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onInformation extraction is widely used to identify well-defined 
entities and relations in unstructured data. Interesting enti-
ties are often consistently structured within a certain context, 
especially in semi-structured texts. However, their actual com-
position varies and is possibly inconsistent among different 
contexts. Information extraction models stay behind their 
potential and return inferior results if they do not consider 
these consistencies during processing. This work presents 
a selection of practical and novel approaches for exploiting 
these context-specific consistencies in information extraction 
tasks. The approaches direct their attention not only to one 
technique, but are based on handcrafted rules as well as pro-
babilistic models.
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Abstract
Large amounts of communication, documentation as well as knowledge and information are
stored in textual documents. Most o�en, these texts like webpages, books, tweets or reports
are only available in an unstructured representation since they are created and interpreted by
humans. In order to take advantage of this huge amount of concealed information and to include
it in analytic processes, it needs to be transformed into a structured representation. Information
extraction considers exactly this task. It tries to identify well-de�ned entities and relations in
unstructured data and especially in textual documents.
Interesting entities are o�en consistently structured within a certain context, especially in

semi-structured texts. However, their actual composition varies and is possibly inconsistent
among di�erent contexts. Information extraction models stay behind their potential and return
inferior results if they do not consider these consistencies during processing. �is work presents
a selection of practical and novel approaches for exploiting these context-speci�c consistencies
in information extraction tasks. �e approaches direct their attention not only to one technique,
but are based on handcra�ed rules as well as probabilistic models.
A new rule-based system called UIMA Ruta has been developed in order to provide optimal

conditions for rule engineers. �is system consists of a compact rule language with a high
expressiveness and strong development support. Both elements facilitate rapid development of
information extraction applications and improve the general engineering experience, which
reduces the necessary e�orts and costs when specifying rules.
�e advantages and applicability of UIMA Ruta for exploiting context-speci�c consistencies

are illustrated in three case studies. �ey utilize di�erent engineering approaches for including
the consistencies in the information extraction task. Either the recall is increased by �nding
additional entities with similar composition, or the precision is improved by �ltering inconsistent
entities. Furthermore, another case study highlights how transformation-based approaches are
able to correct preliminary entities using the knowledge about the occurring consistencies.
�e approaches of this work based on machine learning rely on Conditional Random Fields,

popular probabilistic graphical models for sequence labeling. �ey take advantage of a consis-
tency model, which is automatically induced during processing the document. �e approach
based on stacked graphical models utilizes the learnt descriptions as feature functions that have
a static meaning for the model, but change their actual function for each document. �e other
two models extend the graph structure with additional factors dependent on the learnt model
of consistency. �ey include feature functions for consistent and inconsistent entities as well as
for additional positions that ful�ll the consistencies.
�e presented approaches are evaluated in three real-world domains: segmentation of scien-

ti�c references, template extraction in curricula vitae, and identi�cation and categorization of
sections in clinical discharge letters. �ey are able to achieve remarkable results and provide an
error reduction of up to 30% compared to usually applied techniques.
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Preface

Understanding natural language is a key technology for business and society, since computer
services would be much more powerful if they are able to extract relevant information from
free text in the web, in news, in reports and protocols etc. �e last years showed impressive
success for this di�cult task. �e book of Peter Klügl contains several innovative contributions
for improving information extraction, i.e. to extract prede�ned information types from text
like employers and durations from curricula vitae or symptoms, diagnoses and therapies from
medical reports. His key idea is to exploit the observation that documents written by the same
author or generated by the same process are usuallymuchmore similar to each other than to other
documents of the same domain. If an information extraction system has extracted information
from one document of such a cluster, context speci�c features of the extracted information can
be learned and transferred for extraction from other documents of the same cluster. Peter Klügl
shows convincingly, that this method of exploiting context speci�c consistencies in documents
works both formachine learning and rule based information extraction approaches and improves
precision and recall in several applications with publicly available corpora and own projects by
about 30%.
Information extraction is a di�cult engineering task: researchers and practitioners use a lot

of tools, o�en integrated in architectures like GATE (general architecture for text engineering)
or UIMA (unstructured information management architecture). Peter Klügl has designed
and implemented an innovative open-source rule-based component UIMA Ruta (rule-based
text annotation) for UIMA thus closing a gap for this widespread architecture. His book is
characterized by both theoretical and practical contributions and insights for information
extraction and I recommend it strongly.

Frank Puppe
Chair VI – Arti�cial Intelligence and Applied Computer Science
Institute of Computer Science
University of Würzburg
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Chapter 1

Introduction
Information extraction addresses the identi�cation of well-de�ned entities and relations in
unstructured data and especially in textual documents. Even if the research in this area has a
long history, it becomes more and more important nowadays due to the increased availability of
unstructured data. A vast amount of information is stored and exchanged in an unstructured
representation since it is mainly intended to be interpreted by humans. Examples for this fact
are webpages in the Internet, technical documents in industry, medical notes or even novels1.
In order to access the concealed information for analytic processes, it has to be transformed

into a structured representation. Hence, information extraction has become a key component in
the integration of textual data and can be considered as an umbrella term for many interesting
tasks such as named entity recognition, sentiment analysis or knowledge extraction. Two
emerging and challenging trends in this area are information extraction from social media, like
blogs or tweets [162], and knowledge extraction from clinical notes [179].
Approaches to information extraction can roughly be divided into two main categories:

approaches based on handcra�ed rules and approaches based on statistical models trained in
a supervised fashion. �e latter models include classi�ers or probabilistic graphical models
like Conditional Random Fields [137]. �ere are of course no clear boundaries since hybrid
information extraction systems can apply components of both approaches, or the rules are not
written by a knowledge engineer, but they are automatically induced. While statistical models
dominate the research in academia, commercial applications are mostly implemented as rule-
based systems [44]. �is discrepancy cannot be explained by the latency of translational e�orts
from research to industry. Chiticariu et al. have investigated the reasons for this disconnect and
noticed that research and industry measure the costs and bene�ts of information extraction
di�erently [44]. Aside from many other reasons, rule-based systems sometimes �t better in the
requirements of real-world use cases, e.g., availability of labeled data, stability of the speci�cation
or traceability of results. Statistical models are able to include a vast amount of properties and
features in the classi�cation decision, which o�en leads to an improved accuracy compared to
rule-based approaches. It is easier to publish approaches using machine learning techniques
since no human factor needs to be evaluated in the experimental setup and the experiments can
be reproduced given the algorithms and the labeled data. Even though statistical models o�en
perform better, e.g., in information extraction challenges, the need for rule-based information
extraction will not decrease in the foreseeable future. �e amount of publications about rule-
based systems and approaches has even been slightly increasing in the recent years [66].
1 Parts of the content of the introduction are taken from Peter Kluegl, Martin Toepfer, Philip-Daniel Beck, Georg
Fette, Frank Puppe. UIMA Ruta: Rapid Development of Rule-based Information Extraction Applications. Natural
Language Engineering, 2014 [125].
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1.1 Motivation
When extracting entities and relations it is o�en assumed that they are independent and identi-
cally distributed (iid). However, many documents violate these assumptions. Webpages and
semi-structured documents are o�en generated using templates that specify the arrangement
of the textual contents. �e entities of a speci�c type of information are ordered in lists, tables
or similar structures and share the same layout. Examples for this are web stores that provide
one webpage for each product. �e information about the product is arranged with the same
layout and formatting in each page. �e title of the product may use a di�erent layout than the
price, but these entities are consistently structured throughout all pages of a website. Other
websites apply, however, di�erent templates for generating the webpages. While the entities in
this website are also consistently structured, they might apply di�erent layouts compared to the
previous website. When an information extraction model processes these websites, for example,
in order to extract the product information, then the iid assumption is violated. �e entities are
not independently distributed since subsets of entities share similar layouts.
Such dependencies between entities do not only occur in automatically generated documents.

When humans manually compose and write documents, then they typically apply some sort of
template or consistent structure. �ey organize repeating entities homogeneously or keep the
order of entities. Humans tend to apply the same layout for elements of equal level, like the fonts
of di�erent kinds of headlines. �ese regularities can especially be found in semi-structured
documents that include layout or structure in order to highlight di�erent aspects of the text.
�is work calls the dependencies between entities context-speci�c consistencies. �e entities

within one context or document share the same or at least similar composition, which manifests
in the choice of formatting, the order of entities or other properties. Entities in another document
are also consistently structured, but in a di�erentway. �e actual composition of the entities is not
known when processing a document, and the composition and applied formatting is potentially
contradictory. �ese consistencies concerning the arrangement and layout of entities are called
context-speci�c, because they are only ful�lled in a speci�c frame or scope. Information
extraction models processing these kinds of documents face severe problems resulting in a
reduced performance. Properties that indicate a speci�c type of entity in one document are not
valid or give evidence for a di�erent type of entity in another document. �e discriminative e�ect
of these properties thus stays behind its potential. If these properties can be utilized restricted in a
certain context or document, then they enable the information extraction model to considerably
improve their results. When humans read documents with context-speci�c consistencies, they
are actually able to easily interpret the contained information. �ey automatically consider the
context and include similarities between entities for identifying the information.
�is problem is illustratedwith an example of extracting entities fromcurricula vitae. Figure 1.1

depicts a �ctional curriculum vitae and highlights the results of an information extractionmodel,
e.g., a set of rules built or statistical model with dictionary lookup. If the applied dictionaries
contain entries for American Eagle, Planet Beach and Victoria’s Secret, then these companies
can be easily identi�ed without further keywords. However, the company Heartbreaker will
probably not be extracted since not enough evidence is given due to the missing entry in the
dictionary. �e model was able to identify common patterns of timespans but failed to detect
the �rst occurrence “present”, which indicated the current position of the author.
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1.1 Motivation

John Doe 

WORK EXPERIENCE: 

AMERICAN EAGLE    City, State 
Sales Associate   July 2009 - present

Collaborated with the store merchandiser creating displays to attract clientele
Use my trend awareness to assist customers in their shopping experience
Thoroughly scan every piece of merchandise for inventory control
Process shipment to increase my product knowledge

PLANET BEACH      City, State 
Spa Consultant    Aug. 2008 - present 

Sell retail and memberships to meet company sales goals
Build organizational skills by single handedly running all operating procedures
Communicate with clients to fulfill their wants and needs
Attend promotional events to market our services
Handle cash and deposits during opening and closing
Received employee of the month award twice

HEARTBREAKER                City, State 
Sales Associate  May 2008 – Aug. 2008 

Stocked sales floor with fast fashion inventory
Marked down items allowing me to see unsuccessful merchandise in a retail market
Offered advice and assistance to each guest

VICTORIA’S SECRET       City, State 
Fashion Representative      Jan. 2006 – Feb. 2009 

Applied my leadership skills by assisting in the training of coworkers
Set up mannequins and displays in order to entice future customers
Provided superior customer service by helping with consumer decisions
Took seasonal inventory

AMERICAN EAGLE  

PLANET BEACH

VICTORIA’S SECRET  y,
Jan. 2006 – Feb. 2009 

y,

y,
May 2008 – Aug. 2008–

y,

Aug. 2008 - present 
y,

Figure 1.1: Excerpt of a fictional curricula vitae2 with highlighted spans for Companies and Dates. The
boxed areas exemplify missing entities caused by the absence of specific features. The remaining
contextual features are not sufficient for identifying these entities. Exploiting the context-specific
consistencies concerning positioning and formatting can help to find the missing entities.

In this example, the missing company can simply be identi�ed by analyzing the other compa-
nies in this curriculum vitae. �ey all contain only capitalized characters and are located at the
beginning of the section describing an employment. �e same applies for the missing timespan
of the �rst employment. All extracted timespans are located in the second line a�er the title of
the job position. By identifying and using the knowledge about the consistent composition of
the entities in these sections, many errors of the extraction model can potentially be prevented.
Especially precision-driven approaches based on dictionaries and rules can be improved by
increasing their recall. However, also statistical models are able to take advantage of context-
speci�c hints. �ey exploit the consistent composition of entities in order to compensate missing
features or contradictory formatting. �e example straightforwardly highlights the weaknesses
of information extraction models compared to humans. While information extraction models
typically process the document using only local features, humans take advantage of evidence
that is interspersed throughout the complete text. �ey always incorporate the context and
automatically infer a model about the typical composition. As a consequence, the information
is easily identi�ed.

2 http://upload.wikimedia.org/wikipedia/commons/c/cc/Resume.pdf
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1.2 Goal
�emain claim of this work follows logically from the motivation in the last section: context-
speci�c consistencies can help to improve information extraction. Some sparse and isolated
publications have already considered these kinds of dependencies [25, 177, 94, 92]. However,
their approaches are limited concerning isolated factors. Some of them have been developed for
a speci�c task and are not applicable for other domains. Most publications present approaches
based on one speci�c technique. Furthermore, all approaches are limited concerning the kinds
of consistencies they are able to exploit. �ere is no common understanding of the problem,
which led to redevelopment of the same ideas. A thorough and systematic investigation of
context-speci�c consistencies in information extraction is necessary that is not limited to
speci�c techniques, domains or aspects of consistencies.
�e goal of this work consists in this investigation of context-speci�c consistencies. A closer

look has to be taken at possible appearances of context-speci�c consistencies and approaches
need be developed that rely on di�erent techniques and that are not limited to a speci�c domain.
�e focus lies on practical solutions instead of models of arbitrary complexity. Approaches
are preferred that extend available techniques while providing considerable advantages over
standard solutions. Furthermore, the e�ort of developing information extraction models with
techniques for exploiting context-speci�c consistencies should not exceed the bene�t, e.g., the
increase of accuracy.
�e two main directions for developing information extraction models consisting in hand-

cra�ing rules and training probabilistic models provide di�erent advantages and disadvantages.
�eir applicability for an information extraction task depends on various factors. �ese include
the availability of examples, the e�ort to create gold standards, the necessity of traceable results,
the stability of the speci�cation, or the required performance including runtime and quality. �e
occurrence of context-speci�c consistencies is independent of these factors. �us, approaches
need to be developed that are able to exploit the consistencies using handcra�ed rules as well as
trained models.
�e development of information extraction methods and applications is not an end in itself.

�ey are created to solve or improve speci�c information extraction tasks in given domains. �e
generality and applicability of the developed approaches are shown in three domains: references
in scienti�c publication, curricula vitae and clinical discharge letters. �ese domains are very
di�erent concerning various characteristics like the information extraction task and highlight
the widespread occurrences of context-speci�c consistencies.

1.3 Contributions
�emain contribution is the systematic investigation of context-speci�c consistencies in the
research area of information extraction. �is work provides the �rst thorough analysis of this
kind of dependencies, which extends the e�ectiveness of information extraction in many do-
mains. Some sparse and isolated publications present patchwork restricted to certain techniques,
domains and the kinds of consistencies they are able to model. �e results of this work are
not limited concerning these factors. �ey provide solutions for exploiting various kinds of
context-speci�c consistencies. Most of these consistencies exceed the capabilities of related
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approaches. �is work is not restricted to a speci�c technique for information extraction. It
presents solutions how to take advantage of the consistencies with the two major approaches
in this area: handcra�ed rules and probabilistic models. �us, the presented approaches are
able to �t in any kind of requirements of real-world use cases. �e general applicability of the
developed approaches is shown by evaluating them in three dissimilar domains, in which the
accuracy of the information extraction task could be greatly increased.
�e technical contribution of this work to the research �eld of information extraction consists

of four major parts:

• Design and implementation of the rule-based system UIMA Ruta.

• Knowledge engineering approaches for exploiting context-speci�c consistencies in rule-
based applications.

• Learning a model of context-speci�c consistencies with rule-based classi�ers.

• Extensions of Conditional Random Fields for exploiting context-speci�c consistencies in
information extraction based on machine learning.

�is section provides an overview of the di�erent parts of contribution and reports the exper-
imental results in three real-world domains: segmentation of references, template extraction
in curricula vitae and segmentation of clinical letters. �ese three domains are very di�erent
concerning the information extraction task, which highlights the widespread occurrences of
context-speci�c consistencies and the general applicability of the developed approaches.

UIMA Ruta
UIMA Ruta is a rule-based system for information extraction and general natural language
processing tasks. A special focus of the system lies on a compact rule language with a high
expressiveness combined with strong development support. �ese attributes facilitate rapid
development of rule-based applications and thus reduce onemajor bottleneckwhen handcra�ing
extraction knowledge: the time and costs of the engineering task. UIMA Ruta provides most
of the features of related systems concerning language and tooling support. Furthermore, it
introduces several new and useful elements that are not found in other systems. �ese include
amongst others a coverage-based concept of visibility, powerful vertical matching or estimation
of the rules’ quality on unlabeled documents.
Rule-based information extraction is awell-established �eld of researchwith a long history and

various systems and implementations. �ere are, however, several reasons for the development
of a new system. Besides the provided features in contrast to related work, the support of
rule-based systems in the UIMA framework [77] lacks freely available, open source alternatives.
Commercial or partially commercial systems are not straightforwardly utilized in academic
context. Other rule languages based on UIMA lack expressiveness or tooling support. �e
absence of a freely available and open system that is accepted as the standard tool by the
community handicaps academic research. �is fact can be substantiated with examples from
other architectures like JAPE [54] in the GATE framework [58]. UIMA Ruta tries to �ll this gap
of standard rule support for the UIMA framework. �e success can hardly be measured, but
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there are already strong indicators that the system establishes in the community, e.g., questions
asked in mailing lists and in websites like Stack Over�ow3.
UIMA Ruta has not been created speci�cally for exploiting context-speci�c consistencies.

It is a useful general-purpose tool for many diverse use cases. In contrast to other systems,
however, it provides some features that facilitate the integration of context-speci�c consistencies
in rule-based applications. Amongst others, these include language elements rather unknown
to rule languages. Lists and variables help to model consistencies with rules and allow one to
integrate dynamic knowledge about the currently processed document. An example for this
fact is the usage of variables in the matching condition of a rule in order to process an entity
dependent on the dominant composition of all entities. Another important aspects consists
in the availability of di�erent engineering approaches. Due to the high expressiveness of its
language, UIMA Ruta supports always more than one approach to solve an annotation problem,
which can be essential for dealing with di�erent aspects of consistencies. Besides these properties,
e�cient and e�ective engineering is also helpful when handcra�ing rule set for context-speci�c
consistencies and leads to an improved engineering experience in general.

Knowledge Engineering Approaches
�e �rst contribution for exploiting context-speci�c consistencies in order to improve the
performance of information extraction is a set of case studies that have been implemented using
UIMA Ruta. �ese rule-based applications highlight di�erent engineering approaches that
enable a knowledge engineer to take advantage of the consistencies.
In the �rst case study, simple precision-driven rules are extended with rules for �nding addi-

tional entities that share a composition similar to detected ones. �is approach is very e�ective
and e�cient since the utilized rules are easy and fast to engineer. Even if the resulting applica-
tions are maybe not su�cient for solving real-world information extraction tasks, they provide
many advantages. �e approach can be utilized for creating prototypes, which perform almost as
good as throughout engineered applications, or for a fast analysis of a domain, e.g., by extracting
lists of potential entities. �e results can then be applied to accelerate the development of the
actual application. �e engineering approach is evaluated for the identi�cation of companies in
curricula vitae and for detecting the existence of headlines in clinical discharge letters. Both
rule sets are able to achieve an F1 score of over 0.97 for unseen documents in the respective
domain and have been created in less than two hours. �e experimental setup is limited but
re�ects realistic conditions in real-world scenarios. A feasibility study should be performed
with a limited amount of documents, which prevents the usage of supervised machine learning
approaches.
�e second case study considers a di�erent domain and a more sophisticated approach for

exploiting context-speci�c consistencies. Here, rules are applied in a transformation-based
manner in order to segment scienti�c references. An initial set of rules extracts interesting
entities like author, title and date. �en, rules investigate the composition of the entities and
create a model of di�erent aspects of the occurring context-speci�c consistencies. �is model is
utilized by transformation-based rules in order to modify the initial entities. �e rules reclassify
and change the o�sets of the entities until they con�rmwith the dominant composition of entities

3 http://stackoverflow.com/questions/tagged/ruta
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of the same type in the current document. �e procedure greatly increases the accuracy of the
application if the assumption about consistent composition of entities is ful�lled. �is case study
illustrates some advantages of the rule language of UIMA Ruta. �e model of consistencies
is speci�ed using only language elements of UIMA Ruta. �e properties of the consistent
composition are stored in variables and thus can be directly integrated in rules. Furthermore,
the necessary transformations can be e�ciently speci�ed in UIMA Ruta since the language
allows one to modify arbitrary annotations with specialized actions. �e combination of the
three phases is able to achieve an F1 score of 0.997 for consistently formatted references. While
the experimental setup is limited, it highlights the power of this engineering approach. �e three
phases do not need to be implemented using rules, but can also rely on arbitrary techniques.
�e initial extraction of entities may rely statistical models and the analysis of the consistencies
on proprietary algorithms. �e last phase consisting of the transformation-based knowledge is
already well-suited.
�e last case study investigates the usage of consistencies in a complete application. �e

rules of this case study identify and categorize sections in clinical discharge letters. Overall,
48 categories including one category for other kinds of sections are distinguished. In the
sections, specialized information extraction models are applied in order to populate a clinical
data warehouse. �e rules utilize di�erent features including semantic keywords, formatting and
also context-speci�c consistencies in order to remove false positive headlines in a set of potential
candidates. �us, the consistencies are applied in order to increase the precision. Additional
rules utilize the headlines in order to identify the sections and their categories. �e rules are
able to achieve an F1 score of 0.992 for the extraction of the headlines in a test set of 200 unseen
documents. Overall, this case study highlights the usefulness of exploiting context-speci�c
consistencies in a throughout engineered application. Although the rules have been optimized
to perform in a best possible manner, the integration of the consistencies was still able to further
improve the accuracy.

Learning Context-specific Consistencies
�e �rst contribution based on machine learning techniques does not concern improvements
of an information extraction model, but the induction of a model for the context-speci�c
consistencies, which occur in the currently processed document. �e general approach consists
in utilizing binary classi�ers in order to describe speci�c aspects of the consistencies like the
boundaries of entities or transition between two speci�c types of entities. �is approach provides
several advantages compared to related work. Learning a model represented by a set of classi�ers
enables the usage of a combination of features instead of only one speci�c property. �us, the
consistencies can be described more precisely. Another advantage of a distinct model consists
in the fact that this model can be applied not only to make statements about how consistent
an entity is, but also what other, not yet considered positions ful�ll the di�erent aspects of
consistency.
�e general procedure for learning the context-speci�c consistencies can be described the

following way. First, an initial prediction of entities in a document needs to be provided. �ese
entities together with a subset of available features built a new dataset for the currently processed
document. �e classi�cation model is trained to classify speci�c aspects of the entities of
one type like their beginning. A�er a model is acquired, it is applied on the same dataset
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in order to provide evidence about consistent and inconsistent positions. �e capability to
generalize over the given examples leads to a classi�cation of the correct positions. �ere are
four important properties that the classi�er needs to ful�ll. It should not tend to over�t on
the data, its hypotheses space need to con�rm with the assumption, it should handle label bias
correctly, and it should be fast since it is learnt and applied during processing a document.
In general all kind of classi�ers can be applied in order to learn a model of the context-speci�c

consistencies. �is work utilizes subgroup discovery in order to learn simple binary classi�cation
rules that consist of a conjunction of features. Subgroup discovery provides several advantages
over popular classi�ers like Support Vector Machines. �e learnt subgroups or rules can be
easily interpreted by humans, which facilitates the development process. Furthermore, subgroup
discovery straightforwardly supports the usage of proprietary quality functions. �is feature is
exploited in the context of this work by integrating a novel quality function that takes advantage
of additional background knowledge, i.e. the expected amount of entities of one type. Using
this improvement, correct models of context-speci�c consistencies can already be learnt with a
minimal amount of given entities. It is able to greatly increase the correctness of the predicted
positions.
�e modeling of the context-speci�c consistencies is evaluated in two experimental settings

separately from the actual information extraction task. In both settings, the domains of curricula
vitae and references are considered. �e �rst experiment investigates the ability of subgroup
discovery to classify the correct boundaries of entities given erroneous training data. For this
purpose, a gold standard dataset is incrementally deteriorated by replacing a correct boundary
by an incorrect one. �e learnt rules are able to greatly improve the F1 score and even classify
the boundaries of the entities correctly despite of only minimal amount of correct input data.
�e second experiment investigates the performance of subgroup discovery on more realistic
predictions. �e learnt rules achieve an error reduction of 16%-30% for the classi�cation of
boundaries compared to the prediction provided by a �ve-fold Conditional Random Field.

Machine Learning Approaches
�e last contribution concerns the usage of the learnt model of context-speci�c consistencies
in Conditional Random Fields in order to improve the information extraction result. �e
approaches andmodels developed in the context of this work utilize available implementations in
contrast to the rule-based approaches, which rely on UIMA Ruta. Machine learning approaches
and especially Conditional Random Fields are very popular in information extraction and thus
a variety of suitable implementations are available.
Overall, three approaches based on Conditional Random Fields are presented. �e �rst

approach applies stacked Conditional Random Fields with two phases. �e initial model
provides a prediction of the entities in a document, which is utilized in order to learn a model of
the consistencies. �e stacked model is extended with additional feature functions that provide
static semantics for the model, but change their manifestation dependent on the currently
induced consistencies. �is is achieved by directly utilizing the rules of the consistency model
as feature functions. �e approach is evaluated for the segmentation of references and is able to
achieve an F1 score of 0.940 in a cross fold setting. �is constitutes an error reduction of 30%
compared to a baseline Conditional Random Field.
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�e remaining approaches based on Conditional Random Fields add additional factors
dependent on the learnt consistency model. Both models utilize a prediction of entities provided
by an external Conditional Random Field. �us, their approach is similar to stacking the models,
but they potentially also support an incremental unfolding of the graph during inference. �e
�rst model called comb-chain extends the probabilistic graph with unigram factors on the
positions indicated by the learnt rules. New feature functions represent consistent positions (true
positive) as well as missing (false positive) and additional (false negative) positions compared
to the prediction. �e second model is called skyp-chain and extends the graph structures
with long-range dependencies between interesting positions. �e same set of feature functions
is applied as before. �e experimental results for the segmentation of references and entity
extraction in curricula vitae again indicate an error reduction of up to 30% compared to a
baseline Conditional Random Field. �e comb-chain model overall performs better due to
inference problems in the more complex graph structure of the skyp-chain model. It achieves an
F1 score of 0.976 (references), 0.962 (dates in curricula vitae) and 0.814 (companies in curricula
vitae). �e discrepancy of the results concerning the segmentation of references compared to the
results of the stacked approach is caused by the usage of a di�erent set of labels, by the utilized
implementation and by the di�ering speci�cation of an instance.

1.4 Structure of this Work
�is chapter provided an introduction to the topic “Context-speci�c Consistencies in Infor-
mation Extraction”. �e utilization of this special kind of consistencies in order to improve
information extraction models is motivated and outlined. Furthermore, the contribution to the
�eld of information extraction is summarized. �e remainder of this work is structured in six
chapters. �e related work of this work’s contributions is described in Chapter 2 and Chapter 3.
Chapter 2 contains an overview of information extraction in general. It starts with the foun-

dations that include a categorization of the task, the historical development, typical evaluation
measures and established architectures. �e rest of the chapter describes the two major direc-
tions in information extraction: handcra�ed rules and models based on machine learning. �e
description of rule-based information extraction is more detailed since it represents the related
work of a contribution of this work that is the rule-based system UIMA Ruta. �e last section
provides an introduction to information extraction based on machine learning approaches. It
describes the essentials and the application for information extraction. Additionally, a descrip-
tion of Conditional Random Fields introduces the fundamental basics for the contributions of
this work concerning machine learning approaches.
Chapter 3 represents the core of this work. It provides an introduction to context-speci�c

consistencies and investigates their general characteristics. �e concept is illustrated with three
exemplary domains with context-speci�c consistencies: references of scienti�c publications,
curricula vitae and clinical discharge letters. �ese domains are utilized for the experimental
evaluations of the knowledge engineering and machine learning approaches of this work. For
each domain, the targeted information extraction task is de�ned and interesting applications
are outlined. Furthermore, related work in that domain and especially for the targeted task is
summarized. �e section of each domain concludes with a description of the context-speci�c
consistencies in this domain and how they in�uence information extraction. A short out-
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look summarizes further domains where context-speci�c consistencies occur. �e last section
considers related work concerning context-speci�c consistencies and the usage of long-range
dependencies in collective information extraction.
Chapter 4 contains the description of the rule-based system UIMA Ruta, which has been

developed in the context of this work. �e chapter starts with a short introduction and the
historical development. �en, the rule-based scripting language is described in detail by elabo-
rating on syntax and semantics, inference, novel language elements, and di�erent engineering
approaches. �en, the development environment and tooling of UIMA Ruta is presented, which
covers basic development support, explanation of rule execution, introspection by querying, au-
tomatic validation, constraint-driven evaluation, supervised rule induction, and semi-automatic
creation of gold documents. �e chapter concludes with a comparison to related systems, which
especially illustrates the compactness and expressiveness of the language.
Chapter 5 describes three case studies of rule-based approaches for exploiting context-speci�c

consistencies. Each case study has been implemented using UIMA Ruta. �e �rst case study
applies precision-driven rules, which are extended by rules sensitive to the consistencies for
increasing the recall. �e developed rule sets represent prototypes that process curricula vitae
and clinical letters. �e second case study applies transformation-based rules for segmenting
scienti�c references and the third case study highlights the usefulness in a complete application
for segmenting clinical letters. �e chapter concludes with a discussion of the approaches.
Chapter 6 considers the contributions of this work concerningmachine learning approaches. It

starts with a description how amodel of context-speci�c consistencies can be learnt. An example
and an experimental study illustrate the power and advantages of the developed approach.
�e remainder of the chapter provides descriptions and evaluations of three models based
on Conditional Random Fields that utilize the learnt consistencies in order to improve the
extraction result. �e experimental evaluation considers only the domains references and
curricula vitae since the rule-based approaches covered the clinical letters to an extend where
hardly any improvement can be accomplished. �e chapter concludes with a discussion of the
contributions.
Finally, Chapter 7 concludes the workwith a summary and an outlook on di�erent possibilities

for future work.
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Chapter 2

Information Extraction
Information extraction (i.a. [124, 196, 162, 176]) addresses the identi�cation of well-de�ned
entities and relations in unstructured data and especially in textual documents. Even if the
research in this task has a long history, it becomes more and more important nowadays due to
the increased availability of unstructured data. In order to access the concealed information for
analytic processes, it has to be transformed into a structured representation. Hence, information
extraction has become a key component in the integration of textual data and can be considered
as an umbrella term for many interesting tasks such as named entity recognition, sentiment
analysis or knowledge extraction4.
Approaches to information extraction can roughly be divided into two main categories:

approaches based on handcra�ed rules and approaches based on statistical models trained in
a supervised fashion. �e latter models include classi�ers or probabilistic graphical models
like Conditional Random Fields [137]. �ere are of course no clear boundaries since hybrid
information extraction systems can apply components of both approaches, or the rules are not
written by a knowledge engineer, but they are automatically induced. While statistical models
dominate the research in academia, commercial applications are mostly implemented as rule-
based systems [44]. �is discrepancy cannot be explained by the latency of translational e�orts
from research to industry. Chiticariu et al. have investigated the reasons for this disconnect and
noticed that research and industry measure the costs and bene�ts of information extraction
di�erently [44]. Aside from many other reasons, rule-based systems sometimes �t better in the
requirements of real-world use cases, e.g., availability of labeled data, stability of the speci�cation
or traceability of results. Even though statistical models o�en perform better in information
extraction challenges, the need for rule-based information extraction will not decrease in the
foreseeable future. �e amount of publications about rule-based systems and approaches has
even been slightly increasing in the recent years [66].
�is chapter gives not an overview of the current State-of-the-Art in information extraction,

but provides a description of the basics and preliminaries for the contribution of this work.
First, Section 2.1 introduces information extraction together with its historical development,
evaluation measures and architectures. Section 2.2 provides a description of rule-based infor-
mation extraction. Di�erent rule languages are investigated in detail. �e reason for this focus
on rule-based system can be found in the contribution of this work. While the techniques for
the machine learning approaches rely on available implementations, the rule-based approaches
build upon a newly created system. �us, the description of the rule languages can be considered
4 Parts of the content of the introduction are taken from Peter Kluegl, Martin Toepfer, Philip-Daniel Beck, Georg
Fette, Frank Puppe. UIMA Ruta: Rapid Development of Rule-based Information Extraction Applications. Natural
Language Engineering, 2014 [125].
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related work for a basic part of the contribution. Information about development support for this
engineering task and di�erent approaches for rule induction conclude this section. Section 2.3
provides an introduction in the preliminaries for the machine learning approaches. First, the
essentials for supervised machine learning are presented. �en, di�erent representations of
information extraction as machine learning tasks are described. �e section concludes with
a more detailed introduction to Conditional Random Fields, which are later applied for the
machine learning approaches of this work.

2.1 Foundations
�is sections gives a short introduction in the basics and foundations of information extraction.
First, the task of information extraction is speci�ed and classi�ed according to di�erent �elds of
research. �e description of the historical development provides insights in the driving forces
of information extraction. �en, di�erent options of assessment for information extraction
approaches in experimental evaluations are described. Finally, the last section provides a short
introduction in architectures for information extraction.

2.1.1 Definition
Information extraction is the task of identifying well-de�ned entities and relations in unstruc-
tured data. �ismeans that the developer of the information extractionmodel already knows the
type of information that needs to be extracted. Given a set of documents that serves as input for
the information extraction process, the output of this process consists in a set of spans referring
to speci�c positions in the documents and a classi�cation of the spans according the prede�ned
types of information. Variants of information extraction allow also a broader de�nition of the
task. Open information extraction [73, 61, 84, 205, 74, 38], for example, jointly induces types of
entities and relations independently of the domain.
Information extraction is a wide �eld of research and can be associated with several disciplines:

• Natural Language Processing

• Text Mining

• Database research

• Computational Linguistics

• Machine Learning

Information extraction can be considered a sub�eld of natural language processing as it
processes textual documents in order to �nd mentions of speci�c information. Text mining
is a sub�eld of data mining. It describes the property of information extraction for mining
speci�c entities from unstructured data. �e results of information extraction are o�en stored
in databases. Hence, research in this area is interested in information extraction in order to
populate databases. Computational linguistics is related to information extraction because
of the deeper analysis of the text in order to identify interesting entities. Finally, machine
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learning relates to information extraction, because many information extraction approaches are
based on machine learning techniques. Publications about novel models are o�en evaluated for
information extraction tasks.
�e de�nition of information extraction includes many di�erent types of tasks and vari-

ants [162]:

Named Entity Recognition Named entity recognition considers the identi�cation of named
entities like persons, organizations, locations and dates. Hence, it is a limitation of
information extraction for a speci�c subset of entities.

Coreference Resolution Coreference resolution considers the assignment of di�erent men-
tions to the same entity. It includes abbreviations, pronouns, indirect and implicit men-
tions.

Relation Extraction �is task addresses the identi�cation of the relations between entities.
�e set of potential relations is typically well-de�ned like the types of entities.

Template Filling Template �lling and event extraction consider a more complex task than
relation extraction. Here, several slots for di�erent parts of a relation need to be �lled
with entities.

Sentiment Analysis �is task addresses the identi�cation of subjective information and espe-
cially the polarity of statements about entities.

Ontology Population In the context of ontologies, information extraction is o�en called
ontology population. �e goal of this task consists in creating new instances for speci�c
concepts from unstructured data.

Information extraction must not be mistaken with information retrieval. �e result of the
latter task is a ranked list of relevant documents that have been collected using a set of keywords.
Information extraction typically is applied on a �xed set of documents and returns speci�c text
fragments that represent mentions of speci�c entities. Information extraction and information
retrieval o�en take advantage of their combination. Information retrieval can be applied in
order to acquire the documents, in which information extraction should be performed. Vice
versa, information extraction can be utilized in order to improve the ranking of the retrieved
documents.

2.1.2 Historical Development
�e research in the area of information extraction has been in�uenced by various factors.
�ese include challenges, conferences, projects and funding, but also emerging domains and
tasks as well as new techniques and approaches. Most survey articles and book chapters about
information extraction provide a comprehensive overview of the historical development (cf.
[196, 162, 176, 76]).
One major stimulus for the research in the area of information extraction have been the

message understanding conferences (MUC [90]) initiated by the US Navy and sponsored by
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the United States Advanced Research Projects Agency (DARPA5). Overall, seven conferences
from 1987 to 1998 organized di�erent challenges for information extraction tasks (cf. [196]). �e
�rst MUC in 1987 utilized naval tactical operations as the domain of the documents, but neither
the extraction tasks nor evaluation measures have been declared. �e second MUC in 1989
considered the same domain and additionally speci�ed the task that should be performed. �e
participants should �ll a template for each event whereas the slots cover aspects like type of event,
agent, time and place and e�ect (cf. [196]). �e resulting systems have been hardly comparable
since the evaluation was performed by the participants themselves. MUC-3 in 1991 changed
the domain to the terrorism events in Latin America. Additionally, the organizers provided
training and test sets for an extended template, and they speci�ed four evaluation measures that
include precision and recall. At this time, the TIPSTER Text program6 of DARPA was initiated
in order to �nance several participants in this research area. �e MUC in 1992 utilized a further
increased amount of slots and propagated the usage of the F measure for the evaluation. In 1993,
MUC-5 introduced Japanese documents and two new domains that covered �nancial news and
microelectronic products. �e �nancial domain and new subtasks has been in the focus of the
sixth MUC in 1995. �e tasks covered named entity recognition, template �lling, coreference
resolution, word sense disambiguation and predicate argument syntactic structuring. In 1998,
the MUC-7 included documents about airline crashes in di�erent languages. A new task dealt
with the relations between entities. A�er the MUC conferences, DARPA funded the TIDES
program, which led to the automatic content extraction (ACE7) evaluations. �ese challenges
included di�erent tasks like entity detection, coreference resolution and relation detection with
more level of types and mentions.
Challenges and projects have not only been funded by the DAPRA, but also by the European

Commission (cf. [196]). First, the Linguistic Research and Engineering program supported the
development of tools and components for information extraction in parallel to the MUC chal-
lenges. Later, the Pascal Network of Excellence8 and the Dot.Kom European project9 launched
di�erent challenges formachine learning approaches to information extraction. Other challenges
have been organized by the Conference on Computational Natural Language Learning [193]
and the Text Analysis Conference10.
�e historical development in the area of information extraction can also be approached

from di�erent perspectives than challenges and funding. One perspective considers the applied
methods and approaches for information extraction. Until the late 1980s, handcra�ed system
based on rules and patterns dominated information extraction. Evenwhen �rst approaches based
on machine learning have been published, they were not able to compete with the engineered
systems. �e fact that systems like FASTUS [98] and IE2 [5] are counted as some of the best
system in the MUC challenges may serve as an example for this situation. In the late 1990s,
machine learning approaches won ground. Approaches based on naive Bayes classi�ers and
Hidden Markov Models have been published. With the emergence of vast amounts of websites,
several approaches for rule induction and wrapper generation have been published.

5 http://www.darpa.mil
6 http://www.itl.nist.gov/iaui/894.02/related_projects/tipster/
7 http://www.itl.nist.gov/iad/mig/tests/ace/
8 http://www.pascal-network.org/
9 http://nlp.shef.ac.uk/dot.kom/
10 http://www.nist.gov/tac/
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�ese systems learn rules and patterns in a supervised fashion in order to extract speci�c en-
tities from structured and semi-structured documents. A�er 2000, black-box models based on
statistical classi�ers and probabilistic graphical models started to dominate academic research.
More and more generative and especially discriminative models like Conditional Random
Fields [137] have been applied in order to solve information extraction tasks. Nowadays, the
amount of publications about rule-based approaches increases again slightly, but most publica-
tions in this research area propose black-box models based on machine learning.

2.1.3 EvaluationMeasures
Information extraction approaches and models are typically evaluated and their performance is
estimated using gold standard corpora. �ese documents specify the input as well as the output
of an information extraction task. �ey consist of the unstructured and structured information,
which is achieved by bundling the input text with additional annotations that represent the
output. Normally, annotations for the interesting entities and relation specify the correct output
of the task. �e annotated documents are typically not utilized during the development of the
extraction models and represent a new and unseen sample of the targeted domain. �e quality
of information extraction models is estimated by applying them on the raw texts of the gold
standard. �e output of themodels is then compared to the given annotations for the documents.
�is comparison results in the four values known from binary classi�cation:

True Positives (tp) �e amount of correctly identi�ed information. �e gold standard infor-
mation and the extracted information of the model agree for the identi�ed positions. �e
information extraction model was able to reproduce the correct entities or relations.

True Negatives (tn) �e amount of information that was correctly not identi�ed. �e gold
standard information and the extracted information of the model agree for uninteresting
positions. �is value is typically not calculated for information extraction tasks since it
potentially consists in a vast amount of possible spans in the document.

False Positives (fp) �e amount of falsely identi�ed information. �e information extraction
model identi�ed entities or relations that are not present in the gold standard.

False Negatives (fn) �e amount of missing information. �e information extraction model
was not able to identify entities and relations that are present in the gold standard.

�e values represent the errors and correct extractions in a generic way, but the manner how
they are calculated can di�er. In information extraction, these values are typically given on
token-level or on entity-level. When using the token-level, each token is considered separately.
If a token is part of an entity of the correct type in the output of the model as well as in the gold
standard, then the token is counted as one true positive. �e calculation using the entity-level,
the complete entities are considered. An entity is only counted as a true positive only if the
o�sets and the type of the entity is correct. False positives and false negatives are calculated
correspondingly. Evaluations based on entity-level are more precise as a consequence, but
evaluations using the token-level provide more information since also partial matches are
considered. An entity of ten tokens whereas only one token at the end is not correct, for example,
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produces a false positive and a false negative for the entity-level, but it results in nine true
positives and one false positive using the token-level.
�e values for true positives, false positives and false negatives are utilized in evaluation

measures in order to estimate the quality of the model. �e typical measures are the accuracy
and the F measure. Most o�en, the F1 measure is applied, which is de�ned as the harmonic
mean of precision and recall. �ese measures are de�ned in the following equations:

accuracy = tp + tn
tp + f n + f p + tn

(2.1)

precision = tp
tp + f p

(2.2)

recal l = tp
tp + f n

(2.3)

F measure = (1 + β2) ⋅ precision ⋅ recal l
(β2precision) + recal l

. (2.4)

F1 measure = 2 ⋅ precision ⋅ recal l
precision + recal l

. (2.5)

�e accuracy is o�en applied by counting the correctly classi�ed tokens compared to all
tokens. �e precision provides a measure how correct the output of the information extraction
model is. �e recall states how much information was found. Finally, the F measure provides a
score describing the quality of the model.
�e evaluation scores of information extraction models re�ect o�en an aggregated value

over several scores, especially if the model is responsible to identify more than one type of
information. �e scores for a speci�c type of entity need to be aggregated in order to obtain
a single value representing the model’s quality for the complete task. Typically, two kinds of
averages are applied: the micro-average and the macro-average score. �e di�erence between
both calculations is the set of values responsible for averaging the values of di�erent types of
information. Using a micro-average F1 measure, the values for true positives, false positives and
false negatives are summarized and thus the resulting F1 score represents an average score for
all types of entities, which is weighted concerning the amount of occurrences. In contrast to
this, a macro-average F1 is calculated by averaging the F1 scores of the di�erent types of entities.
Hence, this score does not include a weighting for the actual amount of entities. A di�erentiation
of these averaging scores is only required if several types of entities should be extracted or if
some types of entities occur more o�en than other types of entities, or if some entities generally
contain more tokens than other entities. In the domain of reference segmentation, for example,
the author contains more tokens than the date. When using a token-level macro-average F1
measure, the resulting score is biased for high scores concerning the date. Another aggregated
score for describing the quality of an information extraction model is the instance accuracy.
Here, a true positive is a complete document, in which all entities have been correctly identi�ed.
Following this, the instance accuracy provides a measure how many document have been
processed without a single error.
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2.1.4 Architectures
Information extraction models are o�en part of a larger pipeline of components. �e statistical
models or rules build upon annotations added by the previous components that concern most
o�en a linguistic analysis of the document. �ese components include, for example, tokenizers,
sentence detectors, gazetteers, part-of-speech taggers, morphological analyzers or parsers. Infor-
mation extraction systems are therefore integrated in an architecture or framework for natural
language processing in the majority of cases. �e architectures provide uniform models for
data exchange, component interfaces and process control, which simplify the interoperability
of the components and facilitate the speci�cation of complete pipelines. Figure 2.1 depicts a
typical pipeline for natural language processing and information extraction. �e documents are
provided by readers that are able to process di�erent formats. Di�erent phases add additional
annotations for linguistic, morphological and syntactic information. In the semantic analysis
step, information extraction models like named entity tagger extract interesting information
using the annotations provided by the previous phases. Finally, the entities are stored by writers
in databases or similar sinks. �is section provides a short summary of popular architectures
for natural language processing11.

2.1.4.1 UIMA

�e Unstructured Information Management Architecture (UIMA) [77] is a �exible and exten-
sible framework for the analysis and processing of unstructured data and text in particular. It
directs its attention especially to the interoperability of components and the scale-out function-
ality for vast amounts of data. �e components of the framework are called analysis engines and
are speci�ed in a descriptor that provides information about their implementation, con�guration
and capabilities. �e analysis engines communicate in a pipeline by adding or modifying the
meta information stored in the CAS, which contains the currently processed document. �is
information is represented by typed feature structures and is ordered in indexes for an e�cient
access. �e type of the feature structure de�nes its semantic and its additional features, which
can consist of primitive values or other feature structures. �e available set of types and their
inheritance is speci�ed in type system descriptors. �e most common type of a feature structure
is the annotation that de�nes two additional features, begin and end, assigning its type and
additional features to a span of text. Most analysis engines create new annotations or modify
existing ones in order to represent the result of their analysis.
UIMA is only a framework and does not ship a rich selection of components. �ere are,

however, component repositories like DKPro [95], ClearTK [95] or uCompare [111] that provide
analysis engines of well-known components for natural language processing, e.g., the Stanford
CoreNLP Natural Language Processing Toolkit [147], the Mate Toolkit12 or OpenNLP13. �e
development of Java-based components is facilitated by di�erent extensions like uimaFIT [156].
Two prominent applications that build upon UIMA are the DeepQA systemWatson [78] and
the clinical Text Analysis and Knowledge Extraction System (cTAKES) [179].

11 Parts of the description of this section are taken from Peter Kluegl, Martin Toepfer, Philip-Daniel Beck, Georg Fette,
Frank Puppe. UIMA Ruta: Rapid Development of Rule-based Information Extraction Applications. Natural Language
Engineering, 2014 [125].

12 https://code.google.com/p/mate-tools/
13 https://opennlp.apache.org/
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Figure 2.1: Typical pipeline architecture for natural language processing14.

2.1.4.2 Other Architectures

�e probably most popular architecture for natural language processing is the General Archi-
tecture for Text Engineering (GATE) [53, 58]. It provides a well-established community and a
large amount of tools and integrated components. �e information extraction component is
called ANNIE [57] and is implemented using �nite state transducers. �e framework supports
the usage of ontologies [31] and provides various functionality for queries [59], information
retrieval [56], multimedia processing [67] and machine learning [139].
Other architectures for natural language processing are the �exible and extensible architecture

for linguistic annotation called ATLAS [21] and the middleware architecture for the integration
of deep and shallow natural language processing components called Heart of Gold [37].

14�e �gure is taken from the tutorial slides of Richard Eckhart de Castilho: https://dkpro-tutorials.

googlecode.com/svn/GSCL2013/tags/latest/slides/GSCL2013UIMATutorialUKP.pdf
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2.2 Rule-based Information Extraction
Components for natural language processing and information extraction nowadays o�en rely
on statistical methods and their models are trained using machine learning techniques. How-
ever, components based on manually written rules still play an important role in real world
applications and especially in industry [44]. �e reasons for this are manifold: the necessity for
traceable results, the absence or aggravated creation of labeled data, or unclear speci�cations
favor rule-based approaches. When the speci�cation changes, for example, the complete training
data potentially needs to be annotated again. In rule-based components, adaptions in a small
selection of rules typically su�ce. Rule-based approaches are also used in combination with or
when developing statistical components. While models are o�en trained to solve one speci�c
task in an application, the remaining parts need to be implemented as well. Furthermore, rules
can be applied for high-level feature extraction and for semi-automatic creation of labeled
datasets. It is o�en faster to de�ne one rule for a speci�c pattern than to annotate repeating
mentions of a speci�c type15.
�is section gives an introduction to a selection of prominent systems for rule-based informa-

tion extraction. First, a detailed description provides an overview of di�erent representatives for
rule languages. Development support and other languages are shortly summarized a�erwards.
As a step towards the next section, algorithms for automatically inducing rules conclude the
section.

