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Abstract 
 

The number of newly detected autoantibodies (AB) targeting synaptic proteins in neurological 

disorders of the central nervous system (CNS) is steadily increasing. Direct interactions of 

AB with their target antigens have been shown in first studies but the exact pathomecha-

nisms for most of the already discovered AB are still unclear. The present study investigates 

pathophysiological mechanisms of AB-fractions that are associated with the enigmatic CNS 

disease Stiff person syndrome (SPS) and target the synaptically located proteins amphiphy-

sin or glutamate decarboxylase 65 (GAD65). 

In the first part of the project, effects of AB to the presynaptic endocytic protein amphiphysin 

were investigated. Ultrastructural investigations of spinal cord presynaptic boutons in an es-

tablished in-vivo passive-transfer model after intrathecal application of human anti-

amphiphysin AB showed a defect of endocytosis. This defect was apparent at high synaptic 

activity and was characterized by reduction of the synaptic vesicle pool, clathrin coated vesi-

cles (CCVs), and endosome like structures (ELS) in comparison to controls. Molecular inves-

tigation of presynaptic boutons in cultured murine hippocampal neurons with dSTORM mi-

croscopy after pretreatment with AB to amphiphysin revealed that marker proteins involved in 

vesicle exocytosis (synaptobrevin 2 and synaptobrevin 7) had an altered expression in GA-

BAergic presynapses. Endophilin, a direct binding partner of amphiphysin also displayed a 

disturbed expression pattern. Together, these results point towards an anti-amphiphysin AB-

induced defective organization in GABAergic synapses and a presumably compensatory 

rearrangement of proteins responsible for CME.  

In the second part, functional consequences of SPS patient derived IgG fractions containing 

AB to GAD65, the rate limiting enzyme for GABA synthesis, were investigated by patch 

clamp electrophysiology and immunohistology. GABAergic neurotransmission at low and 

high activity as well as short term plasticity appeared normal but miniature synaptic potentials 

showed an enhanced frequency with constant amplitudes. SPS patient IgG after preabsorp-

tion of GAD65-AB using recombinant GAD65 still showed specific synaptic binding to neu-

rons and brain slices supporting the hypothesis that additional, not yet characterized AB are 

present in patient IgG responsible for the exclusive effect on frequency of miniature poten-

tials.  

In conclusion, the present thesis uncovered basal pathophysiological mechanisms underlying 

paraneoplastic SPS induced by AB to amphiphysin leading to disturbed presynaptic architec-

ture. In idiopathic SPS, the hypothesis of a direct pathophysiological role of AB to GAD65 
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was not supported and additional IgG AB are suspected to induce distinct synaptic malfunc-

tion.   
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Zusammenfassung 

Die Anzahl neu charakterisierter Autoantikörper (AAK) gegen synaptische Proteine bei Er-

krankungen des zentralen Nervensystems (ZNS) ist stetig wachsend. Direkte Interaktionen 

der AAK mit ihren Zielantigenen konnten in ersten Studien belegt werden, jedoch besteht 

weiterhin Unklarheit über die exakten zugrunde liegenden Pathomechanismen.   

In der vorliegenden Arbeit wurden pathophysiologische Mechanismen von AAK gegen die 

synaptisch lokalisierten Proteine Amphiphysin und Glutamatdecarboxylase 65 (GAD65) un-

tersucht, die mit der ZNS Erkrankung Stiff Person Syndrom (SPS) assoziiert sind. 

Im ersten Projektteil wurden die Effekte von AAK gegen das Endozytoseprotein Amphiphysin 

analysiert: in einem etablierten in-vivo Tiermodell konnten nach intrathekalem passiven 

Transfer von AAK gegen Amphiphysin ultrastrukturelle Untersuchungen von präsynaptischen 

Terminalen im Rückenmark eine Störung der Endozytose aufzeigen. Dieser Defekt, der bei 

hoher synaptischer Aktivität eintrat, war durch eine Verminderung synaptischen Vesikel-

pools, Clathrin-ummantelter Vesikel und endosomähnlicher Strukturen charakterisiert. Molu-

kulare Untersuchungen präsynaptischer Terminale kultivierter hippokampaler Zellkulturen mit 

dSTORM Mikroskopie zeigten, dass an der Exozytose beteiligte synaptische Vesikelproteine 

(Synaptobrevin 2 und Synaptobrevin 7) ein verändertes Expressionsmuster innerhalb GA-

BAerger Synapsen aufweisen. Die Expression von Endophilin, einem direkten Bindungs-

partner von Amphiphysin, war ebenso verändert. Zusammengefasst weisen diese Ergebnis-

se auf einen Organisationsdefekt GABAerger Synapsen hin, die durch anti-Amphiphysin 

AAK induziert sind und eine kompensatorische Umverteilung von Endozytoseproteinen ver-

muten lassen.  

Im zweiten Teil der Arbeit wurden die funktionellen Effekte von SPS AAK gegen GAD65, 

dem geschwindigkeitsbestimmenden Enzym der GABA-Synthese, mittels Patch-Clamp Mes-

sungen und Immunhistologie untersucht. Die GABAerge synaptische Übertragung bei niedri-

ger als auch hoher synaptischer Aktivität sowie die synaptische Kurzzeitplastizität wurden 

durch die IgG Fraktionen mit GAD65-AAK nicht beeinträchtigt. Die Frequenz von GABAer-

gen Miniaturpotentialen war jedoch bei ansonsten gleichbleibender Amplitude erhöht. SPS-

Patienten-IgG zeigte allerdings auch nach Präabsorbtion von GAD65-AAK mit Hilfe von re-

kombinanten GAD65 eine spezifische Anfärbung neuronaler Synapsen, was die Hypothese 

von weiteren, funktionell wirksamen, aber noch nicht identifizierten AAK im Patienten-IgG 

unterstützt.  

Zusammenfassend konnten in der vorliegenden Arbeit grundlegende pathophysiologische 

Mechanismen aufgezeigt werden, wie pathogene Antikörper gegen Amphiphysin die Struktur 

präsynaptischer Boutons beeinträchtigen können. Im Falle des idiopathischen SPS konnte 
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keine unterstützenden Befunde für die Hypothese einer direkten pathophysiologischen Rolle 

von GAD65 AAK erhoben werden. Nach den vorliegenden Ergebnissen wird das Vorhan-

densein weiterer, derzeit noch nicht beschriebener IgG AAK postuliert, die die synaptische 

Fehlfunktion erklären können.  
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1. Introduction  

1.1. Humoral autoimmunity in the CNS 

The term of autoimmunity was first used by the Nobel laureate in medicine Paul Ehrlich. He 

described the state in which the immune system attacks own tissue instead of foreign in-

vaders as „horror autotoxicus” (Silverstein, 2001). Humoral autoimmunity - in contrast to cell-

mediated autoimmunity - is the form of immunity which is mediated by macromolecules in the 

extracellular fluids, e.g. serum or cerebrospinal fluid (CSF), most importantly by secreted 

autoantibodies (AB) (Whitney and McNamara, 1999). Identification of AB in serum or CSF 

and characterization of the respective target antigen are first prerequisites for characteriza-

tion of a humoral autoimmune mediated disorder. Further, successful passive transfer of the 

respective AB in experimental animals and active immunization with target antigen reproduc-

ing patient symptoms as well as relief of disease symptoms by immunosuppressive therapies 

are mandatory to categorize suspected disorders as an autoimmune disease according to 

Witebsky´s postulates (Rose and Bona, 1993).  

In the past decades, clinical neurology and neuroscience research has first focused on AB 

targeting peripheral nervous tissue in e.g. myasthenia gravis with AB to the acetylcholine 

receptor (Toyka et al., 1975) Guillian-Barré syndrome with AB to gangliosides (Buchwald et 

al., 1998a, Buchwald et al., 1998b) and Lambert-Eaton syndrome with AB to presynaptic 

Ca2+ channels (Fukunaga et al., 1983). In recent years, characteristic CNS disorders have 

been described to be associated with AB targeting neuronal proteins. Scientific reports high-

light an increasing number of newly detected AB: autoantigens comprise ionotropic gluta-

mate receptor subunits (Dalmau et al., 2008, Lai et al., 2009),  GABAB-receptors (Lancaster 

et al., 2010), GABAA receptors (Petit-Pedrol et al., 2014), the leucin rich, glioma inactivated 

protein LGI1, the paranodal protein CASPR2 (Irani et al., 2010, Lai et al., 2010), and others. 

Interestingly, AB can not only be neuron-specific but also target antigens in astrocytes as 

reported for neuromyelitis optica (Bradl et al., 2009). Most of these recently described anti-

gens are synaptic, extracellular located proteins and therefore easily accessible for potential-

ly pathogenic AB. Some of these target antigens are known to be primarily intracellular locat-

ed, e.g. amphiphysin and glutamate decarboxylase 65 (GAD65) in presynaptic terminals 

(Solimena et al., 1988, De Camilli et al., 1993). The cellular mechanism for AB uptake or an 

alternative mechanisms, how AB can directly interact with their target is still a matter of de-

bate. There are first reports revealing functional effects of AB targeting these presynaptic 

antigens in animal models (Manto et al., 2007, Geis et al., 2009, Geis et al., 2010, Hansen et 
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al., 2013). The underlying pathophysiological impact of AB targeting surface or intracellular 

antigens resulting in distinct synaptic dysfunction have only been described in few recent 

reports in some of these disorders (Dalmau et al., 2008, Geis et al., 2009, Lai et al., 2009, 

Geis et al., 2010, Ohkawa et al., 2014).  

1.2. Stiff person syndrome 

Stiff person syndrome (SPS) is a rare CNS autoimmune disease with a reported prevalence 

of one case per million although prevalence may be underestimated because it is often mis-

diagnosed as a psychiatric disorder (Dalakas, 2008). Patient symptoms comprise muscle 

stiffness and superimposed muscle spasms of the lumbar, trunk and proximal limb muscles 

(Moersch and Woltman, 1956, Alexopoulos and Dalakas, 2010). Beside motor symptoms, 

patients also show also supraspinal symptoms of agoraphobia, panic attacks, and comorbid 

depression (Toro et al., 1994, Henningsen and Meinck, 2003). In general, symptoms can 

often be triggered by stress, unexpected sounds, and other external stimuli. 

Etiology of SPS can be either idiopathic or paraneoplastic secondary to primarily breast and 

small cell lung cancer (Pittock et al., 2005). Paraneoplastic SPS is characterized by AB tar-

geting the endocytic protein amphiphysin or the scaffolding protein gephyrin (De Camilli et 

al., 1993, Butler et al., 2000, Dalakas, 2009). In the far more frequent idiopathic variant of 

SPS, AB against glutamate decarboxylase 65 (GAD65) are prevailing (Solimena et al., 

1988). Recently, in anti-GAD65 AB positive SPS patients also AB to additional epitopes have 

been described. In up to 70 % of patients, AB to the GABAA receptor associated protein 

(GABARAP) were detected (Solimena et al., 1988, Raju et al., 2006). Figure 1 summarizes 

localization and function of already known SPS antigens. Amphiphysin is a protein involved 

in clathrin mediated endocytosis (CME) (Wigge and McMahon, 1998), GAD65 is the rate 

limiting enzyme required for gamma-aminobutyric acid (GABA) synthesis and involved of 

loading GABA into presynaptic vesicles (Asada et al., 1996, Tian et al., 1999), GABARAP is 

a postsynaptically localized protein involved in GABAA receptor clustering (Chen et al., 2000), 

and the scaffolding protein gephyrin is essential for postsynaptic localization of GABAA and 

glycine receptors (Essrich et al., 1998).  

As mentioned above, most SPS patients are affected by the idiopathic form with associated 

AB to GAD65. Interestingly, patients that suffer from  autoimmune diabetes mellitus type 1 

(DM1) also typically have AB to GAD65 (Dalakas et al., 2000). However, in these patients 

the titer of DB1 associated anti-GAD65 AB  is low in comparison to SPS related anti-GAD65 

IgG and the AB seem to be directed only to conformational epitopes, which is not the case in 
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SPS (Butler et al., 1993, Daw et al., 1996, Dalakas et al., 2000). In a study of monozygotic 

twins suffering from SPS, anti-GAD65 binding to linear epitopes of GAD65 could be reduced 

by treatment with Rituximab while conformational epitopes and inhibition of enzymatic activity 

still remained (Rizzi et al., 2010). This observation underlines the assumption that the im-

mune reaction in diabetic patients and SPS patients is different. Moreover, SPS associated 

anti-GAD65 AB target GAD65 preferentially at the N-terminal region of GAD65 and were 

shown to be synthesized intrathecally which may further support the hypothesis of a patho-

genic role of these AB in SPS acting on CNS neurons (Kim et al., 1994, Jarius et al., 2010).  

Treatment of SPS consists of symptomatic measures with drugs enhancing GABAergic 

transmission (benzodiazepines, baclofen), AB-removal by plasma exchange (Brashear and 

Phillips, 1991), and immunosuppression (Wessig et al., 2003, Baker et al., 2005). There ex-

ists one controlled study testing polyvalent intravenous immunoglobulins (Dalakas et al., 

2001) in a series of idiopathic SPS patients showing improvement of disease symptoms. 

