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SUMMARY

This dissertation presents controller design methodologies for a formation

of cooperative mobile robots to perform trajectory tracking and convoy protection

tasks. Two major problems related to multi-agent formation control are addressed,

namely the time-delay and optimality problems. For the task of trajectory tracking,

a leader-follower based system structure is adopted for the controller design, where

the selection criteria for controller parameters are derived through analyses of charac-

teristic polynomials. The resulting parameters ensure the stability of the system and

overcome the steady-state error as well as the oscillation behavior under time-delay

effect. In the convoy protection scenario, a decentralized coordination strategy for

balanced deployment of mobile robots is first proposed. Based on this coordination

scheme, optimal controller parameters are generated in both centralized and decen-

tralized fashion to achieve dynamic convoy protection in a unified framework, where

distributed optimization technique is applied in the decentralized strategy. This uni-

fied framework takes into account the motion of the target to be protected, and the

desired system performance, for instance, minimal energy to spend, equal inter-vehicle

distance to keep, etc.

Both trajectory tracking and convoy protection tasks are demonstrated through

simulations and real-world hardware experiments based on the robotic equipments at

Department of Computer Science VII, University of Wüzburg.
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CHAPTER 1

INTRODUCTION

Over the past two decades, the research of multi-agent systems for a variety of human

activities has tremendously increased. The concept of multi-agent systems provides

solutions to many scientific and social problems that impose either complex structures,

or structures that are difficult to handle by a single-agent system. For example, in

Figure 1.1, a group of intelligent agents (or Unmanned Aerial Vehicles, UAV) are

organized to work cooperatively with each other in order to perform area coverage

and monitoring. These agents can be of small sizes equipped with less expensive

sensing units. The coordination between the agents are implicit, which means that

there is no central coordinator to issue commands to each agent. They only exchange

information with their neighboring agents locally, while achieving the mission on a

global level1. In Figure 1.2, multiple ground vehicles are coordinated to transport

large payload, which requires the vehicles to maintain a certain formation during the

transportation, especially during the path changes. This type of robotic application

is inspired by the biological phenomenon in ants [9]. More examples include Earth

remote sensing with satellite constellations, oceanographic currents determination

over long distance with underwater robotic swarms, etc.

The issue of decentralized formation control thus arises in the application of multi-

agent systems. One essential step in designing the formation control is the selection

of controller parameters. Therefore, this dissertation presents two methodologies for

selecting controller parameters, that deal with time-delay and optimality problems,

respectively. The first design methodology ensures stability of the system with a sta-

ble parametric region for the controller parameters, whereas the second one utilizes

optimization techniques to tune the controller parameters online. These two frame-

works are demonstrated through two exemplary applications, the formation tracking

control based on leader-follower structure, and the dynamic convoy protection with

multiple ground mobile robots. In the rest of this chapter, we elaborate on the mo-

tivations for the dissertation, as well as its scientific contributions.

1One real-world implementation of area coverage and intervention with unmanned aerial and
ground vehicles can be found in [2].
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(a) Initial deployment of 10 UAVs (b) Final distribution of 10 UAVs covering the
complete area

Figure 1.1: Area Coverage and Monitoring; the orange area is the target ground to
monitor; the dashed disc is the effective monitoring perimeter of each UAV.

Figure 1.2: Multiple Vehicles Transport Large Load; the vehicles are coordinated
locally to maintain the shape when the path changes.



1. Introduction 3

1.1 Motivation and Contribution

The ever-growing interest in applications of multi-agent systems is largely attributed

to the development of distributed networked control theories, which involve the infor-

mation exchange between the systems through a communication network. Among the

numerous networked control tools, the methods to overcome the communication con-

straints in the network are studied intensively. These constraints have various forms,

such as time delays in long-distance communication, packet loss and disorder in con-

gestive links, etc. In this dissertation, we focus on one aspect of these constraints,

namely the time-delay effect. In particular, we design the formation controller for a

leader-follower tracking system, that maintains a certain fixed formation shape with

time-delay compensation. Without this compensation, the formation system will fail

to keep the desired shape due to the delayed information exchange in the commu-

nication channel. We aim to provide a set of parameter selection rules for such a

stable formation controller that can be utilized in various collaborative tasks, such

as large load transportation shown in Figure 1.2. This controller can also be applied

to non-cooperative multi-agent systems, such as adaptive cruise control (ACC) for

automotive industry, where the distance and aligning orientation between two driv-

ing cars are expected to be safely maintained. A test scenario to demonstrate the

usage of the controller in non-cooperative tracking system is presented in Chapter 3,

where the main source of time delay in the system is from the computation involved

in image processing.

On the other hand, apart from keeping the formation shape, most multi-agent

systems are expected to operate with many other requirements, such as low energy

spent across the system, fast mission completion time, etc. For these purposes, opti-

mal control is one admissible and effective technique. This control approach considers

the system dynamics and generates the optimal control actions based on desired per-

formance indices. To demonstrate the utility of optimal control in the coordination of

multi-agent system, we present a dynamic convoy protection scenario with multiple

mobile robots. More specifically, we consider parameterized model predictive control

method to overcome the computational demands commonly arising from closed-loop

optimal control problems. Using distributed optimization technique to optimize con-

troller parameters, we intend to show how multi-agent systems can benefit from the

nonlinear optimal control in real-world scenarios.

The contributions of the dissertation are threefold:

• For the time-delayed formation tracking system, a stable PD-type controller
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is proposed and applied in real-world mobile robotic systems. This controller

ensures the stability of the time-delayed formation system, and overcomes the

steady-state error and oscillating behavior of the system, which are often ne-

glected in the existing literature. Controller parameters are chosen according

to the derived parametric stable region. Meanwhile, the internal dynamics of

a feedback linearized system are also proved to be bounded. Apart from the

application in cooperative formation tracking system, this type of controller

is also suitable for non-cooperative missions, such as adaptive cruise control

(ACC). A demonstration of ACC using two car-like mobile robots is provided

as an extended application.

• For a general nonholonomic multi-agent system, the notion of readiness is newly

proposed to characterize the initial conditions of the system. This notion can

be considered as an extension to the existing indices, such as manipulability,

responsiveness, which are used to characterize the holonomic multi-agent sys-

tems. Classical optimization approach based on calculus of variations is used

to derive the optimal readiness. This provides the criteria for the initialization

of the multi-agent system to accomplish the cooperative tasks.

• A parameterized model predictive control framework is proposed and demon-

strated through a dynamic convoy protection scenario with multiple mobile

robots. Conventional model predictive control method is converted into a pa-

rameter optimization problem, which largely reduces the computational com-

plexity, thus being implementable online. A new cosine-Kuramoto model is

designed for the distributed coordination of multi-agent systems, which allows

the system to be scaled and controlled in a decentralized fashion. Optimal

control technique is further applied to obtain the optimal controller parame-

ters, which satisfy the desired performance of the convoy protection system.

The real-world experiment showcases the feasibility and applicability of the

proposed framework.

1.2 Outline

The rest of the dissertation is structured as follows2: Chapter 2 presents some back-

ground knowledge on the control of multi-agent systems, as well as the experimental

2The references given in this section are the publications authored or co-authored by the author
of this dissertation. They are associated with the corresponding chapters.
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platform we use for demonstration. Chapter 3 deals with the time-delayed formation

tracking system, where the controller parameter tuning methods are discussed. We

also analyze the stability of the formation controller, and the internal dynamics of

the time-delayed system [150, 151]. Chapter 4 introduces a new notion to evaluate

the initialization of multi-agent systems, especially nonholonomic systems, based on

certain performance indices [149]. Chapter 5 demonstrates the parameterized opti-

mal control approach in multi-agent system to achieve a dynamic convoy protection

mission. The overall implementation is based on the optimal initialization studied

in Chapter 4, as well as the distributed optimization technique, which enables the

online optimization of controller parameters [148]. Chapter 6 presents a summary

of the dissertation, as well as some research aspects that are considered appropriate

extensions to the results from this work.



6 1.2 Outline



CHAPTER 2

BACKGROUND

This chapter is intended to provide background knowledge in the robotics research

fields concerning two major topics, namely multi-agent formation control and optimal

control. Some of the state-of-the-art research is also presented along. The contents

of this chapter can be considered as laying the conceptual basis for the rest of this

dissertation. At the end of this chapter, we introduce our experimental platform,

which we use to evaluate the developed techniques.

2.1 Control of Multi-Agent System

The study of Multi-Agent System (MAS) has gained widespread recognition in nu-

merous research areas over the past two decades. In general, MAS refers to the system

consisting of multiple interacting elements, also known as agents, to perform certain

activities collectively. Due to its extensive applicability, MAS framework is utilized to

outline the interesting issues arising from, e.g., robotics [137], sensor networks [141],

computer vision [132], software engineering [89], even sociological [45] and economi-

cal [10] studies. One of the foci of this dissertation is on the formation control aspect

of multi-agent systems, especially nonholonomic mobile robot systems. To address

this issue, in this section we introduce one control methodology, feedback linearization,

and point out two related problems, namely the time-delay and consensus problem.

2.1.1 Feedback Linearization

Feedback linearization is an approach in nonlinear control design, where the nonlinear

system dynamics are transformed algebraically into the equivalent simplified ones, ei-

ther fully or partially linear, often depending on the control objectives. This approach

differs completely from the conventional (Jacobian) linearization, which uses linear

approximation of the nonlinear dynamics to simplify the system.

Consider the problem of designing control law to stabilize a class of nonlinear

systems of the form

ẋ = f(x) +G(x)u

y = h(x). (2.1)
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If this system is feedback linearizable [69, Chapter 13], through the change of variable

(or so-called diffeomorphism)

z = T (x),

the system can be transformed into the form

ż = Az +Bγ(x)[u − α(x)], (2.2)

where (A,B) controllable and γ(x) nonsingular on the domain of interest. Further,

we can pick the following state feedback control law:

u = α(x) + β(x)v (2.3)

where β(x) = γ−1(x), to convert the system into an equivalent linear system

ẋ = Ax+Bv.

By designing the new control input v using linear system theories, the original non-

linear system can be stabilized. If we design the control v such that the system

input-output map is linearized, while the system states may be partially linearized,

we call the control law Input-Output Feedback Linearization.

Input-output feedback linearization is a typical technique used in tracking control

of robotic navigation, where the control objective is often for the robot to track a

desired trajectory while keeping the overall system states bounded. Kim and Oh [71]

present a well-defined tracking control design for a wheeled mobile robot using input-

output linearization. Due to the nonsquare (underactuated) property of the system,

the generalized inverse technique is used to obtain β(x) as in Eq. (2.3). Some other

recent work based on this technique can be found in [67, 154].

Typically the design procedure is performed in the following three steps [127]:

a) differentiate the system output until the input appears explicitly;

b) choose the input to cancel the nonlinearities and guarantee the tracking con-

vergence;

c) study the stability of the internal dynamics.

Internal dynamics are the “unobservable” dynamics of the system, which cannot

be seen from the input-output relationship as in Eq. (2.2). The stability of internal

dynamics is required in solving the complete tracking control problem. In practice,
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the stability of internal dynamics is proved in the BIBO (Bounded-Input Bounded-

Output) sense by analyzing system’s zero dynamics, while zero dynamics is defined

to be the internal dynamics of the system when the system output is kept at zero by

the input.

The three steps mentioned above are the procedures we follow for designing the

formation controller in Chapter 3, with the extension of compensating for the time-

delay effect in the formation system.

2.1.2 Time-delay Problem

Multi-Agent Systems are often modeled as Networked Control Systems (NCSs) for

the purpose of analyzing certain aspects in the communication channel which affect

system performance. These aspects are generally referred in NCSs as network im-

perfections, such as time delays, packet losses and disorder, and data quantization,

etc. In this section, we focus on the problem of time delay in NCSs, which is one

of the main topics addressed in the rest of the dissertation. Recent studies on the

other aspects of network imperfections include [35, 119, 144, 157] for packet losses

and disorder, and [14, 43, 83] for data quantization, to name a few.

The time delays in an NCS are generally caused by two sources, the transmission

distance and the network traffic congestion, while the computational delay is neg-

ligible compared to these two classes. As shown in the early studies of time-delay

systems from Lee and Dianat [80], the system performance and stability are often

degraded by the delays, although the fact that delays can have stabilizing effects on

the system is also reported in some literature (see [126]). The time delays in NCSs

are commonly categorized into constant versus time-varying delays, and deterministic

versus stochastic delays. This categorization is mostly dependent on the applications

in different networks. For instance, the constant delay is supposed to hold in CAN

protocols, or in situations where data buffers are used at each network node to cre-

ate an upper-bound of the delays, so that the system design is simplified. In most

Internet-based NCSs, the varying time delays are considered to be more practical,

although certain conditional bounds on the varying delays are often placed to allow

the modeling of the systems.

Various control strategies to cope with the time-delay problem mentioned above

are developed over the past few decades. Tipsuwan and Chow [138] provide a sum-

mary on the typical methodologies used in literature up to 2003, including modeling,

analysis and synthesis of NCSs involved with delay problem. Later on, Naghshtabrizi

et al. [102] complement the earlier work by addressing the advances from 2003 to 2007
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in the control community. The approaches of modeling NCSs as delayed differential

equations (DDEs), or as switched systems, are reviewed for that period. The most

recent survey on NCSs from Zhang et al. [155] reports the developments from 2007

to 2012, where the authors classify the control design into robustness and adaptation

frameworks. For more details on the control strategies, we refer the readers to the

surveys mentioned above, and the references therein.

In order to be self-contained, we state the following definitions and theorems from

other references, which are indicated correspondingly.

1. The following theorem formulates the boundedness of the solutions to a general

linear time-invariant delay differential equation, which is an excerpt from [50].

It is the basis for the Theorem provided in Section 3.6.

Theorem 2.1 (Theorem 1.5 from [50]). Given a general linear time-invariant

delay differential equation

ẋ(t) =

∫ 0

−r

x(t + T )dF (T ) (2.4)

and its fundamental solution Φ(t, t0) with the initial condition

Φ(t0 + T, t0) =

⎧⎨
⎩I T = 0

0 − r ≤ T < 0
. (2.5)

Let Δ(s) be the Laplace transform of Φ(t, t0), and define

λ0 = max{Re(s) | det[Δ(s)] = 0}, (2.6)

then the following three statements are true:

(i) The system (2.4) is stable if and only if λ0 < 0.

(ii) For any λ > λ0, there exists a K > 0, s.t. any solution x(t) of Eq. (2.4)

with the initial condition (2.5) is bounded as

‖x(t)‖ ≤ Keλt. (2.7)

(iii) λ0 is continuous with respect to rk, for all rk > 0, k = 1, 2, ...K.

The number λ0 is known as the stability exponent of the system.

2. The following theorem (Elsgolts and Norkin [see 36, pp.160, 161]) provides the

conditions for asymptotic stability of a delay-differential equation. It is the

basis for the proof in Section 3.6.2.
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Theorem 2.2. The null solution of the system

ẋ(t) =
n∑

j=1

m∑
i=0

aijxj(t− τi) +R(t, x1(t), . . . , x1(t− τ1), . . . , xn(t− τm)) (2.8)

is asymptotically stable if:

(a) all roots of the characteristic equation for the first approximation system

for (2.8),

det

(
m∑
i=0

Aie
−λτi − λI

)
= 0, (2.9)

where [Ai]jj = aij, have negative real parts;

(b) R is such bounded that:

‖R(t, u1, . . . , un(m+1))‖ ≤ α

n(m+1)∑
i=1

‖ui‖, (2.10)

where α > 0 is a sufficiently small constant, and ‖ui‖ are sufficiently small.

This theorem indicates that if the first approximation (linear or linearized part)

of a nonlinear delay-differential equation has asymptotically stable null solution,

and the nonlinear part is bounded, then the original equation has asymptotically

stable null solution.

2.1.3 Consensus Problem

The collaborative phenomena in biological, physical and social systems have greatly

inspired the research of multi-agent systems. Birds migrating in flocks, fish chasing in

school, and people applausing consistently are some typical natural examples where a

single agent acts cooperatively with each other to achieve certain common objectives

at the formation level. This has been understood as a technological direction of going

from simple local rules to complex global behaviors. An early study from Reynolds

[123] interprets three principles to achieve this type of cooperation, which are termed

as separation, alignment and cohesion (also known as collision avoidance, velocity

matching and flock centering). Based on these principles, a great number of literature

has emerged ever since, revealing different facets of cooperative multi-agent systems

and some underlying theories, as well as their new applications in industrial areas.

Murray [101] presents a broad overview of the research developments in this regard till
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2006. The author covers the application areas, such as military systems, mobile sen-

sor networks and transportation systems, reviews the technological basics supporting

these applications, including formation control, cooperative tasking, spatial-temporal

planning and consensus algorithms, and indicates some future research topics, e.g.

the synthesis of control, communication and computation. The study from Cao et al.

[17] provides a survey on distributed multi-agent systems from 2006 to 2012, focus-

ing on the following five directions: consensus-related topics, distributed formation,

optimization, estimation and control, and task assignment. We refer the readers to

the surveys mentioned above for more details, as well as the references therein.

Up till now, certain aspects of multi-agent coordination problem are well under-

stood. A prime example is the consensus problem, where the agents are expected

to reach an agreement on some quantities by locally communicating with or sensing

each other. Olfati-Saber et al. [108] present a cohesive overview of the theories and

applications of consensus problems in a unified framework, which combines the basic

notions in information consensus (e.g. graph theories [98]) and control designs (e.g.

distributed formation control [39],) for system convergence and performance analy-

sis. Under this framework, various consensus algorithms, such as nearest-neighbor

rules from Jadbabaie et al. [59], flocking algorithm from Olfati-Saber and Murray

[109], and gossip algorithm from Boyd et al. [11] can be synthesized based on similar

mathematical tools.

Some other topics, such as rendezvous and synchronization, are derived from con-

sensus algorithms. Rendezvous in space [22] is equivalent to reaching a consensus in

position with a number of agents based on position-induced topology, e.g. proximity

graph. Both Lin et al. [85] and Cortés et al. [22] consider this as an unconstrained

consensus problem with variations in network topology. Hess [54], however, tackles

the rendezvous problem of nonholonomic wheeled mobile robots under constrained

kinematics, and generates discontinuous control laws for a group of car-like robots to

achieve the goal.

To understand the contents presented in Chapter 4 and 5, in the following, we pro-

vide some basics in algebraic graph theory according to the convention used by Mes-

bahi and Egerstedt [98].

The model for the interaction topology of a network ofN agents can be represented

by a graph G = (V, E), where V = {v1, . . . , vN} denotes the set of nodes, and E =

{e1, . . . , eM} ⊆ V × V is the set of edges, where M is the number of edges.
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The adjacency matrix A(G) is the symmetric N ×N matrix indicating the adja-

cency relationships in the graph G, where

[A(G)]ij =
⎧⎨
⎩1 if (vi, vj) ∈ E ,
0 otherwise.

(2.11)

Thus the neighborhood set Ni of the node i is defined by:

Ni = {vj |[A(G)]ij = 1}. (2.12)

The incidence matrix D(G), encoding not only the adjacency map of the nodes

but also the orientation of the edges, is defined by an N ×M matrix, i.e.

[D(G)]ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 if vi is the tail of ej ,

+1 if vi is the head of ej ,

0 otherwise.

(2.13)

The direction of the edges is used to define the information flow, or communication

links. For instance, in an undirected cycle graph Gc, where each node can communi-

cate with its two neighbors, the incidence matrix D(Gc) can be described by:

D =

⎛
⎜⎜⎜⎜⎝
−1 0 · · · +1

+1 −1 · · · 0
...

. . .
. . .

...

0 · · · +1 −1

⎞
⎟⎟⎟⎟⎠ . (2.14)

Note that the directions of edges in a typical graph, e.g. cycle, star, tree or all-to-all,

are such defined by convention, while in principle they can be arbitrarily given.

The graph Laplacian L(G) is defined as:

L(G) = D(G)D(G)�, (2.15)

where D(G) is the incidence matrix in Eq. (2.13). L(G) is a symmetric, positive

semidefinite matrix, as revealed by the definition above.

Denoting the scalar state of the node i as xi ∈ R and the stack form as x =

[x1, . . . , xN ]
� ∈ R

N , then the well-known consensus equation, or agreement protocol,

can be written as:

ẋ(t) = −L(G)x(t), (2.16)

where L(G) is the graph laplacian given in Eq. (2.15).
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2.2 Optimal Control

Optimal control theory has been developed and formulated as an extension to the

calculus of variations over the past few centuries. Both being mathematical opti-

mization methods, the principle of optimal control is readily derived from calculus

of variations, which involves the minimization or maximization of certain functionals

subject to constraints. Most commonly, optimal control derives the control policies

for dynamic systems aiming at minimizing or maximizing certain performance crite-

ria (cost functionals), utilizing directly some fully-fledged mathematical theories, e.g.

Pontryagin’s Maximum Principle [117]. A typical optimal control problem can be

represented in the Bolza form [84], where we consider the real-valued cost functional

of the form:

J(u) �

∫ tf

t0

L(t, x(t), u(t))dt +Ψ(tf , x(tf )), (2.17)

where L and Φ are given functions (so-called instantaneous cost and terminal cost,

respectively), t0 and tf are initial and final (terminal) time, x(tf ) is the final state,

and u(t) is the control signal. Hence, we are looking for the optimal control u∗(t),

which is defined as:

u∗(t) = arg min
u

J(u) (2.18)

subject to: ẋ(t) = f(x, u),

x(t0) = x0.

The First Order Necessary Condition (FONC) for optimality to the Bolza problem

mentioned above is given by the following differential equations in the Hamiltonian

structure:

λ̇ = −∂H
∂x

(t, x, u, λ), (2.19a)

λ(tf ) = −∂Ψ
∂x

(tf , x(tf)), (2.19b)

0 =
∂H
∂u

(t, x, u, λ), (2.19c)

for all t0 ≤ t ≤ tf , with H � L + λ�f . H is called Hamiltonian, and λ is termed

as costate, whose dynamics and boundary condition are given by Eq. (2.19a) and

Eq. (2.19b), respectively.

Note that this optimal control technique produces only an open-loop solution for

the time interval [t0, tf ], which means the outcome of the procedures above is a control
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signal u(t) in terms of time t. One option to convert this open-loop signal to a closed-

loop signal (u(x) in terms of state x) is to perform Model Predictive Control, which

is introduced in the next section.

2.2.1 Model Predictive Control

Model Predictive Control (MPC) is a well-known control technique in process control,

especially for chemical industry, where the plant dynamics are often slow and difficult

to characterize in time [118]. This technique, as the name indicates, uses the model

of control plant to predict or simulate its behavior at future time instants (horizon),

by calculating a sequence of control commands on-line based on the minimization of

a certain cost function. Due to the fact that only the first control command in the

sequence is actually applied to the plant at each step with the horizon for predic-

tion moving along, this technique is also called Receding Horizon Control (RHC). In

the subsequent time interval, the control command is recalculated according to the

same procedure as mentioned above. In principle, MPC introduces feedback into the

open-loop optimal control problem, at the cost of being computationally intensive.

Usually MPC requires solving a set of differential equations with given initial and

final conditions, which is known as a two-point boundary value problem [73]. In the

past, this typically constrains the applicability of MPC, where only slow dynamics

are allowed [40, 93]. However, with the fast development of computing technologies,

it is suitable to apply the MPC in many other industrial and research areas, espe-

cially energy [15, 143] and robotics [18, 94, 142] fields. Two recent dissertations on

MPC from Kanjanawanishkul [62] and Saska [125] present comprehensive overviews

on the variation, development and application of MPC in many different directions,

while a detailed survey of MPC theoretical works on stability and optimality issues

is provided by Mayne et al. [93]. Here we briefly introduce the concept of MPC in

mathematical terms.

Similar as many other optimization techniques, MPC minimizes a cost metric

which characterizes the desired goal of the control problem. Take the cost from

Eq. (2.17) for example, where typically tf = t0 + Δ, Δ being a short time horizon

length. The basic MPC algorithm is described in Algorithm 1.

The complexity of the MPC algorithm comes from the cross-dependency between

the system state x, costate λ, and input u in the two-point boundary value problem

from Step 1), where some of the differential equations depend on the initial system

states, while the others depend on the terminal costs. Under the system nonlinearities,

a family of numerical methods, called Direct Methods [16], such as direct shooting
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Algorithm 1 Model Predictive Control

1) Minimize the cost (2.17) with respect to control signal u(t), ∀t ∈ [t0, tf ]. The
Hamiltonian structure in Eq. (2.19) for deriving the first-order necessary con-
ditions is one commonly-used approach.

