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Summary  

SUMMARY 

Platelet activation and aggregation are essential processes for the sealing of injured vessel 

walls and preventing blood loss. Under pathological conditions, however, platelet 

aggregation can lead to uncontrolled thrombus formation, resulting in irreversible vessel 

occlusion. Therefore, precise regulation of platelet activation is required to ensure efficient 

platelet plug formation and wound sealing but also to prevent uncontrolled thrombus formation. 

Rapid elevations in the intracellular levels of cations are a core signaling event during platelet 

activation. In this thesis, the roles of Ca2+ and Mg2+ channels in the regulation of platelet 

function were investigated. 

Orai1, the major store-operated calcium (SOC) channel in platelets, is not only vital for 

diverse signaling pathways, but may also regulate receptor-operated calcium entry (ROCE). 

The coupling between the Orai1 signalosome and canonical transient receptor potential 

channel (TRPC) isoforms has been suggested as an essential step in the activation of store-

operated calcium entry (SOCE) and ROCE in human platelets. However, the functional 

significance of the biochemical interaction between Orai and TRPC isoforms still remains to 

be answered. In the first part of this thesis, the functional crosstalk between Orai1 and 

TRPC6 was addressed. Orai1-mediated SOCE was found to enhance the activity of 

phospholipases (PL) C and D, to increase diacylglycerol (DAG) production and finally to 

regulate TRPC6-mediated ROCE via DAG, indicating that the regulation of TRPC6 channel 

activity seems to be independent of the physical interaction with Orai1. Furthermore, Orai1 

and TRPC6 double deficiency led to a reduced Ca2+ store content and basal cytoplasmic 

Ca2+ concentrations, but surprisingly also enhanced ATP secretion, which may enhance Ca2+ 

influx via P2X1 and compensate for the severe Ca2+ deficits seen in double mutant platelets. 

In addition, Orai1 and TRPC6 were not essential for G protein-coupled receptor (GPCR)-

mediated platelet activation, aggregation and thrombus formation. 

Transient receptor potential melastatin-like 7 (TRPM7) contains a cytosolic serine/threonine 
protein kinase. To date, a few in vitro substrates of the TRPM7 kinase have been identified, 

however, the physiological role of the kinase remains unknown. In the second part of this 

thesis, mice with a point mutation which blocks the catalytic activity of the TRPM7 kinase 

(Trpm7KI) were used to study the role of the TRPM7 kinase in platelet function. In Trpm7KI 

platelets phosphatidylinositol-4,5-bisphosphate (PIP2) metabolism and Ca2+ mobilization were 

severely impaired upon glycoprotein (GP) VI activation, indicating that the TRPM7 kinase 

regulates PLC function. This signaling defect in Trpm7KI platelets resulted in impaired 

aggregate formation under flow and protected animals from arterial thrombosis and ischemic 

brain infarction. Altogether, these results highlight the kinase domain of TRPM7 as a pivotal 

signaling moiety implicated in the pathogenesis of thrombosis and cerebrovascular events. 



Zusammenfassung  

Zusammenfassung 

Die Aktivierung und Aggregation von Thrombozyten sind zwei elementare Prozesse für das 

Abdichten verletzter Gefäßwände und damit zur Verhinderung von exzessivem Blutverlust. 

Unter pathologischen Bedingungen kann die Thrombozytenaggregation jedoch zur 

unkontrollierten Thrombusbildung und folglich zum irreversiblen Gefäßverschluss führen. 

Daher ist eine präzise Regulation der Thrombozytenaktivierung wichtig, um effizient 

Gefäßverletzungen zu schließen aber gleichzeitig eine unkontrollierte Thrombusbildung zu 

verhindern. Schnelle Veränderungen der zytoplasmatischen Konztentration von Kationen 

stellen ein Kernelement der Signaltransduktion während der Plättchenaktivierung dar. In 

dieser Arbeit wurden die Rolle von Ca2+ und Mg2+ Kanälen in der Regulation der 

Thrombozytenfunktion untersucht. 

Orai1, der bedeutendste store-operated calcium (SOC) Kanal in Thrombozyten, ist nicht nur 

entscheidend für verschiedene Signalwege, sondern reguliert möglicherweise auch 

receptor-operated calcium entry (ROCE). Die Kopplung zwischen dem Orai1-Signalkomplex 

und canonical transient receptor potential channel (TRPC) Isoformen wurde als 

entscheidender Schritt in der Aktivierung in der Aktivierung von store-operated calcium entry 

(SOCE) und ROCE in humanen Thrombozyten vermutet. Die Frage nach der funktionellen 

Relevanz der Interaktion zwischen Orai und TRPC Isoformen blieb jedoch unbeantwortet. 

Im ersten Teil dieser Arbeit wurde der funktionelle Crosstalk zwischen Orai1 und TRPC6 

adressiert. Hierbei zeigte sich, das Orai1-vermittelter SOCE die Aktivität der Phosholipasen 

(PL) C und D steigert, die Diacylglycerol (DAG) Produktion verstärkt und schließlich TRPC6-

vermittelten ROCE via DAG reguliert, was darauf hindeutet, dass die Regulation der TRPC6 

Kanalaktivität unabhängig von einer direkten Interaktion mit Orai1 zu sein scheint. Darüber 

hinaus führte die Doppeldefizienz von Orai1 und TRPC6 zu verringerten Ca2+ 

Konzentrationen in intrazellulären Ca2+-Speichern und im Zytoplasma der Thrombozyten. 

Überraschenderweise war auch die ATP-Sekretion erhöht, was eventuell den Ca2+-Einstrom 

durch P2X1 verstärkt und möglicherweise das starke Ca2+-Defizit in den doppeldefizienten 

Thrombozyten kompensiert. Außerdem wurde gezeigt, dass Orai1 und TRPC6 nicht für die 

Aktivierung und Aggregation von Thrombozyten sowie für die Thrombusbildung mittlels G 

protein-gekoppelter Rezeptoren (GPCR) benötigt werden.  

Transient receptor potential melastatin-like 7 (TRPM7) enthält eine zytosolische 

Serin/Threonin-Kinase Domain. Bislang wurden zwar wenige in vitro Substrate der TRPM7 

Kinase identifiziert, jedoch ist die physiologische Rolle dieser Kinase immer noch unbekannt. 

Im zweiten Teil dieser Arbeit wurden Mäuse mit einer Punktmutation, welche die 

katalytische Aktivität der TRPM7 Kinase blockiert (Trpm7KI) eingesetzt um die Rolle der 

TRPM7 Kinase für die Funktion von Thrombozyten zu untersuchen. In Trpm7KI 



Zusammenfassung  

Thrombozyten war der Metabolismus von phosphatidylinositol-4,5-bisphosphat (PIP2) und 

die Ca2+-Mobilisierung nach Aktivierung des Rezeptors Glykoprotein (GP) VI schwer 

beeinträchtigt, was darauf hindeutet, dass die Aktivität der TRPM7 Kinase die Funktion der 

PLC reguliert. Aus diesem Signaltransduktionsdefekt in Trpm7KI Thrombozyten resultierte 

eine verringerte Aggregatbildung unter Flussbedingungen und ein Schutz der Tiere vor 

arteriellen Thrombosen und ischämischem Schlaganfall. Zusammenfassend heben diese 

Ergebnisse die Kinasedomäne von TRPM7 als einen ausschlaggebenden Bestandteil in 

Signalkaskaden hervor und implizieren eine Rolle dieser Domäne in der Pathogenese von 

ischämischen Kardio- und zerebrovaskulären Erkrankungen. 
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Introduction  

1 INTRODUCTION 

1.1 Platelets 

At the end of the eighteenth century, platelets were first described as particles smaller than 

leukocytes and erythrocytes in the blood system. In the years 1881-1882, Giulio Bizzozzero 

for the first time discovered the activity of platelets and their physiological function in 

hemostasis and thrombosis. Over the last 130 years, the understanding of platelets and their 

important role in hemostasis and thrombosis has remarkably increased.  

Platelets are anuclear and discoid-shaped cells, deriving from megakaryocytes. In human 

blood, the platelet number is about 150,000-350,000 platelets/µL and the platelet size is 3-4 

µm in diameter, whereas in mouse blood the platelet count is approximately 1,000,000 

platelets/µL and the platelet diameter is 1-2 µm. Platelets have a limited life span in the blood 

stream. Platelets circulate for about ten and five days in human and mouse, respectively, 

before they are cleared by the reticulo-endothelial system in spleen and liver. Platelets play 

an important role in hemostasis. After vessel wall injury, exposed components of the 

extracellular matrix (ECM) trigger platelet activation and adhesion. Activated platelets 

subsequently release soluble mediators, which together with locally produced thrombin lead 

to the recruitment of further platelets, thus resulting in the rapid formation of a platelet plug. 

Platelet plug formation is essential for sealing injured vessel walls and preventing excessive 

blood loss. However, under pathological conditions, platelet aggregation may lead to 

uncontrolled thrombus formation, which causes vessel occlusion or embolism, which may 

result in severe diseases such as myocardial infarction and stroke. These two diseases are 

the leading causes of death in developed nations.1  

Since platelets have this double-edge sword function, their activation has to be precisely 

regulated to ensure efficient platelet plug formation and wound sealing but to prevent 

uncontrolled thrombus formation as well. To maintain this equilibrium, platelets possess 

various receptors and regulation mechanisms. 

1.2 Platelet activation and thrombus formation 

After injury of the vessel wall, platelets are activated and thrombi are formed at the sites of 

injury. This process involves multiple signaling events, which can be divided into three distinct 

steps: (1) tethering, (2) activation and (3) firm adhesion and thrombus growth (Figure 1-1).  

In the first step, platelets initially get in contact with the exposed ECM, which comprises 

adhesive molecules like collagens, laminins, fibronectin and von Willebrand Factor (vWF). 

This contact is mediated by the interaction between the platelet glycoprotein (GP)Ib-IX-V 
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complex and vWF, which is immobilized on collagen of the ECM.2 Under high shear 

conditions, the GPIb-vWF interaction is insufficient to allow stable adhesion, however it slows 

the platelets down, resulting in platelets “rolling” on the vessel wall at the site of injury.  

Due to the tethering step, platelets have the opportunity to interact with the ECM protein 

collagen via the platelet-specific immunoglobulin superfamily receptor GPVI.3-5 This interaction 

triggers intracellular signaling via the immunoreceptor tyrosine-based activation motif (ITAM) 

and induces an intracellular Ca2+ signal, thereby inducing the release of “second wave” 

mediators, such as thromboxane A2 (TxA2), adenosine diphosphate (ADP) and epinephrine. 

In addition, thrombin is locally produced from the zymogen prothrombin. These “second 

wave” mediators and thrombin can bind to G protein-coupled receptors (GPCRs) and 

contribute to the full activation of platelets. In addition, the hemITAM receptor C-type lectin-

like receptor 2 (CLEC-2) can trigger platelet activation as well. Recently, podoplanin was 

proposed to directly bind and activate CLEC-2,6 but the physiological ligand of CLEC-2 

inducing intravascular platelet activation and thrombus formation still remains largely 

unknown.7 The GPVI-collagen interaction and the GPCR activation trigger an “inside-out” 

activation of the integrins αIIbβ3, α2β1, α5β1 and α6β1, which turn from a low- into a high-

affinity binding state.  

 

Figure 1-1: Platelet activation and aggregation on the ECM. At sites of vessel wall injury, the 
GPIb-vWF interaction triggers platelet tethering and enables the close contact of platelets with the 
ECM. GPVI subsequently binds to collagen, resulting in the release of secondary mediators ADP and 
TxA2 and the shift of integrins from a low-affinity state to an activated high-affinity state. Secondary 
mediators, as well as locally produced thrombin, further enhance platelet activation and thrombus 
growth. In addition, CLEC-2-mediated signaling contributes to platelet activation as well. High-affinity 
integrins mediate firm adhesion of platelet by binding to ligands on the ECM (α2β1, αIIbβ3) and 
thrombus growth by bridging platelets via fibrinogen and vWF (αIIbβ3).  (Picture is taken from: 
Stegner and Nieswandt, J Mol Med, 2011).8 
 

In the third step, the high-affinity integrins bind to their ligands and induce firm platelet 

adhesion and thrombus growth. Platelets express three β1 integrins, α2β1, α5β1 and α6β1, 
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which bind to collagen, fibronectin and laminin, respectively, whereas the most abundant 

integrin αIIbβ3 (GPIIb/IIIa) binds to fibrinogen and collagen-bound vWF on the ECM.9 Ligand-

bound integrins in turn transduce “outside-in” signals which induce platelet shape change, 

spreading and clot retraction.10,11 Finally, thrombus growth is reinforced by recruitment and 

activation of additional platelets from the blood stream by the released mediators ADP and 

TxA2 and subsequent clustering of platelets via plasma fibrinogen and vWF. 

1.3 Signaling events during platelet activation 

In platelets, two principal signaling pathways induce platelet activation. First, soluble agonists, 

like thrombin, ADP, TxA2 and epinephrine bind to GPCRs and induce the downstream 

signalings via G proteins (Gq, G12/13, Gi, Gz).12 Gq proteins activate phospholipase (PL) Cβ,13 

leading to intracellular Ca2+ mobilization via inositol-1,4,5-trisphosphate (IP3) and protein 

kinase C (PKC) activation via diacylglycerol (DAG). G12/13 proteins stimulate Ras homolog 

gene family (Rho)-GTPase activity, which is critical for platelet cytoskeletal rearrangement, 

shape change and cell spreading.14-17 The βγ complex of Gi proteins regulates various 

effectors, such as phosphatidylinositol 3-kinase (PI3K), contributing to αIIbβ3 integrin 

activation,18,19 and the α-subunit of Gi proteins and Gi-type G protein Gz inhibit adenylyl 

cyclase (AC), which leads to the decrease of cyclic adenosine monophosphate (cAMP) levels, 

facilitating platelet activation (Figure 1-2).12,20,21 

The other pathway involves platelet adhesion receptors, such as GPVI and CLEC-2. GPVI is 

non-covalently associated with a disulfide-linked Fc receptor (FcR) γ chain homodimer, which 

bears ITAMs.22 Activation of GPVI by collagen binding results in the recruitment of two Src- 

family kinases (SFKs) Fyn and Lyn to the FcRγ chain ITAM, leading to the tyrosine 

phosphorylation of the ITAMs and spleen tyrosine kinase (Syk).23,24 Subsequently, a 

downstream tyrosine phosphorylation is initiated, which involves several adapter proteins, 

such as linker of activated T cells (LAT) and SH2 domain-containing leukocyte protein of 76 

kDa (SLP-76), leading to the activation of effector proteins, most notably PLCγ2. PLCγ2 

activation triggers the generation of DAG and IP3, leading the activation of PKC and 

intracellular Ca2+ mobilization. Similarly, CLEC-2, the receptor for the snake venom toxin 

rhodocytin,25 bears a YXXL motif with a single tyrosine residue termed hemITAM, which 

resembles the ITAM. Activation of CLEC-2 triggers a tyrosine phosphorylation cascade and 

subsequently induces activation of PLCγ2 (Figure 1-2). 

In both signaling pathways, PLC isoforms are activated, and consequently IP3 and DAG are 

generated by the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2). IP3 triggers Ca2+ 

release from the intracellular Ca2+ stores and subsequent Ca2+ influx through store-operated 

calcium (SOC) channel in the plasma membrane (PM).26 On the other hand, DAG activates 
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PKC and contributes to receptor-operated calcium entry (ROCE) in platelets.27 The elevation 

of the intracellular Ca2+ concentrations ([Ca2+]i) is essential for platelet activation, firm 

adhesion and stable aggregation, as well as granule secretion. In platelets, there are two 

major types of secretory granules: α-granules and dense granules. As the largest and most 

abundant secretory granules, α-granules contain a large number of proteins including platelet 

factor 4, β-thromboglobulin, coagulation factor V, thrombospondin, fibronectin, vWF and P-

selectin. In contrast, dense granules contain high concentrations of small molecules, such as 

ADP, adenosine triphosphate (ATP), serotonin and Ca2+. These small molecules, released 

from α-granules and dense granules, amplify platelet activation, aggregation and thrombus 

growth. 

 
 
Figure 1-2: Major signaling pathways in platelets. Two principal signaling pathways exist in 
platelets. Soluble agonists, such as thrombin, ADP, TxA2 and epinephrine induce various intracellular 
signaling pathways via GPCRs, leading to the activation of PLCβ, Rho-GTPases, PI3K and inhibition 
of AC. Adhesion receptors, such as GPVI, CLEC-2 and active integrins induce PLCγ2 activation upon 
ligand binding. In both pathways, the activation of PLC isoforms leads to IP3 and DAG production. IP3 
and DAG induce the elevation of the intracellular Ca2+ concentrations, which is critical for full platelet 
activation. Abbreviations: TF, tissue factor; TP, TxA2 receptor; PAR, protease-activated receptor; Rho-
GEF, Rho-specific guanine nucleotide exchange factor; PIP2, phosphatidylinositol-4,5-bisphosphate; 
PIP3, phosphatidylinositol-3,4,5-trisphosphate; (Picture is taken from: Stegner and Nieswandt, J Mol 
Med, 2011).8 
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1.4 Calcium signaling in platelets 

Ca2+ is an ubiquitous second messenger in virtually every cell, which regulates a broad 

spectrum of cellular functions including gene transcription, exocytosis, cell motility, cell cycle 

and apoptosis.28 The increase of the cytoplasmic Ca2+ concentrations can be achieved by the 

following two ways: release from the intracellular Ca2+ stores or Ca2+ influx into the cell via 

Ca2+ channels located in the PM. In eukaryotic cells, it is firmly established that the 

endoplasmic/sarcoplasmic reticulum (ER/SR)-like structure termed dense tubular system 

(DTS) and mitochondria are the major intracellular Ca2+ stores.29,30 However, growing 

evidence indicates that additional organelles like the Golgi apparatus, lysosomes, the nuclear 

envelope and secretory granules play a role in intracellular Ca2+ mobilization.31,32 Regarding 

to Ca2+ channels in the PM, a variety of different Ca2+-permeable channels have been 

identified. The main channels are: (1) voltage-gated Ca2+ channels, which are found in 

electrically excitable cells like nerve and muscle cells, but are largely excluded from 

electrically nonexcitable cells; (2) receptor-operated Ca2+ (ROC) channels, operated by 

extracellular and intracellular ligand binding, are found mainly in excitable cells and some in 

nonexcitable cells; (3) store-operated Ca2+ channels, which are widespread, almost existing 

in all eukaryotes from yeasts to humans.33,34 In nonexcitable cells, SOC channels are the 

major Ca2+ channels mediating store-operated calcium entry (SOCE), in which the depletion 

of intracellular Ca2+ stores activates SOC channels and induces subsequent Ca2+ influx 

across the PM.28 

In platelets, Ca2+ plays a central role for several processes. The elevation of [Ca2+]i is an 

essential step for platelet activation and is also vital for cytoskeleton reorganization, 

aggregation, firm adhesion and granule secretion.35 Similar to other cell types, the increase 

of [Ca2+]i in platelets originates from two major sources: Ca2+ release from intracellular stores 

and Ca2+ influx via Ca2+  channels in the PM. 

Based on the expression pattern of two different sarcoplasmic/endoplasmic reticulum Ca2+ 

ATPase (SERCA) isoforms on the surface of cellular organelles and their affinity to SERCA 

inhibitors, two distinct Ca2+ stores exist in platelets. SERCA2b isoform is expressed on the 

Ca2+ store membrane which is IP3 and thapsigargin (TG) sensitive. These features indicate 

that this store is located in the DTS. Another SERCA isoform called SERCA3, which is 

strongly expressed in the store membrane, shows lower sensitivity to TG but high sensitivity 

to 2,5-di-(t-butyl)-1,4-hydroquinone (TBHQ). Although the subcellular localization of this Ca2+ 

store is unknown in platelets, this Ca2+ store seems to be located in acidic organelles, like 

lysosomes.36-39 

Up to now, several intracellular messengers that control Ca2+ store release have been found: 

IP3, cyclic adenosine 5’-diphosphoribose (cADPR), nicotinic acid-adenine dinucleotide 
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phosphate (NAADP), and sphingolipid-derived messengers.40 In platelets, the major route of 

store release is IP3-induced store depletion via the IP3 receptor (IP3R), which forms a Ca2+-

permeable channel. The N-terminus of the IP3R binds IP3, which is required for the channel 

activity. Interestingly, the N-terminus also contains an inhibitory region which suppresses the 

binding affinity to IP3. The cytosolic C-terminus forms the pore unit of the Ca2+ channel and 

contains an activating domain.41 Three isoforms of IP3R have been identified: IP3R1, IP3R2 

and IP3R3. In platelets, all three isoforms have been found, however the predominant ones 

are IP3R1 and IP3R2.42 

 

Figure 1-3: Calcium signaling in platelets. Through GPCR signaling pathways or (hem)ITAM 
signaling pathways, PLC isoforms can be activated to hydrolyze PIP2 to IP3 and DAG. IP3 leads to 
store depletion and triggers STIM1 to interact with Orai1 and to open Orai1 channel in the plasma 
membrane, allowing SOCE. DAG mediates ROCE through TRPC6. Additionally, P2X1 can be 
activated by ATP and contribute to the increase of [Ca2+]i. In contrast, SERCAs, PMCAs and NCX can 
pump Ca2+ back into the stores or out of the cell. (Picture is modified from: Braun A, Vögtle T, Varga-
Szabo D, Nieswandt B. Front Biosci. 2012).43 

Under resting conditions, the basal [Ca2+]i remains constantly low due to the combined effects 

of Ca2+ pumps and exchangers located in the PM and the Ca2+ store membrane: upon Ca2+ 

release via the IP3R or Ca2+ influx via Ca2+ channels, SERCA isoforms become activated and 

rapidly pump extra cytoplasmic Ca2+ into the stores. In addition, plasma membrane Ca2+- 

ATPase (PMCA) isoforms and Na+/Ca2+ exchanger (NCX) can also reduce the [Ca2+]i. 

However, in stimulated cells this equilibrium is changed because of the activation of PLC 

enzymes. The PLCβ isoform is solely activated by Gq proteins, which can be stimulated by 
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soluble agonists such as thrombin, ADP and TxA2, while PLCγ2 is activated by downstream 

regulatory pathways of the (hem)ITAM receptors and integrin αIIβ3. The activated PLC 

isoforms subsequently hydrolyze PIP2 into IP3 and DAG. IP3 production leads to the depletion 

of the Ca2+ stores, which triggers the activation of the SOC channel, Orai1, via stromal 

interaction molecule (STIM) 1, inducing store-operated Ca2+ entry,26 whereas DAG can 

activate the ROC channel canonical transient receptor potential channel (TRPC) 6 in the PM 

and induce receptor-operated Ca2+ entry (Figure 1-3).27 In platelets, SOCE and ROCE are 

the two predominant Ca2+ entry routes. 

1.4.1 Store-operated calcium entry 

It is well established that in platelets the major Ca2+ entry route is SOCE.26 The concept of 

SOCE, which was first proposed in 1986, was derived from research in investigating the 

relationship between Ca2+ release from the stores, Ca2+ influx and store refilling in parotid 

acinar cells.44 It was found that in nonexcitable cells, the Ca2+ store content controls the Ca2+ 

influx, which is originally termed capacitive calcium entry (CCE). When the stores are full, no 

Ca2+ influx occurs, whereas when the stores are emptied, Ca2+ influx develops. These 

findings indicate that SOCE can be induced by store depletion. Under physiological 

conditions, store depletion is evoked by the increase of IP3 or other Ca2+-releasing signals. 

Moreover, several experimental methods have been developed to empty the stores: (1) the 

elevation of IP3 after activating PLC isoforms with agonists; (2) the application of the SERCA 

pump specific inhibitor, thapsigargin, to prevent store refilling; (3) the application of Ca2+ 

ionophores, like ionomycin or A23187, which permeabilize the store membrane.45-48 

1.4.1.1 STIM1 

Although it was long known that SOCE is triggered by store depletion, the molecular 

mechanism was revealed just several years ago. The breakthrough in understanding this 

mechanism is the discovery of STIM1. In 2005, by using RNAi-based screening, STIM1 was 

identified as the Ca2+ sensor in the endoplasmic reticulum (ER) in Drosophila S2 cells and 

Jurkat T cells. It was shown that the EF hand domain of STIM1, located in the ER lumen, is 

the key domain for binding Ca2+. In a wild type cell line, only when stores are depleted, the 

EF hand domain of STIM1 loses its bound Ca2+, which triggers STIM1 to redistribute to 

“puncta” and activate SOC channels in the PM. However in EF hand mutant cell line, EF 

hand domain fails to bind Ca2+ even under resting conditions, resulting in “false store 

depletion” and permanent opening of the SOC channels.49,50 

In platelets, the same phenomenon was found in a mouse line with a single amino acid (AA) 

mutation (D84G) in the canonical EF hand of STIM1, termed Sax (Stim1Sax/+; named after the 
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Bulgarian king Saxcoburgotski who suffered from a bleeding disorder). Stim1Sax/+ platelets 

display constitutively opened SOC channels, resulting in macrothrombocytopenia and an 

associated bleeding disorder.51 In contrast, the elimination of STIM1 in Stim1-/- platelets leads 

to the complete lack of SOCE and a severely impaired Ca2+ response to all major platelet 

agonists.52 These findings together demonstrate that STIM1 is essential for SOCE in 

platelets. Moreover, in Stim1-/- platelets, reduced Ca2+ store release upon agonist stimulation 

was demonstrated.52 A similar observation was also reported in Stim1-/- mast cells,53 

indicating that STIM1 could be involved in the refilling process of the Ca2+ store. 