2.2.1 Rule Languages
Rule-based information extraction systems mostly consist of a speci�cation of a text-based
rule language and an interpreter, which is able to apply the rules on documents in order to
identify new information [6]. �e textual representation of rules leads to a development process
where a knowledge engineer manually writes rules. �ese rules are composed of a condition
part and an action part. �e condition of the rule is a pattern of properties, which need to be
ful�lled by an interesting position in the document. �e properties are normally represented
as annotations. �ese annotations assign a speci�c type and possibly additional features to a
span of text. Such features may be capitalization, part of speech, formatting, or presence in a
dictionary. Since the sequential order of properties is very important for the speci�cation of
patterns, the condition part o�en represents a regular expression over annotations possibly
extended with additional constraints. If the regular expression matches on a text position, then
the action part modi�es the annotations. In the majority of cases, new annotations are added,
which represent interesting entities and relations, or complex properties.
�e matching algorithm of a set of rules (rule grammar) is o�en implemented as a Finite

State Transducer (FST), an automaton which traverses the annotation lattices and creates or
modi�es annotations [54, 68, 26]. �e automaton processes the document just once and does
not react on its own modi�cations. A popular strategy is the usage of cascaded rule grammars,
where one grammar is based on the results of previous grammars. �is approach provides many
engineering advantages, for example the easier speci�cation of complex patterns by describing

15 Parts of the content of this section are taken from Peter Kluegl, Martin Toepfer, Philip-Daniel Beck, Georg Fette,
Frank Puppe. UIMA Ruta: Rapid Development of Rule-based Information Extraction Applications. Natural Language
Engineering, 2014 [125].
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them as a combination of simpler ones, or the clear separation of the stages of engineering
approaches and their contexts [27].

2.2.1.1 CPSL

�e Common Pattern Speci�cation Language (CPSL) [6] is the result of the e�ort of di�erent
researchers from the TIPSTER research sites for de�ning a system-independent language for
information extraction. At that time, many of the rule-based approaches have been based on
�nite-state grammars, which represented some sort of regular expressions on the lexical features.
�ese rule-based systems applied, however, di�erent and incompatible formalisms making the
translation and reuse of existing systems a di�cult and tedious tasks. �e CSPL provides a
common formalism for the representation of �nite state grammars. �e separation of the syntax
and interpretation should lead to an increased reusability of rule-based systems. While the
syntax for de�ning information extraction rules is accurately declared, the interpretation of the
rules is speci�ed indirectly in order to allow arbitrary implementations and adaptions.
�e semantics of the rules are determined by an interpreter. �e implementation of such

an interpreter has to provide certain functionality, which speci�es how the rules are applied
(cf. [6]):

1. �e interpretation of the rules leads to cascaded �nite-state transducers.

2. �e input of a transducer consists in a sequence of annotations.

3. �e transducer veri�es if the next annotation in that sequence provides the necessary
properties, which have been speci�ed in the rules.

4. �e output of a transducer is a sequence of annotations.

5. A cursor points to the currently observed position in the documents. �e interpreter tries
to match all possible rules at the position of the cursor, but applies only the rule with the
“best match”. A�er the rule is applied, the cursor is moved to the next position.

6. Before the rules are applied, the document is tokenized and annotated with the entries of
external dictionaries.

7. �e interpreter should be extensible by external functions, which implement application-
speci�c functionality.

A CSPL grammar consists of a list of phases, which are sequentially applied on the document.
A phase itself is a set of rules, which are compiled into a �nite-state transducer. Each phase
speci�es the types of annotations that are relevant to the rules of the phase. Additionally, a CSPL
grammar can include macros and options for the interpreter. Macros are used to modularize
recurring parts of the rule de�nitions. �e most important part of a CSPL grammar is the rule
section of a phase. A rule is composed of four elements (cf. [6]):

Rule: <rule_name>

Priority: <integer>

<rule_pattern_part> -->

<rule_action_part>
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�e name of the rule is given for convenience. As mentioned in the functionality of the
interpreter, only the best matching rule is applied. �is rule is determined by the size of its
match. If two rules match on the same amount of annotations, then the rule with the higher
priority is preferred. In case of equal priority, the rule listed earlier is applied.
�e pattern part consists of a mandatory body pattern and optional pre�x and post�x patterns.

When the interpreter tries to apply a rule on the document, it investigates the current position
of the cursor by matching the body part at this position. �e pre�x part of the rule pattern
is, therefore, located before the position of the cursor. If all three patterns of the rule have
successfully matched, then the cursor is moved to the next position, which is located a�er the
match of the body part.
All three parts are grouped sequences of pattern elements attributed with labels, which are

used by the action part in order to refer to the matched annotations. Di�erent kinds of labels are
supported: �e symbol “:” indicates a reference to the last matched annotation and the symbol
“+:” refers to all matched annotations. An exemplary pattern of the CPSL syntax is given in the
following [6]:

(("douglas"):firstName "appelt")+:wholeName

�is rule matches on the annotation with the text “douglas” followed by an annotation with
the text “appelt”, whereas the �rst label refers only to the �rst annotations and the second label
to both annotations. �is example applies an abbreviation for matching on the lemma of a
token. A pattern is normally composed of an annotation type followed by one of its attributes
and an optional comparison to a value. Patterns can be combined with di�erent operators
for alternation (“|”), iteration (“*” and “+”) or optionality “?”, which are common elements in
regular expressions.
�e action part of a rule consists of a comma-separated list of actions, which are composed

of the speci�cation of an annotations type and optionally an attribute of that type. �e targeted
element can be extended with an assignment operator and a value in order to modify a value of
the attribute. If no attribute is given, then a new annotation of the given type is created, which
can be used in further actions. �e action speci�cation is preceded by a label in order to specify
the spans of the new annotations, which correspond to the spans of the annotations matched
in the pattern part. �e action part can also include simple conditional expressions over the
attributes of the annotations and their values.

2.2.1.2 JAPE

�e Java Annotation Patterns Engine (JAPE) [54] provides �nite-state transduction over anno-
tations based on regular expression and is probably the most noted implementation of the CPSL
speci�cation. JAPE is part of the GATE ecosystem and is an essential component of ANNIE [57],
which led to its wide-spread use. Following the CPSL speci�cation, a JAPE grammar consists
of a set of phases, which are sequentially executed. A phase itself is again composed of a set
of rules that are compiled into one �nite-state transducer. Before the actual rules of a JAPE
grammar are applied, the system utilizes a tokenizer for adding an initial set of annotations.
�ese annotations cover, for example, tokens and their properties like capitalization. A�er the
tokenizer, the system applies a prede�ned list of gazetteers and creates additional annotations
for their entries.
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Cunningham et al. identify several di�erences between the JAPE implementation and the
CPSL speci�cation [54]:

1. �e pattern part may not contain pre�x or post�x contexts.

2. �e pattern part does not allow function calls.

3. �e pattern part does not support abbreviations for lemmas.

4. JAPE provides several algorithms for the rule application. One algorithm follows the
speci�cation of CPSL and applies only the rule with the best match. An additional
algorithm applies all matching rules independently of their priorities or size of the match.

5. Unassigned labels in the pattern part are ignored in the action part.

6. �e action part can include arbitrary Java code.

7. �e macro syntax di�ers and macros can be utilized in the pattern and action part.

8. Grammars are compiled into Java code and are stored as serialized objects.

In contrast to the CPSL speci�cation, the actions of JAPE rules allow arbitrary modi�cations
of the annotations and can also remove annotations. �is is accomplished by the usage of Java
code in the action part. �e e�ects of the actions are not available until all rules of a phase have
been applied. If a rule is dependent on the result of another rule, then it needs to be listed in
di�erent phases. �is restriction can be relaxed with the usage of macros that encapsulate the
complete prior rule.
For applying a set of rules aggregated in a phase, the JAPE system �rst compiles the rules

into a deterministic �nite-state automaton. Each rule by its own can be interpreted as a single
automaton. Joining the set of rules into one automaton results in a non-deterministic �nite-state
machine (FSM) with one initial state and several �nal states, one for each rule. �e non-
deterministic �nite-state machine is then converted into a deterministic �nite-state machine.
Details about this process can be found in Cunningham et al. [54].
�e resulting �nite-state machine is applied on the document in order to create or modify

annotations. �e rule execution can be summarized in the pseudo-code algorithm 1. �e
algorithm interprets the document and its annotations as an annotation graph, where the nodes
specify possible positions and the edges represent the annotations. An initial FSM instance
is created and added to the list of active instances. �e matching process starts with the �rst
node or position and iterates over all nodes. Each active FSM instance is investigated and, in
case that it is in a �nal state, the FSM instance is added to the set of accepting instances. �en,
for all possible sets of annotations starting at the current node, a new instance of the FSM (or
a new state of the FSM) is created, which consumes the set of annotations and continues the
matching process. �is procedure is repeated as long as active instances with valid states are
available. �en, the actions of either all accepting instances are applied or only of the instance
with the best match according to the size and priority of the corresponding rules. �e algorithm
continues with the next node a�erwards.
�e actual matching strategy of the rules can be speci�ed at the beginning of the phase by the

so-called control style. JAPE provides �ve di�erent control styles: “appelt”, “brill”, “all”, “�rst”, and
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Algorithm 1 Simplified pseudo-code of the rule matching algorithm in JAPE [54].

startNode← the le�most node
active FSM instances← new instance of the FSM, current node set to the le�most node
while startNode is not the last node do

while not done do
for all instance Fi in active FSM instances do

if Fi is in �nal state then
accepting FSM instances← Fi

end if
identify all annotations starting at current node
identify all sets of annotations that can be used to advance the matching process
for all sets of annotations do
active FSM instances← new instance Fn of the FSM
let Fn consume the current set of annotations
protocol existing bindings
let Fn advance to the rightmost node of the matched annotation

end for
discard Fi

end for
set done = true, if set of active FSM instances is empty

end while
either execute the actions of all accepting instances or only with the “best match”
startNode← next node a�er match

end while

“once”. �e control style “appelt” corresponds to the initial interpreter speci�cation of CPSL [6]
and applies on the best-matching rule of the phase. �e default control style “brill” applies all
matching rules and continues the match on the next position a�er the current match. Already
investigated annotations are, therefore, consumed by the rules of a phase. �e control style
“all” is very similar to the “brill” style, but continues the matching process on the next possible
position, which is allowed to be a part of the previous rule match. JAPE rules with the control
style “�rst” already �re with the �rst successful match and ignore optional repetitions. �e
control style “once” �nally terminates the matching process of the complete phase if one rule
has �red.
�e JAPE syntax and semantics is illustrated with an example of Cunningham et al. [54]

depicted in Figure 2.2. �e example starts with twomacros, which will replace their placeholders
before the �nite-state machine is built. �e �rst macro named “MILLION_BILLION” is a simple
pattern with four alternatives and matches on tokens that indicate a quantity. �e second macro
“AMOUNT_NUMBER” matches on a sequence of numbers separated by commas or periods.
�e pattern ends with an optional whitespace followed by an optional occurrence of the pattern
speci�ed in the �rst macro. �e rule itself is named “Money1” and its pattern part consists of
three elements. First, it matches on the pattern speci�ed in the second macro. �en, an optional
whitespace may occur followed by a mandatory annotation created by the gazetteers. �ese
three patterns are labeled with “money”. �e action creates an annotation of the type “Number”
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covering the span speci�ed by the label “money” and it additionally assigns the values “money”
and “Money1” to the attributes “kind” and “rule”, respectively.

Macro: MILLION_BILLION

({Token.string == "m"} |

{Token.string == "million"} |

{Token.string == "b"} |

{Token.string == "billion"}

)

Macro: AMOUNT_NUMBER

({Token.kind == number}

(({Token.string == ","} |

{Token.string == "."})

{Token.kind == number})*

((SpaceToken.kind == space)?

(MILLION_BILLION)?)

)

Rule: Money1

(

(AMOUNT_NUMBER)

(SpaceToken.kind == space)?

({Lookup.majorType == currency_unit})

)

:money -->

:money.Number = {kind = "money", rule = "Money1"}

Figure 2.2: Example of a JAPE rule with two macros for the identification of amounts of money [54].
The rule matches on text fragments like ‘‘49.95€’’.

Additionally to the standard implementation of the �nite-state transducer, GATE also pro-
vides an improved implementation called JAPE Plus16, which includes several optimizations
concerning the speed-up of the rule execution. �e FSM generated by JAPE Plus grammars are
minimized and compiled. Furthermore, an optimized data structure is applied for representing
the investigated annotations and the results of evaluated patterns are stored for each annotation.
�e speed-up of the JAPE Plus implementation has been measured with the grammars for
named entity recognition of ANNIE applied on 8,000 web pages. �e average execution of JAPE
Plus was in average four times faster than JAPE.

2.2.1.3 SProUT - XTDL

SProUT [14, 68, 132] (shallow processing with uni�cation and typed feature structures) combines
the ideas of �nite-state transducers, typed feature structures and uni�cation-based grammars.
�e development of the system was motivated by the need for interoperability of di�erent
components and a more expressive rule language while retaining good execution e�ciency.
16 http://gate.ac.uk/sale/tao/splitch8.html#chap:jape
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�e rules are regular expressions over typed feature structures and allow de�ning coreference
constraints between the di�erent elements of the rule. For execution, the rules are transformed
into �nite-state transducers based on the implementation of FS devices [161].
�e main representation of information is based on typed feature structures (TFS) given by

the typed description language (TDL) [133]. A TFS is a collection of features that represent
speci�c properties and their values, which can consist of primitive elements, but also of other
features structures. �e types of the TFSs are normally part of a type hierarchy supporting the
inheritance of the feature de�nition. Using this representation of information allows one to
specify more complex relations since the values of the features are able to point to other TFS, e.g.,
representing coreference information. Grammar 2.1 provides an overview of the elements for
representing and specifying TFSs. In short, each TFS can be addressed by its type. �e features
and their values can be speci�ed in square brackets. Additionally, coreferences are able to point
to other elements using a variable.

⟨type-def ⟩ ::= ⟨type⟩ ’:=’ ⟨avm⟩ ’.’ | ⟨type⟩ ’:<’ ⟨type⟩ ’.’ | ⟨string⟩ ’:<’ ⟨type⟩ ’.’

⟨type⟩ ::= ⟨identi�er⟩

⟨avm⟩ ::= ⟨term⟩ ( ’&’ ⟨term⟩ )*

⟨term⟩ ::= ⟨type⟩ | ⟨�erm⟩ | ⟨string⟩ | ⟨coref ⟩

⟨�erm⟩ ::= ’[’ (⟨attr-val⟩ ( ’,’ ⟨attr-val⟩)*)? ’]’

⟨attr-val⟩ ::= ⟨identi�er⟩ ⟨avm⟩

⟨coref ⟩ ::= ’#’ ⟨identi�er⟩

Grammar 2.1: Fragment of TDL used by XTDL [68, 133].

�e rule representation language of SProUT is called XTDL and uses several concepts of the
TDL. XTDL is essentially a rule language for specifying regular expressions over TFSs together
with the consequences in case the expression was able to be applied. Matching on symbols and
annotations is extended by the uni�ability of the coreferences in the TFSs.
�e de�nition of a rule starts with the name followed by the le�-hand side (LHS), which

contains the regular expression, the conditions of the rule. �e right-hand side (RHS) is separated
by the LHS using the symbol “->” and provides the postconditions of the rule. �e LHS allows
one to specify patterns of TFSs using the commonly supported operators such as sequences,
repetitions or optionality. �e actual conditions are TFS speci�cations with speci�c values for
theirs features or variables for coreferences. Each TFS is considered to match successfully if it
occurs at the speci�c position and if the coreference constraint can be ful�lled. Additionally,
di�erent rules can be executed within the context of the pattern using the “seek” operator. �e
RHS consist again of TFSs, which will be created and their feature values will be assigned if
the pattern in the LHS has successfully matched. A list of functional operators completes the
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RHS. �ese externally de�ned functions can be applied for including additional conditions or
modi�cations of the present information. An overview of the syntax of XTDL rules is given in
Grammar 2.2.

⟨rule⟩ ::= ⟨identi�er⟩ (’:>’ | ’:/’) ⟨regexp⟩ ’->’ ⟨avm⟩? ⟨fun-op⟩? ’.’

⟨regexp⟩ ::= ⟨avm⟩ | ’@seek(’ ⟨identi�er⟩ ’)’ | ’(’ ⟨regexp⟩ ’)’ | ⟨regexp⟩ ⟨regexp⟩+
| ⟨regexp⟩ (’|’ ⟨regexp⟩)+ | ⟨regexp⟩ (’*’ | ’+’ | ’?’)
| ⟨regexp⟩ ’{’ int (’,’ int)? ’}’

⟨fun-op⟩ ::= ’,where’ ⟨coref ⟩ ’=’ ⟨fun-app⟩ (’,’ ⟨coref ⟩ ’=’ ⟨fun-app⟩)+

⟨fun-app⟩ ::= ⟨identi�er⟩ ’(’ ⟨term⟩ (’,’ ⟨term⟩)* ’)’

Grammar 2.2: Grammar of the rule syntax of XTDL [68].

Figure 2.3 depicts an exemplary XTDL grammar rule, which is able to detect noun phrases.
�e le�-hand side of the rule consists of a regular expression over three TFSs of the type “morph”,
which provides various information about the morphological properties of the underlying token.
�e �rst TFS is optional and matches on a token of the part-of-speech determiner.
�e second TFS speci�es a match on at least one adjective optionally followed by additional

adjectives. �e last TFS matches on one or two nouns. Each TFS of the le� hand side are
connected by a coreference on di�erent in�ation properties of the matched tokens. �us, the
sequence of tokens is only successfully matched, if the tokens are annotated with the correct
part-of-speech tags and if they have compatible case, number and gender. �e right-hand side
of the rule creates a new TFS of the type “phrase” and assigns the category of the last identi�ed
noun. Furthermore, the result of the uni�cation of the case, number and gender is stored in a
feature “agr”.

np :> morph & [POS Determiner,

INFL [CASE #c, NUMBER #n, GENDER #g ]] ?

(morph & [POS Adjective,

INFL [CASE #c, NUMBER #n, GENDER #g ]]) *

morph & [POS Noun & #cat,

INFL [CASE #c, NUMBER #n, GENDER #g ]] {1,2}

-> phrase & [CAT #cat,

AGR agr & [CASE #c, NUMBER #n, GENDER #g ]]

Figure 2.3: Exemplary XTDL grammar rule for detecting conform noun phrases [68]. The rule matches
on text fragments like ‘‘das blaue Auto’’ (German).
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2.2.1.4 AFST

Boguraev and Ne� [26] presented an annotation-based �nite-state transducer (AFST), which is
able to navigate in dense annotation lattices. �e more components and interesting annotations
are required in a speci�c domain, themore annotations overlapping the same span will introduce
challenges for the pattern matching process. AFST implements the �nite-state calculus over
typed feature structures as, for example, known by SProUT [68]. It extends the horizontal
sequential patterns with navigation in the vertical direction, which enables the user to specify
more constraints for the relationship of overlapping annotations. �e system is completely based
on UIMA (cf. Section 2.1.4.1) and thus straightforwardly supports patterns over typed feature
structures. Furthermore, AFST interprets the matching process of the �nite-state transducer as
a linear path through the annotation lattice, which is provided by the indexes and iterators of
UIMA.
�e syntax of the grammar rules in AFST is introduced with an example [26] in Figure 2.4.

�e rule starts with its identi�er followed by the symbol “=”. �e AFST syntax provides no
separation in an condition and action part of the rule since the e�ects of the rule are integrated
in the sequential pattern. �e rule starts with an empty transition followed by the start marker
for a new annotation and ends with an empty transition followed by the end marker.
Sequential constraints are explicitly given with the operator “.”. �e language supports the

usual operators for disjunction “|” or repetition “*”. Following this, the rule matches on an
optional token with the feature “pos” set to “DT” followed by an optional repetition of tokens
with the part-of-speech tag “JJ”. �en, either a token with the tag “NN” or with the tag “NNS”
needs to be present. If the rule has successfully matched, then a new annotation of the type “NP”
is created covering the annotations within the span indicated by the markers.

np = <E>/[NP .

Token[pos=~"DT"]|<E> .

Token[pos=~"JJ"]* .

Token[pos=~"NN"] | Token[pos=~"NNS"] .

<E>/]NP ;

Figure 2.4: Exemplary AFST grammar rule for detecting noun phrases [26]. The rule matches on text
fragments like ‘‘the blue car’’.

�ematching process is implemented using a special kind of iterator, which validates the pres-
ence of the given constraints in the stream of annotations. �is “typeset” iterator is dynamically
generated given the speci�cation of the rules and searches for an unambiguous path through the
overlapping annotations. If several annotations start at the same o�sets, the annotation with the
highest priority is selected following the natural order of annotations in the UIMA framework.
�e exact matching behavior is speci�ed by grammar-wide declarations:

honour �e iterator normally only investigates types mentioned in the grammar rules. �is
declaration speci�es a set of types with are introduced in the �lter set of the iterator. �e
annotations of these types are now available in the iterator and prevent, for example, the
matching on covered annotations.
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boundary �is declaration speci�es a set of types of annotations that limit the sequential
matching. By default, the rules should not match across sentence boundaries.

focus �ematching process can be restricted to certain windows corresponding to the annota-
tions of the declared types. �e rules are then only applied within the span of the speci�ed
annotations.

match �is declaration speci�es, which match or how many matches are considered to be
successful by the iterator. By default, only the longest match will be tracked.

advance �is parameter in�uences the next start position a�er a match. Either the rule tries
to match at the next position a�er the begin of the match or at the next position a�er the
end of the match.

Additionally to the horizontal matching of sequences of annotations, AFST also provides
functionality for vertical matching. Two operators are available that move the iterator not to the
next position, but to conceptually smaller or larger annotation. �is functionality is illustrated
with the example in Figure 2.5.

findG = PName[@descend] .

Title[string=="General"] .

Name[@descend] .

First[]|<E> . Middle[]|<E> . Last[string=="Grant"] .

Name[@ascend] .

PName[@ascend] ;

Figure 2.5: Exemplary AFST rule for detecting generals with the last name ‘‘Grant’’ [26].

�e rule matches initially on an annotation of the type PName and then descends into the
span of this annotation using the operator “descend”. �e match of the annotation is only
successful, if the following patterns can be applied within this annotation. �erefore, the rule
investigates, if the annotation starts with an annotation of the type Title covering the string
“General” followed by an annotation of the type Name. Once again, additional patterns for the
span of the Name annotation are applied. �is annotation has to start with an optional First
annotation, followed by an optional Middle annotation and �nally by a Last annotation covering
the string “Grant”. �e iterator is then ordered to navigate again back to the previous layer using
the operator “ascend”. �e rule is thus able to �nd proper names that start with “General” and
end with “Grant” [26].
Additionally to these operators that enable the iterator to navigate in a vertical direction,

the AFST language also provides a small set of additional predicates. Figure 2.6 provides three
examples: �e predicate “costarts” is ful�lled if the matched token is located at the beginning of
the sentence. �e predicate “covers” validates the presence of an annotation of the type “PName”
within the span of the matched “Subject” annotation. �e last rule matches on annotations of
the type “PName” with the same span as an annotation of the type “NP”.
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Token[_costarts=~Sentence[]]

Subject[_covers=~PName[]]

PName[_costarts=~NP[],_coends=~NP[]]

Figure 2.6: Three examples of additional predicates for vertical relations in AFST [26].

2.2.1.5 SystemT - AQL

SystemT [43] is a good example for current trends in research about rule languages for infor-
mation extraction. Its rule language AQL follows a more declarative approach regarding the
de�nition of patterns and provides a syntax similar to SQL. �e rules are not transformed into a
�nite-state transducer but into an operator graph, which allows the selection of an optimized
execution plan (cf. Figure 2.7). Breaking up the strict le�-to-right evaluation of the patterns,
SystemT is able to achieve a much higher runtime performance. �e resulting annotators can
be integrated into UIMA. An investigation of the formal model underlying AQL can be found
in [75].

AQL SystemT

Optimizer

SystemT

Runtime

Compiled
Operator

Graph

Figure 2.7: Compilation process of SystemT [43]

In contrast to many rule languages that apply grammars to specify the extraction knowledge,
SystemT is built on a relational algebra with additional text operators. �e data model of the
algebra consists of the types span, tuple and relation. A span is a distinguished area of text
speci�ed by two o�sets. A tuple is de�ned as a list of spans whereas the size of the list is �xed. A
relation consists of a multiset of tuples. �e operators of the algebra de�ne atomic creations or
consumptions of tuples. Overall, SystemT support 12 operators, which include character-level
operators for regular expressions. A complete list of operators is described in Reiss et al [169].
Broadly speaking, AQL rules typically consist of a create view statement that speci�es the

created type of annotation, a select and a from statement for specifying the input and output,
and a where statement for the pattern. �e rules in Figure 2.8 illustrate the syntax and semantics
of the language. �e �rst two statements directly operate on the text of the document. �ey
utilize a regular expression for identifying capitalized words (Caps) and a gazetteer for detecting
known last names (Last). �e third statement creates new annotations by combining spans of
the views Caps and Last. �e fourth statement de�nes the unions of di�erent views in order to
merge all annotations for persons in one view. �ese Person annotations are consolidated by
the ��h statement by �ltering overlapping annotations using the “ContainedWithin” strategy.
Finally, the last statement de�nes the Person annotations as the output of the query.
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create view Caps as

extract regexp /[A-Z](\w|-)+/ on D.text as name

from Document D;

create view Last as

extract dictionary LastGaz on D.text as name

from Document D;

create view CapsLast as

select CombineSpans(C.name, L.name) as name

from Caps C, Last L

where FollowTok(C.name, L.name, 0 0);

...

create view PersonAll as

(select R.name from FirstLast R) union all ...

... union all (select R.name from CapsLast R);

create view Person as select * from PersonAll R

consolidate on R.name using 'ContainedWithin';

output view Person;

Figure 2.8: Excerpt of exemplary AQL rules for the identification of persons [43]. The rules match on
text fragments like ‘‘Peter Kluegl’’ if ‘‘Kluegl’’ is listed in dictionary LastGaz.

2.2.1.6 Other Languages

Many other rule languages have been published in the recent years. CAFETIERE [24] combines
the strict sequential execution of regular expressions over annotations with basic coreference con-
straints. Its data model seems to allow only a disjunct partitioning of the document. HIEL [105]
is built upon JAPE and focuses on a compact rule representation for elements of an ontology.
Xlog [182] is a rule language based on Datalog with embedded extraction predicates. It supports
query optimization techniques for an improved runtime performance. �e declarative language
in PSOX [28] is based on an SQL-like syntax. �e system focuses on the extensibility of its opera-
tor model, the explainability, and a scoring model for social feedback. Other rule-based systems
especially for UIMA are the IBM Content Analytics Studio17, Zanzibar18, UIMA-Drools19 and
UIMA Regexp20.

17 formerly named IBM LanguageWare Resource Workbench: http://www.alphaworks.ibm.com/tech/lrw
18 https://code.google.com/p/zanzibar/
19 https://github.com/celi-uim/uima-drools
20https://sites.google.com/site/uimaregex/
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2.2.2 Development Support
�e development of rule-based information extraction applications is an engineering task and
should be supported by tooling in order to ensure the e�cient speci�cation of rules.
Many of the rule-based systems described in the last section also provide some development

tools, which range from simple basic syntax validation to editor support or testing of rules. �e
most notable tool is probably the development environment of SystemT [42]. It provides an
editor with syntax highlighting and hyperlink navigation, an annotation provenance viewer,
a contextual clue discoverer, a regular expression learner, and a rule re�ner. In WizIE [141], a
process model is introduced that guides the developer in the di�erent steps and enables novice
developers to create high-quality applications [206].
�e Domain Adaptation Toolkit [27] provides grammar development functionality for AFST

and is able to create type system descriptors based on the grammars. �e development environ-
ment for SPRoUT21 includes functionality for testing.
�e IBM Content Analytics Studio is a UIMA-based development environment for the

speci�cation of rules in a drag and drop paradigm. ARDAKE22 provides an environment for the
integration of business and semantic rules in UIMA-based annotators. RAD [113] is a tool for
Rapid Annotator Development. Its rules are based on inverted index operations [168], which
allows for a quick feedback of rule modi�cations.

2.2.3 Rule Induction
�e creation of rule-based information extraction applications is typically a manual engineering
process. �e rule sets can, however, also be automatically induced. It is overall compelling
to automate time consuming and laborious tasks while still being able to investigate the cre-
ated extraction knowledge. Hence, a large amount of rule learning algorithms have been pro-
posed. �ese include IEPlus [41], FASTUS [98], AutoSlog [171, 172], CRYSTAL [185], LIEP [102],
PALKA [114], WIEN [136], STALKER [155], SRV [82], RAPIER [36], WHISK [186], IEPlus [41],
LP2 [45] and BWI [83]. �is section gives a short introduction in a selection of these algorithms,
which are applicable for di�erent kind of documents: structured, semi-structured and free23.

2.2.3.1 BWI

BWI (Boosted Wrapper Induction) [83] uses boosting techniques to improve the performance
of simple pattern matching single-slot boundary wrappers (boundary detectors). Two sets of
detectors are learnt: the "fore" and the "a�" detectors. Weighted by their con�dences and
combined with a slot length histogram derived from the training data they can classify a given
pair of boundaries within a document. BWI can be used for structured, semi-structured and
free text. �e patterns are token-based with special wildcards for more general rules.

21 http://sprout.dfki.de/SProUTIDE.html
22http://www.ardake.com/
23Parts of this section have been published in Peter Kluegl, Martin Atzmueller, Tobias Hermann, and Frank Puppe. A
Framework for Semi-Automatic Development of Rule-based Information Extraction Applications. In Proc. LWA
2009, pages 56–59, 2009 [118].
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2.2.3.2 CRYSTAL

CRYSTAL [185] learns free-text multi-slot extraction rules named concept de�nitions, which
are built of lexical, semantic and syntactic constraints. �ey operate on sentences or syntactic
constituents that are created by a sentence analyzer. Concept de�nitions are induced in a bottom-
up covering manner by generalizing most speci�c seed rules created from uncovered training
instances. A seed rule is merged with themost similar concept de�nition of the initial rule base.

2.2.3.3 LP2

�is method [45] operates on all three kinds of documents. It learns separate rules for the
beginning and the end of a single slot. So called tagging rules insert boundary SGML tags and
additionally induced correction rules shi� misplaced tags to their correct positions in order to
improve precision. �e learning strategy is a bottom-up covering algorithm. It starts by creating
a speci�c seed instance with a window of w tokens to the le� and right of the target boundary
and searches for the best generalization. Other linguistic NLP-features can be used in order to
generalize over the �at word sequence.

2.2.3.4 RAPIER

RAPIER [36] induces single slot extraction rules for semi-structured documents. �e rules
consist of three patterns: a pre-�ller, a �ller and a post-�ller pattern. Each can hold several
constraints on tokens and their according POS-tag and semantic information. �e algorithm
uses a bottom-up compression strategy, starting with a most speci�c seed rule for each training
instance. �is initial rule base is compressed by randomly selecting rule pairs and search for the
best generalization. Considering two rules, the least general generalization (LGG) of the slot
�llers are created and specialized by adding rule items to the pre- and post-�ller until the new
rules operate well on the training set. �e best of the k rules (k-beam search) is added to the
rule base and all empirically subsumed rules are removed.

2.2.3.5 SRV

SRV [82] uses single-slot �rst order logic (FOL) rules to classify a given text fragment. It is an
ILP system based on FOIL and is suitable for all three kinds of documents dependent on the
used feature set. Rules are created in a top-down covering manner from positive and negative
instances by starting with a general rule and adding literals until the rule operates well on
the training set. It uses a feature-set containing simple attribute-value features and relational
features.

2.2.3.6 WHISK

Another multi-slot method is WHISK [186]. It can operate on all three kinds of documents and
learns single- or multi-slot rules looking similar to regular expressions. �e top-down covering
algorithm begins with the most general rule and specializes it by adding single rule terms until
the rule causes no errors on the training set. Domain speci�c classes or linguistic information
obtained by a syntactic analyzer can be used as additional features. �e exact de�nition of a
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rule term (e.g. a token) and of a problem instance (e.g. a whole document or a single sentence)
depends on the operating domain and document type.

2.2.3.7 WIEN

WIEN [136] is the only method listed here that operates on highly structured texts only. It
induces so called wrappers that anchor the slots by their structured context around them. �e
HLRT (head le� right tail) wrapper class for example can determine and extract several multi-
slot-templates by �rst separating the important information block from unimportant head and
tail portions and then extracting multiple data rows from table like data structures from the
remaining document. Inducing a wrapper is done by solving a CSP for all possible pattern
combinations from the training data.

2.3 Machine Learning for Information Extraction
�e research in academia on information extraction is mainly dominated by machine learning
approaches [44]. �e reasons for this fact are manifold. �e annotations of labeled examples
for supervised machine learning can be performed by auxiliary workers in many domains. In
contrast, handcra�ed approaches require well-trained engineers. Statistical models are able to
include a vast amount of properties and features in the classi�cation decision, which o�en leads
to an improved accuracy. Overall, it is easier to publish approaches using machine learning
techniques since no human factor needs to be evaluated in the experimental setup and the
experiments can be reproduced given the algorithms and the labeled data.
�is section provides a short overview of approaches for information extraction based on

supervised machine learning techniques. A�er an introduction to the essentials and to the
di�erent representations of the information extraction tasks for machine learning models, a
more detailed description of Conditional Random Fields is provided. �ese models are applied
in Chapter 6 for implementing approaches for exploiting context-speci�c consistencies. Hence,
this section provides the basics and preliminaries for the part of this work, which is based on
machine learning techniques.

2.3.1 Essentials of Machine Learning
Information extraction is de�ned as the identi�cation of well-speci�ed entities and relations.
From the perspective of machine learning approaches, this de�nition corresponds to the clas-
si�cation of text fragments to a given class or label. Hence, machine learning approaches for
information extraction typically employ supervised training of a model. �e parameters of
the models are estimated according to the given annotated training data in order to predict
a well-de�ned set of labels or entities. �e process model for supervised machine learning is
depicted in Figure 2.9.
�e process model can be partitioned into two separate subprocesses (cf. Figure 2.9, part (a)

training and part (b) prediction). In the training process (a), a machine learning algorithm is
applied in order to estimate the parameters of a model that is later applied for the prediction. �e
input of this subprocess consists in labeled examples, which typically correspond to annotated
documents in information extraction. �e input data is transformed into a feature representation
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Figure 2.9: Process model of supervised machine learning [22].

using a prede�ned set of feature extractors. �e machine learning algorithms use this feature
representation and the additional labels in order to estimate the parameters of the model, which
most o�en includes a weighting of the features for a speci�c label or class. �e output of this
process is the classi�er model with the learnt parameters. �e second subprocess (b) describes
the prediction of the labels for new and typically unseen data. First, the same feature extractors
transform the unlabeled data into the feature representation, which is known to the model.
�en, the model applies inference on the learnt parameters in order to predict the label. In
information extraction, the input data consists of documents, and thus the prediction of the
classi�er model is typically comprised of a more structured output. �e classi�er assigns a label
to each token or sequence of tokens, which potentially leads to variants of multi-instance and
multi-label classi�cation.
�e success of the machine learning process model for information extraction tasks mainly

relies on three factors:

Selection of feature extractors �e representation of the documents needs to provide dis-
criminative properties so that the classi�er can distinguish di�erent types of entities,
positions that contain entities and positions that contain no entities. Popular and com-
monly applied features for information extraction include the string of the token, its
capitalization, regular expressions for speci�c tokens, ngrams of tokens as well as charac-
ters, presence in a dictionary or arbitrary linguistic preprocessing. Additionally, these
features are also added for neighboring tokens in a �xed window in order to weaken
Markov assumptions.

Selection of model and algorithm �e learning algorithm and the applied model need to be
able to represent the information extraction task. Di�erent techniques provide di�erent
advantages and disadvantages. Discriminative graphical models, for example, are typically
preferred over generative models if the classi�cation decision includes many interdepen-
dent features. �e selection of the model o�en depends on the speci�cation of the labels
in order to represent the information in the textual data. Machine learning techniques
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applied for information extraction include Naive Bayes [109, 173], Logistic Regression
and Maximum Entropy classi�ers [23, 109], Support Vector Machines [49, 180, 96], Ran-
dom Forests [33], Hidden Markov Models [72, 70, 167, 166], Maximum Entropy Markov
Models [151], Conditional Random Fields [137, 190, 201], Markov Logic Networks [170]
and Factor Graphs [135, 152].

Labeled data �e amount, quality and representativeness of labeled data is an essential factor
for the success of supervised machine learning for information extraction. If the given
examples are insu�cient or do not cover speci�c aspects, then the trained model will
not be able to predict the correct labels. In general, the necessary amount of labeled data
increases with the amount of features, number of labels and the complexity of the model.

2.3.2 Representation as aMachine Learning Task
Many di�erent possibilities exist for representing information extraction as a machine learning
task. Figure 2.10 depicts the most common and established approaches for applying models
on textual data. �ey can be classi�ed into �ve categories: classify candidate, sliding window,
boundary models, �nite state machines and wrapper induction. �ese approaches are shortly
introduced in the following.

Classify Candidates 
Abraham Lincoln was born in Kentucky. 

Classifier 

which class? 

Sliding Window 
Abraham Lincoln was born in Kentucky. 

Classifier 
which class? 

Try alternate 
window sizes: 

Boundary Models 
Abraham Lincoln was born in Kentucky. 

Classifier 

which class? 

BEGIN END BEGIN END 

BEGIN 

Finite State Machines 
Abraham Lincoln was born in Kentucky. 

Most likely state sequence? 

Wrapper Induction 
<b><i>Abraham Lincoln</i></b> was born in Kentucky. 

Learn and apply pattern for a website 

<b> 

<i> 

PersonName 

Figure 2.10: Different approaches for identifying information in textual data24.

2.3.2.1 Classify Candidates

�emost straightforward and one of the earliest approaches to represent information extraction
as a machine learning task is candidate classi�cation. Here, the identi�cation of information is
24Figure taken from the slides of Kamal Nigam: http://videolectures.net/mlas06_nigam_tie/
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simply de�ned as a classi�cation task. In general, all kinds of classi�ers can be applied, e.g., Naive
Bayes [109, 173], Logistic Regression andMaximum Entropy classi�ers [23, 109], Support Vector
Machines [49, 180, 96] or Random Forests [33]. If several types of entities should be extracted,
then either amodel is selected that supports this multi-label classi�cation or several classi�ers are
trained, one for each kind of entity. �is approach requires the generation of possible candidates,
which contain the information that should be extracted. �ese candidates may consist of single
tokens, complete sentences or chunks identi�ed by parsers. �e classi�cation models perform
inference on the feature representation of the candidate and possibly of its surrounding text in
order to decide if it contains information and which class or label the information possesses.

2.3.2.2 SlidingWindow

�is approach is very similar to candidate classi�cation. �e only di�erence consists in the
generation of the candidates. While the candidates need to be provided by some external
component in the �rst approach, the possible candidates here are generated following a speci�c
procedure. Given a histogram of possible length of entities, a sliding window considers di�erent
spans of the documents as candidates. �e �rst candidate consists, for example only of the �rst
token. �e second candidate also includes the second token and so on until a given length is
exceeded. �is procedure is repeated for all tokens of the document resulting in a large amount
of possible candidates that cover spans of di�erent sizes.

2.3.2.3 Boundary Models

Similar to the previous approaches, the boundary models also apply classi�cation. However,
the problem to process sequential data is solved by classifying the boundaries of the entities.
Typically, at least two classi�cation models are trained. One classi�er detects the beginning of
an entity of a speci�c type and the other classi�er identi�es the end of these entities. �e actual
span and content of an entity is given by the combination of a beginning and the next end. �is
approach is o�en improved by adding additional classi�ers that identify the end dependent on
given beginnings and vice versa. Furthermore, other classi�ers that consider the length and the
content of a span may be applied in order to avoid unreasonable combinations of boundaries.

2.3.2.4 Finite State Machines

Finite state machines and graphical models are probably the most popular approaches to solve
information extraction as an machine learning task. �ey typically unroll a graph structure over
a document whereas one node or random variable corresponds to one token of the text. �e
estimated label of the variable speci�es the kind of entity. It is obvious that this approach provides
several advantages, but also some disadvantages. �is approach is able to jointly classify di�erent
types of entities and thus is able to model dependencies between them. Furthermore, inference
over graph structures con�rms better with the sequential properties of textual data. On the other
hand, these models need to include reasonable encodings of the label set in order to distinguish
subsequent entities of the same type. An exemplary encoding is BIO (begin, in, out/other) where
two labels are used for each type of entity: one label for the �rst token of an entity and one label
for all other tokens of an entity. �erefore, the spans of entities can be reliably identi�ed. Another
problem of these approaches consists in overlapping entities. �e graph structures typically
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models only one variable for each token. �us, it is problematic to assign two labels to one token
without drastically increasing the complexity of the model. An easy solution for this problem is
the usage of separate models for each kind of entity, which, however, prevents the joint inference
on di�erent types of entities. A large amount of di�erent models and algorithms exist that can
be applied for this approach. �ese models include Hidden Markov Models [72, 70, 167, 166],
Maximum Entropy Markov Models [151], Conditional Random Fields [137, 190, 201], Markov
Logic Networks [170] and Factor Graphs [135, 152].

2.3.2.5 Wrapper Induction

Wrappers are typically applied for structured and semi-structured documents like webpages.
�ey specify a combination of attributes or a path in a tree structure in order to classify an entity.
�e induction of these wrappers o�en relies on distinct algorithms, rule learners or classi�ers.
Exemplary methods for this approach can be found in Section 2.2.3.

2.3.3 Conditional Random Fields
Conditional Random Fields are very popular models for solving information extraction tasks.
�ey provide a discriminative approach for classifying sequences of tokens and allow one
to include a rich selection of interdependent features. Also more complex graph structures
are supported that model long-range dependencies between distant random variables. �is
section provides a short introduction to di�erent variants, inference, and parameter estimation.
�e latter two are described in detail only for linear-chain models. Inference and parameter
estimation for arbitrary graph structures are shortly outlined with references to further reading.
�e description summarizes the work of Sutton and McCallum [190, 191]25.

2.3.3.1 Modeling

Conditional Random Fields (CRFs) [137] are undirected graphical models, which model con-
ditional distributions over random variables y and x. Given exponential potential functions
Φ (yc , xc) = exp (∑k λk fk (yc , xc)) a CRF assigns

pθ (y∣x) = 1
Z(x) ∏c∈C

Φ (yc , xc) (2.6)

to a graph with cliques C under model parameters θ = (λ1 , . . . , λK) ∈ RK . �e partition
function Z(x) = ∑y′∏c∈C Φ (yc , xc) is a normalization factor to assert ∑y pθ(y∣x) = 1. �e
feature functions fk can be real valued in general. However, this work assumes binary feature
functions if not mentioned di�erently.
WhenCRFs are applied for information extraction tasks, themodel is adapted to the properties

of sequential data or textual documents. �erefore, the graph structure is normally restricted to
a linear chain representing the sequence of labels that are assigned to a sequence of tokens. �e

25Parts of the content of this section have been published in Peter Kluegl, Martin Toepfer, Florian Lemmerich, Andreas
Hotho, and Frank Puppe. Collective information extraction with context-speci�c consistencies. In Peter A. Flach, Tijl
De Bie, and Nello Cristianini, editors, ECML/PKDD (1), volume 7523 of Lecture Notes in Computer Science, pages
728–743. Springer, 2012 [127].
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entities of information extraction tasks are identi�ed by sequences of equal labels. If linear-chain
CRFs also model long-range dependencies with additional edges between distant labels, then
the models are called skip-chain CRFs [189]. Both models are shortly outlined in the following.

Linear-chain CRFs Linear-chain CRFs [137] restrict the underlying graph structures to be
linear sequences, typically with a �rst order Markov assumption. �e assignment of yt given x
and y− yt = (yt)t=1, . . . ,t−1,t+1, . . . ,T is then only dependent on yt−1,yt , yt+1 and x. �e components
of linear-chain CRFs are referred to with the index l. �e probability of a label sequence y given
a token sequence x is modeled by

pθ (y∣x) = 1
Z(x)

T
∏
t=1
Φl (yt , yt−1 , x) . (2.7)

Φl is used to describe the factors of the linear-chain edges that link adjacent labels:

Φl (yt , yt−1 , x) = exp{∑
k

λlk flk (yt , yt−1 , x, t)} . (2.8)

�e discriminative impact of the feature functions flk is weighted by the parameters θ = θl =
{λlk}Kk=1. �e feature functions can typically be further factorized into indicator functions plk
and observation functions qlk

flk (yt , yt−1 , x, t) = plk (yt , yt−1) ⋅ qlk(x, t) . (2.9)

�e indicator function plk returns 1 for a certain label con�guration and the observation
function qlk relies only on the input sequence x. �us, a feature function, e.g., that indicates
capitalized tokens, can be separately weighted for each label transition. Figure 2.11 contains
an example of a linear-chain CRF in factor graph representation, which is applied for the
reference segmentation task. �e label and token sequence are added for a better understanding.
Dependencies of the factors to tokens are omitted for simplicity.

Author Author Author Author Author Title Title Title Title . . .

y1 y2 y3 y4 y5 y6 y7 y8 y9 . . .

Sutton , C . : GRMM : GRaphical Models . . .

Figure 2.11: A linear-chain CRF applied on the reference segmentation task. The associated labels
and tokens are depicted above and below the variables.

Skip-chain CRFs Skip-chain CRFs [189] break the �rst order Markov assumption of linear-
chain CRFs by adding potentials to the graph that address dependencies between distant labels
and tokens. A set Ix = {(u, v)} ⊂ {1, . . . , T}×{1, . . . , T} de�nes positions u, v for which yu , yv
are connected by skip edges. �e components of skip-chain CRFs are referred to with the index
x in order to point out their usage in previous publications, e.g., [189]. �e set Ix unrolls skip
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edges based on token similarity and is therefore only dependent on the token sequence x. In
NER tasks, for example, the accuracy can o�en be increased when the model is encouraged to
label similar tokens identically. For controlling the computational cost, Ix has to be kept small.
An extension of Equation 2.7 with additional skip edges results in the conditional probability

pθ (y∣x) = 1
Z(x)

T
∏
t=1
Φl (yt , yt−1 , x) ∏

(u ,v)∈Ix
Ψx (yu , yv , x) . (2.10)

�e potentials Ψx for the skip edges are given by

Ψx (yu , yv , x) = exp{∑
k

λxk fxk (yu , yv , x, u, v)} (2.11)

extending the complete set of parameters θ = θl ∪ θx. �e feature functions factorize again
in an indicator function pxk and an observation function qxk :

fxk (yu , yv , x, u, v) = pxk (yu , yv , u, v) ⋅ qxk (x, u, v) (2.12)

�e observation function enables the model to share observed information between the
positions u and v and their neighborhoods, e.g., for providing local evidence at a position
where such information is missing. Figure 2.12 contains an example of a skip-chain CRF in
factor graph representation, which is applied for the identi�cation of the speaker. �e label and
token sequence are added for a better understanding. Dependencies of the factors to tokens are
omitted for simplicity.

Speaker Speaker Speaker O . . . O O Speaker O . . .

yu-2 yu-1 yu yu+1 . . . yv-2 yv-1 yv yv+1 . . .

Prof . Puppe speaks . . . Afterwards , Puppe will . . .

Figure 2.12: A skip-chain CRF applied for the identification of the speaker. The associated labels and
tokens are depicted above and below the variables. A long-range dependency connects the random
variables yu and yv since the corresponding tokens hold the same string ‘‘Puppe’’. The additional
factor provides useful features of the context of yu to yv , i.e. that the token of yu−2 and yu+1 are strong
indicators for mentions of the speaker.

2.3.3.2 Inference

�e inference techniques in probabilistic graphical models need to provide functionality for two
tasks. �e�st task consists in computing themost likely label assignment y∗ = argmaxy p(y∣x, θ)
for a given input x and set of parameters θ. �is procedure is applied for prediction, when the
model is utilized in order to extract information. �e second task is the computation of the
marginal distribution p(ya ∣x, θ) for a subset Ya of variables. �is procedure is required for
parameter estimation.
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Inference for linear-chain CRFs can be performed e�ciently with dynamic programming
approaches. Fast inference is essential since it is applied multiple times when estimating the
parameters. Furthermore, inference in linear-chain CRFs can be computed exactly and no
approximations need to be included in order to retain e�ciency.
Linear-chain CRFs mostly rely on the well-known Viterbi algorithm [197] for the two tasks.

�is algorithm requires the recursive calculation of three types of variables. �e forward variables
αt are computed by

αt( j) = ∑
i∈S
Φt( j, i , xt)αt−1(i) (2.13)

whereas α1 = Φ1( j, y0 , x1) and y0 is a �xed initial state. �e backward variable βt is de�ned
accordingly with an initialization βT(i) = 1:

βt(i) = ∑
j∈S
Φt+1( j, i , xt+1)βt+1( j) (2.14)

�e most likely label assignment is computed using the third type of variable δt de�ned as

δt( j) = maxi∈S Φt( j, i , xt)δt−1(i). (2.15)

Using δt , the most likely assignment y∗ is calculated by

y∗T = argmaxi∈S δT(i)
y∗t = argmaxi∈S Φt(y∗t+1 , i , xt+1)δt(i) for t < T.

(2.16)

�e partition function is given by Z(x) = β0(y0) and Z(x) = ∑i∈S αT(i), and the marginal
distributions for linear-chain graphs by

p(yt−1 , yt ∣x) =
1

Z(x)
αt−1(yt−1)Φt(yt , yt−1 , xt)βt(yt)

p(yt ∣x) =
1

Z(x)
αt(yt)βt(yt).

(2.17)

When moving to more complex graph structures, inference can become problematic and
requires possibly exponential time in worst case. Exact inference is mostly only applied for tree
structured graphs. Algorithms for this type of graphs can also be utilized for inference in loopy
graph structures, however with the result of potential convergence problems. In general, two
di�erent types of algorithms are utilized: Markov Chain Monte Carlo algorithms and belief
propagation algorithms.