2) Apply only the first control u(t0) to the system, whose dynamics are given as
in Eq. (2.18).

3) Repeat step 1) and 2) in each of the subsequent control cycles.

method in Nonlinear Programming [124], are utilized to get the optimal control signal

in every control step, which results in large computation time. In the next section,

we present a few approaches that can be used to circumvent this problem.

2.2.2 Parameterized Model Predictive Control

Although the computational complexity of MPC applied on-line is greatly compen-

sated by the computing hardware itself, people are still seeking remedies to reduce

the burden through other sources. One typical attempt is to search for sub-optimal

solutions in exchange for faster computation, or even real-time performance. Falcone

et al. [38] propose a suboptimal MPC design to achieve real-time vehicle steering

control. They rely on the accurate modeling of the vehicle nonlinearities, and the

analysis of the constraints and performance index in the optimal control problem,

so that the online linearization of the nonlinear vehicle model is valid during each

optimization step.

Parameterized control is another way of compensating the heavy computation in

MPC. This type of controller generates the control action as a function of a variable

vector in addition to time and/or state [56]. It is applied in various applications

with complex models, including parameterized gait control for snake robots [136],

collision avoidance and interactive control of soccer robots [70], path following for

air vehicles [107], adaptive motion planning and navigation of fast-moving mobile

robots [56, 81], optimal trajectory generation for nonholonomic vehicles [68].

In parameterized MPC, feedback control law is designed for the overall control

objective. During optimization step, the control law is utilized to simulate the corre-

sponding actions forward in time, by only optimizing the parameters in the control

law, which means the actual control law is tuned, instead of tuning the output of the

control law as in conventional MPC [57]. Thus, solving a two-point boundary value
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problem becomes a parameter optimization problem, which largely reduces the com-

putation effort. Naus et al. [103] introduce the parameterized MPC into the adaptive

cruise control (ACC) in automobile industry. The parameters considered in the MPC

optimization represent the key characteristics in safety, comfort and fuel economy

aspects, which makes it intuitive even for the drivers to tune online. Alamir et al.

[4] present two real-world implementation of parameterized Nonlinear MPC on auto-

mobiles. The nominal computation time using Control Parameterization Approach

(CPA) in automated manual transmission (AMT)-problem is under 0.35 ms, with

model and torque constraints under consideration. This certainly demonstrates the

feasibility of real-time application of MPC in automotive industry.

2.3 Experimental Platform

In the last part of the chapter, we introduce the experimental platform used in the

context of this dissertation, including the mathematical model of the mobile robot,

and the basic hardware components.

2.3.1 Mathematical Model

The type of vehicle we consider throughout the dissertation is a standard rear-wheel

drive, front-wheel steerable (Ackermann Steering) car-like mobile robot, whose kine-

matic equation is given by:

fq(t) =

⎡
⎢⎣
ẋ(t)

ẏ(t)

θ̇(t)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

cos θ(t) · v(t)
sin θ(t) · v(t)
[tan β(t)] · v(t)

l

⎤
⎥⎥⎥⎦ , (2.20)

where v is the translational driving speed; β is the equivalent steering angle of the

front wheels (see Figure 2.1); (x, y) is the position of the robot in global frame, located

at the mid-point of the rear-wheel axle, and θ is termed as the orientation, which is

the angular difference between the global frame and mobile robot local frame; l is the

distance between front and rear wheel axle. The Instantaneous Center of Curvature

(ICC) lies on the line of rear-wheel axle. The turning radius r =
l

tan β
if β �= 0.

Note that the first two scalar equations represent the nonholonomic constraints of

the car-like mobile robot, which indicates that no sideward movement of the vehicle

is allowed due to wheel slippage and rolling constraints. (Refer to [54] for more details

on kinematic models of wheeled mobile robots.)



18 2.3 Experimental Platform

θ

Figure 2.1: Car-like mobile robot model

Figure 2.2: MERLIN Outlook

2.3.2 Hardware

The experiments to validate the developed techniques in this dissertation are per-

formed on a group of car-like mobile robots, MERLIN (Mobile Experimental Robot

for Localization and Intelligent Navigation), as shown in Figure 2.2. The 16-bit mi-

crocontroller C167CR-LM, running an in-house developed operating system, is used

onboard mainly for interfacing with the drive system, i.e. the brushless DC motor

for driving and the servo module for steering. Various functionalities to acquire and

process sensor data are also integrated in the operating system, with a sampling rate
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Figure 2.3: Overview of the hardware architecture on MERLIN

of 10Hz. Some low-level controls to ensure the safety and smooth driving are im-

plemented in the operating system, such as the emergency stop in case the robot

loses data connection during teleoperation, steering correction to compensate for the

imperfection in mechanical mounting based on gyroscope, etc.

Figure 2.3 shows the various hardware components onboard MERLIN and their

connection interfaces. The embedded PC (PC/104) platform is equipped for com-

municating with the control station running Merlin Control System (MCS), and the

other MERLIN robots via wireless network. It also executes the developed control

algorithms in the Indoor Merlin Interface System (IMIS). The data acquired from the

microcontroller, running Merlin Operating System (MOS), is transmitted through

serial port to PC/104, and the PC/104 is in charge of broadcasting all the necessary

information as UDP packets in the local Ad-Hoc network.

It should be noted that, the odometry of the vehicles relies on the dead reckoning

principle based on sensor readings of the wheel encoders and onboard gyroscope.

During the experiments, in order to have a unified coordinate system, each vehicle is

started in one known position, such that the odometry data is qualified for localization

without external positioning systems1.

1Since the dead reckoning principle suffers from long-term accumulated errors, we carry out most
experiments in a short period of time, as well as in a stable indoor environment.
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CHAPTER 3

TIME-DELAYED FORMATION CONTROLLER

In this chapter, we focus on the parameter design for a class of formation control laws

under communication delays. By constructing Leader-Follower framework, which

enables the formation system to scale and be controlled in a decentralized fashion, we

aim to automate the follower robots to track the leader robot with desired relative

distances and orientations. Taking into account the time delay in data transmission

between the robots, we formulate both stable parametric regions for the formation

control law and its corresponding exponential convergence property. We illustrate

both the advantages of the designed controller in comparative simulation results, and

the applications of the control scheme in real-world robotic vehicle tracking scenarios.

In the following sections, we first present a brief review of the research work

on formation control problem under time delays (Section 3.1). Secondly, we derive

our feedback control law for both time-delay and delay-free cases. (Sections 3.2

to 3.4). Then the controller parameter selection criteria are analyzed (Section 3.5),

followed by the proof on system convergence and internal dynamics (Section 3.6). The

comparative simulation and experimental studies are shown afterward (Section 3.7).

Finally we provide a short summary along with several remarks to conclude this

chapter (Section 3.8).

3.1 Problem Formulation and Related Work

In this section, the problem of time-delayed formation control is presented. We also

provide an overview of the closely related work that address this problem from dif-

ferent aspects than our proposed approach.

3.1.1 Problem Description

Consider the the scenario of teleoperating a robot formation depicted in Figure 3.1,

where the local and remote sites can be far from each other, resulting in a certain

amount of transmission delay in the communication channel. On the remote site,

we assign one robot as the leader, and the rest as followers. We require the follower

robots to communicate only with the leader, where the communication is also affected

by time delays. The control task we focus on in this chapter is to design the stable
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Figure 3.1: Illustration of formation teleoperation with communication delays in
various links

decentralized controller on the follower robots for them to track the leader, where

we teleoperate the leader robot from our local control station. We address mainly

two issues in nonlinear tracking systems with time-delay effect, namely the tracking

steady-error and the oscillation problem.

There are a few related theoretical details to this setup, which we state in the

following:

• The scalability of the formation under leader-follower framework is realized by

considering a set of leader-follower robots as an interconnected system, where

multiple interconnected systems are to be coupled with each other. In principle,

this forms a tree hierarchy, where the follower robot can be treated as the leader

robot for the subsequent followers. Refer to Stipanović et al. [131] for detailed

technicalities on expanding interconnected systems.

• As indicated in Figure 3.1, the leader can be non-physical robot, which we call

virtual leader, in which case the status of the leader is simulated on the local

site and transmitted to the first follower robots in the formation hierarchy.

One of the earliest studies on applying virtual leader concept in robotic control

is from Egerstedt et al. [33], where the path tracking control is designed using

virtual vehicle for a car-like robot. A recent dissertation from Saska [125] covers

the path planning algorithms for virtual leader to guide the robot formation to

the desired destination.
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• Among the information flows from the local operation site to the remote leader

robot, as well as to the followers, there exist other time-delay sources than

the communication channel that affect system performance, for instance, the

sensor-to-controller delay and controller-to-actuator delay. However, under the

assumption of time-invariant control laws, these different causes of delays can

be combined into one single delay T for analysis purposes. In more practical

cases, T can also be considered as the upper bound of the time-varying delays,

or the piece-wise constant delays in digital data transmission [156].

3.1.2 Related Work

In order to cope with the time-delay effect, numerous control strategies have been

developed. The surveys mentioned in Section 2.1.2 cover the recent progress in this

direction from the past decade. In this section, we provide a brief overview on these

strategies, and point out some interesting research work that are closely related to

our approach in two aspects, namely formation control and time-delay compensation.

3.1.2.1 Nonlinear formation control

For the first aspect in terms of the control of nonlinear systems, many design tools

can be considered, among which two popular ones are Lyapunov-based analysis and

feedback linearization method [69].

Mastellone et al. [92] develop a decentralized feedback control law based on Lya-

punov analysis, which achieves both collision avoidance and trajectory tracking for

a formation of differential-drive robots using leader-follower structure. The over-

all design using Lyapunov analysis naturally integrates the avoidance function with

the tracking control, and the stability of internal dynamics is also guaranteed, since

the complete error dynamics of the formation can be included in the Lyapunov-like

function candidate, which is proved to be non-increasing. This work also presents suf-

ficiently extensive experiments, which show the robustness of the controller against

communication imperfections, such as delays, quantization, and packet losses. Pani-

madai Ramaswamy and Balakrishnan [112] extend the Lyapunov-like analysis to the

car-like robot formation, analyzing the formation error dynamics and applying the

control through car-like dynamic model using an online neural network. Some other

research work on formation control using Lyapunov analysis, especially for nonholo-

nomic systems, are [19, 82, 120], to name just a few. However, the analysis on the

delay effect within Lyapunov framework is absent in most literature, which other-

wise would require Lyapunov-Krasovskii functionals [44] that largely complicate the
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control design and stability proof. One exemplary study using Lyapunov-Krasovskii

functionals to analyze the stability of general time-delay nonlinear systems is provided

by [116].

On the other hand, Input-Output feedback linearization (see Section 2.1.1), one

of the state feedback (model-based) control laws, is another typical approach in the

control of nonlinear systems, especially nonholonomic systems [3]. Eghtesad and

Necsulescu [34] study the internal dynamics of a three-wheel mobile robot with non-

holonomic constraints in addition to the feedback linearization control on the system

external dynamics, and they point out the conditions under which the internal dy-

namics are stable. The similar procedure as in [34] is performed in our analysis on

time-delayed formation control. One variation of input-output feedback linearization,

dynamic feedback linearization method, is also successfully applied to the trajectory

tracking control of nonholonomic mobile robots. The difference between these two

methods is that dynamic feedback linearization gives full-state linearized equations by

defining new intermediate control inputs. It is suitable for handling high-dimensional

systems, while restrained from its structural singularity in the dynamic extension pro-

cess (see Luca et al. [88]). Yang et al. [153] design a singularity-free formation model

in order to apply dynamic feedback linearization. They choose the robot coordinate

to be located on the steerable castor wheel, instead of the driving wheel, as most other

work have done, to avoid the structural singularity. The stability of internal dynam-

ics is also provided therein. Gamage [46] emphasize on the use of dynamic feedback

linearization as low-level behavior-based controller, and develop a high-level discrete

event system to interact with the environment. The structural singularity restricts

the robots to move without stopping. More applications of feedback linearization can

be found in [63, 86, 90, 99, 128].

3.1.2.2 Time-delayed formation tracking

The second aspect we are interested in is the time-delay effect in formation control.

Most of the existing work dealing with time-delay problem of controlling multiple

robots focus on the communication channel between the user and remote site in the

bilateral teleoperation setup [42, 78, 79]. Palafox and Spong [110, 111] consider the

time delays in the communication link, as well as the delays on both local and remote

sites. The focus is on the asymptotical stability of the delayed bilateral teleopera-

tion system. Nevertheless, the authors are comparing the master position with the

delayed slave positions, which means the steady-state error problem on the remote

formation driving is not handled. This issue corresponds to the steady-state error of
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the formation tracking for the followers in leader-follower framework, as also neglected

by Goi et al. [49], where the delayed leader position is directly set as the tracking

object for the immediate follower on purpose. Therefore, the tracking error is between

the current follower’s position and the delayed leader’s position, which, on the other

hand, facilitates the autonomous convoying as pointed out in their paper, since the

leader’s states between the current and the delayed moments are used to estimate

its speed and heading. This is a feasible solution, since the objective of convoying

mission is path following, which differs from the control objective of this work. The

steady-state error in the separation distance from [49] still exists due to the image

processing delay. The solution to compensate for the steady-state error is elaborately

addressed in Section 3.4 in this dissertation.

3.1.2.3 Various formation control approaches

In addition, as a horizontal overview, there are quite a few new techniques developed

for formation control that are often extended to deal with communication delays.

For instance, consensus-based control (Ding et al. [25], Liu et al. [87], Olfati-Saber

and Murray [109], Papachristodoulou et al. [113]), which mainly applies to linear

systems or nonlinear systems that are either feedback linearizable or locally passive;

event-based control (Chen et al. [20]) and non-time based control (Jia and Xi [61]),

which dispose the time-dependency in the system dynamics, thus making it effective

in dealing with time-delayed systems.

3.2 System Modeling

In order to solve the problem mentioned in Section 3.1.1, we need to derive the

analytical model for the formation system. In this section, we introduce the kinematic

model for a formation of car-like mobile robots under leader-follower scheme.

In the leader-follower formation system, the control objective is for the followers

to maintain constant distances and relative bearing angles with respect to the leader.

Following Section 2.3.1 and Figure 3.2, we denote q � [x y θ]� as the vehicle state,

and u � [v β]� as the control inputs. Define the system output z � [ρ, α, φ]�, and

system inputs 1 uL � [vL, βL]
� and uF � [vF , βF ]

�. The output z is calculated based

1subscript L, F stand for leader and follower, respectively.
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Figure 3.2: Model of leader-follower formation for car-like vehicles; leader robot
is either teleoperated or driven autonomously with predefined commands, while the
follower robot is driving autonomously based on the designed controller.

on the geometry of the leader-follower formation as follows:2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρ =

√
(xL − xF )2 + (yL − yF )2

α = atan2 (yL − yF , xL − xF )− θF

φ = α + θF − θL + π

(3.1)

where ρ is the distance between the mid-points of the rear-wheel axle of the leader

and follower vehicles; α is the angle from the line of follower’s orientation to the line

2The function atan2(·, ·) denotes the arctangent of two arguments, which is defined as:

if y �= 0 :

atan2(y, x) =

⎧⎪⎨
⎪⎩
arctan(|y/x|) · sgn(y) x > 0

π/2 · sgn(y) x = 0

(π − arctan(|y/x|)) · sgn(y) x < 0

,

if y = 0 :

atan2(y, x) =

{
0 x ≥ 0

π x < 0
.

where sgn(·) is the sign function.



3. Time-delayed Formation Controller 27

of ρ counter-clockwise; and φ is the angle from the line of the leader’s orientation to

the line of ρ counter-clockwise.

By differentiating Eq. (3.1) with respect to time and after some equation manip-

ulations [104], the kinematics of the leader-follower formation system is given as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ̇ = −vF · cosα− vL · cosφ
α̇ =

vF · sinα
ρ

+
vL · sin φ

ρ
− vF · tanβF

l

φ̇ =
vF · sinα

ρ
+
vL · sin φ

ρ
− vL · tan βL

l

(3.2)

where uL is considered as an exogenous input and uF is the endogenous control input

for the formation system.

Note that a fixed system output z defines a unique formation shape. However,

the system given in Eq. (3.2) shows that it has two independent control inputs but

three states, which results in an underactuated system. The controller design in the

next section will cover this issue.

3.3 Formation Feedback Control

In this section, the controller for achieving stable leader-follower formation is devel-

oped under the formation kinematics given in Eq. (3.2). Meanwhile, the stability

issue of the controller with respect to the internal dynamics of the formation is also

addressed.

3.3.1 Input-Output Feedback Linearization

Following Section 2.1.1, we design the formation controller based on input-output

feedback linearization method. The control objective in the leader-follower formation

system is to keep desired relative distances between the leader and follower vehicles,

as well as to maintain desired relative heading directions. Therefore, we select the

control output to be ρ and α, so that the shape of the formation from the follower’s

perspective is maintained once these two variables are kept constant.

Let zd � [ρd, αd] be the desired control output, where ρd is the desired distance

between two vehicles, and αd is the desired relative bearing angle. Hence, the desired

linearized system is given by: ⎧⎨
⎩ρ̇ = kρ · (ρd − ρ)

α̇ = kα · (αd − α) ,
(3.3)



28 3.3 Formation Feedback Control

⊕

Figure 3.3: Formation control scheme under leader-follower approach; the controller
block refers to Eq. (3.3) and Eq. (3.4); the kinematics model is described in Eq. (2.20);
and the LF-system states are from Eq. (3.2).

where kρ > 0, kα > 0 are tuning parameters. Based on input-output feedback

linearization, the control inputs for the follower vehicle are so derived as to eliminate

the nonlinear terms of the system in Eq. (3.2) to achieve the linearized model given

in Eq. (3.3), thus resulting in the following form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
vF = − ρ̇+ vL cosφ

cosα

βF = atan

[
l

(
sinα

ρ
+

α̇ cosα

ρ̇+ vL cos φ
− vL sinϕ cosα

ρ (ρ̇+ vL cos φ)

)] (3.4)

The overall leader-follower formation system is shown in Figure 3.3, where qL and

qF are the states of the leader and follower, respectively. Note that the velocity and

steering angle inputs for the robot are limited in the implementation according to the

following condition:

|v| ≤ vmax, |β| ≤ βmax (3.5)

where vmax > 0 and βmax > 0 are the maximum allowable speed and steering inputs

due to mechanics of the robot.

3.3.2 Stability and Internal Dynamics

As indicated in Section 3.1, the stability problem in the controlled formation system

is analyzed through the convergence of internal dynamics of the system.

We first define the system error e � [e1, e2, e3]
� = [ρ− ρd, α− αd, φ− φd]

�, which

represents the tracking error of the follower vehicle3. The error dynamics is simply

3Note that φd can be any constant value, considering we have no control over the output φ. We
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the time derivative of the system error, given as:

ė =

⎡
⎢⎣
ė1

ė2

ė3

⎤
⎥⎦ =

⎡
⎢⎣
−kρe1
−kαe2
φ̇

⎤
⎥⎦ . (3.6)

Using the controller given in Eq. (3.4), it is trivial to prove that the linearized system

in Eq. (3.3) converges to zero exponentially in terms of e1 and e2, which means ρ→ ρd

and α→ αd as t→ ∞ (refer to [24] for the proof).

However, due to the fact that the system given in Eq. (3.2) is under-actuated, the

third system state φ is left in open loop and it is thus referred as the internal dynamics

of the system. In the following, we derive the stability condition of the internal

dynamics of the formation system, which is equivalent to showing the convergence

of error e3 to a constant value as t → ∞. Note that the internal dynamics here is

analyzed in the formation system for the case of a moving leader. A variation of the

internal dynamics analysis can be found in Eghtesad and Necsulescu [34], where the

stabilization of a single mobile robot is considered.

The internal dynamics are analyzed by looking at the zero dynamics of the sys-

tem (as explained in Section 2.1.1, which can be obtained by setting ρ, α and their

derivatives in Eq. (3.2) to zeros [58, 139]), to which the solution is:

ė3 = A · sin (e3 − αd)− B, (3.7)

where A =
vL

ρd cosαd

, and B =
vL · tanβL

l
. B represents the angular velocity of the

leader robot, which means 0 ≤ |B| ≤ Bmax with Bmax being a positive upper bound.

Also, under the assumption that −π
2
< αd <

π
2
, vL �= 0, we have 0 < |A| ≤ Amax with

Amax being a positive upper bound.

Solving this equation by using dsolve function in MATLABR© gives us:

e3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αd + 2 · atan
⎛
⎝A−√

B2 − A2 tan
(√

B2−A2(c+t)
2

)
B

⎞
⎠ if B �= 0 and B �= A

αd + 2 · atan
(

2

c+ A · t + 1

)
if B �= 0 and B = A

αd + 2 · atan (ec+A·t) if B = 0

(3.8)

where c is a constant depending on the initial value of this error e3. This solution is

further divided into different cases:

denote this variable here only for completeness.
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1. B = 0: This means the leader is moving along a straight line, either forward or

backward, depending on the sign of A.

(a) A > 0: The leader is moving forward. The error lim
t→∞

e3 = αd + π. This

proves that the internal dynamics is stable. From Eq. (3.1), we know that

the orientation of the follower will be equivalent to the orientation of the

leader, as t→ ∞.

(b) A < 0: The leader is moving backward, vL < 0. And the error lim
t→∞

e3 = αd.

This also proves the internal dynamics is stable. In this case, there is an

orientation difference of π between the leader and follower based on our

definitions from Figure 3.2.

2. B �= 0: the problem is further divided into the following three subcases:

(a) if |B| < |A|: Eq. (3.8) becomes:

e3 = αd + 2 · atan
(
A− i

√
A2 − B2 tan (η(t)i)

B

)
,

where η(t) =

√
A2 −B2(c+ t)

2
. Recall that tan θ =

e−iθ − eiθ

e−iθ + eiθ
i, the equa-

tion above becomes:

e3 = αd + 2 · atan
(
A +

√
A2 − B2 eη−e−η

eη+e−η

B

)
.

Since lim
t→∞

eη − e−η

eη + e−η
= 1, it can be concluded that the error e3 will converge

as t→ ∞: lim
t→∞

e3 = αd + 2 · atan
(
A+

√
A2 −B2

B

)
.

(b) if |B| = |A|: the error e3 converges to lim
t→∞

e3 = αd+sgn(A) · π
2
, which also

means stability is ensured on the internal dynamics.

(c) if |B| > |A|: Eq. (3.8) is not converging to a constant value, which gives

no guarantee on system stability.

Remarks :

a) In the case where |B| < |A|, and |B| �= 0, i.e. |vL · tan βL
l

| < | vL
ρd cosαd

|, the
subsequent requirement on the leader robot is:

|βL| < atan
l

ρd| cosαd| .
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b) In order to avoid A → ∞, the following correction will be made in the imple-

mentation.

cos(α) =

⎧⎨
⎩ε if α = ±π

2
,

cos(α) otherwise.

where ε is a positive infinitesimal. Obviously this correction does not affect the

system behavior. Meanwhile it also applies to the control inputs in Eq. (3.4),

which are further limited by Eq. (3.5).

3.4 Time-delayed Formation System

As mentioned in Section 3.1, we need to improve the controller from Eq. (3.4) after

taking into account the assumed constant time delay T of the information flow be-

tween the leader and the follower robots. In this section, we extend from Eq. (3.3)

and Eq. (3.4) to two types of controllers for this purpose. Meanwhile, the stability

analyses on these two controllers are also provided.

3.4.1 P-type Controller for Delay Compensation

Following the input-output feedback linearization control scheme discussed in Sec-

tion 3.3.1, the time delay of data transmission between the leader and follower robots

is considered in this section. The resulting steady-state error problem and its solution

are illustrated. A P-type controller (similar to Eq. (3.3)) and an improved PD-type

controller to compensate for the delay effects are proposed and analyzed.

3.4.1.1 Steady-state error

We first consider the time delay T of the information exchange between the leader

and the follower robot. Accordingly, the system output z̃d becomes4:

z̃d =

⎡
⎢⎣
ρ̃d

α̃d

φ̃d

⎤
⎥⎦ =

⎡
⎢⎣
√

(xLd − xF )2 + (yLd − yF )2

atan2
(
yL

d − yF , xL
d − xF

)− θF

αd + θF − θL
d + π

⎤
⎥⎦ , (3.9)

where the follower states at the current time instance t is compared with the delayed

leader states at time t−T . Apparently, this will cause steady-state error in tracking,

because follower’s motion is only regulated to keep up with the delayed leader’s mo-

tion. This is illustrated in Figure 3.4. A direct impact from this delayed tracking is

4variabled � variable(t − T ), where T is the constant time delay as introduced in Section 3.1,
which can be achieved by using an appropriate network protocol.
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−−
ρ

Figure 3.4: Follower tracks the delayed leader. At the time when the follower
receives the leader information, the actual leader is T time ahead. Thus the follower
is only tracking the delayed version of the leader. ρ̃d is defined in Eq. (3.9).

