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Notation

Notation

Spaces

N the natural numbers
R the real numbers
R≥ the nonnegative real numbers
R> the positive real numbers
Rn the n-dimensional real vector space
Rn
≥ the nonnegative orthant in Rn

Rn
> the positive orthant in Rn

Sets

{x} the set consisting of the vector x
|S | the cardinality of S
S 1 ⊆ S 2 S 1 is a subset of S 2

S 1\S 2 the set of elements contained in S 1 but not in S 2

S 1 ∩ S 2 the intersection of S 1 and S 2

S 1 ∪ S 2 the union of S 1 and S 2

S 1 × S 2 the cartesian product of S 1 and S 2

D ·Ω D ·Ω := {Dw | w ∈ Ω} for a set Ω ⊆ Rn and a matrix D ∈ Rm×n

]x1, x2[ an open interval in R
[x1, x2] a closed interval in R

Vectors and Matrices

x ∈ Rn a column vector in Rn

(x, y) the column vector (xT , yT )T

xi the i-th component of x
xJ the vector in R|J| with J ⊆ {1, . . . , n} consisting of the components xi, i ∈ J
supp x the support of a vector x ∈ Rn, supp x = {i | xi , 0} ⊆ {1, . . . , n}
x ≥ y componentwise comparison xi ≥ yi, i = 1, . . . , n
x > y componentwise comparison xi > yi, i = 1, . . . , n
max{x, y} the vector whose i-th component is max{xi, yi}
‖x‖ the Euclidean norm of x, ‖x‖ := ‖x‖2 =

√∑n
i=1 x2

i

In ∈ Rn×n the identity matrix of size n × n
diag (x) the diagonal matrix with diagonal elements xi for a vector x ∈ Rn

Cones

TX(x) the Bouligand tangent cone to X in x
LX(x) the linearized tangent cone to X in x
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Notation

Functions

f : Rn → Rm a function that maps Rn to Rm

fi : Rn → R the i-th component of f
Φ : Rn ⇒ Rm a set-valued mapping that maps Rn to subsets of Rm

dom F the domain of a function or set-valued mapping F
epi f the epigraph of a function f
gph Φ the graph of the set-valued mapping Φ

∇ f (x) the gradient of a function f : Rn → R at the point x ∈ Rn, column vector
∇x f (x, y) the gradient of f with respect to x only
D f (x) the Jacobian of f : Rn → Rm at x ∈ Rn

∇ f (x) the transposed Jacobian of f : Rn → Rm at x ∈ Rn

∇2 f (x) the Hessian of f : Rn → R at x
∇2

xx f (x, y) the Hessian of f : Rn → R with respect to x only
∂ f (x) the subdifferential of a convex function f : Rn → R at the point x ∈ Rn

PX(x) the Euclidean projection of a vector x onto the set X
δX the indicator function of a set X

Sequences

{xk} ⊆ Rn a sequence in Rn

xk → x̄ a convergent sequence with limit x̄
limk→∞ xk limit of the convergent sequence xk

{tk} ⊆ R a real-valued sequence
tk ↓ t̄ a convergent sequence with limit t̄ and tk > t̄ for all k ∈ N

Quantifiers and Logical Connectives

∀ for all
∃ there exists
∃! there exists exactly one
∧ conjunction (and)
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1. Introduction

In this thesis we investigate smoothness properties of primal and dual reformulations of two prob-
lem classes: generalized Nash equilibrium problems (GNEPs) and quasi-variational inequality
problems (QVIs). GNEPs have widespread applications in various fields such as economics,
engineering, computer science, operations research, telecommunications, and deregulated mar-
kets (see [47] for references), whereas QVIs provide a generalization of GNEPs and can be very
helpful by modeling complex equilibrium situations that occur not only in the context of GNEPs
but also in many other fields such as mechanics, physics, statistics, transportation, and biology
(see [50] for references).

In this thesis we first analyze player convex GNEPs in Part I and then their generalization
QVIs in Part II. Before that, we present some background material from convex and variational
analysis and obtain a smoothness result for a class of parametric optimization problems that fits
into our framework in Chapter 2.

The two main parts of this thesis have similar structure: After the definitions and a literature
overview on the particular problem classes, we consider reformulations of player convex GNEPs
and QVIs as possibly nonsmooth constrained or unconstrained minimization problems based on
well-known primal gap functions, see Chapters 3 and 7, respectively. Additionally, we analyze
three special classes of QVIs in Chapter 8: The first class is a generalization of QVIs with
‘moving sets’, the second are QVIs with set-valued mappings in product form, and the third are
QVIs as an important application to GNEPs. In Chapters 4 and 9 we investigate the continuity of
a corresponding primal gap function for player convex GNEPs or QVIs and relate the points at
which these functions are continuous to interior points of the domain of these functions, where
subsequently the differentiability properties of these functions are studied. Our main result is
that, apart from special cases, the primal gap functions are differentiable at all local minimizers
of the respective reformulation for player convex GNEPs or QVIs.

In Chapters 5 and 10, respectively, we study smoothness properties of an unconstrained op-
timization reformulation of a class of GNEPs or QVIs arising from a corresponding dual gap
function. These dual functions are based on an idea by Dietrich [30] and developed by rewriting
the primal gap functions, which are analyzed in Chapters 4 and 9, as a difference of two strongly
convex functions and employing suitable duality theory to these two functions. These dual gap
functions are continuously differentiable and, under suitable assumptions, have piecewise smooth
gradients.

The results in Chapters 4 and 5 as well as in Chapters 8, 9, and 10 motivate to use certain
smooth optimization techniques for both the primal and dual reformulations, and therefore we
present some numerical results in Chapters 6 and 11 based on primal and dual approaches.

We conclude this thesis by summarizing the main results, discussing open questions, and
giving some suggestions on future research topics.
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1. Introduction

The main results of this thesis are illustrated by accompanying examples and figures. Note that
more detailed summaries of all chapters of this thesis are given at the beginning of the respective
chapter.

The results of this thesis have already been published in [72, 73, 74, 75]. All of them are
joint work with my supervisor Christian Kanzow. Furthermore, the papers [74, 75] arose under
great support of our DFG project partner Oliver Stein, and the papers [72, 73] were developed in
cooperation with my colleague Tim Hoheisel.
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2. Preliminaries

This chapter is divided into two sections: First, the basic variational tools needed for the sub-
sequent analysis in this thesis are provided in Section 2.1. Secondly, an auxiliary result from
parametric optimization is proven in Section 2.2. This result has been shown in the paper [73]
and will be used in Section 5.2.

2.1. Tools from Variational Analysis

In this section we review certain concepts from variational and convex analysis employed in the
sequel. The notation and terminology is, in large parts, based on [117].

We first restate some definitions for set-valued mappings, see, for example, [117, Chapter 5]
for more details.

Definition 2.1 Let X ⊆ Rn, and Φ : X ⇒ Rm be a set-valued mapping. Then Φ is called

(a) inner semicontinuous (isc) at x̄ ∈ X relative to X if for all sequences
{
xk

}
⊆ X with xk → x̄

and all z̄ ∈ Φ(x̄) there exists a number k0 ∈ N and a sequence zk → z̄ such that zk ∈ Φ(xk)
for all k ≥ k0;

(b) outer semicontinuous (osc) at x̄ ∈ X relative to X if for all sequences
{
xk

}
⊆ X with xk → x̄

and all sequences zk → z̄ with zk ∈ Φ(xk) for all k ∈ N sufficiently large we have z̄ ∈ Φ(x̄);

(c) continuous at x̄ ∈ X relative to X if it is isc and osc at x̄ ∈ X relative to X;

(d) isc, osc or continuous on X relative to X if it is isc, osc or continuous at every x ∈ X
relative to X, respectively;

(e) graph-convex if its graph

gph Φ := {(x, z) ∈ Rn × Rm | z ∈ Φ(x) }
is a convex set.

In the literature, isc or osc set-valued mappings are also called open or closed set-valued map-
pings, respectively (see [82]). Alternative concepts to inner and outer semicontinuity are the
concepts of lower or upper semicontinuity in the sense of Berge (see [17, 18]). Note that the
terms of inner semicontinuity and lower semicontinuity are equivalent, but the terms of outer
semicontinuity and upper semicontinuity differ from each other.

In our further analysis we use the concept of continuity of a function relative to a set.

3



2. Preliminaries

Definition 2.2 Given a set X ⊆ Rn and a function f : X → Rm, we say that the function f is
continuous at x̄ ∈ X relative to X if f (xk) → f (x̄) holds for all sequences {xk} ⊂ X converging to
the vector x̄.

Note that relative properties of functions and set-valued mappings are meant relative to Rn if not
stated otherwise. The next result follows immediately from [82, Corollaries 8.1 and 9.1] and will
be used in Sections 5.1, 8.1, 9.1 and 10.1.

Lemma 2.3 Let X ⊆ Rn be an arbitrary set, and v : (z, x) ∈ Rm × X 7→ R be concave in z for
fixed x and continuous on Rm × X. Let Φ : X ⇒ Rm be a set-valued mapping that is osc on a
neighborhood of x̄ and isc at x̄ relative to X, and the set Φ(x) be convex in a neighborhood of x̄.
Define

Z(x) :=
{
ζ ∈ Φ(x)

∣∣∣∣∣ sup
z∈Φ(x)

v(z, x) = v(ζ, x)
}
,

and assume that Z(x̄) is a singleton. Then the set-valued mapping x 7→ Z(x) is continuous at x̄
relative to X.

The following properties of an osc and graph-convex set-valued mapping will also be used in our
subsequent analysis.

Lemma 2.4 Let Φ : Rn ⇒ Rm be an osc and graph-convex set-valued mapping. Then the
following statements hold:

(a) The sets Φ(x) are closed and convex (possibly empty).

(b) For all x1, x2 ∈ Rn with Φ(xi) , ∅ for i = 1, 2, and all t ∈ [0, 1], we have

tΦ(x1) + (1 − t)Φ(x2) ⊆ Φ
(
tx1 + (1 − t)x2

)
,

in particular, the set on the right-hand side is nonempty.

(c) The set gph Φ is closed and convex.

All statements are well known and follow directly from the respective definitions; regarding
assertion (b), see [117, p. 155].

We next introduce some important concepts for extended real-valued functions, more pre-
cisely, for functions f : Rn → R ∪ {+∞}. Handy tools for the analysis of such a function are its
epigraph

epi f := {(x, γ) ∈ Rn × R | f (x) ≤ γ}
and its domain

dom f := {x ∈ Rn | f (x) < +∞}.
Note that a function f is called proper if dom f , ∅. The important concepts for extended
real-valued functions are summarized in the next definition.

4



2.1. Tools from Variational Analysis

Definition 2.5 Let f : Rn → R ∪ {+∞} be proper.

(a) f is called lower semicontinuous (lsc) if epi f is closed.

(b) f is called convex if epi f is convex.

(c) f is called strongly convex with modulus c > 0 if f − c
2‖ · ‖2 is convex.

(d) If f is convex and x̄ ∈ Rn then the (possibly empty) set

∂ f (x̄) :=
{
s ∈ Rn

∣∣∣ f (x̄) + sT (x − x̄) ≤ f (x) ∀x ∈ Rn
}

is called the subdifferential of f at x̄.

(e) The conjugate of f is the function f ∗ : Rn → R ∪ {+∞} defined by

f ∗(y) := sup
x∈Rn

[
xT y − f (x)

]
= sup

x∈dom f

[
xT y − f (x)

]
.

Note that, in view of its definition, an lsc function is often called closed. Further note that the
subdifferential ∂ f (x̄) of a proper and convex function f is nonempty if x lies in the (relative)
interior of dom f , and that we have ∂ f (x) = {∇ f (x)} for a convex and differentiable function f ,
see the monograph [81].

Given a set X ⊆ Rn, a very prominent extended real-valued function is the indicator func-
tion δX : Rn → R ∪ {+∞} defined by

δX(x) :=

0, if x ∈ X,
+∞, if x < X.

(2.1)

It is easily verified that δX is lsc if and only if X is closed, and convex if and only if X is convex.
The following result summarizes some well-known properties of the conjugate function.

Lemma 2.6 Let f : Rn → R∪ {+∞} be a proper convex function. Then the following statements
hold:

(a) The conjugate f ∗ of f is convex and lsc.

(b) The bi-conjugate function f ∗∗ := ( f ∗)∗ is convex and lsc.

(c) The inequality f ∗∗(x) ≤ f (x) holds for all x ∈ Rn.

(d) The equality f ∗∗(x) = f (x) holds for all x ∈ Rn if and only if f is a (convex and) lsc
function.

(e) The Fenchel inequality f (x) + f ∗(y) ≥ xT y holds for all x, y ∈ Rn.

(f) The equality f (x̄) + f ∗(ȳ) = x̄T ȳ holds if and only if ȳ ∈ ∂ f (x̄).

5



2. Preliminaries

All statements can be found in [81, Chapter E]. Another useful observation on the conjugate
function is restated in the following result, cf. [117, Proposition 12.60].

Lemma 2.7 Let f : Rn → R ∪ {+∞} be proper, lsc, and convex. Then f is strongly convex with
modulus c > 0 if and only if f ∗ is differentiable with ∇ f ∗ Lipschitz continuous with modulus 1

c .

Besides of the standard concept of differentiability, we use also other concepts in Sections 4.2
and 9.2 summarized in the following definition.

Definition 2.8 Let U ⊆ Rn be an open set. A function f : U → R is

(a) directionally differentiable at a point x ∈ U if the limit

lim
t↓0

f (x + td) − f (x)
t

exists for all directions d ∈ Rn. The directional derivative f ′(x, d) at x along the vector d
is then defined by the corresponding limit.

(b) directionally differentiable in the Hadamard sense or simply Hadamard directionally dif-
ferentiable at x ∈ U if the limit

lim
t↓0, d′→d

f (x + td′) − f (x)
t

exists for all directions d ∈ Rn. The Hadamard directional derivative f ′(x, d) at x along the
vector d is then defined by the corresponding limit.

(c) Gâteaux differentiable if it is directionally differentiable and if the directional derivative is
a linear function of the direction.

Note that Hadamard directional differentiability implies the usual directional differentiability.
Furthermore, if a function f : U → R with an open set U is Gâteaux differentiable on U and the
partial derivatives of f are continuous at x̄ ∈ U, then f is continuously differentiable at x̄.

For the objective function

F(x) := inf
z∈S (x)

f (z, x)
(
or G(x) := sup

z∈S (x)
f (z, x)

)
(2.2)

with a function f : Rm × Rn → R ∪ {+∞} and a set-valued mapping S : Rn ⇒ Rm, we write

F(x) = min
z∈S (x)

f (z, x)
(
or G(x) = max

z∈S (x)
f (z, x)

)
for x ∈ X ⊆ Rn if the infimum (or supremum) is attained in (2.2) for all x ∈ X. We can write
minimum (or maximum) instead of infimum (or supremum) immediately if the function f is
strongly convex (or strongly concave) in z for each fixed x ∈ X and the set S (x) is nonempty,
convex, and closed for all x ∈ X, since in such cases the minimization (or maximization) problem
in F (or in G) with respect to S (x) has a (unique) solution for all x ∈ X.

6



2.2. A Piecewise Smoothness Result for a Convex Parametric Nonlinear Program

2.2. A Piecewise Smoothness Result for a Convex
Parametric Nonlinear Program

A number of profound results for parametric optimization can be found in the monographs
[11, 21, 27, 58, 90]. In this section we analyze smoothness properties of the solution map-
ping for a class of strongly convex parametric optimization problems, where the parameter only
occurs in the objective function. The main result in this section might be known, but we could
not find an explicit reference. The difference to the existing literature is that we assume the ob-
jective function to be strongly convex (not just convex) for each fixed parameter, which is, of
course, a very restrictive assumption, but this assumption will be satisfied automatically in our
applications. On the other hand, if for each fixed parameter the objective function of a convex
parametric nonlinear program is strongly convex and the feasible set is nonempty, closed, and
convex, this problem has a unique solution for any parameter. Additionally, if the constraints are
independent of the parameter, it turns out that this solution depends continuously on the parame-
ter even without the Mangasarian Fromovitz constraint qualification (MFCQ) or Slater condition.
Note that, in general, this observation does not hold, cf. [27, 82, 114].

In this section we will see that the solution function of our parametric optimization problem is,
under some standard assumptions, piecewise smooth. The analysis is carried out in the spirit of
the results from [114, 82] and the piecewise smoothness result for the projection mapping from
[54, 107]. We commence by introducing the concept of piecewise smoothness, see [54, 119] for
comprehensive accounts on the topic.

Definition 2.9 A continuous function f : D ⊆ Rn → Rm is called piecewise smooth or PC1

near x̄ ∈ D if there exists an open neighborhood U ⊆ D of x̄ and a finite family of continuously
differentiable functions fi : U → Rm, i = 1, . . . , l, such that f (x) ∈ { f1(x), . . . , fl(x)} for all x ∈ U.

Now, for a parameter v ∈ Rn, consider the optimization problem

min
u∈Rm

φ(u, v) subject to c j(u) ≤ 0 ( j = 1, . . . , p), P(v)

where φ : (u, v) ∈ Rm × Rn 7→ R is strongly convex in u for each fixed v ∈ Rn and continuous on
Rm × Rn, and the functions c j : Rm → R, j = 1, . . . , p, are convex and continuous. Let

F :=
{
u ∈ Rm

∣∣∣ c j(u) ≤ 0 ∀ j = 1, . . . , p
}

(2.3)

denote the feasible set, which is closed and convex, and is supposed to be nonempty. Under
the above assumptions, the next lemma shows that the solution mapping of problem P(v) is
continuous.

Lemma 2.10 The solution mapping u∗ : Rn → Rm of the problem P(v) given by

u∗(v) := argmin
u∈F

φ(u, v) (2.4)

is well-defined and continuous.

7



2. Preliminaries

Proof. Under the assumptions on the functions φ and c j, j = 1, . . . , p, the objective function is
strongly convex in u and the feasible set F is nonempty, closed, and convex. Hence the problem
P(v) is uniquely solvable for all v ∈ Rn. Therefore, for each v ∈ Rn, there exists a unique vector
u∗(v) solving (2.4). Therefore, the solution mapping u∗ is well-defined. The continuity of the
mapping u∗ follows from Lemma 2.3, which is based on [82, Corollaries 8.1 and 9.1]. �

Now, for u ∈ F , we define the active set

J0(u) :=
{
j ∈ {1, . . . , p}

∣∣∣ c j(u) = 0
}
. (2.5)

Due to Lemma 2.10, for all v ∈ Rn, the sets

J(v) := J0(u∗(v))

are well-defined.
For the remainder of this section, we assume that all functions defining P(v) are, in addition to

the convexity property, twice continuously differentiable. As a reminder and a reference point,
all of the demanded properties are summarized below.

Assumption 2.11 The functions φ and c j, j = 1, . . . , p, defining P(v) are assumed to have the
following properties:

(a) The objective function φ : (u, v) ∈ Rm × Rn 7→ R is strongly convex in u for each fixed
v ∈ Rn and twice continuously differentiable on Rm × Rn.

(b) The constraints c j : Rm → R, j = 1, . . . , p, are convex and twice continuously differen-
tiable.

(c) The feasible set F := {u ∈ Rm | c j(u) ≤ 0 ∀ j = 1, . . . , p} is nonempty.

For v ∈ Rn and a subset J ⊆ J(v), we define HJ(·, v, ·) : Rm × Rp → Rm+p by

HJ(u, v, λ) :=

 ∇uφ(u, v) +
∑

j∈J λ j∇c j(u)
cJ(u)
λĴ


with Ĵ := {1, . . . , p} \ J. Then the following result is easily proven.

Lemma 2.12 Let Assumption 2.11 hold, let v ∈ Rn, and let J ⊆ J(v) such that the vectors
∇c j(u) ( j ∈ J) are linearly independent. Then the Jacobian D(u,λ)HJ(u, v, λ) is nonsingular for
all λJ ≥ 0.

Proof. After reordering the components of λ accordingly, we obtain

D(u,λ)HJ(u, v, λ) =

 ∇
2
uuφ(u, v) +

∑
j∈J λ j∇2c j(u) DcJ(u)T 0

DcJ(u) 0 0
0 0 I|Ĵ|

 .
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Since the functions c j, j = 1, . . . , p, are convex and φ is strongly convex in the first variable for
each fixed v ∈ Rn, the matrix ∇2

uuφ(u, v) +
∑

j∈J λ j∇2c j(u) is positive definite for all λJ ≥ 0. Hence
the assertion follows from the linear independence of the vectors ∇c j(u) ( j ∈ J). �

We next introduce the constant rank constraint qualification due to [85], which occurs as a
standard assumption in the context of parametric optimization and piecewise smoothness results,
see, for example, [28, 107, 114].

Definition 2.13 Let ci : Rn → R, i = 1, . . . , p, be continuously differentiable, and letF and J0(u)
be defined by (2.3) and (2.5), respectively. We say that the constant rank constraint qualification
(CRCQ) holds at ū ∈ F (with respect to the set F ) if there exists a neighborhood U of ū such
that for every J ⊆ J0(ū) the set {∇c j(u) | j ∈ J} has constant rank (depending on J) for all u ∈ U.

Note that CRCQ is a local property of the feasible set F in the sense that if CRCQ holds at ū, it
also holds at u for all u ∈ F sufficiently close to ū.

CRCQ allows us to prove the next theorem on the piecewise smoothness of the solution map-
ping of the program P(v), which is the main result of this section.

Theorem 2.14 Let v̄ ∈ Rn, and suppose that Assumption 2.11 is fulfilled. Then there exists a
neighborhood V̄ of v̄ such that the function u∗ : Rn → Rm defined in (2.4) is PC1 on V̄, provided
CRCQ holds at ū := u∗(v̄) ∈ F .

Proof. The argumentation in this proof is similar to those in [54, 107, 114].
For v ∈ Rn we define

M(v) :=
{
λ ∈ Rp

∣∣∣ (u∗(v), λ) is a KKT point of P(v)
}

as the set of KKT multipliers for P(v) at u∗(v). Since CRCQ at ū = u∗(v̄) is inherited to a whole
neighborhood and because u∗ is continuous by Lemma 2.10, there exists a neighborhood V of v̄
such that CRCQ holds at u∗(v) for all v ∈ V . In particular, since CRCQ yields KKT multipliers
at a local minimizer (see [85, Proposition 2.3]), we have M(v) , ∅ for all v ∈ V . Hence it follows
from [80, Lemma 3.2] that the set

B(v) :=
{
J ⊆ J(v)

∣∣∣ ∇c j (u∗(v)) ( j ∈ J) linearly independent ∧ ∃λ ∈ M(v) : supp λ ⊆ J
}

is nonempty for all v ∈ V . Moreover, from [80, Lemma 3.3] it follows that

∀v ∈ V, J ∈ B(v) ∃! λ∗,J(v) ∈ M(v) : HJ(u∗(v), v, λ∗,J(v)
)

= 0. (2.6)

Note that, necessarily, supp λ∗,J(v) ⊆ J, and that λ∗,J(v) is nonnegative.
Now, we have by (2.6) for J ∈ B(v̄) a uniquely determined λ̄J := λ∗,J(v̄) such that λ̄J ∈ M(v̄)

and HJ(ū, v̄, λ̄J) = 0 hold. As J ∈ B(v̄), the vectors ∇c j(ū) ( j ∈ J) are linearly independent,
hence Lemma 2.12 together with λ̄J ≥ 0 implies that D(u,λ)HJ(ū, v̄, λ̄J) is nonsingular. Thus, the
implicit function theorem (see, e.g., [4, Theorem 8.2]) yields neighborhoods V J of v̄ and N J of(
ū, λ̄J), and a continuously differentiable function

(
uJ, λJ) : V J → N J such that

uJ(v̄) = ū, λJ(v̄) = λ̄J, and HJ(uJ(v), v, λJ(v)
)

= 0 ∀v ∈ V J, (2.7)
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and for all v ∈ V J the vector
(
uJ(v), λJ(v)

)
is the unique solution of

H(u, v, λ) !
= 0, (u, λ) ∈ N J.

Note that, without loss of generality, we can assume that V J ⊆ V .
Now, set

V̄ :=
⋂

J∈B(v̄)

V J ⊆ V.

Since B(v̄) is finite, V̄ is still a neighborhood of v̄. Moreover, in view of [80, Lemma 3.5 (b)],
we can assume without loss of generality that B(v) ⊆ B(v̄) for all v ∈ V̄ . We will now prove that,
with a possibly smaller neighborhood of v̄, which we still denote by V̄ , we have

u∗(v) ∈
{
uJ(v)

∣∣∣ J ∈ B(v̄)
}
∀v ∈ V̄ . (2.8)

Then it follows that u∗ : V̄ → Rm is in fact PC1, as {uJ : V̄ → Rm | J ∈ B(v̄)} is a finite family of
continuously differentiable functions, and u∗ is continuous by Lemma 2.10. The desired inclusion
in (2.8) follows immediately if we can show that

∀v ∈ V̄ , ∀J ∈ B(v) : u∗(v) = uJ(v) (2.9)

since B(v) ⊆ B(v̄) for all v ∈ V̄ . Note that this does not imply that u∗ = uJ holds locally (which
would imply u∗ to be smooth) since the index set J also depends on v.

For these purposes, let v ∈ V̄(⊆ V) and J ∈ B(v). Due to (2.6), there exists a unique multiplier
λ∗,J(v) ∈ M(v) such that HJ(u∗(v), v, λ∗,J(v)

)
= 0. As it was done after (2.6) we can once again

use the implicit function theorem to show the existence of neighborhoods V J of v̄ and N J of(
ū, λ̄J) as well as a continuously differentiable function

(
uJ, λJ) : V J → N J such that (2.7) holds.

Moreover, for all v ∈ V J, the vector
(
uJ(v), λJ(v)

)
is the unique solution of

H(u, v, λ) !
= 0, (u, λ) ∈ N J.

Hence, in order to prove (2.9), it suffices to show that

∀v ∈ V̄ sufficiently close to v̄, ∀J ∈ B(v) :
(
u∗(v), λ∗,J(v)

) ∈ N J.

Suppose that this is not true: Then there exists a convergent sequence vk → v̄ with vk ∈ V̄ and a
sequence of index sets Jk ∈ B(vk) such that(

u∗(vk), λ∗,Jk(vk)
)
< N Jk ∀k ∈ N. (2.10)

As B(v̄) is finite and B(vk) ⊆ B(v̄) for all k ∈ N, we can assume without loss of generality that
Jk = J̄ for all k ∈ N. From (2.6) we infer that

0 = ∇uφ
(
u∗(vk), vk) +

∑
j∈J̄

(
λ∗,J̄(vk)

)
j∇c j

(
u∗(vk)

) ∀k ∈ N. (2.11)
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By continuity of all functions involved, the linear independence of the vectors ∇c j
(
u∗(vk)

)
( j ∈ J̄)

for all k ∈ N together with the assumed CRCQ condition and the fact that supp λ∗,J̄(vk) ⊆ J̄, we
infer that the sequence λ∗,J̄(vk) is convergent, that is, there exists λ∗,J̄ such that λ∗,J̄(vk) → λ∗,J̄

with supp λ∗,J̄ ⊆ J̄. Hence passing to the limit in (2.11) yields

0 = ∇uφ(ū, v̄) +
∑
j∈J̄

(
λ∗,J̄

)
j∇c j(ū).

On the other hand, also λ̄J̄ solves the above equation. Due to the linear independence of the gradi-
ents ∇c j(ū) ( j ∈ J̄), and the fact that supp λ̄J̄∪supp λ∗,J̄ ⊆ J̄, we have λ∗,J̄ = λ̄J̄. Therefore, we in-
fer that λ∗,Jk(vk)→ λ̄J̄. In view of u∗(vk)→ ū by continuity, we obtain that

(
u∗(vk), λ∗,Jk(vk)

) ∈ N J̄

for all k sufficiently large contradicting (2.10). Hence the proof is complete. �
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3. Background on Generalized Nash
Equilibrium Problems

Chapter 3 contains some preparations for the analysis in Part I. First we give a background on
generalized Nash equilibrium problems in Section 3.1. Then we review some reformulations of a
generalized Nash equilibrium problem as a constrained or unconstrained minimization problem
in Section 3.2, which are relevant to our subsequent analysis. The results of Section 3.2 are based
on Section 2 in [39].

3.1. Definition and Overview

A generalized Nash equilibrium problem (GNEP) consists of N ∈ N players ν = 1, . . . ,N. Each
player ν controls his decision variable xν ∈ Rnν , nν ∈ N, such that the vector x = (x1, . . . , xN) ∈ Rn

with n = n1 + . . . + nN describes the decision vector of all players. In order to emphasize the
role of player ν’s variable xν within the vector x, we often write x = (xν, x−ν). Furthermore, each
player ν has a cost function θν : Rn → R and a strategy space Xν(x−ν) ⊆ Rnν defined by the
set-valued mapping Xν : Rn−nν ⇒ Rnν . Both the cost function and the strategy space can depend
on the other players’ decisions x−ν. Define the set-valued mapping Ω : Rn ⇒ Rn by

Ω(x) := X1(x−1) × . . . × XN(x−N). (3.1)

Then the GNEP consists in finding a vector x̄ = (x̄1, . . . , x̄N) ∈ Ω(x̄) such that for each index
ν ∈ {1, . . . ,N} the vector x̄ν solves

Qν(x̄−ν) : min
xν

θν(xν, x̄−ν) subject to xν ∈ Xν(x̄−ν). (3.2)

A solution point x̄ of a GNEP is called a generalized Nash equilibrium. If the set Xν(x−ν) is
independent of x−ν for all ν = 1, . . . ,N, that is, Xν(x−ν) = Xν for all strategies x ∈ Rn and all
players ν with some constant sets Xν, then the GNEP reduces to the so-called Nash equilibrium
problem (NEP).

A natural assumption to make GNEPs numerically tractable is the convexity of the problems
Qν(x̄−ν), ν = 1, . . . ,N, in the respective players’ variable xν. Assumption 3.1 will be a standing
assumption throughout this part of the thesis.

Assumption 3.1 (a) The cost functions θν(·, x−ν), ν = 1, . . . ,N, are convex for each fixed vec-
tor x−ν ∈ Rn−nν .

(b) The strategy spaces Xν(x−ν), ν = 1, . . . ,N, are closed and convex.
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GNEPs satisfying Assumption 3.1 are called player convex. Apart from very few exceptions,
see [33, 108, 109], it is the most general form of a GNEP studied in the literature. Note that
Assumption 3.1 (a) provides the continuity of θν(·, x−ν) on Rnν for each fixed vector x−ν ∈ Rn−nν ,
and that Assumption 3.1 (b) is satisfied if, for example, the strategy spaces Xν are defined by

Xν(x−ν) := {xν ∈ Rnν | gνi (xν, x−ν) ≤ 0 ∀i = 1, . . . ,mν} (3.3)

with functions gνi : Rn → R, i = 1, . . . ,mν, ν = 1, . . . ,N, that are continuous on Rn and convex
in xν for each fixed x−ν ∈ Rn−nν . We will assume this representation of the strategy spaces in
Chapter 4 and Section 5.2 and use the general definition of these sets otherwise. In cases with
the representation (3.3), we will also use the notation gν := (gν1, . . . , g

ν
mν

), gν : Rn → Rmν , for the
constraint functions.

Player convex GNEPs have a widely studied subclass, which is called jointly convex GNEPs
and characterized by the existence of a fixed convex set X ⊆ Rn such that the strategy space of
each player ν, ν = 1, . . . ,N, is given by

Xν(x−ν) = {xν ∈ Rnν | (xν, x−ν) ∈ X}.

In this case, the set-valued mappings Xν from (3.3) are all defined by the same continuous con-
straint function g1 = g2 = . . . = gN =: g and the components of the constraint function g are
convex in the whole vector x = (x1, . . . , xN). Although we will not study this problem class in de-
tail in this thesis, Remark 4.27 in Section 4.2 will summarize the implications of joint convexity
for our approaches from Chapter 4.

GNEPs were formally introduced in 1952/54 by Arrow and Debreu [26, 6] as a generalization
of NEPs defined in 1950/51 by Nash [94, 95]. The roots of NEPs go back to the concept of
equilibrium in the context of an oligopolistic economy observed by Cournot [25] already in 1838.
A detailed historical overview for GNEPs can be found in [47, 24]. GNEPs have widespread
applications in various fields such as economics, engineering, mathematics, computer science,
operations research, telecommunications, and deregulated markets. Many solution methods for
GNEPs exist in the meantime, which work under different sets of assumptions. The interested
reader is referred to [47, 56, 24, 60, 40, 41] and references therein for a detailed survey of
applications, theory, and algorithms up to the year 2014.

There are several reformulations of a GNEP as

• a quasi-variational inequality (QVI) problem,

• an optimization problem,

• a fixed point problem, and

• a constrained system of equations.

These reformulations are often the basis for both theoretical and algorithmic researches. The first
reformulation, which employs the known equivalence between GNEPs with continuously differ-
entiable cost functions and QVIs (see [13, 71, 45]), allows to adapt the existing gap functions
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for QVIs like those discussed in [31, 63, 67, 127] and Section 8.3 to the setting of GNEPs. This
has been done, for example, in [9, 87]. However, this yields a nondifferentiable optimization
reformulation of a GNEP except for some special cases. We will consider such a special case in
Section 8.3, where the strategy spaces of a player convex GNEP are ‘generalized moving sets’.

Another approach to a suitable optimization reformulation of GNEPs is to use the Nikaido-
Isoda function introduced in [97] or a regularized version of the Nikaido-Isoda function intro-
duced in [70] and later explored in [78, 38] in order to reformulate the jointly convex GNEP
either as a constrained or unconstrained optimization problem. This work was extended to the
larger class of player convex GNEPs, see [39]. A major drawback of the corresponding optimiza-
tion problems, however, is the fact that they typically have nonsmooth objective functions. The
aim of Chapter 4 is therefore to have a closer look at the smoothness properties of these objec-
tive functions. Preliminary results of this kind, especially regarding the continuity and piecewise
smoothness, can already be found in [39]. Subsequently, we show further structural properties
in Section 4.2, in particular, our main result indicates that, apart from some degenerate points,
the objective functions are differentiable in (local or global) minima. Note that this result is also
of some importance for jointly convex GNEPs, although there exist differentiable optimization
formulations of this class of problems, cf. [78]. However, the solutions of these differentiable
formulations do not characterize the full solution set of jointly convex GNEPs (only so-called
normalized solutions can be obtained), whereas here we consider reformulations characterizing
all solutions of both jointly convex and player convex GNEPs.

Nikaido-Isoda functions additionally supply the basis for reformulations of GNEPs as fixed
point problems, see, for example, [86, 133, 79].

Furthermore, we obtain a reformulation of certain GNEPs as a smooth and unconstrained dual
optimization problem using conjugate functions and Toland-Singer duality theory [123, 130, 131]
in Chapter 5. Another application of conjugate duality for solving GNEPs was considered in [3].

The reformulation of player convex GNEPs (with continuously differentiable cost functions
and continuously differentiable inequality constraints defining the players’ strategy spaces) as
a constrained system of equations is based on the concatenated Karush-Kuhn-Tucker (KKT)
conditions of optimization problem (3.2) for all players. More details of these approaches can be
found, for example, in [34, 35, 36, 43, 44, 46].

Based on the previously mentioned reformulations of GNEPs, there are many methods to solve
these problems such as

• decomposition methods,

• penalty methods,

• methods based on Nikaido-Isoda functions,

• methods based on KKT conditions.

Using decomposition methods like Jacobi-type or Gauss-Seidel-type methods is very natural for
solving GNEPs because of their special structure. In the process each player updates his own
strategy at each iteration by solving his optimization problem in (3.11) or its regularized version
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based on simultaneously or sequentially calculated strategies of other players. These methods
are easy to implement, but there are only very few convergence results for some special GNEPs,
see [110, 57].

The basic idea of penalty methods in [55, 48, 49] is to reduce a GNEP to a standard NEP by
penalizing of players’ cost functions with an additional term consisting of a penalty parameter
and respective constraints. Then such a penalized NEP yields a subproblem that is to be solved
at each iteration of a penalty method. A partial penalization, which includes only (difficult)
constraints that are dependent on other players’ decisions, is also possible, see [53, 64]. Penalty
methods are globally convergent if the penalty parameters remain finite during the iteration.
In order to guarantee this fact, some conditions on the constraints are necessary. Moreover,
subproblems of penalty methods may be difficult to solve.

A method, which can be applied to an unconstrained optimization reformulation of GNEPs
based on the regularized Nikaido-Isoda function, is the robust gradient sampling algorithm from
[22]. This method was applied in [38] for jointly convex GNEPs and in [39] for player convex
GNEPs. There are also other methods based on the regularized Nikaido-Isoda function that pro-
vide results for NEPs or jointly convex GNEPs and can only find normalized solutions. Examples
for such methods are gradient methods from [78, 37], fixed point methods from [86, 133], a relax-
ation method of the fixed point iteration in [79] as well as nonsmooth Newton-type minimization
or fixed point methods considered in [77, 80, 37].

There are many solution methods for GNEPs in the literature based on KKT conditions and
a closely related reformulation of GNEPs as a constrained system of equations, for example,
Newton-type methods in [42, 43, 46], Levenberg-Marquardt methods in [59, 61], an LP-Newton
method in [44], and a potential reduction method in [34, 36]. The potential reduction algorithm
from [36] is a very robust and under suitable assumptions globally convergent interior point
method, which is based on minimization of a potential function. In order to obtain also fast
local convergence properties (Q-quadratic rate) under suitable assumptions, this algorithm was
combined with the LP-Newton method from [44] in a hybrid algorithm (see [35]). As a last point
in this overview we refer to [33], where a nonsmooth projection method was obtained in order to
calculate Fritz-John points of a GNEP.

3.2. Reformulations as a Constrained or Unconstrained
Optimization Problem

This section is mostly based on [39]. Here we review how a GNEP can be equivalently replaced
by a (possibly nonsmooth) constrained or unconstrained optimization problem. This is achieved
using a gap function for GNEPs. Basically, a function f is called a gap function for a mathe-
matical program if the function f is nonnegative and a point is a solution of the corresponding
mathematical program if and only the objective function f is zero at this point.

