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Abstract

This work focuses on the study of optical and electronic properties of quantum con-

fined semiconductor nanocrystals. A full characterization of quasi-zero dimensional

semiconductor nanoparticles embedded in a glass matrix is well achieved by applying

both linear and nonlinear spectroscopy techniques. Low wavenumber Raman spec-

troscopy has been proved to be an appropriate tool to determine the most important

parameters like the size of the nanocrystals and the nanoparticle’s size distribution

inside the dielectric matrix. Moreover, the chemical composition of the nanocrystals

was obtained applying resonance Raman techniques. Further properties of such quan-

tum confined systems related to the electronic structure, the nanocrystals’ symmetry

and its dependence on the crystal growth conditions were successfully determined

by means of four-wave-mixing and pump-probe spectroscopy. Four-wave-mixing in

the framework of transient grating experiments was applied in order to complete the

picture of complex relaxation processes in quantum confined systems.
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1 Introduction

Bulk crystalline semiconductors started a new era in the development of science and

technology. Their optical and electronic properties constitute the basis of an entire

industry including electronics, telecommunications, microprocessors, computers and

many other components of modern technology. Further innovation was brought by

reducing the semiconductor’s spatial dimensions, leading to huge enhancement in

their optical nonlinearities due to confinement of carriers. Industry requirement

for miniaturization demanded artificially preparation of quantum wells (QW) and

quantum wires with carriers confined in one and two directions of the cartesian

space, respectively, encouraging further efforts of scientist to reduce the dimensions

even more. Confinement of carriers in all 3 spatial dimensions was achieved in the

semiconductor quantum dots (QDs). The spatial extension of semiconductor QDs

ranges on a nanometer scale and is comparable to the exciton Bohr radius of the

bulk.

Such nanocrystals with electrons and holes confined in all three spatial dimensions

raised high interest in the last decade [1–6] and show a wide application range from

spintronics to quantum computation [7] based on the ability to control and maintain

spin coherence over a practical length and time scale. Three dimensionally confined

excitons are interesting not only because of their highly enhanced nonlinearities but

also because they are known as prototypical systems for investigating the physics of

quantum confinement. Semiconductor QDs are considered as a new form of matter,

1



1 Introduction

which due to their discrete energy structure have been called ”artificial atoms” and

can be manipulated to create QD molecules or can be used as dopants in order to

form a supermolecule. Hence, the periodic table of elements could be extended with

”artificial elements”.

This work is focused on the study of II-VI QDs embedded in a glass matrix.

Nanocrystals formed in inorganic host present the advantage of being impervious

to ambient changes up to high temperatures. At the same time one has to confront

the disadvantage that such QDs are not accessible to surface modifications, while

the main contribution to the optical processes is brought by surface states and

associated defects. The presence of the glass matrix does not allow changes in the

QD’s structure once the growth process is closed. However, the thermodynamical

stability of such nanoparticles provides satisfactory applications.

The electronic and optical properties of nanocrystals depend strongly on their

spatial dimensions and composition. Thus another way to control the physics of

quantum confined systems is achieved by controlling their dimension. This is eas-

ily done by appropriate selection of the heat treatment conditions (duration and

temperature). Heat treatment of QDs embedded in a dielectric matrix by rapidly

quenching from melts yield a wide range of nanocrystal sizes, the precipitation in a

very viscous medium affording the control of nucleation rates and growth of colloids.

The samples investigated in this work are commercially available CdSxSe1−x QDs

embedded in a glass matrix provided by Schott Inc., known as very efficient optical

filters. Their cut-off wavelength depends both on the chemical composition (the

fraction x of S atoms in the nanocrystal) and on the QD’s size. In the case of

the investigated samples these parameters both vary from one sample to another.

Moreover, this study includes not only as-received glasses but also a category of

heat treated QDs with the aim to determine the ”perfect conditions” to grow high

quality QDs.

Linear and nonlinear spectroscopy techniques are applied in order to investigate

the physics of these confined systems. The aim of this study is a full characterization
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of the nanocrystals. It will be shown that linear and nonlinear spectroscopy tech-

niques under adequate polarization geometries are complementary tools and provide

invaluable information about the size, chemical composition, shape and asymmetry

of the QDs. Moreover, the exciton fine structure and ultrafast relaxation processes

will be determined.

The basic concepts of semiconductor nanocrystals are reviewed in chapter 2. In

the first part, the growth process and it’s influence on the crystallographic properties

of the QDs are discussed. A brief overview of the fine energy structure of QDs and

the confinement induced degeneracy of the energy bands are presented.

The key-parameters of various as-received CdSxSe1−x nanocrystals embedded in

dielectric matrix are determined in chapter 3. The most efficient non-destructive

method suitable for such investigations is the low wavenumber Raman spectroscopy.

The special experimental setup enables one to record the spectra very close to the

Rayleigh line and therefore evidencing acoustic phonons, which are often masked by

strong luminescence and unconformity of the experimental equipment. Special care

is taken to the linear polarization of the laser beams, which allows the selection of

the acoustic vibrational modes. The low wavenumber Raman technique is applied in

off-resonance scattering regime. The off-resonance Raman measurements provided

the QD’s mean size and the size distribution inside the inhomogeneous broadening.

A complete picture of the QDs presented above can be achieved by applying com-

plementary techniques. Femtosecond four-wave-mixing spectroscopy is successfully

applied in the study of ultrafast processes taking place in confined systems. Chapter

4 contains a brief description of a theoretical model based on the treatment of the

third order nonlinear polarization in the framework of density matrix formalism.

This model is successfully used for an interpretation and description of nonlinear

processes in confined ensembles and is completed by a schematic representations of

the interaction processes between carriers.

Chapter 5 is entirely dedicated to a detailed description of the experimental setup

used to perform the pump-probe transmission (PPT) and the four-wave-mixing
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1 Introduction

(FWM) experiments, both involving femtosecond (fs) laser pulses. In the first part,

the attention is focused on the generation and characterization of femtosecond laser

pulses. The setup illustrated in this chapter presents major advantages such as tun-

ability of the wavelength over the whole visible range, individual control of the time

sequence of the pulses and ability to choose different beam geometries. Moreover,

the polarization of the femtosecond pulses can be individually selected, thus making

different dynamical processes accessible.

One of the as-received samples studied in chapter 3, namely OG550 is further

investigated by means of ultrafast spectroscopy techniques, the results being sum-

marized in chapter 6. Femtosecond FWM and PPT spectroscopy involving circularly

polarized laser pulses are applied in the study of energetic and optical properties of

confined excitons. It is shown that the relaxation of polarization selection rules is

due to a strong exciton-exciton coupling inside the same QD thus proving the ex-

istence of biexciton structures. Another reason for the relaxation of selection rules

constitutes the contribution of the inhomogeneous spin dephasing of excitons due

to a random exchange splitting of the lowest optically active exciton state J = 1 as

consequence of the lowering of the QD symmetry. Therefore the FWM spectroscopy

is proven to be an appropriate tool in the investigation of the internal and crystal

shape asymmetry of QDs.

This idea is extended in chapter 7, where heat treated CdSe nanocrystals embed-

ded in dielectric matrix are extensively investigated. The attention is focused on

the influence of the heat treatment conditions (duration and temperature) on the

crystal shape and consequently on the fine energy structure of the nanocrystals. It

will be shown that samples containing nanoparticles of the same size, but grown

under different conditions (different time intervals and/or temperatures) exhibit dif-

ferent exciton spin dephasing times and thus different symmetry. As a conclusion,

a qualitative study of the dependence of the QD’s asymmetry on the QD’s size and

heat treatment duration will be presented.

A major part of this work is dedicated to the exciton relaxation processes in quan-
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tum dots. In the last part of chapter 7 it will be shown, that the exciton relaxation

is a complex mechanism. As a consequence of optical excitation, the electrons and

holes can follow different paths in their way back to the ground state. The decay

times are ranging on a ps time scale and include both Auger processes and scattering

on surface defects. It will be proved that Auger autoionization plays a decisive role

in the relaxation of carriers in 3D confined systems. The capture of electrons in

deep traps in the dielectric matrix slows down significantly the relaxation process.

Chapter 7 also discusses relaxation processes from higher lying exciton states, where

Auger-like thermalization, Auger autoionization and capture of carriers in surface

traps have to be considered for the study of the excited exciton behavior. Con-

sequently it will be demonstrated that the electron-hole interaction is the decisive

factor responsible for the carrier relaxation and that phonon mediated processes are

strongly suppressed in quasi zero dimensional particles. Thus the phonon bottle-

neck, which is a well-known phenomenon in bulk semiconductors is definitely broken

in nanoparticle ensembles.

Although there are excellent publications from numerous scientist in this domain

[1–6], the physics of quantum confinement is still not entirely understood. This

work represents a further step and gives an idea for the direction of improvement

in QD’s fabrication techniques in order to obtain high quality QDs. It presents the

complex relaxation mechanisms of quantum confined carriers on a subatomic scale,

thus achieving a description of nonlinear properties of nanosized particles. Moreover,

it proves that by application of both linear- (low wavenumber Raman scattering) and

nonlinear spectroscopy (fs-FWM) a complete characterization of quantum confined

systems can be achieved.
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2 Semiconductors: Basic Concepts

Artificially obtained semiconductor structures with reduced dimensions

present a large variety of new interesting properties in comparison to the

bulk material and open new ways in the engineering of semiconductors.

By simple combination of two semiconductor materials of different band-

gap energies –quantum well– a spatial confinement of carrier motion in

the direction of the growth axis is obtained. Further decrease of dimen-

sions to one-dimensional –quantum wires– and quasi-zero dimensional

–quantum dots– structures leads to large enhancement of their optical

nonlinearities. Confinement of carriers in all 3 spatial directions conse-

quently involves a redistribution of the energy in well-separated atomic-

like energy levels. Moreover, quantum dots are known as prototypes in

the physics of quantum confinement.

This chapter gives a brief review of the basic properties of II-VI semi-

conductor nanocrystals. In the first part of this section the growth meth-

ods and their influence on the crystallographic and energy structure are

described. The lifting of degeneracy due to confinement effects, the one-

electron–hole pair and two-electron–hole pair states are discussed.
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2 Semiconductors: Basic Concepts

2.1 Growth Processes

The samples studied in this work are commercially available optical filter glasses

provided by Schott Inc. The optical properties of such filters are determined by the

semiconductor crystals embedded in the matrix.

The crystal diameter and its chemical composition are the most important pa-

rameters which determine the spectral position of the absorption edge and therefore

the color and the cut-off wavelength of the glass filter. Both crystal dimensions and

composition can be controlled during the synthesis process by varying parameters

like temperature and/or duration of growth process.

The glass and semiconductor components are melted together at 1250–1400◦C in

order to obtain a supersaturated solution of semiconductor ions. Very small crystal-

lites are separated from this supersaturated solution and form so called nucleation

centers, to whom further semiconductor ions are supposed to migrate during this

step of the synthesis. The nucleation process is followed by a diffusion process,

taking place at 500–800◦C, temperature range lying above the glass transition but

below the melting point.

The size of the nanoparticles can be controlled by selecting the appropriate du-

ration of the growth process [8–10]. The size distribution of QDs in the sample is

best described by a Gaussian distribution [11,12].

2.2 Crystallographic Structure of II-VI Semicon-

ductor Quantum Dots

In industry, the most frequently used II-VI semiconductor nanostructures are zinc-

and cadmium chalchogenides. Such materials present large energy gaps and crys-

talize in two main structures: the cubic zinc blend and the hexagonal wurtzite

structure, both illustrated schematically in figure 2.1.

Both zinc blend and wurtzite structures show tetrahedral coordination, i.e. each
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2.2 Crystallographic Structure of II-VI Semiconductor Quantum Dots

Fig. 2.1: The crystallographic structure of II-VI semiconductors. Black spheres

are cations and can be Zn, Cd or Hg atoms, whereas white spheres are

anions represented by S, Se or Te atoms. On the left: hexagonal wurtzite

structure. On the right: cubic zinc blend structure .

Cd atom is surrounded by 4 S, respectively Se atoms and vice versa. The bulk

usually crystalizes in wurtzite structure, whereas in the case of nanocrystals these

two structures coexist. Their ratio can be controlled through appropriate selection

(control of temperature) of growth conditions [13,14]. The symmetry characteristics

of the most frequently used QDs are summarized in table 2.1.

Another important parameter for the characterization of the crystallographic

structure of II-VI quantum dots is the lattice constant. Table 2.2 contains informa-

tion about the lattice constants of the two structures described above for the most

commonly used bulk semiconductors [13].

The crystallographic structure of mixed semiconductor nanocrystals i.e.

CdSxSe1−x is also determined by the preparation conditions, depending on the

(stable) crystallographic structure of the compounds CdS and CdSe. For this case,

parameters like the lattice constant a or the QD’s diameter can be calculated using

a linear interpolation of the components (Vegardschen rule).

Gandais et al. [15] showed a nicely discernable crystal structure of nanocrystals

9



2 Semiconductors: Basic Concepts

Table 2.1: Crystallographic Structure of II-VI Semiconductors [13]

zinc blend wurtzite

Group of symmetry C6 Td

Nr. atoms/primitive cell 4 2

Stable structures ZnS, CdS, CdSe ZnS, ZnSe, ZnTe, CdTe

Metastable Structure ZnSe, ZnTe, CdTe CdS,CdSe

Table 2.2: The Lattice Constant a in 10−10 m of II-VI Semiconductors [13]. The nu-

merical values in brackets indicate the lattice constant of the metastable

structure.

wurtzite zinc blend

ZnSe (4.01) 5.669

CdS 4.137 (5.838)

CdSe 4.298 (6.084)

CdTe (4.57) 6.481

10



2.2 Crystallographic Structure of II-VI Semiconductor Quantum Dots

Fig. 2.2: HRTEM picture of a single CdSxSe1−x QD embedded in a glass matrix

[15]. The refraction pattern of the QD is emphasized by grey deposition.

hosted by the commercially available Schott filter glass RG630 (where the number

next to the letters stays for the cut-off wavelength of the filter glass). Figure 2.2

displays the picture of a single nanocrystal recorded by high resolution transmission

electron microscopy (HRTEM) [15]. The studies on II-VI semiconductor nanostruc-

tures by the group of Gandais [15] showed that small crystals present a spherical

structure, whereas big crystals (> 10 nm) display a hexagonal prism structure. They

also proved that II-VI nanostructures embedded in a glass matrix crystalize mainly

in wurtzite structure.

This work contains studies on crystals of low dimensionality with diameters not

exceeding 10 nm. Although the spherical form for the case of small particles can

be considered as a good approximation, it will be shown in chapters 6 and 7, that

small deviations from the spherical symmetry lead to considerable changes in the

electronic and optical properties of such nanostructures.
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2 Semiconductors: Basic Concepts

2.3 Energy States

The energy band structure forms the basis of understanding the most optical prop-

erties of semiconductors. The conditions for a nanocrystal to be considered as a

quantum dot are related to their spatial dimensions. Considering the exciton Bohr

radius aB three different confinement regimes can be distinguished:

1. weak confinement regime: R > aB,

The radius R of the nanocrystals is bigger than the exciton Bohr radius aB of

the bulk.

2. intermediate confinement : aB,h < R < aB,e,

In this case the dimension R of the nanocrystal lies between the Bohr radius

of the electrons aB,e and the Bohr radius of the hole aB,h.

3. strong confinement regime: a < R < aB,

The carriers are strongly confined if their radius R lies in the interval defined

by the lattice constant a and the exciton Bohr radius aB of the bulk.

The three–dimensional quantum confinement of carriers is analogous to the quan-

tum mechanical problem of the motion of a particle in a box with infinitely high

potential barriers. In the following, the influence of models going beyond simple

quantum mechanics on properties like selection rules, wave functions and energy

states themselves is briefly presented.

2.3.1 One Electron-Hole Pair States

The samples studied within this work lie in the strong confinement regime defined

above. Although the QD’s dimensions are smaller than the exciton Bohr radius, they

exceed the lattice constant and the crystallin structure of the bulk is preserved. In

order to describe the effect of quantum confinement, the effective mass approxima-

tion (EMA) [16–18] was proved to be a good approach. The results obtained from

12



2.3 Energy States

alternative calculation methods as LCAO (linear combination of atomic orbitals) or

tight-bounding approximation coincide well with the results given by the EMA for

nanocrystals showing strong confinement [19–27].

The energy states in semiconductors are given by the semiconductor Bloch equa-

tions, which result from the stationary Schrödinger equation of an electron in a

spatially periodic potential:

ĤΨ(r) =

[
− ~

2

2m
∇2 + V (r)

]
Ψ(r) = EΨ(r). (2.1)

The potential V (~r) is a periodic potential, with a period equal to that of the

underlying Bravais lattice for all lattice vectors ~R. In the following, the vector signs

of the position vector ~r and ~R are omitted for simplification.

V (r) = V (r + R). (2.2)

The eigenstates Ψ (eq. 2.1) are envelope functions composed of the plane wave

eikr and the periodical function uν,k(r) having the period of the Bravais lattice and

are described by the Bloch theorem:

Ψν,k(r) = eikruν,k(r), (2.3)

where

uν,k(r) = uν,k(r + R), (2.4)

ν being the band index and k the wave vector reduced to the first Brillouin zone.

Thus the energy eigenvalues E in the effective mass and parabolic band approxi-

mation are given by:

E(k) =
~2k2

2m
, (2.5)

where m is the effective mass of the electron or the hole, respectively.

13



2 Semiconductors: Basic Concepts

r
e

r
h

r
eh

e+

e−

ε2 ε1

Fig. 2.3: The motion of an electron with associated position vector ~re and of the

hole with associated position vector ~rh inside a sphere with a dielectric

constant ε2, whereas ε1 is the dielectric constant of the medium outside

the sphere. The sphere with infinite potential barriers symbolizes the QD

embedded in a host material with dielectric constant ε1.

Considering the electron-hole states inside a spherical QD of a radius R as being

surrounded by an infinitely high potential barrier represented by the dielectric ma-

trix (figure 2.3), the eigenstates Ψ can be expanded in products of a new envelope

function ψ and the periodic part of the Bloch function uν,k:

Ψ(r) = ψ(r)u(r). (2.6)

Here, the band index ν and the wave vector k were ignored for simplicity.

Considering parabolic bands and neglecting the Coulomb interaction, the Hamil-

tonian for the new envelope function ψ(r) is:

Ĥ = − ~2

2me

∇2
e −

~2

2mh

∇2
h + Ve(re) + Vh(rh) (2.7)

with the confinement potential:

Vi(ri) =





0 for ri < R

∞ for ri > R
, (2.8)

where the indices i=e,h stay for electron and hole, respectively.

14



2.3 Energy States

If the interaction between electrons and holes is negligible, the envelope function

can be written as a product of separate contributions of the electron and hole,

respectively

ψ(re, rh) = φe(re) · φh(rh). (2.9)

Thus separating the motion of the electron from the motion of the hole, the

solution of the Schrödinger equation (eq. 2.7, eq. 2.8 and eq. 2.9) is given by

φi
nlm(r) = Ylm

√
2

R3

Jl(χnl
r
R
)

Jl+1(χnl)
, (2.10)

where the quantum numbers n = 1, 2, 3, ... (main quantum number), l = 0, 1, 2, ...

(orbital quantum number) and −l ≤ m ≤ l (magnetic quantum number) are in-

troduced. Ylm are the spherical harmonics and Jl the spherical Bessel functions.

The energy values are calculated taking into account the boundary conditions at

the QD–matrix interface r = R, where the wave function of the particle i (i stays

for electron and hole, respectively) vanishes:

Jl

(
χnl

r

R

)
|R=r = 0. (2.11)

Introducing the values of the spherical Bessel and harmonic functions [28] the

energy values are determined as:

Ee,h
nl =

~2

2me,h

χ2
nl

R2
(2.12)

and taking into account the boundary condition eq. 2.11, the lowest energy state in

a quantum dot is

Ee,h
10 =

~2

2mi

π2

R2
. (2.13)

For the lowest confined electron-hole pair (1EHP) state an increase of the transi-

tion energy ∆E with respect to the bulk band gap is obtained:
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2 Semiconductors: Basic Concepts

∆E =
~2

2µ

π2

R2
, (2.14)

where µ = memh

me+mh
is the reduced effective mass of the electron–hole pair.

The Coulomb interaction, which in bulk represents the reason for the existence

of excitons, plays an important role in characterizing the electron-hole interaction.

The Hamilton operator describing the electron-hole interaction is given by:

Ĥ = −~
2∇2

e

2me

− ~
2∇2

h

2mh

− e2

ε2|re − rh| + Ve(re) + Vh(rh). (2.15)

The Coulomb potential, which depends on the distance between the electron and

the hole, introduces a break in the symmetry and makes the separation of eq. 2.15 in

coordinates of relative and center–of–mass motion of the electron-hole pair difficult.

By applying the perturbation theory [29], the lowest excited state energy results

into:

E10 =
~2π2

2R2

[
1

me

+
1

mh

]
− 1.8e2

ε2R
. (2.16)

Further improvements of this model can be obtained considering a realistic semi-

conductor band structure. For II-VI semiconductors such as CdS, CdSe, ZnSe, etc.

and most III-V compounds, the conduction band is determined by s–orbitals of the

metal ion, whereas the valence band has a more complicated structure, originating

in p–orbitals of S, Se or other elements of group VI or V, respectively.

The conduction band can be approximated by parabolic bands with only 2–fold

spin degeneracy at k = 0 due to its origin in s–type orbitals, whereas the non-

parabolicity of the valence bands lifts the degeneracy. In figure 2.4 the bulk bands

for both zinc-blende and wurtzite-type crystallin structures are shown. In zinc-

blende structures belonging to Td group symmetry, the p–type character of the

atomic orbitals leads to a six-fold degenerated valence band at k = 0 without taking

into account the spin-orbit coupling. The spin-orbit coupling reduces the valence
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2.3 Energy States

E E
conduction bandzinc-blende

type

wurtzite

type

k k

HH

LH

SO

J=3/2

mJ=
+3/2

mJ=
+1/2

J=1/2

mJ=
+1/2

valence band

A

B
C

Fig. 2.4: Band structure of zinc-blende and wurtzite type semiconductors. Detailed

description – see text.

band degeneracy and the band can be described by the total angular momentum J,

representing the sum of the orbital angular momentum and spin angular momentum.

The four-fold degenerate valence band with a total angular momentum J = 3/2

(mJ = ±3/2;±1/2) and the two-fold degenerate valence band with J = 1/2 (mJ =

±1/2) are created by the combination of the orbital momentum 1 and the angular

momentum 1/2 of the spin. The split in energy of these two states with J = 3/2

and J = 1/2 at k = 0 (at Γ point of the Brillouin zone) is determined by the spin-

orbit coupling. The concepts of ”heavy hole” (HH) and ”light hole” (LH) subbands

denote the two uppermost valence bands and the term ”spin-orbit split-off band”

(SO) stays for the lowest valence band.

