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1  SUMMARY  
 
 
Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for the treatment 

of a variety of malignant and non-malignant disorders. However, the low amount of cells 

collected per donor is often insufficient for treatment of adult patients. In order to make 

sufficient numbers of CB-HSCs available for adults, expansion is required. Different 

approaches were described for HSC expansion, however these approaches are impeded by the 

loss of engrafting potential during ex vivo culture. Little is known about the underlying 

molecular mechanisms. Epigenetic mechanisms play essential roles in controlling stem cell 

potential and fate decisions and epigenetic strategies are considered for HSC expansion. 

Therefore, this study aimed to characterize global and local epigenotypes during the expansion 

of human CB-CD34+, a well established CB progenitor cell type, to better understand the 

molecular mechanisms leading to the culture-associated loss of engrafting potential. Human 

CB-CD34+ cells were cultured using 2 different cytokine cocktails: the STF cocktail containing 

SCF, TPO, FGF-1 and the STFIA cocktail, which combines STF with Angiopoietin-like 5 

(Angptl5) and Insulin-like growth factor-binding protein 2 (IGFBP2). The latter expands CB-

HSCs ex vivo. Subsequently, the NOD-scid gamma (NSG) mouse model was used to study the 

engraftment potential of expanded cells. Engraftment potential achieved by fresh CB-CD34+ 

cells was maintained when CB-CD34+ cells were expanded under STFIA but not under STF 

conditions. To explore global chromatin changes in freshly isolated and expanded CB-CD34+ 

cells, levels of the activating H3K4me3 and the repressive H3K27me3 histone marks were 

determined by chromatin flow cytometry and Western blot analyses. For analysis of genome-

wide chromatin changes following ex vivo expansion, transcriptome profiling by microarray 

and chromatin immunoprecipitation combined with deep sequencing (ChIP-seq) were 

performed. Additionally, local chromatin transitions were monitored by ChIP analyses on 

promoter regions of developmental and self-renewal factors. On a global level, freshly isolated 

CD34+ and CD34- cells differed in H3K4me3 and H3K27me3 levels. After 7 days of 

expansion, CD34+ and CD34- cells adopted similar levels of active and repressive marks. 

Expanding the cells without IGFBP2 and Angptl5 led to a higher global H3K27me3 level. 

ChIP-seq analyses revealed a cytokine cocktail-dependent redistribution of H3K27me3 
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profiles. Chemical inhibition of the H3K27 methyltransferase EZH2 counteracted the culture-

associated loss of NSG engraftment potential. Collectively, the data presented in this study 

revealed that by adding epigeneticly active compounds in the culture media we observed 

changes on a chromatin level which counteracted the loss of engraftment potential. 

H3K27me3 rather than H3K4me3 may be critical to establish a specific engraftment 

supporting transcriptional program. Furthermore, I identified a critical function for the 

Polycomb repressive complex 2-component EZH2 in the loss of engraftment potential during 

the in vitro expansion of HPSCs. Taken together this thesis provides a better molecular 

understanding of chromatin changes upon expansion of CB-HSPCs and opens up new 

perspectives for epigenetic ex vivo expansion strategies. 
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2 ZUSAMMENFASSUNG 
 
 
Hämatopoetische Stammzellen aus Nabelschnurblut (CB-HSCs) sind eine bedeutende Quelle 

für die Behandlung einer Vielzahl maligner und nicht-maligner Erkrankungen. Allerdings ist 

die geringe Anzahl an Stammzellen, die von einem Spender gewonnen werden kann, meist 

nicht ausreichend für die Rekonstitution des hämatopoetischen Systems erwachsener 

Patienten. Um eine ausreichende Menge an CB-HSCs zu gewinnen, ist eine Expansion der 

Zellen erforderlich. Verschiedene Ansätze zur ex vivo Expansion von HSCs wurden 

beschrieben, allerdings waren diese Ansätze durch den Verlust des Repopulationspotentials 

während der ex vivo Kultivierung nicht umsetzbar. Über die zugrundeliegenden Mechanismen 

ist wenig bekannt. Epigenetische Mechanismen spielen eine entscheidende Rolle in der 

Kontrolle von Selbsterneuerung und Differenzierung von Stammzellen.  Aus diesem Grund 

werden epigenetische Strategien zur HSC-Expansion in Betracht gezogen. Das Ziel dieser 

Studie war, globale und lokale Epigenotypen während der Expansion humaner CB-CD34+-

Zellen (CB-Vorläuferzellen) zu charakterisieren. Diese Studien sollten zu einem besseren 

Verständnis der molekularen Mechanismen, welche zum Kultivierungs-assoziierten Verlust 

des Repopulationspotentials führen. Humane CB-CD34+-Zellen wurden in zwei verschiedene 

Zytokin-Cocktails kultiviert: Der sogenannte STF-Cocktail, welcher SCF, TPO und FGF-1 

enthält und der STFIA-Cocktail, welcher STF mit Angptl5 und IGFBP2 kombiniert. Aus der 

Literatur war zu Beginn dieser Doktorarbeit war bekannt, dass CB-HSCs ex vivo in STFIA, 

nicht aber in STF expandiert werden können. In Übereinstimmung mit diesem Befund zeigen 

die hier vorgestellten heterologen Transplantationsexperimente, dass das 

Repopulationspotential frischer CB-CD34+-Zellen nur erhalten blieb, wenn die Zellen unter 

STFIA, jedoch nicht, wenn sie unter STF-Bedingungen expandiert waren. Um die globalen 

Chromatinveränderungen frisch isolierter und expandierter Zellen zu untersuchen, wurden die 

Level der aktivierenden Histonmodifikation H3K4me3 und der repressiven H3K27me3-

Modifikation durch Chromatin-Durchflusszytometrie und Western Blot Analyse bestimmt. 

Zur Analyse der genomweiten Chromatinveränderungen nach ex vivo Expansion wurden 
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Transkriptomprofile durch Mikroarray und Chromatin-Immunpräzipitation, in Kombination 

mit Deep-Sequencing (ChiP-Seq) durchgeführt. 

Zusätzlich wurden lokale Chromatinveränderungen durch ChiP-Analysen an 

Promotorregionen von Entwicklungs- und Selbsterneuerungs-Faktoren analysiert. Auf 

globaler Ebene unterschieden sich frisch isolierte CD34+ und CD34- Zellen in ihren H3K4me3 

und H3K27me3 Leveln. Nach siebentägiger Expansion nahmen CD34+ und CD34- Zellen 

ähnliche Level aktiver und repressiver Markierungen an. Die Expansion der Zellen ohne 

IGFBP2 und Angptl5 führte zu höheren globalen H3K27me3 Leveln. ChiP-seq Analysen 

zeigten eine Zytokin-Cocktail-abhängige Neuverteilung von H3K27me3 Mustern. Die 

chemische Inhibition der H3K27me-Transferase EZH2 wirkte dem Kultivierungs-assoziierten 

Verlust des NSG Repopulationspotentials entgegen. Zusammenfassend zeigen diese Daten, 

dass durch die Zugabe von spezifischen Zytokinen in das Kulturmedium Veränderungen auf 

Chromatinebene verbunden sind, die dem kultivierungs-assoziierten Verlust des 

Repopulationspotentials entgegen wirken. Diese Daten zeigen weiterhin, dass die durch die 

PRC2 Komponente EZH2 vermittelte H3K27me3, nicht jedoch die H3K4me3 

Histonmodifikation ein kritischer Faktor für die Etablierung eines die Repopulation 

fördernden Transkriptionsprogrammes ist. Somit dient diese Arbeit einem besseren 

molekularen Verständnis der Chromatinveränderungen während der Expansion von CB-

HSPCs und eröffnet eine Perspektive für neue epigenetische ex vivo Expansionsstrategien. 
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4 INTRODUCTION  
 

 

4.1 Hematopoiesis 
 

Blood is one of the most regenerative adult tissues in the human body. About 500 billion 

blood cells are generated per day from the adult bone marrow, in a process known as 

hematopoiesis (from the Greek ' haima': blood, and ' poiein': to make) (Doulatov et al., 2012). 

Hematopoiesis is organized as a cellular hierarchy of stem, progenitor and mature cells (see 

Figure 1). Every mature blood cell derives from a common progenitor cell called 

hematopoietic stem cell (HSC) that is capable of entering the cell cycle and then either 

undergoes self-renewal or it differentiates into a multipotent progenitor cell (Adams et al., 

2006). HSCs are multipotent adult stem cells critical for life-long blood production. HSCs 

stand on the top of the hematopoietic hierarchy, composed of an organized sequence of cells 

and precursors that can differentiate into two main lineages, the lymphoid and the myeloid 

lineages (Arai et al., 2007; Müller-Sieburg et al., 2002). In mouse, primitive HSCs first originate 

at day 7,5 of gestation in the extra-embryonic yolk sack, and at day 10,5 they are found in an 

area around the dorsal aorta termed the aorta-gonad mesonephros (AGM) region (Müller et 

al., 1994; Medvinsky et al., 2011). HSCs then migrate to the fetal liver, where finally they are 

mobilized into bone marrow (BM) and spleen. From birth on the major hematopoietic tissue 

remains the bone marrow (Medvinsky et al., 2011). 

 

4.1.1 Hematopoietic stem cell 
 
 
HSCs are defined by their abilities to self-renew and to produce differentiated blood cells 

(Orkin et al., 2008). They are an extremely rare heterogeneous population of cells (Catlin et al., 

2011). Wang et al. reported that in humans only 1 in 3X106 cells in the BM is a transplantable 

HSC (Wang et al., 1997). The first evidences providing the existence of blood-forming stem 

cells were published in the early 60s, when James Till and Ernest McCulloch discovered that 

the mouse BM contained highly proliferative progenitor cells that were able to give rise to 

clonogenic mixed colonies of hematopoietic cells within the spleen of irradiated hosts, the so 
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called colony forming units-spleen (CFU-S) (Till, McCulloch 1961). HSCs reside in the BM in 

a complex microenvironment termed niche. The BM niche is composed of stromal cells, 

extracellular matrix molecules, growth factors and cytokines (Arai et al., 2005; Ehninger et al., 

2011). HSCs characteristics of self-renewal, proliferation and differentiation are driven by their 

niches. These special environments control HSC maintenance and differentiation. Most of the 

HSCs are quiescent, a process that is controlled by a combination of intrinsic and extrinsic 

cellular mechanisms (Purton et al., 2009).  

 

 

  

Figure 1: The hierarchy of hematopoietic cells. Shown is the hematopoietic system that starts with an HSC 
that balances between self-renewal and differentiation. HSCs generate via lineage committed progenitors all 
mature blood lineages. LT-HSC, long-term repopulating HSC; ST-HSC, short-term repopulating HSC; MPP, 
multipotent progenitor; CMP, common myeloid progenitor; CLP, common lymphoid progenitor; MEP, 
megakaryocyte/erythroid progenitor; GMP, granulocyte-macrophage progenitor (modified from Larsson et al., 
2005). 

 

The genetic stability, integrity and regulation of HSCs are dependent on the nature of the 

interacting niche. For example in the endosteal niche, HSCs maintain their quiescence. In 

contrast activated HSCs reside in the so-called perivascular niche (Ehninger et al., 2011; 

Wilson et al., 2006). Moreover, HSCs are capable of two processes known as “mobilization” 

and “homing”, that involve sequential activation of adhesion molecules, in which HSCs 
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constantly move from the BM to the blood stream and vice versa (Lanzkron et al., 1999; Orkin 

et al., 2002). HSCs can be purified by the presence of specific surface markers that are 

characteristic for long-term/short-term repopulating-HSCs (LT-/ST-HSCs), and are 

distinguished from differentiated cells. CD34 was the first differentiation marker to be 

recognized on primitive human hematopoietic cells. CD34 is still a widely used marker to 

obtain enriched populations of human HSCs, as more than 99% of human HSCs are CD34+ 

(Civin et al., 1984, Ishii et al., 2011). Further analyses revealed that in human BM, HSCs are 

highly enriched within the Lin−CD34+CD38−CD90+CD45RA−CD49f+ population (Bhatia et 

al., 1997; Notta et al., 2011, Doulatov et al., 2012). HSCs can only be identified via functional 

repopulation assays using long-term repopulation of a recipient hematopoietic system (Kollet 

et al., 2000). A 12 weeks period of repopulation is chosen by most researchers to define 

enriched cells as LT-HSCs, however a longer period of 8 months was considered the best 

choice to distinguish between transient and long term reconstituting HSCs (Glimm et al., 2001; 

Notta et al., 2011). 

 

4.1.2 HSC transplantation (HSCT) 
 
 
HSCs have been studied for more than 50 years, and this vast experience allowed scientists to 

develop sufficient understanding to use these cells in clinical therapies with increasing 

background knowledge. The transplantation of HSCs has evolved from a highly experimental 

procedure to a standard therapy (Gratwohl, Baldomero et al., 2010). HSCT is done via 

intravenous infusion of autologous or allogeneic HSCs in order to restore the hematopoietic 

functions of a patient whose immune system is damaged or defective. More than 25.000 

HSCTs are performed each year. HSCT has become the standard care for many patients with 

several malignant and non-malignant hematologic and other diseases (Ljungman et al., 2006). 

Currently, most HSC transplant samples are isolated from peripheral blood (PB) after 

mobilization or from bone marrow (BM) aspirates of healthy donors. However, cord blood 

(CB)-derived HSCs are a promising alternative source for HSCT (Ballen et al., 2013). 
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4.1.3 Sources of HSCs for transplantation 
 
 
The sources of HSCs for autologous or allogeneic transplantation are BM, PB or CB. Adult 

humans have on average 2,6 kg of BM, the internal tissue of large bones. For transplantation, 

BM is harvested from the posterior iliac crests of donors and can be used directly for 

transplantation (Hatzimichael et al., 2010). For a stable long-term engraftment, 2X108 

nucleated BM cells per kg of patient’s body are used, although even 1X108/kg cells can be 

sufficient (Bahceci et el., 2000). PB stem cells (PBSC) are also a widely used source for 

allogeneic transplantation due to the fact that they engraft more quickly than BM-derived 

HSCs (Lin et al., 2011). PBSCs are obtained from the donor PB by apheresis, following 

treatment with granulocyte-colony stimulation factor to mobilize HSCs to the peripheral 

blood (Bensinger et al., 1993). BM HSC and PBSC transplantation have however a high risk of 

graft-versus-host disease (GvHD), the HSCs from both these sources are difficult to obtain, 

and have a considerable risk of viral transmission. Moreover, for allogeneic HSCT, the 

possibility of receiving a transplant may be limited due to the low frequency of suitable human 

leukocyte antigen (HLA) donors. The discovery of CB HSCs as a source for transplantation 

has increased the chances of finding allogeneic donors for both pediatric and adult patients. 

 

 

4.1.4 Umbilical cord blood as source of HSCs 
 
 
Since the first umbilical cord blood transplantation (UCBT) was performed successfully in 

France in 1988 (Gluckman et al., 1989) more than 30.000 UCBT have been done worldwide 

and more than 600.000 CB units have been stored for transplantation (Stanevsky et al., 2009). 

CB as a source of HSCs has been increasingly used in the last two decades because of its rapid 

availability, banking features, absence of risk for mothers and newborns during CB collection, 

and reduced probability of transmitting infections from donor to recipient (Sideri et al., 2011). 

Furthermore, UCBT showed increased chance of HLA matching between donor and patient; 

this is due to the higher flexibility in case of mismatches compared to BM or PBSC 

transplants, with a tolerance of 1-2 HLA mismatches out of 6 (Chao et al., 2004). This 

characteristic is of primary importance as it holds the potential of finding donors for patients 

with rare HLA types or for ethnic minority populations. Moreover, UCBT showed a 

diminished incidence of GvHD in comparison to BM transplantation (Bradley et al., 2005), 

because the new-born immune cells possess lower numbers and a mostly naive repertoire of 
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CB-derived T cells (Nitsche et al., 2007; Garderet et al., 1998). Recent studies have 

demonstrated that CB possesses a high number of immunosuppressive regulatory T cells 

(Godfrey et al., 2005). Also, CB has a higher enrichment of HSCs compared to BM and PB 

(Wang et al., 1997), and they proliferate more rapidly most likely due to longer telomere 

lengths of CB-derived HCSs (Gammaitoni et al., 2004; Schuller et al., 2007). CB units can be 

cyropreserved and stored for years without loss of cell viability (Broxmeyer et al., 2011), this is 

why public CB banking is beneficial on a worldwide scale for a rapid availability of HSCs for 

transplantation. CB graft that contains ≥ 2X107 nucleated cells per kg, ≥ 1,7X105 CD34+ cells 

per kg of recipients body weight and has ≤ two HLA disparities is acceptable for 

transplantation into adult recipients (Wagner et al., 2002; Gluckman et al., 2004; Kamani et al., 

2008). Therefore, for patients weighing more than 35 – 40 kg, obtaining enough cells from a 

single CB unit is challenging.  