First we define the fixed point set

W := {x ∈ Rn | x ∈ Ω(x)} (3.4)
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of the set-valued mapping Ω defined in (3.1), which is also called the feasible set of the corre-
sponding GNEP. Note that the feasible set has the representation

W = {x ∈ Rn | gν(x) ≤ 0 ∀ν = 1, . . . ,N} (3.5)

if the set-valued mappings Xν, ν = 1, . . . ,N, are defined by (3.3).
Now, we consider the so-called Nikaido-Isoda function ([97])

ψ(z, x) :=
N∑
ν=1

[
θν(xν, x−ν) − θν(zν, x−ν)]

and the optimal value function

V(x) := sup
z∈Ω(x)

ψ(z, x), (3.6)

with V(x) = −∞ exactly for x < dom Ω, where

dom Ω := {x ∈ Rn | Ω(x) , ∅} (3.7)

is the domain of the set-valued mapping Ω. Note that the supremum in (3.6) may be a nonuniquely
attained maximum or not attained at all on dom Ω even in the player convex case, where Ω(x)
is a closed and convex set for any x ∈ Rn (as a Cartesian product of closed and convex sets
Xν(x−ν)) but the Nikaido-Isoda function ψ is, in general, just concave in z for each fixed x ∈ Rn.
Nevertheless, given a GNEP (also not player convex), it is easily verified that V is nonnega-
tive for all x ∈ Ω(x) and that x̄ is a generalized Nash equilibrium of this GNEP if and only if
x̄ ∈ Ω(x̄) and V(x̄) = 0. Since x ∈ Ω(x) holds if and only if x ∈ W, the optimal value function
V : W → R≥ ∪ {+∞} is a gap function for the corresponding GNEP. Therefore, solving a GNEP
is equivalent to finding a solution of the constrained minimization problem

min V(x) subject to x ∈ W (3.8)

with zero as the optimal value.
In order to guarantee the existence of unique maximal points in (3.6) on dom Ω for player

convex GNEPs, we replace the function ψ by the regularized Nikaido-Isoda function ([70])

ψα(z, x) :=
N∑
ν=1

[
θν(xν, x−ν) − θν(zν, x−ν)] − α2 ‖x − z‖2

where α > 0 denotes a given parameter (and ψ0 = ψ). In view of Assumption 3.1 (a), the function
ψα is strongly concave in z for each fixed x ∈ Rn. Hence, for all x ∈ dom Ω there exists a unique
solution zα(x) of the maximization problem

max
z

ψα(z, x) subject to z ∈ Ω(x).
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Therefore, the optimal value function

Vα(x) := sup
z∈Ω(x)

ψα(z, x) =

N∑
ν=1

θν(xν, x−ν) − inf
z∈Ω(x)

 N∑
ν=1

θν(zν, x−ν) +
α

2
‖x − z‖2

 (3.9)

takes the value −∞ exactly for x < dom Ω and is real-valued for all x ∈ dom Ω. Further properties
of Vα are given in the following result, the proof of which can be found in [39].

Lemma 3.2 Under Assumption 3.1, the following statements hold:

(a) x ∈ Ω(x) if and only if x ∈ W; in particular, we have W ⊆ dom Ω and Vα is real-valued
on W.

(b) Vα(x) ≥ 0 for all x ∈ W.

(c) x̄ is a generalized Nash equilibrium if and only if x̄ ∈ W and Vα(x̄) = 0.

(d) For all x ∈ dom Ω there exists a unique vector zα(x) such that

zα(x) = argmin
z∈Ω(x)

 N∑
ν=1

θν(zν, x−ν) +
α

2
‖x − z‖2

 . (3.10)

(e) x̄ is a generalized Nash equilibrium if and only if x̄ = zα(x̄) holds, that is, x̄ is a fixed point
of the mapping x 7→ zα(x).

It follows from Lemma 3.2 (a)–(c) that the optimal value function Vα : W → [0,+∞[ is a gap
function for player convex GNEPs. Hence solving a player convex GNEP is equivalent to finding
a solution of the constrained minimization problem

P : min Vα(x) subject to x ∈ W (3.11)

or, alternatively, using the indicator function δW of W defined in (2.1), to solving the uncon-
strained minimization problem

min
x∈Rn

[Vα(x) + δW(x)] (3.12)

with zero optimal value in both reformulations and with the convention η + ∞ = +∞ for all
η ∈ R ∪ {±∞} in the unconstrained reformulation. This convention makes sense, since the
objective function from (3.12) should take the function value +∞ on the complement Wc of the
set W and, in particular, on (dom Ω)c ⊆ Wc. We will study the reformulation (3.12) in Chapter
5 for a class of the player convex GNEPs and consider a dual gap function for these GNEPs
applying the duality theory by Toland and Singer [123, 130, 131]. Therefore, we call the optimal
value functions V and Vα also the primal gap functions for the player convex GNEPs.

Theoretical and numerical results on the solutions of the optimization problems (3.8), (3.11),
and (3.12) obviously depend on the structure of the objective functions V and Vα as well as of the
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feasible set W. While not much can be said about the structure of the set W, basic continuity and
differentiability properties of Vα on W for player convex GNEPs were studied in [39]. Chapter 4
will complement these properties with additional useful characteristics of Vα at its points of
nondifferentiability. The continuity and differentiability properties of Vα are applicable to the
optimal value function V if the maximum in (3.6) is uniquely attained on dom Ω without adding
the regularization term with the parameter α to the function ψ. In such cases, it is simpler to
calculate the function V than the function Vα and therefore to allow the choice α = 0, that is,
the employment of the original Nikaido-Isoda function. Hence we will illustrate most results
of Chapter 4 on examples of the GNEPs where the maximization problem in (3.6) is uniquely
solvable on dom Ω. Note that if the maximum in (3.6) is not uniquely attained, the function V
may have worse continuity and differentiability properties than the function Vα.
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4. Smoothness Properties of a Primal
Gap Function for Generalized Nash
Equilibrium Problems

Recall that the primal gap function Vα lays the foundation for the reformulation (3.11) of a
player convex GNEP. The aim of Chapter 4 is to study differentiability properties of this primal
gap function. First we review from [39] a result on the continuity of the primal gap function Vα

in Section 4.1 and relate the continuity points of Vα to interior points of the domain of Vα.
Subsequently, differentiability properties of Vα are studied in Section 4.2. Our main result is
stated in Theorem 4.23 in Section 4.2 and treats differentiability of the function Vα at local
minimizers of the reformulation in (3.11). The results of this chapter were published in [74].

4.1. Continuity Properties and Domain

First we recall in Section 4.1 sufficient conditions for the continuity of the primal gap function
Vα for player convex GNEPs from [39] and then we analyze at which points of the feasible set
W we can study differentiability properties of Vα.

Throughout Chapter 4, we assume that the strategy spaces Xν, ν = 1, . . . ,N, are given by the
representation (3.3). Therefore, we adjust Assumption 3.1 to the following initial assumption of
this chapter.

Assumption 4.1 (a) The cost functions θν, ν = 1, . . . ,N, are continuous on Rn and convex
in xν for each fixed x−ν ∈ Rn−nν .

(b) The strategy spaces Xν(x−ν) are defined by

Xν(x−ν) := {xν ∈ Rnν | gνi (xν, x−ν) ≤ 0 ∀i = 1, . . . ,mν}

with functions gνi : Rn → R, i = 1, . . . ,mν, ν = 1, . . . ,N, that are continuous on Rn and
convex in xν for each fixed x−ν ∈ Rn−nν .

To study the structural properties of the reformulation (3.11) for player convex GNEPs, we
rewrite the primal gap function Vα for any x ∈ W as

Vα(x) = sup
z∈Ω(x)

ψα(z, x) =

N∑
ν=1

[
θν(x) − ϕνα(x)

]
(4.1)
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4. Smoothness Properties of a Primal Gap Function for Generalized Nash Equilibrium Problems

with the optimal value functions

ϕνα(x) := inf
zν∈Xν(x−ν)

[
θν(zν, x−ν) +

α

2
‖xν − zν‖2

]
(4.2)

of the strongly convex and therefore uniquely solvable problems

Qν
α(x) : min

zν
θν(zν, x−ν) +

α

2
‖xν − zν‖2 subject to gν(zν, x−ν) ≤ 0

for ν = 1, . . . ,N. Note that the choice α = 0 is allowed only if the problems Qν
0 are uniquely

solvable on dom Ω. As mentioned at the end of Section 3.2, in such cases the continuity and
differentiability properties of Vα are applicable to the optimal value function V , where V := V0

is easier to calculate than the function Vα.
Let S ν

α(x) = {zνα(x)} denote the (singleton) set of optimal points of the optimization problems
Qν
α(x) for x ∈ W. Hence we can rewrite the optimal value functions ϕνα as

ϕνα(x) = θν(zνα(x), x−ν) +
α

2
‖xν − zνα(x)‖2.

It is easy to see that (z1
α(x), . . . , zN

α (x)) coincides with the unique maximizer zα(x) of ψα(·, x)
on Ω(x). Clearly, the structural properties of Vα heavily depend on the structural properties of
the functions ϕνα.

Now, we briefly recall sufficient conditions for the continuity of the primal gap function Vα on
the feasible set W from [39, Lemma 3.4].

Lemma 4.2 Let Assumption 4.1 hold. Additionally, let Xν(x̄−ν) satisfy the Slater condition for
x̄ ∈ W and for all ν ∈ {1, . . . ,N}, that is, there exists some z̄ν ∈ Rnν with gν(z̄ν, x̄−ν) < 0 for all
ν ∈ {1, . . . ,N}. Then the functions zνα, ϕνα, ν = 1, . . . ,N, and Vα are continuous at x̄.

Lemma 4.2 guarantees continuity of Vα on W \ D1 with the ‘degenerate point set’

D1 := {x ∈ W | for some ν ∈ {1, . . . ,N} the set Xν(x−ν) violates the Slater condition}.
As explained in [39] and illustrated in Example 4.3 below, one has to expect that the set D1 is
nonempty. This was the motivation to develop a weaker sufficient condition for continuity of Vα

on W relative to W (see Definition 2.2), for which the interested reader is referred to the paper
[39, Theorem 3.5].

The following example illustrates the continuity properties of Vα for a GNEP and will also
serve to illustrate differentiability properties of Vα below.

Example 4.3 Consider a player convex GNEP with N = 2, n1 = n2 = 1, the variables x1 and
x2 controlled by player 1 and 2, respectively, the cost functions θ1(x) := x1 and θ2(x) := x2, the
constraint g1

1(x) := −2x1 + x2 ≤ 0 for the first player and the constraints g2
1(x) = x2

1 + x2
2 − 1 ≤ 0

and g2
2(x) = −x1 − x2 ≤ 0 for the second player. Then it is easy to see that the problems Q1

α(x)
and Q2

α(x) with the choice α = 0 are uniquely solvable for all x ∈ W with the set

W =
{
x ∈ R2 | x2

1 + x2
2 ≤ 1, −x1 ≤ x2 ≤ 2x1

}
,
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W

g2
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2 g1
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Figure 4.1.: Illustration of the set W from Example 4.3

which is illustrated in Figure 4.1.
In fact, for x ∈ W we obtain the strategy spaces

X1(x2) =

[ x2

2
,+∞

[
,

X2(x1) =

[
max

{
−x1,−

√
1 − x2

1

}
,
√

1 − x2
1

]
,

so that the optimal points, which are equal to the optimal values of Q1
0(x) and Q2

0(x), are

z1
0(x) = ϕ1

0(x) =
x2

2
,

z2
0(x) = ϕ2

0(x) = max
{
−x1,−

√
1 − x2

1

}
.

Due to (3.6) and (4.1), this results in

V(x) := V0(x) = θ1(x) + θ2(x) − ϕ1
0(x) − ϕ2

0(x) = x1 + x2 + min
{
x1,

√
1 − x2

1

}
− x2

2

for all x ∈ W. Note that, in spite of player convexity, V is a concave function as the minimum of
two smooth concave functions (compare also Figure 4.2 and Remark 4.12 below).

For all x ∈ W the set X1(x2) obviously satisfies the Slater condition. However, the set X2(x1)
satisfies the Slater condition only for values x1 , 1, whereas X2(1) = {0} is a singleton. This
results in D1 = {(1, 0)} and shows that D1 can easily be nonempty. Lemma 4.2 then yields
continuity of V only on W \ D1. Furthermore, direct inspection shows that V is continuous even
on all of W relative to W where, however, V has ‘infinite slope’ at the point x = (1, 0). We remark
that the improvement of Lemma 4.2 by [39, Theorem 3.5] also yields continuity of V at (1, 0)
relative to W for the present example.
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A local minimizer of V on W
The ‘kinks’ of V on W

Figure 4.2.: Function V on W from Example 4.3

It is not hard to see that the function V has a unique global minimizer on W at x̄ := (0, 0).
The function value at x̄ is zero, so that x̄ is the unique generalized Nash equilibrium in view of
Lemma 3.2. However, it can be also shown that V has a local minimizer on W at (1, 0) with value
one. We point out that the point (1, 0) is an element of D1, so that D1 is not only nonempty but
also contains a ‘structurally relevant’ point in the present example. ^

Section 4.2 will show that the set D1 also plays a crucial role for differentiability properties of Vα.
In fact, we shall study differentiability of Vα at points in the topological interior of the domain of
Vα, where we have seen in Section 3.2 that the domain

dom Vα = {x ∈ Rn | V(x) ∈ R}
of Vα coincides with the domain of the set-valued mapping Ω(x) defined in (3.1) and (3.7),
respectively. Hence their topological interiors satisfy

int dom Vα = int dom Ω. (4.3)

The following example shows that we cannot expect the inclusion W ⊆ int dom Vα to hold despite
the fact that we have W ⊆ dom Ω = dom Vα.

Example 4.4 Example 4.3 yields int dom V = int dom Ω = ] − 1/
√

2, 1[ × R, and therefore

W \ {(1, 0)} = W ∩ int dom V.

Together with D1 = {(1, 0)} we arrive at W \ D1 = W ∩ int dom V . ^

The next result guarantees that the inclusion W \ D1 ⊆ W ∩ int dom Vα is also true in general.

Lemma 4.5 Let Assumption 4.1 hold. Then we have

W \ D1 ⊆ W ∩ int dom Vα. (4.4)
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Proof. In view of (4.3), the assertion is shown if we can prove the relation

W \ D1 ⊆ W ∩ int dom Ω.

Choose x̄ ∈ W \ D1. Then we have x̄ ∈ W, and for all ν = 1, . . . ,N there exists some z̄ν ∈ Rnν

with gν(z̄ν, x̄−ν) < 0. Due to the continuity of the functions gν, we can choose a neighborhood U
of x̄ such that for all x ∈ U and ν = 1, . . . ,N also gν(z̄ν, x−ν) < 0 is satisfied. In particular, for all
x ∈ U each set Xν(x−ν), ν = 1, . . . ,N, is nonempty, and U is therefore contained in dom Ω. This
shows the assertion. �

Lemma 4.5 will allow us to study differentiability properties of Vα on the set W\D1 in Section 4.2.
Clearly, Lemma 4.5 does not exclude that also some elements of D1 are contained in int dom Vα.
However, under mild additional assumptions, we conjecture that actually equality holds in (4.4).
This fact will be shown in the sequel under certain conditions, including Assumption 4.6 below,
though we believe that this assumption can be relaxed.

Assumption 4.6 All functions gνi , i = 1, . . . ,mν, ν = 1, . . . ,N, are convex.

Obviously, under Assumption 4.6 of joint constraint convexity the set W is convex. Note that
we will use this assumption only in Theorem 4.11 below. Furthermore, we will assume in the
remainder of Chapter 4 that all defining functions of GNEPs are at least continuously differen-
tiable.

Assumption 4.7 The functions θν and gνi , i = 1, . . . ,mν, are continuously differentiable for each
ν ∈ {1, . . . ,N}.
Furthermore, for each ν ∈ {1, . . . ,N} we denote by

Iν = {1, . . . ,mν}
the index set of inequality constraints of player ν. Additionally, we put

Wν :=
{
x ∈ Rn | gνi (x) ≤ 0 ∀i ∈ Iν

}
, (4.5)

and we define the active index set

Iν0(x) :=
{
i ∈ Iν | gνi (x) = 0

}
(4.6)

for x ∈ Wν. Note that Wν coincides with the graph gph Xν of the set-valued mapping Xν, and that
we obviously have W =

⋂N
ν=1 Wν.

In the following we distinguish between three Mangasarian Fromovitz constraint qualifica-
tions.

Definition 4.8 (a) Let ν ∈ {1, . . . ,N}. The Mangasarian Fromovitz constraint qualification
(MFCQν) holds at x ∈ Wν if there exists some vector d ∈ Rn (typically depending on the
index ν) with

Dgνi (x) d < 0 ∀i ∈ Iν0(x).
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(b) The Mangasarian Fromovitz constraint qualification (MFCQ) holds at x ∈ W if there exists
some vector d ∈ Rn (independent of the index ν) with

Dgνi (x) d < 0 ∀i ∈ Iν0(x), ν = 1, . . . ,N.

(c) For player ν ∈ {1, . . . ,N} and a point x ∈ Wν the player Mangasarian Fromovitz constraint
qualification (player MFCQ) holds at xν ∈ Xν(x−ν) if there exists some vector dν ∈ Rnν with

Dxνgνi (xν, x−ν) dν < 0 ∀i ∈ Iν0(xν, x−ν),

where the active index set Iν0(xν, x−ν) of xν in Xν(x−ν) coincides with the active index set of
(xν, x−ν) in Wν defined in (4.6).

Note that, under Assumption 4.6, MFCQν is satisfied at one point x ∈ Wν if and only if the Slater
condition holds for this set Wν, and therefore MFCQν is satisfied at one point x ∈ Wν if and only
if it is valid at all points x ∈ Wν. We need only Definition 4.8 (a) for the next assumption about
joint MFCQν used in Theorem 4.11.

Assumption 4.9 MFCQν holds everywhere in Wν for each ν ∈ {1, . . . ,N}.

Under Assumption 4.6 and using the comment after Definition 4.8, Assumption 4.9 is equivalent
to the Slater condition for each Wν, ν = 1, . . . ,N.

Remark 4.10 We stress that Assumption 4.9 is unrelated to the assumption of MFCQ every-
where in the set W. In fact, assuming MFCQ at points in W does not allow conclusions about
points in Wν \ W for any ν. In particular, MFCQν may be violated at some x̄ ∈ Wν \ W, so
that Assumption 4.9 does not hold. On the other hand, consider a two player game with vari-
ables x1 ∈ R and x2 ∈ R controlled by player 1 and 2, respectively, and the constraint functions
g1(x) = (x1 − 1)2 + x2

2 − 1 and g2(x) = (x1 + 1)2 + x2
2 − 1. Then Assumption 4.9 holds, but MFCQ

is violated in the set W = {(0, 0)}. ^

Now, we summarize the sufficient assumptions for the validity of the equality in (4.4).

Theorem 4.11 Let Assumptions 4.1, 4.6, 4.7, and 4.9 hold. Then we have

W \ D1 = W ∩ int dom V.

Proof. In view of Lemma 4.5 and (4.3), the assertion is shown if we can prove the relation

W ∩ int dom Ω ⊆ W \ D1.

Let x̄ ∈ D1. We show that x̄ lies in the set complement (int dom Ω)c. Using the relation D1 ⊆
W ⊆ dom Ω, it suffices to guarantee that any neighborhood of x̄ contains points from the set
complement (dom Ω)c.
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Choose some ν ∈ {1, . . . ,N} such that Xν(x̄−ν) violates the Slater condition. Then player MFCQ
is violated at any element of Xν(x̄−ν) and, in particular, at x̄ν. By Gordan’s theorem (see, e.g.,
[120]), there exist multipliers γi ≥ 0 (i ∈ Iν0(x̄)) with

∑
i∈Iν0(x̄) γi = 1 such that

dν :=
∑

i∈Iν0(x̄)

γi∇xνgνi (x̄) = 0. (4.7)

We use the same multipliers to define

d−ν :=
∑

i∈Iν0(x̄)

γi∇x−νgνi (x̄)

as well as d := (dν, d−ν). We claim that d is nonzero. In fact, if we had d = 0, we would obtain∑
i∈Iν0(x̄) γi∇gνi (x̄) = 0. Hence, noting that x̄ ∈ Wν, it would follow from Assumption 4.9 and the

fact that MFCQν is equivalent to the positive linear independence of the corresponding vectors
that γi = 0 holds for all i ∈ Iν0(x̄). This is a contradiction to

∑
i∈Iν0(x̄) γi = 1. Consequently, d , 0

holds and, in view of (4.7), we then also know that d−ν cannot vanish.
We now define the ray

x−ν(t) := x̄−ν + td−ν

and show that for all t > 0 the set Xν(x−ν(t)) is empty. To this end, we note that Assumption 4.6
implies

0 ≥ Dgνi (x̄)(x − x̄) ∀i ∈ Iν0(x̄), x ∈ Wν.

Taking the convex combination of the latter inequalities with the above coefficients γi and using
dν = 0 yields that all x ∈ Wν also satisfy

0 ≥ dᵀ(x − x̄) = (d−ν)ᵀ(x−ν − x̄−ν). (4.8)

The relation in (4.8) holds for all x−ν ∈ dom Xν, since for each x−ν ∈ dom Xν there exists some
xν ∈ Rnν with x ∈ gph Xν = Wν. As (4.8) does not depend on xν, this means

dom Xν ⊆ {x−ν ∈ Rn−nν | (d−ν)ᵀ(x−ν − x̄−ν) ≤ 0}.
On the other hand, for any t > 0 the point x−ν(t) satisfies

(d−ν)ᵀ(x−ν(t) − x̄−ν) = t‖d−ν‖2 > 0,

and therefore x−ν(t) < dom Xν, that is, Xν(x−ν(t)) = ∅. This shows the assertion. �

Note that the assumptions of Theorem 4.11 are satisfied in Example 4.3.
As a last point in this section, we consider a case in which the optimal value function Vα turns

out to be concave.

Remark 4.12 Under Assumption 4.6 and the additional assumption of (affine) linear functions
θν, ν = 1, . . . ,N, one can show along the lines of the proof of [124, Prop. 3.1.26] that the
functions ϕνα, ν = 1, . . . ,N, are convex on W, and that Vα is concave on W. Example 4.3 illustrates
this situation. ^
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4.2. Differentiability Properties

The next step is to study differentiability properties of Vα on W \D1, as motivated by Lemma 4.5
and Theorem 4.11. Assumptions 4.1 and 4.7 are blanket assumptions in this section.

For the following theorem, recall that S ν
α(x) denotes the set of optimal points of Qν

α(x), let

Lνα(x, zν, λν) := θν(zν, x−ν) +
α

2
‖xν − zν‖2 + (λν)ᵀgν(zν, x−ν) (4.9)

denote the Lagrange function of Qν
α(x), and let

KKT ν
α(x) :=

{
λν ∈ Rmν | ∇zνLνα(x, zν, λν) = 0, λν ≥ 0, (λν)ᵀgν(zν, x−ν) = 0

}
be the set of Karush-Kuhn-Tucker multipliers for zν ∈ S ν

α(x). Note that the convex polyhedron
KKT ν

α(x) does not depend on zν as Qν
α(x) is a convex problem (this statement can be easily shown

using the well-known Saddle Point Theorem for convex optimization problems, see [69]), and
that KKT ν

α(x) is a nonempty convex polytope if and only if Xν(x−ν) satisfies the Slater condition
[65].

In this section we will use besides the standard concept of differentiability also several dif-
ferentiability concepts (directional differentiability, Hadamard directional differentiability, and
Gâteaux differentiability) summarized in Definition 2.8.

Theorem 4.13 Let Assumptions 4.1 and 4.7 hold, and let x ∈ W \ D1. Then Vα is Hadamard
directionally differentiable at x with

V ′α(x, d) =

N∑
ν=1

[
Dθν(x) d − max

λν∈KKT ν
α(x)

DxLνα(x, zνα(x), λν) d
]

for any direction d ∈ Rn.

Proof. In view of (4.1), we have

Vα(x) =

N∑
ν=1

[
θν(x) − ϕνα(x)

]
with the differentiable functions θν and possibly nondifferentiable functions ϕνα from (4.2). Since
x ∈ W \D1, the sets Xν(x−ν) satisfy the Slater condition for all ν = 1, . . . ,N, hence, by a standard
result (see, e.g., [69, 83, 116]), the functions ϕνα are Hadamard directionally differentiable, and
their directional derivatives are given by

(ϕνα)′(x, d) = min
zν∈S ν

α(x)
max

λν∈KKT ν
α(x)

DxLνα(x, zν, λν) d (4.10)

for any directions d ∈ Rn. Taking into account that S ν
α(x) = {zνα(x)} is actually a singleton in our

case, the desired statement follows. �

Obviously, the formula for the directional derivative of ϕνα from (4.10) simplifies further if not
only S ν

α(x) but also KKT ν
α(x) is a singleton.
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Proposition 4.14 Let Assumptions 4.1 and 4.7 hold. Additionally, for ν ∈ {1, . . . ,N} and x ∈ Wν,
let Xν(x−ν) satisfy the Slater condition, and let KKT ν

α(x) be the singleton {λνα(x)}. Then ϕνα is
Gâteaux differentiable at x with

(ϕνα)′(x, d) = DxLνα(x, zνα(x), λνα(x)) d

for any d ∈ Rn.

The previous result motivates to define a second ‘degenerate point set’,

D2 := {x ∈ W | for some ν = 1, . . . ,N the set KKT ν
α(x) is not a singleton }.

Note that the formulation ‘KKT ν
α(x) is not a singleton’ allows not only the case where KKT ν

α(x)
contains more than one element but also the case KKT ν

α(x) = ∅. Before we characterize the points
x ∈ Dc

2, we define three linear independence constraint qualifications and a strict Mangasarian
Fromovitz condition for GNEPs.

Definition 4.15 (a) Let ν ∈ {1, . . . ,N}. Then the linear independence constraint qualification
(LICQν) holds at x ∈ Wν if the gradients

∇gνi (x)
(
i ∈ Iν0(x)

)
are linearly independent.

(b) The linear independence constraint qualification (LICQ) holds at x ∈ W if the gradients

∇gνi (x)
(
i ∈ Iν0(x), ν = 1, . . . ,N

)
are linearly independent.

(c) For player ν ∈ {1, . . . ,N} and a point x ∈ Wν the player linear independence constraint
qualification (player LICQ) holds at xν ∈ Xν(x−ν) if the gradients

∇xνgνi (xν, x−ν)
(
i ∈ Iν0(xν, x−ν)

)
are linearly independent.

(d) For player ν ∈ {1, . . . ,N} let x ∈ Wν with KKT ν
α(x) , ∅ for the optimal point zνα(x). Then

the player strict Mangasarian Fromovitz condition (player SMFC) holds at zνα(x) ∈ Xν(x−ν)
with a multiplier λν ∈ KKT ν

α(x) if the gradients

∇xνgνi (z
ν
α(x), x−ν)

(
i ∈ Iν0+(zνα(x), x−ν)

)
are linearly independent, and there exists some vector dν ∈ Rnν with

Dxνgνi (z
ν
α(x), x−ν) dν = 0 ∀i ∈ Iν0+(zνα(x), x−ν),

Dxνgνi (z
ν
α(x), x−ν) dν < 0 ∀i ∈ Iν00(zνα(x), x−ν),

where

Iν0+(x) = {i ∈ Iν0(x) | λνi > 0},
Iν00(x) = {i ∈ Iν0(x) | λνi = 0}.
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We point out that player SMFC is unentitled to be called a constraint qualification as sometimes
done in the literature, since this condition relies on the existence of Lagrange multipliers and
depends (indirectly) on the objective function ϕνα, see [134].

A sufficient condition for x ∈ W to lie in Dc
2 is that player LICQ holds at zνα(x) ∈ Xν(x−ν) for

all ν = 1, . . . ,N. In fact, it is well known that player LICQ at the optimal point zνα(x) entails a
unique KKT multiplier λνα(x) corresponding to zνα(x). Note that if the set Iν0

(
zνα(x), x−ν

)
is empty

for x ∈ Wν and some ν ∈ {1, . . . ,N}, then player LICQ holds at zνα(x), and therefore the set
KKT ν

α(x) is a singleton.
Furthermore, by a result from [88], a characterization for x ∈ Dc

2 ∩W is given by the fact that
KKT ν

α(x) , ∅ and the player SMFC holds at zνα(x) ∈ Xν(x−ν) with a multiplier λν ∈ KKT ν
α(x) for

all ν = 1, . . . ,N. This yields

D2 =
{
x ∈ W | either KKT ν

α(x) = ∅ or player SMFC is violated
at zνα(x) ∈ Xν(x−ν) for some ν ∈ {1, . . . ,N}} (4.11)

and allows us to prove the following relation between D1 and D2.

Lemma 4.16 Under Assumptions 4.1 and 4.7, the degenerate point sets satisfy D1 ⊆ D2.

Proof. Choose any point x ∈ Dc
2. The assertion is trivial if x ∈ Wc. Otherwise, in view of (4.11),

KKT ν
α(x) , ∅ and player SMFC holds at zν(x) in Xν(x−ν) for all ν = 1, . . . ,N. Since player SMFC

implies the ordinary player MFCQ at the latter point, Xν(x−ν) also satisfies the Slater condition
for all ν = 1, . . . ,N. This means that x lies in Dc

1 and shows the assertion. �

In view of Lemma 4.16, the Slater condition may be dropped in Proposition 4.14, and we arrive
at the following theorem.

Theorem 4.17 Let Assumptions 4.1 and 4.7 hold, and let x ∈ W \ D2 and λνα(x), ν = 1, . . . ,N,
denote the unique KKT multipliers. Then Vα is Gâteaux differentiable at x with

V ′α(x, d) =

 N∑
ν=1

[
Dθν(x) − DxLνα(x, zνα(x), λνα(x))

] d

for any d ∈ Rn.

Clearly, player LICQ, or even player SMFC, cannot be expected to hold at zνα(x) in Xν(x−ν) for
all x ∈ W, even if LICQ is fulfilled at each x ∈ W. To begin with, the point (zνα(x), x−ν) ∈ Wν does
not even have to belong to W. However, violation of player SMFC is in some sense exceptional,
as the following example illustrates.

Example 4.18 Again we go back to Example 4.3. In order to prevent the confusion between
indices of elements and a power of a term, we use the notations z1 := z1, z2 := z2, z1(x) := z1

0(x)
as well as z2(x) := z2

0(x), since each player controls only a single variable, and we denote λ1 := λ1,
λ1(x) := λ1

0(x), (λ2, λ3) := λ2 and (λ2(x), λ3(x)) := λ2
0(x), since there are three constraints (one

for the first player and two for the second). Recall that in Example 4.3 the set X2(x1) violates the

32



4.2. Differentiability Properties

Slater condition for x ∈ D1 = {(1, 0)} and, thus, player SMFC is violated at this single element.
In the following, we check for points in D2 \ D1.

The Lagrangian of player 1 is

L1
0(x, z1, λ1) = z1 + λ1(−2z1 + x2).

The optimal point z1(x) = x2/2 has the active index set I1
0
(
z1(x), x2

)
= {1}, and we obtain the

multiplier set
KKT 1

0 (x) = {λ1 ∈ R | 1 − 2λ1 = 0, λ1 ≥ 0} = {1/2} .
In particular, the multiplier λ1(x) = 1/2 is unique for any x ∈ W.

For player 2, the Lagrangian is

L2
0
(
x, z2, (λ2, λ3)

)
= z2 + λ2

(
x2

1 + z2
2 − 1

)
+ λ3(−x1 − z2).

For x ∈ W \ D1 with x1 > 1/
√

2, the optimal point is z2(x) = −
√

1 − x2
1 with active index set

I2
0
(
x1, z2(x)

)
= {1}, and we obtain the multiplier set

KKT 2
0 (x) =

{
(λ2, λ3) ∈ R2

∣∣∣ 1 + 2λ2z2(x) − λ3 = 0, λ2 ≥ 0, λ3 = 0
}

=

{((
2
√

1 − x2
1

)−1

, 0
)}
.

For vectors x ∈ W with x1 < 1/
√

2, the optimal point is z2(x) = −x1 with active index set
I2
0
(
x1, z2(x)

)
= {2}, and we obtain the multiplier set

KKT 2
0 (x) = {(λ2, λ3) ∈ R2 | 1 + 2λ2z2(x) − λ3 = 0, λ2 = 0, λ3 ≥ 0} = {(0, 1)} .

Altogether, for all x ∈ W \ D1 with x1 , 1/
√

2 the multipliers λ2(x) and λ3(x) are unique.
On the other hand, for x ∈ W with x1 = 1/

√
2, the active index set of z2(x) = −1/

√
2 is

I2
0(x1, z2(x)) = {1, 2}, and we obtain the nonunique multiplier set

KKT 2
0 (x) =

{
(λ2, λ3) ∈ R2

∣∣∣ 1 + 2λ2z2(x) − λ3 = 0, (λ2, λ3) ≥ 0
}

=

{
(λ2, λ3) ≥ 0

∣∣∣∣ λ3 = 1 −
√

2λ2

}
=

{(
t, 1 −

√
2t

) ∣∣∣∣ t ∈
[
0, 1/

√
2
]}
.

Thus, we arrive at
D2 = D1 ∪

{
x ∈ W

∣∣∣∣ x1 = 1/
√

2
}

and, in view of Theorem 4.17, V is Gâteaux differentiable on W \ D2.
Finally, we check for differentiability properties of V on D2 \ D1. Recall that we cannot study

differentiability of V on D1 = {(1, 0)}, as the point (1, 0) is not an interior point of dom V . In fact,
as mentioned already in Example 4.3, V actually has ‘infinite slope’ at (1, 0).
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4. Smoothness Properties of a Primal Gap Function for Generalized Nash Equilibrium Problems

For all x ∈ D2 \ D1, that is, x ∈ W with x1 = 1/
√

2, Theorem 4.13 yields directional differen-
tiability of V with

V ′(x, d) = Dθ1(x) d + Dθ2(x) d − DxL1
0
(
x, z1(x), λ1(x)

)
d

− max
(λ2,λ3)∈KKT 2

0 (x)
DxL2

0
(
x, z2(x), (λ2, λ3)

)
d

= d1 + d2 − 1
2

d2 − max
t∈[0,1/√2]

(
2t/
√

2 −
(
1 −
√

2t
))

d1

= d1 +
1
2

d2 + min
t∈[0,1/√2]

(
1 − 2

√
2t

)
d1

=

{
2d1 + 1

2d2, if d1 < 0,
1
2d2, if d1 ≥ 0,

for all d ∈ R2. This corresponds to the ‘concave kink’ in the graph of V , see Figure 4.2. ^

The observed differentiability properties in Example 4.18 guarantee that any local minimizer x̄
of V on W lies in D1, or the function V is Gâteaux differentiable at x̄. In Theorem 4.23 we will
show that, under mild assumptions, a similar assertion holds in the general case. In Section 6.1
we will discuss the essential implications of this fact for the design of numerical methods to
solve the optimization problem P in (3.11). We begin now with a preliminary result which gives
a representation for the gradient of the Lagrangian Lνα from (4.9).

Lemma 4.19 Let Assumptions 4.1 and 4.7 hold, and let Lνα be the Lagrangian of Qν
α(x). Then

the gradient with respect to all variables x = (x1, . . . , xN), evaluated at a point (x̄, z̄ν, λν) with
x̄ ∈ W, z̄ν := zνα(x̄) and λν ∈ KKT ν

α(x̄), has the representation

∇xLνα(x̄, z̄ν, λν) = ∇θν(z̄ν, x̄−ν) +
∑

i∈Iν0(z̄ν,x̄−ν)

λνi∇gνi (z̄
ν, x̄−ν).

Proof. The definitions of Lνα(x, zν, λν) and KKT ν
α(x) immediately imply that

∇xµLνα(x̄, z̄ν, λν) = ∇xµθν(z̄ν, x̄−ν) +
∑

i∈Iν0(z̄ν,x̄−ν)

λνi∇xµgνi (z̄
ν, x̄−ν) (4.12)

holds for all µ ∈ {1, . . . ,N} \ {ν}. Moreover, the combination of

∇xνLνα(x̄, z̄ν, λν) = α(x̄ν − z̄ν)

and, by the definition of KKT ν
α(x̄),

0 = ∇zνLνα(x̄, z̄ν, λν) = ∇xνθν(z̄ν, x̄−ν) − α(x̄ν − z̄ν) +
∑

i∈Iν0(z̄ν,x̄−ν)

λνi∇xνgνi (z̄
ν, x̄−ν)

shows that (4.12) also holds for µ = ν (independently of α). �
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4.2. Differentiability Properties

The following result will be used in order to show that there exist feasible descent directions for
Vα at certain points from W. To this end, we exclude some degenerate points from D2 for the
proof of Theorem 4.23. In fact, we define D3 to be the set of points in D2, such that we have

span
{∇gνi (x)

(
i ∈ Iν0(x), ν = 1, . . . ,N

)} ∩
span

{
∇gµi (zµα(x), x−µ)

(
i ∈ Iµ0 (zµα(x), x−µ)

)}
, {0} (4.13)

whenever KKT µ
α(x) = ∅ or player SMFC is violated at zµα(x) for some µ ∈ {1, . . . ,N}, that is,

D3 :=
{
x ∈ D2 | (4.13) holds at least for one index µ ∈ {1, . . . ,N} where

KKT µ
α(x) = ∅ or player SMFC is violated at zµα(x) ∈ Xµ(x−µ)

}
.

Note that at least the unconstrained points x ∈ D2, that is, the ones with Iν0(x) = ∅, ν = 1, . . . ,N,
do not lie in the set D3, since span ∅ = {0} holds. More generally, one may expect in the case∑N
ν=1 |Iν0(x)| + |Iµ0 (zµα(x), x−µ)| ≤ n that x does not lie in D3, as the involved gradients are evaluated

at different arguments. On the other hand, for
∑N
ν=1 |Iν0(x)| + |Iµ0 (zµα(x), x−µ)| > n and linearly inde-

pendent gradients, x will definitely lie in D3. Furthermore, under mild conditions, a generalized
Nash equilibrium x lying in D2 is necessarily an element of D3. In fact, KKT ν

α(x) = ∅ or SMFC
is violated at (zνα(x), x−ν) in Xν(x−ν) for x ∈ D2 and some ν ∈ {1, . . . ,N} so that, in particular,
Iν0(zνα(x), x−ν) is nonempty. Moreover, the points zνα(x) and xν coincide for a generalized Nash
equilibrium x by Lemma 3.2 (e). This means that the vectors ∇gνi (x)

(
i ∈ Iν0(x)

)
appear in both

spans in (4.13) if Iν0(x) is nonempty. Thus, except for the case where all these vectors vanish, the
intersection of the two spans is strictly larger than {0}.

With regard to linear independence, we will actually need the following assumption about joint
LICQν, which strengthens Assumption 4.9 and is based on Definition 4.15 (a).

Assumption 4.20 LICQν holds everywhere in Wν for each ν ∈ {1, . . . ,N}.

Proposition 4.21 Let x̄ ∈ D2 \ (D1 ∪ D3) and Assumptions 4.1, 4.7, and 4.20 hold. Then there
exists a vector d ∈ Rn solving the system

V ′α(x̄, d) < 0, Dgνi (x̄) d ≤ 0
(
i ∈ Iν0(x̄), ν = 1, . . . ,N

)
. (4.14)

Proof. Assume that (4.14) does not possess a solution d ∈ Rn. By Theorem 4.13, we have

V ′α(x̄, d) =

N∑
ν=1

[
Dθν(x̄) d − max

λν∈KKT ν
α(x̄)

DxLνα(x̄, z̄ν, λν) d
]

for all d ∈ Rn, where we put z̄ν = zνα(x̄) for ν = 1, . . . ,N. Hence the inconsistency of (4.14)
implies that also the system N∑

ν=1

[
Dθν(x̄) − DxLνα(x̄, z̄ν, λν)

] d < 0,

Dgνi (x̄) d ≤ 0
(
i ∈ Iν0(x̄), ν = 1, . . . ,N

)
,
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4. Smoothness Properties of a Primal Gap Function for Generalized Nash Equilibrium Problems

is inconsistent for any choice of

λ := (λ1, . . . , λN) ∈ KKT 1
α(x̄) × . . . × KKT N

α (x̄). (4.15)

Note that KKT ν
α(x̄), ν = 1, . . . ,N, are nonempty sets, since x̄ ∈ W \D1 and, thus, Xν(x̄−ν) satisfies

the Slater condition for all ν = 1, . . . ,N. By Farkas’ lemma (see, e.g., [120]), the latter system is
inconsistent if and only if there exist scalars γνi (λ) ≥ 0 for all i ∈ Iν0(x̄), ν = 1, . . . ,N, with

N∑
ν=1

[∇θν(x̄) − ∇xLνα(x̄, z̄ν, λν)
]
+

N∑
ν=1

∑
i∈Iν0(x̄)

γνi (λ)∇gνi (x̄) = 0.

