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Zusammenfassung

Die Quantentheorie wird als eine der grundlegensten und präzisesten physikalis-
chen Theorien unserer Zeit angesehen. Auch wenn die Theorie konzeptionell
schwierig zu verstehen ist, so ist die eigentliche mathematische Struktur über-
raschend einfach. Auf welcher physikalischen Grundlage basiert diese beson-
ders einfache und elegante mathematische Struktur? Oder anders ausgedrückt:
Warum ist die Quantentheorie so wie sie ist?

Das Gebiet der "Grundlagen der Quantentheorie" versucht, auf diese Fragen
Antworten zu finden. In der Vergangenheit wurde dieses Forschungsgebiet als
überwiegend akademisch mit wenig praktischen Nutzen angesehen. Mit dem
Fortschritt der Quanteninformationstheorie hat sich diese Sicht aber grund-
sätzlich gewandelt, da beide Gebiete einander stetig fruchtbar beeinflussen
[1, 2]. Dadurch stößt die Grundlagenforschung zur Quantentheorie derzeit
auf wachsendes Interesse, so dass das Gebiet nun wohl zu den spannensten
Themenbereichen der theoretischen Physik gezählt werden darf. Diese Arbeit
beschäftigt sich mit einer bestimmten Richtung in diesem Feld – den sogenan-
nten "Verallgemeinerten Wahrscheinlichkeitstheorien" (GPTs). Diese bilden
einen umfassenden theoretischen Rahmen zur Beschreibung physikalischer The-
orien, wobei die klassische Wahrscheinlichkeitstheorie und die Quantentheorie
als Spezialfälle enthalten sind. Wir nutzen diesen Ansatz in dieser Arbeit,
um nicht-lokale Eigenschaften zu untersuchen, die helfen die Sonderrolle der
Quantentheorie gegenüber nicht realisierter Alternativen zu verstehen. Um
die Anwendungsbereich dieses Ansatzes zu vergrößern, führen wir verschiedene
Verallgemeinerungen ein. Dadurch wird es möglich die Auswirkungen von An-
nahmen zu untersuchen, die typischerweise beim GPT-Ansatz gemacht werden.

Basierend auf einem Übersichtsartikel des Autors, beginnen wir in Kapi-
tel 1 zunächst mit einer Einführung des üblichen GPT-Ansatzes und fassen
bisherige Ergebnisse zusammen. Um die Einführung möglichst verständlich zu
halten, verfolgen wir dabei einen konstruktiven Ansatz. Beginnend mit weni-
gen, physikalisch wohlmotivierten Annahmen, zeigen wir wie beliebige exper-
imentelle Beobachtungen in einer operationalen Theorie festgehalten werden
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können. Desweiteren, charakterisieren wir die Konsistenzbedingungen, die bei
darauf aufbauenden Erweiterungen der Theorie beachtet werden müssen. Wir
zeigen auf, dass nicht-klassische Eigenschaften eines Einzelsystems in gleicher
Weise auch in einem höherdimensionalen klassischen System auftreten kön-
nen, wenn man die Menge möglicher Messungen beschränkt. Hingegen wird
gezeigt, dass Verschränkung und Nicht-Lokalität echt nicht-klassische Eigen-
schaften darstellen. Besondere Eigenschaften, die spezifisch für die Quanten-
theorie sind, werden separat für Einzelsysteme und zusammengesetzte Systeme
besprochen.

Kapitel 2 enthält Ergebnisse, die wir in [3] und [4] veröffentlicht haben. Der
GPT-Ansatz wird dort dazu benutzt, um zu zeigen, wie die Struktur lokaler
Zustandsräume indirekt die möglichen nicht-lokalen Korrelationen beeinflusst,
die selbst eigentlich globale Eigenschaften darstellen. Solche Korrelationen sind
stärker als jene, die in der klassischen Wahrscheinlichkeitstheorie möglich sind,
zeigen jedoch andere Beschränkungen, die wir auf die Struktur der Subsys-
teme zurück führen können. Zunächst illustrieren wir dieses Phänomen mit
Spieltheorien mit bestimmten lokalen Zustandsräumen. Danach zeigen wir,
dass für eine besondere Klasse von zusammengesetzten Zuständen (inner prod-
uct states), deren Existenz von geometrischen Eigenschaften der lokalen Sub-
systeme abhängt, Korrelationen im Allgemeinen auf eine Menge beschränkt
sind, die als Q1 bekannt ist. Alle bipartiten Korrelationen von Quantentheo-
rie und klassischer Wahrscheinlichkeitstheorie können auf die Messstatistiken
dieser Zusände zurückgeführt werden.

Kapitel 3 beinhaltet größtenteils unpublizierte Ergebnisse zu Verschränk-
ungstausch (entanglement swapping) in GPTs. Diese Protokoll, das aus der
Quanteninformationstheorie bekannt ist, erlaubt den nicht-lokalen Transfer von
Verschränkung zu anfangs unverschränkten Parteien mit Hilfe eines Dritten,
der verschränkte Zustände mit Beiden teilt. Wir stellen zunächst unseren in
[4] eingeführten Ansatz vor, der die Struktur zusammengesetzter Systeme in
der Quantentheorie nachahmt. Dafür modifizieren wir eine populäre Spielthe-
orie, die unter dem Namen boxworld bekannt ist. Es stellt sich jedoch heraus,
dass dieser Ansatz für größere multipartite Systeme fehlschlägt, da die An-
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wendung des Verschränkungstausch-Protokolls zu Inkonsistenzen führt. Wir
zeigen dann, dass der GPT-Ansatz generell konsistenten Verschränkungstausch
für solche Systeme verbietet, die Subsysteme mit zwei-dimensionalen Zustand-
sräumen haben, wo die reinen Zustände reversibel in einander überführbar sind.
Ändern wir den GPT-Ansatz jedoch insofern, dass rein globale Freiheitsgrade
zugelassen sind, zeigt sich das Verschränkungstausch auch für diese Systeme
möglich wird. Dabei kommt eine Konstruktion zum Einsatz, die die Situa-
tion nachahmt, wie sie in der Quantentheorie auf einem reellen Hilbertraum
herrscht.
Normalerweise geht der GPT-Ansatz von der sogenannten no-restriction-

Hypothese aus, bei der der Zustandsraum einer physikalischen Theorie auch
die Menge möglicher Messungen bestimmt. Allerdings scheint diese Annahme
nicht physikalisch motiviert. Wir verallgemeinern daher in Kapitel 4 den Ansatz
auf Systeme, die nicht der no-restriction-Hypothese gehorchen unter Verwen-
dung von Resultaten aus [5] und [6]. Wir zeigen, wie unser so erweiterte
Ansatz dazu genutzt werden kann, neue Klassen von Wahrscheinlichkeitsthe-
orien zu beschreiben. Dadurch lässt sich beispielsweise in eine Theorie intrin-
sisches Rauschen fest einbauen. Das Aufheben der no-restriction-Hypothese
erlaubt es uns außerdem eine Selbstualisierungsprozedur einzuführen. Dadurch
lassen sich eine neue Klasse von Theorien definieren, die der Quantentheo-
rie ähnelnde Eigenschaften aufweisen. Beispielsweise sind die Korrelationen
durch Messungen auf den maximal verschränkten Zustands durch die Tsirelson-
Schranke beschränkt. Schließlich charakterisieren wir die maximale Menge
zusammengesetzter Zustände, die sich allgemein konsistent für gegebene Sub-
systeme definieren lassen. Dies verallgemeinert das aus dem normalen GPT-
Ansatz bekannte, sogenannte maximale Tensorprodukt.
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Abstract

Quantum theory is considered to be the most fundamental and most accurate
physical theory of today. Although quantum theory is conceptually difficult
to understand, its mathematical structure is quite simple. What determines
this particularly simple and elegant mathematical structure? In short: Why is
quantum theory as it is?

Addressing such questions is the aim of investigating the foundations of quan-
tum theory. In the past this field of research was sometimes considered as an
academic subject without much practical impact. However, with the emergence
of quantum information theory this perception has changed significantly and
both fields started to fruitfully influence each other [7, 2]. Today fundamental
aspects of quantum theory attract increasing attention and the field belongs to
the most exciting subjects of theoretical physics. This thesis is concerned with
a particular branch in this field, namely, with so-called Generalized Probabilis-
tic Theories (GPTs), which provide a unified theoretical framework in which
classical and quantum theory emerge as special cases. This is used to examine
nonlocal features that help to distinguish quantum theory from alternative toy
theories. In order to extend the scope of theories that can be examined with the
framework, we also introduce several generalizations to the framework itself.

We start in Chapter 1 with introducing the standard GPT framework and
summarize previous results, based on a review paper of the author [8]. To
keep the introduction accessible to a broad readership, we follow a constructive
approach. Starting from few basic physically motivated assumptions we show
how a given set of observations can be manifested in an operational theory.
Furthermore, we characterize consistency conditions limiting the range of pos-
sible extensions. We point out that non-classical features of single systems can
equivalently result from higher dimensional classical theories that have been
restricted. Entanglement and non-locality, however, are shown to be genuine
non-classical features. We review features that have been found to be specific
for quantum theory separably or single and joint systems.

Chapter 2 incorporates results published in [3] and [4]. The GPT framework
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is applied to show how the structure of local state spaces indirectly affects
possible nonlocal correlations, which are global properties of a theory. These
correlations are stronger than those possible in a classical theory, but happen
to show different restrictions that can be linked to the structure of subsys-
tems. We first illustrate the phenomenon with toy theories with particular
local state spaces. We than show that a particular class of joint states (inner
product states), whose existence depends on geometrical properties of the lo-
cal subsystems, can only have correlations for a known limited set called Q1.
All bipartite correlations of both, quantum and classical correlations, can be
mapped to measurement statistics from such joint states.

Chapter 3 shows unpublished results on entanglement swapping in GPTs.
This protocol, which is well known in quantum information theory, allows to
nonlocally transfer entanglement to initially unentangled parties with the help
of a third party that shares entanglement with each. We review our approach
published in [4], which mimics the joint systems’ structure of quantum the-
ory by modifying a popular toy theory known as boxworld. However, it is
illustrated that this approach fails for bigger multipartite systems due to in-
consistencies evoked by entanglement swapping. It turns out that the GPT
framework does not allow entanglement swapping for general subsystems with
two-dimensional state spaces with transitive pure states. Altering the GPT
framework to allow completely globally degrees of freedom, however, enables
us to construct consistent entanglement swapping for these subsystems. This
construction resembles the situation in quantum theory on a real Hilbert space.

A questionable assumption usually taken in the standard GPT framework
is the so-called no-restriction hypothesis. It states that the measurement that
are possible in a theory can be derived from the state space. In fact, this as-
sumption seems to exist for reasons of mathematical convenience, but it seems
to lack physical motivation. We generalize the GPT framework to also account
for systems that do not obey the no-restriction hypothesis in Chapter 4, which
presents results published in [5] and [6]. The extended framework includes new
classes of probabilistic theories. As an example, we show how to construct theo-
ries that include intrinsic noise. We also provide a "self-dualization" procedure
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that requires the violation of the no-restriction hypothesis. This procedure re-
stricts the measurement of arbitrary theories such that the theories act as if
they were self-dual. Self-duality has recently gathered lots of interest, since
such theories share many features of quantum theory. For example Tsirelson’s
bound holds for correlations on the maximally entangled state in these theories.
Finally, we characterize the maximal set of joint states that can be consistently
defined for given subsystems. This generalizes the maximal tensor product of
the standard GPT framework.
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1. The GPT framework

1.1. Introduction

This chapter introduces Generlized Probabilistic Theories (GPTs) based on re-
view article of the author [8]. It presents the concept of GPTs in the language of
statistical physics, with the aim to establish a bridge between the communities
of classical statistical physics and quantum information science.
The early pioneers of quantum theory were strongly influenced by positivism,

a philosophy postulating that a physical theory should be built and verified en-
tirely on the basis of accessible sensory experience. Nevertheless the standard
formulation of quantum theory involves additional concepts such as global com-
plex phases which are not directly accessible. The GPT framework, which is
rooted in the pioneering works by Mackey, Ludwig and Kraus [9, 10, 11, 12],
tries to avoid such concepts as much as possible by defining a theory opera-
tionally in terms of preparation procedures and measurements.
As measurement apparatuses yield classical results, GPTs are exclusively

concerned with the classical probabilities of measurement outcomes for a given
preparation procedure. As we will see below, classical probability theory and
quantum theory can both be formulated within this unified framework. Surpris-
ingly, starting with a small set of basic physical principles, one can construct a
large variety of other consistent theories with different measurement statistics.
This generates a whole spectrum of possible theories, in which classical and
quantum theory emerge just as two special cases. Most astonishingly, vari-
ous properties thought to be special for quantum theory turn out to be quite
general in this space of theories. As will be discussed below, this includes the
phenomenon of entanglement, the no-signaling theorem, and the impossibility
to decompose a mixed state into unique ensemble of pure states.
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1. The GPT framework

Although GPTs are defined operationally in terms of probabilities for mea-
surement outcomes, it is not immediately obvious how such a theory can be
constructed from existing measurement data. This introduction tries to shed
some light on the process of building theories in the GPT framework on the
basis of a set of given experimental observations, making the attempt to pro-
vide step-by-step instructions how a theory can be constructed. We try to
explain the essential concepts of the GPT framework in terms of simple ex-
amples, avoiding mathematical details whenever it is possible. We present the
subject from the perspective of model building. To this end we start in Sect.
1.2.1 with a data table that contains all the available statistical information
of measurement outcomes. In Sect. 1.2.3 the full space of possible experimen-
tal settings is then grouped into equivalence classes of observations, reducing
the size of the table and leading to a simple prototype model. As shown in
Sect. 1.2.5 this prototype model has to be extended in order to reflect possible
deficiencies of preparations and measurements, leading in turn to new suitable
representations of the theory. Further extensions can be chosen freely within a
certain range limited by consistency conditions (see Sect. 1.2.9). Depending on
this choice the extended theory finally allows one to make new predictions in
situations that have not been examined so far. Within this framework we dis-
cuss three important minimal systems, namely, the classical bit, then quantum
bit (qubit), as well as the so-called gbit.

In Sect. 1.4 we devote our attention to the fact that any non-classical system
is equivalent to a classical system in a higher-dimensional state space com-
bined with certain constraints. However, this equivalence is only valid as long
as non-composite (single) systems are considered. Turning to bipartite and
multipartite systems the theory has to be complemented by a set of composi-
tion rules in the form of a suitable tensor product (see Sect. 1.5). Again it turns
out that there is some freedom in choosing the tensor product, which deter-
mines the structure of a GPT to a large extent. Finally, in Sect. 1.6 we discuss
nonlocal correlations as a practical concept that can be used to experimentally
prove the existence of non-classical entanglement in composite systems without
the need to rely on a particular theory.
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1.2. Generalized probabilistic theories: Single systems

For beginners it is often difficult to understand the construction of a non-
classical theory without introducing concepts such as Hilbert spaces and state
vectors. For this reason we demonstrate how ordinary quantum mechanics
fits into the GPT framework, both for single systems in Sect. 1.3.6 and for
composite systems in Sect. 1.8.

1.2. Generalized probabilistic theories: Single

systems

1.2.1. Preparation procedures and measurements

As sketched schematically in Fig. 1.1, a typical experimental setup in physics
consists of a preparation procedure, possibly followed by a sequence of manip-
ulations or transformations, and a final measurement. For example, a particle
accelerator produces particles in a certain physical state which are then manip-
ulated in a collision and finally measured by detectors. Since the intermediate
manipulations can be thought of as being part of either the preparation proce-
dure or the measurement, the setup can be further abstracted to preparations
and measurements only1.
We can think of a measurement apparatus as a physical device which is pre-

pared in a spring-loaded non-equilibrium idle state. During the measurement
process the interaction of the physical system with the device releases a cascade
of secondary interactions, amplifying the interaction and eventually leading to
a classical response that can be read off by the experimentalist. This could be,
for example, an audible ’click’ of a Geiger counter or the displayed value of a
voltmeter.
In practice a measurement device produces either digital or analog results.

For analog devices there are in principle infinitely many possible outcomes,
but due to the final resolution the amount of information obtained during the

1In standard quantum theory the absorption of intermediate transformations into the prepa-
ration procedure corresponds to the Schrödinger picture, the absorption into the mea-
surement to the Heisenberg picture.
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1. The GPT framework

Figure 1.1.: Typical experimental setup consisting of a preparation procedure, a se-
quence of intermediate manipulations, and a final measurement with a
certain set of possible classical outcomes (see text). The intermediate
manipulations can be thought of as being part of either the preparation
procedure (dashed box) or the measurement.

measurement is nevertheless finite. Thus, for the sake of simplicity, we will
assume that the number of possible outcomes in a measurement is finite.
For an individual measurement apparatus we may associate with each of the

possible outcomes a characteristic one-bit quantity which is ’1’ if the result oc-
curred and ’0’ otherwise. In this way a measurement can be decomposed into
mutually excluding classical bits, as sketched in Fig. 1.1. Conversely every sin-
gle measurement can be interpreted as a joint application of such fundamental
1-bit measurements.
If we are dealing with several different measurement devices the associated

classical bits are of course not necessarily mutually excluding. This raises
subtle issues about coexistence, joint measurability, mutual disturbance and
commutativity [13, 14], the meaning of a ’0’ if the measurement fails, and
the possibility to compose measurement devices out of a given set of 1-bit
measurements. For simplicity let us for now neglect these issues and return to
some of the points later in the introduction.

1.2.2. Toolbox and probability table

In practice we have only a limited number of preparation procedures and mea-
surement devices at our disposal. It is therefore meaningful to think of some
kind of ‘toolbox’ containing a finite number of 1-bit measurements labeled by
k = 1 . . . K and a finite number of preparation procedures labeled by ` = 1 . . . L.
As mentioned before, if the range of preparations and measurements is con-
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1.2. Generalized probabilistic theories: Single systems

tinuous, we assume for simplicity that the finite accuracy of the devices will
essentially lead to the same situation with a finite number of elements. Our aim
is to demonstrate how the GPT approach can be used to construct a physical
theory on the basis of such a toolbox containing K measurement devices and
L preparation methods.
With each pair of a 1-bit measurement k and a preparation procedure `

we can set up an experiment which produces an outcome χk` ∈ {0, 1}. An
important basic assumption of the GPT framework is that experiments can
be repeated under identical conditions in such a way that the outcomes are
statistically independent. Repeating the experiment the specific outcome χk`
is usually not reproducible, instead one can only reproducibly estimate the
probability

pk` = 〈χk`〉 (1.1)

to obtain the result χk` = 1 in the limit of infinitely many experiments. For a
given toolbox the values of pk` can be listed in a probability table. This data
table itself can already be seen as a precursor of a physical model. However, it
just reproduces the observable statistics and apart from the known probabilities
it has no predictive power at all. Moreover, the table may grow as we add
more preparation and measurement devices. In order to arrive at a meaningful
physical theory, we thus have to implement two important steps, namely,

1. to remove all possible redundancies in the probability table, and

2. to make reasonable assumptions which allow us to predict the behavior
of elements which are not yet part of our toolbox.

1.2.3. Operational equivalence, states and effects

In order to remove redundancies in the probability table let us first introduce
the notion of operational equivalence. Two preparation procedures are called
operationally equivalent if it is impossible to distinguish them experimentally,
meaning that any of the available measurement devices responds to both of
them with the same probability. Likewise two one-bit measurements are called
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1. The GPT framework

operationally equivalent if they both respond with the same probability to any
of the available preparation procedures.
The notion of operational equivalence allows one to define equivalence classes

of preparations and one-bit measurements. Following the terminology intro-
duced by Ludwig and Kraus [10, 12] we will denote these classes as states and
effects:

• A state ω is a class of operationally equivalent preparation procedures.

• An effect e is a class of operationally equivalent 1-bit measurements.

This allows us to rewrite the probability table in terms of states and effects,
which in practice means to eliminate identical rows and columns in the data
table. Enumerating effects by {e1, e2, . . . , eM} and states by {ω1, ω2, . . . , ωN}
one is led to a reduced table of sizeM×N , the so-called fundamental probability
table.
If we denote by e(ω) = p(e|ω) the probability that an experiment chosen from

the equivalence classes e and ω produces a ’1’, the matrix elements elements of
the fundamental probability table can be written as

pij = 〈χij〉 = ei(ωj) . (1.2)

Obviously, this table contains all the experimentally available information.
Since effects and states are defined as equivalence classes, it is ensured that
no column (and likewise no row) of the table appears twice.
Note that the later inclusion of additional measurement apparatuses might

allow the experimentalist to distinguish preparation procedures which were
operationally equivalent before, splitting the equivalence class into smaller ones.
This means that a state may split into several states if a new measurement
device is added to the toolbox. The same applies to effects when additional
preparation procedures are included.
As the introduction of equivalence classes described above eliminates only

identical rows and columns, the fundamental probability table can be still very
large. In addition, there may be still linear dependencies among rows and
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1.2. Generalized probabilistic theories: Single systems

Figure 1.2.: New states and effects can be generated by probabilistically mixing
the existing ones, illustrated here in a simple example (see text).

columns. As we will see below, these linear dependencies can partly be elimi-
nated, leading to an even more compact representation, but they also play an
important role as they define the particular type of the theory.

1.2.4. Noisy experiments and probabilistic mixtures of
states and effects

Realistic experiments are noisy. This means that a preparation procedure does
not always create the physical object in the same way, rather the preparation
procedure itself may randomly vary in a certain range. Similarly, a measure-
ment is noisy in the sense that the measurement procedure itself may vary
upon repetition, even when the input is identical. In the GPT framework this
kind of classical randomness is taken into account by introducing the notion of
mixed states and effects.
The meaning of probabilistic mixtures is illustrated for the special case of

bimodal noise in Fig. 1.2. On the left side of the figure a classical random
number generator selects the preparation procedure ω1 with probability p and
another preparation procedure ω2 with probability 1−p. Similarly, on the right
side another independent random number generator selects the effect e1 with
probability q and the effect e2 otherwise, modeling a noisy measurement device.
If we apply such a noisy measurement to a randomly selected state, all what

we get in the end is again a ’click’ with certain probability P . In the example

7



1. The GPT framework

shown in Fig. 1.2, this probability is given by

P = p q e1(ω1) + p (1−q) e2(ω1)+(1−p) q e1(ω2) + (1−p) (1−q) e2(ω2) , (1.3)

where we used the obvious assumption that the intrinsic probabilities pij =

ei(ωj) are independent of p and q.
It is intuitively clear that a machine which randomly selects one of various

preparation procedures can be considered as a preparation procedure in itself,
thus defining a new state ω. Similarly, a device of randomly selected effects
can be interpreted in itself as a new effect e. Using these new effects and states
the probability (1.3) to obtain a ’click’ can simply be expressed as P = e(ω)

It is easy to see that probability (1.3) can be recovered by conveniently
describing the new states and effects by the following linear combinations

ω := p ω1 + (1− p)ω2 , e := q e1 + (1− q) e2, (1.4)

when we define them to act linear on each other. We call these new objects
mixed states and mixed effects respectively.
We introduced the probabilistic mixing of devices as a consequence of noise.

Of course, the experimenter could also chose the set-up in Fig. 1.2 on purpose
with any probabilities p and q. As p, q are continuous, probabilistic mixing
yields a continuous variety of states and effects that can be realized.

1.2.5. Linear spaces, convex combinations, and extremal
states and effects

The previous example shows that it is useful to represent probabilistically mixed
states and effects as linear combinations. It is therefore meaningful to represent
them as vectors in suitable vector spaces, whose structure, dimension and the
choice of the basis we will discuss further below. For now, let us assume that
each state ωi is represented by a vector in a linear space V and similarly each
effect ei by a vector in another linear space V ∗, which is called the dual space
of V .

8



1.2. Generalized probabilistic theories: Single systems

The embedding of states and effects in linear spaces allows us to consider
arbitrary linear combinations

e =
∑

i

λi ei , ω =
∑

j

µj ωj (1.5)

with certain coefficients λi and µj. Moreover, the fundamental probability table
pij = ei(ωj) induces a bilinear map V ∗ × V → R by

e(ω) =
[ M∑

i=1

λi ei

]( N∑

j=1

µjωj

)
=

M∑

i=1

N∑

j=1

λiµj ei(ωj)︸ ︷︷ ︸
=pij

, (1.6)

generalizing Eq. (1.3) in the previous example. Note that this bilinear map on
V ∗ × V should not be confused with an inner scalar product on either V × V
or V ∗ × V ∗. In particular, it does not induce the notion of length, norm, and
angles.

Having introduced linear combinations we also need to define what it means
when two vectors coincide. Obviously, for states (effects) the same vector yield
the same probability distribution with respect to all effects (states). More-
over, the GPT framework also assumes that the opposite is true. That is, each
state/effect is represented by an unique vector. This equivalence principle en-
sures that the vectors reflect the operational equivalence defining states and
effects2. The equivalence principle thus allows us to identify an element with
the linear combinations of other elements.

At this point it is not yet clear which of the linear combinations in (1.5)
represent physically meaningful objects. However, as shown above, the set of
physically meaningful objects will at least include all probabilistic mixtures of
the existing states and effects, which are mathematically expressed as convex
combinations with non-negative coefficients adding up to 1.

States which can be written as convex combinations of other states are re-

2Note that bra vectors in the Dirac formulation of quantum mechanics do not satisfy the
equivalence principle, since global phases do not affect operational equivalence. Conse-
quently, in the GPT terminology a "state" is not a particular bra vector, but refers to
the equivalence class of bra vectors that only differ by a global phase.
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1. The GPT framework

e1 e2 e3 e4 e5

ω1 1 0 1 1 1
ω2

1
2

0 1 2
3

3
4

ω3
1
2

1
2

1 1
3

3
4

ω4 0 1
2

1 0 1
2

Table 1.1.: Example of a probability table after removing identical columns and
rows.

ferred to as mixed states. Conversely, states which cannot be expressed as
convex combinations of other states are called extremal states. As any convex
set is fully characterized by its extremal points, we can reduce the probability
table even further by listing only the extremal states, tacitly assuming that all
convex combinations are included as well. The same applies to effects.

1.2.6. Linear dependencies among extremal states and
effects

What is the dimension of the spaces V and V ∗ and how can we choose a
suitable basis? To address these questions it is important to note that the
extremal vectors of the convex set of states (or effects) are not necessarily
linearly independent. As we shall see below, linear independence is in fact a
rare exception that emerges only in classical theories, while any non-classicality
will be encoded in certain linear dependencies among the extremal states and
effects.
Let us illustrate the construction of a suitable basis in the example of a

fictitious model with probabilities listed in Table 1.1. As states and effects are
defined as equivalence classes, multiple rows and columns have already been
eliminated. However, there are still linear dependencies among the rows and
the columns. For example, the effect e5 is related to the other ones by

e5 =
1

2
(e1 + e3) . (1.7)

Since the expression on the r.h.s. is a convex combination it is automatically
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1.2. Generalized probabilistic theories: Single systems

assumed to be part of the toolbox so that we can remove the rightmost column
from the probability table, obtaining a reduced table in form of a 4× 4 matrix.
The remaining (non-convex) linear dependencies are

e4 =
2

3
e1 −

2

3
e2 +

1

3
e3 , ω4 = −ω1 + ω2 − ω3 . (1.8)

so that the rank of the matrix is 3. Since row and column rank of a matrix
coincide, the vector spaces V and V ∗ always have the same dimension

n := dimV = dimV ∗ = rank[{pij}]. (1.9)

In other words, the number of different states needed to identify an effect is
always equal to the number of different effects needed to identify a state.