More recently, case reports and case series report beneficial outcome of SPS patients when 

treated with rituximab, a B-cell depleting monoclonal AB (Baker et al., 2005, Lobo et al., 

2010, Fekete and Jankovic, 2012).  

 

 

Fig 1 Summary of SPS antigens linked to GABAergic neurotransmission 
Amphiphysin is an endocytosis protein playing a key role in clathrin mediated endocytosis. GAD65 is a 
presynaptic localized enzyme for rate limiting GABA synthesis. Postsynaptic localized gephyrin organ-
izes localization of GABAA receptors and glycin receptors. GABARAP is associated with postsynaptic 
GABAA receptors regulating their opening kinetics [adapted from and cited in (Butler et al., 2000)] 
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1.3. Chemical synapses and the vesicle cycle 

Communication between nerve cells in the brain relies predominantly on synaptic transmis-

sion using chemical synapses. Chemical synapses transmit synaptic signals by releasing 

chemical compounds called neurotransmitters which allows filtering, integration and summa-

tion of synaptic signals (Burns and Augustine, 1995). Chemical synapses form contacts be-

tween a presynaptic compartment (axonal bouton from a transmitting cell) and a postsynaptic 

compartment (dendrite) of a target cell receiving synaptic information via receptor mediated 

changes of postsynaptic membrane potential (Sudhof and Malenka, 2008). The presynaptic 

bouton stores and releases neurotransmitters using small sized synaptic vesicles (Figure 2) 

(Haucke et al., 2011). Synaptic vesicles can be allocated to different synaptic vesicle pools 

(Rizzoli and Betz, 2005), a ready release pool near the presynaptic membrane, a reserve 

pool, and a resting pool of vesicles. Different vesicle pool models regarding their functional 

role have been proposed but still need further validation (Denker and Rizzoli, 2010). Vesicle 

pools can be distinguished on the basis of their vesicular soluble N-ethylmaleimide-sensitive-

factor attachment receptors (v-SNARE) composition. Synaptobrevin isoform 2 preferentially 

targets the readily releasable pool whereas isoform 7 primarily resides on resting pool vesi-

cles (Hua et al., 2011). V-SNAREs form essential components of vesicular neurotransmitter 

exocytosis facilitating the fusion of vesicular membranes with presynaptic membrane via in-

teraction with membrane bound t-SNAREs (Sudhof and Rizo, 2011). After exocytosis vesi-

cles are recycled in a compensatory mechanism called endocytosis (Haucke et al., 2011) 

and it has been suggested previously that different modes of endocytosis might produce dif-

ferent molecular composition of vesicular proteins (Voglmaier and Edwards, 2007). Clathrin-

mediated endocytosis (CME) has long been termed the dominant form of vesicular endocy-

tosis (Granseth et al., 2006) although recent research also points to similar importance of 

other endocytosis mechanisms, namely kiss and run (He and Wu, 2007) and ultrafast endo-

cytosis (Watanabe et al., 2013). CME is a rather slow endocytosis mechanism taking place 

several seconds after exocytosis (Heuser and Reese, 1973). CME is initiated by nucleation 

of a clathrin coated pit which is accomplished by adaptor proteins and membrane bending 

proteins like amphiphysin (Wu et al., 2009). Successive fission of synaptic vesicles is per-

formed together with the guanosinetriphosphatase (GTPase) dynamin (Takei et al., 1999, 

Ferguson et al., 2007). The clathrin coat covering synaptic vesicles in CME is supposed to  

support molecular sorting of vesicular proteins (Schmid, 1997) and is shed after successful 

CME by uncoating proteins (Verstreken et al., 2003, Milosevic et al., 2011). Kiss and run en-

docytosis is characterized by a narrow, transient fusion pore openings for transmitter release 

retaining the morphology of synaptic vesicles, thus allowing fast coupling of endo- and exo-
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cytosis 20 times faster than CME (Fesce et al., 1994, Richards et al., 2005). Reports of ultra-

fast endocytosis showed compensatory endocytosis within 50 to 100ms revealing an even 

faster endocytosis mechanism taking place at sites adjacent to active zones (Watanabe et 

al., 2013).     

 

 

Fig 2 Overview of the presynaptic compartment of chemical synapses depicting exocytosis 
and endocytosis mechanisms  
adapted from (Haucke et al., 2011) Scheme of presynaptic endocytosis and exocytosis with suggest-
ed coupling of both machineries; light blue: v-SNAREs, green: dynamin, yellow: clathrin coat sur-
rounding synaptic vesicles. 

1.4. Amphiphysin  

Amphiphysin is a synaptic 128kD Protein involved in CME. There exist 2 isoforms of amphi-

hysin and both isoforms are highly concentrated in nerve terminals. Amphiphysin 1 shows 

dominant neuronal expression along with partial association with synaptic vesicles while iso-

form 2 is ubiquitously expressed (Di Paolo et al., 2002).  

Amphiphysin structure (Figure 3) consists of a N-terminal alpha-helix domain, a membrane 

bending N-Bin-amphiphysin-RVs (BAR) domain, a proline rich domain (PRD), a clathrin - und 

AP-2-binding domain and a C-terminal src-homology 3 domain  (SH3) (Wu et al., 2009). 

During CME amphiphysin function involves curvature sensing (Peter et al., 2004) and bend-

ing of the presynaptic membrane (Arkhipov et al., 2009) during the membrane invagination 
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step and recruitment of several endocytosis proteins. Its PRD domain binds to endophilin, a 

SH3 domain containing protein (Micheva et al., 1997, Chen et al., 2003) that is partially as-

sociated with presynaptic calcium channels (Chen et al., 2003) driving BAR domain mediated 

membrane invagination and uncoating of vesicles by recruiting the phosphatase synaptojanin 

(Verstreken et al., 2003). 

 

 

Fig 3 Amphiphysin structure and interaction partners. 
Amphiphysin shows BAR domain mediated interaction with PIP2, Amphiphysin 2, Cdk5/p35 and inhib-
its phospholipidase (PLD) upon binding. The PRD domain binds endophilin and the CLAP domain is 
the interaction hub for clathrin and the adaptor protein AP-2. At the C-terminal there are interactions of 
the SH3 domain with the phosphatase synaptojanin 1 and the vesicle pinching GTPase dynamin 1; 
adapted from (Wu et al., 2009)1 

 

Genetic absence of endophilin leads to accumulation of clathrin coated vesicular profiles.  

Further, endophilin was suggested to be essential for the fast mode of endocytosis (Llobet et 

al., 2011, Milosevic et al., 2011). The SH3 domain of amphiphysin is an interaction hub for 

dynamin 1 (David et al., 1996) and synaptojanin 1 (Micheva et al., 1997). The GTPase dy-

namin 1 is the neuronal isoform of dynamins and a key player of endocytosis. Dynamin is 

acting in concert with amphiphysin  (Takei et al., 1999) and mediates synaptic vesicle fission 

from the presynaptic membrane by establishing collar rings around the neck of clathrin coat-

ed membrane invaginations (Roux et al., 2006) and pinching of synaptic vesicles into the 

presynaptic cytosolic space (Takei et al., 1995, Shupliakov et al., 1997, Praefcke and 

McMahon, 2004) . Genetic knockout (KO) of dynamin 1 results in faster depression of inhibi-

tory postsynaptic current (IPSC) peak amplitudes at high synaptic activity and increased ves-

icle diameter along with formation of clathrin coated pits. (Ferguson et al., 2007). The phos-

                                            

1 All information in legend of Figure 3 is from (and cited in) Wu et al., 2009. 
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phatase synaptojanin is recruited in the late step of endocytosis (Perera et al., 2006) and its 

genetic deletion leads to enhanced depression of neurotransmission along with reduced ves-

icle pool size and increased number of clathrin coated vesicles (CCV) suggesting a role in 

vesicle uncoating process (Cremona et al., 1999).  

 

Fig 4 Structural deficits at disturbed endocytosis 
Ultrastructural changes resulting from disturbed endocytosis. [A and B adapted from (Shupliakov et 
al., 1997), C-E adapted from (Milosevic et al., 2011)]. A) Reticulospinal synapse of lamprey at resting 
conditions. Note the accumulation of vesicles at the release site B) Stimulated (0.2 Hz, 30 min) lam-
prey reticulospinal synapse after injection of peptides targeting amphiphysin SH3 domain showing 
clathrin coated pits at the synaptic membrane. C) Presynaptic bouton of endophilin triple KO mouse 
showing several CCVs. D) Synaptojanin 1 KO synapse with multiple CCVs. E) Dynamin 1 KO syn-
apse harbouring clathrin coated, partially elongagted clathrin coated profiles. Scale bars = 200 nm.  

        
Amphiphysin further interacts with clathrin and AP-2, PLD and cdk5 (Wu et al., 2009). Genet-

ic ablation of amphiphysin 1 leads to concomitant reduction of amphiphysin 2, to reduced 

vesicle pools and enhanced depression of neurotransmission at high synaptic activity (Di 

Paolo et al., 2002). Injection of inhibitory peptides binding to amphipyhsin SH3 domain re-

sulted in clathrin coated intermediates stalled at the synaptic membrane. In paraneoplastic 

SPS, associated AB targeting amphiphysin SH3 domain (David et al., 1994) were shown 

reduce GABAergic neurotransmission leading to motor hyperexcitability and enhanced anxie-

ty in experimental rats (Geis et al., 2010, Geis et al., 2012). Figure 4 summarizes different 

ultrastructural changes that result from inhibition of amphiphysin itself or depletion of its bind-

ing partners.  
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1.5. Scientific research question: anti-amphiphysin AB 

In a previous report from our research group we could provide evidence that intrathecally 

applied SPS patient AB specifically targeting amphiphysin induce functional relevant defects 

in endocytosis in experimental rats. These deficits became evident in spinal GABAergic cir-

cuits resulting in reduced GABAergic presynaptic inhibition in the spinal cord as measured by 

smaller dorsal root potential amplitudes and reduced attenuation of the Hofmann reflex. Fur-

thermore, using stimulated emission depletion (STED) microscopy an accumulation of adap-

tor proteins essential for CME was found in presynaptic terminals, corroborating the hypoth-

esis of an AB-induced endocytosis defect in CNS neurons (Geis et al., 2010).  

Based on these findings, we hypothesized AB-induced structural changes of vesicle pools in 

spinal presynaptic boutons as described in experiments using peptides to amphiphysin SH3 

domain to block CME (Shupliakov et al., 1997). Vesicle pools may have different molecular 

composition of vesicular proteins due to engagement of compensatory endocytosis mecha-

nisms (Voglmaier and Edwards, 2007). As amphiphysin has several interaction partners, AB 

to amphiphysin might disturb the docking of binding partners leading to differences in their 

synaptic distribution. Another assumption is that endophilin could fulfil compensatory endocy-

tosis while amphiphysin is blocked by AB (Llobet et al., 2011). In a similar way, the uncoating 

factor synaptojanin could also be involved in pathologic processes as structural deficits of 

disturbed CME frequently show vesicles still equipped with their stabilizing clathrin coat 

(Milosevic et al., 2011). To test these hypotheses, ultrastructural investigations of spinal GA-

BAergic presynapses were performed in the intrathecal passive-transfer rat model after re-

petitive application of purified patient anti-amphiphysin AB. Further, potentially AB-induced 

changes in synaptic architecture were investigated using super-resolution microscopic tech-

niques in primary hippocampal neurons.  

1.6. Glutamate decarboxylase 65 (GAD65) 

Two different GAD isoforms catalyze synthesis of GABA (Battaglioli et al., 2003), the major 

inhibitory transmitter in the mammalian CNS. The larger isoform glutamate decarboxylase 67 

(GAD67) is a cytosolic enzyme showing ubiquitous expression in the cell body and is pre-

dominantly saturated with its cofactor pyridoxal 5´ phosphate (PLP) (Erlander and Tobin, 

1991). GAD67 synthesizes the majority of GABA explaining why KO animals are not viable 

(Asada et al., 1997). The smaller isoform GAD65 is localized to inhibitory presynaptic bou-

tons, is reversibly attached to synaptic vesicle membranes (Jin et al., 2003), and is involved 

in supplementary synthesis of GABA needed for synaptic transmission while KO animals 

show no significant reductions in GABA availability (Asada et al., 1996). GAD65 is localized 



Introduction  

9 

 

to presynaptic boutons as apoenzyme and becomes activated for additional GABA synthesis 

at high synaptic activation (Martin et al., 1991). Mice with genetic ablation of GAD65 are 

prone to seizures (Christgau et al., 1991, Christgau et al., 1992, Kash et al., 1997) and show 

deficits in fear consolidation and generalization (Seidenbecher et al., 2003, Bergado-Acosta 

et al., 2014). Deficiency of GAD65 leads to reduced GABA release at sustained synaptic 

transmission (Tian et al., 1999). Several diseases are characterized by AB targeting GAD65: 

cerebellar ataxia (Vianello et al., 2003), type 1 diabetes (Solimena, 1998) limbic encephalitis 

(Mata et al., 2010), and non-paraneoplastic SPS (Solimena et al., 1988, Solimena et al., 

1990, Rakocevic et al., 2004). Animal models investigating IgG antibodies purified from pati-

ents with anti-GAD65 AB positive SPS reported motor dysfunction and increased fear related 

behavior in-vivo in experimental rats after intrathecal delivery or surface application of AB 

preparations. In-vitro, patient IgG was shown to reduce GABA synthesis (Manto et al., 2007, 

Geis et al., 2011, Hansen et al., 2013). Immunization of mice with recombinant GAD65 

evoked production of AB that bind near GAD65 but interestingly also showed surface stain-

ing (Chang et al., 2013). Detailed investigations of SPS-associated anti-GAD65 AB on GA-

BAergic transmission at the single cell level have not been investigated so far. 

