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Abstract

Information on the state of the terrestrial vegetation cover is important for several ecological,
economical, and planning issues. In this regard, vegetation properties such as the type,
vitality, or density can be described by means of continuous biophysical parameters. One of
these parameters is the leaf area index (LAI), which is defined as half the total leaf area per
unit ground surface area. As leaves constitute the interface between the biosphere and the
atmosphere, the LAI is used to model exchange processes between plants and their
environment. However, to account for the variability of ecosystems, spatially and temporally
explicit information on LAI is needed both for monitoring and modeling applications.

Remote sensing aims at providing such information. LAI is commonly derived from remote
sensing data by empirical-statistical or physical models. In the first approach, an empirical
relationship between LAI measured in situ and the corresponding canopy spectral signature
is established. Although this method achieves accurate LAI estimates, these relationships are
only valid for the place and time at which the field data were sampled, which hampers
automated LAI derivation. The physical approach uses a radiation transfer model to simulate
canopy reflectance as a function of the scene’s geometry and of leaf and canopy parameters,
from which LAI is derived through model inversion based on remote sensing data. However,
this model inversion is not stable, as it is an under-determined and ill-posed problem.

Until now, LAI research focused either on the use of coarse resolution remote sensing data
for global applications, or on LAI modeling over a confined area, mostly in forest and crop
ecosystems, using medium to high spatial resolution data. This is why to date no study is
available in which high spatial resolution data are used for LAI mapping in a heterogeneous,
natural landscape such as alpine grasslands, although a growing amount of high spatial and
temporal resolution remote sensing data would allow for an improved environmental
monitoring. Therefore, issues related to model parameterization and inversion regularization
techniques improving its stability have not yet been investigated for this ecosystem.

This research gap was taken up by this thesis, in which the potential of high spatial resolution
remote sensing data for grassland LAI estimation based on statistical and radiation transfer
modeling is analyzed, and the achieved accuracy and robustness of the two approaches is
compared. The objectives were an ecosystem-adapted radiation transfer model set-up and an
optimized LAI derivation in mountainous grassland areas. Multi-temporal LAI in situ
measurements as well as time series of RapidEye data from 2011 and 2012 over the
catchment of the River Ammer in the Bavarian alpine upland were used.

In order to obtain accurate in situ data, a comparison of the LAI derivation algorithms
implemented in the LAI-2000 PCA instrument with destructively measured LAI was
performed first. For optimizing the empirical-statistical approach, it was then analyzed how
the selection of vegetation indices and regression models impacts LAI modeling, and how
well these models can be transferred to other dates. It was shown that LAI can be derived
with a mean accuracy of 80 % using contemporaneous field data, but that the accuracy
decreases to on average 51 % when using these models on remote sensing data from other
dates. The combined use of several data sets to create a regression which is used for LAI
derivation at different points in time increased the LAI estimation accuracy to on average
65 %. Thus, reduced field measurement labor comes at the cost of LAI error rates being
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increased by 10 - 30 % as long as at least two campaigns are conducted. Further, it was shown
that the use of RapidEye’s red edge channel improves the LAI derivation by on average 5.4 %.

With regard to physical LAI modeling, special interest lay in assessing the accuracy
improvements that can be achieved through model set-up and inversion regularization
techniques. First, a global sensitivity analysis was applied to the radiation transfer model in
order to identify the most important model parameters and most sensitive spectral features.
After model parameterization, several inversion regularizations, namely the use of a multiple
sample solution, the additional use of vegetation indices, and the addition of noise, were
analyzed. Further, an approach to include the local scene’s geometry in the retrieval process
was introduced to account for the mountainous topography. LAI modeling accuracies of in
average 70 % were achieved using the best combination of regularization techniques, which is
in the upper range of accuracies that were achieved in the few existing other grassland
studies based on in situ or air-borne measured hyperspectral data. Finally, further physically
derived vegetation parameters and inversion uncertainty measures were evaluated in detail
to identify challenging modeling conditions, which was mostly neglected in other studies. An
increased modeling uncertainty for extremely high and low LAI values was observed. This
indicates an insufficiently wide model parameterization and a canopy deviation from model
assumptions on some fields. Further, the LAI modeling accuracies varied strongly between
the different scenes. From this observation it can be deduced that the radiometric quality of
the remote sensing data, which might be reduced by atmospheric effects or unexpected
surface reflectances, exerts a high influence on the LAI modeling accuracy.

The major findings of the comparison between the empirical-statistical and physical LAI
modeling approaches are the higher accuracies achieved by the empirical-statistical approach
as long as contemporaneous field data are available, and the computationally efficiency of the
statistical approach. However, when no or temporally unfitting in situ measurements are
available, the physical approach achieves comparable or even higher accuracies.
Furthermore, radiation transfer modeling enables the derivation of other leaf and canopy
variables useful for ecological monitoring and modeling applications, as well as of pixel-wise
uncertainty measures indicating the robustness and reliability of the model inversion and
LAI derivation procedure. The established look-up tables can be used for further LAI
derivation in Central European grassland also in other years.

The use of high spatial resolution remote sensing data for LAI derivation enables a reliable
land cover classification and thus a reduced LAI mapping error due to misclassifications.
Furthermore, the RapidEye pixels being smaller than individual fields allow for a radiation
transfer model inversion over homogeneous canopies in most cases, as canopy gaps or field
parcels can be clearly distinguished. However, in case of unexpected local surface conditions
such as blooming, litter, or canopy gaps, high spatial resolution data show corresponding
strong deviations in reflectance values and hence LAI estimation, which would be reduced
using coarser resolution data through the balancing effect of the surrounding surface
reflectances. An optimal pixel size with regard to modeling accuracy hence depends on the
canopy and landscape structure. Furthermore, a reduced spatial resolution would enable a
considerable acceleration of the LAI map derivation.

This illustration of the potential of RapidEye data and of the challenges associated to LAI
derivation in heterogeneous grassland areas contributes to the development of robust LAI
estimation procedures based on new and upcoming, spatially and temporally high resolution
remote sensing imagery such as Landsat 8 and Sentinel-2.
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Zusammenfassung

Informationen zum Zustand der Vegetation sind relevant fiir einige Okologische,
okonomische, und planerische Fragestellungen. Vegetationseigenschaften wie der Typ, die
Vitalitdt oder die Dichte einer Pflanzendecke konnen dabei anhand von kontinuierlichen
biophysikalischen Parametern beschrieben werden. Einer dieser Parameter ist der
Blattflachenindex (engl. leaf area index, LAI), der als die halbe gesamte Blattoberfldche pro
Bodenoberfliche definiert ist. Da die Blattfliche eine wichtige Schnittstelle zwischen der
Biosphire und der Atmosphire darstellt, wird der LAI dazu verwendet, Austauschprozesse
zwischen Pflanzen und ihrer Umwelt zu modellieren. Um die natiirliche Variabilitiat von
Okosystemen beriicksichtigen zu konnen, bendtigt man fiir solche Monitoring- und
Modellierungsanwendungen jedoch raumlich und zeitlich explizite LAI Informationen.

Die Fernerkundung stellt solche Informationen zur Verfiigung. Fernerkundungsbasierte LAI-
Kartierung basiert auf empirisch-statistischen und physikalischen Modellen. Im ersten
Ansatz wird ein empirisches Verhaltnis zwischen dem aufgezeichneten Reflexionssignal der
Vegetationsdecke und in situ gemessenem LAI erstellt. Obwohl dieses Verfahren meist hohe
Genauigkeiten erzielt, gilt das erstellte Verhiltnis nur fiir den Ort und Zeitpunkt der
Feldmessungen, was ein automatisiertes Verfahren behindert. Der physikalische Ansatz
verwendet ein Strahlungstransfermodell um die spektrale Signatur einer Pflanzendecke in
Abhingigkeit von der Szenengeometrie und verschiedenen Blatt- und Pflanzenparametern zu
simulieren, von der LAI durch die Inversion des Modells basierend auf Fernerkundungsdaten
abgeleitet wird. Die Modellinversion ist jedoch nicht stabil, da sie ein unterdeterminiertes
und inkorrekt gestelltes Problem ist.

Bisher fokussierten LAI-Studien entweder auf die Verwendung raumlich grob ausgeloster
Fernerkundungsdaten fiir globale Anwendungen, oder auf LAI-Modellierung fiir Walder und
Anbaufriichte innerhalb eines rdumlich eingeschrinkten Gebiets basierend auf mittel und
hoch aufgelosten Daten. Obwohl die Menge an rdumlich und zeitlich hoch aufgelosten
Fernerkundungsdaten fiir ein verbessertes Umweltmonitoring kontinuierlich zunimmt,
fiihrte dies dazu, dass es keine Studie gibt die sich mit der Ableitung des LAI in heterogenen
Landschaften wie beispielsweise alpinem Griinland, basierend auf raumlich hoch aufgelosten
Daten, beschiftigen. Dementsprechend wurden damit verbundene Aspekte wie die
Modellparametrisierung und Regularisierungsmoglichkeiten der Inversion fiir dieses
Okosystem noch nicht untersucht.

Diesem Forschungsbedarf wird mit dieser Arbeit, in der das Potenzial rdumlich hoch
aufgeloster Fernerkundungsdaten fiir die Ableitung von Griinland-LAI basierend auf
statistischen Modellen und Strahlungstransfermodellierung analysiert wird, und in der die
Genauigkeiten und Stabilitdt beider Verfahren verglichen werden, begegnet. Die Ziele der
Arbeit sind eine an das Griinlandokosystem angepasste Einrichtung des
Strahlungstransfermodells und die Ableitung des LAI fiir Griinland im Gebirgsraum.
Multitemporale in situ LAI-Messungen sowie RapidEye-Zeitreihen aus den Jahren 2011 und
2012 aus dem Ammereinzugsgebiet im bayrischen Voralpenland wurden dazu verwendet.

Um verlassliche in situ Messwerte zu erhalten, wurde zunichst ein Vergleich der im LAI-
2000 PCA Messinstrument implementierten Algorithmen mit destruktiv erhobenen LAI
Werten durchgefiihrt. Zur Optimierung des empirisch-statistischen Ansatzes wurde dann
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untersucht, in welchem MaBe die Verwendung verschiedener Vegetationsindizes und
Regressionsmodelle die LAI-Modellierung beeinflussen, und wie gut diese Modelle auf
andere Zeitpunkte tibertragen werden konnen. Es wurde gezeigt, dass unter Verwendung von
zeitgleich erhobenen Felddaten der LAI mit einer mittleren Genauigkeit von 80 % abgeleitet
werden kann, dass sich die Genauigkeit aber auf 51 % verringert, wenn die Modelle auf
Fernerkundungsdaten anderer Zeitpunkte angewendet werden. Die gemeinsame Nutzung
mehrerer Felddatensidtze zur Erstellung einer Regression welche auf andere Zeitpunkte
angewendet wird, erhohte die Genauigkeit der LAI-Ableitung wiederum auf durchschnittlich
65 %. Ein verringerter Arbeitsaufwand fiir Feldmessungen wird also durch erhohte
Fehlerraten von 10 - 30 % pro Szene ausgewogen, solange mindestens zwei Messkampagnen
durchgefiihrt werden. AuBerdem wurde gezeigt, dass die Verwendung des “red edge” Bandes
des RapidEye Sensors die LAI-Ableitung um im Mittel 5.4 % verbessert.