As for any vector space representation, there is some freedom in choosing
a suitable basis. As for the effects, we may simply choose the first n linearly
independent effects e1, . . . , en as a basis of V ∗, assigning to them the canonical
coordinate representation

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) . (1.10)

Likewise we could proceed with the states, choosing ω1, ω2, ω3 as a basis of V ,
but then the matrix pij would be quite complicated whenever we compute e(ω)

according to Eq. (1.5). Therefore it is more convenient to use the so-called
conjugate basis {ω̂1, ω̂2, ω̂3} which is chosen in such a way that the extremal
states are just represented by the corresponding lines in the probability table.
In the example given above this means that the states have the coordinate
representation

ω1 = (1, 0, 1) , ω2 =

(
1

2
, 0, 1

)
, ω3 =

(
1

2
,
1

2
, 1

)
. (1.11)

The basis vectors {ω̂i} can be determined by solving the corresponding linear
equations. In the present example, one can easily show that these basis vectors
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are given by the (non-convex) linear combinations

ω̂1 = 2ω1 − 2ω2, ω̂2 = −2ω2 + 2ω3, ω̂3 = −ω1 + 2ω2 . (1.12)

Using the conjugate basis the bilinear map e(ω) can be computed simply by
adding the products of the corresponding components like in an ordinary Eu-
clidean scalar product.

Recall that the vector spaces V and V ∗ are probabilistic vector spaces which
should not be confused with the Hilbert space of a quantum system. For
example, probabilistic mixtures cannot be represented by Hilbert space vectors.
We will return to this point when discussing specific examples.

1.2.7. Reliability

Realistic experiments are not only noisy but also unreliable in the sense that
they sometimes fail to produce a result. For example, a preparation procedure
may occasionally fail to create a physical object. Similarly, a detector may
sometimes fail to detect an incident particle.

Preparation procedures which create a physical state with certainty are called
reliable. The same applies to measurement devices which respond to an incident
particle with certainty.

An unreliable effect may be thought of as a reliable one that is randomly
switched on and off with probability q and 1 − q, as sketched in Fig. 1.3.
Applying this effect to a state ω, the probability to obtain a ’click’ would
be given by q e(ω). This example demonstrates that unreliable effects can
consistently be represented as sub-normalized vectors q e ∈ V ∗ with 0 ≤ q < 1,
extending the set of physical effects to a truncated convex cone which is shown
as a shaded region in in the right panel of Fig. 1.3. The zero vectors of V and
V ∗ represent the extreme cases of preparation procedures and a measurement
apparatuses which always fail to work.
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1.2. Generalized probabilistic theories: Single systems

Figure 1.3.: Unreliable effects. Left: A reliable effect e can be made unreliable
by randomly switching it on and off, constituting a new effect q e.
Right: Reliable effects are represented by points of the convex set
in V ∗ (green dashed line). Including unreliable effects this set is
extended to a truncated convex cone (the hatched region) spanned
by the extremal effects.

1.2.8. Unit measure and normalization

If a given effect e responds to a specific state ω with the probability e(ω) = 1,
then it is of course clear that both the state and the effect are reliable. However,
if e(ω) < 1, there is no way to decide whether the reduced probability for a
’click’ is due to the unreliability of the state, the unreliability of the effect, or
caused by the corresponding entry in the probability table.

To circumvent this problem, it is usually assumed that the toolbox contains
a special reliable effect which is able to validate whether a preparation was
successful, i.e. it ’clicks’ exactly in case of a successful preparation. This effect
is called unit measure and is denoted by u. The unit measure allows us to
quantify the reliability of states: If u(ω) = 1 the state ω is reliable, otherwise
its rate of failure is given by 1− u(ω).

The unit measure can be interpreted as a norm

||ω|| = u(ω) (1.13)

defined on states in the convex cone of V . By definition, the normalized states
with u(ω) = 1 are just the reliable ones. The corresponding set (the green
dashed line in Fig. 1.3) is usually referred to as the state space Ω of the theory.
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1. The GPT framework

In the example of Table 1.1 it is easy to see that the effect e3 plays the role
of the unit measure. Since the unit measure cannot be represented as a convex
combination of other effects, it is by itself an extremal effect and thus may be
used as a basis vector of V ∗. Here we use the convention to sort the Euclidean
basis of V ∗ in such a way that the unit measure appears in the last place, i.e.
eM ≡ u. Using this convention the norm of a state is just given by its last
component. For example, in Table 1.1, where e3 = u, the third component
of all states ω1, . . . , ω4 is equal to 1, hence all states listed in the table are
normalized and thus represent reliable preparation procedures.
The unit measure also induces a norm on effects defined by

||e|| = max
ω∈Ω

e(ω) . (1.14)

Since e(ω) ≤ 1 an effect is normalized (i.e. ||e|| = 1) if and only if there exists
a state ω for which ω(e) = 1. By definition, such an effect is always reliable.
The opposite is not necessarily true, i.e. reliable effects may be non-normalized
with respect to the definition in (1.14).
Note that a ‘unit state’, analogous to the unit effect u, is usually not intro-

duced since this would correspond to a preparation procedure to which every
reliable effect of the toolbox responds with a ’1’ with certainty, which is highly
unphysical. If we had introduced such a ‘unit state’, it would have allowed us
to define a norm on effects analogous to Eq. (1.13), preserving the symmetry
between states and effects. Using instead the norm (1.14) breaks the symmetry
between the spaces V and V ∗.
As we will see in the following, the unit measure u plays a central role in the

context of consistency conditions and it is also needed to define measurements
with multiple outcomes. Moreover, the definition of subsystems in Sect. 1.5.4
relies on the unit measure.

1.2.9. General consistency conditions

The concepts introduced so far represent only the factual experimental obser-
vations and immediate probabilistic consequences. However, the purpose of a
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Figure 1.4.: Consistency conditions. Left: Schematic illustration of the lower
and the upper bound, defining the intersection Emax. Right: The
same construction for the probabilities listed in Table 1.1 in the
three-dimensional representation (1.10). The red (yellow) planes
indicate the lower (upper) bound. The maximal set of effects Emax

is the enclosed parallelepiped in the center.

physical model is not only to reproduce the existing data but rather to make
new predictions, eventually leading to a set of hypotheses that can be tested
experimentally.

In order to give a GPT the capability of making new predictions one has to
postulate additional extremal states and effects which are not yet part of the
existing toolbox. Such an extension is of course not unique, rather there are
various possibilities which can be justified in different ways. For example, a
particular extension might be reasonable in view of the underlying structure and
the expected symmetries of the physical laws. Moreover, certain expectations
regarding the relationship between the parameters of the apparatuses and the
corresponding states and effects as well as analogies to other models could
inspire one to postulate a specific structure of the state space and the set of
effects. This includes dynamical aspects of the systems, which are absorbed
into preparations and measurements in the present framework.

However, not every extension of states and effects gives a consistent the-
ory. First of all, the extension should be introduced in such a way that any
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combination of effects and states yields a probability-valued result, i.e.,

0 ≤ e(ω) ≤ 1 ∀e ∈ E,ω ∈ Ω. (1.15)

This restriction consists of a lower and an upper bound. The lower bond
0 ≤ e(ω), the so-called non-negativity constraint, remains invariant if we rescale
the effect e by a positive number. In other words, for any effect e satisfying
the non-negativity constraint, the whole positive ray λ e with λ ≥ 0 will satisfy
this constraint as well. The set of all rays spanned by the non-negative effects
is the so-called dual cone, denoted as

V ∗+ := {e ∈ V ∗ | e(ω) ≥ 0∀ω ∈ Ω} . (1.16)

The upper bound can be expressed conveniently with the help of the unit
measure u. Since the unit measure is the unique effect giving 1 on all normalized
states, it is clear that e(ω) ≤ 1 if and only if u(ω) − e(ω) = (u − e)(ω) ≥ 0,
i.e., the complementary effect u − e must be included in the dual cone given
by (1.16). Note that this criterion is valid not only for normalized states but
also for sub-normalized states. This means that the set of effects, which obey
the upper bound e(ω) ≤ 1, is just u−V ∗+. Consequently, the set which satisfies
both bounds in (1.15), is just the intersection of V ∗+ and u− V ∗+, as illustrated
in Fig. 1.4. This maximal set of effects is denoted by3

Emax = V ∗+ ∩
(
u− V ∗+

)
. (1.17)

Thus, if we extend the theory by including additional effects, the resulting set
of effects E has to be a subset of this maximal set. Similarly we may extend
the theory by including additional states. Here we have to specify the set of
states which satisfy (1.15) for a given set of effects E. Generally the inclusion
of additional states imposes additional restrictions on possible effects and vice
versa. Consequently, there is a trade-off between states and effects whenever a

3In the literature this set is also denoted by [∅, u] because of a partial ordering induced by
V ∗
+, as we explain in more detail in appendix A.1.
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theory is extended without changing the dimension of the vector spaces V and
V ∗.

The GPT framework always saturates this trade-off. That is, for a given state
space it includes the full set Emax. Consequently, state spaces and effect sets are
completely determined by each other and cannot be chosen independently. This
condition is referred to as the no-restriction hypothesis [5]. Classical probability
theory and quantum theory both satisfy the no-restriction hypothesis. We will
keep the no-restriction hypothesis for most of the work presented in this thesis.

Note, however, in general there seems no operational reason to assume that
the preparations in our current toolbox should fully determine the range of
possible measurements. This motivated us to study restricted systems and the
consequences of such a generalization to the fundamental concepts of the GPT
framework in Chapter 4.

A given GPT can also be generalized by increasing the dimension of V and
V ∗. In fact, as will be shown in Sect. 1.4, every non-composite system from
an arbitrary GPT can equivalently be realized as a classical theory in a higher-
dimensional state space combined with suitable restrictions on the effects. How-
ever, as we will see in Sect. 1.5, the treatment of multipartite systems leads to
additional consistency conditions which cannot be fulfilled by restricted clas-
sical systems in higher dimensions, allowing us to distinguish classical from
genuine non-classical theories.

1.2.10. Jointly measurable effects

A set of effects is said to be jointly measurable if all of them can be evaluated
in a single measurement, meaning that there exists a measurement apparatus
that contains all these effects. By definition, effects belonging to the same
measurement apparatus are jointly measurable. However, a GPT may also
include effects that cannot be measured jointly. Therefore, it is of interest to
formulate a general criterion for joint measurability.

Before doing so, let us point out that joint measurability neither requires the
effects to be evaluated at the same time nor does it mean that they do not in-
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fluence each other. For example, let us consider a non-destructive measurement
of effects {e1

i } with results {χ1
j} followed by a second measurement. The results

{χ2
j} of the second measurement correspond to effects e2

j with the proviso that
the first measurement has already been carried out. If the first measurement
was not carried out, we would obtain potentially different effects. Nevertheless,
the whole setup measures all effects {e1

i } and {e2
j} jointly, irrespective of the

fact that the second group depends on the first one.

Joint measurability of effects is in fact a weaker requirement than non-
disturbance and commutativity of measurements. In standard quantum theory
these terms are often erroneously assumed to be synonyms. This is because in
the special case of projective measurements they happen to coincide. However,
as shown in [13, 14], they even differ in ordinary quantum theory in the case
of non-projective measurements.

Let us now formally define what joint measurability means. Consider two
effects ei and ej. Applied to a state ω each of them produces a classical one-bit
result χi ∈ {0, 1} and χj ∈ {0, 1}. Joint measurability means that there exists
another single measurement apparatus in the toolbox that allows us to extract
two bits (χ̃i, χ̃j) by Boolean functions with the same measurement statistics as
(χi, χj).

In other words, two effects ei, ej are jointly measurable if the toolbox already
contains all effects which are necessary to set up the corresponding Boolean
algebra, i.e. there are mutually excluding effects ei∧j, ei∧j, ei∧j, ei∧j with the
properties

ei = ei∧j + ei∧j , ej = ei∧j + ei∧j

u = ei∧j + ei∧j + ei∧j + ei∧j (1.18)

ei∨j = ei + ej − ei∧j .
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Let us use Eqs. (1.18) to rewrite ei∧j in three different ways:

ei∧j = ei − ei∧j
= ej − ei∧j (1.19)

= ei + ej − u+ ei∧j .

We can now translate the joint measurability condition to

∃e1, e2, e3, e3 ∈ E : e1 = ei − e2 = ej − e3 = ei + ej − u+ e4 . (1.20)

This condition can be rewritten elegantly as an intersection of sets

E ∩ (ei − E) ∩ (ej − E) ∩ (ei + ej − u+ E) 6= {}. (1.21)

For joint measurability of the effects ei, ej this set has to be non-empty. If this is
the case, any choice of the AND effect ei∧j in the intersection (1.21) allows one
to consistently construct all other effects by means of Eqs. (1.18). This means
that joint measurability of two effects can be implemented in various ways with
different ei∧j. Note that the status of joint measurability of a given set of effects
may even change when a theory is extended by including additional effects.

1.2.11. Complete and incomplete Measurements

A measurement is defined as a set of jointly measurable effects. If these effects
have a non-trivial overlap ei∧j 6= 0 we can further refine the measurement by
including the corresponding AND effects. Thus, we can describe any measure-
ment by a set of mutually excluding effects {ek}, where only one of the outcomes
χk occurs, as sketched in Fig. 1.1. These refined effects have no further over-
lap, i.e. ek∧l = 0 for k 6= l. Moreover, these effects can be coarse-grained by
computing their sum ek∨l = ek + el.

A measurement is called complete if all mutually excluding effects sum up to
the unit measure u. Obviously an incomplete measurement can be completed
by including a failure effect em = u −∑m−1

i=1 ei that is complementary to all
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other effects. As a consequence a complete measurement maps a normalized
state to a normalized probability distribution.
We will show in Chapter 4 in Theorem 4.2 that we need to treat every mea-

surement fundamentally as such a complete measurement in order to prevent
inconsistencies in joint systems.

1.2.12. Equivalent Representations

Consider applying arbitrary bijective linear maps LT on all effects and the
corresponding inverse map L−1 on all states. This leaves the results from any
combination of effects and states invariant, since:

(
LT· e

)[
L−1·ω

]
=
(
LT· e

)T·L−1·ω = eT·L ·L−1·ω = eT·ω = e(ω). (1.22)

Now, a particular probabilistic theory is associated with a particular state space
Ω and set of effects E. But theories are distinguished only by the different mea-
surement statistics that are possible (as is guaranteed by using the equivalence
principle). Hence if Ω and E are transformed according to (1.22), then the
resulting Ω′ and E ′ define the same theory, since this transformed state space
and effect set yield the same measurement statistics.

1.3. Examples

1.3.1. Classical probability theory

Classical systems have properties that take definite perfectly distinguishable
values that can be directly revealed via measurements. Probabilistic mixtures
can be regarded as a mere consequence of subjective ignorance.
In the GPT framework the different possible definite values of a classical

system are represented by the pure states ωi. They are linearly independent
and can be used as an Euclidean basis of the linear space V . The corresponding
state space is a probability simplex (see Fig. 1.5). Probabilistic mixtures are
represented by convex combinations of pure states. As the pure states form a
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Figure 1.5.: State and effect space of a classical bit in the GPT formalism with
the probability table ei(ωj) = δij. In classical systems the extremal
states and effects are linearly independent and can be used as an
orthonormal basis of the vector spaces.

basis, any mixed state can be uniquely decomposed into pure states weighted
by the probabilities of occurrence.

The perfect distinguishability of pure states means that the extremal effects
ej simply read out whether a particular value has been realized or not, i.e.
ej(ωi) = δij. Like the pure states in V these effects provide an Euclidean basis
for V ∗. Furthermore, the zero effect ∅, and coarse-grained basis effects ej have
to be included as additional extremal effects. In particular, this includes the
unit measure u which is obtained by coarse-graining all basis effects ej. The unit
measure responds with a ’1’ to any successful preparation of a classical system,
independent of its values. In classical systems all effects are jointly measurable.

1.3.2. Standard quantum theory: State space

Most textbooks on quantum theory introduce quantum states as vectors |Ψ〉
of a complex Hilbert space H. These vectors represent pure quantum states.
The existence of a Hilbert space representation is in fact a special feature of
quantum mechanics. In particular, it allows one to combine any set of pure
states |Ψi〉 linearly by coherent superpositions

|φ〉 =
∑

i

λi|ψi〉 , λi ∈ C ,
∑

i

|λi|2 = 1 . (1.23)
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Note that the resulting state |φ〉 is again a pure state, i.e. coherent superposi-
tions are fundamentally different from probabilistic mixtures. In fact, Hilbert
space vectors alone cannot account for probabilistic mixtures.

To describe mixed quantum states one has to resort to the density operator
formalism. To this end the pure states |Ψ〉 are replaced by the corresponding
projectors ρΨ = |Ψ〉〈Ψ|. Using this formulation one can express probabilisti-
cally mixed states as convex combinations of such projectors, i.e.

ρ =
∑

i

pi|Ψi〉〈Ψi| ,
∑

i

pi = 1 . (1.24)

As the expectation value of any observable A is given by tr[ρA], it is clear that
the density matrix includes all the available information about the quantum
state that can be obtained by means of repeated measurements.

It is important to note that the density matrix itself does not uniquely de-
termine the pi and |ψ〉i in (1.24), rather there are many different statistical
ensembles which are represented by the same density matrix. For example, a
mixture of the pure qubit states |0〉〈0| and |1〉〈1| with equal probability, and a
mixture |+〉〈+| and |−〉〈−| of the coherent superpositions |±〉 = 1√

2
(|0〉 ± |1〉)

are represented by the same density matrix

ρ =
1

2

(
|0〉〈0|+ |1〉〈1|

)
=

1

2

(
|+〉〈+|+ |−〉〈−|

)
, (1.25)

meaning that these two ensembles cannot be distinguished experimentally.
Thus, in ordinary quantum mechanics the density matrices ρ label equivalence
classes of indistinguishable ensembles and therefore correspond to the physical
states ω in the GPT language. The set of all quantum states (including proba-
bilistic mixtures) can be represented by Hermitean matrices with semi-definite
positive eigenvalues. A state is normalized if tr[ρ] = 1, reproducing the usual
normalization condition 〈ψ|ψ〉 = 1 for pure states.

Identifying the density operators as states, one faces the problem that these
operators live in a complex-valued Hilbert space whereas the GPT framework
introduced above involves only real-valued vector spaces. In order to embed

22



1.3. Examples

Figure 1.6.: State and effect spaces of a quantum-mechanical qubit in the GPT
formalism. Since the vector space are four-dimensional the figure
shows a three-dimensional projection, omitting the third coefficient
c.

quantum theory in the GPT formalism, let us recall that a n×n density matrix
can be parametrized in terms of SU(n) generators with real coefficients. For
example, the normalized density matrix of a qubit can be expressed in terms
of SU(2)-generators (Pauli matrices) as

ρ =
1

2
(1 + a σx + b σy + c σz) (1.26)

with real coefficients a, b, c ∈ [−1, 1] obeying the inequality a2 + b2 + c2 ≤ 1.
Regarding the coefficients (a, b, c) as vectors in R3, the normalized states of a
qubit form a ball in three dimensions. The extremal pure states are located on
the surface of this ball, the so-called Bloch sphere.

In order to include non-normalized states (e.g. unreliable preparation proce-
dures), we have to append a forth coefficient d in front of the unit matrix, i.e.

ρ =
1

2
(d1 + a σx + b σy + c σz) (1.27)

which is 1 for any normalized state and less than 1 if the preparation procedure
is unreliable. The four coefficients (a, b, c, d) provide a full representation of the
state space in R4 according to the GPT conventions introduced above. This
state space is illustrated for the simplest case of a qubit in the left panel of
Fig. 1.6.
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1.3.3. Standard quantum theory: Effect space

As there are pure and mixed quantum states there are also two types of mea-
surements. Most physics textbooks on quantum theory are restricted to ‘pure’
measurements, known as projective measurements. A projective measurement
is represented by a Hermitean operator A with the spectral decomposition

A =
∑

a

a |a〉〈a| (1.28)

with real eigenvalues a and a set of orthonormal eigenvectors |a〉. If such
a measurement is applied to a system in a pure state |ψ〉 it collapses onto
the state |a〉 with probability pa = |〈a|ψ〉|2. Introducing projection operators
Ea = |a〉〈a| and representing the pure state by the density matrix ρ = |ψ〉〈ψ|
this probability can also be expressed as

pa = |〈a|ψ〉|2 = 〈a|ψ〉〈ψ|a〉 = tr[E†a ρ], (1.29)

i.e. the absolute square of the inner product between bra-ket vectors is equiva-
lent to the Hilbert-Schmidt inner product of operators Ea and ρ. Hence we can
identify the projectors Ea = |a〉〈a| with extremal effects in the GPT framework,
where ea(ω) = tr[Eaρ]. As the projectors Ea cannot be written as probabilistic
combinations of other projectors, it is clear that they represent extremal effects.
As all these effects sum up to

∑
aEa = 1, the unit measure u is represented by

the identity matrix.
Turning to generalized measurements, we may now extend the toolbox by

including additional effects which are defined as probabilistic mixtures of pro-
jection operators of the form

Ea =
∑

i

qi|ai〉〈ai| , 0 ≤ qi ≤ 1. (1.30)

As outlined above, such mixtures can be thought of as unreliable measure-
ments. A general measurement, a so-called positive operator valued measure-
ment (POVM), consists of a set of such effects that sum up to the identity.
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1.3. Examples

Figure 1.7.: State and effect spaces of a gbit.

Interestingly, the generalized effects in Eq. (1.30) are again positive operators.
i.e. mixed effects and mixed quantum states are represented by the same type of
mathematical object. Therefore, quantum theory has the remarkable property
that the spaces of states and effects are isomorphic. In the GPT literature this
special property is known as (strong) self-duality.

Note that for every given pure state ρ = |Ψ〉〈Ψ| there is a corresponding
measurement operator E = |Ψ〉〈Ψ| that produces the result tr[E ρ] = 1 with
certainty on this state. In so far the situation is similar as in classical sys-
tems. However, in contrast to classical systems, it is also possible to obtain the
same outcome on other pure states with some probability. This means that in
quantum mechanics pure states are in general not perfectly distinguishable.

1.3.4. The gbit

A popular toy theory in the GPT community, which is neither classical nor
quantum, is boxworld. The simplest system in this theory is given by the
generalized bit, usually simply called gbit. It has a square-shaped state space
defined by the convex hull of the following extremal states ωi:

ω1 = (1, 0, 1), ω2 = (0, 1, 1), ω3 = (−1, 0, 1), ω4 = (0,−1, 1) . (1.31)

The corresponding set of effects is determined by the no-restriction hypothesis.
That is, it includes all linear functionals that give probability-valued results
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when applied to states. This results in an effect space given by the convex hull
of the following extremal vectors:

e1 =
1

2
(1, 1, 1) e2 = 1

2
(−1, 1, 1),

e3 =
1

2
(−1,−1, 1), e4 = 1

2
(1,−1, 1) (1.32)

together with the zero effect and the unit measure

∅ = (0, 0, 0), u = (0, 0, 1). (1.33)

Remarkably, in contrast to the classical and the quantum case, each extremal
effect ei gives certain outcomes on more than one extremal state.

1.3.5. Other toy theories

Further examples of state spaces discussed in the literature include a compli-
cated three-dimensional cushion-like state space to model three-slit interference
[15], a cylinder-shaped state space [16], hypersheres of arbitrary dimensions
used as a generalization of the Bloch sphere of qubits [17], a three-dimensional
state space with triangle-shaped and disc-shaped subspaces [18] and a three-
dimensional approximation of the Bloch ball with finite extremal states [19].

The study of physical principle in this work deploys a variety of new toy the-
ories. A whole class of toy theories with two-dimensional state spaces given by
regular polygons will be discussed in section 2.1 and were originally introduced
in the authors master thesis [20]. Remarkably, these include some of the above
standard cases, which correspond to state spaces with a particular number n of
vertices. The state space of a classical theory with three distinguishable pure
states is given by a triangle-shaped state space, that is the regular polygon with
three vertices (n = 3). The square shaped state space of the gbit corresponds
to n = 4. In the limit n → ∞, we get a two-dimensional subspace of a qubit,
inheriting some of the quantum features. The polygon theories can therefore
be used to compare the different standard cases. Furthermore, increasing the
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number of vertices yields a transition from a classical theory and a gbit to a
quantum-like theory in the limit of infinitely many vertices.
A house-shaped toy theory is studied in Section 2.4. Section 2.1.1 intro-

duces another class of toy theories. This theories allow a continuous transition
between a classical system and a gbit. Such a toy theory consists of two-
dimensional state spaces with four vertices. The location of one of the vertices
is parametrized, such that the square and the triangle appear as special cases
for particular parameters.
All the theories mentioned so far, include the full set of potential effects.

That is, they obey the no-restriction hypothesis. Chapter 4 studies the conse-
quences of relaxing this condition and introduces toy theories with restricted
effect sets. Particular interesting examples are theories with inherent noise and
a construction that mimics the state-effect duality of quantum theory by re-
stricting the effect set of general theories. Another example of a restricted GPT
is the probabilistic version of Spekken’s toy theory [21], given by octrahedron-
shaped state space and effect set.

1.3.6. Special features of quantum theory

Having introduced some examples of GPTs let us now return to the question
what distinguishes quantum mechanics as the fundamental theory realized in
nature from other possible GPTs. Although a fully conclusive answer is not
yet known, one can at least identify various features that characterize quantum
mechanics as a particularly elegant theory.

Continuous state and effect spaces:

Comparing the state and effect spaces in Figs. 1.6 and 1.7 visually, one imme-
diately recognizes that quantum theory is special in so far as extremal states
and effects form continuous manifolds instead of isolated points. In the Hilbert
space formulation this allows one to construct coherent superpositions and to
perform reversible unitary transformations, giving the theory a high degree of
symmetry. Note that coherent superpositions and probabilistic mixtures are
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very different in character: While mixtures exist in all GPTs, coherent super-
positions turn out to be a special property of quantum theory. GPTs do in
general not admit reversible transformations between different extremal states
which would be a prerequisite for the possibility of superpositions [21, 22].
Quantum theory does not only allow one to relate pure states by reversible

unitary transformations (transitivity) [1, 23, 24], but even mixed states can be
reversibly transformed into each other (homogeneity) [25]. Moreover, the con-
tinuous manifold of infinitely extremal quantum states does not require infinite-
dimensional vector spaces. For example, the state space of a qubit (Bloch ball)
is three-dimensional although it has infinitely many extremal points.

Distinguishability and sharpness:

The possibility of reversible transformations between extremal states has direct
consequences in terms of the information processing capabilities of a theory [26].
As we have seen, in non-classical theories pairs of states are in general not per-
fectly distinguishable. Remarkably, quantum theory is also special in so far as
it allows for a weaker notion of perfect distinguishability [27], namely, for any
extremal state one can find a certain number of other perfectly distinguishable
extremal states (the orthogonal ones in the Hilbert space formulation). This
number is called the information capacity of the system which corresponds to
the classical information that can be encoded in such a subsystem of distin-
guishable states. In quantum theory it is equal to the dimension of the Hilbert
space.
Obviously, any GPT with given state and effect spaces has well-defined sub-

sets of perfectly distinguishable states and therewith a well-defined information
capacity. Remarkably, for quantum theory the opposite is also true, i.e., the in-
formation capacity of a system can be shown to determine its state space [1, 23].
As a consequence it turns out that a system of given information capacity in-
cludes non-classical ones with a lower information capacity as subspaces [24],
which allows for an ideal compression of the encoded information [27]. This
embedding is reflected by a rich geometrical structure of state spaces that is
still rather unexplored. The interested reader may be referred to [28] for an
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detailed discussion of the geometry of quantum state spaces. An example of a
state space that is still rather low dimensional, but nevertheless has a highly
non-trivial structure, is the qutrit, a quantum system with information capacity
three. It has extremal points that lie on the surface of an eight-dimensional ball
with radius

√
2/3. However, the sphere is only partially covered with extremal

states. In particular, for any pure state of a qutrit there is a subspace with
information capacity 2 including all states that can be perfectly distinguished
from the first one. As quantum systems with information capacity 2 are rep-
resented by the three-dimensional Bloch ball, we can conclude that there is
an opposing Bloch-ball-shaped facet for any extremal point of the qutrit state
space.
Quantum theory is also special in so far as for any extremal state ω there

exists a unique extremal effect e which gives e(ω) = 1 while it renders a strictly
lower probability for all other extremal states. Therefore, this effect allows one
to unambiguously identify the state ω. The existence of such identifying effects
is another special quantum feature known as sharpness [29].

Strong self-duality:

Another striking feature of quantum theory is the circumstance that extremal
states and the corresponding identifying effects are represented by the same
density operator. This is related to the fact that quantum theory is (strongly)
self-dual, i.e. the cone of non-normalized states and its dual cone coincide [30]
and obey the no-restriction hypothesis [5]. It was shown that this is a conse-
quence of bit symmetry, i.e. all pairs of distinguishable states can be reversibly
transformed into each other [31].