In wurtzite-type crystals, the crystal field introduces a small perturbation of the

Td symmetry leading to a lifting in degeneracy at k = 0 of the two uppermost valence

bands. The result consists in three valence bands, labelled A, B, and C, respectively.

Analogous to the bulk exciton, the energetically lowest exciton level is an eightfold

degenerate (1S3/2, 1se) electron-hole pair state. The electron is an s–type electron
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B

AT

AF

(1S3/2, 1se)

| 2, 0 > ,  | 1, 1 > ,

| 1, 0 > ,  | 1, −1 >

| 2, 1 > ,  | 2, −1 > 

| 2, 2 > ,  | 2, −2 > 

ground state 

Fig. 2.5: Simplified illustration of lifting of degeneracy of the one electron-hole pair

state (1S3/2, 1se) due to non-sphericity of QDs, crystal field and exchange

interaction. The states are labelled by the corresponding ”ket-vectors”

|N, Nm >, composed by the total pair angular momentum N and its pro-

jections Nm [4].

arising from the lowest conduction band and is characterized only by its spin quan-

tum number s = 1/2 with the projections ms = ±1/2. The hole, arising from the

uppermost valence band is described by the total angular momentum F = 3/2 with

the projections mF = ±3/2,±1/2. Here, F = L+J is the total angular momentum

resulting from the mixing of s and d–type valence bands, L is the orbital angular

momentum of the wave function due to confinement effects and J is the angular mo-

mentum of the Bloch component of the wave function [28]. In order to characterize

the electron-hole pair state, the total pair angular quantum momentum N = F + s

is introduced [3] with the projections Nm. The eightfold degeneracy of the lowest

exciton state is given by all possible combinations |N,Nm >= |F, s, mF ,ms >.

The energetically lowest (1S3/2, 1se) exciton state can be further split due to the

crystal field (i.e. wurtzite structure) or deviation from the spherical shape of the

QDs [4] into two groups of states, labelled A and B (figure 2.5). For very small

nanocrystals (with a radius smaller than 1.5 nm) showing relevant deviation from

the spherical shape, the energy states labelled B undergo further significant splitting.

For QDs with dimensions exceeding 1.5 nm but still in the strong confinement regime
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showing almost-spherical symmetry, the energy levels belonging to group A and

group B are well-separated by tens of meV. The exchange interaction leads to further

splitting of the group A energy states into two pair-states given by the projections

Nm = ±1 and ±2 of the total pair angular momentum N = 2. The lowest pair state

with Nm = ±2 is labelled AF , while the immediately higher lying energy state with

Nm = ±1 is labelled AT . Transitions from the ground state to AF are forbidden

because light with an angular momentum 1 couples to states with Nm = ±2 only in

higher orders of perturbation theory. Thus the dipole forbidden AF state shows only

weak absorption, but the emission after relaxation from energetically higher levels

is certainly possible. The lowest optically active pair state is AT with Nm = ±1,

which couples strongly to the radiation field. However, it is important to note that

the energetically lowest lying optically active state AT is not the energetically lowest

lying exciton state, the latter being represented by AF . This remark plays a very

important role in the understanding of the relaxation processes in confined systems,

discussed in the following chapters.

2.3.2 Two Electron-Hole Pairs

Excitation of several electron–hole pairs in quantum confined systems leads to inter-

action of charge carriers. The possible interactions appear between two electrons,

two holes, and one electron and one hole, respectively. The corresponding Hamilto-

nian operator is given by:

Ĥ = Ĥe + Ĥh + Vee + Vhh + Veh + δV (ε1, ε2, re, rh) + V conf
e,h , (2.17)

where Ĥe and Ĥh represent the kinetic energies of electrons and holes, respectively,

Vee, Vhh and Veh are the Coulomb interaction terms for the electron–electron, hole–

hole and electron–hole interactions with the background dielectric constant of the

bulk material, δV (ε1, ε2, re, rh) is the correction to the Coulomb potential due to the

differences in the dielectric constants of the semiconductor and the glass host, and
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Ve,h stays for the barrier potential [30,31].

The spatial confinement of excitons involves the mixing of their wave functions.

The mixing of wave functions of two excitons close to each other results either in a

symmetric or in an anti-symmetric combination. The symmetric combination forms

the bound state of the excitonic molecule (biexciton) with lower energy, whereas the

anti-symmetric state is not bound.

Bound pair states can be created only if the Coulomb interaction between carriers

is taken into account. Ignoring the Coulomb potential, from eq. 2.17 degenerate

one- and two-pair states are obtained and the binding energy results to be zero

δE2 = 0. The stability of the two-electron-hole-pair states is given by a positive

binding energy:

δE2 = 2E1 − E2, (2.18)

where E1 and E2 are the ground state energies corresponding to the one- and two-

pair states, respectively. In QDs however, E2 is not a correct eigenenergy, the

dissociation of biexcitons in free electrons and holes being prevented by the confin-

ing barriers. Thus eq. 2.17 represents only a first approximation. The Schrödinger

equation derived from eq. 2.17 was solved by various groups [30–34]. The theo-

retical calculations showed that, in comparison to the bulk, the binding energy of

biexcitons in nanocrystals is larger and both ground– and excited two-pair states

can be observed in optical spectra. Confinement effects lead to the disappearance

of typical bulk continuum states and to changes in the selection rules thus allowing

transitions to excited two-pair states, which in bulk semiconductors are forbidden. A

scheme of optical transitions in QDs [28] considering both one– and two-pair states

is illustrated in figure 2.6.

Combination of carriers situated on different levels of conduction– (electrons) and

valence band (holes) develops into a whole ensemble of one–pair states (excitons).

Thus beside the lowest exciton state (1S3/2, 1se), a series of combinations between

20



2.3 Energy States

II
I III

E

1 2 3

1se 1P3/2 1se 1P3/2

1se 1S3/2 1pe 1P3/2

…

1se 1S3/2 1se 2S3/2
1se 1S3/2 1se 1S3/2

1pe 1P3/2…

1se 2S3/2
1se 1S3/2

two pair

states

one pair

states

ground state

Fig. 2.6: Optical transitions in QDs for a two-particle system. The energy levels

for one– and two–pair states are illustrated. For details – see text.

electrons and holes populating excited states appear. Further, such exciton states

involving carriers in both ground and excited states can also interact with each

other. Thus, beside the lowest two–pair (biexciton) state combining carriers in the

ground state (1S3/2, 1se, 1S3/2, 1se), a multitude of biexciton states involving carriers

in excited states is created (i. e. (1S3/2, 1se, 2S3/2, 1se)).

The relaxation of selection rules due to Coulomb interaction is responsible for the

optical transitions. The strongest biexciton transition (I) is situated energetically

below the lowest exciton resonance (1) and is separated from the latter by the

biexciton binding energy. The transitions involving excited states of carriers are

weaker than (I) and both can be observed: transition (II) appears energetically

higher, whereas (III) lies energetically below the lowest one–pair transition (see

figure 2.6).

Additional Coulomb forces described by the term δV (ε1, ε2, re, rh) in eq. 2.17

contribute to the binding energy of biexciton states. Thus, surface polarization

induced by the difference in the dielectric constants of the host material ε1 and

the semiconductor ε2 also contributes to the stabilization of biexciton states and
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calculations [30] proved that the stability of biexcitons increases with an increasing

ratio ε2/ε1.

2.3.3 Interaction of Many Particles

In a first approximation, Efros and Efros [16] considered the weak confined model in

order to describe electron-hole pair states in large QDs. This model is valid only in

bigger QDs (having larger diameter with respect to the exciton Bohr radius) and the

confinement effects don’t influence the relative coordinates of electrons and holes.

Thus the particle in an infinite box problem (high potential barriers) can be reduced

to a quantized center-of-mass motion.

The number of energy states and the distance between them is determined by

the height of the potential barrier, which scales inversely proportional to the square

of the QD’s radius 1/R2. Therefore, in the weak confinement regime, the separa-

tion between the energy states tends to disappear leading to a rapidly increasing

number of states per unit energy. However, approaching these energy levels doesn’t

yield a continuum of states like in the bulk. In contrast to the bulk, the exciton

and biexciton states in semiconductor nanocrystals embedded in glass matrix are

well separated and clearly distinguishable in form of Lorenzian line shape in optical

absorption spectra. This line shape arises form the underlying series of confined

overlapping energy levels [35]. Here, the two–level model, often used to describe

small QDs is no longer valid and the nonlinear optical behavior of QDs in weak

confinement regime is described by the many–particle system and its possible inter-

actions.

The system of ”many–particles” refers here to ”many–excitons” accumulated in

one quantum state. Here Pauli’s principle is no longer obeyed, because excitons

and biexcitons are bosons with integer quantum numbers, in contrast to electrons

and holes which are fermions. Unbound and bound pair states (excitons and biex-

citons) are created via exchange and polarization interactions. The population of
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the energy states follow Bose-Einstein statistics, the optical transitions being con-

nected to changes in the occupation number larger than one. Also considering the

exciton–exciton interaction, which leads to homogeneous broadening, boson statis-

tics explain well the blue shift (with respect to the bulk) of the exciton line shapes

in the absorption spectra [36]. However, for a complete understanding of confine-

ment induced blue shift of exciton levels other phenomena such as changing in the

occupation number of the lowest exciton states or higher pair transitions also have

to be taken into account [28].

Although the simple two-level system provides valuable information in charac-

terization of relaxation dynamics in QDs with discrete level structure, the correct

understanding of optical properties of bulk semiconductors requires a many-body

formalism.
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3 Low Wavenumber Raman Spectroscopy

on CdSSe Quantum Dots

Raman spectroscopy is one of the best nondestructive techniques pro-

viding information about the structure and the electronic vibrational

states in confined systems. In this chapter off-resonant low wavenumber

Raman spectroscopy is applied in order to investigate energetic and op-

tical properties of CdSxSe1−x quantum dots embedded in a glass matrix.

In bulk semiconductors, the acoustic phonons show very low intensity

and therefore their presence haven’t been evidenced yet. However, in

quantum confined systems 3D confinement of electrons and holes leads

to modifications in the energy distribution and to a large enhancement of

the intensity of acoustic vibrational modes. Moreover, their wavenumber

depends inversely proportional on the QD’s size. In this chapter the

attention is focused on the contribution of the homogeneous broadening of

the symmetric vibrational mode. Key-properties of the samples like QD’s

size and the size distribution inside the inhomogeneous broadening of the

nanocrystals is estimated by means of Raman spectroscopy under off-

resonant scattering conditions. Special care was taken to the polarization

of the laser beam, making vibrations of different symmetry available to

monitor.
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Here, a systematic study of the low wavenumber Raman (LWR) scattering of

confined acoustical modes in CdSxSe1−x QDs of various size and chemical composi-

tion will be presented. The samples are commercially available Schott filter glasses,

namely GG495, OG515, OG530, OG550, OG570 and RG590, where the numbers

next to the letters indicate the cut-off wavelength of the glass, which depends both

on the QD’s size and on their chemical composition (the fraction x of S atoms).

The chemical composition of the nanocrystals was determined in resonance Raman

scattering regime by the group of Dr. M. Ivanda at the Ruder Boskovic Institute,

Zagreb, Croatia and do not constitute a subject of this study [37].

This section focuses on the off-resonant excitation of the samples presented above.

The off-resonance regime is achieved by employing the krypton ion laser line at 647

nm for the Raman excitation process. The spectra were recorded with a Spex

1403 double monochromator equipped with a multichannel detection system (CCD

camera Photometrics RDS 900). The 90◦ scattering geometry was used to record

Raman spectra very close to the Rayleigh line (≈ 4 cm−1). The excitation power

density of 400 W/cm2 was focused on the sample using a cylindrical lens, therefore

taking special care to avoid local heating of the glass. The samples were kept at

room temperature and before recording the Raman spectra, they were exposed for

an hour to the same laser power. Such an exposure leads to photodarkening of the

samples and consequently to a more favorable detection of the Raman scattered

light, due to a strong decrease in the photoluminescence, which usually masks the

weak Raman signal. Linearly polarized laser light was used for excitation and the

Raman spectra were recorded under two polarization configuration: VV polarization

geometry meaning that the excitation light is vertically polarized and the scattered

light also analyzed vertically, and HV polarization geometry considering that the

excitation light is horizontally polarized and the scattered light is vertically analyzed

with respect to the scattering plane.

In a first approximation, the QDs are free, homogeneous and perfectly symmetric

spheres. The spectra of acoustical vibrations of such a free spherical nanoparticle
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a b

Fig. 3.1: Acoustic vibrational modes of a free, homogeneous, elastic sphere: a.

spheroidal mode – breathing mode labelled l=0, active only in VV po-

larization geometry; b. torsional mode – quadrupolar mode labelled l=2,

active in both VV and HV polarization geometries.

contains two types of vibrational modes: spheroidal and torsional ones as shown in

figure 3.1 a and b, respectively [38].

The modes are classified according to the symmetry group of a sphere by the

indices l and m, in analogy to the harmonic functions Ylm. The values l measure

the number of wavelenghts along a circle on the surface. A third index p=1,2,...,n

labels the sequence of the eigenmodes in increasing order of wave number and radial

vector, for a fixed angular shape (l,m). However, for a spherical particle only the

spheroidal modes labelled l = 0 (symmetric) and l = 2 (quadrupolar) are Raman

active [39]. The wavenumbers ν̃ of these modes, i.e. the lowest energy of the l = 0, 2

sequences, depend inversely proportional to the diameter D of the nanoparticles:

ν̃ =
Slv

cD
, (3.1)

where v is an average value for the longitudinal and transversal sound velocity,

calculated taking into account the orientation of the crystal axis, c is the light

velocity and Sl is a dimensionless coefficient depending on the angular momentum l,

on the harmonic number n and on the ratio between the longitudinal and transversal
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3 Low Wavenumber Raman Spectroscopy on CdSSe Quantum Dots

sound velocities vL/vT [38].

For the studies presented in the following, the sound velocities valid in bulk ma-

terials were used, i.e. in CdS vL = 4250 m/s and vT = 1860 m/s and in CdSe

vL = 3690 m/s and vT = 1620 m/s, respectively [40], calculated taking into account

different crystalline directions (1,5,7 for vL and 2,3,4,5,6 for vT , respectively). Thus

the proportionality constants S0 = 0.84 and S2 = 0.91 were determined, which have

the same values for both CdS and CdSe ensembles and don’t depend on the type of

material. For simplification, all constants can be included in a single value, marked

β and eq. 3.1 can be thus rewritten as:

D =
β

ν
. (3.2)

The numerical values of β were determined individually:

1. for the symmetric vibrations

• in CdS β = 1.29× 10−5 and

• in CdSe β = 1.12× 10−5

2. for the quadrupolar vibrations

• in CdS β = 0.52× 10−5 and

• in CdSe β = 0.46× 10−5 .

Further, the off-resonantly excited acoustic vibrational modes will be analyzed in

the framework of a theoretical model. The Raman scattering intensity on a system

with spatially confined vibrations is generally described by the Shuker-Gammon

relation [41]:

I(ν, T ) =
n(ν, T ) + 1

ν
C(ν)g(ν), (3.3)
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where C(ν) is the light-to-vibration coupling coefficient, g(ν) is the density of vibra-

tional states, T the temperature and n(ν, T )+1 is the Bose-Einstein occupation fac-

tor for the Stokes component. Under off-resonance conditions, the light-to-vibration

coupling coefficient is proportional to the particle diameter [38] C(ν) ∼ D and the

density of vibrational states g(ν) is given by the number N(D) of particles vibrating

with the frequency ν. Therefore, the corresponding relation g(β/ν) ∼ N(D) yields

the particle size distribution N(D) as a function of the density of the symmetric

and quadrupolar modes. The distribution of the particle size N(D) as a function of

the diameter of the vibrating particle is best described by a log-normal distribution:

N(D) =
e−0.5[lnu/σ]2

dσ
√

π/2
, (3.4)

where u = D/D0 and σ is the distribution width.

For off-resonance conditions the main contribution to the Raman signal comes

from particles with diameters larger than the average diameter of the QDs in the

sample (D > D0) and therefore the whole spectrum of nanocrystals’ sizes can be

included. The intensity of the Raman signal in off-resonance scattering conditions

is therefore given by the integral:

I(ν, Eexc) ∼ n(ν) + 1

ν

∫
C(ν,D)N(D)dD. (3.5)

Figure 3.2 shows the theoretically determined Raman spectra for the studied sam-

ples applying eq. 3.5 and the log-normal distribution eq. 3.4 for different distribu-

tion widths σ. The calculations were performed based on the approach of Montagna

and Dusi [38] for the Raman spectra recorded under VV polarization geometry of

the symmetric vibrational modes, using the following parameters: vL = 5960 m/s,

vT = 3790 m/s for the sound velocities, ρ = 2.3 g/cm3 for the density of the silica

glass, and ρCdS = 4.87 g/cm3 and ρCdSe = 5.66 g/cm3 for the density of CdS and

CdSe, respectively. The resulting spectra show the homogeneous broadening of the

vibrational modes, caused by the interaction of the nanoparticles with the surround-
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ing medium. The narrow spectrum of a free particle is also presented in figure 3.2

for comparison. Thus the effect of the surrounding glass matrix on the vibrational

modes is evident. The inset in figure 3.2 shows the influence of the distribution

width σ on the symmetric mode peak νM and on the normalized full width at half

maximum of the symmetric mode ΓFWHM/νM .

Figures 3.3 and 3.4 show the low wavenumber Raman spectra in VV and HV

polarization geometries, respectively, recorded under off-resonance scattering con-

ditions. The shift of the position (in wavenumbers) of the acoustic vibrations of

CdSxSe1−x QDs on the particle’s size is clearly distinguishable. In the polarized

VV spectra, both types of modes, symmetric (l = 0) and quadrupolar (l = 2) are

observable. Besides the symmetric surface mode labelled p = 1, the symmetric inner

modes p = 2, 3 are clearly observable in the spectra (figure 3.3). The quadrupolar

vibrational mode is depolarized and therefore only this mode appears in the HV po-

larized Raman spectra (figure 3.4). For the quadrupolar mode, no higher harmonics

(inner modes with p > 1) can be observed. The absence of the inner modes in the

Raman spectra agrees with the theoretical calculations, which predict almost one

order of magnitude lower Raman intensity of the inner modes [38].

In order to analyze the spectra shown in figures 3.3 and 3.4 several steps have

to be taken into account. These include the extraction of the background given

by the ”boson-peak” and by the quasielastic scattering peak ”QS”. The ”boson-

peak” is a broad feature, common for most glasses, having its maximum near 50

cm−1, whereas the low energy quasielastic scattering peak ”QS” appears below 30

cm−1. The acoustic vibrations are superimposed onto these two features, which

make their detection more difficult. In order to remove the contribution of the low

wavenumber quasielastic scattering, the HV polarized spectra were divided by the

depolarization ratio of QS, whose numerical value, measured for the samples under

discussion, is ρQS = 5/9. The resulting spectra were then subtracted from the VV

polarized Raman spectra. It has to be noted, that the quadrupolar l = 2 mode

is depolarized and, therefore its contribution is mainly cancelled by applying this
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Fig. 3.2: The effects of the particle size distribution width σ on the surface p = 1

and on the symmetric inner modes p = 2, 3, .... The first narrow spec-

trum represents the calculations for the free particle. The other spectra

from bottom to top are homogeneously and inhomogeneously broadened

spectra, with σ increasing from 0 to 0.3 in steps of 0.025. The peak wave

numbers νM were normalized to the maximum of the symmetric mode ν0

of the free particle. The inset shows the influence of the distribution width

σ on the symmetric mode peak νM and on the normalized full width half

maximum of the symmetric mode ΓFWHM/νM .
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Fig. 3.3: Low wavenumber Raman spectra of CdSxSe1−x particles of different sizes,

recorded in VV polarization geometry. The p sequence of the l = 0

symmetric acoustic vibrational modes is labelled. For smaller particles,

contained in OG530, OG515 and GG495 filter glasses, the l = 2 modes

are also visible.
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Fig. 3.4: Low wavenumber Raman spectra of CdSxSe1−x particles of different sizes,

recorded in HV polarization geometry. The l = 2 depolarized acoustic

vibrational modes are visible.
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calculation procedure. The resulted spectra V V −9/5HV consists of the symmetric

l = 0 mode, its inner radial modes (p = 2, 3, ...) and the rest of the boson peak.

In order to fit the boson peak for all spectra the phenomenological function cst ×
ν3(402 + ν2)−1.7 [42] was used. After subtraction of the boson peak fit, the rest of

the spectra containing only the symmetric surface and inner modes p = 1, 2, 3 were

subjected to a new fitting procedure with eq. 3.5. The results are shown in figure

3.5. The distribution widths σ obtained from the fit lie in the range between 15%

and 17,5%. These values are in good agreement with the results of Irmer et al. [43],

who measured the size distribution of CdSxSe1−x particles in Schott glass filters

using x-ray scattering. They determined a sharp distribution of the FWHM of 20-

30% of the mean particle diameters. From the inset in figure 3.2 the inhomogeneous

contribution to the linewidth of the symmetric mode can be estimated to be ≈ 30%,

which is a considerable value.

Due to the shift of the symmetric acoustic vibrational mode with the size dis-

tribution width σ, a corrected equation for the determination of the mean particle

diameter has to be used:

D =
(1.12 + 0.17x)× 10−5

νM

(1.12− 1.13σ). (3.6)

Here, νM is the maximum wavenumber value of the observed symmetric mode

peak, x is the CdS content, and σ is the size distribution width, which in the case

of our Schott glasses lies between 0.15 and 0.175. This relation is valid for σ < 0.3

and can be of practical interest.

To summarize, low wavenumber Raman scattering for off-resonant excitation con-

ditions is an appropriate tool yielding the most important characteristics of QDs em-

bedded in a glass matrix. The spectral shape and width of the symmetric acoustic

vibrations were calculated taking into account both the homogeneous (interaction

of the particles with the dielectric matrix) and the inhomogeneous broadening (due

to particle size distribution inside the matrix). The comparison of the theoretically
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Fig. 3.5: IV V − 9
5
IHV spectra fitted with the boson peak and containing the

CdSxSe1−x symmetric modes inhomogeneously broadened due to parti-

cles’ size distribution. The parameters D0 and σ are results of the fit.
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determined values with the experimental spectra allows one to determine the mean

particle size and the distribution width for each sample individually.