After rearranging terms, we find that for any choice λwith (4.15) there exist multipliers γνi (λ) ≥ 0
with

N∑
ν=1

(
∇θν(x̄) +

∑
i∈Iν0(x̄)

γνi (λ)∇gνi (x̄)
)

=

N∑
ν=1

∇xLνα(x̄, z̄ν, λν).

Using Lemma 4.19 to replace the expression for the gradient on the right-hand side, we conclude
that for any choice λ with (4.15) there exist multipliers γνi (λ) ≥ 0 with

N∑
ν=1

(
∇θν(x̄) +

∑
i∈Iν0(x̄)

γνi (λ)∇gνi (x̄)
)

=

N∑
ν=1

(
∇θν(z̄ν, x̄−ν) +

∑
i∈Iν0(z̄ν,x̄−ν)

λνi∇gνi (z̄
ν, x̄−ν)

)
. (4.16)

Next, we use that x̄ was chosen from D2 so that a multiplier λ exists and player SMFC is violated
at z̄µ at least for one µ ∈ {1, . . . ,N}, say for µ = 1. Then KKT 1

α(x̄) contains two different
multipliers λ̂1 , λ̃1. For ν = 2, . . . ,N, we choose any λν ∈ KKT ν

α(x̄) and put λ̂ := (λ̂1, λ2, . . . , λN)
as well as λ̃ := (λ̃1, λ2, . . . , λN). Equation (4.16) then holds with λ = λ̂ as well as with λ = λ̃.
Subtracting these two equations leads to

N∑
ν=1

∑
i∈Iν0(x̄)

(
γνi (λ̂) − γνi (λ̃)

)∇gνi (x̄) =
∑

i∈I1
0 (z̄1,x̄−1)

(λ̂1
i − λ̃1

i )∇g1
i (z̄1, x̄−1),

where the left hand side is some element of

span
{∇gνi (x̄)

(
i ∈ Iν0(x̄), ν = 1, . . . ,N

)}
,

and the right hand side is some element of

span
{
∇g1

i (z̄1, x̄−1)
(
i ∈ I1

0(z̄1, x̄−1)
)}
,

which, in addition, cannot vanish due to λ̂1 , λ̃1, (z̄1, x̄−1) ∈ W1 and Assumption 4.20. Therefore,
the intersection of these two spans is nontrivial. However, since x̄ was taken from D2 \ D3, this
is a contradiction. Consequently, contrary to our assumption, (4.14) must be consistent. This
shows the assertion. �
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Before we state the main result of this section, we need one more assumption. To this end, we
first recall that the tangent (or contingent or Bouligand) cone to W at x̄ is defined by

TW(x̄) :=
{
d ∈ Rn

∣∣∣ ∃tk ↓ 0, dk → d : x̄ + tkdk ∈ W for all k ∈ N
}
,

and that the linearization cone to W at x̄ is given by

LW(x̄) :=
{
d ∈ Rn

∣∣∣ Dgνi (x̄) d ≤ 0 ∀i ∈ Iν0(x̄), ν = 1, . . . ,N
}
.

The inclusion TW(x̄) ⊆ LW(x̄) always holds (cf., e.g., [125]). The Abadie constraint qualification
(ACQ) is said to hold at x̄ ∈ W if both cones actually coincide.

Assumption 4.22 ACQ holds everywhere in W.

ACQ is typically considered a very weak constraint qualification. Nevertheless, we point out that
the example from Remark 4.10 shows that neither Assumption 4.9 nor Assumption 4.20 imply
Assumption 4.22.

The following is the main result of this section.

Theorem 4.23 Let Assumptions 4.1, 4.7, 4.20, and 4.22 hold. Then any local minimizer x̄ of Vα

on W lies in D1 ∪ D3, or the function Vα is Gâteaux differentiable at x̄.

Proof. By Theorem 4.17, Vα is Gâteaux differentiable everywhere on W \ D2. Choose any
x̄ ∈ D2 \ (D1 ∪ D3). The assertion is shown if we can prove that x̄ is not a local minimizer of Vα

on W. The main idea of the proof is to show this by guaranteeing the existence of a first order
feasible descent direction for Vα on W in x̄.

In view of Proposition 4.21, there exists a vector d ∈ Rn solving the system (4.14). In parti-
cular, d belongs to the linearization cone LW(x̄). In view of Assumption 4.22, d also lies in the
tangent cone TW(x̄), that is, there exist sequences tk ↓ 0 and dk → d with x̄ + tkdk ∈ W for all
k ∈ N.

Assume that x̄ is a local minimizer of Vα on W. This implies Vα(x̄ + tkdk) ≥ Vα(x̄) and, thus,

Vα(x̄ + tkdk) − Vα(x̄)
tk

≥ 0 (4.17)

for all sufficiently large k ∈ N. By Theorem 4.13, Vα is Hadamard directionally differentiable at x̄
so that the limit of the left-hand side in (4.17) exists and equals V ′α(x̄, d) (note that here we exploit
the fact that Vα is actually Hadamard directionally differentiable and not just directionally differ-
entiable in the ordinary sense). However, since the implication V ′α(x̄, d) ≥ 0 contradicts (4.14), x̄
cannot be a local minimizer of Vα on W. �

It is well-known (cf., e.g., [125, Prop. 3.2]) that ACQ holds everywhere in W in the case where
all constraints gνi are linear. This immediately leads to the following result.

Corollary 4.24 Let Assumptions 4.1, 4.7, and 4.20 hold, and assume that all constraint functions
gνi are linear. Then any local minimizer x̄ of Vα on W lies in D1∪D3, or the function Vα is Gâteaux
differentiable at x̄.
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4. Smoothness Properties of a Primal Gap Function for Generalized Nash Equilibrium Problems

We remark that in Example 4.18 the two constrained elements of D2 belong to D3, but first order
feasible descent directions for Vα on W still exist in these points. This indicates that it should be
possible to weaken the assumptions of Theorem 4.23.

With respect to Remark 4.12, we note that, coarsely speaking, ‘concavity property prevails
in the kinks of Vα’ although Vα is not necessarily concave under the general assumptions of
Theorem 4.23.

For completeness, we emphasize that Gâteaux differentiability of Vα at x̄ in Theorem 4.17 can
be replaced by continuous differentiability if Vα is Gâteaux differentiable on a neighborhood of
x̄ and the partial derivatives of Vα are continuous. The next corollary states a sufficient condition
for this situation.

Corollary 4.25 Let Assumptions 4.1 and 4.7 hold. Additionally, for x̄ ∈ W \ D2 let player LICQ
hold at z̄ν := zνα(x̄) with the unique multiplier λ̄ν := λνα(x̄) for each ν ∈ {1, . . . ,N}. Then Vα is
continuously differentiable on a neighborhood of x̄ with

∇Vα(x̄) =

N∑
ν=1

[
∇θν(x̄) − ∇xLνα(x̄, z̄ν, λ̄ν)

]
.

Proof. First, in view of Lemmata 4.5 and 4.16, we have x̄ ∈ int dom Vα, and therefore it makes
sense to study differentiability of Vα at x̄. In the following let ν ∈ {1, . . . ,N}. As in the proof of
Lemma 4.5, one can show that the function zνα(x) is defined on a whole neighborhood U of x̄ and
that U does not contain points from D1. Thus, by Lemma 4.2, the function zνα is continuous on
the whole set U. As player LICQ is stable under perturbations, U can also be chosen such that
player LICQ holds at zνα(x) for each x ∈ U. Consequently, the set-valued mapping KKT ν

α(x) is
single-valued on U, say KKT ν

α(x) ≡ {λνα(x)} with λνα(x̄) = λ̄ν.
Since not only the function zνα but also the function λνα is continuous on U by [83, Lemma 2]

for each ν ∈ {1, . . . ,N}, the partial derivatives of Vα from Theorem 4.17 are continuous on U.
This shows continuous differentiability of Vα on U. �

Under the assumptions of Corollary 4.25, Gâteaux differentiability can be replaced by continuous
differentiability also in Theorem 4.23. Thus, if under the assumptions of Theorem 4.23 each
x ∈ W \ D2 satisfies the assumptions of Corollary 4.25, then each local minimizer x̄ of Vα on W
lies in D1∪D3, or Vα is continuously differentiable on a neighborhood of x̄. Note that Example 4.3
satisfies these assumptions.

The next remark shows that the assumption of player LICQ in Corollary 4.25 can be replaced
by the assumption of stable player SMFC.

Remark 4.26 Let x̄ ∈ W \ D2. Then the assumption of player LICQ at zνα(x̄) ∈ Xν(x̄−ν) for
each ν ∈ {1, . . . ,N} in Corollary 4.25 can be replaced in cases when player SMFC is stable at
zνα(x̄) ∈ Xν(x̄−ν) for each ν ∈ {1, . . . ,N}. Using the characterization of the set D2 from (4.11),
player SMFC already holds at zνα(x̄) ∈ Xν(x̄−ν) for all ν = 1, . . . ,N. Hence if additionally the
sets Iν00(x̄) = {i ∈ Iν0(x̄) | λ̄νi = 0}, ν = 1, . . . ,N, remain constant under small perturbations of x̄
(this is true if, for example, the sets Iν00(x̄), ν = 1, . . . ,N, are empty, that is, the so-called strict
complementarity slackness holds), then continuity arguments show that SMFC is stable at zνα(x̄)
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for each ν ∈ {1, . . . ,N} under sufficiently small perturbations of x̄. After this observation, one
can show continuous differentiability of Vα on a neighborhood of x̄ along the lines of the proof
of Corollary 4.25. ^

The previous results of Chapter 4 can also be used for jointly convex GNEPs, but the following
remark proposes a better way how to use the approaches from Chapter 4 for this class of GNEPs.

Remark 4.27 Recall that in the jointly convex case one assumes identical constraints for all
players, g1 = g2 = . . . = gN =: g, and that the components of g are convex in the whole vector
x = (x1, . . . , xN). Thus, the strategy spaces have the representation

Xν(x−ν) =
{
xν ∈ Rnν | g(xν, x−ν) ≤ 0

}
(ν = 1, . . . ,N),

so that x ∈ Ω(x) holds if and only if x lies in the set

W̃ := {x ∈ Rn | g(x) ≤ 0} . (4.18)

Note that, in contrast to the player convex case, W̃ is necessarily convex (and Assumption 4.6 au-
tomatically holds). An important observation is that the definition of W̃ is slightly different from
the definition of W in (3.5). In fact, while the geometries of both sets coincide, their functional
descriptions are different as, formally, W is described by N identical inequalities g(x) ≤ 0 in
the jointly convex case. With regard to constraint qualifications like LICQ, the latter description
of W is necessarily degenerate at boundary points, while the description of W̃ from (4.18) may
enjoy nondegeneracy properties.

In particular, all sets Wν, ν = 1, . . . ,N, from (4.5) coincide with W̃, and Assumption 4.9
coincides with the assumption of MFCQ everywhere in W̃. Of course, the latter is equivalent to
the Slater condition for W̃ and implies the Abadie constraint qualification for W̃. Furthermore,
Assumption 4.20 of LICQν at each point of each set Wν, ν = 1, . . . ,N, can be replaced by the
assumption of LICQ at each point of W̃ which, in turn, implies the Slater condition for W̃. In
any case, Assumption 4.22 is superfluous in Theorem 4.23 for jointly convex problems. Hence,
in contrast to the player convex case, our assumptions on constraint qualifications are highly
interrelated in the jointly convex case. We also remark that, in the jointly convex case, D3 is
defined to be the set of points x ∈ D2 such that at least for one index µ ∈ {1, . . . ,N} for which
KKT µ

α(x) = ∅ or player SMFC is violated at zµα(x) ∈ Xµ(x−µ) we have

span
{∇gi(x)

(
i ∈ I0(x)

)} ∩ span
{∇gi(zµα(x), x−µ)

(
i ∈ I0(zµα(x), x−µ)

)}
, {0}. (4.19)

We emphasize that so-called shared constraints as in the jointly convex case lead to numerical
difficulties in all established numerical methods for the solution of GNEPs. In fact, while repeat-
ing identical constraints can lead to degeneracies in any numerical approach, dropping redundant
constraints basically leads to underdetermined systems and, thus, alternative numerical problems
in all approaches, which we are aware of. In contrast to this, dropping redundant constraints in
the present approach by switching from W to W̃ does not introduce numerical problems. ^
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The following example illustrates for the jointly convex case that a generalized Nash equilibrium
can fall in any category mentioned in Theorem 4.23.

Example 4.28 We slightly modify Example 4.3 by setting N = 2, n1 = n2 = 1, θ1(x) = −x1,
θ2(x) = x2, g1

1(x) = g2
1(x) = −2x1 + x2, g1

2(x) = g2
2(x) = x2

1 + x2
2 − 1, g1

3(x) = g2
3(x) = −x1 − x2.

Then for all x ∈ W̃ = {x ∈ R2| x2
1 + x2

2 ≤ 1, −x1 ≤ x2 ≤ 2x1} (cf. Figure 4.1) the problems Q1
α(x)

and Q2
α(x) are easily seen to be uniquely solvable for α = 0. Furthermore, it is not hard to see

that the assumptions of Theorem 4.23 with the modifications from Remark 4.27 are satisfied.
As to be expected for problems with shared constraints, the set of generalized Nash equilibria

is not a singleton, but it is formed by the (closed) boundary arc of W̃ connecting the points
x̄ := 1/

√
2 (1,−1) and x̂ := (1, 0). Both x̄ and x̂ are elements of D1, and x̄ also lies in D3, since

player SMFC is violated at the point z2
0(x̄) = −1/

√
2 ∈ X2

(
1/
√

2
)

and the intersection of spans
in (4.19) is R2.

On the other hand, by direct inspection or as shown in Theorem 4.23, the resulting function

V(x) := V0(x) = −x1 + x2 +

√
1 − x2

2 + min{x1,
√

1 − x2
1}

with x ∈ W̃ is differentiable at all generalized Nash equilibria except for x̄ and x̂. ^

The statements of this section motivate the application of certain smooth optimization techniques
on the optimization problem P from (3.11). Therefore, we will draw on this fact and present some
numerical results in Section 6.1.
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5. Smoothness Properties of a Dual Gap
Function for Generalized Nash
Equilibrium Problems

The reformulations of GNEPs in (3.8) and (3.11) as constrained minimization problems have, in
general, nonsmooth objective functions V and Vα. Consequently, also the primal gap function
Vα + δW for the reformulation in (3.12) is, in general, nonsmooth. However, based on an idea by
Dietrich [30], this primal gap function may be viewed as a difference of two convex functions,
which then allows the application of the Toland-Singer duality theory [123, 130, 131] in order to
obtain a smooth and unconstrained optimization reformulation of certain GNEPs. In Section 5.1
we develop such a smooth and unconstrained dual optimization reformulation for a class of player
convex GNEPs. In Section 5.2 we then apply a smoothness result from parametric optimization
observed in Section 2.2 to our particular setting and therefore obtain second-order properties of
our unconstrained objective function. The results of Chapter 5 come from the paper [73].

5.1. A Smooth Dual Gap Function

It is possible to obtain a smooth reformulation of certain GNEPs in case that the optimal value
function Vα + δW of the the unconstrained minimization problem in (3.12) can be rewritten as a
difference of two strongly convex and lsc functions (see Definition 2.5). A class of player convex
GNEPs satisfying the next assumption has this property.

Assumption 5.1 (a) The feasible set W = {x ∈ Rn | x ∈ Ω(x)} of the GNEP (3.2) is nonempty.

(b) The cost functions θν : Rn → R, ν = 1, . . . ,N, are convex on Rn.

(c) The set-valued mappings Xν : Rn−nν ⇒ Rnν , ν = 1, . . . ,N, are graph-convex and osc
on Rn−nν (see Definition 2.1).

Since these assumptions play a central role within our analysis in Chapter 5, we would like to
add a few comments. Assumption 5.1 (a) is rather natural, since otherwise the corresponding
GNEP is not solvable. Assumption 5.1 (c) is satisfied if, for example, Xν, ν = 1, . . . ,N, are
defined by (3.3) with functions gν : Rn → Rmν , ν = 1, . . . ,N, which are convex in the whole
variable x = (xν, x−ν) on Rn. In particular, Assumption 5.1 (c) therefore holds for the class of
jointly convex GNEPs, where g1 = g2 = . . . = gN =: g and the components of g are convex in the
whole variable, cf. [47] for more details. However, we do not use the representation of Xν with
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5. Smoothness Properties of a Dual Gap Function for Generalized Nash Equilibrium Problems

gν here. Finally, Assumption 5.1 (b) is probably the most restrictive condition, since it requires
all cost functions to be convex in the entire vector x. Note that this assumption provides the
continuity of all cost functions on Rn. However, we will see later that the convexity assumption
on the cost functions can be relaxed considerably, see the discussion following Lemma 5.7. In
order to avoid any technical discussion, it is convenient to assume this condition to formulate and
prove the subsequent results.

Assumption 5.1 (c) yields the following result.

Lemma 5.2 Let Assumption 5.1 (c) hold. Then the set-valued mapping Ω : Rn ⇒ Rn defined
by (3.1) is graph-convex and osc on Rn.

Proof. First we verify the graph-convexity of Ω. By the definition of Ω in (3.1) and Assump-
tion 5.1 (c), it holds that

gph Ω = {(x, z) ∈ Rn × Rn | z ∈ Ω(x)}
=

{
(x, z) ∈ Rn × Rn | zν ∈ Xν(x−ν) ∀ν = 1, . . . ,N

}
=

N⋂
ν=1

{
(x, z) ∈ Rn × Rn | zν ∈ Xν(x−ν)

}
=

N⋂
ν=1

{
(xν, x−ν, zν, z−ν) ∈ Rnν × Rn−nν × Rnν × Rn−nν | (x−ν, zν) ∈ gph Xν

}
=:

N⋂
ν=1

Cν

with the convex sets gph Xν := {(x−ν, zν) ∈ Rn−nν × Rnν | zν ∈ Xν(x−ν)} for all ν ∈ {1, . . . ,N}.
Furthermore, the sets Cν, ν = 1, . . . ,N, are convex as suitable Cartesian products of the convex
sets gph Xν and Rnν × Rn−nν . Then the set gph Ω is convex as an intersection of convex sets.
Therefore, the set-valued mapping Ω is graph-convex.

Next, we show that the set-valued mapping Ω is osc on Rn. Let x̄ ∈ Rn be arbitrarily given.
Since the set-valued mappings Xν : Rn−nν ⇒ Rnν , ν = 1, . . . ,N, are osc on Rn−nν , for all sequences{
xk,−ν} ⊆ Rn−nν with xk,−ν → x̄−ν and all sequences zk,ν → z̄ν with zk,ν ∈ Xν(xk,−ν) for all k ∈ N

sufficiently large, we have z̄ν ∈ Xν(x̄−ν). Then for all sequences
{
xk

}
⊆ Rn with xk → x̄ and

zk → z̄ with zk ∈ X1(xk,−1) × . . . × XN(xk,−N) = Ω(xk) for all k ∈ N sufficiently large, we have
z̄ ∈ X1(x̄−1) × . . . × XN(x̄−N) = Ω(x̄). Consequently, Ω is osc at x̄. Since x̄ ∈ Rn was arbitrarily
chosen, the set-valued mapping Ω is osc on Rn. �

The next result, which follows from Lemma 5.2 together with Assumption 5.1 (a), is critical for
the further analysis.

Lemma 5.3 Let Assumptions 5.1 (a) and (c) hold. Then:

(a) The feasible set W of the GNEP (3.2) defined in (3.4) is nonempty, closed, and convex.

(b) The domain dom Ω from (3.7) of the set-valued mapping Ω is nonempty and convex.
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5.1. A Smooth Dual Gap Function

Proof. (a) In view of Assumption 5.1 (a), the set W is nonempty. Furthermore, let {xk} ⊆ W be
an arbitrary convergent sequence with a limit x̄ ∈ Rn. Then xk ∈ Ω(xk) for all k ∈ N. Since the
set-valued mapping Ω : Rn ⇒ Rn is osc by Lemma 5.2, it follows that x̄ ∈ Ω(x̄). Therefore,
x̄ ∈ W so that the set W is closed.

Next, we show that W is convex. To this end, let x1, x2 ∈ W and t ∈ [0, 1] be arbitrarily
given. Then x1 ∈ Ω(x1) and x2 ∈ Ω(x2). By Lemmata 5.2 and 2.4 (b), it follows that Ω is graph-
convex and tx1+(1−t)x2 ∈ Ω

(
tx1+(1−t)x2

)
, that is, tx1+(1−t)x2 ∈ W. Hence the set W is convex.

(b) The set dom Ω is nonempty, since dom Ω contains the nonempty set W in view of Lem-
ma 3.2 (a). The convexity of dom Ω follows immediately from graph-convexity of Ω, see
Lemma 2.4 (b). �

The subsequent example illustrates that even for a graph-convex and osc set-valued mapping Ω

its domain dom Ω is not necessarily closed.

Example 5.4 Consider a GNEP with two players having arbitrary cost functions and each con-
trolling a single variable, which, for simplicity of notation, we call x1 and x2, respectively. Fur-
thermore, let Ω : R2 ⇒ R2 be given by Ω(x) = X1(x2) × X2(x1) with the set-valued mappings X1,
X2 : R⇒ R defined by

X1(x2) :=


{
x1 ∈ R

∣∣∣ x1 ≥ 1
x2

}
, if x2 > 0,

∅, if x2 ≤ 0,
and X2(x1) := [0,∞[.

These set-valued mappings X1 and X2 are obviously graph-convex. Furthermore, X1 and X2 are
osc on R, since, if xk

2 ↓ 0, all sequences {zk
1} with zk

1 ∈ X1(xk
2) are divergent, and all other cases

are unproblematic. In view of Lemma 5.2, the set-valued mapping Ω is also graph-convex and
osc on R2. On the other hand, dom Ω = R × R> is not closed. ^

In order to obtain a differentiable reformulation of GNEPs satisfying Assumption 5.1, we rewrite
the unconstrained objective function from (3.12) as a difference of two strongly convex and lsc
functions and apply the duality theory by Toland [130] and Singer [123] to this DC minimization
problem. Note that a problem is called DC minimization problem if it consists of the minimiza-
tion of a difference of two convex functions. For a survey of DC programming, we refer to [84].

Using the reformulation of the optimal value function Vα in (3.9) with a parameter α > 0 and
the specific structure of this function, we first observe

Vα(x) + δW(x) = %(x) − ϕα(x) (5.1)

with the functions % : Rn → R ∪ {+∞} and ϕα : Rn → R ∪ {+∞} defined by

%(x) :=
N∑
ν=1

θν(x) + δW(x) and ϕα(x) := inf
z∈Ω(x)

 N∑
ν=1

θν(zν, x−ν) +
α

2
‖x − z‖2

 , (5.2)

where the infimum is uniquely attained at zα(x) defined in (3.10) for all x ∈ dom Ω and takes the
value +∞ for all x < dom Ω. The functions % and ϕα are lsc and convex. Lower semicontinuity
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5. Smoothness Properties of a Dual Gap Function for Generalized Nash Equilibrium Problems

and convexity of % are easily verified, since θν, ν = 1, . . . ,N, is continuous and convex on Rn by
Assumption 5.1 (b) and the set W is closed and convex by Lemma 5.3 (a). For the proof of lower
semicontinuity and convexity of the function ϕα we need the following result.

Lemma 5.5 Let Ω : Rn ⇒ Rn be graph-convex and osc on Rn. Then the function

Ψ : Rn × Rn → R ∪ {+∞}, Ψ(z, x) := δΩ(x)(z)

is lsc and convex in (z, x).

Proof. First we show that Ψ is lsc: To this end, let {(zk, xk, γk)} ⊆ epi Ψ such that (zk, xk, γk)
converges to (z̄, x̄, γ̄). In particular, it holds that γk ≥ 0, hence γ̄ ≥ 0. On the other hand, we have
δΩ(xk)(zk) ≤ γk < ∞, hence it necessarily follows from the definition of the indicator function that
δΩ(xk)(zk) = 0, that is, zk ∈ Ω(xk) holds for all k ∈ N. Since Ω is osc, we therefore have z̄ ∈ Ω(x̄)
and thus, δΩ(x̄)(z̄) = 0 ≤ γ̄, hence (z̄, x̄, γ̄) ∈ epi Ψ. It follows that epi Ψ is closed, that is, Ψ is lsc.

It remains to prove that Ψ is convex in (z, x): For these purposes, let (z, x, γ), (z′, x′, γ′) ∈ epi Ψ

and t ∈ [0, 1]. Similar to the first part of the proof, it follows that z ∈ Ω(x) and z′ ∈ Ω(x′).
Consequently, we have tz ∈ tΩ(x) and (1 − t)z′ ∈ (1 − t)Ω(x′) and hence, due to the graph-
convexity of Ω, we observe tz + (1 − t)z′ ∈ Ω(tx + (1 − t)x′), cf. Lemma 2.4 (b). Hence

Ψ
(
tz + (1 − t)z′, tx + (1 − t)x′

)
= 0 ≤ tγ + (1 − t)γ′,

and thus, epi Ψ is convex, that is, Ψ is convex in (z, x). �

Note that the proof of Lemma 5.5 does not come from the paper [73] but has been already
published in the former paper [72, Lemma 3.3]. Using Lemma 5.5, we are now in position to
verify lower semicontinuity and convexity of the function ϕα defined in (5.2).

Lemma 5.6 Let Assumption 5.1 hold. Then the function ϕα is proper, lsc, and convex on Rn.

Proof. In view of (5.2), we rewrite ϕα as

ϕα(x) = inf
z∈Rn

τα(z, x),

where τα : Rn × Rn → R ∪ {+∞} is defined by

τα(z, x) :=
N∑
ν=1

θν(zν, x−ν) +
α

2
‖x − z‖2 + δΩ(x)(z).

By Assumption 5.1 and Lemma 5.5, each summand of τα is convex and (at least) lsc on Rn ×Rn.
Hence τα is lsc and convex. Furthermore, the function τα is proper, since dom τα = dom Ω , ∅.
Additionally, the mapping

argmin
z∈Rn

τα(z, x) = {zα(x)}

is single-valued for all x ∈ dom Ω. Thus, the assertions follow from [117, Corollary 3.32]. �
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5.1. A Smooth Dual Gap Function

Since the functions % and ϕα are lsc and convex, the representation in (5.1) is an lsc DC formula-
tion of the unconstrained objective function from (3.12). For the purpose of a differentiable dual
reformulation of GNEPs satisfying Assumption 5.1, we add to both functions % and ϕα the same
strongly convex quadratic term. This alteration leads to the following DC decomposition of the
optimal value function from (3.12):

Vα(x) + δW(x) = fα(x) − hα(x)

with two functions fα, hα : Rn → R ∪ {+∞} defined by

fα(x) :=
α

2
‖x‖2 +

N∑
ν=1

θν(x) + δW(x) =
α

2
‖x‖2 + %(x), (5.3)

hα(x) :=
α

2
‖x‖2 + inf

z∈Ω(x)

 N∑
ν=1

θν(zν, x−ν) +
α

2
‖x − z‖2

 =
α

2
‖x‖2 + ϕα(x). (5.4)

In principle, we could have used another parameter for the quadratic term in the functions fα and
hα than for the quadratic term in the function ϕα. Furthermore, the quadratic term α

2 ‖x‖2 could be
replaced by any strongly convex function without really changing the subsequent theory.

Some elementary properties of the above DC decomposition are summarized in the following
result.

Lemma 5.7 Let Assumption 5.1 hold, and let fα and hα be defined as in (5.3) and (5.4), respec-
tively. Then the following statements hold:

(a) The function fα is lsc and strongly convex on Rn and has the domain W.

(b) The function hα is lsc and strongly convex on Rn and has the domain dom Ω.

(c) x̄ is a solution of the GNEP if and only if it is a solution of the unconstrained optimization
problem

min
x∈Rn

[
fα(x) − hα(x)

]
with optimal function value equal to zero.

Note that the previous result still holds for certain classes of nonconvex but continuous cost
functions θν, that is, for functions not satisfying Assumption 5.1 (b). This follows directly from
the definitions of fα and hα, since these functions may become strongly convex even for non-
convex and continuous functions θν by adding a suitable strongly convex term. For example,
for quadratic cost functions θν, it can be achieved by adding the strongly convex quadratic term
α
2 ‖x‖2 with a sufficiently large parameter α. This observation will be exploited in our numerical
section in order to compute a suitable parameter α.

Before we apply the duality theory by Toland and Singer to this DC decomposition, we con-
sider the required conjugate functions of fα and hα in the next two results. The definition of a
conjugate function is given in Definition 2.5 (e).
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Lemma 5.8 Let Assumption 5.1 hold. Then the following statements hold for the conjugate f ∗α
of fα:

(a) f ∗α is given by

f ∗α (y) = x f ∗
α (y)T y − α

2

∥∥∥x f ∗
α (y)

∥∥∥2 −
N∑
ν=1

θν
(
x f ∗
α (y)

)
where x f ∗

α (y) denotes the unique solution of the maximization problem

max
x

[
xT y − α

2
‖x‖2 −

N∑
ν=1

θν(x)
]

subject to x ∈ W.

(b) f ∗α has the domain dom f ∗α = Rn.

(c) f ∗α is differentiable with Lipschitz gradient given by ∇ f ∗α (y) = x f ∗
α (y).

Proof. Application of Definition 2.5 (e) leads to

f ∗α (y) = sup
x∈W

[
xT y − α

2
‖x‖2 −

N∑
ν=1

θν(x)
]

=: max
x∈W

Fα(x, y). (5.5)

The function Fα is continuous on Rn × Rn and strongly concave in x for each fixed y ∈ Rn.
Since the set W is nonempty, closed, and convex by Lemma 5.3 (a), the maximization problem
in (5.5) has a unique solution x f ∗

α (y) for each fixed y ∈ Rn, so that dom f ∗α = Rn. This proves
statements (a) and (b).

Furthermore, the function Fα is continuously differentiable in the second variable for each
fixed x ∈ Rn, and the mapping y 7→ x f ∗

α (y) is continuous on Rn in view of Lemma 2.3 based on
[82, Corollaries 8.1 and 9.1]. Due to Danskin’s Theorem (see, e.g., [8, Chapter 4, Theorem 1.7]
or [19]), the function f ∗α is continuously differentiable with

∇ f ∗α (y) = ∇yFα(x, y)
∣∣∣
x=x f ∗

α (y)
= x f ∗

α (y).

In view of Lemma 2.7, this gradient ∇ f ∗α is even Lipschitz. This completes the proof. �

In a similar way as for the function fα we consider the conjugate function of hα.

Lemma 5.9 Let Assumption 5.1 hold. Then the following statements hold for the conjugate h∗α
of hα:

(a) h∗α(y) is given by

h∗α(y) = xh∗
α (y)T y − α

2

∥∥∥xh∗
α (y)

∥∥∥2 −
N∑
ν=1

θν
(
zh∗
α (y)ν, xh∗

α (y)−ν
) − α

2

∥∥∥xh∗
α (y) − zh∗

α (y)
∥∥∥2

where
(
xh∗
α , z

h∗
α

)
(y) is the unique solution of the maximization problem

max
(x,z)

[
xT y − α

2
‖x‖2 −

N∑
ν=1

θν(zν, x−ν) − α2 ‖x − z‖2
]

subject to (x, z) ∈ gph Ω.
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(b) h∗α(y) has the domain dom h∗α = Rn.

(c) h∗α(y) is differentiable with Lipschitz gradient given by ∇h∗α(y) = xh∗
α (y).

Proof. Due to Definition 2.5 (e), we obtain

h∗α(y) = sup
x∈Rn

xT y − α
2
‖x‖2 − inf

z∈Ω(x)

 N∑
ν=1

θν(zν, x−ν) +
α

2
‖x − z‖2

 (5.6)

= max
(x,z)∈gph Ω

[
xT y − α

2
‖x‖2 −

N∑
ν=1

θν(zν, x−ν) − α2 ‖x − z‖2
]

=: max
(x,z)∈gph Ω

Hα(x, z, y). (5.7)

The function Hα is continuous on Rn × Rn × Rn, strongly concave in (x, z) for each fixed y ∈ Rn,
and continuously differentiable in the third variable for each fixed (x, z) ∈ Rn × Rn. Since gph Ω

is nonempty, closed and convex by Assumption 5.1 (a) and (c), the proof of all statements of
Lemma 5.9 is analogous to the proof of Lemma 5.8. Here, it holds that

∇h∗α(y) = ∇yHα(x, z, y)
∣∣∣∣
(x,z)=(xh∗

α ,zh∗
α )(y)

= xh∗
α (y)

where (xh∗
α , z

h∗
α )(y) is the unique maximal point in (5.7). �

The following simple example illustrates the two previous results.

Example 5.10 Consider a GNEP satisfying Assumption 5.1 with N = 2, n1 = n2 = 1, the
variables x1 and x2 controlled by player 1 and 2, respectively, the cost functions θ1(x) := x2

1,
θ2(x) := x2, the constraints g2

1(x) := x1 − x2 ≤ 0 and g2
2(x) := −x1 − x2 ≤ 0 for the second

player, and without constraints for the first player for simplicity. Then we have the feasible set
W =

{
x ∈ R2 | x1 − x2 ≤ 0, −x1 − x2 ≤ 0

}
, which is illustrated in Figure 5.1 (a). Let α = 2. The

optimal points of the minimization problems in

V2(x) = x2
1 + x2 −min

z1∈R

[
z2

1 + (x1 − z1)2
]
− min

z2∈[|x1 |,+∞[

[
z2 + (x2 − z2)2

]
are

(
z2(x)

)
1 = 1

2 x1 for all x ∈ R2,
(
z2(x)

)
2 =

x2 − 1
2 , if x2 − 1

2 ≥ |x1|,
|x1|, else.

Hence we obtain the optimal value function

V2(x) =

 1
2 x2

1 + 1
4 , if x2 − 1

2 ≥ |x1|,
1
2 x2

1 + x2 − |x1| − (x2 − |x1|)2, else.

The function V2 is nondifferentiable at the points x ∈ R2 with x1 = 0 and x2 <
1
2 (see ’kinks’ in

Figure 5.1 (b)), which, in particular, include the unique solution x̄ = 0 of the GNEP. This solution
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Figure 5.1.: Illustrations for Example 5.10

can be verified using Lemma 3.2 (e). On the other hand, we consider the DC decomposition of
V2 with the functions

f2(x) = 2x2
1 + x2

2 + x2 + δW(x) and h2(x) =
3
2

x2
1 + x2

2 +

x2 − 1
4 , if x2 − 1

2 ≥ |x1|,
|x1| + (x2 − |x1|)2 , else.

Using Definition 2.5 (e) yields

f ∗2 (y) = sup
x∈W

[
x1y1 + x2y2 − 2x2

1 − x2
2 − x2

]
=

1
4

y2
1 +

1
4

y2
2 −min

x∈W

[
x2

1 + x2 +

(
x1 − 1

2
y1

)2

+

(
x2 − 1

2
y2

)2]
(5.8)
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with a strongly convex and differentiable minimization problem in (5.8). This problem has the
following Lagrange function:

L f ∗
2 (x, λ, y) = x2

1 + x2 +

(
x1 − 1

2
y1

)2

+

(
x2 − 1

2
y2

)2

+ λ1(x1 − x2) + λ2(−x1 − x2).

Then the KKT conditions of this problem for x ∈ W are

∇xL f ∗
2 (x, λ, y) =

(
4x1 − y1 + λ1 − λ2

1 + 2x2 − y2 − λ1 − λ2

)
= 0 and

λ1 ≥ 0, λ1(x1 − x2) = 0,
λ2 ≥ 0, λ2(−x1 − x2) = 0.

There are four possibilities for a solution of the minimization problem in (5.8): to be uncon-
strained, to be constrained by exactly one out of two constraint, or to be constrained by both
constraints:

Case 1:x1 − x2 < 0,
−x1 − x2 < 0,

Case 2:x1 − x2 = 0,
−x1 − x2 < 0,

Case 3:x1 − x2 < 0,
−x1 − x2 = 0,

Case 4:x1 − x2 = 0,
−x1 − x2 = 0.

Using the KKT conditions of the problem in (5.8) for x ∈ W, we obtain

• the first case for the optimal point x f ∗
2 (y) = 1

4 (y1, 2y2 − 2) if y2 > 1 + 1
2 |y1| holds,

• the second case for x f ∗
2 (y) = 1

6 (y1 + y2 − 1, y1 + y2 − 1) if 1 − y1 < y2 ≤ 1 + 1
2y1 holds,

• the third case for x f ∗
2 (y) = 1

6 (y1 − y2 + 1,−y1 + y2 − 1) if 1 + y1 < y2 ≤ 1 − 1
2y1 holds,

• the fourth case for x f ∗
2 (y) = (0, 0) if y2 ≤ 1 − |y1| holds.

The second and third case can be combined such that the function f2 has the following conjugate

f ∗2 (y) =


1
8

(
y2

1 + 2(y2 − 1)2
)
, if y2 > 1 + 1

2 |y1|,
1
12 (1 − |y1| − y2)2, if 1 − |y1| < y2 ≤ 1 + 1

2 |y1|,
0, if y2 ≤ 1 − |y1|,

which is illustrated in Figure 5.1 (c).
In a similar way, we observe that

h∗2(y) = sup
(x,z)∈gph Ω

[
x1y1 + x2y2 − x2

1 − x2
2 − z2

1 − z2 − (x1 − z1)2 − (x2 − z2)2
]

=
1
4
‖y‖2 − min

(x,z)∈gph Ω

[(
x1 − 1

2
y1

)2

+

(
x2 − 1

2
y2

)2

+ z2
1 + z2 + (x1 − z1)2 + (x2 − z2)2

]
, (5.9)

where in this example

gph Ω =
{
(x, z) ∈ R2 × R2

∣∣∣ x1 − z2 ≤ 0, −x1 − z2 ≤ 0
}
.
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The Lagrange function of the strongly convex and differentiable minimization problem in (5.9)
is given by

Lh∗
2 (x, z, λ, y) =

(
x1 − 1

2
y1

)2

+

(
x2 − 1

2
y2

)2

+ z2
1 + z2 + (x1 − z1)2 + (x2 − z2)2+

+ λ1(x1 − z2) + λ2(−x1 − z2).