40



2.3 Machine Learning for Information Extraction

Gibbs sampling as an example of a Markov Chain Monte Carlo algorithm samples the assign-
ment of one variable while the other variables are �xed. �e algorithm can be summarized the
following way [191]:

1. Set y j+1 ← y j

2. For each s ∈ V , resample component Ys . Sample y j+1
s from the distribution p(ys ∣y∖s , x)

3. Return the resulting value of y j+1

�is algorithm is initiated with an arbitrary labeling and iterated until a given criteria is
ful�lled. A more detailed description of Gibbs sampling can be found in various publications,
e.g., [39].
Another important algorithm for inference especially in tree structured graphs, but also

in cyclic graphs is belief propagation. �is algorithm sends messages between variables and
factors that represent a multiplicative contribution to the marginal [191]. Given the subgraph
Ga = (Va , Fa) for every factor index a ∈ N(s), which contains the variable Ys , Φa and the
complete subgraph following Φa , the messages mas and the messages msa are de�ned as:

mas(ys) = ∑
yVa∖ys

∏
ϕb∈Fa

Φb(yb)

msa(ys) = ∑
yVs
∏
ϕb∈Fs

Φb(yb)
(2.18)

�e computation of the messages can be performed recursively:

mas(ys) = ∑
ya∖ys

Φa(ya) ∏
t∈a∖s

mta(yt)

msa(ys) = ∏
b∈N(s)∖a

mbs(ys)
(2.19)

�e marginal distributions for variables and factors are proportional to the product of the
received messages [191]. When the graph structure is a linear chain, then belief propagation is
equivalent to the well-known forward backward algorithm. A more detailed introduction to the
belief propagation algorithm can be found in various publications, e.g., [208].

2.3.3.3 Parameter Estimation

�is section gives a short introduction in parameter estimation for linear-chain CRFs. �ere
are several methods like maximum likelihood or stochastic gradients whereas only the former
one is considered in the context of this section. Given a labeled training dataset {x(i) , y(i)}, the
conditional log likelihood is de�ned for linear-chain CRFs the following way [191]:

L(θ) =
N
∑
i=1
log p(y(i)∣x(i) , θ)

=
N
∑
i=1

T
∑
t=1

K
∑
k=1

θk fk(y(i)t , y
(i)
t−1 , x

(i)
t ) −

N
∑
i=1
log Z(x(i))

(2.20)
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In order to reduce over�tting of the parameters on the training dataset, a penalty term is
typically added. �ese include the Euclidean norm or the L1 norm. �e parameter estimation is
performed by maximizing the likelihood. A partial derivative for a linear chain with Euclidean
regularizer is [191]:

∂L
∂θk

=
N
∑
i=1

T
∑
t=1

fk(y(i)t , y
(i)
t−1 , x

(i)
t )

−
N
∑
i=1

T
∑
t=1
∑
y ,y′

fk(y, y′ , x(i)t )p(y, y′∣x(i)) − θk

σ 2
.

(2.21)

�e inference techniques described in the last section are applied in order to compute the
likelihood and its derivative, i.e., the partition function Z(x(i)) and the marginal distribution
p(y, y′∣x(i)). Finally, methods like quasi-Newton BFGS [17] are applied to solve the optimization
of the concave objective function L(θ).
�e parameter estimation in arbitrary graph structures is not tractable and thus techniques

based on approximations are utilized. Examples for those methods can be found in [191].
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Context-specific Consistencies

Information extraction models o�en assume that the information in textual documents is
independent and identically distributed (iid). Many documents are, however, created in a
process that violates these assumptions. Webpages are o�en generated using templates that
specify the arrangement of the textual contents. �e entities of a speci�c type of information are
ordered in lists, tables or similar structures and share the same layout. Examples for this are
web stores that provide one webpage for each product. �e information about the product is
arranged with the same layout and formatting in each page. �e title of the product may use a
di�erent layout than the price, but these entities are consistently structured throughout all pages
of a website. Other websites, however, apply di�erent templates for generating the webpages.
While the entities in this website are consistently structured, they might apply di�erent layouts
compared to the previous website. When an information extraction model processes these
websites, for example, in order to extract the product information, then the iid assumption is
violated. �e entities are not independently distributed since subsets of entities share similar
layouts26.
Such dependencies between entities do not only occur in automatically generated documents.

When humans manually compose and write documents, they typically apply some sort of
template or consistent structure. �ey organize repeating entities homogeneously or keep the
order of entities. Humans tend to apply the same layout for elements of equal level, like the fonts
of di�erent kinds of headlines. �ese regularities can especially be found in semi-structured
documents that include layout in order to highlight di�erent aspects of the text.
�e dependencies between entities are called context-speci�c consistencies in this work. �e

entities within a context or document share the same or at least similar composition, which
manifests in the choice of formatting, the order of entities or other properties. Entities in other
documents are also consistently structured, but in a di�erent way. �e actual composition of the
entities is not known when processing a document. �e composition and the applied formatting
is potentially contradictory. �ese consistencies concerning the arrangement and layout of enti-
ties are context-speci�c, because they are only ful�lled in a speci�c frame or scope. Information
extraction models processing these kinds of documents face severe problems resulting in an
reduced performance. Properties that indicate a speci�c type of entity in one document might
give evidence for a di�erent type of entity in another document. �e discriminative e�ect of
these properties stays thus o�en behind its potential.
�is chapter starts with an investigation of context-speci�c consistencies and their character-

istics. �e wide-spread phenomenon of equally structured entities is illustrated by a detailed

26Parts of the content and examples have been published in diverse research papers [128, 127, 121, 123].

43



Chapter 3: Context-speci�c Consistencies

description of three exemplary domains: reference sections of scienti�c publications, curric-
ula vitae and clinical discharge letters. �ese domains are utilized for evaluating the di�erent
approaches for exploiting such regularities. Each of the following three sections gives an in-
troduction to one domain by describing the kind of documents in general. Additionally, a
closer look at the speci�c information extraction task, interesting applications and published ap-
proaches provides insights in the current research in these domains. Each section also provides
a description and examples of the context-speci�c consistencies with hints how they can help
to improve the accuracy of information extraction models. Furthermore, additional domains,
in which context-speci�c consistencies occur, are shortly outlined. �e last section of this
chapter presents and discusses the related work for exploiting context-speci�c consistencies,
independently of the domain they are applied in.

3.1 Characteristics
A formal de�nition of context-speci�c consistencies is problematic because they occur in various
manifestations and due to di�erent reasons. A formulation of the problem can be achieved using
a generative process like in Blei et al. [25]. However, this model does not capture all aspects of
context-speci�c consistencies. �is section investigates the various aspects of these consistencies
and provides an indirect approach for formulating the problem.
�e main statement of this work can be summarized the following way:

Context-speci�c consistencies cause the consistent composition of entities within a
certain context. Entities of di�erent contexts may possess a di�ering and possibly
contradictory composition.

�e statement in second sentence describes the reason why domains with context-speci�c
consistencies cause challenges to information extraction models. �e limited validity of features
for classifying a certain type of entity prevents that the model exploits its full potential. �e
elements of the statement in the �rst sentence are those, which need to be investigated further.
�ree questions arise: When do context-speci�c consistencies occur? What is a context? What
is a consistent composition of entities? Answers to these questions are given in the remainder of
this section.
As the introduction of this chapter already described, context-speci�c consistencies arise if

documents or speci�c text passages are created in the same process. Possible processes range
from applying templates for generating text to authors that manually compose a document. �e
more structured the texts are, the more likely is the presence of context-speci�c consistencies.
�ey occur if several entities of one type are arranged in order to increase the readability of the
text. Free texts like newswire articles hardly contain context-speci�c consistencies.
Straightforwardly, the context can be de�ned as a collection of text that is created by the

same process. Since most o�en the complete document is created by one process, the document
provides the context of the entities. It is of course also possible that the context consists of a
collection of documents if these have been composed or generated by the same process.
�e determination of consistent compositions is more problematic. �e overall composition

of entities is only similar, but not identical within a certain context. If the entities possess an
identical composition in each aspect, then they also contain the same text and all or none of
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them are identi�ed. �us, only speci�c aspects of their composition are identical. �ese equal
properties need to be described.
A closer look at the properties of entities helps to identify suitable description for their

composition. It is o�en easier to describe parts and speci�c aspects of the composition. A set of
these descriptions is able to model the entire composition of entities. A description from the
domain of segmentation of references is the following example: �e author begins at the start of
the reference and ends directly before the date. �is description of the composition of authors
consists of two parts. �e �rst part describes the properties of the beginning of an author and
the second part concerns the end of the author. No information about the content of the author
is given. Hence, the description does not cover all potential aspects, but it is su�cient to specify
the consistent composition of authors within one document. �e example illustrates two types
of descriptions that target a boundary of the entity and the kind of subsequent entities. �e
following list provides a selection of di�erent types:

• Transition between entities

• Boundaries of entities

• Content of entities

• Order of entities

�e transition between entities is the most generic approach for describing the composition
of entities. It can also be utilized to model the other types. �e concept is similar to the
representation of entities in sequence labeling methods, which rate di�erent features for a
speci�c combination of two labels. When the entities are projected on the token sequence
of the document, the transition from one token to another can be used to describe speci�c
aspects of the involved entities. �is description can be extended with additional properties and
features that occur near the two tokens. Tokens of di�erent entities lead to a description of the
boundaries of entities and tokens of the same entity represent a statement about the content
of the entities. �is type of description is well suited for domains where the properties of the
composition depend on the neighboring entities. In the domain of segmentation of references,
the composition of the entities sometimes depends on combination of the entities. While the
pages, for example, begin with a keyword like “pp.” in references for publications in proceedings,
the entity directly starts with the �rst page number for articles published in journals. Even if
the exact kind of publication is probably unknown when processing a reference section, the
combination of entities or labels for tokens can be utilized to achieve the same di�erentiation.
�e pages are located a�er a booktitle entity in references concerning proceedings, but they are
following a volume entity in the references to journals. When the transition between entities
is applied for describing the composition, it is still possible to provide consistent descriptions
since the pages entities are not modelled directly. Instead the transition between booktitle and
pages is modelled with the property of a special keyword and the transition between volume
and pages is described with a di�erent property, e.g., the occurrence of a number.
�e boundaries of the entities can be used as a more robust description in many domains.

�eymodel the properties of the �rst and last token of the entities. �us, boundaries are a special
case of transition between two di�erent kinds of entities. Descriptions using the transition
between entities provide some advantages, but there are also disadvantages especially in domains
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like curricula vitae. Here, the entities are sometimes located next to each other, but sometimes
there are also additional tokens between them. Transition-based descriptions would need
to model transitions between an entity and the following entity, but also from an entity to
tokens that are not part of an entity. �is aggravates the learning process described later due to
the reduced amount of examples. It is hardly possible, for example, to induce a valuable and
useful description of consistent compositions from one example. Descriptions using only the
boundaries of entities do not su�er from this disadvantage. Here, the �rst and last tokens are
described independently of the previous or following entity.
Descriptions for the content of the entities are similar to descriptions based on boundaries.

�is type is again a special case of the transition-based description since it models the transitions
between tokens of the same kind of entity. Descriptions for the content are useful if the consis-
tencies occur for all tokens of an entity. Examples for this consistency are bold or underlined
headlines. �ese properties occur typically also at the beginning or the end of an entity. However,
content-based descriptions are potentially more robust especially if all tokens provide consistent
features but not the tokens concerning the boundaries. Furthermore, providing information
about each token of an entity instead of only the �rst and last token is able to provide more
evidence for graphical models that rely, for example, on a restricted Markov order.
�e fourth type of description for the consistent aspects of the entities’ composition is the

order of the entities. In contrast to the other types, this description does not use properties or
features, but only the sequence of entities. In some domains, the entities in a document may
not share any similarities that can be speci�ed with the available set of features. However, the
order the entities occur may still be consistent within one document. �is information can be
exploited similar to the other kind of description in order to gain knowledge about the correct
appearance of entities.
In summary, the consistent composition of entities can be speci�ed by a combination of

di�erent types of description. A subset of the entities’ properties or features needs to be identical
concerning each type of applied description.

3.2 Domains
Context-speci�c consistencies are a wide-spread form of dependencies between entities. Due to
the common urge to structure information of one type consistently, these dependencies occur in
many di�erent domains. �is section illustrates this fact by describing three domains in detail.
�ese domains are utilized later in order to evaluate the developed approaches. An outlook to
other domains with context-speci�c consistencies concludes the section.

3.2.1 Reference Sections
Reference sections of scienti�c publications contain the meta information of the cited papers.
�is citation metadata or reference string provides speci�c information about the author, title,
publication date and many more entities in order to identify the cited publication. O�en the
well-known BibTex format is used to de�ne the di�erent �elds. �e actual occurrence of a
type of entity depends on the kind of publication and on the rigor of the editing process. �e
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reference strings of papers published in proceedings typically contain a book title, whereas
papers published in journals specify the name of the journal, the series and the volume.
�e references within one reference section follow typically a speci�c style guide, which

determines the intended ordering and layout of entities. �e style guide is o�en prescribed
by the conference or journal, to which the paper has been submitted. Di�erent conferences
and journals demand di�erent style guides resulting in a huge amount of possibly di�erent
composition and layout of the entities. Figure 3.1 contains three examples of di�erent style
guides and highlights distinctive aspects of the composition of the references. �e reference
section in example A contains references, which start with the author followed by an italic title.
�e author and the title are separated by one period, which is, however, an intrinsic part of the
author. �e date is located near the end of the reference followed by an optional mention of the
pages. �e reference in example B starts with the author followed by the date in parentheses.
�e title is here also displayed in an italic font, but located a�er the date. �e reference section
of example C �nally speci�es author entities that end with a colon followed by the title, which is
displayed in a normal font. �e date is also given near the end of the reference as in example A,
but is surrounded by parentheses.
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Figure 3.1: Excerpts of three exemplary reference section.

3.2.1.1 Information Extraction Task

�ere are many interesting and important tasks when processing scienti�c publications. �ese
include the extraction of the metadata of the paper [153, 93, 87, 142, 210], the identi�cation of the
citations in the paragraphs [164], or the disambiguation of the referenced publications [18, 163,
202]. In contrast, information extraction from reference sections consists in the segmentation of
the reference string in interesting entities, which o�en correlate to the BibTeX �elds. Commonly,
13 interesting entities can be identi�ed [160]: Author, Booktitle, Date, Editor, Institution, Journal,
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Location, Note, Pages, Publisher, Tech, Title and Volume. �e speci�cation of entities leads to
a complete disjunctive partitioning of the reference string. �e set of entities is sometimes
reduced or expanded dependent on the requirements of the application. �e entities Author,
Title and optionally Date are o�en su�cient for the identi�cation of the referenced paper [199].
By minimizing the amount of di�erent entities, the extraction tasks can be simpli�ed. �e
remaining entities are then subsumed using an entity like Venue (cf. [183]). For a more detailed
analysis, more �ne-grained entities have to be extracted. One example is the identi�cation of
the �rst name, initials and surname of each author instead of only the complete list of authors
(cf. [4]).

3.2.1.2 Applications

�e segmentation of references is only one task amongst others that applications need to perform
to take advantage of the contained information. First of all, a huge amount of publications
is crawled if it is not yet available. �en, the reference section needs to be found within the
document and each reference string has to be identi�ed. �e reference segmentation task starts
here, by labeling the set of references. Finally, the processed references are disambiguated in
some applications.
Reference sections of research papers are a valuable source for many interesting applications,

which rely on a structured representation of the citation data. �e knowledge how o�en a
paper has been cited is a good indicator for its impact in the research community. Scienti�c
search engines like Google Scholar27, CiteSeerX28 or Rexa29 provide useful tools for academic
work. �ey use citation information in a structured representation in order to improve the
search results. McCallum et al. have introduced the creation of such an Internet portal in [153].
A considerable amount of research has been spent on creating and analyzing citation graphs,
yielding information about research communities and topics (cf. [64, 3, 30, 106]). Furthermore,
social bookmarking services like Bibsonomy [101] facilitate the management of bibliographic
data and take advantage of the automatic acquisition of citation information. �e Icecite Research
Paper Management System [10] supports diverse tasks such as metadata extraction, reference
segmentation or semantic search.

3.2.1.3 Related work

A vast amount of approaches for segmenting references has been published in academia. �e
popularity of the task amongst others for evaluating novel information extraction techniques is
driven by the availability of labeled datasets and by the importance of the tasks for interesting
applications. �is section provides an overview on available datasets and related work on
segmentation of references by categorizing exemplary publications by their applied technique,
focus and domain.
�e segmentation of references is a popular task for evaluating information extraction tech-

niques due to the availability of labeled datasets and of the interestingness of the tasks for
applications. �e ACL Anthology Reference Corpus [20] is a corpus of 10,921 scholarly papers

27http://scholar.google.com/
28http://citeseerx.ist.psu.edu/
29http://rexa.info/
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of the area of computational linguistics, which, however, provides no labeled information about
the entities. �ere are several freely available labeled datasets. �e CORA Field Extraction
dataset [181] contains 500 references from the �eld of computer science and is annotated with 13
di�erent types of entities. �e datasets CiteSeerX [52] and FLUX-CiM [50] are labeled with the
same types of entities and consist of 200 and 300 references respectively. �e UMass Citation
Field Extraction dataset [4] provides references annotated with more �ne-grained entities. �ese
cover di�erent elements of the author names and more detailed information about the venue
amongst other entities. �e references are annotated in a hierarchical manner allowing also
coarse-grained access to the entities. �e dataset contains overall 1825 references from the �elds
physics, mathematics, computer science and quantitative biology and thus provides a broader
variety of di�erent styles. Kim at al. [115] created a labeled dataset of bibliographic references in
digital humanities. �e dataset consists of three corpora covering di�erent types of references
and citations. Finally, the Plazi dataset [177] contains 25,000 references in more than 1000
publications of the last 200 years.
�e CORA Coreference dataset [19] and the CiteSeer dataset [138] have been created for joint

inference approaches. �ey contain 1295 and 1563 references respectively from the �eld of com-
puter science whereas a not negligible part consists of variants in di�erent representations. �e
datasets provide additional information about the identity of the references for disambiguation
tasks. �e CORA Coreference dataset is only annotated with a minimal set of entities since
many entities have been merged to Venue.
All labeled datasets contain only a list of labeled references and not the complete reference

sections. Furthermore, they provide no information from which reference section the references
originated. �e datasets are, therefore, not applicable for developing or evaluating approaches
that try to take advantage of the context-speci�c consistencies.
�e most popular technique are Conditional Random Fields (CRF) [137], which can be

considered the state-of-the-art method for this task. Peng and McCallum [160] have been one
of the �rst that applied CRFs for segmenting references and investigated di�erent in�uence
factor of the model. �ey evaluated their approach on the CORA Field Extraction dataset and
achieved an overall token accuracy of 95.37% and a macro-average entity-based F1 score of 0.915.
Councill et al. [52] reproduced these results in their ParsCit system, which is also based on CRFs,
and extended the evaluation to two additional datasets. Anzaroot and McCallum [4] and Groza
et al. [91] investigated the performance of models trained on di�erent datasets. �e former
approach is trained on the UMass Citation Field Extraction dataset in order to detect more
�ne-grained entities. �ey are able to achieve an overall token-based and entity-based micro F1
score of 0.978 and 0.912 respectively. Other publications about segmentation of references using
CRFs focus on references in di�erent domains [116], layout and formatting [112], acquisition of
training data [104], or granularity of underlying tokens [157]. Other works also applied Hidden
Markov Models for solving the task [97]. �ey evaluated their approach on a modi�ed CORA
Field Extraction dataset and achieved an micro-average F1 score of 0.933 based on tokens and an
F1 score of 0.841 based on entities, and a macro-average F1 score of 0.847 and 0.747 respectively.
Ignoring leading and trailing punctuation marks further improved their results.
Early approaches have been based on manually created rule sets for the detection of the enti-

ties [86, 65, 108]. However, also later approaches can be categorized as rule-based or knowledge-
based. Cortez et al. [50] apply di�erent processes and automatically constructed knowledge
bases for solving the segmentation task. �is approach is utilized by Afzal et al. [1] for au-
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tonomous citation mining. A hierarchical template-based reference segmentation method has
been proposed by Day et al. [60]. �e approach has been evaluated for six major styles. Chen et
al. [40] proposed sequence alignment techniques for segmenting references. �eir approach
uses the order of punctuation marks and the similarity to citations in a database. Sautter and
Böhm [177] introduced an inference mechanism for inducing the applied style using regulari-
ties in any list of references. �eir experimental evaluation reports an improved accuracy for
segmenting references especially for historic reference sections. A more detailed description of
the algorithm and its evaluation results can be found in Section 3.4.1.2.
Park et al. published a hybrid two-stage approach for discipline-independent segmentation

of references [159]. In the �rst stage, Support Vector Machines [49] classify the references
concerning their style guide. In the second stage, specialized CRFs identify the interesting
entities. �e necessary training data is acquired with external tools that generate reference
representations using di�erent style guides.
�e segmentation of references can be combined with other tasks in order to improve the

accuracy. Poon et al. [163] and Singh et al. [183] perform the segmentation jointly with their
disambiguation. �e former approach applied Markov Logic Networks [170], whereas the latter
approach is built on imperatively de�ned factor graphs [183]. �ere have also been e�orts to
improve the accuracy using unlabeled data. �ese models are trained in a semi-supervised
fashion incorporating constraints and knowledge about references [16, 15, 146].
Many models for segmenting references have been developed and evaluated using references

of scienti�c publications from the �eld of computer science. Other approaches cover the task in
patent documents [143], web pages [100], digital humanities [116], Chinese electronic books [85],
or medical articles in HTML [211].

3.2.1.4 Aspects of Context-specific Consistencies

�e references within one reference section typically follow a speci�c style guide that prescribes
the ordering, composition and layout of the entities (cf. Figure 3.1). �ere is, however, a vast
amount of di�erent style guides that de�ne a varying or even contradictory structure of the
entities. �is con�icting nature of reference sections issues a challenge to information extraction
models, which process each reference separately. If the references are segmented collectively,
then the consistent composition of the entities within a reference section can help to avoid
erroneous extractions. �e other references can point out the correct position of an entity in
case of doubt. �ese two assumptions, the challenge for the model and the usefulness of the
consistencies, are illustrated with an example.
Conditional random �elds are a popular method for segmenting references [52, 91, 104, 116,

157, 160]. �e parameters of the models are typically estimated in a supervised fashion using a
labeled training dataset. �ese datasets contain a listing of references with additional information
about the location of entities. �is information is used to optimize the weights of the features
for speci�c label combinations. �e trained model is applied on an instance, which represents a
single reference, in order to predict the most likely sequence of labels representing the entities.
From the model designers’ perspective, the classi�cation process is mainly in�uenced by the
choice of the features. �e feature functions need to provide valuable information to discriminate
labels for all possible kinds of instances. �is works well when the feature functions encode
properties that have the same meaning for inference across arbitrary instances. For example in
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the domain of reference segmentation, some special words have a strong indicative meaning
for a certain task: the word identity feature “WORD=proceedings” always suggests labeling
the token as Booktitle. �us, the learning algorithm will �x the corresponding weights to high
values, leading the inference procedure into the right direction. Some features, however, violate
the assumption of a consistent meaning. �e feature that indicates colons, for example, might
suggest the end of an author label if current training example �nishes author �eld with colons.
However, other style guides de�ne a di�erent structure of the author labels. Consequently,
the learning algorithm assigns the weights to average the overall meaning. �is yields good
generalization given enough training data, but averaging the weights of such features restricts
them to stay behind their discriminative potential. Furthermore, ignoring the context of a
feature can lead to avoidable labeling errors.
Figure 3.2 depicts an example of some references that have been annotated by a Conditional

Random Field with the entities Author, Title and Date. �e second reference contains an error
since the token “SIIPU*S” is assigned to the Author instead of the Title. �is incorrect labeling
was probably caused by the occurrence of the colon near the beginning of the reference in
combination of other features. If the complete reference section is taken into account, and if the
assumption of consistently structured entities is valid, then the labeling mistake and the correct
position of the transition between Author and Title are obvious. All other references contain an
extracted Author that ends with a period followed by an italic token. If this knowledge about
the consistent composition can be inferred and utilized, then these errors can be avoided or
corrected.
�is example illustrates only one scenario where the assumption about consistent composition

can be helpful. A closer look at arbitrary reference sections reveals that the entities of most
types are consistently structured and the order of the entities is identical. �e consistencies can
also be observed for more �ne-grained entities. �e similarities in ordering and layout of, for
example, �rst names, initials and surnames can also be exploited. �e composition of entities
within one reference section is, however, not always completely consistent. Di�erent kinds of
cited publications produce references with varying layout and ordering of the entities. �e Pages
entity contains o�en varying keywords or punctuation marks if the reference is a journal or
a conference publication. Publications like workshop papers that undergo a less rigid editing
process contain entities with di�ering punctuations or even lack some entities resulting in a
di�erent ordering of the entities for a speci�c kind of publication.

3.2.2 Curricula Vitae
A curriculum vitae (CV) or resume summarizes the skills, education, experiences and past
employments of a person and is commonly submitted in order to apply for a new employment.
Big enterprises and recruiting companies receive a substantial amount of CVs, which need to
be processed for further e�ective usage, e.g., management of the CVs or selection of relevant
candidates. An automatic extraction of the relevant information can signi�cantly reduce the
manual labor and is therefore an interesting option for many companies.
�e extraction of the interesting entities is not a simple task, because submitted CVs use o�en

no prede�ned format. Online templates for applications are not widely spread. In most cases, a
person writes her CV with personal preferences concerning structure and layout. �is leads to a
rich amount of di�erent formats, in which the interesting information is structured. Di�erent
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Figure 3.2: Part of an exemplary references section with highlighted spans for the entities Author,
Title and Date. The second reference is erroneous since the token ‘‘SIIPU*S’’ is assigned to Author
instead of Title (indicated by a red bar).

CVs may follow di�erent layouts and structure the contained information in diverse ways, but
the information within one CV is typically composed in a consistent layout. �is is caused by
the fact that humans o�en format repetitions of equivalent blocks consistently with the same
layout. �ese consistencies can be exploited in order to overcome limitations of the information
extraction models.
Figure 3.3 depicts parts of a �ctional CV that contains information about the past professional

experiences, projects and employments, the interesting information for the task in the domain
for this work. �e focus is laid on the entities Company, Date and Title. Company is the former
employer, Date speci�es the timespan of the employment, and Title contains either a short
summary or the name of the job. �e CV is based on a layout with the Company in the �rst line
of an employment block written in capitalized letters. �e Title follows in the second line with
an italic font applied. �e Date is located on the right given by the corresponding month and
year. Other CVs apply, however, a di�erent formatting and arrangement of the entities. �is can
include amongst others the usage of di�erent patterns for specifying the timespan, contradictory
formatting of the entities, or di�erent ordering of entities without clear separations in lines.

3.2.2.1 Information Extraction Task

�e information extraction tasks in CVs are dependent on the targeted application and typically
cover di�erent kinds of contained entities. �ese entities range from personal contact informa-
tion over skills and abilities to eduction and employments. A general speci�cation of entities
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John Doe 

WORK EXPERIENCE: 

AMERICAN EAGLE        City, State 
Sales Associate   July 2009 - present

Collaborated with the store merchandiser creating displays to attract clientele
Use my trend awareness to assist customers in their shopping experience
Thoroughly scan every piece of merchandise for inventory control
Process shipment to increase my product knowledge

PLANET BEACH      City, State 
Spa Consultant    Aug. 2008 - present 

Sell retail and memberships to meet company sales goals
Build organizational skills by single handedly running all operating procedures
Communicate with clients to fulfill their wants and needs
Attend promotional events to market our services
Handle cash and deposits during opening and closing
Received employee of the month award twice

HEARTBREAKER                City, State 
Sales Associate  May 2008 – Aug. 2008 

Stocked sales floor with fast fashion inventory
Marked down items allowing me to see unsuccessful merchandise in a retail market
Offered advice and assistance to each guest

VICTORIA’S SECRET       City, State 
Fashion Representative      Jan. 2006 – Feb. 2009 

Applied my leadership skills by assisting in the training of coworkers
Set up mannequins and displays in order to entice future customers
Provided superior customer service by helping with consumer decisions
Took seasonal inventory

Figure 3.3: Excerpt of an exemplary curricula vitae30.

and information is given by HR-XML31 and resumeRDF [29].
Information extraction models for CVs are o�en divided in two stages [209]. While the

�rst stage segments and classi�es the di�erent sections of the document, which cover personal
information, education or past employments, a second stage performs specialized information
extraction within these sections. �e information extraction task of this work focuses on the
identi�cation of entities in the past employments, especially of the timespan (Date) one employee
worked for a speci�c employer (Company).

3.2.2.2 Applications

�e automatic transformation of the unstructured CVs in a structured representation reduces
the manual labor in processing these documents and is able to improve many tasks that are
hardly e�cient when performed on plain CVs. If the information of CVs is available in a
structured form, then it can be utilized for querying, semantic search, and management of

31 http://www.hr-xml.org/
31 http://upload.wikimedia.org/wikipedia/commons/c/cc/Resume.pdf
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the documents in general. �e potential employer, for example, is able to automatically �lter
uninteresting candidates or to search for candidates ful�lling speci�c requirements.
�e information extraction approach of this work is motivated by an industrial project. �e

information extraction model has to extract all relevant information in German CVs of the
sector of information technology. �e entities include the name, contact information, abilities
and skills. A special focus is laid on the past employments covering the timespan for which the
candidate worked for a speci�c company or within a sector. �is information is linked with the
skills and titles related to these projects or employments. �e resulting entities facilitate, for
example, queries for candidates that have worked in a speci�c sector in the last 10 years whereas
a given set of skills has been applied in these positions. �e information extraction process of
this application was not completely automated since the identi�ed entities needed to be veri�ed,
but the process doubled the e�ciency of a complete department.

3.2.2.3 Related work

Information extraction approaches and techniques for transforming CVs into structured repre-
sentations are not as well-studied as the corresponding research on segmentation of references.
Nevertheless, there are publications that address the task due to its considerable relevance in
real-world applications.
Ciravegna and Lavelli [46] introduced the LP2 algorithm for supervised induction of infor-

mation extraction rules. In one of their case studies that investigates the applicability of the
approach in real world applications, they investigated the extraction of contact information in
English CVs. �e rules have been trained on 250 documents and tested on 50 unseen documents.
�ey were able to achieve a macro-average F1 score of 0.85.
Kaczmarek et al. [110] describe their project plans for information extraction from Polish

CVs. �e approach is based on the rule-based system SProUT [68] and targets more di�erent
kinds of entities, which cover contact information, employment history, education and skills.
Maheshwari et al. [145] extract special skills for an improved performance of resume selection.
An ontology-based approach for English and Turkish CVs has been published by Çelik and

Elçi [71]. �ey apply a pipeline of di�erent phases. �e converter transforms the document into
plain text. �e segmenter identi�es the di�erent sections, in which a parser tries to detect the
interesting entities. �e pipeline is completed by normalization, clustering and classi�cation
components. �e extraction of entities is mostly driven by matching on the labels of an ontology
and by additional rules.
Yu et al. [209] investigate the applicability of di�erent techniques in a cascaded model. �eir

results indicate that probabilistic sequence models like HMM are suitable for the segmentation
of the di�erent sections, whereas classi�cation-based methods like Support Vector Machines
perform well for the detection of entities. �ey evaluated their approach on Chinese documents
and are able to achieve an average F1 score of 0.8 and 0.73 for personal information and edu-
cational information respectively. Compared to a �at model, their cascaded model is able to
improve the F1 score by 2.7 and 7.4 percent points.
Kopparapu [130] extracts the six major entities de�ned in HR-XML, which cover total expe-

rience, birthday, passport number, email, skills and quali�cation. �e extracted information
is stored in a database in order to improve search. In their management system, the user is
able to query documents based on the age, quali�cation, so�ware skills or experience of the
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candidate. �e approach is mostly based on dictionary matching in general, sequential patterns
for experiences and dates, and classi�cation for names. �eir experimental results indicate an
F1 score of 0.78 on a test dataset of 50 CVs.

3.2.2.4 Aspects of Context-specific Consistencies

Humans typically apply the identical layout to repetitive sections or paragraphs. �e consistent
formatting improves the readability and layout of the complete document. �is observation can
also be made in CVs. Authors arrange the entities similarly in repetitive sections like the past
employments. �is consistency of the entities’ composition can be exploited in order to avoid
de�ciencies of the extraction model or to improve its accuracy in general.
�e information extraction models for processing CVs o�en rely on external dictionaries

and word lists. �e company, for example, can be identi�ed using simple features, e.g., common
su�xes, lists of known organizations or locations. Yet, these word lists cannot be exhaustive,
and are o�en limited for e�ciency reasons, e.g., for di�erent countries or only well-known
companies. �is can reduce the accuracy of the information extraction model, e.g., if the
employee had been working for a small company or in another country for some time.
Figure 3.4 depicts the former example of a CV and highlights the results of an inferior model.

If the applied dictionaries contain entries for American Eagle, Planet Beach and Victoria’s Secret,
then these companies can easily be identi�ed without further keywords. However, the company
Heartbreaker will probably not be extracted since not enough evidence is given due to the
missing entry in the dictionary. In addition, the model was able to identify common patterns of
timespans but failed to detect the �rst occurrence “present”, which indicated the current position
of the author.
In this example, the missing company can simply be identi�ed by analyzing the other com-

panies in this CV. �ey all contain only capitalized words and are located at the beginning of
the section describing one employment. �e same applies for the missing timespan of the �rst
employment. All extracted timespans are located in the second line a�er the title of the job posi-
tion. By identifying and using the knowledge about the consistent composition of the entities in
these sections, many errors of the extraction model can potentially be prevented. Especially
precision-driven approaches based on dictionaries and rules can be improved by increasing their
recall. However, also probabilistic models are able to take advantage of context-speci�c hints
about the consistent composition of entities for compensating missing features or contradictory
formatting.

3.2.3 Clinical Discharge Letters
Clinical discharge letters are created for each patient that leaves hospital. �ey summarize
the diagnoses, history, results of di�erent kind of examinations and observations, therapy,
medication and epicrisis. �e examinations may cover di�erent tests and measurements like
laboratory, ECG, echo or radiography. �e clinical discharge letters are therefore a central
documentation of the treatment. Furthermore, they are an important source for epidemiologic
research and many other important applications like cohort selection, quality management or
knowledge discovery. �e clinical discharge letters are textual documents in most cases and
contain sections for the di�erent results, test and measurements.
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John Doe 

WORK EXPERIENCE: 

AMERICAN EAGLE    City, State 
Sales Associate   July 2009 - present

Collaborated with the store merchandiser creating displays to attract clientele
Use my trend awareness to assist customers in their shopping experience
Thoroughly scan every piece of merchandise for inventory control
Process shipment to increase my product knowledge

PLANET BEACH      City, State 
Spa Consultant    Aug. 2008 - present 

Sell retail and memberships to meet company sales goals
Build organizational skills by single handedly running all operating procedures
Communicate with clients to fulfill their wants and needs
Attend promotional events to market our services
Handle cash and deposits during opening and closing
Received employee of the month award twice

HEARTBREAKER                City, State 
Sales Associate  May 2008 – Aug. 2008 

Stocked sales floor with fast fashion inventory
Marked down items allowing me to see unsuccessful merchandise in a retail market
Offered advice and assistance to each guest

VICTORIA’S SECRET       City, State 
Fashion Representative      Jan. 2006 – Feb. 2009 

Applied my leadership skills by assisting in the training of coworkers
Set up mannequins and displays in order to entice future customers
Provided superior customer service by helping with consumer decisions
Took seasonal inventory

AMERICAN EAGLE  

PLANET BEACH

VICTORIA’S SECRET  y,
Jan. 2006 – Feb. 2009 

y,

y,
May 2008 – Aug. 2008–

y,

Aug. 2008 - present 
y,

Figure 3.4: Excerpt of a fictional curricula vitae with highlighted spans for Companies and Dates. The
boxed areas exemplify missing entities.

�is unstructured information has to be transformed in a structured representation in order
to be accessible to analytic processes. A �rst step in this information extraction tasks is the
identi�cation of the di�erent kinds of sections present in the discharge letter. �e content of the
section is typically processed further by additional models in order to extract speci�c entities or
values of measurements. However, the segmentation of the discharge letter and the classi�cation
of its sections itself provides already an interesting source of information besides its importance
for further processing. It gives insights in the set of performed examinations.
�e segmentation of clinical discharge letters can be addressedwithmany di�erent approaches.

One successful approach is the identi�cation of headlines, which can straightforwardly be used
to detect the sections. Furthermore, the content of the headlines also provides a good indication
about the type of the section, e.g., the kind of examination. �e segmentation by headline
identi�cation is of course only reasonable in discharge letters that are structured using headlines.
If no headlines are used, di�erent techniques like the classi�cation of sentences need to be applied.
�e clinical discharge letters in the focus of this work, however, provide a headline-based layout
in the vast majority of cases. Clinical discharge letters are written by physicians or medical
typists, which apply di�erent layout and highlighting in order to represent structure of the letter
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3.2.3.1 Information Extraction Task

Information extraction in clinical discharge letters covers many interesting tasks. �e extraction
is typically performed by a pipeline of diverse components that build on the results of previous
processing. �e clinical discharge letters are initially anonymized in a de-identi�cation step and
segmented in well-de�ned sections in a segmentation step. �ese sections are then processed by
the following components in order to extract speci�c kinds of entities. A common speci�cation
of the outcome of the information extraction task is given by diverse terminologies or ontologies.
Examples for medical terminologies are ICD [88], SNOMED [51, 48] or UMLS [149, 103]. �e
concepts of these resources may de�ne the semantics of the interesting entities. In many cases,
the relations between the entities are investigated. �e extracted entities and relations are �nally
validated and integrated in data warehouses or similar storages.
�e task in the focus of this work is the segmentation of the letter by identi�cation of the

headlines. �is task is a preprocessing step when applying information extraction for the
interesting entities in the corresponding section. �e segmentation combined with classi�cation
of the section in well-known categories of examinations and other observations nevertheless
already provides a noteworthy and useful outcome. �e interesting entities of this task are
straightforwardly the exact spans of the headlines in the document classi�ed according given
categories.

3.2.3.2 Applications

�e content of clinical discharge letters or any other routine documentation in hospitals is the
source of many interesting and important applications. However, the information has to be
available in a structured representation for automated analytic processes. As a consequence,
information extraction and similar tasks have become of great interest in the medical domain.
Evidence for this trend is, for example, the work on freely available pipelines for processing
clinical notes [179] or the adaption of the deep question answering systemWatson for healthcare
applications32.
�e potential applications built on structured information are widespread in the medical

domain. �e content of the discharge letters can be utilized to select possible candidates for
clinical studies. �ey can be automatically queried dependent on interesting combinations
of entities instead of manual investigation, which improves the e�ciency of clinical research.
Furthermore, the researchers are able to automatically validate their hypotheses using the
available data of the patients. �ey are also able to generate new hypotheses based on previous
treatments and examinations. Finally, the structured information can help to improve the quality
management of the hospital, e.g., by comparing the diagnoses mentioned in the discharge letters
to the actually billed diagnoses.
�e information extraction task in the focus of this work, the segmentation of the discharge

letters, is a preprocessing step for making these applications possible. �e �rst applications
are retrospective cohort studies by querying the data warehouse �lled with the entities of the
diverse sections of the discharge letters. Segmented and classi�ed sections can also improve
many other tasks since they provide context for further processing. An example is word sense
disambiguation of speci�c attributes [192].

32 http://www-03.ibm.com/innovation/us/watson/watson_in_healthcare.shtml
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3.2.3.3 Related work

Information extraction in clinical discharge letters and in medical notes in general is a wide
and active area of research. A vast amount of approaches and case studies have been published
that investigate di�erent tasks in this domain. �is section concentrates on related work on
the segmentation of the clinical documentation that covers history and physical examinations,
discharge summaries and various reports.
�e SecTag algorithmdeveloped byDenny et al. [62] is able to identify and categorize explicitly

noted sections with headers or headlines and also text segments where these indicators are
missing. �e algorithm combines di�erent approaches based on rules and naive Bayes that are
cascaded in a pipeline. �e �rst phase of the pipeline identi�es sentences and listings, which
built the input for the following phases. �e second phase identi�es possible section headers and
also their occurrences in text fragments using a prede�ned terminology for section headers [63].
�is process is supplemented by word variants, spelling correction and stop word removal. �e
third phase applies rules and naive Bayes for scoring the category of the sections. �e last two
phases apply rules and the Bayesian score for disambiguating and �ltering unclear classi�cations,
and for identifying the end of a section. �ey evaluated the algorithm on 319 “history and
physical examination” documents, which contain overall 16,036 sections and 7,858 sections
of the prede�ned categories. �e experimental results indicate recall and precision of 0.990
and 0.956 for all sections whereas the values for implicit sections decrease. �e exact o�sets of
the sections have been identi�ed with an accuracy of 94.8 and 85.9% for explicitly mentioned
sections and implicit sections, respectively.
Li et al. [140] apply HiddenMarkovModels for classifying given sections in outpatient clinical

notes. A section corresponds to a variable in the model, which implies a former segmentation
of the documents. In an experimental study, they show that the sequential classi�cation that
incorporates the order of the possible section categories directly in the model outperforms a
similar model that classi�es the sections independently of each other. �e results indicate an
accuracy of 93% for identifying the 15 possible section types in 2,088 clinical notes containing
overall 11,706 sections.
Tepper et al. [192] investigate two di�erent approaches based on Maximum Entropy models.

�e �rst approach segments and classi�es the sections in one step by providing a label encoding
for each category. �e second approach �rst identi�es a section and then tries to infer the
correct category. Both approaches process lines instead of sentences or complete sections, which
is grounded in the characteristics of clinical records that are composed of fragments or lists.
�ey have evaluated their approaches on three di�erent datasets for discharge summaries and
radiology reports containing 594 to 2,527 sections. �ey are able to achieve F1 scores of 0.818
to 0.891 for the complete sections and F1 scores of 0.878 to 0.929 for headers only. Further
experiments indicate that the accuracy of the models signi�cantly decreases if the documents
for training and testing origin from di�erent sources.
Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES) [179] also provides

a component for the segmentation of clinical notes. �e identi�cation of headlines and sections
is based on regular expressions and keywords.
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3.2.3.4 Aspects of Context-specific Consistencies

�e focus of the methods in this work concerning clinical discharge summaries lies on the
documents of the University Clinic of Würzburg. In contrast to the documents processed in
related work, these summaries typically highlight their sections with headlines and apply rich
layout information such as bold fonts. �e headlines, which can be utilized for segmentation
and classi�cation of the sections, possess a consistent layout as known from semi-structured
documents. If the author uses di�erent fonts for speci�c elements of the summary, then they
typically apply always the identical layout to elements of the same category. �is includes the
headlines of the discharge summaries whereas headlines of di�erent levels may apply di�erent
styles. �e headlines are, however, only consistently structured within one summary. Di�erent
authors structure the summaries with di�erent styles for headlines. �is results in a collection of
documents with contradictory layouts. �is characteristic of layout information with ambiguous
discriminative evidence leads to applications that rather process plain text instead of including
the layout information in their model. By exploiting the consistent composition of headlines
within one document, the segmentation of summaries can be improved.

Figure 3.6: Excerpts of three exemplary medical discharge letters (in German) with additional
highlighting for correct and missing headlines.

Figure 3.6 depicts the previous examples of discharge summaries with additional highlighting
for correct and missing headlines. Example A contains only correct headlines that are bold,
underlined, located in an extra line, and end with a colon. �e headlines in example B share
a similar layout, but are not necessarily located in an extra line. Example C features two false
positive headlines that contain information about the date of the laboratory data. �ese lines

60



3.2 Domains

have probably been identi�ed as headlines because of their layout, which covers most properties
of the headlines in the other two examples. �e actual headlines needed for the segmentation in
the third example apply a completely di�erent layout. �ey use a di�erent background color
instead of bold and underlined words. �is problem leads to a model, which either over�ts on
the predominant layout in the dataset or ignores the layout information completely. While the
�rst consequence results in a poor segmentation of summaries with a rare layout, the second
consequence causes the model to miss headlines that describe rather infrequent examinations.
Both situations should be avoided since they reduce the usefulness of the application.
A closer look at the discharge summaries reveals that most documents contain at least a few

headlines describing frequent sections such as diagnoses (“Diagnosen”), history (“Anamnese”)
or laboratory (“Labor”). �ese headlines can be reliably identi�ed due to unambiguity of their
contained words. A model that identi�es these headlines with a high con�dence is able to
�nd the remaining headlines by comparing the layout of possible candidates to the layout of
con�dent headlines. If the headline “Labor:” has been identi�ed in example C of Figure 3.6,
then the remaining headlines can easily be found by searching for similar layouts. �e excerpt
contains two more lines that share the same background color and have previously not been
extracted. �is approach can also improve the segmentation in the �rst two examples, e.g., for
identifying rather unusual examinations or sections with a headline that contains unknown
abbreviations or spelling errors.

3.2.4 Other Domains
�e last sections provided detailed descriptions of three domains with context-speci�c consisten-
cies. �ese domains are only a selection and have been investigated more precisely since they are
utilized in this work in order to evaluate the developed approaches. However, context-speci�c
consistencies occur in many other domains. �e probably largest accumulation of these consis-
tencies can be found in the web. �e webpages of websites are o�en created based on contents
stored in databases. A template or a similar process is applied in order to generate the single
pages and to �ll them with information. �is process straightforwardly leads to dependencies
between the contained information. As it was already stressed before, di�erent webpages apply
di�erent templates, which leads to contradictory compositions of entities. Examples for these
websites are web stores with product information like Amazon33 or portals for job postings.
However, also many other kinds of websites like forums and wikis include context-speci�c
consistencies.
Interesting entities with a similar composition within a certain context can also be found

in other types of documents. �ese include technical documentation, invoices and reports
in industry as well as books in general. Compendia that describe di�erent kinds of trees, for
example, o�en structure the information, which tree possesses which attributes like shape of
leaves consistently across sections. In the end, the idea of context-speci�c consistencies can be
exploited in order to improve the segmentation of most kinds of semi-structured documents.

33 http://www.amazon.com/
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3.3 Exploiting Context-specific Consistencies
�e descriptions of the domains with context-speci�c consistencies in the last section provided
already some hints how the consistencies can be exploited in order to improve information
extraction for the corresponding tasks. �ese envisaged solutions and approaches can be
abstracted from the speci�c use case in order to formulate a minimal process model that
represents general approaches for exploiting context-speci�c consistencies. �is process model
can be summarized with the following three steps, which are performed for each context:

1. Provide an initial prediction of entities.

2. Infer a model for the consistent composition of entities.

3. Consult the model in order to �nd correct entities.

�e necessity of these steps is motivated in reverse order. For improving the extraction
of entities under the assumption that they are consistently structured, a model is required
that describes the consistent composition of entities and that is able to identify consistent and
inconsistent positions. Further on, in order to infer the model, examples of entities are required.
�e �rst step consists in providing an initial set of entities. Two fundamental strategies can

be distinguished. Either only highly con�dent entities are supplied (high precision) or a best
possible and realistic prediction of entities is provided (high F score). �e di�erences between
these two strategies seem minimal since they both provide positive examples, but they in�uence
the set of applicable techniques in the next steps. �e initial prediction needs to ful�ll two
criteria. It needs to provide a minimal amount of entities so that a model can be inferred at
all, and the correctness of the predicted entities may not drop below a certain level so that the
inferred model does not provide an incorrect description of the consistencies. �e selection of
a suitable strategy depends on these two factors. While the �rst strategy struggles to provide
enough entities, the second strategy has tomake sure that the prediction contains enough correct
entities. �e �rst strategy can be considered to lay its focus on a high precision. Strategies based
on a high recall are less useful since they aggravate the induction of a model in the second step.
Providing negative examples can also be reasonable, but they are not utilized in this work.
�e second step investigates the given examples and learns a description of their consistent

composition. Various techniques can be applied for this task. If only one highly con�dent
entity is provided, then speci�c properties of its composition are selected. For a large amount of
entities that also contain incorrect ones, the dominant properties need to be induced from the
examples. Here, the capabilities of the learning algorithm to generalize are of major importance.
�e third step takes advantage of the induced model. How this can be achieved depends on

the techniques applied for information extraction. Rule-based approaches are able to include
the information in their extraction knowledge. If only a minimal set of highly con�dent entities
is given, then rules simply annotate additional positions that ful�ll the properties stored in the
model. Given the second strategy to provide a prediction of entities, rules can utilize the model
to process the document anew and hopefully more accurately, or they modify the given entities
so that they con�rm with the consistencies described in the model. Statistical models are able to
take advantage of the consistencies the same way, e.g., by including the knowledge of the model
as features or long-range dependencies.
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Exploiting context-speci�c consistencies in general and with this process model in particular
is not always reasonable. �e bene�t of a consistency-aware approach has to exceed its increased
development costs. If a context consists of thousands of documents, then it may be more
e�ective to create a separate model for each context and an additional classi�er, which is able
to select the corresponding model for a given context. �e same applies if only few contexts
exist. Furthermore, if a context contains only a minimal amount of entities in general, then the
advantages of exploiting the consistencies are rather minimal. Either there is no prediction, or
if there is a correct prediction, then no entities are le�, for which the extraction is improved.

