TERMITES AND ANTS IN BURKINA FASO (WEST AFRICA)

- TAXONOMIC AND FUNCTIONAL DIVERSITY ALONG LAND-USE GRADIENTS

- ECOSYSTEM SERVICES OF TERMITES IN THE TRADITIONAL ZAÏ SYSTEM

APPENDICES

Dissertation zur Erlangung des

naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

vorgelegt von

Dorkas Tabitha Kaiser

Würzburg 2014

Eingereicht am:

Mitglieder der Promotionskommission:

Vorsitzender: Prof. Dr. Thomas Dandekar

Gutachter: Prof. Dr. K. Eduard Linsenmair

Gutachter: Prof. Dr. Souleymane Konaté

Tag des Promotionskolloquiums:

Doktorurkunde ausgehändigt am:

TABLE OF CONTENTS OF APPENDICES

LIST OF APPENDIX-FIGURES	A-a
LIST OF APPENDIX-TABLES	A-f
Appendix of Chapter II	A1
Appendix of Chapter III	A20
Appendix of Chapter IV	A33
Appendix of Chapter V	A52
Appendix of Chapter VII	A97
Appendix of Chapter VIII	A101

LIST OF APPENDIX-FIGURES

Fig.	A2-1: Agronomic and biological practices as e.g. crop rotation, fallowing, weeding, intercropping, mulching, stubble grazing, manure application, etc. Mechanical are practices as e.g. stone lines, half-moon, stone- or earth bunds, Zaï, etc.	A1
Fig.	A2-2: Mean monthly temperature and rainfall in Ouahigouya, sub-Sahel region (termperature: period 1973–2008; rainfall: period 1940–2008).	A3
Fig.	A2-3: Satellite image (Google earth), showing Ouahigouya (Yatenga province), the Zaï area and the study sites.	A4
Fig.	A2-4: Legend of the map resulting from an extensive pedological survey conducted in the Province Yatenga (BURNASOL 2007) indicating the different soil-types identified according to the French classification (CPCS 1967).	A5
Fig.	A2-5: Photos of the different stages of the agricultural Zaï technique.	A6
Fig.	A2-6: Habitat photos of the degraded, barren and crusted land (initial Zaï stage) (sub-Sahel zone).	A8
Fig.	A2-7: Habitat photos of the millet fields (agricultural Zaï, sub-Sahel zone).	A9
Fig.	A2-8: Habitat photos of the 20-years old Zaï forest (forestry Zaï, sub-Sahel zone).	A10
Fig.	A2-9: Habitat photos of the 30-years old Zaï forest (forestry Zaï, sub-Sahel zone).	A11
Fig.	A2-10: Satellite image (Google earth), showing the type and the relative location of the four Zaï succession stages studied in Ouahigouya (Yatenga province).	A12
Fig.	A2-11: Mean monthly temperature and rainfall in Fada N'Gourma and PK52, North-Sudan region (termperature: period 1980–2008; rainfall: period 1940–2008).	A13
Fig.	A2-12: Habitat photos of the near-natural arboreous and shrubby savanna in the Pama reserve (initial stage of the second disturbance gradient) (N-Sudan zone).	A14
Fig.	A2-13: Habitat photos of the pasture land of the farmer community (N-Sudan zone).	A15
Fig.	A2-14: Habitat photos of the short-term fallow (N-Sudan zone).	A15
Fig.	A2-15: Habitat photos of the cotton fields (N-Sudan zone).	A16
Fig.	A2-16: Satellite image (Google earth), showing the type and the relative location of the four habitats studied near Fada N'Gourma (Gourma province).	A17
Fig.	A3-1: Photos of the sampling methods for termites within transect-sections following the standardized and rapid assessment protocol (RAP).	A20
Fig.	A3-2: Photos of the additional sampling methods for termites (baiting).	A22
Fig.	A3-3: Photos of the sampling methods for ants following the standardized and rapid assessment protocol (RAP): in pitfall traps, 'Winkler-sites', and transect-sections.	A24
Fig.	A3-4: Photos of the additional sampling methods for ants (baiting and sieve buckets).	A26
Fig.	A4-1: Soil textural triangle.	A33
Fig.	A4-2: Small tipping-bucket rain gauge and temperature sensor in the degraded site	

of the Zaï system (since 2005), and climatic station with solar panel of the

	climatology group of BIOTA West Africa (since 2007), sub-Sahel region, Burkina Faso.	A34
Fig.	A4-3: a) Mean gravel content per Zaï stage and soil horizon, and b) mean soil water content per soil horizon in the degraded, barren site and the old Zaï forest.	A37
Fig.	A4-4: Number of live and dead termite mounds per hectare in the four Zaï stages, shown per species and functional group (sub-Sahel zone).	A45
Fig.	A4-5: Number of live termite mounds per hectare in the four habitats near Fada N'Gourma, shown per genus and functional group (North-Sudan region).	A46
Fig.	A4-6: Epigeal termite mound built by <i>Macrotermes bellicosus</i> in the North-Sudan zone (Burkina Faso), classified as 'nids en cathédrale' (Grassé & Noirot 1961).	A47
Fig.	A4-7: Opened mound built by <i>Macrotermes bellicosus</i> in the North-Sudan zone (Burkina Faso), and close-up of a fungus-comb (<i>Termitomyces</i>).	A47
Fig. /	A4-8: Queen of Macrotermes bellicosus in the North-Sudan zone (Burkina Faso).	A48
Fig. /	A4-9: Royal chamber of <i>Macrotermes bellicosus</i> (North-Sudan region, Burkina Faso).	A48
Fig. /	A4-10: Opened mound built by <i>Macrotermes subhyalinus</i> in northern Burkina Faso.	A49
Fig.	A4-11: Queen of <i>Macrotermes subhyalinus</i> with workers and small solders in northern Burkina Faso.	A49
Fig.	A4-12: A) Open air passages of epigeal mounds built by <i>Odontotermes</i> sp. in the North-Sudan zone (Burkina Faso): view from the side and from above; B) distinctly raised surface of an <i>Odontotermes</i> mound in the Pama reserve (North-Sudan zone).	A50
Fig	A5-1: Number of ant species collected per genus, subfamily and land-use type in the sub-Sahel and the North-Sudan region, differentiated according to the sampling methods: ant transect comprising pitfall traps and Winkler sites; termite transect comprising soil scrapes and microhabitats; and both protocol parts combined.	A56
Fig.	A5-2: Incidence-based, randomized accumulation rates of observed and estimated ant species richness in the degraded, barren soil in the sub-Sahel zone, Burkina Faso.	A67
Fig.	A5-3: Incidence-based, randomized accumulation rates of observed and estimated ant species richness in the millet fields in the sub-Sahe zone, Burkina Faso.	A67
Fig.	A5-4: Incidence-based, randomized accumulation rates of observed and estimated ant species richness in the young Zaï forest (sub-Sahel, Burkina Faso).	A68
Fig.	A5-5: Incidence-based, randomized accumulation rates of observed and estimated ant species richness in the old Zaï forest (sub-Sahel, Burkina Faso).	A68
Fig.	A5-6: Ranked biplot of common ant species to the environmental variable 'percentage air humidity' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis.	A73
Fig.	A5-7: Ranked biplot of common ant species along the environmental vector 'maximum tree height' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis.	A73

Fig.	A5-8: Ranked biplot of common ant species to the environmental variable 'clay content in the upper soil horizon (0-10 cm)' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis.	A74
Fig.	A5-9: Ranked biplot of common ant species to the environmental variable 'total litter weight' in the four North-Sudanese sites (Burkina Faso). Results obtained by CCA	A75
Fig.	A5-10: Ranked biplot of common ant species to the environmental variable 'crown cover percentages' in the four North-Sudanese sites (Burkina Faso). Results obtained by Canonical Correspondence Analysis	A76
Fig.	A5-11: Ranked biplot of common ant species to the environmental variable 'maximum tree height' in the four North-Sudanese sites (Burkina Faso). Results obtained by Canonical Correspondence Analysis.	A77
Fig.	A5-12: Ranked biplot of common termite species to the environmental variable 'crown-cover percentage' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis.	A78
Fig.	A5-13: Ranked biplot of common termite species to the environmental variable 'litter-availability' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis.	A79
Fig.	A5-14: Ranked biplot of common termite species to the environmental variable 'sand-content in the upper soil horizon (0-10 cm)' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis.	A79
Fig.	A5-15: Ranked biplot of common termite species to the environmental variable 'total area covered by the main tree trunks' in the four North-Sudanese habitats (Burkina Faso). Results obtained by Canonical Correspondence Analysis.	A80
Fig.	A5-16: Ranked biplot of common termite species to the environmental variable 'soil organic matter in the sub-surface soil (0-10 cm)' in the four North-Sudanese habitats (Burkina Faso). Results obtained by Canonical Correspondence Analysis.	A80
Fig.	A5-17: Ranked biplot of common termite species to the environmental variable 'clay content in the sub-surface soil (0-10 cm)' in the four North-Sudanese habitats (Burkina Faso). Results obtained by Canonical Correspondence Analysis.	A81
Fig.	A7-1: First step of the rapid assessment of biogenic structures of termites, ants and earthworms: Wooden frame of 1 m^2 with a grid of 100 quadratic meshes is placed on the ground to map all visible soil structures according to the constructing taxon, genus or functional group.	A97
Fig.	A7-2: In the second step, all biogenic soil structures were collected, air-dried and finally weighed according to the constructing taxon, genus or functional group.	A97
Fig.	A7-3: Close-up of soil-sheetings and foraging holes underneath soil-sheetings.	A97
Fig.	A7-4: Dry weight of biogenic soil structures in tons per hectare, month and Zaï stage, constructed by termites and ants during one rainy season and three dry seasons.	A98
Fig.	A7-5: Dry weight of biogenic soil structures in tons per hectare, month and habitat in the N-Sudan region, built by termites, ants and earthworms during three dry seasons.	A99

Fig.	A8-1: Photos of the experimental blocks installed in four Zaï stages in the sub-Sahel region (Burkina Faso) during the rainy season run in 2005.	A101
Fig.	A8-2: Photos illustrating the granular structure of <i>Odontotermes</i> -sheetings and the termites' soil-sheeting construction-behavior in experimental block in the Zaï stages.	A103
Fig.	A8-3: Photos illustrating the granular structure of <i>Macrotermes</i> -sheetings and the termites' soil-sheeting construction-behavior in experimental block in the Zaï stages.	A106
Fig.	A8-4: Double-ring infiltration conducted simultaneously in a sub-plot with recent termite activity and in the control-plot of the same experimental block during the dry season run in 2006 (sub-Sahel zone, Burkina Faso).	A109
Fig.	A8-5: Increasing dry weight of <i>Macrotermes</i> -sheetings built during the experimental 4-weeks duration (2006) in a hay-plot of the old Zaï forest and the cumulated quantity of hay consumed during this time.	A110
Fig.	A8-6: Increasing sheeting area and macropore number built by <i>Macrotermes</i> in a hay-plot of the old Zaï forest during the experimental 4-weeks duration (2006).	A110
Fig.	A8-7: Increasing dry weight of sheetings built by <i>Macrotermes</i> and <i>Odontotermes</i> during the experimental 4-weeks duration (2006) in a hay-plot of the old Zaï forest and the cumulated quantity of hay consumed during this time.	A111
Fig.	A8-8: Increasing sheeting area and macropore number built by <i>Macrotermes</i> and <i>Odontotermes</i> during the 4-weeks duration (2006) in a hay-plot of the old forest.	A111
Fig.	A8-9: Increasing dry weight of <i>Odontotermes</i> -sheetings built during the experimental 4-weeks duration (2006) in a hay-plot of the old Zaï forest and the cumulated quantity of hay consumed during this time.	A112
Fig.	A8-10: Increasing sheeting area and macropore number built by <i>Odontotermes</i> during the 4-weeks duration (2006) in a hay-plot of the old forest combined.	A112
Fig.	A8-11: Cumulated increase in sheeting-area built during the experimental 4-weeks duration by <i>Macrotermes</i> and <i>Odontotermes</i> together (sheeting-mix, not possible to separate), shown for all wood-plots per Zaï stage combined (2006).	A113
Fig.	A8-12: Cumulated increase in sheeting-area built during the experimental 4-weeks duration by <i>Macrotermes</i> and <i>Odontotermes</i> together (sheeting-mix, not possible to separate), shown for all hay-plots per Zaï stage combined (2006).	A113
Fig.	A8-13: Cumulated increase in sheeting-area built during the experimental 4-weeks duration by <i>Macrotermes</i> and <i>Odontotermes</i> together (sheeting-mix, not possible to separate), shown for all compost-plots per Zaï stage combined (2006).	A113
Fig.	A8-14: Cumulated increase in sheeting-area built during the experimental 4-weeks duration by <i>Macrotermes</i> and <i>Odontotermes</i> together (sheeting-mix, not possible to separate), shown for all control-plots forest combined (2006).	A113
Fig.	A8-15: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, in total) for all wood-plots of the old forest combined.	A114

 Fig. A8-17: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all compost-plots of the old forest combined. Fig. A8-18: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all controlplots of the old forest combined. Fig. A8-19: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all wood-plots of the young forest combined. Fig. A8-20: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all hay-plots of the young forest combined. Fig. A8-20: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all compost-plots of the young forest combined. Fig. A8-21: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all compost-plots of the young forest combined. Fig. A8-22: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all controlplots of the young forest combined. Fig. A8-23: Correlation between the area and the dry weight of sheetings built during the experimental 4-weeks duration of the dry season run (2006), shown for <i>Odontotermes</i>-sheetings (A), and for <i>Macrotermes</i>-sheetings (B). Fig. A8-24: Diameter of macropores illustrated for plots where either <i>Macrotermes</i> or <i>Odontotermes</i>-species were foraging. Fig. A8-25: Shown are all physico-chemical parameters which were significantly modified in soll-sheeting-sol samples are plotted against sheeting-soil samples collected in hay-plots. Fig. A8-27: Shown are all physico-chemi	Fig.	A8-16: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all hay-plots of the old forest combined.	A114
 Fig. A8-18: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all control-plots of the old forest combined. A114 Fig. A8-19: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all wood-plots of the young forest combined. A115 Fig. A8-20: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all hay-plots of the young forest combined. A115 Fig. A8-20: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all compost-plots of the young forest combined. A115 Fig. A8-21: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all compost-plots of the young forest combined. A115 Fig. A8-22: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all control-plots of the young forest combined. A115 Fig. A8-23: Correlation between the area and the dry weight of sheetings built during the experimental 4-weeks duration of the dry season run (2006), shown for <i>Odontotermes</i>-sheetings (A), and for <i>Macrotermes</i>-sheetings (B). A116 Fig. A8-24: Diameter of macropores illustrated for plots where either <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots of the dry season run ((ight). A126 Fig. A8-25: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots. A129 Fig. A8-27: Shown are all physico-ch	Fig.	A8-17: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all compost-plots of the old forest combined.	A114
 Fig. A8-19: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all wood-plots of the young forest combined. Fig. A8-20: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all hay-plots of the young forest combined. Fig. A8-21: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all compost-plots of the young forest combined. Fig. A8-22: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all compost-plots of the young forest combined. Fig. A8-22: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all compost-plots of the young forest combined. Fig. A8-23: Correlation between the area and the dry weight of sheetings built during the experimental 4-weeks duration of the dry season run (2006), shown for <i>Odontotermes</i>-sheetings (A), and for <i>Macrotermes</i>-sheetings (B). Fig. A8-24: Diameter of macropores illustrated for plots where either <i>Macrotermes</i> or <i>Odontotermes</i> species were foraging. Fig. A8-25: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots. Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheeting-soil samples collected in hay-plots. Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheeting-soil samples collected in hay-plots. Fig. A8-27: Shown are all physico-chemical parameters which were sign	Fig.	A8-18: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all control-plots of the old forest combined.	A114
 Fig. A8-20: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all hay-plots of the young forest combined. Fig. A8-21: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all compost-plots of the young forest combined. Fig. A8-22: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all compost-plots of the young forest combined. Fig. A8-22: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all control-plots of the young forest combined. Fig. A8-23: Correlation between the area and the dry weight of sheetings built during the experimental 4-weeks duration of the dry season run (2006), shown for <i>Odontotermes</i>-sheetings (A), and for <i>Macrotermes</i>-sheetings (B). Fig. A8-24: Diameter of macropores illustrated for plots where either <i>Macrotermes</i> or <i>Odontotermes</i> species were foraging. Fig. A8-25: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots. Fig. A8-26: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples collected in hay-plots. Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheeting sconstructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples collected in hay-plots. Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified i	Fig.	A8-19: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all wood-plots of the young forest combined.	A115
 Fig. A8-21: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all compost-plots of the young forest combined. Fig. A8-22: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all control-plots of the young forest combined. Fig. A8-23: Correlation between the area and the dry weight of sheetings built during the experimental 4-weeks duration of the dry season run (2006), shown for <i>Odontotermes</i>-sheetings (A), and for <i>Macrotermes</i>-sheetings (B). Fig. A8-24: Diameter of macropores illustrated for plots where either <i>Macrotermes</i> or <i>Odontotermes</i> species were foraging. Fig. A8-25: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots of the dry season run (left) and the rainy season run (right). Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings collected in hay-plots. Fig. A8-27: Shown are plysico-chemical parameters analyzed solely for the dry season samples which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots. Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots. Fig. A8-27: Shown are all physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> spe	Fig.	A8-20: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all hay-plots of the young forest combined.	A115
 Fig. A8-22: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes</i>, mix, total) for all control-plots of the young forest combined. A115 Fig. A8-23: Correlation between the area and the dry weight of sheetings built during the experimental 4-weeks duration of the dry season run (2006), shown for <i>Odontotermes</i>-sheetings (A), and for <i>Macrotermes</i>-sheetings (B). A116 Fig. A8-24: Diameter of macropores illustrated for plots where either <i>Macrotermes</i> or <i>Odontotermes</i> species were foraging. A117 Fig. A8-25: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots of the dry season run (left) and the rainy season run (right). A126 Fig. A8-26: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples collected in hay-plots. A129 Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples are plotted against sheeting-soil samples collected in compost-plots of the rainy season run (left) and the dry season run (right). A131 Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheeting-soil samples collected in compost-plots of the rainy season run (left) and the dry season run (right). A131 Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Co	Fig.	A8-21: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all compost-plots of the young forest combined.	A115
 Fig. A8-23: Correlation between the area and the dry weight of sheetings built during the experimental 4-weeks duration of the dry season run (2006), shown for Odontotermes-sheetings (A), and for Macrotermes-sheetings (B). Fig. A8-24: Diameter of macropores illustrated for plots where either Macrotermes or Odontotermes species were foraging. Fig. A8-25: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by Odontotermes or by Macrotermes species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots of the dry season run (left) and the rainy season run (right). Fig. A8-26: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in soil-sheetings constructed either by Odontotermes or by Macrotermes species. Control-plot samples collected in hay-plots. Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by Odontotermes or by Macrotermes or by Macrotermes species. Control-plot samples collected in hay-plots. Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by Odontotermes or by Macrotermes or by Macrotermes or by Macrotermes or by Macrotermes species. Control-plot samples are plotted against sheeting-soil samples collected in compost-plots of the rainy season run (left) and the dry season run (right). Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheeting-soil samples collected in compost-plots of the rainy season run (left) and the dry season run (right). Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by Odontotermes ore by Macrotermes species. Control-pl	Fig.	A8-22: Cumulated increase in sheeting-area during the experimental duration (2006), shown per type (<i>Macrotermes, Odontotermes,</i> mix, total) for all control-plots of the young forest combined.	A115
 Fig. A8-24: Diameter of macropores illustrated for plots where either <i>Macrotermes</i> or <i>Odontotermes</i> species were foraging. A117 Fig. A8-25: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots of the dry season run (left) and the rainy season run (right). A126 Fig. A8-26: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> or by <i>Macrotermes</i> species. Control-plot samples collected in hay-plots. A129 Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots. A129 Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples collected in compost-plots of the rainy season run (left) and the dry season run (right). A131 Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in the dry season run (right). A131 Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples are plotted against sheeting-soil samples are plotted against sheetings constructed either by <i>Odontotermes</i> or by	Fig.	A8-23: Correlation between the area and the dry weight of sheetings built during the experimental 4-weeks duration of the dry season run (2006), shown for <i>Odontotermes</i> -sheetings (A), and for <i>Macrotermes</i> -sheetings (B).	A116
 Fig. A8-25: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots of the dry season run (left) and the rainy season run (right). Fig. A8-26: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots. Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples collected in compost-plot samples are plotted against sheeting-soil samples collected in compost-plots of the rainy season run (left) and the dry season run (right). Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples collected in compost-plots of the rainy season run (left) and the dry season run (right). Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected	Fig.	A8-24: Diameter of macropores illustrated for plots where either <i>Macrotermes</i> or <i>Odontotermes</i> species were foraging.	A117
 Fig. A8-26: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots. A129 Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in compost-plots of the rainy season run (left) and the dry season run (right). A131 Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheetings constructed either by <i>A</i> and the dry season run (right). A131 Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples are plotted against sheeting-soil samples or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in compost-plots. A134 	Fig.	A8-25: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots of the dry season run (left) and the rainy season run (right).	A126
 Fig. A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in compost-plots of the rainy season run (left) and the dry season run (right). A131 Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples are plotted against sheeting-soil samples are plotted against sheeting-soil samples collected in compost-plots. A134 	Fig.	A8-26: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in hay-plots.	A129
Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in compost-plots. A134	Fig.	A8-27: Shown are all physico-chemical parameters which were significantly modified in soil-sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in compost-plots of the rainy season run (left) and the dry season run (right).	A131
	Fig.	A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by <i>Odontotermes</i> or by <i>Macrotermes</i> species. Control-plot samples are plotted against sheeting-soil samples collected in compost-plots.	A134

LIST OF APPENDIX-TABLES

Table A4-1: Species name, family and order corresponding to the abbreviations in Table A4-3 and Table A4-5 for woody plant species assessed in each land-use type in the sub-Sahel and the North-Sudan zone in Burkina Faso.	A35
Table A4-2: Plant available nutrients, cations and cation exchange capacity of topsoil in the succession stages of the Zaï system in the sub-Sahel zone, Burkina Faso.	A38
Table A4-3: Woody plant species assessed in an area of 900 m ² in each of the four Zaï succession stages in the sub-Sahel zone, Burkina Faso. The species are ranked in descending order according to a) their abundance and b) the total 'woody plant basal area' of the respective species.	A39
Table A4-4 Potential cation exchange capacity, concentration of the cations sodium, potassium, magnesium and calcium, and base saturation of the topsoil in the North-Sudanese habitats, Burkina Faso.	A41
Table A4-5: Woody plant species assessed in an area of 900 m ² in each of the four habitats in the North-Sudan zone, Burkina Faso. The species are ranked in descending order according to a) their abundance and b) the total 'woody plant basal area' of the respective species.	A42
Table A5-1: For each habitat of the two disturbance gradients in Burkina Faso, the intensity of anthropogenic impact (AI-index) was calculated	A52
Table A5-2: For the near-natural savanna in the North-Sudan zone (Burkina Faso), the total ant species richness was estimated with six estimators in relation to an increasing sampling effort (including sampling efficiency).	A57
Table A5-3: For the near-natural savanna in the North-Sudan zone (Burkina Faso), the total termite species richness was estimated with six estimators in relation to an increasing sampling effort (including sampling efficiency).	A59
Table A5-4: Incidence-based species-richness estimators and sampling efficacy for ant communities in the Zaï system calculated per RAP-transect, habitat and region.	A61
Table A5-5: Incidence-based species-richness estimators and sampling efficacy for ant communities in the North-Sudanese sites calculated per RAP-transect, habitat and region.	A62
Table A5-6: Incidence-based species-richness estimators and sampling efficacy for termite communities in the Zaï system calculated per RAP-transect, habitat and region.	A63
Table A5-7: Incidence-based species-richness estimators and sampling efficacy for termite communities in the North-Sudanese sites calculated per RAP-transect, habitat and region.	A64
Table A5-8: Quality of four incidence-based species richness estimators for ant communities in the Zaï system calculated per RAP-transect, habitat and region.	A65
Table A5-9: Measures of alpha-diversity for ant communities in the four Zaï stages (sub- Sahel zone) calculated per RAP-transect, per habitat and per region.	A69

combined.

Table A5-10: Measures of alpha-diversity for ant communities in the North-Sudanese sites calculated per RAP-transect, the habitats and the region.	A70
Table A5-11: Measures of alpha-diversity for termite communities in the four Zaï stages (sub-Sahel zone) calculated per RAP-transect, the habitats and the region.	A71
Table A5-12: Measures of alpha-diversity for termite communities in the North- Sudanese sites calculated per RAP-transect, the habitats and the region.	A72
Table A5-13: Analysis of Similarities for groups formed by replicate-transects for ant communities in the four Zaï stages (sub-Sahel zone).	A82
Table A5-14: Average SIMALIRITY WITHIN groups formed by replicate-transects for ant communities in the four Zaï stages (sub-Sahel zone).	A82
Table A5-15: Average DISSIMALIRITY BETWEEN groups formed by replicate-transects for ant communities in the four Zaï stages (sub-Sahel zone).	A83
Table A5-16: Analysis of Similarities for groups formed by replicate-transects for ant communities in four habitats near Fada N'Gourma (North-Sudan region).	A85
Table A5-17: Average SIMALIRITY WITHIN groups formed by replicate-transects for ant communities in four habitats near Fada N'Gourma (North-Sudan region).	A86
Table A5-18: Average DISSIMALIRITY BETWEEN groups formed by replicate-transects for ant communities in four habitats near Fada N'Gourma (North-Sudan region).	A87
Table A5-19: Analysis of Similarities for groups formed by replicate-transects for termite communities in the four Zaï stages (sub-Sahel zone).	A89
Table A5-20: Average SIMALIRITY WITHIN groups formed by replicate-transects for termite communities in the four Zaï stages (sub-Sahel zone).	A89
Table A5-21: Average DISSIMALIRITY BETWEEN groups formed by replicate-transects for termite communities in the four Zaï stages (sub-Sahel zone).	A90
Table A5-22: Analysis of Similarities for groups formed by replicate-transects for termite communities in four habitats near Fada N'Gourma (North-Sudan region).	A93
Table A5-23: Average SIMALIRITY WITHIN groups formed by replicate-transects for termite communities in four habitats near Fada N'Gourma (North-Sudan region)	A93
Table A5-24: Average DISSIMALIRITY BETWEEN groups formed by replicate-transects for termite communities in four habitats near Fada N'Gourma (North-Sudan region).	A94
Table A7-1: For each Zaï stage in Ouahigouya (sub-Sahel region), the total quantity of soil possibly bioturbated by termites until 2009 to construct their epigeal biogenic structures, is calculated for the dry season and the rainy season months.	A100
Table A8-1: Comparisons of control-plot topsoil with sheetings constructed by <i>Odontotermes</i> or <i>Macrotermes</i> on compost (Cp), hay (H) or wood, and with topsoil of Cp- or H-plots after 4 weeks foraging activity (rainy season 05). All Zaï sites combined.	A118
Table A8-2: Comparisons of control-plot topsoil with sheetings constructed by <i>Odontotermes</i> or <i>Macrotermes</i> on compost (Cp), hay (H) or wood, and with topsoil of Cp- or H-plots after 4 weeks foraging activity (dry season 06). All Zaï sites	

A119

- Table A8-3: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood, and with topsoil of Cp- or H-plots after 4 weeks foraging activity (rainy season 05). All Zaï sites combined. A120
- Table A8-4: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood, and with topsoil of Cp- or H-plots after 4 weeks foraging activity (dry season 06). All Zaï sites combined.
- Table A8-5: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood, and with topsoil of Cp- or H-plots after 4 weeks foraging activity (rainy season 05). All Zaï sites combined. A122
- Table A8-6: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood, and with topsoil of Cp- or H-plots after 4 weeks foraging activity (dry season 06). All Zaï sites combined. A123
- Table A8-7: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood, and with topsoil of Cp- or H-plots after 4 weeks foraging activity (dry season 06). All Zaï sites combined. A124
- Table A8-8: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood, and with topsoil of Cp- or H-plots after 4 weeks foraging activity (dry season 06). All Zaï sites combined. A125

APPENDIX – CHAPTER 2

AGRONOMIC AND BIOLOGICAL PRACTICES

G

Fig. A2-1: Agronomic and biological practices as e.g. crop rotation, fallowing, weeding, combination of e.g. millet and green beans (nitrogen-fixing) (H), appropriate crop selection, adapted plant spacing (A, G), thinning, mulching with hay or branches (D), stubble grazing (J), household refuse and manure application (K, here: Zaï). Mechanical are practices as e.g. stone lines (C), deep-plough (B), halfmoon (E, F), stone- or earth bunds (C, D), living hedges and Zaï (I).

Data sources: Centre for Development Research (ZEF), Bonn, Germany; Direction régionale de l'Agriculture de l'Hydraulique et des Ressources halieutiques, Ouagadougou, Burkina Faso.

1998-2008 (LUI-1)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
mean temp (°C)	24.6	27.4	30.9	33.6	33.5	30.9	28.3	27.2	27.9	29.9	28.2	25.2
mean rainfall (mm)	0	0	2	8	34	89	168	213	117	28	1	0

Fig. A2-2: Mean monthly temperature (°C) and rainfall (mm) in Ouahigouya, Yatenga province (sub-Sahel region, northern Burkina Faso). The temperature means were calculated from data measured between 1973 and 2008 – the precipitation means with data from 1940 to 2008. The data basis used is shown in the table below the figure. The average monthly temperature calculated for this longer period ranged between 18.6°C and 39.4°C, the annual mean was 28.9°C. The mean total annual rainfall summed up to 660 mm.

SOIL-TYPES IDENTIFIED BY THE 'BUREAU NATIONAL DES SOLS' (BURNASOL) IN THE ZAÏ-AREA

Fig. A2-3: A) Satellite image, screenshot of Google earth, showing Ouahigouya (Yatenga province, Burkina Faso), the Zaï area (red circle) and the study sites (ZDeg: degraded site, ZMil: millet field, ZF20: 20-yrs old Zaï forest, ZF30: 30-yrs old forest).

B) Map-section showing Ouahigouya and the different soil-types identified by the 'Bureau National des Sols' (BURNASOL 2007) in the Zaï area (red circle). Please refer to Fig. A2-4 for the legend with the sub-groups of the soil-types according to the French classification used by BURNASOL (CPCS 1967).

