Synthese, Struktur und Eigenschaften neuer höherkoordinierter Silicium(II)- und Silicium(IV)-Komplexe

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg

> vorgelegt von Diplom-Chemiker Konstantin Junold aus Bayreuth

Würzburg 2014

meinen Eltern

Kein Wind ist demjenigen günstig, der nicht weiß, wohin er segeln will. (Michel Eyquem de Montaigne)

Eingereicht am:

Bei der Fakultät für Chemie und Pharmazie

1. Gutachter:

2. Gutachter: _____

der Dissertation

1. Prüfer:

2. Prüfer: _____

3. Prüfer:

des öffentlichen Promotionskolloquiums

Tag des öffentlichen Promotionskolloquiums:

Doktorurkunde ausgehändigt am:

Die vorliegende Arbeit wurde im Zeitraum Juli 2009 bis Juli 2014 am Institut für Anorganische Chemie der Julius-Maximilians-Universität Würzburg unter Anleitung von Herrn Prof. Dr. Reinhold Tacke durchgeführt. Die vorliegende Arbeit wurde auszugsweise veröffentlicht:

Novel neutral hexacoordinate benzamidinatosilicon(IV) complexes with SiN₃OF₂, SiN₃OCl₂, SiN₃OBr₂, SiN₅O and SiN₃O₃ skeletons K. Junold, C. Burschka, R. Bertermann, R. Tacke Dalton Trans. **2011**, 40, 9844–9857.

Activation of Nitriles by Trichloro[2-(dialkylphosphanyl)imidazol-1-yl]silanes – Synthesis and Characterization of New Dinuclear Pentacoordinate Silicon(IV) Complexes with Bridging Imido-Nitrogen Ligand Atoms K. Junold, C. Burschka, R. Tacke Eur. J. Inorg. Chem. **2012**, 189–193.

Bis[N,N'-diisopropylbenzamidinato(-)]silicon(II): A Silicon(II) Compound with Both a Bidentate and a Monodentate Amidinato Ligand
K. Junold, J. A. Baus, C. Burschka, R. Tacke
Angew. Chem. 2012, 124, 7126-7129; Angew. Chem. Int. Ed. 2012, 51, 7020-7023.

Stable Five-Coordinate Silicon(IV) Complexes with SiN₄X Skeletons (X = S, Se, Te) and Si=X Double Bonds
K. Junold, J. A. Baus, C. Burschka, D. Auerhammer, R. Tacke
Chem. Eur. J. 2012, 18, 16288–16291.

Five-Coordinate Silicon(II) Compounds with Si-M Bonds (M = Cr, Mo, W, Fe): Bis[N,N'-diisopropylbenzamidinato(-)]silicon(II) as a Ligand in Transition-Metal Complexes
K. Junold, J. A. Baus, C. Burschka, T. Vent-Schmidt, S. Riedel, R. Tacke
Inorg. Chem. 2013, 52, 11593-11599.

The Donor-Stabilized Silylene Bis[N,N'-diisopropylbenzamidinato(-)]silicon(II): Synthesis, Electronic Structure, and Reactivity K. Junold, M. Nutz, J. A. Baus, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke

Chem. Eur. J. 2014, DOI: 10.1002/chem.201402483.

Bis[N, N'-diisopropylbenzamidinato(-)]silicon(II): Lewis Acid/Base Reactions with Triorganylboranes

K. Junold, J. A. Baus, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke *Chem. Eur. J.* **2014**, akzeptiert.

Activation of Sulfur Dioxide by Bis[N,N'-diisopropylbenzamidinato(-)]silicon(II): Synthesis of Neutral Six-Coordinate Silicon(IV) Complexes with Chelating O,O'-Sulfito or O,O'-Dithionito Ligands

K. Junold, F. M. Mück, C. Kupper, J. A. Baus, C. Burschka, R. Tacke *Chem. Eur. J.* **2014**, akzeptiert.

Reactions of the Donor-Stabilized Silylene Bis[N,N'-diisopropylbenzamidinato(-)]silicon(II)with Brønsted Acids

K. Junold, K. Sinner, J. A. Baus, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke

Chem. Eur. J. 2014, eingereicht.

Selective C-H Bond Activation of 1,2-Dicarba-closo-dodecaborane by the Donor-Stabilized Silylene Bis[N,N'-diisopropylbenzamidinato(-)]silicon(II) K. Junold, J. A. Baus, C. Burschka, M. Finze, R. Tacke Angew. Chem. 2014, eingereicht.

I Verzeichnis der verwendeten Abkürzungen

BisTMOP	2,2',4,4',6,6'-Hexamethoxybiphenyl
Ср	Cyclopentadienyl
Dipp	Diisopropylphenyl
DMSO	Dimethylsulfoxid
Et	Ethyl
HMPA	Hexamethylphosphorsäuretriamid
IMe	1,3-Dimethylimidazol-2-yliden
<i>i</i> Pr	Isopropyl
I <i>i</i> Pr	1,3-Diisopropylimidazol-2-yliden
Me	Methyl
NHC	<i>N</i> -heterocyclisches Carben
OAc	Acetat
Ph	Phenyl
tBu	<i>tert</i> -Butyl
THF	Tetrahydrofuran
TMOP	2,4,6-Trimethoxyphenyl
TMS	Tetramethylsilan
aq	aquatorial
ax	axial
Ber.	berechnet
bzw.	beziehungsweise
ca.	circa
CVD	Chemical Vapor Deposition
Gef.	gefunden
GUI	Graphical User Interface
HSAB	Hard and Soft Acids and Bases
max	maximal(e)
\mathbf{QP}	Quadratische Pyramide
Smp.	Schmelzpunkt
TBP	Trigonale Bipyramide
Zers.	Zersetzung
vgl.	vergleiche
vs.	versus

d	Tag(e)
h	Stunde(n)
min	Minute(n)
br.	breit(es)
COSY	Correlated Spectroscopy
CSA	Chemical Shift Anisotropy
d	Dublett
DEPT	Distortionless Enhancement by Polarisation Transfer
EXSY	Exchange Spectroscopy
FWHH	Full Width Half Height
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Correlation
J	Kopplungskonstante
m	Multiplett
MAS	Magic Angle Spinning
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser Effect Spectroscopy
ppm	Parts Per Million
q	Quartett
quint	Quintett
S	Singulett
sept	Septett
t	Triplett
VACP	Variable Amplitude Cross Polarisation
VT	Variable Temperature
НОМО	Highest Occupied Molecular Orbital
LUMO	Lowest Unoccupied Molecular Orbital
МО	Molecular Orbital

II Inhaltsverzeichnis

$1 { m Einleitung1}$
2 Zielsetzung5
2.1 Neutrale pentakoordinierte Silicium(IV)-Komplexe5
2.1.1 Neutrale pentakoordinierte Silicium(IV)-Komplexe mit einem bidentaten Amidinato- und drei monodentaten Halogeno-Liganden
2.1.2 Darstellung eines Donor-stabilisierten Chloro- bzw. Bromo-Silylens mit
 2.1.3 Neutrale pentakoordinierte Silicium(IV)-Komplexe mit einem bidentaten Amidinato-, zwei monodentaten (Pseudo)halogeno- und einem monodentaten 2,4,6-Trimethoxyphenyl- bzw. einem monodentaten Pentafluorphenyl- Liganden
2.2 Neutrale hexakoordinierte Silicium(IV)-Komplexe
Amidinato-, einem bidentaten N.O- und zwei monodentaten (Pseudo)-
halogeno- bzw. einem bidentaten <i>O</i> , <i>O</i> -Liganden
2.3 Darstellung und Charakterisierung eines tetrakoordinierten Donor- stabilisierten Silylens mit zwei bidentaten Amidinato-Liganden sowie die Untersuchung von dessen Reaktivität9
2.3.1 Darstellung eines tetrakoordinierten Donor-stabilisierten Silylens mit zwei
bidentaten Amidinato-Liganden und Untersuchung von dessen strukturellen sowie spektroskopischen Eigenschaften9

	2.3.2 Untersuchung der Reaktivität des Donor-stabilisierten Silylens ${\bf J}$ 9
	2.3.2.1 Lewis-Säure/Base-Reaktionen
	2.3.2.2 Nukleophile Substitutionsreaktionen
	2.3.2.3 Oxidative Additionsreaktionen 11
3	Synthesen13
	3.1 Synthesen von neutralen tetra-, penta- und hexakoordinierten
	${ m Silicium(IV)} ext{-Komplexen}$ ausgehend von ${ m Silicium(IV)} ext{-haltigen}$
	Vorstufen13
	3.1.1 Synthesen von neutralen pentakoordinierten Silicium(IV)-Komplexen mit einem bidentaten Amidinato-Liganden und drei monodentaten Halogeno- Liganden
	3.1.1.1 Synthese von Verbindung $1 (SiN_2Cl_3$ -Gerüst)
	3.1.1.2 Synthese von Verbindung 2 $(SiN_2F_3$ -Gerüst)
	3.1.1.3 Synthese von Verbindung 3 (SiN_2Br_3 -Gerüst)
	3.1.1.4 Versuche zur Darstellung von 4 15
	3.1.1.5 Exkurs: Versuche zur Darstellung eines Donor-stabilisierten Silylens
	mit einem bidentaten Amidinato- und einem monodentaten Halogeno-
	Liganden
	3.1.2 Synthesen von neutralen pentakoordinierten Silicium(IV)-Komplexen mit einem bidentaten Amidinato-, einem 2,4,6-Trimethoxyphenyl- und zwei monodentaten (Pseudo)halogeno- bzw. einem bidentaten Benzol-1,2-diolato-
	Liganden17
	3.1.2.1 Synthese von Verbindung 9 (SiN_2CF_2 -Gerüst)
	3.1.2.2 Synthese von Verbindung 10 (SiN_2CCl_2 -Gerüst)
	3.1.2.3 Synthese von Verbindung 11 (SiN_2CBr_2 -Gerüst)
	3.1.2.4 Synthese von Verbindung 12 $(SiN_2C_3$ -Gerüst)
	3.1.2.5 Synthese von Verbindung 13 $(SiN_4C$ -Gerüst)
	3.1.2.6 Synthese von Verbindung 14 $(SiN_4C$ -Gerüst)
	3.1.2.7 Synthese von Verbindung 15 $(SiN_2CO_2$ -Gerüst)
	3.1.2.8 Versuche zur Abspaltung des 2,4,6-Trimethoxyphenyl-Liganden

3.1.3 Synt	hesen von neutralen pentakoordinierten Silicium(IV)-Komplexen mit								
einer	n bidentaten Amidinato-, einem monodentaten Pentafluorphenyl- und								
zwei	zwei monodentaten Halogeno-Liganden23								
3.1.3.1	Synthese von Verbindung 18 (SiN_2CCl_2 -Gerüst)								
3.1.3.2	Synthese von Verbindung 19 $(SiN_2CBr_2$ -Gerüst)								
3.1.4 Synt	hesen von zwitterionischen dinuklearen pentakoordinierten Silicium (IV)-								
Kom	plexen mit zwei bidentaten N,N - und zwei monodentaten								
Chlo	ro-Liganden								
3.1.4.1	Versuche zur Synthese von hexakoordinierten Silicium (IV)-Komplexen								
	mit einem bidentaten Amidinato-, einem bidentaten N,P - und zwei								
	monodentaten Chloro-Liganden								
3.1.4.2	Synthese von Verbindung 26 $(SiN_3Cl_2$ -Gerüst)								
3.1.4.3	Synthese von Verbindung 27 $(SiN_3Cl_2$ -Gerüst)								
3.1.4.4	Synthese von Verbindung 28 $(SiN_3Cl_2$ -Gerüst)								
3.1.4.5	Synthese von Verbindung 29 $(SiN_3Cl_2$ -Gerüst)								
3.1.4.6	Bildungsmechanismus von 26–29								
3.1.4.7	Reaktionen von 26–29 mit Wasser — Versuche zur Abspaltung und								
	Isolierung des neu gebildeten N.N-Liganden								

3.1.5	Synth	lesen von	neutral en	hexakoo	rdinierte	n Silicium(1	v)-Kom	plexen	mit	
	einem	bidentat	ten Amid	inato-,	einem	bidentaten	N, <i>O</i> -	und	zwei	
	mono	dentaten (1	Pseudo)hal	ogeno bzv	w. einen	n bidentaten	Benzol	-1,2-dio	olato-	
	Ligan	den								. 30
3.	1.5.1	Synthese v	von Verbind	lung 30 (SiN ₃ OC	$_2$ -Gerüst)				. 30
3.	1.5.2	Synthese v	on Verbind	lung 31 (SiN ₃ OB	c_2 -Gerüst)				. 30
3.	1.5.3	Synthese v	on Verbine	lung 32 (SiN ₃ OF ₂	-Gerüst)				. 31
3.	1.5.4	Synthese v	on Verbine	lung 33 (SiN ₅ O-C	Gerüst)				. 32
3.	1.5.5	Synthese v	on Verbine	lung 34 (SiN_5O-C	Gerüst)				. 32
3.	1.5.6	Synthese v	on Verbine	lung 35 (SiN ₅ O-C	Gerüst)				. 33
3.	1.5.7	Synthese v	von Verbind	lung 36 (SiN ₃ O ₃ -	Gerüst)				. 34
3.	1.5.8	Synthese v	on Verbine	lung 37 (SiN ₃ O ₃ -0	Gerüst)				. 34

3.1.6	Synthese	eines	trikoordinierten	Donor-stabilisierten	Silylens	mit
	einem mon	o- und e	einem bidentaten A	Amidinato-Liganden —	Verbindun	g 39
	(<i>Si</i> N ₃ -Gerü	st)				35

3.2.1	Synth	nesen	von	neutralen	pentako ordinierten	Silicium(II)-Komplexen	mit	
	zwei	bident	aten	Amidinato-	Liganden und einer	Si–B-Bindung		37
3.	2.1.1	Synt	hese v	on Verbine	dung 41 (SiN_4B -Geri	ist)		37
3.	.2.1.2	Synt	hese v	on Verbine	dung 42 (SiN_4B -Geri	ist)		38

3.2.2	Synth	esen von n	eutralen	pentakoordinierten	Silicium(II)-Komplexen	mit
	zwei l	oidentaten A	midinato-	Liganden und einer	Si-M-Bindung (M = Cr ,	Mo,
	W, Fe	e)				
3.	2.2.1	Synthese vor	n Verbind	ung 43 (SiN_4 Cr-Gei	rüst)	
3.	2.2.2	Synthese vor	n Verbind	ung 44 (SiN_4 Mo-Ge	rüst)	39
3.	2.2.3	Synthese voi	n Verbind	ung 45 (SiN_4W -Ger	-üst)	40
3.	2.2.4	Synthese voi	n Verbind	ung 46 (SiN_4 Fe-Ger	rüst)	40
3.	2.2.5	Anmerkung	zu den Ve	erbindungen 41–46 .		41

3.2.3	Synthese eines cyclischen Silans mit zwei monodentaten Amidinato-Liganden	
	— Verbindung 48 (SiN_2C_2 -Gerüst)	41

3.2.4	Synth	nese von	kationischen	pentakoordinierten	Silicium(IV)-Komplexen	mit
	zwei	bidentate	en Amidinato-	Liganden und einer	Si–H-Bindung	
3	.2.4.1	Synthes	e von Verbind	lung $49(SiN_4H$ -Gerü	st)	42

3.2.6 Synthesen von neutralen pentakoordinierten Silicium(IV)-Komplexen	
mit zwei bidentaten Amidinato-Liganden und einer Si=El-Doppelbindung	
(El = S, Se, Te)	46
3.2.6.1 Synthese von Verbindung 55 $(SiN_4S$ -Gerüst)	46
3.2.6.2 Synthese von Verbindung 56 (SiN_4 Se-Gerüst)	47
3.2.6.3 Synthese von Verbindung 57 (SiN_4 Te-Gerüst)	48
3.2.6.4 Versuche zur Dimerisierung von 55–57	48
3.2.7 Synthesen von neutralen hexakoordinierten Silicium(IV)-Komplexen mit zwei	
bidentaten Amidinato- und einem bidentaten O,O-Liganden	49
3.2.7.1 Synthese von Verbindung 58 (SiN_4O_2 -Gerüst)	49
3.2.7.2 Synthese von Verbindung 59 $(SiN_4O_2$ -Gerüst)	50
3.2.7.3 Bildungsmechanismus von 58 und 59	50
3.2.8 Synthesen von neutralen hexakoordinierten Silicium(IV)-Komplexen mit zwei bidentaten Amidinato-, einem monodentaten Carboranyl-Liganden sowie	
einer Si–H-Bindung	51
3.2.8.1 Synthesen der Verbindungen 60 und 61 (SiN_4 CH-Gerüste)	51
3.2.8.2 Synthese von Verbindung 62 (SiN_4 CH-Gerüst)	53
3.2.9 Synthesen von neutralen hexakoordinierten Silicium(IV)-Komplexen mit zwei	
bidentaten Amidinato- und zwei monodentaten Halogeno- bzw. zwei	
monodentaten Selenophenolato-Liganden	53
3.2.9.1 Synthesen der Verbindungen 8 (SiN_4Cl_2 -Gerüst) und 66.8 (BeN_2Cl_2 -	50
2 2 0 2 Sumthese yer Verhindung 40 (SN Dr. Conüct)	53
3.2.9.2 Synthese von Verbindung 40 (SuN_4Br_2 -Gerust)	55
3.2.9.3 Synthese von Verbindung 68 (SuN_4I_2 -Gerust)	55
$3.2.9.4$ Synthese von Verbindung 69 (SuN_4Se_2 -Gerust)	90
3.2.10 Synthese eines neutralen hexakoordinierten Silicium(IV)-Komplexes mit zwei	
bidentaten Amidinato-Liganden, einem monodentaten Pentafluorphenyl-	
und einem monodentaten Fluoro-Liganden — Verbindung $70.0.5n$ -C ₆ H ₁₄	
$(SiN_4CF$ -Gerüst)	57

	3.3	Übersicht über die Reaktivität des Donor-stabilisierten Silylens 39 und Klassifizierung der Reaktionstypen
4	NI	MR-Untersuchungen
	4.1	NMR-Untersuchung des trikoordinierten Donor-stabilisierten Silylens 39
	4.2	NMR-Untersuchung der neutralen pentakoordinierten Silicium(II)- Komplexe 41–46
	4.2.3	Untersuchung der pentakoordinierten Silicium(II)-Komplexe 41–46 im Festkörper
	4.2.3	 Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoordinierten Silicium(II)-Komplexe 41–46 im Festkörper und in Lösung
	4.3	NMR-Untersuchungen der pentakoordinierten Silicium(IV)-
		$54' \cdot C_6 H_5 C H_3$ und 55–57 sowie von Verbindung 48
	4.3.2	NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe 1–3, 9, 10, 13–16, 18, 19, 50, 52, 54'· $C_6H_5CH_3$ und 55–57 sowie von Verbindung 48 im Festkörper
	4.3.2	 2 Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoordinierten Silicium(IV)-Komplexe 1-3, 9-15, 18, 19, 50, 52, 54'.C₆H₅CH₃ und 55-57 sowie von Verbindung 48 im Festkörper und in Lösung 70
	4.3.3	 3 Untersuchungen zur Dynamik der Verbindungen 1–3, 9–15, 18, 19, 48, 52 und 55–57 in Lösung
	4.4	NMR-Untersuchungen der zwitterionischen pentakoordinierten Silicium(IV)-Komplexe 26–29 im Festkörper
	4.5	NMR-Untersuchungen der neutralen hexakoordinierten Silicium(IV)- Komplexe 30–37 mit einem Amidinato- und einem <i>N,O</i> -Liganden 75

4.5.1	NMR-Untersuchungen der hexakoordinierten Silicium(IV)-Komplexe $30{37}$
	im Festkörper
4.5.2	Vergleich der 29 Si-chemischen Verschiebungen der hexakoordinierten
	Silicium(IV)-Komplexe 30–37 im Festkörper und in Lösung
4.5.3	Untersuchungen zur Dynamik der Verbindungen 30–37 in Lösung
4.5.4	Anmerkung zu den 1 H-Resonanzsignalen der Methyl-Protonen der
	Verbindungen 30 , 31 und 33–36 in Lösung
4.6 N	${ m MR}$ -Untersuchungen der neutralen hexakoordinierten Silicium(IV)-
K	Xomplexe mit zwei Amidinato-Liganden 38, 53, 58–61, 68, 69 und
7	$0.0.5 C_6 H_{14}$
4.6.1	NMR-Untersuchungen der hexakoordinierten Silicium(IV)-Komplexe 38 , 53 ,
-	58–61 , 68 , 69 und 70 \cdot 0.5C ₆ H ₁₄ im Festkörper
4.6.2	Vergleich der ²⁹ Si-chemischen Verschiebungen der hexakoordinierten
	Silicium(IV)-Komplexe 38 , 53 , 58–61 , 68 , 69 und 70 \cdot 0.5C ₆ H ₁₄ im
	Festkörper und in Lösung
4.6.3	Untersuchungen zur Dynamik der Verbindungen 38, 53, 58–61, 68 und 70
	in Lösung
5 Kris	stallstrukturanalysen91
5.1 A	Illgemeine Bemerkungen91
5.2 Kr	istallstrukturen
5.2.1	Kristallstrukturen der neutralen pentakoordinierten Silicium(IV)-Komplexe
	mit einem bidentaten Amidinato-Liganden und drei monodentaten
_	Halogeno-Liganden
5.	2.1.2 Kristallstruktur von 1
5.	2.1.2 Kristalistruktur von 2
5	2.1.3 Kristallstruktur von 3 94
5.2.2	Kristallstrukturen der neutralen pentakoordinierten Silicium(IV)-Komplexe
	mit einem bidentaten Amidinato-, einem monodentaten 2,4,6-Trimethoxy-
	phenyl- und zwei monodentaten (Pseudo)halogeno bzw. einem bidentaten
	Benzol-1,2-diolato-Liganden

ļ	5.2.2.1	Kristallstruktur von $10.0.5 \text{Et}_2\text{O}$
ļ	5.2.2.2	Kristallstruktur von 13
į	5.2.2.3	Kristallstruktur von 14
į	5.2.2.4	Kristallstruktur von 15
5.2.3	Krist	allstrukturen der neutralen pentakoordinierten Silicium (IV) -Komplexe
	mit	einem bidentaten Amidinato-, einem monodentaten Pentafluorphenyl-
	und	zwei monodentaten Halogeno-Liganden102
ļ	5.2.3.1	Kristallstruktur von 18
ţ	5.2.3.2	Kristallstruktur von 19 103
5.2.4	Krist	allstrukturen der zwitterionischen dinuklearen pentakoordinierten
	Silici	um (IV)-Komplexe mit zwei bidentaten $N,N\!\!$ - und zwei monodentaten
	Chlo	ro-Liganden104
ļ	5.2.4.1	Kristallstruktur von 26
	5.2.4.2	Kristallstruktur von 27 105
	5.2.4.3	Kristallstruktur von 28
ļ	5.2.4.4	Kristallstruktur von 29
5.2.5	Krist	allstrukturen der neutralen hexakoordinierten Silicium (IV)-Komplexe
	mit	einem bidentaten Amidinato-, einem bidentaten N,O - und zwei
	mone	odentaten (Pseudo)halogeno- bzw. einem bidentaten Benzol-1,2-diolato-
	Ligar	nden109
ļ	5.2.5.1	Kristallstruktur von 30
	5.2.5.2	Kristallstruktur von 31 110
ļ	5.2.5.3	Kristallstruktur von 32 111
	5.2.5.4	Kristallstruktur von 33 112
ļ	5.2.5.5	Kristallstruktur von ${f 34}$
į	5.2.5.6	Kristallstruktur von ${f 35}$
į	5.2.5.7	Kristallstruktur von 36
1	5.2.5.8	Kristallstruktur von 37
5.2.6	Krist	${ m callstruktur}$ des neutralen hexakoordinierten Silicium(IV)-
	Kom	plexes 38
5.2.7	′ Krist	allstruktur des trikoordinierten Donor-stabilisierten Silylens 39 120

5.2.8 Kristallstrukturen der neutralen pentakoordinierten Silicium(II)-Komplexe				
mit zwei bidentaten Amidinato-Liganden und einer Si–B-Bindung122				
5.2.8.1 Kristallstruktur von 41 122				
5.2.8.2 Kristallstruktur von $42 \cdot C_6 H_5 C H_3 \dots 124$				
5.2.9 Kristallstrukturen der neutralen pentakoordinierten Silicium(II)-Komplexe				
mit zwei bidentaten Amidinato-Liganden und einer Si–M-Bindung				
(M = Cr, Mo, W, Fe)				
5.2.9.1 Kristallstruktur von 43 125				
5.2.9.2 Kristallstruktur von 44 126				
5.2.9.3 Kristallstruktur von 45 128				
5.2.9.4 Kristallstruktur von 46 129				
5.2.10 Kristallstruktur des cyclischen Silans 48 130				
5.2.11 Unistallatuultuu dag kationigahan nantakaandiniantan Gilisium (π_i)				
S.2.11 Kristanstruktur des kationischen pentakoordinierten Sinclum(iv)-				
Komplexes 32				
5.2.12 Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes ${\bf 53}\ldots 133$				
5.2.13 Kristallstruktur des neutralen dinuklearen pentakoordinierten Silicium(IV)-				
Komplexes $54' \cdot C_6 H_5 CH_3 \dots 134$				
5.2.14 Kristallstrukturen der neutralen pentakoordinierten Silicium(IV)-Komplexe				
mit zwei bidentaten Amidinato-Liganden und einer Si=El-Doppelbindung				
(El = S, Se, Te)				
5.2.14.1 Kristallstruktur von 55				
5.2.14.2 Kristallstruktur von 56				
5.2.14.3 Kristallstruktur von $57.0.7C_6H_5CH_3$				
5.2.15 Kristallstrukturen der neutralen hexakoordinierten Silicium(IV)-Komplexe				
mit zwei bidentaten Amidinato-Liganden und einem bidentaten				
<i>O</i> , <i>O</i> -Liganden140				
5.2.15.1 Kristallstruktur von 58 140				
5.2.15.2 Kristallstruktur von 59 141				

8	\mathbf{Exp}	erimenteller Teil187
7	Sum	nmary175
6	Zusa	ammenfassung163
		Amidinato-Liganden
	5.3.5	Vergleich der neutralen hexakoordinierten Silicium(IV)-Komplexe mit zwei
		Amidinato-Liganden158
	5.3.5	Vergleich der pentakoordinierten Silicium(IV)-Komplexe mit zwei
	5.3.4	Vergleich der neutralen pentakoordinierten Silicium(II)-Komplexe157
		Amidinato-, einem $N,O\!\!-$ und zwei (Pseudo) halogeno -Liganden155
	5.3.3	Vergleich der neutralen hexakoordinierten Silicium(IV)-Komplexe mit einem
		Komplexe mit zwei N,N-Liganden
	5.3.2	Vergleich der dinuklearen zwitterionischen pentakoordinierten Silicium(IV)
		2,4,6-Trimetoxyphenyl- bzw. einem Pentafluorphenyl-Liganden151
		Amidinato-, drei Halogeno- bzw. zwei (Pseudo)halogeno- und einem
	5.3.1	Vergleich der neutralen pentakoordinierten Silicium(IV)-Komplexe mit einem
	5.3 V	ergleich der Molekülstrukturen151
		$70 \cdot 0.5 n \cdot C_6 H_{14}$
	5.2.21	Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes
		69 ·CH ₃ CN
	5.2.20	Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes
	5.2.19	Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes ${\bf 68} \dots 147$
	5.2.10	Kristanstruktur des neutralen trikoordimerten berymum(n)-Komplexes 66 .8140
	5918	Kristallstruktur des neutralen trikoordinierten Beryllium(II)-Kompleyes 66.8 146
	5.2.17	Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes ${\bf 61}\ldots 145$
	5.2.16	Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes ${\bf 60} \dots 143$

8.1 Arbeits- und Messtechniken	
8.1.1 Allgemeine Arbeitstechniken	
8.1.2 Messtechniken	
8.2 Synthesen	
9 Literaturverzeichnis und Anmerkungen	235
Anhang A: Daten zu den Kristallstrukturanalysen	249
Anhang B: Formelregister	
Danksagung	

1 Einleitung

Silicium ist mit 26.3%, nach Sauerstoff (48.9%), das zweithäufigste Element in der "Erdhülle" und ist somit so häufig wie alle übrigen Elemente zusammen.^[1] Es tritt hierbei vor allem in Form silicatischer Minerale (z. B. Feldspäte) bzw. als reines Siliciumdioxid (z. B. α -Quarz) auf.^[2] Es ist, wie sein leichteres Homolges Kohlenstoff, ein Element der vierten Hauptgruppe und weist ein dem Kohlenstoff sehr ähnliches chemisches Verhalten auf. So tritt Silicium wie auch Kohlenstoff in stabilen Verbindungen zumeist tetravalent in der Oxidationsstufe +IV auf; aus den Unterschieden in z. B. den Atomradien, den Elektronegativitäten und der energetischen Lage der *s*- und *p*-Orbitale zueinander resultieren jedoch auch große Unterschiede.

Während im Falle des Kohlenstoffs eine große Zahl von Verbindungen mit kleineren C-Koordinationszahlen (KZ) als vier existieren (z. B. KZ = 3: Alkene, Carbonyl-Verbindungen, Aromaten; KZ = 2: Alkine, Carbene), so sind entsprechende (kinetisch) stabile Silicium-Verbindungen mit Si-Koordinationszahlen von drei (z. B. Silene, Disilene) und zwei (z. B. Silylene, Siline) verhältnismäßig selten. Niedervalente Silicium-Spezies des Typs SiR₂ (R = H, Alkyl, Aryl, Halogen) sind, wie auch ihre leichteren Homologen (Carbene), häufig hochreaktive und unter Normalbedingungen instabile, kurzlebige Verbindungen, welche lange Zeit nur durch Abfangreaktionen bzw. durch spektroskopische Methoden nachgewiesen werden konnten. Da diese niedervalenten Silicium(II)-Verbindungen durch ihren ambiphilen Charakter (elektrophiles LUMO, nukleophiles HOMO) ein vielfältiges Reaktivitätsspektrum besitzen, gilt ihnen seit einiger Zeit großes wissenschaftliches Interesse. Besonders die Synthese und Untersuchung von unter Laborbedingungen stabilen, divalenten Silicium(II)-Spezies war in den letzten zwei Jahrzenten Gegenstand intensiver Forschung.^[3-6] Zur Stabilisierung sich vor allem zwei solcher Verbindungen eignen Methoden: I) Elektronische (thermodynamische) Stabilisierung durch die Einführung von Elektronen-donierenden bzw. -akzeptierenden Substituenten (z. B. I^[5a] und II^[4a]) und II) kinetische Stabilisierung durch Abschirmung des Silicium-Atoms durch sterisch anspruchsvolle Substituenten (z. B. in $\mathbf{III}^{[4g]}$ und $IV^{[4h]}$).

So war die erste isolierte, bei Raumtemperatur stabile Silicium(II)-Verbindung I ein Donorstabilisiertes Silylen. Erst 13 Jahre später gelang es, das thermisch stabile Dialkylsilylen III zu synthetisieren. Die Klasse der Donor-stabilisierten Silvlene ist besonders im letzten Jahrzehnt wieder in den Focus breiter wissenschaftlicher Forschung geraten und vor allem höherkoordinierte Silicium(II)-Komplexe (KZ ≥ 3) mit Amidinato-Liganden (z. B. $V^{[6a]}$) verstärkt untersucht.^[6] Die relativ hierbei einfache Zugänglichkeit wurden und Handhabbarkeit dieser Verbindungen sowie deren breites Reaktionsspektrum lässt auf eine vielfältige Anwendung in vielen Bereichen der synthetischen Chemie hoffen. So werden z. B. mögliche Anwendungen in katalytischen Prozessen diskutiert.^[3] Des Weiteren wurden Schlüsselintermediate in der Müller-Rochow-Synthese kürzlich Silylene alsvon Methylchlorsilanen (dem wichtigsten industriellen siliciumorganischen Prozess) nachgewiesen (siehe hierzu Lit. [7] und die darin zitierte Literatur).

Während die Verbindungen I–V durch Kohlenstoff- bzw. Stickstoff-Liganden stabilisert werden, sind auch einige wenige Silicium(II)-Spezies mit Phosphor- ($\mathbf{VI}^{[5b]}$), Schwefel- ($\mathbf{VII}^{[4e]}$) und Bor-haltigen Liganden ($\mathbf{VIII}^{[4k]}$) bekannt.

Im Gegensatz zu Kohlenstoff-Verbindungen mit C-Koordinationszahlen kleiner als vier werden höherkoordinierte Verbindungen (KZ > 4) im Falle des Kohlenstoffs fast ausschließlich als Übergangszustände durchlaufen. Im Vergleich dazu sind höherkoordinierte Silicium-Komplexe schon seit dem 19. Jahrhundert bekannt und werden seither intensiv untersucht. So gibt es eine große Anzahl von Silicium(IV)-Komplexen mit Si-Koordinationszahlen von fünf bzw. sechs.^[8] Diese werden in den meisten Fällen durch kleine, elektronegative (also harte) Ligand-Atome wie z. B. Fluor, Stickstoff oder Sauerstoff (z. B. $IX^{[9c]}$) stabilisiert. Es wurden jedoch auch einige penta- und hexakoordinierte Silicium(IV)-Komplexe synthetisiert, welche weiche Ligand-Atome wie z. B. Phosphor (z. B. $X^{[9b]}$), Schwefel, Selen oder sogar Tellur (z. B. $XI^{[10f]}$) bzw. Iod tragen. Diese Beispiele widersprechen dem HSAB-Konzept und zeigen die Grenzen solch einfacher Modelle auf. Neben experimentellen Arbeiten Synthese und Charakterisierung zur höherkoordinierter Silicium(IV)-Verbindungen wurde die Bindungssituation in diesen Komplexen und die Frage, warum Silicium und seine schwereren Homologen - Germanium, Zinn und Blei - im Gegensatz zum Kohlenstoff dazu befähigt sind, stabile Verbindungen mit auszubilden, Koordinationszahlen größer alsvier durch quantenchemische Studien untersucht.^[11]

Höherkoordinierte Silicium(IV)-Komplexe können in drei Kategorien eingeteilt werden: I) Anionische (z. B. **XII**^[10c]), II) neutrale (z. B. **IX–XI**; hierzu werden auch die zwitterionischen Komplexe, wie z. B. **XIII**,^[10d] gezählt) und III) kationische Komplexe (z. B. **XIV**^[9c]).

Höherkoordinierte Silicium(IV)-Komplexe werden als Modellsysteme für Substitutionsreaktionen an Silicium- und Kohlenstoff-Zentren herangezogen. Gerade bei Letzeren treten die entsprechenden Zwischenstufen in aller Regel lediglich als Übergangszustände und nicht als isolierbare Intermediate auf, wodurch eine direkte experimentelle Beobachtung nicht möglich ist. Durch höherkoordinierte Silicium(IV)-Verbindungen kann somit das Verständniss für die in solchen Raktionen stattfindenden Prozesse erweitert werden.^[12]

Weiterhin kann durch die systematische Untersuchung der Reaktivität sowie der strukturellen und spektroskopischen Eigenschaften von penta- und hexakoordinierten Silicium(IV)-Komplexen ein besseres Verständnis der Bindungssituation in diesen Systemen erreicht werden.

Verwendung finden höherkoordinierte Silicium(IV)-Komplexe unter anderem in der organischen Synthese zur Knüpfung von C–C-Bindungen und in der Krebsforschung werden sie auf ihre Eignung als Pharmaka für die photodynamische Tumortherapie untersucht.^[13,14] Weiterhin werden geeignete penta- und hexakoordinierte Silicium(IV)-Verbindungen in Sol-Gel- und CVD-Verfahren verwendet.^[15,16]

Einige Pflanzen (z. B. Schachtelhalme), aber auch marine Organismen wie Diatomeen (Kieselalgen), Radiolarien (Strahlentierchen) und einige Poriferen (Schwämme) sind in der Lage, durch gezielte Biomineralisation von Siliciumdioxid z. B. Exoskelette und andere unterstützende Strukturen aufzubauen. Die hierzu notwendigen Transport- und Speicherprozesse von *ortho*-Kieselsäure bzw. Polykieselsäuren sind bislang nicht verstanden, allerdings werden in diesem Zusammenhang höherkoordinierte Silicium(IV)-Verbindungen diskutiert.^[17]

Sowohl höherkoordinierte Silicium(II)- (KZ > 2) als auch Silicium(IV)-Verbindungen (KZ > 4) stellen somit aufgrund ihrer strukturellen Vielfältigkeit und ihrer einzigartigen Eigenschaften ein äußerst reizvolles Gebiet der Hauptgruppenchemie dar. Die vorliegende Arbeit widmet sich dementsprechend der Synthese, Struktur und Eigenschaften neuer tri-, tetra- und pentakoordinierter Silicium(II)- bzw. tetra-, penta- und hexakoordinierter Silicium(IV)-Komplexe und stellt damit einen Beitrag zur Chemie des höherkoordinierten Siliciums dar.

2 Zielsetzung

2.1 Neutrale pentakoordinierte Silicium(IV)-Komplexe

2.1.1 Neutrale pentakoordinierte Silicium(IV)-Komplexe mit einem bidentaten Amidinato- und drei monodentaten Halogeno-Liganden

Aufbauend auf vorangegangene Studien zu hexakoordinierten Silicium(IV)-Komplexen des Formeltyps **A** mit zwei bidentaten monoanionischen Amidinato- und zwei monodentaten monoanionischen (Pseudo)halogeno Liganden^[10m] sollten im Rahmen dieser Arbeit neue neutrale pentakoordinierte Silicium(IV)-Verbindungen des Folmeltyps **B** mit einem bidentaten Amidinato-Liganden desselben Typs wie in **A** und drei monodentaten monoanionischen Halogeno-Liganden synthetisiert und hinsichtlich ihrer Struktur und Eigenschaften untersucht werden. Diese Verbindungen des Typs **B** sollten durch die dritte reaktive Silicium–Halogen-Bindung und die "freie Koordinationsstelle" eine interessante Reaktivität besitzen, welche es zu untersuchen galt.

2.1.2 Darstellung eines Donor-stabilisierten Chloro- bzw. Bromosilylens mit einem Amidinato-Liganden

In Analogie zu der Synthese des literaturbekannten Donor-stabilisierten Silylens $\mathbf{C}^{[6a]}$ sollte der Trichloro- bzw. Tribromosilicium(IV)-Komplex des Formeltyps **B** durch Reduktion mit Alkalimetallen in Silicium(II)-Spezies des Typs **D** überführt werden. Aufgrund des geringeren sterischen Anspruchs der Isopropyl-Gruppen in **D** im Vergleich zu den *t*-Butyl-Gruppen von **C** sollten die so erhaltenen neuen Donor-stabilisierten Silylene D eine gegenüber **C** veränderte Reaktivität besitzen.

2.1.3 Neutrale pentakoordinierte Silicium(IV)-Komplexe mit einem bidentaten Amidinato-, zwei monodentaten (Pseudo)halogeno- und einem monodentaten 2,4,6-Trimethoxyphenyl- bzw. einem monodentaten Pentafluorphenyl-Liganden

Die Verbindungen des Formeltyps **B** sollten durch geeignete Reaktionen in die Derivate des Typs **E** und **F**, welche einen 2,4,6-Trimethoxyphenyl- (TMOP-) (**E**) bzw. Pentafluorphenyl-Liganden (**F**) tragen, überführt werden, um den Einfluss der Substitution eines der Halogeno-Liganden von **B** durch organische Substituenten mit unterschiedlichen elektronischen und sterischen Eigenschaften auf die strukturellen und spektroskopischen Eigenschaften zu untersuchen.

Nachdem der TMOP-Ligand in der Synthese von tetrakoordinierten Silicium(IV)-Verbindungen als vielseitige Schutzgruppe erfolgreich eingesetzt wird,^[18] sollte anhand der Verbindungen des Typs **E** mit einem TMOP-Liganden untersucht werden, ob sich dieser auch in der Chemie des höherkoordinierten Siliciums als Schutzgruppe eignet. Hierzu sollte versucht werden, den TMOP-Liganden der Verbindungen des Typs **E** unter geeigneten Bedingungen unter der Ausbildung einer reaktiven Si-Cl-Bindung abzuspalten.

2.2 Neutrale hexakoordinierte Silicium(IV)-Komplexe

Nachdem sich in vorangegangenen Studien zu Verbindungen des Formeltyps **A** gezeigt hatte, dass sich der entsprechende Dichlorosilicium(IV)-Komplex sehr gut als Edukt für die Synthese neuer neutraler hexakoordinierter Silicium(IV)-Komplexe eignet,^[10m] sollte untersucht werden, ob dies auch auf den Trichlorosilicium(IV)-Komplex des Formeltyps **B** zutrifft. Ausgehend von dieser Verbindung sollten weitere bidentate monoanionische Liganden in die Si-Koordinationssphäre eingeführt werden, um so zu neuartigen hexakoordinierten Silicium(IV)-Systemen zu gelangen.

2.2.1 Neutrale hexakoordinierte Silicium(IV)-Komplexe mit einem bidentaten Amidinato-, einem bidentaten N,O- und zwei monodentaten (Pseudo)halogeno bzw. einem bidentaten O,O-Liganden

Der pentakoordinierte Dichlorosilicium(IV)-Komplex des Formeltyps **B** sollte unter geeigneten Bedingungen mit 8-Hydroxychinolin umgesetzt werden, um so zu dem hexakoordinierten Silicium(IV)-Komplex des Formeltyps **G** zu gelangen. Dieser besitzt zwei reaktive Si-Cl-Bindungen, welche auf ihre Reaktivität in Substitutionsreaktionen (Cl \rightarrow X; X = (Pseudo)halogen, Benzol-1,2-diolato) untersucht werden sollten. Aus dem Fehlen jeglicher Symmetrieelemente in den resultierenden Verbindungen wurde erwartet, dass sich interessante strukturelle und spektroskopische Eigenschaften ergeben, welche es zu untersuchen galt.

2.2.2 Neutrale hexakoordinierte Silicium(IV)-Komplexe mit einem bidentaten Amidinato-, einem bidentaten N,P- und zwei monodentaten (Pseudo)halogeno-Liganden

Im Zuge vorangegangener Arbeiten konnte gezeigt werden, dass auch höherkoordinierte Silicium(IV)-Komplexe mit weichen Ligand-Atomen stabil sein können (siehe hierzu Lit. [9b], [10b,f,h,k] und [19]). In unserer Arbeitsgruppe wurden bereits pentakoordinierte Silicium(IV)-Verbindungen mit Si-S-, Si-Se-, Si-Te- und Si-I-Bindungen sowie hexakoordinierte $Si-Se-Bindungen \quad \ dargestellt.^{[10b,f,h,k,m]}$ Silicium(IV)-Komplexe Si–S-Alle mit und vorangegangenen Versuche, auch phosphorhaltige-Liganden an das harte Si-Koordinationszentrum zu binden, scheiterten. Die Chemie höherkoordinierter Silicium(IV)-Verbindungen mit Si-P-Bindungen beschränkt sich auf wenige Beispiele, welche zum Teil nicht vollständig charakterisiert sind.^[19] Daher sollte in Analogie zu der unter 2.2.1 beschriebenen Reaktion des Dichlorosilicium(IV)-Komplexes des Formeltyps B versucht werden, einen bidentaten monoanionischen N,P-Liganden des Formeltyps $\mathbf{H}^{[20]}$ in die Si-Koordinationssphäre einzuführen, um so zu dem neutralen hexakoordinierten Silicium(IV)-Komplex I zu gelangen. Dieser sollte durch geeignete Umsetzungen an den reaktiven Si-Cl-Bindungen derivatisiert und die resultierenden Verbindungen bezüglich ihrer strukturellen und spektroskopischen Eigenschaften untersucht werden.

- 2.3 Darstellung und Charakterisierung eines tetrakoordinierten Donorstabilisierten Silylens mit zwei bidentaten Amidinato-Liganden sowie die Untersuchung von dessen Reaktivität
- 2.3.1 Darstellung eines tetrakoordinierten Donor-stabilisierten Silylens und Untersuchung von dessen strukturellen sowie spektroskopischen Eigenschaften

Ausgehend von dem Dichloro- bzw. Dibromosilicium(IV)-Komplex des Formeltyps **A** sollte durch Reaktion mit einem geeigneten Reduktionsmittel das tetrakoordinierte Donorstabilisierte Silylen **J** mit zwei bidentaten Amidinato-Liganden dargestellt werden. Des Weiteren sollte **J** auf seine strukturellen sowie spektroskopischen Eigenschaften hin untersucht werden.

2.3.2 Untersuchung der Reaktivität des Donor-stabilisierten Silylens J

Schon in der Vergangenheit wurde demonstriert, dass (Donor-stabilisierte) Silylene eine hochinteressante und vielfältige Reaktivität besitzen.^[3-6] Durch ihren ambiphilen Charakter (elektrophiles LUMO, nukleophiles HOMO) besitzen sie sowohl elektrophile als auch nukleophile Eigenschaften, woraus ein breites Reaktionsspektrum resultiert. So reagieren (Donor-stabilisierte) Silylene beispielsweise als Lewis-Basen in Lewis-Säure/Base-Reaktionen, als Nukleophile in Substitutionsreaktionen und als Reduktionspartner in oxidativen Additionen. Die Reaktivität von \mathbf{J} sollte ebenfalls in diesen drei Bereichen untersucht werden. Neben der Erstellung eines Reaktivitätsprofils für \mathbf{J} sollte vor allem die strukturelle und spektroskopische Untersuchung der jeweils gebildeten höherkoordinierten Silicium(II)-und Silicium(IV)-Verbindungen im Mittelpunkt stehen.

2.3.2.1 Lewis-Säure/Base-Reaktionen

Das Donor-stabilisierte Silylen **J** sollte mit Lewis-sauren Triorganylboranen im Sinne einer Lewis-Säure/Base-Reaktion umgesetzt werden, um die entsprechenden Addukte des Formeltyps **K** zu erhalten (siehe hierzu Lit. [21]). Diese zeichnen sich durch ein pentakoordiniertes Si(II)-Koordinationszentrum und eine Si–B-Bindung aus. Im Gegensatz zu anderen Lewis-Säuren besitzen Borane den Vorteil, dass mit dem ¹¹B-Kern eine weitere NMR-aktive Sonde zur spektroskopischen Untersuchung zur Verfügung steht. Analoge Reaktionen sollten auch mit den Lewis-sauren Kupfer-, Quecksilber-, Zinn- und Berylliumhalogeniden möglich sein, wodurch ebenfalls pentakoordinierte Silicium(II)-Verbindungen des Formeltyps **L** mit Si–M-Bindungen (M = Cu, Hg, Sn, Be) gebildet werden sollten.

2.3.2.2 Nukleophile Substitutionsreaktionen

In Analogie zu der Reaktivität anderer literaturbekannter Silicium(II)-Verbindungen sollte das Donor-stabilisierte Silylen **J** mit Übergangsmetallcarbonylverbindungen der Gruppe 6 (Cr, Mo, W) und des Eisens umgesetzt werden (siehe hierzu Lit. [22]–[24]). Hierbei sollte **J** als Nukleophil reagieren und einen der Carbonyl-Liganden verdrängen. Die so erhaltenen Verbindungen des Formeltyps **M** bzw. **N** zeichnen sich durch ein pentakoordiniertes Si(II)-Koordinationszentrum und eine Si–M-Bindung (M = Cr, Mo, W, Fe) aus. Weiterhin sollte überprüft werden, ob **J** in gleicher Weise mit Gruppe-6-Übergangsmetallkomplexen des Typs [HMCp(CO)₃] (M = Cr, Mo) reagiert und so Verbindungen des Formeltyps **O** gebildet werden.

2.3.2.3 Oxidative Additionsreaktionen

Oxidativen Additionsreaktionen stellen den am intensivsten untersuchten Reaktionstyp von Silylenen dar. Einen Subtyp dieser Reaktionen stellen die Cycloadditionen dar.^[25] Dementsprechend sollte versucht werden, ob das Donor-stabilisierte Silylen **J** formal im Sinne einer [1+4]-Cyclodaddition mit 2,3-Dimethyl-1,3-butadien reagiert ($\mathbf{J} \rightarrow \mathbf{P}$). Des Weiteren sollte versucht werden, durch die Reaktion mit den Chalcogenen Sauerstoff, Schwefel, Selen und Tellur zu neutralen pentakoordinierten Silicium(IV)-Komplexen des Typs **Q** mit einer Si=El-Doppelbindung (El = O, S, Se, Te) zu gelangen (siehe hierzu Lit. [26]).

Ein weiteres Gebiet, welches in den letzten Jahren zunehmend Aufmerksamkeit auf sich gezogen hat, bilden die Element-Element-Bindungsaktivierungen.^[3] Daher sollte **J** mit den Substraten Schwefeldioxid (S-O-Aktivierung; $El^1 = El^2 = O$), Essigsäure (O-H-Aktivierung; $El^1 = H, El^2 = O$), 1,2-Dicarba-*closo*-dodecaboran (C-H- bzw. B-H-Aktivierung; $El^1 = H, El^2 = C$ bzw. B), elementarem Iod (I-I-Aktivierung; $El^1 = El^2 = I$) und Diphenyldiselenid (Se-Se-Aktivierung; $El^1 = El^2 = Se$) umgesetzt werden ($J \rightarrow R$). Besondere Beachtung verdient die Aktivierung von C-F-Bindungen, da diese sehr stabil und entsprechende fluorierte organische Verbindungen über lange Zeit unter normalen Umweltbedingungen persistent sind. Die meisten bekannten C-F-Bindungsaktivierungen verlaufen Übergangsmetall-assistiert bzw.

-katalysiert.^[28] Bislang sind nur wenige Beispiele für Silicium-vermittelte C–F-Bindungsaktivierungen bekannt,^[29] weshalb **J** mit Hexafluorbenzol (C–F-Aktivierung; $El^1 = F$, $El^2 = C$) umgesetzt werden sollte.

Die durch Element–Element-Bindungsaktivierung erhaltenen hexakoordinierten Silicium(IV)-Komplexe des Formeltyps **R** sollten bezüglich ihrer Struktur und spektroskopischen Eigenschaften untersucht werden.

3 Synthesen

- 3.1 Synthesen von neutralen tetra-, penta- und hexakoordinierten Silicium(IV)-Komplexen ausgehend von Silicium(IV)-haltigen Vorstufen
- 3.1.1 Synthesen von neutralen pentakoordinierten Silicium(IV)-Komplexen mit einem bidentaten Amidinato-Liganden und drei monodentaten Halogeno-Liganden

3.1.1.1 Synthese von Verbindung 1 (SiN₂Cl₃-Gerüst)

Verbindung **1** wurde gemäß Schema 3.1 durch Umsetzung von Tetrachlorsilan mit 0.9 Moläquivalenten Lithium-N,N-diisopropylbenzamidinat^[30] in Diethylether bei -78 °C dargestellt.

Schema 3.1: Synthese von Verbindung 1.

Zur Abtrennung des bei der Reaktion gebildeten Lithiumchlorids wurde das Lösungsmittel im Vakuum entfernt, der verbliebene Rückstand mit Dichlormethan versetzt und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der feste Rückstand aus Acetonitril kristallisiert und **1** in einer Ausbeute von 77% als farbloser kristalliner Feststoff isoliert. Die Identität von **1** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.1.2 Synthese von Verbindung 2 (SiN₂F₃-Gerüst)

Verbindung 2 wurde gemäß Schema 3.2 durch zwei unterschiedliche Methoden dargestellt.

Methode 1: Verbindung **2** wurde durch Umsetzung von Tetrafluorsilan mit einem Moläquivalent Lithium-N,N-diisopropylbenzamidinat in Diethylether bei 20 °C dargestellt. Zur Abtrennung des bei der Reaktion gebildeten Lithiumfluorids wurde das Lösungsmittel im

Vakuum entfernt, der verbliebene Rückstand mit Toluol versetzt und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der feste Rückstand aus Acetonitril kristallisiert und **2** in einer Ausbeute von 77% als farbloser kristalliner Feststoff isoliert. Die Identität von **2** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ¹⁹F- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Methode 2: Verbindung 2 wurde durch Umsetzung von 1 mit drei Moläquivalenten Silbertetrafluoroborat und drei Moläquivalenten Triethylamin in THF bei 20 °C dargestellt. Zur Abtrennung des entstandenen Silberchlorids und Trifluorboran-Triethylamin-Addukts wurde das Reaktionsgemisch filtriert und die flüchtigen Bestandteile des Filtrats wurden im Vakuum entfernt. Der feste Rückstand wurde dann aus Acetonitril kristallisiert und 2 in einer Ausbeute von 68% als farbloser kristalliner Feststoff erhalten. Die analytischen Daten stimmten mit denen des nach Methode 1 erhaltenen Produkts überein.

Der Vorteil der zweiten Methode besteht in der im Vergleich zu *Methode 1* kürzeren Reaktionszeit (18 h vs. 20 min) und dem geringeren präparativen Aufwand.

Schema 3.2: Synthese von Verbindung 2.

3.1.1.3 Synthese von Verbindung 3 (SiN₂Br₃-Gerüst)

Verbindung **3** wurde gemäß Schema 3.3 durch Umsetzung von Tetrabromsilan mit einem Moläquivalent Lithium-N,N-diisopropylbenzamidinat in Diethylether bei -78 °C dargestellt.

Schema 3.3: Synthese von Verbindung 3.

Zur Abtrennung des bei der Reaktion gebildeten Lithiumbromids wurde das Lösungsmittel im Vakuum entfernt, der verbliebene Rückstand mit Toluol versetzt und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der verbliebene feste Rückstand aus Acetonitril kristallisiert und **3** in einer Ausbeute von 61% als farbloser kristallinier Feststoff isoliert. Die Identität von **3** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.1.4 Versuche zur Darstellung von 4

Der pentakoordinierte Silicium(IV)-Komplex 4 sollte gemäß Schema 3.4 durch Reaktion von Tetraiodsilan mit einem Moläquivalent Lithium-N,N-diisopropylbenzamidinat in n-Hexan bei -78 °C dargestellt werden, jedoch wurde hierbei lediglich die Bildung eines komplexen Substanzgemisches beobachtet, aus dem das gesuchte Produkt nicht isoliert werden konnte.

Schema 3.4: Versuche zur Synthese von Verbindung 4.

Weiterhin wurde versucht, Verbindung **4** durch die Umsetzung von **1** mit drei Moläquivalenten Iodtrimethylsilan in *n*-Hexan bzw. Benzol darzustellen (Schema 3.4). Auch bei dieser Umsetzung konnte lediglich die Zersetzung der Edukte und nicht die Bildung des gesuchten Triiodosilicium(IV)-Komplexes **4** beobachtet werden.

3.1.1.5 Exkurs: Versuche zur Darstellung eines Donor-stabilisierten Silylens mit einem bidentaten Amidinato- und einem monodentaten Halogeno-Liganden

In Analogie zu einem literaturbekannten Donor-stabilierten Silylen mit einem Amidinato-Liganden und einer Si–Cl-Bindung^[6a] wurde gemäß Schema 3.5 versucht, die Trihalogenosilicium(IV)-Komplexe **1** und **3** mit jeweils zwei Moläquivalenten Lithium, Natrium bzw. Kalium in THF bei 20 und 60 °C zu den entsprechenden heteroleptischen Donor-stabilisierten Silylenen 5 bzw. 6 zu reduzieren. Jedoch konnte in keinem Fall eine Reaktion festgestellt werden. Stattdessen wurden lediglich die Edukte quantitativ reisoliert. Auch der Zusatz von katalytischen Mengen Naphtalin führte nicht zur Bildung der gesuchten Verbindungen 5 und 6.

Schema 3.5: Versuche zu den Synthesen der Verbindungen 5 und 6.

Des Weiteren wurde im Anschluss versucht, in Analogie zu einer literaturbekannten Reaktion^[6d] den pentakoordinierten Chlorohydridosilicium(IV)-Komplex 7 gemäß Schema 3.6 durch Umsetzung von Trichlorsilan mit einem Moläquivalent Lithium-*N*,*N*¹-diisopropylbenzamidinat in Diethylether bei –78 °C darzustellen. Dieser sollte anschließend durch eine reduktive Chlorwasserstoff-Eliminierung in das Donor-stabilisierte Silylen 5 überführt werden. Die Bildung von Verbindung 7 konnte NMR-spektroskopisch nachgewiesen werden, allerdings konnte 7 nicht weiter aufgereinigt werden, da sie sich schon bei relativ niedrigen Temperaturen zersetzt. Forciert man die Zersetzungsreaktion durch erhöhte Temperatur (80 °C), zersetzt sich 7 interessanterweise quantitativ zu Verbindung 8 unter der Bildung eines komplexen Gemisches von nicht genauer untersuchten (vermutlich H/Cl-funktionalisierten) Polysilanen, welches durch Destillation aus der Reaktionsmischung entfernt werden kann. Da Verbindung 8 literaturbekannt ist, wurde sie lediglich durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) identifiziert.

Schema 3.6: Synthesen der Verbindungen 7 und 8.

3.1.2 Synthesen von neutralen pentakoordinierten Silicium(IV)-Komplexen mit einem bidentaten Amidinato-, einem monodentaten 2,4,6-Trimethoxyphenyl- und zwei monodentaten (Pseudo)halogeno- bzw. einem bidentaten Benzol-1,2-diolato-Liganden

3.1.2.1 Synthese von Verbindung 9 (SiN₂CF₂-Gerüst)

Verbindung **9** wurde gemäß Schema 3.7 durch Umsetzung von **2** mit einem Moläquivalent 2,4,6-Trimethoxyphenyllithium^[18a] in THF bei -78 °C dargstellt.

Schema 3.7: Synthese von Verbindung 9.

Zur Abtrennung des bei der Reaktion gebildeten Lithiumfluorids wurde das Lösungsmittel im Vakuum entfernt, der verbliebene Rückstand mit Dichlormethan versetzt und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der feste Rückstand aus Acetonitril kristallisiert und **9** in einer Ausbeute von 60% als farbloser kristalliner Feststoff isoliert. Die Identität von **9** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ¹⁹F- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) sichergestellt.

Aufgrund der schlechten Kristallqualität konnte 9 nicht durch eine Kristallstrukturanalyse untersucht werden.

3.1.2.2 Synthese von Verbindung 10 (SiN₂CCl₂-Gerüst)

Verbindung **10** wurde gemäß Schema 3.8 durch Umsetzung von **1** mit einem Moläquivalent 2,4,6-Trimethoxyphenyllithium in THF bei -78 °C dargstellt.

Schema 3.8: Synthese von Verbindung 10.

Zur Abtrennung des bei der Reaktion gebildeten Lithiumchlorids wurde das Lösungsmittel im Vakuum entfernt, der verbliebene Rückstand mit Toluol versetzt und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der Rückstand mit Diethylether versetzt und **10** durch Filtration in einer Ausbeute von 80% als farbloser amorpher Feststoff isoliert. Die Identität von **10** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse (nach Kristallisation aus Diethylether) sichergestellt.

3.1.2.3 Synthese von Verbindung 11 (SiN₂CBr₂-Gerüst)

Verbindung **11** wurde gemäß Schema 3.9 durch Umsetzung von **10** mit sechs Moläquivalenten Bromtrimethylsilan bei 80–90 °C in Acetonitril dargestellt.

Zur Abtrennung des bei der Reaktion gebildeten Chlortrimethylsilans wurden die flüchtigen Bestandteile des Reaktionsgemisches im Vakuum entfernt. Der Rückstand wurde mit *n*-Pentan versetzt und **11** als farbloser amorpher Feststoff in einer Ausbeute von 61% isoliert. Verbindung **11** konnte nicht kristallisiert und somit auch nicht weiter aufgereinigt werden, weshalb die Identität von **11** lediglich durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) sichergestellt werden konnte.

Schema 3.9: Synthese von Verbindung 11.

3.1.2.4 Synthese von Verbindung 12 (SiN_2C_3 -Gerüst)

Verbindung **12** wurde gemäß Schema 3.10 durch Umsetzung von **10** mit sechs Moläquivalenten Cyanotrimethylsilan bei 80–90 °C in Acetonitril dargestellt.

Schema 3.10: Synthese von Verbindung 12.

Zur Abtrennung des bei der Reaktion gebildeten Chlortrimethylsilans wurden die flüchtigen Bestandteile des Reaktionsgemisches im Vakuum entfernt. Der ölige Rückstand wurde mit *n*-Pentan versetzt und **12** durch Filtration als farbloser amorpher Feststoff in einer Ausbeute von 90% isoliert. Verbindung **12** konnte nicht kristallisiert und somit auch nicht weiter aufgereinigt werden, weshalb die Identität von **12** lediglich durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) sichergestellt werden konnte.

3.1.2.5 Synthese von Verbindung 13 (SiN₄C-Gerüst)

Verbindung **13** wurde gemäß Schema 3.11 durch Umsetzung von **10** mit zwei Moläquivalenten Kaliumcyanat in Gegenwart von 30 Mol-% des Kronenethers 18-Krone-6 in Acetonitril bei 20 °C dargestellt.

Schema 3.11: Synthese von Verbindung 13.

Zur Abtrennung des bei der Reaktion gebildeten Kaliumchlorids wurde das Lösungsmittel im Vakuum entfernt, der verbliebene Rückstand mit Benzol versetzt und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der feste Rückstand aus Acetonitril kristallisiert und **13** als farbloser kristalliner Feststoff in einer Ausbeute von 76% isoliert. Die Identität von **13** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.2.6 Synthese von Verbindung 14 (SiN₄C-Gerüst)

Verbindung **14** wurde gemäß Schema 3.12 durch Umsetzung von **10** mit zwei Moläquivalenten Trimethyl(thiocyanato-N)silan in Acetonitril bei 20 °C dargestellt.

Schema 3.12: Synthese von Verbindung 14.

Zur Abtrennung des bei der Reaktion gebildeten Chlortrimethylsilans wurden die flüchtigen Bestandteile des Reaktionsgemisches im Vakuum entfernt. Der feste Rückstand wurde aus Acetonitril kristallisiert und **14** als farbloser kristalliner Feststoff in einer Ausbeute von 95% isoliert. Die Identität von **14** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.1.2.7 Synthese von Verbindung 15 (SiN_2CO_2 -Gerüst)

Verbindung **15** wurde gemäß Schema 3.13 durch Umsetzung von **10** mit einem Moläquivalent 1,2-Dihydroxybenzol und zwei Moläquivalenten Triethylamin in THF bei 20 °C dargestellt.

Schema 3.13: Synthese von Verbindung 15.

Zur Abtrennung des bei der Reaktion entstandenen Triethylammoniumchlorids wurde das Reaktionsgemisch filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der feste Rückstand aus Acetonitril kristallisiert und **15** als farbloser kristalliner Feststoff in einer Ausbeute von 53% isoliert. Die Identität von **15** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.2.8 Versuche zur Abspaltung des 2,4,6-Trimethoxyphenyl-Liganden

Analog zur Chemie tetrakoordinierter Silicium(IV)-Verbindungen^[18] wurde gemäß Schema 3.14 versucht, den TMOP-Liganden von **10** unter sauren Bedingungen und Ausbildung einer reaktiven Si–Cl-Bindung durch Umsetzung von **10** mit einem Moläquivalent Chlorwasserstoff abzuspalten. Wie sich herausstellte, wurde unter diesen Bedingungen jedoch nicht der TMOP- sondern der Amidinato-Ligand abgespalten und somit nicht **1**, sondern Trichlor(2,4,6-trimethoxyphenyl)silan und N,N-Diisopropylbenzamidin gebildet (nachgewiesen durch ¹H-, ¹³C- und ²⁹Si-NMR-Spektroskopie in Lösung (CD₂Cl₂)). Aufgrund dieser Beobachtungen wurden keine weiteren Versuche unternommen, den TMOP-Liganden der Verbindungen **9** und **11–15** unter sauren Bedingungen abzuspalten.

Schema 3.14: Versuche zur Abspaltung des TMOP-Liganden von Verbindung 10.

Für eine tetrakoordinierte, einfach TMOP-substuierte Silicium(IV)-Verbindung wurde die Abspaltung des TMOP-Liganden unter oxidativen Bedingung durch Umsetzung mit Silbertrifluormethansulfonat beobachtet.^[31] Daher wurde versucht, den TMOP-Liganden der Verbindungen **13** und **14** gemäß Schema 3.15 unter oxidativen Bedingungen durch Umsetzung dieser Komplexe mit jeweils einem Moläquivalent Silbercyanat bzw. Silberthiocyanat abzuspalten. Die Umsetzung führte jedoch nicht zur Bildung der neutralen pentakoordinierten Silicium(IV)-Komplexe **16** bzw. **17**, stattdessen konnten lediglich die Edukte quantitativ reisoliert werden.

Schema 3.15: Versuche zur Abspaltung des TMOP-Liganden der Verbindungen 13 und 14.

3.1.3 Synthesen von neutralen pentakoordinierten Silicium(IV)-Komplexen mit einem bidentaten Amidinato-, einem monodentaten Pentafluorphenyl- und zwei monodentaten Halogeno-Liganden

3.1.3.1 Synthese von Verbindung 18 (SiN₂CCl₂-Gerüst)

Verbindung **18** wurde gemäß Schema 3.16 durch Umsetzung von **1** mit einem Moläquivalent Pentafluorphenyllithium^[32] in Diethylether bei -78 °C dargestellt.

Schema 3.16: Synthese von Verbindung 18.

Zur Abtrennung des bei der Reaktion gebildeten Lithiumchlorids wurde das Lösungsmittel des Reaktionsgemisches im Vakuum entfernt, der verbliebene Rückstand mit Dichlormethan versetzt und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der feste Rückstand aus Acetonitril kristallisiert und **18** als farbloser kristalliner Feststoff in einer Ausbeute von 67% isoliert. Die Identität von **18** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.3.2 Synthese von Verbindung 19 (SiN₂CBr₂-Gerüst)

Verbindung **19** wurde gemäß Schema 3.17 durch Umsetzung von **3** mit einem Moläquivalent Pentafluophenyllithium in Diethylether bei -78 °C dargestellt.

Schema 3.17: Synthese von Verbindung 19.

Zur Abtrennung des bei der Reaktion gebildeten Lithiumbromids wurde das Lösungsmittel des Reaktionsgemisches im Vakuum entfernt, der verbliebene Rückstand mit Dichlormethan versetzt und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der feste Rückstand aus Acetonitril kristallisiert und **19** als farbloser kristalliner Feststoff in einer Ausbeute von 78% isoliert. Die Identität von **19** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.4 Synthesen von zwitterionischen dinuklearen pentakoordinierten Silicium(IV)-Komplexen mit zwei bidentaten N,N'- und zwei monodentaten Chloro-Liganden

3.1.4.1 Versuche zur Synthese von hexakoordinierten Silicium(IV)-Komplexen mit einem bidentaten Amidinato-, einem bidentaten N,P- und zwei monodentaten Chloro-Liganden

Durch die Umsetzung von 1 mit jeweils einem Moläquivalent (Dialkylphosphanyl)imidazol^[20] und Triethylamin in THF bei 20 °C sollten gemäß Schema 3.18 die neutralen pentakoordinierten Silicium(IV)-Komplexe 20 und 21 mit einer Si–P-Bindung dargestellt werden.

Schema 3.18: Versuche zur Synthese der Verbindungen 20 und 21.

Hierbei konnte lediglich die Bildung von komplexen Gemischen verschiedener Silicium(IV)-Spezies beobachtet werden, aus denen sich die gesuchten Verbindungen nicht isolieren ließen. Auch konnte bei keiner dieser Spezies durch NMR-spektroskopische Methoden (²⁹Si- und ³¹P-NMR) das Vorhandensein von Si–P-Wechselwirkungen nachgewiesen werden. Um sterische Gründe als Ursache für das Fehlen von Si–P-Wechselwirkungen auszuschließen, wurde gemäß Schema 3.19 versucht, durch Umsetzung von Tetrachlorsilan mit jeweils einem Moläquivalent (Dialkylphosphanyl)imidazol^[20] und Triethylamin in THF bei 20 °C die neutralen pentakoordiniereten Silicium(IV)-Komplexe 22 und 23 darzustellen, welche sterisch deutlich weniger überfrachtet sein sollten als 20 und 21. Anstatt pentakoordinierter Verbindungen, wurden jedoch die Silane 24 und 25 erhalten, bei denen durch NMR-Spektroskopie in Lösung (²⁹Si- und ³¹P-NMR) keine Hinweise auf das Vorliegen einer Si–P-Wechselwirkung gefunden wurden. Auch konnten 24 und 25 nicht rein dargestellt werden. Verbindung 25 konnte jedoch in ausreichender Reinheit erhalten werden, um sie durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ³¹P- und ²⁹Si-NMR) zu charakterisieren.

Schema 3.19: Synthese der Verbindungen 24 und 25.

Interessanterweise stellte sich heraus, dass **24** und **25** in der Lage sind, Nitrile unter der Bildung von zwitterionischen dinuklearen pentakoordinierten Silicium(IV)-Komplexen zu aktivieren. Diese Reaktionen sollen im Folgenden vorgestellt werden.

3.1.4.2 Synthese von Verbindung 26 (SiN₃Cl₂-Gerüst)

Verbindung **26** wurde gemäß Schema 3.20 durch Umsetzung des Silans **24** – gebildet durch die Umsetzung von Tetrachlorsilan mit jeweils einem Moläquivalent 2-(Diethylphosphanyl)imidazol und Triethylamin in THF bei 20 °C (nicht als Reinsubstanz isoliert) – mit einem großen Überschuss Acetonitril bei 20 °C dargestellt. Die Reaktion von **24** zu **26** verläuft unter Aktivierung von Acetonitril.

Verbindung **26** wurde als farbloser amorpher Feststoff in einer Ausbeute von 55% isoliert. Die Identität von **26** wurde durch NMR-Spektroskopie im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse (nach Kristallisation aus Acetonitril) sichergestellt. Aufgrund der sehr schlechten Löslichkeit in den gängigen deuterierten organischen Lösungsmitteln konnte **26** nicht durch NMRspektroskopische Studien in Lösung untersucht werden.

Schema 3.20: Synthese von Verbindung 26.

3.1.4.3 Synthese von Verbindung 27 (SiN₃Cl₂-Gerüst)

Verbindung 27 wurde gemäß Schema 3.21 durch Umsetzung des Silans 24 mit einem großen Überschuss Propionitril bei 20 °C dargestellt. Die Reaktion von 24 zu 27 verläuft unter Aktivierung von Propionitril.

Verbindung **27** wurde als farbloser amorpher Feststoff in einer Ausbeute von 31% isoliert. Die Identität von **27** wurde durch NMR-Spektroskopie im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse (nach Kristallisation aus Propionitril) sichergestellt. Aufgrund der sehr schlechten Löslichkeit in den gängigen deuterierten organischen Lösungsmitteln konnte **27** nicht durch NMRspektroskopische Studien in Lösung untersucht werden.

Schema 3.21: Synthese von Verbindung 27.

3.1.4.4 Synthese von Verbindung 28 (SiN₃Cl₂-Gerüst)

Verbindung 28 wurde gemäß Schema 3.22 durch zwei unterschiedliche Methoden dargestellt.

Schema 3.22: Synthese von Verbindung 28.

Methode 1: Verbindung **28** wurde gemäß Schema 3.22 durch Umsetzung des Silans **25** – gebildet durch die Umsetzung von Tetrachlorsilan mit jeweils einem Moläquivalent 2-(Diisopropylphosphanyl)imidazol und Triethylamin in THF bei 20 °C (nicht als Reinsubstanz isoliert) – mit einem großen Überschuss Acetonitril bei 20 °C dargestellt. Die Reaktion von **25** zu **28** verläuft unter Aktivierung von Acetonitril. Verbindung **28** wurde als farbloser amorpher Feststoff in einer Ausbeute von 47% isoliert. Die Identität von **28** wurde durch NMR-Spektroskopie im Festkörper (13 C-, 15 N- und 29 Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse (nach Kristallisation aus Acetonitril) sichergestellt. Aufgrund der sehr schlechten Löslichkeit in den gängigen deuterierten organischen Lösungsmitteln konnte **28** nicht durch NMR-spektroskopische Studien in Lösung untersucht werden.

Methode 2: Verbindung **28** wurde durch Umsetzung von Tetrachlorsilan mit jeweils einem Moläquivalent Triethylamin und 2-(Diisopropylphosphanyl)imidazol in Acetonitril bei 20 °C dargestellt. Verbindung **28** wurde in einer Ausbeute von 84% als farbloser amorpher Feststoff isoliert. Die analytischen Daten stimmten mit denen des nach *Methode 1* synthetisierten Produkts überein.

3.1.4.5 Synthese von Verbindung 29 (SiN₃Cl₂-Gerüst)

Verbindung **29** wurde gemäß Schema 3.23 durch Umsetzung des Silans **25** mit einem großen Überschuss Propionitril bei 20 °C dargestellt. Die Reaktion von **25** zu **29** verläuft unter Aktivierung von Propionitril.

Schema 3.23: Synthese von Verbindung 29.

Verbindung **29** wurde als farbloser amorpher Feststoff in einer Ausbeute von 27% isoliert. Die Identität von **29** wurde durch NMR-Spektroskopie im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse (nach Kristallisation aus Propionitril) sichergestellt. Aufgrund der sehr schlechten Löslichkeit in den gängigen deuterierten organischen Lösungsmitteln konnte **29** nicht durch NMRspektroskopische Studien in Lösung untersucht werden.

3.1.4.6 Bildungsmechanismus von 26–29

Die zwitterionischen zweikernigen Silicium(IV)-Komplexe **26–29** besitzen jeweils einen neuen bidentaten N,N-Liganden, der während der Reaktion der Silane **24** bzw. **25** mit den entsprechenden Nitrilen gebildet wird. Ein möglicher Mechanismus für diese Reaktionen ist in Schema 3.24 gezeigt. Im Schlüsselschritt der Reaktion koordiniert das entsprechende Nitril reversibel an das Lewis-acide Silicium-Atom der Silane **24** bzw. **25** unter Ausbildung des Intermediats I. Durch einen nukleophilen Angriff des Phosphor-Atoms an das *a*-Kohlenstoff-Atom des Nitrils (Bildung einer P–C-Bindung) bildet sich das Intermediat II, welches durch Deprotonierung am β -Kohlenstoff-Atom des Nitrils (Eliminierung von Chlorwasserstoff und Ausbildung einer C=C-Doppelbindung) zur zwitterionischen Spezies III weiterreagiert, welche dann zu **26–29** dimerisiert.

Schema 3.24: Mechanismus der Bildung von 26-29.

3.1.4.7 Reaktionen von 26–29 mit Wasser — Versuche zur Abspaltung und Isolierung der neu gebildeten N,N-Liganden

Um den neu gebildeten *N,N*-Liganden zu isolieren, wurden die Verbindungen **26–29** gemäß Schema 3.25 hydrolytisch gespalten. Sowohl unter sauren, neutralen als auch basischen Bedingungen gelang es jedoch nicht, den freien Liganden zu erhalten. Stattdessen wurde in allen Fällen das entsprechende 2-(Dialkylphosphanyl)imidazol in einem 1:1-Gemisch mit Acetamid (**26**, **28**) bzw. Propanamid (**27**, **29**) erhalten.

Schema 3.25: Reaktionen der Verbindungen 26–29 mit Wasser.

3.1.5 Synthesen von neutralen hexakoordinierten Silicium(IV)-Komplexen mit einem bidentaten Amidinato-, einem bidentaten N,O- und zwei monodentaten (Pseudo)halogeno bzw. einem bidentaten Benzol-1,2diolato-Liganden

3.1.5.1 Synthese von Verbindung 30 (SiN₃OCl₂-Gerüst)

Verbindung **30** wurde gemäß Schema 3.26 durch Umsetzung von **1** mit jeweils einem Moläquivalent Triethylamin und 8-Hydroxychinolin in THF bei 20 °C dargestellt.

Schema 3.26: Synthese von Verbindung 30.

Zur Abtrennung des bei der Reaktion gebildeten Triethylammoniumchlorids wurde das Reaktionsgemisch filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der Rückstand aus Acetonitril kristallisiert und **30** in einer Ausbeute von 47% als gelber kristalliner Feststoff isoliert. Die Identität von **30** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.5.2 Synthese von Verbindung 31 (SiN₃OBr₂-Gerüst)

Verbindung **31** wurde gemäß Schema 3.27 durch Umsetzung von **30** mit drei Moläquivalenten Bromtrimethylsilan in Acetonitril bei 20 °C dargestellt.

Zur Abtrennung des bei der Reaktion gebildeten Chlortrimethylsilans wurden die flüchtigen Bestandteile des Reaktionsgemisches im Vakuum entfernt. Der feste Rückstand wurde aus Acetonitril kristallisiert und **31** in einer Ausbeute von 41% als gelber kristalliner Feststoff isoliert. Die Identität von **31** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Schema 3.27: Synthese von Verbindung 31.

3.1.5.3 Synthese von Verbindung 32 (SiN₃OF₂-Gerüst)

Verbindung 32 wurde gemäß Schema 3.28 durch zwei unterschiedliche Methoden dargestellt.

Schema 3.28: Synthese von Verbindung 32.

Methode 1: Verbindung **32** wurde durch die Umsetzung von **30** mit 2.5 Moläquivalenten Kaliumfluorid in Gegenwart von 50 Mol-% des Kronenethers 18-Krone-6 in Acetonitril bei 20 °C dargestellt. Zur Abtrennung des bei der Reaktion gebildeten Kaliumchlorids wurde das Lösungsmittel im Vakuum entfernt, der verbliebene Rückstand mit Toluol versetzt und die resultierende Suspension filtriert. Der feste Rückstand wurde aus Acetonitril kristallisiert und **32** in einer Ausbeute von 43% als gelber kristalliner Feststoff isoliert. Die Identität von **32** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ¹⁹F- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Methode 2: Verbindung **32** wurde durch die Umsetzung von **30** mit jeweils zwei Moläquivalenten Triethylamin und Silbertetrafluoroborat in THF bei 20 °C gebildet. Zur Abtrennung des bei der Reaktion gebildeten Silberchlorids und Trifluorboran–TriethylaminAddukts wurde das Reaktionsgemisch filtriert und die flüchtigen Bestandteile des Filtrats wurden im Vakuum entfernt. Der feste Rückstand wurde aus Acetonitril kristallisiert und **32** in einer Ausbeute von 71% als gelber kristalliner Feststoff erhalten. Die analytischen Daten des Produkts stimmten mit denen des nach *Methode 1* erhaltenen überein.

Der Vorteil von *Methode 2* liegt in der kürzeren Reaktionszeit (3 h vs. 72 h) und der höheren Ausbeute (71% vs. 43%).

3.1.5.4 Synthese von Verbindung 33 (SiN₅O-Gerüst)

Verbindung **33** wurde gemäß Schema 3.29 durch Umsetzung von **30** mit 2.5 Moläquivalenten Azidotrimethylsilan in Acetonitril bei 20 °C dargestellt.

Schema 3.29: Synthese von Verbindung 33.

Zur Abtrennung des bei der Reaktion gebildeten Chlortrimethylsilans wurden die flüchtigen Bestandteile des Reaktionsgemisches im Vakuum entfernt. Der feste Rückstand wurde aus Acetonitril kristallisiert und **33** in einer Ausbeute von 93% als gelber kristalliner Feststoff isoliert. Die Identität von **33** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.5.5 Synthese von Verbindung 34 (SiN₅O-Gerüst)

Verbindung **34** wurde gemäß Schema 3.30 durch die Umsetzung von **30** mit zwei Moläquivalenten Kaliumcyanat in Gegenwart von 33 Mol-% des Kronenethers 18-Krone-6 in Acetonitril bei 20 °C dargestellt.

Schema 3.30: Synthese von Verbindung 34.

Zur Abtrennung des bei der Reaktion gebildeten Kaliumchlorids wurde das Lösungsmittel des Reaktionsgemisches im Vakuum entfernt, der verbliebene Rückstand mit Toluol versetzt und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der feste Rückstand aus Acetonitril kristallisiert und **34** in einer Ausbeute von 55% als gelber kristalliner Feststoff isoliert. Die Identität von **34** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Weiterhin wurde versucht, Verbindung **34** in Analogie zu der Synthese der Verbindungen **31** und **33**, durch eine Transsilylierungsreaktion ausgehend von **30** und Cyanato-*N*trimethylsilan darzustellen. Dies führte jedoch zur Bildung eines komplexen Substanzgemisches, aus dem sich **34** nicht isolieren ließ.

3.1.5.6 Synthese von Verbindung 35 (SiN₅O-Gerüst)

Verbindung **35** wurde gemäß Schema 3.31 durch die Umsetzung von **30** mit 2.2 Moläquivalenten Trimethyl(thiocyanato-N)silan in Acetonitril bei 20 °C dargestellt.

Schema 3.31: Synthese von Verbindung 35.

Zur Abtrennung des bei der Reaktion gebildeten Chlortrimethylsilans wurden die flüchtigen Bestandteile des Reaktionsgemisches im Vakuum entfernt. Der feste Rückstand wurde aus Acetonitril kristallisiert und **35** in einer Ausbeute von 79% als gelber kristalliner Feststoff kristallisiert. Die Identität von **35** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.1.5.7 Synthese von Verbindung 36 (SiN₃O₃-Gerüst)

Verbindung **36** wurde gemäß Schema 3.32 durch die Umsetzung von **30** mit 2.2 Moläquivalenten Trifluormethansulfonatotrimethylsilan in Acetonitril bei 20 °C dargestellt.

Schema 3.32: Synthese von Verbindung 36.

Zur Abtrennung des bei der Reaktion gebildeten Chlortrimethylsilans wurden die flüchtigen Bestandteile des Reaktionsgemisches im Vakuum entfernt. Der feste Rückstand wurde aus Acetonitril kristallisiert und **36** in einer Ausbeute von 76% als gelber kristalliner Feststoff isoliert. Die Identität von **36** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ¹⁹F- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.1.5.8 Synthese von Verbindung 37 (SiN₃O₃-Gerüst)

Verbindung **37** wurde gemäß Schema 3.33 durch die Umsetzung von **30** mit zwei Moläquivalenten Triethylamin und einem Moläquivalent 1,2-Dihydroxybenzol in THF bei 20 °C dargestellt.

Zur Abtrennung des bei der Reaktion gebildeten Triethylammoniumchlorids wurde das Reaktionsgemisch filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der feste Rückstand aus Acetonitril kristallisiert und **37** in einer Ausbeute von 69% als gelber kristalliner Feststoff isoliert. Die Identität von **37** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Schema 3.33: Synthese von Verbindung 37.

3.1.6 Synthese eines trikoordinierten Donor-stabilisierten Silylens mit einem mono- und einem bidentaten Amidinato-Liganden — Verbindung 39 $(SiN_3$ -Gerüst)^[33]

Das trikoordinierte Donor-stabilisierte Silylen **39** wurde durch reduktive Chlorwasserstoff-Eliminierung ausgehend von dem Chlorohydridosilicium(IV)-Komplex **38** dargestellt. Dieser wurde durch eine zu der Synthese von **8** analogen Umsetzung dargestellt:^[10m]

Verbindung **38** wurde gemäß Schema 3.34 durch Umsetzung von Trichlorsilan mit zwei Moläquivalenten Lithium-N,N-diisopropylbenzamidinat in Diethylether bei 20–40 °C erhalten.

Schema 3.34: Synthese von Verbindung 38.

Zur Abtrennung des bei der Reaktion gebildeten Lithiumchorids wurde das Lösungsmittel im Vakuum entfernt, der verbliebene Rückstand mit Dichlormethan versetzt und die resultierende Suspension filtriert. Der feste Rückstand wurde aus Acetonitril kristallisiert und **38** in einer Ausbeute von 81% als farbloser kristalliner Feststoff isoliert. Die Identität von **38** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Durch die Umsetzung von **38** mit 1.05 Moläquivalenten Kaliumbis(trimethylsilyl)amid in Diethylether bei 20 °C wurde nicht wie erwartet ein tetrakoordiniertes Donor-stabilisiertes Silylen erhalten (vgl. hierzu Lit. [5b]), sondern die im Festkörper trikoordinierte Silicium(II)-Spezies **39** isoliert (Schema 3.35).

Schema 3.35: Synthese von Verbindung 39.

Das bei der Reaktion gebildete Kaliumchlorid wurde durch Filtration abgetrennt und die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt. Der verbliebene feste Rückstand wurde aus *n*-Hexan kristallisiert und **39** in einer Ausbeute von 87% als gelber kristalliner Feststoff isoliert. Die Identität von **39** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt. Verbindung **39** ist in Lösungsmitteln wie Benzol, Toluol, *n*-Alkanen, Diethylether und THF stabil, zersetzt sich jedoch rasch bei Kontakt mit Dichlormethan, Trichlormethan, Acetonitril, Dimethylformamid und Dimethylsulfoxid.

Ursprünglich sollte das tetrakoordinierte Donor-stabilisierte Silylen **39'** gemäß Schema 3.36 durch Umsetzung der literaturbekannten Dihalogenosilicium(IV)-Komplexe **8** bzw. **40** mit Alkalimetallen in THF bei 20 °C dargestellt werden. Jedoch konnte auch bei höherer Temperatur (Rückfluss) keine Reaktion festgestellt werden. Stattdessen wurden, wie schon bei den Versuchen, die pentakoordinierten Trihalogenosilicium(IV)-Komplexe **1–3** mit Alkalimetallen zu reduzieren, in jedem Fall die Edukte quantitativ reisoliert.

Schema 3.36: Versuche zur Synthese von Verbindung 39'

3.2 Synthesen von höherkoordinierten Silicium(II)- und Silicium(IV)-Komplexen ausgehend von dem Donor-stabilisierten Silylen 39

Nach der geglückten Synthese des Donor-stabilisierten Silylens **39** und der Optimierung von dessen Synthese (35-g-Maßstab) galt es, die Reaktivität von **39** systematisch zu untersuchen. Hierfür wurde **39** mit geeigneten Substraten im Sinne von Lewis-Säure/Base-Reaktionen (siehe Kapitel 3.2.1), nukleophilen Substitutionsreaktionen (siehe Kapitel 3.2.2) und oxidativen Additionsreaktionen (siehe Kapitel 3.2.3–3.2.10) umgesetzt. Diese Reaktionen sollen in den folgenden Kapiteln vorgestellt werden.

3.2.1 Synthesen von neutralen pentakoordinierten Silicium(II)-Komplexen mit zwei bidentaten Amidinato-Liganden und einer Si-B-Bindung

3.2.1.1 Synthese von Verbindung 41 (SiN₄B-Gerüst)

Verbindung 41 wurde gemäß Schema 3.37 durch Umsetzung von 39 mit einem Moläquivalent Triethylboran in n-Hexan bei 20 °C dargestellt.

Schema 3.37: Synthese von Verbindung 41.

Verbindung **41** kristallisierte direkt aus der eingeengten Reaktionslösung und wurde in einer Ausbeute von 75% als farbloser kristalliner Feststoff isoliert. Die Identität von **41** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹¹B-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹¹B-HPDec/MAS-NMR sowie ¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.2.1.2 Synthese von Verbindung 42 (SiN_4B -Gerüst)

Verbindung **42** wurde gemäß Schema 3.38 durch Umsetzung von **39** mit einem Moläquivalent Triphenylboran in Toluol bei 20 °C dargestellt.

Schema 3.38: Synthese von Verbindung 42.

Verbindung **42** kristallisierte direkt aus der eingeengten Reaktionslösung und wurde in einer Ausbeute von 82% als farbloser kristalliner Feststoff isoliert. Die Identität von **42** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹¹B-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹¹B-HPDec/MAS-NMR sowie ¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.2.2 Synthesen von neutralen pentakoordinierten Silicium(II)-Komplexen mit zwei bidentaten Amidinato-Liganden und einer Si–M-Bindung (M = Cr, Mo, W, Fe)

3.2.2.1 Synthese von Verbindung 43 (SiN₄Cr-Gerüst)

Verbindung **43** wurde gemäß Schema 3.39 durch Umsetzung von **39** mit Chromhexacarbonyl in Toluol bei 20 °C dargestellt.

Verbindung **43** kristallisierte direkt aus der eingeengten Reaktionslösung und wurde in einer Ausbeute von 76% als farbloser kristalliner Feststoff isoliert. Die Identität von **43** wurde

durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristall- strukturanalyse sichergestellt.

Schema 3.39: Synthese von Verbindung 43.

3.2.2.2 Synthese von Verbindung 44 (SiN₄Mo-Gerüst)

Verbindung **44** wurde gemäß Schema 3.40 durch Umsetzung von **39** mit Molybdänhexacarbonyl in THF bei 60 °C dargestellt.

Schema 3.40: Synthese von Verbindung 44.

Verbindung 44 kristallisierte direkt aus der eingeengten Reaktionslösung und wurde in einer Ausbeute von 89% als farbloser kristalliner Feststoff isoliert. Die Identität von 44 wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.2.2.3 Synthese von Verbindung 45 $(SiN_4W$ -Gerüst)

Verbindung **45** wurde gemäß Schema 3.41 durch Umsetzung von **39** mit Wolframhexacarbonyl in THF bei 20 °C dargestellt.

Schema 3.41: Synthese von Verbindung 45.

Das Lösungsmittel wurde entfernt, der feste Rückstand aus Toluol kristallisiert und **45** in einer Ausbeute von 92% als farbloser kristalliner Feststoff isoliert. Die Identität von **45** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.2.2.4 Synthese von Verbindung 46 (SiN_4 Fe-Gerüst)

Verbindung **46** wurde gemäß Schema 3.42 durch Umsetzung von **39** mit Eisenpentacarbonyl in Toluol bei 20 °C dargestellt.

Schema 3.42: Synthese von Verbindung 46.

Verbindung **46** kristallisierte direkt aus der eingeengten Reaktionslösung und wurde in einer Ausbeute von 65% als grün gefärbter kristalliner Feststoff isoliert. Die Identität von **46** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper $(^{13}\mathrm{C}\text{-},~^{15}\mathrm{N}\text{-}$ und $^{29}\mathrm{Si}\text{-}\mathrm{VACP}/\mathrm{MAS}\text{-}\mathrm{NMR})$ so wie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.2.2.5 Anmerkung zu den Verbindungen 41-46

Die Verbindungen 41 und 42 (SiN_4B -Gerüst) sowie 43–46 (SiN_4M -Gerüst, M = Cr, Mo, W, Fe) stellen die ersten strukturell charakterisierten pentakoordinierten Silicium(II)-Komplexe mit Si–B- bzw. Si–M-Bindungen dar. Im Gegensatz zu dem Donor-stabilisierten Silylen 39 besitzen diese Verbindungen zwei bidentate Amidinato-Liganden, was durch die erhöhte Lewis-Acidität der Si-Koordinationszentren von 41–46 im Vergleich zu dem von 39 ermöglicht wird.

3.2.3 Synthese eines cyclischen Silans mit zwei monodentaten Amidinato-Liganden — Verbindung 48 (SiN₂C₂-Gerüst)^[33]

Durch die Umsetzung von **39** mit zwei Moläquivalenten 2,3-Dimethyl-1,3-butadien in n-Hexan bei 69 °C wurde nicht der erwartete hexakoordinierte Silicium(IV)-Komplex **47** erhalten, stattdessen bildete sich das isomere Silan **48** (Schema 3.43).

Schema 3.43: Synthese von Verbindung 48.

Die flüchtigen Bestandteile des Reaktionsgemisches wurden entfernt, der Rückstand aus Acetonitril kristallisiert und **48** in einer Ausbeute von 87% als farbloser kristalliner Feststoff isoliert. Die Identität von **48** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.2.4 Synthese von kationischen pentakoordinierten Silicium(IV)-Komplexen mit zwei bidentaten Amidinato-Liganden und einer Si-H-Bindung

3.2.4.1 Synthese von Verbindung 50 (SiN₄H-Gerüst)

Verbindung **50** wurde gemäß Schema 3.44 durch Umsetzung von **39** mit einem Moläquivalent Tricarbonyl(η^5 -cyclopentadienyl)hydridochrom(0)^[34] bei 20 °C in Toluol dargestellt.

Schema 3.44: Synthese von Verbindung 50.

Zur Abtrennung unlöslicher Bestandteile wurde das Reaktionsgemisch heiß filtriert. Verbindung **50** kristallisierte direkt aus dem eingeengten Filtrat und wurde in einer Ausbeute von 96% als kristalliner Feststoff isoliert. Nachdem bei dieser Umsetzung auch Spuren des intensiv grün gefärbten Bis(tricarbonyl(η^5 -cyclopentadienyl)chrom(I)) entstanden und dieses nicht abgetrennt werden und **50** deshalb nicht weiter aufgereinigt werden konnte, wurde die Identität von **50** lediglich durch NMR-Spektroskopie im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sichergestellt. Interessanterweise kommt es bei dieser Umsetzung nicht zu einer nukleophilen Substitution eines Carbonyl-Liganden an dem Chrom-Atom und somit zur Bildung des neutralen pentakoordinierten Silicium(II)-Komplexes **49**. Stattdessen findet eine Säure/Base-Reaktion mit gekoppelter Oxidation des Silicium- bzw. Reduktion des Wasserstoff-Atoms statt (**39** \rightarrow **50**).

3.2.4.2 Synthese von Verbindung 52 $(SiN_4H$ -Gerüst)

Verbindung **52** wurde gemäß Schema 3.45 durch Umsetzung von **52** mit einem Moläquivalent Tricarbonyl(η^5 -cyclopentadienyl)hydridomolybdän(0)^[34] bei 20 °C in Toluol dargestellt.

Schema 3.45: Synthese von Verbindung 52.

Zur Abtrennung unlöslicher Bestandteile wurde das Reaktionsgemisch heiß filtriert. Verbindung **52** kristallisierte direkt aus dem eingeengten Filtrat und wurde in einer Ausbeute von 95% als gelber kristalliner Feststoff isoliert. Die Identität von **52** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Wie schon bei der in Kapitel 3.2.4.1 beschriebenen Umsetzung, kommt es auch hier nicht zu einer nukleophilen Substitution eines Carbonyl-Liganden an dem Molybdän-Atom und somit zur Bildung des neutralen pentakoordinierten Silicium(II)-Komplexes **51**. Stattdessen findet eine Säure/Base-Reaktion mit gekoppelter Oxidation des Silicium- bzw. Reduktion des Wasserstoff-Atoms statt (**39** \rightarrow **52**).

3.2.4.3 Exkurs: Synthese eines neutralen hexakoordinierten Silicium(IV)-Komplexes mit zwei bidentaten Amidinato-Liganden, einer Si-H- und einer Si-O-Bindung — Verbindung 53 (SiN₄OH-Gerüst)

Verbindung **53** wurde gemäß Schema 3.46 durch Umsetzung von **39** mit einem Moläquivalent Essigsäure bei -78 °C in *n*-Hexan dargestellt.

Schema 3.46: Synthese von Verbindung 53.

Zur Abtrennung unlöslicher Bestandteile wurde das Reaktionsgemisch filtriert. Verbindung **50** kristallisierte direkt aus dem eingeengten Filtrat und wurde in einer Ausbeute von 64% als farbloser kristalliner Feststoff isoliert. Die Identität von **53** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Da Verbindung **53** durch eine im Vergleich zu den Umsetzungen von **39** zu **50** und **52** sehr ähnliche Reaktion (Säure/Base-Reaktion mit gekoppelter Oxidation des Silicium- bzw. Reduktion des Wasserstoff-Atoms) gebildet wurde, erscheint es sinnvoll, Verbindung **53** an dieser Stelle zu präsentieren, obwohl es sich bei **53** um einen neutralen hexakoordinierten Silicium(IV)-Komplex handelt.

Für die Bildung von Verbindung **53** sind prinzipiell zwei unterschiedliche Mechanismen denkbar: I) Ein konzertierter Prozess, in welchem Verbindung **39** in die O-H-Bindung insertiert und II) ein zweistufiger Prozess, in welchen im ersten Schritt – im Sinne einer Säure/Base-Reaktion – ein Proton auf **39** übertragen wird (unter Oxidation des Silicium-Atoms und Reduktion des Wasserstoff-Atoms; Ausbildung desselben Kations wie bei den Verbindungen **50** und **52**). Im zweiten Schritt dieser Reaktion koordiniert dann das in der Säure/Base-Reaktion gebildete Acetat-Anion an das Si-Koordinationszentrum des Kations. Die Hypothese eines zweistufigen Mechanismus wird durch den Befund unterstützt, dass sich das Kation von 50 und 52 durch die Umsetzung mit Kaliumacetat in der Gegenwart des Kronenethers 18-Krone-6, bei 20 °C quantitativ in 53 überführen lässt (Solvens: $[D_8]$ THF).

3.2.5 Synthese eines neutralen dinuklearen pentakoordinierten Silicium(IV)-Komplexes mit zwei mono- und zwei bidentaten Amidinato- sowie zwei monodentaten Oxido-Liganden — Verbindung 54'·C₆H₅CH₃ (SiN₃O₂-Gerüst)

Schema 3.47: Versuche zur Synthese von Verbindung 54.

Der pentakoordinierte Silicium(IV)-Komplex **54** sollte gemäß Schema 3.47 durch die Umsetzung von **39** mit 0.5 Moläquivalenten Disauerstoff in *n*-Hexan bzw. Toluol bei -78 °C dargestellt werden. Jedoch konnte bei diesen Umsetzungen lediglich die Zersetzung der Edukte beobachtet werden. Auch durch die Umsetzung von **39** mit einem Überschuss Distickstoffmonoxid bei -78 °C in Toluol gemäß Schema 3.48 konnte **54** nicht erhalten werden. Stattdessen wurde dessen Dimer, Verbindung **54'**, isoliert.

Schema 3.48: Synthese von Verbindung 54'.

Verbindung 54' kristallisierte als das Toluol-Solvat 54'·C₆H₅CH₃ direkt aus der eingeengten Reaktionslösung und wurde in einer Ausbeute von 93% als farbloser kristalliner Feststoff isoliert. Die Identität von 54'·C₆H₅CH₃ wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Ein wahrscheinlicher Mechanismus für die Reaktion von **39** zu **54'** verläuft über die Bildung von **54**, einem neutralen pentakoordinierten Silicium(IV)-Komplex mit einer Si=O-Doppelbindung (nicht experimentell nachgewiesen), welcher dann zu dem dinuklearen pentakoordinierten Silicium(IV)-Komplex **54'** dimerisiert (siehe hierzu auch Kapitel 3.2.6.4 sowie Lit. [6j] und [6m]).

Alle Versuche, Verbindung 54 bei tiefer Temperatur zu isolieren, scheiterten. Nachdem Si=O-Doppelbindungen sehr polar sind (große positive Partialladung an dem Silicium-Atom und große negative Partialladung an dem Sauerstoff-Atom) wurde versucht, Verbindung 54 als die NHC-Addukte 54·IMe bzw. 54·I*i*Pr (Koordination des Carben-Kohlenstoff-Atoms an das Si-Koordinationszentrum) zu stabilisieren und schließlich zu isolieren (vgl. hierzu Lit. [5i]). Jedoch wurde in allen Fällen das Dimer 54' erhalten (siehe hierzu auch Lit. [27k] und [27l]).

3.2.6 Synthesen von neutralen pentakoordinierten Silicium(IV)-Komplexen mit zwei bidentaten Amidinato-Liganden und einer Si=El-Doppelbindung (El = S, Se, Te)

3.2.6.1 Synthese von Verbindung 55 (SiN₄S-Gerüst)

Verbindung 55 wurde gemäß Schema 3.49 durch zwei unterschiedliche Methoden dargestellt.

Schema 3.49: Synthese von Verbindung 55.

Methode 1: Verbindung **55** wurde durch die Umsetzung von **39** mit 1/8 Moläquivalent elementaren Schwefels bei 20 °C in Toluol dargestellt. Verbindung **55** kristallisierte direkt aus der eingeengten Reaktionslösung und wurde in einer Ausbeute von 51% als farbloser kristalliner Feststoff isoliert. Die Identität von **55** wurde durch NMR-Spektroskopie in

Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

Methode 2: Verbindung 55 wurde durch die Umsetzung von 39 mit 1/4 Moläquivalent Tetraarsentetrasulfid in Toluol bei 100 °C dargestellt. Zur Abtrennung unlöslicher Bestandteile wurde das Reaktionsgemisch heiß filtriert. Verbindung 55 kristallisierte direkt aus dem eingeengten Filtrat und wurde durch Filtration in einer Ausbeute von 78% als farbloser kristalliner Feststoff isoliert. Die analytischen Daten stimmten mit denen des nach Methode 1 erhaltenen Produkts überein. Die Natur der bei dieser Umsetzung entstehenden Nebenprodukte konnte im Rahmen dieser Arbeit nicht aufgeklärt werden.

Verbindung **55** stellt die erste strukturell charakterisierte pentakoordinierte Silicium(IV)-Verbindung mit einer Si=S-Doppelbindung dar.

3.2.6.2 Synthese von Verbindung 56 (SiN_4 Se-Gerüst)

Verbindung 56 wurde gemäß Schema 3.50 durch die Umsetzung von 39 mit einem Moläquivalent grauem Selen bei 20 °C in Toluol dargestellt.

Schema 3.50: Synthese von Verbindung 56.

Zur Abtrennung unlöslicher Bestandteile wurde das Reaktionsgemisch filtriert. Verbindung **56** kristallisierte direkt aus dem eingeengten Filtrat und wurde in einer Ausbeute von 46% als gelber kristalliner Feststoff isoliert. Die Identität von **56** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ²⁹Si- und ⁷⁷Se-NMR) und im Festkörper (¹³C-, ¹⁵N-, ²⁹Si- und ⁷⁷Se-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt. Verbindung **56** stellt die erste strukturell charakterisierte pentakoordinierte Silicium(IV)-Verbindung mit einer Si=Se-Doppelbindung dar.

3.2.6.3 Synthese von Verbindung 57 (SiN_4 Te-Gerüst)

Verbindung 57 wurde gemäß Schema 3.51 durch die Umsetzung von 39 mit einem Moläquivalent elementarem Tellur bei 20 $^{\circ}$ C in Toluol dargestellt.

Schema 3.51: Synthese von Verbindung 57.

Zur Abtrennung unlöslicher Bestandteile wurde das Reaktionsgemisch filtriert. Verbindung **57** kristallisierte direkt aus dem eingeengten Filtrat und wurde in einer Ausbeute von 72% als gelber kristalliner Feststoff isoliert. Die Identität von **57** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ²⁹Si- und ¹²⁵Te-NMR) und im Festkörper (¹³C-, ¹⁵N-, ²⁹Si- und ¹²⁵Te-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristall-strukturanalyse sichergestellt. Verbindung **57** stellt die erste strukturell charakterisierte pentakoordinierte Silicium(IV)-Verbindung mit einer Si=Te-Doppelbindung dar.

3.2.6.4 Versuche zur Dimerisierung von 55–57

In Analogie zu der Bildung des dinuklearen pentakoordinierten Silicium(IV)-Komplexes 54' durch die Dimerisierung des zu 55–57 homologen Silicium(IV)-Komplexes 54 (Schema 3.48) wurde gemäß Schema 3.52 versucht, die dinuklearen pentakoordinierten Silicium(IV)-Komplexe 55', 56' und 57' darzustellen. Interessanterweise konnte jedoch auch nach mehrtägigem Refluxieren von 55–57 in Acetonitril, Toluol und THF keine Reaktion zu den korrespondierenden Dimeren festgestellt werden. Stattdessen wurden lediglich die Edukte quantitativ reisoliert.

Schema 3.52: Versuche zur Dimerisierung von 55–57.

3.2.7 Synthesen von neutralen hexakoordinierten Silicium(IV)-Komplexen mit zwei bidentaten Amidinato- und einem bidentaten 0,0-Liganden

3.2.7.1 Synthese von Verbindung 58 (SiN₄O₂-Gerüst)

Verbindung **58** wurde gemäß Schema 3.53 durch die Umsetzung von **39** mit 1.5 Moläquivalenten Schwefeldioxid bei -78 °C ($\rightarrow 20$ °C) in *n*-Hexan dargestellt.

Schema 3.53: Synthese von Verbindung 58.

Zur Abtrennung unlöslicher Bestandteile wurde das Reaktionsgemisch filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der feste Rückstand aus Toluol kristallisiert und **58** in einer Ausbeute von 85% als farbloser kristalliner Feststoff isoliert. Die Identität von **58** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt. Verbindung **58** ist die erste strukturell charakterisierte Silicium(IV)-Verbindung mit einem chelatisierenden Sulfito-Liganden.

3.2.7.2 Synthese von Verbindung 59 $(SiN_4O_2$ -Gerüst)

Verbindung **59** wurde gemäß Schema 3.54 durch die Umsetzung von **39** mit einem großen Überschuss Schwefeldioxid (welches auch das Lösungsmittel in dieser Umsetzung darstellte) bei -78 °C ($\rightarrow 20$ °C) dargestellt.

Schema 3.54: Synthese von Verbindung 59.

Zur Abtrennung unlöslicher Bestandteile wurde das Reaktionsgemisch filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, der feste Rückstand aus Toluol kristallisiert und **59** in einer Ausbeute von 54% als farbloser kristalliner Feststoff (Mischung des *cis*- und *trans*-Isomers) isoliert. Die Identität von **59** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt. Verbindung **59** ist das erste Beispiel für eine strukturell charakterisierte Verbindung mit einem chelatisierenden Dithionito-Liganden.

Das Verhältnis der Diastereomere in Lösung (CD₂Cl₂; trans/cis-Verhältnis, 1:3.17) unterscheidet sich stark von dem im Festkörper. Des Weiteren konnte gezeigt werden, dass das trans/cis-Verhältnis von der Kristallisationstemperatur abhängt. Während nach Kristallisation bei 20 °C ein trans/cis-Verhältnis von 1:10.2 gefunden wird, beträgt das trans/cis-Verhältnis nach Kristallisation bei -20 °C 1:1.77 (ermittelt durch ²⁹Si-VACP/MAS-NMR-Spektroskopie).^[10z]

3.2.7.3 Bildungsmechanismus von 58 und 59

Die Bildung der hexakoordinierten Silicium(IV)-Komplexe **58** und **59** erfolgt in beiden Fällen durch Reaktion des Donor-stabilisierten Silylens **39** mit Schwefeldioxid. Den Unterschied zwischen beiden Umsetzungen bilden die Reaktionbedingungen: Bei der Reaktion von **39** zu **58** liegt eine konstant niedrige Schwefeldioxid-Konzentration im Reaktionsgemisch vor, während bei der Reaktion von **39** zu **59** durch die Reaktionsführung in flüssigem Schwefeldioxid eine konstant hohe Schwefeldioxid-Konzentration vorliegt.^[35] Diese Befunde können durch den folgenden Reaktionsmechanismus erklärt werden.

Im ersten Schritt beider Reaktionen bildet sich intermediär ein Silylen–Schwfeldioxid-Addukt ($39 \cdot SO_2$; Struktur nicht aufgeklärt). In verdünnter Lösung ($39 \rightarrow 58$, niedrige Schwefeldioxidkonzentration) reagiert $39 \cdot SO_2$ unter Eliminierung von Schwefelmonoxid^[36] zu dem bereits bei der Synthese von 54' postulierten Intermediat 54, welches mit einem zweiten Molekül Schwefeldioxid in einer [2+2]-Cycloaddition zu Verbindung 58 reagiert (siehe hierzu auch Lit. [37]). In flüssigem Schwefeldioxid ($58 \rightarrow 59$, hohe Schwefeldioxidkonzentration) reagiert das Intermediat $39 \cdot SO_2$ spontan mit einem weiteren Molekül Schwefeldioxid unter der Bildung von 59.

3.2.8 Synthesen von neutralen hexakoordinierten Silicium(IV)-Komplexen mit zwei bidentaten Amidinato-, einem monodentaten Carboranyl-Liganden sowie einer Si-H- Bindung

3.2.8.1 Synthesen der Verbindungen 60 und 61 (SiN₄CH-Gerüst)

Verbindung **60** wurde gemäß Schema 3.55 durch die Umsetzung von **39** mit 1,2-Dicarba*closo*-dodecaboran bei 20 °C in THF dargestellt.

Schema 3.55: Synthese von Verbindung 60.

Das Lösungsmittel des Reaktionsgemisches wurde im Vakuum entfernt, der feste Rückstand aus Toluol kristallisiert und **60** in einer Ausbeute von 97% als farbloser kristalliner Feststoff isoliert. Die Identität von **60** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹¹B-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt. Die Reaktion von **39** mit 1,2-Dicarba-*closo*-dodecaboran ist das erste Beispiel für eine selektive C–H-Bindungsaktivierung an 1,2-Dicarba-*closo*-dodecaboranen durch eine Silicium-Verbindung. Interessant ist weiterhin, dass **39** im Gegensatz zu NHCs mit 1,2-Dicarba-*closo*-dodecaboran nicht unter C–B-Bindungsspaltung reagiert (vgl. hierzu Lit. [38])

Wie sich herausstellte, reagiert Verbindung **60** gemäß Schema 3.56 mit einem Überschuss an Acetonitril (welches auch das Lösungsmittel dieser Umsetzung darstellte) bei 80 °C unter Abspaltung des Carboranyl-Liganden zu dem neutralen hexakoordinierten Silicium(IV)-Komplex **61**.

Schema 3.56: Synthese von Verbindung 61.

Verbindung **61** kristallisierte direkt aus der Reaktionslösung und wurde in einer Ausbeute von 84% als farbloser kristalliner Feststoff isoliert. Die Identität von **61** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt. Verbindung **61** stellt den ersten höherkoordinierten Silicium(IV)-Komplex mit einem Cyanomethyl-Liganden dar.

Aus der Mutterlauge kann das zur Synthese von **60** eingesetzte 1,2-dicarba-*closo*dodecaboran in sehr guten Ausbeuten (>90%) reisoliert werden. Somit ist die Reaktion von **60** zu **61** eine neue Möglichkeit, Cyanomethyl-Liganden in Silicium-Verbindungen einzuführen. Weiterhin wird bei dieser Methode auf die hochtoxischen Alkalimetallcyanide verzichtet, welche üblicherweise zur Überführung von (Chlormethyl)silanen in (Cyanomethyl)silane verwendet werden. Nach der Abspaltung der Amidinato-Liganden, z. B. durch Methanolyse, könnte man zu Cyanomethyltrimethoxysilan gelangen, welches einen universell einsetzbaren Synthesebaustein darstellen dürfte.

3.2.8.2 Synthese von Verbindung 62 (SiN₄CH-Gerüst)

Verbindung **62** wurde gemäß Schema 3.57 durch Umsetzung von **39** mit 0.5 Moläquivalenten 1,3-Dicarba-*closo*-dodecaboran bei 60 °C in THF dargestellt.

Schema 3.57: Synthese von Verbindung 62.

Das Lösungsmittel des Reaktionsgemisches wurde im Vakuum entfernt, Rückstand mit *n*-Pentan versetzt und **62** in einer Ausbeute von 69% als farbloser amorpher Feststoff isoliert. Die Identität von **62** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹¹B-, ¹³C- und ²⁹Si-NMR) sichergestellt. Verbindung **62** konnte nicht kristallisiert und somit auch nicht weiter aufgereinigt werden, weshalb eine weitere Charakterisierung nicht möglich war.

Analog zu Verbindung **60** reagiert auch **62** mit einem Überschuss Acetonitril bei 80 °C zu dem neutralen hexakoordinierten Silicium(IV)-Komplex **61**.

3.2.9 Synthesen von neutralen hexakoordinierten Silicium(IV)-Komplexen mit zwei bidentaten Amidinato- und zwei monodentaten Halogeno- bzw. zwei monodentaten Selenophenolato-Liganden

3.2.9.1 Synthesen der Verbindungen 8 (SiN₄Cl₂-Gerüst) und 66·8 (BeN₂Cl-Gerüst)

Durch die Umsetzung von **39** mit Kupferdichlorid, Quecksilberdichlorid und Zinndichlorid in Toluol, sollten gemäß Schema 3.58 die entsprechenden Lewis-Säure/Base-Addukte **63–65** dargestellt werden. Stattdessen bildete sich stets der literaturbekannte Silicium(IV)-Komplex **8** (nachgewiesen durch ¹H-, ¹³C- und ²⁹Si-NMR-Spektroskopie in Lösung; Schema 3.58).^[10m]

Schema 3.58: Versuche zur Synthese der Verbindungen 63–65 sowie Synthese von Verbindung 8.

Obwohl bei den Reaktionen von **39** mit Kupferdichlorid und Quecksilberdichlorid jeweils die Bildung des entsprechenden elementaren Metalls (in Form eines Kupferspiegels bzw. von Quecksilberperlen) beobachtet wurde, kann nicht ausgeschlossen werden, dass noch weitere Reaktionsprodukte entstanden, über deren Identität hier jedoch nicht spekuliert werden soll. Gleiches gilt für die Reaktion von **39** mit Zinndichlorid.

Im Falle der Reaktion von **39** mit Berylliumdichlorid konnte die Identität eines Teils der Nebenprodukte jedoch geklärt werden. Gemäß Schema 3.59 reagiert **39** mit einem Moläquivalent Berylliumdichlorid bei 20 °C in Benzol zu einem 1:1-Gemisch aus **8** und der Berylliumverbindung **66**. Formal entsteht bei dieser Reaktion elementares Silicium als Nebenprodukt. Dieses konnte jedoch nicht zweifelsfrei nachgewiesen werden.

Schema 3.59: Synthese von Verbindung 66.8.

Das Lösungsmittel des Reaktionsgemisches wurde im Vakuum entfernt, der Rückstand aus Toluol kristallisiert und das 1:1-Gemisch von **8** und **66** in einer Ausbeute von 83% als farbloser kristalliner Feststoff isoliert. Die Identität des Cokristallisats **66**·**8** wurde durch NMR-Spektroskopie in Lösung (¹H-, ⁹Be-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ⁹Be-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Kristallstrukturanalyse sichergestellt. Die in diesem Kapitel vorgestellten Reaktionen von **39** mit Metallchloriden verdeutlichen die Halogenophilie von Verbindung **39**. Während es weniger erstaunt, dass das Donorstabilisierte Silylen **39** die Chloride der Edelmetalle Kupfer und Quecksilber zu reduzieren vermag,^[39] so ist es bemerkenswert, dass Zinndichlorid (welches selbst als Reduktionsmittel eingesetzt wird) dehalogeniert wird. Interessanterweise wird Berylliumdichlorid nicht reduziert. Die Beryllium-Atome in **66**·**8** liegen in der Oxidationsstufe +II vor und das Silicium-Atom von **8** in **66**·**8** besitzt die Oxidationsstufe +IV.

3.2.9.2 Synthese von Verbindung 40 (SiN_4Br_2 -Gerüst)

Analog zu der Reaktion von **39** mit Quecksilberdichlorid bildete sich bei der Umsetzung von **39** mit Quecksilberdibromid gemäß Schema 3.60 nicht das Lewis Säure/Base-Addukt **67**, stattdessen wurde der literaturbekannte neutrale hexakoordinierte Silicium(IV)-Komplex $40^{[10m]}$ erhalten (nachgewiesen durch ¹H-, ¹³C und ²⁹Si-NMR Spektroskopie in Lösung; Schema 3.58).

Schema 3.60: Versuche zur Synthese von Verbindung 67 sowie Synthese von Verbindung 40.

3.2.9.3 Synthese von Verbindung 68 (SiN₄I₂-Gerüst)

Bereits in der Vergangenheit wurde versucht, Verbindung **68** gemäß Schema 3.61 durch Umsetzung von **8** mit zwei Moläquivalenten Iodtrimethylsilan in Toluol bzw. durch Umsetzung von Tetraiodsilan mit zwei Moläquivalenten Lithium-N,N-diisopropylbenzamidinat in Benzol darzustellen. In beiden Fällen konnte jeweils nur die Zersetzung der Edukte und die Bildung eines komplexen Substanzgemisches beobachtet werden.

Verbindung **68** konnte jedoch gemäß Schema 3.61 durch die Umsetzung von **39** mit einem Moläquivalent elementarem Iod in Toluol bei 20 °C dargestellt werden.

Zur Abtrennung unlöslicher Bestandteile wurde das Reaktionsgemisch filtriert. Verbindung **68** kristallisierte direkt aus dem eingeengten Filtrat und wurde in einer Ausbeute von 89% als farbloser kristalliner Feststoff isoliert. Die Identität von **68** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Schema 3.61: Synthese von Verbindung 68.

Verbindung **68** ist das erste strukturell charakterisierte Beispiel für eine hexakoordinierte Silicium(IV)-Verbindung mit Si–I-Bindungen. Bemerkenswert ist weiterhin, dass im Gegensatz zu literaturbekannten tetra- und pentakoordinierten Silicium(IV)-Verbindungen mit Si–I-Bindungen, Verbindung **68** nahezu unempfindlich gegenüber Licht ist. Eine gelöste Probe (C₆D₆) von **68** konnte mehrere Tage dem direktem Sonnenlicht ausgesetzt werden, ohne dass die danach durchgeführten NMR-spektroskopischen Studien (¹H-, ¹³C- und ²⁹Si-NMR) Hinweise auf Zersetzung lieferten.

3.2.9.4 Synthese von Verbindung 69 (SiN₄Se₂-Gerüst)

Verbindung **69** wurde gemäß Schema 3.62 durch Umsetzung von **39** mit einem Moläquivalent Diphenyldiselenid in Toluol bei 20 °C dargestellt.

Das Lösungsmittel wurde im Vakuum entfernt, der verbliebene Rückstand mit *n*-Pentan versetzt und der resultierende Feststoff durch Filtration isoliert. Dieser wurde aus Acetonitril umkristallisiert und **69** in einer Ausbeute von 92% als gelber kristalliner Feststoff isoliert. Die Identität von **69** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ²⁹Si- und ⁷⁷Se-

NMR) und im Festkörper (¹³C-, ¹⁵N-, ²⁹Si- und ⁷⁷Se-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Schema 3.62: Synthese von Verbindung 69.

3.2.10 Synthese eines neutralen hexakoordinierten Silicium(IV)-Komplexes mit zwei bidentaten Amidinato-Liganden, einem monodentaten Pentafluorphenyl- und einem monodentaten Fluoro-Liganden — Verbindung 70.0.5n-C₆H₁₄ (SiN₄CF-Gerüst)

Verbindung 70 wurde gemäß Schema 3.63 durch Umsetzung von 39 mit einem Moläquivalent Hexafluorobenzol in Toluol bei 20 °C dargestellt.

Schema 3.63: Synthese von Verbindung 70.

Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, der feste Rückstand aus *n*-Hexan kristallisiert und **70** als das Hemi-*n*-hexan-Solvat **70**·0.5*n*-C₆H₁₄ in einer Ausbeute von 87% als farbloser kristalliner Feststoff isoliert. Die Identität von **70**·0.5*n*-C₆H₁₄ wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si- NMR) und im Festkörper (¹³C-, ¹⁵N- und ²⁹Si- VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.3 Übersicht über die Reaktivität des Donor-stabilisierten Silylens 39 und Klassifizierung der Reaktionstypen

In den vorangegangenen Kapiteln 3.2.1–3.2.10 wurde die Reaktivität des Donor-stabilisierten Silylens **39** – der besseren Übersichtlichkeit halber nach den Produkttypen gegliedert – vorgestellt. Es erscheint jedoch sinnvoll, die in diesen Kapiteln beschriebenen Reaktionen von **39** an dieser Stelle systematisch nach dem Reaktionstyp gegliedert zu präsentieren, um einen besseren Überblick über die Reaktivität von **39** zu ermöglichen.

Wie aus Tabelle 3.1 ersichtlich ist, können die Reaktionen von **39** zunächst in drei Kategorien eingeteilt werden: I) Lewis-Säure/Base-Reaktionen, II) nukleophile Substitutions-reaktionen und III) oxidative Additionsreaktionen.

Die Lewis-Säure/Base- und die nukleophilen Substitutionsreaktionen verlaufen unter Erhalt der Oxidationsstufe am Silicium-Atom und gehen mit einer Erhöhung der Koordinationszahl von drei (**39**) auf fünf einher $(\lambda^3 \text{Si}(\Pi) \rightarrow \lambda^5 \text{Si}(\Pi))$.^[33] Die höhere Lewis-Acidität des Silicium-Koordinationszentrums, welche durch die Übertragung von Elektronendichte von dem Silicium-Atom auf die Bor- (**41**, **42**) bzw. Übergangsmetall-Atome (**43–46**) hervorgerufen wird, führt dazu, dass in **41–46** beide Amidinato-Liganden bidentat an das Silicium-Atom gebunden werden.

Die oxidativen Additionsreaktionen verlaufen unter Erhöhung der Oxidationsstufe des Silicium-Atoms von zwei auf vier. Die Koordinationszahl erhöht sich bei diesen Reaktionen von drei (**39**; λ^3 Si(II)) auf vier (**48**;^[33] λ^3 Si(II) $\rightarrow \lambda^4$ Si(IV)), fünf (**50**, **52**, **54'**, **55–57**; λ^3 Si(II) $\rightarrow \lambda^5$ Si(IV)) bzw. sechs (**8**, **40**, **53**, **58–60**, **62**, **68–70**; λ^3 Si(II) $\rightarrow \lambda^6$ Si(IV)). Die oxidativen Additionsreaktionen lassen sich wie folgt weiter untergliedern: I) Cycloadditionsreaktionen (**48**), II) Reaktionen, bei denen das Silylen **39** formal in eine Element–Element-Bindung des Substrats insertiert (**53**, **55–57**, **60**, **62**, **68–70**) und III) Reaktionen, bei denen formal (zumindest im ersten Schritt) ein bzw. zwei Atome, bzw. Ionen des jeweiligen Substrats auf das Silicium-Atom übertragen werden (**8**, **40**, **50**, **52**, **54'**, **58**, **59**). Formal handelt es sich bei den unter II) und III) genannten Reaktionen um Element–Element-Bindungsaktivierungen.

Reaktionstyp	Substrat	Zielverbindung	Koordinationsmodus/ Oxidationsstufe	Gerüsttyp
Lewis- iäure/Base	BEt_3 BPh $_3$	41 42	$\lambda^5 { m Si}({ m II}) \ \lambda^5 { m Si}({ m II})$	$Si N_4 B$ $Si N_4 B$
nukleophile Substitution S	$[Cr(CO)_6]$ [Mo(CO) ₆]	43 44	$\lambda^5 { m Si}({ m II}) \ \lambda^5 { m Si}({ m II})$	$Si \mathrm{N}_4 \mathrm{Cr}$ $Si \mathrm{N}_4 \mathrm{Mo}$
	$[W(CO)_6]$ $[Fe(CO)_5]$	45 46	$\lambda^5 { m Si}({ m II}) \ \lambda^5 { m Si}({ m II})$	$Si \mathbb{N}_4 \mathbb{W}$ $Si \mathbb{N}_4 \mathbb{F}e$
oxidative Addition	$MCl_2 (M = Cu, Hg, Sn, Be)$ $HgBr_2$	8 40	$\lambda^6 { m Si}({ m IV}) \ \lambda^6 { m Si}({ m IV})$	$Si \mathrm{N}_4 \mathrm{Cl}_2$ $Si \mathrm{N}_4 \mathrm{Br}_2$
	2,3-Dimethyl-1,3-butadien [HCrCp(CO) ₃]	48 50	$\lambda^4 { m Si}({ m {\rm IV}}) \ \lambda^5 { m Si}({ m {\rm IV}})$	$Si N_2 C_2$ $Si N_4 H$
	[HMoCp(CO) ₃] HOAc NaO	52 53 54'	λ^{5} Si(IV) λ^{6} Si(IV) λ^{5} Si(IV)	SiN4H SiN4OH
	S_8 bzw. As_4S_4 Se	55 56	λ^{5} Si(IV) λ^{5} Si(IV)	SiN_3O_2 SiN_4S SiN_4Se
	${ m Te}$ ${ m SO}_2$	57 58	$\lambda^5 { m Si}({ m IV}) \ \lambda^6 { m Si}({ m IV})$	$Si \mathrm{N}_4 \mathrm{Te}$ $Si \mathrm{N}_4 \mathrm{O}_2$
	SO_2 o- $\mathrm{B}_{10}\mathrm{C}_2\mathrm{H}_{12}$	59 60	$\lambda^6 \mathrm{Si}(\mathrm{IV})$ $\lambda^6 \mathrm{Si}(\mathrm{IV})$	SiN_4O_2 SiN_4CH
	m-B ₁₀ C ₂ H ₁₂ I ₂ PhSe–SePh	62 68 69	λ° Si(IV) λ^{6} Si(IV) λ^{6} Si(IV)	$Si \mathrm{N}_4 \mathrm{CH}$ $Si \mathrm{N}_4 \mathrm{I}_2$ $Si \mathrm{N}_4 \mathrm{Se}_2$
	C_6F_6	70	$\lambda^6 \mathrm{Si}(\mathrm{IV})$	SiN_4CF

Tabelle 3.1: Reaktivität von **39** mit Angabe des Reaktionstyps sowie der Oxidationsstufe und des Koordinationsgerüsts des Silicium-Atoms in den Produkten.

4 NMR-Untersuchungen

4.1 NMR-Untersuchung des trikoordinierten Donor-stabilisierten Silylens 39

Das Donor-stabilisierte Silylen **39** wurde durch NMR-Spektroskopie im Festkörper (¹³C-, ¹⁵Nund ²⁹Si-VACP/MAS-NMR) und in Lösung (¹H-, ¹³C-, ¹⁵N- und ²⁹Si-NMR) untersucht. Für **39** werden im Festkörper (-15.4 ppm) und in Lösung (-31.4 ppm, C₆D₆) unterschiedliche isotrope ²⁹Si-chemische Verschiebungen gefunden. Dies deutet darauf hin, dass **39** in Lösung tetrakoordiniert als **39'** vorliegt (durch quantenchemische Untersuchungen bestätigt, s. u.), wohingegen es im Festkörper trikoordiniert ist (siehe Kapitel 5.2.7).

Des Weiteren zeigt **39** Dynamik in Lösung. So werden in den ¹H-NMR-Spektren bei 23 °C nur ein Dublett für die Methyl-Gruppen und ein Septett für die CH_3CHCH_3 -Protonen der Isopropyl-Gruppen gefunden; in den ¹³C-NMR-Spektren bei 20 °C wird entsprechend jeweils nur ein ¹³C-Resonanzsignal für die Methyl- und die CH_3CHCH_3 -Kohlenstoff-Atome der Isopropyl-Gruppen sowie nur ein ¹³C-Resonanzsignal für die N*C*N-Kohlenstoff-Atome der Amidinato-Liganden gefunden. Auch bei tiefer Temperatur ([D₈]Toluol; -80 °C) kann lediglich eine starke Verbreiterung der ¹H- und ¹³C-Resonanzsignale beobachtet werden. Dieses Verhalten kann durch einen auf der NMR-Zeitskala schnellen Austausch der Stickstoff-Bindungspositionen am Si-Koordinationszentrum erklärt werden. So zeigt auch das ¹⁵N-NMR-Spektrum in Lösung bei 20 °C nur ein Resonanzsignal, was die Äquivalenz der vier Stickstoff-Atome in Lösung widerspiegelt (Abb. 4.1). Ähnliches Verhalten wurde auch für bisamidinatosubstituierte Silicium(IV)-Komplexe gefunden.^[10m] Im Festkörper hingegen zeigen die ¹³C-VACP/MAS-NMR-Spektren acht Signale für die Methyl- und vier Signale für die CH₃CHCH₃-Kohlenstoff-Atome der Isopropyl-Gruppen. Auch in dem ¹⁵N-VACP/MAS-NMR-Spektrum werden die erwarteten vier Resonanzsignale gefunden (Abb. 4.1).

Abb. 4.1: ¹⁵N-NMR-Spektren von **39** A) im Festkörper (¹⁵N-VACP/MAS-NMR) und B) in Lösung (C_6D_6 , 500.1 MHz).