−−ρ

−−

Figure 3.5: Follower tracks the delayed leader using its own delayed version. ρd is
defined in Eq. (3.10).

that a desired formation shape cannot be maintained. Moreover, the tracking error

increases with the increase of time delay in the communication. This problem of

steady-state error is visualized through simulations in Section 3.7.1.

3.4.1.2 Delay-compensation scheme

One way to compensate for the steady-state error due to the delay effect is to modify

the computation of system output from Eq. (3.9) by using the follower states at time
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⊕

Figure 3.6: Formation control scheme of time-delayed system. The extra delay
component T in blue is added intentionally into the system.

t− T instead of at time t, as illustrated in Figure 3.5. Therefore, we obtain:

zd =

⎡
⎢⎣
ρd

αd

φd

⎤
⎥⎦ =

⎡
⎢⎣

√
(xLd − xF d)2 + (yLd − yF d)2

atan2
(
yL

d − yF
d, xL

d − xF
d
)− θF

d

αd + θF
d − θL

d + π

⎤
⎥⎦ . (3.10)

Now this delayed output can be used in the same controller designed in Section 3.3.1,

where the linearized closed-loop delay system takes the form:⎧⎨
⎩ρ̇ = kρ ·

(
ρd − ρd

)
α̇ = kα · (αd − αd

) (3.11)

and the control inputs for the follower vehicle are given similar to Eq. (3.4) as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
vF = − ρ̇+ vL

d cos φd

cosαd

βF = atan

[
l

(
sinαd

ρd
+

α̇ cosαd

ρ̇+ vLd cos φd
− vL

d sinφd cosαd

ρd (ρ̇+ vLd cos φd)

)] (3.12)

where ρ̇ and α̇ are from Eq. (3.11). The overall leader-follower formation system is

shown in Figure 3.6. The only change of the control scheme on the delayed system

from the one shown in Figure 3.3 is that the states of the follower robot will be stored

for a time period of T , and once the delayed leader states arrive at the follower, the

stored data will be used and the current states of the followers will be stored.

3.4.1.3 Stability Analysis on P-type Controller

The stability of the linearized closed-loop delayed system described in Eq. (3.11) is

investigated in this section. The delayed differential equations can be rewritten for
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simplicity in the form (with a slight abuse of notation on x):

ẋ(t) = −kx(t− T ). (3.13)

For instance, let x(t) � ρd − ρ(t), and k � kρ �= 0. To determine the stability of the

system, we follow the theorem from Sipahi et al. [126] to analyze the transcendental

characteristic equation of Eq. (3.13):

fk,T (s) � s + k · e−Ts = 0. (3.14)

Theorem 3.1 (Stability condition for P-type controller [126]). System defined in

Eq. (3.13) is asymptotically stable if the parameters k and T satisfy the conditions

given in Eq. (3.15), i.e.

0 < kT <
π

2
, k > 0. (3.15)

Proof. We first derive the stability condition on the parameter k, and then show in

detail for the condition on T .

1. Suppose k < 0 in Eq. (3.13), and we can define two curves: y1(s) := s; y2(s) :=

−ke−Ts with k < 0. It is obvious that y1(0) < y2(0) and lim
s→∞

y1(s) > lim
s→∞

y2(s).

Consequently, there must be at least one intersection point of these two curves

on the right-hand side of the plane. Therefore, k > 0 is a necessary condition

for the stability of the system.

2. When T �= 0, because of the periodicity in the exponential term, there exists an

infinite number of roots in the complex C plane. These are called characteristic

roots. In order to find out whether the real part of the right-most root is in the

C− plane, we will analyze Eq. (3.14) on the imaginary axis. Let s = ib, and

separate real and imaginary parts of Eq. (3.14) as follows:⎧⎨
⎩cos(bT ) = 0,

k sin(bT ) = b.
(3.16)

The result gives the infinite number of delays as Tc,l =
π

2k
+

2πl

bc
, l = 0, 1, 2, . . .,

all of which yield the crossing frequency bc = k. By continuity, the asymptotic

stability of the system given in Eq. (3.13) is guaranteed for all delays satisfying

T ∈ (0, Tc), where Tc =
π

2k
. Equivalently, this gives the first condition in

Eq. (3.15), i.e. 0 < kT <
π

2
.
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Figure 3.7: Stability chart of system (3.13); the shaded area indicates the stable
region where all the roots are located in the C− plane; the curves are described in
Eq. (3.17).

3. Eq. (3.15) is depicted in Figure 3.7, which is referred as the stability chart. The

curves in the figure can be described in the form:

Cn = {(T, k) = (b,
π/2 +mπ

b
), nπ < b < (n+ 1)π}, (3.17)

where m,n ∈ N0. Further investigation on the quantity �
{
ds

dT
|s=ib

}
gives:

�
{
ds

dT
|s=ib

}
=

b2

(kT )2 + sin2(bT )
> 0. (3.18)

Therefore the increase in delay T beyond each curve Cn will bring the roots on

imaginary axis to the C+ plane, and the system will become unstable.

This completes the proof.

Remark: Even if the condition (3.15) is satisfied, the dynamic response of the

system (3.13) can be either slow or oscillating, because its dominant root can be

quite close to the imaginary axis in the s-plane (See Figure 3.10, where d = 0).

Our desired goal in the next step is to improve the dynamic response by placing the

dominant roots (rightmost roots) in C− plane far from the imaginary axis with an

extra tuning parameter.
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3.4.2 Improved PD-type Controller

In the previous controller, the dynamic response of the stable system still has large

oscillations or low convergence rate due to the location of the dominant root with

respect to the imaginary axis. Therefore, in this section, an extra derivative term

is to be designed in the controller to compensate for this oscillating behavior. The

overall system with PD-type controller is given as follows:⎧⎨
⎩ρ̇(t) = kρ · (ρd − ρ(t− T )) + dρ · ρ̇(t− T )

α̇(t) = kα · (αd − α(t− T )) + dα · α̇(t− T ),
(3.19)

where dρ, dα are parameters to be designed. These two equations can be rewritten in

a generalized delay-differential equation form as:

ẋ(t) = −kx(t− T ) + dẋ(t− T ), (3.20)

where delay T > 0. Before we present the stability theorem for this delayed system,

some simplifications need to be introduced for the proof of this theorem.

The characteristic equation corresponding to Eq. (3.20) is a quasi-polynomial of

the form:

hT,k,d(s) � s+ ke−sT − dse−sT = 0. (3.21)

Without loss of generality, through change of variable s 
→ sT and k 
→ kT in

Eq. (3.21) (refer to [13]), the simplified characteristic equation is described by the

function:

gk,d : C → C, gk,d(s) � s+ ke−s − dse−s = 0, (3.22)

which indicates gk,d(Ts) = ThT,k,d(s), meaning that s is a root of hT,k,d(s) if and only

if Ts is a root of gk,d(s). Now the following theorem describes the stability conditions

for the delayed system above.

Theorem 3.2 (Stability condition for PD-type controller). The system defined in

Eq. (3.20) is asymptotically stable if the parameters k, d and T satisfy the conditions

described in Eq. (3.23), i.e.

−1 < d < 1, 0 < kT < r sin(r), k > 0, (3.23)

where r = arccos(d).

Proof. Similar to the proof in Section 3.4.1.3, we can plot the curves in stability chart

with the roots of the simplified characteristic equation (3.22) having zero real parts.
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1. Suppose k < 0 in Eq. (3.22), and again we define two curves: y1(s) � s; and

y2(s) � −(k − d · s) · e−s with k < 0. We have y1(0) < y2(0) and lim
s→∞

y1(s) >

lim
s→∞

y2(s). Then there must be at least one intersection point of these two curves

in the C+ plane. Therefore, k > 0 is a necessary condition for the stability of

the system (3.20).

2. Our next aim is to find out the parametric region for k, d, T from h(s) in

Eq. (3.21), which is equivalent to finding the parametric region for k, d from

g(s) in Eq. (3.22), where it is still guaranteed that all the roots of Eq. (3.21)

will have their real parts in the C− plane. Let s = ib and separate real and

imaginary parts. It follows: ⎧⎨
⎩k = b sin(b)

d = cos(b)
. (3.24)

The stability chart based on Eq. (3.24) is shown in Figure 3.85. The shaded

area indicates the stability region for the parameters k, d, because when d = 0,

the system (3.20) is the same as the system (3.13), hence the same stability

condition applies.

3. Following the same analysis from Section 3.4.1.3, by determining the sign of the

quantity �
{
ds

dk
|s=ib

}
across the curves of the form:

Cn = {(d, k) = (cos(b), b sin(b)), nπ < b < (n + 1)π} (3.25)

where n ∈ N0, we have:

�
{
ds

dk
|s=ib

}
=

k

k2 + (dρb+ sin(b))2
> 0 (3.26)

This shows that the increase in k beyond each curve Cn will bring the roots on

the imaginary axis to the C+ plane and the system will be unstable.

This completes the proof.

Inside the stable region, the system performance is affected by the the location of

the dominant root of Eq. (3.21), which depends on the tuning parameters k, d and

time delay T . This is addressed in the following section.

5The figure is generated using Mathematica R©.
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Figure 3.8: Stability chart of system (3.20); the curves are defined in Eq. (3.25);
the shaded area indicates the stable region where all the roots are located in the C−

plane.

3.5 Parameter Design and Stability Analysis

In this section, we elaborate the parameter selection rules on k, d, T in the sys-

tem (3.20) using D-partition method [36, pp.132]6. The optimal values for the pa-

rameters in terms of system response are derived in a systematic way.

3.5.1 Parameter Selection

D-partition, or D-decomposition, is a well-known method for investigations in the

asymptotic stability of a system. It makes use of the simple fact that the roots of

a characteristic equation are continuous functions of the coefficients in the equation.

Thus the space of coefficients is decomposed by the hyper-surface of all points which

generate at least one root on the imaginary axis, i.e. on the line L0, where

La = {a+ ib | b ∈ R} , a ∈ R. (3.27)

Since the analysis of stability consists mainly of finding the coefficients which generate

only roots with negative real part, the decomposition idea from D-partition simplifies

6Similar work for deriving stable PI controller using D-partition method can be found in Xue
and Li [152].
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this question to the problem of finding the appropriate region in the space of coeffi-

cients. In Theorem 3.1 and 3.2, we already applied this method to the systems (3.13)

and (3.20), respectively.

Here we extend this methodology in the following way: consider a ≤ 0 in Eq. (3.27)

as an additional parameter, and search for coefficients which generate at least one

root in La. In order to do so, we need the following Lemmas.

Lemma 3.1. Every complex number s � a+ ib ∈ C is one root of gk,d if the real part

a and the imaginary part b of s satisfy the following two equations (with any given

d ∈ (−1, 1) and k > 0):

k = da+ eab sin(b)− eaa cos(b) (3.28)

0 = db− eab cos(b)− eaa sin(b) (3.29)

Proof. The equation gk,d(a + ib) = 0 is equivalent to the following two equations,

separated into the real and imaginary parts:

a + ke−a cos(b)− dae−a cos(b)− dbe−a sin(b) = 0 (3.30)

b− ke−a sin(b) + dae−a sin(b)− dye−a cos(b) = 0 (3.31)

• If cos(b) = 0, then sin(b) = ±1. It is obvious that Eq. (3.30) is equivalent to

Eq. (3.29) and Eq. (3.31) is equivalent to Eq. (3.28).

• If cos(b) �= 0, by multiplying Eq. (3.30) with cos(b) and subtracting Eq. (3.31)

multiplied by sin(b), the following equation is derived:

a cos(b) + ke−a − dae−a − b sin(b) = 0

Then Eq. (3.28) is obtained by solving the equation above according to k. Now

insert Eq. (3.28) into Eq. (3.31):

b− b(sin(b))2 + a cos(b) sin(b)− dbe−a cos(b) = 0.

After canceling cos(b), Eq. (3.29) is finally derived.

Lemma 3.1 suggests to decompose the analysis of roots in two steps. First, we

consider the trajectory of all roots by varying a, with b = 0 and fixed d ∈ (−1, 1).

Second, we fix d ∈ (−1, 1) and consider the trajectory of all roots by varying b. In

both steps, the trajectories of the roots form continuous curves in the k − a plane.

These curves are defined as follows.



40 3.5 Parameter Design and Stability Analysis

Definition 3.1. According to Eq. (3.28), every root with zero imaginary part (i.e.

b = 0) in the k − a plane lies on the following curve:

Ψ : R → R
2, Ψ(a) � (k(a), a)� = (da− aea, a)�

If the root has nonzero imaginary part (i.e. b �= 0), Eq. (3.29) cannot be solved

explicitly with respect to a. In this case, the roots form a level set in the k − a plane,

which is defined as

Υ := {(k, a) | ∃b �= 0 s.t. (a, k, b) satisfies Eq. (3.28) and (3.29)} (3.32)

However, it is possible to solve Eq. (3.29) locally with respect to a, i.e. a = a(b).

Thus, the level set Υ can be parameterized with curves of the form:

Φ : R → R
2

Φ(b) � (k(a, b), a(b))�

= (da(b) + ea(b)b sin(b)− ea(b)a(b) cos(b), a(b))�.

In the following part, the intersection point of the curves Ψ and Φ will be studied.

This intersection point is where the roots of gk,d in the C− plane have the same real

part a with given k and d on both curves, which will reveal the dependence of the

real part of the rightmost root on these two parameters.

Lemma 3.2. Suppose (k̂, â) is an intersection point of the curves Ψ and Φ in the

k − a plane, and suppose b̂ is the imaginary part of the intersection point.

• If b̂ = 0, then the following two equations will hold:

k̂ = dâ− âeâ (3.33)

0 = 1 + â− de−â . (3.34)

Note that the equations above are only solvable for d ≥ −e−2.

• If b̂ �= 0, the following equalities hold:

â = ln(|d|) and k̂ = max{2d ln(|d|), 0}

Note that there will be no intersection point for d = 0 in the case of b̂ �= 0.

Proof. Depending on whether the intersection point has imaginary part, two cases

are analyzed here.
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• If b̂ = 0, gk̂,d will have multiple zeros at the intersection point where s = â.

Hence it holds that gk̂,d(â) = 0 and g′
k̂,d
(â) = 0. This gives us:

0 = â + k̂e−â − dâe−â

0 = 1− k̂e−â − de−â + dâe−â.

Insert the first equation above into the second, Eq. (3.34) is derived, and mul-

tiply the first equation with ea, it gives Eq. (3.33). As an example, Figure 3.9a

shows the relation between k and a, with various regions for b.

• If b̂ �= 0, â+ ib̂ and â are both zeros of function gk̂,d. According to Lemma 3.1:

dâ− eââ = k = dâ+ eâb̂ sin(b̂)− eââ cos(b̂) (3.35)

db̂e−â = â sin(b̂) + b cos(b̂) (3.36)

From Eq. (3.35), it gives −â = b̂ sin(b̂)− â cos(b̂).

a) If b̂ �∈ 2πZ, Eq. (3.36) becomes:

db̂e−â =
b̂ sin(b̂)2

cos(b̂)− 1
+ b̂ cos(b̂)

=
b̂ sin(b̂)2(cos(b̂) + 1)

cos(b̂)2 − 1
+ b̂ cos(b̂)

= −b̂

Since b̂ �= 0, it follows that â = ln(−d). This equation is only solvable

for d < 0. Insert this solution into (3.33), it gives k = 2d ln(−d). Two

examples of this case are shown in Figure 3.9b and Figure 3.9c.

b) If b̂ ∈ 2πZ, Eq. (3.29) becomes 0 = db̂ − b̂eâ. Since b̂ �= 0 still holds, it

gives â = ln(d). Moreover, this equation is only solvable for d > 0. Insert

this into Eq. (3.28), then k = 0. This means the intersection point is on

the a axis in the k − a Plot (as shown in Figure 3.9a with the smaller a),

where all zero solutions have the same real part (â = ln(d)) but different

imaginary parts (b̂ ∈ 2πZ) in the s-plane.

Note that for the case when d = 0, the only intersection point is located on the real

axis, where b̂ = 0. The corresponding plot is shown in Figure 3.9d. This completes

the proof for Lemma 3.2.
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Lemma 3.2 provides the relationship between the real part a of the roots and

the two tuning parameters k and d at the point where curve Ψ and Φ intersects. In

order to find the solution to the smallest real part of the rightmost root, the following

Lemma is necessary, which proves the monotonicity of the curve Φ in a certain region

of interest.

Lemma 3.3. The trajectory of the curve Φ is strictly monotonously increasing for

k > da− aea and a < 0 in k − a plane.

Proof. According to Eq. (3.28), the following partial derivative over a and b can be

derived: ⎧⎪⎨
⎪⎩
∂k

∂a
= d+ eab sin(b)− eaa cos(b)− ea cos(b)

∂k

∂b
= ea sin(b) + eab cos(b) + eaa sin(b)

(3.37)

A total differentiation of Eq. (3.29) over b yields:

de−a − dbe−ada

db
= sin(b)

da

db
+ cos(b)a + cos(b)− b sin(b),

and it follows:

d+ eab sin(b)− eaa cos(b)− ea cos(b) = (db+ ea sin(b))
da

db
. (3.38)

Combining Eq. (3.37), (3.38) with Eq. (3.29):

∂k

∂a
=
∂k

∂b

da

db
. (3.39)

Since the curve Φ is strictly monotonously increasing in k − a Plot if
dk

da
∈ (0,+∞),

under Eq. (3.39), it is equivalent to
∂k

∂a
> 0, because

dk

da
=
∂k

∂a
+
∂k

∂b

db

da
=
∂k

∂a

(
1 +

(
∂k
∂b

)2(
∂k
∂a

)2
)

Without loss of generality, let b ≥ 0. In the region k > da− aea:

bea
∂k

∂a
= bde−a − b cos(b) + y (b sin(b)− a cos(b))

= a sin(b) + be−a (eaa+ eab sin(b)− eaa cos(b))− ba

= a sin(b) + be−a (eaa− da+ k)− ba

> a sin(b)− ba

= (−a) (b− sin(b))

≥ 0.
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This indicates that
∂k

∂a
> 0 in the region described above and hence

dk

da
∈ (0,∞).

Now the following theorem can be concluded based on Lemma 3.1 to 3.3, which

states the main result on the criteria of tuning parameters in the PD-type controller

to adjust the location of the dominant root.

Theorem 3.3 (Global Minimum of the Rightmost Root). Let ã(k, d) denote the

largest real part of all the roots of equation gk,d(s), with the parameters k > 0 and

d ∈ (−1, 1), i.e.,

ã(k, d) � max{�(s) | gk,d(s) = 0}.
For a given d ∈ (−1, 1), the trajectory of k 
→ (k, ã(k, d))� has two parts. The first

part starts from the curve of Ψ and the other part is on the curve Φ. The minimum

of k 
→ ã(k, d) is therefore the intersection point of the two curves.

If d varies in (−1, 1), then the global minimum of function ã(k, d) is −2 with

k = 4e−2 and d = −e−2, i.e.

ã(4e−2,−e−2) = min
k>0,|d|<1

ã(k, d) = −2.

Proof. We derive the global minimum point through the monotonicity property of

curves Ψ and Φ, and search for the minimum value in the set of all possible intersection

points.

With given k and d, where k > 0 and d ∈ (−1, 1), the value ã(k, d) is the real

part of one zero solution of function gk,d(s), and the point (k, ã(k, d)) must lie on

either the curve Φ or Ψ according to Lemma 3.1 and Definition 3.1. Since |dse−s| =
|d||s|e−	{s} < |s| for �{s} > 0 and g0,d(0) = 0, s = 0 is hence one zero with the

largest real part of function g0,d, and the point (0, ã(0, d)) is on the curve Ψ. Since

ã is continuous, point (k, ã(k, d)) for k > 0 stays on the curve Ψ until the first

intersection point of Ψ and Φ. Since
dk

da
> 0 after the intersection point, (k, ã(k, d))

will switch onto the curve Φ.

On curve Ψ, k(a) � da − aea is decreasing before the intersection point, and

therefore k 
→ ã(k, d) is decreasing. After the intersection point, the function k 
→
ã(k, d) is monotonously increasing on curve Φ according to Lemma 3.3. Therefore,

the point (k, ã(k, d)) cannot come back to the curve Ψ after the intersection point,

and this intersection point is therefore the minimum of k 
→ ã(k, d).

Let (k̂i,d, âi,d), i ∈ I be all the intersection points with a given value of d ∈ (−1, 1),

and the following equation can be drawn from the argument above:

min
k>0

ã(k, d) = max
i∈I

âi,d.
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This means:

min
k>0,|d|<1

ã(k, d) = min
|d|<1

max
i∈I

âi,d.

According to Lemma 3.2, it can be written as:

min
k>0,|d|<1

ã(k, d)

=min
|d|<1

(
max

{
â | 0 = 1 + â− de−â ∪ â = ln(|d|)}) (3.40)

• If d > −e−2, then ln |d| < −2. Meanwhile, 1 + a − de−a < 0 for a = −2 and

lim
a→∞

(1 + a − de−a) = ∞. By continuity, there must be one â > −2, which

satisfies the equation 0 = 1 + a− de−a.

• If d < −e−2, the equation 0 = 1 + a− de−a has no solution and ln |d| > −2.

• If d = −e−2, â = −2.

Therefore, ã(k, d) = −2 is the global minimum of Eq. (3.40), with d = −e−2 and

k = 4e−2. The corresponding k − a Plot is shown in Figure 3.9e.

Remark:

1. Recall that in the simplified characteristic equation (3.22), we have the change

of variable k 
→ kT . Under Theorem 3.3, it means that the system can tolerate

a large delay T by adjusting the proportional gain k in the controller, where

the same minimum dominant root can be achieved.

2. The method of D-partition allows us to analyze the real part of the roots in terms

of the coefficients in the characteristic equations. This approach is generally

applicable to parameter selection of other types of controllers, provided that

the transcendental characteristic equations exist.

3.6 Convergence and Internal Dynamics

In the section above, we analyzed the relationship between the real part of roots of

the characteristic equation (3.22) and its coefficients. The analysis is valid based on

the change of variables s 
→ sT and k 
→ kT in Section 3.4.2. In this section, we

will address the convergence rate of the formation system described in the general

delay differential equation (3.20), which fundamentally determines the performance

of the system. The advantage of our proposed PD-type controller will be summarized
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(a) The zero solution of function gk,d(s), where d = e−2. The intersection point
with larger a is the solution to Eq. (3.33) and (3.34). The intersection with smaller
a is explained in the proof of Lemma 3.2.
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(b) d = −0.3; There is only one intersection point where â = ln(−d) ≈ −1.2 and
k = 2d ln(|d|) ≈ 0.72.
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(c) The zero solution of function gk,d(s), where d = −0.1. There are three inter-

section points, two of which are from the first part of Lemma 3.2 where b̂ = 0 and
â is the solution to Eq. (3.33) and (3.34). The other intersection point is located
at â = ln(−d) ≈ −2.3 and k = 2d ln(|d|) ≈ 0.46 according to the second part of

Lemma 3.2 where b̂ �= 0.



46 3.6 Convergence and Internal Dynamics

0.5 1.0 1.5 2.0
k

�8

�6

�4

�2

0

a

b��4�,6��

b��2�,4��

b��0,2��

b�0

(d) d = 0; Only one intersection point is found to be located at â = −1 and
k = e−1.
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(e) d = −e−2; The global minimum of ã is found at a = −2, where k = 4e−2.

Figure 3.9: The zero solutions of function gk,d(s) with different values of d.

through the following two theorems, which are based on the Theorem 2.1 for a general

linear time invariant system. Meanwhile, the analysis on internal dynamics in the case

of time-delayed formation system is also provided to complete the overall controller

design.

3.6.1 Exponential Convergence

For the P-type controller discussed in Section 3.4.1, the following theorem can be

concluded.

