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Abstract

For many problems, the estimation of the position and the orientation of an
object is required, for example when regarding Rendezvous operations between
satellites, what is of specific importance for future missions and the problem
of space debris. In this regard, the PMD camera in conjunction with a CCD
camera provides peculiar accuracy. However, for solving the problem, a few
intermediate tasks are necessary.

For instance, the measurement range of the PMD camera is too small (7–10 m)
and previous attempts of expanding it by estimating the phase shift across
periods (“Phase unwrapping”) always required a specific scene geometry, so
that the phase shift could be recovered across periods by using actual phase
jumps. This particular scene geometry just happens not to be present in space
applications; typically, there is rather a single object visible, which freely floats
in the image. Thus, in the thesis a new method for estimating the phase shift
across periods is presented, which is suited for application in space. It is based
on the beat principle, where a synthetic modulation frequency is generated by
using two slightly different frequencies, which then allows measurements at
larger distances. As a consequence, for the first time, the PMD camera becomes
a viable option for Rendezvous maneuvers in space in this regard.

When an eligible distance image is available in conjunction with a grayscale
image of the CCD camera, it must be decided whether the target object is visible,
and if it is, where it is and how it is oriented. This task is usually being tackled by
using template matching algorithms, but depending on the type of the sensor,
other methods may be used as well. In particular, the principal component
analysis (PCA) is a robust and well-established method for application on 3D
point clouds. In the thesis, a method based on this is presented, which relies
solely on the PMD camera, what brings along several advantages: complete
independence of the position of the sun, quick image acquisition, large degree
of detail. As a result, the position and the orientation of the target object can be
estimated very reliably. Moreover, optionally, additional information in the form
of different application-specific descriptions provide the ability of resolving
ambiguities caused by object symmetry. Specifically, the robustness against
changes in lighting and the combination with the PMD sensor is what makes
this method superior.
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As soon as a rough pose estimate (position and orientation) is available, it
needs to be refined and updated over time, such that at each point in time
relevant for the application, a preferably accurate pose estimate is available.
Typically, laser scanners and stereo vision systems are used. However, stereo
vision is limited in terms of distance and fairly sensitive with regard to environ-
mental lighting. Laser scanners are robust, but comparatively expensive. Thus,
in the thesis, the rather inexpensive fusion of a CCD camera and a PMD camera
is proposed, where the fusion of image data is done by a reduction onto devi-
ation components for the individual degrees of freedom of the pose estimate
followed by a combination of the very same components. This new approach
allows putting the complimentary advantages of the sensors to good use and
ameliorates the impact of the drawbacks to a large degree, while reducing the
required computation time to a minimum at the same time. Contrary to existing
approaches of sensor data fusion using stochastic state estimators, such as the
Kalman filter or the Particle filter, here, data that is known to be of low quality
(e.g. data which has a partially predictable fuzziness) is purposely not included.

Finally, it is regarded as imperative to provide statements about the fitness
and the accuracy of the method. To that end, an appropriately suited and highly
accurately calibrated test environment – the European Proximity Operations
Simulator (EPOS) of the German Aerospace Center (DLR) – could be used for
evaluating the accuracy on one side, and for simulating preferably realistic en-
vironmental light on the other side. For the first time, a PMD camera could be
used to measure precisely against a reference over larger distances (>10 m) on
this facility. With a remaining error of about 6 cm on the distance, the method is
approximately even with existing methods, but happens to be a lot less expen-
sive and considerably less susceptible to mechanical stress than laser scanners.

A mistake in the firmware of the PMD camera was discovered during the
measurements and later corrected by the manufacturer upon inquiry. This also
posed an advanced test for the suppression of environmental light of the PMD
camera which led to the conclusion that for a real deployment in space, hard-
ware modifications are necessary – primarily, the use of a suitably defocused
and modulated laser as light source and a preferably narrow optical band pass
filter optimized for the wavelength of the laser.
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Kurzfassung

Bei vielen Problemstellungen wird die Schätzung der Position und Orientie-
rung eines Objektes benötigt, so zum Beispiel auch bei Rendezvous-Manövern
zwischen Satelliten, was insbesondere mit Hinblick auf zukünftige Missionen
und dem Problem des Weltraumschrotts von erhöhter Bedeutung ist. Die PMD-
Kamera liefert hier zusammen mit einer CCD-Kamera eine besonders hohe
Genauigkeit. Um die Aufgabe zu lösen, sind allerdings einige Zwischenschritte
notwendig.

So ist z.B. der Distanzmessbereich der PMD-Kamera zu klein (7–10 m) und bis-
herige Versuche, diesen zu erweitern durch Schätzung der periodenübergreifen-
den Phasenverschiebung („Phase unwrapping“) benötigen stets eine bestimm-
te Geometrie der Szene, um anhand von konkreten Phasensprüngen („Phase
jumps“) die periodenübergreifende Phasenverschiebung zu bestimmen. Diese
Geometrie der Szene ist aber gerade im Weltraumbereich nicht vorhanden; viel
mehr ist für gewöhnlich nur ein Objekt zu sehen, welches frei im Bild schwebt.
In der Arbeit wird daher eine neue Methode zur Bestimmung der perioden-
übergreifenden Phasenverschiebung gezeigt, welche für die Bedingungen im
Weltraum geeignet ist. Sie basiert auf dem Prinzip der Schwebung, wo durch
Verwendung zweier leicht unterschiedlicher Frequenzen eine synthetische Mo-
dulationsfrequenz erzeugt wird, welche Messungen mit größeren Distanzen
ermöglicht. Damit wird die PMD Kamera in dieser Hinsicht erstmalig sinnvoll
für Rendezvousmanöver im Weltraum einsetzbar.

Liegt ein geeignetes Distanzbild zusammen mit einem Graustufenbild der
CCD Kamera vor, muss zunächst entschieden werden, ob das Zielobjekt sicht-
bar ist, und wenn ja, wo es sich befindet und wie es orientiert ist. Diese Aufgabe
wurde bislang oftmals mit Template-Matching-Algorithmen angegangen, ab-
hängig von dem verwendeten Sensortyp kommen aber auch andere Verfahren
zum Einsatz. Insbesondere hat sich hier bei 3D-Punktewolken die Hauptkom-
ponentenanalyse (PCA) als robustes Verfahren durchgesetzt. In der Arbeit wird
ein darauf basierendes Verfahren vorgestellt, welches ausschließlich mit der
PMD-Kamera arbeitet, womit eine Reihe von Vorteilen einhergehen: komplet-
te Unabhängigkeit vom Stand der Sonne, schnelle Akquisition des Bildes, ho-
her Detailgrad. Die Position und Orientierung des Zielobjektes kann dadurch
mit hoher Zuverlässigkeit geschätzt werden. Optionale Zusatzinformationen in
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Form verschiedener anwendungsbezogener Beschreibungen ermöglichen dar-
überhinaus die Auflösung der von der Objektsymmetrie verursachten Mehrdeu-
tigkeiten. Insbesondere die Robustheit gegenüber Änderungen der Lichtverhält-
nisse macht dieses Verfahren in Kombination mit dem PMD Sensor überlegen.

Ist die ungefähre Lage (Position und Orientierung) des Zielobjektes be-
kannt, muss sie präzisiert und nachgeführt werden, sodass zu jedem für die
Anwendung relevanten Zeitpunkt eine möglichst präzise Lageschätzung zur
Verfügung steht. Typischerweise kommen hier Laserscanner oder Stereo-Vision-
Systeme zum Einsatz. Stereo Vision ist allerdings limitiert in Bezug auf die
Distanz und relativ empfindlich, was das umgebende Licht angeht. Lasers-
canner sind robust, aber vergleichsweise teuer. In der Arbeit wird daher die
relativ kostengünstige Fusion einer CCD- und PMD-Kamera angeregt, wobei
die Fusion der Bilddaten in Form einer Reduktion auf Abweichungsindikatoren
für die einzelnen Freiheitsgrade der Lage mit anschließender Kombination der-
selben erfolgt. Dieser neue Ansatz ermöglicht es, die sich sehr gut ergänzenden
Vorteile der beiden Sensoren optimal zu nutzen, ihre Nachteile weitgehend
auszuräumen und gleichzeitig die benötigte Rechenzeit auf ein Minimum zu
senken. Im Gegensatz zu bestehenden Ansätzen zur Sensordatenfusion mittels
stochastischer Zustandsschätzer wie dem Kalman-Filter oder dem Particle-
Filter werden hierbei Daten, über die von vornherein bekannt ist, dass sie
von schlechter Qualität sind bzw. die sich durch eine partiell vorhersagbare
Unschärfe auszeichnen, bewusst außen vor gelassen.

Abschließend gilt es, Aussagen über die Tauglichkeit und auch die Genau-
igkeit des Verfahrens zu machen. Zu diesem Zweck konnte eine entsprechend
geeignete und hochgenau kalibrierte Testumgebung – der European Proximity
Operations Simulator (EPOS) des Deutschen Zentrums für Luft- und Raumfahrt
(DLR) – genutzt werden, um dort einerseits die Genauigkeit zu evaluieren und
andererseits möglichst realistische Lichtverhältnisse zu simulieren. Erstmals
konnte auf dieser Anlage mit einer PMD Kamera mit größeren Distanzen (>10
m) präzise gegen eine Referenz gemessen werden. Mit einem Restfehler von
etwa 6 cm in der Distanz liegt das Verfahren etwa gleichauf mit bestehenden
Methoden, ist dabei aber gleichzeitig erheblich kostengünstiger und mechanisch
weitaus weniger empfindlich als Laserscanner.

Während der Messungen konnte ein Fehler in der Firmware der PMD Kame-
ra entdeckt und vom Hersteller auf Anfrage behoben werden. Dies stellte auch
einen weitergehenden Test der Fremdlichtunterdrückung der PMD-Kamera dar,
der zum Ergebnis führte, dass für einen realen Weltraumeinsatz Hardware-
änderungen an der PMD Kamera notwendig sind – vornehmlich der Einsatz
eines geeignet aufgeweiteten modulierten Lasers als Lichtquelle und ein auf die

vi



entsprechende Wellenlänge optimierter, möglichst schmalbandiger optischer
Bandpassfilter.
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Introduction





1 Overview

In this work, a method for estimating the position and orientation of uncooper-
ative objects is presented. Uncooperative in this context means passive, i.e. the
target object can not aid in a high-level process such as rendezvous or docking.
It does not have actuators (or its actuators are disabled for some reason) and it
does not have visual aids such as markers or reflectors. This particular task of vi-
sual object detection and tracking is encountered in several different application
fields, of which the most prominent ones will now be briefly summarized.

1.1 Motivation

To date, there are thousands of man-made parts orbiting the earth. According to
recent analyses, the number of parts above a size of 10× 10× 10 cm is at about
19,000 [50] and still increasing. The objects originate from very different sources –
mostly unmanned missions, but also manned missions. The exact number is
difficult to tell, because there is a large number of objects for which information
is not available. Figure 1.1 gives an impression of the space surrounding earth.

What can be seen in the figure is that unlike from what one would probably
expect, earth is surrounded by a significant amount of space debris. Space
debris originates from collisions, deactivated or uncontrolled satellites, as well
as rocket parts and even lost tools of astronauts. Most of these objects are

Figure 1.1. Debris in the space near to earth:
In this image, some of the known debris
parts are shown. The density is increased at
low earth orbit (LEO) due to numerous mis-
sions targeting the area. Another accumu-
lation can be seen as a circle (geostationary
orbits). (Image from NASA, public domain)
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detected and tracked by optical and radar measurements. Radar measurements
work almost independently of the weather, but due to atmospheric dampening
effects and power/ wavelength limitations, small objects can not be measured
very well or not at all. Optical measurements with lasers require a clear sky. For
more details on space debris measurements see [128].

Space debris poses a large risk to satellites and even to the International Space
Station (ISS). This is a consequence of the large relative velocities of debris parts,
which can reach several kilometers per second [7].

Interestingly, according to [50], an analysis performed by NASA would in-
dicate that even if all nations contributing to space debris stopped launching
more missions, the number of debris parts in low earth orbit (LEO, altitude
range 80–2,000 km) would continue to increase for about 50 years as a result of
collisions.

As a consequence, the need for space debris mitigation arose and On-Orbit
Servicing became a prominent answer to the problem.

1.1.1 On-Orbit Servicing

No matter how many satellites there are, all of them have one problem in com-
mon: their lifespan. Depending on the mission, the average lifetime of a satellite
is in the order of a few years. Large, expensive geostationary satellites last about
10–15 years. The lifetime has increased over the past decades [91], but is still
considered being a relevant limit. Low earth orbit satellites have significantly
shorter life cycles.

When looking at the statistics of reasons for satellites being rendered inopera-
ble, one of the problems is the limited fuel supply. The fuel is needed to power
thrusters, which are in turn used to keep the satellite in its orbit. Once the fuel
runs out, the satellite is decommissioned.

This is why a typical application of On-Orbit Servicing is taking over attitude
control. In this scenario, the servicer satellite will dock to the client satellite and
use its own systems to stabilize the attitude of the now physically combined
satellites. For the docking, for example in the OLEV mission, a specific docking
tool was developed which can dock to the apogee thruster of a satellite [66].
This part is common to most satellites and as such, a good (if not the only point)
where docking can be performed safely. Another approach is using a robotic
manipulator, as it is planned for the DEOS mission [131].

What is also of interest is the ability to exchange or upgrade and repair single
instruments of a satellite. This is especially of interest for geostationary satellites,
which have been in orbit for a long time and for which the ongoing presence is
still profitable [91, 122].

4



1.1 Motivation

Finally, even if the satellite can not be used any longer, because a vital system
has failed (according to [77], the most likely cause is power system failure),
docking can make sense when the satellite poses a threat to other satellites in
form of a collision target. Then, the satellite may be dragged into a graveyard
orbit, or it may be safely deorbited. Graveyard orbits are locations where old
satellites can reside without causing a risk to operational satellites or manned
spaceflight missions. Deorbiting is the process of decreasing the altitude of a
satellite, until it is also no longer a threat. Deorbited satellites are passive and
have a quickly decaying orbit, what means they enter the atmosphere after a
certain time and burn up.

A Rendezvous and Docking maneuver, what is required for On-Orbit Servic-
ing, consists of several phases, of which roughly (1) is to synchronize the orbits
of the two spacecraft, (2) is to decrease the relative distance between the active
spacecraft (chaser) and the passive spacecraft (target) and (3) performing the
actual docking process.

In practice, these phases are divided into even more subphases, where for
each spacecraft, necessary conditions and requirements are specified along the
goals [147].

It is now important to see that the process of docking requires a lot of on-
board autonomy due to the latency involved in any form of communication
with the satellite. This, in turn, requires accurate measurements of the relative
position of the target satellite, depending on the way it is “seen” by the chaser.
This particular problem of estimating the so-called relative pose (position and
orientation) of a satellite, what is of utmost importance for such maneuvers, is
investigated within this thesis.

There are a lot more applications for pose estimation. However, the work at
hand will be limited to the space context, because the environmental conditions
have a large impact on the design of the methods. Consequently, what works
well in space does not necessarily (and most likely, will not) work well on earth
and vice versa.

1.1.2 Formation flying

Another application field for visual navigation and pose estimation is formation
flying of satellites. This is often mentioned together with applications where
a satellite cluster can obtain performance/ cost ratios which would otherwise
not be in reach [23]. Also, satellite construction is possibly standing before a
paradigm shift towards networked, smaller satellites [126]. The relative distance
and orientation of the satellites in a formation must be controlled with a high
degree of accuracy. In this context, vision-based sensors are very likely to be
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used [146] among GPS receivers, depending on the mission and the design of
the related satellites.

In general, sensors such as cameras and LiDAR sensors are often involved in
the process of pose estimation [37, 101]. While to date, most of these systems
require markers or some other kind of aid on target objects, the future draws a
clearly different picture: The capability of autonomous object acquisition and
tracking, combined with guidance systems, is required. This work focuses on
the CCD and the PMD sensors (especially because the PMD sensor is a recent
development with only little history and has yet never been used in a space
environment) and an approach which does not require any aids present on the
target.

Moreover, minimizing energy consumption, mass and complexity are goals
which can be reached with these sensors. This has a large need for research as a
consequence. For the very same reason, the work at hand is a small contribution
to a large field, which requires continuous attention and development.

After having had the opportunity to contribute to an experiment performed
on a pair of formation flying satellites (PRISMA) [103], the work can be put into
context from a data processing point of view. Some of the challenges encoun-
tered during this experiment influenced the design of the method proposed in
this thesis, despite the fact that the so-called ARGON experiment was targeted
at far-range navigation only [28]. For example, the image resolution and -rate
are similar. Also, it became clear that a monocular camera is sufficient for the
task, as color information does not necessarily provide a valuable input for pose
estimation (as will be seen in the literature review, RGB cameras are almost
never used in space contexts). Besides, color triples the memory requirements
for stored frames and in-memory processing. More details about the selection
of the sensors can be found in section 2.3 on page 25 (for the CCD camera) and
in section 2.4 on page 30 (for the PMD camera).

1.2 Related work

Autonomous Rendezvous and Docking is receiving persistent attention from the
research community, as well as companies designing space-related components
and systems. Various theoretical works and some practically usable sensor
systems have emerged, of which a few prominent ones will be briefly reviewed
in the following.

With TriDAR [37], an interesting solution of the pose estimation problem
is available, combining the LiDAR approach (time of flight) with triangulation
(have two emitters point at a single spot on the object, then get the distance from

6



1.2 Related work

the bearing angles). The idea behind the approach is to combine the advantages
of both methods: The long range capabilities of a LiDAR sensor and the accuracy
of a triangulation approach in the near range. The sensor is not only suitable
for Rendezvous and Docking problems, but also for planetary landing and even
rover navigation. Unfortunately, the resulting sensor system is expensive when
compared to purely camera-based systems.

A more inexpensive method is to rely on monocular vision only, but extended
by a high-level reasoning layer [107]. This subsystem would evaluate the raw
data of the image processing part and carry out assigned tasks. In the event of
tracking failure or any other unforeseen problem with estimating the position
or orientation of the target object, the subsystem would suggest corrections
(retry, retry after random time interval) in order to solve the problem. This
specific part is called “hybrid deliberative/ reactive computational framework”.
It can be summarized as a sophisticated mixture of several artificial intelligence
disciplines used to enhance the overall performance of the system.

In contrast, rather common is the use of a scanning LiDAR sensor for estimat-
ing the pose of the target [63]. The target is detected in a first step and bearing
and range is estimated. Then, a 3D model is fitted, after which the full pose is
available. For following the target and updating the pose, a tracker is proposed.
The correct knowledge of the pose then allows more efficient flight trajectories
because the orientation and the position of the docking port is known at all
times, even when it is not visible. The paper demonstrates the system as a
proof-of-concept using a scaled satellite in a testbed.

The successor of the sensor used in the Orbital Express mission- the Auto-
mated Video Guidance Sensor (AVGS)- is primarily intended for the crew ex-
ploration vehicle (CEV) [80]. Two different lasers are used to illuminate the
target. The difference image yields the remaining reflections from the reflectors
with all other error sources removed. After a thresholding step, centroids of
the reflections are determined and then the pose of the object is estimated. This
is a high-cost (two lasers) solution, which also requires special reflectors at the
target.

To summarize, a lot of projects related to autonomous Rendezvous and Dock-
ing use laser-based sensors. Often, fiducial markers must be present on the
target. There are a few exceptions, but these are very rare and the resulting sys-
tems are very expensive (for example, the TriDAR system). Monocular vision
is rarely used for full 6-DoF pose estimation, apparently due to accuracy con-
cerns. Stereo vision is more common, but still seldom proposed in this context.
LiDAR-based sensors are clearly dominating in this area.

Apparently, the possibility of directly and reliably measuring the distance
is of utmost importance, therefore the method proposed in this thesis looks
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promising after a review of the relevant literature and may especially present
an alternative to close-range laser-based sensors or purely CCD camera-based
approaches.

The review of related work is continued throughout the work in form of
trailing subsections regarding different aspects of the implementation. It was
chosen to structure the work at hand in this way, as it touches a large number
of different scientific fields.

1.3 Contributions

This work aims to implement a relative pose estimation method using a PMD
camera and a CCD camera. While the CCD camera has been widely used in
space already, the PMD camera has never been used in a space environment.
This is why an investigation of the sensor with regard to space applications is
particularly interesting. The work at hand provides:

• A method to extend the measurement range of PMD sensors. Because
common PMD sensors are limited to relatively short distance ranges due
to the measurement principle, a method is presented and evaluated which
allows measuring at significantly larger distances; in the proposed sce-
nario, the theoretical gain of measurement range is at 1,000 %. In contrast
to existing methods, this approach does not rely on the scene geometry.

A complete calibration framework based on available literature about
PMD sensor calibration is given, which addresses the usage of two mea-
surements from the beginning in order to reduce side effects in the fused
long-range image. As state-of-the-art PMD camera calibration do not con-
sider long-range measurements, known models are extended to accomo-
date the problems encountered in these situations.

During the design and test phase, firmware problems have been found
and identified in cooperation with the PMD sensor manufacturer, which
are likely to have never been discovered before, because PMD sensors
have not yet been used on calibrated test facilities as large as EPOS.

• A fast, initializing pose estimator. Most high-accuracy, real-time pose es-
timation problems can only be solved by designing a tracker architecture,
which refines a given pose in a very short amount of time and still pro-
vides high-accuracy measurements. However, without finding an initial
pose, the algorithm can not be used autonomously.
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In this work, such an initial pose estimation method capable of finding
the target object in the image without prior information, is presented. The
method draws its robustness from apparent benefits of the PMD sensor.

Furthermore, the problem of object symmetry is ameliorated by adding
an interface to the initializer what allows providing hints, i.e., additional
mission- or situation-specific information, making it possible for the ini-
tializer to determine the correct object pose even for symmetric objects.

A novelty is the usage of the distinct advantages of the PMD camera in
combination with powerful tools such as the principal component analyis
in order to retrieve a computationally efficient and robust result.

• A multi-sensor fused high-accuracy pose tracker. Investigations have
shown that the PMD sensor and the CCD sensor have a complimentary
nature when it comes to their advantages and disadvantages. A method is
presented, which allows combining the advantages and ameliorating the
shortcomings by fusing the data of the sensors in an application-specific
representation.

This is different from most established methods, where sensor data fusion
is performed on the image level without specific regard to the high-level
problem.

• An in-depth analysis of the PMD sensor for use in space environments.
Due to the much more problematic solar irradiance in space, measure-
ments have been made on a calibrated Rendezvous and Docking test facil-
ity in order to evaluate the fitness of the PMD sensor for use in space from
a lighting-related point of view.

Measurements have shown that simulating extraterrestrial sunlight is a
complex subject both in theory and practice. Using a high-power sun
simulation including a measurement of the light spectrum, tests could be
performed which are significantly closer to the real situation as it would
be encountered in orbit, when compared to previous approaches.

Furthermore, an investigation of the modulation signals of the PMD cam-
era is provided, what gives an insight into potential problems. A brief
analysis of when they are encountered and how to compensate for them
supplements the findings.
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1.4 How this work is organized

1.4.1 Overview flow diagrams

For the main part of this thesis (the description of the pose estimation method),
there are two flow diagrams, which summarize the chapters and sections, with
the intention of providing an overview to the reader in order to facilitate under-
standing the process. These flow diagrams can be found on pages 15 (for the
preprocessing part) and 16 (for the principal part).

1.4.2 Document outline

It was decided to structure this thesis into several chapters, which are itself
wrapped into three large parts. The three parts are:

• Part 1. An introductory part which is intended to familiarize the reader
with the methods and sensors used. Also, the reasoning for choosing the
particular sensors is given. There are two chapters:

– Chapter 1. The first chapter contains an overview of the work, as
well as a literature review. It provides reasoning and the background
of the work at hand and is also supposed to open up a broader view
of the problem.

– Chapter 2. The second chapter is dedicated to the brief introduction
of basic methods, the chosen sensors and the measurement equip-
ment. The purpose is to familiarize with typical error sources and
introduce compensation methods.

• Part 2. The second part represents the core of this work. Here, the details of
the data processing are presented. Where appropriate, relevant literature
is briefly reviewed as well. The following chapters belong to part 2:

– Chapter 3. In this chapter, off-line preprocessing of data is described.
This step has been introduced in order to lower the computational
burden in the on-line phase of the algorithm. Also, the sensor char-
acteristics are investigated, which will later have a significant impact
on the design of the algorithm.

– Chapter 4. This chapter is dedicated to PMD sensor data preprocess-
ing. The purpose of the chapter is twofold. First of all, it is supposed
to show that serious effort must be put into processing PMD data, be-
fore it can be safely used – especially when using two frequencies at
the same time. Second, a range extension method is presented, which
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allows escaping from the inherent distance measurement limitation
common to PMD sensors.

– Chapter 5. This chapter is dedicated to the initialization problem. A
method will be presented, which uses the PMD sensor to estimate
a rough pose estimate without any prior knowledge, except for the
target object model.

– Chapter 6. In this chapter, the target tracking algorithm is presented
in detail. The method refines a given pose estimate using both sensor
measurements from the PMD sensor and the CCD sensor and fuses
the data streams on a rather high, application-specific level.

• Part 3. The last part of the thesis is dedicated to presenting the results
achieved so far, and moves on to a comparison with other methods and
sensors. The purpose of this part is to reflect on the results and provide a
context along with a meaning. The part is divided into the following two
chapters:

– Chapter 7. This chapter is intended for to presenting the experiments
performed, both in terms of what exactly has been done and why it
has been done this way. Furthermore, the results are presented along
with an interpretation.

– Chapter 8. The last chapter provides a more in-depth analysis of the
results, along with comparisons to other implementations and sen-
sors. The purpose is to provide a broader view of the pose estimation
topic and a personal estimation of how the work at hand fits into the
field.

1.5 Math Notation

The following notation is applied throughout the document. It complies to
established literature to a large degree, but some exceptions may be encountered.
On occasion, the text may define slightly different notation where it eases the
handling of a specific problem. In these cases, a profound description and
reasoning will be provided.

a A scalar.

a A vector.

(continued on the next page)
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(continued from the previous page)

ã Intermediate vector; often used to emphasize the relationship with a
in long calculations.

ak The k-th element of the vector a. If k is not defined further, alterna-
tive notation for a set of vector elements. Used sometimes to make
equations more readable.

A A matrix.

A∗ The adjugate of the matrix A.

AT The transpose of the matrix A.

A[i, j] A specific matrix element (row indicated by i, column indicated by j).

x̂ A vector or matrix (depending on the appearance of the symbol un-
der the hat) transformed using a contextual transform, for example
Fourier transform.

Im(x) The imaginary part of a complex scalar x. When applied to a vector
or matrix, it is applied element-wise.

Re(x) The real part of a complex scalar x. When applied to a vector or matrix,
it is applied element-wise.

[a, b) A half-open interval; a is included, b is excluded. Round brackets
indicate exclusion of the interval boundary, square brackets indicate
inclusion of the interval boundary.

‖x‖ The norm of the vector x. When not specified, the Euclidean norm
‖·‖2 is used.

‖x‖p The p-norm of the vector x, i.e. ‖x‖p = (∑n
i=1 ‖xi‖p)1/p, where n is

the number of elements in x.

A A named set.

‖X ‖ The number of elements in the set X .

∅ The empty set.

∠(x, y) Angle between vectors x and y, ∠(x, y) = arccos
(

x·y
‖x‖·‖y‖

)
q The inverse of the quaternion q. Sometimes, the line is used to indicate

a particular state of processing a vector. In these cases, it is made clear
in the text.

(continued on the next page)
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(continued from the previous page)

q∗ The (complex) conjugate of the quaternion q.

� The quaternion multiplication.

q (x) Application of the quaternion q to a vector x, i.e. q (x) = (v1, v2, v3),
where v = q� (x, 0)� q.

Quaternions are treated as defined in [148], with the vector components lo-
cated at the first three components of the quaternion, and the scalar component
being the last element of the quaternion.

1.6 General conventions

Throughout this document, PMD stands for “Photonic Mixer Device”, a semi-
conductor chip design which allows phase-shift measurements in hardware
using modulated light. In a lot of documents, this is also referred to as “Time of
Flight” (ToF), what is considered being a too imprecise (if not misleading) term
in the authors opinion, since the time of flight is neither measured with these
sensors nor is it directly relevant. Instead, the phase shift of a continuously emit-
ted signal is measured and compared to a reference signal. The abbreviation
“PMD” is therefore used to stress this difference.

Data transfer speeds are typically provided using the base of 1,000 instead of
the IEC base 1,0241. While the capital “B” means byte, the letter “b” stands for
bit. For storage sizes, the base 1,024 is used and the corresponding magnitude
abbreviations are used such as GiB, MiB, and so on.

Euler angles are provided in pitch (up/ down) – yaw (left/ right) – roll or-
der. They are used to visualize angular deviations, as it is difficult to interpret
compound rotations from quaternion components.

Images from sensors have pixel numbers written on the X- and Y-axis. In the
relevant plots throughout the document, these axes are not described further,
as this is often not necessary to understand the content of a figure and to save
space, the axes are also left without annotation.

1.7 Method summary

In the following, the entire algorithm will be summarized in form of two flow
diagrams in order to get a quick overview. The flow diagrams will also mention

1See IEC 60027-2, Ed. 3.0, (2005-08) for details.
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1 Overview

the relevant chapters and sections where details about particular parts of the
algorithm can be found.

First of all, the envisaged method is divided into a principal processing part
(figure 1.3) and a preprocessing part (figure 1.2), and the preprocessing part is
divided into an online phase and an offline phase.

In the offline phase, sensor data independent processing takes place, such as
obtaining optimized model data from a raw model and obtaining auxiliary data
for working with the PMD sensor. In the online phase, relevant sensor data is
processed and transformed into suitable representations used by the principal
part of the algorithm.

In the principal part of the algorithm, the two data streams of the PMD sensor
and the CCD sensor are used to determine so-called deviation components, that
is, sensor- and image-space specific measures of deviations between the current
estimated location and orientation of the target object and the object captured
by the sensors. The deviations are specific for the six degrees of freedom, as will
be seen later. By minimizing these deviations for each image retrieved from the
sensors, the estimated position and orientation of the target object is updated
and corrected over time.

The reasoning for designing the algorithm this way and all the details about
the individual steps will be provided in the referenced sections and chapters.
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2 Measurement, sensor and image processing
fundamentals

The PMD sensor is a unique sensor in the sense that it requires specific signal
processing applied to its output in order to retrieve a useable signal. At the
same time, its abilities are special as well, as it combines a high frame rate with
low power requirements and the parallelized distance measurements for every
single pixel. Before starting to work with the sensor, it is therefore important to
familiarize oneself with it. The same applies to the CCD sensor, although it is
less substantial.

As it is the case with any pose estimation method, at the end, the question
is how accurate is it? – To answer this question, measurements will be made on
a facility specifically designed for testing Rendezvous and Docking payloads.
To understand how the results are retrieved, it is essential to know the test
environment. Therefore, this testing facility will be introduced as well.

Finally, the method presented within this thesis is built upon previous re-
search work. Consequentially, it is important to have a brief look at these
techniques first in order to understand how they are used to put together the
entirety.

2.1 Introducing the EPOS facility

This section will briefly introduce the European Proximity Operations Simulator
(EPOS), a real-time, hardware-in-the-loop Rendezvous and Docking simulation
facility, which was used to simulate realistic docking trajectories and maneuvers
in order to evaluate the performance of the image processing algorithms.

2.1.1 History

Origins

The EPOS facility was first built in cooperation of the European Space Agency
(ESA) and the German Aerospace Center (DLR) and installed at the DLR site
in Oberpfaffenhofen, Germany. At the same location, the German Space Oper-
ations Center can be found. The latter has been involved in countless projects

17



2 Measurement, sensor and image processing fundamentals

Figure 2.1. The old EPOS facility. A very
large portal robot moves a gantry which
provides a six degrees of freedom move-
ment of the mounted sensors together with
the robot. At the other end, a gantry was
installed on ground which was capable of
rotating about all three axes. (Image courtesy
of DLR)

ranging from satellite launches (launch and early orbit phase, LEOP) to satellite
control, as well as several missions involving the International Space Station
(ISS). For example, the Columbus module has its control center also in Oberp-
faffenhofen.

The first version of the EPOS simulator has been started in 1984. The lab,
which contains the simulator, has a size of about 40× 10 m. It consisted of a
very large portal robot which could move a gantry in X, Y and Z direction. This
allowed to simulate a distance of about 11 meters with original size models. In
case a larger distance is to be simulated, the model size can be reduced and the
simulated distance would be increased at the same time by the corresponding
factor.

The gantry was able to rotate the mockup about all three axes. This way, all
six degrees of freedom are available. The mockup at the other end was also
mounted on a gantry. This gantry was also capable of rotating the mockup
about all three axes, what provided more flexibility.

The control system of EPOS was designed for real-time hardware-in-the-loop
simulation, meaning the complete sensor and processing hardware of the sys-
tem under test could be mounted on the EPOS actuators and tested on EPOS as
a whole. While the sensors provide information about the position of the other
mockup, the control system would produce thruster commands. The thrusters,
however, are not implemented as real hardware, but simulated by EPOS. This
requires that the dynamic models and orbit information is provided to EPOS.

As a result, navigation, orbit-keeping as well as Rendezvous and Docking
systems could be tested in real-time. EPOS also featured a realistic illumina-
tion unit, which was capable of simulating the sun according to the simulated
position of the two mockups in orbit. A theater lamp was used to provide the
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2.1 Introducing the EPOS facility

lighting. The main application EPOS was intended for was the simulation of
Rendezvous and Docking maneuvers without contact dynamics.

The Phase A study was completed in 1985 which included the hardware
design provided by DLR and the software by ESA. The cooperation partner was
ESTEC in Sweden.

Phase B was completed in 1988, which defined the most important hardware
and software concepts and provided the most important functional parts as
prototypes. Thus, a firstly working simulation environment was complete.

Phase C1 (completed in 1995) then moved the prototype implementation into
the building where the EPOS simulator is located until today. Furthermore, a
lot of software development was done: DLR developed application software
and kinematics, more simulation and test control software was provided by Ori-
gin and flight dynamics/ equipment modeling software was added by DASA.
DASA was a company which belonged to Daimler Benz and could be seen as an
aerospace division. It existed in original form until 2000, when it was changed
to a pure holding society.

Phase C2 (completed in 1998) modernized several hardware components and
brought along an interface to Eurosim. Eurosim is a configurable simulator tool
for space-related real-time simulations. At the same time, the final preparations
for the ATV simulations where made.

Modernisation

The very first version of EPOS was modernized in 2002, when the command
frequency was raised from 2 Hz to 25 Hz [19]. Furthermore, the core computer
was replaced by a more powerful one. The old VME bus (Versa Module Euro-
card) system1 was replaced by a PC-based version, with the interconnections
made with fiber cables. Remote access was implemented since the Internet had
evolved rapidly.

Apart from that, several enhancements have been added. To mention a few,
kinematics became exchangeable, a configuration management system was
added and a sophisticated logging part was implemented.

The man-machine interface was improved as well. First of all, a preview
capability was added, which provided the user with information on what would
actually happen when a certain trajectory was executed. The visualization was
in 3D, an important step forward in helping users to avoid crashes.

1The current version of this bus system, called VME64, is still in use in the aerospace industry. For
example, several parts of the computer system of the International Space Station (ISS) are based on
it.
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2 Measurement, sensor and image processing fundamentals

Figure 2.2. The new EPOS facility. Two
industry-grade manipulators simulate the
motion of satellite mockups. A theater
lamp is used to simulate the sun and a DLP
projector can be used to provide an earth
albedo or background. (Image courtesy of
DLR)

Figure 2.1 shows an image of this implementation. At the far end of the
picture, one can see the stationary gantry. The large, black portal robot with the
XYZ stage and the mobile gantry can be seen as well in the middle of the image.

Using the modernized version of EPOS, sensor tests of the ATV (Autonomous
Transfer Vehicle) have been successfully performed.

2.1.2 The new (and current) EPOS

The facility was renewed in 2008, using two industry-grade KUKA manipula-
tors, as shown in figure 2.2. The main drivers for this decision were increased
accuracy, reduced maintenance overhead and reduced dependence on the man-
ufacturer of rare parts. The control system is now completely PC-based with
Windows PCs as a user interface and computers running VxWorks on the real-
time side.