Im Hinblick auf die physikalische LAI-Modellierung waren vor allem die Verbesserung der
Genauigkeit, die anhand von Modelleinstellungen und Regularisierungstechniken erzielt
werden konnten, von Interesse. Zunidchst wurde eine globale Sensitivititsanalyse des
Strahlungstransfermodells durchgefiihrt, um die wichtigsten Modellparameter und die
sensitivsten spektralen Bereiche zu identifizieren. Nach der darauf basierenden
Modellparametrisierung wurden in den nachsten Schritten mehrere Verfahren zu
Stabilisierung der Inversion, namlich die Verwendung multipler Losungen, von
Vegetationsindizes als Inputdaten, und von simuliertem Datenrauschen, analysiert.
AuBerdem wurde ein Ansatz eingefiihrt, der die Beriicksichtigung der lokalen
Szenengeometrien, und damit der Topographie des Untersuchungsgebietes, erlaubt.
Genauigkeiten von im Mittel 70 % konnten fiir die LAI-Modellierung unter Verwendung der
besten Modell- und Inversionseinstellungen erreicht werden. Diese sind mit den Ergebnissen
anderer Griinland-Studien, die jedoch auf in situ oder flugzeuggetragen gemessenen
hyperspektralen Daten beruhen, vergleichbar. Zuletzt wurden weitere physikalisch
modellierte Vegetationsparameter sowie InversionsunsicherheitsmaBe evaluiert, um
besonders schwierige Modellierungsbedingungen zu identifizieren, was in anderen Studien
bisher meist vernachlassigt wurde. Erhohte Modellierungsunsicherheiten wurden fiir die
Ableitung besonders niedriger und hoher LAI Werte beobachtet, was auf eine ungentigend
weit gefasste Modellparametrisierung und stellenweise Abweichungen der Vegetationsdecke
von den Modellannahmen hinweist. AuBerdem variieren die Genauigkeiten der LAI-
Modellierung stark zwischen den einzelnen Szenen woraus abgeleitet werden kann dass die
radiometrische Qualitit der Fernerkundungsdaten, welche beispielsweise durch
atmosphirische Effekte oder unerwartete Oberflichenreflexionen beeinfluss werten kann,
einen groBen Einfluss auf die Modellierungsgenauigkeit hat.

Im Vergleich der empirisch-statistischen und physikalischen LAI-Modellierung fiel der
empirisch-statistische Ansatz mit hoheren Genauigkeiten, solange zeitgleich aufgenommene
Felddaten vorliegen, sowie mit einer geringeren Berechnungszeit auf. Wenn jedoch keine
zeitlich passenden Felddaten vorhanden sind, erreicht die physikalische Modellierung
vergleichbare oder sogar hdohere Genauigkeiten. Des Weiteren ermdglicht das
Strahlungstransfermodel die Ableitung weiterer Blatt- und Pflanzeneigenschaften, welche fiir
okologische Monitoring- und Modellierungsanwendungen niitzlich sind. Auerdem werden
pixelgenaue Unsicherheitsmale generiert, welche die Stabilitit und Verlasslichkeit der
Modellinversion und des gewonnenen LAI-Wertes charakterisieren. Die erstellten
Datenbanken konnen dariiber hinaus fiir die LAI-Modellierung in anderen
Mitteleuropaischen Griinlandern auch in anderen Jahren verwendet werden.
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Die Verwendung von hochaufgelosten Fernerkundungsdaten ermoglicht eine verlassliche
Landbedeckungsklassifikation und verringert damit Fehler in der LAI-Modellierung die
durch Fehlklassifikationen verursacht werden. Da die RapidEye-Pixel auBBerdem kleiner als
einzelnen Felder sind, konnte das Strahlungstransfermodell in den meisten Fillen iiber
homogenen Pflanzendecken invertiert werden. Angesichts unerwarteter lokaler
Oberflachenreflexionen, hervorgerufen beispielsweise durch Bliiten, Streu, oder Liicken,
zeigen die hochaufgelosten Daten jedoch auch entsprechend starke Abweichungen, welche in
grober aufgelosten Daten durch die Reflexion der umgebenden Oberflichen verringert sind.
Eine optimale PixelgroBe im Hinblick auf die Modellierungsgenauigkeit hiangt also von der
Struktur der Vegetationsdecke und der Landschaft ab. Eine verringerte PixelgroBe wiirde
dariiber hinaus die Ableitung von LAI-Karten deutlich beschleunigen.

Diese Darstellung des Potenzials von RapidEye Daten fiir LAI-Modellierung und der
speziellen Herausforderungen an die genutzten Verfahren in heterogenen Griinlindern kann
zur Entwicklung von robusten LAI-Ableitungsverfahren beitragen, anhand welcher neue,
raumlich und zeitlich hoch aufgeloste, Fernerkundungsdaten wie die der Landsat 8 oder
Sentinel-2 Sensoren in Wert gesetzt werden konnen.
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1. Introduction

This thesis analyzes and compares the potential of high spatial resolution remote sensing
(RS) data for the estimation of grassland leaf area index (LAI) based on statistical
relationships and radiation transfer modeling. The overall aim is an ecosystem-adapted
radiation transfer model (RTM) set-up and optimized LAI derivation in mountainous
grassland areas of the Ammer catchment. In this introduction, the relevance of
environmental monitoring based on RS data for various applications is emphasized (chapter
1.1), with special focus on the LAI parameter (chapter 1.2). The common procedures for LAI
estimation as well as their limitations in general and with regard to grasslands and
mountainous landscapes are briefly outlined (chapter 1.3). Subsequent to that, emerging
research issues, the objectives, and innovative analyses of this thesis are presented, followed
by a short overview of the structure of the thesis (chapter 1.4).

1.1. Remote sensing for environmental monitoring

Information on the state of the earth’s surface is important for several ecological, economical,
and planning issues. For instance, in addition to information about land cover and land use,
monitoring the phenological stage, vitality, or density of vegetation is of high interest for
agricultural applications and environmental protection. Furthermore, these vegetation
properties directly influence natural processes in vegetation canopies, which makes their
knowledge crucial for understanding terrestrial biosphere processes (Foley et al., 2000; Baret
and Buis, 2008). Process-based models, which simulate these interactions between plants
and their environment by linking them to driving variables like weather condition and
nutrient availability, are increasingly being used to understand ecosystem dynamics. The
simulations from these models are highly dependent on the accuracy of vegetation
biophysical properties (Running et al., 1989). Hence, sciences such as climatology, hydrology,
and ecology, which aim at emulating, quantifying, and ultimately predicting natural
processes over a wide range of scales, strongly rely on this knowledge. Vegetation properties
can be described by means of continuous physical, chemical, and biological state parameters
such as the LAI, chlorophyll and water content, the fraction of photosynthetically active
radiation (FPAR), or the fraction of vegetation ground cover. However, spatially and
temporally explicit information on these vegetation properties is needed both for scientific
monitoring and input for modelling applications (Dorigo, 2007).

RS aims at providing such information. What makes RS interesting for environmental
sciences is its ability to deliver spatially continuous and periodical observations of vegetation



1. Introduction

over large extents and also in remote areas. With the launch of the Landsat satellites in the
1970s, the scientific community recognized RS as a valuable tool. In the subsequent decades,
the retrieval of vegetation parameters has been largely addressed by the use of sensors such
as Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging
Spectroradiometer (MODIS). These sensors can provide almost daily global information,
albeit at the expense of coarser! observation supports, e.g. 1 km pixel size for AVHRR.

However, due to the increasingly relevant role of RS in environmental monitoring (Baret and
Buis, 2008) and other sectors of human activities such as urban planning, disaster
management, or civil protection, great efforts have been made to continuously improve RS
technologies. During the last two decades, a number of new high spatial resolution satellites
such as RapidEye (Tyc et al., 2005) and Landsat 8 (Irons et al., 2012) emerged. Currently, a
new generation of high spatial and temporal resolution multi-spectral land monitoring
missions is being launched including the upcoming Sentinel mission (Drusch et al., 2012)
within the Copernicus? program, or the upcoming VENus mission (Ferrier et al., 2010). Such
a growing amount of high temporal and spatial resolution RS data allows for improved
environmental monitoring, but also calls for the development of accurate, robust and
effective methods for vegetation parameter retrieval. These methods should be capable of
deriving vegetation information without requiring field calibration and be applicable to a
wide range of landscape types (Liang, 2008; Duveiller et al., 2011b; Verrelst et al., 2014).

1.2. Relevance of LAI for ecological processes

Environmental monitoring based on RS data traditionally relies on the use of vegetation
indices (VIs), which trace the relative abundance and health of vegetation. However, VIs
should only be used as measures of canopy light absorption, as they have no inherent
physical meaning related to structural, chemical, and biological vegetation state properties
(Glenn et al., 2008). Biophysical parameters on the other hand are quantifiable measures of
mass or area. One such key biophysical parameter and perhaps the most commonly used
canopy structure parameter is the LAI, which quantifies the green plant area that constitutes
the canopy-atmosphere interface. RS provides the only practical option for mapping LAI
continuously over the landscape. The importance of LAI estimates from RS for vegetation
monitoring has also been recognized by the Global Climate Observing System (GCOS), which
identified LAI as an Essential Climate Variable (ECV) and its operational generation as one of
GCOS’s main tasks (GCOS, 2006). Therefore, LAI mapping has been a major objective in RS.

The LAI is a dimensionless variable and was first defined by Watson (1947) as the total one-
sided leaf area per unit horizontal ground surface area. Although this definition is precise for
flat broad leaves, it is ambiguous for cylindrical needles and wrinkled, bent or rolled leaves,
as the one-sided leaf area is not clearly defined in these cases. Lang et al. (1991) and Chen
and Black (1992) proposed to define LAI as half the total intercepting leaf area per unit
ground surface area, because this definition is valid regardless of leaf shape, and because it
has an actual physical (e.g. radiation interception) and biological (e.g. gas exchange)
meaning. Myneni et al. (1997) suggested the use of the maximum projected leaf area per unit

t Although no universally accepted definition of spatial resolution categories exists, in this dissertation
remote sensing data are defined as very high resolution (< 1m), high resolution (1 - 20 m), medium
resolution (20 - 100 m), and coarse resolution (= 100 m) systems (see chapter 2.2.1).

2 Copernicus is a joint initiative of the European Commission (EC) and the European Space Agency (ESA)
that aims at the provision and use of operational high resolution monitoring information for environment
and security applications. For information see http://www.copernicus.eu/. Last access: April 4, 2014.
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ground surface area, which can also be related to total exchange and interception areas.
Further definitions have been proposed (e.g. Bolstad and Gower, 1990; Smith, 1991), and it is
crucial to note that the application of different LAI definitions can result in large differences
in LAI estimates for some biomes. In this thesis and close to Watson’s definition, LAI is
defined as one half the total leaf area per unit ground surface area (Jonckheere et al., 2004).

Usually, LAI measures between zero for bare soil and ten or higher for dense forests. Values
between zero and one mean that there is less leaf area than soil area. Values above one do not
necessarily mean that the soil is completely covered, as the leaves can be situated one above
the other. In contrast to other biophysical vegetation parameters such as albedo, FPAR, or
the mean foliage angle, LAI has no theoretical upper limit. LAI depends on the canopy
species composition, development stage and seasonality, site conditions, and - if
anthropogenically influenced — management practices. Hence, it is a temporally and spatially
(horizontally as well as vertically) highly variable parameter (Jonckheere et al., 2004).

Green leaves constitute the interface between biosphere and atmosphere, and thus play a
major role in several biological and ecological energy and matter exchange processes. Firstly,
photosynthesis takes place in leaves, which directly drives gas exchange of oxygen and carbon
oxide, biogenic emissions, and biomass production. Being a proxy for vegetation biomass,
LAI is an important variable for characterizing vegetation abundance and distribution across
the landscape. The estimation of biomass is required for carbon stock accounting and
monitoring, which is crucial within the framework of several international conventions
(Brown, 2002; Rosenqvist et al., 2003). Another important impact of LAI is its effect on the
hydrological cycle by quantifying the water exchange through canopy interception and
transpiration, thus influencing evapotranspiration, infiltration and runoff generation.
Further, changes in foliage density alter the albedo of a surface and thus processes on scales
from local micro-meteorological fluxes up to the earth’s radiation balance (Bonan, 1997).