Quantenchemische Untersuchungen an **39** haben im Einklang mit den experimentellen Daten gezeigt, dass **39** in Lösung (Benzol) tetrakoordiniert als **39'** in Form eines Solvats des Typs **39'**·(C_6H_6)_n vorliegt (schwache Wechselwirkung zwischen dem HOMO von **39'** und einem antibindenden σ^* -C-H-Orbital der Benzol-Moleküle). Die ²⁹Si-chemische Verschiebung des Solvats **39'**·2C₆H₆ wurde zu -43.0 ppm und die des freien Silylens **39'** zu -62.7 ppm berechnet.^[10y] Die Bildung eines Benzol-Solvats von **39'** erklärt also den kleinen Unterschied in den experimentellen isotropen ²⁹Si-chemischen Verschiebungen im Festkörper und in Lösung von lediglich 16 ppm, da bei einer Erhöhung der Si-Koordinationszahl für gewöhnlich eine größere Differenz gefunden wird. Des Weiteren zeigen diese Berechnungen, dass die tetrakoordinierte Spezies **39'** in Lösung (Benzol) um 6.9 kcal/mol stabiler ist als die trikoordinierte.^[10y]

Da bei der Aufnahme der ²⁹Si-VACP/MAS-NMR-Spektren von **39** eine starke Anisotropie des ²⁹Si-Kerns in **39** festgestellt wurde (hohe Intensität der Rotationsseitenbanden), lag es nahe, diese durch eine Tensoranalyse zu untersuchen. Die einzelnen Tensorkomponenten wurden zu $\delta(11) = 97.3$, $\delta(22) = 28.3$ und $\delta(33) = -163.9$ ppm bestimmt. Die Signalbreite nach Herzfeld-Berger beträgt $\Omega = 261.2$ ppm ($\varkappa = 0.92$ ppm).^[40]

4.2 NMR-Untersuchung der neutralen pentakoordinierten Silicium(II)-Komplexe 41–46

Die neutralen pentakoordinierten Silicium(II)-Komplexe **41–46** wurden durch NMR-Spektroskopie im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) und in Lösung (¹H-, ¹¹B- (nur **41** und **42**), ¹³C- und ²⁹Si-NMR) untersucht.

4.2.1 Untersuchung der pentakoordinierten Silicium(II)-Komplexe 41–46 im Festkörper

Die Verbindungen **41** und **42** besitzen jeweils eine Si–B-Bindung. Da alle Isotope des Bors NMR-aktiv sind ist zu erwarten, dass die ²⁹Si-VACP/MAS-NMR-Spektren bedingt durch die ²⁹Si,¹¹B-Kopplungen eine Strukturierung aufweisen (¹⁰B (I = 3 [19.9%]) und ¹¹B (I = 3/2 [80.1%]). Wie aus Abb. 4.2 zu ersehen ist, sind die ²⁹Si-Resonanzsignale der beiden kristallographisch unabhängigen Moleküle von **41** (vgl. Kapitel 5.2.8.1) und das von **42** durch die ²⁹Si,¹¹B-Kopplung jeweils in ein Quartett aufgespalten. Außerdem sind die Signale durch die Wechselwirkung mit den Quadrupolkernen ¹⁰B und ¹¹B stark verbreitert. Auffällig ist, dass eines der beiden ²⁹Si-Resonanzsignale von **41** stärker verbreitert ist als das andere, was auf die stärkere Fehlordnung der Ethyl-Gruppen an einem der beiden kristallographisch unabhängigen Moleküle zu erklären ist.

Die Verbindungen **43–46** besitzen jeweils eine Si-M-Bindung (M = Cr, Mo, W, Fe). Da sowohl Chrom als auch Molybdän, Wolfram und Eisen NMR-aktive Isotope besitzen, ist ein Einfluss auf die ²⁹Si-VACP/MAS-NMR-Spektren bedingt durch die ²⁹Si,M-Kopplungen zu erwarten (M = Cr, ⁵³Cr (I = 3/2 [9.5%]); M = Mo, ⁹⁵Mo (I = 5/2 [15.9%]) und ⁹⁷Mo (I = 5/2[9.6%]); M = W, ¹⁸³W (I = 1/2 [14.3%]); M = Fe, ⁵⁷Fe (I = 1/2 [2.1%])). Des Weiteren sind ⁵³Cr, ⁹⁵Mo und ⁹⁷Mo Quadrupolkerne, was zu einer Strukturierung bzw. Verbreiterung der ²⁹Si-Resonanzsignale beiträgt, da die MAS-Methode den Effekt der dipolaren Kopplungen für einen Spin-1/2-Kern nicht vollständig unterdrücken kann, wenn dieser mit einem Quadrupol-Kern koppelt, dessen Quadrupolfrequenz nahe der Zeeman-Frequenz liegt.^[41] Die ²⁹Si-VACP/MAS-NMR-Spektren der Verbindungen **43** (M = Cr), **44** (M = Mo) und **45** (M = W) zeigen eine gewisse Signalverbreiterung, während für **46** (M = Fe) ein sehr scharfes ²⁹Si-Resonanzsignal gefunden wurde (Abb. 4.2). Das ²⁹Si-Resonanzsignal von **45** im Festkörper sollte ¹J(²⁹Si,¹⁸³W)-Satelliten aufweisen. Diese konnten jedoch, bedingt durch die Signalbreite, nicht beobachtet werden. Auch das ²⁹Si-VACP/MAS-NMR-Spektrum von Verbindung **46** sollte ${}^{1}J({}^{29}\text{Si}, {}^{57}\text{Fe})$ -Satelliten mit einem Integral von jeweils 1.05% aufweisen. Diese wurden jedoch aufgrund der geringen natürlichen Häufigkeit des Spin-1/2-Kerns ${}^{57}\text{Fe}$ und der daraus resultierenden geringen Intensität der ${}^{57}\text{Fe}$ -Satelliten nicht beobachtet (Abb. 4.2).

Abb. 4.2: ²⁹Si-VACP/MAS-NMR-Spektren von A) **41**, B) **42**, C) **43**, D) **44**, E) **45** und F) **46**.

4.2.2 Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoordinierten Silicium(II)-Komplexe 41–46 im Festkörper und in Lösung

Die isotropen ²⁹Si-chemischen Verschiebungen von **41–46** im Festkörper und in Lösung sind ähnlich, sodass davon ausgegangen werden kann, dass diese Verbindungen in beiden Phasen eine ähnliche Struktur besitzen (Tabelle 4.1). Lediglich für **41** und **46** werden größere Abweichungen von 13.8 bzw. 9.1 ppm (**41**; zwei kristallographisch unabhängige Moleküle im Festkörper) bzw. 110 ppm (**46**) gefunden, was für gewisse Unterschiede in den Festkörperund Lösungsstrukturen dieser Verbindung spricht. Diese dürften sich jedoch nur auf deren Konformationen beziehen sein und keine Änderung der Si-Koordinationszahl beinhalten.

Tabelle 4.1: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von **39** und **41–46** im Festkörper (T = 22 °C) und in Lösung^[a] (T = 23 °C).

Verbindung	$\delta^{29} {\rm Si}~({\rm Festk\" {\rm örper}})$	δ^{29} Si (Lösung)	$ \Delta\delta^{29}{ m Si} $	Gerüsttyp
39	-15.4	-31.4	16.0	SiN_3/SiN_4
$41^{[b]}$	$-37.1^{[c]}/-32.4^{[d]}$	$-23.3^{[e]}$	13.8/9.1	SiN_4B
42	$-46.7^{[f]}$	$-40.3^{[e]}$	6.4	SiN_4B
43	-22.3	-22.3	0.0	SiN_4Cr
44	4.9	6.9	2.0	SiN_4Mo
45	-12.5	-13.3	0.8	SiN_4W
46	-23.7	-12.7	11.0	$Si N_4 Fe$

[a] **39** und **41**: C₆D₆; **42–46**: [D₈]THF. [b] Die Daten im Festkörper beziehen sich auf zwei kristallographisch unabhängige Moleküle. [c] Das Signal ist durch die ²⁹Si,¹¹B-Kopplung in ein Quartett aufgespalten (${}^{1}J({}^{29}Si,{}^{11}B) = 69.3 \text{ Hz}$). [d] Das Signal ist durch die ²⁹Si,¹¹B-Kopplung in ein Quartett aufgespalten (${}^{1}J({}^{29}Si,{}^{11}B) = 68.5 \text{ Hz}$). [e] Das Resonanzsignals ist durch die Silicium–Bor-Kopplung und dynamische Prozesse stark verbreitert. [f] Das Signal ist durch die ²⁹Si,¹¹B-Kopplung in ein Quartett aufgespalten (${}^{1}J({}^{29}Si,{}^{11}B) = 68.5 \text{ Hz}$).

Wie aus Tabelle 4.1 zu erkennen ist, zeigen die ²⁹Si-chemischen Verschiebungen der pentakoordinierten Silicium(II)-Komplexe **41–46** eine starke Abhängigkeit von dem Substitutionsmuster und liegen im Bereich von –46.7–4.9 ppm (Festkörper) bzw. –40.3–6.9 ppm (Lösung). Interessanterweise lässt sich kein einheitlicher Trend in den ²⁹Si-chemischen Verschiebungen erkennen. So sind die ²⁹Si-chemischen Verschiebungen der Verbindungen **41–43** und **46** im Festkörper relativ zu der ²⁹Si-chemischen Verschiebung des freien Silylens **39** zu hohem Feld verschoben, wohingegen diejenigen der Komplexe **44** und **45** zu tieferem Feld verschoben sind. Bemerkenswert ist weiterhin, dass die ²⁹Si-chemischen Verschiebungen von **41–46** trotz der höheren Si-Koordinationszahl keine starke Hochfeldverschiebung erfahren.

Während die ²⁹Si-Resonanzsignale der Verbindungen **41** und **42** im Festkörper eine Silicium– Bor-Kopplung (**41**: 69.3 bzw. 68.5 Hz; **42**: 85.0 Hz) zeigen, konnte diese in Lösung nicht beobachtet werden. Hier findet man lediglich stark verbreiterte Signale, was sowohl auf ²⁹Si,¹⁰B- und ²⁹Si,¹¹B-Kopplungen, als auch im Falle von **41** auf dynamische Prozesse in Lösung zurückzuführen ist.

4.2.3 Untersuchungen zur Dynamik der Verbindungen 41-46 in Lösung

Die Verbindungen **41–46** zeigen dynamisches Verhalten in Lösung. Während man für die paarweise diastereotopen Methyl-Gruppen der Amidinato-Liganden vier Dubletts und zwei Septetts für die CH_3CHCH_3 -Protonen in den ¹H-NMR-Spektren erwartet, zeigen die jeweiligen ¹H-NMR-Spektren dieser Verbindungen in Lösung bei 23 °C jeweils nur ein Dublett für die CH_3CHCH_3 -Protonen und ein Septett für die CH_3CHCH_3 -Protonen der Isopropyl-Gruppen. Dem entsprechend findet man in den ¹³C-NMR-Spektren dieser Verbindungen jeweils nur ein ¹³C-Resonanzsignal für die CH_3CHCH_3 - und CH_3CHCH_3 -Kohlenstoff-Atome der Isopropyl-Gruppen. Im Falle von Verbindung **42** sind diese Signale zusätzlich verbreitert. Diese Beobachtungen können durch einen auf der NMR-Zeitskala schnellen Austausch der Stickstoff-Bindungspositionen am Si-Koordinationszentrum erklärt werden.

Im Falle von Verbindung **41** trägt ein zusätzliches Phänomen zu der Dynamik in Lösung bei: eine Verlängerung bzw. (partielle) Dissoziation der Si–B-Bindung. Wie aus Abb. 4.3 ersichtlich ist, zeigt die ¹¹B-chemische Verschiebung von **41** in Lösung ([D₈]Toluol) eine starke Abhängigkeit von der Temperatur. So verschiebt sich das ¹¹B-Resonanzsignal von **41** bei höherer Temperatur (23 \rightarrow 70 °C) in Richtung des freien Triethylborans.^[42] Ebenso ist die ²⁹Si-chemische Verschiebung von **41** stark temperaturabhängig (Abb. 4.4) und verschiebt sich bei höherer Temperatur (23 \rightarrow 70 °C) in Richtung des freien Silylens.^[43] Diese Befunde können durch eine Verlängerung bzw. (partielle) Dissoziation der Si–B-Bindung von **41** bei höheren Temperaturen erklärt werden. Oberhalb von 70 °C wurde in Lösung die Zersetzung von **41** beobachtet, was durch ein bei der Dissoziation von **41** entstehendes hochreaktives frustriertes "Lewis-Säure/Base-Paar", welches mit dem Lösungsmittel zu reagieren vermag, erklärt werden könnte. Im Gegensatz zu den Befunden bei höherer Temperatur, nähern sich die ¹¹B- und ²⁹Si-chemischen Verschiebungen von **41** in Lösung bei tiefer Temperatur

(-40 bzw. -70 °C) denen im Festkörper an, was auf eine Verkürzung der Si–B-Bindung bei tiefen Temperaturen hinweist (Abb. 4.3 und 4.4).

Abb. 4.3: Temperaturabhängigkeit des ¹¹B-Resonanzsignals von **41** ($[D_8]$ Toluol; 160.5 MHz). Die Veränderungen der ¹¹B-NMR-Spektren beim Abkühlen bzw. Erwärmen sind vollständig reversibel.

Abb. 4.4: Temperaturabhängigkeit des ²⁹Si-Resonanzsignals von **41** ($[D_8]$ Toluol; 99.4 MHz). Die Veränderungen der ²⁹Si-NMR-Spektren beim Abkühlen bzw. Erwärmen sind vollständig reversibel.

4.3 NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe mit Amidinato-Liganden 1–3, 9–15, 18, 19, 50, 52, 54'·C₆H₅CH₃ und 55–57 sowie von Verbindung 48

Die neutralen pentakoordinierten Silicium(IV)-Komplexe 1–3, 9–15, 18, 19, 50, 52, $54' \cdot C_6H_5CH_3$ und 55–57 wurden durch NMR-Spektroskopie im Festkörper (außer 11 und 12; ¹³C, ¹⁵N-, ²⁹Si-, ⁷⁷Se- (nur 56) und ¹²⁵Te-VACP/MAS-NMR (nur 57)) sowie in Lösung (¹H-, ¹³C-, ¹⁵N- (nur 56), ¹⁹F- (nur 2), ²⁹Si-, ⁷⁷Se- (nur 56) und ¹²⁵Te-NMR (nur 57)) untersucht. Verbindung 48 liegt im Festkörper tetrakoordiniert (zwei monodentate Amidinato-Liganden), in Lösung jedoch pentakoordiniert (ein mono- und ein bidentater Amidinato-Ligand) vor, weshalb ihre NMR-spektroskopischen Eigenschaften in die Diskussion der pentakoordinierten Silicium(IV)-Komplexe mit einbezogen werden.

4.3.1 NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe 1–3, 9, 10, 13–16, 18, 19, 50, 52, 54'·C₆H₅CH₃ und 55–57 sowie von Verbindung 48 im Festkörper

Da die pentakoordinierten Silicium(IV)-Komplexe 1-3 jeweils drei und 9, 10, 18 und 19 jeweils zwei Silicium-Halogen-Bindungen besitzen (1, 10, 18: X = Cl; 2, 9: X = F; 3, 19: X = Br) und alle Isotope dieser Halogene NMR-aktiv sind, ist zu erwarten, dass die ²⁹Si-VACP/MAS-NMR-Spektren bedingt durch ²⁹Si,X-Kopplungen eine Strukturierung aufweisen (X = F, ¹⁹F (I = 1/2 [100%]); X = Cl, ³⁵Cl (I = 3/2 [75.8%]) und ³⁷Cl (I = 3/2 [24.2%]; X = Br, ⁷⁹Br (I = 3/2 [50.7\%]) und ⁸¹Br (I = 3/2 [49.3\%])). Abb. 4.5 zeigt die ²⁹Si-VACP/MAS-NMR-Spektren der tri- bzw. difluorosubstituierten Verbindungen **2** und **9**. Anstelle des erwarteten Quartetts (2) bzw. Tripletts (9) wird für beide Verbindungen ein komplexes Aufspaltungsmuster beobachtet, was auf die starken dipolaren Kopplungen innerhalb der 29 Si 19 F_n-Einheiten (**2**: n = 3; **9**: n = 2) zurückzuführen ist.^[44] Das 29 Si-Resonanzsignal von Verbindung 19 zeigt eine starke Verbreiterung (Abb. 4.5). Da die Kerne ⁷⁹Br und ⁸¹Br beide Quadrupolkerne sind, trägt zur Strukturierung zusätzlich ein bekanntes Phänomen bei: Da die MAS-Methode den Effekt der dipolaren Kopplungen für einen Spin-1/2-Kern nicht vollständig unterdrücken kann, wenn dieser mit einem Quadrupol-Kern koppelt, dessen Quadrupolfrequenz nahe der Zeeman-Frequenz liegt, trägt dies zur starken Verbreiterung und/oder Strukturierung dieser Signale bei.^[41] Interessanterweise zeigen die übrigen in dieser Arbeit diskutierten halogenosubstituierten pentakoordinierten Silicium(IV)-

Komplexe keine Strukturierung bzw. Verbreiterung ihrer ²⁹Si-Resonanzsignale (siehe hierzu auch Lit. [10k]).

Abb. 4.5: $^{29}\mathrm{Si}\text{-VACP}/\mathrm{MAS}\text{-NMR}\text{-Spektren von A}$ 3, B) 9 und C) 19.

Die Verbindungen **55–57** tragen jeweils einen doppelt gebundenen Chalcogenido-Liganden (**55**: S; **56**: Se; **57** Te). Während Schwefel kein NMR-aktives Isotop besitzt, sind die Kerne ⁷⁷Se (I = 1/2 [7.63%]) und ¹²⁵Te (I = 1/2 [0.89%]) NMR-aktiv. So findet man für das ²⁹Si-Resonanzsignal von **56** ⁷⁷Se-Satelliten mit einer ¹J(²⁹Si,⁷⁷Se)-Kopplungskonstante von 268 Hz. Die ¹J(²⁹Si,¹²⁵Te)-Kopplungskonstante des ²⁹Si-Resonanzsignals von **57** beträgt 809 Hz. Die ⁷⁷Se- und ¹²⁵Te-chemischen Verschiebungen von **56** bzw. **57** im Festkörper betragen –485.3 bzw. –1208.8 ppm.

4.3.2 Vergleich der ²⁹Si-chemischen Verschiebungen der pentakoordinierten Silicium(IV)-Komplexe 1−3, 9−15, 18, 19, 50, 52, 54'·C₆H₅CH₃ und 55−57 sowie von Verbindung 48 im Festkörper und in Lösung

Wie aus Tabelle 4.2 ersichtlich ist, weisen die Verbindungen 1–3, 9, 10, 13–15, 18, 19, $54' \cdot C_6H_5CH_3$ und 55-57 im Festkörper und in Lösung ähnliche isotrope ²⁹Si-chemische Verschiebungen auf, was darauf schließen lässt, dass die Strukturen dieser Komplexe im Festköper und in Lösung ähnlich sind. Die kleinen Abweichungen lassen sich für diese Verbindungen durch geringe strukturelle Unterschiede im Festkörper und in Lösung erklären, wobei jedoch in beiden Phasen die Koordinationszahl fünf vorliegt. Im Falle von 48 (tetrakoordiniert im Festkörper; vgl. Kapitel 5.2.10) findet sich das ²⁹Si-Resonanzsignal in Lösung im Vergleich zu dem im Festkörper jedoch um 76.2 ppm hochfeldverschoben, was darauf schließen lässt, dass 48 in Lösung pentakoordiniert vorliegt (ein monodentater und ein bidentater Amidinato-Ligand).

Die kationischen pentakoordinierten Silicium(IV)-Komplexe 50 und 52 ($[CpM(CO)_3]^{-1}$ Gegenion (50: M = Cr; 52: M = Mo) zeigen wie die analog aufgebaute literaturbekannte ²⁹Si-chemische ([CpW(CO)₃]⁻-Gegenion) im Festkörper Verbindung $\mathbf{71}$ identische Verschiebungen (97.1 ppm).^[45,46] Jedoch fällt auf, dass die Differenz zwischen den ²⁹Sichemischen Verschiebungen von 52 und 71 im Festkörper und in Lösung stark variiert. Desweiteren zeigen die 29 Si-chemischen Verschiebungen von 52 und 71 eine gewisse Temperaturabhängigkeit (vgl. Tabelle 4.2); so finden sich die 29 Si-Resonanzsignale dieser Verbindungen bei -40 °C um jeweils ca. 5 ppm zu hohem Feld verschoben. Eine Konzentrationsabhängigkeit der ²⁹Si-chemischen Verschiebungen dieser Verbindungen konnte jedoch nicht festgestellt werden; so findet man für 52 und 71 bei Konzentrationen von 21 mmol L^{-1} und 75 mmol L^{-1} jeweils identische Werte. Diese Beobachtungen lassen auf das Vorhandensein von Kontaktionenpaaren in Lösung ($[D_8]$ THF) schließen, wobei für diese Verbindungen unterschiedlich starke Wechselwirkungen zwischen den Silicium-haltigen Kationen und den Übergangsmetall-haltigen Anionen bestehen.

Die isotropen ²⁹Si-chemischen Verschiebungen der Trihalogenosilicium(IV)-Verbindungen 1-3 zeigen eine Verschiebung zu hohem Feld beim Gang von der chlor- über die fluor- hin zur bromsubstituierten Verbindung. Gleiches gilt für die ²⁹Si-chemischen Verschiebungen von 9-11 bzw. 18 und 19.

Verbindung	$\delta^{29} {\rm Si}~({\rm Festk\" {\rm örper}})$	δ^{29} Si (Lösung)	$ \Delta\delta^{29}{ m Si} $	Gerüsttyp
1	-99.4	-98.2	1.2	SiN_2Cl_3
2	-129.6 $-(-117.1)^{[b]}$	$-123.9^{[c]}$	5.7 - 12.2	$Si N_2 F_3$
3	-149.9	-156.6	6.7	$Si m N_2 Br_3$
9	$-104.0 - (-90.7)^{[b]}$	$-92.1^{[d]}$	1.4 - 11.9	SiN_2CF_2
10	-87.6	-87.6	0.0	SiN_2CCl_2
11	_	-111.2		SiN_2CBr_2
12	_	-138.6		SiN_2C_3
13	-113.4	-108.9	4.5	SiN_4C
14	-126.8	-125.1	1.7	SiN_4C
15	-84.6	-83.9	0.7	SiN_2CO_2
18	-98.1	-96.4	1.7	SiN_2CCl_2
19	-123.7	-125.7	2.0	SiN_2CBr_2
48	-0.4	-76.6	76.2	SiN_2C_2/SiN_3C_2
50	-97.1			SiN_4H
52	-97.1	–104.1 (23 °C)	7.0	SiN_4H
		-110.3 (-40 °C)		
71	$-97.1^{[e]}$	$-128.0^{[e]}$ (23 °C)	30.9	SiN_4H
		$-134.6 (-40 \ ^{\circ}C)$		
54	-91.9/-93.0	-82.9	9.0/10.1	SiN_3O_2
55	-74.7	-70.7	4.0	$Si m N_4S$
56	$-85.0^{[f]}$	$-80.8^{[g]}$	4.2	$Si m N_4 Se$
57	$-111.4^{[h]}$	$-116.5^{[i]}$	5.1	$Si m N_4 Te$

Tabelle 4.2: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von 1–3, 9–15, 18, 19, 48, 50, 52, 54'·C₆H₅CH₃, 55–57 und 71 im Festkörper (außer 11 und 12; T = 22 °C) und in Lösung^[a] (außer 50; T = 23 °C).

[a] 1, 2, 3, 9–15, 18, 19, 48 und 54': CD₂Cl₂; 50, 52, 54'·C₆H₅CH₃ und 71: [D₈]THF; 55, 56 und 57: C₆D₆. [b] Komplexes Aufspaltungsmuster durch die starken dipolaren Kopplungen innerhalb der ²⁹Si¹⁹F_n-Einheiten (2: n = 3; 9: n = 2). [c] Das Signal ist durch die ²⁹Si,¹⁹F-Kopplung in ein Quartett aufgespalten (${}^{1}J({}^{29}Si,{}^{19}F) = 218$ Hz). [d] Das Signal ist durch die ²⁹Si,¹⁹F-Kopplung in ein Triplett aufgespalten (${}^{1}J({}^{29}Si,{}^{19}F) = 243$ Hz). [e] Die Daten wurden aus Lit. [46] entnommen. [f] ⁷⁷Se-Satelliten, ${}^{1}J({}^{29}Si,{}^{77}Se) = 268$ Hz. [g] ⁷⁷Se-Satelliten, ${}^{1}J({}^{29}Si,{}^{77}Se) = 291.9$ Hz. [h] 125 Te-Satelliten, ${}^{1}J({}^{29}Si,{}^{77}Se) = 832$ Hz.

Bei den Verbindungen mit einem TMOP-Liganden (9–15) fällt die typische Hochfeldverschiebung der Komplexe mit Cyanato-N- (14: -108.9 ppm; CD₂Cl₂) bzw. Thiocyanato-N-Liganden (15: -125.1 ppm; CD₂Cl₂) im Vergleich zu der chlorsubstituierten Verbindung 10 (-87.6 ppm; CD₂Cl₂) auf. Diese Verschiebungsdifferenz ist im Einklang mit den Befunden für andere penta- und hexakoordinierte Silicium(IV)-Komplexe mit Cyanato-Nbzw. Thiocyanato-N-Liganden. Interessanterweise zeigt der dicyanosubstituierte Silicium(IV)- Komplex **12** die stärkste Hochfeldverschiebung von 51 ppm in Lösung im Vergleich zu der dichlorosubstituierten Verbindung **10**.

Die dihalogenosubstituierten Verbindungen 10 und 11 bzw. 18 und 19 besitzen den gleichen Gerüsttyp (SiN_2CX_2 ; 10, 18: X = Cl; 11, 19: X = Br) und unterscheiden sich lediglich in der Natur des organischen Liganden. Jedoch unterscheiden sich die ²⁹Si-chemischen Verschiebungen der dichloro- bzw. der dibromosubstituierten Spezies um jeweils *ca.* 10 ppm, wodurch die Unterschiede in den elektronischen Eigenschaften des TMOP- und Pentafluorphenyl-Liganden widergespiegelt werden.

Die isotropen ²⁹Si-chemischen Verschiebungen der pentakoordinierten Silicium(IV)-Komplexe mit einer Si=El-Doppelbindung (**55**: El = S; **56**: El = Se; **57**: El = Te) zeigen eine starke Abhängigkeit von dem an das Si-Koordinationszentrum gebundenen Chalkogenido-Liganden. Während für die schwefelsubstituierte Verbindung **55** das ²⁹Si-Resonanzsignal im Festkörper bei -74.7 ppm gefunden wird, liegen diejenigen der selen- und tellursubstituierten Komplexe **56** und **57** bei -85.0 bzw. -111.4 ppm. Die ²⁹Si-chemischen Verschiebungen dieser Komplexe in Lösung zeigen den gleichen Trend.

4.3.3 Untersuchungen zur Dynamik der Verbindungen 1–3, 9–15, 18, 19, 48, 52 und 55–57 in Lösung

Die neutralen pentakoordinierten Silicium(IV)-Komplexe 1-3, 9-15, 18, 19, 48, 52 und 55–57 zeigen bei 23 °C dynamisches Verhalten in Lösung. Da die Methyl-Gruppen der Amidinato-Liganden paarweise diastereotop sind, erwartet man in den jeweiligen ¹H-NMR-Spektren für die Verbindungen mit einem Amidinato-Liganden (1-3, 9-15, 18 und 19) zwei Dubletts und ein Septett und für die Verbindungen mit zwei Amidinato-Liganden (48, 52 und 55–57) vier Dubletts und zwei Septetts für die Protonen der Isopropyl-Gruppen. In den ¹³C-NMR-Spektren würde man dementsprechend zwei bzw. vier Resonanzsignale für die Methyl-Gruppen und ein bzw. zwei Resonanzsignale für die CH₃CHCH₃-Kohlenstoff-Atome der Isopropyl-Gruppen erwarten. Die ¹H-NMR-Spektren der Verbindungen 1-3, 9-14, 18, 19, 48 und 55–57 zeigen jedoch jeweils nur ein Dublett für die Methyl- und ein Septett für die CH₃CHCH₃-Protonen der Amidinato-Liganden. In den ¹³C-NMR-Spektren von 1-3, 9-14, 18, 19, 48 und 52 wird nur jeweils ein Signal für die Methylgruppen und die CH₃CHCH₃-Kohlenstoff-Atome der Isopropyl-Gruppen ferwarten. Die 1900 Septent für die Methyl-Gruppen und die CH₃CHCH₃-Protonen der Amidinato-Liganden. In den ¹³C-NMR-Spektren von 1-3, 9-14, 18, 19, 48 und 52 wird nur jeweils ein Signal für die Methylgruppen und die CH₃CHCH₃-Fortonen der Isopropyl-Gruppen gefunden. In den ¹H-NMR-Spektren der Pentakoordinierten Silicium(IV)-Komplexe 15 und 52 werden in den ¹H-NMR-Spektren zwei

Dubletts und ein Septett beobachtet. Diese sind jedoch stark verbreitert. Für die Verbindungen **15** und **55–57** findet man in den jeweiligen ¹³C-NMR-Spektren zwei Resonanzsignale für die Methyl- und ein Signal für die CH_3CHCH_3 -Kohlenstoff-Atome. Des Weiteren zeigt das ¹⁹F-NMR-Spektrum von **2** nur ein scharfes Signal. Zusätzlich weist das ¹⁵N-NMR-Spektrum von **56** nur ein Resonanzsignal für die vier Stickstoff-Atome auf. Diese Beobachtungen können durch einen auf der NMR-Zeitskala schnellen Austausch der Stickstoff-Bindungspositionen am Si-Koordinationszentrum erklärt werden.

Abb. 4.6: Ausschnitte aus den VT⁻¹H-NMR Spektren von **15**. Gezeigt sind die Resonanzsignale der Methyl-Gruppen der Amidinato-Liganden. Links: Ausschnitt aus dem VT⁻¹H-NMR-Spektrum bei Abkühlung von 23 °C auf –20 °C (CD₂Cl₂; 500.1 MHz). Rechts: Ausschnitt aus dem VT⁻¹H-NMR-Spektrum bei Erwärmung von 23 °C auf 70 °C (C₆D₆; 500.1 MHz). Die Veränderungen der ¹H-NMR-Spektren beim Abkühlen bzw. Erwärmen sind vollständig reversibel.

Für die Verbindungen 1, 2, 15, 52 und 56 wurde dieses Phänomen durch VT-NMR-Messungen bei tiefer Temperatur genauer untersucht. Für 1, 2 und 56 trat allerdings bis zu einer Temperatur von -80 °C in den jeweiligen ¹H-NMR-Spektren lediglich eine Signalverbreiterung und keine weitere Aufspaltung der CH₃CHCH₃- bzw. CH₃CHCH₃-Resonanzsignale auf. Die ¹H-NMR-Spektren von Verbindung 15 zeigen jedoch eine starke Temperaturabhängigkeit (Abb. 4.6). Bei 23 °C werden für die Methyl-Gruppen der Amidinato-Liganden sowohl in [D₆]Benzol als auch in [D₂]Dichlormethan zwei sehr breite Dubletts beobachtet. Bei höherer Temperatur (70 °C) werden die Protonen der Methyl-Gruppen durch die erhöhte Dynamik vollständig äquivalent und es wird lediglich ein leicht verbreitertes Dublett (analog zu den ¹H-NMR-Spektren der Verbindungen **1–3**, **9–14**, **18**, **19**, **48** und **55–57** bei 23 °C) beobachtet. Bei tieferer Temperatur (–20 °C) werden die dynamischen Prozesse auf der NMR-Zeitskala so langsam, dass für die Methyl-Gruppen der Amidinato-Liganden zwei scharfe Dubletts gefunden werden.

Für Verbindung **52** werden bei -40 °C zwei scharfe Dubletts und ein scharfes Septett für die Protonen der Isopropyl-Gruppen beobachtet.

4.4 NMR-Untersuchungen der zwitterionischen pentakoordinierten Silicium(IV)-Komplexe 26–29 im Festkörper

Die zwitterionischen pentakoordinierten Silicium(IV)-Komplexe **26–29** wurden aufgrund der schlechten Löslichkeit in den gängigen deuterierten organischen Lösungsmitteln lediglich durch NMR-Spektroskopie im Festkörper (¹³C-, ¹⁵N-, ²⁹Si- und ³¹P-VACP/MAS-NMR) untersucht. Da diese Verbindungen an jedem der beiden Si-Koordinationszentren jeweils zwei Silicium–Chlor-Bindungen besitzen und die Isotope ³⁵Cl (I = 3/2 [75.8%]) und ³⁷Cl (I = 3/2 [24.2%]) NMR-aktiv sind, ist zu erwarten, dass die ²⁹Si-VACP/MAS-NMR-Spektren bedingt durch die ²⁹Si,Cl-Kopplungen eine Strukturierung und/oder Verbreiterung aufweisen. Interessanterweise wurden jedoch in den ²⁹Si-VACP/MAS-NMR-Spektren von **26–29** vergleichsweise scharfe Resonanzsignale beobachtet.

Tabelle 4.3: Vergleich der isotropen ²⁹Si- und ³¹P-chemischen Verschiebungen [ppm] von **26–29** im Festkörper (T = 22 °C).

Verbindung	$\delta^{29}{ m Si}$	$\delta^{31}\mathrm{P}$	Gerüsttyp
26	-122.2	7.1	SiN_3Cl_2
27	-124.6	17.6	SiN_3Cl_2
28	-125.8	-23.4	SiN_3Cl_2
29	-125.1	-23.7	SiN_3Cl_2

Wie aus Tabelle 4.3 ersichtlich ist, sind die ²⁹Si-chemischen Verschiebungen von **26–29** sehr ähnlich. Interessanterweise ist der Unterschied zwischen den ²⁹Si-chemischen Verschiebungen von **26** und **27** ($|\Delta\delta| = 2.4$ ppm) jedoch größer als zwischen denjenigen von **28** und **29** ($|\Delta\delta| = 0.7$ ppm) und auch größer als der Unterschied zwischen **27** und **28** bzw. **29** ($|\Delta\delta| = 1.2$ bzw. 0.5 ppm). Die Komplexe **26** und **27** bzw. **28** und **29** besitzen jeweils (abgesehen von den Resten an dem NPC=C-Kohlenstoff-Atom) den gleichen *N,N*-Liganden, sodass die unterschiedlichen ²⁹Si-chemischen Verschiebungen von **26** und **27** nur durch die unterschiedlichen Koordinationsmodi des bidentaten N,N-Liganden in diesen Verbindungen erklärt werden können (siehe hierzu auch Kapitel 5.3.2). Dies verdeutlichen auch die ³¹P-chemischen Verschiebungen. Während man für die Verbindungen **26** und **27** eine Differenz von 10.1 ppm in den ³¹P-chemischen Verschiebungen findet, ist diese Differenz für die Verbindungen **28** und **29** (gleicher Koordinationsmodus des bidentaten N,N-Liganden) mit 0.3 ppm deutlich kleiner.

4.5 NMR-Untersuchungen der neutralen hexakoordinierten Silicium(IV)-Komplexe 30–37 mit einem Amidinato- und einem *N*,*O*-Liganden

Die neutralen hexakoordinierten Silicium(IV)-Komplexe **30–37** wurden durch NMR-Spektroskopie im Festkörper (¹³C-, ¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie in Lösung (¹H-, ¹³C-, ¹⁹F- (nur **32** und **36**) und ²⁹Si-NMR) untersucht.

4.5.1 NMR-Untersuchungen der hexakoordinierten Silicium(IV)-Komplexe 30–37 im Festkörper

Da die pentakoordinierten Silicium(IV)-Komplexe **30–37** jeweils zwei Silicium–Halogen-Bindungen (**30**: X = Cl; **31**: X = Br; **32**: X = F) besitzen und alle Isotope dieser Halogene NMR-aktiv sind, ist zu erwarten, dass die ²⁹Si-VACP/MAS-NMR-Spektren bedingt durch die ²⁹Si,X-Kopplungen eine Strukturierung aufweisen (X = F, ¹⁹F (I = 1/2 [100%]); X = Cl, ³⁵Cl (I = 3/2 [75.8%]) und ³⁷Cl (I = 3/2 [24.2%]); X = Br, ⁷⁹Br (I = 3/2 [50.7%]) und ⁸¹Br (I = 3/2[49.3%])). Abb. 4.7 zeigt die ²⁹Si-VACP/MAS-NMR-Spektren der Verbindungen **30–32**.

Interessanterweise ist das ²⁹Si-Resonanzsignal von Verbindung **30** nur etwas verbreitert, während das Signal von **31** stark verbreitert und strukturiert ist. Da die Kerne ⁷⁹Br und ⁸¹Br beide Quadrupolkerne sind, trägt zur Strukturierung zusätzlich ein bekanntes Phänomen bei: Da die MAS-Methode den Effekt der dipolaren Kopplungen für einen Spin-1/2-Kern nicht vollständig unterdrücken kann, wenn dieser mit einem Quadrupol-Kern koppelt, dessen Quadrupolfrequenz nahe der Zeeman-Frequenz liegt, trägt dies zur starken Verbreiterung und/oder Strukturierung dieser Signale bei.^[41] Für das ²⁹Si-Resonanzsignal des Difluorosilicium(IV)-Komplexes **32** würde man ein Triplett erwarten, stattdessen findet man, wie schon bei den pentakoordinierten Silicium(IV)-Komplexen **2** und **9** beobachtet, ein komplexes Aufspaltungsmuster, was auf die starken dipolaren Kopplungen innerhalb der 29 Si¹⁹F₂-Einheit zurückzuführen ist.^[44] Die Verbindungen **33–37** zeigen scharfe ²⁹Si-Resonanzsignale.

Für Verbindung 36 wurden im Kristall zwei kristallographisch unabhängige Moleküle gefunden. Das ²⁹Si-VACP/MAS-NMR-Spektrum von 36 zeigt jedoch lediglich ein Resonanzsignal.

Abb. 4.7: $^{29}\mathrm{Si}\text{-VACP}/\mathrm{MAS}\text{-NMR}\text{-Spektren von A}$ 30, B) 31 und C) 32.

4.5.2 Vergleich der ²⁹Si-chemischen Verschiebungen der hexakoordinierten Silicium(IV)-Komplexe 30–37 im Festkörper und in Lösung

Die ²⁹Si-NMR-Spektren der Verbindungen 30-37 weisen jeweils sehr ähnliche Verschiebungen im Festkörper und in Lösung auf (Tabelle 4.4), was darauf hindeutet, dass die Strukturen dieser Komplexe im Festkörper und in Lösung ähnlich sind. Die Verbindungen **30–36** weisen unterschiedliche monodentate monoanionische Liganden auf und Verbindung 37 trägt statt dieser einen bidentaten dianionischen Liganden. Die Unterschiede in den elektronischen und sterischen Eigenschaften dieser Liganden spiegelt sich auch deutlich in den ²⁹Si-chemischen Verschiebungen wieder (Festkörper: -200-(-145.9) ppm; Lösung: -190-(-146.6) ppm). So sind die Resonanzsignale der Verbindungen 32 (Fluoro-Liganden) und 37 (1,2-Benzoldiolato-Ligand) im Vergleich zu denen des Dichlorosilicium(IV)-Komplexes **30** zu tieferem Feld verschoben, wohingegen die ²⁹Si-Resonanzen der übrigen in diesem Kapitel diskutierten Verbindungen zu höherem Feld verschoben sind (Tabelle 4.4). Auffällig ist die starke Hochfeldverschiebung der Verbindungen 34 und 35. Diese ist jedoch typisch für Silicium(IV)-Komplexe mit Cyanato-N- bzw. Thiocyanato-N-Liganden.

Tabelle 4.4: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von **30–37** im Festkörper (T = 22 °C) und in Lösung^[a] (T = 23 °C).

Verbindung	δ^{29} Si (Festkörper)	δ^{29} Si (Lösung)	$ \Delta \delta^{29} { m Si} $	Gerüsttyp
30	-165.2	-162.4	2.8	SiN_3OCl_2
31	-200-(-160)	-190	[b]	SiN_3OBr_2
32	$-170-(-155)^{[c]}$	$-161.4^{[d]}$	[b]	SiN_3OF_2
33	-169.4	-167.5	1.9	SiN_5O
34	-184.6	-183.5	1.1	SiN_5O
35	-190.2	$-189.3^{[e]}$	0.9	SiN_5O
36	-171.0	-171.2	0.2	SiN_3O_3
37	-145.9	-146.6	0.7	SiN_3O_3

[a] CD_2Cl_2 . [b] Aufgrund der Breite des ²⁹Si-Resonanzsignals im Festkörper erscheint eine Angabe der Verschiebungsdifferenz nicht sinnvoll. [c] Komplexes Aufspaltungsmuster durch die starken dipolaren Kopplungen innerhalb der ²⁹Si¹⁹F₂-Einheit. [d] Das Signal ist durch die ²⁹Si,¹⁹F-Kopplung in ein Triplett aufgespalten (¹J(²⁹Si,¹⁹F) = 192 Hz). [e] Das Signal ist durch die ²⁹Si,¹⁴N-Kopplung in ein Quintett aufgespalten (¹J(²⁹Si,¹⁴N) = 20.5 Hz).

Interessanterweise werden in den ²⁹Si-NMR-Spektren der hexakoordinierten Silicium(IV)-Komplexe **34** (*N*CO-Liganden) und **35** (*N*CS-Liganden) im Festkörper und für **34** in Lösung scharfe Singuletts gefunden, wohingegen bei **35** das ²⁹Si-Resonanzsignal in Lösung durch die ²⁹Si,¹⁴N-Kopplung in ein Quintett aufgespalten ist (Abb. 4.8). Der Sachverhalt, dass diese Kopplung für die Thiocyanato-*N*-substituierte Verbindung **35**, jedoch nicht für den Cyanato-*N*-substituierten Komplex **34** beobachtet wird, ist bislang nicht vollständig verstanden, jedoch scheint es, dass in **34** die quadrupolare Relaxation der ¹⁴N-Kerne der dominierende Relaxationsprozess ist, wohingegen in Verbindung **35** die quadrupolare Relaxation weniger stark ausgeprägt ist, sodass die ²⁹Si,¹⁴N-Kopplung beobachtbar wird.

Abb. 4.8: ²⁹Si-NMR-Spektren von A) **34** und B) **35** in Lösung (CD₂Cl₂, 99.4 MHz).

4.5.3 Untersuchungen zur Dynamik der Verbindungen 30–37 in Lösung

Die Verbindungen **30–37** zeigen dynamisches Verhalten in Lösung. In den jeweiligen ¹H-NMR-Spektren dieser Komplexe sind bei 23 °C die Resonanzsignale der *ortho*- und *meta*-Protonen der Phenyl-Ringe durch die eingeschränkte Rotation um die C_{ipso} -CN₂-Bindung verbreitert. Auch in den jeweiligen ¹³C-NMR-Spektren findet man verbreiterte Signale für die entsprechenden Kohlenstoff-Atome. Des Weiteren findet man in den jeweiligen ¹H-NMR-Spektren von **31**, **32**, **34** und **37** auch für die Methyl- und CH₃CHCH₃-Protonen der Amidinato-Liganden verbreiterte Resonanzsignale. Gleiches gilt für die entsprechenden ¹³C-Resonanzsignale. Bei den Verbindungen **31** und **37** sind zusätzlich auch die ¹H- und ¹³C-Resonanzsignale des bidentaten *N*,*O*-Liganden und bei **37** auch diejenigen des bidentaten *O*,*O*-Liganden verbreitert. Exemplarisch sind in Abb. 4.9 die VT-¹H-NMR Spektren des Difluorosilicium(IV)-Komplexes **32** gezeigt. Wie bereits erwähnt sind bei 23 °C die ¹H-Resonanzsignale der Protonen der Isopropyl- sowie die *ortho*- und *meta*-Protonen der Phenyl-Gruppen verbreitert. Weiterhin findet man für die Protonen der Methyl-Gruppen und für die CH_3CHCH_3 -Protonen jeweils nur ein Signal. Bei tiefen Temperaturen (-50 °C) hingegen beobachtet man für die Methyl-Protonen vier scharfe Dubletts und für die CH_3CHCH_3 -Protonen zwei Septetts. Letztere sind jedoch auch bei dieser Temperatur noch verbreitert. Die ¹H-Resonanzsignale der Phenyl-Gruppen sind hingegen bei -50 °C allesamt scharf.

Abb. 4.9: Ausschnitte aus den VT-¹H-NMR-Spektren von **32**. Gezeigt sind die ¹H-Resonanzsignale A) der Methyl-Gruppen, B) der CH₃C*H*CH₃-Protonen sowie C) der Phenyl-Gruppen bei Abkühlung von 23 °C auf -50 °C (CD₂Cl₂; 500.1 MHz). Die Veränderungen der ¹H-NMR-Spektren beim Abkühlen sind vollständig reversibel.

Des Weiteren zeigt sich diese Dynamik bei Verbindung **32** auch in den ¹⁹F-NMR-Spektren (Abb. 4.10). Während man bei 23 °C für die beiden Fluoro-Liganden jeweils nur ein sehr breites Singulett erkennen kann, findet man bei tiefer Temperatur (-50 °C) zwei scharfe Dubletts mit ${}^{1}J({}^{19}\text{F},{}^{19}\text{F})$ -Kopplungskonstanten von 24.2 Hz. Während in den ${}^{19}\text{F}$ -NMR-Spektren bei 23 °C zwei sehr stark verbreiterte Resonanzsignale vorliegen, was eine Nichtäquivalenz der beiden Fluor-Bindungspositionen widerspiegelt, zeigt das ²⁹Si-NMR Spektrum von **32** bei dieser Temperatur ein Triplett (${}^{29}\text{Si},{}^{19}\text{F}$ -Kopplung), was auf eine Äquivalenz der beiden Fluoro-Liganden auf der NMR-Zeitskala hindeutet. Bei -50 °C kann jedoch ein Dublett von Dubletts beobachtet werden, was im Einklang mit den ¹⁹F-NMR-Spektren für die Nichtäquivalenz der beiden Fluor-Bindungspositionen bei dieser Temperatur spricht (Abb. 4.11).

Verbindung **36** besitzt zwei nichtäquivalente Trifluormethansulfonato-Liganden und in den ¹⁹F-NMR-Spektren dieser Verbindung werden dementsprechend zwei Resonanzsignale gefunden. Diese sind jedoch nicht wie erwartet Singuletts, sondern Quartetts mit einer ¹⁹F,¹⁹F-Kopplungskonstante von 1.7 Hz. Der Mechanismus dieser Kopplung ist noch nicht vollständig verstanden (Kopplung durch die Bindungen (${}^{8}J({}^{19}F,{}^{19}F)$ vs. Kopplung durch den Raum), jedoch ergaben ${}^{19}F,{}^{19}F$ -NOESY-NMR-Experimente keinen Hinweis für eine Wechselwirkung zwischen den Fluor-Atomen der beiden Liganden. Die ${}^{19}F$ -NMR-Spektren von **36** geben keinen Hinweis auf einen Austausch der beiden Trifluormethansulfonato-Liganden, allerdings zeigten ${}^{19}F.{}^{19}F$ -EXSY-Experimente bei 23 °C einen solchen Prozess (Abb. 4.12). Dieser verstärkt sich bei einer Temperatur von 60 °C, wohingegen bei –60 °C keinerlei Kreuzsignale in den entsprechenden ${}^{19}F.{}^{19}F$ -EXSY-NMR-Spektren gefunden wurden.

Wie bereits erwähnt, zeigen die ¹H-NMR-Spektren von Verbindung **37** auch für den bidentaten O,O-Liganden verbreiterte Resonanzsignale. Das ²⁹Si-NMR-Spektrum dieser Verbindung bei 23 °C zeigt ein stark verbreitertes Signal, wohingegen bei -60 °C zwei ²⁹Si-Resonanzsignale mit einem Intensitätsverhältnis von *ca.* 1:4 beobachtet werden (Abb. 4.13). Dies lässt auf das Vorhandensein von zwei Diastereomeren von **37** und eine gewisse strukturelle Instabilität dieser Verbindung in Lösung schließen.

Während für die anderen in dieser Arbeit beschriebenen Verbindungen mit Amidinato-Liganden (außer 40) die vorhandenen dynamischen Prozesse in Lösung sehr gut durch einen auf der NMR-Zeitskala schnellen Austausch der Stickstoff-Bindungspositionen am Si-Koordinationszentrum erklärt werden können, spielen im Falle der Verbindungen 30–37 auch weitere Prozesse eine Rolle, welche möglicherweise miteinander gekoppelt sind: I) Austausch der Stickstoff-Bindungspositionen der Amidinato-Liganden, II) Austausch der Stickstoff- und Sauerstoff-Bindungspositionen des bidenaten N,O-Liganden und III) Austausch der Bindungspositionen der monodentaten Liganden bzw. der beiden Sauerstoff-Bindungspositionen des bidentaten O,O-Liganden. Die Ausprägung dieser Prozesse hängt von dem jeweiligen Substitutionsmuster ab und bislang ist unklar, durch welchen Mechanismus dieses dynamische Verhalten bedingt ist.

Abb. 4.10: VT-¹⁹F-NMR-Spektren von **32** (CD₂Cl₂; 282.4 MHz). Das Spektrum bei 23 °C wurde um den Faktor 60 vergrößert. Die Veränderungen der ¹⁹F-NMR-Spektren beim Abkühlen sind vollständig reversibel.

Abb. 4.11: VT-²⁹Si-NMR-Spektren von **32** (CD₂Cl₂; 99.4 MHz). Die Veränderungen der ²⁹Si-NMR-Spektren beim Abkühlen sind vollständig reversibel.

Abb. 4.12: $^{19}\mathrm{F}, ^{19}\mathrm{F}\text{-}\mathrm{EXSY}\text{-}\mathrm{NMR}\text{-}\mathrm{Spektrum}$ von **36** bei 23 °C (CD₂Cl₂; 282.4 MHz).

Abb. 4.13: ²⁹Si-NMR-Spektren von **37** bei A) 23 °C und B) -60 °C (CD₂Cl₂; 282.4 MHz).

4.5.4 Anmerkung zu den ¹H-Resonanzsignalen der Methyl-Protonen der Verbindungen 30, 31 und 33–36 in Lösung

Die Verbindungen **30**, **31** und **33–36** zeigen in den jeweiligen ¹H-NMR-Spektren in Lösung bei 23 °C für die Protonen der Methyl-Gruppen der Amidinato-Liganden vier Resonanzsignale. Während jeweils drei dieser Signale im Bereich von 0.90–1.50 ppm gefunden werden, ist das vierte ¹H-Resonanzsignal dieser Verbindungen vergleichsweise stark (*ca.* 1.1– 1.5 ppm) zu tieferem Feld verschoben (-0.19-(-0.15) ppm). Da jeweils eine der Methyl-Gruppen in räumlicher Nähe zu der Ebene des aromatischen Systems des *N*,*O*-Liganden liegt (siehe hierzu Kapitel 5.2.5), kann diese Beobachtung durch die Wechselwirkung zwischen den Protonen der Methyl-Gruppen und dem diamagnetischen Ringstrom des aromatischen Systems erklärt werden.

4.6 NMR-Untersuchungen der neutralen hexakoordinierten Silicium(IV)-Komplexe 38, 53, 58–61, 68, 69 und $70.0.5C_6H_{14}$ mit zwei Amidinato-Liganden

Die neutralen hexakoordinierten Silicium(IV)-Komplexe **38**, **53**, **58–61**, **68**, **69** und **70**·0.5C₆H₁₄ wurden durch NMR-Spektroskopie im Festkörper (13 C-, 15 N-, 29 Si- und 77 Se-VACP/MAS-NMR (nur **69**)) sowie in Lösung (1 H-, 11 B- (nur **60**), 13 C-, 29 Si- und 77 Se-NMR (nur **69**)) untersucht.

4.6.1 NMR-Untersuchungen der hexakoordinierten Silicium(IV)-Komplexe 38, 53, 58–61, 68, 69 und 70·0.5C₆H₁₄ im Festkörper

Da die hexakoordinierten Silicium(IV)-Komplexe **40**, **68** und **70**·0.5C₆H₁₄ Silicium–Halogen-Bindungen (**40**: X = Cl; **68**: X = I; **70**: X = F) besitzen und alle Isotope dieser Halogene NMR-aktiv sind, ist zu erwarten, dass die ²⁹Si-VACP/MAS-NMR-Spektren bedingt durch die ²⁹Si,X-Kopplungen eine Strukturierung aufweisen (X = F, ¹⁹F (I = 1/2 [100%]); X = Cl, ³⁵Cl (I = 3/2 [75.8%]) und ³⁷Cl (I = 3/2 [24.2%]); X = I, ¹²⁷I (I = 5/2 [100%])). Die chlor- bzw. iodsubstituierten Verbindungen **38** und **68** zeigen jedoch scharfe ²⁹Si-Resoanzsignale ohne erkennbare Strukturierung. Das ²⁹Si-VACP/MAS-NMR-Spektrum von Verbindung **70**·0.5C₆H₁₄ zeigt, bedingt durch die ²⁹Si,¹⁹F-Kopplung, ein Dublett (¹J(²⁹Si,¹⁹F) = 245.4 Hz; Abb. 4.14).

Abb. 4.14: ²⁹Si-VACP/MAS-NMR-Spektrum von 70.0.5C₆H₁₄.

Der hexakoordinierte Silicium(IV)-Komplex **69** besitzt zwei Si–Se-Bindungen. Da das Isotop ⁷⁷Se NMR-aktiv (I = 1/2 [7.63%]) ist, sollte das ²⁹Si-VACP/MAS-NMR-Spektrum bedingt durch die ¹J(²⁹Si,⁷⁷Se)-Kopplung ⁷⁷Se-Satelliten mit einem Integral von jeweils *ca.* 3.8% aufweisen. Allerdings konnten diese nicht beobachtet werden. Die Relaxation des ⁷⁷Se-Kerns wird in größeren Molekülen durch den Mechanismus der chemischen Verschiebungsanisotropie (CSA) dominiert, die proportional zum Quadrat des äußeren Magnetfeldes B₀ ist.^[47a] Die große Anisotropie der chemischen Verschiebung des ⁷⁷Se-Kerns wird auch durch die intensiven Rotationsseitenbanden in dem ⁷⁷Se-VACP/MAS-NMR-Spektrum von **69** deutlich. Die Signalbreite nach Herzfeld-Berger beträgt $\Omega = 628.1$ bzw. 677.2 ppm ($\varkappa = 0.84$ bzw. 0.92 ppm).^[40] Aufgrund dessen ist die Detektion der ⁷⁷Se-Satelliten
mit dem verwendeten 400-MHz-NMR-Gerät durch die Relaxationsverbreiterung erschwert, da bei steigender Magnetfeldstärke die Intensität der ⁷⁷Se-Satellitensignale sinkt.^[47b] Dieses Phänomen wird auch für einige weitere, vor allem schwere, NMR-aktive Kerne wie z. B. ³¹P, ⁷⁷Se, ⁵⁷Fe, ¹⁰³Rh und ¹⁹⁵Pt beobachtet (siehe hierzu auch Lit. [47c] sowie [47d] und die darin zitierte Literatur).

Die übrigen hexakoordinierten Silicium(IV)-Komplexe **53** und **58–61** zeigen keine Auffälligkeiten in den jeweiligen VACP/MAS-NMR-Spektren.

4.6.2 Vergleich der ²⁹Si-chemischen Verschiebungen der hexakoordinierten Silicium(IV)-Komplexe 38, 53, 58–61, 68, 69 und $70.0.5C_6H_{14}$ im Festkörper und in Lösung

Die ²⁹Si-NMR-Spektren der Verbindungen **38**, **53**, **58–61**, **68**, **69** und **70**·0.5C₆H₁₄ weisen jeweils sehr ähnliche Verschiebungen im Festkörper und in Lösung auf (Tabelle 4.5), was darauf hindeutet, dass die Strukturen dieser Komplexe im Festkörper und in Lösung ähnlich sind. Lediglich für Verbindung **69** wird eine etwas größere Verschiebungsdifferenz von 7.3 ppm gefunden. Diese kann durch eine Änderung der räumlichen Lage der Phenyl-Gruppen der Selenophenolato-Liganden erklärt werden. Diese Annahme wird auch durch die ⁷⁷Se-chemischen Verschiebungen von **69** unterstützt. So findet man im Festkörper ⁷⁷Si-chemische Verschiebungen von 205.2 und 280.9 ppm, während in Lösung ein ⁷⁷Se-Resonanzsignal bei 436.6 ppm gefunden wird. Da der ⁷⁷Se-Kern sehr empfindlich auf geometrische Änderungen in seiner Umgebung reagiert, ist die große Verschiebungsdifferenz nicht verwunderlich.

Durch die sehr unterschiedliche Natur der verschiedenen mono- bzw. bidentaten Liganden (abgesehen von den Amidinato-Liganden) der Verbindungen **38**, **53**, **58–61**, **68**, **69** und **70**· $0.5C_6H_{14}$ fällt ein Vergleich der jeweiligen ²⁹Si-chemischen Verschiebungen schwer, weshalb an dieser Stelle lediglich auf die strukurell eng verwandten Systeme eingegangen wird.

Verbindung	δ^{29} Si (Festkörper)	δ^{29} Si (Lösung)	$\Delta \delta^{29} { m Si}$	Gerüsttyp
38	-178.3	-176.7	1.6	SiN_4ClH
53	-176.7	-175.8	0.9	SiN_4OH
58	-161.7	$-163.3^{[b]}$	1.6	SiN_4O_2
cis- 59	-144.1	$-149.5^{[c]}$	5.4	SiN_4O_2
trans-59	-135.3	$-140.5/-140.4^{[c,d]}$	5.2/5.1	SiN_4O_2
60	-166.0	$-167.7^{[e]}$	1.7	SiN_4CH
61	-169.0	-172.0	3.0	SiN_4CH
68	-255.6	-261.5	5.9	SiN_4I_2
69	$-177.3^{[f]}$	$-170.0^{[f]}$	7.3	SiN_4Se_2
$70{\cdot}0.5\mathrm{C}_{6}\mathrm{H}_{14}$	$-160.0^{[g]}$	$-160.5^{[h]}$	0.5	SiN_4CF

Tabelle 4.5: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von **38**, **53**, **58–61**, **68**, **69** und **70**·0.5C₆H₁₄ im Festkörper (T = 22 °C) und in Lösung^[a] (T = 23 °C).

[a] **38**, **58**, **59** und **69**: CD₂Cl₂; **53**, **61**, **68** und **69**·0.5C₆H₁₄: C₆D₆; **60**: [D₈]THF. [b] T = -40 °C. [c] T = -60 °C. [d] Daten für zwei Diastereomere. [e] T = -80 °C. [f] ⁷⁷Se-Satelliten nicht beobachtet. [g] Das Signal ist durch die ²⁹Si,¹⁹F-Kopplung in ein Dublett aufgespalten (¹J(²⁹Si,¹⁹F) = 245.4 Hz). [h] Das Signal ist durch die ²⁹Si,¹⁹F-Kopplung in ein Dublett aufgespalten (¹J(²⁹Si,¹⁹F) = 250.0 Hz).

Die Verbindungen **58** und **59** haben beide ein SiN_4O_2 -Gerüst und tragen bidentate dianionische O, O-Liganden, jedoch weichen die jeweiligen ²⁹Si-chemischen Verschiebungen stark voneinander ab (Festkörper: $|\Delta\delta^{29}Si_{max}| = 26.4$ ppm; Lösung: $|\Delta\delta^{29}Si_{max}| = 22.9$ ppm; Tabelle 4.5). Eine mögliche Erklärung für diese großen Differenzen liefert die Betrachtung der unterschiedlichen O–Si–O-Winkel innerhalb des viergliedrigen SiO₂S-Rings von Verbindung **58** (78.66(11)°; vgl. hierzu Kapitel 5.2.15.1) bzw. des fünfgliedrigen SiO₂S₂-Rings von **59** (90.67(6)°; vgl. hierzu Kapitel 5.2.15.2). So wurde für die ²⁹Si-chemischen Verschiebungen im Festkörper von Zeolithen ein starker und quantifizierbarer Einfluß der Si–O–Si-Winkel gefunden.^[48] Inwiefern diese Beobachtungen auf die hier diskutierten Verbindungen übertragbar sind, bleibt noch zu klären, jedoch weisen die ²⁹Si-chemischen Verschiebungen von **58** und **59** den gleichen Trend auf. Interessanterweise werden für die Silicium(IV)-Komplexe **60** und **61** trotz der sehr großen Unterschiede in den elektronischen und sterischen Eigenschaften jeweils eines der monodentaten Liganden (Carboranyl- *vs.* Cyanomethyl-Ligand) sehr ähnliche ²⁹Si-chemische Verschiebungen (–172.0–(–166.0) ppm) gefunden.

Auffallend ist die im Vergleich zu den anderen hexakoordinierten Silicium(IV)-Komplexen starke Hochfeldverschiebung der ²⁹Si-Resonanzsignale der iodsubstituierten Verbindung **68**. Dies ist jedoch im Einklang mit dem Trend der ²⁹Si-chemischen Verschiebungen der analog aufgebauten literaturbekannten Verbindungen **8**, **40** und **72** (Tabelle 4.6).^[10m] So zeigen diese

Verbindungen eine mit steigender Ordnungszahl der Halogeno-Liganden ansteigende Hochfeldverschiebung des ²⁹Si-Resonanzsignals.

Tabelle 4.6: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von 8, 40, 69 und 72 im Festkörper (T = 22 °C) und in Lösung^[a] (T = 23 °C).

Verbindung	δ^{29} Si (Festkörper)	δ^{29} Si (Lösung)	Gerüsttyp
$8^{[b]}$	-170.4	-171.0	SiN_4Cl_2
$40^{[b]}$	-206	-199.4	SiN_4Br_2
69	-255.6	-261.5	SiN_4I_2
$72^{[b]}$	$-161^{[c]}$	$-161.6^{[d]}$	SiN_4F_2

[a] 8, 72: CD₂Cl₂; 40, 69: C₆D₆. [b] Die Daten wurden aus Lit. [10m] entnommen. [c] Komplexes Aufspaltungsmuster durch die starken dipolaren Kopplungen innerhalb der ²⁹Si¹⁹F₂-Einheit. [d] Das Signal ist durch die ²⁹Si,¹⁹F-Kopplung in ein Triplett aufgespalten (${}^{1}J({}^{29}Si, {}^{19}F) = 218$ Hz.

4.6.3 Untersuchungen zur Dynamik der Verbindungen 38, 53, 58–61, 68 und 70 in Lösung

Wie schon für die pentakoordinierten Silicium(IV)-Komplexe mit Amidinato-Liganden beobachtet, zeigen auch die neutralen hexakoordinierten Silicium(IV)-Komplexe **38**, **53**, **58– 61**, **68** und **70** dynamisches Verhalten in Lösung bei 23 °C. So findet man für die Verbindungen **38**, **61** und **70** in den jeweiligen ¹H-NMR-Spektren jeweils zwei Dubletts für die Protonen der Methyl-Gruppen und ein breites Septett für die CH₃C*H*CH₃-Protonen der Amidinato-Liganden. Dem entsprechend werden in den jeweiligen ¹³C-NMR-Spektren dieser Verbindungen zwei Signale (im Falle von Verbindung **61** ein breites Signal) für die Kohlenstoff-Atome der Methyl-Gruppen und ein Signal für die CH₃C*H*CH₃-Kohlenstoff-Atome beobachtet. Die ¹H-NMR-Spektren der Verbindungen **53**, **60**, **68** und **69** zeigen jeweils ein Dublett für die Methyl-Protonen und ein breites Septett für die CH₃C*H*CH₃-Kohlenstoff-Protonen. Im Falle von Verbindung **60** sind auch die Signale der an den Bor-Atomen bzw. dem Kohlenstoff-Atom des Carboranyl-Liganden gebunden Wasserstoff-Atome stark verbreitert, was nicht nur durch die entsprechenden ${}^{1}H, {}^{11}B$ -Kopplungen verursacht wird (nachgewiesen durch die Aufnahme ${}^{11}B$ -entkoppelter ${}^{1}H$ -NMR-Spektren), sondern auch durch die Rotation des Carboranyl-Liganden um die Si–C-Bindungsachse. Die ${}^{13}C$ -NMR-Spektren dieser Verbindungen zeigen jeweils ein Signal für die Methyl- und CH₃*C*HCH₃-Kohlenstoff-Atome. Bei den Verbindungen **53** und **60** sind diese Signale zusätzlich verbreitert. Diese Beobachtungen können analog zu den in dieser Arbeit vorgestellten pentakoordinierten Silicium(IV)-Komplexen durch einen auf der NMR-Zeitskala schnellen Austausch der Stickstoff-Bindungspositionen am Si-Koordinationszentrum erklärt werden. Bei Verbindung der ${}^{1}H$ -, ${}^{13}C$ - und ${}^{29}Si$ -NMR-Resonanzsignale auch noch die Rotation des Carboranyl-Liganden um die Si–C-Bindungsachse eine Rolle spielen.

Das ¹H-NMR-Spektrum von **59** (Mischung des *cis*- und *trans*-Isomers) bei 23 °C zeigt hingegen eine Vielzahl von (teils) verbreiterten Signalen für die Methyl- und CH_3CHCH_3 -Protonen. Bei tiefer Temperatur (-60 °C) hingegen sind die Signale gut aufgelöst (Abb. 4.15).

Abb. 4.15: Ausschnitte aus den VT-¹H-NMR-Spektren von **59** (CD₂Cl₂; 99.4 MHz). Gezeigt sind die Signale der A) CH₃C*H*CH₃- und B) der Methyl-Protonen der Amidinato-Liganden bei 20 und -60 °C. Die Veränderungen der ¹H-NMR-Spektren beim Abkühlen sind vollständig reversibel.

Abb. 4.16: ²⁹Si-NMR-Spektrum von Verbindung **59** bei –60 °C (CD₂Cl₂; 99.4 MHz).

Bemerkenswert ist weiterhin, dass für das *trans*-Isomer von **59** in Lösung bei -60 °C (Abb. 4.16) zwei Signale gefunden werden, während bei 23 °C lediglich ein Signal beobachtet wird. Dies kann durch die Existenz zweier Diastereomere von *trans*-**59** bei tiefer Temperatur erklärt werden (Abb. 4.17). Interessanterweise wurden jedoch sowohl in den ²⁹Si-VACP/MAS-NMR-Spektren als auch durch die Kristallstrukturanalyse von **59** keine Hinweise auf das Vorhandensein eines zweiten Diastereomers gefunden. Des Weiteren findet man in den Festkörper- und den Lösungs-NMR-Spektren unterschiedliche *trans/cis*-Verhältnisse (1:10.2 (nach Kristallisation bei 20 °C) *vs.* 1:3.17). Die Dynamik in **59** ist also nicht nur auf einen Austausch der Si–N-Bindungspositionen zurückzuführen; es muss ferner ein Prozess für die Umwandlung der *cis*- und *trans*-Isomere ineinander existieren.

Abb. 4.17: Schematische Darstellung der beiden Diastereomere von trans-59.

5 Kristallstrukturanalysen^[a]

5.1 Allgemeine Bemerkungen

Die Verbindungen 1-3, 10, 13-15, 18, 19, 26-46, 48, 52, 53, 54'. C₆H₅CH₃, 55-61, 66.8, **68**, **69** und **70** \cdot 0.5*n*-C₆H₁₄ wurden durch Einkristall-Röntgenstrukturanalysen strukturell charakterisiert. Die Verbindungen 10, 42, 57 und 69 wurden als die Solvate 10.0.5Et₂O, 43. C₆H₅CH₃, 57.0.7C₆H₅CH₃ bzw. 69. CH₃CN untersucht. Geeignete Einkristalle wurden in inertem Öl (Perfluorpolyalkylether, ABCR) auf einen Glasfaden montiert und in den kalten Stickstoff-Strom des Diffraktometers gebracht. Die Messung erfolgte mit einem Diffraktometer des Typs Stoe-IPDS (1, 2, 10.0.5Et₂O, 18, 19, 27-41, 42.C₆H₅CH₃, 43-46, 48, 52, 55, 61, 66.8 und 69. CH₃CN; graphitmonochromatisierte Mo- K_{α} -Strahlung, λ = 0.71073 Å), des Typs Bruker SMART APEX I (**3** und **26**; graphitmonochromatisierte Mo- K_{α} -Strahlung, $\lambda = 0.71073$ Å), des Typs Bruker Nonius KAPPA APEX II (13–15, 53, 56, 57, 59, 66; Montel-Spiegel, Mo- K_{α} -Strahlung, $\lambda = 0.71073$ Å) oder des Typs Bruker D8 QUEST PHOTON 100 CMOS (58 und 60; graphitmonochromatisierte Mo- K_{α} -Strahlung, $\lambda=0.71073$ Å). Alle Strukturen wurden mit direkten Methoden gelöst (Programm SHELXS-97^[49]). Die Verfeinerung erfolgte mit dem Programm SHELXL-97.^[49] SHELXLE wurde als GUI bei der Verfeinerung der Strukturen verwendet.^[50] Alle Nichtwasserstoff-Atome wurden anisotrop verfeinert. Für an Kohlenstoff gebundene Wasserstoff-Atome wurde ein Reitermodell verwendet. In den Legenden der jeweiligen Strukturabbildungen sind ausgewählte Bindungslängen und -winkel angegeben. Die Abbildungen der Molekülstrukturen mit Angabe der vollständigen Nummerierungsschemata, die Tabellen mit den kristallographischen Daten und den Angaben zu den Kristallstrukturanalysen, die Tabellen der Atomkoordinaten und der äquivalenten isotropen Auslenkungsparameter der Nichtwasserstoff-Atome sowie die Tabellen mit den Bindungslängen und -winkeln finden sich im Anhang A. Die zur Diskussion der Bindungslängen herangezogenen Kovalenzradien wurden aus Lit. [51] entnommen.

Pentakoordinierte Verbindungen können als Koordinationspolyeder eine trigonale Bipyramide oder eine quadratische Pyramide ausbilden. Häufig finden sich jedoch auch Geometrien, die dazwischen auf der Berry-Pseudorotations-Koordinate liegen. Diese Geometrien lassen sich durch die sogenannte Berry-Verzerrung beschreiben. Dabei repräsentiert ein Verzerrungsgrad

^[a] Alle in diesem Kapitel aufgeführten Kristallstrukturanalysen wurden von Herrn Dr. Christian Burschka bzw. Herrn Dipl.-Chem. Johannes A. Baus, Institut für Anorganische Chemie der Universität Würzburg, durchgeführt.

von 0% eine ideale trigonale Bipyramide und ein Verzerrungsgrad von 100% eine ideale quadratische Pyramide. Die Verzerrungsgrade wurden mit Hilfe des Programms Platon^[52] ermittelt.

5.2 Kristallstrukturen

5.2.1 Kristallstrukturen der neutralen pentakoordinierten Silicium(IV)-Komplexe mit einem bidentaten Amidinato-Liganden und drei monodentaten Halogeno-Liganden

5.2.1.1 Kristallstruktur von 1^[b]

Verbindung 1 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (n-Hexan) auf 20 °C. Die Molekülstruktur von 1 im Kristall ist in Abb. 5.1 gezeigt. Die Struktur von 1 weist eine temperaturabhängige nicht kommensurable Überstruktur auf, welche nicht modelliert werden konnte. Die angegebenen Werte sind daher in Bezug auf ihre Genauigkeit kritisch zu betrachten und sollen an dieser Stelle nicht explizit besprochen werden. Die Identität von 1 konnte durch die durchgeführte Kristallstrukturanalyse jedoch eindeutig bestätigt werden und eine qualitative Diskussion der Struktur von 1 im Kristall erscheint aus Vergleichsgründen sinnvoll.

Das Si-Koordinationspolyeder von 1 (SiN₂Cl₃-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide. Die Stickstoff-Atome des bidentaten Amidinato-Liganden besetzen eine axiale und eine äquatoriale Position und die drei Chloro-Liganden befinden sich in einer axialen und zwei äquatorialen Positionen. Der axiale Si–N-Bindungsabstand ist deutlich länger als der äquatoriale. Dies spiegelt sich auch in den N–C-Bindungslängen wider; der N_{ax}–C-Bindungsabstand ist länger als der N_{äq}–C-Bindungsabstand, was für eine eingeschränkte Elektronendelokalisation innerhalb des N–C–N-Fragmentes spricht. Der axiale Si–Cl-Bindungsabstand ist erwartungsgemäß ebenfalls deutlich länger als die beiden äquatorialen. Der axiale Cl–Si–N-Winkel weicht stark von dem idealen 180°-Winkel ab. Die starke Verzerrung des Koordinationspolyeders wird durch die große Vierringspannung innerhalb des SiN₂C-Ringes hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet.

^[b] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 17.583(4) Å; b = 11.2310(18) Å; c = 17.851(5) Å; $a = 90^{\circ}$; $\beta = 106.23(3)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.1146$.

Abb. 5.1: Molekülstruktur eines der beiden kristallographisch unabhängigen Moleküle von 1 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-Cl1 212.9(3), Si-Cl2 207.4(3), Si-Cl3 206.0(3), Si-N1 178.9(5), Si-N2 193.0(5), N1-Cl 135.3(7), N2-Cl 129.1(7); Cl1-Si-Cl2 91.59(14), Cl1-Si-Cl3 97.95(14), Cl2-Si-Cl3 113.47(11), Cl1-Si-N1 96.43(19), Cl1-Si-N2 165.19(17), Cl2-Si-N1 123.4(2), Cl2-Si-N2 93.10(17), Cl3-Si-N1 120.6(2), Cl3-Si-N2 93.04(17), N1-Si-N2 69.3(2), N1-Cl-N2 106.5(5).

5.2.1.2 Kristallstruktur von 2^[c]

Verbindung **2** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (n-Hexan) auf 20 °C. Die Molekülstruktur von **2** im Kristall ist in Abb. 5.2 gezeigt.

Das Si-Koordinationspolyeder von 2 (SiN_2F_3 -Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 357.55°). Die Stickstoff-Atome des bidentaten Amidinato-Liganden besetzen eine axiale und eine äquatoriale Position und die drei Fluoro-Liganden befinden sich in einer axialen und zwei äquatorialen Positionen. Der axiale Si–N-Bindungsabstand (194.46(16) pm) ist um 14.67 pm länger als der äquatoriale (179.79(17) pm) und auch deutlich länger als die Summe der jeweiligen Kovalenzradien (187 pm). Dies spiegelt sich auch in den N–C-Bindungslängen wider; der N_{äq}–C-Bindungsabstand ist 5.9 pm länger als der N_{ax}–C-Bindungsabstand, was für eine eigeschränkte Elektronendelokalisation innerhalb des N–C–N-Fragmentes spricht.

^[c] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe *Pbca*; a = 9.2942(8) Å; b = 11.4192(10) Å; c = 28.368(4) Å; $a = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0489$.

Abb. 5.2: Molekülstruktur von **2** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-F1 162.97(14), Si-F2 159.49(15), Si-F3 158.40(16), Si-N1 179.79(17), Si-N2 194.46(16), N1-C1 136.4(2), N2-C1 130.5(2); F1-Si-F2 94.18(8), F1-Si-F3 96.13(9), F1-Si-N1 95.31(7), F1-Si-N2 164.28(7), F2-Si-F3 111.56(9), F2-Si-N1 126.92(10), F2-Si-N2 92.58(8), F3-Si-N1 119.07(9), F3-Si-N2 94.55(8), N1-Si-N2 69.36(7), N1-C1-N2 106.06(16).

Der axiale Si-F-Bindungsabstand ist mit 162.97(14) pm ebenfalls deutlich länger als die beiden äquatorialen (159.49(15) und 158.40(16) pm) und alle drei Si-F-Bindungslängen sind deutlich kürzer als die Summe der jeweiligen Kovalenzradien (181 pm). Die starke Verzerrung des Koordinationspolyeders (Berry-Verzerrung: 29.3%) wird durch die starke Vierringspannung innerhalb des SiN₂C-Ringes hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N-Si-N-Winkel: 69.36(7)°). Dies äußert sich auch in der Abweichung von dem idealen 180° -Winkel von $15.72(7)^{\circ}$. Die strukturellen Parameter von $\mathbf{2}$ ähneln denen eines analogen literaturbekannten Mono(amidinato)-silicium(IV)-Komplexes, welcher anstatt der Isopropyl-Gruppen von 2 t-Butyl-Einheiten besitzt.^[9n] So stimmen die analogen Si-F-Bindungslängen mit einer maximalen Differenz von nur 0.83 pm sehr gut überein.

5.2.1.3 Kristallstruktur von 3^[d]

Verbindung **3** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (n-Hexan) auf 20 °C. Die Molekülstruktur von **3** im Kristall ist in Abb. 5.3 gezeigt.

^[d] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 8.940(4) Å; b = 8.971(3) Å; c = 12.016(7) Å; $a = 100.967(13)^\circ$; $\beta = 105.346(18)^\circ$; $\gamma = 102.272(4)^\circ$; $R1 [I > 2\sigma(I)] = 0.0263$.

Abb. 5.3: Molekülstruktur von **3** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-Br1 232.60(11), Si-Br2 223.52(12), Si-Br3 223.54(13), Si-N1 178.8(2), Si-N2 190.1(2), N1-C1 136.1(3), N2-C1 130.0(3); Br1-Si-Br2 95.02(3), Br1-Si-Br3 94.91(4), Br1-Si-N1 96.04(8), Br1-Si-N2 166.08(7), Br2-Si-Br3 112.98(4), Br2-Si-N1 122.10(8), Br2-Si-N2 92.62(7), Br3-Si-N1 122.33(9), Br3-Si-N2 92.79(7), N1-Si-N2 70.04(9), N1-C1-N2 105.6(2).

Das Si-Koordinationspolyeder von **3** (SiN_2Br_3 -Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 357.41°). Die Stickstoff-Atome des bidentaten Amidinato-Liganden besetzen eine axiale und eine äquatoriale Position und die drei Bromo-Liganden befinden sich in einer axialen und zwei äquatorialen Positionen. Der axiale Si–N-Bindungsabstand (190.1(2) pm) ist um 11.3 pm länger als der äquatoriale (178.8(2) pm) und auch deutlich länger als die Summe der jeweiligen Kovalenzradien (187 pm). Dies spiegelt sich auch in den N–C-Bindungslängen wider; der N_{äq}–C-Bindungsabstand ist 6.1 pm länger als der N_{ax}–C-Bindungsabstand, was für eine eigeschränkte Elektronendelokalisation innerhalb des N–C–N-Fragments spricht. Der axiale Si–Br-Bindungsabstand ist mit 232.60(11) pm ebenfalls deutlich länger als die beiden äquatorialen (223.52(12) und 223.54(13) pm). Somit liegen die Si–Br-Bindungslängen im Bereich der Summe der jeweiligen Kovalenzradien (231 pm) und sind kürzer als die analogen Si–Br-Bindungen in IiPr–SiBr₄ (Si–Br_{ax}: 241.06(7) und 237.65(7) pm; Si–Br_{äq}: 223.60(4) pm).^[9d]

Die Verzerrung des Koordinationspolyeders (Berry-Verzerrung: 20.4%) wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN_2C -Ringes hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N-Si-N-Winkel:

 $70.04(9)^{\circ}$). Dies äußert sich auch in der Abweichung von dem idealen 180° -Winkel von $13.92(7)^{\circ}$. Das Si-Koordinationspolyeder von **3** ist jedoch weniger stark verzerrt als das von Verbindung **2**.

5.2.2 Kristallstrukturen der neutralen pentakoordinierten Silicium(IV)-Komplexe mit einem bidentaten Amidinato-, einem monodentaten 2,4,6-Trimethoxyphenyl- und zwei monodentaten (Pseudo)halogeno bzw. einem bidentaten Benzol-1,2-diolato-Liganden

5.2.2.1 Kristallstruktur von $10.0.5 \text{Et}_2 \text{O}^{[e]}$

Verbindung **10** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Diethylether) auf -20 °C als das Hemidiethylether-Solvat **10**·0.5Et₂O. Die Molekülstruktur von **10** im Kristall von **10**·0.5Et₂O ist in Abb. 5.4 gezeigt.

Abb. 5.4: Molekülstruktur von **10** im Kristall von **10**·Et₂O mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-Cl1 208.79(12), Si-Cl2 219.28(10), Si-N1 179.94(18), Si-N2 197.74(19), Si-Cl4 188.7(2), N1-Cl 135.9(3), N2-Cl 130.3(3); Cl1-Si-Cl2 95.20(4), Cl1-Si-N1 111.48(7), Cl1-Si-N2 91.95(6), Cl1-Si-Cl4 119.56(7), Cl2-Si-N1 95.82(7), Cl2-Si-N2 164.72(6), Cl2-Si-Cl4 94.21(7), N1-Si-N2 68.97(8), N1-Si-Cl4 126.63(9), N2-Si-Cl4 93.97(9), N1-Cl-N2 107.24(17).

Das Si-Koordinationspolyeder von **10** (SiN_2CCl_2 -Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 357.67°). Die Verzerrung wird maßgeblich durch den sehr kleinen N–Si–N-Winkel (68.97(8)°) innerhalb des

^[e] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 10.638(2) Å; b = 11.172(3) Å; c = 12.803(3) Å; $a = 102.02(3)^\circ$; $\beta = 101.21(3)^\circ$; $\gamma = 109.71(3)^\circ$; R1 $[I > 2\sigma(I)] = 0.0428$.

viergliedrigen SiN₂C-Rings hervorgerufen, welcher der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet. Je eines der beiden Chlor- bzw. Stickstoff-Atome besetzt eine axiale bzw. äquatoriale Positition und das Kohlenstoff-Atom des TMOP-Liganden befindet sich in einer äquatorialen Stellung. Wie schon bei den anderen bisher diskutierten trigonal-bipyramidal aufgebauten Verbindungen ist die axiale Si–N-Bindung (197.74(19) pm) deutlich länger als die äquatoriale (179.94(18) pm); gleiches gilt für die Si-Cl-219.28(10) bzw. 208.79(12)jeweiligen Bindungsabstände von pm(Summe der Kovalenzradien: 216 pm). Der Si-C-Bindungsabstand beträgt 188.7(2) pm und liegt somit im erwarteten Bereich (Summe der jeweiligen Kovalenzradien: 184 pm). Auch in diesem Fall sprechen die unterschiedlich langen N-C-Bindungen (135.9(3) und 130.3(3) pm) für eine eingeschränkte Delokalisation der Elektronen innerhalb des N-C-N-Fragments. Die Berry-Verzerrung beträgt 23.4% und der axiale Cl-Si-N-Winkel weicht um 15.28(6)° von dem idealen 180°-Winkel ab.

5.2.2.2 Kristallstruktur von 13^[f]

Verbindung **13** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstruktur von **13** im Kristall ist in Abb. 5.5 gezeigt.

Das Si-Koordinationspolyeder von **13** (SiN_4 C-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 355.84°). Die Verzerrung wird auch hier maßgeblich durch den sehr kleinen N–Si–N-Winkel (67.75(4)°) innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet. Verbindung **13** trägt anstelle der Halogeno-Liganden von **10** zwei Cyanato-*N*-Liganden. Je eines der Stickstoff-Atome des Amidinato- bzw. der Cyanato-*N*-Liganden besetzt eine axiale bzw. äquatoriale Position und das Kohlenstoff-Atom des TMOP-Liganden befindet sich in einer äquatorialen Stellung. Wie schon bei den anderen bisher diskutierten trigonal-bipyramidal aufgebauten Verbindungen ist die axiale Si–N-Bindung zu dem Amidinato-Liganden (204.36(1) pm) deutlich länger als die äquatoriale (177.73(10) pm); gleiches gilt für die Si–N-Bindungsabstände zu den Cyanato-*N*-Liganden von 180.35(11) bzw. 174.46(10) pm, wenngleich hier der Unterschied deutlich geringer ausfällt als bei den Si–N-Bindungen zu dem Amidinato-Liganden. Der Si–C-Bindungsabstand beträgt 187.00(12) pm und liegt somit im erwarteten Bereich (Summe der jeweiligen

^[f] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/n$; a = 8.5602(3) Å; b = 24.6577(10) Å; c = 12.1990(5) Å; $a = 90^{\circ}$; $\beta = 106.512(2)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0303$.

Kovalenzradien: 184 pm). Der große Unterschied in den Si–N-Bindungen zu dem Amidinato-Liganden spiegelt sich auch in den N–C-Bindungslängen wider. Diese betragen 135.66(15) (N_{aq}) und 129.30(15) (N_{ax}) , was für eine verhältnismäßig stark eingeschränkte Delokalisation der Elektronen innerhalb des N–C–N-Fragments spricht. Die Berry-Verzerrung ist mit 20.4% jedoch verhältnismäßig gering und die Abweichung von dem idealen 180°-Winkel beträgt 15.66(5)°.

Abb. 5.5: Molekülstruktur von **13** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–N1 177.73(10), Si–N2 204.36(10), Si–N3 174.46(10), Si–N4 180.35(11), Si–C14 187.00(12), O4–C23 117.47(15), O5–C24 118.33(15), N1–C1 135.66(15), N2–C1 129.30(15), N3–C23 118.64(16), N4–C24 118.29(16); N1–Si–N2 67.75(4), N1–Si–N3 113.54(5), N1–Si–N4 96.66(5), N1–Si–C14 123.97(5), N2–Si–N3 89.45(5), N2–Si–N4 164.34(5), N2–Si–C14 92.61(5), N3–Si–C14 118.33(5), N4–Si–C14 97.78(5), Si–N3–C23 141.40(10), Si–N4–C24 145.54(10), O4–C23–N3 175.89(14), O5–C24–N4 176.47(14), N1–C1–N2 107.81(10).

Die Cyanato-*N*-Liganden sind mit Si–N–C-Winkeln von 141.40(10) bzw. $145.54(10)^{\circ}$ gewinkelt an das Si-Koordinationszentrum gebunden und die O–C–N-Winkel (175.89(14) und $176.47(14)^{\circ}$) weichen nur geringfügig von dem idealen 180° -Winkel ab. Die internen N–C- und C–O-Bindungslängen der Cyanato-*N*-Liganden betragen 118.64(16) und 118.29(16) pm bzw. 117.47(15) und 118.33(15) pm und liegen somit im erwarteten Bereich. Anstelle der Koordination über das Stickstoff-Atom an das Si-Koordinationszentrum wäre für die Cyanato-Liganden prinzipiell auch eine Koordination über das Sauerstoff-Atom denkbar. Hierfür wurden jedoch keine kristallographischen Hinweise gefunden.

5.2.2.3 Kristallstruktur von 14^[g]

Verbindung 14 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstruktur von 14 im Kristall ist in Abb. 5.6 gezeigt.

Abb. 5.6: Molekülstruktur von 14 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–N1 178.15(11), Si–N2 196.47(12), Si–N3 174.99(13), Si–N4 182.26(12), Si–C14 187.03(14), S1–C23 158.65(16), S2–C24 160.33(14), N1–C1 135.45(17), N2–C1 129.82(17), N3–C23 116.8(2), N4–C24 116.63(19); N1–Si–N2 69.24(5), N1–Si–N3 113.05(6), N1–Si–N4 95.45(5), N1–Si–C14 126.44(6), N2–Si–N3 90.58(5), N2–Si–N4 164.30(5), N2–Si–C14 95.26(5), N3–Si–N4 92.45(6), N3–Si–C14 118.21(6), N4–Si–C14 96.86(6), Si–N3–C23 162.33(12), Si–N4–C24 178.46(12), S1–C23–N3 178.94(14), S2–C24–N4 178.67(13), N1–C1–N2 107.07(11).

Das Si-Koordinationspolyeder von 14 (SiN₄C-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 357.70°). Die Verzerrung wird auch hier maßgeblich durch den sehr kleinen N–Si–N-Winkel ($69.24(5)^{\circ}$) innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen. Verbindung 14 trägt anstelle der Halogeno-Liganden von 10 zwei Thiocyanato-*N*-Liganden. Je eines der Stickstoff-Atome des Amidinato- bzw. der Thiocyanato-*N*-Liganden besetzt eine axiale bzw. äquatoriale Positition und das Kohlenstoff-Atom des TMOP-Liganden befindet sich in einer äquatorialen Stellung. Wie schon bei den anderen bisher gezeigten trigonal-bipyramidal aufgebauten Verbindungen ist die axiale Si–N-Bindung zu dem Amidinato-Liganden (196.47(12) pm) deutlich länger als die äquatoriale (178.15(11) pm); gleiches gilt für die Si–N-Bindungsabstände zu den

^[g] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P\overline{1}$; a = 10.5187(17) Å; b = 11.087(2) Å; c = 12.795(2) Å; $a = 96.347(9)^{\circ}$; $\beta = 113.368(8)^{\circ}$; $\gamma = 94.678(8)^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0348$.

Thiocyanato-N-Liganden von 182.26(12) bzw. 174.99(13) pm, wenngleich, wie schon bei 13, der Unterschied hier deutlich geringer ausfällt als bei den Si-N-Bindungen zu dem Amidinato-Liganden. Der Si-C-Bindungsabstand beträgt 187.03(14) pm und liegt somit im erwarteten Bereich (Summe der jeweiligen Kovalenzradien: 184 pm). Der große Unterschied den Si-N-Bindungen zu dem Amidinato-Liganden spiegelt sich auch in den in N-C-Bindungslängen innerhalb des N-C-N-Fragments wider. Diese betragen 135.45(17) (N_{äq}) und 129.82(17)° (N_{ax}), was für eine vergleichsweise stark eingeschränkte Delokalisation der Elektronen innerhalb des N–C–N-Fragments spricht. Die Berry-Verzerrung ist mit 20.1%jedoch auch hier verhältnismäßig gering und der axiale N-Si-N-Winkel weicht um 15.70(5)° von dem idealen 180°-Winkel ab. Die Thiocyanato-N-Liganden sind mit Si-N-C-Winkeln von 162.33(12) bzw. 178.46(12)° leicht gewinkelt an das Si-Koordinationszentrum gebunden und die S-C-N-Winkel (178.94(14) und 178.67(13)°) weichen nur geringfügig von dem idealen 180°-Winkel ab. Die internen N-C- und C-S-Bindungslängen der Thiocyanato-N-Liganden betragen 116.8(2) und 116.63(19) pm bzw. 158.65(16) und 160.33(14) pm und liegen somit im erwarteten Bereich. Anstelle der Koordination über das Stickstoff-Atom an das Si-Koordinationszentrum wäre für Thiocyanato-Liganden prinzipiell auch die eine Koordination Schwefel-Atom über das denkbar. Hierfür wurden jedoch keine kristallographischen Hinweise gefunden.

5.2.2.4 Kristallstruktur von 15^[h]

Verbindung 15 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstruktur von 15 im Kristall ist in Abb. 5.7 gezeigt.

Das Si-Koordinationspolyeder von **15** (SiN_2CO_2 -Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 357.52°). Je eines der beiden Stickstoff- bzw. Sauerstoff-Atome besetzt eine axiale bzw. äquatoriale Position und das Kohlenstoff-Atom des TMOP-Liganden befindet sich in einer äquatorialen Stellung. Wie schon bei den anderen bisher diskutierten trigonal-bipyramidal aufgebauten Verbindungen ist die axiale Si–N-Bindung (193.56(11) pm) deutlich länger als die äquatoriale (182.14(10) pm). Verbindung **15** trägt anstatt der beiden monodentaten (Pseudo)halogeno-Liganden von **10**, **13** und **14** einen bidentaten O, O-Liganden.

^[h] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/c$; a = 12.0728(11) Å; b = 15.6724(13) Å; c = 13.5830(12) Å; $a = 90^{\circ}$; $\beta = 94.889(5)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0301$.

Abb. 5.7: Molekülstruktur von **15** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–N1 182.14(10), Si–N2 193.56(11), Si–O4 170.28(9), Si–O5 175.68(9), Si–C14 188.89(12), N1–C1 135.04(16), N2–C1 130.97(16); N1–Si–N2 68.98(5), N1–Si–O4 126.91(5), N1–Si–O5 94.74(4), N1–Si–C14 115.30(5), N2–Si–O4 87.71(4), N2–Si–O5 157.55(4), N2–Si–C14 99.84(5), O4–Si–O5 90.40(4), O4–Si–C14 115.31(5), O5–Si–C14 101.17(5), N1–C1–N2 106.36(10).

Die äquatoriale Si–O-Bindung ist deutlich kürzer als die axiale (170.28(9) vs. 175.68(9) pm), beide Si-O-Bindungen sind jedoch deutlich kürzer als die Summe der jeweiligen Kovalenzradien (183 pm). Der O-Si-O-Bindungswinkel beträgt 90.40(4)° und entspricht nahezu den idealen 90°. Auch in diesem Fall sprechen die unterschiedlich langen N-C-Bindungen (135.04(16) und 130.97(16) pm) für das Vorhandensein einer eingeschränkten Elektronendelokalisation innerhalb des N–C–N-Fragments. Die Verzerrung des Si-Koordinationspolyeders (Berry-Verzerrung: 42.6%) ist deutlich stärker ausgeprägt als bei den zuvor gezeigten pentakoordinierten Silicium(IV)-Komplexen mit einem TMOP-Liganden, was sich auch in der großen Abweichung der axialen O-Si-N-Bindung von dem idealen 180°-Winkel von $22.45(4)^{\circ}$ zeigt.

5.2.3 Kristallstrukturen der neutralen pentakoordinierten Silicium(IV)-Komplexe mit einem bidentaten Amidinato-, einem monodentaten Pentafluorphenyl- und zwei monodentaten Halogeno-Liganden

5.2.3.1 Kristallstruktur von 18^[i]

Verbindung **18** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstruktur von **18** im Kristall ist in Abb. 5.8 gezeigt.

Abb. 5.8: Molekülstruktur von **18** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-Cl1 207.83(8), Si-Cl2 215.44(6), Si-N1 178.58(14), Si-N2 196.98(13), Si-Cl4 189.74(15), N1-Cl 136.2(2), N2-Cl 130.2(2); Cl1-Si-Cl2 94.19(3), Cl1-Si-N1 123.38(5), Cl1-Si-N2 91.91(4), Cl1-Si-Cl4 116.00(5), Cl2-Si-N1 96.92(5), Cl2-Si-N2 166.17(4), Cl2-Si-Cl4 94.37(5), N1-Si-N2 69.41(6), N1-Si-Cl4 118.19(7), N2-Si-Cl4 94.09(6), N1-Cl-N2 107.14(13).

Das Si-Koordinationspolyeder von **18** (SiN_2CCl_2 -Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 357.57°). Je eines der beiden Stickstoff- bzw. Chlor-Atome besetzt eine axiale bzw. äquatoriale Positition und das Kohlenstoff-Atom des Pentafluorphenyl-Liganden befindet sich in einer äquatorialen Stellung. Wie schon bei den anderen bisher diskutierten trigonal-bipyramidal aufgebauten Verbindungen mit einem bidentaten Amidinato-Liganden ist die axiale Si–N-Bindung (196.98(13) pm) deutlich länger als die äquatoriale (178.58(14) pm); gleiches gilt für die Si–Cl-Bindungen (215.44(6) und 207.83(8) pm). Letztere sind etwas kürzer als die Summe der jeweiligen Kovalenzradien (216 pm). Auch in diesem Fall sprechen die unterschiedlich langen N–C-Bindungen (136.2(2) und 130.2(2) pm) für das Vorhandensein einer eingeschränkten

^[i] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$; a = 8.0322(14) Å; b = 20.111(4) Å; c = 13.702(3) Å; $a = 90^{\circ}$; $\beta = 106.42(2)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0307$.

Elektronendelokalisation innerhalb des N–C–N-Fragments des Amidinato-Liganden. Die Berry-Verzerrung beträgt 21.1% und der axiale Cl–Si–N-Winkel weicht von dem idealen 180°-Winkel um 13.83(4)° ab. Die Si–C-Bindungslänge liegt mit 189.74(15) pm in einem Bereich, wie er für analoge Bindungen in anderen pentakoordinierten Silicium(IV)-Komplexen mit Pentafluorphenyl-Liganden gefunden wurde (185.4(4)–199.6(2) pm).^[53]

5.2.3.2 Kristallstruktur von 19^[j]

Verbindung **19** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstruktur von **19** im Kristall ist in Abb. 5.9 gezeigt.

Abb. 5.9: Molekülstruktur von **19** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-Br1 222.97(9), Si-Br2 234.95(8), Si-N1 178.0(2), Si-N2 195.5(3), Si-C14 189.5(3), N1-C1 135.9(4), N2-C1 130.3(4); Br1-Si-Br2 95.28(3), Br1-Si-N1 120.12(9), Br1-Si-N2 92.24(8), Br1-Si-C14 115.45(10), Br2-Si-N1 96.14(8), Br2-Si-N2 165.74(8), Br2-Si-C14 93.64(10), N1-Si-N2 69.60(11), N1-Si-C14 122.14(13), N2-Si-C14 94.04(12), N1-C1-N2 106.7(2).

Das Si-Koordinationspolyeder von **19** (SiN_2CBr_2 -Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 357.71°). Je eines der beiden Stickstoff- bzw. Brom-Atome besetzt eine axiale bzw. äquatoriale Positition und das Kohlenstoff-Atom des Pentafluorphenyl-Liganden befindet sich in einer äquatorialen Stellung. Wie schon bei den anderen bisher diskutierten trigonal-bipyramidal aufgebauten Verbindungen mit einem bidentaten Amidinato-Liganden ist die axiale Si–N-Bindung

^[j] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_12_12_1$; a = 11.2670(14) Å; b = 13.6219(15) Å; c = 14.3027(16) Å; $a = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0270$.

(195.5(3) pm) deutlich länger als die äquatoriale (178.0(2) pm); gleiches gilt für die Si-Br-Bindungen (234.95(8) und 222.97(9) pm). Letztere sind, wie schon die Si-Cl-Bindungen von 18, im Bereich der Summe der jeweiligen Kovalenzradien (231 pm). Auch in diesem Fall sprechen die unterschiedlich langen N-C-Bindungen (135.9(4) und 130.3(4) pm) für das Vorhandensein einer eingeschränkten Elektronendelokalisation innerhalb des N-C-N-Fragments des Amidinato-Liganden. Die Berry-Verzerrung beträgt 19.1% und der axiale Br-Si-N-Winkel 180°-Winkel weicht von dem idealen um $14.26(8)^{\circ}$ ab. Die Si-C-Bindungslänge ist mit 189.5(3) pm nahezu identisch mit der von 18 und liegt damit ebenfalls in einem Bereich, wie er für analoge Bindungen in anderen pentakoordinierten Silicium(IV)-Komplexen mit Pentafluorphenyl-Liganden gefunden wurde (185.4(4)–199.6(2) pm).^[53]

5.2.4 Kristallstrukturen der zwitterionischen dinuklearen pentakoordinierten Silicium(IV)-Komplexe mit zwei bidentaten N,N- und zwei monodentaten Chloro-Liganden

5.2.4.1 Kristallstruktur von 26^[k]

Verbindung **26** kristallisierte aus Acetonitril bei 20 °C, indem die Reaktionslösung (siehe Experimenteller Teil) nach der Zugabe des Acetonitrils ungestört aufbewahrt wurde. Die Molekülstruktur von **26** im Kristall ist in Abb. 5.10 gezeigt.

Verbindung 26 zeichnet sich durch Ci-Symmetrie aus und besitzt zwei fünfgliedrige C₃N₂-, sechsgliedrige SiN₂C₂Peinen zentralen viergliedrigen zwei und Si₂N₂-Ring. Die Si-Koordinationspolyeder (SiN_3Cl_2 -Gerüste) entsprechen denen von verzerrten trigonalen Bipyramiden (Summe der äquatorialen Bindungswinkel: 359.97°). Die beiden axialen Positionen werden durch die Amido- und die Imido-Stickstoff-Atome des neu gebildeten N,N-Liganden besetzt, welche die beiden Si-Koordinationszentren verbrücken. Die äquatorialen Positionen besetzen jeweils ein Imido-Stickstoff-Atom und zwei Chloro-Liganden. Die Si-Cl-Bindungslängen betragen 212.27(7) und 212.63(7) pm und sind somit kürzer als die Summe der entsprechenden Kovalenzradien (216 pm). Die Si-N_{Amido}-Bindungslängen betragen 191.38(15) pm und sind somit deutlich länger als die Si-N_{Imido}-Bindungen (172.82(15) und 183.64(15) pm). Die axialen N-Si-N-Winkel betragen $176.91(6)^{\circ}$ und weichen somit nur

^[k] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 7.6200(13) Å; b = 9.1276(15) Å; c = 10.5963(17) Å; $a = 99.728(3)^{\circ}$; $\beta = 103.531(3)^{\circ}$; $\gamma = 113.180(3)^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0346$.

geringfügig von dem idealen 180°-Winkel ab, was sich auch in der geringen Berry-Verzerrung von nur 8.8% widerspiegelt. Der zentrale Si_2N_2 -Vierring ist planar und die internen Si-N-Si-und N-Si-N-Winkel betragen 99.19(7) bzw. 80.81(7)°.

Abb. 5.10: Molekülstruktur von **26** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Aufgrund der hohen Symmetrie wurden die Bindungslängen und -winkel einer Molekülhälfte symmetriegeneriert errechnet.^[54] Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-Cl1 212.27(7), Si-Cl2 212.63(7), Si-N1 191.38(15), Si-N3 172.82(15), Si-N3A 183.64(15), P-C3 177.86(17), P-C8 179.92(18), N1-C3 136.5(2), N3-C8 140.2(2), C8-C9 133.5(2); Si-N3-SiA 99.19(7), Cl1-Si-Cl2 115.77(3), Cl1-Si-N1 88.86(5), Cl1-Si-N3 122.86(6), Cl1-Si-N3A 92.75(5), Cl2-Si-N1 86.51(5), Cl2-Si-N3 121.34(6), Cl2-Si-N3A 95.16(5), N1-Si-N3 96.10(7), N1-Si-N3A 176.91(6), N3-Si-N3A 80.81(7), Si-N1-C3 126.42(11), Si-N3-C8 132.61(12), SiA-N3-C8 128.06(11), P-C3-N1 120.87(13), P-C8-N3 114.30(12), P-C8-C9 117.45(14), N3-C8-C9 128.07(16).

5.2.4.2 Kristallstruktur von 27^[1]

Verbindung **27** kristallisierte aus Propionitril bei 20 °C, indem die Reaktionslösung (siehe Experimenteller Teil) nach der Zugabe des Propionitrils ungestört aufbewahrt wurde. Die Molekülstruktur von **27** im Kristall ist in Abb. 5.11 gezeigt.

Verbindung 27 zeichnet sich durch C_i -Symmetrie aus und besitzt wie auch 26 zwei fünfgliedrige C_3N_2 -, zwei sechsgliedrige SiN₂C₂P- und einen zentralen viergliedrigen Si₂N₂-Ring. Die Si-Koordinationspolyeder (*Si*N₃Cl₂-Gerüste) entsprechen denen von verzerrten trigonalen Bipyramiden (Summe der äquatorialen Bindungswinkel: 359.87°). Im Gegensatz zu Verbindung 26 werden die äquatorialen Positionen der Si-Koordinationspolyeder durch einen Chloro-, einen Amido- und einen verbrückenden Imido-Liganden besetzt; der zweite Chloro-

^[1] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$; a = 7.8083(7) Å; b = 10.5254(13) Å; c = 17.1856(17) Å; $a = 90^{\circ}$; $\beta = 92.302(12)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0373$.

und Imido-Ligand besetzt jeweils eine axiale Position. Somit besitzen die Si-Koordinationspolyeder von **27** eine zu denen von **26** isomere Besetzung. Die Cl_{ax} -Si- N_{ax} -Bindungswinkel weichen mit 172.65(5)° um 7.35(5)° und damit stärker als die axialen N-Si-N-Winkel in Verbindung **26**, von dem idealen 180°-Winkel ab, was sich auch in der stärkeren Berry-Verzerrung zeigt (23.0%). Die Bindungslängen und -winkel der analogen Si-Cl- bzw. Si-N-Bindungen sind denen der Verbindung **26** sehr ähnlich.

Abb. 5.11: Molekülstruktur von **27** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Aufgrund der hohen Symmetrie wurden die Bindungslängen und -winkel einer Molekülhälfte symmetriegeneriert errechnet.^[55] Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-Cl1 212.14(7), Si-Cl2 225.95(6), Si-N1 183.27(17), Si-N3 183.20(14), Si-N3A 172.70(15), P-C3 179.07(18), P-C8 178.98(19), N1-C3 138.5(2), N3-C8 140.9(2), C8-C9 134.6(3); Si-N3-SiA 99.83(7), Cl1-Si-Cl2 88.41(3), Cl1-Si-N1 109.67(6), Cl1-Si-N3 92.95(5), Cl1-Si-N3A 128.13(6), Cl2-Si-N1 91.67(5), Cl2-Si-N3 172.65(5), Cl2-Si-N3A 93.31(5), N1-Si-N3 94.67(7), N1-Si-N3A 122.07(8), N3-Si-N3A 80.17(7), Si-N1-C3 126.36(12), Si-N3-C8 125.03(11), SiA-N3-C8 135.14(12), P-C3-N1 127.89(14), P-C8-N3 109.05(12), P-C8-C9 122.45(14), N3-C8-C9 128.47(17), C8-C9-C10 124.66(17).

5.2.4.3 Kristallstruktur von 28^[m]

Verbindung **28** kristallisierte aus Acetonitril bei 20 °C, indem die Reaktionslösung (siehe Experimenteller Teil) nach der Zugabe des Acetonitrils ungestört aufbewahrt wurde. Die Molekülstruktur von **28** im Kristall ist in Abb. 5.12 gezeigt.

^[m] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe C2/c; a = 16.274(3) Å; b = 12.3909(15) Å; c = 15.676(3) Å; $a = 90^{\circ}$; $\beta = 109.74(2)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0402$.

Abb. 5.12: Molekülstruktur von **28** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Aufgrund der hohen Symmetrie wurden die Bindungslängen und -winkel einer Molekülhälfte symmetriegeneriert errechnet.^[56] Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-Cl1 212.42(7), Si-Cl2 223.16(8), Si-N1 184.09(16), Si-N3 183.41(15), Si-N3A 173.68(16), P-C3 178.89(18), P-C10 180.81(18), N1-Cl 139.0(2), N3-Cl0 140.0(2), Cl0-Cl1 134.3(2); Si-N3-SiA 100.13(7), Cl1-Si-Cl2 88.90(3), Cl1-Si-N1 108.19(5), Cl1-Si-N3 92.59(5), Cl1-Si-N3A 125.73(6), Cl2-Si-N1 90.57(5), Cl2-Si-N3 173.83(6), Cl2-Si-N3A 94.40(5), N1-Si-N3 94.65(7), N1-Si-N3A 125.88(7), N3-Si-N3A 79.87(7), Si-N1-C3 126.51(12), Si-N3-Cl0 125.78(12), SiA-N3-Cl0 133.92(12), P-C3-N1 127.75(13), P-C10-N3 113.10(12), P-C10-C11 119.24(14), N3-C10-C11 127.62(17).

Verbindung 28 zeichnet sich durch C_i -Symmetrie aus und besitzt wie auch 26 und 27 zwei fünfgliedrige C_3N_2 -, zwei sechsgliedrige SiN_2C_2P - und einen zentralen viergliedrigen Si_2N_2 -Ring. Die Si-Koordinationspolyeder (SiN_3Cl_2-Gerüste) entsprechen denen von verzerrten trigonalen Bipyramiden (Summe der äquatorialen Bindungswinkel: 359.80°). Wie auch bei Verbindung 27 und im Gegensatz zu 26, werden die äquatorialen Positionen des Si-Koordinationspolyeders durch einen Chloro-, einen Amido- und einen verbrückenden Imido-Liganden besetzt; der zweite Chloro- bzw. Imido-Ligand besetzt jeweils eine axiale Position. Somit besitzen die Si-Koordinationspolyeder von 28 eine zu denen von 26 isomere Besetzung. Die Cl_{ax} -Si- N_{ax} -Bindungswinkel weichen mit 173.83(6)° um 6.17(6)° von dem idealen 180°-Winkel ab (Berry-Verzerrung: 20.7%) und sind somit denen von 27 ähnlicher als denen von 26. Die Bindungslängen und -winkel der analogen Si-Cl- bzw. Si-N-Bindungen sind denen der Verbindungen 26 und 27 sehr ähnlich.

5.2.4.4 Kristallstruktur von 29^[n]

Verbindung **29** kristallisierte aus Propionitril bei 20 °C, indem die Reaktionslösung (siehe Experimenteller Teil) nach der Zugabe des Propionitrils ungestört aufbewahrt wurde. Die Molekülstruktur von **29** im Kristall ist in Abb. 5.13 gezeigt.

Abb. 5.13: Molekülstruktur von **29** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Aufgrund der hohen Symmetrie wurden die Bindungslängen und -winkel einer Molekülhälfte symmetriegeneriert errechnet.^[57] Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Cl1 214.46(7), Si–Cl2 222.91(6), Si–N1 183.87(15), Si–N3 182.75(15), Si–N3A 173.60(14), P–C3 178.94(18), P–C10 180.40(17), N1–Cl 138.9(2), N3–Cl0 140.0(2), Cl0–Cl1 134.6(2); Si–N3–SiA 99.97(7), Cl1–Si–Cl2 88.99(3), Cl1–Si–N1 108.45(5), Cl1–Si–N3 92.41(5), Cl1–Si–N3A 126.72(5), Cl2–Si–N1 91.38(5), Cl2–Si–N3 173.04(5), Cl2–Si–N3A 93.67(5), N1–Si–N3 94.64(7), N1–Si–N3A 124.63(7), N3–Si–N3A 80.03(7), Si–N1–C3 126.62(11), Si–N3–Cl0 125.35(11), SiA–N3–Cl0 134.64(12), P–C3–N1 128.05(12), P–C10–N3 112.33(12), P–C10–Cl1 119.63(13), N3–Cl0–Cl1 128.01(15), Cl0–Cl1–Cl2 125.25(17).

Verbindung **29** zeichnet sich durch C_i -Symmetrie aus und besitzt wie auch die Komplexe **26–28** zwei fünfgliedrige C_3N_2 -, zwei sechsgliedrige SiN_2C_2P - und einen zentralen viergliedrigen Si_2N_2 -Ring. Die Si-Koordinationspolyeder (SiN_3Cl_2 -Gerüste) entsprechen denen von verzerrten trigonalen Bipyramiden (Summe der äquatorialen Bindungswinkel: 359.80°). Wie auch bei den Verbindungen **27** und **28** und im Gegensatz zu **26**, werden die äquatorialen Positionen des Si-Koordinationspolyeders durch einen Chloro-, einen Amidound einen verbrückenden Imido-Liganden besetzt; der zweite Chloro- bzw. Imido-Ligand

^[n] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 9.6854(12) Å; b = 16.2387(14) Å; c = 10.5653(11) Å; $a = 90^{\circ}$; $\beta = 106.663(13)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0394$.

besetzt jeweils eine axiale Position. Somit besitzen die Si-Koordinationspolyeder von **29** ebenfalls eine zu denen von **26** isomere Besetzung. Die Cl_{ax} -Si- N_{ax} -Bindungswinkel weichen mit 173.04(5)° um 6.96(5)° von dem idealen 180°-Winkel ab (Berry-Verzerrung: 21.7%) und sind somit denen von **27** und **28** ähnlicher als denen von **26**. Die Bindungslängen und winkel der analogen Si-Cl- bzw. Si-N-Bindungen sind denen der Verbindungen **26–28** sehr ähnlich.

5.2.5 Kristallstrukturen der neutralen hexakoordinierten Silicium(IV)-Komplexe mit einem bidentaten Amidinato-, einem bidentaten N,O- und zwei monodentaten (Pseudo)halogeno- bzw. einem bidentaten Benzol-1,2diolato-Liganden

5.2.5.1 Kristallstruktur von 30^[0]

Verbindung **30** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstruktur von **30** im Kristall ist in Abb. 5.14 gezeigt.

Das Si-Koordinationspolyeder (SiN₃OCl₂-Gerüst) von Verbindung **30** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 20.86(6) bzw. 15.61(4)°. Wie schon bei den zuvor diskutierten Verbindungen mit bidentaten Amidinato-Liganden ist die starke Verzerrung des Koordinationspolyeders auch hier auf die hohe Spannung in dem viergliedrigen SiN₂C-Ring zurückzuführen (N–Si–N-Winkel: 69.14(6)°), welchen der Amidinato-Ligand und das Si-Koordinationszentrum ausbilden. Die beiden Si–N-Bindungslängen des Amidinato-Liganden sind ähnlich (190.43(13) bzw. 188.40(13) pm) und deutlich kürzer als der Si–N-Bindungsabstand des bidentaten N, O-Liganden (200.62(13) pm). Die Si–O-Bindungslänge (174.11(12) pm) liegt im erwarteten Bereich und ist deutlich kürzer als die Summe der jeweiligen Kovalenzradien (183 pm). Die Si–Cl-Bindungslängen (217.38(6) und 219.77(5) pm) liegen im erwarteten Bereich und sind etwas länger als die Summe der jeweiligen Kovalenzradien (216 pm). Die Delokalisation im N–C–N-Fragment des Amidinato-Liganden spiegelt sich in den sehr ähnlichen N–C-Bindungsabständen von 132.33(19) und 133.84(19) pm wider.

^[o] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 15.6475(14) Å; b = 9.7128(8) Å; c = 15.3985(16) Å; $a = 90^{\circ}$; $\beta = 107.087(11)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0386$.

Abb. 5.14: Molekülstruktur von **30** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Cl1 217.38(6), Si–Cl2 219.77(5), Si–O 174.11(12), Si–N1 190.43(13), Si–N2 188.40(13), Si–N3 200.62(13), N1–Cl 132.33(19), N2–Cl 133.84(19); Cl1–Si–Cl2 93.52(2), Cl1–Si–O 95.60(5), Cl1–Si–N1 164.39(4), Cl1–Si–N2 95.47(4), Cl1–Si–N3 90.49(4), Cl2–Si–O 89.04(4), Cl2–Si–N1 90.42(4), Cl2–Si–N2 94.76(4), Cl2–Si–N3 173.05(4), O–Si–N1 99.57(6), O–Si–N2 168.06(6), O–Si–N3 84.92(5), N1–Si–N2 69.14(6), N1–Si–N3 87.21(5), N2–Si–N3 90.50(5), N1–Cl–N2 107.72(13).

5.2.5.2 Kristallstruktur von 31^[p]

Verbindung **31** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **31** im Kristall ist in Abb. 5.15 gezeigt.

Das Si-Koordinationspolyeder (SiN_3OBr_2 -Gerüst) von **31** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 20.52(11) bzw. 15.22(8)°. Wie schon für **30** erwähnt, ist die starke Verzerrung des Koordinationspolyeders auf die hohe Spannung in dem viergliedrigen SiN₂C-Ring zurückzuführen (N–Si–N-Winkel: 69.48(11)°), welchen der Amidinato-Ligand und das Si-Koordinationszentrum ausbilden. Die beiden Si–N-Bindungslängen des Amidinato-Liganden sind sehr ähnlich (189.9(3) bzw. 186.1(2) pm) und deutlich kürzer als der Si–N-Bindungsabstand zu dem bidentaten N,O-Liganden (198.7(3) pm). Die Si–O-Bindungslänge beträgt 173.9(2) pm und ist etwas kürzer als die der Verbindung **30**. Die Si–Br-Bindungslängen (237.50(10) und 237.02(12) pm) liegen im erwarteten Bereich und sind etwas länger als die Summe der jeweiligen Kovalenzradien (231 pm). Die Delokalisation im N–C–N-

^[p] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 8.1749(16) Å; b = 9.919(2) Å; c = 14.424(3) Å; $a = 94.61(3)^{\circ}$; $\beta = 102.42(3)^{\circ}$; $\gamma = 95.80(3)^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0381$.

Fragment des Amidinato-Liganden spiegelt sich auch in den sehr ähnlichen N–C-Bindungsabständen von 132.7(4) und 134.2(4) pm wider.

Abb. 5.15: Molekülstruktur von **31** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-Br1 237.50(10), Si-Br2 237.03(12), Si-O 173.9(2), Si-N1 189.9(3), Si-N2 186.1(2), Si-N3 198.7(3), N1-C1 132.7(4), N2-C1 134.2(4); Br1-Si-Br2 92.42(5), Br1-Si-O 95.18(8), Br1-Si-N1 164.78(8), Br1-Si-N2 95.85(8), Br1-Si-N3 87.44(8), Br2-Si-O 90.58(9), Br2-Si-N1 92.59(10), Br2-Si-N2 93.85(9), Br2-Si-N3 175.71(8), O-Si-N1 99.13(11), O-Si-N2 167.93(12), O-Si-N3 85.17(11), N1-Si-N2 69.48(11), N1-Si-N3 88.62(12), N2-Si-N3 90.43(11), N1-C1-N2 106.8(2).

5.2.5.3 Kristallstruktur von 32^[q]

Verbindung **32** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **32** im Kristall ist in Abb. 5.16 gezeigt.

Das Si-Koordinationspolyeder (SiN_3OF_2 -Gerüst) von **32** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 21.03(5) bzw. 18.69(5)°; dies ist die stärkste Verzerrung des Si-Koordinationspolyeders, welche für die Verbindungen **30–37** gefunden wurde. Die starke Verzerrung kann nicht ausschließlich durch die Spannung innerhalb des viergliedrigen SiN₂C-Ringes (N–Si–N-Winkel: 68.97(5)°) erklärt werden. Im Gegensatz zu **30** und **31** weichen die Si–N-Bindungslängen des Amidinato-Liganden (184.88(11) und 193.64(12) pm) stark voneinander ab, was ebenfalls zu der Verzerrung des Si-Koordinationspolyeders beiträgt. Auch die Si–N-

^[q] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 14.657(2) Å; b = 9.7605(8) Å; c = 15.470(2) Å; $a = 90^\circ$; $\beta = 110.049(16)^\circ$; $\gamma = 90^\circ$; R1 $[I > 2\sigma(I)] = 0.0371$.

(208.34(12) pm) und die Si-O-Bindung (178.81(11) pm) zu dem bidentaten *N*, *O*-Liganden sind deutlich länger als die für **30** und **31**. Die N-C-Bindungslängen innerhalb des N-C-N-Fragments des Amidinato-Liganden (135.36(18) und 128.23(16) pm) weichen stark voneinander ab, was auf eine weniger stark ausgeprägte Delokalisierung der Elektronen im Vergleich zu den Verbindungen **30** und **31** schließen lässt.

Abb. 5.16: Molekülstruktur von **32** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-F1 157.08(9), Si-F2 168.80(9), Si-O 178.81(11), Si-N1 184.88(11), Si-N2 193.64(12), Si-N3 208.34(12), N1-C1 135.36(18), N2-C1 128.23(16); F1-Si-F2 93.90(5), F1-Si-O 98.63(5), F1-Si-N1 161.31(5), F1-Si-N2 93.70(5), F1-Si-N3 89.19(5), F2-Si-O 86.86(5), F2-Si-N1 95.72(5), F2-Si-N2 99.07(5), F2-Si-N3 174.25(5), O-Si-N1 97.87(5), O-Si-N2 165.94(5), O-Si-N3 87.88(5), N1-Si-N2 68.97(5), N1-Si-N3 82.71(5), N2-Si-N3 85.56(5), N1-C1-N2 108.86(11).

5.2.5.4 Kristallstruktur von 33^[r]

Verbindung **33** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **33** im Kristall ist in Abb. 5.17 gezeigt.

Das Si-Koordinationspolyeder (SiN_5O -Gerüst) von **33** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 21.02(5) bzw. 17.05(6)°. Auch hier bedingt die Spannung innerhalb des viergliedrigen SiN₂C-Ringes (N–Si–N-Winkel: 68.98(5)°) die starke Verzerrung. Die Si–N-Bindungslänge zu dem bidentaten *N*,*O*-Liganden beträgt 200.37(15) pm und die Si–O-Bindungslänge beträgt 175.63(11) pm. Die N–C-Bindungslängen innerhalb des N–C–N-Fragments des Amidinato-

^[r] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 9.3090(19) Å; b = 9.898(2) Å; c = 14.013(3) Å; $a = 109.12(3)^{\circ}$; $\beta = 94.07(3)^{\circ}$; $\gamma = 98.48(3)^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0401$.

Liganden (132.06(17) und 133.74(17) pm) sind untereinander sehr ähnlich und vergleichbar mit denen von **30** und **31**. Verbindung **33** besitzt anstelle der Halogeno-Liganden von **30–32** zwei Azido-Liganden und die Si–NNN-Bindungslängen betragen 185.12(13) und 184.65(15) pm. Die beiden Azido-Liganden sind mit Si–N–N-Winkeln von 119.09(11) und 123.28(10) gewinkelt an das Si-Koordinationszentrum gebunden und die N–N–N-Winkel (176.72(17) und 175.28(16)°) weichen nur geringfügig von dem idealen 180°-Winkel ab.

Abb. 5.17: Molekülstruktur von **33** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O 175.63(11), Si–N1 191.26(12), Si–N2 186.98(13), Si–N3 200.37(15), Si–N4 185.12(13), Si–N5 184.65(15), N4–N6 121.09(17), N5–N8 120.54(18), N6–N7 114.0(2), N8–N9 114.2(2), N1–C1 132.06(17), N2–C1 133.74(17); O–Si–N1 99.23(6), O–Si–N2 167.73(5), O–Si–N3 84.43(5), O–Si–N4 96.30(6), O–Si–N5 91.19(6), Si–N4–N6 119.09(11), Si–N5–N8 123.28(10), N1–Si–N2 68.98(5), N1–Si–N3 87.53(6), N1–Si–N4 162.95(6), N1–Si–N5 93.70(7), N2–Si–N3 91.46(6), N2–Si–N4 95.02(6), N2–Si–N5 92.93(6), N3–Si–N4 87.01(6), N3–Si–N5 175.59(5), N4–Si–N5 92.96(6), Si–N4–N6 119.09(11), N4–N6–N7 176.72(17), Si–N5–N8 123.28(10), N5–N8–N9 175.28(16), N1–C1–N2 107.40(11).

Erwähnenswert sind die unterschiedlichen $N_{\alpha}-N_{\beta}$ - und $N_{\beta}-N_{\gamma}$ -Bindungslängen von 121.09(17) und 120.54(18) pm bzw. 114.0(2) und 114.2(2) pm. Eine Erklärung hierfür liefert die Betrachtung der möglichen Resonanzstrukturen des Azido-Liganden. Dieser kann prinzipiell durch die beiden Resonanzstrukturen I (Si $-N_{\alpha}=N_{\beta}=N_{\gamma}$) und II (Si $-N_{\alpha}-N_{\beta}=N_{\gamma}$) beschrieben werden. Da in Verbindung **33** die $N_{\beta}-N_{\gamma}$ -Bindungen deutlich kürzer als die $N_{\alpha}-N_{\beta}$ -Bindungen sind, kann davon ausgegangen werden, dass hier die Resonanzstruktur II dominiert. Ähnliches wurde auch für andere hexakoordinierte Silicium(IV)-Komplexe gefunden ($N_{\alpha}-N_{\beta}$: 119.8(2)–122.0(2) pm; $N_{\beta}-N_{\gamma}$: 113.4(2)–114.6(2) pm),^[58] während in pentakoordinierten Silicium(IV)-Verbindungen die Resonanzstruktur I zu dominieren scheint ($N_{\alpha}-N_{\beta}$: 113.4(2)– 117.8(2) pm; $N_{\beta}-N_{\gamma}$: 113.7(3)–115.5(2) pm).^[59] Es existiert jedoch eine pentakoordinierte Silicium(IV)-Verbindung, in welcher wie bei den hexakoordinierten Komplexen, die Resonanzstruktur II dominiert ($N_{\alpha}-N_{\beta}$: 121.82(16) pm; $N_{\beta}-N_{\gamma}$: 114.28(18) pm).^[10r]

5.2.5.5 Kristallstruktur von 34^[s]

Verbindung **34** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **34** im Kristall ist in Abb. 5.18 gezeigt.

Abb. 5.18: Molekülstruktur von **34** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 175.94(13), Si–N1 191.28(13), Si–N2 187.89(15), Si–N3 201.14(14), Si–N4 180.54(14), Si–N5 181.36(15), O2–C23 118.21(19), O3–C24 118.6(2), N4–C23 117.12(19), N5–C24 115.2(2), N1–C1 131.9(2), N2–C1 134.24(19); O1–Si–N1 96.52(6), O1–Si–N2 164.30(6), O1–Si–N3 84.40(6), O1–Si–N4 95.71(7), O1–Si–N5 91.27(7), Si–N4–C23 150.63(14), Si–N5–C24 158.70(15), O2–C23–N4 176.68(19), O3–C24–N5 177.9(2), N1–Si–N2 68.98(6), N1–Si–N3 87.99(6), N1–Si–N4 166.42(7), N1–Si–N5 92.82(7), N2–Si–N3 88.95(6), N2–Si–N4 98.18(7), N2–Si–N5 95.32(7), N3–Si–N4 87.34(7), N3–Si–N5 175.66(7), N4–Si–N5 92.79(7), Si–N4–C23 150.63(14), N4–C23–O2 176.68(19), Si–N5–C24 158.70(15), N5–C24–O3 177.9(2), N1–C1–N2 107.61(13).

^[s] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 8.4742(17) Å; b = 10.239(2) Å; c = 13.933(3) Å; $a = 94.55(3)^{\circ}$; $\beta = 101.63(3)^{\circ}$; $\gamma = 95.44(3)^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0429$.

Das Si-Koordinationspolyeder (SiN_5O -Gerüst) von **34** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 21.02(6) bzw. 13.58(7)°. Während die Abweichung von dem idealen 90°-Winkel in etwa der der Verbindungen 30-33 entspricht (N-Si-N-Winkel innerhalb des viergliedrigen SiN₂C-Ringes: 68.98(6)°), ist die Abweichung von dem idealen 90°-Winkel verhältnismäßig gering. Die Si-N-Bindungslänge zu dem bidentaten N,O-Liganden beträgt 201.14(14) pm und die Si-O-Bindunglänge beträgt 175.94(13) pm. Die N-C-Bindungslängen innerhalb des N-C-N-Fragments des Amidinato-Liganden (131.9(2) und 134.24(19) pm) sind untereinander sehr ähnlich und vergleichbar mit denen von 30, 31 und 33. Verbindung 34 besitzt anstelle der Halogeno-Liganden von **30–32** zwei Cyanato-N-Liganden und die Si-NCO-Bindungslängen betragen 180.54(14) und 181.36(15) pm. Die beiden Cyanato-N-Liganden sind mit Si-N-C-Winkeln von 150.63(14) bzw. $158.70(15)^{\circ}$ gewinkelt an das Si-Koordinationszentrum gebunden und die N-C-O-Winkel (176.68(19) und 177.9(2)°) weichen nur geringfügig von dem idealen 180°-Winkel ab. Die internen N-C- und C-O-Bindungslängen der Cyanato-N-Liganden betragen 117.12(19) und 115.2(2) pm bzw. 118.21(19) und 118.6(2) pm und liegen somit im erwarteten Bereich. Anstelle der Koordination über das Stickstoff-Atom an das Si-Koordinationszentrum wäre für die Cyanato-Liganden prinzipiell auch eine Koordination über das Sauerstoff-Atom denkbar. Hierfür wurden jedoch keine kristallographischen Hinweise gefunden.

5.2.5.6 Kristallstruktur von 35^[t]

Verbindung **35** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **35** im Kristall ist in Abb. 5.19 gezeigt.