The architecture of the new EPOS facility employs the two KUKA manip-
ulators as well as a 25 m rail. One of the robots is mounted on the rail. The
two robot controllers are connected to the first real time machine, the so-called
Facility Monitoring and Control (FMC-RT) (RT for real-time) via Ethernet. The
FMC-RT then sends the movement commands to the robot. It is connected to a
real-time capable bus system known as EtherCAT. EtherCAT connects the safety
electronics and the Application Control System (ACS) where a user can run and
design simulations on.

As an improvement, work is being concentrated on implementing contact
dynamics for the simulator [153], so it can simulate the contact forces and actu-
ally simulate a real docking maneuver (including everything that can possibly
go wrong). To that end, a force/torque sensor has been installed at the chaser
mockup, between the docking tool and the flange.

To improve the accuracy of the robots, a special optical measurement system
is being developed. It employs two units, of which one of both is mounted
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ACS/MMI FMC/MMI

FMC/RTACS/RT
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KRC2
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Real-time Interface, VxWorks Layer

User Interface, Windows Layer

EtherCAT

Figure 2.3. The architecture of EPOS. Two real-time machines running VxWorks command
the robots and run the simulation, while Windows machines provide the user interface.

on each robot. Using a laser beam, the relative distance, displacement and
orientation is measured and used to correct the positions of the robots relative
to each other. As a result, when looking at relative positioning, the accuracy is
pushed towards today’s technical limits.

At both mockups, several ports are available in order to retrieve information
from the sensors. The complete interface includes

• A 230 V line, for local power supplies, etc.

• Several DC power supplies including 5V/ 4A, 12V/ 2.5A, 24V/ 2.5A and
28V/ 2.5A.

• Two Ethernet ports.

• One RG-58 coaxial cable for RF transceivers/ GPS signal simulation.

• 18 × 1 mm2 multi-purpose lines, unshielded.

The multi-purpose lines can be directly accessed in the EPOS control room what
allows special equipment for sensor tests installed directly in there.

To conclude the evolution of EPOS, table 2.1 summarizes the most important
technical differences between the generations.
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Table 2.1. Comparison of EPOS facility performance indices. The EPOS facility will further
gain almost one magnitude of accuracy, once the optical measurement system is available.
A special firmware supplied by KUKA allows commanding the robots at 250 Hz.

Property pre-2008* post-2008† Unit

Accuracy position < 5.00 1.50 mm
orientation < 0.2 0.2 deg

Commanding rate 25 250 Hz

Maximum load target 40 240 kg
chaser 100 100 kg

Maximum velocity translation 0.5 2 m s−1

rotation 6.0 180 deg s−1

Approach distance range 11 25 m

* Including modernization of 2002. Values from [16, 150].
† Details can be found in [18, 119].

2.1.3 Other Hardware-In-The-Loop simulation facilities

A similar facility can be found at the Marshall Space Flight Center in its Flight
Robotics Laboratory (FRL) [118]. Here an air bearing floor is combined with a
8 degrees of freedom overhead gantry robot, which simulates the target object.
Similar to EPOS, force/torque sensors are used to simulate contact dynamics. A
sun/ lighting simulator is also available. A similar facility can be found in italy
[53].

More similarities with EPOS are seen in the EPOSx facility near Rouen in
France. Here, the same goals are set, but at an even larger scale. Distances of
about 300 meters can be simulated, and the target weight can exceed 1,000 kg
[24].

However, more common is the use of two fixed 6-DOF robots without a rail
[63]. Here, two Fanuc robots accomplish the hardware side of the simulation.

The On-orbit Visual Environment Simulator is a scaled version of two robots,
which allows simulation of Rendezvous and Docking maneuvers including
Hardware-In-The-Loop simulation and sunlight for scaled (1:10) models [138].

To summarize, facilities like EPOS can be found all over the globe. However,
facilities of the size of EPOS are rare and it is safe to assume, that there are not
many that large.
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Figure 2.4. Perspective projection of a point P(dx , dy, dz) and its corresponding image-
space coordinates P’(px ,py).

2.2 Imaging principle

After having introduced the test facility, a brief introduction into optical sen-
sors (and characteristic measurement errors) will be provided. As it is the case
with all sensors, the measurement errors must be understood before calibration
measures can be developed and applied. Fortunately, at least as far as optical
distortions are concerned, the same method can be applied to both sensors. In
this section, a model commonly found throughout the literature is introduced
which facilitates the use of optical sensors tremendously.

2.2.1 Pinhole camera model

Both sensors are modeled using the so-called pinhole camera model [57]. In this
simplified model, a scene is captured by a camera with an infinitely small hole.
For practical reasons, assuming that each point of the scene scatters light in
deviating directions, the hole is replaced by a collimating lens, such that ad-
ditionally scattered light is also seen on the same projection point (figure 2.4).
Consequently, the principle remains the same when using a lens and the model
as such does not need to be altered.

The only difference is that there is now optical distortion (which must be
compensated) and points are no longer imaged as points but rather as circles
(the image may become blurry), depending on the distance of the object and the
focal length of the lens. By tuning the parameters correctly, a sharp image can
be retrieved.

Despite the deviations of real-world image sensors from the original ideal
model, this model extension is sufficient and commonly used in most image
processing applications.
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2.2.2 Normalized coordinates

An object is imaged by transforming all 3D points of the model into image space,
i.e. 2D coordinates on the image plane, what corresponds to the surface of the
sensor. What can be seen from figure 2.4 is that it is sufficient to capture the
direction of a line of sight for each point of the object. This direction information
is essentially encoded in normalized coordinates, because

κ =
(
dx/dz, dy/dz

)
= (tan α, tan β) , (2.2.1)

where κ is the normalized coordinate vector and α and β are the direction an-
gles (azimuth and elevation). Once the normalized coordinates are known, the
image-space coordinates can be calculated by multiplying with the focal length
(which is equal to the distance between the sensor and the lens), what yields

p = κ f . (2.2.2)

Because p is relative to the central point of the image (which will also be referred
to as principal point), by adding the pixel offset c of the latter, pixel indices
(i, j) = p + c are retrieved. Normalized coordinates are specifically suited for
the correction of distortions which is why distortion will always be applied to or
compensated on normalized coordinates. This will be discussed in more detail
in sections 2.3.6 (page 28) and 2.4.3 (page 39).

2.2.3 Image space

At this point, a clarification about the term “image space” will be made.
Throughout this work, this term refers to a two dimensional vector space of
image coordinates.

Definition 2.1 (Image space) The image space of a sensor is a two-dimensional vec-
tor space spanned by two sensor-specific intervals

Ω := ([0, w− 1]× [0, h− 1]) ⊂ R2,

where w ∈N is the width of the image and h ∈N is the height of the image (in pixels).

Note that this definition allows locating points between pixels (“subpixels”).
Also, the size of the image space depends on the sensor. In the text, this may be
indicated by subscripts such as ΩPMD or ΩCCD, respectively.
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2.3 CCD sensor

2.3 CCD sensor

The monocular camera was first used without the PMD camera for initial tests
and also for developing a pose estimation method, which would rely on a single
sensor only for later comparison. The results can be found in [141, 142]. There
are a lot of sensors available with varying suitability and targeted application.
In the following, the reasoning for choosing this particular camera is given.

2.3.1 Resolution and color

On the ATV, a monochrome sensor (resolution 1,024×1,024 pixels [75]) based on
a star tracker [145] is used in the docking assembly. The thought of a higher res-
olution is – and will be even more in the future – a promising one. However, the
images generated by the sensor need to be processed in some way and, generally
speaking, the higher the resolution of the image, the higher the processing time.
Therefore, it seemed adequate to use a sensor with a moderate image resolution.
Without investigating the problem in more detail, it seemed to be a reasonable
choice of using a monochrome camera with VGA (640× 480 pixels) resolution.

2.3.2 Interface

With two parameters set, a lot of other parameters remained open. As the inten-
tion is to use the camera together in a closed loop configuration, it is essential
that the sensor can be used in conjunction with a real-time system. Basically
four interfaces are available:

• CameraLink: A high-speed interface for digital video cameras used in
industry automation. CameraLink comes in several speed grades and
always requires dedicated hardware (e.g., frame grabbers). The maximum
cable length depends on the speed grade and is at best 10 meters.

• Firewire (IEEE 1394a/b): A serial bus system which can be seen as the
de-facto bus standard for digital video connectivity. While Firewire can
be commonly found on most computers and consumer products, it is not
very common in research and even less in industrial applications.

• Ethernet (IEEE 802.3)/GigEVision: A very young standard which is built
upon Ethernet. Ethernet currently goes up to 10 Gb/s, which is more than
enough to transport even uncompressed image data. Most cameras come,
however, in the lower speed grade (1 Gb/s).
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• Universal Serial Bus (USB): Found on all PCs and even servers, embed-
ded and industrial products, the universal serial bus has a large footprint
in device connectivity. The drawback is that each device requires a device-
specific driver – when not open sourced, for each specific architecture and
operating system.3

When it comes to the interface, one important constraint ruled out most of the in-
terfaces at once: cable length. While Ethernet can operate on cable lengths up to
100 meters, all other standards allow for a maximum of 10 meters. Some of them
can be extended using expensive repeaters. However, in an environment such as
the EPOS facility, repeaters are not an option as any construction using repeaters
poses a significant problem to the 25 meter rail system with underground ca-
bling. Media converters were not available at the time the measurements have
been made or have been considered too expensive.

Another problem is the availability of drivers for the real-time system. While
Ethernet was up and running already, USB and Firewire were not available and
for CameraLink, there would not have even been a driver available for a single
frame grabber board.

In conclusion, it was decided to buy a camera with an Ethernet interface and
write a custom driver. The one remaining problem was that the GigEVision
standard is not publicly available but only to camera manufacturers and some
software companies. To the time, fortunately, OpenGigEVision4 was already in
a state where it worked with some cameras and the knowledge of the protocol
gathered in OpenGigEVision could be used to get the camera working, as will
be seen later.

2.3.3 Optics

The optics of the camera needs to meet the following requirements:

• At about one meter distance, the image should be filled by the target object
entirely.

• When the target is far away from the camera, the image must remain sharp
without the need for manual focus adjustment.

The first requirement defines the field of view (FOV) or imaging angles, which
were determined to be 40 degrees. The second requirement forces to use a very

3An exception to this statement are several generic device classes, like Human Interface Devices
(HID). However, such a universal device class does not exist for high-performance cameras.

4The project website is http://gitorious.org/opengigevision, where the source code can be down-
loaded as well.
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Figure 2.5. Calibration of the CCD cam-
era inside MATLAB. After a few im-
ages of the checkerboard have been
recorded from different orientations, the
four outer corners of the pattern are
manually marked. Then, the checker-
board crossing points are automatically
traced, and the distortion can be calcu-
lated. The X- and Y-axes show the pixel
coordinates.

sensitive camera so the iris size can be reduced to a minimum. The smaller the
iris, the sharper the image (for an infinitesimally small iris, one would obtain a
pinhole camera again).

For the tests, a Pentax optics has been used with a focal length of f = 6 mm.
The focal ratio could be tuned to f /8, what still provided a sharp image. For
some tests, this could even be reduced to f /16. Details can be found in chapter 7
starting on page 127.

2.3.4 Mechanical and power

The mechanical properties of the camera were only of minor importance. The
camera must be mountable on the EPOS tool plates. The power requirement is
likely to be of no concern, because any camera which fits in the requirements
defined so far, will not draw too much power. The maximum power draw
allowed depends on the operating voltage. The chosen camera is rated 3 W at
12 V.

2.3.5 Final decision

The camera satisfying all the requirements just defined has been chosen to be
the Prosilica GC-655. The sensor chip has a large imaging area, what makes it
a bit more expensive, but the gain is much more sensitivity to weakly lighted
scenes. Most other cameras, which have also been considered, were ruled out
mostly because of the interface.
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2.3.6 Sensor calibration

A single monocular imaging camera has the following properties, which must
be properly addressed in order to achieve the highest possible accuracy:

• Focal length. The focal length is a property of the optics describing the
location of the point where all rays, which are parallel to the optical axis
on one side of the lens, meet. This point must be known (along a few other
parameters) for mapping direction vectors to each pixel.

• Sensor pixel grid. The individual pixels are of a certain size, depending
on the sensor. While more expensive sensors have larger pixels (what
makes them much more sensitive to light), inexpensive sensors typically
have small sensor areas and, consequently, small pixels. The exact size of
a single pixel must be known to retrieve a direction vector for each pixel.

• Radial distortion. The problem of mapping a 3D object onto a 2D pixel
array can be described with the so-called projection matrix [94]. However,
this is only true, as long as the lens is perfect as in theory. In practice,
this is not the case. A radial distortion is applied to the projection, which
causes imaged points to move on the line between the imaged point and
the image center. Depending on the lens, the point can move towards the
image center or move away from it.

• Tangential distortion. The manufacturing of a camera implies a certain
variance of the internal sensor chip positioning. As a consequence, this
leads to tangential distortion which must be compensated for maximum
accuracy.

• Skew. Skew is the deviation from orthogonality of the X and Y axes of the
sensor pixel grid. Today’s sensors usually have an almost perfect pixel
grid, where the skew is zero, so the X and Y axes are orthogonal to each
other.

• Principal point. The principal point is the point on the sensor, where the
optical axis intersects the sensor surface. Due to manufacturing inaccura-
cies, the principal point can move multiple pixels from the center of the
image. Since all projection operations rely on this, the principal point is
one of the most important properties which must be calibrated.

CCD sensors are well understood and therefore, calibration tools are avail-
able. In this subsection, the optical distortion of the camera will be measured.
Figure 2.5 shows the application of the calibration tool. It allows calibrating
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Table 2.2. Intrinsic calibration results for the monocular camera. Values are from the
CalTech camera calibration toolbox. 27 images have been used for the estimation.

Property Estimated* Expected† Unit

Focal length X 591.319± 4.187 606.061 pixels
Y 600.138± 4.187 606.061 pixels

Principal point X 339.261± 4.052 320.000 pixels
Y 238.746± 5.277 240.000 pixels

Distortion coefficients‡

a0 −0.204438± 0.023 0.000 —
a1 0.447498± 0.121 0.000 —
a2 −0.004769± 0.002 0.000 —
a3 0.002288± 0.002 0.000 —

Pixel size X — 9.90 µm
Y — 9.90 µm

* Uncertainty values are approximately 3σ.
† Taken from the camera data sheet.
‡ The radial distortion is represented by a0, a1, while the tangential distortion is repre-

sented by a2, a3 in accordance with the calibration toolbox.

any camera using a checkerboard pattern which has to be imaged from several
orientations.

From the knowledge of the pattern (planar surface, known side lengths of all
squares) and overdetermining the problem by a large number of squares, one
can obtain the optical distortion parameters (details follow).

The calibration was carried out using the MATLAB toolbox from CalTech4,
which is based on Brown’s method [20]. For the sake of completeness, there
is also a similar tool available from DLR5. It is written in IDL and requires the
installation of the IDL virtual machine6. To prevent the necessity of additional
effort, the CalTech software was preferred at this point.

The calibration procedure is carried out by first reading the images and manu-
ally locating the four outer corners of the checkerboard pattern. Then, the exact
locations of all square borders are estimated by the toolbox. From the series of
images and the information of how large the squares are in reality, the toolbox
calculates the camera parameters by using a numeric optimization approach to

4The CalTech calibration toolbox can be retrieved from http://www.vision.caltech.edu/bougue←↩
tj/calib_doc/.

5The DLR calibration tool is not a MATLAB toolbox in the sense that it does directly integrate with
MATLAB. Instead, it runs independently but provides a convenient MATLAB export. It can be
retrieved from http://www.dlr.de/rm/desktopdefault.aspx/tabid-4853/6084_read-9197/

6The IDL VM can be retrieved from http://www.ittvis.com/ProductServices/IDL.aspx.
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Figure 2.6. Optical distortion of the CCD camera. Numbers indicate imaging deviations
in pixels. The cross indicates the geometric image center and the circle indicates the
estimated principal point. The X- and Y-axes show the pixel coordinates.

minimize the reprojection error (the distances of the calculated corner points to
the measured corner points).

When recording the images, it is important to capture a large part of the image
space and also to capture the checkerboard pattern at different orientations. This
ensures a well-conditioned problem for the solver and hence, a good result.

Table 2.2 shows the calibration results for the camera used in the experiments.
Note that the skew angle was not estimated and is assumed to be zero. This
is also recommended in the documentation of the toolbox. The axes of today’s
sensors’ pixel grids are sufficiently close to being orthogonal, so this parameter
can be neglected.

The distortion coefficients are used as coefficients in correction polynoms
(for details, see algorithm 4.1 on page 73 and equation 6.2.5 on page 111). A
graphical representation of the optical distortion is shown in figure 2.6. It can
be observed that the distortion of the CCD camera is much more complex than
the one of the PMD camera (cf. figure 2.11 on page 40) due to the variable focus
of the lens.

2.4 PMD sensor

The PMD sensor is an imaging sensor capable of capturing a gray-scale image
of a scene along with distance information [81]. To date, several different PMD
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2.4 PMD sensor

Figure 2.7. The PMDTec Camcube 3.0 con-
sists of an imaging part and two blocks of
LED arrays used to illuminate the scene.
(Image taken from PMDTec/Wikipedia, used in
accordance with CC-by-sa 3.0/de license)

cameras are available (of which a good overview is given in [39, 105]). Still,
the number of choices is not as large as it was for the CCD sensor. Therefore,
the sensor selection process is much simpler. The PMDTec Camcube 3.0 was
selected for the following reasons:

• High lateral resolution. The higher the lateral resolution, the better. The
resulting point cloud, which will be used for estimating the pose, highly
depends on this parameter. The PMDTec Camcube 3.0 has a resolution of
200× 200 pixels, which was more than all of its competitors at the time
this was written.

• Suppression of background light. In space, sun illumination may be
present, so all sensors must be able to function even under strong sunlight.
An introduction to background light suppression is given in section 2.4.1.
Details can be found in [96].

• Hardware-controlled multiple exposures. This is very important as it
allows using the sensor with larger distances (see section 4.2 on page 82)
but also because it allows measurements with multiple different integra-
tion times, which can be very useful in high dynamic range scenes, as
encountered for example with MLI shielding.

At the time this thesis was written, the only sensor capable of all of the above
was the PMDTec Camcube 3.0. An image of the sensor is shown in figure 2.7. In
the following, the details of the inner workings of the sensor are given. Table 2.3
summarizes the technical properties of the PMD camera.

At this point, it should be stressed that although the multi-frequency captur-
ing feature can be found in the documentation of the camera, it did not work
due to a bug in the firmware, which was fortunately fixed in a later unofficial
firmware release provided by PMDtec upon request.
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2 Measurement, sensor and image processing fundamentals

Table 2.3. Details of the PMD camera (PMDtec CamCube 3). The specifications were taken
from the data sheet, except for the integration time limits, which have been determined
experimentally.

Property value unit

Sensor size horizontal 200 pixels
vertical 200 pixels

Lens focal length 12.8 mm
field of view (FOV) 40 deg

Modulation frequencies*

18 MHz
19 MHz
20 MHz
21 MHz

Integration time min 20 µs
max 50 ms

Repeatability (1σ)† < 3 mm
Operating wavelength 870 nm
Pixel size‡ 45× 45 µm

* The camera comes calibrated for operation at 20 MHz only. Multiple exposure mode
can be used with 2 or 4 frequencies. At the same time, integration times must be
provided separately for each exposure. Only the mentioned four frequencies are valid
and usable.

† This value was taken from the datasheet of the camera. For practical accuracy estima-
tion and results, see section 4.1 on page 69.

‡ Missing in the data sheet; taken from [42].

For reproducing the measurements or, for that matter, any attempt of using
different frequencies than the one the camera is specified for, a measurement of
the modulation signal (see section 7.1.6 on page 133) is highly recommended to
ensure valid measurements.

2.4.1 Theory of operation

PMD sensors use modulated infrared light to determine the distance. In practice,
the signal used to modulate the LEDs is a square-wave signal [14, page 107]. Due
to the low-pass nature of the LEDs, the signal emitted is of a near-sinusoidal
shape [109].4 To simplify further calculations, however, sensor manufacturers
assume a sine signal with the same base frequency, neglecting higher frequencies
in the signal spectrum. This is what is being correlated with the retrieved signal.

4For an investigation of alternative implementation methods, for example pseudo random noise
modulation, see [58].
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2.4 PMD sensor

The complete channel design of a PMD pixel is shown in figure 2.8. As light
falls onto the pixel, electrons are put into the conduction band of the photosen-
sitive substrate. The electric field induced by the modulation electrodes then
creates a charge distribution, which depends on the phase shift between the
modulation signal and the light received. This charge distribution causes a low,
but measurable voltage at the readout electrodes (which is measured at zero
crossings of the modulation signal). Due to noise effects, this voltage must be
integrated over time. The time for this integration process can be set by the
application. Such a circuit can be seen in [74, page 3], where an OP amplifier-
based integrator is shown.

For each pixel, four channels θ ∈ {0,π/2,π, 3π/2} are implemented [81].5

The voltage differences between A/D converters Aθ and Bθ are a direct readout
of the autocorrelation functions

Sθ =
∫ t

0
SMθ

(τ) · SL(τ)dτ (2.4.1)

of the modulation signals SMθ
and the received signal SL, for some integration

time t. The above integrals are measured using two A/D converters each, such
that Sθ = UA,θ − UB,θ . This is a practical solution for obtaining a fast and
symmetric A/D converter in the process (symmetric means, it can read positive
and negative voltages). Also and more important, any offset errors present at
this position will cancel each other out as well.

The modulation signals are generated for θ ∈ {0, π/2, π, 3π/2}. As a con-
sequence, this allows measuring four different components of the signal: The
positive and negative real component, and the positive and negative imaginary
component.

Knowing that the modulation signal is sinusoidal, the correlation integral
becomes∫ t

0
SMθ

(τ) · SL(τ)dτ =
∫ t

0
(sin (ωτ + θ)) · (ψ sin (ωτ + φ)) dτ. (2.4.2)

Here, the modulation signal is represented by a sine term with the frequency
embedded in ω = 2π fM. θ is the phase variance of the modulator channels (of
which there are four present), φ is the phase shift of the measured signal and ψ

is the signal strength of the received signal. Solving the above integral yields

Sθ = ψ
tω cos (φ− θ)− cos (φ + θ + tω) sin (tω)

2ω
. (2.4.3)

5The measurements from the individual channels are performed in a serial fashion but are assumed
to have happened at the same point in time due to the relatively small amount of time required per
measurement.
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Figure 2.8. The architecture of a single channel of a PMD pixel. The five-terminal structure
consists of readout electrodes (1), modulation electrodes (2) and the substrate ground
terminal (3). The oxide layer (white) and the modulation electrodes (yellow) are opti-
cally transparent. The A/D converters include a voltage integrator, which is triggered
according to the integration time set by the application.

It is now important to see that the four channels will sample a signal at the
real and imaginary axes of the complex plane (for each axis, on the positive
and negative semiaxes). They are mapped by traversing the complex plane
counter-clockwise. For better association, the indices of the autocorrelation
functions have already been chosen to represent the corresponding angle. After
subtracting the negative real value from the positive one, what yields

S0(t)− Sπ(t) = ψt cos (φ)− ψ cos (φ + tω) sin (tω)

ω
, (2.4.4)

and the same for the imaginary parts

Sπ/2(t)− S3π/2(t) = ψt sin (φ) +
ψ sin (φ + tω) sin (tω)

ω
, (2.4.5)

it becomes obvious that the dominant part of both terms will be the first sine/
cosine terms, while the fraction will practically vanish, because the numerators
are bounded by ±ψ and the denominators only contain ω. Since ω � 1 and
t� 0, they can be neglected. What remains are the sine and cosine of the phase
angle. As a consequence, the phase angle can be retrieved by calculating

φ = π+ arctan2 (Sπ/2 − S3π/2, S0 − Sπ) . (2.4.6)
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φ Figure 2.9. Measuring phase, ampli-
tude and DC offset of the returning sig-
nal. The green arrow is the reference
signal and the red arrow is the received
signal. φ is the phase shift, g the DC
offset and a the amplitude. Equations
2.4.8, 2.4.10 and 2.4.6 follow directly.

Note that π was added because of the value range of arctan2, which is shifted
from [−π,π) to [0, 2π).

Distance

From here, it follows that the distance can be computed as

d =

(
c

2 · fM
· φ

2π
− ε

)
mod

c
2 · fM

, (2.4.7)

where fM is the modulation frequency, c is the speed of light and ε is a sensor
specific offset to compensate signal run-time delays on the semiconductor. The
modulo operator is used to limit the resulting distance to the correct ambiguity
interval.

Amplitude

The signal strength, i.e., the amplitude of the correlated signal can be obtained
by determining the length of the signal vector (see figure 2.9) described by its
two components S0 − Sπ and Sπ/2 − S3π/2:

a =
1
2

√
(S0 − Sπ)

2 + (Sπ/2 − S3π/2)
2. (2.4.8)

Note that at this point, it is being distinguished between the measured ampli-
tude (a) and the real amplitude (ψ). The measured amplitude will deviate from
the real amplitude and it is impossible to recover the real amplitude. However,
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it can be approximated (neglecting sensor nonlinearities, especially for very
strong signals) by

ψ ≈

√(
Sπ − S2π

t

)2
+

(
Sπ/2 − S3π/2

t

)2
. (2.4.9)

All publications regarding the PMD camera and applications always use the
measured amplitude (a). The dependency on the integration time is often not
explicitly mentioned.

The amplitude is a very good signal strength or signal quality indicator. For
example, it is used in the initializer part to find the target by selecting pixels
with a sufficiently large amplitude value.

Intensity

For measuring the gray scale image, the total amount of light on the pixel (alter-
natively, the DC part, or the intensity) is

g =
UA,0 + UA,π/2 + UA,π + UA,3π/2 + UB,0 + UB,π/2 + UB,π + UB,3π/2

8
,

(2.4.10)

because the variant parts cancel each other out over time, and the only thing
remaining is the DC part. This is identical to the inner workings of a plain CCD
camera from an architecture point of view.

A high value of g is a bad sign, as it becomes very likely that one of the
A/D converters will hit the upper boundary of its value range, causing clipped
values. From the readout circuit design, it follows that since the integration time
can only be regulated chip-wide and not for each individual pixel, it must be set
to the largest possible value which does not cause saturated pixels.

For earlier camera models, saturated pixels could be identified by the prop-
erty of having a large DC part in combination with a small amplitude [149].
However, recent camera models have a circuitry embedded, which suppresses
background illumination [78]. Due to the working principle, which will be
explained shortly, one can not rely on the intensity reading any more. Never-
theless, this is not a large drawback, as the camera provides a flag matrix and
indicates saturated pixels by itself.

Suppression of background light (SBI)

Newer PMD sensors, such as the one used in this thesis, extend the dynamic
range by implementing a circuitry, which prevents the sensor from becoming
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(loss of signal)
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Figure 2.10. Principle of SBI. Charges caused by modulated light are drawn in green,
charges resulting from environmental light are drawn in red.

saturated in the presence of large amounts of unmodulated light (background
light). This is achieved by constantly monitoring the voltages at the two poten-
tial wells of a PMD channel (elementary cell) as it was shown in figure 2.8.

Immediately after the reset, these are positively charged, as no electrons are
accumulated. So the measured voltage is at its maximum. Light puts valence
electrons into the conduction band due to the photoelectric effect, and the volt-
age drops.

Once the voltage of one of the two wells hits a trigger voltage, the SBI circuitry
imposes a correction current on the triggering potential well and regulates this
current so that the potential now remains constant. This correction current is
simultaneously applied to the other potential well.

When there is no modulated light, both wells will remain static. With mod-
ulated light, however, one well is now stabilized, while the other one remains
dynamic. Because the well with the larger amount of electrons is kept stable,
it follows that the other one will be losing electrons due to the correction cur-
rent. Consequently, its measured voltage will now increase again, enlarging the
signal to noise ratio (figure 2.10).

Unfortunately, besides the benefits, SBI also has a drawback. Because the DC
level is not increasing with time any more as it would be the case with SBI off,
the DC component can not be used as an indicator for the environmental light
any longer. In other words, the intensity reading can not be used for anything
meaningful any more. This is also why the intensity channel is not used in
this thesis. As soon as strong environmental light is encountered, the reading
becomes irrelevant.
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SBI operates independently of the camera firmware and can not be controlled
in any way by software. However, the Camcube 3.0 camera provides a bit flag
for each pixel, which indicates, whether a pixel has activated its SBI circuitry or
not. More information about SBI can be found in [78].

2.4.2 Consistency checking

Despite the increasing robustness of the PMD sensor due to SBI, it is advisable
to impose a strict consistency checking scheme on the values read from the
sensor. This way, erroneous pixels can be marked and either interpolated from
neighboring pixels, or be ignored by further processing steps.

At this point, it is clear that the maximum voltage difference the A/D con-
verters can measure, will limit the dynamics of the signal. More precise,

g + a < 216 − 1 (2.4.11)

must hold at all times, otherwise the pixel will encounter saturation effects
whenever the signal reaches its maximum value. In this case, the pixel should
be prevented from contributing to any measurement. Unfortunately, this is only
valid for a sensor without SBI, so it is not of practical value for recent sensors.

More usable is the fact that since the signal is periodic and has a sine shape,
so the sum of all sampling points must always be zero during one period:

4

∑
i=1

Siπ/2 = 0, (2.4.12)

because this is equal to adding ∆x − ∆y − ∆x + ∆y (to re-use the terms used
in figure 2.9), what should always evaluate to a value near zero (due to noise,
it may not be exactly zero, but sufficiently close). In practice, it is sufficient to
check that this value is inside a certain confidence interval centered around zero.
Deviations from zero indicate pixel saturation and motion artifacts.

Motion artifacts can also be detected by comparing the magnitude of the two
measurements of the ∆x and ∆y values. For a proper measurement,

Sπ/2 = −S3π/2 and Sπ = −S2π (2.4.13)

must hold. If the target object is moving, these identities will not be valid any
more. For getting rid of motion artifacts, estimating the distance using only one
pair (either {Sπ/2, S2π} or {S3π/2, Sπ}) of the four measurement points can be
a solution [127]. This, however, is not considered further at this point, as the
motion captured by the sensor will be sufficiently slow. However, this may be
of great interest when measuring targets spinning at a higher rate.
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Table 2.4. Intrinsic calibration results for the PMD camera. Values are from the CalTech
camera calibration toolbox. 14 images have been used for the estimation.

Property Estimated* Expected† Unit

Focal length X 289.827± 2.541 — pixels
Y 293.997± 2.567 — pixels

Principal point X 98.036± 3.192 100.000 pixels
Y 96.366± 3.217 100.000 pixels

Distortion coefficients‡

a0 −0.501351± 0.057 0.000 —
a1 1.380298± 0.688 0.000 —
a2 −0.000108± 0.002 0.000 —
a3 0.004068± 0.003 0.000 —

* Uncertainty values are approximately 3σ.
† Taken from the camera data sheet. Values not available are denoted by “—”.
‡ The radial distortion is represented by a0, a1, while the tangential distortion is repre-

sented by a2, a3 in accordance with the calibration toolbox.

2.4.3 Sensor calibration

As already introduced and described in section 2.3.6 on page 28, the optics of
the PMD camera must be calibrated as well. For the PMD camera, the same
calibration procedure was applied, although it is more difficult due to the sig-
nificantly reduced number of pixels and the resulting loss of resolution. The
intrinsic parameters are shown in table 2.4.

Note that the tangential distortion coefficients are slightly smaller than those
estimated for the CCD camera. The reason for that is, the PMD camera has a
fixed-focus lens, which can not be adjusted, while the CCD camera has a more
complex optics, which allows focus and iris adjustments.

The principal point is significantly shifted (figure 2.11). The sensor pixels are
usually very small (but still substantially larger than the pixels of the CCD cam-
era due to the additional wiring and per-pixel functionality required). Sensor
ICs are mounted with limited precision inside the camera housing, so (small)
sensor positioning deviations are common. However, depending on the pixel
size, this displacement can manifest in significant error.

As can be seen, the PMD camera does not have visible tangential distortion.
This is also suggested by the values in table 2.4 (distortion coefficients a2 and
a3). Still, the effects of the optical distortion must be accounted for, as the
pixel-level offset increases rapidly towards the border of the image. Therefore,
the direction vectors (which are used to retrieve a point cloud from a distance

39



2 Measurement, sensor and image processing fundamentals

Figure 2.11. Optical distortion of the
PMD camera. Both radial and tangen-
tial distortion are accounted for in the
model. Values in the plot are imaging
deviations in pixels. The cross indi-
cates the geometric image center and
the circle indicates the estimated prin-
cipal point. The X- and Y-axes show
the pixel coordinates.
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image, see section 3.3 on page 67) must also be calculated with respect to these
distortion effects.

However, since the PMD camera is mainly used for the distance measurement,
the optical calibration is only a part of the complete calibration process. There
are still effects related to the PMD chip itself, which will be discussed in detail
in chapter 4 (starting on page 69), because it directly relates with the main part
of the algorithm.

2.5 Extrinsic sensor calibration

After the intrinsic parameters of the sensors are known, the extrinsic parameters
must be determined. The extrinsic parameters describe the exact location and
orientation of the sensors, relative to a reference frame. As will be defined
later in more detail, the reference frame used here is the satellite body frame, a
coordinate frame that is fixed to the satellite structure. The relations between
the coordinate frames are shown in figure 2.12.

It is of utmost importance to have an accurate estimate of the sensor orienta-
tion, as even small angular displacements can lead to large position estimation
errors for objects far away from the sensor. The estimation of the extrinsic pa-
rameters is therefore twofold. First, the camera calibration toolbox is used to
retrieve an estimate of the extrinsic parameters, and then the result is refined by
a long distance measurement. The quantities most sensitive to orientation error
are used to correct the orientation error.
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Figure 2.12. Coordinate frames (A, B, C) and transforms (T1, T2, T3) used for the extrinsic
calibration. The target frame describes the spatial orientation of the checkerboard pattern
and its origin coincides with the upper left corner.

2.5.1 Initial estimation

The first step is the estimation of the extrinsic parameters using the camera
calibration toolbox. Two images are used; one for the PMD camera and one for
the CCD camera. A checkerboard pattern is mounted to the target robot and
moved very close to the sensors, such that two images and reference positions
are available (one for each sensor). Then, the camera calibration toolbox is used
to extract the extrinsic transformation for both images.

This transformation describes the translation and orientation of the checker-
board pattern relative to a virtual sensor frame, which is specific to the calibration
toolbox and will later be used to retrieve the transformations to the real sensor
coordinate frames. From figure 2.12, the two transformations T1 and T3 are
known (T1 from the calibration toolbox and T3 from the EPOS facility) and can
be used to estimate T2.

Each transformation will be denoted by a translation vector and a rotation
quaternion, where tx denotes the translation vector of transformation Tx and qx
denotes the rotation quaternion belonging to the same transformation.

First, T1 will be determined. This transformation is provided by the camera
calibration toolbox, but the translation vector must be converted from millime-
ters to meters and the rotation quaternion must be constructed from a Rodrigues
rotation vector. The Rodrigues form encodes the rotation very similar to a
quaternion. The rotation is represented by a three-element vector, where the
length corresponds to the angle and the normalized vector corresponds to the
vector describing the axis of rotation.
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To begin, the direction vector describing the axis of rotation is normalized to
the length of 1. Then, the rotation angle can be directly read from the norm of
the original vector4. The first transformation thus becomes

t1 = text/1000 (2.5.1)

q1 =

(
rext
‖rext‖ · sin (‖rext‖ /2)

cos (‖rext‖ /2)

)
, (2.5.2)

where text is the translation vector given by the camera calibration toolbox and
rext is the Rodrigues rotation vector.