Due to these interrelations with gas, water and energy fluxes, the availability of spatially and
temporally distributed information on LAI is crucial for spatially explicit ecological,
hydrological, and climate modeling over a wide range of grid scales (Bonan, 1993; Dorigo et
al., 2007; van Gorsel et al., 2011). LAI is employed in most land surface process models,
which are also called ecosystem process models (Running and Coughlan, 1988; Nemani et al.,
1993) or Soil-Vegetation-Atmosphere-Transfer (SVAT) models (Flerchinger et al., 1998;
Foley et al., 2000). On the large scale (regional to global), SVAT models are linked to
hydrological models (Kunstmann, 2008), atmospheric circulation models (Bonan, 1995;
Sellers et al., 1996; Sellers, 1997), net primary productivity models (Running et al., 1989;
Cayrol et al., 2000; Matsushita and Tamura, 2002), or carbon cycle models (Turner et al.,
2004) through the fluxes in terrestrial vegetation described above. Next to LAI, other
remotely sensed vegetation properties such as albedo (Lucht et al., 2000), FPAR (Sellers et
al., 1996), surface roughness (Lefsky et al., 2002), and phenology (Stockli et al., 2008) are
inputs to SVAT models (Sellers, 1997). Temporal changes in LAI or other state variables are
adjusted by means of assimilation techniques (Dorigo et al., 2007; Quaife et al., 2008). Due
to limited CPU resources and partly coarse resolution meteorological input data, most of
these models use spatial grid resolutions (10 - 50 km) that are coarser than vegetation
information provided by RS (0.3 - 1 km). This more accurate sub-grid information is still
accounted for through aggregation techniques (Kunstmann, 2008).

LAI is also required on the high and medium resolution scales. For instance, runoff, sediment
transport, and soil erosion models rely on LAI information on the catchment scale (Wigmosta
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et al., 1994; Mueller et al., 2008). The scale invariant FAO Penman-Monteith method for
evapotranspiration computation also uses LAI as input data (Allen et al., 2000). The Joint
European Research Center (JRC)3 conducts comprehensive agricultural monitoring activities
on the regional scale using medium resolution data. High spatial resolution LAI is relevant
for investigations on the field-scale and sub-field scale, e.g. for agricultural applications such
as precision farming, fertilizer and pesticide management, or yield modeling (Moulin et al.,
1998, Dorigo et al., 2007). Thereby, LAI and other biochemical and structural properties are
relevant to accurately representing agricultural units and within-field variabilities (Dorigo et
al., 2007). A large number of studies coupling satellite data and canopy state variables within
crop production models exist (e.g. Doraiswamy et al., 2004; Faivre et al., 2004; Olioso et al.,
2005; Dente et al., 2008; Atzberger, 2013).

1.3. LAI derivation in mountainous grassland

RS observations do not directly sample LAI. Instead, changes in the chemical, physical, and
structural characteristics of a vegetation canopy can cause variations in the spectral
reflectance signature, which in turn can be measured by RS and quantified with changes in
LAI Two methods for RS based LAI retrieval are commonly used:

1) Empirical-statistical LAI derivation: this radiometric data-driven technique
establishes a statistical relationship between the spectral signatures of a surface measured by
a RS system and LAI measured in situ. This relationship expressed as a regression model is
used for mapping LAI based on the RS imagery. Due to its simplicity, accurate results over a
confined area and known land cover, and its computational efficiency, this approach has been
widely used in the RS community. However, in reality the relationship between canopy
reflectance and LAI is not linear, but complex and saturates with high LAI, which limits the
approach for dense canopies (Glenn et al., 2008). Further, the method relies on the
availability of time consistent field measurements, which are usually time-consuming and
expensive. Another drawback is that empirical relationships typically depend on site and
sampling conditions and are sensitive to variations in space and time, and thus cannot be
automated (Baret and Guyot, 1991; Meroni et al., 2004). Empirical-statistical LAI derivation
has therefore mostly been applied to medium to high resolution data covering a small area at
one point in time, representing LAI as a single snap-shot (Gobron et al., 1997a; Turner et al.,
1999; Chen et al., 2002b; Johnson et al., 2003; Colombo et al., 2003; Dorigo et al., 2009;
Rinaldi et al., 2010). Only few studies investigated the seasonal development of LAI using
statistical methods and mostly in forested areas (e.g. Cohen et al., 2003a; Wang et al., 2005;
Heiskanen et al., 2012; Potithep et al., 2013).

2) Radiation transfer modeling: During the last few decades, physical algorithms for
estimating vegetation properties have been increasingly used as an alternative to empirical
approaches (Liang, 2008). The physical approach uses a RTM that describes transmittance,
absorbance, and reflectance of light within a canopy as a function of canopy characteristics
(i.e. structural, chemical and biophysical parameters) and of the illumination and viewing
geometries. This simulation of a radiation field reflected by a canopy is called “forward mode”
of the RTM. In the so-called “inverse mode”, LAI and other canopy parameters can be
derived from the RTM based on matching simulated reflectances to reflectance
measurements (see chapter 6). As these models do not rely on in situ measurements, they are
appealing for automated procedures. LAI derivation studies based on RTMs in the last few

3 http://mars.jrc.ec.europa.eu/mars/About-us/AGRI4CAST/Crop-Monitoring-and-Yield-Forecasting
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decades have focused primarily on the improvement of forward modeling of the radiative
transfer problem (Liang, 2004). Only recently has inverse modeling come to the fore in RS
research. However, model inversion is not straight-forward as, due to the complex character
of RTMs, an analytical closed-form solution is mostly not possible. Consequently, numerical
schemes have to be used for solving the inverted transport equation. Canopy reflectance is,
however, not only influenced by LAI but also by other canopy variables such as leaf
orientation or soil reflectance, so that several parameter combinations can lead to similar
reflectances, which makes the inversion of a physical model an ill-posed problem. Further,
due to the high number of model parameters together with the limited number of
independent data dimensions in most RS systems, inversion is also an under-determined
problem (Baret and Guyot, 1991; Verstraete et al., 1996; Kimes et al., 2000; Tarantola, 2005).
To minimize these problems for RTM inversion and to stabilize the LAI derivation, model
parameterization adaptation based on prior information and regularization techniques such
as the selection of multiple inversion solutions or the addition of noise to the simulated
spectra can be applied (Combal et al., 2002b; Bacour et al., 2006; Baret and Buis, 2008).
However, a conclusive solution to these challenges has not yet been found and optimization
strategies have not been consolidated yet (Verrelst et al., 2014).

Until now, operational LAI derivation relied on the use of coarse resolution RS data due to
their availability for several decades and their high temporal resolution provided, which is
needed for various applications such as phenological analysis. No high spatial resolution
optical sensor was available that could fulfill this requirement. The use of coarse resolution
data fostered research and validation activities in large-scale ecosystems, such as forests or
monoculture crops. Regional LAI studies that used medium to high spatial resolution data for
LAI derivation over a confined area also focused on these vegetation types because they were
either simple to characterize (crops), or led to the development of more complex models
(forests) (see chapter 2.2.3 for a review). Although this is a comprehensible approach, it has
resulted in the fact that very little research has been conducted in relatively heterogeneous as
well as spatial and temporal variable natural ecosystems such as alpine grassland
(Darvishzadeh et al., 2008c). Unlike most agricultural crops, which grow in rather
homogeneous canopies and mostly exhibit a regular annual life cycle, grasslands are
composed of different plant species, all of which have unique morphologic and chemical
features, and whose dynamic consists of periods of growth and re-growth (Vohland and
Jarmer, 2008). Additionally, grassland occurrence, composition and structure depend on the
individual management techniques such as mowing or pasturing, for which the timing is
mostly highly irregular. To date, no study is available in which high spatial resolution data
are used for the derivation of grassland LAI, and accordingly, issues related to RTM
parameterization or inversion regularization techniques have not yet been investigated for
this ecosystem. However, especially in heterogeneous landscapes with small-scale land use
patterns, monitoring of agricultural areas needs frequent observations throughout the
growing season, as well as a high spatial resolution to differentiate between various land uses
and management forms, thus observations that will be provided by the use of recent and
upcoming RS systems.

In Central Europe, more than one third of the agricultural land is made up of permanent
grassland (FAO, 2013). On a global scale, grasslands are among the largest biomes in the
world as they cover 40.5% of the earth’s landmass excluding Greenland and Antarctica
(Suttie et al., 2005). Grassland is an important land cover with essential functions for
regulating ecosystem services, and an agro-ecosystem used for the production of domestic
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livestock. In this context, the mapping of grasslands for subsidies is relevant in the European
rural economy. Besides this economic importance, grassland habitats play an important role
for biodiversity conservation, carbon storage, soil protection and slope stability, water
purification, and regulating hydrologic and metabolic balances (Reid, 2005; Hopkins and
Holz, 2006; Silva, 2008). Furthermore, the cultural and recreational services of grasslands,
which are also of great relevance to tourism in rural areas, should be mentioned. Monitoring
the ecosystem services of grasslands and the impact of environmental changes in regular
inventories is of high interest with regard to ecological, economic, and political issues
(Vohland and Jarmer, 2008). LAI is a suitable parameter for such inventories, offering
information based on the current state and productivity of grasslands. However, information
and data on the spatial distribution and changes in grasslands are scarce even in Central
Europe (Smit et al., 2008). Such information is especially seldom available for areas that are
hard to access, such as mountain regions.

Mountainous areas are mostly fragmented and vertically structured ecosystems in which
grasslands, apart from forests, are the dominant land cover. The monitoring of mountain
ecosystems is of interest as they are biologically valuable habitats and especially affected by
climate change and anthropogenic influence (Nagy et al., 2003; Pauli et al., 2003b; Dirnbock
et al., 2011). Further, alpine grasslands are very suitable for studying climate and global
change effects, as a wide range of environmental conditions are set up by topography at
relatively small spatial scales (Becker et al., 2007). From a RS perspective, mountains present
extreme conditions. Strong topographic and climatic gradients over small distances
frequently result in high spatial heterogeneity with a mixture of patchy land cover and
continuous transitions between cover types. Topography complicates data preprocessing by
the need to correct for shadows, exposition, and atmosphere layers of different thicknesses.
Finally, the very limited availability of representative reference samples caused by the
difficult access to these regions hampers training and validation activities (Pasolli, 2012).
Therefore, the retrieval of alpine grassland LAI from RS imagery has been only marginally
investigated up to now (e.g. Vescovo and Gianelle, 2008; Pasolli, 2012) and the above
mentioned established methodologies require further investigations to adapt to the
complexity of LAI retrieval in this environment.

1.4. Objectives and innovative analyses

As outlined above, the high relevance of LAI for monitoring and modeling applications in
conjunction with the future abundance of high spatial resolution RS data call for robust and
adapted LAI retrieval techniques. In this regard, the question remains which data and
technique to use, especially for fragmented ecosystems. Only few studies have used high
spatial resolution time series data in physical LAI derivation methods so far, which is why the
knowledge of their potential for robust LAI derivation and possible limitations is still
tentative. Indeed, at the time of writing this thesis no LAI estimation from RTMs based on
high spatial resolution satellite data has been conducted in alpine grassland ecosystems. To
fill this gap, grassland LAI is derived in this thesis using two different LAI estimation
methods based on high spatial resolution RS data to assess and compare the accuracy and
robustness of the retrieval approaches. In perspective, this thesis can contribute to the
development of automated data analysis protocols in challenging landscapes.

The objective of this thesis is the optimization of an RTM for grassland LAI mapping over a
heterogeneous mountainous landscape using high resolution RS data, and the evaluation of
its performance in comparison to empirical-statistical models. Multi-temporal in situ LAI
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measurements as well as time series of RapidEye data from 2011 and 2012 over the Ammer
catchment in southern Germany are used as input. So far, only a few studies have analyzed
the potential of RapidEye with regard to mapping biophysical parameters (Vuolo et al., 2010;
Ehammer et al., 2010; Eitel et al., 2011; Friese et al., 2011; Lex et al., 2013; Mannschatz and
Dietrich, 2013; Tillack et al., 2014), and none have used RapidEye for LAI derivation in
grasslands. The following research questions and are hence addressed in this thesis:

1) How does the selection of VIs and regression models impact the statistical modeling of
LAI, and how well can these models be transferred to other points in time?

For empirical-statistical LAI derivation, model optimization comprises the testing of a large
number of spectral indices and statistical models. Benefits achieved through the use of
RapidEye’s red edge band, as well as through the combination of data sets from different
phenological phases, are quantified for the first time. Overall, the hypothesis is that once a
robust statistical transfer function is established, it can be used on other points in time for
which no observations are available, as managed grasslands present a similarly wide range of
LAI occurrences at all points in time. The focus therefore lies on the accuracy loss caused by
temporal transfer of established models, which has not been quantitatively evaluated so far.