To summarize, from the perspective of GPTs quantum theory has remarkable
characteristic properties which may give us an idea why this theory is the one
realized in Nature. On the other hand, various other features that seem special
for quantum theory turned out to be common for non-classical theories within
the GPT framework. Examples are the operational equivalence of different
ensembles and the impossibility to clone a state [32].
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Note, that so far we have only discussed single (i.e. non-composite) systems.
Already on this level quantum theory exhibits very special features that are
hard to find in any other toy theories. Nevertheless, as we will show in the
next section, any non-classical single system can be simulated by a higher
dimensional classical system with appropriate restrictions.

1.4. Non-classicality by restriction

Any non-classical single (non-partitioned) system can be interpreted as a clas-
sical system with appropriately restricted effects in higher dimensions. This
can easily be illustrated in the example of Table 1.1. Suppose we extend the
table by one additional column for each preparation procedure ωi which con-
tains a ’1’ for ωi and ’0’ otherwise (see Table 1.2). Obviously, these additional
columns can be interpreted as additional effects that allow us to perfectly dis-
tinguish different preparation procedures, just in the same way as in a classical
model. In other words, by adding these columns we have extended the model
to a classical one in a higher-dimensional space, where each of the preparation
procedures is represented by a different pure state. The original effects can
simply be interpreted as coarse-grained mixtures of the additional effects.

e1 e2 e3 e4 e5 e6 e7 e8 e9

ω1 1 0 1 1 1 1 0 0 0
ω2

1
2

0 1 2
3

3
4

0 1 0 0
ω3

1
2

1
2

1 1
3

3
4

0 0 1 0
ω4 0 1

2
1 0 1

2
0 0 0 1

Table 1.2.: Copy of Table 1.1 extended by four additional effects e6, e7, e8, e9,
converting the non-classical theory into a classical one in higher
dimensional space.

Conversely, it is also possible to restrict a classical system in such a way
that it seems to acquire non-classical features. Such an example was given by
Holevo in 1982 [33]: Take a classical system with four pure states

ω1 = (1, 0, 0, 0), ω2 = (0, 1, 0, 0), ω3 = (0, 0, 1, 0), ω4 = (0, 0, 0, 1) (1.34)
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representing four distinguishable values. These extremal states span a three-
dimensional tetrahedron of normalized mixed states embedded in four-dimensional
space. The corresponding extremal effects are given by the vertices of the four-
dimensional hypercube e = (x1, x2, x3, x4) with xi ∈ {0, 1}, including the zero
effect ∅ = (0, 0, 0, 0) and the unit measure u = (1, 1, 1, 1). By definition, two
states ω = (y1, y2, y3, y4) and ω′ = (y′1, y

′
2, y
′
3, y
′
4) are operationally equivalent

whenever

e(ω) = e(ω′) ⇔
4∑

i=1

xi yi =
4∑

i=1

xi y
′
i (1.35)

for all available effects e, which in this case means that all components yi = y′i

coincide.
Now, let us restrict our toolbox of effects to a subset where

x1 + x2 = x3 + x4 . (1.36)

As a result, ω and ω′ can be operationally equivalent even if the components
yi and y′i are different. More specifically, if there is a t 6= 0 such that

y′1 = y1 + t, y′2 = y2 + t, y′3 = y3 − t, y′4 = y4 − t , (1.37)

then the restricted toolbox of effects does not allow us to distinguish the two
states, hence ω and ω′ now represent the same state in the restricted model.
The extended operational equivalence allows us to choose one of the com-

ponents, e.g. to set y4 = 0. This means that the four-dimensional parameter
space is projected onto a three-dimensional subspace, and the embedded three-
dimensional tetrahedron is again projected to a two-dimensional convex object.
This projected state space turns out to have the form of a square, as shown
schematically in Fig. 1.8. As we have seen before, this is just the state space
of a (non-classical) gbit. Therefore, the restriction (1.36) leads effectively to
a non-classical behavior. In fact, Holevo showed that such a construction is
possible for any probabilistic theory including quantum theory4.

4Note that quantum theory has infinitely many extremal states. The construction therefore
requires an infinitely dimensional classical system.
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1. The GPT framework

Figure 1.8.: Construction of the two-dimensional gbit state space by projecting
a three-dimensional classical state space (adapted from [33]).

To summarize, any non-classical GPT can be extended to a higher-dimensional
classical theory by including additional effects. Conversely, non-classical theo-
ries can be deduced from a classical one by imposing appropriate restrictions
on the available effects. The restrictions allow us to project the classical state
space to a non-classical one in lower dimensions, inheriting phenomena like
uncertainty relations and non-unique decompositions of mixed states.

Obviously this seems to question the fundamental necessity of non-classical
systems. How do we know that all the unusual phenomena in quantum theory
do not only result from restrictions in some higher-dimensional space and thus
can be explained in classical terms once we extend our theory? However, at
this point we should keep in mind that so far we considered only single (non-
composite) systems. As we will see in the following section, multipartite non-
classical systems cannot be described in terms of restricted classical systems.
Thus, it would be misleading to conclude that non-classicality only results from
restrictions imposed on an underlying higher-dimensional classical system. In
fact, the analysis of multipartite systems will allow us to clearly distinguish
classical and genuinely non-classical physical systems.
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1.5. Multipartite systems

Multipartite systems may be thought of as consisting of several subsystems in
which the same type of theory applies. Since such a composed system in itself
can be viewed as a single system simply by ignoring its subsystems structure,
the consistency conditions discussed in the previous sections obviously apply to
multipartite systems as well. However, it turns out that additional consistency
conditions arise from the fact that the theory has to be compatible with the
partition into given subsystems. In fact, as we will see below, the structure of
the subsystems determines a smallest and largest set of joint states and effects
that are compatible with the given partition. The actual set of joint elements
can be chosen freely within these constraints. This means that a GPT is not yet
fully specified by defining states, effects, and the probability table of a single
system, instead it is also required to specify how individual systems can be
combined to more complex composite systems that embed the joint elements,
as the tensor product of unbounded linear spaces is unique. More specifically,
one has to define suitable tensor product for the sets of states and effects, which
is part of the definition of the theory5.

1.5.1. Separability and the minimal tensor product

In the simplest case, the composite system consists of several independently
prepared components. As these subsystems are statistically independent, the
joint state describing the overall situation is given by a product state.
As an example let us consider two subsystems A and B which are in the

states ωA and ωB, respectively. If these systems are completely independent,
their joint state is given by a product state, denoted as ωAB = ωA ⊗ ωB.
Similarly, the effects of the two subsystems can be combined in product effects
eAB = eA ⊗ eB, describing statistically independent measurements on both

5The term “tensor product” has been chosen because it formally represents a tensor product
of partially ordered vector spaces. Physically, it is just the set of all non-normalized joint
elements for given partition into subsystems. This must not be confused with the direct
product of the linear spaces V , V ∗ that embed the joint elements.
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sides. In this situation the joint measurement probabilities factorize, i.e.

eAB(ωAB) = p(eA ⊗ eB|ωA ⊗ ωB) = p(eA|ωA) p(eB|ωB) = eA(ωA) eB(ωB).

(1.38)
As a next step, we include classical correlations by randomly choosing prepa-
ration procedures and measurement apparatuses in a correlated manner. For-
mally this can be done by probabilistically mixing the product elements defined
above. For example, classically correlated states may be incorporated by in-
cluding probabilistic linear combinations of the form ωAB =

∑
ij λij ω

A
i ⊗ ωBj

with positive coefficients λij > 0. Similarly, one can introduce classically cor-
related effects.

In the GPT framework the mathematical operation, which yields the set of
product elements and their probabilistic mixtures, is the so-called the minimal
tensor product :

V A
+ ⊗min V

B
+ := {ωAB =

∑

ij

λij ω
A
i ⊗ ωBj | ωA ∈ V A

+ , ω
B ∈ V B

+ , λij ≥ 0}

V A∗
+ ⊗min V

B∗
+ := {eAB =

∑

ij

µij e
A
i ⊗ eBj |eA ∈ V A∗

+ , eB ∈ V B∗
+ , µij ≥ 0} .(1.39)

Elements in the minimal tensor product are called separable with respect to
the partition.

The extremal states in the joint state space V A
+ ⊗min V

B
+ are given by the

product of extremal subsystem states. Note that the joint states in this space
are not necessarily normalized. Normalized separable joint states can be ob-
tained by forming products of normalized single states or mixtures of them.
As a criterion for normalization, the joint unit measure uAB = uA ⊗ uB is the
unique joint effect that gives uAB(ωAB) = 1 on all normalized joint states.

If we apply a joint effect to a joint state, the corresponding measurement
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statistics is determined by the weighted sum of factorizing probabilities:

eAB(ωAB) = p(eAB|ωAB) =
[∑

i,j µij e
A
i ⊗ eBj

] (∑
kl λkl ω

A
k ⊗ ωBl

)

=
∑

ijkl λij µkl e
A
i (ωAk ) eBj (ωBl ). (1.40)

As the number of combinations and the number of coefficients λij, µkl coincide,
it is clear that the measurement statistics obtained from such product effects
is sufficient to identify a joint state uniquely. This means that the whole infor-
mation of classically correlated elements in the minimal tensor product can be
extracted by coordinated local operations carried out in each of the subsystems.

1.5.2. Entanglement in GPTs

The minimal tensor product defines the sets V A
+ ⊗min V

B
+ and V A∗

+ ⊗min V
B∗

+

of classically correlated states and effects which can be seen as subsets of cer-
tain vector spaces. For classical systems one can show that the minimal tensor
product already includes all joint elements that are consistent with the divi-
sion into classical subsystems [34]. However, in non-classical theories there are
generally additional vectors representing elements which are non-separable but
nevertheless consistent with the subsystem structure and fully identifiable by
local operations and classical communication (LOCC). Such states are called
entangled. As it is well known, entangled states do exist in standard quantum
theory.
In the GPT framework both separable and entangled elements can be rep-

resented as vectors in the direct product spaces V AB = V A ⊗ V B and V AB∗ =

V A∗ ⊗ V B∗. For separable, classically correlated elements this was directly in-
herited from classical probability theory. The tensor structure for entangled
elements is based on the following additional assumptions[26]: i) local tomog-
raphy, which means that coordinated local operations suffice to identify a joint
element, ii) no-signaling, stating that local operations in one part of the system
have no effect on the local measurement statistics in other parts. As elements
of the direct product spaces, we can represent joint elements as n×m matrices,
where n = dimV A = dimV A∗ and m = dimV B = dimV B∗ are the dimensions
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of the subsystems.
Separable and entangled elements decompose into product elements in a

different way. By definition, entangled elements are are not included in the
minimal tensor product, meaning that they cannot be written as probabilistic
mixtures of product elements. Of course they can still be decomposed into a
linear combination of product elements, but such a linear decomposition would
inevitably include negative coefficients.
As an example from quantum mechanics let us consider a fully entangled

two-qubit Bell state

|ψ+〉 =
1√
2

(|00〉+ |11〉) . (1.41)

Choosing for each qubit the normalized extremal Bloch states

{ω1, ω2, ω3, ω4} = {1
2
,
1 + σx

2
,
1 + σy

2
,
1 + σz

2
} , (1.42)

where σx,y,z are Pauli matrices, a straight-forward calculation shows that the
pure Bell state ω = |ψ+〉〈ψ+| can be decomposed into a linear combination

ω = 2ω11 − ω12 + ω13 − ω14 − ω21 + ω22 + ω31 − ω33 − ω41 + ω44 (1.43)

of the product states ωij = ωi ⊗ ωj, which obviously contains negative coeffi-
cients.

1.5.3. Entanglement as a genuinely non-classical
phenomenon

The previous example of the Bell state illustrates that the phenomenon of
entanglement gives rise to additional extremal joint elements in the tensor
product which are not part of the minimal tensor product. As we will see in
the following, the existence of such non-separable elements makes it impossible
to consistently ‘simulate’ a non-classical system by a classical theory in a higher-
dimensional state space.
To see this we first note that the product of extremal elements in the sub-
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Figure 1.9.: Impossibility to explain entanglement in classical terms. Two non-
classical subsystems A,B containing n and m extremal states are
joined to a single non-classical system by means of a nontrivial
tensor product ⊗GPT > ⊗min. The resulting non-classical sys-
tems AB contains n ·m extremal product states plus k additional
non-separable extremal states. However, mapping the systems
A,B first to the corresponding higher dimensional classical sys-
tems (right side) and combining them by the usual classical tensor
product, the resulting m ·n-dimensional classical system would not
be able to account for the additional k entangled states.

systems gives again extremal elements in the composite system. For example,
if two non-classical systems A and B have n and m pure states, then the joint
system AB possesses at least nm pure product states (see Fig. 1.9). In addition,
the joint system also possesses a certain number k of non-separable extremal
states, provided that the tensor product is ‘larger’ than the minimal one.

The existence of non-separable elements is incompatible with the idea of
an underlying classical system in a higher-dimensional space with appropriate
restriction, as described in Sect. 1.4. The reason is that the combination of
two classical systems cannot account for additional non-separable elements. In
other words, if we first map the subsystems to the corresponding n- and m-
dimensional classical systems and combine them by means of the classical (i.e.
minimal) tensor product, the resulting classical system would live in a nm-
dimensional space. However, in order to account for the entangled elements,
nm+k dimensions would be needed, as illustrated in the figure. In other words,
such a construction shows an inconsistent scaling behavior.

The measurement probability p(eAB|ωAB) of an arbitrary joint effect eAB ap-
plied to an arbitrary joint state ωAB is still given by (1.40), but in the case
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of non-separable elements some of the coefficients λij and µkl will be nega-
tive. Since this could lead to negative probabilities p(eAB|ωAB) < 0, further
restrictions on the joint elements are needed to ensure positivity.
Entanglement for states and effects is not independent from each other. If

we include more and more entangled states, the allowed range of entangled
effects becomes smaller, and vice versa. Thus, as in the case of single systems
there is a trade-off between entangled states and effects [35]. In particular, if
we restrict the range of effects to the minimal tensor product, we can include
a certain maximal set of consistent joint states and vice versa. In the following
we want to characterize this maximal set of joint states.

1.5.4. Marginal states and conditional states

Before defining the maximal set of joint states, we have to introduce the notion
of marginal states. To this end let us first consider the measurement statistics
of independent local measurements applied to a joint state ωAB, which is given
by the joint probability distribution p(eAi , e

B
j |ωAB) = [eAi ⊗ eBj ](ωAB). Since

the local measurements are independent, we do not have to apply the effects
eAi und eBj at once. In particular, we could observe only the outcome of eA in
part A, ignoring the measurement in part B. The probability of this outcome
is given by the marginal probability

p(eAi |ωAB) =
∑

j p(e
A
i , e

B
j |ωAB) =

∑
j[e

A
i ⊗ eBj ](ωAB) = eAi ⊗

[∑
j e

B
j

]
(ωAB)

= [eAi ⊗ uB](ωAB) = eAi (ωAuB) . (1.44)

In the last step of Eq. (1.44) we introduced the so-called marginal state ωAuB
(analogous to the reduced density matrix from the partial trace in quantum
mechanics). This state is the effective subsystem state which predicts the local
measurement statistics in part A. Similarly, the marginal state ωBuA determines
the measurement statistics in part B.
It is important to note that entangled pure states have mixed marginal states.

For example, in standard quantum mechanics the pure state ρAB = |ψ+〉〈ψ+|
in Eq. (1.41 has a completely mixed marginal state ρA = 1

2
(|0〉〈0| + |1〉〈1|).
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Such a situation, where we have perfect knowledge about the entire system
but an imperfect knowledge about its parts, is obviously impossible in classical
systems. In addition, the observation leads us to the important insight that the
concept of probability in GPTs is not just a matter of incomplete subjective
knowledge but rather an important part of the physical laws.
The marginal state ωAuB reflects our knowledge about subsystem A provided

that potential measurements on subsystem B are ignored. However, if a partic-
ular measurement on B is carried out and the result is communicated to us (via
classical communication) our knowledge is of course different. This increased
knowledge is accounted for by the conditional probabilities

p(eAi |eBj , ωAB) =
p(eAi , e

B
j |ωAB)

p(eBj |ωAB)
=

[eAi ⊗ eBj ](ωAB)

eBj (ωB
uA

)
= eAi

(
ωA
eBj

eBj (ωB
uA

)

)
= eAi

(
ω̃AeBj

)
.

(1.45)
In the last steps we introduced the so-called conditional state ωA

eBj
and its nor-

malized version ω̃A
eBj
. The conditional state ω̃A

eBj
is the effective state in A given

that the effect eBj was observed in B. The marginal state introduced in Eq.
(1.44) is a special conditional state, where the effect eBj is just the unit measure
in B.
As ωA

eBj
depends on the effect eBj , it can be interpreted as a linear map from

effects in one part onto conditional states in the other.

1.5.5. The maximal tensor product

As outlined above, consistency conditions lead to a trade-off between the sizes
of state and effect spaces. Therefore, in order to derive the maximal set of
possible joint states, let us assume that the corresponding set of effects is given
by the minimal tensor product. Consequently, the joint states have to satisfy
two consistency conditions:

1. Applied to product effects they have to give non-negative results.

2. They induce valid conditional states, that is, all conditional states have
to be elements of the corresponding subsystem state space.
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1. The GPT framework

⊗max QT ⊗min

Figure 1.10.: The tensor product of standard quantum theory (QT) lies strictly
between the minimal and the maximal tensor product. All tensor
products share the extremal states of the minimal tensor prod-
uct. Quantum theory and the maximal tensor product append
additional extremal states.

Note that the second condition always implies the first one, since all factors in
(1.45) are non-negative for any valid conditional state. Conversely, in systems
obeying the no-restriction hypothesis the first condition also implies the second
one. Therefore, it suffices to consider the non-negativity condition alone. With
this assumption, the maximal set of non-normalized joint states V A

+ ⊗max V
B

+

for unrestricted systems is just given by the dual cone with respect to product
effects:

V A
+ ⊗max V

B
+ := (EA

+ ⊗min E
B
+ )∗ (1.46)

=
{
ωAB ∈ V A ⊗ V B

∣∣eA ⊗ eB(ωAB) ≥ 0 ∀eA ∈ EA, eB ∈ EB
}
.

In other words, the maximal tensor product V A
+ ⊗max V

B
+ is simply the set

of all joint states which give non-negative results if we apply effects from the
minimal tensor product. For restricted systems the situation turns out to get
more complicated and requires a generalization of the maximal tensor product,
as discussed in Chapter 4.

1.6. Realism versus locality: The meaning of

non-local correlations

As shown above entanglement is a strictly non-classical feature of quantum
theory. However, a detailed knowledge of the subsystems is required in order
to identify a joint element as an entangled one. This issue is addressed in
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1.6. Realism versus locality: The meaning of non-local correlations

device-independent set-ups that prove non-classicality without relying on the
agreement on a particular theory for subsystems.
The device-independent view abstracts measurement statistics from the spe-

cific states and measurements used to produce them. That is, it only considers
the probabilities of abstract input-output combinations, with the choice of mea-
surement as input and the outcomes as outputs. Applied to correlations this
corresponds to the probability distributions p(ab|xy) to get outcome a and b

given that local measurements x and y have been chosen. Note that outputs a,
b in this context are no longer referring to particular effects, but are classical
labels that simply enumerate outcomes, e.g. the first or the second outcome.
Similarly labels x and y for inputs abstract from measurements as specific sets
of effects. Specific correlations could in fact result from different combina-
tions of a respective joint state and local measurements. Non-classicality in
this context is no longer expressed in non-classical states and effects, but in
non-classical probability distributions.
The first and most popular of device-independent non-classicality proofs are

the so-called nonlocal correlations that are possible in quantum theory. Already
in the early days of quantum mechanics, it was pointed out in the context of
the famous EPR gedankenexperiment[36] that the existence of such nonclassical
correlations are in conflict with at least one of the following assumptions:

Realism A theory obeys realism if measurement outcomes can be interpreted
as revealing a property of the system that exists independent of the mea-
surement.

Locality A physical theory obeys locality if the measurement on one part of
a joint system does not influence measurements on other (spatially sepa-
rated) parts.

Classical systems satisfy local realism. However, Bell already showed in 1964
that quantum theory can generate correlations that violate at least one of these
assumptions [37].
A particularly simple and popular setup that illustrates non-local correlations

was introduced by Clauser, Horne, Shimony and Holt (CHSH) in 1969 [38]. The
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1. The GPT framework

CHSH setup consists of two parties A and B that share a bipartite quantum
state ωAB. Each of the parties chooses between two binary measurements
MA

x = {eAx,a}1
a=0 and MB

y = {eBy,a}1
a=0 indexed by x, y ∈ {0, 1}. For each choice

of x, y we get a probability distribution

p(a, b |x, y) = eAx,a ⊗ eBy,b(ωAB) . (1.47)

The probability distribution generated by a local realistic theory satisfies the
CHSH inequality

SLH = |C0,0 + C0,1 + C1,0 − C1,1| ≤ 2 (1.48)

with the correlators

Cx,y =
∑

a,b

(−1)a⊕b p(a, b |x, y). (1.49)

In a classical probability theory we have C0,0 = C0,1 = C1,0 = 1, implying that
the fourth correlator is given by C1,1 = 1 so that the inequality holds. Quan-
tum theory, however, can violate this inequality as confirmed experimentally
in [39]. The theoretical maximum of the CHSH value that can be achieved in
quantum theory is given by Tsirelson’s bound SQTmax = 2

√
2 [40]. Interestingly,

stronger entanglement does not always allow higher violations of a Bell inequal-
ity. In fact, it has been shown that in some set-ups even an inverse relationship
between entanglement and nonlocality is possible [41]
Also many non-classical GPTs can generate violations of the CHSH in-

equality. In fact, there exists GPTs that can show violations even exceeding
Tsirelson’s bound. A frequently studied example is the maximal tensor product
of gbits which exhibits so-called PR box correlations [42], violating the CHSH
inequality up to its algebraic maximum SPR = 4.
Returning to the question of what distinguishes quantum mechanics as the

fundamental theory of nature, it is therefore not sufficient to explain the exis-
tence of non-classical correlations, one also has to give reasonable arguments
why these correlations are not stronger.
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1.7. The no-signaling polytope

Blackbox

A B

a b

p(ab|AB)

=̂

MA MB

a b

ωAB

ωAB(eAa ⊗ eBb )

Figure 1.11.: Nonlocal boxes as a device-independent model of nonlocal corre-
lations abstracting from specific measurements and states.

1.7. The no-signaling polytope

Note that up to now we only considered the maximal CHSH violation to char-
acterize device-independent correlations. In order to characterize the exact cor-
relations possible in quantum theory this should be extended to the full device-
independent measurement statistics. We therefore consider the full probability
distributions for a specific set of inputs and outputs. The abstraction from
states and effects is often illustrated by so-called nonlocal boxes as shown in
Fig. 1.11. These are black boxes which respond to inputs with certain out-
puts according to the given probability distribution. This concept allows us to
compare general no-signaling correlations to those possible in quantum theory
without referring to specific theories.

In general correlations are supposed to occur independently of the separa-
tion of the two parts. In particular the parts could be space-like separated,
i.e. communication between the parts is regarded impossible. Excluding cor-
relations that would allow superlumial transmission of information, requires
the marginal probability distributions to be independent of the choice of the
input on the other side of the system. Formally, this refers to the no-signaling
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1. The GPT framework

principle

p(a|x) =
∑

b

p(ab|xy) ∀y (1.50)

p(b|y) =
∑

a

p(ab|xy) ∀x.

As pointed out before measurement statistics from local measurements on joint
GPT systems automatically satisfy this condition.

In the CHSH set-up a, b, x, y are binary. Consequently, the measurement
statistics is given by the 24 = 16 probabilities on all possible combinations.
But not all these probabilities are independent. First, the probabilities for
different outputs a, b sum up to one for any inputs x, y. Apart from the 4

resulting normalization conditions there are 4 conditions from equations (1.50)
due to no-signaling. Thus the number of independent probabilities reduces
accordingly, which leads to a 8 dimensional space of measurement statistics.

From a geometrical perspective the CHSH term in (1.48) corresponds to a
particular direction in this space. The inequality limits the probability dis-
tributions in this direction. That is it corresponds to a half-spaces bounded
by a hyperplane at S = 2. Taking the absolute value implies an equivalent
bound in the opposite direction. Further bounds can be achieved by relabelings,
that is permutations of the x, y assignments. Together with trivial conditions
p(ab|xy) ∈ [0, 1] on the range of probabilities the intersection of half-spaces
yields an eight-dimensional polytope. This so-called local polytope L is spanned
by extremal correlations p(ab|xy) = p(a|x) p(b|y) with p(a|x), p(b|y) ∈ {0, 1}
and includes exactly those correlations that obey local realism.

On the other hand restricting correlations only by the no-signaling principle,
allows additional extremal correlations, the so-called PR-boxes of the form

p(a, b|x, y) =





1
2

if a⊕ b = xy

0 otherwise
(1.51)

and equivalent probability distributions with relabeled measurements and out-
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1.8. Discussion: Special multipartite features in quantum theory

comes. These boxes give the algebraic maximum of 4 for the term in (1.48), i.e.
violates the CHSH inequality. The PR boxes together with the extremals of the
local polytope span the no-signaling polytope P that includes all correlations
that respect the no-signaling principle.
The set of quantum correlations Q lies between the local and the no-signaling

polytope and has infinitely many extremal points, i.e. is not a polytope. The
maximum CHSH violation possible for quantum resources is given by Tsirelson’s
bound of 2

√
2 [40]. Although various approximations to Q have been derived

[43, 44, 45, 46] the complete structure of the set of quantum correlations is
still unknown. Notably, there are correlations in P not possible to produce
within quantum theory. These post-quantum correlations are regarded to be
unphysical. Nevertheless, they have been a subject of extensive research, since
they help to understand nonlocal correlations in general. It is an open question
whether there is a single physical principle that explains the absence of post-
quantum correlations, but at the same time allows the nonlocal correlations
that can be explained within quantum theory.

1.8. Discussion: Special multipartite features in

quantum theory

As we have seen the phenomena of nonlocality and entanglement are a hallmark
of quantum theory but they also exist in many other toy theories. However,
in the context of multipartite systems quantum mechanics exhibits various
characteristic features which generically do not exist in other GPTs. In this
section we are going to review some of these characteristic multipartite quantum
features.

1.8.1. Quantum features inherited from subsystems:

Surprisingly, many of these characteristic features are not linked to the struc-
ture of the tensor product, rather they are consistently inherited from single
systems. In particular the one-to-one correspondence between state spaces and
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1. The GPT framework

their information capacity carries over to joint systems. For example, the in-
formation capacity of a joint system is simply the product of the single systems
information capacities [1].

Since the state spaces are uniquely determined by the information capacity,
a joint system consisting of two qubits has the same state space than a single
quantum system with information capacity of four. In the case of quantum
mechanics the difference between single and joint systems is not reflected in
different state space structures but only in a different interpretation of the
measurements and states. As composite quantum systems have the same state
space structure as their building blocks, multipartite quantum systems inherit
all the features from single systems, including e.g. reversible continuous trans-
formations between pure states (transitivity), strong self-duality, non-restricted
measurements/states, sharpness and homogeneity. This allows us to interpret
the qubit as a fundamental information unit from which any quantum system
can be built [47].

In quantum mechanics the equivalence of systems with equal information
capacity also manifests itself in the associativity of the tensor product. This
means that equal components of a multipartite system can be swapped with-
out changing the state space (compound permutability) [29]. As illustrated
in Fig. 1.10, this tensor product lies strictly between the minimal and maxi-
mal tensor product, such that potential entanglement in states and effects is
perfectly balanced.

The inheritance of such features to joint system in standard quantum theory
is quite exceptional, as can be seen when trying to construct something simi-
lar for other GPTs. For example, the extremal states of a single gbit can be
reversibly transformed into each other and there is an isomorphism between
states and effects. However, as shown in [48] the joint states cannot be re-
versibly transformed when choosing the maximal tensor product. We will show
in Chapters 3 that tensor product which inherits an isomorphism between joint
states and effects can be constructed, but it treats equal subsystems differently
[49].