3.4 RelatedWork
�e last sections have given an introduction to three domains, in which context-speci�c con-
sistencies occur, and described a process model how the consistencies can be exploited. �e
section concerning the domains provided an overview of related work for information extrac-
tion especially in those domains and for a given task. �is section considers the related work
concerning context-speci�c consistencies itself, independently of the processed domain or the
task. When context-speci�c consistencies are exploited in order to improve the information
extraction performance, the long-range dependencies between distant entities need to be ad-
dressed. Collective information extraction also concerns the usage of long-range dependencies
in order to improve the accuracy of the models. �us, these approaches are presented and
discussed shortly in order to highlight the di�erences and the problems when they are applied
for exploiting context-speci�c consistencies.

3.4.1 Context-specific Consistencies
Related approaches that explicitly deal with the challenges of context-speci�c consistencies are
rather sparse and di�cult to �nd. �ere is no common understanding of the problem statement,
which leads to the usage of di�erent terms for describing the ideas of the approach. �is work
calls the dependencies between the entities context-speci�c consistencies. Other work refers to
scopes, regularities, locales, invariant features, repeated patterns, redundancies, conformance or
equal properties. As a consequence, the research on this topic is not well structured and the
publications hardly cite each other.

3.4.1.1 Learning with Scope

Blei et al. [25] proposed a hierarchical probabilistic model that captures the ideas of exploiting
context-speci�c consistencies best compared to other publications and also provides a formal
process how the documents have been generated. �eir approach is motivated by the fact that
each website provides structural regularities that di�ers from other websites. �ey distinguish
two di�erent kinds of features. Global features represent common properties of the text like the
current word that provide useful information for the classi�cation task in general. �e word
“engineer”, for example, is an indicator for a job title independently of the website [25]. Local or
scope-limited features concern properties that may be applied di�erently by speci�c websites
and thus are normally not reliable for classi�cation tasks. �ese features include formatting and
layout of the website. While one website represents an interesting entity with a bold font, other
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websites might display the same kind of entities only with hyperlinks. �us, the context is a
website with several webpages.
Blei et al. model the information extraction task as a classi�cation problem. �ey de�ne

a graphical model that assigns a label to each token of the document or website, which also
provides formatting information additionally to the actual text of the token. �is leads to the
three lists for word content w = {w1 , . . . ,wN}, formatting f = { f1 , . . . , fN} and class labels
c = {c1 , . . . , cN} for an N word document. �e creation of the documents is assumed to be
driven by the following process [25]:

1. For each of the K extraction categories:
a) Generate the formatting feature parameters ϕ i from p(ϕ i)

2. For each of the N words in the document:
a) Generate the nth class label cn from p(cn)
b) Generate the nth word p(wn ∣cn)
c) Generate the nth formatting feature from p( fn ∣cn , ϕ)

�e actual classi�cation of the tokens as class labels or entities is given by the joint distribution
over the local parameters, class labels, words and formatting features in Equation 3.1. �e
additional model parameters are neglected [25].

p(ϕ, c,w, f) = p(ϕ)
N
∏
n=1

p(cn)p(wn ∣cn)p( fn ∣cn , ϕ) (3.1)

�ey provide two approaches for inference since the exact computation of p(c∣w, f) is infeasi-
ble. While the �rst approach builds upon maximum likelihood estimation, the second approach
applies variational methods in order to estimate the conditioned probability. Furthermore, they
also provide a discriminative model.
�e scoped-learning approach is evaluated for two real-world scenarios. �e performance is

compared to a baseline naive Bayes classi�er using precision-recall curves. �e di�erent values
of precision and recall are achieved by changing the threshold for the probability, e.g., lowering
the threshold leads to an increased recall. �e �rst experimental study investigates the extraction
of job titles from 1000 HTML documents, which are split into a testing and training set. A token
may include several words and is de�ned as a set of words with similar formatting. �e approach
is able to outperform the base line. It achieves a precision of approximately 0.55 at a recall of 0.8
whereas the baseline reaches only a precision of approximately 0.46. �e second experimental
study concerns a classi�cation task for identifying press releases and is thus not further discussed
in this work. It is di�cult to estimate the performance of the approach in real-world information
extraction scenarios because of the usage of the threshold and the according presentation of the
results.
�e future work of the publication lists several interesting points. Two of them are especially

relevant for the topic of this work. �e presented approach does not incorporate the sequence of
the tokens and is thus hardly able to provide functionality for common information extraction
tasks. �erefore, a sequential model based, for example, on Hidden Markov Models should be
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able to achieve superior results. �e second improvement concerns the explicit separation of
features into two sets. Local and global features are not necessarily disjoint and the a�liation
of a feature in a given domain may not be known when specifying both sets. Both items for
future work are considered by the contribution of this work. �e presented approaches rely on
probabilistic models or rules that are able to incorporate the sequential dependencies between
tokens and between entities or labels. While the scope-limited features need to be speci�ed for
the rule-based approaches, the models based on Conditional Random Fields are able to include
all available features. Furthermore, both approaches are able to mix global and local features
since they are not restricted due to independence assumptions.
�e probabilistic model presented by Blei et al. is hardly applicable for improving information

extraction tasks in the targeted domains of references, curricula vitae or clinical discharge letters.
First of all, the limitation of generative models concerning the independence of observations
prevents the usage of important features in the domains, e.g., combinations of ngrams with
formatting and neighboring tokens. Discriminative models like Conditional Random Fields
do not su�er from this restriction. �ey have successfully been applied in many domains and
achieved results superior to naive Bayes classi�ers or Hidden Markov Models (cf. reference
segmentation, Section 3.2.1.3). While this limitation does not prevent the usage of Blei’s approach
in the targeted domains, it will most likely not be able to compete with state-of-the-art techniques
applied in those domains. �ere are, however, more important reasons why the scoped learning
approach is not able to solve the described tasks and to exploit the context-speci�c consistencies.
It is essentially a classi�cation model that requires suitable candidates in order to identify the
entities. In the domains of references and curricula vitae, the model would need to classify
the tokens individually, which ignores the important sequential dependencies. �e regularities
and consistencies in the targeted domains cannot be represented by one feature alone. �is
fact is highlighted by the examples in Section 3.2.1.4, Section 3.2.2.4 and Section 3.2.3.4. �e
composition of the entities mostly relies on a combination of features whereas also properties of
neighboring tokens need to be included. �is functionality can only be supported by the scoped
learning model if the cross product of the features is used or if more than one observed variable
is modelled. Following this, more problems concerning the disjoint sets of global and local
features arise. Another challenge that can hardly be solved by the scoped learningmodel consists
in the actual consistent aspects of the entities’ composition. Not all tokens of the entities share
similar characteristics. In the previous examples, o�en only the boundaries of the entities can be
applied for modeling the context-speci�c consistencies while all other tokens of the entities do
not provide relevant local features. �e scoped learning framework can be successfully applied
for the segmentation of clinical discharge letters if suitable candidates for the headlines are
generated. �is domain is, however, already satisfactorily solved by the rule-based approaches
of this work and hardly any improvements can be achieved with more complex models.
�e scoped learning approach is nevertheless an important and interesting possibility for

the future work of approaches in this work. E�ort has already been spent on developing a
higher-order graphical model that includes the ideas of the scoped learning framework while
extending it for representing sequential data. �ese models have, however, not been able to
compete with the machine learning approaches of this work until now.
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3.4.1.2 The RefParse Algorithm

Sautter and Böhm [177, 178] proposed the RefParse algorithm for the reference segmentation
task that depends less on the emerging style and is thus able to provide improved parsing result
for references in historical publications. One central idea of the algorithm consists in the fact that
the references of one reference section follow the same style guide. By processing all references
of the section at once, the algorithm is able to resolve ambiguities, which results in an improved
accuracy. �e main functionality of the algorithm relies on patterns and regular expression for
morphologically distinctive entities, and on majority votes for inducing the speci�c aspects of
the style guide. Sautter and Böhm call the regularities in reference sections repeated patterns
while this work uses the term context-speci�c consistencies.

Figure 3.7: The six steps of the RefParse algorithmwith two additional steps for an interactive
mode [178]

�e algorithm consists of six steps and is summarized in Figure 3.7. �e �rst step uses patterns
in order to identify all possible candidates for speci�c entities, which are reliably identi�able
by their morphological structure. �ese include years of the publication, part designators,
pagination and author names. �e authors are, for example, detected using di�erent patterns
concerning the positioning of initials, �rst names and last names. Ambiguous and false positive
entities are not problematic at this point since later steps will retain only the most likely entity.
�e second step is divided into two stages. �e assembly stage generates all possible author
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lists using only names with equal ordering of the elements. �e selection stage uses a majority
vote over the occurring styles in order to identify the most likely author list. �e third step
induces the most likely arrangement of the found candidates of entities. �e step is again divided
into an assembly stage and a selection stage whereas two criteria are applied for the selection.
Possible arrangements should contain as many entities as possible and the arrangements should
be valid for many references. �e fourth step detects embedded references that are used to
describe proceedings or books, in which the paper was published. Embedded references are
recursively processed by starting again at the �rst step. �e last two steps are �nally responsible
for identifying periodicals, publishers and titles.
Sautter and Böhm evaluated their algorithm on two datasets. �e results on the Cora dataset

indicate that the algorithm is able to outperform freely available parsing services for most types
of entities. Only the accuracy of the title is decreased. Overall, a word-level accuracy of 91.5%
was achieved compared to 83.8% of similar systems. �e second dataset Plazi consists of more
references in general and especially also of historical references. Here, the algorithm provides
superior results. It is able to achieve a word-level accuracy of 94.3% compared to 79.7% of
similar systems.
�e approach of Sautter and Böhm is similar to the stacked transformation presented in

Section 5.2. Both approaches are inherently domain-speci�c and cannot be applied in other
domains or tasks without considerable e�ort. �e RefParse algorithm as well as the rules for the
stacked transformations apply majority vote for inducing speci�c aspects of the context-speci�c
consistencies. While the RefParse algorithm votes on all candidates for single entities or their
assemblies, the rules utilize only the entities given by the base component, which are already
unambiguous. �e inclusion of di�erent candidates potentially leads to more robust parsing of
the references. On the other hand, the stacked transformation approach is able to modify just
the inconsistent aspects of the entities. �e entities are corrected in order to be consistent in
contrast to a selection of consistent entities from a given list of candidates. Transformations are
able to create the correct entities even without a correct candidate.
�e experimental results of both approaches are hardly comparable. �e RefParse algorithm

was created to extract di�erent types of entities, whereas the author, for example, refers to single
authors instead of the author list and is thus more �ne-grained. �e stacked transformations
approach only extracts the four entities author (list), title, editor and date/year. �is restriction
is not only an advantage since other entities are able to help identifying the targeted ones in the
domain of reference segmentation. �e results given in Sautter and Böhm [177] use the word-
level accuracy while the stacked transformations apply the word-level F1 measure. Furthermore,
both approaches utilize di�erent strategies for the inclusion of punctuation marks and the
stacked approach is evaluated on a rearranged dataset that contains a subset of the Cora dataset.
Despite all di�erences in the experimental setting, Figure 3.1 provides an overview of the results
of both approaches for convenience.

3.4.1.3 Properties-based Collective Inference

Gupta et al. [94] proposed a properties-based collective inference framework. �eir workmainly
focuses on Markov Random Fields with symmetric clique potentials. �eir additional inclusion
of properties provides a more general framework for collective information extraction than
similar work (cf. [189, 81, 134, 131, 35]). �ey assume that each document or webpage in a domain
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RefParse Base AIE
(Accuracy) (F1 score) (F1 score)

Author 98.6% 0.984 0.993
Title 79.0% 0.962 0.979
Editor 74.6% 0.949 0.949
Date 98.8% 0.973 0.983

Table 3.1: Evaluation results of the RefParse algorithm, the base component (of the stacked approach)
and the stacked component (AIE) in the Cora dataset.

provides some sort of consistency in the composition of entities of one type. �is consistency is
modelled with additional properties that are uni-valued within a domain. �is means that a
speci�c property has always the same value for one type of entity, but the actual value of the
property di�ers between di�erent contexts or documents. �e properties are utilized to specify
long-range dependencies in the graphical model.
Gupta et al. evaluate their properties-based collective inference framework in the reference

segmentation task with a special focus on domain adaption. �e dataset consists of 433 refer-
ences from webpages of 31 authors. �e composition of entities from di�erent websites can
greatly di�er since di�erent authors apply di�erent style guides and layouts to visualize the ref-
erences. In addition to the standard features used in this domain, they included four Markovian
properties [94]:

1. g1(x,y) = First non-Other label in y

2. g2(x,y) = Token before the Title segment in y

3. g3(x,y) = First non-Other label a�er Title in y

4. g4(x,y) = First non-Other label a�er Venue in y

�e properties-based framework is compared to a common baseline sequential model. �e
results are depicted in Table 3.2 for di�erent allocations of dataset concerning test and training
sets. �e framework is able to achieve a signi�cant error reduction up to 25% compared to the
baseline. Figure 3.8 provides an overview of the combined F1 error of the labels author, title and
venue for the individual webpages (domains). �e properties-based framework produces fewer
errors in most domains. Only in two domains, the results deteriorate compared to the baseline.
�ere are two major di�erences between the properties-based framework and the approaches

of this work: the inference technique and the expressiveness of the properties. �e model
of Gupta et al. apply more sophisticated inference techniques that open up many interesting
possibilities for improved models. �ese include the incremental unfolding of the graphical
structure, which allows one to de�ne long-range dependencies dependent on the label sequence.
�e machine learning approaches of this work utilizes freely available default implementations
for the inference in the graphical models. As a result, exploiting intermediate predictions of the
label sequence caused convergence problems of the inference. �us, a more straightforward
technique was applied by providing a static prediction of an additional model. On the other

68



3.4 Related Work

Train Title Venue Author
(%) Base CI Base CI Base CI

5 0.707 0.748 0.585 0.625 0.741 0.743
10 0.780 0.821 0.692 0.722 0.756 0.759
20 0.858 0.886 0.767 0.789 0.807 0.807
30 0.917 0.930 0.815 0.826 0.877 0.880
50 0.923 0.942 0.835 0.845 0.894 0.900

Table 3.2: Evaluation results of the properties-based framework (CI) and the baseline for different
sizes of training sets [94].

Figure 3.8: F1 error of the properties-based framework (CI) compared to the baseline [94].

hand, di�erent evaluations highlighted the power of unigram factors instead of skip-edges (cf.
Comb-chain CRF, Section 6.3). �ese simpler models of linear graphs are able to compete
with more complex graphical structures with long-range dependencies even if the inference
technique was able to converge.
�e approaches of this work include more expressive properties in order to exploit the context-

speci�c consistencies. Atomic properties as they are used in the properties-based framework
are o�en not su�cient to describe the consistencies in many domains. �e restriction to equal
values of the entities properties limits the usage of arbitrary features. �e properties need to refer
to distinct features or situations like the word content or neighboring labels. �e rule-based
approaches of this work are able to integrate any feature for representing properties including
formatting since the rule sets are already inherently domain-speci�c. An extension of the
properties-based framework leads to an instantiation of speci�c features to boolean properties,
which contradicts the basic ideas of this framework concerning properties independent of their
feature-based values. Nevertheless, the representation of the consistencies in the rule-based
approaches and the properties-based framework are rather similar. Two entities are consistent
if one speci�c feature is equal near their beginning or end. �e machine learning approaches of
this work apply a more expressive and generic solutions for modeling the consistent properties.
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While the properties-based framework requires specifying the set of properties when the set
of features are de�ned, this work uses template-based descriptions of possible aspects of the
consistencies. �is strategy can be compared to including various properties for all types of
entities. �is, however, can quickly cause additional errors when processing documents with
incorrect consistency assumptions, e.g., enforcing a property on an invalid aspect of consistency.
�is problem is solved by allowing more expressive properties that consist of conjunctions
of arbitrary features. Furthermore, atomic values or descriptions are not su�cient in many
domains in order to specify the consistencies. O�en a sequence of word content combined with
additional features is required (cf. Section 3.2.1.4, Section 3.2.2.4 and Section 3.2.3.4). Atomic
values as they are applied in the properties-based framework and the rule-based approaches are
able to improve the accuracy in many situations. However, they deteriorate the performance if
the consistency cannot be expressed by a single feature. �is result has been recognized when
evaluating models similar to the properties-based framework. A Conditional Random Field
with additional long-range dependencies based on speci�c word content or even on weighted
similarity of the feature vectors was not able to achieve the results of the other approaches
that relied on classi�ers in order to induce the properties. �e usage of a learning model for
identifying consistent and inconsistent positions has another major advantage. It is not only able
to validate the consistency of entities, but can also highlight consistent positions without entities
with high accuracy. �is functionality has the potential to greatly increase the performance of
the information extraction model, especially in domains with low recall.
Gupta et al. highlight that their approach is inference-only and does not require retraining the

model for domain adaptation. �is statement is also true for the machine learning approaches of
this work. In the future work, they mention the automated induction of properties especially for
handling unlabeled domains. �is work learns a model of consistency during inference. Overall,
both approaches, the properties-based framework and the machine learning approaches of this
work, would bene�t from including ideas and techniques of the other one. Combining the
intermediate prediction of the label sequence and the robust inference techniques with the more
sophisticated modeling of consistencies has the potential further improve the performance of
information extraction models.

3.4.1.4 Exploiting Content Redundancy

Gulhane et al. [92] presented an approach for exploiting content redundancy for web information
extraction. �ey gather seed entities from some initial sites and utilize them together with a
similarity metric in order to identify new entities. Two properties have been observed by the
authors:

“Property 1: Multiple sites contain pages for the same entity. Furthermore, the value
of an attribute across the various pages for an entity are “textually” similar.
Property 2: Pages within a web site have similar structure conforming to a common
template.”[92]

�ey exploit these properties with an Apriori-style algorithm [2] to �lter inconsistent entities
amongst other things. �e experimental evaluations for web information extraction concerning
restaurants and bibliographic entries indicate a precision greater than 95% and a recall greater
than 80%.
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In contrast to the approaches of this work, the algorithm of Gulhane et al. mainly relies on
similarity metrics. �e general approach can be compared to the increase of recall in precision-
driven prototyping (cf. Section 5.1). Some initial entities are utilized in order to identify more
entities. �e approaches of this work, however, are limited to the currently processed document
since exploiting content redundancy hardly improves information extraction in the targeted
domains.

3.4.1.5 Other publications

�ere are several publications that seem to cover the same or similar problems, but they actually
utilize only similar terms to describe their problem statement or take advantage of the consis-
tencies for di�erent tasks. Wong and Lam [204] adapt web information extraction knowledge
by mining site-invariant and site-dependent features. �ey utilize the site-invariant features for
acquiring training examples of the unseen target websites. �en, both sets of features are applied
in learning extraction knowledge for the targeted website. An approach similar to Gulhane et
al. [92] was published by Machanavajjhala et al. [144]. �ey try to process heterogeneous web
lists by exploiting content redundancy and layout homogeneity. Rush et al. [175] propose the
usage of inter-sentence consistency constraints for improving parsing and POS tagging. �ey
exploit the similarity between test set sentences by including global constraints that reinforce the
linkage between surface-level contexts and syntactic behavior. Another approach that exploits
test set regularities was published by Slattery and Mitchell [184]. �ey improve classi�cation in
relational domains, like website categorization. Yang et al. [207] incorporate site-level knowledge
to extract structured data from web forums. Arnold and Cohen [7] proposed intra-document
structural frequency features for semi-supervised domain adaption. While the title indicates
the usage of similar ideas, their approach rather considers di�erent parts of the documents and
the frequency of the contained words.

3.4.2 Collective Information Extraction
�e approaches of this work try to exploit long-range dependencies between entities in a docu-
ment or context under the assumption that these entities share a similar composition. In order
to include the properties of an entity in the extraction of another entity, all related entities need
to be processes collectively. �us, the presented approaches can be categorized as collection
information extraction while the actual problem that needs to be solved di�ers from the related
work in this research area34.
Models of collective approaches for information extraction are o�en motivated by two as-

sumptions: �e labeling of similar tokens is quite consistent within a given context or document
since those mentions mostly refer to the same type of entity. �e discriminative features to detect
the entities are sparsely distributed over the document. �us, the accuracy to detect di�erent
mentions of an entity can be improved by leveraging and transferring their local context to dis-
tant positions. However, both assumptions provide no advantages when facing context-speci�c

34Parts of the content of this Section have been published in Peter Kluegl, Martin Toepfer, Florian Lemmerich, Andreas
Hotho, and Frank Puppe. Collective information extraction with context-speci�c consistencies. In Peter A. Flach, Tijl
De Bie, and Nello Cristianini, editors, ECML/PKDD (1), volume 7523 of Lecture Notes in Computer Science, pages
728–743. Springer, 2012.[127]
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consistencies. Similar tokens are either rather sparse or pose minor problems in the targeted
domains. It is more interesting and helpful to investigate the long-range dependencies between
entities that contain no similar tokens, but are consistently structured. As for the second assump-
tion about the local context, the entities in the targeted domains share a similar composition
and thus provide no new contextual information for the other entities. �e approaches of this
work rather try to identify the shared aspects of the entities’ composition in order to improve
the overall accuracy.
Bunescu et al.[35] use Relational Markov Networks and model dependencies between distant

entities. �ey apply special templates in order to assign equal labels if the text of the tokens is
identical. �e skip-chain approach introduced by Sutton and McCallum [189] extends linear-
chain CRFs with additional factors for long-range dependencies. �ey link the labels of similar
tokens and provide feature functions that combine evidence of both positions by which missing
context can be transferred. Finkel et al. [81] criticize the usage of believe propagation and
apply Gibbs sampling for enforcing label consistency and extraction template consistency
constraints. All of these approaches with higher-order structures �ght the exponential increase
in model complexity and are forced to apply approximate inference techniques instead of exact
algorithms. Kou et al. [131] and Krishnan et al. [134] have shown that stacked graphical models
with exact inference can compete with the accuracy of those complex models. �ey reduce the
computational cost by applying an ensemble for two linear-chain CRFs where they aggregate
the output of the �rst models in order to provide information about related instances or entities
to a stacked model.
Although these approaches cannot be applied for exploiting context-speci�c consistencies,

they greatly in�uenced the development of the machine learning approaches of this work. �e
approach of Stacked Conditional Random Fields in Section 6.2 was inspired by the stacked
graphical learning of Kou et al. [131] and the approaches towards higher order models by the
work of Sutton and McCallum [189] about skip-chain Conditional Random Fields.
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UIMA Ruta

UIMA Ruta (Rule-based Text Annotation)35 is a rule-based tool that focuses especially on the
rapid development of information extraction and even general text processing applications. �e
system consists of a rule language extended with scripting elements and a strong development
support. �e rule language was designed to provide a compact and comprehensible representa-
tion of patterns over annotations without restricting its expressiveness or area of use. It covers
almost all features of related rule languages for information extraction while still introducing a
few new ones. Although the rule language was optimized for rapid development and not for
a fast runtime performance, it yet compares well with similar rule-based systems concerning
speed. �e UIMA Ruta Workbench provides a full-featured development environment for the
UIMA Ruta language, which exceeds the functionality of most related tools36.
�e chapter is structured as follows: Section 4.1 provides an overview of the system and

examines its history. �e rule-based scripting language is introduced in Section 4.2. �e syntax,
semantics and the rule matching algorithm are explained in detail and illustrated with examples.
Furthermore, a selection of special features and di�erent engineering approaches complete the
description of the language. �e development environment and available tooling for improving
the engineering experience are in focus of Section 4.3. Section 4.4 concludes the chapter with a
comparison of UIMA Ruta to related systems.

4.1 Introduction
UIMA Ruta is a system for rule-based information extraction, which is built completely on
UIMA. Two major parts can be distinguished: �e compact, powerful and extensible rule-
based scripting language for arbitrary text processing tasks and the full-featured development
environment enriched with various tooling in order to ease and improve the development of
rule-based applications.
�e UIMA Ruta language is referred to as a rule-based scripting language since it pursues

di�erent approaches than common rule-based systems for information extraction and it provides
many language elements rather attributed to scripting languages. A rule of the UIMA Ruta
language is composed of a sequence of rule elements, which specify a sequential pattern over
annotations or text fragments. A rule element essentially consists of amandatorymatch reference,

35An early version was published under the name TextMarker [122]
36�e content of this chapter is taken from Peter Kluegl, Martin Toepfer, Philip-Daniel Beck, Georg Fette, Frank Puppe.
UIMA Ruta: Rapid Development of Rule-based Information Extraction Applications. Natural Language Engineering,
2014 [125]. Some examples are taken from the documentation of UIMA Ruta written by the same author.
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an optional quanti�er, an optional list of conditions and an optional list of actions. �e match
reference creates a connection to the document bymatching on the covered text of an annotation
of a given type if possible. �e quanti�er states if the rule element is mandatory and how o�en
the rule element is allowed to match. Conditions provide additional constraints for the text
passage matched by the match reference. If all rule elements of the rule and their match
references have successfully matched, then the actions of all rule elements are applied creating
new annotations or performing di�erent operations. �e language was designed to provide a
compact and comprehensible representation of patterns over annotations without restricting
its expressiveness or area of use. Due to the large amount of di�erent language elements, the
language can be utilized to solve various tasks besides its envisaged purpose. �ese include the
speci�cation and execution of pipelines of UIMA components, the de�nition of UIMA type
systems, or other applications like a rule-based document sorter. �e UIMA Ruta rule language
is described in Section 4.2.
�e UIMA Ruta Workbench provides a full-featured development environment for the

UIMA Ruta language. It was developed to ease every step in engineering rule-based applications
and provides in addition to classical editing support like syntax checking also various di�erent
tooling. �e system can generate a complete explanation of each step of the rule inference, which
enables the rule engineer to adapt rules responsible for unintended behavior. �e engineering
process is supported by tools for introspection, test-driven development, automatic back-testing,
constraint-driven evaluation and automatic rule induction. �e interaction of the provided
tooling results in a rapid and agile development of well-maintained rule sets. Section 4.3
addresses the features of the UIMA Ruta Workbench.
From the perspective of the UIMA framework, the UIMA Ruta rules are interpreted and

executed by a generic analysis engine. UIMA Ruta rules can, therefore, be seamlessly integrated
in UIMA applications. �e system provides additionally several analysis engines, which can be
helpful in various text processing tasks. To these belong, for example, components for annotating
HTML documents or for cutting annotated documents while recalculating the o�sets of the
annotations. �e UIMA Ruta Workbench is able to automatically generate descriptor �les for
rule sets and type system de�nitions.

4.1.1 History and Current State
�eUIMARuta language andWorkbench was initially developed and published under the name
TextMarker. �e earliest predecessor that shared someminimal concepts and language keywords
has been created by Patrick von Schoen in his diploma thesis [198]. In 2007, a new system
has been implemented and greatly extended, whereby it was built on the UIMA framework
and provided an Eclipse-based development environment [119]. From 2008, it was hosted at
SourceForge until it was contributed to Apache UIMA in 2011. Since then, the rule inference
has been reimplemented adding many new language constructs and support for elements of the
UIMA framework. �e �rst version of the system was released at Apache UIMA in March 2013.
In May 2013, it was renamed to UIMA Ruta (RUle-based Text Annotation).
�e systemhas been actively developed since its contribution toApacheUIMAand introduced

a useful tool for rule-based information extraction in the ecosystem of UIMA.�e website of
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UIMA Ruta37 provides links to the download section, the documentation and the update site
for the UIMA Ruta Workbench.

4.2 The Rule-based Scripting Language
�eUIMA Ruta language is primarily a rule-based language for specifying patterns over annota-
tions and additional consequences in the case the patternmatched successfully on a text position.
�e patterns are applied successively in the order the user has speci�ed them. In order to support
more use cases, the language was incrementally extended with elements rather unknown by
rule languages, for example, control structures or variables. �ese two characteristics led to a
perspective in which the UIMA Ruta language can be interpreted as a scripting language. �is
section provides an introduction in the UIMA Ruta rule-based scripting language.

4.2.1 Provided Annotation Types
Before the syntax of the UIMA Ruta language is introduced, this section gives a short overview
of UIMA types provided by the system because these types are partially utilized for example in
the following sections. For improved readability, only the short names without the namespace
of the type are used.
If not con�gured otherwise, the system adds annotations for di�erent classes of tokens to

the document in order to facilitate rapid prototyping. �ese annotations can be used to de�ne
some initial rules, which create for their part new annotations that will be used by other rules.
Figure 4.1 contains a summary of these types displayed as a tree structure representing their
type inheritance. �e leaves of the tree correspond to the types of annotations that will actually
be added to the document and are highlighted with a blue background color. Most of the type
names are self-explaining: An annotation of the type CW is created for each word starting with
an upper-case letter, whereas the type SW is used for lower-cased words. Red and green types
serve only for generalization, for example, if the capitalization of a word is irrelevant. Note
that also types for whitespaces are provided. �e process of adding initial annotations is called
seeding and creates a complete partitioning of the document in order to cover each text position
with exactly one of those annotation.
Another special type is Document, which can be used synonym to the DocumentAnnotation

type of the UIMA framework. It always refers to the complete visible document. �e UIMA
Ruta language provides language elements for restricting the window. �e type Document will
in this case refer to the surrounding window instead of the complete document. Other types are
either used for the internal rule inference or by the tooling of the UIMA Ruta Workbench. To
these belong types that store information about the rule inference for further explanation or
pro�ling.

4.2.2 Syntax and Semantics
�e de�nition of the syntax (grammars) of the rule language is given in Backus-Naur form,
which is described by McCracken et al. as following:

37 http://uima.apache.org/ruta.html
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Figure 4.1: Types of initially provided annotations

“Backus-Naur Form, named a�er John W. Backus of the US and Peter Naur of
Denmark, and usually written BNF, is the best-known example of a meta-language
(q.v.), i.e. one that syntactically describes a programming language. Using BNF it is
possible to specify which sequences of symbols constitute a syntactically valid program
in a given language." [154]

A BNF speci�cation consists of a set of derivation rules which state how elements of the
language can be generated. �is is done by replacing the nonterminal symbols in angle brackets
in the right part by the le� part until only terminal symbols remain. In the following grammars
of this section, the derivation rules for some nonterminal symbols are neglected in order to
improve the readability and to grant a comprehensive overview. �e exact syntax for these
constructs can be found in the documentation of UIMARuta. Additionally, three simpli�cations
of the BNF speci�cation are applied: Optional elements are represented by an appended question
mark. Repetitions are indicated by an appended “*” (optional) or “+” (mandatory). Parentheses
group alternatives or sequences of elements.
�e following sections describe the actual executable resource, the script �le, before the syntax

of rules in the UIMA Ruta language is de�ned. Along with the grammars, examples for rules
and scripts are given in order to illustrate valid excerpts of the UIMA Ruta language. �ese
listings utilize the same syntax coloring as the editor of the UIMA Ruta Workbench: Keywords
for package speci�cation, declarations and imports are depicted with dark red and bold font.
Comments are light green and string literals are light blue. Conditions are highlighted with a
dark green and bold font, and action with a dark blue and bold font. Given types provided by
the UIMA Ruta language for the set of initial annotations are bold with a grey color.
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4.2.2.1 Script Definition

�e general syntax of a UIMA Ruta script �le is given in Grammar 4.1, which states that a
script consists of an optional speci�cation of the package followed by an optional list of import
declarations and an optional list of statements. An empty document �le is, therefore, a valid
script �le without functionality. �e package starts with the keyword “PACKAGE” followed by
an identi�er that serves, together with the �le name of the script, as the namespace of elements
de�ned within the script. �e language supports four di�erent kinds of imports: �e keyword
’TYPESYSTEM’ indicates the import of a UIMA type system descriptor whereby its de�ned
types are made available in the script �le. �e keyword ’SCRIPT’ includes an additional script
and its known types for further usage. �e remaining two keywords import analysis engines,
which can then be executed fromwithin the script �le. Following the imports, a list of statements
constitutes the major part of the script �le and its actual functionality. �ree di�erent groups
of statements can be distinguished. Declarations de�ne new UIMA types, new variables or
external dictionaries. �e de�nition of new types only serves for rapid development in the
UIMA Ruta Workbench since it avoids switching to other tools. �e other two declarations,
however, de�ne new elements of the UIMA Ruta language itself. �e block statement is a
script-like control structure that provides special functionality for the user such as procedures,
de�nition by cases or restriction of the window the rules are applied in. �is construct and
similar language elements are described in Section 4.2.5. �e last kind of statement, the rules,
provides the actual functionality of the script �le and is described in the next section a�er an
example of a common composition of a script �le.

⟨script⟩ ::= ⟨package⟩? ⟨import⟩* ⟨statement⟩*

⟨import⟩ ::= (’TYPESYSTEM’ | ’SCRIPT’ | ’ENGINE’ | ’UIMAFIT’)
⟨identi�er⟩ ’;’

⟨statement⟩ ::= ⟨declaration⟩ | ⟨rule⟩ | ⟨block⟩

⟨declaration⟩ ::= ⟨TypeDeclaration⟩
| ⟨VariableDeclaration⟩
| ⟨DictionaryDeclaration⟩

⟨block⟩ ::= ’BLOCK’ ’(’ ⟨identi�er⟩ ’)’ ⟨ruleElement⟩ ’{’ ⟨statement⟩+ ’}’

Grammar 4.1: Simplified grammar of the script syntax.

Listing 4.1 contains an example with diverse language elements. �e example starts with a
speci�cation of the package of the script �le, which is applied for de�ning the namespace of
newly de�ned types and blocks. In the lines 3 and 17, two comments provide an explanation of
the corresponding environment. From line 4 to line 8, di�erent global imports are added starting
by importing a type system descriptor and its type de�nitions. �en, three additional scripts are
included and �nally an external analysis engine is imported in line 8. Line 10 contains a type
declaration, whereas only the short name of the type is given. �e following lines provide simple
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rules, which execute the imported analysis engine and script �les on the current document.
From line 18 �nally, a block declaration applies a rule for each annotation of the type Reference.
�is example illustrates just one script-like feature of the UIMA Ruta rule language since it
actually de�nes a pipeline of di�erent components with some additional post-processing. Solving
di�erent engineering tasks like the combination of components or the declaration of new types
is an important aspect for the rapid development and avoids switching to other tools.

1 PACKAGE uima.ruta.example;

2

3 // import the types of this type system

4 TYPESYSTEM types.BibtexTypeSystem;

5 SCRIPT uima.ruta.example.Author;

6 SCRIPT uima.ruta.example.Title;

7 SCRIPT uima.ruta.example.Year;

8 ENGINE uima.ruta.example.SegmentationEngine;

9

10 DECLARE Reference;

11 Document{-> CALL(SegmentationEngine )};

12

13 Document{-> CALL(Year )};

14 Document{-> CALL(Author )};

15 Document{-> CALL(Title )};

16

17 // create bibtex annotation

18 BLOCK(forEach) Reference {} {

19 Document{-> CREATE(Bibtex , "author" = Author ,

20 "title" = Title , "year" = Year )};

21 }

UIMA Ruta Listing 4.1: UIMA Ruta script pipeline for parsing bibliographic references.

4.2.2.2 Rule Definition

�e syntax of rules in the UIMA Ruta language is speci�ed in Grammar 4.2. A rule commonly
consists of a sequence of rule elements followed by a semicolon indicating the end of the rule.
Simple regular expression rules serve to create additional annotations and assign feature values
based on the matching groups of a regular expression. �ey have been added to the UIMA Ruta
language additionally to the normal rules in order to support rapid prototyping. �e second
kind of special rules, conjunctions of rules, will be discussed in Section 4.2.3.3. A rule element
itself consists at least of the mandatory match reference, which creates a connection to the
document by matching on a text fragment. �is connection can be speci�ed by �ve di�erent
kinds of references. A type expression represents a UIMA type and is the most common kind of
match reference. �e rule element matches on the annotation of the given type and, therefore,
on the position covered by the annotation. �e feature expression is an extension of the type
expression by adding additional constraints on the feature values of the matched annotation
or by referring to the annotations stored as feature values. A string expression represents a
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⟨rule⟩ ::= ( ⟨ruleElement⟩+ | ⟨regExpRule⟩ | ⟨conjunctRules⟩ ) ’;’

⟨ruleElement⟩ ::= ’@’? ⟨matchReference⟩ ⟨quanti�er⟩? ( ’{’ ⟨conditions⟩?
’->’ ⟨actions⟩? ’}’ )? ⟨inlinedRules⟩?

⟨matchReference⟩ ::= ⟨typeExpression⟩ | ⟨stringExpression⟩
| ⟨featureExpression⟩ | ⟨composedRE⟩ | ⟨wildCard⟩

⟨composedRE⟩ ::= ’(’ ⟨ruleElement⟩+ ’)’
| ’(’ ⟨ruleElement⟩ ( ’&’ ⟨ruleElement⟩ )+ ’)’
| ’(’ ⟨ruleElement⟩ ( ’|’ ⟨ruleElement⟩ )+ ’)’

⟨quanti�er⟩ ::= ’?’ | ’??’ | ’*’ | ’*?’ | ’+’ | ’+?’
| ’[’ ⟨numberExpression⟩ ’,’ ⟨numberExpression⟩ ’]’
| ’[’ ⟨numberExpression⟩ ’,’ ⟨numberExpression⟩ ’]’ ’?’

⟨conditions⟩ ::= ⟨condition⟩ ( ’,’ ⟨condition⟩ )*

⟨actions⟩ ::= ⟨action⟩ ( ’,’ ⟨action⟩ )*

⟨condition⟩ ::= ConditionKeyword ’(’ ⟨expression⟩ ( ’,’ ⟨expression⟩ )* ’)’

⟨action⟩ ::= ActionKeyword ’(’ ⟨expression⟩ ( ’,’ ⟨expression⟩ )* ’)’

⟨inlinedRules⟩ ::= ( ’->’ | ’<-’ ) ’{’ ⟨rule⟩ + ’}’

Grammar 4.2: Simplified grammar of the rule syntax.

character sequence and enables the rule element to match directly on the text passage of the
document with the identical character sequence. �e match reference of a rule element can
also consist of rule elements creating a sequential grouping, and conjunctive or disjunctive
constraints. �e last kind of match reference is the wildcard, which provides a placeholder for
any kind of text passage. �e wildcard is described in Section 4.2.3.
A rule element can be extended with several optional language elements. �e anchor marker

“@” in front of a rule element is ignored for now and is discussed in Section 4.2.3. �e optional
quanti�er part (Kleene operator) speci�es how o�en the rule element may or has to match for a
successful rule match. �e UIMA Ruta language supports the four most common quanti�ers
known by regular expressions, each in a greedy and reluctant form. Greedy quanti�ers terminate
only if the rule element failed to match and reluctant quanti�ers complete their repetition
already if the next rule element is able to match. Quanti�ers that restrict the minimal and
maximal amount of repetitions enclose these values in square brackets. A rule element without a
quanti�er has to match exactly once. A rule with several rule elements and optional quanti�ers,
but without any other elements speci�es a sequential pattern over annotations or character
sequences.

79



Chapter 4: UIMA Ruta

Before the remaining elements of a rule are described, a few examples of patterns speci�ed
with UIMA Ruta are given. �e example in Listing 4.2 contains a rule with two rule elements,
each consisting only of a match reference. �e �rst rule element matches on the token “Room”
and the second one on an annotation of the type “NUM” that is a sequence of digits. �e rule
matches successfully on all positions where the token “Room” is followed by a number.

1 //... matches on "Room 123"

2 "Room" NUM;

UIMA Ruta Listing 4.2: Simple UIMA Ruta rule with two rule elements.

Listing 4.3 provides a rule with three rule elements whereas the second rule element is
optional and may match repeatedly. �is rule matches on all positions that are annotated with
an article followed by a noun, and an arbitrary amount of adjectives may by present between
both annotations.

1 //... matches on "the blue bird"

2 ART ADJ* NN;

UIMA Ruta Listing 4.3: Simple UIMA Ruta rule with three rule elements.

�e rule in Listing 4.4 contains two rule elements, one with a composed match reference
and one with a simple type expression. �e �rst rule element may match repeatedly due to its
quanti�er. Hence, the rule matches on a list of annotations of the type animal separated by
commas.

1 //... matches on "Dog , Cat , Bird"

2 (Animal COMMA )+ Animal;

UIMA Ruta Listing 4.4: Simple UIMA Ruta rule with a composed rule element.

A�er the optional quanti�er, curly brackets contain lists of optional conditions and actions,
which are separated by a rightwards arrow “->”. Conditions are binary predicates and specify
additional constraints on the matched position that need to be ful�lled for a successful match
of the rule element. Actions represent the consequence of the rule and are only applied if
the complete rule was able to match successfully. Conditions and actions start both with a
keyword indicating its type followed by a list of expressions in parentheses determining possible
arguments and con�gurations. �e last optional part of a rule element, the inlined rules, is
discussed in Section 4.2.5. Examples of rules extended with additional conditions and actions are
given in the following. In contrast to the previous examples, these rules have actual consequences
when they match successfully.
�e rule in Listing 4.5 consists of three rule elements. �e �rst one (ANY...) matches on

every token, which has a covered text that occurs in a word list MonthsList. �e second
rule element (PERIOD?) is optional and does not need to be ful�lled, which is indicated by
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1 //... matches on "Dec. 2004" , "July 85" or "11.2008"

2 ANY{INLIST(MonthsList) -> MARK(Month), MARK(Date ,1 ,3)}

3 PERIOD? NUM{REGEXP(".{2 ,4}") -> MARK(Year )};

UIMA Ruta Listing 4.5: A rule with additional actions and conditions.

its quanti�er “?”. �e last rule element (NUM...) matches on numbers that ful�ll the regular
expression REGEXP(".{2,4}") and are therefore at least two characters to a maximum of four
characters long. If this rule successfully matches on a text passage, then its three actions are
executed: An annotation of the type Month is created for the �rst rule element, an annotation
of the type Year is created for the last rule element, and an annotation of the type Date is created
for the span of all three rule elements. If the word list contains the correct entries, then this
rule matches on strings like “Dec. 2004”, “July 85” or “11.2008” and creates the corresponding
annotations.

1 Paragraph{CONTAINS(Bold , 90, 100, true),

2 CONTAINS(Underlined , 90, 100, true), ENDSWITH(COLON)

3 -> MARK(Headline )};

UIMA Ruta Listing 4.6: A rule with additional actions and conditions.

�ematch reference of the rule element in Listing 4.6 is given with the type “Paragraph”, thus
the rule investigates all Paragraph annotations. �e rule matches only if the three conditions
are ful�lled. �e �rst condition CONTAINS(Bold, 90, 100, true) states that 90%-100% of the
matched annotation should also be annotated with annotations of the type Bold. �e boolean
parameter “true” indicates that amount of Bold annotations should be calculated relatively to the
matched annotation. �e two numbers “90,100” are, therefore, interpreted as percent amounts.
�e second condition CONTAINS(Underlined, 90, 100, true) consequently states that the
paragraph should also contain at least 90% of annotations of the type “underlined”. �e third
condition ENDSWITH(COLON) �nally forces the Paragraph annotation to end with a colon. It is
only ful�lled, if there is an annotation of the type COLON, which has an end o�set equal to the
end o�set of the matched Paragraph annotation.
�e conditions and actions in the previous examples re�ect only a small sample of the available

constructs. �e language provides more than 25 di�erent conditions and more than 40 di�erent
actions, which enables the knowledge engineer to tackle di�erent annotation tasks e�ciently.
An overview of the available actions and conditions is given in Figure 4.2. Actions, for example,
can not only add new annotations, but are also able to remove (UNMARK) or modify existing
ones (SHIFT), or execute other components (EXEC). Special actions are also applied for creating
relations between entities or simply copying feature values as shown in Example 4.7.
�e rule creates a new annotation of the type Container for each Token annotation. Further-

more, three features are automatically �lled with values: �e value of the feature “posTag” of the
Token annotation is assigned to the feature “pos” of the Container annotation. �e value of the
feature “value” of a Lemma annotation with the same o�sets as the matched Token annotation
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is assigned to the feature “lemma” of the Container annotation. Finally, the complete Token
annotation is stored in the feature “token”.
�e language also supports syntactic sugar that allows one to specify conditions and action

using expressions without keywords. �e user can use boolean expressions, such as boolean
variables, or feature-match expressions in order to formulate compact conditions. As for actions,
a type expression is able to replace a MARK action and feature-assignment expressions are able
to modify the values of matched feature structures. Listing 4.8 provides an example how the
rule of Listing 4.5 can be rewritten without MARK actions.
�e conditions and actions are normally clearly separated in well-known rule languages.

While the conditions build the le�-hand part, the actions follow in a right hand part a�er a
distinctive separator. In the UIMA Ruta language, actions can occur at each rule element a�er
the list of conditions and are not located solely at the end of the rule as it would be expected.
Allowing action to be attached to the rule element that provides the context for its consequences
provides various advantages and results in a more compact rule representation. However, the
actions can be detached and listed at the last rule element in most situations, simulating the
traditional composition. Listing 4.9 provides an example how the rule of Listing 4.5 can be
rewritten with the actions located at the end of the rules.

4.2.2.3 Extensible Language Definition

�e UIMA Ruta language provides a variety of actions and conditions, which can be applied in
order to e�ectively address various tasks. Di�erent users have, however, di�erent use cases and
require specialized language constructs for e�ciently implementing their rule-based application.
UIMA Ruta provides, therefore, a concept for extending the language by additional actions,
conditions, functions and even blocks that change the execution of rules. �e user is not
restricted to the available list of language elements, but can adapt and optimize the language
from the perspective of her use cases.

4.2.3 Inference
�e description of the syntax and semantics in the last section provided an overview of the
speci�cation of valid rules and their meaning. �is section now considers how the rules are
applied. Before the matching algorithm is introduced, the order of rule application is described.

4.2.3.1 Rule Execution

UIMA Ruta rules are applied in an imperative manner, one rule a�er each other, in the order
they occur in the script �le. �is leads to an interpretation of the language as cascaded �nite-state
transducers, whereas each transducer corresponds to one rule. Other rule-based languages for
information extraction compile the rules of one phase into one �nite-state transducer in order
to avoid unnecessary and duplicate inference steps. �e execution order of UIMA Ruta is rather
known by programming or scripting languages and is one reason why the UIMA Ruta language
is referred to as a rule-based scripting language. Although this kind of inference provides some
disadvantages, the advantages prevail in the focus of the system, which is rapid development of
rule-based information extraction applications.
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Conditions AFTER, AND, BEFORE, CONTAINS, CONTEXTCOUNT, COUNT,
CURRENTCOUNT, ENDSWITH, FEATURE, IF, INLIST, IS, LAST, MOFN,
NEAR, NOT, OR, PARSE, PARTOF, PARTOFNEQ, POSITION, REGEXP,
SCORE, SIZE, STARTSWITH, TOTALCOUNT, VOTE

Actions ADD, ADDFILTERTYPE, ADDRETAINTYPE, ASSIGN, CALL, CLEAR,
COLOR, CONFIGURE, CREATE, DEL, DYNAMICANCHORING, EXEC, FILL,
FILTERTYPE, GATHER, GET, GETFEATURE, GETLIST, GREEDYANCHORING,
LOG, MARK, MARKFAST, MARKFIRST, MARKLAST, MARKONCE, MARKSCORE,
MARKSCORE, MARKTABLE, MATCHEDTEXT, MERGE, REMOVE,
REMOVEDUPLICATE, REMOVEFILTERTYPE, REMOVERETAINTYPE, REPLACE,
RETAINTYPE, SETFEATURE, SHIFT, TRANSFER, TRIE, TRIM, UNMARK,
UNMARKALL

Figure 4.2: List of conditions and actions currently available in UIMA Ruta.

1 Token{-> CREATE(Container , "pos" = Token.posTag ,

2 "lemma" = Lemma.value , "token" = Token )};

UIMA Ruta Listing 4.7: A simple rule for copying feature values and assigning annotations to
features. A new annotation of the type Container is created, which stores different information of
the underlying annotations as feature values.

1 (ANY{INLIST(MonthsList) -> Month} PERIOD?

2 NUM{REGEXP(".{2,4}") -> Year}){-> Date};

UIMA Ruta Listing 4.8: The rule of Listing 4.5 without MARK actions.

1 ANY{INLIST(MonthsList )} PERIOD? NUM{REGEXP(".{2 ,4}")

2 -> MARK(Month ,1), MARK(Year ,3), MARK(Date ,1 ,3)};

UIMA Ruta Listing 4.9: The rule of Listing 4.5 with a clear separation of conditions and actions.
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�e disadvantages consist mainly in the possibility of a decreased performance for large rule
sets and in the missing of truth maintenance between rules. However, truth maintenance is
hardly supported by automata-based languages in general. �e performance issue compared to
rules compiled in one single �nite-state transducer occurs especially if many rules start with the
same match reference resulting in a variety of identical and redundant operations. If, however,
the rules have no joint match references, the performance di�ers only marginally since the
rules share no states in the automata. �e absence of truth maintenance leads potentially to an
increased amount of rules. If a rule activates or negates the preconditions of previous rules, then
their postconditions are not automatically executed or revoked. �e user has to add additional
rules for propagating the desired e�ect like in other languages.
�e advantages of this kind of imperative rule execution lie �rst of all in its simplicity, which

is important for rapid development of rule sets and can be essential for inexperienced users
or users not familiar with rule-based systems. �e user does not have to consider side e�ects
to previous rules and snares of dependent rules. Due to the missing truth maintenance, the
rules of a script have to be ordered corresponding to their dependencies, which results in clear
and comprehensive rule sets. �e absence of a truth maintenance implies also in an improved
performance, because the match references and conditions of other rules do not need to be
reevaluated a�er a rule added or removed annotations. Furthermore, the ability to revoke the
postconditions of rules either con�nes the rule language or increases its complexity. �e usage of
rule scripts with truth maintenance as a prototyping language for the de�nition of pipelines, for
example, is only possible if the operations of arbitrary components can be taken back. �e linear
execution of rules even makes the de�nition of pipelines possible in the �rst place. Another
advantage consists in an easier explanation of the rule inference, which enables the user to
quickly identify the causes of undesired rule behavior.
�e use of the UIMA Ruta language in practical and real-world scenarios has shown that the

advantages outweigh the disadvantages, especially if the focus lies on the rapid and e�cient
development of rule-based information extraction applications. �ere have been plans to intro-
duce a language construct similar to the BLOCK environment, which compiles the contained
rules into an automata, but this extension of the language and inference remains for future work.