Next, T3 will be defined. The checkerboard pattern (see figure 2.5 on page 27)
is mounted with its upper left corner (which will be the origin of the coordinate
frame) 12 centimeters to the left and 27.5 centimeters to the top, relative to
the mounting plate center. As the mounting plate center coincides with the
reference vector provided by the EPOS facility, the translation vector becomes

t3 =

 0.12
0.275

0

+ tEPOS. (2.5.3)

This is a very simple offset, as the mounting plate will not be rotated in any
way. The rotation quaternion for T3 can be constructed by inspecting figure 2.12
again. It is created by a rotation of 180 degrees about the Y axis, followed by
a rotation of 90 degrees about the Z axis. Since coordinate frames are to be
rotated, the inverse quaternions of vector rotations must be used (normally, a
vector rotation would be performed, however here, the coordinate system is to
be rotated). The rotation quaternion thus becomes

q3 =


0
0

sin (π/4)
cos (π/4)

�


0
sin (π/2)

0
cos (π/2)

 . (2.5.4)

Please note that “�” denotes the quaternion multiplication. Now, in order to
retrieve t2, t1 is rotated in such a way that it represents the same translation in A
as it does in C. Consequently, its coordinate frame must be rotated, first by the
inverse of q1, then by q3. This yields

t1
′ = q3 � q1 �

(
t1
0

)
� (q3 � q1) , (2.5.5)

4The Caltech camera calibration toolbox handles the Rodrigues vector in a different way than what
can be found in literature [40]. Instead of fixing the norm of the vector to be equal to the tangent of
half the angle, the norm is set to be directly equal to the angle.
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what describes the same translation as t1, but now in the satellite body frame A.
Then, the missing translation can be determined simply by

t2 = t3 − t1
′. (2.5.6)

The rotation quaternion of T2 is now all that remains to be calculated. It can
be retrieved by first rotating the coordinate frame by 180 degrees about the Z
axis (to bring the calibration toolbox specific virtual sensor coordinate frame
into alignment with the sensor coordinate frames used within this thesis, see
figure 2.13), and then applying the rotation quaternion used for obtaining t1

′,
such that

q2 = (q3 � q1)�


0
0

sin (π/2)
cos (π/2)

. (2.5.7)

The extrinsic parameters of both sensors then are t2 and q2. In the following,
for better distinction, the parameters of the CCD camera will be denoted by
t̃CCD and q̃CCD. Respectively, for the PMD camera, t̃PMD and q̃PMD. The tilde
is added to indicate that this is only the initial estimate. The coordinate frames
used are also shown in figure 2.13 on top of an image of the complete sensor
assembly.

Note that the sensor coordinate frames have their origins coinciding with
the sensor plane, so their origins have different Z coordinates. Apart from
mounting inaccuracies, the coordinate frames are oriented just like the satellite
body frame, what is the reference frame used to represent the relative pose of
the target object.

2.5.2 Angular refinement

The rotation quaternion just retrieved describes the rotation of the particular
sensor relative to the satellite body frame, however, as it is very difficult of
estimating the quaternion at small distances, a refinement step has been added
which refines the quaternion using a long-range measurement.

In particular, the target position has been estimated using the pose tracker
and the extrinsic parameters estimated in section 2.5.1 (page 41), while the target
was positioned 22 meters from the chaser. It is of importance to know that at this
distance, the rotation quaternion can be corrected with much higher precision
when using the translation vectors.

The angular refinement is thus limited to the pitch and yaw angles of the
direction vector. This is sufficient, as the roll angle does not have an effect as
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Figure 2.13. Location and orientation
of sensor coordinate frames, relative
to the satellite body frame (SBF). The
X axes are drawn red, Y axes green,
and the Z axis (target-pointing) blue.

Satellite
body
frame

PMD
frame

CCD
frame

large as the two caused by the other angles. The pitch and yaw angles of the
direction vector are

β = arctan
(

tmy − tRefy

)
/
(
tRefz − 0.225 − tCCDz

)
(2.5.8)

γ = arctan
(
tmx − tRefx

)
/
(
tRefz − 0.225 − tCCDz

)
, (2.5.9)

where tmx and and tmy are the measured X- and Y- components of the transla-
tion vector and tRefx and tRefy are the same translational components, but denote
the reference measurement provided by the EPOS facility. 22.5 centimeters are
subtracted from the Z component, as this is the thickness of the target mockup.
Finally, tCCDz is the extrinsic translation in Z direction for the CCD sensor de-
termined in section 2.5.1 (page 41). The CCD sensor is used for estimating the
angles because of its higher resolution.

Next, two quaternions are constructed from the angles, representing
the above angular deviation, qγ = (0, sin (γ/2) , 0, cos (γ/2)) and qβ =
(− sin (β/2) , 0, 0, cos (β/2)). Then, given the two previously determined
quaternions q̃CCD and q̃PMD, the corrected quaternions become

qCCD = q̃CCD � qβ � qγ (2.5.10)

qPMD = q̃PMD � qβ � qγ. (2.5.11)

It is assumed here, that the remaining rotational error was common to both
sensors. The result of the extrinsic calibration is shown in table 2.5.
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Table 2.5. Extrinsic sensor parameters after the angular refinement step.

Property PMD camera CCD camera Unit

Rotation quaternion components

qx 0.0094 0.0041 —
qy 0.0063 0.0000 —
qz -0.0027 0.0058 —
qw -0.9999 -1.0000 —

Translation components
X 0.2843 0.2783 m
Y 0.1712 -0.0062 m
Z 0.1732 0.1379 m

2.6 Image processing methods

After the sensors have been introduced, a brief introduction into employed
image processing methods is given. As will be seen in chapter 6 (starting on
page 105), the CCD sensor will be primarily used to track edges of the target
object. For tracking edges, several well-known methods are available. Convolu-
tion kernels such as the Sobel filter [134] form the basis of other more elaborate
edge detection methods. One of the certainly most well-known edge detection
algorithm is the Canny algorithm [22]. Alternative methods utilizing a spectral
analysis of the image [73] are intriguing, but have the same problem, that edges
are found in the entire image although only very limited regions of interest are
relevant. In the envisaged application, known edges should be tracked and the
contrast can not be assumed to be stable. Consequently, one must rely on a dif-
ferent method. This is why in the following, the concept of texture segmentation
[132] is introduced.

2.6.1 Texture segmentation

Texture segmentation is a computationally expensive, but very powerful image
segmentation approach. Instead of relying on very high-contrast edges visible
in the image, this works also in areas where the local contrast is much lower,
what can be achieved by looking at the local texture properties. The method
is therefore capable of segmenting an image or determining edges of objects,
even if they can be barely seen. In such a situation, often, humans do not have
much difficulty in finding the edge, but all edge detection algorithms do. This is
where texture segmentation is very likely to provide a significant improvement.

In the following, the texture segmentation algorithm is briefly summarized,
since it is of importance for the 2D part of the algorithm. The algorithm is
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2 Measurement, sensor and image processing fundamentals

reproduced from [132], with a few more explanations added where it made
sense.

To start, the problem is first reduced to determining the border between
two different textures on a scanline (for an explanation, see definition 6.3 on
page 112). As a result, the scanline contains pixel intensities Si. A sequence
of pixels provides a sequence of intensities, for example Sn

1 . When assuming
that the entire scanline has been produced by two different texture-generating
processes T1 and T2, and their border is at the index c in the scanline, then when
determining c (as it is unknown), the probability of the border being at the
position c is

P(border at c|Sn
1 , T1, T2) = k · P(Sc

1|T1) · P(Sn
c+1|T2), (2.6.1)

where k is a normalization constant. The problem is, however, that T1 and T2
are also unspecified. Therefore, a generalization must be made: The scanline
is now considered to have been generated by some texture-generating process.
As a result, the probability terms are replaced by integrals over all possible
texture-generating processes. For an unknown texture, this leads to

P(Sc
1) =

∫
P(Sc

1|T) · P(T) dT

=
∫

P(Sc|T) · P(Sc−1
1 |T) · P(T) dT

= P(Sc−1
1 ) ·

∫
pSc · P(T|Sc−1

1 ) dT. (2.6.2)

The first operation performed was just splitting one factor from a product, while
the second operation was an application of the Bayes theorem. Inspecting the
integral in the last line yields the insight that this is a sum over the product of
the probability of a value and the probability of its occurrence (the probability
that the sequence was produced by T), depending on the process T. Therefore,
it can be rewritten as∫

pSc · P(T|Sc−1
1 ) dT = E(pSc |S

c−1
1 ), (2.6.3)

the expected value of the probability term pSc when considering all possible
texture generating processes. When this is put into the above equation,

P(Sc
1) = P(Sc−1

1 ) · E(pSc |S
c−1
1 ) (2.6.4)

suggests a recursive scheme for solving for the probability term on the left side,
as long as the expected value on the right can be computed. This is possible,
when assuming a uniform prior for T. In practice, this will not always be the
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2.6 Image processing methods

(a) The original image as is it will be pro-
cessed in the following. The green line in-
dicates the location and orientation of the
scanline.
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(b) The probability of texture change de-
termined by the texture segmentation algo-
rithm.

Figure 2.14. The result of the texture segmentation process. First, a scanline is created in
such a way that it samples the pixels perpendicular to an edge. Then, the point where a
texture change is most likely, is found by evaluating the probability for this texture change.
It has a peak at the change point.

case. Still, very often, this assumption approximates reality quite good and
even in cases where it does not, the values retrieved are still reasonably stable
(this becomes less problematic with increasing length of the scanline, as the
brightness distribution will become uniform for an infinite number of pixels).

For calculating the expected value, one must integrate over all possible com-
binations of probabilities for the individual intensity values. By weighting the
probability value of interest (pSc ) with the normalized probability of T being the
texture process describing Sc−1

1 , one obtains

E(pSc |S
c−1
1 ) =

∫ 1
0

∫ 1−p1
0 · · ·

∫ 1−∑I−2
i=1 pi

0 pSc ∏I
j=1 p

oj

j dpI−1 · · ·dp1∫ 1
0

∫ 1−p1
0 · · ·

∫ 1−∑I−2
i=1 pi

0 ∏I
j=1 p

oj

j dpI−1 · · ·dp1

, (2.6.5)

where oj is the number of occurrences of intensity j. Then, solving the above
integrals by repeated partial integration yields

E(pSc |S
c−1
1 ) =

oSc + 1
c + I − 1

. (2.6.6)

In the original paper, an extension to the above method was presented, which
also considers the covariance between a pixel and its predecessor on a scanline.
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2 Measurement, sensor and image processing fundamentals

This first-order model follows directly from the just presented 0th-order model.
It is not described here in detail, since it does not provide new insights; the
calculation is straight-forward with some caution necessary when normalizing
the expected value due to the fact that one now has to deal with transition matri-
ces. A typical result of the texture segmentation process is shown in figure 2.14,
which was obtained by an implementation of the idea in MATLAB.

The texture segmentation approach just introduced works well when the num-
ber of sampled pixels is large compared to the number of possible brightness
values. Unfortunately, in the envisaged application scenario, this is not the case.
As a consequence, pixel values must be quantized into brightness bins in order
to reduce the number of possible brightness values. For details, see section 6.3.2
on page 114.

Typically, a scanline will have 20 to 60 pixels and roughly, the shorter the
scanline, the more difficult it becomes to find the edge. Therefore, additional
measures for increasing robustness can also be found in the referenced section
above. When using high resolution sensors, even better performance of this
particular edge detection method can be expected.

2.7 Summary

In this chapter, the EPOS facility along with the PMD sensor and the CCD sen-
sor have been introduced (for further reading about PMD sensors in computer
graphics and its applications, see [72]). Also, the optical calibration procedure
has been described, which can be applied to both sensors. Here, a state of the
art MATLAB toolbox made by the California Institute of Technology was used.
With the given compensation for the optical distortion, both sensors can now
be used in the following, without having to worry about effects related to the
optics.

An in-depth explanation of the distance measurement principle of the PMD
sensor was given in order to familiarize with the employed phase shift mea-
surement. Later, this will be of utmost importance for the range extension of
the PMD camera. The inner workings of the SBI circuitry have been briefly
described as far as an impact on the measurements is to be expected. As the
influence of the sun is an important thing to consider for using PMD sensors in
space, SBI becomes important as well. Later, measurements will be made which
specifically aim for testing the sunlight tolerance of the sensor.

An introduction to the texture segmentation method was given as well, since
it is essential for the processing of the CCD image data. The original idea will
be extended in section 6.3.2 (starting on page 114) in order to retrieve results
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2.7 Summary

even at low image resolution and shorter scanlines, which happen to occur
in this application. Without this modification, the texture information would
be represented too sparsely and a reliable edge tracking would become rather
difficult. In the measurements performed in chapter 7 (starting on page 127),
situations will be encountered where the advantages of this algorithm can be
clearly seen (specifically, when almost no light is available).

In the next chapter, the model data preprocessing will be introduced along
with the principles and observations behind the architecture of the envisaged
sensor data fusion method.
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3 Off-line preprocessing & Sensor characteristics

Time is a valuable resource in all image processing applications. Especially
on satellites, memory and computational power are very limited. Therefore,
it is important that only necessary calculations are carried out. The method
presented within this thesis is model-based and thus requires model information
to be preprocessed in such a way, that the pose estimation runs preferably fast.
These preprocessing tasks will be worked out within this chapter.

Also, when inspecting the two chosen sensors, one will soon find very differ-
ent strengths and weaknesses. In order to ameliorate the weaknesses and make
use of the advantages, it is crucial to design a data fusion method specifically for
these two sensors. When also incorporating the task or the application, which
is pose estimation in this case, even more improvements can be drawn from
a proper design of the data fusion process. As a consequence, the outlines of
the data fusion method will be developed in this chapter as well (in chapter 6
starting on page 105, this knowledge will be used to design the algorithm in
detail).

3.1 Sensor characteristics

In this section, the two sensors will be investigated with regard to estimating
the relative pose of objects. This is not to be seen as a quantitative analysis,
but rather a way of learning what to expect. Despite the fact that both sensors
belong to the optical kind of sensor, there are quite a few differences which will
be worked out in the following.

3.1.1 Lateral resolution

As being optical sensors, in both cases, the principal design is the same. The
scene is captured using appropriately designed optics, and an imaging chip.
While the optics does have an impact on the imaging process, the parameters
which are influenced by it are not of major importance at this point (such as
field of view, image sharpness, etc).

More important, the properties of the imaging chip must be kept in mind.
One major property is the lateral resolution. The number of pixels in the width

53



3 Off-line preprocessing & Sensor characteristics

and height of the sensor determine, how good textures and surface details of
objects can be captured.

While the PMD camera has a lateral resolution of 200× 200 pixels, the CCD
camera has 640× 480 pixels. This suggests that surface details and edges visible
in the image should be processed using the data of the CCD sensor, as more
pixels provide more detail and, consequently, higher accuracy.

3.1.2 Depth perception

When planning to estimate all six degrees of freedom, also the depth (or, in other
words, distance of an object from the camera) becomes important. While it is
impossible to determine the depth with a single CCD camera without object
knowledge (because distance and object size can be changed in such a way that
the imaged object is not altered in image space), the PMD camera provides a
depth measurement.

Still, when there is information available describing the object of interest, it
is also possible to estimate the distance using a single CCD camera only. The
problem with that is, however, that the measurement becomes inaccurate with
increasing distance [141], because it is an ill-posed problem. At a large distance,
even a change in a single pixel can have a large distance measurement error as
a consequence.

Therefore, it is advisable to use the PMD camera for measuring the distance.
The PMD camera can provide a distance measurement with a fixed accuracy
over the whole measurement range. Also, the measurement is stable in the sense
that small measurement errors do not propagate to large distance measurement
errors, as it would happen in the CCD case.

3.1.3 Frame rate

The frame rate of a sensor becomes important, when motion is to be imaged.
Because motion is always represented as a series of single images captured by a
sensor, the measurement is always an approximation of reality. As soon as the
motion is highly dynamic in terms of velocities, it is of utmost importance that
the sensor is fast enough to properly capture it. “Fast” in this context means, the
sensor must allow for a high frame rate in order to minimize the time intervals
between the captured images.

Both cameras used here can capture images at a frame rate of 10 FPS and even
higher. The 10 FPS mark is a rather practical value, which means, in theory,
both cameras can do more, but including the interfaces and preprocessing steps,
this is very likely to be what can be achieved in real-world scenarios. In space,
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3.1 Sensor characteristics

velocities encountered in rendezvous maneuvers are rather low, so it is unlikely
that the frame rate becomes a limit [13, 115].

3.1.4 Noise

Sensor noise poses a problem as it can influence the measurements when not
properly addressed. In this case, there are two different noise domains: distance
noise in the range measurement of the PMD camera and brightness noise in the
image of the CCD camera.

Each noise domain has multiple different noise sources. The noise sources are
further of different type in terms of shape and level. For imaging sensors, the
most important noise sources are dark current noise (created by thermally pro-
duced free electrons) and shot noise (created by the inhomogeneous distribution
of photons hitting the sensor).

Noise can be neglected, as long as the signal to noise ratio (SNR) is large
enough. For imaging sensors, this is achieved by sufficiently illuminating the
scene and using an appropriate exposure time interval. In the remainder of this
work, it is assumed, that the SNR is large enough.

The distance noise of the PMD camera has various sources and differs very
much from what one would expect. Even more important, the noise amplitude
here is too large to be neglected. Thus, dedicated processing is required in
order to compensate it. This will be discussed in detail in chapter 4 (starting on
page 69).

3.1.5 Separation of the search space

When summarizing the sensor properties, it becomes clear that the PMD camera
is very likely to be good at estimating the distance, and also the pitch and yaw
angles, what is visualized in figure 3.1. This is because even small changes in
these quantities can be measured, when a sufficiently large number of pixels is
available.

Comparing this to the CCD camera, the distance can not be measured at all
(and must be inferred from the object size, when a model of the target object
is available) and the pitch and yaw angles are very difficult to estimate, since
small changes translate to even smaller changes in image space.

Consequently, approaches based on monocular vision suffer accuracy losses
for these quantities [141]. As a result, the distance and the pitch and yaw angles
should be estimated by relying on the depth measurements of the PMD camera.

The roll angle does not lead to changes in the distance but is solely seen in
2D image space. This demands a very high lateral resolution for maximum
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3 Off-line preprocessing & Sensor characteristics

(a) Measurement of the spatial displace-
ment in Z direction.

(b) Measurement of the angular displace-
ment for the pitch and yaw angles.

Figure 3.1. Quantities measured by the PMD camera. The distance, as well as the pitch
and yaw angles are best measured using the point cloud provided by the PMD camera.

accuracy. Therefore, as the CCD camera has the larger lateral resolution, the roll
angle is best estimated by using data from the CCD camera (figure 3.2b).

After having found displacements for the distance and the pitch, yaw, and
roll angles, the position along the image-space axes remains to be solved. It is
clear at this point, that this is again a domain for the CCD camera, since motion
in these directions will have the largest impact in 2D image space, what again
means that the lateral resolution is important (figure 3.2a).

To summarize, the problem is defined as to find the six different displace-
ments measured in the point cloud provided by the PMD camera and suitable
image features (e.g., edges) found in the image of the CCD camera. Edges can
be tracked in a very robust fashion using texture segmentation, which is why it
was decided to implement it that way.

All of the above statements also hold for rotated objects. They are indepen-
dent of the object pose, because there are only little displacements which have
to be measured. These small displacements can then be optimized to zero by the
tracker (see chapter 6 starting on page 105). Table 3.1 summarizes the separation
of the search space.
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(a) Measurement of the spatial displace-
ment in X- and Y- direction.

(b) Measurement of the angular displace-
ment for the roll angle.

Figure 3.2. Quantities measured by the CCD camera. Due to the high lateral resolution,
the displacement in X- and Y- direction as well as the roll angle are best measured using
the CCD camera. The colored overlay parts were drawn manually, as the visualization of
inner quantities of S-functions is not possible in MATLAB without long detours.

3.2 Model preprocessing

Before the point cloud or edges can be processed, information about the target
object must be available in a suitable form. It is assumed that there is a rough
model of the object of interest available. The definition of what rough means will
be given shortly. The model is assumed to be represented as a set of triangles
forming surfaces (short: faces). Edges enclose the surfaces.

The model preprocessing task is to extract the surfaces and edges from the
triangle set. This is an off-line process, which is performed once in order to ob-
tain the model data required for the on-line processing (section 6.2 and onward,
starting on page 109). For an impression of the result, see figure 3.3.

Table 3.1. Summary and reasoning for search space separation.

Pose component Best representing quantity Sensor

Pitch angle Object surface normal vector PMD camera
Yaw angle Object surface normal vector PMD camera
Roll angle Outer object edges CCD camera

X position Outer object edges CCD camera
Y position Outer object edges CCD camera
Z position Object surface centroid PMD camera
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Figure 3.3. OpenGL visualization of the
OLEV target model. Irrelevant details,
such as the apogee nozzle, have been re-
moved. White: triangle normal vectors,
yellow: detected linestrips (outer edge se-
quences), light green: inner edges. In the
middle of the mockup, the model coordi-
nate frame is drawn in red (X axis) and
blue (Z axis). The gray, 1 × 1 meter grid
coincides with the Y axis, which is why it
cannot be seen.

The reason for the preprocessing is the number of possible model sources,
which increases, the less constraints are imposed on the model source. With the
given algorithm, tracking is possible even with an inaccurate model (with an
impact on accuracy, of course).

The model may be retrieved from original CAD files, from a 3D laser scan-
ner object reconstruction and even from manual reconstruction. The point is,
however, that the original CAD model of the object to track is not required.

In the following, the surfaces of the object are assumed to be planar. Complex
objects can still be made up of several planar surfaces of arbitrary shape, so
this is not a significant constraint. The problem at this point is more or less the
PMD sensor, as the low resolution does not allow for capturing the distance
information of highly structured surfaces. The restriction to planar surfaces is
thus primarily derived from this specific sensor property.

3.2.1 Surface extraction

The first step in model preprocessing is the extraction of these surfaces1. As-
suming T is the set of triangles containing all triangles of the model, where a
triangle is represented by three vectors describing its vertices, like (v1, v2, v3),
all surfaces can be found by inspecting every triangle t ∈ T . For each triangle,
a surface mapping f : T → S is introduced. A surface s ∈ S is defined as a
reference point r(s), a normal vector n(s) (what defines a plane in the geometric

1In the rest of the thesis, the word “surface” refers to a finite relation on an infinite 2D subspace of a
3D vector space.
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sense), a set of triangles T (s), a set of edges E(s) and a set of lines L(s), which
are required for tracking the surface, as will be seen later.

Whenever a surface is instantiated with some of the parameters unspecified,
sets are initialized as empty sets. The text will properly define all of the proper-
ties, once the points are reached where a particular property is needed.

Algorithm 3.1. Surface finding algorithm.

Input : set of triangles T , surface constraint margin ν, normal identity margin ξ
Output : surface- triangle set mapping T (s), triangle-surface mapping s(t), surface

set S
1 foreach t ∈ T do
2 n← (v2 − v1)× (v3 − v1) // determine the normal vector
3 n← n/ ‖n‖
4 s0 ← ε
5 foreach s ∈ S do
6 α← ∠ (n (s) , n)
7 if ‖α‖ < ξ then // Normal vector orientations match?
8 d← r (s)− v1
9 β← ∠ (d, n (s))

10 if
(

β > π
2 − ν

)
∧
(

β < π
2 + ν

)
then // Point is part of the surface?

11 s0 ← s
12 break

13 if s0 = ε then
14 s0 ← (v1, n, ∅) // create a new surface (reference point, normal, triangle set)
15 S ← S ∪ s0

16 T (s0)← T (s0) ∪ t
17 s(t)← s0

The surface constraint margin ν and the normal identity margin ξ are fuzzifi-
cations for allowing noisy measurements of surfaces to qualify as surfaces. In
the implementation, setting ν = 0.0001 and ξ = 0.002 provided good results.

After the surfaces have been extracted using algorithm 3.1, there may be a
large number of surfaces. This may happen in cases where the model contains
circular shapes, which need to be approximated by a lot of surfaces and trian-
gles.

To prevent a large number of surfaces from complicating the pose estimation
process, the resulting surface set is filtered. Surfaces with a total area (computed
from the set of triangles and thus the sum of their individual triangle areas) of
less than an area threshold κ are removed. A reasonable value for κ is 0.2 m2,
what is used in the implementation.
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Figure 3.4. Model preprocessing: Inner
edges (black), outer edges (red), ver-
tices (blue) and surfaces (green/ yellow).
Valid lines would be {e1, e2} and all outer
edges except e1 and e2.
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3.2.2 Edge finding

Edge finding is the process of marking strips of triangle edges. A triangle t has
three edges e1, e2, e3. Each edge may be of a certain type, which will be defined
next.

Definition 3.1 (Inner edge) An edge e of a triangle t, which is itself part of a surface
s with a triangle set T (s) is called an inner edge, when

∀x ∈ T (s) : ∀y ∈ E(x) : y ≡ e⇒ S(y) = S(e) ∧ ‖T (e)‖ > 1,

where S(x) denotes the surface set of the edge x, E(t) denotes the edge set of the triangle
t and T (e) denotes the set of triangles belonging to the edge e.

This states in a geometric sense that inner edges are the edges, which are only
part of a single surface and belong to more than one triangle. Any edge, which
belongs to more than one surface or belongs only to one triangle, will be consid-
ered an outer edge.

Definition 3.2 (Outer edge) An outer edge is an edge, which is not an inner edge.

The edges of particular interest here are outer edges. These edges appear either
at the border of a surface or at locations where two different surfaces connect
to each other. In both cases, these are the edges which can be tracked. More
important is, however, that outer edges can be grouped together to a set of
connecting edges, which are denoted by the following definition.

Definition 3.3 (Line) A line is a set of outer edges E , such that

∃Ψ : N→ E : ∀n ∈N, 1 ≤ n < ‖E‖ : ve(Ψ(n)) ≡ vs(Ψ(n + 1)),

where vs(x) is the first vertex of the edge x, ve(x) is the second vertex and Ψ is a
suitable edge numbering, which maps a natural number to every edge in the set E .

Note that the above definition explicitly allows straight lines, curved lines and
even closed circles, when approximating these shapes with sequences of edges.
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Algorithm 3.2. Triangle processing algorithm. For each triangle of all surfaces, all triangle
edges are passed to the addEdge subroutine.

Input : Set of surfaces S
Output : Set of edges E , Outer edge mapping o : E → {true, false}

1 for s ∈ S do
2 for t ∈ T (s) do
3 addEdge (v(t, 0), v(t, 1), t)
4 addEdge (v(t, 1), v(t, 2), t)
5 addEdge (v(t, 2), v(t, 0), t)

The extraction of lines and edges starts by finding an outer edge mapping
according to definition 3.2. Algorithm 3.2 first determines the set of edges E ,
along with the outer edge mapping o, which indicates whether an edge e ∈ E
is an outer edge according to definition 3.2 or not. This is done by considering
all detected surfaces and their triangles. The surface set S and the triangle
sets T (s), s ∈ S have been determined in section 3.2.1 (page 58). The addEdge
subroutine is shown in algorithm 3.3.

Algorithm 3.3. Model edge processing algorithm subroutine (addEdge).

Input : Starting vertex v1, ending vertex v2, triangle t
1 Procedure addEdge (v1, v2, t)
2 for e ∈ E do
3 if (v(e, 0) = v1 and v(e, 1) = v2) or (v(e, 1) = v2 and v(e, 0) = v1) then
4 o(e)← false // same edge already seen from another triangle of the surface
5 b← true // memorize this edge was already seen
6 break

7 if ¬b then // unknown edge, not yet mapped
8 E ← E ∪ (v1, v2, t) // add new edge to the set of known edges

Next, the vertex- edge mapping f : v → e must be defined. This is accom-
plished by iterating over all edges and then storing the mapping for each vertex
encountered, but limited to outer edges only. The complete procedure is given
in algorithm 3.4.

Now that outer edges are marked and the mappings have been set up, the next
step is to obtain lines as sequences of edges in accordance with definition 3.3.
This is implemented by iterating over all edges found and traversing the model
by the vertices from one edge to the next. By calculating the angle between
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Algorithm 3.4. Vertex/ outer edge mapping. For each outer edge, the edge is stored in one
of the two references of the corresponding vertex.

1 for x ∈ E , o(x) = true do
2 if (e(v(x, 0), 0) 6= x) and (e(v(x, 0), 1) 6= x) then // unseen edge?
3 if e(v(x, 0), 0) = ε then
4 e(v(x, 0), 0)← x // memorize this edge in the first edge point
5 else if e(v(x, 0), 1) = ε then
6 e(v(x, 0), 1)← x // memorize this edge in the second edge point

the edges, it is possible to detect corners. Also, straight lines can be detected
when inspecting this angle. This is summarized and put into formal terms in
algorithm 3.5. Have a look at figure 3.5 for a graphical visualization.

Algorithm 3.5. Line extraction part of the model preprocessing algorithm. Lines are formed
by parsing all outer edges.

1 for x ∈ E do
2 if o(x) and l(x) = ε then // outer edge and not assigned to any line?
3 l(x)← () // instantiate new line and assign
4 parseLine (l, x, v(p, 0), false)
5 parseLine (l, x, v(p, 1), true)
6 L ← L∪ l(x) // add new line to the set of lines

The parseLine subroutine traverses the line in one direction, vertex by ver-
tex. In order to retrieve all edges belonging to the line, it must be traversed
in both directions. This is why parseLine is called twice with a different di-
rection flag (last parameter). The complete pseudo code listing is provided in
algorithm 3.6.

There are two important parameters, which must be set before the algorithm
can be used. These are the corner threshold β and the straightness threshold γ.
The corner threshold decides when to stop parsing a line, once a large angular
deviation is encountered. When the angular deviation is larger than the corner
threshold, the line parsing is stopped. In the current implementation, β = 15 °.

The straightness threshold is another angle which determines when a line
strip is considered not to be straight any more. Whenever the angular deviation
is larger then the straightness threshold, the line will still be parsed, but it will
not be considered straight any more. In the current implementation, γ = 0.2 °.
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Algorithm 3.6. Line extraction subroutine (parseLine).

Input : Line to parse l, starting edge estart, next vertex vnext, direction indicator
bforward

1 Procedure parseLine (l, estart, vnext, bforward)
2 elast ← ε // last edge
3 ecurrent ← estart // current edge
4 enext ← ε // next edge
5 vcurrent ← ε // current vertex

6 vdir ←
{

v(estart, 0)− v(estart, 1) v(estart, 0) = vnext
v(estart, 1)− v(estart, 0) otherwise // edge direction vector

7 st(l)← true // assume all lines to be straight
8 if v(l, 0) = ε then
9 v(l, 0)← v(estart, 0)

10 if v(l, 1) = ε then
11 v(l, 1)← v(estart, 1)

12 while true do
13 if ecurrent 6= ε then
14 if l(ecurrent) = ε then
15 l(ecurrent)← l // store edge/line mapping
16 E(l)← E(l) ∪ ecurrent // store line/edge mapping

17 if e(vnext, 0) 6= ecurrent and e(vnext, 0) 6= elast then
18 enext ← e(vnext, 0) // advance edge
19 else if e(vnext, 1) 6= ecurrent and e(vnext, 1) 6= elast then
20 enext ← e(vnext, 1) // advance edge

21 elast ← ecurrent
22 if enext and o(enext) then // next edge valid and outer edge?
23 vcurrent ← vnext

24 vnext ←
{

v(enext, 1) v(enext, 0) = vnext
v(enext, 0) otherwise // pick next vertex

25 vdir
′ ← vnext − vcurrent // compute current edge direction

26 η ← ∠ (vdir, vdir
′) // compute angular deviation

27 if η < β then // angular deviation below corner threshold?
28 ecurrent ← enext
29 vdir ← vdir

′

30 if st(l) and η ≥ γ then // angular deviation above straightness threshold?
31 st(l)← false // not straight

32 else
33 break // corner hit – stop

34 else
35 break // next edge is not an outer edge – stop

36 if bforward then // memorize start/ endpoint vertices
37 v(l, 1)← v(ecurrent, 1)
38 else
39 v(l, 0)← v(ecurrent, 0)
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3 Off-line preprocessing & Sensor characteristics

Figure 3.5. Line parsing: from the start-
ing edge, outer edges are traced until a
stop condition (such as a corner or no
outer edge) is encountered. Edges be-
longing to the set are stored in the line
structure.
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In the further processing, only straight lines are used for the estimation of the
pose. From the architecture of the algorithm, however, it is possible to include
any shape of lines without significant additional effort, since the edges are
readily available. The reason for this is the reduced computational complexity
in the on-line phase of the algorithm.

This completes the line extraction process of the target data. What remains to
be done are some preprocessing tasks related to the surfaces of the model.

3.2.3 Surface centroids

The surface centroids are needed for initializing the tracker and aligning the
model surfaces with the measured point cloud. Before a centroid can be esti-
mated, it is necessary to obtain a pair of orthogonal base vectors which span the
surface. To that purpose, the auxiliary matrix

Y(s) =
(
b(t1)− a(t1) c(t1)− a(t1) . . . b(tn)− a(tn) c(tn)− a(tn)

)
,

(3.2.1)

where n = ‖T (s)‖ is the number of triangles of the surface s, holds the triangle
base vectors, which are candidates for the surface base vectors. By using a QR-
factorization of Ys = QsRs, Qs will hold the orthonormal base vectors spanning
the same subspace by definition, which is exactly what is required at this point.
The first two columns of Qs are thus taken to provide the orthonormal base
vectors bx(s) and by(s).

Then, for obtaining the centroid of a surface, in general, the first moments of
area along two axes must be calculated,

ψx =
∫

A
x dA and ψy =

∫
A

y dA. (3.2.2)

Since in this case, the surface is not arbitrary (in the sense that only outer poly-
gon corner points are known) but created by triangles, the problem can be re-
shaped into a summation of the triangle centroids weighted with the distance to
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by(s)

bx(s)
r(s)

n(s)

cs

Figure 3.6. Triangle processing. The
centroid of the surface (green) is
found by calculating the first mo-
ments of area of the triangles. By us-
ing these moments for weighting the
triangle centroids (red), the total cen-
troid is determined.

the reference axis. After expressing the triangle centroids using the base vectors
of the surface s,

x̃s,τ = ((c(τ)− r(τ)) · bx(s)) · bx(s) + r(τ) (3.2.3)

ỹs,τ =
(
(c(τ)− r(τ)) · by(s)

)
· by(s) + r(τ), (3.2.4)

the surface centroid can be determined by calculating the first moments of area
using the areas of the triangles, what yields

cs =
1

A(s)

(
∑τ∈T (s) (bx(s) · (c(τ)− x̃s,τ) · A(τ) · bx(s))
∑τ∈T (s)

(
by(s) · (c(τ)− ỹs,τ) · A(τ) · by(s)

))+ r(p), (3.2.5)

where s is the surface in question, T (s) is the set of triangles belonging to s, r(s)
is the reference point of the surface (an arbitrarily chosen point which belongs
to the surface) and A(s) and A(τ) are the areas of the surface and the triangles,
respectively (figure 3.6).

3.2.4 Principal components of surfaces

At this point, the centroid of each surface cs is known along with an orthonormal
basis for each surface (bx(s), by(s)). The problem is that the two base vectors
can be arbitrarily rotated about the normal vector of the surface, but for later
initialization problems, these vectors must be fixed with respect to the surface.

This can be achieved by computing the principal components (the eigenvec-
tors of the covariance matrix) of the surface in question. The principal compo-
nents form a base of a subspace of a vector space in such a way that the variance
of the data (in this case, the extents of the surface) along the new base vectors is
maximized. Therefore, the base vectors just retrieved are replaced by a new set
of base vectors obtained from the principal component analysis.

In most cases, the principal components of a point cloud (cf. section 5.2.4 on
page 97) or dense set of any kind of data points is required. However, here, the
process has to be adapted to a set of triangles.
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3 Off-line preprocessing & Sensor characteristics

The first step is to compute the triangle direction vectors, which must be
weighted by the triangle area. By projecting the resulting vectors onto the sur-
face base vectors, the matrix

Ξ =

(
(ct0 − cs) · bx(s) · A(t0) . . . (ct1 − cs) · bx(s) · A(tn−1)
(ct0 − cs) · by(s) · A(t0) . . . (ct1 − cs) · by(s) · A(tn−1)

)
(3.2.6)

is formed. This matrix contains the information of each triangle belonging to
the surface, in a way which would allow computing a scaled version of the
covariance matrix as ΞΞT . This is the key to obtaining the principal components
by using the singular value decomposition. By definition, let Ξ = UΣV∗. From
the definition of the SVD, U contains the eigenvectors of ΞΞT , while V contains
the eigenvectors of ΞTΞ and Σ contains the singular values of Ξ. Consequently,
U will contain the principal components. The reason for using the SVD is,
however, its proven numeric stability and the fact that the decomposition is
possible for any matrix (especially non-square matrices) [27].