_													
GEOMORPHOLOGIE		RPHOLOGIE	MATERIAU ORIGINEL	PROCESSUS DE	UNITE	SUPERF	ICIE	IE SOLS					
			LITHOLOGIE	PEDOGENESE		HA	%	DOMINA	NTS	ASSOC	IES	INCLUSI	ONS
Button of		Button of	Pochos do poturo vorióo:	Embranaging of paul				> 50%		49 - 20	1%	< 20 %	
	Ц	affleurements rocheux	granites, migmatites, granodiorites,schistes.	caractérisé	1	20429.43	1.66	LR	100	-	-	-	-
	ELIEF	Buttes cuirassées	Cuirasse ferrugineuse issue de roches acides:	Cuirassement, déman- tèlement physique	2	96156.60	7.81	LC	89	-	-	FLIS FLIPP	5.5 5.5
	88	Plateaux cuirassés	granites, migmatites, gneiss.	et colonisation des fissures par les racines des végétaux	3	58202.10	4.73	-	-	flis Flipp Flimp	41 25 23	LC	11
			Materiau de type kaonilitique issu de roches acides variées.	Ferruginisation, lessivage, concrétionnement, induration.	4	387021.53	31.44	FLI	84	-	-	FLC FLTC LC FLM FPLM	8 3 3 2 2
		Glacis pente supérieure	Matriau montmorillonitique issu de roches basiques variées (schistes, roches vertes)	Brunification, rubéfication, ferruginisation	5	23017.81	1.87	BEF	68	-	-	BEPE BEM PEER PEEL FLI	10 3 13 1 5
			Sols éoliens issus de roches basiques variées (apport ancien)	Dépôt éolien, sédimentaition	6	1190.26	0.10	BSAM	85	-	-	BSAV	15
	NNELLE		Matériau de type kaonilitique issu de roche acides variées	Ferruginisation, lessivage, concrétionnement, induration.	7	226812.36	18.42	-	-	FLIPP FLIMP FLIP	29 27 32	FLIS FLC BEF	6 4 2
	FONCTIO	Glacis pente	Matériau de type kaonilitique issu de roches acides variées	Ferruginisation, lessivage, concrétionnement, hydro- morphie, localement peu caractérisé.	8	106986.46	8.69	-	-	FLC FLTC	34 35	FLH FLM PEER PEACM	14 14 2 1
SURFACE	SURFACE	moyonno	Sable éolien issu de roches basiques variées (apport ancien)	Dépôt éolien, sédimentaition, hydromorphie localisée	9	16661.29	1.35	-	-	BSAM BSAV BSAG	38 24 29	FLM	9
		Matériau issu de roches basiques variées	Brunification, rubéfication, ferruginisation, induration localisée	10	12945.80	1.05	BEF	83	-	-	BEHV PEER FLI	11 3 3	
			Matériau de type kaonilitique issu de roches acides variées	Ferruginisation, lessivage, concrétionnement, hydromorphie localisée.	11	90661.10	15.50	-	-	FLTC FLH	30 34	FLI FLM HPGS PEAAH PEAAM	19 8 4 3 2

LEGENDE

The respective sub-groups of the French soil-type classification of 1967 (CPCS 1967)

LC	Lithosols sur cuirasse
FLI	Sols ferrugineux tropicaux lessivés indurés
FLIS	Sols ferrugineux tropicaux lessivés indurés superficiels
FLIPP	Sols ferrugineux tropicaux lessivés indurés peu profonds
FLIMP	Sols ferrugineux tropicaux lessivés indurés moyennement profonds
FLIP	Sols ferrugineux tropicaux lessivés indurés profonds
FPLM	Sols ferrugineux tropicaux peu lessivés modaux
FLC	Sols ferrugineux tropicaux lessivés à concrétions
FLTC	Sols ferrugineux tropicaux lessivés à taches et concrétions
FLH	Sols ferrugineux tropicaux lessivés hydromorphes
FLM	Sols ferrugineux tropicaux lessivés modaux
PEER	Sols peu évolués d'érosion régosiliques
PEAAM	Sols peu évolués d'apport alluvial modaux

Fig. A2-4: Legend of the map resulting from an extensive pedological survey conducted in the Province Yatenga (BURNASOL 2007) indicating the different soil-types identified according to the French classification (CPCS 1967). The red squares are highlighting the four soil-types identified in the area of the Zaï-system in Ouahigouya (Yatenga province, northern Burkina Faso). A satellite image and the map-section of the Zaï area are shown in Fig. A2-3A and Fig. A2-3B.

DIFFERENT STAGES OF THE OPTIMIZED AGRICULTURAL ZAÏ-TECHNIQUE

Zaï literature (some examples):

(Bayen 2010; David 2003; Drechsel et al. 2005; Fatondji 2002; Fatondji et al. 2001; Kaboré & Reij 2004; Laguemvare 2003; Maatman et al. 1998; Marchal 1983; Reij et al. 2005; Roose 1988; Roose 1989a, b, 1994, 2000; Roose & Barthes 2001; Roose et al. 1993, 1999; Roose et al. 1994; Rouland et al. 2003; Sawadogo et al. 2008; Shiferaw et al. 2009; Sidibé 2005; Siegle 2009; Slingerland & Sork 2000; Somé et al. 2004; Sterk & Haigis 1998; Trouillier 2003; Vohland & Barry 2009; Zougmore et al. 2003)

Fig. A2-5: Photos of the different stages of the agricultural Zaï technique. A) Close-up of a degraded, barren soil representing the initial habitat stage; B) first Zaï holes chopped in the degraded soil (during the dry season); C) degraded soil prepared with the Zaï technique – here with dead branches placed over the holes to catch organic material (e.g. leaves) transported with the wind during the dry season – as in the Zaï hole shown in D); E) women preparing the house-field for the next rainy season (by means of a 'dappa', the traditional hand-hoe; F) field with young millet plants and a stone line to hold back the water during rainfalls; G) close-up of a Zaï hole with millet, green beans and compost recently applied; I) millet field (green); H) Yacouba Sawadogo passing by a millet field, ready to harvest Zaï; I) close-up of a millet-stump after the harvest and sheetings constructed by termites over the dry leaves left lying on the soil-surface.

HABITAT PHOTOS OF THE FIRST LAND-USE INTENSIFICATION GRADIENT (LUI-1), COMPRISING FOUR ZAÏ STAGES IN OUAHIGOUYA (YATENGA PROVINCE, SUB-SAHEL REGION, BURKINA FASO);

Fig. A2-6: A) and B) Degraded, barren area of reddish, infertile soil (ZDeg) with about 70% gravel in the soil samples; representing the initial stage of all sites belonging to the 1st disturbance gradient (LUI-1). Crusted and impermeable soil surface – almost devoid of any vegetation. C) Close-up of the soil surface.

Fig. A2-7: Fields of millet (*Pennisetum glaucum*) (ZMil) combined with nitrogenfixing green beans and cultivated with the Zaï-technique; in 2009 about 10–11 years old. During the last decade, the small-scale farmer Y. Sawadogo started to cultivate his fields longer than he did before: at the time of sampling, the fields were in the 5th, 7th and 8th cultivation year. In D), E), F) and G) shown in different growth-stages; F) after the harvest at the end of the rainy season.

A10

Fig. A2-8: 20-years old Zaï forest (ZF20), also referred to as 'young Zaï forest' (forestry Zaï). The area was first cultivated for 4 years, and laid fallow ever since. During the dry season, grazing was allowed to the farmers own cattle. I), J), K) and L) different areas of the young forest with rich herbaceous and woody vegetation, however still with degraded spots; M) habitat during the dry season.

Fig. A2-9: 30-years old Zaï forest (ZF30), also referred to as 'old Zaï forest' (forestry Zaï). The area was first cultivated for 4 years, and laid fallow ever since (26 years). During the last 10 years, grazing and wood collection was not allowed, before as in ZF20 (only during the dry season). P) and Q) old forest with a diverse herbaceous and woody vegetation, stone lines present to hold back the rainfall; R) overview over the Zaï forest from a small hill; S) habitat at the end of the rainy season / start of the dry season.

RELATIVE LOCATION OF THE FOUR SUCCESSION STAGES STUDIED IN THE ZAÏ SYSTEM (LUI-1)

Fig. A2-10: Satellite image (screenshot made in Google earth) showing the type and the relative position of the four succession stages studied in the Zaï-system in Ouahigouya (Yatenga province, sub-Sahel region, northern Burkina Faso). The colors of the sites are yellow: ZDeg, degraded site; orange: ZMil, millet field cultivated with the Zaï-method; light green: ZF20, 20-yrs old Zaï-forest; dark green: ZF30, 30-yrs old Zaï-forest.

MEAN MONTHLY TEMPERATURE AND RAINFALL IN THE NORTH-SUDAN ZONE, BURKINA FASO

Data sources: BIOTA West climatology group (2005-2008); Centre for Development Research (ZEF), Bonn, Germany; Direction régionale de l'Agriculture de l'Hydraulique et des Ressources halieutiques, Ouagadougou, Burkina Faso.

1940/1980-2008 (LUI-2)		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
mean temp (°C)		28.9	31.9	32.4	30.4	28.2	26.5	25.8	26.4	27.8	27.8	27.1
mean rainfall (mm)	0	1	3	28	78	123	180	235	194	33	0	0

Fig. A2-11: Mean monthly temperature (°C) and rainfall (mm) in Fada N'Gourma and PK52, Gourma province (North-Sudan region, south-eastern Burkina Faso). The temperature means were calculated from data measured between 1980 and 2008 – the precipitation means with data from 1940 to 2008. The data basis used is shown in the table below the figure. The average monthly temperature ranged between 19.8°C and 36.7°C, the annual mean was 28.4°C. The mean total annual rainfall summed up to 906 mm.

HABITAT PHOTOS OF THE SECOND LAND-USE INTENSIFICATION GRADIENT (LUI-2), COMPRISING FOUR HABITATS LOCATED 54 KM SOUTH OF FADA N'GOURMA (GOURMA PROVINCE, NORTH-SUDAN REGION, SOUTH-EASTERN BURKINA FASO)

Fig. A2-12: Protected near-natural arboreous and shrubby savanna in the Pama reserve (FRes), representing the initial stage of all sites belonging to this disturbance gradient (LUI-2). Dense grass sods, bushes and 8–9 m high trees with open canopy (assemblages of *Combretum* spp., *Anogeisus leiocarpus*, *Vitellaria paradoxa*). A) and B) habitat during the rainy season, the latter taken in 2007 during the vegetation assessment; C) nestsurface of the fungus-growing termite genus *Odontotermes*.

Fig. A2-13: Pasture land (FPas) of the community, exclusively used for grazing cattle since about 20 years (in 2009), comprised few areas with thin but closed canopy of up to 9 m in height, others with grass and some bushes (as in E) and those with bushes and open canopy but more than just a few isolated trees (as in D). F) Pasture land during the dry season.

Η

Fig. A2-14: Fallowed field (FFal), in 2009 about 19 years since the first cultivation year. At the time of sampling, the field was in the 2nd year fallow (2004), and in the 4th and last year fallow (2006). Before fallowing, crop rotation was practiced every 3rd year (crop-sequence see Chapter 2.1.2). All trees which were growing within the area had been felled, only smaller bushes of fallow-typical species *Pyliostigma thonningii* and *Acacia gourmaensis* were left by the farmer. Most areas had dense grass cover.

Fig. A2-15: Cotton fields (FCot), about 300–400 m apart; at the time of sampling both in the 2^{nd} year of cotton cultivation. In 2009, both fields were about 13 years old. Most disturbed habitat of LUI-2 although croprotation was practiced every 3^{rd} year (cropsequence see Chapter 2.1.2). Seven different insecticides and fungicides were applied (9.31 kg ha⁻¹ yr⁻¹) during the years of cotton cultivation. One 4.5 m high *V. paradoxa* tree was left at the margin of the first cotton field (see L). J) Field before harvest; K) and L) after the harvest end of the rainy season.

RELATIVE LOCATION OF THE FOUR LAND-USE TYPES STUDIED NEAR FADA N'GOURMA (LUI-2)

Fig. A2-16: Satellite image (screenshot made in Google earth) showing the relative location of the four habitats studied 54 km south of Fada N'Gourma (Gourma province, North-Sudan region, south-eastern Burkina Faso). The colors of the sites are yellow: FCot, cotton field; orange: FFal, field left fallow for 4 years (in total); light green: FPas, pasture land; dark green: FRes, near-natural savanna in the Pama reserve. Unfortunately, the resolution of the region turned bad only 20 km above – into the direction of Fada N'Gourma.

REFERENCES AND ZAÏ LITERATURE

- Bayen P (2010) L'impact de la restauration des sols sur la productivité du Surgho: cas du Zaï amélioré au Yatenga: Laboratoire de Biologie et Ecologie Vegetales, Université de Ouagadougou (ed. Ouagadougou, Burkina Faso, p. 57.
- BURNASOL (2007) Carte morpho-pedologique des provinces du Yatenga du Loroum et du Zondoma. Echelle: 1/200000, Bureau National des Sols. Ouagadougou, Burkina Faso.
- CPCS (1967) Commission de Pédologie et de Cartographie des Sols. Classification des sols, L'Institut national de la recherche agronomique (INRA). Mimeogr. Thivernal-Grignon, Paris, France.
- David F (2003) Action de la macrofaune sur la fertilité des sols dans une succession végétale: rôle des termites dans un système de Zaï forestier au Yatenga, Rapport de stage ingenieur-maître. Institut de Recherche pour le Développement (IRD), Université de Provence, Ouagadougou, Burkina Faso, pp. 1-26.
- Drechsel P, Olaleye A, Adeoti A, Thiombiano L, Barry B, Vohland K (2005) Adoption driver and constraints of resource conservation technologies in sub-Saharan Africa. Berlin: FAO, IWMI, Humbold Universitaet: 1-21.

- Fatondji D (2002) Organic amendment decomposition, nutrient release and nutrient uptake by millet (*Pennisetum glaucum* (L.) R.Br. in a traditional land rehabilitation technique (Zai) in the Sahel. Ecology and Development Series No. 1: 1-147.
- Fatondji D, Martius C, Vlek P (2001) Zaï traditionelle Methode der Landsanierung im Niger. ZEF news 8: 1-8.
- Kaboré D, Reij C (2004) The emergence and spreading of an improved traditional soil and water conservation practice in Burkina Faso. EPTD Discussion Paper No. 114. 1-43.
- Laguemvare T (2003) Reconstitution des sols dégradés et de la diversité biologique: étude de la succession végétale et de l'action des termites dans un système de Zaï forestier (province du Yatenga, Burkina Faso), Diplome d'Ingenieur du developpement rural, Université Polytechnique de Bobo-Dioulasso (UPB), Institut de Recherche pour le Développement (IRD), Bobo-Dioulasso, Burkina Faso, pp. 1-111.
- Maatman A, Sawadogo H, Schweigman C, Ouédraogo A (1998) Application of Zaï and rock bunds in the northwest region of Burkina Faso: study of its impact on household level by using a stochastic linear programming model. Netherlands Journal of Agricultural Science 46: 123-136.
- Marchal JY (1983) Yatenga Nord Haute Volta: dynamique d'un espace rural soudanosahélien. Traveaux et documents de l'ORSTOM n° 167, Thèse de Doctorat d'Etat de Géographie, Université de Paris I (Panthéon-Sorbonne). ORSTOM, Paris, France, pp. 1-908.
- Reij C, Tappan G, Belemvire A (2005) Changing land management practices and vegetation on the Central Plateau of Burkina Faso (1968-2002). Journal of Arid Environments 63: 642-659.
- Roose E (1988) Nouvelle strategie de gestion conservatoire des eaux et des sols: GCES Application en France et en Afrique occidentale, Communication à la conférence internationale ISCO 5: 18 29/01/1988. Bangkok, Thailand, pp. 1-14.
- Roose E (1989a) Diversité des strategies traditionnelles et moderne de conservation de l'eau et des sols influencé du milieu physique et humin en region Soudano-Sahelienne d'Afrique occidentale, Projet de publication no 31 du livre Réseau Zones Arides "La diversité dans l' aridité". ORSTOM. Montpellier, France, pp. 1-32.
- Roose E (1989b) Gestion conservatoire des eaux et de la fertilité des sols dans les paysages soudano-sahéliens de l'Afrique Occidentale: ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), Soil, Crop, and Water Management Systems for Rainfed Agriculture in the Sudano-Sahelian Zone: proceedings of an International Workshop 7- 11 Jan 1987. ICRISAT Sahelian Center, Niamey, Niger, pp. 55-72.
- Roose E (1994) Une méthode traditionnelle des restauration des sols le Zai au pays Mossi (Burkina Faso), ORSTOM. Montpellier, France, pp. 21-29.
- Roose E (2000) Influence de l'homme sur l'erosion. Volume 2: bassins versants, élevage, millieux urbain et rural, Bulletin du reseau erosion 20. IRD, Institut de recherche pour le développement. France, pp. 1-592.
- Roose E, Barthes B (2001) Organic matter management for soil conservation and productivity restoration in Africa: a contribution from Francophone research. Nutrient Cycling in Agroecosystems 61: 159-170.
- Roose E, Kabore V, Guenat C (1993) Le Zaï fonctionnement, limites et amélioration d'une pratique traditionnelle africaine de réhabilitation (Burkina Faso). Cah. Orstom, sér. Pédol. 28: 159-173.

- Roose E, Kabore V, Guenat C (1999) Zai practice: A west African traditional rehabilitation system for semiarid degraded lands, a case study in Burkina Faso. Arid Soil Research and Rehabilitation 13: 343-355.
- Roose E, Kaboré V, Guenat C (1994) Le "Zaï", une technique traditionnelle africaine de réhabilitation des terres dégradées de la région soudano-sahélienne (Burkina Faso): Congrès International sur La restauration et la réhabilitation des terres dégradées des zones arides et semi-arides. Tunisie, du 14 au 19 Novembre 1994 (ed. ORSTOM Paris. Montpellier, France, pp. 1-25.
- Rouland C, Lepage M, Chotte JL, Diouf M, Ndiaye D, Ndiaye S, Seuge C, Brauman A (2003) Experimental manipulation of termites (Isoptera, Macrotermitinae) foraging patterns in a Sahelo-Sudanese savanna: effect of litter quality. Insectes Sociaux 50: 309-316.
- Sawadogo H, Bock L, Lacroix D, Zombre NP (2008) Restoring soil potentialities using Zaï and compost in Yatenga (Burkina Faso). Biotechnologie Agronomie Societe Et Environnement 12: 279-290.
- Shiferaw BA, Okello J, Reddy RV (2009) Adoption and adaptation of natural resource management innovations in smallholder agriculture: reflections on key lessons and best practices. Environment, Development and Sustainability 11: 601-619. doi:10.1007/s10668-007-9132-1.
- Sidibé A (2005) Farm-level adoption of soil and water conservation techniques in northern Burkina Faso. Agricultural Water Management 71: 211-224.
- Siegle M (2009) Untersuchung der Nahrungsökologie der Termitenarten *Macrotermes* subhyalinus und *Odontotermes* sp. im Zaï-Landwirtschaftssystem in Burkina Faso, Diploma. Lehrstuhl für Tierökologie und Tropenbiologie, Universität Würzburg. Würzburg, Germany, pp. 1-91.
- Slingerland MA, Sork VE (2000) Determinants of the practice of Zai and mulching in North Burkina Faso. Journal for Sustainable Agriculture 16: 53-76.
- Somé D, Zombre NP, Zombre G, Macauley HR (2004) Impact de la technique du zaï sur la production du niébé et sur l'évolution des caractéristiques chimiques des sols très dégradés (zipellés) du Burkina Faso. Science et changements planétaires 15: 263-269.
- Sterk G, Haigis J (1998) Farmers' knowledge of wind erosion processes and control methods in Niger. Land Degradation & Development 9: 107-114.
- Trouillier A (2003) Réhabilitation de la fertilité des sols au Burkina Faso: approche agronomique et environnementale comparative du système "Zaï": Diplôme d'Ingenieur Agronome, Institut National Agronomique Paris-Grignon. Paris, France, pp. 1-63.
- Vohland K, Barry B (2009) A review of in situ rainwater harvesting (RWH) practices modifying landscape functions in African drylands. Agriculture, Ecosystems & Environment 131: 119-127. doi:10.1016/j.agee.2009.01.010.
- Zougmore R, Zida Z, Kambou NF (2003) Role of nutrient amendments in the success of halfmoon soil and water conservation practice in semiarid Burkina Faso. Soil & Tillage Research 71: 143-149.

APPENDIX – CHAPTER 3

SAMPLING TERMITES ACCORDING TO THE RAP-PROTOCOL

В

D

Fig. A3-1: Sampling termites within transect-sections following the standardized and rapid assessment protocol (RAP). A) – J) Some examples for microhabitats; K) one soil-scrape, L) soil-scrapes randomly distributed over a transect-section – here: only five of eight soil scrapes visible.

ADDITIONAL SAMPLING METHODS FOR TERMITES: BAITING

Fig. A3-2: Baiting: additional sampling methods for termites. A) Toilet paper roll placed on the soil-surface and fixed by means of an iron bar and B) another roll, offered below the surface – both covered with sheetings of *Odontotermes* sp. C) Soft wood block in the degraded barren land (LUI-1), offered mainly below the soil surface – the small part visible above the is covered with soil-sheetings of *Odontotermes* sp.; D) Soft wood block placed on the soil-surface in the degraded site, completely eaten by termites; E) wooden block offered below the surface (as in C), however no sheetings visible from above; F) and G) show the block-part that was attacked by termites – only visible after excavating it; the latter with fungus-growers of the genus *Microtermes* or *Ancistrotermes*. H) Monolith dug up to a depth of 30 cm before separating it into the horizons 0–10 cm, 11–20 cm and 21–30 cm. The method was dropped after the first year.

SAMPLING ANTS ACCORDING TO THE RAP-PROTOCOL

Fig. A3-3: Sampling ants following the standardized and rapid assessment protocol (RAP). One sampling-station for ants comprised two parts: a pitfall trap (see A and B) and 1 m apart a Winkler quadrate (1 m^2) . The original Winkler method (see C, D and E), described for forest habitats where litter covers the soil surface, was applied in all land-use types for one year. Since comparable litter layers were virtually missing in the land-use types studied in Burkina Faso, a modified version was applied henceforth: in an area of 1 m^2 (so-called 'Winkler site or 'Winkler quadrate'), the vegetation was at first searched for ants and thereupon totally removed and all ants were collected for the duration of 5 minutes. According to our new combined protocol, ants were additionally collected whenever encountered within the termite transect sections. Microhabitats and soil scrapes thereby increase the standard methods used to collect ants. Examples of microhabitats: F) and G) nest-entrance of the granivorous ant species *Messor galla*; H) *Camponotus*-worker carrying a *Macrotermes*-worker after opening the termite mound. I), J) Soil-scrapes (12 x 12 cm, 15 cm deep).

ADDITIONAL SAMPLING METHODS FOR ANTS: BAITING

С

Ε

Fig. A3-4: Additional sampling methods for ants: baiting. Four bait types following two protocols were used to attract ants actively. 1) *Cookies, tuna and sugar water*. Crumbs of cookies, tuna and sugar water, each replicated 10 times, were placed on plastic bags or plastic plates and alternately distributed across the habitat. The distance between the 30 baits was about 5–10 m, depending on the size of the study site. Two hours, mostly additionally four hours after placement, all baits were checked for ants. 2) *Sieve buckets*. To attract subterranean army ants (sub-family Dorylinae), palm oil was mixed with soil and filled in the lower halves of 1 ½ liter plastic water bottles (Laafi). A soldering iron was used to perforate all sides (see E). These 'sieve buckets' (Berghoff et al. 2003) were then burrowed below the soil surface so that its upper border was on a level with the soil surface. They were checked regularly for the duration of 14 days. A handle made from wire were used to lift the sieve buckets out of the soil.

SPECIES RICHNESS ESTIMATORS (INCIDENCE-BASED)

All formulae are from Colwell and Coddington (1994), where more details are given for the different estimators. They were computed in the software program EstimateS.

Definition of variables used in the following formulas:

S _{est}	Estimated species richness, where <i>est</i> is replaced in the formula by the name of the estimator
S _{obs}	Total number of species observed in all samples pooled
S _{infr}	Number of infrequent species (each found in 10 or fewer samples)
S _{freq}	Number of frequent species (each found in more than 10 samples)
m	Total number of samples
m _{inf r}	Number of samples that have at least one infrequent species
Qj	Number of species that occur in exactly j samples (Q_1 is the frequency of uniques, Q_2 the frequency of duplicates)
γ^2_{ice}	Estimated coefficient of variation of the Q_i for infrequent species
p _k	Proportion of samples that contain species k
N _{inf r}	Total number of incidences (occurrences) of infrequent species
C _{ice}	Sample incidence coverage estimator

Jackknife 1: First-order jackknife estimator of species richness (short: Jack1) (Burnham & Overton 1978, 1979; Heltshe & Forrester 1983).

$$\mathbf{S}_{\text{jack1}} = \mathbf{S}_{\text{obs}} + \mathbf{Q}_1 \left(\frac{\mathbf{m} - \mathbf{1}}{\mathbf{m}}\right)$$

Bootstrap: Bootstrap estimator of species richness (short: Boot) (Smith & van Belle 1984).

$$\mathbf{S}_{\text{boot}} = \mathbf{S}_{\text{obs}} + \sum_{k=1}^{S_{\text{obs}}} (1 - \mathbf{p}_k)^m$$

Michaelis-Menten Mean: Michaelis-Menten Mean estimator of species richness (short: MMM) (Raaijmakers 1987).

The asymptotic behavior of the accumulation curve modeled as hyperbola, where S_{max} and B are fitted constants:

$$S(n) = \frac{S_{\max} n}{B+n}$$

This is the Michaelis-Menten equation used in enzyme kinetics and thus there is an extensive literature discussing the estimation of its parameters, which unfortunately presents considerable statistical difficulties. The approach favored by (Raaijmakers 1987) is to calculate S_{max} and B using their maximum likelihood estimators. This approach is applied in EstimateS Version 7.5 (Colwell 2005).

ICE: Incidence-based Coverage Estimator of species richness (short: ICE) (Lee & Chao 1994).

First note that:

$$\mathbf{S}_{obs} = \mathbf{S}_{inf r} + \mathbf{S}_{freq}$$

The sample coverage estimate based on incidence data is:

$$C_{ice} = 1 - \frac{Q_1}{N_{infr}}$$

Where:

$$N_{\inf r} = \sum_{j=1}^{10} jQ_j$$

Thus, the sample coverage estimate is the proportion of all individuals in infrequent species that are not uniques.

Then the ICE estimator of species richness is:

$$S_{ice} = S_{freq} + \frac{S_{infr}}{C_{ice}} + \frac{Q_1}{C_{ice}}\gamma_{ice}^2$$

Where the estimate the coefficient of variation estimates the coefficient of variation of the Q_i 's, is:

$$\gamma_{ice}^{2} = \max\left[\frac{\frac{\mathbf{S}_{infr}}{\sum_{ice}^{10} \mathbf{m}_{infr}} \frac{\sum_{j=1}^{10} j(j-1)\mathbf{Q}_{j}}{\left(\mathbf{m}_{infr-1}\right)^{2} - 1,0}\right]$$

The formula for ICE is undefined when all Infrequent species are Uniques ($Q_1 = N_{infr}$, yielding C = 0). In this case, EstimateS computes the bias-corrected form of Chao2 instead (on Anne Chao's advice).

MEASURES TO JUDGE THE PERFORMANCE OF SPECIES RICHNESS ESTIMATORS

The following formulas were taken from Palmer (1990)

Mean deviation (MD) is a measure of bias.

MD is calculated as follows:

$$\mathrm{MD} = \sum_{j=1}^{P} (E_j - O_j)/P,$$

where E_j is the estimated SR of Zaï stage j,

and O is the true SR of Zaï stage j,

and P is the number of RAP-transects.

MD will be positive if the estimator overestimates and negative if it underestimates. The magnitude of MD measures the poorness of fit.

The mean square deviation (MSD) measures the estimator's closeness to the true species richness SR. MSD is calculated as follows:

$$MSD = \sum_{j=1}^{P} (E_j - O_j)^2 / P.$$

Estimators with small MSDs are more precise than those with large MSDS. An estimate with a high MSD may nevertheless have a MD close to zero. Such an estimator is accurate but not precise.

Both MD and MSD measure the absolute deviation of estimated SR from actual SR.

The mean square proportional deviation (MSPD) measures the relative deviation; MSPD is calculated as follows:

MSPD =
$$\sum_{j=1}^{P} [(E_j - O_j)/O_j]^2/P.$$

Pearson's correlation coefficient (r²) between estimators and true values measures the adequacy of estimators for comparison purposes.

If the Pearson's correlation coefficient r^2 is close to one, the estimator can be used to compare true species richness SR of different areas. The comparison would be valid even with a biased estimator. Conversely, an unbiased estimator would be inappropriate for comparing two sites if it was weakly correlated with true SOBs.

A high correlation does not imply that a one-unit difference in the estimator means a oneunit difference in true species richness SR: it implies that areas with high estimators will generally have more species than areas with low estimators.

ALPHA-DIVERSITY INDICES

Two standard indices of species diversity used to express the α -diversity of termite and ant communities (see General Methods). They were computed by EstimateS and combine information on the species' richness and relative abundance in different ways (calculations followed the description in Magurran (2004).

Shannon diversity: Shannon-Wiener (also known as Weaver) diversity index.

$$H = -\sum_{i=1}^{s} p_i \ln p_i \text{ or, preferably, } e^H$$

Where p_i = the proportion of the ith species (between 0 and 1) and *S* = the number of species.

Simpson diversity: Diversity index to describe the probability that a second individual drawn from a population should be of the same species as the first.

$$D = 1 - \sum_{i=1}^{s} p_i^2$$
 or, preferably, $D' = \left(\sum_{i=1}^{s} p_i^2\right)^{-1}$.

REFERENCES

- Berghoff SM, Maschwitz U, Linsenmair KE (2003) Hypogaeic and epigaeic ant diversity on Borneo: evaluation of baited sieve buckets as study method. Tropical Zoology 16: 153-163.
- Burnham KP, Overton WS (1978) Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65: 623-633.
- Burnham KP, Overton WS (1979) Robust estimation of population size when capture probabilities vary among animals. Ecology 60: 927-936.
- Colwell RK (2005) EstimateS: Statistical estimation of species richness and shared species from samples Version 7.5. User's Guide and application. Retrieved from URL: <<u>http://purl.oclc.org/estimate></u>, Published at: <<u>http://viceroy.eeb.uconn.edu/</u> EstimateS>.
- Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society (Series B) 345: 101-118.
- Heltshe J, Forrester NE (1983) Estimating species richness using the jackknife procedure. Biometrics 39: 1-11.
- Lee SM, Chao A (1994) Estimating population size via sample coverage for closed capturerecapture models. Biometrics 50: 88-97.
- Magurran AE, ed. (2004) Measuring biological diversity. Blackwell Publishing, Malden.
- Palmer MW (1990) The estimation of species richness by extrapolation. Ecology 71: 1195-1198. doi:10.2307/1937387.
- Raaijmakers JGW (1987) Statistical Analysis of the Michaelis-Menten Equation. Biometrics 43: 793-803. doi:10.2307/2531533.
- Smith EP, van Belle G (1984) Nonparametric estimation of species richness. Biometrics 40: 119-129.