Theorem 3.4 (Convergence rate of P-type Controller). The trivial solution of the

delay differential equation (3.13) is unstable for k < 0 and for kT > π
2
. In the case

0 < kT < π
2
, all solutions x(t) of Eq. (3.13) are asymptotically stable according to the
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exponential rule

|x(t)| ≤ Qeλt

for any λ >
ã(kT, 0)

T
� λ0 and Q > 0.

If T > 0 is fixed, the smallest value for the stability exponent λ0 is − 1

T
. This

value is only achieved for the system parameter k =
1

T
e−1.

Proof. Theorem 3.4 is a trivial deduction of Theorem 3.1, Lemma 3.2 and 3.3 for

d = 0. Thus λ0 and k can be computed using Eq. (3.33) and (3.34), where the

intersection point has zero imaginary part.

For the PD-type controller presented in Section 3.4.2, the following theorem can

be drawn:

Theorem 3.5 (Convergence rate of PD-type Controller). The trivial solution of the

delay equation (3.20) is unstable for k < 0 and for kT > r sin(r) with r = arccos(d).

In the case 0 < kT < r sin(r), all solutions x(t) of Eq. (3.20) are asymptotically stable

according to the exponential rule

|x(t)| ≤ Qeλt

for any λ >
ã(kT, d)

T
� λ0 and Q > 0.

If T > 0 is fixed, the smallest value for the stability exponent λ0 is − 2

T
. This

value is only achieved for the system parameter k =
4

T
e−2 and d = −e−2.

Proof. Theorem 3.5 is also a trivial deduction of Lemma 3.2, Lemma 3.3 and Theo-

rem 3.3 for d �= 0.

These two theorems indicate that switching from the P-type control in Eq. (3.13)

to the PD-type control in Eq. (3.20) makes it possible to double the stability exponent

λ0 (from − 1

T
to − 2

T
), which gives higher convergence rate and more stable response

to the respective systems. Figure 3.10 shows the plot of roots which illustrates the

two theorems above.
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Figure 3.10: Real part of the rightmost root; the curve with d = −e−2 illustrates
Theorem 3.3.

3.6.2 Internal Dynamics in Time-delayed Case

The other part of the controller stability analysis includes the convergence proof of

the internal dynamics of the delayed formation system, similar to the analysis in

Section 3.4.1.3. The theorem developed in this section will address the local stability

conditions and global attraction domain for the internal dynamics.

In order to simplify notation assuming no ambiguity arises on the variable x, let

x(t) � e3(t) − αd in the internal dynamics (3.7), and we get the nonlinear delay

differential equation

ẋ(t) =M sin(x(t− T ))−N, M,N ∈ R, T ≥ 0,M �= 0, (3.41)

where M =
vL

d

ρd cosαd

, N =
vL

d tanβL
d

l
.

Recall that a system like (3.41) yields a unique solution if we have an initial

function Λ : [−T, 0] → R in advance and let x(t) = Λ(t) for all t ∈ [−T, 0]. An

equilibrium point xe ∈ R of a system like (3.41) is called locally (asymptotically)

stable if there exists μa > 0, Ta > 0, such that supt∈[−T,0] |Λ(t) − xe| < μa implies

x(t) → xe for T ≤ Ta. If there exists Ta > 0, such that x(t) → xe holds for any Λ

and any 0 ≤ T ≤ Ta, we call the system globally (asymptotically) stable (see Driver

[28], Melchor-Aguilar and Niculescu [96] for the definitions and Theorem 3.1 in [47]

for the proof.).

Theorem 3.6. Consider the nonlinear delay-differential equation (3.41)
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• if |M | < |N |, it has no equilibrium point.

• if |M | = |N |, then xe = sgn(
N

M
)
π

2
mod 2π is the only equilibrium point in the

interval [0, 2π).

• if |M | > |N |, there are two equilibrium points x1 = arcsin(N/M) mod 2π and

x2 = π − arcsin(N/M) mod 2π in the interval [0, 2π).

Define:

C := sgn(M)T
√
M2 −N2. (3.42)

The point x1 is locally asymptotically stable if −C ∈ [0,
π

2
), and unstable if

−C �∈ [0,
π

2
].

The point x2 is locally asymptotically stable if C ∈ [0,
π

2
), and unstable if C �∈

[0,
π

2
].

Proof. Three cases are analyzed separately, depending on the values of M and N .

• If |M | < |N |, for the right-hand side of Eq. (3.41), it is obvious that

|M sin(x(t− T ))−N | > |N | − |M | > 0.

Therefore, lim
t→∞

|x(t)| = ∞ and Eq. (3.41) has no equilibrium point.

• If |M | > |N |, let σ = arcsin(N
M
). The equilibrium points of Eq. (3.41) are the

same as the zeros of the function

f(z) �M sin(z)−N

=M (sin(z)− sin(σ))

= 2M sin

(
z − σ

2

)
cos

(
z + σ

2

)
. (3.43)

The two zeros of f(z) are z1 = σ mod 2π and z2 = π − σ mod 2π in the

interval [0, 2π), which gives the two equilibrium points x1 = z1 and x2 = z2.

The linearization of Eq. (3.41) at these two equilibrium points is:⎧⎨
⎩ẏ1(t) =M cos(σ)y1(t− T ) at point x1

ẏ2(t) = −M cos(σ)y2(t− T ) at point x2
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where y1(t) = x(t) − x1, and y2(t) = x(t) − x2. Let M̂ � M cos(σ), then the

corresponding characteristics equation of these two linearized equations are:

s− M̂e−Ts = 0 and s+ M̂e−Ts = 0. (3.44)

Following Zhang et al. [156], the stability regions for the characteristic equations

above are well-defined, which are⎧⎨
⎩
0 ≤ −TM̂ <

π

2
at point x1

0 ≤ TM̂ <
π

2
. at point x2.

(3.45)

Therefore, the stability conditions of −C ∈ [0, π
2
) on equilibrium point x1

and C ∈ [0, π
2
) on equilibrium point x2 are the results from Eq. (3.45), with

M̂ = M
√

1− (N/M)2 = sgn(M)
√
M2 −N2. Standard results on stability in

first approximation [see 36, pp.160, 161] complete the proof from the stability of

the linearized function to the stability of the original nonlinear delay-differential

equation (3.41).

• If |M | = |N |, the two zeros from Eq. (3.43) merge together, and the stability of

the equilibrium point of x = π/2 is not well-defined.

This completes the proof.

Theorem 3.6 provides the parameter domain in M,N, T which defines local sta-

bility conditions for the internal dynamics of the delayed formation system.

The parameter domain in M,N, T for the global stability property of the sys-

tem (3.41) is numerically computed under Mathematica R©, which is shown in Fig-

ure 3.11. We approximate the function Ta(M,N), such that each function x(t) with

the following two properties:

• x(t) is a solution of (3.41) for given parameters M,N , 0 ≤ T ≤ Ta(M,N) and

• x(t) = c, ∀t ∈ [−T, 0] and ∀c ∈ R

satisfies x(t) → xe. (Due to the second property, this is a weaker formulation than the

one of the global stability.) Note that Figure 3.11 only captures the case whereM < 0.

When M > 0, the analogous figure appears, which is symmetric to Figure 3.11 with

respect to M = 0 axis.
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Figure 3.11: Parameter domain for global stability; the color map represents the
maximum of delay Ta in [s]

3.7 Simulation and Experimental Validation

In this section, we present both simulation and experimental results for a formation

system composed of multiple car-like robots.

In the simulations, the leader robot (marked in red) moves at a constant speed

vL = 1 m/s, with a steering angle βL = 0.05 radian, while two followers (in yellow)

start from different initial positions and try to achieve a V-formation with a desired

separation distance ρd1 = 2 m and relative bearing angles αd1 = ±π
4
, and two other

sub-followers (in yellow) try to achieve a subsequent V-formation with one of the

followers. For these two sub-followers, the desired separation distance is ρd2 = 3.5 m

and relative bearing angles are αd2 = ±π
6
.

In the hardware experiments, the leader robot is driving semi-autonomously at

the speed of vL = 0.5 m/s for cooperative V-formation, and at vL = 0.3 m/s for the

non-cooperative formation tracking using visual data. The steering angle is set as

βL = 0.087 radian (5 degree) in circular motion. These values are properly selected

according to the size of the robots and the experiment field. The sampling period of

the onboard sensors is Ts = 0.1 s.

The constant time delay T in both cases is simulated using data buffer. In the

case of time-varying delays, we apply the following rules and technical assumptions

to form piecewise constant delays:

1. The variable delays are upper rounded to N · Ts, where N ∈ N, and Ts is the
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simulation step size or sampling period of the robots. Each data packet has its

own delay value.

2. The data packets sent out from the leader are dropped by the follower if the

follower considers the packets are older than the ones it has received before.

3. The follower keeps the newest packet from the leader as the reference at every

processing step.

4. The follower is assumed to be able to determine how much delay is induced on

each packet based on packet numbering or timestamps.

In the experiment presented in Section 3.7.2, the localization between the mobile

robots is based on the dead reckoning technique, as pointed out in Section 2.3.2. It

suffers from long-term accumulation of measurement errors from onboard sensors,

such as gyroscope and optical encoders. Nevertheless, short-term experiments for

proving the concepts are feasible. Such demonstration based on dead reckoning can

also be found in vision-based vehicle-following system from Benhimane et al. [8] and

laser range-based system from Vasseur et al. [140], as well as the rendezvous system

from Hess [54].

3.7.1 Simulation

The simulation results from Figure 3.12 to Figure 3.15 cover the overall study from

this chapter. The car-like mobile robots denoted with Follower 1 and Follower 2 are

assigned to keep a distance ρd1 = 2m and bearing angle αd1 = ±π/4 from the Leader

robot, while Follower 2.1 and Follower 2.2 are expected to keep the V-shape formation

with Follower 2 at a distance ρd2 = 3.5m and bearing angle αd2 = ±π/6.

3.7.1.1 Feasibility

To evaluate the performance of the proposed controllers from this chapter, a cascade

leader-follower formation system without delay is simulated and shown in Figure 3.12.

The controller applied is from Eq. (3.4). A smooth and stable behavior of the system

achieving two cascading V-formations can be observed in the figure, which proves

the feasibility of the input-output feedback linearization method based on scalable

leader-follower structure.
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Figure 3.12: Formation tracking without delay, kρ = 3, kα = 4, where leader drives
along a predefined circle, and the followers are driving autonomously along under the
controller from Eq. (3.4).

3.7.1.2 Steady-state error

In order to illustrate the problem of steady-state error related to the formation track-

ing system, a second simulation based on the controller from Eq. (3.12) is shown

in Figure 3.13. This controller incorporates Eq. (3.9), which utilizes current states

of follower and delayed states of the leader. Clearly, the steady-state error can be

observed on ρ and α as discussed in section 3.4.1. Figure 3.4 illustrates the reason

behind this phenomenon.

3.7.1.3 Oscillation with delay-compensation

After the design of the delay-compensating controller given by Eq. (3.12), which uses

Eq. (3.10) as the input to achieve the linear system behavior given in Eq. (3.11),
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Figure 3.13: Formation tracking with delayed leader states and current follower
states, kρ = 1.5, kα = 2; delay=0.6s. The steady-state error is clearly observed.

the same formation system as before is simulated. The results are shown in Fig-

ure 3.14. Although the convergence condition from Eq. (3.15) still holds in this case,

the formation system presents a very oscillating behavior due to the location of the

dominant root close to the imaginary axis, which can be found in Figure 3.10 (where

d = 0). This oscillation can be suppressed through the derivative term in the PD-type

controller, as shown in the following simulation. Nevertheless, the steady-state error

does not show up in this case due to the delay-compensating controller design, which

is explained in Figure 3.5.

3.7.1.4 Stable delay-compensation

Under the PD-type controller derived from Eq. (3.19), we have the simulated results

in Figure 3.15, with the parameters derived in Section 3.5.1. Additionally, we applied

variable time delays (piecewise constant) between 0.4 to 0.8 sec. To achieve fastest
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Figure 3.14: Formation tracking with delayed leader states and delayed follower
states to compensate for steady-state error; P-type controller, with kρ = 1.5, kα = 2;
delay=0.6s.

convergence according to Theorem 3.5, kρ = kα =
4

T
e−2 = 0.6767 and dρ = dα =

−e−2 = −0.1353, where T = 0.8s is the upper-bound of the delay. The system has a

much more stable behavior than in Figure 3.14, because the location of the dominant

root in this case is placed far enough to the left-side of the imaginary axis. Obviously,

this demonstrates the usage of the derived theorems on selection criteria of stable

parameters in Section 3.6.

In the next section, experiments of various formation tracking systems are pre-

sented to further validate and showcase the developed delay-compensating formation

controller.



56 3.7 Simulation and Experimental Validation

−10 −5 0 5 10
−5

0

5

10

x(m)

y(
m

)

Leader
Follower 1
Follower 2
Follower 2.1
Follower 2.2

0 5 10 15 20 25 30
2

2.5

3

3.5

4

4.5

5

5.5

6

ρ 
(m

)

Time(s)

Follower 1
Follower 2
Follower 2.1
Follower 2.2

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

α 
(r

ad
)

Time(s)

Follower 1
Follower 2
Follower 2.1
Follower 2.2

0 5 10 15 20 25 30
1.5

2

2.5

3

3.5

4

4.5

5

5.5

φ 
(r

ad
)

Time(s)

Follower 1
Follower 2
Follower 2.1
Follower 2.2

Figure 3.15: Formation tracking with PD-Type controller under delayed leader
states; kρ = 0.676, kα = 0.676, dρ = −0.135, dα = −0.135; delay = 0.4− 0.8s
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(a) Three MERLIN robots starting the experiment in a V-Formation; the leader
robot in front is given the commands to drive straight at this moment.

(b) Three MERLIN robots during the experiment after a circular turnaround.

Figure 3.16: Snapshots of MERLIN in leader-follower experiment

3.7.2 Cooperative V-Formation Experiment

For the real-world experimental study on our MERLN robots (which are described

in Section 2.3.2), we compare the delay-compensating formation controller with the

initial feedback linearization method from Section 3.3.1, which is affected by steady-

state error due to the communication delays. In order to be able to manually bound

the communication delays between the robots, we create data buffers on the leader

robot in the software. Before it broadcasts its localization information using UDP in

an Ad-Hoc network, the data buffer mechanism checks if the desired delay is reached

for each packet. We also add bounded randomness to the delay timer. In this way, we

are able to create piece-wise constant delays within the range from 0.4 to 0.8 seconds.

To visualize the conducted experiments, two snapshots of the second experiment

performed in this section are shown in Figure 3.16.
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Figure 3.17: MERLIN formation drive with delayed leader states; the parame-
ters used in the experiment are as follows: ρd = 1.5m,αd = ±π/6, kρ = 1.2, kα =
1.2; delay = 0.4 − 0.8s. Leader is driving at 0.5 m/s, with steering angle at 5 deg
during circular motion.

The first experiment consists of three MERLIN robots, where the two followers

are running the controller from Eq. (3.4), without considering the communication

delays. The results are shown in Figure 3.17. As illustrated in the upper-left plot,

the followers first track the leader’s motion in a line, and perform a circular motion

to turn around, followed again by a straight line path. The switch signal between

different leader’s motion is given by the operator. The formation parameters ρ, α, φ

are calculated according to the recorded status packets of the robots with synchronized

timestamps. With the desired separation distance set to be 1.5 meters, both followers

are maintaining the distances ρ around 1.7 meters under the delay from 0.4 to 0.8

seconds. The followers are simply trying to keep a formation with the delayed leader,

as illustrated in Figure 3.4. Similar deviations from the desired values are to be

found for the bearing angle α. In principle, this steady-state error is caused by data

inconsistency, which is also illustrated through the result in previous simulation study

shown in Figure 3.13. This points out one of the problems in formation tracking under

time-delay in data transmission.
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Figure 3.18: MERLIN formation with PD-Type controller; the parameters used
in the experiment are as follows: ρd = 1.5m,αd = ±π/6, kρ = 1.2, kα = 1.2, dρ =
−0.135, dα = −0.135; delay = 0.4 − 0.8s. Leader speed is regulated at 0.5 m/s and
steering angle at 5 deg during circular motion.

To demonstrate the effectiveness of the proposed controller, a similar experiment

with three MERLIN robots under the delay-compensating control law is implemented,

which corresponds to the idea from Figure 3.5. Figure 3.18 shows the resulting im-

provement. Clearly, the tracking performance is achieved according to the given

specifications (ρ → 1.5m and α → ±π/6), as shown in Table 3.1. The fact that no

steady-state error and oscillating behavior arise during the experiment has demon-

strated the applicability and effectiveness of the proposed control scheme for delayed

formation tracking systems.

Note that the controller parameters for the proportional gain are larger than the

ones given in the comparative simulation shown in Figure 3.15. One reason is that

the smaller proportional gain leads to a longer convergence time, especially when the

robots need to conquer the static friction from the ground and compensate for the

actuator delays. Although the higher proportional gain brings less smoothness to

the system (some small overshoots can be observed in the experiments), the faster

reaction under the implemented controller is also desired in real-world experiment.
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Table 3.1: Tracking errors of the two followers in the experiment show in Figure 3.18.
The nominal value for ρ is ρd = 1.5m, and for α is αd = ±30deg.

Separation Distance [m]
(mean ± standard deviation)

Bearing Angle [deg]
(mean ± standard deviation)

Follower 1 1.4586± 0.02 −30.31± 1.8
Follower 2 1.4806± 0.03 30.50± 1.5

This trade-off should be balanced according to the specific high-level mission together

with low-level hardware requirements.

Table 3.1 shows the statistical evaluation of the formation tracking experiment

in Figure 3.18. The values are computed over the time period from approximately 5

seconds to the end of the experiment. The data at the beginning of the experiment

are not considered for this evaluation, since the followers need to form the desired

formation from the initial positions. The small tracking offsets from the desired values

shown in the table are resulted from two sources. One is the systematic offsets in

robot speed and steering control, as these two states can be affected by the calibration

errors in mechanical construction. The other source is the sampling period of the

sensors at 0.1s, which brings offset to the measured values. This value on sampling

period is limited by the capability of the onboard microcontroller. Nevertheless, with

the nominal speed of the leader at 0.5 m/s, the standard deviations for separation

distance at the magnitude of centimeter and for bearing angle under 2 degrees show

the reliable performance of the designed controller in the time-delayed leader-follower

formation system.

3.7.3 Non-cooperative Formation Tracking using Visual Data

The developed PD-type control law under communication delays in formation control

is not restricted in compensating steady-state errors for cooperative missions. To

further showcase the applicability and the value of the proposed control scheme,

we present a non-cooperative formation tracking scenario using visual data. The

importance of the derivative term in the controller, together with the parameter

selection criteria, is demonstrated through comparative experimental studies in this

section.

Figure 3.19 illustrates the outdoor version of the MERLIN robot, equipped with

high-precision measuring unit, iSpace [55], and a visual system consisting of two

different types of cameras. The iSpace system is used for providing ground truth data

of the formation experiment. Both the leader and follower robots are equipped with
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Figure 3.19: Hardware setup on Outdoor MERLIN for formation tracking using
visual data, and high-precision measuring unit for evaluation.

Figure 3.20: Snapshot of the initial formation setup. The camera perspective from
the follower robot is also displayed in the figure. The bounding box in color is the
estimated 6D posed of the target robot.

the laser transmitters, which can be positioned under millimeter accuracy through

the fixed laser headers in the test field. The visual system, providing the 6 degrees

of freedom (DoF) pose estimation of the target robot, processes RGB-Depth data

based on the sensor fusion between a 3D Time-of-Flight (ToF) camera and a 2D color

camera. Figure 3.20 illustrates the initial setup of the formation tracking system. The

estimated pose of the target robot is shown through the colored bounding box. The

relative pose between the two robots (for the calculation of ρ, α, φ) and the estimated
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(a) Profiles of separation distance ρ and bearing angle α. The experiment is
stopped after 30 seconds due to the undesirable oscillating behavior.
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(b) The varying time delays from the captured visual frame
till the computed driving commands, ranging approximately
from 0.4− 0.6s.

Figure 3.21: Formation tracking results under P-type controller given in Eq. (3.12)
to achieve the linear system of Eq. (3.11). Controller parameters are set as: ρd =
1.5m,αd = 0, kρ = 1.5, kα = 1.5. The target robot is driving at 0.3 m/s.

target speed (vL) are considered as the inputs for the delay-compensating formation

tracking controller proposed in Section 3.4.2. The details on estimating the 6D pose

of an arbitrary object can be found in the paper by Sun et al. [134].

Note that the delay source in this experimental setup is different from the one

discussed in Section 3.7.2, since there is no communication between the two mobile

robots. Instead, as pointed out in [134], the vision-based pose estimation algorithm

under this setup creates a noticeable delay in computation. Therefore, the captured

target information is considered delayed due to this high computational demand when

it is used for calculation of control commands. Since the pose estimation algorithm

directly produces the relative pose information, i.e. ρd, αd, and φd, as well as the

target speed vL
d, there is no data inconsistency between the target and the follower

states. Therefore, no steady-state error in the tracking is to be expected. However, the
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Figure 3.22: Formation tracking results under P-type controller given in Eq. (3.12)
to achieve the linear system of Eq. (3.11). Controller parameters are set as: ρd =
1.5m,αd = 0, kρ = 1.5, kα = 1.5, dρ = −0.135, dα = −0.135. The target robot is
driving at 0.3 m/s, with steering angle at 5 deg during circular motion.

analysis on the stability region of the controller parameters is utilized to understand

the oscillating behavior of the tracking system, as well as to improve the desired

formation tracking specifications.

In the following, we compare the P-type controller with the PD-type controller

through the experimental setup described above, so as to show the effectiveness of the

proposed scheme on suppressing the oscillating behavior of the system by referring to

the derived stability regions. The trajectory of the semi-autonomous target robot is

similar to the one from indoor MERLIN experiment in Section 3.7.2, which consists

of both linear and circular motion.

Figure 3.21 provides the resulting data during the formation tracking experiment.

Similar to the simulated case in Figure 3.14, the P-type controller causes undesired
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Table 3.2: Tracking errors of the follower in the experiment show in Figure 3.22.
The nominal value for ρ is ρd = 1.5m, and for α is αd = 0deg.

Separation Distance [m]
(mean ± standard deviation)

Bearing Angle [deg]
(mean ± standard deviation)

Follower 1.5049± 0.02 0.22± 1.24

oscillating behavior in both ρ and α states due to the location of the dominant root

of the linearized system. Note that the system is not diverging yet, since the product

of k · T is within the stable parametric region shown in Figure 3.10. Therefore, the

next experiment is performed with the PD-type controller to relax the constraint on

the choices of controller parameters.

Figure 3.22 shows the experimental results from the formation tracking using PD-

type controller. The initial separation distance is approximately 1.6m. Both robots

start moving after about 5 seconds. Obviously, the follower robot is able to maintain

the desired separation distance and bearing angle. The deviations in the figure come

from the sensor noises, as well as the ground frictions during driving.

Table 3.2 provides the statistical data of the experiment performed with PD-type

controller. Different from the experiments in Section 3.7.2, the evaluated states ρ and

α are obtained through the high-precision iSpace system, rather than using dead-

reckoning method. Therefore, the tracking offsets are largely reduced compared to

Table 3.1. The mean and standard deviation values are computed over the time

period from approximately 10 seconds to the end of the experiment, which represents

the nominal operation time frame of the controller.

3.8 Summary and Discussion

We have studied the time-delay problem in the formation control of multiple car-like

robots, and developed a stable PD-type controller to achieve trajectory tracking using

feedback linearization method in a leader-follower formation framework. The stability

of the system is guaranteed by the parameter selection rules for the controller, and

by the convergence of internal dynamics. We derived the convergence theorems of

the parameters based on the analysis of transcendental characteristic equations of

time-delayed systems. The robustness of the controller against varying time delays is

shown through both simulations and experiments.

The parameter design methodology introduced in this chapter also applies to

general systems that are feedback linearizable and suffer from time-delay effects. The
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PD-type controller can be substituted by other types of controllers, such as sliding

mode controller, although the stability analysis with the advanced controllers would

be more complicated.

As mentioned in Section 3.1, the delay-compensating framework developed in this

chapter can also be applied to robotic teleoperation, including near-space satellite

operation, where the time-delay effect is inevitable. In this case, the delay between

the ground control center and the satellites can be modeled as the delay between the

leader and follower satellites, where the leader satellite can be virtually simulated on

the ground side. This closely corresponds to the experimental study given by Palafox

and Spong [111], where the steady-state error problem is not considered. With the

delay-compensating PD-type controller extended to the teleoperation scheme, the

slave formation can track the master positions without offsets.