Das Si-Koordinationspolyeder (SiN_5O -Gerüst) von **35** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- bzw. 180°-Winkeln betragen 20.53(6) bzw. 15.36(6)°. Während die Abweichung von dem idealen 90°-Winkel in etwa der der Verbindungen **30–33** entspricht (N–Si–N-Winkel innerhalb des viergliedrigen SiN₂C-Ringes: 69.47(6)°), ist die Abweichung von dem idealen 90°-Winkel wie auch bei Verbindung **34** verhältnismäßig gering. Die Si–N-Bindungslänge zu dem bidentaten N,O-Liganden beträgt 200.38(15) pm und die Si–O-Bindunglänge beträgt 174.01(13) pm. Die N–C-Bindungslängen

^[t] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 11.5619(18) Å; b = 13.4356(18) Å; c = 16.906(3) Å; $a = 90^{\circ}$; $\beta = 109.346(18)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0424$.

innerhalb des N–C–N-Fragments des Amidinato-Liganden (132.43(19) und 134.09(19) pm) sind untereinander sehr ähnlich und vergleichbar mit denen von **30**, **31**, **33** und **34**. Verbindung **35** besitzt anstelle der Halogeno-Liganden von **30–32** zwei Thiocyanato-*N*-Liganden und die Si–*N*CS-Bindungslängen betragen 182.56(14) und 182.72(16) pm. Die beiden Thiocyanato-*N*-Liganden sind mit Si–N–C-Winkeln von 173.87(14) und 162.69(15)° nur leicht gewinkelt an das Si-Koordinationszentrum gebunden und die S–C–N-Winkel (179.13(17) und 179.61(18)°) weichen nur geringfügig von dem idealen 180°-Winkel ab. Die internen N–C- und S–C-Bindungslängen der Thiocyanato-*N*-Liganden betragen 116.7(2) und 117.1(2) pm bzw. 159.99(17) und 160.51(19) pm und liegen somit im erwarteten Bereich.

Abb. 5.19: Molekülstruktur von **35** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O 174.01(13), Si–N1 189.01(13), Si–N2 187.17(14), Si–N3 200.38(15), Si–N4 182.56(14), Si–N5 182.72(16), S1–C23 159.99(17), S2–C24 160.51(19), N4–C23 116.7(2), N5–C24 117.1(2), N1–C1 132.43(19), N2–C1 134.09(19); O–Si–N1 100.62(6), O–Si–N2 169.47(6), O–Si–N3 84.76(6), O–Si–N4 94.37(6), O–Si–N5 88.78(7), N1–Si–N2 69.47(6), N1–Si–N3 90.83(6), N1–Si–N4 164.64(6), N1–Si–N5 91.12(7), N2–Si–N3 91.68(6), N2–Si–N4 95.34(6), N2–Si–N5 94.81(7), N3–Si–N4 87.18(6), N3–Si–N5 173.50(7), N4–Si–N5 92.55(7), Si–N4–C23 173.87(14), S1–C23–N4 179.13(17), Si–N5–C24 162.69(15), S2–C24–N5 179.61(18), N1–C1–N2 107.08(13).

5.2.5.7 Kristallstruktur von 36^[u]

Verbindung **36** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstrukturen der beiden kristallographisch unabhängigen Moleküle (**36a** und **36b**) von **36** im Kristall sind in Abb. 5.20 gezeigt.

Abb. 5.20: Molekülstrukturen der beiden kristallographisch unabhängigen Moleküle (36a: links; 36b:rechts) von 36 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen 50%) Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: ausgewählter Ausgewählte Atome. Bindungslängen [pm] und -winkel [°] von 36a: Si-O1 171.57(14), Si-O2 179.84(14), Si-O3 180.81(14), Si-N1 186.66(17), Si-N2 184.39(16), Si-N3 196.22(17), N1-C1 133.1(2), N2-C1 133.4(2); O1-Si-O2 96.95(7), O1-Si-O3 88.24(7), O2-Si-O3 87.11(7), O1-Si-N1 101.83(7), O1-Si-N2 172.11(8), O1-Si-N3 86.00(7), O2-Si-N1 161.22(7), O2-Si-N2 90.92(7), O2-Si-N3 90.33(7), O3-Si-N1 93.68(7), O3-Si-N2 92.77(7), $O3-Si-N3 \ 173.38(7), \ N1-Si-N2 \ 70.30(7), \ N1-Si-N3 \ 90.71(7), \ N2-Si-N3 \ 93.38(7), \ N1-C1-N2 \ 106.61(16).$ Ausgewählte Bindungslängen [pm] und -winkel [°] von 36b: Si-O1 172.28(14), Si-O2 178.72(14), Si-O3 179.45(14), Si-N1 184.93(16), Si-N2 187.13(17), Si-N3 195.56(16), N1-C1 133.1(2), N2-C1 132.9(2); O1-Si-O2 97.70(7), O1-Si-O3 88.88(7), O2-Si-O3 86.48(7), O1-Si-N1 98.51(7), O1-Si-N2 168.52(7), $O1-Si-N3 \ 86.31(7), \ O2-Si-N1 \ 163.71(7), \ O2-Si-N2 \ 93.70(7), \ O2-Si-N3 \ 88.45(7), \ O3-Si-N1 \ 95.40(7), \ O3-Si-N1 \ 95.40(7)$ O3-Si-N2 93.23(7), O3-Si-N3 172.49(7), N1-Si-N2 70.06(7), N1-Si-N3 91.02(7), N2-Si-N3 92.62(7), N1-C1-N2 106.82(16).

Die Si-Koordinationspolyeder (SiN_3O_3 -Gerüste) von **36a** und **36b** entsprechen denen von stark verzerrten Oktaedern. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 19.70(7) bzw. 18.78(7)° (**36a**) und 19.94(7) bzw. 16.29(7)° (**36b**).

^[u] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe *Pbca*; a = 23.2733(16) Å; b = 16.3163(10) Å; c = 30.800(3) Å; $a = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0439$.

Auffallend ist, dass das Si-Koordinationspolyeder von **36a** stärker verzerrt ist als das von **36b**. Die N-Si-N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe sind mit 70.30(7) (**36a**) und 70.06(7)° (**36b**) jedoch nahezu identisch. Die beiden kristallographisch unabhängigen Moleküle von **36** unterscheiden sich im Wesentlichen durch die räumliche Anordnung der Trifluoromethansulfonato-Liganden zueinander. Die Si-N-Bindungslängen zu dem bidentaten N, O-Liganden betragen 196.22(17) (**36a**) bzw. 195.56(16) pm (**36b**) und sind somit deutlich kürzer als die analogen Bindungslängen in den strukturell verwandten Komplexen **30–37**. Gleiches gilt für die Si-O-Bindunglängen zu dem bidentaten N, O-Liganden (171.57(14) (**36a**) bzw. 172.28(14) pm (**36b**)). Die Si-O-Bindungslängen zu den Trifluoromethansulfonato-Liganden betragen 179.84(14) und 180.81(14) pm (**36a**) bzw. 178.72(14) und 179.45(14) pm (**36b**). Diese liegen im erwarteten Bereich und sind deutlich kürzer als die Summe der jeweiligen Kovalenzradien (183 pm). Die N-C-Bindungslängen innerhalb der N-C-N-Fragmente der Amidinato-Liganden (133.1(2) und 133.4(2) pm (**36a**) bzw. 133.1(2) und 132.9(2) pm (**36b**)) sind untereinander sehr ähnlich und vergleichbar mit denen von **30**, **31** und **33–35**.

5.2.5.8 Kristallstruktur von 37^[v]

Verbindung **37** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **37** im Kristall ist in Abb. 5.21 gezeigt.

Das Si-Koordinationspolyeder (SiN_3O_3 -Gerüst) von **37** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 21.39(6) bzw. 15.79(6)°. Der N-Si-N-Winkel innerhalb des viergliedrigen SiN₂C-Ringes beträgt 68.61(6)°. Die Si-N-Bindungslänge zu dem bidentaten N,O-Liganden beträgt 199.75(14) pm und die Si-O-Bindungslänge beträgt 177.62(12) pm. Die N-C-Bindungslängen innerhalb des N-C-N-Fragments des Amidinato-Liganden (132.8(2) und 133.6(2) pm) sind untereinander sehr ähnlich und vergleichbar mit denen von **30**, **31** und **33–36**. Das Si-Koordinationszentrum von Verbindung **37** besitzt anstelle der zwei monodentaten Liganden von **30–36** einen bidentaten O,O-Liganden und die Si-O-Bindungslängen betragen 175.20(12) und 175.48(12) pm. Der O-Si-O-Winkel, welcher der bidentaten O,O-Ligand mit

^[v] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$; a = 10.9237(17) Å; b = 18.318(2) Å; c = 13.7567(19) Å; $a = 90^{\circ}$; $\beta = 111.285(16)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0438$.

dem Si-Koordinationszentrum ausbildet, beträgt $91.18(6)^{\circ}$ und weicht damit nur geringfügig von dem idealen 90° -Winkel ab.

Abb. 5.21: Molekülstruktur von **37** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 177.62(12), Si–O2 175.20(12), Si–O3 175.48(12), Si–N1 190.26(13), Si–N2 191.44(13), Si–N3 199.75(14), N1–C1 132.8(2), N2–C1 133.6(2); O1–Si–O2 97.50(6), O1–Si–O3 90.44(6), O2–Si–O3 91.18(6), O1–Si–N1 96.78(6), O1–Si–N2 164.21(6), O1–Si–N3 84.22(6), O2–Si–N1 164.95(6), O2–Si–N2 96.66(6), O2–Si–N3 85.18(5), O3–Si–N1 93.46(6), O3–Si–N2 96.21(6), O3–Si–N3 173.08(6), N1–Si–N2 68.61(6), N1–Si–N3 91.54(6), N2–Si–N3 90.06(6), N1–C1–N2 107.66(13).

5.2.6 Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes 38^[w]

Verbindung **38** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstruktur von **38** im Kristall ist in Abb. 5.22 gezeigt.

Das Si-Koordinationspolyeder (SiN_4 ClH-Gerüst) von **38** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 22.11(9) bzw. 17.24(9)° und die N-Si-N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 68.43(9) und 67.89(9)°. Die Si-N-Bindungslängen *trans* zu einem Stickstoff-Atom sind mit 188.7(2) und 187.6(2) pm deutlich länger als diejenigen *trans* zu dem Hydrido- bzw.

^[w] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 7.9766(16) Å; b = 10.117(2) Å; c = 16.454(3) Å; a = 89.77 (3)°; $\beta = 84.07(3)$ °; $\gamma = 86.46(3)$ °; R1 $[I > 2\sigma(I)] = 0.0510$.

dem Chloro-Liganden (196.2(2) und 196.9(2) pm). Die Delokalisation der Elektronen in den N–C–N-Fragmenten der Amidinato-Liganden zeigt sich durch die sehr ähnlichen N–C-Bindungslängen von 131.5(3)–135.2(3) pm. Der Si–Cl-Abstand beträgt 225.18(11) pm und liegt wie der Si–H-Abstand (142(2) pm) im erwarteten Bereich. Die strukturellen Parameter von **38** sind denen einer Serie literaturbekannter strukturverwandter Silicium(IV)-Komplexe sehr ähnlich.^[10m]

Abb. 5.22: Molekülstruktur von **38** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-Cl 225.18(11), Si-N1 188.7(2), Si-N2 196.9(2), Si-N3 187.6(2), Si-N4 196.2(2), Si-H1 142(2), N1-Cl 135.2(3), N2-Cl 131.5(3), N3-Cl4 133.3(3), N4-Cl4 132.0(3); Cl-Si-N1 96.36(7), Cl-Si-N2 164.53(7), Cl-Si-N3 93.80(7), Cl-Si-N4 89.16(7), Cl-Si-H1 92.1(8), N1-Si-N2 68.43(9), N1-Si-N3 162.76(9), N1-Si-N4 98.32(10), N1-Si-H1 98.2(9), N2-Si-N3 100.31(9), N2-Si-N4 90.29(9), N2-Si-H1 92.9(8), N3-Si-N4 67.89(9), N3-Si-H1 95.3(9), N4-Si-H1 163.2(9), N1-Cl-N2 108.9(2), N3-Cl4-N4 107.9(2).

5.2.7 Kristallstruktur des trikoordinierten Donor-stabilisierten Silylens 39^[x]

Verbindung **39** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (n-Hexan) auf -20 °C. Die Molekülstruktur von **39** im Kristall ist in Abb. 5.23 gezeigt.

^[x] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$; a = 10.5873(17) Å; b = 9.0633(11) Å; c = 28.563(4) Å; $a = 90^{\circ}$; $\beta = 100.632(18)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0403$.

Abb. 5.23: Molekülstruktur von **39** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–N1 190.58(12), Si–N2 190.13(12), Si–N3 178.70(12), N1–C1 133.24(17), N2–C1 133.19(16), N3–C14 140.00(16), N4–C14 127.93(17); N1–Si–N2 68.39(5), N1–Si–N3 102.61(5), N2–Si–N3 102.28(5), N1–C1–N2 106.85(11), N3–C14–N4 121.22(12), Si–N3–C14 119.91(9).

Das Si-Koordinationspolyeder (SiN₃-Gerüst) von **39** entspricht dem eines stark verzerrten Pseudotetraeders, wobei drei Positionen von Stickstoff-Atomen und eine von dem freien Elektronenpaar eingenommen wird. Die starke Verzerrung des Si-Koordinations-polyeders wird durch die hohe Spannung in dem viergliedrigen SiN₂C-Ring, welcher der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet, hervorgerufen und die maximale Abweichung von dem idealen 109.47°-Winkel beträgt 41.08(5)°. Die Si-N-Bindungslängen zu dem bidentaten Amidinato-Liganden sind sehr ähnlich und betragen 190.58(12) und 190.13(12) pm, wohingegen der Si-N-Abstand zu dem monodentaten Amidinato-Liganden nur 178.70(12) pm beträgt. Die Si-N-Bindungslängen zu dem bidentaten Amidinato-Liganden sind mit denen vergleichbar, welche für ein trikoordiniertes Chlorosilylen mit einem Amidinato-Liganden gefunden wurden (187.0(2) und 191.7(2) pm).^[6a] Weiterhin findet man in dem bidentat gebundenen Liganden sehr ausgeglichene N-C-Abstände von 133.24(17) und 133.19(16)Delokalisation der Elektronen innerhalb N-C-Npm. was die des Fragments widerspiegelt. In dem monodentat gebundenen Liganden findet man hingegen eine lokalisierte N-C-Einfachbindung (140.00(16) pm) und eine lokalisierte C=N-Doppelbindung (127.93(17) pm). Interessanterweise ist das an das Si-Koordinationszentrum gebundene Stickstoff-Atom des monodentaten Amidinato-Liganden trigonal-planar umgeben (Si–N–C-Winkel: 119.91(9)°), während eine tetraedrische Umgebung zu erwarten wäre. Dieses Phänomen könnte durch eine partielle Delokalisation der Elektronen in dem N–C–N-Fragment des Liganden erklärt werden, wobei dies jedoch nicht mit den beobachteten N–C-Bindungslängen korreliert.

Das Donor-stabilisierte Silylen **39** stellt die erste strukturell charakterisierte Silicium(II)-Verbindung mit zwei Amidinato-Liganden dar.

Interessanterweise liegt **39** im Kristall trikoordiniert vor, wohingegen Rechnungen in der Gasphase ergaben, dass die tetrakoordinierte Spezies **39'** thermodynamisch ($\Delta G =$ -7.1 kcal/mol) stabiler ist.^[10y] Diese Ergebnisse legen nahe, dass es Packungseffekte im Kristall geben muss, welche diesen Energieunterschied überkompensieren. Um zu versuchen, **39'** in kristalliner Form zu isolieren, wurde **39** aus verschiedenen Lösungsmitteln (*n*-Hexan, Toluol, Benzol, Diethylether) und bei verschiedenen Temperaturen kristallisiert, jedoch wurde in allen Fällen die trikooridinierte Verbindung **39** isoliert.

5.2.8 Kristallstrukturen der neutralen pentakoordinierten Silicium(II)-Komplexe mit zwei bidentaten Amidinato-Liganden und einer Si–B-Bindung

5.2.8.1 Kristallstruktur von 41^[y]

Verbindung **41** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (*n*-Hexan) auf -20 °C. Die Molekülstrukturen der beiden kristallographisch unabhängigen Moleküle (**41a** und **41b**) von **41** im Kristall sind in Abb. 5.24 gezeigt.

Die Si-Koordinationspolyeder (SiN_4B -Gerüste) von **41a** und **41b** entsprechen denen von stark verzerrten trigonalen Bipyramiden (Summe der äquatorialen Bindungswinkel: 360.00° (**41a**) bzw. 359.94° (**41b**)). Die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe sind mit 67.80(9) und 67.70(9) (**41a**) bzw. 68.16(9)° und 67.11(9) (**41b**) in derselben Größenordnung wie bei den bisher vorgestellten Komplexen mit bidentaten Amidinato-Liganden und die axialen N–Si–N-Winkel weichen um 31.88(9) (**41a**) bzw. 32.77(9)° (**41b**) von dem idealen 180°-Winkel ab (Berry-Verzerrung: 31.7% (**41a**) bzw. 32.2% (**41b**)).

^[y] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 22.549(4) Å; b = 16.9212(17) Å; c = 18.578(3) Å; $a = 90^{\circ}$; $\beta = 111.459(17)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0511$.

Abb. 5.24: Molekülstrukturen der beiden kristallographisch unabhängigen Moleküle (41a: links; 41b: rechts) von 41 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%)ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°] von 41a: Si-N1 180.8(2), Si-N2 203.6(2), Si-N3 181.6(2), Si-N4 203.0(2), Si-B 207.6(4), N1-C1 135.5(3), N2-C1 131.0(3), N3-C14 135.4(3), N4-C14 131.1(3), B-C27 163.6(5), B-C29 161.7(4), B-C31 164.5(4); N1-Si-N2 67.80(9), N1-Si-N3 114.74(10), N1-Si-N4 95.15(9), N2-Si-N3 94.31(9), N2-Si-N4 148.12(9), N3-Si-N4 67.70(9), N1-Si-B 120.17(13), N2-Si-B 105.52(11), N3-Si-B 125.09(13), N4-Si-B 106.35(11), N1-C1-N2 107.7(2), N3-C14-N4 107.6(2), Si-B-C27 108.2(2), Si-B-C29 106.9(3), Si-B-C31 109.19(19). Ausgewählte Bindungslängen [pm] und -winkel [°] von 41b: Si-N1 182.5(2), Si-N2 199.1(2), Si-N3 182.8(2), Si-N4 204.8(2), Si-B 207.7(3), N1-C1 135.4(3), N2-C1 131.4(3), N3-C14 135.2(3), N4-C14 131.2(3), B-C27 158.0(5), B-C29 164.5(5), B-C31 169.7(5); N1-Si-N2 68.16(9), N1-Si-N3 114.30(10), N1-Si-N4 94.31(9), N2-Si-N3 94.23(9), N2-Si-N4 147.23(9), N3-Si-N4 67.11(9), N1-Si-B 123.53(11), N2-Si-B 108.40(11), N3-Si-B 122.11(11), N4-Si-B 104.37(11), N1-C1-N2 106.9(2), N3-C14-N4 107.6(2), Si-B-C27 114.5(3), Si-B-C29 103.4(2), Si-B-C31 107.2(2).

Die beiden kristallographisch unabhängigen Moleküle von **41** unterscheiden sich im Wesentlichen durch die räumliche Anordnung der Ethyl-Gruppen an den Bor-Atomen. Die Si-B-Bindungslängen betragen 207.6(4) (**41a**) bzw. 207.7(3) pm (**41b**) und sind somit im Bereich derer, welche für andere Silylen-Boran-Addukte mit tri- bzw. tetrakoordinierten Si-Koordinationszentren gefunden wurden (196.24(5)-210.8(2) pm)^[21] und nur etwas länger als die Summe der jeweiligen Kovalenzradien (205 pm). Die äquatorialen Si-N-Bindungen (180.8(2) und 181.6(2) pm (**41a**) bzw. 182.5(2) und 182.8(2) pm (**42b**)) sind deutlich kürzer als die axialen (203.6(2) und 203.0(2) pm (**41a**) bzw. 199.1(2) und 204.8(2) pm (**42b**)). Die N-C-Bindungslängen innerhalb der N-C-N-Fragmente der Amidinato-Liganden (131.0(3)-135.5(3) pm (**41a**) bzw. 131.2(3)-135.4(3) pm (**41b**)) sind untereinander sehr ähnlich und spiegeln die Delokalisation der Elektronen wider.

5.2.8.2 Kristallstruktur von 42·C₆H₅CH₃^[z]

Verbindung **42** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C als das Toluol-Solvat **42**·C₆H₅CH₃. Die Molekülstruktur von **42** im Kristall von **42**·C₆H₅CH₃ ist in Abb. 5.25 gezeigt.

Abb. 5.25: Molekülstruktur von **42** im Kristall von **42**·C₆H₅CH₃ mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–N1 181.09(18), Si–N2 197.67(19), Si–N3 180.39(18), Si–N4 203.56(19), Si–B 206.7(3), N1–C1 136.4(3), N2–C1 131.0(3), N3–C14 135.0(3), N4–C14 131.5(3), B–C27 163.4(3), B–C33 163.0(3), B–C39 163.2(3); N1–Si–N2 68.96(8), N1–Si–N3 112.25(9), N1–Si–N4 95.46(8), N2–Si–N3 94.05(8), N2–Si–N4 150.22(8), N3–Si–N4 67.74(8), N1–Si–B 127.01(9), N2–Si–B 106.44(9), N3–Si–B 120.74(9), N4–Si–B 103.18(9), N1–C1–N2 106.90(17), N3–C14–N4 107.39(17), Si–B–C27 113.13(15), Si–B–C33 111.37(14), Si–B–C39 100.15(14).

Das Si-Koordinationspolyeder (SiN_4B -Gerüst) von **42** entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 360.00°). Die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 68.96(8) und 67.74(8)° (Berry-Verzerrung: 25.1%). Wie schon bei **41** weicht der axiale N–Si–N-Winkel mit 29.78(8)° sehr stark von dem idealen 180°-Winkel ab. Die Si–B-Bindungslänge beträgt 206.7(3) pm und ist somit etwas kürzer als die von **42** und sehr ähnlich zu jenen, welche für andere Silylen–Boran-Addukte mit tri- bzw. tetrakoordinierten Si-Koordinationszentren gefunden

^[2] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe C2/c; a = 49.236(11) Å; b = 10.5423(18) Å; c = 18.000(4) Å; $a = 90^{\circ}$; $\beta = 105.44(2)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0498$.

wurden $(196.24(5)-210.8(2) \text{ pm})^{[21]}$ und nur etwas länger als die Summe der jeweiligen Kovalenzradien (205 pm). Die äquatorialen Si-N-Bindungen (181.09(18) und 180.39(18) pm) sind wie auch bei Verbindung **42** deutlich kürzer als die axialen (197.67(19) und 203.56(19) pm). Auch die übrigen strukturellen Merkmale (abgesehen von den Substituenten an den Bor-Atomen) sind denen von Verbindung **42** sehr ähnlich.

5.2.9 Kristallstrukturen der neutralen pentakoordinierten Silicium(II)-Komplexe mit zwei bidentaten Amidinato-Liganden und einer Si-M-Bindung (M = Cr, Mo, W, Fe)

5.2.9.1 Kristallstruktur von 43^[aa]

Verbindung **43** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C. Die Molekülstruktur von **43** im Kristall ist in Abb. 5.26 gezeigt.

Das Si-Koordinationspolyeder (SiN_4 Cr-Gerüst) von **43** entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 359.94°). Die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 66.14(7) und 67.27(1)° und die Abweichung des axialen N–Si–N-Winkels von dem idealen 180°-Winkel beträgt 35.36(7)° (Berry-Verzerrung: 36.8%). Die Stickstoff-Atome der Amidinato-Liganden besetzen je zwei axiale und zwei äquatoriale Positionen und das Chrom-Atom befindet sich in einer äquatorialen Position. Die Cr–Si-Bindungslänge beträgt 241.81(7) pm und ist somit etwas länger als analoge Einfachbindungslängen in Chrom(0)-Komplexen mit tri- bzw. tetrakoordinierten Silylenen,^[23] was im Einklang mit einer Erhöhung der Koordinationszahl von drei bzw. vier auf fünf steht. Die äquatorialen Si–N-Bindungen (179.82(17) und 180.14(17) pm) sind deutlich kürzer als die axialen (215.67(19) und 208.25(17) pm).

Das Cr-Koordinationspolyeder von **43** entspricht dem eines verzerrten Oktaeders mit maximalen Abweichungen von den idealen 90- und 180° -Winkeln von 4.58(7) bzw. $7.27(9)^{\circ}$. Die Cr–C-Bindungslängen *cis* zu dem Silicium-Atom liegen im Bereich von 187.9(2)-188.7(2)pm und sind somit etwas länger als der Cr–C-Bindungsabstand zu dem *trans*-ständigen Carbonyl-Liganden (185.3(2) pm); der *trans*-Effekt des Silylen-Liganden ist somit eher schwach ausgeprägt. Die C–O-Bindungslängen der Carbonyl-Liganden sind untereinander sehr ähnlich und liegen im Bereich von 114.6(3)-115.4(3) pm.

^[aa] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$; a = 10.774(2) Å; b = 19.500(3) Å; c = 16.413(3) Å; $a = 90^{\circ}$; $\beta = 107.17(2)^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0461$.

Abb. 5.26: Molekülstruktur von **43** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Cr–Si 241.81(7), Cr–C27 187.9(2), Cr–C28 188.7(2), Cr–C29 187.9(2), Cr–C30 188.0(2), Cr–C31 185.3(2), Si–N1 179.82(17), Si–N2 215.67(19), Si–N3 180.14(17), Si–N4 208.25(17), N1–C1 135.8(3), N2–C1 130.7(3), N3–C14 134.7(3), N4–C14 131.4(2), C27–O1 115.4(3), C28–O2 114.6(3), C29–O3 115.2(3), C30–O4 115.0(3), C31–O5 114.8(3); Si–Cr–C27 90.59(7), Si–Cr–C28 85.42(7), Si–Cr–C29 89.41(7), Si–Cr–C30 87.32(7), Si–Cr–C31 179.07(8), C27–Cr–C28 89.12(10), C27–Cr–C29 178.54(10), C27–Cr–C30 91.33(10), C27–Cr–C31 88.97(10), C28–Cr–C29 92.34(10), C28–Cr–C30 172.73(9), C28–Cr–C31 93.76(10), C29–Cr–C30 87.21(9), C29–Cr–C31 91.05(10), C30–Cr–C31 93.51(10), Cr–Si–N1 122.64(6), Cr–Si–N2 107.13(5), Cr–Si–N3 122.19(6), Cr–Si–N4 108.22(5), N1–Si–N2 66.14(7), N1–Si–N3 115.11(8), N1–Si–N4 95.11(7), N2–Si–N3 92.88(7), N2–Si–N4 144.64(7), N3–Si–N4 67.27(7), N1–C1–N2 109.70(17), N3–C14–N4 108.85(16).

5.2.9.2 Kristallstruktur von 44^[bb]

Verbindung 44 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (THF) auf -20 °C. Die Molekülstruktur von 44 im Kristall ist in Abb. 5.27 gezeigt.

Das Si-Koordinationspolyeder (SiN_4 Mo-Gerüst) von **44** entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 359.98°). Die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 66.00(6) und 67.05(6)° und die Abweichung des axialen N–Si–N-Winkels von dem idealen 180°-Winkel beträgt 34.56(6)° (Berry-Verzerrung: 34.4%). Die Stickstoff-Atome der Amidinato-Liganden besetzen je zwei axiale und zwei äquatoriale Positionen und das Molybdän-Atom befindet sich in einer

^[bb] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$; a = 10.7945(15) Å; b = 19.703(3) Å; c = 16.706(2) Å; $a = 90^{\circ}$; $\beta = 106.977(16)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0303$.

äquatorialen Position. Die Mo-Si-Bindungslänge beträgt 257.84(6) pm und ist somit etwas länger als analoge Einfachbindungslängen in Molybdän(0)-Komplexen mit tri- bzw. tetrakoordinierten Silylenen,^[23] was im Einklang mit einer Erhöhung der Koordinationszahl von drei bzw. vier auf fünf steht. Die äquatorialen Si-N-Bindungen (181.01(15) und 180.52(15) pm) sind deutlich kürzer als die axialen (214.17(15) und 208.94(15) pm).

Abb. 5.27: Molekülstruktur von 44 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Mo-Si 257.84(6), Mo-C27 203.9(2), Mo-C28 204.1(2), Mo-C29 203.2(2), Mo-C30 203.9(2), Mo-C31 200.0(2), Si-N1 181.01(15), Si-N2 214.17(15), Si-N3 180.52(15), Si-N4 208.94(15), N1-C1 135.5(2), N2-C1 130.0(2), N3-C14 134.9(2), N4-C14 130.9(2), C27-O1 114.0(3), C28-O2 114.2(2), C29-O3 114.5(3), C30-O4 114.4(3), C31-O5 114.7(2); Si-Mo-C27 91.63(6), Si-Mo-C28 85.57(6), Si-Mo-C29 90.23(6), Si-Mo-C30 87.70(6), Si-Mo-C31 178.70(7), C27-Mo-C28 89.55(8), C27-Mo-C29 177.42(8), C27-Mo-C30 90.84(8), C27-Mo-C31 87.60(9), C28-Mo-C29 92.38(8),173.27(8), C28-Mo-C31 93.38(8), C29-Mo-C30 87.45(8), C29-Mo-C31 C28-Mo-C30 90.57(9),C30-Mo-C31 93.35(8), Mo-Si-N1 123.28(5), Mo-Si-N2 107.24(5), Mo-Si-N3 122.44(5), Mo-Si-N4 107.32(5), N1-Si-N2 66.00(6), N1-Si-N3 114.26(7), N1-Si-N4 95.13(6), N2-Si-N3 93.58(6), N2-Si-N4 145.44(6), N3-Si-N4 67.05(6), N1-C1-N2 109.63(15), N3-C14-N4 108.96(14).

Das Mo-Koordinationspolyeder von **44** entspricht dem eines verzerrten Oktaeders mit maximalen Abweichungen von den idealen 90- und 180° -Winkeln von 4.43(6) bzw. $6.73(8)^{\circ}$ Die Mo-C-Bindungslängen *cis* zu dem Silicium-Atom liegen im Bereich von 203.2(2)-204.1(2)pm und sind somit etwas länger als der Mo-C-Bindungsabstand zu dem *trans*-ständigen Carbonyl-Liganden (200.0(2) pm); der *trans*-Effekt des Silylen-Liganden ist somit, wie auch bei **43**, eher schwach ausgeprägt. Die C-O-Bindungslängen der Carbonyl-Liganden sind untereinander sehr ähnlich und liegen im Bereich von 114.0(3)-114.7(2) pm.

5.2.9.3 Kristallstruktur von 45^[cc]

Verbindung **45** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C. Die Molekülstruktur von **45** im Kristall ist in Abb. 5.28 gezeigt.

Abb. 5.28: Molekülstruktur von **45** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: W-Si 258.03(9), W-C27 203.8(4), W-C28 203.7(3), W-C29 204.1(4), W-C30 203.9(3), W-C31 200.8(3), Si-N1 180.6(3), Si-N2 208.1(3), Si-N3 180.8(2), Si-N4 212.9(3), N1-C1 135.7(4), N2-C1 131.5(4), N3-C14 135.5(4), N4-C14 130.4(4), C27-O1 114.7(4), C28-O2 114.2(4), C29-O3 114.4(5), C30-O4 114.3(4), C31-O5 114.2(4); Si-W-C27 90.47(10), Si-W-C28 87.89(10), Si-W-C29 91.84(11), Si-W-C30 85.19(9), Si-W-C31 178.66(11), C27-W-C28 87.61(14), C27-W-C29 177.17(14), C27-W-C30 92.34(14), C27-W-C31 90.15(15), C28-W-C29 90.84(14), C28-W-C30 173.08(13), C28-W-C31 93.32(14), C29-W-C30 89.48(14), C29-W-C31 87.58(15), C30-W-C31 93.60(13), W-Si-N1 122.23(9), W-Si-N2 107.17(8), W-Si-N3 122.85(9), W-Si-N4 106.86(8), N1-Si-N2 67.42(11), N1-Si-N3 114.90(12), N1-Si-N4 93.68(11), N2-Si-N3 95.05(11), N2-Si-N4 145.97(11), N3-Si-N4 66.57(11), N1-C1-N2 108.6(2), N3-C14-N4 109.9(2).

Das Si-Koordinationspolyeder (SiN_4W -Gerüst) von **45** entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 359.98°). Die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 67.42(11) und 66.57(11)° und die Abweichung des axialen N–Si–N-Winkels von dem idealen 180°-Winkel beträgt 34.03(11)° (Berry-Verzerrung: 34.8%). Die Stickstoff-Atome der Amidinato-Liganden besetzen je zwei axiale und zwei äquatoriale Positionen und das Wolfram-Atom befindet sich in einer äquatorialen Position. Die W–Si-Bindungslänge beträgt 258.03(9) pm und ist somit etwas

^[cc] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$; a = 10.766(2) Å; b = 19.704(4) Å; c = 16.658(3) Å; $a = 90^{\circ}$; $\beta = 106.74(3)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0327$.

länger als analoge Einfachbindungslängen in Wolfram(0)-Komplexen mit tri- bzw. tetrakoordinierten Silylenen,^[23] was auch hier im Einklang mit einer Erhöhung der Koordinationszahl von drei bzw. vier auf fünf steht. Die äquatorialen Si–N-Bindungen (180.6(3) und 180.8(2) pm) sind deutlich kürzer als die axialen (208.1(3) und 212.9(3) pm).

Das W-Koordinationspolyeder von **45** entspricht dem eines verzerrten Oktaeders mit maximalen Abweichungen von den idealen 90- und 180°-Winkeln von 4.81(9) bzw. $6.92(13)^{\circ}$ Die W-C-Bindungslängen *cis* zu dem Silicium-Atom liegen im Bereich von 203.7(3)-204.1(4)pm und sind somit etwas länger als der W-C-Bindungsabstand zu dem *trans*-ständigen Carbonyl-Liganden (200.8(3) pm); der *trans*-Effekt des Silylen-Liganden ist somit, wie auch bei den Verbindungen **43** und **44**, eher schwach ausgeprägt. Die C-O-Bindungslängen der Carbonyl-Liganden sind untereinander sehr ähnlich und liegen im Bereich von 114.2(4)-114.7(4) pm.

5.2.9.4 Kristallstruktur von 46^[dd]

Verbindung **46** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C. Die Molekülstruktur von **46** im Kristall ist in Abb. 5.29 gezeigt.

Das Si-Koordinationspolyeder (SiN₄Fe-Gerüst) von **46** entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 360.00°). Die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 69.01(5) und 68.51(5)° und die Abweichung des axialen N–Si–N-Winkels von dem idealen 180°-Winkel beträgt 25.36(6)°. Die Berry-Verzerrung ist mit 15.8% deutlich geringer ausgeprägt als bei den Verbindungen **43–45**. Die Stickstoff-Atome der Amidinato-Liganden besetzen je zwei axiale und zwei äquatoriale Positionen und das Eisen-Atom befindet sich in einer äquatorialen Position. Die Si–Fe-Bindungslänge beträgt 231.75(6) pm und ist somit deutlich kürzer als die analogen Si–M-Bindungen (M = Cr, Mo, W) der Komplexe **43–45**, jedoch etwas länger als Si–Fe-Einfachbindungslängen in Eisen(0)-Komplexen mit tri- bzw. tetrakoordinierten Silylenen,^[24] was analog zu den Verbindungen **43–45** im Einklang mit einer Erhöhung der Si-Koordinationszahl von drei bzw. vier auf fünf steht. Die äquatorialen Si–N-Bindungen (182.01(13) und 182.47(14) pm) sind auch hier kürzer als die axialen (195.69(13) und 198.64(13) pm), jedoch sind die Unterschiede im Vergleich zu **43–45** verhältnismäßig gering.

^[dd] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 9.8895(13) Å; b = 21.702(3) Å; c = 14.547(2) Å; $a = 90^{\circ}$; $\beta = 99.006(16)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0329$.

Das Fe-Koordinationspolyeder von **46** entspricht dem einer verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 360.00°), wobei das Silicium-Atom eine äquatoriale Position besetzt. Der axiale C-Fe-C-Winkel beträgt 157.73(8)° und die Berry-Verzerrung ist mit 32.8% sehr groß. Erwähnenswert ist, dass die axial gebundenen Carbonyl-Liganden mit Si-Fe-C-Winkeln von 79.51(6) und 79.11(6)° in Richtung des Silicium-Atoms abgewinkelt sind. Ein ähnlicher Effekt wurde für die Verbindungen **43–45** nicht beobachtet.

Abb. 5.29: Molekülstruktur von **46** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Fe–Si 231.75(6), Fe–C27 178.29(18), Fe–C28 176.55(19), Fe–C29 176.04(18), Fe–C30 176.05(19), Si–N1 182.01(13), Si–N2 195.69(13), Si–N3 182.47(14), Si–N4 198.64(13), N1–C1 134.5(2), N2–C1 131.82(19), N3–C14 134.7(2), N4–C14 131.49(19), C27–O1 115.4(2), C28–O2 115.5(2), C29–O3 115.3(2), C30–O4 115.9(2); Si–Fe–C27 122.61(6), Si–Fe–C28 79.51(6), Si–Fe–C29 125.97(6), Si–Fe–C30 79.11(6), C27–Fe–C28 99.24(9), C27–Fe–C29 111.40(8), C27–Fe–C30 97.46(9), C28–Fe–C29 94.06(9), C28–Fe–C30 157.73(8), C29–Fe–C30 93.46(9), Fe–Si–N1 126.71(5), Fe–Si–N2 102.29(4), Fe–Si–N3 124.20(5), Fe–Si–N4 103.05(4), N1–Si–N2 69.01(5), N1–Si–N3 109.09(6), N1–Si–N4 94.68(6), N2–Si–N3 97.74(6), N2–Si–N4 154.64(6), N3–Si–N4 68.51(5), N1–C1–N2 107.10(12), N3–C14–N4 107.69(13).

$5.2.10\,\mathrm{Kristall struktur}$ des cyclischen Silans $48^{\mathrm{[ee]}}$

Verbindung **48** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstruktur von **48** im Kristall ist in Abb. 5.30 gezeigt.

^[ee] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 9.718(2) Å; b = 11.391(2) Å; c = 14.751(3) Å; $a = 104.84(2)^{\circ}$; $\beta = 94.15(2)^{\circ}$; $\gamma = 94.58(2)^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0504$.

Abb. 5.30: Molekülstruktur von **48** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–N1 176.27(17), Si–N3 176.22(17), Si–C27 187.9(2), Si–C30 187.4(2), N1–C1 138.7(3), N2–C1 128.8(2), N3–C14 139.1(3), N4–C14 128.5(2), C27–C28 150.7(3), C28–C29 133.3(3), C29–C30 151.8(3); N1–Si–N3 118.55(8), N1–Si–C27 110.89(9), N1–Si–C30 109.30(9), N3–Si–C27 109.24(9), N3–Si–C30 111.89(9), C27–Si–C30 94.32(9), N1–C1–N2 117.10(17), N3–C14–N4 116.71(17), C27–C28–C29 117.94(17), C28–C29–C30 117.96(18).

Das Si-Koordinationspolyeder (SiN₂C₂-Gerüst) von 48 entspricht dem eines verzerrten Tetraeders mit einer maximalen Abweichung von den idealen 109.47°-Winkeln von 15.15(9)°. Diese starke Verzerrung wird durch die Spannung innerhalb des 3,4-Dimethylsilacyclopent-3en-Rings hervorgerufen (C-Si-C-Winkel: 94.32(9)°). Verbindung 48 besitzt zwei monodentat gebundene Amidinato-Liganden. Die Si-N-Bindungslängen betragen 176.27(17) und 176.22(17) pm und sind somit mit den Si-N-Bindungslängen der monodentaten Amidinato-Liganden der Verbindungen 39 und 54' vergleichbar. Die N-C-Bindungslängen innerhalb der N-C-N-Fragmente der Amidinato-Liganden unterscheiden sich stark: Während die N-C-Bindungslängen zu den an das Si-Koordinationszentrum gebundenen Stickstoff-Atomen (138.7(3) und 139.1(3) pm) im Bereich von N-C-Einfachbindungen liegen, deuten die deutlich kürzeren N-C-Bindungen zu den nicht an das Silicium-Atom gebundenen Stickstoff-Atomen mit 128.8(2) und 128.5(2) pm auf das Vorliegen einer lokalisierten N=C-Doppelbindungen hin, allerdings sind die an das Silicium-Atom gebundenen Stickstoff-Atome der monodentaten Amidinato-Liganden, wie auch bei Verbindung 39, trigonal planar umgeben, was für eine (partielle) Delokalisation der Elektronen innerhalb der N-C-N-Fragmente spricht. Die Si-C-Bindungslängen (187.9(2) und 187.4(2) pm) sowie die C=C-Doppelbindungslänge (133.3(3) pm) liegen im erwarteten Bereich.

5.2.11 Kristallstruktur des kationischen pentakoordinierten Silicium(IV)-Komplexes 52^[ff]

Verbindung **52** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf 20 °C. Die Molekülstruktur des Kations von **52** im Kristall ist in Abb. 5.31 gezeigt.

Abb. 5.31: Molekülstruktur des Kations von **52** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthalts-wahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–N1 178.1(4), Si–N2 189.6(4), Si–N3 178.0(4), Si–N4 191.7(4), Si–H1 142(4), N1–C1 136.0(5), N2–C1 132.8(6), N3–C14 136.3(5), N4–C14 131.6(6); N1–Si–N2 71.21(17), N1–Si–N3 120.26(18), N1–Si–N4 101.06(17), N1–Si–H1 120.0(19), N2–Si–N3 100.82(16), N2–Si–N4 164.45(17), N2–Si–H1 98.8(17), N3–Si–N4 70.92(15), N3–Si–H1 119.7(19), N4–Si–H1 96.7(17), N1–C1–N2 105.7(4), N3–C14–N4 106.6(4).

Das Si-Koordinationspolyeder (SiN_4 H-Gerüst) von **52** entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 359.96°). Die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 71.21(17) und 70.92(15)° und die Abweichung des axialen N–Si–N-Winkels von den idealen 180° beträgt 15.55(17)°. Trotz der im Vergleich zu den anderen diskutierten pentakoordinierten Silicium(IV)-Komplexen mit Amidinato-Liganden relativ großen N–Si–N-Winkeln innerhalb der viergliedrigen Ringe ist die Berry-Verzerrung mit 20.8% mit denen dieser Verbindungen vergleichbar. Die Stickstoff-

^[ff] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe Cc; a = 14.023(2) Å; b = 13.982(3) Å; c = 17.762(3) Å; $a = 90^{\circ}$; $\beta = 100.528(17)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0288$.

Atome der Amidinato-Liganden besetzen je zwei axiale und zwei äquatoriale Positionen und der Hydrido-Ligand befindet sich in einer äquatorialen Position. Die Si-H-Bindungslänge beträgt 142(4) pm und liegt somit im erwarteten Bereich. Die äquatorialen Si-N-Bindungen (178.1(4) und 178.0(4) pm) sind auch hier kürzer als die axialen (189.6(4) und 191.7(4) pm). Trotz dieser starken Abweichungen sind die N-C-Bindungslängen innerhalb der N-C-N-Fragmente untereinander sehr ähnlich (131.6(6)–136.3(5) pm). Obwohl es sich bei **52** um einen kationischen Silicium(IV)-Komplex handelt, sind die strukturellen Parameter sehr ähnlich zu denen der in dieser Arbeit vorgestellten neutralen pentakoordinierten Silicium(IV)-Komplexe mit zwei Amidinato-Liganden.

5.2.12 Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes 53^[gg]

Verbindung **53** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (n-Hexan) auf -20 °C. Die Molekülstrukturen der beiden kristallographisch unabhängigen Moleküle (**53a** und **53b**) von **53** im Kristall sind in Abb. 5.32 gezeigt.

Die Si-Koordinationspolyeder (SiN_4OH -Gerüst) von **53** entsprechen denen von stark verzerrten Oktaedern. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 21.90(8) bzw. 19.53(9)° (**53a**) und 22.55(8) bzw. 17.26(9)° (**53b**) und die N-Si-N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe liegen im Bereich von 67.45(8)–68.238(8)°. Verbindung **53** besitzt zusätzlich zu den beiden bidentaten Amidinato-Liganden einen monodentaten Acetato- und einen Hydrido-Liganden. Die Si-O- bzw. Si-H-Bindungslängen betragen 178.35(17) (**53a**) und 177.54(17) pm (**53b**) bzw. 144(2) (**53a**) und 146(2) (**53b**) pm und liegen somit im erwarteten Bereich. Die Si-N-Bindungslängen *trans* zu einem Stickstoff-Atom liegen im Bereich von 186.2(2)–188.3(2) pm, diejenigen *trans* zu dem Sauerstoff- bzw. Wasserstoff-Atom betragen 193.5(2) (**53a**) und 198.0(2) pm (**53b**) bzw. 195.6(2) (**53a**) und 195.2(2) pm (**53b**) und sind somit untereinander sehr ähnlich.

^[gg] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/c$; a = 10.070(3) Å; b = 29.713(9) Å; c = 18.543(5) Å; $a = 90^{\circ}$; $\beta = 92.095(10)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0526$.

Abb. 5.32: Molekülstrukturen der beiden kristallographisch unabhängigen Moleküle (53a: links; 53b: rechts) von 53 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°] von 53a: Si-O1 178.35(17), Si-N1 186.6(2), Si-N2 195.6(2), Si-N3 188.3(2), Si-N4 193.5(2), Si-H1 144(2), O1-C27 131.4(3), O2-C27 121.2(3), N1-C1 133.8(3), N2-C1 132.1(3), N3-C14 134.2(3), N4-C14 132.0(3); O1-Si-N1 101.74(9), O1-Si-N2 91.02(8), O1-Si-N3 92.59(8), O1-Si-N4 160.79(9), O1-Si-H1 91.0(8), N1-Si-N2 68.10(8), N1-Si-N3 160.47(9), N1-Si-N4 96.72(9), N1-Si-H1 97.2(8), N2-Si-N3 98.77(9), N2-Si-N4 90.97(9), N2-Si-H1 165.2(8), N3-Si-N4 68.23(8), N3-Si-H1 95.8(8), N4-Si-H1 91.9(8), Si-O1-C27 137.73(16), O1-C27-O2 126.4(2), N1-C1-N2 107.4(2), N3-C14-N4 107.1(2). Ausgewählte Bindungslängen [pm] und -winkel [°] von 53b: Si-O1 177.54(17), Si-N1 186.2(2), Si-N2 195.2(2), Si-N3 186.7(2), Si-N4 198.0(2), Si-H1 146(2), O1-C27 132.0(3), O2-C27 120.9(3), N1-C1 133.2(3), N2-C1 131.6(3), N3-C14 133.7(3), N4-C14 131.6(3); O1-Si-N1 98.74(8), O1-Si-N2 93.02(8), O1-Si-N3 92.63(8), O1-Si-N4 160.04(9), O1-Si-H1 93.9(8), N1-Si-N2 67.98(8), N1-Si-N3 162.74(9), N1-Si-N4 100.41(9), N1-Si-H1 96.5(8), N2-Si-N3 98.64(9), N2-Si-N4 88.94(8), N2-Si-H1 163.8(8), N3-Si-N4 67.45(8), N3-Si-H1 95.7(8), N4-Si-H1 89.6(8), Si-O1-C27 137.64(16), O1-C27-O2 126.6(2), N1-C1-N2 107.4(2), N3-C14-N4 107.4(2).

5.2.13 Kristallstruktur des neutralen dinuklearen pentakoordinierten Silicium(IV)-Komplexes 54'·C₆H₅CH₃^[hh]

Verbindung **54'** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C als das Toluol-Solvat **54'**·C₆H₅CH₃. Die Molekülstruktur von **54'** im Kristall von **54'**·C₆H₅CH₃ ist in Abb. 5.33 gezeigt.

^[hh] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$; a = 11.106(3) Å; b = 23.640(4) Å; c = 22.783(5) Å; $a = 90^{\circ}$; $\beta = 98.84(3)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0385$.

Abb. 5.33: Molekülstruktur von 54' im Kristall von 54'·C₆H₅CH₃ mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si1–O1 172.05(13), Si1–O2 165.65(13), Si2–O1 165.90(13), Si2–O2 171.99(13), Si1–N1 179.67(15), Si1–N2 209.66(17), Si1–N3 175.69(16), Si2–N5 180.01(16), Si2–N6 209.09(16), Si2–N7 176.00(15), N1–C1 134.9(2), N2–C1 130.9(2), N3–C14 140.0(3), N4–C14 128.4(2), N5–C27 135.1(2), N6–C27 131.1(2), N7–C40 139.6(2), N8–C40 127.9(2); Si1–O1–Si2 93.43(7), Si1–O2–Si2 93.54(7), O1–Si1–O2 86.48(7), O1–Si2–O2 86.42(7), O1–Si1–N1 97.20(7), O1–Si1–N2 159.16(6), O1–Si1–N3 104.19(7), O1–Si2–N5 124.82(7), O1–Si2–N6 90.91(6), O1–Si2–N7 116.46(7), O2–Si1–N1 123.72(7), O2–Si1–N2 91.67(7), O2–Si1–N3 116.71(7), O2–Si2–N5 97.22(7), O2–Si2–N6 158.28(6), O2–Si2–N7 104.79(7), N1–Si1–N2 66.74(7), N1–Si1–N3 116.54(7), N2–Si1–N3 95.19(7), N5–Si2–N6 66.87(7), N5–Si2–N7 115.56(7), N6–Si2–N7 95.70(7), N1–C1–N2 108.41(16), N3–C14–N4 121.54(17), N5–C27–N6 108.29(15), N7–C40–N8 120.38(18).

Die Si-Koordinationspolyeder (SiN_3O_2 -Gerüste) entsprechen denen von stark verzerrten trigonalen Bipyramiden (Summen der äquatorialen Bindungswinkel: 356.97 und 356.84°). Die äquatorialen Positionen werden jeweils von den Amido-Stickstoff-Atomen der monodentaten Amidinato-Liganden, einem Stickstoff-Atom der bidentaten Amidinato-Liganden und einem Sauerstoff-Atom besetzt. In den axialen Positionen finden sich jeweils ein Stickstoff-Atom des bidentaten Amidinato-Liganden und ein Sauerstoff-Atom (axiale O-Si-N-Winkel: 159.16(6) und 158.28(6)°). Die Berry-Verzerrungen betragen 33.9 und 37.4%. Die Oxido-Liganden verbrücken die beiden Si-Koordinationszentren unter Ausbildung eines viergliedrigen Si₂O₂-Ringes (Si-O-Si-Winkel: 93.43(7) und 93.54(7)°; O-Si-O-Winkel: 86.48(7) und 86.42(7)°). Bemerkenswert sind auch, wie bei den Verbindungen **39** und **48**, die relativ kurzen Si-N-Bindungen zu den monodentaten Amidinato-Liganden (175.69(16) und 176.00(15) pm). Die äquatorialen Si-N-Bindungen zu den bidentaten Amidinato-Liganden (179.67(15) und 180.01(16) pm) sind deutlich kürzer als die axialen (209.66(17) und 209.09(16) pm); gleiches gilt für die Si–O-Bindungen (165.65(13) und 165.90(13) pm vs. 172.05(13) und 171.99(13) pm). Die strukturellen Merkmale von **54'** ähneln denen, welche für eine Serie analoger Silicium(IV)-Komplexe mit einem zentralen Si₂O₂-Ring gefunden wurden.^[6j,m]

5.2.14 Kristallstrukturen der neutralen pentakoordinierten Silicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden und einer Si=El-Doppelbindung (El = S, Se, Te)

5.2.14.1 Kristallstruktur von 55^[ii]

Verbindung **55** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C. Die Molekülstrukturen der beiden kristallographisch unabhängigen Moleküle (**55a** und **55b**) von **55** im Kristall sind in Abb. 5.34 gezeigt.

Die Si-Koordinationspolyeder (SiN_4 S-Gerüste) von **55a** und **55b** entsprechen denen von stark verzerrten trigonalen Bipyramiden (Summe der äquatorialen Bindungswinkel: 360.00° (55a) bzw. 359.97 (55b)). Die N-Si-N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe sind mit $(69.07(7) \text{ und } 68.88(7)^{\circ} (\mathbf{55a}) \text{ bzw. } 68.83(7) \text{ und } 68.79(7)^{\circ} (\mathbf{55b}) \text{ in derselben Größenordnung}$ wie bei den bisher diskutierten Komplexen mit bidentaten Amidinato-Liganden. Die beiden kristallographisch unabhängigen Moleküle von 55 unterscheiden sich im Wesentlichen durch die räumliche Anordnung der Isopropyl-Gruppen an den Stickstoff-Atomen. Auffallend ist jedoch die unterschiedlich stark ausgeprägte Verzerrung des Si-Koordinationspolyeders von 55a und 55b. So beträgt die Berry-Verzerrung von 55a 18.9%, die von 55b jedoch nur 14.8%. Auch die Abweichungen von dem idealen 180°-Winkel sind unterschiedlich stark ausgeprägt $(23.93(7)^{\circ}$ (55a), $21.69(7)^{\circ}$ (55b)). Verbindung 55 besitzt eine Si=S-Doppelbindung mit Bindungslängen von 201.93(9) (55a) bzw. 202.29(9) pm (55b). Diese sind etwas länger als diejenigen, welche für tri- und tetrakoordinierte Silicium(IV)-Komplexe mit Si=S-Doppelbindungen gefunden wurden (192.8(4)-201.3(3) pm),^[26] was im Einklang mit der Erhöhung der Si-Koordinationszahl von drei bzw. vier auf fünf steht. Die äquatorialen Si-N-Bindungen (182.09(17) und 181.48(16) pm (55a) bzw. 183.58(16) und 182.31(16) pm (55b)) sind deutlich kürzer als die axialen (196.11(16) und 192.62(16) pm (55a) bzw.195.01(15) und 196.82(15) pm (55b)). Die N-C-Bindungslängen innerhalb der N-C-N-

^[ii] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 17.987(3) Å; b = 16.210(3) Å; c = 19.063(3) Å; $a = 90^\circ$; $\beta = 105.88(2)^\circ$; $\gamma = 90^\circ$; R1 $[I > 2\sigma(I)] = 0.0392$.

Fragmente der Amidinato-Liganden (130.9(2)–135.9(2) pm (**55a**) bzw. 131.0(2)–135.1(2) pm (**55b**)) sind untereinander ähnlich und spiegeln die Delokalisation der Elektronen wider.

Abb. 5.34: Molekülstrukturen der beiden kristallographisch unabhängigen Moleküle (55a: links; 55b: rechts) von 55 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen (Aufenthaltswahrscheinlichkeit: Auslenkungsellipsoide 50%)ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°] von 55a: Si-S 201.93(9), Si-N1 182.09(17), Si-N2 196.11(16), Si-N3 181.48(16), Si-N4 195.62(16), N1-C1 134.7(2), N2-C1 131.8(2), N3-C14 135.9(2), N4-C14 130.9(2); S-Si-N1 123.43(6), S-Si-N2 103.55(6), S-Si-N3 123.90(6), S-Si-N4 100.32(6), N1-Si-N2 69.07(7), N1-Si-N3 112.67(8), N1-Si-N4 98.99(7), N2-Si-N3 95.91(7), N2-Si-N4 156.07(7), N3-Si-N4 68.88(7), N1-C1-N2 107.38(16), N3–C14–N4 106.33(15). Ausgewählte Bindungslängen [pm] und -winkel [°] von 55b: Si–S 202.29(9), Si-N1 183.58(16), Si-N2 195.01(15), Si-N3 182.31(16), Si-N4 196.82(15), N1-C1 135.1(2), N2-C1 131.0(2), N3-C14 134.5(2), N4-C14 131.4(2); S-Si-N1 123.66(6), S-Si-N2 99.65(5), S-Si-N3 125.01(6), S-Si-N4 102.02(6), N1-Si-N2 68.83(7), N1-Si-N3 111.30(8), N1-Si-N4 99.46(7), N2-Si-N3 97.71(7), N2-Si-N4 158.31(7), N3-Si-N4 68.79(7), N1-C1-N2 107.16(15), N3-C14-N4 107.57(15).

5.2.14.2 Kristallstruktur von 56^[jj]

Verbindung **56** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C. Die Molekülstruktur von **56** im Kristall ist in Abb. 5.35 gezeigt.

Das Si-Koordinationspolyeder (SiN_4 Se-Gerüst) von **56** entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 359.99°). Die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe sind mit 68.96(8) und 68.90(8)° in derselben Größenordnung wie bei den bisher diskutierten Komplexen mit bidentaten Amidinato-

^[ji] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/n$; a = 11.1400(7) Å; b = 16.3972(11) Å; c = 14.7306(9) Å; $a = 90^\circ$; $\beta = 92.894(2)^\circ$; $\gamma = 90^\circ$; R1 $[I > 2\sigma(I)] = 0.0334$.

Liganden. Die Berry-Verzerrung beträgt 17.5% und die maximale Abweichung von dem idealen 180°-Winkel von 22.23(8)° ist sehr ähnlich zu denen, wie sie für die beiden kristallographisch unabhängigen Moleküle von Verbindung **55** gefunden wurden. Verbindung **56** besitzt eine Si=Se-Doppelbindung mit einer Bindungslänge von 226.32(7) pm. Diese ist etwas länger als diejenigen, welche für tri- und tetrakoordinierte Silicium(IV)-Komplexe mit Si=Se-Doppelbindungen gefunden wurden (228.46(4)–234.49(7) pm),^[26] was im Einklang mit der Erhöhung der Si-Koordinationszahl von drei bzw. vier auf fünf steht (Summe der jeweiligen Kovalenzradien: 224 pm). Die äquatorialen Si–N-Bindungen (181.53(18) und 181.3(2) pm) sind auch hier deutlich kürzer als die axialen (195.34(18) und 195.50(17) pm). Die N–C-Bindungslängen innerhalb der N–C–N-Fragmente der Amidinato-Liganden (130.6(3)–135.6(3) pm) sind wie auch bei **53** untereinander sehr ähnlich und spiegeln die Delokalisation der Elektronen wider.

Abb. 5.35: Molekülstruktur von **56** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Se 216.32(7), Si–N1 181.53(18), Si–N2 195.34(18), Si–N3 181.3(2), Si–N4 195.50(17), N1–C1 133.8(3), N2–C1 131.4(3), N3–C14 135.6(3), N4–C14 130.6(3); Se–Si–N1 123.73(7), Se–Si–N2 102.72(6), Se–Si–N3 123.19(6), Se–Si–N4 99.50(5), N1–Si–N2 68.96(8), N1–Si–N3 113.07(9), N1–Si–N4 98.92(8), N2–Si–N3 97.99(9), N2–Si–N4 157.77(8), N3–Si–N4 68.90(8), N1–C1–N2 107.32(18), N3–C14–N4 106.64(19).

5.2.14.3 Kristallstruktur von $57.0.7 C_6 H_5 C H_3^{[kk]}$

Verbindung 57 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C als das Toluolsolvat $57 \cdot 0.7 C_6 H_5 CH_3$. Die Molekülstruktur von 57 im Kristall von $57 \cdot 0.7 C_6 H_5 CH_3$ ist in Abb. 5.36 gezeigt.

Abb. 5.36: Molekülstruktur von **57** im Kristall von **57**·0.7C₆H₅CH₃ mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si-Te 240.18(6), Si-N1 183.25(18), Si-N2 193.27(17), Si-N3 182.26(17), Si-N4 194.73(16), N1-C1 134.5(3), N2-C1 131.8(3), N3-C14 134.6(2), N4-C14 131.3(3); Te-Si-N1 126.42(6), Te-Si-N2 101.78(5), Te-Si-N3 122.62(6), Te-Si-N4 100.93(5), N1-Si-N2 69.30(7), N1-Si-N3 110.96(8), N1-Si-N4 97.27(8), N2-Si-N3 97.86(8), N2-Si-N4 157.29(7), N3-Si-N4 69.14(7), N1-C1-N2 107.15(17), N3-C14-N4 107.29(17).

Das Si-Koordinationspolyeder (SiN_4 Te-Gerüst) von **57** entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 360.00°). Die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe sind mit 69.30(7) und 69.14(7)° in derselben Größenordnung wie bei den bisher diskutierten Komplexen mit bidentaten Amidinato-Liganden. Die Berry-Verzerrung beträgt 15.3% und ist somit etwas geringer als bei den isostrukturellen Verbindungen **55** und **56** und die Abweichung von dem idealen 180°-Winkel von 22.71(7)° ist sehr ähnlich zu denen, welche für die beiden kristallographisch unabhängigen Moleküle von **55** und für **56**, gefunden wurden. Verbindung **57** besitzt eine Si=Te-Doppelbindung mit einer Bindungslänge von 240.18(6) pm. Diese ist etwas länger als

^[kk] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/n$; a = 11.6736(8)Å; b = 16.2635(12) Å; c = 17.2246(13) Å; $a = 90^{\circ}$; $\beta = 104.762(2)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0286$.

diejenigen, welche für tri- und tetrakoordinierte Silicium(IV)-Komplexe mit Si=Te-Doppelbindungen gefunden wurden (232.10(6)-238.3(2) pm),^[26] was auch hier im Einklang mit der Erhöhung der Koordinationszahl am Si-Koordinationszentrum von drei bzw. vier auf fünf steht (Summe der jeweiligen Kovalenzradien: 244 pm). Die äquatorialen Si–N-Bindungen (183.25(18) und 182.26(17) pm) sind wie auch bei **55** und **56** deutlich kürzer als die axialen (193.27(17) und 194.73(16) pm). Die N–C-Bindungslängen innerhalb der N–C–N-Fragmente der Amidinato-Liganden (131.3(3)–134.6(2) pm) sind wie auch bei **55** und **56** und **56**, untereinander sehr ähnlich und spiegeln die Delokalisation der Elektronen wider.

5.2.15 Kristallstrukturen der neutralen hexakoordinierten Silicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden und einem bidentaten *O,O*-Liganden

5.2.15.1 Kristallstruktur von 58^[11]

Verbindung **58** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C. Die Molekülstruktur von **58** im Kristall ist in Abb. 5.37 gezeigt.

Das Si-Koordinationspolyeder (SiN_4O_2 -Gerüst) von **58** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 21.11(11) bzw. 19.41(12)° und die N-Si-N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 69.21(12) und 68.89(11)°. Zusätzlich zu den SiN₂C-Ringen besitzt Verbindung **58** einen stark gespannten viergliedrigen SiO₂S-Ring, welchen der bidenate Sulfito-Ligand mit dem Si-Koordinationszentrum ausbildet. Die Si-O-S-Winkel betragen 95.78(12) und 96.10(13)° und der O-Si-O-Winkel beträgt 78.66(11)°. Die Si-N-Bindungslängen *trans* zu einem Stickstoff-Atom betragen 189.9(3) und 188.5(3) pm, diejenigen *trans* zu den Sauerstoff-Atomen des Sulfito-Liganden betragen 186.7(3) und 188.9(3) pm und sind somit untereinander sehr ähnlich. Die Si-O-Bindungslängen betragen 178.7(2) und 178.2(3) pm und sind damit deutlich kürzer als die Summe der jeweiligen Kovalenzradien (183 pm).

Das Schwefel-Atom des Sulfito-Liganden ist pseudotetraedrisch koordinert, wobei das freie Elektronenpaar formal als vierter Ligand fungiert. Die S–O-Bindungslängen zu denen an das Si-Koordinationszentrum gebundenen Sauerstoff-Atomen betragen 161.0(2) und 160.7(3) pm und können im Sinne von S–O-Einfachbindungen interpretiert werden (Summe der jeweiligen

^[11] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe Cc; a = 9.7158(5) Å; b = 17.7266(9) Å; c = 15.9804(7) Å; $a = 90^{\circ}$; $\beta = 98.195(2)^{\circ}$; $\gamma = 90^{\circ}$; $R1 [I > 2\sigma(I)] = 0.0411$.

Kovalenzradien: 170 pm). Die S–O3-Bindung ist mit 145.5(3) pm deutlich kürzer und kann formal als S=O-Doppelbindung formuliert werden.^[60]

Abb. 5.37: Molekülstruktur von **58** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O1 178.7(2), Si–O2 178.2(3), Si–N1 189.9(3), Si–N2 186.7(3), Si–N3 188.5(3), Si–N4 188.9(3), S–O1 161.0(2), S–O2 160.7(3), S–O3 145.5(3), N1–C1 132.3(4), N2–C1 133.7(4), N3–C14 131.5(4), N4–C14 133.2(4); O1–Si–O2 78.66(11), O1–Si–N1 98.09(11), O1–Si–N2 95.91(11), O1–Si–N3 96.43(11), O1–Si–N4 162.21(12), O2–Si–N1 98.92(12), O2–Si–N2 166.34(11), O2–Si–N3 96.51(12), O2–Si–N4 92.67(12), N1–Si–N2 69.21(12), N1–Si–N3 160.59(12), N1–Si–N4 98.59(11), N2–Si–N3 96.55(12), N2–Si–N4 95.74(12), N3–Si–N4 68.89(11), Si–O1–S 95.78(12), Si–O2–S 96.10(13), O1–Si–O2 89.37(12), O1–S–O3 109.63(15), O2–S–O3 109.96(16), N1–C1–N2 107.1(3), N3–C14–N4 107.5(3).

5.2.15.2 Kristallstruktur von 59^[mm]

Verbindung **59** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf 20 °C als das Cokristallisat von *cis*-**59** und *trans*-**59**. Die Molekülstrukturen von *cis*-**59** und *trans*-**59** im Kristall sind in Abb. 5.38 gezeigt.

Die Si-Koordinationspolyeder (SiN_4O_2 -Gerüst) der beiden Diastereomere von **59** entsprechen denen von stark verzerrten Oktaedern. Verbindung **59** besitzt einen bidentaten Dithionito-Liganden, in dem die nicht an das Si-Koordinationszentrum gebundenen Sauerstoff-Atome *cis*

^[mm] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/n$; a = 9.4889(16) Å; b = 18.986(4) Å; c = 15.666(3) Å; $a = 90^{\circ}$; $\beta = 95.267(12)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0358$.

bzw. trans zu einander angeordnet werden können. Interessanterweise ist das cis-Isomer die dominierende Spezies im Kristall (trans/cis-Verhältnis: 1:2.35). Ähnliches wurde bereits für die Molekülstrukturen des Dithionit-Dianions in Na₂S₂O₄ und Zn₂S₂O₄·Pyridin gefunden, bei denen die doppelt gebundenen Sauerstoff-Atome eine ekliptische Anordnung einnehmen.^[61] Bemerkenswert ist hierbei, dass das trans/cis-Verhältnis in dem vermessenen Einkristall nicht den NMR-Messungen im Festkörper bestimmten Verhältnis mit dem aus übereinstimmt. Somit repräsentiert der verwendete Einkristall in Bezug auf das Diastereomerenverhältnis nicht das Gesamtmaterial. Die Molekülstrukturen von cis-59 und trans-59 sind bis auf die Lage des Sauerstoff-Atoms O4 identisch, weshalb im Folgenden, abgesehen von den unterschiedlichen Bindungslängen und -winkel welche O4 betreffen, nicht weiter zwischen beiden Diastereomeren differenziert wird. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 20.70(7) bzw. 16.08(7)° und die N-Si-N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 69.63(7) und $69.30(7)^{\circ}$. Zusätzlich zu den SiN_2C -Ringen besitzt Verbindung **59** einen fünfgliedrigen SiO_2S_2 -Ring, welchen der bidentate Dithionito-Ligand mit dem Si-Koordinationszentrum ausbildet. Die Si-O-S-Winkel betragen 130.12(8) und 130.58(8)° und der O-Si-O-Winkel beträgt 90.67(6)°. Die Si-N-Bindungslängen trans zu einem Stickstoff-Atom betragen 185.81(16) und 186.33(61) pm, diejenigen trans zu den Sauerstoff-Atomen des Dithionito-Liganden betragen 189.22(16) und 191.04(16) pm und sind somit untereinander sehr ähnlich. Die Si-O-Bindungslängen betragen 178.82(14) und 176.86(14) pm und sind denen von **59** sehr ähnlich.

Die Schwefel-Atome des Dithionito-Liganden sind pseudotetraedrisch koordiniert, wobei das freie Elektronenpaar jeweils formal als vierter Ligand fungiert. Die S–O-Bindungslängen zu denen an das Si-Koordinationszentrum gebundenen Sauerstoff-Atomen betragen 157.00(14) und 156.42(13) pm und können als S–O-Einfachbindungen interpretiert werden (Summe der jeweiligen Kovalenzradien: 170 pm). Interessanterweise unterscheiden sich die S–O-Bindungslängen zu den nicht an das Silicium-Atom gebundenen Sauerstoff-Atomen in *cis*-**59** nur geringfügig (146.96(16) und 149.4(2) pm), wohingegen die analogen Bindungen von *trans*-**59** um 7.44 pm voneinander abweichen. Wie auch bei Verbindung **58** können diese S–O-Bindungslängen im Sinne von S=O-Doppelbindungen interpretiert werden.^[60] Der Dithionito-Ligand besitzt eine S–S-Einfachbindung, welche mit 233.59(7) pm im Vergleich zu einer typischen S–S-Einfachbindung (208 pm) sehr lang und vergleichbar zu denen von Na₂S₂O₄ und Zn₂S₂O₄·Pyridin ist.^[61]

Abb. 5.38: Molekülstruktur der beiden Diastereomere (cis-**59**: links; trans-**59**: rechts) von **59** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthalts-wahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°] von cis-**59**: Si-O1 178.82(14), Si-O2 176.86(14), Si-N1 185.81(16), Si-N2 189.22(16), Si-N3 186.33(16), Si-N4 191.04(16), S1-S2 233.59(7), S1-O1 157.00(14), S1-O3 146.96(16), S2-O2 156.42(13), S2-O4 149.4(2), N1-C1 133.9(2), N2-C1 133.1(2), N3-C14 132.9(2), N4-C14 132.7(2); O1-Si-O2 90.67(6), O1-Si-N1 95.75(7), O1-Si-N2 92.19(7), O1-Si-N3 94.08(7), O1-Si-N4 163.30(7), O2-Si-N1 95.41(7), O2-Si-N2 164.98(7), O2-Si-N3 97.16(7), O2-Si-N4 89.79(7), N1-Si-N2 69.63(7), N1-Si-N3 163.92(7), N1-Si-N4 100(83(7), N2-Si-N3 97.34(7), N2-Si-N4 91.67(7), N3-Si-N4 69.30(7), S1-S2-O2 93.02(5), S2-S1-O1 93.18(5), S1-S2-O4 96.95(9), S2-S1-O3 100.53(7), S1-O1-Si 130.12(8), S2-O2-Si 130.58(8), O1-S-O3 110.81(9), O2-S2-O4 105.86(10), N1-C1-N2 106.66(16), N3-C14-N4 107.79(16). Bindungslängen [pm] und -winkel [°] von trans-**59**, welche sich von denen von cis-**59** unterscheiden: S2-O4 1.544(5), S1-S2-O4 103.83(18), O2-S2-O4 102.99(19).

5.2.16 Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes $60^{[nn]}$

Verbindung **60** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C. Die Molekülstruktur von **60** im Kristall ist in Abb. 5.39 gezeigt.

Das Si-Koordinationspolyeder (SiN_4 CH-Gerüst) von **60** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 22.32(6) bzw. 24.42(6)° und die N-Si-N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 67.86(6) und 67.68(6)°. Die Si-N-Bindungslängen sind mit 191.46(15)-194.61(17)

^[nn] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P\overline{1}$; a = 10.035(2) Å; b = 12.199(2) Å; c = 14.700(3) Å; $a = 103.94(3)^{\circ}$; $\beta = 96.76(3)^{\circ}$; $\gamma = 100.71(3)^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0405$.

pm im Vergleich zu den bisher diskutierten Silicium-Komplexen mit zwei bidentaten Amidinato-Liganden ungewöhnlich lang. Der Si-H-Bindungsabstand liegt mit 143(2) pm im erwarteten Bereich und die Si-C-Bindungslänge zu dem Carboranyl-Liganden beträgt 204.62(18) pm. Diese ist somit deutlich länger als die analogen Bindungen der anderen in dieser Arbeit vorgestellten hexakoordinierten Silicium(IV)-Verbindungen und ebenfalls deutlich länger als diejenigen Si-C-Bindungen, welche für mono-*C*-silylsubstituierte 1,2-Dicarba-*closo*-dodecaborane gefunden wurden.^[62] Da das *ortho*-Kohlenstoff-Atom (C28) über die zu dem Si-Koordinationszentrum *ortho* ständigen Positionen des Clusters fehlgeordnet, ist kann keine verlässliche Aussage über die C-C-Bindungslänge innerhalb des Carboranyl-Ligandens getroffen werden.

Abb. 5.39: Molekülstruktur von **60** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–N1 192.68(15), Si–N2 191.90(15), Si–N3 191.46(15), Si–N4 194.61(17), Si–C27 204.62(18), Si–H1 143(2), N1–C1 134.6(2), N2–C1 131.1(2), N3–C14 133.4(2), N4–C14 132.6(2); N1–Si–N2 67.86(6), N1–Si–N3 155.58(6), N1–Si–N4 95.98(7), N1–Si–C27 102.52(7), N1–Si–H1 94.2(8), N2–Si–N3 92.98(6), N2–Si–N4 89.21(6), N2–Si–C27 170.35(7), N2–Si–H1 92.0(8), N3–Si–N4 67.68(6), N3–Si–C27 96.06(7), N3–Si–H1 101.7(8), N4–Si–C27 91.11(7), N4–Si–H1 169.4(8), C27–Si–H1 89.5(8), N1–C1–N2 107.80(14), N3–C14–N4 107.87(14).

5.2.17 Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes $61^{[00]}$

Verbindung **61** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C. Die Molekülstruktur von **61** im Kristall ist in Abb. 5.40 gezeigt.

Abb. 5.40: Molekülstruktur von **61** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–N1 192.1(2), Si–N2 193.3(2), Si–N3 188.1(2), Si–N4 202.2(2), Si–C27 198.2(3), Si–H1 137(2), N1–C1 134.2(3), N2–C1 131.5(3), N3–C14 133.5(3), N4–C14 131.4(3), N5–C28 116.1(4), C27–C28 144.3(4); N1–Si–N2 67.79(9), N1–Si–N3 157.02(9), N1–Si–N4 98.26(8), N1–Si–C27 99.91(10), N1–Si–H1 96.6(10), N2–Si–N3 93.70(9), N2–Si–N4 89.03(9), N2–Si–C27 166.41(11), N2–Si–H1 92.4(10), N3–Si–N4 66.75(8), N3–Si–C27 96.69(10), N3–Si–H1 97.7(10), N4–Si–C27 87.07(10), N4–Si–H1 164.5(10), C27–Si–H1 94.8(10), Si–C27–C28 113.25(19), N5–C28–C27 176.6(3), N1–C1–N2 108.0(2), N3–C14–N4 108.6(2).

Das Si-Koordinationspolyeder (SiN_4 CH-Gerüst) von **61** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 23.25(8) bzw. 22.98(9)° und die N-Si-N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 67.79(9) und 66.75(8)°. Die Si-N-Bindungslängen *trans* zu einem Stickstoff-Atom betragen 192.1(2) und 188.1(2) pm und unterscheiden sich somit im Gegensatz zu den bisher diskutierten Verbindungen stark. Auch die Si-N-Bindungslängen *trans* zu dem Kohlenstoffbzw. Wasserstoff-Atom sind mit 193.3(2) und 202.2(2) pm sehr unterschiedlich. Der Si-H-Bindungsabstand ist mit 137(2) pm sehr kurz. Verbindung **61** trägt einen Cyanomethyl-Liganden, welcher über das *a*-Kohlenstoff-Atom an das Si-Koordinationszentrum gebunden

^[oo] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $Pna2_1$; a = 17.7237(15) Å; b = 9.7515(9) Å; c = 16.3476(17) Å; $a = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0336$.

ist. Die Si–C-Bindungslänge beträgt 198.2(3) pm und der Cyanomethyl-Ligand ist mit einem Si–C–C-Winkel von 113.25(19)° gewinkelt an das Silicium-Atom gebunden. Der N–C–C-Winkel weicht nur um 3.4(3)° von dem idealen 180°-Winkel ab und der N–C-Bindungsabstand innerhalb des CH₂–C–N-Fragments liegt mit 116.1(4) pm im erwarteten Bereich.

Verbindung **61** ist die erste strukturell charakterisierte höherkoordinierte Silicium(IV)-Verbindung mit einem Cyanomethyl-Liganden. Desweiteren ist in der Literatur bislang nur eine tetrakoordinierte Silicium(IV)-Verbindung mit einem solchen Liganden beschrieben, welche strukturell charakterisiert wurde.^[63] Die strukturellen Merkmale des Cyanomethyl-Liganden dieser Verbindung sind denen von **61** sehr ähnlich.

5.2.18 Kristallstruktur des neutralen trikoordinierten Beryllium(II)-Komplexes 66·8^[pp]

Verbindung **66**·**8** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C. Nachdem Verbindung **8** bereits literaturbekannt und strukturell charakterisiert ist,^[10m] wird im Folgenden nur auf die Struktur von **66** eingegangen. Die Molekülstruktur von **66** im Kristall von **66**·**8** ist in Abb. 5.41 gezeigt.

Das Be-Koordinationszentrum (BeN_2 Cl-Gerüst) von **66** ist verzerrt trigonal-planar von einem Chlor-Atom und zwei Stickstoff-Atomen umgeben (Summe der Bindungswinkel in der Ebene: 359.75°). Die Amidinato-Liganden verbrücken die beiden Be-Koordinationszentren und bilden mit diesen einen achtgliedrigen Be₂N₄C₂-Ring mit N–C–N-Winkeln von 113.55(12)° und N–Be–N-Winkeln von 118.5(2)°. Die N–Be-Bindungslängen betragen 168.7(4) und 167.3(3) pm. Sie liegen im erwarteten Bereich, sind jedoch etwas länger als die Summe der jeweiligen Kovalenzradien (163 pm). Die Cl–Be-Bindungslängen betragen 190.6(4) pm und sind somit etwas kürzer als die Summe der jeweiligen Kovalenzradien (192 pm). Sie sind vergleichbar mit denen, welche für andere tri- bzw. tetrakoordinierte Beryllium-Komplexe mit Stickstoffhaltigen Liganden gefunden wurden.^[64]

^[pp] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe *Pbcn*; a = 19.705(4) Å; b = 8.2894(17) Å; c = 17.024(3) Å; $a = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0390$.

Abb. 5.41: Molekülstruktur von **66** im Kristall von **66**·8 mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Aufgrund der hohen Symmetrie wurden die Bindungslängen und -winkel einer Molekülhälfte symmetriegeneriert errechnet.^[65] Ausgewählte Bindungslängen [pm] und -winkel [°]: Cl2–Be 190.6(4), N1–C1 131.43(19), N2–C1 134.29(17), N1A–Be 168.7(4), N2–Be 167.3(3); Cl2–Be–N1A 117.55(19), Cl2–Be–N2 123.7(2), N1–C1–N2 113.55(12), N1A–Be–N2 118.5(2).

5.2.19 Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes 68^[qq]

Verbindung **68** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf -20 °C. Die Molekülstruktur von **68** im Kristall ist in Abb. 5.42 gezeigt.

Das Si-Koordinationspolyeder (SiN_4I_2 -Gerüst) von **68** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 20.38(10) bzw. 15.14(8)° und die N-Si-N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 70.17(11) und 69.62(10)°. Die Si-N-Bindungslängen *trans* zu einem Stickstoff-Atom betragen 185.8(3) und 186.4(2) pm, diejenigen *trans* zu den Iod-Atomen betragen 186.2(3) und 190.1(2) pm. Auffallend ist, dass sich die beiden Si-N-Bindungslängen *trans* zu den Iodo-Liganden um 3.9 pm unterscheiden, während die beiden anderen Si-N-Bindungslängen sehr

^[qq] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P\overline{1}$; a = 10.3145(14) Å; b = 10.6736(15) Å; c = 15.348(2) Å; $a = 105.661(7)^{\circ}$; $\beta = 93.145(6)^{\circ}$; $\gamma = 113.626(5)^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0384$.

ähnlich sind. Die Si–I-Bindungslängen betragen 266.14(8) und 264.41(8) pm und sind deutlich länger als die Summe der jeweiligen Kovalenzradien (250 pm). Nachdem bislang keine weiteren strukturell charakterisierten hexakoordinierten Silicium(IV)-Komplexe mit Si–I-Bindungen bekannt sind, können die Si–I-Bindungslängen lediglich mit pentakoordinierten Silicium(IV)-Verbindungen verglichen werden. In diesen werden Si–I-Bindungslängen von 273.96(8) bzw. 282.25(7) pm gefunden, welche damit, trotz der niedrigeren Si-Koordinationszahl, deutlich länger sind als in **68**.^[66]

Abb. 5.42: Molekülstruktur von **68** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–II 266.14(8), Si–I2 264.41(8), Si–N1 185.8(3), Si–N2 186.2(3), Si–N3 186.4(2), Si–N4 190.1(2), N1–C1 134.0(4), N2–C1 133.2(4), N3–C14 134.1(3), N4–C14 132.5(3); I1–Si–I2 90.84(3), I1–Si–N1 94.21(8), I1–Si–N2 88.53(8), I1–Si–N3 95.32(8), I1–Si–N4 164.86(8), I2–Si–N1 95.41(8), I2–Si–N2 165.47(9), I2–Si–N3 94.55(8), I2–Si–N4 88.95(8), N1–Si–N2 70.17(11), N1–Si–N3 166.09(12), N1–Si–N4 100.88(11), N2–Si–N3 99.96(12), N2–Si–N4 95.41(11), N3–Si–N4 69.62(10), N1–C1–N2 106.3(2), N3–C14–N4 107.5(2).

5.2.20 Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes $69 \cdot CH_3 CN^{[rr]}$

Verbindung **69** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -20 °C als das Acetonitril-Solvat **69**·CH₃CN. Die Molekülstruktur von **69** im Kristall von **69**·CH₃CN ist in Abb. 5.43 gezeigt.

Abb. 5.43: Molekülstruktur von **69** im Kristall von **69**·CH₃CN mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Se1 244.70(10), Si–Se2 243.09(11), Si–N1 188.8(2), Si–N2 189.4(2), Si–N3 187.9(2), Si–N4 194.0(2), N1–C1 133.6(3), N2–C1 133.1(3), N3–C14 133.8(3), N4–C14 133.0(3); Se1–Si–Se2 90.07(3), Se1–Si–N1 97.69(8), Se1–Si–N2 165.74(7), Se1–Si–N3 96.08(8), Se1–Si–N4 83.14(7), Se2–Si–N1 97.20(7), Se2–Si–N2 95.49(7), Se2–Si–N3 99.31(7), Se2–Si–N4 165.11(7), N1–Si–N2 68.63(10), N1–Si–N3 158.43(9), N1–Si–N4 96.83(9), N2–Si–N3 95.96(10), N2–Si–N4 94.23(9), N3–Si–N4 68.43(9), N1–C1–N2 106.1(2), N3–C14–N4 107.3(2).

Das Si-Koordinationspolyeder (SiN_4Se_2 -Gerüst) von **69** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 21.57(9) bzw. 21.57(9)° und die N-Si-N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 68.63(10) und 68.43(9)°. Die Si-N-Bindungslängen *trans* zu einem Stickstoff-Atom betragen 188.8(2) und 187.9(2) pm, diejenigen *trans* zu den Selen-Atomen der Selenophenol-Liganden betragen 189.4(2) und 194.0(2) pm. Auffallend ist wie auch bei Verbindung **68**, dass sich die beiden Si-N-Bindungslängen *trans* zu den monodentaten Liganden um 4.6 pm

^[rr] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$; a = 10.685(2) Å; b = 11.458(2) Å; c = 16.321(3) Å; $a = 101.47(3)^{\circ}$; $\beta = 93.32(3)^{\circ}$; $\gamma = 90.10(3)^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0375$.

unterscheiden, während auch hier die beiden anderen Si–N-Bindungslängen nahezu identisch sind. Die Si–Se-Bindungslängen betragen 244.70(10) und 243.09(11) pm und sind sehr ähnlich zu den Si–Se-Bindungslängen, welche für einen anderen Bisamidinatosilicium(IV)-Komplex mit einem 1,2-Benzolselenolato-Liganden gefunden wurden (239.89(8) und 241.42(7) pm),^[10m] jedoch deutlich länger als die Summe der jeweiligen Kovalenzradien (234 pm). Die beiden Phenyl-Gruppen an den Selen-Atomen stehen *cis* zueinander und der Se–Si–Se-Winkel beträgt 90.07(3)°.

5.2.21 Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes 70·0.5n-C₆H₁₄^[ss]

Verbindung **70** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (*n*-Hexan) auf -20 °C als das Hemi-*n*-hexan-Solvat **70**.0.5n-C₆H₁₄. Die Molekülstruktur von **70** im Kristall von **70**.0.5n-C₆H₁₄ ist in Abb. 5.44 gezeigt.

Das Si-Koordinationspolyeder (SiN_4 CF-Gerüst) von **70** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90- und 180°-Winkeln betragen 22.58(6) bzw. 19.07(6)° und die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 68.12(5) und 67.42(6)°. Die Si–N-Bindungslängen *trans* zu einem Stickstoff-Atom betragen 187.11(14) und 188.16(14) pm und sind somit deutlich kürzer als diejenigen *trans* zu dem Fluor- bzw. dem Kohlenstoff-Atom (193.54(12) und 197.44(13) pm). Die N–C-Bindungslängen innerhalb der N–C–N-Fragmente der Amidinato-Liganden sind mit 132.0(2)–134.1(2) untereinander sehr ähnlich, sodass von einer wenig beeinträchtigten Elektronendelokalisation ausgegangen werden kann. Die Si–F-Bindungslänge liegt mit 164.84(9) pm im erwarteten Bereich, ist jedoch deutlich kürzer als die Summe der jeweiligen Kovalenzradien (181 pm). Verbindung **70** ist der erste strukturell charakterisierte hexakoordinierte Silicium(IV)-Komplex mit einem Pentafluorphenyl-Liganden und die Si–C-Bindungslänge beträgt 200.42(16) pm. Diese ist somit etwas länger als analoge Si–C-Bindungen in pentakoordinierten Silicium(IV)-Komplexen (185.4(4)–199.6(2) pm),^[53] was im Einklang mit der Erhöhung der Koordinationszahl von fünf auf sechs steht.

^[ss] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$; a = 11.0556(14) Å; b = 17.872(2) Å; c = 17.762(3) Å; $a = 90^{\circ}$; $\beta = 98.039(16)^{\circ}$; $\gamma = 90^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0383$.

Abb. 5.44: Molekülstruktur von **70** im Kristall von **70**·0.5n-C₆H₁₄ mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–F1 164.84(9), Si–N1 187.11(14), Si–N2 193.54(12), Si–N3 188.16(14), Si–N4 197.44(13), Si–C27 200.42(16), N1–C1 133.96(18), N2–C1 132.0(2), N3–C14 134.1(2), N4–C14 131.1(2); F1–Si–N1 94.05(5), F1–Si–N2 160.93(6), F1–Si–N3 98.58(5), F1–Si–N4 89.54(5), F1–Si–C27 92.31(6), N1–Si–N2 68.12(5), N1–Si–N3 161.67(6), N1–Si–N4 99.60(6), N1–Si–C27 98.26(6), N2–Si–N3 97.37(6), N2–Si–N4 86.98(5), N2–Si–C27 96.80(6), N3–Si–N4 67.42(6), N3–Si–C27 94.47(6), N4–Si–C27 161.87(6), N1–C1–N2 106.59(12), N3–C14–N4 107.70(13).

5.3 Vergleich der Molekülstrukturen

5.3.1 Vergleich der neutralen pentakoordinierten Silicium(IV)-Komplexe mit einem Amidinato-, drei Halogeno- bzw. zwei (Pseudo)halogeno- und einem 2,4,6-Trimethoxyphenyl- bzw. einem Pentafluorphenyl-Liganden

Die neutralen pentakoordinierten Silicium(IV)-Komplexe 2, 3, 10, 13–15, 18 und 19 besitzen jeweils einen bidentaten monoanionischen Amidinato-Liganden, dessen Stickstoff-Atome eine äquatoriale und eine axiale Position besetzen. Die Verbindungen 2 und 3 besitzen zusätzlich drei Halogeno-Liganden, die Komplexe 10, 13 und 14 zwei (Pseudo)halogeno- und einen TMOP-Liganden. Verbindung 15 zeichnet sich durch einen bidentaten monoanionischen Amidinato-, einen TMOP- und einen bidentaten dianionischen *O*, *O*-Liganden aus. Die pentakoordinierten Silicium(IV)-Verbindungen 18 und 19 sind analog zu 10 und 13–15 aufgebaut, tragen jedoch statt eines TMOP-Liganden einen Pentafluorphenyl-Substituenten.

Die äquatorialen Si-N-Bindungslängen von 2, 3, 10, 13–15, 18 und 19 (177.73(10)– 182.14(10) pm) sind allesamt deutlich kürzer als die axialen (190.1(2)–204.36(10) pm), wobei die größte Differenz der Si-N-Bindungslängen für Verbindung 13 beobachtet wird (26.63 pm). Interessanterweise zeigen die Si-N-Bindungslängendifferenzen (11.3–26.63 pm) eine starke Abhängigkeit von dem Substitutionsmuster, während die N–C-Bindungslängendifferenzen innerhalb der N–C–N-Fragmente (5.6–6.36 pm) relativ konstant sind (Tabelle 5.1). Dies legt den Schluss nahe, dass die Delokalisation der Elektronen innerhalb der N–C–N-Fragmente der Amidinato-Liganden zwar eingeschränkt ist, dieser Umstand jedoch nicht ausschließlich für die starken Si–N-Bindungslängendifferenzen verantwortlich ist. So haben die übrigen Substituenten einen großen Einfluss auf die Si–N-Bindungslängen, wirken sich jedoch nur sehr gering auf die elektronischen Eigenschaften der Amidinato-Liganden aus. Interessanterweise sind die Berry-Verzerrungen der Komplexe 2, 3, 10, 13, 14, 18 und 19 unabhängig von den großen Si–N-Bindungslängendifferenzen mit 20.1–29.3% relativ ähnlich, wohingegen 15 eine wesentlich größere Berry-Verzerrung von 42.6% aufweist.

Verbindung	Si–N _{äq}	$\rm Si–N_{ax}$	$\Delta \rm{Si-N_{\ddot{a}q}/Si-N_{ax}}$	$N_{\ddot{a}q}$ –C	N_{ax} – C	$\Delta N_{\ddot{a}q}\text{-}C/N_{ax}\text{-}C$	Gerüsttyp
2	179.79(17)	194.46(16)	14.67	136.4(2)	130.5(2)	5.9	SiN_2F_3
3	178.8(2)	190.1(2)	11.3	136.1(3)	130.0(3)	6.1	SiN_2Br_3
10	179.94(18)	197.74(19)	17.80	135.9(3)	130.3(3)	5.6	SiN_2CCl_2
13	177.73(10)	204.36(10)	26.63	$135.66(15)^{[a]}$	$129.30(15)^{[b]}$	6.36	SiN_4C
14	178.15(11)	196.47(12)	18.32	$135.45(17)^{[a]}$	$129.82(17)^{[b]}$	5.63	SiN_4C
15	182.14(10)	193.56(11)	11.42	135.04(16)	130.97(16)	4.07	SiN_2O_2C
18	178.58(14)	196.98(13)	18.40	136.2(2)	130.2(2)	6.0	SiN_2CCl_2
19	178.0(2)	195.5(3)	17.5	135.9(4)	130.3(4)	5.6	SiN_2CBr_2

Tabelle 5.1: Vergleich ausgewählter Bindungslängen [pm] von 2, 3, 10, 13–15, 18 und 19.

[a] N1-C1. [b] N2-C1.

Wie zu erwarten ist, sind auch die äquatorialen Si-X-Bindungen (Tabelle 5.2) kürzer als die axialen. Des Weiteren sind alle äquatorialen Si-X-Bindungen kürzer als die Summen der jeweiligen Kovalenzradien. Dies gilt ebenfalls für die axialen Si-X-Bindungen der Komplexe 2, 13, 14, 15 und 18, wohingegen die entsprechenden Bindungen der Verbindungen 3, 10 und 19 gegenüber der Summe der jeweiligen Kovalenzradien leicht verlängert sind (Tabelle 5.2).

Verbindung	$\mathrm{Si-}X_{\mathrm{\ddot{a}q}}$	Si–X _{ax}	$\Delta_{max} Si – X_{\ddot{a}q} / Si – X_{ax}$	Si-C14	Σ Kovalenz radien (Si,X)
2 (X = F)	159.49(15)	162.97(14)	4.57		181
	158.40(16)				
3 (X = Br)	223.52(12)	232.60(11)	9.08		231
	223.54(13)				
10 (X = Cl)	208.79(12)	219.28(10)	10.49	188.7(2)	216
13 (X = N)	174.46(10)	180.35(11)	5.89	187.00(12)	187
14 (X = N)	174.99(13)	182.26(12)	7.27	187.03(14)	187
15 (X = O)	170.28(9)	175.68(9)	5.40	188.89(12)	183
18 (X = Cl)	207.83(8)	215.44(6)	7.61	189.74(15)	216
19 (X = Br)	222.97(9)	234.95(8)	11.98	189.5(3)	231

Tabelle 5.2: Ausgewählte Bindungslängen [pm] von 2, 3, 10, 13–15, 18 und 19.

Die Verbindungen **10** und **13–15** stellen die ersten strukturell charakterisierten pentakoordinierten Silicium(IV)-Komplexe mit einem TMOP-Liganden dar. Bemerkenswert ist, dass die Si–C-Bindungsabstände zu dem TMOP-Liganden in **10** und **13–15** (187.00(12)–188.89(12) pm; Tabelle 5.2) trotz der höheren Si-Koordinationszahl nicht länger sind als die analogen Si–C-Bindungen in tetrakoordinierten Silicium(IV)-Verbindungen mit TMOP-Substituenten (185.4(2)–192.0(4) pm).^[18] Dies kann im Sinne einer erhöhten Si–C-Bindungsstabilität in **10** und **13–15** im Vergleich zu den entsprechenden tetrakoordinierten Silanen erklärt werden.

Der Vergleich zwischen den Verbindungen mit einem TMOP-Liganden (10, 13–15) mit den Silicium(IV)-Komplexen mit einem Pentafluorphenyl-Liganden (18, 19) zeigt, dass die elektronischen Eigenschaften des organischen Restes (TMOP: "elektronenschiebend"; C_6F_5 : "elektronenziehend") keinen entscheidenden Einfluss auf die restlichen Bindungslängen und - winkel an den Si-Koordinationspolyedern ausüben.

5.3.2 Vergleich der dinuklearen zwitterionischen pentakoordinierten Silicium(IV)-Komplexe mit zwei bidentaten N,N-Liganden

Die Verbindungen **26–29** stellen die einzigen in der vorliegenden Arbeit beschriebenen Silicium(IV)-Komplex dar, welche keine Amidinato-Liganden tragen. Stattdessen besitzen die pentakoordinierten Si-Koordinationszentren jeweils einen bidentaten N,N- und zwei Chloro-Liganden, welche die Silicium-Atome verzerrt trigonal-bipyramidal umgeben (*Si*N₃Cl₂-Gerüst). Die Si-Koordinationszentren werden durch die zwei Imido-Stickstoff-Atome unter Bildung eines planaren zentralen viergliedrigen Si_2N_2 -Rings verbrückt. Die Komplexe **26–29** besitzen C_i -Symmetrie. Interessanterweise wird für Verbindung **26** ein anderer Koordinationsmodus an den Si-Atomen als bei **27–29** beobachtet: Während bei **26** beide Chloro-Liganden und ein Imido-Stickstoff-Atom die äquatorialen Bindungspositionen besetzen, sind bei **27–29** die äquatorialen Positionen durch ein Chlor-Atom sowie ein Imido- und ein Amido-Stickstoff-Atom belegt (Abb. 5.44).

Abb. 5.44: Schematische Darstellung der unterschiedlichen Koordinationsmodi von **26** (links) und **27–29** (rechts).

Trotz der unterschiedlichen Koordinationsmodi zeigen 26–29 untereinander sehr ähnliche Si-N- und Si-Cl-Bindungslängen (Tabelle 5.3). Die äquatorialen Si-Cl-Abstände liegen im Bereich von 212.14(7)-214.46(7) pm und sind somit deutlich kürzer als die axialen (222.91(6) - 225.95(6))pm). Während die äquatorialen Si–N(Imido)-Bindungen (172.70(15)–173.68(16) pm) allesamt deutlich kürzer als die axialen sind, ähneln sich die axialen Si–N(Imido)und äquatorialen Si–N(Amido)-Bindungslängen stark (182.75(15)–184.09(16) pm). Der axiale Si–N(Amido)-Abstand von Verbindung 26 ist mit 191.38(15) pm deutlich größer als die übrigen Si-N-Bindungen.

Tabelle 5.3: Vergleich der Si-Cl- und Si-N-Bindungslängen [pm] von 26-29.

Verbindung	Si–Cl _{äq}	Si–Cl _{ax}	Si–N(Imido) _{äq}	Si–N(Imido) _{ax}	Si–N(Amido) _{äq}	Si–N(Amido) _{ax}
26	212.27(7) 212.63(7)	_	172.82(15)	183.64(15)	_	191.38(15)
27	212.14(7)	225.95(6)	172.70(15)	183.20(14)	183.27(17)	
28	212.42(7)	223.16(8)	173.68(16)	183.41(15)	184.09(16)	
29	214.46(7)	222.91(6)	173.60(14)	182.75(15)	183.87(15)	

Die für 26–29 gefundenen Si–N-Abstände sind kürzer als die analogen Si–N-Bindungen in anderen pentakoordinierten Silicium(IV)-Komplexen mit einem viergliedrigen Si_2N_2 -Ring.^[67]

Lediglich eine Verbindung dieses Typs weist mit 180.90(15) pm eine etwas kürzere Si– N_{ax} -Bindung innerhalb des viergliedrigen Si₂N₂-Rings auf.^[67f]

Trotz der Ähnlichkeit in den Si-Cl- und Si-N-Bindungslängen sind die Si-Koordinationspolyeder von **27–29** mit Berry-Verzerrungen von 20.7–23.0% deutlich stärker verzerrt als die von Verbindung **26** (Berry Verzerrung: 8.8%).

5.3.3 Vergleich der neutralen hexakoordinierten Silicium(IV)-Komplexe mit einem Amidinato-, einem N,O- und zwei (Pseudo)halogeno-Liganden

Die Si-Koordinationszentren der Verbindungen **30–37** werden von einem bidentaten monoanionischen Amidinato-, einem bidentaten monoanionischem N,O- sowie zwei monodentaten monoanionischen (Pseudo)halogeno- bzw. einem bidentaten dianionischen O,O-Liganden verzerrt oktaedrisch umgeben. Die beiden bidentaten monoanionischen Liganden stehen *cis* zueinander, wobei eines der Stickstoff-Atome (N2) des Amidinato-Liganden *trans* zu dem Sauerstoff-Atom des N,O-Liganden steht. Das zweite Stickstoff-Atom des Amidinato-Liganden (N1) und das Stickstoff-Atom des N,N-Liganden (N3) stehen jeweils *trans* zu den an das Silicium-Atom gebundenen Atomen der monodentaten bzw. des O,O-Liganden.

Verbindung	$\Delta_{\rm max}90^\circ$	$\Delta_{\rm max} 180^\circ$	Gerüsttyp
30	20.86(6)	15.61(4)	SiN_3OCl_2
31	20.52(11)	15.22(8)	SiN_3OBr_2
32	21.03(5)	18.69(5)	SiN_3OF_2
33	21.02(5)	17.05(6)	SiN_5O
34	21.02(6)	13.58(7)	SiN_5O
35	20.53(6)	15.36(6)	SiN_5O
36a	19.70(7)	18.78(7)	SiN_3O_3
36 b	19.94(7)	16.29(7)	SiN_3O_3
37	21.39(6)	15.79(6)	SiN_3O_3

Tabelle 5.4: Vergleich der maximalen Abweichungen [°] von den idealen 90- bzw. 180°-Winkeln von **30–37**.

Wie aus Tabelle 5.4 ersichtlich ist, hängt die Verzerrung des Oktaeders in einem gewissen Maße von dem Substitutionsschema ab und die maximalen Abweichungen von den idealen 90- bzw. 180°-Winkeln sind im Bereich 19.70(7)–21.39(6)° bzw. 13.58(7)–18.78(7)°. Auffallend ist die starke Verzerrung des Si-Koordinationspolyeders des Difluorosilicium(IV)-Komplexes **32**, welcher die größten Abweichungen von den idealen 90- bzw. 180°-Winkeln in dieser Serie von Verbindungen aufweist. Ähnliches wurde auch schon für neutrale hexakoordinierte Bisamidinatosilicium(IV)-Komplexe beobachtet.^[10m] Diese starken Verzerrungen werden hauptsächlich durch die große Spannung in den SiN₂C-Vierringen verursacht. Allerdings müssen im Falle von Verbindung **32** auch elektronische Faktoren eine Rolle spielen, wie auch deutlich an der, im Vergleich zu **30**, **31** und **33–37** sehr großen Si–N-Bindungslängendifferenz zu erkennen ist (Tabelle 5.5).

Die Si-O-Bindungslängen zu dem bidentaten N,O-Liganden von **30**, **31** und **33–36** sind untereinander sehr ählich (171.57(14)–175.94(13) pm), während die analogen Bindungen bei **32** und **37** mit 178.81(11) bzw. 177.62(12) pm etwas verlängert sind. Die Si-N-Bindungslängen zu den Stickstoff-Atomen des Amidinato-Liganden sind, mit der weiter oben erwähnten Ausnahme von Verbindung **32**, ebenfalls sehr ähnlich und liegen im Bereich von 184.39(16)–191.44(13) pm; gleiches gilt für die Si-N-Bindungen zu dem N,O-Liganden (195.56(16)–201.14(14) pm). Interessanterweise ist auch hier trotz der höheren Lewis-Acidität des Si-Koordinationszentrums die entsprechende Bindung bei Verbindung **32** mit 208.24(12) pm deutlich verlängert (Tabelle 5.5).

Während man bei Verbindung **32** wegen der starken Abweichungen im Vergleich zu den anderen analogen Verbindungen davon ausgehen kann, dass hier die Substituenten des Si-Koordinationszentrums einen starken Einfluss auf die strukturellen Eigenschaften haben, sind die verhältnismäßig kleinen Unterschiede in den Bindungslängen bei den Verbindungen **30**, **31** und **33–37** eventuell auch auf Kristallpackungseffekte zurückzuführen, weshalb eine weitergehende Interpretation schwer fällt.

Verbindung	Si-O	Si-N1	Si–N2	$\Delta Si-N1/Si-N2$	Si–N3	Gerüsttyp
30	174.11(12)	190.43(13)	188.40(13)	2.03	200.62(13)	SiN_3OCl_2
31	173.9(2)	189.9(3)	186.1(2)	3.8	198.7(3)	SiN_3OBr_2
32	178.81(11)	184.88(11)	193.64(12)	8.76	208.34(12)	SiN_3OF_2
33	175.63(11)	191.26(12)	186.98(13)	4.28	200.37(15)	SiN_5O
34	175.94(13)	191.28(13)	187.89(15)	3.39	201.14(14)	SiN_5O
35	174.01(13)	189.01(13)	187.17(14)	1.84	200.38(15)	SiN_5O
36a	$171.57(14)^{[a]}$	186.66(17)	184.39(16)	2.27	196.22(17)	SiN_3O_3
36 b	$172.28(14)^{[a]}$	184.93(16)	187.13(17)	2.20	195.56(16)	SiN_3O_3
37	$177.62(12)^{[a]}$	190.26(13)	191.44(13)	1.18	199.75(14)	SiN_3O_3

Tabelle 5.5: Vergleich ausgewählter Bindungslängen [pm] von 30-37.
5.3.4 Vergleich der neutralen pentakoordinierten Silicium(II)-Komplexe

Die Si-Koordinationszentren der Verbindungen **41–46** werden jeweils von zwei bidentaten monoanionischen Amidinato-Liganden und einem weiteren monodentaten neutralen Liganden verzerrt trigonal-bipyramidal umgeben. Wie aus Tabelle 5.6 ersichtlich ist, sind die äquatorialen Si–N-Abstände (179.82(17)–182.8(2) pm) wesentlich kürzer als die axialen (195.69(13)–215.67(19) pm) und die maximalen Bindungslängendifferenzen liegen im Bereich 16.63–35.85 pm. Während für den Komplex **46** (*Si*N₄Fe-Gerüst) diese Abweichung mit 16.63 pm verhältnismäßig klein ist, werden für die Silylen–Boran-Addukte **41** und **42** größere Abweichungen von 22.3–23.17 pm beobachtet. Die größten Unterschiede zwischen den äquatorialen und axialen Si–N-Bindungslängen zeigen die Silylen-Komplexe der Gruppe-6-Metalle **42–45**, mit Werten im Bereich 32.3–35.85 pm. Dieser Trend lässt sich auch anhand der Berry-Verzerrungen nachvollziehen. So zeigt Verbindung **46** ebenfalls die niedrigste Berry-Verzerrung von 15.8%, während sie bei **42** 25.1% und bei **43–45** 34.4–36.8% beträgt. Lediglich der Silicium(II)-Komplex **41** weicht mit Berry-Verzerrungen von 31.7 bzw. 32.2% von diesem Trend ab.

Verbindung	Si–X	Si–N _{äq}	$Si-N_{ax}$	$\Delta_{max} SiN$	Gerüsttyp
41a (X = B)	207.6(4)	180.8(2), 181.6(2)	203.6(2), 203.0(2)	22.8	SiN_4B
41b (X = B)	207.7(3)	182.5(2), 182.8(2)	199.1(2), 204.8(2)	22.3	SiN_4B
42 (X = B)	206.7(3)	181.09(18), 180.39(18)	197.67(19), 203.56(19)	23.17	SiN_4B
43 (X = Cr)	241.81(7)	179.82(17), 180.14(17)	215.67(19), 208.25(17)	35.85	SiN_4Cr
44 (X = Mo)	257.84(6)	181.01(15), 180.52(15)	214.17(15), 208.94(15)	33.57	SiN_4Mo
$45~(\mathrm{X}=\mathrm{W})$	258.03(9)	180.6(3), 180.8(2)	208.1(3), 212.9(3)	32.3	SiN_4W
$46~(\mathrm{X}=\mathrm{Fe})$	231.75(6)	182.01(13), 182.47(14)	195.69(13), 198.64(13)	16.63	SiN_4Fe

Tabelle 5.6: Ausgewählte Bindungslängen [pm] von 41-46.

Die Si-B-Bindungen von **41** (207.6(4) und 207.7(3) pm) und **42** (206.7(3) pm) sind sehr ähnlich und erwartungsgemäß deutlich kürzer als die Si-M-Bindungen (M = Cr, Mo, W, Fe) von **43–46**. Die Si-Cr-Bindung von **42** ist mit 241.81(7) pm deutlich kürzer als die untereinender sehr ähnlichen Si-Mo- und Si-W-Bindungen (257.84(6) bzw. 258.03(9) pm) der Verbindungen **43** und **45**. Die Si-Fe-Bindung ist mit 231.75(6) pm wiederum kürzer als die Si-Cr-, Si-Mo- und Si-W-Bindungen.

Sowohl die Si–B- als auch die Si–M-Einfachbindungen (M = Cr, Mo, W, Fe) sind etwas länger als diejenigen, welche für tri- und tetrakooridinierte Silylen–Boran- bzw. Silylen–M-

Komplexe gefunden wurden.^[21,23,24] Diese Beobachtung steht jedoch im Einklang mit einer Erhöhung der Si-Koordinationszahl von drei bzw. vier auf fünf.

Zu den Verbindungen **41–46** wurden quantenchemische Berechungen durchgeführt. Diese bestätigten für **41** und **42**, dass es sich um Silicium(II)-Verbindungen und damit um klassische Lewis-Säure/Base-Addukte handelt.^[6r] Bei den Verbindungen **43–46** konnte gezeigt werden, dass es sich auch hier um Silicium(II)-Spezies handelt und die Si–M-Bindungen (M = Cr, Mo, W, Fe) als Einfachbindungen betrachtet werden müssen und eine *d*-Orbitalbeteiligung an den Silicium-Atomen zu vernachlässigen ist. Interessanterweise ist der Beitrag der *d*-Orbitale der jeweiligen Metall-Atome zu den Si–M-Bindungen mit 24.3–29.9% relativ gering, wobei die *p*-Orbitale zu mehr als 50% zu den jeweiligen Si–M-Bindungen beitragen.^[6s]

5.3.5 Vergleich der pentakoordinierten Silicium(IV)-Komplexe mit zwei Amidinato-Liganden

Die Si-Koordinationszentren der Verbindungen **52** und **55–57** werden jeweils von zwei bidentaten monoanionischen Amidinato-Liganden und einem weiteren monodentaten Liganden verzerrt trigonal-bipyramidal umgeben. Die beiden Silicium-Atome von **54'** werden jeweils von einem mono- und einem bidentaten Amidinato- und zwei monodentaten Oxido-Liganden verzerrt trigonal-bipyramidal koordiniert. Dabei befinden sich die Stickstoff-Atome des monodentaten Amidinato-Liganden jeweils in einer äquatorialen Position und die Si-N-Abstände (175.69(16) und 176.00(15) pm) zu diesen sind deutlich kürzer als diejenigen zu den äquatorial stehenden Stickstoff-Atomen der bidentaten Liganden (179.67(15) und 180.01(16) pm). Die weitere Diskussion der Si-N-Bindungslängen in den Verbindungen **52**, **54'** und **55–57** bezieht sich auf die Si-N-Bindungen zu den bidentaten Amidinato-Liganden. Wie aus Tabelle 5.7 ersichtlich ist, sind die äquatorialen Si-N-Bindungslängen (178.0(4)– 183.58(16) pm) deutlich kürzer als die axialen (189.6(4)–209.66(17) pm) und die maximalen Bindungslängendifferenzen liegen im Bereich von 12.47–33.97 pm. Hierbei werden sowohl die längsten axialen Si-N-Bindungen als auch die größte Differenz zwischen den Si-N_{äq}⁻ und Si-N_{ax}-Bindungslängen für die dinukleare Verbindung **54'** gefunden.

Verbindung	Si–X	${\rm Si-N_{\ddot{a}q}}$	Si–N _{ax}	$\Delta_{max} SiN$	Gerüsttyp
52 (X = H)	142(4)	178.1(4), 178.0(4)	189.6(4), 191.7(4)	13.7	SiN_4H
54' (X = O)	$165.65(13), 165.90(13)^{[a]}$	179.67(15), 175.69(16)	209.66(17), 209.09(16)	33.97	SiN_3O_2
	$172.05(13), 171.99(13)^{[b]}$	180.01(16), 176.00(15)			
55a (X = S)	201.93(9)	182.09(17), 181.48(16)	196.11(16),195.62(16)	14.63	SiN_4S
55b (X = S)	202.29(9)	183.58(16), 182.31(16)	195.01(15), 196.82(15)	14.51	SiN_4S
56 (X = Se)	216.32(7)	181.53(18), 181.3(2)	195.34(18), 195.50(17)	14.2	SiN_4Se
57 (X = Te)	240.18(6)	183.25(18), 182.26(17)	193.27(17), 194.73(16)	12.47	SiN_4Te

Tabelle 5.7: Ausgewählte Bindungslängen [pm] von 52, 54' und 55-57.

[a] Si–O_{äq}. [b] Si–O_{ax}.

Die Si–N-Abstände des kationischen Silicium(IV)-Komplexes **52** sind insgesamt etwas kürzer als die der neutralen pentakoordinierten Verbindungen **54'** und **55–57**, was aus der größeren Lewis-Acidität des Silicium-Atoms von **52** im Vergleich zu den anderen hier diskutierten Verbindungen resultiert, woraus sich stärkere Si–N-Bindungen ergeben. Interessanterweise ist die maximale Abweichung zwischen den Si–N-Bindungslängen von **52** (13.7 pm) jedoch in der gleichen Größenordnung wie für die Verbindungen **55–57** (12.47–14.63 pm). Die Si– O_{aq} und die Si– O_{ax} -Bindungslängen von **54'** unterscheiden sich stark (165.65(13) und 165.90(13) pm vs. 172.05(13) und 171.99(13) pm), liegen jedoch im erwarteten Bereich. Auch die Si=X-Doppelbindungen (X = S, Se, Te) der Verbindungen **55–57** liegen im erwarteten Bereich und sind nur etwas länger als analoge Bindungslängen in tri- bzw. tetrakoordinierten Silicium(IV)-Komplexen,^[26] was auch hier im Einklang mit einer Erhöhung der Si-Koordinationszahl von drei bzw. vier auf fünf ist.

5.3.5 Vergleich der neutralen hexakoordinierten Silicium(IV)-Komplexe mit zwei Amidinato-Liganden

Die Si-Koordinationszentren der Verbindungen **38**, **53**, **58–61** und **68–70** werden jeweils von zwei bidentaten monoanionischen Amidinato-Liganden und zwei monodentaten monoanionischen Liganden verzerrt oktaedrisch umgeben. Die beiden monodentaten Liganden stehen jeweils *cis* zueinander, sodass jeweils ein Stickstoff-Atom der Amidinato-Liganden *trans* zu einem weiteren Amidinato-Stickstoff-Atom und jeweils ein Stickstoff-Atom *trans* zu einem der monodentaten Liganden steht. Wie aus Tabelle 5.8 ersichtlich ist, haben die monodentaten Liganden einen gewissen Einfluss auf die Si–N-Bindungslängen. Da diese Liganden von sehr unterschiedlicher Natur sind und damit sehr unterschiedliche elektronische

und sterische Eigenschaften aufweisen sowie Kristallpackungseffekte eine gewisse Rolle spielen dürften, fällt eine vergleichende Interpretation der Si–N-Bindungslängen schwer. So findet man beispielsweise maximale Abweichungen der Si–N-Bindungslängen bei den Verbindungen mit SiN_4 CH-Gerüst von 3.15 (**60**), 10.33 (**70**) und sogar 14.1 pm (**61**). Betrachtet man alle in diesem Kapitel behandelten Verbindungen, so liegen diese Abweichungen im Bereich von 3.15–14.1 pm. In Tabelle 5.9 sind die Si–X-Bindungslängen zu den monodentaten monoanionischen Liganden zusammengefasst.

Tabelle 5.8: Vergleich der Si–N-Bindungslängen [pm] zu den Amidinato-Liganden von **38**, **53**, **58–61** und **68–70**. Diejenigen Si–N-Bindungen *trans* zu einem weiteren Stickstoff-Atom der Amidinato-Liganden sind mit Si–N_{trans} bezeichnet.

Verbindung	Si-N	Si–N _{trans}	$\Delta_{max} SiN$	Gerüsttyp
38	196.9(2), 196.2(2)	188.7(2), 187.6(2)	9.3	SiN_4ClH
53a	195.6(2), 193.5(2)	186.6(2), 188.3(2)	9.0	SiN_4OH
53b	195.2(2), 198.0(2)	186.2(2), 186.7(2)	11.8	SiN_4OH
58	186.7(3), 188.9(3)	189.9(3), 188.5(3)	3.2	SiN_4O_2
59	189.22(16), 191.04(16)	185.81(16), 186.33(16)	5.23	SiN_4O_2
60	191.90(15), 194.61(17)	192.68(15), 191.46(15)	3.15	SiN_4CH
61	193.3(2), 202.2(2)	192.1(2), 188.1(2)	14.1	SiN_4CH
68	186.2(3), 190.1(2)	185.8(3), 186.4(2)	4.3	SiN_4I_2
69	189.4(2), 194.0(2)	188.8(2), 187.9(2)	6.1	SiN_4Se_2
70	193.54(12), 197.44(13)	187.11(4), 188.16(14)	10.33	SiN_4FC

Die Verbindungen 53, 60 und 61 besitzen jeweils eine Si-H-Bindung. Diese liegen mit 137(2)–146(2) pm im erwarteten Bereich und sind in allen Fällen deutlich kürzer als die Summe der jeweiligen Kovalenzradien (154 pm). Auffallend ist die sehr kurze Si-H-Bindung von 61. Jedoch muss berücksichtigt werden, dass die experimentelle Bestimmung der Lage von Wasserstoff-Atomen, welche direkt an ein Schweratom gebunden sind, durch röntgenographische Verfahren problematisch ist und die erhaltenen Bindungslängen kritisch betrachtet werden müssen. Die Si-C-Bindungen (198.2(3)–204.62(18) pm) der Verbindungen 60, 61 und 70 sind wie auch die Si-Cl-Bindung von 38 (225.18(11) pm), die Si-Se-Bindungen von 62 (244.70(10) und 243.09(11) pm) sowie die Si-I-Bindungen von 61 (266.14(8) und 264.41(8) pm) länger als die Summe der jeweiligen Kovalenzradien (Si-C, 194 pm; Si-Cl, 216 pm; Si-Se, 234 pm; Si-I, 250 pm). Im Gegensatz dazu sind die Si-O-Bindungen der Verbindungen 53, 58 und 59 (176.86(14)–178.82(14) pm) und die

Si-F-Bindung von **70** (164.84(9) pm) allesamt deutlich kürzer als die Summe der jeweiligen Kovalenzradien (Si-O: 183 pm; Si-F: 181 pm; Tabelle 5.9)

 $Si-X^2$ $Si-X^1$ Verbindung Gerüsttyp **38** $(X^1 = H, X^2 = Cl)$ 142(2)225.18(11) SiN_4ClH **53a** $(X^1 = H, X^2 = O)$ 144(2)178.35(17)SiN₄OH **53b** $(X^1 = H, X^2 = O)$ 146(2)177.54(17) SiN_4OH **58** $(X^1 = O, X^2 = O)$ 178.7(2)178.2(3) SiN_4O_2 **59** $(X^1 = O, X^2 = O)$ 178.82(14)176.86(14) SiN_4O_2 **60** $(X^1 = H, X^2 = C)$ 143(2)204.62(18)SiN₄CH **61** $(X^1 = H, X^2 = C)$ 137(2)198.2(3) SiN_4CH **68** $(X^1 = I, X^2 = I)$ 266.14(8)264.41(8) SiN_4I_2 **69** $(X^1 = Se, X^2 = Se)$ 244.70(10)243.09(11) SiN_4Se_2 **70** $(X^1 = F, X^2 = C)$ 164.84(9)200.42(16)SiN₄FC

Tabelle 5.9: Vergleich der Si–X-Bindungslängen^[a] [pm] von **38**, **53**, **58–61** und **68–70** zu den monodentaten monoanionischen Liganden.

[a] Summen der jeweiligen Kovalenzradien: Si–H, 154 pm; Si–C, 194 pm; Si–O, 183 pm; Si–F, 181 pm Si–Cl, 216 pm; Si–Se, 234 pm; Si–I, 250 pm.

6 Zusammenfassung

Die vorliegende Arbeit stellt einen Beitrag zur Chemie des höherkoordinierten Siliciums dar. Im Vordergrund standen die Synthese und Charakterisierung neuer neutraler penta- und hexakoordinierter Silicium(IV)-Komplexe sowie die Synthese, Charakterisierung und Untersuchung der Reaktivität eines neuartigen Donor-stabilisierten Silylens.

Im Rahmen dieser Arbeit wurden die neutralen tetrakoordierten Silane 24, 25 und 48, die neutralen pentakoordinierten Silicium(IV)-Komplexe 1-3, 9-15, 18, 19, 26-29, 54'·C₆H₅CH₃ und 55-57, die kationischen pentakoordinierten Silicium(IV)-Komplexe 50 und 52, die neutralen hexakoordinierten Silicium(IV)-Komplexe 30-38, 53, 58-62, 68, 69 und $70.0.5C_6H_{14}$, Donor-stabilisierte trikoordinierte Silvlen **39**. die das neutralen pentakoordinierten Silicium(II)-Komplexe **41–46** sowie die neutrale trikoordinierte Beryllium(II)-Verbindung **66**·8 erstmalig dargestellt. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen (außer 11, 12, 24, 25, 50, 62 und 66.8), NMR-Spektroskopie im Festkörper (außer 11, 12, 24, 25 und 62; ¹³C-, ¹⁵N-, ²⁹Si-, ³¹P- (nur 26–29) und ⁷⁷Se-VACP/MAS-NMR (nur 56 und 69) sowie ⁹Be- (nur 66·8), ¹¹B- (nur 41 und 42) und 125 Te-HPDec/MAS-NMR (nur 57·C₆H₅CH₃)) und in Lösung (außer 26–29 und 50; ⁹Be- (nur 66·8), ¹¹B- (nur 41, 42, 60 und 62), ¹³C-, ¹⁵N- (nur 39 und 56), ¹⁹F- (nur 2, **32** und **36**), ²⁹Si-, ³¹P- (nur **24** und **25**), ⁷⁷Se- (nur **56** und **69**) und ¹²⁵Te-NMR (nur $57 \cdot C_6 H_5 C H_3$) sowie durch Kristallstrukturanalyse (außer 11, 12, 24, 25, 50 und 62).

Einer der Schwerpunkte der vorliegenden Arbeit lag auf der Synthese neuer penta- und hexakoordinierter Silicium(IV)-Komplexe, ausgehend von Silicium(IV)-haltigen Vorstufen. Diese Synthesen sowie die Eigenschaften der resultierenden Verbindungen können wie folgt zusammengefasst werden:

Neutrale pentakoordinierte Silicium(IV)-Komplexe

Die neutralen pentakoordinierten Silicium(IV)-Komplexe 1–3, 9–15, 18 und 19 wurden ausgehend von Silicium(IV)-haltigen Vorstufen synthetisiert. So wurden die Komplexe 1–3 durch Umsetzung der entsprechenden Tetrahalogensilane mit Lithium-N,Ndiisopropylbenzamidinat in Diethylether erhalten. Der Trifluorosilicium(IV)-Komplex 2 konnte weiterhin durch Umsetzung der analogen Trichlorosilicium(IV)-Verbindung 1 mit Silbertetrafluoroborat in Gegenwart von Triethylamin in THF dargestellt werden. Während die Dihalogenosilicium(IV)-Komplexe 9 und 10 durch Umsetzung von 1 bzw. 2 mit 2,4,6-Trimethoxyphenyllithium in THF erhalten wurden, konnten die Verbindungen 11, 12 und 14 durch Transsilylierungsreaktionen von 10 mit den entsprechenden Silanen des Typs Me₃SiX (11: X = Br; 12: X = CN; 14: X = NCS) in Acetonitril dargestellt werden. Die analoge Cyanato-*N*-substituierte Verbindung 13 wurde durch eine Salzmetathese ausgehend von 1 mit Kaliumcyanat in Gegenwart des Kronenethers 18-Krone-6 erhalten. Der pentakoordinierte Silicium(IV)-Komplex 15 wurde durch Umsetzung von 1 mit 1,2-Dihydroxybenzol und Triethylamin in THF synthetisiert. Die Verbindungen 18 und 19 wurden durch Umsetzung der entsprechenden Trihalogenosilicium(IV)-Komplexe 1 bzw. 2 mit Pentafluorphenyllithium in Diethylether dargestellt.

Die Si-Koordinationspolyeder von 1-3, 10, 13-15, 18 und 19 im Kristall lassen sich am besten als stark verzerrte trigonale Bipyramiden beschreiben, wobei jeweils ein Stickstoff-Atom des Amidinato-Liganden in einer äquatorialen und axialen Position an das Si-Koordinationszentrum gebunden ist. Der TMOP- bzw. der Pentafluorphenyl-Ligand der Verbindungen 10, 13–15, 18 und 19 befindet sich jeweils in einer äquatorialen Position. Die Verbindungen 1-3, 9-15, 18 und 19 besitzen jeweils einen stark gespannten viergliedrigen SiN₂C-Ring, welcher durch den Amidinato-Liganden mit dem Si-Koordinationszentrum gebildet wird und Verbindung 15 besitzt zusätzlich einen fünfgliedrigen SiO₂C₂-Ring, welcher nicht merklich zu der Verzerrung des Si-Koordinationspolveders beiträgt. Die Verbindungen 1-3, 9-15, 18 und 19 zeigen dynamisches Verhalten in Lösung, welches durch einen Austausch der beiden Stickstoff-Bindungspositionen des Amidinato-Liganden charakterisiert ist. Für die Verbindungen 1, 2 und 15 wurde dieses Verhalten durch VT-NMR-Studien näher untersucht. Die Verbindungen 10 und 13–15 stellen die ersten strukturell charakterisierten pentakoordinierten Silicium(IV)-Komplexe mit einem TMOP-Liganden dar. Erwähnenswert ist, dass - im Gegensatz zur Chemie tetrakoordinierter Silicium(IV)-Verbindungen, in welchen der TMOP-Substituent als vielseitige Schutzgruppe genutzt wird –

alle Versuche, den TMOP-Liganden der Verbindungen **10**, **13** und **14** selektiv abzuspalten, fehlschlugen.

Zwitterionische pentakoordinierte Silicium(IV)-Komplexe

Die zwitterionischen dinuklearen pentakoordinierten Silicium(IV)-Komplexe 26–29 wurden durch die Reaktion der Silane 24 und 25 (erhalten durch Umsetzung von Tetrachlorsilan mit den entsprechenden (Dialkylphosphanyl)imidazol-Derivaten und Triethylamin in THF; nicht als Reinsubstanz isoliert) mit Acetonitril bzw. Propionitril dargestellt. Bei diesen Synthesen kommt es zur Bildung eines neuen bidentaten dianionischen *N,N*-Liganden durch Nitril-Aktivierung. Entgegen der Erwartung wurde für die Verbindungen 24 und 25 in Lösung keine Si–P-Wechselwirkung beobachtet. Somit können 24 und 25 jeweils als "frustriertes Lewis-Paar" betrachtet werden (Lewis-acides Silicium-Atom; Lewis-basisches Phosphor-Atom), worin auch die Reaktivität dieser Silane gegenüber Acetonitril und Propionitril begründet sein mag.

Die 26 - 29Verbindungen zeichnen sich durch C_i-Symmetrie die und aus Si-Koordinationspolyeder von dieser Verbindungen im Kristall werden am besten als stark verzerrte trigonale Bipyramiden beschrieben. Interessanterweise wurden zwei unterschiedliche Koordinationsmodi der Silicium-Atome beobachtet: Während bei 26 beide Chloro-Liganden und ein Imido-Stickstoff-Atom die äquatorialen Bindungspositionen besetzen, sind bei 27–29 die äquatorialen Positionen durch ein Chlor-Atom sowie ein Imido- und ein Amido-Stickstoff-Atom besetzt. Die Si-Koordinationspolyeder werden durch die Imido-Stickstoff-Atome unter Ausbildung eines zentralen viergliedrigen Si_2N_2 -Rings verbrückt und der neu gebildete N,N-Ligand bildet mit den Si-Koordinationszentren einen sechsgliedrigen SiN₂C₂P-Ring. Die Komplexe 26–29 zeichnen sich durch eine sehr schlechte Löslichkeit in allen gängigen deuterierten organischen Lösungsmitteln aus, weshalb es nicht möglich war, sie durch NMR-Spektroskopie in Lösung zu untersuchen. Die Synthesen der Komplexe 26–29 sind die ersten Beispiele für Silicium-vermittelte Nitrilaktivierungen.

Bei den Versuchen, die neu gebildeten *N*,*N*-Liganden der Verbindungen **26–29** hydrolytisch abzuspalten, wurden nicht diese Liganden, sondern ein 1:1-Gemisch aus den jeweiligen (Dialkylphosphanyl)imidazol-Derivaten und Acet- bzw. Propanamid isoliert.