Then the corresponding KKT conditions for (x, z) ∈ gph Ω are

∇(x,z)Lh∗
2 (x, z, λ, y) =


4x1 − y1 − 2z1 + λ1 − λ2

4x2 − y2 − 2z2

4z1 − 2x1

1 + 2z2 − 2x2 − λ1 − λ2

 = 0 and

λ1 ≥ 0, λ1(x1 − z2) = 0,
λ2 ≥ 0, λ2(−x1 − z2) = 0.

Again we obtain four possibilities for a solution of the minimization problem in (5.9) depending
on the following cases:

Case 1:x1 − z2 < 0,
−x1 − z2 < 0,

Case 2:x1 − z2 = 0,
−x1 − z2 < 0,

Case 3:x1 − z2 < 0,
−x1 − z2 = 0,

Case 4:x1 − z2 = 0,
−x1 − z2 = 0.

Using the KKT conditions of the problem in (5.9) for (x, z) ∈ gph Ω, we observe

• the first case for the optimal points xh∗
2 (y) = 1

6 (2y1, 3y2 − 3) and zh∗
2 (y) = 1

6 (y1, 3y2 − 6)
under the condition y2 > 2 + 2

3 |y1|,
• the second case for the optimal point xh∗

2 (y) = 1
16 (4y1 + 2y2 − 4, 2y1 + 5y2 − 2) together

with zh∗
2 (y) = 1

16 (2y1 + y2 − 2, 4y1 + 2y2 − 4) under the conditions 2 − 2y1 < y2 ≤ 2 + 2
3y1,

• the third case for the optimal point xh∗
2 (y) = 1

16 (4y1 − 2y2 + 4,−2y1 + 5y2 − 2) together
with zh∗

2 (y) = 1
16 (2y1 − y2 + 2,−4y1 + 2y2 − 4) under the conditions 2 + 2y1 < y2 ≤ 2− 2

3y1,

• the fourth case for xh∗
2 (y) =

(
0, 1

4y2

)
and zh∗

2 (y) = (0, 0) under the condition y2 ≤ 2 − 2|y1|.
Again the second and third case can be combined such that the function h2 has the following
conjugate:

h∗2(y) =


1
12

(
2y2

1 + 3(y2 − 1)2 + 3
)
, if y2 > 2 + 2

3 |y1|,
1
32

(
(2 − 2|y1| − y2)2 + 4y2

2

)
, if 2 − 2|y1| < y2 ≤ 2 + 2

3 |y1|,
1
8y2

2, if y2 ≤ 2 − 2|y1|,

see Figure 5.1 (d). The continuous differentiability of both functions f ∗2 and h∗2 can be shown by
simple calculations or, alternatively, follows directly from Lemmata 5.8 and 5.9, respectively. ^
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Finally, by applying the duality theory by Toland and Singer [131, Theorem 2.2], we obtain the
next theorem, which is the main result of this section. An essential finding of this duality theory
is the following statement: It holds that

inf
x∈Rn

[
f (x) − h(x)

]
= inf

y∈Rn

[
h∗(y) − f ∗(y)

]
(5.10)

for all functions f , h : Rn → R ∪ {+∞} with h convex and lsc and without conditions on f .

Theorem 5.11 Let Assumption 5.1 hold, and define the dual gap function

d∗α := h∗α − f ∗α

with the functions f ∗α and h∗α given by Lemmata 5.8 and 5.9, respectively. Then the following
statements hold:

(a) The function d∗α is differentiable with Lipschitz gradient.

(b) If ȳ is a solution of the unconstrained minimization problem

min
y∈Rn

d∗α(y) (5.11)

with d∗α(ȳ) = 0, then x̄ := ∇ f ∗α (ȳ) is a solution of the GNEP.

(c) Conversely, if x̄ is a solution of the GNEP and ȳ ∈ ∂hα(x̄), then ȳ is a solution of (5.11)
with d∗α(ȳ) = 0.

Proof. This result follows directly from the duality theory by Toland [130, 131] and Singer [123].
Nevertheless, for the sake of completeness, we elaborate on all details in this proof.

(a) The definition of the dual gap function d∗α and Lemmata 5.8 (c) and 5.9 (c) imply the contin-
uous differentiability of d∗α.

(b) Let ȳ be a solution of the unconstrained and differentiable minimization problem (5.11) with

0 = d∗α(ȳ) = h∗α(ȳ) − f ∗α (ȳ). (5.12)

Then we obtain ∇d∗α(ȳ) = 0. This implies that ∇ f ∗α (ȳ) = ∇h∗α(ȳ) holds. Therefore, the two subd-
ifferentials ∂ f ∗α (ȳ) and ∂h∗α(ȳ) also coinside, since the functions f ∗α and h∗α are convex and diffe-
rentiable and hence ∂ f ∗α (ȳ) = {∇ f ∗α (ȳ)} and ∂h∗α(ȳ) = {∇h∗α(ȳ)} hold. Furthermore, Lemma 2.6 (d)
and Lemma 5.7 (a) and (b) show that f ∗∗α = fα and h∗∗α = hα. Hence defining x̄ := ∇ f ∗α (ȳ) and
applying Lemma 2.6 (f) leads to

fα(x̄) + f ∗α (ȳ) = x̄T ȳ and hα(x̄) + h∗α(ȳ) = x̄T ȳ. (5.13)

Consequently, we obtain
fα(x̄) − hα(x̄) = h∗α(ȳ) − f ∗α (ȳ). (5.14)
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Due to (5.12), the vector x̄ minimizes the nonnegative function fα − hα with function value equal
to zero. Thus, the vector x̄ is a solution of the GNEP in view of Lemma 5.7 (c).

(c) Now, let x̄ be a solution of the GNEP. Then Lemma 5.7 (c) implies

0 = Vα(x̄) = min
x∈Rn

[
fα(x) − hα(x)

]
(5.15)

and therefore
fα(x̄) − hα(x̄) ≤ fα(x) − hα(x) ∀x ∈ Rn.

In view of ȳ ∈ ∂hα(x̄), we have

ȳT (x − x̄) ≤ hα(x) − hα(x̄)

for all x ∈ Rn. Consequently, we conclude

ȳT (x − x̄) ≤ hα(x) − hα(x̄) ≤ fα(x) − fα(x̄).

This means that not only the subdifferential ∂hα(x̄) but also the subdifferential ∂ fα(x̄) contains the
element ȳ. Together with Lemma 2.6 (f) we obtain the equations (5.13) and (5.14) successively.
Due to (5.15), the left-hand side of (5.14) is equal to zero. Using the relation (5.10) yields that
the vector ȳ minimizes the dual gap function d∗α with function value equal to zero. �

We recall that, basically, a function f is called a gap function for a mathematical program if the
function f is nonnegative and a point is a solution of the corresponding mathematical program if
and only if the objective function f is zero at this point. Therefore, the name ‘dual gap function’
for the nonnegative function d∗α is justified only if the corresponding GNEP supplies the func-
tion hα with nonempty subdifferential ∂hα for all generalized Nash equilibriums of this GNEP.
Nevertheless, we still use the name ‘dual gap function’ for the function d∗α as Dietrich did in [30].

In order to illustrate the results of Theorem 5.11, we go back to Example 5.10.

Example 5.12 Consider the GNEP with the unique solution x̄ = 0 from Example 5.10. Since

h2(x) =
3
2

x2
1 + x2

2 +

x2 − 1
4 , if x2 − 1

2 ≥ |x1|,
x2

1 + x2
2 + (1 − 2x2)|x1|, else,

the function h2 has in (0, 0) the subdifferential ∂h2(0, 0) =
{
s ∈ R2

∣∣∣ s1 ∈ [−1, 1], s2 = 0
}
. Due to

Theorem 5.11 (c), all vectors ȳ ∈ ∂h2(0, 0) are solutions of the dual minimization problem (5.11)
with zero as the optimal value. Simple calculations of global minima of the dual gap function
d∗2 = h∗2 − f ∗2 confirm this assertion, see Figure 5.2. Furthermore, Theorem 5.11 (b) states that
x̄ = ∇ f ∗2 (ȳ) = 0 is a solution of the GNEP. This fact was already mentioned in Example 5.10. ^

Note that the points ȳ ∈ R2 with ȳ1 = 0 and ȳ2 ≥ 2 are stationary points or local minima of
the dual gap function d∗2 in Example 5.12, which are not solutions of the corresponding GNEP,
see Figure 5.2. This example, which has fairly nice properties, points to the fact that it might be
difficult to find sufficient conditions for optimality of stationary points. The following proposition
is only a partial result in this direction.

52



5.1. A Smooth Dual Gap Function

−5
0

5 −5
0

5

0

5

10

y1 y2

The global minima of d∗2
Other stationary points of d∗2

Figure 5.2.: Dual gap function d∗2 from Example 5.12

Proposition 5.13 Let Assumption 5.1 hold, let d∗α = h∗α − f ∗α be the dual gap function, and let
x f ∗
α (y) and xh∗

α (y), zh∗
α (y) denote the vectors defined in Lemmata 5.8 and 5.9, respectively. Then

the following statements are equivalent:

(a) x f ∗
α (ȳ) = xh∗

α (ȳ) = zh∗
α (ȳ);

(b) d∗α(ȳ) = 0.

Proof. Assume that x f ∗
α (ȳ) = xh∗

α (ȳ) = zh∗
α (ȳ) =: x̄ holds. Using Lemma 5.8 (a) and Lemma 5.9 (a)

leads to

f ∗α (ȳ) = x̄T ȳ − α
2
‖x̄‖2 −

N∑
ν=1

θν(x̄)

and

h∗α(ȳ) = x̄T ȳ − α
2
‖x̄‖2 −

N∑
ν=1

θν(x̄ν, x̄−ν) − α
2
‖x̄ − x̄‖2 = x̄T ȳ − α

2
‖x̄‖2 −

N∑
ν=1

θν(x̄).

Therefore, we have d∗α(ȳ) = h∗α(ȳ) − f ∗α (ȳ) = 0.
Conversely, assume that d∗α(ȳ) = 0 holds. Applying Theorem 5.11 yields that x̄ := ∇ f ∗α (ȳ) is

a solution of the GNEP and that ȳ is a global minimum of d∗α on Rn. The second part implies
∇d∗α(ȳ) = 0. Apart from that, we have

∇d∗α(ȳ) = ∇h∗α(ȳ) − ∇ f ∗α (ȳ) = xh∗
α (ȳ) − x f ∗

α (ȳ)

in view of Lemma 5.8, Lemma 5.9, and the definition of d∗α. These all add up to

x̄ = x f ∗
α (ȳ) = xh∗

α (ȳ). (5.16)

Additionally, it follows from (3.9) that

Vα(x̄) =

N∑
ν=1

θν(x̄) −
N∑
ν=1

θν
(
zα(x̄)ν, x̄−ν

) − α
2

∥∥∥x̄ − zα(x̄)
∥∥∥2
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with the uniquely defined minimum

zα(x̄) = argmin
z∈Ω(x̄)

 N∑
ν=1

θν(zν, x̄−ν) +
α

2
‖x̄ − z‖2

 .
Since x̄ is a solution of the GNEP, we obtain with help of Lemma 3.2 (c) and Lemma 3.2 (e) that
x̄ ∈ W and Vα(x̄) = 0 as well as zα(x̄) = x̄. Furthermore, due to the representation (5.6) of the
function h∗α(ȳ), it holds that zα(x̄) is identical to zh∗

α (ȳ). Thus, we also have zh∗
α (ȳ) = x̄. Together

with (5.16) this completes the proof. �

Proposition 5.13 states that x f ∗
α (ȳ) = xh∗

α (ȳ) = zh∗
α (ȳ) =: x̄ implies d∗α(ȳ) = 0 and, consequently,

that x̄ is a solution of the GNEP. Since it is not difficult to see that x f ∗
α (ȳ) = xh∗

α (ȳ) holds at any
stationary point of d∗α, it remains to provide conditions under which these two vectors are equal
to zh∗

α (ȳ). However, we have to leave this question open and therefore also the question in which
cases stationary points of the dual gap function d∗α provide solutions of a GNEP. On the other
hand, we know the optimal value of d∗α, so this disadvantage might not be that strong, since the
function value itself tells us whether we are in a solution or not. Note that, in Example 5.12, we
have x f ∗

α (ȳ) = xh∗
α (ȳ) , zh∗

α (ȳ) for all stationary points ȳ ∈ R2 with ȳ1 = 0 and ȳ2 ≥ 2 as well as
d∗α(ȳ) = 1

4 , 0. This function value alone shows us that none of these stationary points provides
a solution of the corresponding GNEP.

Theorem 5.11 treats the relation between the solutions of the GNEP and the global minima
of the dual gap function d∗α. More precisely, it shows that every solution of the unconstrained
optimization problem (5.11) provides a solution of the GNEP, but the converse is not necessarily
true, because statement (c) of Theorem 5.11 assumes (implicitly) that the subdifferential ∂hα(x̄)
is nonempty at a solution x̄ of the GNEP. In fact, this subdifferential could be empty, and a global
minimum of the function d∗α could be nonexistent although the corresponding GNEP is solvable.
The next example illustrates this assertion.

Example 5.14 Consider a GNEP satisfying Assumption 5.1 with N = 2, n1 = n2 = 1, the
variables x1 and x2 controlled by player 1 and 2, respectively, the cost functions θ1(x) := (x1−1)2,
θ2(x) := (x2 + 4)2 and the constraint g2

1(x) := x2
1 + x2

2 − 1 ≤ 0 for the second player and without
constraints for the first player for simplicity. Then the feasible set W is given by

W =
{
x ∈ R2

∣∣∣ x2
1 + x2

2 ≤ 1
}
,

which is illustrated in Figure 5.3 (a), and the graph of the set-valued mapping Ω is given by

gph Ω =
{
(x, z) ∈ R2 × R2

∣∣∣ x2
1 + z2

2 ≤ 1
}
.

Let α = 2, then we have

V2(x) = (x1 − 1)2 + (x2 + 4)2 −min
z1∈R

[
(z1 − 1)2 + (x1 − z1)2

]
+

− inf
z2∈

[
−
√

1−x2
1,
√

1−x2
1

] [(z2 + 4)2 + (x2 − z2)2
]
.
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Figure 5.3.: Illustrations for Example 5.14

The optimal points of the minimization problems in V2 are

(
z2(x)

)
1 =

1
2

x1 +
1
2

for all x ∈ R2,
(
z2(x)

)
2 =



1
2 x2 − 2, if x2

1 + 1
4 (x2 − 4)2 < 1,

−
√

1 − x2
1, if 1

2 x2 − 2 ≤ −
√

1 − x2
1,√

1 − x2
1, if 1

2 x2 − 2 ≥
√

1 − x2
1,

nonexistent, if |x1| > 1.
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Thus, we obtain

V2(x) =
1
2

(x1 − 1)2 + (x2 + 4)2 −



1
2 (x2 + 4)2, if x2

1 + 1
4 (x2 − 4)2 < 1,(

4 −
√

1 − x2
1

)2

+

(
x2 +

√
1 − x2

1

)2

, if 1
2 x2 − 2 ≤ −

√
1 − x2

1,(
4 +

√
1 − x2

1

)2

+

(
x2 −

√
1 − x2

1

)2

, if 1
2 x2 − 2 ≥

√
1 − x2

1,

∞, if |x1| > 1.

Note that the inequality 1
2 x2 − 2 ≤ −

√
1 − x2

1 holds for all x ∈ W. The graph of the optimal value
function V2 on the set W is illustrated in Figure 5.3 (b). On the other hand, we consider the DC
decomposition of V2 with the functions

f2(x) = x2
1 + x2

2 + (x1 − 1)2 + (x2 + 4)2 + δW(x)

and

h2(x) = x2
1 + x2

2 +
1
2

(x1 − 1)2 +



1
2 (x2 + 4)2, if x2

1 + 1
4 (x2 − 4)2 < 1,(

4 −
√

1 − x2
1

)2

+

(
x2 +

√
1 − x2

1

)2

, if 1
2 x2 − 2 ≤ −

√
1 − x2

1,(
4 +

√
1 − x2

1

)2

+

(
x2 −

√
1 − x2

1

)2

, if 1
2 x2 − 2 ≥

√
1 − x2

1,

∞, if |x1| > 1.

Using Definition 2.5 (e) yields

f ∗2 (y) = sup
x∈W

[
x1y1 + x2y2 − x2

1 − x2
2 − (x1 − 1)2 − (x2 + 4)2

]
=

1
4

y2
1 +

1
4

y2
2 −min

x∈W

[
(x1 − 1)2 + (x2 + 4)2 +

(
x1 − 1

2
y1

)2

+

(
x2 − 1

2
y2

)2]
(5.17)

with a strongly convex and differentiable minimization problem in (5.17). This problem has the
following Lagrange function:

L f ∗
2 (x, λ, y) = (x1 − 1)2 + (x2 + 4)2 +

(
x1 − 1

2
y1

)2

+

(
x2 − 1

2
y2

)2

+ λ(x2
1 + x2

2 − 1).

Then the KKT conditions of this problem are

∇xL f ∗
2 (x, λ, y) =

(
4x1 − 2 − y1 + 2λx1

4x2 + 8 − y2 + 2λx2

)
= 0,

λ ≥ 0, x2
1 + x2

2 − 1 ≤ 0, λ(x2
1 + x2

2 − 1) = 0.

There are two possibilities for a solution of the minimization problem in (5.17): to be uncon-
strained (x2

1 + x2
2 − 1 < 0) or to be constrained (x2

1 + x2
2 − 1 = 0). With the help of the KKT
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conditions, we obtain that the first case holds for the optimal point x f ∗
2 (y) = 1

4 (y1 + 2, y2 − 8)
under the condition (y1 + 2)2 + (y2 − 8)2 < 16, otherwise the second case holds for

x f ∗
2 (y) =

 y1 + 2√
(y1 + 2)2 + (y2 − 8)2

,
y2 − 8√

(y1 + 2)2 + (y2 − 8)2

 .
Then the function f2 has the following continuously differentiable conjugate

f ∗2 (y) =

 1
8

(
(y1 + 2)2 + (y2 − 8)2) − 17, if (y1 + 2)2 + (y2 − 8)2 < 16,√
(y1 + 2)2 + (y2 − 8)2 − 19, else.

.

In a similar way, we observe

h∗2(y) = sup
(x,z)∈gph Ω

[
x1y1 + x2y2 − x2

1 − x2
2 − (z1 − 1)2 − (z2 + 4)2 − (x1 − z1)2 − (x2 − z2)2

]
=

1
4
‖y‖2 − min

(x,z)∈gph Ω

[(
x1 − 1

2
y1

)2

+

(
x2 − 1

2
y2

)2

+ (z1 − 1)2 + (z2 + 4)2 + (x1 − z1)2 + (x2 − z2)2
]
.

The Lagrange function of the strongly convex and differentiable minimization problem for the
calculation of h∗2(y) is given by

Lh∗
2 (x, z, λ, y) =

(
x1 − 1

2
y1

)2

+

(
x2 − 1

2
y2

)2

+ (z1 − 1)2 + (z2 + 4)2 + (x1 − z1)2 + (x2 − z2)2+

+ λ(x2
1 + z2

2 − 1).

Then the corresponding KKT conditions are

∇(x,z)Lh∗
2 (x, z, λ, y) =


4x1 − y1 − 2z1 + 2λx1

4x2 − y2 − 2z2

4z1 − 2 − 2x1

4z2 + 8 − 2x2 + 2λz2

 = 0,

λ ≥ 0, x2
1 + z2

2 − 1 ≤ 0, λ(x2
1 + z2

2 − 1) = 0.

For a solution of the minimization problem for the calculation of h∗2(y) we obtain the two possi-
bilities x2

1 +z2
2−1 < 0 and x2

1 +z2
2−1 = 0. Again with the help of the KKT conditions, we observe

the first case for the optimal points xh∗
2 (y) = 1

3 (y1 + 1, y2 − 4) and zh∗
2 (y) = 1

6 (y1 + 4, y2 − 16) if
the condition (y1 + 1)2 + 1

4 (y2 − 16)2 < 9 holds and otherwise the second case for

xh∗
2 (y) =

 y1 + 1√
(y1 + 1)2 + 1

4 (y2 − 16)2
,

1
4

y2 +
y2 − 16

4
√

(y1 + 1)2 + 1
4 (y2 − 16)2


and

zh∗
2 (y) =

1
2

+
y1 + 1

2
√

(y1 + 1)2 + 1
4 (y2 − 16)2

,
y2 − 16

2
√

(y1 + 1)2 + 1
4 (y2 − 16)2

 .
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Then the function h2 has the following continuously differentiable conjugate:

h∗2(y) =

 1
6

(
(y1 + 1)2 + (y2 − 4)2 − 51

)
, if (y1 − 1)2 + 1

4 (y2 − 16)2 < 9,
1
2

√
4(y1 − 1)2 + (y2 − 16)2 − 18 + 1

8y2
2, else.

Using Lemma 3.2 (e), we obtain that the GNEP has the unique solution (x̄1, x̄2) = (1, 0). At this
point, the function h2, which is illustrated in Figure 5.3 (c), has ’infinite slope’, and ∂h2(x̄) = ∅.
Therefore, Theorem 5.11 is not applicable to determine a solution of the corresponding dual
problem (5.11). Furthermore, the function d∗2 = h∗2 − f ∗2 is positive on R2, and it holds that
lim

y1→∞
d∗2(y1, 0) = 0, see Figure 5.3 (d). Thus, the dual problem (5.11) has the infimum zero, but

does not attain its infimum, hence it has no solution. ^

Based on the approaches of this section and especially on Theorem 5.11, we will present some
numerical results in Section 6.2.

5.2. Second-Order Properties

In this section, we analyze second-order properties of the dual gap function d∗α. More precisely,
we show piecewise smoothness of the gradient mapping ∇d∗α under certain conditions on the
strategy spaces and the cost functions of GNEPs. This piecewise smoothness result follows from
our parametric optimization result stated in Theorem 2.14. To this end, we use the following
assumptions.

Assumption 5.15 (a) The set-valued mappings Xν : Rn−nν → Rnν are given by

Xν(x−ν) :=
{
xν ∈ Rnν | gνi (xν, x−ν) ≤ 0 ∀i = 1, . . . ,mν

}
(ν = 1, . . . ,N) (5.18)

with convex and twice continuously differentiable functions gνi : Rn → R, i = 1, . . . ,mν,
ν = 1, . . . ,N.

(b) The feasible set

W =
{
x ∈ Rn | gνi (xν, x−ν) ≤ 0 ∀i = 1, . . . ,mν, ν = 1, . . . ,N

}
of the GNEP (3.2) is nonempty.

(c) The cost functions θν, ν = 1, . . . ,N, are convex and twice continuously differentiable.

Then, in particular, we observe

gph Ω =
{
(x, z) ∈ Rn × Rn | gνi (zν, x−ν) ≤ 0 ∀i = 1, . . . ,mν, ν = 1, . . . ,N

}
.

We start our analysis by showing that the gradient of the conjugate function f ∗α is piecewise
smooth under a suitable CRCQ assumption, see Definition 2.13.
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Lemma 5.16 Let Assumption 5.15 hold, and let ȳ ∈ Rn such that CRCQ holds at x̄ := x f ∗
α (ȳ)

with respect to the feasible set W. Then there exists a neighborhood U of ȳ such that ∇ f ∗α = x f ∗
α

is piecewise smooth on U.

Proof. We define φ : Rn × Rn → R by

φ(x, y) :=
α

2
‖x‖2 +

N∑
ν=1

θν(x) − xT y.

Then φ is twice continuously differentiable and φ(·, y) strongly convex in x. Furthermore, we
define the function c : Rn → Rp with p :=

∑N
ν=1 mν by

c(x) := (gνi (x))(i=1,...,mν, ν=1,...,N).

Then each function c j ( j = 1, . . . , p) is convex and twice continuously differentiable by Assump-
tion 5.15 (a), and the assertion follows from Theorem 2.14 with U := V̄ . �

We obtain a similar result for the gradient of the conjugate function h∗α.

Lemma 5.17 Let Assumption 5.15 hold, and let ȳ ∈ Rn be given such that CRCQ holds at
(x̄, z̄) := (xh∗

α (ȳ), zh∗
α (ȳ)) with respect to gph Ω. Then there exists a neighborhood U of ȳ such that

∇h∗α = xh∗
α is piecewise smooth on U.

Proof. The assertion follows from Theorem 2.14 similar to the proof of Lemma 5.16. �

The following theorem is the main result of this section and an immediate consequence of the
two foregoing lemmata.

Theorem 5.18 Let the assumptions of Lemmata 5.16 and 5.17 hold at ȳ ∈ Rn. Then the function
∇d∗α is PC1 near ȳ.

Proof. The proof follows immediately from Lemma 5.16 and 5.17 together with the fact that
∇d∗α = ∇h∗α − ∇ f ∗α . �

We conclude this section with a simple corollary, which covers the case where the constraint
functions from (5.18) are affine-linear and hence CRCQ is satisfied automatically.

Corollary 5.19 Let Assumption 5.15 hold, and let the functions gνi , ν = 1, . . . ,N, i = 1, . . . ,mν,
from (5.18) be affine-linear. Then the function ∇d∗α is PC1 on Rn.
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6. Numerical Results for Generalized
Nash Equilibrium Problems

In this chapter we presents some numerical results for a number of GNEPs based on our ap-
proaches in Section 4.2 and Section 5.1. More precisely, in Section 6.1 we adapt a feasible
direction-type method to the reformulation of a GNEP as the constrained optimization problem
in (3.11) based on the primal gap function Vα defined in (3.9), and in Section 6.2 we apply
a global spectral gradient method to the reformulation of a GNEP as the unconstrained opti-
mization problem based on the dual gap function d∗α defined in Theorem 5.11. Additionally, we
compare the two approaches in Section 6.3. The results from Section 6.1 were published in [74],
whereas Section 6.2 contains the results prepared for the paper [73].

6.1. Primal Gap Function Approach

In view of Proposition 3.2, we know that the computation of a generalized Nash equilibrium is
equivalent to solving the constrained optimization problem

P : min Vα(x) subject to x ∈ W

with the primal gap function Vα defined in (3.9). This function Vα is, in general, nondifferen-
tiable. However, Section 4.2 indicates that, on the one hand, the set of nondifferentiable points is
exceptional and, on the other hand (and more importantly), we may expect differentiability of Vα

at any solution of a GNEP. Hence we may view problem P essentially as a smooth optimization
problem. Note that the primal gap function Vα may not be defined outside the feasible set W,
hence any suitable algorithm applied to problem P should guarantee that all iterates stay feasible.
We therefore decided to apply a feasible direction-type method to problem P.

The class of feasible direction methods was introduced by Zoutendijk [135]. A variant is due
to Topkins and Veinott [132], which, in turn, is the basis of the method presented by Birge et al.
in [20]. The latter method uses a convex quadratic program at each iteration and will be used in
order to solve our problem P. We adapt this method to the setting of problem P in the following
algorithm.

Algorithm 6.1 (Feasible direction-type method from [20])

(S.0) Choose x0 ∈ W, H0 ∈ Rn×n symmetric positive definite, β, σ ∈]0, 1[, c0
ν,i > 0 for all

i = 1, . . . ,mν, ν = 1, . . . ,N, c0
Vα
> 0, and set k := 0.

(S.1) If a suitable termination criterion holds: STOP.
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(S.2) Compute a solution (dk, δk) ∈ Rn × R of

min δ +
1
2

dT Hkd (6.1)

subject to ∇Vα(xk)T d ≤ ck
Vαδ,

gνi (xk) + ∇gνi (xk)T d ≤ ck
ν,iδ ∀i = 1, . . . ,mν, ν = 1, . . . ,N.

If (dk, δk) = (0, 0): STOP. Otherwise go to (S.3).

(S.3) Compute a stepsize tk = max{βl | l = 0, 1, 2, . . .} such that the following conditions hold:

Vα(xk + tkdk) ≤ Vα(xk) + σtk∇Vα(xk)T dk

and
gνi (xk + tkdk) ≤ 0 ∀i = 1, . . . ,mν, ν = 1, . . . ,N.

(S.4) Choose ck+1
ν,i > 0 (i = 1, . . . ,mν, ν = 1, . . . ,N), ck+1

Vα
> 0, Hk+1 ∈ Rn×n symmetric positive

definite, set xk+1 := xk + tkdk, k ← k + 1, and go to (S.1).

This algorithm can be fitted to QVIs which have not only inequality constraints defining strategy
spaces but also affine-linear equality constraints hνj : Rn → R, j = 1, . . . , pν, ν = 1, . . . ,N, with
pν ∈ N. For such QVIs the equality constraints

∇hνj(x)T d = 0 ∀ j = 1, . . . , pν, ν = 1, . . . ,N,

have to be added to the inequality constraints of the optimization problem in (6.1). Then for a
feasible vector xk ∈ Rn, any stepsize tk ∈ R and a solution dk ∈ Rn of the modified optimization
problem (6.1), the vector xk+1 := xk + tkdk fulfills the affine-linear equality constraints such that
these equality constraints do not affect the choice of the stepsize in (S .3).

The main termination criterion used in (S.1) is

Vα(xk) ≤ N · ε with ε := 10−5.

The factor N in front of ε comes from the fact that Vα is the sum of N terms, see (4.1), and the
basic idea is that each term should be less than ε, hence our termination criterion is, in some
way, independent of the number of players. Additionally, the parameter ε should not be taken
too small, since the feasible direction method used here is not a locally fast convergent method.

The computation of the matrix Hk was done in the following way: We begin with H0 := In

and compute Hk+1 as the BFGS-update of Hk whenever this gives a symmetric positive definite
matrix, whereas we simply take Hk+1 := In otherwise. Furthermore, the parameters ck

ν,i, ck
Vα

are chosen in the following way: We always use ck
ν,i := 1 for all i, ν, and for all iterations k

(including k = 0), whereas we take c0
Vα

:= 10 in Step (S.0) and update this parameter in Step
(S.4) by ck+1

Vα
:= 5·ck

Vα
whenever tk < 1 had to be chosen in (S.3); otherwise we set ck+1

Vα
:= ck

Vα
. We

also note that for Algorithm 6.1, the stepsize tk = 1 is not necessarily a natural choice; therefore,
we also allow a larger stepsize whenever this is possible, that is, when tk = 1 satisfies the criteria
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Example N n x0 k Vopt
α

A1 10 10 (0.01, . . . , 0.01) 6 6.4089e-05
(0.1, . . . , 0.1) 2 4.9819e-06

(1, . . . , 1) 2 4.9819e-06
A3 3 7 (0, . . . , 0) 14 2.6397e-05

(1, . . . , 1) 14 2.9342e-06
(10, . . . , 10) 29 2.3998e-06

A4 3 7 (10, . . . , 10) 62 0.0000e+00
A5 3 7 (0, . . . , 0) 13 1.5470e-05

(1, . . . , 1) 29 2.5578e-05
(10, . . . , 10) 55 1.9534e-05

A6 3 7 (0, . . . , 0) 92 2.1231e-05
(1, . . . , 1) 33 2.4189e-05

(10, . . . , 10) 89 2.7651e-05
A7 4 20 (0, . . . , 0) 77 2.2178e-05

(1, . . . , 1) 65 2.4832e-05
(10, . . . , 10) 153 2.5712e-05

A8 3 3 (0, 0, 0) 15 1.1013e-05
(1, 1, 1) 13 1.2011e-05

(10, 10, 10) 13 1.2010e-05
A9a 7 56 (0, . . . , 0) 119 5.4673e-05
A9b 7 112 (0, . . . , 0) 395 4.1144e-05
A11 2 2 (0, 0) 6 1.0419e-05
A12 2 2 (2,0) 15 1.4158e-05
A13 3 3 (0, 0, 0) 10 8.1729e-06
A14 10 10 (0, . . . , 0) 3 6.2243e-05
A15 3 6 (0, . . . , 0) 24 1.0849e-05
A16a 5 5 (10, . . . , 10) 22 0.0000e+00
A16b 5 5 (10, . . . , 10) 11 0.0000e+00
A16c 5 5 (10, . . . , 10) 10 0.0000e+00
A16d 5 5 (10, . . . , 10) 13 2.3575e-05
A17 2 3 (0, 0, 0) 23 1.0266e-05
A18 2 12 (0, . . . , 0) 44 9.1178e-06

(1, . . . , 1) 57 2.8294e-06
(10, . . . , 10) 57 1.6509e-05

Ex. 4.3 2 2 (1,1) 8 0.0000e+00
(0.5,0.5) 8 1.7113e-05
(0.5,0) 6 1.8224e-05
(0.9,0) 9 1.3397e-05

Table 6.1.: Numerical results for different GNEPs from the collection in [48] and Example 4.3
using the primal gap function Vα

from (S.3), we test tk = 1/β and so on, until one of the conditions is violated for the first time.
Finally, the values β = 0.5 and σ = 10−4 were chosen for all test runs.

The numerical results obtained in this way are summarized in Table 6.1. All results are based
on the choice α = 0.01 for the regularization parameter α in the definition of Vα. The test
examples called A1–A18 are taken from the collection of the test problems provided in the
report-version [48] of the paper [49]. We choose the same starting points as in [48], which,
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however, do not necessarily belong to the feasible set W. Hence we first project these starting
points onto W and then begin our iteration with these projected starting points. In some cases,
this projection was already the solution of the underlying GNEP, and we therefore do not present
results for these GNEPs; the reader therefore does not find the results for problem A2 for all
starting points from [48] and problem A4 for the first and second starting points from [48] in
Table 6.1. Furthermore, we note that problem A10 is not included in Table 6.1 and is the only
problem considered in this section that contains affine-linear equality constaints; our method fails
to solve this example since the stepsize becomes too small during the iteration.

For each test example, Table 6.1 contains the following data: the name of the example, the
number of players N, the total number of variables n, the starting point x0, the number of itera-
tions k needed until convergence, and the final value of the objective function Vα in column Vopt

α .
The results from Table 6.1 may be difficult to interpret, however, it can be noted that Algorithm

6.1 solves all test examples reported there (i.e., all test examples with the exception of problem
A10), whereas, for example, the penalty method from [48] has two failures on this set, namely on
Examples A7 and A8, when using the third starting point. Furthermore, the number of iterations
is quite reasonable and typically better than the corresponding number of iterations reported in
[39] for an unconstrained optimization reformulation, especially because each function evalua-
tion of the objective function in this unconstrained optimization reformulation comes with the
cost of the solution of two maximization problems, whereas in our case we only need to solve
one maximization problem in order to compute Vα(x).

Moreover, we would like to draw the attention to the results for Example 4.3. Table 6.1 shows
that the sequence computed with our method converges to the unique solution of the GNEP and
hence to the global minimum of problem P. This is particularly appealing, since one can verify
(similar to Example 4.3 where α = 0 was chosen) that the function Vα still has a strict local
minimum at (1, 0) with a positive function value Vα(1, 0) = 1 − α

2 (at least for all α < 0.5), so
that this minimum does not correspond to a solution of the GNEP. The sequence computed with
our method even converges to the global minimum when the starting point is chosen close to the
local minimum. In this respect, please recall that we cannot start exactly at the local minimum,
since Vα is not differentiable in this point.

Finally, we stress that we had to use a method for the solution of problem P that generates
feasible iterates, since otherwise Vα might not be well-defined. On the other hand, this also has
the advantage that we may apply our method to problems where the functions θν of the players ν
are not defined outside of W due to some logarithmic terms, for example. This is in contrast to
other existing methods, which assume that the functions θν are defined on the whole space Rn.

6.2. Dual Gap Function Approach

Theorem 5.11 motivates to tackle a GNEP by solving the corresponding dual unconstrained
minimization problem

D : min
y∈Rn

d∗α(y)
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with the dual gap function d∗α as the objective function. This dual gap function d∗α is, however,
relatively expensive to calculate, since two convex constrained optimization problems are to
solve for each dual gap function evaluation. On the other hand, our previous results show that
each function evaluation also provides the gradient automatically. We therefore use the global
spectral gradient (GSG) method from [115], which is a global version of the spectral gradient
method proposed by Barzilai and Borwein in [12]. The GSG method has the advantage that
only first order information is required and that, typically, no line search with extra function
evaluations are needed. We adapt this GSG method to the setting of problem D in the following
algorithm.

Algorithm 6.2 (Global spectral gradient method from [115])

(S.0) Choose y0 ∈ Rn, t0 > 0, integer M > 0, γ ∈]0, 1[, 0 < σ1 < σ2 < 1, 0 < ε < 1. Set k := 0.

(S.1) If a suitable termination criterion holds: STOP.

(S.2) Choose δk > 0. If tk ≥ 1
ε

or tk ≤ ε, then set tk := δk.

(S.3) (Nonmonotone line search) If the inequality

d∗α
(
yk − tk∇d∗α(yk)

)
≤ max

0≤ j≤min{k,M}

[
d∗α(yk− j) − γtk‖∇d∗α(yk)‖2

]
holds, then set yk+1 := yk − tk∇d∗α(yk), and go to (S.5). Otherwise go to (S.4).

(S.4) Choose σk ∈ [σ1, σ2], set tk := σktk, and go to (S.3).

(S.5) Set rk := ∇d∗α(yk+1) − ∇d∗α(yk) and tk+1 := − tk‖∇d∗α(yk)‖2(∇d∗α(yk)
)T rk

, k ← k + 1, and go to (S.1).