Given local quantum systems it has been shown that the ordinary quantum
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1.8. Discussion: Special multipartite features in quantum theory

tensor product is the only one that preserves transitivity [50]. Another work
explores the opposite direction [51]. The authors assume transitivity on joint
states and local systems with state spaces bounded by hyperspheres, which is a
generalization of the three-dimensional Bloch ball of qubits known as a hyperbit
[17]. It was shown that entangled states in such a scenario are only possible for
dimension three [51], which was used in [52] to explain why we are living in a
three-dimensional world.

1.8.2. Genuine multipartite quantum features:

Beyond the features inherited from single systems there are also genuine mul-
tipartite features that are characteristic for quantum theory. Recall that for
entangled states the marginal state is mixed even though the joint state might
be extremal. Quantum theory allows also the opposite, namely, any mixed
state can be regarded as the marginal of a pure extremal state – a process
called purification [53, 54, 27]. As a consequence any stochastic mapping from
one mixed state to another can be realized as a reversible unitary transforma-
tion in a higher-dimensional state space without information loss [55].

Since there is a continuum of mixtures, the possibility of purification requires
a continuum of pure entangled states. There is also an isomorphism between the
transformations of single systems and bipartite joint states [56, 57]. This was
recently used to generalize Bayesian inference to quantum states [58]. This iso-
morphism can be further decomposed into two components. On the one hand,
using the self-duality of quantum systems, states are converted to correspond-
ing effects given by the same operator. On the other hand the transformation
itself can be realized via steering, i.e. the ability to obtain any state as the
conditional state of a joint system [59, 60]. Steering is a prerequisite of more
advanced multipartite quantum features, like quantum teleportation [61, 30]
and entanglement swapping [62].

As pointed out before, nonlocal correlations are a central feature of quan-
tum theory. Several articles have examined the relation between entanglement
and non-local correlations in quantum theory. As quantum theory balances
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entanglement in states and effects, extending the joint state space to the max-
imal tensor product would potentially allow for new correlations. While this is
not the case for bipartite systems [63], it was found that the maximal tensor
product of multipartite systems with more than two subsystems can indeed
generate new correlations that are not possible in the standard tensor product
[64]. Not only entanglement but also the local structure of the subsystems
influences nonlocal correlations.We will discuss a particular class of toy theo-
ries in chapter 2. Although each of these theories incorporate joint states that
resemble the maximally entangled states in quantum theory the possible non-
local correlations turn out to strongly depend on the subsystems’ structure. A
general connection between nonlocality and uncertainty relations of subsystems
has been found in Ref. [65].

The device-independent view on nonlocal correlations studies correlations
independent of specific joint states and local measurements, simply by con-
sidering the probabilities of input-output combinations for a given choice of
measurement as input and the outcomes as outputs (see Fig. 1.11). The quan-
tum correlations form a convex subset of the full no-signalling polytope with
infinitely many extremal points [66, 67]. For the CHSH set-up this set can be
determined by a infinite hierarchy of semi-definite programs, whereas an ana-
lytical upper bound known as Q1 has been derived from the first order [43, 44].
It was shown that any theory that is able to recover classical physics in the
macroscopic limit has correlations limited by this bound [68]. Also Q1 obeys
information causality [69, 70]. That is given the nonlocal resource andm bits of
classical communication a party on one side can learn at most m bits about the
system on the other side. Note that this is a generalization of no-signaling that
refers to the situation with m = 0. Different to quantum correlations general
no-signaling correlations can violate information causality up to the extreme
cases of PR boxes that can evaluate any global function that depends on both
local inputs from only one classical bit of communication (trivial communi-
cation complexity) [71]. Interestingly, for some nonlocal boxes given multiple
copies allows to distill PR boxes by using only classical processing at each of
the local parts individually [72], whereas the quantum correlations are closed
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under such operations [73].
In conclusion quantum theory has a lot of unique characteristic physical

features. The framework of Generalized Probabilistic Theories which is used
in this work played a crucial role to identify many of those.
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2. Local limits on nonlocal correlations

We already mentioned in the last chapter that different theories can produce
different sets of nonlocal correlations. Namely, classical theory is limited to
correlations obeying local realism, whereas quantum theory allows some, but
not all nonlocal correlations. Boxworld, in particular gbits and their maximal
tensor product, on the other hand, yields the full set of possible non-signaling
correlations.
Remarkably, this limitation of correlations is not a mere consequence of miss-

ing entanglement, but can to some extent be traced back to the local subsys-
tems. For example, there are some well known cases where the limitations are
unchanged, if all possible joined states are included. That is, the correlations
remain the same for joint systems given by the maximal tensor product. For
classical systems this is trivial, since the maximal and minimal tensor products
coincide [34]. In quantum theory, however, the usual tensor product is strictly
smaller, such that a toy theory with joint systems built from the maximal ten-
sor product of quantum systems inhabits new joint states. Nevertheless, in
the bipartite case (e.g. the CHSH setting) these additional joint states were
shown to only reproduce those correlations that were already available in the
standard case [63]. For tripartite systems the maximal tensor product of quan-
tum systems can produce some post-quantum correlations [64]. However, these
correlations stay limited, as the set of all non-signaling correlations is strictly
bigger.
In this chapter we examine such subsystem-induced limitations of correla-

tions in more detail. We first illustrate the phenomenon. Therefore, we will
characterize the nonlocal correlations of toy theories with particular state spaces
for subsystems in Section 2.1. We then show in Section 2.2 that a whole class of
joint states that we call inner product states restricts the measurement statis-
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tics to nonlocal correlations. All bipartite correlations in quantum theory and
classical probability theory can be reduced to correlations on these states. Fi-
nally, the existence of these states is shown to depend on the local state spaces
of a theory.

2.1. A family of models

Traditionally the study of nonlocal correlations focuses on three different sets:
i) the set of classical correlations that obey local realism, ii) quantum correla-
tions and iii) arbitrary nonlocal correlation that obey the non-signaling condi-
tion with the PR boxes as the nonlocal extremal cases for the CHSH set-up.
Using bipartite systems constructed by the maximal tensor product, one can
choose subsystems with two-dimensional state spaces that yield the respective
sets as possible correlations. Classical subsystems given by triangles restricts
correlations on bipartite states to classical ones. The maximal tensor product
of gbits with a square-shaped state space allows PR boxes and as a consequence
all non-signaling CHSH correlations. Whereas the maximal tensor product of
disc-shaped subsystems yield exactly the quantum correlations. In this section
the dependency between nonlocal correlations and the structure of the local
state spaces is further studied by other toy theories.
Our first toy theory is a local modification of boxworld that allows a contin-

uous transition between classical probability theory and the standard version
of boxworld by a parameter in section 2.1.1.
A class of theories that include all three of the above cases can be constructed

by toy theories with state spaces in the form of regular polygons. As a conse-
quence, this allows us to study transitions from classical probability theory and
boxworld to a quantum-like theory by increasing the number of vertices. This
quantum-like theory corresponds to the disc-shaped subsystems that emerge
in the limit of infinitely many vertices, which can be thought of the equato-
rial intersection of the Bloch ball of a qubit. These polygon models have been
introduced in the master thesis of the author [20]. We explain the structure
of these models in section 2.1.2 and extend the approach in this chapter get
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further insights on the restrictions of nonlocal correlations.

2.1.1. A local modification of boxworld

Boxworld has single systems given gbits with state spaces having the shape
of a square with extremal states given in Equation 1.31. The new model is
constructed by exchanging the original extremal state ω1 of the gbit with

ω′1 =



x

y

1


 x ∈ [0, 1], y ∈ [x− 1, 1− x], (2.1)

that can be varied conditioned on the two transition parameters x and y. The
effect set is again determined by the no-restriction hypothesis. That is, it is
constructed via the dual cone V ∗+ according to Equation 1.17. For x = 0 one
gets the classical case, whereas x = 1, y = 0 corresponds to standard boxworld.

ω
4

ω
1

ω
3

ω
2

ω'
1

Figure 2.1.: State space of single systems in modified boxworld

Looking at bipartite systems consisting of two of these single systems, it
possible to calculate the extremal joint states (again 16 separable and 8 entan-
gled) of the maximal tensor product as a function of x, y. Since the number of
different extremal measurements and extremal joint states is rather small, the
maximal CHSH-value Smax of the theory can be found by directly comparing
the CHSH coefficient of any possible combination.
It is given by:

Smax = 2 +
16x2

x2 + (|y| − 1)2 + 2x(3 + |y|) (2.2)
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Figure 2.2.: Maximal CHSH-violation as a function of the transition parameters
x and y

One can also show that these systems allow correlations not even possible
in quantum theory for arbitrary small derivations of the classical state space.
This complements a result by Brunner et. al. [72] that there are correlations
arbitrary close to classical correlations that are not possible in quantum theory.
This section shows that such correlations can be gained by theories with local
state spaces including only states that are arbitrary close to those allowed in
classical probability theory.

2.1.2. Polygon systems

Let us now discuss a second class of toy systems that are useful to study the
limitation of nonlocal correlations that are induced by local state spaces. This
class consists of theories with local state spaces given by regular polygons.
The different theories are characterized by the respective number n of extremal
states. These n vertices that span the subsystems’ state spaces can be described
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Figure 2.3.: Illustration of the state spaces and ray extremal effects of the poly-
gon models.

by the following equation:

ωi =



rn cos(2πi

n
)

rn sin(2πi
n

)

1


 ∈ R3, (2.3)

where rn =
√

sec(π/n).

The unit effect is

u =




0

0

1


 . (2.4)

Different to the extremal states, the description of the extremal effects requires
us to distinguish between theories with an even number of vertices and those
with odd n. In the case of even n, the set E(Ω) of all possible measurement
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outcomes is the convex hull of the zero effect, the unit effect, and the extremal
effects e1, . . . , en, with

ei =
1

2



rn cos( (2i−1)π

n
)

rn sin( (2i−1)π
n

)

1


 . (2.5)

A complementary effect can be constructed by ēi = u − ei. Hence, a possible
dichotomic measurement is {ei, ēi}. When this measurement is performed on
a system in the state ωj, the probabilities for the two outcomes are given by
ei ·ωj and ēi ·ωj, and satisfy ei ·ωj + ēi ·ωj = 1. Observe that for even n,
ēi = e(i+n/2)mod n.

The case of odd n is slightly different. In this case, define

ei =
1

1 + rn2



rn cos(2πi

n
)

rn sin(2πi
n

)

1


 (2.6)

and again let ēi = u− ei, so that a possible dichotomic measurement is {ei, ēi}.
This time, however, ēi does not equal ej for any j. The set E(Ω) of all possible
measurement outcomes is the convex hull of the zero effect, the unit effect,
e1 . . . , en, and ē1, . . . , ēn. As can be seen in Fig. 2.4 in such theories there
are effects that are extremal in E(Ω) (namely the ēi) but not ray extremal,
i.e., they do not lie on an extremal ray of the cone V ∗+. This also happens in
quantum mechanics, but only if the dimension of the Hilbert space is larger
than two. For example the effect 1− |ψ〉〈ψ| for any rank one projector |ψ〉〈ψ|
is then extremal in the set of proper effects, but not ray extremal.

A two-dimensional illustration of the state and effect spaces is given in
Fig. 2.3 and a three-dimensional illustration in Fig. 2.4.

As pointed out before the n = 3 case corresponds to a classical system with
three distinguishable values, whereas n = 4 yields the square-shaped state space
of a gbit. As n→∞, the state space tends to a disc of radius one. This makes
it similar to a quantum mechanical qubit, whose state space is the Bloch ball.
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n=3 n= 4 n= 5

n=6 n=7 n=8

Figure 2.4.: State spaces Ω (blue polygons) and sets of proper effects E(Ω)
(red polytopes) of the polygon toy theories with n vertices. The
case n = 3 corresponds to a classical system, the n = 4 system is
capable of generating all non-signaling correlations. In the limit
n → ∞ the state space becomes a disc, which can be thought of
as the equatorial plane of the Bloch ball.

The disc can be thought of as the equatorial plane of the Bloch ball. We will
refer to this case, somewhat loosely, as the quantum case.

2.1.3. Bipartite states of polygon systems

We shall not attempt a complete characterization of the set of all possible non-
signaling states ΩA⊗max ΩB for each value of n. Instead, this section describes
a particular joint state of two polygon systems, which is the natural analogue
of a maximally entangled state of two qubits. The next section examines the
nonlocal correlations that can be obtained from performing measurements on
these maximally entangled polygon systems.
Recall that a joint state is an element of V A ⊗ V B, hence in the case of

two polygon systems, a joint state is an element of R3 ⊗ R3 = R9. It is
convenient to represent the joint state as a 3×3 matrix such that (ei⊗ej)(ωAB)

can be calculated by simply left and right multiplying this matrix with the
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2. Local limits on nonlocal correlations

representations of the effects ei and ej in R3. Define

odd n : φAB =




1 0 0

0 1 0

0 0 1


 ,

even n : φAB =




cos(π/n) sin(π/n) 0

− sin(π/n) cos(π/n) 0

0 0 1


 . (2.7)

The state φAB is the natural analogue of a quantum mechanical maximally
entangled state for the following reasons. First, it can be verified (see, e.g.,
Ref. [60]) that except for n = 3, φAB is an entangled pure state, where pure
means that it is extremal in the maximal tensor product, hence cannot be
written as a mixture of other non-signaling states. The n = 3 case corresponds
to two classical trits, with φAB the maximally correlated state, i.e., if the trit
values are 1, 2, 3, then φAB corresponds to P (11) = P (22) = P (33) = 1/3.
Second, φAB is constructed so that if a measurement is performed on the A
system, and outcome ei obtained, then the updated (or collapsed) state for the
B system is ωi. The marginal probability for Alice to obtain outcome ei is the
same for all i. Compare this with the case of two spin-1/2 particles in the state
1/
√

2(|00〉 + |11〉), where |0〉 and |1〉 are the eigenstates of spin-z. If a spin
measurement in direction ~m in the xz-plane is performed on system A, then
the probability of obtaining the up outcome is 1/2, and if the up outcome is
obtained, then the collapsed state of the B system is spin up in direction ~m.
These quantum predictions are recovered by both versions of φAB in the limit
n→∞.

The following sections investigate the nonlocal correlations that can be pro-
duced by performing measurements on two systems in the state φAB. For this
it is useful to have an expression for the joint probability of obtaining outcome
eAi on system A and eBj on system B. This is easy to calculate from (2.7). For
even n,

(eAi ⊗ eBj )(φAB) =
1

4

(
1 + r2

n cos(αi − βj)
)
, (2.8)
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2.1. A family of models

where αi = 2πi
n

and βj = (2j−1)π
n

, and as before, rn =
√

sec(π/n). For odd n

(eAi ⊗ eBj )(φAB) =
1

(1 + r2
n)2

(
1 + r2

n cos(αi − βj)
)
, (2.9)

where αi = 2πi
n

and βj = 2πj
n
. Notice the cosine dependence, which is reminis-

cent of quantum mechanical correlations.

2.1.4. CHSH violations of polygon systems

One commonly used measure of the degree of nonlocality that a bipartite system
exhibits is the maximal violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality introduced in 1.6. Whereas classical correlations obey the CHSH
inequalities (1.48), PR box correlations correspond to their maximal violation.
As discussed before, PR boxes have been explored in the literature and are
known to be particularly powerful for certain kinds of information theoretic
problem, especially communication complexity problems [71, 74, 72, 69, 68, 75,
76]. The quantum correlations lie strictly between the classical correlations and
those that can be produced by PR boxes.

It is interesting to see how the maximal CHSH value obtainable from poly-
gon systems in the state φAB varies as the number of vertices n of the polygon
increases. The n = 4 case is particularly simple. The optimal choice of mea-
surements to violate the CHSH inequality is

x = 0 :{eA1 , eA3 }, x = 1 :{eA2 , eA4 }, y = 0 :{eB2 , eB4 }, y = 1 :{eB1 , eB3 }, (2.10)

and it can be verified from (2.8) in combination with (1.48) that the correlations
obtained give S = 4. In other words, the maximally entangled state of two
n = 4 systems can act as a PR box. It follows that this state has the same
information theoretic power that PR boxes are known to have.

For general n, assume that Alice’s measurement choices are of the form
{eAi , ēAi } and Bob’s of the form {eBj , ēBj }. A lengthy but straightforward calcu-
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2. Local limits on nonlocal correlations

lation gives the following analytic expressions. For even n,

S = r2
n

∑

x,y=0,1

(−1)xy cos (αx − βy) , (2.11)

where as before, αx = 2πix
n

and βy = (2jy−1)π

n
. For odd n,

S =
2

(1 + r2
n)2

∣∣∣∣(r2
n − 1)2 + 2 r2

n

∑

x,y=0,1

(−1)xy cos(αx − βy)
∣∣∣∣, (2.12)

where αx = 2πix
n

and βy = 2πjy
n

. In [20] these expressions were maximized
over all possible choices for the angles αi and βj to get the maximal violation
achievable by local measurements on the maximally entangled state φAB. A
detailed analysis of these expressions can be found in A.2. Fig. 2.5 shows the
maximal CHSH value for the maximally entangled state of polygon systems as
a function of n.

0 20 40 60 80 100
2.82

2 2
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2 2
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C
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Figure 2.5.: Maximal CHSH value from the maximally entangled state of
two polygon systems as a function of the number of vertices n.
Tsirelson’s bound (S ≤ 2

√
2) appears as a natural separation be-

tween the case of even n and odd n.

The most important feature of Fig. 2.5 is that the correlations of even n

systems can always reach or exceed Tsirelson’s bound, while the correlations
of odd n systems are always below Tsirelson’s bound. Thus Tsirelson’s bound
appears aass a natural separation between the correlations of these two different
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2.1. A family of models

kinds of polygon state spaces. Sections 2.2 and 2.3 show why this is. Section
2.2 shows that for odd n, the maximally entangled state φAB belongs to a broad
class of states we call inner product states, and that all correlations obtainable
from measurements on inner product states satisfy Tsirelson’s bound. Section
2.3 goes further, and relates this to a fundamental geometric difference between
polygons with even n and odd n. In Fig. 2.3, the difference is seen in the fact
that for odd n, the effect cone V ∗+ coincides with the state cone V+, whereas
for even n, the effect cone is isomorphic to the state cone but rotated through
some angle.
We have only considered correlations obtainable from the maximally entan-

gled state φAB. In principle there could be joint states other than the maximally
entangled state which show stronger violations for some Bell inequalities. While
this seems unlikely for the CHSH inequality, other Bell inequalities are known
to be maximized by non-maximally entangled states in quantum mechanics
[77, 41].

2.1.5. The Braunstein-Caves inequalities

The Braunstein-Caves (or chained) Bell inequalities [78] are similar to the
CHSH inequality, but involve N measurement settings on each system, rather
than two. Let Alice’s choice of measurement be x, and Bob’s y, with x, y ∈
{1, . . . , N}. Let the outcomes be a, b ∈ {0, 1}. Local correlations satisfy

SN =

∣∣∣∣
N−1∑

j=1

(Cj,j + Cj,j+1) + CN,N − CN,1
∣∣∣∣ ≤ 2N − 2, (2.13)

where as before Cx,y = P (0, 0|x, y) + P (1, 1|x, y) − P (0, 1|x, y) − P (1, 0|x, y).
In the case N = 2, this is equivalent to the CHSH inequality, up to relabelling
of measurement settings.
The algebraic maximum of SN is 2N . This maximum can be attained by

performing measurements on the maximally entangled state of even n poly-
gon systems with n = 2N . This state is thus tailor made for violating the
Braunstein-Caves Bell inequalities. To see this, let Alice’s and Bob’s measure-
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2. Local limits on nonlocal correlations

ment choices be given by

x = i : {eAi , ēAi }, i = 1, . . . , N, (2.14)

y = j : {eBj , ēBj }, j = 1, . . . , N, (2.15)

and note that (i) Cj,j = 1 for j = 1, ..., N , (ii) Cj,j+1 = 1 for j = 1, ..., N−1 and
(iii) CN,1 = −1. In the case n→∞, maximal violation of the Braunstein-Caves
inequality is achieved in the limit of infinitely many settings. This is also true
for a quantum mechanical maximally entangled state, as shown in Ref. [79].

In general, given a set of correlations P (a, b|x, y), they can be written as a
mixture

P (a, b|x, y) = qPNL(a, b|x, y) + (1− q)P L(a, b|x, y), (2.16)

where 0 ≤ q ≤ 1, PNL(a, b|x, y) is a set of nonlocal correlations and PL(a, b|x, y)

a set of local correlations. Suppose, however, that the correlations P (a, b|x, y)

return the maximum value SN for an appropriate Braunstein-Caves inequality.
Then q(SN) + (1− q)(SN − 2) ≥ SN , hence q = 1. Therefore, the fact that the
maximally entangled state of even n polygon systems returns the maximum
value for the appropriate Braunstein-Caves inequality indicates that there is
no local part in the correlations with N = n/2 measurement settings. This
was pointed out in the case of quantum systems in Ref. [79, 80]. As a further
curiosity, if we did have access to these systems, this feature could be used for
secure key distribution, using the protocol of Ref. [81].

2.1.6. Distillation

So far, we have only considered correlations that can be produced by measuring
a single copy of a bipartite polygon system. There remains the possibility that
stronger correlations could be produced by performing local measurements on
multiple bipartite pairs, and locally processing the data (there is a further
possibility, involving entangled measurements across multiple copies on each
side, which we do not discuss).

Consider the bipartite state φAB of two even n polygon systems, and suppose
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2.1. A family of models

that Alice and Bob are choosing from the measurements

x = 0 : {eA1 , ēA1 }, x = 1 : {eA2 , ēA2 }, y = 0 : {eB1 , ēB1 }, y = 1 : {eB2 , ēB2 },
(2.17)

with outcomes a, b ∈ {0, 1} as usual. Recall that Cj,j = 1 for j = 0, 1 and
C0,1 = 1. (2.8) also gives C1,0 = 2 cos(2π

n
) − 1. The correlations produced can

be written as a probabilistic combination of maximally nonlocal correlations
(equivalent up to relabelling to the PR box correlations of (1.51)), and another
term which describes local correlations:

Pε(a, b|x, y) = εPPR(a, b|x, y) + (1− ε)P L(a, b|x, y). (2.18)

Here, 0 ≤ ε = 1− cos(2π
n

) ≤ 1, PPR is given by

PPR(a, b|x, y) =





1
2

if a⊕ b = x(y ⊕ 1)

0 otherwise
(2.19)

and P L is a set of local correlations given by

P L(a, b|x, y) =





1
2

if a⊕ b = 0,

0 otherwise.
(2.20)

In Ref. [72], it is shown that all correlations of the form (2.18) with 0 < ε < 1

can be distilled into stronger correlations using a protocol that involves two
copies of a bipartite system. Importantly, this protocol consists only of local
processing and does not involve any communication. In the asymptotic limit
of infinitely many copies of a bipartite system, the correlations (2.18) can be
distilled to PR box correlations by iterating the protocol. Thus for any finite
even n, the polygon systems produce correlations that can be distilled arbitrar-
ily close to PR box correlations (since ε = 1 − cos(2π

n
) > 0). It is only in the

limit n → ∞ (the quantum case), that we get ε = 0 and thus lose the ability
to distill PR box correlations.

The consequence of the above is that polygon systems with even and finite
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2. Local limits on nonlocal correlations

n inherit the powerful communication properties of PR boxes as long as there
are multiple copies of the maximally entangled state available. For instance,
they collapse communication complexity [71], allow for better than classical
non-local computation [75], violate information causality [69] and macroscopic
locality [68]. Moreover, since the PR box can be considered as a unit of bipartite
nonlocality [82, 83, 84], it follows that any bipartite non-signaling probability
distribution can be generated from multiple copies of polygon systems with even
n. This is particularly surprising as in practice, an individual polygon system
with even and very large n would be very difficult to distinguish from one with
odd n, and also from the quantum case, i.e. the disc that one gets in the
limit n → ∞. These toy theories thus show that practically indistinguishable
theories can have fundamentally different limits to the non-local correlations
they allow.
For polygon systems with odd and finite n, the situation is dramatically

different, as seen in the next section.

2.2. Bounds on correlations

For even n polygon systems, the maximally entangled state can produce ar-
bitrarily strong nonlocal correlations, whereas for odd n polygon systems, the
nonlocality is highly constrained. The maximally entangled state of odd n poly-
gon systems cannot, for example, violate Tsirelson’s inequality. This section
shows that this is a consequence of a much more general result.
We first introduce a class of bipartite states in general theories, which we

call inner product states. The main theorem establishes a strong constraint on
the nonlocal correlations that can be produced from measurements on inner
product states. One consequence is that inner product states cannot violate
Tsirelson’s inequality. The maximally entangled states of odd n polygon sys-
tems are inner product states, hence the theorem explains what was only estab-
lished by direct calculation above — that these states do not violate Tsirelson’s
inequality. On the other hand, the maximally entangled states of even n poly-
gon systems are not inner product states, which is consistent with them pro-
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2.2. Bounds on correlations

ducing arbitrary non-signaling correlations. We also show that all classical and
quantum states are, in terms of non-local correlations, no stronger than an
inner product state.

2.2.1. Inner product states

Recall that a state cone V+ is the set of unnormalized states of a system, and
that these span a vector space V . An effect cone V ∗+ is the set of unnormalized
measurement outcomes, and these span the vector space V ∗. Given two sys-
tems A and B, if the state cones V A

+ and V B
+ span vector spaces V A and V B

respectively, then a joint state is an element of V A ⊗ V B.
Call two distinct systems similar if their state spaces are isomorphic. Exam-

ples of similar systems are two quantum mechanical qubits, or two classical trits,
or two n-vertex polygon systems. For the rest of this section, assume a bipartite
system composed of two similar subsystems A and B. In this case, the respec-
tive state spaces and effect spaces can be identified, so that V A = V B = V ,
(V A)∗ = (V B)∗ = V ∗, uA = uB = u, and so on.

Definition 2.1. A joint state ωAB is symmetric if (e⊗f)(ωAB) = (f⊗e)(ωAB)

for all measurement outcomes e, f ∈ V ∗+.

Definition 2.2. A joint state ωAB is an inner product state if ωAB is sym-
metric, and positive semidefinite, i.e., (e⊗ e)(ωAB) ≥ 0 ∀e ∈ V ∗.

Note that by definition of a joint state, it is always true that (e⊗e)(ωAB) ≥ 0

when e ∈ V ∗+, i.e., when e is a valid effect. This is simply a statement of the fact
that measurement outcome probabilities have to be greater than or equal to
zero. The definition requires something stronger, which is that (e⊗e)(ωAB) ≥ 0

for any e in the whole of the vector space V ∗.

Example 1. Any symmetric product state ωAB = ω ⊗ ω is an inner product
state.

Example 2. Consider two classical systems, each of which is a nit, taking
values {1, . . . , n}. A joint state is simply a joint probability distribution over
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2. Local limits on nonlocal correlations

nit values. Write the joint state as a matrix P , where Pij is the joint probability
that A = i and B = j. This is an inner product state iff the matrix P is
symmetric and positive semi-definite. In particular this includes any perfectly
correlated state of the form

Pij = 0 if i 6= j

Pii = qi, qi ≥ 0,
∑

i

qi = 1.

Example 3. Consider two polygon systems, each corresponding to a state space
with n vertices. Section 2.1.3 defined an analogue of a maximally entangled
state φAB. In the matrix representation of (2.7), φAB is an inner product state
if and only if the matrix is symmetric and positive semi-definite. Hence φAB

is an inner product state for odd n, whereas for even n, φAB is not an inner
product state.

Example 4. The quantum case is slightly subtle. Given two qubits, the maxi-
mally entangled state

Φ+ = |Φ+〉〈Φ+|, |Φ+〉 =
1√
2

(|00〉+ |11〉) (2.21)

is symmetric but is not an inner product state, since if σy is a Pauli spin matrix,
then (σy ⊗ σy)(Φ+) = −1. Consider the operator defined by Φ̃ = (1⊗ T )(Φ+),
where T is the linear map that takes an operator in V B to its transpose with
respect to the computational basis. The new operator Φ̃ is not a valid quantum
state. It is locally positive but not globally positive, hence is not a density
operator. But it is in the maximal tensor product of two qubits, and it is an
inner product state. In fact, Φ̃ predicts perfect correlation whenever Alice and
Bob perform measurements in the same direction. However, the two states are
equivalent in terms of the non-local correlations they can produce (as was first
shown in Ref. [63]).