1.7. Scientific research question: anti-GAD65 AB 

In in-vivo animal passive-transfer experiments using purified IgG of SPS patients with high 

titer of anti-GAD65 AB, IgG application led to motor symptoms, increased anxiety, cognitive 

dysfunction, and increased excitatory transmission (Geis et al., 2011, Hampe et al., 2013, 

Hansen et al., 2013, Vega-Flores et al., 2014). These findings along with patient symptoms 

and clinical relief to plasma exchange and immunotherapy suggests disturbed inhibitory tone 

in CNS networks. These observations led to the hypothesis of AB-induced reduction of pre-

synaptic GABA synthesis. Reduced availability of presynaptic GABA would theoretically re-

sult in decreased evoked inhibitory postsynaptic currents (eIPSCs), especially at high fre-

quency transmission as observed in GAD65 KO animals (Tian et al., 1999). AB binding might 

also cause changes in gene expression of GAD isoforms to compensate for the putative re-

duced GABA synthesis. These hypotheses have been addressed in the present work by in-

vestigating the influence of anti-GAD65 directed patient IgG-AB on GABAergic transmission 

in vital brain slices and in primary neurons using patch-clamp neurophysiology, confocal im-

aging of presynaptic boutons, and GAD65/67 gene expression analysis after IgG preincuba-

tion.  
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2. Material and methods 

2.1. Animal experiments 

All animal experiments were approved by the Bavarian and Thuringian state authorities and 

executed according to ARRIVE guidelines and good laboratory practice (Kilkenny et al., 

2012). Animals were kept in standard cages with water and food ad libitum at a 12h light/dark 

cycle. C57BL/6 mice sacrificed for patch-clamp experiments and primary cell culture prepara-

tions were obtained from internal breedings of the animal facilities at the Department of Neu-

rology of the University Hospital Würzburg or the Hans-Berger Department of Neurology, 

Jena University Hospital. Female Lewis rats were purchased from Harlan-Winkelmann 

(Borchen, Germany). 

2.2. Patient IgG and AB purification 

All biochemistry and molecular biology experiments including preparation of patient IgG frac-

tions were mainly performed by Susanne Hellmig and PD Dr. Andreas Weishaupt (Depart-

ment of Neurology, University hospital, Würzburg).  

 

Anti-amphiphysin AB 

The clinical details of the SPS patient who had a paraneoplastic SPS with very high titers of 

anti-amphiphysin AB have been reported (Wessig et al., 2003). Commercial enzyme immu-

nodot assay was used to determine titers of anti-amphiphysin AB by measuring means of 

with rabbit antisera raised against recombinant amphiphysin 1 as a positive control (H.P. 

Seelig, Karlsruhe, Germany). Titres before the first plasma exchange were 1–2*108. 

 

Anti-GAD65 AB 

SPS IgG #1 and SPS IgG #2 containing high-titer anti-GAD65 AB and control IgG from a 

patient with chronic inflammatory polyneuropathy as well as a control IgG from a patient with 

a tumor in the orbita (initially diagnosed as therapy-resistant optic neuritis), both without de-

tectable serum AB were purified from therapeutic plasma exchange material as described 

previously (Sommer et al., 2005). The IgG fractions were dialyzed, freeze dried and stored at 

-20°C. Lyophilized IgG was dissolved in normal saline before use. 
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Affinity purification of specific AB using recombinant proteins 

The recombinant human glutathione S-transferase-amphiphysin and glutathione S-

transferase-SH3 domain fusion protein, the gene encoding for amphiphysin protein and the 

construct containing its wild-type SH3 domain (Grabs et al., 1997) were expressed and puri-

fied as described before (Geis et al., 2010). Recombinant human GAD65 was kindly provid-

ed by Diarect (Freiburg, Germany). Purification of human immunoglobulin from patient plas-

ma filtrates was performed as described (Buchwald et al., 1998b, Sommer et al., 2005). Anti-

amphiphysin and anti-GAD65 AB were depleted by affinity chromatography according to es-

tablished protocols (Geis et al., 2010). Successful depletion of anti-GAD65 AB was con-

firmed by western blotting of recombinant human GAD65 followed by anti-human IgG detec-

tion (Werner et al., 2014). Eluates containing specific AB and fractions depleted from specific 

AB were dialyzed separately against distilled water, freeze dried and stored at -20°C. Lyophi-

lized IgG was reconstituted in normal saline just before use. 

2.3. Primary hippocampal cell culture 

Reagents were obtained from Life Technologies (Darmstadt, Germany) it not stated other-

wise. E18 embryos of pregnant C57BL/6mice were used for cell culture preparations. After 

dissection of embryonal hippocampi, meninges and surrounding tissue were removed fol-

lowed by enzymatic digestion with 0.25% w/v trypsin EDTA for 5 minutes at 37°C. Trypsin 

was inactivated by two generous flushes of Hank´s Balanced Salt Solution (HBSS) supple-

mented with Penicillin Streptomycin (PS; 1% final concentration) and 10mM HEPES©. Cells 

were mechanically separated by trituration in Neurobasal® medium supplemented with glu-

tamine (1%), B27® (2%) and PS (1%) using a narrowed glass pipette. Concentration of cells 

in suspension was assessed with a haematocytometer (Hartenstein, Würzburg, Germany).  

For dSTORM experiments cells were plated at a density of 50.000 cells on poly-D-lysine 

(PDL) coated 18mm diameter coverslips. 12mm diameter coverslips were used for confocal 

microscopic investigations (Langenbrinck, Emmendingen, Germany). Primary neurons were 

used for experiments at day 14 in vitro (DIV 14).  

Microisland cultures were prepared according to established protocols (Allen, 2006). Briefly, 

12mm diameter coverslips were covered with 0.15% type IIA agarose (Sigma Aldrich, 

Taufkirchen, Germany) as growth limiting agent. At the following day small islands of PDL 

containing rat tail collagen (0.25 mg/ml collagen + 0.05 mg/ml PDL  in distilled H2O, Sigma 

Aldrich, Taufkirchen , Germany) were applied on agarose coated coverslips using a glass 

atomizer (Carl Roth, Karlsruhe, Germany). Cells were prepared as described for standard 
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primary hippocampal cell culture above and a total of 10.000 cells were applied on 12mm 

diameter coverslips. Cells were cultured in standard Neurobasal medium® containing 10% 

fetal bovine serum (FBS) for 24h. After 24h medium was replaced with standard Neurobasal 

medium® lacking additional FBS. Microislands were used for experiments at DIV 10.  

For gene expression experiments 1*106 primary hippocampal cells were seeded in PDL 

coated cell culture flasks (#690160, Greiner Bio One, Frickenhausen,Germany) and used for 

gene expression experiments at DIV 10.  

2.4. In-vivo rat model of SPS 

Catherization and intrathecal AB application 

Placement of intrathecal catheters and AB injections were performed by Prof. Dr. Christian 

Geis. PE10 plastic catheters (Schubert Medizinprodukte, Wackersdorf, Germany) with an 

inner diameter of 0.28 mm, an outer diameter of 0.61 mm and an internal length of 7,0 mm 

were placed in subarachnoid space of experimental Lewis rats in a similar way as described 

in the original report (Yaksh and Rudy, 1976). In deep anesthesia with Isoflurane® (Abott 

GmbH, Wiesbaden, Germany) the catheters were inserted through the occipital membrane 

and the internal tip of the catheter ended just above the lumbar enlargement of the spinal 

cord. In case of paralysis experimental animals were euthanized immediately after the sur-

gery. Following a recovery period of at least 7 days the first IgG application was performed 

(concentration = 10mg/ml, injected volume = 10µl) followed by a rinse with 10µl 0.9% saline. 

The first five injections were applied daily, the following 5 injections every second day and 

the final two injections three days apart. This experimental procedure has been evaluated to 

induce typical disease signs and underlying neurophysiological changes with reduced GA-

BAergic presynaptic inhibition in rats in previous studies (Geis et al., 2010).  

 

Stimulation of Ia afferents 

After completing the IgG application series, animals were deeply anaesthesized with intra-

peritoneally injected Narcoren® (Merial GmbH, Hallbergmoos, Germany, diluted 1:10 with 

0.1% saline [Braun, Melsungen, Germany]). Ia afferents were stimulated by supramaximal 

excitation of the right tibial nerve (8-9V, 10 Hz) using a Grass S88 stimulator (Grass Tech-

nologies, West Warwick, Rhode Island, USA). Stimulation was performed continuously for 60 

s ensuring a sustained period of high synaptic activity. The stimuli were applied unilaterally, 

the contralateral side represented conditions of basal activity. At the end of stimulation (dur-

ing the last seconds of stimulation to exclude fixation of tissue in the compensatory period 
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after stimulation), spinal cord of experimental animals was fixed with 2.5% glutaraldehyde, 

1% paraformaldehyde in PBS by transcardial perfusion using a slow peristaltic pump (Is-

matec, Wertheim-Mondfeld, Deutschland) followed by a rinse with 0.1M PBS. After fixation, 

lumbar spinal cord (L4-L5) and tibial nerve were removed, washed with 0.1M PBS and kept 

in 30% sucrose solution at 4°C overnight. 

2.5. Electron microscopy of rat spinal terminals 

Tissue processing for electron microscopy (EM) 

All reagents were obtained from Sigma Aldrich (Taufkirchen, Germany) if not stated other-

wise. The extracted spinal cord was cut in hemisegments using a sharp razorblade (Wil-

kinson Sword, Solingen, Germany). From each resulting hemisegment 45 µm slices were cut 

in 0.1M PBS using a Leica VT1000S tissue chopper (Leica, Ratingen, Germany) in 0.1M 

PBS. Slices were fixed in osmium tetroxide (1% in 0.1M PBS), followed by several washing 

steps in 0.1M PBS. Uranylacetate (2% in 70% ethanol) was used for contrast enhancement, 

dehydration included a rising ethanol concentration series with a final rinse in propylenoxide 

(100%). Slices were embedded en bloc in epoxy resin on aclar foil (Serva, Heidelberg, Ger-

many). Tissue blocks were cut to ultrathin slices (70 nm) on an ultratome (Ultracut E, Leica, 

Wetzlar). Sections were mounted on formvar coated mesh grids (Plano, Wetzlar, Germany). 

Postembedding immuno EM 

Sections were washed in Tris buffered saline containing 0.1% Triton-X 100, adusted to pH 

7.6 (TBST 7.6) and immunoreacted overnight with a primary antibody to GABA (1:1500, rab-

bit polyclonal, Millipore). Slices were etched in periodate (2% in destilled H2O) and sodium-

metaperiodate (10% in destilled H2O, at 50°C) for 30 seconds each following a rinse in TBST 

7.6 and TBST 8.2. Gold-conjugated secondary antibodies (1:80, Aurion-Biotrend) were ap-

plied in TBST 8.2 for 2h at RT. Gold particles were enhanced with silver particles using R-

GENT SE-EM according to manufacturer protocols (Aurion, Wageningen, Netherlands) and 

slices were contrast enhanced with uranly acetate (2% in 70% ethanol) and Reynold´s lead 

citrate (Reynolds, 1963). 

EM recordings and image analysis 

EM photographs were captured on a LEO 912 AB electron microscope or Leo 906 E electron 

microscope (Zeiss SMT, Oberkochen, Germany). Images were documented via a slow scan 

CCD camera (Zeiss SMT, Oberkochen, Germany) or a ProScan Slow Scan CCD (ProScan, 
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Lagerlechfeld, Germany), respectively. Image aquisition and storage was performed with 

corresponding iTEM software (Soft Imaging System, Irvine, USA).  

For analysis, a square grid of roughly 100µm2 was chosen randomly next to a ventral horn 

motoneuron. This square was screened for synaptic boutons. Silver particles or presynaptic 

structures (vesicles, clathrin coated vesicles (CCV), endosome-like structures (ELS) were 

counted manually using MacBiophotonics ImageJ (Wayne Rasband, 

www.macbiophotonics.ca). CCV were characterized by a clathrin triskelia surrounding con-

ventional synaptic vesicles and ELS structures were identified as oval shaped, enlarged or-

ganelles in comparison to synaptic vesicles. Density of GABA (enhanced silver particles) and 

vesicle subforms were calculated by dividing the counts by the area of bouton minus the mi-

tochondrial area. GABA rich and GABA poor terminals were defined by taking the median of 

all calculated GABA densities and splitting the terminals apart at this value. Calculations 

were performed in Excel and statistics were done in Sigmaplot 12.  