APPENDIX – CHAPTER 4

SOIL TEXTURAL TRIANGLE

Fig. A4-1: Soil textural triangle used to obtain the soil type with the totals of the main grain size fractions sand, silt and clay (in %) mechanically determined for a soil sample.

CLIMATIC STATION INSTALLED IN THE DEGRADED LAND, THE INITIAL ZAÏ STAGE

Fig. A4-2: In 2005, a small tipping-bucket rain gauge (1) and a temperature sensor (2) were installed in the degraded site of the Zaï system (sub-Sahel region, Burkina Faso). In 2007, a climatic station (3a) with solar panel (3b) was installed by the climatology group of BIOTA West Africa.

-

Table A4-1: Species name, family and order corresponding to the abbreviations used in Table A4-3 and Table A4-5 for woody plant species assessed in each land-use type of the sub-Sahel and the North-Sudan zone in Burkina Faso. The vegetation was assessed once during the rainy season in an area of 900 m² (2006 North-Sudan; 2007 sub-Sahel).

Short	Species name	Family	Order
A.dd.	Acacia dudgeonii	Fabaceae - Mimosoideae	Fabales
A.go.	Acacia gourmaensis	Fabaceae - Mimosoideae	Fabales
A.h.	Acacia hockii	Fabaceae - Mimosoideae	Fabales
A.m.	Acacia macrostachya	Fabaceae - Mimosoideae	Fabales
A.n.	Acacia nilotica	Fabaceae - Mimosoideae	Fabales
A.p.	Acacia polyacantha	Fabaceae - Mimosoideae	Fabales
A.sn.	Acacia senegal	Fabaceae - Mimosoideae	Fabales
A.sy.	Acacia seyal	Fabaceae - Mimosoideae	Fabales
A.sb.	Acacia sieberiana	Fabaceae - Mimosoideae	Fabales
A.d.	Adansonia digitata	Bombacaceae	Malvales
A.I.	Anogeissus leiocarpus	Combretaceae	Myrtales
A.i.	Azadirachta indica	Meliaceae	Sapindales
B.m.	Baissea multiflora ¹⁾	Apocynaceae	Gentianales
B.ae.	Balanites aegyptiaca	Zygophyllaceae	unassigned
B.r.	Bauhinia rufescens	Fabaceae - Caesalpinioideae	Fabales
B.an.	Boscia angustifolia	Capparidaceae	Brassicales
B.s.	Bridelia scleroneura	Euphorbiaceae	Malpighiales
C.s.	Cassia sieberiana	Fabaceae - Caesalpinioideae	Fabales
C.a.	Combretum aculeatum	Combretaceae	Myrtales
C.c.	Combretum collinum	Combretaceae	Myrtales
C.gl.	Combretum glutinosum	Combretaceae	Myrtales
C.m.	Combretum micranthum	Combretaceae	Myrtales
C.n.	Combretum nigricans	Combretaceae	Myrtales
C.f.	Crossopteryx febrifuga	Rubiaceae	Gentianales
D.c.	Dichrostachys cinerea	Fabaceae - Mimosoideae	Fabales
Di.m.	Diospyros mespiliformis	Ebenaceae	Ericales
F.ap.	Feretia apodanthera	Rubiaceae	Gentianales
G.e.	Gardenia erubescens	Rubiaceae	Gentianales
G.t.	Gardenia ternifolia	Rubiaceae	Gentianales
G.b.	Grewia bicolor	Tiliaceae	Malvales
G.m.	Grewia mollis	Tiliaceae	Malvales
G.s.	Guiera senegalensis	Combretaceae	Myrtales
J.c.	Jatropha curcas	Euphorbiaceae	Malpighiales
J.g.	Jatropha gossypiifolia	Euphorbiaceae	Malpighiales

Short	Species name	Family	Order
L.a.	Lannea acida	Anacardiaceae	Sapindales
L.m.	Lannea microcarpa	Anacardiaceae	Sapindales
M.s.	Maytenus senegalensis	Celastraceae	unassigned
P.r.	Piliostigma reticulatum	Fabaceae - Caesalpinioideae	Fabales
P.t.	Piliostigma thonningii	Fabaceae - Caesalpinioideae	Fabales
P.I.	Pterocarpus lucens	Fabaceae - Papilionoideae	Fabales
S.b.	Sclerocarya birrea	Anacardiaceae	Sapindales
S.i.	Sclerocarya indica	Anacardiaceae	Sapindales
S.k.	Stereospermum kunthianum	Bignoniaceae	Lamiales
T.i.	Tamarindus indica	Fabaceae - Caesalpinioideae	Fabales
T.a.	Terminalia avicennioides	Combretaceae	Myrtales
V.p.	Vitellaria paradoxa	Sapotaceae	Ericales
Z.ma.	Ziziphus mauritiana	Rhamnaceae	Rosales
Z.mu.	Ziziphus mucronata	Rhamnaceae	Rosales

¹⁾ Life form: Liana = species that germinates on the ground and maintains soil contact while using another plant for support. All other species are Phanerophytes = woody or herbaceous perennial species (≥ 51 cm height), whose shoots do not die back (in other words: trees and large shrubs).

RESULTS FOR THE STUDY SITES IN THE SUB-SAHEL REGION (LUI-1)

MEAN GRAVEL AND MEAN SOIL WATER CONTENT ALONG PROFILES DUG IN THE ZAÏ STAGES

Fig. A4-3: For each Zaï stage and each horizon along the soil profile, **a**) the mean gravel content (grain-size ≥ 2 mm) is shown; **b**) the mean soil water content (%) is shown for the degraded site and the old forest. The means were calculated from the replicate profiles dug in each habitat (n = 5 in the young forest, n = 13 in the other three sites) and are given as percentage of the total soil dry weight. The standard deviations are indicated by the horizontal bars.

ADDITIONAL TOPSOIL PARAMETERS ANALYZED FOR SAMPLES OF THE FOUR ZAÏ STAGES

Table A4-2: Plant available nutrients, cations and cation exchange capacity of the upper soil horizon (0–10 cm) in the succession stages of the Zaï system in Ouahigouya (sub-Sahel zone, Burkina Faso). For each parameter, first the median \pm standard deviation, then minimum / maximum values are given.

	Characte	ristics of the hab	oitats' topsoil (0-	·10 cm)
Study sites of the sub-Sahel zone	Degraded area ZDeg	Millet field ZMil	Young forest ZF20	Old forest ZF30
Ν	15	8	15	10
	1.0 ± 0.9	0.58 ± 2.1	0.42 ± 1.03	0.36 ± 1.3
P_CAL	0.17 / 3.2	0.34 / 4.94	0.17 / 3.0	0.25 / 3.7
	7.0 ± 21.0	16.6 ± 60.6	8.2 ± 29.4	15.5 ± 55.4
R_CAL	5.0 / 66.8	11.0 / 152.9	5.5 / 98.9	6.5 / 166.5
N_{2}^{+} (mmol k_{3}^{-1})	0.12 ± 0.22	0.34 ± 0.13	0.22 ± 0.29	0.30 ± 0.18
	0 / 0.92	0.22 / 0.60	0.01 / 0.87	0.05 / 0.54
k^{+} (mmol ka^{-1})	2.07 ± 0.92	2.84 ± 0.72	2.05 ± 5.75	3.23 ± 1.63
	1.23 / 4.42	1.47 / 3.93	0 / 23.90	1.44 / 7.03
Ma^{2+} (mmol ka^{-1})	3.71 ± 3.70	10.45 ± 1.74	6.38 ± 8.64	8.52 ± 2.10
	1.15 / 16.51	8.26 / 12.90	3.20 / 38.10	3.61 / 10.84
Ca^{2+} (mmol kg ⁻¹)	14.65 ± 9.11	31.22 ± 3.93	18.36 ± 25.98	17.77 ± 7.32
	7.10 / 43.61	28.07 / 40.53	7.94 / 109.0	6.23 / 31.18
CEC (mmol kg ⁻¹)	51.5 ± 26.9	92.6 ± 12.5	46.1 ± 30.2	53.3 ± 16.2
	6.9 / 89.7	74.4 / 111.3	7.9 / 109.8	21.4 / 82.0
DC (0/)	35.6 ± 16.1	50.3 ± 8.5	48.7 ± 10.4	56.1 ± 8.7
(א) כם	22.4 / 72.2	40.5 / 69.4	33.1 / 63.6	48.2 / 74.2

* Plant-available phosphorous / potassium (P_CAL / K_CAL): N = 16 for ZF20, N = 11 for ZF30.

Abbreviated parameters left are: N = sample number; Cations = sodium Na⁺, potassium K⁺, magnesium Mg²⁺, calcium Ca²⁺; CEC_{pH 8.1} = potential cation exchange capacity at pH 8.1; BS = base saturation.

Table A4-3: Woody plant species assessed in an area of 900 m² in each of the four succession stages of the Zaï system in Ouahigouya (sub-Sahel zone, Burkina Faso). The degraded, barren area had no trees at all. The species (names abbreviated) are ranked in descending order according to a) their abundance (Ind; number of individuals) and b) the total 'woody plant basal area' (wPBA) of all individuals belonging to the species (in cm²). Ranks are shown 1) for the combined area of all assessment plots (3600 m²) (Rank all), and 2) for each habitat separately (Rank). RA_{cum}: cumulated relative abundance (in %).

Succ	ession sta in Ouahig	ges of t ouya (3	:he Zaï sy 3.600 m²	ystem)	barren soil (ZDeg)	Millet field (ZMil) (900 m²)				Υοι	ıng Zaï (90	forest (Z 10 m²)	F20)	Old Zaï forest (ZF30) (900 m²)				
Rank all	Tree species	Ind	RA _{cum} (%)	wPBA (cm²)	no trees at all	Rank	Ind	RA _{cum} (%)	wPBA (cm²)	Rank	Ind	RA _{cum} (%)	wPBA (cm²)	Rank	Ind	RA _{cum} (%)	wPBA (cm²)	
1	G.s.	227	29.5	3557		12	1	2.1	2	1	105	34.9	1686	1	121	28.7	1869	
2	C.m.	157	49.9	1983		7	1	4.3	92	2	52	52.2	952	2	104	53.3	939	
3	P.r.	88	61.3	1679		3	7	19.1	71	5	13	56.5	174	3	68	69.4	1434	
4	S.b.	62	69.4	2337		4	6	31.9	118	4	40	69.8	1071	6	16	73.2	1148	
5	B.ae.	57	76.8	3340						3	47	85.4	2143	7	10	75.6	1197	
6	P.I.	37	81.6	262						6	11	89.0	60	4	26	81.8	202	
7	C.s.	32	85.7	1119		5	6	44.7	90	7	7	91.4	217	5	19	86.3	812	
8	A.sb.	15	87.7	1371		2	8	61.7	32					10	7	87.9	1339	
9	A.d.	14	89.5	285		1	11	85.1	181	10	3	92.4	104					
10	L.m.	11	90.9	1581		8	1	87.2	39	13	2	93.0	34	9	8	89.8	1508	
11	Z.ma.	11	92.3	84						14	2	93.7	8	8	9	91.9	76	
12	A.n.	10	93.6	780		6	3	93.6	11					11	7	93.6	769	
13	J.g.	7	94.5	166										12	7	95.3	166	
14	A.i.	6	95.3	398						8	4	95.0	50	15	2	95.7	348	
15	A.p.	5	96.0	303										13	5	96.9	303	
16	C.a.	5	96.6	25						9	4	96.3	20	22	1	97.2	5	
17	G.b.	4	97.1	8						19	1	96.7	3	14	3	97.9	5	

*For the corresponding species names, as well as the family and order they belong to, please refer to Table A4-1 (Appendix 4).

	Zaï s Ouahigo	ystem uya (3	sites .600 m ²)		barren soil (ZDeg)	Γ	Villet f (90	ield (ZMi 10 m²)	il)	Υοι	ıng Zaï (90	forest (Z 10 m²)	F20)	Old Zaï forest (ZF30) (900 m²)			
Rank all	Tree species	Ind	RA _{cum} (%)	wPBA (cm²)	no trees at all	Rank	Ind	RA _{cum} (%)	wPBA (cm²)	Rank	Ind	RA _{cum} (%)	wPBA (cm²)	Rank	Ind	RA _{cum} (%)	wPBA (cm²)
18	A.sy.	3	97.5	298						17	1	97.0	11	16	2	98.3	287
19	V.p.	2	97.8	623						11	2	97.7	623				
20	M.s.	2	98.1	163						12	2	98.3	163				
21	D.c.	2	98.3	25		9	1	95.7	23					24	1	98.6	2
22	B.an.	2	98.6	10						21	1	98.7	2	20	1	98.8	8
23	Di.m.	1	98.7	92						15	1	99.0	92				
24	A.sn.	1	98.8	50										17	1	99.1	50
25	G.t.	1	99.0	42										18	1	99.3	42
26	S.i.	1	99.1	13						16	1	99.3	13				
27	B.m.	1	99.2	11										19	1	99.5	11
28	B.r.	1	99.4	10		10	1	97.9	10								
29	Z.mu.	1	99.5	8						18	1	99.7	8				
30	A.m.	1	99.6	6										21	1	99.8	6
31	T.i.	1	99.7	6		11	1	100	6								
32	J.c.	1	99.9	4										23	1	100	4
33	S.k.	1	100	3						20	1	100	3				
4 x 900 m ² 33 species; 770 trees Σ wPBA: 20,642 cm ²		0 trees 42 cm ²	no trees	12	2 speci Σ wPBA	es; 47 tre A: 675 cm	ees 1 ²	21 Σ	specie wPBA	es; 301 tro : 7,437 cr	ees n ²	2 Σ	4 specie wPBA:	es; 422 tre : 12,530 cr	ees n ²		

*For the corresponding species names, as well as the family and order they belong to, please refer to Table A4-1 (Appendix 4).

RESULTS FOR THE STUDY SITES IN THE NORTH-SUDAN REGION (LUI-2)

ADDITIONAL PARAMETERS ANALYZED FOR TOPSOIL SAMPLES OF THE NORTH-SUDANESE SITES

Table A4-4: For the topsoil (0–10 cm) of each land-use type studied near Fada N'Gourma (North-Sudan zone, Burkina Faso), the potential cation exchange capacity ($CEC_{pH \ 8.1}$), the concentration of the cations sodium (Na⁺), potassium (K⁺), magnesium (Mg²⁺) and calcium (Ca²⁺), and the base saturation (BS) are shown. The parameters were analyzed for one composite sample per habitat (N = 1).

Study sites of the	Chemical parameters of the habitats' topsoil (0–10 cm)									
North-Sudan zone in Burkina Faso (LUI-2)	Pama reserve FRes	Pasture area FPas	Fallow (4 th year) FFal	Cotton field FCot						
Ν	1	1	1	1						
Na ⁺ (mmol _c kg ⁻¹)	0.3	0.5	0.6	1.4						
K⁺ (mmol _c kg⁻¹)	1.0	0.9	3.8	2.0						
Mg ²⁺ (mmol _c kg ⁻¹)	10.8	7.2	50.5	46.4						
Ca ²⁺ (mmol _c kg ⁻¹)	32.7	21.8	218.0	149.6						
CEC _{pH 8.1} * (mmol _c kg ⁻¹)*	54.9	50.5	322.9	259.4						
BS (%)	81.7	60.4	84.5	76.9						

EPIGEAL TERMITE MOUNDS

ASSESSMENT OF EPIGEAL TERMITE MOUNDS IN THE DIFFERENT STUDY SITES (METHODOLOGY)

In each Zaï stage studied in Ouahigouya (sub-Sahel region, northern Burkina Faso), epigeal termite mounds had been assessed once during the rainy season in August 2008 within the whole hectare-plot. Each site was sub-divided into plots of 25 m² (5 x 5 m), yielding a total of about 400 contiguous subplots per land-use type. The location of each termite mound was mapped and its height measured. The mounds were sampled destructively to allow for determining its status 'dead' or 'alive', and to collect specimens of the constructing and inquiline species (Eggleton & Bignell 1997). Specimens were placed in vials with 90% ethanol for later identification.

In the North-Sudanese sites, solely live termite mounds had been assessed together with the vegetation which had been assessed during the rainy season 2007 within a square cut plot of 900 m^2 area. The constructing termites were identified to the genus level. To enable comparisons with results of the Zaï system, mound numbers were converted into mounds per hectare.

Table A4-5: Woody plant species assessed in an area of 900 m² in each of the four habitats studied near Fada N'Gourma (North-Sudan zone, Burkina Faso). The species (names abbreviated*) are ranked in descending order according to a) their abundance (Ind; number of individuals) and b) the total 'woody plant basal area' (wPBA) of all individuals belonging to the species (in cm²). Ranks are shown 1) for the combined area of all assessment plots (3600 m²) (Rank all), and 2) for each habitat separately (Rank). RA_{cum}: cumulated relative abundance (in %). *For the corresponding species names, please refer to Table A4-1 (Appendix 4).

Study	Study sites in the North-Sudan regio (3.600 m ²) {ank Tree RA _{cum} wPB.				Ра	ma res (90	serve (FR 10 m²)	les)	Pa	asture (90	area (FPa 10 m²)	as)	F	allow (90	land (FFa)0 m²)	l)	Cotton field (FCot) (900 m ²)		
Rank all	Tree species	Ind	RA _{cum} (%)	wPBA (cm ²)	Rank	Ind	RA _{cum} (%)	wPBA (cm ²)	Rank	Ind	RA _{cum} (%)	wPBA (cm ²)	Rank	Ind	RA _{cum} (%)	wPBA (cm ²)	Rank	Ind	wPBA (cm ²)
1	T.a.	21	14.0	5546	2	20	25.3	5437					7	1	5.6	109			
2	C.f.	21	28.0	1792	1	21	51.9	1792											
3	A.I.	14	37.3	6987					1	14	26.9	6987							
4	C.gl.	14	46.7	1061	3	13	68.4	958	8	1	28.8	103							
5	A.go.	12	54.7	1268	11	1	69.6	39	2	9	46.2	1155	5	2	16.7	74			
6	A.h.	10	61.3	331	8	1	70.9	161	3	9	63.5	170							
7	P.t.	9	67.3	462	9	1	72.2	97					1	8	61.1	365			
8	M.s.	8	72.7	1979	4	8	82.3	1979											
9	F.ap.	8	78.0	473					4	8	78.8	473							
10	C.c.	7	82.7	264	5	7	91.1	264											
11	C.n.	7	87.3	113					5	7	92.3	113							
12	B.ae.	4	90.0	781					6	2	96.2	592	4	2	72.2	189			
13	G.e.	4	92.7	289	6	4	96.2	289											
14	V.p.	3	94.7	1361									2	2	83.3	971	1	1	390
15	C.m.	2	96.0	429									3	2	94.4	429			
16	A.dd.	1	96.7	448					7	1	98.1	448							
17	L.a.	1	97.3	296	7	1	97.5	296											
18	Di.m.	1	98.0	161									6	1	100	161			
19	B.s.	1	98.7	72	10	1	98.7	72											
20	D.c.	1	99.3	32					9	1	100	32							
21	G.m.	1	100	8	12	1	100	8											
4 x 90	4 x 900 m ² 21 species; 150 trees Σ wPBA: 24,153 cm ²		12 1 100 8 12 species; 79 trees Σ wPBA: 11,392 cm ²				9 species; 52 trees Σ wPBA: 10,073 cm ²				7 species; 18 trees Σ wPBA: 2,298 cm ²				1 species; 1 tree Σ wPBA: 390 cm ²				

DIFFERENCES BETWEEN THE TWO REGIONS WITH REGARD TO THE NESTING BEHAVIOR (RESULTS)

When comparing the termite fauna between the North-Sudan and the sub-Sahel region, some differences were particularly striking with regard to the nesting behavior:

- In the two regions, different nesting behavior could be observed for the fungusgrowing termite genus Odontotermes. The 'classical' nest structure of Odontotermes according to (Darlington 1997) is an epigeal mound that is penetrated by a few open air passages – vertical shafts of circular to oval cross-section (Fig. A4-12). However, the genus Odontotermes contains many species, which build a variety of nests. The nest architecture can be affected by local factors such as soil depth, texture and drainage, however it tends to be constant at any one locality (Darlington 1997).
 - In the sub-Sahelian sites, no traces of *Odontotermes* nests could be seen above the surface – they were fully subterranean. When digging soil profiles up to a depth of one meter, fungus combs of *Odontotermes* had been found in a depth of 50–90 cm below the soil surface.
 - In the North-Sudanese sites, Odontotermes mounds had a low but distinctly raised surface (10–30 cm above the surrounding soil) that was devoid of any vegetation, and a few open air passages in 10–20 cm tall raised rims (Ø 5–10 cm) resembling small chimneys ('classical' nest structure) (Fig. A4-12). In an area of one hectare, 11 Odontotermes mounds had been found in the land which had been exclusively used as pasture area for the last 20 years. In an area of one hectare of the near-natural savanna in the reserve of Pama, 33 Odontotermes mounds had been assessed.
- The tallest and most conspicuous epigeal mounds in both regions were constructed by fungus-growing termites of the genus *Macrotermes*. Differences could be observed in the mound-architecture (external and the internal shape).
 - In the North-Sudanese sites, mounds of *Macrotermes bellicosus* (Smeathman) were tall and had an eye-catching, unique external shape. The mound surface was highly structured and 'folded' with many ridges. (Grassé & Noirot 1961) classified them as 'nids en cathédrale' (Fig. A4-6, Fig. A4-7, Fig. A4-8, Fig. A4-9).
 - In the sub-Sahelian sites, *Macrotermes* mounds (mostly *M. subhyalinus*) were lower, compacter and dome-shaped, and they were lacking the protruding structures. (Grassé & Noirot 1961) classified them as 'nids en dome' (Fig. A4-10, Fig. A4-11).
- High numbers of mounds constructed by the grass-feeding termite genus Trinervitermes were characterizing the savanna habitats of the North-Sudan zone. Trinervitermes mounds had been especially numerous in the near-natural reserve of Pama.

NUMBER OF EPIGEAL TERMITE MOUNDS ASSESSED IN THE TWO STUDY REGIONS (RESULTS)

For each of the succession stages of the Zaï system in Ouahigouya, the number of epigeal mounds assessed in one hectare is shown per termite species, functional group and mound status (live or dead) (Fig. A4-4). In those cases where the constructing termite species could not be determined, the genus is indicated instead. Fig. A4-5 is illustrating the number of live epigeal termite mounds assessed per termite genus and functional group in the habitats near Fada N'Gourma within an area of 900 m². To facilitate the comparison with the sub-Sahelian sites, numbers were converted into mounds per hectare.

In both figures, the functional group to which the termites belong is indicated by the bar color and additionally, as two-digit code in parentheses which are preceding the species (genus) name, with fungus growers (fg) in orange, grass feeders (gf) in green, soil feeders (sf) in brown, wood feeders (wf) in grey, and unknown (uk) in white (Fig. A4-4, Fig. A4-5). Compared to the sites in the sub-Sahel region, significant more epigeal termite mounds had been found in those of the North-Sudan region. However, in both climate zones epigeal termite mounds were completely missing in areas which were heavily impacted by humans: the degraded land in the sub-Sahel region and the cotton fields in the North-Sudan zone of Burkina Faso (Fig. A4-4, Fig. A4-5).

The subsistence farmer Yacouba Sawadogo (Zaï system, Ouahigouya, sub-Sahel region) knew about the beneficial effect of soil feeding termites (e.g. genus *Cubitermes*) on the soil nutrient status. Over the last decade, he therefore transferred several *Cubitermes* mounds from other places into his millet fields. The high number of *Cubitermes* mounds found in his millet field has therefore to be handled with caution (Fig. A4-4). Furthermore, since soil feeding termites often show a subterranean nesting behaviour, the highest number of epigeal soil feeding termite mounds visible in the millet field, should not be automatically equated with the highest number of soil feeding termite colonies in general. In the diagram in Chapter 5.3.2.2 (Fig. 5-2), illustrating the total termite diversity assessed in the eight study sites, more soil feeding species and genera were found in the two forest sites compared to the millet fields – and most of these species were living subterranean.

No epigeal mound constructed by soil-feeding termites was recorded in any of the North-Sudanese sites (Fig. A4-5). However according to Fig. 5-2 and Table 5-6 in Chapter 5.3.2.2, two soil-feeding species belonging to two different genera were collected following the standard protocol RAP in the near-natural savanna of the Pama reserve and one soil-feeding species in the short-term fallow (for the RAP-protocol please refer to Chapter 3.1).

Number of live & dead termite mounds per species & functional group

Fig. A4-4: For each Zaï stage, the number of live and dead termite mounds per hectare is shown per species and functional group. In those cases where the constructing termite species could not be determined, the genus is indicated instead. No epigeal termite mound was found in the degraded, barren site. The functional group is indicated by the color and as two-digit code written in parentheses preceding the species name: fungus grower (fg) = orange; grass feeder (gf) = green; soil feeder (sf) = brown; wood feeder (wf) = grey and unknown (uk) = white.

Number of live termite mounds per genus & functional group

Fig. A4-5: For each habitat studied in the North-Sudan region, the number of live termite mounds per hectare is shown per genus and functional group. No epigeal termite mound was found in the heavily impacted site, the cotton field. The functional group is indicated by the color and as two-digit code written in parentheses preceding the genus name: fungus grower (fg) = orange; grass feeder (gf) = green and wood feeder (wf) = grey.

EPIGEAL MOUNDS OF MACROTERMES BELLICOSUS IN THE NORTH-SUDAN REGION

Fig. A4-6: Mound built by *Macrotermes bellicosus* (Smeathman, 1781) in the North-Sudan zone (Burkina Faso) were tall and had an eye-catching, unique external shape. (Grassé & Noirot 1961) classified them as 'nids en cathédrale'.

Fig. A4-7: Opened mound built by *Macrotermes bellicosus* (Smeathman, 1781) in the North-Sudan zone (Burkina Faso). Close-up: Fungus-comb of the symbiotic fungus (*Termitomyces*).

Fig. A4-8: Macrotermes bellicosus (Smeathman, 1781) queen.

Fig. A4-9: Royal chamber of *Macrotermes bellicosus* (Smeathman, 1781) in the North-Sudan region (Burkina Faso)

EPIGEAL MOUNDS OF MACROTERMES SUBHYALINUS IN NORTHERN BURKINA FASO

Fig. A4-10: Opened mound built by *Macrotermes subhyalinus* (Rambur, 1842) in northern Burkina Faso.

Fig. A4-11: *Macrotermes subhyalinus* (Rambur, 1842) queen with workers and small solders in northern Burkina Faso.

EPIGEAL MOUNDS OF ODONTOTERMES SP. IN THE NORTH-SUDAN REGION

Fig. A4-12: In the North-Sudan region in Burkina Faso, mounds of *Odontotermes* Holmgren, 1912 have a low but distinctly raised surface (10–30 cm above the surrounding soil) and a few open air passages ('classical' nest structure). **A)** Open air passages (10–20 cm tall raised rims; \emptyset 5–10 cm) resembling small chimneys; view from the side and from above with workers and solders. **B)** Low but distinctly raised surface of an *Odontotermes* mound in the Pama reserve.

B)

REFERENCES

- Darlington JPEC (1997) Comparison of nest structure and caste parameters of sympatric species of Odontotermes (Termitidae, Macrotermitinae) in Kenya. 44: 393-408.
- Eggleton P, Bignell DE (1997) Secondary occupation of epigeal termite (Isoptera) mounds by other termites in the Mbalmayo Forest Reserve, southern Cameroon, and its biological significance. Journal of African Zoology 111: 489-498.
- Grassé PP, Noirot C (1961) Nouvelles recherches sur la systématique et l'éthologie des termites champignonnistes du genre Bellicositermes Emerson. Insectes Sociaux 8: 311–359.

APPENDIX – CHAPTER V

AGRICULTURAL INTENSIFICATION INDEX

Table A5-1: For each habitat of the two disturbance gradients studied in Burkina Faso, the intensity of anthropogenic impact was calculated. Habitat-health for the first gradient in the sub-Sahel region increases from left to right, while it is decreasing for the second gradient in the North-Sudan region. The range of the values calculated for each sub-index is being equally weighted between 0-1: the respective maximum values are brought back to 1 by dividing each value by the corresponding highest value. In each cell, first the value is shown and in parentheses for the calculation of the Agricultural Intensification (AI) Index, the sub-index is shown. Habitats are ZDeg: degraded land, ZMil: millet fields, ZF20: young Zaï forest, ZF30: old Zaï forest; and FRes: Pama reserve, FPas: pasture, FFal: fallow, FCot: cotton field.

Climatic region Mean annual rainfall	ľ	Sub-Sah 500 – 700	el region) mm yr⁻¹	1	North-Sudan region 900 – 1100 mm yr ⁻¹					
Cropping season (% of year)	Ju	ın – mid-	Oct (38 %	6)	Ma	ay – mid-	Nov (54 9	%)		
Land-use type	ZDeg	ZMil	ZF20	ZF30	FRes	FPas	FFal	FCot		
Age of site, length of fallow (in years)	30, 30	11, 0	20, 16	30, 26	20, 20	20, 20	19, 4	13, 0		
Mean cultivation-intensity	0	0.38	0.08	0.05	0	0	0.43	0.54		
(CI) (in %)	(0. 0)	(1.00)	(0.21)	(0.13)	(0.00)	(0.00)	(0.80)	(1.00)		
Mean pest control rate (PCR)	0	0	0	0	0	0	1.96	3.58		
(in kg chemicals ha ⁻¹ yr ⁻¹)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.55)	(1.00)		
Mean grazing-pressure (GP)	100	62.5	62.5	62.5	0	100	57.2	45.8		
(in %)	(1.00)	(0.63)	(0.63)	(0.63)	(0.00)	(1.00)	(0.57)	(0.46)		
Mean fertilization rate (FR)	0	4600	920	613	0	0**	5526	7000		
(in kg compost ha ⁻¹ yr ⁻¹)	(0.00)	(1.00)	(0.20)	(0.13)	(0.00)	(0.00)	(0.79)	(1.00)		
Mean tillage frequency (TF)	0	2	0.4	0.27	0	0	1.57	2		
	(0.00)	(1.00)	(0.20)	(0.14)	(0.00)	(0.00)	(0.79)	(1.00)		
Al-Index	1.00*	0.73	0.25	0.17	0.00	0.20	0.70	0.89		

* Degraded, barren land (ZDeg): index-value of 1.00 was artificially set.