2) Which RTM settings are most relevant for establishing an adapted and robust LAI
derivation procedure, and which grassland-specific limitations occur during inversion?

The optimization of physical LAI modeling aims at the reduction of its under-determined and
ill-posed character. Several inversion regularization techniques are tested which have been
suggested in the literature (e.g. Weiss et al., 2000; Combal et al., 2002b; Rivera et al., 2013),
but have never been applied to high spatial resolution RS data for grassland LAI derivation.
To improve the model parameterization, a comprehensive global sensitivity analysis covering
the visible and near infrared spectrum is applied to the used RTM for the first time to identify
the relevance of each model parameter and of additional spectral features. Finally, further
physically derived vegetation parameters and RTM inversion uncertainty measures are
evaluated in detail, which has been mostly neglected in other studies. Based on these
analyses, the potential and limitations of RTM inversion in general and specific to grassland
LAI derivation are assessed.

3) Which of the empirical-statistical and physical LAI modeling approaches is more
appropriate for grassland LAI derivation?

The performances of statistical and physical models are finally evaluated and compared using
LAI measured in situ. In order to obtain accurate in situ data, a comparison of the LAI
derivation algorithms implemented in the LAI-2000 PCA instrument with destructively
measured LAI was performed first. The aim is to assess the LAI mapping potential of these
methods over a heterogeneous grassland landscape. Apart from the LAI estimation accuracy,
aspects regarding the reliability and practicability of the approaches are also of interest.

4) Does the use of high spatial resolution remote sensing data for LAI derivation involve
specific advantages and limitations?

The use of high spatial resolution RS data for grassland LAI derivation on a landscape scale
allows for an assessment of benefits and drawbacks resulting from the increased spatial
detail, also with regard to the technical implementation of the approaches.
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The conceptual framework as well as the new aspects of this thesis are depicted in Figure 1-1.
This thesis is structured as follows: a comprehensive description of the theoretical
background and the state of the art technologies for LAl measurement and estimation is
given first (chapter 2). The study area is presented, with special focus on the occurring
grassland types, in chapter 3. Then the in situ and satellite data used in this thesis, the data
preprocessing, as well as the applied land cover classification are described (chapter 4).
Chapter 5 comprises the first of the two LAI derivation methods, statistical LAI derivation. A
range of spectral indices and statistic models is tested to identify the best fitting models for
each time step as well as for some combinations of in situ samples. The achieved accuracies
are investigated and the temporal transferability of the transfer functions is analyzed. The
properties of the RTM, its sensitivity analysis, its parameterization, and the optimized
inversion strategies are presented in chapter 6. To account for the mountainous topography
in the RTM, an approach to include local viewing geometry in the retrieval process is
introduced, and the results of the physical LAI derivation procedure are presented and
discussed. In chapter 7, the performance of both approaches is compared, conclusions on the
potential of high spatial resolution data for LAI derivation are drawn, and an outlook on
possible future fields of research is provided.
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Figure 1-1: Overview of the conceptual framework and objectives of this thesis.
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LAI is a parameter which has been used in ecology and forestry for decades to characterize
vegetation canopies. As it has a high spatial and temporal variability, it is difficult to quantify.
Various methods for LAI derivation have been developed since the early 1930s. The
suitability of these methods for application in grassland varies. The family of in situ
measurement techniques and related limitations are described first (chapter 2.1). The second
section (chapter 2.2) gives an overview of the theoretical background of vegetation RS
relevant for grassland LAI estimation, as well as on empirical-statistical methods and RTMs.
Finally, an overview of available LAI products is provided (chapter 2.3), followed by some
conclusions on research needs with regard to grassland LAI mapping (chapter 2.4).

2.1. In situ measurement methods

Two main categories of in situ LAI measurement can be distinguished: direct and indirect
methods. The former group consists of direct LAI measurement techniques, while the latter
comprises methods in which LAI is derived from parameters which are easier to measure,
with both of them being applicable to grassland canopies.

2.1.1. Direct and semi-direct measurements

In this thesis, a direct method is defined as a technique to quantify LAI during which the
plants are touched in some manner. The only way to truly determine LAI is by measuring the
surface of all the leaves within a certain surface area (Bréda, 2003). In the early stages, this
was performed by harvesting the biomass, drawing the outline of each leaf after it had been
horizontally fixed to a flat surface, and measuring the shape’s area using a planimeter or a
reference grid (Ross, 1981). This method is obviously not feasible for small or non-flat leaves
and plant parts. Modern leaf area meters measure the LAI by scanning the leaf shape or the
leaf surface. In the field, the leaves within an area are measured employing a portable area
meter e.g. the LI-3000 (LI-COR, NE, USA, see Figure 2-1) that uses an electronic method of
rectangular approximation for area estimation while a leaf is drawn through the scanning
head. In the laboratory, detached leaves can be measured using e.g. the LI-3100 area meter
(L1-cor, NE, USA, see Figure 2-2), which scans the leaves while they pass by a camera on a
transparent conveyor belt. Further alternatives include the portable scanning planimeter CI-
202 from CID Inc. (NW Camas, WA, USA), the WinDIAS color image analyzer (Delta-T
devices, Cambridge, UK), and the DIAS II Digital Image Analysis System (Decagon Devices
Inc., Pullman, USA). The two latter companies also offer video image analysis systems
(Jonckheere et al., 2004). A similar approach is to photograph or scan the flattened
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Figure 2-1: Usage of the LI-cOR LI-3000 leaf Figure 2-2: Usage of the Li-COR LI-3100C area
area meter (Adapted from LI-COR, 2006). meter (Adapted from LI-COR, 2004).

harvested plants and to use image analysis to identify the leaves in the picture (see Figure
2-3). For practical considerations, the direct method is most widely used for crops and
grasses (Bréda, 2003), as it also is in this thesis. However, it is destructive and hence not
feasible for LAI monitoring over time. Furthermore, the approach is too laborious to be
applied on large samples.

Thus, to derive the LAI for whole canopies, the specific leaf area (SLA) is used for scaling. The
SLA, as well as its reciprocal, leaf mass per area (LMA), is an empirical quantity of leaf area
per unit dry biomass (Bréda, 2003). It is established by taking a sub-sample of the harvested
foliage, measuring its LAI directly, drying the biomass in an oven at between 75 and 105 °C
until constant weight, and weighing it. Simultaneously, the remaining material of the entire
sample collected within a known area is dried and the total dry mass of leaves is converted
into LAI by multiplying it with the SLA established on the sub-sample. A balanced
distribution of different leaves (sun / shade, old / young) in the sub-samples is important in
this regard. The SLA is species-specific and also varies between different years and sites,
which is why care has to be taken for its establishment, since it otherwise potentially
introduces errors in the LAI up-scaling (Bréda, 2003; Jonckheere et al., 2004). SLA is also
used for leaf characterization in some RTMs.

These techniques, for the purpose of which all leaves in a defined area need to be harvested
or scanned, are useful for herbaceous vegetation but not for monitoring forest stands, as the

B Leaf pixels

Figure 2-3: Leaf area
estimation from harvested
biomass. The leaves are
photographed (left) with a
known picture size. The
photo is then classified into
leaf pixels and background
pixels (right), from which
the area can be calculated.
Source: Own illustration.
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leaves are not easily reachable, and a destructive method would strongly affect the integrity of
the forest. Therefore, foresters have developed so-called allometric methods that relate LAI to
more easily measureable plant parameters such as tree height, crown base height, or
diameter at breast height (see e.g. Rogers and Hinckley, 1979; O'Hara and Valappil, 1995;
Vertessy et al., 1995; Le Dantec et al., 2000). Another direct method relevant for deciduous
forests is leaf litter collection in a number of traps distributed below the canopy during leaf
fall. See e.g. Neumann et al. (1989), Dufréne and Bréda (1995), Eriksson et al. (2005), and
Wagner and Hagemeier (2006) for more details.

A method applied to both woody and herbaceous canopies is the inclined point quadrat
method. With this method, the number of contacts (‘relative frequency’) of a long needle with
vegetation in a certain direction is counted, which equals the LAI (Wilson, 1960). As the
variation in relative frequency not only dependents on LAI but also on leaf inclination, the
optimal probe angle varies with species. However, as the lowest variability occurs at a point
quadrat inclination angle of 32.5°, this angle is mostly chosen for measurements, irrespective
of species composition (Wilson, 1960). The method is attractive because it is non-destructive
and quick. However, many measurements (typically at least 1000) are required in order to
obtain a reliable result (Vanderbilt et al., 1979; Caldwell et al., 1983; Jonckheere et al., 2004).
A derivation from this method is the needle technique for sampling litter. A needle of
1- 2 mm in diameter is stuck vertically into the litter and the number of leaves collected on
the needle corresponds to LAI. This method also requires intensive sampling to quantify LAI
correctly (Dufréne and Bréda, 1995; Bréda, 2003).

The disadvantage of all direct methods is that they are mostly destructive as well as extremely
expensive. Because of this time-consuming and labor-intensive character, direct LAI
determination is not compatible for long-term monitoring of spatial and temporal LAI
dynamics (Jonckheere et al., 2004). However, as they can account for leaves which are
located above each other, and as they solely relate to foliage but no other vegetation elements
such as flowers or stems, they are the only approaches which give access to real LAI
Therefore, direct LAI derivation methods provide the reference for calibration and validation
of indirect methods. As in most studies working on crops or grassland, in this thesis the
scanning of leaves as well as the derivation of a grassland SLA is used to measure real LAI.

2.1.2.Indirect measurement methods

Indirect methods derive LAI from observations of other variables and are generally faster,
feasible to automation, and thus allow for larger areas to be measured (Jonckheere et al.,
2004). They are based on radiation transfer theory, which is shortly outlined below due to its
relevance for the LAI derivation approaches tested in chapter 4.3.2, and for the functioning of
RTMs. Afterwards, the instrument used in this thesis (the LAI-2000), as well as further
popular measurement devices are introduced to provide an overview. The inherent
limitations of indirect methods are finally explained as they also affected the in situ
measurements in this thesis.

Radiation transfer theory

As incident light travels through the canopy, it is intercepted by plants. In this regard, the
attenuation of downward radiation corresponds to the vertical depth and structure of the
canopy (Saeki, 1975). Because radiative transfer and canopy structure are linked in this way,
information about one can be used to predict the other. Thus, relatively simple radiation

11
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measurements can be used to estimate structural quantities of the canopy (Ross, 1981;
Welles, 1990). The basic principle is the simulation of light transmission through the canopy
using statistical models that describe the probability of radiation interception. Under the
assumptions that leaves are randomly distributed within the canopy, that individual leaf size
is small compared to the canopy height, and that radiation is measured at wavelengths where
leaves are opaque (i.e. non-reflecting and non-transmitting), transmittance is equivalent to
gap fraction (Lang, 1986). Gap fraction is the fraction of view looking up from beneath the
canopy at a given zenith angle that is not blocked by foliage (Baret et al., 1995).