Another extension of the proposed control scheme is the non-cooperative vehicle-

following systems, such as the one studied by Goi et al. [49]. Section 3.7.3 demon-

strates the ability of the controller in this similar direction, although the experiment

is performed under relatively low speed and close separation distance. More applica-

tions include adaptive cruise control (ACC) technology in automotive industry, where

the complex sensor systems on the vehicle may create some undesired information de-

lay due to the processing time. This amount of delay can be similarly handled by

the proposed control scheme, as shown in Section 3.7.3, so that the real-time cruise

control can be further improved.
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CHAPTER 4

OPTIMAL INITIAL CONDITION – READINESS

ANALYSIS

This chapter explores the performance for a formation system in response to inputs

(or disturbances) from outside of the formation. In order to analyze the system per-

formance, the notion of readiness is proposed, which describes the initial conditions

of the formation in terms of a certain set of input space that stems from external

sources. A higher readiness means the system is better prepared with the corre-

sponding set of initial conditions to maintain or recover the original formation shape

against exogenous inputs (or disturbances). For deriving the optimality of the ini-

tial conditions, optimization method based on calculus of variations is utilized. The

meaning and features of readiness notion are demonstrated on car-like mobile robot

formation through simulations.

In the following sections, we first present an overview of the research work which

inspire us in the derivation of readiness and put forth the mathematical represen-

tation (Section 4.1). Then we provide a case study of readiness on car-like mobile

robot formation using a distance-based control approach (Sections 4.2.1 and 4.2.2).

Afterward we formulate the optimality conditions for the optimal initial orientations

in the formation (Section 4.2.3). Different initial conditions are compared with each

other through simulations (Section 4.2.4). At the end of this chapter, we provide a

short summary and discussion on the potential applications of the readiness notion

(Section 4.3).

4.1 Definition

This section reviews some recent literatures on the multi-agent system control, which

form the inspiration for the proposition of readiness notion. We also define the readi-

ness notion with a mathematical formulation and provide the optimality conditions

in a general form that solve the readiness optimization problem.

4.1.1 Inspiration

The studies on multi-agent system control in general are reflected in all sorts of social

aspects (refer to Section 2.1). In particular, robotic formation control has been an
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attractive topic, especially for traffic control, underwater or space missions. One

interesting problem in formation control is the study on the relationship between

the system response and certain conditions in the system, e.g. positions of agents or

system topology. Many existing concepts can be used to characterize this relationship,

such as controllability [121, 135], rigidity and stiffness [72, 158], manipulability [64],

and responsiveness [66].

Controllability describes the point-to-point property of a network system. It ex-

amines whether or not the agents in the system can be moved from one configuration

to another by certain set of permissible controls. This issue is introduced in leader-

follower multi-agent systems by Tanner [135], and later on Rahmani et al. [121] pro-

vide an analysis on this issue from a graph-theoretic point of view, which shows the re-

lation between the symmetry structure of the network topology and its controllability.

Other than the point-to-point property of the system, the measure of instantaneous

response of the system to external perturbation is also studied under several concepts.

The notion of rigidity is used to describe whether or not the system behaves as a rigid

body with fixed-length links between agents in a network. Zhu and Hu [158] extend

this notion in a rigid graph to stiffness and rigidity indices, which measure the ability

of control laws in maintaining the shape of the formation system. Another property

of multi-agent systems, manipulability, is introduced by Kawashima and Egerstedt

[64] in the leader-follower formation context. It indicates the amount of effort to

move the leader agent in a certain direction given various network topologies. The

concept of manipulability is further applied to provide criteria for selecting effective

leaders in leader-follower networks by identifying the influence of leader’s inputs on

the network centroid [65]. These notions to interpret instantaneous network response

are unified by Kawashima et al. [66] in responsiveness, which provides comprehensive

characterization of the choices of both leader nodes and types of interaction topology

in designing the control laws for the system.

Building upon these concepts for evaluating the performance of multi-agent sys-

tems, we propose the notion of readiness. It is yet another index to characterize

the properties of multi-agent systems. Readiness refers to the initial conditions of

a formation system in terms of a certain set of input space. It describes how well

the system is prepared for a variety of external disturbances. An optimal readiness

means the system is prepared with the optimized set of initial conditions to maintain

or recover the original formation shape against exogenous disturbances in the shortest

possible period of time. On the other hand, if the system fails to recover the original

formation shape due to the external perturbations in a decent amount of time, it has
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therefore low readiness.

Readiness notion differs from the above-mentioned existing concepts, where only

single-integrator models with two-dimensional states (position) are assumed. For a

more general type of robotic models, such as nonholonomic robots, the notion of readi-

ness provides the measure on extra dimensions of states. For instance, in a car-like

robot formation, apart from the positions of the agents, their headings or orientations

are also part of the states, which affect the system performance. Previous indices,

such as manipulability or responsiveness, fail to describe the properties of this type

of systems due to the nonholonomic constraints. However, with the readiness notion,

a car-like robot formation can be characterized in terms of the initial orientations,

which are part of the initial conditions of the system.

In the following, we interpret the readiness notion from a mathematical point of

view, and provide the optimality conditions in a general form for solving the readiness

optimization problem.

4.1.2 Readiness Formulation

The following notations are needed in order to formulate the mathematical form of

readiness .

Consider a group of N agents, and the state xi(t) ∈ Rd is associated with each

agent at time t, where i = 1, . . . , N . Denote the overall system configuration in the

stack form by x � [x�1 , ..., x
�
N ]

�. The dynamics of the agents are given by:

ẋ(t) = f(x(t), u), (4.1)

with the initial states x(0) = x0 ∈ Rd, where u ∈ U is the exogenous input to the

formation system, and U represents the set of input space.

Take the following cost functional for the optimal initial condition problem [73]:

J̃(x0, u) =

∫ T

0

L(x(t), u)dt+Ψ(x(T ), u), (4.2)

where L(x(t), u) is an instantaneous cost on states and input u, and Ψ(x(T ), u) is

a terminal cost function. These two cost functions are designed according to the

system requirements. For instance, the instantaneous cost can punish the control

effort spent in the system, or the inter-vehicle distances to keep the vehicles apart

from each other during movement, while the terminal cost can be used to penalize

the difference between desired formation shape and the shape at time T .
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Now we formulate the readiness by taking the integral (parameterized family) of

the cost functionals {J̃(x0, u)|u ∈ U} over the input space to evaluate the overall

response of the system. The following cost functional is defined for readiness:

J(x0) =

∫
U

(∫ T

0

L(x(t), u)dt+Ψ(x(T ), u)

)
du. (4.3)

J(x0) punishes the general integral cost under inputs u ∈ U . If J(x0) is small, then

the system with the corresponding x0 has high readiness. In other words, we would

like to examine how the overall system is prepared for a variety of perturbation,

parameterized by u acting on the system. We would also like to know what the

optimal initial conditions are, which meets the system design requirements indicated

by the cost functional J(x0).

We can follow the approach for solving the optimal initial conditions from [73],

and write the solution as x∗0 given by:

x∗0 = arg min
x0

J(x0) (4.4)

s.t. ẋ(t) = f(x(t), u)

x(0) = x0.

The following theorem states the optimality condition of readiness with respect

to the initial condition x0, which can be used to solve the problem given in Eq. (4.4)

by different numerical methods, such as gradient decent method [12] .

Theorem 4.1. The optimality conditions in terms of first-order necessary conditions

(FONC) for the optimization problem described in Eq. (4.4) are given by:

∂J

∂x0
=

∫
U

λ�(0, u)du = 0, (4.5)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ̇(t, u) = −∂L

∂x

�
(x(t), u)− ∂f

∂x

�
(x(t), u)λ(t, u)

λ(T, u) =
∂Ψ

∂x(T )

�
(x(T ), u)

(4.6)

with the costate λ ∈ RdN .

Proof. We take the advantage of the integral form of the parameter u in Eq. (4.3),

and derive the optimality conditions using calculus of variations. See Appendix B for

the details.
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Figure 4.1: Depiction of a leader-follower network, with the followers lining up on
a circle and the leader at the center; blue discs represent the nonholonomic follower
robots, with their headings indicated by the red arrows; the red disc in the middle is
the leader robot; blue dashed lines are the communication links.

4.2 Case Study

In this section, we present an example of multi-robot control system to illustrate the

usage of the readiness notion. We first apply a distance-based control to a leader-

follower formation system, and demonstrate the optimization process of readiness.

We also compare the results of optimized readiness with other initial conditions to

show the importance of the readiness in a multi-agent system.

4.2.1 Problem Formulation

Consider the scenario depicted in Figure 4.1, where the nonholonomic robots form a

circular formation in a leader-follower structure, with the leader in the middle of the

circle. The communication topology is established among the direct neighbors of the

follower robots, as well as between the leader and each follower. Suppose the follower

robots are evenly distributed on the circle with different orientations. The formation

system is expected to maintain the communication topology by holding the shape

indicated in the figure. In case the leader robot at the centroid of the circle moves in

some direction on the plane, the follower robots are supposed to move accordingly to

locate the leader robot back to the centroid.

Denote the graph G = (V, E) for Figure 4.1, where V = {v1, . . . , vN} denotes the

set of robots in the graph, and E ⊆ V × V is the set of edges, indicated by the blue

dashed lines. The cardinality of E is |E| = M , which is the number of edges in the
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graph. Based on the readiness definition given in Eq. (4.3), we consider the movement

of the leader as the perturbation to the system, which is represented by the arbitrary

input u ∈ U . We also reformulate the dynamics of the agents by separating followers

and leader, as well as positions and orientations, respectively:

ẋ(t) =

[
ẋf (t)

ẋl(t)

]
=

[
gx(x, θf )

gxl(xl, u)

]
, θ̇(t) =

[
θ̇f (t)

θ̇l(t)

]
=

[
gθ(x, θf )

gθl(xl, u)

]
, (4.7)

where we assign the agent with the last index as the leader, i.e., xl � xN , and

the remaining Nf = N − 1 agents as followers, i.e., xf = [x�1 , . . . , x
�
Nf

]�, xi ∈ R2.

θf = [θ1, . . . , θNf
]� and θl � θN , θi ∈ R, i = 1, . . . , N . Here the initial condition in

readiness notion refers to the initial orientations of the followers, i.e.: θ0 � θf(0), and

the initial positions are predefined, i.e. x(0) ∈ X � {x ∈ R2N}. If the agents are

evenly distributed on the circle, we define the position set X∗ as

X∗ � {x ∈ R
2N |‖xi − xj‖ = dij, {vi, vj} ∈ E}, (4.8)

where dij is the desired distance between agent i and j.

4.2.2 System Modeling and Formation Control Design

Before we analyze the optimal readiness in terms of the orientations of the agents,

we need to introduce our control strategy, which is often referred to as edge-tension

energy based formation control [98]. The basic idea is to form an energy function

based on the distances of each pair of neighboring agents. The energy increases if the

desired formation shape is violated, thus forcing the agents to maintain the formation

to keep the “tension” as low as possible.

4.2.2.1 Edge-tension Energy

Similar to the formulation in [66], we introduce the following general edge-tension

energy:

E(x) =
1

2

N∑
i=1

N∑
j=1

Eij(xi(t), xj(t)), (4.9)

where

Eij(xi, xj) =

⎧⎨
⎩
1

2
(eij(||xi − xj ||))2 {vi, vj} ∈ E

0 otherwise.
(4.10)

Here, eij : R+ → R is a strictly increasing, twice differentiable function such that

eij(dij) = 0 and e′ij(dij) �= 0, where dij > 0 is the desired distance between agents i
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and j, and e′ij(r) �
deij(r)

dr
, if {vi, vj} ∈ E . A typical example of eij is

eij(||xi − xj ||) = cij · (||xi − xj || − dij) , (4.11)

where cij > 0 is a weighting factor assigned to the edge {vi, vj}.
Let D(G) ∈ {−1, 0, 1}N×M be the incidence matrix of graph G. The first and the

second derivatives of the edge-tension energy is given by the following1: (see [64] for

the details of the derivation):

∂E(x)

∂x

�
= ((DW1(x)D

�)⊗ Id)x,

∂2E(x)

∂x2
= (DW1(x)D

�)⊗ Id +R(x)�W2(x)R(x)

where W1(x) and W2(x) are M ×M diagonal matrices, whose diagonal elements are

[W1(x)]kk = wikjk(||xik − xjk ||),
[W2(x)]kk =

w′
ikjk

(||xik − xjk ||)
||xik − xjk ||

,

k = 1, ...,M, {vik , vjk} : edge k,

where we define

e′′ij(r) �
d2eij(r)

dr2
,

wij(r) �
eij(r)e

′
ij(r)

r
,

w′
ij(r) �

dwij

dr
=

{e′ij(r)2 + eij(r)e
′′
ij(r)}r − eij(r)e

′
ij(r)

r2
.

Here we assume that the indices of the edges are consistent between W1(x) and the

incidence matrix D, and between W2(x) and the rigidity matrix R, respectively.

Remark: If all the desired distances are satisfied at x = x∗, then
∂E

∂x

∣∣∣∣
x∗

= 0 and

∂2E

∂x2

∣∣∣∣
x∗

= R(x∗)�W2(x
∗)R(x∗). (4.12)

By the definition of the function eij and the fact that ||xi − xj || = dij > 0 at x = x∗,

W2(x
∗) is always positive definite.

Example 4.1. If the edge-tension energy is given by (4.11), then e′ij(r) = cij, e
′′
ij(r) =

0, [W1(x)]kk = c2ikjk(1 − dikjk/||xik − xjk ||), and [W2(x)]kk = c2ikjkdikjk/||xik − xjk ||3.
1operator ⊗ indicates Kronecker product.
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θ

Figure 4.2: Car-like mobile robot model with off-center point z as reference

Hence, when the desired distances are satisfied at x = x∗, the k-th diagonal elements

of the weight matrices become

[W1(x
∗)]kk = 0, [W2(x

∗)]kk =
(
cikjk
dikjk

)2

. (4.13)

Finally, the edge-tension energy from Eq. (4.9) is applied to the system in (4.7)

through the following dynamics:

μi(x) � ẋi = −∂E
∂xi

�
(x) = −

∑
j∈Ni

wij(xi − xj). (4.14)

In terms of the followers, the dynamics can be derived as:

ẋf = − ∂E

∂xf

�
(x) = −((DfW1(x)D

�)⊗ I2)x. (4.15)

4.2.2.2 Control Design with Car-like Robots

The model of the vehicle we use in this example is the same car-like robot mentioned

in Section 2.3.1. Due to the nonholonomic constraints, we need to use an off-center

point of the model as the reference (for complete controllability) in order to apply the

distance-based control described in Section 4.2.2.1. Rewrite the kinematic equation

of car-like robot as: ⎡
⎢⎣
ẋ1i(t)

ẋ2i(t)

θ̇i(t)

⎤
⎥⎦ =

⎡
⎢⎢⎣
cos θi(t)

sin θi(t)
tanβi
l

⎤
⎥⎥⎦ vi(t), (4.16)
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A typical choice of the off-center point is defined by Luca et al. [88, pp.200], which is

indicated in Figure 4.2 with the point z. Now we can represent zi for each agent in

the formation by:

zi =

[
x1i + l cos(θi) + ε cos(θi − φ)

x2i + l sin(θi) + ε sin(θi − φ)

]
, (4.17)

where −π
2
< φ <

π

2
is the off-center angle, and ε > 0 is the off-center length, which

is typically small enough. The time-derivative of the off-center point follows:

żi =

[
cos(θi) − sin(θi)− ε sin(θi − φ)

sin(θi) cos(θi) + ε cos(θi − φ)

]⎡
⎣ vi

vi
tanβi
l

⎤
⎦ (4.18)

Combining Eq. (4.14) and Eq. (4.18), we can achieve żi = μi by the following control

law: ⎡
⎣ vi

vi
tanβi
L

⎤
⎦ =

1

1 + ε cos(φ)

[
p1(θi)

�

p2(θi)
�

]
μi, (4.19)

where

p1(θi) � [cos(θi) + ε cos(θi − φ), sin(θi) + ε sin(θi − φ)]�,

p2(θi) � [− sin θi, cos θi]
�.

Now we can write the formation kinematics in terms of the followers with the control

in Eq. (4.19) in a stack form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋf = gx(x, θf ) � − 1

1 + ε cos(φ)
P3(θf )P1(θf )

� ∂E
∂xf

�
(x)

θ̇f = gθ(x, θf ) � − 1

1 + ε cos(φ)
P2(θf )

� ∂E
∂xf

�
(x)

(4.20)

where Pj ∈ R2Nf×Nf , j = 1, 2, 3, is defined as:

Pj(θf ) �

⎡
⎢⎢⎢⎢⎣
pj(θ1)

pj(θ2)
. . .

pj(θNf
)

⎤
⎥⎥⎥⎥⎦ , (4.21)

and further

p3(θi) � [cos θi, sin θi]
�.

In the following, we prove the local stabilization of the formation system under

the dynamics of Eq. (4.20).
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Proposition 4.1 (Formation stabilization under edge-tension energy). The forma-

tion system with car-like mobile robot model given in Eq. (4.16) is locally stable under

the control law given in Eq. (4.20).

Proof. Consider the Lyapunov function candidate:

V (x) = E(x),

where E(x) is the edge-tension energy defined in Eq. (4.9). Differentiating V with

respect to time:

V̇ (x) = Ė(x) =
∂E

∂xf
ẋf

= − ∂E

∂xf
P1(θf )P3(θf )

� ∂E
∂xf

�

= − ∂E

∂xf
P1(θf )

[
P1(θf )

� + εP1(θf − φ1)�
] ∂E
∂xf

�

= −
∥∥∥∥P1(θf )

� ∂E
∂xf

�∥∥∥∥
2

− ε
∂E

∂xf
P1(θf)P1(θf − φ1)�

∂E

∂xf

�
. (4.22)

The eigenvalues of the matrix P1(θf )P1(θf − φ1)� can be calculated as 0 and cos(φ).

Since −π
2
< φ <

π

2
, we know that P1(θf )P1(θf − φ1)� � 0. Therefore, V̇ ≤ 0, which

ensures local stability of the system in Eq. (4.20).

Remark: While in general the formation system in Eq. (4.20) may be driven

toward a local equilibrium set, we here consider only small perturbations of the agents

from their desired formation, which is defined by the set X∗ in Eq. (4.8). Based on

Example 4.1, we know ‖xi − xj‖ = dij ⇒ V̇ = 0. Therefore, the set X∗ is one

equilibrium set.

4.2.3 Readiness Optimization

Following the scenario depicted in Figure 4.1, each agent in the system has the dy-

namics of a car-like robot model given in Eq. (4.16). Suppose the system initial

configuration satisfies the desired distances of:

x = x∗ =

[
x∗f
x∗l

]
, (4.23)

with ‖xi − xj‖ = dij, ∀{vi, vj} ∈ E . Note that the edge set E represents the commu-

nication link shown in Figure 4.1, which does not change with time. Let δxl be the
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instantaneous movement of the leader at time t = 0, given by:

δxl = γ

[
cos θl

sin θl

]
, (4.24)

where γ > 0 is the small perturbation distance, and θl is the direction of the move-

ment. The leader will not move after this displacement, i.e.,

x(0) = x∗ +

[
0

δx


]
, x(t) = x∗ +

[
δxf (t)

δx


]
, (4.25)

where δxf (t) � xf (t)− x∗f denotes the position change of the followers.

Now we associate the following cost with the set of initial orientations of all fol-

lowers:

J(x0) =

∫
U

Ψ(x(T ), u)du, (4.26)

where we let L = 0 in Eq. (4.3), since we only focus on the final formation shape for

simplicity. An example of f(x, u) and Ψ(x, u) is ẋ = −∂E
∂x

�
(x, u) and E(x(T ), u),

respectively. The exogenous input u is defined as the direction of leader’s movement,

i.e.

u � θl, and U � [0, 2π].

In this case, J(x0) is an index to measure the change of edge-tension energy E in the

system under all given u ∈ U . Note that although u is part of the formation state x,

we write explicitly in the energy function as E(x, u) for clarification purpose.

The optimal initial condition problem in terms of optimizing the readiness of the

system depicted in Figure 4.1 is given by:

min
θ0

J(θ0) =

∫ 2π

0

Ψ(x(T ), u)du (4.27)

s.t. ẋ =

[
ẋf

ẋl

]
=

[
gx(x, θf , u)

0

]

xf(0) = x∗f , θf (0) = θ0

xl(0) = δxl, θl(0) = θl

where Ψ(x(T ), u) = E(x(T ), u). Under Theorem 4.1, we can obtain the first-order

necessary conditions as

∂J

∂θ0
=

∫ 2π

0

ξ�θ (0, u)du = 0, (4.28)
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where ξ = [ξ�x , ξ
�
θ ]

� ∈ R2Nf×Nf is the costate associated with the states xf and θf ,

whose dynamics are given by:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ξ̇(t, u) = −∂gf

∂xf

�
(x(t), u)ξ(t, u) (4.29a)

ξ(T, u) =
∂Ψ

∂xf

�
(x(T ), u) (4.29b)

More specifically, the costates can be described as:

ξx(T, θl) =
∂E

∂xf

�
(x(T ), θl), ξθ(T, θl) =

∂E

∂θf

�
(x(T ), θl) = 0, (4.30)

and

ξ̇x = −∂gx
∂xf

�
ξx − ∂gθ

∂xf

�
ξθ = η

∂2E

∂x2f
P1P

�
3 ξx + η

∂2E

∂x2f
P2ξθ

= η
∂2E

∂x2f

(
P1P

�
3 ξx + P2ξθ

)
(4.31)

ξ̇θ = −∂gx
∂θf

�
ξx − ∂gθ

∂θf

�
ξθ

= η

[
∂E

∂xf

] (
P1P

�
2 + (P2(θf ) + εP2(θf − φ))P�

1

)
ξx − η

[
∂E

∂xf

]
P3ξθ

= η

[
∂E

∂xf

] (
(P1P

�
2 + P4P

�
3 )ξx − P3ξθ

)
(4.32)

where

η =
1

1 + ε cos(φ)
,

P4(θf ) = P2(θf ) + εP2(θf − φ),

and

[
∂E

∂xf

]
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂E

∂x1
∂E

∂x2
. . .

∂E

∂xNf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now the costates dynamics from Equations (4.30) to (4.32), together with the opti-

mality condition from Eq. (4.28), can be used to solve the optimal control problem

given in Eq. (4.27) numerically, based on the following gradient descent principle:

θ
(c+1)
0 = θ

(c)
0 − η(c)

∂J

∂θ0

�
, (4.33)
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Figure 4.3: Edge-tension energy distribution with optimal initial orientations; θl is
used in Eq. (4.24) to generate instantaneous movement of the leader, which is also
considered as the exogenous input.

where η is the step size and c is the iteration count. We use the steepest descent

method with Armijo step size [5] to update η. In the next section, we show the

simulation results through the use of MATLABR©.

4.2.4 Simulation Results

In order to perform the gradient descent numerically as in Eq. (4.33), we need to find

an initial guess of the orientations θ0. Although the method of gradient descent does

not yield global solution, we notice that through multiple simulations, the “Tangen-

tial” setup of the orientations is more likely to be the optimal solution. Therefore, our

initial guess is set to be “Tangential”, where all follower orientations are tangential

to the circle in the same clockwise or counter-clockwise direction. Note that if the

initial guess is far from tangential, the result might be some other local minimum, as

explained in Section 4.2.2.2.

To illustrate the readiness of the formation system with respect to different initial

conditions, we use the edge-tension energy to measure how well the formation shape

is maintained.

Figure 4.3 shows the edge-tension energy distribution when initial orientations of

the followers are aligned according to the solution to the optimal control problem

given in Eq. (4.27). Clearly, the energy E decreases and approaches zero along all

directions of the leader’s movement. This means that the system with the optimal

set of orientations is able to recover the shape against arbitrary perturbation to the
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Figure 4.4: Edge-tension energy distribution with uniform orientations.

leader on a plane, and thus having high readiness.

Figure 4.4 shows distribution of the edge-tension energy E when the initial orien-

tations of the followers are uniformly aligned as θ0 = 0. The local minimum shown

in the figure indicate that the formation system is “ready” for the leader’s move-

ment in the direction of θl = 0 and θl = π, but is not “ready” when the leader

moves in any other direction. Therefore, the overall “readiness” is low for uniform

initial orientations in terms of the cost J given in Eq. (4.27) (which is also shown in

Figure 4.5).