** No fertilizer was applied, however, grazing cattle in the whole pasture area (FPas)

ORDER OF THE SITES ACCORDING TO THE VALUES OF THE AGRICULTURAL INTENSIFICATION INDEX (AI):

Starting with the least intensified, near natural system and ending with the most intensified habitat:

Sites in the sub-Sahel region:	ZDeg > ZMil > ZF20 > ZF30
Sites in the North-Sudanese region:	FCot > FFal > FPas > FRes

CALCULATING THE SUB-INDICES OF THE AGRICULTURAL INTENSIFICATION INDEX:

AGE OF SITE (IN YEARS) * (ALL FOR THE YEAR 2008) The degraded, barren land ZDeg and the near-natural savanna in the Pama reserve FRes are assumed to be the initial stage of the respective LUI-gradient. Therefore and since their correct age is unknown, it was artificially set to the same age as the oldest of the other three sites MEAN CULTIVATION-INTENSITY (CI) Duration of the cropping season in the sub-Sahel region: 6.5 months per year; Duration of the cropping season in the North-Sudanese region: 4.5 months per year; Fallow land FFal: Age of site 19 years = 228 months, including 4 years fallowing; 15 years x 6.5 months = 97.5 months during which site had been cultivated since establishment; **CI:** 97.5 months / 228 months \rightarrow CI = 0.43 (sub-index value: 0.43 /0.54 = 0.80) Cotton field FCot: Age of site 13 years/ 156 months; 13 years x 6.5 months = 49.5 cropping-months in total;; CI: 84.5 months / 156 months \rightarrow CI = 0.54 (sub-index value: 1.00) Millet field **ZMil**: Age of site 11 years = 132 months; 11 years x 4.5 months = 84.5 cropping-months in total; CI: 49.5 months / 132 months \rightarrow CI = 0.38 (sub-index value: 1.00) Young Zaï forest ZF20: Age of site 20 years = 240 months, including 16 years fallow; 4 years x 4.5 months = 18 cropping-months in total; CI: 18 months / 240 months \rightarrow CI = 0.08 (sub-index value: 0.08 / 0.38 = 0.21) Old Zaï forest ZF30: Age of site 30 years = 360 months, including 26 years fallow; 4 years x 4.5 months = 18 cropping-months in total; CI: 18 months / 360 months \rightarrow CI = 0.05 (sub-index value: 0.05 / 0.38 = 0.13) MEAN PEST CONTROL RATE (PCR) In the North-Sudanese region, seven different chemicals (insecticides, fungicides) with a total weight of 9.31 kg per hectare and year were applied for cotton cultivation Cotton field FCot: Age of site 13 years including 5 years of cotton cultivation; 5 years x 9.31 kg ha⁻¹ yr⁻¹ = 46.55 kg per hectare were applied in total since establishment of the site; **PCR:** 46.55 kg ha⁻¹ / 13 years \rightarrow <u>PCR = 3.58 kg ha⁻¹ yr</u>⁻¹ (sub-index value: 1.00) Fallow land FFal: Age of site 19 years including 4 years of cotton cultivation; 4 years x 9.31 kg ha⁻¹ yr⁻¹ = 37.24 kg per hectare applied in total; **PCR:** 37.24 kg ha⁻¹ / 19 years \rightarrow <u>PCR = 1.96 kg ha⁻¹ yr</u>⁻¹ (sub-index value: 1.98 / 3.58 = 0.55)

MEAN GRAZING-PRESSURE (GP)

Mean percentage of the year when grazing was allowed is used instead.

Pasture area **FPas**: age of site 20 years or 240 months; grazing allowed all-the-year; **GP:** (240 months / 240 months) x 100% \rightarrow <u>GP = 100%</u> (sub-index value: 1.00)

Fallow land **FFal**: age of site 19 years = 228 months, 4 years or 48 months fallow: grazing yearround; 15 years x 5.5 months grazing = 82.5 months + 48 months = 130.5 months grazing pressure **GP**: (130.5 months / 228 months) x 100% \rightarrow <u>GP = 57.2%</u>

Cotton field **FCot**: age of site 13 years = 156 months; 13 years x 5.5 months grazing = 71.5 months **GP:** (71.5 months / 156 months) x 100% \rightarrow <u>GP = 45.8%</u>

Degraded land **ZDeg**: grazing allowed all-the-year; **GP:** (360 months / 360 months) x 100% \rightarrow <u>GP = 100%</u> (sub-index value: 1.00)

Millet field **ZMil**: age of site 11 years = 132 months; 11 years x 7.5 months = 82.5 grazing pressure; **GP**: (82.5 months / 132 months) x 100% \rightarrow <u>GP = 62.5%</u>

Young Zaï forest **ZF20**: age of site 20 years = 240 months, including 16 years fallow; During the peak rainy season (4 months of the year) cattle is brought to grass nearby to graze; 4 years cropping x 7.5 months = 30 months; 16 years fallow x 8 months grazing = 128 months; **GP:** (158 months/ 240 months) x 100% \rightarrow <u>GP = 65.8%</u>

Old Zaï forest **ZF30**: age of site 30 years = 360 months, including 26 years fallow; For the last 10 years, the forest was protected all-the-year; 16 years fallow with 8 months grazing 4 years cropping x 7.5 months = 30 months; 16 years fallow x 8 months grazing = 128 months; **GP:** (158 months/ 360 months) x 100% \rightarrow <u>GP = 43.9%</u>

MEAN TILLAGE FREQUENCY (TF)

In both regions, the fields are tilled 2 times per year

Fallow land **FFal**: age of site 19 years, including 4 years fallow and no tilling; 15 years x 2 = 30 times the fallow was tilled in total **TF:** 30 times / 19 years \rightarrow <u>TF = 1.57 times</u> mean tilling frequency per year

Cotton field **FCot**: age of site 13 years x 2 times = 26 times the field was tilled in total **TF:** 26 times / 13 years \rightarrow <u>TF = 2 times</u> (sub-index value: 1.00)

Millet field **ZMil**: age of site 11 years x 2 times = 22 times the field was tilled in total ; **TF:** 22 times / 11 years \rightarrow <u>TF = 2 times</u> (sub-index value: 1.00)

Young Zaï forest **ZF20**: age of site 20 years, including 16 years fallow; cropping period: 4 years **TF**: 8 times / 20 years \rightarrow <u>TF = 0.4 times</u>

Old Zaï forest **ZF30**: age of site 30 years, including 26 years fallow; cropping period: 4 years **TF:** 8 times / 30 years \rightarrow <u>TF = 0.27 times</u>

MEAN FERTILIZATION RATE (FR)

In the North-Sudan zone: about 700 g compost applied per squaremeter; the mean fertilization rate per hectare therefore is: 10,000 m² x 700 g \rightarrow about 7,000 kg compost ha⁻¹ yr⁻¹

In the sub-Sahel zone (Zaï system): 375-475 g compost applied per Zaï-pit; 1 ha \approx 9,700 pits; the mean fertilization rate per hectare therefore is: 375-475 g compost x 9,700 pits \rightarrow 3,638 – 4,608 kg ha⁻¹ yr⁻¹ \rightarrow 4,600 kg compost ha⁻¹ yr⁻¹

Fallow land FFal:

Age of site 19 years, including 4 years fallow; 15 years x 7000 kg ha⁻¹ yr⁻¹ = 105,000 kg ha⁻¹ in total; **FR:** 105,000 kg ha⁻¹/ 19 yrs \rightarrow <u>FR = 5,526 kg ha⁻¹ yr⁻¹</u>

Cotton field **FCot**: age of site 13 years; **FR:** 13 years cropping x 7000 kg ha⁻¹ yr⁻¹ \rightarrow <u>FR = 7,000 kg ha⁻¹ yr⁻¹</u> (sub-index value: 1.00)

Millet field **ZMil**: Age of site 11 years; **FR**: 11 years cropping x 4,600 kg compost ha⁻¹ yr⁻¹ \rightarrow <u>FR = 4,600 kg ha⁻¹ yr⁻¹</u> (sub-index value: 1.00)

Young Zaï forest **ZF20**: Age of site 20 years, 16 years fallow; cropping period: 4 years =18,400 kg ha⁻¹ **FR:** (18,400 kg ha⁻¹) / 20 years \rightarrow <u>FR = 920 kg ha⁻¹ yr⁻¹</u>

Old Zaï forest **ZF30**: Age of site 30 years, 26 years fallow; cropping period: 4 years =18,400 kg ha⁻¹ **FR:** (18,400 kg ha⁻¹) /30 years \rightarrow <u>FR = 613 kg ha⁻¹ yr⁻¹</u>

Fig. A5-1: Number of ant species collected per genus and Zaï stage, differentiated according to the sampling methods; in each Zaï stage and in the Pama reserve, four replicate transects were conducted between 2004 and 2008, in the other sites three transects. Three columns are shown per site, each represents a certain protocol part: ant transect (AT) comprising pitfall traps and Winkler sites; termite transect (TT) comprising soil scrapes and microhabitats; and both protocol parts combined (ALL). Each color represents one of nine subfamilies: Amblyoponinae (Amb), Aenictinae (Aen), Formicinae (For), Myrmicinae (Myr), Ponerinae (Pon), Cerapachyinae (Cer), Dolichoderinae (Dol), Proceratinae (Pro), and Dorylinae (Dor). Land-use types are degraded land (ZDeg), millet fields (ZMil), young forest (ZF20), and old Zaï forest (ZF30); Pama reserve (FRes), pasture (FPas), fallow (FFal), cotton field (FCot).

Table A5-2: For the National Park in Pama (FRes), the near-natural ecosystem studied in the North-Sudanese zone of Burkina Faso, the increase in ant species richness was observed (SOB) with increasing sampling effort. The total ant species richness was estimated with six estimators (ICE, Chao2, Jackknife1, Jackknife2, Bootstrap, and Michaelis-Menten-Mean) in relation to an increasing sampling effort. Sampling efficiency was calculated for each estimator by dividing the observed species richness (SOB) through the respective estimated species richness (in %). The last column (mean all) represents the mean of the shown estimators, again including sampling efficiency. Increasing the sampling effort means an increase of the number of sampling units (SUs). For ants, one sampling unit comprises one transect section (10 m^2) plus one pitfall trap plus one 'Winkler-site' $(1 \text{ m}^2)^1$.

Ants in FR	es		Species-richness estimators (incidence-based)												
SUs	SOB 24	ICE 27	%-eff	Chao2 26	%-eff	Jack1 28	%-eff	Jack2 29	%-eff	Boot 26	%-eff	MMM 26	%-eff	mean all 27	%-eff
1	6.5	30.8	21.2%	30.8	21.2%	6.5	100%	0.0	0%	6.5	100%	0.0	0%	12.4	52.4%
2	10.4	45.5	22.8%	25.1	41.3%	14.2	73.3%	14.2	73.3%	12.3	84.6%	25.4	40.9%	22.8	45.6%
3	13.2	31.4	41.8%	25.3	52.1%	18.5	70.9%	20.7	63.6%	15.7	83.9%	26.6	49.5%	23.0	57.1%
4	15.3	29.8	51.6%	28.3	54.2%	21.8	70.5%	24.9	61.6%	18.3	84.0%	27.6	55.6%	25.1	61.1%
5	16.9	30.4	55.7%	31.2	54.3%	24.0	70.6%	27.7	61.1%	20.1	84.2%	28.1	60.3%	26.9	62.9%
6	18.5	31.1	59.4%	32.0	57.7%	25.9	71.3%	29.9	61.9%	21.8	84.6%	28.7	64.4%	28.2	65.4%
7	19.9	32.8	60.8%	33.1	60.2%	27.9	71.4%	32.2	61.9%	23.5	84.7%	29.5	67.6%	29.8	66.8%
8	21.1	34.2	61.7%	34.5	61.2%	29.5	71.7%	34.0	62.1%	24.9	85.0%	30.2	70.0%	31.2	67.7%
9	22.1	35.0	63.1%	34.8	63.6%	30.6	72.2%	35.2	62.9%	25.9	85.2%	30.8	71.8%	32.0	69.0%
10	23.1	36.0	64.0%	35.3	65.4%	31.7	72.7%	36.2	63.7%	27.0	85.5%	31.3	73.7%	32.9	70.1%
11	23.9	36.7	65.3%	35.8	66.9%	32.7	73.3%	37.1	64.6%	27.9	85.7%	31.8	75.4%	33.6	71.2%
12	24.7	37.5	65.9%	37.2	66.6%	33.6	73.5%	38.1	64.9%	28.8	85.9%	32.2	76.8%	34.6	71.6%
13	25.5	37.8	67.3%	37.0	68.8%	34.3	74.1%	38.6	65.9%	29.5	86.2%	32.6	78.0%	35.0	72.8%
14	26.1	38.2	68.4%	37.5	69.6%	35.0	74.6%	39.3	66.5%	30.2	86.5%	33.0	79.1%	35.5	73.5%
15	26.7	38.6	69.2%	37.9	70.6%	35.7	75.0%	39.9	67.0%	30.9	86.6%	33.4	80.2%	36.0	74.2%
16	27.4	39.1	70.1%	38.3	71.5%	36.4	75.3%	40.6	67.4%	31.5	86.8%	33.7	81.2%	36.6	74.8%
17	28.0	39.5	70.8%	39.0	71.7%	37.0	75.6%	41.2	67.8%	32.1	87.0%	34.0	82.1%	37.1	75.3%
18	28.5	39.5	72.1%	39.2	72.6%	37.5	76.0%	41.6	68.5%	32.6	87.2%	34.3	82.9%	37.4	76.0%
19	29.0	39.5	73.3%	39.4	73.5%	38.0	76.3%	42.0	69.0%	33.2	87.4%	34.6	83.7%	37.8	76.7%

¹ However, only eight ant sampling stations (each comprising one pitfall and one 'Winkler-site') were installed per 50 m transect; two sampling units for ants consequently correspond to one transect section only.

20	29.5	39.6	74.4%	39.7	74.2%	38.4	76.7%	42.3	69.6%	33.6	87.6%	34.9	84.4%	38.1	77.3%
21	29.9	39.6	75.4%	39.8	75.1%	38.8	77.1%	42.5	70.3%	34.1	87.8%	35.2	85.0%	38.3	78.0%
22	30.3	39.6	76.5%	39.7	76.3%	39.1	77.6%	42.6	71.1%	34.5	88.0%	35.4	85.5%	38.5	78.7%
23	30.7	39.8	77.1%	39.7	77.2%	39.4	77.8%	42.9	71.5%	34.8	88.1%	35.7	86.0%	38.7	79.2%
24	31.1	39.9	77.9%	40.0	77.6%	39.7	78.2%	43.0	72.2%	35.2	88.3%	35.9	86.5%	38.9	79.8%
25	31.4	39.9	78.7%	40.1	78.3%	39.9	78.6%	43.1	72.9%	35.5	88.5%	36.1	86.9%	39.1	80.3%
26	31.8	40.1	79.1%	40.2	78.9%	40.2	78.9%	43.3	73.3%	35.8	88.6%	36.3	87.4%	39.3	80.7%
27	32.1	40.2	79.8%	40.3	79.6%	40.5	79.2%	43.5	73.8%	36.1	88.8%	36.5	87.9%	39.5	81.2%
28	32.4	40.4	80.3%	40.7	79.6%	40.8	79.5%	43.7	74.2%	36.5	88.9%	36.7	88.3%	39.8	81.5%
29	32.7	40.5	80.8%	41.0	79.9%	41.0	79.8%	43.9	74.5%	36.7	89.1%	36.9	88.7%	40.0	81.8%
30	33.0	40.6	81.2%	41.1	80.3%	41.2	80.1%	44.1	74.9%	37.0	89.2%	37.1	89.0%	40.2	82.1%
31	33.3	40.7	81.7%	41.2	80.8%	41.4	80.3%	44.3	75.2%	37.2	89.4%	37.2	89.4%	40.3	82.5%
32	33.5	40.8	82.2%	41.2	81.4%	41.6	80.6%	44.4	75.5%	37.5	89.5%	37.4	89.7%	40.5	82.8%
33	33.8	40.9	82.6%	41.3	81.8%	41.8	80.8%	44.5	75.9%	37.7	89.6%	37.5	90.0%	40.6	83.2%
34	34.0	40.9	83.1%	41.4	82.2%	41.9	81.1%	44.7	76.1%	37.9	89.8%	37.7	90.2%	40.7	83.5%
35	34.2	41.0	83.4%	41.3	82.8%	42.1	81.3%	44.9	76.3%	38.1	89.9%	37.8	90.5%	40.9	83.7%
36	34.4	41.1	83.8%	41.5	83.0%	42.2	81.5%	45.1	76.4%	38.2	90.0%	38.0	90.7%	41.0	83.9%
37	34.6	41.1	84.2%	41.6	83.1%	42.3	81.8%	45.2	76.7%	38.4	90.2%	38.1	90.9%	41.1	84.2%
38	34.9	41.4	84.2%	42.2	82.6%	42.6	81.8%	45.6	76.4%	38.6	90.2%	38.2	91.2%	41.4	84.1%
39	35.1	41.7	84.2%	42.6	82.3%	42.9	81.9%	46.0	76.2%	38.9	90.3%	38.3	91.6%	41.7	84.1%
40	35.3	41.8	84.5%	42.7	82.6%	43.0	82.0%	46.3	76.3%	39.1	90.4%	38.5	91.8%	41.9	84.3%
41	35.5	41.9	84.7%	43.0	82.6%	43.3	82.1%	46.6	76.2%	39.3	90.5%	38.6	92.1%	42.1	84.4%
42	35.7	42.0	85.0%	43.3	82.5%	43.4	82.3%	46.9	76.2%	39.4	90.6%	38.7	92.3%	42.3	84.5%
43	35.8	42.0	85.3%	43.3	82.8%	43.5	82.4%	47.0	76.3%	39.5	90.7%	38.8	92.3%	42.3	84.6%
44	36.0	42.1	85.4%	43.5	82.8%	43.6	82.5%	47.3	76.1%	39.7	90.8%	38.9	92.5%	42.5	84.7%
45	36.2	42.3	85.5%	44.1	82.1%	43.8	82.5%	47.7	75.8%	39.8	90.9%	39.0	92.7%	42.8	84.5%
46	36.4	42.5	85.6%	44.4	81.8%	44.0	82.6%	48.1	75.6%	40.0	90.9%	39.1	92.9%	43.0	84.5%
47	36.5	42.5	85.8%	44.8	81.4%	44.1	82.6%	48.3	75.5%	40.1	91.0%	39.2	93.0%	43.2	84.5%
48	36.7	42.8	85.7%	45.2	81.1%	44.4	82.6%	48.8	75.1%	40.3	91.0%	39.3	93.3%	43.5	84.4%
49	36.8	43.0	85.7%	45.8	80.5%	44.6	82.5%	49.3	74.8%	40.4	91.1%	39.4	93.5%	43.7	84.2%
50	37.0	43.2	85.7%	46.1	80.2%	44.8	82.5%	49.7	74.4%	40.6	91.1%	39.5	93.7%	44.0	84.1%

Table A5-3: For the National Park in Pama (FRes), the near-natural ecosystem studied in the North-Sudanese zone of Burkina Faso, the increase in termite species richness was observed (SOB) with increasing sampling effort. The total termite species richness was estimated with six estimators (ICE, Chao2, Jackknife1, Jackknife2, Bootstrap, and Michaelis-Menten-Mean) in relation to an increasing sampling effort. Sampling efficiency was calculated for each estimator by dividing the observed species richness (SOB) through the respective estimated species richness (in %). The last column (mean all) represents the mean of the shown estimators, again including sampling efficiency. Increasing the sampling effort means an increase of the number of sampling units (SUs). For termites, one transect section (2 m x 5 m = 10 m^2) represents on sampling unit.

Termites in FRes		Species-richness estimators (incidence-based)													
RAP-section (sampling area)	SOB 24	ICE 27	%-eff	Chao2 26	%-eff	Jack1 28	%-eff	Jack2 29	%-eff	Boot 26	%-eff	MMM 26	%-eff	mean all 27	%-eff
1 (10 m²)	4.3	15.8	27.5%	15.8	27.5%	4.3	100%	0.0	0%	4.3	100%	0.0	0%	6.7	64.6%
2 (20 m²)	7.3	17.8	40.7%	19.0	38.2%	10.1	71.6%	10.1	71.6%	8.7	83.4%	21.9	33.1%	14.6	49.6%
3 (30 m²)	9.2	19.4	47.5%	18.1	51.1%	13.3	69.4%	14.9	61.9%	11.1	82.9%	21.2	43.5%	16.3	56.5%
4 (40 m ²)	10.8	20.4	53.0%	18.5	58.5%	15.4	70.3%	17.4	62.2%	12.9	83.5%	21.3	50.7%	17.6	61.2%
5 (50 m²)	12.2	20.7	58.7%	19.1	63.6%	17.0	71.5%	19.1	63.6%	14.4	84.3%	21.7	55.9%	18.7	65.1%
6 (60 m²)	13.2	20.8	63.3%	20.2	65.0%	18.2	72.5%	20.4	64.6%	15.5	84.9%	22.0	59.9%	19.5	67.5%
7 (70 m²)	14.1	20.9	67.3%	21.3	65.9%	19.2	73.2%	21.6	65.2%	16.5	85.4%	22.2	63.4%	20.3	69.4%
8 (80 m²)	14.8	21.1	70.3%	22.3	66.7%	20.1	73.9%	22.5	65.9%	17.3	85.9%	22.4	66.2%	20.9	70.8%
9 (90 m²)	15.5	21.4	72.3%	23.2	66.8%	20.7	74.6%	23.2	66.6%	17.9	86.4%	22.6	68.6%	21.5	72.0%
10 (100 m²)	16.0	21.8	73.6%	23.9	67.0%	21.3	75.1%	23.9	66.9%	18.5	86.7%	22.7	70.7%	22.0	72.8%
11 (110 m²)	16.5	22.1	74.7%	24.6	67.1%	21.8	75.6%	24.5	67.4%	19.0	87.1%	22.8	72.5%	22.5	73.5%
12 (120 m²)	17.0	22.5	75.4%	25.0	68.0%	22.3	76.0%	25.0	67.9%	19.4	87.3%	22.9	74.2%	22.9	74.3%
13 (130 m²)	17.4	22.7	76.5%	25.0	69.5%	22.7	76.4%	25.5	68.2%	19.8	87.6%	23.0	75.6%	23.1	75.2%
14 (140 m²)	17.7	23.1	77.0%	25.3	70.1%	23.1	76.7%	25.9	68.5%	20.2	87.8%	23.1	77.0%	23.4	75.7%
15 (150 m²)	18.1	23.2	78.0%	25.3	71.5%	23.4	77.2%	26.1	69.3%	20.5	88.1%	23.1	78.2%	23.6	76.6%
16 (160 m²)	18.4	23.4	78.6%	25.6	71.9%	23.8	77.6%	26.4	69.9%	20.9	88.3%	23.2	79.4%	23.9	77.2%
17 (170 m²)	18.8	23.8	78.9%	26.1	72.0%	24.1	77.8%	26.7	70.3%	21.2	88.4%	23.3	80.5%	24.2	77.5%
18 (180 m²)	19.0	24.1	79.1%	26.1	73.0%	24.4	78.1%	27.0	70.6%	21.5	88.6%	23.4	81.4%	24.4	78.0%
19 (190 m²)	19.3	24.3	79.5%	26.1	74.2%	24.6	78.5%	27.1	71.3%	21.8	88.8%	23.5	82.3%	24.6	78.7%
20 (200 m ²)	19.6	24.6	79.7%	26.2	74.8%	24.9	78.8%	27.3	71.8%	22.0	88.9%	23.6	83.1%	24.8	79.1%
21 (210 m ²)	19.8	24.9	79.7%	26.2	75.7%	25.1	79.1%	27.4	72.3%	22.3	89.0%	23.7	83.9%	24.9	79.6%
22 (220 m ²)	20.1	25.2	79.8%	26.4	75.9%	25.3	79.3%	27.6	72.6%	22.5	89.2%	23.8	84.5%	25.1	79.9%

23 (230 m²)	20.4	25.5	79.7%	26.6	76.6%	25.6	79.5%	27.9	73.1%	22.8	89.2%	23.8	85.4%	25.4	80.2%
24 (240 m²)	20.6	25.8	79.9%	26.6	77.3%	25.8	79.8%	28.0	73.6%	23.0	89.4%	23.9	86.0%	25.5	80.7%
25 (250 m²)	20.8	26.0	80.1%	26.9	77.4%	26.0	80.0%	28.1	73.9%	23.3	89.5%	24.0	86.6%	25.7	80.9%
26 (260 m²)	21.0	26.2	80.3%	26.8	78.4%	26.2	80.2%	28.3	74.3%	23.5	89.6%	24.1	87.3%	25.9	81.4%
27 (270 m²)	21.2	26.3	80.8%	26.7	79.4%	26.3	80.6%	28.2	75.1%	23.7	89.7%	24.2	87.6%	25.9	81.9%
28 (280 m ²)	21.4	26.4	81.3%	26.6	80.4%	26.5	80.9%	28.2	75.8%	23.8	89.8%	24.3	88.1%	26.0	82.4%
29 (290 m²)	21.6	26.4	81.6%	26.7	80.9%	26.6	81.2%	28.3	76.4%	24.0	89.9%	24.4	88.6%	26.1	82.8%
30 (300 m ²)	21.8	26.6	81.9%	26.9	80.9%	26.8	81.4%	28.4	76.6%	24.2	90.0%	24.5	89.1%	26.2	83.1%
31	22.0	26.7	82.4%	26.9	81.6%	26.9	81.7%	28.5	77.1%	24.4	90.1%	24.5	89.5%	26.3	83.5%
32	22.1	26.8	82.7%	26.8	82.4%	27.0	81.9%	28.5	77.7%	24.5	90.2%	24.6	89.8%	26.4	83.9%
33	22.3	26.8	83.1%	26.8	83.0%	27.1	82.1%	28.5	78.1%	24.6	90.3%	24.7	90.2%	26.4	84.2%
34	22.4	26.7	83.6%	26.6	84.1%	27.1	82.6%	28.4	78.8%	24.7	90.5%	24.8	90.3%	26.4	84.8%
35	22.5	26.8	84.0%	26.7	84.3%	27.2	82.8%	28.5	79.1%	24.8	90.7%	24.8	90.7%	26.5	85.0%
36	22.6	26.9	84.3%	26.9	84.3%	27.3	83.0%	28.6	79.2%	24.9	90.7%	24.9	90.9%	26.6	85.2%
37	22.7	26.8	84.8%	26.7	85.3%	27.3	83.3%	28.5	79.8%	25.0	90.9%	25.0	91.1%	26.6	85.7%
38	22.9	26.8	85.2%	26.7	85.7%	27.4	83.6%	28.5	80.3%	25.1	91.0%	25.0	91.4%	26.6	86.0%
39	23.0	26.9	85.6%	26.6	86.4%	27.4	83.8%	28.5	80.7%	25.2	91.1%	25.1	91.6%	26.6	86.4%
40	23.1	26.8	86.0%	26.5	87.0%	27.5	84.1%	28.5	81.1%	25.3	91.2%	25.1	91.8%	26.6	86.7%
41	23.2	26.9	86.2%	26.6	87.1%	27.5	84.3%	28.5	81.3%	25.4	91.3%	25.2	92.1%	26.7	86.9%
42	23.3	26.9	86.6%	26.5	87.8%	27.6	84.5%	28.5	81.7%	25.5	91.4%	25.3	92.2%	26.7	87.2%
43	23.4	26.9	87.0%	26.5	88.3%	27.6	84.7%	28.6	81.9%	25.5	91.6%	25.3	92.4%	26.7	87.5%
44	23.5	26.9	87.3%	26.5	88.8%	27.7	84.9%	28.6	82.1%	25.6	91.7%	25.4	92.6%	26.8	87.7%
45	23.6	27.0	87.5%	26.5	89.0%	27.7	85.1%	28.7	82.2%	25.7	91.8%	25.4	92.8%	26.8	87.9%
46	23.7	27.0	87.8%	26.6	89.1%	27.8	85.3%	28.8	82.3%	25.8	91.9%	25.5	93.0%	26.9	88.1%
47	23.7	27.0	87.9%	26.6	89.1%	27.8	85.3%	28.9	82.1%	25.8	91.9%	25.5	93.1%	26.9	88.1%
48	23.9	27.1	88.2%	26.6	89.8%	27.9	85.5%	29.0	82.2%	25.9	92.0%	25.6	93.4%	27.0	88.4%
49 (490 m ²)	23.9	27.0	88.6%	26.4	90.5%	27.9	85.7%	29.0	82.6%	26.0	92.1%	25.6	93.5%	27.0	88.7%
50 (500 m²)	24	27.0	88.9%	26.3	91.3%	27.9	86.0%	28.9	82.9%	26.0	92.2%	25.6	93.6%	27.0	89.0%
Table A5-4: Incidence-based species-richness estimators for ant communities in the Zaï system calculated per RAP-transect, habitat and region (± standard deviation). For each estimator, sampling efficacy (%-eff) was calculated as relation between the number of species observed (SOB) and the respective estimator value, indicating that sampling was very efficient. The column (mean all) represents the mean of all estimators. ICE: incidence-based coverage estimator, Jack1: jackknife-1, Boot: Bootstrap, MMM: Michaelis-Menten mean.

Sub-Sahel zone, Burkina Faso RAP-transect ^{length}		Species-richness estimators for ant communities									
Land-use type	SOB	ICE	%-eff	Jack1	%-eff	Boot	%-eff	MMM	%-eff	mean all	%-eff
ZDeg-1 ^{50 m}	8	9 ± 1	89	10 ± 1	80	9 ± 1	89	9	89	9	86
ZDeg-2 ^{50 m}	9	12 ± 2	75	12 ± 1	75	10 ± 1	90	11	82	11	80
ZDeg-3 ^{50 m}	13	30 ± 0	43	20 ± 3	65	16 ±0	81	17	76	21	63
ZDeg-4 ^{50 m}	8	13 ±0	62	12 ± 2	67	9 ± 0	85	9	89	11	74
Degraded land (ZDeg)	15	30 ± 0	50	21 ± 3	71	17 ±0	88	15	100	21	72
ZMil-1 ^{100 m}	8	9 ± 0	89	9 ± 1	89	8 ± 0	100	8	100	9	94
ZMil-2 ^{50 m}	11	12 ±0	92	13 ±1	85	12 ± 1	92	12	92	12	90
ZMil-3 ^{50 m}	13	15 ±0	87	16 ±1	81	14 ±1	93	15	87	15	87
ZMil-4 ^{50 m}	18	21 ± 2	86	22 ± 3	82	20 ± 1	90	22	82	21	85
Millet field (ZMil)	22	25 ±0	88	27 ± 3	81	24 ±0	92	22	100	25	90
ZF20-1 ^{100 m}	17	22 ±0	77	22 ± 3	77	19 ±0	89	19	89	21	83
ZF20-2 ^{50 m}	12	18 ±0	67	17 ± 2	71	14 ± 0	86	13	92	16	77
ZF20-3 ^{50 m}	14	18 ± 2	78	18 ±1	78	16 ±1	88	17	82	17	81
ZF20-4 ^{50 m}	18	24 ±0	75	24 ± 2	75	21 ± 1	86	22	82	23	79
Zaï forest 20-yrs (ZF20)	25	31 ±0	81	31 ± 3	81	28 ± 1	89	26	96	29	86
ZF30-1 ^{100 m}	19	22 ±0	86	23 ± 3	83	21 ±0	90	21	90	22	87
ZF30-2 ^{50 m}	23	39 ± 4	59	33 ± 3	70	27 ±0	85	30	77	32	71
ZF30-3 ^{50 m}	18	21 ±0	86	23 ± 3	78	20 ± 1	90	20	90	21	86
ZF30-4 ^{50 m}	23	34 ± 3	68	31 ± 2	74	27 ±0	85	29	79	30	76
Zaï forest 30-yrs (ZF30)	35	41 ±0	85	43 ± 3	81	39 ± 0	90	36	97	40	88
Sub-Sahel zone	41	45 ±0	91	47 ± 3	87	44 ± 0	93	40	103	44	93

Table A5-5: Incidence-based species-richness estimators for ant communities in the North-Sudanese sites, calculated per RAP-transect, habitat and region (± standard deviation). For each estimator, sampling efficacy (%-eff) was calculated as relation between the number of species observed (SOB) and the respective estimator value, indicating that sampling was very efficient. The last column (mean all) represents the mean of the shown estimators: ICE: incidence-based coverage estimator, Jack1: jackknife-1, Boot: Bootstrap, MMM: Michaelis-Menten mean.