Theorem 2.4 below establishes a constraint on the nonlocal correlations that
can be obtained from measurements on an inner product state. It may seem as
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if the definition of an inner product state is quite restrictive, given that an inner
product state must be symmetric, for example, and given that the maximally
entangled state Φ+ of two qubits is not included. This would diminish the
interest of the theorem. However, suppose that a bipartite state ωAB can
be obtained from an inner product state via a transformation of one of its
subsystems. Then any correlations obtained from ωAB could also be obtained
from an inner product state. Hence any restriction on the correlations from
inner product states also applies to ωAB. Formally,

Theorem 2.1. Consider a joint state ωAB, which can be written in the form
ωAB = (1 ⊗ τ)(σAB), for some τ : V+ → V+ that takes normalized states to
normalized states. Any correlations obtained from measurements on ωAB can
also be obtained from measurements on σAB.

Proof. Define the adjoint map τ † : V ∗+ → V ∗+ such that for any effect e ∈ V ∗+
and any state ω ∈ V+,

(τ †(e))(ω) = e(τ(ω)). (2.22)

Since τ takes normalized states to normalized states, τ †(u) = u. Given a
measurement y on system B, with outcomes {f1, . . . , fr}, let y′ be the mea-
surement with outcomes {τ †(f1), . . . , τ †(fr)}. Note that from f1 + · · ·+ fr = u,
and τ †(u) = u, it follows that τ †(f1)+· · ·+τ †(fr) = u, as must be the case for y′

to be a valid measurement. Then measurements x and y on ωAB have the same
joint outcome probabilities as measurements x and y′ on σAB. Hence, if a par-
ticular set of correlations can be obtained by performing measurements on ωAB,
those same correlations can be obtained by performing different measurements
on σAB.

Further,

Theorem 2.2. Given two d-dimensional quantum systems, any pure state
ρAB = |ψ〉〈ψ| can be written in the form ρAB = (1⊗τ)(ρ̃AB), where τ : V+ → V+

takes normalized states to normalized states, and ρ̃AB is an inner product state.
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Proof. Using the Schmidt decomposition, every pure quantum state |ψ〉 can be
written in the form:

|ψ〉 =
r∑

i=1

λi|ai〉 ⊗ |bi〉, (2.23)

where r is the Schmidt rank, {|ai〉} and {|bi〉} are orthonormal bases and the λi
are real and positive. A unitary transformation U , on system B, which maps
{|bi〉} to {|ai〉} gives

|ψ′〉 =
r∑

i=1

λi|ai〉 ⊗ |ai〉.

Now let
ρ̃AB = (1⊗ T )(|ψ′〉〈ψ′|),

where T is the transpose map, acting on the B system, defined with respect to
the basis {|ai〉}. Note that ρ̃AB is symmetric since for Hermitian operators E
and F ,

(E ⊗ F )(ρ̃AB) = Tr[(E ⊗ F )ρ̃AB] =
∑

ij

λiλjEjiFij = (F ⊗ E)(ρ̃AB).

Note also that ρ̃AB is positive semi-definite since for any Hermitian operator
E,

(E ⊗ E)(ρ̃AB) = Tr[(E ⊗ E)ρ̃AB] =
∑

ij

λiλjEjiEij =
∑

ij

λiλj|Eji|2 ≥ 0.

Therefore ρ̃AB is an inner product state. The quantum state ρAB can be written
ρAB = (1⊗τ)(ρ̃AB), where τ is the transpose map followed by U−1, which proves
the theorem.

Now any correlations that can be obtained from measurements on a bipartite
classical or quantum system, pure or mixed, can also be obtained from mea-
surements on a pure quantum state of two d-dimensional systems for some d.
This follows from the fact that mixed quantum states always have a purification
on a larger Hilbert space. Combining this observation with theorems 2.1 and
2.2 gives
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Theorem 2.3. Any correlations obtained from measurements on a bipartite,
pure or mixed, classical or quantum system could also be obtained from mea-
surements on an inner product state.

Hence as far as correlations go, the fact that we consider only inner product
states is not nearly so restrictive as it looks. By extension, the results apply to
all classical and quantum bipartite systems.

2.2.2. The set Q1

The problem of characterizing those correlations which could in principle be
produced by performing measurements on quantum systems, and those that
cannot, is an interesting one. Tsirelson’s inequality, which limits the possible
violation of the CHSH inequality in quantum theory, was the first result in
this direction. A great deal of progress is made in Refs. [43, 44, 45], where
the problem is reduced to the following form. A hierarchy of sets Q1, Q2, . . . is
defined, such that each Qk is a proper subset of the set of all possible bipartite
non-signaling correlations, and each Qk is strictly contained in its predeces-
sor. For given correlations P (a, b|x, y), and for each k, it is a semi-definite
programming problem to determine whether P (a, b|x, y) is contained in Qk.
Furthermore, a given set of correlations P (a, b|x, y) can be obtained from mea-
surements on quantum systems if and only if P (a, b|x, y) is contained in Qk for
some k. Hence the sets Qk become smaller as k increases, until in the limit
k →∞ they converge towards the set Q of quantum correlations.
The set Q1, which is the largest in the hierarchy, is of further significance.

In Ref. [68] it is shown that correlations in Q1 satisfy a readily comprehensi-
ble physical principle called macroscopic locality. For a precise description of
what this means, see Ref. [68], but in a nutshell, the principle states that the
coarse-grained statistics of correlation experiments involving a large number
of particles should admit a description by a local hidden variable model. In
other words, the set of microscopic correlations that satisfy the principle of
macroscopic locality are those which are compatible with classical physics in a
certain limit in which the number of particle pairs being tested is large, and
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only coarse-grained statistics, rather than settings and outcomes for every pair,
are collected. It is also known that Q1 is closed under wiring [68, 73], in other
words it is not possible to distill correlations in Q1 to correlations outside Q1 by
performing measurements on a number of distinct pairs of systems, and locally
manipulating the data. Finally, in the specific case of binary measurement
choices and outcomes, all correlations in Q1 respect Tsirelson’s bound of 2

√
2

for the CHSH scenario. The main theorem below states that correlations from
measurements on inner product states are contained in the set Q1.
First, we give a formal definition of Q1. Suppose that Alice and Bob share

two systems in a bipartite state, and let Alice choose a measurement x and
Bob choose a measurement y. Up to now, when we discussed correlations,
Alice’s and Bob’s outcomes were labelled a and b, and correlations written
P (a, b|x, y). For the specific purpose of defining Q1, however, it is more useful
to label the measurement outcomes in such a way that outcomes of distinct
measurements have different labels. Hence let the index i range over all possible
outcomes of all of Alice’s measurement choices. For example, if Alice is choosing
from N possible measurements, each of which has k possible outcomes, then
i takes values in {1, . . . , kN}, with i = 1, . . . , k the outcomes of the x = 1

measurement, i = k + 1, . . . , 2k the outcomes of the x = 2 measurement, and
so on. Let the same conventions apply to Bob’s outcome, which is denoted j.
With a slight abuse of notation, let x(i) denote the unique measurement choice
of Alice for which i is a possible outcome. Similarly, y(j). Write P (i, j) for the
probability of obtaining outcomes i and j when the measurements x(i) and y(j)

are performed. Let PA(i) denote the marginal probability for Alice to obtain
outcome i when she performs measurement x(i), and PB(j) denote the marginal
probability for Bob to obtain outcome j when he performs measurement y(j).

Definition 2.3 ([43, 44, 45, 68]). A set of correlations P (i, j) is in Q1 iff there
exists a positive semi-definite matrix γ of the form

γ =




1 ~P T
A

~P T
B

~PA Q̃ P̃
~PB P̃ T R̃


 , (2.24)
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such that

1. ~PA and ~PB are the vectors of probabilities PA(i) and PB(j),

2. P̃ is a matrix with elements P̃ij = P (i, j),

3. Q̃ and R̃ are sub-matrices with diagonal elements Q̃ii = PA(i) and R̃jj =

PB(j),

4. Q̃ii′ = 0 if i 6= i′, x(i) = x(i′),

5. R̃jj′ = 0 if j 6= j′, y(j) = y(j′).

In words, the last two conditions state that elements of Q̃ and R̃ corresponding
to different outcomes of the same measurement must be zero. The remaining
off-diagonal elements of Q̃ and R̃ can be chosen freely.

2.2.3. The main theorem

Theorem 2.4. Consider two similar systems, whose joint state is an inner
product state. All correlations that can be obtained from local measurements lie
in Q1.

Proof. It is sufficient to show that for any set of correlations generated by
measurements on an inner product state, there exists a matrix γ of the form
(2.24), which is symmetric, positive semi-definite, and has the feature that
entries in the blocks Q̃ and R̃ corresponding to different outcomes of the same
measurement are zero.
Consider correlations generated by measurements on an inner product state

ωAB. Using the notation introduced in section 2.2.2, let ei be the effect cor-
responding to Alice’s measurement outcome i, and fj the effect corresponding
to Bob’s measurement outcome j. Suppose that i ranges from 1, . . . , nA and
j from 1, . . . , nB. Define a vector of effects g = (u, e1, . . . , enA , f1, . . . , fnB),
and denote the entries g1 = u, g2 = e1, . . . , g1+nA+nB = fnB . Define the
(1 + nA + nB) × (1 + nA + nB) matrix γ̃ such that γ̃kl = (gk ⊗ gl)(ω

AB).
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From the fact that ωAB is an inner product state, it follows directly that γ̃ is
a symmetric and positive semi-definite matrix [85].
Now define a matrix γ of the form (2.24), with γkl = γ̃kl for all k, l except

for the following elements of the sub-matrices Q̃ and R̃:

1. Q̃ii = PA(i), and R̃jj = PB(j).

2. Q̃ii′ = 0 if i 6= i′, x(i) = x(i′),

3. R̃jj′ = 0 if j 6= j′, y(j) = y(j′).

By construction, γ satisfies conditions (i)-(v) of Definition 2.3, and symmetry
of γ follows from symmetry of γ̃. It remains to show that γ is positive semi-
definite.
To this end, let δ = γ − γ̃ and note that δ is of the form

δ =




0 · · · 0
... δQ 0̃

0 0̃T δR


 , (2.25)

where δQ is an nA × nA sub-matrix, δR is an nB × nB sub-matrix, and 0̃ is the
nA × nB matrix with all entries 0. Since both γ and γ̃ are symmetric, δ is also
symmetric. We will show that δQ and δR are positive semi-definite. It follows
that δ is positive semi-definite. Since γ = δ+ γ̃, it follows that γ is also positive
semi-definite.
Note that (δQ)ii′ = 0 for x(i) 6= x(i′). It follows that δQ is block diagonal, with

each block corresponding to a particular measurement choice of Alice. Consider
a particular block, corresponding to a measurement with, say, r outcomes. It
is of the form

M =




e1 ⊗ u− e1 ⊗ e1 −e1 ⊗ e2 · · · −e1 ⊗ er
−e2 ⊗ e1 e2 ⊗ u− e2 ⊗ e2 · · · −e2 ⊗ er

...
−er ⊗ e1 −er ⊗ e2 · · · er ⊗ u− er ⊗ er




(ωAB).

(2.26)
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Using e1 + · · ·+er = u, this matrix can be decomposed into a sum of (r2− r)/2
matrices

M =
r∑

n=2

n−1∑

m=1

Mmn, (2.27)

where all entries of the matrices Mmn are 0, except for

(Mmn)mm = (Mmn)nn = (em ⊗ en)(ωAB) (2.28)

(Mmn)mn = (Mmn)nm = −(em ⊗ en)(ωAB). (2.29)

EachMmn is manifestly positive semi-definite, henceM is positive semi-definite.
Since each block of δQ is positive semi-definite, δQ is also positive semi-definite.
A similar argument shows that δR is also positive semi-definite. Therefore δ
and γ are positive semi-definite. This concludes the proof.

Corollary 2.1. Consider two systems, whose joint state is of the form ωAB =

(1⊗ τ)(σAB), where τ : V+ → V+ takes normalized states to normalized states
and σAB is an inner product state. All correlations obtainable from measure-
ments on ωAB lie in Q1.

Proof. This is immediate from theorem 2.4 and theorem 2.1.

Theorem 2.3 then implies that all correlations from bipartite classical and
quantum states lie in Q1. This was known already of course from Refs. [43, 44,
45]. One could view the theorem and corollary as an independent proof of this
fact.

2.3. Polygons revisited

It has already been observed that given two n-vertex polygon systems, the
maximally entangled state φAB, defined in section 2.1.3, is an inner product
state if and only if n is odd. Theorem 2.4 states that correlations obtained
from measurements on an inner product state lie in the set Q1, which means in
particular that they respect Tsirelson’s bound for the CHSH inequailty. This
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2. Local limits on nonlocal correlations

explains why Tsirelson’s bound is satisfied by the odd n polygon systems, and
is consistent with violation of Tsirelson’s bound by the even n polygon systems.
This section relates these observations to simple geometrical properties of the

state spaces of polygon systems. A quick glance at figures 2.3 and 2.4 reveals
an obvious difference between the odd n and even n cases. For odd n, the effect
cone V ∗+ coincides with the state cone V+. For even n on the other hand, the
effect cone is isomorphic to the state cone, but is rotated by some non-zero
angle. This simple observation lies at the heart of why it is only the maximally
entangled states of odd n polygon systems that are inner product states, and
hence why it is only these that must satisfy Tsirelson’s bound.
The fundamental difference between the odd n and even n state spaces can

be stated more formally as follows. First

Definition 2.4 (weakly self-dual). A system is weakly self-dual iff the state
and effect cones are isomorphic.

All of the polygon state spaces are weakly self-dual. The isomorphisms
are simply the rotations and improper rotations around the z axis by (1 +

2k)π/n, k ∈ {0, . . . , n− 1} if n is even and by 2kπ/n, k ∈ {0, . . . , n− 1} if n
is odd.
The odd n polygon state spaces, on the other hand, satisfy a stronger condi-

tion, whereby there are additional restrictions on the isomorphism connecting
V ∗+ and V+.

Definition 2.5 (strongly self-dual). A system is strongly self-dual iff there
exists an isomorphism T : V ∗+ → V+ which is symmetric and positive semi-
definite, i.e., f [T (e)] = e[T (f)] for all e, f ∈ V ∗, and e[T (e)] ≥ 0 for all
e ∈ V ∗.

Given the representation of sections 2.1.2 and 2.1.3, the identity map is an
example of such an isomorphism. The odd n polygon state spaces are strongly
self-dual, but the even n are not.
The concepts of strong and weak self-duality have appeared earlier in the

literature, for example in Ref. [30]. Weak self-duality is intimately related to
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the operational tasks of probabilistic remote state preparation (steering) and
teleportation [60, 30].
Now we can relate these properties of individual systems to the bipartite

maximally entangled state φAB. Notice that given two similar systems, any
isomorphism T : V ∗+ → V+ corresponds to a bipartite state ωABT via

(e⊗ f)(ωABT ) =
f [T (e)]

u[T (u)]
. (2.30)

The state defined is normalized by construction and is locally positive since 0 ≤
f [T (e)]/u[T (u)] ≤ 1 for all e, f ∈ E(Ω). Intuitively, ωABT is defined so that if
Alice performs a measurement and obtains outcome e, then Bob’s unnormalized
collapsed state, conditioned on that outcome, is T (e).
In the special case that the individual systems are strongly self-dual and the

isomorphism T has the additional properties required by definition 2.5, then
the induced state ωABT is symmetric and positive semi-definite, hence it is an
inner product state. This is the case for the maximally entangled state φAB of
odd n polygon systems, defined in (2.7), where φAB corresponds to a map T

which is simply the identity map. It follows that for odd n, correlations from
φAB lie in Q1.
In the case that individual systems are weakly but not strongly self-dual,

the maximally entangled state corresponds to an isomorphism T , but there
is no such T with the additional properties of symmetry and positive semi-
definiteness, hence the maximally entangled state is not an inner product state.
This is the case for the maximally entangled state φAB of the even n polygon
systems, defined in (2.7), where φAB corresponds to a map T which is a rotation
in R3 by π/n. This is why for even n, correlations from φAB need not lie in Q1.

2.4. Correlations outside of Q1

Correlations obtained from the maximally entangled state of two odd n polygon
systems must be contained in Q1, and this has been seen to be related to the
fact that the individual systems are strongly self-dual. It is natural to ask
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ω1, e1

ω2, e2

ω3, e3

ω4, e4 ω5, e5

Figure 2.6.: The house-shaped state space is strongly self-dual.

whether the correlations obtained from any joint state of strongly self-dual
subsystems must also lie in Q1. An explicit counterexample shows that this is
not the case.

Consider a strongly self-dual system with normalized extremal states

ω1 = (1, 0, 1)T ω2 = (0, 1, 1)T ω3 = (−1, 0, 1)T

ω4 = (−1,−1, 1)T ω5 = (1,−1, 1)T ,

and normalized ray extremal effects

e1 =
1

2
(1, 0, 1)T e2 =

1

2
(0, 1, 1)T e3 =

1

2
(−1, 0, 1)T

e4 =
1

3
(−1,−1, 1)T e5 =

1

3
(1,−1, 1)T u = (0, 0, 1)T .

The state space for this system looks something like a house and is depicted in
Fig. 2.6.

We have explicitly calculated all extremal states in the maximal tensor prod-
uct of two such systems. One of these joint states can be written as



−1 −1

4
−1

2
1
4
−1

2
−1

4
1
2
−1

4
1


 , (2.31)

where we have used the same representation as a 3× 3 matrix that was intro-
duced in section 2.1.3. This state is extremal in the maximal tensor product,
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2.5. Discussion

but is not an inner product state. With a suitable choice of measurements,
correlations can be produced which violate Uffink’s quadratic inequality [46]

(C0,0 + C1,0)2 + (C0,1 − C1,1)2 ≤ 4. (2.32)

In particular the measurement choices

x = 0 :{e5, u− e5}, x = 1 :{e3, u− e3}, y = 0 :{e2, u− e2}, y = 1 :{e3, u− e3}
(2.33)

give

(C0,0 + C1,0)2 + (C0,1 − C1,1)2 =
17

4
> 4. (2.34)

However, satisfaction of Uffink’s inequality is known to be a necessary condition
for membership of Q1 [70]; hence these correlations cannot lie in Q1.

Although these correlations violate Uffink’s inequality and lie outside of Q1,
they do not violate Tsirelson’s bound for the CHSH inequality. In fact, we
have not been able to find a joint state of two strongly self-dual subsystems
that violates the CHSH inequality beyond Tsirelson’s bound. This leads us to
conjecture that Tsirelson’s bound holds for every theory with strongly self-dual
subsystems.

2.5. Discussion

This work considers a very general setting in which a whole range of probabilis-
tic models can be defined, with the classical and quantum theories as special
cases. There is little constraint on the state space, except that it is assumed
to be convex, and joint systems are assumed to satisfy a no-signaling principle
and a principle of local tomography. The aim of this chapter was to investigate
the nonlocal correlations that can be produced by measurements on entangled
systems, and to compare and contrast this with the classical and quantum
cases.

We revealed an intimate and intricate relationship between the shape of the
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2. Local limits on nonlocal correlations

state space for an individual system, and the strength of the nonlocal corre-
lations that can be obtained from two systems in an entangled state. This is
illustrated by a family of toy models that provide transitions between the usual
cases. First, we examine a local modification of boxworld that allows us to
characterize the maximal CHSH violation of theories that form a continuum
between standard boxworld and classical probability theory. We then consid-
ered a second class of models, in which the state space for a single system is a
regular polygon with n vertices. Given two such systems, there is an analogue of
a maximally entangled state. It turns out that the strength of nonlocal correla-
tions generated by this state depends dramatically on the parity of the number
of vertices n of the local polygon. If n is even, maximally nonlocal correlations
can be generated, including those that violate macroscopic locality. If n is odd,
however, the maximally entangled state respects macroscopic locality. This is
in turn explained by the fact that odd n polygons have a geometric property
known as strong self-duality, while even n polygons do not. The main theorem,
with its corollary, states that correlations from a broad class of bipartite states
in probabilistic theories cannot be arbitrarily nonlocal — they are constrained
to obey the principle of macroscopic locality, or equivalently to lie within the set
Q1, which means in particular that they satisfy Tsirelson’s bound for violation
of the CHSH inequality. This theorem extends to all bipartite quantum states,
which explains why quantum mechanics cannot violate macroscopic locality or
Tsirelson’s bound.

It would be natural to think that all bipartite states of strongly self-dual sub-
systems would respect macroscopic locality, but the house-shaped counterex-
ample shows that this is not the case. An interesting open question, therefore,
is the following: What additional property of local state spaces would ensure
that all bipartite states give correlations which respect macroscopic locality?
One suggestion is that sharpness might be able to ensure this. Sharpness is the
constraint that for any ray extremal effect, there is a unique state on which
this effect will occur with certainty. This property is very attractive from a
physical point of view. It allows a natural definition of the post-measurement
states of these effects, such that repeating a measurement reproduces the same
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outcome. This extra constraint is indeed not satisfied by the house model, since
the effect e1 occurs with certainty for both states ω1 and ω5, but it is satisfied
by odd n polygon models. Another possibility that seems to be plausible is that
strong self-duality together with the property that all extremal states of the
local systems can be transformed into one another reversibly might limit the
set of possible correlations to the ones compatible with macroscopic locality.
Finally, it is worth emphasizing that two theories which have almost identical

local state spaces can lead to dramatically different nonlocal correlations. In
particular, given any finite level of accuracy, it is always possible to find a
polygon model with an even and sufficiently large number of vertices n, which
is locally indistinguishable from the quantum-like case, where the state space
is a disc. Nevertheless, while quantum correlations are restricted, any non-
signaling correlations can be distilled in the former model by using multiple
copies of the maximally entangled state.
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3. Entanglement swapping in GPTs

Recent developments in the study of quantum foundations concentrate on in-
formation theoretical properties. Related to this, is the question where the
computational power of quantum computing stems from. Traditional answers
to the question suggest "quantum parallelism" associated with quantum super-
positions, as well as nonlocal dynamics induced by entanglement to be crucial
elements for the speed up in quantum algorithms compared to the best known
classical ones. In this chapter, we examine the consequences of these properties
for low dimensional GPTs.
Superpositions in GPTs can be defined for non-classical transitive state spaces.

That is, superpositions exist in systems with pure states that are not all lin-
early independent, but can be reversibly transformed into each other. A subset
of perfectly distinguishable pure states correspond to the orthogonal basis in
quantum theory. The other pure states that result from reversible transforma-
tions on these basis states are interpreted as superpositions.
Nonlocal dynamics, on the other hand, we associate with maximal entangled

elements and primitives like steering, teleportation and entanglement swapping.
In this chapter, we will focus on entanglement swapping, as it requires the
other primitives. This means, the other primitives are possible, if entanglement
swapping is possible. We will first explain how entanglement swapping works in
quantum theory in Section 3.1. We then try to establish entanglement swapping
of maximally entangled states for a modified version of boxworld in Section 3.2,
but show that inconsistent arise for multipartite systems. These inconsistencies
turn out to necessarily occur for any GPT with two-dimensional state spaces
and local transitive dynamics (Section 3.3).
A seemingly conflicting theory that allows consistent entanglement swapping,

although it has two-dimensional transitive local state spaces, is quantum theory
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on a real Hilbert space. We show in Section 3.4 that this is only possible,
because the joint systems violate the local tomography assumption of the GPT
framework. A similar construction is illustrated to resolve the inconsistency
issues for any theory with two-dimensional transitive local state spaces.

3.1. Entanglement swapping in quantum theory

As pointed out in Section 1.5.2 entanglement cannot be generated by mere local
operations and classical communication (LOCC). However, it is possible to
transfer entanglement. A well-known protocol in quantum information theory
that achieves this is entanglement swapping. We will illustrate the protocol in
the Dirac representation. The equivalent formulation with density matrices,
i.e. with states in the sense of the GPT framework, is straight-forward.

The main objects we consider in this discussion are the maximally entangled
elements of the Bell basis:

|Φ+〉 =
1√
2

(|00〉+ |11〉) (3.1)

|Φ−〉 =
1√
2

(|00〉 − |11〉) (3.2)

|Ψ+〉 =
1√
2

(|01〉+ |10〉) (3.3)

|Ψ−〉 =
1√
2

(|01〉 − |10〉) (3.4)

The setting consists of two initially separated parties. Let us call them Alice
and Charlie. Alice and Charlie do not share entanglement with each other
initially. But each of them shares a maximally entangled state |Φ+〉 with a
third party that we call Bob. In summary, we have a four-partite system in the
state

|ϕ〉AB1CB2 = |Φ+〉AB1 ⊗ |Φ+〉CB2 (3.5)

=
1

2
(|0000〉+ |0011〉+ |1100〉+ |1111〉) . (3.6)
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3.1. Entanglement swapping in quantum theory

Entanglement swapping allows Alice and Charlie to get entangled with the
help of Bob. To achieve this, Bob does a measurement in the Bell basis on
his parts of the system. Let us now examine the post measurement state.
According to Born’s rule it can be determined by the projector on the basis
element which corresponds to the outcome. For example suppose Bob gets an
outcome corresponding to the basis element |Φ+〉B1B2 . This results in the post
measurement state

|ϕ′〉 = |Φ+〉B1B2〈Φ+|B1B2 |ϕ〉AB1CB2 = |Φ+〉B1B2 ⊗ 〈Φ+|ϕ〉AC (3.7)

=
1

2
|Φ+〉B1B2 ⊗ |Φ+〉AC (3.8)

where we used

〈Φ+|ϕ〉AC =
1

2
√

2
(〈00|+ 〈11|)B1B2 (|0000〉+ |0011〉+ |1100〉+ |1111〉)AB1CB2

=
1

2
√

2


〈00|00〉︸ ︷︷ ︸

=1

|00〉+ 〈11|00〉︸ ︷︷ ︸
=0

|00〉+ 〈00|01〉|01〉+ · · ·+ 〈11|11〉|11〉



AC

=
1

2
√

2
(|00〉+ |11〉)AC =

1

2
|Φ+〉AC . (3.9)

which is the non-normalized conditional state that occurs in AC with proba-
bility 1/4. One can easily check that projections from the other basis elements
also results in a conditional state in AC that reproduces the basis element up
to normalization.
If Bob does not communicate this result to Alice and Bob, they just know

that their joint state is given by one of those conditional states with equal
probability. That is given by a mixture. More precisely it is given by the
maximally mixed state that was also the effective (marginal) state before Bob’s
measurement. This is no coincidence, but a direct consequence of no-signaling
that gets reaffirmed in this example. Communicating the result tells Alice and
Charlie the particular conditional state, such that the state in AC reduces to
the normalized version of equation (3.9).
In summary, we transformed a given pair of maximally entangled states
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3. Entanglement swapping in GPTs

shared with Bob to a pair of random but equal Bell states. One of these
pairs is completely held by Bob, whereas the other pair is now shared between
Alice and Charlie.

3.2. Entanglement swapping in boxworld

There have been various attempts to generalize entanglement swapping, known
from quantum mechanics [86], to a swapping protocol for PR boxes, i.e. a
LOCC protocol that generates a PR box between two parties Alice and Charlie
with the help of a third party (Bob) who shared an PR box with Alice and
Charlie individually. A popular approach is known as nonlocality swapping. In
contrast to entanglement swapping in quantum mechanics nonlocality swapping
does not transform entangled states directly but introduces a so-called coupler
that acts on probability distributions on Bob’s side. It was shown in [87] that
being able to apply the same coupler consistently to all PR boxes does not
allow any nontrivial coupler for two-input-two-output boxes, i.e. nonlocality
swapping is impossible for that case. By exclusion of all PR boxes but one,
however, it was shown in [4] that nonlocality swapping can be done. The
other PR boxes can be generated by a simple relabelling of measurements
and outcomes such that they can be generated from the single box by mere
classical local wirings. That the coupler is not sensitive to wirings is explained
by introducing a genuine part of the box that corresponds to the (not further
specified) state that gives rise to the correlations represented by a nonlocal box.
The details on the underlying entanglement swapping on physical states that
produces PR box correlations remain unclear.
In [35] it was shown that entanglement swapping in boxworld is not pos-

sible. This results from the fact that the standard version of boxworld does
not allow any entangled measurements. We show in section 3.2.1 that one can
modify joint systems in boxworld such that entangled states as well as entan-
gled measurements are included. We study whether this construction can be
extended to multipartite systems and show that this requires a different treat-
ment of bipartite partitions consisting of otherwise equal elementary systems.
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It is demonstrated that this modified theory shows potential for entanglement
swapping, but treats subsystems differently.