Additionally, we use the same setting as in [115] with the parameters t0 := 1, M := 10, γ := 10−4,
σ1 := 0.1, σ2 := 0.5, ε := 10−10,

δk :=


1, if ‖∇d∗α(yk)‖ > 1,
‖∇d∗α(yk)‖, if 10−5 ≤ ‖∇d∗α(yk)‖ ≤ 1,
10−5, if ‖∇d∗α(yk)‖ < 10−5,

and the quadratic interpolation of σk described in [29, p.127] with

σk :=


σ1, if σmin, k < σ1,

σmin, k, if σ1 ≤ σmin, k ≤ σ2,

σ2, if σmin, k > σ2,

where

σmin, k :=
‖∇d∗α(yk)‖2

2
(
d∗α

(
yk − tk∇d∗α(yk)

) − d∗α(yk) + ‖∇d∗α(yk)‖2
) .
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Example N n α λmin,F λmin,H y0 k #d∗α d∗α(yk) ‖∇d∗α(yk)‖
Ex. 5.10 2 2 2 2.00 0.76 (0, 0) 0 1 0.0000e+00 0.0000e+00

(1, 1) 5 6 1.0856e-07 1.9022e-04
(10, 10) 3 4 2.5000e-01 7.9040e-07

Ex. 5.14 2 2 1 3.00 1.38 (0, 0) 83 141 1.7000e+01 9.9880e-07
(1, 1) 64 106 1.7000e+01 9.9216e-07

(10, 10) 64 108 1.7000e+01 9.3826e-07
A3 3 7 63 13.86 0.83 (0, . . . , 0) 970 1377 7.4902e-08 1.0444e-05

(1, . . . , 1) 1973 2809 4.0346e-07 5.5712e-05
(10, . . . , 10) 1499 2133 4.7735e-07 3.3865e-04

A5 3 7 14 4.76 0.61 (0, . . . , 0) 20 22 6.7906e-07 1.7271e-04
(1, . . . , 1) 17 18 7.0005e-07 1.1031e-04

(10, . . . , 10) 32 35 3.3339e-07 1.7712e-04
A7 4 20 117 4.85 0.63 (0, . . . , 0) 15 16 5.0958e-08 2.1327e-05

(1, . . . , 1) 15 16 5.2761e-08 2.1706e-05
(10, . . . , 10) 15 16 6.0704e-08 2.3002e-05

A8 3 3 2 2.00 0.76 (0, 0, 0) 11 12 1.4745e-07 1.3367e-04
(1, 1, 1) 5 6 4.7894e-07 2.8679e-04

(10, 10, 10) 9 10 1.2500e-01 3.3832e-07
A11 2 2 1 3.00 1.38 (0, 0) 4 5 4.9960e-15 3.7652e-08

(1, 1) 0 1 0.0000e+00 5.6501e-10
(10, 10) 2 3 1.4334e-11 2.0243e-06

A12 2 2 2 2.00 1.00 (2, 0) 4 5 2.5693e-10 6.0585e-06
(0, 0) 2 3 1.8645e-11 2.4924e-06
(1, 1) 2 3 2.4218e-10 6.9597e-06

(10, 10) 2 3 3.9645e-10 8.9048e-06
A13 3 3 2 2.02 0.78 (0, 0, 0) 13 15 9.9189e-07 2.0379e-04

(1, 1, 1) 14 16 2.2737e-13 4.6215e-07
(10, 10, 10) 20 25 -2.2737e-13 5.7849e-07

A15 3 6 3 3.02 0.60 (0, . . . , 0) 1094 1433 9.9879e-07 1.0102e-05
(1, . . . , 1) 1099 1470 9.1871e-07 1.1981e-04

(10, . . . , 10) 1443 1922 3.3720e-07 3.7221e-04
A17 2 3 2 1.63 0.79 (0, 0, 0) 7 8 8.9804e-09 3.8128e-05

(1, 1, 1) 8 9 0.0000e+00 2.7595e-08
(10, 10, 10) 8 9 2.2402e-07 1.9045e-04

A18 2 12 2 2.00 0.76 (0, . . . , 0) 23 25 9.3132e-10 2.6248e-06
(1, . . . , 1) 36 37 2.9153e-07 2.3941e-04

(10, . . . , 10) 27 32 1.4095e-08 4.8729e-05
T1 2 2400 2 2.76 0.57 (0, . . . , 0) 18 19 3.2072e-07 3.0320e-04

(1, . . . , 1) 20 21 3.0623e-07 1.9514e-04
(10, . . . , 10) 21 22 3.3050e-07 2.2579e-04

T2 2 4800 2 2.76 0.57 (0, . . . , 0) 19 20 1.7288e-08 5.3392e-05
(1, . . . , 1) 20 21 2.3871e-07 2.5285e-04

(10, . . . , 10) 21 22 6.2399e-07 2.9929e-04

Table 6.2.: Numerical results for some GNEPs with the global spectral gradient (GSG) method
from [115] using the dual gap function d∗α
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k #d∗α tk d∗α(yk) ‖∇d∗α(yk)‖
0 1 0.000 2.5322e+05 2.9233e+02
1 2 1.000 1.7608e+05 2.3741e+02
2 3 5.134 2.3860e+04 9.7272e+01
3 4 5.009 9.1171e+03 7.2845e+01
4 5 3.295 2.7760e+03 3.1505e+01
5 6 2.585 1.3002e+03 1.3528e+01
6 7 3.039 8.1620e+02 1.0461e+01
7 8 11.499 1.1249e+02 5.7856e+00
8 9 12.677 4.4560e+02 1.8486e+01
9 10 3.599 9.7405e+01 9.0002e+00

10 11 2.464 1.4541e+00 6.4820e-01
11 12 2.373 7.4622e-01 3.5923e-01
12 13 4.092 3.2655e-01 2.2632e-01
13 14 9.962 1.6841e-02 5.1157e-02
14 15 12.666 7.0349e-04 2.3781e-02
15 16 12.320 1.1471e-02 9.8163e-02
16 17 2.420 4.8805e-05 5.1082e-03
17 18 2.371 7.7907e-06 1.9112e-03
18 19 3.509 3.2072e-07 3.0320e-04

Table 6.3.: Numerical results for Example T1 with starting point (0, . . . , 0) in each iteration of
the global spectral gradient (GSG) method from [115]

Furthermore, we terminate the iteration if either ‖∇d∗α(yk)‖ ≤ 10−6 or d∗α(yk) ≤ 10−6 holds.
For the computation of the conjugate functions of fα and hα from Lemmata 5.8 and 5.9, re-

spectively, we use the TOMLAB/SNOPT solver with settings Prob.SOL.optPar(9)= 10−8,
Prob.SOL.optPar(11)= 10−8 and Prob.SOL.optPar(12)= 10−8, see the TOMLAB/SNOPT
User’s Guide on the web site [1] for more information about the TOMLAB/SNOPT solver.

The test problems used here are: Examples 5.10 and 5.14 from Section 5.1, a class of test
examples indicated by a capital T, which are GNEP reformulations of a discrete approximation
of a transportation problem defined as a generalized quasi-variational inequality problem in [121]
with details given in Example 6.3, and a subset of test problems from the report version [48] of
the paper [49], indicated by a capital A. All these test examples satisfy Assumptions 5.1 (a) and
(c), whereas the requirement (b) of this assumption is violated except for Examples 5.10, 5.14,
A8, and A11. For our method to work also on the remaining examples, we used the strategy for
the choice of the parameter α outlined after the statement of Lemma 5.7.

More precisely, in our implementation, whenever possible, we first choose for each example
the parameter α as the smallest integer such that the minimal eigenvalues λmin,F and λmin,H of the
Hessians ∇2

xx (−Fα) and ∇2
(x,z)(x,z) (−Hα) with the functions Fα and Hα defined in (5.5) and (5.7),

respectively, are larger than 0.5. This choice of α guarantees that the functions fα and hα have
all the desired properties. Such a suitable choice was easily possible for the two transportation
problems T1 and T2 based on Example 6.3 below as well as for all test problems from [48] with
quadratic cost functions, whereas the other test problems from that collection were excluded
from our test set. Note that, without this particular choice of α, we usually get much worse
results and often do not even converge to a solution.
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The details of Examples T1 and T2 are given in the next example.

Example 6.3 Consider a discrete approximation of a transportation problem defined as a gen-
eralized quasi-variational inequality problem in [121]. There are two players controlling 2T
variables in the GNEP reformulation, where T gives the number of the partitions of the time
interval [0, 1]. The optimization problems of the first player is given by

min
x1

T∑
i=1

(
1
2

(
x1

2i−1 x1
2i

) (4 2
2 10

) (
x1

2i−1
x1

2i

)
+

(
x1

2i−1 x1
2i

) [(0 0
0 4

) (
x2

2i−1
x2

2i

)
+

(
40
30

)])
subject to 0 ≤

(
x1

2i−1
x1

2i

)
≤ pi + 12,

x1
2i−1 + x1

2i = −10pi +
2
3

x2
2i + 11 for all i = 1, . . . ,T, with pi =

i − 1
T − 1

,

and for the second player by

min
x2

T∑
i=1

(
1
2

(
x2

2i−1 x2
2i

) (4 2
2 10

) (
x2

2i−1
x2

2i

)
+

(
x2

2i−1 x2
2i

) [(0 0
0 4

) (
x1

2i−1
x1

2i

)
+

(
40
30

)])
subject to 0 ≤

(
x2

2i−1
x2

2i

)
≤ pi + 12,

x2
2i−1 + x2

2i = −4pi +
1
2

x2
2i−1 + 7 for all i = 1, . . . ,T, with pi =

i − 1
T − 1

.

The exact solution of this GNEP given in [121] is composed of(
x1

2i−1, x
1
2i, x

2
2i−1, x

2
2i

)
=

(
−134

15
pi +

601
60

,−26
15

pi +
77
30
,−112

15
pi +

289
30

,−pi +
19
8

)
for all i = 1, . . . ,T , with pi = i−1

T−1 . For Examples T1 and T2 we choose T = 600 and T = 1200,
respectively. ^

The numerical results obtained with the GSG method are summarized in Table 6.2. This table
contains the following data: the name of the example, the number of players N, the number
of variables n, the value of the chosen parameter α, the eigenvalues λmin,F and λmin,H of the
corresponding Hessians ∇2

xx (−Fα) and ∇2
(x,z)(x,z) (−Hα), respectively, the starting point y0 ∈ Rn,

the number of iterations k, the cumulated number of dual gap function evaluations #d∗α until
termination, the final value of the dual gap function d∗α(yk), and the final value of the gradient
norm ‖∇d∗α(yk)‖.

The calculations with the GSG method were quite successful for most instances, except for
Example 5.14 with all starting points and Examples 5.10 and A8 with the third starting point.
The function value in these examples is not small enough and the iteration is terminated, since
the norm of the gradient gets small, hence we are close to a non-optimal stationary point of the
function d∗α. Note that the failure in Example 5.14 was expected based on the considerations in
this example. Additionally, there are two cases, namely Example 5.10 with the first starting point
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and Example A11 with the second starting point, where the starting point already provides a so-
lution of the dual unconstrained minimization problem (5.11). Furthermore, the bad convergence
speed in Examples A3 and A15 leads to a large number of iterations although the calculations of
solutions for all starting points were successful. In all other test examples, we observed far better
convergence properties. The iteration is terminated after a relatively small number of iterations,
in particular, taking into account that the GSG method is just a first-order gradient method.

Table 6.3 gives some details on the iteration history for Example T1. The cumulated number of
function evaluations #d∗α is, at each iteration k, equal to k + 1, which indicates that no line search
had to be applied at any of the iterations. This is quite typical for most of the test problems where
the method was able to solve the example within a relatively small number of iterations.

6.3. Comparing the Two Approaches

The methods from Sections 6.1 and 6.2 have been tested partially on the same problems. Never-
theless, it is difficult to compare the results of the two approaches. First, the objective functions,
which have to be minimized in both methods (constrained in Section 6.1 or unconstrained in
Section 6.2), are different. Second, the starting points are not interconnected although they have
equal values.

Anyway, we would like to compare the corresponding methods and the obtained results. To
this end, we compute for the common examples the values of the primal gap function Vα(xk)
for α = 0.01 and the corresponding vector xk := ∇ f ∗α (yk) after the termination of the GSG
method, since α = 0.01 has been chosen for the calculations of the primal gap function Vα in
Section 6.1. Furthermore, for the common test examples we give the cumulated number of the
primal gap function evaluations until the termination of the feasible direction-type method from
Section 6.1. In order to allow an easier comparison, we combine these results with the results
from Sections 6.1 and 6.2 in Table 6.4.

Table 6.4 contains the following data: the name of the example, the starting points x0 and y0,
the number of iterations k for both methods, the cumulated number of the primal gap function
evaluations #Vα until the termination of the feasible direction-type method from Section 6.1
as well as the corresponding primal gap function value Vopt

α , the cumulated number of dual gap
function evaluations #d∗α until termination of the GSG method as well as the corresponding primal
gap function value Vα(xk).

Now, we compare the fundamental points of both methods as far as possible. For the evaluation
of the primal gap function we need to solve only one constrained convex optimization problem,
whereas solving two constrained convex optimization problems are necessary for the evaluation
of the dual gap function. Nevertheless, the GSG method yields lower cumulated numbers of
function evaluations on average even if we double these numbers. Additionally, in each iteration
of the feasible direction-type method one evaluation of the gradient∇Vα is necessary, whereas the
evaluation of the function d∗α provides the gradient ∇d∗α automatically. Furthermore, the average
of the function evaluations per iteration in the GSG method is one or lies between one and two,
whereas the average of the function evaluations per iteration in the method from Section 6.1 is
bigger than two, less than nine, and on average bigger than four. The bad outliers for the GSG
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The feasible direction-type The GSG method
method from Section 6.1 from Section 6.2

Example x0, y0 k #Vα Vopt
α k #d∗α Vα(xk)

A3 (0, . . . , 0) 14 123 2.6397e-05 970 1377 5.1765e-07
(1, . . . , 1) 14 90 2.9342e-06 1973 2809 1.4069e-06

(10, . . . , 10) 29 170 2.3998e-06 1499 2133 2.9298e-06
A5 (0, . . . , 0) 13 33 1.5470e-05 20 22 5.1974e-07

(1, . . . , 1) 29 86 2.5578e-05 17 18 1.9621e-06
(10, . . . , 10) 55 186 1.9534e-05 32 35 3.8092e-07

A7 (0, . . . , 0) 77 322 2.2178e-05 15 16 0.0000e+00
(1, . . . , 1) 65 291 2.4832e-05 15 16 0.0000e+00

(10, . . . , 10) 153 619 2.5712e-05 15 16 0.0000e+00
A8 (0, 0, 0) 15 48 1.1013e-05 11 12 9.3428e-08

(1, 1, 1) 13 44 1.2011e-05 5 6 6.3017e-07
(10, 10, 10) 13 44 1.2010e-05 9 10 0.2488e+00

A11 (0, 0) 6 14 1.0419e-05 4 5 0.0000e+00
A12 (2,0) 15 89 1.4158e-05 4 5 4.4736e-10
A13 (0, 0, 0) 10 26 8.1729e-06 13 15 0.0000e+00
A15 (0, . . . , 0) 24 157 1.0849e-05 1094 1433 8.0144e-05
A17 (0, 0, 0) 23 66 1.0266e-05 7 8 0.0000e+00
A18 (0, . . . , 0) 44 218 9.1178e-06 23 25 0.0000e+00

(1, . . . , 1) 57 262 2.8294e-06 36 37 0.0000e+00
(10, . . . , 10) 57 282 1.6509e-05 27 32 0.0000e+00

Table 6.4.: Data for comparing the two approaches from Sections 6.1 and 6.2

method are problems A3 and A15, in which very slow convergence speed was observed. Another
advantage of the GSG method is that the primal gap function values in most problems in Table 6.4
are closer to zero than the values of this function provided by the method from Section 6.1 or
are even ‘exactly’ zero, and the value zero of the primal gap function indicates that a solution
of the corresponding GNEP is found, see Lemma 3.2. The bad outlier for the GSG method in
this context is problem A8 with the third starting point and the primal gap function value bigger
than 0.2. Here we were close to a non-optimal stationary point of the dual gap function d∗α.

Altogether, the GSG method fares better than the method from Section 6.1 if this method
is applicable to the corresponding GNEP. Nevertheless, even if the strategy spaces fulfill the
Assumptions 5.1 (a) and (c), it can be difficult to find the required DC reformulation of the
primal gap function, except the cost functions of all players are quadratic or convex in the whole
variable. For example, problems A1, A2, A4, A14, and A16 fulfill Assumptions 5.1 (a) and (c),
but we could not find a DC reformulation of these problems and therefore not apply the GSG
method to these problems, whereas we do not have to prepare the ground for the calculations with
the method from Section 6.1. Anyway, if a GNEP fulfills Assumptions 5.1 (a) and (c) and we
have a DC reformulation of this GNEP, it is promising to obtain the corresponding unconstrained
dual reformulation, since the dual gap function is continuously differentiable, has, under suitable
assumptions, a piecewise smooth gradient, and therefore allows the application of second-order
Newton-type methods, whereas the primal gap function has, in general, nondifferentiable points,
supplies a constrained reformulation, and may not be defined outside the feasible set W.
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Quasi-Variational Inequalities
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7. Background on Quasi-Variational
Inequalities

In Chapter 7 we provide the basis for the analysis in Part II. This chapter is organized in the
following way: In Section 7.1 we give the definition of quasi-variational inequality problems
and a literature overview for these problems, and in Section 7.2 we recall the definitions of some
gap functions for variational inequalities and quasi-variational inequalities.

7.1. Definition and Overview

Given a function F : Rn → Rn and a set-valued mapping S : Rn ⇒ Rn such that S (x) is a
closed and convex (possibly empty) set for any x ∈ Rn, the finite-dimensional quasi-variational
inequality problem (QVI) consists in finding a vector x ∈ S (x) such that

F(x)T (z − x) ≥ 0 ∀z ∈ S (x). (7.1)

If the set S (x) is independent of x, that is, S (x) = S for all x ∈ Rn with a constant, nonempty,
closed, and convex set S ⊆ Rn, then the QVI reduces to the so-called variational inequality (VI)
problem, cf. the monograph [54] for an extensive discussion of VIs.

The QVI was formally introduced in a series of papers [14, 15, 16] by Bensoussan et al. It has
soon become a powerful modeling tool for many different problems both in the finite and in the
infinite-dimensional setting. An early summary may be found in the article by Mosco [93]. The
infinite-dimensional problem with several mechanical and engineering applications is discussed
in the monograph [10] by Baiocchi and A. Capelo. For several other applications, we refer the
reader to the list of references in the recent paper [52]. In the meantime, several applications
coming from totally different origins can also be found in a test problem collection whose details
are given in [51].

Unfortunately, QVIs turn out to be a difficult class of problems, and the numerical solution of
QVIs is still a challenging task. To the best of our knowledge, the first method was proposed
by Chan and Pang in [23]. They consider a projection-type algorithm and prove a global con-
vergence result under certain assumptions for the class of QVIs where the set-valued mapping
S is given by S (x) = c(x) + K for a suitable function c : Rn → Rn and a fixed, closed, and
convex set K ⊆ Rn. This particular class of problems is sometimes called a QVI with a moving
set S (x) since the fixed set K moves along the mapping c(x). There are a number of subsequent
extensions of this approach, see, for example, [5, 89, 96, 98, 100, 101, 118, 122], which all use
a projection-type or fixed point iteration and essentially deal with the moving set case only in
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order to obtain suitable global convergence results. More recently, Pang and Fukushima [106]
suggested a multiplier-penalty-type approach where they have to solve a sequence of (standard)
VIs. They obtain a global convergence result for a class of problems not restricted to the moving
set case, but their VI-subproblems are in general non-monotone and therefore difficult to solve.
A recent interior point method by Facchinei et al. [52] applies a potential-reduction-type method
to the corresponding KKT conditions and proves global convergence results for some classes
of QVIs that go beyond the moving set case. Besides these (more or less) globally convergent
approaches, there also exist some semismooth or nonsmooth Newton-type methods based on
suitable reformulations of a QVI by Outrata et al., see, in particular, [103, 104, 105]. These
Newton-type methods are locally fast convergent under appropriate assumptions. However, it is
difficult to globalize these methods in comparison to another semismooth Newton method for
the solution of the KKT system of a QVI that was considered and also globalized recently by
Facchinei et al. in [50]. This paper investigates the theoretical basis for such semismooth meth-
ods regarding the nonsingularity of certain matrices and guarantees at least the superlinear local
convergence for some important classes of QVIs under certain assumptions. Furthermore, the
numerical results presented in [50] show that the globalized semismooth Newton method for the
solution of the KKT system of a QVI has a very fast local convergence and can achieve a high ac-
curacy, but is less robust than the interior point method in [52]. More comparisons between these
two methods are given in [50]. Another fast local method, which can be applied to the KKT con-
ditions of QVIs, is the LP-Newton method that was originally developed in [43, 44] for solving
nonsmooth systems of equations with nonisolated solutions. Therefore, the LP-Newton method
provides an approach even for solving QVIs in which nonisolated solutions and nonsmoothness
occur. Such QVIs arise, for example, from GNEPs with nonisolated solutions, see [32, 33] for
generic properties of solutions of GNEPs. We recall that, in the context of GNEPs, a combination
of the LP-Newton method and the interior point method was studied in [35]. The disadvantage
of the LP-Newton method is that the computational cost at each iteration can become immensely
high for problems with large dimensions.

Apart from the previous classes of methods, there exist a number of different gap functions
for QVIs, cf. [9, 31, 63, 67, 127] and the corresponding discussion in Section 7.2. These gap
functions allow a reformulation of the QVI as an optimization problem and therefore the appli-
cation of standard software. However, the disadvantage is that these gap functions are usually
nonsmooth in the QVI setting, so that the previous literature concentrates on error bound results
or the local Lipschitz continuity and directional differentiability of these gap functions. In par-
ticular, also the regularized gap function in the QVI setting that was originally introduced by
Fukushima [62] in the context of standard variational inequalities is typically nonsmooth. Ex-
ceptions for QVIs where this regularized gap function turns out to be continuously differentiable
everywhere are the cases of QVIs with the feasible sets of the moving-set-type [31] or a suitable
generalization of it, see Section 8.1. Additionally, we show in Chapter 9 that, except for some
pathological cases for general QVIs, this regularized gap function is continuously differentiable
at all minimizers. Furthermore, for a class of QVIs that are different from the moving set case,
Dietrich observed in [30] that this regularized gap function may be viewed as a difference of two
convex functions and can therefore be used, by means of a suitable duality theory, to obtain a
dual gap function. This dual gap function then gives a smooth reformulation for this class of
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QVIs. Therefore, Chapter 10 aims at elaborating further on this dual approach. In particular, we
get rid of the (implicit) assumption from [30] that the set-valued mapping defining the QVI is
always nonempty-valued, since, in many practical instances, this is indeed frequently violated.
Furthermore, we verify some stronger smoothness properties in Section 10.2 and present some
numerical results obtained by the dual gap function approach in Chapter 11.

7.2. Preliminaries on Gap Functions

There exist several gap functions for QVIs. All these gap functions were originally introduced
for standard VIs and then extended to QVIs. Therefore, we first recall the definitions of the
relevant gap functions for VIs in Subsection 7.2.1 and then present their counterparts for QVIs
in Subsection 7.2.2, together with some elementary properties of one of these gap functions that
plays a central role in our subsequent analysis. Note that there exist other gap functions for VIs
and QVIs, which, however, do not play any role in our context, see, for example, [99].

7.2.1. Gap Functions for Variational Inequalities

Recall that the (standard) variational inequality consists in finding a solution x ∈ S such that

F(x)T (z − x) ≥ 0 ∀z ∈ S

holds, where S ⊆ Rn is a nonempty, closed, and convex set, and F : Rn → Rn denotes a function,
which we assume to be continuously differentiable in this subsection. The classical gap function
for VI is defined by

g(x) := − inf
z∈S

F(x)T (z − x)

and was introduced by Auslender [8], see also Hearn [76] and, for example, the paper [91] for
an algorithmic application. The gap function is nonnegative on S , and g(x̄) = 0 for some x̄ ∈ S
holds if and only if x̄ solves the VI. Hence the VI is equivalent to the constrained optimization
problem

min g(x) subject to x ∈ S (7.2)

with zero as the optimal value. However, unless S is compact, the objective function g is typically
extended-valued, moreover, g is usually nondifferentiable.

In order to avoid these problems, Fukushima [62] and Auchmuty [7] independently developed
the regularized gap function

gα(x) := −min
z∈S

[
F(x)T (z − x) +

α

2
‖z − x‖2

]
,

where α > 0 denotes a given parameter. Note that the strongly convex minimization problem
in gα with respect to the nonempty, closed, and convex set S is uniquely solvable for all x ∈ Rn

and therefore we may use minimum istead of infimum in the definition of the regularized gap
function. Similar to the gap function, one can show that also the regularized gap function is
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nonnegative on S , and gα(x̄) = 0 for some x̄ ∈ S holds if and only if x̄ solves the VI. Moreover,
gα is finite-valued and continuously differentiable everywhere (by Danskin’s Theorem, see, e.g.,
[8, Chapter 4, Theorem 1.7]). Hence the VI is equivalent to a smooth optimization problem
of the form (7.2) with g being replaced by gα. This fact has been exploited, for example, in
the paper [129], which presents a simple globalization of the standard Josephy-Newton method
based on the regularized gap function.

The main computational burden of the regularized gap function is the fact that the evaluation
of gα(x) is quite expensive for nonlinear (non-polyhedral) sets S since then one has to solve
a convex optimization problem with a nonlinear feasible set, which is practically impossible.
Motivated by this observation, Taji and Fukushima [128] introduced the following modification
of the regularized gap function:

g̃α(x) := − min
z∈T (x)

[
F(x)T (z − x) +

α

2
‖z − x‖2

]
,

where T (x) denotes the polyhedral approximation of S at x defined by

T (x) :=
{
z ∈ Rn

∣∣∣ si(x) + ∇si(x)T (z − x) ≤ 0 ∀i = 1, . . . ,m
}

and where we assume that the feasible set S has the representation

S = {x ∈ Rn | si(x) ≤ 0 ∀i = 1, . . . ,m}
for some convex functions si : Rn → R, i = 1, . . . ,m. It was shown in [128] that, once again, the
VI is equivalent to a constrained optimization problem like (7.2) with g̃α replacing g, and with
zero objective function value at the solution. However, in contrast to the regularized gap function
gα, the mapping g̃α is, in general, not differentiable.

7.2.2. Gap Functions for Quasi-Variational Inequalities

In the context of QVIs, the fixed point set of S ,

X := {x ∈ Rn | x ∈ S (x)} (7.3)

plays a special role and is sometimes called the feasible set of the underlying QVI. In case of
a VI, this set is equal to the constant set S and therefore justifies this terminology. Furthermore,
the (effective) domain of S ,

M := dom S := {x ∈ Rn | S (x) , ∅} (7.4)

will also play a central role in Part II. Clearly, the relation

X ⊆ M (7.5)

holds.
Consider the QVI from (7.1). A direct extension of the classical gap function from VIs to

QVIs seems to be due to Giannessi [67], who defines the mapping

g(x) := − inf
z∈S (x)

F(x)T (z − x)

and shows that
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• g(x) ≥ 0 for all x ∈ X;

• g(x̄) = 0 for some x̄ ∈ X if and only if x̄ solves the QVI,

where X denotes the feasible set of a QVI from (7.3). Hence the QVI is equivalent to the con-
strained optimization problem

min g(x) subject to x ∈ X

with zero as the optimal value. However, the optimal value function g is nondifferentiable and
possibly extended-valued (both g(x) = −∞ and g(x) = +∞ may occur if S (x) = ∅ or g is
unbounded from above). Further note that the set X might have a complicated structure.

An extension of the regularized gap function to QVIs is due to Taji [127] and was, in fact,
introduced earlier by Dietrich [30] in the infinite-dimensional setting, see also the later paper [9]
by Aussel et al. This regularized gap function for QVIs is defined by

gα(x) := − inf
z∈S (x)

[
F(x)T (z − x) +

α

2
‖z − x‖2

]
(7.6)

where α > 0 denotes a given parameter. In view of Assumption 9.1, the function

ϕα(z, x) := F(x)T (z − x) +
α

2
‖z − x‖2 (7.7)

is strongly convex in z for each fixed x ∈ Rn. Therefore, the following remark holds.

Remark 7.1 For any x ∈ M (the domain of S ) the minimum in (7.6) is uniquely attained by the
solution zα(x) of the optimization problem

min
z

ϕα(z, x) subject to z ∈ S (x). (7.8)

In particular, we have gα(x) = −ϕα(zα(x), x) ∈ R. Note, however, that gα(x) = −∞ holds for
x < M, so that gα is real-valued exactly on M. Consequently, due to (7.5), the optimal value
function gα is real-valued on X. ^

The following result, whose proof may be found in [127], clarifies the relation between the
regularized gap function gα and the QVI (7.1). Recall once again that the set X in this result
denotes the feasible set from (7.3).

Lemma 7.2 The following statements hold:

(a) gα(x) ≥ 0 for all x ∈ X.

(b) gα(x̄) = 0 for some x̄ ∈ X if and only if x̄ is a solution of the QVI.

(c) A point x̄ ∈ X is a solution of the QVI if and only if zα(x̄) = x̄, where

zα(x) := argmin
z∈S (x)

ϕα(z, x).

77



7. Background on Quasi-Variational Inequalities

Lemma 7.2 (a) and (b) shows that solving the QVI is equivalent to finding an optimal point x̄ of
the constrained optimization problem

min gα(x) subject to x ∈ X (7.9)

with gα(x̄) = 0. Unfortunately, and in contrast to standard VIs, simple examples show that the
objective function of this problem is nondifferentiable in general, and for infeasible points x < X,
it might also take the value −∞ (cf. Remark 7.1). Additionally, we can rewrite the constrained
optimization problem (7.9) as the unconstrained optimization problem

min
x∈Rn

[
gα(x) + δX(x)

]
(7.10)

with the indicator function δX of X defined in (2.1) and the convention η + ∞ = +∞ for all
η ∈ R ∪ {±∞}. Note that this convention makes sense in our case since the objective function
from (7.10) should take the function value +∞ outside of X, in particular, we would like to
have gα(x) + δX(x) = +∞ also for all x < X ∪ M = M. This unconstrained reformulation
will be considered in Chapter 10 in order to obtain a smooth dual unconstrained optimization
reformulation for a class of QVIs. Therefore, we call the regularized gap function gα sometimes
also the primal gap function.

Based on the reformulation (7.9), it seems natural to replace gα by the counterpart of the
modified regularized gap function g̃α from the previous subsection in cases where the set-valued
mapping S is defined by

S (x) = {z ∈ Rn | si(z, x) ≤ 0 ∀i = 1, . . . ,m}
with functions si : Rn × Rn → R, i = 1, . . . ,m, which are continuous on Rn × Rn and convex in z
for each fixed x ∈ Rn. In fact, this was done by Fukushima [63], but we skip the corresponding
details here, mainly because it turns out that the regularized gap function has better differentia-
bility properties. In fact, in an important special case to be discussed in the following chapter,
the regularized gap function from (7.6) turns out to be continuously differentiable, whereas the
modified regularized gap function from [63] would still be nonsmooth in general.

We conclude this subsection by introducing an example, which not only illustrates Lemma 7.2
but will also serve to illustrate continuity and differentiability properties of gα on X in Sec-
tions 9.1 and 9.2, respectively.

Example 7.3 Consider the QVI with n = 2, F(x) := (1, 1)T , and the set-valued mapping S
defined by S (x) := {z ∈ R2 | si(z, x) ≤ 0 ∀i = 1, 2, 3}, where

s1(z, x) := −2z1 + x2, s2(z, x) := x2
1 + z2

2 − 1, s3(z, x) := −x1 − z2.

Then for x ∈ M we have S (x) = S 1(x) × S 2(x) with

S 1(x) = {z1 ∈ R | −2z1 + x2 ≤ 0} =

[ x2

2
,+∞

[
,

S 2(x) =
{
z2 ∈ R

∣∣∣ x2
1 + z2

2 − 1 ≤ 0, −x1 − z2 ≤ 0
}

=

[
max

{
−x1,−

√
1 − x2

1

}
,
√

1 − x2
1

]
,

78



7.2. Preliminaries on Gap Functions

M

X
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Figure 7.1.: Illustration of the sets X and M from Example 7.3

so that M =
[
−1/
√

2, 1
]
× R and

X =
{
x ∈ R2

∣∣∣ −2x1 + x2 ≤ 0, x2
1 + x2

2 − 1 ≤ 0, −x1 − x2 ≤ 0
}
,

see Figure 7.1. For the regularized gap function with α > 0 we obtain

gα(x) = − inf
z∈S (x)

[
F(x)T (z − x) +

α

2
‖z − x‖2

]
= x1 + x2 − min

z1∈S 1(x)

(
z1 +

α

2
(z1 − x1)2

)
− inf

z2∈S 2(x)

(
z2 +

α

2
(z2 − x2)2

)
. (7.11)

For x ∈ M the two components of zα(x) are the unique optimal points corresponding to the two
optimal values in (7.11). In fact, for x ∈ M, with

%1(x) := x1 − x2

2
, %2(x) := x2 + min

{
x1,

√
1 − x2

1

}
, %3(x) := x2 −

√
1 − x2

1,

we have

(zα(x))1 =

x1 − %1(x), if %1(x) ≤ 1
α
,

x1 − 1
α
, if 1

α
< %1(x),

and

(zα(x))2 =


x2 − %2(x), if %2(x) ≤ 1

α
,

x2 − 1
α
, if %3(x) < 1

α
< %2(x),

x2 − %3(x), if 1
α
≤ %3(x).
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The ‘kinks’ of g1 on X

Figure 7.2.: Regularized gap function on X for α = 1 from Example 7.3

Inserting these optimal values into (7.11) leads to

gα(x) =

%1(x) − α
2%

2
1(x), if %1(x) ≤ 1

α
,

1
2α , if 1

α
< %1(x),

+


%2(x) − α

2%
2
2(x), if %2(x) ≤ 1

α
,

1
2α , if %3(x) < 1

α
< %2(x),

%3(x) − α
2%

2
3(x), if 1

α
≤ %3(x),

for all x ∈ M. Figure 7.2 illustrates the graph of the regularized gap function on the set X for
α = 1. It can be shown that x̄ := 0 is the unique global minimizer of gα on X with gα(x̄) = 0.
Therefore, x̄ is the unique solution of the QVI by Lemma 7.2. ^
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8. Special Classes of Quasi-Variational
Inequalities

In Chapter 8 we discuss three special classes of QVIs, namely QVIs with a generalization of
the moving set case for which the regularized gap function turns out to be continuously differ-
entiable under suitable assumptions in Section 8.1, further QVIs with set-valued mappings in
product form in Section 8.2, and, finally, QVIs as an important application to generalized Nash
equilibrium problems in Section 8.3. The results of this chapter were published in [75, Section 3].

8.1. Quasi-Variational Inequalities with Generalized Moving
Sets

Many papers dealing with QVIs do not consider the general setting from (7.1), see, for example,
[23, 31, 96]. They only discuss the particular case where the nonempty, closed, and convex set
S (x) has the form S (x) = c(x) + K for some function c : Rn → Rn and a fixed nonempty, closed,
and convex set K ⊆ Rn. This class of QVIs is often called the moving set case for reasons that
should be clear from Figure 8.1 (a). We assume in this section that the function c is continuous.
If the set K is described as

K = {y ∈ Rn | ki(y) ≤ 0, i = 1, . . . ,m}
with convex functions ki : Rn → R, i = 1, . . . ,m, then the set-valued mapping S is defined by

S (x) =
{
z ∈ Rn | si(z, x) := ki

(
z − c(x)

) ≤ 0 ∀i = 1, . . . ,m
}
,

where the functions si are continuous on Rn ×Rn and convex in z for each fixed x ∈ Rn, such that
the sets S (x) are nonempty, closed, and convex for all x ∈ Rn.

Here we consider a generalization of this case. To this end, let c be given as before and let
K ⊆ Rp be a nonempty, closed, and convex set with p ≤ n. In addition, assume that we have a
matrix Q(x) ∈ Rn×p of full (column) rank for all x ∈ Rn. Then we consider the case where the
set-valued mapping S : Rn ⇒ Rn has the form

S (x) = c(x) + Q(x)K := {c(x) + Q(x)y | y ∈ K} . (8.1)

Note that S (x) , ∅ holds in this case for any x ∈ Rn, that is, we have M = Rn. We call a QVI with
the mapping S defined in this way the generalized moving set case. In the special case p = n
and Q(x) = In for all x ∈ Rn we re-obtain the moving set case. Our generalization of this case
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8. Special Classes of Quasi-Variational Inequalities

K

c(x̂) + K

c(x̃) + K

c(x̂)

c(x̃)

c

(a) moving set case

K

c(x̂) + Q(x̂)K

c(x̃) + Q(x̃)K

c(x̂)

c(x̃) c

(b) generalized moving set case

Figure 8.1.: Examples for a moving set case and a generalized moving set case

for p = n actually allows any x-dependent affine transformation T (K, x) = c(x) + Q(x)K of K
instead of just translation, that is, also scaling, rotation, reflection, and shearing, as shown in
Figure 8.1 (b) for p = n = 2. A further generalization of this approach is obtained in Remark 8.3.

Note that if c and Q are continuous and if K is described as

K = {y ∈ Rp | ki(y) ≤ 0, i = 1, . . . ,m}

with convex functions ki : Rp → R, i = 1, . . . ,m. Then for p = n the set-valued mapping S is
defined by

S (x) =
{
z ∈ Rn

∣∣∣ si(z, x) := ki

(
Q(x)−1(z − c(x))

)
≤ 0 ∀i = 1, . . . ,m

}
,

For p < n and any x ∈ Rn one may choose some matrix B(x) ∈ Rn×(n−p) whose columns form a
basis of the null space of Q(x)T , with the function B being continuous, cf. [68], and then set

S (x) =
{
z ∈ Rn

∣∣∣ si(z, x) := ki

((
Q(x)T Q(x)

)−1Q(x)T (z − c(x)
)) ≤ 0 ∀i = 1, . . . ,m,

s̄(z, x) := B(x)T (z − c(x)) = 0
}

In both cases, p = n and p < n, the functions si are continuous on Rn × Rn and convex in z for
each fixed x ∈ Rn. Furthermore, the function s̄ is continuous on Rn × Rn and linear in z for each
fixed x ∈ Rn. Consequently, the sets S (x) are nonempty, closed, and convex for all x ∈ Rn.

With the exception of the recent paper [52], the QVIs with moving sets are essentially the
only case that has been investigated in papers dealing with the numerical solution of QVIs, and
for which a more or less complete convergence theory is available. For example, Dietrich [31]
considers QVIs with moving sets only and notes that the regularized gap function is continuously
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8.1. Quasi-Variational Inequalities with Generalized Moving Sets

differentiable in this case. It seems that this observation has been widely overlooked in the
subsequent literature.

In this section, we want to generalize this observation by showing that the regularized gap
function gα from (7.6) is still smooth in the case where the set S (x) is given by (8.1) with con-
tinuously differentiable functions c and Q. To this end, we first reformulate the minimization
problem from (7.8) as

min
z

ϕα(z, x) subject to z ∈ S (x)

⇐⇒ min
z

ϕα(z, x) subject to z ∈ c(x) + Q(x)K

⇐⇒ min
z

ϕα(z, x) subject to ∃ y ∈ K : z = c(x) + Q(x)y

⇐⇒ min
y,z

ϕα(z, x) subject to z = c(x) + Q(x)y, y ∈ K

⇐⇒ min
y

ψα(y, x) subject to y ∈ K, (8.2)

where

ψα(y, x) := ϕα
(
c(x) + Q(x)y, x

)
= F(x)T (c(x) − x) +

α

2
‖c(x) − x‖2 +

(
F(x) + α(c(x) − x)

)T Q(x)y +
α

2
yT Q(x)T Q(x)y

is convex quadratic in y for each x. Note that the full rank of Q(x) is actually not needed for the
reformulation (8.2), but that under this assumption, for each fixed x ∈ Rn, the function ψα(·, x) is
strongly convex with respect to y because

∇2
yyψα(y, x) = αQ(x)T Q(x)

is uniformly positive definite (in y). Therefore, problem (8.2) has a unique solution yα(x) for all
x ∈ Rn, and we obtain

gα(x) = − min
z∈S (x)

ϕα(z, x) = −min
y∈K

ψα(y, x) = −ψα(yα(x), x).

The function x 7→ yα(x) turns out to be continuous on Rn.

Proposition 8.1 Let F be continuous on Rn. Consider a QVI with S (x) being defined by (8.1)
with p ≤ n, K ⊆ Rp being nonempty, closed, and convex, c and Q being continuous, and Q(x)
having full rank for each fixed x ∈ Rn. Then the function x 7→ yα(x) is continuous on Rn.