A statistical model describing transmittance can eventually be inverted to calculate LAI if gap
fraction information for a range of angles is available (Norman and Campbell, 1989). Though
several probabilistic models are in use to approximate the distribution of foliage elements,
gap fraction probability is most commonly described by a Poisson distribution, as no
additional parameters for the description of canopy structure are needed (Monsi and Saeki,
1953). Other theoretical models of vegetation structure are positive and negative binominal
models and Markov models (see Nilson, 1971 for more details). The Poisson model assumes
that the canopy is divided into n statistically independent layers. If n — oo, the probability of
gaps decreases and can be described by the Poisson distribution. Gap fraction is therefore the
probability P(6) of light transmitting the canopy, i.e. of zero layer overlaps (Lang et al., 1985):

P(9) = e~ GONS(O) (2.1)

with G(0) being the fraction of leaf area projected in the direction of the zenith angle 6, u
being the foliage density and S(6) being the length of the light path in the direction 6.
According to Miller (1967), the foliage density p is

/2

InP(0
u= 2f - r;(e())sin 0do (2.2)

with d6 being the angle width in the direction . Assuming a homogeneous horizontal
canopy, the path length S(8) can be derived by

S(9) = —

cos@’

(2.3)

As the vegetation height h can be set to one, S(8) becomes a relative path length depending
on the angle 6 (Welles, 1990). With the foliage density relating to the LAI by

LAI = ph, (2.4)

Equation 2.1 can be written as

LAI

P(O) = e “@rosa, (2.5)

Based on the approach by Miller (1967), LAI can be derived from Equation 2.5 without a
prior knowledge of G(0) as

T

2
LAl =2 f —In P(6) cos 8 sin 6d6. (2.6)
0

Equation 2.6 shows that LAI can be mathematically derived by measuring the gap fraction
over several zenith angles 0. Several measurement methods that rely on this approximation
are described below. While gap fraction-based methods (e.g. hemispherical images) measure
gap fraction directly, transmittance measurement devices (e.g. LAI-2000) make use of the
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Beer-Lambert extinction law to estimate gaps (Bréda, 2003; Jonckheere et al., 2004).
Measurement inaccuracies and unfulfilled model assumptions that hamper indirect LAI
estimation methods are discussed at the end of this chapter.

LAI-2000, DEMON, ceptometers

There are four commercial canopy analyzers available to optically measure the transmittance
in canopies. The instruments which are most widely used is the LAI-2000 Plant Canopy
Analyzer (PCA) (LI-COR Biosciences, Lincoln, NE, USA, see Figure 2-4) and its successor LAI-
2200 PCA. This is a portable sensor system designed to derive transmittance by relating the
irradiation of diffuse light measured below the canopy to the diffuse irradiation measured
above the canopy (LI-COR, 2009). The field of view of the optical hemispherical sensor head
is divided into five concentric light-detecting silicon rings i, thus having five constant
values. There are several approaches implemented in the LAI-2000 to derive LAI from
transmission measured in these rings (see chapter 4.3.2). The LAI-2000 PCA has been
successfully used in a number of studies, especially in homogeneous canopies such as crops
and grassland (Gower and Norman, 1991; Dufréne and Bréda, 1995; Levy and Jarvis, 1999;
Lee et al., 2004; Gonsamo Gosa et al., 2007; Darvishzadeh et al., 2008b; Garrigues et al.,
2008b; Vuolo et al., 2010; Tang et al., 2014), and it is also used in this thesis. It is a popular
device as it does not require additional data acquisition and is able to provide LAI
instantaneously. Further, the simultaneous measurement of radiation at different angles
reduces the workload. A potential weakness of the LAI-2000 is the requirement of above-
canopy readings (Kraus, 2008). However, in contrast to tall stands, alternating below- and
above-canopy measurements can be easily performed in grassland. Further, LAI-2000
measurements should only be taken under diffuse irradiance, reducing the possible operating
time. For more details on the functioning and handling of the LAI-2000, see chapter 4.3.2.

The DEMON instrument (CSIRO, Canberra, Australia) adapts the basic functioning from the
above mentioned point quadrat method (Wilson, 1960). It measures direct beam radiation
above and below the canopy through a directional narrow angle of view, thereby replacing the
needle (Welles, 1990). DEMON measurements have to be conducted under clear conditions
and repeated several times over the day to collect data over a range of sun zenith angles
(Dufréne and Bréda, 1995). In tall canopies, the operator moves beneath the canopy along a
linear path, directing the instrument to the sun. In crops, the sensor is driven along a track
beneath the canopy. The DEMON instrument has been reported to derive similar results as
the LAI-2000 (Dufréne and Bréda, 1995). However, the requirement of repeated
measurements over the day reduces its applicability if many plots have to be investigated.
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Figure 2-4: The LI-COR LAI-2000 Plant Canopy Analyzer (Source: LICOR, 2005)
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The SunSCAN (Delta-T Devices Ltd, Cambridge, UK) as well as the Sunfleck Ceptometer and
its successor AccuPAR LP-80 Ceptometer (Decagon Devices Inc., Pullman, WA, USA) are
sensitive to incident photosynthetic active radiation (PAR, 400 - 700 nm). They are also
known as line quantum sensors, as they are equipped with a linear probe that has several (64
to 80) individual photodiodes (Welles, 1990). Like the other optical devices, they derive the
transmitted PAR by relating readings above and below canopy, but recorded at several of the
available sensors on the bar at a time. LAI is calculated based on PAR, the sun zenith angle,
and an estimate of the leaf angle distribution provided by the user in a simple light scattering
model (Wilhelm et al., 2000; Tewolde et al., 2005; Decagon Devices, 2013).

Hemispherical photographs

A straight approach to deriving canopy gap fraction is to visually identify it in a photograph.
In doing so, photographs of single directions (see e.g. Macfarlane et al., 2007; Baret et al.,
2010b) as well as of the hemisphere can be used. In digital hemispherical photography
(DHP), photographs are acquired through a fisheye lens from within the canopy oriented
upwards, or placed above the canopy looking downwards (Rich, 1990; Jonckheere et al.,
2004). A circular image is produced, with the zenith in the center and the horizon at the
edges (see Figure 2-5 a) (Goel and Norman, 1990; Rich, 1990). To represent the canopy
structure adequately, several images should be taken within one plot, and under diffuse light
and uniform sky conditions, to avoid sun glares, chromatic lens aberration, foliage
reflections, and sky luminance heterogeneity (Neumann et al., 1989; Weiss et al., 2004). The
selections of exposure time and shutter speed are also critical steps, as they influence the
image’s brightness and contrast (Zhang et al., 2005b; Macfarlane et al., 2007). In downward-
looking images taken e.g. over dense grassland, shaded areas impede the identification of
gaps. The use of infrared light measurement (see e.g. Kucharik et al., 1997) can reduce this
limitation (Rich, 1990; Welles, 1990). Through the classification of the photographs, the
soil/sky and canopy elements are distinguished. Several tools have been developed for this
purpose, e.g. the CAN-EYE software (Weiss and Baret, 2010), HemiView PCA (Delta-T
Devices, Cambridge, UK), and Gap Light Analyzer (GLA, Frazer et al., 1997). A range of
image classification algorithms have been proposed and discussed in the literature, with the
most common approach being interactive or automatic thresholding, i.e. the selection of a
brightness value which is used to differentiate the classes (Leblanc et al., 2005; Wagner and

Figure 2-5: Hemispherical photograph taken on September 9, 2011 near the Fendt measurement
site. a) Illustration of the angular field of sight. b) Subdivision of hemisphere into regular segments
in order to derive gap fraction information for individual viewing directions.
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Hagemeier, 2006; Macfarlane et al., 2007; Englund et al., 2000; Jonckheere et al., 2005).
After classification, the hemisphere is subdivided into regular segments to exploit different
directions concurrently (Figure 2-5 b), and gap fraction is extracted in each segment. Canopy
parameters such as LAI, leaf angle, and gap frequency distributions are subsequently derived
by inverting Equation 2.6 (Norman and Campbell, 1989; Weiss et al., 2004).

Although there are many steps involved in deriving LAI from DHP, there has been a renewal
of interest in this method with the development of high resolution digital cameras and
advances in image processing software. Its advantages are low purchase costs and the rapid
picture acquisition in the field. One of the most important assets is the high amount of
information recorded (gap fraction, size and distribution), which enables the use of different
light extinction models. A further advantage is the possibility of detecting green and non-
green elements (Jonckheere et al., 2004; Kraus, 2008). Several authors have successfully
used DHPs for studies in forests (Neumann et al., 1989; Chen et al., 1997; White et al., 2000;
Jonckheere et al., 2004; Leblanc et al., 2005; Macfarlane et al., 2007), while the approach is
less often used in crops (e.g. Garrigues et al., 2008b) or grassland due to the above
mentioned shadows and an insufficient plant-soil contrast (Demarez et al., 2008).

Limitations of indirect LAI measurement methods

A large number of studies compare the results of direct and indirect measurement techniques
for crops (Levy and Jarvis, 1999), shrubs (Brenner et al., 1995), and forest stands (Neumann
et al., 1989; Chason et al., 1991; Smith, 1993; Fassnacht et al., 1994; Comeau et al., 1998;
Barclay and Trofymow, 2000), with some of them revealing great differences. The main
factor causing errors in indirect LAI measurements is the result of most canopies deviating
from the assumption behind the Poisson model of random foliage dispersion, i.e. clumping of
vegetation elements (Figure 2-6). Clumping results in higher canopy transmittance than
predicted for random canopies, and thus in LAI underestimation (Black et al., 1991;
Fassnacht et al., 1994; Chen and Cihlar, 1995). Therefore, indirectly derived LAI has been
named effective LAI (LAl.y) by Chen et al. (1991). LAl is defined as the product of LAI and a
clumping index Q (Nilson, 1971; Macfarlane et al., 2007; Ryu et al., 2010).

Several approaches have been suggested to overcome this issue. It would be straight-forward
to incorporate the non-random distribution of plant elements in a probabilistic model
underlying the inversion process. A canopy consisting of non-randomly distributed leaves
could be described more adequately by binomial models or Markov models (Nilson, 1971).
However, these models require additional information on leaf angle or gap distribution
within the canopy, which is not measured by the devices presented above (Chason et al.,
1991). Lang and Xiang (1986) proposed to correct for clumping at plant level by modifying
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Figure 2-6: Illustration of the clumping effect with leaves being either randomly distributed or
arranged to shoots. While the same amount of leaves is present, the gap fraction in b) is bigger than
in a), leading to an underestimation of LAI using indirect measurement techniques (adapted from
Nilson, 1999).
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the use of the Beer-Lambert law. The basic assumption is that the required random
distribution of foliage is fulfilled when looking at a small part of the canopy. Lang and Xiang
(1986) showed that if multiple transmittance measurements are made in small sectors and
combined by averaging the logarithms of the transmittances, an improved LAI can be
derived. Instead of using the logarithm of the mean of P(8) over all azimuth ranges, the
logarithm of P(8) for each sector is averaged (Ryu et al., 2010). Equation 2.6 hence becomes

/;
LAl =2 f —InP(8) cos B sin 6d6 (2.7)
0

The clumping parameter Q is then provided by the ratio of Equation 2.6 to Equation 2.7. This
method is implemented in the LAI-2000 algorithm. Chen and Cihlar (1995) developed
another procedure for deriving Q based on gap fraction, size and distribution using the
Tracing Radiation and Architecture of Canopies (TRAC) instrument (3rd Wave Engineering,
Ontario, Canada; Kucharik et al., 1997; Chen et al., 1997; Chen et al., 2002b). Further
development of this method has been conducted by Leblanc (2002), who normalized Q, and
by Leblanc (2004) in developing a software which connects the TRAC to fisheye photographs.
Leblanc et al. (2005) finally combined the gap size distribution theory with Lang’s and
Xiang’s method. The TRAC can also be used in combination with the LAI-2000 (Chen et al.,
1997), but care has to been taken not to overcorrect clumping by using TRAC together with
the LAI-2000 output, which is already corrected (Ryu et al., 2010). Some authors (Chen et
al., 1991; Fournier et al., 1997) indicated that clumping occurs at several scales, i.e. between
plants, branches and shoots. For that reason they divide the clumping factor into two
components, a between-shoots clumping factor Q. and a within-shoot clumping factor ye. The
ve values of Gower et al. (1991) are implemented in the LAI-2000 software.