3.2.1. A weakly self-dual version of boxworld

Systems with a one-to-one correspondence between the positive cone of unnor-
malized states and the dual cone, are referred to as weakly self-dual systems.

In boxworld single systems (e.g. a gbit) are weakly self-dual. However, for
joint systems, in the standard formulation of boxworld with the maximum ten-
sor product, the systems loose this property. Joint systems include all possible
joint states, but no entangled effects. We would like to study a situation similar
to quantum theory where entanglement in states and measurements is balanced
with a one-to-one correspondence between effects and unnormalized states for
single systems and for joint systems.

In order to find such a weakly self-dual tensor product we take a closer
look on the tensor product of two qubits and try to mimic it. Exchanging
the usual tensor product of two qubits by the maximal tensor product, one
gets a joint state space that still includes all pure states available in standard
quantum theory. However, it inhabits also some additional pure states that each
can be generated by a partial transpose applied to a corresponding entangled
pure quantum state. It is well known that such states are non-positive and
therefore normally excluded [88]. As these additional unphysical states can be
constructed by applying a partial transpose to the normal entangled states,
each entangled state in a standard bipartite qubit system has a counterpart in
the maximal tensor product that is regarded unphysical. At the same time each
new state leads to new constraints on the entangled effects possible. From this
point of view the standard tensor product of two qubits can be derived from the
maximal tensor product by excluding half of the entangled pure states. This
removes constraints on corresponding entangled effects.

We construct a weakly self-dual tensor product for local boxworld systems in
a similar manner. We include separable pure states and only four (ωAB17 , ωAB18 ,
ωAB19 , ωAB20 ) of the nonlocal extremals as pure joint states. The reduction of the
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extremal entangled states, allows for new extremal entangled effects, such that
joint states and effects are connected by a one-to-one mapping:

eAB17 =
2

3

(
eA1 ⊗ eB2 − eA2 ⊗ eB2 + eA2 ⊗ eb3 + eA3 ⊗ eB1

)
(3.10)

eAB18 =
(
eA2 ⊗ eB2 − eA3 ⊗ eB3 + eA3 ⊗ eB4 + eA4 ⊗ eB3

)
(3.11)

eAB19 =
(
eA1 ⊗ eB1 − eA2 ⊗ eB2 + eA2 ⊗ eB3 + eA3 ⊗ eB2

)
(3.12)

eAB20 =
2

3

(
eA2 ⊗ eB2 − eA3 ⊗ eB2 + eA3 ⊗ eB3 + eA4 ⊗ eB1

)
(3.13)

Nevertheless, since we keep some of the original entangled pure states, we are
still able to produce PR boxes with all the powerful features that come with
them.
Dynamics are connected to automorphisms of the state space. Gross et

al. have shown that dynamics in standard boxworld are very limited, since
invertible maps of the joint systems include only permutations of the local pure
states [48]. This means that there is no reversible way to convert pure separable
states to pure entangled states, e.g. as it is possible in quantum theory with the
CNOT operation. If one want to include at least one of the original entangled
pure states of boxworld, one can get the others by the local symmetries. Thus,
excluding some of the entangled extremals leads to a situation where these local
symmetries would map joint states allowed in the theory to those that have
been excluded. This gives rise to a notion of complete positivity as opposed
to positivity, similar to the situation in quantum theory. As a consequence the
construction above restricts also local dynamics to be consistent with the joint
elements.

3.2.2. Multipartite extension and entanglement swapping

Given the new tensor product, we want to extend it to multipartite systems as
well. Using the example of a four-partite system ABCD, we will show in this
section that this, if possible at all, can only be done under conditions that could
be regarded unphysical, namely the symmetry under swapping of the identical
elementary systems has to be broken.
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No matter what the exact structure of the four-partite tensor product might
be, it must at least contain any product state consisting of two bipartite states
in AB and CD of the bipartite tensor product chosen before. Assuming that
the systems BD allow for the same joint measurements, it can be shown that
applying the entangled effects in (3.10) to the product ωAB⊗ωCD of two nonlo-
cal extremal states would result in a collapse to an entangled pure state in AC,
i.e. the realization of entanglement swapping. The resulting state ωAC in AC
however is not guaranteed to be in the bipartite tensor product chosen before.
One can find combinations of states and effects such that ωAC is one of the
states of the maximal tensor product that we abolished for the construction of
our new tensor product. For example if one gets outcome eBD17 when measuring
the state ωAB17 ⊗ ωCD18 the resulting collapsed state in AC is ωAC22 that is not
included in the weakly self-dual tensor product chosen before. This means that
the bipartite tensor product for subsystem BD and AC must be different to
the tensor product chosen for AB and CD. Hence, the initial construction can
only be extended in a way that does not treat each pairs of particles in the
same way.

Since elementary systems of the same form should be indistinguishable, it
is questionable if this is consistent with a reasonable notion of a multipartite
system. More formally, this shows that the construction of the weakly self-dual
tensor product above cannot be extended to an associative tensor product.

3.3. Entanglement swapping in low dimensional

GPTs

The inconsistencies shown in the last section are not a peculiarity of boxworld.
In fact we will show in the following that the limitations are generic for two-
dimensional single systems in the GPT framework.
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3.3.1. Transitive two-dimensional state spaces

The pure states in quantum theory are connected by unitary transformations.
That is, each pure state can be transformed into each other reversibly. Although
most of the toy theories discussed so far also have this property, this is not the
case for all GPTs. Counter-examples are the house-shaped state space and the
kite-shaped state spaces in the transition between the classical and the gbit
case in Chapter 2. We will call state spaces transitive, when all extremal states
can be reversibly transformed into each other1.

It is clear that transitivity implies a symmetry that is reflected in a group
structure for the reversible transformations. As Dakic et al. point out in [23],
the Shur-Auerbach lemma guarantees that every compact group has an orthog-
onal representation [89], whereas compactness is given for GPT transformations
due to the fact that the range [0, 1] of probabilities need to be preserved [1].
Consequently, using a suitable representation of the state space according to
(1.22) it is always possible to arrange the extremal states of a transitive state
space in such a way, that each state lies on a circumscribed sphere. The group
of reversible transformations is a subgroup of the orthogonal group O(n) on
the state space dimension n.

Considering two-dimensional systems, we have to focus on the the subgroups
of O(2). These are O(2) itself, SO(2) as well as the dihedral groups Dn and
the cyclic groups Cn. The elements of all these groups are two-dimensional
rotations R+(α) and reflection-rotations R−(α) given by

R+(α) =




cos(α) sin(α) 0

− sin(α) cos(α) 0

0 0 1


 (3.14)

R−(α) =




cos(α) sin(α) 0

sin(α) − cos(α) 0

0 0 1


 , (3.15)

1More precisely, such geometrical bodies are called vertex-transitive or isogonal in mathe-
matics.

88



3.3. Entanglement swapping in low dimensional GPTs

where the finite groups Dn and Cn allow only discrete rotation angles α. The
state space corresponding to these symmetries are the regular polygon systems
and the disc-shaped state space from chapter 2, as well as truncated versions
of the regular polygons.

3.3.2. Incompatible maximally entangled elements

We want to restrict our discussion on the entanglement swapping of maximally
entangled states. The definition of maximally entangled elements requires an
isomorphism between extremal effects and extremal states, which excludes the
truncated polygons. So we only need to consider the polygon systems and the
disc system from Chapter 2.

As introduced in this chapter the maximally entangled elements are given by
the isomorphisms between cones and dual cones that are unbiased, i.e. have
maximally mixed marginal states. The set of all maximally entangled states
is given by all unbiased reversible maps of effects that acts on one side of the
bipartite system to conditional states at the other part. Transitivity allows us
to get all maximally entangled elements from a single generic one combined
with the automorphism on local states and effects. In particular, we chose
the generic state Φ as defined in equation (2.7). The other potential maxi-
mal entangled states Φ′ are generated by matrix multiplication with the local
symmetry transformations from Equation (3.14):

R′ = Φ′ = R ·Φ. (3.16)

That Φ′ is again a rotation/reflection matrix, results from the algebraic struc-
ture of the rotations/reflections. In particular, combinations via the usual
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3. Entanglement swapping in GPTs

matrix product and their transpose yield the following relations:

R+(α) ·R+(β) = R−(α) ·R−(β) = R+(α + β)

R+(α) ·R−(β) = R−(α + β)

R−(α) ·R+(β) = R−(α− β)

R+T (α) = R+(−α)

R−T (α) = R−(α). (3.17)

Potential maximally entangled effects corresponds basically to the same ex-
pressions as the potential maximally entangled states, since they correspond
to the isomorphisms in the opposite direction. The difference is that they are
weighted with some scalar normalization factor that limits the maximal mea-
surement probabilities to one. For the discussion in this chapter it suffices to
examine whether combinations of effects and states result in non-negative val-
ues. We will therefore omit normalization factors and replace both maximally
entangled states and effects by the unscaled rotation/reflection matrices defined
in (3.14).

The application of a joint effect on a joint state is given by the sum of
the products of corresponding matrix components of both matrices, which can
conveniently be written as a Hilbert-Schmidt inner product:

e(ω) ∝ tr[R(α)T ·R(β)] =
∑

ij

rij(α) rij(β) (3.18)

Using the algebraic relations in (3.17) we can reduce this to the trace of a
single transformation matrix with some angle α′:

e(ω) ∝





tr[R+(α′)] = 1 + 2 cos(α′)

tr[R−(α′)] = 1
(3.19)

In order to get positive values the combinations of the transformations corre-
sponding to joint states and effects, have to result in either a reflection or in a
rotation with rotation angles in the range α′ ∈ [−2π/3, 2π/3]. On the other
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3.3. Entanglement swapping in low dimensional GPTs

hand, combinations of joint states and effects that result in a rotation with α′

in the range of ]2π/3, 4π/3[ would result in unphysical negative values.

In the classical case, the local state space is given by a triangle with a D3

symmetry, that can be generated by R+(2 π/3) and R−(2 π/3) respectively.
Notably, the corresponding transformation matrices have a non-negative trace
and are closed under matrix multiplication and transposition. A classical
theory does of course not have entanglement. However, there are separable
joint elements that reproduce the isomorphic mapping behavior that we de-
fined as "maximally entangled". These elements are given by the same ro-
tation/reflection matrices as the local symmetries. As these are closed under
compositions we get non-negative values in (3.19), even if we include all "max-
imally entangled" elements.

For general regular polygons the assumption of local transitivity requires
us to at least include all elements of the cyclic group Cn as local transforma-
tions, as the smallest transitive subgroup. Likewise, for the disc we have to
at least include the local transformations of SO(2). Consequently, if we have
one maximally entangled state that is a rotation we get all the rotations with
rotation angles that respect the polygon symmetry. Also the local transforma-
tions produce all reflections from a single reflection as a maximally entangled
state. However, these minimal local symmetry transformations would not be
able to convert between rotations and reflections. The same is true for max-
imally entangled effects. If a combination of maximally entangled effects and
states result in a rotation, this necessarily allows negative values in (3.19) for
some angles α′ except for the triangle representing the classical case. On the
other hand, if combinations result in a reflection we get non-negative values for
any angles and therefore for any polygon. Consequently, the only possibilities
to chose maximally entangled elements consistently are i) to have entanglement
only for joint states or for effects, ii) to have maximally entangled states given
by rotations and maximally entangled effects given by reflections, or iii) the
other way round.

As we want to generate theories that allow nonlocal primitives like teleporta-
tion and entanglement swapping, we require entanglement for states and effects.

91



3. Entanglement swapping in GPTs

This excludes option i). The other options give valid results for any combina-
tions of a single pair of a bipartite state and effect. However, we will show in
the next section that inconsistencies arise in bigger multipartite systems.

3.3.3. Composing nonlocal primitives

In the last section we used matrix products and the transpose operation ex-
clusively in combination with the trace to get a convenient representation of
inner products. There are also operational interpretations for these operations
themselves. We will now discuss the meaning of the mathematical operations.
In addition we introduce a graphical representation to illustrate more complex
constructions.

Therefore, we map the experimental setup to a circuit of boxes with a logical
flow from left to right or top to bottom. We depict states as blue boxes with
one or more open "outputs" that can serve as inputs to measurements. Effects
are the corresponding counterparts with open "inputs" where we chose a red
color. A circuit that connects all outputs from states with all inputs from effects
represent the probability of the corresponding state/effect combination. Similar
graphical formalisms have been introduced by several authors [27, 90, 29].

Given a bipartite state in matrix representation, applying a matrix on the
left side corresponds to a transformation of the first part, whereas applying
something on the right acts on the second part of the system. The transpose
swaps both parts. Bipartite states act also as maps from local effects on one
part to the conditional state on the other part and likewise applying a local
state to a bipartite effect yields an effective local effect on the other part. The
trace connects the first part of a system with the last one. Using our graphical
notation, we illustrate how these operations are used in the Hilbert-Schmidt
inner product in Figure 3.1.

We can apply these rules to chain bipartite states and effects together, which
allows us to build nonlocal primitives like teleportation and entanglement swap-
ping.
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ωAB

eAB

=

ωAB

eAB

eAB(ωAB)
tr[eAB,T ·ωAB]

Figure 3.1.: Illustration of the mathematical operations involved in the Hilber-
Schmidt inner product: The transpose exchanges the inputs of the
effect eAB. Matrix multiplication then connects the second input
of eAB with the first output of the state ωAB. The trace finally
connects the remaining loose ends.

Teleportation We can combine an entangled effect in parts AB with an en-
tangled state in parts BC to produce nonlocal transformations. Using maxi-
mally entangled elements, the construction transforms any state in A to a state
in C that differs from the original state only by a reversible local transforma-
tion. Dependent on the measurement outcome in AB, given by different effects,
we also get different transformations. Communicating the measurement out-
come and reverting the transformation finally gives us the usual teleportation
protocol as known from quantum information theory.
A particular combination of maximally entangled effects and states as shown

in Figure 3.2 can itself be regarded as probabilistic teleportation [30], as it still
depends on the corresponding outcome to occur.

Entanglement swapping As illustrated in Figure 3.3 entanglement swap-
ping can be described by composing a maximally entangled state on AB with
a maximally entangled effect in BC and finally another maximally entangled
state in CD. The result is a reversible transformation from effects in A to
states in D, which corresponds to a maximally entangled state in AD.
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3. Entanglement swapping in GPTs

ωBC

eAB

ωA

∝ ω′C

Figure 3.2.: Probabilistic teleportation is done by chaining a maximally entan-
gled effect and a maximally entangled state: The maximally en-
tangled effect eAB maps any state ωA to a effect in B that is again
transformed to a state ω′C in C via ωBC . As maximally entan-
gled elements are defined by isomorphisms, the whole construction
forms an isomorphism of states in A to states in B.

ωAB

eBC

ωCD

∝ ω′AD

Figure 3.3.: Graphical illustration of entanglement swapping.

It is reasonable to assume that bipartite systems of the same single systems
should always be described by the same composition rules. That is, we suspect
the joint state in AD is ensured to be one of those allowed in AB and CD

respectively. If this is the case, we call this consistent entanglement swapping.
In the following, we show that consistent entanglement swapping is impossible
for transitive two-dimensional systems.

3.3.4. Inconsistencies in multipartite systems

As pointed out the only ways to get compatible maximally entangled effects
and states is to strictly define one of them to be proper rotations, whereas the
others are given by reflections. The entanglement swapping protocol turns out
to break this classification.
Suppose we choose maximum entangled joint state to be given by rotations,
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3.4. Entanglement swapping enabled by violating local tomography

implying reflections for maximally entangled effects. Entanglement swapping
yields a reflection as a state in AD as it combines two rotations and one reflec-
tion:

R−,AD(α1 + α2 − α3) = R+,AB(α1) ·R−,BC(α2) ·R+,CD(α3). (3.20)

Similarly, the opposite classification of states and effects transforms reflections
to rotations by:

R+,AD(α1 − α2 + α3) = R−,AB(α1) ·R+,BC(α2) ·R−,CD(α3). (3.21)

Consequently, entanglement swapping introduces inconsistencies for systems
with two-dimensional transitive state spaces in the GPT framework.

3.4. Entanglement swapping enabled by

violating local tomography

We have illustrated that the GPT framework forbids consistent entanglement
swapping for systems with two-dimensional transitive state spaces. However,
we can circumvent these issues, when we weaken the local tomography assump-
tion. We first show that the violation of local tomography enables entanglement
swapping in quantum theory on a real Hilbert space and then show that the
same construction can be exploited to allow consistent entanglement swapping
for the previously conflicting systems.

3.4.1. Quantum theory on a real Hilbert space

Quantum theory on real valued Hilbert space (real quantum theory for short) is
known to allow consistent entanglement swapping, even though having subsys-
tems with transitive two-dimensional state spaces. However, this theory does
not allow to identify joint states by local measurements [91]. That is, it violates
the local tomography assumption of the GPT framework. In fact, the density
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matrices in real quantum theory are not elements of a tensor space anymore,
but includes purely global degrees of freedom.

Before illustrating this, let us consider the pure states of real quantum theory
in the Dirac formalism. As in the usual case, we have a Hilbert space with
a orthonormal basis of Ket-vectors |i〉 with general pure states |Ψ〉 given by
superpositions:

|Ψ〉 =
∑

i

ci|i〉
∑

i

|ci|2 = 1

〈i|j〉 = δij (3.22)

The only difference to standard quantum theory is that coefficients ci ∈ R are
not complex, but restricted to real numbers. As in the usual case joint systems
have states given by the same rules, with the basis of the joint Hilbert space,
given by products:

|Ψ〉AB =
∑

ij

cij|i〉 ⊗ |j〉
∑

ij

|cij|2 = 1

〈i|A ⊗ 〈j|B(|k〉A ⊗ |l〉B) = 〈i|k〉 〈j|l〉 = δik δjl, (3.23)

where cij are again real coefficients. So, considering only Ket-vectors, it seems
there is not much difference to the standard case and the tensor product struc-
ture is preserved. This changes when we look at the actual measurement statis-
tics and the associated density matrices.

Density matrices in the standard case are given by positive Hermitian ma-
trices. Hermitian matrices acting on a n-dimensional Hilbert space have n2

independent degrees of freedom. The reason that both ket-vectors and density
matrices scale multiplicatively results from (m ·n)2 = n2 ·m2. We can decom-
pose any Hermitian matrix ρ into a symmetric matrix S and an antisymmetric
matrix A by

ρ = S + i A (3.24)
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3.4. Entanglement swapping enabled by violating local tomography

Switching to real valued Hilbert spaces reduces the density matrices to pos-
itive symmetrical matrices with d(n) = n (n + 1)/2 independent degrees of
freedom. Therefore, the dimension of the Hilbert space dimensions scales dif-
ferently than the dimension of operator spaces as

d(n ·m) 6= d(n) · d(m). (3.25)

The reason for this different scaling behavior is that Kronecker products of
two antisymmetric matrices yields a symmetric matrix. Hence, there are valid
global components that result from the product of components that are invalid
for the local systems. This leads to a super-multiplicative scaling.

For example consider the density matrix of a standard qubit from a complex
Hilbert space. It can be composed from a basis of the identity matrix 1 and the
three Pauli matrices σx, σy, σz. The matrices σx and σz are symmetric, whereas
σy is antisymmetric and imaginary. The density matrix for a system from a
two-dimensional real Hilbert space, a so-called rebit, has no σy components.
The local state space is given by a disc. A two-rebit system on the other hand,
can have a σy ⊗ σy component, as the product is a real symmetric matrix.
An example that inhibits such a component is the density matrix Φ+ of the
following real valued maximally entangled state

Φ+ = |Φ+〉〈Φ+| |Φ+〉 =
1√
2

(|00〉+ |11〉)

=
1

4
(1 + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz) . (3.26)

This purely global σy ⊗ σy component cannot be detected by local mea-
surements. It turns out that entanglement in two-rebit systems is completely
characterized by this non-local component [91]. This violates local tomography
that is assumed in the GPT framework.
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3.4.2. Entanglement swapping in real quantum theory

As entangled elements in real quantum theory have an additional σy ⊗ σy-
component, we can not represent them as 3 × 3-matrices anymore. Thus,
we use the original basis of the standard qubit with all Pauli matrices. This
allows us to embed real quantum theory in this larger space, where we set all
components zero that can only result from states in a complex Hilbert space.
In particular, we describe local elements by a vector with four components,
where one component corresponding to σy is always zero. The joint elements
are represented by 4× 4-matrices, where the components have a fixed value of
zero that correspond to the product of σy with another different Pauli matrix
or the identity. This way we can still use matrix arithmetrics, even though the
tensor product structure is broken in real quantum theory.

The set of all maximally entangled states are given by the O(2) symmetries of
the disc. In addition the σy⊗σy-component is either 1 or −1 dependent whether
the symmetry on the disc is a reflection or a rotation, such that the overall
matrix is a reflection on R4. Consequently, the combination of a maximally
entangled effect in AB and a maximally entangled state in BC yield a nonlocal
rotation. As pointed out before, this can be interpreted as a probabilistic
teleportation protocol. As the combination of rotations gives again a rotation,
we can chain several of such constructions together and still get rotations. This
way, real quantum theory guarantees consistent teleportation.

On the other hand, we can connect both ends of the teleportation construc-
tion by the trace and reinterpret it as the usual application of joint effects
on joint states. It is easy to see that non-negativity of the trace behaves op-
posite to the previous case with 3 × 3 matrices that obey local tomography.
Rotations give always non-negative values, such that applying maximally en-
tangled effects on states in real quantum theory yields valid probability valued
outcomes, although both are chosen as reflections. The trace of reflections
themselves, however, can give negative values. With the given choice of joint
elements this is not a problem as the trace of a single entangled state without
an effect does not have any operational meaning.
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Entanglement swapping can be build upon the teleportation construction.
We only need to apply one side of a maximally entangled state to the tele-
portation apparatus. Recall that maximally entangled elements are defined as
unbiased isomorphisms. A composition of isomorphisms obviously results in
another isomorphism. Consequently, the result of the entanglement swapping
set-up build from maximally entangled elements always yields a maximally en-
tangled state. However, this state might not be valid, as it might conflict with
the maximally entangled effects that have been defined. That is, some maxi-
mally entangled effects could give negative results on the generated maximally
entangled states. We showed that this happens for two-dimensional transitive
local state spaces and maximally entangled elements that obey local tomogra-
phy. In real quantum theory, on the other hand, entanglement swapping turns
out to be consistent. Teleportation corresponds to a rotation, whereas every
entangled element is a reflection. This implies that the whole entanglement
swapping set-up results in a reflection. As maximally entangled elements were
defined as reflections in the beginning, there is no conflict.

3.4.3. Nonlocal dynamics for non-local-tomographic
polygon systems

We can construct consistent entanglement swapping for systems with regular
polygons as local state spaces in a similar way as provided in real quantum
theory. That is we chose the both types of transformations, rotations and
reflections for maximally entangled states and effects, but add an additional
strictly global component that is set 1 or −1, such that the overall transfor-
mation is a reflection on a bigger linear space. As shown for all continuous
rotation angles for the disc case that corresponds to real quantum theory, this
prevents the conversion between rotations and reflections for joint elements
and guarantees that bipartite joint states and effects are compatible, such that
measurement probabilities are non-negative. Obviously, this is also guaranteed
for discrete rotation angles. In addition, it is impossible to get invalid angles
due to the group structure of the discrete rotation/reflections.
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hypothesis

The standard GPT framework assumes the no-restriction hypothesis, in which
the state space of a physical theory determines the set of measurements. How-
ever, this assumption seems not physically motivated. In this chapter we
generalize the framework to account for systems that do not obey the no-
restriction hypothesis. We then show how our framework can be used to de-
scribe new classes of probabilistic theories, for example those which include
intrinsic noise. Relaxing the restriction hypothesis also allows us to introduce
a ‘self-dualization’ procedure, which yields a new class of theories that share
many features of quantum theory, such as obeying Tsirelson’s bound for the
maximally entangled state. We then characterize joint states, generalizing the
maximal tensor product. We show how this new tensor product can be used to
describe the convex closure of the Spekkens toy theory, and in doing so we ob-
tain an analysis of why it is local in terms of the geometry of its state space. We
show that the unrestricted version of the Spekkens toy theory corresponds to a
variant of boxworld and therefore would allow maximal nonlocal correlations.

The idea of removing the no-restriction hypothesis (or replacing it with other
assumptions) has appeared sporadically in other works [27, 18]. However, until
now a systematic analysis of the consequences of doing so has been lacking. In
this chapter we provide a well-defined framework with the no-restriction hy-
pothesis omitted, whilst keeping the other assumptions of the GPT framework.
Our work then proceeds in two parts.

In the first part we show that this new framework encompasses more theories
than before. For example, we show that theories with intrinsic noise can be
described in our framework, but not in the existing GPT framework. We also
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provide a procedure for constructing a self-dual theory from a theory which is
not self-dual. The importance of this is that self-duality has been shown to
imply ‘quantum-like’ (for example, limiting bipartite nonlocality to Tsirelson’s
bound for the maximally entangled state [3]). Hence this allows us to intro-
duce a new class of probabilistic theories with ‘quantum-like’ behaviour, and
crucially, this is a class of theories which does not satisfy the no-restriction
hypothesis.
In the second part, we develop the treatment of composite systems. In partic-

ular, we show that our extension requires a new (and more general) definition of
the tensor product for describing composite systems. This significantly extends
the GPT framework, since it allows us to analyze the relationship between non-
locality and the geometry of the state space of a theory, building on previous
work in this direction. For example, we show how the Spekkens toy theory [21]
(for which the connection to GPTs had not been previously established) can
be viewed as a GPT, but only in our more general framework. Moreover, this
allows us to give an analysis of why the Spekkens theory is local, using the
geometry of its state space.

4.1. The no-restriction hypothesis

We now consider in detail the no-restriction hypothesis, and the consequences
of relaxing it.

4.1.1. Defining the set of effects

Let us recall the interdependence of state spaces and effect sets in the traditional
framework. In general effects are restricted to give values in the range of [0, 1]

when applied to normalized states. As pointed out in the introduction of the
traditional GPT framework in Section 1.2.9, the set of effects E is not restricted
any further. That is, the set of effects is exactly the set of all probability-valued
linear functionals on the given states. We will call this relationship between
states and effects the no-restriction hypothesis, in accordance with [27]. It is

102



4.1. The no-restriction hypothesis

satisfied for classical probability theory and quantum theory.
As shown in Section 1.2.9 the set of effects under the no-restriction hypothesis

is given by

Emax := V ∗+ ∩ (u− V ∗+) (4.1)

with the so-called dual cone

V ∗+ := {e ∈ V ∗ | e(ω) ≥ 0 ∀ω ∈ Ω} . (4.2)

If the no-restriction hypothesis holds, then a theory is completely determined
by the state space, since the effect set can be derived from the state space via
the dual cone. On the other hand, the unnormalized states can be recovered
as the dual of the dual cone, which is the primal cone V+:

V+ := {λω |ω ∈ Ω, λ ≥ 0} = (V ∗+)∗. (4.3)

In the following we want develop the framework of GPTs without the no-
restriction hypothesis. There are two main reasons for doing so:

1. The necessity of the no-restriction hypothesis is questionable from an op-
erational perspective. Indeed, considering the physical meaning of states
and effects there is no reason to believe that the possible preparation
procedures determine possible measurements.

2. The possibility to cope with restricted systems generalizes the GPT frame-
work to cover new scenarios that have not been accessible within the old
framework.