Proof. First recall that −ψα(·, x) is concave for each fixed x ∈ Rn and continuous onRp×Rn. Since
K is a closed set, the constant set-valued mapping x 7→ K is continuous on Rn, see Definition 2.1.
Moreover, the set K is convex. Furthermore, the set

Yα(x) :=
{
ζ ∈ K

∣∣∣∣ max
y∈K

( − ψα(y, x)
)

= −ψα(ζ, x)}
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8. Special Classes of Quasi-Variational Inequalities

is a singleton for all x ∈ Rn since the function ψα(·, x) is strongly convex for each fixed x ∈ Rn,
and the set K is nonempty, closed, and convex. Therefore, Lemma 2.3 implies that the (single-
valued) set-valued mapping x 7→ Yα(x) = {yα(x)} is continuous on Rn. Hence the function
x 7→ yα(x) is continuous on Rn. �

Since we minimize the function ψα(·, x) with respect to a fixed set K, we may apply Danskin’s
Theorem and Proposition 8.1 and immediately obtain the following result.

Proposition 8.2 Let F be continuously differentiable on Rn. Consider a QVI with S (x) being
defined by (8.1) with p ≤ n, K ⊆ Rp being nonempty, closed, and convex, c and Q being contin-
uously differentiable, and Q(x) having full rank for each fixed x ∈ Rn. Then gα is continuously
differentiable with gradient

∇gα(x) = −∇xψα(y, x)
∣∣∣
y=yα(x)

=

[
∇F(x)

(
x − c(x) − Q(x)y

)
+

+
(
In − ∇c(x) − ∇x (Q(x)y)

)(
α
(
c(x) + Q(x)y − x

)
+ F(x)

)]
y=yα(x)

, (8.3)

where yα(x) denotes the unique solution of problem (8.2).

As mentioned above, a further generalization of the generalized moving set case is possible and
is specified in the next remark.

Remark 8.3 A careful analysis of the above proofs shows that the introduced generalized mov-
ing set case with a nonempty, closed and convex set K can be further generalized to the case
S (x) = T (K, x) with any continuously differentiable nonlinear mapping T : Rp × Rn → Rn such
that ψα(y, x) = ϕα(T (y, x), x) is strongly convex in y for all fixed x ∈ Rn. In applications, however,
it might be cumbersome to check the strong convexity assumption on the function ψα. ^

The following example illustrates the results of this section.

Example 8.4 Let p = n = 2, K = R2
≥, and F be continuously differentiable on R2. On K we

simultaneously impose the translation c(x) := x, the scaling γ(x) > 0 and the rotation by the
angle ω(x) for x ∈ R2 with continuously differentiable functions γ : R2 → R and ω : R2 → R.
Then we may set Q(x) := γ(x)R(x) with the rotation matrix

R(x) :=
(
cos(ω(x)) − sin(ω(x))
sin(ω(x)) cos(ω(x))

)
and S (x) = x + Q(x)K. Clearly, Q(x) is nonsingular for all x ∈ R2, and we obtain

ψα(y, x) = F(x)T Q(x)y +
αγ2(x)

2
yT y.

For a given x ∈ R2 the unconstrained minimizer of ψα(·, x) is

y∗α(x) = − 1
αγ(x)

R(x)T F(x).

84
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Figure 8.2.: Regularized gap function with α = 1 from Example 8.4

Therefore, the minimizer of ψα(·, x) on K = R2
≥ is

yα(x) = max
{
0,− 1

αγ(x)
R(x)T F(x)

}
(with the maximum taken componentwise) for all x ∈ R2. The function yα is obviously continu-
ous on R2, and the regularized gap function

gα(x) = −ψα(yα(x), x) =
αγ2(x)

2
‖yα(x)‖2 =

1
2α

∥∥∥max{0,−R(x)T F(x)}
∥∥∥2

is also known to be continuously differentiable on R2. By Propositions 8.1 and 8.2, we achieve
the same results for this particular example. Note that the regularized gap function gα does not
depend on the scaling function γ.

Due to 0 ∈ K we have x ∈ S (x) = x + Q(x)K for all x, so that X = R2 and, by Lemma 7.2, the
solutions of the QVI are exactly the unconstrained minimizers of gα with value zero, that is, the
vectors x ∈ R2 with

max{0,−R(x)T F(x)} = 0.

Thus, the solutions of the QVI are formed by the set

{x ∈ R2 | R(x)T F(x) ≥ 0}.

A plot of the regularized gap function with the special choices F(x) := x, ω(x) := x1 + x2 and
α = 1 is illustrated in Figure 8.2. ^

In Section 9.2, we will investigate the smoothness properties of the regularized gap function gα
in general cases.
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8. Special Classes of Quasi-Variational Inequalities

8.2. Quasi-Variational Inequalities with Set-valued
Mappings in Product Form

Motivated by Example 7.3 (and Section 8.3 below), let us consider QVIs with a set-valued map-
ping S in product form. We say that a set-valued mapping S is in product form if there exist some
N ∈ N, nν ∈ N, ν = 1, . . . ,N, with n1 +n2 + . . .+nN = n, and set-valued mappings S ν : Rn ⇒ Rnν ,
ν = 1, . . . ,N such that

S (x) = S 1(x) × S 2(x) × . . . × S N(x)

holds for all x ∈ Rn. After partitioning the variables x = (x1, . . . , xN) and z = (z1, . . . , zN) as well
as the function F(x) = (F1(x), . . . , FN(x)), we may use the separability with respect to z of the
function ϕα from (7.7) to obtain

gα(x) = − inf
z∈S (x)

[
F(x)T (z − x) +

α

2
‖z − x‖2

]
= −

N∑
ν=1

inf
zν∈S ν(x)

[
Fν(x)T (zν − xν) +

α

2
‖zν − xν‖2

]
=

N∑
ν=1

gνα(x) (8.4)

with

gνα(x) := − inf
zν∈S ν(x)

[
Fν(x)T (zν − xν) +

α

2
‖zν − xν‖2

]
, ν = 1, . . . ,N. (8.5)

As the function gα, the functions gνα are nonnegative on X.

Lemma 8.5 For all x ∈ X and ν ∈ {1, . . . ,N}, we have gνα(x) ≥ 0.

Proof. For any ν ∈ {1, . . . ,N} choose some x ∈ X. Then we have

(x1, x2, . . . , xN) ∈ S 1(x) × S 2(x) × . . . × S N(x)

and, in particular, xν ∈ S ν(x). Consequently, a lower bound of gνα(x) is the value

−
[
Fν(x)T (zν − xν) +

α

2
‖zν − xν‖2

]
zν:=xν

= 0.

This shows the assertion. �

The combination of Lemma 7.2 (a) and (b), the reformulation (8.4), and Lemma 8.5 immediately
yield the following separation result.

Theorem 8.6 A point x̄ solves a QVI with set-valued mapping in product form if and only if x̄ is
the global minimizer of gνα on X with value zero for all ν = 1, . . . ,N.

Next, we combine the ideas of generalized moving sets from Section 8.1 with set-valued map-
pings in product form. In fact, the product form and the resulting separability allow each set
S ν(x), ν = 1, . . . ,N, to be written as an independent generalized moving set, that is,

S ν(x) = {cν(x) + Qν(x)y | y ∈ Kν} (8.6)
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8.2. Quasi-Variational Inequalities with Set-valued Mappings in Product Form

where, for pν ≤ nν, the set Kν ⊆ Rpν is nonempty, closed, and convex, the functions cν : Rn → Rnν

and Qν : Rn → Rnν×pν are continuous, and Qν(x) has full (column) rank for all x ∈ Rn. Then
the proof of the assertion in Proposition 8.2 translates word by word to a proof of the assertion
that, under continuous differentiability assumptions on F, cν and Qν, the function gνα from (8.5)
is continuously differentiable for each ν = 1, . . . ,N with known gradient.

To prepare the statement of this result note that, for ν = 1, . . . ,N, we may rewrite the function
gνα from (8.5) as

gνα(x) = − inf
zν∈S ν(x)

ϕνα(zν, x)

with
ϕνα(zν, x) := Fν(x)T (zν − xν) +

α

2
‖zν − xν‖2

for all x ∈ X. In analogy to (8.2), upon defining

ψνα(yν, x) := ϕνα(cν(x) + Qν(x)yν, x)

one can show that also
gνα(x) = − min

yν∈Kν
ψνα(yν, x)

as well as

∇gνα(x) = −∇xψ
ν
α(yν, x)

∣∣∣
yν=yνα(x)

(8.7)

hold, where yνα(x) denotes the unique solution of the problem

min
yν

ψνα(yν, x) subject to yν ∈ Kν.

Consequently, (8.4) yields the following result.

Theorem 8.7 Consider a QVI with set-valued mapping in product form and generalized moving
sets of the form (8.6) where, for pν ≤ nν, the set Kν ⊆ Rpν is nonempty, closed, and convex, the
functions F, cν, and Qν are continuously differentiable, and Qν(x) has full rank for all x ∈ Rn,
ν = 1, . . . ,N. Then the function gα is continuously differentiable with ∇gα(x) =

∑N
ν=1 ∇gνα(x) and

∇gνα(x) given by (8.7).

Note that, under the above assumptions, S (x) can be written as a generalized moving set in the
form S (x) = c(x) + Q(x)K with the nonempty, closed, and convex set K = K1 × . . . × KN in the
product form as well as

c(x) =


c1(x)
...

cN(x)

 and Q(x) =


Q1(x) 0 0

0 . . . 0
0 0 QN(x)

 ,
where Q(x) has full rank for all x ∈ Rn.
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8. Special Classes of Quasi-Variational Inequalities

8.3. Application to Generalized Nash Equilibrium Problems

In this section we tackle some player convex GNEPs. The corresponding definitions, a literature
overview, and some reformulations of these problems are given in Chapter 3. Throughout this
section, we make the following smoothness and convexity assumptions.

Assumption 8.8 (a) The functions θν : Rn → R, ν = 1, . . . ,N, are continuously differentiable.

(b) The functions θν(·, x−ν), ν = 1, . . . ,N, are convex for all fixed x−ν ∈ Rn−nν .

(c) The sets Xν(x−ν), ν = 1, . . . ,N, are closed and convex for all x ∈ Rn.

Under Assumption 8.8, it is well-known, see, for example, [47, 71], that a GNEP is equivalent
to a QVI in the sense that x̄ is a solution of the GNEP if and only if x̄ solves the corresponding
QVI with F being defined by

FGNEP(x) := F(x) :=


∇x1θ1(x)

...
∇xNθN(x)


and S (x) having the product structure (cf. Section 8.2)

S (x) := X1(x−1) × . . . × XN(x−N).

For x ∈ M (= dom S ) the regularized gap function of this particular QVI therefore reads

gα(x) = − inf
z∈S (x)

[
FGNEP(x)T (z − x) +

α

2
‖z − x‖2

]
= − inf

z∈S (x)

 N∑
ν=1

(
∇xνθν(xν, x−ν)T (zν − xν) +

α

2
‖zν − xν‖2

)
= −

N∑
ν=1

inf
zν∈Xν(x−ν)

[
∇xνθν(xν, x−ν)T (zν − xν) +

α

2
‖zν − xν‖2

]
.

Taking into account the convexity of θν as a function of xν, it follows that

gα(x) ≥ −
N∑
ν=1

inf
zν∈Xν(x−ν)

[
θν(zν, x−ν) − θν(xν, x−ν) +

α

2
‖zν − xν‖2

]
= − inf

z∈S (x)
Φα(z, x) =: Vα(x),

where

Φα(z, x) :=
N∑
ν=1

(
θν(zν, x−ν) − θν(xν, x−ν) +

α

2
‖zν − xν‖2

)
. (8.8)

The functions −Φα and Vα defined in this way are the regularized Nikaido-Isoda function and
the corresponding optimal value function, respectively, which are known from theoretical and
numerical considerations in the context of GNEPs, see, for example, Section 3.2. If gα and Vα

are considered to be extended-valued, then for all x < M we trivially have gα(x) = Vα(x) = −∞.
We summarize the previous discussion in the following result.
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Lemma 8.9 Let Assumption 8.8 hold. Consider a QVI arising from a player convex GNEP,
and let gα and Vα be the corresponding regularized gap function and optimal value function,
respectively. Then gα(x) ≥ Vα(x) holds for all x ∈ Rn.

The previous result implies, for example, that any error bound result for Vα also gives an error
bound result for the regularized gap function gα, whereas the converse might not be true.

Next, we also study the differentiability properties of the optimal value function Vα of player
convex GNEPs in the generalized moving set case S (x) = c(x) + Q(x)K defined by (8.1). In fact,
due to the inherent product structure of S (x) in the GNEP case, we have

S (x) = S 1(x) × . . . × S N(x)

with S ν(x) = Xν(x−ν), ν = 1, . . . ,N, so that we may use independent generalized moving sets for
each player as defined in (8.6):

Xν(x−ν) =
{
cν(x−ν) + Qν(x−ν)y | y ∈ Kν} (8.9)

where, for pν ≤ nν, the sets Kν ⊆ Rpν , ν = 1, . . . ,N, are nonempty, closed, and convex, the
functions cν : Rn−nν → Rnν and Qν : Rn−nν → Rnν×pν are continuous, and Qν(x−ν) has full
(column) rank for all x−ν ∈ Rn−nν . The following example is a class of player convex GNEP with
(generalized) moving set which fits into this framework.

Example 8.10 Consider a GNEP with N players, nν = 1 for all ν = 1, . . . ,N, and the strategy
sets Xν(x−ν) := {xν ∈ R | ∑N

ν=1 ανx
ν ≤ β}, where β, αν ∈ R with αν > 0 for all ν. Then all sets

Xν(x−ν) are (generalized) moving sets with nonempty, closed, and convex sets Kν := ] − ∞, 0]
and continuous functions cν : RN−1 → R, cν(x−ν) := 1

αν

(
β − ∑

µ,ν αµxµ
)
, and Qν : RN−1 → R,

Qν(x−ν) := 1, hence Qν(x−ν) has full rank for all x−ν ∈ RN−1. In fact, we have

Xν(x−ν) =

xν ∈ R
∣∣∣∣∣ xν ≤ 1

αν

β −∑
µ,ν

αµxµ

 =

{
cν(x−ν) + y | y ∈ ] −∞, 0]

}
,

from which the above observation follows immediately. ^

Note that, under the additional assumption of continuous differentiability on the functions FGNEP

(that is, the assumption of twice continuous differentiability on the functions θν), cν and Qν,
ν = 1, . . . ,N, the regularized gap function gα is continuously differentiable with known gradient
by Theorem 8.7. The corresponding analysis for the optimal value function Vα is similar to the
one given in Section 8.2. A first difference is that in the description

Vα(x) = − inf
z∈S (x)

Φα(z, x)

the function Φα from (8.8) is not separable with respect to all components of z, while the function
ϕα from (7.7) in the description

gα(x) = − inf
z∈S (x)

ϕα(z, x)
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is. However, Φα obviously is separable with respect to the vectors z1, . . . , zN which suffices to
mimic the proof of continuous differentiability of gα in Theorem 8.7 in order to show continuous
differentiability of Vα. In fact, the separability allows us to write Vα(x) =

∑N
ν=1 Vν

α(x) with

Vν
α(x) := − inf

zν∈Xν(x−ν)
Φν
α(zν, x)

and
Φν
α(zν, x) := θν(zν, x−ν) − θν(xν, x−ν) +

α

2
‖zν − xν‖2

or, equivalently,
Vν
α(x) = − min

yν∈Kν
Ψν
α(yν, x)

with
Ψν
α(yν, x) := Φν

α(cν(x−ν) + Qν(x−ν)yν, x)

for ν = 1, . . . ,N. As a second difference to the analysis of the gap function, the strong convexity
of Ψν

α in yν is slightly less apparent. In fact, the convexity of Φν
α in zν implies the convexity of Ψν

α

in yν. Moreover, by the full rank of Qν(x−ν), the matrix

∇2
yνyνΨ

ν
α(yν, z) = Qν(x−ν)T

(
∇2

zνzνΦ
ν
α(zν, x)|zν=cν(x−ν)+Qν(x−ν)yν

)
Qν(x−ν)

with
∇2

zνzνΦ
ν
α(zν, x) = ∇2

zνzνθν(z
ν, x−ν) + αInν

is uniformly positive definite (in yν), so that Ψν
α even is strongly convex in yν. Therefore, for each

ν ∈ {1, . . . ,N} the problem

min
yν

Ψν
α(yν, x) subject to yν ∈ Kν

has a unique solution yνα(x), and along the lines of Section 8.2 we obtain that Vν
α is continuously

differentiable with

∇Vν
α(x) = −∇xΨ

ν
α(yν, x)|yν=yνα(x) (8.10)

where

∇xνΨ
ν
α(yν, x) = −∇xνθ(xν, x−ν) − α (

cν(x−ν) + Qν(x−ν)yν − xν
)
,

∇x−νΨ
ν
α(yν, x) =

[
∇x−νθν(zν, x−ν) − ∇x−νθν(xν, x−ν)+

+
(∇x−νcν(x−ν) + ∇x−ν(Qν(x−ν)yν)

) (∇xνθν(zν, x−ν) + α(zν − xν)
) ]

zν = cν(x−ν)+Qν(x−ν)yν
.

The following theorem summarizes the previous discussion.

Theorem 8.11 Consider a GNEP with strategy spaces of generalized moving set form (8.9)
where, for pν ≤ nν, the sets Kν ⊆ Rpν are nonempty, closed, and convex, the functions θν are
twice continuously differentiable, the functions cν and Qν are continuously differentiable, and
Qν(x−ν) has full rank for all x−ν ∈ Rn−nν , ν = 1, . . . ,N. Then Vα is continuously differentiable
with ∇Vα(x) =

∑N
ν=1 ∇Vν

α(x) and ∇Vν
α(x) given by (8.10).
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9. Smoothness Properties of a Primal
Gap Function for Quasi-Variational
Inequalities

In Chapter 9 we turn back to the general QVI, where the regularized gap function is typically non-
smooth. Hence we investigate its continuity properties in Section 9.1 under suitable assumptions.
Then we discuss the differentiability properties of the gap function in Section 9.2. Our main
result of Section 9.2 is that, apart from special cases, all local minimizers of the reformulation
are differentiability points of the gap function. The results and analysis of this chapter are similar
to that in Chapter 4 and are published in [75].

We assume in Chapter 9 that S (x) has the representation

S (x) = {z ∈ Rn | si(z, x) ≤ 0 ∀i = 1, . . . ,m}

with suitable functions si : Rn × Rn → R, i = 1, . . . ,m. Then the feasible set X is given by

X = {x ∈ Rn | si(x, x) ≤ 0 ∀i = 1, . . . ,m} .

Throughout this chapter, we make the following smoothness and convexity assumptions.

Assumption 9.1 (a) The function F is continuous on Rn.

(b) The functions si, i = 1, . . . ,m, are continuous on Rn × Rn.

(c) The functions si(·, x), i = 1, . . . ,m, are convex for each fixed x ∈ Rn.

Note that, in particular, Assumptions 9.1 (b), (c) guarantee that S (x) is indeed a closed and
convex (possibly empty) set for any given x ∈ Rn.

9.1. Continuity Properties and Domain

In the first part of this section we show that the solution function zα of the problem (7.8) is
continuous at x̄ ∈ M = dom S if S (x̄) satisfies the Slater condition, that is, if there exists some
z̄ ∈ Rn satisfying si(z̄, x̄) < 0 for all i = 1, . . . ,m. We therefore define the ‘degenerate point set’

D1 := {x ∈ M | the set S (x) violates the Slater condition} .
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9. Smoothness Properties of a Primal Gap Function for Quasi-Variational Inequalities

Note that continuity of zα at x̄, in particular, implies the continuity of the regularized gap function
gα at x̄. The corresponding analysis is similar to the one given in [38] and in Chapter 4 for certain
objective functions arising in the context of jointly and player convex GNEPs, respectively. After
two generalizations of our main result, we then study a topological property of the set M \ D1.

In this section we use Definition 2.1 where the definitions of an inner semicontinuous (isc) and
an outer semicontinuous (osc) set-valued mapping are given.

Theorem 9.2 Let Assumption 9.1 hold, and let the set-valued mapping S be isc at x̄ ∈ M. Then
the functions zα and gα are continuous at x̄.

Proof. Recall that ϕα(·, x) is convex for each fixed x ∈ Rn and continuous on Rn ×Rn. Therefore,
the function −ϕα(·, x) is concave for each fixed x ∈ Rn and continuous on Rn × Rn.

The set-valued mapping S is osc, since its graph

gph S := {(x, z) ∈ Rn × Rn | si(z, x) ≤ 0 ∀i = 1, . . . ,m}

is a closed set in view of continuity of si, i = 1, . . . ,m, see [82, Theorem 2]. Due to Assump-
tion 9.1, S (x) is convex for all x ∈ Rn. Additionally, the set

Zα(x) =

{
ζ ∈ S (x)

∣∣∣∣∣ max
z∈S (x)

( − ϕα(z, x)
)

= −ϕα(ζ, x)
}

is a singleton with the unique element zα(x) for all x ∈ M, see Remark 7.1. Therefore, Lemma 2.3
implies that the set-valued mapping x 7→ {zα(x)} is continuous at x̄. Hence the function x 7→ zα(x)
is continuous at x̄. Furthermore, gα(x) = −ϕα (zα(x), x) is continuous at x̄ as a composition of
continuous functions. �

As an immediate consequence of Theorem 9.2, we obtain the following result.

Corollary 9.3 Let Assumption 9.1 hold. Then zα and gα are continuous on M \ D1.

Proof. Let x̄ ∈ M \ D1. Due to Assumption 9.1 and the Slater condition for S (x̄), the set-valued
mapping S is isc at x̄ (see [82, Theorem 12]). Therefore, Theorem 9.2 implies that the functions
zα and gα are continuous at x̄. �

Let us illustrate the previous result in the context of Example 7.3.

Example 9.4 Note that Assumption 9.1 is fulfilled in Example 7.3. In the situation of Exam-
ple 7.3, for x ∈ M the set S (x) = S 1(x) × S 2(x) satisfies the Slater condition if and only if S 1(x)
as well as S 2(x) possess a Slater point. Clearly, S 1(x) satisfies the Slater condition for all x ∈ M.
On the other hand, S 2(x) violates the Slater condition exactly for all x with x1 = −1/

√
2 and for

all x with x1 = 1. Hence we obtain D1 =
(
{−1/

√
2}∪{1}

)
×R and, by Corollary 9.3, the functions

zα and gα are continuous on M \ D1 = ] − 1/
√

2, 1[×R. ^

Direct inspection of the functions zα and gα from Example 7.3 shows that they are actually
continuous at least on all of X (⊆ M) relative to X, see Definition 2.2. This motivates to relax the
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9.1. Continuity Properties and Domain

assumption of Corollary 9.3 in the spirit of [39, Theorem 3.5] for generalized Nash equilibrium
problems. To this end, let us define the set

D′1 :=
{
x ∈ M | the set S (x) violates the Slater condition and is not a singleton

}
.

The following result shows that zα and hence also gα are continuous on the set X \ D′1 (relative
to X), that is, they are continuous at every point x ∈ X (relative to X) where S (x) either satisfies
the Slater condition or reduces to a single point. Note that the latter degenerate case occurs quite
frequently, for example, in the context of GNEPs.

Theorem 9.5 Let Assumption 9.1 hold. Then zα and gα are continuous on X \D′1 (relative to X).

Proof. Let x̄ ∈ X \ D′1. In view of X ⊆ M and Corollary 9.3, we only have to consider the
case that S (x̄) is a singleton. Due to x̄ ∈ X, we actually have S (x̄) = {x̄}. Choose any sequence
{xk} ⊆ X with xk → x̄. Then for each k ∈ N we have xk ∈ S (xk), so that S turns out to be isc at x̄
(relative to X). Theorem 9.2 now yields the assertion. �

Unfortunately, in Example 7.3 we obtain X ∩ D1 = X ∩ D′1 = {(1, 0)} as S (1, 0) = [0,+∞[× {0}
violates the Slater condition while not being a singleton. Hence Theorem 9.5 may not be evoked
to show continuity of zα and gα on all of X (relative to X). However, the product form of the
set-valued mapping S in Example 7.3 justifies to modify the assumptions of Theorem 9.5. Let
us consider the general case of a set-valued mapping in product form (cf. Section 8.2)

S (x) = S 1(x) × S 2(x) × . . . × S N(x)

and define

D′′1 := {x ∈ M | for some ν ∈ {1, . . . ,N} the set S ν(x) violates the Slater condition
and is not a singleton

}
.

Recall that this product structure of S (x) arises quite naturally in the GNEP context (see Sec-
tion 8.3).

Theorem 9.6 Let Assumption 9.1 hold, and let S be given in product form. Then the functions
zα and gα are continuous on X \ D′′1 (relative to X).

Proof. Let x̄ ∈ X \ D′′1 . Then for each ν ∈ {1, . . . ,N} the set S ν(x̄) either satisfies the Slater
condition or coincides with the singleton {x̄ν}. Choose any sequence {xk} ⊆ X with xk → x̄ and
any z̄ ∈ S (x̄), that is, we have xν,k → x̄ν and z̄ν ∈ S ν(x̄), ν = 1, . . . ,N. For those ν ∈ {1, . . . ,N}
with S ν(x̄) satisfying the Slater condition, the set-valued mapping S ν is isc at x̄, so that for
sufficiently large k a sequence zν,k ∈ S ν(xk) with zν,k → z̄ν exists. On the other hand, for each
ν with S ν(x̄) = {x̄ν}, we may choose zν,k := xν,k ∈ S ν(xk) and obtain zν,k = xν,k → x̄ν = z̄ν as
in the proof of Theorem 9.5. This shows the inner semicontinuity of S at x̄ (relative to X), and
Theorem 9.2 yields the assertion. �

Note that we have X \ D′′1 = X in Example 7.3, so that Theorem 9.6 finally yields the continuity
of zα and gα on all of X (relative to X).
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9. Smoothness Properties of a Primal Gap Function for Quasi-Variational Inequalities

Let us return to the set D1 which is also important in our analysis of the differentiability
properties of gα. In fact, in Section 9.2 we shall study differentiability properties of gα at points
from the topological interior of the domain of gα where, in view of Remark 7.1,

dom gα = {x ∈ Rn | gα(x) ∈ R}
coincides with M. Therefore, their topological interiors also coincide:

int dom gα = int M. (9.1)

The following result relates the set M \ D1 to the interior of the domain of gα.

Lemma 9.7 Let Assumption 9.1 hold. Then the set M \ D1 is open and satisfies

M \ D1 ⊆ int dom gα.

Proof. Let x̄ ∈ M \ D1. Then there exists some z̄ ∈ Rn satisfying si(z̄, x̄) < 0 for all i = 1, . . . ,m.
Due to continuity of the functions si, i = 1, . . . ,m, we can choose a neighborhood U of x̄ such
that for all x ∈ U also si(z̄, x) < 0 is satisfied for all i = 1, . . . ,m. Therefore, for all x ∈ U the set
S (x) satisfies the Slater condition, that is, we have x ∈ M \ D1. This shows that M \ D1 is open.
In particular, U is contained in dom S = M. This implies x̄ ∈ int M and, due to (9.1), shows the
second assertion. �

As a last point of this section, we remark that Lemma 9.7 lays the foundation for the analysis in
Section 9.2.

Remark 9.8 Lemma 9.7 guarantees that the set dom gα \ D1 is an open subset of int dom gα, so
that we will be able to study differentiability of gα on dom gα \ D1 in Section 9.2. We point out
that, under stronger convexity and regularity assumptions, along the lines of Theorem 4.11 one
can also show the reverse inclusion in Lemma 9.7, that is, the topological boundary of dom gα
coincides with D1. An illustration of this result is given in Example 9.4. ^

9.2. Differentiability Properties

Assumption 9.1 and the following Assumption 9.9 are the blanket assumptions for this section.

Assumption 9.9 The functions F and si, i = 1, . . . ,m, are continuously differentiable.

In this section we want to study differentiability properties of gα. To this end, we have to make
sure that we consider differentiability only at points in the interior of the domain of gα, since
otherwise it makes no sense to talk about differentiability. In view of Lemma 9.7, it is reasonable
to investigate the differentiability of the function gα on the set M \D1. To this end, consider once
again the convex optimization problem from (7.8). In view of Remark 7.1, this problem has a
unique optimal point zα(x) for all x ∈ M, in particular, for all x ∈ M \ D1. Let

Lα(x, z, λ) := ϕα(z, x) +

m∑
i=1

λisi(z, x) = F(x)T (z − x) +
α

2
‖z − x‖2 +

m∑
i=1

λisi(z, x)
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9.2. Differentiability Properties

denote the Lagrange function of the optimization problem (7.8), and let

KKTα(x) :=
{
λ ∈ Rm

∣∣∣∣ F(x) + α
(
zα(x) − x

)
+

m∑
i=1

λi∇zsi
(
zα(x), x

)
= 0,

λi ≥ 0, λisi
(
zα(x), x

)
= 0 ∀i = 1, . . . ,m

}
be the set of Karush-Kuhn-Tucker multipliers for zα(x) ∈ S (x). Note that the convex polyhedron
KKTα(x) is a convex and nonempty polytope if and only if S (x) satisfies the Slater condition
[65], that is, for x ∈ M \ D1. Furthermore,

Iα(x) :=
{
i ∈ {1, . . . ,m} | si

(
zα(x), x

)
= 0

}
will denote the set of active indices of zα(x) ∈ S (x).

Besides the standard concept of differentiability, this section is based on several differentia-
bility concepts (directional differentiability, Hadamard directional differentiability, and Gâteaux
differentiability) summarized in Definition 2.8.

Theorem 9.10 Let Assumptions 9.1 and 9.9 hold, and let x ∈ M \ D1. Then the regularized gap
function gα is Hadamard directionally differentiable at x with

g′α(x, d) = min
λ∈KKTα(x)

(F(x) − (∇F(x) − αIn
)(

zα(x) − x
) − m∑

i=1

λi∇xsi
(
zα(x), x

))T

d

 (9.2)

for any d ∈ Rn.

Proof. Since x ∈ M \ D1, the set S (x) satisfies the Slater condition. A standard result from
parametric optimization (see, e.g., [69, 83, 116]) then states that the optimal value function −gα
of the optimization problem (7.8) is Hadamard directionally differentiable at x with

(−gα)′(x, d) = max
λ∈KKTα(x)

(∇xLα(x, z, λ)|z=zα(x)
)T d

= max
λ∈KKTα(x)

dT
(
− F(x) +

(∇F(x) − αIn
)(

z − x
)

+

m∑
i=1

λi∇xsi
(
z, x

))∣∣∣∣∣
z=zα(x)


for any d ∈ Rn. This shows the assertion. �

Remark 9.11 Note that, in the assertion of Theorem 9.10 and in the following, for any x ∈ M\D1

and any λ ∈ KKTα(x) one may replace the term
∑m

i=1 λi∇xsi
(
zα(x), x

)
by

∑
i∈Iα(x) λi∇xsi

(
zα(x), x

)
,

since λi = 0 for all i ∈ {1, . . . ,m} \ Iα(x). ^

The formula (9.2) for the directional derivative of gα at some x ∈ M \ D1 simplifies if not only
the optimal point set {zα(x)} of (7.8) but also the set KKTα(x) is a singleton. This motivates to
define a next ‘degenerate point set’

D2 :=
{
x ∈ M | the set KKTα(x) is not a singleton

}
.
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As mentioned before, the convex polyhedron KKTα(x) is a convex and nonempty polytope if and
only if x ∈ M \D1. Hence for x ∈ D1 the set KKTα(x) is either empty or unbounded but certainly
not a singleton. This shows the relation

D1 ⊆ D2. (9.3)

Theorem 9.10 and (9.3) lead to the following result.

Corollary 9.12 Let Assumptions 9.1 and 9.9 hold, and let x ∈ M \ D2 with KKTα(x) = {λα(x)}.
Then the regularized gap function gα is Gâteaux differentiable at x with

g′α(x, d) =

(
F(x) − (∇F(x) − αIn

)(
zα(x) − x

) − m∑
i=1

(
λα(x)

)
i∇xsi

(
zα(x), x

))T

d (9.4)

for any d ∈ Rn.

For algebraic characterizations of the sets D1 and D2 we use the following definitions of some
conditions on QVIs.

Definition 9.13 (a) The Mangasarian Fromovitz constraint qualification (MFCQ) holds at
zα(x) ∈ S (x) if there exists a vector d ∈ Rn satisfying ∇zsi

(
zα(x), x

)T d < 0 for all i ∈ Iα(x).

(b) The strict Mangasarian Fromovitz condition (SMFC) holds at zα(x) in S (x) with a multi-
plier λ ∈ KKTα(x) if the gradients

∇zsi
(
zα(x), x

) (
i ∈ I+

α(x) = {i ∈ Iα(x) | λi > 0}) ,
are linearly independent, and there exists a vector d ∈ Rn satisfying

∇zsi
(
zα(x), x

)T d < 0 ∀i ∈ I0
α(x) = {i ∈ Iα(x) | λi = 0} ,

∇zsi
(
zα(x), x

)T d = 0 ∀i ∈ I+
α(x).

(c) The linear independence constraint qualification (LICQ) holds at zα(x) ∈ S (x) if the vectors
∇zsi

(
zα(x), x

) (
i ∈ Iα(x)

)
are linearly independent.

Note that, because of the convexity of the functions si(·, x) (i = 1, . . . ,m) for each fixed x,
MFCQ holds at zα(x) if and only if the Slater condition is satisfied for S (x). Hence we have the
characterization

D1 = {x ∈ M | MFCQ is violated at zα(x) ∈ S (x)} .
Furthermore, it is known from [88] that SMFC at zα(x) ∈ S (x) characterizes a unique KKT
multiplier λα(x) at the optimal point zα(x). Therefore, we arrive at

D2 = {x ∈ M | either KKTα(x) = ∅ or SMFC is violated at zα(x) ∈ S (x)} .
Finally, as LICQ implies SMFC at zα(x) ∈ S (x), the set

D3 := {x ∈ M | LICQ is violated at zα(x) ∈ S (x)}
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satisfies
D1 ⊆ D2 ⊆ D3. (9.5)

For the proof of the next result recall that if a function f : U → R with an open domain U is
Gâteaux differentiable on U and the partial derivatives of f are continuous at x̄ ∈ U, then f is
continuously differentiable at x̄.

Theorem 9.14 Let Assumptions 9.1 and 9.9 hold, and let x̄ ∈ M \ D3 with KKTα(x̄) = {λα(x̄)}.
Then KKTα(x) = {λα(x)} holds in a neighborhood of x̄, and the regularized gap function gα is
continuously differentiable on this neighborhood of x̄ with

∇gα(x) = F(x) − (∇F(x) − αIn
)(

zα(x) − x
) − m∑

i=1

(
λα(x)

)
i∇xsi

(
zα(x), x

)
.

Proof. First, due to (9.5) and Lemma 9.7, x̄ is an interior point of dom gα, and there is some
neighborhood U of x̄ such that for all x ∈ U the optimal point zα(x) ∈ S (x) satisfies the Slater
condition. By Corollary 9.3, the function zα is actually continuous on U. Consequently, since
LICQ is stable under perturbations, U may be chosen such that LICQ holds at zα(x) ∈ S (x)
for each x ∈ U. This implies that KKTα is single-valued on U, say KKTα(x) = {λα(x)} for
x ∈ U. Corollary 9.12 thus guarantees that gα is Gâteaux differentiable on U with (9.4). By
[83, Lemma 2] the set-valued mapping KKTα is locally bounded and osc on U. As it is also
single-valued in our case, the function λα is continuous on U, so that the partial derivatives
of gα are continuous at x̄. This shows continuous differentiability of gα at x̄ with the asserted
gradient. Since the partial derivatives of gα actually are continuous on all of U, also continuous
differentiability of gα on U follows. �

The next remark shows that the assumption x̄ ∈ M \ D3 in Theorem 9.14 can be replaced by
x̄ ∈ M \ D2 and the additional assumption of stable SMFC.

Remark 9.15 The main reason to use D3 instead of the smaller set D2 in the assumption of
Theorem 9.14 is the lack of stability of SMFC (cf. also Example 9.16 below). On the other
hand, a different sufficient condition for continuous differentiability of gα on a neighborhood of
x̄ ∈ M \ D2 can be obtained in cases when SMFC is stable at zα(x̄) ∈ S (x̄). Note that, since x̄ ∈
M\D2, SMFC already holds at zα(x̄) ∈ S (x̄) and yields the unique multiplier λα(x̄). If additionally
the set I0

α(x̄) =
{
i ∈ Iα(x̄) | (λα(x̄)

)
i = 0

}
remains constant under small perturbations of x̄ (this is

true if, for example, the set I0
α(x̄) is empty, that is, the so-called strict complementarity slackness

holds), then continuity arguments show that SMFC is stable at zα(x) under sufficiently small
perturbations of x̄. After this observation, one can show continuous differentiability of gα on a
neighborhood of x̄ along the lines of the proof of Theorem 9.14. ^

Let us illustrate our results for the QVI from Example 7.3 and check differentiability properties
of the regularized gap function gα on X \ D1.

Example 9.16 Consider the QVI from Example 7.3. Note that Assumptions 9.1 and 9.9 hold for
this example. By Theorem 9.14, gα is continuously differentiable at each x ∈ X \ D3 with known
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gradient. In the following, we will determine the sets X ∩ (D3 \ D1) and X ∩ (D2 \ D1) as well as
the corresponding directional derivatives of gα.

By definition of D3 one has

X ∩ (D3 \ D1) = {x ∈ X \ D1 | LICQ is violated at zα(x) in S (x)}
so that we have to check for violation of LICQ. The involved gradients are

∇zs1
(
zα(x), x

)
=

(−2
0

)
, ∇zs2

(
zα(x), x

)
=

(
0

2(zα(x))2

)
, ∇zs3

(
zα(x), x

)
=

(
0
−1

)
.

Some tedious calculations show that the activities are characterized as follows, where we use the
functions %i from Example 7.3:

{x ∈ X \ D1 | 1 ∈ Iα(x)} = {x ∈ X \ D1 | %1(x) ≤ 1/α} ,
{x ∈ X \ D1 | 2 ∈ Iα(x)} =

{
x ∈ X \ D1 | %2(x) ≤ 1/α, x1 ≥ 1/

√
2
}

∪ {x ∈ X \ D1 | 1/α ≤ %3(x)} ,
{x ∈ X \ D1 | 3 ∈ Iα(x)} =

{
x ∈ X \ D1 | %2(x) ≤ 1/α, x1 ≤ 1/

√
2
}
.

In particular, if 2 ∈ Iα(x), then for all x ∈ X \ D1 with %2(x) ≤ 1/α and x1 ≥ 1/
√

2 we find

∇zs2
(
zα(x), x

)
=

 0

−2
√

1 − x2
1

 , 0,

and for all x ∈ X \ D1 with 1/α ≤ %3(x)

∇zs2
(
zα(x), x

)
=

 0

2
√

1 − x2
1

 , 0,

so that
X ∩ (D3 \ D1) = {x ∈ X \ D1 | {2, 3} ⊆ Iα(x)} .

As %3(x) < %2(x) holds for all x ∈ X \ D1, this implies

X ∩ (D3 \ D1) =

{
x ∈ X \ D1

∣∣∣∣ %2(x) ≤ 1
α
, x1 =

1√
2

}
=

{
x ∈ X \ D1

∣∣∣∣ x2 +
1√
2
≤ 1
α
, x1 =

1√
2

}
=

{
1√
2

}
×

[
− 1√

2
,min

{
1√
2
,

1
α
− 1√

2

}]
.