4.2.3.2 Rule Matching

Rules in UIMA Ruta are atomic statements concerning the inference, as pointed out in the last
section. A rule itself can be interpreted as an automaton with states for the match references and
conditions, and with state transitions between the di�erent rule elements. For the description of
the rule matching in UIMA Ruta, a pseudo code algorithm is employed.
�e rule matching of UIMA Ruta is speci�ed in Algorithm 2. �e rule starts to match by

calling the procedure startMatch. First, the rule element is determined, which starts the
rule matching process. �is is normally the �rst rule element of the rule resulting in a le�-to-
right match. If the match reference of the selected rule element consists of a composed rule
element, then the starting rule element is determined in the list of contained elements. �e
starting rule element is then requested to continue the matching process with the procedure
continueMatch.
�e procedure continueMatch provides one to three arguments: the current rule element,

an optional position and an optional rule match. If this method is called by the procedure
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Algorithm 2 Simplified pseudo-code of the rule matching algorithm in UIMA Ruta.

procedure startMatch
rule element e ← identify starting rule element
continueMatch(e)

end procedure

procedure continueMatch(rule element e, optional position p, optional rule match o)
if position p is given then
anchors a ← all valid positions next to position p

else
anchors a ← all valid positions for the rule element e

end if
for all positions i of anchors a do
rule match m ← new alternative of rule match o or new rule match
validate match reference and conditions of e on position i for rule match m
rule element n ← nextElement(rule element e, rule match m)
continueMatch(rule element n, position i, rule match m)

end for
end procedure

function nextElement(rule element e, rule match m)
if quanti�er of e indicates further repetition then

return rule element e
else
rule element n ← identify rule element next to e
if rule element n exists and rule match m is valid then

return rule element n
else

doneMatching(rule match m)
end if

end if
end function

procedure doneMatching(rule match m)
if rule match m is valid then
apply all actions of rule

end if
end procedure
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startMatch, then only one argument is given. First of all, valid positions for the rule element
are determined. Either all valid positions, e.g., annotations of the type of the match reference,
are listed, or only valid positions next to the provided position in the arguments. �e strategy
for selecting the next position can be con�gured. For each possible position of this list, several
operations are performed. First, a new rule match is created, which stores the current state of
the matching process, e.g., already evaluated positions. If a rule match was provided by the
arguments of the procedure, then a copy is created, representing a new alternative rule match.
�e position is validated concerning the match reference, conditions and inlined rules of the
rule element. UIMA Ruta is, therefore, able to handle positions where multiple annotations
begin. If the rule element has successfully matched, then the next rule element is identi�ed using
the function nextElement. �e next rule element is then requested to continue the matching
process on the new position and rule match.
�e function nextElement does not only provide the next rule element, but also terminates

the matching process, if no remaining rule elements can be found. �e function initially checks
whether the quanti�er of the rule element allows repetitions, and returns the current one as
appropriate. Reluctant and optional quanti�ers are neglected in the pseudo code for simplicity.
If the rule element has already matched o�en enough, then the next rule element is determined.
�is is normally the rule element following the current one. If the rule element is part of a
composed rule element, then next rule element can also be the composed one. �e last procedure
doneMatching simply validates if the current rule match was successful and then applies all
actions and inlined rules of the rule on the positions stored in the rule match. �e matching
algorithm tracks a rule match until it terminates and possibly applies the actions before an
alternative match is considered. �is facilitates the speci�cation of useful rules. Two examples
illustrate the consequences of this feature.

1 ANY+{-> Text1 };

2 ANY+{-PARTOF(Text2) -> Text2 };

UIMA Ruta Listing 4.10: Example for dependencies between rule matches.

Listing 4.10 contains two rules. �e �rst rule matches on each token of the document and
creates an annotation of the type Text1 for the covered positions. However, this is caused only by
the �rst iteration in the procedure continueMatch. �e next iteration considers the second
token of the document and continues thematching process and so on. �is results in annotations
starting at each token and ending at the end of the document. Although this behavior seems
to be counterintuitive, there are situations where this kind of matching is desired. �e second
rule provides an additional condition, which states that the matched position is not allowed
to be part of an annotation of the type Text2. �is rule, therefore, creates only one annotation
covering the complete document. �e user is also able to in�uence the matching process by
con�guring that matched positions should not be considered by the same rule.

1 PERIOD Annotation{-> BetweenPeriods} PERIOD;

UIMA Ruta Listing 4.11: Example for potential alternatives at one position.
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�e rule in Listing 4.11 creates an annotation of the type BetweenPeriods for all annotations
that are surrounded by periods. If several annotations start a�er a period, e.g., a token, a sentence
and a paragraph, then the largest annotation is matched �rst and the matching process continues
with the last rule element. �e second largest annotation is considered only then, a�er the rule
already potentially created an annotation.
�e description of the matching algorithm mentioned that the starting rule element is nor-

mally the �rst rule element of the rule, which can decrease the performance of the matching
process for certain rules to some extent. �is problem is illustratedwith two rules in Example 4.12
that match on the second last token.

1 ANY LastToken;

2 ANY @LastToken;

UIMARutaListing4.12: Two simple rules thatmatchon a token followedby a LastToken annotation.
While the first rule has to investigate every token, the second rule starts to match with the second
rule element and requires less index operations.

�e �rst rule investigates each token of the document starting with the �rst one, which results
in many unnecessary rule matches. �e second rule provides a start anchor, indicated by the
symbol “@”. �is optional symbol enables the user to manually specify the starting rule element.
�e rule begins with the annotation of the type LastToken and continues the match with the
previous rule element, which results in a right-to-le� matching and in only one rule match. �e
UIMA Ruta language also provides an option called “dynamic anchoring” that automatically
determines the starting element using a heuristic applied on the amount of involved annotations.
�e option can be activated in the con�guration parameters or by other rules in the script.
�e possible occurrences of matching references of the rule elements are compared and the
rule element with the least amount of initial matches is selected. �e heuristic also includes
the quanti�er and composed rule elements. Furthermore, a penalty for the reverse matching
direction can be speci�ed. Dynamic anchoring is a newer feature and thus not yet activated by
default.
�e special kind of match reference, the wildcard “#”, can be used to further optimize the rule

matching performance. �e two rules in Listing 4.13 create an annotation of the type Sentence
for all text passages that are surrounded by periods. While the �rst rule matches on one token
a�er each other until the next occurrence of a period, the second rule directly matches on the
next period. �is reduces the amount of considered positions and also provides a compact
representation.

1 PERIOD ANY+?{-> Sentence} PERIOD;

2 PERIOD #{-> Sentence} PERIOD;

UIMA Ruta Listing 4.13: Two equivalent rules for annotating text between two periods. While the
first rule needs to match on each token (ANY), the second rule just searches for the next period
resulting in less UIMA index operations.
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�e general performance concerning execution time of the UIMA Ruta rule-based script
mainly depends on the amount of index operations in the UIMA framework, and related to
this, on the amount of rule matches and the involved conditions. While those operations of the
rule matching algorithm are easily estimated for a given set of rules and the documents they
are applied on, additional index operations can be performed by the conditions and actions.
One example is the condition NEAR, which evaluates the nearby presence of certain types of
annotations independently of the match references of adjacent rule elements. In order to achieve
this, the condition has to investigate the annotation index in relation to the currently matched
position.
�e language supports many di�erent ways to specify an annotation problem. Similar to

programming languages, it is possible in UIMA Ruta to implement slow and fast rule sets
for solving the same problem. Since the language was especially designed to support rapid
development, the user normally does not stress performance issues in the �rst place. If, however,
the execution time of a rule script needs to be improved, many di�erent ways exist. �is section
introduced a few options to reduce the amount of rule matches or index operations. �e user
can also make use of e�cient dictionaries or can pro�le the rule execution in order to identify
bottlenecks (cf. 4.3.2).

4.2.3.3 Beyond Sequential Matching

�ematching process described until now considers only rule elements as sequential patterns.
�e language also supports rule elements that need tomatch on the same position. As introduced
in Section 4.2.2.2, composed rule elements are not only able to specify sequential patterns, but
also disjunctive and conjunctive rule elements. �e list of disjunctive rule elements separated by
the symbol “|” specify that at least one of the rule elements needs to match for a successful match
of the composed rule element. Analogously, all of the conjunctive rule elements separated by the
symbol “&” need to match in order to continue the matching process. �ese language elements
can be applied for verifying di�erent aspects on the same position that cannot be represented by
a combination of conditions.
Another language construct that does not represent a strict sequential pattern is given by the

symbol “%”, which is applied to connect two rules. �e resulting rule builds a conjunction of
both rules and its actions are only applied if both rules successfully matched. �e connected
rules themselves may match independently of each other on positions in the current window or
document.

1 // matches on ``Room 1 ... ... call 911'';

2 CW NUM % SW NUM;

UIMA Ruta Listing 4.14: A conjunction of two simple rules. The complete rule matches only if both
rules are able to match independently of each other.

�e rule in Listing 4.14 consists of two connected rules and matches only successfully if there
is an arbitrary capitalized word that is followed by a number in the document and if there is
also some arbitrary lower-cased word that is followed by a number.
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4.2.4 Visibility and Filtering
�e UIMA Ruta language and its inference are designed to provide an instrument for solving
di�erent text processing and information extraction tasks. One step in this direction is the
possibility of de�ning patterns not only over token but over arbitrary types of annotations. Rules
can, therefore, be applied for matching sequences of tokens, but also sequences of paragraphs.
Another feature provided by UIMA Ruta is the speci�cation of the visibility that determines
which kinds of text passages represented by annotations are accessible by the rules. While one
type of text is important in one use case, it should be ignored in other applications. If the rules
are applied to, for example, label sequences of tokens, then the whitespaces between tokens are
of minor interest and the user should be able to ignore them in the de�nition of the rule set.
However, if the rules are built in order to parse identi�ers or indentation of tables, whitespaces
are essential and need to be included in the pattern. Another example is the processing of
headlines in a document. In a sequential pattern over headline annotations, the paragraphs do
not need to be considered in the speci�cations of rules.
Rule-based languages o�en specify the types available in a phase whereas annotations of

other types are automatically skipped. �e UIMA Ruta language provides a more complex
and dynamic concept of visibility. Here, text positions covered by annotations of speci�c types
are invisible. �is leads to a coverage-based visibility concept instead of a type-based one. All
annotations and their covered text passages that start or end with a type speci�ed in the set
of �ltered types are not accessible by the rules. �is means that these invisible positions will
be skipped when the next position for the rule match is determined. �e set is calculated
using three lists. �e default list is speci�ed in the con�guration parameters and generally
contains types for whitespace and markup. �e elements of the �ltered list are added to this
list. A�erwards, the elements of the retained list are removed. �e �ltered and retained lists can
be modi�ed by actions so that the knowledge engineer is able to adapt the rule inference to
her current requirements directly in a UIMA Ruta script. �e exact behavior of rules facing
invisible annotations is explained with Example 4.15 and Example 4.16.

1 // matches on ``Dec <br >2004'', ``May1999 '' or ``July 85''

2 W NUM;

3 Document{-> RETAINTYPE(SPACE ,MARKUP )};

4 // matches only on ``May1999 ''

5 W NUM;

UIMA Ruta Listing 4.15: Two identical rules that match on different text positions due to the
changed filtering settings in the second rule. The second rule is sensible to markup and whitespaces
in its sequential constraint.

�e �rst rule in Listing 4.15 matches on text fragments like “Dec<br>2004”, “May1999” or
“July 85” since whitespaces and markup are �ltered by default. �e second rule changes the
�ltering settings by adding the types for space andmarkup annotations to the retained list, which
makes them visible again. �e last rule is identical to the �rst one, but matches now only on
the text fragment ‘May1999” since the matching process was unable to �nd a valid subsequent
position.
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1 Sentence;

2 Document{-> RETAINTYPE(MARKUP )};

3 Sentence;

4 Document{-> FILTERTYPE(Headline )};

5 Sentence;

6 Document{-> RETAINTYPE , FILTERTYPE };

UIMARuta Listing 4.16: Three rules for matching on sentences. The other rules change the filtering
setting resulting in different matches on sentences.

�e Example 4.16 contains three identical rules that match on sentences and three rules
that change the �ltering settings. �e �rst rule matches on sentences that do not start with a
whitespace or markup annotation due to the default �ltering settings. �e second rule enables
matching on markups. �e third rule (line 3) matches also on sentences that start with a markup
element. �e fourth rule hides headlines and, thus, the ��h rule is not able tomatch on sentences
that start with or are part of a headline. �e last rule resets the �ltering settings to its default
values.

4.2.5 Blocks and Inlined Rules
�e implementation of annotation tasks using only a plain rule language o�en leads to rule sets
that are hard to interpret by a human. �is is caused by the lack of control structures, which are
compensated by additional conditions or activation rules. Control structures can be very useful
in rule-based information extraction system. Examples for those elements are the restriction of
the rule match to a certain window, further modularization, conditioned execution of rule sets
or application of rules for each occurrence of an annotation.
�e UIMA Ruta language provides the BLOCK construct for these use cases. �e syntax

of blocks was already speci�ed in Section 4.2.2.1. A block construct starts with the keyword
“BLOCK” followed by an identi�er that is utilized in case the block is invoked by another rule.
�e main part, the head, is a rule element, which speci�es the functionality of the block. �e
body of the construct �nally contains a list of statements, e.g., rules. �e rules within the
block are only applied in the context of the matches of the rule element in the head. If the rule
element did not match, then the contained rules are not applied at all, which corresponds to a
conditioned statement. If the rule element matches on several annotations, then the contained
rules are applied once for each matched annotation and only within this annotation, which
corresponds to an iteration over the annotations and a restriction of the context. �ese use cases
are illustrated with examples.

1 BLOCK(German) Document{FEATURE("language", "de")} {

2 // rules for german documents

3 }

UIMA Ruta Listing 4.17: A conditioned statement using the block construct. The contained rules
are only applied if the language of the document is set to ‘‘de’’.
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Listing 4.17 provides a block construct that applies the contained rules only if the language of
the document was set to “de”.

1 BLOCK(ForEach) Sentence {} {

2 // ... do something

3 }

UIMA Ruta Listing 4.18: Iteration over annotations of the type Sentence. The contained rules are
applied for each sentence and only in the window of the current sentence.

�e block in Listing 4.18 applies the contained rules on each sentence. Rules that try to match
over the boundaries of a sentence will automatically fail. Within the body of the block, the type
Document refers to the current sentence rather than to the whole document.
Another language element that provides similar functionality are an extension of a rule

element, the so called inlined rules (cf. Section 4.2.2.2). It occurs in two manifestations, either
interpreted as consequences indicated by the symbol “->” or as preconditions (“<-”). �e former
kind provides the similar functionality as the block element, but can directly be utilized in more
complex rules. If the rule matched successfully, then the inlined rules are applied in the context
of the match of the rule element. �e latter provides functionality for expressing more complex,
nested conditions. Here, the rule itself matches successfully in the �rst place, if one of the
contained rules was able to match. Both extensions enable the user to specify complex patterns
in a compact representation. �eir syntax and semantics are illustrated with two examples.

1 Prefix Sentence ->{

2 Document{-STARTSWITH(NP) -> SentNoLeadingNP };

3 };

UIMARutaListing4.19:Anexample of an inlined rule interpreted as a postcondition. An annotation
is created for each sentence if additional requirements are fulfilled.

�e rule in Listing 4.19 matches on an annotation of the type Pre�x followed by a sentence
annotation. If this match was successful, then the rule in line 2 is applied in the context of the
matched sentence annotation. It creates an annotation of the type SentNoLeadingNP with the
o�sets of the matched sentence, if the sentence does not start with an annotation of the type NP.

1 Sentence{-> SentenceWithNPNP }<-{

2 NP NP;

3 };

UIMA Ruta Listing 4.20: An example of a rule element with an inlined rule interpreted as a
precondition. An annotation is created only if the sentence contained two subsequent noun phrases.

Listing 4.20 contains a rule element extendedwith an inlined rule interpreted as a precondition.
�e rule tries tomatch on each annotation of the type Sentence, but only succeeds if this sentence
contains an annotation of the type NP followed by another NP.
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4.2.6 Engineering Approaches
�e support of di�erent engineering approaches for solving an annotation task is an important
characteristic of a generic rule-based information extraction system. �e formalisation of rules
based on only one engineering perspective may lead to inconvenient representations. �e
UIMA Ruta language was in particular designed to provide a generic pattern formalism that
enables the user to solve annotation tasks with di�erent approaches. Among other things, this is
achieved with special conditions and, in particular, with actions that encapsulate the necessary
functionality. In the following, a selection of approaches are discussed and illustrated with
examples. �ese approaches do not have to be applied separately, but can also be mixed at each
stage. �e most important approach in the context of this work, engineering for context-speci�c
consistencies, is covered in the next Chapter 5 with some case studies.

4.2.6.1 Classical Approaches

Many classical approaches for rule-based information extraction can be identi�ed. �e simplest
one is called candidate classi�cation, which generates possible candidate annotations and then
assigns a speci�c type, if the candidate holds certain properties. �e rule in Listing 4.21, for
example, considers each annotation of the type paragraph and labels it as a headline, if it is
mostly bold, underlined and ends with a colon.

1 Paragraph{CONTAINS(Bold , 90, 100, true),

2 CONTAINS(Underlined , 90, 100, true), ENDSWITH(COLON)

3 -> MARK(Headline )};

UIMA Ruta Listing 4.21: Candidate classification with UIMA Ruta rules. The rule classifies a
paragraph as a headline if it is ninety to hundred percent covered by Bold and Underlined
annotations, and ends with a colon.

Interesting annotations can be approached in a bottom-up or a top-downmanner. �e former
approach starts by identifying small parts of the targeted annotations and successively composes
them until the desired annotation can be speci�ed. �e latter approach starts with more general
annotations and re�nes or reduces the considered positions until interesting annotations are
found. Listing 4.22 provides an example for labeling the author section of a scienti�c reference
using a bottom-up approach. �e �rst rule creates annotations for name initials, which consist
only of one upper-case letter followed by a period. �e second rule speci�es names as a capitalized
word followed by a comma and a list of name initials. �e last rule �nally combines a listing of
names to the annotations of the type Author.

1 (CW{REGEXP(".")} PERIOD){-> Initial }; // P.

2 (CW COMMA Initial+){-> Name}; // Kluegl , P.

3 (Name (COMMA Name)*){-> Author }; // Kluegl , P., Toepfer , M.

UIMA Ruta Listing 4.22: Bottom-up approach for labeling author sections. the first rule detects
initials, the second rule identifies names, and the third rule combines names to authors.
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�e speci�cation of rules that consider the content of an annotation are sometimes hard
to de�ne. However, the boundaries of the targeted annotation are possibly easier to identify
without facing the variety of patterns occurring within that annotation. An example of this
boundary matching approach is given in Listing 4.23. �e �rst rule identi�es the start of the
author part of a reference and the second rule detects possible ends of the author section. �e
third rule creates an annotation for spans that starts with an annotation of the type AuthorStart
and ends with an annotation of the type AuthorEnd.

4.2.6.2 Transformation-based Rules

Transformation-based rules are applied on already existing annotations and try to correct spe-
ci�c errors or defects. �e usage of transformations can greatly ease the de�nition of patterns
and accelerate the development of rule sets. �e inclusion of all possible exceptions or negative
preconditions in the rule that creates the interesting annotations leads to confusing rule con-
structs. �ese exceptions can be neglected initially if later transformation-based rules remove
annotations that should have been excluded. �e transformation-based approach can also be
bene�cial in many other scenarios. One example is the usage of transformations for domain
adaptation or improving the accuracy of arbitrary models.
�e UIMA Ruta language provides several actions for modifying existing annotations. �e

action UNMARK removes annotations of the given type, the action SHIFT changes the o�sets
of an annotation dependent on the other rule elements and the action TRIM reduces the span
of an annotation. Listing 4.24 provides a simple rule that removes annotations of the type
Headline if they contain no words at all. A previous rule identi�ed headlines using the layout of
the document, but did not include a condition validating their contents. If only one rule was
responsible for annotating headlines, the additional precondition is easily added and does not
decrease the readability of the rule. If the annotations of the type Headline are, however, created
by twenty di�erent rules, then the additional condition has to be added twenty times, which
actually decreases the readability and aggravates possible refactoring of the script.
�e rule in Listing 4.25 expands the span of an annotation of the type Person, if it is preceded

by the word “Mr” and an optional period.

4.2.6.3 Scoring Rules

It is sometimes not possible to specify a combination of properties in one rule. In some situations
the knowledge engineer wants to weight di�erent aspects for dealing with uncertainty. �e
UIMA Ruta language provides a special action and condition for such use cases. �e action
MARKSCORE adds a heuristic score for a certain kind of annotation and the condition SCORE
is able to evaluate this score for further processing. While scoring rules can help to solve
problematic tasks in a compact manner, larger sets of scoring rules get increasingly hard to
maintain. �e author of this work was involved in the development of di�erent techniques for
leveraging this problem [12, 8], but these have not been integrated in UIMA Ruta. Example 4.26
contains a small example for the identi�cation of headlines.
�e rules from line 2 to line 7 weight di�erent aspects and assign each a score to the annotation

HeadlineInd. �e �rst two rules, for example, specify that a paragraph with fewer words is more
likely a headline. �e third and fourth rules investigate the layout and the ��h rule assigns

93



Chapter 4: UIMA Ruta

1 ANY{STARTSWITH(Reference) -> AuthorStart }; // Kluegl

2 COLON{-> AuthorEnd} CW; // : Collective

3 (AuthorStart # AuthorEnd){-> Author };// Kluegl ... Puppe , F.:

UIMA Ruta Listing 4.23: Boundary matching approach for labeling author sections. First rule
detects the start position, the second rule identifies the end position, and the third rule combines
both for the complete annotation.

1 Headline{-CONTAINS(W) -> UNMARK(Headline )};

UIMARuta Listing 4.24: A transformation-based rule for removing defective Headline annotations.

1 "Mr" PERIOD? @Person{-> SHIFT(Person ,1 ,3)};

UIMA Ruta Listing 4.25: A transformation-based rule for expanding the offsets of an annotation.

1 STRING s;

2 Paragraph{CONTAINS(W,1,5)-> MARKSCORE (5, HeadlineInd )};

3 Paragraph{CONTAINS(W,6,10)-> MARKSCORE (2, HeadlineInd )};

4 Paragraph{CONTAINS(Bold ,80,100, true)

5 ->MARKSCORE (7, HeadlineInd )};

6 Paragraph{CONTAINS(Bold ,30,80,true)

7 ->MARKSCORE (3, HeadlineInd )};

8 Paragraph{CONTAINS(CW ,50,100, true)

9 ->MARKSCORE (7, HeadlineInd )};

10 Paragraph{CONTAINS(W,0,0)-> MARKSCORE (-50, HeadlineInd )};

11 HeadlineInd{SCORE (10)->MARK(Headline )};

12 HeadlineInd{SCORE (5,10)-> MATCHEDTEXT(s),

13 LOG("Maybe a headline: " + s)};

UIMA Ruta Listing 4.26: Scoring rules for weighting different aspects of headlines. The rules create
an annotation of the type Headline for paragraphs like ‘‘Diagnoses:’’ since the first (line 2) and fifth
rule (line 6) increase the score resulting in an overall score of 12. The rule in line 8 evaluates the
score and creates a new annotation.
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higher scores to paragraphs with many capitalized words. �e sixth rule reduces the score for
paragraphs that contain no words at all. �e remaining rules evaluate the score and either create
a new annotation of the type Headline, if the score exceeds the threshold of 10, or emit a message
for less certain positions using a string variable de�ned in line 1.

4.2.7 Exemplary Script
�e previous sections provided examples illustrating isolated aspects of the syntax and semantic
of the UIMA Ruta language. �is section describes a complete script for the detection of charac-
ters in German literary texts developed by Stefan Olbrecht as part of his bachelor thesis [158].
�e rules are divided in Listing 4.27 (Part 1) and Listing 4.28 (Part 2). �e script is part of a
small pipeline and assumes that a part-of-speech tagger and a lemmatizer have been applied
before. Comments are given in German.
�e script in Listing 4.27 starts with the package declaration. �en, two import statements

in line 3-6 import types for part-of-speech tags using an alias and a type for lemmas from the
DKPro type system [95]. �ese special import statements have not been discussed before in
Section 4.2.2.1. �ey can be utilized in order to avoid problems with ambiguous short names
of types. �e statement in line 8 imports an additional script concerning direct speech. From
line 10 to 19, various dictionaries are de�ned. �ey include gazetteers for animals, �rst names,
phrases, jobs, objects, relatives, special verbs as well as general, military and noble titles. �e
lines 21-29 declare additional types and variables. From line 31 to 41, the imported script for
direct speeches and the various dictionaries are applied. �e dictionary matching is sensible
to whitespaces speci�ed by the rule in line 32. �en, the �rst typical rule is given in the lines
46-47. It create annotations of the type FirstName for a noun that is preceded by a mention of
a relative or an animal. Additionally, the rule stores the covered text of the matched noun in
the list FirstNames. �e rule in line 50 investigates all FirstName annotations, which have been
created by the last rule or by the dictionary matching, and stores their covered text extended
with an additional “s” in the same list as before. �us, the strings in the list also cover di�erent
cases. �e last rule in the �rst part of the script joins subsequent FirstName annotations.
Part 2 of the script is given in Listing 4.28. �e �rst rule in line 4-6 creates LastName

annotations for capitalized words if they are preceded by a capitalized word that is listed in
FirstNameList and by an optional word “von”. Additionally, the rule stores the covered text
of the potential last name in the list LastNames. �e rule in line 9-12 detects last names that
are preceded by any kind of title and stores the covered text in the same list. �e third rule
in line 15 extends the list LastNames with the covered text of each found last name extended
with the string “s”. �e next rule in line 18-19 uses this list in order to annotate all nouns that
are contained in the list with the type LastName. �e two rules in line 24-29 detect mentions
of characters without actual names. �e �rst rule creates AddName annotations for animals,
relatives, jobs and titles, and stores the covered text in the list AddNames. �e second rule
creates an AddName annotation for all nouns, whose lemmas are listed in that list. �e rules
in line 34-35 create PersName annotations for di�erent patterns of AddName, FirstName and
LastName annotations. �e rule in line 38-40 investigates direct speeches. If a direct speech
is followed by an optional comma, a special verb, whose lemma is present in the dictionary
VerbList, an optional noun marker and a list of capitalized words, then these last words are
annotated with the type PersName. �e covered text of the created annotations is additionally
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stored in the list PersNames. �e rule in line 43 creates a PersName annotation for each noun,
whose lemma is present in the list PersName. �e remaining rules apply some �nal corrections.
First, the rule in line 48 clears the list FirstNames. �en, the rule in line 49-51 detects �rst names
a�er direct speeches and adds them to the list FirstNames. �e rule of line 54-55 identi�es �rst
names a�er speci�c phrases like “I am. . . ” and adds the covered text to the list FirstNames.
�e rule in line 58 investigates all nouns and annotates them with the type FirstName if they
are listed in FirstNames. �e last rule states that �rst names are also annotations of the type
PersName.
Overall, this script uses di�erent techniques in order to detect characters (PersName) in

literary texts. A major part is dependent on dictionaries. �e rules utilize the found keywords
in sequential patterns in order to identify new annotations. Furthermore, lists are applied for
�nding distant mentions of the same characters.

»Nun sieh mal, Saljoshew ist auch da!« murmelte Rogoshin, indem er mit einem triumphierenden, 
sogar etwas boshaften Lächeln nach ihnen hinblickte; dann wandte er sich auf einmal zum Fürsten. 
»Fürst, ich weiß nicht, weswegen ich dich liebgewonnen habe. Vielleicht, weil ich dich in einem 
solchen Augenblick getroffen habe; aber den hier habe ich doch auch getroffen« (er wies auf 
Lebedew), »und den habe ich nicht liebgewonnen. Komm zu mir, Fürst! Wir werden dir diese 
Gamaschen ausziehen; ich werde dir den besten Marderpelz kaufen, dir den schönsten Frack machen 
lassen, eine weiße Weste oder was für eine du sonst wünschst; ich werde dir die Taschen voll Geld 
stopfen, und...dann wollen wir zu Nastasja Filippowna fahren! Wirst du kommen oder nicht?« 
»Gehen Sie darauf ein, Fürst Lew Nikolajewitsch!« fügte Lebedew in eindringlichem, feierlichem Tone 
hinzu. »Lassen Sie sich das ja nicht entgehen! Lassen Sie sich das ja nicht entgehen!« 
Fürst Myschkin stand auf, streckte Rogoshin höflich die Hand hin und sagte freundlich zu ihm: 

Figure 4.3: Results of the UIMA Ruta script applied on an excerpt of Dostoevskij’s ‘‘Der Idiot’’ (in
German) with highlightings for identified mentions of characters. Missing entities are underlined.

Figure 4.3 contains an excerpt of Dostoevskij’s “Der Idiot” (in German) with highlightings
for the identi�ed mentions of characters (PersName annotations). �e script was only applied
on this excerpt resulting in several false negative entities. �ey are underlined in the �gure. �e
light grey entities can be found by adding a simple rule. If the rules are applied on the complete
chapter, then all entities are identi�ed. �e �rst mention of “Rogoschin” and the secondmention
of “Lebedjew” have been created by the rule in line 38-40 due to the direct speech and the
speci�c verb. �e second mention of “Rogoschin” and the �rst mention of ‘Lebedjew” have
been created by the rule in line 43 because the previous rule added the covered text to the list
PersNames. �e rule in line 34 created the PersName annotations “Nastasja Filippowna” and
“Fürst Ljow Nikolajewitsch” due to the presence of a FirstName annotation. “Fürst Myschkin”
has been created by the rule in line 35 because of a LastName annotation, which was identi�ed
by the rule in line 9-12 using the context of the NobleTitle annotation (“Fürst”). Single AddName
annotations are not annotated with PersName annotations and thus the script is not able to detect
the mention of “Fürsten” and the two mentions of “Fürst”. �eir identi�cation can be achieved
in various ways, e.g., by adding the rule AddName{-PARTOF(PersName) -> MARK(PersName)};

at the end of the script.
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1 PACKAGE uima.ruta.firefly;
2
3 IMPORT PACKAGE de.tudarmstadt.ukp.dkpro.core.api.lexmorph.type.pos
4 FROM GeneratedDKProCoreTypes AS pos;
5 IMPORT de.tudarmstadt.ukp.dkpro.core.api.segmentation.type.Lemma
6 FROM GeneratedDKProCoreTypes;
7
8 SCRIPT uima.ruta.firefly.DirectSpeech;
9
10 WORDLIST AnimalList = 'Animals.txt';
11 WORDLIST FirstNameList = 'FirstNames.txt';
12 WORDLIST GeneralTitleList = 'GeneralTitles.txt';
13 WORDLIST PhraseList = 'IMPhrases.txt';
14 WORDLIST JobList = 'Jobs.txt';
15 WORDLIST MilitaryTitleList = 'MilitaryTitles.txt';
16 WORDLIST NobleTitleList = 'NobleTitles.txt';
17 WORDLIST ObjectWordList = 'ObjectWords.txt';
18 WORDLIST RelativesTitleList = 'RelativesTitles.txt';
19 WORDLIST VerbList = 'Verbs.txt';
20
21 STRINGLIST AddNames;
22 STRINGLIST FirstNames;
23 STRINGLIST LastNames;
24 STRINGLIST PersNames;
25 STRING Match;
26
27 DECLARE PersName , AddName , FirstName , LastName , AnAnimal ,
28 RelativesTitle , GeneralTitle , MilitaryTitle , NobleTitle ,
29 Job , BodyPart , IMPhrase;
30
31 Document{-> CALL(DirectSpeech )};
32 Document{-> RETAINTYPE(SPACE )};
33 Document{-> MARKFAST(AnAnimal , AnimalList )};
34 Document{-> MARKFAST(FirstName , FirstNameList )};
35 Document{-> MARKFAST(GeneralTitle , GeneralTitleList )};
36 Document{-> MARKFAST(IMPhrase , PhraseList )};
37 Document{-> MARKFAST(Job , JobList )};
38 Document{-> MARKFAST(MilitaryTitle , MilitaryTitleList )};
39 Document{-> MARKFAST(NobleTitle , NobleTitleList )};
40 Document{-> MARKFAST(RelativesTitle , RelativesTitleList )};
41 Document{-> RETAINTYPE };
42
43 // ---- VORNAMEN -------------\\
44
45 // Titel , nach denen wahrscheinlich ein Vorname kommt , z.B. Bruder Senka
46 (RelativesTitle|AnAnimal) pos.N{-PARTOF(FirstName), -PARTOF(SPECIAL)
47 -> MARK(FirstName), MATCHEDTEXT(Match), ADD(FirstNames , Match )};
48
49 // Vornamen , die mit "s" enden speichern
50 FirstName{-> MATCHEDTEXT(Match), ADD(FirstNames , Match + "s")};
51
52 // Alle Vornamen in der Liste FirstNames markieren
53 pos.N{-PARTOF(FirstName), INLIST(FirstNames) -> MARK(FirstName )};
54
55 // Vorname + Vorname = Vorname , z.B. Nikolai Andrejewitsch
56 FirstName{-> SHIFT(FirstName , 1, 2)} FirstName{-> UNMARK(FirstName )};

UIMA Ruta Listing 4.27: (Part 1) Script for detection mentions of characters in literary texts [158].
An explanation of the rules can be found in the corresponding section. Comments in the script are
given in German.
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1 // ---- NACHNAMEN ------------\\
2
3 // Vornamen + CW (-> Nachname), z.B. Andrejewitsch Pawlischtschew
4 CW{INLIST(FirstNameList )} "von"? CW{-PARTOF(FirstName), -PARTOF(LastName),
5 -PARTOF(pos.PP) -> MARK(LastName , 2, 3), MATCHEDTEXT(Match),
6 ADD(LastNames , Match )};
7
8 // Titel , nach denen wahrscheinlich ein Nachname kommt , z.B. Herr Pawlisch ...
9 (GeneralTitle|MilitaryTitle|NobleTitle|Job) "von"? CW{-PARTOF(GeneralTitle),
10 -PARTOF(Job),-PARTOF(NobleTitle), -PARTOF(MilitaryTitle),
11 -PARTOF(RelativesTitle), -PARTOF(FirstName), -PARTOF(LastName)
12 -> MARK(LastName , 2, 3), MATCHEDTEXT(Match), ADD(LastNames , Match )};
13
14 // Nachnamen , die mit "s" enden speichern
15 LastName{-> MATCHEDTEXT(Match), ADD(LastNames , Match + "s")};
16
17 // Markieren der Namen in LastName
18 pos.N{-PARTOF(FirstName), -PARTOF(LastName), INLIST(LastNames)
19 -> MARK(LastName )};
20
21 // ---- ADDNAMEN -------------\\
22
23 // Verschiedene Titel zusammenfassen
24 (AnAnimal|RelativesTitle|GeneralTitle|MilitaryTitle|NobleTitle|Job)
25 {-> MARK(AddName), MATCHEDTEXT(Match), ADD(AddNames , Match )};
26
27 // Alle Zusatztitel in der Liste AddNames markieren
28 pos.N{-PARTOF(AddName), INLIST(AddNames , Lemma.value)
29 -> MARK(AddName )};
30
31 // ---- PERSONEN -------------\\
32
33 // AddName + FirstName + LastName = PersName
34 (AddName* @FirstName LastName *){-PARTOF(PersName) -> MARK(PersName )};
35 (AddName* FirstName? @LastName ){-PARTOF(PersName) -> MARK(PersName )};
36
37 // Sprecher nach direkter Rede als Person markieren
38 DirectSpeech COMMA? pos.V{INLIST(VerbList , Lemma.value )} pos.ART? CW+
39 {-PARTOF(PersName)-> MARK(PersName), MATCHEDTEXT(Match),
40 ADD(PersNames , Match )};
41
42 // Alle Personen in der Liste PersNames markieren
43 pos.N{-PARTOF(PersName), INLIST(PersNames , Lemma.value) -> MARK(PersName )};
44
45 // ---- KORREKTUR ------------\\
46
47 // Eigennamen , die nicht als Vornamen oder Nachnamen erkannt wurden
48 Document{-> CLEAR(FirstNames )};
49 DirectSpeech COMMA? pos.V{INLIST(VerbList , Lemma.value )}
50 CW+{-PARTOF(FirstName), -PARTOF(LastName), -PARTOF(AddName)
51 -> MARK(FirstName), MATCHEDTEXT(Match), ADD(FirstNames , Match )};
52
53 // Eindeutige Phrasen nach denen ein Name kommt
54 IMPhrase CW{-PARTOF(FirstName) -> MARK(FirstName), MATCHEDTEXT(Match),
55 ADD(FirstNames , Match , Match + "s")};
56
57 // Alle Vornamen in der Liste FirstNames markieren
58 pos.N{-PARTOF(FirstName), INLIST(FirstNames) -> MARK(FirstName )};
59 FirstName{-PARTOF(PersName) -> MARK(PersName )};

UIMA Ruta Listing 4.28: (Part 2) Script for detection mentions of characters in literary texts [158].
An explanation of the rules can be found in the corresponding section. Comments in the script are
given in German.
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4.3 Development Environment and Tooling
�e development of rule-based applications for information extraction is �rst of all an engi-
neering task. It can be a di�cult, tedious and time consuming task, which depends on human
resources and their quali�cation. Quali�ed rule engineers are potentially an expensive resource
or only available to a limited extent. �e engineers should therefore be supported by tools
that ease the access to the rule-based systems and that improve the engineering experience
in general. While improvements of the usability and an extensive documentation weaken the
learning curve, the development environment should provide features that decrease the time
and labor enabling the rapid development of rule sets. A (non-exhaustive) list of those features
for supporting the rule engineer can be identi�ed:

Clear visualization of different language elements �e visualization of language ele-
ments by highlighting di�erent syntactic constructs provides a clear overview of the
rule set. Semantic highlighting of the occurrences of some language elements further
improves the readability.

Direct feedback on defective rules Writing rules is an error-prone process. �e develop-
ment environment should notify the user instantly about syntax errors, typing error and
misplaced constructs. �e engineering process is decelerated if feedback about erroneous
rules is given not before the rules are applied.

Shortcuts for editing �e development environment should provide functionality for recur-
ring elements either by completion of the statements of the user or by templates for favored
constructs. In general, the e�ort of writing rules should be minimized.

Adaptable to process model of user �e rule engineering task can be approached with dif-
ferent process models. �e user should be able to adapt and optimize the development to
her own process model.

Easy introspection of results When the engineered rules are applied on exemplary docu-
ments, the resulting annotations should be visualized in an clear and accessible way. �e
user should be able to directly investigate di�erent aspects of the annotated documents.

Explanation of rule execution �e application of rules on a document should not be opaque.
�e user should be able to comprehend and track every step of the rule inference in order
to identify and correct undesired behavior.

Automatic validation of the rule set’s correctness Manual veri�cation of the rules and
the validation of their results is tedious and time consuming and has to be performed
potentially every time the rule set is extended or re�ned. �is task should be automated
by specifying test cases and informative reports should be provided to the user.

Support for automatic induction of rules �e development environment should support
the user in the speci�cation of rule sets. In case additional data is available, this data can
be utilized in order to propose rules that solve a speci�c annotation task.

�e UIMA RutaWorkbench [126] tries to provide a development environment and additional
tooling, which cover all of these features. It is implemented as a rich client application extending
the Eclipse platform38, which allows the user to arrange the di�erent features and tools according
38http://www.eclipse.org/
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to her preferences. �e available tooling of the Eclipse platform can be directly utilized in the
UIMA Ruta Workbench, e.g., version control of script �les, which allows collaborative develop-
ment. �e large amount of features and additional tooling leads to an increased complexity of
the system. �us, the UIMA Ruta Workbench is not easily accessible for inexperienced users,
but favors trained engineers, which are able to take advantage of all features for an increased
productivity. �e following sections highlight how a strong tooling support can render the rapid
development of rule-based information extraction systems possible, and refer to �gures in order
to illustrate the di�erent tooling support.

4.3.1 Basic Development Support
A development environment for rule-based information extraction applications should provide
at least some basic features. �ese include the option to create and modify rules, the execution
of these rules on a set of documents and the visualization of the annotations created by the rules.
�e central parts of the UIMA Ruta Workbench are the workspace with UIMA Ruta projects,
the full-featured editor, the launch capacity for executing script �les and the visualization of
annotated documents based on the CAS Editor39.

Figure 4.4:Default perspective of the UIMA RutaWorkbench: Script explorer with a UIMA Ruta project
(left part). Full-featured editor for specifying rules (center part).

39http://uima.apache.org/d/uimaj-2.5.0//tools.html#ugr.tools.ce
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Figure 4.4 provides a screenshot of the default perspective of the UIMA RutaWorkbench. �e
le� part contains the list of UIMARuta projects in the workspace. A UIMARuta project consists
of a distinct folder layout. �e script folder contains the rule-based script �les, the descriptor
folder the descriptor �les of UIMA analysis engines and type systems, and the resources folder
contains dictionaries and word lists. �e workbench automatically generates an analysis engine
and type system descriptor for each script �le. �ese descriptors can be utilized in order to
include the UIMARuta rules in arbitrary UIMA applications. By default, when executing a script
�le, documents in the input folder are processed and their results are stored in the output folder.
�e UIMA Ruta Workbench supports mixin-workspaces. �e user is able to add dependencies
in a UIMA Ruta project pointing to other projects of the workspace. A dependency to a UIMA
Ruta project enables the user to refer to its script �les and leads to reusable subprojects. �e
Workbench takes care of the correct con�guration of the generated analysis engines descriptors.
A UIMA Ruta project can, however, also have dependencies to Java projects in the workspace.
When a UIMA Ruta script is launched, then the classpath is automatically expanded by the
dependencies and analysis engines implemented in the same workspace can be utilized in a
script �le. �is enables rapid prototyping across languages.
�e central part of the screenshot shows the full-featured editor, which provides the editing

support known by common development environments. �ese include syntax highlighting,
semantic highlighting, syntax checking, auto-completion, template-based completion and
others. �ereby, the user is optimally supported when writing or editing rules. Defective rules
are instantly highlighted in the editor and the auto-completion proposes suitable language
elements based on the current editing position.
For visualizing the results of the rule execution, the UIMA Ruta Workbench utilized the

CAS Editor extended with additional views for an improved access to the annotations. �e
Annotation Browser view lists the annotations of a document sorted by their types. Figure 4.9
contains a screenshot of this view. �e Selection view lists the annotations of the currently
selected position in the CAS Editor sorted by their types (cf. Figure 4.5). Both views provide
additional �ltering options and enable the user to obtain a fast overview of the results of the
rule execution and to investigate speci�c positions.

Figure 4.5: Selection view for listing annotation at the selected position
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task potentially each time the rule set is extended or re�ned in order to ensure the correct
processing of the documents. An automatic validation of the rule set’s correctness is therefore
one of the most important features of a development environment for rule-based information
extraction. �e user should be able to de�ne test cases that are utilized to validate the rule
set. In the context of information extraction applications, the test cases are equivalent to a set
of documents containing annotations of interesting types. �e rules are applied on the raw
documents and the resulting annotations created by the rules are then compared to the given
gold annotations. �e di�erences are used to calculate an evaluation score, e.g., the F1 score40.

Figure 4.11: The Annotation Testing view for automatic validation of rule sets using annotated
documents.

�e UIMA Ruta Workbench provides this functionality with the Annotation Testing view.
Figure 4.11 contains a screenshot of this view, which consists of the list of tested documents on the
le� side and the results for the currently selected document on the right side. Additionally the
user is able to select di�erent evaluators resulting in di�erent F1 scores, e.g., based on annotations
or tokens. �e usefulness of this functionality can be summarized with the description of three
use cases:

Goal-oriented development A real-world scenario for the development of a rule-based
information extraction system o�en includes a quality threshold speci�ed by a contractee
(cf. [187]). Given a set of annotated documents, the developed rules have to achieve a
previously de�ned evaluation score in order to be accepted for deployment. �is use case
is directly supported by the UIMA Ruta Workbench and the user is able to continuously
compare the current state of the system to the desired targets.

Test-driven development Test-driven development [107] is a programming process model
where �rst test cases for speci�c parts of functionality are de�ned before the actual program
code is written. �e developed code is then continuously validated during development in

40Parts of the contents of this section have been published in Peter Kluegl, Martin Atzmueller, and Frank Puppe.
Test-driven Development of Complex Information Extraction Systems using TextMarker. In Grzegorz J. Naplepa
and Joachim Baumeister, editors, 4th International Workshop on Knowledge Engineering and So�ware Engineering
(KESE 2008), 31th German Conference on Arti�cial Intelligence (KI-2008), pages 19–30, 2008. [120]

105



Chapter 4: UIMA Ruta

order to ensure the correctness of di�erent parts of the so�ware. Test-driven development
has proven itself as an e�ective process model [148]. �is process model can also be
applied to the development of rule-based information extraction applications. First, a set
of documents is manually annotated, which provides a best possible coverage of di�erent
challenges. �e rules are then developed against these test cases until the performance
of the rules is su�cient. A methodology and detailed process model for test-driven
development of rule-based information extraction systems has been published by Kluegl
et al. [120].

Regression testing Another reliable process model for developing rules can be summarized
as follows. �e rule engineer considers one document a�er each other and creates new
rules or re�nes existing rules. Starting with the �rst document, she creates an initial
set of rules, which extracts all interesting information within this document. A�er the
rules are applied on the document, it is either perfectly annotated or manually corrected,
and is stored as a test case. �e rule engineer continues with the second document and
extends, modi�es and refactors the rule set until the annotations in the second document
are correctly identi�ed. During these modi�cations of the rules set, however, the test
case of the �rst document is continuously validated in order to ensure that the rules still
provide the necessary functionality for the �rst document. �is procedure is iterated for
the complete collection of documents until all documents are su�ciently processed by
the created rules.

4.3.5 Constraint-driven Evaluation
One of the advantages of rule-based information extraction approaches is that annotated doc-
uments are not strictly necessary for application development. Nevertheless, they are very
bene�cial for rule-based systems, e.g., for accelerating the development or quality maintenance.
�ere is a natural lack of labeled data in most application domains and its creation is error-prone,
cumbersome and time-consuming as is the manual validation of the extraction results by a hu-
man. A human is able to validate the created annotations in those documents using background
knowledge and expectations on the domain. An automatic estimation of the rule set’s quality in
unseen or unlabeled documents using this kind of knowledge provides many advantages and
greatly improves the engineering experience41.
�e Constraint-driven Evaluation (CDE) framework [203] is a combination of the testing

framework and the querying functionality, and greatly improves the engineering process. It
allows the user to specify expectations about the domain in formof constraints. �ese constraints
are applied on documents with annotations, which have been created by a set of rules. �e
results of the constraints are aggregated to a single cde score, which re�ects how well the created
annotations ful�ll the user’s expectations and thus provide a predicted measurement of the rule
set’s quality for these unlabeled documents. �e documents can be ranked according to the
cde score, which provides an intelligent report about the well and poorly processed examples.

41�e contents of this section have been published in Andreas Wittek, Martin Toepfer, Georg Fette, Peter Klügl, and
Frank Puppe. Constraint-driven Evaluation in UIMA Ruta. In Peter Klügl, Richard Eckart de Castilho, and Katrin
Tomanek, editors, UIMA@GSCL, volume 1038 of CEURWorkshop Proceedings, pages 58–65. CEUR-WS.org, 2013.
[203]
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Figure 4.12 provides a screenshot of the CDE perspective, which includes di�erent views to
formalize the set of constraints and to present the predicted quality of the model for the speci�ed
documents.
Compared to the test-driven development in the last section, this approach facilitates

constraint-driven development, which requires no annotated data. �is process is illustrated
with a simple example for identifying one speci�c person name in each document of a larger
collection. �e knowledge engineer speci�es her background knowledge and expectations about
the domain using rules. �ese rules cover, for example, that each document should contain
exactly one annotation of the type Name. A�er the actual extraction rules are applied on the
large set of documents, the expectations are compared to the Name annotations created by
the rules. Using a score called cde score, the documents are ranked whereas documents that
violate the expectations are listed �rst. �e knowledge engineer is now able to investigate these
problematic documents where the rule obviously failed either by �nding no name or by labeling
multiple names. A�er the rule set is re�ned or extended, this process is iterated.