Figure 4.5 shows the cost J given in Eq. (4.27) under different sets of initial ori-

entations, which also indicates different readiness levels of the system. The curve

marked “Optimal” shows the cost J with optimal initial orientations, which are

slightly smaller than the one with “Tangential” after approximately 0.2 time units.

An interesting observation is that the uniform orientations lead to a very low cost in

the beginning of the formation recovering. This comes from the fact that the uniform

orientation setup has very low cost along θl = 0 and θl = 2π direction, as shown

in Figure 4.4. The integration of the cost over the input space [0, 2π] benefits from

this, and thus the cost drops really fast in the beginning. However, the cost slowly

approaches zero due to the low readiness in the rest part of the input space. On

the other hand, the costs for “Optimal” and “Tangential” orientations approach zero

much faster, which indicates higher readiness for these two initial conditions.

The optimal orientations calculated numerically are depicted in Figure 4.6. The

difference of this “Optimal” setup from the “Tangential” one is about 2.1 deg to the
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Figure 4.5: Cost comparison; the costs for tangential and optimal setups approach
zero much faster than the other two configurations, indicating the faster recovery of
the formation shape.

Figure 4.6: Optimal initial orientations of the convoy; the red arrows indicate the
orientations, and the blue dashed lines are the communication or sensing links.

inner side of the circle. This also reflects the fact that the tangential initial heading

is nearly optimal. In the case where the followers need to be moving or spinning

around the leader robot, the tangential heading setup can behave just as well while

still keeping the circular shape.
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4.3 Summary and Discussion

In this section, we have proposed a novel notion, readiness, to describe the system

initial conditions. The general idea of this notion is to characterize the system per-

formance in terms of external disturbances. A system that recovers faster from these

disturbances has higher readiness. We have applied optimization techniques of cal-

culus of variations to analyze which initial conditions bring optimal readiness to the

system. This concept is illustrated in a multi-agent system with nonholonomic con-

straints. The initial orientations of the agents are the variables to be optimized in

the readiness optimization. The comparative results with other sets of initial orienta-

tions show the importance of this notion in interpreting the properties of multi-agent

systems with nonholonomic constraints.

Proposition 4.1 shows that the distances between the agents are driven to the

desired ones (if initial states are in the neighborhood of the set X∗), although there

is no guarantee for the convergence of the orientations of the agents. In fact, we do

not require this convergence, because we focus on the optimal initial orientations that

lead to the fastest convergence in positions, or rather in the formation shape recovery.

And the final orientations of the agents do not affect the instantaneous property of

the system.

Other than the orientation optimization, the notion of readiness can also be used

to describe the optimal poses of the agents, including both the positions and orien-

tations. This would give more generic results in terms of the initial conditions of the

multi-agent system. Meanwhile, the design of the instantaneous and terminal costs

in Section 4.2.3 is rather simplified for clarity and illustration purposes, which only

considers the final formation shape. In case some other metrics, such as the control

effort over a specific period of time, need to be optimized through the performance

index, the instantaneous cost can be adapted to punish the difference of these metrics

from the expected values.



CHAPTER 5

CONTROLLER PARAMETER OPTIMIZATION

This chapter presents the design of parameterized Model Predictive Control (MPC)

in a dynamic convoy protection scenario. Provided that the dynamics of the target of

interest are known a priori, a centralized control strategy is proposed. This strategy is

based on a new Kuramoto-like model for multi-robot coordination, which only takes

into account the local information of each agent’s neighbors and spreads out the

agents equidistantly on a circle. The implementation of this strategy is illustrated

on a car-like robot convoy through a locker-room agreement, where the controller

parameters are optimized through the parameterized MPC before deployment. In

case the dynamics of the protected target are not known a priori, a decentralized

strategy is performed, which is similar to the centralized strategy except that the

convoy controller requires no dynamic dependencies between the agents. Therefore,

the parameterized MPC can be executed in a distributed fashion on the robot convoy

online during the mission, where the motion of the target is part of the feedback

information in the optimization process. The decentralized case is illustrated through

both simulations and experiments based on the convoy model of car-like robots.

In the following sections, we first define the convoy protection scenario of interest,

and provide an overview on the research work of using optimal control for multi-robot

coordination (Sections 5.1 and 5.2). Then we describe the proposed new interaction

model, called Cosine-Kuramoto model, for the balanced deployment of agents on a

circle (Section 5.3). Afterward, we demonstrate the usage of parameterized MPC in

the car-like robot convoy through two control strategies, and derive the optimality

conditions for solving the optimal convoy protection problem (Section 5.4). The

effectiveness of the overall control framework is showcased through simulation tools

and hardware experiments (Sections 5.5 and 5.6). The chapter is concluded with a

summary and a few discussions (Section 5.7).

5.1 Scenario and Problem Definition

This section introduces the multi-robot coordination scenario of our interest, namely

convoy protection, and presents the technical problems that we aim to solve.

The phrase convoy protection refers to a formation of mobile vehicles coordinated
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Figure 5.1: Illustration of mobile robots in circular convoy. The moving target is
represented as a disc in the center of the circle.

to provide mutual support and protection to the target of interest. It can be con-

sidered as a problem of formation control in the context of robotics. Most research

on convoy protection application involve heterogeneous systems. For instance, Ding

et al. [27] describe a multi-UAV (Unmanned Aerial Vehicle) convoy protection prob-

lem, which consists of multiple aerial vehicles with limited range of view to provide

surveillance and protection over a group of ground vehicles. However, the homoge-

neous multi-robot system can also be considered for convoy protection, e.g. Parker

and Howard [114].

In our scenario, we consider a group of car-like mobile robots providing circular

convoy protection to a moving target on the ground. Figure 5.1 shows the basic

setup in the scenario. The robot convoy is lined up on a circle, while trying to keep

the target in the center of the circle, in case the target moves in some direction on

the plane. The convoy is expected to keep an even distribution on the circle, while

avoiding collision with each other during movement. According to the case study

in Chapter 4, the robots are initially located with their orientations being tangential

to the circle. This setup is close to the optimal readiness, and it enables the formation

to spin around the circle, as discussed in Section 4.2.4.

The questions related to this scenario that we are interested in can be described

from the following three aspects:

1. How to maintain an even distribution of the vehicles on the circle during the

convoy movement in a decentralized fashion?

2. How to spend the least possible control effort and respond reactively to keep
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the target at the centroid in case the target starts moving?

3. How to adjust the protection perimeter (considering the constrained movement

of car-like mobile robots)?

Remarks:

1. The phrase “decentralized” refers mainly to the scalability of the system under

the control law to be designed. This requirement allows the convoy system to be

scaled at a large number of agents, which still interact only with the neighboring

agents, without knowing the information on a global level. Meanwhile, the even

distribution is needed in order to form a balanced protection of the target.

2. It is conceivable that the convoy is able to track the target in any direction if

all agents are spinning fast enough. This requires large control efforts, e.g. fuel,

battery, etc. However, we would like to investigate how to spend the minimal

amount of control effort which still achieves the task.

3. The convoy needs to reduce the perimeter of protection in case the target stays

still. This is supposed to be realized without performing back and forth maneu-

vers, but rather with smooth transitions, such as spiral motion. It also applies

to the case where the convoy needs to increase the perimeter during movement.

Therefore, in the rest of this chapter, we propose a synthesized control framework

to achieve these control objectives, and present the results through simulation and

experimental work.

5.2 Related Work

This section presents an overview on the research work in three aspects of multi-robot

coordination, which are closely related to our proposed control framework. First, we

discuss the cooperative robotic systems and their application fields in general. The

second aspect is a particular multi-agent synchronization protocol, called Kuramoto

model. Then the last topic is on the application of MPC for robot formation control

and navigation.

5.2.1 Cooperative Systems

Typically, cooperative systems consist of multiple robotic agents performing certain

tasks collaboratively to achieve a common goal. This field of research is of particular
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importance in multi-agent system theory due to its wide applications, such as cover-

age control, area patrolling, and convoy protection, etc. Spry et al. [130] introduce

an organization and coordination strategy for multiple UAVs to provide video and

sensor coverage of a moving ground convoy. The hierarchical control architecture has

multiple layers, from the top regional layer that monitors the status of the region

in the mission for vehicle assignment, and the team control layer that decomposes

the mission into multiple subtasks, to the bottom supervisory and executive layers

that report vehicle and task status, process sensor information, and finally perform

the actual protecting movement. This movement is realized through the flight path

generation of both lateral and longitudinal orbits, and trajectory tracking control on

the heading. The velocities of the vehicles are assumed to be constant in this case.

Hattenberger et al. [52, 53] present an optimal approach in convoy self-configuration

according to the changing environment with threats for a fleet of UAVs. The manage-

ment of the formation flight is centralized on one UAV, while the trajectory tracking

control of each vehicle is distributed to get a higher robustness. The stable commu-

nication between the vehicles is assumed. They further evaluate the algorithms in

a simulated hostile environment with hardware-in-the-loop, and show the ability for

real-time implementation. Ding et al. [27] propose a time-optimal method in path

planning for multiple UAVs during a convoy protection mission. The optimal coor-

dination guarantees the continuous coverage of the moving ground vehicles with the

minimum number of UAVs performing alternating circular-arc motion. They also

derive the bound on the convoy speed, under which only one UAV is needed for all-

time coverage. One limitation exists on the motion of the ground vehicles, which is

assumed to be a straight line.

Apart from using the UAVs, ground convoy unit for active protection also poses

interesting perspectives in different research fields. Pasqualetti et al. [115] consider

the problem of cooperative patrolling of an area by multiple autonomous ground mo-

bile robots. The area patrol refers to the repeated visits of the predefined viewpoints

by the robots. The design of optimal trajectory and distributed control laws mini-

mizes the longest time interval between any two visits of a viewpoint with weighted

priorities, and realizes the self-organization of the robots along the optimal trajec-

tory. This resulting optimal trajectory is called Equal-Time-Spacing trajectory. It

describes a stop-go type of trajectory, where the waiting intervals at each viewpoint

are equal among the robots and constant in time. The experiment is performed on 3

robots and a tour with 5 viewpoints, which demonstrates interesting cooperative be-

haviors. Parker and Howard [114] demonstrate a formation-in-motion concept. They
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simulate a ground robot formation, which is able to hold the desired shape while

being teleoperated to move through a cluttered environment. The traditional leader-

follower framework is used, such that the position of the leader is given through the

operator, and the positions of the followers are assigned based on the environment

conditions (e.g. obstacles) and the required shape of formation through a centralized

utility function. This proposed framework shows high reactiveness and autonomy of

the robotic cooperative system. This formation-in-motion concept is also reflected in

our following research work, whereas we do not assign the positions for each robot

explicitly in order to implement the control design in a distributed way. Another

example of ground convoy is demonstrated in the adaptive coverage control problem

addressed by Renzaglia et al. [122]. They present a cognitive adaptive optimization

(CAO) algorithm for positioning a team of mobile robots for surveillance in a non-

convex environment with unknown obstacles. The proposed algorithm approximates

the coverage criterion function, and minimizes the difference between the approx-

imation and the actual coverage measurement, in order to maximize the coverage

area. Distributed solution is also obtained in case of limited communication links

by minimizing the overlapping of each robot’s field of view with the obstacles and

with that of other robots. Spletzer [129] deal with the problem of optimal position-

ing strategy in shape changes of robotic formation, considering the minimization of

either the maximum distance that any robot travels, or the total distance traveled

by the formation. This optimization design has a direct application in extending the

lifetime of the sensor nodes in mobile ad-hoc networks (MANETs). More applications

of cooperative systems can be found for area patrolling [48], coverage control [37, 51],

circular pursuit [7, 91], and automatic deployment [26].

5.2.2 Kuramoto Model

Kuramoto model was first proposed by Yoshiki Kuramoto in 1975 [75], where the

problem of synchronizing coupled nonlinear oscillators was addressed in the context of

physics. Later on, his book [76] published in 1984 further elaborated on this problem.

Strogatz [133] provides a detailed review of the research before year 2000 on Kuramoto

oscillator models, especially the contributions from Crawford [23]. The stability issues

related to synchronized nonlinear oscillators based on Kuramoto model are analyzed

by Jadbabaie et al. [60]. They derive the necessary and sufficient conditions on

the coupling weight in the model. These conditions are later improved by Chopra

and Spong [21], where the exponential synchronization of the angular frequencies of

oscillators can be guaranteed.
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Meanwhile, the extension from the classical Kuramoto models on coupled oscilla-

tors to other research fields has been established over the last decade. Florian and

Bullo [41] investigate the transient stability issues in power networks in relation to

the synchronization of non-uniform Kuramoto models. The resulting characterization

based on this relationship improves the understanding of power network with respect

to the underlying network parameters and initial conditions. Moreau [100] study

the relation between the information flow and stability of a generalized multi-agent

system, which encompasses not only Kuramoto synchronization model but also the

consensus and swarming models. Acebrón et al. [1] provide further applications of

coupled Kuramoto models to various scientific areas, including neural networks, laser

arrays, etc. Klein et al. [74] analyze the discrete time Kuramoto model in all-to-all

and one-to-all broadcast networks for multi-vehicle coordination. The integration of

communication and control helps to design the network routing optimization frame-

work, which deals with energy efficiency and heading alignment issues for multi-agent

systems. In the following, we briefly introduce the Kuramoto model in a mathematical

formulation.

The classic Kuramoto model consists of N coupled oscillators, whose dynamics

are governed by the following equation:

ψ̇i = ωi − K

N

N∑
j=1

sin(ψi − ψj), i = 1, ..., N, (5.1)

where ψi is the phase of oscillator i, ωi is the oscillator’s initial natural frequency, and

K > 0 is the coupling gain. The oscillators are said to have frequency synchronization

if:

lim
t→∞

|ψ̇i(t)− ψ̇j(t)| = 0, ∀i, j = 1, ..., N. (5.2)

The necessary condition derived by Chopra and Spong [21] states that there exists

a lower bound of coupling gain K = Kc > 0, below which the oscillators cannot

synchronize. Furthermore, if all the natural frequencies (ωi) are identical, the phases

of the oscillators will converge to a common value ψ∞, which is referred as phase

synchronization. If the natural frequencies are non-identical, then the phase difference

between each pair of oscillators ψi − ψj will converge to a constant value, which is

not necessarily zero.

As an example of this classic Kuramoto model, consider the evolutions of multi-

agent system shown in Fig. 5.2 and Fig. 5.3. The original phases of the oscillators are

mapped to the positions of the agents on the circle, while the frequencies are mapped

to the angular velocities of the agents. In the phase synchronization example, all
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Figure 5.2: Phase synchronization example, where ωi = 0 in Eq. (5.1)
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Figure 5.3: Frequency synchronization example, where ωi �= 0 in Eq. (5.1)

agents end up on top of each other and stay still, if the natural frequencies are

assumed to be zero. In the frequency synchronization, the angular velocities of all

agents converge to a common value, since the natural frequencies are not all zero.

5.2.3 Parameterized MPC for Multi-Robot Coordination

As introduced in Section 2.2.1, MPC requires an optimal control problem to be solved

at each control cycle. With the expense of being computationally extensive, MPC

can provide closed-loop optimal solution to nonlinear constrained dynamical systems.

This feature has been the major motive for its wide-application in multi-robot sys-

tems.

Most of the research work on applying MPC to multi-robot systems have the same

principle with some variations in modeling and implementation. Dunbar and Murray

[31] analyze the stabilization problem for multi-vehicle formation with MPC. They

provide a set of permissible equilibria for the stabilization, rather than the exact

position assignment for each vehicle. The result is simulated in the formation ma-

neuvers of 3 vehicles for trajectory tracking under centralized optimization scheme.
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Later on, they study the decentralized case of formation stabilization in [32], where

the states of the vehicles are coupled in the cost function and the dynamics of the

vehicles are decoupled from each other. This modeling structure is also applied in

our proposed decentralized strategy discussed in Section 5.4. Another decentralized

framework of formation control with obstacle avoidance is simulated by Mej́ıa and

Stipanović [94], where the trajectory tracking is realized by setting a series of way

points on the desired path. The optimization process forces the vehicles to stay on

the trajectory as close as possible, while taking into account the obstacle avoidance

function in the overall cost. They also implement a limit cycle method [70] in sym-

metric cases of the formation movement to avoid infeasible control outputs. The

proposed MPC framework is limited in the application on real-world robotic vehi-

cles. Since the computation of optimization cycle needs to take a few seconds, the

distances between vehicles should be relatively large enough, or the velocities of the

vehicles are low enough, so that no collision would happen during the optimization

process. Wesselowski and Fierro [146] perform the optimal formation control from a

different perspective. They apply a dual-mode MPC for the robot formation, where

the desired terminal constraints are used as the objective function to be minimized

in the first mode, and a second separation-bearing controller1 is designed locally in

the terminal region to achieve stable formation control. The first mode is mainly de-

signed to respect the state constraints, the collision avoidance and desired formation

shape in a combined structure. Saska [125] solve the problem of optimal trajectory

planning for a formation of nonholonomic mobile robots to reach the target by using

decentralized MPC. The proposed method is divided into two parts. The first part

covers the control inputs for the virtual leader that generates the desired trajectories

for the whole formation based on a constant sampling rate, and in the second part

the prediction horizon is also considered as a variable in the optimization so as to

release the computation burden in each control cycle. More examples can be found

in [6, 97, 142, 145].

It can be observed that most research work on MPC are restrained to simulations

due to the computational burden in the nature of optimization process. However, as

introduced in Section 2.2.2, parameterized MPC is considered as one remedy to al-

leviate the computational complexity. This method utilizes the feedback control law

to simulate the state trajectories, and further optimizes over the feedback parameters

to obtain optimal solution. Droge et al. [30] specifically investigate the problem of

1This is the same controller used in Section 3.3.



5. Controller Parameter Optimization 91

applying parameterized MPC in single unicycle mobile robot navigation. The use

of parameterized feedback law transforms the classic MPC problem into a parame-

ter optimization problem, where the system states are decoupled from the costates.

Consequently, this transformation reduces the complexity in simulating the gradients

of the system states forward in time. Meanwhile, the desired behavior of the mobile

robot is represented in the performance index to be minimized, which allows for mod-

ularized behavior design in complex environment. Our proposed method is largely

based on this work, and further extended to multi-robot case with different feedback

control laws.

5.3 Model Design for Balanced Deployment

In this section, we present the model design for the convoy protection scenario given

in Section 5.1 in terms of the balanced deployment on a circle. By extending the

Kuramoto synchronization model in Eq. (5.1) to the multi-robot coordination case,

we propose a decentralized cosine-Kuramoto model for automatic distribution of the

robots. This new model is illustrated through two simple examples based on single-

integrator dynamics.

5.3.1 Cosine-Kuramoto Model

Consider N agents on a cycle graph Gc = (V, E), where V = {v1, ..., vN} is the set of

nodes, E = {(vi, vi+1)}, i = 1, ..., N is the set of edges, and v0 � vN , vN+1 � v1. The

incidence matrix D ∈ RN×N of a cycle graph is given in Eq. (2.14), which we rewrite

as follows:

D =

⎛
⎜⎜⎜⎜⎝
−1 0 · · · +1

+1 −1 · · · 0
...

. . .
. . .

...

0 · · · +1 −1

⎞
⎟⎟⎟⎟⎠ . (5.3)

The graph Laplacian of such a cycle graph can be represented as:

L = DD� = D�D = −D −D�, (5.4)

Hence, the Kuramoto model given in Eq. (5.1) can be rewritten in stack form:

ψ̇ = ω −K ·D sin(D�ψ), (5.5)

where ψ = [ψ1, ..., ψN ]
� are the phases of the oscillators; ω = [ω1, ..., ωN ]

� are the

natural frequencies; D is given in Eq. (5.3); sin(D�ψ) = [sin(ψ2 − ψ1), ..., sin(ψ1 −
ψN )]

�.
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Suppose we have N homogeneous vehicles, whose dynamics are described in polar

coordinates:

ṡ = u, (5.6)

where s = [ρ, φ]� are the radial and angular coordinates (corresponding to the ori-

entations) of the vehicles, ρ ∈ RN , φ = [φ1, . . . , φN ]
� ∈ [0, 2π)N ; u = [u1, u2]

� is

the control force, u1, u2 ∈ RN . The new Kuramoto-like model for coordinating the

orientations of the vehicles is given as follows:

φ̇ = K ·D cos(D�φ), (5.7)

where D is the incidence matrix given in Eq. (5.3); K > 0 is the coupling gain. Due

to the difference of applying the cosine term from the original Kuramoto model, we

call Eq. (5.7) Cosine-Kuramoto model.

Note that in Eq. (5.6), we only control the orientation or the angular coordinate

of the vehicle but not the radial coordinate, which means that u1 = 0 in this case.

The following theorem states the capability of the proposed Cosine-Kuramoto model

in multi-agent coordination.

Theorem 5.1 (Balanced Deployment). In the cycle graph Gc, assume N vehicles’

initial orientations satisfy 0 ≤ φ1(0) < φ2(0) < ... < φN(0) < 2π, N > 2, under

the dynamics of the Cosine-Kuramoto model given in Eq. (5.7), all orientations will

asymptotically converge to a balanced distribution of equilibrium on the circle, i.e.

φi+1 − φi =
2π

N
, ∀i ∈ {1, 2, ..., N}, where φN+1 � φ1.

Proof. For simplicity purpose and assuming no confusion on the notation arises,

we let x � D�φ mod 2π, which is the orientation difference vector, where x =

[x1, . . . , xN ]
� ∈ [0, 2π)N ,

∑N
i=1 xi = 2π. We rewrite Eq. (5.7) in terms of x :

ẋ = KD�D cos(x).

Consider the following Lyapunov function candidate:

V =
1

2
‖x‖2 ≥ 0 (5.8)

Correspondingly, the time derivative of V is

V̇ = x�ẋ = Kx�D�D cos(x)

= −Kx�D cos(x)−Kx�D� cos(x), (5.9)
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where

x�D cos(x) =
N∑
i=1

(xi+1 − xi) cosxi, xN+1 � x1. (5.10)

According to Proposition A.1 in Appendix A, we know that x�D cos(x) ≥ 0 (The

second term x�D� cos(x) ≥ 0 can be proved analogously). Therefore, we have V̇ ≤ 0.

Now using LaSalle’s invariance principle [69], we first define the set Ωc = {x ∈
[0, 2π)N |∑N

i=1 xi = 2π, V (x) ≤ c, c ∈ R+}. Since V̇ ≤ 0 and V is also quadratic, Ωc

is then a compact and positively invariant set. Define

Vo = {x ∈ Ωc|V̇ = 0}. (5.11)

Based on Proposition A.1, V̇ = 0 ⇔ xi+1 = xi, ∀i ∈ {1, 2, ..., N}. Considering the

condition
∑N

i=1 xi = 2π, we get:

Vo =

{
x ∈ Ωc|xi = 2π

N
, ∀i ∈ {1, 2, ..., N}

}
. (5.12)

Now let M = Vo, which is (in terms of φ):

M =

{
φ|φi+1 − φi =

2π

N
mod 2π, ∀i ∈ {1, 2, ..., N}

}
, (5.13)

then every trajectory of φ will approach M as t→ ∞.

This completes the proof.

Theorem 5.1 shows that the convergence of the cosine-Kuramoto model for multi-

agent coordination is guaranteed as long as the initial positions of the agents are

not identical. On a circular formation, this is reflected by the non-overlapping angu-

lar coordinates of the agents. The decentralized nature of this interaction model is

illustrated through the follow-up examples.

5.3.2 Examples

To better demonstrate the capability of the cosine-Kuramoto model, and to illustrate

the main ideas as clearly as possible, we present two simple simulations in this section.

First example shows the basic principle of the proposed model by automatically de-

ploying the agents on a circle, given random initial angular coordinates. The second

one shows the decentralized property of the model by self-organizing the distribution

pattern once new agents are added into the network.

Note that the cosine-Kuramoto model also applies to other closed-form shapes,

since the only conditions required in Theorem 5.1 are that the initial orientations

are sequentially ordered and not all the same. For the purpose of being clear and

illustrative, the following two examples are only visualized on a circular form.
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Figure 5.4: Balanced distribution of 10 agents

5.3.2.1 Self-deployment example

Given N = 10 agents with the dynamics of (5.6) under the network topology of an

undirected cycle graph described in Section 5.3.1. Assume all agents initially line up

on a circle of radius ρi = 14, ∀i = 1, 2, ..., N , and φi is randomly generated, which is

shown in Figure 5.4a. Using the new Kuramoto-like model described in Eq. (5.7), we

have:

u2 = φ̇ = 10 ·D cos(D�φ), (5.14)

where we set K = 10, and incidence matrix D is given in Eq. (5.3). After 200

simulation steps, these 10 agents (almost) end up in a balanced distribution on the

circle2, as shown in Figure 5.4b, i.e. φi+1 − φi =
2π

10
. The corresponding Lyapunov

function from Eq. (5.8) is given in Figure 5.4c, which is strictly decreasing as expected.