1.4.1.2 Orai1 

In 2006, three independent groups identified the second essential component of SOCE, 

Orai1, a plasma membrane protein with four predicted transmembrane domains.54-59 Feske 

et al. discovered that SOCE is defective in patients with a hereditary severe combined 

immune deficiency (SCID). By using single-nucleotide polymorphism arrays and a Drosophila 

RNAi screen, they found that these SCID patients were homozygous for a mutation in Orai1, 

and the expression of normal Orai1 in SCID T cells restored SOCE.54 Vig et al. and Zhang et 

al. showed that Orai1 plays an essential role for SOCE, since Orai1 knockdown by RNAi 

severely disrupted SOCE.55,59 Furthermore, Prakriya et al. showed that the mutation of two 

conserved acid residues in the transmembrane domain of Orai1 resulted in diminished Ca2+ 

influx, but increased influx of monovalent cations like Cs+, indicating that Orai1 is a pore 

subunit of the SOC channel.56 Similarly, Yeromin et al. and Vig et al. observed an altered ion 

selectivity after site-directed mutagenesis of Orai1, demonstrating that Orai1 itself forms the 

Ca2+ selectivity pore of the SOC channel.57,58 

1.4.1.3 Coupling machinery of STIM1 and Orai1 

The identification of STIM1 and Orai1 led to tremendous progress towards the understanding 

of the molecular mechanism of SOCE.  However, a critical question, how STIM1 regulates 

the opening of the SOC channel Orai1, still remains to be answered. Over the last decade, a 

large number of studies have been performed to understand this mechanism. In the current 

model, SOCE can be divided into four phases (from left to right, Figure 1-4). In the first phase, 

the Ca2+ store is full and the EF hand domain of STIM1 binds Ca2+, therefore STIM1 stays in 

a resting state. In the second phase, when the store is depleted, Ca2+ disassociates from the 

EF hand, resulting in the oligomerization of STIM1.60 Subsequently, STIM1 oligomers 

translocate to ER-PM junctions and accumulate at the cell periphery, forming “puncta” 

there.61-63 In the last phase, STIM1 oligomers bind to the SOC channel, which is formed by 

four Orai1 subunits, and this interaction leads to the opening of the SOC channel. 64,65 
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Figure 1-4: Simplified model of SOCE. The process of SOCE can be divided into four phases. The 
details are described in the text. (Figure is modified from Richard S. Lewis. Cold Spring Harb Perspect 
Biol. 2011).66 
 

1.4.1.4 Orai1 is the major SOC channel in mouse platelets 

The Orai channel family comprises three isoforms, Orai1, Orai2 and Orai3. In human and 

mouse platelets all three isoforms have been shown to be expressed by using quantitative 

RT-PCR, however Orai1 is the predominant one.67 Recently, Braun et al. confirmed that 

Orai1 is strongly expressed in mouse platelets. They generated Orai1-/- mice and discovered 

that approximately 60% of the Orai1-/- mice died shortly after birth. Moreover, the surviving 

Orai1-/- mice exhibited severe developmental defects and all Orai1-/- mice died at the latest 4 

weeks after birth. In Orai1-/- platelets, they found that TG-induced SOCE was almost 

completely abolished, establishing that Orai1 is the main SOC channel in mouse platelets. In 

addition, Orai1-/- platelets displayed impaired platelet activation, aggregation and thrombus 

formation under flow. Furthermore, Orai1 deficiency resulted in the resistance to pulmonary 

thromboembolism, arterial thrombosis and ischemic brain infarction.26 Taken together, these 

results established that Orai1 is the major SOC channel in mouse platelets, and it plays a 

critical role in platelet activation during arterial thrombosis and ischemic brain infarction. 

Besides Orai1, members of the superfamily of transient receptor potential (TRP) channels, 

particularly those from TRPC subfamily, have also been suggested as SOC channels. In 

human platelets, TRPC1 has been proposed to mediate SOCE. Rosado et al. reported that in 

human platelets the application of an anti-human TRPC1 blocking antibody led to reduced 

SOCE.68 In addition, they proposed a model where STIM1 interacts with TRPC1 and 

activates TRPC1.69 However in mouse platelets, TRPC1 deficiency did not result in either 
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impaired Ca2+ store release or reduced SOCE.70 Moreover, Trpc1-/- mice were intercrossed 

with Stim1Sax/+ mice, in which SOC channels are constitutively opened,51 to generate      

Trpc1-/-Sax/+ mice. In these mice, TRPC1 deficiency could not rescue the phenotypes that 

Stim1Sax/+ mice present, such as macrothrombocytopenia and elevated [Ca2+]i.70 Furthermore, 

the expression level of TRPC1 in megakaryocytes and platelets is extremely low.70 Taken 

together, these findings reveal that TRPC1 plays a minor role in Ca2+ homeostasis in mouse 

platelets and Orai1 is the major SOC channel in mouse platelets.  

1.4.2 Receptor-operated calcium entry 

Besides SOCE, other Ca2+ influx mechanisms also exist in platelets. Among them, ROCE, 

operated by DAG or purinergic, is the predominant one. 

1.4.2.1 Phospholipase-mediated DAG production 

There are two major routes of DAG production in platelets. One is through PLC isoforms. As 

described above, receptor-mediated activation of PLC isoforms leads to the hydrolysis of 

PIP2 into IP3 and DAG. The other route is mediated by PLD isoforms. PLD hydrolyses 

phosphatidylcholine (PC) to phosphatidic acid (PA) and choline in the lipid raft. The life time 

of PA is very short, since PA-phosphatases convert PA to DAG and inorganic phosphate 

during platelet activation.71,72 The intracellular DAG concentration [DAG]i is tightly regulated 

by DAG kinase, which converts DAG back to PA.73 Sustained elevations of DAG are 

essential to regulate Ca2+ channels and other DAG-dependent signaling pathways. For 

instance, CalDAG-GEF, Rap1b and PKC-mediated integrin activation are dependent on 

[Ca2+]i and [DAG]i in platelets.27,74 

1.4.2.2 TRPC6 

TRPC6, which is robustly expressed in both human and mouse megakaryocytes and 

platelets, 75,76 has been suggested as a ROC channel instead of a SOC channel.75,77 Recently, 

Ramanathan et al. showed that in Trpc6-/- platelets TG-induced SOCE was unaltered, 

confirming that TRPC6 is not a SOC channel in mouse platelets. Furthermore, they 

discovered that the application of 1-oleoyl-2-acetyl-sn-glycerol (OAG), an analogue of DAG, 

induced Ca2+ influx in Wt platelets, however, in Trpc6-/- platelets this Ca2+ influx was virtually 

completely abolished, establishing TRPC6 as the predominant DAG-mediated Ca2+ channel 

in mouse platelets.27 However, Harper et al. pointed out that TRPC6 is not the only DAG- 

mediated ROC channel expressed in mouse platelets, but TRPC3 is also expressed in 

mouse platelets and operated by DAG.78  

TRPC6 seems not essential for platelet function. Trpc6-/- platelets displayed unaltered life 
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span, integrin αIIbβ3 activation, degranulation, aggregation, adhesion, cytoskeletal 

reorganization and spreading compared to Wt platelets.27 In vivo studies also showed that in 

Trpc6-/- mice intravascular thrombus formation after mechanical injury of the abdominal aorta 

and after FeCl3-induced chemical injury of the mesenteric arterioles and the carotid artery 

was unaltered.27 Taken together, these findings suggest that lack of TRPC6 functions is 

redundant and can be compensated by other Ca2+ channels. 

1.4.2.3 P2X1 

Another ROC channel in the PM of platelets is the P2X1 channel. P2X receptors have seven 

isoforms (P2X1-P2X7), which are identified in mammalian cells. Among these receptors, P2X1 

is the only one expressed in megakaryocytes and platelets at a significant level.79,80 P2X1 is 

operated directly by ATP, whereas ADP has been suggested to play an inhibitory effect on 

this channel.81 The activation of the P2X1 channel evokes a rapid Ca2+ influx, dense granule 

centralization, shape change and a low level of aggregation.82-84 In addition, P2X1 activation 

promotes platelet responses to thrombin and collagen, subsequently triggering an amplifying 

signal.83,85,86 However, the activation of the P2X1 channel is transient, because of its fast 

desensitization by the released ADP. Therefore, to investigate the P2X1 channel in vitro, a 

high concentration of apyrase is required to scavenge the released ADP.83,84,87 

1.4.3 Crosstalk between Orai1 and TRPC6 

In human platelets, the heteromeric interaction between Orai and TRPC isoforms has been 

suggested. It was shown that human (h) Orai1 interacted directly with the N- and C-termini of 

hTRPC3 and hTRPC6 in a GST pull-down assay. Furthermore, via this interaction Orai 

proteins regulated TRPC channels and enabled them to respond to the store depletion.88 In 

addition, hTRPC6 was reported to interact with either both hOrai1 and hSTIM1 or hTRPC3 to 

participate in SOCE or ROCE, respectively. When the Ca2+ store was depleted, the 

interaction between hTRPC6 and the Orai1-STIM1 complex was enhanced and hTRPC6 

contributed to SOCE. In contrast, when platelets were stimulated by OAG, the interaction 

between hTRPC6 and the Orai1-STIM1 complex disassociated and the interaction between 

hTRPC6 and hTRPC3 was enhanced, therefore hTRPC6 participated in ROCE in this 

situation.89  Another dynamic coupling model between Orai proteins and TRPC isoforms was 

proposed in 2012. Depletion of the intracellular Ca2+ stores led to the formation of a signaling 

complex involving hSTIM1, hSTIM2, hOrai1, hOrai2, hTRPC1 and hTRPC6. Whereas, OAG 

stimulation resulted in the association of hOrai3 with hTRPC3.69 

However, DeHaven et al. reported that TRPC channels function independently of STIM1 and 

Orai1.90 By using the human kidney cell line HEK293, transiently expressing TRPC1, TRPC3, 
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TRPC5 or TRPC6, they observed that the overexpression of STIM1 did not enhance their 

activities. Furthermore, RNAi knockdown of STIM1 did not affect the Ca2+ influx through 

TRPC5, TRPC6 or TRPC7. Thus, TRPC channels seem not to be regulated by STIM1. In 

mice, Orai1-/- platelets displayed normal OAG-induced Ca2+ entry via TRPC6, and in addition, 

TRPC6 deficiency did not affect TG-induced SOCE via Orai1, suggesting that Orai1 and 

TRPC6 function independently of each other.26,27  

Therefore, the functional crosstalk between Orai and TRPC isoforms remains controversial. 

1.5 The role of magnesium in platelets 

Besides Ca2+, Mg2+ is also a very important cation found in all tissues. In mammalian cells, 

Mg2+ can be stored in the ER and mitochondria.91,92 Mg2+ is a cofactor for many enzymes and 

plays a vital role in binding nucleotides and stabilizing nucleic acids. Mg2+ influences many 

cellular processes, such as neuromuscular excitability and hormone secretion. Aberrant Mg2+ 

homeostasis is associated with several disorders, including cardiovascular diseases.93 Low 

Mg2+ levels in blood serum, termed hypomagnesaemia, have been shown to associate with 

the development of metabolic syndrome, diabetes mellitus, hypertension, acute myocardial 

infarction, inflammation and pre-eclampsia.94-99 In contrast, high serum Mg2+ concentrations, 

termed hypermagnesaemia, can result in neuromuscular, cardiac and nervous disorders.100 

Unlike the extracellular Mg2+ deficiency, an intracellular Mg2+ deficiency cannot be easily 

recognized during development of human diseases. Since about 99% of total body Mg2+ is 

stored in bones, muscles and liver,101 and these Mg2+ stores can maintain normal Mg2+ levels 

in the blood for a long period of time without indication of intracellular Mg2+ deficits. 

In megakaryocytes and platelets, no intracellular Mg2+ stores have been described so far, 

however, extracellular Mg2+ levels have been reported to influence platelet activity. A high 

extracellular Mg2+ concentration has been shown to inhibit platelet aggregation induced by 

ADP, thrombin, collagen and the stable TxA2 analogue U46619.102-105 In addition, Mg2+ can 

affect TxA2 synthesis, ATP secretion and ß-thromboglobulin release.106 Mg2+ can also 

influence vascular PGI2 synthesis and blood coagulation.105 Furthermore, Mg2+ has been 

considered as a natural “calcium antagonist”.107 Mg2+ and Ca2+ compete with each other for 

the same binding sites of receptors on the PM.98,108 It was shown that Mg2+ can reduce 

thrombin-stimulated Ca2+ influx in platelets.106 In summary, all these studies lead to a 

conclusion that Mg2+ seems to play a role in Ca2+ homeostasis and platelet activity, thereby 

influencing thrombosis and hemostasis. 

1.5.1 Mechanisms of Mg2+ influx 

Although Mg2+ plays such a vital role in numerous cellular functions and it is linked to a 
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variety of diseases, the regulating mechanisms of intracellular Mg2+ mobilization and Mg2+ 

influx remain unclear. For a long time, the negative membrane potential on the inside of the 

cells was considered to serve as a force to drive Mg2+ influx either through ion channels or 

carriers. However, whether such Mg2+ transporters exist remained unclear until the 1990s. In 

the 1990s, metabolic or hormonal stimuli were found to result in the rapid increase of the 

[Mg2+]i in lymphocytes, erythrocytes, cardiac myocytes and liver cells. Importantly, this Mg2+ 

influx can be influenced by ion channel blockers. These findings indicate that Mg2+ channels 

or transporters are expressed in these cells. Furthermore, genetic studies in eukaryotic cells 

have identified several Mg2+ channels and transporters to be involved in the regulation of the 

Mg2+ homeostasis.109-116 So far, a variety of Mg2+ transporters have been identified (Table 1). 

 
                                                     Location                                              Associated Disease 

 

          Mrs2 

    Mrs2p                                   Mitochondria 

         TRPM 

    TRPM7                              Plasma membrane                         Guamanian ALS/Parkinsonism dementia 

    TRPM6                              Plasma membrane                                                  HSH   

         MagT 

    MagT1                               Plasma membrane   

    TUSC3 or N33                   Plasma membrane                                   Tumor suppressor gene 

          SLC41 

               SLC41 A1                  

               SLC41 A2                           Plasma membrane 

               SLC41 A3                  

          ACDP 

               ACDP1                               Plasma membrane                                                  UFS 

               ACDP2 or Cnnm2     

               ACDP3                      

               ACDP4                      

          MMgT 

              MMgT1                          Golgi, post-Golgi vesicles 

              MMgT2                          Golgi, post-Golgi vesicles 

         NIPA 

              NIPA1                                 Plasma membrane                                                   HSP 

              NIPA2                                 Plasma membrane                              

              NIPA3                       

              NIPA4                       

         HIP14 

              HIP14                       Golgi, subplasma membrane vesicles                     Huntington disease 

              HIP14L                     Golgi, subplasma membrane vesicles                     Huntington disease 

        MagC 

    MagC1                     

 
Table 1: Mammalian Mg2+ transporters. Abbreviations: ALS, amyotrophic lateral sclerosis; HSH, 
hypomagnesaemia with secondary hypocalcemia; UFS, urofacial syndrome; HSP, hereditary spastic 
paraplegia. (Table is modified from Quamme GA. Am J Physiol Cell Physiol. 2010).117  
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As depicted in Table 1, the Mg2+ transporters are mainly located in the PM, and some of them 

are located in mitochondria and the Golgi apparatus. Among these transporters, two transient 

receptor potential melastatin-like (TRPM) ion channels, TRPM6 and TRPM7 have been 

reported to be essential for Mg2+ influx and homeostasis.118,119 

1.5.2 The role of TRPM6 and TRPM7 channels in Mg2+ homeostasis 

TRPM6 and TRPM7 are constitutively opened Mg2+-permeable channels. TRPM6 is uniquely 

found along the full length of the intestine, in the kidney nephron, and in lung and testis 

tissues. 120-122 This specific localization enables TRPM6 to control the whole-body Mg2+ 

homeostasis by regulating intestinal Mg2+ absorption and renal Mg2+ reabsorption.109,115,116 It 

has been shown that TRPM6 mutation results in the syndrome of HSH, which is 

characterized by low serum Mg2+ levels.119,123 More recently, Trpm6-/- mice have been 

developed. Most Trpm6-/- mice died by embryonic day 12.5, and only very few Trpm6-/- mice 

could survive with severe neural tube defects such as exencephaly and spina bifida 

occulta.124 Another group reported similar findings that homozygous TRPM6 deletion leads to 

embryonic lethality whereas heterozygous TRPM6 deletion results in a mild 

hypomagnesaemia.125 

Unlike TRPM6, TRPM7 is ubiquitously expressed in virtually all cell types and plays a role in 

controlling Mg2+ homeostasis in individual cells.118,126,127 It has been shown that the deletion 

of TRPM7 in an avian cell line results in intracellular Mg2+ depletion and growth arrest.118,128 

However in murine T cell, TRPM7 deletion does not affect acute uptake of Mg2+ or the 

maintenance of intracellular Mg2+ concentrations.129 These findings indicate that TRPM7 is 

important for regulating intracellular Mg2+ homeostasis, however it may be not the only Mg2+ 

transporter to fulfill this function.  

Interestingly, TRPM6 and TRPM7 have been reported to form heterooligomeric complexes. 

TRPM7 was demonstrated to be necessary for TRPM6 trafficking to the PM, whereas 

TRPM6 was not essential for TRPM7 trafficking.119,121,130 Furthermore, it has been shown that 

TRPM7-deficient cells cannot be complemented by TRPM6 expression, however TRPM6 can 

modulate TRPM7 function by phosphorylation.128 In addition, Chubanov et al. reported that in 

HEK293 cells or X. Laevis oocytes which only express TRPM6, no electrical conductance 

through TRPM6 can be recorded. They suggested that the co-expression of TRPM7 is 

needed for TRPM6 to be incorporated into channel complexes in the PM.120 All these studies 

suggest that TRPM6 cannot function without TRPM7. However, another group reported that 

TRPM6 can fully function in heterologously expressed cell lines.131,132 Moreover, Yue et al. 

reported that pure TRPM6, pure TRPM7 and the TRPM6/TRPM7 complexes constitute three 

distinct ion channels with different divalent cation permeability.133,134 
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1.5.3 TRPM7 

TRPM7 is one of the first identified Mg2+ channels in mammalian cells. It is also permeable to 

Ca2+ and other divalent cations, such as Zn2+, Mn2+ and Co2+. The influx of these divalent 

cations into the cell is mediated by the transmembrane electrochemical gradient.121,132,135,136 

TRPM7 is constitutively opened, and it can be suppressed by the increase of [Mg2+]i or 

intracellular Mg2+-ATP complex levels.136 Furthermore, TRPM7 channel activity can also be 

regulated by the activity of PLC isoforms. It was suggested that the activation of PLCβ via 

GPCR signalings could further enhance the channel activity of TRPM7.137 However, 

contradictory findings exist, reporting that the channel function of TRPM7 will be down-

regulated if PIP2 in the PM is hydrolyzed by PLC isoforms.138,139 

TRPM7 has six transmembrane domains. In addition, it bears a cytoplasmic α-kinase domain, 

serine/threonine (Ser/Thr) kinase, at its C-terminus,121 so that it can also function as Ser/Thr 

kinase (Figure 1-5). Since it function as both channel and kinase, it is termed “chanzyme”. 

 

 
 
Figure 1-5: Structural features of TRPM7. TRPM7 contains six transmembrane domains. The 
cytoplasmic N-terminus contains a domain highly homologous to other members of the melastatin 
TRP channel subfamily (Melastatin domain). The channel domain (red) locates between 
transmembrane helices 5 and 6. At the cytoplasmic C-terminus, there is an α kinase domain, which is 
a serine–threonine-rich region with multiple autophosphorylation sites. (Picture is taken from Tamara 
M. Paravicini, Vladimir Chubanov and Thomas Gudermann. The International Journal of Biochemistry 
& Cell Biology. 2012).140 

1.5.3.1 The physiological role of TRPM7 protein 

TRPM7 is ubiquitously expressed in virtually all cell types and has been suggested to 

regulate several cellular processes including cell growth, cell cycle and cell death.118 141-143 

Recently, it has been shown that the global deletion of TRPM7 results in embryonic lethality 

while the tissue-specific deletion of TRPM7 leads to disrupted thymopoiesis, suggesting an 
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important role of TRPM7 in embryonic development and organogenesis.129,144 Abolished 

TRPM7 function in vitro results in the depletion of [Mg2+]i and growth arrest in the presence of 

normal extracellular Mg2+ concentrations.118,128 It has been reported that TRPM7 plays an 

important role in the pathogenesis of ischemic stroke.145 In the transient middle cerebral 

artery occlusion (tMCAO) model of ischemic stroke, the expression levels of TRPM7 protein 

were found to be up-regulated,146 and the inhibition of TRPM7 function under hypoxia 

enhanced cell viability.147,148 Hence, it is assumed that the up-regulation of TRPM7 and/or the 

enhanced channel activity may induce Ca2+ entry, thereby accelerating cell death during 

stroke development.149 TRPM7 seems to exhibit an ambivalent role in Ca2+ and Mg2+ 

homeostasis, since extracellular Ca2+ influx through TRPM7 could be increased by reactive 

oxygen/nitrogen species and prolonged oxygen and glucose deprivation (OGD).147 Although 

TRPM7-mediated Mg2+ entry can support cell survival under normoxic conditions, TRPM7-

induced Ca2+ entry seems to enhance cell death under hypoxic conditions. 

1.5.3.2 The kinase domain of TRPM7 

As described above, TRPM7 bears a Ser/Thr kinase domain containing multiple 

autophosphorylation sites at the C-terminus. The activating signal of the TRPM7 kinase and 

its downstream effect on cellular functions are still unknown, although the kinase domain is 

proposed to play a role in diverse phosphorylation events. Autophosphorylation of the kinase 

domain of TRPM7 enhances kinase-substrate interactions, leading to the Ser/Thr 

phosphorylation of different substrates.150 However, up to now only a limited number of 

endogenous substrates for the TRPM7 kinase has been identified. Earlier, it was suggested 

that annexin I151 and the heavy chain of myosin IIA152 are phosphorylated by the TRPM7 

kinase. Recently, Schmitz et al. reported the phosphorylation of eukaryotic elongation factor 

2 (eEF2) to be regulated by the TRPM7 kinase via the activation of eEF2-kinase.153  

The TRPM7 kinase has also been reported to directly associate with the C2 domain of PLC 

isoforms including PLCβ, PLCγ and PLCδ.138 In 2012, Schmitz et al. identified some 

phosphorylation sites for the TRPM7 kinase within PLCγ2 in cell culture experiments with the 

DT40 B cell line. They found that the TRPM7 kinase phosphorylates PLCγ2 at position 

Ser1164 in its C2 domain and at position Thr1045 in the linker region preceding the C2 

domain. Furthermore they observed that under hypomagnesic conditions, the mutation of 

Thr1045 in PLCγ2 leads to impaired Ca2+ homeostasis.154 Taken together, these results 

demonstrate that the TRPM7 kinase may influence the enzymatic activity of PLCγ2, thereby 

affecting Ca2+ homeostasis. 

The complete deletion of the kinase domain of TRPM7 leads to the early embryonic 

lethality.144 It was also reported that mice heterozygous for the loss of the TRPM7 kinase 
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reveal reduced Mg2+ concentrations in blood, urine and bones.155 However, the interplay of 

kinase and channel domain remains unclear: some researchers believe that the kinase 

domain is essential for the channel activity,127 while some hold the opinion that the channel 

domain and the kinase domain function independently of each other.156 

So far, the role of TRPM7, especially the kinase domain of TRPM7, in megakaryocyte or 

platelet function has not been determined. 

1.6 AIM OF THE STUDY 

During platelet activation, elevation of [Ca2+]i is an important signaling step. It is well 

established that Orai1-mediated SOCE and TRPC6-mediated ROCE are the two major Ca2+ 

entry routes in mouse platelets. The heterodimerization of Orai and TRPC isoforms has been 

suggested to regulate SOCE and ROCE in human platelets. However, the functional 

significance of the biochemical interaction between Orai and TRPC isoforms still remains 

controversial. One aim of this thesis was to study the functional crosstalk between Orai1 and 

TRPC6 in mouse platelets. 