For α ≤ 1/
√

2 this results in

X ∩ (D3 \ D1) =
{
x ∈ X \ D1| x1 = 1/

√
2
}
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and corresponds to a ‘concave kink in the graph of gα on X along the line segment connecting the
boundary points

(
1/
√

2,−1/
√

2
)

and
(
1/
√

2, 1/
√

2
)

of X’. This fact becomes apparent below.

The example exhibits a more interesting feature, however, for α > 1/
√

2 when

X ∩ (D3 \ D1) =

{
1√
2

}
×

[
− 1√

2
,

1
α
− 1√

2

]
.

In the following we will see that this corresponds to a ‘concave kink in the graph of gα on X
along the line segment connecting the boundary point

(
1/
√

2,−1/
√

2
)

and the interior point(
1/
√

2,−1/
√

2 + 1/α
)

of X’. For α = 1
(
> 1/

√
2
)
, this ‘kink’ is visualized in Figure 7.2. For

simplicity, in the remainder of this example, let us focus on the case α = 1 with

X ∩ (D3 \ D1) =

{
x(t) :=

(
1√
2
,− 1√

2
+ t

) ∣∣∣∣ t ∈ [0, 1]
}
.

To identify the set X ∩ (D2 \ D1), we compute the sets KKT1(x(t)) for t ∈ [0, 1]. It is not hard to
see that 1 ∈ I1(x(t)) if and only if t ≥ 3/

√
2 − 2. Some more computations show that

KKT1(x(t)) =

(1 − s)


0

1−t√
2

0

 + s

 0
0

1 − t


∣∣∣∣∣∣ s ∈ [0, 1]


for all t ∈

[
0, 3/

√
2 − 2

[
, and

KKT1(x(t)) =

(1 − s)


1
2

(
1 − 3

2
√

2
+ t

2

)
1−t√

2
0

 + s


1
2

(
1 − 3

2
√

2
+ t

2

)
0

1 − t


∣∣∣∣∣∣ s ∈ [0, 1]


for all t ∈

[
3/
√

2 − 2, 1
]
. Hence KKT1(x(t)) contains more than one multiplier for all t ∈ [0, 1[,

whereas KKT1(x(1)) is a singleton. In other words, for t = 1, that is, at ‘the interior end point of
the kink’ x(1) =

(
1/
√

2, 1 − 1/
√

2
)
, SMFC holds at y1(x(1)) in S (x(1)) while LICQ is violated.

We arrive at

X ∩ (D2 \ D1) =

{
x(t) :=

(
1√
2
,− 1√

2
+ t

) ∣∣∣∣ t ∈ [0, 1[
}
.

In particular, by Corollary 9.12, g1 is Gâteaux differentiable at x(1), but SMFC is unstable at
y1(x(1)) in S (x(1)), as it is violated at y1(x(t)) in S (x(t)) with t < 1. In the following we shall
see that, indeed, g1 is not Gâteaux differentiable at x(t) with t < 1. To this end, we compute
the Hadamard directional derivatives of g1 at x(t) with the formula from Theorem 9.10. The
appearing derivatives are

∇F(x) = 0, ∇xs1(x, y1(x)) =

(
0
1

)
, ∇xs2(x, y1(x)) =

(
2x1

0

)
, ∇xs3(x, y1(x)) =

(−1
0

)
,

and for d ∈ Rn, we obtain
g′1(x(t), d) = (1 − t) (d2 − |d1|)
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9. Smoothness Properties of a Primal Gap Function for Quasi-Variational Inequalities

for all t ∈
[
0, 3/

√
2 − 2

[
as well as

g′1(x(t), d) =

(
1 − 3

2
√

2
+

t
2

)
d1 − 1

2

(
1 − 3

2
√

2
+

t
2

)
d2 + (1 − t) (d2 − |d1|)

for all t ∈
[
3/
√

2 − 2, 1
[
. This shows that g1 is not Gâteaux differentiable at x(t) with t < 1, but

that a ‘concave kink’ occurs in the graph of g1 along X∩ (D2 \D1). Additionally, at x(1) we have

g′1(x(1), d) =
3
2

(
1 − 1√

2

) (
d1 − d2

2

)
for all d ∈ Rn.

We point out that the main argument in the proof of Theorem 9.14 needs Gâteaux differentia-
bility of g1 not only at the point under consideration but also on a neighborhood of this point. In
the present example, Gâteaux differentiability of g1 at x(1) does not extend to a neighborhood of
this point. ^

The observed differentiability properties in Example 9.16 particularly guarantee that any local
minimizer x̄ of gα on X lies in D1, or gα is at least Gâteaux differentiable at x̄, where usually even
continuous differentiability occurs at x̄. In the sequel we will show that, under mild assumptions,
this also holds in the general case.

To this end, we use the linearization cone to X = {x ∈ Rn | si(x, x) ≤ 0 ∀i = 1, . . . ,m} at a
point x, which is easily seen to be given by

LX(x) :=
{
d ∈ Rn | (∇xsi(x, x) + ∇zsi(x, x)

)T d ≤ 0 ∀i ∈ I0(x)
}

with the active index set
I0(x) := {i ∈ {1, . . . ,m} | si(x, x) = 0} .

Furthermore, we define the ‘degenerate point set’ D4 as a set of points in D2 with

span
{
∇xsi

(
zα(x), x

)
(i ∈ Iα(x))

}
∩ span

{
∇xsi(x, x) + ∇zsi(x, x) (i ∈ I0(x))

}
, {0}. (9.6)

Therefore, we have

D4 :=
{
x ∈ D2 | (9.6) holds for zα(x) ∈ S (x)

}
.

For the next result we need the following assumption.

Assumption 9.17 The vectors ∇xsi
(
zα(x), x

)
(i ∈ Iα(x)) are linearly independent for all vectors

x ∈ D2 \ (D1 ∪ D4).

Note that Assumption 9.17 is not to be confused with LICQ at zα(x) ∈ S (x), as here the gradients
are taken with respect to x.

Proposition 9.18 Let Assumptions 9.1, 9.9, and 9.17 hold, and let x̄ ∈ D2 \ (D1 ∪ D4). Then
there exists a vector d ∈ Rn solving the system

g′α(x̄, d) < 0,
(∇xsi(x̄, x̄) + ∇zsi(x̄, x̄)

)T d ≤ 0 (i ∈ I0(x̄)) . (9.7)
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9.2. Differentiability Properties

Proof. Assume that (9.7) does not possess a solution d ∈ Rn. By Theorem 9.10, this implies the
inconsistency of(

F(x̄) − (∇F(x̄) − αIn
)(

zα(x̄) − x̄
) − ∑

i∈Iα(x̄)

λi∇xsi
(
zα(x̄), x̄

))T
d < 0,

(∇xsi(x̄, x̄) + ∇zsi(x̄, x̄)
)T d ≤ 0 ( i ∈ I0(x̄)) ,

for any λ ∈ KKTα(x̄). By Farkas’ lemma (see, e.g., [120]), this system is inconsistent if and only
if there exist scalars γi(λ) ≥ 0, i ∈ I0(x̄), with

F(x̄) − (∇F(x̄) − αIn
)(

zα(x̄) − x̄
) − ∑

i∈Iα(x̄)

λi∇xsi
(
zα(x̄), x̄

)
+

∑
i∈I0(x̄)

γi (λ)
(∇xsi(x̄, x̄) + ∇zsi(x̄, x̄)

)
= 0.

(9.8)

Because of x̄ ∈ D2 \ D1, there exist two different multipliers λ̂ , λ̃ with λ̂, λ̃ ∈ KKTα(x̄). Then
equation (9.8) holds for λ = λ̂ as well as for λ = λ̃. Subtracting and rearranging these two
equations leads to∑

i∈I0(x̄)

(
γi
(
λ̂
) − γi

(
λ̃
)) (∇xsi(x̄, x̄) + ∇zsi(x̄, x̄)

)
=

∑
i∈Iα(x̄)

(
λ̂i − λ̃i

)∇xsi
(
zα(x̄), x̄

)
,

where the left hand side is some element of

span
{
∇xsi(x̄, x̄) + ∇zsi(x̄, x̄) ( i ∈ I0(x̄))

}
,

and the right hand side is some element of

span
{
∇xsi

(
zα(x̄), x̄

)
(i ∈ Iα(x̄))

}
.

The right hand side cannot be trivial in view of λ̂ , λ̃ and Assumption 9.17. Hence (9.6) holds,
which is a contradiction to x̄ ∈ D2 \ D4. Therefore, our assumption is wrong, and there exists a
vector d ∈ Rn solving the system (9.7). �

Before we present the main result of this section, we recall that the tangent (or contingent or
Bouligand) cone to X at point x is defined by

TX(x) :=
{
d ∈ Rn

∣∣∣ ∃tk ↓ 0, dk → d : x + tkdk ∈ X for all k ∈ N
}
.

It is well-known that the relation TX(x) ⊆ LX(x) always holds (see, e.g., [125]), and the Abadie
constraint qualification (ACQ) is said to hold at x ∈ X if TX(x) = LX(x).

Assumption 9.19 ACQ holds for all x ∈ D2 \ (D1 ∪ D4).

The following theorem is the main result of this section.
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9. Smoothness Properties of a Primal Gap Function for Quasi-Variational Inequalities

Theorem 9.20 Let Assumptions 9.1, 9.9, 9.17, and 9.19 hold. Then any local minimizer x̄ of gα
on X lies in D1 ∪ D4, or gα is at least Gâteaux differentiable at x̄. If, in the latter case, LICQ
holds at zα(x̄) ∈ S (x̄), then gα is continuously differentiable at x̄.

Proof. Let x̄ be a local minimizer of gα on X. We distinguish the cases x̄ ∈ D2 and x̄ ∈ X \ D2.
First let x̄ ∈ D2. Then x̄ ∈ D1 ∪ D4 holds or, by Proposition 9.18, there exists a vector d ∈ Rn

solving the system (9.7). We shall show that the latter leads to a contradiction. In fact, because
of

(∇xsi(x̄, x̄) + ∇zsi(x̄, x̄)
)T d ≤ 0 for all i ∈ I0(x̄), this vector d is an element of the linearization

cone LX(x̄). Due to Assumption 9.19, d also belongs to the tangent cone TX(x̄). Hence there
exist sequences tk ↓ 0 and dk → d with x̄ + tkdk ∈ X for all k ∈ N. As x̄ is a local minimizer of gα
on X, we have gα(x̄ + tkdk) ≥ gα(x̄) and

gα(x̄ + tkdk) − gα(x̄)
tk

≥ 0 (9.9)

for all sufficiently large k ∈ N. By Theorem 9.10, the function gα is Hadamard directionally
differentiable at x̄. Hence the limit of the left-hand side in (9.9) exists and is equal to g′α(x̄, d) (note
that just directionally differentiability in the ordinary sense is not sufficient for this implication).
Consequently, it holds g′α(x̄, d) ≥ 0. This is a contradiction to (9.7).

In the second case, let x̄ ∈ X \ D2. In view of Corollary 9.12 and (7.5), gα is Gâteaux differen-
tiable at x̄. This completes the proof of the first part of the assertion.

The second part immediately follows from Theorem 9.14. �

We conclude this section with a corollary, which covers the case with the affine-linear constraint
functions si, i = 1, . . . ,N.

Corollary 9.21 Let Assumptions 9.1, 9.9, 9.17 hold, and assume that all constraint functions si

are affine-linear. Then any local minimizer x̄ of gα on X lies in D1 ∪ D4, or the function gα is at
least Gâteaux differentiable at x̄. If, in the latter case, LICQ holds at zα(x̄) ∈ S (x̄), then gα is
continuously differentiable at x̄.

Proof. Due to affine linearity of all constraint functions si, ACQ holds everywhere in X (see,
e.g., [125]). Then Theorem 9.20 yields the statements. �
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10. Smoothness Properties of a Dual
Gap Function for Quasi-Variational
Inequalities

The primal gap function gα+δX for the reformulation of a QVI in (7.10) is, in general, nonsmooth
like the primal gap function gα. Nevertheless, Dietrich observed in [30] that this regularized gap
function may be viewed as a difference of two convex functions. This reformulation then allows
the application of the Toland-Singer duality theory [123, 130, 131] in order to obtain a dual gap
function that gives a smooth reformulation for a class of QVIs. Therefore, we elaborate further
on this approach in Chapter 10. In Section 10.1 we remove the (implicit) assumption from [30]
that the set-valued mapping defining the QVI is always nonempty-valued and derive the dual
gap function and its basic properties adjusted to our QVI setting. Furthermore, we verify some
stronger smoothness properties of this dual reformulation in Section 10.2. The results of this
chapter have already been published in [72].

10.1. A Smooth Dual Gap Function

Recall that a QVI consists in finding a vector x ∈ S (x) with

F(x)T (z − x) ≥ 0 ∀z ∈ S (x), (defined in (7.1))

where F : Rn → Rn is a function and S (x) is a closed and convex (possibly empty) set for any
x ∈ Rn, that the fixed point set of S is given by

X := {x ∈ Rn | x ∈ S (x)} , (defined in (7.3))

and that the domain of S is the set

M = dom S = {x ∈ Rn | S (x) , ∅}. (defined in (7.4))

In this section we rewrite the objective function

gα + δX = − inf
z∈S (x)

[
F(x)T (z − x) +

α

2
‖z − x‖2

]
+ δX

of the optimization problem

min
x∈Rn

[
gα(x) + δX(x)

]
(defined in (7.10))
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10. Smoothness Properties of a Dual Gap Function for Quasi-Variational Inequalities

as a difference of two strongly convex functions. Then we deduce from this reformulation a dual
reformulation of a QVI as an unconstrained and smooth optimization problem. Furthermore, we
study the basic properties of this dual reformulation.

Our first goal is to rewrite the objective function gα + δX of the optimization problem (7.10)
as a difference of two convex functions. To this end, we have to make some assumptions on
the class of QVIs that we are going to deal with. In this assumption we use the definition of a
graph-convex and osc set-valued mapping given in Definition 2.1.

Assumption 10.1 (a) The feasible set X of the QVI (7.1) defined in (7.3) is nonempty.

(b) The function F : Rn → Rn is given by F(x) = Ax + b with A ∈ Rn×n and b ∈ Rn.

(c) The set-valued mapping S : Rn ⇒ Rn is graph-convex and osc on Rn.

Assumption 10.1 (a) does not limit the application of our theory, since otherwise the QVI would
not have a solution. On the other hand, Assumptions 10.1 (b) and (c) are more restrictive in the
sense that we consider only QVIs with an affine operator F and suitable set-valued mappings S .
Note that Assumption 10.1 (b) can be relaxed as it will be mentioned in Remark 10.5.

There are immediate consequences of Assumption 10.1 summarized in the following result.

Lemma 10.2 Suppose that Assumptions 10.1 (a) and (c) hold. Then:

(a) The set X from (7.3) is nonempty, closed, and convex.

(b) The set M from (7.4) is nonempty and convex.

Proof. (a) The set X is nonempty by Assumption 10.1 (a). In order to show that X is also closed,
let {xk} ⊆ X be an arbitrary sequence with xk → x̄ for some x̄ ∈ Rn. Then we have xk ∈ S (xk) for
all k ∈ N. Since the set-valued mapping S : Rn ⇒ Rn is osc by Assumption 10.1 (c), it follows
that x̄ ∈ S (x̄). Hence x̄ ∈ X so that X is a closed set.

We next show that X is also convex. To this end, let x1, x2 ∈ X and t ∈ [0, 1] be arbitrarily
given. Then x1 ∈ S (x1) and x2 ∈ S (x2). Using the assumed graph-convexity of S together with
Lemma 2.4 (b) yields tx1 + (1 − t)x2 ∈ S

(
tx1 + (1 − t)x2

)
. This means that tx1 + (1 − t)x2 ∈ X,

that is, X is a convex set.

(b) By Assumption 10.1 (a), there exists an element x ∈ X which means that x ∈ S (x), hence
x ∈ M, so that M is nonempty.

Finally, we come to the convexity of M. Let x1, x2 ∈ M and t ∈ [0, 1] be given. Then S (x1) , ∅
and S (x2) , ∅, hence there exist elements z1 ∈ S (x1) and z2 ∈ S (x2). Using Assumption 10.1 (c)
together with Lemma 2.4 (b), this implies

tz1 + (1 − t)z2 ∈ S
(
tx1 + (1 − t)x2

)
.

Consequently, the set on the right-hand side is nonempty, that is, tx1 + (1 − t)x2 ∈ M. �

It is worth mentioning that, even for an osc and graph-convex set-valued mapping S , its domain
is not necessarily closed as illustrated by the subsequent example.
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Example 10.3 Let S : R⇒ R be given by

S (x) :=


{
y ∈ R

∣∣∣ y ≥ 1
x

}
, if x > 0,

∅, if x ≤ 0.

Obviously, S is graph-convex. Additionally, S is osc, since, if xk ↓ 0, a sequence {zk} ⊆ R
with zk ∈ S (xk) is divergent, and all other cases are unproblematic. On the other hand, the set
M = dom S = R> is not closed. ^

We next follow an observation by Dietrich [30] and reformulate the unconstrained objective
function from problem (7.10) explicitly as a difference of two convex functions, that is, we
obtain a DC minimization problem, see [84] for a survey of DC programming. Having this DC
formulation, it is pretty straightforward to obtain a reformulation as a difference of two strongly
convex functions. Then we may invoke the duality theory by Toland [130] and Singer [123] in
order to derive a smooth dual formulation of the original QVI.

The basic step to obtain a DC formulation is the rearrangement of the regularized gap function:

gα(x) = − inf
z∈S (x)

[
− 1

2α
‖F(x)‖2 +

α

2

(
‖z − x‖2 +

2
α

F(x)T (z − x) +
1
α2 ‖F(x)‖2

)]
=

1
2α
‖F(x)‖2 − α

2
inf

z∈S (x)

∥∥∥∥∥z −
(
x − 1

α
F(x)

)∥∥∥∥∥2

(10.1)

=
1

2α
‖F(x)‖2 − Φα(x) (10.2)

with the function Φα : Rn → R ∪ {+∞} defined by

Φα(x) :=
α

2
inf

z∈S (x)

∥∥∥∥∥z −
(
x − 1

α
F(x)

)∥∥∥∥∥2

(10.3)

=

α
2

∥∥∥∥PS (x)

(
x − 1

α
F(x)

)
−

(
x − 1

α
F(x)

)∥∥∥∥2
, if x ∈ M,

+∞, if x < M,
(10.4)

where the projection PS (x)(y) of y onto the set S (x) is well-defined for all x ∈ M = dom S , since
the set S (x) is nonempty, closed, and convex in view of Assumption 10.1 (c) and Lemma 2.4 (a).

Our next goal is to prove that Φα is a convex and lsc function, see Definition 2.5 (a). For these
purposes, the auxiliary Lemma 5.5 is pivotal. This lemma shows that the function

Ψ : Rn × Rn → R ∪ {+∞}, Ψ(z, x) := δS (x)(z)

is lsc and convex in (z, x) for a graph-convex and osc set-valued mapping S : Rn ⇒ Rn.

Lemma 10.4 Let Assumption 10.1 hold. Then the function Φα is lsc and convex on Rn.

Proof. In view of (10.3), we may rewrite Φα as

Φα(x) = inf
z∈Rn

f (z, x),
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where f : Rn × Rn → R ∪ {+∞} is given by

f (z, x) :=
α

2

∥∥∥∥∥z −
(
x − 1

α
F(x)

)∥∥∥∥∥2

+ δS (x)(z).

The first summand of f is convex as it is the composition of the convex function α
2 ‖ · ‖2 and

an affine mapping, see, e.g., [117, Ex. 2.20]. Moreover, the first summand is, in particular,
continuous. The second summand is lsc and convex due to Lemma 5.5, hence f is lsc and
convex (and proper, since M , ∅). Moreover, it holds that

argmin
z

f (z, x) =

{
PS (x)

(
x − 1

α
F(x)

)}
∀x ∈ M

is single-valued. Since M , ∅, the assertions therefore follow from [117, Cor. 3.32]. �

Note that Lemma 10.4 exploits the definition (10.3) of the mapping Φα in order to verify that it
is both lsc and convex. Alternatively, one might try to use the representation (10.4) to rewrite Φα

in the form

Φα(x) =
α

2

∥∥∥∥∥PS (x)

(
x − 1

α
F(x)

)
−

(
x − 1

α
F(x)

)∥∥∥∥∥2

+ δM(x).

This formulation can indeed be used to show convexity of Φα, but the verification of the lower
semicontinuity is more difficult, especially since M is not necessarily closed, hence this formu-
lation is, in general, not the sum of two lsc functions.

The following remark is a comment on Assumption 10.1 (b).

Remark 10.5 We would like to point out that the proof of Lemma 10.4 exploits, for the first
time, the assumption that F(x) = Ax + b is an affine mapping, since it uses the fact that the
composition of an outer convex function with an inner affine-linear function remains convex.
Similar situations will also arise in the subsequent analysis, and it is clear that there exist more
general classes of functions F which have this property, but in order to avoid any technical
conditions and to concentrate on the main ideas of our approach, Assumption 10.1 (b) takes F as
an affine-linear function. ^

In view of Lemma 10.4 and Assumption 10.1 (b), the representation (10.2) gives an explicit
formulation of the regularized gap function as a DC optimization problem. In order to obtain
better smoothness properties in a corresponding dual formulation, we add and substract a simple
strongly convex quadratic term. This gives us the following DC decomposition of the uncon-
strained objective function from (7.10):

gα(x) + δX(x) = fα(x) − hα(x)

with the two functions fα, hα : Rn → R ∪ {+∞} defined by

fα(x) :=
α

2
‖x‖2 +

1
2α
‖F(x)‖2 + δX(x) and hα(x) :=

α

2
‖x‖2 + Φα(x). (10.5)

We summarize the previous discussion in the following result.
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Lemma 10.6 Let Assumption 10.1 hold, and let fα, hα be defined as in (10.5). Then:

(a) The function fα is lsc and convex on Rn and strongly convex on its domain dom fα = X.

(b) The function hα is lsc and convex on Rn and strongly convex on its domain dom hα = M.

(c) The vector x̄ is a solution of the QVI if and only if it is a solution of the unconstrained
optimization problem

min
x∈Rn

[
fα(x) − hα(x)

]
with optimal function value equal to zero.

We next want to apply the duality theory by Toland and Singer. This theory involves the conju-
gates of the two functions fα and hα, see Definition 2.5 (e). We therefore give explicit expressions
for these two conjugate functions in the next two results.

Lemma 10.7 Let Assumption 10.1 hold. Define

Qα := α

(
In +

1
α2 AT A

)
, qα :=

1
α

AT b, cα :=
1

2α
‖b‖2, ‖x‖Qα

:=
√

xT Qαx. (10.6)

Then the following statements hold for the conjugate f ∗α of the function fα:

(a) f ∗α is given by

f ∗α (y) =
1
2

∥∥∥Q−1
α (y − qα)

∥∥∥2

Qα
− 1

2

∥∥∥Q−1
α (y − qα) − x f ∗

α (y)
∥∥∥2

Qα
− cα

where x f ∗
α (y) denotes the unique solution of the minimization problem

min
x

1
2

∥∥∥Q−1
α (y − qα) − x

∥∥∥2

Qα
subject to x ∈ X, (10.7)

that is, x f ∗
α (y) is the projection of the vector Q−1

α (y − qα) onto the set X with respect to the
Qα-norm.

(b) f ∗α has the domain dom f ∗α = Rn.

(c) f ∗α is differentiable with Lipschitz gradient given by ∇ f ∗α (y) = x f ∗
α (y).

Proof. Using Definition 2.5 (e) and the notation from (10.6), we obtain

f ∗α (y) = sup
x∈Rn

[
xT y − α

2
‖x‖2 − 1

2α
‖F(x)‖2 − δX(x)

]
= sup

x∈Rn

[
xT y − α

2
xT

(
In +

1
α2 AT A

)
x − 1

α
bT Ax − 1

2α
‖b‖2 − δX(x)

]
= sup

x∈Rn

[
xT (y − qα) − 1

2
‖x‖2Qα

− cα − δX(x)
]
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= sup
x∈X

[
1
2

∥∥∥Q−1
α (y − qα)

∥∥∥2

Qα
− cα − 1

2

∥∥∥Q−1
α (y − qα) − x

∥∥∥2

Qα

]
=

1
2

∥∥∥Q−1
α (y − qα)

∥∥∥2

Qα
− cα − 1

2
min
x∈X

∥∥∥Q−1
α (y − qα) − x

∥∥∥2

Qα
.

Since the set X is nonempty, closed, and convex by Lemma 10.2 (a), and taking into account that
the matrix Qα is positive definite, the minimization problem (10.7) has a unique solution x f ∗

α (y)
for all y ∈ Rn. By definition, this solution is simply the projection of the vector Q−1

α (y − qα) onto
the set X with respect to the Qα-norm and therefore known to be well-defined for all y ∈ Rn, so
that dom f ∗α = Rn. This proves statements (a) and (b).

Part (c) can be derived as follows: Using the continuity of the projection operator, it follows
that the mapping y 7→ x f ∗

α (y) is continuous. Therefore, application of Danskin’s Theorem gives
that f ∗α is continuously differentiable and directly yields ∇ f ∗α (y) = x f ∗

α (y), cf. also the subsequent
proof where a similar statement is carried out in some more detail. The fact that ∇ f ∗α is even
Lipschitz follows directly from Lemma 2.7. �

The following result computes the conjugate function of hα and states some additional properties
in the same spirit as in the previous result for the function fα.

Lemma 10.8 Let Assumption 10.1 hold. Then the following statements hold for the conjugate
h∗α of the function hα:

(a) h∗α(y) is given by

h∗α(y) =
1

2α
‖y‖2 − α

2

∥∥∥∥∥xh∗
α (y) − 1

α
y
∥∥∥∥∥2

− α
2

∥∥∥∥∥zh∗
α (y) −

(
xh∗
α (y) − 1

α
F

(
xh∗
α (y)

) )∥∥∥∥∥2

(10.8)

where
(
xh∗
α , z

h∗
α

)
(y) is the unique solution of the minimization problem

min
(x,z)

[∥∥∥∥∥x − 1
α

y
∥∥∥∥∥2

+

∥∥∥∥∥z −
(
x − 1

α
F(x)

)∥∥∥∥∥2]
subject to (x, z) ∈ gph S .

(b) h∗α(y) has the domain dom h∗α = Rn.

(c) h∗α(y) is differentiable with Lipschitz gradient given by ∇h∗α(y) = xh∗
α (y).

Proof. Using Definition 2.5 (e), we have

h∗α(y) = sup
x∈Rn

[
xT y − α

2
‖x‖2 − Φα(x)

]
= sup

x∈Rn

[
1

2α
‖y‖2 − α

2

(
‖x‖2 − 2

α
xT y +

1
α2 ‖y‖2

)
− Φα(x)

]
=

1
2α
‖y‖2 − inf

x∈Rn

α

2

[∥∥∥∥∥x − 1
α

y
∥∥∥∥∥2

+ inf
z∈S (x)

∥∥∥∥∥z −
(
x − 1

α
F(x)

)∥∥∥∥∥2]
(10.9)

=
1

2α
‖y‖2 − min

(x,z)∈gph S

α

2

[∥∥∥∥∥x − 1
α

y
∥∥∥∥∥2

+

∥∥∥∥∥z −
(
x − 1

α
F(x)

)∥∥∥∥∥2]
. (10.10)
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Recall that, by Assumption 10.1 (a) and (c) and Lemma 2.4 (c), the set gph S is nonempty, closed,
and convex. Furthermore, the mapping

ϕα(x, y, z) :=
∥∥∥∥∥x − 1

α
y
∥∥∥∥∥2

+

∥∥∥∥∥z −
(
x − 1

α
F(x)

)∥∥∥∥∥2

is strongly convex in (x, z) (uniformly in y), since

∇2
(x,z)(x,z)ϕ(x, y, z) = 2

(
2In + 1

α2 AT A − 1
α
(AT + A) −In + 1

α
AT

−In + 1
α

A In

)
=: Bα

is positive definite in (x, z) (uniformly in y) because we have

(
vT wT

)
Bα

(
v
w

)
= 2

[
‖v‖2 +

∥∥∥∥∥w − v +
1
α

Av
∥∥∥∥∥2]
≥ 0 and(

vT wT
)

Bα

(
v
w

)
= 0 if and only if (v,w) = 0.

Hence the infimum in (10.10) is uniquely attained for all y ∈ Rn. We denote this unique solution
by

(
xh∗
α , z

h∗
α

)
(y) and obtain (10.8) and dom h∗α = Rn. This proves statements (a) and (b).

Furthermore, the continuous differentiability of the conjugate convex function h∗α follows from
Lemma 2.7. Alternatively, we may invoke Lemma 2.3 based on [82, Corollaries 8.1 and 9.1] to
see that the mapping y 7→ (

xh∗
α , z

h∗
α

)
(y) is continuous, which together with Danskin’s Theorem can

be used to see that h∗α is indeed continuously differentiable, with gradient given by

∇h∗α(y) =
1
α

y − α
2
∇yϕ(x, y, z)

∣∣∣
(x,z)=(xh∗

α ,zh∗
α )(y)

=
1
α

y + xh∗
α (y) − 1

α
y = xh∗

α (y).

The fact that ∇h∗α is Lipschitz is due to Lemma 2.7. This completes the proof. �

In order to illustrate the two previous and the subsequent results, we consider a simple example.

Example 10.9 Consider the QVI with n = 1, F(x) = x, and

S (x) =


[−x + 2,∞[, if x ∈ [0, 1],
[1,∞[, if x ∈ ]1, 2],
∅, if x < [0, 2].

Note that M = [0, 2] is the domain of S in this example, that X = [1, 2] is the feasible set, and
that all conditions from Assumption 10.1 are satisfied. Let α = 1. Using (10.2), we may write
the corresponding regularized gap function g1 as

g1(x) =
1
2

x2 − 1
2

inf
z∈S (x)

z2 =


2x − 2, if x ∈ [0, 1],
1
2 (x2 − 1), if x ∈ ]1, 2],
−∞, if x < [0, 2],
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gph S

x

z

1 2

1

2

3

(a) Set gph S

x−1 1 2

−2

−1

1

2
g1

(b) Gap function g1 on [0, 2]

y1 2 3 4

1

2

3

4 f ∗1

(c) Conjugate function f ∗1

y−2 −1 1 2

−2

−1

1

2

3

h∗1

(d) Conjugate function h∗1

Figure 10.1.: Illustrations for Example 10.9

since

z1(x) =


−x + 2, if x ∈ [0, 1],
1, if x ∈ ]1, 2],
nonexistent, if x < [0, 2],

holds. The graph of the set-valued mapping S and the graph of the function g1 on dom g1 = [0, 2]
are illustrated in Figures 10.1 (a) and (b), respectively. We see that the function g1 is zero only
at x = 1, hence this point is the unique solution of the QVI, but g1 has a ’kink’ precisely at this
solution point. On the other hand, we consider the DC decomposition of g1 with the functions

f1(x) = x2 + δX(x) and h1(x) =
1
2

x2 +
1
2

inf
z∈S (x)

z2.
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10.1. A Smooth Dual Gap Function

Using Definition 2.5 (e) yields the conjugate function of f1 illustrated in Figure 10.1 (c):

f ∗1 (y) = sup
x∈[1,2]

[
xy − x2

]
=


y − 1, if y < 2,
1
4y2, if y ∈ [2, 4],
2y − 4, if y > 4,

since x f ∗
1 (y) =


1, if y < 2,
1
2y, if y ∈ [2, 4],
2, if y > 4.

In order to obtain the conjugate function of h2, we rewrite the set-valued mapping S of this QVI
with the help of inequality constraints

S (x) = {z ∈ R | s1(z, x) := −x ≤ 0,
s2(z, x) := −z − x + 2 ≤ 0,
s3(z, x) := −z + 1 ≤ 0,
s4(z, x) := x − 2 ≤ 0}.

(10.11)

Due to Definition 2.5 (e), we have

h∗1(y) = sup
(x,z)∈gph S

[
xy − 1

2
x2 − 1

2
z2

]
=

1
2

y2 − min
(x,z)∈gph S

[
1
2

(x − y)2 +
1
2

z2
]
, (10.12)

where the minimization problem in (10.12) is strongly convex and differentiable. This problem
has the following Lagrange function:

Lh∗
1 (x, z, λ, y) =

1
2

(x − y)2 +
1
2

z2 − λ1x + λ2(−z − x + 2) + λ3(−z + 1) + λ4(x − 2).

Then the KKT conditions of this problem for (x, z) ∈ gph S are

∇(x,z)Lh∗
1 (x, z, λ, y) =

(
x − y − λ1 − λ2 + λ4

z − λ2 − λ3

)
= 0 and


λ1 ≥ 0, λ1x = 0,
λ2 ≥ 0, λ2(−z − x + 2) = 0,
λ3 ≥ 0, λ3(−z + 1) = 0,
λ4 ≥ 0, λ4(x − 2) = 0.

There are five possibilities for a solution of the minimization problem in (10.12):

Case 1:
−x = 0,
z + x = 2,
−z + 1 < 0,
x − 2 < 0,

Case 2:
−x < 0,
z + x = 2,
−z + 1 < 0,
x − 2 < 0,

Case 3:
−x < 0,
z + x = 2,
−z + 1 = 0,
x − 2 < 0,

Case 4:
−x < 0,
z + x > 2,
−z + 1 = 0,
x − 2 < 0,

Case 5:
−x < 0,
z + x > 2,
−z + 1 = 0,
x − 2 = 0.

Using the KKT conditions of the minimization problem in (10.12) for (x, z) ∈ gph S , we obtain

h∗1(y) =



−2, if y ≤ −2,
1
4y2 + y − 1, if y ∈ ] − 2, 0[,
y − 1, if y ∈ [0, 1],
1
2 (y2 − 1), if y ∈ ]1, 2[,
2y − 5

2 , if y ≥ 2,

since
(
xh∗

1 (y), zh∗
1 (y)

)
=



(0, 2), if y ≤ −2,
1
2 (2 + y, 2 − y) , if y ∈ ] − 2, 0[,
(1, 1), if y ∈ [0, 1],
(y, 1), if y ∈ ]1, 2[,
(2, 1), if y ≥ 2,
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see Figure 10.1 (d). Simple calculations show that the functions f ∗1 and h∗1 are continuously
differentiable on R with gradients

∇ f ∗1 (y) =


1, if y < 2,
1
2y, if y ∈ [2, 4],
2, if y > 4,

and ∇h∗1(y) =



0, if y ≤ −2,
1
2y + 1, if y ∈ ] − 2, 0[,
1, if y ∈ [0, 1],
y, if y ∈ ]1, 2[,
2, if y ≥ 2.

The same results follow from Lemmata 10.7 and 10.8, respectively. ^

We now apply Toland’s and Singer’s duality theory [131, Theorem 2.2] which states that

inf
x∈Rn

[
f (x) − h(x)

]
= inf

y∈Rn

[
h∗(y) − f ∗(y)

]
(10.13)

for all functions f , h : Rn → R ∪ {+∞} with h convex and lsc. Hence this duality fits perfectly
within our framework and allows us to state the following main result of this section.

Theorem 10.10 Let Assumption 10.1 hold, and define the dual gap function

d∗α := h∗α − f ∗α

with the functions f ∗α and h∗α given by Lemmata 10.7 and 10.8, respectively. Then the following
statements hold:

(a) The function d∗α is differentiable with Lipschitz gradient.

(b) If ȳ is a solution of the unconstrained minimization problem

min
y∈Rn

d∗α(y) (10.14)

with d∗α(ȳ) = 0, then x̄ := ∇ f ∗α (ȳ) is a solution of the QVI.

(c) Conversely, if x̄ is a solution of the QVI and ȳ ∈ ∂hα(x̄), then ȳ is a solution of (10.14) with
d∗α(ȳ) = 0.

Proof. The result is essentially an application of the duality theory by Toland [130, 131] and
Singer [123]. The proof of this result is analogous to the proof of Theorem 5.11.

(a) This assertion follows immediately from the definition of the dual gap function d∗α together
with Lemmata 10.7 (c) and 10.8 (c).

(b) Let ȳ be a solution of the differentiable unconstrained minimization problem (10.14) with

0 = d∗α(ȳ) = h∗α(ȳ) − f ∗α (ȳ). (10.15)
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10.1. A Smooth Dual Gap Function

Then we have ∇d∗α(ȳ) = 0 and therefore ∇ f ∗α (ȳ) = ∇h∗α(ȳ). This also shows that the subdiffe-
rentials ∂ f ∗α (ȳ) and ∂h∗α(ȳ) are equal, since the functions f ∗α and h∗α are convex and differentiable
and therefore ∂ f ∗α (ȳ) = {∇ f ∗α (ȳ)} and ∂h∗α(ȳ) = {∇h∗α(ȳ)} hold. We denote the single element of
the two subdifferential by the vector x̄ := ∇ f ∗α (ȳ). Since we also have f ∗∗α = fα and h∗∗α = hα by
Lemma 2.6 (d) and Lemma 10.6 (a), (b), we obtain from Lemma 2.6 (f) that

fα(x̄) + f ∗α (ȳ) = x̄T ȳ and hα(x̄) + h∗α(ȳ) = x̄T ȳ. (10.16)

Subtracting and rearranging these two equations yields

fα(x̄) − hα(x̄) = h∗α(ȳ) − f ∗α (ȳ). (10.17)

The right-hand side of this equation is equal to zero in view of (10.15). Hence x̄ is a minimum
of the nonnegative function fα − hα with function value equal to zero. Therefore Lemma 10.6 (c)
implies that x̄ is a solution of the QVI.

(c) Finally, let x̄ be a solution of the QVI. Consequently, we have

0 = gα(x̄) = min
x∈Rn

[
fα(x) − hα(x)

]
in view of Lemma 10.6 (c). Hence

fα(x) − hα(x) ≥ fα(x̄) − hα(x̄) ∀x ∈ Rn

and, using ȳ ∈ ∂hα(x̄),
hα(x) − hα(x̄) ≥ ȳT (x − x̄) ∀x ∈ Rn.

Combining these two inequalities yields the relation

ȳT (x̄ − x) ≥ hα(x̄) − hα(x) ≥ fα(x̄) − fα(x).

This relation shows that the element ȳ from the subdifferential ∂hα(x̄) also belongs to the sub-
differential ∂ fα(x̄). Using these facts, we obtain from Lemma 2.6 (f) that (10.16) holds which,
in turn, implies that (10.17) is also true. But this time, the left-hand side of (10.17) is equal to
zero. Consequently, the right-hand side is also equal to zero, meaning that ȳ is a solution of the
minimization problem (10.14) with d∗α(ȳ) = 0 because of (10.13). �

In order to illustrate the results of Theorem 10.10, we return to Example 10.9.