Figure 4.12: CDE perspective in the UIMA Ruta Workbench. Bottom left: Expectations on the domain
formalized as constraints. Top right: Set of documents and their cde scores. Bottom right: Results of
the constraints for selected document. Overall, three constraints are violated to a certain extend, e.g.,
an Author annotation was detected that contains less than two words (5th constraint, 4th reference).
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A constraint is de�ned as a function C ∶ CAS → [0, 1], which returns a con�dence value
for an annotated document where high values indicate that the expectations are ful�lled. Two
di�erent types of constraints are supported: Rule constraints are simple UIMA Ruta rules
without actions and allow to specify sequential patterns or other relationships between annota-
tions that need to be ful�lled. �e result is basically the ratio of how o�en the rule has tried to
match compared to how o�en the rule has actually matched. An example for such a constraint
is Document{CONTAINS(Author)};, which speci�es that each document must contain an
annotation of the type Author. �e second type of supported constraints are Annotation Distri-
bution (AD) constraints (c.f. Generalized Expectations [146]). Here, the expected distribution
of an annotation or word is given for the evaluated types. �e result of the constraint is the
cosine similarity of the expected and the observed presence of the annotation or word within
annotations of the given types. A constraint like "Peter": Author 0.9, Title 0.1, for
example, indicates that the word “Peter” should rather be covered by an Author annotation than
by a Title annotation. �e set of constraints and their weights can be de�ned using the CDE
Constraint view (c.f. Figure 4.12, bottom le�).
For a given set of constraints C = {C1 ,C2 ...Cn} and corresponding weights w =

{w1 ,w2 , ...,wn}, the cde score for each document is de�ned by the weighted average:

cde = 1
∑n

i w i

n
∑
i
w i ⋅ C i (4.1)

�e cde scores for a set of documents may already be very useful as a report how well the
annotations comply with the expectations on the domain. However, one can further distinguish
two tasks for CDE: the prediction of the actual evaluation score of the rules, e.g., the token-based
F1 score, and the prediction of the quality ranking of the documents. While the former task
can give answers how good the rules perform or whether the rules are already good enough for
the application, the latter task provides a useful tool for introspection: Which documents are
poorly labeled by the rules? Where should the set of rules be improved? Are the expectations
on the domain realistic? �e cde scores for the annotated documents are depicted in the CDE
Documents view (c.f. Figure 4.12, top right). �e result of each constraint for the currently
selected document is given in the CDE Results view (c.f. Figure 4.12, bottom right).
�e development of the constraints needs to be supported by tooling in order to achieve an

improved prediction in the intended task. If the user extends or re�nes the expectations on the
domain, then a feedback whether the prediction has improved or deteriorated is very valuable.
For this purpose, the framework provides functionality to evaluate the prediction quality of
the constraints itself. Given a set of documents with gold annotations, the cde score of each
document can be compared to the actual F1 score. Four measures are applied to evaluate the
prediction quality of the constraints: the mean squared error, the Spearman’s rank correlation
coe�cient, the Pearson correlation coe�cient and the cosine similarity. For optimizing the
constraints to approximate the actual F1 score, the Pearson’s r is maximized, and for improving
the predicted ranking, the Spearman’s ρ is maximized. If documents with gold annotations are
available, then the F1 scores and the values of the four evaluation measures are given in the CDE
Documents view (c.f. Figure 4.12, top right).
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4.3.6 Supervised Rule Induction
All development support described until now has focused on the manual engineering of rule-
based information extraction systems. �e user de�nes the set of rules herself in an ecosystem
of tools, which facilitate the writing or enable an improved quality maintenance. Besides that,
the development environment can also support the user in the construction of new rules. Given
a set of annotated documents, machine learning algorithms can be applied in a supervised
fashion in order to propose new rules. �e user can then inspect the proposed rules for insights
in possibly interesting patterns of annotations. Furthermore, she can extend her rule set with a
selection of the proposed rules, which can again be extended or adapted42.
�e UIMA Ruta Workbench provides the TextRuler framework for the supervised induction

of rules. Figure 4.13 depicts the TextRuler view, which allows the user to specify the training
data, the interesting types of annotations and the preferred learning algorithm. �e induced
rules for each algorithm are presented in a separate view. Currently, four di�erent algorithms
are available.

Figure 4.13: The TextRuler framework in the UIMA Ruta Workbench for supervised rule induction:
configuration of the training data and the rule learning algorithms (bottom part) and the induced
rules of the algorithms (right part).

42Parts of the contents of this section have been published in Peter Kluegl, Martin Atzmueller, Tobias Hermann, and
Frank Puppe. A Framework for Semi-Automatic Development of Rule-based Information Extraction Applications. In
Melanie Hartmann und Frederik Janssen, editor, Proc. LWA 2009 (KDML - Special Track on Knowledge Discovery
and Machine Learning), pages 56–59, 2009. [118]
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LP2 �e two implementations of this rule learner, naive and optimized, are adaptations of the
original algorithm published by Ciravegna [45] for the UIMA Ruta language. LP2 induces
three di�erent kinds of rules. Tagging rules identify the boundaries of the annotations,
context rules shi� misplaced boundaries and correction rules �nally are able to remove
boundaries again (cf. Section 2.2.3.3). Correction rules are, however, not yet supported
by the implementations.

WHISK �e two implementations of this rule learner, token and generic, are adaptations of the
algorithm published by Soderland et al. [186] for the UIMA Ruta language. �eWhisk
algorithm induces rules in the formofmodi�ed regular expressions (cf. Section 2.2.3.6). In
contrast to the original algorithm, the implementations do not directly support multi-slot
rules.

KEP �e name of the rule learner KEP (knowledge engineering patterns) [32] is derived from
the idea that humans use di�erent engineering patterns to write annotation rules. �e
algorithm implements simple rule inductionmethods for some patterns, such as boundary
detection or annotation-based restriction of the window. �e results are then combined
in order to take advantage of the interaction of the di�erent kinds of induced rules. Since
the single rules are constructed according to how humans engineer the annotations rules,
the resulting rule set resembles more handcra�ed rule sets. Furthermore, by exploiting
the synergy of the patterns, the patterns for some annotations are much simpler.

TraBaL �e TraBaL algorithm [69] is able to induce transformation-based error-driven rules.
�e basic idea is similar to the Brill-Tagger [34], but template generation is more generic
and can also handle arbitrary annotations instead of tags of tokens. �is algorithm was
built in order to learn how to correct the annotations of arbitrary models or human
annotators.

A methodology and process model for the semi-automatic development of rule-based in-
formation extraction systems where the human engineer is supported and completed by rule
induction algorithms has been published in Kluegl et al. [118].

4.3.7 Semi-automatic Creation of Gold Documents
�e last sections highlighted the importance of annotated documents for the development
of rule-based information extractions system. A popular approach for creating annotated
documents is the semi-automatic annotation using rules. �e labeling of a large collection of
documents is time consuming, but can be accelerated if recurring annotations are automatically
created. �e rule engineer de�nes a few rules that are able to create correct annotations instead
of manually specifying them one a�er each other. A�erwards, the created annotations need to
be veri�ed, whereas missing annotations are added and defective annotations are removed. �is
functionality is already covered by the default tooling of the UIMAWorkbench in combination
with the CAS Editor. �e approach can, however, be improved if the user is supported in the
manual veri�cation of the annotations. �e UIMA Ruta Workbench provides the additional
view Check Annotations for this use case, which enables the user to e�ciently accept, reject or
replace the proposed annotations. Figure 4.14 contains a screenshot of this view located in the
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right part. �e view lists all annotations of types selected by the user, which can quickly classify
these annotations as correct or erroneous.

Figure 4.14: The Check Annotations view for efficiently verifying the correctness of annotations in a
collection of documents.

4.4 Comparison to Related Systems
UIMA Ruta is compared to a representative selection of related systems and highlights dif-
ferent aspects of rule representation and execution, expressiveness of the language, runtime
performance, and available tooling for development support. A special focus is laid on the
concise representation of rules, which is one important aspect for rapid development. �e less
text the knowledge engineer has to write for achieving the same functionality, the better. �e
compactness and expressiveness of the UIMA Ruta language is illustrated in Figures 4.15, 4.17
and 4.18. Each �gure depicts a representative example of a related language taken from the
respective publication and its equivalent in the UIMA Ruta language.
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Macro: AMOUNT_NUMBER
({Token.kind == number}
(({Token.string == ","} |

{Token.string == "."})
{Token.kind == number})*

)
Rule: Money1
(

(AMOUNT_NUMBER)
(SpaceToken.kind == space)?
({Lookup.majorType == currency_unit})

)
:money -->

:money.Number = {kind = "money", rule = "Money1"}

(NUM (("," | ".") NUM)*)
{-> AmountNumber };

(AmountNumber SPACE? CurrencyUnit)
{-> Money};

Figure 4.15: An excerpt of an exemplary JAPEmacro and rule [54] (left) for the detection of ‘‘money’’
entities and their UIMA Ruta equivalents (right).

Figure 4.15 contains an example of a JAPEmacro and rule [54] and their equivalents in UIMA
Ruta. �is example assumes that whitespaces are not �ltered, that the type “Money” inherits
from the type “Number”, and that gazetteers directly create annotations of the speci�ed types,
as it is usual in UIMA Ruta. UIMA Ruta does not enforce a clear separation of conditions
and actions and thus does not need to support labels. Java code cannot directly be included in
UIMA Ruta rules, but the language itself can be extended, and arbitrary Java code wrapped in
additional analysis engines can be executed. JAPE speci�es the accessible types for each phase,
whereas UIMA Ruta applies a more complex and dynamic paradigm of visibility controlled by
the annotations themselves. In contrast to JAPE, which compiles all rules of a phase into one
FST, UIMA Ruta applies the rules sequentially in the order they are speci�ed, supports variable
matching direction, and is able to match on all disjunctive alternatives. Overall, the UIMA Ruta
language provides almost all features of JAPE together with a more concise representation. �e
development of JAPE grammars is barely supported by tooling to the best knowledge of the
authors. �e GATE framework provides, however, a rich selection of tools like ANNIC [55] for
discovering new patterns.
For a comparison of the runtime performance, the Named Entity Recognition component in

GATE is utilized without the part-of-speech tagger and applied only the �rst three phases of
the JAPE grammar with overall 58 rules. A translation of these rules to UIMA Ruta resulted in
about 44 rules, which can be considered as created by an inexperienced knowledge engineer.
�ey do not include UIMA Ruta speci�c optimizations. Both systems are applied on nine
sets of documents containing each 10000 documents and providing an increasing document
size, taken from the Enron email dataset43. Startup time of the frameworks and Java can be
neglected, because the �rst batch was evaluated twice, but only the second run was measured.
Figure 4.16 depicts the average runtime for components based on the JAPE implementation, the
optimized JAPE Plus implementation44, UIMA Ruta and UIMA Ruta with activated dynamic
anchoring45. UIMA Ruta is able to compete well for all sizes of documents, although the rules
are not optimized at all, and they apply sequentially 44 phases in contrast to three phases of

43https://www.cs.cmu.edu/~enron/
44http://gate.ac.uk/sale/tao/splitch8.html#sec:jape:plus
45GATE 7.1 and UIMA Ruta 2.2.0 are applied.
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JAPE. Dynamic anchoring improves the performance only slightly since the patterns have not
been engineered accordingly and considerable processing time is caused by the gazetteers.
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Figure 4.16: Average processing time for documents of different sizes.

�e UIMA Ruta language provides a higher expressiveness than AFST [26], which is limited
to a linear path through the annotation lattices. Each special functionality in AFST (honour,
focus, advance, . . . ) is available in UIMA Ruta using the corresponding language constructs.
Figure 4.17 contains exemplary rules for vertical navigation in AFST and UIMA Ruta. �e AFST
rule starts by matching on a PName annotation and then steps into this annotation indicated
by the operator “@descend”. �e next element “Title[string==“General”]” speci�es that the
PName annotation has to start with a Title annotation with the covered text “General”. A period
between two elements indicates a sequential constraint. �e vertical navigation is repeated for
the Name annotation, which has to contain a Last annotation with the covered text “Grant”. �e
elements First and Middle are optional, but required for the linear path through the annotation
lattices.
AFST includes a small set of additional predicates, whereas UIMA Ruta ships an extensive set

of conditions and actions. �e Domain Adaptation Toolkit [27] provides grammar development
functionality and is able to create type system descriptors based on the grammars like the UIMA
Ruta Workbench.

findG = PName[@descend] .
Title[string=="General"] .
Name[@descend] .
First[]|<E> . Middle[]|<E>
. Last[string=="Grant"] .

Name[@ascend] .
PName[@ascend] ;

PName <-{
Title{REGEXP("General")}
Name <-{

Last{REGEXP("Grant")};
};

};

Figure 4.17: An exemplary AFST rule [26] (left) for vertical matching in ‘‘PName’’ annotations and its
UIMA Ruta equivalent (right). The rules match on text passages like ‘‘General Ulysses S. Grant’’ if the
corresponding annotations are present. The optional patterns for the First and Middle annotations
are not necessary in UIMA Ruta.

SystemT criticizes three aspects of rule languages based on the CPSL speci�cation: Lossy
sequencing, rigid matching priority and limited expressiveness in rule patterns [43]. None
of these properties can be observed in UIMA Ruta. �e rule language of SystemT, AQL, is a
declarative relational language similar to SQL and thus does not provide a compact represen-
tation. Especially since the modi�cation of the content of a view enforces the speci�cation of
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another view. While the syntax is accessible to programmers, it might appear counterintuitive
for users not familiar with SQL. Most of the features of AQL are also supported in the UIMA
Ruta language. Figure 4.18 provides an excerpt of an AQL grammar for the detection of persons
and the UIMA Ruta rules with the same functionality. Broadly speaking, AQL rules typically
consist of a create view statement that speci�es the created type of annotation, select and
from statement for specifying the input and output, and a where statement for the pattern. �e
�rst UIMA Ruta rule is equivalent to the �rst create view statement in the AQL example.
�ere is no need for the second create view statement in UIMA Ruta since the rules are able
to operate on the same types of annotations. �e second and third UIMA Ruta rules emulate
the last create view statement, which consolidates overlapping annotations.

create view CapsLast as
select CombineSpans(C.name, L.name) as name
from Caps C, Last L
where FollowTok(C.name, L.name, 0 0);
...
create view PersonAll as

(select R.name from FirstLast R) union all ...
... union all (select R.name from CapsLast R);

create view Person as select * from PersonAll R
consolidate on R.name using 'ContainedWithin';

(Caps Last){-> Person };
Person{PARTOFNEQ(Person)

-> UNMARK(Person )};
Person{CONTAINS(Person ,2 ,100)

-> UNMARK(Person )}

Figure 4.18: Excerpt of exemplary AQL rules [43] (left) for the detection of persons and their
UIMA Ruta equivalents (right). The last two UIMA Ruta rules are only necessary for the consolidate
statement.

�erule execution of SystemT is not based on �nite-state transducers, but applies an optimized
operator plan for the execution of rules. �e rules in UIMA Ruta are also not limited to a le�-to-
right matching, which can greatly improve the runtime performance. �e automatic selection
of the starting rule element (dynamic anchoring) is a �rst step towards an optimized execution
plan. UIMA Ruta was developed for the rapid development of rules and cannot (yet) compete
with SystemT concerning runtime performance.
SystemT provides the best tools for development support of all related systems, to the best

knowledge of the author. Most of the features are also supported in a similar form by the
UIMA Ruta Workbench. �e development support of UIMA Ruta provides more possibilities
to automatically estimate the quality of the rules, e.g., also on unlabeled documents, which is
an essential assistance for developing rules. Another development environment for creating
rules is the IBM Content Analytics Studio, which propagates a drag-and-drop paradigm for
specifying patterns instead of a textual language. In contrast to UIMA Ruta, the system provides
a more sophisticated dictionary support, but lacks many advantages of �exible rule languages.
In the experience of th author, trained knowledge engineers are faster in specifying rule sets in
a textual form.
UIMA Ruta is a useful tool for rule-based information extraction in the ecosystem of UIMA.

�e system was designed with a special focus on rapid development in order to reduce develop-
ment time and costs. �e rule language can be applied for solving a great number of various
use cases, but still provides a compact representation. It covers most functionality of related
languages and still introduces a few new features that ease the speci�cation of complex patterns.
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�e UIMA Ruta Workbench adds another important aspect for rendering rapid development
possible. It provides an extensive tooling support for all tasks that a knowledge engineer has to
perform when creating rule-based information extraction applications. UIMA Ruta is currently
unique concerning the combination of integration in UIMA, expressiveness of its language and
industry-friendly open source license. �e system was already applied for developing various
information extraction applications. Among others, these include structured data acquisition in
medical reports and resumes [9], and authoring of eLeanring systems [99].
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Knowledge Engineering Approaches

�e last section introduced the UIMA Ruta system that provides many advantages over similar
systems. Besides others features, it helps to limit the development costs of rule-based information
extraction applications by providing a compact and powerful rule language together with strong
tooling support. �e system by itself is applicable for the creation of arbitrary natural language
applications. One important factor in the development of UIMA Ruta was, however, the e�cient
utilization of context-speci�c consistencies in the handcra�ed rule sets. �e language provides
various elements that enable the speci�cation of consistencies and their generic usage in rules
for context-speci�c applications. Examples for these elements cover variables, lists, speci�c
actions, and operations on feature structures. A variable for a type of an annotation can be set
to a speci�c value while processing a document. Rules that use these variables are automatically
adapted to the circumstances in the current document and operate context-speci�c. Another
example are lists, which can be utilized to gain knowledge about the dominant composition
of entities in the current document, or actions that allow e�cient modi�cation of inconsistent
entities. While some of these features can also be implemented with other rule-based systems,
hardly any of them support all characteristics that allow a rapid development of applications
exploiting context-speci�c consistencies.
�is chapter provides an overview of rule-based applications developed with UIMA Ruta

that take advantage of the context-speci�c consistencies. Some case studies have been created
with the predecessor system named TextMarker. �e case studies cover information extraction
tasks in the three di�erent domains introduced in Chapter 3. �ey apply di�erent approaches
for exploiting the consistencies, which is re�ected by the structure of this chapter. �e �rst case
study describes precision-driven prototypes developed with minimal labor. Nevertheless, these
rule sets are able to achieve notable results because the meager recall is gained by identifying
additional entities based on the present consistencies. �e second case study investigates a
more sophisticated approach that introduces a separate phase for modeling the consistencies
extended by an additional step that applies transformation-based rules. �ese rules operate on
the manifestation of the consistency model by matching consistent and con�icting positions.
By using transformation-based rules, the entities identi�ed by previous steps do not need
to be created again, but only corrected. �e third case study incorporates ideas of the initial
prototypes in a complete real-world application and highlights the usefulness of the consistencies
in a thorough engineered rule set.
�e applied rule sets in each case study are described mostly conceptually in order to explain

the overall approach. Additional examples of rules for speci�c parts of the application provide
insights in the actual implementation. More examples and complete rule sets can be found in
the corresponding publications.
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5.1 Improving Recall in Precision-driven Prototyping
�is section gives an overview on two case studies that investigate the advantages of consistency-
based rules for increasing the recall in precision-driven approaches. �e implemented rules for
exploiting the context-speci�c consistencies can be considered prototypes for solving a limited
information extraction task in an e�cient manner and with minimal engineering overhead.
�e targeted domains concern information extraction in curricula vitae and identi�cation of
headlines in clinical discharge letters. Both domains have already been introduced in Chapter 3
in detail, but are shortly recapitulated for convenience46.
�e limited task of information extraction in curricula vitae deals with the identi�cation

of speci�c entities in the past work experience of the author. In each project description of
the curricula vitae, the company, sector or contractor is extracted. �e company can o�en be
identi�ed using simple features, e.g., common su�xes, lists of known organizations or locations.
Yet, these word lists cannot be exhaustive, and are o�en limited for e�ciency reasons, e.g., for
di�erent countries. �is can reduce the accuracy of the model if the employee had been working
in another country for some time. Humans solve these problems of missing features, for example
unknown company names, by transferring patterns of already extracted information. If the
company, for example, was found in the third line of ninety percent of all project sections, then
it is highly probable that the missing company can be found in the same position.
Medical discharge letters contain, for example, the examinations, the laboratory data, and

the diagnoses of the patient leaving the hospital. �e information extraction task needs to
identify the headlines for further segmentation of the letter and identi�cation of the performed
examinations. Since there are no restrictions for writing these documents, the authors apply a
variety of layouts for structuring the headlines. Humans are able to identify common headlines
using the contained words. �en, they transfer these patterns to other text fragments and extract
headlines with a similar layout.

5.1.1 Rule Sets
In both domains, a limited set of rules is already able to produce noteworthy results by exploiting
these context-speci�c consistencies. Figure 5.1 provides an overview of a generic process model.
�emanifestation of the process model as a rule set is addressed in the following. First, common
features for identifying the interesting information are created. �ese cover dictionaries for
speci�c keywords, pre�xes or locations, and annotations for layout information and relevant
patterns. A static information extraction model identi�es initial entities with minimal e�ort.
Rules implementing expectations can help to identify highly con�dent information and relevant
meta-features representing the properties of the consistencies. Examples for these meta-features
are the distinct line where the companies occur, or the distinct font of headlines.
In precision-driven rule sets, the identi�ed information is already highly con�dent so that

only the properties need to be modelled. Transfer knowledge is responsible for the projection or
comparison of the given meta-feature in order to identify missing entities and thus increasing
the recall of the rule set. �is process can be iteratively applied for including an incremental set
of meta-features.

46�e content of this section has been published in Peter Kluegl, Martin Atzmueller, Frank Puppe. Meta-level Informa-
tion Extraction. KI, volume 5803 of Lecture Notes in Computer Science, Springer, 2009. [121]
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Figure 5.1: Process model with meta-features and transfer knowledge [121].

�e elements of the generic process model are described in [121]:

Meta-Features Relations between features and information, respectively patterns, are ex-
plicitly implemented by meta-features. �ese are not only created for the extracted
information, but also for possible candidates. A simple meta-feature, for example for the
extraction of headlines, states that the bold feature indicates a headline in this document.

Confidence Estimation Since even only a single incorrect information can lead to a potentially
high number of incorrect information, the correctness and con�dence of an information
is essential for the meta-level information extraction. �ere are two ways to identify
information suitable for the extraction of meta-features. If the knowledge engineer
already has certain assumptions about the content of the input documents, especially on
the occurrence of certain information, then these expectations can be formalized in order
to increase the con�dence of the information.

Transfer Knowledge �e transfer knowledge models the human behavior in practice and
can be classi�ed in three categories: Agglomeration knowledge processes multiple meta-
features and creates new composed meta-features. �en, projection knowledge de�nes
the transfer of the meta-features to possible candidates of new information. Comparison
knowledge �nally formalizes how the similarity of the meta-features of the original infor-
mation and candidate information is calculated. �e usage of these di�erent knowledge
types in an actual process depends on the kind of repetitive structures and meta-features.

�is process model provides a generic framework for improving information extraction
models in general. �e actual implementation as a rule set can be engineered in an e�cient
manner and with minimal labor. �e rules for the two domains are summarized in the following
with pointers to the elements of the process model.
In the curricula vitae, the meta-features for the description of the consistency are based on

the position of con�dent information dependent on the layout and in relation to other enti-
ties. Agglomeration knowledge uses these meta-features to formalize a pattern of the common
appearance of the companies. �en, projection knowledge uses this pattern to identify new
information that is rated by rules for con�dence estimation. �e actual rule set is quite straight-
forward. Some initial rules identify companies with high precision by using only con�dent
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patterns relying on pre�xes, su�xes or dictionaries for locations. Some of the companies, for
example, are easily identi�ed if they occur in a list of known companies, if there is a known
keyword nearby (e.g., “Client:”), or if the location of the o�ce is given a�erwards. �en, the
patterns of meta-features are initialized by joining the properties of these entities. �e patterns
may also include relation to other types of entities, e.g., a rule like “companies are located in the
second line of the project a�er the mention of the date period”. �is knowledge is then projected
to projects where no entities have been found yet.
In the discharge letters, the meta-features for the description of the consistency are based

on the layout. �e expectation of a “Diagnoses” or “History” (Anamnesis) headline is used
to identify con�dent entities. �en, meta-features describing its actual layout are created and
transferred by projection knowledge. Finally, comparison knowledge is used to calculate the
similarity of the layout of the con�dent information and a candidate for a headline. �e actual
rule set is again quite straightforward. Some initial rules identify frequent headlines that are easily
identi�ed: headlines for “Diagnoses” or “History” (Anamnesis). �en, properties describing the
layout of these headlines are stored in variables. �ese properties cover prede�ned features the
font of the text fragment (bold, italic, underlined), the ending with a colon, or presence of free
lines. A�er possible candidates for headlines are created, rules compare the properties of the
con�dent headlines with the properties of each candidate. If they share the same properties,
then a new headline was identi�ed.

5.1.2 Experimental Results
For the evaluation of the precision-driven approach with improved recall by exploiting the
context-speci�c consistencies, two rule-based prototypes were developed. �e rules for infor-
mation extraction in curricula vitae were engineered and tested on a very small dataset, which
contains overall 15 documents with 72 companies. �is minimal dataset is hardly suitable for
an experimental evaluation, but it re�ects the initial situation in a real-world project. An infor-
mation extraction prototype should be developed as a feasibility analysis using this limited set
of con�dential documents. �e rules were developed using �ve documents and the remaining
ten documents were applied for testing. �e development of the rules for identi�cation of
headlines in clinical discharge letters was based on a larger dataset, which contains overall 141
documents and 1515 headlines. About ten percent of the documents were used to engineer the
rule set and the remaining documents were applied for testing. As a comparable model for both
domains, a CRF was trained and tested on the respective collection of documents for testing the
rule-based approaches. �is setting leads of course to unrealistic predictions of the CRF model,
but illustrates the advantages of the rule-based approach. �e CRF was trained with the same
features, the rules were based on.
�e results of the experimental evaluation for both domains are given in Table 5.1. �e rule-

based approach achieved an F1 score of 0.979 for the identi�cation of companies in curricula
vitae, whereas the CRF was only able to reach an F1 score of 0.750. �is inferior result of the
CRF is mainly caused by the limited set of training examples and the restricted set of features.
More important, even by testing on the training set, the CRF was not able to over�t on the
examples. �e rules, however, are able to extract almost all entities on unseen document with
only minimal e�ort. �e approach is very e�cient and e�ective since the set of applied rules
was written within one hour.
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�e rule-based approach achieved an F1 score of 0.972 for the identi�cation of headlines
in clinical discharge letters, whereas the CRF was only able to reach an F1 score of 0.871. �e
probabilistic model was again not able to reproduce the examples. �e CRF extracted the same
headlines as the rule-based approach in many documents. However, the con�icting layout styles
of the same authors caused, as expected, a high number of false negative errors resulting in a
lower recall value. �e rule-based approach is not only very e�ective but also rather e�cient,
since it took only about 1-2 hours for engineering the necessary rules, considerably less time
than the time spent for the annotation of the examples.

Precision Recall F1

Curricula Vitae CRF 0.938 0.625 0.750
Rules 1.0 0.958 0.979

Discharge Letters CRF 0.979 0.785 0.871
Rules 0.991 0.954 0.972

Table 5.1: Experimental results given for recall expansion during precision-driven prototyping in two
domains. Rules implement the consistency-based approach for increasing the recall. Additionally, F1
scores for a CRF model trained and tested on the test data using the same features are added [121].

5.2 Stacked transformations
�e case study introduced in this section describes an iterative process model similar to the
approach in the last section. �e rules in this case study, however, are integrated in a more
sophisticated process model where the created annotations are incrementally corrected based
on a more complex model of consistencies. Furthermore, instead of processing semi-structured
documents like curricula vitae or discharge letters, the segmentation of references in scien-
ti�c publications is investigated. �is approach shares some characteristics with error-driven
transformations for part-of-speech tagging (cf. [34]), but applies the transformations based
on con�icts concerning a model describing the occurring consistencies instead of patterns of
tokens47.
�e aspects of context-speci�c consistencies in the domain of segmentation of references

are shortly recapitulated for convenience (cf. Section 3.2.1). A document with references like
scienti�c publications is o�en created in a single creation process, e.g., an author writes an article
by using LaTeX.�ese documents contain similar styles, e.g., an author uses in a single document
always the same layout for headlines or the used BibTeX style determines the appearance of
the references in a paper. Patterns describing these similarities and regularities can be detected
and used to improve the extracted information. However, patterns can vary strongly between
di�erent documents in a domain.

47�e content of this section has been published in Peter Kluegl, Andreas Hotho, Frank Puppe. Local Adaptive
Extraction of References. In 33rd Annual German Conference on Arti�cial Intelligence, Springer, 2010. [123]
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5.2.1 Rule Sets
A common problem with extracting references is the di�erent style resulting in con�icting
patterns for global models, e.g., di�erent separators between interesting �elds or di�erent
sequences of the �elds. �is rule-based approach tries to apply a short term memory to exploit
these context-speci�c consistencies. A simple information extraction component extracts
instances and �elds of information. �e next phase, however, does not simply try to correct
errors using a gold standard, but rather applies a local adaption step (adaptive IE component
AIE). An analysis of the occurring patterns returns a set of con�icting information that can
be corrected using transformation-based rules. �is approach works best if the assumption
holds that the document contains several instances of information and was created in the same
process. �e whole process is depicted in Figure 5.2.

BibTeX:
Author:  Kluegl, P., …
Title:      Meta-Level…
Date:      (2009)

Result

1. Identify Authors
2. Identify Editors
3. Identify Dates
4. Identify Titles

Paper with References Information Extraction
(Base)

BibTeX:
Author:  Kluegl, P., …
Title:      Meta-Level…
Date:      (2009)

BibTeX:
Author:  Kluegl, P., …
Title:      Meta-Level…
Date:      (2009)

BibTeX:
Author:  Kluegl, P., …
Title:      Meta-Level…
Date:      (2009)

BibTeX:
Author:  Kluegl, P., …
Title:      Meta-Level…
Date:      (2009)

BibTeX:
Author:  Kluegl, P., …
Title:      Meta-Level…
Date:      (2009)

Analyse local
Patterns

Adaption Phase
(AIE)

Transformations

Figure 5.2: Overview of the adaptive process with initial information extraction, analysis step and
transformation phase.

�e base component consists of a simple set of rules for the identi�cation of the Author, Title,
Editor and Date. �e given features are token classes and word lists for months, �rst names, stop
words and keywords, e.g., indicators for an editor. A�er some reasonable rules were handcra�ed,
the adaptive component AIE is created and re�ned for the rules of the base component. �e
separators located at the beginning and the end of the BibTeX �elds and the sequence of the
�elds are su�cient for a description of the applied creation process. �erefore, handcra�ed
rules aggregate the separators and sequences of the initially extracted information. �ey build
a the local model by remembering the dominant separators and neighbors of each �eld. �is
local model is compared with all initially extracted information for an identi�cation of possible
con�icts. A�er this analysis phase, transformation-based rules are applied that utilize the local
model and the information about con�icts in order to restore the consistency of the extracted
information and therefore to correct the errors of the base component.
�e approach is illustrated along the following example which is a typical text fragment

representing a single reference of a reference section:

Kluegl, P., Atzmueller, M., Puppe, F., TextMarker: A Tool for Rule-Based Informa-
tion Extraction, GSCL Conference 2009, 2nd UIMA@GSCLWorkshop, 2009

A reasonable result of the base component could consist in the following annotations:

<A>Kluegl, P., Atzmueller, M., Puppe, F., TextMarker:</A> <T>A Tool for
Rule-Based Information Extraction, GSCL Conference</T> <D>2009</D>, 2nd
UIMA@GSCLWorkshop, <D>2009</D>
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�e exemplary annotations contain four errors: “TextMarker:” is part of the Author and is
missing in the Title. �e Title and Date contain additional tokens of the conference. Inline
annotations for the Author (<A>), Title (<T>) and Date (<D>) are used as a simple description:
�e analysis of the document results in the following patterns describing the internal consis-

tency of the references: Most of the identi�ed Author and Title annotations end with a comma.
�e Title follows directly a�er the Author and the Date is located near the end of the reference.
With this information at hand, con�icts for the �rst Date, the end of the Author and Title are
identi�ed. Several handcra�ed transformation rules are applied to solve these con�icts. In
the example, the Author and Title are both reduced to the last comma and only the last Date
is retained. �e following exemplary rule shi�s the end of the Author by a maximum of four
tokens to the next separator listed in the local model (EndOfAuthor) if a con�ict was identi�ed
at the end of the Author annotation (Con�ictAtEnd):

1 Author ->{ANY{STARTSWITH(Author) -> SHIFT(Author ,1 ,3)}

2 # EndOfAuthor ANY[0,4]? ConflictAtEnd ;};

UIMA Ruta Listing 5.1: Exemplary rule for consistency-based correction of the author.

However, a�er these changes the Title does not directly follow the currently detected Author
�eld. �erefore, the Title is expanded, which results in the following correct annotation of the
example:

<A>Kluegl, P., Atzmueller, M., Puppe, F.,</A> <T>TextMarker: A Tool for Rule-
Based Information Extraction,</T> GSCL Conference 2009, 2nd UIMA@GSCL
Workshop, <D>2009</D>

�e transformation rules used to correct the errors of the base component are applied in a
generic framework. �ey are completely independent of the speci�c local patterns detected for
the current document. �is is an immense advantage of the approach, because the same rules
will work with di�erent and unknown separators or �eld sequences. �e complete rule set is
linked in the respective publication [123].

5.2.2 Experimental Results
�e experimental evaluation for this case study investigates the applicability of stacked trans-
formations based on context-speci�c consistencies for the segmentation of references. At the
time when the rule set was developed, there was no labeled dataset with multiple references
originating from the same publication available.
For a comparable evaluation of the approach, the evaluation uses the commonly used Cora

dataset (DCora : 500 references [153]). �e dataset DAl l
Cora contains 489 references missing line

100-109, which are utilized for the development of the Base component and one reference
with damaged markup. However, this dataset is not directly applicable for the development
and evaluation of the approach as the Cora dataset does not contain information about the
original document of every reference which is needed to derive the context-speci�c consistencies.
�erefore, a simple script was developed in order to reconstruct reference sections as they would
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occur in real publications using only references of the available dataset. DPaper
Cora contains 299

references of DAl l
Cora in 21 documents and represents a selection of papers with a strict style guide

applied. Due to the simplicity of the assignment script and the distribution of the reference
styles in the dataset, a considerable amount of references could not be assigned to a paper. �e
dataset DRest

Cora contains the remaining 190 references. �e dataset DAl l
Cora is the union of D

Paper
Cora

and DRest
Cora . �e dataset DDev for the development of the adaptive component was created using

11 di�erent publications and contains 213 references.
Table 5.2 contains the evaluation results of the simple rule-based component (Base) and the

combination with the adaption phase (AIE). �e token-level F1 measure was applied on a single
�eld and the instance accuracy was calculated for the complete reference. �e AIE component
was only applied on the dataset DPaper

Cora which are 61% of all references. �e Base component
reached an average F1 score of 0.953 and an instance accuracy of 85.4% on the development
set DDev . �e AIE component was tuned to achieve an average F1 score of 1.0 and an instance
accuracy of 100% on DDev .

Base AIE Peng[160] ParsCit[52]

DPaper
Cora DRest

Cora DAl l
Cora DPaper

Cora DRest
Cora DAl l

Cora DCora DCora

Author 0.984 0.983 0.984 0.999 0.983 0.993 0.994 0.990
Title 0.964 0.959 0.962 0.992 0.959 0.979 0.983 0.972
Editor 1.0 0.929 0.949 1.0 0.929 0.949 0.877 0.862
Date 0.981 0.958 0.973 0.999 0.958 0.983 0.989 0.992

Average 0.983 0.957 0.967 0.997 0.957 0.976 0.961 0.954
Instance 0.890 0.816 0.861 0.987 0.816 0.920 - -

Table 5.2: Experimental results of the normal rule set (Base) alone and with the adaption phase (AIE)
for the additional datasets. The results for the dataset DRest

Cora always refer to the Base component
alone since no adaption was applicable.

�eBase component yields results for all datasets which are comparablewith knowledge-based
approaches (cf. Section 3.2.1.3). �e results of the machine learning methods are considerably
better. Merely the score of the Editor �eld outperforms the related results and implies that rules
seem to be very suitable for this task due to the long-range dependencies to the editor keyword.
�e overall lower performance for the Date �eld is caused by the fact that the development
dataset contains no date information with a time span (e.g., dates like “20.-30. August 2011”).
Hence, the Base component missed several true positives of the test datasets.
�e adaptive approach is able to improve the accuracy of the initial rule set for both datasets,

DPaper
Cora and D

Al l
Cora . �e results of DRest

Cora refer always to the result of the Base component since
the context of the references is missing and the local adaption cannot be applied. �e AIE
approach achieves a remarkable result on the (DPaper

Cora ) dataset with an average F1 score of 0.997.
98.7% of the references are extracted correctly without a single error. �is is a reduction of the
harmonic mean error rate by 88.2% for the complete reference sections. Errors in the extraction
process can be observed for complicated references as well as for simpler ones. �e presented
approach is rather resilient to the di�culty of such references because the approach extracts
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di�cult references correctly by learning from other references of the same document. �ere
was no adaption applied for the Editor �eld. �e development dataset did not encourage any
adaption of the Editor, because the Base component already achieved a F1 score of 1.0 for this
part on the development set DDev , resulting in a limited amount and quality of the necessary
rules.
Although the adaption phase of the approach was only applied to 61% of the references

of the dataset DAl l
Cora , its evaluation results are able to compete with the results of Peng [160]

and ParsCit [52]. �e results are, however, generally di�cult to compare to results from other
researchers. First of all, the experimental evaluation used a transformed dataset, which required
access to the labeled examples. �e achieved outcomes are already very good and admit only
marginally improvements for this dataset. �e results of all three approaches were accomplished
with di�erent training or development datasets: A de�ned amount of references [160], a 10 fold
cross evaluation [52] and an external dataset for the presented approach. �e set of features
applied, e.g., the content of the additional word lists, or even the tokenizer used to count the
true positives may vary between di�erent approaches. Besides that, it is di�cult to compare
a knowledge engineering approach with machine learning methods, because the knowledge
engineer contributes an intangible amount of background knowledge to the rule set.

5.3 Usage in a Complete Application
�e third case study for exploiting context-speci�c consistencies investigates the usefulness
in a complete real-world application for processing clinical discharge letters. �e application
consists of a pipeline with six phases:

1. Conversion of the input document into a processable format. In the context of the
application, the documents are given as word processing documents and are converted to
HTML in order to retain the layout information.

2. Anonymization and deindenti�cation using rules and dictionaries extracted from the
clinical electronic health system.

3. Conversion of the HTML document into a plain text representation while retaining the
layout information. �is step facilitates the manual inspection of results in the available
tooling.

4. Identi�cation and classi�cation of headlines and their corresponding segments into
categories.

5. Information extraction in identi�ed segments using specialized models for each kind of
category (cf. [80, 79]).

6. Postprocessing of the extracted information and storage in a clinical data warehouse.

�e focus of this case study lies on the fourth phase, which exploits the context-speci�c
consistencies in order to improve the segmentation of the discharge letters. �is part of the
application was developed by Philip-Daniel Beck within the scope of his master thesis [13]. Due
to the fact that the segmentation is a preprocessing step for further phases, high accuracy in
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this step is an essential factor for the success of the complete application. �e next sections will
address the composition of the rule-based segmentation and the experimental results.

5.3.1 Rule Sets
�e complete segmentation and classi�cation concerning the fourth phase of the application is
performed using UIMA Ruta rules. �e general procedure that rules are implementing can be
summarized by the following four phases:

1. Cutting out header and footer of the letter, and additional headers and footers of the
pages.

2. Generating possible candidates for headlines.

3. Identi�cation and classi�cation of headlines using di�erent approaches.

4. Extraction of categorized segments using the headlines.

�e �rst phase is a preprocessing step, which ensures that only interesting parts of the docu-
ment are processed. �e header of the letter possibly contains text fragments that share a layout
similar to that of headlines and thus aggravates the usage of rule-based approaches based on
layout information. �e footer of the letter should be removed or at least identi�ed in order to
secure the detection of the correct end of a segment in fourth phase. Headers and footers of a
page do not contain interesting information and are removed in order to avoid problems and
challenges in further processing. �e last phase identi�es the interesting sections by joining all
text fragments from one headline to the next one or until the end of the document in case of
the last section. �e category of the section is determined by the category of the corresponding
headline. �e subheadings with similar layouts are a general problem and are dealt with by the
combination of the di�erent approaches. �e second and third phases are described in more
detail in the following sections.

5.3.1.1 Generating Candidates

�e identi�cation of possible candidates is an important part of this rule-based approach, because
the remaining steps mainly only �lter the set of candidates for identifying the headlines. �e goal
of the candidate generation is therefore obtaining a high recall so that no potential headlines
will be missed. �e rules for creating the candidates make use of the layout information given
by the HTML document, punctuation marks that indicate the end of a sentence, and additional
rules for dates and ICD10 codes. Periods and colons that are part of dates or abbreviations, for
example, will be treated di�erently by the rules. A candidate typically begins with the start of a
paragraph, but only if also a suitable end was identi�ed. �is end of a candidate is determined
by the �rst applicable rule of the following list, which is extended with additional pointers to
the corresponding examples in Figure 5.3:

• If the candidate uses the same layout for the complete span, ends with a colon, and
possesses at least a highlighting like a bold, underlined or italic font, the end of the
candidate is set to the end of the paragraph (cf. Type 1 in Figure 5.3).
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• If the candidate is consistently formatted, possesses at least one kind of highlighting, but
contains no colon indicating the end of a sentence, then the end of the candidate is again
set to the end of the paragraph. �is rule is a specialization of the �rst one for covering
candidates before the remaining rules are applied.

• If the beginning of a candidate is formatted and a change of layout occurs near a colon,
then the candidate ends with this colon (cf. Type 2 in Figure 5.3). Text fragments in
parentheses without highlighting are ignored (cf. Type 3 in Figure 5.3).

• �e candidate ends with a change of layout even if there is no colon.

• �e candidate ends with the �rst colon (cf. Type 4 in Figure 5.3).

• If there is a highlighted text fragment near the begin of the paragraph, then the candidate
ends with the next change of layout (cf. Type 5 in Figure 5.3).

• �e end of the candidate is set to the end of an overlapping HTML headline, e.g., “</h1>”.

Type 1 Diagnosen:

Type 2 Aktueller Status: Am Vorstellungstag Kopfschmerzen, ansonsten bis auf
Beschwerden im li. Knie weitgehend o.B..

Type 3 Laborbefunde vom DDD (siehe Anlage): Krea 1,5 mg/dl, BUN 35 mg/dl, HS
10,0 mg/dl, Ca 3,7 mmol/l, K, 4,2 mmol/l.

Type 4 Labor: Gesamtcholesterin 243 mg/dl, LDL-Cholesterin 149 mg/dl

Type 5 Nach der körperlichen Untersuchung hat sich herausgestellt...

Figure 5.3: Five example of different types of headlines in German discharge letters. For each
example Type 1-5, the complete paragraph is given [13].

�is process still generates a huge amount of possible candidates, which should optimally
cover all potential headlines. �e set of candidates can, however, be safely reduced by removing
candidates that ful�ll certain conditions. �e candidates are pruned with the rules in Listing 5.2.
�e rules investigate each candidate (“HC”) and remove it if it contains more than 35 words,
contains more than 16 words and does not end with a colon or are not highlighted, contains
more than 8 words, does not end with a paragraph and contains a period indicating the end of a
sentence.
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1 HC{HC.numW >8,-FEATURE("endswithPar"),CONTAINS(PeriodNotOK)

2 ->UNMARK(HC)};

3 HC.numW >16{-IS(Formatted)->UNMARK(HC)};

4 HC.numW >16{- FEATURE("endswithColon",true)->UNMARK(HC)};

5 HC.numW >35{-> UNMARK(HC)};

UIMA Ruta Listing 5.2: Rules for pruning the set of potential candidates.

5.3.1.2 Properties of Headlines

�e di�erent rule-based approaches for identifying headlines in the set of candidates use mostly
a limited set of properties or features. Table 5.3 gives an overview of the boolean attributes of a
candidate, which re�ect its structure and layout.

Property Abbreviation Description

endswithPar eP true if candidate ends with a paragraph annotation.
startswithPar sP true if candidate starts with a paragraph annotation.
short Sh true if the candidate contains only up to two words.
isBold Bo true if the candidate uses a bold font.
isUnder U true if the candidate is underlined.
isItalic I true if the candidate uses an italic font.
hasBackground Ba true if the candidate uses a speci�c background color.
endswithColon eC true if the candidate ends with a colon.
isHTMLHeadline H true if the candidate is a HTML headline (h1-h6).
containsDate D true if the candidate contains a date.
partOfCollection Co true if the candidate is part of an enumeration or table.

Table 5.3: Listing of boolean properties of the candidates [13].

�is set of properties can directly be applied for identifying the headlines by interpreting
them individually as rules. �is approach may not be su�cient for the application, but grants
insights in the composition of the dataset. Table 5.4 provides an overview of the coverage of the
properties in the development set used during the engineering of the rules (cf. Section 5.3.2).
�e results indicate that most headlines end with a colon and are formatted using a bold font.
Headlines with an italic font or with a di�erent background are rather sparse. �e most accurate
classi�cation is achieved by the combination of both properties (colon and bold) with an F1
score of 0.860. While this seems to be an already good result, it is by far not su�cient in the
scope of the application.

5.3.1.3 Score-based Approach

Score-based approaches assign a numerical score for each occurring property to a candidate. If
the aggregated sum of the scores for one candidate exceeds a given threshold, then the candidate
is identi�ed as a headline. Given the properties speci�ed in the last section, a vast amount of
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Property Recall Precision F1 TP FP FN

hasBackground 0.032 0.788 0.062 115 31 3432
isBold 0.932 0.707 0.804 3307 1369 240
containsDate 0.178 0.472 0.258 630 705 2917
endswithColon 0.981 0.576 0.726 3479 2559 68
endswithPar 0.759 0.629 0.688 2692 1590 855
isItalic 0.005 0.016 0.080 19 1208 3528
isUnderlined 0.507 0.504 0.506 1799 1771 1748
isBold ∧ endswithColon 0.918 0.808 0.860 3257 772 290
isBold ∧ endswithPar 0.724 0.766 0.744 2567 783 980
short 0.707 0.525 0.603 2509 2270 1038

Table 5.4: Classification of candidates as headlines using individual properties or combinations of
two properties. The results are given for the development set [13].

possible con�gurations exist. Table 5.5 contains ten di�erent variants that apply di�erent scores
for each property and also de�ne a suitable threshold. A candidate like Type 1 in Figure 5.3, for
example, will achieve a score of 2+2+4+2+0+0+0+2+0+0+0=12 for variant Scoring10 and will
be classi�ed as a headline.

Variant eP sP Sh Bo U I Ba eC H D Co �reshold

Scoring1 1 0 1 1 1 0 0 1 1 0 0 2
Scoring2 1 0 1 1 1 0 0 1 1 0 0 3
Scoring3 1 0 1 1 1 0 0 1 1 0 0 4
Scoring4 2 2 2 3 1 1 1 4 1 -1 -1 8
Scoring5 2 2 2 2 1 1 1 5 1 -1 -1 10
Scoring6 2 2 2 2 1 1 -1 3 1 -1 -1 8
Scoring7 2 2 2 2 1 1 1 2 1 -1 -1 8
Scoring8 3 2 3 4 1 1 1 2 1 -1 -1 10
Scoring9 2 2 2 4 1 1 1 2 1 -1 -1 8
Scoring10 2 2 4 2 1 1 1 2 1 -1 -1 8

Table 5.5: Overview of variants with varying scores for the different properties [13]. The results of
each variant are given in Table 5.7

5.3.1.4 Keyword-based Approach

�e keyword-based approach applies an extensive list of regular expressions covering indicator
words and their variants. �is approach is not only applied for identifying headlines in the
set of candidates, but also for assigning a prede�ned category to the identi�ed headline. �e
rules de�ne furthermore strong categories, a concept that is utilized by other approaches, and
aggregates a few kinds of categories. A more detailed description of this approach and the
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categories can be found in [13]. Overall, this approach is similar to the segmentation component
provided in cTAKES (cf. Section 3.2.3.3).

5.3.1.5 Consistency-based Approach

�is rule-based approach exploits the context-speci�c consistencies in the document by com-
paring the layout of the candidates to the layout of con�dent headlines. �e headlines should
be easily identi�ed in the set of candidates and should occur preferably in each document. To
these headlines belong diagnoses, history (anamnesis) and lab data. If a candidate possesses
the identical values in the properties startswithPar, isBold, isUnderlined, isItalic, hasBackground
and endswithColon as a con�dent headline, then it is classi�ed as a headline. �is approach is
strongly inspired by the prototype described in Section 5.1.1.

5.3.1.6 Correction-based Approach

�e last approach applies transformation-based rules for covering a small set of misclassi�ed
candidates. Some candidates can only be correctly identi�ed by the previous approaches with
considerable e�orts. Transformation-based rules can here be easily applied for correction.
Examples for these correction rules and also rules implemented for the other approaches can be
found in the master thesis [13].

5.3.2 Experimental Results
�e application for segmenting and categorizing sections in clinical discharge letters was created
using a labeled dataset. �e dataset contains overall 700 gold standard documents manually
labeled by Philip-Daniel Beck of which 500 documents have been used for developing the
rule sets and the remaining 200 documents for the evaluation of the di�erent approaches. �e
experimental study was designed to compare the performance of the di�erent approaches
described in the previous section individually and also combinations of them. �e results in
this section provide always the performance for the test set and also for the development set.
�is grants insights on how far the rule sets have been optimized on the development set and if
there are major discrepancies between the results on the development set and the test set.
Before the actual approaches for the identi�cation of the headlines are evaluated, a closer

look is taken on the generation of possible candidates. Table 5.6 contains the results for the
development set and the test set. �e approach was able to ful�ll the requirements by achieving
a high recall. Two headlines have been missed in the test set, which will also not be identi�ed as
headlines by the following approaches. One false negative was caused by an error in the rule set,
and the second missed headline did not start with a paragraph.