The above-discussed advantages are the primary reason why more than 30.000 UCBT were 

preformed worldwide. However there are known disadvantages in using CB as source of HSC 

transplantation. Despite optimization of isolation and processing techniques, the low number 

of cells collected per CB unit, the longer time of engraftment in adult donors of neutrophils 

and platelets compared to BM or PBSCs, together with the inability to robustly expand CB-

HSCs render insufficient HSC numbers a major constraint in many settings of UCBT (Rocha 

et al., 2010; Laughlin et al., 2004). Since engraftment failure and prolonged time to engraft due 

to low cell dose is the main limitation of UCBT, several approaches have been developed to 

overcome this obstacle. A promising strategy to overcome the low cell content of single CB 

units is co-transplantation of two units (Sideri et al., 2011). In this approach, 2 partially HLA-

matched CB units from unrelated donors are transplanted simultaneously (Barker et al., 2003; 

Barker et al., 2005). In the last decade the number of adult patients receiving double UCBT 

has increased more than the number of adults receiving single UCBT (Rocha et al., 2010). For 

co-transplantation of two CB units, the CB grafts are chosen firstly based on the CD34+ cell 

dose and secondly on the degree of HLA disparity (Wagner et al., 2002). However, combining 

two CB units raised questions regarding higher chances of GvHD, lack of engraftment due to 

the immune reactivity between the two units, and the graft-versus-graft effect (Tarnani et al., 

2008; Liao et al., 2011). Therefore, besides the double CB transplantation strategy, UCBT is an 

important object of study to enhance its clinical efficacy via different approaches which 

include addition of mesenchymal stem cells, direct intra-bone injection, modulation of CD26 

expression to improve the homing potential, and ex vivo expansion of HSCs isolated from CB 

(Delaney et al., 2010), which is the focus of this study.  
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4.1.5 Expansion strategies 
 
 
Despite the efforts of many scientists over the past 30 years focusing on finding optimal 

expansion conditions for HSCs, the efficient increase of HSCs numbers in vitro remains 

challenging (Chou et al., 2010). Numerous experimental strategies were reported that allow 

robust expansion of HSCs and include the use of combinations of recombinant cytokines, a 

multitude of cell-intrinsic and extrinsic self-renewal factors, addition of stromal cell cultures, 

3D culture systems, transcription inhibitors and copper chelators (Dahlberg et al., 2011; 

Walasek et al., 2012; Mendez-Ferrer et al., 2010; Araki et al., 2006; Seet et al., 2009; Schiedlmeier 

et al., 2007). Early clinical trials are currently evaluating the use of Notch signaling pathway to 

expand CB-derived HSPCs. Recent publications indicate a 100-fold increase in CD34+ cell 

numbers when cultured in the presence of Notch ligand Delta1 (Fernandez-Sanchez et al., 

2011; Delaney et al., 2010), and showed improved engrafting potential in the myeloid 

compartment when tested in a Phase I trial (Delaney et al., 2010). Under clinical evaluation are 

also co-culture systems expanding CB-derived HSPCs together with components of the stem 

cell niche (mesenchymal stromal cells) that reported a 40-fold expansion of CD34+ cells, 

neutrophil engraftment in 97% and platelet engraftment in 81% of patients (de Lima et al., 

Blood. 2010; 116 Abstract 362). A tetraethylenepentamine (TEPA)-based expansion approach 

was reported to lead to a 159-fold increase in CD34+ cells after 7 days of expansion (Peled et 

al., 2004), and CB-derived HSPCs expanded in the presence of the copper chelator TEPA 

resulted in 90% engraftment in patients with advanced hematological malignancies in a Phase 

I/II trial (de Lima et al., 2008). A brief ex vivo incubation (1-2 hours) of CB units with 

prostaglandin E2 (PGE2) prior infusion is currently being tested in a clinical trial as it was 

reported that this incubation significantly increased the numbers of repopulating HSCs 

(Goessling et al., 2009). In addition to this, a report by Boitano et al. identified an aryl 

hydrocarbon receptor antagonist named Stem-Regenin1 capable of robustly enhance HSCs 

expansion (Boitano et al., 2010) in a pre-clinical model. Other studies report that the 

overexpression of the homeoprotein homeobox B4 (HOXB4) promotes HSCs expansion 

(Sauvageau et al., 1995; Haddad et al., 2008).  
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4.1.6 Cytokine-based ex vivo expansion  
 
 
To establish optimum growth factor combinations for the expansion of isolated CB HSPCs 

different combinations and concentrations of cytokine cocktails are currently the topic of 

research (Lam et al., 2001; Kelly et al., 2009). Transcriptome studies of HSCs did not yet 

further improve the concept of HSC expansion (Ivanova et al., 2002; McKinney-Freeman et al., 

2012), however it has been reported that the presence of stimulatory cytokines that act at early 

stages of hematopoiesis i.e. stem cell factor (STF) and thrombopoietin (TPO) are essential for 

expansion of primitive hematopoietic cells (Piacibello et al., 1997). These hematopoietic 

factors are present in most common combinations of cytokine cocktails together with fetal 

liver tyrosine kinase-3 ligand (FL), interleukin-6 (IL-6) and interleukin-3 (IL-3) (Kelly et al., 

2009). Fibroblast growth factor-1 (FGF-1) and insulin-like growth factor (IGF2) have also 

been reported as promising growth factors in the context of HSCs expansion (Yeoh et al., 

2006; Zhang et al., 2004). This was supported by the discovery that all fetal liver and BM HSCs 

express receptors of IGF2 (Zhang et al., 2004). Two years after that Zhang et al. reported that 

using a combination of SCF, TPO, IGF-2 and FGF-1 supplemented with Angiopoietin-like 

proteins (Angptls), a group of secreted glycoproteins, for 10 days resulted in up to 30-fold 

expansion of murine LT-HSCs (Zhang et al., 2006). Furthermore, the introduction of Insulin-

like growth factor-binding protein 2 (IGFBP2) and Angiopoietin-like 5 (Angptl5) as additional 

proteins increased 20-fold the number of human SCID-repopulating cells (SRCs) (Zhang et al., 

2008). 
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4.2 Epigenetics 
 

 

In 1942 Conrad Waddington conceived the term epigenetics and described it as “the branch 

of biology which studies the causal interactions between genes and their products which 

brings the phenotype into being” (Waddington, 1942). Some years later, he sketched his 

model (Figure 2) into a simple visualization scheme with a downhill rolling marble 

representing the differentiation process and fate decisions. As a stem cell moves down, its 

genetic information is not lost but becomes 

differentially expressed, and the potential of 

the cell becomes restricted. This model got 

support by John Gurdon who in 1958 

discovered that by cell nuclear 

transplantation a mature somatic cell nucleus 

retains all the genetic information necessary 

to become any other cell of an organism 

(Gurdon et al., 1958).  

 
Figure 2: Waddington’s epigenetic landscape.  
The marble represents a stem cell rolling through 
developmental processes. Its fate depends on the path 
taken by the marble as it rolls down the valleys. Sketch, 
C.A. Waddington, 1957. 
 

Today epigenetics is defined as the study of heritable changes in a gene function that do not 

entail a change in DNA sequence. In an eukaryotic cell, DNA is compact and folded by 

histone and nonhistone proteins into chromatin. All tissue-specific somatic cells possess the 

same genetic information but they exhibit different cell-type-specific gene expression patterns. 

Thereby via activating or silencing transcription distinct cell types use the same DNA 

sequence differently. Chromatin modifications, chemical modifications of DNA and histones, 

are the principal epigenetic mechanisms by which specific gene expression patterns are 

established and maintained (Dupont et al., 2009). Also, non-coding RNAs, chromatin 

compactation and transcription factors define gene expression programs on the epigenetic 

level (Bonifer et al., 2008). The gene expression patterns will be maintained beyond cell 

division (Egger et al., 2004). Several histone modifications occur to transiently adjust 

chromatin density and tighten or loosen chromatin to forbid or to allow accessibility for 

chromatin-associated proteins. The combination of different histone modifications can be 
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regarded as the histone code that extends the information potential of the genetic code 

(Jenuwein et al., 2001). Chromatin can switch between two principal configurations; 

euchromatin, characterized by a low condensation of nucleosomes that is accessible to the 

transcriptional machinery, and heterochromatin in which the high compaction of nucleosomes 

leads to the inaccessibility of DNA preventing transcription (Probst et al., 2009). The structure 

of chromatin carries out essential functions via the condensation and protection of DNA but 

also via the preservation of genetic information and the control of gene expression. The N-

terminal tails of core histones are subject to post-translational and reversible epigenetic 

modifications including acetylation, methylation, ubiquitination, phosphorylation, 

SUMOylation, citrullination or ADP-ribosylation. The importance of histone modifications is 

demonstrated by the fact that epigenetic mechanisms are essential for development and that 

epigenetic misregulation can lead to diseases including cancer (Rountree et al., 2001). 

 

4.2.1 Bivalent domains 

 

The methylation of specific lysine and arginine residues at the N-terminal tails of histones is 

found in certain transcriptional regulatory regions of the genome. Such modifications have 

prominent roles in epigenetic regulation. Trithorax group (TrxG) proteins and Polycomb 

group (PcG) proteins are two systems with chromatin-modifying activities that are 

evolutionarily conserved and sustain gene activation and repression, respectively 

(Schuettengruber et al., 2007). Both TrxG and PcG genes encode components of multiprotein 

complexes that regulate higher-order chromatin structure and accessibility of chromatin to 

various factors. Both influence gene expression by adding specific modifications to histone 

tails. A subset of TrxG proteins, SET1A, SET1B or MLL, catalyze the trimethylation of 

histone H3 lysine 4 (H3K4me3) that marks transcriptionally active regions (Shilatifard, 2012). 

In contrast, methylation of H3K27 is catalyzed by PRC2 component EZH2 or its homolog 

EZH1 (Shen et al., 2008). H3K27me3 marks silenced chromatin (Margueron et al., 2011). The 

coexistence of H3K27me3 and H3K4me3, also known as bivalent domains, maintains genes in 

a permissive chromatin conformation. Thus, developmental promoters have ready access to 

both transcriptional activation and inhibition in response to microenvironmental signals 

(Strahl et al., 2000; Bernstein et al., 2006; Jorgensen et al., 2006). 
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4.2.2 Epigenetic regulation of hematopoiesis 
 
 
Lineage-specific transcription factors and chromatin-associated factors direct the generation 

of all mature blood cells (Orkin et al., 2008). Across all hematopoietic differentiation stages, 

transcriptional and epigenetic circuits work in close relationship for the maintenance of self-

renewal and differentiation of HSCs, by a network that integrates and coordinates extra- and 

intracellular signals (Novershtern et al., 2011). Epigenetic alterations result in the silencing of 

lineage-specific genes throughout hematopoietic differentiation. This is achieved via directly 

shaping and restricting the lineage potential of HSCs by controlling chromatin compaction 

and accessibility (Weishaupt et al., 2010; Novershtern et al., 2011). Particularly, the evolutionary 

conserved PcG and TrxG proteins have previously been identified as regulators of HSC 

functions (Huang et al., 2013; Xie et al., 2014). The major complexes formed by PcG proteins 

in mammals are the Polycomb Repressive Complex (PRC) 1 and 2. PRC2 is responsible for 

the de novo establishment of the repressive H3K27me3 mark (Sauvageau et al., 2010). The 

H3K27me3 mark functions as a docking site to recruit the canonical PRC1, which maintains 

gene repression via ubiquitination of H2AK119 (Wang et al., 2004). Among PRC1 proteins, 

the role of Bmi1 is crucial for PRC mediated silencing. Park et al. showed that the absence of 

Bmi1 reduced the long-term, but not short-term, repopulation capacity of HSCs (Park et al., 

2003). It has also been shown that overexpression of Bmi1 or EZH2, a subunit of PRC2, 

augments HSC self-renewal and prevents HSCs exhaustion (Iwama et al., 2004; Kamminga et 

al., 2006). However, EZH2 overexpression leads to a significant increase in HSCs and to 

abnormal myeloid expansion in BM, leading to the development of severe myeloproliferative 

disease (Herrera-Merchan et al., 2012). EZH2 mutation was reported to cause deficiencies in 

early B cell development (Su et al., 2002; Mochizuki-Kashio et al., 2011). In addition, the 

deletion of the PRC2 component Eed resulted in HSC exhaustion (Xie et al., 2014). Thus, 

there are different roles of PRC1 and PRC2 in the regulation of HSCs’ cell status. DNA 

methylation is another important epigenetic modification, and some of the members of the 

DNA methyltransferase (DNMT) enzymes have pivotal roles in hematopoiesis. DNMT1 is 

essential for hematopoietic development. DNMT1-deficient HSCs showed reduced self-

renewal and reduced myelo/erythroid lineage commitment (Trowbridge et al., 2009). The loss 

of DNMT3A and DNMT3B at the same time results in an impairment of HSCs self-renewal 

(Tadokoro et al., 2007). Moreover, loss-of-function mutations of the DNA demethylase TET2 

are frequent in myeloid malignancies and TET2 is required for normal blood development. 

TET2-knockout mice showed expansion of HSCs with decreased differentiation potential and 
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developed leukemia at an early age (Moran-Crusio et al., 2011). The crosstalk between DNA 

methylation and histone modifications during hematopoiesis is an active area of study. Also 

bivalent domains have an essential role in the regulation of hematopoietic genes. Many HSC- 

and HSPC-specific genes are also bivalently marked in ESCs, but lose the repressive 

H3K27me3 mark in early blood cells (Adli et al., 2010). Remodelling of the bivalent landscape 

accompanies the differentiation of HSCs (Cui et al., 2009; Weishaupt et al., 2010; Abraham et 

al., 2013). Epigenetics coordinates HSCs’ function and differentiation, as supported by the 

notion that combinatorial modification patterns guarantee the cooperative regulation of 

transcription. This was supported by Cui et al. who mapped the epigenetic landscapes of HSCs 

and erythrocyte precursors (Cui et al., 2009). Chung et al. compared H3 and H4 global 

acetylation levels of CD34+ and CD34- cells and showed that HSCs and HSPCs have higher 

levels of acetylation than differentiated cells. Moreover they found that acetylation turnover 

was higher in immature cells pointing to a more dynamic and open chromatin in 

undifferentiated hematopoietic cells (Chung et al., 2009). The study of global patterns of 

chromatin modifications will further help in understanding the mechanisms behind the 

maintenance and differentiation of HSCs. While high-resolution and genome-wide histone 

modification maps of fresh HSCs were described  (Cui et al., 2009; Adli et al., 2010; Weishaupt 

at al., 2010), the study of how ex vivo culture influence chromatin modifications of HSCs is still 

at an early stage. It was reported that, upon culture, human HPSCs acquired DNA-

hypermethylation at specific sites in the genome (Yamagata et al., 2012; Weidner et al., 2013). 

The fundamental role of epigenetics in hematopoiesis was strengthened from the discovery of 

the involvement of chromatin modifiers in several blood malignancies (Neff et al., 2013; Butler 

et al., 2013; The Cancer Genome Atlas Research Network, 2013). The knowledge of 

chromatin remodeling during hematopoietic development is increasingly being translated into 

practice as epigenetic strategies are considered for HSC expansion and as treatment option for 

hematopoietic malignancies (Neff et al., 2013; Obier et al., 2010; Jones 2014; Mahmud et al., 

2014). 
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4.2.3 EZH2 in hematopoiesis 
 
 
Over the last years, it was noticed that EZH2 is overexpressed in a variety of cancers, and that 

its overexpression is associated with aggressive tumor development and progression (Chen et 

al., 2012; Bracken et al., 2003). Therefore, the role of EZH2 in normal and malignant 

hematopoiesis has been an object of numerous studies. EZH2 is the methyltransferase 

component of PRC2, that is composed of three core components: EZH2, EED, and SUZ12. 

EZH2 was reported to be essential for cell proliferation (Bracken et al., 2003). EZH2 

expression is controlled by a complex network of machanisms, and its dysregulation has been 

associated with various cancers. For instance, while EZH2 loss-of-function has been reported 

for myeloid leukemias, gain-of-function mutations have been found in lymphoid malignancies 

(Butler & Dent, 2013). Thus, depending on the cellular context and gene dosage, EZH2 can 

have a role either oncogenic in one setting or tumor-suppressiv in another, thereby 

underlining the complexity of epigenetic regulation. Moreover, EZH2 is capable of stabilizing 

chromatin structure and maintaining HSCs’ self-renewal by silencing pro-differentiation genes 

and its ectopic expression confers growth advantages and facilitate the progression through 

the cell cycle (Kamminga et al., 2006; Bracken et al., 2003). These findings demonstrate the role 

of EZH2 in tumor progression and stem cell maintenance and this makes EZH2 an attractive 

therapeutic target. Several studies used the carbocyclic adenosine analog 3-deazaneplanocin 

(DZNep), known to inhibit methylation and to induce EZH2 degradation, and showed that it 

suppresses cancer growth and tumor formation (Chang et al., 2012). However, the effect of 

DZNep is rather global upon histone methylation and not EZH2-specific (Miranda et al., 

2009). Numerous novel and selective small-molecule EZH2 inhibitors are in development, 

such as GSK126, GSK343, EPZ005687, EPZ-6438 and El1 (Helin et al., 2013). For instance, 

the use of GSK126 resulted in complete tumor growth inhibition and increased survival when 

assessed in xenograft models (McCabe et al., 2012). The safe use of EZH2 inhibitors is an 

object of numerous studies, but several prolonged animal studies have shown their high 

tolerance which has lead to similar molecules such as EPZ-6438 to enter phase 1/2 clinical 

trial and several others will follow shortly (Knutson et al., 2013). Combining the knowledge on 

the role of EZH2 in normal and malignant hematopoiesis and the development of novel 

selective epigenetic drugs will lead to targeted and lower toxicity therapies (Helin et al., 2013). 
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4.3 Aim and experimental strategy 
 
 
CB is a valuable source of HSCs for transplantation as a therapy for hematopoietic disorders. 

However due to the limited amount of CB-HSC available within a single graft CB-HSC 

transplantation is mainly restricted to pediatric recipients. During the last decades several 

combinations of cytokine cocktails have been tested for the in vitro expansion of human CB-

CD34+ cells, a cell population that includes hematopoietic stem and progenitor cells (HSPCs). 

Zhang et al. in 2008 reported that IGFBP2 in combination with Angptl5 (STFIA cocktail) are 

powerful growth factors that support CB-CD34+ expansion (Zhang et al., 2008). To prove the 

hypothesis that the epigenome of HSPCs defines their self-renewal and differentiation 

capacities, I sought to determine whether and how the expansion of CB-CD34+ cells under 

STFIA cocktail culture condition alters histone modifications genome-wide and remodels 

global and local chromatin states. This study firstly compared side by side the abilities of STF 

and STFIA cocktails to expand human CB-CD34+ cells ex vivo and to generate engraftment in 

NSG mice in vivo, then it analysed global and local histone modification changes upon CB-

CD34+ cell expansion. Finally, it identified the PRC2 protein EZH2 as being involved in the 

loss of engrafting potential caused by CB-CD34+ expansion. The experimental design is 

shown in Figure 3: after expansion, CB-CD34+ cells were analysed for their stem and 

progenitor cell activity in vitro and in vivo, gene expression, and H3K4me3 and H3K27me3 

histone marks distributions. 

 

 

 
 
Figure 3: Experimental strategy. Human CB-CD34+ cells were isolated via MACS technology, expanded 
under STF or STFIA conditions and analysed in vitro and in vivo by primary and secondary transplantations into 
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (NSG) mice. In addition, expanded cells were checked for hematopoietic 
activity, gene expression and chromatin changes. 
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5.1 Morphological and immunophenotypic changes 
upon expansion of human CB-CD34+ cells 
 
Human CB-CD34+ cells were freshly isolated from a single CB unit per experiment and 

cultured in parallel for 7 days under two different cytokine cocktail conditions. The cytokine 

cocktails used were STFIA (see section 7.1.1), as it was shown to stimulate the ex vivo 

expansion of hCB-HSCs (Zhang et al., 2008), and STF representing a standard cocktail widely 

used for HSC/HSPCs expansion (Piacibello et al., 1997; Yeoh et al., 2006; Zhang et al., 2004). 

First, I monitored hematopoietic cell morphology and proliferation for a time course of 7 days 

of culture (Fig. 4A). Total nuclear cell (TNC) numbers were determined at the indicated time 

points by dividing the total number of cells in culture by the number of input cells at day 0. 

The TNCs were not significantly different between STF- and STFIA-expanded cells, with 

17,5- and 18-fold increases, respectively. Morphologically, there were no visible differences 

between STF- and STFIA-cultured cells. Upon culture, freshly isolated CB-CD34+ cells under 

both expansion conditions slightly increased in size and developed uropods as indicated in 

Figure 4A, typical of migratory polarized cells (Giebel et al., 2004). Next, the expression of 

several surface markers was analysed in CB-CD34+ cells expanded for 7 days under STF or 

STFIA conditions in comparison with fresh CB-CD34- and CB-CD34+ cells. As CB-CD34+ 

cells contain a mixture of progenitors, lineage-committed and mature cells (Wisniewski et al., 

2011), it is of primary importance to monitor the phenotypical changes of CB-CD34+ cells 

upon expansion. Therefore, a selection of surface markers uniquely expressed on the surface 

of HSPCs and that make them distinguishable from other cell types was used. On the basis of 

the selected markers, Figure 4B shows the typical primitive immunophenotype of fresh CB-

CD34+ cells compared to fresh CB-CD34- cells (see also Table 1). After 7 days of expansion 

under both STF and STFIA conditions the cells maintained a primitive immunophenotype 

comparable to fresh cells: primitive markers such as CD34 and CD133 were still highly 

expressed (see Fig. 4C). Table 1 summarizes the average percentage of 3 independent 
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immunophenotypic analyses on fresh and expanded CB cells. Upon expansion the cells show 

high expression of CD34 and CD133, and low expression of CD38 and CD90 surface 

markers both of which are lowly expressed in HSPCs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Cell proliferation, morphology and immunophenotye of fresh and expanded CB-CD34+ cells. 