TRPM7 contains a cytoplasmic Ser/Thr kinase domain at its C terminus. It has been shown 

that the TRPM7 kinase directly interacts with the C2 domain of PLC isoforms in mammalian 

cells. Moreover, in a DT40 cell line several Ser/Thr phosphorylation sites in PLCγ2 were 

identified by the TRPM7 kinase recently, demonstrating that the TRPM7 kinase may regulate 

PLCγ2. Therefore, the other aim of this thesis was to elucidate the role of the TRPM7 kinase 

in platelet phospholipase activity, Ca2+ homeostasis and the development of thrombosis and 

stroke. 
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2 MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Chemicals and reagents 

Reagent Company  

3,3,5,5-tetramethylbenzidine (TMB) BD Biosciences (Heidelberg, Germany) 

β-mercaptoethanol Roth (Karlsruhe, Germany) 

Adenosine diphosphate (ADP) Sigma-Aldrich (Schnelldorf, Germany) 

Agarose Roth (Karlsruhe, Germany) 

Alexa Fluor 488 Invitrogen (Karlsruhe, Germany) 

Amersham Hyperfilm ECL GE Healthcare (Little Chalfont, UK) 

Ammonium peroxodisulfate (APS)  Roth (Karlsruhe, Germany) 

Apyrase (grade III) Sigma (Schnelldorf, Germany) 

Aspirin i.v. 500 mg Bayer (Wuppertal, Germany) 

Atipamezole Pfizer (Karlsruhe, Germany) 

Bovine serum albumin (BSA)  AppliChem (Darmstadt, Germany) 

Calcium chloride Roth (Karlsruhe, Germany) 

Chrono-Lume® 

(d-luciferase/luciferin reagent +ATP standard) 

Probe & go (Osburg, Germany) 

 

Complete mini protease inhibitors (+EDTA) Roche Diagnostics (Mannheim, Germany) 

Convulxin (CVX) Enzo Lifesciences (Lörrach, Germany) 

Disodiumhydrogenphosphate  Roth (Karlsruhe, Germany) 

DMEM medium Gibco (Karlsruhe, Germany) 

dNTP mix Fermentas (St. Leon-Rot, Germany) 

Dry milk, fat-free AppliChem (Darmstadt, Germany) 

Dylight-488 Pierce (Rockford, IL, USA) 

EDTA   AppliChem (Darmstadt, Germany) 

Ethanol Roth (Karlsruhe, Germany) 
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Ethidium bromide Roth (Karlsruhe, Germany) 

Fentanyl Janssen-Cilag (Neuss, Germany) 

Fetal calf serum (FCS) Gibco (Karlsruhe, Germany) 

Fibrillar type I collagen (Horm) Nycomed (Munich, Germany) 

Flumazenil Delta Select (Dreieich, Germany) 

Fluo-3 acetoxymethyl ester (AM) Invitrogen (Karlsruhe, Germany) 

Fluorescein-isothiocyanate (FITC) Molecular Probes (Oregon, USA) 

Forene® (isoflurane) cp-pharma (Burgdorf, Germany) 

Fura2 acetoxymethyl ester (AM) Invitrogen (Karlsruhe, Germany) 

GeneRuler 1kb DNA Ladder  Fermentas (St. Leon-Rot, Germany) 

Glucose Roth (Karlsruhe, Germany) 

HEPES Roth (Karlsruhe, Germany) 

Heparin sodium Ratiopharm (Ulm, Germany) 

Human fibrinogen Sigma-Aldrich (Schnelldorf, Germany) 

IGEPAL CA-630 Sigma-Aldrich (Schnelldorf, Germany) 

Immobilon-P transfer membrane Millipore (Schwalbach, Germany) 

Indomethacin  Alfa Aesar (Karlsruhe, Germany) 

IP1 ELISA kit Cisbio (Paris, France) 

Iron-III-chloride hexahydrate (FeCl3 6H2O) Roth (Karlsruhe, Germany) 

Isopropanol Roth (Karlsruhe, Germany) 

Lipofectamine® 2000 Invitrogen (Karlsruhe, Germany) 

Loading Dye solution, 6× Fermentas (St. Leon-Rot, Germany) 

Magnesium chloride Roth (Karlsruhe, Germany) 

Magnesium sulfate Roth (Karlsruhe, Germany) 

Medetomidine (Dormitor) Pfizer (Karlsruhe, Germany) 

Midazolam (Dormicum) Roche (Grenzach-Wyhlen, Germany) 

Midori Green Advanced DNA stain Nippon Genetics Europe (Düren, 

Germany) 
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Naloxon Delta Select (Dreieich, Germany) 

1-oleoyl-2-acetyl-sn-glycerol (OAG) Sigma (Schnelldorf, Germany) 

PageRuler prestained protein ladder Fermentas (St. Leon-Rot, Germany) 

Paraformaldehyde (PFA) Roth (Karlsruhe, Germany) 

Penicillin-Streptomycin Gibco (Karlsruhe, Germany) 

Phalloidin-rhodamine Invitrogen (Karlsruhe, Germany) 

Phalloidin-Atto647N AttoTec GmbH (Siegen, Germany) 

Phenol/chloroform/isoamylalcohol AppliChem (Darmstadt, Germany) 

Pluronic F-127  Invitrogen (Karlsruhe, Germany) 

Potassium acetate Roth (Karlsruhe, Germany) 

Potassium chloride Roth (Karlsruhe, Germany) 

Prostacyclin (PGI2) Sigma (Schnelldorf, Germany) 

Protease inhibitor cocktail (100×) Sigma-Aldrich (Schnelldorf, Germany) 

Proteinase K Fermentas (St. Leon-Rot, Germany) 

RNeasy Mini Kit Qiagen (Hilden, Germany) 

R-phycoerythrin (PE) EUROPA (Cambridge, UK) 

Rotiphorese gel 30 acrylamide Roth (Karlsruhe, Germany) 

Serotonin ELISA kit LDN (Nordhorn, Germany) 

Sodium chloride AppliChem (Darmstadt, Germany) 

Sodium citrate AppliChem (Darmstadt, Germany) 

Sodiumdihydrogenphosphate  Roth (Karlsruhe, Germany) 

Sodium hydroxide AppliChem (Darmstadt, Germany) 

Sodium orthovanadate Sigma (Schnelldorf, Germany) 

Taq polymerase Fermentas (St. Leon-Rot, Germany) 

Taq polymerase buffer (10×) Fermentas (St. Leon-Rot, Germany) 

Tetramethylethylenediamine (TEMED) Roth (Karlsruhe, Germany) 

Thapsigargin (TG) Invitrogen (Karlsruhe, Germany) 

Thrombin  Roche Diagnostics (Mannheim) 
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TxB2 ELISA kit DRG (Marburg, Germany) 

Triton X-100 AppliChem (Darmstadt, Germany) 

Tween 20 Roth (Karlsruhe, Germany) 

U46619 Enzo Lifesciences (Lörrach, Germany) 

Western lightning chemiluminescence (ECL) PerkinElmer LAS (Boston, USA) 

 

Collagen-related peptide (CRP) was a gift from Prof. Dr. S.P. Watson (University of 

Birmingham, UK). Rhodocytin was provided by Prof. Dr. J. Eble (University Hospital Frankfurt, 

Germany). Annexin V-Dylight-488 was provided by Jonathan F. Tait, Medical Center, 

University of Washington. All Primers were purchased from Metabion (Planegg-Martinsried, 

Germany). All non-listed chemicals were obtained from AppliChem (Darmstadt, Germany), 

Sigma (Schnelldorf, Germany) or Roth (Karlsruhe, Germany). 

2.1.2 Antibodies 

2.1.2.1 Purchased primary and secondary antibodies 

Reagent Company  

Anti-phosphotyrosine 4G10 Millipore (CA, USA) 

Goat anti-rabbit IgG-Alexa-488 Invitrogen (Karlsruhe, Germany) 

Rabbit anti-actin (no. A2066) Sigma-Aldrich (Schnelldorf, Germany) 

Rat anti-mouse IgG-HRP DAKO (Hamburg, Germany) 

Rat anti-tubulin IgG Millipore (CA, USA) 

Rabbit anti-LAT (no. 9166) Cell Signaling (Danvers, MA, USA) 

Rabbit anti-phospho-LAT (Y191) (no. 3584) Cell Signaling (Danvers, MA, USA) 

Rabbit anti-PLCγ2 (product Q20) Santa Cruz Biotechnology (Heidelberg, 
Germany) 

Rabbit anti-phospho-PLCγ2 (Y759) (no.3874) Cell Signaling (Danvers, MA, USA) 

Rabbit anti-Syk (clone D1I5Q) Cell Signaling (Danvers, MA, USA) 

Rabbit anti-phospho-Syk (Y525/526) (clone 
C87C1) 

Cell Signaling (Danvers, MA, USA) 

Mouse anti-α-tubulin (clone B-5-1-2) Sigma-Aldrich (Schnelldorf, Germany) 
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Anti-TRPM7 and anti-phospho-TRPM7 antibodies were kindly provided by Prof. Dr. Thomas 

Gudermann (Walther-Straub Institute for Pharmacology and Toxicology, LMU München).  

2.1.2.2 Monoclonal antibodies (mAbs) used for flow cytometry 

mAbs generated and modified in our laboratory 

Antibody Isotype Antigen 
Described 

in 

DOM2 IgG1 GPV 125 

INU1 IgG1κ CLEC-2 7 

JAQ1 IgG2a GPVI 157  

JON/A IgG2b GPIIb/IIIa 158 

JON1 IgG2a GPIIb/IIIa 159 

p0p4 IgG2b GPIbα 159 

p0p6 IgG2b GPIX 159 

ULF1 IgG2a CD9 159 

WUG1.9 IgG1 P-selectin unpublished 

12C6 IgG2b α2 integrin unpublished 

2.1.3 Mice 

Trpc6-/- mice were kindly provided by Prof. Dr. Alexander Dietrich (Walther-Straub Institute for 

Pharmacology and Toxicology, LMU München). In Trpc6-/- mice, the exon 7 of the Trpc6 gene 

was replaced by a positive selective marker (PGK-NGO).160  

Orai1-/- mice were generated with gene-trap technology. A “β-Geo” cassette, encoding a 

fusion of β-galactosidase and neomycin phosphotransferase, was inserted in the first intron 

of the Orai1 gene.161 Dr. Attila Braun obtained embryonic stem (ES) cell clone (XL922) 

containing the disrupted Orai1 gene from BayGenomics (University of California San 

Francisco, San Francisco, CA), and the ES cells were then microinjected into C57Bl/6 

blastocysts to generate Orai1-/- mice.26 However, Orai1-/- mice displayed high mortality. 60% 

of Orai1-/- mice died shortly after birth for unknown reasons. Furthermore, surviving Orai1-/- 

animals had significantly development defects and all animals died at latest 4 weeks after 

birth. Therefore, bone marrow (BM) chimeric mice, transplanted with fetal liver cells or BM 

cells, were generated.  
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To obtain fetal liver cells of Wt, Orai1-/- and Orai1-/-/Trpc6-/- mice, Trpc6-/- mice were crossed 

with Orai1+/- mice to generate Trpc6+/-/Orai1+/- mice. Trpc6+/-/Orai1+/- male mice crossed with 

Trpc6+/-/Orai1+/- female mice to generate Trpc6+/+/Orai1+/+ (wild-type), Trpc6+/+/Orai1-/- (Orai1 

knock-out) and Trpc6-/-/Orai1-/- (Orai1 and TRPC6 double knock-out) embryos, which were 

isolated at embryonic day 13.5. Thereafter, fetal liver cells were isolated for transplantation.  

TRPM7 “kinase-dead” mice (Trpm7KI) were kindly provided by Prof. Dr. Thomas Gudermann 

and Dr. Vladimir Chubanov (Walther-Straub Institute for Pharmacology and Toxicology, LMU 

München). In Trpm7KI mice, an amino acid residue in the kinase domain was mutated from 

lysine to arginine, leading to disruption of the kinase catalytic activity. 

2.1.4 Buffers and media 

All buffers were prepared in deionized water obtained from a MilliQ Water Purification 

System (Millipore, Schwalbach, Germany). pH was adjusted with HCl or NaOH. 

Acid-citrate-dextrose (ACD) buffer, pH 4.5 

Trisodium citrate dehydrate 85 mM 

Anhydrous citric acid 65 mM 

Anhydrous glucose 110 mM 

Blocking solution for immunoblotting 

Washing buffer (TBS-T, see below)  

BSA or fat-free dry milk 5% 

Bone marrow or fetal liver cell freezing medium 

DMEM 40% 

FCS 50% 

DMSO 10% 

FACS buffer 

PBS (1×)  

FCS 1% 

NaN3 0.02% 

Immunoprecitation (IP) buffer, pH 8.0 

TRIS/HCl, pH 8.0 15 mM 

NaCl 155 mM 

EDTA 1 mM 

NaN3 0.005% 
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Laemmli buffer for SDS-PAGE 

TRIS 40 mM 

Glycine 0.95 mM 

SDS 0.5% 

Lysis buffer (for DNA isolation), pH 7.2 

TRIS base 100 mM 

EDTA 5 mM 

NaCl 200 mM 

SDS 0.2% 

Proteinase K (to be added directly before use) 100 µg/mL 

Lysis buffer 2× (for tyrosine phosphorylation assay), pH 7.5 

TRIS base 20 mM 

NaCl 300 mM 

EDTA 2 mM 

EGTA 2 mM 

IGEPAL CA-630 2% 

NaF 10 mM 

to be added directly before use:  

Na3VO4  2 mM  

Complete mini protease inhibitor or 

protease inhibitor cocktail (100×) 

1 tablet/10 mL 

2% 

PHEM, pH 7.2 

PIPES 60 mM 

HEPES 25 mM 

EGTA 10 mM 

MgSO4 2 mM 

PHEM complete pH 7.2 

PHEM buffer  

PFA   1% 

NP-40 0.005% 
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Phosphate buffered saline (PBS), pH 7.14 

NaCl 137 mM 

KCl 2.7 mM 

KH2PO4 1.5 mM 

Na2HPO4 8 mM 

Sample buffer for agarose gels, 6× 

Tris buffer (150 mM) 33% 

Glycerine 60% 

Bromophenol blue (3',3",5',5"-tetrabromophenol-
sulfonphthalein) 

0.04% 

SDS sample buffer, 4× 

β-mercaptoethanol (for reducing conditions) 20% 

TRIS buffer (1 M), pH 6.8 20% 

Glycerine 40% 

SDS 4% 

Bromophenol blue 0.04% 

Separating gel buffer (Western Blot), pH 8.8 

TRIS/HCl 1.5 M 

Stacking gel buffer (Western Blot), pH 6.8 

TRIS/HCl 0.5 M 

TAE buffer, 50×, pH 8.0 

TRIS 0.2 M 

Acetic acid 5.7% 

EDTA  50 mM 

TE buffer, pH 8.0 

TRIS base 10 mM 

EDTA 1 mM 

Transfer buffer 

Tris Ultra 50 mM 

Glycine 40 mM 

Methanol 20% 
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Tris-buffered saline (TBS), pH 7.3 

NaCl 137 mM 

TRIS/HCl 20 mM 

Tyrode’s buffer, pH 7.3 

NaCl 137 mM 

KCl 2.7 mM 

NaHCO3 12 mM 

NaH2PO4 0.43 mM 

CaCl2 0 or 2 mM 

MgCl2 1 mM 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid) 

5 mM 

to be added directly before use:  

BSA  0.35% 

Glucose  0.1% 

Washing buffer for immunoblotting (TBS-T) 

TBS (1×)  

Tween 20  0.1%  

Washing buffer for ELISA  

PBS (1×)  

Tween 20  0.1% 

Washing buffer for IP1 ELISA 

H2O  

Tween 20  0.1% 

2.2 Methods 

2.2.1 RNA isolation and reverse transcription PCR (RT-PCR)  

To isolate platelet RNA, 2×106 platelets/µL were washed twice in PBS/EDTA and finally 

suspended in 200 µL IP buffer with 1% NP-40. 800 µL of Trizol reagent was added to the 

samples and incubated for 60 min at 4°C. After incubation, 200 µL of chloroform were added 

and then incubated for 15 min at 4°C. Samples were then centrifuged at 10,000 rpm for 

10 min. The upper phase of samples was collected and incubated with three volumes of 70% 

ethanol with 10% sodium acetate (pH 5.2) for 1 hour at -20°C. After that, samples were 
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centrifuged at 14,000 rpm for 15 min. The pellet was washed with 70% ethanol, then 

centrifuged again and dried at 37°C. 30-40 µL of RNase free water was added to solve the 

pellet and the concentration was determined by absorbance readings at 260 nm, whereas 

the ratio of absorbance at 260/280 and 260/230 was used to assess the purity. Samples with 

260/280 readings of >1.8 and 260/230 readings of >1.9 were used to prepare cDNA. 

1-2 µg RNA were incubated with 1 µL Oligo dNTP (0.5 µg/µL) in a total volume of 11.9 µL at 

70°C for 5 min and afterwards were transferred on ice. 2 µL DTT (0.1 M), 1 µL dNTPs (10 

mM), 0.5 U RNase inhibitor, 4 µL 5× first strand buffer and 200 U Super Script Reverse 

Transcriptase were added. The total volume was adjusted to 40 µL by using RNase-free 

water and the samples were incubated at 42°C for 1 hour. A gradient polymerase chain 

reaction (PCR) was used to determine the suitable annealing temperature. Afterwards, a 

PCR with the appropriate annealing temperature was performed. 

The following RT-PCR primers were used to study the expression of Mg2+ channel proteins in 

mouse platelets:  

Gene RT-PCR primers Size of cDNA fragment (bp) 

MagT1 Fwd.: 5'-tcggaccgtgctggaagaaa-3' 

Rev.: 5'-gagctttaacaagacgacgg-3' 
255 

Tusc3 Fwd.: 5'-tactggtagctttcccttcc-3' 

Rev.: 5'-attcttcgttagcctgcctg-3' 
263 

Acdp1 

 

Fwd.: 5'-tgttcgtcaaagacttggcc-3' 

Rev.: 5'-ggatctccgacttgatgatc-3' 
261 

Acdp2 Fwd.: 5'-aagacttggccttcgtggat-3' 

Rev.: 5'-acaggtctgtctcatccaag-3' 
270 

Acdp3 Fwd.: 5'-ataccaaactggacgctgtc-3' 

Rev.: 5'-cagacaccttgaataaggag-3' 
267 

Acdp4 Fwd.: 5'-ctacactcgcattcctgtgt-3' 

Rev.: 5'-gatgacgtcctccagagtga-3' 
289 

Nipa1 Fwd.: 5'-tagtgaacgggtccacgttc-3' 

Rev.: 5'-ttagcagacagcccaacttg -3' 
267 

Nipa2 Fwd.: 5'-gaactactctgccgtggtta-3' 

Rev.: 5'-tcatagccaatcccagacca-3' 
262 

Nipa3 Fwd.: 5'-caatctgtatgtgggcttgg-3' 

Rev.: 5'-ttatgagaacgctcagagcc-3' 
233 
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Nipa4 Fwd.: 5'-accttgatcacctggcaaga-3' 

Rev.: 5'-tcgcaggtgcaaatgcatag-3' 
259 

Slc41A1 Fwd.: 5'-ctccttttccattggactgc-3' 

Rev.: 5'-atcatccgccagagctcctt-3' 
246 

Slc41A2 Fwd.: 5'-catggctctgcagatattgg-3' 

Rev.: 5'-gtatgatggctgccacagct-3' 
311 

Slc41A3 Fwd.: 5'-gagacgtccctgatcattgg-3' 

Rev.: 5'-catcgatttgccccagtgttg-3' 
226 

Trpm6 Fwd.: 5'-tgtgggcggtgctcatgaag-3' 

Rev.: 5'-caagccattcgtgcacgctg-3' 
450 

Trpm7 Fwd.: 5'-gagcccaacagatgcttatgg-3' 

Rev.: 5'-ggcccgccttcaaatatcaaag-3' 
550 

Actin Fwd.: 5'-gtgggccgctctaggcaccaa-3' 

Rev.: 5'-ctctttgatgtcacgcacgatttc-3' 
500 

2.2.2 Mouse Genotyping 

2.2.2.1 Mouse DNA isolation 

Approximately half of the mouse ear was dissolved in 500 µL lysis buffer at 55°C overnight 

under shaking conditions (900 rpm) in a Thermomixer comfort (Eppendorf, Hamburg, 

Germany). Samples were mixed with phenol/chloroform/isoamyl alcohol (1:1). After that, 

samples were centrifuged at 11,000 rpm for 10 min at room temperature (RT). The upper 

phase was carefully transferred to a new tube containing 500 µL isopropanol. After vigorous 

shaking, the samples were centrifuged at 14,000 rpm for 10 min at 4°C. Subsequently, the 

supernatant was discarded and the DNA pellet was washed with 500 µL of 70% ethanol and 

centrifuged again at 14,000 rpm for 10 min at 4°C. Next, ethanol was removed and the pellet 

was dried for approximately 30 min at 37 °C. Finally, the pellet was dissolved by adding 80-

100 µL TE buffer and shaking (300 rpm) for 30 min at 37°C. Usually, 1-2 µL DNA solution 

were used for a PCR reaction. 

2.2.2.2 Detection of the Trpc6-/- by PCR 

Primers: 

Trpc6 Wt Fwd: 5'-cagatcatctctgaaggtctttatgc-3' 

Trpc6 Wt Rev: 5'-tgtgaatgcttcattctgttttgcgcc-3' 
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Trpc6 KO Fwd: 5'-gggtttaatgtctgtatcactaaagcctcc-3' 

Trpc6 KO Rev: 5'-acgagactagtgagacgtgctacttcc-3' 

Pipetting scheme: 

2 µL genomic DNA 

5 µL Taq-buffer (10×) 

5 µL MgCl2 (25 mM) 

1 µL dNTPs (10 mM) 

1 µL Trpc6 Wt Fwd primer (1:10 in H2O, stock 100 µM) 

1 µL Trpc6 Wt Rev primer (1:10 in H2O, stock 100 µM) 

1 µL Trpc6 KO Fwd primer (1:10 in H2O, stock 100 µM) 

1 µL Trpc6 KO Rev primer (1:10 in H2O, stock 100 µM) 

0.2 µL Taq-Polymerase (0.5 U/µL) 

32.8 µL H2O  

PCR-Program: 

96°C 3 min  

94°C 30 s  

56°C 30 s 35× 

72°C 30 s  

72°C 5 min   

4°C stop  

Results (expected band sizes): 

Wt:  234 bp 

Trpc6-/-: 339 bp 

 

2.2.2.3 Detection of the Orai1-/-  by PCR 

Primers: 

Orai1 Wt Fwd: 5'-ctcttgagaggtaagaactt-3' 

Orai1 Wt Rev: 5'-gatccctaggacccatgtgg-3' 

Orai1 KO Fwd: 5'-ttatcgatgagcgtggtggttatcc-3' 

Orai1 KO Rev:  5'-gcgcgtacatcgggcaaataatatc-3' 
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Pipetting scheme for Wt allele: 

1 µL genomic DNA 

5 µL Taq-buffer (10×) 

5 µL MgCl2 (25 mM) 

1 µL dNTPs (10 mM) 

1 µL Orai1 Wt Fwd primer (1:10 in H2O, stock 100 µM) 

1 µL Orai1 Wt Rev primer (1:10 in H2O, stock 100 µM) 

0.5 µL Taq-Polymerase (0.5 U/µL) 

35.5 µL H2O  

Pipetting scheme for KO allele: 

1 µL genomic DNA 

2.5 µL Taq-buffer (10×) 

2.5 µL MgCl2 (25 mM) 

0.5 µL dNTPs (10 mM) 

0.5 µL Orai1 KO Fwd primer (1:10 in H2O, stock 100 µM) 

0.5 µL Orai1 KO Rev primer (1:10 in H2O, stock 100 µM) 

0.25 µL Taq-Polymerase (0.5 U/µL) 

19.25 µL H2O  

PCR-Program for Wt: 

96°C 3 min  

94°C 30 s  

56°C 30 s 35× 

72°C 30 s  

72°C 5 min   

4°C stop  

PCR-Program for Orai1-/-: 

96°C 3 min  

94°C 30 s  

51.4°C 30 s 40× 

72°C 60 s  

72°C 5 min   

4°C stop  
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Results (expected band sizes): 

Wt:  900 bp 

Orai1-/-: 650 bp 

2.2.2.4 Detection of the Trpm7KI by PCR 

Primers: 

Trpm7 KIN Fwd: 5'-aatgggaggtggtttacg-3' 

Trpm7 KIN Rev: 5'-ctcagatcacagcttacagtca-3' 

Pipetting scheme: 

1 µL genomic DNA 

5 µL Taq-buffer (10×) 

5 µL MgCl2 (25 mM) 

1 µL dNTPs (10 mM) 

1 µL Trpm7 KIN Fwd primer (1:10 in H2O, stock 100 µM) 

1 µL Trpm7 KIN Rev primer (1:10 in H2O, stock 100 µM) 

0.2 µL Taq-Polymerase (0.5 U/µL) 

35.8 µL H2O  

PCR-Program: 

96°C 3 min  

94°C 30 s  

62°C 30 s 40× 

72°C 30 s  

72°C 5 min   

4°C stop  

Results (expected band sizes): 

Wt:  120 bp + 85 bp 

Trpm7KI: 205 bp 

2.2.3 Fetal liver cell or bone marrow transplantation 

For the generation of bone marrow chimeras, 5-6 week-old C57Bl/6 mice were irradiated with 

a single dose of electron beam radiotherapy (10 Gy). Fetal liver cells from Wt, Orai1-/- and 

Orai1-/-/Trpc6-/- embryos or bone marrow cells from 6-8 week-old Wt, Orai1-/- and Orai1-/-

/Trpc6-/- BM chimeric mice were injected intravenously into the irradiated C57Bl/6 mice 
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(4×106 cells/mouse) for transplantation. Acidified water containing 2 g/L neomycin was 

provided to the mice for 2 weeks.  

2.2.4 Tyrosine phosphorylation assay 

For tyrosine phosphorylation assay, washed platelets at a concentration of 7×105 platelets/µL 

were activated with 1 µg/mL CRP under constant stirring conditions. Stimulation was stopped 

by adding an equal volume of ice-cold lysis buffer at the indicated time points. After 

incubation on ice for 30 min, lyzed samples were centrifuged at 14,000 rpm for 5 min at 4°C 

and the supernatant was mixed with 4× SDS sample buffer. Samples were incubated at 70°C 

for 10 min. After that, 15-25 µL per sample were loaded onto a gel with 4% stacking part and 

12% separating part. After separation, proteins were transferred onto a polyvinylidene 

difluoride (PVDF) membrane. PVDF Membrane was blocked for 1 hour at RT in blocking 

buffer and then incubated with the primary antibody at 4°C overnight. The membrane was 

then washed 3× 10 min in washing buffer before incubation with the appropriate secondary 

HRP-labeled antibody for 1 hour at RT. Finally, the membrane was washed three times and 

proteins were visualized by ECL. 

2.2.5 Cell cultures, transient expression 

For transient expression of TRPM7 constructs, human embryonic kidney (HEK) 293 cells 

were maintained at 37°C and 5% CO2 in Earle’s minimal essential medium supplemented 

with 10% fetal calf serum (FCS), 100 µg/mL streptomycin and 100 U/mL penicillin. Cells were 

transiently transfected using the Lipofectamine 2000 reagent. 

2.2.6 Electrophysiology 

Mouse embryonic fibroblast (MEF) cells were isolated from Wt or Trpm7KI embryos. On these 

MEF cells, patch clamp experiments were performed at a whole-cell configuration. Currents 

were elicited by a ramp protocol from -100 mV to +100 mV over 50 ms acquired at 0.5 Hz 

and a holding potential of 0 mV. Inward current amplitudes were extracted at -80 mV, outward 

currents at +80 mV and plotted versus time. Data were normalized to cell size as pA/pF. 

Capacitance was measured using the automated capacitance cancellation function of the 

EPC10 (HEKA, Lambrecht, Germany). Values over time were normalized to the cell size 

measured immediately after whole-cell break-in. Nominally Mg2+-free extracellular solution 

contained (in mM): 140 NaCl, 3 CaCl2, 2.8 KCl, 0 MgCl2, 10 HEPES-NaOH, 11 Gluc (pH 7.2, 

300 mOsm). Intracellular solution contained (in mM): 120 Cs-glutamate, 8 NaCl, 1 MgCl2, 10 

HEPES, 10 BAPTA, 5 EDTA (pH 7.2, 300 mOsm). 
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2.2.7 Determination of Mg2+ levels in the serum and bones 

8 week-old male mice were killed and the blood samples were obtained from the heart. The 

corresponding serum samples were isolated by centrifugation (1.2 g, 15 min at RT). Right 

tibias were dissected and cleaned from the muscle tissues. Next, the bones were dried for 48 

hours at 65 oC. Mg2+ levels in the obtained serum and bone samples were determined using 

inductively coupled plasma-sector field mass spectrometry (ALS laboratories, Sweden). 