2.6. dSTORM microscopy experiments 

AB treatment and stimulation 

Primary neurons were incubated with affinity purified specific AB targeting the SH3 domain of 

amphiphysin (specAmph) and IgG of a control patient that are described previously (Geis et 

al., 2010) for 6h at 37°C (100µg/ml). The experimenter was blinded to treatment conditions.  

Stimulation of primary hippocampal neurons 

Neurons were stimulated with a customized stimulation chamber RC-49FS (Warner Instru-

ments, Hamden, UK). Electrical fields of ~10V/cm at a frequency of 10Hz for 90s (pulse dura-

tion = 1ms) were applied across platinum electrodes with a spacing of approximately 10mm 

using a Grass stimulator S88. Stimulation of neurons was performed in artificial cerebrospi-

nal fluid (ACSF) containing 119mM NaCl, 2.5mM KCl, 2mM CaCl2, 2mM MgCl2, 25mM 

Hepes and 30mM glucose. Control coverslips were placed in ACSF for 90s until fixation 

without stimulation.  
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Immunocytochemistry for dSTORM microscopy 

Immediately after stimulation cells were fixed with ice-cold 4% paraformaldehyde (PFA) for 

20min and permeabilized with 0.1% Triton-X (Sigma Aldrich, Taufkirchen, Germany) for 

30min at room temperature (RT). 

 

Primary antibodies concentration manufacturer order ID species 

synaptobrevin 2 1 : 2000 Synaptic systems 104211 mouse monoclonal 

synaptobrevin 7 1 : 2000 Synaptic systems 232011 mouse monoclonal 

endophlilin 1 : 1000 Synaptic systems 159002 rabbit polyclonal 

synaptojanin 1 : 500 Synaptic systems 145003 rabbit polyclonal 

VGAT 1 : 1000 Synaptic systems 131004 guinea pig polyclonal 

synaptophysin 1 : 1000 Chemicon AB9272 rabbit polyclonal 

PGP 9.5. 1 : 500 Paesel & Lorei 5304793 rabbit polyclonal 

Secondary antibodies --- --- --- --- 

Alexa 647 1  : 500 Life technologies A21237 goat anti-mouse 

Alexa 647 1 : 500 Life technologies A21246 goat anti-rabbit 

Alexa 488 1 : 500 Life technologies A21206 goat anti-guinea pig 

Cy3  1 : 500 Dianova 106-165-003 goat anti-guinea pig 

Cy3  1 : 500 Jackson immunoresearch 111-165-003 goat anti-rabbit 

Rhodamin 1 : 500 Jackson immunoresearch 706-296-148 goat anti-guinea pig 

 
Table 1 Antibody list for fluorescence microscopy 

 

Primary antibodies (see Table 1) were incubated for 1h at RT in PBS containing 10% normal 

bovine (BSA) and 10% normal goat serum (NGS). Coverslips were then washed six times for 

10 minutes and subsequently incubated with respective secondary antibodies (see Table 1) 

in blocking solution (10% BSA, 10% NGS) overnight at 4°C. Incubation was again followed 

by washing steps as described above. Samples were kept in PBS until recording started.  

dSTORM microscopy  

Coverslips were fixed in a custom built imaging chamber and placed on a vibration isolated, 

customized Olympus IX71 inverted microscope. Samples were imaged in 1ml 100mM mer-

captoethylamine (MEA) in PBS with pH adjusted to 7.9 using a 60x Tirf objective (numerical 

aperture = 1.49). Fluorophores were excited with an Ibeam Smart 640s (Toptica Photonics, 

Gräfelding, Germany) at 640 nm and a Nano laser (Quioptiq photonics, Göttingen, Germany) 

at 532 nm using respective filter sets while keeping laser powers (75mW at 640 nm; 1mW at 

532 nm) constant during the experiment. Tirf illumination was only slightly used yielding a 

better z axis resolution. Photons were collected using two EMCCD (Andor Ixon Ultra, BFI 
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Optilas, Gröblingen, Germany) cameras keeping detector gain and frame rate constant 

throughout the experiment. 

 

Analysis of dSTORM recordings 

Recorded tiff-format videos (15.000 frames) were processed in rapidstorm software (Wolter 

et al., 2012) to obtain density matrices with z-dimensions representing localization counts. 

The following processing parameters were applied in rapidstorm: minimum localization 

strength = 1000, pixel size = 127 nm, PSF FWHM = 320. A custom written python script 

(kindly provided by Thorge Holm) was used to rearrange matrices to text image format. Text 

images were fed into ImageJ (Wayne Rasband, www.macbiophotonics.ca) for further calcu-

lations. For calculation of sum of localization counts a region of interest (ROI) was created in 

ImageJ by applying a (constant) threshold on the epifluorescent signal of vesicular GABA 

transporter (VGAT). A binary mask was created and converted to ROIs for quantification of 

integrated density in ImageJ. Parallel computations of raw values in Microsoft Excel con-

firmed reliability of ImageJ output.   

Analysis of clusters inside GABAergic boutons was performed by computing the distances 

between each maximum residing in every singular VGAT ROI. Coordinates of cluster cen-

troids were calculated by ImageJ (using constant parameters for detection, threshold = 2) 

and distances were calculated by a custom written script in Sigmaplot (Systat, Erkrath, Ger-

many).  Thus, shorter distances represent enhanced clustering and longer distances dis-

persed signal.  

2.7. Confocal microscopy for analysis of GABAergic bouton size and IgG 

binding experiments 

AB incubation and staining procedure 

Commercial antibodies for immunofluorescence staining are listed in Table 1. Primary hippo-

campal cells were treated with purified patient IgG at a concentration of 100µg/ml for 6h. The 

researcher was blinded to treatment conditions. Following incubation, neurons were fixed in 

ice-cold 4% PFA for 10min followed by permeabilization with 0.1 % Triton-X 100. Blocking 

solution to saturate unspecific binding sites contained 10% bovine serum albumin (BSA) and 

was applied for 30 min at RT. Primary antibodies targeting synaptophysin and VGAT (Table 

1) were incubated overnight at 4°C in 2% BSA. Alexa 488 goat anti-rabbit and Rhodamin anti 

guinea-pig were used as secondary antibodies. Antibodies were applied for 2h at RT fol-
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lowed by washing in PBS (4 x 15 mins), DAPI® (Life Technologies, Darmstadt, Germany) 

staining, and embedding in Mowiol (Sigma Aldrich, Taufkirchen, Germany). This protocol was 

also applied for immunostaining of PGP 9.5 (Table 1) and synaptophysin in microisland cul-

tures. For IgG binding experiments, DIV14 primary neurons fixed with ice-cold 4% PFA and 

30µm free floating murine coronal brain sections were incubated with patient IgG (10 µg/ml) 

over night at 4°C followed by Cy3 goat anti-human secondary antibody (table 1) for 2h at 

room temperature.  

 

Confocal microscopy and image analysis 

Confocal images were captured on a confocal laser scanning microscope (Zeiss LSM 710, 

Jena, Germany) using a 40x oil objective, keeping lasers power and PMT (photomultiplier 

tube) voltage constant. Tiff images were acquired sequentially as z-stacks and maximum 

projections of z-stacks were generated in FIJI image analysis software (Schindelin et al., 

2012). Resulting images were converted to 16-bit and background signal subtraction was 

performed. Areas were calculated after setting constant thresholds for VGAT and synapto-

physin signals. The area ratio was defined by the division of synaptophysin area by VGAT 

area. VGAT signals as defined by thresholds were used as a region of interest for synapto-

physin intensity quantification. For visualization of neurons and brain slices used in binding 

studies, the same confocal microscope was used. Images of slices were captured using a 

20x air objective and primary hippocampal cells with a 40x oil objective (Zeiss). Processing of 

images was performed as described for quantification of vesicle pools but omitting back-

ground subtraction and thresholding procedures.   

2.8. Whole cell patch-clamp recordings 

15-25 day old C57BL/6-mice were sacrificed and acute hippocampal slices (300µm) were 

prepared from brain hemisegments in ice cold slicing solution (40mM NaCl, 25mM NaHCO3, 

10mM glucose, 150mM sucrose, 4mM KCL, 1.25mM NaH2PO4, 0.5mM CaCl2, 7mM MgCl2; 

purged with 95% CO2/5% O2) using a Campden vibratome (Campden Instruments, Lough-

borough, UK). Slices were incubated in slicing solution containing 100µg/ml of the respective 

IgG-solution at 32°C for at least 30 min. During recordings slices were fixed with a custom 

made thin platinum ring with nylon strings and superfused with extracellular solution (125mM 

NaCL, 25mM NaHCO3, 25mM glucose, 2.5mM KCl, 1.25mM NaH2PO4, 2mM MgCl2 purged 

with 95% CO2/5% O2). GABAergic IPSC were recorded with a HEKA EPC10 patch clamp 

amplifier (HEKA, Lambrecht, Germany). Recording electrodes were pulled from thick-walled 
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borosilicate glass (GB200F-10, Science Products, Hofheim, Germany) with an Sutter instru-

ments micropipette puller p97 (Science Products, Hofheim, Germany) and were filled with 

intracellular recording solution containing 140mM KCl, 10mM Hepes, 10mM EGTA, 2mM 

Na2ATP, 2mM MgCl2 yielding a final resistance of 3-5 MΩ. Positioning of electrodes was per-

formed using piezo driven micromanipulators (Unit Mini 3 Axes, Luigs & Neumann, Ratingen, 

Germany). Dentate granule cells (GC) were voltage clamped at -70mV in whole cell configu-

ration. Recordings were rejected if resting potential changed during experiments, series re-

sistance was higher than 20 MΩ, or cells had resting potentials more positive than -50mV. 

Evoked IPSCs were isolated by applying 10µM CNQX and 50µM AP-5 to recording solution 

to block AMPA and NMDA currents, respectively (Tocris Bioscience, Ellisville, USA). Minimal 

stimulation of GABAergic axons was performed as described before (Edwards et al., 1990, 

Allen and Stevens, 1994, Geis et al., 2010).  In brief, GABAergic afferents of molecular layer 

basket cells were stimulated (200µs, 0.3Hz) using an Isoflex stimulation isolation unit 

(A.M.P.I., Jerusalem, Israel). 1µM Tedrodotoxin (TTX; Sigma Aldrich, Germany) was added 

for recording of miniature IPSC.  

For recording of IPSC in microisland cultures, intracellular and extracellular solutions includ-

ing blockers were used as described and autaptic neurons were voltage clamped at -70mV. 

eIPSC were evoked by a 1ms depolarization step to 0mV. Recordings were filtered at 2.9 

kHz and 10 kHz. Igor Pro was used for analysis of recordings (Wavemetrics, Lake Oswego, 

OR, USA).  

2.9. Quantitative real time polymerase chain reaction (qRT-PCR) 

At DIV 10, in each experiment 1*106 primary hippocampal cells, grown in 25 cm2 cell culture 

flasks (#690160, Greiner Bio One, Frickenhausen ,Germany) were incubated with 100µg/ml  

anti-GAD65 antibody containing SPS-IgG #1 or control IgG #1 (CIDP patient) for 3h at 37°C. 

Following incubation with IgG, RNA was extracted with RNeasy® mini kit (Quiagen, Hilden, 

Germany. Here, culture medium was removed from preincubated cells and exchanged by 

RLT® lysis buffer supplemented with 20µl ß-mercaptoethanol (Roth, Karlsruhe, Germany). 

After 2 min incubation time cells including lysis buffer were scraped into Eppendorf cups with 

a cell scraper (Hartenstein, Würzburg, Germany) and further processed according to manu-

facturer protocol. Purity and concentration was assessed by measuring absorption of RNA 

solution using a Nanodrop® device (Wilmington, USA).  

Reagents for reverse transcription and qRT-PCR were obtained from Life Technologies 

(Darmstadt, Germany) if not stated otherwise. RNA was handled on ice if not other specified. 
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250ng RNA was used as input for reverse transcription of each sample. After addition of 5µl 

random hexamer to RNA, mixture was incubated for 3 min at 85°C using a heating block 

(TS-100, Thermoshaker, Hartenstein) and subsequently stored on ice for further steps. 2µl 

Oligo-DT und 60.2 µl premix (10µl 10x buffer; 22µl 25mM MgCL2; 20µl dNTP; 2µl RNASE 

Inhibitor; 6.2µl Multscribe) were added to the solution. RNA was reverse transcribed to cDNA 

using the following program: 10 min at 25°C, 60 min at 48°C and 5 min at 95°C.  

qRT- PCR primers for Gad1 (Kit ID: Mm00725661_s1), Gad2 (Kit ID: Mm00484623_m1, 

GAPDH (Kit ID: Mm99999915_g1) und 18s rRNA (Nr.: 4319413E) were obtained as Taq-

man© gene expression assays at Life technologies (Darmstadt, Germany). Premix (2µl mas-

termix, 0.25µl primer (250nM), 1.75µl destilled H2O) and sample were mixed in a 4:5 ratio 

and 9µl of final reaction solution was applied to each well.   