A) 0,2X106 human CB-CD34+ cells were cultured for 7 days in either serum-free STF medium (STF) or STF 

medium containing 500 µg/ml Angeopoietin-like 5 and 100 µg/ml IGFBP2 (STFIA). Total cells were counted at 

the indicated time points (left panel). Shown are phase-contrast images of fresh CB-CD34+ and 7 days expanded 

CB-CD34+ cells under STF or STFIA conditions. The typical morphological cell polarity is indicated. Scale bar: 

50 µm  (right panel). B) Immunophenotype analyses of CB-CD34- (CD34-) and CB-CD34+ (CD34+) cells. The 

purity of the CB-CD34+ positive selection was analysed via flow cytometry using antibodies specific for CD34 

surface marker together with CD133, CD38 and CD45 antibodies. C) Immunophenotype analyses of CB-CD34+ 

cells expanded for 7 days under either STF or STFIA conditions. Cells were analysed for CD45 expression and 

for markers specific for hematopoietic progenitor cells. Percentages of positive cells are indicated. 
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Table 1: Immunophenotype of fresh CB-CD34- and CB-CD34+ cells, and CB-CD34+ cells expanded 
using different cytokine cocktails. Cells were sorted by MACS technology and analysed via flow cytometry, 
n=3. 

 

 

5.2 NSG transplantation of expanded CB-CD34+ cells 
with different cytokine combinations 
 
 
Primary and secondary transplantation experiments of fresh and expanded CB-CD34+ cells 

into NSG mice were performed to test whether CB-CD34+ cells expanded with different 

cytokine combinations were capable of engrafting the entire hematopoietic system of a murine 

transplant recipient. For primary transplantation, 0,5X105 freshly isolated CB-CD34+ cells or 

their progeny after 7 days of expansion under STF- or STFIA-conditions were intravenously 

injected into sublethally irradiated NSG mice together with 0,2X106 NSG splenocytes (Fig. 

5A). For secondary transplantation, the BM of one primary was injected into two secondary 

NSG recipients. Engraftment was assessed eight and sixteen weeks after transplantation by 

measuring the percentage of human CD45+ cells in BM, SP and PB of recipient mice. As 

shown in Figure 3A, in all mice human cells had engrafted, but recipients showed inter-

experimental variations. Human chimerism in BM, SP and PB was higher among STFIA- 

compared to STF-expanded grafts. Chimerism achieved by injecting fresh CB-CD34+grafts 

was maintained when CB-CD34+ cells were expanded under STFIA but not when they were 

expanded under STF condition. Eight weeks after primary transplantation, BM chimerism was 

52,3 ± 3,4% with fresh CB-CD34+ grafts, 36,1 ± 22,2% with STFIA-expanded grafts and 

10,9 ± 13,8% with STF-expanded grafts. Eight weeks after secondary transplantation, BM 

chimerism was 8,8 ± 5% with fresh CB-CD34+ grafts, 9,0 ± 3,7% with STFIA-expanded 

grafts and 3,5 ± 1,6% with STF-expanded grafts. Human chimerism in SP and PB followed 

similar trends, being higher in STFIA-expanded than in STF-expanded grafts. Multilineage 

 fresh sorted 
CB-CD34- 

fresh sorted 
CB-CD34+ 

STF-expanded 
CB-CD34+ 

STFIA-expanded 
CB-CD34+  

CD34 1% ± 0,5 92% ± 4,8 41% ± 3,4 39% ± 9,5 

CD133 1,2% ± 0,3 86,9% ± 5 52,3% ± 10,1 53,2% ± 5,6 

CD38 46,8% ± 7,3 33% ± 10,6 17,6% ± 9,3 17,8% ± 10,2 

CD90 0% ± 0 2% ± 3 1% ± 0 2% ± 1 

CD45 58% ± 20,2 98% ± 5,2 98,4% ± 7,5 98,4% ± 17,7 
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engraftment was also assessed in mouse BM and SP by CD19- (B lymphocytes surface 

marker), CD14- (monocytes and macrophages surface marker) and CD3-specific (T-cells 

surface marker) flow cytometry (Fig. 5B). Multilineage engraftment analyses revealed increased 

percentages of lymphocyte types (CD19, CD3 stainings) in STFIA-grafts compared to STF-

grafts. In summary, the functional characterization of CB-CD34+ cells cultured under different 

cytokine cocktail conditions confirmed the increased capability of multilineage engraftment in 

primary and secondary NSG recipients in STFIA- versus STF-cultured CB-CD34+ cells as 

previously reported (Zhang et al., 2008). 

 

 
Figure 5: A cocktail of STFIA maintains in vivo repopulation capacity of CB-CD34+ cells. A) Shown are 
percentages of human chimerism by measuring the percentage of human CD45+ cells via flow cytometry in the 
BM of NSG transplant recipients. After 7 days of culture the progeny of 2x105 CB-CD34+ cells expanded under 
STF- or STFIA-cultures were equally split and injected into 4 recipients. Recipients injected with 0,5x105 fresh 
CB-CD34+ cells are shown as controls. Each symbol represents the engraftment of a single recipient 8 weeks 
after transplantation (left). Shown are the percentages of human chimerism in the bone marrow of mice that 
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received bone marrow cells of primary recipients. The bone marrow of one primary was injected into two 
secondary recipients. Recipients were analysed 8 weeks post transplant (right). Student t-test, *** p< 0,001, * p< 
0,05. n=3. B) Representative analysis of human chimerism in the spleen of primary recipients that were injected 
with either fresh CB-CD34+ or STF- or STFIA-expanded CB-CD34+ cells. Splenocytes of animals were analysed 
via flow cytometry 8 weeks post transplantation using antibodies specific for human hematopoietic cells. 
Percentages of positive cells are indicated, n=3.  
 

 

5.3 Expansion of CB-CD34+ cells is accompanied by 
marginal changes of gene expression but significant 
alterations of global histone modification 
 

As compared to the STF cocktail, the STFIA cocktail maintained in vivo repopulation capacity 

of CB-CD34+ cells. In collaboration with the group of Professor Zenke (RWTH, Aachen) we 

assessed global gene expression changes upon CB-CD34+ cell expansion via microarray 

analysis. Hierarchical clustering of gene expression changes was performed using Pearson 

correlation coefficient and was represented by dendrogram and heatmap. Due to the low cell 

numbers of fresh CB-CD34+ cells, 4 published gene expression datasets of isolated CD34+ 

cells were used (GSM999015, GSM999018, GSM999021, GSM1139830). As shown in Figure 

6A, two independent experiments were performed and in both experiments global gene 

expression analyses of STF- versus STFIA-expanded CB-CD34+ cells revealed only minor 

transcriptomic changes, while gene expression in fresh compared to expanded CB-CD34+ 

cells differed. In two experiments comparing the gene expression of STF- versus STFIA-

expanded cells, we found fewer than 200 probes that were differentially expressed. Heatmaps 

of differentially expressed genes in fresh and expanded cells demonstrated the consistency of 

gene expression levels in the two independent experiments (Fig.  6B). 
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Figure 3: Hierarchical clustering and heat maps of global gene expression profiles of 
fresh and expanded CD34+ cells.  
A) Hierarchical cluster dendrogramm of whole gene expression datasets indicating the 
relatedness in total gene expression.  For fresh CD34+ cells, 4 published datasets were used 
(GSM999015,GSM999018, GSM999021, GSM1139830). B) Heatmaps of differentially 
expressed genes in fresh and expanded cells. In this representation, samples that share 
similar expression profiles have closer Euclidean distances to common branch points and 
are grouped. Gene expression levels are color-coded (blue, low expression; red, high 
expression).  
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Figure 6: Hierarchical clustering of gene expression data of fresh and expanded CB-CD34+ cells.       
A) Dendrogram of unsupervised hierarchical clustering analysis of global gene expression profiles of fresh and 
expanded CB-CD34+ datasets showing the relatedness in gene expression. For the fresh CB-CD34+ sample, 4 
published datasets were used (GSM999015, GSM999018, GSM999021, GSM1139830). B) Heatmaps of 
differentially expressed genes between fresh and expanded cells. In this representation, samples that share similar 
expression profiles have closer Euclidean distances to common branch points and are grouped. Gene expression 
levels are color-coded (blue, low expression; red, high expression).  
 

 

To assess culture-induced global epigenetic changes between fresh and expanded cells I used 

intranuclear flow cytometry, Western blot and immunofluorescence analysis. Figure 7A shows 

a representative intranuclear flow cytometry analysis. In the example, STFIA-expanded CB-

CD34+ cells were stained with CD34 and CD45 surface markers together with intranuclear 

stainings specific for H3K4me3 and H3K27me3. With this analysis it is possible to analyse cell 

populations with distinct stainings and FSC/SSC characteristics. Measuring of global H3 levels 

was done as internal control as it can be assumed that global H3 levels should be identical in 

cells with the same DNA content. Four independent intranuclear flow cytometry analysis 

experiments revealed higher levels of the histone modifications H3K4me3, associated with 

transcriptional activation, and H3K27me3, linked with repression, in fresh CB-CD34+ 

compared to CB-CD34- cells (Fig. 7B). Following the analysis of global H3K4me3 and 

H3K27me3 levels by chromatin flow cytometry, Western blot analysis was used to study global 
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Figure 3: Hierarchical clustering and heat maps of global gene expression profiles of 
fresh and expanded CD34+ cells.  
A) Hierarchical cluster dendrogramm of whole gene expression datasets indicating the 
relatedness in total gene expression.  For fresh CD34+ cells, 4 published datasets were used 
(GSM999015,GSM999018, GSM999021, GSM1139830). B) Heatmaps of differentially 
expressed genes in fresh and expanded cells. In this representation, samples that share 
similar expression profiles have closer Euclidean distances to common branch points and 
are grouped. Gene expression levels are color-coded (blue, low expression; red, high 
expression).  
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levels of the two modifications of interest so as to clarify and prove the previous results. 

Immunoblot detection of H3 was used as a loading control (Fig. 7C). Upon culture of CB-

CD34+ cells I noticed that global H3K27me3 but less H3K4me3 levels changed and that 

STFIA-cultured cells carried less H3K27me3 than fresh CB-CD34+ or STF-cultured CB-

CD34+ cells. Immunostainings of fresh CB-CD34- and CB-CD34+ cells and of CB-CD34+ 

cells expanded under STF or STFIA conditions confirmed the results obtained by Western 

blot and chromatin FACS analyses (Fig. 7D). Confocal microscopy also showed elevated 

levels of H3K4me3 and H3K27me3 in freshly isolated CB-CD34+ compared to CB-CD34- 

cells. However, confocal microscopy did not detect altered H3K27me3 levels between the two 

expansion conditions.  

CD133 is another useful surface marker for HSC isolation (Shmelkov et al., 2005), and it was 

shown that transplanted CD133+/CD34- cells can differentiate into CD133+/CD34+ cells 

(Bhatia et al., 2001). As intranuclear flow cytometry allows the analysis of subpopulations 

within a mixed population, I choose this method to further analyse within the CD133+ 

subpopulation two other relevant histone modifications: the repressive H3K9me3 and the 

active H3K79me3 marks. I observed that the CD133+/CD34+ population compared to the 

CD133+/CD34- population of cells both selected from the pool of STF-cultured cells, had 

higher H3K27me3 levels (Fig. 8). Following STFIA expansion, H3K27me3 levels decreased in 

the CD133+/CD34+ population compared to the CD133+/CD34- population. Global levels of 

H3K79me3 and of H3K9me3 marks did not differ between CD133+/CD34+ and 

CD133+/CD34- cells in both expansion conditions. 

In conclusion, despite high similarities in gene expression between the two different culture 

conditions, just the STFIA-cultured cells showed elevated repopulation potential. Surprisingly 

I found that the expansion of CB-CD34+ cells is accompanied by global histone modification 

changes that are mainly regarding H3K27me3. Together this shows that global changes of 

H3K27me3 but less of H3K4me3 levels accompany STFIA culture-associated preservation of 

engraftment potential, while gene expression is not altered. 
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Figure 7: Global H3K27me3 and H3K4me3 levels in fresh and expanded CB-CD34+ cells. A) Intranuclear 
flow cytometry allows the detection and analysis of different cell populations within the same sample. A 
representative analysis is shown: CB-CD34+ cells expanded for 7 days with STFIA cytokine cocktail were stained 
for the surface markers CD45 and CD34 together with antibodies specific for H3, H3K4me3 and H3K27me3. B) 
Summary of H3-normalized values of global H3K4me3 and H3K27me3 fluorescence levels of fresh CB-CD34- 
and CB-CD34+ cells, and of CB-CD34+ cells expanded for 7 days with either STF or STFIA cocktails analysed 
via intranuclear flow cytometry, * p< 0,05. n=4. C) Representative image from one of four independent 
experiments of H3K4me3- and H3K27me3-specific Western blot analysing fresh CB-CD34- and CB-CD34+ cells, 
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and CB-CD34+ cells expanded for 7 days with either STF or STFIA cocktails (left). H3K4me3- and H3K27me3-
specific signal intensities of bands were quantified, and normalized against H3- specific signal intensities (middle, 
right). Student t-test, ** p< 0,01, * p< 0,05. n=4. D) Representative confocal images of fluorescence intensity of 
H3K4me3 or H3K27me3 in fresh CB-CD34- and CB-CD34+ cells, and of CB-CD34+ cells expanded for 7 days 
with either STF or STFIA. Nuclei were co-stained with DAPI. Scale bars: 100 µm. 
 
 
 

Figure 8: Intranuclear flow cytometry specific for H3K79me3, H3K27me3 and H3K9me3 histone 
modifications. Global changes of H3K79, H3K27 and H3K9 trimethylation levels were analysed in 
CD133+/CD34+ or in CD133+/CD34- cell populations. Prior analysis, CB-CD34+ cells were expanded for 7 
days under STF- or STFIA-condition. H3K79, H3K27 or H3K9 trimethylation levels were normalized against 
H3 fluorescence signals. n=3.  
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Figure 5: Chromatin FACS analysis specific for the histone modification H3K79me3, 
H3K27me3 and H3K9me3.  
Global changes of H3K79, H3K27 and H3K9 trimethylation levels were analyzed in gated 
CD133+/CD34+ and CD34+ cells. Prior analysis, CD34+ cells were expanded for 7 days in 
STF- or STFIA-supplemented media. The H3K79, H3K27 or H3K9 trimethylation levels were 
normalized to H3 signals. n=3.  
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5.4 Remodelling of H3K4me
3
 and H3K27me

3
 marks 

upon culture of CB-CD34
+
 cells 

 

The use of chromatin immunoprecipitation and next generation sequencing (ChIP-seq) was 

chosen to better define the differences between epigenotypes of fresh and expanded cells, as 

well as between epigenotypes of STF- and STFIA-expanded cells. To characterize the impact 

of in vitro expansion on chromatin signatures, in collaboration with Dr. Rainer Claus and 

Professor Christoph Plass (DKFZ, Heidelberg) we performed H3K4me3- and H3K27me3-

specific ChIP-seq analyses and mapped the histone modification enrichments on a genome-

wide level. To this end, I established a reproducible protocol for chromatin preparation that 

was optimized for low cell numbers (Dahl et al., 2009). Typically 80.000 cells were used, and 

four paralleled chromatin IP samples were pooled per antibody for one ChIP-seq analysis. 

Raw data processing and quality control revealed high replicate correlations between 

individual samples according to ENCODE ChIP-seq guidelines (Fig. 9) (Landt et al., 2014). 

Pearson's correlation coefficients between the replicates were all between 0,96 and 0,73. 

Considering the high replicate correlation coefficients between the individual experiments, 

replicates were merged for subsequent analyses. First, we performed unsupervised hierarchical 

clustering of complete data sets comprising the entire genome partitioned into 500 bp 

windows to assess similarities between individual samples. The clustering was done using 

Ward's minimum variance method. Regarding the H3K4me3 histone modification clustering 

analysis of the datasets, the samples revealed a closer relationship between STF- and STFIA-

cultured cell datasets than to the two fresh cell datasets (Fig. 10A). In contrast, for H3K27me3 

hierarchical clustering showed that samples of the two expanded cells and fresh CB-CD34+ 

cells grouped together while the CB-CD34- sample separated.  

We then looked at the total reads found around the TSSs and within the gene bodies of the 

different samples. As expected, H3K4me3 was highly enriched at the promoters and showed 

the typical bimodal distribution with a nucleosome gap at the TSSs. We observed that 

H3K4me3 meta-profiles on all TSSs and gene bodies were maintained during expansion of 

CB-CD34+ cells, independently of cocktail composition, while the ChIP-seq read density was 

slightly higher in fresh CB-CD34- cells (Fig. 10B). A closer look at the distribution of 

H3K27me3 reads revealed that upon expansion of CB-CD34+ cells, H3K27me3 levels at TSSs 

and within gene bodies slightly decreased independently of the cytokine cocktail.  
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Figure 9: ChIP-seq raw data quality control.  Reproducibility analysis of two ChIP-seq replicates is shown. 
Two independent ChIP-seq experiments per biological condition were processed and compared before merging. 
Correlations of sequencing tag counts between replicates in peak regions were plotted (using logarithmic scale) 
and calculated using Pearson's correlation coefficient. The correlation coefficients showing high reproducibility 
are indicated.  
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Figure 10: Hierarchical clustering and chromatin profiles of H3K4me3 and H3K27me3 in fresh and 
expanded CB-CD34+ cells. A) Unsupervised hierarchical cluster analysis of H3K4me3 and H3K27me3 data sets 
of fresh CB-CD34- and CB-CD34+ cells, and of CB-CD34+ cells expanded for 7 days with either STF or STFIA 
cocktails. Data sets of two independent experiments per sample were merged. The entire sequenced genome was 
partitioned in 500 bp bins. B) H3K4me3 and H3K27me3 profiles around the TSSs and within gene body regions 
in fresh CB-CD34-, CB-CD34+, and in 7 days STF- or in STFIA-expanded CB-CD34+ cells. Y axes display read 
density per 106 reads. Gene body distances are displayed as percentage of variable gene body size.  
 
 

We then used peak detection to identify regions of significant H3K4me3 and H3K27me3 

histone mark enrichment. Examination of peak signals revealed that considerably larger 

portions of the genome were enriched with H3K27me3 compared to H3K4me3 marks in all 

four samples, as expected (Fig. 11A). The genome fraction covered by significant H3K4me3 

enrichment was the double in STFIA- and STF-cultured CB-CD34+ as compared to fresh CB-

CD34+ or CB-CD34- cells. In contrast, the genome fraction covered by H3K27me3 peaks was 

increased upon STFIA- but not STF-culturing. Peak counts of H3K27me3-marked regions in 

STF cells were reduced compared to other samples. This result was unexpected, considering 
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Figure 7: Genome-wide distribution of H3K4me3 and H3K27me3 profiles in fresh and 
expanded CD34+ cells. 
A) Unsupervised hierarchical cluster analysis using Ward's minimum variance of H3K4 and 
H3K27 trimethylation ChIPseq data sets originating from fresh CD34- and CD34+ cells, and 
from CD34+ cells expanded for 7 days with either STF or STFIA cocktails. Data sets of two 
independent experiments per sample were merged. The entire sequenced genome was 
partitioned in 500 bp bins. B) H3K4 and H3K27 trimethylation profiles at promoter and gene 
body regions in fresh CD34-, CD34+, and in 7 days STF- or in STFIA-expanded CD34+ cells. 
Y axes display read density per base pair. Gene body distances are displayed as 
percentage of variable gene body size.  
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that we found globally higher levels of H3K27me3 in cells expanded under STF condition. 