Continuing with the determination of the principal components, having the
two eigenvectors

ex =

(
U1,1
U2,1

)
, ey =

(
U1,2
U2,2

)
, (3.2.7)

the 3D principal components are retrieved and memorized as new surface base
vectors for the surface s:

bx(s) = b̃x · ex1 + b̃y · ex2 (3.2.8)

by(s) = b̃x · ey1 + b̃y · ey2 , (3.2.9)

where b̃x and b̃y denote the previously determined base vectors. The new base
vectors are now aligned with the principal components of the surface.

For more details about the SVD, have a look at section 5.2.4 on page 97. Here,
the same principle is applied in order to determine the principal components of a
point cloud. (The results of this section are used to determine the rotation about
the normal vector by measuring the angular difference between the principal
components of the model and the principal components of a measured point
cloud.)

3.2.5 Surface bounding box estimation

Once the new base vectors are available, the bounding box of the surface can be
determined. The bounding box is used for the initialization of the tracker. Its
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dimensions are retrieved by determining the maximum and the minimum of
the triangle vertex coordinates in the base frame of the surface, what yields

Γ (s) =

 max
x∈V(t),∀t∈T (s)

(x · bx(s))− min
x∈V(t),∀t∈T (s)

(x · bx(s))

max
x∈V(t),∀t∈T (s)

(
x · by(s)

)
− min

x∈V(t),∀t∈T (s)

(
x · by(s)

) . (3.2.10)

This completes the preprocessing of the model data. What remains to be done
in the off-line stage is the calculation of the direction vectors, which map a line
of sight vector to each pixel of the PMD camera.

3.3 Direction vector preprocessing

For later use, the pixel direction vectors of the PMD camera are calculated off-
line. This allows a fast conversion of a PMD distance image into a point cloud.
The direction vector of a pixel with the coordinate vector p = (x, y) is computed
as follows. First, the normalized coordinates (as introduced in section 2.2.2 on
page 24)

pu =

(
(x− cx) / fx(
y− cy

)
/ fy

)
(3.3.1)

are retrieved by subtracting the coordinates of the principal point and dividing
by the focal length. The compensation of skew is omitted here, as it is assumed
to be zero throughout the document. The remaining part is the inclusion of lens
distortion. This is accomplished by applying algorithm 4.1 (page 73) to pu.

After this step, the direction vector is obtained by complementing the vector
with a Z coordinate (for normalized coordinates, the Z coordinate is implicitly
defined and assumed to be equal to one). Consequently, the direction vector
becomes

rx,y = (pd, 1) / ‖(pd, 1)‖, (3.3.2)

where pd is the distorted normalized direction vector (the result of applying
algorithm 4.1 to pu). Note that all direction vectors must be normalized to the
length of 1 in order to retrieve the correct point cloud during on-line processing.

3.4 Summary

In this chapter, the object model was introduced along with a detailed descrip-
tion of the preprocessing steps, which allow an arbitrary set of triangles to be

67
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used as a representation of the object to track. It should be emphasized once
more at this point that the triangle set may be retrieved from a detailed CAD
model, but this is not a requirement. The algorithm can also handle imprecise
models, what is important for situations where a CAD model is not available.
As a consequence, an utmost versatile model representation is retrieved, what
allows to achieve the most important goal set for the chapter: to have a model
representation that allows to track an object with a computational need which
is as low as possible. This is achieved by the reduction to surfaces and lines.
Existing approaches relying on complete and unprocessed CAD models require
on-line processing of a large number of triangles and in combination with least-
squares pose residual optimization, this causes the estimation process to take
several seconds for a single frame [138].

The separation of the pose search space was discussed as a consequence of
the individual sensor properties. It even became possible to map each one of
the degrees of freedom of the relative pose estimation problem to one of the
sensors in such a way, that the complete pose can be estimated using both
sensors in an advantageous fashion. In contrast to most existing methods based
purely on stochastic state estimators such as the Kalman filter, this specific way
of processing sensor data allows for avoiding working on ill-posed problems
leading to unstable and noisy pose estimates which the filter then would have
to smooth – a task, which often fails as the noise characteristics start to change
rapidly.

Finally, also some preparations of the initialization problem were made (such
as determining the principal components of the model surfaces along with their
dimensions), where an initial pose of the target object must be found without
prior knowledge. This problem will be discussed in full detail in chapter 5
starting on page 91.

In the next chapter, the preprocessing of PMD sensor data will be discussed.
This encompasses compensating for sensor-specific non-linearities as well as the
processing of multiple frequency raw sensor values for obtaining long-range
measurements.
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4 PMD Data preprocessing

The PMD sensor is unique in the sense that it unifies several different strengths
of various sensors in a single sensor – high frame rate, depth measurement,
and low computational requirements. However, there is still a price to pay in
form of sensor-specific non-linearities and side effects. These effects are too
significant to be neglected. Since the correction of the effects has an impact
on the performance of the following processing steps (especially for the range
extension), known calibration methods have to be modified and adapted under
these circumstances.

Another problem is the limited measurement range of the PMD sensor, what
is a consequence of the phase shift measurement principle and the chosen mod-
ulation frequency. Since a typical application in space will require a larger
measurement range, a method is proposed to extend it, while not relying on the
scene geometry as existing approaches do.

4.1 Measurement error compensation

The following is a list of known effects, which must be considered when working
with a PMD camera. Please note that since this work has pose estimation as its
subject, an extensive calibration of the PMD camera is omitted, except for the
major sources of error.

• Fixed Pattern Noise. Because every PMD pixel consists of multiple func-
tional parts and a relatively complex processing path, there are several
error sources, which contribute to a per-pixel static offset, such as wiring,
capacities and inductivities. Fixed pattern noise is the union of all pixel-
specific constant offsets.

• Amplitude dependent distance offset. Due to the non-linearity of the
elementary PMD cells, the amplitude of the signal may have an effect on
the phase shift, what translates into a distance measurement error.

• Wiggling effect. This is an effect which can be seen when gradually chang-
ing the distance of an object while looking at the distance. The error is
caused by the LED signal not being exactly sinusoidal due to high-order
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harmonics remaining in the signal, what is a consequence of the fact that
the LED drivers use a rectangular signal. The deviation is not considered
during the on-chip correlation.

• Integration time dependent distance error. This is an effect which was
mentioned by [109] and later confirmed numerous times. The error is
characterized by a constant offset which depends on the integration time
in a non-linear way. It is probably caused by the non-linear coupling of the
readout voltage and the charge amount of the potential wells of a PMD
cell, similar to the amplitude-related offset.

• Intensity-related distance error. Environmental light can have an effect
on the measurement. The effect can be reduced especially for older sen-
sors, which do not have SBI circuitry. For newer sensors, the compensation
becomes difficult if not impossible due to SBI.

• Motion artifacts. When the scene captured by the PMD camera contains
moving objects, motion artifacts can occur. This effect manifests promi-
nently near object edges and can be observed especially with high veloc-
ities. It is caused by the assumption, that the distance remains constant
during the sequential measurement of the raw values, which is of course
not the case for a moving object.

• Multipath interference. Whenever the scene contains a part where two
surfaces are inclined in such a way that the angle between the surfaces
in the direction of the camera becomes too small, modulated light of the
emitters can be reflected from one surface to the other and contribute an
error to the measurement.

• Jump edge effect (“flying pixels”). Pixels imaging edges of objects often
tend to have an unreliable distance measurement. The distance measured
is often in the middle of the air, instead of being at the object edge. This is
caused by more than one contiguous surface contributing to the measure-
ment of a single pixel.

Calibrating PMD cameras has been done to a fair extent and the above effects
have been properly addressed in various papers, such as [46, 86, 88, 90, 108,
125, 149], to mention a few. Several of the effects described in the following
are related to the partially erroneous integration of the signal, what is caused
by a non-linear correspondence of PMD elementary cell electrical potential to
photons. Despite the fact that it has already been proposed to use non-linear
integration characteristics [2, Chapter 4], the problem remains yet to be solved

70



4.1 Measurement error compensation

in ways presented in the above papers. In this thesis, also a state-of-the-art
calibration will be made which is based on these articles.

Apart from the static parameters, one must also keep in mind that the LEDs
produce a significant amount of heat. The heat must be dissipated into the
environment. It also causes the problem that measurements as well as calibra-
tion attempts must be made at defined temperatures where the camera is in
thermal equilibrium [127]. Therefore, all measurements and calibrations have
been made after 20 minutes had passed since the power-up of the PMD cam-
era. The laboratory is air-conditioned and provides temperature and humidity
stabilization.

From the given list of error sources, only the following will be compensated:
Fixed pattern noise, amplitude dependent distance offset, the Wiggling effect
and the integration time dependent distance error. The other effects are not
compensated for the following reasons.

First, motion artifacts become a problem at very high velocities, what is not
the case here. For Rendezvous and Docking, these motion artifacts are sim-
ply negligible, as motion towards the camera or vice versa is known to have
only a small effect and the typical velocities encountered in these scenarios are
rather low [13, 115]. For a very interesting attempt of compensating the effect, a
promising approach was already made by accessing the raw A/D values of the
camera and detecting events, where motion artifacts occur. Then, raw images of
the previous frame can be used to correct the measurement [127].

Multipath interference has only a very limited effect on the target measure-
ments performed here. Also, if the target had a much more complex surface
structure, it would be very difficult compensating the error due to the structure.
Most multipath interference correction approaches assume lambertian reflec-
tion properties1 [45], what does not apply to MLI shielding. Furthermore, the
computational need for multipath compensation does not scale well; the con-
tributions of every single surface in the vicinity of a pixel must be considered,
what becomes impractical for complex surface structures.

The Jump edge effect is not relevant, because invalid measurements are fil-
tered out by the planar RANSAC algorithm (see section 6.2 on page 109). After
the filtering, a sufficient number of pixels is still left for being processed in fur-
ther steps. Nevertheless, when jump edges have to be filtered in a dedicated
fashion, [121] provides an overview of available methods.

The intensity-related distance error is not compensated, as with the SBI cir-
cuitry and the fact, that it can not be disabled or controlled in any way, no

1Lambertian reflectance is achieved when a body receiving light is scattering the same amount of
light in all directions. An observer will always see the same light intensity, independently of the
viewing angle.
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reliable intensity measurements are possible. The camera used here provides
a bit flag indicating activity of the SBI circuitry, however, this would only al-
low to disable any error correction for individual pixels. Since in this context,
highly dynamic scenes are to be expected, it does not make much sense imple-
menting a compensation method which would automatically disable itself for a
large amount of pixels. Still, when required, in [86], an adequate compensation
method can be found.

4.1.1 Fixed pattern noise compensation

The pixels of the PMD chip are relatively complex compared to those of a CCD
sensor, as described in section 2.4.1 (page 32). Therefore, depending on the
particular chip at hand, some parts of the processing silicon may have been
moved to the border of the chip in order to free up space in the active area of the
sensor, causing pixel-dependent effects. This is common to all implementations.
Also, due to manufacturing tolerances, each PMD pixel is unique due to slightly
different sizes of active surface and wiring.

Fixed pattern noise summarizes all pixel-specific irregularities, which have an
impact on the measurement and do not change over time. In practice, these off-
sets are compensated directly in the distance measurement by adding a match-
ing offset to the measurement.

To calibrate this offset, the camera has been put on a small tool cabinet. Then,
the camera was rotated in such a way that it faces perpendicular to a white wall
of the laboratory, which can be assumed to be planar. The distance to the wall
was 1 m.

An image sequence (100 frames) was captured and the measurement was
averaged over all frames to eliminate zero-mean noise, assuming the remaining
offsets are fixed.

For better accuracy, first a central offset retrieved from the four inner pixels is
calculated,

do =
1
4

101

∑
y=100

101

∑
x=100

D̂[y, x], (4.1.1)

which is then used to obtain the relative distances D̂′ = D̂− do. For the next
step, the pixel direction vectors must be computed as already briefly discussed
in section 3.3 (page 67), given the camera calibration parameters:

x′ =
(
(p1 − c1) / f1
(p2 − c2) / f2

)
, (4.1.2)
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where p1, p2 are the image-space coordinates of the pixel in question, c1, c2 are
the coordinates of the principal point and f1, f2 are the focal lengths in pixels
among both dimensions.

Now, it is important to apply the effects of the optical distortion. This is done
by algorithm 4.1, which is part of the Caltech Camera Calibration Toolbox. It is
an iterative approach which both accounts for radial and tangential distortion.

Algorithm 4.1. Iterative algorithm for estimating normalized point coordinates of a given
pixel.

Input : Normalized pixel coordinate vector x′
Input : Radial distortion coefficients k
Input : Tangential distortion coefficients t
Output : Normalized pixel coordinate vector x including the optical distortion

model

1 n← 0
2 x← x′
3 while n < 20 do
4 r ← x2

1 + x2
2

5 γ← 1 + k1r + k2r2 + k3r3

6 ∆x1 ← 2t1x1x2 + t2
(
γ + 2x2

1
)

7 ∆x2 ← 2t2x1x2 + t1
(
γ + 2x2

2
)

8 x← (x′ − ∆x) /γ
9 n← n + 1

The normalized pixel coordinate vectors correspond to a 3D vector with Z =
1, so the resulting 2D vectors x are extended by the third element set to one,
such that x̃ = (x1, x2, 1). Then, the direction vector norm ‖x̃‖ can be computed
for each pixel.

Let the matrix of vector norms be V′. Then, for each element of V′, the vector
norm is adjusted, such that the central four pixels are the zero reference again:

V = V′ − 1
4

101

∑
y=100

101

∑
x=100

V′ [y, x] . (4.1.3)

Finally, the matrix describing the fixed pattern offset of each pixel is F+ = D̂−V.
The resulting matrices, both for a modulation frequency of 18 and 20 MHz are
shown in figure 4.1. The distance offset is shown here in meters.

As can be seen in the figure, the fixed-pattern noise seems to have three
components. First, the sensor is apparently made up of four discrete blocks,
which divide the imaging area into four columns. Second, there is a weak
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(a) Measured distance deviations for a
modulation frequency of 20 MHz.
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Figure 4.1. Visualization of fixed pattern noise of the PMDtec Camcube 3 for the two
modulation frequencies used throughout this thesis. The offset is shown in meters. The
X- and Y-axes show the pixel coordinates.

structuring visible, subdividing the blocks into columns of one pixel width.
This is probably a result of the internal chip wiring. The last component seems
to be a general increase of the measured distance for pixels located near the top
of the image, and vice versa for the bottom of the image. The total distance span
for the offset depends on the modulation frequency but can be seen to be about
10 centimeters at 20 MHz and about 16 centimeters at 18 MHz.

The irregularity near the left corner at the top is likely to be caused by a
pollution of the wall. As this affects only a small number of pixels, its effect will
be neglected.

4.1.2 Wiggling effect compensation

One of the most important errors which must be compensated, is the so-called
Wiggling-effect. This is a distance-dependent offset on the measurement. It can
be characterized as roughly increasing or decreasing with the distance, while
at the same time, having an almost sine like periodic part. It is caused by the
non-sinusoidal form of the optical signal emitted by the LEDs [78], what can
be regarded as being a transformed signal, so that in fact the on-chip correlator
is performing a cross-correlation, to which the theorems stated in section 2.4.1
(page 32) do technically not apply any more.

There have been several investigations of the problem, which have lead to
different approaches for its compensation, for example by fitting B-Splines [90].
Once the B-spline parameters are known, the error can be corrected. Other
methods are based on the claim that it should be possible to achieve the same
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Figure 4.2. Wiggling effect calibration (20 MHz). Four pixels in the center of the image
have been measured and are visualized by the four colors, respectively. The yellow block
shows the ambiguity interval used for fitting the error model.

result while using a physical interpretation [102]. The following approach will
be based on this work.

The difference is that here, it is possible to estimate the offset for the complete
unambiguous interval. Pattinson calibrated the PMD camera for the first unam-
biguity interval only, what makes it impossible to measure distances down to
zero. Also, for use with multiple ambiguity intervals, the error model must be
a periodic function. Therefore, the following model does not include a linear
term but instead introduces additional low-order harmonics in order to capture
the shape of the error, what is the difference to the work of Pattinson [102].

Implementing and continuing with this idea, the problem can be narrowed
down to determining seven coefficients of a complex trigonometric polynomial,
which represents the most important effect-related harmonics of the signal emit-
ted by the LEDs2:

d+(x) = a0 + a1 cos (2kx) + a2 sin (2kx) + a3 cos (4kx) +

a4 sin (4kx) + a5 cos (8kx) + a6 sin (8kx) , (4.1.4)

2There is theoretically an infinite number of upper harmonics of such a signal, however, their ampli-
tudes decay rapidly and therefore, only missing harmonics which contribute significantly to the
error are considered here.

75



4 PMD Data preprocessing

In
te

n
si

ty

Real distance [m]

A
m

p
li

tu
d

e

Real distance [m]

Interval 1 Interval 2

M
ea

s.
d

is
t.

[m
]

Real distance [m]

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

×104

×104

0

2

4

0

1

2

0

5

10

Figure 4.3. Wiggling effect calibration (18 MHz). Four pixels in the center of the image
have been measured and are visualized by the four colors, respectively. The yellow block
shows the ambiguity interval used for fitting the error model.

where k = 2π/λ is the wave number and x is the measured distance. d+(x) then
provides the offset for correction, once the coefficients ai are known.

The calibration coefficients ai are determined by first running a Simulink
model on the EPOS facility, what performs a distance sweep from 22 to 1 meter.
The PMD camera captures the distance sweep and the data obtained is stored
in a file. This file is then processed by a MATLAB script, which processes the
four central pixels of the image.

The script performs the following steps: First, it tries to determine the dis-
tances where the ambiguity interval overlaps are located. Once known, the
modulation frequency and the wavelength are determined. After that, it picks
the interval in the middle, determines the static distance offset (the reference
distance where a measured distance of zero is read) and then fits the above error
model using a least squares approach.

As can be seen in figures 4.2 and 4.3, the ambiguity intervals (see definition 4.1
on page 82) can be automatically identified and a fit can be made once the offset
at this position is known. This is particularly useful because calibrating the
entire measurement interval at a distance from the camera prevents near-range
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Figure 4.4. Fit of the Wiggling effect error model on data captured by the distance sweep.
The gray points show the samples from the measurements. The black line shows the fit of
the model.

effects from contributing additional effects to the result, apart from the fact that
a distance of zero can not be measured in practice.

The figures also show the measured amplitude and intensity values among
the distance. What can be seen from these values is that neither the amplitude
nor the intensity seem to have a large effect on the distance measurement, as
long as they are kept on a low level. In fact, figure 4.2 suggests that the impact
of amplitude changes can be neglected completely as long as it does not lead to
saturation effects as can be seen in the first ambiguity interval.

The result of the calibration is given in figure 4.4. This plot shows the distance
error, where measurements are indicated by gray dots and the fit of the error
model is shown as a black line. The periodicity is clearly visible. The error
model can then be used to compensate for the Wiggling error. Please note that
here, the X axis is the measured distance and not the reference distance as it was
in the plot before. The residuals are given in figure 7.11 on page 141.

As a result, the Wiggling effect is now compensated. However, there are more
effects to consider here. The distance sweep for determining the coefficients for
the Wiggling effect compensation model has been made at a fixed integration
time (2 ms), but measurements may be made with different integration times.
Therefore, the integration time offset must be compensated as well.

4.1.3 Integration time offset compensation

It is known from the literature about the PMD sensor, that changes in integration
time have indirect side-effects on the distance measurement [39, 86]. In order

77



4 PMD Data preprocessing

D
is

ta
n

ce
o

ff
se

t
[m

]

Integration time [ms]
0 5 10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

Figure 4.5. Integration time offset for 20 MHz. Gray points show the measurements, the
black line shows the modeled approximation using a piecewise second-order polynomial.

to compensate this offset, a reference measurement was made, where the inte-
gration time was gradually changed from 20µs to 50 ms. While the integration
time was changed, the distance to the reference object was kept constant, so that
the influence of the integration time became visible. The offset is approximated
for the compensation using piecewise polynomials of degree 2,

t+,n(x) = k0,n + k1,n · x + k2,n · x2, n ∈N0, (4.1.5)

as the effect is very complex and can not be reduced to a simpler, more specific
model. It was found that 20 interval boundaries distributed uniformly over the
value range interval [20× 10−6, 50× 10−3] are sufficient to achieve a good fit.
Figures 4.5 and 4.6 show the results. Note that the offset has been zeroed at 20µs,
because this was the integration time used for the Wiggling effect compensation.
As the latter is considered to be the dominating error contributor, all other
calibration attempts are made relative to this reference measurement.

At 20 MHz, the offset rises very fast to about 5 centimeters for very short
integration times (about 200µs) and then continues to increase, but having also
a continuously changing slope. The entire plot does not show any evidence of
saturation. The increasing distance between the clusters of measurements is
related to the time it takes the camera to adjust to a new integration time and
the sampling grid, which has been designed to have a high density at lower
integration times and a low density at higher integration times.
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Figure 4.6. Integration time offset for 18 MHz. Gray points show the measurements, the
black line shows the modeled approximation using a piecewise second-order polynomial.

At 18 MHz, a saturation can be clearly seen at the offset of about 0.18 m. The
plot also shows deviation from the highest offset with increasing integration
time. The reason for that is currently unknown.

It is also evident that the effect is very different for the two frequencies. While
at 20 MHz, the offset seems to be almost constantly increasing, at 18 MHz it
remains at an almost constant level after it has reached it. The cause for this
particular difference is also unknown but it is likely to be related to specific
optimizations of the PMD chip for a single frequency and in general sensor
non-linearities. Integration times higher than 2 ms are uncommon, but may be
required in situations where the target has a large distance from the chaser.

In essence, both frequencies must be treated separately when compensating
the effect and in case of multi-frequency operation, both models must be avail-
able in order to retrieve an accurate overall result.

4.1.4 Amplitude offset compensation

The remaining source of error is the influence of the amplitude on the measure-
ment. As can be seen in figures 4.2 and 4.3 as well, once the distance becomes
very small, there is very little dampening of the light occurring, because the
distance is small. As a consequence, the amplitude of the signal raises. When
inspecting the distance plot at this point, the deviation suggests that the am-
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Figure 4.7. Amplitude offset error compensation for the PMD camera at 20 MHz. Gray
points denote measurements. The black line is the visualization of the model.

plitude has an effect on the distance measurement once it reaches values near
15,000.

This effect has been investigated in more detail. The target has been posi-
tioned at a fixed distance of 5 meters. Then, the four central pixels were read
out while the target was being slowly tilted in such a way that the distance of
the central pixels remained constant. The amplitude, however, was changing
rapidly due to the changing amount of light reflected at the target.

The result for a modulation frequency of 20 MHz is shown in figure 4.7. As
was the case with the integration time offset, it is very similar here as well. The
effect is non-linear and in this case not monotonically increasing. In fact, it
is interesting to see that the offset is positive for very small amplitude values
and decreases with increasing amplitude, and at an amplitude of about 950, the
offset remains almost stable until at about 8,000, the offset begins to increase.

At an amplitude of around 15,000, also in this plot it can be seen that the
error increases rapidly up to 0.4 m. In essence, it is unlikely that this is the
symptom of only one source of error – it is probably caused by multiple effects.
Unfortunately, details are unknown. At this point it is therefore concluded
that the effect must be adequately compensated, especially for high amplitude
values due to the magnitude of the offset.
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Figure 4.8. Amplitude offset error compensation for the PMD camera at 18 MHz. Gray
points denote measurements. The black line is the visualization of the model.

Figure 4.8 shows the result from the same experiment, but for a modulation
frequency of 18 MHz. Clearly, there are similarities with the 20 MHz plot. The
shift of the offset along the positive Y axis for low amplitude values to zero,
the global minimum of the offset and the increasing form for higher amplitude
values.

Still, it is interesting to see that the effect is much less significant when mea-
suring at 18 MHz. The offset does not become as large as in the case of 20 MHz
(which was about 0.4 m) but instead seems to be limited at about 0.2 m. Never-
theless, it is still too large to be neglected.

To summarize, both figures show that the amplitude-related distance mea-
surement error is probably related to multiple causes. At very low amplitude
levels, the noise is very large, as one would expect. However, at the same time
the mean value of the samples is also changing. When inspecting both figures,
it can be further seen that this is, on a larger scale, frequency-dependent. There-
fore, this calibration was made two times for both frequencies.

Another striking part of the figure is the rise of the error at very high am-
plitude values. It is likely that this is due to sensor saturation. Because of the
numerous effects which prohibit using a simple law for approximation, again a
set of piecewise polynomials

a+,n(x) = k0,n + k1,n · x + k2,n · x2, n ∈N0, (4.1.6)
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is used for the approximation. For using the fit as a compensation measure,
it must be integrated into the existing data preprocessing framework. This
has been achieved by adding an additional offset, what forces the measured
distances to zero at a zero offset point. This point has been selected by reading
out the mean amplitude value of the Wiggling error compensation. Then, the
distance value of the amplitude offset measurement at this specific point was
subtracted. As a result, the offset splines are now zero valued at a reference
point which has already been calibrated with the EPOS facility (see section 4.1.2
on page 74 for details).

From now on, all other points with varying amplitude values can be properly
handled, assuming the amplitude related offset and the Wiggling effect are
uncorrelated errors. Unfortunately, from what is known so far, this is not the
case. The given compensation methods reflect the state-of-the-art and provide
a fair improvement in accuracy, however, for situations where the amplitude
reaches extreme values, the non-linearity of the sensor will become visible again.
Nevertheless, as this work concentrates on pose estimation instead of sensor
calibration, the PMD sensor specific calibration is regarded to be complete at
this point. As will be seen later in chapter 7 (starting on page 127), the remaining
distance measurement error does not exceed 11 cm in the worst case (outliers)
and remains within 3 cm in the average case.

4.2 Range extension

Before starting with the range extension of the PMD camera, it is necessary to
familiarize with the sensor characteristics. The following definition will be of
utmost importance for the remainder of this section.

Definition 4.1 (Unambiguous interval) Given an ideal PMD sensor capable of
measuring the phase shift, [0, λ/2), where λ is the wavelength corresponding to the
modulation frequency, is called the unambiguous interval.

Sometimes, λ/2 may be referred to as the unambiguous range. This is basically
the default measurement range, the PMD sensor is specified for.

The problem that a measurement of the distance is made based on the mea-
surement of a partially ambiguous phase difference is a common topic in image
processing [47]. It is encountered in a wide variety of applications [85, 139] and
approaches for solving this ambiguity can be typically found under the term
phase unwrapping in the relevant literature.

When it comes to the PMD sensor, the resulting phase images can also be
unwrapped; with a single modulation frequency based on graph cuts [15], con-
straint/ belief propagation [32, 41] and also by using two different modulation
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frequencies [31] (however, this method relies primarily on phase jumps and
uses the second frequency only as an additional clue for the resolution of the
phase ambiguity). These approaches are particularly useful for applications
in mobile robots due their robustness and the availability of “phase jumps”,
i.e. distance jumps in the measurement, which are assumed to be caused by a
simple wrap-around of the measured phase.

In the scenario discussed within this work, these phase jumps are not avail-
able – instead, a single object is seen without any reference to ground or any-
thing else. Therefore, in the following, a different approach is made, which can
directly determine the correct distance for any image pixel, independently from
the neighborhood. The only limitation is that the range is extended to a new
limit, so measuring unlimited distances is not possible. When required, how-
ever, the method could be easily extended to include object model image-space
size constraints, what would allow for ambiguity interval resolution beyond
this range. The second limitation is that this is only possible when making an
assumption about the noise in the distance measurement, as will be seen later
in section 4.2.2 on page 86.

4.2.1 Multi-frequency phase unwrapping

In order to measure distances larger than the unambiguous interval imposed by
the modulation frequency of the sensor, in this section, a method is introduced
which allows retrieving larger distances. With the given approaches of phase
unwrapping, this particular idea has not yet been pursued further due to the
lack of an adequate sensor. An existing (but closed) implementation can be
found in [14, page 114]. Unfortunately, it is not clear, which method was used
in this approach and the publication lacks the details.

Here, the concept will now be developed farther and put to practical use, as
the Camcube 3 is likely to be the first sensor available to researchers that allows
multi-frequency imaging. Also, specific constraints are derived, which must be
followed in practice due to noise effects.

The main idea is, when assuming that there are two different modulation
frequencies f1, f2 available with corresponding wavelengths λ1, λ2 and the
sensor can provide images fast enough in such a way that the time between the
individual frames can be neglected, then one can obtain the exact distance from
the two measurements by solving the following equation system:

d = ψ1 + k1 · λ1/2

d = ψ2 + k2 · λ2/2,
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Figure 4.9. Multi-frequency visualization. Solid: measurement with 20 MHz. Dashed:
measurement with 18 MHz. Observe the intervals of constant distance between the two
signals. On a larger scale, the distances shift depending on the real distance.

where d is the exact distance, which is to be determined. ψ1 and ψ2 are the mea-
sured distances from the camera, k1 and k2 are distance ambiguity coefficients,
i.e., integer factors which define intervals derived from the unambiguous inter-
val as [k · λ1/2, (k + 1) · λ1/2) and [k · λ2/2, (k + 1) · λ2/2). As a consequence
of having two equations and three unknowns3, the equation system can not be
solved in closed form at first glance to provide a solution in practice.

Instead, it is advisable to have a look at what happens with increasing distance
(figure 4.9). The measured distance is the result of a measurement process,
which could be described by

ψ = (ψ̃ + ε) mod (λ/2) , (4.2.1)

where ψ̃ is the real distance, ε is the measurement error and λ/2 is the unambigu-
ous range again. Having two such measurements with different unambiguous
ranges means that the measured values will interchangeably “overflow” with

3In fact, this will also work for three or more frequencies, however, the time it takes to capture a single
frame will increase and it will not solve the problem with the variable count, as there will always
be n + 1 variables in n equations – the one additional variable being the distance.
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Figure 4.10. Distance difference plot for f1 = 20 MHz and f2 = 18 MHz and artificial noise
on the signals. With increasing distance, the deviation between the two signals remains
constant at most, but overlaps are clearly visible as sudden changes in value. The black
overlay shows values rounded to the nearest natural number.

increasing distance. This suggests using the difference between both measure-
ments ∆ψ as an ambiguity indicator:

η =

⌊
∆ψ + λ1/2

λ2/2− λ1/2
+ 0.5

⌋
. (4.2.2)

For most of the time, both measurements will be increasing, so the difference
will be constant. But whenever one of the two measurements overlaps, the dif-
ference function will instantaneously yield a new value and then again remain
constant. The maximum range, which can be measured with this method is thus
limited to

dmax <
λ1/2 · λ2/2

λ2/2− λ1/2
. (4.2.3)

In words, the size of the unambiguous interval of the first modulation fre-
quency times how often the difference between the unambiguous intervals of
the two modulation frequencies fits in the unambiguous interval of the second
frequency.
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The nature of the two unambiguous intervals overlapping interchangeably
directly implies a schema for obtaining the ambiguity coefficients:

(k1, k2) =


(0, 0) η ∈ {0, η̂, 2η̂}
(η + 1, η) η < η̂

(η − η̂, η − η̂) otherwise,

(4.2.4)

where

η̂ =

⌊
λ1/2

λ2/2− λ1/2
+ 0.5

⌋
(4.2.5)

indicates how often the difference of the two unambiguous intervals fits into
the first unambiguous interval. This is essentially equal to half of the number
of levels seen in figure 4.10. The main idea behind this formalism is to map
the corresponding ambiguity coefficients to each level of the distance difference
function.

Having determined both coefficients, it is now straightforward to recover the
distance from both measurements as

d = ψ1 + k1 · λ1/2, or (4.2.6)

d = ψ2 + k2 · λ2/2, or (4.2.7)

d =
ψ1 + k1 · λ1/2 + ψ2 + k2 · λ2/2

2
, (4.2.8)

which provide a clean closed-form solution after all. In practice, equation 4.2.6
delivered the best results in the experiments, probably because this was the mea-
surement performed with the frequency the sensor was designed for. Despite
the additional calibration attempts performed here, the error was larger for the
second frequency. Equation 4.2.8 is specifically not suited for moving targets,
but may be advantageous for static scenes.

In the following, this method of estimating the distance from two measure-
ments will be referred to as direct distance ambiguity estimation (DDAE).

4.2.2 Noise considerations

Up to now, the theoretical background has been discussed. In practice, one
must keep in mind that there is also noise on both signals. Noise causes two
effects. First, the constant parts of the difference function will not be constant
any more, and become noisy as well. Second, noise will cause transition zones,
where a measurement might randomly alternate between its upper and lower
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Figure 4.11. Result of the distance recovery: As long as the data does not violate any of
the constraints, the distance can be reliably determined. Noise causes border effects –
measurements near zero or the maximum possible measurement range should not be
trusted. The plot has been made using simulated signals with artificial noise added.

boundary. This is shown in figure 4.10, and it is also the reason for the rounding
in equation 4.2.2.

It is important to understand that knowledge about the signals is very im-
portant (noise levels, modulation frequencies and their stability, etc.) and, as
figure 4.11 suggests, the distance of all objects must be sufficiently far from zero
and the maximum distance, otherwise noise effects will cause unreliable border
effects (visible transition zones). These can be detected by observing pixels over
a certain time period and memorizing pixels, which have an ambiguity indicator
of η ∈ {0, 2η̂}.

As a practical consideration, the noise present in both measurements must
be smaller, in its maximum amplitude, than half of the difference between the
unambiguous ranges,

‖ε‖ < ‖λ1/2− λ2/2‖
2

, (4.2.9)

because otherwise, the ambiguity range coefficients k1, k2 can not be estimated
reliably any more. Note that ‖ε‖ applies to the sum of the noise components of
both measurements. So in average, the noise amplitude for a single frequency
must not exceed ‖ε‖ /2.
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Table 4.1. Chosen modulation frequencies and practical conse-
quences.

Property Value Unit

Modulation frequency #1 20 MHz
Modulation frequency #2 18 MHz

Resulting extended measurement range 75 m
Tolerable total noise amplitude (‖ε‖) 0.4167 m

Consequently, DDAE requires properly calibrated sensors and low noise mea-
surements, to achieve best results. In practice, the noise tolerance can be tuned
by choosing the modulation frequencies accordingly. When using frequencies
which cause equation 4.2.9 to yield a larger value, the noise can have a larger
amplitude. However, changing the frequencies and especially making the dif-
ference between them larger will decrease the resulting extended measurement
range, as equation 4.2.3 indicates.

Thus, one must choose the two frequencies very carefully. In most cases, one
will estimate the noise amplitude ‖ε‖ and then choose the frequencies from the
result. Assuming the first frequency is chosen to match best the sensor charac-
teristics, the second frequency can be found by evaluating the noise constraint
from equation 4.2.9, which – after some basic calculation – yields

f2 <
c

c/ f1 + 4 · ‖ε‖ ∨ f2 >
c

c/ f1 − 4 · ‖ε‖ . (4.2.10)

For the measurements performed for this thesis, the chosen frequencies
among more details on the noise tolerance are shown in table 4.1. By using these
values, the maximum range measured on the EPOS facility is well below the
extended measurement range. Of course, for extending the measurement range
further and even for 75 m, other problems must be solved. The LED emitters
will very likely not be able to provide enough light intensity for a measurement
this far. Following [14, page 114], for distances up to 120 m, an output power of
about 8 W is required.

Finally, the entire idea can also be seen as using the camera with a synthetic
modulation frequency obtained from the difference of the two frequencies used
(20− 18 = 2 MHz). The unambiguous interval is equal to half of the wavelength
of this synthetic modulation frequency (150/2 = 75 m). In physics, the related
effect is called beat (commonly found in audio contexts).

However, as there are two independent measurements at different times with
different noise patterns involved, the former introduction is being considered
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Figure 4.12. DDAE range/ noise trade-off. Using four different primary frequencies (red:
18 MHz, green: 19 MHz, blue: 20 MHz and black: 21 MHz), arbitrary distance ranges
are possible. With decreasing noise, significant distance range gains can be achieved,
especially for noise levels, which are already very low.

the correct description of the measurement process. The beat effect was men-
tioned here due to similarities and deeper understanding.