In this chapter the key-parameters of the QDs were determined. However, the

characterization of quantum confined systems is far from being complete. Further

properties correlated to the energy distribution due to confinement of carriers are

desirable to be analyzed. The investigation of the energetic structure, lifetime of

different exciton states and the ultrafast relaxation processes in CdSxSe1−x require

employment of pulsed laser beams and nonlinear spectroscopy techniques, presented

in the following chapters.
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This chapter gives a brief description of the four wave mixing spec-

troscopy technique, successfully applied to study ultrafast processes tak-

ing place in confined systems. The theoretical model supporting the ap-

plied ultrafast spectroscopy techniques is described in the first part of this

chapter. The theoretical background is based on the treatment of the

third order nonlinear susceptibility in the framework of a density matrix

formalism. This formalism is extended by taking into account the prop-

agation of third order nonlinear polarization and the Liouville theorem.

For a better understanding of the four-wave mixing process, the theoret-

ical model is completed by a schematic representation of the interaction

processes using Feynman diagrams. The application of this model in the

analysis of experimental spectra results in the determination of essen-

tial parameters like life– and spin dephasing time of different exciton

levels. Moreover, as it will be shown in chapters 6 and 7, by applying

this technique a successful description of symmetry characteristics and of

nonlinear relaxation processes taking place in quantum confined systems

can be achieved.
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4.1 Theoretical Model

The rapid development of ultrafast spectroscopy techniques [44–47] made the inves-

tigation of various dynamical processes taking place in sub picosecond range possi-

ble. In order to avoid artifacts introduced by coherent effects, spectrally resolved

common pump-probe spectroscopy is combined with transient grating techniques

based on four-wave-mixing (FWM) spectroscopy, which were proved to be powerful

methods to study nonlinear properties of semiconductors [48–53]. In the simplest

approximation, the coherent phenomena in semiconductors are analyzed for an en-

semble of independent two–level systems treating third order optical interactions

in the framework of perturbation theory. Details concerning the FWM processes

can be found in many excellent books [54–61]. Here only a brief description of the

femtosecond pump-probe transmission and of the most general form of FWM tech-

nique, namely degenerate four-wave-mixing (DFWM) in the framework of transient

grating are given.

Beginning with a general approach, particularities of the theoretical model will

be developed for the spectroscopy methods utilized in chapters 6 and 7 applied to

characterize quantum confined systems. Here we refer to an ensemble of CdSxSe1−x

semiconductor QDs embedded in a glass matrix.

The first approximation includes a classification of the system in two parts: a

small quantum system containing only a few energy levels, which correspond to the

well separated energy levels of the excitons in QDs, and a macroscopic thermal bath,

which corresponds to a phonon bath. Although only the quantum system is coupled

to the light, its phase coherence is strongly affected by the coupling to the phonon

bath. Thus the quantum system has a limited number of degrees of freedom and

its reduced density matrix has a reasonable size. The simplest approximation to

treat the coupling between the excitons and the phonon bath is based on the Bloch

equation, which despite of drastic approximations (i.e. including only Markovian

processes) has been proved to be very useful for the illustration and understanding
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the basic physics of femtosecond dynamics.

The evolution of a two-level quantum system is described by its density matrix ρ.

Taking into account only Markovian processes, the density matrix can be written:

ρ =


 n p

p∗ 1− n


 , (4.1)

where n and 1 − n are population terms, which represent the probability for the

system to occupy one or the other level, respectively. The off-diagonal elements p

and p∗ represent the coherence intrinsic to a superposition state. The density matrix

introduced in Liouville’s theorem results in the Bloch equation [48],which, taking

into account the coupling to the bath, leads to the equation describing the evolution

of the system:

i~
dρ

dt
= [H0, ρ] + [W (t), ρ] + i~

∂ρ

∂t
|relax , (4.2)

where H0 is the reduced unperturbed Hamiltonian, W (t) = −µE(t) is the dipolar

interaction with the total electric field E(t) of the incident femtosecond pulses, and

µ the electric–dipole operator. The eigenstates of the unperturbed Hamiltonian are

H0|n >= ~ωn|n >. The interaction with the phonon bath leads to a relaxation term

∂ρnm

∂t
|relax = −Γnm(ρnm − ρ(0)

nm), (4.3)

with Γnm the decay rate of the relaxation process, which corresponds to a dephasing

rate when n 6= m (n and m are the two different energy levels) and to a population

relaxation rate when n = m. The non-diagonal terms of the density operator at

thermal equilibrium ρ(0) are all zero. Assuming only the ground state as being

populated (ρ
(0)
00 = 1 and all other matrix elements zero), the matrix elements of the

two commutators in eq. 4.2 are:
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< n|[H0, ρ]|m > = < n|H0ρ− ρH0|m >

= < n|~ωnρ− ρ~ωm|m >= ~ωnmρnm, (4.4)

where ωnm = ωn − ωm and

< n|[W, ρ]|m > = < n|Wρ− ρW |m >=
∑

l

(Wnlρlm − ρnlWlm)

= −E(t)
∑

l

(µnlρlm − ρnlµlm), (4.5)

where n, m and l are summation indices, indicating different energy states.

Thus the evolution of the density matrix can be written as:

(
i
d

dt
− ωnm + iΓnm

)
ρnm(t) = −E(t)

~
∑

l

(µnlρlm(t)− ρnl(t)µlm). (4.6)

This equation can be solved introducing Green functions and Fourier transform

[47], thus obtaining for the density matrix:

ρnm(t) = Gnm(t)⊗ (E(t)
∑

l

[µnlρlm(t)− ρnl(t)µlm]), (4.7)

where

Gnm(t) =
i

~
Θ(t)exp(−iωnmt− Γnm(t)) (4.8)

with Θ the Heaviside step function. The Green function can be interpreted as the

impulsive response function of the material.

4.1.1 Perturbation Theory

If the electric field is small enough, it can be considered as a small perturbation to

the equilibrium of the system. This allows one to expand the density operator into

a perturbation series [62–65]
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ρ(t) = ρ(1)(t) + ρ(2)(t) + ρ(3)(t) + ..., (4.9)

where ρ(p) is the pth order of ρ in the electric field. This perturbation expansion

allows one to compute the term of order p + 1 from the pth element:

ρ(p+1)
nm (t) = Gnm(t)⊗ E(t)

∑

l

[µnlρ
(p)
lm(t)− ρ

(p)
nl (t)µlm], (4.10)

thus obtaining a sequence of equations allowing one to iteratively compute the den-

sity matrix up to any order in the electric field.

Considering the simplest case of a two–level system consisting of a ground state

|g > and an excited state |e >, the only non-zero matrix element of the dipole

operator is µeg and eq. 4.7 results in

ρeg(t) = µegGeg(t)⊗ {E(t)[ρgg(t)− ρee(t)]}, (4.11)

which connects population terms to coherent terms, and

ρee(t) = Gee(t)⊗ {E(t)[µegρge(t)− µgeρeg(t)]}, (4.12)

connecting coherence terms to population terms. Thus through the perturbation

expansion an alternating development is obtained:

ρ
(0)
gg −→ ρ

(1)
eg −→ ρ

(2)
ee −→ ρ

(3)
eg −→ ... .

Considering the system in equilibrium and at zero temperature (ρ
(0)
gg = 1), the

first three terms of the expansion can be determined from eq. 4.11 and eq. 4.12 [47].

Thus the first-order coherence is:

ρ(1)
eg (t) = µegGeg(t)⊗ E(t), (4.13)

which is used in order to obtain by iteration the second-order population term:
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ρ(2)
ee (t) = −|µeg|2Gee(t)⊗ (E(t){[Geg(t) + Gge(t)]⊗ E(t)}), (4.14)

and, further, the third-order coherence term:

ρ(3)
eg (t) = 2µegµgeµegGeg(t)⊗{E(t)[Gee(t)⊗(E(t){[Geg(t)+Gge(t)]⊗E(t)})]}. (4.15)

In the case of a two–level system, only two relaxation times appear, given by the

relaxation rates Γeg = 1/T2, where T2 stays for the dephasing time of the ensemble,

and Γee = 1/T1, where T1 is the population relaxation time of the excited energy

level. The population life time T1 is strongly correlated to the dephasing time T2 of

the system:

1

T2

=
1

T ∗
2

+
1

2(T1g + T1e)
, (4.16)

where T ∗
2 is the pure dephasing time of the system due to interactions with the

environment (i.e. collisions with defects) [59, 66]. Furthermore, the interaction of

the electric fields with a two-level system will be discussed, taking into account the

polarization induced in the ensemble.

4.1.2 Induced Polarization

The optical properties of the system are determined by the macroscopic polarization

induced in the material, which is actually responsible for the emission of the radiated

electric field. For an ensemble of N identical, independent systems per unit volume,

the total polarization per unit volume is connected to the density matrix by the

mathematical relation:

P (t) = N < µ >= NTr{µρ(t)} = N
∑
nm

µmnρnm, (4.17)

which can be expanded like the density operator into a perturbation series:
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P (t) = P (1)(t) + P (2)(t) + P (3)(t) + .... (4.18)

Thus the (p + 1)th component of the macroscopic polarization can be computed,

analogous to the density matrix, from the pth term of the series. Applying Liouville’s

theorem from eq. 4.2, one can compute the nonlinear susceptibility tensors χ:

P (p)(t) = ε0

∫ +∞

−∞

dω1

2π
...

∫ +∞

−∞

dωp

2π
×

χ(p)(−ωs; ω1, ...ωp)E(ω1)...E(ωp)exp(iωst), (4.19)

where ωs = ω1+ω2+...+ωp with ω the angular frequency of the incident electric field.

The nonlinear susceptibility tensor is a constant of the material, but its dependence

on the excitation frequency leads to memory effects which allow one to compute the

response of the system at any sequence of femtosecond pulses. In the following, the

dynamics of the quantum system will not be limited to this nonlinear susceptibility

formalism, but the whole polarization terms will be directly used.

4.2 Femtosecond Spectroscopy

This section includes an adaptation of the theoretical model presented in the for-

mer section to the femtosecond spectroscopy techniques applied in chapters 6 and 7.

First, the response of the system to the consecutive interaction with three incident

laser pulses will be successively analyzed. Then, concrete relations describing non-

linear dynamics of the system for two different femtosecond spectroscopy techniques,

namely femtosecond pump-probe spectroscopy and degenerative four wave mixing

in the framework of transient grating will be presented.
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4.2.1 First Order Polarization

A laser pulse of a given electric field

E(t) = Aexp[i(kr− ωt)], (4.20)

propagating in the direction given by its wave vector k and angular frequency ω

incident on the sample induces a polarization in the sample volume. This polariza-

tion, called first order polarization, can be computed from the first order density

operator:

ρ(1)
nm(t) = Gnm(t)⊗ [

E(t)
(
µnmρ(0)

mm − ρ(0)
nnµnm

)]
, (4.21)

where E(t) represents the real part of the electric field E(t) = ReE(t), with E staying

for the total electric field composed of a real and an imaginary part. Applying a

Fourier transformation eq. 4.21 results into

ρ(1)
nm(ω) = µnmGnm(ω)E(ω)

(
ρ(0)

mm − ρ(0)
nn

)
. (4.22)

Equation 4.22 introduced in eq. 4.17 can be used to calculate the induced first

order polarization for an ensemble of N non-interacting identic systems:

P (ω) = N
∑
nm

µmnµnmGnm(ω)
(
ρ(0)

mm − ρ(0)
nn

) E(ω). (4.23)

The interaction of the electric wave with the sample can be illustrated using

Feynman diagrams [55,59–61] as shown in figure 4.1.

After the pulse has left the sample space, the induced polarization decays with

a dephasing time T2 given by eq. 4.16. Using eq. 4.19, the linear susceptibility is

determined from the linear polarization eq. 4.23:

χ(1)(ω) = N
∑
nm

−|µnm|2
~ε0

ρ
(0)
mm − ρ

(0)
nn

ω − ωnm + iΓnm

. (4.24)
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t

Feynman diagram

k1

|l> |m>

|n>

ρ(0)lm

Fig. 4.1: Schematic representation of the interaction of a laser pulse with the sam-

ple material: Feynman diagram. The laser pulse with a wave vector k1

interacts with the sample and induces a coherence term ρ0
lm between the

two states l and m.

The real part of the linear susceptibility yields the refractive index, whereas the

imaginary part gives the absorption coefficient. All these results are well known from

linear optics and only show that the above formalism yields reasonable results in this

regime. Linear terms are essential in developing higher order nonlinear properties.

For the femtosecond experiments presented within this study, nonlinear terms of 2nd

and 3rd order are of interest and will be described in the following.

4.2.2 Second Order Polarization

If a second pulse propagating in the direction given by its wave vector k2 is incident

on the sample before the linear polarization induced by the first pulse (with wave

vector k1) is dephased, the two polarization patterns will interfere in the sample

volume and form a grating. The finite cross-section of the laser beams (figure 4.2)

spatially limits the extent of the interference zone [67].

The dynamics of the population grating created by the interference of the two
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k
1

k
2

Fig. 4.2: Spatial distribution of intensity within the volume – grating pattern cre-

ated by the interference of two Gaussian beams of equal intensity [67].

pulses is described by the second order polarization, which is computed from the

second order coherence terms of the density operator:

ρ(2)
nn(t) =

|µnm|2
2~

Im

∫ t

−∞
E∗(t′) [Gnm(t′)⊗ E(t′)] dt′, (4.25)

where E∗ is the complex conjugate of the incident electric field of the second pulse

and t represents the time when the second pulse arrives at the sample. In the case

of a two–level system, the states |m > and |n > correspond to the ground |g > and

excited state |e >, respectively. After the second pulse has left the sample volume,

the excited population is given by [47]:

ρ(2)
ee (+∞) =

|µeg|2
2~

∫ +∞

−∞
|E(ω)|2 ImGeg(ω)

dω

2π
. (4.26)

In order to schematically illustrate the interaction process, several energy levels

have to be taken into account because more than two energy levels are excited by

the laser pulses. In the simplest case, where only 3 energy levels are involved, not

only the population terms ρ11 and ρ22, but also coherence terms ρ12 and ρ21 are

excited (figure 4.3).
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|2>

|1>

|0>

a.

k1
ρ(0)00

k1
ρ(0)00

k1
ρ(0)00

t

k1
ρ(0)00

b.

ρ(1)10ρ(1)20ρ(1)20ρ(1)10
k2 k2 k2 k2

ρ(2)11 ρ(2)22 ρ(2)21 ρ(2)12

Fig. 4.3: Schematic representation of the interaction of the second laser pulse in-

cident on the sample. a. Three–level system; b. Possible Feynman dia-

grams.

The coherence term between the excited states |1 > and |2 > can be obtained

analogous to eq. 4.14:

ρ
(2)
21 (t) = −µ20µ01G21(t)⊗ (E(t){[G01(t) + G20(t)]⊗ E(t)}) , (4.27)

and consequently, the second order polarization induced in the material is then given

by:

P (2)(t) = −µ01µ12µ20G21(t)⊗ (E(t){[G01(t) + G20(t)]⊗ E(t)}) . (4.28)

The second order polarization oscillates at the angular frequency ω21 and its de-

phasing rate is given by Γ21. It is interesting to observe that in the case of cen-

trosymmetric systems, the second order polarization vanishes, due to the fact that
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the product µ01µ12µ20 is non-zero only in non-centrosymmetric systems [47].

4.2.3 Third Order Polarization

In order to explore higher order response functions of the system, more than one

laser beam is usually used for the excitation. By controlling the time delay between

the pulses a better exploration of the nonlinear response functions is achieved. For

simplification, a two level system will be further considered and the two most com-

mon configuration geometries relevant for this work will be presented.

4.2.3.1. Pump–Probe Spectroscopy

In the case of pump–probe experiments, two pulses are incident onto the sample:

a pump pulse described by an electric field EP(r, t) ∼ exp(ikPr) propagating in the

direction kP , and a probe (test) pulse ET(r, t) ∼ exp(ikTr) propagating in the di-

rection kT . A signal can be observed in more than one direction, given by different

phase matching conditions (see figure 4.4). One of these, interesting for the exper-

iments presented in chapters 6 and 7, is given by the diffraction of the pump in

the direction of the probe, which leads to a signal ks propagating in the direction

ks = kP − kP + kT = kT .

In order to compute the third order density operator and the third order polar-

ization, the total electric field

E(r, t) =
1

2
[EP(r, t) + ET(r, t) + E∗P(r, t) + E∗T(r, t)] (4.29)

has to be introduced into eq. 4.15. The fact that the total electric field is a combina-

tion of all incident electric fields (eq. 4.29) leads to many different combinations of

the four terms. Only those terms, where all three incident fields EP(r, t), E∗P(r, t) and

ET(r, t) appear only once are relevant for the detected pump–probe signal [47, 48].

A schematic representation of the possible scattering directions of the pump-probe

signal is shown in figure 4.4. The fs pump-probe experiments presented in chapter 6
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Pump

Probe
kT, ks=kP-kP+kT=kT

kP

ks=2kP-kT

sample

Fig. 4.4: Experimental set–up using two excitation beams in order to perform third

order nonlinear optical measurements. [47] A signal can be observed in two

directions given by the phase matching conditions: ks = kP−kP +kT = kT

and ks = 2kP − kT

were carried out recording the intensity of the pump-probe transmission signal in the

direction ks = kT . This signal is related to the third order polarization P (3) [47,48].

In a pump-probe experiment, under the approximation that the probe pulse is much

weaker in intensity than the pump pulse and the sample is very thin, usually the

differential transmission signal is recorded:

∆I(ω)

I0(ω)
≈ nωL

ε0c
Im

P (3)(ω)

ET(ω)
, (4.30)

where n is the non-perturbed refractive index, ε0 the non-perturbed permeability

and L represents the thickness of the sample.

Once the density operator is known, the differential transmission signal is easy to

evaluate. Further, the cases where in the Feynman diagram the pump appears twice

and the probe only once will be discussed [63]. The time sequence of the incident

pulses determines three different contributions to the differential absorption, which

are illustrated in figure 4.5.

In the first two cases (figure 4.5a and b), the pump kP and its complex conjugate

propagating in the direction −kP precede the probe pulse kT and create a population

term ρ
(2,PP )
ee which modifies the transmission of the probe pulse:
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kP
ρ(0)gg

kP

ρ(0)gg

kT

ρ(0)gg kT ρ(0)gg

ρ(1)egρ(1)geρ(1)geρ(1)eg -kP

-kP -kP

-kP

ρ(2)ee ρ(2)ee ρ(2)ee ρ(2)ee

a. b. c. d.

kT

kT kP kP

ρ(3)eg ρ(3)eg ρ(3)eg ρ(3)eg

Population
Polarization

coupling

Perturbed

polarization

Fig. 4.5: Feynman diagrams for different time sequences of the laser pulses in a

pump–probe experiment. The ”minus” sign of the wave vector corre-

sponds to the complex conjugate electric field E∗.

ρ(3,TPP )
eg (t) =

µeg

2
Geg(t)⊗

{ET(t)
[
ρ(2,PP)

gg (t)− ρ(2,PP)
ee (t)

]}

=
µegµgeµeg

4
Geg(t)⊗ [ET(t) (Gee(t)⊗

{E∗P(t) [Geg(t)⊗ EP(t)] − EP(t)

[
G∗

eg(t)⊗ E∗P(t)
]})]

. (4.31)

In this case, the population created by the pump is probed by the test pulse

and the signal appears only for positive delay times between these two pulses. The

decay of the population is given by the decay time T1. If the pump and the probe

overlap in space and time, another contribution to ρ
(3)
eg emerges from the so called

pump–polarization coupling represented in diagram c. of figure 4.5:

ρ(3,PTP )
eg (t) =

µeg

2
Geg(t)⊗

{EP(t)
[
ρ(2,TP)

gg (t)− ρ(2,TP)
ee (t)

]}

=
µegµgeµeg

4
Geg(t)⊗ [EP(t) (Gee(t)⊗

⊗ {ET(t)
[
G∗

eg(t)⊗ E∗P(t)
]})]

. (4.32)
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This signal can be interpreted as the diffraction of the pump beam in the direction

of the probe beam, after the diffraction process on the population grating created

by the interference between the pump and the probe.

For negative time delays between the excitation pulses, when the probe precedes

the pump beam, a third contribution to ρ
(3)
eg is generated. It is called perturbed polar-

ization decay [63,68] and it can be interpreted as a perturbation of the polarization

induced by the probe pulse through the pump pulse:

ρ(3,PPT )
eg (t) =

µegµgeµeg

4
Geg(t)⊗ [EP(t) (Gee(t)⊗

{E∗P(t) [Geg(t)⊗ ET(t)]})] . (4.33)

The major difficulty in such experiments represents the simultaneous use of spec-

tral an temporal resolution due to validity of the time–frequency uncertainty prin-

ciple. Another spectroscopic method, which avoids this difficulty is discussed in the

next section.

4.2.3.2. Photon Echo

The experimental setup for a four-wave mixing (FWM) experiment is presented

schematically in figure 4.6. Such experiments are based on the successive interac-

tion of three laser beams incident onto the sample. The separate control of delay

times between all three pulses allows the investigation of more nonlinear phenomena

occurring in the system as in the case of only two incident pulses.

The first (in time) pulse k1 induces a polarization in the sample, whereas the

second pulse k2 interacts with the polarization pattern induced by k1 thus forming

a grating. The third pulse propagating in the direction k3 is scattered on this

grating (process similar to Bragg diffraction) in the direction given by the phase

matching condition ks = −k1 + k2 + k3 [48, 59, 69]. Of course, there are also other

scattering directions corresponding to other phase matching conditions given by
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k2

k1sample

1

2

3

k3

ks=-k1+k2+k3

Fig. 4.6: Experimental set–up for FWM experiment using three–beam excitation

[47].

another combination of the incident wave vectors, but only the former is of interest

for the studies presented in chapter 6 and 7.

Thus the only relevant term in the nonlinear polarization describing this diffrac-

tion process is proportional to E∗1E2E3 and the corresponding Feynman diagram is

given in figure 4.7. The FWM processes are achieved in the framework of transient

grating experiments in form of photon echo, a process described by the Feynman

diagram shown in figure 4.7a. The experimental setup for the two–pulse photon echo

measurements is identical with the one shown in figure 4.4. The simplest form of

photon echo is in principle identical with the pump–probe experimental setup with

the signal collected in the direction ks = 2kP − kT .

In the following, it will be referred to the general case of three–pulse photon echo

experiments carried out in chapter 6 and 7. The contribution to the density operator

can be directly derived from the Feynman diagram shown in figure 4.7a:

ρ(3)
eg =

|µeg|2µge

4
Geg(t)⊗

[E3(t)
(
Gee(t)⊗

{E2(t)
[
G∗

eg(t)⊗ E∗1 (t)
]})]

. (4.34)

Introducing the Heaviside step function Θ and assuming infinitely short pulses

[Eα(t) = Eα(t)(t − τα) where τ = 1, 2, 3 counts the time sequence of the incident

52



4.2 Femtosecond Spectroscopy

k2

ρ(0)gg

ρ(1)ge

-k1

ρ(2)ee

k3

ρ(3)eg

1 2 3
b.

homogeneous

a.