Therefore we decided to have a closer look at the nature of the detected peaks, with a focus 

on the genome-wide distribution and the horizontal expansion of the enriched regions. The 

analysis of the size of H3K4me3- and H3K27me3-enriched regions (referred to as islands) was 

assessed to examine how the histone modification domains were shaped across the four 

samples. We observed that H3K4me3 islands in fresh CB-CD34- and CB-CD34+ cells were 

similarly sized, while upon expansion the size distribution of H3K4me3 peaks changed. STF 

and STFIA culture seemed to increase the size of H3K4me3 islands (Fig. 11B). It is reported 

that H3K27me3 occupies broad domains in comparison to other histone modifications (Pauler 

et al., 2009; Pinello et al., 2014): as expected we noticed that H3K27me3 peaks were wider than 

H3K4me3 peaks in all samples (Fig. 11B). Furthermore, the reduced peak counts of 

H3K27me3-marked regions in STF-cultured cells was explained by the discovery that 

H3K27me3-enriched regions were considerably broadened in STF-cultured cells, similar to 

fresh CB-CD34- cells. Our data revealed that the distribution of H3K4me3- and H3K27me3-

enriched regions varied among the different samples. Genome-wide analysis of H3K4me3 

peak distribution over functional genomic elements revealed that between 15% and 20% of 

total H3K4me3 peaks were found at promoters, around 40% in introns and around 20% in 

intergenic regions. In contrast, H3K27me3 was widely deposited in introns and intergenic 

regions with respectively 30% and 60% of total H3K27me3 peaks (Fig. 11C). It is known that 

intergenic regions contain important elements like promoters and enhancers and that 

H3K27me3 as compared to H3K4me3 is widely spread within gene bodies (Pauler et al., 2009; 

Pinello et al., 2014). Our results confirmed these notions as the majority of H3K27me3 peaks 

were found in intergenic regions. Upon expansion of CB-CD34+ cells, promoters lost and 

introns gained H3K4me3. The expansion of CB-CD34+ cells had no visible qualitative or 

quantitative impact on H3K27me3 marking at the analysed elements.  
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Figure 11:  Peak counts and genome-wide distribution of H3K4me3- and H3K27me3-marked regions in 
fresh and expanded CB-CD34+ cells.  A) Shown are the absolute numbers of H3K4me3 or H3K27me3 peaks 
after peak calling using SICER in the different datasets (right panel). Percentages of genome covered by 
significantly enriched regions (peaks) are displayed for H3K4me3 and H3K27me3 histone marks for fresh and 
expanded cells (left panel). B) Shown are the distributions of the sizes of H3K4me3- and H3K27me3- enriched 
regions in fresh CB-CD34- and CB-CD34+ cells, and in CB-CD34+ cells expanded for 7 days with either STF or 
STFIA cocktails using kernel density graphs. C) Total numbers of H3K4me3- and H3K27me3- enriched regions 
in promoters, 5’UTRs, exons, introns, 3’UTRs, TSSs, intergenic and non-intergenic regions were identified. The 
graph shows the percentage of peaks per each defined region.  
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found differences in H3K4me3 and H3K27me3 deposition at the HoxA and HoxB loci 

between fresh CB-CD34+ and CB-CD34- cells but little changes between the two culture 

conditions. Overall the H3K27me3-specific profiles between the samples differed more than 

the H3K4me3-specific profiles. The CB-CD34+ expanded cells showed similar enrichment 

profiles like fresh CB-CD34+ cells in both HoxA and HoxB loci, with only few differences 

(i.e. in HoxA5 - A9 regions) of new H3K27me3-marked regions found upon culture. The 

center region of the HoxA locus comprising A5 – A9 was marked by higher H3K27 

trimethylation in CB-CD34- than in fresh or expanded CB-CD34+ cells. The H3K4me3 

distribution in this area was not changed between the different samples. The distinct 

epigenetic profiles found in CB-CD34- sample were associated with the silencing of HoxA6 

and HoxA9 transcripts in CB-CD34- cells, while their expression in fresh and expanded CB-

CD34+ was higher (Fig. 12B). The majority of the HoxB genomic locus comprising B1 – B6 

was characterized by higher H3K27me3 levels in CB-CD34- than in fresh or expanded CB-

CD34+ cells. The H3K4me3-specific profiles were similar between the four samples. The 

H3K27me3 distributions in this genome area were consistent with higher expression levels of 

HoxB4 in fresh and expanded CB-CD34+ but less expression in CB-CD34- cells (Fig. 12B). 

The analysis of HoxA and HoxB clusters indicated a correlation between epigenetic 

modifications and gene expression, so we analysed the expression profiles and the chromatin 

status of a set of selected genes by qRT-PCR.  

ChIP primers specific for promoter regions of developmental regulators of HSPC-specific 

genes were employed for the study of bivalent chromatin markers remodelling upon culture of 

CB-CD34+ cells (Fig. 13). As the CD34 gene itself is highly transcribed in CB-CD34+ but not 

in CB-CD34- cells we first assessed H3K4me3 and H3K27me3 enrichment at the CD34 

promoter. The distribution of H3K27me3 was consistent with the transcriptional state of the 

CD34 locus: both ChIP-seq and ChIP-PCR analyses revealed higher H3K27me3 levels in CB-

CD34- than in fresh or expanded CB-CD34+ cells. The H3K4me3 pattern was similar between 

the different samples (Fig. 13, top panel).  
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Figure 12: Culture-induced histone modification changes in the HoxA and HoxB loci.  
A) Histone modification profiles of H3K4me3 and H3K27me3 in the HoxA and HoxB loci in fresh CB-CD34- 
and CB-CD34+ cells, and in CB-CD34+ cells expanded for 7 days with either STF or STFIA cocktails. Data are 
displayed using the Integrative Genomics Viewer software. The positions of HoxA and HoxB genes are indicated 
below the panels. On the y-axis the number of reads per 200 bp windows are displayed. The position of introns, 
exons and the direction of transcription are shown. B) Shown are RT-PCR analyses of HoxA6, A9 and B4 loci in 
fresh CB-CD34- and CB-CD34+ cells and in STF- or STFIA-expanded CB-CD34+ cells. 
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Figure 13: Correlation between local distribution of H3K4me3 and H3K27me3 and gene expression. 

ChIP-seq profiles, ChIP-PCR and RT-PCR analyses of selected genes in fresh CB-CD34- and CB-CD34+ cells 

and in STF- and STFIA-expanded cells. The TSS and the amplicon size and location are indicated, n=3. 

 
 
 

The same correlation between gene expression and histone modification patterns was found 

in LMO2, TAL1 and RUNX1 loci, where higher H3K27me3 levels were found in CB-CD34- 

cells with subsequent silencing of the analysed genes in the fresh CB-CD34- population in 

comparison to fresh CB-CD34+ cells and CB-CD34+ cells expanded with either STF or 

STFIA cocktails. ChIP-PCR analyses were employed for validating the ChIP-seq profiling of 

the selected loci. 
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In addition, we analysed the correlation of H3K4me3 and H3K27me3 marks and gene 

expression. We looked at the chromatin profiles around the TSSs of fresh CB-CD34- and CB-

CD34+ cells, and of expanded CB-CD34+ cells of the 2000 highest and 2000 lowest expressed 

genes in fresh CB-CD34+ cells (Fig. 14). The promoters of the 2000 highest expressed genes 

were mainly enriched in H3K4me3: we observed in all four samples the typical distribution of 

H3K4me3 with a nucleosomes-free region at the TSS and almost complete lack of H3K27me3. 

For the genes highest expressed in CB-CD34+ cells, STFIA-expanded CB-CD34+ cells had a 

chromatin environment at the TSSs identical to fresh CB-CD34+ cells, whereas STF-expanded 

CB-CD34+ cells and CB-CD34- cells showed higher and lower H3K4me3 tag density, 

respectively (Fig. 14A). In line with the gene expression profiles, the TSSs of the lowest 

expressed genes showed very low enrichment in H3K4me3 and more repressive H3K27me3 

marks in all 4 samples (Fig. 14B). 

 

 

 
 
Figure 14: Comparison of H3K4me3 and H3K27me3 profiles around the TSSs of high and low expressed 
genes. A) H3K4me3 and H3K27me3 profiles around the TSSs of the 2000 highest expressed genes in fresh CB-
CD34+ cells of fresh CB-CD34- and CB-CD34+ cells, and of CB-CD34+ cells expanded for 7 days with either 
STF or STFIA cocktails. B) H3K4me3 and H3K27me3 profiles around the TSSs of the 2000 lowest expressed 
genes in fresh CB-CD34+ cells. 
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Figure 11: Correlation of H3K4me3 and H3K27me3 marks and gene expressions. 
A) H3K4me3 and H3K27me3 profiles around the TSSs of the 2000 highest expressed genes 
of fresh CD34- and CD34+ cells, and of CD34+ cells expanded for 7 days with either STF or 
STFIA cocktails. B) H3K4me3 and H3K27me3 profiles around the TSSs of the 2000 lowest 
expressed genes. 
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To further investigate the remodelling of H3K4me3 and H3K27me3 upon CB-CD34+ cell 

expansion, we analysed the sets of genes having the promoters enriched in H3K4- and/or 

H3K27- trimethylation. Figure 15A shows the overlap of genes with the promoters enriched 

in either H3K4me3 or H3K27me3 marks. We observed that culture conditions changed the set 

of enriched promoters giving a unique signature to each of the three samples containing CB-

HSPCs. One third of the promoters were exclusively enriched with either H3K4me3 or 

H3K27me3 depending on the analysed sample. To gain insight into the categories of genes 

with enriched promoters in fresh and expanded CB-CD34+ cells, we performed Gene 

Ontology (GO) analysis. GO-analysis of H3K4me3-enriched promoters indicated the genes 

were enriched in functional categories of ‘transcriptional regulation’ and ‘metabolic processes’ 

in fresh and STFIA-expanded CB-CD34+ cells, while STF-expanded cells associated with 

‘signaling’ and ‘cell death’ (Fig. 15B, C). The H3K27me3-enriched promoters were associated 

with the GO-terms ‘signal transduction’ and ‘differentiation’ in all three samples.  

For relating changes of chromatin modifications and mRNA expression data, we ranked 

26.000 transcripts represented on the Affymetrix expression arrays according to the fold-

change of sequencing reads (of H3K4me3/H3K27me3 ChIP) in their promoter regions (-1000 

bp to +500 bp around transcriptional start site) and asked for enrichment of either up- or 

downregulated genes. First we compared STF versus STFIA culture conditions (Fig. 16A, B). 

Although we observed more H3K4me3 loss than gain, H3K4me3 changes appeared to be 

more balanced with similar extent of lost and gained areas between the two samples. Looking 

at H3K27me3 changes we noticed a higher extent of remodelling compared to H3K4me3 

histone modification (as shown by the enlarged saturated red and blue areas). The fold-

changes of H3K27me3 and H3K4me3 between STFIA- and STF-cultured samples were also 

sorted by amplitude and plotted as line plots: Figure 16B shows the greater extent of 

H3K27me3 changes compared to H3K4me3. The analysis of the correlation between histone 

modification changes on promoters and gene expression indicated a higher remodelling of 

H3K27me3-enriched promoters compared to H3K4me3 promoters without transcriptomic 

changes.  
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Figure 15: Promoter methylation states and GO analysis of genes with H3K4me3- and H3K27me3-
enriched promoters.   A) Venn diagram of the genes with the promoters enriched in either H3K4me3 or 
H3K27me3 marks in fresh CB-CD34- and CB-CD34+ cells, and in CB-CD34+ cells expanded for 7 days with 
either STF or STFIA cocktails. B) Functional annotation analysis of the genes with either H3K4me3 or 
H3K27me3 enriched promoters in fresh and expanded CB-CD34+ cells using gene ontology analysis with 
Database for Annotation, Visualization and Integrated Discovery (DAVID). Gene counts and p-values are 
indicated. 
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Figure 16: Correlation changes in gene expression and histone modification on promoters. A) 
Approximately 26.000 transcripts of STFIA- and STF-cultured CB-CD34+ cells were sorted according to the 
log2-fold change (STFIA versus STF) of either H3K4me3 or H3K27me3 enrichment in their promoter regions 
(defined as -1000 bp to +500 bp around the TSS). Log2-fold changes ranged from -3,84 to 4,02 for H3K4me3 
and -4,19 to 3,51 for H3K27me3 and were displayed by color coding (shades of red = positive log2-fold changes, 
grey = no change/0, blue = negative log2-fold changes). The same representation was chosen for the log2-fold 
changed mRNA expression values for the respective transcripts taken from the Affymetric expression arrays 
(lane labelled ´RNA`). B) Log2-fold changes of H3K27me3 and H3K4me3 between STFIA- and STF-cultured 
samples were sorted by amplitude and plotted. The area below the curve indicates the relative extent of changes 
of either histone modification. C) Approximately 26.000 transcripts of fresh CB-CD34+ cells and of STFIA- or 
STF-cultured CB-CD34+ cells were ranked according to log2-fold changes of either H3K4me3 or H3K27me3 
enrichment in their promoter regions. Shown are (left) STFIA-cultured CB-CD34+ versus fresh CB-CD34+ and 
(right) STF-cultured CB-CD34+ versus fresh CB-CD34+ promoter regions. Log2-fold changes (STFIA-cultured 
CB-CD34+ versus fresh CB-CD34+ (H3K4me3 ranged from (-3,83) to (4,51); H3K27me3 from (-4,45) to (4,81)); 
STF-cultured CB-CD34+ versus fresh CB-CD34+  (H3K4me3 ranged from (-3,83) to (4,19); H3K27me3 from (-
4,32) to (4,55)) were displayed by color coding (shades of red = positive log2-fold changes, grey = no change/0, 
blue = negative log2-fold changes). The same representation was chosen for the log2-fold changed mRNA 
expession for the respective transcripts (lanes labeled 'RNA').  
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In contrast, in STFIA-expanded CB-CD34+ cells H3K4me3 changes appeared to be more 

balanced whereas upon STF-culture there was mostly a gain of H3K4me3 when the two 

expansion conditions were compared to fresh CB-CD34+ cells. Under both culture 

conditions, gain of H3K27me3 at promoter regions was more frequent than loss when 

compared to fresh CB-CD34+ cells (Fig. 16C). We did not find any correlation between 

H3K4me3 or H3K27me3 changes and gene expression when the CB-CD34+ expanded cells 

were compared to fresh CB-CD34+ cells. 

Promoters with a bivalent chromatin signature are assumed to be poised key genes important 

for development and differentiation (Voigt et al., 2013). Therefore we looked at the genes 

showing enrichment of both bivalent marks in fresh CB-CD34- and CB-CD34+ cells and in 

CB-CD34+ cells expanded under STF or STFIA conditions. The promoters with both 

H3K4me3 and H3K27me3 marks were twice the number in fresh CB-CD34+ and STF- or 

STFIA-cultured cells compared to CB-CD34- cells (Fig. 17A). For understanding the 

bivalency reorganization upon expansion, we looked into the resolution of the 374 bivalent 

promoters found in fresh CB-CD34+ cells after expansion, and compared it with fresh CB-

CD34- cells (Fig. 17B). One third of the bivalent genes in fresh CB-CD34+ cells remained 

bivalent after expansion whereas only 47 genes were found to be bivalent in the CB-CD34- 

population; one third of genes lost H3K27me3 mark and the remaining genes resulted to be 

not marked in all three samples. We therefore observed a cocktail-specific reorganization of 

the bivalency status. 

To better understand the dynamics of bivalency resolution upon expansion we constructed 

maps of promoter bivalency status of fresh and cultured cells (Fig. 17C). Only about one third 

of the genes marked with both modifications in fresh CB-CD34+ cells maintained the bivalent 

mark upon STF or STFIA expansion. However we found newly established bivalent 

promoters in each of the samples. GO analysis revealed that genes grouping in categories of 

hematopoietic cell differentiation and development were occupied by bivalent marks in both 

fresh and expanded CB-CD34+ cells but not in the fresh CB-CD34- sample (Fig. 18). GO 

analysis further revealed enrichment of genes belonging to blood vessel development and 

morphogenesis in the STFIA sample.  
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Figure 17: Bivalent promoter methylation profiles in fresh and expanded CB-CD34+ cells. A) Comparison 
of the number of promoters marked with H3K4me3 and H3K27me3 and numbers of H3K4me3 and H3K27me3 
co-occupancy on promoters in fresh CB-CD34- and CB-CD34+ cells, and in CB-CD34+ cells expanded for 7 
days with either STF or STFIA cocktails. B) The table shows how the promoters of the genes bivalently marked 
in fresh CB-CD34+ cells are marked in fresh CB-CD34- or in expended CB-CD34+ cells. The number of genes 
possessing H3K4me3 but lacking H3K27me3, possessing H3K27me3 but lacking H3K4me3, and possessing 
neither H3K4me3 nor H3K27me3 in fresh CB-CD34- or in expended CB-CD34+ cells are indicated. C) 
H3K4me3 and H3K27me3 bivalent promoters resolution, formation and mutual exclusion in fresh and cultured 
cells. The columns represent genes recorded as bivalent in any of the 4 samples. Total number of bivalent genes 
per sample is indicated on the left (n=2). 
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Figure 14: Analysis of enriched promoters and co-occupancy of H3K4me3 and 
H3K27me3 on promoters. 
A) Venn diagrams of promoters marked with H3K4me3 and H3K27me3 and numbers of 
H3K4me3 and H3K27me3 co-occupancy on promoters in fresh CD34- and CD34+ cells, and 
in CD34+ cells expanded for 7 days with either STF or STFIA cocktails. B) The table shows 
how the promoters of the genes bivalently marked in fresh CD34+ cells are marked in fresh 
CD34- or in expended CD34+ cells. The number of genes possessing H3K4me3 but lacking 
H3K27me3, possessing H3K27me3 but lacking H3K4me3, and possessing neither H3K4me3 
nor H3K27me3 in fresh CD34- or in expended CD34+ cells are shown. C) H3K4me3 and 
H3K27me3 co-occupancy on promoters and patterns of recurrence and mutual exclusion in 
fresh and cultured cells. Each column represent a gene recorded as bivalent in any of the 4 
samples. Total number of bivalent genes per sample is indicated on the left (n=2). 
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Figure 18: Gene ontology enrichment analysis of bivalent promoters. Top 12 biological processes of 
bivalent promoters in fresh CB-CD34- and CB-CD34+ and expanded CB-CD34+ cells using gene ontology 
analysis with Database for Annotation, Visualization and Integrated Discovery (DAVID). p-values are indicated. 
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Figure 15: Gene ontology analyses of bivalent promoters. 
Functional annotation analysis of bivalent promoters in fresh and expanded CD34+ cells 
using gene ontology analysis with Database for Annotation, Visualization and Integrated 
Discovery (DAVID). p-values are indicated. 



                                                                                                                                              5 RESULTS 

53 

5.5 Clonogenic potential of EZH2 inhibitor-treated 
CB-CD34+ cells 
 

Analysing the chromatin organization and dynamics of fresh and expanded CB-CD34+ cells 

we observed a culture-associated chromatin remodelling and a genome-wide increase and 

redistribution especially of H3K27me3 mark. PRC2 is the complex with the histone 

methyltransferase activity that trimethylates histone H3 on lysine 27. Given that EZH2 is the 

protein ruling the enzymatic activity of PRC2 that catalyzes the H3K27me3 mark (Cao et al., 

2002), I firstly looked for EZH2 expression in fresh and expanded CB-derived cells. Three 

independent Western blot analyses revealed higher EZH2 protein levels in fresh CB-CD34+ 

compared to CB-CD34- cells and elevated EZH2 levels in STF- compared to STFIA-cultured 

cells (Fig. 19A). I then analysed the gene expression of EZH2 and qRT-PCR analyses 

confirmed the higher expression of EZH2 in STF-expanded compared to STFIA-expanded 

cells (Fig. 19B). ChIP-PCR analyses of the EZH2 locus revealed higher H3K4me3 promoter 

marking in fresh CB-CD34- and in STF-expanded CB-CD34+ cells, but higher H3K27me3 

levels only around the TSS of fresh CB-CD34- cells (Fig. 19C). Therefore I hypothesized that 

employing selected EZH2 inhibitors might antagonize the elevated H3K27me3 levels of STF- 

versus STFIA-expanded cells. Fresh CB-CD34+ cells were expanded for 7 days under STF 

conditions and were treated with either GSK343 or GSK126 EZH2 inhibitors (Verma et al., 

2012; McCabe et al., 2012). First we tested the efficiency of the EZH2 inhibitors treatment via 

chromatin flow cytometry: treatment of STF-expanded CB-CD34+ cells with both EZH2 

inhibitors decreased global H3K27me3 levels to the levels of STFIA-expanded cells (Fig.19D). 