Neutrale hexakoordinierte Silicium(IV)-Komplexe

Der neutrale hexakoordinierte Silicium(IV)-Komplex **30** wurde durch Umsetzung des pentakoordinierten Trichlorosilicium(IV)-Komplexes **1** mit 8-Hydroxychinolin und Triethylamin in THF dargestellt. Ausgehend von **30** wurden die Silicium(IV)-Komplexe **31**, **33**, **35** und **36** mittels Transsilylierungsreaktionen durch Umsetzung mit den entsprechenden Silanen des Typs Me₃SiX (**31**: X = Br; **33**: X = N₃; **35**: X = NCS; **36**: X = OSO₂CF₃) in Acetonitril dargestellt. Die Difluoro- bzw. (Dicyanato-*N*)silicium(IV)-Komplexe **32** und **34** wurden ausgehend von **30** jeweils durch Salzmetathesen erhalten (**32**: Kaliumfluorid/18-Krone-6/ Acetonitril bzw. Silbertetrafluoroborat/Triethylamin/THF; **34**: Kaliumcyanat/18-Krone-6/ Acetonitril). Der (Benzol-1,2-diolato)silicium(IV)-Komplexe **37** wurde durch Umsetzung von **30** mit 1,2-Dihydroxybenzol und Triethylamin in THF synthetisiert.

Die Si-Koordinationspolyeder der Verbindungen **30–37** im Kristall werden am besten als stark verzerrte Oktaeder beschrieben, wobei die monodentaten monoanionischen Liganden von **30–36** und die Sauerstoff-Atome des bidentaten dianionischen O, O-Liganden von **37** jeweils in *cis*-Stellung zueinander stehen. Die Stickstoff-Atome der bidentaten Amidinatound N, O-Liganden nehmen eine *fac*-Anordnung ein und das Stickstoff-Atom des N, O-Liganden und jeweils ein monodentater Ligand bzw. ein Sauerstoff-Atom des bidentaten O, O-Liganden stehen in *trans*-Stellung zueinander. Die Verbindungen **30–37** besitzen einen stark gespannten viergliedrigen SiN₂C-Ring, welcher durch den Amidinato-Liganden mit dem Si-Koordinationszentrum gebildet wird. Weiterhin bildet der bidentate monoanionische N, O-Ligand mit dem Silicium-Atom einen fünfgliedrigen SiNOC₂-Ring aus, wobei Verbindung **37** zusätzlich einen fünfgliedrigen SiO₂C₂-Ring besitzt. Die Verbindungen **33–35** stellen die ersten strukturell charakterisierten hexakoordinierten Silicium(IV)-Komplexe mit einem *Si*N₅O-Gerüst dar. Die Komplexe **30–37** zeigen dynamisches Verhalten in Lösung, welches, wie NMR-spektroskopische Studien gezeigt haben, auf die drei folgenden Prozesse zurückzuführen ist: I) Austausch der Stickstoff-Bindungspositionen der Amidinato-Liganden,

167

II) Austausch der Stickstoff- und Sauerstoff-Bindungspositionen des bidenaten N,O-Liganden und III) Austausch der Bindungspositionen der monodentaten Liganden bzw. der beiden Sauerstoff-Bindungspositionen des bidentaten O,O-Liganden. Die Ausprägung dieser Prozesse hängt von dem jeweiligen Substitutionsmuster ab. Bislang ist unklar, auf welchem Mechanismus dieses dynamische Verhalten hauptsächlich beruht. Auch konnte im Rahmen dieser Arbeit nicht aufgeklärt werden, ob diese Prozesse miteinander gekoppelt sind. Für die Verbindungen 32, 36 und 37 wurden diese Prozesse durch VT-NMR-Experimente näher untersucht.

Durch die hier vorgestellten Synthesen konnte gezeigt werden, dass besonders der pentakoordinierte Trichlorosilicium(IV)-Komplex **1** aber auch der pentakoordinierte Dichlorosilicium(IV)-Komplex **10** sowie der hexakoordinierte Dichlorosilicium(IV)-Komplex **30** sehr gut geeignete Vorstufen für die Synthese neuartiger penta- und hexakoordinierter Silicium(IV)-Verbindungen darstellen.

Ein weiteres wesentliches Ziel dieser Arbeit war die Synthese eines neuartigen Donorstabilisierten Silylens, dessen Charakterisierung sowie die Untersuchung seiner Reaktivität. Im Folgenden sind die Ergebnisse dieser Studien zusammengefasst:

Synthese und Charakterisierung eines neuartigen Donor-stabilisierten Silylens

Nachdem alle Versuche, das Donor-stabilisierte Silvlen **39** durch Reduktion der Dihalogenosilicium(IV)-Komplexe entsprechenden neutralen hexakoordinierten mit Alkalimetallen darzustellen, fehlschlugen, wurde zunächst durch Umsetzung von Trichlorsilan mit Lithium-N, N-diisopropylbenzamidinat in Diethylether der neutrale hexakoordinierte Chlorohydridosilicium(IV)-Komplex 38 dargestellt. Typische Ansatzgrößen für die Synthese von 38 liegen im 250-mmol-Bereich, sodass diese Verbindung leicht im 100-g-Maßstab dargestellt werden kann. Ausgehend von 38 konnte das Donor-stabilisierte Silylen 39 durch Umsetzung mit Kaliumbis(trimethylsilyl)amid in Diethylether im Sinne einer reduktiven Chlorwasserstoff-Eliminierung erhalten werden. Auch diese Synthese konnte in Bezug auf Ausbeute und Ansatzgröße optimiert werden, sodass es möglich war, Verbindung 39 im 35-g-Maßstab darzustellen, wodurch umfassende Reaktivitätsstudien mit diesem Donorstabilisierten Silvlen möglich waren.

Das Si-Koordinationspolyeder von **38** wird am besten als stark verzerrtes Oktaeder beschrieben. Die beiden monodentaten Liganden stehen in *cis*-Stellung zueinander. Der hexakoordinierte Silicium(IV)-Komplex **38** besitzt zwei stark gespannte viergliedrige SiN₂C-Ringe, welche die große Verzerrung des Koordinationspolyeders bedingen. Die strukturellen Eigenschaften von **38** sind sehr ähnlich zu denen einer Serie analog aufgebauter literaturbekannter hexakoordinierter Bis(amidinato)silicium(IV)-Komplexe mit zwei identischen monodentaten Liganden.

Das Silicium-Atom von **39** ist verzerrt pseudotetraedrisch von drei Stickstoff-Atomen der beiden Amidinato-Liganden und dem freien Elektronenpaar als vierten "Liganden" umgeben. Verbindung **39** ist im Festkörper trikoordiniert (ein monodentater und ein bidentater Amidinato-Ligand), jedoch zeigten NMR-spektroskopische Untersuchungen und quantenchemische Rechnungen, dass **39** in Lösung als die tetrakoordinierte Silicium(II)-Spezies **39'** vorliegt (zwei bidentate Amidinato-Liganden), welche auch die thermodynamisch bevorzugte Form darstellt. Verbindung **39** ist das erste Beispiel für ein Donor-stabilisiertes Silylen mit zwei Amidinato-Liganden.

Reaktivität des Donor-stabilisierten Silylens 39

Der trikoordinierte Silicium(II)-Komplex **39** reagiert mit den Lewis-Säuren Triethyl- und Triphenylboran in *n*-Hexan bzw. Toluol unter der Bildung der neutralen pentakoordinierten Silcium(II)-Komplexe **41** und **42**, welche eine Si-B-Bindung besitzen. Das Donor-stabilisierte Silylen **39** reagiert hierbei als Lewis-Base unter Ausbildung von Lewis-Säure/Base-Addukten. Des Weiteren reagiert **39** im Sinne einer nukleophilen Substitution mit Gruppe-6-Übergangsmetallcarbonylverbindungen des Typs $[M(CO)_6]$ (M = Cr, Mo, W) sowie Eisenpentacarbonyl in Toluol (**43**, **45**, **46**) bzw. THF (**44**) unter der Ausbildung von neutralen pentakoordinierten Silicium(II)-Komplexen mit einer Si-M-Bindung.

Die Si-Koordinationspolyeder von 41–46 im Kristall werden am besten als stark verzerrte trigonale Bipyramiden beschrieben, wobei sich das Bor- bzw. Übergangsmetall-Atom jeweils in einer äquatorialen Position befindet. Diese Verbindungen besitzen eine Si-B- (41, 42) bzw. Si-M-Einfachbindung (43–46). Zusätzlich weisen 41–46 zwei stark gespannte viergliedrige SiN₂C-Ringe auf, welche die große Verzerrung des Si-Koordinationspolyeders bedingen. Diese Silicium(II)-Komplexe 41–46 zeigen dynamisches Verhalten in Lösung, welches – wie schon bei den o.g. pentakoordinierten Silicium(IV)-Komplexen diskutiert – durch einen Austausch der Stickstoff-Bindungspositionen erklärt werden kann. Im Falle von 41 trägt jedoch ein weiterer Prozess zu der Dynamik in Lösung bei: eine Verlängerung bzw. (partielle) Dissoziation der Silicium-Bor-Bindung. Dieses Phänomen wurde durch VT-NMR-Studien in Lösung näher untersucht. Ein ähnliches Verhalten wurde für die Triphenylboran-substituierte Verbindung 42 nicht beobachtet, was im Sinne einer höheren Si-B-Bindungsstabilität in 42 interpretiert werden kann. Wie quantenchemische Berechungen zeigten, sind die Verbindungen 41 und 42 als klassische Beispiele für Lewis-Säure/Base-Addukte zu betrachten, wobei diese Berechungen die Annahme einer höheren Si-B-Bindungsstabilität in 42 im Vergleich zu 41 bestätigen. Auch 43–46 wurden durch quantenchemische Methoden untersucht, wonach die Si-M-Bindung (M = Cr, Mo, W, Fe) in diesen Komplexen als Einfachbindung beschrieben werden sollte.

Es wurde erwartet, dass **39** mit Lewis-Säuren des Typs MCl_2 (M = Cu, Hg, Sn, Be) und HgBr₂ ebenfalls im Sinne von Lewis-Säure/Base-Reaktionen reagieren sollte (Solvens: Toluol). Jedoch fand in diesen Fällen jeweils eine Oxidation des Si-Koordinationszentrums unter Bildung der entsprechenden Dihalogenosilicium(IV)-Komplexe **8** bzw. **40** statt. Die Natur der weiteren (Neben)Produkte dieser Reaktionen konnte im Rahmen dieser Arbeit nicht vollständig geklärt werden, jedoch wurde im Falle der Umsetzung von **39** mit Berylliumdichlorid die trikoordinierte dinukleare Beryllium(II)-Verbindung **66** als das Cokristallisat **66**·8 isoliert.

Die Beryllium-Atome von **66** im Kristall sind trigonal-planar von jeweils zwei Stickstoff-Atomen und einem Chloro-Liganden umgeben, wobei die Amidinato-Liganden hierbei die Be-Koordinationszentren verbrücken.

Im Gegensatz zu den Reaktionen von **39** mit den Übergangsmetallcarbonyl-Verbindungen des Typs $[M(CO)_6]$ (M = Cr, Mo, W) und $[Fe(CO)_5]$, in denen **39** als Nukleophil reagiert, fanden bei den Umsetzungen von **39** mit Gruppe-6-Übergangsmetallkomplexen des Typs $[HMCp(CO)_3]$ (M = Cr, Mo) in Toluol oxidative Additionsreaktionen unter Bildung der kationischen pentakoordinierten Silicium(IV)-Verbindungen **50** und **52** statt. Diese Reaktionen lassen sich als eine Säure/Base-Reaktion mit gekoppelter Oxidation des Silicium-Atoms und Reduktion des Wasserstoff-Atoms beschreiben. Eine ähnliche Reaktion geht **39** bei der Umsetzung mit Essigsäure in *n*-Hexan ein, wobei das im ersten Schritt der Reaktion gebildete Acetatanion dazu in der Lage ist, an das gebildete pentakoordinierte Silicium(IV)-Kation (vgl. hierzu die Komplexe **50** und **52**) zu koordinieren, wodurch der neutrale hexakoordinierte Silicium(IV)-Komplex **53** erhalten wird.

Das Si-Koordinationpolyeder von **52** im Kristall wird am besten als stark verzerrte trigonale Bipyramide beschrieben, wobei der Hydrido-Ligand in einer äquatorialen Position gebunden ist. Von **50** konnten keine für eine Röntgenstrukturanalyse geeigneten Kristalle erhalten werden, jedoch legen die NMR-spektroskopischen Daten im Festkörper nahe, dass die Struktur von 50 der von 52 sehr ähnlich ist. Das Si-Koordinationspolyeder von 53 im Kristall wird am besten als stark verzerrtes Oktaeder beschrieben. Wie schon bei anderen strukturell verwandten hexakoordinierten Silicium(IV)-Komplexen mit zwei Amidinato-Liganden gefunden, stehen auch hier die beiden monodentaten Liganden in *cis*-Stellung zueinander. Auch das dynamische Verhalten von 53 in Lösung ähnelt dem der oben erwähnten strukturverwandten Silicium(IV)-Komplexe.

Durch Umsetzung von **39** mit 2,3-Dimethyl-1,3-butadien in *n*-Hexan wurde das tetrakoordinierte Silan **48** erhalten. Hierbei reagiert das Donor-stabilisierte Silylen **39** formal in einer [4+1]-Cycloaddition. Das Si-Koordinationspolyeder von **48** im Kristall wird am besten als verzerrtes Tetraeder beschrieben, wobei die beiden Amidinato-Liganden jeweils monodentat an das Silicium-Atom gebunden sind. Wie NMR-spektroskopische Untersuchungen in Lösung ergaben, liegt **48** in Lösung als pentakoordinierte Spezies vor (ein monodentater und ein bidentater Amidinato-Ligand).

Die neutralen pentakoordinierten Silicium(IV)-Komplexe 54'·C₆H₅CH₃ und 55-57 wurden im Sinne oxidativen Additionsreaktionen durch die Umsetzung von von 39 mit Distickstoffmonoxid (\rightarrow 54'·C₆H₅CH₃) bzw. den elementaren Chalcogenen Schwefel (\rightarrow 55), Selen (\rightarrow 56) und Tellur (\rightarrow 57) in Toluol dargestellt. Verbindung 55 konnte außerdem durch Umsetzung von 39 mit Tetraarsentetrasulfid in Toluol synthetisiert werden. Hierbei reagiert 39 ebenfalls im Sinne einer oxidativen Addition. Interessanterweise konnte die zu den Komplexen 55–57 analoge Verbindung mit einer Si=O-Doppelbindung nicht erhalten werden, stattdessen wurde dessen Dimer $54' \cdot C_6 H_5 CH_3$ isoliert. In diesem Zusammenhang ist es bemerkenswert, dass die zu 54' analogen Dimere der Verbindungen 55-57 nicht erhalten werden konnten.

Die Si-Koordinationspolyeder der Verbindungen **54'** und **55–57** im Kristall werden am besten als stark verzerrte trigonale Bipyramiden beschrieben. Während **54'** sich durch zwei monodentate und zwei bidentate Amidinato-Liganden sowie einen zentralen viergliedrigen Si₂O₂-Ring auszeichnet, stellen **55–57** (zwei bidentate Amidinato-Liganden) die ersten neutralen pentakoordinierten Silicium(IV)-Komplexe mit Si=X-Doppelbindungen dar (X = S, Se, Te). Die Komplexe **54'** sowie **55–57** zeigen dynamisches Verhalten in Lösung, welches durch einen ähnlichen Prozess wie schon bei den anderen zuvor diskutierten pentakoordinierten Silicium(IV)-Komplexen erklärt werden kann. Für **56** wurde dieses Verhalten durch VT-NMR-Experimente in Lösung näher untersucht.

Die neutralen hexakoordinierten Silicium(IV)-Komplexe **58** und **59** wurden im Sinne von oxidativen Additionsreaktionen durch die Umsetzung von **39** mit einer stöchiometrischen Menge Schwefeldioxid in Toluol (**58**) bzw. einem sehr großen Überschuss an Schwefeldioxid (welches auch das Solvens diente; **59**) dargestellt.

Die Si-Koordinationspolyeder von **58** und **59** im Kristall werden am besten als stark verzerrte Oktaeder beschrieben. Verbindung **59** wurde als ein Cokristallisat des *cis*- und *trans*-Isomers isoliert, wobei das Verhältnis der beiden Diastereomere im Festkörper durch die Kristallisationstemperatur gesteuert werden kann. Die Sauerstoff-Atome der bidentaten O, O-Liganden stehen jeweils in *cis*-Stellung zueinander. Interessanterweise dominiert bei Verbindung **59** sowohl im Festkörper als auch in Lösung das sterisch stärker gehinderte *cis*-Isomer. Verbindung **58** ist das erste Beispiel für eine Silicium-Verbindung mit einem

bidentaten Sufito-Liganden und **59** ist die erste strukturell charakterisierte molekulare Verbindung mit einem chelatisierenden Dithionito-Liganden. Die Komplexe **58** und **59** zeigen dynamisches Verhalten in Lösung. Während dieses bei **58** auf einen Austausch der Stickstoff-Bindungspositionen zurückgeführt werden kann, spielt bei **59** zusätzlich noch die Umwandlung zwischen *cis*- und *trans*-Isomer sowie die Umwandlung der beiden Diastereomere von *trans*-**59** (nachgewiesen durch NMR-Spektroskopie in Lösung bei tiefer Temperatur) ineinander eine Rolle. Dieses Phänomen wurde durch VT-NMR-Experimente in Lösung näher untersucht, jedoch konnten die genauen Mechanismen dieser Prozesse im Rahmen dieser Arbeit nicht vollständig aufgeklärt werden.

Ebenfalls im Sinne von oxidativen Additionen verlaufen die Reaktionen von **39** mit 1,2-Dicarba-*closo*-dodecaboran (\rightarrow **60**), 1,7-Dicarba-*closo*-dodecaboran (\rightarrow **62**), elementarem Iod (\rightarrow **68**), Diphenyldiselenid (\rightarrow **69**) und Hexafluorbenzol (\rightarrow **70**·0.5C₆H₁₄) in THF (**60** und **62**) bzw. Toluol (**68**, **69** und **70**·0.5C₆H₁₄). Diese Reaktionen verlaufen unter selektiver Element–Element-Bindungsaktivierung. Wie sich herausstellte, reagieren **60** und **62** mit Acetonitril unter Abspaltung des Carboranyl-Liganden und Bildung des neutralen hexakoordinierten Silicium(IV)-Komplexes **61** mit einem Cyanomethyl-Liganden. Ob diese Reaktionen von **60** bzw. **61** mit dem C–H-aciden Acetonitril auch auf andere X–H-acide Substrate übertragbar sind, müssen zukünftige Studien zeigen.

Die Si-Koordinationspolyeder von **60–62** und **68–70** werden am besten als stark verzerrte Oktaeder beschrieben, wobei auch hier die beiden monodentaten Liganden *cis* zueinander stehen. Abgesehen von den jeweiligen monodentaten Liganden sind die strukturellen Merkmale dieser hexakoordinierten Silicium(IV)-Komplexe untereinander recht ähnlich.

Verbindungen **60** ist der erste strukturell charakterisierte höherkoordinierte Silicium(IV)-Komplex mit einem Carboranyl-Liganden. Im Gegensatz zu den Reaktionen der entsprechenden Carborane mit NHCs kommt es hier nicht zu einer Öffnung des Clusters, sondern zu einer selektiven C–H-Bindungsaktivierung. Verbindung **61** stellt die erste hexakoordinierte Silicium(IV)-Verbindung mit einem Cyanomethyl- und **68** den ersten hexakoordinierten Silicium(IV)-Komplex mit Iodo-Liganden dar. Die Bildung von **70** ist eines von wenigen Beispielen für eine Silicium-vermittelte C–F-Bindungsaktivierung.

Die hier beschriebenen Reaktivitätsstudien verdeutlichen das außerordentlich hohe synthetische Potential des Donor-stabilisierten Silylens **39**. Die erhaltenen Silicum(II)- und Silicium(IV)-Komplexe besitzen teils einzigartige strukturelle und spektroskopische Eigenschaften und ihre Reaktivität dürfte einige dieser Verbindungen für eine Anwendung in der präparativen organischen und anorganischen Chemie interessant machen.

7 Summary

This thesis is a contribution to the chemistry of higher-coordinate silicon. The main focus of this work was the synthesis and characterization of novel neutral five- and six-coordinate silicon(IV) complexes as well as the synthesis, characterization, and reactivity of a novel donor-stabilized silylene.

In the course of these studies, the neutral four-coordinate silanes 24, 25, and 48, the neutral five-coordinate silicon(IV) complexes 1–3, 9–15, 18, 19, 26–29, 54'·C₆H₅CH₃, and 55–57, the cationic five-coordinate silicon(IV) complexes 50 and 52, the neutral six-coordinate silicon(IV) complexes 30–38, 53, 58–62, 68, 69, and 70·0.5C₆H₁₄, the donor-stabilized three-coordinate silylene 39, the neutral five-coordinate silicon(II) complexes 41–46, and the neutral three-coordinate beryllium(II) compound 66·8 were prepared for the first time. These compounds were characterized by elemental analyses (except 11, 12, 24, 25, 50, 62, and 66·8), NMR spectroscopy in the solid state (except 11, 12, 24, 25, and 62; ¹³C, ¹⁵N, ²⁹Si, ³¹P (26–29 only), and ⁷⁷Se VACP/MAS NMR (56 and 69 only), as well as ⁹Be (66·8 only), ¹¹B (41 and 42 only), and ¹²⁵Te HPDec/MAS NMR (57·C₆H₅CH₃ only)) and in solution (except 26–29 and 50; ⁹Be (66·8 only), ¹¹B (40, 41, 60, and 62 only), ¹³C, ¹⁵N (39 and 56 only), ¹⁹F (2, 32, and 36 only), ²⁹Si, ³¹P (24 and 25 only), ⁷⁷Se (56 and 69 only), and ¹²⁵Te NMR (57·C₆H₅CH₃ only)), and single-crystal X-ray diffraction (except 11, 12, 24, 25, 50, 62, and 62).

One the main topics of this thesis was the synthesis of novel five- and six-coordinate silicon(IV) complexes, starting from silicon(IV) containing precursors. These syntheses and the properties of the resulting compounds can be summarized as follows:

Neutral five-coordinate silicon(IV) complexes

The neutral five-coordinate silicon(IV) complexes 1–3, 9–15, 18, and 19 were synthesized starting from silicon(IV) containing precursors. Complexes 1–3 were prepared by reaction of the respective tetrahalogenosilanes with lithium N,N'-diisopropylbenzamidinate in diethyl ether. The trifluorosilicon(IV) complex 2 could also be prepared by treatment of the analogous trichlorosilicon(IV) complex 1 with silver tetrafluoroborate and triethylamine in THF. While the dihalogenosilicon(IV) complexes 9 and 10 were prepared by the reaction of 1 and 2, respectively, with 2,4,6-trimethoxyphenyl lithium in THF, compounds 11, 12, and 14 were synthesized by transsilylation reactions of 10 with the correspondig silanes of the type Me₃SiX (11: X = Br; 12: X = CN; 14: X = NCS) in acetonitrile. The analogous cyanato-N

substituted compound 13 was prepared by salt metathesis from 1 and potassium cyanate, in the presence of the crown ether 18-crown-6. The five-coordinate silicon(IV) complex 15 was obtained by treatment of 1 with 1,2-dihydroxybenzene and triethylamine in THF. Compounds 18 und 19 were synthesized by reaction of the corresponding trihalogenosilicon(IV) complexes 1 und 2, respectively, with pentafluorophenyl lithium in diethyl ether.

The silicon coordination polyhedra of 1–3, 10, 13–15, 18, and 19 in the crystal are best described as strongly distorted trigonal bipyramids, in which one of the amidinato-nitrogen atoms each is bound to the silicon coordination center in an axial and equatorial position. The TMOP and the pentafluorophenyl ligand, respectively, of compounds 10, 13–15, 18, and 19 is found in an equatorial site. Compounds 1–3, 9–12, 18, and 19 are each characterized by a highly strained four-membered SiN₂C ring, which is formed by the bidentate amidinato ligand and the silicon coordination center, and compound 15 additionally contains a five-membered SiO₂C₂ ring, which does not noticably contribute to the distortion of the silicon coordination polyhedron. Complexes 1–3, 9–15, 18, and 19 show a dynamic behavior in solution, which is characterized by an exchange of the two nitrogen sites of the amidinato ligand. For compounds 1, 2, and 15, this behavior was studied in more detail by VT-NMR experiments. Compounds 10–13 and 15 represent the first structurally characterized five-coordinate silicon(IV) compounds with a 2,4,6-trimethoxyphenyl ligand.

It is noteworthy that – in contrast to the chemistry of four-coordinate silicon(IV) compounds, in which the TMOP substituent is used as a versatile protecting group – all attempts to selectively cleave the Si–C-bond of the TMOP-substituted compounds **10**, **13**, and **14** failed.

Zwitterionic five-coordinate silicon(IV) complexes

The zwitterionic dinuclear five-coordinate silicon(IV) complexes **26–29** were obtained by reaction of the silanes **24** and **25** (formed by treatment of tetrachlorosilane with the respective (dialkylphosphanyl)imidazole derivatives and triethylamine in THF; not isolated

as pure compounds) with acetonitrile and propionitrile, respectively. In these syntheses, a new bidentate N,N ligand is formed by nitrile activation. In contrast to what would be expected, no Si–P interaction was observed for **24** and **25** in solution. Therefore, compounds **24** and **25** could be described as "frustrate Lewis pairs" (Lewis-acidic silicon atom; Lewisbasic phosphorus atom), which might be the reason for their reactivity against aceto- and propionitrile.

Compounds 26–29 are characterized by C_i -symmetry and the silicon coordination polyhedra of these complexes in the crystal are best described as strongly distorted trigonal bipyramids. Interestingly, two different coordination modes were observed for the silicon atoms of these complexes: While in compound 26 both chloro ligands and one imido-nitrogen atom occupy the equatorial positions, one chlorine atom, one imido-nitrogen, and one amido nitrogen atom are found in the equatorial sites of 27–29. The silicon coordination polyhedra are bridged by the imido-nitrogen atoms leading to the formation of a central four-membered Si_2N_2 ring and the new N,N ligand forms a six-membered SiN_2C_2P ring with the silicon coordination center. Complexes 26–29 are characterized by a poor solubility in all common deuterated organic solvents and therefore could not be studied by NMR spectroscopy in solution. The syntheses of complexes 26–29 are the first examples for a silicon-mediated nitrile activation.

Attempts to isolate the new N,N ligands of compounds **26–29** after hydrolytic Si–N cleavage failed. Instead the formation of a 1:1 mixture of the corresponding (dialkylphosphanyl)-imidazole derivatives and acetamide or propaneamide was observed.

Neutral six-coordinate silicon(IV) complexes

The neutral six-coordinate silicon(IV) complex **30** was obtained by treatment of the fivecoordinate trichlorosilicon(IV) complex **1** with 8-hydroxyquinoline and triethylamine in THF. Starting from **30**, the silicon(IV) complexes **31**, **33**, **35**, and **36** were prepared by transsilylation reactions with the corresponding silanes of the type Me₃SiX (**31**: X = Br; **33**: $X = N_3$; **35**: X = NCS; **36**: $X = OSO_2CF_3$) in acetonitrile. The diffuoro and dicyanato-*N* substituted compounds **32** und **34**, respectively, were synthesized by salt metathesis reactions (**32**: potassium fluoride/18-crown-6/acetonitrile or silver tetrafluoroborate/triethyl-amine/THF; **34**: potassium cyanate/18-crown-6/acetonitril). The (benzene-1,2-diolato)-silicon(IV) complex **37** was prepared by treatment of **30** with 1,2-dihydroxybenzene and triethylamine in THF.

The silicon coordination polyhedra of **30–37** in the crystal are best described as strongly distorted octahedra, with the monodentate monoanionic ligands of 30-36 and the oxygen atoms of the bidentate dianionic O,O ligand of **37**, in *cis* positions. The nitrogen atoms of the bidentate amidinato and N,O ligands are found in a fac arrangement, and the nitrogen atom of the N,O ligands and one of the monodentate ligands and one of the oxygen atoms of the bidentate O,O ligand, respectively, occupy trans positions. Compounds **30–37** contain a strongly distorted four-membered SiN_2C ring, which is formed by the amidinato ligand and the silicon coordination center. The bidentate monoanionic N,O ligand forms a fivemembered $SiNOC_2$ ring with the silicon atom, and 37 additionally contains a five-membered SiO_2C_2 ring. Compounds **33–35** are the first structurally characterized six-coordinate silicon(IV) complexes with a SiN_5O skeleton. Compounds **30–37** show a dynamic behavior in solution, which, according to NMR spectroscopic studies, can be rationalized by the following three processes: I) exchange of the nitrogen sites of the amidinato ligands, II) exchange of the oxygen and nitrogen sites of the bidentate N,O ligand, and III) exchange of the binding sites of the monodentate ligands or the two oxygen sites of the bidentate O,O ligand. The importance of these processes depends on the substitution pattern, and until now it is unclear, on which mechanism this dynamic behavior is mainly based. Also, it could not be clarified whether these processes are coupled with each other. For compounds 32, 36, and 37, this dynamic behavior was studied by VT-NMR experiments in some more detail.

The syntheses presented here demonstrate the high synthetic potential of the five-coordinate trichlorosilicon(IV) complex **1** as well as the five-coordinate dichlorosilicon(IV) complex **10**

and the six-coordinate dichlorosilicon(IV) complex **30** as precursors in the synthesis of novel five- and six-coordinate silicon(IV) complexes.

Another important object of this study was the synthesis and characterization of and reactivity studies on a novel donor-stabilized silylene. The results can be summarized as follows:

Synthesis and characterization of a novel donor-stabilized silylene

After all attempts to synthesize the donor-stabilized silylene **39** by reduction of the corresponding neutral six-coordinate dihalogenosilicon(IV) complexes with alkaline metals failed, the neutral six-coordinate chlorohydridosilicon(IV) complex **38** was prepared by reaction of trichlorosilane with lithium N,N-diisopropylbenzamidinate in diethyl ether. The typical batch size for the synthesis of **38** is in the 250-mmol-range, so that this compound can be easily prepared on the 100-g-scale. Starting from **38**, the donor-stabilized silylene **39** could be prepared by reaction with potassium bis(trimethylsilyl)amide in diethyl ether in a reductive hydrogen chloride elimination. Alike to the synthesis of **38**, the synthetic protocol for the preparation of **39** could be optimized regarding yield and batch size, to allow for the preparation of **39** on the 35-g-scale, which paved the way for comprehensive reactivity studies with this donor-stabilized silylene.

The silicon coordination polyhedron of **38** is best described as a strongly distorted octahedron. The monodentate ligands are found in a *cis* arrangement. The six-coordinate silicon(IV) complex **38** contains two highly strained four-membered SiN₂C rings, which are responsible for the strong distortion of the silicon coordination polyhedron. The structural features of **38** are very similar to those of a series of analogue well documented six-coordinate silicon(IV) complexes, with two identical monodentate ligands.

The silicon atom of **39** is coordinated in a pseudotetrahedral fashion by three nitrogen atoms of the two amidinato ligands, with the free pair of electrons as the fourth "ligand". Compound **39** is three-coordinate in the solid state (one monodentate and one bidentate amidinato ligand), whereas NMR spectroscopic studies and quantum chemical calculations revealed, that **39** exists as the four-coordinate silicon(II) species **39'** (two bidentate amidinato ligands) in solution, where it is also the thermodynamically favored isomer. Compound **39** is the first example of a donor-stabilized silylene with two amidinato ligands.

Reactivity of the donor-stabilized silylene 39

The three-coordinate silicon(II) complex **39** reacts with the Lewis acids triethyl- and triphenylborane in toluene and *n*-hexane, respectively, to give the neutral five-coordinate silicon(II) complexes **41** and **42**. In these transformations, the donor-stabilized silylene **39** reacts as a Lewis base, leading to the formation of Lewis acid/base adducts. Furthermore, **39** reacts as a nucleophile with group-6 transtion-metal complexes of the type $[M(CO)_6]$ (M = Cr, Mo, W) and iron pentacarbonyl in toluene (**43**, **45**, **46**) and THF (**44**), respectively, to form the neutral five-coordinate silicon(II) complexes **43–46** with Si–M bonds.

The silicon coordination polyhedra of 41-46 in the crystal are best described as strongly distorted trigonal bipyramids, with the boron or transition-metal atom in an equatorial position. These compounds contain an Si-B (41, 42) and Si-M (43-46) single bond, respectively. Additionally, compounds 41-46 contain two highly strained four-membered SiN₂C rings, which are responsible for the strong distortion of the silicon coordination polyhedra. The silicon(II) complexes 41-46 show a dynamic behavior in solution, which can be explained by an exchange of the nitrogen binding sites. In the case of 41, an additional process contributes to the dynamic behavior: an elongation and/or (partial) dissociation of the Si-B bond. This phenomenon was studied in some more detail by VT-NMR experiments.

A similar behavior was not observed for the triphenylborane-substituted compound 42, which can be interpreted by a higher stability of the Si–B bond in 42 compared to that in 41. As revealed by quantum chemical calculations, compounds 41 and 42 can be described as classical Lewis acid/base adducts, and these calculations support the suggestion that the Si–B bond of 42 is more stable than that of 41. Compounds 43–46 were also studied by quantum chemical calculations, which support the assumption that the Si–M bonds (M = Cr, Mo, W, Fe) in 43–46 are best described as single bonds.

It was expected, that the donor-stabilized silylene **39** should also react with the Lewis acids of the type MCl_2 (M = Cu, Hg, Sn, Be) and HgBr₂ (solvent: toluene) to form Lewis acid/base adducts. However, in all cases the silicon atom was oxidized leading to the formation of the dihalogenosilicon(IV) complexes **8** and **40**, respectively. The nature of the other (by)products could not be elucidated, but in the case of the reaction with beryllium dichloride, the threecoordinate beryllium(II) compound **66** could be isolated as the co-crystallizate **66**·**8**.

The beryllium atoms of **66** in the crystal are coordinated in a trigonal planar fashion by one nitrogen atom of each of the two amidinato ligands and one chloro ligand, and the amidinato ligands bridge the two beryllium coordination centers.

In contrast to the reaction of **39** with transition-metal carbonyl complexes of the type $[M(CO)_6]$ (M = Cr. Mo, W) and $[Fe(CO)_6]$, in which **39** reacts as a nucleophile, the reactions of **39** with the group-6 transition metal compounds of the type $[HMCp(CO)_3]$ (M = Cr, Mo) in toluene yielded the cationic five-coordinate silicion(IV) compounds **50** and **52**, respectively (oxidative additions). These transformations can be described as an acid/base reaction, coupled with an oxidation of the silicon atom and a reduction of the hydrogen atom. A similar reaction is observed when **39** is treated with acetic acid in *n*-hexane, which leads to the formation of the neutral six-coordinate silicon(IV) complex **53**. This can be rationalized by a two-step process: In the first step, the same five-coordinate silicon(IV) cation (cf. the

cations of **50** and **52**) is formed, and in the second step the acetate anion (generated by the acid/base reaction of **39** with acetic acid) adds to the cation to form **53**.

The silicon coordination polyhedron of 52 in the crystal is best described as a strongly distorted trigonal bipyramid, with the hydrido ligand in an equatorial position. Suitable single crystals of 50 could not be obtained, but the NMR spectroscopic data in the solid state suggest that 50 and 52 adopt a similar structure. The silicon coordination polyhedron of 53 in the crystal is best described as a strongly distorted octahedron. As it was found for other structurally related six-coordinate silicon(IV) compounds with two amidinato ligands, the two monodentate ligands are bound in a *cis* arrangement. Also, compound 53 shows a similar dynamic behavior in solution as it was found for the above-mentioned structurally related silicon(IV) complexes.

The four-coordinate silane 48 was formed by the reaction of 39 with 2,3-dimethyl-1,3-butadiene in *n*-hexane. In this transformation, the donor-stabilized silylene 39 formally reacts in a [4+1]-cycloaddition.

The silicon coordination polyhedron of **48** in the crystal is best described as a distorted tetrahedron, in which both amidinato ligands are bound to the silicon coordination center in a monodentate fashion. In contrast, NMR spectroscopic studies revealed that **48** exists as a five-coordinate silicon(IV) species in solution (one monodentate and one bidentate amidinato ligand).

The neutral five-coordinate silicon(IV) complexes $54' \cdot C_6H_5CH_3$ and 55-57 were formed by treatment of **39** with dinitrogen monoxide ($\rightarrow 54' \cdot C_6H_5CH_3$) and the elemental chalcogens sulfur ($\rightarrow 55$), selenium ($\rightarrow 56$), and tellurium ($\rightarrow 57$), respectively, in toluene. Compound 55 could also be synthesized by reaction of **39** with tetraarsenic tetrasulfide in toluene. These reactions can also be described as oxidative additions. Interestingly, the oxygen analogue fo 55-57 the compound with an Si=O-double bond could not be isolated. Instead, its dimer 54' $\cdot C_6H_5CH_3$ was obtained. In this context it is noteworthy that the analogous dimers of 55-57 could not be prepared.

The silicon coordination polyhedra of **54'** and **55–57** in the crystal are best described as strongly distorted trigonal bipyramids. While **54'** is characterized by two monodentate and two bidentate amidinato ligands and a central four-membered Si_2O_2 ring, compounds **55–57** (two bidentate amidinato ligands) are the first neutral five-coordinate silicon(IV) complexes with Si=X-double bonds (X = S, Se, Te). Complexes **54'** and **55–57** show a dynamic behavior in solution, which is similar to that of the other five-coordinate silicon(IV) complexes described above. In the case of **56**, this behavior was studied in some more detail by VT-NMR experiments.

The neutral six-coordinate silicon(IV) complexes **58** and **59** were prepared in oxidative addition reactions of **39** with a stoichiometric amount of sulfur dioxide in toluene (**58**) and a large excess of sulfur dioxide (which also served as the solvent; **59**), respectively.

The silicon coordination polyhedra of **58** and **59** are best described as strongly distorted octahedra. Compound **59** was isolated as a cocrystallizate of its *cis* and *trans* isomer, the ratio of which can be controlled by the crystallization temperature. The oxygen atoms of the bidentate *O,O* ligands are found *cis* to each. Interestingly, the sterically more congested *cis* isomer is the dominant species, both in the solid state and in solution. Compound **58** is the first example of a silicon compound with a bidentate sulfito ligand, and **59** is even the first structurally characterized example of a molecular compound with a chelating dithionito ligand. Compounds **58** and **59** show a dynamic behavior in solution. In the case of **58**, this behavior can be explained by an exchange of the four nitrogen sites, whereas two more processes contribute to the dynamic behavior of **59**: I) exchange between the *cis* and *trans* isomer and II) exchange between the two diastereomers of *trans*-**59** (revealed by NMR spectroscopic studies in solution at low temperature). This phenomenon was studied in some more detail by VT-NMR experiments in solution, but the exact mechanisms of these processes are not yet fully understood.

Compound **39** also undergoes oxidative addition reactions with 1,2-dicarba-*closo*dodecaborane (\rightarrow **60**), 1,7-dicarba-*closo*-dodecaborane (\rightarrow **62**), elemental iodine (\rightarrow **68**), diphenyl diselenide (\rightarrow **69**), and hexafluorobenzene (\rightarrow **70**.0.5C₆H₁₄) in THF (**60** and **62**) and toluene (**68**, **69**, and **70**.0.5C₆H₁₄), respectively. These transformations are based on a selective element–element bond activation. Compounds **60** and **62** were found to react with acetonitrile (cleavage of the carboranyl ligand) to give the neutral six-coordinate silicon(IV) complex **61**, which contains a cyanomethyl ligand. Future studies have to show, whether this reactivity of **60** and **62** with the C–H-acidic acetonitrile is transfereable to other X–H-acidic substrates.

-*i*Pr

−*i*Pr

Ρh

The silicon coordination polyhedra of 60-62 and 68-70 are best described as strongly distorted octahedra, with the two monodentate ligands in a *cis* positions. Except for the monodentate ligands, the structural features of these six-coordinate silicon(IV) complexes are very similar. Compound **60** is the first structurally characterized higher-coordinate silicon(IV) complex with a carboranyl ligand. In contrast to reactions with NHCs, no opening of the clusters is observed; instead, a selective C-H bond activation takes place. Compound **61** is the first six-coordinate silicon(IV) complex with a cyanomethyl ligand, and **68** is the first example of a six-coordinate silicon(IV) complex with iodo ligands. The formation of complex **70** is one of the very rare examples of a silicon-mediated C-F bond activation.

The reactivity studies described herein demonstrate the exceptionally high synthetic potential of the donor-stabilized silvlene **39**. The silicon(II) and silicon(IV) compounds obtained show unique structural and spectroscopic properties, and their reactivity may lead to applications of these compounds in synthetic organic and inorganic chemistry.

8 Experimenteller Teil

8.1 Arbeits- und Messtechniken

8.1.1 Allgemeine Arbeitstechniken

Chemische Synthesen

Alle Synthesen wurden in getrockneten, sauerstofffreien Lösungsmitteln unter einer trockenen Argonatmosphäre durchgeführt. Das verwendete Schutzgas wurde durch einen mit Silica-Gel und zwei mit Phosphorpentoxid/Bimsstein gefüllte Trockentürme geleitet und dadurch wasserfrei erhalten.

Die verwendeten Lösungsmittel wurden nach Standardverfahren getrocknet und desoxygeniert, durch Destillation gereinigt und unter einer trockenen Argonatmosphäre aufbewahrt. Alle kommerziell erhältlichen Reagenzien besaßen mindestens p.a.-Qualität und wurden ohne weitere Reinigung direkt verwendet. Das verwendete graue Selen (99.7%; ABCR, Artikel-Nr. AB118648, <70 μ) und Tellur (99.8%; Acros Organics, Artikel-Nr. 31599, 200 mesh) wurden als Pulver eingesetzt.

Lithium-N,N-diisopropylbenzamidinat,^[30] 2,4,6-Trimethyoxyphenyllithium,^[18a] Pentafluorphenyllithium,^[32] 2-(Diethylphosphanyl)imidazol,^[20] 2-(Diisopropylphosphanyl)-imidazol,^[20] Tricarbonyl(η^{5} -cyclopentadienyl)hydridochrom(0)^[34] und Tricarbonyl(η^{5} -cyclopentadienyl)-hydridomolybdän(0)^[34] wurden nach literaturbekannten Methoden dargestellt.

Deuterierte Lösungsmittel für die NMR-Spektroskopie

Die für die NMR-Spektroskopie eingesetzten kommerziell erhältlichen deuterierten Lösungsmittel wurden aus abgeschmolzenen Glasampullen ohne weitere Reinigung direkt für die Messungen eingesetzt (CD_2Cl_2 , $[D_8]$ Toluol) bzw. nach Standardverfahren getrocknet und desoxygeniert, durch Destillation gereinigt und unter einer trockenen Argonatmosphäre aufbewahrt (C_6D_6 , $[D_8]$ THF).

8.1.2 Messtechniken

¹*H*-*NMR*-*Spektren*

Geräte DRX-300, Avance III HD 300 (300.1 MHz) und Avance 500 (500.1 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD_2Cl_2 (interner Standard CHDCl₂, $\delta = 5.32$ ppm), C_6D_6 (interner Standard C_6HD_5 , $\delta = 7.28$ ppm), $[D_8]$ THF (interner Standard $[D_7]$ THF, $\delta = 1.73$ ppm), $[D_8]$ Toluol (interner Standard $[D_7]$ Toluol, $\delta = 2.09$ ppm); Messtemperatur (wenn nicht anders angegeben) *ca.* 23 °C. Die Zuordnungen wurden durch ¹H,¹H- (¹H,¹H-COSY, ¹H,¹H-NOESY) und ¹H,¹³C-Korrelationsexperimente unterstützt; die Ergebnisse sind in den entsprechenden Zuordnungen enthalten.

⁹Be-NMR-Spektren

Gerät Avance 500 (70.3 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanz: C₆D₆ (externer Standard BeCl₂, 0.1 M in D₂O, $\delta = 0$ ppm); Messtemperatur *ca.* 23 °C. Alle ⁹Be-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen.

¹¹B-NMR-Spektren

Gerät Avance 500 (160.5 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanz: C₆D₆, [D₈]Toluol, [D₈]THF (externer Standard BF₃·Et₂O, 15 Gewichtsprozent in CDCl₃, $\delta = 0$ ppm); Messtemperatur *ca.* 23 °C. Alle ¹¹B-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen.

¹³C-NMR-Spektren

Geräte DRX-300, Avance III HD 300 (75.5 MHz) und Avance 500 (125.8 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD₂Cl₂ (interner Standard CD₂Cl₂, $\delta =$ 53.8 ppm), C₆D₆ (interner Standard C₆D₆, $\delta =$ 128.0 ppm), [D₈]THF (interner Standard [D₈]THF, $\delta =$ 25.3 ppm), [D₈]Toluol (interner Standard [D₈]Toluol, $\delta =$ 20.4 ppm); Messtemperatur (wenn nicht anders angegeben) *ca.* 23 °C. Alle ¹³C-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Signalzuordnungen wurden durch DEPT-135-Experimente sowie ¹H,¹³C-Korrelationsexperimente (HMBC bzw. HMQC) unterstützt; die Ergebnisse sind in den entsprechenden Zuordnungen enthalten.

¹⁵N-NMR-Spektren

Gerät Avance 500 (50.7 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanz: C₆D₆ (externer Standard Formamid mit 10 Gewichtsprozent DMSO, $\delta = -268.0$ ppm); Messtemperatur (wenn nicht anders angegeben) *ca.* 23 °C. Alle ¹⁵N-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen.

¹⁹F-NMR-Spektren

Geräte DRX-300, Avance III HD 300 (282.4 MHz) und Avance 400 (376.5 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD₂Cl₂, C₆D₆ (externer Standard CFCl₃, $\delta = 0$ ppm); Messtemperatur (wenn nicht anders angegeben) ca. 23 °C. Alle ¹⁹F-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die ¹⁹F,¹⁹F-EXSY/NOESY-Spektren wurden mit einer Mischzeit von 800 ms aufgenommen.

²⁹Si-NMR-Spektren

Geräte DRX-300, Avance III HD 300 (59.6 MHz) und Avance 500 (99.4 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD₂Cl₂, C₆D₆, [D₈]THF, [D₈]Toluol (externer Standard TMS, $\delta = 0$ ppm); Messtemperatur (wenn nicht anders angegeben) *ca.* 23 °C. Alle ²⁹Si-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Zuordnungen wurden durch ¹H,²⁹Si-Korrelationsexperimente unterstützt (HMQC); die Ergebnisse sind in den entsprechenden Zuordnungen enthalten.

³¹P-NMR-Spektren

Gerät Avance 500 (202.5 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanz: CD_2Cl_2 (externer Standard H₃PO₄, 85%, $\delta = 0$ ppm); Messtemperatur (wenn nicht anders angegeben) *ca.* 23 °C. Alle ³¹P-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Zuordnungen wurden durch ¹H,³¹P-Korrelationsexperimente unterstützt (¹H,³¹P-COSY); die Ergebnisse sind in den entsprechenden Zuordnungen enthalten.

⁷⁷Se-NMR-Spektren

Gerät Avance 500 (95.4 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD_2Cl_2 , C_6D_6 (externer Standard Me₂Se mit 5 Gewichtsprozent C_6D_6 , $\delta = 0$ ppm); Messtemperatur ca. 23 °C. Alle ⁷⁷Se-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen.

¹²⁵Te-NMR-Spektren

Gerät Avance 500 (157.8 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanz: C₆D₆ (externer Standard Ph₂Te, 0.1 M in CDCl₃, $\delta = 422.0$ ppm); Messtemperatur (wenn nicht anders angegeben) *ca.* 23 °C. Alle ¹²⁵Te-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen.

⁹Be-HPDec/MAS-NMR-Spektren

Gerät DSX-400 (56.2 MHz) der Firma Bruker; externer Standard BeCl₂, 0.1 M in D₂O, $\delta = 0$ ppm; Messtemperatur *ca.* 22 °C. Alle ⁹Be-HPDec/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 7 mm) mit 30 mg Probensubstanz durchgeführt. 90°-¹H-Pulslänge 3.6 μ s; Signalakkumulationswartezeit 2 s.

¹¹B-HPDec/MAS-NMR-Spektren

Gerät DSX-400 (128.4 MHz) der Firma Bruker; externer Standard, BF₃·Et₂O, 15 Gewichtsprozent in CDCl₃, $\delta = 0$ ppm; Messtemperatur *ca.* 22 °C. Alle ¹¹B-HPDec/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 7 mm) mit 200 mg Probensubstanz durchgeführt. 90°-¹H-Pulslänge 3.6 μ s; Signalakkumulationswartezeit 2 s.

¹³C-VACP/MAS-NMR-Spektren

Gerät DSX-400 (100.6 MHz) der Firma Bruker; externer Standard TMS, $\delta = 0$ ppm; Messtemperatur *ca.* 22 °C. Alle ¹³C-VACP/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 bzw. 7 mm) mit 80 (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 2 ms; 90°-¹H-Pulslänge 2.6 (4 mm) bzw. 3.6 μ s (7 mm); Signalakkumulationswartezeit 4–7 s.

15 N-VACP/MAS-NMR-Spektren

Gerät DSX-400 (40.6 MHz) der Firma Bruker; externer Standard Glycin, $\delta = -342.0$ ppm; Messtemperatur *ca.* 22 °C. Alle ¹⁵N-VACP/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 bzw. 7 mm) mit 80 (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 3–5 ms; 90°-¹H-Pulslänge 2.6 (4 mm) bzw. 3.6 μ s (7 mm); Signalakkumulationswartezeit 4–7 s.

³¹P-VACP/MAS-NMR-Spektren

Gerät DSX-400 (162.0 MHz) der Firma Bruker; externer Standard H₃PO₄ (85%), $\delta = 0$ ppm; Messtemperatur *ca.* 22 °C. Alle ³¹P-VACP/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 7 mm) mit 200 mg Probensubstanz durchgeführt. Kontaktzeit 2 ms; 90°-¹H-Pulslänge 3.6 μ s; Signalakkumulationswartezeit 4–7 s.

²⁹Si-VACP/MAS-NMR-Spektren

Gerät DSX-400 (79.5 MHz) der Firma Bruker; externer Standard TMS, $\delta = 0$ ppm; Messtemperatur *ca.* 22 °C. Alle ²⁹Si-VACP/MAS-MR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 bzw. 7 mm) mit 80 (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 5 ms; 90°-¹H-Pulslänge 2.6 (4 mm) bzw. 3.6 μ s (7 mm); Signalakkumulationswartezeit 4–7 s.

⁷⁷Se-VACP/MAS-NMR-Spektren

Gerät DSX-400 (76.3 MHz) der Firma Bruker; externer Standard Me₂Se, $\delta = 0$ ppm; Messtemperatur *ca.* 22 °C. Alle ⁷⁷Se-VACP/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 bzw. 7 mm) mit 80 (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 5 ms; 90°-¹H-Pulslänge 2.6 (4 mm) bzw. 3.6 μ s (7 mm); Signalakkumulationswartezeit 5–7 s.

¹²⁵Te-HPDec/MAS-NMR-Spektren

Gerät DSX-400 (126.2 MHz) der Firma Bruker; externer Standard Te(OH)₆, $\delta = 685.5$ und 692.2 ppm; Messtemperatur *ca.* 22 °C. Alle ¹²⁵Te-HPDec/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 7 mm) mit 200 mg Probensubstanz durchgeführt. 90°-¹H-Pulslänge 3.6 μ s; Signalakkumulationswartezeit 7 s.

VT-NMR-Spektren

Die Theromoelemente, welche in den Probenköpfen für die VT-NMR-Messungen verwendet wurden, wurden für höhere und tiefere Temperaturen gemäß Lit. [68] mit einer Lösung von Ethan-1,2-diol in $[D_6]DMSO$ (80%) bzw. einer Lösung von MeOH in $[D_4]MeOH$ (4%), welche eine Spur HCl enthielt, kalibriert.

Schmelzpunkte (unkorrigiert)

Gerät Melting Point B540 der Firma Büchi; die Messungen wurden in abgeschmolzenen Glaskapillaren durchgeführt.

Elementaranalysen

Gerät Leco CHNS-932 der Firma Leco Instruments und Gerät VarioMicro der Firma Elementar.

8.2 Synthesen

Verbindung 1

Zu einer Lösung von Lithium-N, N-diisopropylbenzamidinat (16.8 g, 79.9 mmol) in Diethylether (120 mL) wurde unter Rühren bei -78 °C innerhalb von 2 min Tetrachlorsilan (15.0 g, 88.3 mmol) gegeben und das resultierende Gemisch innerhalb von 4 h unter Rühren auf 20 °C erwärmt. Die flüchtigen Bestandteile wurden im Vakuum entfernt und zu dem verbliebenen Rückstand wurde Dichlormethan (80 mL) gegeben. Die resultierende Suspension wurde filtriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Zu dem verbliebenen Rückstand wurde Acetonitril (50 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der
entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 20 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 20.8 g (61.6 mmol, 77%) eines farblosen kristallinen Feststoffs. Smp. >150 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.20 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; \text{ C}H_{3}, 3.65 \text{ (sept, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 2 \text{ H}; \text{ C}H_{3}\text{C}H\text{C}H_{3}),$ 7.36–7.39 (m, 2 H; o-C₆ H_5), 7.56–7.66 ppm (m, 3 H; p- und m-C₆ H_5). — ¹³C-NMR (CD₂Cl₂), 125.8 MHz): $\delta = 22.9$ (4 C; CH₃), 47.5 (2 C; CH₃CHCH₃), 127.0 (*i*-C₆H₅), 127.4 (2 C; *o*-C₆H₅), 129.6 (2 C; m- C_6H_5), 131.8 (p- C_6H_5), 173.1 ppm (N*C*N). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -98.2$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 22.6$ (2 C; CH₃), 23.9 (2 C; CH₃), 46.8, 48.4 (CH_3CHCH_3) , 125.1, 126.4 (2 C), 129.4 (2 C), 133.1 (C_6H_5), 173.5 ppm (NCN). — ¹⁵N-VACP/MAS-NMR: $\delta = -230.6$, -172.6 ppm. $-^{29}$ Si-VACP/MAS-NMR: $\delta = -99.4$ ppm. C 46.23 H 5.67 $C_{13}H_{19}Cl_3N_2Si$ (337.75) Ber. N 8.29 Gef. C 46.2 H 5.7 N 8.3

Verbindung 2

Methode 1: In eine Lösung von Lithium-N,N-diisopropylbenzamidinat (3.32 g, 15.8 mmol) in THF (100 mL) wurde unter Rühren bei 20 °C innerhalb von 5 min Tetrafluorsilan (3.05 g, 29.1 mmol) eingeleitet und das resultierende Gemisch 18 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und zu dem verbliebenen Rückstand Toluol (50 mL) gegeben. Die resultierende Suspension wurde filtriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Zu dem verbliebenen festen Rückstand wurde n-Hexan (15 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf -20 °C abgekühlt und 3 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (3 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 3.52 g (12.2 mmol, 77%) eines farblosen kristallinen Feststoffs. Smp. >170 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 1.12$ (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 12 H; CH₃), 3.44 (sept, ${}^{3}J({}^{1}H, {}^{1}H)$ = 6.8 Hz, 1 H; CH₃CHCH₃), 3.45 (sept, ${}^{3}J({}^{1}H, {}^{1}H)$ = 6.8 Hz, 1 H; CH₃CHCH₃), 7.32–7.40 (m, 2 H; o-C₆H₅), 7.53–7.65 ppm (m, 3 H; p- und m-C₆H₅). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): $\delta =$ 23.1 (4 C; CH₃), 46.1 (2 C; CH₃CHCH₃), 127.3 (*i*-C₆H₅), 127.7 (2 C; *o*-C₆H₅), 129.7 (2 C; $m-C_6H_5$), 131.9 ($p-C_6H_5$), 175.4 ppm (NCN). — ¹⁹F-NMR (CD₂Cl₂, 282.4 MHz): $\delta =$ -135.4 ppm (²⁹Si-Satelliten: ${}^{1}J({}^{19}\text{F}, {}^{29}\text{Si}) = 218 \text{ Hz}$). — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta =$ $-123.9 \text{ ppm} (q, {}^{1}J({}^{29}\text{Si}, {}^{19}\text{F}) = 218 \text{ Hz}). - {}^{13}\text{C-VACP/MAS-NMR}: \delta = 22.3 (3 \text{ C}), 23.6 (CH_3),$ 46.1 (2 C; CH₃CHCH₃), 125.6, 127.9, 128.8, 130.2, 130.9, 131.9 (C₆H₅), 175.7 ppm (NCN). — ¹⁵N-VACP/MAS-NMR: $\delta = -226.6$, -210.5 ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -129.6$ – (-117.1) ppm (m).

 $\begin{array}{ccccc} C_{13}H_{19}F_{3}N_{2}Si~(288.39) & & Ber. & C~54.14 & H~6.64 & N~9.71 \\ & & Gef. & C~54.4 & H~6.7 & N~9.6 \end{array}$

Methode 2: Zu einer Lösung von 1 (2.38 g, 7.04 mmol) in THF (35 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Silbertetrafluoroborat (4.20 g, 21.1 mmol) und Triethylamin (2.1 g, 21.1 mmol) gegeben und das resultierende Gemisch wurde 20 min bei dieser Temperatur gerührt. Die resultierende Suspension wurde filtriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Zu dem verbliebenen festen Rückstand wurde *n*-Hexan (8 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf –20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 1.38 g (4.79 mmol, 77%) eines farblosen kristallinen Feststoffs. — Die analytischen Daten stimmten mit denen des nach Methode 1 erhaltenen Produkts überein.

Verbindung 3

Zu einer Lösung von Lithium-N,N-diisopropylbenzamidinat (4.21 g, 20 mmol) in Diethylether (50 mL) wurde unter Rühren bei -78 °C innerhalb von 2 min Tetrabromsilan (10.5 g, 30.2 mmol) gegeben und das resultierende Gemisch wurde zunächst 1 h bei dieser Temperatur und anschließend weitere 4 h bei 20 °C gerührt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, zu dem verbliebenen Rückstand wurde Toluol (30 mL) gegeben und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, zu dem verbliebenen Rückstand Acetonitril (10 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 5.71 g (12.1 mmol, 61%) eines farblosen kristallinen Feststofft. Smp. >130 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.21$ (d, ³J(¹H,¹H) = 6.8 Hz, 12 H; CH₃), 3.79 (sept, ³J(¹H,¹H) = 6.8 Hz, 2 H; CH₃CHCH₃), 7.37-7.41 (m, 2 H; σ -C₆H₅), 7.56-7.65 ppm (m, 3 H; *p*- und *m*-C₆H₅). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 23.1$ (4 C; *C*H₃), 47.4 (2 C; CH₃*C*HCH₃), 127.0 ($\dot{r}C_{6}H_{5}$), 127.5 (2 C; $o-C_{6}H_{5}$), 129.4 (2 C; $m-C_{6}H_{5}$), 131.8 ($p-C_{6}H_{5}$), 172.8 ppm (N*C*N). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -156.6$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 24.7$ (2 C), 25.5 (2 C) (*C*H₃), 45.7, 47.0 (CH₃*C*HCH₃), 127.9, 128.6, 129.0 (2 C), 130.0, 133.2 ($C_{6}H_{5}$), 172.9 ppm (N*C*N). — ¹⁵N-VACP/MAS-NMR: $\delta = -225.9$, -161.4 ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -149.9$ ppm.

 $\begin{array}{ccccc} C_{13}H_{19}Br_{3}N_{2}Si~(471.11) & Ber. & C~33.14 & H~4.07 & N~5.95 \\ & Gef. & C~32.9 & H~4.3 & N~6.2 \end{array}$

Allgemeine Vorschrift für die Umsetzung von 39 mit Metallchloriden — Verbindung 8

In einem NMR-Rohr wurde zu einer Mischung von **39** (30 mg, 69 μ mol) und einer äquimolaren Menge MCl₂ (CuCl₂: *ca.* 9 mg; HgCl₂: *ca.* 19 mg; SnCl₂: *ca.* 13 mg) bei 20 °C in einer Portion [D₆]Benzol (0.7 mL) gegeben und das resultierende Gemisch wurde nach 2 h NMR-spektroskopisch untersucht. Die analytischen Daten stimmten mit denen in der Literatur überein (Bildung von **8**).^[10m] Die ¹H- und ¹³C-NMR-Spektren wiesen Verunreinigungen auf, welche keiner definierten Verbindung zugeordnet werden konnten.

Verbindung 9

Zu einer Lösung von 2 (600 mg, 2.08 mmol) in THF (20 mL) wurde unter Rühren bei -78 °C innerhalb von 1 h eine Lösung von 2,4,6-Trimethoxyphenvllithium (362 mg, 2.08 mmol) in THF (10 mL) getropft und das resultierende Gemisch 16 h unter Erwärmen auf 20 °C gerührt. Das Lösungsmittel wurde im Vakuum entfernt, zu dem verbliebenen Rückstand Dichlormethan (20 mL) gegeben und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt und zu dem verbliebenen Rückstand wurde n-Hexan (35 mL) gegeben. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf -20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 543 mg (1.24 mmol, 60%) eines farblosen kristallinen Feststoffs. Smp. >155 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 0.95$ (dt, ³J(¹H, ¹H) = 6.8 Hz, ⁵J(¹H, ¹⁹F) = 0.4 Hz, 12 H; CH_3CHCH_3), 3.45 (sept von t, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, ${}^{4}J({}^{1}H, {}^{19}F) = 1.9$ Hz, 1 H; CH_3CHCH_3), 3.82 (s, 3 H; *p*-OCH₃), 3.86 (s, 6 H; *o*-OCH₃), 6.13 (s, 2 H; C₆H₂(OCH₃)₃), 7.28–7.37 (m, 2 H; o-C₆H₅), 7.47–7.56 ppm (m, 3 H; p- und m-C₆H₅). — ¹³C-NMR (CD₂Cl₂) 75.5 MHz): $\delta = 23.2$ (4 C; CH₃CHCH₃), 46.5 (2 C; CH₃CHCH₃), 55.5 (p-OCH₃), 55.7 (2 C;

o-OCH₃), 90.8 (SiC), 115.6 (2 C; m-C₆H₂(OCH₃)₃), 125.6 (i-C₆H₅), 127.6 (2 C; o-C₆H₅), 129.2 $(2 \text{ C}; m-C_6\text{H}_5), 130.7 (p-C_6\text{H}_5), 163.1 (p-C_6\text{H}_2(\text{OCH}_3)_3), 164.8 (2 \text{ C}; p-C_6\text{H}_2(\text{OCH}_3)_3), 170.4$ ppm $({}^{2}J({}^{13}C, {}^{19}F) = 3.5 \text{ Hz}; \text{ N}C\text{N}). - {}^{29}\text{Si-NMR} (CD_{2}Cl_{2}, 59.6 \text{ MHz}): \delta = -92.1 \text{ ppm}$ $(t, {}^{1}J({}^{29}Si, {}^{19}F) = 243 \text{ Hz}). - {}^{13}C-VACP/MAS-NMR: \delta = 22.9 (2 \text{ C}), 23.6, 24.5 (CH_{3}CHCH_{3}),$ 45.5, 47.6 (CH₃CHCH₃), 54.3 (p-OCH₃), 54.7 (2 C; o-OCH₃), 125.5 (2 C), 127.8 (2 C), 129.2 $(2 \text{ C}), 129.9 (2 \text{ C}), 133.3 (C_6\text{H}_5, i, m-C_6\text{H}_2(\text{OCH}_3)_3), 162.4 (p-C_6\text{H}_2(\text{OCH}_3)_3), 164.6$ $(o - C_6 H_2(OCH_3)_3)$, 165.5 $(o - C_6 H_2(OCH_3)_3)$, 171.1 ppm (br.; NCN). — ¹⁵N-VACP/MAS-NMR: $\delta = -238.7, -185.1$ ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -104.0 - (-90.7)$ ppm (m). $C_{22}H_{30}F_2N_2O_3Si$ (436.57) $C \ 60.53$ H 6.93N 6.41 Ber. Gef. C 60.5 H 6.7 N 6.2

Verbindung 10

Zu einer Lösung von 1 (17.2 g, 50.6 mmol) in THF (100 mL) wurde unter Rühren bei –78 °C innerhalb von 1 min eine Lösung von 2,4,6-Trimethoxyphenyllithium (8.81 g, 50.6 mmol) in THF (50 mL) getropft und das resultierende Gemisch 1 h bei dieser Temperatur und anschließend 18 h bei 20 °C gerührt. Das Lösungsmittel wurde im Vakuum entfernt, zu dem verbliebenen Rückstand Toluol (100 mL) gegeben und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt und zu dem verbliebenen Rückstand wurde Diethylether (80 mL) gegeben. Der entstandene Feststoff wurde durch Filtration isoliert und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 18.9 g (38.0 mmol, 80%) eines farblosen amorphen Feststoffs. Smp. >165 °C (Zers.). — ¹H-NMR $(CD_2Cl_2, 300.1 \text{ MHz}): \delta = 1.00 \text{ (d. } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3CHCH_3), 3.59 \text{ (sept.)}$ ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 3.82 (s, 3 H; *p*-OCH₃), 3.86 (s, 6 H; *o*-OCH₃), 6.08 (s, 2 H; C₆ $H_2(OCH_3)_3$), 7.31–7.57 ppm (m, 5 H; C₆ H_5). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): $\delta = 22.9 (4 \text{ C}; CH_3CHCH_3), 47.0 (2 \text{ C}; CH_3CHCH_3), 55.5 (p-OCH_3), 55.7 (2 \text{ C}; o-OCH_3), 91.2$ (SiC), 112.9 (2 C; $m - C_6H_2(OCH_3)_3$), 127.0 ($i - C_6H_5$), 127.4 (2 C; $o - C_6H_5$), 129.1 ($m - C_6H_5$), 129.2 $(m - C_6H_5)$, 130.7 $(p - C_6H_5)$, 162.7 $(p - C_6H_2(OCH_3)_3)$, 162.8 (2 C; $o - C_6H_2(OCH_3)_3)$, 170.4 ppm (N*C*N). — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -87.6$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 20.8 (2 \text{ C}), 23.6 (2 \text{ C}) (CH_3CHCH_3), 48.3 (2 \text{ C}; CH_3CHCH_3), 56.1 (p-OCH_3), 56.6$ $(2 \text{ C}; \sigma \text{O}C\text{H}_3), 91.0 \ (i \cdot C_6\text{H}_2(\text{O}\text{C}\text{H}_3)_3), 92.1, 112.8, 128.0 \ (2 \text{ C}), 128.4 \ (2 \text{ C}), 130.2, 130.9$ $(C_{6}H_{5}, i-, m-C_{6}H_{2}(OCH_{3})_{3}), 162.1 (p-C_{6}H_{2}(OCH_{3})_{3}), 163.4 (o-C_{6}H_{2}(OCH_{3})_{3}), 164.2$ $(o-C_6H_2(OCH_3)_3)$, 172.0 ppm (N*C*N). — ¹⁵N-VACP/MAS-NMR: $\delta = -232.9$, -177.2 ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -87.6$ ppm.

$C_{22}H_{30}Cl_2N_2O_3Si$ (496.48)	Ber.	C 56.28 $$	H 6.44	N 5.97
	Gef.	C 56.1	H 6.6	N 5.8

Zu einer Lösung von 10 (1.01 g, 2.15 mmol) in Acetonitril (25 mL) wurde unter Rühren bei 20 °C in einer Portion Bromtrimethylsilan (2.00 g, 13.1 mmol) gegeben und das resultierende Gemisch wurde 6 h bei 80–90 °C gerührt (destillative Abtrennung des entstandenen Chlortrimethylsilans) und anschließend auf 20 °C abgekühlt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, der verbliebene Rückstand mit n-Pentan (10 mL) versetzt und der resultierende Feststoff durch Filtration isoliert und im Vakuum getrocknet (20 °C, 1 h, 0.01 mbar). Ausbeute: 732 mg (1.31 mmol, 61%) eines leicht braun gefärbten amorphen Feststoffs. — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 1.89$ (d, ³J(¹H, ¹H) = 6.8 Hz, 12 H; CH_3CHCH_3), 3.22 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH_3CHCH_3), 3.81 (s, 3 H; p-OCH₃), 3.86 (s, 6 H; o-OCH₃), 6.11 (s, 2 H; C₆H₂(OCH₃)₃), 7.33-7.69 ppm (m, 5 H; C₆H₅). - ¹³C-NMR (CD₂Cl₂, 75.5 MHz): δ = 23.1 (2 C), 23.3 (2 C) (*C*H₃CH*C*H₃), 47.0 (2 C; CH_3CHCH_3 , 55.6 (*p*-OCH₃), 55.7 (2 C; *o*-OCH₃), 91.3 (*i*-C₆H₂(OCH₃)₃), 126.5 (2 C; $m - C_6 H_2(OCH_3)_3$, 127.0 ($i - C_6 H_5$), 127.6 (2 C; $o - C_6 H_5$), 129.2 (2 C; $m - C_6 H_5$), 130.2 ($p - C_6 H_5$), 162.4 ($p - C_6 H_2(OCH_3)_3$), 162.9 (2 C; $o - C_6 H_2(OCH_3)_3$), 170.9 ppm (NCN). — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -111.2$ ppm. Die ¹H- und ¹³C-NMR Spektren wiesen geringfügige Verunreinigungen auf.

Verbindung 12

Zu einer Lösung von **10** (1.01 g, 2.15 mmol) in Acetonitril (25 mL) wurde unter Rühren bei 20 °C in einer Portion Cyanotrimethylsilan (1.22 g, 12.3 mmol) gegeben und das resultierende Gemisch wurde 5 h bei 80–90 °C gerührt (destillative Abtrennung des entstandenen Chlortrimethylsilans) und anschließend auf 20 °C abgekühlt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, der verbliebene Rückstand mit *n*-Pentan (10 mL) versetzt und der resultierende Feststoff durch Filtration isoliert und im Vakuum getrocknet (20 °C, 1 h, 0.01 mbar). Ausbeute: 846 mg (1.94 mmol, 90%) eines farblosen amorphen Feststoffs. — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 1.07$ (d, ³J(¹H,¹H) = 6.8 Hz, 12 H; C H_3 CHC H_3), 3.58 (sept, ³J(¹H,¹H) = 6.8 Hz, 2 H; CH₃CHCH₃), 3.84 (s, 3 H; *p*-OC H_3), 3.88 (s, 6 H; *o*-OC H_3), 6.16 (s, 2 H; C₆ H_2 (OCH₃)₃), 7.32–7.59 ppm (m, 5 H; C₆ H_5). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): $\delta = 23.0$ (4 C; CH₃CHCH₃), 47.5 (2 C; CH₃CHCH₃), 55.6 (*p*-OCH₃), 55.7 (2 C; *o*-OCH₃), 91.3 (*i* C_6 H₂(OCH₃)₃), 103.9 (2 C; *m*- C_6 H₂(OCH₃)₃), 127.0 $(i \cdot C_6 H_5)$, 127.4 (2 C; $o \cdot C_6 H_5$), 129.5 (2 C; $m \cdot C_6 H_5$), 131.3 $(p \cdot C_6 H_5)$, 164.4 $(p \cdot C_6 H_2(\text{OCH}_3)_3)$, 164.5 (2 C; $o \cdot C_6 H_2(\text{OCH}_3)_3$), 172.4 ppm (N*C*N); ¹³C-Resonanzsignale der *C*N-Liganden nicht detektiert. — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -138.6$ ppm. Die ¹H- und ¹³C-NMR-Spektren wiesen geringfügige Verunreinigungen auf.

Verbindung 13

Zu einer Lösung von 10 (1.26 g, 2.68 mmol) in Acetonitril (30 mL) wurde unter Rühren bei 20 °C nacheinander in jeweils einer Portion 18-Krone-6 (213 mg, 800 μ mol) und Kaliumcyanat (435 mg, 5.37 mmol) gegeben und das resultierende Gemisch 18 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt, zu dem verbliebenen Rückstand Benzol (25 mL) gegeben und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt und zu dem verbliebenen Rückstand Acetonitril (3 mL) gegeben. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf -20 °C abgekühlt und 18 h bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 980 mg (2.04 mmol, 76%) eines farblosen kristallinen Feststoffs. Smp. >160 °C (Zers.). — ¹H-NMR $(CD_2Cl_2, 300.1 \text{ MHz}): \delta = 1.00 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3CHCH_3), 3.40 \text{ (sept,}$ ${}^{3}J({}^{1}H,{}^{1}H) = 6.8 \text{ Hz}, 2 \text{ H}; \text{ CH}_{3}\text{C}H\text{CH}_{3}, 3.83 \text{ (s, 3 H; } p\text{-OC}H_{3}), 3.89 \text{ (s, 6 H; } o\text{-OC}H_{3}), 6.17 \text{ (s, 6 H; } o\text{-OC}H_{3})$ 2 H; $C_6H_2(OCH_3)_3$), 7.22–7.55 ppm (m, 5 H; C_6H_5). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): $\delta =$ 23.1 (4 C; CH₃CHCH₃), 46.9 (2 C; CH₃CHCH₃), 55.4 (p-OCH₃), 55.6 (2 C, o-OCH₃), 90.6 $(i - C_6 H_2(OCH_3)_3)$, 108.6 (2 C; $m - C_6 H_2(OCH_3)_3$), 123.4 (2 C; NCO), 127.5 ($i - C_6 H_5$), 127.6 (2 C; $o-C_6H_5$), 128.6 ($m-C_6H_5$), 129.2 ($m-C_6H_5$), 130.4 ($p-C_6H_5$), 163.2 ($p-C_6H_2(OCH_3)_3$), 163.9 (2 C; $o-C_6H_2(OCH_3)_3)$, 169.2 ppm (N*C*N). — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -108.9$ ppm. - ¹³C-VACP/MAS-NMR: δ = 21.8 (2 C), 24.5 (2 C) (*C*H₃CH*C*H₃), 46.5, 47.3 (CH₃*C*HCH₃), 55.0 (p-OCH₃), 56.0 (2 C; o-OCH₃), 93.1 (*i*-C₆H₂(OCH₃)₃), 108.8 (2 C), 127.8 (2 C), 128.7 $(2 \text{ C}), 131.0, 132.7 \quad (C_6\text{H}_5, m-C_6\text{H}_2(\text{OCH}_3)_3), 163.5 \quad (p-C_6\text{H}_2(\text{OCH}_3)_3), 163.8 \quad (2 \text{ C};$ $o-C_6H_2(OCH_3)_3$, 170.6 ppm (NCN); ¹³C-Resonanzsignale der NCO-Liganden nicht detektiert. -¹⁵N-VACP/MAS-NMR: $\delta = -328.2, -315.9$ (NCO), -241.9, -172.4 ppm (NCN). — ²⁹Si-VACP/MAS-NMR: $\delta = -113.4$ ppm.

 $\begin{array}{ccccc} C_{24}H_{30}N_4O_5Si~(482.61) & & Ber. & C~59.73 & H~6.27 & N~11.61 \\ & & Gef. & C~59.4 & H~6.3 & N~11.5 \end{array}$

Zu einer Lösung von 10 (1.26 g, 2.68 mmol) in Acetonitril (30 mL) wurde unter Rühren bei 20 °C in einer Portion Trimethyl(thiocyanato-N)silan (739 mg, 5.63 mmol) gegeben und das resultierende Gemisch 17 h bei dieser Temperatur gerührt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, zu dem verbliebenen Rückstand wurde Acetonitril (3 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 18 h bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 2 h, 0.01 mbar). Ausbeute: 1.37 g (2.67 mmol, 95%) eines farblosen kristallinen Feststoffs. Smp. >180 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 1.15$ (d, ³ $J(^{1}H,^{1}H) = 6.8$ Hz, 12 H; CH_3CHCH_3 , 3.46 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH_3CHCH_3), 3.83 (s, 3 H; *p*-OCH₃), 3.88 (s, 6 H; o-OCH₃), 6.15 (s, 2 H; C₆H₂(OCH₃)₃), 7.30–7.58 ppm (m, 5 H; C₆H₅). — ¹³C-NMR $(CD_2Cl_2, 75.5 \text{ MHz}): \delta = 22.9 (4 \text{ C}; CH_3CHCH_3), 46.8 (2 \text{ C}; CH_3CHCH_3), 55.6 (p-OCH_3), 56.2$ $(2 \text{ C}, o \text{-O}C\text{H}_3), 90.8 (i \cdot C_6\text{H}_2(\text{O}C\text{H}_3)_3), 106.2 (2 \text{ C}; m \cdot C_6\text{H}_2(\text{O}C\text{H}_3)_3), 127.4 (i \cdot C_6\text{H}_5), 127.6$ $(2 \text{ C}; \text{ } \text{o-}C_6\text{H}_5), 129.5 (2 \text{ C}; \text{ } \text{m-}C_6\text{H}_5), 131.4 (\text{p-}C_6\text{H}_5), 163.7 (\text{p-}C_6\text{H}_2(\text{OCH}_3)_3), 164.2$ $(2 \text{ C}; o-C_6\text{H}_2(\text{OCH}_3)_3), 172.3 \text{ ppm} (NCN), {}^{13}\text{C-Resonanzsignale der NCS-Liganden nicht}$ detektiert. — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -125.1$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 22.8, 23.6 (2 \text{ C}), 25.1 (CH_3CHCH_3), 47.4 (2 \text{ C}) (CH_3CHCH_3), 55.2 (p-OCH_3), 56.1$ $(o - OCH_3)$, 56.7 $(o - OCH_3)$, 94.8 $(i - C_6H_2(OCH_3)_3)$, 106.3 (2 C; $m - C_6H_2(OCH_3)_3)$, 125.9, 126.3, 127.1, 130.6, 131.9, 132.9 (C_6H_5), 162.8 ($p-C_6H_2(OCH_3)_3$), 164.1 (2 C; $o-C_6H_2(OCH_3)_3$), 173.2 ppm (N*C*N). — ¹⁵N-VACP/MAS-NMR: δ = -253.6, -235.5 (N*C*S), -232.1, -180.7 ppm (NCN), ¹³C-Resonanzsignale der NCS-Liganden nicht detektiert. — ²⁹Si-VACP/MAS-NMR: $\delta = -126.8$ ppm.

 $\begin{array}{cccc} C_{24}H_{30}N_4O_3S_2Si~(514.74) & \mbox{Ber.} & C~56.00 & \mbox{H}~5.87 & \mbox{N}~10.88 & S~12.46 \\ & \mbox{Gef.} & C~55.8 & \mbox{H}~5.9 & \mbox{N}~10.9 & S~12.3 \end{array}$

Verbindung 15

Zu einer Lösung von **10** (1.25 g, 2.66 mmol) in THF (30 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (538 mg, 5.32 mmol) und 1,2-Dihydroxybenzol (292 mg, 2.66 mmol) gegeben und das resultierende Gemisch wurde 22 h bei dieser Temperatur gerührt. Die resultierende Suspension wurde filtriert, das Lösungsmittel des Filtrats im Vakuum entfernt und zu dem verbliebenen Rückstand Acetonitril (3 mL) gegeben. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten

wurde, welche anschließend langsam auf -20 °C abgekühlt und 18 h bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde duch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 2 h, 0.01 mbar). Ausbeute: 720 mg (1.42 mmol, 53%) eines farblosen kristallinen Feststoffs. Smp. >170 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 0.98$ (br. d, ³J(¹H, ¹H) = 6.8 Hz, 6 H), 1.11 (br. d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H) (CH₃CHCH₃), 3.49 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 3.51 (s, 6 H; o-OCH₃), 3.79 (s, 3 H; p-OCH₃), 6.07 (s, 2 H; C₆H₂(OCH₃)₃), 6.65–7.59 ppm (m, 9 H; C₆H₅, C₆H₄). — ¹³C-NMR (CD₂Cl₂, 128.8 MHz): δ = 22.6 (2 C), 24.0 (2 C) (CH₃CHCH₃), 46.3 (2 C; CH₃CHCH₃), 55.5 (p-OCH₃), 55.6 (2 C, o-OCH₃), 90.9 $(i - C_6 H_2(OCH_3)_3)$, 108.1 (2 C; $m - C_6 H_2(OCH_3)_3)$, 110.9 (2 C), 118.6 (2 C), 127.8, 128.1 (2 C), 129.3 (2 C), 130.9, 151.2 (2 C) (C_6H_5 , C_6H_4), 163.0 (p- $C_6H_2(OCH_3)_3$), 165.4 (2 C; $o-C_6H_2(OCH_3)_3)$, 171.6 ppm (N*C*N). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -83.9$ ppm. -¹³C-VACP/MAS-NMR: δ = 22.7, 23.4, 24.6 (2 C) (*C*H₃CH*C*H₃), 46.9 (2 C; CH₃*C*HCH₃), 54.7 (3 C; OCH_3), 91.8 (*i*-C₆H₂(OCH₃)₃), 105.4 (2 C; *m*-C₆H₂(OCH₃)₃), 109.4, 111.5, 116.2, 119.4, 126.3, 127.5 (2 C), 131.5 (2 C), 150.3, 153.5, 157.4 (C_6H_5 , C_6H_4), 162.9 $(p-C_6H_2(OCH_3)_3)$, 168.9 (2 C; $o-C_6H_2(OCH_3)_3$), 171.0 ppm (N*C*N). — ¹⁵N-VACP/MAS-NMR: $\delta = -232.5, -192.7 \text{ ppm.} - \frac{^{29}\text{Si-VACP}}{\text{MAS-NMR}} = -84.6 \text{ ppm.}$

$C_{24}H_{30}N_2O_5Si~(506.67)$	Ber.	C 66.78	H 6.76	N 5.54
	Gef.	C 66.4	H 6.9	N 5.5

Verbindung 18

Zu einer Lösung von 1 (3.00 g, 8.88 mmol) in THF (50 mL) wurde unter Rühren bei –78 °C innerhalb von 1 h eine Lösung von Pentafluorphenyllithium (1.55 g, 8.88 mmol) in THF (50 mL) getropft und das resultierende Gemisch 1 h bei dieser Temperatur und anschließend weitere 16 h bei 20 °C gerührt. Das Lösungsmittel wurde im Vakuum entfernt und zu dem verbliebenen Rückstand Dichlormethan (60 mL) gegeben. Die resultierende Suspension wurde filtriert, das Lösungsmittel des Filtrats im Vakuum entfernt, zu dem verbliebenen Rückstand Acetonitril gegeben (4 mL) und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf –20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert und im Vakuum getrocknet (20 °C, 2 h, 0.01 mbar). Ausbeute: 2.79 g (5.94 mmol, 67%) eines farblosen kristallinen Feststoffs. Smp. >130 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 1.00$ (d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8$ Hz, 12 H; $CH_{3}CHCH_{3}$), 3.60 (sept, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8$ Hz, 2 H; $CH_{3}CHCH_{3}$), 7.34–7.42 (m, 2 H; σ -C₆H₅), 7.56–7.67 ppm (m, 3 H; m-, p-C₆H₅). — ¹³C-NMR

 $(CD_2Cl_2, 75.5 \text{ MHz}): \delta = 23.0 (4 \text{ C}; CH_3CHCH_3), 48.1 (2 \text{ C}; CH_3CHCH_3), 118.2 (br.; <math>\dot{r}C_6F_5),$ 127.7 ($i C_6 H_5$), 127.9 (2 C; $o C_6 H_5$), 130.3 (2 C; $m C_6 H_5$), 132.4 ($p C_6 H_5$), 174.6 ppm (NCN), o-, m- und p-¹³C-Resonanzsignale des Pentafluorphenyl-Liganden nicht detektiert. --- ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -96.4$ ppm. --- ¹³C-VACP/MAS-NMR: $\delta = 21.4$ (2 C), 23.3, 24.6 (CH₃CHCH₃), 47.8, 48.8 (CH₃CHCH₃), 115.4 (*i*-C₆F₅), 126.2 (3 C), 128.8, 130.2, 133.3 (C_6H_5), 134.6–150.8 (5 C; o-, m- und p- C_6F_5), 174.0 ppm (NCN). — ¹⁵N-VACP/MAS-NMR: $\delta = -233.7, -174.1$ ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -98.1$ ppm. $C_{19}H_{19}Cl_2F_5N_2Si$ (469.36) C 48.62 H 4.08Ber. N 5.97 Gef. C 48.3 H 4.2 N 5.9

Verbindung 19

Zu einer Lösung von 3 (1.50 g, 3.18 mmol) in Diethylether (20 mL) wurde unter Rühren bei -78 °C innerhalb von 1 h eine Lösung von Pentafluorphenyllithium (553 mg, 3.18 mmol) in Diethylether (20 mL) getropft und das resultierende Gemisch 1 h bei dieser Temperatur und anschließend weitere 14 h bei 20 °C gerührt. Das Lösungsmittel wurde im Vakuum entfernt und zu dem verbliebenen Rückstand Dichlormethan (30 mL) gegeben. Die resultierende Suspension wurde filtriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Zu dem verbliebenen Rückstand wurde Acetonitril gegeben (5 mL) und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 $^{\circ}C$ abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert und im Vakuum getrocknet (20 °C, 2 h, 0.01 mbar). Ausbeute: 1.38 g (2.47 mmol, 78%) eines farblosen kristallinen Feststoffs. Smp. >115 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 1.07$ (d, ³J(¹H, ¹H) = 6.8 Hz, 12 H; CH_3CHCH_3 , 3.76 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH_3CHCH_3), 7.33–7.46 (m, 2 H; $o-C_6H_5$), 7.55–7.67 ppm (m, 3 H; *m*-, *p*-C₆*H*₅). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): δ = 23.0 (4 C; CH₃CHCH₃), 47.7 (2 C; CH₃CHCH₃), 116.7 (br.; *i*-C₆F₅), 127.0 (*i*-C₆H₅), 127.3 (2 C; *o*-C₆H₅), 129.5 (2 C; m-C₆H₅), 131.2 (p-C₆H₅), 173.8 ppm (NCN), o-, m- und p-¹³C-Resonanzsignale des Pentafluorphenyl-Liganden nicht detektiert. — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -125.7$ ppm (br.). — ¹³C-VACP/MAS-NMR: $\delta = 22.6$ (2 C), 25.4, 27.0 (*C*H₃CH*C*H₃), 45.6, 48.4 (CH₃CHCH₃), 116.6 (*i*-C₆F₅), 126.3, 127.9 (2 C), 129.5, 130.4, 132.4 C₆H₅), 134.4–150.7 (5 C; o-, m-, p-C₆F₅), 174.1 ppm (NCN). — ¹⁵N-VACP/MAS-NMR: $\delta = -232.0$, -167.7 ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -123.7$ ppm (br.).

$C_{19}H_{19}Br_2F_5N_2Si$ (558.26)	Ber.	C 40.88	H 3.43	N 5.02
	Gef.	C 41.2	H 3.7	N 5.1

Zu einer Lösung von 2-(Diethylphosphanyl)imidazol (625 mg, 4.00 mmol) in THF (20 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (405 mg, 4.00 mmol) und Tetrachlorsilan (680 mg, 4.00 mmol) gegeben und das resultierende Gemisch wurde 24 h bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit THF (5 mL) gewaschen und verworfen. Das Filtrat wurde mit der Waschlösung vereinigt und die Lösung im Vakuum vom Lösungsmittel befreit. Der verbliebene Rückstand wurde ohne weitere Aufreinigung durch NMR-Spektroskopie in Lösung untersucht und **24** eindeutig nachgewiesen. Die Probe war jedoch zu stark durch Nebenprodukte verunreinigt, deren Resonanzsignale mit denen von **24** teilweise überlagerten, sodass eine eindeutige Zuordnung der ¹H-, ¹³C-, ³¹P- und ²⁹Si-Resonanzsignale nicht möglich war, weshalb an dieser Stelle auf die Angabe von NMR-Daten bewusst verzichtet wird.

Verbindung 25

Zu einer Lösung von 2-(Diisopropylphosphanyl)imidazol (741 mg, 4.00 mmol) in THF (20 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (405 mg, 4.00 mmol) und Tetrachlorsilan (680 mg, 4.00 mmol) gegeben und das resultierende Gemisch wurde 24 h bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit THF (5 mL) gewaschen und verworfen. Das Filtrat wurde mit der Waschlösung vereinigt und die Lösung im Vakuum vom Lösungsmittel befreit. Der verbliebene Rückstand wurde ohne weitere Aufreinigung durch NMR-Spektroskopie in Lösung untersucht. — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 0.87$ (dd, ³J(¹H,¹H) = 7.1 Hz, ³J(¹H,³¹P) = 14.3 Hz, 6 H), 1.04 (dd, ³J(¹H,¹H) = 7.1 Hz, ³J(¹H,³¹P) = 14.3 Hz, 6 H) (CH₃), 2.14 (d von sept, ²J(¹H,³¹P) = 3.8 Hz, ³J(¹H,¹H) = 7.1 Hz, 2 H; CH₃CHCH₃), 7.26 (d, ⁴J(¹H,³¹P) = 1.5 Hz, 1 H, CH), 7.35–7.37 ppm (m, 1 H, CH). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 19.5$ (d, ²J(¹³C,³¹P) = 14.8 Hz), 20.3 (d, ²J(¹³C,³¹P) = 12.5 Hz) (CH₃), 25.5 (d, ¹J(¹³C,³¹P) = 8.5 Hz, CH₃CHCH₃), 125.6–125.7 (m, C₆H₅), 132.0 (C₆H₅), 153.8 ppm (d, ¹J(¹³C,³¹P) = 22.8 Hz, N₂CP). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -33.6$ ppm. — ³¹P-NMR (CD₂Cl₂, 202.5 MHz): -10.1 ppm.

Zu einer Lösung von 2-(Diethylphosphanyl)imidazol (625 mg, 4.00 mmol) in THF (20 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (405 mg, 4.00 mmol) und Tetrachlorsilan (680 mg, 4.00 mmol) gegeben und das resultierende Gemisch wurde 24 h bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit THF (5 mL) gewaschen und verworfen. Das Filtrat wurde mit der Waschlösung vereinigt und die Lösung im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (10 mL) gegeben und das resultierende Gemisch 2 d bei 20 °C gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mbar). Ausbeute: 647 mg (1.10 mmol, 55%) eines farblosen amorphen Feststoffs. — ¹³C-VACP/MAS-NMR: $\delta = 6.8$, 9.5 (CH₂CH₃), 13, 14 (br.; *C*H₂CH₃), 117.5, 129.1 (br.), 131.5 (br.), 132.4 ppm (br.) (C=*C*H₂, *C*=CH₂, *C*(Imidazol-1-yl)). — ¹⁵N-VACP/MAS-NMR: $\delta = -254.8$ (Si*N*C), -134.0 (C*N*C), -92.3 ppm (Si*N*Si). — ²⁹Si-VACP/MAS-NMR: $\delta = -122.2$ ppm. — ³¹P-VACP/MAS-NMR: $\delta = 7.1$ ppm.

$C_{18}H_{28}Cl_4N_6P_2Si_2$ (588.39)	Ber.	C 36.74	H 4.80	N 14.28
	Gef.	C 37.1	H 5.0	N 14.4

Verbindung 27

Zu einer Lösung von 2-(Diethylphosphanyl)imidazol (625 mg, 4.00 mmol) in THF (20 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (405 mg, 4.00 mmol) und Tetrachlorsilan (680 mg, 4.00 mmol) gegeben und das resultierende Gemisch wurde 24 h bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit THF (5 mL) gewaschen und verworfen. Das Filtrat wurde mit der Waschlösung vereinigt und die Lösung im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Propionitril (10 mL) gegeben und das resultierende Gemisch 2 d bei 20 °C gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mbar). Ausbeute: 382 mg (620 μ mol, 31%) eines farblosen amorphen Feststoffs. — ¹³C-VACP/MAS-NMR: δ = 3.9, 4.3 (CH₂CH₃), 11.7 (C=CH*C*H₃), 18.2 (d, ¹*J*(¹³C, ³¹P) = 50 Hz, 2 C; *C*H₂CH₃), 121.3 (br.), 128.9, 132.2, 133.2, 139.7 ppm (C=*C*HCH₃, *C*=CHCH₃, *C*(Imidazol-1-yl)). — ¹⁵N-VACP/MAS-NMR: δ = -265.1 (Si*N*C), -164.4 (C*N*C), -84.1 ppm (Si*N*Si). — ²⁹Si-VACP/MAS-NMR: δ = -124.6 ppm. — ³¹P-VACP/MAS-NMR: δ = 17.6 ppm.

$C_{20}H_{32}Cl_4N_6P_2Si_2$ (616.44)	Ber.	C 38.97	H 5.23	N 13.63
	Gef.	C 39.0	H 5.3	N 13.4

Methode 1: Zu einer Lösung von 2-(Diisopropylphosphanyl)imidazol (741 mg, 4.00 mmol) in THF (20 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (405 mg, 4.00 mmol) und Tetrachlorsilan (680 mg, 4.00 mmol) gegeben und das resultierende Gemisch wurde 24 h bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit THF (5 mL) gewaschen und verworfen. Das Filtrat wurde mit der Waschlösung vereinigt und die Lösung im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (10 mL) gegeben und das resultierende Gemisch wurde 2 d bei 20 °C gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 6 h)0.01 mbar). Ausbeute: 606 mg (940 μ mol, 47%) eines farblosen amorphen Feststoffs. - ¹³C-VACP/MAS-NMR: δ = 14.4, 15.4, 16.3, 16.7 (CH*C*H₃), 23.6, 26.2 (br.; *C*HCH₃), 127.7, 129.1 (br.), 131.3 (br.), 132.9 ppm (br.) (C=CH₂, C=CH₂, C(Imidazol-1-yl)). -¹⁵N-VACP/MAS-NMR: $\delta = -244.9$ (SiNC), -160.9 (CNC), -82.6 ppm (SiNSi). - ²⁹Si-VACP/MAS-NMR: $\delta = -125.8$ ppm. - ³¹P-VACP/MAS-NMR: $\delta = -23.4$ ppm. $C_{22}H_{36}Cl_4N_6P_2Si_2$ (644.50) Ber. C 41.00 H 5.63 N 13.04 Gef. C 40.8 H 5.6 N 12.9

Methode 2: Zu einer Lösung von 2-(Diisopropylphosphanyl)imidazol (375 mg, 2.04 mmol) in Acetonitril (30 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (415 mg, 410 mmol) und Tetrachlorsilan (397 mg, 2.34 mmol) gegeben und das resultierende Gemisch wurde 2 d bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit Dichlormethan (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mar). Ausbeute: 553 mg (84%, 858 μ mol). — Die analytischen Daten stimmten mit denen des nach Methode 1 erhaltenen Produkts überein.

Verbindung 29

Zu einer Lösung von 2-(Diisopropylphosphanyl)imidazol (741 mg, 4.00 mmol) in THF (20 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (405 mg, 4.00 mmol) und Tetrachlorsilan (680 mg, 4.00 mmol) gegeben und das resultierende

Gemisch wurde 24 h bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit THF (5 mL) gewaschen und verworfen. Das Filtrat wurde mit der Waschlösung vereinigt und die Lösung im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Propionitril (10 mL) gegeben und das resultierende Gemisch wurde 2 d bei 20 °C gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mbar). Ausbeute: 363 mg (540 µmol, 27%) eines farblosen amorphen Feststoffs. — ¹³C-VACP/MAS-NMR: $\delta = 14.3$, 15.2, 16.0 (CH*C*H₃), 17.3 (2 C; CH*C*H₃, C=C*C*H₃), 23.9 (d, ¹*J*(³¹P,¹³C) = 43 Hz; *C*HCH₃), 25.3 (d, ¹*J*(³¹P,¹³C) = 43 Hz; *C*HCH₃), 123.6 (br.), 132.4 (br.), 140.4 ppm (2 C; br.) (C=*C*HCH₃, *C*=CHCH₃, *C*(imidazol-1-yl)). — ¹⁵N-VACP/MAS-NMR: $\delta = -228.7$ (Si*N*C), -162.5 (C*N*C), -84.1 ppm (Si*N*Si). — ²⁹Si-VACP/MAS-NMR: $\delta = -125.1$ ppm. — ³¹P-VACP/MAS-NMR: $\delta = -23.7$ ppm.

 $\begin{array}{cccc} C_{24}H_{40}Cl_4N_6P_2Si_2 \ (672.55) & \mbox{Ber.} & C \ 42.86 & \mbox{H} \ 6.00 & \mbox{N} \ 12.50 \\ & \mbox{Gef.} & C \ 43.1 & \mbox{H} \ 6.0 & \mbox{N} \ 12.6 \end{array}$

Verbindung 30

Zu einer Lösung von 1 (10.3 g, 30.5 mmol) in THF (150 mL) wurden unter Rühren bei 20 $^{\circ}$ C nacheinander in jeweils einer Portion Triethylamin (3.09 g, 30.5 mmol) und 8-Hydroxychinolin (4.43 g, 30.5 mmol) gegeben und das resultierende Gemisch wurde 19 h bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration isoliert, mit THF $(3 \times 20 \text{ mL})$ gewaschen und verworfen. Das Filtrat wurde mit den Waschlösungen vereinigt und die Lösung im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde Acetonitril (100 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 \times 10 mL) gewaschen und im Vakuum (20 °C, 3 h, 0.01 mbar) getrocknet. Ausbeute: 6.40 g (14.3 mmol, 47%) eines gelben kristallinen Feststoffs. Smp. >210 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = -0.15$ (d, ³J(¹H, ¹H) = 6.8 Hz, 3 H), 1.19 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ = 6.8 Hz, 3 H), 1.41 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ = 6.8 Hz, 3 H), 1.43 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}) (CH_{3}), 3.21 (\text{sept}, {}^{3}J({}^{1}H,{}^{1}H) = 6.8 \text{ Hz}, 1 \text{ H}), 4.04 (\text{sept}, {}^{3}J({}^{1}H,{}^{1}H) =$ 6.8 Hz, 1 H) (CH), 7.24 (br. s, 1 H; o-C₆H₅), 7.29 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 7.8$ Hz, ${}^{4}J({}^{1}H, {}^{1}H) = 0.8$ Hz, 1 H; H7, C₉H₆NO), 7.36 (br. s, 1 H; o-C₆H₅), 7.41 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 8.2$ Hz, ${}^{4}J({}^{1}H, {}^{1}H) = 0.8$ Hz, 1 H; H5, C₉H₆NO), 7.49–7.58 (m, 3 H; m-, p-C₆H₅), 7.68 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 8.2$ Hz, ${}^{3}J({}^{1}H, {}^{1}H) =$ 7.8 Hz, 1 H; H6, C₉H₆NO), 7.70 (dd, ${}^{3}J({}^{1}H,{}^{1}H) = 8.2$ Hz, ${}^{3}J({}^{1}H,{}^{1}H) = 5.0$ Hz, 1 H; H3, C₉*H*₆NO), 8.52 (dd, ³*J*(¹H, ¹H) = 8.2 Hz, ⁴*J*(¹H, ¹H) = 1.2 Hz, 1 H; *H*4, C₉*H*₆NO), 9.06 ppm (dd, ³*J*(¹H, ¹H) = 5.0 Hz, ⁴*J*(¹H, ¹H) = 1.2 Hz, 1 H; *H*2, C₉*H*₆NO). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 21.9, 22.2, 23.6, 23.7 (*C*H₃), 46.9, 47.5 (*C*H), 112.5 (*C*7; *C*₉H₆NO), 115.6 (*C*5; *C*₉H₆NO), 122.9 (*C*3; *C*₉H₆NO), 127.4 (br., 2 C; *o*-*C*₆H₅), 128.95 (*i*-*C*₆H₅), 129.03 (*C*4a; *C*₉H₆NO), 129.3 (br., 2 C; *m*-*C*₆H₅), 130.9 (*p*-*C*₆H₅), 131.5 (*C*6; *C*₉H₆NO), 135.7 (*C*8a; *C*₉H₆NO), 139.0 (*C*2; *C*₉H₆NO), 140.6 (*C*4; *C*₉H₆NO), 152.4 (*C*8; *C*₉H₆NO), 169.7 ppm (*NC*N). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): δ = -162.4 ppm. — ¹³C-VACP/MAS-NMR: δ = 21.1, 23.1, 24.6 (2 C) (*C*H₃), 46.2, 48.7 (*C*H), 113.8, 118.1, 122.6, 124.7, 126.7, 128.7 (4 C), 130.2, 132.5, 135.4, 140.7, 141.1, 151.4 (*C*₆H₅, *C*₉H₆NO), 168.2 ppm (*NC*N). — ¹⁵N-VACP/MAS-NMR: δ = -209.0 (*NCN*), -186.8 (*NCN*), -129.3 ppm (C₉H₆*NO*). — ²⁹Si-VACP/MAS-NMR: δ = -165.2 ppm (br.).

 $\begin{array}{cccc} C_{22}H_{25}Cl_2N_3OSi~(446.45) & & Ber. & C~59.19 & H~5.64 & N~9.41 \\ & & Gef. & C~58.9 & H~5.7 & N~9.5 \end{array}$

Verbindung 31

Zu einer Mischung von **30** (1.66 g, 3.72 mmol) und Acetonitril (30 mL) wurde unter Rühren bei 20 °C in einer Portion Bromtrimethylsilan (1.71 g, 11.2 mmol) gegeben und das resultierende Gemisch 18 h bei dieser Temperatur gerührt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, zu dem verbliebenen Rückstand wurde Acetonitril (50 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf 20 °C abgekühlt und 4 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 817 mg (1.53 mmol, 41%) eines gelben kristallinen Feststoffs. Smp. >180 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = -0.15$ (br. s, 3 H), 1.16–1.50 (m, 9 H) (CH₃), 3.3 (m, 1 H), 4.2 (m, 1 H) (CH), 7.1–7.8 (m, 9 H; C₆H₅, C₉H₆NO), 8.6 (m, 1 H; H4, C_9H_6NO , 9.1 ppm (m, 1 H; H2, C_9H_6NO). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 22.1$ (br., 2 C), 23.4 (br., 2 C) (CH₃), 47.1, 47.2 (CH), 112.9 (C7, C₉H₆NO), 116.1 (C5, C₉H₆NO), 123.1 $(C_3, C_9H_6NO), 127.3$ (br., 2 C; $o-C_6H_5), 129.1$ ($i-C_6H_5), 129.3$ (br., 2 C; $m-C_6H_5), 130.2$ (C4a, C₉H₆NO), 131.1 (*p*-C₆H₅), 131.6 (C6, C₉H₆NO), 135.5 (C8a, C₉H₆NO), 139.1 (C2, C₉H₆NO), 140.2 (C4, C₉H₆NO), 151.9 (br.; C8, C₉H₆NO), 170.0 ppm (NCN). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -190$ ppm (br.). — ¹³C-VACP/MAS-NMR: $\delta = 21.2, 24.3, 26.1, 27.6$ (CH₃), 46.8, 48.9 (CH), 114.5, 115.6, 123.2, 126.6, 127.4 (2 C), 129.6, 130.4 (2 C), 131.4, 132.5, 134.7, 139.1, 140.7, 150.1 (C_6H_5 , C_9H_6NO), 170.3 ppm (NCN). — ¹⁵N-VACP/MAS-NMR: δ =

-209.1 (<i>NCN</i>), -180	0.5 (NC)	N), -129.	4 ppm	$(C_9H_6NO).$		²⁹ Si-VACP/MAS-NMR:	$\delta =$
-200-(-160) ppm (m)							
C ₂₂ H ₂₅ Br ₂ N ₃ OSi (535.	35) 1	Ber. C	49.36	H 4.71	Ν7	7.85	

Gef. C 49.7 H 4.9 N 7.9

Verbindung 32

Methode 1: Zu einer Mischung von **30** (600 mg, 1.34 mmol), 18-Krone-6 (150 mg, 567 μ mol) und Acetonitril (20 mL) wurde unter Rühren bei 20 °C in einer Portion Kaliumfluorid (195 mg, 3.36 mmol) gegeben und das resultierende Gemisch 72 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt, zu dem verbliebenen Rückstand Toluol (20 mL) gegeben und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, zu dem verbliebenen festen Rückstand Acetonitril (5 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 3 h, 0.01 mbar). Ausbeute: 237 mg (573 μ mol, 43%) eines gelben kristallinen Feststoffs. Smp. >210 °C (Zers.). - ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.19$ (br. s, 12 H; CH₃), 3.42 (br. s, 2 H; CH), 7.29 $(dd, {}^{3}J({}^{1}H, {}^{1}H) = 7.7 Hz, {}^{4}J({}^{1}H, {}^{1}H) = 0.9 Hz, 1 H; H7, C_{9}H_{6}NO), 7.30 (br. s, 2 H; o-C_{6}H_{5}), 7.32$ $(dd, {}^{3}J({}^{1}H, {}^{1}H) = 8.3 Hz, {}^{4}J({}^{1}H, {}^{1}H) = 0.9 Hz, 1 H; H5, C_{9}H_{6}NO), 7.50-7.57 (m, 3 H; m-, 3)$ $p-C_6H_5$), 7.63 (dd, ${}^{3}J({}^{1}H,{}^{1}H) = 8.3$ Hz, ${}^{3}J({}^{1}H,{}^{1}H) = 7.7$ Hz, 1 H; H6, C_9H_6NO), 7.66 (dd, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 8.3 \text{ Hz}, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 5.1 \text{ Hz}, 1 \text{ H}; H3, C_{9}H_{6}\text{NO}), 8.45 \text{ (dd, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 8.3 \text{ Hz},$ ${}^{4}J({}^{1}\text{H},{}^{1}\text{H}) = 1.3 \text{ Hz}, 1 \text{ H}; H4, C_{9}H_{6}\text{NO}), 9.10 \text{ ppm } (\text{dd}, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 5.1 \text{ Hz}, {}^{4}J({}^{1}\text{H},{}^{1}\text{H}) = 1.3 \text{ Hz}, 4 \text{ H$ 1 H; H2, C₉H₆NO). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 22.9 (m, 4 C; CH₃), 46.5 (m, 2 C; CH), 111.7 (C7, C₉H₆NO), 114.6 (C5, C₉H₆NO), 122.6 (C3, C₉H₆NO), 127.7 (br., 2 C; $o C_6H_5$), 128.7 (t, ${}^4J({}^{13}C, {}^{19}F) = 2.1$ Hz; $\dot{r}C_6H_5$), 129.0 (C4a, C_9H_6NO), 130.5 (br., 3 C; p-, m- C_6H_5), 131.3 (C_6 , C_9H_6NO), 136.7 (C_{8a} , C_9H_6NO), 139.9 (C_2 , C_9H_6NO), 140.2 (C_4 , $C_{9}H_{6}NO$, 154.0 (t, ${}^{3}J({}^{13}C, {}^{19}F) = 2.6$ Hz; C8, $C_{9}H_{6}NO$, 170.7 ppm (t, ${}^{3}J({}^{13}C, {}^{19}F) = 2.5$ Hz; N*C*N). — ¹⁹F-NMR (CD₂Cl₂, 376.5 MHz): $\delta = -140.2$ (br. s), -119.1 ppm (br. s). ²⁹Si-NMR (99.4 MHz, CD₂Cl₂): $\delta = -161.4$ ppm (t, ¹ $J(^{29}Si, ^{19}F) = 192$ Hz). -¹³C-VACP/MAS-NMR: δ = 21.3, 23.8, 25.3 (2 C) (*C*H₃), 45.1, 46.7 (*C*H), 112.3, 117.7, 122.7, 125.2, 127.8 (3 C), 129.2 (3 C), 132.7, 135.7, 138.7, 141.5, 153.1 (C₆H₅, C₉H₆NO), 167.8 ppm (N*C*N). — ¹⁵N-VACP/MAS-NMR: $\delta = -217.8$ (*NCN*), -190.8 (*NCN*), -125.5 ppm (C_9H_6NO) . — ²⁹Si-VACP/MAS-NMR: $\delta = -170-(-155)$ (m).

 $\begin{array}{cccc} C_{22}H_{25}F_2N_3OSi~(413.54) & & Ber. & C~63.90 & H~6.09 & N~10.16 \\ & & Gef. & C~63.9 & H~6.0 & N~10.2 \end{array}$

Methode 2: Zu einer Lösung von **30** (724 mg, 1.62 mmol) und Triethylamin (328. mg, 3.24 mmol) in THF (20 mL) wurde unter Rühren bei 20 °C in einer Portion Silbertetrafluoroborat (631 mg, 324 mmol) gegeben und das resultierende Gemisch 3 h bei dieser Temperatur gerührt. Die resultierende Suspension wurde filtriert, das Lösungsmittel des Filtrats im Vakuum entfernt und zu dem verbliebenen Rückstand Acetonitril (15 mL) gegeben. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 476 mg (1.15 mmol, 71%) eines gelben kristallinen Feststoffs. — Die analytischen Daten stimmten mit denen des nach Methode 1 erhaltenen Produkt überein.

Verbindung 33

Zu einer Mischung von **30** (1.59 mg, 3.56 mmol) und Acetonitril (30 mL) wurde unter Rühren bei 20 °C in einer Portion Azidotrimethylsilan (1.03 g, 8.94 mmol) gegeben und das resultierende Gemisch 17 h bei dieser Temperatur gerührt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, zu dem verbliebenen Rückstand wurde Acetonitril (30 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 1.53 g (3.33 mmol, 93%) eines gelben kristallinen Feststoffs. Smp. >190 °C (Zers.). - ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = -0.19$ (d, ³J(¹H, ¹H) = 6.8 Hz, 3 H), 1.18 (d, ³J(¹H, ¹H)) $= 6.8 \text{ Hz}, 3 \text{ H}, 1.39 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 3 \text{ H}, 1.45 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 3 \text{ H}) \text{ (CH}_{3},$ 3.24 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 1 H), 3.74 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 1 H) (CH), 7.2 (br. s, 2 H; o-C₆ H_5), 7.29 (dd, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 7.7$ Hz, ${}^{4}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9$ Hz, 1 H; H7, C₉ H_6 NO), 7.41 (dd, ${}^{3}J({}^{1}\mathrm{H},{}^{1}\mathrm{H}) = 8.4 \text{ Hz}, \ {}^{4}J({}^{1}\mathrm{H},{}^{1}\mathrm{H}) = 0.9 \text{ Hz}, \ 1 \text{ H}; \ H5, \ \mathrm{C}_{9}H_{6}\mathrm{NO}), \ 7.51-7.60 \ (\mathrm{m}, \ 3 \text{ H}; \ p\text{-}, \ m\text{-}\mathrm{C}_{6}H_{5}),$ 7.68 (dd, 1 H, ${}^{3}J({}^{1}H, {}^{1}H) = 8.4$ Hz, ${}^{3}J({}^{1}H, {}^{1}H) = 7.7$ Hz; H6, C₉H₆NO), 7.72 (dd, 1 H, ${}^{3}J({}^{1}H, {}^{1}H)$ $= 8.4 \text{ Hz}, {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 5.0 \text{ Hz}; H3, C_{9}H_{6}\text{NO}), 8.54 \text{ (dd, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 8.4 \text{ Hz}, {}^{4}J({}^{1}\text{H}, {}^{1}\text{H}) = 1.2 \text{ Hz},$ 1 H; H4, C₉H₆NO), 9.00 ppm (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 5.0$ Hz, ${}^{4}J({}^{1}H, {}^{1}H) = 1.2$ Hz, 1 H; H2, C₉H₆NO). -¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 21.8, 22.2, 22.8, 23.5$ (*C*H₃), 46.4, 47.5 (*C*H), 112.2 (C7, C_9H_6NO), 115.5 (C5, C_9H_6NO), 122.7 (C3, C_9H_6NO), 127.0 (br., 2 C; o- C_6H_5), 127.9 (i- C_6H_5), 129.0 (C4a, C_9H_6NO), 129.6 (br., 2 C; m- C_6H_5), 131.0 (p- C_6H_5), 131.5 (C6, C_9H_6NO), 136.5 (C8a, C_9H_6NO), 139.8 (C2, C_9H_6NO), 140.8 (C4, C_9H_6NO), 153.0 (C8, C_9H_6NO), 171.2 ppm (NCN). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -167.5$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 22.2$ (3 C), 24.1 (CH₃), 45.2, 47.9 (CH), 111.0, 115.0, 121.7, 125.8, 128.9 (br., 4 C), 131.2 (2 C), 132.3, 135.4, 137.7, 141.2, 152.3 (C_6H_5 , C_9H_6NO), 170.2 ppm (NCN). — ¹⁵N-VACP/MAS-NMR: $\delta = -299.8$ (SiNNN), -293.2 (SiNNN), -218.0 (NCN), -208.5 (SiNNN), -204.5 (SiNNN), -187.2 (NCN), -133.0 (br., 2 N; SiNNN), -130.4 ppm (C₉H₆NO). — ²⁹Si-VACP/MAS-NMR: $\delta = -169.4$ ppm.

$C_{22}H_{25}N_9OSi~(459.59)$	Ber.	C 57.50	H 5.48	N 27.43
	Gef.	C 57.6	H 5.6	N 27.8

Verbindung 34

Zu einer Mischung von **30** (1.26 g, 2.82 mmol), 18-Krone-6 (225 mg, 851 μ mol) und Acetonitril (50 mL) wurde unter Rühren bei 20 °C in einer Portion Kaliumcyanat (461 mg, 5.68 mmol) gegeben und das resultierende Gemisch 19 h bei dieser Temperatur gerührt. Das Lösungsmittel des Reaktionsgemisches wurde im Vakuum entfernt, zu dem verbliebenen Feststoff Toluol (50 mL) gegeben und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt, zu dem verblieben festen Rückstand Acetonitril (10 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf 20 °C abgekühlt und 2 d ungestört bei dieser Temperatur aufbewahrt. Der enstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 714 mg (1.55 mmol, 55%) eines gelben kristallinen Feststoffs. Smp. >180 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = -0.18$ (br. d, ³J(¹H, ¹H) = 6.8 Hz, 3 H), 1.15 (br. d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.39 (br. d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.45 (br. d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 3 H) (CH₃), 3.18 (br. sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 1 H), 3.77 (br. sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 1 H) (CH), 7.26 (dd, ${}^{3}J({}^{1}H,{}^{1}H) = 7.6$ Hz, ${}^{4}J({}^{1}H,{}^{1}H) = 0.8$ Hz, 1 H; H7, C_9H_6NO , 7.29 (br. s, 2 H; o- C_6H_5), 7.40 (dd, ${}^3J({}^1H, {}^1H) = 8.3$ Hz, ${}^4J({}^1H, {}^1H) = 0.8$ Hz, 1 H; H5, C₉H₆NO), 7.50–7.58 (m, 3 H; m-, p-C₆H₅), 7.67 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 8.3$ Hz, ${}^{3}J({}^{1}H, {}^{1}H) =$ 5.0 Hz, 1 H; H3, C₉H₆NO), 7.68 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 8.3$ Hz, ${}^{3}J({}^{1}H, {}^{1}H) = 7.6$ Hz, 1 H; H6, C_9H_6NO), 8.51 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 8.3$ Hz, ${}^{4}J({}^{1}H, {}^{1}H) = 1.2$ Hz, 1 H; H4, C_9H_6NO), 9.00 ppm (br. dd, ${}^{3}J({}^{1}H,{}^{1}H) = 5.0$ Hz, ${}^{4}J({}^{1}H,{}^{1}H)$ nicht aufgelöst, 1 H; H2, C₉H₆NO). -¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 22.1, 22.2, 23.6 (br., 2 C) (*C*H₃), 46.6, 47.4 (*C*H),

112.3 (*C*7, *C*₉H₆NO), 115.3 (*C*5, *C*₉H₆NO), 119.6, 120.9 (br.; N*C*O), 122.7 (*C*3, *C*₉H₆NO), 127.1, 127.4 (br.; *σ*-*C*₆H₅), 128.3 (*i*-*C*₆H₅), 129.1 (*C*4a, *C*₉H₆NO), 129.4 (br., 2 C; *m*-*C*₆H₅), 130.9 (*p*-*C*₆H₅), 131.5 (*C*6, *C*₉H₆NO), 136.2 (*C*8a, *C*₉H₆NO), 139.4 (*C*2, *C*₉H₆NO), 140.4 (*C*4, *C*₉H₆NO), 152.9 (*C*8, *C*₉H₆NO), 170.2 ppm (N*C*N). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): δ = -183.5 ppm (br.). — ¹³C-VACP/MAS-NMR: δ = 21.2, 23.2 (2 C), 26.9 (*C*H₃), 45.6, 48.3 (*C*H), 112.0, 114.3, 118.5, 122.1, 127.2 (3 C), 128.9, 129.6, 130.9 (2 C), 135.1, 137.7, 140.5, 152.1 (*C*₆H₅, *C*₉H₆NO), 170.9 ppm (N*C*N), ¹³C-Resonanzsignale der N*C*O-Liganden nicht detektiert. — ¹⁵N-VACP/MAS-NMR: δ = -319.9, -314.8 (*N*CO), -218.4, -188.0 (*N*C*N*), -127.3 ppm (C₉H₆*N*O). — ²⁹Si-VACP/MAS-NMR: δ = -184.6 ppm. C₂₄H₂₅N₅O₃Si (459.58) Ber. C 62.72 H 5.48 N 15.24

Gef. C 62.6 H 5.5 N 15.4

Verbindung 35

Zu einer Mischung von **30** (787 mg, 1.76 mmol) und Acetonitril (25 mL) wurde unter Rühren bei 20 °C in einer Portion Trimethyl(thiocyanato-N)silan (509 mg, 3.88 mmol) gegeben und das resultierende Gemisch 18 h bei dieser Temperatur gerührt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt und zu dem verbliebenen Rückstand wurde Acetonitril (5 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C,4 h, 0.01 mbar). Ausbeute: 682 mg (1.39 mmol, 79%). Smp. >170 °C (Zers.). — ¹H-NMR $(CD_2Cl_2, 500.1 \text{ MHz}): \delta = -0.15 \text{ (d, } {}^3J({}^1\text{H},{}^1\text{H}) = 6.8 \text{ Hz}, 3 \text{ H}), 1.18 \text{ (d, } {}^3J({}^1\text{H},{}^1\text{H}) = 6.8 \text{ Hz}, 3 \text{ Hz}, 3 \text{ H})$ 3 H), 1.43 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 3 H), 1.49 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 3 H) (CH₃), 3.22 (sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8 \text{ Hz}, 1 \text{ H}), 3.82 \text{ (sept, } {}^{3}J({}^{1}H,{}^{1}H) = 6.8 \text{ Hz}, 1 \text{ H}) \text{ (CH)}, 7.2 \text{ (br. s, 2 H; } o\text{-C}_{6}H_{5}),$ 7.32 (dd, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 7.7 \text{ Hz}, {}^{4}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.47 (dd, {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 0.9 \text{ Hz}, 1 \text{ H}; 1 \text{$ 8.3 Hz, ${}^{4}J({}^{1}H,{}^{1}H) = 0.9$ Hz, 1 H; H5, C₉H₆NO), 7.52–7.62 (m, 3 H; p-, m-C₆H₅), 7.72 (dd, ${}^{3}J({}^{1}H,{}^{1}H) = 8.3 \text{ Hz}, {}^{3}J({}^{1}H,{}^{1}H) = 7.7 \text{ Hz}, 1 \text{ H}; H6, C_{9}H_{6}\text{NO}), 7.75 \text{ (dd, }{}^{3}J({}^{1}H,{}^{1}H) = 8.3 \text{ Hz},$ ${}^{3}J({}^{1}H,{}^{1}H) = 5.1 \text{ Hz}, 1 \text{ H}; H3, C_{9}H_{6}\text{NO}), 8.59 \text{ (dd, } {}^{3}J({}^{1}H,{}^{1}H) = 8.3 \text{ Hz}, {}^{4}J({}^{1}H,{}^{1}H) = 1.2 \text{ Hz}, 1 \text{ H};$ H4, C₉H₆NO), 8.99 ppm (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 5.1$ Hz, ${}^{4}J({}^{1}H, {}^{1}H) = 1.2$ Hz, 1 H; H2, C₉H₆NO). -- ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 21.9, 22.0, 23.45, 23.46 (*C*H₃), 46.8, 47.9 (*C*H), 112.9 (C7, C₉H₆NO), 116.1 (C5, C₉H₆NO), 123.0 (C3, C₉H₆NO), 127.9 (br., 2 C; o-C₆H₅), 129.0 $(i - C_6H_5)$, 129.4 (br., 2 C; $m - C_6H_5$), 129.6 (C4a, C_9H_6NO), 130.0 ($p - C_6H_5$), 131.3 (C6, C_9H_6NO , 136.1 (C8a, C_9H_6NO), 139.8 (C2, C_9H_6NO), 141.4 (C4, C_9H_6NO), 151.9 (C8,

C₉H₆NO), 171.9 ppm (N*C*N), ¹³C-Resonanzsignale der N*C*S-Liganden nicht detektiert. — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): δ = -189.3 ppm (quint, ¹*J*(²⁹Si,¹⁴N) = 20.5 Hz). — ¹³C-VACP/MAS-NMR: δ = 21.9, 24.5, 25.6, 26.4 (*C*H₃), 45.4, 48.5 (*C*H), 113.9, 117.9, 122.8, 124.4, 126.5, 127.1, 130.1, 132.9, 130.1, 132.9 (2 C), 135.1 (3 C), 140.1 (2 C), 151.1 (*C*₆H₅, *C*₉H₆NO, N*C*S), 172.4 ppm (N*C*N). — ¹⁵N-VACP/MAS-NMR: δ = -234.1, -231.3 (*N*CS), -218.6, -195.3 (*N*CN), -130.6 ppm (C₉H₆NO). — ²⁹Si-VACP/MAS-NMR: δ = -190.2 ppm.

 $\begin{array}{ccccc} C_{24}H_{25}N_5OS_2Si~(491.71) & Ber. & C~58.62 & H~5.12 & N~14.24 & S~13.04 \\ & Gef. & C~58.4 & H~5.1 & N~14.1 & S~13.1 \end{array}$

Verbindung 36

Zu einer Mischung von 30 (730 mg, 1.64 mmol) und Acetonitril (30 mL) wurde unter Rühren bei 20 °C in einer Portion Trifluormethansulfonatotrimethylsilan (800 mg, 3.60 mmol) gegeben und das resultierende Gemisch 17 h bei dieser Temperatur gerührt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt. Zu dem verbliebenen festen Rückstand wurde Acetonitril (5 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der enstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 837 mg (1.24 mmol, 76%) eines gelben kristallinen Feststoffs. Smp. >160 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = -0.16$ (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}, 0.90 \text{ (d, } {}^{3}J({}^{1}H,{}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}, 1.35 \text{ (d, } {}^{3}J({}^{1}H,{}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}),$ 1.41 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H) (CH₃), 3.36 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 1 H), 3.82 (sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 1 H) (CH), 7.3 (br. s, 2 H; $o - C_{6}H_{5}$), 7.40 (dd, ${}^{3}J({}^{1}H,{}^{1}H) = 7.7$ Hz, ${}^{4}J({}^{1}H,{}^{1}H) = 0.9 \text{ Hz}, 1 \text{ H}; H7, C_{9}H_{6}\text{NO}), 7.55 \text{ (dd, }{}^{3}J({}^{1}H,{}^{1}H) = 8.4 \text{ Hz}, {}^{4}J({}^{1}H,{}^{1}H) = 0.9 \text{ Hz}, 1 \text{ H};$ H5, C₉H₆NO), 7.56–7.68 (m, 3 H; p-, m-C₆H₅), 7.79 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 8.4$ Hz, ${}^{3}J({}^{1}H, {}^{1}H) =$ 7.7 Hz, 1 H; H6, C₉H₆NO), 7.87 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 8.4$ Hz, ${}^{3}J({}^{1}H, {}^{1}H) = 5.1$ Hz, 1 H; H3, C_9H_6NO , 8.72 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 8.4$ Hz, ${}^{4}J({}^{1}H, {}^{1}H) = 1.2$ Hz, 1 H; H4, C_9H_6NO), 9.13 ppm $(dd, {}^{3}J({}^{1}H, {}^{1}H) = 5.1 Hz, {}^{4}J({}^{1}H, {}^{1}H) = 1.2 Hz, 1 H; H2, C_{9}H_{6}NO). - {}^{13}C-NMR (CD_{2}Cl_{2}, {}^{1}H)$ 125.8 MHz): $\delta = 21.4$, 22.40, 22.42, 23.1 (CH₃), 47.3, 48.4 (CH), 113.6 (C7, C₉H₆NO), 116.8 (C5, C₉H₆NO), 123.3 (C3, C₉H₆NO), 127.4 (C4a, C₉H₆NO), 126.8 (br., 2 C; o-C₆H₅), 128.2 (br., 2 C; $m-C_6H_5$), 128.7 (*i*- C_6H_5), 129.3, 130.1 (br.; CF_3) 130.3 (*p*- C_6H_5), 131.8 (C6, C₉H₆NO), 136.6 (C8a, C₉H₆NO), 140.6 (C2, C₉H₆NO), 142.9 (C4, C₉H₆NO), 151.2 (C8, C_9H_6NO , 174.8 ppm (NCN). — ¹⁹F-NMR (CD₂Cl₂, 376.5 MHz): $\delta = -78.5$ (q, $J({}^{19}F, {}^{19}F) =$

1.7 Hz), -78.31 ppm (q, $J({}^{19}\text{F}, {}^{19}\text{F}) = 1.7$ Hz) (CF₃). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -171.2$ ppm. — ¹³C-VACP/MAS-NMR (Daten für zwei kristallographisch unabhängige Moleküle): $\delta = 20.6$ (2 C), 22.3 (4 C), 23.2 (2 C) (CH₃), 42.6 (br., 4 C; CH), 112.2 (3 C), 117.9, 119.5, 123.7, 125.0, 126.3 (2 C), 127.1 (3 C), 128.8 (6 C), 129.9 (5 C), 131.7 (3 C), 136.7 (2 C), 142.1, 142.8, 144.5, 145.0, 150.8, 151.3 (CF₃, C₆H₅, C₉H₆NO), 174.2, 175.1 ppm (N*C*N). — ¹⁵N-VACP/MAS-NMR (Daten für zwei kristallographisch unabhängige Moleküle): $\delta = -208.8$ (2 N), -200.9, -199.4 (*NCN*), -140.7, -140.1 ppm (C₉H₆*N*O). — ²⁹Si-VACP/MAS-NMR (Daten für zwei kristallographisch unabhängige Moleküle): $\delta = -171.0$ ppm (2 Si). C₂₄H₂₅F₆N₃O₇S₂Si (673.69) Ber. C 42.79 H 3.74 N 6.24 S 9.52

Verbindung 37

Zu einer Lösung von **30** (2.30 g, 2.91 mmol) in THF (35 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (592 mg, 5.85 mmol) und 1,2-Dihydroxybenzol (321 mg, 292 mmol) gegeben und das resultierende Gemisch wurde 16 h bei dieser Temperatur gerührt. Die resultierende Suspension wurde filtriert, das Lösungsmittel des Filtrats im Vakuum entfernt und zu dem verbliebenen Rückstand Acetonitril (35 mL) gegeben. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 5 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C,3 h, 0.01 mbar). Ausbeute: 971 mg (2.01 mmol, 69%) eines gelben kristallinen Feststoffs. Smp. >180 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = -0.2-1.4$ (m, 12 H; CH₃), 3.24– 3.54 (m, 2 H; CH), 6.54–6.69 (m, 4 H; C₆H₄O₂), 7.13 (dd, ${}^{3}J({}^{1}H,{}^{1}H) = 7.7$ Hz, ${}^{4}J({}^{1}H,{}^{1}H) =$ 0.9 Hz, 1 H; H7, C₉H₆NO), 7.25 (br. s, 2 H; o-C₆H₅), 7.30 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 8.4$ Hz, ${}^{4}J({}^{1}H, {}^{1}H)$ = 0.9 Hz, 1 H; H5, C_9H_6NO), 7.40–7.57 (m, 3 H; p-, m- C_6H_5), 7.58–7.65 (m, 2 H; H3 und H6, C_9H_6NO , 8.48 (dd, ${}^{3}J({}^{1}H, {}^{1}H) = 8.4$ Hz, ${}^{4}J({}^{1}H, {}^{1}H) = 1.2$ Hz, 1 H; H4, C_9H_6NO), 9.07 ppm (br. dd, ${}^{3}J({}^{1}H, {}^{1}H)$ und ${}^{4}J({}^{1}H, {}^{1}H)$ nicht aufgelöst, 1 H; H2, C₉H₆NO). — ${}^{13}C$ -NMR (CD₂Cl₂, 125.8 MHz): $\delta = 22.6$ (3 C), 22.5 (CH₃), 46.4 (2 C; CH), 111.5 (C7, C₉H₆NO), 111.7 (br., 2 C), 113.8 (br., 2 C) ($C_6H_4O_2$), 118.4 (C_5 , C_9H_6NO), 122.5 (C_3 , C_9H_6NO), 127.6 (br., 2 C; $o-C_6H_5$), 128.1 (br., 2 C; $C_6H_4O_2$), 128.9 ($i-C_6H_5$), 129.1 (C4a, C_9H_6NO), 129.2 (br., 2 C; m-C₆H₅), 130.5 (p-C₆H₅), 131.6 (C6, C₉H₆NO), 136.7 (C8a, C₉H₆NO), 140.8 (C4, C₉H₆NO), 142.4 (br.; C2, C_9H_6NO), 150.9 (C8, C_9H_6NO), 170.9 ppm (NCN). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -146.6$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 20.0, 21.4, 24.2, 26.5$ (*C*H₃), 46.0

(br., 2 C; *C*H), 109.3, 111.3 (3 C), 112.9, 118.2 (2 C), 122.6, 126.7 (2 C), 128.1, 129.1 (2 C), 130.3, 132.5, 137.1, 138.4, 142.9, 150.5, 152.8, 154.6 (C_6H_5 , $C_6H_4O_2$, C_9H_6NO), 172.6 ppm (N*C*N). — ¹⁵N-VACP/MAS-NMR: $\delta = -215.6$, -198.7 (*NCN*), -129.3 ppm (C₉H₆*NO*). — ²⁹Si-VACP/MAS-NMR: $\delta = -145.9$ ppm.