4.2.3 Noise/ range trade-off

As became clear in the previous subsections, there is a trade-off between the tol-
erable noise amplitude and the achievable extended distance range. Decreasing
the difference between the two frequencies increases the distance range, but this
also decreases the tolerable noise amplitude.

Fortunately, the tolerable noise amplitude scales linearly, while the achiev-
able distance range scales with a quotient. Especially for already very small
frequency deviations, even small changes, which decrease the difference further,
lead to large gains in distance range and only small changes in the tolerable
noise amplitude (figure 4.12).

What can also be seen from the plots is the interesting effect, that the choice of
frequencies is irrelevant for the noise margin and the achievable distance range –
the only parameter influencing both quantities is the difference between the two
frequencies. So in effect, the method can be applied to any sensor optimized for
any frequency.

Another conclusion at this point is that a suitable light source (such as a
laser) can be used for long-range measurements, as long as the phase shift
can be measured accurately enough. The laser provides two advantages: first,
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it does not have a broad, continuous spectrum, so the infrared filter of the
camera can become extremely narrow (eliminating even more environmental
light) and second, with a very small beam diversity, its power is sufficient for
large distances (see also section 8.4 starting on page 176).

4.3 Summary

In this chapter, a complete list of typical effects of PMD sensors was given.
The ones with the largest impact on the distance measurement are compen-
sated with state-of-the-art approaches. Care must be taken when employing
the PMD camera for larger ranges, as especially the compensation of the Wig-
gling effect requires an adequate error model. Finally, after the compensation
of the Wiggling effect, fixed pattern noise, integration time offsets and ampli-
tude offsets, an accurate range image is retrieved also for measurements with
more than one modulation frequency. Existing calibration methods do not take
multi-frequency measurements into account, as this is something which has not
been done yet to a large extent. The proposed error compensation is sufficient
to achieve a range error of less than 1 % of the object distance for most of the
measurement range, as will be seen in chapter 7 starting on page 127. Still, espe-
cially the compensation of measurement error of the PMD sensor has room for
improvement.

The measurement range of the PMD camera can be extended by using two
or more frequencies; the redundancy of the two measurements can be used to
extract information about the real distance. However, this method is a trade-off
between measurement noise and range. When the modulation frequencies can
be chosen freely, the proposed algorithm can be tuned from maximum noise
tolerance to maximum range, depending on the requirements. Compared to
other approaches for range extension or phase unwrapping, this approach does
not require the detection of phase jumps and works independently of the scene
geometry. The range extension method just presented has also been published
in [144].

This completes the data preprocessing of the sensors. In the next chapter,
the initialization problem is discussed, which is roughly stated as to find an
initial relative pose estimate of an object without prior information of its where-
abouts.
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As will be seen later, the pose estimate is retrieved by iteratively refining a
given pose estimate on an image-by-image basis. However, the first initial
pose estimate must be available before this process can be started. The largest
problem is the fact that this must work in absence of any prior information about
the target scene. Before calculating a pose estimate, thus the problem of actually
finding the target object must be solved. In the following, this initial acquisition
and estimation process is discussed, and a solution based on the advantages of
the PMD camera will be proposed.

5.1 Related work

In this section, some previously published literature is reviewed. Here, the
choice of reviewed articles will be limited to approaches, which aim at tracker
initialization. Methods such as these are often envisaged with the following
guidelines in mind:

• It does not need to be fast. For the actual pose estimation process, the
initializer is combined with a fast tracker, which can update the pose
estimate at a high rate. The initializer therefore does not need to be fast.

• It does not need to be accurate. The tracker, which does the updates of the
pose estimate for a given sequence of sensor frames is designed to achieve
the accuracy required by the application. The initializer only has to fulfill
the requirements of the tracker, which are usually much less demanding.

• Absence of prior knowledge. The most important property of the initial-
izer is that it must be able to provide the initial pose estimate without any
prior knowledge which may aid in the process.

In the following, a few articles presenting methods which have emerged in the
last years are reviewed. Most publications rely on single cameras (often RGB
cameras) and laser scanners and target a wide range of applications. Conse-
quently, the methods used depend heavily on the latter.

The problem of finding the initial pose is not limited to space-related applica-
tions [30]. Depending on the available sensors, approaches based on the Hough
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transform are viable [25, 68]. Algebraic surface models [137] are particularly
elegant and useful for convex objects but generally lack real-time capability.
Downsampling an edge image and then using neural networks for initial pose
estimation [151] is even real-time capable but needs extensive off-line processing
(neural network training) and is sensitive to occlusion.

In a more general context, template matching [21] is often involved, where
a known set of images of the target object is correlated with the image of the
sensor. The problem is the large search space and the nearest neighbor search,
once relevant matches have been found. The latter has been recently ameliorated
with pose parameter hashing [133]. An overview of approximation approaches
for finding the nearest neighbors is given in [6].

The principal component analysis (PCA) can be used on the point cloud re-
trieved from a laser scanner to determine two degrees of freedom first, and then
the remaining pose parameters can be retrieved by an exhaustive search in 3D
space [63]. The drawback is that this takes several seconds even on powerful
hardware.

Feature-based approaches are possible for initializing the tracking process as
well [143], despite the fact that they increase the size of the model data set and
add additional computational need to the off-line preprocessing phase.

To summarize, initialization methods must always consider the entire im-
age and depend heavily on the sensor and the representation of the model.
Some methods take several seconds to compute, while others are designed to
be real-time capable. Fortunately, the problem of occlusion is not relevant in the
Rendezvous and Docking context (except for self-occlusion).

As will be seen in the rest of this chapter, the PMD camera is the source of a
lot of advantages, which facilitate the process tremendously.

5.2 Initial pose estimation

While most related solutions commonly utilize a CCD sensor, here, it is of in-
terest to benefit from the advantages of the PMD camera. As the PMD camera
is an active sensor, finding the target without any prior information is much
easier than using a single CCD sensor. The CCD sensor is specifically unsuited
for this task, as the image it provides depends significantly on the illumination
conditions, what is not the case for the PMD camera.1

1In fact, of course, also the PMD camera depends on the environmental lighting, as will be seen in
chapter 7 (starting on page 127). But first, this is a consequence of a hardware limitation which can
be ameliorated and second, the PMD camera can work in complete absence of environmental light
in contrast to the CCD camera.
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Figure 5.1. Pose estimator state diagram. States are represented by the named ellipses.
State transitions are indicated by arrows.

Therefore, in this section, a method designed to retrieve a rough pose estimate
solely from the PMD camera – without prior knowledge of the target pose – is
presented. The result is used to start up the tracker for a refinement of the pose
and high-accuracy tracking (see chapter 6 starting on page 105).

5.2.1 Architectural background

The coarse target acquisition is needed in two different situations. First, when-
ever the pose estimation process is started, a rough estimate is required before it
can be refined by the tracker. Second, whenever the tracker encounters a prob-
lem and for some reason loses track of the target, the initializer can be used to
re-initialize the tracker. This is visualized by figure 5.1.

When the estimator is activated, it is in the idle state. It will remain in this
state, until an update request forces it to enter the coarse acquisition mode, what
is discussed in this chapter. Once a rough pose estimate is available, the estima-
tor switches to the tracking state. This state remains active until the estimator is
deactivated or the target is lost for some reason (tracker divergence, for exam-
ple). When the target is lost, the pose estimator switches to the coarse acquisition
state again.

The coarse acquisition state may also lead to a failure state, when the target
can not be found or the quality of the estimate does not fulfill all requirements.
Once this state has been reached, it can never change unless a manual reset is
issued. The reason for this behavior is that the initializer should be able to find
the target at all times and not finding the target is considered a severe error
condition.
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Figure 5.2. Initializer structure. From a bootstrapping point located on the target, a point
cloud is constructed. The properties of the point cloud provide the pose estimate.

Figure 5.2 shows the structure of the initializer, as it will be constructed in the
following. The idea is to retrieve the point cloud of the target, determine the
dominant surface (see definition 6.1 on page 109), and then determine the six
degrees of freedom for that surface. From there, the pose of the entire object can
be calculated.

5.2.2 Image-space coarse acquisition

The acquisition process runs asynchronously. It uses solely the PMD sensor, as
it is much easier to find the target here. Most other approaches would use ex-
pensive model/ template matching algorithms and have to sweep an extremely
large search space. Here, an initialization is proposed which is utmost fast and
computationally efficient.

The design of the algorithm results from the advantages of the PMD camera:
Because the PMD camera is an active sensor, only the target object will produce
a significant feedback of the modulation signal, while the background will not.
This assumption is always true for situations in space, however, it also works
inside the lab, when the background backscatter is sufficiently low.

To begin, the row- and column sums of the amplitude image are calculated
(visualized sideways in figure 5.3):

u =

m−1

∑
j=0

A[0, j], · · · ,
m−1

∑
j=0

A[n− 1, j]

 (5.2.1)

v =

(
n−1

∑
i=0

A[i, 0], · · · ,
n−1

∑
i=0

A[i, m− 1]

)
, (5.2.2)
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Figure 5.3. Target acquisition visualization. The row and column sums of the amplitude
channel are shown on the top and on the right. The global maximum on both dimensions
is used to find an inner point of the object (bootstrap point, yellow). Then, object pixels
are found to retrieve a point cloud (green). The centroid (red) is determined from the
point cloud. For better readability, the convex hull of the selected pixels is drawn white.
The X- and Y-axes show the pixel coordinates.

where m is the number of rows and n is the number of columns of the image.
Now the bootstrap point of the target

w =

(
arg max
x∈[0,n−1]

ux , arg max
y∈[0,m−1]

vy

)
(5.2.3)

is the point obtained by searching the coordinates of the global maximum of the
column- and row sums, respectively. The characteristic of this point is that it
will always be located on the target and near a spot where the signal is strong.
Single pixels with high values will not necessarily influence this measurement,
as long as the vicinity does not also exhibit very high amplitude values.

Once the bootstrap point is known, by recursively searching for target pixels
along the X- and Y-direction, the surface affinity matrix X (see definition 6.2
on page 110) is retrieved. This matrix indicates whether a pixel belongs to the
target object or not. It is visualized by the green dots in figure 5.3. The exact
procedure is shown in algorithm 5.1. By calling it with the bootstrap point w as
base position and starting point for the next positions, the recursion is started.
After the algorithm has terminated, the surface affinity matrix is available.
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The pixels are selected depending on the difference of their amplitude values
(α) and their distance values (β). It is assumed that neighboring pixels which are
part of a planar surface, have similar amplitude values and a low distance devi-
ation. In the current implementation, α = 4,000 and β = 0.05. This works also
for rotated objects, due to the fact that only dominant surfaces (see definition 6.1
on page 109) are to be tracked.

Algorithm 5.1. Procedure for determining the surface affinity matrix. From a bootstrap
point, all other points belonging to the target are found by recursively searching in all four
directions (left, top, right, bottom).

1 Procedure scantargetpixels (b, p)
2 if X[py, px ] 6= 1 then
3 if

∥∥A[by, bx ]−A[py, px ]
∥∥ < α then // Amplitude difference within threshold?

4 if
∥∥D[by, bx ]−D[py, px ]

∥∥ < β then // Distance difference within threshold?
5 X[py, px ]← 1 // Mark this point as belonging to the target
6 scantargetpixels (p, p + (1, 0)) // recursion: right
7 scantargetpixels (p, p + (−1, 0)) // recursion: left
8 scantargetpixels (p, p + (0, 1)) // recursion: bottom
9 scantargetpixels (p, p + (0,−1)) // recursion: top

5.2.3 Dominant surface estimation

The next step is to calculate the 3D points from the PMD measurements, what
is done by multiplying each distance measurement from the distance matrix D
with its corresponding direction vector obtained in section 3.3 (page 67), such
that the measured point cloud becomes

M =
⋃

(x,y)∈ΩPMD
X[y,x]=1

rx,y ·D[y, x]. (5.2.4)

Now given the above point cloud, the task is to determine the target pose. By
reducing the problem to the dominant surface, the pose of the target object can
be estimated after the surface centroid was retrieved by

c̃ =
1
‖M‖ ∑

x∈M
x. (5.2.5)
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Then, two (non-orthogonal) base vectors can be determined by evaluating

f = ∑x∈M (x− c̃) · (1, 0, 0)
‖∑x∈M (x− c̃) · (1, 0, 0)‖ (5.2.6)

g =
∑x∈M (x− c̃) · (0, 1, 0)
‖∑x∈M (x− c̃) · (0, 1, 0)‖ . (5.2.7)

Given these two vectors, the normal vector of the surface can be retrieved from
the normalized cross product ñ(s) = f× g/ ‖f× g‖. However, there are several
drawbacks when using this method. First of all, depending on the rotation of
the surface, singularities can occur (for example, an X-Z surface will produce
a division by zero in equation 5.2.7). Since dominant surfaces will have an
inclination angle of 45 degrees or less relative to the optical axis, singularities
can be excluded but still, there is room for improvement. Therefore, the base
vectors of the surface are not estimated right now, but will be estimated in the
next subsection, along with the orientation about the normal vector.

So far, five degrees of freedom would have been determined. The surface cen-
troid basically contains the three translational components of the target object,
and the surface orientation is defined by the normal vector, which essentially
encodes two rotational degrees of freedom.

The only piece of information, which is still missing, is the rotation about the
normal vector. In order to retrieve this information, the properties of the surface
must be considered. The surface has finite dimensions and more important,
a known shape. Known shape here refers to the set of triangles known from
the model. In the following, it is shown how to retrieve the missing rotational
degree of freedom along with more accurate base vectors without the problem
of singularities.

5.2.4 Surface orientation

For estimating the rotation about the normal vector, the principal components of
both the model consisting of sets of triangles and the measured point cloud are
determined. Then, by finding the transform that brings both principal compo-
nents into alignment, the rotation about the normal vector of the surface can be
found. Note that this will not work for symmetric targets (worst case: sphere).
In this case, hints (additional information) must be provided to the initializer
in order to retrieve the correct pose estimate. This will be discussed later in
section 5.2.5 (page 102).

The first step is to determine the principal components of the point cloud by
performing a principal component analysis (PCA). The PCA provides orthogo-
nal base vectors for a real subspace in a vector space oriented in such a way, that
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the variance of the data is maximized along the principal component vectors. In
this case, the vector space is solely spanned by the 3D point cloudM retrieved
from the PMD sensor and the 2D subspace of interest is the visible surface of
the target.

Problem reformulation

The principal components of the point cloud are equal to the eigenvectors of the
corresponding covariance matrix [10]

C =
1
‖M‖

cXX cXY cXZ
cYX cYY cYZ
cZX cZY cZZ

 , (5.2.8)

where cXX = ∑p∈M (p1 − c1)
2, cXY = ∑p∈M (p1 − c1) · (p2 − c2) and so on.

In practice, this particular problem is best solved by using a slightly different
way in order to gain numerical stability – the Singular Value Decomposition.
The singular values are a characteristic of a matrix very similar to eigenvalues,
but generalized to a larger set of matrices (most importantly, non-quadratic
matrices) [27]. The decomposition has the shape

M = UΣV*, (5.2.9)

where U is a unitary matrix containing the so-called left-singular vectors of M
and V* is an adjoined unitary matrix containing the right-singular vectors of M.
In the following, the adjoint operator will be replaced by the transpose, because
all matrices relevant here are real-valued only and in this case, the transpose
of a matrix is equal to its adjoint matrix, since the conjugation can be omitted
[79, page 334]. Then by definition of the SVD, the left-singular vectors are
eigenvectors of MMT, and the right-singular vectors are eigenvectors of MTM.
As a consequence, when rewriting the covariance matrix in the form

C =
1
‖M‖AAT, (5.2.10)

where

A =


(p1 − c)T

...(
p‖M‖ − c

)T

 (5.2.11)

is a ‖M‖× 3 matrix containing the point coordinates relative to the centroid, the
principal components (or, equally, valid eigenvectors of the covariance matrix)
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Figure 5.4. Determination of principal components of a point cloud. The target point
cloud is visualized by black dots. The two principal components are shown in red and
green; the blue line shows the resulting cross product vector. The centroid of the target
point cloud is marked with orange color. The remaining points of the PMD sensor point
cloud (gray) have been sparsified for better readability (only 10 % of all points are shown).
All numbers are distances in meters. The camera is located on the right of the image, at
position (0,0,0).

can be determined by replacing A in equation 5.2.10 by the definition of the
singular value decomposition of A, what yields

C =
1
‖M‖UΣVT

(
UΣVT

)T

=
1
‖M‖UΣVTVΣTUT

=
1
‖M‖UΣΣTUT. (5.2.12)

Now the column vectors of U are eigenvectors of the covariance matrix C.
Next, for obtaining the principal components, the first two column vectors of U
(named e1 and e2 in the following) are normalized, such that

b̃x =
e1
‖e1‖

and b̃y =
e2

‖e2‖
(5.2.13)

form the pair of surface base vectors, which are orthogonal and aligned with
the surface (red and green lines in figure 5.4).
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Surface size estimation

Afterwards, the dimensions of the surface along the principal components can
be determined. This is accomplished by finding the points with the largest
distance to the centroid along the principal components:

Γ̃ =

(
maxp∈M

(
(p− c̃) · b̃x

)
−minp∈M

(
(p− c̃) · b̃x

)
maxp∈M

(
(p− c̃) · b̃y

)
−minp∈M

(
(p− c̃) · b̃y

)) (5.2.14)

Surface selection

The next step is to prepare the calculations in the satellite body frame. First, the
model surface centroid c(s) must be transformed into the satellite body frame.
For the normal vector n(s) and the two principal components bx(s), by(s), only
the rotation quaternion of the transformation is applied.

Then, matching surfaces are found by reducing the model surface set S to the
reduced surface set S ′, such that

S ′ =
{

s ∈ S : c(s) · n(s) > 0 ∧
∥∥Γ (s)− Γ̃

∥∥
1 < ζ

}
, (5.2.15)

where ‖·‖1 is the sum norm, Γ (k) is the dimension vector of the surface k (as it
was determined in section 3.2.5 on page 66) and ζ is the total maximum of size
deviation allowed for two surfaces to match. In the implementation, ζ = 0.5
lead to good results.

The reduced surface set does not contain surfaces, which are on the inside
and it does not contain surfaces, which have a large size deviation. For an
asymmetric model, ‖S ′‖ = 1. For symmetric models, the correct surface can not
be reliably found and must be provided in some way. Multiple pose hypotheses
are possible.2

Aligning normal vectors and surfaces

Assuming the correct surface ŝ has been found, the rotation quaternion is com-
posed from the quaternion that brings the normal axes of the model surface and
the measured normal vector into alignment,

qalign =

(
(n(ŝ)× (−ñ(ŝ))) · sin

(
∠ (n(ŝ), ñ(ŝ))

2

)
, cos

(
∠ (n(ŝ), ñ(ŝ))

2

))
,

(5.2.16)

2See section 5.2.5 on page 102.
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by(ŝ)

bx(ŝ)

n(ŝ)

b̃y(ŝ)

b̃x(ŝ)

ñ(ŝ)

qalign

(a) The normal vectors of the measured sur-
face (ñ(ŝ)) and the model surface (n(ŝ)) are
brought into alignment.

by(ŝ)

bx(ŝ)

n(ŝ) = ñ(ŝ)

qrot

b̃y(ŝ)

b̃x(ŝ)

(b) The principal components are brought
into alignment by applying a rotation
about the normal vector.

Figure 5.5. Initial attitude quaternion determination. First, the normal vectors of the
measured surface and the model surface are aligned using qalign. Then, the model surface
is rotated until its principal components match the ones of the point cloud using qrot.

and the quaternion

qrot =

(
ñ(ŝ) · sin

(
∠
(
bx(ŝ), b̃x(ŝ)

)
2

)
, cos

(
∠
(
bx(ŝ), b̃x(ŝ)

)
2

))
(5.2.17)

which rotates the model surface, so that the principal components are aligned
as well. The resulting quaternion consequently becomes

qinitial = qrot � qalign. (5.2.18)

Now, the rotation of the target object has been completely estimated. What
remains to be done is the estimation of the translational components.

As the model has now been rotated to match the orientation of the measured
surface, the new centroid vector becomes

cr = qinitial (c) , (5.2.19)

where c is the centroid of the non-transformed model surface. Then, the only dif-
ference remaining is the translational offset, what can be determined by simply
evaluating the difference between the two centroids,

tinitial = c̃− cr. (5.2.20)

Finally, the vector (qinitial, tinitial) provides the initial pose estimate. It may be
imprecise to a certain degree and it will probably lack precision especially for
the translational part. However, it is sufficient to initialize the tracker.
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5.2.5 Object symmetry related pose ambiguity

As stated earlier, for highly symmetric objects, the method just presented can not
reliably determine all six degrees of freedom. The problem solution envisaged
here is twofold. First, when the tracker diverges and the initializer is used to
re-initialize the tracker, the attitude quaternion may be checked to minimize a
(vector) distance metric over the set of model surfaces

ξ = arg min
s∈S

‖qs − qlast‖2 . (5.2.21)

In the case where the tracker must be initialized for the first time, hints may
be given to the tracker. Hints are small pieces of information which allow the
initializer to narrow down the set of possible solutions (poses) until only one
pose remains.

By default, the rotation quaternion qrot rotates the surfaces in such a way that
the principal components are aligned and then, the image is probed with all
relevant surfaces with different rotations, where the rotation about the normal
vector (qrot) is changed in steps of 45 ◦. The initialization problem then can be
stated as

p = arg max
u∈U

∑
(x,y)∈ΩPMD

{
1 Xu,model[y, x] + Xmeasurement[y, x] = 2,

0 otherwise,
(5.2.22)

where U is the set of probed poses (determined as described in the above
paragraph) and the two matrices X are the target affinity matrices – one for
the model (which depends on the probed pose u) and one for the point cloud
determined from the sensor data. For symmetric targets, the number of probed
poses can be reduced by hints:

• When a surface rotation hint is given, qrot is set to a fixed value and no other
configurations of the surface will be tested.

• When an attitude hint is given, the attitude quaternion from the hint is
used and no matching checks are performed at all. The initializer then
only determines the translational components of the complete target pose.

• When one or more surface exclusion hints are given, only surfaces not being
excluded from the search are probed.

• When a surface lock hint is given, only the given surface will be probed.
This is particularly useful, when it is known that the target object will be
faced with a specific side of its body.
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• When a rotation probe grid hint is given, the step size for probed orientations
(default 45 ◦) can be changed.

Refer to section 8.4 on page 176 for possible additional improvements suggested
for future development.

5.3 Summary

In this chapter, the problem of finding the initial relative pose of an object has
been discussed. From the review of several publications it became evident that
each method depends both on the application and the sensors. Therefore, the
same applies to the method presented in the remainder of the chapter.

For minimizing the dependence on environmental lighting, it was decided to
use solely the PMD camera for retrieving an initial relative pose estimate. The
PMD camera can perform this measurement in complete absence of sunlight,
what is not possible with the CCD camera.

The envisaged method is a new approach to the object detection and early
pose estimation problem. It uses the amplitude channel of the PMD camera
to locate the target object in image-space and then expands a point cloud in
3D space starting from a bootstrap point selected from accumulated amplitude
readings. The resulting point cloud provides a centroid, which is used to deter-
mine the translational components of the relative pose. A sequential probing
of all the model surfaces to the point cloud provides the planar orientation of
the matching model surface, and finally, the determination of the principal com-
ponents of the measured point cloud provides the rotation about the normal
vector, what completes the initial relative pose estimate.

In the next chapter, the relative pose tracker is presented, which uses both
measurements from the CCD camera and the PMD camera (in the fashion al-
ready outlined in section 3.1.5 on page 55) to refine and update the pose estimate
during a rendezvous maneuver.
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Once a rough pose estimate is available, it is necessary to update the pose of
the target object, as it moves and rotates over time, while requiring the lowest
possible amount of computational power in the process. In this chapter, a novel
approach for tracking the target (i.e., iteratively updating the pose with high ac-
curacy) is presented. Also, relevant literature is reviewed. The tracking method
presented in the following uses both the CCD- and the PMD sensor and gains
its accuracy from the advantages of the sensors, which are neatly fused on a
rather high, near-application level.

6.1 Related work

To start with the literature review, a few representative data fusion approaches
of PMD- and monocular cameras are presented. Some of the papers use RGB
cameras what means even color information is available in the resulting image.
Comparable data fusion methods regarding a PMD sensor and a CCD sensor can
be grouped together into the high-resolution, low-level interpolation category,
where a large number of image pixels is interpolated by different means due
to the low lateral resolution of the PMD camera. The result is always a high-
resolution image enhanced with distance information.

Figure 6.1 provides a graphical distinction of the different types of sensor data
fusion approaches. The difference is the level where the data fusion takes place.

In a more general context, high-level data fusion as proposed within this
thesis is also often performed by using different variants of the Kalman filter [36,
67, 99] or the particle filter [117], but these approaches require a complete pose
estimate from each sensor. In contrast, here it is attempted to fuse the sensor
data based on distributed measurements of position and orientation deviations
in order to obtain a complete pose estimate.

6.1.1 Scene acquisition

Fusing PMD measurements with monochromatic CCD image data is found
rarely [114] compared to approaches using RGB cameras [60, 64, 65, 87, 89, 116].
One method of fusing the data relies on the orthophoto approach [94]. This
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CCD image PMD image

Image-space
data fusion

Application

fused image

(a) Data fusion on the image level.

Application-
specific data
processing

Application-
specific data
processing

Data fusion

Application

CCD image PMD image
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specific data

(b) Data fusion as part of the application.

Figure 6.1. Different approaches for sensor data fusion. The left image shows the com-
mon way of first fusing the image data of both sensors on the image-level, before any
application-specific processing takes place. On the other hand, on the right, a high-level
data fusion approach is shown, where the data fusion is itself part of the application. The
approach taken with this thesis is, in its structure, similar to the right figure.

method is used to map PMD pixels into the CCD camera frame. Basically, it
works by recalculating the PMD image in such a way that the 3D information
becomes a height map of a 2D image plane. After this step, the resulting height
map can be scaled and applied to the high-resolution CCD image.

There are also approaches interesting particularly from the hardware side
[106], when using an optical splitter in order to combine both sensors for using
single optics. The large advantage of this is, that a lot of calibration work is not
necessary – both sensors basically use the same coordinate frame. The drawback
is the lowered sensitivity of both sensors caused by the optical splitter. As
only approximately half of the light falls on each of the sensors, especially the
range measurement can become difficult for objects with dark surfaces or low
reflectivity in general.

The problem of model building using a PMD sensor together with a high-
resolution CCD camera can be tackled by first translating the point cloud mea-
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sured by the PMD camera into the CCD camera coordinate frame. Then, Markov
Random Fields [84] may be used to fuse the images [60]. In essence, such meth-
ods are based on the assumption that image space color or brightness discon-
tinuities also cause depth discontinuities. The method can also be applied to
and was originally presented in conjunction with a laser scanner [29]. In the
end, this provides a very smooth, high-resolution image enhanced with depth
information, while conserving edge information. A drawback is that this al-
gorithm is sensitive to strong noise and highly textured surfaces, for example
those produced by MLI shielding.

Fusing stereo vision data with PMD data has also been investigated [52, 76,
98], as each sensor may compensate for the deficiencies of the other one. In
more detail, the PMD camera provides good measurements especially for un-
structured surfaces, where stereo vision fails. On the other hand, for a very
much detailed structure, stereo vision provides a good distance estimate, since
there is a high number of clues for estimating the disparity. For fusing the data,
the PMD camera is used as a rough initializer for the stereo matching algo-
rithms. In a later stage, confidence intervals are used to choose whether to trust
the PMD measurement or the stereo matching result. In a different approach,
fusing both stereo vision and PMD distance data into a single image is even
proposed without extrinsic calibration [54] using graph cuts [51].

6.1.2 Scene segmentation and object recognition

There are also attempts of RGB camera/PMD camera data fusion where object
recognition is the high-level goal [87]. Here, instead of recalculating the PMD
camera image, one can rely on projective texture maps [65, 129], where the CCD
camera image is projected onto the 3D shape provided by the PMD camera. For
speeding up the calculations, the data fusion can be performed on a graphics
processing unit (GPU). The advantage is the faster processing speed. The draw-
back is the dependency on the hardware. Unfortunately, especially in space,
highly parallelized and powerful processing units – as can be found on today’s
graphics cards – are not available.

In a follow-up paper [89], the method was improved by refining the distance
estimate near and around edges by a more suitable interpolation [135].

Image segmentation algorithms can profit from the depth measurements of a
PMD camera [123]. In this particular application, an electronic chalk board and
a teacher in front is being used. The PMD camera provides depth measurements,
which are transformed into the CCD coordinate frame. Then, a depth threshold-
ing is made after an erode step in order to remove border effects. Color samples
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of both depth areas are then used to initialize and update the segmentation
provided by the SIOX algorithm (see [44] and [43] for details).

Objects can also be identified using groups of features [124]. Here, such
groups are mapped on object surfaces and a neighborhood relation between sur-
faces allows complete description of the object, what defines the model. When
capturing an object from different viewpoints, background features become un-
stable immediately. This provides a way of filtering such features, as they do
not form a group of stable features.

Purely PMD-sensor based approaches are also possible [152] but depend on
the accuracy requirements, as high-resolution CCD sensors are still superior to
localizing certain image features [95].

6.1.3 Pose estimation

The pose estimation problem is a common topic in all image- and sensor data
processing articles. One possible approach is to fit a plane to carefully selected
key points [110, 112], where edges are detected in the image using a Canny edge
detector. Then, on two outer edges, three points are selected. By intersection
lines perpendicular to the edges, nine more points located on the surface of the
object are retrieved. By finally reading out the distance value and fitting a plane
to the resulting points, the pose is recovered. This approach does not rely on
a previously defined model or features, but it can directly estimate the pose
simply and fast. The drawback of this approach is the low number of pixels
used for the actual measurement, what makes the method prone to noise and
outliers.

A different approach, which is more close to the method presented in this
thesis is the combination of least-squares plane fitting using the PMD point
cloud and the Hough transform [35] to determine the orientation of edges in
the amplitude channel of the camera [111], resulting in significantly improved
precision.

When using stereo vision, the pose of objects can also be estimated by tracking
the lines of a known model and using the 3D information along with the 2D
edges [69]. Here, for higher accuracy, the iterative least-squares pose refinement
algorithm [34] was used: Instead of using an algorithm such as RANSAC [38]
to filter outliers, a weighting function is introduced, which depends on a spatial
distance parameter changing with each iteration. This results in very good
robustness, especially in case of partial occlusion. Using the point cloud and
fitting a model to it using a least squares method is also possible [59].

Finally, the author has already implemented a feature-based pose estimation
algorithm for Rendezvous and Docking scenarios in the past [143]. To introduce
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the main idea briefly, while feature extractors such as SURF [11] and SIFT [93]
are commonly used in 2D images captured by CCD sensors, in the paper it was
attempted to create a novel feature extractor capable of extracting 3D features.
This works by using the depth information of the camera to retrieve surfaces and
fit extraction planes to these surfaces. Once found, local reflection properties
of the object are extracted in a way tolerant to arbitrary rotations. However,
the weakness of this approach are surfaces with a lot of structure in terms of
physical shape.

To summarize, what can be seen from the reviewed literature is that data
fusion often happens on the image level and the accuracy of single-sensor ap-
proaches is often very limited. There is a large number of data fusion methods
with different advantages and drawbacks, but there seems to be a lack of in-
clusion of application requirements. Granted, for mobile robot localization and
mapping, there is not much room for specializing, however, for estimating the
pose of an object, a lot more can be done to improve the overall result.

6.2 Geometric feature estimation

Beginning with this section, the tracking algorithm is presented. In this case,
tracking means to refine a given pose estimate and update it on a frame-by-
frame basis. The initial pose estimate may be given by the user, an initializing
algorithm (such as the one presented in chapter 5 starting on page 91), a naviga-
tion filter, or some other source.

6.2.1 Dominant surface

The first step in the on-line processing part is to retrieve the point cloud from
the PMD camera. Let D be the matrix of distance measurements of the PMD
camera and let rx,y be the direction vector of the image pixel coordinate (x, y)
(calculated in the off-line preprocessing stage – see section 3.3 on page 67), then
the point cloud becomes

M =
⋃

(x,y)∈ΩPMD

D[y, x] · rx,y. (6.2.1)

The next step is to determine the dominant surface of the model. This is accom-
plished by algorithm 6.1.

Definition 6.1 (Dominant surface) Given the optical axis vector z of the sensor and
the set of transformed model surfaces S , the dominant surface is the surface s ∈ S which
maximizes ∏k Γk(s) (the total area) and minimizes ∠ (−z, n (s)) (the angle between
the inversed optical axis vector and the surface normal vector).
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6 High accuracy fused target tracking

Algorithm 6.1. Determination of the dominant surface.

Input : Optical axis vector z
Input : Set of transformed model surfaces S
Input : Current pose rotation quaternion qp
Output : Dominant surface ŝ

1 bbest ← π // best angular deviation
2 abest ← 0 // largest area
3 ŝ = ε
4 forall the s ∈ S do
5 v← qp � (n (s) , 0)� qp // apply current pose (rotation only)
6 if (∠ (v′,−z) ≤ bbest) then // Angular improvement?
7 if (a (s) > abest) then // Area improvement?
8 bbest ← ∠ (v′,−z)
9 abest ← a(s)

10 ŝ← s

6.2.2 Surface affinity matrix

After the dominant surface is known, the surface affinity matrix X can be re-
trieved, which contains the information of whether a pixel is part of the target
object or not.

Definition 6.2 (Surface affinity matrix) A matrix X which is of the same size as
the distance matrix D, each element corresponding to an image pixel, is called surface
affinity matrix, when for each element

X[y, x] =
{

1 The projection of the surface contains (x, y)
0 otherwise.

The matrix is constructed by first initializing all elements to zero. Then, the
scanline algorithm1 changes elements to 1 where a triangle is drawn. The rea-
soning for choosing this particular method will be given later in section 6.4.1
(page 117). The entire algorithm is too long to put it here, therefore, a summary
is given.

For three given triangle vertices, the algorithm starts at the upper left point
and from there moves to the right, until the right border of the triangle is hit.
Then, it moves one line down and repeats. This happens until the entire triangle

1Despite the name of the algorithm, this has nothing to do with the scanlines used in later stages.
While this algorithm is dedicated to drawing triangles, the scanlines used later are needed for
finding the position of an edge.
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6.2 Geometric feature estimation

v1

v2

v3

Figure 6.2. Principle of the Scanline algo-
rithm. Triangles are drawn by traversing
each line of pixels from the upper left to
the bottom right point.

has been drawn. A visualization is provided in figure 6.2. The large size of the
algorithm results from the number of different cases, which must be handled
depending on the orientation and shape of the triangle.

Before the triangles can be drawn, however, their 2D image space vertex
coordinates must be known. First, for all triangle vertices x ∈ V(t) and for all
triangles t ∈ T (ŝ) (where ŝ is the currently tracked surface), the current pose is
applied:

xp = qp � (x, 0)� qp +
(
tp, 0

)
, (6.2.2)

where qp is the rotation quaternion of the current pose estimate and tp is the
translational part of the current pose estimate. Next, the individual sensor
reference frame must be applied; due to its definition, however, it must be
applied inversed, such that

xs = qs � xp � qs − (ts, 0) , (6.2.3)

where qs and ts are the rotation quaternion and translation vector of the sensor,
respectively. Next, the resulting 3D vertex coordinate, which is now relative
to the sensor coordinate frame, is projected into 2D image space. First, the
normalized coordinates

xu =

(
−xs1 /xs3

−xs2 /xs3

)
(6.2.4)

are retrieved. Then, optical distortion must be respected. Here, the complete
distortion model is applied (meaning tangential and radial distortion). The for-
mulas were taken from the CalTech Camera Calibration Toolbox. The resulting
distorted pixel coordinate then is

xd =

((
1 + k0 · r + k1 · r2) · xu0 + 2 · k2 · xu0 · xu1 + k3 ·

(
r + 2 · x2

u0

)(
1 + k0 · r + k1 · r2) · xu1 + 2 · k3 · xu0 · xu1 + k3 ·

(
r + 2 · x2

u1

)) , (6.2.5)
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6 High accuracy fused target tracking

where r = ‖xu‖2, the squared norm of the undistorted pixel coordinate vector
xu. After this step, the vector must be multiplied by the focal length and the prin-
cipal point must be added as offset in order to obtain image space coordinates,
what yields

x =

(
fx · xd0 + cx
fy · xd1

+ cy

)
. (6.2.6)

This calculation can now be made for each 3D vertex of the model belonging
to the visible surface. Then, so far, the triangles are drawn using the Scanline
algorithm and the pixels belonging to the dominant surface are memorized in
the surface affinity matrix X. This is done in the image space of the PMD sensor.