We then monitored CB-CD34+ cells expansion and viability upon 7 days of culture with or 

without EZH2 inhibitors treatment. The TNCs and the total dead cells counts were not 

significantly different between treated and untreated STF-cultured CB-CD34+ cells (Fig. 19E).  
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Figure 19: Treatment of CB-CD34+ cells with PRC2 inhibitors. A) Representative image from one of three 
independent EZH2-specific Western blot analyses of fresh CB-CD34- and CB-CD34+ cells, and of CB-CD34+ 
cells expanded for 7 days with either STF or STFIA cocktails (upper panel). Relative signal intensities of bands 
were quantified and normalized against H3- specific signal intensities (lower panel), n=3. B) ChIP-PCR and RT-
PCR analyses of the EZH2 (chr7:148,502,464-148,583,441) locus of fresh CB-CD34- and CB-CD34+ cells and of 
7 days STF- and STFIA-expanded cells. C) 0,15X106 human CB-CD34+ cord blood cells were expanded for 7 
days with either STF or STFIA cocktails +/- the EZH2 inhibitors GSK343 (1 mM) or GSK126 (1 mM) and total 
living and dead cells were counted at the indicated time. D) CB-CD34+ cells expanded for 7 days with either STF 
or STFIA cocktails +/- either GSK343 or GSK126 inhibitors. Intranuclear flow cytometry analysis specific for 
H3-normalized values of H3K27me3 global levels of gated CD34+/CD133+/CD38- cells. Student t-test, ** p< 
0,01, n=3.  
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Clonogenic potential has been used as a measure for hematopoietic progenitor cells. Each 

colony formed represents the progeny of a single multipotent stem cell. We therefore 

determined the colony forming capacity of fresh CB-CD34+ cells and of CB-CD34+ cells 

expanded with either STF or STFIA cocktails +/- EZH2 inhibitors by a metylcellulose-based 

colony formation assay. After 14 days of culture in methylcellulose, plates were scored for the 

number of BFU-E (burst forming unit - erythroid) CFU-GEMM (colony forming unit- 

granulocyte, erythrocyte, macrophage, and megakaryocyte), and CFU-GM (colony forming 

unit- granulocyte, macrophage) under an inverted light microscope (Fig. 20A). Hematoxyline 

and eosin stainings demonstrated the presence of the corresponding hematopoietic cell types 

per colony forming category (Fig. 20B). All tested conditions supported CFU formation and 

CFUs were highest with STFIA-expanded cells. STFIA-expanded cells were able to 

significantly higher total numbers of CFUs in comparison to STF-expanded cells (reflecting 

their higher engraftment potential). However, the treatment of STF-expanded cells with 

EZH2 inhibitors did not significantly raise the CFUs formation to the levels recorded for 

STFIA-expanded cells (Fig. 20C).  

 

5.6 EZH2 inhibition increases the engrafting potential 
of expanded CB-CD34+ cells 
 

Despite a lack of differences in the progenitor cells capability to form CFUs after treatment of 

STF-expanded cells with EZH2 inhibitors, the impact of EZH2 inhibitor treatment on 

hematopoietic engraftment potential was assessed. The progeny of 0,5X105 CB-CD34+ STF-, 

STFIA-cultured or STF-plus inhibitor-cultured CB-CD34+ cells were harvested after 7 days of 

expansion and injected into irradiated NSG mice together with 0,2X106 NSG splenocytes. 

Engraftment was assessed four, eight and twelve weeks after transplantation by measuring the 

percentage of human CD45+ cells in the PB. I observed that treatment of STF-cultured CB-

CD34+ cells with both EZH2 inhibitors significantly increased hematopoietic engraftment at 

four, eight and twelve weeks post transplantation to levels similar to STFIA-cultured CB-

CD34+ cells (Fig. 21A). Multilineage hematopoietic engraftment potential of STF-treated versus 

STF-untreated CB-CD34+ cells was assessed in the BM and SP of the recipients eight weeks 

after transplantation by CD19, CD14 and CD3 stainings. The multilineage engraftment assay 

confirmed the increased capability of multilineage engraftment of STF-treated versus STF-

untreated CB-CD34+ cells (Fig. 21B). To be pointed out, multilineage engraftment analyses 
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revealed increased percentages of lymphocyte types in STF-treated- compared to STF-

untreated-grafts, as reported for STFIA-grafts. 

 

 

 
 
Figure 20: Only CB-CD34+ cells expanded with STFIA show improved colony-forming cell potential. A) 
After 7 days of expansion with either STF or STFIA cocktails +/- the EZH2 inhibitors GSK343 (1 mM) or 
GSK126 (1 mM), 400 cells were seeded into methylcellulose medium to evaluate the clonogenic potential under 
the different culture conditions. The clonogenic potential was assessed by plating 400 fresh CB-CD34+ 
cells/plate. The example shows phase-contrast images of typical morphologies of CFU-GM, BFU-E, or CFU-
GEMM colonies after 7 and 14 days of culture into methylcellulose, scale bar = 50 µm. B) Representative 
example of hematoxylin and eosin staining of BFU-E, CFU-GEMM and CFU-GM colonies after 14 days of 
culture in methylcellulose. The different hematopoietic cell types are indicated. C) Total CFU, BFU-E, CFU-
GEMM and CFU-GM per 400 cells are shown. Results express mean ± SD of two independent experiments 
performed in triplicate. Student t-test, * p< 0,05, ** p<0,01, n=2. 
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Figure 21: Multilineage engraftment analysis of CB-CD34+ cells treated with EZH2 inhibitors. A) The 
progeny of 2x105 CB-CD34+ cells expanded for 7 days with either STF or STFIA cocktails +/- either GSK343 
or GSK126 inhibitors were equally split and injected into 4 recipients. Shown are percentages of human 
chimerism by measuring the percentage of human CD45+ cells via flow citometry in the BM of NSG transplant 
recipients. Each symbol represents the engraftment of a single recipient analysed 4, 8 or 12 weeks post 
transplant. Student t-test, * p< 0,05,  ** p< 0,01. B) Representative analysis of human chimerism in the SP and 
BM of transplant recipients of CB-CD34+ cells expanded with either STF or STFIA cocktails +/- either GSK 
343 or GSK 126 inhibitors. Animals were analysed 8 weeks post transplantation using antibodies specific for 
human hematopoietic cells. Percentages of positive cells are indicated. 
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Figure 18: Multilineage engraftment analysis of human CD34+ cells treated with EZH2 
inhibitors.  
A) After 7 days of culture the progeny of 2x105 CD34+ cells in STF- or STFIA-supplemented 
cultures in the absence or presence of either GSK343 or GSK126 EZH2 inhibitors were 
equally split and injected into 4 recipients. Shown are percentages of human chimerism by 
human CD45-specific flow cytometry in the peripheral blood of NSG transplant recipients. 
Each symbol represents the engraftment of a single recipient analyzed 4, 8 or 12 weeks 
post transplant. Student t test, * p< 0,05,  ** p< 0,01. B) Representative analysis of human 
chimerism in the spleen and bone marrow of transplant recipients of STF- or STFIA-
expanded CD34+ cells, or of STF-expanded CD34+ cells treated with either GSK343 or 
GSK126. Animals were analyzed via flow cytometry 8 weeks post transplantation using 
antibodies specific for human hematopoietic cells. Percentages of positive cells are 
indicated. 
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6 DISCUSSION 
 
 
The work presented in this thesis contributes to a better understanding of chromatin changes 

upon in vitro expansion of human CB-HSPCs. I observed that short- and long-term 

engraftment in NSG mice when using a STFIA cytokine cocktail for expansion is superior to 

a STF cocktail only. I found that freshly isolated CB-CD34+ and CB-CD34- cells have 

different global H3K4me3 and H3K27me3 levels and that the ex vivo environment remodels 

the epigenetic landscape of CB-CD34+ cells. I noticed that especially global H3K27me3 levels 

change depending on the expansion conditions. I also observed a higher degree of changes in 

the local distribution of H3K27me3- than of H3K4me3-marked regions. Furthermore, I 

detected higher EZH2 protein levels in STF- compared to STFIA-cultured CB-CD34+ cells 

and treatment with two different EZH2-specific inhibitors increased hematopoietic 

engraftment potential of cultured CB-CD34+ cells.  

 

 

6.1 STFIA cocktail maintains the engrafting potential 
of CB-CD34+ cells 
 

HSC expansion requires a complex combination of growth factors and cytokine cocktails that 

control the proliferative potential of HSCs (Devine et al., 2003). The searching for optimized 

growth factor conditions for robust HSC expansion is of primary importance to establish 

trusted methods that maintain reliable HSCs potential during culture (Doulatov et al., 2012). I 

here evaluated the expansion potential and culture-related chromatin remodeling of CB-

CD34+ cells using 2 different cytokine cocktails: STFIA and STF. STFIA combines SCF, 

TPO, FGF-1 (i.e. the so-called STF cocktail) with Angptl5 and IGFBP2 and it was shown to 

highly expand HSCs (Zhang et al., 2006; Drake et al., 2011). Firstly I compared the 

morphology of expanded CB-CD34+ cells with fresh CB-CD34+ cells and I observed a higher 

degree of polarization in both culture conditions as compared to fresh CB-CD34+ cells. 

Polarization is the ability of CB-CD34+ cells to gain polarized shape upon ex vivo expansion 

(Giebel et al., 2004) and it is correlated with migration potential (Alakel et al., 2009). One 
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would have expected a higher degree of polarization in STFIA-expanded cells, as it is reported 

that IGFBP2 and IGFBP4 enhance the migration potential of human HSPCs (Bartling et al., 

2010). However, the concentration of IGFBP2 used by Bartling et al. that was stimulating cell 

migration was 500 µg/ml and 900 µg/ml, which corresponded to the amount of protein 

found in a healthy donor blood. This amount is 5 and 10 times higher than the concentration 

used in my study, so the amount of IGFBP2 used was too low to cause a higher degree of 

polarization of STFIA-cultured cells. When the cells were analysed via CFU assay, higher 

expansion of CFU-initiating cells was found using STFIA- in comparison to STF-conditions 

(Figure 20). The addition of Angptl5 and IGFBP2 significantly enhanced the CFU potential of 

CB-HSPCs as previously published (Zhang et al., 2008). However, it was also confirmed that 

after 7 days of expansion with both expansion conditions less CFU-initiating cells were 

present in the cultures when compared to fresh CB-CD34+ cells (Walenda et al., 2011). Similar 

to a previously published report I observed that after culture under both expansion conditions 

the progeny of 50.000 fresh CB-CD34+ cells was able to repopulate the hematopoietic system 

of recipient mice (Blank et al., 2012). However, I also noticed inter-experimental variations in 

engraftment similar to a previous study (Blank et al., 2012). The inter-experimental variations 

could be caused by dissimilarities in cell source, expansion periods, or batch to batch 

variations of cytokines. A limiting dilution assay would be helpful to verify if also low cell 

doses are able to reconstitute the hematopoietic system of recipients (Khoury et al., 2011). 

Additionally, the variable engraftment may arise from a multitude of causes including how 

individual HSCs respond to growth factors and how they vary in their homing potential 

capabilities. Furthermore this study confirmed that after 7 days of culture, the human 

chimerism found in fresh CB-CD34+ grafts was maintained when CB-CD34+ cells were 

expanded under STFIA condition but not when they were expanded under STF condition 

(Zhang, 2008). However, engraftment levels of STFIA-cultured cells did not reach the 20-fold 

net expansion of repopulating HSPCs as earlier reported (Zhang et al., 2008). Multilineage 

engraftment analyses revealed increased percentages of lymphocyte types such as CD19 and 

CD3 (Figure 5B) in STFIA- compared to STF-grafts indicating that the addition of Angptl5 

and IGFBP2 boosts the hematopoietic progression of HSPCs towards the lymphoid lineage. 

Since multiple signals are known to interact within the HSC niche for establishing the balance 

between self-renewal and differentiation (Rice et al., 2007), the importance of IGFBP2 and 

Angptl5 for HSC differentiation must be studied in greater detail. It was also reported that the 

use of Angptl5 greatly reconstituted both myeloid and lymphoid compartments (Khoury et al., 

2011), while I noticed an increased reconstitution of especially the lymphoid cell types. These 
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discrepancies could be explained by the use of different cell populations, cell dose, expansion 

periods and cell source in the above cited studies (Blank et al., 2011; Khoury et al., 2011; Zhang 

et al., 2008). All these factors can affect the engrafting potential of HSCs.  

In summary the data reported above indicate that CB-CD34+ cells expanded under STFIA 

condition compared to a standard cocktail show improved clonogenic and NSG engraftment 

potential. The in vivo assay reveals that lymphoid differentiation capacity is maintained in 

STFIA-grafts but not in STF-grafts when compared to fresh CB-CD34+-grafts. Due to the 

knowledge that post-engraftment infections are mostly related to an impaired reconstitution 

of B and T lymphocytes (Heining et al., 2007), this finding may be of clinical relevance.  

Several Angiopoietin-like (Angptl) proteins were shown to support the expansion of HSCs in 

vitro and in vivo (Zheng et al., 2012). However the intracellular signal transduction pathways 

involved and further roles of these proteins in angiogenesis and in vascular as well as in tumor 

biology are poorly understood. Nevertheless, recent analyses proved the importance of Angptl 

proteins in supporting HSC expansion, metabolism, angiogenesis and inflammation (Morisada 

et al., 2006; Hato et al., 2008). Recent studies have aimed at finding the receptors of these so 

far called “orphan ligands”. Interestingly, the immune-inhibitory receptor human leukocyte 

immunoglobulin-like receptor B2 (LILRB2) showed enhanced binding to Angptl2 and 

Angptl5 (Zheng et al., 2012). LILRB2 was found to be expressed on the surface of 40-95% of 

human CB-CD34+CD38-CD90+ cells, a population enriched in HSCs, and the silencing of 

LILRB2 resulted in decreased repopulation capabilities of human CB-HSCs (Zheng et al., 

2012). Therefore Angptl5-mediated CB-CD34+ expansion could act via the surface receptor 

LILRB2. The HSC niche is the microenvironment that maintains and controls the balance 

between survival, self-renewal ability and cell fate decision of HSCs (Orkin et al., 2008; 

Carlesso et al., 2010). Because Angptl proteins are widely expressed in many cell types 

including cells of endocrine organs and in the BM niche (Zheng et al., 2011; Hato et al., 2008), 

they are candidates for direct or indirect effects on HSCs expansion. It was reported that ex 

vivo culture significantly modulates the immunogenicity of HSCs, and therefore contribute to 

the “immune privilege” of HSCs, via changes in the expression of immune proteins such as 

MHC-I and MHC-II (Zheng et al., 2011b) and other immune molecules. The Angptl-LILRB2 

network may be involved in this process and may be fundamental for the maintenance of 

HSC stemness upon culture. 
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6.2 Global levels of H3K4me3 and H3K27me3 change 
upon expansion of CB-CD34+ cells 
 

The limitations to expand HSCs ex vivo may be due to an altered control of the balance 

between survival and self-renewal (Srour et al., 2005). The importance of epigenetic 

mechanisms on wether HSCs proceed to either symmetrical or asymmetrical cell division has 

been validated (Araki et al., 2007; Li et al., 2011). The maintenance of HSC function and the 

differentiation potential of HSCs are both influenced by epigenetic regulation (Weishaupt et 

al., 2010). Therefore I examined the epigenetic changes between fresh CB-CD34+ and CB-

CD34- cells, and CB-CD34+ cells expanded under different culture conditions. This work 

focuses on the analysis of H3K4me3 and H3K27me3 histone tail modifications. The 

simultaneous presence of these 2 marks characterizes bivalent domains which are regulatory 

regions associated with cell fate decision (Bernstein et al., 2006). The co-occupancy by active 

and repressive marks is known to silence developmental genes and to keep them poised for 

activation (Mikkelsen et al., 2007; Bernstein et al., 2006). Chromatin flow cytometry and 

Western blot analysis were chosen for evaluating the global histone modification levels of 

fresh and expanded human CB cells. The two methodologies showed that H3K4me3 and 

H3K27me3 levels differed between CB-CD34+ and CB-CD34- cells. Both methods found 

higher global H3K4me3 levels in fresh CB-CD34+ than in CB-CD34- cells, which is in line 

with previously published data (Navakauskiene et al., 2014). We next studied active or 

repressive histone modification remodeling upon expansion, and we observed that culturing 

CB-CD34+ was paralleled by global changes in H3K27me3 while H3K4me3 levels were less 

altered. Recent studies have revealed that Polycomb-group proteins are required not only for 

maintaining pluripotency and lineage potential in ES cells but also for a strict control of gene 

expression during differentiation (Shen et al., 2008; Chamberlain et al., 2008). It was also 

reported that the active modification H3K4me3 is stable in distinct stem cell lines while 

H3K27me3 varies in abundance and genome-wide distribution (Rugg-Gunn et al., 2010). In 

line with these findings our data suggest that for the maintenance of HSC properties during 

CB-CD34+ expansion the H3K27me3 gene silencing promoted by Polycomb-group proteins 

seems to be functionally more relevant than Trithorax-group-mediated gene activation. 

Human CB-CD34+ cells are a heterogeneous cell population consisting of quiescent LT-

HSCs, but also cycling short-term HSCs and multipotent progenitors with different potentials. 

I am aware of the fact that a more stringent HSC purification including an extended range of 

surface markers, which characterize the HSPCs population, would be beneficial (Wisniewski et 

al., 2011). The data collected from the mixed population of CB-CD34+ cells may overestimate 
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the epigenetic complexity of cell populations with similar potentials and the results obtained 

with pure LT-HSCs would most probably be different. It is important to optimize chromatin 

profiling methods for even lower cell numbers to dissect epigenetic profiles in subtle cell 

populations. Nevertheless, the study of epigenetic changes during CB-CD34+ cell expansion 

contributes to clarify the histone modification dynamics in HSPC maintenance and 

development. The understanding of the chromatin status alterations linked to ex vivo 

expansion may provide instruments for finding new epigenetic drugs able to improve HSC 

transplantation potential, given that altered histone modification patterns have been proved to 

be reversible for instance in AML cells (Paul et al., 2010). 

 

 

6.3 Ex vivo expansion of CB-CD34+ cells remodels the 
distribution of H3K4me3 and H3K27me3 histone 
modification marks 
 

Several studies revealed that epigenomic landscapes differ between different cell types 

(Hawkins et al., 2010, Meissner et al., 2008) and that these differences are crucial for defining 

cell-type specific gene expression patterns and functions (Creyghton et al., 2010; Heintzman et 

al., 2009). We therefore performed ChIP-seq experiments focusing on the genome-wide 

redistribution of H3K4me3 and H3K27me3 marks upon CB-CD34+ cell expansion. 

ChIP-seq analyses identified that upon ex vivo expansion CB-CD34+ cells overall lost 

H3K27me3 marks at the TSSs and over gene bodies. Moreover it was found that in cultured 

cells the size of H3K4me3-enriched regions increased independently of the cytokine cocktail. 