North-Sudan zone, Burkina Faso		Species-richness estimators for ant communities									
RAP-transect ^{length} Land-use type	SOB	ICE	%-eff	Jack1	%-eff	Boot	%-eff	MMM	%-eff	mean all	%-eff
FRes-1 100 m	28	40 ± 2	70	38 ± 3	74	32 ±0	88	32	88	36	79
FRes-2 ^{50 m}	14	18 ±0	78	18 ± 2	78	16 ±0	88	15	93	17	84
FRes-3 ^{50 m}	18	24 ± 2	75	23 ± 2	78	21 ± 1	86	22	82	23	80
FRes-4 ^{50 m}	21	26 ±0	81	26 ± 2	81	23 ±0	91	26	81	25	83
Pama reserve (FRes)	36	43 ±0	84	45 ± 3	80	41 ±0	88	39	92	42	86
FPas-1 ^{100 m}	18	22 ± 1	82	23 ± 2	78	20 ± 1	90	21	86	22	84
FPas-2 ^{50 m}	21	33 ±0	64	29 ± 2	72	25 ±0	84	26	81	28	74
FPas-3 ^{50 m}	17	21 ± 1	81	22 ± 2	77	19 ±0	89	19	89	20	84
Pasture area (FPas)	28	40 ± 0	70	38 ± 3	74	32 ±0	88	29	97	35	81
FFal-1 ^{100 m}	19	27 ±0	70	25 ± 2	76	22 ± 1	86	21	90	24	80
FFal-2 ^{50 m}	25	30 ± 0	83	31 ± 2	81	28 ±1	89	29	86	30	85
FFal-3 ^{50 m}	26	34 ± 2	76	34 ± 2	76	29 ±1	90	30	87	32	82
Fallow land (FFal)	36	43 ±0	84	44 ± 3	82	40 ± 0	90	38	95	41	87
FCot-1 ^{100 m}	11	15 ±0	73	15 ± 2	73	13 ±0	85	14	79	14	77
FCot-2 ^{50 m}	13	16 ±0	81	17 ± 2	76	15 ±0	87	16	81	16	81
FCot-3 ^{50 m}	17	22 ± 2	77	22 ± 2	77	19 ± 1	89	20	85	21	82
Cotton field (FCot)	19	21 ±0	90	22 ± 2	86	21 ±0	90	21	90	21	89
North-Sudanese zone	53	61 ± 0	87	63 ± 3	84	57 ±0	93	52	102	58	91

Table A5-6: Incidence-based species richness estimators for termites in the Zaï system calculated per RAP-transect, habitat and region (± standard deviation SD). For each estimator, sampling efficacy (%-eff) was calculated as relation between the number of species observed (SOB) and the respective estimator value, indicating that sampling was very efficient. The column (mean all) represents the mean of all estimators. ICE: incidence-based coverage estimator, Jack1: jackknife1, Boot: Bootstrap, MMM: Michaelis-Menten mean.

Sub-Sahel zone, Burkina Faso		Species-richness estimators for termite communities									
RAP-transect ^{length} Zaï system stage	SOB	ICE	%-eff	Jack1	%-eff	Boot	%-eff	MMM	%-eff	mean all	%-eff
ZDeg-1 ^{50 m}	0	0 ± 0	100	0 ± 0	100	0 ± 0	100	0	100	0	100
ZDeg-2 ^{50 m}	0	0 ± 0	100	0 ± 0	100	0 ± 0	100	0	100	0	100
ZDeg-3 ^{50 m}	1	2 ± 0	67	2 ± 1	53	1 ±0	74	0	0	1	83
ZDeg-4 ^{50 m}	0	0 ± 0	100	0 ± 0	100	0 ± 0	100	0	100	0	100
Degraded land (ZDeg)	1	2 ± 0	67	2 ± 1	51	1 ±0	74	0	0	1	82
ZMil-1 ^{100 m}	8	13 ± 2	63	12 ± 3	68	10 ± 0	82	14	57	12	67
ZMil-2 ^{50 m}	6	8 ± 0	80	8 ± 1	77	7 ±0	88	8	71	8	79
ZMil-3 ^{50 m}	8	14 ± 1	59	12 ± 3	69	10 ± 1	84	11	74	11	70
ZMil-4 ^{50 m}	11	16 ± 0	70	15 ± 2	75	13 ±0	86	14	77	14	77
Millet field (ZMil)	16	24 ±0	68	22 ± 2	73	19 ± 0	87	18	90	20	78
ZF20-1 ^{100 m}	8	16 ± 5	50	12 ± 2	68	10 ± 0	82	13	63	13	64
ZF20-2 ^{50 m}	7	9 ± 0	75	10 ± 1	72	8 ± 1	86	11	64	10	73
ZF20-3 ^{50 m}	7	17 ±0	40	12 ± 2	61	9 ± 0	79	22	32	15	47
ZF20-4 ^{50 m}	14	20 ± 0	69	20 ± 2	69	17 ± 0	82	30	46	22	64
Zaï forest 20-yrs (ZF20)	20	22 ±0	86	24 ± 3	80	22 ± 1	88	26	74	23	82
ZF30-1 100 m	18	21 ± 0	86	23 ± 2	79	20 ± 1	89	23	80	22	83
ZF30-2 ^{50 m}	7	25 ±0	28	12 ± 2	57	9 ± 0	77	13	55	15	47
ZF30-3 ^{50 m}	11	17 ± 2	66	16 ± 2	71	13 ±0	85	14	80	15	75
ZF30-4 ^{50 m}	9	11 ±0	84	12 ± 1	77	10 ± 0	86	15	59	12	75
Zaï forest 30-yrs (ZF30)	25	35 ± 0	72	34 ± 3	74	29 ± 1	87	28	89	31	80
Sub-Sahelian zone	33	47 ± 0	70	44 ± 4	75	37 ± 0	88	34	96	41	81

Table A5-7: Incidence-based species-richness estimators for termite communities in the North-Sudanese sites, calculated per RAPtransect, habitat and region (± standard deviation). Sampling efficacy (%-eff) was calculated as relation between the number of species observed (SOB) and the respective estimator value, indicating that sampling was very efficient. The mean of all estimators is shown in the last column (mean all). ICE: incidence-based coverage estimator, Jack1: jackknife1, Boot: Bootstrap, MMM: Michaelis-Menten mean.

North-Sudan zone, Burkina Faso		Species-richness estimators for termite communities										
RAP-transect ^{length} Land-use type	SOB	ICE	%-eff	Jack1	%-eff	Boot	%-eff	MMM	%-eff	mean all	%-eff	
FRes-1 ^{100 m}	13	16 ±0	80	17 ± 2	77	15 ± 1	88	16	83	16	82	
FRes-2 ^{50 m}	13	16 ± 1	82	17 ± 2	78	15 ± 1	89	17	78	16	81	
FRes-3 ^{50 m}	17	27 ±0	62	24 ± 3	70	20 ± 1	85	20	87	23	75	
FRes-4 ^{50 m}	14	16 ±0	90	17 ± 1	84	15 ±1	92	17	83	16	87	
Pama reserve (FRes)	24	27 ±0	89	28 ± 2	86	26 ±0	92	26	94	27	90	
FPas-1 ^{100 m}	8	18 ±0	44	12 ± 2	68	10 ± 0	84	9	87	12	66	
FPas-2 ^{50 m}	7	12 ±0	57	10 ± 1	72	8 ± 0	84	11	66	10	68	
FPas-3 ^{50 m}	4	6 ±0	67	6 ±1	69	5 ±1	82	11	37	7	58	
Pasture area (FPas)	14	27 ±0	53	21 ± 2	67	17 ±0	82	17	81	20	69	
FFal-1 ^{100 m}	5	7 ±1	75	7 ±1	73	6 ± 0	86	8	65	7	74	
FFal-2 ^{50 m}	9	12 ±0	73	13 ± 2	71	11 ±0	85	15	61	13	72	
FFal-3 ^{50 m}	7	14 ± 3	50	11 ± 2	66	8 ± 1	83	10	74	11	66	
Fallow land (FFal)	13	16 ±0	79	18 ± 2	73	15 ±0	87	17	79	16	79	
FCot-1 ^{100 m}	4	4 ±0	91	5±1	81	4 ±0	91	6	72	5	82	
FCot-2 ^{50 m}	1	1 ±0	100	1 ±0	100	1 ±0	100	1	98	1	100	
FCot-3 ^{50 m}	4	5 ±0	87	5±1	82	4 ±0	91	5	88	5	86	
Cotton field (FCot)	5	6 ± 0	91	6 ± 1	84	5 ±0	93	6	90	6	89	
North-Sudanese zone	31	36 ± 0	85	38 ± 3	82	34 ±0	91	32	97	35	88	

Table A5-8: Quality of four incidence-based species richness estimators exemplarily calculated for ant communities in the Zaï system per RAP-transect, habitat and region: three non-parametric estimators ICE, Jackknife 1, Bootstrap, and the asymptotic Michaelis Menten. Bold values are given for the estimator that fitted the data best, italics for the second-best.

Ants in the Z system	Zaï		IC	Έ		Jackknife 1			Bootstrap				Michaelis-Menten Mean				
RAP-transect Zaï stage	SOB	ICE ± sd	MD	MSD	MSPD	Jack ± <i>sd</i>	MD	MSD	MSPD	Boot ± sd	MD	MSD	MSPD	MMM	MD	MSD	MSPD
ZDeg-1 ^{50 m}	8	9 ± 1	1,2	1,5	0,02	10 ±1	1,8	3,2	0,05	9 ± 1	0,7	0,5	0,01	9	0,9	0,9	0,01
ZDeg-2 ^{50 m}	9	12 ± 2	2,8	7,8	0,10	12 ±1	2,7	7,3	0,09	10 ±1	1,2	1,5	0,02	11	2,1	4,5	0,06
ZDeg-3 50 m	13	30 ± 0	16,8	281,6	1,67	20 ± 3	7,2	51 <i>,</i> 8	0,31	16 ±0	2,9	8,1	0,05	17	4,0	16,1	0,10
ZDeg-4 50 m	8	13 ±0	4,6	21,5	0,34	12 ± 2	3,6	13,0	0,20	9±0	1,4	2,0	0,03	9	1,3	1,7	0,03
Degraded land r ² SOB <i>vs.</i> est	15	30 ± 0 0,9769	6,4	78,1	0,53	21 ±3 0,9829	3,8	18,8	0,16	17 ± 0 0,9959	1,5	3,0	0,03	15 0,9976	2,1	5,8	0,05
ZMil-1 100 m	8	9 ± 0	0,5	0,3	0,09	9 ± 1	0,9	0,9	0,82	8 ± 0	0,4	0,2	0,026	8	0,4	0,2	0,031
ZMil-2 ^{50 m}	11	12 ±0	1,0	1,1	1,17	13 ±1	1,8	3,2	10,50	12 ± 1	0,9	0,8	0,69	12	1,0	1,0	1,04
ZMil-3 ^{50 m}	13	15 ±0	2,0	3,8	14,76	16 ±1	2,7	7,3	53,14	14 ± 1	1,3	1,7	2,86	15	1,6	2,6	6,55
ZMil-4 ^{50 m}	18	21 ± 2	2,8	7,6	58,0	22 ±3	3,6	13,0	168,0	20 ± 1	1,9	3,6	12,76	22	3,8	14,6	212,9
Millet field r ² SOB <i>vs.</i> est	22	<i>25 ±0</i> 0,9993	1,6	3,2	18,51	27 ±3 0,9993	2,3	6,1	58,10	24 ±0 0,9999	1,1	1,6	4,08	22 0,9988	1,7	4,6	55,14
ZF20-1 100 m	17	22 ±0	5 <i>,</i> 3	28,4	0,10	22 ±3	4,8	22,7	0,08	19 ±0	2,2	4,8	0,02	19	2,1	4,5	0,02
ZF20-2 50 m	12	18 ±0	5,8	33,3	0,23	17 ± 2	4,5	20,3	0,14	14 ±0	1,9	3,5	0,03	13	1,5	2,2	0,02
ZF20-3 50 m	14	18 ± 2	4,1	17,0	0,09	18 ±1	3,6	13,0	0,07	16 ± 1	1,9	3,5	0,02	17	3,0	8,9	0,05
ZF20-4 50 m	19	24 ±0	5,4	29,6	0,08	24 ± 2	5,4	29,2	0,08	21 ± 1	2,3	5,4	0,02	22	2,7	7,4	0,02
Young forest r ² SOB <i>vs.</i> est	25	31 ± 0 0,9755	5,2	27,1	0,13	31 ± 3 0,9895	4,6	21,3	0,09	28 ±1 0,9998	2,1	4,3	0,02	26 0,9857	2,3	5,8	0,02
ZF30-1 100 m	19	22 ±0	2,7	7,1	0,02	23 ± 3	3,8	14,5	0,04	21 ±0	1,9	3,6	0,01	21	2,4	5,9	0,02

ZF30-2 50 m	23	39 ± 4	16,2	263,4	0,50	33 ± 3	9,9	98,0	0,19	27 ±0	4,2	17,8	0,03	30	7,3	52,7	0,10
ZF30-3 50 m	18	21 ±0	3,5	12,1	0,04	23 ±3	4,5	20,3	0,06	20 ± 1	1,9	3,7	0,01	20	2,3	5,1	0,02
ZF30-4 50 m	23	34 ± 3	10,6	111,5	0,21	31 ± 2	8,1	65,6	0,12	27 ±0	3,5	12,3	0,02	29	5,7	31,9	0,06
Old forest r ² SOB <i>vs.</i> est	35	41 ±0 0,9549	8,2	98,5	0,19	43 ±3 0,9822	6,6	49,6	0,10	39 ±0 0,9957	2,9	9,3	0,02	36 0,9897	4,4	23,9	0,05
Sub-Sahel zone r ² SOB <i>vs.</i> est	41	45 ±0 0,8557	7,6	79,1	0,29	47 ±3 0,9770	6,1	38,6	0,08	44 ±0 0,9959	2,8	8,4	0,02	40 0,9836	0,4	0,6	0,001
RAP-transect Zaï stage	SOBs	ICE	MD	MSD	MSPD	Jack1	MD	MSD	MSPD	Boot	MD	MSD	MSPD	MMM	MD	MSD	MSPD

.

Fig. A5-2: Incidence-based, randomized accumulation rates (with standard deviations) of observed and estimated ant species richness in the degraded, barren area of the Zaï system (sub-Sahel, Burkina Faso) from 2004–2008. Four estimators are shown: the incidence-based coverage estimator (ICE), jackknife 1 (Jack1), Bootstrap, and Michaelis-Menten Mean (MMMean).

Fig. A5-3: Incidence-based, randomized accumulation rates (with standard deviations) of observed and estimated ant species richness in millet fields cultivated with the Zaï technique (sub-Sahel, Burkina Faso) from 2004–2008. Four estimators are shown: the incidence-based coverage estimator (ICE), jackknife 1 (Jack1), Bootstrap, and Michaelis-Menten Mean (MMMean).

Fig. A5-4: Incidence-based, randomized accumulation rates (with standard deviations) of observed and estimated ant species richness in the young Zaï forest (sub-Sahel, Burkina Faso) from 2004–2008. Four estimators are shown: the incidence-based coverage estimator (ICE), jackknife 1 (Jack1), Bootstrap, and Michaelis-Menten Mean (MMMean).

Fig. A5-5: Incidence-based, randomized accumulation rates (with standard deviations) of observed and estimated ant species richness in the old Zaï forest (sub-Sahel, Burkina Faso) from 2004–2008. Four estimators are shown: the incidence-based coverage estimator (ICE), jackknife 1 (Jack1), Bootstrap, and Michaelis-Menten Mean (MMMean).

MEASURES OF WITHIN-HABITAT DIVERSITY OF ANT COMMUNITIES

Land-use intensification gradient in the sub-Sahel region of Burkina Faso (LUI-1)

Table A5-9: Measures of within-habitat or alpha-diversity for ant communities in the Zaï system sites calculated per RAP-transect, per habitat and per region (± standard deviation). SOB: number of species observed.

Sub-Sahel zone, Burkina Faso	Alpha-(α)-diversity Indices							
Zaï succession stage	SOB	Shannon-Wiener H'	Simpsons' D					
ZDeg-1 ^{50 m}	8	1.8 ± 0.1	6.1 ± 0					
ZDeg-2 ^{50 m}	9	1.9 ±0	6.9 ±0					
ZDeg-3 ^{50 m}	13	2 ±0	7.3 ±0					
ZDeg-4 ^{50 m}	8	2.2 ± 0.1	8.2 ± 0					
Degraded land (ZDeg)	15	2.2 ± 0.1	8 ±0					
ZMil-1 100 m	8	1.9 ±0	6.3 ± 0					
ZMil-2 ^{50 m}	11	2.2 ±0	9.5 ±0					
ZMil-3 ^{50 m}	13	2.3 ±0	10.7 ±0					
ZMil-4 ^{50 m}	18	2.7 ±0	15 ±0					
Millet field (ZMil)	22	2.5 ±0	9.9 ± 0.1					
ZF20-1 ^{100 m}	17	2.4 ±0	10 ± 0.2					
ZF20-2 ^{50 m}	12	2.1 ±0	8.2 ± 0.2					
ZF20-3 ^{50 m}	14	2.2 ±0	7.2 ± 0.3					
ZF20-4 ^{50 m}	18	2.7 ±0	14.2 ±0					
Zaï forest 20-yrs (ZF20)	25	2.6 ±0	10 ±0					
ZF30-1 ^{100 m}	19	2.6 ±0	12.1 ±0					
ZF30-2 ^{50 m}	23	2.8 ±0	16.3 ±0					
ZF30-3 ^{50 m}	18	2.7 ±0	14.8 ±0					
ZF30-4 ^{50 m}	23	2.8 ±0	16.4 ±0					
Zaï forest 30-yrs (ZF30)	35	2.9 ±0	14.5 ±0					
Sub-Sahel region	41	2.8 ±0	11.7 ±0					

Land-use intensification gradient in the North-Sudanese region of Burkina Faso (LUI-2)

Table A5-10: Measures of within-habitat (α -) diversity for ant communities in the North-Sudanese sites calculated per RAP-transect, the habitats and the region (± standard deviation). SOB: number of species observed.

North-Sudan zone, Burkina Faso RAP-transect length	Alpha-(α)-diversity Indices						
Study site	SOB	Shannon-Wiener H'	Simpsons' D				
FRes-1 ^{100 m}	28	2.9 ±0	14.3 ± 0.3				
FRes-2 ^{50 m}	14	2.3 ±0	9.9 ± 0.2				
FRes-3 ^{50 m}	18	2.6 ±0	13.4 ±0				
FRes-4 50 m	21	2.8 ±0	15.2 ±0				
Pama reserve (FRes)	36	3.0 ± 0	15.6 ± 0.2				
FPas-1 ^{100 m}	18	2.6 ±0	11.7 ± 0.3				
FPas-2 ^{50 m}	21	2.7 ±0	14 ±0				
FPas-3 ^{50 m}	17	2.6 ±0	13.5 ±0				
Pasture area (FPas)	28	2.8 ±0	13.1 ± 0.1				
FFal-1 ^{100 m}	19	2.5 ±0	10.8 ±0				
FFal-2 ^{50 m}	25	3 ±0	20.8 ±0				
FFal-3 ^{50 m}	26	3 ± 0	20.5 ± 0.4				
Fallow land (FFal)	36	3.0 ± 0	16.6 ± 0.2				
FCot-1 ^{100 m}	11	2 ±0	5.9 ± 0.2				
FCot-2 ^{50 m}	13	2.4 ±0	11.4 ±0				
FCot-3 ^{50 m}	17	2.6 ±0	12.9 ±0				
Cotton field (FCot)	19	2.5 ±0	10.5 ± 0.1				
North-Sudan region	53	3.3 ±0	18.8 ± 0.1				

MEASURES OF WITHIN-HABITAT DIVERSITY OF TERMITE COMMUNITIES

Land-use intensification gradient in the sub-Sahel region of Burkina Faso (LUI-1)

Table A5-11: Measures of within-habitat (α -) diversity for termite communities in the Zaï system sites calculated per RAP-transect, the habitats and the region (± standard deviation). SOB: number of species observed.

Sub-Sahel zone, Burkina Faso	Alpha-(α)-diversity Indices						
RAP-transect ^{congar} Zaï succession stage	SOB	Shannon-Wiener H'	Simpsons' D				
ZDeg-1 ^{50 m}	0	0	0				
ZDeg-2 ^{50 m}	0	0	0				
ZDeg-3 ^{50 m}	1	0	0				
ZDeg-4 ^{50 m}	0	0	0				
Degraded land (ZDeg)	1	0	0				
ZMil-1 ^{100 m}	8	1.9 ±0	8 ± 1				
ZMil-2 ^{50 m}	6	1.6 ±0	5.7 ±0				
ZMil-3 ^{50 m}	8	1.8 ±0	5.8 ± 0.7				
ZMil-4 ^{50 m}	11	2.1 ± 0.1	7.5 ±0				
Millet field (ZMil)	16	2.3 ±0	9 ± 0				
ZF20-1 ^{100 m}	8	1.7 ±0	4.6 ± 0.5				
ZF20-2 ^{50 m}	7	1.8 ±0	7.5 ±0				
ZF20-3 ^{50 m}	7	1.8 ±0	11.3 ± 4.4				
ZF20-4 ^{50 m}	14	2.5 ± 0.1	19.7 ±0				
Zaï forest 20-yrs (ZF20)	20	2.6 ±0	12.2 ± 0.4				
ZF30-1 ^{100 m}	18	2.5 ±0	10.6 ±0				
ZF30-2 ^{50 m}	7	1.5 ± 0.1	3.7 ± 0.3				
ZF30-3 ^{50 m}	11	2.1 ± 0.1	8.4 ±0				
ZF30-4 ^{50 m}	9	2.0 ± 0.1	11.4 ±0				
Zaï forest 30-yrs (ZF30)	25	2.7 ±0	12 ± 0				
Sub-Sahel region	33	2.9 ±0	15 ±0				

A71

Land-use intensification gradient in the North-Sudanese region of Burkina Faso (LUI-2)

Table A5-12: Measures of within-habitat (α -) diversity for termite communities in the North-Sudanese sites calculated per RAP-transect, the habitats and the region (± standard deviation SD). SOB: number of species observed.

North-Sudan zone, Burkina Faso		Alpha-(α)-div	ersity Indices
Study site	SOB	Shannon-Wiener H'	Simpsons' D
FRes-1 ^{100 m}	13	2.3 ±0	8.9 ± 0.3
FRes-2 ^{50 m}	13	2.4 ±0	11.5 ± 0.6
FRes-3 ^{50 m}	17	2.5 ±0	11.5 ±0
FRes-4 ^{50 m}	14	2.5 ±0	13.1 ±0
Pama reserve (FRes)	24	2.8 ±0	13.3 ±0
FPas-1 ^{100 m}	8	1.6 ±0	8 ± 1
FPas-2 ^{50 m}	7	1.6 ±0	4.4 ± 0.3
FPas-3 50 m	4	1.3 ±0	7.5 ±0
Pasture area (FPas)	14	1.9 ±0	4.8 ±0
FFal-1 ^{100 m}	5	1.4 ± 0.1	4.6 ±0
FFal-2 ^{50 m}	9	2.0 ± 0	10 ± 0
FFal-3 50 m	7	1.6 ±0	4.6 ± 0.3
Fallow land (FFal)	13	2.2 ±0	7.5 ± 0.2
FCot-1 ^{100 m}	4	1.3 ± 0.1	4.1 ± 0.3
FCot-2 ^{50 m}	1	0 ±0	1 ±0
FCot-3 ^{50 m}	4	1.2 ± 0.1	3.5 ±0
Cotton field (FCot)	5	1.3 ± 0	3.8 ± 0.1
North-Sudan region	31	2.8 ±0	12.1 ±0

PARAMETERS PREDICTING VARIATIONS IN ANT COMMUNITIES

Land-use intensification gradient in the sub-Sahel region (LUI-1)

Axis 1

Fig. A5-6: Ranked biplot of common ant species (name abbreviated) to the environmental variable 'percentage air humidity' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis.

Axis 1

Fig. A5-7: Ranked biplot of common ant species (name abbreviated) to the environmental variable 'maximum tree height' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis.

Fig. A5-8: Ranked biplot of common ant species (name abbreviated) to the environmental variable 'clay content in the upper soil horizon (0-10 cm)' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis.

Ant species: Ano_sedi (0): Anochetus sedilloti; Cre_sp2 (1): Crematogaster sp.2; Lep_sp1 (2): Lepisiota sp.1; Lep_sp3 (3): Lepisiota sp.3; Mon_aren (4): Monomorium areniphilum; Mon_bico (5): Monomorium bicolor; Mon_osca (6): Monomorium oscaris; Pac_senn (7): Pachycondyla senaarensis; Pac_sp3 (8): Pachycondyla sp.3; Phe_sp1 (9): Pheidole sp.1; Tet_sp6 (10): Tetramorium sp.6. Land-use intensification gradient in the North-Soudan region (LUI-2)

- Rank biplot - total litter weight - LUI-2 -

Axis 1

Fig. A5-9: Ranked biplot of common ant species (name abbreviated) to the environmental variable 'total litter weight' in the four North-Sudanese sites (Burkina Faso). Results obtained by Canonical Correspondence Analysis.

Ant species are Camp_comp (0): Camponotus compressiscapus, Cam_seri (1): Camponotus sericeus, Cat_sp1 (2): Cataglyphis sp.1, Cre_sp2 (3): Crematogaster sp.2, Mes_gall (4): Messor galla, Mon_abys (5): Monomorium abyssinicum, Mon_dest (6): Monomorium destructor, Pac_senn (7): Pachycondyla senaarensis, Pac_sp1 (8): Pachycondyla sp.1, Phe_sp1 (9): Pheidole sp.1, Phe_sp3 (10): Pheidole sp.3, Phe_sp4 (11): Pheidole sp.4, Tet_ang (12): Tetramorium angulinode, Tet_seri (13): Tetramorium sericeiventre.

- Rank biplot - crown cover percentage - LUI-2 -

Axis 1

Fig. A5-10: Ranked biplot of common ant species (name abbreviated) to the environmental variable 'crown cover percentages' in the four North-Sudanese sites (Burkina Faso). Results obtained by Canonical Correspondence Analysis. **Ant species** are Camp_comp (0): *Camponotus compressiscapus*, Cam_seri (1): *Camponotus sericeus*, Cat_sp1 (2): *Cataglyphis* sp.1, Cre_sp2 (3): *Crematogaster* sp.2, Mes_gall (4): *Messor galla*, Mon_abys (5): *Monomorium abyssinicum*, Mon_dest (6): *Monomorium destructor*, Pac_senn (7): *Pachycondyla senaarensis*, Pac_sp1 (8): *Pachycondyla* sp.1, Phe_sp1 (9): *Pheidole* sp.1, Phe_sp3 (10): *Pheidole* sp.3, Phe_sp4 (11): *Pheidole* sp.4, Tet_ang (12): *Tetramorium angulinode*, Tet_seri (13): *Tetramorium sericeiventre*.

- Rank biplot - maximum tree height - LUI-2 -

Axis 1

Fig. A5-11: Ranked biplot of common ant species (name abbreviated) to the environmental variable 'maximum tree height' in the four North-Sudanese sites (Burkina Faso). Results obtained by Canonical Correspondence Analysis. **Ant species** are Camp_comp (0): *Camponotus compressiscapus*, Cam_seri (1): *Camponotus sericeus*, Cat_sp1 (2): *Cataglyphis* sp.1, Cre_sp2 (3): *Crematogaster* sp.2, Mes_gall (4): *Messor galla*, Mon_abys (5): *Monomorium abyssinicum*, Mon_dest (6): *Monomorium destructor*, Pac_senn (7): *Pachycondyla senaarensis*, Pac_sp1 (8): *Pachycondyla* sp.1, Phe_sp1 (9): *Pheidole* sp.1, Phe_sp3 (10): *Pheidole* sp.3, Phe_sp4 (11): *Pheidole* sp.4, Tet_ang (12): *Tetramorium angulinode*, Tet_seri (13): *Tetramorium sericeiventre*.

PARAMETERS PREDICTING VARIATIONS IN TERMITE COMMUNITIES

Land-use intensification gradient in the sub-Sahel region (LUI-1)

Fig. A5-12: Ranked biplot of common termite species (name abbreviated) to the environmental variable 'crown-cover percentage' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis.

Termite species are fg-Anc_cruc (1): *Ancistrotermes crucifer*, sf-Cub_subc (2): *Cubitermes subcrenulatus*, wf-Ere_saba (3): *Eremotermes sabaeus*, fg-Mac_bell (4): *Macrotermes bellicosus*, wf-Mic_eden (5): *Microcerotermes edentatus*, wf-Mic_parv (6): *Microcerotermes parvus*, fg-Mic_havi (7): *Microtermes havilandi*, fg-Mic_subh (8): *Microtermes subhyalinus*, fg-Odo_sp1 (9):*Odontotermes* sp.1, fg-Odo_sp2 (10): *Odontotermes* sp.2. The first two letters indicate the functional group fg: fungus-growers, wf: wood-feeders, sf: soil-feeders, uk: unknown.

Fig. A5-13: Ranked biplot of common termite species (name abbreviated) to the environmental variable 'litter-availability' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis.

Fig. A5-14: Ranked biplot of common termite species (name abbreviated) to the environmental variable 'sand-content in the upper soil horizon (0-10 cm)' in the four Zaï stages (sub-Sahel region, Burkina Faso). Results obtained by Canonical Correspondence Analysis. **Termite species** are fg-Anc_cruc (1): *Ancistrotermes crucifer*, sf-Cub_subc (2): *Cubitermes subcrenulatus*, wf-Ere_saba (3): *Eremotermes sabaeus*, fg-Mac_bell (4): *Macrotermes bellicosus*, wf-Mic_eden (5): *Microcerotermes edentatus*, wf-Mic_parv (6): *Microcerotermes parvus*, fg-Mic_havi (7): *Microtermes havilandi*, fg-Mic_subh (8): *Microtermes subhyalinus*, fg-Odo_sp1 (9): *Odontotermes* sp.1, fg-Odo_sp2 (10): *Odontotermes* sp.2. The first two letters indicate the **functional group** fg: fungus-growers, wf: wood-feeders, uk: unknown.