Candidates Recall Precision F1 TP FP FN

development set 1.0 0.482 0.651 3547 3812 0
test set 0.998 0.594 0.745 1239 845 2

Table 5.6: Results of candidate generation [13].
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Table 5.7 depicts the experimental results for the di�erent variants of the scoring approach.
�e rules and the rating were developed to achieve a high recall, which explains the discrepancy
between the development set and the test set. �e results are overall mediocre. �e best variant
on the development set (Scoring7) was able to achieve an F1 score of 0.817 while producing one
of the worst predictions on the test set. �e best F1 score of 0.880 on the test set was achieved
by variant Scoring5, which de�ned a high score for candidates that end with a colon. �e
scoring-based approach performs, therefore, too poorly in the scope of the application.

Scoring Recall Precision F1 TP FP FN

scoring1
development set 0.996 0.541 0.701 3532 2993 15
test set 0.986 0.680 0.805 1224 575 17

scoring2
development set 0.932 0.623 0.747 3306 1998 241
test set 0.928 0.783 0.849 1152 320 89

scoring3
development set 0.997 0.539 0.700 3536 3023 11
test set 0.986 0.675 0.802 1224 588 17

scoring4
development set 1.0 0.528 0.691 3546 3174 1
test set 0.948 0.768 0.849 1177 355 64

scoring5
development set 0.987 0.560 0.714 3500 2752 47
test set 0.909 0.853 0.880 1228 194 113

scoring6
development set 0.963 0.570 0.716 3414 2572 133
test set 0.546 0.880 0.674 677 92 564

scoring7
development set 0.906 0.743 0.817 3213 1109 334
test set 0.745 0.871 0.803 925 137 316

scoring8
development set 0.983 0.574 0.725 3495 2599 52
test set 0.893 0.804 0.846 1108 270 133

scoring9
development set 0.998 0.561 0.718 3538 2769 9
test set 0.922 0.788 0.850 1144 308 97

scoring10
development set 0.990 0.560 0.716 3513 2756 34
test set 0.881 0.770 0.822 1093 327 148

Table 5.7: Results of the different variants based on scoring rules [13].

Table 5.8 provides an overview of the results of the keyword-based approach. �e rules are
able to achieve a remarkable recall thanks to the general character of the approach. �e applied
rules identify all variants of word combinations that are usually used in headlines, which explains
also the lower precision. �e recall for the test set decreases due to the fact that the regular
expressions have been designed based on the development set. Overall, the approach is able
to achieve an F1 score of 0.912 on the test set, a considerable higher score than the score-based
approaches.
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Keyword Recall Precision F1 TP FP FN

development set 0.997 0.845 0.915 3536 647 11
test set 0.988 0.847 0.912 1226 221 15

Table 5.8: Results of keyword-based headline identification [13].

Table 5.9 contains the results of the consistency-based approach. �e rules were able to
achieve a remarkable precision both on the development set and test set. �is result is a clear
indicator that the authors of the discharge letters apply the layout of headlines not for other text
fragments. However, the recall provides opportunities for improvement. By achieving an F1
score of 0.960 on the development set and an F1 score of 0.949 on the test set, this approach
outperforms the other approaches considerably.

Consistency Recall Precision F1 TP FP FN

development set 0.923 0.999 0.960 3275 4 272
test set 0.906 0.996 0.949 1124 5 117

Table 5.9: Results of consistency-based headline identification [13].

A�er evaluating the approaches individually, the next results provide insights on the perfor-
mance of the combinations of the approaches.
�e results given in Table 5.10 display the performance of the combination of the score-based

and keyword-based rules. �e usage of scored candidates reduces the recall only marginally,
but improves the precision considerably. �e rules are able to achieve an F1 score of 0.988.

Score+Keywords Recall Precision F1 TP FP FN

development set 0.994 0.982 0.988 3524 63 23
test set 0.985 0.992 0.988 1222 10 19

Table 5.10: Results of score-based headline identification combined with keywords [13].

By additionally using the rules based on consistencies, the F1 score is increased by 0.003,
which constitutes an error reduction of about 25% (cf. Table 5.11).

Score+Keywords+Consistency Recall Precision F1 TP FP FN

development set 0.994 0.982 0.988 3526 66 21
test set 0.991 0.990 0.991 1230 12 11

Table 5.11: Results of the combination of the score-based, keyword-based and consistency-based
headline identification [13].
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�e further usage of correction-based rules leads to an F1 score 0.992 on the test set (cf.
Table 5.11). While this is only a small improvement, the minor labor for writing these rules can
be ignored.

Score+Keywords+Consistency+Correction Recall Precision F1 TP FP FN

development set 0.996 0.992 0.994 3531 29 16
test set 0.991 0.994 0.992 1230 8 11

Table 5.12: Results of the combination of the score-based, keyword-based and consistency-based
headline identification with additional correction rules [13].

�e combination of the approaches provides a high-quality method for the segmentation
and categorization of clinical discharge letters. Overall, 93.5 percent of the documents haven
been correctly processed without one single error. A detailed error analysis can be found in the
master thesis [13].

5.4 Discussion
One advantage of rule-based information extraction approaches is the fact that the knowledge
engineer is able to keep improving the rule set in order to increase its accuracy. �is process
is, however, time consuming and more and more labor and e�ort needs to be invested for
further improving the performance of the rule set. A central goal for rule-based system is
therefore the ease of the engineering work. �is can be achieved by good tooling support,
a clear and powerful rule language, and a strong documentation. �e �rst case study takes
another path by introducing a novel methodology for engineering that allows the user to create
e�ective rule sets in a extremely e�cient manner. �e developed rule sets can be summarized
as precision-driven prototypes with additional recall expansion by exploiting context-speci�c
consistencies. �is idea enables to achieve results almost ready for production if the assumption
of the consistent composition of entities holds. �e experimental evaluation in this case study
showed the advantages of the approach: �e knowledge engineer is able to create rapid prototypes
with minimal labor ranging under two hours of work. �ese kinds of prototypes are perfect for
feasibility analysis in domains with context-speci�c consistencies. Furthermore, these prototypes
achieve results good enough for speeding up the development of the actual applications as it
was done in the third case study for the segmentation of discharge letters.
�e second case study of the segmentation of references applied amore sophisticated approach.

While the prototypes in the �rst case study can be interpreted as stacked phases, the rules in
this case study clearly separate the phases by introducing a distinct model of consistency. �e
properties of the identi�ed entities are analyzed and aggregated to a non-trivial description
of the consistencies. �e framework of this process is more domain independent than the
rather simple approach of the �rst case study. �e idea of just correcting the inconsistent
entities is overall also more �exible and can be combined with arbitrary components in a more
e�cient manner. �e combination is of course also possible with the approach for increasing
the recall, but here only new entities can be identi�ed. It is conceptually more e�cient to apply
transformations, which are able to remove the errors produced by the �rst component. �e
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experimental evaluation of this case study illustrated the advantages of the approach by achieving
remarkable results. �ese results represent, however, only a feasibility analysis due to the limited
expressivity of the applied dataset. In real-world scenarios, slatternliness and other reasons
introduce inconsistent compositions of entities, which did not occur in the partition with the
stand out results. Nevertheless, it is a remarkable result that a knowledge based approach can
even compete with probabilistic models in this domain (cf. Section 3.2.1.3).
�e last case study shows the usefulness of exploiting context-speci�c consistencies in a

complete real-world application. It tries to combine various rule-based approaches and does
not only rely on one approach like the other case studies. �e experimental study shows
that the consistencies are also able to improve a thorough engineered application. When the
consistency-based rules are applied separately, they are able to achieve a remarkable precision. In
combination with other rule-based approaches, it is still able to improve the accuracy and even
increases the recall. �e absolute improvement seems not substantial in the �rst place, but it is
very important in critical applications like processing medical documents, and especially if the
results are used further in a pipeline. In the experience of the author, it is hard to gain any more
percent points in this region of F1 scores. �e consistency-based approach accomplishes this
improvement while not requiring the equivalent e�ort of a common rule-based approach. �e
relative error reduction concerning the F1 score of 25% can be considered a realistic improvement
for exploiting context-speci�c consistencies in real-world scenarios.
Overall, this section presented three approaches for exploiting consistencies in three di�erent

domains. �e �rst and last case study utilizes a simple description of the consistency to �nd
additional entities and to �lter inconsistent entities, respectively. �e second case study applies
transformations for correcting the given entities. �e rules change entities in order that they
become consistent with the dominant composition. All three approaches have proven their
usefulness and provide an e�cient alternative to common engineering patterns.

134



Chapter 6

Machine Learning Approaches

Machine learning approaches to information extraction are o�en assumed to be superior to
rule-based approaches, especially for well-de�ned and stable speci�cations and when enough
labeled data is available. �e last Chapter 5 described a few case studies of rule-based applications
that exploit context-speci�c consistencies. �ese rule sets are inherently domain-speci�c and
only the general strategy but not the actual functionality can be utilized for solving information
extraction tasks in other domains. �is section describes machine learning approaches that
provide a more generic framework for exploiting the context-speci�c consistencies. �ey are
applicable for all domains where the assumption about the similar composition of entities holds.
�e chapter starts with an introduction how a model for the consistencies in a document can be
learnt. �is model is utilized by di�erent variants of Conditional Random Fields in order to
achieve superior results in the targeted domains. �e information extraction task concerning
the segmentation of discharge letters was already covered by rule-based approaches resulting in
a extremely high accuracy so that hardly any improvement can be achieved using probabilistic
models. �us, the experimental studies for evaluating the machine learning approaches consider
only segmentation of references and information extraction in curricula vitae48.

6.1 Learning Context-specific Consistencies
�e rule-based approaches for exploiting context-speci�c consistencies in Chapter 5 follow a
straightforward strategy. �ey explicitly specify the consistent properties of the entities with
rule-based methods by simply selecting the dominant composition or even only single char-
acteristics. �e search space for �nding the consistencies is therefore directly engineered and
does not support much adaption beyond the boundaries of the considered properties during
rule execution. �e context-speci�c consistencies can, however, also be automatically induced
using machine learning methods. First, the process of applying binary classi�ers for learning

48Parts of the contents of this chapter have been published in three research papers: Peter Kluegl, Martin Toepfer,
Florian Lemmerich, Andreas Hotho, and Frank Puppe. Stacked Conditional Random Fields Exploiting Structural
Consistencies. In Pedro Latorre Carmona, J. Salvador Sanchez, and Ana Fred, editors, Proceedings of 1st International
Conference on Pattern Recognition Applications and Methods (ICPRAM), pages 240–248, Vilamoura, Algarve,
Portugal, February 2012. SciTePress [128]. Peter Kluegl, Martin Toepfer, Florian Lemmerich, Andreas Hotho,
and Frank Puppe. Exploiting Structural Consistencies with Stacked Conditional Random Fields. Mathematical
Methodologies in Pattern Recognition and Machine Learning. Springer New York, 2013. 111-125 [129]. Peter Kluegl,
Martin Toepfer, Florian Lemmerich, Andreas Hotho, and Frank Puppe. Collective information extraction with
context-speci�c consistencies. In Peter A. Flach, Tijl De Bie, and Nello Cristianini, editors, ECML/PKDD (1), volume
7523 of Lecture Notes in Computer Science, pages 728–743. Springer, 2012 [127].
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description of consistent compositions of the entities is introduced. �is process is then illus-
trated by an example for segmentation of references. �e usefulness of the presented approach
is evaluated in two scenarios. �e �rst setting introduces random errors for highlighting the
ability of the approach to identify the correct boundaries using erroneous data. �e second
setting investigates the identi�cation of boundaries based on realistic predictions.

6.1.1 Modeling Consistencies with Classifiers
For exploiting context-speci�c consistencies it is very helpful to acquire a description or model
for the consistencies in each context or document. A model describing the consistent entities is
not only able to point out inconsistent compositions, but it allows one also to identify additional
entities that share a consistent composition. �e identi�cation of consistent and inconsistent
entities can be divided into six steps:

1. Determine type of description for the consistencies.

2. Select classi�er for learning the consistencies.

3. Provide a prediction of the entities.

4. Create a dataset for the classi�er.

5. Learn classi�ers on the dataset.

6. Apply classi�ers on the dataset.

�e �rst two steps are general decisions about the actual approach that should be used for
modeling the consistencies. �ey cover the representation of possible consistencies and the
algorithm applied for learning the model. �ese decisions have to be made during the creation
of the information extraction application. �ey depend on the domain and the appearance
of the consistencies. �e remaining four steps are performed when processing a document.
�ey include preprocessing steps, the induction of a description for the consistencies and the
usage of the description for identifying consistent and inconsistent entities. �e next step would
exploit this information in an information extraction model in order to improve the accuracy
in domains where the assumptions about the consistent composition holds. Approaches for this
step are described in Section 6.2 and Section 6.3. Both approaches rely on sequence labeling
methods and in particular on Conditional Random Fields. �ese graphical models unroll a
graph of random variables for the tokens. �e assignment of the random variable speci�es
identi�ed entities. �e six steps for modeling the context speci�c consistencies are described
in the following sections. Since the gained information should be exploited by Conditional
Random Fields, the description of the steps point out the connection to the respective concepts
of graphical models, e.g., token sequence and label sequence.

6.1.1.1 Determine Type of Description for Consistencies

�e di�erent possibilities to describe the composition of entities have already been investigated
in Section 3.1. �e developer needs to select one type or a set of types according to the domain,
in which information extraction is performed. �e di�erent types are repeated for convenience:
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• Transition between entities

• Boundaries of entities

• Content of entities

• Order of entities

�e transition between entities is the most generic approach for describing the composition
of entities. It can also be utilized to model the other types. �e concept is similar to the
representation of entities in sequence labeling methods, which rate di�erent features for a
speci�c combination of two labels. When the entities are projected on the token sequence
of the document, the transition from one token to another can be used to describe speci�c
aspects of the involved entities. �is description can be extended with additional properties and
features that occur near the two tokens. Tokens of di�erent entities lead to a description of the
boundaries of entities and tokens of the same entity represent a statement about the content
of the entities. �is type of description is well suited for domains where the properties of the
composition depend on the neighboring entities. In the domain of segmentation of references,
the composition of the entities sometimes depends on combination of the entities. While the
pages, for example, begin with a keyword like “pp.” in references for publications in proceedings,
the entity directly starts with the �rst page number for articles published in journals. Even if
the exact kind of publication is probably unknown when processing a reference section, the
combination of entities or labels for tokens can be utilized to achieve the same di�erentiation.
�e pages are located a�er a booktitle entity in references concerning proceedings, but they are
following a volume entity in the references to journals. When the transition between entities
is applied for describing the composition, it is still possible to provide consistent descriptions
since the pages entities are not modelled directly. Instead the transition between booktitle and
pages is modelled with the property of a special keyword and the transition between volume
and pages is described with a di�erent property, e.g., the occurrence of a number.
�e boundaries of the entities can be used as a more robust description in many domains.

�eymodel the properties of the �rst and last token of the entities. �us, boundaries are a special
case of transition between two di�erent kinds of entities. Descriptions using the transition
between entities provide some advantages, but there are also disadvantages especially in domains
like curricula vitae. Here, the entities are sometimes located next to each other, but sometimes
there are also additional tokens between them. Transition-based descriptions would need
to model transitions between an entity and the following entity, but also from an entity to
tokens that are not part of an entity. �is aggravates the learning process described later due to
the reduced amount of examples. It is hardly possible, for example, to induce a valuable and
useful description of consistent compositions from one example. Descriptions using only the
boundaries of entities do not su�er from this disadvantage. Here, the �rst and last tokens are
described independently of the previous or following entity.
Descriptions for the content of the entities are similar to descriptions based on boundaries.

�is type is again a special case of the transition-based description since it models the transitions
between tokens of the same kind of entity. Descriptions for the content are useful if the consis-
tencies occur for all tokens of an entity. Examples for this consistency are bold or underlined
headlines. �ese properties occur typically also at the beginning or the end of an entity. However,
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content-based descriptions are potentially more robust especially if all tokens provide consistent
features but not the tokens concerning the boundaries. Furthermore, providing information
about each token of an entity instead of only the �rst and last token is able to provide more
evidence for graphical models that rely, for example, on a restricted Markov order.
�e fourth type of description for the consistent aspects of the entities’ composition is the

order of the entities. In contrast to the other types, this description does not use properties or
features, but only the sequence of entities. In some domains, the entities in a document may
not share any similarities that can be speci�ed with the available set of features. However, the
order the entities occur may still be consistent within one document. �is information can be
exploited similar to the other kind of description in order to gain knowledge about the correct
appearance of entities.

6.1.1.2 Select Classifier for Learning Consistencies

Context-speci�c consistencies can be induced by a large amount of di�erent approaches. A
simple approach includes similarity measures that rate the consistency of di�erent aspects of the
entities. An example for using mutual information can be found in Toepfer et al [194]. �is work
applies binary classi�ers trained in a supervised fashion in order to learn models for identifying
consistent and inconsistent parts of the entities. �is section discusses properties of a classi�er
suitable for this task. How the classi�er is applied for learning the context speci�c consistencies
is described in the following section.
Any kind of binary classi�er trained in a supervised scenario can be applied for gaining

information about the consistencies in a document. �ere are however speci�c properties a
classi�er should ful�ll in order to achieve best possible results in this task. �ese properties
include the following features:

Generalization �e classi�er should not tend to over�t since it is trained and applied on
possibly erroneous data. �ese errors should not be reproduced. �e learning algorithm
needs to support a certain level of generalization, which is able overcome the dirty input
data. �e generalization ability of the classi�er is the main functionality that enables to
detect consistent aspects of the entities. In general, generalization can be improved and
over�tting can be restrained by limiting the amount of attributes.

Hypotheses space �e hypotheses space of the classi�er need to be compatible to the consis-
tencies in the domain. �e classi�er should not use di�erent hypotheses in order to solve
the classi�cation problem if only one consistency exists. Classi�ers combining multiple
hypotheses tend to model consistent examples as well as the inconsistent examples in the
given training data. �is results in a deteriorated generalization concerning the given
task.

Label bias �e classi�er should handle label bias correctly. �e given training data consist of a
few true positive examples and a large amount of true negative examples. If the learning
algorithm only tries to optimize the accuracy, then it is able to achieve already good results
when it classi�es all examples as true negative. �is classi�cation prevents any attempts
to identify the consistencies.
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Performance �e classi�er should be e�cient with respect to its runtime performance. A
classi�cation model for each kind of description needs to be learnt and applied during
processing the current document. While the application of the classi�er on the data is
typically fast, the learning of the model should be fast enough for the targeted applications.
�e runtime performance can be improved for many classi�er implementation, e.g., by
reducing the amount of attributes. �e set of examples, however, should not be limited in
order to speed up the learning process.

Many classi�ers ful�ll these requirements more or less. Support vector machines (SVM) [49]
are one of the most popular binary classi�ers and can be applied for this task. �ey produce,
however, models that are hardly interpretable by humans, which aggravates the development
and tuning of the classi�cation task. SVMmay be more powerful than other classi�ers and are
able to achieve better result in many classi�cation tasks. �is task di�ers, however, from typical
classi�cation scenarios since the learnt model is applied on the training data in order to identify
consistent and inconsistent examples. Classi�cation models which are interpretable by humans
o�en rely on rules. Ripper [47] is probably the currently most popular learning algorithm for
inducing a set of rules. Ripper learns rules one at a time by growing and pruning each rule and
then adds them to a result set until a stop criterion is met. A�er adding a rule to the result,
examples covered by this rule are then removed from the training data. Ripper is known to be
on par regarding classi�cation performance with other learning algorithms for rule sets, e.g.,
C4.5 [165], but is computationally more e�cient. However, an application of Ripper for the
given task su�ers from one of the main characteristics of the learning algorithm. By trying
to cover all examples, the algorithm tends to learn rules for inconsistent examples. �erefore,
Ripper is not suitable for domains in which the entities share only one kind of composition.
It is rather useful in scenarios where di�erent manifestations of consistencies may occur for
one kind of entity. An example for this is the domain of reference segmentation combined with
a boundary description of the pages entity (cf. Section 6.1.1.1). �is work utilizes subgroup
discovery [117] for learning a model of the consistent composition of the entities. �is approach
ful�lls all requirements since the generalization functionality can directly be controlled by
the given amounts of attributes. �e hypothesis space con�rms with the assumptions in the
targeted domains, e.g., only one subgroup is learnt to describe all entities of one kind, and no
label bias occurs. Subgroup discovery is rather a supervised pattern discovery algorithm than a
rule learning approach for classi�cation. Finally, the runtime performance can be improved
either by reducing the amount of attributes or by using optimistic estimates. �e experimental
evaluation in [128] investigated all three classi�ers for learning the consistencies with the result
that subgroup discovery outperformed the other classi�ers. �us, this work only investigates
subgroup discovery for learning context-speci�c consistencies. �e remainder of this section
introduces subgroup discovery and optimizations for the given task.
Subgroup Discovery [117] (also called Supervised Descriptive Rule Discovery or Pattern

Mining) performs an exhaustive search for the best k conjunctive patterns in the dataset with
respect to a pre-speci�ed target concept and a quality function. In the context of this work,
only the best pattern is of interest. �e most popular quality functions for a pattern p can be
formulated in the following form:

qa(p) = na ⋅ (t − t0), a ∈ [0; 1] (6.1)
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n is the number of instances covered by this pattern, t is the share of the target concept for the
respective pattern, t0 is the target share in the total population and a is a parameter that can be
used to trade a larger coverage of the rule with a higher deviation in the target share.
Additionally, di�erent constraints on the resulting patterns can be applied, e.g., on the maxi-

mum number of describing attribute value pairs or the minimum support for a rule. While the
resulting rules are not intended to be used directly as a classi�er, a related approach using pat-
terns based on improvement of the target share and additional constraints has been successfully
applied as an intermediate feature construction step for classi�cation tasks [11].
�ere are many possibilities to adapt subgroup discovery to the intended task of this work.

�e restriction of the maximum number of attributes of one subgroup or rule directly controls
generalization. �e rules are normally not able to over�t on the given examples with limited
amount of attributes or features. �e algorithm provides straightforwardly a score for each
subgroup. �is enables the usage of a threshold for pruning poor-quality descriptions, which
potentially deteriorate the actual information extraction models. �e most important adaption
to the given task is the selection of the quality function, which allows further optimizations
beyond the functionality of common classi�ers. �e Equations 6.2, 6.3 and 6.4 contain the
utilized quality functions. Equation 6.2 represents the common F1 measure. �e subgroup
discovery task tries to identify descriptions that reproduce the given examples as good as possible.
�e values tp, f p and f n refer to the true positives, false positives and false negatives when the
examples covered by the subgroup are compared to the actual data.

F1 =
2 ⋅ tp

2 ⋅ tp + f n + f p
(6.2)

F ex p
1 = F1 ⋅ (1 − (

∣tp + f p − Ey ∣
max(tp + f p, Ey)

)) (6.3)

F ex p2
1 = F1 ⋅

⎛
⎝
1 − (

∣tp + f p − Ey ∣
max(tp + f p, Ey)

)
2⎞
⎠

(6.4)

�e Equations 6.3 and 6.4 contain two optimized quality functions for learning the consis-
tencies if additional information about the entities are given. �e le� part of these measures
describes the traditional F1 measure that is how well the pattern reproduces the given examples.
�e right factor is a penalty term for the divergence of the amount of covered examples to a given
variable Ey , which is the expected amount of occurrences in a context. �ese quality function
can greatly improve the given task since subgroups are preferred that identify the expected
amount of boundaries or transitions. In the domain of reference segmentation, for example,
one expects that each reference contains exactly one author. Although this is not true in general,
it provides for a valuable weighting of the hypothesis space and further reduces over�tting.

6.1.1.3 Provide Prediction of Entities

Learning context-speci�c consistencies relies on a prediction of the entities or, in terms of
graphical models, on a prediction of the label sequence. �e di�erent types of descriptions
for consistencies have continuously mentioned the entities for referring to their boundaries
or other aspects. �e entities are, however, the output of information extraction and are of

140



6.1 Learning Context-speci�c Consistencies

course not available when processing the document. �erefore, some sort of prediction of the
entities has to be provided for learning the context-speci�c consistencies. �e prediction is
inherently defective since otherwise no information extraction needs to be applied a�er all. �e
provided entities do not need to be perfect. �ey are only used to analyze the consistencies of
their composition so that another model is able to extract the entities more accurately.
�ere are plenty of options for providing an initial prediction of the interesting entities.

Basically, all approaches can be applied for this task. �e most useful prediction depends on the
domain and the available resources. In the domain of curricula vitae, for example, dictionary
matching is already able to provide some initial entities. �e approaches and techniques in
this chapter should, however, be independent of the domain. �us, the prediction is given by
a simple baseline Conditional Random Field that is trained on a representative collection of
examples. �e model is utilized during processing of the document for extracting the necessary
entities. Since the later approaches in Section 6.2 and Section 6.3 use also Conditional Random
Fields for the actual information extraction, the overall approach is similar to stacked graphical
models (cf. [131, 134, 128]).

6.1.1.4 Create Dataset for Classifier

A�er a prediction of entities is given, the dataset for training the classi�er can be created. �e
composition and layout of the dataset depends on the format required by the classi�er. �is work
utilizes subgroup discovery for learning the context-speci�c consistencies. �us, the creation of
the dataset is described using the terminology and concepts of this algorithm.
A new dataset needs to be provided for each document or context that is processed. Each

token of the document will become a training example of the dataset. �e attributes of each
example consist of two separate sets. A set of binary attributes cover the available features, e.g.,
the features also utilized by the Conditional Random Fields. For performance reasons and to
reduce the search space of the subgroup discovery task, the set of features is pruned and only
relevant properties are retained. �e set of attributes can also be extended by including features
of nearby tokens in a �xed window, which avoid the limitations of classi�cation techniques for
sequences. �e attribute “WORD@+1=pp” indicates, for example, that the next token equals the
string “pp”. �e values of the attributes are set to true, if the feature occurs at the current token
and false otherwise.
�e second set of binary attributes represents the target attributes. �ey are calculated using

the predicted set of entities. One attribute is added for each kind of entity and each kind of
description used the model the consistencies. �e set of entities does not have to cover all
entities that should be extracted, but only the entities that are assumed to ful�ll the expectation
of consistent composition. When working with the boundaries of entities, this leads to two
attributes for each type of entity, that are an attribute for the beginning of that kind of entity and
one attribute for the end. �e values of these attributes are set to true, if the token corresponds
to the type of description, and to false otherwise. In the example of boundaries, the attribute for
the beginning of an entity is set to true for each �rst token of this type of entity. When working
with transition-based descriptions, the value is set to true in case a transition of the respective
labels or entities occurred.
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6.1.1.5 Learn Classifiers on Dataset

�e next step a�er creating the dataset for the current document is the training of the classi�er
on this dataset. �e subgroup discovery task searches for best conjunctive patterns of attribute
value pairs for a given target attribute and returns a list of subgroups rated by the quality function.
�is procedure is performed for all target attributes in the dataset, which represent the cross
product of the utilized types of descriptions and set of investigated entities. For each type of
description and kind of boundary, only the subgroup with the highest score is utilized. �is
subgroup can be interpreted as a binary classi�cation rule and described the consistent properties
concerning the description and entity. Additionally, a threshold can be speci�ed in order to
accept only subgroups of a certain quality. It is sometimes better to provide no description
of the consistencies than to introduce additional errors by poor analysis of the consistencies.
�e usage of a threshold depends on the con�guration of the subgroup discovery tasks and on
the domain. Improved quality functions like Fex p1 potentially induce subgroups with a lower
quality score, but their description are o�en more useful when the input data is of poor quality.
�e result of the learning step is a set of subgroup that can be utilized for classifying consistent
positions in the document.

6.1.1.6 Apply Classifiers on Dataset

�e set of rule-based classi�ers are applied on the given dataset in order to provide information
about the consistent and inconsistent entities in the current document. Each rule classi�es the
set of examples, which represent the sequence of token in the document. Positive classi�ed
tokens indicate that this position ful�lls the description for a consistent composition of that
kind of entity. �e actual information is given by the evaluation results of the rules compared to
the labels in the dataset:

True Positive A true positive indicates that the rule-based description con�rms with the pre-
dicted entity of the generated dataset. �e aspect of the entity’s composition is consistent
compared to the other entities. �is information does not introduce new knowledge about
the position, but it can be utilized to increase the con�dence that the entity is correctly
identi�ed.

False Positive A false positives indicates that the rule classi�ed a token as a consistent position
for the respective type of description, but no entity with this property is given in the
predicted dataset. �is error provides hints that an entity is missing or that the span of an
entity is wrong. �e con�dence that the aspect of the entity’s composition is ful�lled at
this position can be increased for further information extraction models.

False Negative A false negative indicates that the given entity at this position does not con�rm
with the consistencies in the document. �is error points out that either an additional
but wrong entity was predicted or that the span of the entity is erroneous. �e overall
information provided by this error consists in the fact that there is no evidence that an
entity should be present at this position concerning the aspect of its composition.

�e union of the evaluation results of all rule-based classi�ers and their positions provide a
description of the consistent composition of the entities in the currently processed document.
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�e idea is that this knowledge can be exploited by further information extraction model in
order to provide an improved identi�cation of entities. �e complete process of learning context-
speci�c consistencies is illustrated with a running example for the segmentation of references in
the next section.

6.1.2 Example
�e process of learning context-speci�c consistencies is illustrated with an example for the
segmentation of references. �e subgroup discovery techniques are applied for learning a
rule-based model for the consistent ends of the author entities. Other descriptions like the
consistent begin of the author or consistent transitions between two kinds of entities can be
learnt straightforwardly. �e following examples sometimes refer to a token as a combination
of several tokens for an increased visibility in the �gures. �e actual dataset would apply a
common speci�cation of tokens.
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Figure 6.1: Excerpt of a reference section with highlighting for predicted author entities.

Figure 6.1 depicts the initial situation for the process. An arbitrarymodel provided predictions
for the author entities. All of the entities but the second one have been classi�ed correctly. �e
author in the second reference includes parts of the title. �e text fragment “SIIPU*S” is falsely
added to the author instead of the title.
�is initial prediction is utilized to generate a training data for the rule learning algorithm,

which is depicted in Figure 6.2. A training example is created for each token whereas only the last
token of the author is determined as a true positive and the remaining tokens are speci�ed as true
negative. �e examples are enriched with the features and properties of the surrounding tokens,
which serve as boolean attributes for the rule learning algorithm. �e value of the attribute is
set to true if the feature or property occurs, and is set to false otherwise. �e �rst true positive
instance provides, for example, information about the period of the current token and the italic
font of the following token. �en, subgroups are searched in this training dataset in a supervised
fashion. �e algorithm tries to identify the best combination of attributes concerning the quality
function for classifying the true positive end of authors. A realistic result is the subgroup that
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Figure 6.2: Generated training dataset for the rule learning algorithm. The last token of the author is
determined as true positive and all remaining tokens are specified as true negative.

combines two attributes: the end of the author is located at a period that is followed by an italic
token. �is subgroup does not cover all true positive examples as it was not possible to �nd a
suitable description that included the second end of author due to the restriction of conjunctions
of binary attributes. �erefore, the score of the quality function for this subgroup is reduced.
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Figure 6.3: Result of classifying the end of the author using a rule in the form of ‘‘period followed by
an italic token’’.

�e subgroup can be interpreted a rule: if a period is followed by an italic token, then it is
the last token of an author. �e rule learnt on the generated training examples is then directly
applied on the same examples. Figure 6.3 contains highlighting for the tokens, which have
been classi�ed by the rule as the end of the author. �e rule was able to reproduce four ends
of authors of the training dataset. �e second reference contains a false positive (“al.”) and
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one false negative (“*S:”) concerning the training examples. �e false positive is, however, a
correct end of author, which was erroneously labeled by the initial model. �e rule learning
algorithm was able to remove the errors and found the consistent ends of the author entity due
to generalization. �e evaluation of the rule on the training dataset can �nally be utilized to
create a more accurate labeling of the entities. �e true positives indicate consistent boundaries,
false negative point out incorrect boundaries, and false positives highlight missing boundaries.
Including this information can greatly improve the performance of an information extraction
model.

6.1.3 Experimental Results
�e knowledge about the consistent composition of entities can be exploited in order to improve
the accuracy of information extraction models. Section 6.2 and Section 6.3 will introduce
and evaluate di�erent approaches based on probabilistic graphical models that integrate this
knowledge. �is section directly evaluates the quality of learnt context-speci�c consistencies
independently of the later usage. �e experimental studies in this section provide insights on
how well the classi�ers can predict the correct composition of entities given erroneous data.
�is is achieved by comparing the accuracy of given entities to the accuracy of the classi�er in
the domains of references and curricula vitae.
�e context-speci�c consistencies can be learnt with a vast amount of di�erent con�gurations

and methods. �e evaluation of this section is restricted to a representative setting in the two
domains concerning description of entities, considered kinds of entities and type of classi�er.

Description of entities �e entities are described by their boundaries, which provide a spec-
i�cation not depending on other types of entities and are easily exploited in graphical
models. �e boundaries of entities are overall a generic approach for describing consis-
tencies and can be applied in many domains. �e task of the classi�er consists either in
detecting the �rst token of a kind of entity or the last token of a kind of entity.

Type of classifier While almost all binary classi�ers trained in a supervised fashion can be
applied, the experimental studies only evaluate the subgroup discovery method. �is
method provides all important characteristics for the speci�c classi�cation task and is
applied for the evaluations in combination with the graphical models. Furthermore, it
facilitates the usage of di�erent quality functions. �e experimental studies compare the
common F1 quality function with the optimized Fex p1 quality function.

Considered kinds of entities �e domains considered in the experimental studies provide
di�erent kinds of entities. While all entities in curricula vitae are considered, the set of
entities in references are restricted to the author, title and date. �ese entities can be
assumed to be the most important entities of the domain and allow one to estimate the
amount of their occurrence needed for the improved quality function.

�e experimental evaluations in the following sections illustrate the power of subgroup
discovery for learning context-speci�c consistencies in two scenarios. �e �rst synthetic scenario
in Section 6.1.3.1 investigates how well the learning process can handle erroneous input in
general and provides a detailed analysis for the boundaries of the entities. In a second scenario
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of Section 6.1.3.2, the classi�ers are learnt on realistic data produced by a 5-fold Conditional
RandomFields. Both scenarios utilize the datasets and features that are also applied in evaluation
in Section 6.2 and Section 6.3. However, the evaluation of the classi�ers was performed a�er
the experimental study for Conditional Random Fields because it gives detailed insights in the
datasets. �is in�uences feature extraction or other con�gurations andmay lead to optimizations
for the datasets and domain. Furthermore, the experiments pointed out several labeling errors
in the dataset, which have been �xed for this evaluation, but which are still present in the later
studies.

6.1.3.1 Random Synthetic Errors

�is experimental evaluation investigates the robustness of the subgroup discovery task to
predict correct boundaries. �e scenario is con�gured the following way: the complete dataset
with correct entities is incrementally deteriorated by replacing a correct boundary by a ran-
domly selected, erroneous position. �is process is iterated until all entities possess no correct
boundary resulting in a completely random and falsely annotated set of entities. �e subgroup
for describing either the begin or the end of an entity are learnt for each iteration and thus
rely on increasingly defective input data. For investigating the applicability of the approach,
separate evaluations are given for each kind of boundary and entity. An additional analysis of
all combined boundaries illustrates the overall performance.
�e results are given in Figure 6.4 to Figure 6.15. Each �gure contains two scatter plots that

display the F1 score of the classi�cation rules dependent on the F1 score of the input data. Data
points in diagrams for speci�c boundaries of entities depict the F1 score for a complete document.
In diagrams for all entities, a data point indicates the average F1 score of all boundaries for
the complete dataset. An accumulation of data points that lies above the imaginary diagonal
represents an improvement compared to the input data. Data points located below the diagonal
indicate that the subgroupwas not able tomodel the consistencies and thus introduced additional
errors. �e le� diagram in each �gure displays the results of the subgroup discovery task using
the common F1 measure for quality function, whereas the right diagram contains the results
using the improved Fex p1 measure.

References Figure 6.4 and Figure 6.5 contain the results for identifying the begin of an author
and the end of the author respectively. Subgroups using the normal F1 quality function are able
to greatly improve the boundaries of the author. Almost all data point are located above the
diagonal indicating that the learnt description was able to removemost errors. �e accumulation
of data points near an F1 score of 0.0 occurs only for an F1 score of about 0.3, which indicates
the minimal requirements for a successful task. However even for this low quality input, there
are many data points indicating a high score. �e subgroups using the improved Fex p1 quality
function achieve even better results. �e accumulation of data points is clearly moved towards
an F1 score of 1. �is fact can be especially observed in the le� part of the diagrams.
�e results for predicting the correct boundaries of the title are depicted in Figure 6.6 and

Figure 6.7. �e begin of the title is reliably identi�ed using both quality functions since almost all
data points are located above the diagonal. �e results using the improved Fex p1 quality function
are even better. Only the beginnings in a small amount of documents are not near the F1 score
of 1 regardless of the quality of the input. �e end of the title causes more problems. Most of the
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Figure 6.4: Classification of the author’s begin in reference sections with subgroup discovery using
F1 (left) and Fex p1 (right) measure as quality function. A data point represents the F1 score of one
document.
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Figure 6.5: Classification of the author’s end in reference sections with subgroup discovery using
F1 (left) and Fex p1 (right) measure as quality function. A data point represents the F1 score of one
document.

147



Chapter 6: Machine Learning Approaches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F 1
 s

co
re

 o
f 

su
b

gr
o

u
p

 

F1 score of input 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F 1
 s

co
re

 o
f 

su
b

gr
o

u
p

 

F1 score of input 

Figure 6.6: Classification of the title’s begin in reference sections with subgroup discovery using
F1 (left) and Fex p1 (right) measure as quality function. A data point represents the F1 score of one
document.
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Figure 6.7: Classification of the title’s end in reference sections with subgroup discovery using
F1 (left) and Fex p1 (right) measure as quality function. A data point represents the F1 score of one
document.

data points are indeed located above the diagonal, but the ending of the title cannot always be
modelled using the available features. �is fact can be observed at the data points in the right
part of the diagram. In some documents, the F1 score of the subgroup is lower than the Fex p1
score of the input, which can be observed in the right part of the diagrams where data points
are located near an F1 score of 0.7. �e end of the title is sometimes hard to distinguish from the
end of booktitles.
Figure 6.8 and Figure 6.9 contain the results for identifying the beginning and end of a

date. �e subgroups are able to detect most boundaries independently of the errors in the
input document. While the results of the normal quality function are already very good, the
subgroups using the improved quality function still provide better results. �e data points of the
right diagrams are generally located nearer to an F1 score of 1.0. �e improved quality function
introduces a few errors for the beginning of a date, which can be observed by the single data
points near an F1 score of 0.8. �is problem is caused by the fact that the assumption about the
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Figure 6.8: Classification of the date’s begin in reference sections with subgroup discovery using
F1 (left) and Fex p1 (right) measure as quality function. A data point represents the F1 score of one
document.
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Figure 6.9: Classification of the date’s end in reference sections with subgroup discovery using
F1 (left) and Fex p1 (right) measure as quality function. A data point represents the F1 score of one
document.

amount of entities used in the improved quality function does not hold. Hence, the subgroup
provides a description that includes additional beginnings. �is problem does not occur for
the end of the date, which is overall easier to detect than the beginning. Especially using the
improved quality function, only a few data points are located in the middle of the diagram. �e
subgroups are able to identify the end in most documents with an F1 score of at least 0.9. If the
quality of the input drops below an F1 score of 0.2, the classi�er are not able to learn the correct
boundaries.
Figure 6.10 contains an overview of results for all boundaries. In this diagram, a data point

represents the average F1 score for all boundaries in the complete dataset dependent on the
quality of the input. Both curves indicate that the approach is able to greatly improve the
identi�cation of the boundaries because the data point are located above the imaginary diagonal.
�e subgroups using the common F1 quality function achieve an average F1 score of 0.9 already
for an input of an F1 score of 0.4. �e subgroups using the improved Fex p1 quality function
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Figure 6.10: Classification of boundaries of the author, title and date in reference sections with
subgroupdiscovery using F1 (left) and F

ex p
1 (right)measure as quality function. Adatapoint represents

the average F1 score for the complete dataset.

perform even better. Here, an F1 score of 0.9 is already reached for an input of an F1 score of
0.3. It can be observed that the second curve for the improved quality function generally climbs
steeper and approaches the F1 score of 1.0 faster. �is property can especially be noted near an
F1 score of 0.6 for the input quality.

Curricula Vitae Figure 6.11 and Figure 6.12 contain the results for identifying the beginning
and end of the client entities that refer to the company or sector, in which the author of the
documentwas employed. A �rst look at the diagrams reveals that consistencies in this domain are
harder to model by subgroup discovery. Most of the predicted boundaries have been improved
compared to the given input data since most of the data points are located above the imaginary
diagonal. A closer look at the beginning of the client indicates that both quality functions are
able to provide good results. �e improved quality function produces overall more concise
prediction of the beginning of the client, but introduces also some additional errors located
at the lower right part of the second diagram. �ese errors are caused by a combination of
the available features and the assumption about the amount of occurrences of the entity. �e
subgroups are not able to describe consistent composition for the expected amount of beginning.
�e beginning of the client is hard to identify in some documents, even for humans.
�e end of the client also provides valuable results whereas the improved quality function Fex p1

performs much better than the normal quality function F1. �is improvement can especially be
observed by the accumulation of data points near the F1 score of 1.0. In both diagrams, a line of
data points near the F1 score 0.7 can be identi�ed. �e subgroups have not been able to provide
a correct description for some documents independently of the input’s quality. �e entities in
the original documents have been consistently structured, but the conversion into plain text
introduced some con�icts, e.g., by moving a few clients from the second line to the third line of
a project. �e subgroup relied, however, on the number of line for the end of the client since no
better features were available.
�e results for predicting the correct boundaries of the date are depicted in Figure 6.13

and Figure 6.14. �e results of the subgroups using the normal F1 quality function show a
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Figure 6.11: Classification of the client’s begin in curricula vitae in reference sectionswith subgroup
discovery using F1 (left) and Fex p1 (right) measure as quality function. A data point represents the F1
score of one document.
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Figure6.12: Classification of the client’s end in curricula vitaewith subgroupdiscovery using F1 (left)
and Fex p1 (right) measure as quality function. A data point represents the F1 score of one document.

clear accumulation of data point above the imaginary diagonal. Only a few outliers indicate
additional errors introduced by the subgroups. �e improved quality function Fex p1 achieves
again better results than the normal one. �is improvement can be observed by the sparse data
point in the middle of the diagrams. �e diagrams for the beginning of the date show that
theassumption about the amount of occurrences does not hold for some documents. Here, no
suitable descriptions were found that ful�ll the expectation. As for the end of the date, modeling
of the properties is even harder indicated by the accumulation of data point below an F1 score
of 1.0 for an input quality of an F1 score of 1.0.
Figure 6.15 contains an overview of results for all boundaries where one data point re�ects the

average F1 score for the complete dataset dependent on the quality of the input. �e subgroups
using the improved quality function Fex p1 overall performs better. �is fact can be observed by
the steeper climb and earlier approach of the F1 score of 1.0. However, both quality functions
are not able to reach an F1 score of 1.0 since either the features are not su�cient to model
the boundaries or the entities are not consistently structured. �e subgroups using the Fex p1

151



Chapter 6: Machine Learning Approaches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F 1
 s

co
re

 o
f 

su
b

gr
o

u
p

 

F1 score of input 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F 1
 s

co
re

 o
f 

su
b

gr
o

u
p

 

F1 score of input 

Figure 6.13: Classification of the date’s begin in curricula vitae with subgroup discovery using
F1 (left) and Fex p1 (right) measure as quality function. A data point represents the F1 score of one
document.
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Figure 6.14: Classification of the date’s end in curricula vitae with subgroup discovery using F1 (left)
and Fex p1 (right) measure as quality function. A data point represents the F1 score of one document.

quality function achieve an average F1 score of 0.9 already at an input quality of 0.5 whereas the
subgroups using the F1 quality function reaches this prediction yet with a input quality greater
than 0.6.

Summary Subgroup discovery performs well for predicting the consistent boundaries in
both domains. �e experimental setting introduces a false positive and a false negative in each
iteration by replacing a true positive. �is additional deterioration of the input data is however
not as problematic since the introduced false positive boundaries are chosen randomly. �e
correct composition of the entities can still be induced by the subgroups because the no valid
descriptions can be learnt that cover the additional errors. It can be assumed that the subgroups
perform equally well if no false positives are included in the input data. �e subgroups using the
improved quality function Fex p1 achieve better results for all boundaries in both datasets if the
assumption about the expected amount of entities holds. While the F1measure tries to reproduce
the true positives and the false positives in the input data, the Fex p1 measure additionally accounts
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Figure 6.15: Classification of boundaries of the client and date in curricula vitae with subgroup
discovery using F1 (left) and Fex p1 (right) measure as quality function. A data point represents the
average F1 score for the complete dataset.

the amount of covered boundaries. Hence, it is able to learn the correct properties of a boundary
even if only a small amount of true positives is included in the input data.
�is setting provides valuable insights in the advantages of the approach, but does not provide

a realistic scenario. A normal model for information extraction produces a di�erent kind
of input. �e predictions of the entities include rather systematic errors than random ones.
�is aggravates the induction of correct subgroups since the dominant composition of the
predicted entities may actually be incorrect, which leads to a completely misleading subgroups.
Furthermore, a realistic information extraction model o�en identi�es all entities correctly in
one document but it is not able to �nd any correct entities in another document. While learning
context-speci�c consistencies can only deteriorate the result in the �rst document, it is not able
to produce any results in the second document. �e approach works only if a reasonably correct
prediction is provided.

6.1.3.2 Realistic Prediction

�e discussion in the last section pointed out the limited expressiveness of the evaluation based
on random errors. �is section investigates the capabilities of subgroup discovery for learning
consistencies on realistic predictions. For this purpose, a Conditional Random Field is utilized
in a 5-fold fashion. �e model is trained on four ��hs of the dataset and then applied on the
remaining ��h part. �is process is iterated for all permutation in order to accomplish a labeling
of the entities that does not su�er from over�tting. �e boundaries predicted by the Conditional
Random Field are then used as the input of the subgroup discovery task. In this experimental
setting, only the improved quality function Fex p1 is applied. A disadvantage of this setting is the
coverage of di�erent qualities of the input data. �e models are hardly con�gurable to produce
a wide variation of F1 scores. Hence, the evaluation is limited to a realistic scenario where the
Conditional Random Field is trained in a optimal setting with enough iterations.
Table 6.1 contains the results of the experimental study. �e Conditional Random Field is able

to achieve an average F1 score of 0.960 for the references dataset and an average F1 score of 0.824
for the curricula vitae dataset. Both scores represent very good and realistic results for these
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CRF SGF ex p
1

References 0.960 0.973
Curricula Vitae 0.824 0.852

Table 6.1: Average F1 scores for the boundaries of entities in two domains. The F1 scores of the CRF
have been produced in a 5-fold evaluation. The subgroups utilized the Fex p1 quality function and are
induced on the result of the CRF.

domains and datasets. �e results refer always to the evaluation of the boundaries alone. Since
the boundaries are however generated using the predicted entities, the score are hardly a�ected.
�e subgroups achieved an average F1 score of 0.973 and 0.852 when processing the output of the
Conditional Random Fields. �is indicates and error reduction of about 30% for references and
about 16% for curricula vitae. �e results provide only an indication of possible improvements
for a model that exploits the learnt consistencies. Even if the absolute improvement is not perfect,
the learnt boundaries may enable another model to achieve proportionally better results. If
the subgroups predicted several false positive boundaries additionally to the correct ones, then
an information extraction model can still exploit this information for extracting the correct
entities.

6.2 Stacked Conditional Random Fields
�is section introduces a method for exploiting context-speci�c consistencies by combining
two linear-chain Conditional Random Fields (CRFs) in a stacked learning framework. A�er the
instances are initially labeled, a rule learning method is applied on label transitions within one
context in order to identify their shared properties. �e stacked CRF is then supplemented with
high-quality features that help to resolve possible ambiguities in the data. While the features
possess a global meaning for the model, their manifestation adapts to the patterns occurring
in the currently processed document. �e approach is evaluated with a real-world dataset
for the segmentation of references, a domain that is widely used to assess the performance of
information extraction techniques. �e results show a signi�cant reduction of the labeling error
and con�rm the bene�t of additional features induced online during processing the data. �is
approach builds upon earlier work on stacked CRFs that relies on mutual information in order
to analyze the consistencies [194]49.