Example 10.11 Consider once again the setting from Example 10.9. Calculating the difference
of h∗1 − f ∗1 , we obtain

d∗1(y) = h∗1(y) − f ∗1 (y) =



−y − 1, if y ≤ −2,
1
4y2, if y ∈ ] − 2, 0[,
0, if y ∈ [0, 1],
1
2y2 − y + 1

2 , if y ∈ ]1, 2[,
−1

4y2 + 2y − 5
2 , if y ∈ [2, 4],

3
2 , if y > 4.
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y−3 −2 −1 1 2 3 4

1

2 d∗1

Figure 10.2.: Dual gap function d∗1 from Example 10.11

This function is illustrated in Figure 10.2. Due to the observations in Example 10.9, the corre-
sponding QVI has the unique solution x̄ = 1. Furthermore, it holds that ∂h1(1) = [0, 1], since

h1(x) =
1
2

x2 +
1
2

inf
z∈S (x)

z2 =


x2 − 2x + 2, if x ∈ [0, 1],
1
2 (x2 + 1), if x ∈ ]1, 2],
+∞, if x < [0, 2].

In view of Theorem 10.10 (c), all ȳ ∈ [0, 1] solve the dual problem (10.14), and this statement
is consistent with the graph of the dual problem shown in Figure 10.2. Furthermore, given any
solution ȳ ∈ [0, 1] of (10.14), Theorem 10.10 (b) states that x̄ = ∇ f ∗1 (ȳ) is a solution of the QVI.
Since, in our case, we obtain ∇ f ∗1 (ȳ) = 1 for all ȳ ∈ [0, 1], it follows that x̄ = 1 solves the QVI.
This confirms a corresponding observation given in Example 10.9. ^

Note that the dual gap function in Example 10.11 has stationary points or local minima that do not
provide solutions of the QVI. Since this example has relatively nice properties, this indicates that
it might be difficult to obtain a result which says that, under suitable conditions, a stationary point
is already a global minimum of the dual gap function. In fact, we were not able to derive such a
result, but we have a partial result in this direction that is based on the following proposition.

Proposition 10.12 Let Assumption 10.1 hold, let d∗α = h∗α − f ∗α be the dual gap function, and let
x f ∗
α (y) and xh∗

α (y), zh∗
α (y) denote the vectors defined in Lemmata 10.7 and 10.8, respectively. Then

the following statements are equivalent:

(a) x f ∗
α (ȳ) = xh∗

α (ȳ) = zh∗
α (ȳ).

(b) d∗α(ȳ) = 0.

Proof. The proof of this result is analogous to the proof of Proposition 5.13.
Assume that x f ∗

α (ȳ) = xh∗
α (ȳ) = zh∗

α (ȳ) holds. For simplicity of notation, let us denote this
common vector by x̄. Then, in particular, we have x̄ ∈ X, hence the definition of f ∗α yields

f ∗α (ȳ) = x̄T ȳ − α
2
‖x̄‖2 − 1

2α
‖F(x̄)‖2,

whereas the definition of h∗α implies

h∗α(ȳ) =
1

2α
‖ȳ‖2 − α

2

(∥∥∥∥∥x̄ − 1
α

ȳ
∥∥∥∥∥2

+

∥∥∥∥∥1
α

F(x̄)
∥∥∥∥∥2)

= x̄T ȳ − α
2
‖x̄‖2 − 1

2α
‖F(x̄)‖2.
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This immediately gives d∗α(ȳ) = h∗α(ȳ) − f ∗α (ȳ) = 0.
Conversely, assume that d∗α(ȳ) = 0 holds. Then, in view of Theorem 10.10, ȳ is a global

minimum of the unconstrained optimization problem (10.14). Hence we have ∇d∗α(ȳ) = 0. On
the other hand, the definition of d∗α together with Lemmata 10.7 and 10.8 yields

∇d∗α(ȳ) = ∇h∗α(ȳ) − ∇ f ∗α (ȳ) = xh∗
α (ȳ) − x f ∗

α (ȳ).

Hence we obtain
x f ∗
α (ȳ) = xh∗

α (ȳ). (10.18)

Furthermore, d∗α(ȳ) = 0 and Theorem 10.10 together imply that x̄ := ∇ f ∗α (ȳ) is a solution of the
QVI. Note that (10.18) and Lemma 10.7 yield

x̄ = x f ∗
α (ȳ) = xh∗

α (ȳ). (10.19)

The vector x̄ being a solution of the QVI means that x̄ ∈ X and gα(x̄) = 0, where gα denotes the
regularized gap function, cf. Lemma 7.2. In view of (10.1), we may rewrite this regularized gap
function as

gα(x̄) =
1

2α
‖F(x̄)‖2 − α

2
inf

z∈S (x̄)

∥∥∥∥∥z −
(
x̄ − 1

α
F(x̄)

)∥∥∥∥∥2

=
1

2α
‖F(x̄)‖2 − α

2

∥∥∥∥∥zα(x̄) −
(
x̄ − 1

α
F(x̄)

)∥∥∥∥∥2

with the uniquely defined minimum

zα(x̄) := argmin
z∈S (x̄)

∥∥∥∥∥z −
(
x̄ − 1

α
F(x̄)

)∥∥∥∥∥2

.

According to a result of Taji [127] given in Lemma 7.2 (c), x̄ being a solution of the QVI is
equivalent to zα(x̄) = x̄. However, in view of the representation (10.9) of the function h∗α(ȳ), it
follows that zα(x̄) is identical to zh∗

α (ȳ). Consequently, we have zh∗
α (ȳ) = x̄. Together with (10.19),

this completes the proof. �

Proposition 10.12 shows that x f ∗
α (ȳ) = xh∗

α (ȳ) = zh∗
α (ȳ) =: x̄ implies d∗α(ȳ) = 0 and, therefore,

that x̄ is a solution of the QVI. This sufficient condition for a solution is partially satisfied at any
stationary point of the dual gap function, since, as noted in the previous proof, we always have
x f ∗
α (ȳ) = xh∗

α (ȳ) at a stationary point ȳ of d∗α. The missing part is therefore to verify that these
two vectors are also equal to zh∗

α (ȳ) which seems to be the difficult part that is not satisfied in
Example 10.9 for all y ≥ 4. However, we could not verify a sufficient condition under which
stationary points of the dual gap function d∗α already provide solutions of a QVI. On the other
hand, since we know the optimal value of d∗α, this disadvantage might not be that strong, since
the function value itself tells us whether we have a solution or not.

Theorem 10.10 gives, more or less, a one-to-one correspondence between the solutions of the
QVI and the global minima of the dual gap function d∗α. In fact, it shows that every solution of
the optimization problem (10.14) yields a solution of the QVI, but the converse is not necessarily
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x

z

1 2 3

1

2

3

4

(a) Set gph S

x1 2 3

1

2

3

4

g1
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(c) Function h1 on [1, 3]
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(d) Dual gap function d∗1

Figure 10.3.: Illustrations for Example 10.13

true, because statement (c) of Theorem 10.10 assumes (implicitly) that the subdifferential ∂hα(x̄)
is nonempty. As illustrated by the following counterexample, this subdifferential could be empty,
and the infimum in the relation (10.13) is not necessarily attained.

Example 10.13 Consider the QVI with n = 1, F(x) = x, and S (x) = {z ∈ R | (x−2)2+(z−1)2 ≤ 1}
such that

S (x) =


[
1 −

√
1 − (x − 2)2, 1 +

√
1 − (x − 2)2

]
, if x ∈ [1, 3],

∅, if x < [1, 3],

see Figure 10.3 (a). Note that M = [1, 3] is the domain of S in this example, that X = [1, 2]
is the feasible set, and that all conditions in Assumption 10.1 are satisfied. Let α = 1. The
corresponding regularized gap function

g1(x) =
1
2

x2 − 1
2

inf
z∈S (x)

z2 =

 1
2 x2 − 1

2

(
1 −

√
1 − (x − 2)2

)2
, if x ∈ [1, 3],

−∞, if x < [1, 3],
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is illustrated in Figure 10.3 (b). This function has the DC decomposition with the functions

f1(x) = x2 + δX(x) and h1(x) =
1
2

x2 +
1
2

inf
z∈S (x)

z2 (see Figure 10.3 (c)).

The conjugate function of f1 is the same as in Example 10.9:

f ∗1 (y) = sup
x∈[1,2]

[
xy − x2

]
=


y − 1, if y < 2,
1
4y2, if y ∈ [2, 4],
2y − 4, if y > 4.

As in Example 10.9, we obtain

h∗1(y) =
1
2

y2 − min
(x,z)∈gph S

[
1
2

(x − y)2 +
1
2

z2
]
, (10.20)

where the minimization problem in (10.20) is again strongly convex and differentiable. This
problem has the following Lagrange function:

Lh∗
1 (x, z, λ, y) =

1
2

(x − y)2 +
1
2

z2 + λ
(
(x − 2)2 + (z − 1)2 − 1

)
.

Then the KKT conditions of this problem are

∇(x,z)Lh∗
1 (x, z, λ, y) =

(
x − y + 2λ(x − 2)

z + 2λ(z − 1)

)
= 0,

λ ≥ 0, (x − 2)2 + (z − 1)2 − 1 ≤ 0, λ
(
(x − 2)2 + (z − 1)2 − 1

)
= 0.

Since the unconstrained minimum (x̄, z̄) = (y, 0) of the minimization problem in (10.20) is not
an interior point of gph S for all y ∈ R, any solution of this problem has to be constrained, that
is,

(
x f ∗

1 (y) − 2
)2

+
(
z f ∗

1 (y) − 1
)2 − 1 = 0 has to hold. Using the KKT conditions of the problem

in (10.20), we obtain(
x f ∗

1 (y), z f ∗
1 (y)

)
=

y − 2 + 2
√

1 + (y − 2)2√
1 + (y − 2)2

,
−1 +

√
1 + (y − 2)2√

1 + (y − 2)2


and therefore

h∗1(y) = 2y +
√

1 + (y − 2)2 − 3.

We see that the function g1 is zero only at x = 1, hence this point is the unique solution of the
QVI. At this point, the slope of h1 is infinite, and ∂h1(1) = ∅. Hence, for this example, we cannot
apply Theorem 10.10 to determine the solutions for the dual problem (10.14). We further note
that d∗1(y) = h∗1(y) − f ∗1 (y) > 0 holds for all y ∈ R and lim

y→−∞
d∗1(y) = 0, see Figure 10.3 (d).

Therefore, zero is the infimum but not the minimum of the unconstrained minimization problem
(10.14), which does not have a solution. ^

Based on the continuously differentiable dual reformulation of QVIs described in Theorem 10.10,
we will present some numerical results in Section 11.2.
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10.2. Second-Order Properties

The dual gap function d∗α turned out to be piecewise smooth (see Definition 2.9) in all previous
examples. The aim of this section is therefore to show that this observation is true in a rather
general setting.

Piecewise smooth functions arise naturally in the context of Euclidian projections onto convex
sets. To this end, let us assume that we have a set Ω ⊆ Rn described by

Ω := {x ∈ Rn | ci(x) ≤ 0 ∀i = 1, . . . ,m}, (10.21)

with ci : Rn → R, i = 1, . . . ,m, convex and twice continuously differentiable. Furthermore, for
x ∈ Ω we define the active index set

I(x) := {i ∈ {1, . . . ,m} | ci(x) = 0}
Recall from Definition 2.13, which goes back to Janin [85], that CRCQ is satisfied at x̄ ∈ Ω (with
respect to the set Ω) if there exists a neighborhood U of x̄ such that for all K ⊆ I(x̄), the family
of gradients {∇ci(x) | i ∈ K} has constant rank (depending on the set K) for all x ∈ U.

Let Ω be the set from (10.21). Recall that the unique solution of the strongly convex mini-
mization problem

min
w∈Ω

1
2
‖w − v‖2

is called the Euclidean projection of a given vector v ∈ Rn onto the set Ω, denoted by PΩ(v). The
mapping v 7→ PΩ(v) is then called the projection mapping. It is well-known that this mapping is
piecewise smooth under the CRCQ assumption. More precisely, the following result holds, see,
for example, [54, Theorem. 4.5.2].

Theorem 10.14 Let Ω be the set defined in (10.21) with twice continuously differentiable and
convex functions ci. Let v̄ ∈ Rn be given such that CRCQ holds at w̄ := PΩ(v̄) ∈ Ω. Then the
projection mapping PΩ is a PC1 function near v̄.

In order to apply this result to our case, recall that our two conjugate functions f ∗α and h∗α also
involve projections, but not with respect to the Euclidean norm. Instead, we are dealing with
scaled projection problems of the form

min
w∈Ω

1
2
‖Dw − v‖2, (10.22)

where Ω denotes again the set from (10.21) and D ∈ Rn×n is a nonsingular matrix. Then problem
(10.22) is equivalent to the standard (Euclidean) projection problem

min
u∈D·Ω

1
2
‖u − v‖2

in the sense that the optimal values are equal with

argmin
u∈D·Ω

1
2
‖u − v‖2 = PD·Ω(v) and argmin

w∈Ω

1
2
‖Dw − v‖2 = D−1PD·Ω(v).
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We are interested in the smoothness properties of the mapping v 7→ D−1PD·Ω(v). To this end,
we first state the following result, which says that CRCQ still holds if the set is transformed in
a simple way. The transformation is precisely the one that will be used in order to deal with
projection-like problems as in (10.22).

Lemma 10.15 Let ci : Rn → R, i = 1, . . . ,m, be convex and continuously differentiable,

Ω := {x ∈ Rn | ci(x) ≤ 0 ∀i = 1, . . . ,m}
and v̄ ∈ Rn such that CRCQ holds at w̄ := D−1PD·Ω(v̄) ∈ Ω. Then CRCQ holds at ū := Dw̄ ∈ D·Ω.

Proof. First note that, setting c̃i(u) := ci(D−1u) for all u ∈ Rn and i = 1, . . . ,m, we have

D ·Ω = {u ∈ Rn | c̃i(u) ≤ 0 ∀i = 1, . . . ,m},
and thus,

I(ū) = {i ∈ {1, . . . ,m} | c̃i(ū) = 0} = {i ∈ {1, . . . ,m} | ci(w̄) = 0} = I(w̄).

By assumption, there exists a neighborhood W of w̄ such that for all K ⊆ I(w̄) the family of
gradients {∇ci(w) | i ∈ K} has constant rank for all w ∈ W. Since D is nonsingular, the set
U := D ·W is a neighborhood of ū. Now, let u, u′ ∈ U and K ⊆ I(ū) be given, in particular, there
exist w,w′ ∈ W such that u = Dw and u′ = Dw′. Furthermore, we obtain

{∇c̃i(u) | i ∈ K} = D−1 · {∇ci(w) | i ∈ K}
and

{∇c̃i(u′) | i ∈ K} = D−1 · {∇ci(w′) | i ∈ K}.
Doe to the arguments above, both sets have the same rank, which concludes the proof. �

The previous result allows us to formulate the PC1 property for the solution mapping of problems
in the form (10.22).

Proposition 10.16 Let the assumptions of Lemma 10.15 hold. Assume, in addition, that the
functions ci, i = 1, . . . , l, are twice continuously differentiable. Then there exists a neighborhood
V of v̄ such that v 7→ D−1PD·Ω(v) is PC1 on V.

Proof. From Lemma 10.15 we infer that CRCQ holds at ū := Dw̄ = PD·Ω(v̄) ∈ D · Ω. Hence, in
view of Theorem 10.14, we conclude that there is a neighborhood U of ū on which v 7→ PD·Ω(v)
is PC1. Hence the function v 7→ D−1PD·Ω(v) is PC1 on V := D · U (recall that V is indeed a
neighborhood of v̄ due to the nonsingularity of the matrix D). �

Now we want to apply the previous result in order to show that the gradient ∇d∗α of the function
d∗α from Theorem 10.10 is PC1. For these purposes, we assume throughout that the set-valued
mapping S : Rn ⇒ Rn has the form

S (x) := {z ∈ Rn | si(z, x) ≤ 0 ∀i = 1, . . . ,m}, (10.23)
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where the functions si : Rn × Rn → R, i = 1, . . . ,m, are twice continuously differentiable and
convex in (z, x). Note that Assumption 10.1 (c) automatically holds in this case. Then we have

X = {x ∈ Rn | si(x, x) ≤ 0 ∀i = 1, . . . ,m}.
In order to verify the piecewise smoothness of the gradient of the dual gap function d∗α, we show
that both ∇h∗α and ∇ f ∗α are piecewise smooth. We begin with the mapping h∗α.

Lemma 10.17 Let Assumption 10.1 hold, and let ȳ ∈ Rn such that CRCQ holds at the point
(x̄, z̄) := D−1

h PDh·gph S (ȳ,−b) ∈ gph S , where

Dh :=
(

αIn 0
A − αIn αIn

)
.

Then ∇h∗α is PC1 near ȳ.

Proof. Due to Lemma 10.8, we have ∇h∗α(y) = xh∗
α (y) for all y ∈ Rn, where(

xh∗
α (y)

zh∗
α (y)

)
= argmin

(x,z)∈gph S

{∥∥∥∥∥x − 1
α

y
∥∥∥∥∥2

+

∥∥∥∥∥z −
(
x − 1

α
F(x)

)∥∥∥∥∥2}
= argmin

(x,z)∈gph S

∥∥∥∥∥∥
(

αIn 0
A − αIn αIn

) (
x
z

)
−

(
y
−b

)∥∥∥∥∥∥2

= D−1
h PDh·gph S (y,−b).

Hence the assertion follows immediately from Proposition 10.16. �

Similar to the previous result, we prove in the next lemma that also the function ∇ f ∗α is piecewise
smooth under a suitable CRCQ assumption.

Lemma 10.18 Let Assumption 10.1 hold, and let ȳ ∈ Rn such that CRCQ holds at the point
x̄ := D−1

f PD f ·X(D−1
f (ȳ− qα)) ∈ X, where qα = 1

α
AT b and D f := Q

1
2
α denotes the matrix square root

of the matrix Qα = α
(
In + 1

α2 AT A
)

from (10.6). Then ∇ f ∗α is PC1 near ȳ.

Proof. Due to Lemma 10.7, we have

∇ f ∗α (y) = argmin
x∈X

∥∥∥Q−1
α (y − qα) − x

∥∥∥2

Qα

= argmin
x∈X

∥∥∥∥Q−
1
2

α (y − qα) − Q
1
2
α x

∥∥∥∥2

= D−1
f PD f ·X

(
D−1

f (y − qα)
)

for all y ∈ Rn. Hence the assertion follows immediately from Proposition 10.16. �

Summarizing the previous results, we obtain the following main result of this section.

Theorem 10.19 Let Assumption 10.1 hold, and let ȳ ∈ Rn such that the assumptions of Lem-
mata 10.17 and 10.18 hold for ȳ. Then the gradient of the dual gap function ∇d∗α is PC1 near ȳ.
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y−3 −2 1 2 3 4
−1

1 ∇d∗1

Figure 10.4.: Gradient ∇d∗1 from Example 10.21

Note that the two CRCQ conditions used in Lemmata 10.17 and 10.18 are independent of each
other. A simple, but still important, case where the constant rank assumption holds, is the linear
one. This yields the following consequence.

Corollary 10.20 Let the functions si, i = 1, . . . ,m, in (10.23) be affine-linear. Then the gradient
of the dual gap function ∇d∗α is a PC1 mapping (in fact, it is piecewise affine-linear).

In order to illustrate the results of Corollary 10.20, we return to Examples 10.9 and 10.11.

Example 10.21 Consider once again the QVI from Example 10.9. The set-valued mapping S of
this QVI has the form

S (x) = {z ∈ R | si(z, x) ≤ 0 ∀i = 1, . . . ,m}

with affine-linear functions si, i = 1, . . . , 4, see the description of the set S in (10.11). Further-
more, we have already obtained the corresponding dual gap function d∗1 in Example 10.11. Hence
we calculate the gradient of this function

∇d∗1(y) =



−1, if y ∈ ] −∞,−2],
1
2y, if y ∈ ] − 2, 0[,
0, if y ∈ [0, 1] ∪ ]4,+∞[,
y − 1, if y ∈ ]1, 2[,
−1

2y + 2, if y ∈ [2, 4],

which is illustrated in Figure 10.4. This gradient is piecewise affine-linear as expected from
Corollary 10.20. ^

Piecewise smooth functions are, in particular, semismooth in the sense of [112, 113], see, for
examlpe, [54, Proposition 7.4.6]. In principle, this observation therefore allows the application
of second-order Newton-type methods for the minimization of the dual gap function.
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11. Numerical Results for
Quasi-Variational Inequalities

In this chapter we present some numerical results for QVIs based on our approaches in Sec-
tion 8.1 and Section 10.1. To this end, we confine us in Section 11.1 to QVIs with moving sets and
generalized moving sets and apply the TOMLAB/SNOPT solver and the TOMLAB/KNITRO
solver to the reformulation of such QVIs as the constrained optimization problem (7.9). Then
in Section 11.2 we apply a global spectral gradient method and a conjugate gradient method to
the reformulation of a QVI as the unconstrained optimization problem based on the dual gap
function d∗α defined in Theorem 10.10. The results from Sections 11.1 and 11.2 were published
in [75] and [72], respectively.

11.1. Primal Gap Function Approach

Here we present numerical results for the solution of QVIs based on the optimization reformula-
tion from (7.9):

min gα(x) subject to x ∈ X,

where gα denotes the regularized gap function and X is the feasible set of the QVI, cf. (7.6) and
(7.3), respectively. In order to apply suitable standard software to this problem, we have to distin-
guish two cases: First we have a QVI with a generalized moving set in which case (7.9) represents
a smooth (continuously differentiable) optimization problem. Second, if the constraints are not
given by a generalized moving set, gα is not necessarily continuously differentiable everywhere,
although our analysis in Chapter 9 shows that, also in this case, except for some pathological
situations, we can expect differentiability at all local minimizers.

Since, for the nondifferentiable case, numerical results are presented in Section 6.1 for the
special case of generalized Nash equilibrium problems, we decided to concentrate on QVIs de-
fined by generalized moving sets in this section. More precisely, we consider both QVIs with
(standard) moving sets and QVIs with generalized moving sets as defined in Section 8.1.

To this end, we recall that the generalized gap function gα is well defined for all x ∈ Rn in
the moving and generalized moving set cases whenever K , ∅. This observation is important
since this allows to apply software that might generate non-feasible iterates. In particular, this
enables us to use the TOMLAB/SNOPT 7.2.9 solver as the working horse for problem (7.9),
especially since this method does not use any second-order derivatives. However, we compare
the results also with the TOMLAB/KNITRO 8.0.0 solver applied to (7.9) although, formally, this
solver uses second-order information and, therefore, is not a feasible method in our case since
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SNOPT Solver KNITRO Solver
Example n m x0 k gopt

α k gopt
α

MovSet1A 5 1 (0, . . . , 0) 9 8.1190e-09 6 1.7720e-09
(10, . . . , 10) 14 8.1687e-09 8 3.6953e-11

MovSet1B 5 1 (0, . . . , 0) 57 -1.4553e-09 7 5.9139e-10
(10, . . . , 10) 89 -4.1061e-08 16 5.8887e-10

MovSet2A 5 1 (0, . . . , 0) 9 3.1279e-13 5 4.6895e-10
(10, . . . , 10) 18 -1.9631e-11 9 4.6971e-10

MovSet2B 5 1 (0, . . . , 0) 35 3.1292e-09 9 -1.4995e-05
(10, . . . , 10) – failure – failure

MovSet3A1 1000 1 (0, . . . , 0) 55 1.5426e-06 6 -1.5727e-09
(10, . . . , 10) 54 1.5427e-06 11 1.5038e-09

MovSet3B1 1000 1 (0, . . . , 0) 57 5.2083e-08 7 4.8238e-10
(10, . . . , 10) 56 5.2119e-08 12 4.4169e-10

MovSet3A2 2000 1 (0, . . . , 0) 64 4.3399e-11 7 1.3183e-11
(10, . . . , 10) 63 3.0436e-11 11 1.4201e-11

MovSet3B2 2000 1 (0, . . . , 0) 63 1.0951e-07 7 1.6163e-11
(10, . . . , 10) 63 1.0954e-07 13 9.7019e-11

MovSet4A1 400 801 (10, . . . , 10) 3 4.2168e-12 3 5.4949e-13
MovSet4B1 400 801 (10, . . . , 10) 3 3.0465e-12 3 -1.7639e-13
MovSet4A2 800 1601 (10, . . . , 10) 4 2.1394e-12 3 7.3646e-13
MovSet4B2 800 1601 (10, . . . , 10) 4 -2.6190e-13 3 8.0765e-13

Table 11.1.: Table with numerical results for QVIs with moving sets from paper [51]

the regularized gap function gα may not be twice continuously differentiable everywhere. For
more information about TOMLAB/SNOPT solver and TOMLAB/KNITRO solver, we refer to
their User’s Guides on the web sites [1] and [2], respectively.

For both solvers, we provide the starting point x0 as well as the function and gradient val-
ues (including the derivative of gα from (8.3)) for each test problem. Moreover, for KNITRO,
we use the active set Sequential Linear-Quadratic Programming (SLQP) optimizer by setting
Prob.KNITRO.options.ALG=3. Apart from this, all standard options are taken for both me-
thods. Our implementation uses the regularization parameter α = 1 for all test problems.

We use two groups of test examples: The first group consists of all the QVIs with (standard)
moving sets from the test problem collection [51] (called MovSet*). For the second group, we
modify these test problems to QVIs with generalized moving sets (called GenMovSet*) defined

by the diagonal matrix Q(x) = diag
(

1
x2

1+1 , . . . ,
1

x2
n+1

)
. The numerical results for the first group are

presented in Table 11.1, whereas Table 11.2 contains the numerical results for the second group.
For each test example, Tables 11.1 and 11.2 contain the following data: the name of the

example, the number of variables n, the number of constraints si, i = 1, . . . ,m, the starting
point x0, and for both solvers the number of iterations k needed until convergence and the final
value of the generalized gap function gα in column gopt

α (whenever a solution was found). Here,
the starting points in Table 11.1 are those taken from the paper [51] and implemented in the
corresponding M-file startingPoints.m. The same starting points are used for the generalized
moving set examples. The results for examples MovSet4* and GenMovSet4* with the starting

124



11.1. Primal Gap Function Approach

SNOPT Solver KNITRO Solver
Example n m x0 k gopt

α k gopt
α

GenMovSet1A 5 1 (0, . . . , 0) 10 -8.0488e-13 6 2.9963e-08
(10, . . . , 10) 18 4.0500e-12 13 2.9963e-08

GenMovSet1B 5 1 (0, . . . , 0) 21 -1.2869e-02 11 7.6188e-06
(10, . . . , 10) 18 -1.8537e-04 15 7.8063e-06

GenMovSet2A 5 1 (0, . . . , 0) 8 1.9762e-11 6 7.7652e-09
(10, . . . , 10) 18 -3.3309e-10 10 7.7636e-09

GenMovSet2B 5 1 (0, . . . , 0) 28 1.3524e-09 14 1.9856e-06
(10, . . . , 10) – failure – failure

GenMovSet3A1 1000 1 (0, . . . , 0) 29 5.9914e-10 8 9.8173e-12
(10, . . . , 10) 42 6.0085e-10 17 3.9912e-10

GenMovSet3B1 1000 1 (0, . . . , 0) 31 3.1845e-11 8 2.0142e-10
(10, . . . , 10) 43 3.3889e-11 17 1.9064e-10

GenMovSet3A2 2000 1 (0, . . . , 0) 34 1.2260e-09 9 4.9325e-10
(10, . . . , 10) 51 1.2214e-09 16 -3.3733e-08

GenMovSet3B2 2000 1 (0, . . . , 0) 36 7.7424e-11 8 -5.4514e-11
(10, . . . , 10) 59 6.5349e-11 18 -6.1479e-10

GenMovSet4A1 400 801 (10, . . . , 10) 12 5.6944e-03 10 1.3273e-08
GenMovSet4B1 400 801 (10, . . . , 10) 12 4.7289e-03 10 1.3704e-08
GenMovSet4A2 800 1601 (10, . . . , 10) 13 6.7424e-14 10 2.6527e-08
GenMovSet4B2 800 1601 (10, . . . , 10) 12 1.0695e-02 10 2.8100e-08

Table 11.2.: Table with numerical results for QVIs with generalized moving sets

k xk gα(xk) #gα
0 (10, 10) 1.2744e+01 1
1 (9.84901583, 9.84901583) 3.8544e-01 3
2 (9.82327425, 9.82327425) 1.2972e-02 5
3 (9.81753271, 9.81753271) 1.1948e-06 6
4 (9.81747717, 9.81747717) 6.1412e-12 7
5 (9.81747704, 9.81747704) -7.7879e-20 8

Table 11.3.: Table with numerical results for Example 8.4

point equal to the zero vector (as suggested in [51]) are not contained in Tables 11.1 and 11.2
since the zero vector turned out to be a solution of these test problems and was immediately
identified as such from both solvers.

Tables 11.1 and 11.2 show that all test examples can be solved within a very reasonable num-
ber of iterations except for examples MovSet2B and GenMovSet2B with the second starting
point. These tables also indicate that the number of iterations needed by KNITRO is sometimes
significantly smaller than the corresponding numbers for SNOPT. A possible explanation might
be the fact that KNITRO uses second-order information. We also believe that this fact is respon-
sible for the higher accuracy that is sometimes obtained by the KNITRO solver. In fact, SNOPT
terminates for three of the four test examples called GenMovSet4* with the function value of gα
being around 10−2 − 10−3, whereas KNITRO is able to get much closer to zero. Nevertheless,
the termination by SNOPT was successful in the sense that the standard stopping criteria of this
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solver were reached.
Note also that, in some cases, upon termination we have a negative function value gopt

α in the
corresponding columns of Tables 11.1 and 11.2. These negative values arise for two reasons:
First, if the final iterate xk is slightly outside the feasible region, then gα might be negative. Sec-
ond, negative values may arise due to inexact function evaluations (recall that the evaluation of
gα at a point x requires the solution of an optimization problem which, fortunately, automatically
also gives the gradient ∇gα(x)).

Finally, in Table 11.3, we come back to our Example 8.4 and present the corresponding itera-
tion history, with all calculations being done by SNOPT (using KNITRO we obtained a similar
iteration history). More precisely, for each iteration k, Table 11.3 provides the iteration vector
xk, the value of gα at xk as well as the cumulated number #gα of evaluations of the mapping gα.
Table 11.3 illustrates that the calculation of a solution for the starting point x0 = (10, 10) finishes
successfully and has a fast local convergence rate. We also tried a number of different starting
points and were always able to find a solution up to the required accuracy. Note, however, that
Example 8.4 has infinitely many solutions, hence the method finds different solutions when using
different starting points.

11.2. Dual Gap Function Approach

In view of Theorem 10.10, a solution ȳ of the the dual unconstrained minimization problem

min
y∈Rn

d∗α(y)

from (10.14) implies a solution x̄ = ∇ f ∗α (ȳ) of the corresponding QVI. In this section, we apply
this theory to a class of examples from the QVILIB test problem collection [51] that satisfy
Assumption 10.1.

For the solution of the unconstrained minimization problem (10.14), we use two different first-
order methods: the global spectral gradient (GSG) method from [115] and a conjugate gradient
(CG) method. The details of the GSG method are summarized in Section 6.1. A variant of a
conjugate gradient (CG) method, which was first presented by Polak and Ribière in [111], is
restated in the following algorithm.

Algorithm 11.1 (Conjugate gradient method)

(S.0) Choose y0 ∈ Rn, 0 < σ < ρ < 1
2 , set p0 := −∇d∗α(y0) and k := 0.

(S.1) If a suitable termination criterion holds: STOP.

(S.2) (Restart) If ∇d∗α(yk)T pk > 0, set pk := −∇d∗α(yk).

(S.3) (The strong Wolfe-Powell conditions) Choose a step size tk > 0 with

d∗α
(
yk + tk pk

)
≤ d∗α(yk) + σtk∇d∗α(yk)T pk
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Example n y0 k #d∗α d∗α ‖∇d∗α‖
Scrim11 2400 (0, . . . , 0) 32 33 1.8044e-08 1.9517e-05
Scrim11 2400 (10, . . . , 10) 36 37 5.4686e-08 6.2638e-05
Scrim12 4800 (0, . . . , 0) 32 33 2.7707e-08 3.3777e-05
Scrim12 4800 (10, . . . , 10) 36 37 9.0629e-08 5.6006e-05
Scrim21 2400 (0, . . . , 0) 32 33 1.9558e-08 1.8173e-05
Scrim21 2400 (10, . . . , 10) 36 37 7.3633e-08 7.2570e-05
Scrim22 4800 (0, . . . , 0) 32 33 1.7462e-08 2.9717e-05
Scrim22 4800 (10, . . . , 10) 36 37 5.6927e-08 6.2776e-05

Table 11.4.: Numerical results with the global spectral gradient method

and ∣∣∣∣∇d∗α
(
yk + tk pk

)T
pk

∣∣∣∣ ≤ −ρ∇d∗α(yk)T pk.

(S.4) Set yk+1 := yk + tk pk,

βk :=

(
∇d∗α(yk+1) − ∇d∗α(yk)

)T ∇d∗α(yk+1)∥∥∥∇d∗α(yk)
∥∥∥2 ,

pk+1 := −∇d∗α(yk+1) + βPR
k pk, k ← k + 1, and go to (S.1).

Note that for the examples in Table 11.5 the case ∇d∗α(yk)T pk > 0 never occurred. Furthermore,
we compute the step length tk satisfying the strong Wolfe-Powell conditions whose implementa-
tion is based on the suggestion outlined in [92] and is summarized in [66, Algorithm 6.5]. For the
computation of this step size we use the parameter σ = 10−4 and ρ = 0.1 and, at each iteration k,
the initial guess

tk =
−2d∗α(yk)
∇d∗α(yk)T pk .

For both methods, the termination criteria are ‖∇d∗α(yk)‖ ≤ 10−5 or d∗α(yk) ≤ 10−6.
For the computation of the conjugate functions of fα and hα from Lemmata 10.7 and 10.8, re-

spectively, we use the TOMLAB/KNITRO solver with the active set SLQP optimizer by setting
Prob.KNITRO.options.ALG=3 and Prob.KNITRO.options.FEASTOL=10−10, see the TOM-
LAB/KNITRO User’s Guide on the web site [2] for more information about TOMLAB/KNITRO
solver. Our implementation uses the regularization parameter α = 5 for all test runs.

The class of test problems that we use here are named Scrim* in the test problem library
QVILIB from [51]. This class corresponds to a large-scale transportation problem formulated as
QVIs. Tables 11.4 and 11.5 contain the following data: the name of the example, the number of
variables n, the starting point y0, the number of iterations k, the cumulated number of dual gap
function evaluations #d∗α needed until convergence, the final value of the dual gap function d∗α,
and the final value of the gradient norm ‖∇d∗α‖.
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11. Numerical Results for Quasi-Variational Inequalities

Example n y0 k #d∗α d∗α ‖∇d∗α‖
Scrim11 2400 (0, . . . , 0) 15 37 3.1869e-07 1.5863e-04
Scrim11 2400 (10, . . . , 10) 20 47 7.6852e-07 3.5654e-04
Scrim12 4800 (0, . . . , 0) 15 37 8.8592e-07 2.4624e-04
Scrim12 4800 (10, . . . , 10) 23 50 9.3831e-07 1.5281e-04
Scrim21 2400 (0, . . . , 0) 15 37 3.2617e-07 1.5942e-04
Scrim21 2400 (10, . . . , 10) 20 47 7.5009e-07 3.5802e-04
Scrim22 4800 (0, . . . , 0) 15 37 8.6840e-07 2.3947e-04
Scrim22 4800 (10, . . . , 10) 23 50 8.8691e-07 1.5345e-04

Table 11.5.: Numerical results with the conjugate gradient method

In view of the large number of variables in each example, the evaluation of the dual gap
function is more expensive than the computations in the outer iterations for both methods. In
Tables 11.4 and 11.5, we observe that the total number of function evaluations in the GSG method
is less than in the CG method. Therefore, in spite of higher number of iterations, the total time
until convergence in the GSG method is less than in the CG method. Furthermore, we achieve
higher accuracy of the results with the GSG method although the termination criteria for both
methods are the same. In any case, both methods were able to find a solution for all instances of
this class of QVIs, that is, they never stopped at a local but not global minimum of d∗α.
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Final Remarks

To conclude this thesis, we summarize the main results, discuss open questions, and give some
suggestions on future research topics.

In Section 2.2, for a class of convex parametric optimization problems, where the objective
function is strongly convex and the feasible set is independent of the parameter and nonempty,
we proved the piecewise smoothness of the solution mapping exploiting mainly a suitable CRCQ
condition. Note that this result might be known in the literature, but we could not find an explicit
reference. We applied this result to the dual gap functions established in this thesis for some
classes of GNEPs and QVIs and obtained the piecewise smoothness of the gradient of these
dual gap functions under certain assumptions. Additionally, one can show that with the solution
mapping also the gradient of the regularized gap function for QVIs with generalized moving sets
is piecewise smooth.

In Chapters 4 and 9, respectively, we investigated some structural properties of a constrained
optimization reformulation of player convex GNEPs or QVIs whose objective function is the
well-known (primal) regularized gap function given in Section 3.2 or 7.2. In particular, we
proved that, apart from some exceptional cases, the objective functions are differentiable at every
minimizer of the corresponding optimization problem. Hence the optimization problems are
essentially differentiable and therefore allow the application of suitable algorithms for smooth
optimization problems. On the other hand, for jointly convex GNEPs, one can characterize
certain (normalized) solutions as the minima of a smooth optimization problem, cf. [78], whose
objective function is once but not twice continuously differentiable. We believe that a similar
analysis can be carried out in order to verify twice continuous differentiability of this function
under convenient assumptions. The details are left as a future research topic.

In Chapters 5 and 10 we showed that a class of GNEPs and QVIs, respectively, can be re-
formulated as an unconstrained and smooth optimization problem using the respective dual gap
function, which was developed via variational and convex analysis techniques. There are a cou-
ple of questions still open for the future research.

• First, when is a stationary point of our unconstrained optimization problems already a
global minimizer and, therefore, provides a solution of the GNEP?

• Second, can we develop a second-order method with fast local convergence by employing
the fact that the gradient is still piecewise smooth? Since the objective function is continu-
ously differentiable with a semismooth gradient (under appropriate assumptions), a natural
candidate would be the semismooth Newton method from [112, 113], however, the compu-
tation of the corresponding generalized Jacobians (or Hessians, in our case) might be rather
expensive. Therefore, we believe that another Newton-type method based on the idea of
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Final Remarks

the computable generalized Jacobian from [126] (see also [80] for an application within
the framework of generalized Nash equilibrium problems) might be the better choice.

• Third, what happens in the case where the function evaluations are done only inexactly?
This point is quite interesting from a practical point of view, since the evaluation of our un-
constrained objective functions requires the solution of two optimization problems, which
are strongly convex, but which might be difficult to compute exactly at least in the non-
quadratic case for GNEPs.

• Finally, is it possible to adapt the dual gap function approach to some of the existing
generalizations of QVI problems (see, e.g., [102])? Note, however, that this requires that
we have convenient gap functions also for these generalized QVIs, and that still some
linearity and convexity assumptions will be needed not only for the function F and the
set-valued mapping S arising in the standard QVI, but also for the additional functions that
occur within these generalized QVIs.
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