2.2.8 In vitro analysis of platelet function 

2.2.8.1 Platelet preparation and washing 

Mice, under isoflurane anesthesia, were bled from the retroorbital plexus. 700 µL blood were 

collected into a 1.5 mL tube containing either 300 μL heparin in TBS (20 U/mL, pH 7.3) or 

300 µL ACD. 200 µL heparin or ACD were added and blood was centrifuged at 1800 rpm 

(Eppendorf Centrifuge 5415C) for 5 min at RT. Supernatant and buffy coat were transferred 

to a tube containing 200 µL heparin or ACD, and were centrifuged at 800 rpm for 5 min at RT 

to obtain platelet rich plasma (PRP). For washed platelets, PRP was centrifuged at 2800 rpm 

for 5 min at RT in the presence of apyrase (0.02 U/mL) and prostacyclin (PGI2) (0.1 μg/mL), 

and the pellet was suspended in 1 mL Ca2+-free Tyrode’s buffer with PGI2 and apyrase. After 

10 min incubation at 37°C, the sample was centrifuged at 2,800 rpm for 5 min. After 

centrifugation, platelets were resuspended once more in 1 mL Ca2+-free Tyrode’s buffer with 

PGI2 and apyrase, the platelet numbers were determined by taking a 1:1 dilution of the 

platelet solution and the platelet count was measured in a Sysmex KX-21N automated 

hematology analyzer (Sysmex Corp., Kobe, Japan). Finally, the platelets was resuspended in 

the appropriate volume of Tyrode’s buffer containing apyrase (0.02 U/mL) to reach the 

required platelet concentration. 

2.2.8.2 Platelet counting 

To determine platelet count and size, 50 µL blood were taken from the retroorbital plexus of 

anesthetized mice by using heparinized microcapillaries and collected into a tube containing 

300 μL heparin in TBS (20 U/mL, pH 7.3). Platelet count and size were determined by using 

a Sysmex KX-21N automated hematology analyzer. 

2.2.8.3 Flow cytometry 

50 µL of blood were taken and collected into a tube containing 300 µL heparin in TBS 

(20 U/mL, pH 7.3). 1 mL Ca2+-free Tyrode’s buffer was added into the tube. To determine 

basal glycoprotein expression levels, 50 µL of diluted blood were stained with saturating 
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amounts of fluorophore-conjugated antibodies for 15 min at RT, and were analyzed directly 

after addition of 500 µL PBS on a FACSCalibur flow cytometer using Cell QuestTM software 

(Becton Dickinson, Heidelberg, Germany). For platelet activation studies, blood samples 

were washed twice (2,800 rpm, 5 min, RT) in Tyrode’s buffer without Ca2+ and finally 

resuspended in Tyrode’s buffer with 2 mM Ca2+. Platelets were activated with appropriately 

diluted agonists for 7 min at 37°C followed by 7 min at RT in the presence of saturating 

amounts of PE-coupled JON/A (4H5) and FITC-coupled anti-P-selectin (5C8) antibodies. The 

reaction was stopped by addition of 500 μl PBS and samples were analyzed with a 

FACSCalibur. For a two-color staining, the following settings were used: 

 
Detectors/Amps: 
 

Parameter Detector Voltage 

P1 FSC E01 

P2 SSC 380 

P3 Fl1 650 

P4 Fl2 580 

P5 Fl3 150 

 

Threshold: 

Value Parameter 

253 FSC-H 

52 SSC-H 

52 Fl1-H 

52 Fl2-H 

52 Fl3-H 

 

Compensation: 

Detector Setting 

Fl1 2.4% of Fl2 

Fl2 7.0% of Fl1 

Fl2 0% of Fl3 

Fl3 0% of Fl2 
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2.2.8.4 Determination of phosphatidylserine exposure by flow cytometry 

Washed platelets were resuspended in Tyrode’s buffer with 2 mM Ca2+ at the concentration 

of 5×104 platelets/µL. 50 µL of this suspension were stimulated with agonists for 15 min at 

37°C in the presence of DyLight-488 coupled annexin V, which stains exposed PS. After that, 

500 µL Tyrode’s buffer with 2 mM Ca2+ were added to stop the reaction and the samples 

were immediately analyzed with a FACSCalibur flow cytometer. 

2.2.8.5 Aggregometry 

For determination of platelet aggregation, washed platelets in Ca2+-free Tyrode’s buffer were 

adjusted to a concentration of 5×105 platelets/µL. Alternatively, heparinized PRP (for 

measurements with ADP) was used at a concentration of 5×105 platelets/µL. 50 µL of 

washed platelets suspension or PRP were transfered into a cuvette containing 110 µL 

Tyrode’s buffer with 2 mM Ca2+. For all measurements with washed platelets, except those 

with thrombin as agonist, 100 µg/mL human fibrinogen were added into Tyrode’s buffer. 

Platelet agonists or reagents (100-fold concentrated) were added to the cuvette and light 

transmission was recorded over 10 min on a Fibrintimer 4 channel aggregometer (Apact 4-

channel optical aggregation system, APACT, Hamburg, Germany). For calibration, Tyrode’s 

buffer (for washed platelets) or plasma (for PRP) was set as 100% aggregation and washed 

platelet suspension or PRP without stimulation was set as 0% aggregation.  

2.2.8.6 Adhesion under flow conditions 

Rectangular coverslips (24 x 60 mm) were coated with 200 µg/mL fibrillar type-I collagen 

(Horm) at 37°C overnight and then were blocked with 1% BSA at RT for 1 hour. Blood 

(700 μL) was collected into 300 μL heparin (20 U/mL in TBS, pH 7.3). Whole blood was 

diluted 2:1 in Tyrode’s buffer with Ca2+ and labeled with a Dylight-488 conjugated α-GPIX Ig 

derivative (0.2 μg/mL) for 6 min at 37°C. The diluted blood then was filled into a 1 mL syringe, 

which was connected to a transparent flow chamber with a slit depth of 50 µm, equipped with 

the coated coverslips. Perfusion was performed using a pulse-free pump under high shear 

stress equivalent to a wall shear rate of 1,000 s-1 for 4 min. Thereafter, coverslips were 

washed for 2 min by perfusion with Tyrode’s buffer at the same shear rate and phase-

contrast and fluorescent images were recorded from at least five different microscopic fields 

(40× objective) using a Zeiss Axiovert 200 microscope equipped with a CoolSNAP-EZ 

camera (Visitron, Munich, Germany). Image analysis was performed off-line using MetaVue 

software (Visitron, Munich, Germany). Thrombus formation was expressed as the mean 

percentage of total area covered by thrombi and as the mean integrated fluorescence 

intensity per mm2. 
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2.2.8.7 Determination of PS exposing platelets after perfusion 

Rectangular coverslips were coated with 200 µg/mL type I collagen overnight at 37°C, and 

blocked with 1% BSA. Chamber and tubing were prewashed with HEPES buffer with 5 U/mL 

heparin to prevent coagulation. The heparinized whole blood was perfused through the flow 

chamber for 4 min at a shear rate of 1000 s-1. HEPES buffer containing 5 U/mL heparin, 

2 mM CaCl2 and 250 ng/mL of Annexin V-Dylight-488 was then perfused through the flow 

chamber for 4 min, and then HEPES buffer was perfused for 2 min to remove unbound 

Annexin V-Dylight-488. Phase-contrast and fluorescent images were obtained from at least 

10 different collagen-containing microscopic fields, which were randomly chosen. Image 

analysis was performed off-line using Metavue software.  

2.2.8.8 Intracellular Ca2+ measurements 

Platelets were washed once and adjusted to a concentration of 2×105 platelets/µL in Tyrode’s 

buffer without Ca2+. Platelets were loaded with Fura2/AM (5 μM) by incubating with Fura2/AM 

in the presence of Pluronic F-127 (0.2 μg/mL) for 30 min at 37°C. After incubation, labeled 

platelets were washed and resuspended in Tyrode's buffer with or without 1 mM Ca2+. 

Magnetically stirred platelets were activated with different agonists and fluorescence was 

determined with a PerkinElmer LS 55 fluorimeter (Waltham, MA) with excitation at 340 and 

380 nm and emission at 509 nm. Each measurement was calibrated using Triton X-100 and 

EGTA. To determine the relative Ca2+ concentrations in the cytoplasm ([Ca2+]cyt), 

anticoagulated blood samples from Wt and mutant mice were loaded with 5 µM Fluo-3/AM in 

the presence of Pluronic F-127 for 30 min and diluted in Tyrode's buffer with 1 mM Ca2+. 

Platelets were stained and gated with phycoerythrin (PE)-conjugated anti-αIIbβ3 complex 

monoclonal antibody (14A3-PE, Emfret Analytics, Würzburg, Germany). Mean fluorescence 

intensity (MFI) of Fluo-3 in resting platelets was measured using flow cytometry. 

2.2.8.9 Measurement of ATP release 

Platelets were washed twice and adjusted to a concentration of 5×105 platelets/μL. ATP 

secretion was measured using CHRONO-LUME reagent according to the manufacturer’s 

protocol on a Chronolog aggregometer (Chrono-Log Corp. Philadelphia, PA, USA). 5μL of 

luciferase reagent was added directly to the platelets under constant stirring, and then 

indicated concentrations of various agonists were added to study ATP release. The 

luminescence intensity was measured at a setting of ×0.005. 

2.2.8.10 Measurement of inositol 1 phosphate (IP1) 

Platelets were washed twice with phosphate- and Ca2+-free Tyrode's buffer, and were 
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adjusted to the final concentration of 8×105 platelets/μL in phosphate-free Tyrode's buffer 

containing 2 mM Ca2+, 50 mM Li+, 10 µM Indomethacin and 2 U/mL apyrase. Platelets were 

activated with the indicated agonists for 5 min at 37°C with constant shaking at 450 rpm. After 

stimulation, platelets were lyzed in the buffer supplied with the kit. 50 μL of lyzed platelets 

were used for the IP1 ELISA assay according to the manufacturer’s protocol (Cisbio, Codolet, 

France). 

2.2.8.11 Measurement of thromboxane B2 (TxB2) release 

Washed platelets were adjusted to a concentration of 5×105 platelets/µL and stimulated with 

the indicated agonists for 5 min. Then, 5 mM EDTA and 1 mM aspirin were added. Platelets 

were removed by centrifugation and the supernatant was collected. TxB2 concentrations in 

the supernatant were measured with the TxB2 ELISA kit according to the manufacturer’s 

instructions of TxB2 ELISA kit (DRG, Marburg, Germany). 

2.2.8.12 Measurement of serotonin release 

Washed platelets (5×105 platelets/µL) were prepared as for standard aggregometry and were 

stimulated with indicated concentrations of various agonists for 5 min. Activated platelets 

were removed by centrifugation, and the supernatant was kept for ELISA, which was 

performed according to the manufacturer’s protocol (LDN, Nordhorn, Germany) to measure 

serotonin concentrations. 

2.2.8.13 Measurement of PLD activity 

Washed platelets (3×105 platelets/µL) were labeled with [3H]myristic acid for 1.5 hours at 

37°C. After labeling, platelets were pre-incubated with 0.5% ethanol then activated with 

agonists or TG in the presence or absence of 1 mM Ca2+. Reactions were stopped by 

addition of 500 µL ice-cold chloroform/methanol followed by incubation on ice. 500 µL of ice-

cold chloroform and 350 µL of water were added to extract the lipids via thin layer 

chromatography. [3H]Ptd-EtOH bands were identified and quantified via scintillation counting. 

PLD activity is depicted as percentage of phosphatidylethanol of total [H3]-labeled 

phospholipids. 

2.2.8.14 Spreading assay 

Rectangular coverslips (24 x 60 mm) were coated with 100 µg/mL human fibrinogen 

overnight at 4°C under humid conditions and blocked for at least 1 hour with 1% BSA at RT. 

The coverslips were rinsed with Tyrode’s buffer. Platelets were isolated from blood, washed 

twice with Ca2+-free Tyrode’s buffer, and then adjusted to a concentration of 1×105 
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platelets/μL. 100 µL of the platelet suspension were activated with 0.01 U/mL thrombin and 

immediately placed on fibrinogen-coated coverslips. Platelets were allowed to spread for the 

indicated time, and then the process was stopped by addition of 300 μL 4% PFA/PBS. 

Excessive liquid was removed and platelets were visualized by differential interference 

contrast (DIC) microscopy with a Zeiss Axiovert 200 inverted microscope (100×/1.4 oil 

objective) equipped with a CoolSNAP-EZ camera. Representative images were taken and 

evaluated according to different platelet spreading stages with ImageJ (National Institutes of 

Health, Bethesda, MD, USA). Spreading stages were defined as follows: 1: round, no 

filopodia, no lamellipodia. 2: only filopodia. 3: filopodia and lamellipodia. 4: full spreading. 

2.2.8.15 Fluorescence microscopy of platelets 

After thrombin (0.01 U/mL) stimulation, washed platelets were allowed to fully spread on 

fibrinogen-coated surface and were fixed in PHEM complete buffer for 20 min at 4°C, then 

blocked with 5% BSA and 1% goat serum for 2 hours at 37°C. Fully-spreaded platelets were 

stained with rabbit anti-TRPM7 antibody for 2 hours followed by 4x washing with PBS and 

incubation of 1 hour with secondary Alexa 488-labeled anti-rabbit IgG antibody (Invitrogen) 

and phalloidin-Atto647N (Sigma-Aldrich, Schnelldorf, Germany). Then, samples were 

washed again with PBS, mounted with Vectashield mounting medium and finally left to dry 

overnight at 4°C. Samples were visualised on a Leica SP5 confocal microscope with a 100× 

oil objective (Leica Microsystems GmbH, Wetzlar, Germany). Images were further processed 

using Image J software. 

2.2.9 In vivo analysis of platelet function 

2.2.9.1 Platelet life span 

5 μg Dylight-488-anti-GPIX Ig derivative were injected i.v. in the retro-orbital plexus to label 

circulating platelets. 30 min later (and every 24 hours for 5 days), 50 µL blood was taken 

from the retro-orbital plexus of the treated mice and the percentage of the positive labeled 

platelets was determined by flow cytometry. 

2.2.9.2 Tail bleeding time assay 

Mice were anesthetized by intraperitoneal injection of the triple anesthesia (dormitor, 

dormicum and fentanyl), and a 1 mm segment of the tail tip was cut off with a scalpel. Tail 

bleeding was monitored by gently absorbing the drop of blood with a filter paper in 20 s 

intervals without interfering with the wound site. When no blood was observed on the paper, 

bleeding was determined to have ceased. The experiment was manually stopped after 

20 min by cauterization.  
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2.2.9.3 Intravital microscopy of thrombus formation in FeCl3-injured mesenteric 
arterioles 

Mice (15-18 g body weight) were anesthetized i.p. with ketamine/xylazine (100/5 mg/kg; 

Parke-Davis, Berlin, Germany and Bayer, Leverkusen, Germany) and the mesentery was 

exteriorized through a midline abdominal incision. Arterioles with a diameter of 35 - 60 μm 

were visualized using a Zeiss Axiovert 200 inverted microscope equipped with a 100-W HBO 

fluorescent lamp source and a CoolSNAP-EZ camera. Endothelial damage was induced by 

application of a 3 mm2 filter paper saturated with 20% FeCl3. Adhesion and aggregation of 

fluorescently labeled platelets (Dylight-488 conjugated anti-GPIX antibody derivative) in 

arterioles was monitored for 40 min or until complete occlusion occurred (blood flow stopped 

for >1 min). Digital images were recorded and analyzed using the Metavue software. 

2.2.9.4 Mechanical injury of the abdominal aorta 

Mice (20-26 g body weight) were anesthetized and the abdominal cavity was opened by a 

longitudinal midline incision. The abdominal aorta was carefully exposed, and a Doppler 

ultrasonic flow probe (Transonic Systems, New York, USA) was placed around the vessel. 

Mechanical injury was induced by a single firm compression with a forceps. Blood flow was 

monitored until complete occlusion of vessel or experiments were stopped manually after an 

observation period of 30 min. 

2.2.9.5 Transient middle cerebral artery occlusion (tMCAO) model 

Experiments were conducted on 8-12 week old male mice according to published 

recommendations for research in mechanism-driven basic stroke studies.162 tMCAO was 

induced under inhalation anesthesia using the intraluminal filament (6021PK10; Doccol 

Company) technique.163 A midline neck incision was made and a standardized silicon rubber–

coated 6.0 nylon monofilament (6021PK10, Doccol, Redlands, CA, USA) was inserted into 

the right common carotid artery and advanced via the internal carotid artery to occlude the 

origin of the middle cerebral artery. After 60 min, the filament was withdrawn to allow 

reperfusion. 24 hours after tMCAO the global neurological status was assessed by the 

Bederson score.164 Motor function and coordination were graded with the grip test.165 For 

measurements of ischemic brain (infarct) volume, animals were sacrificed 24 hours after 

induction of tMCAO and brain sections were stained with 2% 2,3,5-triphenyltetrazolium 

chloride (TTC; Sigma-Aldrich, Germany). Brain infarct volumes were calculated and 

corrected for oedema as described.163 This work was performed in collaboration with 

Dr. Peter Kraft and colleagues in the group of Prof. Guido Stoll, Department of Neurology, 

University Hospital, Würzburg. 

39  



Materials and methods  

2.2.9.6 Magnetic resonance imaging (MRI) 

For the assessment of infarct dynamics and intracranial bleeding complications, MRI was 

performed serially at 24 hours and again on day 7 after tMCAO on a 1.5 Tesla unit (Vision, 

Siemens).166 A custom-made dual channel surface coil was used for examining mice 

(A063HACG; Rapid Biomedical). The imaging protocol comprised a coronal T2-weighted 

sequence (slice thickness 2 mm) and a blood-sensitive coronal three dimensional T2-

weighted gradient echo constructed interference in steady state (CISS; slice thickness 1 mm) 

sequence. Infarct volumes were calculated by planimetry from the hyper-intense areas on 

T2-weighted images by an investigator blinded to the different mouse groups. 

2.2.9.7  Platelet transfusion 

Purity of platelet suspensions from Wt and Trpm7KI donor mice were confirmed by flow 

cytometry and microscopical inspection. Platelet count and contamination by other blood cell 

types were further determined by hematology analyzer Sysmex. Thrombocytopenia was 

induced in Wt recepients by intravenous injection of an anti-GPIb antibody (0.185 µg/g of 

body weight). After 12 hours of platelet depletion, platelet counts of Wt recepients was 

determined by flow cytometry as previously described.167 Wt recipients were injected 

intravenously with 1×109 washed platelets from either Wt or Trpm7KI donor mice. Peripheral 

platelet count was determined after 60 min of platelet transfer and mice were subsequently 

subjected to tMCAO. 

2.3 Data analysis 

The results presented in this thesis are mean ± SD from at least three independent 

experiments per group, if not otherwise stated. When applicable, differences between the 

groups were statistically analyzed using the Student’s t-test. For analyzing variance in 

occurrence of occlusion, the Fischer’s exact test was used. For the Bederson score and the 

grip test analysis, the Mann-Whitney-U-test was applied. P-values < 0.05 were considered as 

statistically significant (*), p < 0.01 (**), and p < 0.001 was taken as the level of highest 

significance (***). 
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3 RESULTS 

3.1 Functional crosstalk between Orai1 and TRPC6 

Elevation of [Ca2+]i is an essential step for platelet activation. It is well established that the 

major Ca2+ entry route in platelets is mediated by the SOC channel Orai1.26 Recently, it was 

found that DAG-induced ROCE is almost completely abolished in Trpc6-/- platelets, indicating 

that TRPC6 is the major DAG-regulated Ca2+ channel in mouse platelets.27 A dynamic 

coupling model suggests that the heterodimerization of Orai and TRPC isoforms regulates 

ROCE and SOCE.69,89 However, the functional significance of the biochemical interaction 

between Orai and TRPC isoforms remains controversial, since Trpc6-/- platelets displayed 

unaltered TG-induced SOCE, while Orai1-/- platelets showed normal DAG-induced 

ROCE.26,27 Thus, it seems that the physical association of Orai1 with TRPC6 does not 

influence their channel functions. One aim of this thesis was to investigate the functional 

crosstalk between Orai1 and TRPC6. 

To study the functional crosstalk between Orai1 and TRPC6, Wt, Orai1-/- and Orai1-/-/Trpc6-/- 

BM chimeric mice were generated by transferring either Wt, Orai1-/-, or Orai1-/-/Trpc6-/- fetal 

liver cells into lethally irradiated C57Bl6J recipient mice. Trpc6-/- and Orai1-/- mice have been 

generated and described previously.26,27 

3.1.1 TRPC6 contributes to TG-induced SOCE and regulates Ca2+ store 
content together with Orai1 

TRPC6 has been proposed to be involved in TG-induced SOCE in human platelets.168 

Recently, it was shown that Trpc6-/- platelets have normal SOCE and Ca2+ influx in response 

to treatment with TG and stimulation by platelet agonists, respectively, indicating that the 

loss of TRPC6 may be fully compensated for by Orai1.27 To study the role of TRPC6 in 

SOCE, TG-induced SOCE in Wt, Orai1-/-, or Orai1-/-/Trpc6-/- platelets was measured. 

Platelets were loaded with 5 μM Fura2, which allows to measure [Ca2+]i fluorometrically. In 

the absence of extracellular Ca2+, TG was applied to trigger store release. Afterwards, 1 mM 

extracellular Ca2+ was added to induce SOCE.  

Orai1-/-/Trpc6-/- platelets displayed reduced basal [Ca2+]i. The basal [Ca2+]i in Wt and Orai1-/-

platelets were 21.6 ± 5.8 nM and 21.0 ± 5 nM, respectively. In contrast, Orai1-/-/Trpc6-/- 

platelets exhibited 12.4 ± 3.2 nM basal [Ca2+]i (Figure 3-1 B). Store release, triggered by the 

application of TG in the absence of extracellular Ca2+, in Orai1-/-/Trpc6-/- platelets was also 

defective. After TG stimulation, Orai1-/-/Trpc6-/- platelets displayed 48 ± 10.4 nM store release, 

which was significantly lower than Wt (79 ± 11.3 nM) and Orai1-/- (84 ± 12.6 nM) platelets 

(Figure 3-1 C). These data indicated that Orai1 together with TRPC6 may regulate basal 
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[Ca2+]i and store release. Furthermore, TG-induced SOCE was further reduced in           

Orai1-/-/Trpc6-/- platelets compared to Orai1-/- platelets (1521 ± 276 nM for Wt, 155 ± 38 nM 

for Orai1-/- and 92 ± 11 nM for Orai1-/-/Trpc6-/-, Figure 3-1 D), indicating a role for TRPC6 in 

regulating SOCE. 

 
Figure 3-1: TRPC6 contributes to TG-induced SOCE. (A) SOCE was measured in Fura2-loaded 
platelets. Platelets were treated with 5 µM TG for 5 min followed by the addition of 1 mM extracellular 
Ca2+. (B-D) Quantification of [Ca2+]i before (basal) and after (store release) TG application, and SOCE 
upon addition of extracellular Ca2+. Data are mean ± standard deviation (SD). **p < 0.01, ***p < 0.001. 
(Chen et al., J Thromb Haemost 2014)169 
 

To confirm the findings that Orai1 together with TRPC6 regulates basal [Ca2+]i, a flow 

cytometric assay was used to determine the basal [Ca2+]i of Wt, Orai1-/-, Trpc6-/- and       

Orai1-/-/Trpc6-/- platelets, which were preloaded with Fluo-3. Consistent with previous results, 

the relative fluorescence intensity was comparable between Wt, Trpc6-/- and Orai1-/- platelets, 

while a 40% reduction of [Ca2+]i in Orai1-/-/Trpc6-/- platelets was found (Figure 3-2 A). 

Furthermore, the store content was also measured by using ionomycin. It was found that 

ionomycin-induced Ca2+ store release was reduced in Orai1-/-/Trpc6-/- platelets compared to 

Wt, Orai1-/- and Trpc6-/- platelets (Figure 3-2 B). These data lead to the conclusion that Orai1 

together with TRPC6 regulates the store content and basal [Ca2+]i, however, either Orai1 or 

TRPC6 alone is not sufficient to fulfill this function. 
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Figure 3-2: Orai1 together with TRPC6 regulates basal [Ca2+]i and store content. (A) Relative 
[Ca2+]i levels in Wt and mutant platelets was measured using Fluo-3/AM labeled anti-coagulated whole 
blood. Resting platelets in diluted blood were gated by 14A3-PE antibody. Mean fluorescence intensity 
(MFI) was determined by flow cytometry. The MFI in Wt platelets was set as 100%. (B) Store content 
was determined upon treatment of platelets with 20 µM ionomycin in the presence of 0.5 mM EGTA. 
The average Ca2+ release from the stores of Wt platelets was 160 nM after ionomycin treatment and it 
was set as 100%. Data are presented as mean percentage ± SD. *p < 0.05, **p < 0.01. (Chen et al., J 
Thromb Haemost 2014)169 
 

3.1.2 Orai1 regulates TG-induced phospholipase activity 

It is well established that the channel activity of TRPC6 is triggered by DAG,77 and in 

platelets DAG production is regulated by PLC and PLD isoforms. In addition, the previous 

results indicate that TRPC6 contributes to TG-induced SOCE (Figure 3-1 A). These findings 

suggest that TG stimulation may induce phospholipase (PL) activation and DAG production, 

which subsequently enable TRPC6 to contribute to SOCE. To address a potential role of PL-

mediated pathways in the regulation of SOCE, TG-induced SOCE was analyzed in the 

presence of the PLC antagonists 1-[6-[((17β)-3-Methoxyestra-1,3,5[10]-trien-17-

yl)amino]hexyl]-1H-pyrrole-2,5-dione (U73122)170 and the PLD blocker 5-fluoro-2-indolyl des-

chlorohalopemide (FIPI).171 In the presence of U73122, FIPI or both, a significant reduction of 

SOCE was observed in Wt and Orai1-/- platelets (Figure 3-3 A), indicating that PL-mediated 

pathways are involved in SOCE.  