Stem and mature cells have distinct epigenomic landscapes and differentiation is paralleled by 

large-scale expansion of H3K27me3 but less H3K4me3 domains (Hawkins et al., 2010, Zuh et 

al., 2013). Our analysis confirmed previous observations (Abraham et al., 2013; Cui et al., 2009; 

Hawkins et al., 2010) showing that H3K4me3-enriched regions were narrower than 

H3K27me3-enriched regions irrespective of which dataset was analysed. The H3K27me3 

histone modification appeared to be a very dynamic chromatin mark as previously reported 

(Hawkins et al., 2010). It is shown that H3K27me3 distribution progresses from a more focal 

state in ESCs to expanded domains in differentiated cells, and is found in an intermediate state 

in adult stem cells (Rugg-Gunn et al., 2010, Chen et al., 2014). H3K27me3-enriched regions 

maintained the size distribution of fresh CB-CD34+ cells following STFIA expansion, but 

showed a relevant enlargement of H3K27me3 domains following STF expansion similar to the 

spatial distribution found in differentiated CB-CD34- cells. Considering that H3K4me3 island 
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size distributions were maintained in human HSPCs while H3K27me3 island sizes increased 

during differentiation (Jones et al., 2014; Hawkins et al., 2010), noticeably STFIA- but not STF-

cytokine cocktail was able to preserve the size distribution of H3K27me3-enriched regions. 

The ChIP-seq data further pointed out that the genome-wide H3K27me3 peak distribution 

occupied broad domains while H3K4me3 signals were confined to mainly promoter regions, 

in line with published observations (Cui et al., 2009, Heintzman et al., 2007). It was reported 

that human blood cells presented a high degree of intergenic regions covered by H3K27me3 

(Zhu et al., 2013). Also, H3K4me3 is mostly found in focal peak-like structures within 

promoters while the majority of H3K27me3 peaks is found in intergenic regions and forms 

broad local enrichments (BLOCs) (Cui et al., 2009; Pauler et al., 2009; Brinkman et al., 2012). 

Our data are consistent with the above cited reports. We found different H3K4me3 and 

H3K27me3 distributions over specific gene regions and different enriched-island sizes.  

The distribution of H3K27me3 modification is highly variable across different cell types and 

especially certain regions such as Hox gene clusters are associated with a high-degree of 

variability (Pinello et al., 2014). To examine whether the extended H3K27me3 repressive mark 

domains are a pivotal feature of differentiated cells we examined specific gene loci. Our 

analysis of the HoxA and HoxB loci showed the predicted H3K4me3 and H3K27me3 

landscapes as previously published (Abraham et al., 2013). We also noticed expanded domains 

of H3K27me3 in the differentiated cells that were not found in fresh CB-CD34+ and CB-

CD34- cells.  

To verify the correlation between gene expression data and ChIP-seq analysis we assessed 

H3K4me3 and H3K27me3 profiles around the TSSs of sets of genes that exhibited high or low 

expression levels in fresh CB-CD34+ cells. Our analyses revealed that the chromatin maps 

precisely reflected the true patterns of H3K4me3 histone modification with the typical 

nucleosome gap at the TSSs of the utmost expressed genes (Adli et al., 2010, Rugg-Gunn et al., 

2010). The integration of gene expression profiles and ChIP-seq data confirmed the expected 

correlation between H3K27me3 and the transcriptional status of lowly expressed genes. 

The subset of loci enriched with either H3K4me3, H3K27me3 or both chromatin 

modifications could give us insights on new genes with critical functions in hematopoietic 

progenitors (Azuara et al., 2006; Orford et al., 2008). Therefore, we looked at lists of genes 

with marked promoters. The Venn diagrams in Figure 15 show a high degree of exclusivity of 

promoters that were H3K4me3- or H3K27me3-marked depending on whether samples from 

fresh, STF- or STFIA-cultured cells were analysed. We noticed that one third of the enriched 
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promoters was unique in each of the samples. The lists of H3K27me3 enriched promoters 

were used to view how Polycomb-repressive complex is specifically reorganizing chromatin to 

prepare different gene loci for silencing. These patterns may provide an epigenetic memory to 

keep lineage-specific expression or repression of defined sets of genes. The exclusively marked 

promoters of fresh and STFIA-expanded CB-CD34+ cells showed similar GO-terms revealing 

that genes linked to the same biological processes have the same chromatin structure. This 

finding supports the hypothesis that epigenetics and environmental cues are able to maintain 

certain lineage specific transcriptional programs. 

The analysis of the correlation between histone modifications on promoters and gene 

expression indicates little transcriptional changes between STF- and STFIA-cultured cells 

while visible changes of H3K27me3 and H3K4me3 levels are apparent upon culture. I 

observed a higher remodelling of H3K27me3-enriched promoters compared to H3K4me3-

enriched promoters without transcriptomic changes. Interestingly, Factor et al. showed 

marginal changes in gene expression when mouse ESCs and epiblast stem cells were analysed 

via high resolution genome-wide assay but significant alterations of global histone 

modifications (Factor et al., 2014). These distinctive transcriptome and epigenome 

characteristics found in naive and primed pluripotent cells show that also closely related 

developmental stages with similar gene expression profiles can possess diverse epigenotypes, 

possibly priming but not yet resulting in transcriptional changes. This could indicate that STF 

and STFIA cocktails primarily act on the epigenomic and less on transcriptomic regulatory 

systems and that epigenomic properties on HSPCs are sensitive to whether the cells are 

exposed to in vivo or in vitro environments. The enrichment patterns of H3K4me3 and 

H3K27me3 have been shown to be highly variable among different cell types due to the 

cellular and developmental context (Zhu et al., 2013, Young et al., 2011). However the dynamic 

of how the distribution of these epigenetic modifications changes is still under investigation. 

Recently Masaki et al. claimed that changes in H3K27me3 status are consequence rather than 

cause of transcriptional regulation (Hosogane et al., 2013). 

Promoters marked with H3K4me3 and H3K27me3 are known to belong to poised key genes 

important for development and differentiation. We therefore tested how bivalency reorganizes 

upon expansion. Bivalency at promoter regions in HSCs primes for subsequent transcriptional 

activation of genes and is critical during differentiation (Voigt et al., 2013). Moreover, 

bivalency is important for stem cell maintenance implying a critical role for chromatin 

modifications in HSC fate (Roh et al., 2006). I observed a considerable redistribution of 
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bivalent domains upon culture. However, I am aware that the bivalent genes showed a 

heterogeneous enrichment for the two histone modifications, which can translate into 

important differences in the gene expression patterns (De Gobbi et al., 2011). On the basis of 

the ratio between H3K4me3 and H3K27me3 enrichment it would be possible to separate the 

bivalent genes in several groups as the ratio between the two chromatin modifications can be 

important when translated into gene expression regulation (Roh et al., 2006; Gibson et al., 

2009). 

 As previously published, we found nearly double the number of bivalent genes in CB-CD34+ 

cells, both fresh and expanded, in comparison with differentiated CB-CD34- cells (Cui et al., 

2009, Bernstein et al., 2006). Although the total number of bivalent promoters was similar in 

fresh and cultured CB-CD34+ cells, only about one third of the genes marked with both 

modifications in fresh CB-CD34+ cells maintained the bivalent mark upon STF or STFIA 

expansion. Moreover, we found newly established bivalent promoters in each of the samples. 

Thus, although transcriptomic changes are minor between the STF and STFIA culture 

conditions, different sets of genes are set up for being expressed (or definitely silenced) at a 

later stage, which subsequently may cause differences in engraftment potential. GO-term 

analysis revealed a cocktail-specific reorganization of the bivalency status. GO analysis also 

showed that genes involved in hematopoietic cell differentiation and development were 

occupied by bivalent marks in both fresh and expanded CB-CD34+ cells. However, I found 

that only in CB-CD34+ cells expanded under STFIA condition GO analysis showed genes 

involved in blood vessel development and morphogenesis. The appearance of these GO 

terms may relate to the activity of Angptl proteins (Oike et al., 2004) or the angiogenetic 

signatures may be relevant for HSC expansion.  

For a better understanding of the process of epigenetic gene activation, repression and 

priming with respect to cell fate commitment upon ex vivo expansion of HSCs it will be 

important to genome-wide analyse other histone modifications. For instance, it would be 

relevant to study histone acetylation and H3K4 mono-/dimethylation characterizing active 

enhancers and promoters, as well as other repressive histone marks such as H3K9me3 or 

DNA methylation that may or may not overlap with H3K27me3. In particular, the 

colocalization of H3K9me3 and H3K27me3 has already drawn the attention of other groups 

(Bilodeau et al., 2009) due to the dual repression at specific regulatory regions (Hawkins et al., 

2010) that may be fundamental for the maintenance of silencing during differentiation. 
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6.4 The treatment of STF-cultured CB-CD34+ cells 
with two different EZH2 inhibitors increases 
hematopoietic engraftment 
 

I found a culture-associated chromatin remodelling and a genome-wide increase of especially 

H3K27me3 marks after analysing the chromatin organization and dynamics of fresh and 

expanded CB-CD34+ cells. 

I therefore studied the protein responsible for PRC2’s catalytic activity to deposit H3K27me3 

mark, i.e. EZH2. The results of this analysis revealed increased culture-induced EZH2 protein 

and RNA levels in STF- compared to STFIA-cultured cells. EZH2 is less expressed in STFIA-

cultured cells leading to lower H3K27 trimethylation levels in these cells. EZH2 plays an 

essential role in stem cell maintenance and lineage differentiation (Wei et al., 2011; Chen et al., 

2012). Moreover, the involvement of EZH2 overexpression in cancer stem cells and tumor 

development and progression has been shown (Chang et al., 2012). Both activating and 

inactivating mutations of EZH2 are associated with certain malignancies (Sauvageau et al., 

2010; Chase et al., 2011), suggesting that EZH2 probably acts via positive and negative 

regulation of cell activity in a cell-context dependent manner. Numerous highly potent and 

selective small molecule inhibitors of EZH2 have been developed (Helin et al., 2013), as 

EZH2 is a novel therapeutic target for human malignancies. Therefore I assessed if specific 

EZH2 inhibitors could block the activity of EZH2 in STF-cultured cells, and I analysed the 

consequences of this treatment. In the context of HSPCs expansion, epigenetic inhibitors 

have previously been shown to support expansion of CD34+ cells and combination of azaC 

with trichostatin A was shown to support the maintenance of NSG mice repopulating cells 

(Obier et al., 2010, Milheim et al., 2004). I could observe that treating STF-cultured cells with 

two EZH2 inhibitors counteracted the culture-induced loss of engraftment potential, 

indicating that EZH2 activity may be key to culture-associated loss of engraftment potential. 

Notably, multilineage engraftment analyses revealed increased percentages of lymphocyte 

types in STF-treated- compared to STF-untreated-grafts, as reported for STFIA-grafts. A 

strict regulation of the expression of PRC1 and PRC2 complexes has been shown to be crucial 

for HSCs identity (Kamminga et al., 2006; Mochizuki-Kashio et al., 2011; Van den Boom et al., 

2013). Being a subject of studies, the increased engraftment potential of EZH2 inhibitor-

treated cells was not entirely unexpected as loss of function mutations of the PRC2 core 

components Suz12, Eed and EZH2 display enhanced hematopoietic progenitor cell activities 

following transplants in mice (Majewski et al, 2010). Inhibition of histone methyltransferase 

activity by small molecule approaches is an active area of research (Verma et al., 2012). Thus, 
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inhibitors of chromatin factors and chromatin-modifying agents provide potential strategies 

for the expansion of HSPCs. A more detailed knowledge of EZH2 target genes in the HSPC 

compartment will enable a better understanding of the role of this protein and PRC2 complex 

during HSPCs expansion and differentiation. The interplay between cell-extrinsic and –

intrinsic factors involved in HSC expansion and self renewal potential vary depending on the 

combinations of environmental stimuli applied to the culture system. Knowing that the 

function and maintenance of HSCs in vivo as well as in vitro are controlled by transcriptional 

and epigenetic regulation, I suggest a model (Figure 22) in which ex vivo expansion strategies 

using the inhibition of chromatin factors are fundamental for retaining the characteristic 

biological properties of HSCs.  

 

 

 

Figure 22: Proposed model for HSCs chromatin remodeling. 
HSCs in the native niche are tightly regulated by specific stromal interactions that provide appropriate humoral, 
physical and metabolic signals. All these interactions feed HSC chromatin. When HSCs are out of their natural 
location, these environmental stimuli change, and with them the chromatin of HSCs. HSCs in culture show 
elevated PRC2 expression and reduced engraftment potential. The data shown here indicate that the use of 
EZH2 inhibitors increase the engraftment potential of HSCs. I hypothesize that a strict regulation of PRC2 
complex is fundamental for HSCs expansion and that especially EZH2 activity is key to culture-associated loss of 
engraftment potential of HSCs. 
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In summary, this work provides genome-wide maps of H3K4 and H3K27 trimethylation 

changes upon expansion of CB-HSPCs and shows that the H3K4me3 but less the H3K27me3 

landscape is stable. These findings suggest a model (see Figure 22) in which growth stimuli in 

culture media alter chromatin architecture. Ex vivo culture results in chromatin modification 

changes associated with a specific engraftment potential. H3K27me3 mediated gene repression 

rather than H3K4me3 may be critical to establish a specific transcriptional program. However 

H3K27me3 mediated influences on specific genomic loci remain to be understood. Our data 

further show that inhibition of the PRC2 component EZH2 counteracts the culture-

associated loss of engraftment potential. These data may lead to new therapeutic tools and 

rational protocols for robust expansion of this clinically important adult stem cell type. 
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7 MATERIALS AND METHODS  
 

 

7.1 Materials 

 

7.1.1 Cell culture media and supplements 

 

STF medium 

Contents Final concentration Distributor 
StemSpan serum-free medium filled to 100% StemCell Technologies 
Penicillin and streptomycin 10 U/ml, 0,1 mg/ml PAA 
Heparin 10 µg/ml Sigma Aldrich 
Recombinant stem cell factor 
(SCF) 

10ng/ml Peprotech 

Recombinant fibroblast growth 
factor 1 (FGF-1) 

10ng/ml Peprotech 

Recombinant Thrombopoietin 
(TPO) 

20ng/ml Peprotech 

 
 
STFIA medium 
Contents Final concentration Distributor 
StemSpan serum-free medium filled to 100% StemCell Technologies 
Penicillin and streptomycin 10 U/ml, 0,1 mg/ml PAA 
Heparin 10 µg/ml Sigma Aldrich 
Recombinant stem cell factor 
(SCF) 

10ng/ml Peprotech 

Recombinant fibroblast growth 
factor 1 (FGF-1) 

10ng/ml Peprotech 

Recombinant Thrombopoietin 
(TPO) 

20ng/ml Peprotech 

Angiopoietin-like 5 (Angptl5) 500ng/ml Tebu-Bio 
Insulin-like growth factor-binding 
protein-2 (IGFBP2) 

100ng/ml R&D Systems 
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Methylcellulose medium for CFU assay 

Contents 
Final 

concentration 
Distributor 

MethoCult SF H4236 Methylcellulose in 
Iscove’s Modified Dulbecco’s Media  

40% StemCell Technologies 

Fetal Bovine Serum 25% Gibco, Lot#41Q2105K 
Bovine Serum Albumin 2% PAA 
L-Glutamine 2mM PAA 
2-Mercaptoethanol 5x10-5 M PAA 
Recombinant Human SCF 50 ng/mL PAA 
Recombinant Human GM-CSF 10 ng/mL Miltenyi Biotec 
Recombinant Human IL-3 10 ng/mL Miltenyi Biotec 
Recombinant Human Epo 3 IU/mL Invitrogen 
Recombinant Human SCF 1,4% PeproTech 

 
 

 

7.1.2 Antibodies 

 

Primary antibodies 

Specificity Species Distributor 
H3 Rabbit polyclonal Abcam 
H3K9me3 Rabbit polyclonal Diagenode 
H3K4me3 Rabbit polyclonal Abcam 
H3K27me3 Rabbit polyclonal Diagenode 
H3K79me3 Rabbit polyclonal Abcam 
EZH2 Rabbit ployclonal Diagenode 
IgG isotype control Rabbit ployclonal Abcam 
CD34-FITC Mouse monoclonal Miltenyi Biotec 
CD34-PE Mouse monoclonal Miltenyi Biotec 
CD45FITC Mouse monoclonal Miltenyi Biotec 
CD133-PE Mouse monoclonal Miltenyi Biotec 
CD38-PE Mouse monoclonal Miltenyi Biotec 
CD90-PE Mouse monoclonal Miltenyi Biotec 
CD14-PE Mouse monoclonal Miltenyi Biotec 
CD19-PE Mouse monoclonal Miltenyi Biotec 
CD3-PE Mouse monoclonal Miltenyi Biotec 
IgG2a-PE Mouse monoclonal Miltenyi Biotec 
IgG2a-FITC Mouse monoclonal Miltenyi Biotec 
IgG1-FITC Mouse monoclonal Miltenyi Biotec 

 
 
 



                                                                                                              7 MATERIALS AND METHODS 

71 

Secondary antibodies 
Specificity Label Distributor 
Mouse Cy2 Dianova 
Mouse Cy3 Dianova 
Rabbit Cy2 Dianova 
Rabbit APC Dianova 
Rat goat, microbeads Miltenyi Biotec 
Rabbit ECL- HRP Ge Healthcare 

 

 

7.1.3 Primers 
 
 
All primers were ordered from Eurofins MWG Operon. 