1 2 3
c.

inhomogeneous

τ21

Fig. 4.7: a. Feynman diagram relevant to photon echo experiments. b. Induced

polarization in a homogeneous system. c. Induced polarization in an

inhomogeneous system. Here, the polarization looks like a small echo of

the third (in time) pulse k3

pulses], the third order density operator can be expressed as a function of the de-

phasing time T2 and population relaxation time T1:

ρ(3)
eg = −i

|µeg|2µge

4~3
Θ(t− τ3)Θ(τ21)e

−τ32/T1e−(t−τ3+τ21)/T2

×E∗1E2E3exp[−iωeg(t− τ3 − τ21)]. (4.35)

Thus the third order polarization occurs at the time t = τ3, just after the third

pulse, its decay depending on the dephasing time of the material. The intensity of

the recorded signal will be proportional to exp(−2τ21/T2), where τ21 = τ2− τ1 is the

delay time between the pulses 2 and 1.

In the case of an inhomogeneously broadened system composed of independent
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two–level systems with a Gaussian distribution of transition frequencies g(ωeg), the

averaged density operator can be written:

〈ρ(3)
eg 〉 = −i

|µeg|2µeg

4~3
Θ(t− τ3)Θ(τ32)Θ(τ21)e

−τ32/T1e−(t−τ3+τ21)/T2

×E∗1E2E3

∫ +∞

−∞
g(ωeg)e

[−iωeg(t−τ3−τ21)]dωeg

= −i
|µeg|2µge

4~3
Θ(t− τ3)Θ(τ32)e

−τ32/T1e−(t−τ3+τ21)/T2

×E∗1E2E3g(t− τ3 − τ21), (4.36)

where g(t) is the Fourier transform of the frequency distribution g(ωeg). The time

dependence of the corresponding photon emission process is governed by g(t), so

that the duration of the emission process scales inversely to the inhomogeneous

linewidth, i.e. the inhomogeneous dephasing time. For an inhomogeneous system,

the polarization decays first in the interval [0, τ21] and a second time in the interval

[τ3, τ3 + τ21], leading to an exponential dependence of the signal amplitude propor-

tional to exp(−2τ21/T2). Thus the time–integrated intensity of the photon echo

signal decays with the constant T2/4. Moreover, the echo signal provides informa-

tion about the homogeneous dephasing processes in the system, independently from

the inhomogeneous broadening.

One of the advantages of this method consists of the fact that the recorded sig-

nal is free from any background contributions from the incident beams. Although

the theoretical model presented above is based on drastic approximations (i.e. only

Markovian processes are taken into account), it can be successfully applied to in-

terpret the experimental data presented in the chapters 6 and 7, proving to be a

suitable tool to describe nonlinear processes in confined systems.
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This chapter focuses on the description of the laser system employed for the genera-

tion of the femtosecond laser pulses necessary to perform the experiments described

in chapters 6 and 7. The first part of this chapter focuses on the procedure of gen-

erating and characterizing femtosecond laser pulses. One major advantage of the

setup described here is the possibility of tuning the wavelength of the laser pulses

over the whole visible range. The setup also enables one to individually control

the time sequence of all three laser pulses, thus making various nonlinear processes

accessible.

Another advantage of the setup consists in the ability to perform FWM experi-

ments using different beam geometries, thus choosing different phase matching con-

ditions. Here, only the beam geometries corresponding to the phase matching condi-

tions applied for the experiments presented in chapters 6 and 7 are discussed. The

degrees of freedom provided by these arrangements allow one to individually control

the polarization of the incident laser beams, thus different dynamical processes in

the system being accessible to study.
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5.1 Femtosecond Laser Pulses: Generation and

Characterization

Although the nonlinear processes in confined systems usually occur on a picosecond

time scale, for their ingenious investigation laser pulses in the femtosecond range

are necessary. In this section the laser system used to generate femtosecond laser

pulses will be presented. The actual generation and acquiring process will be only

briefly described. Detailed information can be found in the literature [48,70–72].

The laser system presented schematically in figure 5.1 generates laser pulses at a

repetition rate of 100 kHz with a full–width half–maximum (FWHM) of 60-80 fs and

an energy of 50-100 nJ/pulse, thus being suitable for the investigation of nonlinear

dynamics in condensed matter. The fs-system consists of a Kerr-lens, mode-locked

Titanium:Sapphire oscillator, a Titanium:Sapphire amplifier unit with a compressor

and two white-light optical parametric amplifiers as shown in figure 5.1. The 25

W output power of an argon ion laser (Sabre, Coherent) operating in the multi-line

mode is split in two parts. 8 W are used to pump the oscillator (MIRA, Coherent)

and 17 W to pump the regenerative amplifier (RegA, Coherent). The oscillator is

operated at 800 nm generating femtosecond laser pulses at 76 MHz with a FWHM of

approximately 60 fs and an energy of 10 nJ/pulse. 30% of the oscillator power is used

to read the amplifier. An opto-acoustic modulator is responsible for the selection of

a single laser pulse to be coupled into and out of the cavity of the amplifier with a

repetition rate of 100 kHz. To avoid independent lasing of the cavity, the Q-switch

also realized by an opto-acoustic modulator allows the cavity to open exclusively for

the time when the pulses are propagating in the amplifier. In order to avoid damages

of the optics in the cavity, the pulse is stretched in its temporal profile by introducing

dispersion during each of its round trips in the cavity. The pulses are amplified by

multiple passes through the active medium of the cavity. The amplified pulses are

coupled out of the amplifier. Multiple reflections on a holographic grating assures
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5.1 Femtosecond Laser Pulses: Generation and Characterization

compensation of the dispersion introduced during the amplification process. The

outcoupled pulses show a FWHM of approximately 120 fs at a central wavelength

of 800 nm with approximately 8 µJ/pulse at a repetition rate of 100 kHz.

The amplified pulses are used to pump two white-light optical parametric ampli-

fiers (OPA 9400, Coherent). The OPAs allow for wavelength tunability over the

whole visible range (450-700 nm). The tunable wavelengths are accomplished by

utilizing difference-frequency generation with the second harmonic pulses and the

IR components of the white light pulses generated by the OPAs. The dispersion

introduced inside the OPAs is compensated by two double prism-compressors (dis-

persive medium: BK7) in a standard configuration [73]. The pulses thus obtained

show a FWHM of approximately 60-80 fs with an energy of 50 to 100 nJ. They are

split with appropriate beam splitters into three independent pulses. The control

of the time sequence of these three pulses is realized by two delay stages (OWIS)

equipped with retroreflectors indicated in the figure 5.2 by arrows.

The length of the fs-pulses is characterized with an autocorrelator (Femtoscope

MC-2, BMI) and the spectral profile is acquired with a combination of a monochro-

mator (SpectraPro 500, Acton) and a CCD detector (LN/CCD512SB, Princeton

Instruments). The monochromator allows the spatial separation of the recorded sig-

nal into its spectral components, which are simultaneously detected with the help

of the multichannel CCD camera. The silicon chip of the CCD camera, which reg-

isters the signal, is divided into 512 × 512 pixels, each pixel having the dimensions

of 26× 26 µm. At a fixed delay time of the time variable laser pulse, a mechanical

shutter opens and allows the chip to be exposed for approximatively 0,1 to 1 s.

The CCD camera integrates over approximately 104 to 105 signal shots in the time

interval in which the shutter is open. The combination of the CCD camera with the

monochromator has the advantage that the whole broad band spectrum of the fs

pulse can be recorded at once, in the interval between the moment when the shutter

opens and closes, respectively [60]. After the accumulated signal on the silicon chip

was read out, the relative timing of the variable laser pulse that introduces the time

57



5 Experimental Setup

cw Ar ion laser

Ti:Sapphire Oscillator

Ti:Sapphire 

Regenerative

Amplifier 
Optical Parametric 

Amplifier

OPA 1

Optical Parametric

Amplifier

OPA 2

S
p

ec
tr

o
m

et
er

+

C
C

D

Computer

Pin hole
Sample

Achromat

Delay stage

Delay stage

Compresor

Compresor

λ/2
plate

λ/2
plate

λ/4
plate

λ/4
plate

glan

prism

Fig. 5.1: Schematic representation of the femtosecond laser system.
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delay stages

Fig. 5.2: Optics involved in the experiment. The two delay stages, which control

the time sequence of the femtosecond pulses are indicated by arrows.
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cryostat head

Fig. 5.3: Optical cryostat head – Oxford Instruments. Top view.

resolution in the experiment, is moved to a new delay time value and this proce-

dure is repeated for all desired delay times. Thus the whole spectrum of FWM or

pump–probe transmission (PPT) signal as a function of the variable delay time of

the laser pulses can be obtained.

In the case of both types (FWM and PPT) of experiments, the samples were

kept at low temperatures inside a closed cycle He cooled optical cryostat (Oxford

Instruments CCC1204). The cryostat head is shown in figure 5.3.

High vacuum (7, 4×10−7 Torr) is created inside the cryostat by a turbo–molecular

vacuum pump (Pfeiffer TSH 060/TMH 064). The closed cycle He cooler (Cryodrive

3.0 from CTI-Cryogenics Helix Company) allows the control of the temperature in

a range from 10 to 300 K. This cryogenic system has the advantage of reduced
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windows for maximized optical throughput.

Special attention was paid to the polarization of the incident pulses. The lin-

ear polarization of the laser beams was selected to be perpendicular or parallel to

the propagation plane by using λ/2 plates (achromatic quartz and MgF2 retarders,

Bernhard Halle Nachfl. GmbH). Circularly polarized pulses are obtained by letting

the laser beams pass through λ/4 plates (achromatic quartz and MgF2 retarders,

Bernhard Halle Nachfl. GmbH). The direction of the circular polarization (left

σ+ and right hand σ− circular polarization, respectively) was controlled by using

a combination of λ/2 and λ/4 plates. By recording the FWM and PPT signal,

the polarization sensitivity of the spectrometer grating was taken into account by

placing both a λ/4 and a glan prism in front of the spectrometer’s entrance slit.

5.2 Phase Matching Condition

In this section, the phase matching conditions needed to generate a degenerate four-

wave-mixing (DFWM) and simple pump–probe transmission (PPT) signal will be

presented. The experimental setup described in section 5.1 allows the application

of different phase matching masks and to vary the number of incident pulses (from

1 to 3 pulses incident on the sample).

For standard FWM measurements, three incident beams with wave vectors k1, k2

and k3 in a non-collinear configuration are focused by a lens onto the sample. In order

to select the spatially separated scattered FWM signal with a wave vector ks a mask

is used. Panels a-c. of figure 5.4 illustrate the beam geometry, the phase matching

mask (Mask 1) and the wave vector diagram applied for the DFWM measurements,

where all three incident pulses have the same wavelength.

The wave vector of the scattered DFWM signal is given by the momentum con-

servation:

ks = −k1 + k2 + k3. (5.1)
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diagram illustrating the phase matching condition achieved in DFWM

measurements.

62



5.2 Phase Matching Condition

The chosen beam geometry, depicted in figure 5.4 a., refereed to in literature as

folded BOXCARS arrangement [74–76], allows for maximum spatial separation of

the FWM signal from the incident laser beams. All three non-collinear beams, after

they have passed through mask 1, are focused with lens 1 onto the sample. The

FWM signal is generated inside the sample and is converted together with the three

incident laser pulses into a parallel, non-collinear configuration by lens 2. Applying

the second mask, the FWM signal is separated from the incident beams by means

of mask 2. Thus the folded BOXCARS arrangement allows the background free

detection of the scattered FWM signal.

In the case of simple femtosecond pump–probe measurements, only two incident

pulses were involved: a pump pulse kp and a probe (test) pulse kT . As shown in

section 4.2.3, the pump–probe signal can be seen as the diffraction of the probe

pulse on the population grating created by the pump:

ks = −kp + kp + kT = kT . (5.2)

Thus the pump–probe signal is propagating in the direction given by the wave

vector of the probe pulse ks = kT . By recording the changes in the probe pulse, as

theoretically derived in section 4.2.3 information about different dynamical processes

of the system can be obtained.
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Proved by four-wave-mixing and Pump–

Probe Spectroscopy

This chapter demonstrates the complementarity of linear and nonlinear

spectroscopy methods for the characterization of semiconductor quantum

dots embedded in a dielectric matrix. In chapter 3 the key-properties

of the QDs like their size and the inhomogeneously broadened size dis-

tribution were determined. This section includes nonlinear spectroscopy

studies on semiconductor nanoparticles. In particular, femtosecond four

wave mixing (FWM) and pump-probe transmission experiments were per-

formed on QDs of different sizes.

By analyzing the polarization properties of the time integrated four-

wave-mixing (TI-FWM) and pump–probe transmission (PPT) signal,

valuable information about the QD’s energy structure is obtained. The

experimental setup allows to individually select and vary the polarization

of the incident laser pulses and to generate various polarization geome-

tries. It will be shown, that the appearance of strong TI-FWM signals in

forbidden polarization geometries according to the non-interacting oscil-

lators’ model, is due to a strong exciton–exciton coupling inside the same

QD and to the inhomogeneous spin dephasing of the QD excitons due to

a random exchange splitting of the J = 1 exciton state, originating in

the lowered QD symmetry.
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Similar depolarization effects observed for the DTS signals in the case

of pump–probe experiments validate the results obtained from FWM mea-

surements, the intensity of the DTS signal being the square root of the

TI-FWM signal [48].

6.1 Exciton–Exciton Coupling in CdSSe Quantum

Dots

In this section, the polarization properties of one of the samples discussed in chapter

3 will be presented. The QD system studied here consists of CdS0.6Se0.4 nanopar-

ticles embedded in a glass matrix. The chemical composition of the nanocrystals

was determined by the group of Dr. M. Ivanda at the Ruder Boskovic Institute

in Zagreb, Croatia. The mean diameter of the investigated QDs is 9.1 nm with a

size distribution of 15% were determined in chapter 3. The volume fraction of QDs

in the glass counts 1%. The sample is manufactured by Schott Inc. in Mainz and

commercially available under the name OG550.

The sample was mounted into an optical cryostat described in section 5.1 and kept

during the FWM and pump–probe experiments at a temperature of 10 K. Figure 6.1

displays the absorption spectrum for the investigated QD system at a temperature of

10 K. Depending on the experiment (TI-FWM or pump–probe spectroscopy) three

or two incident 80-fs laser pulses were used for excitation, respectively. For all pulses

the same excitation energy was chosen (corresponding to 510 nm), lying in the range

of inhomogeneously broadened 1s−X exciton transition (figure 6.1).

The dynamics of the QD system was first investigated by three pulse photon

echo spectroscopy. This is a FWM technique used in the framework of transient

gratings, which avoids the inhomogeneous broadening of oscillators’ energies because

the integrated photon echo signal reflects the average properties of nanoparticles

within the inhomogeneous distribution [48]. Three pulse photon echo was preferred
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Wavenumber (cm-1)

Fig. 6.1: Absorption spectrum recorded for CdS0.6Se0.4 QDs of 9.1 nm in diameter,

embedded in a glass matrix.

to two pulse photon echo in order to be able to individually control the polarization

of the incident laser pulses. In the experiments presented below, all three pulses were

circularly σ+ or σ− polarized. The notations σ+ and σ− stand for left and right hand

circular polarization of the beams, respectively. Propagating in the directions given

by their wave vectors k1, k2 and k3, the laser pulses are incident on the sample

under an angle of incidence of about 5◦ and the photon echo signal is scattered in

the direction given by the phase matching condition (section 5.2):

ks = −k1 + k2 + k3 (6.1)

In the following it will be referred to the TI-FWM signals in different polarization

geometries as I ijkl, where I is the intensity of the recorded signal and the indexes i,

j, k and l equal to + or − represent the σ+ or σ− polarization of the electric fields of

the pulses with wave vectors k = k1, k2, k3 and ks. The time sequence of the pulses

was selected to be zero for the first two (in time) incident pulses (t21 = t2 − t1 = 0)

and the FWM signal was recorded as a function of the delay time t31 = t3 − t1

between the third pulse and the two time coincident pulses. This corresponds to a

diffraction of the electric field E3 of the third pulse, for positive t31 delay times, on
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6 Biexciton and Spin Dephasing Effects

the population grating created through the interference of the pulses E1 and E2 in

the sample space. In this geometry, the TI-FWM signal is a direct measure of the

population dynamics.

Figure 6.2 displays the three pulse photon echo signal recorded for the 9.1 nm mean

diameter QDs ensemble embedded in a glass matrix at 10 K for different polarization

geometries of the electric fields of the incident laser pulses. The polarization selection

rules for a system of non-interacting oscillators (NIO) predict a non-zero TI-FWM

signal only for the case when all incident pulses have the same polarization [48].

Figure 6.2 proves that indeed the strongest signal appears for pulses having the

same σ+ polarization, the intensity of I++++ at t31 = 0 being the highest. In

contrast to the NIO model, the experiment shows at t31 = 0 strong signals for

two other polarization configurations I++−− and I+−+−. The rapid decrease in

intensity of I+−+−, as it will be shown in the section 6.2, is due to the difference

in the gratings created by the first two pulses. The appearance of other FWM

signals in forbidden polarization geometries (according to the NIO model) is due

to depolarization effects (the intensity of the signal in forbidden geometries is one

order of magnitude smaller) and/or to lowering of the symmetry of the QDs but

unfortunately they yield no valuable information for this study.

In the following, a qualitative study of the electronic properties of such a confined

system will be presented by focusing on the time behavior of the TI-FWM signals

recorded under two specific configurations of the incident pulses, namely the allowed

I++++ and forbidden I++−− configuration according to NIO model. For clarity,

these two signals are plot once more in figure 6.3 together with the time behavior

of the sum and the difference between I++++ I++−− as a function of t31. With

increasing t31, I++++ first decreases in intensity by a factor of 2 in the first t31 ≈ 5 ps,

afterwards its decay time decreases drastically and exceeds 100 ps. The behavior of

I++−−, forbidden according to the NIO model is quite different. I++−− corresponds

to scattering of σ− polarized light on the population grating created by two σ+

polarized beams. Its intensity first even increases in the first t31 ≈ 5 ps and only
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Fig. 6.2: Time integrated photon echo for different polarization geometries of the

incident beams recorded as a function of the delay time t31. The data

are plotted on a logarithmic scale. The transient recorded with all laser

pulses having the same polarization I++++ is vertically shifted for clarity.
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after that it decays with the same time constant as I++++.

A similar depolarization effect was observed in the case of pump–probe trans-

mission (PPT) measurements. The intensity of the differential transmission signal

(DTS) should be the square root of the intensity of the FWM signal [48]. The DTS

spectra recorded for OG550 under two different polarization geometries are shown

in figure 6.4. It is noticeable that the σ+ polarized pump pulse influences the trans-

mission of both σ+ and σ− polarized probe pulses, and the behavior of the DTS I++

and I+− is quite similar to that of the FWM signals I++++ and I++−−, respectively.

I++ shows first a fast decay, then its decay time exceeds 100 ps, whereas I+− first

increases and only afterwards decreases with the same decay time as I++. Thus the

DTS results are in agreement with the TI-FWM experiments.

In order to explain the unexpected time behavior of FWM–signal and PPT signal,

the electronic structure of the QDs has to be considered [1–4, 33, 77]. As shown in

figures 2.5 and 2.6, the 3D confinement of electrons and holes results in a strong

quantization of their states. The lowest exciton state 1s − X is formed mainly by

the electron and the hole in the ground (1s) QD confined states with the total spin

J = 1
2

and 3
2
, respectively. In a spherical dot, which presents a wurtzite lattice

structure, the electron–hole exchange interaction splits the 1s −X state into a set

of states with spins equal to 1 and 2 [1–3]. The exciton ground state with spin 2 is

optically passive in the dipole approximation, because emitted or absorbed photons

cannot have an angular momentum projection ±2. This state with J = 2 is known

in the literature as ”dark exciton state” [1–3]. The lowest optically active state is

a J = 1 spin doublet. However, if the QD’s symmetry is reduced to C2v or lower,

the J = 1 doublet splits further into two states with the corresponding ket vectors:

|X >= |1>+|−1>√
2

and |Y >= |1>−|−1>√
2

. These two states are optically active in

mutually orthogonal linear polarizations [5, 6]. The energy splitting of these states

∆ is usually rather small, in the range of 1 meV.

In QDs with cubic symmetry, the Fs σ+ polarized beam excites the pure X (ex-

citon) state | + 1 >, whereas in a nanodot of lower symmetry it excites a linear
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Fig. 6.3: Dependence of the time integrated photon echo in the I++++ and I++−−

configuration, of the sum I++++ + I++−− and of the difference I++++ −
I++−− on the delay time t31. The data are plot on a logarithmic scale.
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combination of |X > and |Y > states. In the case of lower symmetry QDs, the en-

ergy difference between the states marked |X > and |Y > leads to spin precession.

However, the effect of the latter can be neglected for delay times t31 much smaller

than 2π~/∆. For the investigated sample, this time is in the order of 3 ps (as it will

be shown later) and thereby the splitting can be neglected for delay times t31 below

1 ps.

In order to explain the strong signal in forbidden polarization geometries (ac-

cording to the NIO model) one has to take into account the exciton-exciton inter-

action [48]. The volume fraction of the QDs is 1%, thus the Coulomb interaction

between excitons belonging to different QDs can be neglected due to the large sep-

aration between the nanoparticles. In contrast, the Coulomb interaction between

excitons belonging to the same QD is very strong, due to the electron–hole confine-

ment. As a result:

1. an excitation of two 1S excitons with the same spin in the same QD is forbidden

according to Pauli principle;

2. the excitation of the first | + 1 > exciton causes a marked decrease in the

photoexcitation energy of the second | − 1 > exciton in the same QD.

The decrease in photoexcitation energy of |−1 > excitons as consequence of pho-

toexcitation of |+1 > excitons results in a change of the dielectric function and leads

to the appearance of PPT signal I+− and to the scattering of a σ− polarized beam

on the polarization grating created by two σ+ polarized pulses (I++−−), forbidden

according to the noninteracting oscillators model (NIO).