4.1.2. Relaxing the no-restriction hypothesis

Let us note the constraints that still apply when the no-restriction hypothesis
is removed. Clearly, effects still need to give probabilities when applied to any
state. That is, when allowing violations of the no-restriction hypothesis, the
set of probability-valued linear functionals on states in (4.1) remains an upper
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V+

uΩ
⇔

E

V ∗+ vs
E

V ∗+

Figure 4.1.: The construction of the effect set E in the traditional GPT frame-
work with no-restriction hypothesis is shown in the middle. With-
out the no-restriction hypothesis the definition of the effect set gets
a independent part of the theory specification (right picture).

bound for possible effects. However, in general not all elements in this set need
to represent a valid measurement outcome. Consequently, the set of effects E
may actually be given by a subset of (4.1):

E ⊆ Emax. (4.4)

This is the crucial new ingredient in the GPT framework that we shall use in
subsequent sections.
For operational reasons, we shall assume that E is a convex set. We have

also identified the following four consistency conditions that also have to be
met:

i) The unit measure u needs to be included in the restricted set as it is
crucial for the definition of measurements.

ii) For every effect e included in E, the complement effect ē = u−e needs to
be included as well. We will show in Section 4.4 that including an effect,
but not the complement can yield inconsistencies for joint states.

iii) For any effects ei, ej that are included in a common measurement M :
ei + ej ∈ E. Operationally this corresponds to a ‘coarse graining’ where
the discrimination between outcomes ei and ej is waived.

iv) Transformations map valid states to valid states. However, for any trans-
formation T on states, there is also an adjoint transformation T † on ef-
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fects defined by e[T (ω)] = [T †(e)](ω) for all states and effects. The effect
set must be consistent with transformations, and hence we must have
∀e ∈ E : T †(e) ∈ E.

Apart from these consistency restrictions, the definition of the effect set E is
now an independent part of the specification of the theory. In other words, the
effect set E does not depend on the state space now, and the dual cone V ∗+ is
irrelevant for single systems. However, we will see in Section 4.5.2 that we still
need it to classify consistent joint states.
Let us now consider how removing the no-restriction hypothesis will be useful.

As shown above, the no-restriction hypothesis connects a set of states and
effects via the respective dual-cone. Taking a closer look at the dual cone
construction in (4.2), it can easily be seen that each extremal point of the primal
cone describes a facet of the dual cone and the other way round. Therefore,
arbitrary small changes in the primal cone, can have an enormous impact on
the form of the dual cone. Consequently, the no-restriction hypothesis makes
it extremely difficult to alter a theory in a controlled way. However, it has
always been a central motivation for the framework of generalized probabilistic
theories to find alternatives to quantum theory.
We shall now show in Section 4.2 and Section 4.3 that new models with

interesting features can indeed be constructed when accepting violations of
the no-restriction hypothesis. Furthermore, for joint systems, we will see in
Section 4.4 and Section 4.5 how consistency conditions are affected.

4.2. Theories with intrinsic noise

The no-restriction hypothesis guarantees that for any pure state ω, there is an
effect e, with e 6= u, such that e(ω) = 1. In contrast, removing the no-restriction
hypothesis allows for the modeling of systems with intrinsic noise, i.e. systems
for which the unit measure is the only certain outcome for any state. For
example, an isotropic unbiased implementation of noise can be achieved by
restricting the effects to a set where the original extremal effects are replaced
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Figure 4.2.: Inclusion of noise into boxworld: State space and effects are both
embedded into R3 and shown from above for illustration. The state
space (blue) is given by a square. The effect set is the octahedron
spanned by the extremal effects ei, u and ∅. The noisy theory has
a restricted effect set with extremal effects eλi .

by mixtures with u/2 (except for ∅ and u itself). In order to combine noise and
bias one can mix the extremal with another effect instead of u/2.

The inclusion of intrinsic noise by a modification of boxworld is illustrated
in Fig. 4.2. The state space of a single system is given by a square. In the
traditional model the effect set is determined by the no-restriction hypothesis.
A noisy version of boxworld is given by mixing the extremal effects ei with u/2:

ei 7→ eλi = λ ei + (1− λ)
u

2
. (4.5)

This model is particularly interesting with respect to its potential non-local
correlations in joint systems. This will be examined in more detail after intro-
ducing joint system of restricted theories in Section 4.4.

4.3. Self-dualization procedure

A particular class of systems that has gained a lot of interest recently are
so-called (strongly) self-dual systems [30, 3, 31]. These are systems with a
particular geometrical structure, shared by both classical probability theory
and quantum theory. For strongly self-dual systems states and effects can be
identified with each other and thus be represented by the same mathematical
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Figure 4.3.: Self-dualization of a hexagon system: The pictures show the states-
pace (blue) and the intersection of the effect cone (red) that lies
in the same plane. In the first step the state cone will be embed-
ded into the effect cone by an equivalence transformation (1.22).
In the second step the effects not included in the state cone are
abandoned.

objects. E.g. in quantum theory both states and effects are represented by
positive hermitian operators.
Formally, strong self-duality is given by the following definition.

Definition 4.1. A system is strongly self-dual iff there exists an isomorphism
Φ : V ∗+ 7→ V+ giving rise to a corresponding symmetric bilinear form T with
T (e, f) = e[Φ(f)] = T (f, e) and T (e, e) ≥ 0 for all e, f ∈ V ∗.

That is, T provides a semi inner product on effects. In a similar way for
strongly self-dual systems the inverse map Φ−1 leads to a semi inner product
on states.
Strong self-duality greatly restricts the class of possible systems. As we de-

scribe below, the property of ‘bit-symmetry’ implies that a system is strongly
self-dual [31], and there is evidence that non-local correlations of self-dual sys-
tems are limited [3]. In this section we provide a general construction rule to
modify any system, such that it resembles the behaviour of strongly self-dual
systems.

Theorem 4.1. Any theory in the GPT framework can be modified to resem-
ble strongly self-dual systems respecting Definition 4.1 with the dual cone V ∗+
replaced by a truncated cone V∗+.
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4. GPTs without the no-restriction hypothesis

Proof. Using our representation, we assume an embedding of effects and states
in a common vector space with a scalar product mediating the application of
effects on states. We start from an arbitrary theory for which the no-restriction
hypothesis holds. The freedom of linearly transformations LT from (1.22) allows
us to strictly enlarge the effect cone V ∗+, while the corresponding inverse L−1

constricts the cone of unnormalized states V+ to be strictly smaller. Hence,
one can always represent the same physical theory, with V+ embedded in V ∗+.
We can then define a truncated the effect cone from V∗+ ⊆ V ∗+, such that V∗+
coincides with the state cone V+. Hence we can describe unnormalized effects
and states with the same set of vectors. Consequently, the restriction of effects
yields the vector space’s scalar product to act as an inner product between
states. This satisfies the definition of strong self-duality with the dual cone
V ∗+ exchanged for the truncated effect cone V∗+. The set of effects is then
constructed from V∗+ by E = V∗+ ∩ u− V∗+.

The connection between self-dualized systems and actual strongly self-dual
systems is not only limited to a mere formal resemblance. In fact, the following
example shows that self-dualized systems have features that strongly self-dual
systems have when the no-restriction hypothesis is assumed.

4.3.1. Example: self-dualized polygons

Let us illustrate the self-dualization procedure on polygon systems introduced
in chapter 2. As before the regular polygon-shaped state spaces of these systems
are spanned by the extremal states from equation (2.3).
In the previous discussion of the theory we set E(Ω) of all possible measure-

ment outcomes to be determined by the no-restriction hypothesis which results
in the extremal effects given by equations (2.6) and (2.5) respectively.
While the cases with an odd number of vertices n are strongly self-dual, the

even cases are not. The extremal rays of the dual cone of polygon systems with
odd number of vertices, coincide with the scaled extremal states. However, for
polygon system with an even number of vertices the primal and dual cones are
only isomorphic and can be matched by a rotation of π

n
. That is, the even
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4.3. Self-dualization procedure

polygons are not strongly self-dual in the original models. We will now self-
dualize these even-polygon systems using the procedure described in Theorem
4.1.

As discussed in Section 1.2.12 there is always the freedom to apply arbitrary
bijective linear maps to all effects and the corresponding inverse map on all
states. We use this to shrink the state space by rn 7→ 1 to fit in a circumscribed
circle of radius one. Applying the inverse map to effects results in a effect
cone with rn 7→ r2

n. This new effect cone is strictly bigger than the cone of
unnormalized states. By truncating this effect cone, such that the new extremal
effect e′i are given by

e′i =
1

2

(
ei + e(i+1)mod n

)
=
ωi
2
, (4.6)

the primal cone coincide with the new effect cone generated by the restricted
effect set.

Let us demonstrate the self-dualization procedure explicitly, by using the
polygon with n = 4 (this is the boxworld model). In the first step the pure states
and effects are transformed to the equivalent representation given in (1.31) and
(1.32). In this representation the effect cone is completely embedded in the cone
of unnormed states. The actual self-dualization is then done by exchanging ei
for e′i = ωi/2, shrugging off the effects not included in the primal cone.

For all self-dualized polygon models, another interesting feature emerges for
the restricted case. Namely, there exists a specific pure state ω̄ for each pure
state ω, such that they can be perfectly distinguished by an effect e with e(ω) =

1 and e(ω̄) = 0. Furthermore, each pair of perfectly distinguishable states can
be mapped reversibly to any other pair of perfectly distinguishable states. This
feature is known as bit symmetry, and was shown to only hold for strongly self-
dual systems in the traditional framework [31].

This demonstrates that the self-dualization procedure can actually reproduce
properties thought to be specific for actual strongly self-dual systems. Note
that the mathematical description of actual strongly self-dual systems can be
complex. Using self-dualized systems might be an alternative that helps to
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4. GPTs without the no-restriction hypothesis

identify new features of strongly self-dual systems, even if one is not interested
in the relaxation of the no-restriction hypothesis.

4.3.2. Spekkens’s toy theory

In [21] Spekkens introduced a toy theory which replicates many features of
quantum theory. For example, it exhibits a no-cloning theorem and a tele-
portation protocol. The theory is not explicitly probabilistic, since outcomes
are not explicitly assigned probabilities. Instead, a graphical calculus is used.
Given a state ω, the outcome i is only specified to be ‘possible’ or ‘impossible’.
The Spekkens theory in its original form also has no notion of arbitrary convex
mixing, i.e. it does not have the property for any pair of states ω1 and ω2, there
exists a state pω1 + (1− p)ω2 for all probabilities p ∈ [0, 1].
The ability to form convex mixtures is crucial to GPTs, and in particular to

its operational motivation. Fortunately, there is a natural extension of Spekkens
theory which is probabilistic and which does allow convex mixing (the proba-
bilistic version of this theory was also introduced previously by Hardy in [92]).
The state space Ω of a single system is then the octahedron. In the represen-
tation that we have used, the six extremal states (i.e. the pure states) are just
given by the co-ordinates of the octahedron in R3, with an extra component
for normalization. For example, the four extremal states that form the square

ω1

ω2

ω3

ω4

ω6

ω5

Figure 4.4.: The state space of the Spekkens model, with the six pure states ωi
labelled.

base of each tetrahedron are identical to the states for boxworld (see Fig. 4.4).

110



4.3. Self-dualization procedure

That is, for i = 1, . . . , 4 the states are:

ωi =




cos(2πi
4

)

sin(2πi
4

)

0

1



∈ R4, (4.7)

and for i = 5, 6 the states are

ωi = (0, 0,±1, 1)T ∈ R4, (4.8)

Now, the dual space of an octahedron is the cube. However, in the Spekkens
theory, the space of effects is identical to the state space: it is also the octahe-
dron depicted in Fig. 4.4. Since the octahedron can be obtained by restricting
the cube (in the same way that is depicted for the hexagon in Fig. 4.3),we
see that the Spekkens theory provides an example of a self-dualized theory.
In particular, the convex probabilistic version of it is obtained using the self-
dualization procedure defined in Theorem 4.1, and as described above for self-
dualized polygons. Indeed, as with boxworld, the restricted effects are given
by:

e′i =
ωi
2

Hence we see that, at least for single systems, self-dualized boxworld can be
seen as an extension of the Spekkens theory: the state and effect space of the
Spekkens theory are given by the extremal states and effects of self-dualized
boxworld. We develop the analysis of joint systems for the Spekkens theory in
Section 4.5.3.

We note that the single-system state space of Spekkens theory is also identical
to that of stabilizer quantum mechanics, for which the only allowed states are
the eigenstates of the Pauli operators, and the allowed transformations are the
Clifford operations. As discussed in [21] and further in [93], the Spekkens theory
and stabilizer quantum mechanics, however, differ in the group of reversible
transformations that each theory specifies.
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4. GPTs without the no-restriction hypothesis

4.4. Joint systems in the traditional GPT

framework

In the preceding sections we have not distinguished between single systems
and joint systems. That is, our discussion so far (e.g. of self-dualization) has
not involved any potential subsystem structure, whereby a system C can be
divided into subsystems A and B, with each subsystem having well-defined
states and effects. In the next section we shall consider how relaxing the no-
restriction hypothesis affects composite systems. Before doing so, let us recall
the treatment of joint systems in the traditional framework, i.e. when the no-
restriction hypothesis is assumed to hold.

We will restrict the discussion of joint systems to the bipartite case with two
subsystems, as the generalization of multipartite systems is straightforward.
Bipartite joint states are given by elements of the product space

V AB = V A ⊗ V B (4.9)

and joint effects are elements of V AB∗ = V A∗ ⊗ V B∗ respectively 1.

We will represent joint states and joint effects by n × m matrices, with
n = dimV A = dimV A∗, m = dimV B = dimV B∗. As for single systems, the
application of effects on states results in the sum of the entry-wise products.
This can be elegantly written as the Hilbert-Schmidt inner product

eAB
(
ωAB

)
= tr

(
eT·ω

)
=
∑

i,j

εij wij, (4.10)

where we write eT·ω for the matrix product between the transpose of matrix e
representing the joint effect eAB and the matrix ω representing the joint state
ωAB.

1It can be shown that this follows from two conditions on joint states: i) local tomography
ii) the no-signaling principle. The no-signaling principle forbids sending information by
local operations on a joint state, and will be explained in more detail in Section 4.4. Local
tomography is the identification of joint states by combinations of local measurements.
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4.4. Joint systems in the traditional GPT framework

To define a composite system for a particular GPT (with specified state and
effect spaces for individual systems), we must define the set of joint states
ΩAB = {ωAB}, and the set of joint effects EAB = {eAB}, such that these are
consistent with the individual systems. If the no-restriction hypothesis holds,
then, as before, once the set of joint states ΩAB is defined, the set of effects EAB

is determined. In this situation we need only consider the definition of ΩAB in
order to specify the behaviour of composite systems. There is much freedom
in defining ΩAB, but there are two boundary cases which we now discuss.

Lower bound on joint systems

Consider independently prepared systems A and B with states ωA ∈ ΩA, ωB ∈
ΩB. Treating the systems jointly as a composite AB, the overall preparation is
represented by the product state ωAB = ωA ⊗ ωB, with ωAB ∈ V AB. However,
just as classical mixtures are allowed for single systems, for joint systems mix-
tures between product states give valid joint states again. This corresponds
to the ability of experimenters to classically correlate the preparations and
measurements of the individual systems, e.g. two experimenters can agree on
specific settings.
The set of unnormalized states only containing product states and their mix-

tures is known as the minimal tensor product A+ ⊗min B+.

Definition 4.2. The minimal tensor product is given by

A+ ⊗min B+ :=

{
ωAB ∈ V AB

∣∣∣∣∣ω
AB =

∑

i

λi ω
A
i ⊗ ωBi , (4.11)

ωAi ∈ A+, ω
B
i ∈ B+, λi ≥ 0

}
.

It is the smallest possible set of unnormalized joint states ωAB that is compatible
with given state cones A+ ≡ V A

+ , B+ ≡ V B
+ of subsystems A,B.

Similar reasoning applies to measurements, and so the set of joint effects is
lower-bounded by the convex hull of product effects. Importantly, this includes
the joint unit measure uAB = uA ⊗ uB, which is uniquely defined due to the
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4. GPTs without the no-restriction hypothesis

equivalence principle. Hence, normalization of joint states ωAB is represented
by the condition uAB(ωAB) = 1. This allows us to define the bipartite state
space ΩAB

min corresponding to the minimal tensor product:

ΩAB
min :=

{
ωAB ∈ A+ ⊗min B+

∣∣uAB
(
ωAB

)
= 1
}

(4.12)

=

{
ωAB ∈ V AB

∣∣∣∣∣ω
AB =

∑

i

pi ω
A
i ⊗ ωBi , (4.13)

ωAi ∈ ΩA, ωBi ∈ ΩB, pi ≥ 0,
∑

i

pi = 1

}
.

For classical subsystems (i.e. a simplex), the joint states and effects defined
by the minimal tensor product is sufficient to describe joint classical systems.
Theories with non-classical subsystems, however, allow joint states that cannot
be interpreted as a mixture of product states, i.e. entangled states. The other
extreme to the minimal tensor product allows all possible entangled states, as
we now show.

Upper bound on joint systems

Everything introduced so far is valid independent of the no-restriction hypothe-
sis. This changes now, as we ask for the maximal sets of joint states and effects
consistent with the structure of the single systems.

First, let us focus on the traditional GPT framework with single systems
obeying the no-restriction hypothesis. Given a specific state space the no-
restriction hypothesis determines the effects for the single systems. As argued
above, the joint system should at least incorporate product effects and their
mixtures. Applying such joint effects to any potential joint state ωAB should
give probabilities. In particular this implies that the joint states form a subset
of the following set of linear elements.
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4.4. Joint systems in the traditional GPT framework

Definition 4.3. The maximal tensor product is defined as

A+ ⊗max B+ :=
{
ωAB ∈ V AB

∣∣(eA ⊗ eB
)[
ωAB

]
> 0,

∀eA ∈ EA, eB ∈ EB
}

(4.14)

=
(
A∗+ ⊗min B

∗
+

)∗
. (4.15)

It is the largest possible set of unnormalized joint states ωAB that is compatible
with given state cones A+, B+ of subsystems A, B that respect the no-restriction
hypothesis.

Note that the second equality arises just by definition of the dual cone (4.2).
Hence, we see that the maximal tensor product for states is given by the max-
imal set of joint states consistent with the minimal tensor product for effects.
Similarly the maximal tensor product for effects is defined as the maximal set of
joint effects consistent with the minimal tensor product for states. Elements in
the maximal tensor product, but not in the minimal tensor product are called
entangled.
To summarise the standard constructions of joint systems: the definition of

a GPT includes the tensor product, which specifies the composition of subsys-
tems. The minimal and maximal tensor product are only the extreme cases
where the joint state space ΩAB is chosen as smallest or the biggest set com-
patible with the state spaces ΩA, ΩB of single systems. In general, a GPT can
be defined to include any set of joint states between those extremes.
For example, the joint state space in quantum theory lies strictly between the

minimal and maximal tensor product. E.g. the partial transposed of density
matrices representing entangled states of two qubits or a qubit and a qutrit are
known to give invalid states for the quantum tensor product, because they are
not positive on all entangled effects [88]. However, these states give positive re-
sults for separable measurements, i.e. they are in the maximal tensor product.
Note that these states should not be misunderstood as part of quantum theory,
but form a separate toy theory that omits any entangled measurements. Nev-
ertheless, the additional states in the maximal tensor product of local quantum
systems are useful for the study of entanglement in standard quantum theory,
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4. GPTs without the no-restriction hypothesis

as they correspond exactly to the set of entanglement witnesses.

Joint states as linear maps

For our generalization of the maximal tensor product, we shall use the following
conception of joint states. Joint states can linearly map effects from one part
of the joint system to unnormalized states of the other subsystem. This can be
conveniently shown in the representation of joint states as matrices, since

(
eA ⊗ eB

)[
ωAB

]
= tr

[(
eA ⊗ eB

)T·ωAB
]

=
(
eA
)T·ωAB· eB.

Using associativity of the matrix product, we can interpret parts of this expres-
sion as ‘effective’ states of the subsystems A and B. We define these conditional
states as

ωAeB := ωAB· eB (4.16)

ωBeA :=
(
eA
)T·ωAB (4.17)

The process of remotely preparing a state by a measurement outcome on the
other part of a joint state is usually referred to as ‘steering’ [65]. It demonstrates
that, when measuring only part of a joint system, the joint state acts as a linear
map from effects of one side of the system to unnormalized states of the other
part. The maximal tensor product coincides exactly with all possible linear
maps of this form, i.e. it corresponds to all potential joint states that have
valid conditional states for non-restricted systems [30]. This property will be
central for the generalization of the maximal tensor product in the next section.
Conditional states at A are unnormalized: they are weighted with the proba-

bility of obtaining the corresponding measurement outcome at B. That is, the
probability accounts for the potential ignorance of the outcome for observers
at B. Consequently, if one knows the measurement outcome in B the effective
description of the state in A is given by the normalized conditional state:

ω̃AeB =
ωAeB

p(eB|ωAB)
=

ωAeB

u(ωA
eB

)
.
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4.4. Joint systems in the traditional GPT framework

The marginal state or reduced state ωAuB gives the description of the effective
state on part A of a joint state ωAB. This is a conditional state with eB = uB,
and is already normalized i.e. ω̃AuB = ωAuB .
Note that this formalism still applies if the parts of the system are space-like

separated, i.e. if there is no causal relationship between the measurement on
the system B and the system A. However, the no-signaling principle states
that steering cannot be used to transmit information, i.e. it does not allow for
communication faster than the speed of light. The relationship between steering
and the no-signaling principle is shown by the following theorem. First, we call
a set of effects {eAi }i, for any system A, a complete measurement if

∑

i

eAi = uA.

An incomplete measurement is a set of effects {eAi }i that sum up to less than
the unit measure.

Theorem 4.2. Assuming the no-signaling principle, steering implies that all
measurements are complete measurements.

Proof. Consider two observers in part A and B respectively sharing a joint state
ωAB. The observer in B performs a measurement on his part and gets some
measurement outcome eBj . Knowing the outcome the description of the system
in A from his point of view is given by the normalized conditional state ω̃A

eBj
. The

other observer ‘knows’ only the coarse graining of the different measurement
outcomes. I.e. from his point of view the state in A is an ensemble of possible
‘post-measurement states’ {ω̃A

eBi
}.

Remember that the equivalence principle gives a one-to-one correspondence
of states and specific measurement statistics. Consequently, no-signaling re-
quires the state in A after the measurement on B to be identical to the original
marginal state ωAuB in order to prevent information transfer, i.e.

∑

i

pi ω̃
A
eBi

=
∑

i

ωAeBi
= ωA∑

i e
B
i

= ωAuB ,
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4. GPTs without the no-restriction hypothesis

where we used the definition of the normalized conditional state and the lin-
earity of effects.
Since the coarse grained conditional state needs to be equal to the marginal

state for any joint state

∑

i

eBi = uB.

As a consequence even an imperfect detector that might fail to ‘click’ requires
to be modelled by a complete measurement which includes an additional ‘no
click’-effect for consistency with steering and no-signaling.
We will use the interpretation of the maximal tensor product as the set of

all positive linear maps to generalize it for systems violating the no-restriction
hypothesis.

4.5. The generalized maximal tensor product

As we have discussed, by removing the no-restriction hypothesis, the definition
of a physical system now needs a specification of both the state space and the
effect set. That is, the set of allowed states and the set of allowed effects can
be chosen independently—except for the constraints discussed in Section 4.1.
Let us now consider the specification of joint systems when the no-restriction
hypothesis is removed.
The definition of the minimal tensor product A+⊗minB+ makes no reference

to the effect sets EA and EB. I.e. it is constructed by products and their
convex combinations. Therefore the minimal tensor product can be defined
without assuming the no-restriction hypothesis, and hence carries over to our
more general situation. Indeed, everything that we have introduced for joint
systems so far is valid independently of the no-restriction hypothesis — with
one exception.
The exception is the maximal tensor product. As before, we expect the
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maximal tensor product to comprise all joint states that are compatible with
the given subsystems. Compatibility can be broken down to two requirements:
i) non-negative results on local effects ii) valid conditional states. For non-
restricted systems both requirements are equivalent, as the no-restriction hy-
pothesis implies consistent mappings (i.e. valid conditional states) if and only if
local effects give non-negative results on joint states. Now, for the general case
(i.e. without the no-restriction hypothesis), valid conditional states still guar-
antees non-negativity on local effects. However, the implication in the other
direction that is used in the construction of the maximal tensor product is no
longer secured.

4.5.1. Failure of the traditional maximal tensor product

Before generalizing the maximal tensor product we will show that the tradi-
tional construction rules fail for restricted systems.
The traditional maximal tensor product A+ ⊗max B+ is given by the dual

of the set of separable effects. For restricted systems this yields two different
variants. Eq. (4.14) seems to suggest a construction based on the restricted
effects, whereas Eq. (4.15) uses the subsystems’ dual cones, which are generated
by the set of unrestricted effects. We show that neither choice gives the set of
all joint states consistent with restricted subsystems.
The first variant is constructed as follows. Consider the restricted effects EA

of a subsystem A with an effect cone EA
+ := {λ eA | eA ∈ EA, λ ≥ 0}. Following

Eq. (4.3) we can construct a virtual, non-restricted system A with the state
cone given by

A+ :=
{
ωA ∈ V A

∣∣ eA(ωA) ≥ 0 ∀eA ∈ EA
+

}
⊇ A+ (4.18)

⇒ A∗+ = EA
+. (4.19)

I.e. the virtual system extends the unnormalized states, such that the no-
restriction hypothesis is satisfied. The potential joint states from Eq. (4.14),
correspond actually to the standard maximal tensor product A+ ⊗max B+ =

(EA
+ ⊗min E

B
+ )∗ of the virtual systems A, B. Recall that according to the
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4. GPTs without the no-restriction hypothesis

interpretation of joint states as positive linear maps, A+⊗maxB+ is exactly the
set of all maps from the restricted effect cones EA

+ (EB
+ ) to the unnormalized

virtual states B+ (A+) on the other side of the bipartite system. In other words,
this construction includes joint states that allow the preparation of conditional
states in the subsystems not limited to the initial definition of the state spaces
ΩA, ΩB, but to those of the virtual systems instead.
For example in a bipartite system of self-dualized boxworld with extremal

states according to (1.31) and restricted extremal effects e′i = ωi/2 the potential
joint state

ωAB =




1 −1 0

1 1 0

0 0 1


 ∈ ΩABmax (4.20)

gives positive values on any pair of restricted effects. However, some conditional
states are not valid for the actual system A, e.g. ω̃Ae′1 = (−1, 1, 1)T /∈ ΩA.
The second variant of the traditional maximal tensor product (A∗+⊗minB

∗
+)∗

is based on the dual cones A∗+, B∗+ according to Eq. (4.15). The resulting
joint states are also consistent with the restricted effects, since the latter is
included in the set of all of effects. However, this construction omits joint
states which are consistent only with the restricted effects. For example, for
self-dualized boxworld the tensor product defined in such a way would not
include the identity matrix. As the identity matrix gives valid conditional
states and returns positive values for any pair of effects, there is no reason to
regard it as invalid, though.

4.5.2. Construction of the generalized maximal tensor
product

As shown above, the traditional construction rules for the maximal tensor
product lead to inconsistencies when applied to theories not obeying the no-
restriction hypothesis. In this section we shall construct a generalized maximal
tensor product A+⊗maxB+:
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ωAB
eA

ωB
eA ∈V B

+

(
EA
+⊗min V B∗

+

)∗

(
V A∗
+ ⊗min EB

+

)∗

ωAB

eB

ωA
eB ∈V A

+

V A
+⊗maxV B

+

⇔⇔

Figure 4.5.: Illustration of the construction of the generalized maximal tensor
product.

Definition 4.4. The generalized maximal tensor product of systems A, B with
primal cones A+, B+, dual cones A∗+, B∗+ and effect cones EA

+, EB
+ is given by

A+⊗maxB+ :=
(
EA

+ ⊗min B
∗
+

)∗∩
(
A∗+ ⊗min E

B
+

)∗ (4.21)

=
(
EA

+ ⊗min B
∗
+ ∪ A∗+ ⊗min E

B
+

)∗
.