$C_{28}H_{29}N_3O_3Si$ (483.64)	Ber.	C 69.54	H 6.04	N 8.69
	Gef.	C 69.2	H 5.9	N 8.9

Verbindung 38

Zu einer Mischung von Lithium-N, N-diisopropylbenzamidinat (105.1 g, 500 mmol) und Diethylether (700 mL) wurde unter Rühren bei 20–40 °C innerhalb von 25 min eine Lösung von Trichlorsilan (33.9 g, 250 mmol) in Diethylether (35 mL) getropft und das resultierende Gemisch 3 h bei 20 °C gerührt. Das Lösungsmittel wurde im Vakuum entfernt, zu dem verbliebenen Rückstand Dichlormethan (500 mL) gegeben und die resultierende Suspension filtriert. Das Lösungsmittel des Filtrats wurde im Vakuum entfernt und zu dem verbliebenen Rückstand wurde Acetonitril (300 mL) gegeben. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche langsam auf -20 °C abgekühlt und 16 h bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 60 \text{ mL})$ gewaschen und im Vakuum getrocknet. Ausbeute: 95.4 g (203 mmol, 81%) eines farblosen kristallinen Feststoffs. Smp. >197 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.22$ (d, ³J(¹H, ¹H) = 6.8 Hz, 12 H), 1.29 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 12 H) (CH₃), 3.55 (sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 4 H; CH₃CHCH₃), 5.10 (s, ²⁹Si-Satelliten, ${}^{1}J({}^{1}H, {}^{29}Si) = 285.2 \text{ Hz}, 1 \text{ H}; SiH), 7.26-7.40, 7.47-7.53 \text{ ppm} (m, 10 \text{ H}; C_{6}H_{5}).$ -¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 23.7 (4 C), 24.2 (4 C) (*C*H₃), 47.1 (4 C; CH₃*C*HCH₃), 127.3 (br., 2 C), 127.7 (br., 2 C) ($o-C_6H_5$), 128.9 (2 C; $p-C_6H_5$), 129.7 (4 C; $m-C_6H_5$), 131.2 (2 C; *i*-C₆H₅), 167.8 ppm (2 C; N*C*N). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -176.7$ ppm. -¹³C-VACP/MAS-NMR: δ = 21.6, 23.5 (2 C), 24.5 (2 C), 25.5 (3 C) (*C*H₃), 46.9, 47.3 (2 C), 47.9 (CH₃CHCH₃), 126.6 (br., 2 C), 127.8 (br., 2 C), 128.7 (br.), 129.8 (br., 3 C), 131.0 (br., 4 C) (C_6H_5), 168.2 ppm (2 C; NCN). — ¹⁵N-VACP/MAS-NMR: $\delta = -212.4, -208.5,$ -192.9, -187.9 ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -178.3$ ppm (br.).

 $\begin{array}{cccc} C_{26}H_{39}ClN_4Si~(471.16) & & Ber. & C~66.28 & H~8.34 & N~11.89 \\ & & Gef. & C~66.1 & H~8.4 & N~11.7 \end{array}$

Zu einer Mischung von **38** (47.1 g, 100 mmol) und Kaliumbis(trimethylsilyl)amid (21.0 g, 105 mmol) wurde unter Rühren bei 20 °C in einer Portion Diethylether (500 mL) gegeben und das resultierende Gemisch 30 min bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration isoliert und mit Diethylether (50 mL) gewaschen. Das Filtrat und die Waschlösung wurden vereinigt und die Lösung wurde im Vakuum von den flüchtigen Bestandteilen befreit. Zu dem verbliebenen Rückstand wurde *n*-Hexan (40 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 37.8 g (87 mmol, 87%) eines gelben kristallinen Feststoffs. Smp. 127 °C. — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 1.51$ (d, ³ $J(^{1}H, ^{1}H) = 6.8$ Hz, 24 H; CH₃), 3.63 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 4 H; CH₃CHCH₃), 7.15–7.25 ppm (m, 10 H; C_6H_5). — ¹³C-NMR (C_6D_6 , 125.8 MHz): $\delta = 24.9$ (8 C; CH_3), 47.7 (4 C; CH_3CHCH_3), 128.3 (br., 4 C; $o - C_6H_5$), 128.5 (4 C; $m - C_6H_5$), 128.7 (2 C; $p - C_6H_5$), 134.4 (2 C; $i - C_6H_5$), 161.1 ppm $(2 \text{ C; } \text{N}C\text{N}). - {}^{15}\text{N-NMR} (C_6D_6, 50.7 \text{ MHz}): \delta = -193.4 \text{ ppm.} - {}^{29}\text{Si-NMR} (C_6D_6, 99.4)$ MHz): $\delta = -31.4$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 21.6, 21.9, 23.2, 24.2, 24.9, 26.3, 27.2,$ 27.9 (CH₃), 45.2, 45.8, 46.8, 49.6 (CH₃CHCH₃), 125.8, 127.5, 127.9 (2 C), 128.4, 129.2, 129.7 (3 C), 130.3, 131.8, 139.2 (C_6H_5), 159.4, 161.8 ppm (br.; NCN)— ¹⁵N-VACP/MAS-NMR: $\delta = -230.4, -204.4, -198.9, -103.0 \text{ ppm}$ (*NCN*). — ²⁹Si-VACP/MAS-NMR: $\delta = -15.4 \text{ ppm}$. $C_{26}H_{38}N_4Si$ (434.70) C 71.84 Ber. H 8.81 N 12.89 Gef. C 70.6 H 9.1 N 12.5

Verbindung 40

In einem NMR-Rohr wurde zu einer Mischung von **39** (30 mg, 69 μ mol) und Quecksilberdibromid (25 mg, 0.69 μ mol) bei 20 °C in einer Portion [D₆]Benzol (0.6 mL) gegeben und das resultierende Gemisch nach 2 h NMR-spektroskopisch untersucht. Die analytischen Daten stimmten mit denen der Literatur überein (Bildung von **40**).^[10m] Die ¹Hund ¹³C-NMR-Spektren wiesen Verunreinigungen auf, welche keiner definierten Verbindung zugeordnet werden konnten.

Zu einer Lösung von **39** (500 mg, 1.15 mmol) in *n*-Hexan (20 mL) wurde unter Rühren bei 20 °C in einer Portion eine Lösung von Triethylboran (1 M in *n*-Heptan, 1.15 mL, 1.15 mmol) gegeben und das resultierende Gemisch 10 min bei dieser Temperatur gerührt. Die Reaktionslösung wurde im Vakuum auf ein Volumen von 3 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert und im Vakuum getrocknet (20 °C, 2 h, 0.01 mbar). Ausbeute: 462 mg (867 µmol, 75%). Smp. >80 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 1.19$ (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.9$ Hz, 24 H; CH₃CHCH₃), 1.29 (q, ${}^{3}J({}^{1}H, {}^{1}H) = 7.7$ Hz, 6 H; CH_2CH_3), 1.67 (t, ${}^{3}J({}^{1}H, {}^{1}H) = 7.7$ Hz, 9 H; CH_2CH_3), 3.89 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.9$ Hz, 4 H; CH₃CHCH₃), 7.13–7.20 (m, 6 H; m-, p-C₆H₅), 7.36–7.44 ppm (m, 4 H; o-C₆H₅). — ¹¹B-NMR (C₆D₆, 160.5 MHz): δ = -11.6 ppm (br.). — ¹³C-NMR (C₆D₆, 125.8 MHz): δ = 12.9 (3 C; CH_2CH_3), 15.4 (br., 3 C; CH_2CH_3), 24.3 (8 C; CH_3CHCH_3), 47.5 (4 C; CH_3CHCH_3 , 128.2 (4 C; $o-C_6H_5$), 128.6 (4 C; $m-C_6H_5$), 129.6 (2 C; $p-C_6H_5$), 133.7 (2 C; $i - C_6 H_5$), 170.1 ppm (2 C; NCN). — ²⁹Si-NMR (C₆D₆, 99.4 MHz): $\delta = -23.3$ ppm. — $^{11}\text{B-HPDec/MAS-NMR}$ (Daten für zwei kristallographisch unabhängige Moleküle): δ = -14.5 ppm (br. m). — ¹³C-VACP/MAS-NMR (Daten für zwei kristallographisch unabhängige Moleküle): $\delta = 13.4$ (6 C; CH₂CH₃), 13.7–16.0 (br., 6 C; CH₂CH₃), 22.9 (2 C), 23.8, 24.0, 24.4 (2 C), 24.7 (3 C), 25.0 (2 C), 25.6 (2 C), 26.4, 26.8, 27.5 (CH₃CHCH₃), 46.5 (2 C), 46.7 (2 C), 47.5, 48.0, 48.9, 49.2 (CH₃*C*HCH₃), 127.0 (2 C), 127.8, 128.4 (3 C), 128.6 (5 C), 129.1 (2 C), 129.5 (2 C), 130.1, 130.3, 130.7, 131.1, 131.5, 132.5, 133.4, 134.8, 135.7 ($C_{6}H_{5}$), 169.5, 170.0, 171.5 ppm (2 C) (N*C*N). — ¹⁵N-VACP/MAS-NMR (Daten für zwei kristallographisch unabhängige Moleküle): $\delta = -232.0, -229.7, -228.3, -224.8, -190.4, -182.2,$ -176.3, -171.4 ppm. — ²⁹Si-VACP/MAS-NMR (Daten für zwei kristallographisch unabhängige Moleküle): $\delta = -37.1$ (q, ${}^{1}J({}^{11}B, {}^{29}Si) = 69.3$ Hz), -32.4 ppm (br. q, ${}^{1}J({}^{11}B, {}^{29}Si) =$ 68.5 Hz).

$C_{32}H_{53}BN_4Si~(532.70)$	Ber.	C 72.15	H 10.03	N 10.52
	Gef.	C 71.9	H 10.3	N 10.2

Verbindung 42

Zu einer Mischung von **39** (500 mg, 1.15 mmol) und Triphenylboran wurde unter Rühren bei 20 °C in einer Portion Toluol (20 mL) gegeben und das resultierende Gemisch 10 min bei dieser Temperatur gerührt. Die Reaktionslösung wurde im Vakuum auf ein Volumen von

3 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 638 mg (943 μ mol, 82%) eines farblosen kristallinen Feststoffs. Smp. >145 °C (Zers.). — ¹H-NMR ([D₈]THF, 500.1 MHz): $\delta = 0.65-0.89$ (m, 24 H; CH₃CHCH₃), 3.55 (br. sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.9$ Hz, 4 H; CH₃CHCH₃), 6.87–6.91 (m, 3 H; p-B(C₆H₅)₃), 7.06–7.11 (m, 6 H; m-B(C₆H₅)₃), 7.43–7.57 (m, 10 H; C₆H₅), 7.75–7.79 ppm (m, 6 H; o-B(C₆H₅)₃). -¹¹B-NMR ([D₈]THF, 160.5 MHz): $\delta = -10.2$ ppm. -¹³C-NMR ([D₈]THF, 125.8 MHz): $\delta =$ 24.1 (br., 8 C; CH₃CHCH₃), 48.6 (4 C; CH₃CHCH₃), 123.4 (3 C; p-B(C₆H₅)₃), 127.1 (6 C; m-B(C₆H₅)₃), 128.8 (4 C; c-C₆H₅), 128.9 (4 C; m-C₆H₅), 130.8 (2 C; p-C₆H₅), 134.0 (2 C; $i - C_6H_5$, 135.9 (6 C; $o - B(C_6H_5)_3$), 159.1 (3 C; $i - B(C_6H_5)_3$), 172.9 ppm (2 C; NCN). — ²⁹Si-NMR ([D₈]THF, 99.4 MHz): δ = -40.3 ppm (br.). — ¹¹B-HPDec/MAS-NMR: δ = -9.7 ppm. — ¹³C-VACP/MAS-NMR: δ = 21.4 (3 C), 23.9 (2 C), 26.1 (2 C), 26.7 (*C*H₃), 45.9, 47.4, 50.1, 51.0 (CH₃CHCH₃), 122.0 (2 C), 122.4 (br., 2 C), 122.8 (2 C), 126.0 (2 C), 128.0 (5 C), 128.6 (3 C), 129.4 (2 C), 130.0, 130.1 (2 C), 133.7 (br., 3 C), 135.1, 136.1, 136.8 $(CC_{6}H_{5}, o, m, p-B(C_{6}H_{5})_{3}), 155.0, 161.4, 164.1 (i-B(C_{6}H_{5})_{3}), 171.5, 172.8 (br.; NCN).$ — ¹⁵N-VACP/MAS-NMR: δ = -232.0, -231.1, -187.1, -177.4 ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -46.7$ (q, ${}^{1}J({}^{11}B, {}^{29}Si) = 85.0$ Hz) ppm.

$C_{44}H_{53}BN_4Si~(676.83)$	Ber.	C 78.08	H 7.89	N 8.28
	Gef.	C 78.2	H 7.6	N 8.3

Verbindung 43

Zu einer Mischung von **39** (500 mg, 1.15 mmol) und Chromhexacarbonyl (254 mg, 1.15 mmol) wurde unter Rühren bei 20 °C in einer Portion Toluol (20 mL) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Die Reaktionslösung wurde im Vakuum auf ein Volumen von 2 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf –20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 549 mg (876 μ mol, 76%) eines farblosen kristallinen Feststoffs. Smp. >160 °C (Zers.). — ¹H-NMR ([D₈]THF, 300.1 MHz): $\delta = 1.15$ (d, ³J(¹H,¹H) = 6.9 Hz, 24 H; CH₃), 3.82 (sept, ³J(¹H,¹H) = 6.9 Hz, 4 H; CH₃CHCH₃), 7.46–7.55 ppm (m, 10 H; C₆H₅). — ¹³C-NMR ([D₈]THF, 75.5 MHz): $\delta = 25.5$ (8 C; CH₃), 49.3 (4 C; CH₃CHCH₃), 129.8

(4 C; $o - C_6H_5$), 130.6 (4 C; $m - C_6H_5$), 131.6 (2 C; $p - C_6H_5$), 134.4 (2 C; $i - C_6H_5$), 169.8 (2 C; NCN), 225.3 (4 C; cis - CO), 227.3 ppm (1 C; trans - CO). — ²⁹Si-NMR (59.6 MHz): $\delta = -22.3$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 22.8$, 23.2 (2 C), 24.2 (2 C), 25.5, 26.0, 26.9 (CH₃), 45.8, 46.2, 48.6, 49.5 (CH₃CHCH₃), 127.9, 128.8 (4 C), 129.4 (2 C), 130.0, 130.6 (2 C), 131.8, 132.8 (C_6H_5), 167.7, 169.5 (br.; NCN), 224.1 (br., 4 C; cis - CO), 227.4 ppm (1 C; trans - CO). — ¹⁵N-VACP/MAS-NMR: $\delta = -232.9$, -226.9, -177.5, -162.3 ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -22.3$ ppm (br. s; FWHH = 223 Hz).

 $\begin{array}{cccc} C_{31}H_{38}CrN_4O_5Si~(626.75) & \mbox{Ber.} & C~59.31 & \mbox{H}~6.11 & N~8.94 \\ & \mbox{Gef.} & C~59.5 & \mbox{H}~6.2 & N~8.9 \end{array}$

Verbindung 44

Zu einer Mischung von **39** (500 mg, 1.15 mmol) und Molybdänhexacarbonyl (304 mg, 1.15 mmol) wurde unter Rühren bei 20 °C in einer Portion THF (20 mL) gegeben und das resultierende Gemisch 5 h bei 60 °C gerührt. Die Reaktionslösung wurde im Vakuum auf ein Volumen von 2 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). 687 mg (1.02 mmol, 89%)eines farblosen Ausbeute: kristallinen Feststoffs. Smp >165 °C (Zers.). — ¹H-NMR ([D₈]THF, 300.1 MHz): $\delta = 1.16$ (d, ³J(¹H, ¹H) = 6.9 Hz, 24 H; CH₃), 3.77 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.9$ Hz, 4 H; CH₃CHCH₃), 7.42–7.54 ppm (m, 10 H; C_6H_5). — ¹³C-NMR ([D₈]THF, 75.5 MHz): $\delta = 24.7$ (8 C; CH₃), 48.2 (4 C; CH₃CHCH₃), 129.1 $(4 \text{ C}; \text{ } \text{o-}C_6\text{H}_5), 129.6 \ (4 \text{ C}; \text{ } \text{m-}C_6\text{H}_5), 130.6 \ (2 \text{ C}; \text{ } \text{p-}C_6\text{H}_5), 133.7 \ (2 \text{ C}; \text{ } \text{i-}C_6\text{H}_5), 168.7 \ (2 \text{ C}; \text{i-}C_6\text{H}_5), 16$ N*C*N), 213.9 (4 C; *cis-C*O), 213.7 ppm (1 C; *trans-C*O). — ²⁹Si-NMR ([D₈]THF, 59.6 MHz): $\delta = 6.9$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 22.8$ (2 C), 23.6, 23.8, 24.6, 25.3, 25.5, 26.7 (CH₃), 45.4, 45.8, 48.2, 49.1 (CH₃CHCH₃), 127.9, 128.6 (2 C), 129.2 (3 C), 129.7 (2 C), 130.6 $(2 \text{ C}), 131.9, 132.8 (C_6H_5), 167.6, 169.3 \text{ ppm} (NCN), {}^{13}C$ -Resonanzsignale der CO-Liganden nicht detektiert. — ¹⁵N-VACP/MAS-NMR: $\delta = -232.2, -228.8, -174.4, -163.0$ ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = 4.9$ ppm.

 $\begin{array}{ccccccc} C_{31}H_{38}MoN_4O_5Si~(670.69) & Ber. & C~55.52 & H~5.71 & N~8.35\\ & & Gef. & C~55.8 & H~5.5 & N~8.4 \end{array}$

Zu einer Mischung von **39** (500 mg, 1.15 mmol) und Wolframhexacarbonyl (405 mg, 1.15 mmol) wurde unter Rühren bei 20 °C in einer Portion THF (20 mL) gegeben und das resultierende Gemisch 3 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt, zu dem verbliebenen Rückstand Toluol (1.5 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mbar). Ausbeute: 804 mg (1.06 mmol, 92%) eines farblosen kristallinen Feststoffs. Smp. >165 °C (Zers.). — ¹H-NMR ([D₈]THF. 500.1 MHz): $\delta = 1.16$ (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.9$ Hz, 24 H; CH₃), 3.77 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.9$ Hz, 4 H; CH₃CHCH₃), 7.46–7.54 ppm (m, 10 H; C₆H₅). — ¹³C-NMR ([D₈]THF, 125.8 MHz): δ = 24.6 (8 C; CH₃), 48.1 (4 C; CH₃CHCH₃), 129.1 (4 C; o-C₆H₅), 129.7 (4 C; m-C₆H₅), 130.3 (2 C; $p - C_6 H_5$, 133.7 (2 C; $i - C_6 H_5$), 169.4 (2 C; NCN), 203.3 (1 C; ¹⁸³W-Satelliten, ¹J(¹³C, ¹⁸³W) = 145.0 Hz; trans-CO), 203.7 ppm (4 C; ¹⁸³W-Satelliten, ${}^{1}J({}^{13}C, {}^{183}W) = 123.1$ Hz; cis-CO). -²⁹Si-NMR ([D₈]THF, 99.4 MHz): $\delta = -13.3$ ppm (¹⁸³W-Satelliten, ¹J(²⁹Si, ¹⁸³W) = 139.2 Hz). — ¹³C-VACP/MAS-NMR: δ = 22.6 (2 C), 23.6, 23.9, 24.6, 25.4 (2 C), 26.7 (CH₃), 45.4, 45.7, 48.2, 49.1 (CH₃CHCH₃), 127.9, 128.8 (3 C), 129.2 (3 C), 129.7, 130.1, 131.8 (2 C), 132.7 (C_6H_5), 168.4, 170.0 (br.; NCN), 201–204 ppm (5 C; CO). — ¹⁵N-VACP/MAS-NMR: $\delta = -232.7, -229.6, -173.8, -163.0$ ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -12.5$ ppm (br.). $C_{31}H_{38}N_4O_5SiW$ (758.59) Ber. C 49.08 H 5.05 N 7.39 C 49.3 Gef. H 5.0 N 7.4

Verbindung 46

Zu einer Lösung von **39** (500 mg, 1.15 mmol) in Toluol (20 mL) wurde unter Rühren bei 20 °C in einer Portion Eisenpentacarbonyl (225 mg, 1.15 mmol) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Die Reaktionslösung wurde im Vakuum auf ein Volumen von 2 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 450 mg (747 µmol, 65%) eines grün gefärbten kristallinen Feststoffs. Smp. >135 °C (Zers.). — ¹H-NMR ([D₈]THF, 500.1 MHz): $\delta = 1.15$ (d, ³J(¹H, ¹H) = 6.9 Hz, 24 H; CH₃), 3.85 (sept, ³J(¹H, ¹H) = 6.9 Hz, 4 H; CH₃CHCH₃), 7.48–7.58 ppm (m, 10 H; C₆H₅). — ¹³C-NMR ([D₈]THF, 125.8 MHz): $\delta = 23.9$ (8 C; CH₃), 47.8 (4 C; CH₃CHCH₃), 129.2 (4 C; σ -C₆H₅), 129.3 (4 C; m-C₆H₅), 131.1 (2 C; p-C₆H₅), 132.6 (2 C; i·C₆H₅), 170.2 (2 C; NCN), 220.4 ppm (4 C; CO). — ²⁹Si-NMR ([D₈]THF, 99.4 MHz): $\delta = -12.7$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 22.5$ (3 C), 23.2, 23.7 (2 C), 24.4, 24.7 (CH₃), 46.9 (2 C), 47.6 (2 C) (CH₃CHCH₃), 127.3, 127.9 (4 C), 128.6, 129.8, 130.3, 130.9, 131.5, 132.2, 133.4 (C₆H₅), 169.3, 170.4 (br.; NCN), 226.2 ppm (br., 4 C; CO). — ¹⁵N-VACP/MAS-NMR: $\delta = -229.4, -221.6, -190.4, -178.8$ ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -23.7$ ppm. C₃₀H₃₈FeN₄O₄Si (602.59) Ber. C 59.80 H 6.36 N 9.30

Gef. C 59.6 H 6.5 N 9.3

Synthese von 48

Zu einer Lösung von 39 (500 mg, 1.15 mmol) in n-Hexan (20 mL) wurde unter Rühren bei 20 °C in einer Portion 2,3-Dimethyl-1,3-butadien (189 mg, 2.30 mmol) gegeben und das resultierende Gemisch 5 h unter Rückfluss erhitzt und anschließend auf 20 °C abgekühlt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, zu dem verbliebenen Rückstand wurde Acetonitril (5 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 14 h bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert und im Vakuum getrocknet (20 °C, 2 h, 0.01 mbar). Ausbeute: 515 mg (996 μ mol, 87%) eines farblosen kristallinen Feststoffs. Smp. >120 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 1.04$ (d, ³J(¹H, ¹H) = 6.7 Hz, 24 H; CH_3CHCH_3 , 1.36 (s, 4 H; CH_2), 1.73 (s, 6 H; $CH_3C=CCH_3$), 3.38 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.7$ Hz, 4 H; CH₃C*H*CH₃), 7.22–7.25, 7.37–7.42 ppm (m, 10 H; C₆H₅). — ¹³C-NMR (CD₂Cl₂) 75.5 MHz): $\delta = 19.5$ (2 C; CH₃C=CCH₃), 24.3 (8 C; CH₃CHCH₃), 33.5 (4 C; CH₃CHCH₃), 46.3 (2 C; CH_2), 127.7 (2 C; $CH_3C=CCH_3$), 128.2 (4 C; $o-C_6H_5$), 128.4 (4 C; $m-C_6H_5$), 131.8 $(2 \text{ C}; p-C_6\text{H}_5), 135.8 \ (2 \text{ C}; i-C_6\text{H}_5), 164.2 \text{ ppm} \ (2 \text{ C}; \text{ N}C\text{N}). - {}^{29}\text{Si-NMR} \ (\text{CD}_2\text{Cl}_2, 59.6 \text{ MHz}):$ $\delta = -76.6 \text{ ppm (br.)}$. — ¹³C-VACP/MAS-NMR: $\delta = 20.1, 20.7 (CH_3C=CCH_3), 23.0, 24.2, 25.1$ (2 C), 26.2 (2 C), 28.1 (2 C) (CH₃CHCH₃), 46.9 (4 C; CH₃CHCH₃), 49.8 (2 C; CH₂), 127.9-131.1 (12 C; C_6H_5 , $CH_3C=CCH_3$), 139.1 (2 C; $i C_6H_5$), 161.1, 162.4 ppm (NCN). -- ¹⁵N-VACP/MAS-NMR: δ = -263.3, -256.2, -98.1, -90.5 ppm. -- ²⁹Si-VACP/MAS-NMR: $\delta = -0.4$ ppm.

$C_{32}H_{48}N_4Si~(513.85)$	Ber.	C 74.36	H 9.36	N 10.84
	Gef.	C 74.1	H 9.6	N 10.7

Zu einer Mischung von **39** (500 mg, 1.15 mmol) und Tricarbonyl(η^5 -cyclopentadienyl)hydridochrom(0) (245 mg, 1.15 mmol) wurde unter Rühren bei 20 °C in einer Portion Toluol gegeben und das resultierende Gemisch 1 h bei dieser Temperatur gerührt. Das Reakionsgemisch wurde auf ca. 100 °C erhitzt, filtriert und das Filtrat im Vakuum auf ein Volumen von 10 mL eingeengt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C)5 h, 0.01 mbar). Ausbeute: 716 mg (1.11 mmol, 96%) eines kristallinen Feststoffs. Da bei der Reaktion von **39** mit Tricarbonyl(η^5 -cyclopentadienyl)hydridochrom(0) auch Spuren des intensiv grün gefärbten $Bis(tricarbonyl(\eta^5-cyclopentadienyl)chrom(I))$ entstanden, welche von 50 nicht abgetrennt werden konnten, kann über die Farbigkeit von 50 keine Aussage getroffen werden. — ¹³C-VACP/MAS-NMR: $\delta = 21.4, 23.4, 23.9$ (3 C), 25.1, 25.9, 27.7 (CH₃CHCH₃), 47.6, 48.7 (3 C) (CH₃CHCH₃), 81.7 (5 C; C₅H₅), 126.9, 127.9, 128.6, 129.0 $(3 \text{ C}), 129.8 (2 \text{ C}), 130.1, 130.6, 131.0, 133.4 (C_6H_5), 181.0 \text{ ppm}$ (br., 2 C; NCN), ¹³C-Resonanzsignale der CO-Liganden nicht detektiert. — ¹⁵N-VACP/MAS-NMR: δ = –234.3, –229.6, –197.4, –187.8 ppm. — $^{29}\text{Si-VACP/MAS-NMR:}\ \delta$ = –97.1 ppm.

Verbindung 52

Zu einer Mischung von **39** (500 mg, 1.15 mmol) und Tricarbonyl(η^5 -cyclopentadienyl)hydridomolybdän(0) (283 mg, 1.15 mmol) wurde unter Rühren bei 20 °C in einer Portion Toluol gegeben und das resultierende Gemisch 1 h bei dieser Temperatur gerührt. Das Reaktionsgemisch wurde auf *ca.* 100 °C erhitzt, filtriert und das Filtrat im Vakuum auf ein Volumen von 10 mL eingeengt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf –20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 752 mg (1.11 mmol, 96%) eines gelben Feststoffs. Smp. >165 °C (Zers.). — ¹H-NMR ([D₈]THF, -40 °C): $\delta = 1.22$ (d, ³J(¹H,¹H) = 6.8 Hz, 12 H), 1.33 (d, ³J(¹H,¹H) = 6.8 Hz, 12 H) (CH₃), 3.65 (sept, ³J(¹H,¹H) = 6.8 Hz, 4 H; CH₃CHCH₃), 5.11 (s, 5 H; C₅H₅), 5.18 (s, ²⁹Si-Satelliten, ¹J(¹H,²⁹Si) = 297.8 Hz, 1 H; SiH), 7.54–7.60, 7.61–7.70 ppm (m, 10 H; C₆H₅). — ¹³C-NMR ([D₈]THF, -40 °C): $\delta = 23.9$ (4 C), 24.6 (4 C) (*C*H₃), 48.2 (4 C; CH₃*C*HCH₃), 86.0 (5 C; *C*₅H₅), 128.7 (2 C; *p*-C₆H₅), 129.0 (2 C; *o*-C₆H₅), 129.1 (2 C; $o - C_6H_5$), 130.0 (2 C; $m - C_6H_5$), 130.2 (2 C; $m - C_6H_5$), 132.4 (2 C; $i - C_6H_5$), 175.7 (2 C; NCN), 227.6 ppm (3 C; CO). — ²⁹Si-NMR ([D₈]THF, -40 °C): $\delta = -134.6$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 21.4$, 23.4 (3 C), 24.5, 24.9, 25.8, 27.9 (CH₃), 47.5, 48.8 (2 C), 49.0 (CH₃CHCH₃), 86.0 (5 C; C_5H_5), 126.7, 128.0, 128.7 (2 C), 129.1 (2 C), 129.7, 130.0 (2 C), 130.8 (2 C), 133.4 (C_6H_5), 181.0 ppm (br., 2 C; NCN), ¹³C-Resonanzsignale der CO-Liganden nicht detektiert. — ¹⁵N-VACP/MAS-NMR: $\delta = -234.2$, -229.5, -197.7, -187.7 ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -97.1$ ppm.

Verbindung 53

Zu einer Lösung von **39** (500 mg, 1.15 mmol) in *n*-Hexan (20 mL) wurde unter Rühren bei -78 °C innerhalb von 5 min eine Lösung von Essigsäure (1.11 M in Diethylether, 1.04 mL, 1.15 mmol) gegeben und das resultierende Gemisch 10 min bei dieser Temperatur gerührt. Das Reaktionsgemisch wurde auf 20 °C erwärmt, im Vakuum auf ein Volumen von 1.5 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 381 mg (771 µmol, 67%) eines farblosen kristallinen Feststoffs. Smp. 92 °C. — ¹H-NMR ($[D_8]$ Toluol, -40 °C): $\delta = 1.26$ (d, ³ $J(^1H, ^1H) =$ 6.8 Hz, 6 H), 1.29 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.30 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.31 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 3 H), 1.446 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 3 H), 1.450 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ 6.8 Hz, 3 H), 1.57 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 3 H) (CH₃CHCH₃), 2.19 (s, 3 H; CH₃C(O)O), 3.497 $(\text{sept}, {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 2 \text{ H}), 3.502 \text{ (sept}, {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 1 \text{ H}), 3.85 \text{ (sept}, {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 1 \text{ H})$ 6.8, 1 H) (CH₃C*H*CH₃), 5.13 (s, ²⁹Si-Satelliten, ¹J(¹H, ²⁹Si) = 267.1 Hz, 1 H; Si*H*), 7.04–7.16, 7.20–7.29 ppm (m, 10 H; C_6H_5 ; partiell durch das Lösungsmittelsignal überlagert). -¹³C-NMR ([D₈]Toluol, -40 °C): $\delta = 22.1, 22.5, 22.6, 23.0, 24.0, 24.8, 25.4, 25.5$ (CH₃CHCH₃), 25.8 (CH₃C(O)O), 46.7 (2 C), 47.2, 47.6 (CH₃CHCH₃), 126.3, 126.7, 127.5, 128.2 (2 C), 129.1 (3 C), 129.3, 129.4, 131.1, 131.2 (C_6H_5 ; partiell durch das Lösungsmittelsignal überlagert), 166.0 (CH₃C(O)O), 168.9, 169.3 ppm (NCN). — ²⁹Si-NMR ([D₈]Toluol, -40 °C): $\delta = -177.3$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 22.5, 23.0 (2 \text{ C}), 24.1,$ 23.1 (3 C), 26.6 (2 C) (CH₃CHCH₃, CH₃C(O)O), 46.6, 47.3 (2 C), 48.0 (CH₃CHCH₃), 126.0 $(2 \text{ C}), 127.1, 128.3 (2 \text{ C}), 128.9, 129.4 (2 \text{ C}), 130.6 (3 \text{ C}), 131.8 (C_6H_5), 167.1, 167.6 (NCN),$

169.3 ppm (CH₃*C*(O)O). — ¹⁵N-VACP/MAS-NMR: $\delta = -218.3, -217.0, -199.2, -186.0$ ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -176.7$ ppm. C₂₈H₄₂N₄O₂Si (494.75) Ber. C 67.98 H 8.56 N 11.32 Gef. C 67.8 H 8.7 N 11.0

Verbindung 54' $\cdot C_6H_5CH_3$

Durch eine Lösung von 39 (500 mg, 1.15 mmol) in Toluol (20 mL) wurde unter Rühren bei -78 °C innerhalb von 3 min Distickstoffmonoxid (ca. 500 mg) geleitet und das resultierende Gemisch 10 min bei dieser Temperatur und anschließend 1 h bei 20 °C gerührt. Die resultierende Lösung wurde im Vakuum auf ein Volumen von 2 mL eingeengt, langsam auf -20 °C abgekühlt und 2 d bei dieser Temperatur aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mbar). Ausbeute: 532 mg (535 μ mol, 93%) eines farblosen kristallinen Feststoffs. Smp. >220 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.48$ (br. d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.4$ Hz, 48 H; $CH_{3}CHCH_{3}$), 2.24 (s, 3 H; $C_{6}H_{5}CH_{3}$), 3.44 (br. s (FWHH = 30.4 Hz), 8 H; CH₃CHCH₃), 7.10–7.32, 7.41–7.58 ppm (m, 25 H; C₆H₅, C₆H₅CH₃). - ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 21.4$ (C₆H₅CH₃), 24.7 (br., 16 C; CH₃CHCH₃), 48.4 (br., 8 C; CH₃CHCH₃), 125.6, 128.0, 128.2, 128.5, 128.9, 129.3, 136.1 (30 C; C₆H₅, $C_6H_5CH_3$; eine Zuordnung der aromatischen ¹³C-Resonanzsignale war wegen Überlagerungen nicht möglich), 163.6 ppm (br., 4 C; N*C*N). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): δ = -82.9 ppm. - ¹³C-VACP/MAS-NMR: $\delta = 14.4, 15.2, 21.7, 22.5, 23.2$ (3 C), 39.9 (3 C), 24.9 $(3 \text{ C}), 25.3 (2 \text{ C}), 26.0, 27.7 (CH_3CHCH_3, C_6H_5CH_3; eine Zuordnung der {}^{13}C-Resonanzsignale$ der Methylgruppen war wegen Überlagerungen nicht möglich), 44.6 (2 C), 48.9 (4 C), 49.6 (2 C) (CH₃CHCH₃), 126.0 (2 C), 126.6 (5 C), 127.8 (3 C), 128.2 (3 C), 128.6 (3 C), 129.0 (3 C), 129.4 (3 C), 129.9, 131.7, 132.7 (3 C), 132.0, 138.6 (2 C) (C₆H₅, C₆H₅CH₃; eine Zuordnung der aromatischen ¹³C-Resonanzsignale war wegen Überlagerungen nicht möglich), 157.4, 170.7 ppm (br.; N*C*N). — ¹⁵N-VACP/MAS-NMR: $\delta = -262.2, -261.2, -253.2, -234.3,$ –172.9, –171.1, –98.9 ppm (2 N). — $^{29}\text{Si-VACP/MAS-NMR:}\ \delta$ = –91.9, –93.0 ppm. $C_{59}H_{84}N_8O_4Si_2$ (993.54) Ber. C 71.33 H 8.52N 11.28 Gef. C 70.0 H 8.7N 11.3 $\,$

Methode 1: Zu einer Mischung von 39 (500 mg, 1.15 mmol) und Schwefel (37.0 mg, 144 μ mol) wurde unter Rühren bei 20 °C in einer Portion Toluol (20 mL) gegeben und das resultierende Gemisch 15 h bei dieser Temperatur gerührt. Die resultierende Suspension wurde im Vakuum auf ein Volumen von 2 mL eingeengt und so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt. Der enstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 272 mg (583 μ mol, 51%) eines farblosen kristallinen Feststoffs. Smp. >210 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 1.43$ (d, ³J(¹H, ¹H) = 6.8 Hz, 24 H; CH₃), $3.93 \text{ (sept, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 4 \text{ H}; \text{ CH}_{3}\text{C}H\text{CH}_{3}\text{)}, 7.08-7.17, 7.19-7.28 \text{ ppm} \text{ (m, 10 H; C}_{6}H_{5}\text{)}.$ -¹³C-NMR (C₆D₆, 125.8 MHz): $\delta = 24.1$ (8 C; CH₃), 47.2 (4 C; CH₃CHCH₃), 128.1 (4 C; $o - C_6H_5$), 128.5 (4 C; $m - C_6H_5$), 130.2 (2 C; $p - C_6H_5$), 131.9 (2 C; $i - C_6H_5$), 172.1 ppm (2 C; N*C*N). — ²⁹Si-NMR (C₆D₆, 99.4 MHz): $\delta = -70.7$ ppm. — ¹³C-VACP/MAS-NMR: $\delta =$ 23.3–23.8 (4 C), 24.0, 24.3, 25.6 (2 C) (CH₃), 45.9, 46.7, 47.5, 47.8 (CH₃CHCH₃), 127.1, 127.8–129.6 (6 C), 129.9, 131.8, 132.8, 133.2 (2 C) ($C_{6}H_{5}$), 172.8, 173.8 ppm (br.; NCN). -¹⁵N-VACP/MAS-NMR: $\delta = -224.4, -222.6, -196.0, -174.9$ ppm. -²⁹Si-VACP/MAS-NMR: $\delta = -74.7$ (br.) ppm.

$C_{26}H_{38}N_4SSi~(466.77)$	Ber.	C 66.90	H 8.21	N 12.00	S 6.87
	Gef.	C 66.4	H 8.1	N 12.3	S 6.9

Methode 2: Zu einer Mischung von **39** (500 mg, 1.15 mmol) und Tetraarsentetrasulfid (123 mg, 288 μ mol) wurde unter Rühren bei 20 °C in einer Portion Toluol (15 mL) gegeben, das resultierende Gemisch 10 min bei 100 °C gerührt und anschließend auf 20 °C abgekühlt. Die unlöslichen Bestandteile des Reaktionsgemisches wurden durch Filtration entfernt und das Filtrat im Vakuum auf ein Volumen von 5 mL eingeengt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 272 mg (583 μ mol, 51%) eines farblosen kristallinen Feststoffs.

Die analytischen Daten stimmten mit denen des nach *Methode 1* erhaltenen Produkts überein.

Zu einer Mischung von **39** (300 mg, 690 μ mol) und grauem Selen (54.5 mg, 690 μ mol) wurde unter Rühren bei 20 °C in einer Portion Toluol (20 mL) gegeben und das resultierende Gemisch 20 h bei dieser Temperatur gerührt. Das Reaktionsgemisch wurde filtriert und das Filtrat im Vakuum auf ein Volumen von 1 mL eingeengt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf -20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 3 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 162 mg (315 μ mol, 46%) eines gelben kristallinen Feststoffs. Smp. >195 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 1.42$ $(d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 24 \text{ H}; CH_{3}), 4.00 \text{ (sept, } {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 4 \text{ H}; CH_{3}CHCH_{3}),$ 7.10–7.18, 7.20–7.26 ppm (m, 10 H; C₆H₅). — ¹³C-NMR (C₆D₆, 125.8 MHz): δ = 24.1 (8 C; CH₃), 47.0 (4 C; CH₃CHCH₃), 128.1 (4 C; o-C₆H₅), 128.5 (4 C; m-C₆H₅), 130.2 (2 C; p-C₆H₅), 131.8 (2 C; $i - C_6H_5$), 171.7 ppm (2 C; N*C*N). — ¹⁵N-NMR (C₆D₆, 50.7 MHz): $\delta = -208.9$ ppm. -- ²⁹Si-NMR (C₆D₆, 99.4 MHz): $\delta = -80.8$ ppm (⁷⁷Se-Satelliten, ¹J(²⁹Si, ⁷⁷Se) = 291.9 Hz). --- ⁷⁷Se-NMR (C₆D₆, 95.4 MHz): $\delta = -495.7$ ppm. --- ¹³C-VACP/MAS-NMR: $\delta = 22.8, 24.0$ (3 C), 25.7 (2 C), 26.1 (2 C) (CH₃), 46.1 (2 C), 47.6 (2 C) (CH₃CHCH₃), 127.1, 127.8-129.6 $(5 \text{ C}), 130.0, 132.1, 132.5, 133.0, 133.4 (2 \text{ C}) (C_6H_5), 172.2, 173.6 \text{ ppm}$ (br.; NCN). -¹⁵N-VACP/MAS-NMR: $\delta = -225.1$ (2 N), -196.0, -173.1 ppm. -²⁹Si-VACP/MAS-NMR: $\delta = -85.0 \text{ ppm} (^{77}\text{Se-Satelliten}, {}^{1}J(^{29}\text{Si},^{77}\text{Se}) = 268 \text{ Hz}). - {}^{77}\text{Se-VACP/MAS-NMR}:$ $\delta = -485.3$ ppm.

$C_{26}H_{38}N_4SeSi~(513.66)$	Ber.	C 60.80	H 7.46	N 10.91
	Gef.	C 60.5	H 7.5	N 10.9

Verbindung 57

Zu einer Mischung von **39** (500 mg, 1.15 mmol) und Tellur (147 mg, 1.15 mmol) wurde unter Rühren bei 20 °C in einer Portion Toluol (20 mL) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Das Reaktionsgemisch wurde filtriert und das Filtrat im Vakuum auf ein Volumen von 3 mL eingeengt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf –20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 3 mL) gewaschen und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 468 mg (832 µmol, 72%) eines gelben kristallinen Feststoffs. Smp. >240 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 1.39$ (d, ³J(¹H, ¹H) = 6.8 Hz, 24 H; CH₃), 4.04 (sept, ${}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8$ Hz, 4 H; CH₃CHCH₃), 7.10–7.18, 7.19–7.22 ppm (m, 10 H; C₆H₅). — 13 C-NMR (C₆D₆, 125.8 MHz): $\delta = 24.4$ (8 C; *C*H₃), 46.8 (4 C; CH₃*C*HCH₃), 128.0 (4 C; $o \cdot C_{6}$ H₅; durch das Lösungsmittelsignal überlagert), 128.6 (4 C; $m \cdot C_{6}$ H₅), 130.3 (2 C; $p \cdot C_{6}$ H₅), 131.8 (2 C; $i \cdot C_{6}$ H₅), 170.9 ppm (2 C; N*C*N). — 29 Si-NMR (C₆D₆, 99.4 MHz): $\delta = -116.5$ ppm (125 Te-Satelliten, ${}^{1}J({}^{29}$ Si, 125 Te) = 832 Hz). — 125 Te-NMR (C₆D₆, 157.8 MHz): $\delta =$ -1199.2 ppm. — 13 C-VACP/MAS-NMR: $\delta = 21.9$, 22.7, 23.3, 25.5 (2 C), 25.8 (2 C), 26.8 (*C*H₃), 45.4–47.7 (4 C; CH₃*C*HCH₃), 126.6 (2 C), 128.5, 130.6 (4 C), 132.3 (4 C), 133.2 (C_{6} H₅), 170.8–173.3 ppm (2 C; N*C*N). — 15 N-VACP/MAS-NMR: $\delta = -224.8$, -222.5, -186.7, -184.9 ppm. — 29 Si-VACP/MAS-NMR: $\delta = -111.4$ ppm (125 Te-Satelliten, ${}^{1}J({}^{29}$ Si, 125 Te) = 809 Hz). — 125 Te-HPDec/MAS-NMR: $\delta = -1208.8$ ppm.

$C_{26}H_{38}N_4SiTe~(562.30)$	Ber.	C 55.54	H 6.81	N 9.96
	Gef.	C 55.1	H 6.9	N 9.9

Verbindung 58

In eine Mischung von **39** (500 mg, 1.15 mmol) und *n*-Hexan (20 mL) wurde unter Rühren bei -78 °C innerhalb von 2 min gasförmiges Schwefeldioxid (111 mg, 1.73 mmol) geleitet und das resultierende Gemisch unter Rühren innerhalb von 30 min auf 20 °C erwärmt. Das Lösungsmittel wurde im Vakuum entfernt, zu dem verbliebenen Rückstand Toluol (20 mL) gegeben und die resultierende Suspension filtriert. Das Filtrat wurde im Vakuum auf ein Volumen von 2 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 502 mg (975 μ mol, 85%) eines farblosen kristallinen Feststoffs. Smp. >165 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz, -40 °C): $\delta = 1.04$ (d, ³J(¹H, ¹H) = 6.8 Hz, 3 H), 1.076 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.084 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 3 H), 1.13 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 6.8 Hz, 3 H; CH₃), 1.17 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.19 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.25 $(d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}), 1.26 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}) (CH_{3}), 3.33 (sept, {}^{3}J({}^{1}H, {}^{1}H) =$ 6.8 Hz, 1 H), 3.36 (sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 1 H), 3.65 (sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 1 H), 3.88 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 1 H) (CH₃CHCH₃), 7.22–7.30 (m, 4 H; o-C₆H₅), 7.39–7.55 ppm (m, 6 H; *m*-, *p*-C₆*H*₅). —¹³C-NMR (CD₂Cl₂, 125.8 MHz, -40 °C): $\delta = 22.88, 22.89, 22.97, 23.0,$ 23.1, 23.2, 24.2, 24.5 (CH₃), 45.9, 45.96, 46.0, 46.1 (CH₃CHCH₃), 126.7, 126.9, 127.7, 128.0 $(o-C_6H_5)$, 128.4, 128.55, 128.59, 128.7 $(m-C_6H_5)$, 129.7, 130.0, 130.10, 130.15 $(p-, i-C_6H_5)$, 171.7, 171.8 ppm (N*C*N). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz, -40 °C): $\delta = -163.3$ ppm.

-- ¹³C-VACP/MAS-NMR: δ = 22.0 (2 C), 23.1 (2 C), 25.4 (3 C), 25.9 (*C*H₃), 45.6, 46.9 (3 C) (CH₃*C*HCH₃), 126.5, 127.3, 128.5 (2 C), 129.3 (4 C), 130.9 (3 C), 131.7 (br.; *C*₆H₅), 171.5–174.1 ppm (N*C*N). -- ¹⁵N-VACP/MAS-NMR: δ = -214.1 (2 N), -212.3, -199.9 ppm. -- ²⁹Si-VACP/MAS-NMR: δ = -161.7 ppm.

$C_{26}H_{38}N_4O_3SSi~(514.76)$	Ber.	C 60.67	H 7.44	N 10.88	S 6.23
	Gef.	C 60.3	H 7.5	N 10.5	S 6.4

Verbindung 59

Zu 39 (500 mg, 1.15 mmol) wurde unter Rühren bei -78 °C in einer Portion Schwefeldioxid (ca. 5 mL) gegeben und das resultierende Gemisch 5 min bei dieser Temperatur gerührt und anschließend innerhalb von 1 h auf 20 °C erwärmt. Zu dem verbliebenen Feststoff wurde Toluol (20 mL) gegeben und die resultierende Suspension wurde filtriert. Das Filtrat wurde im Vakuum auf ein Volumen von 3 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene kristalline Feststoff wurde durch Filtration isoliert und im Vakuum getrocknet. Zu diesem Feststoff wurde unter Rühren bei -78 °C in einer Portion Schwefeldioxid (ca. 5 mL) gegeben und das resultierende Gemisch 5 min bei dieser Temperatur gerührt und anschließend innerhalb von 1 h auf 20 °C erwärmt. Zu dem verbliebenen Rückstand wurde Toluol (20 mL) gegeben und die resultierende Suspension wurde filtriert. Das Filtrat wurde im Vakuum auf ein Volumen von 2 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 3 h, 0.01 mbar). Ausbeute: 349 mg (620 μ mol, 54%) eines farblosen kristallinen Feststoffs. Smp. >155 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz, -60 °C; Daten für zwei Isomere, *trans/cis*-Verhältnis 1:3.17): $\delta = 0.84$ (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H; CH₃, cis), 0.89 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H; CH₃, *trans*), 0.93 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H; CH₃, *trans*), 0.959 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H; CH₃, trans), 0.964 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 3 H; CH₃, cis), 1.00 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 3 H; CH₃, *trans*), 1.09 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H; CH₃, *cis*), 1.10 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H; CH₃, *cis*), 1.11 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H; CH₃, cis), 1.12 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H; CH₃, cis), 1.12 $(d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.16 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{3}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{3}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{3}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{3}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{3}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.18 (d, {}^{3}J({}^{1}H, {}^{3}H) = 6.8 \text{ Hz}, 3$ $(d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, cis), 1.21 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 3 \text{ H}; CH_{3}, trans), 1.22 (d, 3)$ ${}^{3}J({}^{1}\mathrm{H},{}^{1}\mathrm{H}) = 6.8 \text{ Hz}, 3 \text{ H}; \text{ C}H_{3}, \text{ cis}), 1.25 \text{ (d, } {}^{3}J({}^{1}\mathrm{H},{}^{1}\mathrm{H}) = 6.8 \text{ Hz}, 3 \text{ H}; \text{ C}H_{3}, \text{ trans}), 3.28 \text{ (sept, I)} = 0.8 \text{ Hz}, 100 \text{$ ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 1 H; CH₃CHCH₃, cis), 3.28 (sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 1 H; CH₃CHCH₃,

trans), 3.36 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃, *cis*), 3.40 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 1 H; CH₃CHCH₃, trans), 3.41 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 1 H; CH₃CHCH₃, trans), 3.64 (sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 1 H; CH₃CHCH₃, cis), 3.67 (sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 1 H; CH₃CHCH₃, *trans*), 7.17–7.54 ppm (m, 10 H; C₆H₅, *cis* und *trans*). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz, -60 °C; Daten für zwei Isomere, trans/cis-Verhältnis 1:3.17): $\delta = 22.2$ (trans), 22.29 (cis), 22.32 (trans), 22.4 (cis), 22.6 (1 C; cis; 1 C; trans), 22.7 (cis), 22.8 (trans), 23.2 (trans), 23.6 (cis), 23.7 (cis), 23.8 (cis), 23.9 (trans), 24.3 (cis), 24.4 (trans), 24.5 (trans) (CH₃), 44.7 (trans), 45.2 (cis), 45.5 (cis), 45.7 (trans), 46.1 (cis), 46.2 (trans), 46.3 (trans), 46.4 (cis) (CH₃CHCH₃), 126.29 (cis), 126.34 (trans), 126.45 (cis), 126.49 (trans), 127.1 (cis), 127.3 (trans), 127.5 (trans), 127.7 (cis) (o-C₆H₅), 128.3 (cis), 128.37 (2 C, trans), 128.41 (cis), 128.49 (trans), 128.51 (trans), 128.6 (cis), 128.7 (cis), 128.8 (cis), 129.7 (trans), 129.87 (trans), 129.88 (cis), 129.94 (trans), 129.96 (cis), 130.04 (trans), 130.05 (cis) (m-, p-, i-C₆H₅), 170.6 (cis), 171.37 (cis), 171.39 (trans), 171.44 ppm (trans) (NCN). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz, -60 °C; Daten für zwei Isomere, trans/cis-Verhältnis 1:3.17): $\delta = -149.5$ (cis), -140.5 (trans), -140.4 ppm (trans). — ¹³C-VACP/MAS-NMR: Wegen vieler Signalüberlagerungen war eine eindeutige Zuordnung der ¹³C-Resonanzsignale nicht möglich, weshalb auf deren Angabe an dieser Stelle bewusst verzichtet wird. — ¹⁵N-VACP/MAS-NMR (Daten für zwei Isomere, trans/cis-Verhältnis 1:10.2; nach Kristallisation bei 20 °C): $\delta = -243.2$ (trans), -239.2 (cis), -236.8 (cis), -234.4 (trans), -215.8 (cis), -209.4 (trans), -207.0 (cis), -198.8 ppm (trans). — ²⁹Si-VACP/MAS-NMR (Daten für zwei Isomere, trans/cis-Verhältnis 1:10.2, nach Kristallisation bei 20 °C): $\delta = -144.1$ (*cis*), -135.3 ppm (*trans*).

$C_{26}H_{38}N_4O_4S_2Si~(562.83)$	Ber.	C 55.48	H 6.81	N 9.95	S 11.39
	Gef.	C 55.5	H 7.0	N 10.1	S 11.0

Verbindung 60

Zu einer Mischung von **39** (407 mg, 936 μ mol) und 1,2-Dicarba-*closo*-dodecaboran (135 mg, 936 μ mol) wurde unter Rühren bei 20 °C in einer Portion THF (5 mL) gegeben und das resultierende Gemisch 30 min bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und zu dem verbliebenen Rückstand Toluol (1.5 mL) gegeben. Die resultierende Mischung wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf -20 °C abgekühlt und 14 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 3 h, 0.01 mbar). Ausbeute: 528 mg (912 μ mol, 97%) eines farblosen kristallinen Feststoffs. Smp. >155 °C (Zers.).

-- ${}^{1}H{}^{11}B$ -NMR ([D₈]THF, 500.1 MHz, -80 °C): $\delta = 0.84$ (br. d, ${}^{3}J{}^{(1}H{}^{,1}H{}) = 6.8$ Hz, 3 H), 0.88 (br. d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.06 (br. d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.07 (br. d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 3 H), 1.12 (br. d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 3 H), 1.18 (br. d, ${}^{3}J({}^{1}H,{}^{1}H) =$ 6.8 Hz, 3 H), 1.27 (br. d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H), 1.37 (br. d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 3 H) (CH_3) , 1.80–2.76 (m, 10 H; BH), 3.69 (br. sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 1 H), 3.74 (br. sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8, 1 \text{ H}) (CH_{3}CHCH_{3}), 3.89 (br. s, 1 H, BCH), 4.00 (br. sept, {}^{3}J({}^{1}H,{}^{1}H) = 6.8 \text{ Hz},$ 1 H; CH₃CHCH₃), 4.29 (s, ²⁹Si-Satelliten, ¹ $J(^{1}H,^{29}Si) = 262.3$ Hz, 1 H; SiH), 4.40 (br. sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8 \text{ Hz}, 1 \text{ H}; \text{CH}_{3}\text{C}H\text{CH}_{3}), 7.18-7.22 \text{ (m, 1 H)}, 7.32-7.41 \text{ (m, 2 H)}, 7.42-7.51 \text{ (br.)}$ m, 2 H), 7.52–7.60 (m, 4 H), 7.62–7.67 ppm (m, 1 H) (C₆H₅). — ¹¹B-NMR ([D₈]THF, 160.5 MHz, -80 °C): $\delta = -14.7$ (br. 4 B), -10.6 (3 B), -4.3 (3 B). - ¹³C-NMR ([D₈]THF, 125.8 MHz, -80 °C): $\delta = 22.3$, 22.7, 24.2, 24.3, 24.5, 25.79, 25.28, 26.3 (br.; CH₃), 47.2, 47.5, 47.7, 48.1 (br; CH₃CHCH₃), 63.2 (br.; BCH), 84.7-84.8 (m; SiC), 127.3, 127.8, 128.8, 129.1 (2 C), 129.7, 130.0, 130.1, 130.6, 130.9, 134.3 (2 C) (br.; C₆H₅), 168.2, 169.3 ppm (NCN). — ²⁹Si-NMR ([D₈]THF, 99.4 MHz, -80 °C): $\delta = -167.7$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 23.4$ (2 C), 24.1, 24.8 (3 C), 26.4, 28.4 (CH₃), 46.6, 47.2 (2 C), 49.0 (CH₃CHCH₃), 84.4 $(br., 2 C; C_2B_{10}H), 126.9-128.9 (6 C), 129.2, 129.6, 130.3, 130.9, 132.7, 135.2 (C_6H_5), 168.9$ ppm (br., 2 C; N*C*N). — ¹⁵N-VACP/MAS-NMR: $\delta = -212.0, -209.4, -197.4, -182.2$ ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -166.0$ ppm.

$C_{28}H_{50}B_{10}N_4Si~(868.85)$	Ber.	C 58.09	H 8.71	N 9.68
	Gef.	C 57.8	H 8.7	N 9.7

Verbindung 61

Eine Mischung von **60** (316 mg, 555 μ mol) und Acetonitril (5 mL) wurde 5 min bei 80 °C gerührt, langsam auf -20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 3 h, 0.01 mbar). Ausbeute: 217 mg (455 μ mol, 82%) eines farblosen kristallinen Feststoffs. Smp. >175 °C (Zers.). — ¹H-NMR ([D₈]Toluol, -40 °C): $\delta = 1.04$ (br. d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ nicht aufgelöst, 6 H), 1.14 (d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8$ Hz, 3 H), 1.15 (d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8$ Hz, 6 H), 1.21 (d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8$ Hz, 3 H), 1.22 (br. d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ nicht aufgelöst, 3 H), 1.32 (d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8$ Hz, 3 H) (CH₃), 1.86 (δ_{A}), 1.92 (δ_{B}), 5.00 (δ_{X} ; ²⁹Si-Satelliten, ${}^{1}J({}^{1}\text{H},{}^{2}\text{Si}) = 231.8$ Hz; ABX-system, ²J_{AB} = 15.3 Hz, ³J_{AX} nicht aufgelöst, ³J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 Hz, 1 H), 3.77 (sept, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8$ Hz, 1 H) (CH₃CHCH₃), 6.98–7.26 ppm (m, 10 H; C₆H₅; partiell durch das Lösungsmittelsignal überlagert). — ¹³C-NMR ([D₈]Toluol,
-40 °C): $\delta = 15.3$ (CH₂CN), 22.7, 23.1 (br.), 23.3, 23.6, 24.9 (br.), 25.0 (br., 2 C), 25.1 (CH₃), 46.86 (br., 2 C), 46.91 (br., 2 C) (CH₃CHCH₃), 125.7, 126.6, 128.2, 128.3, 128.7, 129.1, 129.2, 129.3, 129.4, 129.9, 130.8, 132.3 (C_6H_5), 166.3, 166.5 ppm (NCN); ¹³C-Resonanzsignal des CH₂CN-Liganden nicht detektiert. — ²⁹Si-NMR ([D₈]Toluol, -40 °C): $\delta = -176.2$ ppm. -¹³C-VACP/MAS-NMR: δ = 17.4 (*C*H₂CN), 23.4 (2 C), 24.2, 24.7, 25.0 (2 C), 25.4, 26.0 (CH₃), 46.2 (3 C), 46.8 (CH₃CHCH₃), 126.2, 126.9, 127.7, 127.9, 129.3 (2 C), 129.7 (2 C), 130.7, 131.1, 131.6, 132.5 (C_6H_5), 166.4, 167.8 ppm (br.; NCN); ¹³C-Resonanzsignal des CH₂CN-Liganden nicht detektiert. — ¹⁵N-VACP/MAS-NMR: $\delta = -217.3, -203.9, -190.0,$ -188.5 (*NCN*), -133.3 (CH₂C*N*) ppm. - ²⁹Si-VACP/MAS-NMR: $\delta = -169.0$ ppm. $C_{28}H_{41}N_5Si$ (475.75) C 70.69 H 8.69 Ber. N 14.72 C 70.5 H 8.6Gef. N 14.9

Verbindung 62

Zu einer Mischung von **39** (483 mg, 1.11 mmol) und 1,7-Dicarba-*closo*-dodecaboran (80 mg, 555 μ mol) wurde unter Rühren bei 20 °C in einer Portion THF (7 mL) gegeben und das resultierende Gemisch 2 d unter Rückfluss erhitzt. Das Reaktionsgemisch wurde auf 20 °C abgekühlt und im Vakuum vom Lösungsmittel befreit. Zu dem verbliebenen Rückstand wurde n-Pentan (10 mL) gegeben, der entstandene Feststoff durch Filtration isoliert und im Vakuum getrocknet (20 °C, 10 h, 0.01 mbar). Ausbeute: 388 mg (383 μ mol, 69%) eines farblosen amorphen Feststoffs. — ¹H{¹¹B}-NMR ([D₈]THF, 500.1 MHz): $\delta = 1.11$ (br. d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.12 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}), 1.15 \text{ (br. d, } {}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8 \text{ Hz}, 1$ 6.8 Hz, 24 H) (CH₃), 2.01–2.38 (br. m, 4 H), 2.45–2.83 (br. m, 4 H), 2.91 (br. m, 1 H), 3.04 (br. m, 1 H) (BH), 3.29–3.94 (br. m, 8 H; CH₃CHCH₃), 4.58 (s, 29 Si-Satelliten, ${}^{1}J({}^{1}H, {}^{29}Si) =$ 258.7 Hz, 1 H; SiH), 4.66 (s, $^{29}\text{Si-Satelliten},\ ^1J(^1\text{H}, ^{29}\text{Si})$ = 252.6 Hz, 1 H; SiH), 7.25–7.36 (m, 10 H), 7.37–7.48 (m, 10 H) (C₆ H_5). — ¹¹B-NMR ([D₈]THF, 160.4 MHz): $\delta = -16.7$ (br. 1 B), -13.2 (2 B), -10.5 (2 B), -9.6 (3 B), -6.8 (2 B). - ¹³C-NMR ([D₈]THF, 125.8 MHz): $\delta =$ 22.9, 24.0, 24.6, 24.8, 26.0 (CH₃; auf die Angabe der Intensitäten wurde wegen teilweiser Überlagerung mit dem Lösungsmittelsignal bewusst verzichtet), 48.8 (3 C), 48.9, 49.4 (5 C) (br.; CH₃CHCH₃), 84.7-84.8 (m, 2 C; BC), 128.3 (2 C), 128.5-128.7 (8 C), 128.8 (2 C), 128.9 (5 C), 129.0 (2 C), 129.2, 129.3 (3 C), 129.7 (br.; C₆H₅), 163.6 (2 C), 165.0 (2 C) ppm (NCN). — ²⁹Si-NMR ([D₈]THF, 99.4 MHz): Die ²⁹Si-Resonanzsignale wurden aufgrund ihrer Breite nicht detektiert. Die ¹H-, ¹¹B- und ¹³C-NMR-Spektren wiesen Verunreinigungen auf.

Verbindung $66 \cdot 8$

Zu einer Mischung von **39** (500 mg, 1.15 mmol) und Berylliumdichlorid (92 mg, 1.15 mmol) wurde unter Rühren bei 20 °C in einer Portion Benzol (20 mL) gegeben und das resultierende Gemisch 20 min bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt, zu dem verbliebenen Rückstand Toluol (2 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 473 mg (477 μ mol, 83%) eines farblosen kristallinen Feststoffs. — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 1.33$ (d, ³J(¹H, ¹H) = 6.8 Hz, 6 H; CH₃, 8), 1.45 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH₃, 8), 1.48 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH₃, 8), 1.49 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 24 H; CH₃, 66), 1.66 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH_3 , 8), 3.48 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 4 H; CH_3CHCH_3 , 66), 3.61 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH₃C*H*CH₃, **8**), 4.30 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH₃C*H*CH₃, **8**), 7.14–7.20, 7.37–7.44 ppm (m, 20 H; C₆ H_5 , **8**, **66**). — ⁹Be-NMR (C₆D₆, 70.3 MHz): δ = 10 ppm (br.). — ¹³C-NMR $(C_6D_6, 125.8 \text{ MHz}): \delta = 23.0 \ (2 \text{ C}), \ 23.7 \ (2 \text{ C}), \ 23.8 \ (2 \text{ C}), \ 24.1 \ (2 \text{ C}) \ (CH_3, 8), \ 24.2 \ (8 \text{ C}); \ (2 \text{ C}), \ (2 \text{$ CH₃, **66**), 47.2 (2 C), 47.3 (2 C) (CH₃CHCH₃, **8**), 50.6 (4 C; CH₃CHCH₃, **66**), 125.1, 126.6, 127.5, 130.0, 129.88, 129.89, 131.2, 134.8 (C_6H_5 , **8**, **66**; wegen Überlagerungen der aromatischen ¹³C-Resonanzsignale mit dem Lösungsmittelsignal war eine Zuordnung und die Angabe von Signalintensitäten nicht möglich.), 168.3 (2 C; NCN, 8), 176.1 ppm (2 C; NCN, 66). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -170.4$ ppm. — ⁹Be-HPDec/MAS-NMR: $\delta =$ -10.1 ppm (Zentrum eines asymmetrischen Multipletts.). — ¹³C-VACP/MAS-NMR (Daten für 8 und 66): $\delta = 23.4$ (2 C), 23.5 (6 C), 24.6 (8 C) (CH₃), 48.2 (4 C), 50.6 (4 C) (CH₃CHCH₃), 123.8–126.5 (4 C), 127.2–132.9 (18 C), 135.2–136.8 (2 C) (C₆H₅), 168.1 (br., 2 C; NCN, 8), 174.3 ppm (br., 2 C; NCN, 66). — ¹⁵N-VACP/MAS-NMR (Daten für 8 und **66**): $\delta = -211.9$ (4 N), -195.8 (2 N), -189.3 (2 N) ppm. — ²⁹Si-VACP/MAS-NMR: $\delta =$ -172.6 ppm. Aufgrund der hohen Toxizität von Berylliumverbindungen wurde für 66.8 keine Elementaranalyse durchgeführt.

Verbindung 68

Zu einer Lösung von **39** (300 mg, 690 μ mol) in Toluol (15 mL) wurde unter Rühren bei 20 °C innerhalb von 5 min eine Lösung von Iod (175 mg, 689 μ mol) in Toluol (10 mL) gegeben und das resultierende Gemisch 10 min bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration entfernt und das Filtrat im Vakuum auf ein Volumen von

2 mL eingeengt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mbar). Ausbeute: 423 mg (614 µmol, 89%) eines farblosen kristallinen Feststoffs. Smp. >145 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 1.39$ (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 24 H; CH₃), 3.96–4.58 (m, 4 H; CH₃CHCH₃), 7.14–7.27, 7.36–7.43 ppm (m, 10 H; C₆H₅). — ¹³C-NMR (C₆D₆, 125.8 MHz): $\delta = 24.3$ (8 C; CH₃), 47.0 (4 C; CH₃CHCH₃), 126.7 (4 C; $\sigma C_{6}H_{5}$), 128.5 (4 C; *m*-C₆H₅), 130.5 (2 C; *p*-C₆H₅), 131.1 (2 C; $\dot{\tau} C_{6}H_{5}$), 168.2 ppm (2 C; NCN). — ²⁹Si-NMR (C₆D₆, 99.4 MHz): $\delta = -261.5$ ppm. — ¹³C-VACP/MAS-NMR: $\delta = 21.6$, 22.2, 23.8, 24.4, 24.7 (2 C), 25.8, 28.6 (CH₃), 45.5, 46.1, 48.1 (2 C) (CH₃CHCH₃), 123.8, 124.2, 125.7, 127.6, 130.3 (4 C), 131.6 (3 C), 132.2 (C₆H₅), 168.2 ppm (br., 2 C; NCN). — ¹⁵N-VACP/MAS-NMR: $\delta = -208.7, -205.7, -189.2$ ppm (2 N). — ²⁹Si-VACP/MAS-NMR: $\delta = -255.6$ ppm.

$C_{26}H_{38}I_2N_4Si~(688.51)$	Ber.	C 45.36	H 5.56	N 8.14
	Gef.	C 45.3	H 5.7	N 8.3

Verbindung 69

Zu einer Mischung von 39 (300 mg, 690 µmol) und Diphenyldiselenid (215 mg, 690 µmol) wurde unter Rühren bei 20 °C in einer Portion Toluol (15 mL) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt, zu dem verbliebenen Rückstand n-Pentan (5 mL) gegeben und der enstandene Feststoff durch Filtration isoliert und im Vakuum getrocknet. Zu diesem Feststoff wurde Acetonitril (2 mL) gegeben und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf -20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 471 mg (631 μ mol, 92%) eines gelben kristallinen Feststoffs. Smp. >175 °C (Zers.). - ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.17$ (d, ³J(¹H, ¹H) = 6.8 Hz, 6 H), 1.22 (d, ³J(¹H, ¹H) = 6.8 Hz, 6 H), 1.26 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 6 H), 1.33 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 6 H) (CH₃), 3.48 $(\text{sept}, {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 2 \text{ H}), 3.93 (\text{sept}, {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 2 \text{ H}) (CH_{3}CHCH_{3}), 7.27-7.33$ (m, 2 H; o-C₆ H_5), 7.33–7.38 (m, 6 H; m-, p-SeC₆ H_5), 7.38–7.44 (m, 2 H; o-C₆ H_5), 7.46–7.56 (m, 6 H; *m*- and *p*-C₆H₅), 7.60–7.67 ppm (m, 4 H; σ -SeC₆H₅). — ¹³C-NMR (CD₂Cl₂) 125.8 MHz): $\delta = 23.0$ (2 C), 23.6 (4 C), 23.9 (2 C) (CH₃), 46.9 (2 C), 47.3 (2 C)

(CH₃CHCH₃), 127.1 (br., 2 C), 127.9 (br., 2 C) ($o - C_6H_5$), 128.6 (2 C; $p - \text{Se}C_6H_5$), 128.9 (br., 2 C), 129.0 (br., 2 C) ($m - C_6H_5$), 129.7 (4 C; $m - \text{Se}C_6H_5$), 130.3 (2 C; $i - \text{Se}C_6H_5$), 130.8 (2 C; $p - C_6H_5$), 133.1 (2 C; $i - C_6H_5$), 133.7 (4 C, ⁷⁷Se-Satelliten, ²J(¹³C, ⁷⁷Se) = 10.6 Hz; $o - \text{Se}C_6H_5$), 168.7 ppm (2 C; NCN). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -170.0$ ppm. — ⁷⁷Se-NMR (CD₂Cl₂, 99.4 MHz): $\delta = 21.1$, 23.7 (3 C), 25.9, 26.1, 26.4, 27.0 (CH₃), 45.8, 46.9, 47.5 (2 C) (CH₃CHCH₃), 124.4, 124.9 (2 C), 127.1 (2 C), 128.3 (4 C), 128.9 (2 C), 129.5 (2 C), 130.8 (4 C), 131.7, 132.4, 134.8, 138.5 (3 C), 140.0 (C_6H_5 , Se C_6H_5), 169.5, 171.4 ppm (br.; NCN). — ¹⁵N-VACP/MAS-NMR: $\delta = -200.7$, -198.0, -194.9, -190.6 ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -177.3$ ppm (br.). — ⁷⁷Se-VACP/MAS-NMR: $\delta = 205.2$, 280.9 ppm.

$C_{38}H_{48}N_4Se_2Si$ (746.83)	Ber.	C 61.11	H 6.48	N 7.50
	Gef.	C 60.7	H 6.5	N 7.6

Verbindung $70 \cdot 0.5 \text{n-} C_6 H_{14}$

Zu einer Lösung von 39 (500 mg, 1.15 mmol) in Toluol (20 mL) wurde unter Rühren bei 20 °C in einer Portion Hexafluorobenzol (214 mg, 1.15 mmol) gegeben und das resultierende Gemisch 1 h bei dieser Temperatur gerührt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt und zu dem verbliebenen Rückstand wurde n-Hexan (2 mL) gegeben. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf -20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 667 mg (1.00 mmol, 87%) eines farblosen kristallinen Feststoffs. Smp. >180 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 1.00$ (t. ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 7.0$ Hz, 3 H; $CH_{3}(CH_{2})_{4}CH_{3}$), 1.24 (d. ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) =$ 6.8 Hz, 12 H), 1.26 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 12 H) (CH₃CHCH₃), 1.31–1.42 (m, 4 H; $CH_3(CH_2)_4CH_3$, 3.63 (br. sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 4 H; CH_3CHCH_3), 7.17–7.21 and 7.44–7.49 ppm (m, 10 H; C₆H₅). — ¹³C-NMR (C₆D₆, 125.8 MHz): δ = 14.3 (1 C; $CH_3(CH_2)_4CH_3$, 23.0 (1 C; $CH_3CH_2(CH_2)_2CH_2CH_3$), 23.7 (4 C), 24.2 (4 C) (CH_3CHCH_3), 31.9 (1 C; CH₃CH₂(CH₂)₂CH₂CH₃), 46.4 (4 C; CH₃CHCH₃), 122.6–123.8 (m, 2 C; C₆F₅), 128.1 (m), 138.1–139.3 (m, 2 C), 140.7–141.2 (m) (C_6F_5), 169.4 ppm (2 C; NCN). — ²⁹Si-NMR $(C_6D_6, 99.4 \text{ MHz}): \delta = -160.5 \text{ ppm} (d, {}^{1}J({}^{19}\text{F}, {}^{29}\text{Si}) = 250.0 \text{ Hz}). - {}^{13}\text{C-VACP/MAS-NMR}:$ $\delta = 14.8, 22.2, 22.9 (2 \text{ C}), 24.4, 24.7 (3 \text{ C}), 25.8 (2 \text{ C}), 31.5 (CH_3(CH_2)_4CH_3, CH_3CHCH_3),$ 44.9, 46.1, 46.6 (2 C) (CH₃CHCH₃), 124.5, 126.8, 128.2 (4 C), 128.9, 129.6, 130.4 (2 C), 132.1, 132.5 (C_6H_5), 134.0–143.2, 145.9–155.0 (6 C; C_6F_5), 169.1 ppm (br., 2 C; N*C*N). — ¹⁵N-VACP/MAS-NMR: $\delta = -222.5$, -211.4, -199.3, -188.8 ppm. — ²⁹Si-VACP/MAS-NMR: $\delta = -160.0$ ppm (d, ¹ $J(^{19}F,^{29}Si) = 245.4$ Hz). C₃₅H₄₅F₆N₄Si (663.85) Ber. C 63.33 H 6.83 N 8.44

Gef. C 63.1 H 7.2 N 8.6

9 Literaturverzeichnis und Anmerkungen

- Hollemann Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage, Walter de Gruyter, Berlin, 2007, S. 62.
- Hollemann Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage, Walter de Gruyter, Berlin, 2007, S. 877.
- [3] Ausgewählte Übersichtsartikel über stabile Silicium(II)-Verbindungen: a) M. Haaf, T. A. Schmedake, R. West, Acc. Chem. Res. 2000, 33, 704–714; b) B. Gerhus, M. F. Lappert, J. Organomet. Chem. 2001, 617–618, 209–223; c) S. Nagendran, H. W. Roesky, Organometallics 2008, 27, 457–492; d) Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev. 2009, 109, 3479–3511; e) M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354–396; f) S. Yao, Y. Xiong, M. Driess, Organometallics 2011, 30, 1748–1767; g) S. S. Sen, S. Khan, P. P. Samuel, H. W. Roesky, Chem. Sci. 2012, 3, 659–682; h) R. S. Ghadwal, R. Azhakar, H. W. Roesky, Acc. Chem. Res. 2013, 46, 444–456; i) B. Blom, M. Stoelzel, M. Driess, M. Chem. Eur. J. 2013, 19, 40–62.
- [4]Ausgewählte Publikationen über stabile dikoordinierte Silicium(II)-Verbindungen: a) M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Beljakov, H. P. Verne, A. Haaland, M. Wagner, N. Metzler, J. Am. Chem. Soc. 1994, 116, 2691-2692; b) B. Gehrhus, M. F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Chem. Soc. Chem. Commun. **1995**, 1931–1932; c) B. Gehrhus, P. B. Hitchcock, M. F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Organomet. Chem. 1996, 521, 211–220; d) R. West, M. Denk, Pure Appl. Chem. 1996, 68, 785-788; e) J. Heinicke, A. Oprea, M. K. Kindermann, T. Karpati, L. Nyulászi, T. Veszprémi, Chem. Eur. J. 1998, 4, 541–545; f) M. Haaf, A. Schmiedl, T. A. Schmedake, D. R. Powell, A. J. Millevolte, M. Denk, R. West, J. Am. Chem. Soc. 1998, 120, 12714–12719; g) M. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1999, 121, 9722–9723; h) M. Driess, S. Yao, M. Brym, C. van Wüllen, D. Lentz, J. Am. Chem. Soc. 2006, 128, 9628-9629; i) P. Zark, A. Schäfer, A. Mitra, D. Haase, W. Saak, R. West, T. Müller, J. Organomet. Chem. 2010, 695, 398–408; j) Y. Xiong, S. Yao, M. Driess, Chem. Eur. J. 2012, 18, 3316– 3320; k) A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldrige, J. Am. Chem. Soc. 2012, 134, 6500-6503; l) B. D. Rekken, T. M. Brown, J. C. Fettinger, H. M. Tuononen, P. P. Power, J. Am. Chem. Soc. 2012, 134, 6504-6507.

- [5]Ausgewählte Publikationen über stabile höherkoordinierte Silicium(II)-Verbindungen: a) P. Jutzi, D. Kanne, C. Krüger, Angew. Chem. 1986, 98, 163–164; Angew. Chem. Int. Ed. Engl. 1986, 25, 164; b) H. H. Karsch, U. Keller, S. Gamper, G. Müller, Angew. Chem. 1990, 102, 297–298; Angew. Chem. Int. Ed. Engl. 1990, 29, 295–296; c) P. Jutzi, D. Eikenberg, A. Möhrke, B. Neumann, H.-G. Stammler, Organometallics 1996, 15, 753–759; d) P. Jutzi, A. Mix, B. Rummel, W. W. Schoeller, B. Neumann, H. G. Stammler, Science 2004, 305, 849–851; e) S. Yao, M. Brym, C. van Wüllen, M. Driess, Angew. Chem. 2007, 119, 4237-4240; Angew. Chem. Int. Ed. 2007, 46, 4159-4162; f) P. Jutzi, K. Leszczyńska, B. Neumann, W. W. Schoeller, H.-G. Stammler, Angew. Chem. 2009, 121, 2634–2637; Angew. Chem. Int. Ed. 2009, 48, 2596–2599; g) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. 2009, 121, 5793–5796; Angew. Chem. Int. Ed. 2009, 48, 5683–5686; h) A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. 2009, 121, 5797–5800; Angew. Chem. Int. Ed. 2009, 48, 5687–5690; i) Y. Xiong, S. Yao, M. Driess, J. Am. Chem. Soc. 2009, 131, 7562–7563; j) R. S. Ghadwal, H. W. Roesky, S. Merkel, D. Stalke, Chem. Eur. J. 2010, 16, 85–88; k) Y. Gao, J. Zhang, H. Hu, C. Cui, Organometallics 2010, 29, 3063-3065; l) J. Li, S. Merkel, J. Henn, K. Meindl, A. Döring, H. W. Roesky, R. S. Ghadwal, D. Stalke, Inorg. Chem. 2010, 49, 775–777; m) A. Meltzer, S. Inoue, C. Präsang, M. Driess, J. Am. Chem. Soc. 2010, 132, 3038-3046; n) A. C. Filippou, O. Chernov, B. Blom, K. W. Stumpf, G. Schnakenburg, Chem. Eur. J. 2010, 16, 2866–2872; o) R. Rodriguez, D. Gau, Y. Contie, T. Kato, N. Saffon-Merceron, A. Baceiredo, Angew. Chem. 2011, 123, 11694–11697; Angew. Chem. Int. Ed. 2011, 50, 11492-11495; p) W. Wang, S. Inoue, E. Irran, M. Driess, Angew. Chem. 2012, 124, 3751-3754; Angew. Chem. Int. Ed. 2012, 51, 3691–3694; q) K. Leszczyńska, K. Abersfelder, A. Mix, B. Neumann, H.-G. Stammler, M. J. Cowley, P. Jutzi, D. Scheschkewitz, Angew. Chem. 2012, 124, 6891-6895; Angew. Chem. Int. Ed. 2012, 51, 6785-6788; r) F. M. Mück, K. Junold, J. A. Baus, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2013, 5821–5825.
- [6] Ausgewählte Publikationen über stabile höherkoordinierte Silicium(II)-Verbindungen mit Amidinato-Liganden: a) C.-W. So, H. W. Roesky, J. Magull, R. B. Oswald, Angew. Chem. 2006, 118, 4052–4054; Angew. Chem. Int. Ed. 2006, 45, 3948–3950;
 b) C.-W. So, H. W. Roesky, P. M. Gurubasavaraj, R. B. Oswald, M. T. Gamer, P. G. Jones, S. Blaurock, J. Am. Chem. Soc. 2007, 129, 12049–12054; c) W. Yang, H. Fu, H. Wang, M. Chen, Y. Ding, H. W. Roesky, A. Jana, Inorg. Chem. 2009, 48,

5058-5060; d) S. S. Sen, H. W. Roesky, D. Stern, J. Henn, D. Stalke, J. Am. Chem. Soc. 2010, 132, 1123-1126; e) G. Tavčar, S. S. Sen, R. Azhakar, A. Thorn, H. W. Roesky, Inorg. Chem. 2010, 49, 10199-10202; f) S. S. Sen, J. Hey, R. Herbst-Irmer, H. W. Roesky, D. Stalke, J. Am. Chem. Soc. 2011, 133, 12311-12316; g) A. Jana, D. Leusser, I. Objartel, H. W. Roesky, D. Stalke, Dalton Trans. 2011, 40, 5458-5463; h) R. Azhakar, S. P. Sarish, H. W. Roesky, J. Hey, D. Stalke, Inorg. Chem. 2011, 50, 5039–5043; i) R. Azhakar, R. S. Ghadwal, H. W. Roesky, H. Wolf, D. Stalke, J. Am. Chem. Soc. 2012, 134, 2423-2428; j) R. Azhakar, R. S. Ghadwal, H. W. Roesky, H. Wolf, D. Stalke, Chem. Commun. 2012, 48, 4561-4563; k) R. Azhakar, H. W. Roesky, J. J. Holstein, B. Dittrich, Dalton Trans. 2012, 41, 12096–12100; l) P. P. Samuel, R. Azhakar, R. S. Ghadwal, S. S. Sen, H. W. Roesky, M. Granitzka, J. Matussek, R. Herbst-Irmer, D. Stalke, Inorg. Chem. 2012, 51, Azhakar, K. Pröpper, B. Dittrich, H. W. Roesky, 11049–11054; m) R. Organometallics 2012, 31, 7586–7590; n) K. Junold, J. A. Baus, C. Burschka, R. Tacke, Angew. Chem. 2012, 124, 7126–7129; Angew. Chem. Int. Ed. 2012, 51, 7020-7023; o) R. Azhakar, R. S. Ghadwal, H. W. Roesky, R. A. Mata, H. Wolf, R. Herbst-Irmer, D. Stalke, Chem. Eur. J. 2013, 19, 3715-3720; p) R. Azhakar, H. W. Roesky, H. Wolf, D. Stalke, Chem. Commun. 2013, 49, 1841–1843; q) B. Blom, S. Enthaler, S. Inoue, E. Irran, M. Driess, J. Am. Chem. Soc. 2013, 135, 6703-6713; r) K. Junold, J. A. Baus, C. Burschka, T. Vent-Schmidt, S. Riedel, R. Tacke, Inorg. Chem. 2013, 52, 11593-11599; s) K. Junold, J. A. Baus, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Chem. Eur. J. 2014, akzeptiert; t) G. Tan, B. Blom, D. Gallego, M. Driess, Organometallics 2014, 33, 363-369.

- [7] a) L. Lorey, G. Roewer, Silicon Chem. 2002, 1, 299–308; b) M. Okamoto, Res. Chem. Intermed. 2006, 32, 317–330.
- [8] Ausgewählte Übersichtsartikel über höherkoordinierte Silicium(IV)-Komplexe:
 a) R. R. Holmes, Chem. Rev. 1996, 96, 927–950; b) V. Pestunovich, S. Kirpichenko,
 M. Voronkov in The Chemistry of Organic Silicon Compounds, Vol. 2, Part 2 (Hrsg.:
 Z. Rappoport, Y. Apeloig), Wiley, Chichester, 1998, S. 1447–1537; c) C. Chuit,
 R. J. P. Corriu, C. Reye in Chemistry of Hypervalent Compounds (Ed.: K.-y. Akiba),
 Wiley-VCH, New York, 1999, S. 81–146; d) R. Tacke, M. Pülm, B. Wagner,
 Adv. Organomet. Chem. 1999, 44, 221–273; e) M. A. Brook, Silicon in Organic,
 Organometallic, and Polymer Chemistry, Wiley, New York, 2000, S. 97–114;

f) R. Tacke, O. Seiler in Silicon Chemistry: From the Atom to Extended Systems (Hrsg.: P. Jutzi, U. Schubert), Wiley-VCH, Weinheim, 2003, S. 324–337; g) D. Kost,
I. Kalikhman, Adv. Organomet. Chem. 2004, 50, 1–106; h) M. G. Voronkov,
O. M. Trofimova, Y. I. Bolgova, N. F. Chernov, Russ. Chem. Rev. 2007, 76, 825–845;
i) D. Kost, I. Kalikhman, Acc. Chem. Res. 2009, 42, 303–314; j) E. P. A. Couzijn,
J. C. Slootweg, A. W. Ehlers, K. Lammertsma, Z. Anorg. Allg. Chem. 2009, 635, 1273–1278; k) W. Levason, G. Reid, W. Zhang, Coord. Chem. Rev. 2011, 255, 1319–1341.

[9] Ausgewählte Publikationen anderer Arbeitsgruppen über höherkoordinierte Silicium(IV)-Komplexe: a) W. Dilthey, Chem. Ber. 1903. 36. 923-930: b) H. H. Karsch, B. Deubelly, U. Keller, O. Steigelmann, J. Lachmann, G. Müller, Chem. Ber. 1996, 129, 671-676; c) I. Kalikhman, B. Gostevskii, O. Girshberg, A. Sivaramakrishna, N. Kocher, D. Stalke, D. Kost, J. Organomet. Chem. 2003, 686, 202–214; d) R. S. Ghadwal, S. S. Sen, H. W. Roesky, G. Tavcar, S. Merkel, D. Stalke, Organometallics 2009, 28, 6374-6377; e) S. Yakubovich, I. Kalikhman, D. Kost, Dalton Trans. 2010, 39, 9241–9244; f) P. Bombicz, I. Kovács, L. Nyulászi, D. Szieberth, P. Terleczky, Organometallics 2010, 29, 1100-1106; g) E. Kertsnus-Banchik, B. Gostevskii, M. Botoshansky, I. Kalikhman, D. Kost, Organometallics 2010, 29, 5435–5445; h) R. S. Ghadwal, S. S. Sen, H. W. Roesky, M. Granitzka, D. Kratzert, S. Merkel, D. Stalke, Angew. Chem. 2010, 122, 4044-4047; Angew. Chem. Int. Ed. 2010, 49, 3952–3955; i) D. Schöne, D. Gerlach, C. Wiltzsch, E. Brendler, T. Heine, E. Kroke, J. Wagler, Eur. J. Inorg. Chem. 2010, 461-467; j) A. R. Bassindale, M. Sohail, P. G. Taylor, A. A. Korlyukov, D. E. Arkhipov, Chem. Commun. 2010, 46, 3274–3276; k) R. S. Ghadwal, K. Pröpper, B. Dittrich, P. G. Jones, H. W. Roesky, Inorg. Chem. 2011, 50, 358-364; l) S. Yakubovich, B. Gostevskii, I. Kalikhman, M. Botoshansky, L. E. Gusel'nikov, V. A. Pestunovich, D. Kost, Organometallics 2011, 30, 405–413; m) S. Muhammad, A. R. Bassindale, P. G. Taylor, L. Male, S. J. Coles, M. B. Hursthouse, Organometallics 2011, 30, 564-571; n) R. S. Ghadwal, K. Pröpper, B. Dittrich, P. G. Jones, H. W. Roesky, Inorg. Chem. 2011, 50, 358–364; o) D. Schwarz, E. Brendler, E. Kroke, J. Wagler, Z. Anorg. Allg. Chem. 2012, 638, 1768–1775; p) N. A. Kalashnikova, S. Y. Bylikin, A. A. Korlyukov, A. G. Shipov, Y. I. Baukov, P. G. Taylor, A. R. Bassindale, Dalton Trans. 2012, 41, 12681–12682; q) A. A. Nikolin, E. P. Kramarova, A. G. Shipov, Y. I. Baukov, A. A. Korlyukov, D. E. Arkhipov, A. Bowden,

S. Y. Bylikin, A. R. Bassindale, P. G. Taylor, Organometallics 2012, 31, 4988–4997;
r) M. Sohail, A. R. Bassindale, P. G. Taylor, A. A. Korlyukov, D. E. Arkhipov,
L. Male, S. J. Coles, M. B. Hursthouse, Organometallics 2013, 32, 1721–1731.

[10]Ausgewählte Publikationen Arbeitsgruppe über höherkoordinierte unserer Silicium(IV)-Komplexe: a) R. Willeke, R. Tacke, Z. Anorg. Allg. Chem. 2001, 627, 1537–1541; b) R. Tacke, M. Mallak, R. Willeke, Angew. Chem. 2001, 113, 2401–2403; Angew. Chem. Int. Ed. 2001, 40, 2339–2341; c) O. Seiler, C. Burschka, M. Penka, R. Tacke, Silicon Chem. 2002, 1, 355-365; d) R. Bertermann, A. Biller, M. Kaupp, M. Penka, O. Seiler, R. Tacke, Organometallics 2003, 22, 4104-4110; e) O. Seiler, M. Büttner, M. Penka, R. Tacke, Organometallics 2005, 24, 6059–6062; f) S. Metz, C. Burschka, D. Platte, R. Tacke, Angew. Chem. 2007, 119, 7136–7139; Angew. Chem. Int. Ed. 2007, 46, 7006-7009; g) S. Metz, C. Burschka, R. Tacke, Organometallics 2008, 27, 6032–6034; h) B. Theis, S. Metz, C. Burschka, R. Bertermann, S. Maisch, R. Tacke, Chem. Eur. J. 2009, 15, 7329-7338; i) S. Metz, C. Burschka, R. Tacke, Organometallics 2009, 28, 2311–2317; j) B. Theis, S. Metz, F. Back, C. Burschka, R. Tacke, Z. Anorg. Allg. Chem. 2009, 635, 1306-1312; k) S. Metz, B. Theis, C. Burschka, R. Tacke, Chem. Eur. J. 2010, 16, 6844-6856; 1) S. Cota, M. Beyer, R. Bertermann, C. Burschka, K. Götz, M. Kaupp, R. Tacke, Chem. Eur. J. 2010, 16, 6582–6589; m) K. Junold, C. Burschka R. Bertermann, R. Tacke, Dalton Trans. 2010, 39, 9401-9413; n) K. Junold, C. Burschka, R. Bertermann, R. Tacke, Dalton Trans. 2011, 40, 9844–9857; o) K. Junold, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2012, 189-193; p) C. Kobelt, C. Burschka, R. Bertermann, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Dalton Trans. 2012, 41, 2148-2162; q) B. Theis, J. Weiß, W. P. Lippert, R. Bertermann, C. Burschka, R. Tacke, Chem. Eur. J. 2012, 18, 2202–2206; r) J. Weiß, B. Theis, S. Metz, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Eur. J. Inorg. Chem. 2012, 3216-3228; s) Lit. [6n]; t) K. Junold, J. A. Baus, C. Burschka, D. Auerhammer, R. Tacke, Chem. Eur. J. 2012, 18, 16288–16291; u) J. A. Baus, C. Burschka, R. Bertermann, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Inorg. Chem. 2013, 52, 10664–10676; v) J. Weiß, K. Sinner, J. A. Baus, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2014, 475-483; w) J. Weiß, B. Theis, J. A. Baus, C. Burschka, R. Bertermann, R. Tacke, Z. Anorg. Allg. Chem. 2014, 640, 300-309; x) J. Weiß, J. A. Baus, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2014, 2449–2455; y) K. Junold, M. Nutz, J. A. Baus, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, *Chem. Eur. J.* 2014, DOI: 10.1002/chem.201402483;
z) K. Junold, F. M. Mück, C. Kupper, J. A. Baus, C. Burschka, R. Tacke, *Chem. Eur. J.* 2014, akzeptiert.

- [11] Ausgewählte Publikationen über theoretische Untersuchungen an höherkoordinierten Silicium(IV)-Komplexen: a) C. J. Marsden, Inorg. Chem. 1983, 22, 3177–3178;
 b) J. Hu, L. J. Schaad, B. A. Hess Jr., J. Am. Chem. Soc. 1991, 113, 1463–1464;
 c) I. Alkorta, I. Rozas, J. Elguero, J. Phys. Chem. A 2001, 105, 743–749;
 d) I. S. Ignatyev, F. H. Schäfer, J. Phys. Chem. A 2001, 105, 393–404;
 e) H. Fleischer, Eur. J. Inorg. Chem. 2001, 393–404; f) E. I. Davydova,
 A. Y. Timoshkin, T. N. Sevastianova, V. A. Suvorov, G. Frenking, J. Mol. Struct.
 2006, 767, 103–111; g) S. C. A. H. Pierrefixe, C. F. Guerra, F. M. Bickelhaupt,
 Chem. Eur. J. 2008, 14, 819–828; h) E. P. A. Couzjin, D. W. F. van den Engel,
 J. C. Slootweg, F. J. J. de Kanter, A. W. Ehlers, M. Schakel, K. Lammertsma,
 J. Am. Chem. Soc. 2009, 131, 3741–3751; i) O. Hallóczki, L. Nyulászi,
 Organometallics 2009, 28, 4159–4164; j) Lit. [10p]; k) Lit. [10r]; l) Lit. [10u].
- [12] a) A. A. Korlyukov, K. A. Lyssenko, M. Y. Antipin, *Russ. Chem. Bull., Int. Ed.* **2002**, *51*, 1423–1432; b) N. Kocher, J. Henn, B. Gostevskii, D. Kost, I. Kalikhman,
 B. Engels, D. Stahlke, *J. Am. Chem. Soc.* **2004**, *126*, 5563–5568.
- [13] S. Rendler, M. Oestreich, Synthesis 2005, 1727–1747.
- [14] a) N. L. Oleinick, A. R. Antunez, M. E. Clay, B. D. Rihter, M. E. Kenney, *Photochem. Photobiol.* 1993, 57, 242–247; b) J.-D. Huang, W.-P. Fong, E. Y. M. Chann, M. T. M. Choi, W.-K. Chan, M.-C. Chan, D. K. P. Ng, *Tetrahedron Lett.* 2003, 44, 8029–8032; c) J. D. Miller, E. D. Barton, H. Scull, A. Hsia, J. C. Berlin, T. McCormic, V. Colussi, M. E. Kenney, K. D. Cooper, N. L. Oleinick, *Toxicol. Appl. Pharmacol.* 2007, 224, 290–299.
- [15] N. Sahai, J. A. Tossell, *Inorg. Chem.* **2002**, *41*, 748–756.
- [16] C. Xu, T. H. Baum, Inorg. Chem. 2004, 43, 1568–1573.
- [17] Ausgewählte Publikationen über die Biomineralisation von SiO₂: a) R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, Wiley, New York, 1978, S. 783–784; b) P. B. Kaufman, P. Dayanandan, Y. Takeoka, W. C. Bigelow, J. D. Jones, R. Iler, in: Silicon and Siliceous Structures in Biological Systems (Hrsg.: T. L. Simpson, B. E. Volcani),

Springer-Verlag, New York, **1981**, S. 442–446; c) C. W. Sullivan, in: Silicon Biochemistry (Hrsg.: D. Evered, M. O'Connor), Wiley, Chichester, 1986, S. 70-73; d) S. D. Kinrade, J. W. Del Nin, A. S. Schach, T. A. Sloan, K. L. Wilson, C. T. G. Knight, Science 1999, 285, 1542–1545; e) R. Tacke, C. Burschka, I. Richter, B. Wagner, R. Willeke, J. Am. Chem. Soc. 2000, 122, 8480-8485; f) R. Tacke, A. Steward, J. Becht, C. Burschka, I. Richter, Can. J. Chem. 2000, 78, 1380-1387; g) S. D. Kinrade, R. J. Hamilton, A. S. Schach, C. T. G. Knight, J. Chem. Soc., Dalton Trans. 2001, 961-963; h) Lit. [10c]; i) K. Benner, P. Klüfers, M. Vogt, Angew. Chem. 2003, 115, 1088–1093; Angew. Chem. Int. Ed. 2003, 42, 1058–1062; j) S. D. Kinrade, E. W. Deguns, A.-M. Gillson, C. T. G. Knight, J. Chem. Soc. Dalton Trans. 2003, 3713–3716; k) K. Benner, P. Klüfers, M. Vogt, Angew. Chem. 2003, 115, 1088-1093; Angew. Chem. Int. Ed. 2003, 42, 1058-1062; l) N. Sahai, Geochim. Cosmochim. Acta 2004, 68, 227-237; m) S. D. Kinrade, R. J. Balec, A. S. Schach, J. Wang, C. T. G. Knight, Dalton Trans. 2004, 3241-3243; n) X. Kästele, P. Klüfers, F. Kopp, J. Schuhmacher, M. Vogt, Chem. Eur. J. 2005, 11, 6326-6346.

- Publikationen über strukturell charakterisierte Silicium(IV)-Verbindungen mit 2,4,6-Trimethoxyphenyl-Liganden: a) J. Braddock-Wilking, Y. Levchinsky, N. P. Rath, J. Organomet. Chem. 1999, 588, 51–59; b) J. O. Daiss, M. Penka, C. Burschka, R. Tacke, Organometallics 2004, 23, 4987–4994; c) J. O. Daiss, K. A. Barth, C. Burschka, P. Hey, R. Ilg, K. Klemm, I. Richter, S. A. Wagner, R. Tacke, Organometallics 2004, 23, 5193–5197; d) F. Popp, J. B. Nätscher, J. O. Daiss, C. Burschka, R. Tacke, Organometallics 2007, 26, 6014–6028; e) R. Tacke, F. Popp, B. Müller, B. Theis, C. Burschka, A. Hamacher, M. U. Kassack, D. Schepmann, B. Wünsch, U. Jurva, E. Wellner, ChemMedChem 2008, 3, 152–164; f) D. Troegel, T. Walter, C. Burschka, R. Tacke, Organometallics 2009, 28, 2756–2761; g) R. Tacke, B. Nguyen, C. Burschka, W. P. Lippert, A. Hamacher, C. Urban, M. U. Kassack, Organometallics 2010, 29, 1652–1660; h) N. Laskowski, E.-M. Reis, L. Kötzner, J. A. Baus, C. Burschka, R. Tacke, Organometallics 2013, 32, 3269–3278.
- [19] Ausgewählte Publikationen über höherkoordinierte Silicium(IV)-Komplexe mit Si-P-Wechselwirkungen: a) K. Issleib, H. Reinhold, Z. Anorg. Allg. Chem. 1962, 314, 113–124; b) I. R. Beattie, M. Webster, J. Chem. Soc. 1963, 4285–4287; c) G. Fritz, R. Wiemers, U. Protzer, Z. Anorg. Allg. Chem. 1968, 363, 225–232; d) G. A. Ozin, Chem. Commun. 1969, 104; e) H. E. Blayden, M. Webster, Inorg. Nucl. Chem.

Letters 1970, 6, 703-705; f) H. H. Karsch, R. Richter, E. Witt, J. Organomet. Chem.
1996, 521, 185-190; g) Lit. [8b]; h) H. H. Karsch, B. Deubelly, U. Keller, F. Bienlein,
R. Richter, P. Bissinger, M. Heckel, G. Müller, Chem. Ber. 1996, 129, 759-764;
i) A. Toshimitsu, T. Saeki, K. Tamao, J. Am. Chem. Soc. 2001, 123, 9210-9211;
j) D. Gau, R. Rodriguez, T. Kato, N. Saffon-Merceron, F. P. Cossío, A. Baceiredo, Chem. Eur. J. 2010, 16, 8255-8258.

- [20] Ausgewählte Publikationen zu den Synthesen und Ligandeigenschaften von 2-(Dialkylphosphanyl)imidazolen: a) D. B. Grotjahn, Y. Gong, A. G. DiPasquale, L. N. Zakharov, A. L. Rheingold, Organometallics 2006, 25, 5693-5695; b) Z. Chen, H. W. Schmalle, T. Fox, O. Blacque, H. Berke, J. Organomet. Chem. 2007, 692, 4875-4885; c) D. B. Grotjahn, J. E. Kraus, H. Amouri, M.-N. Rager, A. L. Cooksy, A. J. Arita, S. A. Cortes-Llamas, A. A. Mallari, A. G. DiPasquale, C. E. Moore, L. M. Liable-Sands, J. D. Golen, L. N. Zakharov, A. L. Rheingold, J. Am. Chem. Soc. 2010, 132, 7919-7934.
- [21] Ausgewählte Publikationen über Silylen-Boran-Addukte: a) N. Metzler, M. Denk, Chem. Commun. 1996, 2657–2658; b) Lit [5j]; c) R. Azhakar, G. Tavčar, H. W. Roesky, J. Hey, D. Stalke, Eur. J. Inorg. Chem. 2011, 475–477; d) A. Jana, R. Azhakar, S. Pillai Sarish, P. P. Samuel, H. W. Roesky, C. Schulzke, D. Koley, Eur. J. Inorg. Chem. 2011, 5006–5013; e) Lit. [6g]; f) S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson, E. Rivard, Chem. Commun. 2012, 48, 1308–1310; g) R. Rodriguez, T. Troadec, T. Kato, N. Saffon-Merceron, J.-M. Sotiropoulos, A. Baceiredo, Angew. Chem. 2012, 124, 7270–7273; Angew. Chem. Int. Ed. 2012, 51, 7158–7161; h) S. Inoue, K. Leszczyńska, Angew. Chem. 2012, 124, 8717–8721; Angew. Chem. Int. Ed. 2012, 51, 8589–8593.
- [22] Ausgewählte Übersichtsartikel über Silylen-Übergangsmetall-Komplexe:
 a) P. D. Lickiss, Chem. Soc. Rev. 1992, 271–279; b) R. Waterman, P. G. Hayes,
 T. D. Tilley, Acc. Chem. Res. 2007, 40, 712–719; c) Lit. [3h].
- [23] Ausgewählte Publikationen über Silylen-Gruppe-6-Metall-Komplexe: a) H. Nakatsuji, J. Ushio, T. Yonezawa, J. Organomet. Chem. 1983, 258, C1-C4; b) R. J. P. Corriu, B. P. S. Chauhan, G. F. Lanneau, Organometallics 1995, 14, 1646-1656;
 c) S. H. A. Petri, D. Eikenberg, B. Neumann, H.-G. Stammler, P. Jutzi, Organometallics 1999, 18, 2615-2618; d) K. Ueno, A. Masuko, H. Ogino, Organometallics 1999, 18, 2694-2699; e) T. A. Schmedake, M. Haaf, B. J. Paradise,

J. A. Millevolte, R. D. Powell, R. West, J. Organomet. Chem. 2001, 636, 17–25;
f) M. Hirotsu, T. Nunokawa, K. Ueno, Organometallics 2006, 25, 1554–1556;
g) H. Sakaba, T. Hirata, C. Kabuto, K. Kabuto, J. Organomet. Chem. 2007, 692, 402–407; h) K. Takanashi, V. Y. Lee, T. Yokoyama, A. Sekiguchi, J. Am. Chem. Soc. 2009, 131, 916–917; i) K. Dannappel, R. Nienhaus, M. Schürmann, B. Costisella, K. Jurkschat, Z. Anorg. Allg. Chem. 2009, 635, 2126–2134; j) A. Shinohara, J. McBee, T. D. Tilley, Inorg. Chem. 2009, 48, 8081–8083; k) Lit [4i]; l) H. Sakaba, H. Oike, Y. Arai, E. Kwon, Organometallics, 2012, 31, 8172–8177, m) Lit. [6i];
n) I. S. M. Al-Rafia, A. C. Malcom, R. McDonald, M. J. Ferguson, E. Rivard, E. Chem. Commun. 2012, 48, 1308–1310.

- [24] Ausgewählte Publikationen über Silylen-Eisen-Komplexe: a) G. Schmid, E. Welz, Angew. Chem. 1977, 89, 823-824; Angew. Chem. Int. Ed. Engl. 1977, 16, 785-786;
 b) A. Marinetti-Mignani, R. West, Organometallics 1987, 6, 141-144; c) K. Ueno, H. Tobita, M. Shimoi, H. Ogino, J. Am. Chem. Soc. 1988, 110, 4092-4093;
 d) K. Ueno, H. Tobita, H. Ogino, J. Organomet. Chem. 1992, 430, 93-104;
 e) U. Bodensieck, Braunstein, W. Deck, T. Faure, M. Knorr, C. Stern, Angew. Chem. 1994, 106, 2561-2564; Angew. Chem. Int. Ed. Engl. 1994, 33, 2440-2442; f) K. Ueno, S. Ito, K.-I. Endo, H. Tobita, S. Inomata, H. Ogino, Organometallics 1994, 13, 3309-3314; g) Lit. [21b]; h) H. Tobita, T. Sato, M. Okazaki, H. Ogino, J. Organomet. Chem. 2000, 611, 314-322; i) Lit [6c]; j) R. S. Ghadwal, R. Azhakar, K. Pröpper, J. J. Holstein, B. Dittrich, H. W. Roesky, Inorg. Chem. 2011, 50, 8502-8508.
- [25] Ausgewählte Publikationen über Cycloadditionsreaktionen von (Donor-stabilisierten) Silylenen: a) A. Jana, H. W. Roesky, C. Schulzke, P. P. Samuel, Organometallics 2009, 28, 6574–6577; b) Y. Xiong, S. Yao, M. Driess, Organometallics 2010, 29, 987– 990; c) R. S. Ghadwal, S. S. Sen, H. W. Roesky, M. Granitzka, D. Kratzert, S. Merkel, D. Stalke, Angew. Chem. 2010, 122, 4044–4047; Angew. Chem. Int. Ed. 2010, 49, 3952–3955; d) S. Ishoda, T. Iwamoto, M. Kira, Organometallics 2010, 29, 5526–5534; e) S. Khan, S. S. Sen, D. Kratzert, G. Tavčar, H. W. Roesky, D. Stalke, Chem. Eur. J. 2011, 17, 4283–4290.
- [26] Ausgewählte Übersichtsartikel über Silicium(IV)-Verbindungen mit Si=X-Doppelbindungen (X = S, Se, Te): a) R. Okazaki, N. Tokitoh, Acc. Chem. Res. 2000, 33, 625–630; b) N. Tokitoh, R. Okazaki, Adv. Organomet. Chem. 2001, 47, 121–166.

- [27]Ausgewählte Publikationen über Silicium(IV)-Verbindungen mit Si=X-Doppelbindungen (X = O, S, Se, Te): a) P. Arya, J. Boyer, F. Carré, R. Corriu, G. Lanneau, J. Lapasset, M. Perrot, C. Priou, Angew. Chem. 1989, 101, 1069–1071; Angew. Chem. Int. Ed. Engl. 1989, 28, 1016-1018; b) H. Suzuki, N. Tokitoh, S. Nagase, R. Okazaki, J. Am. Chem. Soc. 1994, 116, 11578-11579; c) H. Suzuki, N. Tokitoh, R. Okazaki, S. Nagase, M. Goto, J. Am. Chem. Soc. 1998, 120, 11096-11105; d) N. Tokitoh, T. Sadahiro, K. Hatano, T. Sasaki, N. Takeda, R. Okazaki, Chem. Lett. 2002, 34-35; e) T. Iwamoto, K. Sato, S. Ishida, C. Kabuto, M. Kira, J. Am. Chem. Soc. 2006, 128, 16914–16920; f) C.-W. So, H. W. Roesky, R. B. Oswald, A. Pal, P. G. Jones, Dalton Trans. 2007, 5241-5244; g) S. Yao, Y. Xiong, M. Brym, M. Driess, Chem. Asian J. 2008, 3, 113-118; h) A. Mitra, J. P. Wojcik, D. Lecoanet, T. Müller, R. West, Angew. Chem. 2009, 121, 4130-4133; Angew. Chem. Int. Ed. 2009, 48, 4069–4072; i) Y. Xiong, S. Yao, M. Driess, J. Am. Chem. Soc. 2009, 131, 7562-7563; j) S. Yao, Y. Xiong, M. Driess, Chem. Eur. J. 2010, 16, 1281–1288; k) J. D. Epping, S. Yao, M. Karni, Y. Apeloig, M. Driess, J. Am. Chem. Soc. 2010, 132, 5443–5455; l) Y. Xiong, S. Yao, R. Müller, M. Kaupp, M. Driess, Nature Chem. 2010, 2, 577–580; m) S.-H. Zhang, H.-X. Yeong, C.-W. So, Chem. Eur. J. 2011, 17, 3490-3499.
- [28] Ausgewählte Übersichtsartikel über Übergangsmetall-katalysierte Aktivierungen von C-F-Bindungen: a) H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119–2183;
 b) E. Clot, O. Eisenstein, N. Jasim, S. A. MacGregor, J. F. McGrady, R. N. Perutz, Acc. Chem. Res. 2011, 44, 333–348.
- [29] A. Jana, P. P. Samuel, G. Tavčar, H. W. Roesky, C. Schulzke, J. Am. Chem. Soc.
 2010, 132, 10164–10170.
- [30] J. Richter, J. Feiling, H.-G. Schmidt, M. Noltemeyer, W. Brueser, F. T. Edelmann, Z. Anorg. Allg. Chem. 2004, 630, 1269–1275.
- [31] A. Berkefeld, R. Tacke, unveröffentlichte Ergebnisse.
- [32] M. I. Rybinskaya, A. Z. Kreindlin, S. S. Fadeeva, P. V. Petrovskii, J. Organomet. Chem. 1988, 345, 341–350.
- [33] Die Angabe des Gerüsttyps bzw. der Koordinationszahl bezieht sich auf die Struktur im Festkörper.
- [34] E. O. Fischer, *Inorg. Synth.* **1963**, *7*, 136–139.

- [35] Wird 39 mit einem großen Überschuss Schwefeldioxid in Toluol bei -78-20 °C umgesetzt, bildet sich ein Gemisch von 58, cis-59 und trans-59 in einem Verhältnis von ca. 1:9:1 (nach Kristallisation bei 20 °C aus Toluol).
- [36] Schwefelmonoxid ist unter den Reaktionsbedingungen nicht stabil und disproportioniert gemäß folgender Gleichung zu Schwefeldioxid und Schwefel: $2 \text{ SO} \rightarrow \text{SO}_2 + \text{S}$. Aus diesem Grund werden bei der Synthese von **58** nur exakt 1.5 Moläquivalente SO₂ benötigt.
- [37] P. Jutzi, D. Eikenberg, A. Möhrke, B. Neumann, H.-G. Stammler, Organometallics 1996, 15, 753–759.
- [38] a) C. E. Willans, C. A. Kilner, M. A. Fox, *Chem. Eur. J.* 2010, *16*, 10644–10648;
 b) F. Zheng, Z. Xie, *Dalton Trans.* 2012, *41*, 12907–12914.
- [39] Es existieren verschiedene Definitionen des Begriffs "Edelmetall". Hier wird die Definition verwendet, nachdem ein Edelmetall ein Metall mit einem positiven Normalpotential ist.
- [40] J. Rohonczy, SOLA-Solid Lineshape Analysis, Version 2.2.3, Lorand University, Hungary, 2013.
- [41] J. Böhm, D. Fenzke, H. Pfeifer, J. Magn. Reson. 1983, 55, 197–204.
- [42] Triethylboran: ¹¹B-NMR ([D₈]Toluol, 160.5 MHz, 70 °C): $\delta = 85.6$ ppm.
- [43] **39**: ²⁹Si-NMR ([D₈]Toluol, 99.4 MHz, 70 °C): $\delta = -31.0$ ppm.
- [44] a) Lit. [10m]; b) X. Helluy, R. Pietschnig, A. Sebald, Solid State Nucl. Magn. Reson.
 2003, 24, 286–300.
- [45] K. Junold, K. Sinner, J. A. Baus, C. Burschka, C. Fonseca Guerra,
 F. M. Bickelhaupt, R. Tacke, *Chem. Eur. J.* 2014, eingereicht.
- [46] K. Sinner, *Masterarbeit*, Universität Würzburg, **2013**.
- [47] a) J. Mason, Multinuclear NMR, Plenum Press, New York, 1987, S. 432;
 b) P. S. Pregosin, NMR in Organometallic Chemistry, Wiley-VCH, Weinheim, 2012,
 S. 15; c) P. S. Pregosin, Transistion Metal Nuclear Magnetic Resonance, Elsevier,
 New York, 1991, S. 331; d) J. G. Melnick, K. Yurkerwich, D. Buccella, W. Sattler,
 G. Parkin, Inorg. Chem. 2008, 47, 6421–6426.

- [48] G. Engelhardt, H. Koller in NMR-Basic Principles and Progress, Vol 31 (Hrsg.: P. Diehl, E. Fluck, H. Günther, R. Kosfeld, J. Seelig), Springer-Verlag, Berlin, 1994, S. 10–11; G. Engelhard, D. Michel, High-Resolution Solid-State NMR of Silicates and Zeolithes, Wiley, Chichester, 1987, S. 129–131 und S. 250–256.
- [49] G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112–122.
- [50] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281– 1284.
- [51] Hollemann Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage, Walter de Gruyter, Berlin, 2007, S. 2002–2005.
- [52] A. L. Speck, *PLATON*, Utrecht University, Utrecht, The Netherlands, **2008**.
- [53]Publikationen über strukturell charakterisierte pentakoordinierte Silicium(IV)-Komplexe mit Pentafluorphenyl-Liganden: a) Υ. Wan, J. G. Verkade, Organometallics 1994, 13, 4146-4166; b) Y. Wan, J. G. Verkade, J. Am. Chem. Soc. 1995, 117, 141–156; c) A. D. Dilman, V. V. Levin, A. A. Korlyukov, P. A. Belyakov, M. I. Struchkova, M. Y. Antipin, V. A. Tartakovsky, J. Organomet. Chem. 2008, 693, 1005–1019; d) M. Woski, R. J. F. Berger, N. W. Mitzel, Dalton Trans. 2008, 37, 5652–5658; e) Lit. [10k]; f) Lit. [10p].
- [54] Symmetrie-Transformationen, welche zur Erzeugung der äquivalenten Atome verwendet wurden: -x, -y + 1, -z.
- [55] Symmetrie-Transformationen, welche zur Erzeugung der äquivalenten Atome verwendet wurden: -x + z, -y + z, -z.
- [56] Symmetrie-Transformationen, welche zur Erzeugung der äquivalenten Atome verwendet wurden: -x + 1/2, -y + 3/2, -z.
- [57] Symmetrie-Transformationen, welche zur Erzeugung der äquivalenten Atome verwendet wurden: -x + 2, -y, -z + 1.
- [58] Publikationen über hexakoordinierte Silicium(IV)-Komplexe mit Azido-Liganden:
 a) A. C. Filippou, P. Portius, G. Schnakenburg, J. Am. Chem. Soc. 2002, 124, 12396–12397;
 b) Lit. [10m];
 c) P. Portius, A. C. Filippou, G. Schnakenburg, M. Davis, K.-D. Wehrstedt, Angew. Chem. 2010, 122, 8185–8189; Angew. Chem. Int. Ed. 2010, 49, 8013–8016.

- [59] Publikationen über pentakoordinierte Silicium(IV)-Komplexe mit Azido-Liganden:a) Lit. [10k]; b) Lit. [10p]; c) Lit. [10r].
- [60] Für eine detailierte Diskussion des Problems eine S=O-Doppelbindung zu beschreiben, siehe: S. Grabowsky, P. Luger, J. Buschmann, T. Schneider, T. Schirmeister, A. N. Sobolev, D. Jayatilaka, Angew. Chem. 2012, 124, 6880–6884; Angew Chem. Int. Ed. 2012, 51, 6776–6779; sowie die darin zitierte Literatur.
- [61] a) J. D. Dunitz, Acta Cryst. 1959, 9, 579–586; b) C. T. Kiers, A. Vos, Acta Crystallogr. Sect. B 1978, 34, 1499–1504.
- [62] Ausgewählte Publikationen über mono-C-silylsubstituierte 1,2-Dicarba-closo-dodecaborane: a) J. Wang, Y. Zhu, S. Li, C. Zheng, J. A. Maguire, N. S. Hosmane, J. Organomet. Chem. 2003, 680, 173–181; b) Y.-J. Lee, J.-D. Lee, S.-J. Kim, B. W. Yoo, J. Ko, I.-H. Suh, M. Cheong, S. O. Kang, Organometallics 2004, 23, 490–497; c) R. Núñez, A. González-Campo, C. Viñas, F. Teixidor, R. Sillanpää, R. Kivekäs, Organometallics 2005, 24, 6351–6357; d) R. Tiwari, A. Toppino, H. K. Agarwal, T. Huo, Y. Byun, J. Gallucci, S. Hasabelnaby, A. Kahlil, A. Goudah, R. A. Baiocchi, M. V. Darby, R. F. Barth, W. Tjarks, Inorg. Chem. 2012, 51, 629–639.
- [63] C. Krempner, K. Martens, H. Reinke, J. Organomet. Chem. 2007, 692, 5799–5803.
- [64] a) M. Niemeyer, P. P. Power, *Inorg. Chem.* 1997, 36, 4688–4696; b) M. Arrowsmith,
 M. S. Hill, G. Kocik-Köhn, D. J. MacDougall, M. F. Mahon, I. Mallow, *Inorg. Chem.* 2012, 51, 13408–13418.
- [65] Symmetrie-Transformationen, welche zur Erzeugung der äquivalenten Atome verwendet wurden: -x, y, -z + 1/2.
- [66] a) Lit. [10f]; b) Lit [10k].
- [67] Publikationen über pentakoordinierte Silicium(IV)-Komplexe mit viergliedrigen Si₂N₂-Ringen: a) L. M. Englehardt, P. C. Junk, W. C. Patalinghug, R. E. Sue, C. L. Raston, B. W. Skelton, A. H. White, J. Chem. Soc., Chem. Commun. 1991, 930–932; b) Y. Wan, J. G. Verkade, Organometallics 1996, 15, 5769–5771; c) M. Driess, N. Muresan, K. Merz, Angew. Chem. 2005, 117, 6896–6899; Angew. Chem. Int. Ed. 2005, 44, 6738–6741; d) Lit. [9k]; e) S. S. Sen, J. Hey, D. Kratzert, H. W. Roesky, D. Stalke, Organometallics 2012, 31, 435–439; f) S. P. Sarish, A. Jana,

H. W. Roesky, P. P. Samuel, C. E. Abad Andrade, B. Dittrich, C. Schulzke, *Organometallics* **2011**, *30*, 912–916.

[68] S. Braun, S. Berger, 200 and More Basic NMR Experiments, VCH, Weinheim, 2004, S. 141–148.

Anhang A: Daten zu den Kristallstrukturanalysen

	1	2	3	$10{\cdot}0.5\mathrm{Et}_{2}\mathrm{O}$
Empirische Formel	$\mathrm{C_{13}H_{19}Cl_{3}N_{2}Si}$	$C_{13}H_{19}F_3N_2Si$	$\mathrm{C_{13}H_{19}Br_{3}N_{2}Si}$	$C_{24}H_{35}Cl_2N_2O_{3.50}Si$
Molekülmasse $[g mol^{-1}]$	337.74	288.39	471.12	506.53
Messtemperatur [K]	173(2)	173(2)	173(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	orthorhombisch	triklin	triklin
Raumgruppe (Nr.)	$P2_1/c$ (14)	Pbca~(61)	$P\overline{1}$ (2)	$P\overline{1}$ (2)
a [Å]	17.583(4)	9.2942(8)	8.940(4)	10.638(2)
<i>b</i> [Å]	11.2310(18)	11.4192(10)	8.971(3)	11.172(3)
c [Å]	17.851(5)	28.368(4)	12.016(7)	12.803(3)
a [°]	90	90	100.967(13)	102.02(3)
β [°]	106.23(3)	90	105.346(18)	101.21(3)
γ [°]	90	90	102.272(4)	109.71(3)
V [Å ³]	3384.5(14)	3010.8(6)	876.5(8)	1342.0(6)
Ζ	8	8	2	2
$arrho_{ m ber}~[{ m g~cm}^{-3}]$	1.26	1.272	1.785	1.254
$\mu~(\mathrm{mm}^{-1})$	0.601	0.177	6.962	0.315
F(000)	1408	1216	460	538
Kristalldimensionen [mm]	$0.35\times0.25\times0.40$	0.60 imes 0.30 imes 0.20	$0.40\times0.30\times0.20$	$0.40\times0.30\times0.10$
Messbereich 2ϑ [°]	4.826-58.212	5.832 - 52.040	3.642 - 52.042	5.686 - 52.042
Index-Breite	$-23 \le h \le 23$	$-11 \le h \le 11$	$-11 \leq h \leq 11$	$-13 \le h \le 13$
	$-14 \le k \le 14$	$-14 \le k \le 12$	$-11 \le k \le 11$	$-13 \le k \le 13$
	$-24 \le l \le 24$	$-35 \le l \le 35$	$-14 \le l \le 14$	$-15 \le l \le 15$
gemessene Reflexe	47390	19878	21759	11544
unabhängige Reflexe	8868	2943	3433	4941
$R_{ m int}$	0.0697	0.0442	0.0439	0.0701
verfeinerte Parameter	341	176	176	328
Restraints	0	0	0	40
$S^{\mathrm{a})}$	1.046	1.054	1.034	0.927
Gewichtungsschem a $a/b^{\rm b)}$	0.0682/33.527901	0.0961/0.4767	0.0279/0.7244	0.0618/0.0000
$R1^{ m c)}\;[I>2\sigma(I)]$	0.1146	0.0489	0.0263	0.0428
$wR2^{ m d)}$ (alle Daten)	0.2909	0.1461	0.0661	0.1079
Restelektronendichte [e $Å^{-3}$]	+3.091/-2.655	+0.770/-0.232	+0.646/-0.610	+0.367/-0.258

Tabelle	A1:	${\it Kristallographische}$	Daten	und	Angaben	zu	den	Kristall struktur analysen	von	1 ,	2 ,	3	und
10 .0.5Et	.oO.												

^{a)} $S = \{\Sigma [w(F_o^2 - F_c^2)^2] / (n - p)\}^{0.5}; n = Anzahl der Reflexe; p = Anzahl der Parameter.$

^{b)}
$$w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	13	14	15	18
Empirische Formel	$\mathrm{C}_{24}\mathrm{H}_{30}\mathrm{N}_4\mathrm{O}_5\mathrm{Si}$	$\mathrm{C}_{24}\mathrm{H}_{30}\mathrm{N}_4\mathrm{O}_3\mathrm{S}_2\mathrm{Si}$	$\mathrm{C}_{28}\mathrm{H}_{34}\mathrm{N}_{2}\mathrm{O}_{5}\mathrm{Si}$	$\mathrm{C_{19}H_{19}Cl_2F_5N_2Si}$
Molekülmasse [g mol ⁻¹]	482.61	514.73	506.66	469.35
Messtemperatur [K]	100(2)	100(2)	100(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	triklin	monoklin	monoklin
Raumgruppe (Nr.)	$P2_1/n$ (14)	$P\overline{1}$ (2)	$P2_1/c$ (14)	$P2_1/n$ (14)
a [Å]	8.5602(3)	10.5187(17)	12.0728(11)	8.0322(14)
<i>b</i> [Å]	24.6577(10)	11.087(2)	15.6724(13)	20.111(4)
c [Å]	12.1990(5)	12.795(2)	13.5830(12)	13.702(3)
a [°]	90	96.347(9)	90	90
β [°]	106.512(2)	113.368(8)	94.889(5)	106.42(2)
γ [°]	90	94.678(8)	90	90
V [Å ³]	2468.71(17)	1348.4(4)	2560.7(4)	2123.2(7)
Ζ	4	2	4	4
$arrho_{ m ber}~[{ m g~cm}^{-3}]$	1.298	1.268	1.314	1.468
$\mu ~(\mathrm{mm}^{-1})$	0.137	0.274	0.134	0.413
F(000)	1024	544	1080	960
Kristalldimensionen [mm]	$0.50\times0.38\times0.31$	$0.27\times0.16\times0.15$	$0.50\times0.40\times0.40$	$0.35\times0.25\times0.25$
Messbereich 2ϑ [°]	3.304 - 52.040	3.510 - 52.042	3.386 - 52.042	5.100 - 52.040
Index-Breite	$-10 \le h \le 10$	$-12 \leq h \leq 12$	$-14 \leq h \leq 14$	$-9 \le h \le 9$
	$-30 \le k \le 30$	$-13 \leq k \leq 13$	$-19 \le k \le 19$	$-24 \le k \le 24$
	$-14 \le l \le 15$	$-15 \le l \le 15$	$-16 \le l \le 16$	$-16 \le l \le 16$
gemessene Reflexe	60200	15964	89476	22852
unabhängige Reflexe	4856	5065	5052	4151
$R_{ m int}$	0.0330	0.0493	0.0388	0.0490
verfeinerte Parameter	314	314	332	266
Restraints	0	0	0	0
$S^{\mathbf{a})}$	1.037	1.062	1.053	0.852
Gewichtungsschema $a/b^{\rm b)}$	0.0350/0.1246	0.0372/0.6072	0.0384/1.3769	0.1042/0.1243
$R1^{ m c)}\;[I>2\sigma(I)]$	0.0303	0.0348	0.0301	0.0307
$wR2^{\mathrm{d})}$ (alle Daten)	0.0795	0.0926	0.0834	0.1077
Restelektronendichte [e $Å^{-3}$]	+0.324/-0.307	+0.370/-0.351	+0.354/-0.318	+0.323/-0.269

Tabelle A2: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 13, 14, 15 und 18.