Apart from the clumping issue, another characteristic of most measurement devices is that
they cannot distinguish between leaves and non-photosynthetically active plant parts such as
branches, flowers, or fruits. In fact, indirect methods do not measure leaf area, as all canopy
elements intercepting radiation are included. Therefore, the terms “Plant Area Index (PAI)”
(Neumann et al., 1989), “Vegetation Area Index” (Fassnacht et al., 1994), “Foliage Area
Index” (Welles and Norman, 1991), or “Surface Area Index” (Bréda, 2003) are sometimes
used. Some studies tried to derive true LAI by measuring the “Wood Area Index” (WAI) in
deciduous forests in winter (e.g. Neumann et al., 1989; Cutini et al., 1998; Barclay et al.,
2000). However, a simple subtraction of WAI from PAI does not equal LAI, as the
contribution of woody material to LAI at its maximum is far less than WAI (Dufréne and
Bréda, 1995; Gower et al., 1999). On the other hand, WAI which is derived during vegetation
maximum (e.g. from photographs) cannot simply be subtracted, due to leaves that are
obscured by the stems. Macfarlane et al. (2007) suggest that the use of upward-looking
photographs would reduce the influence of woody material, because stems contribute little to
LAI at the zenith. As a further drawback, most transmittance measurement instruments
reach an asymptotic signal saturation level in dense canopies (Gower et al., 1999). Finally,
indirect methods do not account for leaves that lie on top each other and essentially act as
one leaf.

Due to these issues, most comparisons between direct and indirect methods point to an
underestimation of LAI by 25% to 50% in different ecosystems with the latter techniques
(Gower and Norman, 1991; Fassnacht et al., 1994; Stenberg et al., 1994; Cutini et al., 1998;
Comeau et al., 1998; van Gardingen et al., 1999; Gower et al., 1999; Kiiner and Mosandl,
2000; Macfarlane et al.,, 2000; Wilhelm et al., 2000). A measurement device which
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2.2, Estimation of LAI from remote sensing data

overcomes this restriction is still not available. In RS, in situ measurements are indispensable
for the validation of LAI estimates. It can be thus concluded that a sound measurement
technique and sampling design as well as correction for clumping are crucial when measuring
LAI, and that a comparison of directly and indirectly measured LAI is advised to assess the
accuracy of indirect in situ measurements.

2.2, Estimation of LAI from remote sensing data

The spectral signal recorded over vegetation results from radiative processes within canopies,
depending on plant parameters and observation configurations. This relationship enables the
derivation of LAI from spectral vegetation properties. The two most common approaches to
retrieve LAI, the empirical-statistical (subchapter 2.2.2) and the physical approach
(subchapter 2.2.3), are presented here. The concepts and some examples of all relevant
methods for LAI estimation are presented, while the specific details of the methods applied in
this study are discussed in chapters 5 and 6. Beforehand, an overview of basic terms and the
theoretical background of solar-reflective RS of vegetation is given (subchapter 2.2.1), as
these processes also constitute the basis of RTMs.

2.2.1.Theoretical background of vegetation remote sensing

RS is the science and technology of deriving information about an area of interest without
being directly in contact with it. A sensor is used to measure the energy emitted or reflected
by a surface. A detailed description of the physical principles of optical RS is given in
Richards and Jia (2006) and Asrar (1989). Only the most relevant aspects of RS for radiation
transfer in vegetation canopies are explained here.

Basic terms

The physical quantity that is measured by an RS sensor is the electromagnetic radiant flux ¢
emitted or reflected by an object. The total amount of radiation incident on a surface, i.e. the
flux density per area, is called irradiance E, with Eg,, being used for direct solar irradiance,
and Egy,, for diffuse hemispherical irradiance. When only the irradiance coming from a
certain direction is considered, it is called radiance dL and expressed as flux density per unit
projected area and unit solid angle. By relating radiance measured at the sensor to the
irradiance at the surface, reflectance p, can be derived, which is commonly used to describe
the spectral properties of surfaces. The reflectance factor R; of each wavelength A is the ratio
of the radiant flux reflected by a surface to that reflected into the same direction by a 100 %
reflecting surface (Martonchik et al., 2000; Schaepman-Strub et al., 2006).

Optical RS systems record energy from around 400 to 2500 nm that is emitted from an
external illumination source, such as the sun or the target itself. This wavelength range can
be subdivided into visible (VIS; 400 - 700 nm), near infrared (NIR; 700 - 1300 nm) and
shortwave infrared (SWIR; 1300 - 2500 nm) radiation. The energy measured at the sensor is
integrated over wavelength intervals. The number and width of these bands defines the
spectral resolution of the system (Richards and Jia, 2006). The spatial resolution of the
sensor is defined as the smallest distance between two objects that can be distinguished by
the sensor. Although spatial resolution is defined quite differently in the literature (e.g.
Franklin and Wulder, 2002; Navulur, 2006) and no standard definition exists, here RS
systems are divided into very high resolution (with a resolution < 1 m), high resolution (1 <

20 m), medium resolution (20 < 100 m), and coarse resolution (= 100 m) systems.
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2. State of the art in LAI derivation

The spectral signal coming from a vegetation surface is a combination of scattering,
absorption, and emission processes that take place in the atmosphere and on the surface.
According to Goel (1988) and Kimes (2000) the reflectance factor R, detected by a sensor is
determined by the properties of the atmosphere (a)), background (b;), the optical and
structural plant properties of the canopy (c,), the solar source parameters (s;) including the
angular location (s, ¢s), and the sensor properties (0;) including the view angle (0, @o)4:

Ry = f(ay, by, 3,52, 02) (2.8)

In this chapter, soil reflectance is not explicitly discussed. The influence of the soil is
wavelength-dependent and largest in the near infrared region (see Figure 2-7). Soil
reflectance is dominated by soil composition, roughness and moisture content, although also
plant residues, litter, and organic and salt crusts can contribute to it. See Verhoef and Bach
(2007), Cierniewski and Verbrugghe (1997), or Farys (2003) for more details. Thus, when
looking only at processes within the canopy, R, is a result of incident light that interacts with
pigments, water, and intercellular air parcels within plant elements. These processes as well
as directional and atmospheric effects are discussed in below.

Leaf optical properties
A typical signal of healthy green vegetation is dominated in the VIS by overall low reflectance

values but a small peak in the green region (see Figure 2-7). This strong absorption is caused
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Figure 2-7: Typical spectral signals of soil and healthy green vegetation. Figure adapted from
Jensen (2000), data generated using PROSAIL (Verhoef et al., 2007).

4 The zenith angles of the sun (0s) and the sensor (0,) are measured relative to nadir, i.e., a zenith angle of 0°
is equal to nadir, while the horizon has a zenith angle of 9o0°.
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Figure 2-8: Chlorophyll a + b absorption coefficient in the VIS and NIR spectrum as implemented
in the PROSAIL model. Adopted from Feret et al. (2008).

by leaf pigments relevant for photosynthesis, namely chlorophyll pigments concentrated
within the palisade mesophyll cells (Jones and Vaughan, 2010). Photons are absorbed by
chlorophyll a + b molecules, yet only the PAR between approximately 350 and 700 nm is
used for photosynthesis. Chlorophyll absorbs mainly blue and red light (see Figure 2-8):
chlorophyll a at wavelengths of 430 and 660 nm and chlorophyll b at 450 and 650 nm
(Wellburn, 1994). The lack of absorption in between the chlorophyll bands produces a
relative maximum around 540 nm, i.e. in the green spectral range, which explains the natural
color of plants (Richards and Jia, 2006). There are also other pigments present in mesophyll
cells that are masked in healthy vegetation by the abundance of chlorophyll pigments
(Jacquemoud and Baret, 1990). The most important are carotenes and xanthophyll pigments
with an absorption maximum in the blue wavelength region. As for brown pigment, their
concentration increases with the decay of a plant (Jacquemoud and Baret, 1990; Féret et al.,
2008).

In contrast to the VIS part of the spectrum, reflectance and transmittance increases strongly
in the NIR part. This strong increase between red and NIR canopy reflectance is called the
red edge region (Baret et al., 1992). The high amount of reflected NIR energy is caused by
high leaf surface reflectance as well as by the cell structure of the spongy mesophyll with its
intercellular air spaces causing scattering at the cell wall/air interfaces (Gausman et al.,
1969). Another reason for the high NIR reflectance is the fact that energy transmitted
through the leaf (about 40 - 60 % of irradiance) can be potentially reflected by leaves below.
Thus, NIR reflectance increases with the number of leaf layers. This so-called leaf additive
reflectance enables NIR reflectance to distinguish vegetation densities and to provide 3D
information about the canopy. This is of high value for optical vegetation monitoring.

In the SWIR, tissue materials (e.g. lignin, protein, cellulose) dominate absorption and lead to
a decreased reflectance with respect to the NIR plateau. Especially strong local reflectance
reductions are caused by water absorption bands at 1400 nm, 1900 nm and 2700 nm. Based
on this, RS in the NIR, SWIR, and thermal infrared can provide information about the plant
turgidity. While all these properties describe healthy vegetation, senescence is marked by an
overall reflectance increase. As leaf structure decomposes, it gives room to extra intra-leaf
scattering in the NIR. At the same time, reduced chlorophyll content increases VIS
reflectance and unmasks the characteristics of the other leaf pigments, leading to a flattening
of the red edge. Reflectance in the SWIR increases due to reduced water content. Thus, the
spectral shape of senescent vegetation gradually approximates that of soil.
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2. State of the art in LAI derivation

Canopy structure

The spatial configuration of plants in a canopy determines the magnitude and the directional
variation in reflectance over all wavelengths. Therefore, the most important canopy structure
characteristics are briefly presented. Canopy architecture is described at the plant level
through LAI and the leaf angle distribution (LAD). LAI represents the quantity of leaves. As
scattering and absorption within the canopy increases with LAI, canopy reflectance changes
accordingly. However, Haboudane et al. (2004) showed that incoming radiation does not
reach lower leaves at LAI values greater than 3 and 5 for the VIS and NIR, respectively. This
means that no light reflected from more leaves can contribute to the spectral signal, leading
to so-called signal saturation over dense canopies (Baret and Guyot, 1991).

The LAD describes the distribution of leaf inclination and orientation angles and is often also
indicated as leaf inclination distribution function (LIDF), average leaf angle (ALA) or mean
tilt angle (MTA). While the distribution of leaf azimuth angles is usually assumed to be
uniform, zenith angle distributions are often mathematically described by one of six LAD
types: planophile, erectophile, plagiophile, extremophile, uniform, or spherical (see Figure
2-9, Wit, 1965). The spherical foliage orientation is popular because the fraction of projected
area is always 0.5 (Welles, 1990). Goel and Strebel (1984) showed that all of these ideal
distributions are special cases of a “universal” distribution, the “two parameter beta
distribution”. Campbell (1986) equated the LAD to the surface of an ellipsoid which can be
continuously derived by varying the ratio between its two principle axes. This is a less flexible
but more intuitive one-parameter approach. For a detailed description of LAD functions, see
Liang (2004) or Wang (2007). The LAD varies among vegetation species, and sometimes also
with phenological stages and stress (Wirth et al., 2001; Medhurst and Beadle, 2001). It plays
a prominent role in any description of canopy structures and thus in RTMs (Welles, 1990).

The canopy structure is described through the relationship between LAI and LAD, but also
leaf size, plant density, canopy height, and canopy heterogeneity (Verhoef, 1984; Widlowski
et al., 2004). Examples of a heterogeneous vertical canopy profile are forest canopies with
litter, understory vegetation, and several tree layers, or cereal crops with a top layer of fruit, a
green leaves layer, and a bottom layer of senescent material. A strong horizontal
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Figure 2-9: Common leaf angle distributions: uniform, erectophile, planophile, extremophile,
plagiophile, and spherical distribution functions. Plot generated using the ‘LeafAngle’ R package
provided by Duursma (2012).
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heterogeneity is found in open forest canopies or row crops. Although such heterogeneities
are highly important, they are not further described as this thesis investigates solely
grasslands, which show no horizontal or vertical structure profiles.