The appearance of the PPT and FWM signals in forbidden polarizations (I+−

and I++−−) is explained in the framework of the four-level model (figure 2.5 and

figure 2.6) including a ground state, two X states of opposite polarizations (|+ 1 >

and | − 1 >) and a singlet two–exciton (biexciton) state. A σ+ polarized pulse can

only excite excitons with positive spins, i.e. J = | + 1 >, the excitation of J = −1
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6 Biexciton and Spin Dephasing Effects

excitons being possible only with σ− polarized pulses. Here, two interfering σ+

polarized pulses create in the sample a density grating in the 1s+ −X state, noted

ρ++, where the sign ”+” indicates the spin J = +1 of the exciton. Considering the

total density grating created in the sample as being equal to 1, the density grating

created in the ground state is given by the difference:

ρ00 = 1− ρ++. (6.2)

In the 1s− − X exciton or in the biexciton states no density grating appears

(ρ−− = 0). The absorption (refraction) is proportional to the difference:

ρ00 − ρ++ = [1− ρ++]− ρ++ = 1− 2ρ++ (6.3)

for σ+ polarized light. For a σ− polarized beam, the absorption is proportional to

the difference:

ρ00 − ρ−− = [1− ρ++]− 0 = 1− ρ++. (6.4)

This model predicts a maximum ratio 1 : 2 for I+− : I++ in the PPT measure-

ments. The intensity of the FWM signal is squared with respect to the DTS inten-

sity [48]. This results in a ratio of 1 : 4 for the photon echo signals I++−− : I++++.

As it will be shown later, the investigated QDs have a relatively low symmetry and

a random orientation in the glass matrix. Thereby, one can expect a relaxation of

the selection rules. Indeed, the polarization dependence relaxes in absorption mea-

surements. However, the influence of the random orientation of nanoparticles on

the selection rules in PPT and FWM measurements is much weaker [1, 77]. This is

due to the predominant excitation of QDs with a quantization plane perpendicular

to the pump beam, when the electric field of the pump pulse is parallel to the QD’s

polarization plane.

To estimate the effect of the orientational induced disorder on the DTS and FWM

signals, calculations in the limit of the 4-level model and of the random distribution
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Table 6.1: Relative DTS signal for different polarizations of the pump and the

probe laser beams

σpumpσprobe I ij I ij/I++

NO RND NO RND RND-NO

+ + 2.000 0.933 1.000 1.000 0

+ − 1.000 0.600 0.500 0.643 0.143

of noninteracting J = 1 exciton oscillators were performed. In this approximation,

the QDs have a cylindrical symmetry and their polarization in the direction of a

cylindrical axis is zero [77]. Therefore, only the in-plane component of the electric

field has to be considered for the corrections to the density matrix ρ(2) (eq. 4.14)

for the case of DTS measurements and ρ(3) (eq. 4.15) for the case of the FWM

experiments, respectively. The results of the calculations are presented in the tables

6.1 and 6.2 for the pump-probe and FWM measurements, respectively. Here, the

following notations were used: NO stays for the normal orientation of the QD’s

symmetry axes (like coins on the table), whereas RNO represents the situation

when the normals of the QDs are randomly oriented in the ensemble.

The orientational induced disorder (see table 6.1) was found to lead to relatively

weak changes in the relative intensities of the DTS and FWM signals in I+− and

I++−− geometries, respectively. However, the orientational induced disorder does

not predict the appearance of any signals in the forbidden FWM geometries I+++−,

I++−+, I+−++ and I+−+−.

The 4 level model predicts for oriented QDs the maximum ratio 1 : 2 for I+− : I++

in the PPT measurements and the ratio 1 : 4 for the photon echo signals I++−− :

I++++. The orientational induced disorder in QDs predicts only small changes in

the ratios: I++−−/I++++ ≈ 0.41 for FWM (see table 6.2) and I+−/I++ ≈ 0.64

for DTS (see table 6.1. However, the experiment shows that the intensity of the
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Table 6.2: Relative FWM signal in the direction −k1 + k2 + k3 for different polar-

izations of the incident laser beams

σ1σ2σ3σs I ijkl I ijkl/I++++

NO RND NO RND RND-NO

+ + ++ 4.000 0.871 1.000 1.000 0

+ + +− 0 0 0 0 0

+ +−+ 0 0 0 0 0

+ +−− 1.000 0.360 0.250 0.413 0.163

+−++ 0 0 0 0 0

+−+− 0 0 0 0 0

PPT (I++ and I+−) and FWM (I++++ and I++−−) signals in the allowed and

forbidden polarization geometries are almost the same after longer delay times t31

(see fig.6.3 and fig.6.4). Therefore, the orientational induced disorder cannot be

alone responsible for the appearance of the DTS and FWM signals in forbidden

polarization geometries and the strong X-X interactions cannot be neglected for

excitons belonging to the same QD.

To summarize, it was shown, that the orientational disorder does not disturb the

polarization selection rules and the appearance of strong DTS (I+−) and FWM

(I++−) signals in forbidden geometries is well explained by the four level model

taking into account the strong X−X coupling in the QD, thus proving the existence

of biexciton states. The orientational disorder does not disturb the polarization

selection rules and leads only to a relatively small changes in the relative intensities

of the signals recorded under various allowed polarization geometries.
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6.2 Spin Dephasing in 3D Confined Systems

In order to study spin dephasing effects in QDs, the behavior of the I++−− and

I+−+− FWM signals (figure 6.2) recorded in forbidden polarization geometries –

according to NIO model– will be discussed. Although the time behavior of I++−−

and I+−+− in quantum well (QW) structures is rather similar [78], in the case of 3D

confined carriers significant discrepancies have been observed (figure 6.2).

The time behavior of I+−+− is quite different from I++−−. The intensity of I+−+−

decreases rapidly by two orders of magnitude and becomes almost zero for t31 > 400

fs, i.e. when the temporal overlap of the pulses with the wave vectors k2 and k3,

creating the grating, disappears. The observed equality in intensities of I+−+− and

I++−− at zero time t1 = t2 = t3 = 0 is expected because the spatial direction of the

FWM signal is symmetric under the interchange of the first two (in time) pulses k1

and k2. The difference between the pulses k2 and k3 for time delays t32 = t31 6= 0

is connected to the fact that the second (in time) pulse interferes in the sample

space with the first (in time) pulse and forms thus the population grating, while

the third pulse k3 is scattered onto this grating according to the Bragg condition.

Therefore, the huge difference in the decay behavior of I++−− and I+−+− indicates

the qualitative difference in the gratings created by the pulses k1 and k2 having the

same (both k1 and k2 being σ+ polarized) and opposite polarizations (k1 being σ+

and k2 σ− polarized), respectively.

The grating created in the sample space by two σ+ polarized laser pulses is a

population grating which decays with the exciton lifetime T1, which in the case of the

QDs under discussion is rather long and leads to a long decay time of both I++++ and

I++−−. Such a grating is obviously absent for orthogonal polarizations of the laser

beams. In this case only a polarization grating is created in the sample volume. The

pulses k1 (σ+ polarized) and k2 (σ− polarized) thus excite linearly polarized states

(|X > and |Y >) with an electric vector precessing with a period of 1/(|k1 + k2|).
The properties of such a polarization precession grating are qualitatively different
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6 Biexciton and Spin Dephasing Effects

from those of a population grating created by pulses having the same polarization.

First of all, the polarization vector’s precession leads to a very specific scattering:

the scattering occurs by changing the circular polarization of the incident beam

to the opposite one. In addition, the direction of the scattering depends on the

polarization of the third (in time) beam, which is scattered on the polarization

grating. Therefore, a σ+ polarized beam is scattered in the direction −k1 + k2 + k3

and this signal is σ− polarized, whereas a σ− beam scatters into σ+ in the direction

k1−k2 +k3. Finally, the decay of this grating is determined by its dephasing, which

occurs at times much shorter than T1, resulting in a very fast decay of I+−+−. These

predictions are in qualitative agreement with the experiment. First, as shown in

figure 6.2, the σ+ polarized k3 scatters in the direction −k1 + k2 + k3 and the signal

is highly σ− polarized. Second, no marked scattering of a σ− polarized k3 beam

in this direction is observed. Moreover, I+−++ is lower in intensity as I+−+−. By

analyzing figure 6.2, it becomes much clearer that this scattering process by changing

the polarization of the third pulse k3 into the opposite one is only characteristic to

polarization gratings: the intensity of I+++− is one order of magnitude smaller in

comparison to I++++, while the same dependence in relative intensities is observed

for I++−+ in comparison to I++−−. Finally, in contrast to I++++, the decay time

of I+−+− is only about 200 fs. The latter is similar to the exciton dephasing time,

determined separately in another FWM geometry, where k2 and k3 were overlapped

in time and the signal was recorded as a function of the delay of k1 (figure 6.5). As a

reference, a glass plate showing no dynamics was used. The perfect correspondence

of the two transients (from glass and QDs, respectively) suggests that the exciton

dephasing time of QDs is equal or shorter than the time resolution of our system

(50 fs). As shown in section 4.2.3 using eq. 4.36, the intensity of TI-FWM signal is

directly proportional to T2/4 for inhomogeneous systems, leading to a spin dephasing

time of T2 ≈ 200 fs.

Therefore, the drastic difference between the time behavior of I+−+− and I++−−

is well explained by the four–level model.
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Fig. 6.5: FWM signal I++++ recorded with k2 and k3 overlapped in time (t32 = 0),

the transient being recorded as a function of t21 in the direction given by

the phase matching condition ks = k1 − k2 + k3. The data are plot on

a logarithmic scale. The experimentally recorded points are represented

by symbols connected by a solid line. The spectrum recorded for the

reference (glass plate) is marked only by a solid line and is vertically

shifted for clarity.
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6 Biexciton and Spin Dephasing Effects

For a closer analysis of the spin dephasing process in QDs, the behavior of the

TI-FWM signals I++++ and I++−− has to be carefully studied. In both cases, the

FWM signal is a result of scattering a σ− polarized pulse on the population grating

created by two σ+ polarized pulses. However, their temporal behavior is different

for small t31 delay times (I++++ decreases in intensity, whereas I++−− first even

increases in intensity) and the difference disappears only at t31 > 5 ps (figure 6.3).

A similar behavior is observed in figure 6.4 for the PPT signals: I++ decreases,

whereas I+− increases in intensity for the first ≈ 5 ps. It is natural to suppose

that the difference in the temporal behavior of I++++ and I++−− is due to the spin

dephasing process taking place at early delay times. For t31 > 5 ps the density

grating is already spin dephased and a FWM signal decay time of τ1 ≈ 80 ps is

determined resulting in a lifetime T1 = 2τ1 ≈ 160 ps for the bright QD exciton.

A similar value for the exciton lifetime T1 ≈ 180 ps can be extracted from the

PPT signal in figure 6.4. Moreover, the sum of I++ and I+− shown in figure 6.4

displays the same decay time in the whole range of delay times exceeding 0.3 ps. A

similar behavior is observed for the sum of I++++ and I++−− in figure 6.3. That

is an additional proof that the changes both in the PPT signals I++, I+− and in

TI-FWM signals I++++, I++−− for early delay times are connected to an exciton

spin dephasing process. Moreover, the dominating dephasing seems to occur just

between the two bright exciton states with J = 1 and does not include scattering

into the dark exciton states with J = 2. That allows one to neglect phonon assisted

spin flip processes, which result mainly in the conversion of bright exciton into dark

ones, having the characteristic time in the ns regime [77].

One of the most effective mechanisms of the spin dephasing between two J = 1

states is connected to their splitting due to a lowered QD symmetry. The splitting

causes a spin precession in excitons generated by circularly polarized light with a rate

∆
2π~ , where ∆ is the difference in energies between the two exciton states (X) under

discussion (J = ±1). In a system of homogeneously split Xs, with the same value

of ∆ in all QDs such a precession would lead to quantum beats in the population
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6.2 Spin Dephasing in 3D Confined Systems

densities ρ++ and ρ−−. The system under study obviously exhibits inhomogeneously

split Xs, therefore medium population densities have to be considered: < ρ++ > for

X states with J = +1 and < ρ−− > for X states with J = −1. The fluctuations in

∆ lead to spin dephasing and result in decreasing difference between < ρ++ > and

< ρ−− > [79]. As a result < ρ++ > decreases and < ρ−− > increases in time till

a mean value (≈ ρ++(t31 = 0)/2) is achieved. This causes an increase in intensity

of the FWM signal I++−− and PPT signal I+− for early delay times t31 and, vice

versa, the fast decrease in intensity of I++++ and I++. The observed spin dephasing

time (also separately determined from the difference between I++++ and I++−− in

figure 6.3) is about 1 ps indicating that ∆ in our sample fluctuates in the range

of ≈ ±1 meV. It is important to note that this dephasing time is not a real spin

dephasing time (T2 being determined as ≈ 200 fs) but a spin dephasing connected

to the lowered symmetry of the nanoparticles.

In conclusion, the investigations of the polarization properties of the TI-FWM and

PPT signals have shown that the relaxation of selection rules due to orientational

disorder in QDs is relatively weak. The strong scattering of a σ− polarized light

on the population grating created by two σ+ polarized pulses and the strong I+−

PPT signal appear due to a strong X–X coupling in the nanoparticles. The spin

dephasing of a σ+ population grating leads to the disappearance of the difference

in I++++ and I++−− signals for long delay times, determining a population lifetime

of T1 ≈ 180 ps. No marked population grating is created by two pulses having

opposite (σ+ and σ−) polarizations. In this case the grating is determined by the

polarization vector’s precession and decays with the exciton dephasing time T2 ≈ 200

fs. Moreover, the splitting in energy between the exciton levels J = 1 could also

be estimated indicating a lowered symmetry of the nanoparticles. Furthermore,

ultrashort processes in such confined systems are studied by applying nonlinear

spectroscopy techniques, like TI-FWM and DTS involving circularly polarized laser

pulses.
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7 Degree of Asymmetry of Nanoparticles

Embedded in Dielectric Matrix

As already introduced in chapter 6, the polarization properties strongly

depend on the internal and crystal shape asymmetries, and not only on

the changes in the energy distribution due to strong electron–hole ex-

change interaction. This chapter deals with detailed investigations of the

nanoparticles’ symmetry. The aim is to determine the net splitting pa-

rameter ∆ of the energy levels, which is a direct measure of the QD’s

asymmetry, using the TI-FWM technique with circularly polarized light.

A comparison between polarization properties of commercially available

CdS0.6Se0.4 QDs and heat treated CdSe QDs embedded in a dielectric

matrix is performed. Nanoparticles of different sizes and/or the same

size but grown under different conditions are investigated in order to de-

termine the optimal growth conditions for obtaining high quality QDs

with the highest symmetry achievable. The spin dephasing effects and

exciton lifetimes for ground- and excited states of electron–hole pairs are

intensively discussed. It will be shown that samples containing nanopar-

ticles of the same size, but grown under different conditions exhibit differ-

ent exciton spin dephasing times and consequently different asymmetries.

Finally, ultrafast relaxation paths and the role of Auger processes in the

relaxation mechanisms in quantum confined systems will be discussed.
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7.1 Influence of Growth Conditions

7.1 Influence of Growth Conditions on the Exciton

Spin Dephasing

As already shown in chapter 6, the electron–hole interactions play a crucial role

in all processes in QDs. In particular, the electron–hole interaction (in CdS and

CdSe QDs) splits the lowest exciton state, formed by the electron having a spin

of J = 1/2 and by the hole with a spin J = 3/2, into a set of states with J = 1

and 2 [3, 77]. The lowest optically active state (spin doublet with J = 1) is split

further due to lowering of the QD’s symmetry into two states with J = |+1>+|−1>√
2

and J = |+1>−|−1>√
2

, optically active in mutually orthogonal linear polarizations [6].

Moreover, the random exchange splitting of the J = 1 exciton state, which leads to

the depolarization of the DTS and FWM signals, originates from the lowered sym-

metry of the nanoparticles. Thus the measurements of the exciton spin dephasing

time using polarized FWM spectroscopy allow one to estimate the QD’s asymmetry

and follow its dependence on the growth conditions.

The samples investigated in this chapter were obtained from commercial RG695

filter glass provided by Schott Glass Technologies. The samples containing CdSe

QDs embedded in a glass matrix were subject to a heat-treatment procedure per-

formed in the group of Dr. A. Filin at the Renselear Polytechnic Institute, Troy,

USA. As-received RG695 was melted at 1050◦C to dissolve particles and heat–treated

after quenching to grow QDs of different size. (For details concerning the prepara-

tion see Ref. [80].) By controlling the growth parameters (time and temperature)

nanoparticles of different sizes can be formed. The dimensions of the investigated

QDs vary from 2.4 to 8 nm in diameter, obtained by varying the growth temper-

ature in a range from 590◦C to 720◦C and the growth time between 0.5 and 280

h. The study will focus on samples having the same size but grown under different

conditions. It will be referred to as ”slow-growth” for the samples grown over a

longer period of time at lower temperature and ”fast-growth” for the samples grown
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7 Degree of Asymmetry of Nanoparticles Embedded in Dielectric Matrix

over shorter periods but at higher temperature. For the QDs grown under these

conditions, the observed asymmetry will be discussed in terms of the kinetics of

QD’s growth.

In this section it will be focused in particular on two pairs of samples: the first

pair (1a and 1b) has an average diameter < D >= 2.8 nm and the second pair

(2a and 2b) < D >= 4.8 nm, respectively. The samples were prepared under the

following conditions:

• sample 1a was grown during 280 hours at a temperature of 590◦C (280h@590C)

and will be called ”slow growth 1” (SG1);

• sample 1b was heat treated for 2 hours at 650◦C (2h@650C) and will be called

”fast growth 1” (FG1);

• sample 2a was grown 8 hours at 700◦C (8h@700C) and will be referred to as

”slow growth 2” (SG2);

• sample 2b was treated for 1 hour at 720◦C (1h@720C) and will be referred to

as ”fast growth 2” (FG2).

The absorption spectra of these samples are shown in figure 7.1. The exciton

spin relaxation is investigated by means of the TI-FWM technique, using three

perfectly circularly polarized laser pulses of approximately 80 fs duration. All three

fs pulses have the same wavelength lying in the range of the 1Se − 1Sh transition

as indicated by arrows in figure 7.1 for each sample separately. Note that the size

of the interrogated particles is selected by the laser wavelength, because only the

QDs resonant with the laser wavelength are excited. The study of the QD ensemble

was reduced to the investigation of the time behavior of the TI-FWM signal for

only two polarization geometries I++++ and I++−− (see chapter 6). In both cases,

a transient population grating is created by temporal (t21 = t2− t1 = 0) and spatial

interference of the first two σ+ polarized pulses in the sample space. The third pulse
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7.1 Influence of Growth Conditions

Fig. 7.1: Absorption spectra of QDs of different sizes (the radius of the dots are

indicated in the figure) and grown under different conditions. The spec-

tra are recorded at a temperature of 10 K. The excitation energies used

in the TI-FWM measurements are indicated by arrows for each sample

individually.
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7 Degree of Asymmetry of Nanoparticles Embedded in Dielectric Matrix

scans the transient population grating (t31 = t3 − t1) and can be σ+ (I++++) or σ−

polarized (I++−−), the FWM signal being scattered in the direction given by the

phase matching condition ks = −k1 +k2+k3, whose polarization always corresponds

to the polarization of k3. As shown in chapter 6, spin dephasing processes lead to

the disappearance of the difference in intensities of the signals I++++ and I++−−

for long t31 delay times, i.e. when the population grating is already spin dephased.

Thus, the sum S+ = I++++ + I++−− is analyzed in order to determine the exciton

lifetime and the difference S− = I++++ − I++−− to determine the exciton spin

dephasing time and thus for estimating the QD’s asymmetry.

The transient grating created in the sample volume by the interference of two σ+

polarized pulses with wave vectors k1 and k2 leads to a modulation of the refractive

index due to the creation of an induced grating in the sample volume, whose knots

are occupied by excitons. The amplitude of this induced grating and therefore the

intensity of the scattered FWM signal is proportional to the exciton population den-

sity. Thus the intensity of the TI-FWM signal for different polarization geometries

depends on the population density given by the excitons arrived in both states, with

J = +1 (eq. 6.3) and J = −1 (eq. 6.4). For a σ+ polarized k3 beam one has

I++++ ∼ (2ρ++ + ρ−−)2 and I++−− ∼ (ρ++ + 2ρ−−)2 for a σ− polarized k3 pulse,

respectively. Taking into account the exciton lifetime τl and exciton spin relaxation

time τs, the population densities created in the two states J = ±1 can be written

as functions of decay times:

• ρ++(t) ∼ exp(−t/τl)(1 + exp(−t/τs))

• ρ−−(t) ∼ exp(−t/τl)(1− exp(−t/τs)).

Therefore, the intensities of the TI-FWM signals can be expressed as follows:

I++++ ∼ (2ρ++ + ρ−−)2 ∼ exp(−2t/ρl)(3 + exp(−t/τs))
2 (7.1)

I++−− ∼ (ρ++ + 2ρ−−)2 ∼ exp(−2t/ρl)(3− exp(−t/τs))
2. (7.2)
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7.1 Influence of Growth Conditions

Therefore, the difference S− = I++++ − I++−− results into:

S− ∼ exp(−2t/τl)exp(−t/τs) = exp(−t/τ−), (7.3)

where 1
τ− = 2

τl
+ 1

τs
is the decay time of the difference S−. For the sum S+ =

I++++ + I++−− one obtains:

S+ ∼ exp(−2t/τl)[9 + exp(−2t/τs)] ≈ exp(−2t/τl) = exp(−t/τ+), (7.4)

where τ+ = τl/2 is the decay time of the sum. The sum can be described by a single

exponential with an accuracy of about 10%, because exp(−2t/τs) ≤ 1.

Thus the decay of the sum S+ reflects the transient population dynamics, whereas

the decay of the difference S− is enhanced due to an exciton spin dephasing process.

One of the fastest dephasing processes in an ensemble of asymmetric QDs with split

J = 1 exciton states is a spin precession with a rate of ∆/2π~. Such a spin precession

in a randomly split exciton system leads to the disappearance of the difference in

FWM signals observed for a scattering of σ+ (I++++) and σ− polarized light (I++−−)

on the transient population grating created by two σ+ polarized pulses. Therefore,

the temporal behavior of the difference S− = I++++ − I++−− characterizes the

dynamics of exciton spin dephasing.

Figure 7.2 shows the population dynamics for the two pairs of investigated sam-

ples. As it is clearly observable, the occupation decay time depends strongly on the

particle size, while the lifetime of the population grating gets shorter with decreasing

particle size. It is remarkable that the population lifetime is nearly independent on

the growth conditions for particles having the same size, i.e. the decay of the sum

S+ being the same for samples containing nanoparticles of the same size but grown

under different conditions. In contrast, the exciton spin dynamics exhibits a drastic

dependence on the growth conditions. Figures 7.3 and 7.4 display the temporal

behavior of the difference S− = I++++− I++−− recorded for QDs of 1.4 nm and 2.4

nm in radius, respectively. The occupation dynamics S+ for one sample of each size
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Fig. 7.2: The transients depicting the sum of polarized TI-FWM signals S+ =

I++++ + I++−− plotted on a logarithmic scale. The TI-FWM signals

were recorded in the direction given by the phase matching condition

ks = −k1 + k3 + k3 as a function of time delay t31 of the pulse k3. Squares

correspond to the pair of samples containing smaller QDs (R=1.4 nm) and

the triangles to the pair containing larger QDs (R=2.4 nm), respectively

.
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are also plotted as a reference. The experimental data are represented by symbols,

whereas the deconvolution (according to figures 7.4 and 7.3 for the sum S+ and for

the difference S−, respectively) by solid lines. For both pairs, the sample grown for

shorter time at higher temperature (FG1 = 2h@650C and FG2 = 1h@720C) shows

much shorter decay time of the difference S− as the sample grown for longer time

at a lower temperature (SG1 = 280h@590C and SG2 = 8h@700C). Note that the

data are plot in logarithmic scale.