Gene expression primers 

 
 
ChIP primers 
 
Gene Sequence forward primer Sequence reverse primer 
CD34 GCTTCTCTCCTCCCCAGTCT ACGACTGGTTCCAATGGACT 

RUNX1 AAGGAAGGGCATTGCTCAGA ACCCTGTGGTTTGCATTCAG 

EZH2 CCGTGTGTTCAGCGAAAGA GCTGTAAGGGACGCCACTG 

MLL GAGGCCGCTATACAGATTGC GAGAGGGAGAGGCGACAAC 

Gene Sequence forward primer Sequence reverse primer 
CD34 CATCACAGAAACGACAGTCAA ACTCCGCACAGCTGGAGG 

RUNX1 CCACCTACCACAGAGCCATCAA TTCACTGAGCCGCTCGGAAAAG 

EZH2 AGGAGTTTGCTGCTGCTCTC CCGAGAATTTGCTTCAGAGG 

MLL GTGGGATGTTACCAAACGCAG ACTGTCTTCTCGACTCCTATCAG 

LMO2 GCGCCTCTACTACAAACTGGGC CTCATAGGCACGAATCCGCTTG 

TAL1 CCACCAACAATCGAGTGAAGAGG GTTCACATTCTGCTGCCGCCAT 

cMYC CTCCTGGCAAAAGGTCAGAG TCGGTTGTTGCTGATCTGTC 

UTX CTTCAGCCATTTCAACAGCA GCTGAGCTGGGGTATATGGA 

GATA2 TGACGGAGAGCATGAAGATG GCCTTCTGAACAGGAACGAG 

PU.1 GAAGCACTGGTGCCCTATGA GGGGTGGAAGTCCCAGTAAT 

C/EBPa TGGACAAGAACAGCAACGAG TTGTCACTGGTCAGCTCCAG 

C/EBPb TTTCGAAGTTGATGCAATCG CAACAAGCCCGTAGGAACAT 

SUZ12 TGCAGTTCACTCTTCGTTGG GAACCAGGCTTGTTTTCCTG 

EED TGGCCATGGAAATGCTATC CCTCCAAATATTGCCACCAG 

RPL27 ATCGCCAAGAGATCAAAGATAA TCTGAAGACATCCTTATTGACG 

BETA 
ACTIN 

GCTATCCCTGTACGCCTCTG CTCCTTCTGCATCCTGTCGG 
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LMO2 CTGCTTCCTGCCGACTTC CAGATACAGACAGAACACTTGC 

TAL1 ACTCCCTCCGGTGAAATTG CGCTGTAATCCCACTCACG 

cMYC CACTCTCCCTGGGACTCTTG TCTCCCTTTCTCTGCTGCTC 

UTX GCCCTACTGGGCAAGGTAAG GAAAAGAGCGATTTCGCAAG 

GATA2 CCTGGAAGTGGGTTGAAGAC ACCCTGTGCATCCACACTC 

C/EBPa GCCGGGAGAACTCTAACTCC CTCTGCAGGTGGCTGCTC 

C/EBPb GGCCGCCCTTATAAATAACC TATTAGTGAGGGGGCTGGTG 

SUZ12 GGTCCTTCTCTCCCCACAAT GATTCCCCCGTCAGTCAC 

EED GGTAGCGCTTTGAAATCCAC TCTGGCGAATGGAAAGTACC 

 
 
 

7.1.4 Kits and reagents 
 
 
Kits Distributor 
CD34 progenitor cell isolation kit Miltenyi Biotec 
CD34 diamond cell isolation kit Miltenyi Biotec 
RNeasy Micro Kit Qiagen 
High Sensitivity DNA kit Agilent Technologies  

 
 
Reagents Distributor 
ABsolute qPCR SybrGreen Mix Thermo Scientific 
Agilent High Sensitivity DNA Kit Agilent 
BSA Sigma-Aldrich 
Chloroform Applichem 
DAPI Sigma-Aldrich 
DEPC Applichem 
DMSO Applichem 
Ethidium Bromid Merck 
ECL Select Western Blotting Detection Kit Amersham 
Ethanol Applichem 
First Strand cDNA Synthesis Kit Thermo Scientific 
GSK126 Chemie Tek 

GSK343 
Kindly provided from the SGC, University 

of Toronto 
Isopropanol Applichem 
Laminin Sigma-Aldrich 
Methanol Applichem 
MethoCult SF H4236 Stem Cell Technologies 
PageRuler Prestained Protein Ladder Fermentas 
Paraformaldehyd Applichem 
peqGold RNAPure Peqlab 
Phenol/Chloroform Applichem 
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Propidiumiodid Sigma-Aldrich 
Proteinase K Applichem 
RNase Sigma-Aldrich 
Tris Applichem 

 

 

7.1.5 Consumables 
 

Consumables Distributor 
Irradiation box Greiner  
Cell culture flasks Nunc 
Centrifuge tubes (15 mL & 50 mL) Greiner Bio One 
Cover slip Hartenstein Laborbedarf 
Blood collection bags Kimberly-Clark 
Multi-well cell culture plates Nunc 
Parafilm M Hartenstein Laborbedarf 
Scalpels Ratiomed 
Sterile filter Schleicher & Schuell 
Syringes B. Braun 
Tissue culture plates Greiner Bio One 

 

 

7.1.6 Buffers and solutions 
 

1X PBS: 

137 mM NaCl; 2,7 mM KCl; 10 mM Na2HPO4; 1,76 mM KH2PO4, pH 7,4.  
 
DEPC-H2O:   
200 µl C6H10O5 in 200 ml ddH2O. 
 
10X TBE Buffer: 
0,9 M Tris-HCL (pH 8); 0,9 M Boric Acid; 20 mM EDTA. 
 
Gel Loading Dye: 
0,25 g Bromophenol Blue; 1,25 ml of 10% SDS; 12,5 ml of glycerol. 
They are dissolved in 6,25 ml of ddH2O. 
 
1X Sample Solution: 
0,01% Bromophenol Blue; 5% β-mercaptoethanol; 25% Glycerin; 2% of 20% SDS; 0,5 M 
Tris-HCL (pH 6,8). 
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Upper Tris: 
0,5 M Tris-HCL; 10 ml of 20X SDS. 
They are dissolved in 500 ml of ddH2O (pH 6,8). 
 
Lower Tris: 
1,5 M Tris-HCL; 10 ml of 20X SDS. 
They are dissolved in 500 ml of ddH2O (pH 8,8). 
 
Stacking gel: 
1,5 ml of 30% PAA; 6,5 ml of ddH2O; 2,5 ml Upper Tris; 40 µl TEMED; 70 µl 10% APS. 
 
Running gel: 
5 ml of 30% PAA; 4 ml of ddH2O; 3 ml Lower Tris; 20 µl TEMED; 60 µl 10% APS. 
 
10X Lammli:  
30 g Tris-HCL; 144 g Glycin; They are dissolved in 1 l of ddH2O (pH 8,7). 
 
Electrophoresis Buffer:  
100 ml 10X Lammli; 5 ml 10% SDS; 895 ml ddH2O. 
 
Transfer Buffer:  
200 ml Methanol; 100 ml 10X Lammli; 700 ml ddH2O. 
 
Blocking solution:  
5% Nonfat dried milk powder; 0,1% Tween 20. 
They are dissolved in 1X PBS. 
 
Stripping solution:  
10% SDS in ddH2O; 1 M Tris-HCl (pH 6,5); 100 mM β-Mercaptoethanol. 
 
FACS Buffer: 
1000 ml of 1X PBS; 0,4% BSA; 0,02% NaN3 (pH 7,4). 
 
MACS Buffer: 
1000 ml of 1X PBS; 0,3% BSA. 
 
Gey’s Solution: 
20% Stock A: NH4Cl 35,0 g; KCl 1,85 g; Na2HPO4-12·H2O 1,5 g; KH2PO4 0,12 g; Glucose 
5,0 g; Phenol red 50 mg, bring to 1 liter with water.  
5% Stock B: MgCl2-6·H20 0,42 g, MgSO4-7·H20 0,14 g, CaCl2 0,34g, bring to 100 ml with 
water. 
5% Stock C: NaHCO3 2,25 g, bring to 100 ml 70% water. 
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Lysis buffer:  
50 mM Tris–HCl, pH 8,0; 10 mM EDTA; 1% (wt/vol) SDS; protease inhibitor mix (1:100 
dilution from stock); 1 mM PMSF. Protease inhibitor mix and PMSF should be added 
immediately before use. 
 
RIPA buffer:   
10 mM Tris–HCl, pH 7,5; 140 mM NaCl; 1 mM EDTA; 0,5 mM EGTA; 1% (vol/vol) Triton 
X-100; 0,1% (wt/vol) SDS; 0,1% (wt/vol) Na-deoxycholate. 
 
RIPA ChIP buffer:  
10 mM Tris–HCl, pH 7,5; 140 mM NaCl; 1 mM EDTA; 0,5 mM EGTA, 1% (vol/vol) Triton 
X-100; 0,1% (wt/vol) SDS; 0,1% (wt/vol) Na-deoxycholate; protease inhibitor mix (1:100 
dilution from stock); 1 mM PMSF. Protease inhibitor mix and PMSF should be added 
immediately before use. 
 
TE buffer:    
10 mM Tris–HCl, pH 8,0; 10 mM EDTA. 
 
Elution buffer:   
20 mM Tris–HCl, pH 7,5; 5 mM EDTA; 50 mM NaCl. 
 
Complete elution buffer:  
20 mM Tris–HCl, pH 7,5; 5 mM EDTA; 50 mM NaCl; 20 mM Na-butyrate; 1% (wt/vol) 
SDS; 50 µg/mL proteinase K.  
 
Buffer A:  
10 mM Hepes pH 8; 10 mM EDTA pH 8; 0,5 mM EGTA pH 8; 0,25% TritonX100; protease 
inhibitor mix (1:100 dilution from stock); diluted in ddH2O. 
 
Buffer B: 
10 mM Hepes pH8; 200 mM NaCl; 1 mM EDTA; 0,5 mM EGTA; 0,01% TritonX100; 
protease inhibitor mix (1:100 dilution from stock); diluted in ddH2O. 
 

 

7.1.7 Animals 

 

For all animal experiments NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (NSG) were used. NSG 

mice were purchased from JAX (The Jackson Laboratory) and the colony was maintained at 

the ZEMM institute (in house-bread colony) at the University Würzburg, Germany. 
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7.1.8 Equipment 
 
 
Instrument Distributor 
Cell culture microscope EVOS Life Technologies 
Cytospin 4 Zentrifuge Thermo Scientific 
FACS Canto I BD 
Gel Imaging System Biorad 
Confocal microscope Leica SP5 
Light Cycler 480 II  Roche 
M220 Focused-ultrasonicator Covaris 
2100 Bioanalyzer  Agilent Technologies 

 

 

7.1.9 Softwares 
 
 
Software Distributor 
FACS Diva BD 
FlowJo Tree Star, Inc. 
ImageJ NIH 
Integrative Genomics Viewer Broad Institute 
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7.2 Methods 
 

 

7.2.1 Informed consent and CB collection 

 

Written informed consents for umbilical cord blood collection, storage and donation were 

obtained from all the parents. The CB units were collected without alteration of safe 

Caesarean section deliveries. The CB units were always collected ex utero after the delivery of 

the placenta under strict sterile conditions. Blood samples were collected into sterile 250 ml 

blood collection bags containing 25 ml of anticoagulant (heparin, 30 U/ml) from the 

performing surgeon. The umbilical cord was clamped at one end, a needle was inserted into 

the umbilical vein on the unclamped end, and the blood was allowed to flow through the 

needle into the collection bag. 

 

7.2.2 Criteria for the storage of samples prior to processing 

 

Pre-processing CB storage temperature was maintained between 4°C and room temperature. 

The samples utilized for this thesis were all transported at room temperature and processed 

within 24 hours of collection. Time and temperature play an important role in the potential 

decline of cell viability in cord blood samples. 

 

 

7.2.3 Isolation of CD34+ cells from CB 

 

The mononuclear cell (MNC) fraction was obtained from whole CB using a density gradient 

method of cell separation. The blood samples were transferred from the sterile collection bags 

to sterile graduated beakers and diluted 1:4 with Dulbecco’s Phosphate buffered salt solution 

(PBS). Ficoll-Paque PLUS was used for the MNC isolation procedure. 15 ml of  Ficoll were 

transferred into 50 ml centrifuge tubes and 35 ml of diluted blood were then overlaid onto the 

Ficoll. The 50 ml tubes were centrifugated at 400 g (1350 rpm) for 35 minutes (20°C, 

acceleration 1, deceleration 0). Centrifugation accelerates the density gradient separation. A 

different migration through the Ficoll during centrifugation results in the formation of layers 

of different cell types: the bottom layer contains erythrocytes, whereas the MNCs are at the 
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interface between the plasma and Ficoll. The MNC layer was collected with a sterile Pasteur 

pipette and washed twice with ice cold PBS at 400 g (1350 rpm) for 10 minutes (4°C, 

acceleration 1, deceleration 0). Cell aliquots were taken for viability and enumeration using 

Trypan blue. Cells were counted with a Neubauer standard haemocytometer. The Trypan blue 

solution allows discrimination between dead cells (staining blue due to impaired membrane 

integrity) and viable cells (remaining translucent).   CD34+ progenitor cells were isolated using 

the CD34 progenitor cell isolation kit from Miltenyi Biotec. 108 MNCs were incubated with 

100 µl FcR blocking reagent together with 100 µl microbeads conjugated to the anti-human 

CD34 antibody for 30 minutes at 4°C. CD34+ progenitor cells were obtained after two cycles 

of immunomagnetic bead selection according to the manufacturer’s instructions. CD34+Lin- 

progenitor cells were isolated using the Diamond CD34 isolation kit from Miltenyi Biotec. 

Magnetic cell separation was used to separate Lin+ from Lin- human mononuclear cells. For 

this purpose 108 freshly isolated MNCs were first incubated with microbeads coniugated to a 

cocktail of biotin-conjugated monoclonal anti-human antibodies against CD2, CD3, CD11b, 

CD14, CD15, CD16, CD19, CD56, CD61, and CD235a. According to the manufacturer, 

labeled MNCs were passed through a magnetic field with Lin+ cells remaining inside the 

column and with Lin- cells passing through. The flow-through fraction was subsequently 

incubated with 100 µl microbeads conjugated to the anti-human CD34 antibody for 30 

minutes at 4°C. After cell count, CD34+Lin- purity was analysed by flow cytometry. The purity 

of the microbeads selection was ranging from 90% to 98 %.  

  

7.2.4 Culture of CD34+ cells 

 

CD34+ progenitor cells were cultured using serum-free StemSpan medium supplemented with 

1X penicillin and streptomycin, and two different cytokine cocktails (see section 7.1.1). The 

two cytokine cocktails used where: STF consisting of SCF, TPO, FGF-1 and heparin, and 

STFIA consisting of SCF TPO, FGF-1, IGFBP2, Angptl5 and heparin. Cells were cultured in 

4-well polystyrene plates for all experiments. Cells were maintained at 37°C in a 20% O2 and 

5% CO2 humidified atmosphere. Fresh medium was added every two days and cell density 

was maintained at 2×105 cells/ml. Cell counting was performed by using a hemocytometer 

and an inverse microscope. At designed culture time points, expanded cells were harvested 

and used for analysis. 
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7.2.5 Immunostainings of fresh and cultured CD34+ cells 

 

Cover slips with 100.000 fresh or expanded CD34+ cells were washed with PBS once. After 

removal of PBS, cells were permeabilised with 1 ml MSP buffer each well for 30 seconds. 

Afterwards, cells were fixed with 1 ml Methanol for 3 minutes at –20°C and washed three 

times with 1 ml PBS + 0,1 % Triton X-100. For blocking unspecific binding, cells were 

treated with 0,1 % Triton X-100, 5 % goat serum in PBS. Then cells were incubated for 30 

minutes with 250 µl of different primary antibodies. Slides were stained with the following 

primary antibodies: rabbit anti-H3K4me3 (1:200), rabbit anti-H3K27me3 (1:500). After 

washing three times with 1 ml 0,1 % Triton X-100 in PBS for 5 minutes, 250 µl of secondary 

antibodies (anti-rabbit Cy3 and Cy5) were used. The cells were incubated for 1 hour in the 

dark at room temperature. Cells were then washed three times with 0,1 % Triton X-100 in 

PBS and after that, nuclei were stained with 1 ml DAPI-solution (5 mg/ml DAPI stock 

solution was diluted 1:500 in PBS with 0,1 % Triton X-100, yielding a DAPI concentration of 

10 µg/ml) for 5 minutes. Then cells were washed with PBS and cover slips were put upside 

down on a drop of Fluorescent Mounting Medium on slides. Fluorescent imaging was done 

using a SP5 Confocal Microscope.  

 

 

7.2.6 Inhibitor treatment 

 

For EZH2 inhibitor treatment experiments, CD34+ cells expanded under STF conditions 

were treated with either GSK343 EZH2 inhibitor or GSK126 EZH2 inhibitor at the indicated 

concentrations. Cells were cultured in 4-well polystyrene plates. Fresh medium was added 

every second day and cell density was maintained at 2×105 cells/ml. 

 

 

7.2.7 Colony-forming unit (CFU) assays 

 

For analysis of clonogenicity 35-mm Petri dishes containing serum-free MethoCult SF H4236 

were used. Cells were seeded on methylcellulose supplemented with the growth factors 

contained in the Materials section 7.1.1 (three triplicates per condition), and incubated in a 

humidified atmosphere at 37°C and 5% CO2 for 14 days. Cell seeding numbers and 
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supplementation of methylcellulose medium are the following: for experiments of HPSC 

expansion using cytokine supplementation, 400 expanded cells (day 7) were plated per dish, 

the cells were expanded in either STFIA or STF conditions; for experiments of HPSC 

expansion using EZH2 inhibitors, aliquots of 400 expanded cells from each condition were 

seeded per dish. After 14 days of incubation, the number of granulopoietic colonies (colony-

forming unit granulocyte-macrophage or CFU-GM), multilineage colonies (colony-forming 

unit granulocyte-erythrocyte-macrophage-megakaryocyte or CFU-GEMM) and erythroid 

colonies (burst forming unit-erythrocyte or BFU-E) were scored using an inverted light 

microscope. 400 freshly isolated CD34+ cells/plate (in triplicates) were cultured for 14 days in 

methylcellulose for control.  

 

 

7.2.8 Hematoxylin & Eosin staining 

 

14 days after methylcellulose culture the hematopoietic colonies were washed twice for 5 

minutes and resuspended in 200 µl PBS and then cytocentrifuged onto glass slides 4 minutes 

at 200 g using Cytospin 4. The slides were stained with Hematoxylin & Eosin (HE). For HE 

staining the glass slides were shortly allowed to dry and, in order to better preserve the 

hematopoietic precursor cell morphology, the cells were fixed for 5 minutes with ice-cold 

Methanol. Subsequently, the samples were stained as follows: after an incubation of 5 minutes 

in H2O, they were incubated for 5 minutes with Hematoxylin. The slides were washed with 

tap water (change several times). The slides were incubated for 2 minutes with Eosin, then 

washed short with demineralized H2O, incubated first with 70% EtOH for 1 minute and then 

with 100% EtOH for 7 - 8 minutes. The slides were then directly incubated for 5 minutes 

with Xylene. Cover slips were put upside down on a drop of Vitroclud and the samples were 

then dried and photographed with an EVOS microscope.  
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7.2.9 Flow cytometry membrane staining  

 

For the detection of cellular surface antigens on living cells, fluorochrome conjugated 

antibodies were used. Approximately 100.000 cells were used and washed once in 1 ml of 

FACS buffer before staining. The cells were incubated with the antibodies of interest in FACS 

buffer for 45 minutes at 4°C. The fluorochrome conjugated antibodies used were against 

CD45, CD34, CD133, CD90, CD38, CD14, CD19, CD8 which were used at a concentration 

of 2 µl per antibody in 100 µl FACS buffer at 4°C. All the antibodies were coniugated with 

either PE fluorochrome or FITC fluorochrome. After 2 washing steps with FACS buffer, cells 

stained with monoclonal antibodies were resuspended in 100 µl FACS buffer and were ready 

for analysis. For all the washing steps the cells were spun down for 5 minutes at 1350 rpm. 

Approximately 10.000 events were gated for each sample.  

 

 

7.2.10 Intranuclear staining  

 

For chromatin flow cytometry analysis, cells were counted and 250.000 cells were used for 

each staining: cells were washed in 1X PBS, the supernatant was discarded and the pellet was 

resuspended in 100 µl of 1X PBS. 1 ml of icecold 88% Methanol solution in 1X PBS was 

added to the FACS tubes, and 100 µl of the cell suspension was added dropwise and slowly 

into the FACS tubes, while vortexing them. Cells were incubated for 30 minutes at -20°C for 

fixation and permeabilization. The alcohol was then discarded after a spinning step of 5 min at 

1700 rpm, and the cells, after vortexing, were washed twice with FACS buffer for 5 min at 

1700 rpm. Primary antibodies in the corresponding dilutions were added into the FACS tubes 

in a final volume of 100 µl and the samples were incubated for one hour at 4°C in the dark. 

For the characterization of epigenetic patterns primary antibodies against H3K4me3 

(0,5µg/100µl), H3K27me3 (0,5µg/100µl), H3K9me3 (0,5µg/100µl) and H3K79me3 

(0,5µg/100µl) were used. Primary antibodies against H3 (0,48µg/100µl) were used as controls. 

After one hour of incubation with the primary antibodies, 1 ml of FACS buffer was added 

into the FACS tubes, the cells were spun down for 5 min at 1700 rpm and washed again in 1 

ml of FACS buffer. The samples were incubated with the secondary antibody α-rabbit-APC 

(1:500) in FACS buffer in a final volume of 100 µl for 45 min and kept in the dark. After 
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washing with FACS buffer, the cells were resuspended in 120 µl of FACS buffer and 

measured using BD FACS Canto I flow cytometer. 