To assess the direct contribution of SOCE on PLD activity, a radioactive PLD assay was 

performed detecting the time-dependent accumulation of phosphatidylethanol, a non-

degradable product of PLD. This experiment was performed in collaboration with Ina 

Thielmann in our group. During TG-induced store release, PLD activity was enhanced in Wt 

platelets, but only residual PLD activity was detected in Orai1-/- platelets (Figure 3-3 B). 

During SOCE, PLD activity was further enhanced in Wt platelets, while only a slight elevation 

of PLD activity was found in Orai1-/- platelets indicating that PLD activity is tightly regulated by 

Orai1 (Figure 3-3 B). Furthermore, to assess the effect of SOCE on the enzymatic activity of 
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PLC, an IP1-ELISA was performed to investigate the time-dependent accumulation of IP1, a 

non-degradable stable product of IP3. Interestingly, store release upon addition of TG in the 

absence of extracellular Ca2+ produced comparable amounts of IP1 in Wt and Orai1-/- 

platelets (Figure 3-3 C). In sharp contrast, in the presence of extracellular Ca2+, the 

production of IP1 in Wt platelets was strongly enhanced, while only a moderate increase was 

observed in Orai1-/- platelets (Figure 3-3 C). Altogether, these results suggest that Orai1-

induced Ca2+ influx enhances PLC and PLD activity, thereby accelerating PLC- and PLD-

mediated DAG production in platelets. Since TRPC6 is regulated by DAG, it can be 

concluded that PLC and PLD activity mediates a functional crosstalk between Orai1 and 

TRPC6. 

 
Figure 3-3: Orai1 regulates TG-induced phospholipase activity. (A) In the presence of 100 nM 
FIPI (PLD inhibitor), 5 µM U73122 (PLC inhibitor) or both, SOCE was induced by using 5 µM TG in Wt 
and Orai1-/- platelets. Data are mean ± SD. (B) PLD activity was measured in [3H] myristic acid pre-
labeled platelets, which were stimulated in the same way as in the SOCE measurements. PLD activity 
is shown as percentage of phosphatidylethanol (PEt) of total 3H-labeled phospholipids (PEt/P-lipids). 
Data are mean ± SD. (C) The amount of accumulated IP1, a specific metabolite of IP3, was quantified 
by an ELISA assay. Results are mean of IP1 concentrations (nM) ± SD. 0 min: unstimulated platelets in 
the absence of extracellular Ca2+; 5 min: activated platelets by 5 µM TG for 5 min in the absence of 
extracellular Ca2+; 10 min: addition of 1 mM extracellular Ca2+ after 5 min of TG-induced store 
depletion. *p < 0.05, **p < 0.01, ***p < 0.001. (Chen et al., J Thromb Haemost 2014)169 
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3.1.3 Platelet agonists can activate PLC and PLD independently of Orai1 

Agonist-induced platelet activation and aggregation requires elevations of [Ca2+]i and 

intracellular DAG. This is maintained through the release of Ca2+ from intracellular stores 

followed by SOCE, which further enhances PL activity during platelet activation. Since the 

store content and the basal [Ca2+]i are reduced in Orai1-/-/Trpc6-/- platelets, and PL activity is 

reduced in Orai1-/- platelets, it can be assumed that Ca2+ responses to platelet agonists may 

be strongly affected in Orai1-/-/Trpc6-/- platelets. To test this, store release and Ca2+ influx of 

Wt, Orai1-/- and Orai1-/-/Trpc6-/- platelets were measured upon stimulation with platelet 

agonists (thrombin, CRP, ADP, U46619). Indeed, store release and Ca2+ influx were 

significantly reduced in Orai1-/-/Trpc6-/- platelets in response to almost all agonists compared 

to Orai1-/- or Wt platelets (Figure 3-4 A and B). These data confirmed that the Ca2+ store 

content in Orai1-/-/Trpc6-/- platelets was significantly reduced, while platelets lacking solely 

Orai1 or TRPC6 harbored normal Ca2+ levels in the stores. 

TG can be used as a shortcut to activate only store-dependent Ca2+ entry mechanisms. 

Platelet agonists, on the other hand, induce Orai1, TRPC6 and ATP-operated P2X1 channels 

activation simultaneously,35,43 which could substantially enhance PL-mediated DAG 

production. The previous results (Figure 3-3) have shown that TG stimulation can enhance 

DAG production, and that this process is tightly Orai1-dependent. To study whether platelet 

agonist-induced DAG production is also Orai1-dependent, PLD and PLC activity were 

measured by the PLD assay and the IP1 ELISA, respectively. The platelet agonists thrombin, 

CRP and TxA2-analogue U46619 were used to stimulate Wt and Orai1-/- platelets for 2 or 15 

min. Thereafter, PLD activity and IP1 production were quantified. Under all conditions, Orai1-/- 

platelets displayed normal PLD activity (Figure 3-4 C) and IP1 production (Figure 3-4 D), 

indicating that platelet agonist-induced PLD and PLC activation (or platelet agonist-induced 

DAG production) is not Orai1-dependent. These results suggest that in the presence of high 

concentrations of physiological agonists, ITAM-PLCγ2 signaling, GPCR-PLCβ signaling and 

PKC-PLD signaling can enhance DAG production independently of Orai1. Therefore, it can 

be concluded that Orai1-mediated SOCE is not essential for platelet receptor-induced PLD 

and PLC activation under in vitro conditions. However, under in vivo conditions where 

concentrations of platelet agonists are much lower than under in vitro conditions presented in 

this study, Orai1-induced PL activity may exhibit its physiological significance.  

 

45  



Results  

 
 
Figure 3-4: Platelet agonists activate PLC and PLD independently of Orai1. (A) Reduced Ca2+ 

store release and (B) Ca2+ influx in Orai1-/-/Trpc6-/- platelets. Fura2-loaded Wt, Orai1-/- and Orai1-/-

/Trpc6-/- platelets were stimulated with indicated agonists in the presence of 0.5 mM EGTA or in the 
presence of 1 mM Ca2+ and changes in [Ca2+]i were measured with a fluorimeter. Representative 
measurements and maximal increase in [Ca2+]i compared to baseline levels before stimulus are 
depicted as (Δ[Ca2+]i) ± SD. (C) Wt and Orai1-/- platelets were labeled with [3H] myristic acid and 
stimulated with the indicated agonists for different time intervals (thrombin: 0.1 U/mL, CRP: 10 µg/mL, 
U46619: 3 µM) and PLD activity was quantified. (D) IP1 production in Wt and Orai1-/- platelets was 
quantified upon activation with indicated agonists (thrombin 0.1 U/mL, CRP: 10 µg/mL, U46619: 3 µM). 
IP1 concentrations, as a specific metabolite of IP3, were quantified with an ELISA assay. Data are 
mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001. (Chen et al., J Thromb Haemost 2014)169 
 

3.1.4 TxA2-induced second phase of Ca2+ signaling is controlled by Orai1 

The initial phase of receptor activation-induced Ca2+ and DAG signaling is followed by a 

second signaling phase which further increases the levels of both [Ca2+]i and intracellular 

DAG in platelets. The second wave mediator TxA2 strongly amplifies TP-PLCβ-mediated IP3 

and DAG production which further accelerates Ca2+ store release and DAG-mediated ROCE 

in this process. Earlier, it has been shown that in human platelets TG-mediated SOCE 

strongly enhance TxA2 formation.172 To study whether platelet agonists or TG-induced TxA2 

secretion is Orai1 dependent, Wt, Orai1-/- and Orai1-/-/Trpc6-/- platelets were stimulated with 

TG, thrombin and CRP, and TxA2 formation was measured by a TxB2 ELISA. In line with 

published results,172 TG stimulation of Wt platelets resulted in large amount of TxA2 formation, 

however, in Orai1-/- and Orai1-/-/Trpc6-/- platelets TxA2 formation was nearly abolished (Figure 
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3-5), indicating that TG-induced TxA2 formation is tightly Orai1-dependent. Compared to 

Orai1-/- platelets, Orai1-/-/Trpc6-/- platelets exhibited a decreased TxA2 formation, suggesting 

that TRPC6 plays a role in TG-induced TxA2 formation. In response to CRP a significant 

reduction of TxA2 formation was observed in Orai1-/- and Orai1-/-/Trpc6-/- platelets compared 

to Wt platelets. In sharp contrast, thrombin-induced TxA2 formation was unaltered in both 

mutant platelets (Figure 3-5), indicating that GPVI- but not GPCR-mediated TxA2 formation is 

Orai1 and TRPC6 independent.  

 

 
 
Figure 3-5: TxA2-induced second phase of Ca2+ signaling is controlled by Orai1. TxA2 production 
was measured by a TxB2 ELISA. 5 µM TG, 0.1 U/mL thrombin and 10 µg/mL CRP were used for 
platelet activation. Results are presented as mean of TxB2 production (ng) ± SD.*p < 0.05, **p < 0.01, 
***p <0.001. (Chen et al., J Thromb Haemost 2014)169 
 

In summary, TG-induced SOCE through Orai1 can enhance PLC and PLD activity. 

Furthermore, TxA2 formation can be increased during Orai1-mediated SOCE, which could 

further enhance PLCβ activity via the TP receptor. Subsequently, enhanced PLC and PLD 

activity leads to DAG production, resulting in TRPC6 activation.  

3.1.5 Normal platelet count, size and glycoprotein expression in Orai1-/-

/Trpc6-/- platelets 

To investigate the effects of Orai1 and TRPC6 double deficiency on platelet physiology, 

peripheral platelet count and size were determined using a Sysmex KX-21N automated 

hematology analyzer. Orai1-/- and Orai1-/-/Trpc6-/- mice displayed normal platelet count 

(Figure 3-6 A) and size (Figure 3-6 B) as Wt mice. In addition, the surface expression of 

major glycoproteins, including GPIb-IX-V, GPVI, CLEC-2, as well as integrin αIIbβ3 and 

α2β1, were measured by a flow cytometric assay. The abundance of these glycoproteins 
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was unaltered in Orai1-/- and Orai1-/-/Trpc6-/- platelets compared to Wt platelets (Figure 3-6 C).  

 
 
Figure 3-6: Deficiency of Orai1 and TRPC6 does not impair platelet count, size and glycoprotein 
expression. Peripheral platelet count (A) and platelet size (B) of Wt, Orai1-/- and Orai1-/-/Trpc6-/- mice 
measured with a blood cell counter are depicted. Results are mean ± SD. (C) Diluted whole blood was 
incubated with saturating concentrations of FITC-labeled antibodies for 15 min at RT and analyzed by 
flow cytometry. Results are shown as MFI ± SD (n=4) and are representative of 3 individual 
experiments. 
 

3.1.6 Defective platelet activation in response to the GPVI agonists, but 
normal responses to the GPCR agonists in Orai1-/-/Trpc6-/- platelets 

Orai1-/- platelets display defective responses to GPVI stimulation, but unaltered platelet 

activation in response to the GPCR agonists.26 To determine whether the double deficiency 

of Orai1 and TRPC6 has additional effects on platelet activation, platelets were stimulated by 

the GPCR agonists and the ITAM-coupled receptor agonists, and analyzed by flow cytometry. 

Two markers for platelet activation were assessed: inside-out activation of αIIbβ3 integrin 

and degranulation. The αIIbβ3 integrin activation was assessed by using JON/A-PE antibody, 

which specifically binds the activated conformation of the integrin,158 and degranulation was 

determined by P-selectin surface exposure, which is a marker of α-granule release. 

Upon stimulation of the ITAM-coupled collagen receptor GPVI, either with CRP or the snake 

venom toxin convulxin (CVX), the αIIbβ3 integrin activation and P-selectin exposure were 

severely reduced compared to Wt platelets, which is in line with previous observations.26 

Furthermore, compared to Orai1-/- platelets, Orai1-/-/Trpc6-/- platelets had reduced platelet 

activation in response to low concentrations of CRP and CVX (Figure 3-7 A), indicating a 

significant role of TRPC6 in integrin activation and degranulation. However, when stimulated 

by the GPCR agonists (thrombin, ADP and U46619), Orai1-/- and Orai1-/-/Trpc6-/- platelets 

had normal αIIbβ3 integrin activation and P-selectin exposure (Figure 3-7 B), demonstrating 

that Orai1 and TRPC6 are not required for GPCR-induced platelet activation. 
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Figure 3-7: Impaired platelet activation in response to the GPVI agonists in Orai1-/-/Trpc6-/- 
platelets. Flow cytometric analysis of αIIbβ3 activation and P-selectin exposure in Wt, Orai1-/- and               
Orai1-/-/Trpc6-/- platelets in response to platelet agonists as indicated (CRP: 1 – 10 µg/mL, CVX: 1 
µg/mL ADP: 10 µM, U46619: 3 µM, thrombin: 0.1 – 0.002 U/mL). Results are depicted as MFI ± SD of 
4 mice per group and representative of 4 individual experiments. *p < 0.05, **p < 0.01, ***p < 0.001. 
(Chen et al., J Thromb Haemost 2014)169 
 

3.1.7 Defective aggregation in response to the GPVI agonists in  Orai1-/-

/Trpc6-/- platelets 

Since Orai1-/-/Trpc6-/- platelets display a more defective GPVI-dependent integrin activation 

and degranulation compared to Orai1-/- platelets, the ability to aggregate of Orai1-/-/Trpc6-/- 

platelets may also be further impaired. To investigate this, in vitro aggregation studies were 

performed. In line with the flow cytometry data, Orai1-/- platelets and Orai1-/-/Trpc6-/- platelets 

aggregated normally upon stimulation with the GPCR agonists thrombin, ADP and U46619 

at all tested concentrations. In contrast, the response to the GPVI agonists CRP and 
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collagen was partially impaired at intermediate and abrogated at low agonist concentrations 

in Orai1-/-/Trpc6-/- platelets (Figure 3-8). These data indicate that Orai1 and TRPC6 are 

required for GPVI-induced platelet aggregation, but not essential for GPCR-induced 

aggregation. 

 
 
Figure 3-8: Defective aggregation of Orai1-/-/Trpc6-/- platelets in response to the GPVI agonists. 
Aggregation curves of Wt (grey line), Orai1-/- (black line) and Orai1-/-/Trpc6-/- (red line) platelets in 
response to indicated agonists and concentrations. Washed platelets were incubated for 10 min in the 
presence of indicated agonists and changes in light transmission were recorded. (Chen et al., J 
Thromb Haemost 2014)169 
 

3.1.8 Orai1-/-/Trpc6-/- platelets display normal spreading on fibrinogen 

Integrin αIIbβ3 outside-in signaling is triggered by extracellular ligand binding, which leads to 

cytoskeletal reorganization and platelet spreading.11 To investigate the role of Orai1 and 

TRPC6 in integrin outside-in signaling, a spreading assay was performed. After stimulation 

with 0.01 U/mL thrombin, Wt, Orai1-/- and Orai1-/-/Trpc6-/- platelets were allowed to spread on 

a fibrinogen coated surface. Orai1-/- and Orai1-/-/Trpc6-/- platelets could form filopodia and 
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lamellipodia and fully spread like Wt platelets (Figure 3-9). These data indicate that Orai1 

and TRPC6 are not essential for integrin outside-in signaling and cytoskeletal reorganization.  

 
 

Figure 3-9: Unaltered spreading of Orai1-/-/Trpc6-/- platelets. Washed platelets of Wt, Orai1-/- and 
Orai1-/-/Trpc6-/- BM chimeric mice were stimulated with 0.01 U/mL thrombin and allowed to spread on 
fibrinogen (200 μg/mL). Representative DIC images of 3 individual experiments from the indicated time 
points (left) and statistical evaluation of the percentage of platelets at different stages of spreading 
(right). Stg 1: roundish, Stg 2: only filopodia, Stg 3: filopodia and lamellipodia, Stg 4: fully spread.  
 

3.1.9 Normal in vivo thrombus formation in Orai1-/-/Trpc6-/- mice 

In the next step, the functional consequence of Orai1 and TRPC6 double deficiency was 

addressed in vivo. This experiment was performed in collaboration with Ina Thielmann in our 

group. Intravital microscopy was used to visualize thrombus formation in the mesenteric 

arterioles after chemical injury (20% FeCl3). This arterial thrombosis model has been 

frequently used to study tissue factor/thrombin-driven thrombus formation in vivo, but has 

also been shown to be dependent on collagen-mediated GPVI activation.173 Orai1-/- mice 

were already protected in a model where thrombus growth is induced by mechanical injury of 

the aorta, whereas they showed normal thrombus formation in the FeCl3 injury model.26 In 

order to investigate whether Orai1 and TRPC6 have redundant functions in in vivo thrombus 

formation, Orai1-/-/Trpc6-/- mice were subjected to the FeCl3 model. However, no differences 

were observed in thrombus growth between Orai1-/- and Orai1-/-/Trpc6-/- (19.04 ± 2.75 min vs. 

17.42 ± 1.33 min) mice (Figure 3-10). These data indicated that Orai1 and TRPC6 functions 

are not essential for thrombus formation in this experimental setting or an alternative 
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signaling mechanism could compensate the severe Ca2+ deficits in Orai1-/-/Trpc6-/- platelets in 

vivo. 

 

 
 
Figure 3-10: Normal arterial thrombus formation in Orai1-/-/Trpc6-/- mice. Thrombus formation in 
small mesenteric arterioles was induced by topical application of 20% FeCl3. In order to monitor 
thrombus formation by intravital microscopy platelets were labeled fluorescently. Representative 
pictures and time to stable occlusion of Wt, Orai1-/- and Orai1-/-/Trpc6-/- mice are shown. (Chen et al., J 
Thromb Haemost 2014)169 
 

3.1.10 Enhanced ex vivo thrombus formation, but reduced PS exposure in 
Orai1-/-/Trpc6-/- platelets 

At sites of vessel wall injury, the GPVI-collagen interaction is critical for integrin αIIbβ3 

activation, which is important for firm platelet adhesion and thrombus growth. Orai1-/- and 

Orai1-/-/Trpc6-/- platelets display impaired GPVI-induced αIIbβ3 integrin activation, 

degranulation and aggregation, however, in vivo thrombus formation is normal (Figure 3-10). 

To study the effect of impaired GPVI signaling of Orai1-/- and Orai1-/-/Trpc6-/- platelets on 

thrombus formation under flow, an ex vivo whole blood perfusion assay was used. This 

experiment was performed in collaboration with Prof. Johan Heemskerk, Department of 

Biochemistry, Maastricht University. Whole anti-coagulated blood was perfused over a 

collagen-coated surface at a shear rate of 1000s-1, the area covered by platelets was 

measured. In line with flow cytometry and aggregometry results, perfusion of Orai1-/- platelets 

resulted in a significantly reduced surface coverage. Surprisingly, Orai1-/-/Trpc6-/- platelets 

displayed enhanced platelet adhesion and thrombus formation compared to Orai1-/- platelets 

(Figure 3-11 A and B), indicating that in Orai1-/-/Trpc6-/- platelets an alternative signaling 

mechanism exists to compensate the severe Ca2+ deficits.  

It is well established that upon platelet activation PS can be exposed on the outer surface of 

the plasma membrane, which provides high affinity binding sites for key coagulation factors 
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to trigger coagulation.174-176 During this process, high levels of intracellular Ca2+ are essential. 

Since Orai1-/- and Orai1-/-/Trpc6-/- platelets display a defective Ca2+ response, the coagulant 

activity of platelets may be impaired. To study this, Annexin V-Dylight-488, which specifically 

binds to platelets exposing PS at their outer surface, was used to in the flow chamber assay. 

When perfusing Orai1-/- and Orai1-/-/Trpc6-/- blood, the percentage of PS-positive platelets 

was significantly lower than when perfusing Wt blood. Furthermore, PS exposure was also 

analyzed by flow cytometry upon agonist stimulation. Similarly, a strong reduction of PS 

exposure in Orai1-/- and Orai1-/-/Trpc6-/- platelets was observed after agonist or TG treatment, 

whereas control experiments showed that Ca2+ ionophore (A23187)-dependent PS exposure 

was similar to Wt platelets (Figure 3-11 C). These data confirm that the defective Ca2+ 

response in Orai1-/- and Orai1-/-/Trpc6-/- platelets lead to impaired procoagulant activities. 

 
Figure 3-11: Enhanced ex vivo thrombus formation but reduced PS exposure in Orai1-/-/Trpc6-/- 
platelets. (A) Heparinized whole blood from Wt, Orai1-/- and Orai1-/-/Trpc6-/- mice was perfused over 
0.2 mg/mL of immobilized collagen at a shear rate of 1000 s-1 (4 min) followed by 2 min perfusion with 
Tyrode HEPES buffer at the same shear rate. Adherent platelets were stained with Annexin V-Dylight-
488 (0.25 μg/mL). Representative phase contrast (upper panel) and fluorescence images (lower panel) 
are shown. (B) Mean surface coverage ± SD (left panel) and mean percentage of Annexin V positive 
platelets ± SD (right panel) are shown. (C) PS exposure of platelets was determined using Annexin-V-
DyLight-488 upon stimulation with the indicated agonists and A23187. Results are represented as 
percentage of Annexin V positive platelets ± SD. *p < 0.05, **p < 0.01, ***p < 0.001. 

3.1.11 Enhanced ATP secretion in Orai1-/-/Trpc6-/- platelets in response to 
GPCR agonists 

Since Orai1-/-/Trpc6-/- platelets display enhanced ex vivo thrombus formation, an Ca2+ entry 
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pathway besides Orai1 and TRPC6 may be enhanced to compensate for the severe Ca2+ 

deficits in Orai1-/-/Trpc6-/- platelets. It is known that the two major Ca2+ entry routes in 

platelets are SOCE and ROCE. SOCE is mediated by Orai1, and ROCE is mainly regulated 

by TRPC6, TRPC3 and P2X1. In Orai1-/-/Trpc6-/- platelets Orai1-mediated SOCE and TRPC6-

mediated ROCE are abolished, and DAG production is not increased in Orai1-/-/Trpc6-/- 

platelets indicating that TRPC3-mediated ROCE should not be enhanced. Therefore, P2X1-

induced Ca2+ entry in Orai1-/-/Trpc6-/- platelets was studied. Since P2X1 is operated by ATP, 

the secretion of ATP was measured. In response to high concentrations of thrombin, ATP-

secretion in platelets of the three mouse lines was comparable, indicating that the ATP 

content is normal. However, at threshold concentrations of thrombin or U46619, ATP-

secretion was significantly increased in Orai1-/-/Trpc6-/- platelets compared to Orai1-/- or Wt 

platelets. In sharp contrast, in response to CRP and TG, ATP secretion was completely 

abolished (Figure 3-12 A). These results indicate that GPCR-mediated stimulation can lead 

to enhanced ATP-secretion in Orai1-/-/Trpc6-/- platelets, thereby resulting in activation of P2X1. 

To further study whether P2X1 function was enhanced in Orai1-/-/Trpc6-/- platelets after 

stimulation with the GPCR agonists, an aggregation assay was performed in the presence of 

ACD buffer and a high concentration of apyrase (2 U/mL), which prevents P2X1 channels 

from desensitization and block ADP-mediated aggregation responses. As expected, 

thrombin- or U46619-induced platelet aggregation was strongly enhanced in Orai1-/-/Trpc6-/- 

platelets while Orai1-/- platelets responded similarly to Wt platelets (Figure 3-12 B), 

confirming the previous results. According to these data, P2X1 channel is speculated to 

compensate for the severe Ca2+ deficits of Orai1-/-/Trpc6-/- platelets under in vivo conditions. 

 
 
Figure 3-12: Enhanced ATP secretion in response to the GPCR agonists in Orai1-/-/Trpc6-/- 
platelets. (A) Washed platelets were incubated with Luciferase-Luciferin reagent, and ATP secretion 
was measured using a Chronolog aggregometer after stimulation with indicated agonists. *p < 0.05, 
**p < 0.01, ***p < 0.001. (B) Aggregation responses of Wt (grey line), Orai1-/- (black line) and Orai1-/-

/Trpc6-/- (red line) platelets in the presence of ACD and a high concentration of apyrase (2 U/mL). 
(Chen et al., J Thromb Haemost 2014)169 
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3.2 The role of the TRPM7 kinase in mouse platelets 

Mg2+ has been shown to be associated with several diseases. In many cardiovascular 

diseases, such as metabolic syndrome, diabetes mellitus, hypertension and stroke, altered 

Mg2+ homeostasis is described.94-97 Moreover, Mg2+ has been considered as a “natural 

antagonist” of Ca2+ for more than 50 years. It has been suggested that Mg2+ competes with 

Ca2+ for the same binding sites of receptors in the PM and influences Ca2+ entry.98 In 

platelets high levels of extracellular Mg2+ were shown to reduce Ca2+ influx106 and inhibit 

platelet aggregation,103-105 indicating that Mg2+ channels or transporters on platelet surface 

may play a role in platelet Ca2+ homeostasis and platelet activation.  

TRPM7 is one of the most interesting Mg2+ channels since it is expressed in virtually all cell 

types and the structure and the physiological role of TRPM7 is well studied. TRPM7 contains 

an atypical α-kinase domain at the C-terminus, which has been proposed to play a role in 

diverse phospho-signaling events. The TRPM7 kinase domain contains multiple 

autophosphorylation sites, whose autophosphorylation enhance the kinase to interact with 

different substrates, leading to Ser/Thr phosphorylation of the substrates.150 Up to date, only 

a limited number of endogenous substrates of the TRPM7 kinase has been identified in 

mammalian cells.151,177 It has been reported that the kinase domain of TRPM7 directly 

interacts with the C2 domain of PLC isoforms.138 Furthermore, several Ser/Thr 

phosphorylation sites in the C2 domain of PLCγ2 was identified by using the TRPM7 kinase 

in a DT40 cell line.154 Taken together, these findings indicate that the TRPM7 kinase may 

regulate the activity of PLC isoforms, thereby influencing Ca2+ homeostasis. One aim of this 

thesis was to elucidate the role of the TRPM7 kinase in platelet Ca2+ homeostasis and 

platelet function. 