6.3 Scanline processing

Equally, after all model lines have been projected into the image space of the
CCD sensor, scanlines can be extracted to track the lines in the image. As it was
discussed in section 3.1.5 (page 55), here, data processing is limited to estimating
residual data for only three degrees of freedom. In the end, the displacement in
X- and Y- direction as well as the angular displacement about the roll axis is to
be determined.

In order to achieve this, articulated edges of the target object are tracked. For
making the tracking process computationally efficient, the number of pixels
sampled during this step is minimized by only sampling a particular selection
of image pixels. These pixels will have the shape of lines, which will be referred
to as scanlines in the following.

The idea of using lines in such a way for tracking edges is common practice
in machine vision, as this is a problem which has been addressed for a long time
[33, 34, 55, 132], [61, pp. 368–369].

Definition 6.3 (Scanline) Given the set of image pixels P , a scanline is a sequence of
pixels P ′ ⊂ P chosen in such a way that it forms a line crossing an articulated edge of
the model clearly visible to the texture segmenter in the CCD image. A natural ordering

“<” is defined among the set elements of P ′, allowing the line to be traversed.

6.3.1 Scanline parameters

Scanlines are used to gather information about the change in position and ori-
entation of an articulated edge visible in the CCD image stream. To accomplish
that, scanlines are best placed perpendicularly along the last known line of the
model. This line is obtained by projecting all lines l ∈ L(ŝ) belonging to the
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real edge positionl

bl,k

bl,k−1

bl,k+1

vl

ls

le

tl,k = fl,k,Ns/2+cl,k

fl,k,Ns/2+1

last known
edge position

Figure 6.3. Visualization of a scanline
and edge finding. A scanline is used
to perpendicularly search for an edge
in the image, relative to a last known
line.

currently tracked surface ŝ of the model using the last known model pose p, into
the CCD image plane. In the following, ∑l will denote the summation over all
l ∈ L(ŝ). For the remainder of this section, please have a look at figure 6.3 for
help in understanding the process.

Each one of these lines has a starting point ls and an endpoint le in CCD
image space. The vector describing the difference is thus ml = le − ls. Then, for
each line l ∈ L(ŝ), a scanline spawn point bl,k is computed by traversing the line,
such that

bl,k = ls +
k

Nl
ml , (6.3.1)

where k is a natural number which increases from 0 up to Nl − 1. Nl is the
number of planned scanlines for the model line l. It is determined by the length of
the line ‖ml‖, such that

Nl = Ns ·
‖ml‖

∑x∈L(ŝ) ‖mx‖
, (6.3.2)

the ratio between the length of the line l and the total length of all lines x ∈ L(ŝ).
It further depends on Ns, the total number of scanlines to use for tracking the
entire surface ŝ, what was found to provide good results with Ns = 80.

Now, after the scanline spawn point has been determined, the scanline is
placed perpendicular to the model line, with its central point coinciding with
the scanline spawn point. For that, the direction vector

vl =
ml
‖ml‖

×
(

0 1
−1 0

)
(6.3.3)
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6 High accuracy fused target tracking

is created. After that, the pixels are sampled from image space, according to the
position vector

fl,k,x = bl,k +

(
x

γ/2
− γ

)
· vl , (6.3.4)

where x is a natural number increasing from 0 to γ− 1 and γ = 50 is the length
of the scanline. Finally,

sl,k = I
[
fl,k,x

]∣∣
x∈[0,γ−1]∩N0

(6.3.5)

contains the image space samples of the pixels targeted by the k-th scanline on
the projected model line l.

6.3.2 Texture change point

Assuming the image space samples have been successfully obtained in sl,k, the
texture change point can be determined. Please refer to the introductory sec-
tion 2.6.1 on page 45 for more information about the following texture segmenta-
tion algorithm. At this point, only the actual implementation will be discussed.

First of all, the sampled pixel values may be limited in dynamic range. For
example, if a dark part of the image is sampled, the values in the scanline vector
sl,k will have a very limited value range. Since the brightness values must be
quantized (due to the very limited length of the scanline), a normalization is
required, such that

s̃l,k =
sl,k

max sl,k
. (6.3.6)

Next, the brightness values in the normalized scanline vector s̃l,k are quan-
tized into bins. This is required since the ratio of the length of the scanline and
the bit depth of the image sensor is too large. Note that quantization is not
necessary when the scanline length is of the same magnitude (or even larger)
than the number of possible brightness values.

Here, the normalized and quantized brightness values are denoted by

sl,k =
⌊

s̃l,k ·
(

2b̃ − 1
)⌋

, (6.3.7)

where b̃ is the reduced bit depth, such that 2Nq is the number of quantization
bins. sl,k now only contains numbers in [0, (2Nq − 1)].
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6.3 Scanline processing

Afterwards, the texture change point estimation can be performed by maxi-
mizing the product of the probability term

pl,k(u, v) =
v

∏
z=u

∑z
h=u 1 +

{
1, sl,k(z) = sl,k(h)
0, otherwise

2Nq − 1 + (z− u + 1)
(6.3.8)

of the two texture-generating processes T1 and T2, such that the texture change
point becomes

cl,k = arg max
c∈[α,γ−1−α]

pl,k(0, c) · pl,k(c + 1, γ− 1), (6.3.9)

where α is the minimum number of samples considered for a texture gener-
ating process, pl,k(0, c) is the probability of the sequence {sl,k(0), . . . , sl,k(c)}
belonging to T1 and pl,k(c + 1, γ− 1) for T2, respectively. In the current imple-
mentation, α = 4. The idea is that when sampling the two texture patterns with
the correct texture change point, their probability will be maximal and sampling
at a wrongly chosen texture change point will only decrease the product of their
probabilites. Consequently, the goal is to maximize the product.

Now, after the index of the pixel on the scanline has been determined, it is
straightforward to obtain the actual texture change point

tl,k = bl,k +

(
cl,k
γ/2

− γ

)
· vl , (6.3.10)

which is just equation 6.3.4, but with x replaced by cl,k.
Before the texture change points can be used, the RANSAC algorithm (see

[38] for details) is applied to the points in order to remove outliers (remember
that the sequence of texture change points forms a line). In the following, only
texture change points remaining after this step are considered. Consequently,
Ñs will denote the total reduced number of scanlines (or resulting texture change
points, for that matter) of the surface, which are left after the RANSAC filtering.
Ñl will denote the reduced number of scanlines on the line l, respectively.

6.3.3 2D image space deviation components

For computing the two first translational deviation components, the distance
vector between each texture change point tl,k and the model line l

dl,k = tl,k − bl,k (6.3.11)
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Figure 6.4. Visualization of 2D image
space deviation components. A result-
ing displacement vector is obtained
by arithmetic averaging all displace-
ment vectors from all scanlines.
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is computed. Then, the sum of these vectors provides the deviation components

(
∆x
∆y

)
=

1
Ñl

∑
l

Ñl−1

∑
k=0

dl,k. (6.3.12)

This is shown in figure 6.4. Afterwards, the roll angle residual can be obtained
by computing the mean angular deviation of all lines l of the tracked surface ŝ.
Before this can be done, the position deviation must be considered. To regain
independence, the centroid of all texture change points

gl =
1

Ñl
·

Ñl−1

∑
k=0

tl,k (6.3.13)

is determined, where Ñl is the reduced number of scanlines of the line l again.
In the next step, vectors pointing from the texture change point centroid to

each particular texture change point are constructed,

rl,k = tl,k − gl . (6.3.14)

Now the resulting vectors rl,k are independent of the current model position.
In order to calculate the angular deviation, these vectors must be expressed
in a different coordinate frame aligned with the model line l. This is done by
projecting the vectors onto the base vectors of the targeted coordinate frame,
such that

wl,k =

(
rl,k · (ml/ ‖ml‖)

rl,k · vl

)
, (6.3.15)
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gl

to ls

to le

texture change
point centroids

wl,k(0)

wl,k(1)tl,k

tl,k+1

Figure 6.5. Roll angle residual visualization. The residual can be measured once the texture
change point centroids have been obtained.

where ml/ ‖ml‖ is the normalized direction vector of the line l (note that in
the previous definition of ml , it was intentionally not normalized) and vl is the
scanline direction vector (which was normalized by definition).

The angular displacement can now be retrieved as the angle between the
zero vector (first base vector in the right-handed, 2D coordinate frame) and wl,k
(figure 6.5). As a consequence, it follows that

∆γ =
1

#L(ŝ) ∑
l∈L(ŝ)

Ñl−1

∑
k=0

arctan2
(
wl,k(1), wl,k(0)

)
, (6.3.16)

what completes the processing of the CCD sensor data.

6.4 Point cloud processing

After the CCD sensor data has been processed, the data of the PMD sensor must
be prepared and then processed. In section 6.2 (page 109), the processing of
model data along with coordinate frame transformations and optical distortion
accommodation has already been described. In the following, the surface affin-
ity matrix is retrieved from the model and then border effects are addressed.

6.4.1 Surface affinity determination

When processing images from the PMD sensor, the object must be separated
from the background and even more important, surfaces currently being tracked
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6 High accuracy fused target tracking

must be separated from remaining parts of the object. While approaches of
using image data for performing this separation are possible, there are often
drawbacks caused by limited accuracy, outliers and singularities. Therefore, the
surface affinity is determined by using the model information.

When the current (approximate) pose is known, the model along with all of its
surfaces can be projected into the PMD camera frame and then pixels belonging
to an object surface can be marked. This is the high-level idea. On a lower level,
there are multiple methods for marking the pixels, assuming the model defines
the surfaces as sets of triangles (of which both have been tested):

• Raytracing. Here, for each pixel of the camera sensor, a virtual ray is cast
into the scene and every triangle is checked for a collision with the ray.
The collision closest to the camera defines the distance and surface of that
pixel. This method is very accurate and provides barycentric coordinates
without much additional effort. However, it has the drawback of being
too slow.

• Scanline algorithm. The triangles are first projected into 2D image space.
Then, each triangle is processed individually in the following way: Start
at the leftmost, uppermost pixel of the triangle (this will be one of the first
vertices after sorting them using their Y coordinate). Then, mark pixels,
row by row, from left to right, by walking along the edges of the triangle as
borders. This method is well known in computer graphics and utmost fast.
The drawback is that barycentric coordinates are not retrieved – additional
effort must be put in, to retrieve them.

Due to the speed of the Scanline method and the fact that barycentric coordi-
nates are not important for this application, it is the method of choice. It has
already been introduced in section 6.2.2 (page 110). After the projection of the
dominant surface of the model, a rough surface affinity matrix is available.

6.4.2 Surface affinity matrix refinement

Since the projection used the pose estimate of the previous frame, there may be
a discrepancy between the model and the real object, which will be addressed
in the following. Especially pixels near the border of the dominant surface can
be assigned to belong to the target instead of the background and vice versa.

For this purpose, a planar RANSAC algorithm is now applied to the model
surface described by the respective surface affinity matrix X in conjunction with
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the distance matrix D. For better stability, the choice of pixels is straitened by
the constraint that for the three points p1, p2, p3,

‖p1 − p2‖ > 0.5 ∧ ‖p2 − p3‖ > 0.5 ∧ ‖p3 − p1‖ > 0.5 (6.4.1)

must hold at all times. By enforcing that the three points, which serve as a
definition for the RANSAC testing surface, are spatially distributed, a lot of
processing time is saved. In the end, after the RANSAC algorithm has finished,
the surface affinity matrix X will be updated accordingly, such that erroneous
pixels (too much noise, border effects, sensor saturation, etc.) are removed.

After the surface affinity has been refined, the three object/ model pose de-
viation components can be calculated, which provide the foundation for the
numeric optimization and thus, finding the updated pose estimate.

6.4.3 Deviation component determination

First the surface centroid must be found. Assuming P is the set of points belong-
ing to the surface ŝ (points selected from the sensor point cloud), this becomes

c̃(ŝ) =
1
‖P‖ · ∑

x∈P
x. (6.4.2)

Next, the normal vector of the surface is retrieved by evaluating

ñ′(ŝ) =

(
∑

x∈P
(x− c̃(ŝ)) · x1 − c̃x

‖x− c̃(ŝ)‖

)
×
(

∑
x∈P

(x− c̃(ŝ)) ·
x2 − c̃y

‖x− c̃(ŝ)‖

)
. (6.4.3)

Note that (x1 − c̃x) / ‖x− c̃(ŝ)‖ is essentially the cosine of the angle between
the difference vector x− c̃(ŝ) and the X axis, while (x2 − c̃y)/ ‖x− c̃(ŝ)‖ is the
sine, respectively. Finally, the normal vector is retrieved after the normalization

ñ(ŝ) =
ñ′(ŝ)
‖ñ′(ŝ)‖ . (6.4.4)

Then, the same vector can be used to determine the angular displacements
for the pitch angle (see also figure 3.1 on page 56),

∆α = arctan2 (ñz(ŝ), ñx(ŝ))− arctan2 (nz(ŝ), nx(ŝ)) , (6.4.5)

and the yaw angle,

∆β = arctan2
(
ñz(ŝ), ñy(ŝ)

)
− arctan2

(
nz(ŝ), ny(ŝ)

)
. (6.4.6)
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In both cases, ñ(ŝ) refers to the measured normal vector of the surface ŝ and
n(ŝ) refers to the normal vector of the corresponding model surface. The addi-
tional indices denote the vector components.

The distance deviation is obtained by determining the distance vector be-
tween a point on the model surface (pRef(ŝ)) and the measured point cloud
centroid, then projecting this vector onto the point cloud normal vector:

∆z = (c̃(ŝ)− pRef(ŝ)) · ñ(ŝ). (6.4.7)

This completes the calculation of the last three deviation components. By nu-
merically minimizing these quantities, the pose estimate can be obtained.

6.5 Pose estimation

The pose estimation is mainly inspired by the individual sensor characteristics
worked out in table 3.1 (page 57). It is an attempt to maximize the accuracy of
the pose estimate by using each sensor’s strengths.

6.5.1 Pose representation

The pose of the object is a union of two different operations: Translation and
rotation. While the translation can be simply expressed as a vector in 3D space,
the rotation can be represented by numerous means, such as Euler angles, a
rotation matrix or a quaternion. Rotation matrices are a good choice in situations
where a large number of vectors must be rotated. For complete transformations,
by using homogeneous coordinates, the translational part and the rotational
part can be combined into one single matrix. Standard methods for inverting
a matrix can be used to retrieve the inverse transformation. The problem with
that is however, that matrix inversions are in general non-trivial and can fail
entirely for ill-conditioned matrices.

Euler angles are a very common representation of linked rotations. The main
advantage is the easy to read representation for human beings. The drawbacks
are the gimbal lock, a singularity where exchanging angles in a certain way will
not alter the rotation result and second, the order in which the rotations about
the coordinate frame axes are performed, is important and there is, in general,
no universally accepted convention for that.

Finally, the quaternion is a computationally very efficient representation of
rotations. There are no problems with singularities. This suggests that quater-
nions are simply the best representation of rotations for technical applications.
This is why a quaternion has been chosen to represent the orientation.
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6.5 Pose estimation

Definition 6.4 (Pose vector) A pose vector is a 7-element vector, composed of a 4-
element rotation quaternion q =

(
qx , qy, qz, qw

)
and a 3-element translation vector

t =
(
tx , ty, tz

)
such that the pose vector is p =

(
qx , qy, qz, qw, tx , ty, tz

)
.

6.5.2 Pose vector optimization

The algorithm design is a tracker architecture. The idea is to have an approxi-
mate pose estimate and refine this estimate with each pair of images retrieved
from the sensors. As the pose estimation problem is in general non-linear and
a closed-form solution is not available, the method relies on numeric optimiza-
tion.

There are several optimizers known, however the Levenberg-Marquardt al-
gorithm [92, 97] is a very well documented and proven method, which is why
it is being used here. It seeks the minimum of an objective function χ, which in
this case is defined as

χ : S3 ×R3 ×Rh×w ×Rv×u ×Rv×u → R7, (6.5.1)

where S3 is the set of unit vectors in R4 (3-sphere). This function maps a pose
vector p ∈ S3 ×R3, along with the brightness image B ∈ Rh×w retrieved from
the CCD camera and the distance image D ∈ Rv×u and the amplitude image
A ∈ Rv×u retrieved from the PMD camera (which are all considered constant
during the optimization) into the residual space R7. The residual vector is com-
posed of the angular and translational displacements, as well as the deviation
of the quaternion norm from the unit norm (1). A solution is found when all
elements of the residual vector are zero.

6.5.3 Error metric

What remains to be done is defining an error metric, which can be minimized in
the pose space, so that the pose vector is updated with respect to the incoming
sensor images. Table 3.1 on page 57 already listed the quantities that are going
to be used. Therefore, the residual can be put together as

εp = (∆α, ∆β, ∆γ, ∆x, ∆y, ∆z, k · (1− ‖q‖))|p , (6.5.2)

where ∆α is the pitch angle deviation, ∆β is the yaw angle deviation, ∆γ is
the roll angle deviation, k · (1 − ‖q‖) is the amplified unit quaternion norm
deviation, and ∆x, ∆y and ∆z are the translational position deviations, respec-
tively. The unit quaternion deviation is introduced as an additional quantity
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here in order to prevent the optimizer from changing the norm of the quater-
nion embedded in the pose vector. The amplification factor has been determined
experimentally and it was found that a value of k = 100 provided stable results.

The residual can then be written as a sum of squares over the above vector
elements, or simply the square of the vector norm, such that

χ(p) =
∥∥εp

∥∥2 (6.5.3)

becomes the objective function.
The individual components are calculated as described in sections 6.3.3

(page 115, for the 2D deviation components) and 6.4.3 (page 119, for the 3D
deviation components).

The optimization is carried out using the Levenberg-Marquardt algorithm
[92]. Due to the design of the error metric, the norm of the quaternion will
not have diverged to a large degree, but for the stability of the algorithm and
further processing of the pose vector, the quaternion is normalized after the
convergence of the algorithm so it can be guaranteed that it is of norm 1. After
that point, the update of the pose vector is complete.

6.6 Summary

In this chapter, a novel method for tracking a target object was presented. The
method utilizes measurements from the CCD camera for tracking edges and
PMD camera data for tracking surfaces. On a frame-by-frame basis, displace-
ments are computed which are then used to minimize a common pose error
residual. The pose estimate is obtained by adapting the model transformation
towards the real-world position and orientation. By combining the information
of the PMD sensor and the CCD sensor in this common optimization, the ad-
vantages of the sensors are properly used and a highly accurate pose estimate
is retrieved.

Compared to existing approaches, where either the images of the two sensors
are fused on the image level [60, 94] and the application-level data processing
runs on the high-resolution depth image created by the data fusion or the data
fusion is accomplished by using a stochastic state estimator such as the Kalman
filter [36, 67, 99], here, the data processing is limited to relevant parts of the
images only. This is important for minimizing the computational need, what is
easily achieved with the proposed method.

Before going into the measurements, it is advisable to have a look at the two
flow diagrams presented in chapter 1 again. Figure 1.2 (page 15) summarizes
the preprocessing part and figure 1.3 (page 16) shows the principal part of the
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just presented algorithm. The flow diagrams will be useful for interpreting the
results.

In the next chapter, tests are envisaged and conducted in order to assess
the performance of the algorithm. Another goal will be to find limits of the
method just proposed with regard to possible situations encountered in a space
environment.
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Measurements, Analysis & Discussion





7 Performance measurements

So far, the architecture of the proposed algorithm was presented in detail. De-
spite the postulated theoretical advantages, it is of high importance to test the
method in a preferably realistic environment (what very often happens not to be
available). For this purpose, the EPOS facility already introduced in section 2.1
(page 17) was used. The test campaign was divided into two major parts; first, it
should be demonstrated that the algorithm works as intended. This corresponds
to a test under optimal conditions. Then, by applying different lighting condi-
tions, the limit of the proposed method will be found, as the optimal operating
conditions are no longer present. Moreover, robustness tests such as temporary
loss of tracking will also be considered.

7.1 Setup

In the following, the setup of the testing environment is given. All tests per-
formed on the EPOS facility have this common configuration as a starting point.
Deviations from the configuration will be noted in the text.

7.1.1 Sensor mounting

The EPOS facility consists of two industrial manipulators, of which both are
equipped with a universal mounting plate. To mount the sensors, mounting
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pitch: 70 mm
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Figure 7.1. CAD drawing of the
EPOS mounting plate, including
placement of the sensors (orange:
CCD camera, blue: PMD camera).
Optical axes of the sensors are in-
dicated by crosses. All numbers
are in mm. The EPOS tool coor-
dinate frame (red/green) coincides
with the satellite body frame (SBF)
used as reference for the pose es-
timate. (Mounting plate CAD draw-
ing courtesy of Robo Technology GmbH,
used with permission)
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Figure 7.2. Picture of the satellite mockup
used for the experiments. The central body
of the mockup is 2.3 × 1.8 m in size. It
is wrapped in a MLI-like thermal blanket.
The apogee nozzle represents the rear of a
typical geostationary satellite.

adapters have been designed which interface to the mounting plate of the EPOS
facility and the sensors.

The design of these mounting adapters was lead by the idea of letting the op-
tical axes of the sensors intersect with the center point of the mounting adapter.
This way, a precise positioning was made possible without consuming too much
space on the EPOS mounting plate.

Figures 7.1 and 2.13 (page 44) show the location of the sensors on the EPOS
mounting plate. Although the location of the sensors is known from the mount-
ing process, it is especially the orientation of the sensors, which must be known
very precisely. Since the mounting adapters can only provide this precision up
to a certain degree despite the efforts of manufacturing them in a local CAM
facility, the results of the extrinsic calibration performed in section 2.5 are used
as a reference.

7.1.2 Target mockup

A mockup of a typical geostationary satellite has been used as the target object.
It is of utmost importance, to have a mockup that is similar to a real satellite
as much as possible. Especially the reflectance of infrared light is achieved by
using a foil similar to MLI. Figure 7.2 shows an image of the mockup mounted
on one of the robots.

The antenna dishes have to be removed during facility operation in order to
respect the inertia limits of the robot, what is not a significant limitation in con-
trast to the fact that the mockup only provides one side of the simulated satellite
and the robot can not perform a continuous rotation due to cable connections.
Hence, tumbling satellites can not be simulated by the facility at the moment,
but for testing the estimation of the target satellite pose during a servicing ma-
neuver, this is sufficient.
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Figure 7.3. Comparison of real and simulated sun spectrum. The real sun spectrum data
(black) was taken from the ASTM E-490-00 extraterrestrial Reference Spectrum (ETR/
AM0). The spectrum of a 5 kW lamp at 10 m (red) and a 12 kW lamp at 10 (blue) and 7
(green) meters is also shown.

There is a small model of the complete satellite available (1/30 scale), how-
ever, because the PMD camera can not measure a “scaled distance” and – more
important – the light dampening including all reflections would be unrealistic,
the usage of the scaled model was not pursued further.

7.1.3 Sun simulation

A 12 kW ARRI theater lamp has been used as a sun simulator and placed at
different positions for the experiments (see section 7.5 on page 157), to simulate
different lighting situations encountered in orbit.

The spectrum of the lamp was measured using a B&W Tek SpectraRad
Xpress spectrometer (BSR112E-VIS/NIR). This particular spectrometer is specif-
ically suited for spectral irradiance measurements. Its wavelength range is
250–1,050 nm. Figure 7.3 shows the spectrum of the lamp, compared to the sun
spectrum.1

1For an in-depth analysis of the solar spectrum, see [140]. The data for the plot was taken from
http://rredc.nrel.gov/solar/spectra/am0/ASTM2000.html.
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Figure 7.4. The spectral response of the CCD camera (Prosilica GC-655), as taken from the
camera data sheet.

What can be seen is that for a comparable light intensity, high-power illumina-
tion is necessary. A comparable sun spectrum is achieved with the 12 kW lamp
(ARRIMAX) at distances less than 7 meters. There are still slight differences –
and most prominently, several peaks – in the spectrum, which are related to
the inner lamp gas composite. What can also be seen is the presence of an
ultra-violet filter, as the spectrum is cut at about 400 nm. The 5 kW lamp is of a
different architecture and does not reach comparable light levels.

Before using this plot for judging the sunlight similarity, it is also advisable
to actually have a look at the sensitivity plot of the sensor, what is given in
figure 7.4. Here, it can be seen that the spectral deviation of the light source
from the sun above wavelengths of 1µm can be neglected, as the camera will
not capture these deviations significantly. The same applies to the ultra-violet
range below wavelengths of about 400 nm. The camera data sheet does not
provide information for wavelengths below, but it can be estimated that the
sensitivity will continue to gradually decrease. Therefore, the range of interest
is near the peak of quantum efficiency, which is located at about 510 nm. The
chosen light source provides sufficient power at this point. To conclude, using
the 12 kW lamp at a distance of about 7 meters is sufficiently close to the real
sun exposure when the sun is to be simulated in conjunction with this particular
camera.
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Table 7.1. Comparison of absolute irradiance levels relevant to the PMD sensor.

Location Absolute irradiance*

(W/m2)

Earth surface† 56
AM0 (facility simulation)‡ 113
AM0 (reference spectrum) 120

* Integration range: 815–940 nm.
† Measured using the spectrometer on february 22, 2012 at the DLR site in Oberpfaffen-

hofen.
‡ At a distance of 7.0 meters.

Unfortunately, the spectral response of the PMD camera is not available.
Therefore, the simulation of the sun can not be guaranteed to be close to re-
ality. Moreover, it must be assumed that the spectral sensitivity peaks at about
870 nm as suggested in the data sheet. The wavelength of the infrared light
provided by the LEDs is in fact specified to be 850 nm, however due to the
temperature-related shift occurring during operation, 870 nm is more realistic.
Also, the bandwidth of the LEDs is specified to be about 100 nm. When inspect-
ing figure 7.3, it can be seen that there are peaks in the spectrum of the lamp
very close to this wavelength range, although a precise readout showed that the
irradiance levels of the sun and the lamp are approximately equal at 870 nm.

According to the manufacturer of the PMD camera, the optical path consists
of a RG830 filter (peak transmission at 830 nm) and an interference filter, which
cuts wavelengths above 940 nm. Because there are multiple peaks within this
wavelength range, the total irradiance levels have been calculated by integrating
the spectral irradiance functions in the relevant interval.

There are two different conclusions that can be drawn from the results (ta-
ble 7.1). First, the sun simulation of the facility is very close to the reference
spectrum, which represents reality. The magnitudes of absolute irradiance are
comparable. Second, there is a large difference between the absolute irradiance
on the surface of earth and space. Obviously, about half of the power in this
range of the spectrum is lost in the atmosphere.

The consequence of this is that when the PMD camera is advertised as being
“sunlight tolerant”, this will very likely only apply to scattered sunlight on
ground; direct sunlight in space will be more than twice as intense. This has to
be kept in mind, especially when regarding the rendezvous scenarios conducted
in section 7.5 (starting on page 157).
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Figure 7.5. Image capturing component overview and data flow. The PMD camera only
has a USB interface, which is incompatible with the real-time part (yellow). Therefore, a
device server (gray) provides the data of the PMD camera on a TCP connection. The rest
of the process is contained within the Windows part.

7.1.4 System structure

The structure of the measurement environment is explained in figure 7.5. Due
to limits in interfaces and also limits for run-time memory allocation, it was
decided to run only the most essential parts on the real time system, that is,
the robot controller and the interface. By using the SimCon block, the two
simulations can be connected and the EPOS feedback is transported via a TCP
connection. For details on this block, please refer to [17, 113].

For facilitating the analysis of the measurements, the image data was written
to files along with timestamps and EPOS reference data. For Hardware-in-the-
loop tests, this can be adapted in such a way that the estimated pose is passed
back to the master Simulink model to provide inputs for a guidance system or
similar.

7.1.5 Sensors

The PMD sensor was operated using the provided optics, which does not allow
focus or focal ratio adjustments. The CCD sensor was operated with a more
advanced optics which allows focus and focal ratio adjustments. The focus was
set to infinity and the focal ratio will be provided in the descriptions of the
individual experiments, as it was not left constant.

Due to the fact that the two cameras are not synchronized to the EPOS facility,
latency issues can occur. The typical latencies are shown in table 7.2.

What can be seen in the table is that the standard deviation of the latencies
of both sensors do not differ much. This is something one would probably not
expect from a setup such as this. Still, it is clear that the longer and more complex
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Table 7.2. Sensor latency statistics* (measured using the performance counter API on the
ACS-MMI Windows system†).

Property PMD camera CCD camera Unit

Mean 0.150794 0.095406 s
Standard deviation 0.000882 0.000835 s
Variance 0.000001 0.000001 s2

Minimum 0.149397 0.095266 s
Maximum 0.168779 0.109387 s

* All values include the individual exposure times, which have been set to 80 ms for the
CCD camera and 2 ms for the PMD camera.

† Timing resolution (Windows XP limit): ≈ 2.7937 × 10−7 s, clock source: ACPI PM
timer (3.579545 MHz). Drift is unknown, but for recent systems, 50 ppm is a reasonable
assumption.

data path of the PMD camera causes the standard deviation to be larger than
the one of the CCD camera. This also explains the significantly higher latency
mean.

Both sensors are queried from MATLAB/ Simulink in a serial fashion, which
means that the total latency of the data acquisition will be the sum of both
sensors (about 240 ms).

Since the effect can not be compensated in any way and since it is very short
compared to the cycle time of one second, it will be neglected in the following.
Also, due to low velocities during motion capture sessions, the effect will be
minimal.

7.1.6 PMD Sensor issues

There are several open questions, which must be dealt with in a dedicated
fashion. The PMD sensor is mostly used and tested with a single frequency.
Therefore, it is desirable to know whether the oscillator can also reliably produce
other signals for different modulation frequencies. To summarize, the following
issues must be dealt with first:

• Stability of the oscillator. The modulation frequency must be as stable
and accurate as possible, because deviations accumulate and cause severe
errors in the distance measurement especially for large distances.

• Oscillator settling time. Because the oscillator now must produce two
different frequencies, it depends on the hardware design, whether this
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(a) LVDS signals at 18 MHz (timebase
20µs/div)

(b) LVDS signals at 20 MHz (timebase
10µs/div)

Figure 7.6. PMD modulation signal measurements. The complementary LVDS signals of
the camera have been measured using a digital storage oscilloscope in order to determine
the frequency deviations.

works flawlessly or not. Switching between two different frequencies may
introduce additional problems.

• Time between measurements. The two measurements performed at dif-
ferent modulation frequencies must be made as close as possible in the
time domain in order to minimize the distance error introduced for the
second measurement by the delay. The delay should be constant and must
be known.

In order to accommodate these issues, it was decided to take a direct approach.
The Camcube provides the modulation signal for both LED cubes as an LVDS
signal. By using a digital storage oscilloscope, the signal can be analyzed. Still,
there is one little challenge which must be solved. Both modulation frequencies
will only be visible for very short time periods; determining the frequency of
the individual signals will be utmost difficult. Also, any difference between the
18 MHz and 20 MHz signal will be difficult to discover, unless the two frequen-
cies can be observed isolated.

Fortunately, the used oscilloscope (Agilent Technologies DSO7014A) has a
pulse width trigger mode. By forcing it to trigger for a specific pulse width,
choosing two slightly different integration times at the camera, and triggering
on the length of the active state of the LVDS lines, the two signals can be isolated.
The results are shown in figure 7.6.
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As can be seen, it is still very difficult of triggering at the right point. Because
it now depends on a time period of a pulse (and not a rising or falling edge), the
trigger point becomes a bit unstable in the time domain. Moreover, the intervals
do not have clean edges for the oscilloscope to lock on to, but a very complex
shape. This is why the measurement exhibits significant jitter. However, it does
not pose a problem for measuring the above quantities.

The length of the intervals used for triggering correspond to the integration
time. Here, an integration time of 20µs was used for the 20 MHz image and
50µs was used for the 18 MHz image. Note that the timebase is different for
the two images. The modulation frequency is then measured by estimating the
length of a period, what can be done automatically by the oscilloscope. Also, the
corresponding frequency is determined along with statistical properties. After
more than 10,000 measurements, the frequency estimate becomes sufficiently
accurate.

Especially for the right image, the frequency deviation of ∆ f ≈ 0.0135 MHz
leads to a wavelength deviation of ∆λ ≈ 0.005 m. This offset will accumulate
for each ambiguity interval. Therefore, the measured frequency must be used
as a reference for all measurements and for the calibration as well.

What remains to be measured is the time it takes the oscillator to provide a
stable signal for the LEDs and also the time between the two measurements.
Both quantities have again been measured directly at the LVDS lines of the
camera. The result is given in figure 7.7.

First, the time it takes the signal to become stable was determined to be about
750 ns. For the given integration time interval of ∆t = 20µs, this equals to about
3.75%. It is therefore concluded that the effect can be neglected. The beginning
of the integration interval will only contribute very little to the measurement,
and especially for larger integration times (which are certainly more common
than 20µs), the effect will be even less significant. The settling time does not
depend on the integration time but is related to capacities on the chip, the PCB
and cabling, along with inductivities.

Especially figure 7.7b shows something unexpected. When the camera is
put into multi-frequency mode, the two measurements are not performed in a
contiguous manner, but instead, a cool-down interval in inserted (probably to
prevent an out-of-specification duty cycle on the LEDs). This way of design is
highly problematic. This means that the second measurement will be performed
at a significantly different point in time, what causes offsets for all non-static
scenes and especially for objects moving or rotating at higher velocities, the
offsets will become large.

The offset seems to be constant and not changing with the integration time,
so it can also be speculated that this is perhaps not a safeguard for the LEDs but
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(a) Oscillator settling time. The readout
was made manually using the cursor func-
tion in single acquisition mode.

(b) Time between two measurements. Mea-
sured automatically using the signal period
estimation of the oscilloscope.

Figure 7.7. PMD modulation signal timing measurements. About 750 ns pass until the
LVDS signal reaches a stable level once the integration begins. Between two measure-
ments, an interval of about 3.75 ms can be found.

may be some time span required for internal sensor data processing (buffering,
bus transport, reset/ preparation for next measurement, etc).

Nevertheless, a better design can be achieved by moving most of the pro-
cessing after both measurements, so that the time between two consecutive
measurements is minimized. The time between two frames (i.e., group of two
images) is less relevant and restrictive than this intra-frame time span. For the
given situation, the period was 3.77 ms. Subtracting the integration time, the ac-
tual processing time is at about 3.75 ms. The target object was moving towards
the camera at a velocity of 5 cm/s what consequently translates into an error in
distance measurement of 0.175 mm for the second integration time interval. For
this given velocity, the error is negligible. However, this must be kept in mind
for larger velocities.

Unfortunately, especially in cases where the integration time is set to very low
values in order to become as robust as possible against motion-related imag-
ing problems, this effect will block any progress that could be made regarding
imagery of high-velocity objects. This problem must be addressed in future
designs of PMD sensors.

To conclude the measurements, care must be taken with the modulation
frequencies and the intra-frame spacing in time domain, when using multi-
frequency imaging. Here, the effect can be ignored due to low velocities of
target objects. The modulation frequency offset, however, must be respected
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Table 7.3. Properties of the linear approach experiment (ideal conditions). The most
important point for the experiment was the diffuse lab lighting, what eliminates the
influence of lighting effects.

Property Value Unit

Target velocity 0.005 m/s

Initial distance* 22.000 m
Final distance† 1.000 m

Attitude quaternion‡

qx 0.500 —
qy -0.500 —
qz -0.500 —
qw 0.500 —

Imaging rate 1.000 Hz
PMD camera integration time 2.000 ms
CCD camera integration time 80.000 ms
CCD sensor focal ratio f/8 —

Lighting Diffuse (lab)

* The full distance of 25 meters can not be used due to the robot configuration.
† For testing the presented algorithm, this is sufficient. See the text for details.
‡ The rotation quaternion was fixed for this particular sequence.

as it has a larger impact on the accuracy. Oscillator/ signal settling time issues
could not be found – their influence on the measurement is negligible.