The exciton spin dephasing time τs can be estimated from the difference S−,

however the exciton recombination has to be taken into account. The exciton de-

population time is:

τl = 2τ+ (7.5)

and therefore the spin dephasing time can be calculated:

1

τs

=
1

τ−
− 1

τ+
, (7.6)

where τ+ and τ− are the decay times of the sum S+ = I+++++I++−− and difference

S− = I++++ − I++−−, respectively.

For the sample SG1 containing smaller QDs (figure 7.3), the deconvolution ac-

cording to eq. 7.3 yields a decay time of the difference S− of τ− = 0.20 ps, whereas

the deconvolution according to eq. 7.4 yields a decay time τ+ = 0.28 ps of the sum

S+, resulting in a spin dephasing time of τs = 0.70 ps. For the sample FG1 of the

same pair 1 containing smaller dots, τ− is shorter than the time resolution of the

system, i.e. τ < 0.07 ps.

The second pair of samples containing larger QDs show a more complex behavior.

For SG2 one can associate two depopulation times: τ+
1 = 93 fs and τ+

2 = 2.2 ps,

having their origins in two different kinds of particles. The contribution of the

particles characterized by τ+
1 is insignificant, their concentration being obviously

smaller than that of the particles characterized by τ+
2 (as it will be shown in the
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Fig. 7.3: Transients plotted as the difference in intensities of polarized TI-FWM

signals S− = I++++ − I++−− recorded for pair ”1” of samples containing

smaller QDs (R=1.4 nm). The signals are plot on logarithmic scale. The

empty circles correspond to ”slow growth” sample SG1 (280h@590C),

whereas the solid circles to the ”fast growth” sample FG1 (2h@650C).

The sum S+ is also plot (black curve with solid squares) and illustrates

the difference in the behavior of the TI-FWM signals corresponding to

the population and spin relaxation processes, respectively.
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Fig. 7.4: Transients plotted as the difference in intensities S− = I++++ − I++−−

of polarized TI-FWM signals recorded for pair ”2” of samples containing

larger QDs (R=2.4 nm). The signals are plot on a logarithmic scale. The

empty circles correspond to the ”slow growth” sample SG1 (8h@700C),

whereas the solid circles to the ”fast growth” sample FG1 (1h@720C).

The sum S+ is also plot (black curve with solid squares) and illustrates

the difference in the behavior of the TI-FWM signals corresponding to

the population and spin relaxation processes, respectively.
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next sections). Thus the dephasing process is mainly characterized by τ+
2 . For

SG2 one finds (τs)1 = 0.4 ps and (τs)2 = 5.9 ps, whereas in the case of FG2 one

can only tell that τs < 0.07 ps, representing the time resolution of the fs system.

As discussed earlier, the energy gap of the splitted J = 1 exciton states can be

estimated as ∆ ≈ ~/τs. For both ”fast growth” samples (FG1 and FG2) it can be

concluded with certainty that the energy splitting is ∆ > 20 meV, which indicates a

very high asymmetry of the quickly grown QDs. For the ”slow growth” sample SG1,

the splitting is ∆ ≈ 2 meV, whereas in the sample SG2 the most of the QDs show

a much slower decay, indicating that ∆ ≈ 0.3 meV. The decreased splitting of the

1S exciton state indicates that with increasing growth time the QD shape becomes

more and more symmetric. Note that the results are used only for a qualitative

rather than any quantitative estimations.

In summary, there are two remarkable aspects of the present observations:

1. the population lifetime depends only on the particle size, and doesn’t depend

on the growth temperature,

2. the exciton spin dephasing time depends strongly on the preparation history.

Samples containing nanoparticles of the same size have the same lifetime,

but if they were grown under different conditions, they exhibit different spin

dephasing times: the samples grown for longer times at lower temperatures

yield a longer spin dephasing time, whereas the samples grown for shorter

times at higher temperature exhibit shorter spin dephasing times.

Note that the exciton spin dephasing time in discussion is not a ”real spin deco-

herence time” but it is due to the random splitting of the J = 1 exciton states.

The asymmetry of nanocrystals can originate a) from distortion of the hexago-

nal lattice structure of the crystal [1] and b) from the nonspherical shape of the

finite nanocrystal having the radius smaller or comparable to the exciton Bohr ra-

dius [2]. The distortion of the intrinsic hexagonal structure does not influence the
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splitting of the J = 1 exciton state [1, 77]. The only contribution to the energy

redistribution of the J = 1 exciton comes from deviations from the spherical shape

of the nanocrystals due to the creation of additional strains at the heterointerface

semiconductor-dielectric matrix. It follows from studies of τs that the J = ±1 exci-

ton splits and hence the QD’s symmetry for nanocrystals of the same size increases

strongly with increasing growth time and decreasing temperature.

The crystal quality and the deviation from the spherical shape of a nanocrystal

can be related to three physical aspects:

1. entropy–induced disorder,

2. defects and roughness due to kinetic limitations,

and/or

3. energy differences between crystallite facets.

In order to ingeniously determine the symmetry of the nanocrystals, their thermal

history has to be taken into account. By means of rapid quenching from the melt,

the QD’s structure can be ”frozen” in a homogeneous state in the dielectric matrix,

whose viscosity strongly depends on the temperature. The rate of the QDs precipi-

tation from glass depends on two factors: on the thermodynamic driving force and

on the kinetic factor [81]. The thermodynamic driving force consists in a decrease

in the free energy of the system due to the formation of a QDs precipitate. The

kinetic factor is related to the mobility of the system and depends strongly on the

temperature. Due to the fact that the kinetic factor is a proportionality constant

between the driving force and the rate of particle formation, it is agreed that the

kinetics factor plays the most important role in formation of defects in CdSe QDs

in dielectric matrices.

Nanocrystals of high symmetry are obtained if the lowest energy state in the crys-

tallite can be achieved. If this state involves symmetric facets with smooth surfaces,

the nanoparticle can be prevented from achieving this lowest energy state if diffusion
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and relaxation processes are slow compared to the rate of the arrival of atoms at

the growth surface. In one extreme, the particle arrival without relaxation gives

rise to fractal aggregation [82]. In order to compare samples prepared under dif-

ferent conditions, a parameter named ”growth quality coefficient, Q” is introduced.

This parameter is directly proportional to the diffusion rate Diff and inversely

proportional to the flux of atoms (adatoms) migrating towards the growth surface

F :

Q ∼ Diff

F
. (7.7)

The growth rate is proportional to the adatom growth flux and hence inversely

proportional to the growth time of the last crystallite monolayer. The growth rate

can be estimated from the crystal size, and the relative relaxation rate from the

self–diffusion data, respectively.

If we assume that the crystals were formed by diffusion–limited growth from

infinitesimal seeds, then the growth rate can be estimated for these four samples

(SG1, FG1, SG2 and FG2) for a particular size. For an estimation of the time to

grow the last crystal layer, it has to be taken into account that in a diffusion–limited

growth process the QD’s size increases as the square root of the growth time [83]:

R(t) = R0 + at1/2, (7.8)

where R0 is the initial size of the seed and a is the growth rate. The size of the

initial seed is infinitely small and can be approximated to R0 ≈ 0, therefore:

t =
1

a2
R2, (7.9)

whose derivative yields the time to grow the last monolayer ∆t:

∆t =
1

a2
2R∆R. (7.10)
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Here, taking into account 7.9, the growth rate a can be written as a function of

the growth time t and the nanoparticle’s radius R

1

a2
=

t

R2
, (7.11)

enabling one to determine the time to grow the last layer ∆t as a function of the

QD’s final size R and the total growth time t:

∆t = t× 2

R
×∆R. (7.12)

Here, ∆R is the thickness of the last monolayer and represents the lattice constant

of CdSe, ∆R = 0.27 nm.

On one hand, one can expect that the longer the time to grow the last crystal

monolayer, the better the QD’s quality because the adatoms have more time to

occupy proper positions (states of lower potential energy). Indeed, the lower the

temperature, the longer the time to grow the last monolayer for samples containing

QDs of equal size (see table 7.1).

However, there’s another process which significantly affects the quality of QDs,

connected to the migration of the adatoms towards the infinitesimal growing seeds.

As indicated above, the growth mechanism takes place in the framework of diffusion–

limited processes. Diffusion processes in such nanocrystals are characterized by the

diffusion coefficient, estimated by Jones et all. [84]:

Diff = Diff0exp(
−2.7[eV ]

kT
). (7.13)

.

The diffusion coefficient Diff is a measure of the adatoms kinetics, and, sub-

sequently of their mobility. Therefore, it is evident that the larger the diffusion

constant D, the better the quality of the crystal because for a certain time domain,

the adatoms have larger degree of freedom to build a ”perfect” crystal. In order to

monitor the evolution of QDs in time, the diffusion scaling factor was analyzed:
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Table 7.1: Degree of Asymmetry of QDs

R

(nm)

Growth

Time

(h)

Growth

Temp.

(◦C)

Last

Layer

Growth

Time

(h)

Diffusion

Scaling

Factor

Quality

Coeff. Q

1
Q τs (ps)

∆

(meV)

1.4 280 590 108 3.22∗10−15 1 1 0.7 2

1.4 2 650 0.77 2.65∗10−14 0.059 17 < 0.7 > 20

2.4 8 700 1.80 1.26∗10−13 0.56 1.8 0.4 4

5.9 0.3

2.4 1 720 0.22 2.26∗10−13 0.126 8.0 < 0.07 > 20

Diff

Diff0

= exp(−2.7[eV ]/kT [K]), (7.14)

which shows the changes in the diffusion process during the crystal growth time.

The diffusion process is strongly temperature dependent. Higher temperatures

assure better mobility and subsequently larger Diff and better quality of the QDs.

However, in order to obtain QDs of a certain size, if the temperature is increased,

the growth time has to be reduced. In order to figure out which factor is decisive for

the characterization of QD’s quality, the ”quality coefficient Q” is introduced. Q is

directly proportional to the time to grow the last monolayer ∆t and inversely pro-

portional to the diffusion scaling factor Diff
Diff0

. This is an arbitrary coefficient and can

be set to 1 for the sample grown for longer time at lower temperature 280h@590C,

which is supposed to have the highest symmetry. The quality coefficients for the

other three samples were scaled relative to Q determined for the sample 280h@590C.

For both sample pairs discussed in this section, the ”fast growth” samples (FG1

and FG2) exhibit much smaller quality coefficient Q as the ”slow growth” (SG1 and
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7.1 Influence of Growth Conditions

SG2) samples. These two samples FG1 and FG2 show also much shorter dephasing

times as SG1 and SG2, the corresponding splitting being also relatively large (> 20

meV), implying a relatively large asymmetry.

Figure 7.4 shows that the ”slow growth” sample containing the larger QDs SG2

exhibit two values of ∆, corresponding to two characteristic dephasing times. This

result is a consequence of the transient fitting (see figure 7.4) with two exponentials.

It is natural to suppose that in this sample two types of QDs are excited. Details

concerning this two-exponential decay fit of the transient will be discussed in section

7.2. This fit shows that the majority of the QDs are characterized by a longer spin

dephasing time of τs = 5.9 ps and only these must be further considered for a

comparison with the other nanocrystals.

Thus the investigation of the exciton spin dephasing time in CdSe QDs embedded

in a glass matrix by means of polarized transient grating methods yields valuable

information on the symmetry of QDs grown under various conditions. The most

surprising result of this study is the observation of those QDs that appear to be

identical by many measures (size, linear absorption spectrum, exciton lifetime),

these exhibiting very different exciton spin dephasing times. The dephasing times

correlate with a measure of the crystal structural quality parameter estimated from

the ratio between the time for a point defect to diffuse across the crystallite and

the time necessary to grow the last monolayer of the crystal. For both pairs of

samples of different sizes, when Q is small, the asymmetry measured by TI-FWM

is large and when Q is large the degree of symmetry is much greater. The quality

coefficients are summarized in table 7.1 and it can be seen, that the inverse of the

quality coefficient (1/Q) increases with increasing asymmetry of the nanocrystal.

The splitting ∆ of the J = 1 exciton state was estimated from the exciton spin

dephasing time τs, where ∆ ≈ ~/τs. These results are also summarized in table 7.1,

reflecting the degree of asymmetry of the four samples discussed in this section.

A qualitative comparison using both methods was achieved. The results concern-

ing the quality of the QDs determined using the diffusion calculation method and
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thus calculating the quality coefficient Q are in very good agreement with the energy

splitting ∆ calculated from the spin dephasing time of the exciton energy levels with

J = 1. Comparing the results of these two methods, we can conclude that TI-FWM

polarized measurements are an appropriate tool to investigate the asymmetry of

nanoparticles. This study yields invaluable information for the QD manufacturing

process of nanocrystals, showing the ways to be followed in order to obtain QDs of

high quality.
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7.2 Size Dependence of Exciton Lifetime

7.2 Dependence of the Exciton Lifetime on the

Nanoparticles’ Size

The size of semiconductor nanostructures is a crucial parameter concerning both

their electronic and optical properties [77,85]. This section is focused on the investi-

gation of quantum size dependence of exciton fine structure of CdSe QDs embedded

in a glass matrix.

Femtosecond DFWM in the framework of transient grating experiments, described

in the chapters 4 and 5 were performed on heat treated CdSe QDs of different

sizes, prepared by the method presented in section 7.1. The following samples were

investigated:

1. 0.5h@700C containing QDs of 1.4 nm in radius;

2. 2h@700C containing nanoparticles of 2.2 nm in radius;

3. 16h@720C with QDs of 3.2 nm in radius.

The samples were labelled indicating both the duration of the heat treatment (in

hours) and the temperature (in ◦C), abbreviated as follows ”duration h @ temper-

ature ◦C”.

During the experiments the samples were mounted into an optical cryostat and

kept at a temperature of 10 K. Size selective excitation of the nanocrystals was

achieved by appropriate choice of the excitation energy. The choice of the latter

near the resonance of the absorption of the 1Se − 1Sh exciton transition allows one

to choose the excited QDs close to the mean size of the nanoparticles included in

the matrix. The absorption spectra of the investigated samples are shown in figure

7.5, the excitation energy being indicated by arrows for each sample individually.

As already introduced in the chapters 4 and 5, the samples are excited by 3

circularly polarized femtosecond pulses in transient grating experiments and the

FWM signal was scattered in the direction given by the phase matching condition
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Fig. 7.5: Absorption spectra of CdSe QDs of different sizes embedded in glass ma-

trix, recorded at 10 K. The excitation energy used in the FWM measure-

ments is indicated by arrows for each sample individually.
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ks = −k1 + k2 + k3. The incident fs pulses are circularly polarized and for these

experiments two relevant polarization geometries were selected: I++++ where all 3

incident pulses and the recorded signal are σ+ polarized and I++−−, where the first

two (in time) pulses k1 and k2, which create the exciton population grating are σ+

polarized, whereas the third pulse with a wave vector k3 and the recorded signal

ks are both σ− polarized. The sum between the intensities of the TI-FWM signals

recorded under these two polarization geometries S+ = I++++ + I++−− is a direct

measure of the exciton population dynamics, its decay serving as a measure of the

exciton lifetime. This sum S+ registered for the QDs discussed above is shown in

figure 7.6. In the following, the relaxation processes from the lowest lying 1S exciton

state will be discussed.

It was shown [81,86,87] that Auger processes play an essential role in the degra-

dation of the nonlinear properties of nanocrystals. In particular, Auger ionization

followed by the capture of carriers in the surrounding matrix bring strong contribu-

tions to the decay of the optically excited electron-hole states in confined media. The

signal decay rate is determined mainly by the Auger ionization rate and the prob-

ability of creating two electron-hole pairs in the nanocrystal. The Auger processes

affect all aspects of carrier relaxation and recombination.

The optical excitation of an electron-hole pair in an electrically neutral QD results

usually in the emission of a photon as a consequence of its annihilation. However,

in charged systems the annihilation energy can be taken up by the extra electron or

hole instead of being re-emitted in form of a photon. This phenomenon is due to the

large Auger rate in comparison to the radiative recombination rate in nanocrystals

[81]. The extra charge can be created in the nanocrystal by optical excitation

even if the energy of the incident photon is not sufficient for a direct ionization of

the nanoparticle. The Auger autoionization of nanoparticles depends strongly on

factors like QD’s size, band offset between the semiconductor nanocrystal and the

surrounding matrix, temperature and excitation energy.

For the creation of Auger autoionized nanocrystals, the simultaneous excitation
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Fig. 7.6: Sum S+ = I++++ + I++−− as a function of the delay time t31 for QDs of

different sizes, whose absorption spectra are presented in figure 7.5.
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Fig. 7.7: Process of Auger autoionization in nanocrystals. Two electron-hole pairs

are simultaneously excited, one of the carriers being ejected into the di-

electric matrix and captured by surface states or crystal defects.

of two electron-hole pairs in the same QD is necessary (figure 7.7). The annihilation

energy of one of the electron-hole pairs is transferred to the carriers of the second

electron-hole pair thus resulting into ejection of carriers from the crystal. The ejected

carriers (electrons or holes) are then localized in traps in the surrounding matrix or

at the nanocrystal surface.

The efficiency of Auger processes in nanocrystals with respect to their rate in the

bulk is related to energy and momentum conservation rules. In large band-gap bulk

semiconductors as CdS and CdSe the Auger processes are considerably suppressed

because in homogeneous materials both energy and momentum are conserved. These

conservation rules lead to an exponential dependence of the recombination rate

on the ratio Eg/T , where Eg represents the semiconductor band gap and T the

temperature. Thus for large values of the energy gap Eg the Auger processes become

negligible in the bulk.

The reasons for the enhancement of Auger processes in nanocrystals lies in the

different structural properties of confined systems in comparison to bulk materials.

In nanocrystals the momentum of the carrier motion is not a good quantum number

anymore, therefore no valid conservation law for the momentum can be written.

Moreover, the enhancement of Coulomb interactions between carriers due to quan-

tum confinement cannot be ignored. Thus the Auger processes become very efficient

when the volume of the semiconductor is reduced and the carriers are confined in all
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three spatial dimensions. The rate of Auger interactions in QDs can be determined

using Fermi’s golden rule:

1

τA

=
2π

~
∑

k,l,m

∣∣∣
〈
Ψi|V (~r1, ~r2)|Ψf

k,l,m

〉∣∣∣
2

δ(Ei − Ef ), (7.15)

where Ei, Ef and Ψi, Ψf are the energies and wave functions of the initial and

final electronic states of the nanocrystal, respectively. The rate of Auger processes

depends on the Coulomb potential V (~r1, ~r2) = e2

ε|~r1−~r2| existing between two carriers

situated at a distance defined by the difference between their position vectors |~r1−~r2|
in a medium having the dielectric constant ε. The summation is made over all final

states of the system (k, l, m).

A qualitative explanation in a semi-classical picture of the meaning of the Auger

process rate can be given by analyzing the carrier dynamics in the framework of

energy transfer. The electron shows an affinity to take up the annihilation energy

of the exciting photon at the place where its kinetic energy, or kinetic energy un-

certainty has a maximum value. Such a place can be created in the center of an

impurity, where the potential energy goes to minus infinity and the kinetic energy

has a maximum.

For quantum confined systems, Auger processes take place at the abrupt het-

erointerface, where the surface of the nanocrystal gets in contact with the dielectric

matrix. Here, the electron momentum uncertainty is very large and the electrons

can gain enough momentum at the interface. Quantum mechanical calculations [87]

confirm that Auger processes take place right at the nanocrystal surface because

the abrupt surface significantly accelerates the Auger ratio τA in nanoparticles with

large surface to volume ratio. Efros et al. demonstrated a very strong dependence of

the Auger autoionization rate on the band offset and an even stronger dependence

on the nanoparticles’ size [77,81]. The average size dependence was found to be:

〈
1

τA

〉
∼ 1

Rν
, (7.16)
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Fig. 7.8: Dependence of the exciton lifetime τ1 on the size of the nanoparticles R

following the power law τ ∼ R2.5.

where R stands for the size of the nanocrystal and 5 < ν < 7 is a coefficient

depending on the band offset.

The exciton lifetime for the QDs under discussion was determined from the tran-

sients plotted in figure7.6. The results are presented as a function of the QD’s size in

figure 7.8. Figure 7.8 shows that the dependence of the exciton lifetime on the QD’s

size is markedly weaker (τ ∼ R2.5) than Efros’ predictions concerning the depen-

dence of the Auger autoionization’s rate on the QD’s radius (eq. 7.16). Therefore,

the Auger autoionization is not the major process contributing to the recombination
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of excitons in the samples studied within this chapter and the transients plotted in

figure 7.6 have to be analyzed more carefully.

The decay of the TI-FWM signal (figure 7.6) is not monoexponential, especially

for QDs having a radius R < 2.5 nm, two decay channels are clearly distinguishable:

an initial very fast decay (a few hundred of fs) and a slower decaying channel (a

few ps). These two decay channels indicate the existence of at least two different

types of QDs, which coexist in the nanocrystals and exhibit different relaxation

channels. In order to understand the relaxation process, the energy structure of the

lowest lying exciton state (1S3/2, 1se) has to be taken into account. As described

in detail in section 2.3.1 this electron-hole pair state is split due to the crystal field

and/or QD’s asymmetry (figure 2.5) into two sets of states, labelled A and B [4].

Figure 7.9 shows a simplified picture of the splitted 1S exciton state, including the

only optically accessible A states, which are further split into the states labelled

AT and AF . It can be seen, that the lowest lying optically active exciton state AT

is not the energetically lowest lying exciton state. The latter is labelled AF and

is known in literature as ”dark exciton state”. Transitions to the dark state are

optically forbidden, because the light couples to states with J = 2 only in higher

order perturbation theories. Therefore optical excitation occurs only on the AT

bright exciton state, from where the excitons in the investigated samples relax in a

few ps.

From the bright exciton state, there are three possible relaxation channels:

• radiative recombination,

• capture of carriers in deep traps,

• spin relaxation into dark states.