Land-use intensification gradient in the North-Soudan region (LUI-2)

Fig. A5-15: Ranked biplot of common termite species (name abbreviated) to the environmental variable 'total area covered by the main tree trunks' in the four North-Sudanese habitats (Burkina Faso). Results obtained by Canonical Correspondence Analysis.

Fig. A5-16: Ranked biplot of common termite species (name abbreviated) to the environmental variable 'soil organic matter in the sub-surface soil (0-10 cm)' in the four North-Sudanese habitats (Burkina Faso). Results obtained by CCA. **Termite species** are wf-Ami_evun (0): Amitermes evuncifer, fg-Anc_cruc (1): Ancistrotermes crucifer, wf-Ere_saba (2): Eremotermes sabaeus, fg-Mac_bell (3): Macrotermes bellicosus, fg-Mic_havi (4): Microtermes havilandi, fg-Mic_subh (5): Microtermes subhyalinus, fg-Odo_sp1 (6): Odontotermes sp.1, fg-Odo_sp2 (7): Odontotermes sp.2, gf-Tri_gemi (8): Trinervitermes geminatus, gf-Tri_oeco (9): Trinervitermes oeconomus. The first two letters indicate the **functional group** fg: fungus-growers, wf: wood-feeders and gf: grass-feeders.

Fig. A5-17: Ranked biplot of common termite species (name abbreviated) to the environmental variable 'clay content in the sub-surface soil (0-10 cm)' in the four North-Sudanese habitats (Burkina Faso). Results obtained by Canonical Correspondence Analysis.

Termite species are wf-Ami_evun (0): Amitermes evuncifer, fg-Anc_cruc (1): Ancistrotermes crucifer, wf-Ere_saba (2): Eremotermes sabaeus, fg-Mac_bell (3): Macrotermes bellicosus, fg-Mic_havi (4): Microtermes havilandi, fg-Mic_subh (5): Microtermes subhyalinus, fg-Odo_sp1 (6): Odontotermes sp.1, fg-Odo_sp2 (7): Odontotermes sp.2, gf-Tri_gemi (8): Trinervitermes geminatus, gf-Tri_oeco (9): Trinervitermes oeconomus. The first two letters indicate the **functional group** fg: fungusgrowers, wf: wood-feeders and gf: grass-feeders.

ANOSIM AND SIMPER FOR ANT COMMUNITIES

Analyzed in CAP-4 (Community Analysis Package, Pisces Conservation Ltd. 2007)

Land-use intensification gradient in the sub-Sahel region of Burkina Faso (LUI-1)

Results of ANOSIM

Table A5-13: Analysis of Similarities (ANOSIM) for groups formed by transects that were conducted in the same land-use type (replicate-transects) for ant communities in four main succession stages of the Zaï-system in Ouahigouya (sub-Sahel zone, Burkina Faso).

Full Data ANOSIM											
Sample Statis	stic R	No F	Randomizations		P Value		Level %		No >= Obs		
0.523			1,000		1,000 < 0		< 0.00	< 0.001 0.1			1
Pairwise Tests											
1 st Group	2 nd (Group	Permutations	P	v Value	Leve	el %	No >= Obs	Test Statistic R		
ZF20 (4)	ZF3	30 (4)	35		0.16	31.	43	11	0.177		
ZF20 (4)	ZDe	eg (4)	35		0.01	2.8	36	1	0.771		
ZF20 (4)	ZN	lil (4)	35		0.01	2.8	2.86 1		0.427		
ZF30 (4)	ZDe	eg (4)	35		0.01	2.8	36	1	0.91		
ZF30 (4)	ZM	lil (4)	35		0.01	2.86		1	0.58		
ZDeg (4)	ZM	lil (4)	35		0.01	2.8	36	1	0.58		

Results of SIMPER

Table A5-14: A) – **D)** Average SIMALIRITY WITHIN groups resulting from 'Similarity Percentages'(SIMPER) for groups formed by replicate-transects for ant communities in four main successionstages of the Zaï-system in Ouahigouya (sub-Sahel zone, Burkina Faso).

A)

Degraded la	nd, ZDeg	Average Similarity	60.7				
Ant species	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %			
Mon_bico	67.5	27.4	45.1	45.1			
Phe_sp1	47.5	11.3	18.6	63.7			
Mon_aren	40.0	8.9	14.6	78.3			
Mon_abys	20.0	5.6	9.2	87.5			
Cre sp2	35.0	5.0	8.3	95.8			

B)

Millet field, ZMil

Average Similarity 69.5

		e 1		
Ant species	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
Mon_bico	87.5	21.3	30.6	30.6
Phe_sp1	75.0	17.7	25.4	56.0
Lep_sp1	53.8	10.8	15.5	71.6
Cre_sp2	50.0	7.0	10.0	81.6
Mon_abys	33.8	6.1	8.7	90.3

C)

Young Zaï forest, ZF20

Average Similarity 74.4

Ant species	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
Phe_sp1	91.3	23.9	32.2	32.2
Mon_bico	82.5	22.9	30.8	62.9
Lep_sp1	42.5	9.4	12.7	75.6
Mon_abys	31.3	6.0	8.1	83.7
Ano_sedi	25.0	4.6	6.2	90.0
Cam_seri	16.3	2.7	3.6	93.6

D)

Old Zaï fores	st, ZF30	Average Similarity	Σ γ 74.0		
Ant species	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %	
Phe_sp1	83.8	19.6	26.5	26.5	
Mon_bico	75.0	17.4	23.5	50.0	
Lep_sp1	73.8	14.3	19.4	69.4	
Tet_angu	41.3	5.8	7.9	77.2	
Ano_sedi	23.8	4.6	6.2	83.5	
Pac_sp3	27.5	3.9	5.3	88.8	
Tet_sp6	30.0	3.4	4.6	93.3	

Table A5-15: A) – **F)** Average DISSIMALIRITY BETWEEN groups resulting from 'Similarity Percentages' (SIMPER) for groups formed by replicate-transects for ant communities in four main succession stages of the Zaï-system in Ouahigouya (sub-Sahel zone, Burkina Faso).

A)

ZF20 with ZF30		Average Dissimilarity	28.3		
	ZF20	ZF30			
Ant species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Tet_angu	20	41	4	15	15
Lep_sp1	43	74	4	15	30
Pac_sp3	0	28	4	13	43
Mon_abys	31	24	3	11	53
Tet_sp6	15	30	3	10	64
Mon_vona	20	10	2	7	71
Cam_seri	16	11	2	6	76
Phe_sp1	91	84	2	5	82
Mon_osca	5	13	2	5	87
Ano_sedi	25	24	1	5	92

	۱
к	1

в)					
ZF20	with ZDeg	Average Dissimilarity	52.0		
	ZF20	ZDeg			
Ant species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Phe_sp1	91	48	8	15	15
Lep_sp1	43	3	7	13	28
Mon_aren	0	40	7	13	41
Cre_sp2	3	35	6	11	52
Ano_sedi	25	3	4	8	59
Mon_vona	20	0	3	6	65
Tet_angu	20	0	3	6	71
Mon_abys	31	20	3	6	77
Cam_seri	16	0	3	5	82
Mon_bico	83	68	2	5	87
Tet_sp6	15	0	2	5	91

C)

ZF20 with ZMil		Average Dissimilarity	33.7		
	ZF20	ZMil			
Ant species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Cre_sp2	3	50	6	18	18
Pac_senn	5	40	5	14	32
Tet_angu	20	24	4	11	43
Lep_sp1	43	54	3	9	52
Ano_sedi	25	5	3	8	60
Phe_sp1	91	75	2	7	67
Mon_vona	20	8	2	6	73
Cam_seri	16	8	2	6	80
Mon_abys	31	34	2	6	86
Tet_sp6	15	13	2	5	91

D)

ZF30 with ZDeg		Average Dissimilarity		57.5	
	ZF30	ZDeg			
Ant species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Lep_sp1	74	3	11	19	19
Tet_angu	41	0	6	11	30
Mon_aren	0	40	6	10	40
Phe_sp1	84	48	6	10	50
Cre_sp2	0	35	5	9	60
Tet_sp6	30	0	4	8	67
Pac_sp3	28	5	4	7	74
Ano_sedi	24	3	3	6	80
Mon_abys	24	20	3	5	85
Cam_seri	11	0	2	3	89
Mon osca	13	0	2	3	92

E)

ZF30 with ZMil		Average Dissimilarity	36.9		
	ZF30	ZMil			
Ant species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Cre_sp2	0	50	6	16	16
Tet_angu	41	24	5	12	28
Pac_senn	1	40	4	12	40
Pac_sp3	28	0	3	9	49
Lep_sp1	74	54	3	8	57
Tet_sp6	30	13	3	8	65
Mon_abys	24	34	3	7	72
Ano_sedi	24	5	2	7	79
Cam_seri	11	8	2	4	83
Mon_bico	75	88	2	4	88
Mon_osca	13	5	2	4	92
F)					

ZDeg with ZMil		Average Dissimilarity	48		
	ZDeg	ZMil			
Ant species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Lep_sp1	3	54	9	18	18
Cre_sp2	35	50	6	12	31
Mon_aren	40	3	6	12	43
Pac_senn	3	40	6	12	55
Phe_sp1	48	75	5	11	66
Tet_angu	0	24	3	7	73
Mon_bico	68	88	3	7	79
Mon_abys	20	34	3	6	85
Tet_sp6	0	13	2	4	89
Lep_sp3	10	8	1	2	91

Land-use intensification gradient in the North-Soudan region of Burkina Faso (LUI-2)

Results of ANOSIM

Table A5-16: Analysis of Similarities (ANOSIM) for groups formed by transects that were conducted in the same land-use type (replicate-transects) for ant communities in four land-uses near Fada N'Gourma (Gourma province, North-Sudan region of Burkina Faso).

Pairwise Tests						
Sample	Statistic	No Randomiza	ations	P Value	Level %	No >= Obs
0.1	754	1,000		< 0.001	0.1	1
		Pairwi	ise Tests			
1st Group	2nd Group	Permutations	P value	Level %	No >= Obs	Statistic R
FCot (3)	FFal (3)	10	0.05	10.00	1	0.33
FCot (3)	FPas (3)	10	0.05	10.00	1	0.93
FCot (3)	FRes (4)	35	0.03	2.86	1	0.85
FFal (3)	FPas (3)	10	0.05	10.00	1	1.00
FFal (3)	FRes (4)	35	0.03	2.86	1	1.00
FPas (3)	FRes (4)	35	0.06	5.71	2	0.67

Results of SIMPER

Table A5-17: A) – D) Average SIMALIRITY WITHIN groups resulting from 'Similarity Percentages' (SIMPER) for groups formed by replicate-transects for ant communities in four land-uses near Fada N'Gourma (Gourma province, North-Sudan region of Burkina Faso).

A)

Cotton fie	ld, FCot	Average Similarity	59.4	
Name	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
Pac_senn	63.3	16.0	26.9	26.9
Mes_gall	63.3	15.2	25.6	52.4
Phe_sp1	30.0	6.4	10.7	63.2
Phe_sp4	35.0	6.0	10.1	73.3
Cam_seri	50.0	5.8	9.7	83.0
Cat_sp1	33.3	4.1	6.9	89.9
Phe_sp3	11.7	2.0	3.4	93.3

B)

Fallow, FF	al	Average Similarity	78.9	
Name	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
Mes_gall	90.0	16.4	20.8	20.8
Pac_senn	68.3	13.1	16.6	37.3
Cam_seri	71.7	12.8	16.2	53.5
Phe_sp1	71.7	11.7	14.8	68.4
Phe_sp4	60.0	9.9	12.6	81.0
Tet_angu	48.3	8.2	10.4	91.3

C)

Pasture area, FPas		Average Similarity	73.0	
Name	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
Phe_sp1	83.3	23.2	31.8	31.8
Cam_seri	78.3	20.2	27.7	59.5
Mon_abys	55.0	10.1	13.8	73.3
Cam_comp	28.3	6.3	8.6	81.9
Tet_seri	36.7	5.6	7.7	89.6
Pac_sp1	13.3	2.9	4.0	93.5

D)

•				
Pama reserve, FRes		Average Similarity	77.3	
Name	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
Cam_seri	91.3	28.2	36.5	36.5
Phe_sp1	75.0	21.5	27.8	64.3
Mon_dest	30.0	6.7	8.7	73.1
Cam_comp	20.0	6.6	8.6	81.6
Tet_angu	22.5	6.6	8.6	90.2

Table A5-18: A) – F) Average DISSIMALIRITY BETWEEN groups resulting from 'Similarity Percentages' (SIMPER) for groups formed by replicate-transects for ant communities in four land-uses near Fada N'Gourma (Gourma province, North-Sudan region of Burkina Faso).

A)

FCot With	FFal	Average Dissimilarity	35.2		
	FCot	FFal			
Name	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Phe_sp1	30	72	5	15	15
Tet_angu	15	48	4	12	27
Cam_seri	50	72	4	12	39
Phe_sp4	35	60	4	11	50
Mes_gall	63	90	4	10	60
Cat_sp1	33	23	4	10	70
Tet_seri	7	30	3	9	79
Cre_sp2	2	17	2	5	85
Phe_sp3	12	17	2	5	90
Pac_senn	63	68	2	5	94

B)

FCot With FPas

5

Average Dissimilarity 63.6

	FCot	FPas			
Name	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Mes_gall	63	0	9	15	15
Pac_senn	63	5	9	14	29
Phe_sp1	30	83	9	13	42
Mon_abys	0	55	8	13	55
Cam_seri	50	78	6	9	65
Tet_seri	7	37	5	8	72
Cat_sp1	33	3	4	7	79
Phe_sp4	35	18	4	6	85
Cam_comp	8	28	3	5	90
Tet_angu	15	23	3	5	95

C)

FCot With Fl	Res	Average Dissimilarity	60.9		
	FCot	FRes			
Name	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Mes_gall	63	4	9	15	15
Pac_senn	63	11	9	15	30
Cam_seri	50	91	8	13	43
Phe_sp1	30	75	8	13	56
Mon_dest	0	30	5	8	64
Cat_sp1	33	1	5	8	72
Pac_sp1	7	29	4	7	79
Phe_sp4	35	9	4	7	86
Tet_angu	15	23	2	4	89
Cam comp	8	20	2	3	93

•					
FFal With FPas Average Dissimilarity		47.9			
	FFal	FPas			
Name	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Mes_gall	90	0	11	22	22
Pac_senn	68	5	7	15	38
Mon_abys	3	55	6	12	50
Phe_sp4	60	18	5	10	60
Tet_seri	30	37	3	6	67
Tet_angu	48	23	3	6	73
Cat_sp1	23	3	2	5	78
Cam_comp	10	28	2	5	82
Cre_sp2	17	0	2	4	86
Phe_sp1	72	83	2	4	90

D)

E)

_

FFal With F	Res	Average Dissimilarity	51.7		
	FFal	FRes			
Name	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Mes_gall	90	4	11	21	21
Pac_senn	68	11	7	14	34
Phe_sp4	60	9	6	12	47
Mon_dest	0	30	4	7	54
Tet_seri	30	1	3	7	61
Pac_sp1	2	29	3	7	67
Tet_angu	48	23	3	6	74
Cat_sp1	23	1	3	5	79
Cam_seri	72	91	2	5	83
Phe_sp1	72	75	2	4	88
Cre_sp2	17	0	2	4	92

F)

FPas With FRes

Average Dissimilarity 34.0

	FPas	FRes			
Name	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
Mon_abys	55	8	7	21	21
Tet_seri	37	1	5	16	37
Mon_dest	0	30	5	14	50
Pac_sp1	13	29	3	9	59
Tet_angu	23	23	3	7	67
Cam_seri	78	91	2	7	74
Phe_sp4	18	9	2	7	81
Pac_senn	5	11	2	6	87
Phe_sp1	83	75	2	5	92

ANOSIM AND SIMPER FOR TERMITE COMMUNITIES

Land-use intensification gradient in the sub-Sahel region of Burkina Faso (LUI-1)

Results of ANOSIM

Table A5-19: Analysis of Similarities (ANOSIM) for groups formed by transects that were conducted in the same land-use type (replicate-transects) for termite communities in four main succession stages of the Zaï-system in Ouahigouya (Yatenga province, sub-Sahel zone, Burkina Faso).

Full Data ANOSIM								
Sample Stati	stic R	No Ran	domizations	P Value	Le	vel %	No >= Obs	
0.806			1000	< 0.001	0.1		1	
	Pairwise Tests							
1 st Group	2 nd	Group	Permutations	P Value	Level %	No >= Obs	Test Statistic R	
ZDeg (4)	ZF	20 (4)	35	0.01	2.86	1	1	
ZDeg (4)	ZF	30 (4)	35	0.01	2.86	1	1	
ZDeg (4)	ZN	∕lil (4)	35	0.01	2.86	1	1	
ZF20 (4)	ZF	30 (4)	35	0.21	42.86	15	0.05	
ZF20 (4)	ZN	∕lil (4)	35	0.04	8.57	3	0.60	
ZF30 (4)	ZN	∕lil (4)	35	0.01	2.86	1	0.82	

Results of SIMPER

Table A5-20: A) – D) Average SIMALIRITY WITHIN groups resulting from 'Similarity Percentages' (SIMPER) for groups formed by replicate-transects for termite communities in four main succession stages of the Zaï-system in Ouahigouya (Yatenga province, sub-Sahel zone, Burkina Faso).

Λ	۱
~	J

Degraded land, ZDeg		Average Similarity	83.3	
Termite species	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
fg-Odo_sp4	6.3	83.3	100.0	100.0

D	L
D	

Millet field, ZMil		Average Similarity	40.0	
Termite species	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
fg-Mic_havi	38.8	9.5	23.8	23.8
wf-Ere_saba	32.5	8.0	20.1	43.9
wf-Ami_evun	18.8	7.7	19.2	63.1
wf-Mic_eden	32.5	7.4	18.4	81.5
uk-Unk-3	17.5	3.6	9.0	90.5

Young Zaï forest, ZF20		Average Similarity	32.5	
Termite species	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
fg-Mic_havi	26.3	9.5	29.1	29.1
fg-Odo_sp1	15.0	4.7	14.3	43.5
fg-Mic_subh	17.5	4.4	13.5	57.0
uk-Unk-3	10.0	3.4	10.5	67.5
wf-Mic_ther	7.5	3.4	10.4	77.9
fg-Odo_sp2	12.5	3.4	10.4	88.3
sf-Ano_sp1	6.3	1.7	5.3	93.6

C)

Young Zaï forest 7F20

D)

Old Zaï forest, ZF30		Average Similarity	38.6	
Termite species	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
fg-Mic_subh	46.3	12.6	32.6	32.6
fg-Mac_bell	30.0	6.3	16.3	49.0
fg-Mic_havi	22.5	4.4	11.4	60.3
fg-Mic_sp1	30.0	4.4	11.4	71.7
uk-Unk-3	25.0	3.1	7.9	79.7
sf-Unk-1_sf	17.5	2.0	5.2	84.8
fg-Odo_sp1	10.0	1.9	4.8	89.7
wf-Ere_saba	5.0	1.1	2.8	92.5

Table A5-21: A) – F) Average DISSIMALIRITY BETWEEN groups resulting from 'Similarity Percentages' (SIMPER) for groups formed by transects that were conducted in the same land-use type (replicatetransects) for termite communities in four main succession stages of the Zaï-system in Ouahigouya (Yatenga province, sub-Sahel zone, Burkina Faso).

A)					
ZDeg with ZMil		Average Dissimilarity	100.0		
	ZDeg	ZMil		-	
Termite species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
fg-Mic_havi	0	39	21	21	21
wf-Ere_saba	0	33	16	16	37
wf-Mic_eden	0	33	16	16	53
wf-Ami_evun	0	19	11	11	65
wf-Mic_parv	0	19	11	11	75
uk-Unk-3	0	18	9	9	84
fg-Anc_cruc	0	8	4	4	89
fg-Odo_sp4	6	0	4	4	93

A90

ZDeg with ZF30		Average Dissimilarity	100.0		
	ZDeg	ZF30			
Termite species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
fg-Mic_subh	0	46	23	23	23
fg-Mac_bell	0	30	11	11	34
fg-Mic_sp1	0	30	11	11	45
uk-Unk-3	0	25	9	9	54
fg-Mic_havi	0	23	9	9	63
sf-Unk-1_sf	0	18	8	8	70
sf-Ano_sp1	0	16	5	5	75
fg-Odo_sp1	0	10	4	4	80
wf-Ami_evun	0	9	3	3	83
wf-Ere_saba	0	5	3	3	86
wf-Mic_parv	0	6	3	3	89
fg-Odo_sp4	6	0	3	3	92

B)

C)

ZDeg with ZF20

Average Dissimilarity 98.4

	ZDeg	ZF20			
Termite species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
fg-Mic_havi	0	26	20	20	20
fg-Odo_sp1	0	15	11	12	32
fg-Mic_subh	0	18	11	11	43
fg-Odo_sp2	0	13	8	8	51
uk-Unk-3	0	10	7	7	58
sf-Ano_sp1	0	6	6	6	64
wf-Mic_ther	0	8	5	5	69
fg-Mic_sp1	0	10	5	5	74
wf-Mic_eden	0	5	5	5	79
fg-Odo_sp4	6	3	4	4	83
sf-Unk-1_sf	0	8	4	4	87
fg-Mac bell	0	6	4	4	91

D)

ZF20 with ZF30

Average Dissimilarity 65.7

	ZF20	ZF30			
Termite species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
fg-Mic_subh	18	46	10	16	16
fg-Mic_sp1	10	30	7	11	27
fg-Mac_bell	6	30	6	10	36
fg-Mic_havi	26	23	6	9	45
uk-Unk-3	10	25	5	8	53
sf-Unk-1_sf	8	18	5	8	60
sf-Ano_sp1	6	16	5	7	68
fg-Odo_sp1	15	10	3	5	73
fg-Odo_sp2	13	5	3	5	78
wf-Ami_evun	0	9	2	3	82
wf-Mic_ther	8	0	2	3	85
wf-Mic_eden	5	3	2	3	88
wf-Mic_parv	4	6	2	3	90

-/					
ZF20 with ZMil		Average Dissimilarity	76.1	_	
	ZF20	ZMil			
Termite species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
fg-Mic_havi	26	39	10	13	13
wf-Mic_eden	5	33	9	12	25
wf-Ere_saba	3	33	9	12	37
wf-Ami_evun	0	19	6	8	45
wf-Mic_parv	4	19	6	7	52
fg-Mic_subh	18	0	5	7	59
fg-Odo_sp1	15	3	5	6	66
uk-Unk-3	10	18	4	5	71
fg-Odo_sp2	13	0	4	5	76
fg-Mic_sp1	10	3	3	4	80
fg-Anc_cruc	0	8	2	3	84
wf-Mic_ther	8	0	2	3	87
sf-Ano sp1	6	0	2	3	90

E)

F)

ZF30 with ZMil

ZIVIII

Average Dissimilarity 75.7 ZMil

	ZF30	ZMil			
Termite species	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
fg-Mic_subh	46	0	12	16	16
wf-Mic_eden	3	33	8	10	26
fg-Mic_havi	23	39	7	9	36
fg-Mac_bell	30	0	7	9	45
fg-Mic_sp1	30	3	7	9	54
wf-Ere_saba	5	33	6	8	62
uk-Unk-3	25	18	5	7	68
sf-Unk-1_sf	18	0	4	6	74
wf-Mic_parv	6	19	4	6	80
wf-Ami_evun	9	19	4	5	85
sf-Ano_sp1	16	0	3	4	89
fg-Anc_cruc	5	8	3	3	93

Land-use intensification gradient in the North-Soudan region of Burkina Faso (LUI-2)

Results of ANOSIM

Table A5-22: Analysis of Similarities (ANOSIM) for groups formed by transects that were conducted in the same land-use type (replicate-transects) for termite communities in four land-uses near Fada N'Gourma (Gourma province, North-Sudan region of Burkina Faso).

Full Data ANOSIM						
Sample	Statistic	No Randomiz	ations	P Value	Level %	No >= Obs
0.0	600	1000		< 0.001	0.1	1
		Pairw	ise Tests			
1st Group	2nd Group	Permutations	P value	Level %	No >= Obs	Statistic R
FCot (3)	FFal (3)	10	0.15	30.0	3	0.074
FCot (3)	FPas (3)	10	0.05	10.0	1	0.519
FCot (3)	FRes (4)	35	0.03	2.9	1	0.815
FFal (3)	FPas (3)	10	0.05	10.0	1	0.630
FFal (3)	FRes (4)	35	0.03	2.9	1	0.852
FPas (3)	FRes (4)	35	0.03	2.9	1	0.611

Results of SIMPER

Table A5-23: A) – **D)** Average SIMALIRITY WITHIN groups resulting from 'Similarity Percentages' (SIMPER) for groups formed by replicate-transects for termite communities in four land-uses near Fada N'Gourma (Gourma province, North-Sudan region of Burkina Faso).

A)

Cotton field, FCot		Average Similarity	28.3	
Termite spp.	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
fg-Mic_havi	45.0	18.4	65.0	65.0
fg-Mic_subh	31.7	7.1	25.0	90.0
wf-Ere_saba	10.0	2.8	10.0	100.0

B)

Fallow, FFal		Average Similarity	33.3	
Termite spp.	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
fg-Mic_subh	45.0	18.0	53.9	53.9
fg-Odo_sp1	16.7	6.8	20.5	74.5
fg-Odo_sp2	15.0	4.3	12.8	87.3
uk-Unk-3	10.0	2.5	7.6	94.9

C)

Pasture area,	FPas	Average Similarity	32.6	
Termite spp.	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
gf-Tri_oeco	51.7	23.0	70.5	70.5
wf-Mic_parv	13.3	4.0	12.4	82.9
fg-Mic_havi	25.0	4.0	12.4	95.3

Pama reserve,	FRes	Average Similarity	49.9	
Termite spp.	Ave. Abundance	Ave. Similarity	% Contribution	Cumulative %
wf-Mic_parv	56.3	9.0	18.0	18.0
gf-Tri_oeco	52.5	8.7	17.4	35.4
fg-Mic_subh	43.8	8.4	16.9	52.3
fg-Mic_havi	48.8	6.0	11.9	64.2
gf-Tri_gemi	47.5	5.3	10.6	74.8
fg-Anc_cruc	40.0	3.5	6.9	81.8
wf-Mic_eden	35.0	1.9	3.8	85.6
uk-Unk-3	17.5	1.5	3.0	88.6
gf-Tri_occi	28.8	1.5	3.0	91.6

D)

Table A5-24: A) – F) Average DISSIMALIRITY BETWEEN groups resulting from 'Similarity Percentages' (SIMPER) for groups formed by replicate-transects for termite communities in four land-uses near Fada N'Gourma (Gourma province, North-Sudan region of Burkina Faso).

A)					
FCot with FFal		Average Dissimilarity	73.1		
	FCot	FFal			
Termite spp.	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
fg-Mic_havi	45	10	16	22	22
fg-Mic_subh	32	45	12	17	39
wf-Ere_saba	10	13	7	9	48
fg-Odo_sp1	0	17	6	9	57
fg-Mic_sp1	20	0	6	9	66
fg-Odo_sp2	0	15	6	8	74
uk-Unk-3	2	10	5	7	80
fg-Anc_cruc	0	13	5	6	86
wf-Mic_parv	0	13	4	6	92

B)

FCot with FPa	S	Average Dissim	81.9
	FCot	FPas	
Termite spp.	Ave. Abundance	Ave. Abundance	Ave Dissim

Termite spp.	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
gf-Tri_oeco	0	52	21	26	26
fg-Mic_havi	45	25	17	21	47
fg-Mic_subh	32	5	12	14	61
fg-Mic_sp1	20	0	7	8	70
wf-Mic_parv	0	13	5	6	76
wf-Ere_saba	10	3	4	5	81
fg-Mac_bell	0	7	4	5	86
fg-Odo_sp2	0	7	2	3	89
wf-Ful_coat	0	3	2	3	92

FCot with FRe	S	Average Dissimilarity	81.3		
	FCot	FRes			
Termite spp	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
wf-Mic_parv	0	56	11	13	13
gf-Tri_oeco	0	53	9	11	25
gf-Tri_gemi	0	48	8	9	34
fg-Mic_havi	45	49	6	8	42
fg-Anc_cruc	0	40	6	8	49
wf-Mic_eden	0	35	5	7	56
fg-Mic_subh	32	44	5	7	62
gf-Tri_occi	0	29	4	5	68
fg-Mac_bell	0	16	3	4	72
fg-Mic_sp1	20	0	3	4	76
uk-Unk-3	2	18	3	4	79
gf-Tri_trin	0	18	3	3	83
wf-Ere_saba	10	0	2	2	85
gf-Tri_togo	0	10	2	2	87
wf-Mic_parv	0	9	1	2	89
fg-Anc_cavi	0	8	1	2	91

C)

D)

FFa

FFal with FPas

Average Dissimilarity 80.7

	FFal	FPas			
Termite spp.	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
gf-Tri_oeco	3	52	17	21	21
fg-Mic_subh	45	5	14	17	39
fg-Mic_havi	10	25	8	10	48
wf-Mic_parv	13	13	6	8	56
fg-Odo_sp2	15	7	5	6	62
fg-Odo_sp1	17	3	5	6	68
uk-Unk-3	10	0	5	6	74
wf-Ere_saba	13	3	5	6	80
fg-Anc_cruc	13	0	4	5	85
fg-Mac_bell	3	7	4	5	90
wf-Ful_coat	0	3	2	2	92

A95

FFal with FRes	;	Average Dissimilarity	74.2		
	FFal	FRes			
Termite spp.	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
wf-Mic_parv	13	56	9	12	12
gf-Tri_oeco	3	53	8	11	22
gf-Tri_gemi	0	48	7	9	32
fg-Mic_havi	10	49	6	9	40
fg-Anc_cruc	13	40	5	7	48
wf-Mic_eden	3	35	5	7	54
gf-Tri_occi	0	29	4	6	60
fg-Mic_subh	45	44	4	5	65
fg-Mac_bell	3	16	3	4	69
gf-Tri_trin	0	18	3	3	72
fg-Odo_sp1	17	5	3	3	76
fg-Odo_sp2	15	0	2	3	79
uk-Unk-3	10	18	2	3	82
wf-Ere_saba	13	0	2	3	85
gf-Tri_togo	0	10	2	2	87
wf-Mic_parv	0	9	1	2	89
fg-Anc_cavi	0	8	1	2	90

E)

F)

FPas with FRes

Average Dissimilarity 71.6

	FPas	FRes			
Termite spp.	Ave. Abundance	Ave. Abundance	Ave Dissim	% Contribution	Cumulative %
wf-Mic_parv	13	56	9	12	12
gf-Tri_gemi	2	48	7	10	22
fg-Mic_subh	5	44	7	9	31
fg-Anc_cruc	0	40	6	8	40
fg-Mic_havi	25	49	6	8	48
wf-Mic_eden	0	35	5	7	55
gf-Tri_oeco	52	53	4	6	61
gf-Tri_occi	0	29	4	6	67
uk-Unk-3	0	18	3	4	71
fg-Mac_bell	7	16	3	4	75
gf-Tri_trin	0	18	3	4	79
gf-Tri_togo	0	10	2	2	81
wf-Mic_parv	0	9	1	2	83
fg-Anc_cavi	0	8	1	2	85
wf-Ful_coat	3	6	1	2	87
sf-Ano_sp1	0	5	1	2	89
wf-Ami_guin	3	5	1	2	90
APPENDIX – CHAPTER 7

RAPID ASSESSMENT OF BIOGENIC STRUCTURES OF TERMITES, ANTS AND EARTHWORMS - WORKING STEPS

Fig. A7-1: Wooden frame of 1 m², by means of a rope subdivided into a grid of 100 quadratic meshes (each 10 cm²). Every 5–10 m, the frame was placed on the ground and all visible epigeal soil structures were mapped according to the constructing taxon, genus or functional group.