BRDF effect

The directional behavior of leaf, canopy, and soil reflectance has already been mentioned
above. Reflectance of a surface depends on the sun and sensor angles relative to the target as
most terrestrial surfaces are not isotropic. Isotropic surfaces, also called “Lambertian”, reflect
incoming light equally in all directions. In vegetation canopies, anisotropy is mainly caused
by surface roughness, foliage orientation, shading, and gaps (Roujean, 2002). Figure 2-10
illustrates the geometries resulting from the orientation of the sun (6,¢,) and of the observer
(6,,9,) to the target (Kimes, 1983; Sandmeier and Itten, 1999). Due to this twofold
dependency on illumination and viewing angles, anisotropic reflectance is characterized as
“bidirectional”. The mathematical description of the hemispheric scattering of incident light
over all combinations of illumination and viewing angles is the bidirectional reflectance
distribution function (BRDF) (Martonchik et al., 2000; Lillesand and Kiefer, 2000). The
BRDF f, is formally defined as the ratio of the radiance dL (W m- sr* nm™) reflected in one
direction (8,,¢,) to the sun’s incident irradiance dE;,,, (W m2 nm?) from the direction
(85,) for each wavelength A (Sandmeier and Itten, 1999):

dL(6s, 9s; 05, 003 1)
dEsun(gs' PDs; 7y

Since both dL and dEj,, are defined in terms of infinitesimal solid angles, and since natural
irradiance does not consist of a single direction, f, cannot be measured, making it a useful
but non-measurable concept (Schaepman-Strub et al., 2006). Instead, the BRDF is assumed
to be retrievable from actual bi-conical radiance measurements made over a small solid
angle. Thus, if using an ideal Lambertian surface (i.e. a Spectralon panel) as reference dL,.,

fr (s, @s; 0, 903 1) = (2.9)

for which the BRDF is 1/m, a dimensionless bidirectional reflectance factor (BRF) can be
derived for each wavelength and angle combination from the radiant flux dL actually
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Figure 2-10: The geometry of solar irradiance and observer viewing direction. The amount of
reflected radiance depends on the zenith (6,) and azimuth (¢.) angles of the observer and on the
zenith (0;) and azimuth (¢s) angles of the sun with respect to the target. For modeling purposes, the
relative azimuth angle (¢.) between the sun and the sensor is often used.

21



2. State of the art in LAI derivation

1 1
0= 90° 60° 30° 0° 30°  60° 90°
Nadir
4+—— Forward Backward —»

scattering view  scattering view

Figure 2-11: Principle of forward and backward scattering.

reflected from a surface in a specific direction (Sandmeier and Itten, 1999):

dL(6s, @s; 05, 003 1)
dLref (95' Ds; /D
The hemispherical-directional reflectance factor (HDRF) is similar to the BRDF, but assumes

additional diffuse sky illumination from the hemisphere. HDRF thus depends on
atmospheric conditions and reflectance of the surrounding terrain (Martonchik et al., 2000).

BRF = R(6, ¢s; 0,, 9p; A) =

X Rref(gs: ®s; Oo) Vo3 A) (2.10)

Depending on the viewing and illumination geometry, surfaces appear brighter or darker.
Broadly, the bidirectional reflectance can be distinguished in backward and forward
scattering (Figure 2-11). This distinction is described by the relative azimuth angle ¢,.. In
backward scattering view, when the surface is seen from the same side at which it is
illuminated (i.e. @, < 90°), most of the shadows are hidden and the terrain appears brighter.
In forward scattering mode, the sun and the viewer are on opposite sides (i.e. ¢, > 90°) and
surfaces seem darker. The so-called solar principal plane is formed when the sun, the target,
and the sensor are in the same plane (i.e. ¢, = [0° 180°]). This is where BRDF effects are
most pronounced. The overall highest BRF occurs in the viewing direction that is equal to the
sun azimuth and zenith angles, due to the fact that the sensor views only sunlit surfaces. This
area of increased reflectance is called hot spot (Kuusk, 1995a; Lillesand and Kiefer, 2000).

In the nadir view, a maximum of the background can be seen by the sensor, particularly over
canopies with a vertical structure such as grasses or conifer forests (Sandmeier et al., 1998;
Sandmeier and Deering, 1999). These canopies show a very strong anisotropy effect, due to
the quickly changing fraction of soil seen by the sensor with changing view angles, and they
have a typical bell shape of the BRF in the principle plane. Canopies having a predominant
horizontal structure have a rather bowl-shaped anisotropy (Widlowski et al., 2004;
Widlowski et al., 2005; Koetz et al., 2005b). Further, the BRDF varies considerably with
wavelength. In the blue and red spectra, BRDF effects are strong, while they are less
pronounced in the green and most of the NIR ranges because multiple scattering reduces the
contrast between shadowed and illuminated canopy components (Sandmeier et al., 1998).

The BRDF effect is relevant for sensors with a large instantaneous field of view (IFOV5) or for
sensors that provide off-nadir measurements. Furthermore, the BRDF is crucial for multi-
temporal studies with varying illumination angles, as the spectra measured at different points

5 IFOV is the angle over which the detector records radiation. Together with the platform altitude, this
controls the pixel size.
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2.2, Estimation of LAI from remote sensing data

in time cannot be directly compared (Jensen, 2000). VIs (see chapter 2.2.2) can also be
biased by the BRDF effect. Overall, the incorporation of the BRDF is essential when the
detailed comparison of surface reflectance data is concerned.

Atmospheric and topographic influences

As can be seen from Equation 2.8, radiance which reaches the sensor is not only influenced
by surface properties, but also by processes occurring during the downward and upward
transfer of radiance through the atmosphere. Molecular and aerosol scattering and
absorption contribute to the measured radiance, especially at shorter wavelengths (Richter
and Schliapfer, 2012). The radiance L that actually reaches the sensor consists of three
components:

L= Lpath + Lpixel + Ladj (2.11)

with L, 4., being the photons scattered into the sensor’s IFOV without having ground contact,
and L,4; being radiance originating from the land surface surrounding a pixel but scattered
by air into the instantaneous direction (‘adjacency effect’, see Figure 2-12). The surface
information Ly, that is of interest for RS analysis is masked, as it were. In areas of rugged
terrain, an additional radiation component is the radiance reflected from the terrain to the
detected pixel (L., in Figure 2-12). Furthermore, the terrain introduces variations to the
spectral signals recorded over a certain surface as it changes the local viewing and
illumination geometry. In areas with steep slopes, the local solar zenith angle (i.e. the angle
between the sun zenith angle and the slope surface normal) may vary over a wide range
(0 -90°) and thus creates areas with maximum solar irradiance as well as with zero direct
irradiance, i.e. shadowed areas (Richter and Schlépfer, 2012).

For a meaningful comparison of surface reflectances and RTM outputs, it is therefore
indispensable to unmask the object spectral properties and thus to eliminate the influence of
atmosphere and topography on the RS signal. Butson and Fernandes (2004) showed that an
automated atmospheric correction with a fixed aerosol concentration used on different
overlapping satellite images can lead to significant differences in the LAI retrieval, and that
abandoning the atmospheric correction even slightly increases the consistency between the
LAI maps. The proper correction of atmospheric effects is thus crucial, but at the same time

Lpalth Lpixel Ladj

Figure 2-12: Radiation components in rugged terrain. Adapted from Richter and Schliapfer (2012).
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runs the risk of introducing new errors to the RS data (see Mannschatz and Dietrich, 2013).

As the overall aim of atmospheric correction is the derivation of top-of-canopy (TOC)
reflectances from remotely sensed top-of-atmosphere (TOA) radiances, an integral part is the
conversion of radiance values to reflectances (see chapter 4.1.2). This is achieved by relating
the radiance L at a certain earth-sun distance d to the extraterrestrial irradiance E from a
solar zenith angle 6:

m d? L
Proa = E cos@

(2.12)

To account for the atmosphere influence, absolute or relative atmospheric corrections can be
applied (Song et al., 2001). Absolute correction methods employ an atmospheric RTM that
explicitly accounts for the optical properties of the atmosphere and models the resulting
atmospheric transmittance r and path radiance L, 4., (Gao et al., 2009). Based on equations
2.11 and 2.12, and disregarding the adjacency component, TOC reflectance can be derived by
equation 2.13., which is a key formula of atmospheric correction:

T {dzL - Lpath;l

_ (2.13)
Proc TE

To simulate the atmosphere transfer processes sufficiently well, scene acquisition conditions
as well as atmosphere conditions need to be known. Information specifying the conditions of
the scene (e.g. location coordinates, acquisition date and time, elevation data, viewing
geometries) is mostly provided by the scene’s metadata. The atmosphere can be characterized
by its aerosol type, water vapor content, or visibility. As the aerosol contribution is the most
influential atmospheric component, aerosol optical depth (AOD), rather than visibility, is
often used to characterize the atmosphere (Liang et al., 2001; Richter and Schliapfer, 2012).
An ideal method of visibility or AOD determination would be to obtain atmospheric
measurements at the time of sensor overpass, which is however rarely possible because
aerosols are very variable in space and time. Therefore, this value is either estimated by the
operator or derived directly from the used RS scene (Kaufman et al., 1997; Liang et al., 1997).
The automatic derivation is most frequently performed over dark objects, as these are
especially sensitive to AOD estimates because their reflectances become negative if the AOD
is estimated too high. An accurate estimate of the main atmospheric parameters is necessary,
because these influence the values of path radiance, transmittance, and global irradiance. The
adjacency component is calculated in a second step by relating the average reflectance of the
surrounding area to the ratio of the diffuse and direct transmissions and adding it to the term
in equation 2.13 (Richter and Schlapfer, 2012).

A relative atmospheric correction is a simple and straight-forward statistical method that
assumes a linear relationship between image bands across time, but does not account for
individual radiance components. Examples are the invariant-object method, histogram
matching, or contrast reduction. For empirical methods such as the empirical line approach,
reflectance spectra field measurements are required (Liang et al., 2001; Gao et al., 2009).

2.2.2. Empirical-statistical LAI derivation

Empirical-statistical LAI derivation is one of the two approaches pursued in this thesis. It
searches for a continuous relationship between the spectral signature of a canopy and LAIL
Thereby a statistical model, also referred to as transfer function, relates LAI measured in situ
to corresponding RS spectral information. The RS reflectance measurements are then
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Figure 2-13: Schematic concept of the empirical-statistical approach. Adapted from Dorigo et al.
(2007).

converted to LAI by inverting the transfer function (see Figure 2-13, Cohen et al., 2003a;
Dorigo et al., 2007). In addition to the selected spectral information and transfer function
described below, the accuracy and range of in situ measurements sampled for model training
determine the validity of the derived map (Turner et al., 1999; Sims and Gamon, 2002).

Empirical-statistical approaches to derive properties of vegetation canopies have been in use
since the early exploitation of satellite data in the 1970s (Weiss et al., 2000). Statistical LAI
derivation was first used on crop canopies. One of the earliest attempts was carried out by
Kanemasu (1974), who derived wheat LAI using Landsat MSS data. Recent studies on crop
LAI have been published by Broge and Mortensen (2002), Colombo et al. (2003), Yang et al.
(2007), or Ehammer et al. (2010). After investigations on crop LAI yielded promising results,
LAI estimation for forests started in the 1980s. Since the first forest LAl mapping by Peterson
et al. (1987), a high number of empirical studies have been conducted (see e.g. Chen and
Cihlar, 1996; White et al., 1997; Turner et al., 1999; Cohen et al., 2003a; Fernandes et al.,
2003; Kalacska et al., 2004; Soudani et al., 2006). With regard to grassland LAI, the number
of studies is smaller. Since the BigFoot site in the Konza Prairie has been used for ecological
research since 1980, several LAI studies focused on this tallgrass prairie (see e.g. Asrar et al.,
1986; Turner et al., 1999; Cohen et al., 2003b; Lee et al., 2004; Cohen et al., 2006). Other
studies using empirical relationships to derive grassland LAI are He et al. (2006), Frank and
Karn (2003), Mutanga et al. (2004), or Vescovo and Gianelle (2008).

Vegetation indices

For the establishment of empirical relationships, the spectral signature is rarely directly used,
as it is influenced by various factors (Equation 2.8). Therefore band reflectance is often
transformed to enhance the spectral contribution of green vegetation while minimizing those
from soil background, senescent vegetation, atmosphere, and variations in viewing geometry
(Huete, 1989). Although several manipulations have been proposed (see Dorigo, 2007), the
most common method is to mathematically combine spectral band reflectance to create a VI.
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VIs are dimensionless variables that mostly rely on the strong reflectance difference between
VIS and NIR described above. VIs are hence basically linked to relative abundance and
activity of green vegetation (Baret and Guyot, 1991; Baret et al., 1992; Glenn et al., 2008).
Due to this relationship, VIs constitute a convenient tool to monitor spatial and temporal
patterns of vegetation canopies and to estimate biophysical vegetation properties (He et al.,
2006; Dorigo et al., 2007; Glenn et al., 2008). The number of VIs used in scientific studies is
constantly increasing, as each VI tries to reach maximum sensitivity to a specific biochemical
or biophysical parameter under different conditions (Haboudane, 2004; Dorigo et al., 2007).
Classical broad band VIs based on multispectral sensors are distinguished from VIs based on
narrow bands recorded by hyperspectral sensors. A review of the latter group of VIs is given
in Dorigo et al. (2007) or Liang (2004). Broadband VIs can be divided into ratio, orthogonal,
and hybrid indices (Broge and Mortensen, 2002).