7.2 Reference measurements

In the following, reference measurements will be made at optimal conditions,
in order to better evaluate the impact of different lighting conditions. This first
section is to be seen as a proof of concept, where the emphasis is put on a rather
quantitative analysis of the measurement errors and their causes.

7.2.1 Linear approach

In this measurement campaign, the target moves towards the chaser without
any disturbance. Furthermore, it is attempted to achieve optimal lighting condi-
tions. Optimal here means that the accuracy is maximized. This is for getting a
first impression of what to expect. Table 7.3 summarizes the properties of the
experiment. The main driver for this test was to see the performance of the PMD
camera.
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The target velocity was chosen in such a way that the experiment can be com-
pleted in reasonable time. Any approach in a real orbit between two spacecraft
will – at this distance – look very similar. Higher velocities lead to an increasing
risk of damaging one or both spacecraft in the docking process. Therefore, it
is believed that this approximates reality good. Apart from that, by increasing
the imaging rate, higher velocities are possible when required, so this is no
limitation at all.

As the table states, the initial distance was chosen to be 22 meters. Although
the EPOS facility can theoretically simulate a distance of 25 meters, this was cho-
sen for simplicity. The main problem here are the two manipulators which have
a configuration of their joints which needs some space for itself. For each robot,
this is approximately 1 meter. The remaining difference (1 meter) was added for
safety reasons. The robot configuration is flexible, but at the time this thesis was
compiled, the on-board measurement system was already installed (but not yet
operational), which limits this flexibility to a certain degree. Also, there are joint
movement limits as well as positioning area limits in place to prevent damage
to the facility and its mockups. Still, for most of the measurements, these limits
have never been hit and if they have, the impact was negligible.

The final distance was chosen to be 1 meter. The presented method allows
rendezvous of two spacecraft as it is. However, for docking, the distance becomes
too small for any camera to see the entire target. In other words, target edges
move out of the image what makes it impossible to detect their positions. At this
point, the presented method will cease to function. This is why it is necessary
to switch to a different type of sensor or algorithm at this point. For example,
a feature-based approach (as done earlier in [143]) can provide estimates until
the docking process is complete. Most likely, however, other sensors will be
used (for example, the OLEV docking tool has sensors which can be used for
the last few centimeters [66]). Multiple cameras with different field of view are
also widely used [103].

The integration time was left fixed (although there are approaches of adapting
it dynamically [48, 149]) mainly because changing the integration time can take
a lot of time (where the camera is not responding while at it). Furthermore, the
results are still reasonably accurate, as will be seen later.

The imaging rate was chosen from what is known to be very common. At
this rate, image processing can take place even on embedded systems with
very limited computational power, as it is the case for most satellites. Also, for
a regular approach with very little velocity changes (as velocity changes are
usually expensive) a navigation filter will still be very well capable of correctly
performing the rendezvous [12].
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Figure 7.8. Pose estimation visualization. The straight outer edges of the model are vi-
sualized as overlay inside the CCD camera image. At the top left corner, the amplitude
channel of the PMD camera is shown. Pixels which have been selected for surface esti-
mation are mixed with 50% white. As this is being done in memory (grayscale image
processing), there is no color available. The X- and Y-axes show the pixel coordinates.

The lighting for this first measurement campaign was set up very simple. The
lab provides diffuse lighting through the CCFL lamps at the top of the lab. Since
the lab is about 10 meters high, and the density of lamps is high, the resulting
light can be assumed to be diffuse and uniformly distributed. More importantly,
this lighting configuration allows testing the algorithm at peak performance,
what is important for detecting lighting-related performance losses.

A still image of the pose tracker output is given in figure 7.8 showing the
CCD image with the PMD amplitude channel visualized in the top left corner
during the approach sequence.

The text in the image provides the state of the algorithm: Estimator state (ES),
Initializer state (IS), PMD sensor image space violation (P), CCD sensor image
space violation (C). The last line provides the current pose estimate. The first
four numbers are the quaternion components and the last three components
form the translation vector. An image space violation is present, when at least
one point of the projected target object is outside of the visible sensor area.

Slight offsets are normal, these are caused by the fact that the overlay is late
by one frame. The PMD range measurement, as it is available after the PMD
preprocessing (see chapter 4 starting on page 69), is shown in figure 7.9. The
distance measurement of the PMD camera contains vital information about
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Figure 7.9. Visualization of the distance measurement. Color indicates measured distance
in meters (white = 0 meters, black = 30 meters). The large amount of noise results from a
very short integration time tuned for measuring the distance of the mockup. As can be
seen, the mockup does not show evidence of significant noise. The X- and Y-axes show
the pixel coordinates.

the distance to the target, as well as two of its rotational degrees of freedom.
Note that the distance range was limited to 30 meters in order to improve the
readability of the figure.

The result of the measurement is given in figures 7.10, which shows the posi-
tion estimation error and 7.12, which shows the orientation estimation errors in
form of Euler angles. The angles have been retrieved by computing the differ-
ence quaternion q∆ = qm � qref between the reference orientation qref and the
estimated (measured) orientation qm, and then converting the difference quater-
nion to Euler angles using pitch – yaw – roll order, as described in section 1.6
on page 13.

While the X- and Y- directions are determined using the CCD sensor to the
largest degree possible, the Z direction is determined using the PMD sensor.
As can be seen in figure 7.10, especially the Z direction shows a striking error.
This error can be described as having several components. First, there seems
to be a periodic effect. This could be a residual from the Wiggling effect at first
glance, but the residual plots of the calibration did not show any evidence of this
(figure 7.11). It is possible that it is caused by unknown reflections, but despite
a significant effort put into finding the cause, it still remains unclear. A few
outliers have also been captured, which raise the error to about 5–6 centimeters,
but they do not pose a real problem, as such incidents can be filtered out in a
later stage.
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Figure 7.10. Position estimation error for the linear approach (X position: red, Y position:
green, Z position (target-pointing): blue).
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(a) Residual error after the calibration of
the Wiggling effect for 18 MHz (λ/2 ≈
8.3 m).
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the Wiggling effect for 20 MHz (λ/2 =
7.5 m).

Figure 7.11. Wiggling effect residuals after compensation. In these plots, no other com-
pensation measures are considered. Both plots indicate that the periodic error has been
neutralized.
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Figure 7.12. Angular estimation error for the linear approach (pitch (up/down): red, yaw
(left/right): green, roll: blue).

The second effect is a general decrease of the error with decreasing distance
(so the distance of the target is slightly over-estimated for larger distances). This
is very likely a residual effect of the intensity influence on the measurement.

Please note that details about PMD sensor calibration are out of the scope
of this work. Granted, the accuracy of the estimation can still be improved
by using more sophisticated PMD calibration methods. However, the range
error constraint of 1%, which is commonly found in space-related navigation
and distance estimation according to [130], is not violated except for very close
distances below 6 m. At this distance, switching to a different pose estimation
method would be advisable also for continuous tracking, as the outer edges
of the target will be outside of the image space very soon. Consequently, the
performance is sufficient even in its current implementation. The increase of the
error for very low distances is likely to be a consequence of multi-path effects.

The angular error is shown in figure 7.12 in the form of Euler angles. What
can be seen from the plot is that there is a static offset on the orientation of the
target (see the one degree offset on the pitch angle), what is at first glance very
likely to be a side effect of the fixed pattern noise calibration (see section 4.1.1
on page 72). As the camera was positioned against a white wall, the precision
of the rotation and position is very limited. Unfortunately, there was not any
suitable equipment available to achieve a higher accuracy in this regard. How-
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ever, disabling FPN correction did not improve the result, so there must be a
different source of error.

As the deviation remains constant over the entire distance range, it is possible
that this is due to a remaining error on the extrinsic camera calibration, but this
is rather unlikely because the error would have to be significantly smaller in
magnitude. Most likely, it may be the case that this is a residual of a compen-
sation measure applied by the chaser robot. The robots compensate the static
effects of mass mounted near the end-effector. As the chaser was not moving,
gravity would lead to a deviation in the pitch angle. The problem is now that the
load parameters are configured for the target model, which was not mounted
during the measurements (because otherwise the PMD camera could not have
been mounted at all). Consequently, the robot was over-compensating for a
mass that was not there. It is uncertain, whether this can explain the complete
offset, but it is at least a part of it and it is conspicuous that the error appears on
the pitch angle, which describes the up/down directional rotation and thus is
sensitive to gravity. Unfortunately, it was not possible to perform a new set of
measurements with the static load compensation disabled or corrected due to
time constraints and facility reservations.

7.2.2 Compound motion

In this section, the target exhibits a compound motion, where all rotational axes
along all translational degrees of freedom are changing with time. This test is
intended to demonstrate the method for freely moving and rotating or tumbling
objects. The experimental setting from section 7.2.1 is reproduced except for
the distance and motion parameters. In addition to the distance-decreasing
rendezvous trajectory, a disturbance was added.

The X- and Y- displacements are sine functions with an amplitude of 10 cm.
The attitude quaternion is constructed from a rotation matrix, which rotates
about all three angles with the same sine functions (amplitude 10 °). The purpose
is to demonstrate the suitability of the algorithm in more complex situations.

The results of the compound motion show that the regular pattern seen in
the distance measurement of the linear approach (figure 7.10) is still partially
visible (figure 7.13).

An additional problem encountered in this compound motion case is the
specular reflection of the target mockup. The LED emitters of the PMD camera
are clearly visible as a bright circle on the target, moving over the target as it
rotates. However still, despite the locally distorted distance measurements, the
target attitude and position are estimated reasonably well.
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Figure 7.13. Translational error of the compound motion. The largest deviation remains in
the Z direction, but the regular pattern seen in the linear approach is almost gone. Overall,
the translational errors are bound by 3 cm in X and Y direction and 11 cm in Z direction.
The colors correspond to the coordinate axes in this way: X- red, Y- green, Z- blue.

Table 7.4. Comparison of pose estimation errors for different motions. The compound
motion shows significantly larger errors due to the more complex movement. The largest
impact comes from the heavy changes in lighting due to the rotation and the reflection
properties of the target surface.

Property Linear approach* Compound motion* Unit

Positioning error (X) −0.004± 0.003 0.000± 0.004 m
Positioning error (Y) −0.011± 0.005 −0.008± 0.006 m
Positioning error (Z) 0.014± 0.011 0.023± 0.021 m
Pitch angle error −0.970± 0.451 −0.730± 1.060 deg
Yaw angle error −0.018± 0.452 −1.074± 1.672 deg
Roll angle error −0.133± 0.432 0.021± 0.479 deg

* All values are to be read as µ± σ (mean ± standard deviation).
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Figure 7.14. Angular errors of the compound motion. The static load compensation intro-
duces an orientation error which manifests in deviations between the reference and the
measurement. The colors correspond to the angles in this way: pitch (up/ down): red,
yaw (left/ right): green, roll: blue.

When inspecting the statistical properties of the errors (table 7.4), a few things
become visible as well: First of all, a problem with the Y axis becomes evident for
the translational quantities. This is probably due to the static load compensation
of the robots. The increase of the error in Z direction is caused by the large
amplitude deviations encountered during the approach. The X axis position is
estimated only slightly worse when compared to the linear approach.

The estimated orientation shows only marginally larger errors. This is due
to the initial pointing error and the effect of the additional rotation. A more
detailed view of the error is given in figure 7.14.

While the error shows the expected regularity, there is also a point where the
orientation can not be determined reliably any more (near 20 m). This particular
problem is caused by the reflection properties of the foil surface. Even small
tilt motions can lead to large signal strength deviations, which manifest in large
amplitude variance (figure 7.15).

This obviously happens only for distances larger than 16 meters. For smaller
distances, the mean signal strength remains at an acceptable level, despite the
fact that the target orientation is still constantly changing and passing through
comparable situations.
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Figure 7.15. Compound motion mean amplitude (signal strength). From the set of target
associated pixels, the mean amplitude is computed. When the target is tilted in such a
way that the reflected signal becomes very weak, the point cloud becomes sparse and all
quantities measured by the PMD camera become inaccurate.

In summary, this is a problem which can be ameliorated with constantly
tuning the integration time of the PMD camera, however, there are still limits
(the image captured by the PMD camera will always require a high dynamic
range sensor).

Regulating the integration time can be kind of dangerous in situations of
rotating targets, as the amplitude values change very quickly (see the rise and
fall of the amplitude near 18 and 19 m in figure 7.15). In the worst case, this may
even lead to tracker divergence and when the initializer is used to reinitialize the
tracker, it may not be able to find the target due to a large number of saturated
pixels. Therefore, it is not sufficient to just adapt the integration time to the mean
amplitude of the target pixels, as it was proposed before [48, 149]. Instead, one
must also hold and propagate a safe value, which may be used in this situation in
order to prevent tracker divergence or reinitialization problems. This safe value
would have to be chosen in such a way that target acquisition is always possible
(maybe with limited accuracy, but this would be still better than not finding
the target at all). Apart from that, there is a significant time delay between the
integration time change request and the actual resulting image. An integration
time controller would have to take this into account.
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Table 7.5. Static pose estimation error statistics. Four different distances have been used
to identify possible laws regarding target distance and estimation quality. The integration
time (2 ms) and environmental lighting (diffuse lab light, as described in section 7.2.1 on
page 137) were fixed for these measurements.

Pose compo-
nent

5 m* 10 m* 15 m* 20 m*

Position (x) 0.003± 0.001 −0.001± 0.000 −0.002± 0.001 −0.001± 0.004
Position (y) −0.009± 0.001 −0.008± 0.001 −0.008± 0.002 −0.009± 0.006
Position (z) 0.025± 0.006 0.006± 0.002 −0.006± 0.004 −0.013± 0.017
Pitch angle −1.026± 0.505 −1.099± 0.142 −1.216± 0.301 −1.157± 0.467
Yaw angle 0.250± 0.372 −0.168± 0.144 −0.173± 0.369 −0.256± 1.479
Roll angle −0.056± 0.092 −0.000± 0.081 −0.049± 0.137 −0.220± 0.422

* All values are to be read as µ± σ (mean ± standard deviation). Sample size: 90 (for
eliminating startup effects, the last 90 frames have been used). Position values are in
meters, angles are in degrees.

7.3 Static target performance evaluation

For this test, the target object has been positioned at different distances (because
the distance is the most important parameter that influences the quality of the
measurement) and for each point, about 100 frames have been captured. The
resulting mean values and standard deviations are shown in table 7.5.

The static target analysis is intended to provide an insight into the influence of
the distance, while preventing motion-related effects from distorting the statis-
tics at the same time.

As can be seen from the table, there is an increase of position uncertainty for
the X- and Y- directions due to the varying size of the target. The more far the
target moves away from the chaser, the more influence is gained for a single
pixel. This can also be seen in the standard deviation of the roll angle, as it is
related to the same effect.

The distance estimation is rather independent of the distance, as expected.
The only influence here is the signal dampening, which depends on the distance.
However, its influence on the standard deviation is still very limited and from
the series given in the table, no concrete law can be derived.

For these measurements, the initializer was supplied with a surface rotation
hint, in order to prevent random object rotation configuration ambiguities from
complicating the comparisons. Note that this does not happen during a contin-
uous sequence, as local attitude information is used in order to resolve these
ambiguities.
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The angular offset on the pitch angle is visible again in form of a static offset
of about −1 ◦, as already explained in section 7.2.1 on page 137. Apart from
this, it can be generally concluded that the roll angle can be determined with a
slightly higher accuracy than the two other angles. Especially for low distances,
near-range effects related to the PMD sensor amplify this effect, as there are
increasing problems with determining the angles from the point cloud. On the
other hand, at large distances, the roll angle estimation becomes less accurate
and there may be a point where it becomes less accurate than the pitch and
the yaw angle. This is related to the differences in lateral sensor resolution and
depth resolution.

7.4 Start-up process evaluation

In this section, the start-up of the presented algorithm is evaluated. To that
end, a few different scenarios are used in order to compare the initializer pose
estimate with the reference pose. Also, it is investigated whether the tracker did
correctly converge on the initial pose estimate.

7.4.1 Initializer performance

Given the architecture of the initializer (see chapter 5 starting on page 91), the
quality of the initial estimate depends solely on the PMD sensor. In the follow-
ing, different scenarios are evaluated in order to provide a thorough analysis of
the performance of the initializer.

Static case

First, the four static scenes already introduced in section 7.3 will be used. The
results are shown in table 7.6.

What applies in general is that the standard deviations are larger compared
to those of the tracker (table 7.5). This is due to the lack of information from
the CCD sensor. Also, the standard deviations increase with the distance as
expected, since less pixels are contributing to the estimation when the target
appears smaller.

The in particular bad estimation of the attitude quaternion at 5 meters is again
likely to be related to near-range effects, what demonstrates in a non-intentional
way the robustness of the tracker (figure 7.21, page 154). It is caused by a
significant deviation of the target object shape as it is represented in the resulting
target affinity matrix produced by the initializer (figure 7.16).
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Table 7.6. Static target acquisition error statistics for targets at four different distances
(same image material as used in section 7.3). A surface rotation hint (determining qrot
as described in section 5.2.4 on page 97) was provided to the initializer here, in order to
facilitate the computation of the mean and standard deviation values.

Pose com-
ponent

5 m* 10 m* 15 m* 20 m*

Position (x) 0.165± 0.017 −0.104± 0.004 −0.183± 0.005 −0.245± 0.005
Position (y) −0.041± 0.007 −0.015± 0.003 −0.010± 0.004 −0.002± 0.004
Position (z) 0.061± 0.012 0.003± 0.007 −0.007± 0.005 −0.020± 0.011
Pitch angle 1.204± 0.842 −1.073± 0.055 −1.251± 0.056 −1.093± 0.082
Yaw angle 0.061± 0.451 −0.308± 0.057 −0.237± 0.069 −0.225± 0.089
Roll angle −24.165± 2.301 2.486± 0.587 3.873± 0.904 1.821± 0.868

* All values are to be read as µ± σ (mean ± standard deviation). Estimates marked as
invalid have been filtered in order to retrieve correct statistical properties (frames for
which the initializer was unable to provide an estimate). Position values are in meters,
angles are in degrees.

Dynamic case

For testing the initializer during motion, a reference trajectory has been used,
where the distance between the chaser and the target is continuously reduced
and at the same time, the target changed its orientation. A sine function with
10 ◦ amplitude has been added to all rotational axes and further, sine functions
with an amplitude of 10 cm have been added to the two remaining translational
axes. The tracker has been disabled for this test case, so that the resulting pose
estimate reflects the result of the initializer for every single frame of the image
sequence.

(a) 5 m. (b) 10 m. (c) 15 m. (d) 20 m.

Figure 7.16. Target affinity matrices for different distances. White pixels are included in
the point cloud, black pixels are considered not to be a part of the target object. The target
is deformed at close ranges, leading to increasing errors in the target acquisition result.
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Figure 7.17. Target acquisition analysis (position). The colors in the plot correspond to the
coordinate system axes: X (red), Y (green), Z (blue).

When inspecting the position estimation error of the initializer (figure 7.17),
it becomes obvious that orientation changes (and consequently, severe changes
in amplitude due to non-lambertian reflectance of the thermal insulation) have
a large impact on the accuracy of the centroid position determination, since
the centroid position is primarily used for determining the target position (see
section 6.2.1 on page 96). Although the absolute errors appear to be large, when
putting this into context with the distance, the errors do not exceed 5 % of the
distance.

Furthermore, as will be seen later, the tracker will still be able to lock onto the
target, despite these offsets. For future improvement, instead of estimating the
centroid of the point cloud, fitting the surface into the point cloud will probably
provide a more accurate result.

When inspecting the orientation plot, there is evidence of significant error
(figure 7.18). This is the consequence of the PCA being relatively sensitive to
local PMD point cloud sparseness. The trajectory used is particularly difficult
for the initializer, because it contains parts where the target does not reflect
much of the signal (figure 7.19a).

While the case of the low amplitude does not pose a large problem in space,
it does for the lab tests, because local reflections at the facility safety fence can
confuse the tracker (false target). When the bootstrap point is placed at such a
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Figure 7.18. Target acquisition analysis (orientation). The colors in the plot correspond to
the Euler angles: Pitch (up/ down): red, yaw (left/ right): green and roll: blue.
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(a) Problem #1: A very low amplitude oc-
curring due to non-lambertian reflectance
properties of the target under rotation.
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(b) Problem #2: Closed point set. When the
bootstrap point is located within a closed
structure, the point cloud can not be ex-
panded to the full target.

Figure 7.19. Initializer image amplitude scenarios. Both scenarios pose a problem to the
initializer. Either very low amplitude or high amplitude inside a closed structure can
prevent the initializer from expanding the point cloud. The X- and Y-axes show the pixel
coordinates.
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Figure 7.20. Initializer state variable progression. The blue curve shows the number of
points in the point cloud determined by the initializer. The red curve shows the relative
matching (1.0 means all points of the point cloud have been matched). When the matching
threshold of 0.3 is not reached, the initializer will not return a pose estimate and switch to
an error state. For better readability, this is marked light red.

location, none of the surfaces of the model will match. Fortunately, this can not
happen in space.

A more relevant problem can occur at low distances, when the target has
highly articulated structures on the visible surface which produce closed areas
of high amplitude and similar distance (figure 7.19b). In these cases, the point
cloud can not be extended past the structure boundary, what again leads to the
problem that no model surface will match.

There are also parts in the plots, where the initializer was unable to provide an
estimate at all. This happened once during a low-signal phase (distance range
18–21 m) and again (but much less severe), when the target was already very
close to the chaser (distance range 5–7 m).

The reason for this is that the relative matching of target pixels dropped
below the threshold (figure 7.20), which has been set to a value of 0.3 here,
what has been determined experimentally. The figure also shows the number
of points in the target object point cloud. As can be expected, it increases, as the
distance becomes smaller. Especially for very low distances, the effect shown
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in figure 7.16 limits the expansion of the point cloud and thus, the pixel-target
matching becomes unstable.

As can be seen, the relative matching correlates to the point cloud size. Near
a distance of 20 meters, the size of the point cloud decreases slightly, as the
bootstrap point becomes unstable for several frames. Near 9 meters a significant
amplitude spot causes the point cloud expansion to exclude several pixels. As a
consequence, the principal components become more inaccurate and the relative
matching decreases rapidly. At 6 meters and less, the point cloud can more
and more not be reliably expanded to the full target size any more due to the
effect shown in figure 7.16, and despite the still increasing number of pixels in
the point cloud, the centroid estimation becomes inaccurate, what causes the
decreasing number of matched pixels.

Overall, the approach works very well for a large target range, but still needs
improvement for very low distances. The problems at larger ranges are a conse-
quence of side effects only present in the lab experiment.

The accuracy of the initializer is only partially required for the application, as
stated in the requirements defined at the beginning of the chapter. The question
is whether the estimate is accurate enough for the tracker to converge on such
an estimate. This will be investigated in the following subsection.

7.4.2 Tracker convergence

With the given architecture, it is assumed that the target object can be tracked,
as the position changes and the angular changes from one frame to the next are
sufficiently small. This translates to: the tracker will converge on an initial pose
estimate, when its deviation from the real pose is sufficiently small. However,
as stated earlier, the target acquisition process is particularly difficult at close
ranges due to various effects, such as maximization of optical distortion effects,
possible PMD multi-path effects, and so on. In this subsection, it will be investi-
gated whether the performance of the initializer meets the requirements of the
tracker.

Near-limit test

The first test was motivated from the image sequence obtained during the ini-
tialization of the static 5 meter sequence, which is shown in figure 7.21.

This sequence is particularly interesting, because it takes the tracker several
frames until it has finally converged on the real position. As can be seen, at the
beginning, there is a large angular error remaining from the initializer. How-
ever, the tracker was able to successfully lock onto the target. Still, in situations
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(a) Frame 1. (b) Frame 2. (c) Frame 3. (d) Frame 4.

(e) Frame 5. (f) Frame 6. (g) Frame 7. (h) Frame 8.

Figure 7.21. Tracker convergence after bad initialization. As the image sequence shows,
the tracker is capable of correcting large errors of the initial pose estimate after a few
frames.

where lighting is critical, such a large displacement can become an obstacle for
the tracker. An exemplary scene will be given later in section 7.5.2 on page 159:
Under these circumstances, the CCD sensor can not provide much information,
as there is not enough light available which would allow edge tracking. The
initializer, however, would continuously provide valid estimates, as the PMD
sensor can operate without dependence on environmental light. Nevertheless,
the image sequence just shown is a first indication that the tracker is very ro-
bust. This motivates to investigate it further, specifically for a more advanced
trajectory.

Complex trajectory

In the following, the test trajectory already introduced in section 7.2.2 (page 143)
will be used in which the distance between the target and the chaser is con-
tinuously decreasing and the target is changing its orientation using the sine
function on all rotational axes with an amplitude of 10 ◦. Every 20 frames, the
tracker is intentionally reset, in order to restart the target acquisition and lock-on
process.

When inspecting figures 7.22 and 7.23, the regular pattern where the tracker
has been purposedly reset can be seen as light blue lines. Whenever the esti-
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Figure 7.22. Tracker convergence during the approach sequence (position error). The
coordinates are X (red), Y (green) and Z (blue). The background coloring indicates the
estimator states (light red: failure, light blue: target acquisition active, white: tracking).

mator switches to the target acquisition state, the target was artificially “lost”
shortly before.

Both plots show blocks in light red, where the initializer was unable to pro-
vide a reasonable pose estimate and switched to its error state. The two cases
are identical to those already explained in section 7.4.1 on page 148. Apart
from these special cases, the tracker converges correctly on all pose estimates
provided by the initializer.

In the position error plot, small peaks can be seen for the Z coordinate, which
are about 5 cm in size. Sometimes, the deviation is larger, but the tracker still
converges. This can be caused by wrong inclusions or exclusions of pixels into
the target point cloud used for the estimation of the pose. What can also be
seen is that the position error is slightly larger also for the regions where the
tracker is running. This is a consequence of the much higher dynamic range of
the active PMD signal, which is now occurring due to continuous rotation of
the target during the approach.

When inspecting the plots near a distance of 14.5 meters, a large orientation
deviation is encountered, which is corrected within one frame. The remain-
ing parts of the plots are consistent with the expectations (cf. figures 7.13 on
page 144, and 7.14 on page 145).
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Figure 7.23. Tracker convergence during the approach sequence (orientation error). The
angles are pitch (up/ down) (red), yaw (left/ right) (green) and roll (blue). The back-
ground coloring indicates the estimator states (light red: failure, light blue: target acquisi-
tion active, white: tracking).

Overall it can be concluded at this point that despite the difficulty the ini-
tializer might have of estimating a valid initial pose, when it does, the tracker
converges to the correct pose estimate within a few frames. Obviously, the ini-
tial pose estimate must be very close to a false local optimum in pose space in
order for the tracker to hold on to it by mistake.

Erroneous target acquisition recovery

It is possible to create such situations intentionally, for example a rotation of
90 degrees about the roll axis will cause the tracker to follow the wrong pose.
However, these pose estimates tend to be unstable and it is very likely that the
tracker diverges soon (figure 7.24), so that a new initial pose can be acquired.
Furthermore, if there is any cross-checking available from the application side,
the estimator can be instructed to re-acquire the target at any time.

This completes the synthetic performance tests. Now, an artificial sun light
(as introduced in section 7.1.3 on page 129) is added in order to evaluate the
impact of strong environmental light.
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(b) Orientation error.

Figure 7.24. Erroneous target acquisition recovery. When the target object is mistakenly
acquired with a pose which is partially stable, but still significantly wrong, the tracker
diverges after a brief period of time, and a new acquisition is initiated, what will even-
tually recover the true pose estimate. The colors correspond to the individual degrees of
freedom (red: X and pitch, green: Y and yaw, blue: Z and roll).

7.5 Rendezvous scenarios

In the following, three different rendezvous scenarios will be investigated. The
difference between the experiments will be the position of the simulated sun, in
order to see the impact of different lighting situations.

The position of the sun is dependent on the mission and the resulting require-
ments for the instruments. There are three extreme cases of sun illumination,
which will be investigated here as placeholders for a complete evaluation. Con-
sequently, this section should be seen as a rather qualitative approach.

7.5.1 Backside sun illumination

When the sun is located behind the servicing spacecraft, but still in such a way
that the servicing spacecraft does not cast a shadow on the target, the most
convenient situation is found. The target is illuminated by the sun, a lot of
features are visible and the background remains dark. It can be speculated
already, that this will most likely produce the best results. A snapshot of the
sequence is shown in figure 7.25.

Here, the target is well visible for the CCD sensor due to the scattering of
light on the surface of the target. With the correct focal ratio and exposure time,
it is possible to retrieve a good image. However, it would show that the PMD
sensor has – despite the suppression of background light – trouble providing a
clean image. In fact, the image does not allow pose estimation at all. Apparently,
suppression of background light (as it is available with the PMD camera) means
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Figure 7.25. Rear sun illumination, as seen from the CCD camera. The X- and Y-axes show
the pixel coordinates.

scattered light on earth’s surface. Sunlight in space and especially direct sunlight
(with corresponding intensity) do, unfortunately, not seem to be targeted by this
technology.

The distance image of the PMD camera is shown in figure 7.26. Obviously,
the PMD sensor has severe problems when dealing with large dynamic range
scenes such as these. As can be seen from the image, the noise level is very large.
The target is still visible in parts, but the distance measurements are completely
erratic. So this image can not be used for tracking the object.

Multiple attempts of retrieving a usable image have failed – either the pixels
of the PMD camera were saturated when the integration time was set to a high
value, or the remaining signal was too faint when the integration time was set
to a low value. Unfortunately, the integration time is the only parameter which
can be modified in order to adapt to the situation. But since decreasing the
integration time also decreases the sensitivity of the camera for the modulated
light and hence, has a bad impact on the signal, there was no way of solving
this issue. For a possible hardware solution, see section 8.4.4 on page 178.

As will be seen later, this situation has the unique property of being advanta-
geous for one sensor (the CCD camera) but problematic for the other sensor (the
PMD camera). Because the fused approach relies on both sensors, it is sensitive
to this situation. While the suggested hardware change is one way of solving it,
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Figure 7.26. Rear sun illumination, as seen from the PMD camera (distance image, distance
in meters shown in the scale on the right). Strong sunlight saturates the PMD pixels,
making distance measurements impossible. The X- and Y-axes show the pixel coordinates.

another way may be using a purely CCD-based pose estimation method, such
as the one presented earlier in [142].

This shows that having multiple methods available and the ability to switch
between them would also be an invaluable feature which provides robustness
and flexibility to an optical navigation solution. Unfortunately, one would have
to know when to use which method. In this case, it is probably easier to make
changes to the hardware.

7.5.2 Side sun illumination

When the sun is located to the left or to the right of the satellite constellation,
light does not scatter on the target surface, what causes it to become dark. This
is very difficult for any vision-based pose estimation approach without active
illumination. In this case, the LED emitters of the PMD camera also provide
some light for the CCD camera, but due to modulation, the brightness of the tar-
get changes constantly as a consequence of the interference between the shutter
of the CCD camera and the modulation of the infrared light.

For testing this scenario, the distance of the target was fixed at 10 m. The
target was not moved, but the light source was slowly rotated. Its position was
fixed at about 4 m left of the target (as seen from the chaser camera) and then it
was slowly rotated in order to simulate a changing position in orbit.

It would show that the PMD camera is very advantageous in this situation.
Since the light is now not visible (at least, for the most part), the pixels of the
PMD camera are not saturated and hence, provide reliable distance measure-
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Figure 7.27. Side sun illumination. Reliable distance measurements are possible, as the
overall light intensity is sufficiently low. Distances are in meters, the scale is shown on
the right. The X- and Y-axes show the pixel coordinates.

ments (figure 7.27). The initializer is thus capable of continuously providing
rough estimates.

However, the situation is much more challenging for the tracker. At first, the
target can be tracked, but as the light changes slightly, the tracker pose estimate
becomes inaccurate until it finally diverges. After re-initialization, the estimate
does not seem to be as stable as it was before (figure 7.28).

The problems encountered by the tracker are the result of a very low exposure
time of the CCD camera (10µs) and also a small focal ratio (f/16) required due
to the high intensity of the simulated sunlight. Despite the degraded perfor-
mance and the fact that the target is almost invisible to the CCD camera, the
tracker is still able to at least track the target for brief periods of time. This
demonstrates very well the superiority of the texture segmentation approach
along with the scanline quantization (section 6.3.2, page 114), although it does
not work without problems.

Interestingly also, this situation is contrary to the case with the rear illumi-
nation. Here, the PMD sensor can provide good measurements, but the CCD
sensor runs into problems. There are two possible solutions. Either use a purely
PMD-based approach, such as [143], or regulate the exposure time of the CCD
camera.

Either way, this shows once more that using two sensors instead of one does
not necessarily improve the robustness of the method, but rather increases the
accuracy at the price of robustness.
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Figure 7.28. Tracking performance for constellations where the sun is located at the side.
Overall, the accuracy degrades and even tracking failure may occur (frames 21–24), never-
theless, pose estimation remains possible. The colors correspond to the individual degrees
of freedom (red: X and pitch, green: Y and yaw, blue: Z and roll).

7.5.3 Frontal sun illumination

When the sun is located at the front of the servicing spacecraft (and behind
the target), sunlight directly hits the sensors and causes pixels hit by the sun-
light to be overexposed. Saturated pixels do not provide information any more.
Also, the target is completely dark, when this situation is encountered. This is,
among the side sun illumination, probably the worst condition which can ever
be encountered.

In the experiment, the position of the target was fixed, but the orientation of
the target was dynamic. Using three rotation matrices, an attitude quaternion
was composed, where each one of the Euler angles corresponding to the rotation
matrices was retrieved from a sine function with an amplitude of 10◦ (in fact, this
was the same motion as already used in section 7.2.2 on page 143 but without
any position changes).

A typical image of the scene as captured by the CCD sensor is provided in
figure 7.29. Because the target is not illuminated specifically for the CCD sensor,
it appears very dark due to the small focal ratio. The fact that it appears at all
is related to the side effects of various reflections of the light and in general –
what the image does not show – the entire laboratory was as bright as a day in
sunlight.

Attempts to start up the tracker on this image failed repeatedly, again due to
the PMD camera and the effects of the strong light on the measurement. The
amplitude and intensity channels of the PMD camera are given in figure 7.30.

Apparently, this light intensity is too high for the PMD sensor. When inspect-
ing the plot of the intensity channel, it becomes evident that SBI is active: Pixels
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Figure 7.29. Frontal sun illumination (CCD sensor). The contrast is utmost strong; the
target object is almost invisible. Under normal circumstances, the target object can not
be seen, unless the chaser spacecraft reflects some of the sunlight in the direction of the
target. The X- and Y-axes show the pixel coordinates.
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(a) Amplitude channel.
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(b) Intensity channel.

Figure 7.30. Frontal sun illumination (PMD sensor). The strong light influences the mea-
surement of the PMD sensor and saturates the pixels despite active SBI (green pixels in
the right figure). Saturated pixels have an amplitude close to zero. In the left figure, the
target is only visible partially due to numerous saturated pixels. The X- and Y-axes show
the pixel coordinates.
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near the border show a large intensity value (red/ orange color), while a lot
of pixels in the rest of the image are a mixture of green and yellow, indicating
lower intensity values. These lower values are caused by the SBI circuitry.

This is, by itself, not a problem – however, when inspecting the amplitude
image, the target object can be barely seen, as a lot of the pixels have dropped
almost to zero. This means that despite the correction current of the SBI circuitry,
the potential wells of the respective PMD pixels have reached saturation. As a
consequence, no distance measurement is possible.

The resulting point cloud represents the target object only sparsely, which is
why the initializer can not reliably find the dominant surface and thus, fails. This
particular problem can only be solved by hardware means, as the CCD sensor
also can not provide data leading to reliable measurements. See section 8.4.4 on
page 178 for details.

7.6 Summary

In this chapter, the test environment was described. A mockup of a geosta-
tionary satellite was used in order to test the developed relative pose estima-
tion algorithm under utmost realistic conditions. Typical rendezvous approach
trajectories have been tested under different environmental lighting, and the
approach motion was also modified to include various disturbances.