Fig. A7-2: In the second step, after mapping, a wooden frame without grid delimited the square meter in which all biogenic soil structures were collected, air-dried and finally weighed according to the constructing taxon, genus or functional group.

Fig. A7-3: Close-up of soil-sheetings that were collected within the frame of 1 m² according to the constructing taxon, genus or functional group (left) and of openings of foraging holes underneath soil-sheetings (right).

LAND-USE INTENSIFICATION GRADIENT IN THE SUB-SAHEL REGION IN BURKINA FASO

Fig. A7-4: Dry weight of biogenic soil structures in tons per hectare, month and Zaï stage, constructed by termites and ants during one rainy season (2005) and three dry seasons (2006, 2007, 2009); per season, year and site, 10 plots (1 m²) were assessed; in 2006 it were 20 plots. Habitats are ZDeg: degraded area, ZMil: millet field, ZF20: young Zaï forest, ZF30: old Zaï forest. Functional groups of termites are fg: fungus-growers and gf: grass-feeders.

LAND-USE INTENSIFICATION GRADIENT IN THE SUB-SAHEL REGION IN BURKINA FASO

Fig. A7-5: Dry weight of biogenic soil structures in tons per hectare, month and land-use type, constructed by termites, ants and earthworms during three dry seasons (2006, 2007, 2009): per year and site, 10 plots (each 1 m²) were assessed, in 2006 it were 20 plots. Habitats are FRes: Pama reserve, FPas: pasture area, FFal: fallow, FCot: cotton fields. Functional groups of termites are fg: fungusgrowers and gf: grass-feeders.

FFal

FCot

Table A7-1: For each Zaï stage in Ouahigouya (sub-Sahel region, Burkina Faso), the total quantity of soil possibly bioturbated by termites until 2009 to construct their epigeal biogenic structures, is calculated for the dry season months (ca. 62% of the year) and the rainy season months (ca. 38% of the year). A standard protocol (BS-transects) was followed during three dry seasons (2006, 2007, 2009) and one rainy season (2005) to rapidly assess the epigeal biogenic structures of termites and ants. Per season, year and site 10 plots (1 m²) were sampled, in 2006 it were 20 plots; the means were taken in the following calculation. Habitats are ZDeg: degraded land, ZMil: millet fields, ZF20: young forest, ZF30: old forest.

Soil turn-over by termites		Mean dry weight of biogenic structures N _{dry season} = 40; N _{rainy season} = 10		Bulk density ρ _{soil}		Growth of s	soil layer		Total growth of soil layer u	ntil 2009
Zaï stage & season		to ha ⁻¹ mon ⁻¹	kg m ⁻² mon ⁻¹	kg∙m ⁻³	m mon⁻¹	cm mon⁻¹	cm season ⁻¹	cm year ⁻¹	Layer since initial habitat sta	age (in cm)
ZDeg	Dry seasons	0.1328	0.01328	1640	0.0000081	0.00081	0.00603	0.006		0.00
	Rainy season	0.0014	0.00014	1040	0.0000001	0.00001	0.00005	0.006		0.00
75 4:1	Dry seasons	1.6707	0.16707	1640	0.0001019	0.01019	0.07581	0 1 2 0	11 years x 0 129 cm 1 42	
217111	Rainy season	1.9087	0.19087	1040	0.0001164	0.01164	0.05308	0.129		1.42
7520	Dry seasons	2.6943	0.26943	1620	0.0001663	0.01663	0.12373	0.200	(4 years x 0.129 cm) +	F 46
2720	Rainy season	6.5869	0.65869	1020	0.0004066	0.04066	0.18541	0.509	(16 years x 0.309 cm)	5.40
7520	Dry seasons	4.1433	0.41433	1600	0.0002590	0.02590	0.19270	0 5 2 0	(4 years x 0.129 cm) +	10.00
ZF30	Rainy season	11.4940	1.14940	1600	0.0007184	0.07184	0.32759	0.520	(16 years x 0.309 cm) + 10 . (10 years x 0.520 cm)	

ρ_{soil} Mean soil bulk density assessed with the 'Volumen-Ersatzmethode' (volume substitution method) in five soil profiles per Zaï stage. Two distinct seasons the sub-Sahel region: 62% of the year is dry season, 38% is rainy season (site history and climate see Chapter 2.1.1.

APPENDIX – CHAPTER 8

Some photos illustrating the experimental blocks

Fig. A8-1: Illustrated are some of the experimental blocks installed in four main succession stages of Zaï system in Ouahigouya (sub-Sahel region, northern Burkina Faso); here of the rainy season run in October 2005. Shown are three blocks, one located in the old Zaï forest (A), in the young Zaï forest (B), and in the millet field (C). In (D), the compost sub-quadrat of the block in (C) in the millet field is shown.

GRANULAR STRUCTURE OF SOIL-SHEETINGS & CONSTRUCTION-BEHAVIOR OF ODONTOTERMES

C)

<u>A104</u>

Fig. A8-2: Shown are: A) a hay quadrat in the young Zaï forest completely covered with *Odontotermes*-sheetings (dry season 2006); B)–D) close-ups of the sheetings constructed in the hay-plot shown in A). Together, the photos in A)–D) illustrate the termites' 'soil-sheeting construction-behavior': When foraging in hay, *Odontotermes* started from below and built then, from bottom to top, several layers of sheetings sometimes resulting in a height of more than 10 cm. E) Close-up of *Odontotermes*-workers while foraging in hay. F) Close-up of *Odontotermes*-sheetings constructed on compost. Together, the photos in D–F) illustrate the granular structure of *Odontotermes*-sheetings.

GRANULAR STRUCTURE OF SOIL-SHEETINGS & CONSTRUCTION-BEHAVIOR OF MACROTERMES

Fig. A8-3: Shown are first two hay-quadrats of the old Zaï forest where the hayamendment was completely consumed; in A) of the rainy season run in 2005, the plot is completely covered with *Macrotermes*-sheetings; in B) a plot of the dry season run in 2006 where *Macrotermes* was foraging during the night and where most of the ground was visible since only some sheeting-spots were present. In C), D) close-ups of *Macrotermes* workers foraging in hay during the night while being surveyed by soldiers (no continuous sheeting-cover constructed). Together, the photos in A–D) illustrate the termites' 'soil-sheeting construction-behavior': *Macrotermes* usually built just one thick layer of sheetings with a height of only few centimeters (0.5 to maximal 5 cm). And E–F), illustrate the granular structure of *Macrotermes*-sheetings, constructed in E) a hay-plot and F) a compost-plot.

DOUBLE RING INFILTROMETER USED TO MEASURE THE SOILS' WATER INFILTRATION CAPACITY

Fig. A8-4: A) Double-ring infiltration conducted simultaneously in a sub-quadrat with recent termite activity (here: compost) and in the control-plot of the same experimental block (degraded area, ZDeg); and **B)** one of two sub-quadrats in which an infiltration measurement was simultaneously conducted in the young Zaï forest (ZF20) (both dry season 2006). In both photos, *Macrotermes* mound-soil was used to seal the base of the outer ring. In most cases, the clayey mound-soil had to be used at some point of the measurement to ensure that the water in the outer ring did not start to leak sideward at the rings' base.

DYNAMICS OF FORAGING AND SOIL-SHEETING ESTABLISHMENT IN SINGLE QUADRATS

Fig. A8-5: The increasing dry weight of soil-sheetings constructed by *Macrotermes* during the experimental 4-weeks duration (dry season 2006) and the cumulated quantity of hay taken during this time is shown for the second hay-quadrat of the old Zaï forest (ZF30).

Fig. A8-6: The increase in sheeting-area and macropores constructed by *Macrotermes* during the experimental 4 weeks duration (dry season 2006) is shown for the second hay-quadrat of the old Zaï forest (ZF30).

Fig. A8-7: The increasing dry weight of soil-sheetings constructed by *Odontotermes* and *Macrotermes* during the experimental 4-weeks duration (dry season 2006) and the cumulated quantity of hay taken during this time is shown for the eighth hay-quadrat of the old Zaï forest (ZF30).

Fig. A8-8: The increase in sheeting-area and macropores constructed by *Odontotermes* and *Macrotermes* during the experimental 4-weeks duration (dry season 2006) is shown for the eighth hay-quadrat of the old Zaï forest (ZF30).

Fig. A8-9: The increasing dry weight of soil-sheetings constructed by *Odontotermes* during the experimental 4-weeks duration (dry season 2006) and the cumulated quantity of hay taken during this time is shown for the ninth hay-quadrat of the old Zaï forest (ZF30).

Fig. A8-10: The increase in sheeting-area and macropores constructed by *Odontotermes* during the experimental 4-weeks duration (dry season 2006) is shown for the ninth hay-quadrat of the old Zaï forest (ZF30).

DYNAMICS OF FORAGING AND SOIL-SHEETING ESTABLISHMENT IN ALL REPLICATE-QUADRATS

Fig. A8-11: Cumulated increase in sheeting-area constructed during the experimental 4-weeks duration by *Odontotermes* and *Macrotermes* together (sheeting-mix, not possible to separate), shown per Zaï stage for all wood--plots combined; and in **Fig. A8-12:** for all hay-plots combined (dry season 2006).

Fig. A8-13: Cumulated increase in sheeting-area constructed during the experimental 4-weeks duration by *Odontotermes* and *Macrotermes* together (sheeting-mix, not possible to separate), shown per Zaï stage for all compost-plots combined; and in **Fig. A8-14:** for all control-plots combined (dry season 2006).

Study sites are: degraded area (ZDeg), millet field (ZMil), young Zaï forest (ZF20), old Zaï forest (ZF30).

Sheetings which could not be separated into the constructing taxa will be called 'mixed sheetings'.

In the following eight figures, different grey-scales are used for each sheeting-type: sheetings of *Odontotermes* and *Macrotermes* in total are dark grey, the 'mixed sheetings' are white; sheetings of *Odontotermes* and *Macrotermes* have grey scales in between.

Fig. A8-15: Cumulated increase in sheeting-area constructed during the experimental 4-weeks duration by foraging termites, shown per type (*Macrotermes, Odontotermes, mix, total*) for all wood-plots combined; and in **Fig. A8-16:** for all hay-plots of the old Zaï forest (ZF30) combined (dry season 2006).

Fig. A8-17: Cumulated increase in sheeting-area constructed during the experimental 4-weeks duration by foraging termites, shown per type (*Macrotermes, Odontotermes, mix, total*) for all compost-plots combined; and in **Fig. A8-18:** for all control-plots of the old Zaï forest (ZF30) combined (dry season 2006).

Fig. A8-19: Cumulated increase in sheeting-area constructed by foraging termites during the 4-weeks duration of the dry season run (2006), shown per sheeting-type (*Macrotermes, Odontotermes,* mix, total) for all wood-plots combined; and in **Fig. A8-20:** for all hay-plots of the young Zaï forest (ZF20) combined.

Fig. A8-21: Cumulated increase in sheeting-area constructed by foraging termites during the 4-weeks duration of the dry season run (2006), shown per sheeting-type (*Macrotermes, Odontotermes,* mix, total) for all compost-plots combined; and in **Fig.** A8-22: for all control-plots of the young Zaï forest (ZF20) combined.

CORRELATION BETWEEN AREA AND WEIGHT OF SHEETINGS BUILT IN HAY (DRY SEASON 2006)

For both genera, the correlation-equations were calculated 1) for all Zaï sites combined, and 2) for each Zaï stage separately; the resulting equations are shown 1) in the scatter plots, and 2) beside the scatter plots.

(A)

Study sites are: degraded area (ZDeg), millet field (ZMil), young Zaï forest (ZF20), old Zaï forest (ZF30).

DIAMETER OF FORAGING HOLES (MACROPORES) OF MACROTERMES AND ODONTOTERMES

Fig. A8-24: Diameter of macropores illustrated for plots where either *Macrotermes* or *Odontotermes* species were foraging. The diameter was measured at the end of the experimental 4-weeks duration and before placing new material on a plot where 100% of the offered hay was consumed by termites.

NOW:

PHYSICOCHEMICAL PARAMETERS OF SOIL-SHEETINGS BUILT BY **ODONTOTERMES** AND **MACROTERMES** SPECIES

	Soil parameter		CN-	ratio	SOM	SOM (g kg ⁻¹)		pΗ _{κci}		l (g kg⁻¹)	P total (g kg ⁻¹)		
	Paired-samples		M±SD	Δ 95% Cl	M ± SD	Δ 95% Cl	M±SD	Δ 95% Cl	M ± SD	Δ 95% Cl	M ± SD	Δ 95% Cl	
		Control-plot	9.3 ± 2.7	Δ 1.19	10.2 ± 4.6	Δ-85.74	5.1 ± 1	Δ-2.26	0.65 ± 0.29	Δ-6.47	0.27 ± 0.08	Δ-3.09	
		Sheetings in Cp	8.1 ± 1.5	-0.9 / 3.3	96 ± 8.7	-91.8 / -79.6	7.3 ± 0.1	-2.8 / -1.7	7.12 ± 1.86	-7.61/-5.32	3.35 ± 0.85	-3.6 / -2.57	
	sər	N=13	r	IS	<i>p</i> <0	0.0001	<i>p</i> <0.0001		<i>p</i> <0.0001		<i>p</i> <0.0001		
	ontotern	Control-plot	9.7 ± 2.2	Δ-4.61	10.1 ± 5.7	Δ -5.35	4.8 ± 0.6	Δ -0.39	0.6 ± 0.28	Δ -0.05	0.27 ± 0.05	Δ-0.06	
		Sheetings in H	14.3 ± 3.6	-6.7 / -2.5	15.5 ± 6.5	-7.8 / -3	5.2 ± 0.5	-0.5 / -0.3	0.64 ± 0.27	-0.14 / 0.04	0.32 ± 0.15	-0.13 / 0.02	
		<i>N</i> =19 ¹	<i>p</i> =0.0002		<i>p</i> =0	<i>p</i> =0.0002		.0001	1	าร	1	าร	
	po	Control-plot	9.7 ± 2.8	Δ-0.67	10.2 ± 5.3	Δ0.24	5.1 ± 0.8	Δ -0.53	0.63 ± 0.3	Δ 0.06	0.27 ± 0.09	Δ0.01	
		Sheetings in W	10.4 ± 1.3	-2.2 / 0.8	10 ± 2.7	-1.9 / 2.4	5.6 ± 0.7	-0.8 / -0.3	0.57 ± 0.16	-0.08 / 0.21	0.26 ± 0.08	-0.05 / 0.06	
-		N=19	ns		ns		<i>p</i> =0.0003		ns		ns		
05		Control-plot	10.6 ± 3.6	∆ 2.24	10.9 ± 3.8	Δ -40.17	5.2 ± 0.5	Δ-2	0.64 ± 0.23	Δ-2.88	0.25 ± 0.07	Δ-1.06	
20		Sheetings in Cp	8.4 ± 0.5	-2.7 / 7.2	51.1 ± 8.7	-54.5 / -25.8	7.2 ± 0.1	-2.8 / -1.1	3.52 ± 0.44	-3.75 / -2.01	1.32 ± 0.15	-1.29 / -0.83	
ou	S	N=4	r	IS	p=0	0.003	<i>р</i> =0).005	<i>р</i> =0	.002	p=0.	.0007	
eas	Ĩ	Control-plot	9.5 ± 3	Δ-5.82	10.8 ± 4.2	Δ-2.01	5.4 ± 0.9	Δ-0.04	0.7 ± 0.31	Δ 0.19	0.27 ± 0.12	Δ 0.06	
y s	ote	Sheetings in H	15.3 ± 3.6	-8.6/-3	12.8 ± 2.8	-4.1/0	5.4 ± 0.5	-0.6 / 0.5	0.51 ± 0.17	0.02 / 0.35	0.21 ± 0.08	-0.02 / 0.14	
tair	acr	N=9	<i>p</i> =0	<i>p</i> =0.001		ns		ns		<i>p</i> =0.03		ns	
	S	Control-plot	13.5 ± 2.3	Δ1.1	11.2 ± 4.2	Δ-3.79	5.1 ± 0.5	Δ-0.78	0.52 ± 0.3	Δ-0.17	0.24 ± 0.08	Δ-0.06	
		Sheetings in W	12.4 ± 1.7	-8.7 / 10.9	15 ± 6	-8.6/1	5.9 ± 0.1	-2.1/0.6	0.69 ± 0.19	-0.52 / 0.17	0.29 ± 0.02	-0.23 / 0.11	
_		N=3	r	IS		ns		ns	1	าร	1	าร	
-		Control-plot	9.2 ± 2.6	Δ-1.05	10.1 ± 4.4	Δ-0.77	5.1 ± 0.9	Δ-0.19	0.66 ± 0.27	Δ 0.03	0.27 ± 0.07	Δ-0.06	
	_	Compost-plot	10.2 ± 2.4	-2.4 / 0.4	10.9 ± 3.6	-2.5 / 1	5.3 ± 0.6	-0.5 / 0.1	0.63 ± 0.19	-0.1/0.16	0.32 ± 0.07	-0.12 / 0	
	isoi	N=15	r	IS	-	ns		ns	1	าร	1	าร	
	Top	Control-plot	9.8 ± 2.4	Δ-1.14	10.4 ± 5.3	Δ0.76	5 ± 0.7	∆0.21	0.63 ± 0.3	Δ 0.09	0.27 ± 0.08	Δ 0.03	
	•	Hay-plot	10.9 ± 2.9	-2.2 / -0.1	9.7 ± 4.1	-0.4 / 1.9	4.8 ± 0.5	0.1/0.4	0.54 ± 0.23	0/0.18	0.24 ± 0.08	-0.01 / 0.07	
		N=27	p=0	0.03		ns	p=	0.01	p=0	0.05	I	าร	

Table A8-1: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood (W), and with topsoil of Cp- or H-plots after 4 weeks foraging activity (rainy season 05). Given are means (M) ± standard deviations (SD), the mean difference (Δ), 95% confidence interval of Δ and the *p*-value (paired-samples *t* test; ns for *p* > 0.05). All Zaï sites combined.

Soil parameter		CN-r	atio	SOM	(g kg ⁻¹)	pl	H _{KCI}	N tota	l (g kg⁻¹)	P total (g kg⁻¹)		
	Paired-samples		M±SD	Δ 95% Cl	M ± SD	Δ 95% Cl	M±SD	Δ 95% Cl	M±SD	Δ 95% Cl	M ± SD	Δ 95% Cl
		Control-plot	13.7 ± 4.3	Δ0.1	12.9 ± 6.1	Δ-31.55	5.2 ± 0.6	Δ-2.03	0.57 ± 0.26	Δ-1.34	0.27 ± 0.07	Δ-0.33
		Sheetings in Cp	13.6 ± 2.6	-2.4 / 2.6	44.4 ± 15.7	-38.5 / -24.6	7.2 ± 0.5	-2.4 / -1.7	1.91 ± 0.6	-1.59 / -1.09	0.59 ± 0.18	-0.42 / -0.23
	sər	N=19 ¹	n	S	<i>p</i> <0.00001		<i>p</i> <0.00001		<i>p</i> <0.00001		<i>p</i> <0.00001	
	ern	Control-plot	12.4 ± 2.6	Δ 0.18	11.6 ± 5.4	Δ-4.56	5.1 ± 0.6	Δ-0.47	0.57 ± 0.3	Δ-0.22	0.29 ± 0.07	Δ0
	tot	Sheetings in H	12.2 ± 2	-1.2 / 1.6	16.1 ± 5.9	-5.9 / -3.2	5.6 ± 0.4	-0.6 / -0.3	0.79 ± 0.35	-0.32 / -0.12	0.29 ± 0.09	-0.05 / 0.05
	uo	N=20 ²	ns		<i>p</i> <0.0	<i>p</i> <0.00001		00002	<i>р</i> =0.	0002	r	ıs
	ро	Control-plot	12.7 ± 4.6	Δ 0.83	13.1 ± 6.5	Δ-2.96	5.3 ± 0.5	Δ -0.5	0.61 ± 0.26	Δ-0.19	0.26 ± 0.07	Δ-0.04
		Sheetings in W	11.9 ± 2.3	-1.6 / 3.3	16 ± 9	-5.6 / -0.3	5.8 ± 0.4	-0.7 / -0.3	0.8 ± 0.41	-0.33 / -0.05	0.3 ± 0.11	-0.08 / 0.01
-		N=20	ns		<i>p</i> =0.03		<i>p</i> =0.00005		<i>p</i> =0.01		ns	
90		Control-plot	12.9 ± 1.7	Δ0.3	11.6 ± 3.8	Δ-31.72	5.4 ± 0.5	Δ-2.09	0.53 ± 0.17	Δ-1.47	0.22 ± 0.04	Δ-0.31
200		Sheetings in Cp	12.6 ± 1.3	-1.3 / 1.9	43.3 ± 10.3	-37.4 / -26	7.5 ± 0.3	-2.3 / -1.9	2 ± 0.45	-1.72 / -1.22	0.53 ± 0.11	-0.37 / -0.24
u U	rmes	<i>N</i> =10 ³	n	S	p<0.0	00001	<i>p</i> <0.	00001	<i>p</i> <0.	00001	p<0.0	00001
easi		Control-plot	12.8 ± 1.1	Δ-3.89	9.8 ± 3.3	Δ-8.51	5.6 ± 0.6	Δ-0.18	0.45 ± 0.17	Δ-0.19	0.2 ± 0.04	Δ0
γ s(ote	Sheetings in H	16.7 ± 2.5	-6 / -1.8	18.3 ± 3.9	-12.2 / -4.8	5.7 ± 0.6	-0.7 / 0.4	0.64 ± 0.13	-0.35 / -0.03	0.2 ± 0.05	-0.04 / 0.04
p	acr	N=8	<i>p</i> =0.	003	<i>p</i> <0.001		ns		<i>p</i> =0.03		ns	
	S	Control-plot	13.1 ± 1.5	Δ-0.36	14.1 ± 4.4	Δ-5.37	5.5 ± 0.5	Δ-0.22	0.62 ± 0.17	Δ-0.21	0.22 ± 0.05	Δ -0.05
		Sheetings in W	13.5 ± 2.1	-3.2 / 2.4	19.5 ± 5.9	-10 / -0.8	5.7 ± 0.4	-0.7 / 0.3	0.83 ± 0.19	-0.4 / -0.01	0.26 ± 0.07	-0.13 / 0.03
		<i>N</i> =6	n	s	p=0	0.03	1	ns	p=0	0.04	r	าร
-		Control-plot	13.5 ± 3.8	Δ 3.68	12.8 ± 5.7	Δ-3.01	5.3 ± 0.6	Δ-0.69	0.57 ± 0.25	Δ -0.35	0.26 ± 0.07	Δ-0.07
	_	Compost-plot	9.9 ± 1.8	1.9 / 5.5	15.8 ± 6	-5.2 / -0.8	6 ± 0.7	-0.9 / -0.5	0.92 ± 0.31	-0.43 / -0.27	0.33 ± 0.13	-0.12 / -0.03
	soi	N=25	<i>p</i> =0.0	0003	p<	0.01	<i>p</i> <0.	00001	<i>p</i> <0.	00001	<i>p</i> =0.002	
	Гор	Control-plot	12.7 ± 2.1	Δ -0.07	11.4 ± 4.9	Δ -0.98	5.3 ± 0.6	Δ-0.04	0.55 ± 0.28	Δ-0.03	0.27 ± 0.08	Δ-0.02
	-	Hay-plot	12.8 ± 2.6	-1.1/1	12.4 ± 5.2	-2.7 / 0.7	5.3 ± 0.6	-0.2 / 0.1	0.57 ± 0.22	-0.11 / 0.06	0.28 ± 0.09	-0.04 / 0.01
		N=26 ⁷	n	s	1	าร		ns	1	าร	r	าร

Table A8-2: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood (W), and with topsoil of Cp- or H-plots after 4 weeks foraging activity (dry season 06). Given are means (M) ± standard deviations (SD), the mean difference (Δ), 95% confidence interval of Δ and the *p*-value (paired-samples *t* test; ns for *p* > 0.05). All Zaï sites combined.

¹ CN-ratio: *N*=13

	Soil parameter		EC (n	nS cm ⁻¹)	Coarse	sand (%)	Middle	sand (%)	Fine sa	nd (%)	Sand total (%)	
	Paired-samples		M±SD	Δ 95% Cl	M ± SD	Δ 95% Cl	M±SD	Δ 95% Cl	M±SD	Δ 95% Cl	M±SD	Δ 95% Cl
		Control-plot	48 ± 19	Δ-675	9 ± 2.6	Δ-0.4	19.1 ± 6.7	Δ0.6	27.4 ± 3.7	Δ2.4	55.4 ± 9.3	Δ2.6
		Sheetings in Cp	723 ± 98	-735 / -615	9.4 ± 2.7	-1.7 / 1	18.5 ± 4.5	-1.4 / 2.5	25 ± 2.4	0.1/4.7	52.8 ± 5.9	-0.1 / 5.4
	les	N=13	<i>p</i> <0	0.0001	ns		ns		<i>p</i> =0.04		<i>p</i> <0.0001	
	ern	Control-plot	48 ± 20	∆-22	7.4 ± 3.5	Δ-0.2	16.3 ± 8.5	Δ-2.4	28.5 ± 9.7	Δ-2.1	55.4 ± 11.8	Δ-1.3
	tot	Sheetings in H	70 ± 21	-32 / -13	7.6 ± 3.7	-1.9 / 1.5	18.7 ± 6.6	-5.1/0.3	30.6 ± 5.2	-6.6/2.4	56.6 ± 9.5	-4.5 / 2
	oni	<i>N</i> =16 ²	<i>p</i> <0.0001		r	is	r	IS	n	S	<i>p</i> <0.	0001
	po	Control-plot	45 ± 17	Δ-69	8 ± 3.8	Δ1.1	17 ± 7.5	Δ-1.5	28.4 ± 9.5	Δ-0.2	56.7 ± 8.4	∆ 2.7
		Sheetings in W	114 ± 49	-95 / -44	6.9 ± 5.3	-1.4 / 3.7	18.5 ± 5.4	-4.6 / 1.5	28.6 ± 3.9	-4.5/4	54 ± 6.5	-1 / 6.5
_		N=19	<i>p</i> =0	.00002	0002 n		IS I		ns		ns	
05		Control-plot	42 ± 5	Δ-385	8 ± 2	Δ-1.1	17.3 ± 5.5	Δ-3.1	28.1 ± 2.3	Δ0.5	53.5 ± 8.3	Δ-3.8
20		Sheetings in Cp	426 ± 51	-460/-310	9.2 ± 0.3	-4.6 / 2.3	20.5 ± 1.6	-10.4 / 4.1	27.7 ± 1.6	-3 / 3.9	57.3 ± 1.9	-17.5 / 9.9
lon	S	N=4	p=	0.005	r	IS	r	IS	n	S	<i>р</i> =0.	0005
eas	Ľ	Control-plot	43 ± 11	Δ-19	8.7 ± 2.8	Δ-1.6	19.4 ± 5.7	Δ-3	27.9 ± 5.1	Δ-0.1	56.1 ± 8	∆-4.7
λ	ote	Sheetings in H	61 ± 12	-30 / -7	10.3 ± 2.8	-4.7 / 1.6	22.4 ± 5.5	-5.7 / -0.4	28 ± 3.5	-3.5 / 3.4	60.7 ± 6.3	1.00
Raii	acr	N=9	<i>p</i> =	0.006	ns		<i>p</i> =0.03		ns		<i>p</i> =0.006	
	Σ	Control-plot	36 ± 8	Δ-73	6.3 ± 4.5	Δ-0.7	17.8 ± 5.9	∆ -2.7	29.1 ± 4.8	Δ 0.8	53.1 ± 9.4	Δ-2.6
		Sheetings in W	110 ± 9	-98 / -48	7 ± 2.9	-11.3 / 9.9	20.5 ± 2.8	-13.6 / 8.2	28.2 ± 4.9	-6/7.7	55.7 ± 3.4	-29.5 / 24.4
		N=3	p=	0.006	r	IS	r	IS	ns		r	IS
_		Control-plot	47 ± 17	Δ-15	8.8 ± 2.5	Δ-1	18.6 ± 6.4	Δ-1.1	27.7 ± 3.6	Δ-0.6	55.1 ± 8.8	Δ-2.7
	_	Compost-plot	63 ± 21	-28 / -2	9.8 ± 2	-2.7 / 0.7	19.7 ± 5.4	-2.9 / 0.6	28.3 ± 3	-2.3 / 1.1	57.8 ± 7.2	-6.1/0.6
	soi	N=15	p=	0.02	r	is	r	IS	n	S	r	is
	Гор	Control-plot	47 ± 17	Δ2	7.6 ± 3.2	Δ-1.2	17.3 ± 7.8	Δ-1.5	28.5 ± 8.2	Δ-1.6	55.7 ± 10.5	Δ-1.8
	-	Hay-plot	45 ± 14	-3 / 7	8.8 ± 3	-2.3 / -0.2	18.7 ± 6.8	-3.4/0.4	30.1 ± 5.4	-4.6 / 1.5	57.5 ± 10.6	-4.4 / 0.8
		N=24 ⁸		ns	р=(0.03	r	IS	n	5	ns	

Table A8-3: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood (W), and with topsoil of Cp- or H-plots after 4 weeks foraging activity (rainy season 05). Given are means (M) ± standard deviations (SD), the mean difference (Δ), 95% confidence interval of Δ and the *p*-value (paired-samples *t* test; ns for *p* > 0.05). All Zaï sites combined.