Gad 1 and Gad 2 were recorded as triplets and cDNA of housekeeping genes as well as 

negative controls as duplets. qRT - PCR was performed using a StepOnePlus® qRT-PCR 

device from Life Technologies (Darmstadt, Germany) repeating the following cycles:  20s at 

95°C, 40 repetitions of 1s at 95°C followed by 20s at 60°C. CT values were calculated as 

described (Livak and Schmittgen, 2001).  

 

2.10.  Statistics 

Statistical comparisons and plots were made in Microsoft Excel and Systat Sigmaplot 12 

(Erkrath, Germany). Samples were compared with non-parametric Mann-Whitney U test and 

with one-way ANOVA following Tukey post-hoc test for groupwise comparisons. Graphs re-

port mean and standard error of mean if not stated otherwise. 
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3. Results A: Impact of SPS anti-amphiphysin AB on synaptic 

structure 

3.1. Sustained stimulation increases synaptic vesicle pool size and the 

amount of clathrin-coated vesicles in naïve GABAergic spinal cord inter-

neurons 

The consequences of sustained high frequency Ia afferent stimulation on the presynaptic 

vesicle pool of naïve spinal cord interneurons were investigated in boutons next to ventral 

horn motoneurons at the lumbar spinal cord level using EM. Prior to perfusion with fixative, Ia 

afferents of the rat tibial nerve were unilaterally stimulated at 10 Hz for 60 s. This heter-

osynaptic activation of local GABAergic neurons (Figure 5 A) allows investigation of presyn-

aptic inhibition in spinal circuits that was shown to be disturbed by specific anti-amphiphysin 

AB in a previous report (Geis et al., 2010).  

We measured vesicle pool size, density of CCVs, and ELS in spinal presynaptic boutons of 

in the L4-5 levels of spinal cord hemisegments (stimulated vs. unstimulated condition). Pre-

synaptic spinal terminals can use multiple neurotransmitters in parallel (Somogyi, 2002). To 

focus on primary GABAergic boutons, we defined this type of bouton population by applying 

a threshold on GABA immunoreactive postembedding signal and analyzed this subgroup of 

boutons in addition to the total number of all perisomatic boutons regardless of transmitter 

specificity located adjacent to ventral horn motoneurons (Figure 5 B).  

 

 

Fig 5 Experimental setup and categorization of synapse types 
A) Scheme of experimental setup depicting unilateral stimulation of Ia afferents targeting ventral horn 
motoneurons (rhombus: motoneuron; white circle: excitatory neuron; block circle: local GABAergic 
inhibitory neuron. Flashes represent stimulation of peripheral Ia afferent) B) Example micrographs of 
spinal boutons with high GABA immunoreactivity (arrows, GABA rich) or low reactivity (GABA poor). 
Scale bar = 250 nm. 
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In control animals which received non-reactive control patient IgG intrathecally, sustained 

stimulation increased the size of the presynaptic vesicle pool (Figure 6; unstimulated = 32.5 ± 

0.3 n/µm2, n = 51; stimulated = 47.3 ± 4.2 n/µm2, n = 52 analyzed boutons).  

 

 

Fig 6 Increased synaptic vesicle density in stimulated spinal boutons (control condition). 
EM micrographs show unstimulated and stimulated spinal boutons of controls (scale bar: 250 nm). 
Boutons are marked with decent yellow. Quantification of vesicle (purple) density of all boutons and in 
the subgroup of GABA rich presynapses revealed larger synaptic vesicle pool size in stimulated condi-
tions compared to basal neuronal activity. Frequency distribution histogram shows a shift towards a 
higher number of boutons with high vesicle density (GABA rich boutons; *p<0.05).  
 

At low synaptic activity only few endocytic intermediates (CCV and ELS) were found whereas 

stimulation evoked accumulation of these intermediates within the synaptic vesicle pools. 
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(Figure 7, [CCV]: unstimulated = 3.2 ± 0.6 n/µm2, n = 40; stimulated = 6.2 ± 1.3 n/µm2, n = 

52; Figure 8, [ELS]: unstimulated = 1.0 ±, 0.3 n/µm2, n = 44; stimulated = 2.0 ±, 0.5 n/µm2, n 

= 53). 

 

Fig 7 Increased CCV intermediates at high synaptic activity in spinal boutons (control condi-
tion). 
EM microscopic images of unstimulated and stimulated spinal cord synapses showing CCVs. In 
stimulated boutons several CCVs were detected (in red) compared to only few in unstimulated pre-
synaptic compartments. Insets present detailed structure of CCVs with visible triskelia surrounding the 
vesicle core structure. Synapses predominantly using GABA as neurotransmitter show a similar trend 
but no significant changes in CCV density. Frequency distribution histogram represents data distribu-
tion of CCV density analysis of GABArich terminals. Scale bar: 250 nm, scale bar of insets: 50 nm; 
*p<0.05.  

 
Collectively, the results obtained from control animals indicate that spinal cord presynapses 

keep step with long-duration, high-frequency stimulation by generating an activity-induced 
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bulk of presynaptic vesicles including enlarged endocytic intermediates that are known from 

studies of ultrafast endocytosis (Kittelmann et al., 2013, Watanabe et al., 2013). 

 

Fig 8  Increased number of ELS upon stimulation in spinal boutons (control condition). 
EM micrographs of spinal boutons enriched with enlarged organelles defined as ELS. These struc-
tures are identified by their increased size relative to synaptic vesicles. Note the increase of ELS at 
high synaptic activity compared to low synaptic activation. Bar graph depicts a significant difference 
between the activity patterns. Stimulation induced increase of ELS was not significant for GABArich 
boutons. Dot plot shows data distribution of ELS density in individual boutons. Scale bar: 250 nm, 
*p<0.05.  

3.2. Pathogenic human anti-amphiphysin AB interfere with CME leading to 
stimulus-dependent presynaptic vesicle depletion 

Next, the impact of anti-amphiphysin AB on the ultrastructure of spinal terminals was investi-

gated in the same experimental stetting using intrathecal application of affinity-purified hu-

man AB specific to amphiphysin (specAmph).  
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Spinal synaptic boutons of rats treated intrathecally with specAmph showed a markedly re-

duced synaptic vesicle pool size after stimulation (Figure 9, unstimulated = 54.0± 3.8 n/µm2, 

n = 109; stimulated = 29.3 ± 3.3 n/µm2, n = 66). This remarkable decrease at stimulated syn-

apses was also observed when focussing on boutons with high GABA immunoreactivity 

(Figure 9, unstimulated = 57.8± 6.0 n/µm2, n = 47; stimulated = 32.2 ± 5.8 n/µm2, n= 25). 

 

Fig 9 Reduced vesicle density in stimulated boutons after intrathecal passive-transfer with 
specAmph AB 
EM micrographs of unstimulated and stimulated spinal boutons (scale bar: 250 nm). Boutons are 
marked with yellow and synaptic vesicles in light purple. Quantification of vesicle density in all boutons 
and in the subgroup of GABA rich presynapses shows a reduced vesicle density at high synaptic ac-
tivity. Frequency distribution histogram represents data distribution of vesicle density inside GABA rich 
boutons with a shift towards terminals with reduced vesicle density; **p<0.01, ***p<0.001. 
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Frequency distribution histogram in GABA rich boutons revealed a massive left shift with 

smaller vesicle pools after stimulation compared to low synaptic activity (Figure 9). Moreover, 

quantification of endocytic intermediates showed an even more remarkable depletion of 

CCVs in anti-amphiphysin AB treated animals (Figure 10).  

 

Fig 10 Depletion of CCV during high synaptic activity after intrathecal passive-transfer with 
specAmph AB 
EM micrographs depicting CCVs (marked in red) in unstimulated and stimulated spinal cord presyn-
apses (scale bar: 250 nm). Insets highlight detailed structure of CCVs with visible snowflake-like tri-
skelia edging (scale bar: 50 nm). Analysis of CCV density of all stimulated boutons reveals compara-
tively high number of vesicles equipped with clathrin coat already in resting conditions which were 
almost completely abolished after stimulation. The same observation was made in synapses with high 
levels of GABA. Frequency distribution histogram represents CCV density analysis of GABA rich ter-
minals showing a massive shift towards boutons with low number of CCV upon stimulation. 
***p<0.001.  
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Here, frequency distribution histogram clearly depicts an almost complete depletion of bou-

tons with higher density of CCV during stimulation (Figure 10). 

Similarly, reduction of ELS in presynaptic boutons after sustained stimulation was evident, 

although not reaching significance due to the overall low number of ELS (Figure 11; unstimu-

lated = 1.8 ± 0.2 n/µm2, n = 110; stimulated = 1.0 ± 0.2 n/µm2, n= 64; p = 0.061).  

 

 

Fig 11 Reduction of ELS in spinal cord boutons after intrathecal passive-transfer with spe-
cAmph AB 
EM microscopic images of ELS in unstimulated and stimulated spinal cord synapses (scale bar: 250 
nm). Analysis of ELS density of all stimulated boutons shows a not significant reduction of ELS at high 
synaptic activity in presence of anti-amphiphysin AB. Dot plot highlights distribution of boutons accord-
ing density of ELS with a shift towards terminals with low number of ELS.  
 

Group analysis comparing all experimental conditions further elucidates the opposing effect 

of anti-amphiphysin AB on endocytic function in spinal presynapses after sustained Ia affer-
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ent stimulation. In resting conditions with basal synaptic activity, presynaptic boutons of rats 

with intrathecal application of anti-amphiphysin AB showed a significant increased density of 

vesicles, CCV, and ELS in comparison to controls (Table 2). This contrasting vesicle recruit-

ment after anti-amphiphysin IgG administration already in resting conditions was also evident 

in the subgroup of predominantly GABAergic boutons (Table 2, right column). In controls, 

sustained stimulation led to a significant increase of vesicle pool formation and number of 

CCV. In sharp contrast, sustained high frequency stimulation had a reversed effect with 

massive depletion of vesicles and endocytic intermediates in spinal boutons after chronic 

intrathecal application of pathogenic AB to amphiphysin. 

 

 

Table 2 Group comparison of vesicle, CCV, and ELS density analysis. *p<0.05, **p<0.01, 
***p<0.001 

 

Collectively, in-vivo long-term intrathecal application of AB to amphiphysin induces massive 

changes in spinal presynaptic vesicle endocytosis with increased compensatory vesicle re-

cruitment including endocytic intermediates already at basal activity levels which is then 

nearly completely decompensated during sustained stimulation.  
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3.3. Different v-SNARE composition of GABAergic vesicle pools induced by 
anti-amphiphysin AB 

The massive structural endocytosis deficits in the animal experiments induced by anti-

amphiphysin AB revealed profound changes in presynaptic vesicle pools. To gain insight into 

molecular equipment of vesicle pools, for differentiation which part of vesicle pool is predom-

inantly affected, and to investigate if compensatory endocytic mechanisms take place, we 

performed dSTORM super-resolution microscopy with specific commercial immunoflo-

rescence antibodies. Here, we chose primary hippocampal cell culture as experimental mod-

el system which reduces circuit complexity and offers low background for quantification of 

fluorescent signals. Cultures of primary neurons were preincubated with purified IgG frac-

tions and stimulated by applying electric fields with similar stimulation parameters as in the 

in-vivo experiments. Molecular composition of synaptic vesicle pools was analyzed by meas-

uring the quantity of the two neuronal v-SNARE isforms synaptobrevin 2 (syb2) and synap-

tobrevin 7 (syb7) that were reported to be expressed on different forms of vesicle pools. 

Syb2 is known to be predominantly localized to ready releasable vesicles and syb7 shows 

preferential localisation to resting pool vesicles (Hua et al., 2011). As in-vivo experiments 

here and previous studies highlight a major effect of anti-amphiphysin AB on GABAergic 

transmission, we constrained our analysis to GABAergic synapses by recording the quantity 

of syb localisation counts in regions of interests (ROIs) defined by the epifluorescent signal of 

presynaptic VGAT, a reliable marker of GABAergic presynaptic terminals (Figure 12). 

 

Fig 12 Scheme for analysis of dSTORM signals 
Scheme for quantification of signals using ROIs of epifluorescent VGAT (green) signal, dashed lines 
highlight calculated ROIs, scale bars: 250 nm.  
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Syb2 signal density in GABAergic presynapes showed no changes at control conditions 

comparing low and high synaptic activity.  Interestingly, sustained stimulation of GABAergic 

synapses pretreated with pathogenic anti-amphiphysin AB increased syb2 localization count 

density inside GABAergic ROIs (Figure 13; controls unstimulated = 2.4 ± 0.3 n/nm2, n = 51 

analyzed ROIs; controls stimulated = 2.3 ± 0.1 n/nm2, n= 100, specAmph unstimulated = 2.6 

± 0.3 n/nm2, n = 85; specAmph stimulated = 4.8 ± 1.1 n/nm2, n = 70). 