^{a)} $S = \{\Sigma [w(F_o^2 - F_c^2)^2] / (n - p)\}^{0.5}; n = Anzahl der Reflexe; p = Anzahl der Parameter.$

^{b)}
$$w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	19	26	27	28
Empirische Formel	$\mathrm{C_{19}H_{19}Br_2F_5N_2Si}$	$\mathrm{C}_{18}\mathrm{H}_{28}\mathrm{Cl}_4\mathrm{N}_6\mathrm{P}_2\mathrm{Si}_2$	$\mathrm{C}_{20}\mathrm{H}_{32}\mathrm{Cl}_4\mathrm{N}_6\mathrm{P}_2\mathrm{Si}_2$	$\mathrm{C}_{22}\mathrm{H}_{36}\mathrm{Cl}_4\mathrm{N}_6\mathrm{P}_2\mathrm{Si}_2$
Molekülmasse $[g mol^{-1}]$	558.27	588.38	616.44	644.49
Messtemperatur [K]	173(2)	173(2)	173(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	orthorhombisch	triklin	monoklin	monoklin
Raumgruppe (Nr.)	$P2_12_12_1$ (19)	$P\overline{1}$ (2)	$P2_1/n~(14)$	C_2/c (15)
a [Å]	11.2670(14)	7.6200(13)	7.8083(7)	16.274(3)
<i>b</i> [Å]	13.6219(15)	9.1276(15)	10.5254(13)	12.3909(15)
c [Å]	14.3027(16)	10.5963(17)	17.1856(17)	15.676(3)
a [°]	90	99.728(3)	90	90
β [°]	90	103.531(3)	92.302(12)	109.74(2)
γ [°]	90	113.180(3)	90	90
$V [\text{\AA}^3]$	2195.1(4)	629.97(18)	1411.3(3)	2975.4(9)
Ζ	4	1	2	4
$arrho_{ m ber} ~[{ m g~cm}^{-3}]$	1.689	1.551	1.451	1.439
$\mu ~(\mathrm{mm}^{-1})$	3.797	0.713	0.640	0.611
F(000)	1104	304	640	1344
Kristalldimensionen [mm]	$0.7\times0.5\times0.4$	$0.30\times0.20\times0.04$	0.4 imes 0.3 imes 0.2	$0.50\times0.30\times0.15$
Messbereich 2ϑ [°]	5.48 - 52.04	4.14 - 56.08	6.12 - 58.10	5.52 - 58.12
Index-Breite	$-13 \leq h \leq 13$	$-10 \leq h \leq 10$	$-10 \leq h \leq 10$	$-22 \leq h \leq 22$
	$-16 \leq k \leq 16$	$-12 \leq k \leq 12$	$-14 \leq k \leq 14$	$-16 \leq k \leq 16$
	$-17 \leq l \leq 17$	$-13 \leq l \leq 14$	$-23 \le l \le 22$	$-21 \leq l \leq 21$
gemessene Reflexe	13462	8333	11187	20773
unabhängige Reflexe	4312	3022	3647	3922
$R_{ m int}$	0.0454	0.0368	0.0475	0.0567
verfeinerte Parameter	266	147	157	167
Restraints	0	0	0	0
$S^{\mathbf{a})}$	0.952	1.045	1.003	1.080
Gewichtungsschema $a/b^{\rm b)}$	0.0383/0.0000	0.0464/0.1461	0.0647/0.0000	0.0704/1.0654
$R1^{ m c)}\;[I>2\sigma(I)]$	0.0270	0.0346	0.0373	0.0402
$wR2^{d)}$ (alle Daten)	0.0616	0.0924	0.1000	0.1137
abs. Strukturparameter	-0.003(7)			
Restelektronendichte [e $\mathrm{\mathring{A}}^{-3}]$	+0.329/-0.247	+0.492/-0.242	+0.436/-0.433	+0.464/-0.380

Tabelle A3: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 19, 26, 27 und 28.

^{a)} $S = \{ \Sigma [w(F_o^2 - F_c^2)^2] / (n - p) \}^{0.5}; n = Anzahl der Reflexe; p = Anzahl der Parameter.$

^{b)}
$$w^{-1} = \sigma^2 (F_0^2) + (aP)^2 + bP$$
, mit $P = [\max(F_0^2, 0) + 2F_c^2] / 3$.

	29	30	31	32
Empirische Formel	$C_{24}H_{40}Cl_4N_6P_2Si_2$	$C_{22}H_{25}Cl_2N_3OSi$	$\mathrm{C}_{22}\mathrm{H}_{25}\mathrm{Br}_{2}\mathrm{N}_{3}\mathrm{OSi}$	$C_{22}H_{25}F_2N_3OSi$
Molekülmasse [g mol^{-1}]	672.54	446.44	535.36	413.54
Messtemperatur [K]	173(2)	173(2)	173(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	071073	0.71073
Kristallsystem	monoklin	monoklin	triklin	monoklin
Raumgruppe (Nr.)	$P2_1/c$ (14)	$P2_1/c \ (14)$	$P\overline{1}$ (2)	$P2_1/c$ (14)
a [Å]	9.6854(12)	15.6475(14)	8.1749(16)	14.657(2)
<i>b</i> [Å]	16.2387(14)	9.7128(8)	9.919(2)	9.7605(8)
c [Å]	10.5653(11)	15.3985(16)	14.424(3)	15.470(2)
a [°]	90	90	94.61(3)	90
β [°]	106.663(13)	107.087(11)	102.42(3)	110.049(16)
γ [°]	90	90	95.80(3)	90
V [Å ³]	1591.9(3)	2237.0(4)	1130.1(4)	2079.0(4)
Ζ	2	4	2	4
$arrho_{ m ber}~[{ m g~cm}^{-3}]$	1.403	1.326	1.573	1.321
$\mu ~(\mathrm{mm}^{-1})$	0.574	0.362	3.658	0.149
F(000)	704	936	540	872
Kristalldimensionen [mm]	0.5 imes 0.3 imes 0.2	0.5 imes 0.4 imes 0.2	0.5 imes 0.2 imes 0.2	0.5 imes 0.4 imes 0.3
Messbereich 2ϑ [°]	5.06 - 58.28	5.02 - 58.16	4.82 - 58.22	5.02 - 55.76
Index-Breite	$-13 \leq h \leq 12$	$-21 \leq h \leq 21$	$-11 \leq h \leq 11$	$-19 \leq h \leq 19$
	$-22 \leq k \leq 22$	$-13 \leq k \leq 13$	$-13 \leq k \leq 13$	$-12 \leq k \leq 12$
	$-13 \leq l \leq 14$	$-21 \leq l \leq 21$	$-19 \leq l \leq 19$	$-19 \leq l \leq 19$
gemessene Reflexe	12012	31467	16443	15548
unabhängige Reflexe	4249	5956	5566	4918
$R_{ m int}$	0.0358	0.0425	0.0448	0.0369
verfeinerte Parameter	177	266	266	266
Restraints	0	0	0	0
$S^{\mathbf{a})}$	1.072	1.066	1.077	1.040
Gewichtungsschema $a/b^{\rm b)}$	0.0736/0.1448	0.0522/0.7972	0.0722/0.5002	0.0553/0.5034
$R1^{ m c)} \; [I>2\sigma(I)]$	0.0394	0.0386	0.0381	0.0371
$wR2^{d)}$ (alle Daten)	0.1122	0.1029	0.1191	0.1025
Restelektronendichte [e $\mathrm{\AA}^{-3}]$	+0.464/-0.411	+0.372/-0.398	+0.644/-0.936	+0.307/-0.301

Tabelle A4: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von **29**, **30**, **31** und **32**.

^{a)} $S = \{ \Sigma [w(F_o^2 - F_c^2)^2] / (n - p) \}^{0.5}; n = \text{Anzahl der Reflexe}; p = \text{Anzahl der Parameter}.$

^{b)}
$$w^{-1} = \sigma^2 (F_0^2) + (aP)^2 + bP$$
, mit $P = [\max(F_0^2, 0) + 2F_c^2] / 3$.

	33	34	35	36
Empirische Formel	$\mathrm{C}_{22}\mathrm{H}_{25}\mathrm{N}_9\mathrm{OSi}$	$\mathrm{C}_{24}\mathrm{H}_{25}\mathrm{N}_5\mathrm{O}_3\mathrm{Si}$	$\mathrm{C}_{24}\mathrm{H}_{25}\mathrm{N}_{5}\mathrm{OS}_{2}\mathrm{Si}$	$C_{24}H_{25}F_6N_3O_7S_2Si$
Molekülmasse $[g mol^{-1}]$	459.60	459.58	491.70	673.68
Messtemperatur [K]	173(2)	173(2)	173(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	triklin	triklin	monoklin	orthorhombisch
Raumgruppe (Nr.)	$P\overline{1}$ (2)	$P\overline{1}$ (2)	$P2_1/c \ (14)$	Pbca~(61)
a [Å]	9.3090(19)	8.4742(17)	11.5619(18)	23.2733(16)
<i>b</i> [Å]	9.898(2)	10.239(2)	13.4356(18)	16.3163(10)
c [Å]	14.013(3)	13.933(3)	16.906(3)	30.800(3)
a [°]	109.12(3)	94.55(3)	90	90
β [°]	94.07(3)	101.63(3)	109.346(18)	90
γ [°]	98.48(3)	95.44(3)	90	90
V [Å ³]	1196.8(4)	1172.8(4)	2478.0(7)	11695.7(16)
Ζ	2	2	4	16
$arrho_{ m ber}~[{ m g~cm}^{-3}]$	1.275	1.301	1.318	1.530
$\mu~(\mathrm{mm}^{-1})$	0.132	0.136	0.290	0.309
F(000)	484	484	1032	5536
Kristalldimensionen [mm]	0.5 imes 0.5 imes 0.5	$0.5 \times 0.5 \times 0.4$	$0.5 \times 0.5 \times 0.2$	$0.50\times0.25\times0.25$
Messbereich 2ϑ [°]	6.20 - 58.26	6.00 - 58.18	4.84-58.2	4.50-56.2
Index-Breite	$-11 \leq h \leq 12$	$-11 \leq h \leq 11$	$-15 \leq h \leq 15$	$-30 \le h \le 30$
	$-13 \leq k \leq 13$	$-14 \leq k \leq 14$	$-18 \leq k \leq 18$	$-21 \leq k \leq 21$
	$-19 \leq l \leq 19$	$-19 \leq l \leq 19$	$-23 \leq l \leq 23$	$-40 \leq l \leq 40$
gemessene Reflexe	13488	16905	35139	8865
unabhängige Reflexe	5854	5726	6609	14160
$R_{ m int}$	0.0328	0.0348	0.0457	0.0584
verfeinerte Parameter	302	302	302	798
Restraints	0	0	0	15
$S^{\mathrm{a})}$	1.102	1.087	1.052	1.062
Gewichtungsschem a $a/b^{\rm b)}$	0.0544/0.4103	0.0549/0.3588	0.0541/0.8993	0.061/5.5732
$R1^{ m c)}\;[I>2\sigma(I)]$	0.0401	0.0429	0.0424	0.0439
$wR2^{ m d)}$ (alle Daten)	0.1196	0.1237	0.1159	0.1211
Restelektronendichte [e ${\rm \AA}^{-3}]$	+0.412/-0.390	+0.350/-0.400	+0.346/-0.410	+0.666/-0.626

Tabelle A5: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von **33**, **34**, **35** und **36**.

^{a)} $S = \{\Sigma [w(F_o^2 - F_c^2)^2] / (n - p)\}^{0.5}; n = Anzahl der Reflexe; p = Anzahl der Parameter.$

^{b)}
$$w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	27	80	20	41
	37	38	39	41
Empirische Formel	$\mathrm{C}_{28}\mathrm{H}_{29}\mathrm{N}_{3}\mathrm{O}_{3}\mathrm{Si}$	$\rm C_{26}H_{39}ClN_4Si$	$\mathrm{C}_{26}\mathrm{H}_{38}\mathrm{N}_{4}\mathrm{Si}$	$\mathrm{C}_{32}\mathrm{H}_{53}\mathrm{BN}_4\mathrm{Si}$
Molekülmasse [g mol^{-1}]	483.63	471.15	434.69	532.68
Messtemperatur [K]	173(2)	173(2)	173(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	triklin	monoklin	monoklin
Raumgruppe (Nr.)	$P2_1/n~(14)$	$P\overline{1}$ (2)	$P2_1/n~(14)$	$P2_1/c \; (14)$
a [Å]	10.9237(17)	7.9766(16)	10.5873(17)	22.549(4)
<i>b</i> [Å]	18.318(2)	10.117(2)	9.0633(11)	16.9212(17)
c [Å]	13.7567(19)	16.454(3)	28.563(4)	18.578(3)
a [°]	90	89.77(3)	90	90
β [°]	111.285(16)	84.07(3)	100.632(18)	111.459(17)
γ [°]	90	86.46(3)	90	90
$V [\text{\AA}^3]$	2564.9(6)	1318.2(5)	2693.8(7)	6597.1(16)
Ζ	4	2	4	8
$arrho_{ m ber}~[{ m g~cm}^{-3}]$	1.252	1.187	1.072	1.073
$\mu ~(\mathrm{mm}^{-1})$	0.126	0.211	0.106	0.097
F(000)	1024	508	944	2336
Kristalldimensionen [mm]	0.5 imes 0.3 imes 0.1	0.50 imes 0.25 imes 0.20	$0.50\times0.25\times0.25$	$0.5 \times 0.4 \times 0.35$
Messbereich 2ϑ [°]	5.46 - 55.76	4.734 - 52.042	5.962 - 52.042	4.88 - 52.04
Index-Breite	$-14 \le h \le 14$	$-9 \le h \le 9$	$-13 \le h \le 13$	$-27 \leq h \leq 27$
	$-24 \le k \le 24$	$-12 \leq k \leq 12$	$-11 \leq k \leq 11$	$-20 \leq k \leq 20$
	$-16 \le l \le 18$	$-20 \le l \le 20$	$-35 \leq l \leq 35$	$-22 \le l \le 22$
gemessene Reflexe	21567	14387	18122	70844
unabhängige Reflexe	6122	4864	5285	12984
$R_{ m int}$	0.0801	0.0725	0.0463	0.0582
verfeinerte Parameter	320	301	288	730
Restraints	0	0	0	138
$S^{\mathbf{a})}$	0.945	0.910	1.042	0.947
Gewichtungsschema $a/b^{\rm b)}$	0.0669/0.0000	0.0935/0.0000	0.0638/0.3561	0.0874/0.0000
$R1^{ m c)}\;[I>2\sigma(I)]$	0.0438	0.0510	0.0403	0.0511
$wR2^{d)}$ (alle Daten)	0.1159	0.1412	0.1106	0.1487
Restelektronendichte [e $Å^{-3}$]	+0.319/-0.281	+0.451/-0.485	+0.267/-0.209	+0.656/-0.433

Tabelle A6: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von **37**, **38**, **39** und **41**.

^{a)} $S = \{\Sigma [w(F_o^2 - F_c^2)^2] / (n - p)\}^{0.5}; n = Anzahl der Reflexe; p = Anzahl der Parameter.$

^{b)}
$$w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	$42{\cdot}0.5\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CH}_{3}$	43	44	45
Empirische Formel	$\mathrm{C}_{51}\mathrm{H}_{61}\mathrm{BN}_4\mathrm{Si}$	$\mathrm{C_{31}H_{38}CrN_4O_5Si}$	$\mathrm{C_{31}H_{38}MoN_4O_5Si}$	$\mathrm{C_{31}H_{38}N_4O_5SiW}$
Molekülmasse [g mol^{-1}]	768.94	626.74	670.68	758.59
Messtemperatur [K]	173(2)	173(2)	173(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	monoklin	monoklin	monoklin
Raumgruppe (Nr.)	$C\!2/c~(15)$	$P2_1/n$ (14)	$P2_1/n$ (14)	$P2_1/n$ (14)
a [Å]	49.236(11)	10.774(2)	10.7945(15)	10.766(2)
<i>b</i> [Å]	10.5423(18)	19.500(3)	19.703(3)	19.704(4)
c [Å]	18.000(4)	16.413(3)	16.706(2)	16.658(3)
β [°]	105.44(2)	107.17(2)	106.977(16)	106.74(3)
$V [\text{\AA}^3]$	9006(3)	3294.5(11)	3398.2(8)	3383.8(12)
Ζ	8	4	4	4
$arrho_{ m ber}~[{ m g~cm}^{-3}]$	1.134	1.264	1.311	1.489
$\mu ~(\mathrm{mm}^{-1})$	0.091	0.426	0.463	3.491
F(000)	3312	1320	1392	1520
Kristalldimensionen [mm]	0.65 imes 0.3 imes 0.25	$0.55\times0.25\times0.25$	$0.65\times0.50\times0.45$	$0.6 \times 0.4 \times 0.2$
Messbereich 2ϑ [°]	4.70 - 52.04	4.92 - 52.06	5.50 - 52.04	4.86 - 56.56
Index-Breite	$-60 \le h \le 60$	$-13 \leq h \leq 13$	$-13 \leq h \leq 13$	$-14 \leq h \leq 14$
	$-13 \leq k \leq 13$	$-24 \leq k \leq 24$	$-24 \leq k \leq 24$	$-26 \leq k \leq 26$
	$-22 \leq l \leq 22$	$-20 \leq l \leq 20$	$-20 \le l \le 20$	$-22 \leq l \leq 22$
gemessene Reflexe	47703	35568	22081	45503
unabhängige Reflexe	8574	6369	6688	8360
$R_{ m int}$	0.0608	0.0463	0.037	0.0557
verfeinerte Parameter	574	387	387	388
Restraints	153	0	0	0
$S^{\mathbf{a})}$	0.883	1.016	1.036	1.033
Gewichtungsschema $a/b^{\rm b)}$	0.0919/0.0000	0.0909/0.0000	0.0555/0.5785	0.0619/0.0000
$R1^{ m c)}\;[I>2\sigma(I)]$	0.0498	0.0461	0.0303	0.0327
$wR2^{\mathrm{d})}$ (alle Daten)	0.1390	0.1253	0.0825	0.0876
Restelektronendichte [e $\mathrm{\AA}^{-3}]$	+0.364/-0.410	+0.489/-0.421	+0.528/-0.388	+1.321/-1.607

Tabelle A7: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von $42.0.5C_6H_5CH_3$, 43, 44 und 45.

^{a)} $S = \{ \Sigma [w(F_o^2 - F_c^2)^2] / (n - p) \}^{0.5}; n = \text{Anzahl der Reflexe}; p = \text{Anzahl der Parameter.} \}$

^{b)}
$$w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	46	48	52	53
Empirische Formel	$\mathrm{C}_{30}\mathrm{H}_{38}\mathrm{FeN}_4\mathrm{O}_4\mathrm{Si}$	$\mathrm{C}_{32}\mathrm{H}_{48}\mathrm{N}_{4}\mathrm{Si}$	$\mathrm{C}_{34}\mathrm{H}_{44}\mathrm{MoN_4O_3Si}$	$C_{28}H_{42}N_4O_2Si$
Molekülmasse [g mol ⁻¹]	602.58	516.83	680.76	494.74
Messtemperatur [K]	173(2)	173(2)	173(2)	100(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	triklin	monoklin	monoklin
Raumgruppe (Nr.)	$P2_1/c$ (14)	$P\overline{1}$ (2)	Cc (9)	$P2_{1}/c$ (14)
a [Å]	9.8895(13)	9.718(2)	14.023(2)	10.070(3)
<i>b</i> [Å]	21.702(3)	11.391(2)	13.982(3)	29.713(9)
c [Å]	14.547(2)	14.751(3)	17.762(3)	18.543(5)
a [°]	90	104.84(2)	90	90
β [°]	99.006(16)	94.15(2)	100.528(17)	92.095(10)
γ [°]	90	94.58(2)	90	90
V [Å ³]	3083.6(7)	1566.1(5)	3423.8(10)	5544(3)
Ζ	4	2	4	8
$arrho_{ m ber}~[{ m g~cm}^{-3}]$	1.298	1.096	1.321	1.185
$\mu ~(\mathrm{mm}^{-1})$	0.568	0.100	0.456	0.116
F(000)	1272	564	1424	2144
Kristalldimensionen [mm]	$0.80\times0.60\times0.35$	0.3 imes 0.3 imes 0.3	$0.60\times0.25\times0.15$	$0.35 \times 0.30 \times 0.25$
Messbereich 2ϑ [°]	5.02 - 52.04	5.34 - 52.04	5.018 - 52.020	4.274 - 52.044
Index-Breite	$-11 \le h \le 12$	$-11 \le h \le 11$	$-17 \leq h \leq 17$	$-12 \leq h \leq 12$
	$-26 \le k \le 26$	$-14 \leq k \leq 13$	$-17 \leq k \leq 17$	$-36 \le k \le 36$
	$-17 \leq l \leq 17$	$-18 \leq l \leq 18$	$-21 \leq l \leq 21$	$-22 \le l \le 22$
gemessene Reflexe	22395	13289	18339	1296
unabhängige Reflexe	6056	5761	6517	10925
$R_{ m int}$	0.0332	0.0470	0.0481	0.103
verfeinerte Parameter	369	344	399	657
Restraints	0	0	2	0
$S^{\mathbf{a})}$	1.075	1.039	0.993	1.026
Gewichtungsschema $a/b^{\rm b)}$	0.0664/0.0053	0.0887/0.0000	0.0250/0.0000	0.051/0.6001
$R1^{ m c)}\;[I>2\sigma(I)]$	0.0329	0.0504	0.0288	0.0526
$wR2^{ m d)}$ (alle Daten)	0.0938	0.1433	0.0622	0.1316
abs. Strukturparameter			-0.064(17)	
Restelektronendichte [e $\mathrm{\AA}^{-3}]$	+0.416/-0.527	+0.450/-0.265	+0.595/-0.737	+0.707/-0.441

Tabelle A8: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 46, 48, 52 und 53.

^{a)} $S = \{ \Sigma [w(F_o^2 - F_c^2)^2] / (n - p) \}^{0.5}; n = Anzahl der Reflexe; p = Anzahl der Parameter.$

^{b)}
$$w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	$\mathbf{54'}{\cdot}\mathrm{C_6H_5CH_3}$	55	56	$57{\cdot}0.7\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CH}_{3}$
Empirische Formel	$\mathrm{C}_{59}\mathrm{H}_{84}\mathrm{N}_8\mathrm{O}_2\mathrm{Si}_2$	$\mathrm{C}_{26}\mathrm{H}_{38}\mathrm{N}_{4}\mathrm{SSi}$	$\rm C_{26}H_{38}N_4SeSi$	$C_{30.91}H_{43.66}N_4SiTe$
Molekülmasse $[g mol^{-1}]$	993.52	466.75	513.65	626.97
Messtemperatur [K]	173(2)	173(2)	100(2)	100(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	monoklin	monoklin	monoklin
Raumgruppe (Nr.)	$P2_1/n \; (14)$	$P2_1/c$ (14)	$P2_1/n~(14)$	$P2_1/n~(14)$
a [Å]	11.106(3)	17.987(3)	11.1400(7)	11.6736(8)
<i>b</i> [Å]	23.640(4)	16.210(3)	16.3972(11)	16.2635(12)
c [Å]	22.783(5)	19.063(3)	14.7306(9)	17.2246(13)
β [°]	98.84(3)	105.88(2)	92.894(2)	104.762(2)
$V [\text{\AA}^3]$	5910(2)	5346.2(17)	2687.3(3)	3162.2(4)
Ζ	4	8	4	4
$\varrho_{ m ber} ~[{ m g~cm}^{-3}]$	1.117	1.160	1.270	1.317
$\mu ~(\mathrm{mm}^{-1})$	0.106	0.186	1.462	1.003
F(000)	2152	2016	1080	1292
Kristalldimensionen [mm]	$0.25\times0.25\times0.15$	$0.70\times0.25\times0.20$	0.5 imes 0.4 imes 0.3	0.5 imes 0.4 imes 0.3
Messbereich 2ϑ [°]	5.00 - 52.16	4.708 - 52.042	3.720 - 52.832	3.500 - 55.910
Index-Breite	$-13 \leq h \leq 13$	$-22 \le h \le 22$	$-13 \leq h \leq 13$	$-15 \leq h \leq 15$
	$-29 \le k \le 29$	$-20 \le k \le 20$	$-20 \leq k \leq 20$	$-21 \leq k \leq 21$
	$-28 \le l \le 28$	$-23 \le l \le 23$	$-18 \leq l \leq 18$	$-22 \leq l \leq 22$
gemessene Reflexe	4226	7273	79882	90882
unabhängige Reflexe	11415	10363	5518	7594
$R_{ m int}$	0.0740	0.0689	0.0529	0.0527
verfeinerte Parameter	690	593	327	309
Restraints	150	0	25	7
$S^{\mathrm{a})}$	0.891	0.991	1.045	1.048
Gewichtungsschema $a/b^{\rm b)}$	0.0370/0.0000	0.0343/0.0000	0.0197/2.3701	0.0259/4.1296
$R1^{ m c)}\;[I>2\sigma(I)]$	0.0385	0.0392	0.0334	0.0286
$wR2^{ m d)}$ (alle Daten)	0.0862	0.0863	0.0734	0.0692
Restelektronendichte [e $\mathrm{\AA}^{-3}]$	+0.469/-0.223	+0.429/-0.273	+0.536/-0.984	+1.162/-0.565

Tabelle A9: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 54'·C₆H₅CH₃, 55, 56 und 57·0.7C₆H₅CH₃.

^{a)} $S = \{ \sum [w(F_o^2 - F_c^2)^2] / (n - p) \}^{0.5}; n = \text{Anzahl der Reflexe}; p = \text{Anzahl der Parameter.} \}$

^{b)}
$$w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	58	59	60	61
Empirische Formel	$\mathrm{C}_{26}\mathrm{H}_{38}\mathrm{N}_4\mathrm{O}_3\mathrm{SSi}$	$\mathrm{C}_{26}\mathrm{H}_{38}\mathrm{N}_4\mathrm{O}_4\mathrm{S}_2\mathrm{Si}$	$\mathrm{C}_{28}\mathrm{H}_{50}\mathrm{B}_{10}\mathrm{N}_{4}\mathrm{Si}$	$\mathrm{C}_{28}\mathrm{H}_{41}\mathrm{N}_{5}\mathrm{Si}$
Molekülmasse [g mol ⁻¹]	514.75	562.81	578.91	475.75
Messtemperatur [K]	100(2)	100(2)	100(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	monoklin	triklin	orthorhombisch
Raumgruppe (Nr.)	Cc (9)	$P2_1/n$ (14)	$P\overline{1}$ (2)	$Pna2_1$ (33)
a [Å]	9.7158(5)	9.4889(16)	10.035(2)	17.7237(15)
<i>b</i> [Å]	17.7266(9)	18.986(4)	12.199(2)	9.7515(9)
c [Å]	15.9804(7)	15.666(3)	14.700(3)	16.3476(17)
a [°]	90	90	103.94(3)	90
β [°]	98.195(2)	95.267(12)	96.76(3)	90
γ [°]	90	90	100.71(3)	90
V [Å ³]	2724.2(2)	2810.4(10)	1691.0(6)	2825.4(5)
Ζ	4	4	2	4
$arrho_{ m ber}~[{ m g~cm}^{-3}]$	1.255	1.330	1.137	1.118
$\mu ~(\mathrm{mm}^{-1})$	0.197	0.271	0.096	0.107
F(000)	1104	1200	620	1032
Kristalldimensionen [mm]	$0.35\times0.25\times0.15$	$0.53\times0.49\times0.41$	$0.345 \times 0.197 \times 0.148$	0.5 imes 0.3 imes 0.3
Messbereich 2ϑ [°]	4.596 - 53.460	3.380 - 52.038	4.672 - 52.826	4.984 - 52.044
Index-Breite	$-12 \le h \le 12$	$-11 \le h \le 11$	$-12 \le h \le 12$	$-21 \le h \le 21$
	$-22 \le k \le 22$	$-23 \le k \le 23$	$-15 \le k \le 14$	$-12 \le k \le 12$
	$-20 \le l \le 20$	$-19 \le l \le 19$	$0 \le l \le 18$	$-20 \le l \le 20$
gemessene Reflexe	37859	35985	6913	27686
unabhängige Reflexe	5797	5540	6913	5540
$R_{ m int}$	0.0433	0.0284		0.0454
verfeinerte Parameter	325	352	457	319
Restraints	119	0	7	1
$S^{\mathrm{a})}$	1.066	1.153	1.099	1.039
Gewichtungsschema $a/b^{\rm b)}$	0.0724/1.6667	0.0385/2.8174	0.0585/0.4717	0.0537/0.0793
$R1^{ m c)}\;[I>2\sigma(I)]$	0.0411	0.0358	0.0405	0.0336
$wR2^{d)}$ (alle Daten)	0.1111	0.0995	0.1067	0.0853
abs. Strukturparameter	0.039(18)			-0.02(4)
Restelektronendichte [e $\mathrm{\AA}^{-3}]$	+0.910/-0.410	+0.652/-0.374	+0.364/-0.338	+0.196/-0.157

Tabelle A10: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 58, 59, 60 und 61.

^{a)} $S = \{ \Sigma [w(F_o^2 - F_c^2)^2] / (n - p) \}^{0.5}; n = Anzahl der Reflexe; p = Anzahl der Parameter.$

^{b)}
$$w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	66.8	68	69 ·CH ₃ CN	70.0.5n-C ₆ H ₁₄
Empirische Formel	$\rm C_{26}H_{38}BeCl_2N_4Si$	$\mathrm{C_{26}H_{38}I_2N_4Si}$	$C_{40}H_{51}N_5Se_2Si$	$\mathrm{C_{35}H_{45}F_6N_4Si}$
Molekülmasse $[g mol^{-1}]$	514.60	688.49	787.87	663.84
Messtemperatur [K]	173(2)	100(2)	173(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	orthorhombisch	triklin	triklin	monoklin
Raumgruppe (Nr.)	Pbcn (60)	$P\overline{1}$ (2)	$P\overline{1}$ (2)	$P2_1/c$ (14)
a [Å]	19.705(4)	10.3145(14)	10.685(2)	11.0556(14)
<i>b</i> [Å]	8.2894(17)	10.6736(15)	11.458(2)	17.872(2)
c [Å]	17.024(3)	15.348(2)	16.321(3)	17.762(3)
a [°]	90	105.661(7)	101.47(3)	90
β [°]	90	93.145(6)	93.32(3)	98.039(16)
γ [°]	90	113.626(5)	90.10(3)	90
V [Å ³]	2780.8(10)	1464.9(4)	1954.8(7)	3474.9(8)
Ζ	4	2	2	4
$arrho_{ m ber}~[{ m g~cm}^{-3}]$	1.229	1.561	1.339	1.269
$\mu~(\mathrm{mm}^{-1})$	0.298	2.208	1.956	0.130
F(000)	1096	684	816	1404
Kristalldimensionen [mm]	$0.30\times0.40\times0.40$	$0.40\times0.20\times0.20$	0.4 imes 0.4 imes 0.2	$0.75\times0.50\times0.30$
Messbereich 2ϑ [°]	5.22 - 52.74	2.804 - 61.102	4.72 - 52.04	5.12 - 52.04
Index-Breite	$-24 \leq h \leq 24$	$-14 \leq h \leq 14$	$-13 \leq h \leq 13$	$-13 \leq h \leq 13$
	$-10 \leq k \leq 10$	$-15 \leq k \leq 15$	$-13 \leq k \leq 13$	$-22 \leq k \leq 22$
	$-21 \leq l \leq 21$	$-21 \leq l \leq 21$	$-20 \leq l \leq 20$	$-21 \leq l \leq 21$
gemessene Reflexe	29361	58900	21439	37476
unabhängige Reflexe	2850	8697	7221	6512
$R_{ m int}$	0.0482	0.0305	0.0531	0.0438
verfeinerte Parameter	170	306	442	435
Restraints	1	0	0	0
$S^{\mathrm{a})}$	1.057	1.115	0.965	1.057
Gewichtungsschema $a/b^{\rm b)}$	0.0592/0.3692	7.2596/0.0000	0.0671/0.0000	0.0593/0.8123
$R1^{ m c)}\;[I>2\sigma(I)]$	0.0390	0.0384	0.0375	0.0383
$wR2^{ m d)}$ (alle Daten)	0.1071	0.0911	0.0953	0.1073
Restelektronendichte [e $\mathrm{\AA}^{-3}]$	+0.204/-0.189	+2.474/-2.929	+0.706/-0.879	+0.371/-0.413

Tabelle A11: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von $66\cdot 8$, 68, $69\cdot CH_3CN$ und $70\cdot 0.5n-C_6H_{14}$.

^{a)} $S = \{ \Sigma [w(F_o^2 - F_c^2)^2] / (n - p) \}^{0.5}; n = Anzahl der Reflexe; p = Anzahl der Parameter.$

^{b)}
$$w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

Verbindung 1

Abb. A1: Struktur der beiden kristallographisch unabhängigen Moleküle im Kristall von **1** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A12: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **1**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	у	Ζ	U_{eq}
Si1	6146(1)	7462(2)	13(1)	40(1)
Cl1	6049(1)	7049(3)	-1174(1)	94(1)
Cl2	6962(1)	6106(2)	401(2)	64(1)
Cl3	6657(1)	9118(2)	46(1)	55(1)
N1	5115(3)	7319(6)	-58(3)	41(1)
N2	5963(3)	7663(4)	1023(3)	27(1)
C1	5213(3)	7519(5)	710(3)	29(1)
C2	4558(3)	7543(5)	1085(3)	27(1)
C3	4161(4)	6509(6)	1149(4)	41(2)
C4	3542(4)	6528(8)	1478(4)	52(2)
C5	3313(4)	7594(8)	1735(4)	49(2)
C6	3699(4)	8628(7)	1663(4)	48(2)
C7	4333(3)	8615(6)	1349(4)	35(1)
C8	4341(3)	7305(6)	-663(4)	37(1)
C9	4213(4)	6153(7)	-1125(4)	50(2)
C10	4223(5)	8397(7)	-1159(4)	52(2)
C11	6342(3)	7753(5)	1875(3)	30(1)

Fortsetzung von Tab	belle A12:			
C12	7078(7)	8555(12)	2037(7)	92(3)
C13	6541(6)	6595(10)	2242(6)	80(3)
Si21	1132(1)	7771(1)	2495(1)	21(1)
Cl21	1012(1)	8097(2)	1289(1)	41(1)
Cl22	1885(1)	9198(2)	2872(1)	43(1)
Cl23	1704(1)	6165(1)	2524(1)	44(1)
N21	97(2)	7803(5)	2424(3)	28(1)
N22	963(2)	7535(4)	3523(3)	26(1)
C21	204(3)	7616(4)	3193(3)	21(1)
C22	-446(3)	7530(5)	3568(3)	24(1)
C23	-694(4)	6433(6)	3750(4)	42(2)
C24	-1320(4)	6357(7)	4090(5)	53(2)
C25	-1690(4)	7362(7)	4236(4)	44(2)
C26	-1447(4)	8447(7)	4058(4)	46(2)
C27	-827(4)	8560(6)	3717(4)	39(1)
C28	-671(3)	7681(6)	1832(3)	35(1)
C29	-704(4)	6555(7)	1346(4)	46(2)
C30	-888(4)	8797(7)	1331(4)	47(2)
C31	1355(3)	7457(6)	4362(4)	33(1)
C32	2113(4)	6779(8)	4507(4)	53(2)
C33	1469(4)	8675(7)	4732(4)	50(2)

Tabelle A13: Bindungslängen [Å] und -winkel [°] von ${\bf 1}.$

Si1-N1	1.789(5)	C4–C5	1.382(12)	N21-C28	1.472(6)
Si1–N2	1.930(5)	C5–C6	1.370(11)	N22–C21	1.304(6)
Si1–Cl3	2.060(3)	C6–C7	1.382(8)	N22–C31	1.466(7)
Si1–Cl2	2.074(3)	C8-C10	1.493(10)	C21–C22	1.480(7)
Si1–Cl1	2.129(3)	C8–C9	1.517(10)	C22–C23	1.375(8)
Si1–C1	2.321(6)	C11–C13	1.454(12)	C22–C27	1.400(8)
N1-C1	1.353(7)	C11–C12	1.537(13)	C23–C24	1.400(9)
N1–C8	1.481(7)	Si21-N21	1.787(4)	C24–C25	1.363(11)
N2-C1	1.291(7)	Si21-N22	1.956(5)	C25–C26	1.357(11)
N2-C11	1.484(7)	Si21–Cl22	2.058(2)	C26–C27	1.395(9)
C1–C2	1.485(7)	Si21–Cl23	2.068(2)	C28–C30	1.524(10)
C2–C3	1.376(8)	Si21-Cl21	2.135(2)	C28–C29	1.525(10)
C2–C7	1.390(8)	Si21–C21	2.320(5)	C31–C32	1.493(8)
C3–C4	1.373(9)	N21–C21	1.350(6)	C31–C33	1.507(10)
N1–Si1–N2	69.3(2)	C3–C2–C1	119.9(5)	C21–N21–C28	123.7(4)
N1–Si1–Cl3	120.6(2)	С7-С2-С1	119.8(5)	C21-N21-Si21	94.4(3)
N2–Si1–Cl3	93.04(17)	C4–C3–C2	120.2(7)	C28-N21-Si21	139.6(4)

N1–Si1–Cl2	123.4(2)	C3–C4–C5	119.6(7)	C21–N22–C31	126.5(5)
N2–Si1–Cl2	93.10(17)	C6–C5–C4	120.4(6)	C21–N22–Si21	88.4(3)
Cl3–Si1–Cl2	113.47(11)	C5–C6–C7	120.4(7)	C31–N22–Si21	144.6(4)
N1–Si1–Cl1	96.43(19)	C6–C7–C2	119.0(6)	N22–C21–N21	107.6(5)
N2–Si1–Cl1	165.19(17)	N1-C8-C10	111.8(6)	N22–C21–C22	127.9(5)
Cl3–Si1–Cl1	97.95(14)	N1-C8-C9	111.9(6)	N21-C21-C22	124.5(4)
Cl2–Si1–Cl1	91.59(14)	С10-С8-С9	113.8(6)	N22–C21–Si21	57.4(3)
N1–Si1–C1	35.5(2)	C13–C11–N2	112.5(6)	N21–C21–Si21	50.2(2)
N2–Si1–C1	33.79(19)	C13–C11–C12	110.8(7)	C22–C21–Si21	174.6(4)
Cl3–Si1–C1	109.14(17)	N2-C11-C12	110.2(6)	C23–C22–C27	119.7(5)
Cl2–Si1–C1	111.59(18)	N21–Si21–N22	69.6(2)	C23–C22–C21	120.1(5)
Cl1–Si1–C1	131.89(17)	N21-Si21-Cl23	120.01(19)	C27–C22–C21	120.2(5)
C1–N1–C8	124.9(5)	N22–Si21–Cl23	93.40(16)	C22–C23–C24	119.8(6)
C1–N1–Si1	94.2(4)	N21–Si21–Cl22	123.59(18)	C25-C24-C23	120.5(7)
C8–N1–Si1	139.3(4)	N22–Si21–Cl22	92.90(15)	C26-C25-C24	120.0(6)
C1–N2–C11	124.2(5)	Cl23–Si21–Cl22	114.01(10)	C25-C26-C27	121.3(6)
C1-N2-Si1	90.0(4)	N21-Si21-Cl21	96.50(16)	C26-C27-C22	118.7(6)
C11-N2-Si1	145.2(4)	N22–Si21–Cl21	166.08(15)	N21-C28-C30	111.9(5)
N2-C1-N1	106.5(5)	Cl23–Si21–Cl21	94.87(9)	N21-C28-C29	111.5(5)
N2-C1-C2	129.1(5)	Cl22–Si21–Cl21	93.93(9)	C30–C28–C29	112.7(5)
N1-C1-C2	124.4(5)	N21–Si21–C21	35.46(18)	N22-C31-C32	110.5(5)
N2–C1–Si1	56.2(3)	N22–Si21–C21	34.17(17)	N22-C31-C33	111.2(5)
N1–C1–Si1	50.2(3)	Cl23–Si21–C21	109.48(14)	C32–C31–C33	112.6(6)
C2-C1-Si1	174.6(4)	Cl22–Si21–C21	111.45(14)		
C3–C2–C7	120.3(5)	Cl21-Si21-C21	131.96(14)		

Fortsetzung von Tabelle A13:

Verbindung ${\bf 2}$

Abb. A2: Struktur von 2 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	Х	у	Z	U_{eq}
C1	4486(2)	1243(2)	3727(1)	32(1)
C2	5871(2)	600(2)	3757(1)	31(1)
C3	6033(2)	-466(2)	3527(1)	39(1)
C4	7351(2)	-1039(2)	3542(1)	49(1)
C5	8502(2)	-541(2)	3780(1)	51(1)
C6	8341(2)	513(2)	4008(1)	46(1)
C7	7024(2)	1086(2)	4004(1)	38(1)
C8	4378(2)	1594(2)	2863(1)	40(1)
C9	3439(3)	786(3)	2571(1)	68(1)
C10	4438(4)	2813(3)	2655(1)	68(1)
C11	3762(2)	1141(2)	4586(1)	49(1)
C12	3893(3)	2155(3)	4931(1)	73(1)
C13	2492(4)	358(3)	4704(1)	70(1)
F1	1261(1)	2631(2)	4176(1)	60(1)
F2	1097(1)	1700(2)	3434(1)	64(1)
F3	2613(2)	3611(1)	3577(1)	61(1)
N2	3849(2)	1644(2)	3350(1)	34(1)
N1	3653(2)	1580(2)	4099(1)	40(1)
Si	2331(1)	2304(1)	3740(1)	38(1)

Tabelle A14: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **2**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

C1–N2	1.305(2)	C4–C5	1.386(3)	C11–C13	1.518(4)
C1-N1	1.364(2)	C5-C6	1.376(4)	C11–C12	1.522(4)
C1–C2	1.483(2)	C6–C7	1.388(3)	F1–Si	1.6297(14)
C1–Si	2.3419(19)	C8–N2	1.469(2)	F2–Si	1.5949(15)
C2–C3	1.390(3)	C8–C10	1.512(4)	F3–Si	1.5840(16)
C2–C7	1.396(3)	C8–C9	1.515(3)	N2–Si	1.9446(16)
C3–C4	1.389(3)	C11–N1	1.473(2)	N1–Si	1.7979(17)
N2-C1-N1	106.06(16)	N2-C8-C10	110.10(18)	F2–Si–F1	94.18(8)
N2-C1-C2	127.85(16)	N2-C8-C9	110.17(18)	F3–Si–N1	119.07(9)
N1-C1-C2	126.03(16)	C10-C8-C9	111.7(2)	F2–Si–N1	126.92(10)
N2–C1–Si	56.14(9)	N1–C11–C13	110.8(2)	F1–Si–N1	95.31(7)
N1–C1–Si	49.93(9)	N1-C11-C12	110.5(2)	F3–Si–N2	94.55(8)
C2-C1-Si	175.62(13)	C13–C11–C12	111.5(2)	F2–Si–N2	92.58(8)
С3-С2-С7	120.04(17)	C1-N2-C8	127.32(15)	F1–Si–N2	164.28(7)
C3–C2–C1	120.06(16)	C1-N2-Si	89.99(11)	N1–Si–N2	69.36(7)
С7-С2-С1	119.87(18)	C8-N2-Si	142.43(13)	F3–Si–C1	109.97(7)
C4-C3-C2	119.62(19)	C1–N1–C11	126.12(16)	F2–Si–C1	112.53(8)
C5-C4-C3	120.1(2)	C1-N1-Si	94.59(11)	F1–Si–C1	130.70(7)
C6-C5-C4	120.29(19)	C11-N1-Si	137.35(13)	N1–Si–C1	35.49(7)
C5-C6-C7	120.3(2)	F3–Si–F2	111.56(9)	N2–Si–C1	33.87(6)
C6-C7-C2	119.6(2)	F3–Si–F1	96.13(9)		

Tabelle A15: Bindungslängen [Å] und -winkel [°] von $\mathbf{2}$.

Verbindung $\mathbf{3}$

Abb. A3: Struktur von **3** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).
	x	У	Z	U_{eq}
Br2	-1639(1)	3760(1)	2599(1)	40(1)
Br1	-139(1)	802(1)	1649(1)	42(1)
Br3	2042(1)	2989(1)	4438(1)	49(1)
C1	2425(3)	5625(3)	2416(2)	26(1)
C2	3479(3)	6958(3)	2164(2)	28(1)
C3	5135(3)	7351(3)	2661(2)	35(1)
C4	6099(4)	8595(3)	2404(3)	42(1)
C5	5409(4)	9422(3)	1665(3)	44(1)
C6	3766(4)	9030(4)	1170(3)	49(1)
C7	2785(4)	7800(3)	1418(3)	41(1)
C8	1903(4)	6966(3)	4279(2)	38(1)
C9	1140(6)	8184(4)	3840(4)	67(1)
C10	3622(4)	7675(5)	5130(3)	63(1)
C11	2401(3)	3331(3)	778(2)	31(1)
C12	2173(4)	4088(4)	-260(3)	46(1)
C13	4113(4)	3222(4)	1240(3)	48(1)
N2	1814(3)	5662(2)	3286(2)	29(1)
N1	1880(2)	4096(2)	1750(2)	27(1)
Si	808(1)	3450(1)	2712(1)	25(1)

Tabelle A16: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **3**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

Tabelle A17: Bindungslängen [Å] und -winkel [°] von $\mathbf{3}$.

Br2–Si	2.2352(12)	C2–C3	1.380(4)	C8–C9	1.512(5)
Br1–Si	2.3260(11)	C2–C7	1.386(4)	C8-C10	1.522(5)
Br3–Si	2.2354(13)	C3–C4	1.395(4)	C11–N1	1.474(3)
C1–N2	1.300(3)	C4–C5	1.370(5)	C11–C13	1.515(4)
C1-N1	1.361(3)	C5–C6	1.369(5)	C11–C12	1.518(4)
C1–C2	1.489(3)	C6–C7	1.389(4)	N2–Si	1.901(2)
C1–Si	2.316(3)	C8–N2	1.475(3)	N1–Si	1.788(2)
N2–C1–N1	105.6(2)	N2-C8-C9	112.2(3)	N2–Si–Br2	92.62(7)
N2-C1-C2	128.3(2)	N2-C8-C10	111.3(2)	N1–Si–Br3	122.33(9)
N1–C1–C2	126.1(2)	C9–C8–C10	113.2(3)	N2–Si–Br3	92.79(7)
N2–C1–Si	55.18(13)	N1-C11-C13	111.5(2)	Br2–Si–Br3	112.98(4)
N1–C1–Si	50.40(12)	N1-C11-C12	113.1(2)	N1–Si–C1	35.90(9)
C2-C1-Si	176.52(18)	C13–C11–C12	111.9(2)	N2–Si–C1	34.15(9)
C3–C2–C7	120.0(2)	C1-N2-C8	132.2(2)	Br2–Si–C1	110.75(7)
C3–C2–C1	120.5(2)	C1–N2–Si	90.67(16)	Br3–Si–C1	109.95(7)
C7–C2–C1	119.5(2)	C8–N2–Si	137.13(17)	N1–Si–Br1	96.04(8)

Fortsetzung von Tabelle A17:						
C2-C3-C4	119.5(3)	C1–N1–C11	128.7(2)	N2–Si–Br1	166.08(7)	
C5–C4–C3	120.4(3)	C1–N1–Si	93.70(15)	Br2–Si–Br1	95.02(3)	
C6-C5-C4	120.1(3)	C11-N1-Si	136.11(17)	Br3–Si–Br1	94.91(4)	
C5–C6–C7	120.4(3)	N1–Si–N2	70.04(9)	C1–Si–Br1	131.93(7)	
С2-С7-С6	119.6(3)	N1–Si–Br2	122.10(8)			

Verbindung $10.0.5Et_2O$

Abb. A4: Struktur von 10.0.5Et₂O im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A18: Atomkoordinaten (× 10^4) und äquivalente isotrope Auslenkungsparameter (Å ² × 10^3) d	er
Nichtwasserstoff-Atome von $10.0.5$ Et ₂ O. Die angegebenen U _{eq} -Werte sind definiert als 1/3 der Spur de	.es
orthogonalisierten U _{ij} -Tensors.	

	х	у	Z	U_{eq}
C1	7813(2)	3702(2)	2630(2)	23(1)
C2	7455(2)	2232(2)	2363(2)	27(1)
C3	8445(3)	1741(2)	2735(2)	32(1)
C4	8083(3)	373(2)	2481(2)	43(1)
C5	6752(3)	-501(2)	1870(2)	46(1)
C6	5759(3)	-20(2)	1507(2)	54(1)
C7	6105(3)	1346(2)	1747(2)	44(1)
C8	8883(3)	4217(2)	1063(2)	31(1)
C9	7770(3)	3093(3)	89(2)	53(1)
C10	10228(3)	4036(3)	1363(2)	46(1)
C11	6960(3)	3974(2)	4296(2)	30(1)
C12	7654(3)	5047(2)	5429(2)	39(1)
C13	5392(3)	3622(3)	3924(2)	47(1)

Fortsetzung von	Tabelle A18:			
C14	6811(2)	6444(2)	2932(2)	22(1)
C15	5499(2)	5633(2)	2149(2)	24(1)
C16	4324(2)	5923(2)	2114(2)	28(1)
C17	4435(2)	7055(2)	2891(2)	26(1)
C18	5687(2)	7889(2)	3693(2)	26(1)
C19	6852(2)	7571(2)	3693(2)	24(1)
C20	4177(3)	3646(2)	602(2)	43(1)
C21	3266(3)	8461(3)	3495(2)	43(1)
C22	8262(3)	9512(2)	5252(2)	43(1)
Cl2	9188(1)	7306(1)	1954(1)	35(1)
Cl1	10127(1)	6901(1)	4310(1)	33(1)
N1	8374(2)	4514(2)	2039(2)	25(1)
N2	7623(2)	4434(2)	3471(1)	24(1)
01	5488(2)	4533(2)	1406(1)	33(1)
O2	3222(2)	7272(2)	2788(1)	37(1)
O3	8144(2)	8365(1)	4430(1)	34(1)
Si	8364(1)	5987(1)	2927(1)	22(1)
C23	12013(11)	209(10)	1217(10)	99(3)
C24	10823(15)	472(13)	741(13)	115(4)
O4	9982(8)	-406(7)	-290(6)	91(2)
C25	8830(17)	-86(15)	-750(14)	128(5)
C26	8201(13)	-981(16)	-1883(10)	138(5)

Tabelle A19: Bindungslängen [Å] und -winkel [°] von $10.0.5Et_2O$.

C1–N2	1.303(3)	C11–N2	1.466(3)	C20–O1	1.439(3)
C1–N1	1.359(3)	C11–C13	1.528(4)	C21–O2	1.424(3)
C1-C2	1.501(3)	C11–C12	1.533(3)	C22–O3	1.430(3)
C1–Si	2.346(2)	C14–C19	1.404(3)	Cl2–Si	2.1928(10)
C2–C3	1.393(3)	C14–C15	1.414(3)	Cl1–Si	2.0879(12)
C2-C7	1.393(3)	C14–Si	1.887(2)	N1–Si	1.7994(18)
C3–C4	1.392(3)	C15–O1	1.384(3)	N2–Si	1.9774(19)
C4–C5	1.374(4)	C15–C16	1.387(3)	C23–C24	1.443(13)
C5–C6	1.384(4)	C16–C17	1.390(3)	C24–O4	1.384(12)
C6–C7	1.393(4)	C17–O2	1.378(3)	O4–C25	1.442(13)
C8-N1	1.475(3)	C17–C18	1.389(3)	C25–C26	1.455(15)
C8-C10	1.500(4)	C18–C19	1.399(3)		
C8–C9	1.518(3)	C19–O3	1.376(3)		
N2C1N1	107.24(17)	C19-C14-Si	123.91(16)	C19–O3–C22	117.92(19)
N2-C1-C2	125.9(2)	C15-C14-Si	120.68(15)	N1–Si–C14	126.63(9)
N1–C1–C2	126.8(2)	O1–C15–C16	122.66(18)	N1–Si–N2	68.97(8)
N2–C1–Si	57.42(11)	O1–C15–C14	114.27(19)	C14– Si – $N2$	93.97(9)
N1-C1-Si	49.83(10)	C16-C15-C14	123.07(19)	N1–Si–Cl1	111.48(7)

Fortsetzung von Tabelle A19:						
C2-C1-Si	176.35(16)	C15-C16-C17	118.65(19)	C14–Si–Cl1	119.56(7)	
C3-C2-C7	119.5(2)	O2–C17–C18	123.89(19)	N2–Si–Cl1	91.95(6)	
C3-C2-C1	121.1(2)	O2–C17–C16	114.69(19)	N1–Si–Cl2	95.82(7)	
С7-С2-С1	119.4(2)	C18-C17-C16	121.4(2)	C14– Si – $Cl2$	94.21(7)	
C4-C3-C2	119.9(2)	C17-C18-C19	118.20(19)	N2–Si–Cl2	164.72(6)	
С5-С4-С3	120.5(2)	O3-C19-C18	122.13(18)	Cl1–Si–Cl2	95.20(4)	
C4-C5-C6	119.9(2)	O3-C19-C14	114.6(2)	N1–Si–C1	35.24(9)	
C5-C6-C7	120.4(2)	C18-C19-C14	123.2(2)	C14– Si – $C1$	113.10(9)	
C6–C7–C2	119.8(2)	C1–N1–C8	129.54(17)	N2–Si–C1	33.74(8)	
N1-C8-C10	112.33(19)	C1-N1-Si	94.94(14)	Cl1–Si–C1	104.20(6)	
N1-C8-C9	112.6(2)	C8–N1–Si	135.38(15)	Cl2–Si–C1	131.02(7)	
С10-С8-С9	113.6(2)	C1-N2-C11	126.77(18)	O4–C24–C23	115.0(11)	
N2-C11-C13	111.03(19)	C1-N2-Si	88.84(14)	C24-O4-C25	113.2(10)	
N2-C11-C12	109.42(19)	C11-N2-Si	144.08(14)	O4-C25-C26	105.1(11)	
C13-C11-C12	111.2(2)	C15–O1–C20	117.26(19)			
C19-C14-C15	115.4(2)	C17-O2-C21	118.46(18)			

Abb. A5: Struktur von **13** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A20: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **13**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	У	Z	U_{eq}
C1	2175(1)	1366(1)	9500(1)	18(1)
C2	1846(2)	1459(1)	10615(1)	21(1)
C3	254(2)	1482(1)	10680(1)	30(1)
C4	-20(2)	1567(1)	11742(2)	42(1)
C5	1277(2)	1620(1)	12713(1)	43(1)
C6	2854(2)	1594(1)	12648(1)	38(1)
C7	3143(2)	1519(1)	11598(1)	28(1)
C8	1303(1)	414(1)	9213(1)	20(1)
C9	151(2)	154(1)	8160(1)	25(1)
C10	2728(2)	44(1)	9779(1)	29(1)
C11	3136(2)	2308(1)	9288(1)	22(1)
C12	2151(2)	2687(1)	8365(1)	27(1)
C13	4946(2)	2437(1)	9643(1)	30(1)
C14	922(1)	1203(1)	6535(1)	16(1)
C15	967(1)	917(1)	5556(1)	17(1)
C16	-432(1)	799(1)	4667(1)	19(1)
C17	-1917(1)	983(1)	4768(1)	19(1)
C18	-2034(1)	1283(1)	5707(1)	19(1)
C19	-618(1)	1388(1)	6572(1)	17(1)
C20	2665(2)	443(1)	4583(1)	22(1)
C21	-3344(2)	598(1)	2969(1)	27(1)
C22	-2107(1)	1912(1)	7598(1)	24(1)
C24	3892(1)	1966(1)	6134(1)	21(1)
C23	5197(1)	620(1)	7489(1)	21(1)
N2	1899(1)	929(1)	8887(1)	17(1)
N1	2860(1)	1734(1)	8951(1)	18(1)
N4	3736(1)	1821(1)	7021(1)	21(1)
N3	4386(1)	858(1)	7974(1)	22(1)
O1	2494(1)	760(1)	5528(1)	22(1)
O2	-3378(1)	894(1)	3964(1)	24(1)
O3	-608(1)	1685(1)	7521(1)	22(1)
O5	4107(1)	2131(1)	5277(1)	35(1)
O4	6038(1)	367(1)	7070(1)	34(1)
Si	2806(1)	1330(1)	7734(1)	16(1)

C1–N2	1.2930(15)	C11–N1	1.4741(15)	C20–O1	1.4348(14)
C1–N1	1.3566(15)	C11–C13	1.5192(18)	C21–O2	1.4236(15)
C1–C2	1.4837(16)	C11–C12	1.5200(18)	C22–O3	1.4271(14)
C1–Si	2.3659(12)	C14–C15	1.3978(16)	C24–N4	1.1829(16)
C2–C3	1.3882(18)	C14–C19	1.4083(16)	C24–O5	1.1833(15)
C2–C7	1.3917(19)	C14–Si	1.8700(12)	C23–O4	1.1747(15)
C3–C4	1.396(2)	C15–O1	1.3727(14)	C23–N3	1.1864(16)
C4–C5	1.380(3)	C15–C16	1.3982(16)	N2–Si	2.0436(10)
C5–C6	1.376(3)	C16–C17	1.3885(17)	N1–Si	1.7773(10)
C6–C7	1.3844(19)	C17–O2	1.3692(14)	N4–Si	1.8035(11)
C8–N2	1.4650(15)	C17–C18	1.3903(17)	N3–Si	1.7446(10)
C8–C9	1.5212(17)	C18-C19	1.3870(16)		
C8–C10	1.5231(17)	C19–O3	1.3668(14)		
N2-C1-N1	107.81(10)	C15–C14–Si	121.74(9)	C24-N4-Si	145.54(10)
N2-C1-C2	127.50(11)	C19–C14–Si	121.87(9)	C23–N3–Si	141.40(10)
N1-C1-C2	124.68(10)	O1-C15-C14	114.90(10)	C15-O1-C20	119.26(9)
N2-C1-Si	59.63(6)	O1-C15-C16	122.25(10)	C17-O2-C21	117.19(10)
N1-C1-Si	48.20(5)	C14–C15–C16	122.85(10)	C19-O3-C22	118.43(9)
C2-C1-Si	172.86(9)	C17-C16-C15	117.86(11)	N3–Si–N1	113.54(5)
C3–C2–C7	120.11(12)	O2–C17–C16	123.86(11)	N3–Si–N4	95.84(5)
C3-C2-C1	120.28(12)	O2–C17–C18	114.20(10)	N1-Si-N4	96.66(5)
C7–C2–C1	119.60(11)	C16-C17-C18	121.93(11)	N3–Si–C14	118.33(5)
C2–C3–C4	119.08(14)	C19–C18–C17	118.36(11)	N1-Si-C14	123.97(5)
C5-C4-C3	120.28(15)	O3-C19-C18	122.60(10)	N4–Si–C14	97.78(5)
C6-C5-C4	120.59(13)	O3-C19-C14	114.82(10)	N3–Si–N2	89.45(5)
С5-С6-С7	119.71(15)	C18-C19-C14	122.57(11)	N1–Si–N2	67.75(4)
C6–C7–C2	120.21(14)	N4-C24-O5	176.47(14)	N4–Si–N2	164.34(5)
N2-C8-C9	109.23(10)	O4-C23-N3	175.89(14)	C14– Si – $N2$	92.61(5)
N2-C8-C10	110.28(10)	C1–N2–C8	125.79(10)	N3–Si–C1	103.83(5)
C9–C8–C10	111.91(10)	C1–N2–Si	87.28(7)	N1–Si–C1	34.68(4)
N1-C11-C13	110.49(10)	C8–N2–Si	146.68(8)	N4–Si–C1	131.34(4)
N1-C11-C12	111.82(10)	C1–N1–C11	124.28(10)	C14– Si – $C1$	110.42(5)
C13-C11-C12	112.90(11)	C1–N1–Si	97.13(7)	N2–Si–C1	33.09(4)
C15–C14–C19	116.39(10)	C11-N1-Si	137.33(8)		

Tabelle A21: Bindungslängen	[Å]	und -winkel	[°]	von 13

${\rm Verbindung} \ {\bf 14}$

Abb. A6: Struktur von **14** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A22: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **14**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	х	у	Z	U_{eq}
C1	9879(1)	6882(1)	2692(1)	17(1)
C2	10946(1)	6070(1)	3179(1)	20(1)
C3	11787(2)	5722(2)	2635(2)	32(1)
C4	12774(2)	4955(2)	3109(2)	40(1)
C5	12910(2)	4541(2)	4120(2)	40(1)
C6	12068(2)	4884(2)	4661(2)	44(1)
C7	11079(2)	5657(2)	4201(1)	33(1)
C8	7846(1)	5312(1)	1527(1)	23(1)
C9	7657(2)	5046(1)	271(1)	30(1)
C10	6446(2)	5169(1)	1622(1)	31(1)
C11	11480(1)	8867(1)	3561(1)	19(1)
C12	11897(2)	9676(2)	2826(1)	31(1)
C13	11531(2)	9596(1)	4659(1)	28(1)
C14	7459(1)	8212(1)	468(1)	17(1)
C15	6041(1)	8302(1)	-110(1)	18(1)
C16	5376(1)	8166(1)	-1315(1)	21(1)
C17	6165(1)	7948(1)	-1946(1)	21(1)
C18	7584(1)	7865(1)	-1415(1)	21(1)

Fortsetzung	von Tabelle A22:			
C19	8194(1)	7992(1)	-223(1)	19(1)
C20	3898(1)	8594(1)	70(1)	25(1)
C21	4241(2)	7991(2)	-3724(2)	54(1)
C22	10401(2)	7701(2)	-260(1)	37(1)
C23	6309(2)	7984(1)	3047(1)	27(1)
C24	8804(1)	11035(1)	2657(1)	20(1)
N2	8560(1)	6560(1)	2035(1)	19(1)
N1	10108(1)	8122(1)	2889(1)	17(1)
N3	7281(1)	8143(1)	2828(1)	22(1)
N4	8601(1)	9970(1)	2419(1)	21(1)
O1	5641(1)	7784(1)	-3127(1)	28(1)
O2	5361(1)	8539(1)	590(1)	25(1)
O3	9573(1)	7887(1)	381(1)	26(1)
S1	5005(1)	7758(1)	3364(1)	57(1)
S2	9119(1)	12497(1)	3001(1)	30(1)
Si	8335(1)	8304(1)	2070(1)	16(1)

Tabelle A23: Bindungslängen [Å] und -winkel [°] von ${\bf 14}.$

C1–N2	1.2982(17)	C11–N1	1.4729(16)	C20–O2	1.4241(16)
C1-N1	1.3545(17)	C11–C13	1.521(2)	C21–O1	1.416(2)
C1–C2	1.4804(18)	C11–C12	1.5262(19)	C22–O3	1.4257(19)
C1–Si	2.3300(14)	C14–C15	1.3959(18)	C23–N3	1.168(2)
C2–C3	1.379(2)	C14–C19	1.401(2)	C23–S1	1.5865(16)
C2-C7	1.390(2)	C14–Si	1.8703(14)	C24–N4	1.1663(19)
C3–C4	1.388(2)	C15–O2	1.3668(17)	C24–S2	1.6033(14)
C4–C5	1.378(3)	C15–C16	1.4017(19)	N2–Si	1.9647(12)
С5-С6	1.375(3)	C16–C17	1.386(2)	N1–Si	1.7815(11)
C6–C7	1.391(2)	C17–O1	1.3714(17)	N3–Si	1.7499(13)
C8-N2	1.4650(17)	C17–C18	1.3889(19)	N4–Si	1.8226(12)
C8-C10	1.522(2)	C18–C19	1.385(2)		
С8-С9	1.530(2)	C19–O3	1.3692(16)		
N2-C1-N1	107.07(11)	C15-C14-Si	122.61(11)	C23-N3-Si	162.33(12)
N2-C1-C2	127.52(12)	C19-C14-Si	121.09(10)	C24-N4-Si	178.46(12)
N1-C1-C2	125.38(11)	O2-C15-C14	114.77(12)	C17-O1-C21	117.17(13)
N2-C1-Si	57.46(7)	O2–C15–C16	122.99(12)	C15-O2-C20	118.48(11)
N1–C1–Si	49.61(6)	C14-C15-C16	122.25(13)	C19–O3–C22	117.42(11)
C2-C1-Si	174.54(10)	C17-C16-C15	118.46(12)	N3–Si–N1	113.05(6)
C3-C2-C7	120.41(14)	O1–C17–C16	124.33(12)	N3–Si–N4	92.45(6)
C3-C2-C1	121.06(13)	O1–C17–C18	113.98(13)	N1–Si–N4	95.45(5)
С7-С2-С1	118.53(14)	C16-C17-C18	121.69(13)	N3–Si–C14	118.21(6)
С2-С3-С4	119.90(16)	C19-C18-C17	117.86(13)	N1-Si-C14	126.44(6)
С5-С4-С3	119.97(17)	O3-C19-C18	122.38(13)	N4–Si–C14	96.86(6)

Fortsetzung von	Tabelle A23:				
C6-C5-C4	120.20(15)	O3–C19–C14	114.12(12)	N3–Si–N2	90.58(5)
С5-С6-С7	120.49(17)	C18–C19–C14	123.48(12)	N1–Si–N2	69.24(5)
С2-С7-С6	119.03(17)	N3-C23-S1	178.94(14)	N4–Si–N2	164.30(5)
N2-C8-C10	109.28(12)	N4-C24-S2	178.67(13)	C14-Si-N2	95.26(5)
N2-C8-C9	109.94(11)	C1-N2-C8	126.88(12)	N3–Si–C1	103.56(5)
С10-С8-С9	111.36(12)	C1-N2-Si	88.69(8)	N1–Si–C1	35.39(5)
N1-C11-C13	111.61(11)	C8–N2–Si	144.24(9)	N4–Si–C1	130.73(5)
N1-C11-C12	111.37(11)	C1-N1-C11	124.88(11)	C14– Si – $C1$	114.51(6)
C13-C11-C12	112.39(12)	C1-N1-Si	95.00(8)	N2–Si–C1	33.85(4)
C15-C14-C19	116.25(12)	C11–N1–Si	140.10(9)		

Abb. A7: Struktur von **15** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	x	у	Z	U_{eq}
C1	1168(1)	9361(1)	3598(1)	15(1)
C2	537(1)	8716(1)	4120(1)	16(1)
C3	906(1)	7873(1)	4178(1)	20(1)
C4	296(1)	7261(1)	4633(1)	23(1)
C5	-674(1)	7488(1)	5047(1)	24(1)
C6	-1042(1)	8325(1)	4998(1)	22(1)
C7	-445(1)	8940(1)	4530(1)	19(1)
C8	-316(1)	9829(1)	2325(1)	17(1)
C9	-229(1)	9744(1)	1216(1)	26(1)
C10	-917(1)	10650(1)	2564(1)	23(1)
C11	3025(1)	9220(1)	4590(1)	20(1)
C12	3976(1)	8768(1)	4132(1)	27(1)
C13	3444(1)	9902(1)	5331(1)	26(1)
C14	2660(1)	9816(1)	1584(1)	15(1)
C15	2647(1)	8939(1)	1356(1)	16(1)
C16	2995(1)	8620(1)	478(1)	18(1)
C17	3354(1)	9186(1)	-219(1)	16(1)
C18	3366(1)	10057(1)	-54(1)	17(1)
C19	3024(1)	10350(1)	846(1)	16(1)
C20	2322(1)	7512(1)	1888(1)	26(1)
C21	4168(1)	9341(1)	-1755(1)	21(1)
C22	3518(1)	11796(1)	450(1)	20(1)
C23	3443(1)	11667(1)	3091(1)	16(1)
C24	4303(1)	12250(1)	3239(1)	19(1)
C25	4080(1)	13109(1)	3008(1)	22(1)
C26	3018(1)	13368(1)	2665(1)	22(1)
C27	2141(1)	12781(1)	2545(1)	20(1)
C28	2374(1)	11939(1)	2760(1)	16(1)
N2	801(1)	9819(1)	2832(1)	15(1)
N1	2240(1)	9587(1)	3814(1)	16(1)
01	2271(1)	8408(1)	2060(1)	20(1)
O2	3673(1)	8807(1)	-1059(1)	21(1)
O3	3024(1)	11197(1)	1073(1)	21(1)
O5	3517(1)	10807(1)	3204(1)	16(1)
O4	1630(1)	11284(1)	2643(1)	16(1)
Si	2262(1)	10314(1)	2769(1)	13(1)

Tabelle A24: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **15**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

C1–N2	1.3097(16)	C11-C13	1.5249(18)	C22–O3	1.4287(14)
C1–N1	1.3504(16)	C11–C12	1.5259(19)	C23–O5	1.3580(15)
C1–C2	1.4814(17)	C14–C19	1.4044(17)	C23–C24	1.3848(17)
C1–Si	2.3445(12)	C14–C15	1.4073(17)	C23–C28	1.3976(18)
C2–C3	1.3949(18)	C14–Si	1.8889(12)	C24–C25	1.4035(18)
C2–C7	1.3969(18)	C15–O1	1.3733(15)	C25–C26	1.387(2)
C3–C4	1.3872(18)	C15–C16	1.3920(17)	C26–C27	1.4019(18)
C4–C5	1.388(2)	C16–C17	1.3928(18)	C27–C28	1.3748(18)
C5–C6	1.383(2)	C17–O2	1.3704(14)	C28–O4	1.3645(15)
C6–C7	1.3904(18)	C17–C18	1.3843(17)	N2–Si	1.9356(11)
C8–N2	1.4606(16)	C18–C19	1.3996(17)	N1–Si	1.8214(10)
C8–C9	1.5250(17)	C19–O3	1.3634(14)	O5–Si	1.7568(9)
C8–C10	1.5256(17)	C20–O1	1.4248(15)	O4–Si	1.7028(9)
C11–N1	1.4734(15)	C21–O2	1.4309(15)		
N2-C1-N1	106.36(10)	O1–C15–C14	115.97(10)	C1–N1–Si	94.15(7)
N2-C1-C2	126.95(11)	C16-C15-C14	122.70(11)	C11-N1-Si	138.67(8)
N1-C1-C2	126.69(11)	C15-C16-C17	119.19(11)	C15–O1–C20	117.52(10)
N2–C1–Si	55.65(6)	O2-C17-C18	124.22(11)	C17–O2–C21	117.38(10)
N1–C1–Si	50.79(6)	O2-C17-C16	114.60(11)	C19-O3-C22	119.81(9)
C2-C1-Si	176.12(9)	C18–C17–C16	121.18(11)	C23-O5-Si	110.64(8)
C3–C2–C7	119.54(11)	C17-C18-C19	117.70(11)	C28-O4-Si	112.08(7)
C3–C2–C1	119.92(11)	O3-C19-C18	121.51(11)	O4–Si–O5	90.40(4)
C7–C2–C1	120.51(11)	O3-C19-C14	114.36(10)	O4–Si–N1	126.91(5)
C4–C3–C2	120.06(12)	C18-C19-C14	124.13(11)	O5–Si–N1	94.74(4)
C3–C4–C5	120.13(12)	O5–C23–C24	126.68(12)	O4–Si–C14	115.31(5)
C6–C5–C4	120.16(12)	O5–C23–C28	112.91(10)	O5-Si-C14	101.17(5)
C5–C6–C7	120.13(12)	C24-C23-C28	120.37(11)	N1–Si–C14	115.30(5)
C6–C7–C2	119.97(12)	C23-C24-C25	118.26(12)	O4–Si–N2	87.71(4)
N2-C8-C9	109.04(10)	C26-C25-C24	120.68(12)	O5–Si–N2	157.55(4)
N2-C8-C10	110.24(10)	C25-C26-C27	120.95(12)	N1–Si–N2	68.98(5)
C9–C8–C10	110.96(11)	C28-C27-C26	117.80(12)	C14– Si – $N2$	99.84(5)
N1-C11-C13	110.81(11)	O4-C28-C27	125.26(11)	O4–Si–C1	110.54(4)
N1-C11-C12	110.44(10)	O4-C28-C23	112.80(10)	O5–Si–C1	128.58(4)
C13–C11–C12	112.04(11)	C27-C28-C23	121.88(11)	N1–Si–C1	35.06(4)
C19–C14–C15	115.07(11)	C1–N2–C8	128.06(10)	C14–Si–C1	109.95(5)
C19– $C14$ – Si	118.68(9)	C1-N2-Si	90.39(8)	N2–Si–C1	33.96(4)
C15-C14-Si	126.24(9)	C8–N2–Si	141.53(8)		
O1-C15-C16	121.33(11)	C1-N1-C11	126.79(10)		

Tabelle A25: Bindungslängen [Å] und -winkel [°] von ${\bf 15}.$

Abb. A8: Struktur von **18** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	Х	У	Z	U_{eq}
Cl1	10736(1)	1617(1)	5211(1)	41(1)
Cl2	11028(1)	2361(1)	3284(1)	40(1)
Si	9142(1)	1771(1)	3744(1)	27(1)
F1	5512(1)	1955(1)	2182(1)	43(1)
F2	3321(1)	2980(1)	1889(1)	51(1)
F3	4081(2)	4073(1)	3119(1)	60(1)
F4	7058(2)	4107(1)	4663(1)	54(1)
F5	9287(1)	3088(1)	4970(1)	41(1)
N2	7497(2)	1084(1)	3911(1)	29(1)
N1	8812(2)	1164(1)	2756(1)	32(1)
C1	7634(2)	805(1)	3079(1)	29(1)
C2	6650(2)	220(1)	2554(1)	30(1)
C3	6904(2)	-401(1)	3017(1)	38(1)
C4	5924(3)	-943(1)	2544(1)	41(1)
C5	4690(2)	-862(1)	1617(1)	37(1)
C6	4441(2)	-244(1)	1151(1)	39(1)
C7	5420(2)	300(1)	1614(1)	36(1)
C8	6331(2)	868(1)	4510(1)	35(1)
C9	5367(2)	1462(1)	4776(2)	44(1)
C10	7355(3)	500(1)	5469(1)	45(1)

Tabelle A26: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **18**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

Fortsetzung von	Tabelle A26:			
C11	9418(2)	993(1)	1860(1)	39(1)
C12	8904(3)	1518(1)	1029(2)	56(1)
C13	11347(3)	834(1)	2165(2)	51(1)
C14	7510(2)	2474(1)	3586(1)	28(1)
C15	5955(2)	2478(1)	2814(1)	32(1)
C16	4798(2)	3004(1)	2649(1)	36(1)
C17	5174(2)	3552(1)	3277(1)	40(1)
C18	6680(2)	3567(1)	4056(1)	37(1)
C19	7820(2)	3038(1)	4204(1)	31(1)

Tabelle A27: Bindungslängen [Å] und -winkel [°] von ${\bf 18}.$

Cl1–Si	2.0783(8)	N2-C1	1.302(2)	С8-С9	1.523(3)
Cl2–Si	2.1544(6)	N2-C8	1.4740(19)	C8-C10	1.529(2)
Si–N1	1.7858(14)	N1-C1	1.362(2)	C11–C13	1.520(3)
Si-C14	1.8974(15)	N1-C11	1.483(2)	C11-C12	1.522(3)
Si–N2	1.9698(13)	C1–C2	1.484(2)	C14–C15	1.391(2)
Si–C1	2.3344(15)	C2–C3	1.390(2)	C14–C19	1.395(2)
F1-C15	1.3454(18)	C2–C7	1.393(2)	C15–C16	1.382(2)
F2–C16	1.341(2)	C3–C4	1.392(2)	C16–C17	1.379(3)
F3–C17	1.3443(19)	C4–C5	1.382(3)	C17–C18	1.369(3)
F4-C18	1.349(2)	C5–C6	1.386(2)	C18–C19	1.382(2)
F5–C19	1.3416(19)	C6–C7	1.391(2)		
N1–Si–C14	118.19(7)	C11-N1-Si	140.69(11)	C13–C11–C12	113.04(16)
N1–Si–N2	69.41(6)	N2-C1-N1	107.14(13)	C15–C14–C19	115.08(14)
C14– Si – $N2$	94.09(6)	N2-C1-C2	126.87(14)	C15–C14–Si	122.37(11)
N1–Si–Cl1	123.38(5)	N1C1C2	125.95(13)	C19–C14–Si	122.48(11)
C14–Si–Cl1	116.00(5)	N2–C1–Si	57.52(8)	F1-C15-C16	116.70(14)
N2–Si–Cl1	91.91(4)	N1–C1–Si	49.67(7)	F1-C15-C14	120.09(13)
N1–Si–Cl2	96.92(5)	C2–C1–Si	174.26(11)	C16–C15–C14	123.20(14)
C14–Si–Cl2	94.37(5)	C3–C2–C7	119.95(14)	F2-C16-C17	120.24(15)
N2–Si–Cl2	166.17(4)	C3-C2-C1	120.11(14)	F2-C16-C15	120.38(16)
Cl1–Si–Cl2	94.19(3)	C7–C2–C1	119.88(13)	C17–C16–C15	119.38(15)
N1–Si–C1	35.54(6)	C2-C3-C4	120.04(16)	F3-C17-C18	120.08(17)
C14–Si–C1	108.05(6)	C5–C4–C3	119.98(15)	F3-C17-C16	120.32(17)
N2–Si–C1	33.90(5)	C4–C5–C6	120.14(15)	C18–C17–C16	119.60(15)
Cl1–Si–C1	111.29(4)	C5–C6–C7	120.33(16)	F4-C18-C17	119.62(15)
Cl2–Si–C1	132.45(4)	C6–C7–C2	119.56(14)	F4-C18-C19	120.35(16)
C1-N2-C8	125.75(13)	N2-C8-C9	110.37(13)	C17-C18-C19	120.02(15)
C1–N2–Si	88.58(9)	N2-C8-C10	110.41(14)	F5-C19-C18	117.07(14)
C8-N2-Si	145.48(10)	C9–C8–C10	111.09(14)	F5-C19-C14	120.21(13)
C1–N1–C11	124.52(13)	N1-C11-C13	111.63(15)	C18-C19-C14	122.71(15)
C1–N1–Si	94.79(9)	N1-C11-C12	111.98(14)		

Abb. A9: Struktur von **19** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A28: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **19**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	х	у	Z	U_{eq}
Br1	4606(1)	6221(1)	1089(1)	40(1)
Br2	4844(1)	4903(1)	3086(1)	40(1)
Si	3507(1)	5990(1)	2367(1)	25(1)
F1	1704(2)	6710(2)	3852(2)	48(1)
F2	1915(3)	8106(2)	5159(2)	61(1)
F3	3959(3)	9141(2)	5322(2)	60(1)
F4	5837(2)	8730(2)	4182(2)	53(1)
F5	5671(2)	7318(2)	2904(2)	45(1)
N1	2284(2)	5163(2)	2340(2)	26(1)
N2	2124(2)	6618(2)	1798(2)	26(1)
C1	1525(2)	5813(2)	1937(2)	24(1)
C2	247(2)	5663(2)	1707(2)	26(1)
C3	-595(3)	5863(2)	2380(3)	35(1)
C4	-1797(3)	5752(3)	2159(3)	46(1)
C5	-2129(3)	5463(3)	1267(3)	47(1)
C6	-1284(3)	5281(3)	597(3)	46(1)
C7	-84(3)	5385(2)	815(2)	37(1)
C8	2042(3)	4150(2)	2636(3)	37(1)

Fortsetzung v	on Tabelle A28:			
C9	1356(4)	4121(4)	3553(3)	61(1)
C10	1461(4)	3534(3)	1882(4)	58(1)
C11	1667(3)	7504(2)	1339(2)	35(1)
C12	2176(4)	8406(3)	1788(4)	58(1)
C13	1933(4)	7476(4)	292(3)	60(1)
C14	3674(3)	6958(2)	3309(2)	30(1)
C15	2757(3)	7189(2)	3918(3)	37(1)
C16	2840(4)	7909(3)	4592(2)	42(1)
C17	3879(4)	8437(3)	4674(2)	42(1)
C18	4819(3)	8223(2)	4101(2)	39(1)
C19	4710(3)	7493(2)	3431(2)	34(1)

Tabelle A29: Bindungslängen [Å] und -winkel [°] von ${\bf 19}.$

Br1–Si	2.2297(9)	N1-C1	1.359(4)	C8-C10	1.516(6)
Br2–Si	2.3495(8)	N1-C8	1.468(4)	C8–C9	1.522(6)
Si–N1	1.780(2)	N2C1	1.303(4)	C11–C12	1.501(5)
Si-C14	1.895(3)	N2-C11	1.467(4)	C11–C13	1.527(6)
Si–N2	1.955(3)	C1–C2	1.492(4)	C14–C19	1.387(5)
Si–C1	2.328(3)	C2–C3	1.378(4)	C14–C15	1.387(5)
F1-C15	1.357(4)	C2–C7	1.382(4)	C15–C16	1.379(5)
F2–C16	1.347(4)	C3–C4	1.400(5)	C16–C17	1.379(6)
F3–C17	1.337(4)	C4–C5	1.386(6)	C17–C18	1.370(5)
F4-C18	1.344(4)	C5–C6	1.373(6)	C18–C19	1.387(4)
F5–C19	1.341(4)	C6–C7	1.395(5)		
N1–Si–C14	122.14(13)	C11–N2–Si	145.7(2)	C12–C11–C13	111.5(3)
N1–Si–N2	69.60(11)	N2C1N1	106.7(2)	C19–C14–C15	115.4(3)
C14–Si–N2	94.04(12)	N2-C1-C2	125.5(3)	C19–C14–Si	122.6(2)
N1–Si–Br1	120.12(9)	N1-C1-C2	127.7(3)	C15–C14–Si	122.0(2)
C14–Si–Br1	115.45(10)	N2–C1–Si	57.11(14)	F1–C15–C16	116.7(3)
N2–Si–Br1	92.24(8)	N1–C1–Si	49.65(13)	F1-C15-C14	119.9(3)
N1–Si–C1	35.57(11)	C2–C1–Si	176.8(2)	C16–C15–C14	123.4(3)
C14–Si–C1	110.79(12)	C3–C2–C7	120.9(3)	F2-C16-C17	120.1(3)
N2–Si–C1	34.04(10)	C3-C2-C1	118.9(3)	F2-C16-C15	120.7(4)
Br1–Si–C1	109.30(8)	C7–C2–C1	120.1(3)	C17–C16–C15	119.2(3)
N1–Si–Br2	96.14(8)	C2-C3-C4	119.1(3)	F3-C17-C18	121.0(3)
C14–Si–Br2	93.64(10)	C5-C4-C3	120.0(3)	F3-C17-C16	119.3(4)
N2–Si–Br2	165.74(8)	C6-C5-C4	120.4(3)	C18–C17–C16	119.7(3)
Br1–Si–Br2	95.28(3)	C5-C6-C7	119.9(4)	F4-C18-C17	119.9(3)
C1–Si–Br2	131.70(8)	C2-C7-C6	119.6(3)	F4-C18-C19	120.2(3)
C1-N1-C8	128.1(2)	N1-C8-C10	113.3(3)	C17–C18–C19	119.8(3)
C1–N1–Si	94.79(18)	N1-C8-C9	111.5(3)	F5-C19-C14	121.1(3)
C8–N1–Si	137.1(2)	C10–C8–C9	112.3(3)	F5-C19-C18	116.4(3)

Fortsetzung von Tabelle A29:						
C1-N2-C11	125.4(3)	N2-C11-C12	110.3(3)	C14–C19–C18	122.6(3)	
C1-N2-Si	88.86(18)	N2-C11-C13	110.4(3)			

Abb. A10: Struktur von **26** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A30: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **26**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	у	Z	U_{eq}
C1	5413(3)	8821(2)	2983(2)	30(1)
C2	6878(3)	8796(2)	3988(2)	33(1)
C3	4933(3)	6299(2)	2791(2)	24(1)
C4	2075(3)	3134(2)	2968(2)	28(1)
C5	1149(3)	1235(2)	2531(2)	37(1)
C6	5704(3)	3365(2)	2289(2)	29(1)
C7	6898(3)	3610(3)	3759(2)	37(1)
C8	2440(2)	3712(2)	372(2)	22(1)
C9	2633(3)	2662(2)	-565(2)	28(1)
Cl1	2430(1)	8505(1)	267(1)	30(1)
Cl2	640(1)	6756(1)	2785(1)	31(1)
N1	4137(2)	7209(2)	2185(2)	24(1)
N2	6578(2)	7185(2)	3873(2)	30(1)
N3	1170(2)	4483(2)	180(1)	22(1)

Fortsetzung von Tabelle A30:					
Р	3812(1)	4095(1)	2121(1)	23(1)	
Si	1426(1)	6398(1)	999(1)	21(1)	

Tabelle A31: Bindungslängen [Å] und -winkel [°] von ${\bf 26}.$

C1–C2	1.361(3)	C4–P	1.7987(18)	Cl2–Si	2.1263(7)
C1–N1	1.376(2)	C6–C7	1.537(3)	N1–Si	1.9138(15)
C2–N2	1.375(2)	С6-Р	1.7966(19)	N3–Si	1.7282(15)
C3–N2	1.325(2)	C8–C9	1.335(2)	N3–Si ⁱ	1.8364(15)
C3–N1	1.365(2)	C8–N3	1.402(2)	$Si-N3^{i}$	1.8364(15)
С3–Р	1.7786(17)	C8–P	1.7992(18)	$Si-Si^i$	2.7153(9)
C4–C5	1.527(3)	Cl1–Si	2.1227(7)		
C2-C1-N1	108.34(16)	C3–N2–C2	103.27(15)	N3–Si–Cl1	122.86(6)
C1–C2–N2	110.19(16)	C8–N3–Si	132.61(12)	$N3^{i}$ –Si–Cl1	92.75(5)
N2-C3-N1	114.97(15)	$C8-N3-Si^i$	128.06(11)	N1–Si–Cl1	88.86(5)
N2–C3–P	124.15(14)	Si–N3–Si ⁱ	99.19(7)	N3–Si–Cl2	121.34(6)
N1–C3–P	120.87(13)	C3–P–C6	111.22(9)	$N3^{i}$ –Si–Cl2	95.16(5)
С5-С4-Р	113.41(13)	C3-P-C4	109.59(8)	N1–Si–Cl2	86.51(5)
С7-С6-Р	114.79(13)	C6–P–C4	110.53(9)	Cl1–Si–Cl2	115.77(3)
C9–C8–N3	128.07(16)	C3–P–C8	103.57(8)	N3–Si–Si ⁱ	41.88(5)
С9-С8-Р	117.45(14)	C6-P-C8	111.99(9)	$N3^{i}$ –Si–Si	38.92(4)
N3–C8–P	114.30(12)	C4-P-C8	109.72(8)	N1–Si–Si ⁱ	137.99(5)
C3–N1–C1	103.22(15)	$N3-Si-N3^{i}$	80.81(7)	Cl1–Si–Si ⁱ	112.20(3)
C3–N1–Si	126.42(11)	N3–Si–N1	96.10(7)	Cl2–Si–Si ⁱ	113.07(3)
C1–N1–Si	126.52(12)	$N3^{i}$ –Si–N1	176.91(6)		

Verbindung $\mathbf{27}$

Abb. A11: Struktur von **27** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A32: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **27**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	у	Z	U_{eq}
C1	6846(3)	12758(2)	312(1)	29(1)
C2	5994(3)	13439(2)	-253(1)	33(1)
C3	8148(3)	12594(2)	-777(1)	23(1)
Cl1	12178(1)	12068(1)	675(1)	34(1)
Cl2	9046(1)	11547(1)	1637(1)	29(1)
N1	8259(2)	12191(1)	-10(1)	22(1)
N2	6820(2)	13342(2)	-945(1)	31(1)
Si	9848(1)	11089(1)	420(1)	19(1)
C4	8390(3)	11307(2)	-2270(1)	31(1)
C5	9487(3)	11006(2)	-2969(1)	38(1)
C6	10245(3)	13721(2)	-1956(1)	36(1)
C7	10979(4)	14651(2)	-1353(2)	55(1)
C8	11250(2)	11283(2)	-1102(1)	21(1)
C9	12870(3)	11327(2)	-1339(1)	24(1)
C10	14295(3)	10507(2)	-1029(1)	30(1)

Fortsetzung von Tabelle A32:						
N3	10568(2)	10514(1)	-518(1)	19(1)		
Р	9567(1)	12229(1)	-1539(1)	22(1)		

Tabelle A33: Bindungslängen [Å] und -winkel [°] von $\mathbf{27}$.

C1–C2	1.359(3)	Cl2–Si	2.2595(6)	C6–C7	1.521(4)
C1–N1	1.388(2)	N1–Si	1.8327(17)	С6-Р	1.814(2)
C2–N2	1.379(3)	$Si-N3^{i}$	1.7270(15)	C8–C9	1.346(3)
C3–N2	1.325(3)	Si–N3	1.8320(14)	C8–N3	1.409(2)
C3–N1	1.385(2)	Si–Si ⁱ	2.7237(9)	С8-Р	1.7898(19)
С3-Р	1.7907(18)	C4–C5	1.536(3)	C9–C10	1.490(3)
Cl1–Si	2.1214(7)	C4–P	1.808(2)	N3–Si ⁱ	1.7270(15)
C2–C1–N1	108.43(17)	N3–Si–Cl1	92.95(5)	C9-C8-N3	128.47(17)
C1-C2-N2	110.17(17)	N1–Si–Cl1	109.67(5)	С9-С8-Р	122.45(14)
N2-C3-N1	114.07(16)	N3 ⁱ –Si–Cl2	93.31(5)	N3-C8-P	109.05(12)
N2-C3-P	118.05(14)	N3–Si–Cl2	172.65(5)	С8-С9-С10	124.66(17)
N1-C3-P	127.89(14)	N1–Si–Cl2	91.67(5)	$C8-N3-Si^i$	135.14(12)
C3–N1–C1	103.15(16)	Cl1–Si–Cl2	88.41(3)	C8–N3–Si	125.03(11)
C3–N1–Si	126.36(12)	$N3^{i}$ –Si–Si	41.51(5)	Si ⁱ –N3–Si	99.83(7)
C1–N1–Si	130.38(13)	N3–Si–Si ⁱ	38.67(4)	С8-Р-С3	106.11(8)
C3–N2–C2	104.19(17)	N1–Si–Si ⁱ	113.04(6)	C8-P-C4	109.71(9)
N3 ⁱ –Si–N3	80.17(7)	$Cl1-Si-Si^i$	115.22(3)	С3-Р-С4	108.09(9)
N3 ⁱ –Si–N1	122.07(8)	Cl2–Si–Si ⁱ	134.72(3)	С8-Р-С6	115.26(10)
N3–Si–N1	94.67(7)	С5-С4-Р	111.72(15)	С3-Р-С6	107.63(9)
N3 ⁱ –Si–Cl1	128.13(6)	С7-С6-Р	113.29(17)	C4–P–C6	109.75(11)

Abb. A12: Struktur von **28** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A34: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **28**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	У	Z	U_{eq}
C1	655(1)	9554(2)	-1158(1)	34(1)
C2	703(1)	10644(2)	-1180(1)	39(1)
C3	1796(1)	10125(2)	-66(1)	24(1)
C4	3543(1)	10988(2)	467(1)	28(1)
C5	3659(2)	10400(2)	-350(1)	35(1)
C6	4416(1)	11170(2)	1227(2)	44(1)
C7	2577(1)	11010(2)	1795(1)	30(1)
C8	2306(2)	12179(2)	1505(1)	38(1)
C9	1896(2)	10432(2)	2106(2)	42(1)
C10	3157(1)	8896(1)	1231(1)	22(1)
C11	3714(1)	8727(2)	2074(1)	30(1)
N3	2834(1)	8135(1)	538(1)	23(1)
Cl2	324(1)	7225(1)	-762(1)	31(1)
Cl1	1451(1)	7596(1)	1211(1)	33(1)
N1	1363(1)	9188(1)	-438(1)	24(1)

Fortsetzung	von Tabelle A34:			
N2	1422(1)	11018(1)	-492(1)	34(1)
Р	2782(1)	10252(1)	883(1)	22(1)
Si	1680(1)	7803(1)	-35(1)	21(1)

Tabelle A35: Bindungslängen [Å] und -winkel [°] von ${\bf 28}.$

C1–C2	1.354(3)	C4–P	1.8252(19)	N3–Si	1.8341(15)
C1–N1	1.390(2)	С7-С9	1.531(3)	Cl2–Si	2.2316(8)
C2–N2	1.377(3)	С7-С8	1.538(3)	Cl1–Si	2.1242(7)
C3–N2	1.329(2)	C7–P	1.8325(19)	N1–Si	1.8409(16)
C3–N1	1.380(2)	C10-C11	1.343(2)	$Si-N3^{i}$	1.7368(16)
С3–Р	1.7889(18)	C10–N3	1.400(2)	$Si-Si^i$	2.7388(11)
C4–C6	1.531(3)	C10–P	1.8081(18)		
C4–C5	1.540(3)	N3–Si ⁱ	1.7368(16)		
C2-C1-N1	107.91(17)	$C10-N3-Si^i$	133.92(12)	N3 ⁱ –Si–N1	125.88(7)
C1-C2-N2	110.86(17)	C10–N3–Si	125.78(12)	N3–Si–N1	94.65(7)
N2-C3-N1	113.93(15)	Si ⁱ –N3–Si	100.13(7)	$N3^{i}$ –Si–Cl1	125.73(6)
N2-C3-P	118.32(14)	C3-N1-C1	103.52(15)	N3–Si–Cl1	92.59(5)
N1-C3-P	127.75(13)	C3–N1–Si	126.51(12)	N1–Si–Cl1	108.19(5)
C6-C4-C5	112.02(18)	C1–N1–Si	129.97(13)	$N3^{i}$ -Si-Cl2	94.40(5)
C6–C4–P	111.02(13)	C3-N2-C2	103.79(17)	N3–Si–Cl2	173.83(6)
С5-С4-Р	110.44(13)	C3–P–C10	106.55(8)	N1–Si–Cl2	90.57(5)
С9-С7-С8	111.58(18)	C3–P–C4	105.87(8)	Cl1–Si–Cl2	88.90(3)
С9–С7–Р	110.59(14)	C10–P–C4	111.82(9)	$N3^{i}$ –Si–Si	41.24(5)
С8–С7–Р	111.22(13)	C3–P–C7	110.20(9)	N3–Si–Si ⁱ	38.63(5)
C11–C10–N3	127.62(17)	C10–P–C7	111.86(8)	$N1-Si-Si^i$	115.21(5)
С11-С10-Р	119.24(14)	C4–P–C7	110.30(9)	$Cl1-Si-Si^i$	113.62(4)
N3-C10-P	113.10(12)	N3 ⁱ –Si–N3	79.87(7)	$Cl2-Si-Si^i$	135.60(3)

Verbindung $\mathbf{29}$

Abb. A13: Struktur von **29** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A36: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **29**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	х	У	Z	U_{eq}
C1	6054(2)	-762(1)	4336(2)	28(1)
C2	5015(2)	-779(1)	3153(2)	30(1)
C3	6603(2)	86(1)	2962(2)	22(1)
C4	7538(2)	484(1)	647(2)	28(1)
C5	8228(2)	1135(2)	-29(2)	40(1)
C6	8384(2)	-328(1)	861(2)	33(1)
C7	6082(2)	1764(1)	1869(2)	28(1)
C8	4737(2)	1606(2)	716(2)	40(1)
C9	5653(2)	1970(1)	3124(2)	39(1)
C10	9030(2)	1163(1)	3377(2)	22(1)
C11	9554(2)	1930(1)	3377(2)	31(1)
C12	10916(2)	2246(1)	4323(3)	42(1)
Cl1	8585(1)	1253(1)	6263(1)	30(1)
Cl2	8120(1)	-514(1)	7078(1)	28(1)

Fortsetzung vo	on Tabelle A36:			
N1	7104(1)	-203(1)	4236(1)	22(1)
N2	5354(2)	-247(1)	2275(2)	28(1)
N3	9614(1)	512(1)	4234(1)	20(1)
P1	7342(1)	890(1)	2196(1)	22(1)
Si1	8819(1)	69(1)	5452(1)	19(1)

Tabelle A37: Bindungslängen [Å] und -winkel [°] von $\mathbf{29}$.

C1 $C2$	1 269(2)	C4 D1	1 8220(10)	C11 Si1	9.1446(7)
01-02	1.302(3)	C4-F1	1.6259(19)		2.1440(7)
C1-N1	1.389(2)	C7–C8	1.529(3)	Cl2–Si1	2.2291(6)
C2–N2	1.375(3)	С7-С9	1.536(3)	N1–Si1	1.8387(15)
C3–N2	1.333(2)	C7–P1	1.8395(18)	N3–Si1 ⁱ	1.7360(14)
C3–N1	1.376(2)	C10–C11	1.346(2)	N3–Si1	1.8275(15)
C3–P1	1.7894(18)	C10–N3	1.400(2)	$\rm Si1-N3^{i}$	1.7360(14)
C4–C5	1.532(3)	C10–P1	1.8040(17)	$\rm Si1{-}Si1^{i}$	2.7298(9)
C4–C6	1.535(3)	C11–C12	1.499(3)		
C2-C1-N1	107.89(16)	C3-N1-C1	103.71(14)	N3–Si1–N1	94.64(7)
C1-C2-N2	110.50(16)	C3–N1–Si1	126.62(11)	$N3^{i}$ –Si1–Cl1	126.72(5)
N2-C3-N1	113.86(15)	C1-N1-Si1	129.60(12)	N3–Si1–Cl1	92.41(5)
N2-C3-P1	117.89(13)	C3-N2-C2	104.03(15)	N1–Si1–Cl1	108.45(5)
N1–C3–P1	128.05(12)	$C10-N3-Si1^{i}$	134.64(12)	$N3^{i}$ –Si1–Cl2	93.67(5)
C5-C4-C6	112.02(17)	C10–N3–Si1	125.35(11)	N3–Si1–Cl2	173.04(5)
C5-C4-P1	109.92(14)	Si1 ⁱ –N3–Si1	99.97(7)	N1–Si1–Cl2	91.38(5)
C6-C4-P1	111.52(13)	C3–P1–C10	105.50(8)	Cl1–Si1–Cl2	88.99(3)
С8-С7-С9	110.14(16)	C3-P1-C4	107.48(9)	$N3^{i}$ –Si1–Si1 ⁱ	41.25(5)
C8–C7–P1	112.84(14)	C10–P1–C4	113.75(8)	$N3-Si1-Si1^{i}$	38.78(4)
С9-С7-Р1	109.56(13)	C3–P1–C7	108.53(8)	$N1-Si1-Si1^{i}$	114.55(5)
C11-C10-N3	128.01(15)	C10–P1–C7	111.16(8)	$Cl1-Si1-Si1^i$	114.11(3)
C11-C10-P1	119.63(13)	C4–P1–C7	110.13(9)	$Cl2-Si1-Si1^i$	134.85(3)
N3-C10-P1	112.33(12)	$N3^{i}$ –Si1–N3	80.03(7)		
C10-C11-C12	125.25(17)	N3 ⁱ -Si1-N1	124.63(7)		

${\rm Verbindung} \ {\bf 30}$

Abb. A14: Struktur von 30 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A38: Atomkoor	dinate	en (×	$< 10^4$)	und äquivale	ente isotrop	e Aus	lenkungsp	aram	leter	$(Å^2$	$\times 10^{3}$)	der
Nichtwasserstoff-Atome	von	3 0.	Die	angegebenen	$\mathbf{U}_{\mathrm{eq}}\text{-}\mathbf{W}\mathrm{erte}$	sind	definiert	als	1/3	der	Spur	des
orthogonalisierten U_{ij} -Te	nsors											

	Х	У	Z	U_{eq}
C1	1595(1)	7547(2)	9483(1)	21(1)
C2	702(1)	7704(2)	8804(1)	24(1)
C3	512(1)	7106(2)	7950(1)	34(1)
C4	-338(1)	7264(2)	7332(1)	46(1)
C5	-982(1)	8022(2)	7569(1)	46(1)
C6	-796(1)	8621(2)	8419(2)	46(1)
C7	47(1)	8459(2)	9042(1)	36(1)
C8	1234(1)	5540(2)	10310(1)	26(1)
C9	1517(2)	4145(2)	10044(2)	54(1)
C10	1210(2)	5560(3)	11283(1)	57(1)
C11	2287(1)	9630(2)	9035(1)	25(1)
C12	3038(1)	9715(2)	8588(1)	35(1)
C13	2301(1)	10879(2)	9644(1)	36(1)
C14	3328(1)	5942(2)	9004(1)	26(1)
C15	3643(1)	4777(2)	8636(1)	29(1)
C16	4050(1)	3712(2)	9194(1)	29(1)
C17	4154(1)	3787(2)	10140(1)	25(1)
C18	4570(1)	2790(2)	10806(1)	33(1)

Fortsetzung v	on Tabelle A38:			
C19	4625(1)	3020(2)	11702(1)	37(1)
C20	4259(1)	4215(2)	11993(1)	33(1)
C21	3834(1)	5176(2)	11358(1)	25(1)
C22	3808(1)	4976(2)	10439(1)	22(1)
Cl1	4186(1)	8627(1)	10792(1)	30(1)
Cl2	2484(1)	8758(1)	11524(1)	31(1)
N1	1815(1)	6636(1)	10150(1)	22(1)
N2	2313(1)	8331(1)	9543(1)	21(1)
N3	3401(1)	6030(1)	9882(1)	22(1)
Ο	3421(1)	6325(1)	11525(1)	27(1)
Si	2972(1)	7432(1)	10615(1)	21(1)

Tabelle A39: Bindungslängen [Å] und -winkel [°] von ${\bf 30}.$

C1-N1	1.3233(19)	C8–C9	1.519(3)	C20–C21	1.375(2)
C1-N2	1.3384(19)	C11–N2	1.4795(19)	С21-О	1.3518(19)
C1–C2	1.486(2)	C11–C12	1.529(2)	C21–C22	1.416(2)
C1–Si	2.3432(15)	C11–C13	1.530(2)	C22–N3	1.3673(19)
C2–C3	1.388(2)	C14–N3	1.3263(19)	Cl1–Si	2.1738(6)
C2–C7	1.394(2)	C14–C15	1.416(2)	Cl2–Si	2.1977(5)
C3–C4	1.398(3)	C15–C16	1.376(2)	N1–Si	1.9043(13)
C4–C5	1.382(3)	C16–C17	1.419(2)	N2–Si	1.8840(13)
C5–C6	1.383(3)	C17–C22	1.409(2)	N3–Si	2.0062(13)
C6–C7	1.392(3)	C17–C18	1.421(2)	O–Si	1.7411(12)
C8-N1	1.467(2)	C18-C19	1.376(3)		
C8-C10	1.509(2)	C19–C20	1.423(3)		
N1-C1-N2	107.72(13)	C15-C16-C17	119.69(14)	C21–O–Si	117.32(10)
N1-C1-C2	126.27(13)	C22–C17–C16	116.01(14)	O–Si–N2	168.06(6)
N2-C1-C2	125.98(13)	C22–C17–C18	117.46(14)	O–Si–N1	99.57(6)
N1–C1–Si	54.34(8)	C16–C17–C18	126.53(15)	N2–Si–N1	69.14(6)
N2–C1–Si	53.48(7)	C19–C18–C17	119.56(15)	O–Si–N3	84.92(5)
C2-C1-Si	175.70(11)	C18-C19-C20	122.39(15)	N2–Si–N3	90.50(5)
C3–C2–C7	119.95(15)	C21–C20–C19	119.05(15)	N1–Si–N3	87.21(5)
C3–C2–C1	121.25(14)	O-C21-C20	125.74(14)	O–Si–Cl1	95.60(5)
C7-C2-C1	118.80(14)	O-C21-C22	115.36(13)	N2–Si–Cl1	95.47(4)
C2-C3-C4	119.67(17)	C20-C21-C22	118.90(14)	N1–Si–Cl1	164.39(4)
С5-С4-С3	120.07(19)	N3-C22-C17	124.12(13)	N3–Si–Cl1	90.49(4)
C4-C5-C6	120.49(17)	N3-C22-C21	113.33(13)	O–Si–Cl2	89.04(4)
С5-С6-С7	119.83(18)	C17-C22-C21	122.54(14)	N2–Si–Cl2	94.76(4)
С6-С7-С2	119.99(18)	C1-N1-C8	125.66(13)	N1–Si–Cl2	90.42(4)
N1-C8-C10	110.78(14)	C1–N1–Si	91.29(9)	N3–Si–Cl2	173.05(4)
N1-C8-C9	110.95(14)	C8–N1–Si	143.05(10)	Cl1–Si–Cl2	93.52(2)
С10-С8-С9	111.91(18)	C1-N2-C11	123.80(12)	O-Si-C1	133.92(6)

Fortsetzung von	Tabelle A39:				
N2-C11-C12	112.28(13)	C1-N2-Si	91.70(9)	N2–Si–C1	34.82(5)
N2-C11-C13	111.01(13)	C11-N2-Si	141.44(10)	N1–Si–C1	34.37(5)
C12–C11–C13	111.08(14)	C14–N3–C22	118.45(13)	N3–Si–C1	90.00(5)
N3-C14-C15	121.58(14)	C14-N3-Si	132.49(11)	Cl1–Si–C1	130.28(4)
C16-C15-C14	120.12(15)	C22-N3-Si	109.00(9)	Cl2-Si-C1	91.73(4)

Abb. A15: Struktur von **31** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A40: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **31**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	X	У	Z	U_{eq}
Br1	3859(1)	5823(1)	2491(1)	27(1)
Br2	6612(1)	3480(1)	3078(1)	29(1)
C1	2741(4)	1636(3)	2922(2)	21(1)
C2	1927(4)	495(3)	3338(2)	22(1)
C3	2818(5)	-568(4)	3676(3)	35(1)
C4	1988(6)	-1667(4)	4004(3)	40(1)
C5	300(6)	-1715(4)	3997(3)	39(1)
C6	-599(5)	-661(4)	3661(3)	37(1)

Fortsetzung von	Tabelle A40:			
C7	220(5)	449(3)	3338(3)	29(1)
C11	2956(4)	3685(3)	4137(2)	23(1)
C13	3538(5)	2821(4)	4950(3)	36(1)
C12	1329(5)	4271(4)	4210(3)	33(1)
C8	3419(5)	228(3)	1570(3)	31(1)
C9	2497(11)	252(4)	557(3)	80(2)
C10	5233(8)	-14(6)	1637(6)	83(2)
C14	-5(4)	3370(3)	1525(2)	19(1)
C15	-1459(4)	3297(3)	797(2)	21(1)
C16	-1328(4)	3262(3)	-142(2)	20(1)
C17	294(4)	3321(3)	-362(2)	17(1)
C18	624(4)	3305(3)	-1295(2)	23(1)
C19	2283(4)	3421(3)	-1381(2)	23(1)
C20	3661(4)	3529(3)	-592(2)	21(1)
C21	3371(4)	3502(3)	317(2)	17(1)
C22	1668(4)	3419(3)	414(2)	18(1)
N2	2842(3)	2976(2)	3184(2)	19(1)
N1	3374(3)	1509(2)	2150(2)	20(1)
N3	1534(3)	3414(2)	1340(2)	15(1)
0	4536(3)	3510(2)	1133(2)	20(1)
Si	3811(1)	3430(1)	2178(1)	17(1)

Tabelle A41: Bindungslängen [Å] und -winkel [°] von ${\bf 31}.$

Br1–Si	2.3750(10)	C11-N2	1.473(4)	C18–C19	1.382(5)
Br2–Si	2.3703(12)	C11–C12	1.524(5)	C19–C20	1.408(5)
C1–N1	1.327(4)	C11–C13	1.530(5)	C20–C21	1.383(4)
C1–N2	1.342(4)	C8–N1	1.471(4)	С21-О	1.344(4)
C1–C2	1.488(4)	C8–C9	1.497(6)	C21–C22	1.423(4)
C1–Si	2.340(3)	C8–C10	1.510(6)	C22–N3	1.364(4)
C2–C7	1.392(5)	C14–N3	1.338(4)	N2–Si	1.861(2)
C2–C3	1.401(4)	C14–C15	1.398(5)	N1–Si	1.899(3)
C3–C4	1.395(5)	C15–C16	1.380(4)	N3–Si	1.987(3)
C4–C5	1.374(6)	C16–C17	1.425(4)	O–Si	1.739(2)
С5-С6	1.396(6)	C17–C22	1.394(5)		
C6–C7	1.394(5)	C17–C18	1.428(4)		
N1C1N2	106.8(2)	C15–C16–C17	119.6(3)	C21-O-Si	117.11(18)
N1–C1–C2	125.3(3)	C22–C17–C16	116.2(3)	O–Si–N2	167.93(12)
N2-C1-C2	127.6(3)	C22–C17–C18	118.0(3)	O–Si–N1	99.13(11)
N1-C1-Si	54.21(15)	C16-C17-C18	125.9(3)	N2–Si–N1	69.48(11)
N2–C1–Si	52.59(14)	C19–C18–C17	118.5(3)	O–Si–N3	85.17(11)
C2-C1-Si	175.3(2)	C18–C19–C20	123.0(3)	N2-Si-N3	90.43(11)
С7-С2-С3	119.7(3)	C21–C20–C19	119.6(3)	N1–Si–N3	88.62(12)

Fortsetzung von	Tabelle A41:				
C7–C2–C1	118.9(3)	O-C21-C20	126.8(3)	O–Si–C1	133.55(11)
C3–C2–C1	121.3(3)	O-C21-C22	115.4(2)	N2–Si–C1	34.94(11)
C4–C3–C2	119.9(4)	C20-C21-C22	117.8(3)	N1–Si–C1	34.54(10)
C5–C4–C3	120.4(3)	N3-C22-C17	124.1(3)	N3–Si–C1	89.35(11)
C4-C5-C6	120.2(3)	N3-C22-C21	112.7(3)	O–Si–Br2	90.58(9)
C7–C6–C5	120.0(4)	C17–C22–C21	123.2(3)	N2–Si–Br2	93.85(9)
C2–C7–C6	119.9(3)	C1–N2–C11	129.1(3)	N1–Si–Br2	92.59(10)
N2-C11-C12	112.0(3)	C1–N2–Si	92.46(18)	N3–Si–Br2	175.71(8)
N2–C11–C13	113.3(3)	C11-N2-Si	132.1(2)	C1–Si–Br2	93.98(9)
C12–C11–C13	112.0(3)	C1–N1–C8	126.3(3)	O–Si–Br1	95.18(8)
N1-C8-C9	111.2(3)	C1–N1–Si	91.25(19)	N2–Si–Br1	95.85(8)
N1-C8-C10	109.2(4)	C8–N1–Si	142.2(2)	N1–Si–Br1	164.78(8)
C9–C8–C10	111.6(5)	C14–N3–C22	118.3(3)	N3–Si–Br1	87.44(8)
N3–C14–C15	121.8(3)	C14-N3-Si	132.1(2)	C1–Si–Br1	130.67(8)
C16-C15-C14	119.9(3)	C22–N3–Si	109.5(2)	Br2–Si–Br1	92.42(5)

Verbindung $\mathbf{32}$

Abb. A16: Struktur von **32** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	х	У	Z	\mathbf{U}_{eq}
C1	3395(1)	2663(1)	5460(1)	20(1
C2	4341(1)	2936(1)	6164(1)	22(1
C3	4860(1)	4015(2)	6006(1)	34(1
C4	5763(1)	4222(2)	6642(1)	43(1
C5	6126(1)	3372(2)	7439(1)	43(1
C6	5604(1)	2320(2)	7606(1)	42(1
C7	4710(1)	2090(2)	6960(1)	32(1
C11	2598(1)	4714(1)	5812(1)	24(1
C12	1778(1)	4820(2)	6166(1)	34(1
C13	2561(1)	5852(2)	5087(1)	34(1
C8	3796(1)	710(2)	4594(1)	24(1
С9	3475(1)	-753(2)	4600(2)	54(1
C10	3899(2)	1098(2)	3631(1)	54(1
C14	1738(1)	960(2)	6118(1)	23(1
C15	1424(1)	-122(2)	6559(1)	25(1
C16	967(1)	-1209(2)	6009(1)	26(1
C17	827(1)	-1247(1)	4997(1)	23(1
C18	356(1)	-2282(2)	4327(1)	29(1
C19	260(1)	-2159(2)	3359(1)	32(1
C20	622(1)	-1032(2)	2996(1)	29(1
C21	1090(1)	-20(2)	3631(1)	23(1
C22	1178(1)	-127(1)	4624(1)	20(1
F1	932(1)	3094(1)	4160(1)	29(1
F2	2166(1)	3334(1)	3492(1)	30(1
N2	2631(1)	3366(1)	5380(1)	21(1
N1	3164(1)	1670(1)	4810(1)	21(1
N3	1621(1)	964(1)	5174(1)	20(1
0	1477(1)	1095(1)	3392(1)	25(1
Si	1918(1)	2349(1)	4280(1)	21(1

Tabelle A42: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **32**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

Tabelle A43: Bindungslängen [Å] und -winkel [°] von ${\bf 32}.$

C1-N2	1.2823(16)	C11-C13	1.568(2)	C20-C21	1.396(2)
C1–N1	1.3536(18)	C8–N1	1.4353(17)	С21-О	1.3367(17)
C1–C2	1.4644(18)	C8–C9	1.505(2)	C21–C22	1.501(2)
C1–Si	2.3239(14)	C8–C10	1.595(2)	C22–N3	1.3790(17)
C2–C3	1.371(2)	C14–N3	1.4115(19)	F1–Si	1.5708(9)
C2–C7	1.426(2)	C14–C15	1.417(2)	F2–Si	1.6880(9)
C3–C4	1.366(2)	C15–C16	1.381(2)	N2–Si	1.9364(12)

C4–C5	1.429(3)	C16–C17	1.508(2)	N1–Si	1.8488(11)
C5–C6	1.358(3)	C17–C22	1.4131(19)	N3–Si	2.0834(12)
C6–C7	1.366(2)	C17–C18	1.442(2)	O–Si	1.7881(11)
C11–N2	1.4842(18)	C18–C19	1.460(2)		
C11–C12	1.485(2)	C19–C20	1.418(2)		
N2-C1-N1	108.86(11)	C15–C16–C17	121.58(13)	C21-O-Si	114.89(9)
N2-C1-C2	123.18(13)	C22–C17–C18	113.55(13)	F1–Si–F2	93.90(5)
N1-C1-C2	127.95(12)	C22–C17–C16	117.75(12)	F1–Si–O	98.63(5)
N2–C1–Si	56.44(7)	C18–C17–C16	128.69(13)	F2–Si–O	86.86(5)
N1–C1–Si	52.68(6)	C17-C18-C19	122.24(13)	F1–Si–N1	161.31(5)
C2–C1–Si	176.05(10)	C20–C19–C18	123.56(13)	F2–Si–N1	95.72(5)
С3-С2-С7	121.99(13)	C21–C20–C19	115.48(14)	O–Si–N1	97.87(5)
C3–C2–C1	116.63(13)	O-C21-C20	122.31(13)	F1–Si–N2	93.70(5)
С7-С2-С1	121.34(13)	O-C21-C22	116.37(12)	F2–Si–N2	99.07(5)
C4-C3-C2	116.40(16)	C20-C21-C22	121.32(13)	O–Si–N2	165.94(5)
C3–C4–C5	121.18(16)	N3-C22-C17	120.40(13)	N1–Si–N2	68.97(5)
С6-С5-С4	122.43(14)	N3-C22-C21	115.77(12)	F1-Si-N3	89.19(5)
С5-С6-С7	116.52(17)	C17-C22-C21	123.82(12)	F2–Si–N3	174.25(5)
C6–C7–C2	121.44(16)	C1-N2-C11	126.35(11)	O–Si–N3	87.88(5)
N2-C11-C12	112.55(12)	C1-N2-Si	90.07(9)	N1–Si–N3	82.71(5)
N2-C11-C13	107.68(12)	C11-N2-Si	139.38(9)	N2–Si–N3	85.56(5)
C12–C11–C13	112.39(12)	C1-N1-C8	128.54(11)	F1–Si–C1	127.13(5)
N1-C8-C9	112.96(12)	C1-N1-Si	91.72(8)	F2–Si–C1	96.82(5)
N1-C8-C10	109.71(12)	C8–N1–Si	138.55(9)	O-Si-C1	133.47(5)
С9-С8-С10	111.18(17)	C22–N3–C14	120.06(12)	N1–Si–C1	35.61(5)
N3-C14-C15	123.77(13)	C22-N3-Si	104.68(9)	N2–Si–C1	33.49(5)
C16-C15-C14	116.42(13)	C14–N3–Si	135.21(9)	N3–Si–C1	85.13(5)

Fortsetzung von Tabelle A43:

Abb. A17: Struktur von **33** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A44: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **33**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	У	Z	U_{eq}
C1	2257(2)	4733(1)	1786(1)	23(1)
C2	2536(2)	3254(1)	1217(1)	26(1)
C3	1669(2)	2395(2)	304(1)	38(1)
C4	1913(3)	988(2)	-194(2)	53(1)
C5	3013(3)	459(2)	213(2)	56(1)
C6	3878(3)	1312(2)	1106(2)	56(1)
C7	3643(2)	2713(2)	1617(1)	42(1)
C8	919(2)	4062(2)	3077(1)	30(1)
C10	-709(2)	4081(2)	3107(2)	51(1)
C9	1725(3)	4416(2)	4141(1)	48(1)
C11	3270(2)	6037(1)	658(1)	26(1)
C12	4689(2)	7136(2)	901(1)	35(1)
C13	2126(2)	6398(2)	-19(1)	34(1)
C14	4918(2)	7206(2)	3538(1)	30(1)
C15	6015(2)	7592(2)	4377(1)	35(1)

Fortsetzung von	Tabelle A44:			
C16	5712(2)	8283(2)	5345(1)	34(1)
C17	4293(2)	8598(2)	5494(1)	29(1)
C18	3809(2)	9318(2)	6438(1)	35(1)
C19	2385(2)	9523(2)	6458(1)	36(1)
C20	1341(2)	9027(2)	5568(1)	31(1)
C21	1784(2)	8330(1)	4642(1)	25(1)
C22	3258(2)	8144(1)	4612(1)	24(1)
N1	1548(1)	5076(1)	2591(1)	25(1)
N2	2696(1)	5956(1)	1593(1)	22(1)
N3	3575(1)	7464(1)	3652(1)	24(1)
N4	2470(1)	8816(1)	2497(1)	26(1)
N5	59(1)	6752(1)	1809(1)	27(1)
N6	1621(2)	9622(1)	2468(1)	30(1)
N7	877(2)	10433(2)	2447(2)	57(1)
N8	-1130(2)	6675(1)	2097(1)	31(1)
N9	-2298(2)	6567(2)	2301(1)	53(1)
0	929(1)	7775(1)	3736(1)	26(1)
Si	1783(1)	7056(1)	2650(1)	21(1)

Tabelle A45: Bindungslängen [Å] und -winkel [°] von ${\bf 33}.$

C1–N1	1.3206(17)	C11–N2	1.4723(16)	C21–C22	1.412(2)
C1–N2	1.3374(17)	C11–C12	1.521(2)	C22–N3	1.3688(17)
C1–C2	1.4912(18)	C11–C13	1.533(2)	N1–Si	1.9126(12)
C1–Si	2.3448(15)	C14–N3	1.323(2)	N2–Si	1.8698(13)
C2-C7	1.393(2)	C14–C15	1.411(2)	N3–Si	2.0037(15)
C2–C3	1.396(2)	C15–C16	1.374(2)	N4-N6	1.2109(17)
C3–C4	1.400(2)	C16–C17	1.416(2)	N4–Si	1.8512(13)
C4–C5	1.385(4)	C17–C22	1.413(2)	N5-N8	1.2054(18)
С5-С6	1.375(4)	C17–C18	1.423(2)	N5–Si	1.8465(15)
C6–C7	1.395(2)	C18–C19	1.370(3)	N6-N7	1.140(2)
C8-N1	1.4656(17)	C19–C20	1.424(2)	N8-N9	1.142(2)
C8-C10	1.522(3)	C20–C21	1.3795(18)	O–Si	1.7563(11)
С8-С9	1.525(2)	С21-О	1.3482(18)		
N1-C1-N2	107.40(11)	C22–C17–C18	117.07(15)	C21-O-Si	117.33(9)
N1-C1-C2	125.80(12)	C16-C17-C18	126.63(15)	O–Si–N5	91.19(6)
N2-C1-C2	126.79(12)	C19–C18–C17	119.56(14)	O–Si–N4	96.30(6)
N1–C1–Si	54.64(7)	C18-C19-C20	122.91(14)	N5–Si–N4	92.96(6)
N2–C1–Si	52.82(6)	C21-C20-C19	118.65(15)	O–Si–N2	167.73(5)
C2-C1-Si	178.74(11)	O-C21-C20	125.98(14)	N5–Si–N2	92.93(6)
С7-С2-С3	119.95(14)	O–C21–C22	115.22(12)	N4–Si–N2	95.02(6)
C7–C2–C1	119.56(14)	C20-C21-C22	118.80(14)	O-Si-N1	99.23(6)

Fortsetzung von Tabelle A45:							
C3–C2–C1	120.46(14)	N3-C22-C21	113.50(13)	N5–Si–N1	93.70(7)		
C2-C3-C4	119.38(18)	N3-C22-C17	123.52(14)	N4–Si–N1	162.95(6)		
C5-C4-C3	120.2(2)	C21-C22-C17	122.97(13)	N2–Si–N1	68.98(5)		
C6-C5-C4	120.41(16)	C1–N1–C8	125.34(11)	O–Si–N3	84.43(5)		
C5-C6-C7	120.26(19)	C1-N1-Si	91.09(8)	N5–Si–N3	175.59(5)		
С2-С7-С6	119.83(19)	C8–N1–Si	143.56(9)	N4–Si–N3	87.01(6)		
N1-C8-C10	109.86(13)	C1-N2-C11	125.55(11)	N2–Si–N3	91.46(6)		
N1-C8-C9	111.06(14)	C1-N2-Si	92.44(8)	N1–Si–N3	87.53(6)		
С10-С8-С9	111.45(15)	C11-N2-Si	139.42(9)	O–Si–C1	133.48(5)		
N2-C11-C12	111.28(12)	C14–N3–C22	118.56(13)	N5–Si–C1	92.96(6)		
N2-C11-C13	110.81(12)	C14-N3-Si	132.20(10)	N4–Si–C1	129.65(5)		
C12–C11–C13	110.81(12)	C22-N3-Si	109.23(10)	N2–Si–C1	34.74(5)		
N3-C14-C15	121.87(13)	N6–N4–Si	119.09(11)	N1–Si–C1	34.27(5)		
C16-C15-C14	120.12(15)	N8–N5–Si	123.28(10)	N3–Si–C1	90.44(6)		
C15–C16–C17	119.60(15)	N7-N6-N4	176.72(17)				
C22–C17–C16	116.30(13)	N9-N8-N5	175.28(16)				

Verbindung $\mathbf{34}$

Abb. A18: Struktur von **34** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	х	У	Z	U_{eq}
C1	2525(2)	3360(1)	7075(1)	33(1)
C2	3172(2)	4504(1)	6615(1)	36(1)
C3	2116(3)	5336(2)	6138(2)	50(1)
C4	2740(3)	6415(2)	5733(2)	60(1)
C5	4388(3)	6679(2)	5812(2)	59(1)
C6	5440(3)	5868(2)	6287(2)	56(1)
C7	4832(2)	4772(2)	6688(1)	45(1)
C11	2897(2)	1614(2)	5833(1)	36(1)
C13	1474(3)	1750(2)	4984(1)	52(1)
C12	3305(2)	193(2)	5814(1)	45(1)
C8	1574(2)	4631(2)	8405(1)	45(1)
C10	-235(3)	4669(2)	8326(3)	84(1)
C9	2517(5)	4743(2)	9461(2)	87(1)
C14	5188(2)	1661(1)	8514(1)	32(1)
C15	6578(2)	1720(1)	9283(1)	35(1)
C16	6405(2)	1733(2)	10245(1)	37(1)
C17	4835(2)	1665(1)	10461(1)	34(1)
C18	4453(2)	1665(2)	11410(1)	44(1)
C19	2860(3)	1564(2)	11487(1)	48(1)
C20	1547(2)	1468(2)	10657(1)	42(1)
C21	1876(2)	1492(1)	9730(1)	33(1)
C22	3520(2)	1582(1)	9642(1)	30(1)
C24	-1811(2)	1757(2)	6794(1)	37(1)
C23	931(2)	-1294(1)	7469(1)	33(1)
N2	2556(2)	2080(1)	6792(1)	32(1)

3424(1)

1608(1)

1469(1)

-212(1)

1470(1)

2024(2)

-2408(1)

1543(1)

7852(1)

8691(1)

7056(1)

7563(1)

8878(1)

6498(1)

7388(1)

7789(1)

34(1)

29(1)

43(1)

38(1)

36(1)

79(1)

59(1)

31(1)

Tabelle A46: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **34**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

N1

N3

N5

N4

01

O3

O2

 Si

1857(2)

3704(2)

-524(2)

1567(2)

775(1)

363(2)

1516(1)

-3141(2)

C1–N1	1.319(2)	C8–N1	1.469(2)	C21–C22	1.417(2)
C1–N2	1.3424(19)	C8–C9	1.515(3)	C22–N3	1.3676(19)
C1–C2	1.491(2)	C8-C10	1.519(3)	C24–N5	1.152(2)
C1–Si	2.3481(17)	C14–N3	1.326(2)	C24–O3	1.186(2)
C2–C7	1.389(3)	C14–C15	1.417(2)	C23–N4	1.1712(19)
C2–C3	1.401(2)	C15–C16	1.376(2)	C23–O2	1.1821(19)
C3–C4	1.388(3)	C16–C17	1.419(3)	N2–Si	1.8789(15)
C4–C5	1.378(3)	C17–C22	1.416(2)	N1–Si	1.9128(13)
C5–C6	1.383(3)	C17–C18	1.423(2)	N3–Si	2.0114(14)
C6–C7	1.394(3)	C18–C19	1.370(3)	N5–Si	1.8136(15)
C11–N2	1.475(2)	C19–C20	1.423(3)	N4–Si	1.8054(14)
C11–C12	1.527(2)	C20–C21	1.377(2)	O1–Si	1.7594(13)
C11–C13	1.534(2)	C21–O1	1.3514(19)		
N1C1N2	107.61(13)	C22–C17–C18	117.14(16)	C21-O1-Si	117.29(10)
N1–C1–C2	126.07(14)	C16–C17–C18	126.72(15)	O1–Si–N4	95.71(7)
N2-C1-C2	126.30(15)	C19-C18-C17	119.21(16)	O1–Si–N5	91.27(7)
N1–C1–Si	54.53(8)	C18-C19-C20	123.15(17)	N4–Si–N5	92.79(7)
N2–C1–Si	53.10(8)	C21-C20-C19	119.08(17)	O1–Si–N2	164.30(6)
C2-C1-Si	179.39(13)	O1–C21–C20	126.23(15)	N4–Si–N2	98.18(7)
С7-С2-С3	119.86(16)	O1–C21–C22	115.58(14)	N5–Si–N2	95.32(7)
С7-С2-С1	119.88(14)	C20-C21-C22	118.17(15)	O1–Si–N1	96.52(6)
C3–C2–C1	120.23(16)	N3-C22-C17	123.57(15)	N4–Si–N1	166.42(7)
C4–C3–C2	119.6(2)	N3-C22-C21	113.19(13)	N5–Si–N1	92.82(7)
C5-C4-C3	120.30(19)	C17-C22-C21	123.23(15)	N2–Si–N1	68.98(6)
C4-C5-C6	120.49(18)	N5-C24-O3	177.9(2)	O1–Si–N3	84.40(6)
C5–C6–C7	120.0(2)	N4-C23-O2	176.68(19)	N4–Si–N3	87.34(7)
C2-C7-C6	119.80(18)	C1-N2-C11	122.84(13)	N5–Si–N3	175.66(7)
N2-C11-C12	111.52(13)	C1-N2-Si	92.06(10)	N2–Si–N3	88.95(6)
N2-C11-C13	111.29(15)	C11-N2-Si	142.39(10)	N1–Si–N3	87.99(6)
C12-C11-C13	110.42(14)	C1-N1-C8	126.37(13)	O1–Si–C1	130.51(6)
N1-C8-C9	110.72(16)	C1-N1-Si	91.32(10)	N4–Si–C1	132.94(7)
N1-C8-C10	109.73(17)	C8–N1–Si	142.28(12)	N5–Si–C1	94.28(7)
C9-C8-C10	113.0(2)	C14–N3–C22	118.75(13)	N2–Si–C1	34.84(6)
N3-C14-C15	121.76(15)	C14-N3-Si	131.72(11)	N1–Si–C1	34.15(6)
C16-C15-C14	119.83(16)	C22-N3-Si	109.53(10)	N3–Si–C1	88.79(6)
C15-C16-C17	119.91(14)	C24-N5-Si	158.70(15)		
C22–C17–C16	116.14(15)	C23-N4-Si	150.63(14)		

Tabelle A47: Bindungslängen [Å] und -winkel [°] von ${\bf 34}.$

${\rm Verbindung} \ {\bf 35}$

Abb. A19: Struktur von **35** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A48: Atomkoore	dinate	en (×	$< 10^{4}$) und äquival	ente isotrop	e Aus	lenkungsp	aram	eter	$(Å^2$	$\times 10^{3}$)	der
Nichtwasserstoff-Atome	von	35 .	Die	angegebenen	U_{eq} -Werte	sind	definiert	als	1/3	der	Spur	des
orthogonalisierten U _{ij} -Te	nsors.											