2Since the convergence of the agents is an asymptotical property, which can only be achieved
exactly when t → ∞, we therefore consider the distribution being balanced if the angular difference
‖x‖ is small enough.
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Figure 5.5: Self-organizing behavior in balanced distribution with added agents.

5.3.2.2 Self-organizing example

This example shows that the positions of agents can be automatically reorganized

after adding a number of agents into the network, and the system still ends up with

a balanced distribution.

The initial setup of the scene consists of 4 agents on a circle, shown in Figure 5.5a,
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which have already settled in a balanced distribution under cosine-Kuramoto dynam-

ics. In Figure 5.5b, 4 more agents are added into the network randomly without

overlapping with the existing ones, where the cycle topology holds for the new sys-

tem. This means the agents can still obtain the relative phase difference from their

direct neighbors. And Figure 5.5c shows the final distribution of the agents after they

reconfigure themselves under the same cosine-Kuramoto model. Figure 5.5d gives the

Lyapunov function from the time when 4 extra agents are added into the network.

5.4 Optimal Convoy Control

In this section, we first formulate the design requirements in terms of the information

flow in a general optimal control problem for a multi-agent system, and the technical

assumptions we use for our intended convoy protection scenario given in Section 5.1.

Under these conditions, the model and control laws for this dynamic convoy protection

problem are designed. Two distinct strategies are discussed using different control

laws. We also introduce the parameterized optimal control scheme under these two

control strategies, based on the behavior-dependent performance index to optimize

the control inputs, so that the overall convoy protection task can be performed in a

synthesized framework.

5.4.1 Design Requirements and Technical Assumptions

In order to design the optimal controller for the convoy protection task, we need to

evaluate the feasibility of the optimization in terms of the information that is needed

by each agent in the convoy. In particular, following [29], we address the design

requirements for the agents in terms of the dynamic dependencies and performance

(or cost) dependencies .

Droge and Egerstedt [29] derive the theorem on the feasibility of distributed pa-

rameterized optimization in multi-agent systems. The theorem states that the dy-

namic dependencies between the agents cause the induced communication graph to

explode. For instance, if agent i dynamically depends on agent j, and agent j dynam-

ically depends on agent k, then agent i will eventually need information from agent k

to perform the optimization. If the graph for dynamic dependency is a cycle graph,

this means each agent will need to know the information from the rest of the agents,

which violates the principle of distributed optimization. On the other hand, if the

system has only cost dependencies among the agents, the induced information graph

is the undirected cost graph. This allows that the information needed by each agent
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can be described by a function of the separability of the collective cost designed for

the complete system.

In the follow-up design for car-like robot convoy, we present two types of control

laws, which are considered centralized and decentralized strategies considering the

different induced information flow. We state the corresponding technical assumptions

as follows:

• In the centralized strategy, we assume that the dynamics of the target to protect

are given a prior, and thus we can use this information to perform the opti-

mization on a central computing unit, as in a locker-room agreement. We also

assume that the agents can obtain the location of their neighbors during exe-

cution. In this case, we can assign the agents with both dynamic dependencies

and cost dependencies, since the optimization is not run in a distributed way,

i.e. no optimization is needed during the task. This brings low computational

demands for the agents.

• In the decentralized strategy, we assume the motion of the target is unknown

beforehand, but the position of the target is acquired by all the agents during

each control step. Meanwhile, the optimization needs to be performed on every

agent in each control step on-the-fly. We also assume that the agents can

obtain the information from their neighbors during the task. In this case, the

dependencies between the agents only appear in the cost function, while the

dynamics of each agent requires no dependencies from the other agents.

5.4.2 Model and Control of Car-like Robot Convoy

As introduced in Section 5.1, we take the same kinematic equations from Eq. (2.20)

for each agent in the convoy, depicted in Figure 5.6. Now consider the collective state

q of the N -agent system defined by:

q � [x�, y�, θ�, c�, r]� ∈ R
N×N×N×2×1,

where x = [x1, . . . , xN ]
�, y = [y1, . . . , yN ]

� are the positions of the robots, θ =

[θ1, . . . , θN ]
�, are the orientations, c = [c1, c2]

� ∈ R2 is the coordinate of the central

target, and r ∈ R is the desired protection radius of the convoy circle. Following
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Figure 5.6: Convoy Protection with Car-like Robots; the protected target is denoted
by the brown disc in the center, and the dashed circle indicates the desired convoy
shape with the protection perimeter being r.

Eq. (2.20), the collective state dynamics of the convoy are given by3:

q̇ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

ċ

ṙ

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

v ∗ cos θ
v ∗ sin θ

v ∗ [tan β]/l
fc(t)

fr(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.15)

where fc(t) : R 
→ R2 and fr(t) : R 
→ R are the functions describing the motion of

the target and the change in convoy radius; velocity controls v � [v1, . . . vN ]
� and

steering controls β � [β1, . . . βN ]
� are the control inputs to be designed.

In the following, we present two types of control law, which are considered as the

centralized and decentralized strategies, respectively. In the centralized strategy, we

use the cosine-Kuramoto model to control velocity, and a PD controller for steering

angle, while in the decentralized case, we simply use the set-point method to directly

control the velocity and steering angle.

5.4.2.1 Centralized Control Strategy

In case the motion of the target is known a prior, i.e. fc(t) and fr(t) are given,

the control inputs for the robots can be computed with a locker-room agreement.

This means that a central computing unit optimizes the set of parameters before

the protection task starts based on the specific mission requirements. Then during

3operator ∗ indicates element-wise multiplication.
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the task, each agent is able to execute the control law on its own using the same

optimized parameters, while only considering the information of its neighboring agents

and the target. The design of the control law is presented in this section, while the

performance index for optimization is introduced in Section 5.4.3.1.

We design the velocity controls v and steering controls β in stack forms to be:⎧⎨
⎩
v = ω ∗ d (5.16a)

β = arctan

(
1
l

r
+ kpe+ kdė

)
(5.16b)

where we incorporate the cosine-Kuramoto model through the angular velocity4

ω = ω0 +KD cos(D�θ) (5.17)

and distance error e = [e1, . . . , eN ]
� = d − 1r , distance d = [d1, . . . , dN ]

� =

‖p − c ⊗ 1‖r, position p = [p1, . . . , pN ]
�, pi = [xi, yi]

�, initial angular velocity ω0 =

[ω01, . . . , ω0N ]
�, i = 1, 2, . . . , N . K is the coupling factor for the cosine-Kuramoto

model. Due to the symmetric structure of the desired convoy, we can assign the same

initial value to ω0, i.e.,

ω0i = u0, i = 1, . . . , N.

Note that we can express the time derivative of the distance error ei in Eq. (5.16b)

as:

ėi =
d‖pi − c‖

dt
− fr(t)

=
(pi − c)�

‖pi − c‖ (ṗi − fc(t))− fr(t)

=
(pi − c)�

di

(
vi cos θi − fc1(t)

vi sin θi − fc2(t)

)
− fr(t) (5.18)

5.4.2.2 Decentralized Control Strategy

The control law presented in Eq. (5.16) and (5.17) introduces dynamic coupling of the

agents into the optimization framework. As pointed out in Section 5.4.1, this control

law will cause the information flow to explode due to the dynamic dependencies if we

perform distributed optimization. Therefore, in the decentralized strategy, we use the

set-point method to avoid dynamic dependencies. It has the following simple form:{
vi = vid (5.19a)

βi = βid, (5.19b)

4operator ‖ · ‖r indicates row-wise norm.
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where vid and βid are the set-point inputs for agent i, which are also considered as

system parameters to be optimized.

5.4.3 Parameterized Model Predictive Control

With the convoy control design outlined in Section 5.4.2, we need to assign values

to the tunable gains in the controllers. As discussed in Section 5.2.3, parameterized

MPC is a technique suitable for this gain tuning, since it takes the system dynamics

into account, and computes an optimal control action in a closed loop based on some

pre-defined performance index, or cost. It also adapts the control action according to

the changes in the dynamics. The computation of the optimal solution is significantly

reduced, since the state trajectory generation is based on the parameter optimization

using the parameterized control laws as a base, as pointed out by Howard [56]. Thus,

instead of optimizing over the control input for some time horizon as in a traditional

MPC approach, we optimize over the relatively low-dimensional parameter space to

reduce the computational complexity.

In the rest of this section, we first consider the general case for parameterized

MPC [30] approach and show the optimality conditions, and then identify the per-

formance index based on the desired behaviors for the convoy protection problem.

The corresponding update rules for control signals using the optimality conditions

are discussed in the end.

Given the convoy system with dynamics of Eq. (5.15), we define:

q̇(t) � f(q(t), u(t), t). (5.20)

In general, the state feedback control law takes the form:

u(t) = κ(q(t), γ)

where γ is the parameter vector. This allows us to simplify the system as:

q̇ = f(q(t), κ(q(t), γ), t) = f(q(t), γ, t). (5.21)

In case of the centralized strategy, the control law κ(q(t), γ) is given in Eq. (5.16)

and (5.17), where

γ = [kd, kp, K, u0]
� ∈ R

4. (5.22)

For the decentralized case, κ(q(t), γ) is given in Eq. (5.19), where

γ = [γ�1 , . . . , γ
�
N ]

� ∈ R
2N , γi = [vid, βid]

�, i = 1, . . . , N. (5.23)
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The optimal parameter vector γ∗ is the obtained through the minimization of the

following cost functional:

γ∗ = arg min
γ

J(γ), (5.24)

where

J(γ) =

∫ tf

t0

L(q(t), γ)dt+Ψ(q(tf), γ), s.t. Eq. (5.21). (5.25)

This cost functional takes the standard Bolza form as in Eq. (2.17).

The following theorem states the first order necessary conditions of optimality,

which can be used in the update rule discussed in Sections 5.4.3.2 and 5.4.3.3 to find

the optimal set of parameters.

Theorem 5.2. The first order necessary conditions of optimality for minimizing the

cost given in Eq. (5.25) with respect to the parameter vector, γ, is given by

∂J

∂γ
= ξ(t0)

� = 0, (5.26)

where the costate ξ associated with the parameter vector γ is defined by:

ξ̇ = −∂L
∂γ

�
− ∂f

∂γ

�
λ; ξ(tf) =

∂Ψ

∂γ

�
(q(tf), γ); (5.27)

and the dynamics of the second costate λ associated with the state vector q is given

by:

λ̇ = −∂L
∂q

�
− ∂f

∂q

�
λ; λ(tf ) =

∂Ψ

∂q

�
(q(tf ), γ). (5.28)

Proof. The proof follows standard variational methods, which is a simplification of

the problem considered in [30], where the switching time horizon is replaced with a

single fixed-length horizon. See Appendix C for details.

Theorem 5.2 provides analytic form of the cost gradients, which removes the cross-

dependency between the state q and the costates λ, ξ. This result largely alleviates

the main difficulty in solving the two-point boundary value problem, where the sys-

tem states depend on the costates. The cost gradient from Theorem 5.2 can be

used in combination with the parameter update rules (introduced in Sections 5.4.3.2

and 5.4.3.3) to tune the feedback controller.
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5.4.3.1 Performance Index

For both centralized and decentralized strategies, we can design the performance index

in Eq. (5.25) based on desired behaviors or criteria of the convoy. These criteria are

explained below5.

1. Spinning velocity ω

To ensure that the agents expend as little energy as possible during the process

while approaching the desired convoy trajectory, we define an instantaneous

cost for the spinning velocity ω as follows:

< cen > L1(q, γ) =
ρ1
2
‖ω‖2 (5.29a)

< dec > Li1(q, γi) =
ρ1
2

(
vi
di

)2

(5.29b)

where ω is given in Eq. (5.17) for centralized strategy, and
vi
di

represents the

spinning velocity for agent i in decentralized strategy.

2. Orientation difference θi − θid

To avoid undesired oscillations of the agents during movement, we need to

penalize the orientation difference of each agent from its nominal orientation on

the circle, which results in the following instantaneous cost:

< cen > L2(q, γ) = −ρ2
2

N∑
i=1

cos(θi − θid) (5.30a)

< dec > Li2(q, γi) = −ρ2
2
cos(θi − θid) (5.30b)

where θid =
(π
2
+ atan2(yi − c2, xi − c1)

)
mod 2π is the desired orientation of

agent i at position pi = (xi, yi).

3. Inter-vehicle distance ‖pi − pj‖
To avoid collision between the agents, we penalize the inter-vehicle distances,

such that if two agents are closing to each other, the cost increases. This is

realized through the following exponential function of the distance between two

5We use the notations of < cen > and < dec > in front of the costs to represent whether the cost
is for centralized or decentralized control strategy, respectively. The subscript i represents the ith
agent in the formation.
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neighboring agents for the instantaneous cost:

< cen > L3(q, γ) =
ρ3
2

N∑
i=1

∑
j∈Ni

exp
(−‖pi − pj‖2

)
(5.31a)

< dec > Li3(q, γi) =
ρ3
2

∑
j∈Ni

exp
(−‖pi − pj‖2

)
(5.31b)

4. Radial error e

In order to keep track of the moving target and maintain the circular shape,

we penalize the radial distance error of each agent to the target. This part

is considered in the terminal cost, since the focus is to have the convoy shape

toward the end of each optimization process without enforcing it at each time

instant.

< cen > Ψ1(q, γ) =
ρ4
2
‖e‖2 (5.32a)

< dec > Ψi1(q, γi) =
ρ4
2
e2i (5.32b)

where e is defined in Eq. (5.16b).

5. Balanced deployment cos(θi − θj)

Apart from keeping the desired distance to the target, the agents are expected to

be evenly distributed on the circle toward the end of each optimization process,

which yields the following terminal cost:

< cen > Ψ2(q, γ) =
ρ5
2

N∑
i=1

cos(θi+1 − θi) (5.33a)

< dec > Ψi2(q, γi) =
ρ5
2

∑
j∈Ni

cos(θi − θj) (5.33b)

Note that ρm > 0, m = 1, . . . , 5 are the cost weights. Depending on the required tasks,

we can manually tune these weights to influence the performance accordingly. In the

follow-up simulations and experiment, these weights are to be empirically determined

and set for the complete task. Section 5.7 provides further discussions on the choices

of these weights.
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Now the overall cost to be minimized can be written as the sum of the costs

designed above:

< cen > J(γ) =

∫ tf

t0

L1(q(t), γ) + L2(q(t), γ) + L3(q(t), γ)dt

+Ψ1(q(tf), γ) + Ψ2(q(tf ), γ), (5.34)

s.t. q̇ = f(q(t), γ, t).

< dec > J(γ) =
N∑
i=1

Ji(γi) =
N∑
i=1

[∫ tf

t0

(
Li1(q(t), γi) + Li2(q(t), γi)

+Li3(q(t), γi)
)
dt+Ψi1(q(tf), γi) + Ψi2(q(tf), γi)

]
, (5.35)

s.t. q̇ = f(q(t), γ, t).

Note that cost J(γ) in Eq. (5.34) is minimized on a central computing unit before

the task starts, and the solution γ∗ is used throughout the whole task. On the other

hand, the cost Ji(γi) in Eq. (5.35) is processed on each individual agent’s processing

unit during the task.

As explained in Section 5.4.1, the dynamic dependency of the centralized control

law restricts the optimization process to be performed beforehand, as in a locker-

room agreement. But the decentralized strategy allows the agents to execute the

optimization online in a distributed fashion. In the following, we present the different

numerical update rules of the parameter set γ in these two strategies.

5.4.3.2 Centralized Update Rule

In centralized strategy, the solution to the parameter set γ is given based on the

numerical steepest decent method, i.e.,

γ(c+1) = γ(c) − η(c)
∂J

∂γ

�
, (5.36)

where η(c) is the Armijo step size; c indicates the iteration count; J is given in

Eq. (5.34), and
∂J

∂γ

�
is calculated according to Theorem 5.2. The parameter opti-

mization algorithm with the centralized strategy is summarized in Algorithm 2.

5.4.3.3 Decentralized Update Rule

In decentralized strategy, we adopt the consensus-based distributed optimization

method, as introduced in [77, 105], to solve for γ∗. The idea is for each agent to
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Algorithm 2 Centralized Optimization with Parameterized MPC

1. Simulate the state trajectories q(t), t ∈ [0, tf ] of all agents at time t0 with the
initial parameter set γ0.

2. Calculate the total cost J(γ0) given in Eq. (5.34) with q(0).

3. Iterate with Armijo algorithm until step size η(c) converges to zero or the max-
imum iteration count is exceeded.

4. Apply the corresponding γ∗ to each agent, and execute the control law during
the task.

combine the gradient-descent step with a step in the direction of consensus on the

variables being optimized. This algorithm can be written as:

γ
(k+1)
i = γ

(k)
i − μ

∂Ji
∂γi

(γi)−
∑
j∈Ni

αij(γ
(k)
i − γ

(k)
j ), (5.37)

where μ is a constant step size along the gradient toward optimality, and αij is

the consensus weight between the agents i and j. For simplicity, we assume equal

weights, i.e. αij = α0, ∀(vi, vj) ∈ E . The convergence proof of this algorithm can

be found in [77], where a diminishing step size μ is needed as time goes to infinity.

However, Nedić and Ozdaglar [106] have shown that desirable performance can still be

achieved by using constant step size in the gradient-descent. Moreover, the deviation

from convergence can be arbitrarily small by increasing the consensus weight. The

overall distributed optimization algorithm with the decentralized strategy for finding

the optimal parameter set γ∗ is summarized in Algorithm 36. This algorithm for

the distributed optimization is further illustrated through the block diagram given

in Figure 5.7. In principle, agent i exchanges information of state qi and parameter

vector γi with all the neighbors, so that it can perform the trajectory generation for

both states and costates to update the parameter vector for the next control loop.

5.5 Case Studies

In this section, we demonstrate the two control strategies discussed in Section 5.4 for

the convoy protection problem through simulations in MATLAB R©. These simulations

show the ability of the synthesized optimization framework in dynamically adjusting

the convoy shape and spinning velocity, while keeping track of the target to protect.

6Initial time t0 in continuous time corresponds to k in discrete time. Thus t0 +Δt corresponds
to k + 1.
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Algorithm 3 Consensus-based MPC with distributed optimization

1. At time t0, agent i simulates its own state trajectory qi(t) and its neighbors’
state trajectories qj(t), t ∈ (t0, tf ] forward in time based on Eq. (5.15), using the
current parameter set γi(t0), γj(t0) and the current states qi(t0), qj(t0), j ∈ Ni.

2. Agent i simulates the trajectory of the costates λi, λj and ξi, ξj backward in
time based on Eq. (5.27) and (5.28) to obtain ξi(t0), i.e. the gradient towards

optimality
∂Ji
∂γi

(γi).

3. Perform the update rule given in Eq. (5.37), and apply the next step parameter

set γ
(k+1)
i to the system, which leads to the next step state q

(k+1)
i .

4. Agent i communicates with its neighbors on γ
(k+1)
i and q

(k+1)
i .

5. Repeat from Step 1 in the following control loop.

γ

+

+γξ

+ +γ

ξ

Figure 5.7: Block diagram of the consensus-based parameterized MPC in convoy
protection scenario, where the operations in the gray area are performed on each
individual agent. j ∈ Ni represents one of agent i’s neighbors, and t ∈ (t0, tf ] indicates
the time horizon of the optimization. c(k) is the position of the target at time k.

5.5.1 Case 1: Centralized

In the following scenarios with centralized control law, we assume that the trajectory

of the target is given, i.e. both fc(t) and fr(t) in Eq. (5.15) are known. Once the

optimization is done in the beginning, the agents only need to execute the control

law with the optimized parameter vector to perform convoy protection. Optimization

during the mission is not needed, which alleviates the burden on the computation of

each agent.

The first scenario is to verify the capability of the control strategy in distribut-

ing the agents evenly on the circle, when the target is static. We expect the agents
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(b) Distribution Process of the Convoy at
t = 0.5s.

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

X (m)

Y
 (m

)

time = (2.00 s)

1

2

3
4

5

6

7

(c) Steady State of the Convoy at t = 2s.
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Figure 5.8: Convoy Protection with Static Target (scenario 1 in centralized case).

to stay static on the circle as well, after they form the balanced deployment. The

initial parameter vector γ0 = [kd, kp, K, u]
� = [0.6, 0.1, 2, 2]�, and the simulation

step is Δt = 0.001s. Figure 5.8 shows the motion of the agents, as well as the

associated cost. The agents spread out first and stop at the desired formation pat-

tern with balanced distribution. The optimized parameter vector is found to be

γ∗ = [0.617, 0.04, 1.971, 0]�. With the initial angular velocity set as 2 rad/s, the opti-

mization process finds the optimal base angular velocity to be zero, since the target

is static. The cost profile shows the cost versus iteration steps of the optimization.

In this simple scenario, the optimum is obtained after only one iteration step. This

scenario demonstrates the feasibility of the optimization framework that achieves the

desired convoy with the minimal cost.

Figure 5.9 shows the second scenario with the centralized control strategy. The

convoy radius is decreasing over time, which translates to a tighter protection of

the target. The initial radius is 4.5 m, and γ0 = [0.6, 0.1, 2, 2]�, with fr(t) = −0.5
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(a) Initial configuration of the 7 agents and
the target.
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(b) Distribution of the Convoy at t = 0.5s.
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(c) Balanced distribution with decreasing
convoy radius.
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(d) Convoy at steady state.
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(e) Cost profile in the optimization.

Figure 5.9: Convoy protection with decreasing convoy radius (scenario 2 in central-
ized case).

m/s. The optimization in this case finds the optimal parameter vector to be γ∗ =

[0.021, 0.075, 2.03, 0.987]�. This optimum is obtained after approximately 16 iteration

steps, as can be observed from the cost profile. This scenario shows the capability of
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the same control framework in adapting the convoy to the changing environment.

A third scenario of centralized control strategy is illustrated in Figure 5.10, where

the target is moving at a constant rate of fc(t) = [2, 2]� m/s. The initial parameter

set is γ0 = [0.6, 0.2, 3, 10]�, and the convoy radius is 3 m. The optimization generates

the optimal parameter vector as γ∗ = [0.801, 0.885, 2.497, 4.539]�. The cost profile

shows that the optimization has not yet converged to a stable value after 30 steps

with decreasing cost. However, the obtained parameter set is already applicable in

the scenario, considering the low convergence rate in cost after a few iteration steps.

This simulation provides an outlook on how the convoy control framework is able

to react to the fast-changing environment, provided that the agents are capable of

performing the necessary motion under the mechanical limits.

The examples shown in this section have a limitation in real-world implementation,

since it requires the motion of the target to be given in advance. Any change in the

target motion during the task makes the convoy movement non-optimal. For instance,

if the target were to stop in scenario 3, the convoy would be spinning around the target

on the circle at some angular velocity without coming to a stop, since the optimal

parameters are chosen initially for the moving target. This drawback is overcome by

the decentralized control strategy, which is illustrated in the next section.

5.5.2 Case 2: Decentralized

This section demonstrates the capability of the decentralized control strategy in per-

forming convoy protection. Different from the centralized case, the motion of the

target to protect is not known a prior, although it is assumed that each agent is able

to obtain the position of the target on-the-fly. We illustrate the decentralized concept

of the optimization framework in one combined example.

In every control cycle, the optimization runs according to Algorithm 3, where we

set the prediction horizon tf = 2 s, with the simulation step of Δt = 0.01 s. The

constant gradient step size is μ = 0.001, while the consensus weight a0 is computed

according to the Metropolis-based algorithm [147] to ensure distributed average con-

sensus. The overall flow of the simulation can be divided into the following four

phases.

• Phase 1, t ∈ [0, 10)s : The agents are deployed automatically on the circular

convoy, when the target is static;

• Phase 2, t ∈ [10, 20)s : The convoy starts moving along the direction of the

target’s movement, and the convoy radius is enlarged in the meantime (from
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(a) Initial configuration of the 7 agents and
the target.
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(b) Distribution process of the convoy at
t = 1s.
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(c) Convoy in motion with desired shape
at t = 4s.
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(d) Cost profile in the optimization.