 

 

Fig 13 specAmph AB induce increase of syb2 expression inside GABAergic presynapses  
Density of v-SNARE synaptobrevin 2 (syb2, magenta, dSTORM) over GABAergic boutons marked 
with vesicular GABA transporter (VGAT, green, epiflourescence) and corresponding signal intensity 
profiles of representative examples. Quantitative analysis of syb-2 reveals similar localization counts 
in unstimulated and stimulated control boutons. Stimulated specAmph pretreated boutons show an 
increased quantity of syb2 compared to unstimulated specAmph pretreated terminals or stimulated 
control terminals. Scale bars: 500 nm, range of heatmaps: 0-255 bits. ***p <0.001 
 
 

This increase of syb2 signal was also highly significant in comparison to stimulated control 

presynapses. In the next set of experiments we investigated impact of specAmph AB on 

density of v-SNARE syb7 targeting predominantly resting pool vesicles. Analysis of syb7 
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densities showed overall low signal inside GABAergic synapses which is in line with reports 

measuring a higher amount of syb2 copies with respect to other synaptic vesicle proteins 

(Takamori et al., 2006). Quantification of syb7 signal revealed a gradual increase of syb7 

density in GABAergic presynapses of control boutons following stimulation (Figure 14, con-

trols unstimulated = 0.22 ± 0.03 n/nm2, n = 79; controls stimulated = 0.38 ± 0.07 n/nm2, n= 

72). In contrast, after pretreatment with affinity-purified anti-amphiphysin IgG, syb7 quantity 

was markedly reduced upon stimulation (Figure 14, specAmph unstimulated = 0.16 ± 0.06 

n/nm2, n = 98; specAmph stimulated = 0.05± 0.01 n/nm2, n = 78).  

 

 

Fig 14 specAmph AB mediate decrease of syb7 upon stimulation 
Analysis of signal quantity of vesicular SNARE synaptobrevin 7 (syb7, magenta, dSTORM) using 
VGAT signal (green) as a mask for GABAergic boutons (scale bar: 500 nm). Analysis reveals a nomi-
nal increase of syb7 localization count in controls by stimulation. Contrary, in specAmph pretreated 
neurons, syb7 quantity is gradually decreased at high synaptic activity. In comparison to stimulated 
control conditions, analysis reveals a highly significant reduction of syb7 signal in stimulated GABAer-
gic boutons after specAmph application; scale bars: 500 nm, range of heatmaps: 0-255 bits. ***p 
<0.001 
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Together, endocytic dysfunction induced by AB targeting amphiphysin influences synaptic 

vesicle pool dynamics by changing v-SNARE expression pattern of synaptic vesicles in GA-

BAergic vesicle pools towards a relative increase of presumably ready releasable vesicle 

equipped with syb2 at the cost of the resting pool.  

3.4. Human AB to amphiphysin alter endophilin density and clustering in 
GABAergic presynaptic vesicle pools 

In-vivo experiments clearly demonstrated that repetitive intrathecal administration of anti-

amphiphysin IgG results in enhanced density of CCV at basal synaptic activity. This finding 

suggests that compensatory mechanisms may contribute to the endocytic machinery during 

the pathological influence of anti-amphiphysin AB. We therefore investigated the direct am-

phiphysin interaction partners endophilin and synaptojanin. These proteins are not involved 

in membrane fission and the respective KO mouse models show similar synaptic pathology 

at resting conditions as observed in our passive-transfer model in presence of AB targeting 

amphiphysin (Milosevic et al., 2011).   

We analyzed the quantity of endophilin signal over GABAergic vesicle pools in primary neu-

rons at different activation patterns. Control GABAergic synapses had a reduction of en-

dophilin signal after sustained stimulation (Figure 15; control unstimulated = 1.02 ± 0.14 

n/nm2, n = 107; control stimulated = 0.60 ± 0.08 n/nm2, n= 106). Against this, after preincuba-

tion with pathogenic anti-amphiphysin AB, stimulation evoked nominal but not significant in-

crease of endophilin signal inside GABAergic terminals (Figure 15; specAmph unstimulated = 

0.76 ± 0.07 n/nm2, n = 154; specAmph stimulated = 1.02 ± 0.25 n/nm2, n= 114).  

In addition to the absolute number of synaptic proteins, proper localization is essential for 

endocytic function. We therefore analyzed clustering of endophilin proteins by measuring 

distance between endophilin signal maxima (Figure 16). After stimulation, the mean distance 

between maxima was increased when neurons were preincubated with specAmph IgG indi-

cating dispersion of endophilin signal during high synaptic activity. In control condition, stimu-

lation did not change clustering of endophilin (Figure 17; control unstimulated: 2386 ± 343 

nm, n = 71, control stimulated: 1770 ± 158 nm, n = 92, specAmph unstimulated: 2261 ± 225 

nm, n = 69, specAmph stimulated: 2962 ± 325 nm, n = 78). Accordingly, frequency distribu-

tion histograms revealed a higher number of GABAergic synapses with longer distances be-

tween endophilin maxima at stimulation after application of specific anti-amphiphysin IgG. 
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Fig 15 Stimulation induced different endophilin expression pattern in GABAergic boutons de-
pendent on IgG preincubation 
Analysis of endophilin (cyan) expression in GABAergic boutons (green). Controls show reduced locali-
zation count of endophilin signal over GABAergic vesicle pools upon stimulation. Pretreatment with 
specAmph leads leads to a reverse regulation with a slight increase of endophilin quantity after stimu-
lation; scale bars: 500 nm, range of heatmaps: 0-255 bits. **p<0.01.  

 

 

 

Fig 16 Scheme of cluster analysis of dSTORM signals 
Crosshairs depict detected signal maxima, dashed lines show analyzed ROI, scale bar: 250 nm. 
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Fig 17 Stimulation evoked dispersion of endophilin signal maxima in presence of specAmph 
AB   
Images show endophilin signal (cyan, dSTORM) in GABAergic synapses (green, epiflourescence). 
Frequency distribution histograms show a population of GABAergic synapses with increased distance 
between endophilin maxima after stimulation and specAmph preincubation. Analysis of point distance 
between endophilin signal maxima of unstimulated versus stimulated GABAergic boutons reveals 
nearly equal distances between endophilin clusters comparing unstimulated and stimulated control 
boutons. Stimulated specAmph boutons show dispersion of endophilin signal compared to stimulated 
controls; scale bars: 500 nm, range of heatmaps: 0-255 bits; *p<0.05  
 

 

Different from endophilin, quantity as well as synaptic localization of the phosphatase synap-

tojanin was unchanged between experimental groups (Figure 18, quantity of synaptojanin 

localization counts : controls unstimulated = 0.27 ± 0.04 n/nm2, n = 93; controls stimulated = 

0.30 ± 0.04 n/nm2, n = 135, specAmph unstimulated = 0.33 ± 0.06 n/nm2, n = 141; specAmph 

stimulated = 0.38 ± 0.05 n/nm2, n = 90; Figure 19, distance between synaptojanin maxima: 

controls unstimulated = 711 ± 74 nm, n = 58; controls stimulated = 827 ± 85 nm, n = 69, spe-

cAmph unstimulated = 704  ± 67 nm, n = 59; specAmph stimulated = 923  ± 92  nm, n = 54).  
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Fig 18 Synaptojanin expression in GABAergic boutons is unaffected by AB targeting am-
phiphysin  
Quantitative analysis of synaptojanin signal (cyan, dSTORM) in GABAergic synapses (green, 
epiflourescence) results in similar amount of synaptojanin in GABAergic synapses in all experimental 
groups; scale bars: 500 nm, range of heatmaps:0-255 bits.  
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Fig 19 Stable synaptojanin clustering in presence of AB to amphiphysin 
Quantitative analysis and frequency distribution histograms of synaptojanin (cyan, dSTORM) in GA-
BAergic synapses (green, epiflourescence) reveal nearly equal distances between synaptojanin clus-
ters comparing all experimental groups without additional peaks of subgroups; scale bars: 500 nm, 
range of heatmaps: 0-255 bits.  
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4. Results B: Functional consequences induced by anti-GAD65 

containing SPS-IgG2 

4.1. Normal basal GABAergic neurotransmission in presence of anti-GAD65 
AB containing SPS-IgG 

IgG AB from SPS patients containing high titer of anti-GAD65 AB have been shown to cause 

motor deficits, increased anxiety, cognitive dysfunction, and increased excitatory synaptic 

potentiation (see introduction for detailed information). These findings and SPS patient symp-

toms with motor overexcitation and increased anxiety suggesting defective inhibitory tone led 

to the hypothesis that a defective GABAergic transmission due to AB-induced GAD65 dys-

function might be the underlying pathomechanism.  

To evaluate hypothesized AB mediated functional defects of GABAergic transmission whole 

cell voltage clamp recordings were performed at hippocampal granule cells in brain slices 

preincubated with anti-GAD65 AB containing IgG or control IgG. Granule cells were excited 

by stimulation of molecular layer basket cell afferents forming GABAergic synaptic contacts 

onto granule cells and inhibitory postsynaptic currents (IPSC) were recorded (Figure 20 A).  

 

Fig 20 Similar GABAergic eIPSC amplitude and kinetic characteristics in presence of anti-
GAD65 AB containing IgG 
A) Experimental setup for recording IPSCs in acute hippocampal slices. GABAergic basket cell axons 
were stimulated in the inner third of the granule cell layer. IPSC evoked by minimal stimulation of GA-
BAergic basket cell axons residing in the inner third of the granule cell layer were recorded in granule 
cells that were monosynaptically connected.  GCL = granule cell layer, ML = molecular layer, rec = 
recording electrode, stim = stimulation electrode; scale bar: 20µm B) Analysis of single-evoked IPSC 
from dentate gyrus granule cells after preincubation with control IgG or SPS-IgG demonstrates no 
change in eIPSC amplitudes and kinetics. Upper traces show averaged responses of representative 
individual neurons.  

                                            

Results from figure 20-23 and figure 25 have been published in: Werner et al., 2014  
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Whole cell patch clamp recordings from hippocampal granular cells after minimal stimulation 

of GABAergic afferences were unchanged after incubation with SPS-IgG and control IgG in 

amplitude (Figure 20 B; control IgG #1 = 163.5 ± 23.1 pA; SPS-IgG #1 = 161.2 ± 31.2 pA; p 

=0.824) and eIPSC kinetics (Figure 20 B; [rise time]: control IgG #1 = 1.2 ± 0.2 ms; SPS-IgG 

#1 = 1.4 ± 0.3 ms; p = 0.524; [decay time]: controls = 15.4 ± 1.1 ms, SPS-IgG #1 = 12.9 ± 

0.9 ms; p = 0.134); n [control IgG #1] = 15, n [SPS-IgG #1] = 10). 

 

4.2. Normal short term plasticity and high frequency transmission after anti-
GAD65 IgG incubation 

IPSCs can also vary depending on preceding activity which can be evaluated in paired pulse 

experiments. Depending on synapse type, inter-stimulus intervals, and experimental condi-

tions synapses can undergo synaptic facilitation or depression.  

This mechanism called short-term plasticity is depending on intracellular calcium levels, vesi-

cles available for exocytosis and vesicular release probability. We measured short-term plas-

ticity and vesicular GABA loading at short inter-pulse intervals, using the paired pulse para-

digm applying different interstimulus intervals. For all tested intervals there was paired pulse 

depression without any difference between the experimental groups (Figure 21 A; values of 

the test pulse are given in relation to the preceding pulse; 50 ms: control IgG #1  = 0.97 ± 

0.07, n = 6; SPS-IgG #1  = 0.89 ± 0.14 n = 8, p = 0,645; 100 ms: control IgG #1  = 0.92 ± 

0.06, n = 11,; SPS-IgG #1  = 0.96 ± 0.01, n = 9, p = 0.761; 250 ms: control IgG #1 = 0.89 ± 

0.09, n = 11, SPS-IgG #1 = 0.84 ± 0.05, n = 13, p = 0,720; 500 ms: control IgG #1  = 0.90 ± 

0.04, n = 6, SPS-IgG #1  = 0.94 ± 0.04, n = 8, p = 0.652). 

AB-mediated effects may have been masked at low synaptic activity. Therefore GABAergic 

basket cell axons were stimulated using high frequency (10 Hz) train stimulation. In both 

groups, high-frequency stimulation induced depression was as expected without any differ-

ences between preincubation of control or SPS-IgG (Figure 21 B).  
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Fig 21 SPS-IgG with anti-GAD65 AB does not affect short term plasticity or high frequency 
transmission of a basket cell – granule cell GABAergic synapse 
A) Paired stimulation at tested interpulse intervals revealed depression of the second pulse without 
differences between tested groups. B) IPSC peak amplitude during high frequency stimulation of GA-
BAergic basket cell axons was not compromised by anti-GAD65 IgG preincubation (bin size = 5; n 
[control IgG] = 9, n [SPS-IgG] = 6). 
 

4.3. Anti-GAD65 AB containing IgG increases frequency of mIPSCs  

To investigate single fusion of GABAergic vesicles miniature IPSCs were recorded in ab-

sence of action potentials. Miniature potentials are spontaneous quantal currents that pre-

sumably represent single vesicular fusions releasing only one vesicle quantum from the pre-

synaptic active zone for binding to postsynaptic target receptors. Frequency of mIPSCs is 

limited by release probability whereas mIPSC amplitude is determined by transmitter content 

of release-ready vesicles, postsynaptic receptor characteristics, and receptor location in the 

synapse. To characterize AB-mediated changes in single vesicular fusion we measured 

mIPSC amplitudes and frequencies in presence of the sodium channel blocker tetrodotoxin 

(TTX). 