The radiative recombination time in strongly confined CdSe QD systems was

determined [88] to be approximately 300 ps and no decrease is expected for QDs

with a radius R < 3 nm. The calculations referring to nanocrystals embedded in a
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| 2, 2 > ,  | 2, −2 > 

ground state 

Fig. 7.9: Degeneracy of the lowest lying exciton state (1S3/2, 1se) into the AF dark-

and AT bright exciton states. The states are labelled by the corresponding

”ket-vectors” |N,Nm >, composed by the total pair angular momentum

N and its projections Nm.

matrix with similar dielectric constants εmatrix ≈ εQD showed that corrections are

necessary in order to explain the short relaxation times in the samples studied within

this chapter. For example, the calculations must take into account the effect of the

environment having a quite different dielectric constant εmatrix 6= εQD. Indeed, the

effect of a smaller dielectric constant of the matrix εmatrix << εQD results into two

opposite contributions:

1. decrease of the electric field of the light in the nanocrystal due to its redis-

tribution into the matrix with smaller dielectric constant and thus increase in

the exciton lifetime;

2. enhancement of Coulomb interaction between carriers (FCoulomb ∼ 1
ε
) and

hence leading to some decrease in the exciton lifetime.

However, the effect of the enhanced Coulomb interactions cannot be significant

concerning the relaxation of the excitons and cannot induce such a big decrease

(two orders of magnitude) in the exciton lifetime, because the main effect in the
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confinement of electrons and holes in nanocrystals is due to the QD confinement

potential. Indeed, calculations performed by Tagakahara et al. for CdSe QDs

embedded in a glass matrix have shown that the decreased dielectric constant in

the matrix leads to a decrease by 0.6 in the exciton lifetime [89]. Thereby, it is

obvious that the radiative recombination cannot result in the short exciton lifetimes

observed in our experiments.

The initial very fast decay channel observed for all samples in figure 7.6 can be

attributed to Auger autoionization processes. A very small fraction of QDs in the

matrix are characterized by very short lifetimes (of a few hundred of fs) and they

are connected to the initial fast decrease in the intensity of the TI-FWM signal. The

experiments show a strong dependence of this decrease on the excitation density and

temperature. To diminish this effect a minimal excitation density (0.1 nJ/µ m2) and

the lowest temperature achievable in the cryostat (10K) was chosen. Moreover, the

Auger recombination occurs on a sub ps time scale and its rate increases with the

excitation density and/or the temperature. Thus it can be concluded that this small

part of nanocrystals are charged ones, which recombine via Auger-autoionization

processes. Therefore, the Auger processes dominate only at the beginning of the

exciton relaxation, after Auger recombination the charged QDs do not contribute

further to the exciton lifetime.

The second relaxation channel observed in figure 7.6 can be connected either to

a simple energy relaxation from the bright J = 1 to the dark J = 2 exciton state

and/or to a capture of the exciton into a lower state connected to surface defects.

The latter mechanism is very probably because the glass and the nanocrystals have

quite different lattices and lattice parameters, a fact which favors the appearance of

surface defects with captured charges, which show fast subsequent recombination.

Both energy relaxation to the ground dark state and surface defect assisted recom-

bination can provide a strong decrease in the lifetime of bright excitons. Indeed, as

the QD’s size (radius R) increases, the energy relaxation from bright to dark exciton

states involves an increasing number of phonons K ∼ 1
R
, thus leading to a decrease
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in the exciton lifetime. On the other hand, the effect of surface defects is usually

proportional to the surface/volume ratio of the nanoparticle, increasing with 1/R.

In addition one has to take into account an increase in the exciton wave function at

the QD boundary which results in an additional enhancement of the transfer of QD

excitons to the surface defect.

Thus a differentiation between these two channels is not easy. Of course, the

transition to dark state does not restore the ground state, the lifetime of dark

excitons being in a microsecond range. Hence energy relaxation into the dark exciton

state can result maximum in a 4-times decrease in the intensity of the FWM signal.

The experiments show a much stronger decrease for samples with very small dots

(almost one order of magnitude for the samples 0.5h@700C and 2h@700C containing

QDs of 1.4 nm and 2.2 nm in radius, respectively). Thereby one assumes that the

main channel is the surface defect assisted recombination of bright excitons.

The sample containing bigger QDs with a radius R > 2.5 nm (16h@720C) shows a

relatively small decrease in the TI-FWM signal (10%) and to choose between the two

relaxation channels described above is impossible. The relaxation into dark exciton

states is not excluded and contributes to the FWM signal via the unoccupied ground

state. For the smallest nanocrystals with R < 2.5 nm where the fraction of the

slowly decaying signal is well below 10% definitely indicates that the measured time

is not the spin relaxation time from a bright J = 1 into a dark J = 2 exciton state.

Another proof that the measured time corresponds to the nonradiative surface defect

assisted recombination of QD excitons is the fact described in section 7.1, where it

was shown that the exciton lifetime depends only on the QD’s size and not on the

growth conditions. In section 7.1 it was shown that the growth conditions, which

influence the QD’s symmetry and therefore the energy separation ∆ between the

bright and dark exciton states do not have any influence on the exciton lifetime. If

the exciton would relax via this path (bright to dark states), their lifetime should

definitely depend on the fine energy structure of the 1S exciton and hence on the

QD’s shape.
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In conclusion, the relaxation scenario occurs as follows: First, there is a small

part of charged dots with a decay of a few hundred of fs and whose contribution

disappears already for the sub ps range. However, most of the nanoparticles are

neutral but show surface defects. These defects result in a strong decrease of the

bright exciton lifetime to a ps or an even smaller range with decreasing QD’s size.

The decay is not monoexponential because with increasing delay time one deals

already with a relatively small part of QDs, which are nearly free of defects having

a relatively long lifetime in the range of hundred ps. It is certain as well that the

part of bright excitons relaxes into dark exciton states that live in defect free dots

hundreds of ns or even longer [90]. They as well contribute to the FWM signal via

unoccupied ground states. However, this part of the QDs is negligible because the

quantum efficiency of the emission from the dark exciton states is very small [90].

7.3 Energy Relaxation Mechanisms from Higher

Excited States

In the previous sections it was shown that relaxation processes in quantum dot

confined systems usually range on a ps time scale, thereby fs laser pulses are nec-

essary for an ingenious investigation. Carrier relaxation in 3D confined systems is

significantly different from the relaxation mechanisms in bulk semiconductors due

to differences in the energy distribution. In contrast to the bulk, which shows en-

ergy bands with a continuum of states, the QDs present atomic-like discrete energy

levels created as result of quantum confinement effects [1–4, 33, 77]. Therefore it

is expected that the carrier relaxation in nanocrystals is governed by other rules

as in bulk semiconductors. In the bulk, the relaxation of nonequilibrium electrons

and holes is mainly mediated by carrier interaction with phonons and, subsequently,

carrier-carrier scattering. In nanoparticles such mediation of carrier relaxation by

phonons is considerably suppressed even for nanocrystals in the weak confinement
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regime, where the level spacing is only a few meV, because of restrictions imposed

by energy and momentum conservation. Small II-VI semiconductor QDs, i.e. CdSe,

show a large band gap of up to 16 LO-phonon energies – depending on the size of

the nanocrystal. Therefore it is natural to suppose that carrier-phonon scattering

can occur only via multiphonon processes [91], which are less probable mechanisms.

Despite that, the relaxation rates of carriers in nanocrystals are not significantly

slower than in materials with a continuous energy spectrum [92–94]. There are

several mechanisms proposed for explaining this effect in QDs. An important role

might play different types of Auger processes:

1. Auger-type scattering in the presence of dense electron-hole plasmas [92];

2. Auger-like energy transfer between carriers [93];

3. scattering on defects [94].

Electron-hole plasmas can be only created by a very high excitation density, which

in glass matrix by the excitation density of 0,1 nJ/µm2 used in the experiments

presented within this chapter is definitely excluded. Thus it will be focused on

the other two possible relaxation mechanisms in order to explain the dynamics of

carriers situated in higher excited states. The sample investigated in this section

contains heat–treated QDs embedded in a glass matrix and belong to the same

group of samples discussed in section 7.1 and 7.2. The preparation method is briefly

described in section 7.1, detailed information being available in the PhD thesis of

Yukselici [80]. In particular, it will be focused here on the samples called 2h@700C

containing nanoparticles of 2.2 nm in radius. During the experiments, the sample

was mounted into an optical cryostat and kept at a temperature of 10 K.

The most probable transitions (figure 2.6) take place between the lowest lying

exciton states. For QDs in strong confinement regime, the first five lowest lying

exciton states were theoretically determined [4] as an increasing energy separation

from the ground state: (1se, 1S3/2), (1se, 2S3/2), (1se, 1S1/2), (1se, 2S1/2), (1pe,
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Fig. 7.10: Linear absorption spectra for 2.2 nm QDs included in the sample

2h@700C. The first peak corresponds to the lowest 1S transition and

the second peak to the 1P transition, respectively. The excitation wave-

lenghts of the incident laser pulses indicated by arrows are considered

for each transition and sample separately.
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1P3/2) (see figure 2.6). The lowest transitions are involving the electron in its 1se

ground state, therefore the e-h pair relaxation times are mainly determined by the

hole relaxation through its dense spectrum, even for high energy separation. Further,

it will be focused on the transitions 1S and 1P , well-resolved in the linear absorption

spectra of the sample 2h@700C (figure 7.10).

The investigation technique, described in the chapters 4 and 5 involves three

circularly polarized 80-fs pulses tuned to the absorption peak energy, indicated by

arrows in the linear absorption spectra shown in figure 7.10. The phase matching

condition of DFWM in the framework of transient grating is obeyed. The essential

role of various polarization geometries has already been outlined in the previous

chapters. In this section the two polarization geometries I++++ and I++−− were

selected as relevant, so that the investigation technique focuses on the lifetime of e-

h pairs situated on higher excited energy levels. By comparing excited- and ground

state dynamics, it will be shown that Auger-like thermalization of carriers plays a

decisive role in the electron-hole energy relaxation.

Time transients obtained by TI-FWM spectroscopy represent a direct measure

of bright exciton lifetime. Moreover, a summation of the transients in I++++ and

I++−− geometries also includes average relaxation rates of the spin states. By care-

fully choosing the excitation wavelength of the incident pulses pulses to be in reso-

nance with either 1S or 1P exciton state, both population dynamics in the lowest

1S and in the first excited 1P electron states can be investigated.

Figure 7.11 shows time transients recorded for the sample 2h@700C in both

ground 1S and excited 1P exciton states. More exactly, the sum S+ for the tran-

sients recorded under the two relevant polarization geometries I++++ and I++−− for

these states is plotted. 1P is the first optically allowed excited exciton state resolved

in the linear absorption spectrum and it involves Coulomb interactions of the hole

in 1P3/2 with the electron in 1pe state.

The sample 2h@700C contains small QDs of 2.2 nm in radius. Therefore, strong

carrier-carrier interaction is expected From the figure 7.11 it can be seen that the

113



7 Degree of Asymmetry of Nanoparticles Embedded in Dielectric Matrix

-1 0 1 2 3 4 5
10

2

10
3

10
4

10
5

excited state

ground state

R = 2.2 nm
S = I + I

delay time t
31

 (ps)

T
I-

F
W

M
 I

n
te

n
s
it
y
 (

a
.u

.)

2h@700C

Fig. 7.11: S+ = I++++ + I++−− recorded for 2.2 nm QDs included in the sample

2h@700C. S+ reflects the exciton lifetime in ground 1S state (squares)

and excited 1P state (circles), respectively. The intensities of the two

transients were normalized for clarity.
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Table 7.2: Exciton Lifetime in CdSe QDs

R

(nm)

Growth

Time (h)

Growth

Temp. (◦C)

1S Exciton

Lifetime

(ps)

1P Ex-

citon

Lifetime

(ps)

∆

(meV)

τ1 τ2 τ1 τ2

2.2 2 700 0.3 5.64 0.13 3.88 1.1

decay of the FWM signal intensity recorded for the excited 1P state is much faster

than its decay recorded for the ground state 1S: the intensity of the TI-FWM signal

for the 1P state decreases almost two orders of magnitude for the time interval

depicted in figure 7.11, whereas in the same interval the intensity of the TI-FWM

signal recorded for the 1S exciton decreases only 6 times. The most important

optical and electronic properties, including exciton lifetimes and QD’s symmetry

characteristics are summarized in table 7.2.

Both 1S and 1P exciton states display a two-exponential decay behavior: first, a

short but very fast decay of the exciton lifetime followed by a slow decay. The same

behavior was observed for the ”slow growth” sample 8h@700C with QDs of 2.4 nm

in radius. The behavior of the latter indicates the coexistence of two different kind of

nanocrystals simultaneously excited by the laser pulses. Thus the capture of carriers

into the dielectric matrix is mediated by two different type of traps. Furthermore,

the interpretation is focused on the Auger mechanisms explaining the behavior of

the excitons in the excited 1P state.

The time transients depicted in figure 7.11 show an initial fast decay (in the first

few hundred of fs) followed by a much slower decay which can be considered as a

”background”. It was shown that Auger processes play a decisive role in the re-

laxation of 1P exciton into lower states [77, 81, 95, 96]. The observed fast dynamics
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Fig. 7.12: Schematic illustration of the Auger-like thermalization of quantum con-

fined carriers. Strong Coulomb interaction is responsible for energy

transfer from the electron to the hole, which then relaxes rapidly through

the almost continuous spectrum of its valence band states [97].

are best explained in terms of an Auger mechanism discussed in [93], which in-

volves confinement-enhanced energy transfer of the electron excess energy to a hole.

Subsequently, the hole relaxes relatively fast through its quasicontinuum of states.

The background-like decay observable in the transients shown in figure 7.11 for

t31 > 300 fs is due to formation of long lived ionized states by Auger-like carrier

thermalization. It was shown [93] that Auger-like thermalization is a much faster

process than the radiative recombination. A schematic representation of this process

is given below (figure 7.12).

For the QDs discussed in this section, the energy spacing between the states 1S

and 1P is on the order of 300 − 500 meV, which is significantly larger than the

optical phonon energy (20 − 30 meV). However, the strong Coulomb interaction

between carriers in small QDs constrains the hole levels, so that the hole level

spacing becomes an order of magnitude smaller than those of the electrons. This

is a direct consequence of the greater hole effective mass (mh/me ≈ 6) and the

degeneracy of the valence band. As a result, the electron energy is transferred via
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Coulomb interaction to the hole, which then relaxes very quickly through its much

smaller split valence band states, a process known as Auger-like thermalization.

The exciton dynamics shown in figure 7.11 can be described as a multichannel

relaxation of electrons and holes. The initial fast decay of the exciton lifetime can

be attributed to an intraband relaxation mechanism of the electron. By optical

excitation with the appropriate wavelength resonant with the 1P transition (figure

7.10), the electron achieves the 1P excited state, from where it first relaxes by

Auger-like thermalization into lower lying states. This process is very fast and takes

place on a sub ps scale (given by time constant τ1 in table 7.2). This Auger-like

thermalization from 1P to energetically lower lying levels in 2.2 nm QDs in 2h@700C

was determined to lie in the range of 200 fs (decay of the sum S+ being 100 fs).

The strong electron-hole coupling influences the hole relaxation from its 1P3/2

into lower energy states, which are easily achieved due to transitions between the

dense energy states of the valence band. The ”background”-like features in the

transients are due to carrier trapping into long-living surface states, defects, and/or

escaping into the dielectric matrix. Here, the Auger autoionization processes gain in

importance and the relaxation process occurs as described in the previous section.

After the hole was transferred into the matrix or deep surface traps, the relaxation

time increases significantly and exceeds the ps barrier because the distance between

the Coulomb interacting carriers drastically increases. It is worth to emphasize

that even in a charge separated system the electron relaxes back into the ground

state on a ps time scale, which is much faster than expected for phonon dominated

relaxation [98].

It can be said with certainty that the electron-hole relaxation mechanisms involve

strong Coulomb-interaction-mediated electron-hole energy transfer. Auger-like ther-

malization and autoionization play a decisive role in the relaxation process.

The contribution of other relaxation channels to the 1P exciton lifetime can be

ignored. The decay time of the FWM signal for 1P excitons is markedly smaller

than that for the 1S states, which indicates that the direct recombination from the
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optically active 1P exciton states to the ground state is not the dominating channel.

Moreover, taking a look at the background-like feature, which appears after the first

300 fs (t31 > 300 fs), the intensity of this slowly decaying part of the TI-FWM

signal is very low. Therefore the part of bright 1P excitons converted into long

lived dark 1S exciton states (J=2) is very small. This is in concordance with the

very low quantum efficiency of the QD dark exciton emission by above band gap

excitation [90].

In conclusion, the relaxation processes from higher lying exciton states were stud-

ied by means of three pulse DFWM spectroscopy in the framework of transient

grating. It was shown, that the electron intraband dynamics depend strongly on

the Coulomb interaction between electrons and holes. Even in the case of significant

spatial separation between an electron and a hole, i.e. as result of trapping outside

the nanocrystal into the dielectric matrix, the Coulomb interactions between carri-

ers can be strong enough to provide an efficient channel for electron energy losses.

This is a consequence of the fact that the Coulomb coupling does not require a di-

rect overlap between the wave functions of electrons and holes, depending inversely

proportional on the spatial separation between carriers. The relaxation from the

energetically higher situated exciton state (1P3/2, 1pe) occurs in two steps: a fast

decay of the electron from its 1pe excited state into lower lying states (i.e. surface

traps or escaping into the matrix), from where further relaxation into the lowest

lying 1se state occurs very slowly, giving rise to a ”background”-like feature in the

time transient. In the meantime, the hole relaxes first from its 1P3/2 excited state

into lower lying dense energy states into the valence band via Auger thermalization.

This clearly indicates that electron relaxation in QDs is dominated by electron-hole

interaction processes, but not electron-phonon interactions like in bulk semicon-

ductors. The Coulomb forces acting between carriers are thus responsible for the

breakdown of the phonon bottleneck in quantum confined nanocrystals.
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8.1 Conclusions

Although extensively investigated, the physics of quantum confinement is still not

entirely understood. It is well known that the enhancement of electronic and op-

tical properties of semiconductors is a direct consequence of spatial confinement of

carriers in nanostructures. The strong dependence of the opto-electronic properties

of confined ensembles on the experimental conditions makes it difficult to create

for quantum confined systems a detailed description based on a rigorous theoretical

model. Therefore further investigations are required.

This work focuses on a qualitative study of quasi-zero dimensional II-VI semi-

conductor nanostructures (quantum dots QDs). In particular, commercially avail-

able as-received and heat treated CdSxSe1−x QDs embedded in a dielectric matrix

were investigated by means of linear and nonlinear spectroscopy techniques. Low

wavenumber Raman in off-resonance scattering regime was applied in order to obtain

key-properties of the nanocrystals, such as the QD’s size and the distribution of the

QD’s size inside the inhomogeneous broadening. Moreover, by careful selection of

the polarization geometries, different acoustic vibrational modes could be evidenced.

Furthermore, nonlinear spectroscopy techniques like femtosecond four wave mixing

(fs-FWM) and femtosecond pump-probe transmission (fs-PPT) were applied in or-

der to determine intrinsic properties of the nanoparticles, like energy distribution,

symmetry of the nanocrystals and ultrafast relaxation processes. The excitation of

carriers was performed with circularly polarized femtosecond laser pulses, special
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attention being paid to the non-phonon relaxation mechanisms.

Chapter 2 summarizes the basic properties of quantum confined systems. The

electronic and optical properties of nanocrystals are illustrated using a theoretical

model including simple approximations like the ”particle in a box” and the ”effective

mass approximation”. Due to quantum confinement and strong Coulomb interac-

tion between the spatially confined electrons and holes, a redistribution of the energy

levels of the nanocrystal into discrete atomic-like structure with well separated en-

ergy levels occurs. Therefore, one can expect the relaxation of the selection rules

of the optical transitions between such atomic-like energy levels. This relaxation of

the selection rules due to redistribution of the energy states in comparison to the

bulk was extensively investigated in the following chapters.

Chapter 3 is dedicated to low wavenumber Raman studies on CdSxSe1−x QDs of

different sizes enclosed in commercially available Schott filter glasses. The modifi-

cations in the energy distribution due to 3D quantum confinement lead to a large

enhancement of the intensity of the acoustical vibrational modes. As shown in chap-

ter 3, for nanocrystals only two acoustic vibrations are Raman active: spheroidal

(l = 0) and quadrupolar (l = 2), which can be selectively excited using linearly polar-

ized laser pulses. The experiments presented in this chapter are in good agreement

with these predictions. The spheroidal l = 0 vibrational modes being symmetric

were observed only in the VV polarization geometry (incident beam vertically V

polarized and scattered Raman signal vertically V analyzed – here vertical refers

to the direction perpendicular to the scattering plane). The quadrupolar l = 2

modes are depolarized and therefore they could be observed in both VV and HV

polarization geometries (incident laser beam horizontally H polarized and scattered

Raman signal vertically V analyzed). The low wavenumber Raman experiments

were performed in off-resonant scattering regime, thus involving all particles inside

the inhomogeneous distribution into the scattering process. The QD’s size was de-

termined using the dependence of the frequency of the acoustic vibrational mode

on the diameter of the vibrating particle, whereas the QD’s size distribution was
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estimated from the normalized full width at the half of the maximum (FWHM) of

the symmetric acoustic vibrational mode.

In order to study relaxation mechanisms, which in quantum confined systems oc-

cur on a ps time scale, ultrafast spectroscopy techniques using laser pulses in the

fs range must be employed. The generation of femtosecond laser pulses used in

both FWM and PPT experiments was achieved using the experimental setup de-

scribed in chapter 5, whereas the theoretical background is presented in chapter

4. The experimental setup allows individual control of the polarization of all three

laser pulses making multiple polarization geometries available for the experiment.

The efficiency of three pulse FWM experiments consists in eliminating the inconve-

nience introduced by the two pulse FWM processes, where the pump k2 and probe

k3 = k2 are represented by the same beam k2, thus making it impossible to achieve

polarization geometries with opposite polarization of the pump k2 and the probe

k3 = k2 pulses. As it was shown, such polarization geometries are crucial for the

investigations presented in this work.

Chapter 6 includes fs-FWM and fs-PPT measurements on CdS0.6Se0.4 QDs of 9.1

nm in diameter, embedded in a glass matrix. For both FWM and PPT experiments

circularly polarized femtosecond laser pulses were used. In this chapter it was shown

that the relaxation of polarization selection rules depend strongly on the symmetry

of the nanocrystals under discussion. The laser pulses excite nanoparticles belonging

to the symmetry group C2 or lower, thus putting in evidence a hexagonal crystal

shape of the QDs. It was shown that the appearance of weak time integrated FWM

(TI-FWM) and differential transmission (DTS) signals in polarization geometries

(I++−− and I+−, respectively) forbidden according to the model of non-interacting

oscillators cannot be explained taking into account only the orientational induced

disorder. Such a disorder induced by the random orientation of the symmetry axes

of the QDs ensemble leads indeed to the appearance of weak TI-FWM and DTS sig-

nals in forbidden polarization geometries and the observed relatively weak intensities

of I+−++, I+++− and I++−+ signals are in good agreement with these predictions.
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However, the strong I++−− and I+− signals appearing in forbidden polarization

geometries cannot be explained by taking into account only the orientational in-

duced disorder and further consequences of the lowered QD’s symmetry have to be

considered.