49�e contents of this section have been published in two research papers: Peter Kluegl, Martin Toepfer, Florian Lem-
merich, Andreas Hotho, and Frank Puppe. Stacked Conditional Random Fields Exploiting Structural Consistencies.
In Pedro Latorre Carmona, J. Salvador Sanchez, and Ana Fred, editors, Proceedings of 1st International Conference on
Pattern Recognition Applications and Methods (ICPRAM), pages 240–248, Vilamoura, Algarve, Portugal, February
2012. SciTePress [128]. Peter Kluegl, Martin Toepfer, Florian Lemmerich, Andreas Hotho, and Frank Puppe. Ex-
ploiting Structural Consistencies with Stacked Conditional Random Fields. Mathematical Methodologies in Pattern
Recognition and Machine Learning. Springer New York, 2013. 111-125 [129].
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6.2.1 Stacked Inference with Consistencies
Sequence labeling methods like CRFs assign a sequence of labels y = (y1 , . . . , yT) to a given
sequence of observed tokens x = (x1 , . . . , xT). Let cr f (x, Λ, F) = y be the function that
applies the CRF model with the weights Λ = {λ1 , . . . , λK} and the set of feature functions
F = { f1 , . . . , fK} on the input sequence x and returns the labeling result y. �e set of model
weights must of course correspond to the set of feature functions. Since the CRF processes this
sequence of tokens in one labeling task, x is called an instance. All instances together form
the dataset D which is split in a disjoint training and testing subset. An information or entity
consists o�en of several tokens and are encoded by a sequence of equal labels. It is assumed here
that the given labels already specify an unambiguous encoding. An instance itself may contain
multiple entities speci�ed by an arbitrary amount of labels, one label for each token of the input
sequences. Furthermore, it is assumed that the dataset D = {C1 , . . . ,Cn} can be completely and
disjointly partitioned into subsets of instances x that originate from the same creation context
C i . Similar to the relational template in [131], this work implies that a trivial context template
exists for the assignment of the context set.
In stacked graphical learning, several models can be stacked in a sequence. Experimental

results, e.g., of Kou [131], have shown that this approach already converges with a depth of
two learners and no signi�cant improvements are achieved with more iterations of stacking.
�erefore, stacked graphical learning with CRFs is only applied in a two-stage approach like
Krishnan and Manning [134]. In order to extract entities collectively, this work de�nes the
stacked inference task on the complete set of instances x in one contextC. �e twoCRFs, however,
label the single instances within that context separately as usual. �e following algorithm
summarizes the stacked inference combined with online rule learning. A�erwards, integration
of the rule learning techniques for the identi�cation of context-speci�c consistencies is described.
Details about the estimation of the weights (e.g., Λm) are discussed in Section 6.2.2.

1. Apply base CRF Apply cr f (x, Λ, F) = ŷ on all instances x ∈ C in order to create the
initial label sequences ŷ.

2. Learn consistencies Learn classi�cation rules for the target attributes ŷ and construct a
feature function f m ∈ Fm for each discovered rule.

3. Apply stacked CRF Apply cr f (x, Λ ∪ Λm , F ∪ Fm) = y again on all instances x ∈ C in
order to create the �nal label sequences y.

�is process is illustrated in Figure 6.16. �e dataset consists of a list of instances. Some
of them origin from the same context, for example, the �rst four and the last four instances.
�ese instances are individually processed by the base CRF and the predicted label sequence is
applied together with the features for learning a rule-based model about the context-speci�c
consistencies. �e resulting rules specify the semantics of the additional features in the stacked
model, which hopefully creates a more accurate prediction.
Rule learning is applied on all (probably erroneously) label assignments ŷ ∈ C of the base

CRF. �e rules are learnt in order to classify certain label transitions and, thus, describe the
shared properties of the transition within the context C. �e labeling error in the input data
is usually eliminated by the generalization of the rule learning algorithm. �e label transition
is optimally described by a single pattern that covers the majority of transitions despite of
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Figure 6.16:Overview of the stacked inference.

erroneously outliers. �e learnt rules are then used as binary feature functions in the same
context C: they return 1 if the rule applies on the observed token xt , and 0 otherwise. �e model
gains therefore additional features that indicate label transitions if the instances are consistently
structured. Even if the learnt rules are misleading due to erroneously input data or missing
consistency of the instances, their discriminative impact on the inference is yet weighted by the
learning algorithm of the stacked CRF.
�is process is illustrated by a simple example concerning the author label, but can also be

applied to any other label. Let a reference section be processed by the base CRF that classi�ed
all instances but one correctly. For some reasons the base CRF missed the date and editor and
misclassi�ed the tokens x5 to x10 and the tokens x18 to x43 in the ninth reference (cf. Figure 6.17).
�e input of the rule learning now consists of 22 transitions from author to date whereas one
transition is incorrect. In this case, a reasonable result of the rule learning is the rule “if the
token xt is a period and followed by a parenthesis, then there is a transition from author to
date at t”. Converted to a feature function, this rule returns 1 for token x4 and 0 for all other
tokens of the reference in Figure 6.17. �e weight of this new feature function is then estimated
by the stacked CRF. �erefore, the stacked CRFs’ likelihood of a transition from author to date
is increased at the token x4 and decreased at the token x41 due to the presence or absence of
the meta-features. Finally, the set of learnt rules are transformed to the set of binary feature
functions Fm that return true, if the condition of the respective rule applies.
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Author Author Author Author Author Author Author Author Author Author Title . . . Author Author Author Author Date Date Booktitle . . .

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 . . . y38 y39 y40 y41 y42 y43 y44 . . .

Klösgen , W . ( 1996 ) . Explora : A . . . , R . , editors , Advances . . .

Figure 6.17: Two excerpts of a reference with erroneous labeling: The date (y5 to y8) and the begin
of the title (y9 and y10) was falsely labeled as author, e.g., due to the high weight of the colon for the
end of an author. The editor was additionally labeled as an author (up to y41) and date (y42 and y43).

6.2.2 Parameter Estimation
�e weights of two models need to be estimated for the presented approach: the parameters of
the base model and of the stacked model. �e base model needs to be applied on the training
instances for the estimation of the weights of the stacked model, i.e., step 1 and step 2 of the
stacked inference in Section 6.2.1 need to be performed on the training set. If the weights of
the base model are estimated as usual using the labeled training instances, then it produces
unrealistic prediction on these instances and themeta-features of the stackedmodel are over�tted
resulting in a decrease of accuracy. Since the base model is optimized in this case on the training
instances, it labels these instances perfectly. �e learnt rules create optimal descriptions of the
structural consistencies and the stacked model assigns biased weights to the meta-features. �is
is of course not reproducible when processing unseen data. It can reduce the accuracy of the
stacked inference, even if the meta-features in the testing phase are also overall of good quality.
�e simple solution to this problem is a cross-fold training of the base model for training of

the stacked CRF that was already successfully applied by several approaches [131, 134]. Training
of the base model in a cross-fold fashion is also a very good solution for the presented approach,
but this work simply decreases the accuracy of the model by reducing the training iterations.
�us, only one model needs to be trained for the learning phase of the stacked model. For
the testing phase or common application however, a single base model learnt with the default
settings is applied.
�e model of the stacked CRF is trained dependent on the base model and the creation

context C that are both applied to induce the new features online during the stacked inference.
�e weights Λ = {λ1 , . . . , λK} and Λm = {λm

1 , . . . , λm
M} of the stacked CRF are estimated to

maximize the conditional probability on the instances of the training dataset:

Pλ(y∣x,C , cr f (x, Λ′ , F)) =
1
Zx
exp

⎛
⎝

T
∑
t=1

K
∑
i=1

λ i ⋅ f i(yt−1 , yt , x, t)

+
T
∑
t=1

M
∑
j=1

λm
j ⋅ f mj (yt−1 , yt , x, t,C , cr f (x, Λ′ , F))

⎞
⎠
(6.5)

�e resulting model still relies on the normal feature functions but is extended with dynamic
and high quality features that help to resolve ambiguities and substitute for other missing
features. �ese meta-features possess the same meaning in the complete dataset, but change
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their interpretation or manifestation dependent on the currently processed creation context.
�ey provide overall a very good description of the structural consistencies and are o�en alone
su�cient for a classi�cation of the entities.
A short example: �e induced feature function for the transition of the author to the date

is set to very high weights for the corresponding state transition of the learnt model. �is
feature function returns 1 in the exemplary reference section for a token, which is a period and
is followed by a parenthesis. In other reference sections with a di�erent style guide applied,
the feature function for this state transition returns 1, if the token is a colon and is followed
by a capitalized word. However, both examples refer only to exactly one feature function that
dynamically adapts to the currently processed context.

6.2.3 Experimental Results
�e presented approach is evaluated in the domain of reference segmentation (cf Section 3.2.1).
�e common approach is to separately process the instances, namely the references. Within
these references, the interesting entities need to be identi�ed. Since all tokens of a reference are
part of exactly one entity, one speaks of a segmentation task. �is section introduces the overall
settings and presents the experimental results.

6.2.3.1 Datasets

All available and commonly used datasets for the segmentation of references are a listing of
references without their creation context and are thus not applicable for the evaluation of the
presented approach. �erefore, a new dataset was manually annotated with the label set of Peng
and McCallum [160] concerning the �elds Author, Booktitle, Date, Editor, Institution, Journal,
Location, Note, Pages, Publisher, Tech, Title and Volume. �e resulting dataset contains 566
references in 23 documents extracted only of complete reference sections of real publications.
�e amount of instances is comparable to previously published evaluations in this domain, cf.,
[160, 52].
Similar to previous studies with CRFs in the domain of reference segmentation, this work

uses features indicating the length of tokens, the relative position inside the reference string,
n-gram pre�xes, n-gram su�xes, as well as the covered text of the token and the covered text of
tokens on the le� and on the right of the observed token. Additionally, features representing
token classes, dictionaries, regular expressions for URLs and simple combinations of features,
for example a �rst name followed by a capitalized word, are integrated. �e dictionaries cover
�rst names, locations, keywords (e.g., “eds.”) and some well-known journals and publishers.
Only this additional subset of features is used for the rule learning task. �is restriction is
justi�ed with the minimal expressiveness of ngram features for the identi�cation of the structure
in relation to the increase of the search space. Overall, the applied features are comparable to
previously published approaches, e.g., [160, 52]. Only a part of the basic features is used for the
induction of the meta-features, omitting ngram and token window features. �is restriction is
justi�ed with their minimal expressiveness for the identi�cation of the consistencies in relation
to the increase of the search space.
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Crf A single CRF trained on the same data and features.

Stacked Crf A two-stage CRF approach. �e predictions of the base
CRF are added as features to the stacked CRF.

Stacked+Descriptive �e default approach of stacked CRF combined with sub-
group discovery for rule learning. Only transitions be-
tween the labels Author, Title, Date and Pages that com-
monly occur in most references are considered.

Stacked+More A stacked approach using subgroup discovery that addi-
tionally learns the transitions of the labelsBooktitle, Journal
and Volume.

Stacked+Max A stacked approach using subgroup discovery that consid-
ers the transitions of all labels for the rule learning task.

Table 6.2:Overview of the evaluated models.

6.2.3.2 Implementation Details

�emachine learning toolkit Mallet50 is used for an implementation of the CRF in the presented
approach. For rule learning, this work chose a subgroup discovery implementation51 because of
the multifaceted con�guration options that allow a deep study of the approach’s limits. Only the
default parameters are used for the CRF and all evaluatedmodels were trained until convergence.
Only for the training of the stacked model, the iterations of the base model was reduced to 50
iterations. For the default con�guration of both rule learning tasks, the window size is set to
w = 1. Additionally for the default setting of the subgroup discovery, this work uses a quality
function based on the F1 measure, selected only one rule for each description of a label, restricted
the length of the rules to maximal three selectors, and set an overall minimum threshold of
the quality of a rule equal to 0.5. No improved quality function was applied since assumptions
about the occurrence of the entities do not hold for all kind of entities. �e presented approach
is overall straightforward to implement and only established standard methods are used. Its
inference is still e�cient in contrast to complex models with approximate inference techniques.

6.2.3.3 Results

�e presented approach is compared to two base line models in a �ve-fold cross evaluation.
�ree di�erent settings of stacked CRFs combinedwith a rule learning technique are investigated.
A detailed description of all evaluated models is given in Table 6.2. �e documents of the dataset
are randomly distributed over the �ve folds. �e results of the experimental study are depicted
in Table 6.3. Only marginal di�erences can be observed between the two base line models
Crf and Stacked Crf. �is indicates that the normal stacking approach cannot exploit the
structural consistencies or gain much advantage of the predicted labels.

50http://mallet.cs.umass.edu
51 http://sourceforge.net/projects/vikamine/
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F1
Base Line

Crf 0.913
Stacked Crf 0.918

Presented Approach

Stacked+Descriptive 0.940

Variants of Descriptive

Stacked+More 0.941
Stacked+Max 0.936

Table 6.3: F1 scores averaged over the five folds.

All of the stacked models combined with rule learning techniques signi�cantly outperform
the base line models using a one-sided, paired t-tests on the F1 scores of the single references (p
≪ 0.01). Comparing the results of Stacked+Descriptive that only considers the consistencies
of four labels to the base line Crf, the approach achieves an average error reduction of over 30%
on the real-world dataset.
�e second con�guration with a subgroup discovering technique Stacked+More considers

the transition between seven labels and is able to slightly increase the measured F1 score com-
pared to the default model Stacked+Descriptive. Stacked+Max that induces rules for all
labels achieves only an average error reduction of 26% compared to a single CRF. �is is mainly
caused by misleading meta-features for rare labels. �e task of learning consistencies from a
minimal amount of examples is error-prone and can decrease the accuracy, especially if the
examples are labeled incorrectly.
Table 6.4 provides closer insights in the bene�t of the presented approach using the author

label as an example. Stacked+Descriptive is able is signi�cantly improve the labeling accuracy
for all folds but one. �e third fold contains an unfavorable distribution of style guides between
the training and testing set for the author. If the initial base CRF labels a label systematically
incorrectly, then the rule learning cannot induce any valuable and correct descriptions of the
structure. Nevertheless, an average error reduction of over 50% is achieved for identifying the
author of the reference.
For comparison, the skip-chain approach of [189] has been applied with factors for capitalized

words and additionally for identical punctuation marks, but no improvement over the base line
models could be measured. Furthermore, the feature induction for CRFs [150] was integrated,
but resulted counter-intuitively in a decrease of the accuracy.
�e performance time of the presented approach for one fold averaged over the �ve folds

is about nine times faster than a higher-order model with skip edges. �e di�erence in speed
is less compared to previously published evaluations [131]. �is is mainly caused by the fact
that the rule learning is neither optimized for this task nor for the domain, e.g., by pruning the
attributes.
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CRF Stacked+ error
Descriptive reduction

Fold 1 0.977 0.996 82.6%
Fold 2 0.970 0.992 73.3%
Fold 3 0.964 0.965 2.8%
Fold 4 0.971 0.988 58.6%
Fold 5 0.895 0.951 53.3%

average 0.955 0.978 51.6%

Table 6.4: F1 scores of the author label.

6.3 Towards Higher-order Models
�e approaches of this section investigate how the context-speci�c consistencies can be exploited
with the idea of skip-chain CRFs or in general CRFs with additional potentials for long-range
dependencies. In contrast to skip-chain CRFs, where the potentials are only based on the
token sequence (cf. Equation 2.11), the additional potentials are mainly dependent on the label
sequence.
�e approaches need a prediction of the assignment in order to be able to link or relate the

entities. While there are a variety of di�erent ways to model the consistencies, the presented
approaches in this section investigate only the boundaries of the entities in order to describe
their consistent composition. �e label sequence (hidden variables) is of course not available
during inference when the graph is unrolled on an instance with all potentials since it is the result
of the computation of pθ (y∣x). However, there are many di�erent ways to provide a prediction
of the label sequence during inference. �e initial choice was to incrementally unroll the graph:
First, the potentials of the linear-chain part are unrolled, the currently most likely label sequence
is computed and this prediction is used to further unroll the additional potentials. However,
this work observed problems with the parameter estimation and inference mechanism (cf.
Section 6.3.3). While the model sometimes achieved remarkable improvements, the approach
frequently did not converge at all. �erefore, this work utilizes a separate static linear-chain
model in order to provide a constant prediction of the label sequences, which corresponds to
the approach of stacked graphical models [131, 134, 128] (cf. Section 6.2). Here, an initial model
is used to compute new features for a stacked model. In the approaches of this section, however,
the predicted assignments of the initial model lead to additional potentials. Normally, cross-fold
training is applied for the initial model in order to prevent unrealistic predictions during training
of the stacked model. �is improvement is neglected in the belief that the advantages of the
presented models prevail52.

52�e contents of this section have been published in Peter Kluegl, Martin Toepfer, Florian Lemmerich, Andreas Hotho,
and Frank Puppe. Collective information extraction with context-speci�c consistencies. In Peter A. Flach, Tijl De Bie,
and Nello Cristianini, editors, ECML/PKDD (1), volume 7523 of Lecture Notes in Computer Science, pages 728–743.
Springer, 2012 [127].
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6.3.1 Comb-chain CRFs
In a �rst approach, the variables of a linear-chain model are extended with additional (unigram)
factors dependent on the classi�cation result (cf. Figure 6.18). Hence, this work chose the name
comb-chain CRFs for this approach because of the layout of the graph.
Let Rb(y) and Re(y) be the set of positions, which are identi�ed by the classi�er as the

beginning and end of an entity with the label y. �e positions of additional factors are de�ned
the following way:

Ub =
⎧⎪⎪⎨⎪⎪⎩
u ∶ yu−1 ≠ yu ∨ u ∈ ⋃

y
Rb(y)

⎫⎪⎪⎬⎪⎪⎭

Ue =
⎧⎪⎪⎨⎪⎪⎩
u ∶ yu ≠ yu+1 ∨ u ∈ ⋃

y
Re(y)

⎫⎪⎪⎬⎪⎪⎭
U = Ub ∪ Ue

(6.6)

Ub and Ue contain all positions that are either intermediately labeled by the external model
or are identi�ed by the classi�er as the beginning, respectively end of an entity. �e conditional
probability is then de�ned as53

pθ (y∣x) = 1
Z(x)

T
∏
t=1
Φl (yt , yt−1 , x)∏

u∈U
Ψc (y, u) (6.7)

and the potentials for the unigram factor are given by

Ψc (y, u) = exp{∑
k

λck fck (y, u)} (6.8)

whereas θc = {λck} is the set of additional parameters for the classi�er template. �e feature
function factorize into an indicator function pck and an output function qck :

fck (y, u) = pck (yu) ⋅ qck (y, u) (6.9)
Six di�erent output functions are introduced:

qe-consistent (y, u) =
⎧⎪⎪⎨⎪⎪⎩

1 i� yu ≠ yu+1 ∧ u ∈ Re(yu)
0 else

qe-project (y, u) =
⎧⎪⎪⎨⎪⎪⎩

1 i� yu ≠ ỹ ∧ u ∈ Re( ỹ)
0 else

qe-suppress (y, u) =
⎧⎪⎪⎨⎪⎪⎩

1 i� yu ≠ yu+1 ∧ u /∈ Re(yu)
0 else

(6.10)

53�e di�erent usage of y for the predicted sequence and the label con�guration of the parameters deduces from the
context.
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Author Author Author Title . . . Author Author Author Title . . .

yu-2 yu-1 yu yu+1 . . . yv-2 yv-1 yv yv+1 . . .

: GRMM : GRaphical . . . A . : Collective . . .

Figure 6.18: An excerpt of a comb-chain graph with erroneous labeling whereas only additional
factors for the end of the author are displayed. The output functions indicate a missing end at
position yu-2 , a surplus end at yu and a consistent end at yv

�e output functions qb-consistent, qb-project and qb-suppress are de�ned equivalently for the
beginning of an entity. �ey re�ect the result of the classi�cation combinedwith the intermediate
labeling: qe-consistent indicates a true positive, qe-project a false positive and qe-suppress a false
negative classi�cation compared to the label sequence. Together, these feature functions supply
evidence, which parts of the label sequence agree with the consistency and which parts should
be altered in order to gain a higher likelihood. �e resulting graph of the model contains no
loops and provides therefore fewer challenges for an inference mechanism.
�e idea of comb-chain CRFs is summarized with an example for the segmentation of

references (cf. Figure 6.18). Let a reference section be the input sequence. When unrolling the
graph, the external model provides an intermediate labeling specifying the entities. A classi�er
is trained to detect the boundaries of the entities. �e descriptive result of the classi�er for
the end of the author is, for example, a pattern like “A period followed by a colon”. Now, the
additional potentials with the output functions in�uence the model to assign a high likelihood
to label sequences that con�rm with the description of the classi�er.

6.3.2 Skyp-chain CRFs
Skyp-chain CRFs are a variant of skip-chain CRFs (cf. Section 2.3.3.1). But instead of creating
additional edges between labels, whose tokens are similar or identical, this approach adds long-
range dependencies based on the patterns occurring in the predicted label sequence y and the
classi�cation result. �us, the small modi�cation of the name. Earlier work on skyp-edges
without a distinct model for consistencies can be found in Toepfer et al. [195]. However, the
implementation of the predecessor is �awed, which led to false results in its evaluation.
When applying skyp-chain CRFs for exploiting context-speci�c consistencies, two additional

di�erences to published approaches for skip-chain CRFs or similar collective information
extraction models can be identi�ed:

1. �ere is no need to transfer local evidence to distant labels since this work already assumes
a homogeneous composition of the entities.

2. Useful observation functions for the skip edges cannot be speci�ed, because the relevance
of certain properties is unknown.

First, the set of additional edges is de�ned that specify the positions of the long-range depen-
dencies using the positions Ub and Ue of Equation 6.6.
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Author Author Author Title . . . Author Author Author Title . . .

yu-2 yu-1 yu yu+1 . . . yv-2 yv-1 yv yv+1 . . .

: GRMM : GRaphical . . . A . : Collective . . .

Figure 6.19: An excerpt of a skyp-chain graph with erroneous labeling. Only one additional edge for
the end of the author is displayed. The likelihood of the sequence is decreased because only position
u − 2 and v but not u were identified as a boundary by the classifier.

Eb = {(u, v) ∶ u ≠ v ∧ yu = yv ∧ u ∈ Ub ∧ v ∈ Ub}
Ee = {(u, v) ∶ u ≠ v ∧ yu = yv ∧ u ∈ Ue ∧ v ∈ Ue}
E = Eb ∪ Ee

(6.11)

�e set Eb contains edges that connect the start label of an entity with all other start labels of
entities with the same type. �e set Ee refers accordingly to the links between the end labels of
entities. Further, this work introduces a parameter me for controlling the model complexity
that restricts the maximal amount of additional long-range dependencies for each variable. E.g.,
for me = 2, a label is only connected to the closest previous and following boundary of the same
entity type.
�e skyp-chain approach extends the linear-chain model with additional potentials for edges

de�ned in Equation 6.11. �e conditional probability for the assignment of the label sequence is
given by

pθ (y∣x) = 1
Z(x)

T
∏
t=1
Φl (yt , yt−1 , x) ∏

(u ,v)∈E
Ψy (y, u, v) . (6.12)

An example of an unrolled graph of this model is depicted in Figure 6.19. Similar to Equa-
tion 2.11, the additional potentials factorize to

Ψy (y, u, v) = exp{∑
k

λyk fyk (y, u, v)} , (6.13)

resulting in the complete parameter set θ = θl ∪ θy with θ = θy = {λyk} to be estimated for
this model. In contrast to the skip-chain model, the feature functions depend on the complete
(predicted) label sequence y. �e feature functions consist again of an indicator function for
the label con�guration, but not of an observation function on the input sequence. Instead, this
work applies the output functions of Equation 6.10 separately for the source and destination of
the skip edge.
�e skyp-chain model is illustrated in an example for reference segmentation (cf. Figure 6.19).

Let the input sequence be a reference section. When the graph of the model is unrolled during
inference, a label assignment are calculated. During this process, long-range dependencies are
considered, e.g., for the end of the author entities (cf. labels yu and yv in Figure 6.19). Due to
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the additional potentials, label sequences with boundaries that are identi�ed by the classi�er
as consistently structured become more likely. In Figure 6.19, the likelihood of the sequence is
decreased in comparison to a graph with an additional edge between the labels yu−2 and yv .

6.3.3 Parameter Estimation and Inference
�e conditional probability pθ (y∣x) is computed to decide which label sequence y is most likely
for the observed token sequence x, and to estimate the parameters θ of the model. �e applied
inference technique, tree based reparameterization (TRP) [200], is related to belief propagation
and computes approximate marginals for loopy graphs. TRP is also used in [189] for the original
skip-chainmodels. Unfortunately, severe convergence problems could be observed when applied
on complex graph structures. �e parameters θ of the models are obtained using training data
D = {x(i) , y(i)}N

i=1 and maximum a-posteriori estimation. �e log likelihood L(θ∣D) of the
model parameters given the training examples is optimized with the quasi-Newton method
L-BFGS and a Gaussian prior on the parameters as in [189].

6.3.4 Experimental Results
�is work demonstrates the advantages of the presented approach in a �ve-fold cross evaluation
in two di�erent real-world applications: �e segmentation of references and the template
extraction in curricula vitae (cf. Chapter 3). First, both domains and the real-world datasets
are shortly recapitulated for convenience and then the settings of the evaluation are speci�ed.
Finally, the empirical results are presented and discussed.

6.3.4.1 Datasets

Two datasets are utilized in the evaluation of this work. �e dataset References origins in a
domain that is very popular for the evaluation of novel information extraction techniques
(cf. [15, 160, 163, 183]), whereas the dataset Curricula Vitae belongs to classical information
extraction problems of template extraction.
�is dataset for the segmentation of references was introduced in [128] (cf. Section 6.2) and

consists only of complete reference sections of real publications, mainly from the computer
science domain. For the evaluation in this section, this work reduced the label set for the
identi�cation of the entities Author, Date, Title and Venue. �e same features as in [128] (cf.
Section 6.2) have been extracted.
�e information extraction task in curricula vitae consists in identifying the time span

and company for which the author of these documents worked in a stage of his or her life
(employments). �is information can be used to improve the search for suitable future employees
for certain projects. �e dataset consists of 68 German curricula vitae and is annotated with
896 companies or sectors54 and 937 time spans in overall 921 stages of life. �is work uses the
label Date for the time span and the label Client for the companies or sectors. �e feature set
extends the feature set of the dataset References with additional domain-speci�c features like
the number of the line, the position within a line and keywords for company pre�xes/su�xes
54�e authors of the curricula vitae sometimes anonymize the actual name of a company and replace it with the sector
in which the company is located.
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and date indicators. For the dataset References the F1 score is presented combined for all labels,
whereas the labels Date and Client are distinguished for Curricula Vitae.

6.3.4.2 Settings

All models are trained with identical settings. In order to minimize the model complexity of the
skyp-chain approach, this work set me = 2. Eleven (for References) and twelve (for Curricula
Vitae) manually selected features are used in a window of �ve tokens as attributes for the rule
learner. �e learnt descriptions had a maximum of three attributes and a minimum quality score
of 0.01. For the dataset References, only the boundaries for the labels Author, Date, Title are
considered. �e quality function F ex p2

1 is utilized. �e implementation of the CRFs is based on
the GRMM package [188].

6.3.4.3 Results

�e proposed models are compared to a linear-chain CRF (base line). �is work has considered
di�erent variants of skip-chain CRFs, but none of them returned noteworthy results. As a
consequence, the presented models are only compared to the base line.
�e results of the �ve-fold cross evaluation are depicted in Table 6.5 for the dataset References

and in Table 6.6 for the dataset Curricula Vitae. �e comb-chain models achieve overall an
average error reduction of over 30% and increase the measured averaged F1 score by at least
1%, 9% for the label Client. �e skyp-chain model provides more challenges for the inference
technique and is only able surpass the comb-chain results for the label Date of the dataset
Curricula Vitae. In the evaluation of the remaining label, the average error reduction is 14%.
If the comb-chain model is compared to the skyp-chain model, then it becomes apparent

that the skyp-chain model with the applied inferencing technique TRP has no advantages when
exploiting consistencies even at the cost of a computationallymore expensive inference. Table 6.7
and Table 6.8 contain the average evaluation time for one fold. In general, it takes longer to train
models with the larger dataset Curricula Vitae. �e discrepancies of the results in the domain of
references compared to the results of the stacked approach are explained in Section 6.4.
�e evaluated results of the presented models have a valuable in�uence on real-world applica-

tions. An error reduction of 30% considerably improves the quality of automatically extracted
entities and reduces the workload to correct possible errors. �e reported increase of the accu-
racy and the corresponding error reduction of the presentedmodels compete well with published
approaches for collective information extraction, joint inference in information extraction or
other models that exploit long-range dependencies.

6.4 Discussion
�e experimental studies of this section show that context-speci�c consistencies can be exploited
by Conditional Random Fields. �e presented approaches are generic and can be applied for
any appropriate domain with only minimal con�guration decisions. �e overall �ndings can
be summarized with the expectation that the usage of context-speci�c consistencies is able
to produce an average error reduction of 30% concerning the F1 score. �is improvement
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References All

Linear Chain 0.966

Comb Chain 0.976
Skyp Chain 0.972

Table 6.5: F1 scores for the segmentation of
references.

Curricula Vitae Date Client

Linear Chain 0.944 0.725

Comb Chain 0.962 0.814
Skyp Chain 0.962 0.764

Table 6.6: F1 scores for template extraction
in curricula vitae.

References

Linear Chain 0.03h

Comb Chain 0.17h
Skyp Chain 0.53h

Table 6.7: Average time for one fold (Refer-
ences).

Curricula Vitae

Linear Chain 0.11h

Comb Chain 0.27h
Skyp Chain 0.97h

Table6.8:Average time forone fold (Curricula
Vitae).

competes well with many approaches that exploit di�erent asumptions and joint tasks and even
outperforms many results of collective information extraction techniques.
�e �rst experimental study investigated the capabilities of subgroup discovery for learning

descriptions for context-speci�c consistencies in a document. �e rules are able to identify a
great amount of correct boundaries independently of the quality of the input. �e evaluation
showed also the limitation of the approach. If no valuable prediction is available, then no
consistencies at all can be learnt. Another problem can be identi�ed in documents where the
set of features and properties are not su�cient for describing the aspects of consistencies. Both
situations can cause a decrease of accuracy when the learnt consistencies are exploited in further
models. �e experimental evaluation is supplemented by a more realistic scenario where a
Conditional Random Field with optimal con�guration is applied for predicting the entities. �e
subgroup discovery task is still able to improve the identi�cation of the boundaries.
�e approaches based on Conditional Random Fields can be compared using di�erent per-

spectives like the necessary e�ort for the implementation and the quality of their extractions.
�e stacked approach is clearly the most straightforward to implement since it only requires to
connect two models with an intermediate phase for inducting the feature functions. �e comb-
chain and skyp-chain approach require a bit more e�ort to implement. �ey de�ned a new clique
template that integrates the induction of the consistency, which requires a prediction of the
entities. �us, the utilized implementation of the Conditional Random Field needs to be adapted
in order to either access the current model or for asking an external model for incrementally
unrolling the graph during inference. When comparing the results of the di�erent approaches,
the skyp-chain model clearly falls back behind the other models due to the inference problems
in its cyclic graph structure. Using more sophistical inference techniques like SampleRank [174],
the model should be able to exploit its full potential. Di�erences between the stacked model and
the comb-chain model in their current con�guration consist mostly in the representation and
integration of the information about the consistencies. Overall, the comb-chain model provides
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some more advantages since it allows one potentially to incrementally unroll its graph structure
dependent on its own prediction.
An interesting observation can be made when the results of the evaluation of the consistency

learning task for curricula vitae is compared to the results of the comb-chain approach exploiting
the consistencies in the same domain. �e subgroups are able to achieve an error reduction of
about 16% for detection the correct boundaries of clients and dates. �e comb-chain approach is,
however, able to achieve an average error reduction of about 30%. �is improvement highlights a
very nice feature of the presented approach. �e description of the context-speci�c consistencies
does not need to be perfect in order to achieve good results when exploiting them. If the
subgroups classify to many tokens as boundaries of an entity, then the Conditional Random
Field is able to take advantage of the correct ones. Additionally, in situations where the subgroups
missed correct boundaries, the Conditional Random Field can still rely on its own mechanisms.
A closer look at the results of the stacked and the comb-chain approach for segmentation of

references reveals that the results of the baseline and also the achieved scores of the presented
techniques di�er considerably. �is discrepancy is caused by various factors. �e experimental
setting of the comb-chain approach de�ned a smaller set of entities. �e information extraction
task is limited to the identi�cation of the author, title, date and venue. �us, the learning task is
much simpler and higher scores can be achieved. However, this variation of the setting is not
the only reason. �e comb-chain approach utilized another implementation of Conditional
Random Fields and also a di�erent inference technique. Furthermore, the models of the stacked
approach are applied on the references separately and use transition-based descriptions for
modeling the consistencies. In contrast to this, the higher-order models process the complete
reference sections at once and utilize the boundaries of entities for describing the consistencies.

168



Chapter 7

Conclusion

�is chapter provides a summary of the presented work and discusses its contribution. Fur-
thermore, an outlook highlights di�erent options for future work that will further improve the
impact of exploiting context-speci�c consistencies in information extraction.

7.1 Summary
Information extraction addresses the identi�cation of well-de�ned entities and relations in
unstructured data and especially in textual documents. A vast amount of information is stored
and exchanged in an unstructured representation since it is mainly intended to be interpreted
by humans. In order to access the concealed information for analytic processes, it has to be
transformed into a structured representation. Hence, information extraction has become a
key component in the integration of textual data and can be considered as an umbrella term
for many interesting tasks such as named entity recognition, sentiment analysis or knowledge
extraction. Approaches to information extraction can roughly be divided into two main cate-
gories: approaches based on handcra�ed rules and approaches based on statistical models
trained in a supervised fashion.
When extracting entities and relations it is o�en assumed that the information in textual

documents is independent and identically distributed (iid). However, many documents violate
these assumptions. Especially semi-structured documents o�en contain a special form of
long-range dependencies between entities. �e context in which the textual data is created or
written introduces a homogeneous composition of the entities. �ese dependencies are called
context-speci�c consistencies in this work. If these consistencies are not taken into account,
then the information extraction system faces a heterogeneous and inconsistent composition
of the entities in the complete dataset. However, by considering the consistencies between
entities within a context and processing those entities collectively, many labeling errors can be
prevented.
�is work provided an investigation of context-speci�c consistencies and presented di�er-

ent approaches for exploiting these consistencies in order to improve information extraction
applications: approaches based on handcra�ed rules and approaches based on probabilistic
models using supervised machine learning. Furthermore, the rule-based system UIMA Ruta
has been developed in order to support and improve the knowledge engineering process when
writing rules sensitive to the consistencies. �ese contributions are shortly summarized in the
following.

169



Chapter 7: Conclusion

UIMARuta is a rule-based system for information extraction and for general natural language
processing tasks. A special focus of the system lies on a compact rule language with a high
expressiveness combined with strong development support. �ese attributes facilitate rapid
development of rule-based applications and thus reduce onemajor bottleneckwhen handcra�ing
extraction knowledge: the time and costs of the engineering task. UIMA Ruta provides most
of the features of related systems concerning language and tooling support. Furthermore, it
introduces several new and useful elements that are not found in other systems. �ese include
amongst others a coverage-based concept of visibility, powerful vertical matching or estimation
of the rules’ quality on unlabeled documents. UIMA Ruta has not been speci�cally created for
exploiting context-speci�c consistencies. It is a useful general-purpose tool for many diverse
use cases. In contrast to other systems, however, it provides some features that facilitate the
integration of context-speci�c consistencies in rule-based applications. Amongst others, these
include language elements rather unknown to rule languages. Lists and variables help to model
consistencies with rule sets and allow one to integrate dynamic knowledge about the currently
processed document. An example for this fact is the usage of variables in the matching condition
of a rule in order to process an entity dependent on the dominant composition of all entities.
Another important aspect consists in the availability of di�erent engineering approaches. Due
to the high expressiveness of its language, UIMA Ruta supports always more than one approach
to solve an annotation problem, which can be essential for dealing with di�erent aspects of
consistencies. Besides these properties, e�cient and e�ective engineering is also helpful when
handcra�ing rule sets for context-speci�c consistencies and leads to an improved engineering
experience in general.
�ree case studies highlight di�erent engineering approaches that enable a knowledge en-

gineer to integrate the consistencies in rule-based applications. In the �rst case study, simple
precision-driven rules are extended with rules for �nding additional entities that share a compo-
sition similar to detected ones. �is approach is very e�ective and e�cient since the utilized
rules are easy and fast to engineer. Even if the resulting applications are not su�cient for solving
real-world information extraction tasks, they provide many advantages. �e approach can be
utilized for creating prototypes, which perform almost as good as corresponding applications, or
for a fast analysis of a domain, e.g., by extracting lists of entities. �e results can then be applied
to accelerate the development of the actual application. �e engineering approach is evaluated
for the identi�cation of companies in curricula vitae and for detecting headlines in clinical
discharge letters. Both rule sets are able to achieve an F1 score of over 0.97 for unseen documents
in the respective domain and have been created in less than two hours. �e experimental setup
is limited but re�ects realistic conditions in real-world scenarios. A feasibility study should
be performed with a limited amount of documents, which prevents the usage of supervised
machine learning approaches. �e second case study considers a di�erent domain and a more
sophisticated approach for exploiting context-speci�c consistencies. Here, rules are applied in a
transformation-based manner in order to segment scienti�c references. An initial set of rules
extracts interesting entities like author, title and date. �en, rules investigate the composition of
the entities and create a model of di�erent aspects of the occurring context-speci�c consistencies.
�is model is utilized by transformation-based rules in order to modify the initial entities. �e
rules reclassify and change the o�sets of the entities until they con�rm with the dominant com-
position of entities of the same type in the current document. �e procedure greatly increases
the accuracy of the application if the assumption about the consistent composition of entities is
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ful�lled. �is case study illustrates some advantages of the rule language of UIMA Ruta. �e
model of consistencies is speci�ed using only language elements of UIMA Ruta. �e properties
of the consistent composition are stored in variables and thus can be directly integrated in
rules. Furthermore, the necessary transformation can be e�ciently speci�ed in UIMA Ruta
since the language allows one to modify arbitrary annotations with specialized actions. �e
combination of the three phases is able to achieve an F1 score of 0.997 for consistently formatted
references. While the experimental setup is limited, it highlights the power of this engineering
approach. �e last case study investigates the usage of consistencies in a complete application.
�e rules of this case study identify and categorize sections in clinical discharge letters. In these
sections, specialized information extraction models are applied in order to populate a clinical
data warehouse. �e rules utilize di�erent approaches including semantic keywords, formatting
and also context-speci�c consistencies in order to remove false positive headlines in a set of
potential candidates. �us, the consistencies are applied in order to increase the precision.
Additional rules utilize the headlines in order to identify the sections and their categories. �e
rules are able to achieve an F1 score of 0.992 in a test set of 200 unseen documents. Overall, this
case study highlights the usefulness of exploiting context-speci�c consistencies in a throughout
engineered application. Although the rules have been optimized to perform in a best possible
manner, the integration of the consistencies was still able to further improve the accuracy.
�e part of this work that considers machine learning starts with techniques how to learn a

model of the context-speci�c consistencies. �e general approach is based on in utilizing binary
classi�ers in order to describe speci�c aspects of the consistencies like the boundaries of entities
or transitions between speci�c types of entities. �is approach provides several advantages
compared to related work. Learning a model represented by a set of classi�ers enables the usage
of a combination of features instead of only one speci�c property. �us, the consistencies can be
described more precisely. Another advantage of a distinct model results from the fact that this
model can be applied not only tomake statements about how consistent an entity is, but also what
other, not yet considered positions ful�ll the di�erent aspects of consistency. �e modeling of
the context-speci�c consistencies is evaluated separately from the actual information extraction
task in two experimental settings. In both settings, the domains of curricula vitae and references
are considered. �e �rst experiment investigates the ability of subgroup discovery to classify the
correct boundaries of entities given erroneous training data. For this purpose, a gold standard
dataset is incrementally deteriorated by replacing a correct boundary by an incorrect one. �e
learnt rules are able to greatly improve the F1 score and even classify the boundaries of the
entities correctly despite of only minimal amount of correct input data. �e second experiment
investigates the performance of subgroup discovery on more realistic predictions. �e learnt
rules achieve an error reduction of 16%-30% for the classi�cation of boundaries compared to
the prediction provided by a �ve-fold Conditional Random Field.
�ree approaches based on Conditional Random Fields are presented that utilize the learnt

model in order to exploit the context-speci�c consistencies. �e �rst approach applies stacked
Conditional Random Fields with two phases. �e initial model provides a prediction of the
entities in a document, which is utilized in order to learn a model of the consistencies. �e
stacked model is extended with additional feature functions that provide static semantics for
the model, but change their manifestation dependent on the currently induced consistencies.
�is is achieved by directly utilizing the rules of the consistency model as feature functions.
�e approach is evaluated for the segmentation of references and is able to achieve an F1
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score of 0.940 in a cross fold setting. �is constitutes an error reduction of 30% compared
to a baseline Conditional Random Field. �e remaining approaches based on Conditional
Random Fields add additional factors dependent on the learnt consistency model. Both models
utilize a prediction of entities provided by an external Conditional Random Field. �us, their
approach is similar to stacking the models, but they also support an incremental unfolding of
the graph during inference. �e �rst model called comb-chain extends the probabilistic graph
with unigram factors on the positions indicated by the learnt rules. New feature functions
represent consistent positions (true positive) as well as missing (false positive) and additional
(false negative) positions compared to the prediction. �e secondmodel is called skyp-chain and
extends the graph structures with long-range dependencies between interesting positions. �e
same set of feature functions is applied as before. �e experimental results for the segmentation
of references and entity extraction in curricula vitae again indicate an error reduction of up to
30% compared to a baseline Conditional RandomField. �e comb-chainmodel overall performs
better due to inference problems in the more complex graph structure of the skyp-chain model.
It achieves an F1 score of 0.976 (references), 0.962 (dates in curricula vitae) and 0.814 (companies
in curricula vitae). �e discrepancy of the results concerning the segmentation of references
compared to the results of the stacked approach is mainly caused by the usage of a di�erent set
of labels and speci�cation of an instance.
In summary, the presented approaches provide practical solutions for exploiting context-

speci�c consistencies that have considerable impact in real-world applications. UIMA Ruta
enables the knowledge engineer to integrate the consistencies in rapid prototypes as well as
in complex rule-based applications. �e machine learning approaches are able to achieve an
error reduction of 30% compared to a Conditional Random Field while still relying on common
techniques. �us, the presented models compete well with published approaches for improved
models, e.g., collective information extraction, joint inference in information extraction or
other models that exploit long-range dependencies. A direct comparison of approaches based
on handcra�ed rules and approaches based on machine learning is problematic, because the
quality of the rules is inherently in�uenced by the human factor. �e experimental evaluations
are called case studies because they are hardly reproducible leading to same results. Either
a di�erent knowledge engineer with other training or capabilities is employed, or the initial
knowledge engineer gained knowledge just by the work she performed. �is fact prevents an
evaluation in a cross-fold setting. �e machine learning approaches are easier to evaluate. Given
the labeled data, the extracted features and the algorithms, the same results can be reproduced.
�e results of the rule-based case studies seem to be superior to the results of the machine
learning evaluations if only the absolute scores are considered. Nevertheless, a conclusion that
rule-based approaches perform better would be wrong. �e rule engineer is able to integrate
extraction knowledge beyond the given examples. She can think of possible situations that
might occur in the other documents like the test set, and specify the rules accordingly. �e
machine learning approaches solely rely on the labeled examples. Both approaches have been
evaluated for the segmentation of references and entity extraction in curricula vitae. However,
the documents applied for evaluating the machine learning approaches are much more realistic
and problematic. While the examples used in the rule-based case studies are well-formatted, the
labeled entities in the machine learning evaluation not always share a consistent composition.
Either the author of the document accidently changed the layout, did not care about the structure,
or preprocessing steps broke the consistencies. Nevertheless, the approaches performed well in

172



7.2 Outlook

this realistic setting. �e rule-based case studies also contain a domain with documents where
the context-speci�c consistencies are not always ful�lled: the clinical discharge letters. However,
the results in this domain indicate an F1 score of 0.992, a result that highlights that potential
problems can be solved with rule-based approaches.

7.2 Outlook
�e presented approaches in this work already provide well-suited techniques for exploiting
context-speci�c consistencies in information extraction. However, there remain many possibili-
ties to further improve these approaches or to transfer speci�c ideas to other approaches, tasks
and methodologies. Besides these improvements, the general idea and techniques can also be
applied in di�erent domains.
UIMA Ruta provides language elements and functionality in order to engineer rules sensitive

to context-speci�c consistencies in an e�cient and e�ective manner. �e engineering process
can, however, be further improved by providing more complex actions like operations on lists.
Currently, these include only the selection of an element in a list that occurs most o�en, which
has been applied in order to determine the dominant properties of consistency. It will help
the knowledge engineer to rapidly specify dependencies between entities without relying on
additional functionality de�ned in another language like Java. Besides improvements concerning
context-speci�c consistencies, many interesting options for future work can be identi�ed. �ese
include enhancements of the runtime performance by compiling sets of rules into �nite-state
transducers or by using optimized execution plans that extend dynamic anchoring. Another
interesting direction is the further development of rule learning algorithms that induce human-
readable rule sets. �e KEP algorithms introduced in Section 4.3.6 takes advantage of rule
engineering patterns and provides a �rst step in this direction.
�e approaches of this work illustrated their advantages separately from each other. Each

approach provides distinct advantages and is suited for di�erent settings. A combination of the
approaches has the potential to bene�t from the di�erent strengths and to further increase the
e�ect of exploiting context-speci�c consistencies. Examples for possible combinations are mani-
fold. �e knowledge engineering approaches relied solely on handcra�ed extraction knowledge,
which also includes the induction of the consistencies occurring in the currently processed doc-
ument. �us, the model of consistencies is rather limited compared to the presented approach
based on binary classi�ers. �is more powerful technique can also be utilized in rule-based
applications. A�er acquiring an initial prediction of entities, the consistencies are modeled with
machine learning techniques (subgroup discovery) instead of using handcra�ed rules. �en,
this improved description can be utilized by other rules in order to identify additional entities,
�lter inconsistent entities, or repair entities in order to con�rm with the learnt consistencies.
Especially the improved quality function will provide many advantages for approaches based
on a small amount of highly con�dent entities. Another example is the combination of ap-
proaches based on Conditional Random Fields with transformation-based rules. �ese rules
can simply be applied a�er a model like the comb-chain approach processed the document. �e
transformation-based rules operate on the entities extracted by the probabilistic model. �e
rules face, for example, fewer problems to express long-range dependencies and thus are able to
remove a variety of the remaining errors.
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�is work applied subgroup discovery in order to learn a model of the context-speci�c
consistencies. �is technique works well, but there are always options to improve this task in
general or for a speci�c domain. Statistical models are able to include a large amount of features
in their classi�cation decision and potentially provide the capability to model the consistencies
more precisely. An interesting option is the integration of background knowledge, e.g., the
expected amount of entities, in the optimization objective when training the statistical model.
Furthermore, additional documents including labeled and unlabeled examples can be utilized
amongst others for selecting or pruning the set of applied features.
Concerning the approaches based on Conditional Random Fields, more complex models

with sophisticated inference techniques have the potential to perform better than the presented
models. �e work of Gupta et al. [94] about the properties-based collective inference and the
work of Blei et al. [25] on generative models with scope present interesting extensions. �ey
either provide inference techniques better suited for complex graph structures or integrate the
induction of the consistencies directly in the graphical model. However, ideas of this work
should be integrated in these models in order to overcome their drawbacks, which are described
in Section 3.4.1.
�e knowledge engineering approach based on transformations presents a potent methodol-

ogy for exploiting context-speci�c consistencies in information extraction. Here, the stacked
rules do not extract the entities anew, but only correct potential errors of the given entities. �is
idea of applying transformations can also be utilized in approaches based on machine learning.
A �rst step consists in automatically inducing the transformations in a supervised fashion with
the TraBaL algorithm presented in Section 4.3.6. �is rule induction algorithm is able to learn
transformation-based rules for a speci�c component given labeled examples. By providing the
information of the model for context-speci�c consistencies, the induced rules are able to take
advantage of the identi�ed consistent and inconsistent positions. Even more promising is the
development of a statistical model that is able to perform transformations instead of sequence
labeling. It could consist in a set of Support Vector Machines that specify the transformations or
a graphical model with a graph structure that does not re�ect the token sequence, but chunks of
label shi�s. �is approach potentially provides the advantages of including a large amount of
features and does not need to repeat the work of an initial model.
Context-speci�c consistencies can also be exploited for other tasks. One idea is the estimation

of a component’s quality by analyzing how consistent the extracted entities are. �e approach for
learning a model of consistencies can be utilized in the constraint-driven evaluation framework
presented in Section 4.3.5. Here, a constraint rates, for example, the violations compared to
the learnt consistencies. �e basic idea has already been used in the creation and validation
of gold standard documents. Under the assumption that entities share a similar composition,
the model of context speci�c consistencies is able to point out false positive and false negative
entities. Several erroneous entities created by human annotators have been found using this
approach in the labeled datasets for references and curricula vitae.
When pursuing this idea further, one ends up in improving the parameter estimation of

probabilistic models. Several approaches for semi-supervised training of Conditional Random
Fields have been proposed (cf. [16, 15, 146]). �e approaches apply background knowledge and
expectations in order to estimate the parameters using unlabeled documents. �ese techniques
can be extended by constraints that are sensitive to context-speci�c consistencies. In suitable
domains where the assumptions about the consistencies are ful�lled, the estimation of the model
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parameters can be supported by measuring how consistent the predicted label sequence is.
All approaches and domains presented in this work assume that there exists a trivial mapping

between instances and their context. In most domains, the context is given by the document
and all instances or entities are automatically associated with this context. It is possible that
this assignment is not straightforwardly given in some domains. �us, approaches need to be
developed, which are able to associate a set of instances to a given context or de�ne the contexts
from scratch. �is task resembles clustering or classi�cation of documents whereas one cluster
or category refers to one context.
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