Figure 5.10: Convoy protection with moving target (scenario 3 in centralized case).

r = 2.5m to r = 3.5m);

• Phase 3, t ∈ [20, 50)s : The target changes the direction of movement (at

t = 20s, 30s, 40s). Consequently, the convoy also changes the motion to keep

track of the target while maintaining the enlarged radius as the perimeter for

protection;

• Phase 4, t ∈ [50, 75]s : The motion of the target comes to a pause. Therefore,

the convoy decreases the perimeter to have a tighter protection (from r = 3.5m

at t = 50s to r = 2.5m at t = 60s), and remains still afterwards (from t = 60s

to t = 75s).
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Figures 5.11a to 5.11f illustrate the complete process of the phases mentioned

above. The simulation includes four agents, which are expected to keep track of

the moving target and perform convoy protection task. The motion of the target

is reflected as feedback information in the optimization framework, as modeled in

Eq. (5.15). The two optimal control signals are shown in Figure 5.12. The initial

controls are γ0 = [v0, β0]
� = [0.4, 0]�. The initial convoy radius is 2.5 m.

The optimization algorithm is implemented in C/C++, with MEX wrappers7 to

interface with MATLABR©. It computes the optimal parameter vector γ, which, in

this case, is the set of control variables for the car-like mobile robots. The aver-

age computation time for running this algorithm throughout the complete task is

0.01s in each control loop8. This is a significant improvement compared to a conven-

tional MPC implementation. Using fmincon function from optimization toolbox in

MATLABR© takes up to a few seconds for this nonlinear MPC problem, which is not

suitable for hardware implementation in the multi-agent coordination problem [95].

Meanwhile, compared to the developed centralized case before, the decentralized

control strategy is well-suited for online implementation, since it captures the un-

expected motion of the target during the mission with only the computation time

for parameter optimization. Therefore, in the next section, we demonstrate how this

framework works out on our real-world mobile robots.

7Refer to the online documentation for “C/C++ Source Mex-Files” at http://www.mathworks.
com/help/matlab/matlab_external/c-c-source-mex-files.html.

8The supporting hardware and software in running this simulation is mainly the quad-core
Intel(R) i5-2400 at 3.10 GHz under the MATLAB R© version 2011b.
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(a) Initial setup of the agents and target.

−2 0 2 4 6

−4

−2

0

2

4

X (m)
Y

 (m
)

time = (10.0)

1

2

3

4

(b) Balanced distribution in Phase 1.
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(c) Convoy moving in Phase 2.
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(d) Convoy tracking in Phase 3.
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(e) Convoy reducing radius in Phase 4.
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(f) Convoy in static shape.

Figure 5.11: Decentralized optimization control in convoy protection; the dashed
line indicates the desired convoy location; the green square is the path traveled by
the target in red disc. 4 mobile robots are protecting the target on the desired circle.
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Figure 5.12: Optimal control signals in the decentralized control strategy; The gray
dashed lines indicate the transition between different phases of motion; Note that the
steering angles are bounded by ±0.3 rad due to mechanical limits.
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5.6 Experimental Validation

To showcase the proposed decentralized optimal control strategy for convoy protec-

tion, we implement the algorithm on three of our MERLIN robots, which are intro-

duced in Section 2.3. The test field has an area of 6m x 6m. The initial convoy radius

is set to be 2.5 m, and the initial positions are shown in Figure 5.13a. The target in

the experiment is a virtual point indicated with the blue disc. The desired convoy

circle is denoted by the dashed line in green. The poses of the robots are based on

the odometry data, which is explained in Section 2.3.

The experiment is structured in the following three steps:

1. Step 1: The mobile robots distribute themselves automatically on the circular

convoy, keeping the target at the centroid of the circle.

2. Step 2: Since the target is still static, the robots start to shrink the circle with

the decreasing perimeter for protection.

3. Step 3: Once the target moves, the robots gradually increase the convoy radius

and move along with the target while keeping the balanced distribution and

circular shape. And finally the target stops moving, which makes the convoy

also come to a slow balanced stop on a larger reference circle.

Figures 5.13b to 5.13d are the snapshots of the experiment for the three corre-

sponding steps. In this case, each robot communicates with its two neighbors about

the current states and control inputs at a frequency of 5 Hz, while the computation

for optimization algorithm takes approx. 35 ˜ 40 ms (c.a. 28 Hz)9. The position

information of the target point is simulated on a separate computer and transmitted

to each vehicle.

Figure 5.14 shows the velocity and steering control signals of the experiment, which

are also the optimized parameters considered in the decentralized strategy. The cost

weights discussed in Section 5.4.3.1 are determined through two steps. The relative

ratios between the weights are first approximated by the simulation shown in Sec-

tion 5.5.2, and the final scale of the values is selected through multiple experiments.

These weights are finally given as:

[ρ1, ρ2, ρ3, ρ4, ρ5] = [5, 10, 1, 30, 8].

9This computation time is achieved under the PC/104 embedded system with Pentium III at
800MHz, which runs Ubuntu 10.04.
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(a) Initial setup of the 3 vehicles, indicated by the colored numbers, and the
reference circle, which is marked with dashed green line. The target to be protected
is marked with the blue disc.

(b) Step 1: Balanced deployment. Three vehicles are deployed equally on the
circle, and they are reducing the velocity since the target is not moving.
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(c) Step 2: Shrinking convoy. The radius of the reference circle is reducing, so
that the vehicles have a tighter protecting perimeter.

(d) Step 3: Expanded convoy. As the target starts moving, the convoy is moving
along, keeping the target in the center of the circle. And the radius is increased
in order to get a larger protecting perimeter.

Figure 5.13: Snapshots of the optimal convoy protection experiment with three
MERLIN vehicles.
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Figure 5.14: Speed and steering profiles in the convoy protection experiment.

During the experiments, we noticed that in order to keep the circular protective shape,

it is preferred to set a higher weight for ρ4, which is the weight for punishing the radial

errors of the vehicles. This index has higher influence than the others on moving the

convoy to keep track of the target. Due to the small number of vehicles and the

relatively large space between the vehicles, the weighting factor ρ3 on inter-vehicle

distance is set to be small. If there would be more vehicles, this factor needed to be

increased to avoid potential collisions between them.

In Figure 5.14, both velocity and steering controls have large disturbances at the

start of Step 2 and 3. This is done intentionally to demonstrate the robustness of

the MPC framework in the presence of external disturbances, such as in outdoor

environment. The uneven ground surface for such vehicles in a convoy protection

mission will cause similar interference to the control, and eventually further recovery

efforts are needed. However, we observed from this experiment that the proposed

MPC framework is quite robust against this type of disturbances, and the convoy

settles quickly according to the optimized inputs.
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5.7 Summary and Discussion

We have demonstrated the parameterized model predictive control in a convoy pro-

tection scenario. This scenario consists of multiple ground mobile robots, which are

expected to form a circular convoy to protect the target at the centroid. We have

shown both centralized and decentralized optimization for the cases where the motion

of the target is given or unknown, respectively. The motion of the convoy is generated

through a unified optimal control framework based on the parameterized MPC. The

optimal control signals are computed to minimize the behavior-based performance

index. We also validated the proposed control scheme on the MERLIN mobile robots

to show its feasibility in real-world online implementation.

It should be noted that the MPC framework generates the closed-loop solutions

that are capable of handling dynamical changes in the environment, such as the

unknown motion of the target to be protected, as well as the varying radius of the

protection perimeter. The control signals are considered as the optimized outputs in

this framework. The only parameters which need to be tuned initially are the weights

on the performance indices or the costs. Different combinations of the weighting

factors would result in different performance during the protection task. For instance,

lower weights (compared to the rest of the weights in the performance index) on the

spinning velocity would be suitable for fast-moving targets, since the vehicles are

supposed to move fast correspondingly, while the higher weighting factors should be

chosen for the slowly-moving targets. On the other hand, a larger weight is necessary

on the inter-vehicle distance to reduce the risk of collisions, if the number of vehicles

in the convoy increases. The online tuning of these weights is one desirable extension

to the current platform.

On the other hand, the cosine-Kuramoto model can be considered as a decen-

tralized self-organizing system, where only local communication is needed to achieve

the global coordination mission. This modeling concept under Theorem 5.1 can be

applied to, for instance, public transit systems, where the transporting vehicles run

along fixed routes with closed form. In this case, each vehicle only needs to exchange

information with the two neighboring vehicles to maintain the smooth schedule of

the complete transit system. Further applications for cosine-Kuramoto model in-

clude coverage control, where the agents can be maximally spread out to achieve the

optimal coverage, as indicated through the examples in Section 5.3.



CHAPTER 6

CONCLUSIONS

In this dissertation, we presented two methodologies for designing controller param-

eters in cooperative multi-agent systems. These two approaches reflect general con-

cepts in constructing stable controllers to solve time-delay and optimality problems,

and produce particular solutions for the time-delayed formation tracking system and

the dynamic convoy protection coordination.

In Chapter 3, based on leader-follower structure, a stable PD-type controller is

designed to compensate for the steady-state error and oscillating behaviors in time-

delayed formation tracking system. Parameter selection rules are formulated through

the analysis on system characteristic equation and its transcendental roots. Mean-

while, the internal dynamics associated with the feedback linearization method are

examined, where the conditions for system convergence are provided. In Chapter 4,

the initial conditions of a general multi-agent system are characterized in the proposed

notion, readiness. It represents the level of how well prepared the system is against

external disturbances, especially for a nonholonomic system. This notion improves

the understanding of the properties of multi-agent systems, and the meaning of opti-

mal readiness is further studied in a multi-robot scenario through the investigation on

initial orientations of the robots. This case study also provides the criteria of initial-

ization in the convoy protection example, which is introduced in the follow-up chapter.

In Chapter 5, a new cosine-Kuramoto model, considered as a distributed multi-agent

coordination scheme, is proposed to solve the problem of balanced deployment of

mobile agents on a circle. The convoy protection scenario is illustrated by both cen-

tralized and decentralized control strategies, and the use of distributed optimization

technique in real-world implementation is shown in the decentralized case, where pa-

rameterized model predictive control provides the corresponding control framework

as the basis. Optimality conditions are derived using variational methods, so that the

controller parameters for convoy coordination are optimized according to the desired

behavioral index.

Future research along the concepts of this dissertation can be performed in the

following directions:

• Formation tracking with obstacle avoidance The leader-follower formation
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tracking scenario from this dissertation is to illustrate the controller parameter

tuning approach for time-delayed problem. In order to be more applicable in

real-world scenario, the obstacle avoidance functionalities need to be integrated.

It is conceivable that the delay effect will lead to unexpected collisions during

tracking. Therefore, the PD-type controller for delay compensation needs to be

combined with the avoidance function for synthesized parameter tuning.

• Tracking control with blind swarm The term blind swarm refers to the

swarm of agents which can only partially acquire the information needed for

the coordination, such as self-localization data, position and velocity measure-

ment data, etc. In the tracking control of the V-formation from this dissertation,

both planar relative positions and velocities between the leader and followers

are required. The behavior of the formation under partial data set is of inter-

est for research, especially under the communication constraints. With a small

amount of data needed for control, the agents will reduce the amount of data

to be transmitted, thus decreasing the data-jam-induced time delay in commu-

nication. This research direction poses fundamental remedies to the problem of

time delay in control with communication for large-scale multi-agent systems.

• Convoy protection with UAVs and human interaction The methodology

developed for the dynamic convoy protection can be readily transferred to the

scenario with multiple UAVs, or a combination of UGVs (Unmanned Ground

Vehicles) and UAVs. Besides the difference between the dynamics, the prob-

lem of coordinating heterogeneous agents becomes more prominent. Moreover,

the involvement of human interaction with the convoy is another attractive ex-

tension. The question that how to interpret a single human command for a

formation of mobile agents is yet to be answered.

• Multi-target protection with switching topology In case that multiple dy-

namic targets need to be protected by a large mobile convoy, the coordination

strategy would require the proper split of the agents that perform protection

separately, or a jointly protective convoy. The underlying communication topol-

ogy needs to switch depending on the decisions from the coordination algorithm.

The switching topology will affect the performance of distributed optimization

which relies on the communication between the neighboring agents. The topics

on this dynamic system modeling and switching behavior analysis still remain

open.
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COSINE POSITIVE

The following proofs are provided to support Theorem 5.1 in Section 5.3.1.

Proposition A.1. Given a set x = {x1, x2, ..., xN}, where xi ∈ [0, 2π),
∑N

i=1 xi = 2π

and N > 2. Then,
N∑
i=1

(xi+1 − xi) cosxi ≥ 0

where xN+1 � x1. Equality holds if and only if xi =
2π
N
, ∀i ∈ {1, 2, ..., N}.

In order to prove this proposition, the following two Lemmas are needed.

Lemma A.1. Given a set x = {x1, x2, ..., xn}, where n ∈ N, xi ∈ [0, 2π),
∑n

i=1 xi =

2π and n > 2. Then, ∀k, l ∈ {1, 2, ..., n}, we have xk ≤ xl iff. cosxk ≥ cosxl.

Proof. We first show that if xk ≤ xl, then cosxk ≥ cosxl in the following two cases:

• xk ≤ xl < π: The monotonicity of cosine function clearly implies cosxk ≥ cosxl.

• π ≤ xl: Consider the following inequality:

0 < xk = 2π −
n∑

j=1,j �=k

xj ≤ 2π − xl ≤ π.

Hence, in this case,

cosxk ≥ cos(2π − xl) = cos xl.

Now we will show if cosxk ≥ cosxl, then xk ≤ xl by contradiction. Suppose we have

cosxk ≥ cosxl and xk > xl. From the analysis above, xk > xl implies cosxk < cosxl,

which is a contradiction to the assumption. This completes the proof.

Now we will present a stronger form of Proposition A.1 in the following Lemma.

Lemma A.2. Suppose that a set x = {x1, x2, ..., xn}, where n ∈ N and xi ∈ [0, 2π),

is such that ∀k, l ∈ {1, 2, ..., n}, xk ≤ xl iff. cosxk ≥ cosxl. Then,

fn(x) �

n∑
i=1

(xi+1 − xi) cosxi ≥ 0, (A.1)

where xn+1 � x1.
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Proof. We can prove this by induction to n.

• n = 1: The proof is trivial.

• n = 2: W.l.o.g., we can assume x2 ≥ x1, and therefore, cos x2 ≤ cosx1. With

these two inequalities, it implies:

fn(x) = (x2 − x1) cosx1 + (x1 − x2) cosx2

≥ (x2 − x1) cosx2 + (x1 − x2) cosx2

= 0.

• n > 2: There must be a j ∈ {1, 2, ..., n} s.t. xj−1 ≤ xj and xj+1 ≤ xj . Because,

otherwise we would have:

x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 = x1,

or

x1 ≥ x2 ≥ · · · ≥ xn ≥ xn+1 = x1,

which would imply that all xi are equal (thus the proof is trivial). Now for such

a j, we have cosxj−1 ≥ cos xj and cosxj+1 ≥ cosxj . Therefore,

fn(x) =

n∑
i=1

(xi+1 − xi) cosxi

= (xj − xj−1) cosxj−1 + (xj+1 − xj) cosxj +

n∑
i=1

i �=j−1,j

(xi+1 − xi) cosxi

= (xj − xj+1) cosxj−1 + (xj+1 − xj−1) cosxj−1 + (xj+1 − xj) cosxj

+
n∑

i=1
i �=j−1,j

(xi+1 − xi) cosxi

≥ (xj+1 − xj−1) cosxj−1 +
n∑

i=1
i �=j−1,j

(xi+1 − xi) cosxi

The last expression has the form of fn−1(x) (It has n − 1 terms, without the

contribution from xj , not xn), which implies that fn(x) ≥ fn−1(x). And by the

induction hypothesis, fn(x) ≥ 0. The equality only holds when xj = xj−1, ∀j ∈
{1, 2, ..., N}. Considering the condition that

∑n

i=1 xi = 2π, the equality indi-

cates xi =
2π

N
.

This completes the proof of the Lemma.

From Lemma A.1 and A.2, we can conclude that Proposition A.1 is proved.
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PROOF ON OPTIMALITY CONDITIONS FOR OPTIMAL

READINESS (THEOREM 4.1)

Proof. Repeat the nonlinear system dynamics analyzed in Section 4.1.2 as follows:

ẋ(t) = f(x(t), u). (B.1)

Since the input u is a constant over a short time interval, we can take integration of

u over the entire input space U for the system dynamics given in Eq. (B.1). In order

to avoid ambiguity, we denote the system state as x(t, u) in the following derivation

to point out that x depends on u implicitly.

First, taking the dynamics in Eq. (B.1) into account, we expand the original cost

functional to:

Ĵ(x0) =

∫
U

[∫ T

0

{
λ�(t, u)

(
f(x(t, u), u)− ẋ

)
+ L(x(t, u), u)

}
dt+Ψ(x(T, u), u)

]
du.

(B.2)

Then, the idea of calculus of variations allows us to perturb the initial condition x0

with a small change, x0 + εh. Consequently, this small change causes a variation,

x(t, u) + εη(t, u), in the state trajectory, where ε > 0. Now based on Eq. (B.2), we

have the expanded cost functional after variation:

Ĵ(x0 + εh) =

∫
U

[∫ T

0

{
L(x(t, u) + εη(t, u), u)

+λ�(t, u)
(
f(x(t, u) + εη(t, u), u)− (ẋ+ εη̇)

)}
dt

+Ψ(x(T, u) + εη(T, u), u)

]
du. (B.3)

Due to the linearity of integration, the following difference can be calculated with the
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Taylor expansions of L, f , and Ψ:

Ĵ(x0 + εh)− Ĵ(x0) =

∫
U

[∫ T

0

{∂L
∂x

εη(t, u) + λ�(t, u)
∂f

∂x
εη(t, u)

−ελ(t, u)η̇
}
dt+

∂Ψ

∂x
εη(T, u)

]
du+ o(ε)

= ε

∫
U

[∫ T

0

{∂L
∂x

η(t, u) + λ�(t, u)
∂f

∂x
η(t, u)

+λ̇�η(t, u)
}
dt− λ�(T, u)η(T, u) + λ�(0, u)η(0, u)

+
∂Ψ

∂x(T, u)
η(T, u)

]
du+ o(ε), (B.4)

where the last equality above follows from integration by parts∫ T

0

λ�(t, u)η̇dt = [λ�(t, u)η(t, u)]T0 −
∫ T

0

λ̇�η(t, u)dt, (B.5)

and o(ε) denotes the higher-order terms in the Taylor expansion. By definition of

directional derivative, we divide Eq. (B.4) by ε and take the limit ε→ 0:

δĴ(x0; h) = lim
ε→0

Ĵ(x0 + εh)− Ĵ(x0)

ε

=

∫
U

[∫ T

0

{
∂L

∂x
+ λ�

∂f

∂x
+ λ̇�

}
η(t, u)dt

+

{
∂Ψ

∂x(T, u)
− λ�(T, u)

}
η(T, u)

]
du+

∫
U

λ�(0, u)η(0, u)du. (B.6)

Now if we design the costate λ to cancel out the first integral based on the following

costate dynamics:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ̇(t, u) = −∂L

∂x

�
(x(t), u)− ∂f

∂x

�
(x(t), u)λ(t, u)

λ(T, u) =
∂Ψ

∂x(T )

�
(x(T ), u),

(B.7)

the resulting directional derivative becomes:

δĴ(x0; h) =

∫
U

λ�(0, u)η(0, u)du =

(∫
U

λ�(0, u)du
)
h. (B.8)

In Eq. (B.8), we used the fact η(0, u) = h, i.e., the change of initial value x0 + εh

corresponds to x(0, u)+ εη(0, u). Since the functional Ĵ is differentiable, we can write
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the directional derivative as δĴ(x0; h) =
∂Ĵ

∂x0
h. Therefore, we obtain the first-order

necessary condition for optimal initial condition x∗0 as:

∂J

∂x0
=

∫
U

λ�(0, u)du = 0, (B.9)

which is also given in Eq. (4.5). This completes the proof.
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APPENDIX C

PROOF ON OPTIMALITY CONDITION FOR

PARAMETERIZED MPC (THEOREM 5.2)

The following proof is based on Droge et al. [30], where parameterized MPC with

switching time horizon problem is handled. Here, we provide a simplification of

this problem, where only single fixed-length time horizon is considered. The basic

approach follows standard variational methods, as shown in Appendix B.

Proof. Repeat the cost functional given in Eq. (5.25) as follows:

J(γ) =

∫ tf

t0

L(q(t), γ)dt+Ψ(q(tf), γ), (C.1)

s.t. q̇ = f(q(t), γ, t). (C.2)

Now we augment Eq. (C.1) with the dynamics of Eq. (C.2) to:

Ĵ(γ) =

∫ tf

t0

{
L(q(t), γ) + λ�

(
f(q(t), γ, t)− q̇

)}
dt +Ψ(q(tf), γ), (C.3)

where λ is the costate associated with the state q. Following the idea of calculus of

variations, we perturb the parameter vector with a small change, γ+εh, which causes

a variation, q(t) + εη(t), in the state trajectory, where ε > 0. The augmented cost

functional after variation becomes (the dependency of q and η on time t is omitted):

Ĵ(γ + εh) =

∫ tf

t0

{
L(q + εη, γ + εh) + λ�

(
f(q + εη, γ + εh, t)− (q̇ + εη̇)

)}
dt

+Ψ(q(tf) + εη(tf ), γ + εh), (C.4)

We can compute the difference of the cost functionals before and after variation with

the Taylor expansion on L, f, and Ψ:

Ĵ(γ + εh)− J(γ) =

∫ tf

t0

{∂L
∂q
εη + λ�

∂f

∂q
εη − λ�εη̇

}
dt+

∫ tf

t0

{∂L
∂γ

εh + λ�
∂f

∂γ
εh
}
dt

+
∂Ψ

∂q
εη

∣∣∣∣
tf

+
∂Ψ

∂γ
εh

∣∣∣∣
tf

+ o(ε)

= ε

∫ tf

t0

{∂L
∂q
η + λ�

∂f

∂q
η + λ̇�η

}
dt+ ε

∫ tf

t0

{∂L
∂γ

h + λ�
∂f

∂γ
h
}
dt

+ ε
∂Ψ

∂q
η

∣∣∣∣
tf

+ ε
∂Ψ

∂γ
h

∣∣∣∣
tf

− ε λ�η
∣∣tf
t0
+ o(ε), (C.5)
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where we invoke the integration by parts on the term λ�η̇, i.e.:∫ tf

t0

λ�η̇dt = λ�η
∣∣tf
t0
−
∫ tf

t0

λ̇�ηdt, (C.6)

and o(ε) is the higher-order terms from the Taylor expansion. By definition of direc-

tional derivative, we can write:

δĴ(γ; h) = lim
ε→0

Ĵ(γ + εh)− Ĵ(γ)

ε

=

∫ tf

t0

{∂L
∂q
η + λ�

∂f

∂q
η + λ̇�η

}
dt+

∫ tf

t0

{∂L
∂γ

h+ λ�
∂f

∂γ
h
}
dt

+
∂Ψ

∂q
(q(tf ), γ)η(tf) +

∂Ψ

∂γ
(q(tf ), γ)h− λ�(tf )η(tf) + λ�(t0)η(t0). (C.7)

Since η(t0) = 0 (initial state q(t0) has no variation when γ → γ + εh), we define the

costate λ as:

λ̇ = −∂L
∂q

�
− ∂f

∂q

�
λ; λ(tf) =

∂Ψ

∂q

�
(q(tf ), γ), (C.8)

and the second costate, ξ associated with the parameter vector γ, is defined by:

ξ(t)� =

∫ tf

t

{∂L
∂γ

+ λ�
∂f

∂γ

}
ds+

∂Ψ

∂γ
(q(tf), γ), (C.9)

then the directional derivative in Eq. (C.7) becomes:

δĴ(γ; h) =
∂Ĵ

∂γ
h = ξ(t0)

�h. (C.10)

Therefore, we obtain the first-order necessary condition for optimality on the param-

eter vector γ as:
∂J

∂γ
= ξ(t0)

� = 0, (C.11)

where

ξ̇ = −∂L
∂γ

�
− ∂f

∂γ

�
λ; ξ(tf) =

∂Ψ

∂γ

�
(q(tf), γ). (C.12)

Equations (C.8), (C.11) and (C.12) are also given in Theorem 5.2. This completes

the proof.
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[143] Široký, J., Oldewurtel, F., Cigler, J., and Pŕıvara, S. (2011). Experimental
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