Therefore, the reason for higher intensities of I++−− and I+− as predicted by the

orientational induced disorder was explained by a strong exciton–exciton exchange

interaction between excitons belonging to the same QD. The Coulomb interaction

between excitons contained in different dots is negligible due to the large separation

between the nanoparticles. The appearance of TI-FWM and DTS signals for forbid-

den polarization geometries was explained in the framework of a four–level system.

This includes the ground state, two exciton states with opposite polarizations and

a singlet two–exciton state. Formation of biexcitons – exciton molecules – takes

place due to the unavoidable approach of spatially confined excitons. Considering

the absorption/refraction directly proportional to the population density created in

an energy state having the same polarization as the exciting laser beam, the de-

polarization ratio for both TI-FWM and DTS can be calculated. In both cases a

much higher depolarization ratio of the experimentally recorded TI-FWM and DTS

spectra was observed, which was explained by the strong exciton–exciton coupling in

quantum confined systems. The experimentally recorded TI-FWM and DTS signals

prove the existence of biexciton structures and the validity of the four–level model.

The reason for the fast decay of I+−+− (by two orders of magnitude for t31 ≈ 400

fs) and for its qualitatively different behavior with respect to I++−−, both forbidden

according to the non–interacting oscillators model, has its origin in the qualitatively

different density gratings created by the first two time coincident pump pulses. The

two time coincident pulses create the density grating and the third pulse is scattered

on it, similarly to the Bragg diffraction. The polarization of these two pump pulses

with wave vectors k1 and k2, respectively is crucial for the formation of the density

grating. For pulses having the same polarization, i.e. σ+, an interference of the

pump fields in the sample volume creates a population grating. In contrast, when
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the grating is formed by two pulses having opposite polarizations, i.e. σ+ and σ−,

respectively, a polarization grating is created. The polarization vector executes a

precession with a rate proportional to the splitting ∆ between the exciton levels,

similar to a spin dephasing process. It has to be mentioned that the spin dephasing

discussed here is not a ”real spin dephasing” mechanism, but a process related

to the exciton splitting, which is a measure of QD’s asymmetry. Due to the fact

that the scattering on the population grating results in a change of the direction

of polarization from σ+ to σ−, the spin dephasing effect explains the behavior of

I++−− with respect to I++++ at early delay times. It is natural to suppose that

after a while (t31 ≈ 5 ps) the whole ensemble is already spin dephased and thus

the difference in the intensities of I++++ and I++−− at small delay times (t31 < 5

ps) disappears and both signals decay with the same time constant, given by the

population lifetime (≈ 160 ps). Inverse proportionality between this dephasing time

and the energy band offset allows one to draw conclusions related to the energy

structure and symmetry of the nanocrystals.

Deviation from spherical symmetry is a decisive element which has to be taken

into account for the characterization of quantum energy level structures. Lowering

of the nanocrystal symmetry results in further splitting of the lowest optically active

exciton spin doublet J = ±1 into the states |X >= |+1>+|−1>√
2

and |Y >= |+1>−|−1>√
2

optically active in mutually orthogonal linear polarizations. A redistribution of

the energy levels is a direct result of the lowering of the nanoparticles’ symmetry,

having significant influence on the nonlinear optical properties of quantum confined

systems.

The efficiency of circularly polarized femtosecond FWM spectroscopy techniques

was proved once more in the investigation of heat treated CdSe QDs embedded

in a dielectric matrix. The role of non-phonon energy relaxation mechanisms in

the exciton ground and excited state of the QDs ensemble was extensively studied.

Moreover, the dependence of the crystal shape asymmetry on the particle size and

on the growth conditions could be estimated. It was shown, that the most efficient
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procedure to grow high quality nanocrystals is a longer heat treating at lower tem-

peratures. In this case, the particles have more time to ”nucleate” and to adopt a

more ”symmetric” shape.

In the last part of this work it was shown that the relaxation of excitons is a com-

plex mechanism. The electron intraband dynamics depend strongly on the Coulomb

interaction between electrons and holes. Even at low excitation density, the Auger

processes cannot be ignored for early delay times of t31. Auger autoionization of

excitons followed by capture of carriers in surface states and deep traps outside the

QDs in the dielectric matrix slow down the exciton relaxation process leading to an

exciton lifetime ranging on a ps time scale. The relaxation of excitons from higher

lying energy levels occurs also on two paths. At the beginning of the relaxation

process (t31 < 400 fs), Auger-like thermalization of carriers is responsible for relax-

ation of the electron from 1pe into its 1se state, while the hole relaxes rapidly to its

dense spectrum of states in the valence band. This process is immediately followed

by capturing of carriers in deep traps, situated at the semiconductor-dielectric het-

erointerface. The traps are a consequence of the QD’s asymmetry: the more and

the deeper the traps, the higher the asymmetry of the nanocrystals (the band offset

∆ is larger).

This work presents a complete characterization of CdSSe QDs embedded in a

glass matrix. The most important properties of the nanocrystals like QD’s size and

size distribution inside the inhomogeneous broadening were determined by means

of low wavenumber Raman spectroscopy. In order to draw a full picture of these

nanoparticles further complementary nonlinear spectroscopy techniques were used.

Invaluable conclusions were available as a result of TI-FWM techniques applied in

the framework of transient grating on 3D confined nanocrystals embedded in a glass

matrix. The polarized the TI-FWM measurements were successfully performed on

different QDs ensembles in order to determine symmetry properties and to describe

the ultrafast relaxation mechanisms. This work brings additional contribution con-

cerning the preparation of high symmetry QDs by presenting the effect of different
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growth conditions on the QDs asymmetry, thus indicating a way for efficient man-

ufacturing of nanocrystals.
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8.2 Zusammenfassung

Trotz umfangreicher Nachforschungen ist die Physik des ”Quantum Confine-

ments” noch immer nicht völlig verstanden. Es ist zwar bekannt, dass räumlich

eingeschränkte Ladungsträger in niederdimensionalen Halbleitern zur Verstärkung

optischer und elektronischer Eigenschaften solcher Nanostrukturen beitragen. Die

Entwicklung eines Modells, das solche räumlich eingeschränkten Ensembles detail-

liert beschreibt, hat sich wegen der starken Abhängigkeit der opto-elektronischen

Eigenschaften von den experimentellen Randbedingungen als sehr aufwändig er-

wiesen. Die Entwicklung eines solchen theoretischen Modells erfordert weitere in-

tensive Forschung.

Die vorliegende Arbeit beinhaltet eine qualitative Studie quasi-nulldimensionaler

II-VI Halbleiter Nanostrukturen. Es wurden handelsübliche und wärmebehandelte

CdSxSe1−x Quantenpunkte (QDs) mittels linearer und nicht-linearer Spek-

troskopie untersucht. Im Rahmen nicht-resonanter Raman Spektroskopie wurden

Schlüsseleigenschaften der QDs, wie z.B. der Durchmesser und die Größenverteilung,

bestimmt. Außerdem wurden nicht-lineare Techniken, wie z.B. Femtosekunden Vier-

Wellen-Mischung (Fs-VWM) und Femtosekunden-Pump-Probe-Transmission (Fs-

PPT), eingesetzt, um Eigenschaften der QDs, wie z.B. Energieverteilung, Symmetrie

der Nanokristalle und ultraschnelle Relaxationsmechanismen, zu untersuchen. Im

Falle der Femtosekunden-Spektroskopiemessungen erfolgte die optische Anregung

der Ladungsträger durch zirkular polarisierte Laserpulse, wobei besondere Aufmerk-

samkeit den Nicht-Phonon-Relaxationsmechanismen gewidmet wurde.

Im Kapitel 2 sind die Grundeigenschaften räumlich eingeschränkter Systeme

zusammengefasst worden. Die optischen und elektronischen Eigenschaften der QDs

sind unter Verwendung einfacher Modelle, wie z. B. ”Teilchen im Kasten” oder ”ef-

fektive Masse-Näherung” dargestellt. Die Bandstruktur räumlich eingeschränkter

Systeme verändert sich wegen der starken Coulomb–Wechselwirkung zwischen den

Ladungsträgern und führt zu einer atom-ähnlichen Anordnung der energetischen
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Niveaus. Folglich ändern sich entsprechend die Auswahlregeln für Übergänge zwis-

chen den diskreten Niveaus. Die Änderung der Polarisationsauswahlregeln und deren

Ursache wird in den nächsten Kapiteln im Detail untersucht.

Kapitel 3 ist linearen optischen Studien an in einer Glasmatrix eingebetteten

CdSxSe1−x Quantenpunkten verschiedener Größe gewidmet. Die Proben wurden

von Schott GmbH in Mainz hergestellt und sind als sehr effiziente optische Filter

bekannt. Die Anordnung der Energieniveaus in einer atom-ähnlichen Struktur hat

die Verstärkung der Intensität akustischer Phononen zur Folge, welche im Bulk nicht

nachgewiesen werden können. In Nanokristallen sind nur zwei Sorten akustischer

Vibrationen Raman-aktiv: Die kugelsymmetrischen (l = 0) und die quadrupolaren

(l=2) Vibrationen, die durch linear polarisierte Laserpulse selektiv angeregt werden

können. Die in diesem Kapitel dargestellten Versuche stimmen sehr gut mit diesen

Voraussagen überein. Die l = 0 Vibrationen sind symmetrisch und deshalb sind sie

nur in den VV Spektren erkennbar (VV Polarisationsgeometrie heißt, dass der anre-

gende Laserstrahl senkrecht zu der Streuebene polarisiert ist und das gestreute Ra-

mansignal auch senkrecht zur Streuebene analysiert wird). Die quadrupolaren l = 2

Vibrationen sind depolarisiert und deshalb sind sie in beiden VV und HV Polarisa-

tionen erkennbar (HV Polarisationsgeometrie heißt, dass der anregende Laserstrahl

parallel zu der Streuebene polarisiert ist und das gestreute Ramansignal senkrecht

dazu analysiert wird). Die Raman-Messungen wurden im ”off”-resonanten Regime

durchgeführt. Daher tragen alle QDs verschiedener Größen zu dem Streuprozess bei.

Die Größe der QDs wurde durch Berücksichtigen der Abhängigkeit der Vibrations-

frequenz akustischer Phononen von dem Durchmesser des Nanokristalls berechnet.

Die Größenverteilung der QDs ist aus dem normalisierten FWHM (”full width half

maximum”) der symmetrischen Vibration bestimmt worden.

Die Relaxationsprozesse in Quantenpunkten finden auf einer Pikosekundenskala

statt. Deshalb sind ultraschnelle Spektroskopiemethoden mit Laserpulsen im Fem-

tosekundenbereich notwendig, um genaue Informationen über die stattfindenden

Prozesse zu erhalten. Die Femtosekundenlaserpulse (Fs-Laserpulse), die für die
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VWM- und PPT-Messungen eingesetzt werden, wurden auf Basis der im Kapitel

4 dargestellten theoretischen Grundlagen mit Hilfe der im Kapitel 5 beschriebenen

Fs-Anlage erzeugt. Die Vorteile des verwendeten experimentellen Aufbaus liegen

in der individuellen Kontrolle der Polarisation aller vier Laserpulse, welche die

Auswahl vielfacher Polarisationsgeometrien im Rahmen des Versuchs ermöglicht.

Das Verwenden der Drei-Puls VWM-Geometrie gegenüber den Zwei-Puls VWM

Experimenten ist vorteilhaft, da im Falle der Drei-Puls VWM die k1 und k2 Pump-

pulse auch entgegengesetzt polarisiert werden können, wobei im Falle der Zwei-Puls

VWM diese k1 und k2 Pumppulse durch einen einzigen Laserpuls vertreten werden

(k1 = k2) und dadurch den Aufbau einer Polarisationsgeometrie mit entgegengesetzt

polarisierten k1 und k2 Pulsen unmöglich gemacht wird. Eine solche Polarisationsge-

ometrie hat sich für die in dieser Arbeit geschilderten Untersuchungen von äußerster

Wichtigkeit bewiesen.

Im Kapitel 6 wurden in einer Glasmatrix eingebettete CdS0.6Se0.4 QDs von 9.1

nm Durchmesser mittels Fs-VWM- und Fs-PPT-Spektroskopie untersucht. In bei-

den Fällen wurden zirkular polarisierte Fs-Laserpulse eingesetzt. In diesem Kapi-

tel ist gezeigt worden, dass die Auswahlregeln für die Polarisation sehr stark von

der Symmetrie der Nanokristalle abhängig sind. Die Fs-Laserpulse regen in den

VWM- und PPT-Versuchen Nanokristalle an, die der Symmetriegruppe C2v oder

niedriger angehören. Dadurch wird der Nachweis einer hexagonalen Struktur der

Nanokristalle erbracht. Das Entstehen schwacher ZI-VWM- und DTS-Signale in

den verbotenen Polarisationsgeometrien I+−++, I+++− und I++−+ stimmt mit den

theoretischen aufgrund von Orientierungsunordnung erwarteten Intensitäten gut

überein. Im Gegensatz dazu konnte die gemessene schwache Intensität der I++−−−
und I+−−Signale durch die Orientierungsunordnung nicht erklärt werden.

Diese Diskrepanz zwischen den hohen gemessenen Intensitäten und den aufgrund

der Orientierungsunordnung vorhergesagten eher niedrigen Intensitäten der I++−−−
und I+−−Signale wurde in der vorliegenden Arbeit durch die starken Wechsel-

wirkungen zwischen Exzitonen, die sich in demselben QD befinden, erklärt. Um das
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Entstehen der ZI-VWM- und DTS-Signale in verbotenen Polarisationsgeometrien zu

klären, wurde das Modell des Vier–Niveau–Systems verwendet, bestehend aus einem

Grundzustand, zwei entgegengesetzt polarisierten Exzitonzuständen und einem

Singlet-Zwei-Exzitonenzustand. Durch unvermeidliche Annäherung der räumlich

eingeschränkten Exzitonen bilden sich Biexzitonen. Das Depolarisationsverhältnis

der ZI-VWM- und DTS-Signale kann berechnet werden, indem man die Absorp-

tion/Brechung als direkt proportional zur Populationsdichte eines Zustands gleicher

Polarisation wie der des Anregungslaserstrahls annimmt. In beiden Fällen der ZI-

VWM- und DTS-Spektren ergab sich im Experiment ein viel höheres Depolarisa-

tionsgrundverhältnis als erwartet, was allein durch Orientierungsunordnung nicht

erklärt werden konnte. Daraus konnte geschlossen werden, dass die Exziton-Exziton

Kopplung in räumlich eingeschränkten Systemen eine sehr wichtige Rolle spielt. Die

Existenz der Biexzitonstrukturen und die Gültigkeit des Vier-Niveau-Modells wurde

durch die experimentellen ZI-VWM und DTS Spektren eindeutig nachgewiesen.

Als sehr interessant erwies sich der zeitliche Verlauf der I+−+−− und

I++−−−Signale, die laut dem Modell der nicht-wechselwirkenden Oszillatoren in ver-

botenen Polarisationsgeometrien aufgenommen worden sind. Während erstere schon

nach t31 = 400 fs um fast zwei Größenordnungen abgefallen ist, erreicht letztere bei

diesen Verzögerungszeiten erst ihr Maximum. Dieses qualitativ unterschiedliche Ver-

halten beruht auf dem verschiedenen Ursprung der durch die Pumppulse erzeugten

optischen Gitter. Der Ursprung des Gitters hängt vom Ursprung der angeregten

Populationsdichte ab. Die ersten zwei zeitlich zusammentreffenden Pulse zeugen ein

Dichtegitter und der zeitlich dritte Puls wird auf diesem Gitter gemäß der Bragg-

Bedingung gestreut. Die Polarisation der ersten zwei so genannten Pumppulse,

denen die Wellenvektoren k1 und k2 zugeordnet werden, ist für den Aufbau des

Dichtegitters entscheidend. Durch Interferenz zweier Pumppulse derselben Polari-

sation (z. B. σ+) wird in der Probe ein Populationsgitter aufgebaut, wohingegen

das durch Interferenz zweier entgegengesetzt polarisierter Pumppulse (z. B. σ+ und

σ−) entstandene Gitter zu einer ganz anderen Art von Gittern gehört. Das zweite
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ist ein Polarisationsgitter, das viel schneller als das Populationsgitter zerfällt. Der

Polarisationsvektor eines solchen Polarisationsgitters führt eine Präzession um die

Symmetrieachse herum aus, deren Rate proportional zu der Aufspaltung ∆ der un-

tersten Exzitonniveaus ist. Diese Präzession des Polarisationsvektors ähnelt einem

Spindephasierungsprozess. Es sei angemerkt, dass der Spindephasierungsprozess,

der hier diskutiert wird, kein ”echter Spindephasierungsmechanismus” ist, sondern

ein Prozess, der mit der Exzitonaufspaltung zusammenhängt und ein Maß der

Quantenpunktasymmetrie darstellt. Der Spindephasierungsprozess erklärt das un-

terschiedliche Verhalten der I++−−− gegenüber der I++++−Intensität bei frühen

Verfallszeiten t31, da die Bragg–Streuung auf dem Populationsgitter durch Wechsel

der Polarisationsrichtung von σ+ zu σ− geschieht. Nach einiger Zeit (t31 ≈ 5 ps)

kann angenommen werden, dass das Populationsgitter schon spindephasiert ist, und

somit verschwindet der Unterschied zwischen den Intensitäten I++++ und I++−−.

Nach dieser Spindephasierungszeit (t31 > 5 ps), zerfallen beide I++++ und I++−−

Signale mit der gleichen Zeitkonstante, die auf die Populationslebensdauer (≈ 160

ps) hinweist. Aus der inversen Proportionalität zwischen der Spindephasierungszeit

und dem Bandoffset (∆) lässt sich auf die Energiestruktur und auf die Symmetrie

der Nanokristalle schließen.

Abweichungen von der sphärischen Symmetrie sind entscheidende Faktoren, die

bei der Charakterisierung der Struktur der Quantum-Energieniveaus unbedingt

beachtet werden müssen. Gehört der Nanokristall zu C2v oder zu einer niedrigereren

Symmetriegruppe, spaltet sich das niedrigste optisch-aktive Exziton Spindublett

J = ±1 auf in zwei weitere Zustände (|X >= |+1>+|−1>√
2

und |Y >= |+1>−|−1>√
2

),

die in aufeinander orthogonalen linearen Polarisationen der Laserpulse optisch ak-

tiv sind. Daher hat die niedrige Quantenpunktsymmetrie eine direkte Auswirkung

auf die Verteilung der Energieniveaus und folglich auf die nicht-linearen optischen

Eigenschaften der Quantenpunkte.

Im Kapitel 7 hat sich die Effizienz der Methode der zirkular polarisierten Fs-

VWM-Spektroskopie bei der Untersuchung von in einer Glasmatrix eingebetteten
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wärmebehandelten CdSe Quantenpunkten noch einmal bestätigt. Hier wurde die

Aufmerksamkeit auf Nicht-Phonon-Relaxationsmechanismen des Grund– und an-

geregten Zustands des Exzitons gerichtet. Außerdem konnte die Abhängigkeit der

Kristallasymmetrie von der Nanopartikelgröße und von den Wachstumsbedingungen

abgeschätzt werden. Es zeigte sich, dass qualitativ hochwertige Quantenpunkte am

effizientesten durch lange Wachstumszeiten bei niedrigen Temperaturen hergestellt

werden können. Dabei haben die Partikel während des Wachstums genügend Zeit

für die ”Nukleation” und können somit eine ”symmetrischere” Form annehmen.

Im letzten Teil dieser Arbeit ist nachgewiesen worden, dass die Exzitonrelaxation

ein komplexer Mechanismus ist. Die Intrabanddynamik der Elektronen hängt stark

von den Coulomb-Wechselwirkungen zwischen den Ladungsträgern ab. Sogar bei

niedriger Anregungsdichte und kurzen Verzögerungszeiten (t31 < 400 fs) spielen die

Auger Prozesse eine wichtige Rolle. Die Relaxationsprozesse der Exzitonen werden

sowohl durch die Auger Selbstionisation, als auch durch den anschließenden Ein-

fang der Ladungsträger in tiefen Fallen (die sich an der Quantenpunktoberfläche

und/oder in der dielektrischen Matrix befinden) deutlich verlangsamt. Dadurch

wird die Lebensdauer der Exzitonen deutlich verkürzt und liegt im Pikosekunden-

bereich. Die Relaxation der Exzitonen von höheren Energieniveaus in den Grundzu-

stand erfolgt auch auf zwei Wegen: Am Anfang des Relaxationsprozesses (t31 ≈ 200

fs) ist Auger–Thermalisierung der Ladungsträger für die Relaxation des Elektrons

von seinem angeregten 1pe Zustand auf sein niedrigeres 1se Energieniveau verant-

wortlich. Währenddessen erfolgt die Relaxation des Lochs sehr schnell über sein

dichtes Spektrum von Valenzbandzuständen. Diesem Prozess folgt unmittelbar der

Einfang der Ladungsträger in tiefen Fallen, die sich an der Nanokristall-Glasmatrix-

Grenzfläche befinden. Diese Fallen sind eine direkte Konsequenz der Asymmetrie des

Nanokristalls: je zahlreicher und je tiefer die Fallen, desto höher ist die Asymmetrie

des Kristalls (der Bandoffset ∆ ist größer).

Im Rahmen dieser Arbeit ist eine komplette Charakterisierung der in einer Glas-

matrix eingebetteten CdSSe-Quantenpunkte gelungen. Die wichtigsten Eigen-
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schaften, wie z.B. die Größe und die Größenverteilung der Quantenpunkte, sind

durch polarisierte Raman-Messungen bestimmt worden. Um ein komplettes Bild

über die Nanokristalle zu bekommen, sind weitere nicht-lineare Spektroskopiemeth-

oden eingesetzt worden. Polarisierte ZI-VWM Spektroskopie wurde zur Unter-

suchung verschiedener Quantenpunktensembles erfolgreich eingesetzt und daraus

sind wertvolle Informationen über die Symmetrie der Nanokristalle gewonnen wor-

den. Weiterhin sind die Exzitonrelaxationsmechanismen beschrieben worden, die

teilweise die Verstärkung der optischen nicht-linearen Eigenschaften durch ”Quan-

tum Confinement” und starke Coulomb-Wechselwirkungen zwischen den demselben

QD zugeordneten Exzitonen erklären. Durch die Untersuchung der Auswirkung ver-

schiedener Wachstumsbedingungen auf die Symmetrie der QDs stellt diese Arbeit

einen ergänzenden Beitrag zu Herstellungsverfahren qualitativ hochwertiger Quan-

tenpunkte dar.
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