In two separate experiments, preincubation with SPS-IgG from different patients lead to a 

significant increase of mIPSC frequency in acute  hippocampal slices compared to the re-

spective controls (Figure 22; control IgG #1 = 0.62 Hz ± 0.14 Hz, n[control IgG #1] = 8, SPS-

IgG #1 = 1.29 ± 0.26 Hz, n[SPS-IgG #1] = 7, p=0.038; control IgG #2 = 0.68 ± 0.07 Hz,  

n[control IgG #2] = 6, SPS-IgG #2 = 0.91 ± 0.10 Hz, n[SPS-IgG #2] = 7; p=0.035). 
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Fig 22 GAD65-IgG increases release probability of spontaneous GABAergic transmission  
Traces show representative mIPSC recordings of control IgG #1 and #2 and of SPS-IgG (patient #1 
and patient #2) pretreated neurons. mIPSC amplitude was not different while incubation with SPS-IgG 
led to an increase in the frequency of miniature potentials; *p<0.05 
  

 

Against this, mIPSC amplitudes were not affected by SPS-IgG (Figure 22; control IgG #1 =  

43.2 ± 2.2 pA, n[control IgG #1] = 8, SPS-IgG #1 = 40.9 ± 3.0  pA,  n[SPS-IgG #1] = 7, p= 

0.977; control IgG #2 = 43.2 ± 2.2 pA, n[control IgG #2] = 6, SPS-IgG #2 = 45.2 ±  2.8 pA, 

n[SPS-IgG #2] = 7; p = 0.534) suggesting that individual vesicles were loaded with similar 

content in both experimental groups contradicting the hypothesis of reduced GABA availabil-

ity.  

Increased mIPSC frequency might result from a compensatory increased amount and there-

fore more frequent vesicular fusions of vesicles in GABAergic boutons. To test this hypothe-

sis, the size of GABAergic vesicle pools was quantified in-vitro using confocal microscopy of 

axonal boutons of primary hippocampal neurons preincubated with SPS-IgG and non-

reactive control IgG. The number of synaptic vesicles was identified by signal quantification 

of the vesicle marker synaptophysin (syphy) in VGAT positive GABAergic presynaptic termi-

nals. To verify that VGAT area is a normalization factor with only minor variability, we com-

pared VGAT area between both experimental groups. Calculated mean VGAT positive area 

per bouton showed no relevant fluctuations (Figure 23, control IgG #1 = 6.55 ± 0.84 µm2, 

SPS patient-IgG #1 = 7.80 ± 1.72 µm2; p = 0.959) confirming VGAT as reliable normalization 

factor. The size of GABAergic synaptic vesicle pools identified by the area of syphy immuno-

reactivity normalized by VGAT area showed similar percentage in SPS-IgG treated neurons 

in comparison to controls (Figure 23, control IgG #1 = 71.2 ± 8.4 %, SPS-IgG #1 = 72.3 ± 6.3 
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%; p = 0.798). Moreover, calculations of integrated density (Figure 23, control IgG #1 = 

496.234 ± 108.459 bits/µm2, SPS-IgG #1 = 573.3 ± 146.6 bits/µm2; p = 0.878) and mean-

grey values over VGAT positive synapses  (Figure 23, control IgG #1 = 75.5 ± 12.4, SPS-IgG 

#1 = 72.0 ± 8.2,  p = 0.967) also revealed no differences in syphy signal. These results con-

firm that the size of GABAergic vesicle pools is not affected by SPS-IgG and cannot be re-

sponsible for the observed increased frequency of vesicular release.   

 

Fig 23 Increased mIPSC frequency cannot be attributed to larger GABAergic vesicle pools 
Representative confocal images of control IgG and SPS-IgG treated neurons. The overview micropho-
tograph shows merged images of neurons after VGAT (green) and syphy (magenta) double-staining. 
ROIs were defined on proximal axonal synapses (dotted rectangle) and taken for further analysis 
(scale bar: 20 µm). High magnification images (right) of dotted areas in the overview images show 
individual and merged color channels demonstrating similar syphy signal over VGAT signals in both 
treatment groups (scale bar: 5 µm). The VGAT area (mean area per bouton) was unchanged in both 
experimental groups. Syphy areas normalized to VGAT areas were nearly identical implicating a simi-
lar vesicle pool size in control IgG and SPS-IgG preincubated neurons. Integrated syphy intensity and 
mean grey values, both determined in VGAT positive presynaptic boutons, corroborate the finding of 
similar vesicle pool size comparing both experimental groups.  
 

Studies from GAD65 KO animals showed no compensatory gene expression changes of its 

isoform GAD67 (Asada et al., 1996). Acute inhibition by AB targeting existing GAD65 might 

induce different regulations. To test the hypothesis of compensatory, AB-induced changes in 

gene expression, mRNA levels of GAD isoforms (gad65, gad67), were determined using 

qRT-PCR of gad65 and gad67 after preincubation of primary hippocampal cell cultures with 

pathogenic SPS-IgG vs. control IgG.  

Experiments revealed no significant gene expression changes for gad65 (Figure 24, results 

are given as delta CT value; control IgG #1 = 9.56 ± 0.40, SPS-IgG #1 = 8.81 ± 0.32; p = 

0.212; n = 11 for both groups) or gad67 (Figure 24, control IgG #1 = 7.75 ± 0.32 SPS-IgG #1 
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= 6.98 ± 0.20; p = 0.101; n = 11 for both groups) suggesting no compensatory gene expres-

sion regulation mediated by anti-GAD65 AB containing SPS-IgG.                                                     

 

Figure 24 Anti-GAD65 AB containing IgG induces no gene expression changes of gad isoforms 
Plots compare qRT-PCR comparative thresholds (delta CT) of gad65 and gad67 mRNA normalized to 
two housekeeping genes (18s, GAPDH) purified from cells pretreated with control or SPS-IgG. 

 

From these different experiments and consisting results it became clear that AB to GAD65 

cannot account for the observation of increased release probability. Since polyclonal purified 

IgG-fractions were used in the patch-clamp experiments, additional IgG-AB to other target 

proteins than to GAD65 may be present. To investigate whether SPS patient IgG contains 

further possible pathogenic AB we performed immunohistological experiments with fractions 

depleted of GAD65 AB after affinity purification of SPS-IgG #2 with recombinant GAD65 

(SPSIgG #2preabsorbed). Western blotting on recombinant human GAD65 corroborated the suc-

cessful and complete depletion of AB to GAD65 from SPS-IgG #2 (Figure 25 B). Binding ex-

periments were done with SPSIgG #2preabsorbed in comparison to native SPS-IgG #2, and a 

further control IgG containing no specific antinueronal AB on primary neurons and murine 

hippocampal brain slices. As expected, native SPS-IgG #2 immunostained neuronal struc-

tures in primary cell cultures and dentate gyrus of hippocampal brain sections (Figure 25 A). 

Surprisingly, SPSIgG #2preabsorbed still showed still strong immunoreaction to neuronal struc-

tures in hippocampal slices and dissociated neurons with punctuate pattern similar to the 

staining pattern of other presynaptic markers (Figure 25 A). This finding strongly suggests 

the occurence of additional IgG-AB in SPS-IgG other than anti-GAD65 AB that are directed 

to so far not determined presynaptic antigens.  
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Fig 25 SPS-IgG depleted of GAD65-AB still binds to murine neuronal structures 
A) Positive immunolabeling of synapses of dissociated hippocampal neurons and mouse dentate gy-
rus in hippocampal slices with patient SPS-IgG #2 (red) before depletion and after removal of anti-
GAD65 AB (SPSIgG #2preabsorbed). Control IgG #2 showed no specific immunostaining. Blue = DAPI 
staining for cell nuclei.  Insets depict higher magnifications; scale bar (top row, slices): 100 µm, scale 
bar (bottom row, cells): 50 µm, scale bar (insets): 10 µm. B) Western blot (recombinant GAD65, 15µg 
per lane) confirming efficient depletion of anti-GAD65 AB from SPS-IgG #2 after affinity chromatog-
raphy; left lane = patient IgG #2, right lane = patient IgG#2 after preabsorption with recombinant hu-
man GAD65.                                           

4.4. Microisland cultures as model system to investigate functional effects of 
pathogenic antineuronal AB 

Availability and amount of patient material (IgG, serum, or CSF) for experimental use in re-

search of AB mediated synapse pathology is often a limiting factor. Also for in in-vitro physio-

logical experiments with AB preincubation of acute brain slices, relatively high amounts of 

patient material are necessary. This led to the idea to establish a model system with the ad-

vantage of known synaptic connectivity and the possibility of using very little patient material 

for incubation. These considerations directed to the establishment of a primary cell culture 

based model system with convenient possibilities to assess functional effects induced by 

pathogenic AB. The so-called microisland culture system consists of many isolated neurons 

on a coverslip that are separated from each other by specific preparation of the coverslip 

coating (for details see material and methods section, 2.3.).  

Microisland cultures offer several benefits 1) patient material is only needed in sparse vol-

ume similar to usual cell culture preparations 2) in contrast to usual neuronal cultures and 

brain slices, the circuit complexity is reduced and thus connectivity between neurons is clear-

ly monosynaptic 3) individual cells are located on microislands innvervating themselves with 

so called autapses allowing easy stimulation and recording of depolarization evoked autaptic 

potentials with the same patch-clamp pipette.  
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The structural and functional maturity of the established autapses in culture (Figure 26 A) 

was confirmed by immunostaining for synaptic vesicle marker syphy and the axonal marker 

PGP9.5. (Figure 26 C, D) as well as recording of eIPSCs by whole cell voltage clamp record-

ings in presence of CNQX and AP-5 blocking postsynaptic glutamatergic receptors (Fig 26 

B). This established model system can now be used in future experiments for evaluation of 

AB-induced synaptic dysfunction when patient material is limited. The next application will be 

functional investigations of preabsorbed SPS-IgG (SPSIgG #2preabsorbed) and specific patient 

anti-GAD65 AB reconstituted after affinity chromatography on GABAergic autaptic transmis-

sion. Due to the very small amounts of reconstituted IgG after affinity purification, microisland 

cultures represent an ideal model system. 

 

 

Fig 26 Microisland culture  
A) Differential interference contrast (DIC) image of a vital autaptic neuron in culture. B) depolarization 
(1ms) evoked IPSC recorded by whole cell voltage clamp. First deflection is the stimulus artifact due to 
depolarization. The IPSC (downward deflection) can be clearly separated. C) immunostaining of a 
microisland neuron with the axonal marker PGP 9.5. D) immunostaining with anti-synaptophysin 
AB.reveals occurence of presynaptic vesicles.  
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5. Discussion 

5.1. Pathophysiological mechanisms of anti-amphiphysin AB 

 

Synaptic neurotransmission depends on reliable compensatory reformation of synaptic vesi-

cles following fusion with synaptic membrane by CME or budding of new vesicles from bulk 

endosomes. Studies on CME function have relied on genetic KO of CME proteins (Milosevic 

et al., 2011, Raimondi et al., 2011, Soda et al., 2012) or acute block by inhibitory peptides 

(Shupliakov et al., 1997). Genetic absence of CME proteins leads to endocytosis defects 

characterized by appearance of different endocytosis intermediates depending on the point 

of interference with endocytosis (Di Paolo et al., 2002, Ferguson et al., 2007, Milosevic et al., 

2011). The present thesis revealed that pathogenic human AB targeting amphiphysin in 

paraneoplastic SPS can have effects on structure of presynaptic vesicle pools and the mo-

lecular composition of synaptic vesicles. 

Results reported here with reduction of synaptic vesicle pools and less endocytic intermedi-

ates in GABAergic boutons at high synaptic activity corroborate the findings that CME in 

GABAergic synapses is functionally primarily affected by specAmph AB (Geis et al., 2010). 

Here, ultrastructural abnormalities have been uncovered that represent dysfunctional CME 

after passive-transfer of anti-amphiphysin AB. Beside depletion of the presynaptic vesicle 

pool, loss of CCV removes the machinery for proper protein sorting and efficient preparation 

of vesicles for transmitter exocytosis (Faini et al., 2013). ELS are structures that are preva-

lent during ultrafast endocytosis (Watanabe, 2013). The reduction of ELS during stimulated 

conditions probably impedes fast replenishment of synaptic vesicles in synapses under sus-

tained activity. Finally, the structural defects characterized in this study are in line with anti-

amphiphysin AB induced functional defects like slower endocytosis rates and faster synaptic 

depression under prolonged high frequency neurotransmission as reported previously (Geis 

et al., 2010). 