	х	у	Z	U_{eq}
C1	5488(1)	7634(1)	-227(1)	25(1)
C2	4242(1)	7506(1)	-850(1)	28(1)
C3	3990(2)	7848(1)	-1669(1)	34(1)
C4	2829(2)	7709(2)	-2259(1)	43(1)
C5	1940(2)	7200(2)	-2037(1)	51(1)
C6	2186(2)	6849(2)	-1229(1)	53(1)
C7	3335(2)	7007(2)	-629(1)	41(1)
C11	6562(2)	6470(1)	-896(1)	35(1)
C12	7484(2)	6708(2)	-1341(1)	51(1)
C13	6795(2)	5457(2)	-466(1)	52(1)
C8	4974(1)	8663(1)	844(1)	28(1)
C10	4734(2)	8068(2)	1544(1)	39(1)
C9	5510(2)	9679(1)	1165(1)	36(1)
C14	7677(2)	9299(1)	-459(1)	34(1)
C15	8135(2)	10221(2)	-615(1)	42(1)
C16	8835(2)	10800(2)	43(2)	47(1)
C17	9084(2)	10467(2)	876(1)	41(1)
C18	9820(2)	10948(2)	1623(2)	55(1)
Fortsetzung von	Tabelle A48:			
-----------------	--------------	----------	---------	-------
C19	9954(2)	10533(2)	2387(2)	58(1)
C20	9383(2)	9636(2)	2478(1)	47(1)
C21	8684(1)	9134(2)	1768(1)	35(1)
C22	8556(1)	9550(1)	974(1)	33(1)
C23	9772(1)	6842(1)	670(1)	29(1)
C24	6730(2)	6054(1)	1685(1)	34(1)
N2	6525(1)	7263(1)	-300(1)	27(1)
N1	5794(1)	8116(1)	496(1)	26(1)
N3	7878(1)	8973(1)	320(1)	29(1)
N4	8901(1)	7207(1)	750(1)	33(1)
N5	7142(1)	6600(1)	1309(1)	35(1)
0	8082(1)	8270(1)	1748(1)	35(1)
S1	10953(1)	6329(1)	553(1)	53(1)
S2	6156(1)	5308(1)	2198(1)	54(1)
Si	7444(1)	7703(1)	775(1)	27(1)

Tabelle A49: Bindungslängen [Å] und -winkel [°] von $\mathbf{35}$.

C1–N1	1.3243(19)	C8–N1	1.4673(19)	C21–C22	1.417(3)
C1-N2	1.3409(19)	C8–C9	1.524(2)	C22–N3	1.366(2)
C1–C2	1.487(2)	C8-C10	1.528(2)	C23–N4	1.167(2)
C1–Si	2.3351(16)	C14–N3	1.332(2)	C23–S1	1.5999(17)
C2–C7	1.396(2)	C14–C15	1.406(3)	C24–N5	1.171(2)
C2–C3	1.396(2)	C15–C16	1.379(3)	C24–S2	1.6051(19)
С3–С4	1.394(2)	C16–C17	1.414(3)	N2–Si	1.8717(14)
C4–C5	1.385(3)	C17–C22	1.409(3)	N1–Si	1.8901(13)
C5–C6	1.382(3)	C17–C18	1.423(3)	N3–Si	2.0038(15)
C6–C7	1.395(3)	C18–C19	1.368(4)	N4–Si	1.8256(14)
C11–N2	1.477(2)	C19–C20	1.406(4)	N5–Si	1.8272(16)
C11–C13	1.525(3)	C20–C21	1.380(2)	O–Si	1.7401(13)
C11–C12	1.528(3)	С21-О	1.348(2)		
N1–C1–N2	107.08(13)	C22–C17–C18	116.6(2)	C21-O-Si	117.03(11)
N1–C1–C2	127.59(14)	C16–C17–C18	127.2(2)	O–Si–N4	94.37(6)
N2-C1-C2	125.32(14)	C19-C18-C17	120.0(2)	O–Si–N5	88.78(7)
N1–C1–Si	54.02(8)	C18–C19–C20	122.82(19)	N4–Si–N5	92.55(7)
N2–C1–Si	53.24(7)	C21–C20–C19	119.1(2)	O–Si–N2	169.47(6)
C2-C1-Si	175.50(12)	O-C21-C20	126.30(18)	N4–Si–N2	95.34(6)
С7-С2-С3	119.68(15)	O-C21-C22	115.16(14)	N5–Si–N2	94.81(7)
C7–C2–C1	120.29(15)	C20-C21-C22	118.53(19)	O-Si-N1	100.62(6)
C3-C2-C1	119.97(15)	N3-C22-C17	123.79(17)	N4–Si–N1	164.64(6)
C4–C3–C2	120.03(17)	N3-C22-C21	113.30(16)	N5–Si–N1	91.12(7)
C5-C4-C3	119.85(18)	C17-C22-C21	122.90(17)	N2–Si–N1	69.47(6)

Fortsetzung von	Tabelle A49:				
C6–C5–C4	120.48(17)	N4-C23-S1	179.13(17)	O-Si-N3	84.76(6)
C5–C6–C7	120.1(2)	N5-C24-S2	179.61(18)	N4–Si–N3	87.18(6)
C6–C7–C2	119.83(18)	C1-N2-C11	124.06(13)	N5–Si–N3	173.50(7)
N2-C11-C13	111.06(15)	C1–N2–Si	91.73(9)	N2–Si–N3	91.68(6)
N2-C11-C12	111.58(16)	C11–N2–Si	139.02(11)	N1–Si–N3	90.83(6)
C13–C11–C12	112.31(17)	C1-N1-C8	127.19(13)	O–Si–C1	135.15(6)
N1-C8-C9	110.52(13)	C1–N1–Si	91.44(10)	N4–Si–C1	130.37(6)
N1-C8-C10	110.82(13)	C8–N1–Si	141.24(10)	N5–Si–C1	91.67(6)
C9–C8–C10	110.43(14)	C14–N3–C22	118.64(16)	N2–Si–C1	35.03(5)
N3-C14-C15	121.45(17)	C14–N3–Si	132.50(12)	N1–Si–C1	34.54(5)
C16–C15–C14	120.15(19)	C22–N3–Si	108.77(11)	N3–Si–C1	93.45(6)
C15–C16–C17	119.81(19)	C23–N4–Si	173.87(14)		
C22–C17–C16	116.11(17)	C24–N5–Si	162.69(15)		

Abb. A20: Struktur der beiden kristallographisch unabhängigen Moleküle im Kristall von **36** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%). Aus Gründen der Übersichtlichkeit ist hier nicht die asymmetrische Einheit abgebildet.

Tabelle A50: Atomkoor	dinate	en (×	(10^4)	und äquival	ente isotrop	e Aus	lenkungsp	aram	leter	$(Å^2$	$\times 10^{3}$)	der
Nichtwasserstoff-Atome	von	36 .	Die	angegebenen	U_{eq} -Werte	sind	definiert	als	1/3	der	Spur	des
orthogonalisierten U _{ij} -Te	nsors.											

	Х	У	Z	U_{eq}
C1	5104(1)	404(1)	2238(1)	26(1)
C2	5626(1)	90(1)	2019(1)	29(1)
C3	5849(1)	-668(1)	2129(1)	37(1)
C4	6317(1)	-978(2)	1905(1)	47(1)
C5	6552(1)	-551(2)	1566(1)	52(1)
C6	6325(1)	191(2)	1449(1)	54(1)
C7	5866(1)	523(2)	1675(1)	42(1)
C8	5491(1)	1433(1)	2776(1)	39(1)
C9	5742(1)	842(2)	3110(1)	55(1)
C10	5969(1)	1824(2)	2499(1)	53(1)
C11	4424(1)	-451(1)	1813(1)	32(1)
C12	4166(1)	-1241(1)	1982(1)	49(1)
C13	4038(1)	-16(2)	1489(1)	41(1)
C14	4514(1)	-581(1)	3115(1)	34(1)
C15	4596(1)	-906(1)	3533(1)	40(1)
C16	4491(1)	-435(1)	3893(1)	38(1)
C17	4291(1)	373(1)	3844(1)	32(1)
C18	4153(1)	936(1)	4181(1)	38(1)
C19	3965(1)	1701(1)	4078(1)	40(1)
C20	3916(1)	1980(1)	3644(1)	36(1)
C21	4055(1)	1457(1)	3314(1)	30(1)
C22	4230(1)	654(1)	3415(1)	29(1)
C23	2538(1)	-14(2)	2255(1)	56(1)
C24	3729(1)	2901(2)	1798(1)	57(1)
C31	3888(1)	7794(1)	274(1)	27(1)
C32	4331(1)	8358(1)	452(1)	29(1)
C33	4777(1)	8053(2)	704(1)	46(1)
C34	5203(1)	8581(2)	846(1)	55(1)
C35	5191(1)	9395(2)	737(1)	47(1)
C36	4745(1)	9696(2)	496(1)	45(1)
C37	4310(1)	9182(1)	355(1)	36(1)
C38	4345(1)	7376(1)	-439(1)	32(1)
C39	4315(1)	8189(2)	-680(1)	46(1)
C40	4957(1)	7177(2)	-304(1)	49(1)
C41	3204(1)	7882(1)	889(1)	35(1)
C42	3079(1)	7124(2)	1160(1)	52(1)
C43	2700(1)	8470(2)	890(1)	48(1)
C44	2696(1)	8517(1)	-292(1)	33(1)
C45	2488(1)	9024(1)	-624(1)	39(1)
C46	2470(1)	8740(2)	-1043(1)	42(1)
C47	2658(1)	7942(1)	-1141(1)	36(1)

Fortsetzung v	on Tabelle A50:			
C48	2676(1)	7561(2)	-1554(1)	47(1)
C49	2862(1)	6770(2)	-1592(1)	48(1)
C50	3039(1)	6294(2)	-1230(1)	39(1)
C51	3029(1)	6649(1)	-829(1)	30(1)
C52	2847(1)	7468(1)	-787(1)	30(1)
C53	1448(1)	6625(2)	376(1)	77(1)
C54	3734(1)	4698(1)	626(1)	49(1)
F1	2603(1)	195(2)	1848(1)	92(1)
F2	2689(1)	-796(1)	2303(1)	87(1)
F3	1990(1)	59(2)	2358(1)	84(1)
F4	3402(1)	2511(2)	1519(1)	100(1)
F5	3881(1)	3623(1)	1639(1)	109(1)
F6	3426(1)	3039(1)	2150(1)	74(1)
F31	1416(1)	7415(1)	348(1)	138(1)
F32	945(1)	6307(1)	257(1)	114(1)
F33	1555(1)	6421(2)	781(1)	119(1)
F34	3420(1)	4282(1)	340(1)	74(1)
F35	3413(1)	4839(1)	972(1)	64(1)
F36	4172(1)	4233(1)	744(1)	77(1)
N1	5044(1)	1031(1)	2511(1)	29(1)
N2	4580(1)	93(1)	2177(1)	27(1)
N3	4340(1)	184(1)	3057(1)	29(1)
N31	3930(1)	7332(1)	-80(1)	26(1)
N32	3370(1)	7658(1)	442(1)	28(1)
N33	2870(1)	7758(1)	-372(1)	28(1)
O1	4040(1)	1629(1)	2885(1)	33(1)
O2	3550(1)	439(1)	2444(1)	32(1)
O3	4105(1)	1557(1)	2091(1)	31(1)
O4	2880(1)	335(1)	3037(1)	58(1)
O5	2780(1)	1452(1)	2513(1)	68(1)
O6	4673(1)	2793(1)	2237(1)	42(1)
07	4654(1)	2173(1)	1520(1)	65(1)
O31	3173(1)	6282(1)	-450(1)	31(1)
O32	2494(1)	6705(1)	200(1)	34(1)
O33	3428(1)	6044(1)	316(1)	31(1)
O34	1836(1)	6465(2)	-403(1)	86(1)
O35	2039(1)	5375(1)	116(1)	63(1)
O36	4280(1)	5414(1)	-2(1)	45(1)
O37	4321(1)	6035(1)	721(1)	45(1)
S1	2961(1)	634(1)	2613(1)	36(1)
S1B	3084(4)	136(9)	2666(3)	59(4)
S2	4376(1)	2318(1)	1921(1)	34(1)
S31	1998(1)	6215(1)	21(1)	39(1)
S31B	2087(7)	6004(14)	306(9)	78(8)
S32	4001(1)	5643(1)	389(1)	28(1)
S32B	3666(8)	5298(10)	134(4)	76(6)

Fortsetzung von Ta	belle A50:			
Si1	4252(1)	866(1)	2537(1)	26(1)
Si2	3200(1)	6909(1)	0(1)	26(1)

Tabelle A51: Bindungslängen [Å] und -winkel [°] von ${\bf 36}.$

C1–N1	1.331(2)	C24–S2	1.821(3)	C54–F34	1.332(3)
C1-N2	1.334(2)	C31–N32	1.329(2)	C54–S32B	1.812(2)
C1–C2	1.481(3)	C31–N31	1.331(2)	C54–S32	1.8169(19)
C1–Si1	2.3129(19)	C31–C32	1.487(3)	F2–S1B	2.099(10)
C2–C3	1.384(3)	C31–Si2	2.3160(19)	F33–S31B	2.032(19)
C2-C7	1.391(3)	C32–C37	1.377(3)	F34–S32B	1.865(13)
C3–C4	1.385(3)	C32–C33	1.387(3)	N1–Si1	1.8666(17)
C4-C5	1.368(4)	C33–C34	1.384(3)	N2–Si1	1.8439(16)
C5–C6	1.369(4)	C34–C35	1.369(4)	N3–Si1	1.9622(17)
C6–C7	1.385(3)	C35–C36	1.369(4)	N31–Si2	1.8493(16)
C8–N1	1.476(2)	C36–C37	1.386(3)	N32–Si2	1.8713(17)
C8–C9	1.525(4)	C38–N31	1.470(2)	N33–Si2	1.9556(16)
C8-C10	1.540(3)	C38-C40	1.518(3)	O1–Si1	1.7157(14)
C11–N2	1.476(2)	C38–C39	1.524(3)	O2–S1B	1.374(11)
C11–C12	1.514(3)	C41–N32	1.478(2)	O2–S1	1.5018(14)
C11-C13	1.519(3)	C41-C43	1.514(3)	O2–Si1	1.7984(14)
C14–N3	1.324(3)	C41–C42	1.519(3)	O3–S2	1.4888(14)
C14–C15	1.405(3)	C44–N33	1.326(3)	O3–Si1	1.8081(14)
C15–C16	1.371(3)	C44–C45	1.403(3)	O4–S1B	1.279(11)
C16–C17	1.405(3)	C45–C46	1.369(3)	O4–S1	1.4070(18)
C17–C22	1.408(3)	C46–C47	1.407(3)	O5–S1	1.432(2)
C17–C18	1.423(3)	C47–C52	1.406(3)	O6-S2	1.4226(16)
C18–C19	1.359(3)	C47–C48	1.418(3)	O7–S2	1.4138(17)
C19–C20	1.418(3)	C48-C49	1.365(4)	O31–Si2	1.7228(14)
C20–C21	1.366(3)	C49–C50	1.420(3)	O32–S31	1.5094(15)
C21–O1	1.349(2)	C50-C51	1.366(3)	O32–S31B	1.52(3)
C21–C22	1.406(3)	C51–O31	1.354(2)	O32–Si2	1.7872(14)
C22–N3	1.367(2)	C51-C52	1.408(3)	O33–S32B	1.450(19)
C23–F1	1.308(3)	C52–N33	1.364(2)	O33–S32	1.5015(14)
C23–F3	1.319(3)	C53–F31	1.293(4)	O33–Si2	1.7945(14)
C23–F2	1.330(4)	C53–F33	1.315(5)	O34–S31	1.420(2)
C23–S1B	1.809(2)	C53–F32	1.331(4)	O35–S31B	1.19(2)
C23–S1	1.817(2)	C53–S31	1.810(2)	O35–S31	1.404(2)
C24–F6	1.311(4)	C53–S31B	1.813(2)	O36–S32	1.4165(16)
C24–F4	1.312(3)	C54–F35	1.319(3)	O36–S32B	1.500(19)
C24–F5	1.324(3)	C54–F36	1.322(3)	O37–S32	1.4171(16)
N1-C1-N2	106.61(16)	C46-C47-C48	127.5(2)	O2-S1B-F2	109.9(6)

Fortsetzung von Tabelle A51:

N1-C1-C2	129.68(17)	C49-C48-C47	120.1(2)	C23-S1B-F2	38.9(2)
N2C1C2	123.69(16)	C48-C49-C50	122.7(2)	O7–S2–O6	117.78(12)
N1–C1–Si1	53.79(10)	C51-C50-C49	118.3(2)	O7–S2–O3	111.18(10)
N2–C1–Si1	52.82(9)	O31-C51-C50	126.1(2)	O6–S2–O3	114.81(9)
C2–C1–Si1	175.94(14)	O31-C51-C52	114.63(17)	O7–S2–C24	106.52(14)
C3–C2–C7	119.31(19)	C50-C51-C52	119.26(19)	O6–S2–C24	105.04(12)
C3–C2–C1	120.44(17)	N33–C52–C47	123.21(19)	O3–S2–C24	99.13(11)
C7–C2–C1	120.00(18)	N33-C52-C51	113.70(17)	O35-S31-O34	119.37(16)
C2-C3-C4	120.0(2)	C47-C52-C51	123.08(18)	O35-S31-O32	112.87(11)
C5–C4–C3	120.4(2)	F31–C53–F33	109.0(3)	O34–S31–O32	112.73(11)
C4–C5–C6	119.9(2)	F31-C53-F32	108.7(3)	O35-S31-C53	106.46(15)
C5–C6–C7	120.7(2)	F33-C53-F32	109.1(3)	O34-S31-C53	105.19(19)
C6–C7–C2	119.6(2)	F31-C53-S31	111.7(2)	O32-S31-C53	97.14(12)
N1-C8-C9	111.19(19)	F33-C53-S31	110.1(2)	O35-S31B-O32	127.1(18)
N1-C8-C10	112.72(19)	F32-C53-S31	108.1(2)	O35-S31B-C53	117.6(15)
C9-C8-C10	111.1(2)	F31-C53-S31B	126.6(9)	O32-S31B-C53	96.7(10)
N2-C11-C12	110.44(16)	F33-C53-S31B	79.3(10)	O35–S31B–F33	125.9(17)
N2-C11-C13	111.42(16)	F32-C53-S31B	118.1(9)	O32–S31B–F33	106.4(11)
C12-C11-C13	112.87(19)	S31-C53-S31B	30.9(9)	C53–S31B–F33	39.5(3)
N3-C14-C15	121.42(19)	F35-C54-F36	108.4(2)	O36-S32-O37	119.45(11)
C16-C15-C14	120.3(2)	F35-C54-F34	108.3(2)	O36-S32-O33	113.21(9)
C15-C16-C17	119.95(19)	F36-C54-F34	108.2(2)	O37-S32-O33	112.17(9)
C16-C17-C22	116.05(18)	F35-C54-S32B	122.1(6)	O36-S32-C54	105.92(12)
C16-C17-C18	127.10(19)	F36-C54-S32B	127.3(6)	O37-S32-C54	105.83(12)
C22-C17-C18	116.84(19)	F34-C54-S32B	70.9(6)	O33-S32-C54	97.21(10)
C19-C18-C17	119.81(19)	F35-C54-S32	111.73(17)	O33-S32B-O36	111.4(12)
C18-C19-C20	122.6(2)	F36-C54-S32	109.44(17)	O33-S32B-C54	99.4(8)
C21-C20-C19	118.9(2)	F34-C54-S32	110.73(17)	O36-S32B-C54	102.6(8)
O1-C21-C20	126.32(18)	S32B-C54-S32	40.0(6)	O33–S32B–F34	119.9(10)
O1-C21-C22	114.63(16)	C23–F2–S1B	58.7(3)	O36-S32B-F34	119.9(10)
C20-C21-C22	119.05(18)	C53–F33–S31B	61.2(7)	C54-S32B-F34	42.4(2)
N3-C22-C21	113.53(16)	C54–F34–S32B	66.6(5)	O1-Si1-O2	96.95(7)
N3-C22-C17	123.75(18)	C1-N1-C8	128.14(17)	O1-Si1-O3	88.24(7)
C21-C22-C17	122.72(18)	C1–N1–Si1	91.09(12)	O2-Si1-O3	87.11(7)
F1-C23-F3	108.5(2)	C8–N1–Si1	137.48(14)	O1–Si1–N2	172.11(8)
F1-C23-F2	109.0(2)	C1-N2-C11	124.12(16)	O2–Si1–N2	90.92(7)
F3-C23-F2	108.4(2)	C1–N2–Si1	91.99(11)	O3–Si1–N2	92.77(7)
F1-C23-S1B	123.6(4)	C11-N2-Si1	139.93(13)	O1-Si1-N1	101.83(7)
F3-C23-S1B	119.9(4)	C14–N3–C22	118.51(17)	O2–Si1–N1	161.22(7)
F2-C23-S1B	82.4(5)	C14–N3–Si1	132.65(14)	O3–Si1–N1	93.68(7)
F1-C23-S1	111.51(19)	C22–N3–Si1	108.65(12)	N2-Si1-N1	70.30(7)
F3-C23-S1	108.95(18)	C31–N31–C38	129.62(16)	O1–Si1–N3	86.00(7)
F2-C23-S1	110.42(18)	C31–N31–Si2	92.02(11)	O2–Si1–N3	90.33(7)
S1B-C23-S1	28.0(5)	C38–N31–Si2	136.22(13)	O3–Si1–N3	173.38(7)
F6-C24-F4	108.2(3)	C31-N32-C41	123.87(16)	N2–Si1–N3	93.38(7)
F6-C24-F5	107.3(3)	C31-N32-Si2	91.10(11)	N1–Si1–N3	90.71(7)

Fortsetzung von	Tabelle A51:				
F4-C24-F5	110.1(2)	C41N32Si2	141.67(14)	O1–Si1–C1	136.95(7)
F6-C24-S2	111.27(18)	C44–N33–C52	119.12(17)	O2-Si1-C1	126.10(7)
F4-C24-S2	111.2(2)	C44–N33–Si2	132.26(14)	O3–Si1–C1	93.58(7)
F5-C24-S2	108.7(2)	C52-N33-Si2	108.59(13)	N2–Si1–C1	35.19(7)
N32-C31-N31	106.82(16)	C21–O1–Si1	117.02(12)	N1–Si1–C1	35.12(7)
N32-C31-C32	126.21(17)	S1B-O2-S1	35.2(6)	N3–Si1–C1	92.86(7)
N31-C31-C32	126.97(17)	S1B-O2-Si1	140.89(19)	O31–Si2–O32	97.70(7)
N32-C31-Si2	53.89(9)	S1O2Si1	133.74(9)	O31-Si2-O33	88.88(7)
N31-C31-Si2	52.94(9)	S2–O3–Si1	135.04(9)	O32-Si2-O33	86.48(7)
C32-C31-Si2	179.62(16)	S1B-O4-S1	37.8(6)	O31–Si2–N31	98.51(7)
C37-C32-C33	119.87(19)	C51-O31-Si2	116.04(12)	O32–Si2–N31	163.71(7)
C37–C32–C31	119.92(17)	S31–O32–S31B	37.2(10)	O33–Si2–N31	95.40(7)
C33-C32-C31	120.19(18)	S31-O32-Si2	132.55(10)	O31-Si2-N32	168.52(7)
C34–C33–C32	119.3(2)	S31B-O32-Si2	141.9(3)	O32–Si2–N32	93.70(7)
C35-C34-C33	120.7(2)	S32B-O33-S32	49.7(7)	O33–Si2–N32	93.23(7)
C36-C35-C34	119.8(2)	S32B-O33-Si2	124.25(19)	N31-Si2-N32	70.06(7)
C35–C36–C37	120.4(2)	S32–O33–Si2	133.34(9)	O31–Si2–N33	86.31(7)
C32–C37–C36	119.8(2)	S31B-O35-S31	42.7(13)	O32–Si2–N33	88.45(7)
N31-C38-C40	113.70(17)	S32-O36-S32B	50.3(6)	O33-Si2-N33	172.49(7)
N31-C38-C39	112.26(17)	O4–S1–O5	118.88(13)	N31-Si2-N33	91.02(7)
C40-C38-C39	111.22(19)	O4–S1–O2	111.75(11)	N32-Si2-N33	92.62(7)
N32-C41-C43	111.18(17)	O5–S1–O2	113.04(11)	O31-Si2-C31	133.56(7)
N32-C41-C42	111.16(18)	O4–S1–C23	106.76(13)	O32–Si2–C31	128.71(7)
C43–C41–C42	111.49(19)	O5-S1-C23	104.75(15)	O33–Si2–C31	95.02(7)
N33-C44-C45	121.27(19)	O2–S1–C23	99.18(10)	N31-Si2-C31	35.05(6)
C46-C45-C44	119.9(2)	O4-S1B-O2	130.3(7)	N32–Si2–C31	35.01(7)
C45-C46-C47	120.3(2)	O4–S1B–C23	113.5(6)	N33-Si2-C31	92.48(7)
C52-C47-C46	116.10(19)	O2-S1B-C23	104.7(5)		
C52–C47–C48	116.4(2)	O4-S1B-F2	119.8(7)		

Abb. A21: Struktur von **37** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A52: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **37**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	х	У	Z	U_{eq}
C1	1185(1)	2620(1)	1190(1)	20(1)
C2	1474(2)	2767(1)	227(1)	20(1)
C3	434(2)	2798(1)	-736(1)	26(1)
C4	685(2)	2977(1)	-1632(1)	34(1)
C5	1960(2)	3110(1)	-1574(1)	34(1)
C6	3000(2)	3060(1)	-622(1)	30(1)
C7	2759(2)	2892(1)	282(1)	26(1)
C8	1986(2)	3800(1)	2079(1)	24(1)
C10	3363(2)	3850(1)	2915(2)	39(1)
C9	1044(2)	4352(1)	2265(2)	33(1)
C11	456(2)	1342(1)	805(1)	26(1)
C13	1742(2)	912(1)	1250(2)	40(1)
C12	-717(2)	900(1)	830(2)	44(1)
C14	-1960(2)	2785(1)	1303(1)	28(1)
C15	-3158(2)	3157(1)	1117(2)	37(1)
C16	-3306(2)	3603(1)	1867(2)	42(1)

Fortsetzung von	Tabelle A52:			
C17	-2255(2)	3687(1)	2837(2)	37(1)
C18	-2243(2)	4129(1)	3695(2)	52(1)
C19	-1134(2)	4155(1)	4582(2)	53(1)
C20	22(2)	3754(1)	4697(2)	41(1)
C21	43(2)	3319(1)	3886(1)	28(1)
C22	-1094(2)	3293(1)	2963(1)	26(1)
C23	856(2)	1129(1)	3626(1)	22(1)
C24	522(2)	478(1)	3980(1)	30(1)
C25	1536(2)	7(1)	4558(2)	35(1)
C26	2845(2)	186(1)	4764(1)	34(1)
C27	3184(2)	836(1)	4381(1)	29(1)
C28	2180(2)	1303(1)	3809(1)	23(1)
N1	1495(1)	3049(1)	2024(1)	20(1)
N2	554(1)	2039(1)	1364(1)	20(1)
N3	-951(1)	2855(1)	2207(1)	23(1)
O1	1066(1)	2918(1)	3867(1)	26(1)
O2	-14(1)	1649(1)	3078(1)	23(1)
O3	2330(1)	1943(1)	3360(1)	24(1)
Si	808(1)	2372(1)	2743(1)	19(1)

Tabelle A53: Bindungslängen [Å] und -winkel [°] von ${\bf 37}.$

C1-N1	1.328(2)	C11-C12	1.527(2)	C23–O2	1.364(2)
C1-N2	1.336(2)	C11–C13	1.531(3)	C23–C24	1.385(2)
C1–C2	1.495(2)	C14–N3	1.335(2)	C23–C28	1.412(2)
C1–Si	2.3616(15)	C14–C15	1.414(2)	C24–C25	1.402(3)
C2-C7	1.397(2)	C15–C16	1.371(3)	C25–C26	1.393(3)
C2-C3	1.399(2)	C16–C17	1.418(3)	C26–C27	1.405(3)
C3–C4	1.395(2)	C17–C22	1.414(2)	C27–C28	1.388(2)
C4–C5	1.387(3)	C17–C18	1.427(3)	C28–O3	1.3612(19)
C5-C6	1.391(3)	C18–C19	1.373(4)	N1–Si	1.9026(13)
C6–C7	1.397(2)	C19–C20	1.419(3)	N2–Si	1.9144(13)
C8-N1	1.469(2)	C20–C21	1.377(2)	N3–Si	1.9975(14)
C8–C9	1.529(2)	C21–O1	1.346(2)	O1–Si	1.7762(12)
C8-C10	1.529(2)	C21–C22	1.419(3)	O2–Si	1.7520(12)
C11–N2	1.473(2)	C22–N3	1.368(2)	O3–Si	1.7548(12)
N1C1N2	107.66(13)	C19–C18–C17	119.66(19)	C14–N3–Si	131.31(12)
N1-C1-C2	126.11(14)	C18–C19–C20	122.90(19)	C22–N3–Si	109.85(11)
N2-C1-C2	126.22(14)	C21–C20–C19	119.0(2)	C21–O1–Si	117.02(11)
N1–C1–Si	53.62(8)	O1–C21–C20	126.15(17)	C23–O2–Si	110.64(9)
N2–C1–Si	54.14(8)	O1–C21–C22	115.31(14)	C28–O3–Si	110.84(9)
C2–C1–Si	177.85(11)	C20–C21–C22	118.52(17)	O2–Si–O3	91.18(6)
C7-C2-C3	120.05(14)	N3-C22-C17	123.48(17)	O2–Si–O1	97.50(6)
	C1-N1 C1-N2 C1-C2 C1-Si C2-C7 C2-C3 C3-C4 C4-C5 C5-C6 C6-C7 C8-N1 C8-C9 C8-C10 C11-N2 N1-C1-N2 N1-C1-N2 N1-C1-C2 N2-C1-C2 N1-C1-Si C2-C1-Si C2-C1-Si C7-C2-C3	C1-N1 $1.328(2)$ C1-N2 $1.336(2)$ C1-C2 $1.495(2)$ C1-Si $2.3616(15)$ C2-C7 $1.397(2)$ C2-C3 $1.399(2)$ C3-C4 $1.395(2)$ C4-C5 $1.387(3)$ C5-C6 $1.391(3)$ C6-C7 $1.397(2)$ C8-N1 $1.469(2)$ C8-C10 $1.529(2)$ C1-N2 $1.473(2)$ N1-C1-N2 $107.66(13)$ N1-C1-C2 $126.11(14)$ N2-C1-C3 $53.62(8)$ N2-C1-Si $54.14(8)$ C2-C1-Si $177.85(11)$ C7-C2-C3 $120.05(14)$	C1-N1 $1.328(2)$ C11-C12C1-N2 $1.336(2)$ C11-C13C1-C2 $1.495(2)$ C14-N3C1-Si $2.3616(15)$ C14-C15C2-C7 $1.397(2)$ C15-C16C2-C3 $1.399(2)$ C16-C17C3-C4 $1.395(2)$ C17-C12C4-C5 $1.387(3)$ C17-C18C5-C6 $1.391(3)$ C18-C19C6-C7 $1.397(2)$ C19-C20C8-N1 $1.469(2)$ C20-C21C8-C9 $1.529(2)$ C21-O1C8-C10 $1.529(2)$ C21-C22C11-N2 $107.66(13)$ C19-C18-C17N1-C1-N2 $107.66(13)$ C19-C18-C17N1-C1-Si $53.62(8)$ O1-C21-C20N2-C1-Si $54.14(8)$ O1-C21-C22C2-C1-Si $177.85(11)$ C20-C21-C22C7-C2-C3 $120.05(14)$ N3-C22-C17	C1-N1 $1.328(2)$ C11-C12 $1.527(2)$ C1-N2 $1.336(2)$ C11-C13 $1.531(3)$ C1-C2 $1.495(2)$ C14-N3 $1.335(2)$ C1-Si $2.3616(15)$ C14-C15 $1.414(2)$ C2-C7 $1.397(2)$ C15-C16 $1.371(3)$ C2-C3 $1.399(2)$ C16-C17 $1.418(3)$ C3-C4 $1.395(2)$ C17-C22 $1.414(2)$ C4-C5 $1.387(3)$ C17-C18 $1.427(3)$ C5-C6 $1.391(3)$ C18-C19 $1.373(4)$ C6-C7 $1.397(2)$ C19-C20 $1.419(3)$ C8-N1 $1.469(2)$ C20-C21 $1.377(2)$ C8-C9 $1.529(2)$ C21-O1 $1.346(2)$ C8-C10 $1.529(2)$ C21-C12 $1.419(3)$ C11-N2 $107.66(13)$ C19-C18-C17 $119.66(19)$ N1-C1-N2 $107.66(13)$ C19-C20 $122.90(19)$ N2-C1-C2 $126.22(14)$ C21-C20-C19 $119.0(2)$ N1-C1-Si $53.62(8)$ O1-C21-C22 $115.31(14)$ C2-C1-Si $177.85(11)$ C20-C21-C22 $118.52(17)$ C7-C2-C3 $120.05(14)$ N3-C22-C17 $123.48(17)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Fortsetzung vor	n Tabelle A53:				
C7–C2–C1	120.86(14)	N3-C22-C21	113.32(14)	O3–Si–O1	90.44(6)
C3–C2–C1	119.06(13)	C17-C22-C21	123.20(16)	O2–Si–N1	164.95(6)
C4–C3–C2	119.51(15)	O2-C23-C24	125.18(15)	O3–Si–N1	93.46(6)
C5-C4-C3	120.40(16)	O2-C23-C28	113.79(14)	O1–Si–N1	96.78(6)
C4-C5-C6	120.18(16)	C24-C23-C28	121.03(15)	O2–Si–N2	96.66(6)
C5–C6–C7	119.96(15)	C23-C24-C25	118.36(16)	O3–Si–N2	96.21(6)
C2–C7–C6	119.86(15)	C26-C25-C24	120.74(17)	O1–Si–N2	164.21(6)
N1-C8-C9	111.85(13)	C25-C26-C27	120.95(17)	N1–Si–N2	68.61(6)
N1-C8-C10	109.68(14)	C28-C27-C26	118.28(16)	O2–Si–N3	85.18(5)
C9–C8–C10	111.85(15)	O3-C28-C27	125.93(15)	O3–Si–N3	173.08(6)
N2-C11-C12	110.54(14)	O3-C28-C23	113.47(14)	O1–Si–N3	84.22(6)
N2-C11-C13	110.77(14)	C27-C28-C23	120.59(15)	N1–Si–N3	91.54(6)
C12–C11–C13	111.94(17)	C1-N1-C8	124.92(13)	N2-Si-N3	90.06(6)
N3-C14-C15	121.34(17)	C1-N1-Si	92.18(9)	O2–Si–C1	131.11(6)
C16-C15-C14	120.32(18)	C8-N1-Si	142.16(10)	O3–Si–C1	94.50(5)
C15-C16-C17	119.82(17)	C1-N2-C11	122.76(12)	O1–Si–C1	130.89(6)
C22–C17–C16	116.32(17)	C1-N2-Si	91.41(9)	N1–Si–C1	34.20(5)
C22–C17–C18	116.7(2)	C11-N2-Si	138.58(11)	N2–Si–C1	34.45(5)
C16-C17-C18	126.97(18)	C14–N3–C22	118.72(14)	N3–Si–C1	92.32(5)

Verbindung $\mathbf{38}$

Abb. A22: Struktur von **38** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	х	У	Z	U_{eq}
Cl	3019(1)	2139(1)	6739(1)	33(1)
Si	4943(1)	1996(1)	7650(1)	24(1)
N2	6662(2)	1365(2)	8362(1)	24(1)
N1	5161(3)	130(2)	7685(1)	25(1)
N4	6717(3)	2273(2)	6759(1)	26(1
C1	6320(3)	134(2)	8228(2)	25(1
C2	7108(3)	-1093(3)	8587(2)	27(1
C3	7106(3)	-1217(3)	9437(2)	33(1
C4	7861(4)	-2356(3)	9760(2)	42(1
N3	5431(3)	3783(2)	7542(1)	25(1
C5	8617(4)	-3345(3)	9254(2)	41(1
C6	8618(3)	-3229(3)	8413(2)	37(1
C7	7852(3)	-2099(3)	8083(2)	32(1
C8	8027(3)	1763(3)	8830(2)	29(1
C9	9121(3)	2747(3)	8348(2)	33(1
C11	4006(3)	-945(3)	7633(2)	31(1
C10	7298(4)	2357(3)	9649(2)	39(1
C12	2296(4)	-592(3)	8104(2)	41(1
C13	3858(5)	-1309(3)	6753(2)	49(1
C14	6538(3)	3564(2)	6886(2)	24(1
C15	7351(3)	4619(3)	6377(2)	28(1
C16	9010(4)	4906(3)	6424(2)	38(1
C17	9700(4)	5944(3)	5964(2)	47(1
C18	8725(4)	6673(3)	5455(2)	47(1
C19	7092(4)	6375(3)	5389(2)	51(1
C20	6387(4)	5357(3)	5856(2)	42(1
C24	4641(3)	5068(2)	7828(2)	30(1
C25	2847(4)	5279(3)	7579(2)	46(1
C26	4627(4)	5194(3)	8746(2)	45(1
C21	7834(4)	1636(3)	6094(2)	34(1
C23	6909(6)	1354(5)	5378(2)	85(2)
C22	8785(4)	409(3)	6375(2)	46(1

Tabelle A54: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **38**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

Tabelle A55: Bindungslängen [Å] und -winkel [°] von $\mathbf{38}$.

Cl–Si	2.2518(11)	N4-C21	1.463(3)	C11-C12	1.521(4)
Si-H1	1.42(2)	C1–C2	1.503(3)	C14–C15	1.492(3)
Si–N3	1.876(2)	C2–C7	1.381(4)	C15–C16	1.382(4)
Si–N1	1.887(2)	C2–C3	1.404(4)	C15–C20	1.395(3)

-					
Si–N4	1.962(2)	C3–C4	1.396(4)	C16–C17	1.400(4)
Si–N2	1.969(2)	C4–C5	1.373(4)	C17–C18	1.382(4)
Si–C1	2.369(2)	N3–C14	1.333(3)	C18–C19	1.370(5)
Si–C14	2.370(3)	N3–C24	1.466(3)	C19–C20	1.393(4)
N2-C1	1.315(3)	C5–C6	1.389(4)	C24-C26	1.516(4)
N2-C8	1.474(3)	C6–C7	1.397(4)	C24–C25	1.532(4)
N1-C1	1.352(3)	C8–C10	1.521(4)	C21–C23	1.491(5)
N1-C11	1.476(3)	C8–C9	1.529(4)	C21–C22	1.512(4)
N4-C14	1.320(3)	C11–C13	1.514(4)		
H1-Si-N3	95.3(9)	C1–Si–C14	120.28(9)	N2-C8-C10	110.4(2)
H1-Si-N1	98.2(9)	C1-N2-C8	124.9(2)	N2-C8-C9	111.07(19)
N3-Si-N1	162.76(9)	C1–N2–Si	90.04(15)	C10–C8–C9	110.4(2)
H1–Si–N4	163.2(9)	C8–N2–Si	144.73(17)	N1-C11-C13	111.2(2)
N3–Si–N4	67.89(9)	C1-N1-C11	123.20(19)	N1-C11-C12	111.1(2)
N1–Si–N4	98.32(10)	C1–N1–Si	92.49(16)	C13-C11-C12	112.3(2)
H1–Si–N2	92.9(8)	C11–N1–Si	135.22(16)	N4-C14-N3	107.9(2)
N3–Si–N2	100.31(9)	C14-N4-C21	124.4(2)	N4-C14-C15	127.2(2)
N1–Si–N2	68.43(9)	C14–N4–Si	90.27(16)	N3-C14-C15	124.9(2)
N4–Si–N2	90.29(9)	C21–N4–Si	145.04(18)	N4–C14–Si	55.88(12)
H1–Si–Cl	92.1(8)	N2-C1-N1	108.9(2)	N3–C14–Si	52.18(12)
N3–Si–Cl	93.80(7)	N2-C1-C2	126.8(2)	C15-C14-Si	173.34(17)
N1–Si–Cl	96.36(7)	N1-C1-C2	124.2(2)	C16-C15-C20	119.3(2)
N4–Si–Cl	89.16(7)	N2–C1–Si	56.24(12)	C16–C15–C14	122.0(2)
N2–Si–Cl	164.53(7)	N1–C1–Si	52.75(12)	C20-C15-C14	118.7(2)
H1–Si–C1	95.2(8)	C2–C1–Si	176.69(19)	C15-C16-C17	120.1(3)
N3–Si–C1	133.23(10)	C7-C2-C3	119.6(2)	C18-C17-C16	119.9(3)
N1–Si–C1	34.76(9)	C7-C2-C1	120.3(2)	C19–C18–C17	120.4(3)
N4–Si–C1	96.55(9)	C3-C2-C1	120.1(2)	C18-C19-C20	120.0(3)
N2–Si–C1	33.72(9)	C4-C3-C2	119.5(3)	C19-C20-C15	120.2(3)
Cl–Si–C1	131.12(8)	C5-C4-C3	120.6(3)	N3-C24-C26	110.7(2)
H1–Si–C14	129.4(9)	C14-N3-C24	126.6(2)	N3-C24-C25	111.4(2)
N3–Si–C14	34.13(9)	C14–N3–Si	93.68(16)	C26-C24-C25	110.4(2)
N1–Si–C14	131.83(10)	C24–N3–Si	137.12(16)	N4-C21-C23	111.8(2)
N4–Si–C14	33.86(9)	C4–C5–C6	120.2(2)	N4-C21-C22	112.1(2)
N2–Si–C14	98.27(9)	C5-C6-C7	119.7(3)	C23-C21-C22	111.6(3)
Cl–Si–C14	89.84(6)	C2-C7-C6	120.5(3)		

Fortsetzung von Tabelle A55:

Abb. A23: Struktur von **39** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A56: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **39**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	у	Z	U_{eq}
C1	118(1)	3404(1)	864(1)	30(1)
N1	394(1)	4459(1)	1191(1)	33(1)
C2	4744(1)	5616(2)	1468(1)	31(1)
N2	1232(1)	2947(1)	761(1)	33(1)
C3	4722(1)	7130(2)	1553(1)	39(1)
N3	3054(1)	3864(1)	1583(1)	32(1)
C4	5305(2)	8103(2)	1285(1)	48(1)
N4	4847(1)	4133(1)	2190(1)	39(1)
C5	5912(1)	7586(2)	932(1)	46(1)
C6	5930(1)	6089(2)	842(1)	44(1)
C7	5355(1)	5109(2)	1108(1)	37(1)
C8	6119(1)	4753(2)	2379(1)	45(1)
C9	6139(2)	5213(2)	2892(1)	61(1)
C10	7121(2)	3578(2)	2350(1)	65(1)
C11	2615(1)	2561(2)	1828(1)	37(1)
C12	3533(2)	1256(2)	1840(1)	49(1)
C13	2306(2)	2898(2)	2316(1)	49(1)

Fortsetzung von Ta	belle Abo:			
C15	-1194(1)	2923(1)	634(1)	30(1)
C14	4232(1)	4515(2)	1780(1)	32(1)
C16	-1691(1)	3279(2)	163(1)	36(1)
C17	-2928(1)	2845(2)	-43(1)	42(1)
C18	-3668(1)	2055(2)	219(1)	44(1)
C19	-3180(1)	1698(2)	686(1)	46(1)
C20	-1948(1)	2135(2)	896(1)	40(1)
C21	-551(1)	5525(2)	1306(1)	42(1)
C22	-564(2)	6911(2)	1022(1)	80(1)
C23	-278(3)	5812(3)	1836(1)	88(1)
C24	1399(1)	1770(2)	427(1)	41(1)
C25	1185(2)	264(2)	628(1)	58(1)
C26	2741(2)	1913(2)	310(1)	61(1)
Si	2089(1)	4636(1)	1061(1)	33(1)

Fortsetzung von Tabelle A56:

Tabelle A57: Bindungslängen [Å] und -winkel [°] von $\mathbf{39}$.

C1-N2	1.3319(16)	N3-C14	1.4000(16)	C15–C20	1.3892(19)
C1–N1	1.3324(17)	N3-C11	1.4888(17)	C15–C16	1.3898(18)
C1–C15	1.4876(17)	N3–Si	1.7870(12)	C16–C17	1.3902(19)
C1–Si	2.3418(13)	C4–C5	1.376(2)	C17–C18	1.380(2)
N1–C21	1.4706(17)	N4-C14	1.2793(17)	C18–C19	1.379(2)
N1–Si	1.9058(12)	N4-C8	1.4675(18)	C19–C20	1.389(2)
C2–C7	1.3888(19)	C5–C6	1.381(2)	C21–C22	1.495(3)
C2–C3	1.394(2)	C6–C7	1.382(2)	C21–C23	1.510(3)
C2–C14	1.5036(18)	C8-C10	1.517(3)	C24–C25	1.515(3)
N2-C24	1.4637(18)	C8–C9	1.518(2)	C24–C26	1.523(2)
N2–Si	1.9013(12)	C11–C13	1.521(2)		
C3-C4	1.384(2)	C11–C12	1.527(2)		
N2-C1-N1	106.85(11)	C11–N3–Si	121.47(8)	C15–C16–C17	120.28(13)
N2-C1-C15	127.18(11)	C5-C4-C3	120.28(15)	C18–C17–C16	120.09(13)
N1–C1–C15	125.83(11)	C14–N4–C8	120.78(12)	C19–C18–C17	119.91(13)
N2–C1–Si	54.27(7)	C4-C5-C6	119.71(14)	C18–C19–C20	120.38(14)
N1–C1–Si	54.46(6)	C5-C6-C7	120.38(14)	C19-C20-C15	120.11(13)
C15-C1-Si	164.58(9)	C6-C7-C2	120.49(14)	N1-C21-C22	111.64(13)
C1–N1–C21	123.94(11)	N4-C8-C10	108.32(14)	N1-C21-C23	108.91(14)
C1-N1-Si	90.87(8)	N4-C8-C9	107.97(13)	C22-C21-C23	112.36(18)
C21-N1-Si	133.83(9)	С10-С8-С9	111.12(15)	N2-C24-C25	111.37(12)
С7-С2-С3	118.64(13)	N3-C11-C13	114.14(12)	N2-C24-C26	108.11(12)
C7-C2-C14	119.09(12)	N3-C11-C12	111.94(11)	C25-C24-C26	111.74(15)
C3-C2-C14	122.05(12)	C13-C11-C12	112.19(12)	N3–Si–N2	102.28(5)
C1-N2-C24	126.04(11)	C20-C15-C16	119.24(12)	N3–Si–N1	102.61(5)
C1–N2–Si	91.08(8)	C20-C15-C1	119.78(12)	N2–Si–N1	68.39(5)

Fortsetzung von Tabelle A57:						
C24-N2-Si	140.84(9)	C16-C15-C1	120.96(11)	N3–Si–C1	111.17(5)	
C4–C3–C2	120.49(13)	N4-C14-N3	121.22(12)	N2–Si–C1	34.66(5)	
C14–N3–C11	118.59(10)	N4-C14-C2	122.94(11)	N1–Si–C1	34.67(4)	
C14– $N3$ – Si	119.91(9)	N3-C14-C2	115.77(11)			

Abb. A24: Strukturen der beiden kristallographisch unabhängigen Moleküle im Kristall von **41** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%). Aus Gründen der Übersichtlichkeit ist hier nicht die asymmetrische Einheit abgebildet.

Tabelle A58: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **41**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	x	у	Z	U_{eq}
Si1	3439(1)	6752(1)	86(1)	35(1)
Si2	8655(1)	8195(1)	784(1)	35(1)
N1	3412(1)	6379(1)	-837(1)	36(1)
N2	2566(1)	6895(1)	-760(1)	35(1)
N3	3594(1)	7805(1)	228(1)	40(1)
N4	4385(1)	7004(1)	490(1)	40(1)
N5	9304(1)	8148(1)	291(1)	40(1)
N6	9068(1)	7246(1)	952(1)	38(1)

Fortsetzung vo	on Tabelle A58:			
N7	7832(1)	7739(1)	841(1)	36(1)
N8	7980(1)	8261(1)	-135(1)	36(1)
C1	2778(1)	6484(2)	-1213(1)	34(1)
C2	2387(1)	6130(2)	-1969(2)	38(1)
C3	2061(1)	5430(2)	-1972(2)	46(1)
C4	1703(1)	5071(2)	-2658(2)	60(1)
C5	1662(1)	5407(2)	-3345(2)	64(1)
C6	1970(2)	6101(2)	-3358(2)	62(1)
C7	2337(1)	6470(2)	-2667(2)	49(1)
C8	3882(1)	6013(2)	-1111(2)	42(1)
C9	3692(1)	5201(2)	-1473(2)	64(1)
C10	4068(1)	6566(2)	-1632(2)	65(1)
C11	1877(1)	7052(2)	-950(2)	44(1)
C12	1767(1)	7328(2)	-234(2)	54(1)
C13	1626(1)	7657(2)	-1591(2)	64(1)
C14	4237(1)	7747(2)	534(2)	39(1)
C15	4680(1)	8411(2)	888(2)	43(1)
C16	4747(1)	8682(2)	1620(2)	53(1)
C17	5173(2)	9280(2)	1965(2)	64(1)
C18	5532(2)	9611(2)	1586(2)	66(1)
C19	5466(2)	9353(2)	859(2)	63(1)
C20	5039(1)	8750(2)	507(2)	52(1)
C21	3203(1)	8520(2)	-19(2)	48(1)
C22	3219(2)	9042(2)	658(3)	82(1)
C23	3354(2)	8973(3)	-626(3)	95(1)
C24	5020(1)	6633(2)	836(2)	48(1)
C25	5388(1)	6851(2)	1683(2)	67(1)
C26	5422(1)	6781(2)	345(2)	56(1)
B1	3298(2)	5992(2)	886(2)	56(1)
C27	2697(1)	5414(2)	427(2)	71(1)
C28	2571(2)	4761(3)	920(3)	101(2)
C29	3158(2)	6539(3)	1521(2)	101(1)
C30	3649(3)	6836(4)	2133(4)	73(1)
C29B	3158(2)	6539(3)	1521(2)	101(1)
C30B	3234(4)	6426(5)	2327(4)	73(1)
C31	3942(1)	5454(2)	1291(2)	58(1)
C32	4106(2)	4865(2)	779(2)	63(1)
C33	9479(1)	7448(2)	603(2)	39(1)
C34	10013(1)	6946(2)	586(2)	46(1)
C35	10609(1)	6976(2)	1179(2)	59(1)
C36	11089(2)	6476(3)	1154(3)	75(1)
C37	10980(2)	5959(2)	551(3)	80(1)
C38	10395(2)	5941(2)	-49(3)	80(1)
C39	9912(2)	6435(2)	-29(2)	64(1)
C40	9624(1)	8654(2)	-97(2)	50(1)
C41	10299(2)	8862(2)	402(2)	67(1)

Fortsetzung von Tak	belle A58:			
C42	9594(2)	8331(2)	-875(2)	67(1)
C43	9052(1)	6532(2)	1389(2)	52(1)
C44	9631(2)	6448(4)	2127(3)	122(2)
C45	8916(3)	5807(3)	929(3)	121(2)
C46	7536(1)	7974(2)	126(2)	35(1)
C47	6838(1)	7999(2)	-341(2)	39(1)
C48	6511(1)	8706(2)	-393(2)	51(1)
C49	5872(1)	8755(2)	-866(2)	63(1)
C50	5561(1)	8111(3)	-1278(2)	67(1)
C51	5878(1)	7412(2)	-1231(2)	62(1)
C52	6522(1)	7348(2)	-753(2)	48(1)
C53	7538(1)	7478(2)	1389(2)	42(1)
C54	7034(1)	8035(2)	1472(2)	56(1)
C55	7281(1)	6642(2)	1204(2)	55(1)
C56	7929(1)	8331(2)	-943(2)	45(1)
C57	7368(1)	8816(2)	-1467(2)	60(1)
C58	7956(2)	7519(2)	-1279(2)	61(1)
B2	8894(1)	9112(2)	1582(2)	48(1)
C59	9610(2)	9394(3)	1844(3)	63(1)
C60	10111(2)	8823(3)	2333(3)	71(1)
C61	8734(2)	8801(3)	2360(2)	54(1)
C62	8886(3)	9404(4)	3005(3)	83(2)
C63	8362(2)	9796(3)	1160(3)	53(1)
C64	8489(2)	10251(2)	504(2)	63(1)
C59B	9590(3)	8846(5)	2217(4)	63(1)
C60B	9587(4)	8265(6)	2800(5)	71(1)
C61B	8367(3)	9331(5)	1912(4)	54(1)
C62B	8517(6)	10019(6)	2453(6)	83(2)
C63B	9057(4)	9913(4)	1128(5)	53(1)
C64B	8489(2)	10251(2)	504(2)	63(1)

Tabelle A59: Bindungslängen [Å] und -winkel [°] von $\bf 41.$

Si1-N1	1.808(2)	C2–C7	1.385(4)	C36–C37	1.371(6)
Si1–N3	1.816(2)	C2–C3	1.392(4)	C37–C38	1.380(6)
Si1–N4	2.030(2)	C3–C4	1.375(4)	C38–C39	1.385(5)
Si1–N2	2.036(2)	C4–C5	1.369(5)	C40-C41	1.506(4)
Si1–B1	2.076(4)	C5–C6	1.368(5)	C40-C42	1.524(4)
Si1–C1	2.371(3)	C6–C7	1.395(4)	C43–C45	1.462(6)
Si1-C14	2.380(3)	C8-C10	1.514(4)	C43–C44	1.516(6)
Si2–N6	1.825(2)	C8–C9	1.520(4)	C46–C47	1.494(3)
Si2–N8	1.828(2)	C11–C13	1.514(4)	C47–C52	1.381(4)
Si2–N5	1.991(2)	C11–C12	1.515(4)	C47–C48	1.390(4)
Si2–N7	2.048(2)	C14–C15	1.488(4)	C48-C49	1.389(4)

Fortsetzung von	Tabelle A59:				
Si2–B2	2.077(3)	C15–C20	1.381(4)	C49–C50	1.368(5)
Si2-C33	2.371(3)	C15–C16	1.390(4)	C50–C51	1.367(5)
Si2-C46	2.396(2)	C16–C17	1.381(4)	C51-C52	1.402(4)
N1-C1	1.355(3)	C17–C18	1.373(5)	C53–C55	1.519(4)
N1-C8	1.468(3)	C18-C19	1.375(5)	C53–C54	1.528(4)
N2-C1	1.310(3)	C19–C20	1.390(4)	C56–C58	1.521(4)
N2-C11	1.484(3)	C21–C23	1.501(5)	C56-C57	1.523(4)
N3-C14	1.354(3)	C21–C22	1.527(5)	B2–C61B	1.567(6)
N3-C21	1.467(4)	C24–C26	1.524(4)	B2–C59	1.580(5)
N4-C14	1.311(3)	C24–C25	1.530(4)	B2–C59B	1.644(6)
N4-C24	1.478(3)	B1–C29	1.617(4)	B2–C63	1.645(5)
N5–C33	1.314(3)	B1–C27	1.636(5)	B2–C61	1.697(5)
N5-C40	1.468(3)	B1–C31	1.645(4)	B2–C63B	1.706(6)
N6–C33	1.354(3)	C27–C28	1.526(4)	C59–C60	1.512(6)
N6-C43	1.464(4)	C29–C30	1.360(7)	C61–C62	1.514(6)
N7-C46	1.312(3)	C31–C32	1.514(4)	C63-C64	1.554(5)
N7–C53	1.470(3)	C33–C34	1.484(4)	C59B-C60B	1.464(8)
N8-C46	1.352(3)	C34–C39	1.383(5)	C61B-C62B	1.495(8)
N8-C56	1.467(3)	C34–C35	1.393(4)		
C1–C2	1.485(4)	C35–C36	1.387(5)		
N1–Si1–N3	114.74(10)	C46–N7–Si2	88.17(15)	C39–C34–C33	119.1(3)
N1–Si1–N4	95.15(9)	C53–N7–Si2	142.68(17)	C35-C34-C33	121.2(3)
N3–Si1–N4	67.70(9)	C46–N8–C56	127.2(2)	C36-C35-C34	119.4(4)
N1–Si1–N2	67.80(9)	C46–N8–Si2	96.68(16)	C37-C36-C35	120.4(4)
N3–Si1–N2	94.31(9)	C56-N8-Si2	133.42(16)	C36–C37–C38	120.5(3)
N4–Si1–N2	148.12(9)	N2C1N1	107.7(2)	C37-C38-C39	119.5(4)
N1–Si1–B1	120.17(13)	N2C1C2	126.3(2)	C34-C39-C38	120.4(4)
N3–Si1–B1	125.09(13)	N1-C1-C2	125.8(2)	N5-C40-C41	113.7(3)
N4-Si1-B1	106.35(11)	N2–C1–Si1	59.06(12)	N5-C40-C42	113.4(3)
N2-Si1-B1	105.52(11)	N1–C1–Si1	49.31(12)	C41-C40-C42	110.6(3)
N1–Si1–C1	34.64(8)	C2-C1-Si1	167.17(19)	C45-C43-N6	114.3(3)
N3–Si1–C1	110.54(10)	С7-С2-С3	119.2(3)	C45-C43-C44	112.1(4)
N4–Si1–C1	126.92(9)	C7–C2–C1	122.3(2)	N6-C43-C44	113.0(3)
N2–Si1–C1	33.50(8)	C3–C2–C1	118.5(2)	N7-C46-N8	107.6(2)
B1–Si1–C1	113.99(12)	C4–C3–C2	120.6(3)	N7-C46-C47	129.4(2)
N1–Si1–C14	109.73(9)	C5–C4–C3	119.8(3)	N8-C46-C47	122.9(2)
N3-Si1-C14	34.44(9)	C6–C5–C4	120.7(3)	N7-C46-Si2	58.66(12)
N4-Si1-C14	33.39(9)	C5–C6–C7	120.1(3)	N8-C46-Si2	49.24(12)
N2-Si1-C14	125.44(9)	C2–C7–C6	119.5(3)	C47–C46–Si2	168.64(19)
B1-Si1-C14	118.79(12)	N1-C8-C10	111.4(2)	C52-C47-C48	119.7(2)
C1–Si1–C14	127.20(9)	N1-C8-C9	114.4(2)	C52–C47–C46	121.2(2)
N6–Si2–N8	114.30(10)	С10-С8-С9	112.0(3)	C48-C47-C46	119.0(2)
N6–Si2–N5	68.16(9)	N2-C11-C13	111.6(2)	C49-C48-C47	119.8(3)
N8-Si2-N5	94.23(9)	N2-C11-C12	109.9(2)	C50-C49-C48	120.4(3)
N6–Si2–N7	94.31(9)	C13–C11–C12	110.3(2)	C51-C50-C49	120.3(3)

N8-Si2-N7	67.11(9)	N4-C14-N3	107.6(2)	C50-C51-C52	120.2(3)
N5–Si2–N7	147.23(9)	N4-C14-C15	127.4(2)	C47–C52–C51	119.6(3)
N6–Si2–B2	123.53(11)	N3-C14-C15	125.0(2)	N7-C53-C55	110.7(2)
N8–Si2–B2	122.11(11)	N4-C14-Si1	58.50(13)	N7-C53-C54	115.1(2)
N5–Si2–B2	108.40(11)	N3-C14-Si1	49.34(13)	C55-C53-C54	111.2(2)
N7–Si2–B2	104.37(11)	C15-C14-Si1	171.16(18)	N8-C56-C58	110.3(2)
N6-Si2-C33	34.64(9)	C20-C15-C16	119.3(3)	N8-C56-C57	115.8(2)
N8-Si2-C33	109.16(9)	C20-C15-C14	120.8(2)	C58-C56-C57	111.9(3)
N5-Si2-C33	33.66(9)	C16-C15-C14	119.8(2)	C61B-B2-C59	130.1(4)
N7-Si2-C33	125.33(9)	C17-C16-C15	120.2(3)	C61B-B2-C59B	116.4(4)
B2-Si2-C33	119.15(11)	C18-C17-C16	120.2(3)	C59-B2-C59B	42.5(3)
N6-Si2-C46	109.04(9)	C17-C18-C19	120.1(3)	C61B-B2-C63	59.6(3)
N8-Si2-C46	34.08(9)	C18–C19–C20	120.2(3)	C59–B2–C63	114.8(3)
N5-Si2-C46	124.94(9)	C15–C20–C19	119.9(3)	C59B-B2-C63	150.9(4)
N7-Si2-C46	33.17(8)	N3-C21-C23	112.4(3)	C61B-B2-C61	46.6(3)
B2–Si2–C46	115.53(11)	N3-C21-C22	112.9(3)	C59–B2–C61	110.1(3)
C33–Si2–C46	125.31(9)	C23–C21–C22	112.3(3)	C59B-B2-C61	75.4(3)
C1–N1–C8	129.5(2)	N4-C24-C26	111.3(2)	C63–B2–C61	106.2(3)
C1–N1–Si1	96.05(15)	N4-C24-C25	114.9(2)	C61B-B2-C63B	109.7(4)
C8–N1–Si1	134.22(17)	C26-C24-C25	110.9(2)	C59–B2–C63B	62.1(3)
C1–N2–C11	122.5(2)	C29–B1–C27	112.1(3)	C59B-B2-C63B	104.6(4)
C1–N2–Si1	87.44(14)	C29–B1–C31	111.0(3)	C63–B2–C63B	57.1(3)
C11-N2-Si1	146.89(17)	C27–B1–C31	109.4(3)	C61–B2–C63B	145.0(4)
C14–N3–C21	128.3(2)	C29–B1–Si1	106.9(3)	C61B-B2-Si2	114.8(3)
C14–N3–Si1	96.23(16)	C27–B1–Si1	108.2(2)	C59-B2-Si2	114.5(3)
C21–N3–Si1	134.61(17)	C31–B1–Si1	109.19(19)	C59B-B2-Si2	103.8(4)
C14–N4–C24	127.5(2)	С28-С27-В1	114.9(3)	C63–B2–Si2	103.4(2)
C14–N4–Si1	88.12(14)	C30–C29–B1	120.3(4)	C61-B2-Si2	107.2(2)
C24–N4–Si1	142.28(19)	C32–C31–B1	117.0(3)	C63B-B2-Si2	106.7(3)
C33-N5-C40	128.4(2)	N5-C33-N6	106.9(2)	C60–C59–B2	116.5(4)
C33-N5-Si2	89.21(15)	N5-C33-C34	128.4(2)	C62-C61-B2	114.0(4)
C40N5Si2	141.05(19)	N6-C33-C34	124.7(2)	C64–C63–B2	114.2(3)
C33-N6-C43	129.3(2)	N5-C33-Si2	57.12(13)	C60B-C59B-B2	116.9(6)
C33-N6-Si2	95.31(17)	N6–C33–Si2	50.05(12)	C62B-C61B-B2	115.5(6)
C43-N6-Si2	134.93(17)	C34–C33–Si2	173.2(2)		
C46–N7–C53	126.9(2)	C39-C34-C35	119.7(3)		

Fortsetzung von Tabelle A59:

Verbindung $42 \cdot C_6 H_5 C H_3$

Abb. A25: Struktur von $42 \cdot C_6 H_5 CH_3$ im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A60: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von $42 \cdot C_6 H_5 C H_3$. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	x	у	Z	U_{eq}
В	1120(1)	4125(2)	3123(1)	29(1)
Si	1057(1)	2799(1)	3907(1)	27(1)
N1	748(1)	1818(2)	3819(1)	30(1)
N2	796(1)	3582(2)	4438(1)	30(1)
N3	1327(1)	2494(2)	4787(1)	32(1)
N4	1316(1)	1348(2)	3793(1)	33(1)
C1	625(1)	2617(2)	4228(1)	28(1)
C2	348(1)	2396(2)	4393(1)	33(1)
C3	336(1)	1787(2)	5063(1)	41(1)
C4	76(1)	1569(2)	5211(2)	49(1)
C5	-169(1)	1972(2)	4689(2)	52(1)
C6	-157(1)	2597(3)	4031(2)	55(1)
C7	101(1)	2809(2)	3877(2)	46(1)
C8	670(1)	515(2)	3556(1)	33(1)

Fortsetzung von Tal	belle A60:			
C9	722(1)	-410(2)	4226(2)	57(1)
C10	374(1)	400(3)	3028(2)	58(1)
C11	751(1)	4763(2)	4836(1)	34(1)
C12	698(1)	4532(2)	5619(1)	43(1)
C13	527(1)	5635(3)	4352(2)	54(1)
C14	1462(1)	1571(2)	4506(1)	31(1)
C15	1729(1)	955(2)	4946(1)	39(1)
C16	1723(1)	-46(2)	5437(2)	49(1)
C17	1974(1)	-604(3)	5854(2)	68(1)
C18	2227(1)	-152(3)	5785(2)	78(1)
C19	2233(1)	838(3)	5297(2)	74(1)
C20	1986(1)	1403(3)	4873(2)	53(1)
C21	1391(1)	3027(2)	5571(1)	38(1)
C22	1297(1)	2143(3)	6124(2)	58(1)
C23	1695(1)	3450(3)	5887(2)	53(1)
C24	1377(1)	431(2)	3237(2)	45(1)
C25	1410(1)	-906(3)	3539(2)	43(1)
C26	1617(1)	840(2)	2907(2)	43(1)
C24B	1377(1)	431(2)	3237(2)	45(1)
C25B	1256(4)	-619(16)	2981(11)	49(6)
C26B	1617(1)	840(2)	2907(2)	43(1)
C27	855(1)	5096(2)	2828(1)	30(1)
C28	576(1)	4665(2)	2582(1)	35(1)
C29	352(1)	5464(2)	2252(1)	42(1)
C30	399(1)	6745(3)	2162(2)	48(1)
C31	670(1)	7204(2)	2384(2)	47(1)
C32	894(1)	6387(2)	2707(1)	38(1)
C33	1148(1)	3451(2)	2332(1)	29(1)
C34	978(1)	2434(2)	1982(1)	33(1)
C35	986(1)	1937(2)	1271(1)	39(1)
C36	1165(1)	2449(2)	877(1)	41(1)
C37	1332(1)	3474(2)	1197(1)	41(1)
C38	1322(1)	3959(2)	1903(1)	35(1)
C39	1409(1)	4796(2)	3632(1)	32(1)
C40	1408(1)	5807(2)	4139(1)	40(1)
C41	1655(1)	6369(3)	4581(1)	48(1)
C42	1913(1)	5936(3)	4536(2)	57(1)
C43	1925(1)	4919(3)	4064(2)	53(1)
C44	1677(1)	4355(2)	3625(1)	41(1)
C45A	2748(2)	2411(13)	7205(7)	158(4)
C46A	2570(1)	2100(4)	7686(3)	86(2)
C47A	2665(1)	1209(5)	8266(3)	97(2)
C48A	2496(1)	871(5)	8742(3)	118(2)
C49A	2232(1)	1423(5)	8637(3)	96(2)
C50A	2138(1)	2314(4)	8057(3)	88(2)
C51A	2307(1)	2653(4)	7581(2)	85(2)

Fortsetzung vor	n Tabelle A60:			
C45B	2362(4)	1126(18)	8936(10)	133(4)
C49B	2704(2)	2439(9)	7213(4)	90(3)
C50B	2858(1)	1563(8)	7735(5)	86(2)
C51B	2745(2)	1047(7)	8297(4)	94(3)
C46B	2477(2)	1406(8)	8338(4)	91(3)
C47B	2323(1)	2282(7)	7816(5)	74(2)
C48B	2436(2)	2798(8)	7253(5)	94(3)

Tabelle A61: Bindungslängen [Å] und -winkel [°] von $42 \cdot C_6 H_5 C H_3$.

B-C33	1.630(3)	C6–C7	1.387(4)	C34-C35	1.392(3)
B–C39	1.632(3)	C8–C9	1.518(3)	C35–C36	1.380(4)
B-C27	1.634(3)	C8-C10	1.519(3)	C36–C37	1.388(3)
B–Si	2.067(3)	C11–C12	1.518(3)	C37–C38	1.384(3)
Si–N3	1.8039(18)	C11–C13	1.519(3)	C39–C44	1.404(3)
Si–N1	1.8109(18)	C14–C15	1.491(3)	C39–C40	1.405(3)
Si–N2	1.9767(19)	C15–C16	1.382(3)	C40–C41	1.396(3)
Si–N4	2.0356(19)	C15–C20	1.390(3)	C41–C42	1.371(4)
Si-C1	2.358(2)	C16–C17	1.392(4)	C42–C43	1.378(4)
Si-C14	2.380(2)	C17–C18	1.368(5)	C43–C44	1.396(3)
N1–C1	1.364(3)	C18–C19	1.370(5)	C45A-C46A	1.425(9)
N1–C8	1.471(3)	C19–C20	1.387(4)	C46A-C47A	1.3900
N2–C1	1.310(3)	C21–C23	1.523(3)	C46A–C51A	1.3900
N2-C11	1.483(3)	C21-C22	1.523(4)	C47A-C48A	1.3900
N3-C14	1.350(3)	C24-C25	1.504(4)	C48A-C49A	1.3900
N3–C21	1.474(3)	C24–C26	1.521(4)	C49A-C50A	1.3900
N4-C14	1.315(3)	C27–C28	1.400(3)	C50A-C51A	1.3900
N4–C24	1.478(3)	C27–C32	1.400(3)	C45B-C46B	1.376(12)
C1–C2	1.488(3)	C28–C29	1.391(3)	C49B-C50B	1.3900
C2–C3	1.381(3)	C29–C30	1.387(4)	C49B-C48B	1.3900
C2–C7	1.391(3)	C30–C31	1.376(4)	C50B-C51B	1.3900
C3–C4	1.393(3)	C31–C32	1.396(3)	C51B-C46B	1.3900
C4–C5	1.383(4)	C33–C38	1.401(3)	C46B-C47B	1.3900
C5–C6	1.370(4)	C33–C34	1.403(3)	C47B-C48B	1.3900
С33-В-С39	114.56(17)	N2-C1-C2	128.01(19)	С28-С27-В	122.14(18)
С33-В-С27	103.62(16)	N1-C1-C2	125.09(18)	С32-С27-В	121.90(19)
С39-В-С27	114.41(18)	N2–C1–Si	56.97(11)	C29-C28-C27	122.6(2)
C33-B-Si	111.37(14)	N1–C1–Si	49.93(10)	C30–C29–C28	120.0(2)
C39-B-Si	100.15(14)	C2-C1-Si	175.02(16)	C31-C30-C29	119.3(2)
C27-B-Si	113.13(15)	С3-С2-С7	119.6(2)	C30-C31-C32	120.0(2)
N3–Si–N1	112.25(9)	C3-C2-C1	120.21(19)	C31–C32–C27	122.7(2)
N3–Si–N2	94.05(8)	C7–C2–C1	120.1(2)	C38-C33-C34	115.1(2)
N1–Si–N2	68.96(8)	С2-С3-С4	120.0(2)	С38-С33-В	121.35(18)
N3–Si–N4	67.74(8)	C5-C4-C3	119.9(3)	С34-С33-В	123.08(19)

N1–Si–N4	95.46(8)	C6–C5–C4	120.3(2)	C35-C34-C33	122.7(2)
N2–Si–N4	150.22(8)	C5–C6–C7	120.2(2)	C36-C35-C34	120.2(2)
N3–Si–B	120.74(9)	C6–C7–C2	120.0(3)	C35-C36-C37	118.7(2)
N1–Si–B	127.01(9)	N1-C8-C9	111.72(19)	C38-C37-C36	120.4(2)
N2–Si–B	106.44(9)	N1-C8-C10	113.81(18)	C37-C38-C33	122.7(2)
N4–Si–B	103.18(9)	C9–C8–C10	112.1(2)	C44-C39-C40	115.0(2)
N3–Si–C1	105.72(8)	N2-C11-C12	113.50(18)	С44-С39-В	122.2(2)
N1–Si–C1	35.20(8)	N2-C11-C13	114.23(18)	С40-С39-В	122.8(2)
N2–Si–C1	33.76(7)	C12–C11–C13	110.6(2)	C41-C40-C39	122.6(2)
N4–Si–C1	126.41(8)	N4-C14-N3	107.39(17)	C42-C41-C40	120.3(3)
B–Si–C1	122.11(8)	N4–C14–C15	128.0(2)	C41-C42-C43	119.2(2)
N3–Si–C14	34.28(8)	N3-C14-C15	124.59(19)	C42-C43-C44	120.4(3)
N1–Si–C14	108.09(8)	N4–C14–Si	58.73(11)	C43-C44-C39	122.4(2)
N2–Si–C14	125.56(8)	N3–C14–Si	48.81(10)	C47A-C46A-C51A	120.0
N4–Si–C14	33.53(7)	C15–C14–Si	172.30(16)	C47A-C46A-C45A	118.3(6)
B-Si-C14	114.72(9)	C16-C15-C20	119.5(2)	C51A-C46A-C45A	121.7(6)
C1–Si–C14	123.07(8)	C16-C15-C14	120.5(2)	C46A-C47A-C48A	120.0
C1-N1-C8	129.29(18)	C20-C15-C14	119.9(2)	C49A-C48A-C47A	120.0
C1–N1–Si	94.87(13)	C15-C16-C17	120.2(3)	C48A-C49A-C50A	120.0
C8–N1–Si	134.83(14)	C18–C17–C16	120.1(3)	C51A-C50A-C49A	120.0
C1–N2–C11	128.57(18)	C17-C18-C19	120.0(3)	C50A-C51A-C46A	120.0
C1–N2–Si	89.28(13)	C18-C19-C20	120.9(3)	C50B-C49B-C48B	120.0
C11–N2–Si	141.77(14)	C19-C20-C15	119.4(3)	C51B-C50B-C49B	120.0
C14–N3–C21	129.20(17)	N3-C21-C23	114.1(2)	C50B-C51B-C46B	120.0
C14–N3–Si	96.91(14)	N3-C21-C22	111.6(2)	C45B-C46B-C47B	114.0(8)
C21–N3–Si	133.89(15)	C23-C21-C22	112.1(2)	C45B-C46B-C51B	125.2(8)
C14–N4–C24	128.43(19)	N4-C24-C25	113.0(2)	C47B-C46B-C51B	120.0
C14–N4–Si	87.74(13)	N4-C24-C26	113.43(19)	C46B-C47B-C48B	120.0
C24–N4–Si	143.61(15)	C25-C24-C26	112.7(2)	C47B-C48B-C49B	120.0
N2-C1-N1	106.90(17)	C28-C27-C32	115.43(19)		

Fortsetzung von Tabelle A61:

Abb. A26: Struktur von **43** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A62: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **43**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	X	у	Z	U_{eq}
Cr	7766(1)	1735(1)	1111(1)	22(1)
Si	8209(1)	924(1)	2276(1)	22(1)
01	5849(2)	765(1)	-60(1)	56(1)
O2	9922(2)	1006(1)	615(1)	46(1)
N1	8274(2)	1169(1)	3345(1)	22(1)
N2	6412(2)	763(1)	2576(1)	23(1)
N3	8424(2)	22(1)	2125(1)	22(1)
O3	9595(2)	2762(1)	2243(1)	48(1)
N4	10157(2)	642(1)	2582(1)	20(1)
O4	5691(2)	2344(1)	1802(1)	46(1)
C1	7011(2)	1058(1)	3300(1)	22(1)
C2	6402(2)	1261(1)	3970(1)	25(1)
C3	5776(2)	1889(1)	3924(1)	32(1)
C4	5222(2)	2078(2)	4554(2)	44(1)
C5	5292(3)	1641(2)	5227(2)	50(1)
O5	7219(2)	2718(1)	-360(1)	51(1)
C6	5895(3)	1013(2)	5273(2)	46(1)
C7	6443(2)	820(1)	4644(1)	34(1)

Fortsetzung von 7	Tabelle A62:			
C8	9287(2)	1505(1)	4025(1)	28(1)
C9	8915(3)	2225(2)	4236(2)	60(1)
C31	7436(2)	2347(1)	208(1)	32(1)
C30	6468(2)	2105(1)	1535(1)	30(1)
C10	9742(3)	1059(2)	4810(2)	62(1)
C11	5018(2)	587(1)	2374(1)	30(1)
C12	4319(2)	677(1)	1430(1)	41(1)
C13	4844(2)	-135(1)	2661(2)	41(1)
C14	9727(2)	28(1)	2307(1)	20(1)
C15	10560(2)	-562(1)	2220(1)	23(1)
C16	11068(2)	-597(1)	1533(1)	29(1)
C17	11872(2)	-1134(1)	1469(2)	38(1)
C18	12173(2)	-1637(1)	2083(2)	42(1)
C19	11672(3)	-1609(1)	2765(2)	43(1)
C20	10864(2)	-1071(1)	2836(2)	35(1)
C21	7507(2)	-518(1)	1707(1)	30(1)
C22	7690(3)	-757(2)	858(2)	53(1)
C23	7503(3)	-1112(1)	2299(2)	58(1)
C24	11558(2)	805(1)	2817(1)	26(1)
C25	11781(2)	1552(1)	2657(2)	34(1)
C26	12240(2)	610(1)	3737(1)	36(1)
C27	6574(2)	1123(1)	408(1)	34(1)
C28	9117(2)	1289(1)	806(1)	29(1)
C29	8923(2)	2357(1)	1824(1)	30(1)

Tabelle A63: Bindungslängen [Å] und -winkel [°] von ${\bf 43}.$

Cr–C31	1.853(2)	N2-C1	1.307(3)	C8-C10	1.512(3)
Cr–C29	1.879(2)	N2-C11	1.479(3)	С8–С9	1.527(3)
Cr-C27	1.879(2)	N3–C14	1.347(3)	C11–C13	1.514(3)
Cr–C30	1.880(2)	N3–C21	1.467(2)	C11–C12	1.520(3)
Cr–C28	1.887(2)	O3–C29	1.152(3)	C14–C15	1.492(3)
Cr–Si	2.4181(7)	N4-C14	1.314(2)	C15–C20	1.386(3)
Si–N1	1.7982(17)	N4-C24	1.478(3)	C15–C16	1.392(3)
Si–N3	1.8014(17)	O4–C30	1.150(3)	C16–C17	1.383(3)
Si–N4	2.0825(17)	C1–C2	1.491(3)	C17–C18	1.375(4)
Si–N2	2.1567(19)	C2–C3	1.389(3)	C18–C19	1.380(4)
Si–C14	2.3838(19)	C2–C7	1.390(3)	C19–C20	1.389(3)
Si–C1	2.416(2)	C3–C4	1.389(3)	C21–C23	1.513(3)
O1–C27	1.154(3)	C4–C5	1.380(4)	C21–C22	1.536(3)
O2–C28	1.146(3)	C5–C6	1.378(4)	C24-C25	1.512(3)
N1-C1	1.358(3)	O5–C31	1.148(3)	C24–C26	1.521(3)
N1-C8	1.466(2)	C6–C7	1.384(3)		

C31–Cr–C29	91.05(10)	N3–Si–Cr	122.19(6)	N1-C8-C10	111.9(2)
C31–Cr–C27	88.97(10)	N4–Si–Cr	108.22(5)	N1-C8-C9	113.42(18)
C29–Cr–C27	178.54(10)	N2–Si–Cr	107.13(5)	С10-С8-С9	112.1(2)
C31–Cr–C30	93.51(10)	C14–Si–Cr	118.05(5)	O5–C31–Cr	178.9(2)
C29–Cr–C30	87.21(9)	C1–Si–Cr	117.28(5)	O4–C30–Cr	178.5(2)
C27–Cr–C30	91.33(10)	C1–N1–C8	128.41(17)	N2-C11-C13	110.96(18)
C31–Cr–C28	93.76(10)	C1–N1–Si	98.95(12)	N2-C11-C12	111.50(18)
C29–Cr–C28	92.34(10)	C8–N1–Si	131.83(14)	C13-C11-C12	110.82(19)
C27–Cr–C28	89.12(10)	C1-N2-C11	120.19(17)	N4-C14-N3	108.85(16)
C30–Cr–C28	172.73(9)	C1-N2-Si	84.69(12)	N4-C14-C15	125.07(17)
C31–Cr–Si	179.07(8)	C11-N2-Si	154.52(13)	N3-C14-C15	126.07(17)
C29–Cr–Si	89.41(7)	C14–N3–C21	128.66(17)	N4-C14-Si	60.64(10)
C27–Cr–Si	90.59(7)	C14– $N3$ – Si	97.38(12)	N3–C14–Si	48.54(9)
C30–Cr–Si	87.32(7)	C21-N3-Si	131.96(14)	C15-C14-Si	172.60(13)
C28–Cr–Si	85.42(7)	C14–N4–C24	120.96(16)	C20–C15–C16	119.38(19)
N1–Si–N3	115.11(8)	C14– $N4$ – Si	86.02(12)	C20-C15-C14	120.09(19)
N1–Si–N4	95.11(7)	C24-N4-Si	152.24(13)	C16–C15–C14	120.51(17)
N3–Si–N4	67.27(7)	N2-C1-N1	109.70(17)	C17–C16–C15	120.3(2)
N1–Si–N2	66.14(7)	N2-C1-C2	125.51(18)	C18-C17-C16	120.1(2)
N3–Si–N2	92.88(7)	N1-C1-C2	124.76(17)	C17-C18-C19	120.2(2)
N4–Si–N2	144.64(7)	N2–C1–Si	62.73(11)	C18–C19–C20	120.2(2)
N1–Si–C14	110.16(7)	N1–C1–Si	47.33(9)	C15-C20-C19	119.9(2)
N3–Si–C14	34.08(7)	C2-C1-Si	169.54(15)	N3-C21-C23	112.2(2)
N4–Si–C14	33.35(6)	C3-C2-C7	119.3(2)	N3-C21-C22	113.1(2)
N2-Si-C14	123.04(7)	C3-C2-C1	120.39(19)	C23-C21-C22	112.0(2)
N1–Si–C1	33.72(7)	С7-С2-С1	120.31(19)	N4-C24-C25	111.37(16)
N3–Si–C1	108.57(8)	C4-C3-C2	120.1(2)	N4-C24-C26	111.26(18)
N4–Si–C1	124.63(7)	C5-C4-C3	119.9(2)	C25-C24-C26	110.98(17)
N2–Si–C1	32.58(6)	C6-C5-C4	120.4(2)	O1–C27–Cr	176.5(2)
C14–Si–C1	124.63(7)	C5-C6-C7	119.9(2)	O2–C28–Cr	178.6(2)
N1–Si–Cr	122.64(6)	C6-C7-C2	120.4(2)	O3–C29–Cr	176.86(19)

Fortsetzung von Tabelle A63:

${\rm Verbindung}\ 44$

Abb. A27: Struktur von **44** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A64: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **44**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	x	У	Z	U_{eq}
Мо	7762(1)	1743(1)	1090(1)	24(1)
Si	8222(1)	884(1)	2305(1)	24(1)
O1	5728(2)	772(1)	-145(1)	65(1)
O2	10033(2)	987(1)	589(1)	54(1)
O3	9667(2)	2819(1)	2237(1)	56(1)
O4	5560(2)	2362(1)	1790(1)	58(1)
O5	7207(2)	2760(1)	-427(1)	60(1)
N1	8295(1)	1116(1)	3367(1)	24(1)
N2	6443(1)	731(1)	2604(1)	26(1)
N3	8451(1)	-10(1)	2159(1)	24(1)
N4	10172(1)	610(1)	2589(1)	23(1)
C1	7032(2)	1018(1)	3314(1)	24(1)
C2	6414(2)	1226(1)	3975(1)	28(1)
C3	6454(2)	800(1)	4642(1)	39(1)
C4	5892(2)	998(2)	5259(1)	53(1)
C5	5287(2)	1620(2)	5197(2)	56(1)
C6	5223(2)	2043(1)	4528(2)	49(1)

Fortsetzung	von Tabelle A64:			
C7	5781(2)	1848(1)	3910(1)	37(1)
C8	9294(2)	1474(1)	4017(1)	31(1)
C9	8904(2)	2197(1)	4173(2)	67(1)
C10	9745(3)	1066(2)	4815(2)	70(1)
C11	5047(2)	554(1)	2395(1)	32(1)
C12	4373(2)	642(1)	1467(1)	43(1)
C13	4877(2)	-165(1)	2678(2)	46(1)
C14	9751(2)	4(1)	2323(1)	23(1)
C15	10581(2)	-580(1)	2227(1)	26(1)
C16	11076(2)	-612(1)	1543(1)	33(1)
C17	11871(2)	-1147(1)	1474(1)	42(1)
C18	12174(2)	-1646(1)	2074(2)	46(1)
C19	11689(2)	-1616(1)	2754(2)	49(1)
C20	10895(2)	-1082(1)	2832(1)	39(1)
C21	7537(2)	-531(1)	1711(1)	36(1)
C22	7720(2)	-718(2)	854(2)	64(1)
C23	7536(3)	-1149(1)	2248(2)	72(1)
C24	11568(2)	778(1)	2818(1)	28(1)
C25	11773(2)	1522(1)	2656(1)	36(1)
C26	12248(2)	591(1)	3726(1)	39(1)
C27	6461(2)	1103(1)	321(1)	38(1)
C28	9224(2)	1268(1)	764(1)	34(1)
C29	9002(2)	2416(1)	1837(1)	34(1)
C30	6346(2)	2142(1)	1532(1)	35(1)
C31	7415(2)	2394(1)	130(1)	37(1)

Tabelle A65: Bindungslängen [Å] und -winkel [°] von 44.

Mo-C31	2.000(2)	O5–C31	1.147(2)	C8–C10	1.510(3)
Mo-C29	2.032(2)	N1C1	1.355(2)	C8–C9	1.529(3)
Mo-C30	2.039(2)	N1-C8	1.468(2)	C11–C12	1.518(3)
Mo-C27	2.039(2)	N2-C1	1.300(2)	C11–C13	1.522(3)
Mo-C28	2.041(2)	N2-C11	1.485(2)	C14–C15	1.495(2)
Mo-Si	2.5784(6)	N3–C14	1.349(2)	C15–C20	1.385(3)
Si–N3	1.8052(15)	N3–C21	1.469(2)	C15–C16	1.397(3)
Si–N1	1.8101(15)	N4-C14	1.309(2)	C16–C17	1.385(3)
Si–N4	2.0894(15)	N4-C24	1.480(2)	C17–C18	1.374(3)
Si–N2	2.1417(15)	C1–C2	1.504(2)	C18–C19	1.384(4)
Si–C14	2.3884(17)	C2–C3	1.386(3)	C19–C20	1.387(3)
Si–C1	2.4133(17)	C2–C7	1.391(3)	C21–C23	1.513(3)
O1–C27	1.140(3)	C3–C4	1.396(3)	C21–C22	1.544(3)
O2–C28	1.142(2)	C4–C5	1.379(4)	C24-C25	1.519(3)
O3–C29	1.145(3)	C5–C6	1.380(4)	C24–C26	1.526(3)
O4–C30	1.144(3)	C6–C7	1.393(3)		

Fortsetzung von	Fortsetzung von Tabelle A65:						
C31–Mo–C29	90.57(9)	N1–Si–Mo	123.28(5)	N1-C8-C10	112.08(19)		
C31–Mo–C30	93.35(8)	N4–Si–Mo	107.32(5)	N1-C8-C9	113.23(17)		
С29-Мо-С30	87.45(8)	N2–Si–Mo	107.24(5)	С10-С8-С9	112.2(2)		
C31–Mo–C27	87.60(9)	C14–Si–Mo	117.37(4)	N2-C11-C12	111.38(16)		
C29–Mo–C27	177.42(8)	C1–Si–Mo	117.31(4)	N2-C11-C13	110.59(17)		
C30–Mo–C27	90.84(8)	C1–N1–C8	128.61(14)	C12–C11–C13	110.97(18)		
C31–Mo–C28	93.38(8)	C1–N1–Si	98.35(11)	N4-C14-N3	108.96(14)		
C29–Mo–C28	92.38(8)	C8–N1–Si	131.22(12)	N4-C14-C15	125.41(15)		
C30–Mo–C28	173.27(8)	C1–N2–C11	120.60(15)	N3-C14-C15	125.62(15)		
C27–Mo–C28	89.55(8)	C1-N2-Si	85.33(10)	N4-C14-Si	60.78(9)		
C31–Mo–Si	178.70(7)	C11-N2-Si	153.51(12)	N3-C14-Si	48.55(8)		
C29–Mo–Si	90.23(6)	C14–N3–C21	128.45(15)	C15-C14-Si	172.22(12)		
C30-Mo-Si	87.70(6)	C14-N3-Si	97.37(11)	C20-C15-C16	119.64(17)		
C27–Mo–Si	91.63(6)	C21-N3-Si	130.77(12)	C20–C15–C14	119.85(17)		
C28–Mo–Si	85.57(6)	C14-N4-C24	121.20(14)	C16-C15-C14	120.48(16)		
N3–Si–N1	114.26(7)	C14– $N4$ – Si	86.07(10)	C17-C16-C15	119.81(19)		
N3–Si–N4	67.05(6)	C24-N4-Si	152.08(12)	C18–C17–C16	120.3(2)		
N1–Si–N4	95.13(6)	N2C1N1	109.63(15)	C17-C18-C19	120.11(19)		
N3–Si–N2	93.58(6)	N2-C1-C2	125.80(16)	C18-C19-C20	120.2(2)		
N1-Si-N2	66.00(6)	N1–C1–C2	124.56(16)	C15-C20-C19	120.0(2)		
N4–Si–N2	145.44(6)	N2–C1–Si	62.19(9)	N3–C21–C23	112.2(2)		
N3-Si-C14	34.08(6)	N1–C1–Si	47.91(8)	N3-C21-C22	112.96(18)		
N1-Si-C14	109.80(6)	C2-C1-Si	169.40(13)	C23-C21-C22	112.4(2)		
N4-Si-C14	33.15(6)	C3–C2–C7	119.74(17)	N4-C24-C25	111.10(15)		
N2-Si-C14	123.97(6)	C3–C2–C1	120.50(17)	N4–C24–C26	111.11(16)		
N3–Si–C1	108.88(7)	С7–С2–С1	119.76(17)	C25-C24-C26	111.04(16)		
N1–Si–C1	33.75(6)	С2-С3-С4	120.4(2)	O1–C27–Mo	176.1(2)		
N4–Si–C1	125.18(6)	С5-С4-С3	119.5(2)	O2–C28–Mo	178.24(19)		
N2–Si–C1	32.48(6)	C4–C5–C6	120.6(2)	О3-С29-Мо	176.84(19)		
C14–Si–C1	125.29(6)	C5–C6–C7	120.2(2)	O4-C30-Mo	179.1(2)		
N3–Si–Mo	122.44(5)	C2–C7–C6	119.6(2)	O5–C31–Mo	179.1(2)		

Abb. A28: Struktur von **45** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A66: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **45**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	x	У	Z	U_{eq}
W	7242(1)	1747(1)	8905(1)	28(1)
Si	6780(1)	884(1)	7690(1)	27(1)
O5	7795(3)	2765(2)	10425(2)	60(1)
O2	9447(3)	2362(2)	8197(2)	59(1)
C2	4418(3)	-577(2)	7782(2)	30(1)
N2	4833(2)	614(1)	7415(2)	28(1)
O3	9279(3)	777(2)	10148(2)	64(1)
C3	3916(3)	-605(2)	8469(2)	36(1)
N3	6698(2)	1120(1)	6628(1)	29(1)
O4	4961(3)	990(2)	9405(2)	54(1)
C4	3119(3)	-1140(2)	8542(2)	45(1)
N4	8556(2)	735(1)	7394(2)	30(1)
01	5331(3)	2826(2)	7758(2)	57(1)
C5	2816(4)	-1641(2)	7944(3)	49(1)
N1	6558(2)	-10(1)	7847(2)	29(1)
C14	7964(3)	1021(2)	6681(2)	29(1)
C15	8586(3)	1230(2)	6023(2)	32(1)

Fortsetzung von Tabelle A66:						
C19	9108(4)	1004(3)	4729(2)	55(1)		
C18	9718(4)	1618(3)	4792(3)	58(1)		
C17	9787(4)	2045(2)	5465(3)	52(1)		
C6	3309(4)	-1620(2)	7259(3)	49(1)		
C16	9221(4)	1851(2)	6082(2)	42(1)		
C7	4102(4)	-1083(2)	7177(2)	42(1)		
C21	5695(3)	1478(2)	5974(2)	34(1)		
C20	8536(3)	799(2)	5350(2)	42(1)		
C8	7463(3)	-531(2)	8300(2)	39(1)		
C22	6087(4)	2200(3)	5818(4)	70(2)		
C9	7291(4)	-708(3)	9159(3)	63(1)		
C23	5244(4)	1069(3)	5171(3)	73(2)		
C10	7466(5)	-1156(2)	7765(4)	71(1)		
C24	9954(3)	554(2)	7604(2)	35(1)		
C11	3437(3)	784(2)	7188(2)	32(1)		
C26	10628(3)	644(2)	8536(2)	45(1)		
C12	3229(3)	1528(2)	7346(2)	39(1)		
C25	10119(4)	-165(2)	7320(2)	48(1)		
C13	2750(3)	592(2)	6279(2)	41(1)		
C1	5248(3)	3(2)	7681(2)	27(1)		
C31	7584(3)	2404(2)	9866(2)	39(1)		
C28	8665(3)	2143(2)	8462(2)	37(1)		
C29	8542(3)	1109(2)	9680(2)	41(1)		
C30	5776(3)	1271(2)	9231(2)	37(1)		
C27	6000(3)	2424(2)	8159(2)	38(1)		

Tabelle A67: Bindungslängen [Å] und -winkel [°] von ${\bf 45}.$

W-C31	2.008(3)	C2–C1	1.490(4)	C15–C16	1.390(5)
W-C28	2.037(3)	N2–C1	1.315(4)	C15–C20	1.395(5)
W-C27	2.038(4)	N2-C11	1.478(4)	C19–C18	1.367(7)
W-C30	2.039(3)	O3–C29	1.144(5)	C19–C20	1.408(5)
W-C29	2.041(4)	C3–C4	1.387(5)	C18-C17	1.387(7)
W–Si	2.5803(9)	N3–C14	1.355(4)	C17–C16	1.391(5)
Si–N1	1.806(3)	N3-C21	1.473(4)	C6–C7	1.391(5)
Si–N3	1.808(2)	O4–C30	1.143(4)	C21–C23	1.516(5)
Si–N2	2.081(3)	C4–C5	1.374(6)	C21–C22	1.527(6)
Si–N4	2.129(3)	N4-C14	1.304(4)	C8-C10	1.521(6)
Si–C1	2.391(3)	N4-C24	1.486(4)	C8–C9	1.535(5)
Si–C14	2.401(3)	O1–C27	1.147(4)	C24–C25	1.521(5)
O5–C31	1.142(4)	C5–C6	1.392(6)	C24–C26	1.523(5)
O2–C28	1.142(4)	N1-C1	1.357(4)	C11–C12	1.518(5)
C2–C7	1.389(5)	N1-C8	1.466(4)	C11–C13	1.529(4)
C2–C3	1.400(4)	C14–C15	1.497(4)		

C31–W–C28	93.32(14)	N3–Si–W	122.85(9)	C20–C15–C14	119.9(3)
C31-W-C27	90.15(15)	N2–Si–W	107.17(8)	C18–C19–C20	120.0(4)
C28-W-C27	87.61(14)	N4–Si–W	106.86(8)	C19–C18–C17	120.8(4)
C31-W-C30	93.60(13)	C1–Si–W	117.41(7)	C18–C17–C16	119.8(4)
C28-W-C30	173.08(13)	C14–Si–W	117.00(8)	C7-C6-C5	119.6(4)
C27–W–C30	92.34(14)	C7–C2–C3	119.6(3)	C15–C16–C17	120.1(4)
C31–W–C29	87.58(15)	C7–C2–C1	119.9(3)	C2–C7–C6	120.2(3)
C28–W–C29	90.84(14)	C3-C2-C1	120.5(3)	N3-C21-C23	112.2(3)
C27–W–C29	177.17(14)	C1–N2–C11	121.0(2)	N3–C21–C22	113.1(3)
C30–W–C29	89.48(14)	C1–N2–Si	86.37(17)	C23–C21–C22	112.2(4)
C31-W-Si	178.66(11)	C11-N2-Si	152.1(2)	C15–C20–C19	119.4(4)
C28-W-Si	87.89(10)	C4–C3–C2	119.7(3)	N1-C8-C10	112.3(3)
C27-W-Si	90.47(10)	C14–N3–C21	128.8(2)	N1-C8-C9	113.5(3)
C30-W-Si	85.19(9)	C14–N3–Si	97.74(19)	С10-С8-С9	112.5(4)
C29-W-Si	91.84(11)	C21-N3-Si	131.7(2)	N4–C24–C25	110.6(3)
N1–Si–N3	114.90(12)	C5-C4-C3	120.5(3)	N4-C24-C26	111.4(3)
N1–Si–N2	67.42(11)	C14–N4–C24	121.0(2)	C25-C24-C26	111.2(3)
N3–Si–N2	95.05(11)	C14-N4-Si	85.16(18)	N2-C11-C12	111.4(3)
N1–Si–N4	93.68(11)	C24-N4-Si	153.42(19)	N2-C11-C13	111.4(3)
N3–Si–N4	66.57(11)	C4-C5-C6	120.3(3)	C12–C11–C13	110.9(3)
N2–Si–N4	145.97(11)	C1-N1-C8	128.1(3)	N2C1N1	108.6(2)
N1–Si–C1	34.27(10)	C1–N1–Si	97.18(19)	N2-C1-C2	125.7(3)
N3–Si–C1	109.95(11)	C8–N1–Si	131.3(2)	N1C1C2	125.7(3)
N2–Si–C1	33.30(10)	N4-C14-N3	109.9(2)	N2–C1–Si	60.33(15)
N4–Si–C1	124.23(11)	N4-C14-C15	125.6(3)	N1–C1–Si	48.55(14)
N1–Si–C14	109.28(11)	N3-C14-C15	124.5(3)	C2–C1–Si	172.3(2)
N3–Si–C14	34.01(10)	N4–C14–Si	62.07(15)	O5–C31–W	178.4(4)
N2–Si–C14	125.39(10)	N3–C14–Si	48.26(13)	O2–C28–W	178.6(3)
N4–Si–C14	32.77(10)	C15–C14–Si	169.6(2)	O3–C29–W	176.3(3)
C1–Si–C14	125.58(10)	C16-C15-C20	119.8(3)	O4-C30-W	178.4(3)
N1–Si–W	122.23(9)	C16-C15-C14	120.3(3)	O1–C27–W	177.1(3)

Fortsetzung von Tabelle A67:

${\rm Verbindung}\ {\bf 46}$

Abb. A29: Struktur von **46** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A68: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **46**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	у	Z	U_{eq}
Fe	2661(1)	3464(1)	4372(1)	24(1)
Si	1562(1)	3816(1)	2945(1)	19(1)
O1	3075(2)	4206(1)	6080(1)	55(1)
O2	5025(2)	3871(1)	3556(1)	59(1)
O3	3732(2)	2225(1)	4762(1)	54(1)
O4	-134(1)	3059(1)	4448(1)	52(1)
N2	1712(1)	4711(1)	3092(1)	22(1)
N1	2363(1)	4158(1)	2022(1)	24(1)
N4	1028(1)	3043(1)	2252(1)	22(1)
N3	-285(1)	3777(1)	2566(1)	23(1)
C1	2338(2)	4735(1)	2356(1)	24(1)
C2	2898(2)	5288(1)	1936(1)	31(1)
C3	4292(2)	5405(1)	2057(1)	41(1)
C4	4769(3)	5913(1)	1610(2)	60(1)
C5	3873(3)	6287(1)	1054(2)	64(1)
C6	2491(3)	6177(1)	949(2)	63(1)

Fortsetzung von Tabelle A68:						
C7	1988(2)	5680(1)	1394(1)	46(1)		
C8	1798(2)	5161(1)	3863(1)	26(1)		
C9	3261(2)	5344(1)	4252(1)	34(1)		
C10	907(2)	5729(1)	3604(1)	38(1)		
C11	2656(2)	3950(1)	1107(1)	39(1)		
C12	4139(4)	4050(2)	998(3)	105(2)		
C13	1648(5)	4208(2)	310(2)	108(2)		
C14	-261(2)	3210(1)	2195(1)	22(1)		
C15	-1482(2)	2837(1)	1832(1)	25(1)		
C16	-2421(2)	2687(1)	2419(1)	36(1)		
C17	-3521(2)	2308(1)	2091(2)	46(1)		
C18	-3697(2)	2089(1)	1188(2)	46(1)		
C19	-2779(2)	2244(1)	605(2)	43(1)		
C20	-1663(2)	2615(1)	928(1)	31(1)		
C21	1473(2)	2405(1)	2103(1)	28(1)		
C22	1032(2)	1953(1)	2808(2)	39(1)		
C23	3017(2)	2390(1)	2145(1)	34(1)		
C24	-1520(2)	4162(1)	2519(1)	31(1)		
C25	-1674(2)	4388(1)	3491(1)	40(1)		
C26	-1525(2)	4677(1)	1815(2)	46(1)		
C27	2896(2)	3932(1)	5392(1)	36(1)		
C28	4077(2)	3715(1)	3869(1)	36(1)		
C29	3323(2)	2718(1)	4609(1)	35(1)		
C30	965(2)	3235(1)	4418(1)	34(1)		

Tabelle A69:	Bindungslängen	[Å]	und -winkel	[°] von 46.

Fe–C29	1.7604(18)	N2-C1	1.3182(19)	C8–C9	1.522(2)
Fe–C30	1.7605(19)	N2-C8	1.4789(18)	C8-C10	1.528(2)
Fe–C28	1.7655(19)	N1C1	1.345(2)	C11–C13	1.513(4)
Fe–C27	1.7829(18)	N1-C11	1.4770(19)	C11–C12	1.515(3)
Fe–Si	2.3175(6)	N4-C14	1.3149(19)	C14–C15	1.481(2)
Si–N1	1.8201(13)	N4-C21	1.4781(19)	C15–C20	1.387(2)
Si–N3	1.8247(14)	N3-C14	1.347(2)	C15–C16	1.394(2)
Si–N2	1.9569(13)	N3-C24	1.4728(19)	C16–C17	1.387(3)
Si-N4	1.9864(13)	C1-C2	1.491(2)	C17–C18	1.382(3)
Si–C1	2.3462(15)	C2–C3	1.385(3)	C18–C19	1.378(3)
Si-C14	2.3573(16)	C2-C7	1.391(3)	C19–C20	1.387(3)
O1–C27	1.154(2)	C3–C4	1.399(3)	C21–C23	1.519(2)
O2–C28	1.155(2)	C4-C5	1.369(4)	C21–C22	1.532(2)
O3–C29	1.153(2)	C5–C6	1.373(4)	C24–C26	1.514(3)
O4–C30	1.159(2)	C6–C7	1.389(3)	C24–C25	1.526(2)
C29–Fe–C30	93.46(9)	Fe–Si–C14	116.58(4)	N2-C8-C10	112.51(13)

1 Of the County of the	1 abene 1105.				
C29–Fe–C28	94.06(9)	C1-Si-C14	125.18(6)	C9–C8–C10	111.02(14)
C30–Fe–C28	157.73(8)	C1-N2-C8	127.70(13)	N1-C11-C13	112.22(19)
C29–Fe– $C27$	111.40(8)	C1–N2–Si	89.31(9)	N1-C11-C12	112.38(18)
C30–Fe– $C27$	97.46(9)	C8–N2–Si	137.00(10)	C13–C11–C12	113.6(3)
C28–Fe– $C27$	99.24(9)	C1-N1-C11	128.90(13)	N4-C14-N3	107.69(13)
C29–Fe–Si	125.97(6)	C1–N1–Si	94.48(9)	N4-C14-C15	126.96(14)
C30–Fe–Si	79.11(6)	C11–N1–Si	135.20(11)	N3-C14-C15	125.29(13)
C28–Fe–Si	79.51(6)	C14-N4-C21	123.77(13)	N4–C14–Si	57.40(8)
C27–Fe–Si	122.61(6)	C14–N4–Si	88.71(9)	N3–C14–Si	50.47(7)
N1–Si–N3	109.09(6)	C21-N4-Si	143.50(10)	C15–C14–Si	172.79(11)
N1–Si–N2	69.01(5)	C14–N3–C24	124.54(13)	C20–C15–C16	120.00(16)
N3–Si–N2	97.74(6)	C14–N3–Si	94.83(9)	C20–C15–C14	120.32(14)
N1–Si–N4	94.68(6)	C24-N3-Si	140.45(11)	C16–C15–C14	119.61(15)
N3–Si–N4	68.51(5)	N2-C1-N1	107.10(12)	C17–C16–C15	119.38(18)
N2–Si–N4	154.64(6)	N2C1C2	128.04(14)	C18–C17–C16	120.34(17)
N1–Si–Fe	126.71(5)	N1-C1-C2	124.85(13)	C19–C18–C17	120.31(17)
N3–Si–Fe	124.20(5)	N2–C1–Si	56.51(7)	C18-C19-C20	119.93(18)
N2–Si–Fe	102.29(4)	N1–C1–Si	50.66(7)	C15–C20–C19	120.03(16)
N4–Si–Fe	103.05(4)	C2–C1–Si	175.30(12)	N4-C21-C23	109.61(13)
N1–Si–C1	34.86(5)	C3–C2–C7	120.09(17)	N4-C21-C22	112.32(13)
N3–Si–C1	107.37(6)	C3-C2-C1	121.47(17)	C23–C21–C22	110.41(14)
N2–Si–C1	34.18(5)	C7-C2-C1	118.42(17)	N3-C24-C26	111.35(14)
N4–Si–C1	127.52(5)	C2-C3-C4	119.2(2)	N3-C24-C25	109.98(14)
Fe–Si–C1	118.24(4)	C5-C4-C3	120.5(2)	C26-C24-C25	113.54(15)
N1–Si–C14	106.03(6)	C4-C5-C6	120.21(19)	O1–C27–Fe	176.17(16)
N3–Si–C14	34.70(5)	C5–C6–C7	120.4(2)	O2–C28–Fe	178.29(18)
N2–Si–C14	130.14(6)	C6-C7-C2	119.5(2)	O3–C29–Fe	178.76(18)
N4–Si–C14	33.89(5)	N2-C8-C9	113.10(13)	O4–C30–Fe	177.13(17)

Fortsetzung von Tabelle A69:

Abb. A30: Struktur von **48** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A70: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **48**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	X	У	Z	U_{eq}
Si	7224(1)	6609(1)	8162(1)	27(1)
N1	7783(2)	5625(2)	7158(1)	28(1)
N2	6243(2)	4092(2)	7326(1)	32(1)
N3	5562(2)	7110(2)	8075(1)	30(1)
N4	6395(2)	8256(2)	7137(1)	31(1)
C1	7354(2)	4389(2)	6977(1)	27(1)
C2	8284(2)	3483(2)	6484(1)	28(1)
C3	9589(2)	3445(2)	6926(2)	36(1)
C4	10447(2)	2579(2)	6519(2)	47(1)
C5	10031(3)	1757(2)	5663(2)	49(1)
C6	8733(3)	1776(2)	5221(2)	45(1)
C7	7860(2)	2634(2)	5628(1)	37(1)
C8	8388(2)	6146(2)	6424(1)	33(1)
C9	9927(2)	6004(3)	6346(2)	50(1)
C10	7517(3)	5706(2)	5482(2)	47(1)
C11	5844(2)	2828(2)	7336(2)	38(1)
C12	6129(3)	2712(3)	8333(2)	62(1)
Fortsetzung von Tab	elle A70:			
---------------------	-----------	----------	----------	-------
C13	4317(3)	2523(3)	7004(2)	58(1)
C14	5431(2)	8056(2)	7647(1)	29(1)
C15	4281(2)	8862(2)	7883(1)	31(1)
C16	4374(2)	9722(2)	8753(1)	37(1)
C17	3359(3)	10506(2)	8981(2)	45(1)
C18	2227(2)	10440(2)	8344(2)	48(1)
C19	2120(2)	9598(3)	7479(2)	49(1)
C20	3146(2)	8821(2)	7242(2)	41(1)
C21	4330(2)	6300(2)	8168(2)	40(1)
C22	3416(3)	6885(3)	8922(3)	70(1)
C23	3511(3)	5732(3)	7214(2)	60(1)
C24	6510(2)	9352(2)	6794(1)	35(1)
C25	7970(2)	9978(2)	7089(2)	50(1)
C26	6217(3)	8987(3)	5727(2)	58(1)
C27	7415(2)	5958(2)	9207(1)	36(1)
C28	8655(2)	6708(2)	9815(1)	33(1)
C29	9257(2)	7631(2)	9536(1)	31(1)
C30	8597(2)	7914(2)	8662(1)	32(1)
C31	9089(3)	6349(2)	10698(2)	45(1)
C32	10525(2)	8444(2)	10041(2)	40(1)

Tabelle A71: Bindungslängen [Å] und -winkel [°] von ${\bf 48}.$

Si–N3	1.7622(17)	C2–C7	1.392(3)	C16–C17	1.385(3)
Si–N1	1.7627(17)	С2-С3	1.392(3)	C17–C18	1.379(4)
Si-C30	1.874(2)	C3–C4	1.390(3)	C18–C19	1.377(4)
Si–C27	1.879(2)	C4–C5	1.376(4)	C19–C20	1.390(3)
N1-C1	1.387(3)	C5–C6	1.382(3)	C21–C23	1.524(4)
N1-C8	1.495(2)	C6–C7	1.393(3)	C21–C22	1.525(3)
N2C1	1.288(2)	C8-C10	1.518(3)	C24–C25	1.517(3)
N2-C11	1.465(3)	C8–C9	1.527(3)	C24–C26	1.521(3)
N3-C14	1.391(3)	C11–C13	1.512(3)	C27–C28	1.507(3)
N3-C21	1.489(3)	C11–C12	1.518(3)	C28–C29	1.333(3)
N4-C14	1.285(2)	C14–C15	1.507(3)	C28–C31	1.505(3)
N4-C24	1.462(3)	C15–C20	1.389(3)	C29–C32	1.504(3)
C1–C2	1.507(3)	C15–C16	1.392(3)	C29–C30	1.518(3)
N3–Si–N1	118.55(8)	C3–C2–C1	118.87(18)	C18–C17–C16	120.0(2)
N3-Si-C30	111.89(9)	C4–C3–C2	120.6(2)	C19–C18–C17	119.6(2)
N1-Si-C30	109.30(9)	С5-С4-С3	120.5(2)	C18–C19–C20	120.6(2)
N3-Si-C27	109.24(9)	C4-C5-C6	119.5(2)	C15–C20–C19	120.5(2)
N1-Si-C27	110.89(9)	С5-С6-С7	120.4(2)	N3-C21-C23	110.99(19)
C30-Si-C27	94.32(9)	С2-С7-С6	120.4(2)	N3-C21-C22	114.6(2)
C1–N1–C8	121.26(16)	N1-C8-C10	111.69(17)	C23–C21–C22	112.7(2)

Fortsetzung von Tabelle A71:							
C1-N1-Si	117.47(12)	N1-C8-C9	114.34(16)	N4-C24-C25	107.98(16)		
C8–N1–Si	119.62(13)	С10-С8-С9	112.94(19)	N4-C24-C26	109.2(2)		
C1–N2–C11	121.53(17)	N2-C11-C13	108.30(19)	C25-C24-C26	110.72(19)		
C14–N3–C21	121.27(16)	N2-C11-C12	108.80(19)	C28-C27-Si	104.65(14)		
C14– $N3$ – Si	116.63(12)	C13-C11-C12	110.7(2)	C29-C28-C31	125.75(19)		
C21-N3-Si	119.23(14)	N4-C14-N3	116.71(17)	C29-C28-C27	117.94(17)		
C14-N4-C24	121.64(17)	N4-C14-C15	123.70(17)	C31-C28-C27	116.30(19)		
N2-C1-N1	117.10(17)	N3-C14-C15	119.25(16)	C28-C29-C32	124.85(17)		
N2-C1-C2	123.89(18)	C20-C15-C16	118.09(19)	C28-C29-C30	117.96(18)		
N1-C1-C2	118.65(16)	C20-C15-C14	122.21(19)	C32-C29-C30	117.16(18)		
С7-С2-С3	118.55(19)	C16–C15–C14	119.64(17)	C29–C30–Si	104.22(14)		
C7–C2–C1	122.48(17)	C17-C16-C15	121.2(2)				

Abb. A31: Struktur von 52 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A72: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **52**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	У	Z	U_{eq}
Мо	5866(1)	2649(1)	7697(1)	30(1)
Si	10388(1)	3073(1)	5853(1)	24(1)
O1	6008(3)	3109(3)	6003(2)	50(1)
O2	3924(3)	1541(3)	7208(3)	56(1)
O3	6940(3)	741(3)	7521(2)	56(1)
N1	9933(3)	3276(2)	6712(2)	25(1)
N2	10713(3)	2010(2)	6514(2)	24(1)
N3	11564(2)	3488(2)	5767(2)	26(1)
N4	10277(3)	4326(3)	5409(2)	26(1)
C1	10252(3)	2418(3)	7020(2)	24(1)
C2	10120(3)	2017(3)	7767(3)	28(1)
C3	9204(4)	1827(3)	7917(3)	35(1)
C4	9107(4)	1477(4)	8638(3)	44(1)
C5	9924(5)	1335(4)	9198(3)	48(1)
C6	10839(4)	1511(5)	9040(3)	46(2)
C7	10944(4)	1843(3)	8324(3)	37(1)
C8	9589(3)	4126(3)	7088(3)	29(1)
C9	8504(4)	4103(4)	7028(4)	53(2)
C10	10125(5)	4270(4)	7908(3)	53(2)
C11	10847(3)	961(3)	6461(3)	30(1)
C12	11595(4)	746(4)	5973(4)	46(1)
C13	9892(4)	475(3)	6147(4)	50(2)
C14	11222(3)	4330(3)	5437(3)	25(1)
C15	11783(3)	5087(3)	5126(3)	28(1)
C16	12101(3)	4944(3)	4439(3)	31(1)
C17	12608(4)	5662(3)	4138(3)	36(1)
C18	12783(4)	6526(3)	4526(3)	39(1)
C19	12460(4)	6669(3)	5204(3)	43(1)
C20	11955(4)	5955(3)	5510(3)	38(1)
C21	12562(3)	3249(3)	6163(3)	29(1)
C22	12870(4)	3861(4)	6865(3)	47(1)
C23	13286(3)	3244(4)	5634(3)	39(1)
C24	9589(4)	4956(3)	4910(3)	35(1)
C25	9215(5)	5734(4)	5369(4)	68(2)
C26	8803(5)	4356(4)	4449(5)	72(2)
C27	5940(4)	2915(4)	6644(3)	38(1)
C28	4674(4)	1960(3)	7378(3)	41(1)
C29	6526(4)	1467(3)	7588(3)	37(1)
C30	6558(4)	4126(3)	8193(3)	37(1)
C31	5567(4)	4168(3)	8229(3)	37(1)
C32	5376(4)	3454(4)	8743(3)	44(1)

Fortsetzung von Tabelle A72:									
C33	6250(4)	2970(4)	9032(3)	42(1)					
C34	6988(4)	3392(3)	8693(3)	39(1)					

Mo-C29	1.920(5)	N1-C1	1.360(5)	C11–C13	1.515(7)
Mo–C28	1.922(6)	N1–C8	1.486(5)	C14–C15	1.484(6)
Mo–C27	1.929(6)	N2-C1	1.328(6)	C15–C16	1.388(7)
Mo-C33	2.377(5)	N2-C11	1.484(5)	C15–C20	1.391(7)
Mo-C32	2.379(5)	N3–C14	1.363(5)	C16–C17	1.391(7)
Mo-C34	2.380(5)	N3–C21	1.485(5)	C17–C18	1.390(7)
Mo-C30	2.381(4)	N4–C14	1.316(6)	C18–C19	1.376(8)
Mo-C31	2.393(4)	N4–C24	1.476(5)	C19–C20	1.390(7)
Si-H1	1.42(4)	C1–C2	1.482(6)	C21–C23	1.505(7)
Si–N3	1.780(4)	C2–C3	1.384(7)	C21–C22	1.509(7)
Si–N1	1.781(4)	C2–C7	1.399(7)	C24–C26	1.503(8)
Si–N2	1.896(4)	C3–C4	1.402(7)	C24-C25	1.510(8)
Si–N4	1.917(4)	C4–C5	1.386(8)	C30–C31	1.405(7)
Si–C1	2.306(4)	C5–C6	1.386(9)	C30-C34	1.417(7)
Si–C14	2.306(4)	C6–C7	1.386(8)	C31–C32	1.411(8)
O1–C27	1.189(7)	С8-С9	1.506(7)	C32–C33	1.411(8)
O2–C28	1.195(6)	C8–C10	1.525(7)	C33-C34	1.418(8)
O3–C29	1.186(6)	C11–C12	1.508(8)		
C29-Mo-C28	87.0(2)	N1–Si–C1	36.07(15)	C12-C11-C13	111.1(4)
C29-Mo-C27	87.4(2)	N2–Si–C1	35.16(16)	N4-C14-N3	106.6(4)
C28-Mo-C27	90.5(2)	N4–Si–C1	135.99(17)	N4-C14-C15	126.0(4)
C29–Mo–C33	103.79(19)	H1-Si-C14	111.2(18)	N3-C14-C15	127.4(4)
C28–Mo–C33	114.5(2)	N3-Si-C14	36.14(15)	N4-C14-Si	56.2(2)
C27–Mo–C33	152.7(2)	N1–Si–C14	115.78(16)	N3-C14-Si	50.4(2)
C29–Mo–C32	134.4(2)	N2–Si–C14	135.84(16)	C15-C14-Si	175.5(3)
C28–Mo–C32	96.1(2)	N4–Si–C14	34.78(15)	C16-C15-C20	120.1(4)
C27–Mo–C32	137.8(2)	C1–Si–C14	136.12(15)	C16-C15-C14	120.1(4)
C33–Mo–C32	34.52(19)	C1–N1–C8	129.4(4)	C20–C15–C14	119.7(5)
C29–Mo–C34	100.72(19)	C1–N1–Si	93.5(3)	C15-C16-C17	120.2(4)
C28–Mo–C34	149.1(2)	C8–N1–Si	135.1(3)	C18-C17-C16	119.5(5)
C27–Mo–C34	119.4(2)	C1–N2–C11	123.4(4)	C19–C18–C17	120.2(4)
C33–Mo–C34	34.7(2)	C1–N2–Si	89.5(3)	C18-C19-C20	120.7(5)
C32–Mo–C34	57.25(19)	C11–N2–Si	139.0(3)	C19–C20–C15	119.3(5)
C29–Mo–C30	127.8(2)	C14–N3–C21	128.7(4)	N3–C21–C23	113.0(4)
C28–Mo–C30	144.76(19)	C14–N3–Si	93.5(3)	N3-C21-C22	111.5(4)
C27–Mo–C30	95.8(2)	C21–N3–Si	133.9(3)	C23–C21–C22	113.3(4)
C33–Mo–C30	57.61(19)	C14-N4-C24	124.2(4)	N4-C24-C26	109.2(4)
С32-Мо-С30	57.14(19)	C14-N4-Si	89.0(3)	N4-C24-C25	111.0(4)

Tabelle A73: Bindungslängen [Å] und -winkel [°] von ${\bf 52}.$

Fortsetzung von	Tabelle A73:				
С34-Мо-С30	34.63(17)	C24-N4-Si	141.9(3)	C26-C24-C25	113.8(5)
C29–Mo–C31	157.83(19)	N2-C1-N1	105.7(4)	O1–C27–Mo	177.5(5)
C28–Mo–C31	110.8(2)	N2C1C2	126.9(4)	O2–C28–Mo	177.4(5)
С27-Мо-С31	104.9(2)	N1-C1-C2	127.4(4)	O3–C29–Mo	179.5(5)
С33-Мо-С31	57.45(18)	N2–C1–Si	55.3(2)	C31-C30-C34	108.2(5)
С32-Мо-С31	34.40(19)	N1–C1–Si	50.4(2)	С31–С30–Мо	73.3(3)
C34–Mo–C31	57.23(17)	C2–C1–Si	177.4(3)	С34-С30-Мо	72.6(3)
С30-Мо-С31	34.23(17)	C3–C2–C7	120.5(5)	C30–C31–C32	107.9(5)
H1–Si–N3	119.7(19)	C3-C2-C1	121.1(4)	С30–С31–Мо	72.4(3)
H1–Si–N1	120.0(19)	C7–C2–C1	118.4(4)	С32–С31–Мо	72.3(3)
N3–Si–N1	120.26(18)	C2-C3-C4	119.4(5)	C31–C32–C33	108.6(5)
H1–Si–N2	98.8(17)	C5-C4-C3	120.0(5)	С31-С32-Мо	73.3(3)
N3–Si–N2	100.82(16)	C6-C5-C4	120.3(5)	С33-С32-Мо	72.6(3)
N1–Si–N2	71.21(17)	C5–C6–C7	120.2(5)	C32–C33–C34	107.4(5)
H1–Si–N4	96.7(17)	C6–C7–C2	119.6(5)	С32-С33-Мо	72.8(3)
N3–Si–N4	70.92(15)	N1-C8-C9	110.9(4)	С34-С33-Мо	72.8(3)
N1–Si–N4	101.06(17)	N1-C8-C10	113.0(4)	C30–C34–C33	107.9(5)
N2–Si–N4	164.45(17)	C9–C8–C10	112.6(5)	С30-С34-Мо	72.7(3)
H1–Si–C1	112.7(18)	N2-C11-C12	110.1(4)	С33-С34-Мо	72.5(3)
N3–Si–C1	115.89(16)	N2-C11-C13	110.6(4)		

Abb. A32: Strukturen der beiden kristallographisch unabhängigen Moleküle im Kristall von **53** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%). Aus Gründen der Übersichtlichkeit ist hier nicht die asymmetrische Einheit abgebildet.