Soil parameter		EC (mS cm ⁻¹)		Coarse sand (%)		Middle sand (%)		Fine sand (%)		Sand total (%)		
Paired-samples		M±SD	Δ 95% Cl	M ± SD	Δ 95% Cl	M±SD	Δ 95% Cl	M±SD	Δ 95% Cl	M ± SD	Δ 95% Cl	
		Control-plot	59 ± 21	Δ-1171	6.9 ± 3	Δ0.2	16.8 ± 5.6	Δ-0.8	29.5 ± 4.9	Δ2.1	53.4 ± 9.1	Δ1.8
		Sheetings in Cp	1230 ±462	-1395 / -947	6.6 ± 3	-1.2 / 1.6	17.6 ± 4.7	-2.3 / 0.7	27.4 ± 3.7	0.4/3.8	51.6 ± 7.4	-1/4.6
	səu	N=19	<i>p</i> <0.	00001	ns		ns		<i>p</i> =0.02		ns	
	ern	Control-plot	56 ± 19	Δ-121	7.6 ± 2.8	∆0.7	18.1 ± 6.5	Δ -0.9	28.1 ± 2.6	Δ0.5	54.1 ± 9.7	Δ1.1
	tot	Sheetings in H	177 ± 67	-152 / -89	6.9 ± 2.5	-0.3 / 1.7	19 ± 6.9	-2.5 / 0.7	27.6 ± 3	-0.8 / 1.8	53 ± 9.9	-1.5 / 3.7
	no	N=20	<i>p</i> <0.	<i>p</i> <0.00001		is	n	S	n	s	n	S
	ро О	Control-plot	57 ± 22	Δ-107	6.7 ± 3	Δ-0.8	16.7 ± 6.3	∆ -2.7	29.6 ± 5.3	Δ0.9	53.1 ± 10.5	Δ-2.6
		Sheetings in W	164 ± 77	-141 / -73	7.5 ± 3.6	-2/0.4	19.4 ± 6.5	-4.3 / -1.1	28.7 ± 4.6	-0.8 / 2.6	55.7 ± 10.7	-5.6 / 0.4
-		N=20	<i>p</i> =0.00005		r	ns		<i>p</i> =0.003		ns		S
90		Control-plot	48 ± 20	Δ -1169	6.8 ± 2.2	Δ0.5	20.9 ± 6.6	Δ0.3	30.8 ± 5	Δ1.6	58.5 ± 11.3	Δ2.5
200		Sheetings in Cp	1218 ± 427	-1472 / -867	6.2 ± 2.1	-1/2.1	20.6 ± 4.7	-1.7 / 2.3	29.2 ± 3.7	-1.6 / 4.9	56 ± 7.3	-1.2 / 6.1
no	Sa	N=10	<i>р</i> =0.	00001	r	าร	n	S	n	S	n	S
easi	rme	Control-plot	41 ± 18	Δ-116	6.4 ± 2.9	Δ-1.1	21.7 ± 6.5	Δ1.2	33.8 ± 7	Δ4.6	61.8 ± 10.9	Δ4.7
γ se	ote	Sheetings in H	156 ± 57	-161 / -71	7.5 ± 3	-3.2 / 1	20.4 ± 4.2	-2.4 / 4.9	29.2 ± 5	0.1/9	57.1 ± 7.4	-0.2 / 9.6
D	acr	N=8	<i>p</i> =0.0005		ns		ns		<i>p</i> =0.05		ns	
	Σ	Control-plot	53 ± 19	Δ-124	5 ± 1.6	Δ-2.7	15.7 ± 2.1	Δ0.2	29.5 ± 6.1	Δ3.8	50.2 ± 7.1	Δ1.3
		Sheetings in W	177 ± 81	-207 / -41	7.7 ± 4.6	-7.3 / 1.9	15.5 ± 3.6	-3.9 / 4.3	25.7 ± 5.5	-0.3 / 8	48.9 ± 9.6	-9.3 / 11.9
-		<i>N</i> =6	p=	0.01	r	is	n	S	n	s	n	S
		Control-plot	56 ± 22	Δ -107	6.8 ± 2.9	Δ-0.5	17.9 ± 6.1	Δ-0.2	29.8 ± 5.2	Δ0.8	54.7 ± 10.4	Δ0.3
	_	Compost-plot	162 ± 76	-140 / -73	7.3 ± 2.8	-1.5 / 0.5	18 ± 5.2	-1.4 / 1.1	28.9 ± 4.7	-0.5 / 2.2	54.4 ± 9.4	-2.1 / 2.7
	soi	N=25	<i>р</i> <0.	00001	r	is	n	S	n	s	n	S
	Гор	Control-plot	52 ± 20	Δ-21	7.1 ± 2.7	Δ0.4	18.7 ± 6.4	Δ-0.4	29.8 ± 5.2	Δ1.1	55.6 ± 10.3	Δ1.3
	-	Hay-plot	73 ± 30	-34 / -8	6.7 ± 2.3	-0.6 / 1.3	19.1 ± 6.2	-1.7 / 0.9	28.7 ± 4	-0.6 / 2.7	54.3 ± 9.4	-0.9 / 3.6
	<i>N</i> =26		<i>р=</i> С	0.002	r	าร	n	S	n	S	ns	

Table A8-4: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood (W), and with topsoil of Cp- or H-plots after 4 weeks foraging activity (dry season 06). Given are means (M) ± standard deviations (SD), the mean difference (Δ), 95% confidence interval of Δ and the *p*-value (paired-samples *t* test; ns for *p* > 0.05). All Zaï sites combined.

² P total: *N*=19

Soil parameter Coarse silt (%) Clay (%) Middle silt (%) Fine silt (%) Silt total (%) Δ Δ Δ Δ Δ M ± SD M±SD M±SD **Paired-samples** M±SD M±SD 95% CI 95% CI 95% CI 95% CI 95% CI Control-plot 20.6 ± 5.7 Δ1.4 5.6 ± 1.6 Δ-1 3.4 ± 0.8 Δ-1.5 29.6 ± 7.2 Δ-1.1 15 ± 5.5 Δ-1.5 19.1 ± 3 5.9 ± 2 -1.7 / -0.4 4.9 ± 0.8 -2.1 / -0.9 30.7 ± 4.3 -3.8 / 1.5 Sheetings in Cp -1.2 / 4.1 16.5 ± 2.5 -4.4 / 1.4 Odontotermes p=0.004 N=13 p=0.0001 ns ns ns 5.4 ± 2.2 21.1 ± 7.9 2.6 ± 1.1 Δ0 31 ± 8 Δ1 13.7 ± 5.9 Control-plot Δ-0.8 Δ0.1 Δ0.3 5.3 ± 1.1 -0.9 / 1.1 2.6 ± 0.7 -0.7 / 0.7 30 ± 6.7 -1.8 / 3.8 Sheetings in H 22 ± 5.1 -4/2.4 13.4 ± 4.4 -1.6 / 2.2 N=16 ns ns ns ns ns 5.3 ± 2.1 ∆ -0.2 2.8 ± 1.1 △ -0.7 29.9 ± 7.9 13.4 ± 3.5 Control-plot 20.1 ± 7.9 Δ0.2 Δ0.9 Δ-3.6 20 ± 5.5 Sheetings in W -3/3.3 5.5 ± 1.6 -1/0.6 3.4 ± 0.9 -1.2 / -0.1 29.1 ± 7.3 -1.7 / 3.5 17 ± 4.6 -6.9 / -0.4 N=19¹ *p*=0.02 p=0.03 ns ns ns Δ0.3 Δ3.3 22.8 ± 7.1 Δ2.3 5.9 ± 2 3.8 ± 0.6 Δ0.6 32.5 ± 8.8 14 ± 3.6 Rainy season 2005 Control-plot Δ0.6 **Sheetings in Cp** 20.5 ± 2.5 -5.3 / 9.9 5.6 ± 0.5 -2.1 / 2.7 3.2 ± 0.5 0 / 1.3 29.2 ± 2.7 -6.6 / 13.1 13.5 ± 3.2 -4.9 / 6.1 N=4 ns ns ns ns Macrotermes ns 5.2 ± 1.6 Δ2.5 Control-plot 19.6 ± 6.1 Δ1.2 Δ0.4 3.5 ± 0.9 Δ0.8 28.3 ± 7.3 15.6 ± 6.1 Δ2.2 Sheetings in H 18.4 ± 4.9 -1.7 / 4.2 4.7 ± 1.4 -0.3 / 1.1 2.7 ± 0.9 0.1 / 1.5 25.9 ± 6.3 -0.8 / 5.7 13.4 ± 5.4 -2.6 / 7.1 N=9 p=0.03 ns ns ns ns 22.8 ± 8.7 Δ6.3 Δ1 3.3 ± 0.8 31.7 ± 9.7 Δ7.7 15.2 ± 3.3 5.6 ± 1.9 Δ0.4 Δ-5.1 Control-plot **Sheetings in W** 16.5 ± 4.8 -6.2 / 18.8 4.6 ± 0.9 -2.8 / 4.8 2.9 ± 0.8 -1.1 / 1.9 24 ± 4.8 -7.7 / 23 20.3 ± 6.1 -19.9 / 9.7 N=3 ns ns ns ns ns 30.4 ± 7.2 21.2 ± 5.7 5.7 ± 1.6 3.5 ± 0.8 Δ0.2 Δ2.1 14.5 ± 5.3 Control-plot Δ1.1 Δ0.7 Δ0.6 20.1 ± 4.8 -1.6 / 3.9 **Compost-plot** 5±1.3 0.1/1.3 3.2±0.8 -0.2/0.6 28.4±5.9 -1.1/5.2 13.8±4.3 -1.7/3 Topsoil p=0.03 N=15 ns ns ns ns **Control-plot** 5.4 ± 2.1 Δ0 30.4 ± 8.1 Δ2.2 Δ-0.4 21 ± 7.6 Δ0.6 Δ0.4 2.8 ± 1.1 13.8 ± 5.2 2.7 ± 0.9 -0.5 / 0.6 28.2 ± 7.8 0.4 / 4.1 20.4 ± 5.5 -1.6 / 2.7 5 ± 1.6 -0.3/1 14.3 ± 5.7 -2 / 1.1 Hay-plot N=24⁸ p = 0.02ns ns ns ns

Table A8-5: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood (W), and with topsoil of Cp- or H-plots after 4 weeks foraging activity (rainy season 05). Given are means (M) ± standard deviations (SD), the mean difference (Δ), 95% confidence interval of Δ and the *p*-value (paired-samples *t* test; ns for *p* > 0.05). All Zaï sites combined.

Soil parameter		Coarse	silt (%)	Middle	silt (%)	Fines	silt (%)	Silt total (%)		Clay (%)		
	Paired-samples		M ± SD	Δ 95% CI	M ± SD	Δ 95% Cl	M±SD	Δ 95% Cl	M±SD	Δ 95% Cl	M±SD	Δ 95% Cl
		Control-plot	23.7 ± 6.3	Δ1.3	6 ± 1.9	Δ-0.2	3.4 ± 0.8	Δ0.3	33.6 ± 8.2	Δ1.7	13 ± 4.3	Δ-3.5
		Sheetings in Cp	22.4 ± 3.8	-0.4 / 2.9	5.8 ± 2.5	-1.1/0.6	3.1 ± 0.8	-0.3 / 0.8	31.8 ± 5.6	-0.5 / 4	16.5 ± 3.5	-5.2 / -1.9
	sər	N=19	ns		ns		ns		ns		<i>p</i> =0.0002	
	ern	Control-plot	22.9 ± 6.9	Δ1.3	5.8 ± 1.9	Δ0.3	3.3 ± 0.8	Δ 0.5	32.4 ± 9	Δ2.2	13.5 ± 4.5	Δ-3.2
	tot	Sheetings in H	21.7 ± 6.5	-0.1/2.6	5.4 ± 1.4	-0.3 / 0.9	2.8 ± 0.8	0.2 / 0.9	30.2 ± 7.9	0.3/4.1	16.7 ± 6	-5.6 / -0.9
	oni	<i>N</i> =20	ns		r	ns		.004	<i>р</i> =0.	03	<i>p</i> =0	.01
	ро	Control-plot	24.3 ± 7.5	Δ2.6	6.3 ± 2.3	Δ0.7	3.4 ± 0.9	Δ0.5	34 ± 10	Δ3.8	12.9 ± 3.8	Δ-1.2
		Sheetings in W	21.7 ± 6.4	1.1/4.2	5.6 ± 2.1	0.1/1.3	2.9 ± 0.9	0.2 / 0.8	30.2 ± 8.8	1.8 / 5.8	14.1 ± 5	-3.9 / 1.5
-		<i>N</i> =20	ns		<i>p</i> =0.003		<i>p</i> =0.03		<i>p</i> =0.003		<i>p</i> =0.0007	
9		Control-plot	22.6 ± 7.4	Δ1.9	5.8 ± 2.5	Δ-0.2	3.5 ± 0.6	Δ0.6	31.8 ± 10.1	∆ 2.3	9.6 ± 2.3	Δ-4.8
200		Sheetings in Cp	20.7 ± 6.2	-0.3 / 4.1	6 ± 1.7	-1.2 / 0.7	2.9 ± 0.7	0.1/1.1	29.6 ± 7.9	-0.4 / 5	14.4 ± 2.6	-7 / -2.5
u c	S	<i>N</i> =10	n	S	r	าร	p=0	0.03	ns	5	<i>р</i> =0.	001
easi	m	Control-plot	21.9 ± 7.5	Δ0.1	4.8 ± 1.8	Δ-0.3	3.2 ± 0.8	Δ0.4	29.9 ± 9.8	Δ0.1	8.3 ± 2	Δ-4.8
۷ se	ote	Sheetings in H	21.8 ± 5.9	-3.7 / 3.9	5.1 ± 1.3	-1.4 / 0.7	2.9 ± 0.7	-0.5 / 1.2	29.7 ± 7.1	-4.4 / 4.7	13.1 ± 2.6	-7.5 / -2.2
p	acr	N=8	n	S	ns		ns		ns		<i>p</i> =0.004	
	Σ	Control-plot	25.9 ± 6.5	Δ2.9	7 ± 1.8	Δ-0.1	3.9 ± 0.3	Δ0.5	36.8 ± 7.6	Δ3.3	13 ± 6.6	Δ-4.6
		Sheetings in W	23 ± 3.4	-0.9 / 6.7	7.2 ± 2.8	-2.3 / 2	3.3 ± 1.6	-1.1 / 2.2	33.5 ± 6.6	-2.9 / 9.5	17.7 ± 6.7	-9.5 / 0.3
		N=6	n	S	r	าร	r	ıs	ns	5	n	s
•		Control-plot	23.5 ± 6.8	Δ0.1	5.9 ± 2.1	Δ-0.1	3.4 ± 0.8	Δ0.1	33.2 ± 9	Δ0.6	12.1 ± 4.2	Δ-0.9
	_	Compost-plot	23.4 ± 5.4	-1.5 / 1.8	6.1 ± 1.8	-0.6 / 0.4	3.3 ± 1	-0.4 / 0.6	32.6 ± 7.7	-1.4 / 2.5	13 ± 4	-2 / 0.2
	soi	<i>N</i> =26	n	S	r	ıs	r	าร	ns	5	n	s
	-o	Control-plot	22.7 ± 7.1	Δ1.5	5.5 ± 2	Δ-0.1	3.3 ± 0.8	Δ-0.6	32.3 ± 9.1	Δ0.7	12.1 ± 4.6	Δ-2
	-	Hay-plot	21.2 ± 6.3	0/3	5.6 ± 1.8	-0.5 / 0.4	3.9 ± 1.9	-1.3 / 0.2	31.6 ± 8.5	-1.1/2.4	14.1 ± 5.9	-4 / 0
		N=26	n	S	r	is	r	is	ns	5	n	S

Table A8-6: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood (W), and with topsoil of Cp- or H-plots after 4 weeks foraging activity (dry season 06). Given are means (M) ± standard deviations (SD), the mean difference (Δ), 95% confidence interval of Δ and the *p*-value (paired-samples *t* test; ns for *p* > 0.05). All Zaï sites combined.

² P total: *N*=19

	Soil parameter		P_CAL (mg 100 g ⁻¹)		K_CAL (n	ng 100 g ⁻¹)	BS	(%)	CEC _{pH 8.1} (mmol _c kg ⁻¹)	
	Paired-samples		M±SD	Δ 95% Cl	M ± SD	Δ 95% Cl	M ± SD	Δ 95% Cl	M±SD	Δ 95% Cl
		Control-plot	0.36 ± 0.14	Δ-8.41	11 ± 5.4	Δ-212.1	46.3 ± 13	Δ-46	69 ± 21.8	Δ-65.2
		Sheetings in Cp	8.77 ± 3.55	-10.17 / -6.66	223.2 ± 105.4	-264 / -160.3	92.3 ± 13.7	-55.6 / -36.3	134.2 ± 40.7	-84 / -46.3
	sər	N=18 ³	<i>p</i> <0.	00001	<i>p</i> <0.	00001	<i>p</i> <0.0	00001	<i>p</i> <0.0	0001
	ern	Control-plot	0.33 ± 0.11	Δ-0.6	11.2 ± 6.1	Δ -17.5	47 ± 12.8	Δ-7.6	66.2 ± 21.5	Δ-14.6
	tot	Sheetings in H	0.93 ± 0.36	-0.8 / -0.41	28.7 ± 6	-20 / -14.9	54.6 ± 11.3	-12.3 / -3	80.7 ± 25.5	-21.2 / -7.9
	иo	<i>N</i> =17 ⁴	<i>p</i> <0.	00001	<i>p</i> <0.	00001	<i>p</i> =0	.003	<i>р</i> =0.0	0002
	0q	Control-plot	0.49 ± 0.42	∆ -0.24	12.7 ± 6.4	Δ-7.3	49.1 ± 11.4	Δ-7.9	69.2 ± 24.2	Δ-7.7
		Sheetings in W	0.73 ± 0.34	-0.49 / 0.01	20 ± 8.5	-12.2 / -2.5	56.9 ± 8.4	-12.8 / -2.9	76.9 ± 30.8	-17.2 / 1.8
_		N=20	ns		<i>p</i> =0.005		<i>p</i> =0.003		n	s
9		Control-plot	0.34 ± 0.14	Δ-8.67	10.3 ± 3.7	∆ -247.4	51.3 ± 11.9	Δ-48.7	57.2 ± 16.1	Δ-69.9
200		Sheetings in Cp	9.01 ± 2.62	-10.63 / -6.7	257.7 ± 81.1	-305.1 / -189.6	100 ± 0	-57.2 / -40.2	127.1 ± 27.9	-84.7 / -55.1
LO LO	rmes	<i>N</i> =10 ⁵	<i>p</i> <0.00001		<i>p</i> <0.	00001	p<0.0	00001	<i>p</i> <0.0	0001
eas		Control-plot	0.32 ± 0.08	Δ-0.22	13.8 ± 6.9	Δ-16.6	54.8 ± 15.5	Δ-1.1	45.9 ± 12.2	Δ-23.5
۷ Sé	ote	Sheetings in H	0.54 ± 0.17	-0.4 / -0.03	30.4 ± 3.6	-23.8 / -9.5	55.9 ± 12.2	-12 / 9.9	69.4 ± 10.7	-35.3 / -11.7
p	acr	N=8	p=	0.03	<i>p</i> <0	0.001	r	าร	<i>p</i> =0.002	
	S	Control-plot	0.3 ± 0.02	Δ-0.4	18 ± 6	Δ-4.6	54.5 ± 13.7	Δ-3.5	64.9 ± 19.4	Δ-15.1
		Sheetings in W	0.7 ± 0.38	-3.65 / 2.85	22.6 ± 2	-76.3 / 67.1	58 ± 13	-14.4 / 7.5	80 ± 19.9	-27.1 / -3.2
		N=8		ns		ns	r	าร	<i>p</i> =0	.02
_		Control-plot	0.31 ± 0.1	Δ-0.63	9.7 ± 4.4	Δ-9.8	49.2 ± 13	Δ-14.5	66.7 ± 21.3	Δ-12
	_	Compost-plot	0.94 ± 0.45	-0.83 / -0.42	19.5 ± 7.3	-13.4 / -6.3	63.7 ± 14.6	-19.5 / -9.6	78.7 ± 25.2	-20.4 / -3.6
	soi	<i>N</i> =20 ⁹	<i>p</i> <0.	00001	<i>p</i> =0.	00002	<i>p</i> <0.0	00001	<i>р</i> =0.	007
	Гор	Control-plot	0.33 ± 0.12	Δ0	12 ± 6.3	Δ-2.4	48.8 ± 13.3	Δ1.6	61.4 ± 21.5	Δ-6.2
	-	Hay-plot	0.33 ± 0.19	-0.09 / 0.09	14.4 ± 4.7	-4.8 / 0	47.2 ± 14.8	-2.2 / 5.4	67.6 ± 18.6	-12.1 / -0.3
		N=25 ¹⁰		ns		ns	r	าร	p=0.04	

Table A8-7: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood (W), and with topsoil of Cp- or H-plots after 4 weeks foraging activity (dry season 06). Given are means (M) ± standard deviations (SD), the mean difference (Δ), 95% confidence interval of Δ and the *p*-value (paired-samples *t* test; ns for *p* > 0.05). All Zaï sites combined.

³ BS, CEC: *N*=19; ⁴ BS, CEC: *N*=20; ⁵ P_CAL: *N*=9

Soil parameter		Na ⁺ (mmol _c kg ⁻¹)		K⁺ (mn	nol _c kg ⁻¹)	Mg ²⁺ (m	nmol _c kg ⁻¹)	Ca ²⁺ (mmol _c kg ⁻¹)		
	Paired-samples		M±SD	Δ 95% Cl	M±SD	Δ 95% Cl	M ± SD	Δ 95% Cl	M ± SD	Δ 95% Cl
		Control-plot	0.3 ± 0.23	Δ-1.4	2.5 ± 1.5	Δ-50.6	7.5 ± 3.3	Δ-21.5	22.8 ± 11.8	Δ -16.3
		Sheetings in Cp	1.7 ± 0.74	-1.75 / -1.05	53.1 ± 36.5	-68.1 / -33.2	29 ± 7.5	-25 / -18	39.1 ± 11.8	-22.1 / -10.5
	nes	N=19	<i>p</i> <0.0	00001	<i>p</i> <0.	00001	<i>p</i> <0.00001		<i>p</i> =0.00001	
	una	Control-plot	0.32 ± 0.26	Δ-0.81	2.7 ± 1.6	Δ-4.9	7.4 ± 3.2	Δ-3.1	21 ± 9.7	Δ-4
	tot	Sheetings in H	1.13 ± 0.54	-1.09 / -0.54	7.5 ± 1.8	-5.7 / -4	10.5 ± 4.7	-4.7 / -1.6	24.9 ± 12.1	-6.9 / -1.1
	oni	N=20	<i>p</i> <0.0	00001	<i>p</i> <0.	00001	<i>ρ</i> =0	0.0003	p=0	0.01
	po	Control-plot	0.25 ± 0.18	Δ -0.66	2.6 ± 1.1	Δ-2.8	7.9 ± 3.3	Δ-2.6	23.2 ± 11.6	Δ-4.7
		Sheetings in W	0.9 ± 0.47	-0.89 / -0.42	5.4 ± 2.7	-4 / -1.6	10.5 ± 4.6	-3.9 / -1.4	27.9 ± 15.1	-10 / 0.6
-		<i>N</i> =20	<i>p</i> =0.00001		<i>p</i> =0.0001		<i>p</i> =0.0003		ns	
9		Control-plot	0.34 ± 0.23	Δ-1.37	2.3 ± 0.9	Δ-52.5	7.4 ± 2.7	Δ-24.6	18.7 ± 7.2	Δ -19.8
200		Sheetings in Cp	1.72 ± 0.42	-1.67 / -1.08	54.9 ± 17.4	-64.9 / -40.2	32 ± 8.9	-30.1 / -19.1	38.5 ± 9.7	-24.1 / -15.5
L L	S	N=10	<i>p</i> <0.0	00001	<i>p</i> <0.	00001	<i>p</i> <0	.00001	<i>p</i> <0.0	00001
easi	rm	Control-plot	0.34 ± 0.23	Δ-0.11	1.9 ± 0.8	Δ-4.7	6.4 ± 2.5	Δ-4.4	16.2 ± 8	Δ-5.5
γ s(ote	Sheetings in H	0.41 ± 0.17	-0.42/0.21	6.6 ± 2.2	-6.8 / -2.5	10.7 ± 4	-6.8 / -1.9	21.7 ± 8	-11.2 / 0.2
p	acr	N=8	r	าร	<i>p</i> =0.001		<i>p</i> =0.004		ns	
	Σ	Control-plot	0.3 ± 0.16	Δ-0.46	2.7 ± 2.3	Δ-3.9	8.4 ± 3.4	∆ -2.4	23.6 ± 9.6	∆ -4.2
		Sheetings in W	0.76 ± 0.23	-0.72 / -0.2	6.7 ± 2.7	-8.5 / 0.7	10.8 ± 2.9	-3.7 / -1.1	27.7 ± 9.8	-11.8 / 3.5
		N=8	N	=8	<i>р</i> =0	0.006		ns	<i>р</i> =0	.005
-		Control-plot	0.3 ± 0.22	Δ-0.35	2.5 ± 1.3	Δ-4.5	7.7 ± 3.1	Δ-3.5	22.4 ± 10.7	Δ-8
	_	Compost-plot	0.65 ± 0.52	-0.57 / -0.12	7 ± 2.8	-5.7 / -3.4	11.3 ± 3.9	-4.8 / -2.3	30.4 ± 11	-12 / -3.9
	soi	N=25	<i>p</i> =0	.004	<i>p</i> <0.	00001	<i>p</i> <0	.00001	<i>p</i> =0.	.0005
	Ър	Control-plot	0.34 ± 0.25	Δ-0.42	2.4 ± 1.5	Δ-0.6	7.2 ± 3.1	Δ-0.8	20 ± 9.6	Δ-0.4
		Hay-plot	0.76 ± 0.93	-0.81 / -0.03	3 ± 1	-1.2 / 0	7.9 ± 3.4	-1.6 / 0.1	20.3 ± 9.9	-3 / 2.3
		N=26	p=0	0.04		ns		ns	1	าร

Table A8-8: Comparisons of control-plot topsoil with sheetings constructed by *Odontotermes* or *Macrotermes* on compost (Cp), hay (H) or wood (W), and with topsoil of Cp- or H-plots after 4 weeks foraging activity (dry season 06). Given are means (M) ± standard deviations (SD), the mean difference (Δ), 95% confidence interval of Δ and the *p*-value (paired-samples *t* test; ns for *p* > 0.05). All Zaï sites combined.

CONTROL-TOPSOIL PLOTTED AGAINST SIGNIFICANTLY MODIFIED SHEETING-SOIL

Fig. A8-25: Shown are all physico-chemical parameters which were <u>significantly modified</u> in soil-sheetings constructed by *Odontotermes* or by *Macrotermes* species. Control-plot samples (0-10 cm) are plotted against sheeting-soil samples (0-10 cm) collected in hay-plots of the rainy season run (left) and the dry season run (right).

Termite genera are Odo: Odontotermes (square), Macro: Macrotermes (triangle).

Study sites are ZDeg: barren, degraded land (yellow), ZMil: millet field (orange), ZF20: young Zaï forest (light-green), ZF30: old Zaï forest (dark-green).

plant-available phosphorous plant-available potassium (drv season 2006) (dry season 2006) 2.0 40 soil-sheetings over hay soil-sheetings over hay K_CAL (mg/100g) P_CAL (mg/100g) 1.5 30 ≥∆ \diamond 1.0 20 0.5 10 0.0 0 0.0 1.0 2.0 0.5 1.5 10 20 30 40 ♦ Odo in ZF30 P₂O_{5 available} (mg/100g) K_{available} (mg/100g) control-plot soil ♦ Odo in ZF20 control-plot soil ♦ Odo in ZMil ♦ Odo in ZDeg ▲ Macro in ZF30 base saturation potential cation exchange capacity ▲ Macro in ZF20 (dry season 2006) (dry season 2006) 140 100% soil-sheetings over hay soil-sheetings over hay CEC_{pH 8.1} (mmol_c/kg) 120 80% 100 BS (%) 60% 80 60 40% 40 20% 20 0 0% 20 80 100 0 40 60 120 40% 60% 20% 80% 100% 0% ♦ Odo in ZF30 CEC_{pH 8.1} (mmol_c/kg) BS (%) ♦ Odo in ZF20 control-plot soil control-plot soil ♦ Odo in ZMil ♦ Odo in ZDeg ▲ Macro in ZF30 exchangable potassium exchangable sodium ▲ Macro in ZF20 (dry season 2006) (dry season 2006) 3 12 soil-sheetings over hay soil-sheetings over hay 10 Na⁺ (mmol_c/kg) K⁺ (mmol_c/kg) 8 2 6 4 1 2 0 0 0 2 4 6 8 10 12 1.5 2.5 3.0 0.0 0.5 1.0 2.0 K^+ (mmol_c/kg) Na⁺ (mmol_c/kg) control-plot soil control-plot soil

ADDITIONAL PARAMETERS ANALYZED SOLELY FOR THE DRY SEASON SAMPLES

(CONSTRUCTED IN HAY)

Fig. A8-26: Shown are physico-chemical parameters analyzed solely for the dry season samples which were significantly modified in sheetings constructed either by *Odontotermes* or by *Macrotermes* species. Control-plot samples (0-10 cm) are plotted against sheeting-soil samples (0-10 cm) collected in hay-plots.

Termite genera are Odo: Odontotermes (square), Macro: Macrotermes (triangle).

Study sites are ZDeg: barren, degraded land (yellow), ZMil: millet field (orange), ZF20: young Zaï forest (light-green), ZF30: old Zaï forest (dark-green).

CONSTRUCTED IN COMPOST

Fig. A8-27: Shown are all physico-chemical parameters which were <u>significantly modified</u> in soil-sheetings constructed either by *Odontotermes* or by *Macrotermes* species. Control-plot samples (0-10 cm) are plotted against sheeting-soil samples (0-10 cm) collected in compost-plots of the rainy season run (left) and the dry season run (right).

Termite genera are Odo: Odontotermes (square), Macro: Macrotermes (triangle).

Study sites are ZDeg: barren, degraded land (yellow), ZMil: millet field (orange), ZF20: young Zaï forest (light-green), ZF30: old Zaï forest (dark-green).

ADDITIONAL PARAMETERS ANALYZED SOLELY FOR THE DRY SEASON SAMPLES

(CONSTRUCTED IN COMPOST)

Fig. A8-28: Shown are physico-chemical parameters analyzed solely for the dry season samples which were <u>significantly modified</u> in sheetings constructed either by *Odontotermes* or by *Macrotermes* species. Control-plot samples (0-10 cm) are plotted against sheeting-soil samples (0-10 cm) collected in compost-plots.

Termite genera are Odo: Odontotermes (square), Macro: Macrotermes (triangle).

Study sites are ZDeg: barren, degraded land (yellow), ZMil: millet field (orange), ZF20: young Zaï forest (light-green), ZF30: old Zaï forest (dark-green).