The results here are different to observations from animals with genetic deficiency of am-

phiphysin 1 with probably sufficient compensatory mechanisms (Di Paolo et al., 2002). Fur-

ther, the findings in this study are different to previous reports showing stimulation induced 

accumulation of clathrin coated pits stalled at the membrane of lamprey presynaptic boutons 

that have been injected with inhibitory peptides targeting amphiphysin SH3 domain 

(Shupliakov et al., 1997). The differential effect of AB can be first explained by the fact that 

AB bind acutely to endogenous available amphiphysin with only minor possibility of compen-

satory mechanisms as it is frequently observed in KO animals. Second, in contrast to synap-
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ses in lamprey, mammalian CNS is far more complex with increased number of synaptic con-

tacts. Moreover, the study using inhibitory peptides targeting lamprey synapses used very 

long stimulation (30 min) at rather low frequency (0.2 Hz) which might not represent a physio-

logical stimulation as we mimicked with our paradigms.  

 

The protein composition on synaptic vesicles is generally believed to be different depending 

on which endocytic route is prevalent at a particular synapse (Voglmaier and Edwards, 

2007). The present results after molecular analysis of pathologic GABAergic vesicle pools 

indicate that targeting of v-SNARE isoforms as essential components of vesicle exocytosis to 

the different synaptic vesicle pools is disturbed. V-SNAREs were previously shown to charac-

terize different vesicle pools (Hua et al., 2011). V-SNAREs who are essential for fast synaptic 

neurotransmission may not be present in sufficient copy numbers or in the right ratio to guar-

antee sustained exocytosis at high synaptic activity levels. Syb7 as a marker for the resting 

pool of vesicles was massively reduced in primary neurons, which is in line with the observa-

tions of activity-dependent depletion of vesicle and CCV in spinal presynapses after anti-

amphiphysin IgG passive-transfer. V-SNAREs may even be trapped at the synaptic plasma 

membrane after fusion due to a slowed or blocked endocytic machinery as observed in a 

previous report (Shetty et al., 2013) which may explain the relative increase of syb2 signal in 

stimulated neurons after specAmph AB preincubation. Differential distribution of syb-2 may 

also result from its sorting by AP-180 (Koo et al., 2011) which itself has been shown to have 

more intense clustering in presence of anti-amphiphysin AB (Geis et al., 2010). 

The thesis elucidated that endophilin, an interaction partner of amphiphysin (Micheva et al., 

1997), is differentially expressed in GABAergic vesicle pools and seems to be abnormally 

localized during the influence of anti-amphiphysin AB. As endophilin was shown to be espe-

cially important for high frequency neurotransmission (Llobet et al., 2011), this difference in 

localization might in part explain functional defects caused by specAmph AB that are pre-

dominantly apparent during high synaptic activity (Geis et al., 2010). Moreover, triple KO of 

all endophilin isoforms leads to accumulation of CCVs (Milosevic et al., 2011) reminiscent to 

the ultrastructural findings of synapses after specAmph treatment at resting conditions re-

ported here. Although these results add important knowledge in a reduced model system of 

primary hippocampal neurons, they likely do not fully reflect the synaptic dynamics of rat spi-

nal presynaptic boutons in SPS in-vivo experiments. This study cannot rule out diverging 

manifestations of AB induced endocytosis defects in different subtypes of synapses. Future 

work will also have to elucidate if glutamatergic boutons of primary neurons are equally af-

fected by anti-amphiphysin AB mediated endocytosis deficits.  
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Results of the present dissertation highlight molecular and structural pathomechanisms un-

derlying Stiff person syndrome with pathogenic amphiphysin AB affecting presynaptic CME. 

It would be highly interesting in future research to perform experimental analysis of postsyn-

aptic receptor trafficking to challenge the hypothesis of an exclusive presynaptic action of 

anti-amphiphysin AB. Inhibition of postsynaptic endocytic machinery may interfere with en-

docytosis mediated reduction and recycling of surface receptors and hence also influence 

synaptic transmission (Wigge et al., 1997). This thesis not only provides important insights 

into pathophysiological details of a specific autoimmune CNS disorder but may also add 

principle knowledge for research on other neurological disorders that show reduction (De 

Jesus-Cortes et al., 2012) or inhibition (Trempe et al., 2009) of endocytic proteins.  

5.2. The role of anti-GAD65 AB in SPS 

SPS-IgG containing high titer of anti-GAD65 AB delivered to the CNS compartment of exper-

imental animals leads to motor deficits, increased anxiety, cognitive deficits and increased 

potentiation of excitatory transmission (Geis et al., 2011, Hampe et al., 2013, Hansen et al., 

2013, Vega-Flores et al., 2014). The hypothesis of direct pathogenic mechanism of anti-

GAD65 AB inducing disease signs in these animal models has long been a matter of debate. 

The present dissertation provides evidence that SPS-IgG of idiopathic SPS patients mediat-

ed an increase in GABAergic presynaptic quantal release probability in dentate gyrus basket 

cells projecting to granule cells. This finding is not in line with the assumption that anti-

GAD65 AB binding reduces enzymatic activity of GAD65. The hypothetical reduction of 

available neurotransmitter for loading into GABAergic vesicles would have been unmasked 

by smaller eIPSC amplitudes especially during high frequency stimulation. Against this, re-

sults here revealed no AB-induced changes of eIPSC at low and high synaptic activity. The 

hypothesis that AB-induced inhibition of GAD65 would resemble deficits in GAD65 KO mice 

was also not corroborated. The frequency dependent deficit of GABAergic transmission ob-

served in GAD65 KO mice (Tian et al., 1999) was not seen at high frequency stimulation af-

ter SPS-IgG preincubation.  It has to be noted that effects resulting from AB binding might by 

different compared to complete lack of a protein in a KO model including compensatory regu-

lations in the CNS. Moreover we cannot exclude that we missed AB mediated effects at other 

IgG concentrations or that incubation time is too short to allow access of AB to their intracel-

lular antigen. Nevertheless, we used IgG concentrations and an incubation time frame that 

have been validated in previous experiments with AB binding to amphiphysin which is also 

intracellular located in presynapses (Geis et al., 2010). 
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The results are in accordance with the assumption of additional pathogenic AB present in 

anti-GAD65-AB-positive SPS patient IgG fractions (Chang et al., 2013) that can account for 

the functional difference of mIPSC frequency after SPS-IgG preincubation. The already iden-

tified target structures for AB that coexist with anti-GAD65 AB in SPS patient serum comprise 

GABA-A receptor associated protein, gephyrin, and glycine receptors (Butler et al., 2000, 

Raju et al., 2006). These AB cannot be responsible for presynaptic modifications as their 

target epitopes are all residing at the postsynaptic compartment of GABAergic synapses. 

The increased probability of single vesicular fusions allows speculation towards putative ad-

ditional AB targeting presynaptic antigens that are involved in regulating presynaptic vesicu-

lar release, e.g. calcium sensors (Christgau et al., 1992, Pang et al., 2011, Walter et al., 

2011) or vesicle proteins regulating spontaneous release mechanisms (Ramirez et al., 2012). 

These AB might be specific to GABAergic synapses since not all primary hippocampal neu-

rons showed positive immunostaining in cell culture preparations (preliminary observations).  

Patient symptoms can be explained by chronically increased spontaneous release of pre-

synaptic GABA possibly leading to homeostatic mechanisms that downregulate GABA-A 

receptors. Chronic spontaneous activity might also induce desensitization of postsynaptic 

GABA-A receptors. These assumptions would be consistent with reports of reduced GABA-A 

receptor binding potential in SPS patients (Galldiks et al., 2008). The decrease of inhibitory 

transmission may lead to comparatively increased excitatory transmission contributing to 

SPS-symptoms. 

However, it remains a matter of debate whether short incubation of anti-GAD65 AB with slic-

es allows AB to reach their target antigens in a similar pattern as compared to long exposure 

over several days in in-vivo animal models. Therefore it cannot be fully excluded that anti-

GAD65 antibodies still may have a limited pathogenic effect on GABAergic neurotransmis-

sion, but this seems unlikely according to the results shown here. The present experiments 

could provide important evidence for putative new target antigens present in patient serum or 

CSF that need to be characterized in future studies. Furthermore, experiments including pre-

absorbed SPS patient IgG and reconstituted anti-GAD65 fractions will clarify the pathogenic 

role of existing anti-GAD65-AB (Geis et al., 2010). Here, the established microisland neu-

ronal cultures offer a convenient model system to investigate these experimental questions 

with a limited amount of patient material. Autapses forming monosynaptic contacts can easily 

be manipulated and characterized (Ikeda and Bekkers, 2006) and time as well as concentra-

tion-dependent processes can conveniently investigated in standardized series of experi-

ments.    

Gene expression analysis showed that SPS-IgG containing GAD65 AB induced no compen-

satory gene expression changes neither of GAD65 itself or compensatory regulation of its 
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isoform GAD67 which is in line with observations in GAD65 KO mice (Asada et al., 1996). 

This finding was found in neurons of DIV10 cell cultures. Primary cell cultures are intercon-

nected in less complex networks than brain tissue and synapse formation might not be fully 

established at that timepoint, so data from in-vivo experiments with adult animals and longer 

exposure time might show different results. For incubation experiments a validated concen-

tration of anti-GAD65 containing IgG was used (Geis et al., 2010) but a dose response rela-

tionship is still warranting further experiments with different preincubation concentrations of 

SPS-IgG. It would also be interesting to perform gene expression analysis of a variety of pre-

synaptic antigens involved in presynaptic release machinery to get further insights into SPS-

IgG mediated synaptic changes and to obtain first hints for identification of the putative addi-

tional antigen targeted by SPS-IgG. The next steps would imply to perform 2D-gel electro-

phoresis experiments followed by protein identification by mass spectrometry.  

In conclusion, the experiments with anti-GAD65 positive SPS-IgG in this thesis revealed new 

and unexpected findings suggesting additional presynaptic autoantigens in SPS and might 

contribute to further research elucidating the synaptic pathophysiology of idiopathic SPS.  
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BSA bovine serum albumine 

°C degree celsius 

µg 10-3 g 

µm 10-6 meter 

µs 10-3 second 

a.u. arbitrary units 

AB autoantibodies 

ACSF artificial cerebrospinal fluid 

AMPA alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

ANOVA analysis of variance 

AP-2 adaptor protein 2 

AP-3 adaptor protein 3 

AP-5 D-2-amino-5-phosphonovalerate 

BAR Bin/Amphiphysin/Rvs 

CCD charge-coupled device 

CCV clathrin coated vesicles 

cdk5 cyclin dependent kinase 5 

cDNA complementary deoxyribonucleic acid 

CIDP chronic inflammatory demyelinating polyneuropathy 

cm 10-2 meter 

CME clathrin mediated endocytosis 

CNQX 6-Cyano-7-nitroquinoxaline-2,3-dione 

CNS central nervous system 

CSF cerebrospinal fluid 

CT comparative threshold 

DG dentate gyrus 

DIV days in vitro 

dSTORM direct stochastic optical reconstruction microscopy 

E18 day 18 embryonal state 

EDTA ethylenediaminetetraacetic acid 

eIPSC evoked inhibitory postsynaptic currents  

ELS endosome like structures 

EM electron microscopy 

EMCCD electron multiplying charge-coupled device 

FBS fetal bovine serum 

fig. figure 

FWHM full width half maximum 

g gram 
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GABA ү - aminobutyric acid 

GABARAP GABAA receptor associated protein 

GAD glutamate decarboxylase 

GAD65 glutamate decarboxylase 65 

GAD67 glutamate decarboxylase 67 

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 

GTPase Guanosintriphosphatase 

h hour 

H2O water 

HBSS Hank´s Balanced Salt Solution  

Hz Hertz 

i.th. intrathecal 

IgG immunoglobulin G 

IPSC inhibitory postsynaptic current 

kHz 103 Hz 

KO knockout 

M mega  

m meter 

M molar 

MEA mercaptoethylamine 

min minute 

mIPSC miniature inhibitory postsynaptic current 

ML molecular layer 

mm 10-3 meter 

mM 10-3 molar 

ms 10-3 second 

ng 10-9 gram 

nm 10-9 meter 

NMDA N-methyl-D-aspartate 

pA 10-12 ampere 

PBS phosphate buffered saline 

PDL poly-D-lysine  

PFA paraformaldehyde 

PGP 9.5 protein gene product 9.5 

PIP2 Phosphatidylinositol-4,5-bisphosphate 

PLP pyridoxal 5´ phosphate  

PMT photomultiplier tube 

ppr paired pulse ratio 

PRD proline rich domain 

PS penicillin streptomycin  



Appendix B: Abbreviations  

60 

 

PSF point spread function 

qRT-PCR quantitative reverse transcription polymerase chain reaction 

rec recording 

RNA ribonucleic acid 

ROI region of interest 

RT room temperature 

s second 

SEM standard error of mean 

SH3 spectrin homology 3  

SNARE soluble N-ethylmaleimide-sensitive-factor attachment receptors  

specAmph treated with specific autoantibodies to Amphiphysin 

SPS Stiff person syndrome 

STED stimulated emission depletion 

stim stimulation 

syb synaptobrevin 

syb2 synaptobrevin 2 

syb7 synaptobrevin 7 

Syphy Synaptophysin 

Tirf total internal reflection fluorescent 

TTX tetrodotoxin 

V volt 

VGAT vesicular GABA transporter 

v-SNARE vesicular soluble N-ethylmaleimide-sensitive-factor attachment receptors  

Ω Ohm 
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