The pose tracker and the initialization method have been successfully tested
on these trajectories, what proves that the envisaged algorithms can actually
provide the measurements required for a scenario like Rendezvous and Dock-
ing.

However, the impact of sunlight is significant. In contrast to previous publi-
cations (for example, [111, 138, 143]), the simulated sunlight was significantly
closer to real sunlight in orbit with regard to the spectrum and the total irradi-
ance. One scenario has been identified where only one of the two sensors can
provide valid measurements. When the sunlight originates from the back of
the servicer, the CCD camera can accurately see the target object, but the PMD
camera can not be used, as the light intensity is too strong (see the following
chapter for a solution). When the sun originates from the back of the target, a sit-
uation is encountered, where only the PMD camera can provide measurements
after hardware modifications. In the case where the sun is located at the side
of the constellation, a scenario is found which is close and comparable to an
eclipse phase. Here, tracking was possible – although less accurate than when
operating under optimal lab conditions, as could be expected.
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Overall, two future extensions seem to be necessary: a hardware modification
of the PMD camera, providing more resistance to environmental light, and a
software switch that allows to use only one sensor for estimating the pose, when
one of the two sensors produces readings which can not be used.

In the next chapter, the results will be discussed in more detail and put into
context with comparable existing approaches and different sensors.
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As it was seen in the last chapter, using two different sensors to retrieve a mea-
surement can improve the accuracy, but it does not necessarily improve the ro-
bustness as well. Now, it remains to be investigated how the proposed method
fits into the field of other pose estimation techniques, which may even rely on to-
tally different sensors. In practice, probably a combination of different methods
is required in order to be capable of adapting to a large range of environmental
conditions.

Also, there are still concerns about the space-readiness of the PMD sensor. As
the near future will be very likely to bring first experiments with PMD sensors
in space, some initial thoughts about the impact of the space environment on
the sensor must be made as well.

8.1 Comparison of pose estimation methods

In this section, several different pose estimation approaches will be compared.
The intention is to get an impression of the current state of pose estimation
methods regarding PMD sensors, CCD sensors, laser scanners and hybrid ap-
proaches based on various implementations of sensor data fusion.

8.1.1 PMD sensors

What is specifically interesting is comparing the presented approach to meth-
ods, which rely on a single sensor (either PMD or CCD) only. Using two sensors
is more expensive in all relevant dimensions, therefore, significant advantages
must result as a consequence. Unfortunately, very little work has been done
on pose estimation with a single PMD camera so far. Much more common are
approaches to environmental mapping and camera pose estimation. Neverthe-
less, a comparison is made where it is applicable, but often, only qualitative
statements can be made due to the large differences in measurements, models
and lighting conditions.

In [112], a PMD camera was used for pose estimation with an edge tracking
approach. The distance information has been used to measure the orientation
and also the distance. Unfortunately, the PMD camera used was not calibrated,
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leading to large errors. As several plots in the original work show, the 1 % rule
is violated repeatedly (see for example figures 4.5–4.29). However, this is to a
large degree the consequence of not calibrating the camera; the method itself
would probably benefit a lot from filtered sensor data.

The camera is calibrated in [70], but there is no statement made about the
accuracy. However, from stationary plots, it can be inferred that the accuracy
in the distance is limited: in figure 6.21, there seems to be an error of about
20 centimeters, what is way larger that what can be achieved with the method
presented in this thesis.

The work at hand also outperforms an earlier approach of using a feature-
based pose estimation method [143]. It was inspired by common SLAM algo-
rithms which usually only operate in a two-dimensional image space. Unfortu-
nately, there was no calibrated reference measurement system available, what
makes it very difficult to obtain accuracy statements. Also, noise and outliers
had a large impact on the estimated pose – especially for determining the orien-
tation.

A simulation of pose estimation with a PMD camera using point cloud match-
ing was carried out in [56]. It should be noted that the results are not from a
real setup, but from a simulation. Still, the total accuracy is comparable to the
work at hand, what is good, since typical PMD sensor non-linearities and error
sources are not addressed at all, meaning the calibration performed within the
work at hand is sufficient.

To summarize, it can be safely said that using a CCD camera in addition
to a PMD sensor is very likely to increase the accuracy. Overall, the achieved
accuracy is well within reasonable borders and looks very promising, as long
as PMD sensors alone still struggle with low lateral resolution and numerous
sources of error.

8.1.2 CCD sensors

CCD sensors have already been used for a long time. A lot of different pose
estimation methods have emerged, although it seems that single CCD sensors
are rarely used. Stereo vision is much more common. In the following, how-
ever, only pure monocular vision approaches (which are designed to work with
uncooperative target objects) are considered.

When using features on the target for estimating the pose of a spacecraft, a
closed-form solution is possible. A positioning accuracy of about 1 mm can be
achieved along with an angular accuracy of 0.3 ◦ [104]. A good reference that
shows what is possible under ideal conditions when using a single CCD camera
is also given in [154], as the results are based on a simulation only. Errors well
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below 1 mm for all translational degrees of freedom and errors in the order of
1◦ for the rotational degrees of freedom can be achieved.

A very interesting approach is made in [9] (however, for limited distance
ranges only) that uses several different monocular cues (such as lighting, defo-
cus) as hints for obtaining 3D positions of points and then, by fitting a model,
the complete pose of a known object. An OpenGL rendering of the object is used
as a comparison with the image and a suitable distance metric is minimized in
order to iteratively refine the pose estimate.

Finally, an earlier approach [141] nicely demonstrated the most important
problem with monocular pose estimation approaches. Overall, the CCD sen-
sor based pose estimation is highly accurate for some degrees of freedom (see
the reference for details) and certain distances, however, the performance de-
grades rapidly for increasing distances. Also, there is a significant dependence
on which pose properties are estimated. The distance to the target object, for
example, is very difficult to determine. The same applies to for the out-of-image-
plane rotation angles.

Summarizing, CCD sensors are the most simple way of implementing pose
estimation hardware, but have severe drawbacks in certain situations. This is
the main reason for the implementation of the pose estimation using sensor
data fusion. For further reading, a good overview of CCD sensor based pose
estimation is provided in [82].

8.1.3 Laser scanners

Laser scanners are widely found in space related pose estimation methods [3,
37, 80]. The large advantage is the combination of an active sensor (and thus,
the resulting robustness against harsh lighting conditions) with the sensitivity
of the receiver optimized for the wavelength used. However, care must be taken
during the design of the laser scanner mechanics, otherwise the launch of the
spacecraft can lead to irreversible damage. Also, the update rate can be limited,
as laser scanners have severe scanning speed limits.

Laser scanners provide point clouds of the target object along with brightness
information for each point. The most common algorithm used to align known
models with the point cloud is the Iterative Closest Point algorithm [120]. ICP
minimizes the squared distances between nearest points in the point cloud and
the model, while optimizing the pose estimate. It requires a rough alignment of
the point clouds in order to work, because it can not find the global minimum
of the error metric. Hence, approaches of using the state estimate of a Kalman
filter as a rough alignment are widely used [1].
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The Principal Component Analysis is also often used to help with the initial
alignment of the model [63]. Once a pose estimate is available, an ICP variant
continuously tracks the target and updates the pose estimate.

In essence, the large advantage of laser scanners is their range (when us-
ing laser scanners based on the time-of-flight principle) and independence on
the environmental lighting conditions. However, the drawback is high cost,
sensitive mechanics and – compared to CCD or PMD sensors – higher power
requirements.

8.1.4 Stereo vision

Stereo vision is very common in Rendezvous and Docking, as the sensors are in-
expensive and the resulting 3D point clouds facilitate pose estimation. However,
the drawback is often the limited field of view [14, Chapter 7] or the extensive
processing time required. For example in [138], the stereo matching takes about
5 seconds, and the iterative closest point method takes another 5-11 seconds for
a single image. This is likely a consequence of the high number of points in the
model and the point cloud, which must be matched.

Robustly tracking images using stereo vision and by using the disparity infor-
mation, gathering distance information, is pursued in [100]. While the method
can cope with the loss of a camera, once the algorithm was initialized (stereo
disparity information is not required), the initialization becomes weaker and
less accurate. The target object may be unknown and is tracked using image
features. Rotation errors are within 5 ◦, translational errors are within 6 cm. The
most prominent advantage of the approach is that the method works without
object information.

When a model of the object is available, the pose may be estimated by itera-
tively refining a fit based on rendered model edges and detected edges in the
image [62, 69]. However, rendering the entire model can be computationally
too demanding for embedded systems, because there is no dedicated graphics
hardware available. Alternatively, the 3D model can be directly fitted into the
point cloud.

Finally, a comparison of monocular pose estimation and stereo pose estima-
tion is made in [8]. In essence, the most important result of the comparison is
that stereo vision is better for estimating the distance of objects at large distances
and under skew of the target object.
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8.1.5 Summary and overall performance comparison

In general, comparing approaches of different architecture is very difficult.
There is no common setup and the objects used range from scaled satellites
to original size mockups and in some cases, other objects. Still, when comparing
the raw pose deviations, at least a rough impression is gained. Table 8.1 shows
the results in terms of accuracy of several selected papers, which are compared
to the method developed here.

The accuracy numbers in the table are roughly what can be expected as the
worst case error for the individual method, when neglecting situation-specific
outliers. Not all authors provide mean errors and standard deviations, what is
why this has been chosen to be the quantity used for the comparison. The values
have been extracted from plots in the relevant papers when it was necessary, as
described in the previous subsections. For the statistical error analysis related
to this work, see table 7.5 on page 147. It has to be kept in mind here that the
degree of realism in the simulation/ image generation differs widely and it can
be safely said at this point, that the work at hand has used the most sophisticated
simulation of them all (i.e., less realistic image material will very likely lead to
better results).

Apparently, purely CCD based approaches can be very accurate. However, it
is more likely that the errors remain small, as the distance remains small. The
fact that a single pixel gains impact with increasing distance can not be amelio-
rated by any method. It is interesting to see that stereo based pose estimation
is approximately as good as single-CCD approaches, but there is clearly more
potential in large-distance scenarios.

The laser scanner example is not representative, as there are much more ex-
pensive and sophisticated scanners available. However, comparing systems
which have a financial value factor of 1,000 or above between them, does not
make much sense.

Being a bit out of line with the approach presented within this thesis, it is
still nice to see that this fused approach can definitely compare to established
methods.

8.1.6 Kinect sensor

Before moving on to discussing the impact of environmental conditions on the
PMD sensor, for the sake of completeness, a few words about the Kinect sensor
seem to be appropriate: In a review of a paper, a reviewer rose the question of
how the PMD sensor is related to the Kinect sensor developed by Microsoft and
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Table 8.1. Overall performance comparison of different model-based pose estimation
methods, using different sensors.

Sensor(s) Method Reference Angular
accuracy*

(deg)

Positioning
accuracy*

(m)

1× CCD Features, closed-form
pose est.

Philip and
Anan-
thasayanam
[104]

0.3 0.001

1× CCD Features, closed-form
pose est.

Zhang and Cao
[154]

1.2 0.25

1× CCD Monocular cues† Barrois and
Wöhler [9]

0.8 0.004

2× CCD Features,
dual-quaternion
optimization

Oumer and
Panin [100]

5.0 0.06

2× CCD Model Edge tracking Kelsey et al.
[69]

3.3 0.021

LiDAR ICP Jasiobedzki
et al. [63]

2.0‡ 0.05‡

PMD,
CCD

Fused edge/ surface
tracking

Figures 7.10,
7.12, 7.13, 7.14

3.5 0.04

* Accuracy here means worst case error in order to facilitate the comparison, but situation-
specific outliers have been neglected. Note that differences in the test scenarios, which
have an influence on the results, can not be compensated.

† Limited distance only. Used cues: defocus, brightness.
‡ Achieved with point clouds of 2,000 points or more.

PrimeSense. This is why at this point, a brief discussion about the differences
between the Kinect sensor shown in figure 8.1 and the PMD sensor is made.

The Kinect sensor works by emitting a pseudo random pattern and projecting
the pattern onto the scene using an infrared light emitter. A CCD sensor with
sufficient sensitivity in the infrared spectrum then captures the scene with the

Figure 8.1. The Kinect sensor. An infrared
emitter projects a pattern into the scene,
which is captured by a camera. Similar to
stereo vision, the disparity is used to ob-
tain the distance measurement. (Image from
Wikipedia, public domain)
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Table 8.2. Comparison of the PMD sensor and the Kinect sensor. The Kinect sensor data
was taken from [5].

Property PMD camera Kinect sensor Unit

Framerate < 20* ≈ 30 Hz
Spatial resolution 200× 200 640× 480 pixels
Depth resolution < 0.01 0.01 m

Minimum distance 0.1 0.8 m
Maximum distance 7.5† 3.5 m

* Depending on the chosen integration time, higher imaging rates may be possible. For
very high integration times, the frame rate can drop significantly.

† up to 75 m with multi-frequency imaging, when using 18 and 20 MHz as modulation
frequencies, as suggested in section 4.2 on page 82.

projected pattern. By using stereo vision techniques, the distance of a point in
the image can be recovered by measuring the disparity.

While stereo vision methods must rely on texture and estimate the disparity
by matching image pixels from two images, the Kinect sensor relies on the
pattern, what means this will work particularly well for untextured surfaces,
where traditional stereo matching is likely to fail.

The primary motivation for this comparison is the question whether the
Kinect sensor is as well suited for space as the PMD camera, as it is clearly
similar from a functional point of view, but achieves the goal with a completely
different approach. A large problem is that the Kinect sensor is not very well
investigated by the scientific community yet. However, performance data is
available [5] and a brief comparison is provided in table 8.2.

What can be seen at first glance is that the Kinect sensor has a much higher
spatial resolution. Also from the frame rate, the Kinect sensor looks promising.
However, the first problem is the distance range. While the PMD camera can
theoretically measure distances of up to 75 meters with the dual-frequency imag-
ing approach presented in this thesis, the Kinect sensor is limited to 3.5 meters,
what is nowhere near the PMD camera. Moreover, this is a disadvantage which
can not be significantly ameliorated by designing a different pattern or enhanc-
ing the resolution of the sensor. Instead, this is an inherent limitation of the
working principle.

Second, one has to keep in mind that the target object may be highly articu-
lated and especially MLI shielding poses a large problem for any active sensor
relying on reflection of a signal. In this case, the Kinect sensor can be expected
to run into problems due to heavy distortion of the emitted infrared pattern.

171



8 Summary & Discussion

Having to rely on a pattern instead of just reflected light makes the process even
more sensitive.

Finally, the PMD camera was designed to work in sunlight and more impor-
tantly, outdoors. In contrast, the Kinect sensor was designed for indoor appli-
cations and it can be safely said that it will be certainly much more sensitive to
sunlight than the PMD camera.

In essence, it seems that the Kinect sensor has several advantages (frame rate,
spatial resolution) and is well suited for gesture recognition. However, it is
currently far from being of use in a space environment and the architecture
does not allow that to change much in the future (mainly due to the inherent
limitation in the distance range). It is therefore concluded that the PMD camera
is technologically superior with regard to the application targeted by this thesis,
despite its own drawbacks.

8.2 PMD sensor space suitability considerations

So far, the pose estimation method has been discussed under various condi-
tions, however, there is another problem which is related to the PMD sensor.
As it has not been qualified and tested for use in a space environment, it re-
mains to be seen whether state-of-the-art sensors are usable at all or if hardware
modifications are necessary. In this section, the most important space-related
environmental conditions are briefly discussed with regard to the PMD sensor.

8.2.1 Thermal

Depending on the local temperature, there will be a different number of ther-
mally generated electrons (dark current). This has an impact on the measure-
ment [127]. Any attempt of calibrating the sensor for a specific temperature,
as it is currently being done by all approaches published so far (including this
document) assume that the sensor is used in thermal equilibrium. This is not
possible in a space environment. The temperature variations can be reduced by
cooling and heating systems, but these are utmost expensive, as they require
large amounts of energy and there are still limits, which can not be overcome.

As a consequence, the effect must be accepted to be present and compensation
measures must be implemented which can deal with the symptoms of the effect,
instead of trying to remove it completely by eliminating its causes. The obvious
method would be to implement a temperature sensor as close to the sensor chip
as possible (the best solution would be an on-chip thermal diode). Then, when
the temperature is known, the effect may be compensated during the processing
of the sensor data.
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Another distinction must be made. The necessity of calibrating this effect
emerges from the orbit parameters of the spacecraft in question. When the orbit
parameters allow for continuous sunlight or short to zero eclipse periods (such
as some special cases of sun-synchronous orbits), a thermal equilibrium can be
established that prevents the necessity of calibrating the effect. However, for
most applications and orbits, different eclipse phases will occur [26] and the
only way of compensating for the effect is the above suggested temperature
measurement and further processing of the sensor data in the preprocessing
stage. Otherwise, there will be periods of several minutes up to tens of minutes,
where the camera measurements are continuously drifting as a consequence of
heat exchange and temperature change.

8.2.2 Radiation

In general, there is currently no data available on the effects of radiation on the
PMD chip. A comparison with the typical effects of CMOS CCD imagers is also
not envisaged here, as PMD sensors require a different working principle for
the determination of the distance. Still, as one of the most important effects
caused by radiation in the case of CMOS imaging sensors is the increase of dark
current [49], it can be speculated that PMD sensors will experience an increase
of the non-linear effects of single pixels.

Since the potential offsets do not apply to all elementary cells at once, the
result will be an almost impossible-to-predict deformation of the distance esti-
mation. However, the magnitude of the effect may be minimal; a statement is
not possible without precise knowledge about the sensor.

When it comes to compensation measures, detecting these deformations will
be utmost difficult, if not impossible. The only measure which may be applied in
practice is the detection of pixels damaged beyond negligible offsets. Such pixels
may be marked as being defect and would be excluded in future measurements.
As most PMD data processing algorithms work with point clouds, the result
will be a sparsified point cloud, which would allow for graceful degradation.

Such pixels may be detected by investigating the values of the elementary
cells over time (value range checks, comparison with neighbor pixels, etc). Also,
consistency checks (as proposed in section 2.4.2 on page 38) are viable.

8.2.3 Launch vibration

Once a satellite has reached its orbit, there are no significant vibrations, which
may have an influence on the performance of a sensor system such as the PMD
camera. However, during the launch, strong forces and vibrations can damage
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sensitive systems or permanently influence their properties [83], which is why
all systems designed for space applications undergo vibration tests.

When it comes to the PMD camera, especially the housing of the PMD cam-
era and the interface to the optics is more or less likely to be damaged as a
consequence of vibrations. Electronics usually fail depending on the shape of
the individual components, the PCB thickness, and – most importantly – the
mechanical interconnections of the PCB and the housing. The local acceleration
itself can not be used as an indicator for failure [4].

Typical points of failure which must be mentioned here as well, are all sorts of
electrical connectors which is why it is recommended to use connectors capable
of storing mechanical energy up to a certain point [136]. Connectors not only
fail due to vibration but also because of thermal stress, especially when the
compounds used have different coefficients for temperature related expansion.
The referenced paper suggests that well-designed elasticity near connectors
can ameliorate this problem. As the external connectors of the PMD camera
are threaded, it can be assumed that these connections are rather stable in this
regard.

8.3 Conclusions

8.3.1 Summary

In this thesis, a method was presented that allows to use a PMD sensor in con-
junction with a CCD sensor on board a spacecraft for estimating the relative pose
of a neighboring satellite in a formation or a satellite target during a rendezvous
maneuver.

A range extension of the PMD sensor was presented, which can be used
specifically in a space environment. Previous approaches have relied on the
geometry of the scene, what becomes impractical, once there are no walls or
ground in the image. Moreover, for the first time, a PMD sensor could be
used for long range measurements on a calibrated test facility. Also, the sensor
calibration must be designed with respect to multi-frequency measurements. It
was shown that by designing compensation methods specifically for using them
in periodic cases, the necessary PMD camera data preprocessing can be suitably
adapted to provide high accuracy long-range measurements.

As stated in the Kinect sensor comparison, it is unlikely that such a range
extension is possible with the Kinect sensor, as its range is bound by the resolu-
tion of the CCD sensor imaging the pattern. Therefore, the PMD sensor is the
right choice. It can also be assumed true that current implementations of the
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Kinect sensor do not have any means of filtering environmental infrared light,
in contrast to the PMD camera.

This is specifically important for the target acquisition method. The robust-
ness of this part of the algorithm comes primarily from the measurement princi-
ple of the PMD camera, but also relies on the specific properties of applications
in space. In contrast to previous works, the resolution of object symmetries is
addressed with a framework that allows to pass additional information to the
algorithm. It should also be pointed out that the target acquisition takes less
than one second on recent computer hardware, and that is without any form of
optimization.

The approach of fusing CCD and PMD sensor data by combining deviation
components extracted from the images provides a new and computationally
very efficient way of using multiple sensors for pose estimation, what outper-
forms methods using only the PMD sensor, and also outperforms most CCD-
based methods as soon as the object distance increases. It also outperforms most
laser-scanner sensors in terms of cost. The high frame rate of the sensors propa-
gates through the processing chain and allows measurements even for objects
moving or rotating at higher velocities, what is in particular useful for the case
of tumbling target objects.

For the first time, measurements with a CCD- and PMD-sensor have been
made in the presence of a light source that is very close to the real sun spectrum
in orbit. Compared to previous approaches, this allows an evaluation of the
sensors to be much closer to the real conditions. When the environment does
not provide sufficient light for the CCD sensor to operate, tests have shown
that a method purely based on the PMD measurements, such as the initializer
proposed in this thesis, are capable of providing a pose estimate, although at a
reduced accuracy. Furthermore, tests with simulated sunlight have shown that
there are as well situations, where the PMD sensor can not be used due to light
which is too strong and saturates the PMD cells, while the CCD sensor can still
be used. Here, pose estimation techniques purely based on CCD sensors could
provide measurements. Another conclusion from the tests is that overall, the
PMD sensor is – in its current stage – not suitable for operation in space due
to the sensitivity to environmental light. However, a laser-based illumination
system along with an optimized optical filter path looks very promising in that
it would allow the developed algorithms to be used without modification while
at the same time providing more sunlight tolerance, thereby widening the field
of application.
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8.3.2 Algorithm limits

While the sensors impose limits on the environmental lighting, there are also
limits related to the situation, of which the most important ones are now briefly
discussed. For suggested solutions to these limits, see the next section.

Visibility of the target object

Since the presented algorithm relies on tracking the edges of the target object
with the CCD camera, there is a constraint that these edges must be visible at all
times. More importantly, the target must not move too close to the chaser. Oth-
erwise, the outer edges will leave the image space. To counteract this problem,
a tracking algorithm based on images features can provide measurements while
the distance is reduced until the docking process has been completed.

Size of the target object

Due to perspective projection the object will appear smaller, the larger the dis-
tance between the chaser and the object grows. There is a point where an ac-
curate pose estimation is no longer possible. This was not yet relevant for the
measurement campaign performed within this thesis, however, it is important
to keep that in mind. This does, of course, also depend on the target size. With
the mockup used here, one could estimate that this point would possibly be
somewhere around 30–40 meters.

High-frequency structures

MLI and instruments are not a problem, as long as their influence is limited.
Nevertheless, the approach of estimating the pose of an object presented in this
thesis is based on articulated edges and surfaces of an object. As soon as the
object does not have well articulated edges or surfaces, this method can not be
applied any longer. Therefore, there is a strong limitation on the outer shape of
the target object. However, please note that especially the planarity constraint
is a consequence of the low lateral resolution of the PMD sensor, which can not
capture high-frequency features very well.

8.4 Future work

Regarding the presented pose estimation algorithm, there are a few research
topics which could improve the results or solve remaining problems. Such ideas
will be briefly discussed in the following.
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8.4.1 Feature-based docking tracker

As stated in section 8.3.2, once the target is very close to the chaser, it may
happen that one or more of the outer edges of the target object are not visible
any more because they have moved outside the image area. When this happens,
the presented algorithm can no longer reliably determine the pose. Therefore,
an on board computer may switch to a different algorithm for retrieving pose
estimates.

Here, it is suggested that a feature-based algorithm is used. The advantage
of feature-based algorithms is that tracking is possible as long as at least three
features are available (for tracking in three dimensions). Such an algorithm was
already developed earlier [143] (what allows tracking as soon as two features
are available). The main problem here was, however, the low image-space
resolution of the PMD camera. With the CCD camera available, this method
could be extended in such a way that brightness information is extracted from
the high-resolution CCD image and distance information (for estimating the
normal vector of the feature) is extracted from the PMD camera.

8.4.2 Extended range

While it was possible to extend the measurement range of the PMD camera, so
it is sufficient to test it inside the EPOS facility, it would also be of interest to see
how the algorithm performs at even larger distances. This thought is primarily
motivated from the effect, that the target will become smaller with increasing
distance. As a result, there will be a point, where the proposed method will
no longer work. The location of this point could not be determined within
this thesis (a very rough estimation was given in section 8.3.2 on page 176).
Therefore, performing outdoor tests would very likely answer this question.

When this critical distance is reached, it is very likely that six degrees of
freedom are not of primary interest, but the direction and the distance. This is a
problem which has already been partially solved within a PRISMA experiment
[28]. This experiment did not have a PMD camera available and the distance
was not estimated, but the direction was estimated. A different approach was
made earlier in the predecessor of the method used for the PRISMA experiment,
and here the distance was estimated as well by relying on the size of the object
[141]. Assuming there would be a modulated laser available, and using this as a
light source, distances of 75 meters and maybe even more (with some effort, for
example, using more than two frequencies) would become measurable with the
PMD camera. Alternatively, the modulation frequencies of the camera can be
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tuned. Lower frequencies allow for larger measurement ranges [14, page 114]
(see also section 4.2.3 on page 89).

Even if only one pixel of the target could be measured, the distance would
not have to be inferred from the size of the object in image-space. The result
would be a large gain in distance estimation accuracy.

8.4.3 Hidden object removal

While the tracking of the target provides good results as long as there is no
partial occlusion, this can turn into a problem for a target with an articulated
surface. For example, the apogee thruster could very easily occlude one of the
outer borders, when rotated far enough. The current implementation has two
ways of proceeding with pose estimation despite this problem: First, the tracker
will switch and track a different surface of the object, as soon as the angular
measurement of the normal vector of the tracked surface exceeds a threshold.
Second, partially occluded edges do not pose a problem, as long as other edges
are visible and the edge in question does not produce wrong tracking input.

Still, at this point it would be of use to have a means of removing occluded
model edges. This has been done already numerous times in computer graphics.
The reason why this has not yet been implemented was a lack of time and
the initial requirement to be independent of computer graphics libraries. On
the real-time system used for the tests, there is no computer graphics interface
available and porting libraries such as MESA3 to VxWorks is prohibitively time-
consuming at best. In essence, this can be seen as a low-priority improvement.

8.4.4 Laser illumination

When using a laser instead of infrared LEDs, the optical filter path can become
more narrow in terms of bandwidth. Due to the fact that LEDs have a rather
broad wavelength range, the filter must also be designed to allow a broad range
of light to pass through unless one can afford signal dampening. Lasers have
line spectra and therefore qualify to solve the problem. Once the band pass for
the active light in the PMD camera can be narrowed down, there will be also less
environmental light, which interferes with the measurement. Consequently, the
PMD camera can be tuned even more to withstand strong sunlight influence.

The necessary hardware changes would encompass providing an infrared
laser which can be modulated at frequencies of about 20 MHz with a wavelength
near the specified LED wavelength (830− 870 nm), as well as a newly designed

3The MESA 3D graphics library is a software OpenGL-backend. It can be found at http://www.me←↩
sa3d.org/
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optical filter path, which has its central transmission wavelength coinciding
with the one of the laser, and a very narrow transmission window around it.

8.4.5 Initializer object symmetry resolution

As stated in section 5.2.5 on page 102, the current implementation of the initial-
izer can not reliably determine all six degrees of freedom of an object, when the
object is symmetric. Despite the already available methods for providing hints
to the initializer, which allow overcoming this problem in most cases, it would
be advantageous to remove the need for these hints.

One possible solution could be based on the feature-based pose estimation
method developed earlier [143]. In this case, it would be sufficient to detect one
feature. When the feature orientation information is not used or not available
(what would be the case when using features such as SIFT [93] or SURF [11], as
both do not account for 3D rotation), two matched features would suffice. The
features should be extracted from the CCD image due to the higher resolution
of the pixel grid.

8.4.6 Environmental effects

The investigation of environmental effects, such as temperature changes, radia-
tion and air pressure changes are out of scope of this thesis. Consequently, the
effects these environmental conditions might have on the PMD sensor have not
been evaluated. An investigation of these effects should answer two questions:
First, is the respective effect significant enough to distort the measurement in a
destructive way and second, if yes, can it be compensated using a suitable cali-
bration or can it be filtered? If nothing can be done about the effect in software,
what are suitable hardware modifications to achieve the same goal?

8.5 Outlook

Clearly, autonomous Rendezvous and Docking is of great interest. All nations
known for their space experience have programs running for the development
of autonomous Rendezvous and Docking capabilities (the efforts have been
summarized in section 1.2 starting on page 6). Even after the financial crisis of
2008, where research funding has substantially decreased, the topic remains of
utmost importance. From a different point of view, On-Orbit Servicing is a very
interesting, active research area, which will bring a lot of new knowledge in the
near future.
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Thinking of DEOS and other projects, space debris and the ever increasing
need for exploration – the potential and the drivers are there. The space debris
problem is of high importance, when regarding the wish to operate satellites in
the future without a lot of additional effort. During the time this was written
and while working at DLR, several evasive maneuvers had to be made with
satellites, which are being controlled by DLR, due to space debris and collision
warnings.

From prevention of creating new space debris to collecting it, autonomous
Rendezvous and Docking, as well as autonomous object tracking are (and will
remain) important fields for research. The PMD sensor and especially promising
developments of combined RGB/ depth sensing chips [71] show that this tech-
nology is still growing to become more important over time and also indicates
that PMD sensor technology continues to evolve. It can be anticipated, that the
first experiments with PMD cameras in space will materialize in the next few
years.
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Nomenclature

ACPI Advanced Configuration and Power Interface, a standard
defining interfaces to power management and in general, the
hardware, on today’s computer systems.

ACS Application Control System, a computer system of the EPOS
facility designed to operate the Simulink models.

ARGON Advanced Rendezvous experiment using GPS and Optical
Navigation, an experiment carried out using the PRISMA
satellites, where an optical far range navigation algorithm was
demonstrated.

ATV Autonomous Transport Vehicle, a container for transporting
goods to the ISS.

AVI Audio/ Video Interleaved, a container file format specification
for video data.

CAM Computer Aided Manufacturing, a combination of software
and hardware which accelerates and simplifies the production
of real-world items.

CCD Charge Coupled Device, a vision sensor architecture based on
the photoelectric effect.

CCFL Cold-Cathode Flourescent Lamp, a lamp type using ionized
gas as source of light.

Chaser The active satellite in a Rendezvous and Docking scenario,
which initiates all procedures and uses its actuators to com-
plete the process.

DDAE Direct Distance Ambiguity Estimation, a method for extend-
ing the measurement range of PMD sensors by using multiple
modulation frequencies.
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Nomenclature

DEOS DEutsche Orbitale Servicing Mission, a German Rendezvous
and Docking demonstration mission planned for 2017 (or
later).

DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aero-
space Center)

DoF Degree of Freedom

EPOS European Proximity Operations Simulator, a facility for testing
Rendezvous and Docking operations and sensors.

ESA European Space Agency

EtherCAT A real-time capable bus system based on Ethernet.

FMC Facility Monitoring and Control, the primary control system of
the EPOS facility.

FPGA Field-programmable Gate Array, an integrated circuit consist-
ing of logic cells which can be interconnected to form functions.

GEO Geostationary Earth Orbit, orbits grouped by altitude of
35786 km.

GPU Graphics Processing Unit, a processor designed specifically for
calculations related to graphics processing, mainly rendering.
GPUs have typically massively parallelized, pipelined floating
point units.

HEO High Earth Orbit, orbits with an altitude larger than the GEO
altitude.

ICP Iterative Closest Point, a method of iteratively aligning two
point sets of an object (in most cases, model and measurement).
Commonly found at the core of 3D pose estimation algorithms.

ISS International Space Station

Kinect A real-time depth-imaging sensor developed by Microsoft, tar-
geted mainly for consumer applications.

LED Light Emitting Diode, a semiconductor structure optimized for
light emission.
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Nomenclature

LEO Low Earth Orbit, orbits grouped by altitude in the range of
80− 2000 km.

LEOP Launch and Early Orbit Phase, a slice of time dedicated to
launching a satellite and bringing it into routine operations.

LiDAR Light Detection And Ranging, an active sensor measuring the
distance to objects by the Time-Of-Flight principle.

LSH Locality Sensitive Hashing, a method to determine parameters
from inputs by exploiting collisions of suited hash functions.

LVDS Low Voltage Differential Signaling, a method for transporting
high-frequency digital signals robust to external interference,
while causing as little interference as possible by itself.

MEO Middle Earth Orbit, orbits grouped by altitude in the range of
2000− 35786 km.

MLI Multi Layer Insulation, a thin foil composed of metal coated
plastic layers to stabilize the temperature inside satellites by
dampening heat dissipation in both directions.

MMI Man-Machine Interface, computer systems designed for inter-
action with EPOS operators.

OLEV Orbital Lifetime Extension Vehicle, a satellite designed to dock
to GEO satellites and thereby extend their life.

PCA Principal Component Analysis, a method for finding base vec-
tors along a data set, such that the variance of the data set
among the new base vectors is maximized.

PCB Printed Circuit Board, the union of substrate material, copper
layers and soldered electronic components.

PM Power Management, the ability of an embedded system, hard-
ware component or computer system to reduce its own power
consumption by slowing down clocks (throttling), partially
stopping clocks (clock gating) and cutting power to unneeded
hardware parts.

PMD Photonic Mixer Device, a sensor architecture capable of deter-
mining reflectivity and distance based on phase measurement.
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Nomenclature

Pose The union of position (spatial location, represented by a vector)
and orientation of an object (represented by rotation matrices,
quaternions or other characterizations).

PRISMA Prototype Research Instruments and Space Mission technol-
ogy Advancement, a pair of satellites and also the name of
a swedish mission for demonstration of formation flight in
space.

RT Real-Time, a short term used for computer systems of the EPOS
facility running real-time operating systems, such as VxWorks
and RTLinux.

SBI Suppression of Background Illumination, a method for reduc-
ing the influence of background illumination on PMD sensor
measurements.

SimCon Simulation Connection, a MATLAB/ Simulink block for con-
necting Simulink models across multiple computers.

SLAM Simultaneous Localization and Mapping, a keyphrase for the
self-pose estimation problem and environment mapping- com-
monly found in mobile robot research and corresponding liter-
ature.

SNR Signal to Noise Ratio, a relative measure of signal quality.

SVD Singular Value Decomposition, a method for splitting a matrix
M into two unitary matrices U, V∗ and a diagonal matrix Σ

containing the singular values of M.

Target The uncooperative satellite in a Rendezvous and Docking sce-
nario, which will remain passive with regard to actuators.

TCP Transmission Control Protocol, a connection oriented, reliable
inter-system communication protocol, which is part of the in-
ternet protocol family.

TLC Target Language Compiler, a language for platform-indepen-
dent code generation used by the Simulink Real-time work-
shop.
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Nomenclature

ToF Time of Flight, a principle of measuring the time a signal takes
to reach a destination and returns, and thus, by assuming a
constant velocity, determining the distance.

VME Versa Module Eurocard, a parallel bus system.
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Surface constraint margin, 59
Surface extraction, 58
Surface size deviation threshold,

100
Synthetic modulation frequency, 88

T

Target
Acquisition, 91–103
High frequency structures,

176
Size considerations, 176
Visibility considerations, 176

Template matching, 92
Texture change point, 114

Texture probability, 115
Texture segmentation, 45–48, 114
Thermal considerations, 172
Thermal equilibrium (PMD), 71
Time of flight, 6, 13
Tracker, 9
Tracking, 105
Transition zones, 86
Triangulation, 6
TriDAR, 6

U

Unambiguous interval (definition),
82

Uncooperative target, 3
USB, 26

V

Vibration considerations, 173
Visual aids, 3
VME bus, 19
VxWorks, 20

W

Wave number, 76
Wiggling effect, 69

Compensation, 74–77
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