3.2.1 Impaired Ca2+ homeostasis in the presence of high levels of 
extracellular Mg2+ 

In many cell types, Mg2+ has been reported to inhibit Ca2+ entry.107 To study whether Mg2+ 

can influence Ca2+ influx in platelets, two major Ca2+ entry routes, ROCE and SOCE, were 

measured in the presence of physiological concentration (1 mM) and high concentration (5 

mM) of extracellular Mg2+. To induce ROCE, platelets were stimulated with 150 µM DAG 

analogue, OAG, which directly activates TRPC6. For SOCE measurement, TG was applied 

to activate Orai1 and the changes of [Ca2+]i were determined. As expected, reduced ROCE 

(Figure 3-13 A) and SOCE (Figure 3-13 B) were observed in the presence of 5 mM 

extracellular Mg2+, suggesting an inhibiting effect of elevated extracellular Mg2+ levels on 

platelet Ca2+ homeostasis. 
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Figure 3-13: High extracellular Mg2+ levels inhibit Ca2+ influx in platelets. Fura2-loaded platelets 
from normal C57Bl6 mice were incubated in physiological (1 mM) or high (5 mM) concentrations of 
extracellular Mg2+. OAG-induced ROCE (A) and TG-induced SOCE (B) were determined by a 
fluorimeter with excitation at 340 and 380 nm and emission at 509 nm. 
 

3.2.2 Inhibiting effects of high extracellular Mg2+ concentrations on platelet 
activation 

In human platelets, high extracellular Mg2+ levels have been reported to inhibit platelet 

activation and aggregation.102-105 Moreover, in mouse platelets the elevation of extracellular 

Mg2+ concentrations leads to impaired Ca2+ homeostasis, indicating that high levels of 

extracellular Mg2+ may also play an inhibiting role in platelet activity in mouse platelets. To 

study this, platelets from C57Bl6 mice were used and their function was determined in the 

presence of high concentrations of extracellular Mg2+. Integrin αIIbβ3 inside-out activation 

and P-selectin exposure were measured by flow cytometric assay. Washed platelets were 

incubated in physiological concentration (1 mM) or high concentration (5 mM) of extracellular 

Mg2+ for 10 min, then were stimulated with thrombin, CRP or Rhodocytin. Consistent with 

results from human platelets, integrin activation and degranulation were reduced in the 

presence of 5 mM Mg2+ compared to 1 mM Mg2+, indicating that high extracellular Mg2+ can 

inhibit platelet activation (Figure 3-14 A). In the next step, platelet aggregation in the 

presence of high Mg2+ concentrations was investigated. Similarly, platelet aggregation in 

response to GPCR-PLCβ and (hem)ITAM-PLCγ2 agonists was severely impaired in platelets 

treated with 5 mM Mg2+ (Figure 3-14 B). In line with these findings, elevation of extracellular 

Mg2+ resulted in the inhibition of thrombus formation on immobilzed collagen under flow 

conditions (Figure 3-14 C). Taken together, these results suggest that high levels of 

extracellular Mg2+ play an inhibiting effect on platelet activation, aggregation and thrombus 

formation. 
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Figure 3-14: High extracellular Mg2+ levels inhibit platelet activation, aggregation and thrombus 
formation. (A) Washed platelets from C57Bl6 mice were incubated in 1 mM or 5 mM of extracellular 
Mg2+. Thereafter, platelets were stimulated with indicated agonists (thrombin: 0.1 – 0.005 U/mL, CRP: 
5 – 0.1 µg/mL, Rhodocytin: 1.2 – 0.06 µg/mL), and integrin αIIbβ3 activation and P-selectin exposure 
was analyzed by flow cytometer. Results are represented as MFI ± SD. (B) Washed platelets, 
incubated in 1 mM and 5 mM extracellular Mg2+, were stimulated with GPCR-PLCβ (thrombin, U46619, 
ADP) or ITAM-PLCγ2 (CRP, Rhod.) agonists. Light transmission was recorded on a Fibrintimer 
4-channel aggregometer. ADP measurements were performed in platelet-rich plasma. (C) Different 
amounts of MgCl2 were added into heparinized blood samples and incubated for 10 min. Afterwards, 
blood samples were perfused over a collagen-coated surface at a shear rate of 1000 s-1. 
Representative phase contrast images of control (1 mM, left) and Mg2+-treated (5 mM, right) are 
shown. Mean surface coverage of platelets was measured. *p < 0.05, **p < 0.01, ***p < 0.001. 
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3.2.3 TRPM7 is expressed in mouse platelets 

In mammalian cells, more than 20 Mg2+ channels or transporters have been identified on the 

plasma membrane, the ER membrane, the mitochondrial membrane and also the membrane 

of Golgi apparatus.117,178,179 To identify the major Mg2+ channels in mouse platelets, mRNA 

expression profiles of plasma membrane Mg2+ channels were studied. Total mRNAs were 

isolated from mouse platelets and brain tissue (as positive control) and RT-PCRs were 

performed using Mg2+ channel specific primers. In platelets, only MagT1 and TRPM7 were 

predominantly expressed and TUSC3 was also detectable at mRNA level, while most of the 

investigated Mg2+ channels could be detected in brain tissues (Figure 3-15 A). Furthermore, 

at protein level, the expression of TRPM7 was confirmed by immunofluorescent confocal 

microscopy. In fully spreaded Wt platelets, TRPM7 protein was detectable and was found to 

mainly locate on the cell surface (Figure 3-15 B). 

 
 
Figure 3-15: TRPM7 is expressed in mouse platelets. (A) mRNA expression profiles of plasma 
membrane Mg2+ channels and transporters in mouse platelets and brain tissues were detected by RT-
PCR. Actin was used as loading control. (B) Protein expression and subcellular localization of TRPM7 
in Wt platelets was confirmed. Upon stimulation with 0.01 U/mL thrombin, platelets were allowed to 
spread on fibrinogen-coated surface for 30 min. Thereafter platelets were fixed and permeabilized, 
then were stained with phalloidin Atto647N and TRPM7 antibody to detect F-actin and TRPM7. 
Representative confocal microscopy images are shown using TRPM7 antibody and phalloidin staining 
to label the actin cytoskeleton.  
 

3.2.4 Generation of TRPM7 "kinase-dead" mice Trpm7KI 

To investigate the physiological significance of the TRPM7 kinase, a “kinase-dead” knock-in 

mouse line (Trpm7KI) was generated (kindly provided by Prof. Dr. Thomas Gudermann and 

Dr. Vladimir Chubanov, Walther-Straub Institute for Pharmacology and Toxicology, LMU 

München), in which a single base pair in exon 33 of the Trpm7 gene was mutated, resulting 

in the single AA substitution of arginine for lysine at position 1646 (Figure 3-16 A).  

ATP and Mg2+ bindings to the kinase domain are required for the optimal enzymatic activity 

of the TRPM7 kinase, and amino acid TRPM7K1646 is critical for their bindings. Mutation of 

TRPM7K1646R abolishes ATP and Mg2+ bindings, thereby inhibiting the autophosphorylation of 

TRPM7S1511, one of the major autophosphorylation sites in the kinase domain. Moreover, 
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mutation of TRPM7S1511 completely abolishes the kinase activity.156 Therefore, in 

TRPM7K1646R mutant, the indirect inhibition of phosphorylation of TRPM7S1511 also inactivates 

the kinase (Figure 3-16 B, upper panel). 

To test whether the targeting vector is functional, hemagglutinin (HA)-tag TRPM7 with 

mutation of TRPM7K1646R or TRPM7S1511C (as negative control) was overexpressed in 

HEK293 cells. The autophosphorylation of the TRPM7 kinase was detected with anti-

phospho-serine 1511 antibody. These experiments were performed in collaboration with Prof. 

Dr. Thomas Gudermann, Dr. Vladimir Chubanov and their colleagues, Walther-Straub 

Institute for Pharmacology and Toxicology, LMU München. In wild-type (positive control), the 

phosphorylation of TRPM7S1511 was detectable. However, in TRPM7S1511C mutant (negative 

control), phosphorylation of TRPM7S1511 was completely abolished. In line with negative 

control, TRPM7K1646R mutant also exhibited abolished TRPM7S1511 phosphorylation (Figure 3-

16 B, lower panel), establishing that the knock-in strategy is successful. 

 
 
Figure 3-16: Generation of Trpm7KI mice. (A) Targeting strategy of the “kinase-dead” knock-in 
mouse was based on homologous recombination of a targeting vector into the Trpm7 locus carrying a 
single base pair substitution (K1646R) in exon 33. A floxed neomycin (NEO) knock-in cassette was 
inserted into intron 32 for selecting the targeted ES cells. By crossing the Trpm7NEO mice with deleter-
Cre mice the floxed NEO cassette was removed in vivo to generate Trpm7KI mice. (B) Upper panel: a 
model about TRPM7K1646R mutant inhibiting TRPM7S1511 phosphorylation and inactivate the kinase 
activity. Lower panel: HA-tagged TRPM7 carrying mutation on K1646R or S1511C was overexpressed 
in HEK293 cells. Anti-phospho-serine 1511 antibody was used to detect the phosphorylation of the 
TRPM7 kinase, and HA expression was shown as loading control. K1646R mutation in the kinase 
domain completely blocks autophosphorylation on amino acid residue of S1511 in HEK293 cells. 
 

3.2.5 Normal TRPM7 channel activity in Trpm7KI mice 

The role of the TRPM7 kinase domain in regulating its channel activity remains controversial 

and only partially understood. Recent studies suggest that the kinase activity is not essential 

for channel activation, but plays a role in modulating channel activity. Similarly, channel 
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activity affects kinase activity, since Mg2+ influx via the channel can regulate the kinase 

activity.128,155 To study whether the ''kinase-dead'' knock-in affects TRPM7 channel activity, 

TRPM7 current in primary mouse embryonic fibroblast (MEF) cells, which were isolated from 

Trpm7KI embryos, was measured. This work was performed in collaboration with Prof. Dr. 

Thomas Gudermann, Dr. Vladimir Chubanov and their colleagues, Walther-Straub Institute 

for Pharmacology and Toxicology, LMU München. Compared to Wt MEF cells, Trpm7KI MEF 

cells exhibited unaltered TRPM7 current (Figure 3-17 A). Similarly, in blood serum and bone 

from Trpm7KI mice Mg2+ concentrations were unchanged (Figure 3-17 B), suggesting a 

normal long-term in vivo Mg2+ status in Trpm7KI mice. In line with these results, the basal 

[Mg2+]i and [Ca2+]i in Trpm7KI platelets were found to be normal (Figure 3-17 C). Altogether, 

these results indicate that the kinase activity of TRPM7 is dispensable for Mg2+ homeostasis, 

at least under our experimental conditions. 

 
Figure 3-17: Unaltered TRPM7 channel activity in Trpm7KI mice. (A) TRPM7 currents in primary 
MEF cells derived from Wt and Trpm7KI embryos are shown. Currents were elicited by a ramp 
protocol from −100 to +100 mV over 50 ms acquired at 0.5 Hz. Inward current amplitudes were 
extracted at −80 mV, outward currents at +80 mV and plotted versus time of the experiment. Data 
were normalized to cell size as pA/pF. Representative current-voltage relationships extracted at 600 s. 
Quantification of inward and outward currents at -80 mV and +80 mV at 600 s. Measurements were 
conducted in the absence of extracellular Mg2+ to enhance current sizes. No changes in channel 
activation were observed under these conditions. (B) Quantification of Mg2+ concentrations in blood 
serum and bone in adult mice. (C) In Mag-Fluo-4 and Fluo-3 loaded resting platelets of washed blood 
cytoplasmic Mg2+ and Ca2+ concentrations were respectively detected with flow cytometer.  
 

3.2.6 TRPM7 kinase function is dispensable for platelet generation 

To analyze the role of the TRPM7 kinase activity in platelet physiology, platelet count and 

size were determined with an automated hematology analyzer. Trpm7KI mice exhibited 
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normal platelet count and size (Figure 3-18 A). Additionally the expression levels of major 

surface glycoproteins were also measured by flow cytometer, and found to be unaltered in 

Trpm7KI mice (Figure 3-18 B). These results indicate that the disruption of the TRPM7 kinase 

activity has no significant effect on peripheral platelet count, size and glycoprotein 

expression. Furthermore, platelet life span in blood stream was determined. Mouse platelets 

display a life span of approximate 5 days. After that they are cleared by the reticulo-

endothelial system in spleen and liver. To determine platelet life span, circulating platelets 

were labeled by intravenous injection of a fluorescence-coupled anti-GPIX antibody 

derivative, which does not influence platelet function.159 One hour after antibody injection, 

the percentage of labeled platelets was assessed by flow cytometry and more than 90% of 

circulating platelets were labeled in both Wt and Trpm7KI mice. Over the next 5 days, the 

percentage of labeled platelets was monitored (Figure 3-18 C). In Trpm7KI mice, platelet life 

span was normal compared to Wt mice, demonstrating that the TRPM7 kinase activity is 

dispensable for platelet production and turnover in normal physiology. 

 
Figure 3-18: TRPM7 kinase function is dispensable for platelet generation. (A) Peripheral platelet 
count and platelet size of Wt and Trpm7KI mice were measured with an automated hematology 
analyzer. Results are mean ± SD. (B) Diluted whole blood was incubated with saturating 
concentrations of indicated FITC-labeled antibodies for 15 min at RT. Afterwards the expression of 
major surface glycoproteins were analyzed by flow cytometry. Results are shown as MFI ± SD. (C) 
Platelet life span determination. Wt and Trpm7KI mice were injected intravenously with Dylight-488 
conjugated anti-GPIX derivative (0.5 mg/kg). The percentage of fluorescently labeled platelets was 
determined over 5 days using a flow cytometer.  
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3.2.7 Impaired PLCγ2-ITAM-mediated and partially defective PLCβ-GPCR-

mediated activation in Trpm7KI platelets 

The TRPM7 kinase has been suggested to directly interact with the C2 domain of PLC 

isoforms in mammalian cells,138 and in platelets the activation of PLC isoforms (PLCβ and 

PLCγ2) is critical for agonist-induced activation. To study the effect of the TRPM7 kinase 

activity on platelet activation, agonist-induced activation of the major platelet integrin αIIbβ3 

and degranulation-dependent P-selectin exposure were analyzed by flow cytometry. Upon 

stimulation with high concentrations of the GPCR-specific agonists (ADP, U46619 and 

thrombin), Tprm7KI platelets responded normally. Only at threshold concentrations of 

thrombin, integrin αIIbβ3 activation and P-selectin exposure in Trpm7KI platelets were 

reduced (Figure 3-19 A), indicating that the TRPM7 kinase partially influences PLCβ-GPCR-

mediated platelet activation. In contrast, in response to both high and low concentrations of 

the GPVI-specific agonists (CRP and CVX), integrin αIIbβ3 activation and P-selectin 

exposure were markedly reduced (Figure 3-19 B), suggesting that the TRPM7 kinase plays 

an important role in PLCγ2-ITAM-mediated platelet activation. 

 
Figure 3-19: Severely impaired ITAM-PLCγ2- and partially defective GPCR-PLCβ-mediated 
platelet activation. Different concentrations of the GPCR-specific agonists (A) and the GPVI-specific 
agonists (B) were used to stimulate platelets. Integrin αIIbβ3 activation (upper panel) and P-selectin 
exposure (lower panel) were assessed using PE-labeled JON/A antibody and FITC-labeled anti-P-
selectin antibody, respectively. Results are represented as MFI ± SD. *p < 0.05, **p < 0.01, ***p < 
0.001. 
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To investigate how these defects in integrin inside-out activation and degranulation influence 

aggregation of Trpm7KI platelets, an in vitro aggregation experiment was performed. 

Consistent with the flow cytometric results, Trpm7KI platelets exhibited partially impaired 

aggregation in response to low concentrations of thrombin, but upon stimulation with ADP, 

U46619 and high concentrations of thrombin, Trpm7KI platelets aggregated normally. In 

contrast, in response to the GPVI-specific agonists, CRP and collagen, Trpm7KI platelets 

exhibited severely reduced aggregation (Figure 3-20). In summary, disruption of the TRPM7 

kinase activity results in strong defects of PLCγ2-ITAM-mediated platelet activation and 

aggregation, and partial defects of PLCβ-GPCR-dependent platelet activity. 

 

 
Figure 3-20: Severely impaired ITAM-PLCγ2 and partially defective GPCR-PLCβ-mediated 
platelet aggregation. Washed platelets from Wt (black line) and Trpm7KI (grey line) mice were 
stimulated with GPCR-PLCβ (thrombin, ADP and U46619) or ITAM-PLCγ2 (CRP and collagen) 
agonists at the indicated concentrations. Light transmission was recorded on a Fibrintimer 4-channel 
aggregometer. ADP measurements were performed in platelet-rich plasma, all other measurements 
were performed in buffer with 100 μg/mL human fibrinogen (except for thrombin). 
 

3.2.8 Trpm7KI platelets display normal spreading on fibrinogen 

To investigate integrin outside-in signaling, a spreading assay was performed. Upon 

stimulation with 0.01 U/mL thrombin, platelets were allowed to spread on immobilized 

fibrinogen for 30 min and analyzed at different time points. Compared to Wt platelets, 

Trpm7KI platelets were able to form filopodia and lamellipodia to the same extent with similar 

kinetics. Moreover, Trpm7KI platelets could fully spread as Wt platelets after 30 min (Figure 3-

21). These data indicate that the TRPM7 kinase activity is not required for integrin outside-in 

signaling and cytoskeletal reorganization in platelets. 
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Figure 3-21: Unaltered spreading of Trpm7KI platelets on fibrinogen. Washed platelets from Wt 
and Trpm7KI mice were allowed to spread on immobilized fibrinogen (200 µg/mL) for 30 min after 
stimulation with 0.01 U/mL thrombin. Upper panel: representative DIC images of 3 individual 
experiments from the indicated time points. Lower panel: statistical evaluation of the percentage of 
platelets at different stages of spreading. Stg 1: roundish, Stg 2: only filopodia, Stg 3: filopodia and 
lamellipodia, Stg 4: fully spread. 
 

3.2.9 Impaired dense granule secretion in Trpm7KI platelets 

Flow cytometric results showed defective P-selectin exposure in Trpm7KI platelets in 

response to GPVI agonists, indicating that α-granule degranulation is affected. To test 

whether dense granule secretion is also affected in Trpm7KI platelets, the amount of released 

ATP and serotonin were measured. Washed platelets from Wt and Trpm7KI mice were 

stimulated with thrombin (0.1 U/mL and 0.01 U/mL) or CRP (0.1 µg/mL and 0.05 µg/mL), and 

ATP secretion was determined by using CHRONO-LUME reagent, while serotonin secretion 

was quantified by an ELISA assay. In line with flow cytometry and aggregometry results, ATP 

(Figure 3-22 A) and serotonin (Figure 3-22 B) secretion in response to low concentrations of 

thrombin and CRP were reduced, suggesting that agonist-induced dense granule secretion 

is also impaired in Trpm7KI platelets.  
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Figure 3-22: Impaired dense granule secretion in Trpm7KI platelets. (A) Washed platelets from Wt 
and Trpm7KI mice were adjusted to 500,000 platelets/µL and incubated with Luciferase-Luciferin 
reagent. Upon stimulation with different concentrations of thrombin or CRP, ATP release was 
measured using a Chronolog aggregometer. (B) 500,000 platelets/µL of washed platelets were 
stimulated with the indicated agonists for 5 min. Afterwards, platelets were spun down and the 
supernatant was taken. The amount of serotonin in the supernatant was quantified by an ELISA assay. 
*p < 0.05, **p < 0.01. 
 

3.2.10 The TRPM7 kinase regulates PL-mediated Ca2+ responses in platelets 

The enzymatic activity of PLs has been well established to play a critical role in Ca2+ 

homeostasis in platelets, which is essential for platelet activation, aggregation and 

degranulation. It has been suggested that the TRPM7 kinase can directly interact with the 

C2 domain of PLC isoforms.138 Furthermore, flow cytometric and aggregometric results 

showed that platelet activation and aggregation were impaired in Trpm7KI platelets. These 

findings lead to a proposal that the TRPM7 kinase may influence PL activity and Ca2+ 

homeostasis in platelets, thereby affecting their activation and aggregation. To study the 

effect of the TRPM7 kinase on PL activity, the time-dependent accumulation of IP1, a non-

degradable stable product of IP3, was measured by using an IP1 ELISA (Figure 3-23 A). 

Upon stimulation with a high concentration (0.1 U/mL) of thrombin, Trpm7KI platelets 

exhibited normal IP1 production, however at low concentration (0.01 U/mL), the amount of 

IP1 in Trpm7KI platelets was slightly lower than Wt platelets. In contrast, in response to both 

high (1 µg/mL) and low (0.1 µg/mL) concentrations of CRP, Tprm7KI platelets showed 

defective IP1 production. These results indicate that the TRPM7 kinase plays an important 
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role in regulating the activity of PLCγ2, but a minor role in the regulation of PLCβ activity. 

Further, the activation of PLC isoforms leads to DAG and IP3 production. DAG directly 

activates ROC channels (mainly TRPC6) and induces ROCE, while IP3 production results in 

Ca2+ release from the intracellular stores and induces subsequent Ca2+ influx via Orai1 

channels. Since Tprm7KI platelets exhibit defective PL activity, it can be reasoned that their 

Ca2+ response may also be impaired. Therefore, intracellular Ca2+ store release and 

extracellular Ca2+ entry were measured (Figure 3-23 B). Upon stimulation with thrombin, 

ADP and U46619, Trpm7KI platelets exhibited normal store release and Ca2+ entry. However, 

in response to CRP, Trpm7KI platelets displayed severely reduced store release and Ca2+ 

entry. These results confirm the role of the TRPM7 kinase in regulating PLCγ2 activity.  

In summary, the TRPM7 kinase can regulate phospholipase activity and influence Ca2+ 

homeostasis in platelets, which results in impaired platelet activation, degranulation and 

aggregation. 

 
Figure 3-23: The TRPM7 kinase regulates PLCγ2-mediated Ca2+ mobilization.  (A) IP1 (a specific 
metabolite of IP3) concentrations were quantified with an ELISA assay. Wt platelets (black) could 
produce 165 ± 25 or 92 ± 18 nM IP1 in response to 1 µg/mL or 0.1 µg/mL CRP, respectively. In sharp 
contrast, Trpm7KI platelets (grey) could only generate 74 ± 22 and 40 ± 6 nM IP1, respectively. As for 
thrombin, Wt platelets could generate 397 ± 36 and 168 ± 9 nM IP1 in response to 0.1 U/mL or 0.01 
U/mL thrombin respectively, however Trpm7KI platelets produced 414 ± 19 and 143 ± 16 nM IP1 
respectively. (B) Fura2-loaded Wt (black) and Trpm7KI platelets (grey) were stimulated with indicated 
agonists in the presence of 0.5 mM EGTA (store release) or in the presence of 1 mM Ca2+ (Ca2+ influx) 

and changes in [Ca2+]i were measured with a fluorimeter. Representative measurements and maximal 
increase in [Ca2+]i compared with baseline levels before stimulus are depicted as (Δ[Ca 2+]i) ± SD.     
*p < 0.05, **p < 0.01, ***p < 0.001.  
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3.2.11 Normal GPVI-induced tyrosine phosphorylation in Trpm7KI platelets 

Changes in the tyrosine phosphorylation of the proteins in GPVI-signaling cascade have 

been extensively studied in the past,180 however the physiological significance of Ser/Thr 

phosphorylation in this signaling cascade remains largely unknown. The tyrosine kinase Syk 

plays a central role in the GPVI signaling pathway. Syk phosphorylation at Y519/520 has 

been suggested to enhance the kinase's activity, which subsequently mediates LAT 

phosphorylation (Y191) and contributes to PLCγ2 phosphorylation (Y759).181,182 Furthermore, 

deletion of Syk or LAT in vivo severely impairs PLCγ2 function and IP3-induced Ca2+ 

mobilization in platelets.183,184 To investigate whether the TRPM7 kinase regulates tyrosine 

kinases or phosphatases in the GPVI-signaling cascade, time-dependent tyrosine 

phosphorylation of GPVI-signaling was monitored in Wt and Trpm7KI platelets. This 

experiment was performed in collaboration with Dr. Heike Hermanns, Rudolf Virchow Center, 

University of Würzburg. Neither global tyrosine phosphorylation, as assessed by the 4G10 

antibody (Figure 3-24 A), nor phospho-SykY525/526, phospho-LATY191, or phospho-PLCγ2Y759 

were altered in Trpm7KI platelets after activation of GPVI (Figure 3-24 B). These results 

suggest that tyrosine kinases and phosphatases involved in the GPVI-signaling cascade are 

not regulated by the TRPM7 kinase. 

 
Figure 3-24: Normal GPVI-induced tyrosine phosphorylation. 1 µg/mL CRP was used to stimulate 
washed platelets for 0, 30, 60 and 120 seconds under stirring condition. (A) The whole cell tyrosine 
phosphorylation in Wt or Trpm7KI platelet were detected by western blot using phosphotyrosine 
antibody 4G10. (B) Tyrosine phosphorylation of the GPVI-signaling cascade was determined with the 
indicated antibodies by Western blotting. 
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3.2.12 Trpm7KI platelets exhibit impaired procoagulant activity 

The exposure of PS to the outer surface of the plasma membrane is a key mechanism how 

platelets promote coagulation. It has been suggested that high [Ca2+]i is essential for PS 

exposure. Impaired Ca2+ homeostasis in Trpm7KI platelets may influence PS exposure and 

then affect platelet-dependent coagulation. To study this, Wt and Trpm7KI platelets were 

activated with thrombin and/or CRP, and PS exposure was measured using Dylight-488-

labeled annexin V, which specifically binds to PS-exposed platelets. In line with Ca2+ 

measurement results, Trpm7KI platelets displayed reduced PS exposure in response to CRP, 

but normal PS exposure to thrombin. In addition, under stimulation of a combination of low 

dose of thrombin and CRP, PS exposure was also impaired in Trpm7KI platelets (Figure 3-25). 

These results indicate that disruption of the TRPM7 kinase activity leads to impaired 

procoagulant activity. 