 

 

7.2.11 FACS data analysis 

 

For every FACS analysis 10.000 events were collected in a BD FACSCanto I flow cytometer. 

The cell populations were identified at first on the basis of the composite pattern of forward 

scatter (FSC) and side scatter (SSC) and non viable cells were excluded from analysis based on 

scatter properties. The samples were then observed and analysed for the used fluorochrome. 

Data were further analysed by FACSDiva software and then by FlowJo FACS data analysis 

software that applies compensation corrections.  

 

 

7.2.12 RNA isolation 

 

An RNase-free work environment was used for all molecular methodology. RNA isolation 

from cell pellets was performed either using peqGOLD RNA Pure or Rneasy Micro kit, both 

supplied by Qiagen. The Micro kit was applied when the cell numbers were 3x105 and below. 

The kit was used according to the manufacturer’s instructions. When the cell numbers were 

greater than 4x105, cells were washed once in 1X PBS by centrifuging for 5 minutes at 1350 

rpm. The cell pellet was resuspended in 500 µl of RNA peqGOLD, mix by gentle pipetting 

and then incubated for 5 minutes at RT. 100 µl of Chloroform (without Isoamil alcohol) was 

added and mixed by vortexing. Next, samples were incubated for 10 minutes on ice and then 

were centrifuged for 10 minutes at 4°C 12.000 g. The upper phases were transferred into fresh 

tubes and equal volumes of isopropanol at RT were added to the aqueous phase and mixed 

gently by inverting. The samples were incubated for 5 minutes at RT. The nucleic acid was 

then left to precipitate at 4°C for 15 minutes. Following precipitation, samples were 

centrifuged for 10 minutes at 4°C at 12.000 g. Following centrifugation, the supernatant was 

discarded and the pellet was resuspended in 1 ml of 75% icecold Ethanol. Samples were 

centrifuged for 10 minutes at 4°C at 12.000 g. The supernatant was discarded, and the pellet 

was again resuspended with 1 ml of icecold 75% Ethanol for a second wash and centrifuged 

for 10 minutes at 4°C at 12.000 g. Finally, the supernatant was decanted carefully and the 

pellet was air dried and resuspended in 25 µl of DEPC-treated water. Samples were incubated 
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for 30 minutes at 4°C and were subsequently stored at -20°C. To evaluate the purity and the 

integrity of the mRNA produced, the extracted amounts of RNA were photometrically 

quantified using an Eppendorf BioPhotometer. 

 
 

7.2.13 DNAse treatment and cDNA synthesis 

 

To remove any contaminating genomic DNA from total RNA, RNA samples were treated 

with RNAse-free recombinant DNAse. Between 0,5 and 1,5 µg of RNA was mixed with 1,3 µl 

of 10X DNAse buffer, DEPC treated water was added to a final volume of 12 µl, and 1 µl 

(2U) of DNAse I was added. Samples were incubated for exactly 30 minutes at 37°C. DNAse 

was inactivated by adding 1 µl of 25 mM EDTA and 10 minutes incubation at 65°C. Samples 

were kept on ice for previous cDNA synthesis or were stored at -20°C. Half of the reaction 

mix containing 0,5 µg RNA was used for cDNA synthesis. 

Purified RNA was reverse transcribed by the M-MLV reverse transcriptase (200 U/µl). 1 µl of 

oligo dT primers (5' TTT TTT TTT TTT TTT T 3') was added to the DNAse treated RNA. 

DEPC treated water was added to a final volume of 16,5 µl. The oligo dT primers were 

allowed to anneal to the poly-A RNA at 65°C for 5 min, followed by rapid chill down on ice. 

Subsequently, RNA was incubated with 1 µl dNTPs (10 mM), 5 µl first-strand buffer, 2 µl of 

0,1 M DTT, and 0,6 µl M-MLV reverse transcriptase at 37°C for 1 hour. Samples were 

incubated at -20°C for at least 20 minutes. The resulting cDNA was then either used directly 

or stored at -20°C until further application. The purity of the cDNA produced was tested 

photospectrometrically. The ratio of absorbance values at 260 nm and 280 nm gives an 

estimate of DNA. An A260/A280 ratio of 1,8 - 2,0 was considered as pure cDNA. 

 

 

7.2.14 Primer design and quantitative realtime PCR 

 

A list of the primers used during the course of this study is elaborated in the section 7.1.3. All 

primers were self-designed using the following web provided programmes: 

NCBI (National Centre for Biotechnology Information): the primers were designed ensuring 

that the mRNA sequence selected included a segment of two exons 

(http://www.ncbi.nlm.nih.gov/nuccore). 
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Primer 3: the selected mRNA sequence was used for designing primers ranging in length 

between 100-200 bp (http://bioinfo.ut.ee/primer3-0.4.0/primer3/). 

USCS in Silico PCR: once primers were designed they were checked for efficiency and 

selectivity (http://genome.ucsc.edu/cgi-bin/hgPcr?org=Human).  

 

Oligo Calc (Oligonucleotide Properties Calculator): the PCR primers were checked for 

potential hairpin interactions and self complementarity 

(http://www.basic.northwestern.edu/biotools/oligocalc.html). 

 

Real-time PCR allowing detection and quantification of nucleic acid sequences was performed 

using Sybr-Green Mix in the Corbett RG-3000. For general gene expression analyses, 1 µl 

cDNA (~50 ng) was mixed with 10 µl 2x Sybr-Green Mix, 8,5 µl water and each 0,25 µl of 

100 pM primers. Sybr-Green Mix was used as a fluorescent DNA binding dye, that binds all 

double-stranded DNA and detection is monitored by measuring the increase in fluorescence 

throughout the cycle. All primers used are listed in the section 7.1.3. Analyses were referred to 

beta-actin and RPL27 by the delta-delta Ct calculation. All reactions were carried out as 

duplicates with the following PCR program: 95°C for 15 min, 40x (95°C for 10 s, 60°C for 20 

s, 72°C for 30 s, 80°C for 20 s), 50°C for 1 min.  

 

 

7.2.15 Global gene expression analysis (Microarray)  

 

RNA was isolated using RNeasy Mini Kit with DNase I digestion (Qiagen) and subjected to 

microarray analysis. The RNA quality was analysed using the Agilent RNA 6000 Pico Total 

RNA Kit with a 2100 Bioanalyzer. Microarray preparation and determination of gene 

expression levels were performed by Prof. M. Zenke, Qiong Lin and colleagues. Briefly, 

sample preparation was performed according to the Expression Analysis Technical Manual 

(Affymetrix). GeneChip One-cycle Target Labeling Kit (Affymetrix) and 1$µg total RNA were 

used. Biotin-labeled cRNA was hybridized on Affymetrix Human Gene 1.0 ST Array. Arrays 

were stained, washed, and scanned according to the manufacturer's protocols. Gene 

expression levels were determined by RMA algorithm using Affymetrix power tools. 

Hierarchical clustering was performed using Pearson correlation coefficient and the average 

linkage method and represented by dendrogram and heatmap. The transcripts having a fold 
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change >2 were considered as being differentially expressed. Data sets were submitted to 

Gene Expression Omnibus database (www.ncbi.nlm.nih.gov/geo) under the accession 

number GSE58461. 

 

 

7.2.16 Western blot 

 

Protein samples were prepared from 0,5x106 cells which were lysed in 60 µl protein lysis 

buffer and sheared by passing through a 21 gauge needle for several times. Samples were 

heated up to 95°C for 5 min and proteins were separated by SDS-PAGE in 12% SDS gels. 

Proteins were blotted onto nitrocellulose membranes. Subsequently, after blocking unspecific 

binding sites in 5% milk in PBS with 0,1% Tween20 at room temperature for 30 min, the 

membranes were incubated with primary antibodies in 1X PBS containing 1% milk and 0,1% 

Tween20 at 4°C over night. After three washes secondary HRP-coupled antibodies were 

incubated for 2 h at RT in 1X PBS 0,1% Tween20, before proteins were detected by ECL 

addition and chemiluminescence measurement, either by X-ray film or by Biorad Imaging 

system. Membranes were stripped from antibodies by 30 min incubation with stripping 

solution at 50°C. Primary antibodies used were anti-H3K4me3, anti-H3K27me3, anti-H3 and 

anti-EZH2. 

 

 

7.2.17 Chromatin immunoprecipitation (ChIP) low cell number 

 

ChIP was done with adjustments to the protocol described by Dahl and Collas (Dahl et al., 

2009). 2x105 cells were crosslinked for 8 min at RT by 1% Formaldehyde in 500 µl 1X PBS. 

The Formaldehyde was quenched by adding 1/10 of volume of 2 M freshly prepaired Glycine 

followed by incubation for 5 minutes at RT, and the cells were washed twice in ice cold 1X 

PBS for 10 minutes at 4°C at 500 rcf. The cell pellet was gently resuspended in 500 µl of 

buffer A and mixed well by pipetting followed by incubation on ice for 10 minutes. Nuclei 

were subsequently collected by centrifuging at 500 rcf for 5 minutes at 4°C. After removing 

the supernatant, the nuclei were resuspended in 500 µl of buffer B followed by incubation on 

ice for 10 minutes. After nuclei isolation the pellets were resuspended in 120 µl SDS lysis 

buffer. The chromatin was sheared with a Covaris M220 Focused-ultrasonicator for 15 

minutes with 10% duty factor. The DNA fragment size and quantitation was analysed using 
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the Agilent High Sensitivity DNA kit with a 2100 Bioanalyzer. After sonication, the chromatin 

was diluted to reduce SDS concentration to 0,1% in a final volume of 1 ml RIPA ChIP buffer. 

10% of the chromatin was used as input material and the remaining chromatin was suitable 

for 8 parallel ChIPs. 2,5 µg of H3K4me3, H3K27me3, H3 or 1 µg of IgG isotype control 

antibodies were used for 100 µl chromatin. The antibodies were incubated on a rotator for 2 h 

at 4°C with 10 µl Dynabeads protein A in a final volume of 100 µl RIPA buffer for the 

antibody-beads complex preparation. 100 µl chromatin was incubated with the antibody-beads 

complex on a rotator for 2h at 4°C. The DNA recovery and purification from the ChIP 

material was done by phenol chloroform extraction and ethanol precipitation. The DNA was 

dissolved in 40 µl TE buffer and used for real time PCR. 2 µl of ChIP-DNA and input DNA 

were used per PCR reaction together with ABsolute SybrGreen Mix and ChIP-specific 

primers. All reactions were carried out on a Corbett RG-3000 machine as triplicates with the 

following PCR parameters: 15 min, 95°C 40x (10 s, 95°C; 20 s 60°C, 30 s, 72°C, 20 s, 80°C), 

50°C for 1 min. Analyses were referred to non-precipitated input DNA by delta-delta Ct 

calculation. Values were normalized for H3 ChIP-DNA levels. All primers used were specific 

for the promoter regions of selected genes.  

 

 

7.2.18 ChIP primer design  and ChIP-seq analyses 

A list of the ChIP primers designed according to methylation patterns during the course of 

this study is elaborated in the section 7.1.3. All primers were self-designed using the following 

web provided programmes: 

Integrative Genomics Viewer (IGV): IGV is a visualization tool for interactive exploration of 

large genomic datasets, including array-based and next-generation sequence data. IGV was 

used for selecting the desired sequence with the use of annotated ChIPseq datasets of histone 

modifications of interest (http://www.broadinstitute.org/igv/Genomes). 

 

Human BLAT search: After choosing the right genome, the primers were designed ensuring 

that the selected sequence was immediately upstream the transcription start site (TSS) or 

within the first exon. The primers were designed ensuring the presence of CpG islands and of 

annotated histone modifications of interest (http://genome.ucsc.edu). 
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Primer 3: the selected sequence was used for designing primers ranging in length between 

100-200 bp (http://bioinfo.ut.ee/primer3-0.4.0/primer3/). 

Oligo Calc (Oligonucleotide Properties Calculator): the PCR primers were checked for 

potential hairpin interactions and self complementarity 

(http://www.basic.northwestern.edu/biotools/oligocalc.html). 

 

DNA from ChIP (10-30 ng) was used for library preparation (Illumina). Adapter ligated and 

amplified fragments were sequenced on an Illumina HiSeq 2000 sequencing system using 50 

bp single end reads. Sequence tags were mapped to the human reference sequence version 

GRCh37/hg19 using BWA (Li et al., 2010). Reads were filtered for unique mapping and 

mapping quality. Duplicate reads were removed. Sequence tags from biological replicates were 

analysed for correlation/reproducibility using ENCODE criteria (Landt et al., 2014). Peaks 

were called separately in replicate samples, peak areas of replicates were then merged, and 

sequence tags in merged peak regions were finally correlated between replicates. The 

distribution of log-transformed ChIP-seq tags in replicates was plotted as a color-coded tag 

count density map. Tags from replicates were combined and normalized to 107 tags per 

sample. The fraction of reads falling within peak regions (fraction of reads in peaks, FRiP) was 

used as a measure for global ChIP enrichment. For global similarity analyses, tags were 

counted into 500 bp genomic bins and unsupervised hierarchical clustering was applied using 

Ward's minimum variance method. As H3K4me3 and H3K27me3 were expected to cover 

larger sized regions of the genome, SICER version 1.1 (Zang et al., 2009) was used for peak 

detection with a fragment size estimate of 150 bp, a window size of 200 bp and a gap size of 

400 bp for H3K4me3 and 600 bp for H3K27me3. FDR cut-off for statistical enrichment was 

set to 1X10-2. Genomic locations of peaks were defined relative to RefSeq transcription start 

sites (TSSs) and annotated using HOMER (Heinz et al., 2010). Promoters were defined from -

1kb to +100bp. Promoters were considered to be bivalent if they had significant enrichment 

for both H3K4me3 and H3K27me3 within the narrow promoter window. The enrichment of 

Gene Ontology terms was calculated using DAVID tools (Huang et al., 2009) and sorted by 

term enrichment p-value. Histograms of tag densities were calculated with position-corrected, 

normalized tag counts using the ngs.plot software (Shen et al., 2014). We used MeV (Saeed et 

al., 2003) to generate heatmaps, and area-proportional Venn diagrams were created 

(VennDiagram package in R, http://cran.r-project.org/web/packages/VennDiagram). UCSC 

browser tracks were created with a resolution of 1 bp window and normalized to 107 reads 

using HOMER. For relating changes of chromatin modifications and mRNA expression data, 
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approximately 26.000 transcripts with unique genomic representation and processable mRNA 

expression data read out on the Affymetrix arrays were chosen and respective promoter 

regions were retrieved using the BiomaRt package (Durinck et al., 2009). Genomic intervals 

1.000 bp upstream and 500 bp downstream the transcriptional start sites of those transcripts 

were defined and sequence tags from normalized ChiP-seq data were counted into the 

intervals. Log2-fold changes were calculated for ChiP-seq reads and for Affymetrix based 

expression data. Heatmaps were created using the Multiple Experiment Viewer (MeV, 

http://www.tm4.org). Data sets were submitted to Gene Expression Omnibus database 

(www.ncbi.nlm.nih.gov/geo) under accession number GSE58461. 

 

 

7.2.19 NSG Mouse line  

 

NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice were purchased from Jackson Laboratory (Bar 

Harbor, ME, USA), and have been bred and maintained under defined conditions in 

ventilated cages with irradiated food and filtered water. NSG mice were bread, housed and 

handled at the Animal Facility of the ZEMM Institute at the University of Würzburg, 

according to institutional regulations. 

 

 

7.2.20 Primary and secondary NSG transplantation 

 

Mice at 8-12 weeks of age were placed into the irradiation box and were irradiated with 2 Gray 

(Gy) (Faxitron CP-160 X-ray radiation cabinet (160 kV, 6.3 mA, 0.4 Gray/min, filter: 0.5mm 

Cu)) of whole-body irradiation at the ZEMM institute at the University of Würzburg. Within 

8 hours mice were injected via tail vein with approximately 0,5×105 freshly isolated CD34+ 

cells or with their expanded progeny together with 2×105 freshly isolated NSG splenocytes. 

For experiments of HSPC expansion using cytokine supplementation, transplantation 

included two groups of mice injected with 7 days expanded cells using either STF or STFIA. 

Three to four mice per group were used in each experiment. Groups of four unmanipulated 

and four irradiated uninjected mice were used as negative controls. For experiments of HSPC 

expansion using EZH2 inhibitors, transplantation included three groups of mice injected with 

the progeny of 2x105 CD34+ cells expanded for 7 days using either STF or STFIA, or with the 

progeny of 2x105 CD34+ cells expanded for 7 days with STF cocktail plus either GSK 343 (1 
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mM) or GSK 126 (1 mM). Three to four mice per group were used in each experiment. 

Groups of four irradiated uninjected mice were used as negative controls. Eight to ten weeks 

post-transplantation (short-term engraftment) mice were sacrificed for a first engraftment 

assay analysis. 16 weeks post-transplantation (long-term engraftment) mice were sacrificed for 

a second engraftment assay analysis. Peripheral blood (PB), spleen (SP) and bone marrow 

(BM) were harvested for further analyses and analysed by flow cytometry. Secondary 

transplantations were carried out at 16 weeks post-primary transplantation. The BM cells of 

both tibias and femurs of a primary recipient together with 2X105 freshly isolated NSG 

splenocytes were injected into two sub-lethally irradiated secondary recipients. 

 

 

7.2.21 Organs preparation and analysis of human cell 

engraftment 

 

The mice were sacrificed by cervical dislocation. Blood samples were collected in 1,5 ml 

eppendorf tubes containing 500 µl of 0.5 mM EDTA. 4 drops of blood were collected by 

heart puncture with a 27G sterile syringe. The samples were then incubated for 30 minutes in 

the water-bath at 37°C together with 1 ml of 2% Dextran in 1X PBS solution. The 

supernatants were spun down for 7 minutes at 1350 rpm and the pellets were then washed 

twice with 1X PBS. Spleens were scraped off and successively flushed trough a 70 µm cell 

strainer in MACS buffer. The pellets were washed twice with 1X PBS for 5 minutes at 1350 

rpm. The BM cells of both tibias and femurs of a recipient were collected flushing the bones 

with MACS buffer. The BM cells were then flushed trough a 70 µm cell strainer and the 

pellets were washed twice with 1X PBS. PB, SP and BM cells were then resuspended in red 

blood cell (RBC) lysis solution (Gey’s solution) and were incubated for 5 minutes on ice. The 

white blood cells were centrifuged in FCS for 7 minutes at 1350 rpm. After 2 washing steps 

with FACS buffer, cells were ready for staining with the antibodies of interest. For all the 

washing steps the cells were spun down for 5 minutes at 1350 rpm. Peripheral blood, spleen 

and bone marrow of the recipients were collected 4, 8 and 16 weeks post-transplantation and 

cells were analysed via FACS analysis for human chimerism using antibodies against human 

CD45 surface marker. The multilineage differentiation capacity of transplanted cells was 

analysed by staining the spleen and BM of the recipient animals for different FITC- or PE-

labelled Lin markers and matching isotype antibodies (CD19, CD14, CD3, CD45). At least 
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10.000 events were acquired per probe and successful engraftment of human transplanted 

CD34+ cells was set to higher values than 0,1% of human CD45 cells in mouse PB. 

 

 

7.2.22 Statistical analysis 

 

All results are indicated with standard error of the average of independent experiments 

(number indicated per figure). To estimate the probability of difference, analyses were done by 

two-tailed Students t-test. Probability value of p < 0,05 denoted statistical significance.
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