Tabelle A74: Ator	nkoordinat	en (×	(10^4)) und äquivale	ente isotrop	e Aus	lenkungsp	aram	eter	$(Å^2$	\times 10 ³)	der
Nichtwasserstoff-A	tome von	53 .	Die	angegebenen	U_{eq} -Werte	sind	definiert	als	1/3	der	Spur	des
orthogonalisierten	U _{ij} -Tensors											

	Х	у	Z	U_{eq}
Si	6023(1)	3912(1)	3594(1)	15(1)
O1	7692(2)	3710(1)	3647(1)	20(1)
O2	7903(2)	3025(1)	3140(1)	27(1)
N1	5062(2)	3377(1)	3488(1)	15(1)
N2	5832(2)	3727(1)	2583(1)	16(1)
N3	6570(2)	4510(1)	3455(1)	15(1)
N4	4524(2)	4316(1)	3477(1)	17(1)
C1	5205(2)	3358(1)	2774(1)	16(1)
C2	4754(2)	2981(1)	2298(1)	17(1)
C3	5680(2)	2731(1)	1928(1)	22(1)
C4	5260(3)	2376(1)	1495(1)	26(1)
C5	3929(3)	2265(1)	1434(1)	26(1)
C6	3001(3)	2510(1)	1806(1)	22(1)
C7	3418(2)	2870(1)	2235(1)	19(1)
C8	4611(2)	3013(1)	3949(1)	19(1)

Fortsetzung von Ta	belle A74:			
C9	5748(3)	2843(1)	4436(2)	34(1)
C10	3457(2)	3169(1)	4391(2)	29(1)
C11	6200(2)	3841(1)	1844(1)	19(1)
C12	7696(2)	3844(1)	1786(1)	28(1)
C13	5623(3)	4292(1)	1609(1)	29(1)
C14	5320(2)	4668(1)	3448(1)	16(1)
C15	4975(2)	5154(1)	3414(1)	16(1)
C16	4649(2)	5391(1)	4032(1)	22(1)
C17	4366(2)	5846(1)	3996(1)	26(1)
C18	4395(2)	6068(1)	3341(2)	25(1)
C19	4724(2)	5837(1)	2726(1)	23(1)
C20	5031(2)	5385(1)	2763(1)	20(1)
C21	7718(2)	4791(1)	3658(1)	16(1)
C22	8253(3)	4675(1)	4414(1)	25(1)
C23	8789(2)	4762(1)	3106(1)	25(1)
C24	3080(2)	4295(1)	3407(1)	29(1)
C25	2434(2)	4401(1)	4119(1)	28(1)
C26	2485(3)	4543(1)	2782(2)	38(1)
C27	8365(2)	3366(1)	3407(1)	21(1)
C28	9844(2)	3436(1)	3496(2)	34(1)
SiB	-457(1)	6113(1)	604(1)	15(1)
O1B	-1978(2)	5817(1)	468(1)	18(1)
O2B	-2842(2)	5599(1)	1520(1)	26(1)
N1B	216(2)	5798(1)	1405(1)	15(1)
N2B	-1005(2)	6380(1)	1507(1)	14(1)
N3B	-996(2)	6575(1)	-23(1)	16(1)
N4B	900(2)	6591(1)	533(1)	16(1)
C1B	-409(2)	6054(1)	1875(1)	14(1)
C2B	-407(2)	5987(1)	2672(1)	16(1)
C3B	768(2)	5901(1)	3062(1)	18(1)
C4B	765(2)	5843(1)	3803(1)	21(1)
C5B	-421(3)	5874(1)	4160(1)	22(1)
C6B	-1593(2)	5956(1)	3777(1)	21(1)
C7B	-1598(2)	6010(1)	3033(1)	17(1)
C8B	736(2)	5342(1)	1522(1)	19(1)
C9B	-156(3)	4987(1)	1161(1)	25(1)
C10B	2137(3)	5312(1)	1233(2)	32(1)
C11B	-1704(2)	6765(1)	1815(1)	16(1)
C12B	-3197(2)	6725(1)	1681(1)	21(1)
C13B	-1203(2)	7209(1)	1513(1)	21(1)
C14B	160(2)	6795(1)	34(1)	15(1)
C15B	515(2)	7197(1)	-398(1)	16(1)
C16B	609(2)	7164(1)	-1142(1)	21(1)
C17B	904(2)	7537(1)	-1554(1)	26(1)
C18B	1100(3)	7951(1)	-1224(2)	29(1)
C19B	1017(3)	7986(1)	-484(2)	30(1)

Fortsetzung von Tabelle A74:									
C20B	725(2)	7612(1)	-69(1)	25(1)					
C21B	-1978(2)	6630(1)	-621(1)	17(1)					
C22B	-1913(3)	6236(1)	-1151(1)	25(1)					
C23B	-3374(2)	6689(1)	-348(1)	24(1)					
C24B	2254(2)	6729(1)	751(1)	22(1)					
C25B	3268(3)	6448(1)	366(2)	42(1)					
C26B	2466(3)	6702(1)	1567(1)	29(1)					
C27B	-2868(2)	5621(1)	869(1)	19(1)					
C28B	-3970(3)	5409(1)	417(2)	32(1)					

Tabelle A75: Bindungslängen [Å] und -winkel [°] von ${\bf 53}.$

Si-H1	1.44(2)	C11–C13	1.517(3)	N3B-C21B	1.467(3)
Si-O1	1.7835(17)	C14–C15	1.486(3)	N4B-C14B	1.316(3)
Si–N1	1.866(2)	C15–C20	1.393(3)	N4B-C24B	1.466(3)
Si–N3	1.883(2)	C15–C16	1.395(3)	C1B–C2B	1.490(3)
Si–N4	1.935(2)	C16–C17	1.381(4)	C2B-C3B	1.388(3)
Si–N2	1.956(2)	C17–C18	1.383(4)	C2B-C7B	1.397(3)
Si–C14	2.368(3)	C18–C19	1.382(4)	C3B-C4B	1.384(3)
Si–C1	2.369(3)	C19–C20	1.379(3)	C4B-C5B	1.390(3)
O1–C27	1.314(3)	C21–C23	1.517(3)	C5B-C6B	1.376(3)
O2–C27	1.212(3)	C21–C22	1.523(3)	C6B-C7B	1.388(3)
N1C1	1.338(3)	C24–C26	1.482(4)	C8B–C9B	1.524(3)
N1-C8	1.464(3)	C24-C25	1.526(3)	C8B-C10B	1.529(3)
N2-C1	1.321(3)	C27–C28	1.507(3)	C11B-C12B	1.519(3)
N2-C11	1.472(3)	SiB–H1B	1.46(2)	C11B-C13B	1.526(3)
N3-C14	1.342(3)	SiB-O1B	1.7754(17)	C14B-C15B	1.488(3)
N3-C21	1.464(3)	SiB–N1B	1.862(2)	C15B-C20B	1.389(3)
N4-C14	1.320(3)	SiB-N3B	1.867(2)	C15B-C16B	1.390(3)
N4-C24	1.456(3)	SiB–N2B	1.952(2)	C16B-C17B	1.384(3)
C1-C2	1.487(3)	SiB–N4B	1.980(2)	C17B-C18B	1.385(4)
C2-C7	1.386(3)	SiB-C1B	2.363(2)	C18B-C19B	1.382(4)
C2–C3	1.392(3)	SiB-C14B	2.380(2)	C19B-C20B	1.389(3)
C3–C4	1.383(3)	O1B–C27B	1.320(3)	C21B-C23B	1.522(3)
C4–C5	1.381(4)	O2B-C27B	1.209(3)	C21B-C22B	1.532(3)
C5-C6	1.388(4)	N1B-C1B	1.332(3)	C24B-C25B	1.518(4)
C6-C7	1.388(3)	N1B–C8B	1.468(3)	C24B-C26B	1.522(3)
C8-C10	1.518(3)	N2B–C1B	1.316(3)	C27B-C28B	1.505(3)
C8–C9	1.518(3)	N2B–C11B	1.471(3)		
C11–C12	1.515(3)	N3B-C14B	1.337(3)		
H1–Si–O1	91.0(8)	N1-C8-C9	110.5(2)	C27B-O1B-SiB	137.64(16)
H1–Si–N1	97.2(8)	С10-С8-С9	110.9(2)	C1B-N1B-C8B	127.3(2)
O1–Si–N1	101.74(9)	N2-C11-C12	110.7(2)	C1B–N1B–SiB	93.95(15)

Fortsetzung von Tabelle A75:

H1–Si–N3	95.8(8)	N2-C11-C13	111.4(2)	C8B–N1B–SiB	134.34(16)
O1–Si–N3	92.59(8)	C12–C11–C13	110.3(2)	C1B-N2B-C11B	126.0(2)
N1–Si–N3	160.47(9)	N4-C14-N3	107.1(2)	C1B–N2B–SiB	90.43(14)
H1–Si–N4	91.9(8)	N4-C14-C15	129.1(2)	C11B-N2B-SiB	143.58(16)
O1–Si–N4	160.79(9)	N3-C14-C15	123.8(2)	C14B-N3B-C21B	124.4(2)
N1–Si–N4	96.72(9)	N4–C14–Si	54.77(13)	C14B–N3B–SiB	94.52(15)
N3–Si–N4	68.23(8)	N3–C14–Si	52.56(12)	C21B-N3B-SiB	136.52(16)
H1–Si–N2	165.2(8)	C15–C14–Si	174.35(17)	C14B-N4B-C24B	124.2(2)
O1–Si–N2	91.02(8)	C20-C15-C16	118.7(2)	C14B–N4B–SiB	90.17(14)
N1–Si–N2	68.10(8)	C20-C15-C14	120.0(2)	C24B-N4B-SiB	145.09(16)
N3–Si–N2	98.77(9)	C16-C15-C14	121.3(2)	N2B-C1B-N1B	107.4(2)
N4–Si–N2	90.97(9)	C17-C16-C15	120.6(2)	N2B-C1B-C2B	126.6(2)
H1-Si-C14	92.5(8)	C16–C17–C18	119.9(2)	N1B-C1B-C2B	126.0(2)
O1–Si–C14	127.02(8)	C19–C18–C17	120.0(2)	N2B-C1B-SiB	55.72(12)
N1–Si–C14	130.06(9)	C20-C19-C18	120.2(2)	N1B-C1B-SiB	51.82(12)
N3–Si–C14	34.47(8)	C19–C20–C15	120.5(2)	C2B-C1B-SiB	176.29(17)
N4–Si–C14	33.87(8)	N3-C21-C23	111.6(2)	C3B-C2B-C7B	119.3(2)
N2–Si–C14	97.91(8)	N3-C21-C22	110.91(19)	C3B-C2B-C1B	120.8(2)
H1–Si–C1	131.4(8)	C23-C21-C22	111.9(2)	C7B-C2B-C1B	120.0(2)
O1–Si–C1	96.12(8)	N4-C24-C26	115.0(2)	C4B-C3B-C2B	120.5(2)
N1–Si–C1	34.29(8)	N4–C24–C25	111.7(2)	C3B-C4B-C5B	119.9(2)
N3–Si–C1	131.67(9)	C26-C24-C25	113.7(2)	C6B-C5B-C4B	120.0(2)
N4–Si–C1	96.16(9)	O2-C27-O1	126.4(2)	C5B-C6B-C7B	120.4(2)
N2–Si–C1	33.88(8)	O2-C27-C28	121.5(2)	C6B-C7B-C2B	119.9(2)
C14–Si–C1	119.35(8)	O1-C27-C28	112.1(2)	N1B-C8B-C9B	111.9(2)
C27–O1–Si	137.73(16)	H1B–SiB–O1B	93.9(8)	N1B-C8B-C10B	109.3(2)
C1-N1-C8	126.4(2)	H1B–SiB–N1B	96.5(8)	C9B-C8B-C10B	110.0(2)
C1–N1–Si	93.90(15)	O1B–SiB–N1B	98.74(8)	N2B-C11B-C12B	111.07(19)
C8–N1–Si	137.62(16)	H1B–SiB–N3B	95.7(8)	N2B-C11B-C13B	111.13(19)
C1-N2-C11	125.4(2)	O1B-SiB-N3B	92.63(8)	C12B-C11B-C13B	110.3(2)
C1–N2–Si	90.45(14)	N1B–SiB–N3B	162.74(9)	N4B-C14B-N3B	107.4(2)
C11–N2–Si	143.89(16)	H1B–SiB–N2B	163.8(8)	N4B-C14B-C15B	127.4(2)
C14–N3–C21	122.3(2)	O1B-SiB-N2B	93.02(8)	N3B-C14B-C15B	125.2(2)
C14–N3–Si	92.98(15)	N1B–SiB–N2B	67.98(8)	N4B-C14B-SiB	56.28(12)
C21–N3–Si	137.35(16)	N3B–SiB–N2B	98.64(9)	N3B-C14B-SiB	51.42(12)
C14–N4–C24	129.5(2)	H1B–SiB–N4B	89.6(8)	C15B-C14B-SiB	173.80(17)
C14–N4–Si	91.36(15)	O1B–SiB–N4B	160.04(9)	C20B-C15B-C16B	119.0(2)
C24–N4–Si	139.12(17)	N1B-SiB-N4B	100.41(9)	C20B-C15B-C14B	120.8(2)
N2-C1-N1	107.4(2)	N3B-SiB-N4B	67.45(8)	C16B-C15B-C14B	120.2(2)
N2-C1-C2	127.3(2)	N2B–SiB–N4B	88.94(8)	C17B-C16B-C15B	120.9(2)
N1-C1-C2	125.3(2)	H1B–SiB–C1B	130.7(8)	C16B-C17B-C18B	119.8(2)
N2–C1–Si	55.67(12)	O1B-SiB-C1B	95.19(8)	C19B-C18B-C17B	119.6(2)
N1–C1–Si	51.82(12)	N1B-SiB-C1B	34.22(8)	C18B-C19B-C20B	120.6(3)
C2–C1–Si	175.06(17)	N3B-SiB-C1B	132.07(9)	C15B-C20B-C19B	120.0(2)
С7-С2-С3	119.8(2)	N2B-SiB-C1B	33.85(8)	N3B-C21B-C23B	111.47(19)
C7–C2–C1	120.2(2)	N4B-SiB-C1B	97.43(8)	N3B-C21B-C22B	110.8(2)

Fortsetzung von	Tabelle A75:				
C3–C2–C1	119.9(2)	H1B-SiB-C14B	90.7(8)	C23B-C21B-C22B	111.2(2)
C4-C3-C2	119.8(2)	O1B– SiB – $C14B$	126.62(8)	$\rm N4BC24BC25B$	110.5(2)
С5-С4-С3	120.3(2)	N1B–SiB–C14B	133.51(9)	$\rm N4BC24BC26B$	110.7(2)
C4-C5-C6	120.2(2)	N3B-SiB-C14B	34.05(8)	C25B-C24B-C26B	111.4(2)
С7-С6-С5	119.6(2)	N2B-SiB-C14B	96.94(8)	O2B-C27B-O1B	126.6(2)
С2-С7-С6	120.2(2)	N4B-SiB-C14B	33.56(8)	O2B-C27B-C28B	121.5(2)
N1-C8-C10	110.4(2)	C1B– SiB – $C14B$	120.63(8)	O1BC27BC28B	112.0(2)

Verbindung 54'·C₆H₅CH₃

Abb. A33: Struktur von $54' \cdot C_6H_5CH_3$ im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A76: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von 54'·C₆H₅CH₃. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	x	У	Z	U_{eq}
Si1	-66(1)	2108(1)	3388(1)	25(1)
Si2	-1492(1)	2083(1)	2448(1)	25(1)
O1	-1562(1)	1926(1)	3152(1)	26(1)

Fortsetzung	von Tabelle A76:			
O2	-19(1)	2297(1)	2692(1)	26(1)
N1	435(1)	1431(1)	3691(1)	29(1)
N2	1836(1)	2030(1)	3565(1)	32(1)
N3	-148(1)	2656(1)	3900(1)	30(1)
N4	-1499(2)	3160(1)	4401(1)	37(1)
N5	-1151(1)	1585(1)	1899(1)	28(1)
N6	-2935(1)	1532(1)	2161(1)	28(1)
N7	-2256(1)	2701(1)	2167(1)	28(1)
N8	-2163(2)	3644(1)	1894(1)	37(1)
C1	1647(2)	1510(1)	3727(1)	30(1)
C2	2617(2)	1087(1)	3915(1)	38(1)
C3	2855(2)	653(1)	3543(1)	48(1)
C4	3789(2)	272(1)	3732(1)	64(1)
C5	4470(2)	331(1)	4293(2)	69(1)
C6	4235(2)	761(1)	4659(1)	63(1)
C7	3313(2)	1139(1)	4477(1)	50(1)
C8	-251(2)	922(1)	3825(1)	32(1)
C9	-585(2)	562(1)	3272(1)	45(1)
C10	374(2)	566(1)	4344(1)	43(1)
C11	3036(2)	2221(1)	3440(1)	41(1)
C12	2892(2)	2518(1)	2847(1)	50(1)
C13	3687(2)	2595(1)	3932(1)	65(1)
C14	-1065(2)	2684(1)	4258(1)	31(1)
C15	-1423(2)	2132(1)	4507(1)	33(1)
C16	-2552(2)	1885(1)	4308(1)	42(1)
C17	-2903(3)	1400(1)	4574(1)	58(1)
C18	-2164(3)	1163(1)	5048(1)	65(1)
C19	-1048(3)	1406(1)	5253(1)	59(1)
C20	-674(2)	1886(1)	4982(1)	45(1)
C21	555(2)	3179(1)	3814(1)	35(1)

3179(1)

3624(1)

3424(1)

3178(1)

3541(1)

3408(1)

1294(1)

783(1)

248(1)

-223(1)

-166(1)

365(1)

841(1)

1497(1)

1115(1)

1283(1)

1248(1)

3814(1)

3424(1)

4406(1)

4823(1)

4571(1)

5410(1)

1829(1)

1458(1)

1651(1)

1323(1)

798(1)

595(1)

924(1)

1626(1)

2005(1)

986(1)

2300(1)

35(1)

42(1)

51(1)

42(1)

48(1)

65(1)

27(1)

30(1)

35(1)

43(1)

47(1)

46(1)

38(1)

32(1)

45(1)

46(1)

34(1)

555(2)

-167(2)

1172(2)

-2369(2)

-3452(2)

-1731(3)

-2211(2)

-2541(2)

-2151(2)

-2562(2)

-3355(2)

-3722(2)

-3332(2)

-44(2)

865(2)

-296(2)

-4038(2)

C22

C23

C24

 $\mathrm{C25}$

C26

C27

C28

C29

C30

C31

C32

C33

C34

 $\rm C35$

C36

C37

Fortsetzung von T	Tabelle A76:			
C38	-4090(2)	1288(1)	2960(1)	42(1)
C39	-5206(2)	1475(1)	1938(1)	50(1)
C40	-1723(2)	3144(1)	1894(1)	29(1)
C41	-682(2)	3004(1)	1568(1)	31(1)
C42	509(2)	3169(1)	1787(1)	40(1)
C43	1443(2)	3104(1)	1455(1)	52(1)
C44	1203(3)	2878(1)	897(1)	56(1)
C45	39(3)	2712(1)	666(1)	55(1)
C46	-915(2)	2772(1)	1002(1)	45(1)
C47	-3479(2)	2807(1)	2342(1)	31(1)
C48	-3456(2)	3210(1)	2867(1)	41(1)
C49	-4436(2)	2973(1)	1813(1)	43(1)
C50	-1703(2)	4109(1)	1568(1)	45(1)
C51	-1424(2)	4601(1)	1993(1)	54(1)
C52	-2680(3)	4262(1)	1045(1)	57(1)
C53A	1627(9)	-737(4)	2453(4)	125(3)
C54A	1848(4)	-480(2)	1875(2)	79(2)
C55A	991(4)	-567(2)	1412(2)	95(3)
C56A	1107(4)	-325(2)	899(2)	125(3)
C57A	2182(5)	-3(2)	812(2)	116(2)
C58A	3054(5)	52(2)	1333(3)	103(2)
C59A	2841(4)	-196(2)	1833(2)	94(2)
C53B	1229(6)	-203(2)	508(2)	149(4)
C54B	1659(7)	-289(3)	1175(3)	96(3)
C55B	2710(7)	-65(3)	1399(3)	126(4)
C56B	3070(6)	-150(3)	1987(3)	91(3)
C57B	2398(7)	-481(3)	2364(3)	110(3)
C58B	1257(7)	-707(3)	2058(4)	129(4)
C59B	956(6)	-589(3)	1475(3)	130(5)

Tabelle A77: Bindungslängen [Å] und -winkel [°] von $54' \cdot C_6H_5CH_3$.

Si1–O2	1.6565(13)	C1–C2	1.485(3)	C34-C35	1.520(3)
Si1–O1	1.7205(13)	C2-C3	1.381(3)	C34–C36	1.529(3)
Si1–N3	1.7569(16)	C2-C7	1.395(3)	C37–C38	1.517(3)
Si1–N1	1.7967(15)	C3–C4	1.391(3)	C37–C39	1.523(3)
Si1–N2	2.0966(17)	C4–C5	1.387(4)	C40-C41	1.505(3)
Si1–C1	2.3991(19)	C5–C6	1.366(4)	C41–C46	1.387(3)
Si1–Si2	2.4604(10)	C6-C7	1.375(3)	C41–C42	1.396(3)
Si2–O1	1.6590(13)	C8–C9	1.520(3)	C42–C43	1.382(3)
Si2–O2	1.7199(13)	C8-C10	1.529(3)	C43–C44	1.368(3)
Si2–N7	1.7600(15)	C11–C12	1.510(3)	C44–C45	1.375(4)
Si2–N5	1.8001(16)	C11–C13	1.521(3)	C45–C46	1.407(4)
Si2–N6	2.0909(16)	C14–C15	1.501(3)	C47-C48	1.526(3)

Fortsetzung vo	on Tabelle A77:				
Si2-C27	2.3999(18)	C15–C20	1.387(3)	C47–C49	1.530(3)
N1-C1	1.349(2)	C15–C16	1.393(3)	C50–C51	1.514(3)
N1–C8	1.479(2)	C16–C17	1.381(3)	C50–C52	1.527(3)
N2–C1	1.309(2)	C17–C18	1.371(4)	C53A-C54A	1.503(9)
N2-C11	1.476(3)	C18-C19	1.382(4)	C54A-C59A	1.308(3)
N3–C14	1.400(3)	C19–C20	1.386(3)	C54A-C55A	1.323(3)
N3–C21	1.491(2)	C21-C22	1.523(3)	C55A-C56A	1.326(3)
N4-C14	1.284(2)	C21-C23	1.530(3)	C56A-C57A	1.454(3)
N4–C24	1.466(3)	C24–C26	1.516(3)	C57A–C58A	1.418(3)
N5–C27	1.351(2)	C24-C25	1.516(3)	C58A–C59A	1.333(3)
N5–C34	1.477(3)	C27–C28	1.488(2)	C53B-C54B	1.534(8)
N6–C27	1.311(2)	C28–C29	1.386(3)	C54B-C55B	1.311(3)
N6–C37	1.474(2)	C28–C33	1.394(3)	C54B-C59B	1.321(3)
N7–C40	1.396(2)	C29–C30	1.379(3)	C55B-C56B	1.354(4)
N7–C47	1.494(2)	C30–C31	1.379(3)	C56B-C57B	1.450(4)
N8-C40	1.279(2)	C31–C32	1.378(3)	C57B-C58B	1.450(4)
N8-C50	1.461(3)	C32–C33	1.384(3)	C58B–C59B	1.349(4)
O2-Si1-O1	86.48(7)	C21–N3–Si1	116.27(13)	N6-C27-Si2	60.42(9)
O2–Si1–N3	116.71(7)	C14–N4–C24	120.18(17)	N5-C27-Si2	47.93(9)
O1–Si1–N3	104.19(7)	C27-N5-C34	130.26(15)	C28–C27–Si2	174.67(14)
O2–Si1–N1	123.72(7)	C27-N5-Si2	98.22(12)	C29-C28-C33	119.35(16)
O1–Si1–N1	97.20(7)	C34-N5-Si2	131.47(12)	C29–C28–C27	121.59(16)
N3–Si1–N1	116.54(7)	C27–N6–C37	122.10(15)	C33–C28–C27	118.90(16)
O2–Si1–N2	91.67(7)	C27-N6-Si2	86.53(11)	C30-C29-C28	120.27(18)
O1-Si1-N2	159.16(6)	C37-N6-Si2	147.06(12)	C29-C30-C31	120.34(19)
N3–Si1–N2	95.19(7)	C40–N7–C47	117.24(14)	C32-C31-C30	119.78(19)
N1-Si1-N2	66.74(7)	C40-N7-Si2	124.87(13)	C31-C32-C33	120.46(19)
O2-Si1-C1	109.11(7)	C47-N7-Si2	116.70(11)	C32-C33-C28	119.77(18)
O1–Si1–C1	129.36(6)	C40–N8–C50	122.12(18)	N5-C34-C35	111.53(16)
N3–Si1–C1	109.88(7)	N2-C1-N1	108.41(16)	N5-C34-C36	113.99(17)
N1-Si1-C1	33.81(7)	N2-C1-C2	124.98(17)	C35-C34-C36	110.69(17)
N2-Si1-C1	32.98(6)	N1-C1-C2	126.61(16)	N6-C37-C38	110.14(15)
O2-Si1-Si2	44.24(5)	N2–C1–Si1	60.70(10)	N6-C37-C39	112.93(16)
O1-Si1-Si2	42.31(5)	N1–C1–Si1	47.81(9)	C38-C37-C39	110.89(19)
N3–Si1–Si2	120.22(6)	C2–C1–Si1	173.62(14)	N8-C40-N7	120.38(18)
N1–Si1–Si2	115.68(5)	C3–C2–C7	119.7(2)	N8-C40-C41	121.82(17)
N2–Si1–Si2	131.31(5)	C3-C2-C1	121.55(19)	N7-C40-C41	117.67(15)
C1-Si1-Si2	129.72(5)	C7-C2-C1	118.7(2)	C46-C41-C42	118.4(2)
O1–Si2–O2	86.42(7)	C2-C3-C4	119.7(2)	C46-C41-C40	119.86(18)
O1–Si2–N7	116.46(7)	C5-C4-C3	119.7(3)	C42-C41-C40	121.24(17)
O2–Si2–N7	104.79(7)	C6-C5-C4	120.6(2)	C43-C42-C41	121.5(2)
O1–Si2–N5	124.82(7)	C5–C6–C7	120.2(3)	C44-C43-C42	119.7(2)
O2-Si2-N5	97.22(7)	C6–C7–C2	120.1(3)	C43-C44-C45	120.3(2)
N7-Si2-N5	115.56(7)	N1-C8-C9	110.65(16)	C44-C45-C46	120.4(2)
O1–Si2–N6	90.91(6)	N1-C8-C10	114.88(15)	C41-C46-C45	119.7(2)

O2-Si2-N6	158.28(6)	C9–C8–C10	110.84(16)	N7-C47-C48	113.99(16)
N7-Si2-N6	95.70(7)	N2-C11-C12	109.90(16)	N7-C47-C49	112.54(16)
N5-Si2-N6	66.87(7)	N2-C11-C13	112.11(19)	C48-C47-C49	112.55(16)
O1-Si2-C27	109.47(6)	C12–C11–C13	111.17(18)	N8-C50-C51	107.82(19)
O2-Si2-C27	129.19(7)	N4-C14-N3	121.54(17)	N8-C50-C52	108.21(19)
N7–Si2–C27	109.43(7)	N4-C14-C15	122.30(18)	C51-C50-C52	111.68(18)
N5-Si2-C27	33.85(7)	N3-C14-C15	115.93(16)	C59A–C54A–C55A	122.2
N6-Si2-C27	33.05(6)	C20-C15-C16	118.62(19)	C59A-C54A-C53A	121.6(5)
O1–Si2–Si1	44.27(5)	C20–C15–C14	119.84(18)	C55A–C54A–C53A	116.2(5)
O2–Si2–Si1	42.22(4)	C16-C15-C14	121.25(18)	C54A–C55A–C56A	118.7
N7–Si2–Si1	120.48(5)	C17–C16–C15	120.4(2)	C55A–C56A–C57A	122.6
N5–Si2–Si1	116.37(5)	C18–C17–C16	120.6(2)	C58A-C57A-C56A	113.8
N6–Si2–Si1	130.33(5)	C17-C18-C19	119.6(2)	C59A-C58A-C57A	119.1
C27-Si2-Si1	129.89(5)	C18–C19–C20	120.2(2)	C54A-C59A-C58A	123.4
Si2-O1-Si1	93.43(7)	C19–C20–C15	120.5(2)	$\mathbf{C55B}\text{-}\mathbf{C54B}\text{-}\mathbf{C59B}$	125.2
Si1-O2-Si2	93.54(7)	N3-C21-C22	114.27(16)	$\rm C55B{-}C54B{-}C53B$	117.1(6)
C1–N1–C8	129.87(15)	N3–C21–C23	111.63(17)	$\rm C59BC54BC53B$	117.7(6)
C1-N1-Si1	98.39(11)	C22-C21-C23	112.22(17)	$\rm C54B{-}C55B{-}C56B$	115.8
C8–N1–Si1	131.63(12)	N4-C24-C26	108.92(19)	$\rm C55B{-}C56B{-}C57B$	124.4
C1–N2–C11	122.02(16)	N4-C24-C25	109.42(17)	$\rm C58BC57BC56B$	113.9
C1-N2-Si1	86.31(11)	C26-C24-C25	111.52(19)	$\rm C59B{-}C58B{-}C57B$	117.6
C11–N2–Si1	148.12(12)	N6-C27-N5	108.29(15)	$\rm C54B{-}C59B{-}C58B$	123.0
C14–N3–C21	118.71(15)	N6-C27-C28	123.81(17)		
C14–N3–Si1	122.54(12)	N5-C27-C28	127.88(18)		

Fortsetzung von Tabelle A77:

${\rm Verbindung}\ {\bf 55}$

Abb. A34: Struktur der beiden kristallographisch unabhängigen Moleküle im Kristall von 55 mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%). Aus Gründen der Übersichtlichkeit ist hier nicht die asymmetrische Einheit abgebildet.

Tabelle A78: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **55**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	у	Z	U_{eq}
SA	1500(1)	6376(1)	2396(1)	35(1)
SiA	2147(1)	6774(1)	1748(1)	26(1)
N2A	3142(1)	7047(1)	2439(1)	28(1)
N1A	2926(1)	6171(1)	1562(1)	29(1)
N4A	1393(1)	6692(1)	792(1)	26(1)
N3A	2013(1)	7762(1)	1284(1)	28(1)
C1A	3468(1)	6463(1)	2144(1)	28(1)
C2A	4270(1)	6140(1)	2406(1)	29(1)
C3A	4900(1)	6640(1)	2417(1)	36(1)
C4A	5645(1)	6327(1)	2654(1)	44(1)
C5A	5756(1)	5522(2)	2890(1)	44(1)
C6A	5134(1)	5024(1)	2888(1)	38(1)
C7A	4387(1)	5325(1)	2643(1)	34(1)
C8A	3458(1)	7341(1)	3196(1)	35(1)
C9A	3395(2)	6685(2)	3748(1)	49(1)
C10A	3039(1)	8117(2)	3310(1)	51(1)

Fortsetzung vo	n Tabelle A78:			
C11A	3066(1)	5591(1)	1021(1)	35(1)
C12A	2530(1)	4852(1)	945(1)	43(1)
C13A	3006(1)	6019(2)	298(1)	50(1)
C14A	1447(1)	7489(1)	702(1)	26(1)
C15A	963(1)	8027(1)	122(1)	27(1)
C16A	1091(1)	8088(1)	-562(1)	36(1)
C17A	649(1)	8623(1)	-1081(1)	44(1)
C18A	73(1)	9081(1)	-924(1)	45(1)
C19A	-75(1)	9008(1)	-255(1)	39(1)
C20A	376(1)	8493(1)	274(1)	33(1)
C21A	723(1)	6154(1)	464(1)	32(1)
C22A	-26(1)	6458(1)	606(1)	40(1)
C23A	628(1)	5993(1)	-342(1)	45(1)
C24A	2491(1)	8511(1)	1328(1)	35(1)
C25A	2036(1)	9306(1)	1272(2)	49(1)
C26A	2985(1)	8478(2)	806(2)	56(1)
SiB	2822(1)	2956(1)	3323(1)	25(1)
SB	3427(1)	3282(1)	2615(1)	35(1)
N2B	3607(1)	3148(1)	4241(1)	25(1)
N1B	3012(1)	2015(1)	3880(1)	27(1)
N4B	1809(1)	2664(1)	2662(1)	27(1)
N3B	2051(1)	3565(1)	3519(1)	27(1)
C1B	3590(1)	2363(1)	4402(1)	25(1)
C2B	4106(1)	1889(1)	5017(1)	27(1)
C3B	3998(1)	1909(1)	5709(1)	33(1)
C4B	4460(1)	1431(1)	6263(1)	40(1)
C5B	5034(1)	944(1)	6128(1)	40(1)
C6B	5150(1)	927(1)	5442(1)	38(1)
C7B	4681(1)	1391(1)	4878(1)	34(1)
C8B	4259(1)	3727(1)	4492(1)	30(1)
C9B	5006(1)	3405(1)	4360(1)	39(1)
C10B	4376(1)	3991(1)	5284(1)	41(1)
C11B	2712(1)	1182(1)	3969(1)	36(1)
C12B	2978(1)	551(1)	3509(1)	45(1)
C13B	1853(1)	1187(1)	3870(1)	48(1)
C14B	1497(1)	3259(1)	2955(1)	26(1)
C15B	695(1)	3589(1)	2704(1)	27(1)
C16B	59(1)	3095(1)	2679(1)	33(1)
C17B	-680(1)	3423(1)	2451(1)	40(1)
C18B	-781(1)	4239(1)	2239(1)	41(1)
C19B	-152(1)	4734(1)	2254(1)	39(1)
C20B	591(1)	4412(1)	2492(1)	34(1)
C21B	1463(1)	2367(1)	1909(1)	34(1)
C22B	1515(1)	3006(2)	1342(1)	48(1)
C23B	1856(1)	1571(1)	1793(1)	44(1)
C24B	1913(1)	4116(1)	4083(1)	34(1)

Fortsetzung von Ta	belle A78:			
C25B	2393(1)	4895(1)	4128(1)	45(1)
C26B	2046(1)	3675(2)	4810(1)	47(1)

Tabelle A79: Bindungslängen [Å] und -winkel [°] von ${\bf 55}.$

SA–SiA	2.0193(9)	C11A–C13A	1.520(3)	N3B-C14B	1.345(2)
SiA-N3A	1.8148(16)	C14A–C15A	1.489(2)	N3B-C24B	1.469(2)
SiA-N1A	1.8209(17)	C15A-C16A	1.388(3)	C1B-C2B	1.493(3)
SiA–N4A	1.9562(16)	C15A–C20A	1.392(3)	C2B–C3B	1.386(3)
SiA-N2A	1.9611(16)	C16A–C17A	1.390(3)	C2B-C7B	1.393(3)
SiA-C1A	2.342(2)	C17A-C18A	1.372(3)	C3B-C4B	1.387(3)
SiA-C14A	2.3519(19)	C18A-C19A	1.377(3)	C4B-C5B	1.379(3)
N2A–C1A	1.318(2)	C19A–C20A	1.387(3)	C5B-C6B	1.380(3)
N2A–C8A	1.477(2)	C21A–C23A	1.522(3)	C6B-C7B	1.391(3)
N1A–C1A	1.347(2)	C21A–C22A	1.526(3)	C8B–C9B	1.526(3)
N1A–C11A	1.468(2)	C24A–C26A	1.507(3)	C8B-C10B	1.527(3)
N4A–C14A	1.309(2)	C24A-C25A	1.514(3)	C11B-C13B	1.503(3)
N4A–C21A	1.481(2)	SiB-N3B	1.8231(16)	C11B-C12B	1.507(3)
N3A-C14A	1.359(2)	SiB-N1B	1.8358(16)	C14B-C15B	1.489(3)
N3A-C24A	1.476(2)	SiB-N2B	1.9501(15)	C15B-C16B	1.387(3)
C1A–C2A	1.487(3)	SiB-N4B	1.9682(15)	C15B-C20B	1.392(3)
C2A–C3A	1.390(3)	SiB-SB	2.0229(9)	C16B-C17B	1.386(3)
C2A–C7A	1.393(3)	SiB-C14B	2.3447(19)	C17B-C18B	1.380(3)
C3A–C4A	1.388(3)	SiB-C1B	2.3474(19)	C18B-C19B	1.381(3)
C4A–C5A	1.377(3)	N2B-C1B	1.310(2)	C19B-C20B	1.391(3)
C5A–C6A	1.379(3)	N2B–C8B	1.477(2)	C21B-C23B	1.515(3)
C6A-C7A	1.384(3)	N1B-C1B	1.351(2)	C21B-C22B	1.518(3)
C8A-C10A	1.513(3)	N1B-C11B	1.482(2)	C24B-C25B	1.518(3)
C8A-C9A	1.521(3)	N4B-C14B	1.314(2)	C24B-C26B	1.520(3)
C11A–C12A	1.520(3)	N4B-C21B	1.481(2)		
N3A-SiA-N1A	112.67(8)	C10A-C8A-C9A	110.4(2)	C1B–N1B–SiB	93.63(12)
N3A–SiA–N4A	68.88(7)	N1A-C11A-C12A	110.16(18)	C11B-N1B-SiB	143.83(12)
N1A–SiA–N4A	98.99(7)	N1A-C11A-C13A	111.20(18)	C14B–N4B–C21B	122.45(15)
N3A–SiA–N2A	95.91(7)	C12A–C11A–C13A	112.86(17)	C14B–N4B–SiB	88.86(11)
N1A-SiA-N2A	69.07(7)	N4A-C14A-N3A	106.33(15)	C21B–N4B–SiB	140.19(14)
N4A–SiA–N2A	156.07(7)	N4A-C14A-C15A	128.74(16)	C14B-N3B-C24B	124.95(16)
N3A–SiA–SA	123.90(6)	N3A-C14A-C15A	124.78(17)	C14B–N3B–SiB	94.27(12)
N1A–SiA–SA	123.43(6)	N4A-C14A-SiA	56.28(9)	C24B–N3B–SiB	140.31(12)
N4A–SiA–SA	100.32(6)	N3A-C14A-SiA	50.28(9)	N2B-C1B-N1B	107.16(15)
N2A-SiA-SA	103.55(6)	C15A–C14A–SiA	170.94(14)	N2B-C1B-C2B	129.37(16)
N3A–SiA–C1A	109.53(7)	C16A-C15A-C20A	119.14(18)	N1B-C1B-C2B	123.43(17)
N1A-SiA-C1A	34.99(7)	C16A-C15A-C14A	121.76(18)	N2B-C1B-SiB	56.18(9)
N4A–SiA–C1A	132.00(7)	C20A-C15A-C14A	119.09(17)	N1B-C1B-SiB	51.30(9)

Fortsetzung	von	Tabelle	A79:
1 01 05002 4110		1 000 0110	

N2A–SiA–C1A	34.23(6)	C15A-C16A-C17A	120.2(2)	C2B-C1B-SiB	171.43(14)
SA–SiA–C1A	115.99(6)	C18A–C17A–C16A	120.1(2)	C3B-C2B-C7B	119.90(18)
N3A–SiA–C14A	35.18(6)	C17A–C18A–C19A	120.3(2)	C3B-C2B-C1B	121.08(17)
N1A–SiA–C14A	111.15(7)	C18A-C19A-C20A	120.1(2)	C7B-C2B-C1B	118.96(18)
N4A–SiA–C14A	33.83(6)	C19A–C20A–C15A	120.1(2)	C2B-C3B-C4B	120.06(19)
N2A–SiA–C14A	129.56(7)	N4A–C21A–C23A	112.43(18)	C5B-C4B-C3B	120.0(2)
SA–SiA–C14A	114.27(6)	N4A–C21A–C22A	112.94(16)	C4B-C5B-C6B	120.29(19)
C1A–SiA–C14A	129.74(7)	C23A-C21A-C22A	111.90(17)	C5B-C6B-C7B	120.2(2)
C1A–N2A–C8A	123.52(15)	N3A–C24A–C26A	111.92(18)	C6B-C7B-C2B	119.5(2)
C1A–N2A–SiA	88.93(11)	N3A-C24A-C25A	113.68(17)	N2B-C8B-C9B	112.74(16)
C8A–N2A–SiA	139.93(14)	$\rm C26A{-}C24A{-}C25A$	112.80(19)	N2B-C8B-C10B	112.34(17)
C1A–N1A–C11A	125.40(16)	N3B-SiB-N1B	111.30(8)	C9B-C8B-C10B	111.72(16)
C1A–N1A–SiA	94.17(12)	N3B–SiB–N2B	97.71(7)	N1B-C11B-C13B	111.95(17)
C11A–N1A–SiA	140.39(12)	N1B-SiB-N2B	68.83(7)	N1B-C11B-C12B	111.57(18)
C14A–N4A–C21A	127.39(15)	N3B–SiB–N4B	68.79(7)	C13B-C11B-C12B	114.25(18)
C14A–N4A–SiA	89.89(11)	N1B-SiB-N4B	99.46(7)	N4B-C14B-N3B	107.57(15)
C21A–N4A–SiA	135.24(13)	N2B–SiB–N4B	158.31(7)	N4B-C14B-C15B	127.99(16)
C14A–N3A–C24A	127.56(16)	N3B–SiB–SB	125.01(6)	N3B-C14B-C15B	124.35(17)
C14A–N3A–SiA	94.54(12)	N1B–SiB–SB	123.66(6)	N4B-C14B-SiB	57.07(9)
C24A–N3A–SiA	134.50(12)	N2B–SiB–SB	99.65(6)	N3B-C14B-SiB	50.84(9)
N2A–C1A–N1A	107.38(16)	N4B–SiB–SB	102.02(6)	C15B-C14B-SiB	170.76(14)
N2A–C1A–C2A	127.80(16)	N3B-SiB-C14B	34.89(6)	C16B-C15B-C20B	119.94(17)
N1A–C1A–C2A	124.76(18)	N1B–SiB–C14B	111.11(7)	C16B-C15B-C14B	121.38(17)
N2A–C1A–SiA	56.84(9)	N2B-SiB-C14B	131.47(7)	C20B-C15B-C14B	118.68(17)
N1A–C1A–SiA	50.84(9)	N4B-SiB-C14B	34.07(6)	C17B-C16B-C15B	119.99(19)
C2A–C1A–SiA	171.59(14)	SB-SiB-C14B	115.72(5)	C18B-C17B-C16B	119.9(2)
C3A–C2A–C7A	119.87(18)	N3B-SiB-C1B	109.91(7)	C17B-C18B-C19B	120.58(19)
C3A–C2A–C1A	120.74(18)	N1B–SiB–C1B	35.06(6)	C18B-C19B-C20B	119.9(2)
C7A–C2A–C1A	119.39(18)	N2B–SiB–C1B	33.94(6)	C19B-C20B-C15B	119.71(19)
C4A–C3A–C2A	120.1(2)	N4B-SiB-C1B	133.08(7)	N4B-C21B-C23B	109.26(15)
C5A-C4A-C3A	119.6(2)	SB-SiB-C1B	113.38(6)	$\rm N4B{-}C21B{-}C22B$	112.17(16)
C4A-C5A-C6A	120.6(2)	C14B–SiB–C1B	130.88(7)	C23B-C21B-C22B	110.80(19)
C5A-C6A-C7A	120.4(2)	C1B-N2B-C8B	127.49(15)	$\rm N3B\text{-}C24B\text{-}C25B$	109.88(18)
C6A-C7A-C2A	119.4(2)	C1B–N2B–SiB	89.88(11)	N3B-C24B-C26B	111.34(17)
N2A-C8A-C10A	109.54(16)	C8B–N2B–SiB	135.10(12)	C25B-C24B-C26B	113.26(17)
N2A–C8A–C9A	111.62(17)	C1B-N1B-C11B	121.87(15)		

 ${\rm Verbindung}\ {\bf 56}$

Abb. A35: Struktur von **56** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A80: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **56**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	x	У	Z	U_{eq}
C1	10599(2)	6606(2)	1424(1)	34(1)
C2	11646(2)	6270(2)	1964(2)	34(1)
C3	12317(2)	6750(2)	2576(2)	37(1)
C4	13282(2)	6414(2)	3080(2)	41(1)
C5	13575(2)	5606(2)	2962(2)	42(1)
C6	12922(2)	5121(2)	2344(2)	40(1)
C7	11947(2)	5457(2)	1849(2)	37(1)
C8	11688(2)	7494(2)	397(2)	42(1)
C9	11380(2)	8262(2)	-148(2)	55(1)
C10	12235(2)	6850(2)	-196(2)	53(1)
C11	9030(2)	5757(2)	2123(2)	43(1)
C12	8195(2)	6199(2)	2745(2)	52(1)
C13	8458(2)	5014(2)	1676(2)	47(1)
C14	7108(2)	7574(1)	772(1)	26(1)
C15	6010(2)	8082(1)	829(1)	27(1)
C16	5623(2)	8540(1)	73(1)	31(1)
C17	4624(2)	9037(1)	115(2)	34(1)
C18	4029(2)	9095(2)	914(2)	37(1)
	· · ·			()

Fortsetzung von Ta	abelle A80:			
C19	4412(2)	8642(2)	1663(2)	38(1)
C20	5396(2)	8133(1)	1622(1)	32(1)
C21	8357(8)	8778(6)	1263(6)	28(2)
C22	8564(10)	9392(8)	518(7)	33(2)
C23	9342(8)	8756(5)	2018(5)	41(2)
C21B	8789(5)	8572(3)	1212(4)	30(1)
C22B	8253(6)	9361(4)	826(5)	39(2)
C23B	8711(6)	8531(3)	2240(3)	49(2)
C24	6258(2)	6231(1)	252(1)	27(1)
C25	5644(2)	6532(2)	-636(1)	32(1)
C26	5347(2)	6021(2)	951(2)	34(1)
N2	10591(2)	7192(1)	815(1)	34(1)
N1	9479(2)	6314(1)	1436(1)	33(1)
N3	8244(2)	7874(1)	811(1)	34(1)
N4	7196(1)	6792(1)	620(1)	24(1)
Se	9010(1)	6543(1)	-925(1)	41(1)
Si	8921(1)	6922(1)	476(1)	30(1)

Tabelle A81: Bindungslängen [Å] und -winkel [°] von ${\bf 56}.$

C1–N2	1.314(3)	C11–C13	1.511(4)	C21–N3	1.627(10)
C1-N1	1.338(3)	C11–C12	1.522(4)	C21B-N3	1.411(6)
C1–C2	1.485(3)	C14–N4	1.306(3)	C21B-C22B	1.522(7)
C1–Si	2.335(2)	C14–N3	1.356(3)	C21B-C23B	1.523(7)
C2–C3	1.387(3)	C14–C15	1.486(3)	C24–N4	1.474(3)
C2–C7	1.387(4)	C14–Si	2.345(2)	C24–C26	1.521(3)
C3–C4	1.389(3)	C15–C20	1.386(3)	C24–C25	1.528(3)
C4–C5	1.376(4)	C15–C16	1.393(3)	N2–Si	1.9534(18)
C5–C6	1.388(3)	C16–C17	1.383(3)	N1–Si	1.8153(18)
C6–C7	1.391(3)	C17–C18	1.383(3)	N3–Si	1.813(2)
C8–N2	1.481(3)	C18–C19	1.380(3)	N4–Si	1.9550(17)
C8-C10	1.519(4)	C19–C20	1.381(3)	Se–Si	2.1632(7)
C8–C9	1.523(3)	C21–C22	1.515(11)		
C11–N1	1.468(3)	C21–C23	1.524(10)		
N2-C1-N1	107.32(18)	C20-C15-C16	119.7(2)	C21B–N3–Si	129.5(3)
N2-C1-C2	128.0(2)	C20-C15-C14	121.62(19)	C21-N3-Si	150.6(3)
N1-C1-C2	124.6(2)	C16-C15-C14	118.66(19)	C14–N4–C24	128.14(17)
N2–C1–Si	56.78(11)	C17-C16-C15	119.9(2)	C14-N4-Si	89.66(13)
N1–C1–Si	50.84(10)	C16-C17-C18	120.0(2)	C24–N4–Si	135.26(14)
C2-C1-Si	170.67(19)	C19–C18–C17	120.1(2)	N3–Si–N1	113.07(9)
C3–C2–C7	120.0(2)	C18-C19-C20	120.3(2)	N3–Si–N2	97.99(9)
C3–C2–C1	121.4(2)	C19–C20–C15	120.0(2)	N1–Si–N2	68.96(8)
C7-C2-C1	118.7(2)	C22–C21–C23	114.5(9)	N3–Si–N4	68.90(8)

Fortsetzung von Tal	belle A81:				
C2-C3-C4	120.0(2)	C22–C21–N3	108.7(8)	N1–Si–N4	98.92(8)
C5-C4-C3	119.8(2)	C23–C21–N3	108.3(7)	N2–Si–N4	157.77(8)
C4-C5-C6	120.9(2)	N3-C21B-C22B	112.4(5)	N3–Si–Se	123.19(6)
C5–C6–C7	119.1(3)	N3-C21B-C23B	109.5(4)	N1–Si–Se	123.73(7)
C2-C7-C6	120.2(2)	C22BC21BC23B	111.6(5)	N2–Si–Se	102.72(6)
N2-C8-C10	111.7(2)	N4-C24-C26	112.19(17)	N4–Si–Se	99.50(5)
N2-C8-C9	109.05(19)	N4-C24-C25	113.07(18)	N3–Si–C1	111.08(9)
С10-С8-С9	111.0(2)	C26-C24-C25	111.55(17)	N1–Si–C1	34.86(8)
N1-C11-C13	110.6(2)	C1-N2-C8	123.43(18)	N2–Si–C1	34.25(8)
N1-C11-C12	111.0(2)	C1–N2–Si	88.97(13)	N4–Si–C1	132.27(8)
C13-C11-C12	112.9(2)	C8–N2–Si	139.90(14)	Se–Si–C1	115.65(6)
N4-C14-N3	106.64(19)	C1-N1-C11	125.63(18)	N3–Si–C14	35.22(8)
N4-C14-C15	129.00(19)	C1–N1–Si	94.30(14)	N1–Si–C14	111.69(8)
N3-C14-C15	124.2(2)	C11–N1–Si	139.76(14)	N2–Si–C14	131.85(9)
N4-C14-Si	56.49(11)	C14–N3–C21B	133.9(3)	N4–Si–C14	33.84(7)
N3–C14–Si	50.47(11)	C14–N3–C21	113.7(4)	Se-Si-C14	112.98(5)
C15-C14-Si	170.09(15)	C14-N3-Si	94.31(15)	C1–Si–C14	131.37(8)

Verbindung $57.0.7C_6H_5CH_3$

Abb. A36: Struktur von $57 \cdot 0.7 C_6 H_5 CH_3$ im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A82: Atomkoordinaten (× 10^4) und äquivalente isotrope Auslenkungsparameter (Å ² × 10^3) der
Nichtwasserstoff-Atome von $57.0.7C_6H_5CH_3$. Die angegebenen U_{eq} -Werte sind definiert als $1/3$ der Spur des
orthogonalisierten U _{ij} -Tensors.

	x	у	Z	U_{eq}
C1	5061(2)	6402(1)	3681(1)	20(1)
C2	3936(1)	5966(1)	3320(1)	24(1)
C3	3556(1)	5308(1)	3705(1)	32(1)
C4	2507(1)	4905(1)	3340(1)	44(1)
C5	1839(1)	5159(1)	2591(1)	49(1)
C6	2219(1)	5816(1)	2206(1)	47(1)
C7	3268(1)	6220(1)	2570(1)	33(1)
C8	6360(2)	5310(1)	3368(1)	24(1)
C9	6803(2)	5489(2)	2628(1)	28(1)
C10	7175(2)	4745(2)	3966(2)	33(1)
C11	4387(2)	7640(1)	4294(1)	25(1)
C12	3898(2)	7135(2)	4885(2)	35(1)
C13	3387(2)	8028(2)	3654(2)	34(1)
C14	8336(2)	7370(1)	3553(1)	17(1)
C15	9196(2)	7712(1)	3134(1)	20(1)
C16	9461(2)	7273(1)	2512(1)	26(1)
C17	10223(2)	7608(2)	2092(1)	30(1)
C18	10714(2)	8373(2)	2298(1)	30(1)
C19	10462(2)	8811(2)	2921(1)	28(1)
C20	9686(2)	8488(1)	3336(1)	24(1)
C21	9573(2)	6381(1)	4526(1)	23(1)
C22	10458(2)	7025(2)	4956(1)	29(1)
C23	10142(2)	5804(2)	4032(1)	32(1)
C24	6689(2)	8309(1)	2885(1)	23(1)
C25	5693(2)	7948(2)	2228(1)	37(1)
C26	6295(2)	9030(2)	3309(2)	35(1)
C30	1998(8)	8988(5)	5588(5)	39(1)
C31	1072(6)	9433(4)	5313(5)	39(1)
C32	1150(6)	10122(4)	4851(5)	39(1)
C33	161(6)	10615(4)	4562(5)	39(1)
C34	-907(6)	10419(4)	4733(5)	39(1)
C35	-986(6)	9730(4)	5195(5)	39(1)
C36	3(6)	9237(4)	5484(5)	39(1)
C37	5167(7)	9975(6)	5092(5)	47(1)
C38	3875(3)	9743(3)	5181(3)	47(1)
C39	2892(4)	10194(2)	4777(3)	47(1)
C40	1772(3)	9987(3)	4855(3)	47(1)
C41	1634(3)	9328(3)	5338(3)	47(1)
C42	2617(4)	8877(3)	5742(3)	47(1)
C43	3737(4)	9085(3)	5663(3)	47(1)
N1	6143(1)	6073(1)	3765(1)	20(1)

Tabelle A83: Bindungslängen [Å] und -winkel [°] von $57.0.7C_6H_5CH_3$.

C1-N2	1.318(3)	C14–N3	1.346(2)	C31–C36	1.3900
C1–N1	1.345(3)	C14–C15	1.485(3)	C32–C33	1.3900
C1–C2	1.482(2)	C14–Si	2.337(2)	C33-C34	1.3900
C1–Si	2.339(2)	C15–C16	1.387(3)	C34–C35	1.3900
C2–C3	1.3900	C15–C20	1.392(3)	C35-C36	1.3900
C2–C7	1.3900	C16–C17	1.391(3)	C37-C38	1.599(10)
C3–C4	1.3900	C17–C18	1.378(4)	C38–C39	1.3900
C4–C5	1.3900	C18-C19	1.381(3)	C38-C43	1.3900
C5–C6	1.3900	C19–C20	1.392(3)	C39–C40	1.3900
C6–C7	1.3900	C21–N4	1.476(2)	C40-C41	1.3900
C8-N1	1.469(3)	C21–C22	1.524(3)	C41–C42	1.3900
C8-C10	1.520(3)	C21–C23	1.528(3)	C42–C43	1.3900
C8–C9	1.521(3)	C24–N3	1.468(2)	N1–Si	1.8325(18)
C11–N2	1.473(3)	C24–C26	1.514(3)	N2–Si	1.9327(17)
C11–C13	1.523(3)	C24–C25	1.518(3)	N4–Si	1.9473(16)
C11–C12	1.527(3)	C30–C31	1.287(11)	N3–Si	1.8226(17)
C14–N4	1.313(3)	C31–C32	1.3900	Si–Te	2.4018(6)
N2C1N1	107.15(17)	C18–C17–C16	120.0(2)	C1–N2–Si	90.00(12)
N2–C1–C2	128.64(17)	C17–C18–C19	120.5(2)	C11-N2-Si	135.33(14)
N1-C1-C2	124.19(18)	C18–C19–C20	120.0(2)	C14–N4–C21	127.22(17)
N2–C1–Si	55.72(10)	C19–C20–C15	119.6(2)	C14-N4-Si	89.40(12)
N1–C1–Si	51.44(10)	N4-C21-C22	112.75(18)	C21-N4-Si	136.09(13)
C2–C1–Si	175.62(14)	N4–C21–C23	112.67(17)	C14–N3–C24	124.91(17)
C3–C2–C7	120.0	C22–C21–C23	110.80(18)	C14–N3–Si	93.84(12)
C3–C2–C1	121.58(12)	N3-C24-C26	110.01(18)	C24-N3-Si	141.09(13)
С7-С2-С1	118.41(12)	N3-C24-C25	111.36(18)	N3–Si–N1	110.96(8)
C2-C3-C4	120.0	C26-C24-C25	112.9(2)	N3–Si–N2	97.86(8)
C5-C4-C3	120.0	C30-C31-C32	119.5(2)	N1–Si–N2	69.30(7)
C4-C5-C6	120.0	C30–C31–C36	120.5(2)	N3–Si–N4	69.14(7)
C7-C6-C5	120.0	C32–C31–C36	120.0	N1–Si–N4	97.27(8)
C6–C7–C2	120.0	C31–C32–C33	120.0	N2–Si–N4	157.29(7)
N1-C8-C10	110.38(18)	C34–C33–C32	120.0	N3–Si–C14	35.07(7)
N1-C8-C9	111.35(18)	C33–C34–C35	120.0	N1–Si–C14	109.04(7)
С10-С8-С9	113.26(18)	C36-C35-C34	120.0	N2–Si–C14	131.30(7)
N2-C11-C13	113.18(18)	C35-C36-C31	120.0	N4–Si–C14	34.18(7)

Fortsetzung von	Tabelle A83:				
N2-C11-C12	111.87(18)	C39–C38–C43	120.0	N3–Si–C1	107.90(7)
C13–C11–C12	110.93(19)	C39–C38–C37	120.38(18)	N1–Si–C1	35.02(7)
N4-C14-N3	107.29(17)	C43-C38-C37	119.62(18)	N2–Si–C1	34.28(7)
N4-C14-C15	129.36(17)	C40-C39-C38	120.0	N4–Si–C1	130.16(8)
N3-C14-C15	123.35(18)	C41-C40-C39	120.0	C14– Si – $C1$	127.43(7)
N4-C14-Si	56.43(10)	C40–C41–C42	120.0	N3–Si–Te	122.62(6)
N3-C14-Si	51.08(10)	C41-C42-C43	120.0	N1–Si–Te	126.42(6)
C15–C14–Si	172.87(15)	C42-C43-C38	120.0	N2–Si–Te	101.78(5)
C16–C15–C20	120.03(19)	C1–N1–C8	123.69(17)	N4–Si–Te	100.93(5)
C16-C15-C14	119.62(19)	C1–N1–Si	93.54(13)	C14–Si–Te	114.15(5)
C20–C15–C14	120.26(18)	C8–N1–Si	140.79(14)	C1–Si–Te	118.40(5)
C15-C16-C17	119.8(2)	C1-N2-C11	126.49(17)		

Abb. A37: Struktur von **58** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	х	У	Z	U_{eq}
C1	1459(3)	3734(2)	4474(2)	23(1)
C2	251(4)	4093(2)	4786(2)	26(1)
C3	111(4)	4875(2)	4791(3)	38(1)
C4	-952(5)	5208(2)	5155(3)	45(1)
C5	-1877(4)	4766(2)	5514(3)	40(1)
C6	-1763(4)	3982(2)	5494(2)	33(1)
C7	-702(4)	3650(2)	5131(2)	27(1)
C8	408(4)	3183(2)	3076(2)	26(1)
C9	-115(5)	3936(2)	2697(3)	41(1)
C10	-799(4)	2674(2)	3227(2)	35(1)
C11	3119(4)	4132(2)	5694(2)	27(1)
C12	4619(4)	4384(2)	5839(2)	32(1)
C13	2794(4)	3584(2)	6374(2)	33(1)
C14	3923(3)	3303(2)	2684(2)	21(1)
C15	4368(4)	3400(2)	1841(2)	22(1)
C16	5774(4)	3350(2)	1768(2)	30(1)
C17	6209(4)	3400(2)	978(2)	33(1)
C18	5238(4)	3496(2)	266(2)	33(1)
C19	3844(4)	3539(2)	331(2)	34(1)
C20	3391(4)	3491(2)	1120(2)	28(1)
C21	3637(4)	1926(2)	2605(2)	25(1)
C22	2374(5)	1461(2)	2738(3)	40(1
C23	4985(5)	1507(2)	2899(3)	41(1)
C24	4292(4)	4621(2)	3154(2)	32(1)
C25	5781(5)	4712(3)	3591(3)	49(1)
C26	3326(5)	5181(2)	3483(2)	36(1)
N2	1467(3)	3257(2)	3826(2)	21(1)
N1	2763(3)	3808(2)	4838(2)	22(1)
N3	3604(3)	2661(1)	3020(2)	20(1)
N4	3819(3)	3845(2)	3249(2)	22(1)
01	3348(2)	2284(1)	4653(1)	24(1)
O2	5164(2)	3052(1)	4521(2)	26(1)
O3	5204(3)	2386(2)	5910(2)	42(1)
S	4987(1)	2268(1)	4999(1)	30(1)
Si	3393(1)	3132(1)	4052(1)	19(1)

Tabelle A84: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **58**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ii}-Tensors.

C1–N1	1.323(4)	C11–C12	1.510(5)	C21–C23	1.521(5)
C1–N2	1.337(4)	C11–C13	1.523(5)	C24–N4	1.466(4)
C1–C2	1.483(5)	C14-N3	1.315(4)	C24-C26	1.511(5)
C1–Si	2.341(3)	C14–N4	1.332(4)	C24–C25	1.522(6)
C2–C7	1.387(5)	C14–C15	1.482(4)	N2–Si	1.867(3)
C2-C3	1.392(5)	C14–Si	2.337(3)	N1–Si	1.899(3)
C3–C4	1.387(6)	C15–C16	1.390(5)	N3–Si	1.885(3)
C4–C5	1.378(6)	C15–C20	1.394(5)	N4–Si	1.889(3)
C5-C6	1.394(6)	C16-C17	1.391(5)	O1–S	1.610(2)
C6–C7	1.385(5)	C17–C18	1.381(6)	O1–Si	1.787(2)
C8–N2	1.470(4)	C18-C19	1.375(6)	O2–S	1.607(3)
С8-С9	1.521(5)	C19–C20	1.397(5)	O2–Si	1.782(3)
C8-C10	1.527(5)	C21–N3	1.465(4)	O3–S	1.455(3)
C11–N1	1.478(4)	C21-C22	1.518(5)	S–Si	2.5230(11)
N1C1N2	107.1(3)	C18–C19–C20	120.4(3)	O1–Si–N3	96.43(11)
N1-C1-C2	124.3(3)	C15-C20-C19	119.2(3)	N2–Si–N3	96.55(12)
N2-C1-C2	128.6(3)	N3-C21-C22	110.4(3)	O2–Si–N4	92.67(12)
N1–C1–Si	54.21(16)	N3-C21-C23	111.6(3)	O1–Si–N4	162.21(12)
N2–C1–Si	52.86(16)	C22–C21–C23	111.7(3)	N2–Si–N4	95.74(12)
C2–C1–Si	176.9(2)	N4-C24-C26	111.2(3)	N3–Si–N4	68.89(11)
С7-С2-С3	119.4(3)	N4-C24-C25	110.1(3)	O2–Si–N1	98.92(12)
С7-С2-С1	119.7(3)	C26-C24-C25	111.6(3)	O1–Si–N1	98.09(11)
C3–C2–C1	120.8(3)	C1-N2-C8	127.4(3)	N2–Si–N1	69.21(12)
C4-C3-C2	120.3(4)	C1–N2–Si	92.3(2)	N3–Si–N1	160.59(12)
С5-С4-С3	120.1(4)	C8–N2–Si	135.4(2)	N4–Si–N1	98.59(11)
C4-C5-C6	120.0(4)	C1–N1–C11	121.9(3)	O2–Si–C14	94.29(11)
С7-С6-С5	119.9(4)	C1–N1–Si	91.4(2)	O1–Si–C14	129.61(12)
C6–C7–C2	120.3(3)	C11-N1-Si	143.3(2)	N2–Si–C14	98.75(11)
N2-C8-C9	113.7(3)	C14–N3–C21	124.2(3)	N3–Si–C14	34.20(11)
N2-C8-C10	112.8(3)	C14–N3–Si	92.08(19)	N4–Si–C14	34.73(11)
C9–C8–C10	111.1(3)	C21-N3-Si	143.3(2)	N1–Si–C14	132.18(12)
N1–C11–C12	110.5(3)	C14-N4-C24	123.5(3)	O2–Si–C1	132.99(12)
N1-C11-C13	111.6(3)	C14– $N4$ – Si	91.37(19)	O1–Si–C1	98.42(11)
C12–C11–C13	111.9(3)	C24-N4-Si	143.2(2)	N2–Si–C1	34.80(11)
N3-C14-N4	107.5(3)	S–O1–Si	95.78(12)	N3–Si–C1	130.17(12)
N3-C14-C15	126.0(3)	S–O2–Si	96.10(13)	N4–Si–C1	98.83(12)
N4-C14-C15	126.4(3)	O3–S–O2	109.96(16)	N1–Si–C1	34.42(12)
N3-C14-Si	53.72(15)	O3–S–O1	109.63(15)	C14–Si–C1	120.21(11)
N4–C14–Si	53.90(16)	O2–S–O1	89.37(12)	O2–Si–S	39.29(8)
C15–C14–Si	175.8(2)	O3–S–Si	120.10(13)	O1–Si–S	39.42(8)
C16-C15-C20	120.0(3)	O2–S–Si	44.61(9)	N2–Si–S	134.47(9)
C16–C15–C14	119.1(3)	O1–S–Si	44.80(8)	N3–Si–S	97.00(9)
C20–C15–C14	120.8(3)	O2–Si–O1	78.66(11)	N4–Si–S	129.65(10)

Tabelle A85: Bindungslängen [Å] und -winkel [°] von ${\bf 58}.$

Fortsetzung von Tabelle A85:							
C15–C16–C17	120.1(3)	O2–Si–N2	166.34(11)	N1–Si–S	102.40(9)		
C18–C17–C16	119.7(3)	O1–Si–N2	95.91(11)	C14–Si–S	116.20(9)		
C19–C18–C17	120.6(3)	O2–Si–N3	96.51(12)	C1–Si–S	123.59(8)		

Abb. A38: Struktur von **59** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	Х	У	Z	U_{eq}
Si	7376(1)	1842(1)	2992(1)	10(1)
S1	6562(1)	3128(1)	1894(1)	18(1)
S2	4604(1)	2506(1)	2296(1)	16(1)
O1	7644(1)	2653(1)	2450(1)	15(1)
O2	5535(1)	1888(1)	2693(1)	15(1)
O3	6516(2)	2935(1)	983(1)	31(1)
N2	9329(2)	1623(1)	3071(1)	12(1)
N1	7778(2)	1262(1)	2090(1)	12(1)
N3	7353(2)	2264(1)	4064(1)	11(1)
N4	7043(2)	1157(1)	3845(1)	12(1)
O4	4059(2)	2268(1)	1419(1)	26(1)
O4A	4188(5)	2906(2)	3094(3)	21(1)

Tabelle A86: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **59**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

Fortsetzung von	n Tabelle A86:			
C1	9156(2)	1236(1)	2361(1)	12(1)
C2	10269(2)	847(1)	1951(1)	14(1)
C3	10087(2)	135(1)	1751(1)	16(1)
C4	11129(2)	-229(1)	1362(1)	19(1)
C5	12348(2)	116(1)	1174(1)	21(1)
C6	12529(2)	826(1)	1365(1)	21(1)
C7	11489(2)	1193(1)	1749(1)	17(1)
C8	7083(2)	1188(1)	1212(1)	15(1)
C9	8024(2)	1389(1)	508(1)	21(1)
C10	6411(2)	465(1)	1059(1)	21(1)
C11	10426(2)	1564(1)	3804(1)	14(1)
C12	11728(2)	2020(1)	3703(1)	21(1)
C13	10857(2)	806(1)	4036(1)	21(1)
C14	7096(2)	1655(1)	4440(1)	12(1)
C15	6924(2)	1546(1)	5362(1)	13(1)
C16	5809(2)	1855(1)	5743(1)	19(1)
C17	5671(2)	1744(1)	6607(1)	23(1)
C18	6639(2)	1326(1)	7087(1)	23(1)
C19	7749(2)	1016(1)	6709(1)	21(1)
C20	7893(2)	1125(1)	5847(1)	16(1)
C21	7610(2)	2942(1)	4507(1)	16(1)
C22	6411(3)	3453(1)	4241(1)	26(1)
C23	9042(2)	3251(1)	4345(2)	26(1)
C24	6396(2)	462(1)	3963(1)	15(1)
C25	4810(2)	484(1)	3732(2)	28(1)
C26	7095(2)	-107(1)	3465(1)	23(1)

Tabelle A87: Bindungslängen [Å] und -winkel [°] von ${\bf 59}.$

Si–O2	1.7686(14)	N2-C11	1.482(2)	С8-С9	1.529(3)
Si–O1	1.7882(14)	N1–C1	1.339(2)	C11–C12	1.529(3)
Si–N1	1.8581(16)	N1–C8	1.477(2)	C11–C13	1.529(3)
Si–N3	1.8633(16)	N3-C14	1.329(2)	C14–C15	1.483(3)
Si–N2	1.8922(16)	N3–C21	1.471(2)	C15–C16	1.391(3)
Si–N4	1.9104(16)	N4-C14	1.327(2)	C15–C20	1.391(3)
Si-C14	2.3346(19)	N4–C24	1.475(2)	C16–C17	1.388(3)
Si–C1	2.3367(19)	C1–C2	1.482(3)	C17–C18	1.383(3)
S1–O3	1.4696(16)	C2–C7	1.392(3)	C18–C19	1.386(3)
S101	1.5700(14)	C2–C3	1.395(3)	C19–C20	1.385(3)
S1–S2	2.3359(7)	C3–C4	1.392(3)	C21–C23	1.523(3)
S2-O4	1.494(2)	C4–C5	1.385(3)	C21–C22	1.525(3)
S2–O4A	1.544(5)	C5–C6	1.387(3)	C24–C25	1.516(3)
S2–O2	1.5642(13)	C6–C7	1.389(3)	C24–C26	1.520(3)
N2-C1	1.331(2)	C8-C10	1.524(3)		

Fortsetzung von	Tabelle A87:				
O2–Si–O1	90.67(6)	O1-S1-S2	93.18(5)	C5-C4-C3	119.91(19)
O2–Si–N1	95.41(7)	O4-S2-O2	105.86(10)	C4-C5-C6	120.18(18)
O1–Si–N1	95.75(7)	O4A-S2-O2	102.99(19)	C5–C6–C7	120.16(19)
O2–Si–N3	97.16(7)	O4-S2-S1	96.95(9)	C6–C7–C2	120.02(19)
O1–Si–N3	94.08(7)	O4A-S2-S1	103.83(18)	N1-C8-C10	112.09(16)
N1–Si–N3	163.92(7)	O2-S2-S1	93.02(5)	N1-C8-C9	114.06(15)
O2–Si–N2	164.98(7)	S1–O1–Si	130.12(8)	С10-С8-С9	111.99(16)
O1–Si–N2	92.19(7)	S2–O2–Si	130.58(8)	N2-C11-C12	113.14(15)
N1–Si–N2	69.63(7)	C1–N2–C11	129.02(15)	N2-C11-C13	114.15(15)
N3–Si–N2	97.34(7)	C1–N2–Si	91.22(11)	C12–C11–C13	110.89(16)
O2–Si–N4	89.79(7)	C11–N2–Si	132.96(12)	N4-C14-N3	107.79(16)
O1–Si–N4	163.30(7)	C1-N1-C8	129.19(15)	N4-C14-C15	125.77(16)
N1–Si–N4	100.83(7)	C1–N1–Si	92.48(11)	N3-C14-C15	126.43(16)
N3–Si–N4	69.30(7)	C8–N1–Si	131.29(12)	N4–C14–Si	54.91(9)
N2–Si–N4	91.67(7)	C14–N3–C21	125.49(16)	N3–C14–Si	52.88(9)
O2–Si–C14	93.85(6)	C14–N3–Si	92.44(11)	C15–C14–Si	179.30(14)
O1–Si–C14	128.72(7)	C21–N3–Si	141.84(13)	C16–C15–C20	119.88(18)
N1–Si–C14	134.37(7)	C14–N4–C24	122.64(15)	C16–C15–C14	121.01(17)
N3–Si–C14	34.67(7)	C14–N4–Si	90.46(11)	C20–C15–C14	119.11(16)
N2–Si–C14	95.83(7)	C24-N4-Si	142.59(13)	C17–C16–C15	119.87(19)
N4–Si–C14	34.63(6)	N2-C1-N1	106.66(16)	C18–C17–C16	120.02(19)
O2–Si–C1	130.32(7)	N2-C1-C2	126.83(16)	C17-C18-C19	120.26(19)
O1–Si–C1	94.73(6)	N1-C1-C2	126.51(17)	C20–C19–C18	120.03(19)
N1–Si–C1	34.92(7)	N2–C1–Si	54.06(9)	C19–C20–C15	119.94(18)
N3–Si–C1	131.45(7)	N1–C1–Si	52.60(9)	N3-C21-C23	111.73(16)
N2–Si–C1	34.72(6)	C2–C1–Si	179.10(15)	N3-C21-C22	109.91(16)
N4–Si–C1	97.68(7)	С7-С2-С3	119.62(17)	C23–C21–C22	111.31(17)
C14–Si–C1	119.22(6)	C7–C2–C1	120.23(17)	N4-C24-C25	111.13(16)
O3–S1–O1	110.81(9)	C3-C2-C1	120.14(17)	N4-C24-C26	111.41(15)
O3-S1-S2	100.53(7)	C4-C3-C2	120.10(18)	C25-C24-C26	111.60(17)

${\rm Verbindung} \ {\bf 60}$

Abb. A39: Struktur von **60** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%). Das Kohlenstoff-Atom C28 ist statistisch über die *ortho*-Positionen (B1–B4, B11 bzw. C28, C28a, C28b, C28c, C28d, C28e) des Carboranyl-Liganden fehlgeordnet.

Tabelle A88: Atomkoor	dinate	en (×	(10^4)	und äquival	ente isotrop	e Aus	lenkungsp	aram	eter	$(Å^2$	\times 10 ³)	der
Nichtwasserstoff-Atome	von	60 .	Die	angegebenen	U_{eq} -Werte	sind	definiert	als	1/3	der	Spur	des
orthogonalisierten U _{ij} -Te	ensors.											

	x	У	Z	U_{eq}
Si	8185(1)	3717(1)	2686(1)	11(1)
N2	8690(1)	2454(1)	3103(1)	13(1)
N1	7050(1)	3241(1)	3553(1)	14(1)
N4	7085(1)	2612(1)	1541(1)	13(1)
N3	9187(1)	3492(1)	1651(1)	14(1)
C1	7782(2)	2452(1)	3675(1)	13(1)
C2	7616(2)	1683(1)	4329(1)	14(1)
C3	8600(2)	1911(2)	5145(1)	20(1)
C4	8533(2)	1132(2)	5701(1)	25(1)
C5	7508(2)	126(2)	5434(1)	25(1)
C6	6521(2)	-97(2)	4630(1)	21(1)
C7	6567(2)	683(2)	4078(1)	17(1)
C8	9666(2)	1710(1)	2885(1)	15(1)
C9	11078(2)	2290(2)	3498(1)	24(1)

Fortsetzung von Ta	belle A88:			
C10	9223(2)	457(2)	2927(1)	22(1)
C11	6207(2)	3736(2)	4236(1)	17(1)
C12	7030(2)	4305(2)	5236(1)	24(1)
C13	4898(2)	2869(2)	4255(2)	28(1)
C14	8125(2)	2722(1)	1066(1)	14(1)
C15	8070(2)	2103(2)	51(1)	17(1)
C16	7609(2)	2584(2)	-662(1)	25(1)
C17	7486(2)	1989(2)	-1614(1)	28(1)
C18	7823(2)	922(2)	-1855(1)	27(1)
C19	8303(2)	442(2)	-1150(1)	27(1)
C20	8417(2)	1027(2)	-199(1)	22(1)
C23	5913(15)	565(7)	1361(8)	25(1)
C21	5818(4)	1688(3)	1097(2)	15(1)
C22	4555(3)	2095(2)	1406(2)	30(1)
C23B	5890(40)	573(19)	1240(20)	25(1)
C21B	5726(11)	1813(10)	1396(6)	15(1)
C22B	4678(7)	1953(6)	642(6)	30(1)
C24	10508(2)	3921(2)	1364(1)	21(1)
C25	11334(2)	5004(2)	2119(2)	33(1)
C26	11386(2)	3014(2)	1180(2)	33(1)
C27	7381(2)	5030(2)	2368(1)	16(1)
B4	7131(2)	6084(2)	3321(1)	20(1)
B1	5717(2)	5183(2)	2455(1)	19(1)
B2	6296(2)	4972(2)	1368(1)	17(1)
B3	7999(2)	5660(2)	1510(1)	18(1)
B11	8447(2)	6364(2)	2706(1)	18(1)
C28D	7131(2)	6084(2)	3321(1)	20(1)
C28E	5717(2)	5183(2)	2455(1)	19(1)
C28B	6296(2)	4972(2)	1368(1)	17(1)
C28C	7999(2)	5660(2)	1510(1)	18(1)
C28	8447(2)	6364(2)	2706(1)	18(1)
B5	5799(2)	6690(2)	2880(2)	20(1)
B6	5270(2)	5982(2)	1648(2)	21(1)
B7	6691(2)	6278(2)	1059(2)	21(1)
B8	8102(2)	7172(2)	1920(2)	21(1)
B9	7555(2)	7440(2)	3049(2)	21(1)
B10	6408(2)	7378(2)	2013(2)	23(1)

Si–H1	1.43(2)	C8-C10	1.529(2)	B4-B1	1.778(3)
Si–N3	1.9146(15)	C8–C9	1.530(2)	B4–B9	1.782(3)
Si–N2	1.9190(15)	C11-C12	1.528(3)	B1–B2	1.741(3)
Si–N1	1.9268(15)	C11–C13	1.533(3)	B1–B6	1.776(3)
Si–N4	1.9461(17)	C14–C15	1.492(2)	B1–B5	1.777(3)
Si-C27	2.0462(18)	C15-C16	1.392(2)	B2–B3	1.722(3)
Si–C1	2.3759(18)	C15-C20	1.396(3)	B2–B7	1.748(3)
Si–C14	2.3862(19)	C16-C17	1.391(3)	B2–B6	1.753(3)
N2-C1	1.311(2)	C17-C18	1.380(3)	B3–B11	1.724(3)
N2-C8	1.466(2)	C18-C19	1.388(3)	B3–B7	1.770(3)
N1-C1	1.346(2)	C19–C20	1.388(3)	B3–B8	1.776(3)
N1-C11	1.478(2)	C23–C21	1.527(6)	B11–B9	1.732(3)
N4-C14	1.326(2)	C21–C22	1.522(4)	B11–B8	1.733(3)
N4–C21B	1.480(12)	C23B-C21B	1.516(14)	B5–B6	1.777(3)
N4-C21	1.494(4)	C21B-C22B	1.499(11)	B5–B9	1.786(3)
N3-C14	1.334(2)	C24–C25	1.528(3)	B5–B10	1.790(3)
N3-C24	1.479(2)	C24-C26	1.532(3)	B6–B7	1.777(3)
C1–C2	1.500(2)	C27–B11	1.696(3)	B6-B10	1.784(3)
C2–C7	1.395(2)	C27–B2	1.702(3)	B7–B8	1.771(3)
С2-С3	1.396(2)	C27–B1	1.731(3)	B7-B10	1.782(3)
C3–C4	1.394(3)	C27–B4	1.735(3)	B8-B10	1.781(3)
C4–C5	1.385(3)	C27–B3	1.743(3)	B8–B9	1.783(3)
С5-С6	1.386(3)	B4-B11	1.714(3)	B9–B10	1.774(3)
С6-С7	1.389(2)	B4–B5	1.775(3)		
H1–Si–N3	101.7(8)	C20-C15-C14	121.11(15)	C27–B11–B4	61.17(12)
H1–Si–N2	92.0(8)	C17-C16-C15	120.07(18)	C27–B11–B3	61.26(11)
N3–Si–N2	92.98(6)	C18-C17-C16	120.17(18)	B4-B11-B3	112.34(15)
H1–Si–N1	94.2(8)	C17-C18-C19	120.20(17)	C27–B11–B9	111.43(15)
N3–Si–N1	155.58(6)	C20-C19-C18	119.93(18)	B4-B11-B9	62.28(12)
N2–Si–N1	67.86(6)	C19-C20-C15	120.18(17)	B3-B11-B9	112.48(15)
H1–Si–N4	169.4(8)	N4-C21-C22	110.0(2)	C27–B11–B8	111.31(14)
N3–Si–N4	67.68(6)	N4-C21-C23	111.1(6)	B4–B11–B8	112.92(14)
N2–Si–N4	89.21(6)	C22-C21-C23	110.1(6)	B3-B11-B8	61.81(12)
N1–Si–N4	95.98(7)	N4-C21B-C22B	114.0(8)	B9–B11–B8	61.92(12)
H1-Si-C27	89.5(8)	N4–C21B–C23B	110.5(17)	B4-B5-B1	60.10(12)
N3–Si–C27	96.06(7)	C22B-C21B-C23B	112.8(15)	B4-B5-B6	107.82(14)
N2-Si-C27	170.35(7)	N3-C24-C25	110.16(16)	B1-B5-B6	59.98(12)
N1–Si–C27	102.52(7)	N3-C24-C26	113.37(15)	B4-B5-B9	60.06(12)
N4–Si–C27	91.11(7)	C25-C24-C26	109.57(16)	B1–B5–B9	108.10(14)
H1–Si–C1	92.0(8)	В11-С27-В2	106.78(13)	B6–B5–B9	107.59(15)
N3–Si–C1	125.50(6)	В11-С27-В1	108.70(14)	B4-B5-B10	107.55(14)
N2–Si–C1	33.45(6)	B2-C27-B1	60.97(11)	B1-B5-B10	107.95(15)
N1–Si–C1	34.49(6)	В11-С27-В4	59.92(11)	B6-B5-B10	59.99(12)

Tabelle A89: Bindungslängen [Å] und -winkel [°] von ${\bf 60}.$

Fortsetzung von Tabelle A89:

N4–Si–C1	94.75(6)	B2-C27-B4	109.88(13)	B9–B5–B10	59.45(12)
C27–Si–C1	136.98(7)	B1-C27-B4	61.74(12)	B2–B6–B1	59.12(11)
H1–Si–C14	135.7(8)	В11-С27-В3	60.16(11)	B2–B6–B5	106.34(14)
N3–Si–C14	33.94(6)	B2–C27–B3	59.98(11)	B1-B6-B5	60.00(11)
N2–Si–C14	91.00(6)	B1-C27-B3	110.57(13)	B2-B6-B7	59.35(12)
N1–Si–C14	127.44(7)	B4-C27-B3	110.40(13)	B1-B6-B7	107.89(14)
N4–Si–C14	33.75(6)	B11-C27-Si	116.24(11)	B5–B6–B7	108.27(15)
C27–Si–C14	94.61(7)	B2–C27–Si	127.63(12)	B2-B6-B10	106.53(14)
C1–Si–C14	113.23(6)	B1–C27–Si	124.47(12)	B1-B6-B10	108.26(15)
C1–N2–C8	131.10(14)	B4–C27–Si	116.73(11)	B5-B6-B10	60.37(12)
C1–N2–Si	92.77(10)	B3–C27–Si	119.16(11)	B7-B6-B10	60.07(12)
C8–N2–Si	136.11(11)	B11–B4–C27	58.91(11)	B2–B7–B3	58.61(11)
C1-N1-C11	124.21(14)	B11-B4-B5	106.21(14)	B2–B7–B8	106.41(14)
C1–N1–Si	91.34(10)	C27–B4–B5	106.70(14)	B3–B7–B8	60.20(11)
C11–N1–Si	138.84(11)	B11-B4-B1	105.75(14)	B2–B7–B6	59.65(11)
C14–N4–C21B	136.5(4)	C27–B4–B1	59.00(11)	B3-B7-B6	107.50(14)
C14–N4–C21	119.18(17)	B5-B4-B1	60.00(11)	B8-B7-B6	108.19(15)
C14-N4-Si	91.64(10)	B11-B4-B9	59.36(12)	B2-B7-B10	106.81(14)
C21B–N4–Si	130.6(4)	C27-B4-B9	107.28(14)	B3-B7-B10	108.01(15)
C21–N4–Si	148.05(14)	B5-B4-B9	60.30(12)	B8-B7-B10	60.14(13)
C14–N3–C24	124.35(15)	B1-B4-B9	108.21(15)	B6-B7-B10	60.14(12)
C14–N3–Si	92.80(10)	C27–B1–B2	58.70(11)	B11-B8-B7	105.48(14)
C24–N3–Si	142.65(13)	C27–B1–B6	106.91(14)	B11-B8-B3	58.84(11)
N2-C1-N1	107.80(14)	B2-B1-B6	59.79(11)	B7-B8-B3	59.88(12)
N2-C1-C2	124.47(14)	C27–B1–B5	106.83(14)	B11-B8-B10	105.33(15)
N1-C1-C2	127.73(15)	B2-B1-B5	106.89(14)	B7-B8-B10	60.25(12)
N2–C1–Si	53.78(8)	B6-B1-B5	60.03(12)	B3-B8-B10	107.84(15)
N1–C1–Si	54.17(8)	C27–B1–B4	59.26(11)	B11-B8-B9	59.00(12)
C2–C1–Si	176.52(12)	B2-B1-B4	106.14(14)	B7-B8-B9	107.95(15)
С7-С2-С3	120.06(16)	B6-B1-B4	107.70(14)	B3-B8-B9	107.69(14)
С7-С2-С1	120.29(15)	B5-B1-B4	59.90(12)	B10-B8-B9	59.70(13)
С3-С2-С1	119.34(15)	C27–B2–B3	61.19(11)	B11-B9-B10	105.69(15)
C4-C3-C2	119.57(17)	C27–B2–B1	60.33(11)	B11-B9-B4	58.36(11)
C5-C4-C3	120.00(17)	B3–B2–B1	111.04(15)	B10-B9-B4	107.96(15)
C4–C5–C6	120.53(17)	C27–B2–B7	109.99(15)	B11-B9-B8	59.08(12)
C5-C6-C7	119.92(18)	B3-B2-B7	61.34(11)	B10-B9-B8	60.09(12)
C6–C7–C2	119.88(16)	B1-B2-B7	110.83(15)	B4-B9-B8	107.42(15)
N2-C8-C10	116.64(14)	C27–B2–B6	109.24(14)	B11-B9-B5	104.93(15)
N2-C8-C9	110.05(14)	B3–B2–B6	110.79(15)	B10-B9-B5	60.38(12)
С10-С8-С9	110.92(14)	B1-B2-B6	61.09(12)	B4-B9-B5	59.64(12)
N1-C11-C12	112.95(14)	B7-B2-B6	61.01(11)	B8-B9-B5	107.99(16)
N1-C11-C13	113.13(15)	B2-B3-B11	104.64(15)	B9-B10-B8	60.22(12)
C12-C11-C13	111.31(15)	B2-B3-C27	58.82(11)	B9-B10-B7	107.86(14)
N4-C14-N3	107.87(14)	B11-B3-C27	58.58(11)	B8-B10-B7	59.61(12)
N4-C14-C15	124.86(15)	B2-B3-B7	60.05(11)	B9-B10-B6	107.87(15)
N3-C14-C15	127.25(15)	B11–B3–B7	105.90(15)	B8-B10-B6	107.50(15)

Fortsetzung von Tabelle A89:							
N4-C14-Si	54.61(9)	С27-В3-В7	107.10(14)	B7-B10-B6	59.79(12)		
N3–C14–Si	53.27(9)	B2–B3–B8	107.32(14)	B9–B10–B5	60.17(12)		
C15–C14–Si	179.30(12)	B11-B3-B8	59.35(12)	B8-B10-B5	107.93(14)		
C16-C15-C20	119.45(17)	С27-В3-В8	107.18(14)	B7-B10-B5	107.47(14)		
C16-C15-C14	119.39(16)	B7–B3–B8	59.92(12)	B6-B10-B5	59.64(12)		

Abb. A40: Struktur von **61** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A90: Atomkoordinaten (× 10^4) un	d äquivalente isotrop	e Auslenkungspa	arameter	$({\rm \AA}^2~\times$	10^3) de
Nichtwasserstoff-Atome von 61. Die ang	gegebenen U_{eq} -Werte	sind definiert	als $1/3$	der S	Spur de
orthogonalisierten U _{ij} -Tensors.					

	х	У	Z	U_{eq}
Si	8107(1)	5766(1)	6013(1)	28(1)
N1	8803(1)	6499(2)	5226(1)	32(1)
N2	8425(1)	7606(2)	6287(1)	32(1)
N3	7693(1)	5433(2)	7054(1)	31(1)
N4	8867(1)	5031(2)	6825(1)	31(1)
N5	7124(2)	3718(3)	4334(2)	64(1)
C1	8818(1)	7718(2)	5607(2)	30(1)
C2	9180(1)	8970(2)	5263(2)	32(1)
C3	8740(2)	9924(3)	4843(2)	39(1)
C4	9071(2)	11050(3)	4475(2)	46(1)
C5	9837(2)	11234(3)	4518(2)	51(1)

Fortsetzung v	on Tabelle A90:			
C6	10281(2)	10300(3)	4937(2)	52(1)
C7	9956(2)	9167(3)	5309(2)	44(1)
C8	8340(2)	8573(3)	6967(2)	37(1)
C9	7833(2)	9779(3)	6761(2)	54(1)
C10	9080(2)	9074(4)	7319(2)	59(1)
C11	9055(2)	6329(3)	4377(2)	36(1)
C12	8428(2)	6596(4)	3770(2)	57(1)
C13	9406(2)	4920(3)	4244(2)	51(1)
C14	8334(1)	4973(2)	7382(2)	29(1)
C15	8412(1)	4504(3)	8243(1)	32(1)
C16	8474(2)	3117(3)	8423(2)	45(1)
C17	8518(2)	2685(3)	9232(2)	55(1)
C18	8514(2)	3637(4)	9854(2)	51(1)
C19	8464(2)	5017(4)	9681(2)	47(1)
C20	8406(2)	5455(3)	8874(2)	39(1)
C21	9640(1)	4577(3)	6963(2)	36(1)
C22	9799(2)	3231(4)	6523(2)	60(1)
C23	10197(2)	5664(3)	6697(2)	54(1)
C24	6947(1)	5360(3)	7428(2)	37(1)
C25	6479(2)	4233(4)	7034(2)	62(1)
C26	6549(2)	6739(4)	7376(2)	55(1)
C27	8014(2)	3864(3)	5597(2)	38(1)
C28	7514(2)	3747(3)	4904(2)	43(1)

Tabelle A91: Bindungslängen [Å] und -winkel [°] von $\bf 61.$

Si-H1	1.37(2)	N4-C14	1.314(3)	C14–C15	1.485(3)
Si–N3	1.881(2)	N4-C21	1.459(3)	C15-C20	1.386(4)
Si–N1	1.921(2)	N5-C28	1.161(4)	C15–C16	1.389(4)
Si–N2	1.933(2)	C1-C2	1.490(3)	C16–C17	1.391(4)
Si-C27	1.982(3)	C2-C7	1.391(4)	C17–C18	1.377(5)
Si–N4	2.022(2)	C2–C3	1.395(4)	C18–C19	1.378(5)
Si-C1	2.377(2)	C3–C4	1.382(4)	C19-C20	1.391(4)
Si–C14	2.402(3)	C4–C5	1.371(5)	C21–C23	1.512(4)
N1–C1	1.342(3)	C5–C6	1.386(5)	C21–C22	1.522(4)
N1-C11	1.468(3)	C6–C7	1.387(4)	C24–C25	1.520(4)
N2-C1	1.315(3)	C8-C10	1.514(4)	C24–C26	1.521(4)
N2–C8	1.466(3)	C8–C9	1.518(4)	C27–C28	1.443(4)
N3-C14	1.335(3)	C11–C12	1.512(4)		
N3-C24	1.458(3)	C11–C13	1.523(4)		
H1–Si–N3	97.7(10)	C1-N1-C11	122.2(2)	С10-С8-С9	110.4(3)
H1–Si–N1	96.6(10)	C1–N1–Si	91.78(15)	N1–C11–C12	112.2(2)
N3–Si–N1	157.02(9)	C11–N1–Si	141.88(17)	N1-C11-C13	111.2(2)

-					
H1–Si–N2	92.4(10)	C1-N2-C8	129.9(2)	C12–C11–C13	111.2(2)
N3–Si–N2	93.70(9)	C1–N2–Si	92.08(15)	N4-C14-N3	108.6(2)
N1–Si–N2	67.79(9)	C8–N2–Si	137.99(17)	N4-C14-C15	127.1(2)
H1-Si-C27	94.8(10)	C14–N3–C24	125.9(2)	N3-C14-C15	124.4(2)
N3–Si–C27	96.69(10)	C14–N3–Si	95.13(15)	N4–C14–Si	57.30(12)
N1-Si-C27	99.91(10)	C24-N3-Si	137.87(16)	N3–C14–Si	51.26(12)
N2-Si-C27	166.41(11)	C14–N4–C21	123.7(2)	C15-C14-Si	175.62(18)
H1–Si–N4	164.5(10)	C14-N4-Si	89.54(14)	C20-C15-C16	119.6(2)
N3–Si–N4	66.75(8)	C21-N4-Si	146.67(16)	C20–C15–C14	119.8(2)
N1–Si–N4	98.26(8)	N2C1N1	108.0(2)	C16-C15-C14	120.5(2)
N2–Si–N4	89.03(9)	N2C1C2	128.0(2)	C15–C16–C17	120.0(3)
C27-Si-N4	87.07(10)	N1C1C2	123.9(2)	C18-C17-C16	119.9(3)
H1-Si-C1	93.2(10)	N2–C1–Si	54.35(12)	C17-C18-C19	120.4(3)
N3–Si–C1	126.67(9)	N1–C1–Si	53.87(12)	C18–C19–C20	120.0(3)
N1–Si–C1	34.35(9)	C2-C1-Si	171.88(18)	C15-C20-C19	120.0(3)
N2–Si–C1	33.57(9)	С7-С2-С3	119.2(2)	N4-C21-C23	110.9(2)
C27-Si-C1	134.23(10)	C7–C2–C1	121.2(2)	N4-C21-C22	111.2(2)
N4–Si–C1	96.54(9)	C3–C2–C1	119.5(2)	C23–C21–C22	110.3(3)
H1-Si-C14	131.3(10)	C4–C3–C2	120.5(3)	N3-C24-C25	110.6(2)
N3-Si-C14	33.60(8)	C5–C4–C3	120.1(3)	N3-C24-C26	110.7(2)
N1-Si-C14	129.52(9)	C4–C5–C6	120.1(3)	C25-C24-C26	111.3(3)
N2-Si-C14	91.97(9)	C5–C6–C7	120.3(3)	C28– $C27$ – Si	113.25(19)
C27-Si-C14	91.86(10)	C6–C7–C2	119.8(3)	N5-C28-C27	176.6(3)
N4-Si-C14	33.15(8)	N2-C8-C10	114.1(2)		
C1-Si-C14	115.41(8)	N2-C8-C9	113.0(2)		

Fortsetzung von Tabelle A91:
Verbindung $\mathbf{66}{\cdot}\mathbf{8}$

Abb. A41: Struktur von **66**·**8** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A92: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **66·8**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	У	Z	U_{eq}
N1	9934(1)	7600(2)	3351(1)	34(1)
N2	9083(1)	8851(1)	2750(1)	32(1)
C1	9275(1)	7833(2)	3322(1)	29(1)
C2	8788(1)	7094(2)	3889(1)	31(1)
C3	8706(1)	7805(2)	4624(1)	37(1)
C4	8251(1)	7143(2)	5159(1)	41(1)
C5	7888(1)	5774(2)	4969(1)	42(1)
C6	7980(1)	5042(2)	4247(1)	43(1)
C7	8424(1)	5708(2)	3705(1)	40(1)
C8	10249(1)	6353(2)	3849(1)	45(1)
C9	10599(1)	7118(3)	4556(1)	65(1)
C11	8408(1)	9624(2)	2766(1)	39(1)
C10	10747(1)	5355(2)	3367(1)	54(1)
C12	8461(1)	11394(2)	3000(1)	54(1)
C13	8038(1)	9403(3)	1987(1)	58(1)
Si	10000	9173(1)	2500	27(1)
Cl1	10204(1)	10984(2)	3396(1)	49(1)

Fortsetzung von Tal	belle A92:			
C12	9556(1)	11047(2)	1337(1)	50(1)
Be	9540(2)	9099(4)	1931(2)	34(1)

N1-C1	1.3143(19)	C2–C7	1.390(2)	$\rm Si-N2^{i}$	1.8761(12)
N1-C8	1.4732(19)	C2–C3	1.392(2)	$Si-N1^i$	1.9542(14)
$N1-Be^{i}$	1.687(4)	C3–C4	1.390(2)	Si-Cl1	2.177(2)
N1–Si	1.9541(14)	C4–C5	1.380(2)	$Si-Cl1^i$	2.177(2)
N2-C1	1.3429(17)	C5–C6	1.383(2)	$Si-C1^i$	2.2872(15)
N2-C11	1.4766(18)	C6–C7	1.388(2)	Cl2–Be	1.906(4)
N2–Be	1.673(3)	C8–C10	1.523(3)	$Be-N1^i$	1.687(4)
N2–Si	1.8761(12)	C8–C9	1.525(3)	$Be-Be^i$	2.652(7)
C1–C2	1.4933(19)	C11–C12	1.524(2)		
C1–Si	2.2871(15)	C11–C13	1.524(2)		
C1-N1-C8	122.76(12)	C5–C4–C3	120.35(14)	$N1-Si-Cl1^i$	165.33(6)
$C1-N1-Be^{i}$	119.13(15)	C4–C5–C6	120.06(15)	$N1^{i}$ –Si–Cl 1^{i}	87.29(6)
$C8-N1-Be^{i}$	115.01(15)	C5–C6–C7	119.97(16)	$Cl1-Si-Cl1^i$	92.85(11)
C1–N1–Si	86.48(8)	C6–C7–C2	120.30(14)	N2 ⁱ –Si–C1	132.18(7)
C8–N1–Si	150.12(11)	N1-C8-C10	110.00(13)	N2-Si-C1	35.95(5)
Be^{i} -N1-Si	41.95(11)	N1-C8-C9	110.65(15)	N1–Si–C1	35.00(5)
C1-N2-C11	120.95(12)	С10-С8-С9	111.04(15)	N1 ⁱ –Si–C1	99.83(7)
C1–N2–Be	121.91(16)	N2-C11-C12	111.12(14)	Cl1–Si–C1	91.25(5)
C11–N2–Be	116.56(15)	N2-C11-C13	111.28(13)	Cl1 ⁱ –Si–C1	130.38(6)
C1-N2-Si	88.95(9)	C12–C11–C13	112.11(14)	$N2^{i}$ – Si – $C1^{i}$	35.95(5)
C11-N2-Si	144.11(10)	N2 ⁱ –Si–N2	163.65(10)	$N2-Si-C1^{i}$	132.18(7)
Be–N2–Si	43.45(12)	N2 ⁱ –Si–N1	97.88(6)	$N1-Si-C1^{i}$	99.83(7)
N1-C1-N2	113.55(12)	N2–Si–N1	70.92(5)	$N1^{i}$ – Si – $C1^{i}$	35.00(5)
N1-C1-C2	123.39(12)	$N2^{i}$ – Si – $N1^{i}$	70.92(5)	Cl1–Si–C1 ⁱ	130.38(6)
N2-C1-C2	123.01(12)	$N2-Si-N1^{i}$	97.88(6)	$Cl1^{i}$ – Si – $C1^{i}$	91.25(5)
N1–C1–Si	58.52(7)	$N1-Si-N1^{i}$	96.26(9)	$C1-Si-C1^i$	121.88(9)
N2–C1–Si	55.10(7)	N2 ⁱ -Si-Cl1	94.52(6)	N2–Be–N1 ⁱ	118.5(2)
C2–C1–Si	175.10(10)	N2–Si–Cl1	96.73(6)	N2–Be–Cl2	123.7(2)
С7-С2-С3	119.50(13)	N1–Si–Cl1	87.29(6)	N1 ⁱ –Be–Cl2	117.55(19)
С7-С2-С1	121.63(12)	N1 ⁱ –Si–Cl1	165.33(6)	$\rm N2BeBe^{i}$	76.09(16)
C3-C2-C1	118.86(13)	$N2^{i}$ -Si-Cl 1^{i}	96.73(6)	$N1^{i}$ –Be–Be ⁱ	77.84(14)
C4-C3-C2	119.79(14)	$N2-Si-Cl1^i$	94.52(6)	$Cl2-Be-Be^{i}$	112.12(14)

Tabelle A93: Bindungslängen [Å] und -winkel [°] von $66 \cdot 8$.

Verbindung 68

Abb. A42: Struktur von **68** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A94: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **68**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	X	У	Z	U_{eq}
I1	2404(1)	3800(1)	4072(1)	24(1)
I2	1444(1)	3073(1)	1517(1)	21(1)
Si1	2983(1)	2361(1)	2557(1)	14(1)
N2	3618(3)	1472(3)	3259(2)	18(1)
N1	1499(3)	594(3)	2473(2)	17(1)
N4	3814(3)	1814(3)	1529(2)	15(1)
N3	4732(3)	3876(3)	2592(2)	16(1)
C1	2325(3)	358(3)	3055(2)	18(1)
C2	1858(3)	-868(3)	3433(2)	20(1)
C3	1150(3)	-806(3)	4178(2)	21(1)
C4	712(4)	-1932(4)	4548(2)	25(1)
C5	958(4)	-3129(4)	4163(2)	27(1)
C6	1694(5)	-3178(4)	3428(3)	34(1)
C7	2155(5)	-2038(4)	3069(3)	31(1)
C8	4927(4)	1949(4)	3938(2)	29(1)
C9	4644(5)	1670(5)	4836(3)	35(1)
C10	5974(5)	1423(6)	3498(3)	43(1)

Fortsetzung	von Tabelle A94:			
C11	-28(3)	-250(3)	2034(2)	21(1)
C12	-479(4)	-1866(4)	1633(3)	32(1)
C13	-1020(4)	61(4)	2669(3)	32(1)
C14	4914(3)	3111(3)	1798(2)	15(1)
C15	6054(3)	3610(3)	1255(2)	15(1)
C16	7448(3)	3774(4)	1498(2)	22(1)
C17	8468(4)	4253(4)	960(2)	26(1)
C18	8103(4)	4562(4)	190(2)	24(1)
C19	6713(4)	4374(3)	-66(2)	21(1)
C20	5680(3)	3890(3)	466(2)	18(1)
C21	3656(3)	612(3)	732(2)	20(1)
C22	2320(5)	135(4)	29(3)	35(1)
C23	3667(5)	-638(4)	1025(3)	30(1)
C24	5514(3)	5430(3)	3097(2)	20(1)
C25	5251(4)	6368(4)	2580(3)	29(1)
C26	7126(4)	5920(4)	3379(2)	29(1)

Tabelle A95: Bindungslängen [Å] und -winkel [°] von $\mathbf{68}$.

I1–Si1	2.6614(8)	N4-C21	1.460(4)	C11–C12	1.524(5)
I2–Si1	2.6441(8)	N3-C14	1.341(3)	C14–C15	1.485(4)
Si1–N1	1.858(3)	N3-C24	1.472(4)	C15–C16	1.393(4)
Si1–N2	1.862(3)	C1–C2	1.488(4)	C15–C20	1.394(4)
Si1–N3	1.864(2)	C2–C7	1.384(4)	C16–C17	1.393(4)
Si1–N4	1.901(2)	C2–C3	1.391(4)	C17–C18	1.382(5)
Si1–C1	2.322(3)	C3–C4	1.390(4)	C18–C19	1.383(5)
Si1–C14	2.333(3)	C4–C5	1.384(5)	C19–C20	1.396(4)
N2-C1	1.332(4)	C5–C6	1.395(5)	C21–C22	1.517(5)
N2-C8	1.474(4)	C6–C7	1.391(5)	C21–C23	1.522(5)
N1–C1	1.340(4)	C8–C9	1.507(5)	C24–C25	1.525(5)
N1-C11	1.472(4)	C8-C10	1.516(5)	C24–C26	1.525(5)
N4-C14	1.325(3)	C11–C13	1.521(5)		
N1-Si1-N2	70.17(11)	I2–Si1–I1	90.84(3)	N2-C8-C9	114.4(3)
N1-Si1-N3	166.09(12)	C1-N2-C8	133.1(3)	N2-C8-C10	110.7(3)
N2–Si1–N3	99.96(12)	C1–N2–Si1	91.76(19)	C9-C8-C10	114.7(3)
N1–Si1–N4	100.88(11)	C8–N2–Si1	133.9(2)	N1-C11-C13	112.0(3)
N2–Si1–N4	95.41(11)	C1-N1-C11	130.8(2)	N1-C11-C12	113.9(3)
N3–Si1–N4	69.62(10)	C1–N1–Si1	91.66(18)	C13–C11–C12	111.3(3)
N1-Si1-C1	35.23(11)	C11–N1–Si1	137.4(2)	N4-C14-N3	107.5(2)
N2–Si1–C1	34.98(11)	C14–N4–C21	125.1(2)	N4-C14-C15	124.4(2)
N3–Si1–C1	134.48(12)	C14–N4–Si1	90.84(17)	N3-C14-C15	127.9(2)
N4–Si1–C1	101.09(11)	C21-N4-Si1	144.0(2)	N4-C14-Si1	54.57(14)
N1-Si1-C14	134.91(11)	C14–N3–C24	129.1(2)	N3-C14-Si1	52.99(14)

Fortsetzung von	Tabelle A95:				
N2-Si1-C14	100.24(11)	C14–N3–Si1	91.97(17)	C15–C14–Si1	174.7(2)
N3–Si1–C14	35.04(10)	C24-N3-Si1	137.2(2)	C16-C15-C20	119.9(3)
N4-Si1-C14	34.59(10)	N2C1N1	106.3(2)	C16-C15-C14	122.5(3)
C1-Si1-C14	123.58(10)	N2-C1-C2	127.1(3)	C20-C15-C14	117.6(3)
N1–Si1–I2	95.41(8)	N1-C1-C2	126.5(3)	C17-C16-C15	119.5(3)
N2–Si1–I2	165.47(9)	N2–C1–Si1	53.26(15)	C18-C17-C16	120.4(3)
N3–Si1–I2	94.55(8)	N1-C1-Si1	53.12(14)	C17-C18-C19	120.3(3)
N4–Si1–I2	88.95(8)	C2–C1–Si1	175.5(2)	C18-C19-C20	119.8(3)
C1–Si1–I2	130.54(8)	С7-С2-С3	120.0(3)	C15–C20–C19	120.0(3)
C14– $Si1$ – $I2$	91.22(7)	C7–C2–C1	120.9(3)	N4-C21-C22	111.4(3)
N1–Si1–I1	94.21(8)	C3–C2–C1	119.0(3)	N4-C21-C23	111.1(3)
N2–Si1–I1	88.53(8)	C4–C3–C2	120.2(3)	C22-C21-C23	111.6(3)
N3–Si1–I1	95.32(8)	C5-C4-C3	119.9(3)	N3-C24-C25	113.0(2)
N4–Si1–I1	164.86(8)	C4-C5-C6	119.9(3)	N3-C24-C26	113.0(3)
C1–Si1–I1	90.52(7)	С7-С6-С5	120.1(3)	C25-C24-C26	110.3(3)
C14–Si1–I1	130.30(7)	С2-С7-С6	119.8(3)		

Verbindung $69 \cdot CH_3CN$

Abb. A43: Struktur von 69·CH₃CN im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	x	У	Z	U_{eq}
Se1	2092(1)	5472(1)	3076(1)	23(1)
C1	2567(2)	8168(2)	1540(1)	20(1)
N1	1874(2)	7355(2)	1799(1)	20(1)
C2	2181(2)	8957(2)	939(2)	22(1)
Se2	2560(1)	8497(1)	3768(1)	23(1)
N2	3683(2)	8185(2)	1949(1)	19(1)
Si	3168(1)	7047(1)	2562(1)	17(1)
C14	4919(2)	5783(2)	2326(1)	19(1)
C13	77(3)	6721(3)	739(2)	45(1)
C12	-272(3)	8074(3)	2119(2)	43(1)
C15	6000(2)	4960(2)	2208(1)	20(1)
C20	7194(3)	5383(3)	2110(2)	27(1)
N3	4787(2)	6708(2)	2958(1)	19(1)
C3	2420(3)	8654(3)	99(2)	30(1)
C19	8197(3)	4602(3)	2022(2)	34(1)
C4	2138(3)	9428(3)	-438(2)	35(1)
N4	3886(2)	5712(2)	1822(1)	19(1)
C18	8008(3)	3417(3)	2033(2)	33(1)
C5	1621(3)	10524(3)	-128(2)	36(1)
N5	7993(4)	10509(3)	2721(2)	74(1)
C17	6824(3)	2995(3)	2130(2)	30(1)
C6	1360(3)	10821(3)	706(2)	35(1)
C16	5808(3)	3762(2)	2210(2)	24(1)
C7	1629(3)	10042(3)	1241(2)	29(1)
C24	5464(2)	6930(2)	3797(1)	23(1)
C21	3698(3)	4858(2)	1019(1)	24(1)
C11	520(3)	7090(3)	1663(2)	32(1)
C8	4862(2)	8813(3)	1860(2)	25(1)
C22	3443(3)	5491(3)	285(2)	32(1)
C9	4718(3)	10077(3)	1729(2)	32(1)
C23	2645(3)	3970(3)	1059(2)	38(1)
C10	5638(3)	8091(3)	1185(2)	40(1)
C38	2193(3)	6223(3)	4884(2)	29(1)
C32	2451(3)	10916(3)	3497(2)	34(1)
C33	1419(2)	6087(2)	4145(2)	22(1)
C27	3244(3)	10034(2)	3714(1)	25(1)
C26	5709(3)	5805(3)	4143(2)	31(1)
C25	6670(3)	7670(3)	3830(2)	34(1)
C34	140(3)	6276(3)	4204(2)	30(1)
C28	4494(3)	10338(3)	3962(2)	35(1)
C35	-361(3)	6598(3)	4984(2)	38(1)
	· /	· /	× /	× /

Tabelle A96: Atomkoordinaten (× $10^4)$ und äquivalente isotrope Auslenkungsparameter (Å 2 \times $10^3)$ der Nichtwasserstoff-Atome von $69 \cdot CH_3CN$. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des $orthogonalisierten \ U_{ij}\mbox{-}Tensors.$

Fortsetzung von	Tabelle A96:			
C29	4967(4)	11475(3)	3976(2)	48(1)
C36	412(3)	6735(3)	5710(2)	38(1)
C30	4186(4)	12323(3)	3746(2)	55(1)
C37	1683(3)	6554(3)	5661(2)	35(1)
C31	2935(4)	12060(3)	3519(2)	49(1)
C40	8909(4)	10177(4)	4165(2)	48(1)
C39	8393(4)	10379(3)	3355(2)	46(1)

Tabelle A97: Bindungslängen [Å] und -winkel [°] von $\mathbf{69}{\cdot}\mathrm{CH_3CN}.$

Se1-C33	1.927(2)	C14–N3	1.338(3)	C24–C25	1.533(4)
Se1–Si	2.4470(10)	C14–C15	1.489(3)	C21–C23	1.529(4)
C1–N2	1.331(3)	C13–C11	1.530(4)	C21–C22	1.532(4)
C1-N1	1.336(3)	C12-C11	1.511(4)	C8–C9	1.513(4)
C1–C2	1.501(4)	C15–C16	1.389(4)	C8-C10	1.526(4)
C1–Si	2.362(3)	C15-C20	1.393(4)	C38–C37	1.393(4)
N1-C11	1.473(3)	C20–C19	1.393(4)	C38–C33	1.404(4)
N1–Si	1.888(2)	N3–C24	1.487(3)	C32–C31	1.402(5)
C2–C3	1.386(3)	C3–C4	1.387(4)	C32–C27	1.406(4)
C2-C7	1.388(4)	C19–C18	1.376(5)	C33–C34	1.391(4)
Se2-C27	1.926(3)	C4–C5	1.385(5)	C27–C28	1.396(4)
Se2–Si	2.4309(11)	N4-C21	1.474(3)	C34–C35	1.391(4)
N2-C8	1.478(3)	C18–C17	1.382(4)	C28–C29	1.393(5)
N2–Si	1.894(2)	C5–C6	1.381(4)	C35–C36	1.387(5)
Si–N3	1.879(2)	N5-C39	1.134(5)	C29–C30	1.375(6)
Si–N4	1.940(2)	C17–C16	1.394(4)	C36–C37	1.378(5)
Si–C14	2.370(3)	C6–C7	1.386(4)	C30–C31	1.383(6)
C14–N4	1.330(3)	C24–C26	1.524(4)	C40–C39	1.463(5)
C33–Se1–Si	110.84(8)	N1–Si–Se2	97.20(7)	C18–C17–C16	120.4(3)
N2–C1–N1	106.1(2)	N2–Si–Se2	95.49(7)	C5–C6–C7	120.6(3)
N2–C1–C2	125.6(2)	N4–Si–Se2	165.11(7)	C15–C16–C17	119.4(3)
N1–C1–C2	128.2(2)	C1-Si-Se2	96.69(6)	C6-C7-C2	119.9(3)
N2–C1–Si	53.23(13)	C14–Si–Se2	132.93(6)	N3-C24-C26	113.8(2)
N1–C1–Si	52.96(13)	N3–Si–Se1	96.08(8)	N3-C24-C25	112.7(2)
C2-C1-Si	175.93(17)	N1–Si–Se1	97.69(8)	C26-C24-C25	111.3(2)
C1–N1–C11	130.1(2)	N2–Si–Se1	165.74(7)	N4–C21–C23	110.7(2)
C1–N1–Si	92.62(15)	N4–Si–Se1	83.14(7)	N4–C21–C22	111.7(2)
C11–N1–Si	135.63(18)	C1–Si–Se1	132.06(7)	C23–C21–C22	110.9(2)
C3–C2–C7	119.2(3)	C14–Si–Se1	88.75(7)	N1-C11-C12	112.9(2)
C3–C2–C1	121.5(2)	Se2–Si–Se1	90.07(3)	N1-C11-C13	113.7(2)
C7–C2–C1	119.3(2)	N4-C14-N3	107.3(2)	C12–C11–C13	111.6(3)
C27-Se2-Si	109.05(7)	N4-C14-C15	125.7(2)	N2-C8-C9	115.5(2)
C1-N2-C8	130.7(2)	N3-C14-C15	127.0(2)	N2-C8-C10	111.6(2)

0					
C1–N2–Si	92.52(16)	N4-C14-Si	54.96(13)	C9–C8–C10	110.5(2)
C8–N2–Si	136.55(18)	N3-C14-Si	52.35(13)	C37–C38–C33	120.2(3)
N3–Si–N1	158.43(9)	C15-C14-Si	177.32(18)	C31–C32–C27	119.6(3)
N3–Si–N2	95.96(10)	C16-C15-C20	120.1(2)	C34–C33–C38	119.0(2)
N1–Si–N2	68.63(10)	C16-C15-C14	119.1(2)	C34–C33–Se1	120.42(19)
N3–Si–N4	68.43(9)	C20–C15–C14	120.8(2)	C38–C33–Se1	120.2(2)
N1–Si–N4	96.83(9)	C15-C20-C19	119.8(3)	C28-C27-C32	118.4(3)
N2–Si–N4	94.23(9)	C14–N3–C24	127.3(2)	C28C27Se2	121.5(2)
N3–Si–C1	129.00(10)	C14-N3-Si	93.34(15)	C32-C27-Se2	119.8(2)
N1–Si–C1	34.41(9)	C24-N3-Si	134.15(16)	C33–C34–C35	120.3(3)
N2–Si–C1	34.24(9)	C2-C3-C4	120.9(3)	C29–C28–C27	121.4(3)
N4–Si–C1	97.70(9)	C18–C19–C20	120.0(3)	C36-C35-C34	120.3(3)
N3–Si–C14	34.31(8)	C5-C4-C3	119.6(3)	C30–C29–C28	119.5(3)
N1-Si-C14	129.56(9)	C14–N4–C21	124.2(2)	C37-C36-C35	120.0(3)
N2-Si-C14	96.95(9)	C14-N4-Si	90.91(14)	C29–C30–C31	120.5(3)
N4–Si–C14	34.13(8)	C21-N4-Si	144.82(17)	C36-C37-C38	120.2(3)
C1-Si-C14	118.12(9)	C19–C18–C17	120.4(3)	C30-C31-C32	120.5(4)
N3–Si–Se2	99.31(7)	C6-C5-C4	119.7(3)	N5-C39-C40	178.5(4)

Fortsetzung von Tabelle A97:

Verbindung $70.0.5C_6H_{14}$

Abb. A44: Struktur von $70.0.5C_6H_{14}$ im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	x	У	Z	U _{eq}
Si	7866(1)	1197(1)	1727(1)	25(1)
F1	7617(1)	366(1)	1332(1)	33(1)
F2	7268(1)	1705(1)	3458(1)	48(1)
F3	7766(1)	1034(1)	4774(1)	64(1)
F4	8834(1)	-351(1)	4886(1)	61(1)
F5	9514(1)	-992(1)	3619(1)	56(1)
F6	9154(1)	-309(1)	2300(1)	44(1)
N1	6205(1)	1410(1)	1708(1)	26(1)
N2	7603(1)	2215(1)	2037(1)	26(1)
N3	9529(1)	1294(1)	1622(1)	30(1)
N4	8115(1)	1611(1)	730(1)	30(1)
C1	6408(1)	2117(1)	1943(1)	25(1)
C2	5419(1)	2640(1)	2084(1)	27(1)
C3	4488(2)	2835(1)	1504(1)	36(1)
C4	3529(2)	3284(1)	1663(1)	42(1)
C5	3479(2)	3531(1)	2393(1)	42(1)
C6	4400(2)	3344(1)	2970(1)	41(1)
C7	5371(2)	2904(1)	2816(1)	34(1)
C8	5048(2)	1001(1)	1704(1)	32(1)
C9	5212(2)	344(1)	2243(2)	63(1)
C10	4545(2)	747(2)	908(1)	67(1)
C11	8329(2)	2906(1)	2114(1)	31(1)
C12	8925(2)	3018(1)	2931(1)	51(1)
C13	7645(2)	3611(1)	1807(1)	43(1)
C14	9302(2)	1551(1)	907(1)	30(1)
C15	10203(2)	1720(1)	377(1)	33(1)
C16	10468(2)	2456(1)	207(1)	43(1)
C17	11272(2)	2609(1)	-306(1)	53(1)
C18	11800(2)	2031(1)	-662(1)	52(1)
C19	11531(2)	1297(1)	-507(1)	50(1)
C20	10731(2)	1144(1)	12(1)	41(1)
C21	7501(2)	1743(1)	-45(1)	33(1)
C22	7159(2)	997(1)	-438(1)	43(1)
C23	6394(2)	2244(1)	-22(1)	40(1)
C24	10716(2)	1223(1)	2104(1)	37(1)
C25	11462(2)	560(1)	1882(1)	53(1)
C26	11479(2)	1935(1)	2151(1)	53(1)
C27	8189(1)	758(1)	2774(1)	30(1)
C28	7872(2)	1046(1)	3448(1)	35(1)
C29	8096(2)	700(1)	4152(1)	42(1)
C30	8637(2)	9(1)	4213(1)	43(1)

Tabelle A98: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **70**·0.5C₆H₁₄. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

Fortsetzung von Tabelle A98:								
C31	8979(2)	-311(1)	3571(1)	39(1)				
C32	8765(2)	63(1)	2886(1)	33(1)				
C33	4727(5)	4877(3)	-394(3)	93(1)				
C34	4318(5)	4061(3)	-375(3)	99(1)				
C35	3750(14)	3767(9)	-1107(4)	141(4)				
C33B	4643(14)	4647(9)	58(9)	93(1)				
C34B	3809(16)	4539(8)	-811(9)	99(1)				
C35B	4040(50)	3720(30)	-849(19)	141(4)				

Tabelle A99: Bindungslängen [Å] und -winkel [°] von ${\bf 70} \cdot 0.5 C_6 H_{14}.$

Si–F1	1.6484(9)	N4-C14	1.311(2)	C19–C20	1.391(3)
Si–N1	1.8711(14)	N4–C21	1.4649(19)	C21–C23	1.520(2)
Si–N3	1.8816(14)	C1–C2	1.486(2)	C21–C22	1.528(2)
Si–N2	1.9354(12)	C2–C7	1.391(2)	C24–C26	1.523(2)
Si–N4	1.9744(13)	C2–C3	1.394(2)	C24–C25	1.526(3)
Si-C27	2.0042(16)	C3–C4	1.390(2)	C27–C28	1.392(2)
Si–C1	2.3716(15)	C4–C5	1.377(3)	C27–C32	1.397(2)
Si–C14	2.3852(16)	C5–C6	1.381(3)	C28–C29	1.386(2)
F2-C28	1.3550(18)	C6–C7	1.388(2)	C29–C30	1.370(3)
F3-C29	1.350(2)	C8–C9	1.509(2)	C30–C31	1.376(3)
F4-C30	1.3479(19)	C8–C10	1.515(3)	C31–C32	1.378(2)
F5-C31	1.3502(19)	C11–C12	1.521(2)	C33–C33#1	1.511(9)
F6-C32	1.3547(19)	C11–C13	1.529(2)	C33–C34	1.530(7)
N1-C1	1.3396(18)	C14–C15	1.494(2)	C34–C35	1.460(9)
N1-C8	1.472(2)	C15-C20	1.388(2)	C33BC33B#1	1.52(3)
N2-C1	1.320(2)	C15–C16	1.390(2)	C33B-C34B	1.69(2)
N2-C11	1.4686(18)	C16-C17	1.387(3)	C34B-C35B	1.50(6)
N3–C14	1.341(2)	C17–C18	1.382(3)		
N3–C24	1.469(2)	C18–C19	1.381(3)		
F1–Si–N1	94.05(5)	C14–N3–C24	127.98(14)	C16-C15-C14	120.49(14)
F1–Si–N3	98.58(5)	C14–N3–Si	93.97(10)	C17-C16-C15	120.18(17)
N1–Si–N3	161.67(6)	C24–N3–Si	137.75(11)	C18-C17-C16	120.26(18)
F1–Si–N2	160.93(6)	C14-N4-C21	123.76(13)	C19–C18–C17	120.17(17)
N1–Si–N2	68.12(5)	C14-N4-Si	90.80(10)	C18-C19-C20	119.58(17)
N3–Si–N2	97.37(6)	C21–N4–Si	142.92(11)	C15-C20-C19	120.72(17)
F1–Si–N4	89.54(5)	N2-C1-N1	106.59(12)	N4-C21-C23	109.80(12)
N1–Si–N4	99.60(6)	N2-C1-C2	129.93(13)	N4-C21-C22	110.04(13)
N3–Si–N4	67.42(6)	N1-C1-C2	123.44(13)	C23–C21–C22	112.15(15)
N2–Si–N4	86.98(5)	N2–C1–Si	54.66(7)	N3-C24-C26	113.67(15)
F1–Si–C27	92.31(6)	N1–C1–Si	51.93(7)	N3-C24-C25	112.85(15)
N1–Si–C27	98.26(6)	C2-C1-Si	175.08(10)	C26–C24–C25	110.32(17)
N3–Si–C27	94.47(6)	C7–C2–C3	118.98(14)	C28-C27-C32	111.80(14)

Fortsetzung von Tabelle A99:								
N2-Si-C27	96.80(6)	C7–C2–C1	119.69(13)	C28–C27–Si	128.24(11)			
N4-Si-C27	161.87(6)	C3-C2-C1	121.20(13)	C32–C27–Si	119.91(12)			
F1–Si–C1	128.05(5)	C4–C3–C2	120.03(16)	F2-C28-C29	113.67(14)			
N1–Si–C1	34.31(5)	C5–C4–C3	120.48(16)	F2-C28-C27	121.19(14)			
N3–Si–C1	130.33(5)	C4-C5-C6	119.94(16)	C29-C28-C27	125.12(15)			
N2–Si–C1	33.82(5)	C5–C6–C7	120.02(16)	F3-C29-C30	119.86(15)			
N4–Si–C1	93.90(5)	C6–C7–C2	120.54(16)	F3-C29-C28	120.44(16)			
C27-Si-C1	99.10(6)	N1-C8-C9	110.85(14)	C30-C29-C28	119.69(16)			
F1-Si-C14	93.71(5)	N1-C8-C10	110.98(14)	F4-C30-C29	121.00(17)			
N1-Si-C14	132.09(6)	C9–C8–C10	110.72(17)	F4-C30-C31	120.57(16)			
N3–Si–C14	34.12(6)	N2-C11-C12	110.95(13)	C29-C30-C31	118.43(15)			
N2–Si–C14	93.64(5)	N2-C11-C13	115.05(14)	F5-C31-C30	119.39(15)			
N4–Si–C14	33.34(6)	C12–C11–C13	110.99(14)	F5-C31-C32	120.82(16)			
C27-Si-C14	128.54(6)	N4-C14-N3	107.70(13)	C30-C31-C32	119.79(15)			
C1-Si-C14	116.13(5)	N4-C14-C15	124.44(14)	F6-C32-C31	113.92(14)			
C1-N1-C8	125.22(12)	N3-C14-C15	127.83(15)	F6-C32-C27	120.95(14)			
C1–N1–Si	93.77(9)	N4-C14-Si	55.86(8)	C31-C32-C27	125.12(15)			
C8–N1–Si	138.48(10)	N3-C14-Si	51.91(8)	C33#1-C33-C34	109.7(5)			
C1-N2-C11	130.35(13)	C15-C14-Si	176.23(11)	C35-C34-C33	114.5(6)			
C1–N2–Si	91.52(9)	C20–C15–C16	119.08(16)	C33B#1-C33B-C34B	101.4(15)			
C11-N2-Si	135.70(10)	C20-C15-C14	120.31(14)	C35B-C34B-C33B	94.6(16)			

Danksagung

Herrn Prof. Dr. Reinhold Tacke danke ich für die freundliche Aufnahme in den Arbeitskreis und die Möglichkeit, diese Doktorarbeit anzufertigen. Ich bedanke mich für das entgegengebrachte Vertrauen, die interessante Themenstellung, die vielen wissenschaftlichen Freiheiten und die stete Ermutigung, eigene Ideen zu entwickeln und umzusetzen. Weiterhin danke ich *Herrn Prof. Dr. Tacke* für die Möglichkeit, an so mancher internationalen Tagung teilzunehmen.

Herrn Dr. Rüdiger Bertermann und Frau Marie-Luise Schäfer danke ich für die Aufnahme zahlloser NMR-Spektren und für die Hilfestellung bei deren Auswertung und Interpretation. Weiterhin danke ich Herrn Dr. Bertermann für das entgegengebrachte Vertrauen und die Messberechtigung an den diversen NMR-Spektrometern; insbesondere für die Möglichkeit, für mich und andere Mitglieder des Arbeitskreises selbstständig Festkörper-NMR-Spektren aufzunehmen.

Für die Durchführung der vielen Kristallstrukturanalysen und die Geduld bei der Suche nach geeigneten Einkristallen und den Änderungen der Atomnummerierungen danke ich *Herrn Dr. Christian Burschka* sowie *Herrn Dipl.-Chem Johannes A. Baus.* Besonderer Dank gilt *Herrn Dr. Burschka* weiterhin für die viele Zeit die er in knifflige kristallographische Probleme investiert hat und für die Geduld mir diese zu erläutern.

Frau Liselotte Michels und Frau Sabine Timmroth danke ich für die Durchführung der Elementaranalysen.

Für die Aufnahme einiger Massenspektren danke ich Herrn Dr. Stephan Wagner.

Unseren Kooperationspartnern Herrn Prof. Dr. F. Matthias Bickelhaupt, Frau Dr. Célia Fonseca Guerra, Herrn Prof. Dr. Sebastian Riedel und Herrn Prof. Dr. Maik Finze sowie deren beteiligten Mitarbeitern danke ich für die Durchführung der quantenchemischen Berechungen. Herrn Prof. Dr. Robert West und Herrn Prof Dr. Paul W. Percival danke ich für die Durchführung der Myon-Spin-spektroskopischen Studien.

Frau Loretta Tietze danke ich für die jederzeit freundliche und engagierte Unterstützung bei allen organisatorischen Belangen sowie für ihre stete Hilfsbereitschaft.

Für die stets freundliche Unterstützung bei allen organisatorischen Belangen sowie für die Versorgung mit Büromaterialien (insbesondere zahlloser Pakete Druckerpapier) danke ich *Frau Cornelia Walter*.

Für die rasche Anfertigung und Reparatur unzähliger Glasgeräte danke ich Herrn Berthold Fertig. Mein Dank gilt des Weiteren allen Mitarbeitern der Werkstatt, besonders Herrn Manfred Reinhart sowie Herrn Alfred Schertzer für die Hilfe bei allen technischen Problemen sowie die Anfertigung und Reparatur diverser Apparaturen und Geräte.

Für die Unterstützung bei manchen präparativen Arbeiten bedanke ich mich bei unseren Laboranten Herrn Dipl.-Ing. (FH) Frank Möller sowie Herrn Stefan Ziegler.

Besonderer Dank für ihre äußerst engagierte Unterstützung bei den Synthesen vieler Verbindungen sowie für ihr Druchhaltevermögen, wenn sich ein Thema doch als weniger ergiebig herausstellte als wir dies hofften, gebührt meinen F-Praktikanten bzw. Bachelor- und Masterstudenten (chronologisch) Frau M. Sc. Nicola Schwenk, Frau M. Sc. Christina Claes, Frau M. Sc. Annike Weißenstein, Herrn B. Sc. Dominic Auerhammer, Frau M. Sc. Claudia Kupper, Frau M. Sc. Katharina Sinner und Herrn M. Sc. Marco Nutz.

Den Arbeitskreisen von Herrn Prof. Dr. Holger Braunschweig, Herrn Prof. Dr. Udo Radius und Herrn Prof. Dr. Maik Finze danke ich für die großzügige Bereitstellung einiger Chemikalien.

Frau Maria Kromm danke ich für die Hilfe während der Praktika und die Übersetzung einer Versuchsvorschrift aus dem Russischen.

Für die Hilfestellung bezüglich einiger Phosphane und Übergangsmetallkomplexe bedanke ich mich insbesondere bei *Herrn Dr. Jan Mies* sowie bei *Herrn Dr. Justin Wolf.* Letzerem sei auch für die unterhaltsame Zeit und seine Unterstützung während der ACII Praktika gedankt.

Meinen langjährigen Labornachbarn *Herrn Dr. Jörg Weiß* und *Frau Dipl.-Chem. Claudia Kobelt* danke ich für die stets angenehme Arbeitsatmosphäre und für den regen Ausstausch von Gedanken, Chemikalien und Glasgeräten.

Ich danke allen *Mitgliedern des Arbeitskreises*, die mich während der Zeit meiner Diplomund Doktorarbeit unterstützt haben, für die vielen Diskussionen und Anregungen sowie für ihr Verständnis, besonders in hektischen Zeiten. *Herrn Dipl.-Chem. Felix Mück* gilt mein Dank besonders für die gründliche Durchsicht dieser Arbeit.

Mein besonderer Dank gilt meinen Eltern welche mir mein Studium ermöglicht, mich zum Durchhalten motiviert und zu jeder Zeit – nicht zuletzt auch finanziell – unterstützt haben.

Meiner ganz besonderer Dank gilt meiner Partnerin *Melanie* für ihre stetige Unterstützung, besonders in schwierigen Lebenslagen und ihr Verständnis, wenn wegen der Chemie oder den Papierbergen wieder einmal Pläne verschoben bzw. gestrichen werden mussten, sowie dafür, dass sie mir immer wieder Mut gab, wenn der Frust Überhand zu nehmen drohte.