 
Figure 3-25: Impaired PS exposure in Trpm7KI platelets. PS exposure in response to the indicated 
agonists was measured by flow cytometric analysis. Washed blood from Wt and Trpm7KI mice were 
incubated with annexin V-DyLight-488, and then stimulated with the indicated agonists in the presence 
of 2 mM Ca2+. The percentage of annexin V-Dylight-488 positive platelets was determined by flow 
cytometry.  *p < 0.05, **p < 0.01. 
 

3.2.13 Impaired thrombus formation of Trpm7KI platelets on collagen under 
flow conditions  

Since it is well established that GPVI-collagen interaction is a critical step for platelet 

adhesion and thrombus growth at sites of vessel wall injury, the TRPM7 kinase may play a 

role in thrombus formation under flow. To study this, anti-coagulated whole blood from Wt or 

Trpm7KI mice was perfused over collagen-coated surface at a shear rate of 1000s-1, 

mimicking the flow conditions in large arteries. Wt platelets could adhere to collagen fibers 

quickly, aggregate stably and form large three-dimensional thrombi at the end of the 

perfusion period. In sharp contrast, Trpm7KI platelets exhibited markedly reduced adhesion 
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to the collagen-coated surface, and the subsequent three-dimensional thrombus formation 

was virtually abrogated (Figure 3-26). These results demonstrate that the TRPM7 kinase 

plays a role in the regulation of platelet adhesion and thrombus formation on collagen fibers 

under physiological flow conditions. 

 
Figure 3-26: Impaired thrombus formation of Trpm7KI platelets on collagen under flow 
conditions. (A) Heparinized whole blood from Wt and Trpm7KI mice was perfused over 0.2 mg/mL 
immobilized collagen at a shear rate 1000 s-1 for 4 min, followed by 2 min perfusion with Tyrode 
HEPES buffer at the same shear rate. Platelets were stained with anti-GPIX-Dylight-488 antibody. 
Representative phase contrast (upper panel) and fluorescence images (lower panel) are shown. (B) 
Mean surface coverage ± SD (left panel) and relative thrombus volume ± SD was shown. IFI: 
integrated fluorescence intensity. *p < 0.05, **p < 0.01. 
 

3.2.14 Impaired arterial thrombus formation and hemostasis in Trpm7KI mice 

Trpm7KI mice displayed defective ex vivo thrombus formation, therefore in the next step the 

requirement of the TRPM7 kinase for in vivo thrombus formation was addressed by 

subjecting Trpm7KI mice in two different models of arterial thrombosis. These experiments 

were performed in collaboration with Martina Morowski in our group. In the first model, 

arterial thrombosis was induced by a single firm compression with a forceps and the blood 

flow was monitored with an ultrasonic flow probe. Trpm7KI mice formed instable thrombi 

(mean occlusion time Wt: 293 ± 92 s, vs. Trpm7KI: 520 ± 136 s, and 6 out of 10 vessels did 

not occlude in the Trpm7KI mice; Figure 3-27 A). In the second model, thrombus formation 

was induced by injuring mesenteric arterioles with 20% FeCl3 and monitored by intravital 

fluorescence microscopy. The kinetics of initial adhesion and accumulation of fluorescently 

labeled platelets during the early time period was comparable between Wt and Trpm7KI mice. 

However, 7 out of 15 vessels failed to occlude in Trpm7KI mice during the later stage of 

thrombus growth (Figure 3-27 B). These findings indicate that the TRPM7 kinase contributes 

to platelet activation and thrombus growth in vivo. 
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Figure 3-27: Impaired arterial thrombus formation in Trpm7KI mice. (A) The abdominal aorta of 
Wt and Trpm7KI mice was injured by tight compression with a forceps and blood flow was monitored 
for 30 min with an ultrasonic flow probe. The time to stable vessel occlusion is shown. Each symbol 
represents one individual. (B) Thrombus formation in FeCl3-injured mesenteric arterioles was 
monitored by intravital microscopy of fluorescently labeled platelets. Each symbol represents one 
individual. *p < 0.05, **p < 0.01. 
 

To study the role of the TRPM7 kinase in hemostasis, a tail bleeding time assay was 

performed. 1 mm of the mouse tail tip was amputated and the drop of blood was absorbed 

with a filter paper in 20 s intervals. Trpm7KI mice exhibited prolonged tail bleeding times 

compared to Wt mice. The average tail bleeding time of Wt mice was 287 ± 221 s and in 

Trpm7KI mice it was 581 ± 285 s (Figure 3-28, left panel) with high variability. In Trpm7KI mice, 

13.3% of the mice stopped bleeding at 0 – 300 s; 30% at 301 -600 s; 30% at 600 – 1200 s; 

and 26.7% did not stop within 1200 s. In Wt mice, 66.7% at 0 – 300 s; 26.7% at 301 – 600 s; 

and 6.6% at 601 – 1200 s (Figure 3-28, right panel). These results indicate that the TRPM7 

kinase plays a role in normal hemostasis. 

 
Figure 3-28: Impaired hemostasis in Trpm7KI mice. 1 mm segment of the mouse tail tip was cut off 
using a scalpel. Blood drops were absorbed every 20 s using a filter paper without touching the wound 
site until bleeding ceased. Each symbol represents the bleeding time of one animal (left panel). The 
percentages of mice which stopped bleeding at different time points was shown (right panel). **p < 
0.01, ***p < 0.001. 
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3.2.15 The TRPM7 kinase plays an important role in ischemic stroke 

Ischemic stroke is the second leading cause of death and severe disability worldwide.185 

Ischemic stroke has been proposed to involve in  the blockage of vessels via thrombosis in 

brain,186 and during this process platelets play a critical role via GPIb-, GPVI- and integrin 

αIIbβ3-dependent platelet activation, adhesion and aggregation.163 However the exact 

underlying mechanisms are still not understood.  

To determine whether the observed thrombus instability and prolonged occlusion time in 

Trpm7KI mice affect ischemic stroke, mice were challenged in the tMCAO model of focal 

cerebral ischemia. This work was performed in collaboration with Dr. Peter Kraft and 

colleagues in the group of Prof. Guido Stoll, Department of Neurology, University Hospital, 

Würzburg. To initiate transient cerebral ischemia, a thread was advanced via the internal 

carotid artery into the middle cerebral artery, and 60 min later reperfusion was allowed. 24 

hours after reperfusion, the extent of infarction was quantified on TTC-stained brain slices. In 

Trpm7KI mice, the infarct volumes were dramatically reduced to < 40% compared to those of 

Wt controls (Wt: 122 mm3 ± 20 mm3; Trpm7KI: 50 mm3 ± 32 mm3) demonstrating that the 

disruption of the TRPM7 kinase activity protects mice from ischemic stroke (Figure 3-29 A).  

Additionally, to determine whether this protective effect is due to the effect of lacking the 

TRPM7 kinase activity on non-hematopoietic cells (i.e. neurons)147 or on blood cells, BM 

chimeras were generated by injecting Wt BM cells into lethally irradiated Trpm7KI mice and 

vica versa. Interestingly, both Trpm7KI animals substituted with Wt BM (47 mm³ ± 11 mm3) 

and Wt animals substituted with Trpm7KI BM (59 mm³ ± 35 mm3) were protected when 

compared to Wt animals which received Wt BM (97 mm³ ± 22 mm3) regarding infarct 

volumes (Figure 3-29 B). The reduction in infarct size was functionally relevant as the global 

neurological function (Bederson score) and motoric function (Grip test) were better in 

Trpm7KI animals substituted with Wt BM and Wt animals substituted with Trpm7KI BM, when 

compared to Wt control at day 1 after tMCAO (Figure 3-29 D and E). Notably, the disruption 

of the TRPM7 kinase activity either in bone marrow-derived cells or in non-hematopoietic 

cells is sufficient to protect the brain from acute ischemic insult (Figure 3-29 C). 

Furthermore, to demonstrate that altered platelet function of Trpm7KI mice contributes to this 

process, Wt mice were transplanted with Wt or Trpm7KI platelets after 12 hours of 

immunothrombocytopenia induced by injection of anti-GPIb antibody. tMCAO was performed 

again in these chimeras 2 hours after platelet transfusion. Remarkably, Wt mice transfused 

with Trpm7KI platelets developed significantly smaller brain infarcts compared to controls 

(Figure 3-29 F).  The global neurological and motoric functions were slightly better in mice 

transfused with Trpm7KI platelets (Figure 3-29 G). These results indicate that the TRPM7 

kinase activity in platelets has a pivotal role in the development of stroke.  
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Figure 3-29: Trpm7KI mice are protected from cerebral ischemia. (A) Representative images of 
three corresponding coronal sections of Wt and Trpm7KI mice stained with TTC 24 hours after tMCAO. 
Stroke volumes in Wt and Trpm7KI mice are depicted. (B) In order to figure out if decreased 
vulnerability of neurons lacking the TRPM7 kinase activity or altered blood cell function leads to 
protection in Trpm7KI animals, bone marrow chimeras were generated. Planimetric volumetry and 
corresponding magnetic resonance images (C) of tMCAO infarct volumes at day 1 after stroke are 
displayed. (D and E) Reduced ischemic brain damage translated in better functional outcome as 
measured with the Bederson score and the grip test. (F) Platelet transfusion experiment showed a 
protection of Wt mice transfuced with Trpm7KI platelets. Infarct volumes were measured 24 hours after 
tMCAO. (G) Bederson score and Grip test in Wt mice transfused with Wt platelets or Trpm7KI platelets 
were assessed. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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4 DISCUSSION 

Platelet activation and aggregation are essential for preventing blood loss and for sealing 

wounds after vascular injury. However, under pathological conditions, uncontrolled platelet 

aggregation may lead to vessel occlusion or thromboembolism resulting in life threatening 

diseases such as myocardial infarction or stroke. Over the last decades several anti-

thrombotic drugs such as aspirin, clopidogrel and integrin αIIbβ3 antagonists, have been 

used to prevent cardiovascular diseases. However, the use of these drugs is limited since 

they often lead to bleeding complications. Therefore, the comprehensive understanding of 

the signaling processes during platelet activation is essential for the development of novel, 

yet safe, anti-thrombotic therapies.  

It is well established that the elevation of [Ca2+]i is essential for platelet activation, firm 

adhesion and stable aggregation, as well as granule secretion. Furthermore, Mg2+ has also 

been proposed to play a role in regulating platelet activity. In this thesis, the functional 

crosstalk between two major Ca2+ channels Orai1 and TRPC6 was investigated by using 

genetic knockout mice. The results presented here show that Orai1-mediated SOCE 

enhances the enzymatic activity of PL isoforms and indirectly regulates TRPC6-mediated 

ROCE.  In addition the role of TRPM7 kinase activity in the regulation of platelet activation 

was studied by using ‘‘kinase-dead’’ knockin mice. The loss of TRPM7 kinase activity was 

found to impair the enzymatic activity of PLC isoforms, thereby affecting Ca2+ mobilization and 

platelet activation. This signaling defect protected mice from arterial thrombosis and ischemic 

brain infarction. 

 

4.1 Functional crosstalk between Orai1-mediated SOCE and TRPC6-
mediated ROCE in mouse platelets 

4.1.1 Orai1-mediated SOCE indirectly regulates TRPC6-mediated ROCE 

The elevation of [Ca2+]i is a critical step for several platelet functions, including integrin 

activation, aggregation and degranulation. In mouse platelets, it is established that the major 

Ca2+ entry routes are SOCE and ROCE.26,27 Orai1 is considered as the principal SOC 

channel in mouse platelets since in Orai1-/- platelets TG-induced SOCE is almost completely 

abolished.26 In addition, TRPC6 is suggested as an important channel for DAG-induced 

ROCE,27,78,187 since in Trpc6-/- platelets OAG-triggered Ca2+ entry is significantly reduced.  

Interestingly, in human platelets hTRPC6-induced Ca2+ influx was detected during TG 

treatment, indicating that hTRPC6 may be part of the store-operated macromolecular (SOM) 
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complex.155,172 Furthermore, hTRPC6 was suggested to directly interact with hTRPC1 and 

hOrai1 and form heterodimers.89,188 However, hTRPC6 and hOrai3 were found to dissociate 

from the SOM complex and to interact with hTRPC3 when the platelets were stimulated with 

OAG.89 Taken together, these findings lead to the proposal that in human platelets TRPC and 

Orai isoforms can form heterodimers, and depending on the interacting proteins TRPC 

isoforms can either regulate SOCE or ROCE.60,172 DAG may activate heterodimers of TRPC6 

with TRPC3 which subsequently trigger ROCE, while heterodimers of TRPC6 with Orai1 may 

be regulated by STIM1 and enhance SOCE during platelet activation. In agreement with a 

supportive role of TRPC6 in SOCE, the results presented here showed that TG-mediated 

SOCE was further reduced in Orai1-/-/Trpc6-/- platelets as compared to Orai1-/- platelets 

(Figure 3-1), demonstrating that during SOCE TRPC6 activity is enhanced. However, this 

enhanced TRPC6 activity has a minor contribution to SOCE in mouse platelets, since this 

physiological function of TRPC6 was only detectable in the absence of Orai1. 

Recent studies showed that TG-induced SOCE is normal in Trpc6-/- platelets and DAG-

mediated ROCE is not influenced in Orai1-/- platelets.27 The TRPC6 blocker LOE-908, a non-

selective cation channel inhibitor, also did not influence SOCE in human platelets while it 

specifically blocked OAG-mediated Ca2+ entry.189 These results suggested that Orai1 and 

TRPC6 function independently of each other in human platelets, although an indirect 

crosstalk between these two channels may exist. In this study, a hypothesis was proposed 

that during TG-induced SOCE DAG is produced to activate TRPC6, which subsequently 

contributes additional Ca2+ influx to SOCE.  

There are two routes to generate DAG in platelets: PLD and PLC pathways. PLD can 

hydrolyze PC to PA and choline.190 Thereafter, PA-phosphohydrolase converts PA to DAG 

and inorganic phosphate during platelet activation.191 PLD activity is regulated by 

phospholipids (PIP2, PIP3), PKC, Ca2+ and other factors.192 It has been shown that depletion 

of intracellular Ca2+ stores by BAPTA or inhibition of extracellular Ca2+ entry with EGTA lead 

to the inhibition of PLD activity,192 indicating that store release and Ca2+ influx are involved in 

the regulation of PLD function. The present results here showed that in Orai1-/- and Wt 

platelets the release of Ca2+ from the store is similar. However, upon store release, a strong 

reduction of PLD activity was observed in Orai1-/- platelets (Figure 3-3 B). Interestingly,  

Stim1-/- platelets also showed a strong reduction of PLD activity after TG-induced store 

release and SOCE, similarly to Orai1-/- platelets (data not shown). Taken together, it can be 

speculated that the Orai1/STIM1 complex may coordinate subcellular localization or 

enzymatic activity of PLD upon store release and SOCE. The results here also provide the 

first evidence that Orai1-mediated SOCE can modulate PLD activity in mouse platelets 

(Figure 3-3 A and B), which may further activate DAG-mediated ROCE. In line with this 

finding, the application of the PLD blocker FIPI was shown to reduce TG-mediated SOCE in 
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mouse platelets (Figure 3-3 A). The second pathway leading to DAG production is through 

PLC activation, independently of Ca2+ store release or Ca2+ entry. The treatment with the 

PLC blocker U73122 was found to inhibit TG-induced SOCE in mouse (Figure 3-3 A) and 

human platelets.193 Furthermore, Orai1-/- platelets displayed lower enzymatic activity of PLC 

compared to Wt platelets (Figure 3-3 C). Altogether, it can be concluded that Orai1-mediated 

SOCE enhances the enzymatic activity of phospholipases, thereby increasing [DAG]i and 

activating TRPC6-mediated Ca2+ entry.  

Earlier, it was found that TG-mediated SOCE strongly enhances the release of the second 

wave mediator TxA2 in human platelets.172 TxA2 activates the TP receptor and subsequently 

enhances PLCβ activity. Consistent with the results in human platelets, TG stimulation led to 

strong TxA2 production in Wt platelets; however in Orai1-/- and Orai1-/-/Trpc6-/- platelets, TxA2 

secretion was severely impaired (Figure 3-5). This indicates that Orai1-mediated SOCE plays 

a central role in amplifying TxA2-TP-PLCβ-induced IP3 and DAG production, confirming the 

regulating role of Orai1-mediated SOCE in TRPC6-mediated ROCE. 

Altogether, a model of a functional crosstalk between Orai1 and TRPC6 can be proposed: 

Orai1-mediated SOCE can enhance PLC and PLD activity, and TxA2 production as well, 

which further enhances PLC activity via the TP receptor. Enhanced PLC and PLD activity 

subsequently leads to DAG production and induces TRPC6-mediated ROCE (Figure 4-1).  

 
 
Figure 4-1: Proposed model of TRPC6 activation by Orai1 and PLs. Orai1-mediated SOCE 
regulates TRPC6-mediated ROCE indirectly in platelets. The details are described in the text (Picture 
is taken from: Chen et al., J Thromb Haemost 2014).169 
 

Although Orai1-mediated SOCE can induce DAG production and indirectly regulates TRPC6 

activation, it is important to note that this effect is strongly dependent on the stimulating 

compound. When Orai1 is selectively activated by TG, TRPC6 function is strongly dependent 

on Orai1-dependent DAG production. However, when platelets are stimulated by receptor 

agonists, Orai1 function appears to be dispensable for TRPC6 activation (Figure 3-4 C and 
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D). These results demonstrate that the crosstalk between TRPC6 and Orai1 seems to play 

only a minor role under normal physiological conditions where receptor-operated DAG 

production is the dominant route in TRPC6 activation, which strongly regulates TRPC6 

function independently from the Ca2+ store release or SOCE. However, Orai1-mediated DAG 

production may play an important role under pathological conditions, for example when Orai1 

channel activity is abnormal or receptor-mediated activation of phospholipases is hampered. 

Recently, it was shown that Orai1 abundance on the platelet surface is higher in patients with 

acute myocardial infarction.194 In patients with diabetes mellitus type 2, Orai1 expression in 

platelets was also increased.195  Under these pathophysiological conditions, aberrant Orai1-

mediated SOCE may also accelerate PLD/PLC-induced DAG production, which can further 

enhance TRPC6 activity thereby causing “Ca2+ overload” in platelets. However, the functional 

consequence of Orai1 in the regulation of phospholipase activity and DAG-mediated ROCE 

requires further detailed analysis in human platelets under normal and pathophysiological 

conditions. 

4.1.2 Orai1 together with TRPC6 regulates store content 

Apart from increasing Ca2+ levels in the cytoplasm, SOCE was also proposed to facilitate 

Ca2+ refilling of the store through SERCA.196 In mammalian cells, the interaction between the 

SOM complex and SERCA isoforms led to the proposal of a model termed calcium entry-

calcium refilling coupling (CERC) mechanism which is very efficient to pump Ca2+ back into 

the empty store during SOCE.197 However, the detailed molecular mechanism of CERC in 

platelets is still not completely understood.  

Earlier, it was shown that TG- and agonist-mediated Ca2+ store depletion is strongly altered in 

Stim1-/- platelets indicating that STIM1 plays an important role in the regulation of the store 

content.52 Interestingly, the Ca2+ store content was also found to be reduced in Orai1-/-/Trpc6-/- 

platelets (Figure 3-2 B), but not in single knockouts of Orai1 or TRPC6; therefore both Ca2+ 

channels seem to be involved in refilling the stores. In human platelets, STIM1 binds to 

Orai1198 and TRPC6.60,76 Moreover, an increased interaction between TRPC6 and SERCA2b 

was observed during SOCE.188 Taking the results from human platelets and the recent 

findings in mouse platelets together, a model can be proposed that STIM1, Orai1, TRPC6 

and SERCA2b may regulate CERC in platelets: 

STIM1 seems to form a physical bridge between the DTS and the plasma membrane and to 

cluster Orai1 and TRPC6 in the plasma membrane. The physical interaction between STIM1 

and TRPC6 does not regulate the channel activity of TRPC6, since OAG-mediated TRPC6 

activation is normal in Stim1-/- platelets.27 During CERC, either Orai1 or TRPC6 may be 

activated to carry Ca2+ from the extracellular space into the empty store. Lack of either Orai1 

or TRPC6 does not influence the CERC mechanism, since STIM1 can separately keep the 
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structure of CERC either with Orai1 or with TRPC6 and link the DTS close to the plasma 

membrane. When STIM1 function is deleted or STIM1 cannot be translocated to both Ca2+ 

channels, the physical interaction between the DTS and the plasma membrane is disrupted. 

Consequently, SERCA2b is not close enough to the Ca2+ channels so that the pumping Ca2+ 

back to the empty store is less effective and finally, the store content is reduced in platelets.  

4.1.3 Enhanced ATP secretion in response to the GPCR agonists in Orai1-/-

/Trpc6- /- platelets 

Earlier, it was shown that in Orai1-/- or Trpc6-/- mutant mice GPCR-induced platelet activation 

and thrombus formation are unaltered,25,26 suggesting that neither Orai1 nor TRPC6 is 

essential for GPCR-induced platelet responses. In line with these findings, the present 

results here showed that GPCR-induced platelet activation and aggregation was unaltered in 

the absence of both Orai1 and TRPC6 channels (Figure 3-7 B and Figure 3-8). Moreover, 

thrombus formation under flow was even enhanced in Orai1-/-/Trpc6-/- platelets compared to 

Orai1-/- (Figure 3-10 and Figure 3-11 A and B). These results suggest that an alternative 

signaling pathway may exist which compensates for the loss of both Ca2+ channels. 

Furthermore, ATP-secretion in response to thrombin and U46619 was found to be elevated in 

Orai1-/-/Trpc6-/- platelets compared to Wt or Orai1-/- platelets (Figure 3-12 A) indicating that 

purinergic signaling pathways may compensate for the severe Ca2+ deficits in Orai1-/-/Trpc6-/- 

platelets in vivo, by enhancing Ca2+ influx through ATP-operated P2X1 channels. The 

increased ATP-secretion was not due to the increased amount of ATP in the granules since 

high concentrations of thrombin induced normal ATP-secretion in Orai1-/-/Trpc6-/- platelets 

(Figure 3-12 A). 

The ATP-activated P2X1 Ca2+ channel plays a pivotal role in thrombus formation.87,199 It is 

important to note that the P2X1 channel becomes desensitized by ADP in our standard 

experimental in vitro settings. Therefore the platelet aggregation assay was repeated in the 

presence of high doses of apyrase, which preserves P2X1 channel function and blocks ADP-

mediated Ca2+ responses. Our results showed that thrombin- and U46619-induced platelet 

aggregation responses were strongly enhanced in Orai1-/-/Trpc6-/- platelets, when the 

desensitization of P2X1 channel was prevented (Figure 3-12 B). Altogether, it can be 

assumed that P2X1 channel and purinergic signaling pathways seem to compensate for the 

severe Ca2+ deficits of Orai1-/-/Trpc6-/- platelets under in vivo conditions. 
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4.2 The role of the TRPM7 kinase in mouse platelets 

4.2.1 Normal Mg2+ homeostasis and TRPM7 channel activity in Trpm7KI mice 

TRPM7 belongs to the TRPM subfamily of TRP channels and has been found to be 

expressed in almost all cell types and to regulate many cellular processes including cell 

cycle, migration and other important functions.118,141-143 TRPM7 forms a Mg2+ and Ca2+ 

permeable channel and is considered to play an important role in controlling [Mg2+]i. TRPM7 

contains an intracellular Ser/Thr kinase domain at its C-terminus. Up to now, the role of this 

kinase domain in regulating Mg2+ homeostasis remains controversial. It has been reported 

that the heterozygous deletion of the TRPM7 kinase domain results in reduced Mg2+ 

concentrations in plasma, urine and bones.155 In addition, the deletion of the TRPM7 kinase 

domain leads to impaired TRPM7 channel activity.155 On the contrary, other studies reported 

that the kinase domain and channel domain function independently of each other.156 Schmitz 

et al. suggested that the TRPM7 kinase domain is not essential for the activation of the 

channel domain, however it plays a role in modulating channel activity.128 The results 

presented here show that the disruption of kinase activity in Trpm7KI mice did not lead to 

impaired channel activity (Figure 3-17 A) and did not influence both intracellular and 

extracellular Mg2+ homeostasis (Figure 3-17 B and C). These results demonstrate that the 

catalytic activity of the TRPM7 kinase is not essential for the channel domain to function 

normally.  

4.2.2 The TRPM7 kinase regulates the enzymatic activity of phospholipase 

TRPM7 bears a Ser/Thr kinase domain with multiple autophosphorylation sites at the C-

terminus. Although it is suggested to play a role in diverse signaling pathways, only a limited 

number of endogenous substrates for the TRPM7 kinase has been identified up to now. 

Recently, it was demonstrated that the TRPM7 kinase directly binds to the C2 domain of PLC 

isoforms including PLCβ, PLCγ and PLCδ.138 Further, Schmitz et al. reported that PLCγ2, an 

important regulator in ITAM-receptor-mediated Ca2+ signaling, can be phosphorylated by the 

TRPM7 kinase in a DT40 cell line.154 They identified two phosphorylation sites for the TRPM7 

kinase in PLCγ2: one is Ser1164 in the C2 domain; the other one is Thr1045 in the linker 

region preceding the C2 domain. Further, under hypomagnesic conditions, the mutation of 

Thr1045 in PLCγ2 lead to impaired Ca2+ mobilization. Taken together, these findings lead to 

the proposal that TRPM7 kinase may regulate the enzymatic activity of PLCγ2 and Ca2+ 

homeostasis. The present results here support this model.  