For the saturated case, dual cones and effect cones are identical, and we
recover the usual maximal tensor product. Hence our construction is indeed
a generalization of the existing definition of the maximal tensor product. For
restricted systems it strictly lies between both traditional variants introduced
in Section 4.5.1. That is,

(A∗+ ⊗min B
∗
+)∗ ⊆ A+⊗maxB+ ⊆ (EA

+ ⊗min E
B
+ )∗. (4.22)

The generalized maximal tensor product determines all joint states consistent
with general subsystems regardless whether the no-restriction hypothesis holds
or not. I.e. all joint states with valid conditional states are included, as shown
in the following theorem.

Theorem 4.3. Let ωAB ∈ V AB. Then ωAB ∈ A+⊗maxB+ iff ωAB has well-
defined conditional states:

ω̃AeB ∈ ΩA and ω̃BeA ∈ ΩB
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4. GPTs without the no-restriction hypothesis

for all eA ∈ EA and eB ∈ EB.

Proof. We shall show that

ωBeA ∈ B+ iff ωAB ∈
(
EA

+ ⊗min B
∗
+

)∗ (4.23)

and that

ωAeB ∈ A+ iff ωAB ∈
(
A∗+ ⊗min E

B
+

)∗
. (4.24)

SinceA+⊗maxB+ is defined as the intersection of sets of linear maps
(
EA

+ ⊗min B
∗
+

)∗

and
(
A∗+ ⊗min E

B
+

)∗, this will establish the thesis.
First we show the A → B direction, i.e. (4.23), which is the statement that(
EA

+ ⊗min B
∗
+

)∗ is the set of all and only those joint states ωAB such that each
ωAB defines a map from effects eA ∈ EA

+ on system A to valid unnormalized
states ωB ∈ B+.
Recall that for non-restricted systems the traditional maximal tensor product

is already known to give all positive linear maps from the effect cone of one part
of the system to the state cone of the other part for both directions. We now
show that

(
EA

+ ⊗min B
∗
+

)∗ can be interpreted as the traditional maximal tensor
productA+⊗maxB+ of two virtual systemsA and B that obey the no-restriction
hypothesis. A is the virtual system that has already been introduced in (4.18).
It has an extended virtual state cone A+, since (EA

+)∗ ⊂ A+. However, the
actual effect cone EA

+ = A∗+ is kept. The opposite situation applies to B. Here,
the effect set EB

+ is extended to the dual cone B∗+, so that EB
+ ⊂ B∗+, where

B∗+ representing the full set of potential unnormalized effects. However, the
original state cone B+ = B+ is kept. With these conventions

(
EA

+ ⊗min B
∗
+

)∗
= A+ ⊗max B+

follows directly from the definition of the traditional tensor product in (4.15).
Hence for the A → B direction, this means that

(
EA

+ ⊗min B
∗
+

)∗ contains all
positive linear maps from the restricted effects in A to allowed states in B. That
is, ωAB ∈

(
EA

+ ⊗min B
∗
+

)∗ is a sufficient and necessary condition for ωBeA ∈ B+
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4.5. The generalized maximal tensor product

which proves (4.23). However, for the traditional maximal tensor product the
same joint states also coincide with the positive maps in the other direction
B → A, potentially including invalid mappings.
By swapping the roles of A and B in the above argument, we similarly

obtain that the set
(
A∗+ ⊗min E

B
+

)∗ includes all linear maps that are consistent
for the B → A direction, but also those which lead to inconsistencies in A →
B opposite direction. Hence we obtain (4.24) as the intersection of the sets(
EA

+ ⊗min B
∗
+

)∗ and
(
A∗+ ⊗min E

B
+

)∗, which includes only those joint states that
are consistent in both directions.

If ωAB has well-defined conditional states, then in particular it is locally
positive: (

eA ⊗ eB
) [
ωAB

]
≥ 0

which provides a useful necessary condition that joint states must satisfy. Note
that the pure product states stay extremal in A+⊗maxB+, as they are the unique
joint states with pure marginals.
As mentioned above the generalized maximal tensor product reduces to the

traditional maximal tensor product if both systems obey the no-restriction
hypothesis. In the following we show that the tensor products are equivalent
even if only one of the systems is unrestricted.

Theorem 4.4. The generalized maximal tensor product A+⊗maxB+ of two sys-
tems reduces to the traditional maximal tensor product (A∗+ ⊗min B

∗
+)∗ with re-

spect to the dual cones A∗+, B∗+, if one of the systems obeys the no-restriction
hypothesis.

Proof. Without loss of generality, assume that system A is the unrestricted
system. Since system A is unrestricted, we have A∗+ = EA

+ and consequently

A+⊗maxB+ = (A∗+ ⊗min B
∗
+)∗ ∩ (A∗+ ⊗min E

B
+ )∗. (4.25)

Thus, the generalized maximal tensor product is now given by the intersection
of the standard maximal tensor product from the dual cones and the standard
maximal tensor product with respect to the dual cone in A, but the original
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4. GPTs without the no-restriction hypothesis

restricted effects in B. As discussed above, the construction of the traditional
maximal tensor product is defined by positivity with respect to the product
effects. In general, the restriction of a set of functionals enlarges the set of
elements for which each functional yields a positive real. Hence the restriction
of the local effect cone from B∗+ to EB

+ yields a strictly larger tensor product,
and so (A∗+ ⊗min B

∗
+)∗ ⊂ (A∗+ ⊗min E

B
+ )∗. The intersection of a set with a

strictly larger set obviously gives the original set, which in this case is the
standard maximal tensor product (A∗+ ⊗min B

∗
+)∗ constructed from the local

dual cones.

In the traditional GPT framework the choices of tensor products for states
and effects are not independent, as the no-restriction hypothesis does not only
apply to single systems, but to the joint system as well. Having the minimal
tensor product for joint states (effects) does in fact constitute the maximal
tensor product for the set of joint effects (states). This restriction seems in-
appropriate given that arbitrary single systems can actually be emulated by
classical systems with constrained measurements [33], whereas entanglement is
a strictly non-classical feature.

In our modified framework that is also valid for systems violating the no-
restriction hypothesis, this is no longer the case. We have seen that we can
generalize the maximal tensor product, but nevertheless we are not forced to
use this for states when we choose the minimum tensor product for effects and
the other way round.

4.5.3. Examples of joint systems

To give some specific examples for the generalized maximal tensor product, we
have calculated it for the toy theories introduced in Section 4.2 and Section 4.3.
For systems with extremals having strictly rational coordinates this is done
using the program lrs [94], whereas for the other cases the double description
method [95] is used for an analytic calculation.
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4.5. The generalized maximal tensor product

Noisy boxworld

In the original unrestricted version of boxworld joint systems are given by the
maximal tensor product, including the 16 extremal product states and 8 pure
entangled joint states ΦAB = 1

2
(ω1 ⊗ ω2 − ω2 ⊗ ω2 + ω2 ⊗ ω3 + ω3 ⊗ ω1) and

respectively the states transformed by local symmetries.

These entangled extremals can be interpreted as a maximally entangled state
of two such systems, as they form a isomorphic map and have totally mixed
reduced states. They correspond to a rotation of π

4
and the local symmetries

of the state spaces.

This theory has become very popular as it shows nonlocal correlations be-
yond those possible in quantum theory, when choosing between two possible
binary measurements at each side of the bipartite systems. Let us denote the
two measurements {MA

x } and {MB
y } for each of the systems A and B respec-

tively: we index the measurements at each system with x, y ∈ {0, 1}. Each
measurement has binary outcomes, labelled with a, b ∈ {0, 1} for systems A
and B respectively. For example, the x = 0 measurement on system A consists
of a pair of effects MA

x = {ex0 , ex1} satisfying ex0 + ex1 = u; similarly for the x = 1

measurement on system A, and y ∈ {0, 1} measurements on system B. This
leads to a bipartite conditional probability distribution

P (a, b|x, y) := (exa ⊗ eyb)[ωAB] (4.26)

We define the correlation

Cxy := P (a = b|x, y)− P (a 6= b|x, y).

To introduce the Clauser-Horne-Shimony-Holt (CHSH) inequality for demon-
strating nonlocality, we introduce the parameter

S := |C00 + C01 + C10 − C11|,
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4. GPTs without the no-restriction hypothesis

For classical systems it is upper bounded by the CHSH inequality [38]

SC ≤ 2,

whereas for quantum theory it must satisfy SQ ≤ 2
√

2 [40]. However, local
measurements on the maximally entangled state Φ in boxworld can produce
correlations which reach the algebraic maximum Smax = 4, i.e. the theory
allows the post-quantum correlations known as PR boxes [42].

For the noisy version of boxworld introduced in Section 4.2 there is still
a notion of a maximally entangled state in the generalized maximal tensor
product, namely

Φλ = ωABent,1 = diag(
1

λ
,

1

λ
, 1) ·Φ1, (4.27)

i.e. the original maximally entangled state Φ1 combined with a mapping of the
effects on one side of the system to the original unrestricted set. Note that this
map does not undo the restriction of effects completely. The reversion only
happens to occur in this particular case when mapping to states of the other
part. On the other part, however, only restricted effects can be applied to.
Consequently, the correlations possible with restricted systems will be different
to those possible in unrestricted systems.

Furthermore, constructing the generalized maximal tensor product it turns
out there are 4 different classes of new pure joint states that are entangled but
not maximally entangled. These are representatives of each class

ωABent,2 = −αω2 ⊗ ω2 + β ω2 ⊗ ω4 + β ω4 ⊗ ω2 − αω4 ⊗ ω4

ωABent,3 = −αω2 ⊗ ω2 + β ω2 ⊗ ω3 + β ω4 ⊗ ω2 − αω4 ⊗ ω3

ωABent,4 = −αω2 ⊗ ω2 + β ω2 ⊗ ω4 + β ω3 ⊗ ω2 − αω3 ⊗ ω4

ωABent,5 = −αω3 ⊗ ω2 + β ω4 ⊗ ω1 + β ω4 ⊗ ω2 − αω4 ⊗ ω3

with α =
1− λ
4λ

, β =
1 + λ

4λ
, (4.28)

where the other elements of the class only differ by the local symmetries.
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4.5. The generalized maximal tensor product

In conclusion the generalized maximal tensor product is spanned by 96 pure
states. Namely, it consists of 16 local pure states, 8 pure entangled states of
class ωABent,1, 8 of class ωABent,2, 16 of class ωABent,3, 16 of class ωABent,4 and 32 states of
class ωABent,5.
Considering local measurements on one instance of any of the nonlocal ex-

tremal states the maximal CHSH violation Sλ as a function of the parameter λ
of the restricted model can be shown to be 4λ2. Note that this bound is only
guaranteed for the correlations that occur from direct measurements. However,
it is known that wiring the measurements on multiple joint states via classical
post-processing, might give rise to a distillation of correlations beyond for some
values of λ [73].

Self-dualized polygons

Interestingly, not only boxworld but all bipartite polygon systems allow a joint
state with features known from the maximally entangled state of ordinary quan-
tum theory. Namely, the linear maps corresponding to these states are given
by isomorphisms of the dual and primal cones with maximally mixed reduced
states. The 2n different maximally entangled states correspond to the elements
of the dihedral group. For even n, the maximally entangled states include an
additional rotation of π/n mapping the dual cone of one part to the primal cone
of the other part. It was shown that non-local correlations based on two binary
local measurements on the maximally entangled states at each side show corre-
lations strictly weaker than quantum correlations for the odd case, whereas the
unrestricted even case shows correlations as strong as those of quantum theory
or stronger [3].
Replacing the original polygon systems with even n by their self-dualized

versions, the maximally entangled states lose the additional rotation as the
new effect cone and the state cone coincide. Note, that the self-dualized single
systems become subtheories of the theory given in the limit n → ∞, i.e. the
quantum case, as both states and effects form strict subsets. Thus, the correla-
tions on the maximally entangled state form a strict subset of those in quantum
theory, in contrast to the unrestricted case which allows post-quantum correla-
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4. GPTs without the no-restriction hypothesis

tions. In fact, the maximally entangled states of general self-dualized theories
in general are inner product states, as defined in Chapter 2, where we also
proved that these have correlations limited by Tsirelson’s bound, which cannot
be distilled beyond.
For self-dualized boxworld the generalized maximal tensor product is given

by the 16 local pure states, the 8 states ωABent,1 representing the identity and
symmetry mappings as well as a class of 64 pure entangled states ωABent,2 =

1/4(−ω1 ⊗ ω1 + ω1 ⊗ ω3 + 2ω2 ⊗ ω4 + ω3 ⊗ ω1 − ω3 ⊗ ω3 + 2ω4 ⊗ ω2). The
generalized maximal tensor product for the pentagon system is equal to the
traditional one. For hexagon systems one gets already 7672 extremals with 475

classes of entangled pure states.
Systems with a higher number of vertices are neither computational feasible

with our methods nor do we expect further insights from their characterization.

Spekkens’s toy theory

The Spekkens theory that we introduced earlier is a local theory, meaning that
(in the probabilistic version) it cannot violate any Bell inequalities. However,
as discussed in [21], the Spekkens theory has entangled states. This raises the
question of why the Spekkens theory does not exhibit bipartite nonlocality. In
contrast, a classical theory, i.e. a simplex, is local but does not have entangled
states. One could then ask, given that the Spekkens theory has entangled
states, but is local, what must be added to the definition of the theory to make
it nonlocal?
In our framework, the answer to this question can be clearly understood in

terms of the geometry of the state space. First, recall that the state space
ΩA of a single system in the Spekkens theory is an octahedron, and the effect
space EA is identically the same, i.e. EA not the full dual space. Consider a
pair of single systems A and B in the Spekkens theory. Since the effect space
EA is not the full dual space A∗+, we must use the generalized tensor product
ΩAB = A+⊗maxB+ to define the bipartite states. Note that ΩAB contains
more states than the original Spekkens theory, since the latter has 24 extremal
bipartite entangled states, whereas the former is of the order of 106 (calculated
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4.5. The generalized maximal tensor product

using lrs). However, consider the following bipartite state:

ωAB =




0 0 0 0

0 1
2

1
2

0

0 −1
2

1
2

0

0 0 0 1




(4.29)

It is straightforward to verify that ωAB leads to well-defined conditional states
for system B for all effects eA ∈ EA, i.e.:

ω̃BeA ∈ ΩB

and correspondingly for conditional states for system A when using effects on
system B. In particular, it is also easily checked that (eA⊗eB)[ωAB] ≥ 0 for any
pair of effects eA and eB. Hence by Theorem 4.3, this shows that ωAB is in the
generalized tensor product A+⊗maxB+. It is also a state in the convex closure
of the original Spekkens theory, since it decomposes as ωAB = 1

2
σAB + 1

2
τAB,

where σAB and τAB are both in the set of 24 extremal bipartite entangled states
defined in the original Spekkens theory.

Now, since the Spekkens theory is local, the CHSH inequality (4.5.3) is sat-
isfied for any choice of measurements Mx and My on the state ωAB, or any
other bipartite state. However, let us consider the unrestricted effect space A∗+
from which the restricted space EA for the Spekkens theory was derived. The
unrestricted effect space of the octahedron is the cube. We can represent the
normalised extremal effects as the vertices of a cube:

ei =
1

2
(±1,±1,±1, 1)T

Now, suppose that we use the cube to be the effect space for the octahedron,
i.e. we use the full dual space. It is easily shown that the state ωAB defined
in Eq. 4.29 is again in the generalized maximal tensor product A+⊗maxB+

(which coincides with the usual maximal tensor product in this case). However,
we can now provide measurements which violate the CHSH inequality. In
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4. GPTs without the no-restriction hypothesis

particular, consider two measurements for Alice given by MA
0 = {e0, u − e0}

and MA
1 = {e1, u− e1} where:

e0 =
1

2
(1, 1,−1, 1)T , e1 =

1

2
(−1,−1,−1, 1)T

and two measurements for Bob given by MB
0 = {e0, u− e0} and MB

1 = {e1, u−
e1}. By using these choices of measurements in Eq. 4.26 and the following
equations, we obtain the value of the CHSH parameter: this is S = 4. This is
the value attained by PR boxes, and hence using the full effect space essentially
yields the same nonlocality as boxworld.
We therefore see that the Spekkens theory can be embedded into a nonlocal

theory by embedding the effect space of single system into the full dual cone.
Moreover, we see completing the Spekkens theory in this way yields boxworld.
This provides a new understanding of why the Spekkens theory is local: the
measurements are too restricted.

Nonlocality in linearly restricted theories

Now, while restriction of an effect space yields fewer local measurements, there
are at the same time also additional joint states in the generalized maximal
tensor product. An open question is then whether restriction of local effects
always limits the possible correlations to those in the unrestricted systems. In
the following we provide a positive answer to the question for the special case
where the restriction results from a linear bijection.

Theorem 4.5. Let A and B be systems with restricted effect sets EA = LA ·EA,max

that can be generated by a linear bijective map LA from the full unrestricted set
of probability valued functionals EA,max. Then correlations on the generalized
maximal tensor product A+⊗maxB+ of the restricted systems A, B can be at
most as strong as on the maximal tensor product (A∗+⊗minB

∗
+)∗ of the systems

with unrestricted effect sets.

Proof. First let us rewrite the correlations possible in the unrestricted systems.
Note that for any theory there is some freedom in choosing representations of
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effects and states. In particular, one can transform the effect set by a linear
bijection L, and counter it with a corresponding transformation (L−1)T on
states; this will not affect measurement probabilities, since:

(L · e)[(L−1)Tω] = (L · e)T · (L−1)T ·ω = eT · (L−1 ·L)T ·ω = eT ·ω = e(ω).

(4.30)

The set of bipartite correlations in a GPT results from applying each of the
possible combinations of local effects in EA,max and EB,max to each of the joint
states in the traditional maximal tensor product (A∗+ ⊗min B

∗
+)∗. Accordingly,

we denote the set of all correlations as EA,max⊗EB,max[(A∗+⊗min B
∗
+)∗]. Using

Eq. (4.30) this can be translated into

EA,max ⊗ EB,max
[(
A∗+ ⊗min B

∗
+

)∗]

=
(
LA ·EA,max ⊗ LB ·EB,max

) [(
LA,−1 ⊗ LB,−1

)T ·
(
A∗+ ⊗min B

∗
+

)∗]

= EA ⊗ EB
[(
EA

+ ⊗min E
B
+

)∗]
. (4.31)

Consequently, the correlations of the unrestricted effects on the standard
maximal tensor product of the unrestricted systems is equal to the correlations
by the restricted effect set on the standard maximal tensor product of the
restricted systems.
We now compare this to the correlations that are actually possible in the

restricted systems given by EA ⊗ EB(A+⊗maxB+), which uses the general-
ized maximal tensor product. According to Eq. (4.25) we have A+⊗maxB+ ⊆
(EA

+ ⊗min E
B
+ )∗, and together with Eq. 4.31 this implies:

EA ⊗ EB (A+⊗maxB+) ⊆ EA ⊗ EB
[(
EA

+ ⊗min E
B
+

)∗] (4.32)

= EA,max ⊗ EB,max
[(
A∗+ ⊗min B

∗
+

)∗]
.

Note that this result only applies to restrictions by a linear bijection. The
general question if non-linear restrictions of effects can produce correlations
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4. GPTs without the no-restriction hypothesis

exceeding the unrestricted case is still open.

4.6. Discussion

In this chapter, we have extended the framework of generalized probabilistic
theories. Given an arbitrary state space the traditional framework determines
the possible measurement outcomes as corresponding to the complete set of
probability valued linear functionals on states. In contrast to the traditional
framework, our generalization allows the set of states and and the set of effects
to be defined separately. As a result the upper bound for the set of joint states,
known as the maximal tensor product, is no longer valid in its traditional form,
but has to be replaced by a generalized version.
As an application for restricted models, we provided a self-dualization pro-

cedure that alters any theory by restricting the set of effects, such that states
and the restricted effects are similarly related as states and unrestricted ef-
fects in strongly self-dual systems. We introduce specific examples for which
the self-dualization does not only give a formal resemblance but reproduces
a phenomenon called bit symmetry shown to only hold for strongly self-dual
systems in the traditional framework [31]. Furthermore, these self-dualized
models show quantum correlations, whereas the original models have correla-
tions that are stronger than quantum correlations. In particular, the correla-
tions of boxworld—a theory known to allow correlations only restricted by the
no-signaling principle—has classical correlations if self-dualized, even though
the generalized maximal tensor product includes maximally entangled states.
We showed how the Spekkens theory is related to this model, since it is also
self-dual and violates the no-restriction hypothesis: but were it to satisfy this
principle, by taking the full dual cone, it would produce nonlocal correlations.
As another application for restricted models, we show that restrictions can be

used to alter theories, such that their measurements are inherently noisy. This
is different to the unrestricted theories, since in our noisy theories it holds that
for pure states there is no non-trivial extremal effect occurring with certainty.
We derive the maximal CHSH violation [38] of a noisy version of boxworld as
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a function of a noise parameter.
The modified framework is therefore suitable for examining new situations

that could not be addressed using the traditional framework. In particular the
self-dualization procedure might be useful for the study of strong self-duality
that has recently received much interest [30, 3, 31].
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The framework of generalized probabilistic theories (GPTs) is a well-established
tool used to study the physical foundations of quantum theory. The basic idea
of the GPT framework is to introduce a general notion of a physical theory
combined with the tools to formally describe theories. The mathematical for-
malism of the framework connects arbitrary measurement statistics with states
and 1-bit measurements in a similar way as the density matrix formalism in
quantum theory. This is used to construct toy theories and study the relations
between their mathematical and physical properties. As quantum theory is a
special case, we can get insights on its particular physical properties by con-
trasting them to properties seen in other theories. This thesis uses the GPT
framework to get a better understanding of the roles of nonlocality and entan-
glement from a foundational point of view. In addition, we also extend the
framework itself.
An introduction of the GPT framework is given in Chapter 1. We put partic-

ular emphasis on a some aspects that are usually not addressed in the literature:
i) the GPT framework is able to incorporate arbitrary measurement statistics
into a physical theory ii) if only single systems are considered any seemingly
non-classical properties could potentially be explained by a higher-dimensional
classical theory with restricted measurements iii) entanglement and nonlocal
correlations in joint systems are genuine non-classical properties that forbid
such explanations.
Conversely, we pointed out that the properties of joint systems are not com-

pletely independent of the structure of the single systems. In particular, we
show in Chapter 2 that the subsystems indirectly affect the nonlocal corre-
lations possible in a theory. The specific correlations of quantum theory are
shown to be connected to those on joint states that act like an inner product
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on the measurements. The existence of such joint states and equivalent states
depend on a geometrical property of the subsystems called strong self-duality.
Strong self-duality is notably present in both quantum and classical systems,
but very special among toy theories [3, 30, 31].
In order to extend the range of physical theories and properties that can be

studied with the GPT framework, we furthermore provided modifications of
the framework itself. Chapter 3 shows how we can use similar representations
of states and effects, when allowing purely global degrees of freedom (i.e. how
to describe theories that violate the so-called local tomography assumption).
Chapter 4 generalizes the framework to allow restricted measurements, whereas
the so-called no-restriction hypothesis in the traditional framework completely
determines measurements from possible states.
These generalizations not only allow to describe completely new situations,

but also provide technical tools that simplifies the study of phenomena that
were already addressed in the traditional framework and in quantum infor-
mation theory. They therefore build the ground for possible future works in
several directions. The modification in Chapter 3 was illustrated to enable
entanglement swapping to be examined with structurally simple lower dimen-
sional systems. This might also be useful for the study of other phenomena
connected to nonlocal dynamics. Chapter 4 shows how intrinsic noise can be
manifested in the definition of a effective theory. One could use this to examine
the noise sensitivity of quantum information theoretical protocols by applying
them to a manifestly noisy version of quantum theory. The self-dualization
procedure introduced in Section 4.3 simplifies the study of strong self-duality
that has recently gathered lots of attention. Another possible avenue for fur-
ther work is the study of the relationship between our constructions of more
general joint systems in Section 4.5 and the formalism of categorical quantum
theory [96] in which the definition of composite systems is the primary formal
device.
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A.1. Partial order of effects

Given two effects ei, ej one is dominated by the other iff it occurs with lower
probability for any state:

ei ≤ ej ⇔ ei(ω) ≤ ej(ω)∀ω ∈ Ω (A.1)

Note that there are effects that cannot be compared in such a way. There
might be states that give higher probabilities for ei, while other states give
higher probabilities on ej. Therefore this is called a partial order.

A partial order on the elements of a vector space can be induced by a convex
cone. The partial order of effects is based on the dual cone V ∗+ with

ei ≤ ej ⇔ ei ∈ ej − V ∗+. (A.2)

To see that this is equivalent to (A.1) recall that the dual cone V ∗+ is given by
all elements in V ∗ with non-negative results on the state space elements ω ∈ Ω.
Consequently, subtracting one of these elements from an effect cannot result in
a bigger value for any state.

Note that the dual cone depends on the state space Ω. Extension of a model
with new states might therefore also affect the partial order.
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A.2. Maximal CHSH value of the polygon

systems

In the main text, we gave expressions for the maximal CHSH value returned by
measurements on a maximally entangled state of two n-vertex polygon systems.
The expression for even n is given in (2.11), and for odd n, in (2.12). The choice
of angles that maximize these quantities is not unique. We will see below that
we have to take two different sets of optimal angles into account.

Table A.1.: Optimal angles
α∗0 α∗1 β∗0 β∗1

Set 1 0 π
2

π
4

−π
4

Set 2 0 π
2
−3π

4
3π
4

Note that the optimization has been performed without any restriction on
the values of the angles α∗x and β∗y . However, due to the polygon structure
of our model, only specific angles, corresponding to extremal effects, are ad-
missible. Thus the optimal CHSH values are obtained by taking the extremal
effects which are closest to the optimal angles. The deviation from the optimal
angles will be called ∆α0,∆α1,∆β0,∆β1. Without loss of generality we set
∆α0 to 0. A detailed analysis reveals a total of eight classes of deviation angles
characterized by the remainder x = n mod 8 of the division of n by 8. For a
free choice of angles both sets in Table A.1 lead to the same maximum value of
the CHSH-coefficient. Whether the available extremal effects are closer to the
angles of set 1 or set 2, however, depends on the number of vertices. It turns
out that for even n as well as for x ∈ {1, 7} this is the case for set 1, whereas
for x ∈ {3, 5} the smallest derivation can be achieved to set 2. The maximal
CHSH value for each polygon system is given by the following parameters for
(2.11) and (2.12):

βy = β∗y + ∆βy

αx = α∗x + ∆αx
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Table A.2.: Analytical expression for the maximal CHSH-violation of polygon
boxes

x ∆α1 ∆β0 ∆β1 S

0 0 π
n

π
n 2

√
2

1 −π
2n

−π
4n

π
4n

2

(1+sec(πn ))
2

[
1 + sec

(
π
n

) (
2 cos

(
n+3
4n π

)
+ 6 sin

(
n+1
4n π

)
+ sec

(
π
n

)
− 2
)]

2 π
n

π
2n

−π
2n sec

(
π
n

) [
3 cos(n+2

4n π) + sin
(
n+6
4n π

)]

3 π
2n

π
4n

−π
4n

−2

(1+sec(πn ))
2

[
1− sec

(
π
n

) (
6 cos

(
n+1
4n π

)
+ 2 sin

(
n+3
4n π

)
− sec

(
π
n

))]

4 0 0 0 2
√

2 sec(πn )

5 −π
2n

−π
4n

π
4n

−2

(1+sec(πn ))
2

[
1− sec

(
π
n

) (
6 sin

(
n+1
4n π

)
+ 2 cos

(
n+3
4n π

)
− sec

(
π
n

))]

6 π
n

−π
2n

π
2n sec(πn )

[
cos
(
n+6
4n π

)
+ 3 sin

(
n+2
4n π

)]

7 π
2n

π
4n

−π
4n

2

(1+sec(πn ))
2

[
1 + sec

(
π
n

) (
2 sin

(
n+3
4n π

)
+ 6 cos

(
n+1
4n π

)
+ sec

(
π
n

)
− 2
)]

The eight classes can clearly be seen in Fig. 2.5. The analytic expressions
for the maximal CHSH value as a function of the number of vertices n and the
remainder x are given in Table A.2.
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