In this study, Trpm7KI platelets displayed severely impaired integrin αIIbβ3 activation, P-

selectin exposure and aggregation in response to GPVI stimulation, while in response to the 
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GPCR agonist thrombin only slightly reduced platelet activation and aggregation was 

observed at threshold concentrations (Figure 3-19 and Figure 3-20). Interestingly ATP and 

serotonin secretion from dense granules were also significantly reduced in Trpm7KI platelets 

after thrombin and CRP activation at threshold concentrations (Figure 3-22). This suggests 

that in Trpm7KI platelets activation of ATP-operated P2X1 Ca2+ channel, ADP-induced 

P2Y1/P2Y12 receptors and the serotonin-activated 5HT2A receptor are reduced during platelet 

activation and aggregation. Furthermore, IP3 production upon CRP and threshold 

concentrations of thrombin stimulation was also impaired in Trpm7KI platelets (Figure 3-23 A), 

which demonstrated that the TRPM7 kinase activity can regulate the enzymatic activity of 

PLC isoforms, especially PLCγ2, in mouse platelets. PLC isoforms hydrolyze PIP2 into IP3 

and DAG. It is known that IP3-mediated stimulation of the IP3R on the intracellular store 

membrane leads to the release of Ca2+ from internal stores and induces subsequent SOCE 

through Orai1 channel, and that DAG can directly bind to the TRPC6 channel and induce 

ROCE. Therefore, changes of [Ca2+]i were measured in response to different agonists. In line 

with the IP3 production results, store release and Ca2+ influx in response to CRP were 

markedly reduced in Trpm7KI platelets. However, normal Ca2+ homeostasis was observed in 

Trpm7KI platelets when stimulated by the GPCR agonists thrombin, ADP or U46619 (Figure 

3-23 B). These findings suggest that the TRPM7 kinase activity plays a minor role in GPCR-

PLCβ pathways or that its function is strongly compensated by other kinases. However, the 

enzymatic activity of the TRPM7 kinase is essential for the full activation PLCγ2 downstream 

of GPVI. 

It is well established that the GPVI-PLCγ2 signaling cascade is mainly mediated by tyrosine 

phosphorylation events. To investigate whether the Ser/Thr phosphorylation activity of the 

TRPM7 kinase influences tyrosine phosphorylation of the GPVI-signaling cascade, the 

tyrosine phosphorylation events of the regulating molecules was analyzed. Neither global 

tyrosine phosphorylation, nor phospho-SykY525/526, phospho-LATY191, nor phospho-PLCγ2Y759 

were altered in Trpm7KI platelets after activation by GPVI, indicating that the TRPM7 kinase 

does not influence tyrosine phosphorylation events in the GPVI-signaling cascade. Therefore, 

it can be speculated that the TRPM7 kinase regulates PLCγ2 directly by Ser/Thr 

phosphorylation, instead of influencing the tyrosine phosphorylation of the GPVI-signaling 

cascade and regulating PLCγ2 indirectly.  

In summary, a model for the role of the TRPM7 kinase in regulating PLC isoforms can be 

proposed. When platelets are activated by the GPVI-specific agonists, PLCγ2 is recruited to 

the GPVI signalosome associated with LAT and subsequently becomes phosphorylated by 

the tyrosine kinase Syk. The enzymatic activity of PLCγ2 is then further enhanced by the 

TRPM7 kinase-mediated Ser/Thr phosphorylation. Subsequently, PLCγ2-mediated PIP2 
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hydrolysis rapidly increases the levels of DAG and IP3 in the cytosol and induces a strong 

activation of ROCE and SOCE, respectively (Figure 4-2). 

 

 
Figure 4-2: Proposed model of the TRPM7 kinase-mediated Ca2+ responses in GPVI signaling. 
The TRPM7 kinase regulates the Ser/Thr phosphorylation of PLCγ2. PLCγ2 activation subsequently 
induces the production of DAG and IP3, which trigger ROCE and SOCE, respectively.  
 

4.2.3 The TRPM7 kinase plays an important role in thrombosis, hemostasis 
and stroke 

It has been shown that GPVI deficiency protects mice from pathological thrombus 

formation.173 To investigate whether the severe GPVI signaling defects in Trpm7KI platelets 

also influences thrombosis, ex vivo and in vivo thrombosis models were performed. 

Consistent with the in vitro results, Trpm7KI platelets exhibited markedly reduced platelet 

adhesion and impaired three-dimensional thrombus formation on fibrillar collagen under flow 

conditions (Figure 3-26). This translated into impaired arterial thrombus growth after 

mechanical or chemical (20% FeCl3) vessel injury in vivo (Figure 3-27). In addition, Trpm7KI 

mice exhibited prolonged tail bleeding times (Figure 3-28), which is in line with the previous 

findings that GPVI-defects have such an effect.173 Altogether, these findings demonstrate that 

the blockage of the TRPM7 kinase activity is sufficient to protect mice from arterial 

thrombosis. Therefore, the TRPM7 kinase might become a promising therapeutic target for 

the development of novel anti-thrombotics. 

Recently, TRPM7 was suggested as a potential drug target in stroke.200 In the tMCAO model 

of ischemic stroke in mice, the expression of TRPM7 protein was found to be up-regulated in 

neurons.146 Furthermore, the down-regulation of TRPM7 in the ischemic brain protects 

neuron from necrosis. 147,148 It was proposed that the increased channel function of TRPM7 
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may induce aberrant Ca2+ influx, thereby enhancing neuronal cell death during stroke 

development. However, the role of the TRPM7 kinase domain in this process remained 

largely unclear. In this study, the significance of the TRPM7 kinase in the pathogenesis of 

acute ischemic brain infarction was assessed in the tMCAO model. The infarct volumes in 

Trpm7KI brains were dramatically reduced compared to Wt brains (Figure 3-29 A), 

demonstrating that the disruption of the TRPM7 kinase activity can protect mice from 

ischemic stroke. However, this protection may originate from the effect of the abolished the 

TRPM7 kinase activity in blood cells or in non-hematopoietic cells (i.e. cells of the vessel wall 

and brain), since the infarct volumes in both Trpm7KI animals substituted with Wt BM and Wt 

animals substituted with Trpm7KI BM were reduced compared to Wt control (Figure 3-29 B). 

Consistent with the observed platelet defects, animals transfused with Trpm7KI platelets 

developed significantly smaller brain infarcts compared to Wt controls (Figure 3-29 F), 

indicating that the abolished TRPM7 kinase activity is sufficient to protect mice from ischemic 

stroke. In summary, these finding suggest that the disruption of the TRPM7 kinase activity in 

bone marrow-derived cells, brain cells or vessel wall cells protects mice from ischemic stroke, 

indicating the TRPM7 kinase is also a potential drug target for treatment of ischemic stroke.  

4.3 Concluding remarks 

In this thesis the role of Ca2+ and Mg2+ channel proteins for platelet function was investigated 

by the use of genetically modified mice. The major findings are: 

Functional crosstalk between Orai1-mediated SOCE and TRPC6-mediated ROCE in mouse 

platelets. 

• Orai1-mediated SOCE enhances phospholipase activity thereby regulating TRPC6-

mediated ROCE indirectly. 

• Orai1 together with TRPC6 regulates intracellular Ca2+ store content and basal 

cytoplasmic Ca2+ levels. 

• Orai1 and TRPC6 are not essential for GPCR-mediated platelet activation, 

aggregation and thrombus formation. 

• Orai1 and TRPC6 double deficiency is compensated through a possible mechanism, 

involving enhanced ATP secretion, which may compensate for severe Ca2+ deficits. 

Function of the TRPM7 kinase on mouse platelets. 

• High extracellular Mg2+ levels lead to impaired Ca2+ influx, platelet activation, 

aggregation and thrombus formation under flow. 

• The TRPM7 kinase activity is not required for TRPM7 channel activity and Mg2+ 

homeostasis. 

• The TRPM7 kinase is required for GPVI-induced Ca2+ mobilization and platelet 
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activation. 

• The TRPM7 kinase regulates PLCγ2 by its Ser/Thr phosphorylation without 

influencing tyrosine phosphorylation events in the GPVI signaling cascade. 

• The TRPM7 kinase is required for arterial thrombus growth and ischemic stroke. 

4.4 Perspective 

In this thesis, it was shown that Orai1-mediated SOCE indirectly regulates TRPC6-mediated 

ROCE via PLC and PLD. However, it remains to be answered how Orai1-mediated SOCE 

enhances PLC and PLD activity. Furthermore TRPC3 has also been proposed to be a DAG-

operated ROC channel in platelets; it is therefore important to study whether Orai1-mediated 

SOCE also regulates TRPC3-mediated ROCE. Additionally, the compensation mechanism 

induced by Orai1 and TRPC6 double deficiency requires further investigation.  

Although in a DT40 cell line several Ser/Thr phosphorylation sites in PLCγ2 have been 

shown to be phosphorylated by the TRPM7 kinase, the evidence for the TRPM7 kinase 

phosphorylating PLCγ2 in platelets are still needed. Further it needs to be answered to what 

extent the TRPM7 kinase regulates PLCβ. In addition, to further understand the role of the 

whole TRPM7 protein on platelet function, TRPM7 knockout mice should be analyzed. Finally, 

mouse lines deficient in other Mg2+ transporters, like MagT1 and TRPM6, need to be 

analyzed to better understand the role of Mg2+ homeostasis in platelet physiology. 
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6 APPENDIX 

6.1 Abbreviation 

α alpha 
β beta 
δ delta 
γ gamma 
μ micro 
AA Amino acid 
AC Adenylyl cyclase 
ACD Acid-citrate-dextrose 
ADP Adenosine diphosphate 
APS Ammonium peroxodisulfate 
ATP Adenosine triphosphate 
BM Bone marrow 
BSA Bovine serum albumin 
Ca2+ Calcium 
oC Degree Celsius 
[Ca2+]i Intracellular Ca2+ concentration 
cAPM Cyclic adenosine monophosphate 
CCE Capacitive calcium entry 
CERC Calcium entry-calcium refilling coupling 
CLEC-2 C-type lectin-like receptor 2 
CRAC Calcium release activated calcium  
CRP Collagen-related peptide 
CVX Convulxin 
DAG Diacylglycerol 
DIC Differential interference contrast 
DTS Dense tubular system 
ECM Extracellular matrix 
ELISA Enzyme-linked immunosorbent assay 
ER Endoplasmic reticulum 
ES Embryonic stem 
et al. et alteri 
FACS Fluorescence-activated cell sorting 
FcR Fc receptor 
FeCl3 Ferric(III)chloride 
FITC Fluorescein isothiocyanate 
FIPI 5-fluoro-2-indolyl des-chlorohalopemide 
FSC Forward scatter 
g Gram 
GP Glycoprotein 
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GPCR G protein-coupled receptors 
h Hour(s); human 
H2O Water 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HSH Hypomagnesaemia with secondary hypocalcemia 
Ig Immunoglobulin 
IFI Integrated fluorescence intensity 
IP3 Inositol-1,4,5-trisphosphate 
IP3R IP3 receptor 
ITAM Immunoreceptor tyrosine-based activation motif 
L Liter 
LAT Linker of activated T cells 
M Molar 
MFI Mean fluorescence intensity 
min Minute(s) 
MRI Magnetic resonance imaging 
mL Milliliter 
mm2 Square millimeter 
NaCl Sodium chloride 
NCX Na+/Ca2+ exhannger 
OAG 1-oleoyl-2-acetyl-sn-glycerol 
OGD Oxygen and glucose deprivation 
PA Phosphatidic acid 
PAR Protease-activated receptor 
PC Phosphatidylcholine 
PCR Polymerase chain reaction 
PE Phycoerythrin 
PGI2 Prostacyclin 
PH Pleckstrin homology 
PI3K Phosphatidylinositol 3-kinase 
PIP2 Phosphatidylinositol-4,5-bisphosphate 
PIP3 Phosphatidylinositol-3,4,5-triphosphate 
PKC Protein kinase C 
PL Phospholipase 
PM Plasma membrane 
PMCA Plasma membrane Ca2+ ATPase 
PRP Platelet rich plasma 
PS Phosphatidylserine 
Rho Ras homolog gene family 
Rho-GEF Rho-specific guanine nucleotide exchange factor 
ROC Receptor-operated calcium 
ROCE Receptor-operated calcium entry 

RT Room temperature; in case of RT-PCR, RT indicates reverse 
transcription 
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s Second(s) 
SCID Severe combined immune deficiency 
SD Standard deviation 
SDS Sodium dodecyl sulfate 
Ser/Thr Serine/Threonine 
SERCA Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 
SFK Src- family kinase 
SLP-76 SH2 domain containing leukocyte protein of 76 kDa 
SOC Store-operated calcium 
SOCE Store-operated calcium entry 
SOM Store-operated macromolecular 
SR Sarcoplasmic reticulum 
STIM Stromal interaction molecule 
Syk Spleen tyrosine kinase 
TAE TRIS acetate EDTA buffer 
TBS TRIS-buffered saline 
TE TRIS EDTA buffer 
TF Tissue factor 
TG Thapsigargin 
tMCAO Transient middle cerebral artery occlusion 
TMB 3,3,5,5-tetramethylbenzidine 
TP Thromboxane A2 receptor 
TRIS Tris(hydroxymethyl)aminomethane 
TRP Transient receptor potential 
TRPC Canonical transient receptor potential channel 
TRPM Transient receptor potential melastatin-like 
TTC 2,3,5-triphenyltetrazolium chloride 
TxA2 Thromboxane A2 
TxB2 Thromboxane B2 
U Units 

U73122 1-[6-[((17β)-3-Methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-
1H-pyrrole-2,5-dione 

vWF von Willebrand factor 
 
 
 
 
 
 
 
 
 
 
 

 102  



Appendix  

6.2 Curriculum vitae 

 
Name Wenchun Chen 

Date of birth May 30th, 1984 

Place of birth Fujian, China 

Nationality China 

 
 
Education 

2010 - now PhD student in the group of Prof. Dr. Bernhard Nieswandt, Chair of 

Experimental Biomedicine, University Hospital and Rudolf Virchow 

Center for Experimental Biomedicine, Julius-Maximilians-Universität 

Würzburg 

2007 - 2010 Master of Molecular Neurobiology 

Key Laboratory of Brain Functional Genomics, Ministry of Education 

East China Normal University, Shanghai, China 

2003 - 2007 Bachelor of Biotechnology at Heilongjiang University, China 

1991 - 2003 Primary, Secondary and High School in Zhangzhou, Fujian,  China 

 
 
 

 

 

 

Würzburg, July 2014    __________________________________ 

 
 
 
 
 
 
 
 
 
 
 

 103  



Appendix  

6.3 Publications 

6.3.1 Original articles 

1. Chen W, Thielmann I, Gupta S, Subramanian H, Stegner D, Kruchten R. van, Dietrich A, 

Gambaryan S, Heemskerk J, Hermanns H, Nieswandt B, Braun A. Orai1-induced store-

operated calcium entry enhances phospholipase activity and modulates TRPC6 function in 

murine platelets. J Thromb Haemost. 2014; 12: 528-539. 

 
2. Braun A, Chen W, Kraft P, Chubanov V, Morowski M, Stritt S, Zierler S, Gotru SK, Gupta S, 

Hermanns H, Stoll G, Schmitz C, Gudermann T, Nieswandt B. TRPM7 kinase controls 

calcium responses in arterial thrombosis and stroke. (in preparation) 
 
 
 

6.3.2 Posters 

58th Annual Meeting oft he Society of Thrombosis and Haemostasis Research, February 

2014, Vienna, Austria. “Phospholipase-mediated crosstalk between Orai1 and TRPC6 in 
murine platelets” 

SCI, 8th International Symposium, the Graduate School of Life Science, University of 

Würzburg, Würzburg, Germany, October 2013. “Orai1-induced store-operated calcium 
entry enhances phospholipase activity and modulates TRPC6 function in murine 
platelets” 

XXIVth Congress of the International Society on Thrombosis and Hemostasis, Amsterdam, 

The Netherlands, July 2013. “Redundant functions of TRPC6 and Orai1 in murine 
platelets” 

EPOS, 7th International Symposium, the Graduate School of Life Science, University of 

Würzburg, Würzburg, Germany, October 2012. “Dual role of TRPM7 in magnesium and 
calcium homeostasis in platelets” 

Bio Bang, 6th International Symposium, the Graduate School of Life Science, University of 

Würzburg, Würzburg, Germany, October 2011. “Analysis of platelet function in mice 
lacking N-BAR domain proteins Bin1 and Bin3” 

 104  



Appendix  

6.4 Acknowledgement 

The work presented here was performed at the Chair of Experimental Biomedicine, Rudolf 

Virchow Center for Experimental Biomedicine, University of Würzburg, in the group of Prof. 

Dr. Bernhard Nieswandt. 

During the period of my PhD work (November 2010 - June 2014), many people helped and 

supported me. Therefore I would like to thank the following people: 

• My primary supervisor, Prof. Dr. Bernhard Nieswand for allowing me to perform my PhD 

work in his laboratory, for his great ideas, useful advice and support. I would like to thank 

him as well for allowing me to present my work at various international conferences. 

• My supervisory committee, Prof. Dr. Manfred Gessler and Prof. Dr. Guido Stoll for kind 

support and scientific advice, and for reviewing my thesis.  

• Prof. Dr. Stephan Kissler for giving me valuable suggestions and sharing his lentiviral 

vectors. 

• Dr. Attila Braun for his great idea, close team work and support throughout my work and 

his carefully reading my thesis. 

• Prof. Dr. Thomas Gudermann and Dr. Vladimir Chubanov for providing Trpm7KI mice and 

measuring TRPM7 channel activity. 

• Prof. Dr. Alexander Dietrich for providing Trpc6-/- mice. 

• Prof. Dr. Guido Stoll, Dr. Peter Kraft and their team for performing the stroke experiments. 

• Martina Morowski and Ina Thielmann for performing in vivo experiments and Ina 

Thielmann also for the PLD assay in Orai1 and TRPC6 double knock-out project. 

• Prof. Dr. Johan Heemskerk and Dr. David Stegner for the support in Orai1 and TRPC6 

double knock-out project 

• Dr. Heike Hermanns, Dr. Shuchi Gupta, Simon Stritt, Deya Cherpokova and Sanjeev K. 

Gotru for their effort and support in TRPM7 ''kinase-dead'' project. 

• All of the technical assistants and animal caretakers for providing an excellent working 

basis. 

• All proofreaders, especially Dr. Timo Vögtle. 

 105  



Appendix  

• All of the members of AG Nieswandt for their kind help, the useful discussions and for the 

good atmosphere in the group. 

• Finally, I would like to thank my family and my friends for their understanding, encourage 

and endless support. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 106  



Appendix  

6.5 Affidavit 

I hereby confirm that my thesis entitled “Studies on the role of calcium channels and the 

kinase domain of transient receptor potential melastatin-like 7 (TRPM7) in platelet function” is 

the results of my own work. I did not receive any help or support from commercial 

consultants. All sources and/or materials applied are listed and specified in the thesis. 

Furthermore, I confirm that this thesis has not been submitted as part of another examination 

process neither in identical nor in similar form. 

 

  
Würzburg, July 2014    __________________________________ 

 

 

 

 

 

 

 

 

 

Eidesstattliche Erklärung 

Hiermit erkläre ich an Eides statt, die Dissertation „Studien über die Rolle von Calcium 

Kanälen und der Kinase Dömane von transient receptor potential melastatin-like 7 (TRPM7) 

für die Thrombozytenfunktion“ eigenständig, d.h. insbesondere selbständig und ohne Hilfe 

eines kommerziellen Promotionsberaters, angefertigt und keine anderen als die von mir 

angegebenen Quellen und Hilfsmittel verwendet zu haben. 

Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form bereits 

in einem anderen Prüfungsverfahren vorgelegen hat. 

 

 

Würzburg, Juli 2014                __________________________________ 

 

 

 107  


	1 INTRODUCTION
	1.1 Platelets
	1.2 Platelet activation and thrombus formation
	1.3 Signaling events during platelet activation
	1.4 Calcium signaling in platelets
	1.4.1 Store-operated calcium entry
	1.4.1.1 STIM1
	1.4.1.2 Orai1
	1.4.1.3 Coupling machinery of STIM1 and Orai1
	1.4.1.4 Orai1 is the major SOC channel in mouse platelets

	1.4.2 Receptor-operated calcium entry
	1.4.2.1 Phospholipase-mediated DAG production
	1.4.2.2 TRPC6
	1.4.2.3 P2X1

	1.4.3 Crosstalk between Orai1 and TRPC6

	1.5 The role of magnesium in platelets
	1.5.1 Mechanisms of Mg2+ influx
	1.5.2 The role of TRPM6 and TRPM7 channels in Mg2+ homeostasis
	1.5.3 TRPM7
	1.5.3.1 The physiological role of TRPM7 protein
	1.5.3.2 The kinase domain of TRPM7



	1.6 AIM OF THE STUDY
	2 MATERIALS AND METHODS
	2.1 Materials
	2.1.1 Chemicals and reagents
	2.1.2 Antibodies
	2.1.2.1 Purchased primary and secondary antibodies
	2.1.2.2 Monoclonal antibodies (mAbs) used for flow cytometry

	2.1.3 Mice
	2.1.4 Buffers and media

	2.2 Methods
	2.2.1 RNA isolation and reverse transcription PCR (RT-PCR)
	2.2.2 Mouse Genotyping
	2.2.2.1 Mouse DNA isolation
	2.2.2.2 Detection of the Trpc6-/- by PCR
	2.2.2.3 Detection of the Orai1-/-  by PCR
	2.2.2.4 Detection of the Trpm7KI by PCR

	2.2.3 Fetal liver cell or bone marrow transplantation
	2.2.4 Tyrosine phosphorylation assay
	2.2.5 Cell cultures, transient expression
	2.2.6 Electrophysiology
	2.2.7 Determination of Mg2+ levels in the serum and bones
	2.2.8 In vitro analysis of platelet function
	2.2.8.1 Platelet preparation and washing
	2.2.8.2 Platelet counting
	2.2.8.3 Flow cytometry
	2.2.8.4 Determination of phosphatidylserine exposure by flow cytometry
	2.2.8.5 Aggregometry
	2.2.8.6 Adhesion under flow conditions
	2.2.8.7 Determination of PS exposing platelets after perfusion
	2.2.8.8 Intracellular Ca2+ measurements
	2.2.8.9 Measurement of ATP release
	2.2.8.10 Measurement of inositol 1 phosphate (IP1)
	2.2.8.11 Measurement of thromboxane B2 (TxB2) release
	2.2.8.12 Measurement of serotonin release
	2.2.8.13 Measurement of PLD activity
	2.2.8.14 Spreading assay
	2.2.8.15 Fluorescence microscopy of platelets

	2.2.9 In vivo analysis of platelet function
	2.2.9.1 Platelet life span
	2.2.9.2 Tail bleeding time assay
	2.2.9.3 Intravital microscopy of thrombus formation in FeCl3-injured mesenteric arterioles
	2.2.9.4 Mechanical injury of the abdominal aorta
	2.2.9.5 Transient middle cerebral artery occlusion (tMCAO) model
	2.2.9.6 Magnetic resonance imaging (MRI)
	2.2.9.7  Platelet transfusion


	2.3 Data analysis

	3 RESULTS
	3.1 Functional crosstalk between Orai1 and TRPC6
	3.1.1 TRPC6 contributes to TG-induced SOCE and regulates Ca2+ store content together with Orai1
	3.1.2 Orai1 regulates TG-induced phospholipase activity
	3.1.3 Platelet agonists can activate PLC and PLD independently of Orai1
	3.1.4 TxA2-induced second phase of Ca2+ signaling is controlled by Orai1
	3.1.5 Normal platelet count, size and glycoprotein expression in Orai1-/-/Trpc6-/- platelets
	3.1.6 Defective platelet activation in response to the GPVI agonists, but normal responses to the GPCR agonists in Orai1-/-/Trpc6-/- platelets
	3.1.7 Defective aggregation in response to the GPVI agonists in  Orai1-/-/Trpc6-/- platelets
	3.1.8 Orai1-/-/Trpc6-/- platelets display normal spreading on fibrinogen
	3.1.9 Normal in vivo thrombus formation in Orai1-/-/Trpc6-/- mice
	3.1.10 Enhanced ex vivo thrombus formation, but reduced PS exposure in Orai1-/-/Trpc6-/- platelets
	3.1.11 Enhanced ATP secretion in Orai1-/-/Trpc6-/- platelets in response to GPCR agonists

	3.2 The role of the TRPM7 kinase in mouse platelets
	3.2.1 Impaired Ca2+ homeostasis in the presence of high levels of extracellular Mg2+
	3.2.2 Inhibiting effects of high extracellular Mg2+ concentrations on platelet activation
	3.2.3 TRPM7 is expressed in mouse platelets
	3.2.4 Generation of TRPM7 "kinase-dead" mice Trpm7KI
	3.2.5 Normal TRPM7 channel activity in Trpm7KI mice
	3.2.6 TRPM7 kinase function is dispensable for platelet generation
	3.2.7 Impaired PLC(2-ITAM-mediated and partially defective PLC(-GPCR-mediated activation in Trpm7KI platelets
	3.2.8 Trpm7KI platelets display normal spreading on fibrinogen
	3.2.9 Impaired dense granule secretion in Trpm7KI platelets
	3.2.10 The TRPM7 kinase regulates PL-mediated Ca2+ responses in platelets
	3.2.11 Normal GPVI-induced tyrosine phosphorylation in Trpm7KI platelets
	3.2.12 Trpm7KI platelets exhibit impaired procoagulant activity
	3.2.13 Impaired thrombus formation of Trpm7KI platelets on collagen under flow conditions
	3.2.14 Impaired arterial thrombus formation and hemostasis in Trpm7KI mice
	3.2.15 The TRPM7 kinase plays an important role in ischemic stroke


	4 DISCUSSION
	4.1 Functional crosstalk between Orai1-mediated SOCE and TRPC6-mediated ROCE in mouse platelets
	4.1.1 Orai1-mediated SOCE indirectly regulates TRPC6-mediated ROCE
	4.1.2 Orai1 together with TRPC6 regulates store content
	4.1.3 Enhanced ATP secretion in response to the GPCR agonists in Orai1-/-/Trpc6- /- platelets

	4.2 The role of the TRPM7 kinase in mouse platelets
	4.2.1 Normal Mg2+ homeostasis and TRPM7 channel activity in Trpm7KI mice
	4.2.2 The TRPM7 kinase regulates the enzymatic activity of phospholipase
	4.2.3 The TRPM7 kinase plays an important role in thrombosis, hemostasis and stroke

	4.3 Concluding remarks
	4.4 Perspective

	5 REFERENCES
	6 APPENDIX
	6.1 Abbreviation
	6.2 Curriculum vitae
	6.3 Publications
	6.3.1 Original articles
	6.3.2 Posters

	6.4 Acknowledgement
	6.5 Affidavit