Ratio VIs are based on the ratio between red and NIR reflectance and computed irrespective
of soil properties. Their LAI isolines, i.e. lines of equal LAI values from different vegetation
structures and soil types, join the origin in the red-NIR feature space (see Figure 2-14). The
first VI was the NIR reflectance divided by the reflectance in the red band, named Simple
Ratio (SR) or Ratio Vegetation Index (RVI) (Jordan, 1969). Rouse et al. (1974) developed the
Normalized Difference Vegetation Index (NDVI), which is the difference between the NIR
and red reflectance, related to their sum. The NDVI is adopted in many studies as well as for
operational monitoring and is probably the most widely used VI. Further, several variations
have been proposed (an overview is given by Huete and Liu, 1994, and Karnieli et al., 2001).

Orthogonal indices have been developed to minimize the influence of soil reflectance. For
these VIs, the LAI isolines do not converge at the origin of the Red-NIR space but stay
parallel to the soil line (Huete, 1988). The difference between NIR and red reflectance was
the first index of this category (DVI, Jordan, 1969), which was modified by Clevers et al.
(1989) as Weighted Difference Vegetation Index (WDVI). The Tasseled Cap transformation
presented by Kauth and Thomas (1976) is also an orthogonal transformation. Quite similarly,
Richardson and Wiegand (1977) used the perpendicular distance to the soil line as an
indicator of plant development and created the Perpendicular Vegetation Index (PVI).

Hybrid VIs contain elements of both ratio and orthogonal VIs. The Soil Adjusted Vegetation

NIR reflectance
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Figure 2-14: Simulated LAI isolines of a planophile canopy (ALA = 30°) in the red-NIR feature space
generated using the PROSAIL model. LAI values range from o (bare soil, bold line) to 6 by 0.2 steps.
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Index (SAVI, Huete, 1988) introduces a soil calibration factor to minimize soil background
influences. The SAVI has also been further modified, e.g. in the Transformed Soil Adjusted
Vegetation Index (TSAVI, Baret et al., 1989), the Modified Soil Adjusted Vegetation Index
(MSAVI, Qi et al., 1994), the Soil adjusted and Atmospherically Resistant Vegetation Index
(SARVI), and the modified SARVI (MSARVI, Huete and Liu, 1994). Using SWIR reflectances
in VIs enables the monitoring of LAI (Brown et al., 2000), dead plant material (Xu et al.,
2014), and of water content (Bowyer and Danson, 2004). However, as no RS data providing
SWIR bands are used in this study, the review of those indices would be out of scope.

Overall, soil adjusted indices are reported to be especially suitable for estimating structural
canopy parameters such as LAI (Baret et al.,, 1995; Huete, 1997; Haboudane, 2004).
However, the SR being linearly related and the NDVI and TSAVI being exponentially related
have also been identified as suitable VIs (Wiegand et al., 1992; Liang, 2004). Thus, a general
recommendation on which VI performs best for LAI derivation cannot be given. Systematic
comparisons of VI performances have been conducted using synthetic (Broge and Leblanc,
2001; Haboudane, 2004; Féret et al., 2011) and measured data (Jordan, 1969; Broge and
Mortensen, 2002; Darvishzadeh et al., 2008a), but even these studies only refer to a limited
data set, specific vegetation types, and specific atmospheric conditions.

Transfer functions

The most established way to model the relationship between VIs and the variable of interest
is by ordinary least squares (OLS) regressions (see e.g. Fassnacht et al., 1997; Schlerf et al.,
2005; Heiskanen, 2006) of the form

Y= Bp+B:1X+¢ (2.14)

where Y is the response variable (LAI), X is the explanatory variable (VI), B, and B, are
intercept and slope, and ¢ is the error term. Although it can be argued that the spectral signal
is dependent on vegetation state and not vice versa, in most studies the vegetation parameter
is modeled as the dependent variable Y (Cohen et al., 2003a). The unknown parameters
Boand B;of the best fit are identified using the OLS method, which minimizes the sum of
squared vertical distances between the observed and the predicted variable X values. Due to
the fact that the spectral signal reaches a saturation level at higher canopy densities (chapter
2.2.1), the relationships between VIs and LAI are often reported to be non-linear (Weiss et
al., 2000; Baret and Buis, 2008). Thus, several studies used transformed predictors in
logarithmic, exponential, power, or polynomial regression models (see e.g. Clevers, 1989;
Turner et al., 1999; Hansen and Schjoerring, 2003; Kalacska et al., 2004; Ehammer et al.,
2010). Cohen et al. (2003a) mention the limitations of traditional linear models for RS
applications. Assumptions about the data sets’ statistical properties are often violated when
using RS data and data measured in situ, as there are errors in both measured X and Y
variables (Brown, 1979). Larsson (1993) and Heiskanen (2006) therefore used the Reduced
Major Axis (RMA) method instead of OLS for the establishment of regressions. For a detailed
discussion, see Curran and Hay (1986) and Cohen et al. (2003a).

Integrating multiple data (e.g. several VIs, angle measurements, or dates) into one index or
empirical model is another approach to improving the estimate of the variable of interest. In
multiple regressions, the regression equation contains two or more predictor variables. In
stepwise multiple regressions (SMR) these predictors are added and removed successively to
automatically select the most relevant variables. The use of SMR for LAI estimation has e.g.
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been tested by Jacquemoud et al. (1995b), De Jong et al. (2003), Mutanga et al. (2004),
Atzberger et al. (2010) and Duveiller et al. (2011b). Cohen et al. (2003a), Lee et al. (2004),
and Heiskanen (2006) incorporated multiple information by means of canonical correlation
analysis (CCA), which permits the use of several weighted explanatory variables in a linear
model. The partial least squares (PLS) regression is an extension of the multiple regression
approach well suited for dealing with highly multicollinear data. The multidimensional
feature space is transformed such that information which correlates with the variable of
interest is combined into a few factors, while irrelevant information is grouped into less
important factors (Hansen and Schjoerring, 2003; Cho et al., 2007; Darvishzadeh et al.,
2008c; Atzberger et al., 2010). Huang et al. (2004) and Curran et al. (2001) further tested the
continuum-removal analysis of Kokaly and Clark, an approach that pursues the same strategy
of isolating the spectral features of interest by normalizing the reflectances.

Machine learning techniques constitute another group of statistical approaches. In contrast
to OLS approaches, machine learning techniques do not assume a linear relationship but can
model complex non-linear functions. An advantage thereof is that no assumptions have to be
made about the data distribution (Fourty and Baret, 1997; Beale and Jackson, 1998; Huang et
al., 2004). For empirical-statistical LAI derivation, artificial neural networks (ANN) are often
used. ANNs mimic biological mechanisms used to process information. During a calibration
phase, a relation between the predictor variables X (inputs) and a response variable Y
(output), that minimizes the difference between the actual and desired output, is iteratively
learned based on a training data set, and an interpolating response surface M is set up:

Y= MX) +=. (2.15)

The response surface M consists of at least one “hidden layer” composed of processing nodes,
referred to as neurons. The inputs are connected to the neurons in the hidden layers, which,
in turn, are connected to the output. Each neuron is a nonlinear processor f of its input
signals S; before forwarding it to another layer or the output. Thus the output O of a node is

0= f(z WiSi + b) (2.16)
i=1

Thereby, the weights w; and biases b are unique for each neuron. The learning phase is an
iterative optimization process involving the modification of the weights and biases and the
evaluation of the output error. Thus, the structure of an ANN adaptively develops its own
basis functions and the corresponding coefficients (Rumelhart et al., 1986; Kimes et al., 1998;
Combal et al., 2002a). A drawback of the method is that the network can over-fit the data,
although techniques such as pruning or stopping criteria reduce this risk. ANNs are also
frequently used for radiative transfer model inversion (chapter 2.2.3). Other machine
learning approaches that are used as a transfer function are Support Vector Regression (SVR,
see Vapnik, 1999; Durbha et al., 2007; Camps-Valls et al., 2009; Yang et al., 2011; Verrelst et
al., 2012a) or, less often, random forest approaches (Powell et al., 2010; Le Maire et al., 2011;
Vuolo et al., 2013). No general conclusion can be drawn for the choice of the regression
model, as the performance of each model depends on the used VI, ecosystem, site, and field
data. However, most studies report that VIs are linearly related to LAI in sparse canopies and
non-linearly when high LAI values occur. Further, multivariate and machine learning
techniques often outperform univariate techniques (Baret et al., 1995; Broge and Mortensen,
2002; Baret and Buis, 2008; Darvishzadeh et al., 2008¢; Atzberger et al., 2010).
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Potentials and Limitations

The empirical-statistical approach is often used due to its simplicity, computational
efficiency, and the good results that can be achieved if extensive ground measurements are
available and if the transfer function is applied on a confined region and known land cover
(Gobron et al., 1997a; Cohen et al., 2003a; Colombo et al., 2003; Atzberger et al., 2003a).
Apart from its use for LAI mapping, the empirical approach is further indispensable for the
upscaling of in situ data for validating coarse resolution data (Baret et al., 2003; Morisette et
al., 2006). However, there are considerable limitations to the empirical-statistical approach.
A prerequisite of a transfer function is the assumption that variations in a spectral signal are
caused by variations in LAI only. This assumption is never fulfilled, as canopy reflectance
depends on several factors (Dorigo, 2007; Ustin et al.,, 2009). Explicitly, reflectance is
sensitive to variations in space and time (e.g. phenological stages), species composition, and
site (e.g. soil properties) and sampling (e.g. atmospheric properties, viewing and illumination
geometries) conditions. Further, even if extensive field measurements are conducted, it is
nearly impossible to cover all occurring scenarios (Clevers, 1989; Jacquemoud et al., 1995b;
Turner et al., 1999). Therefore, no universally valid VI-LAI relationship can be expected. This
implies that the derived relationship is only reliable for the data set it is trained on, and new
relationships would ideally have to be established for each place and time, which is costly and
time-intensive, as corresponding in situ measurements are needed. Therefore, empirical
relationships are not suitable for global and operational LAI mapping. Partly due to this
limitation, increasing interest goes towards RTMs for the retrieval of LAI.

2.2.3. Physical approach

The physical approach is rooted in the understanding and theoretical description of radiation
transport through vegetation canopies. Spectral reflectance is the result of scattering and
absorbing in the canopy and at boundary layers. Physics-based RTMs aim at providing these
processes and relate radiation leaving a vegetation canopy in a given direction to the spectral
and structural properties of the leaves and the canopy (Widlowski et al., 2014). An RTM is
run in the “forward mode” to calculate reflectances given the specific characteristics of a
canopy and observation configurations (see Figure 2-15). The canopy characterization by leaf
and canopy parameters is called parameterization. Through parameterization, RTMs can
simulate a great variety of vegetation characteristics and sensor acquisition geometries
(Dorigo et al., 2007). These explicit input parameters, which can later be directly derived by
running the model in the ‘inverse mode’, are called ‘primary variables’. FPAR and the
fractional vegetation cover (fCover) have also been estimated as so-called ‘secondary
variables’, as they are combinations of RTM primary variables (Weiss et al., 2000; Combal et
al., 2002b). The physical approach was developed since the beginning of the
1980s, concurrently with the empirical approach. First studies showed that the
estimation of biophysical and biochemical properties using an RTM from reflectances
measured in situ is possible given a certain amount of ancillary data on leaf and soil
properties (Goel and Strebel, 1983, Goel and Thompson, 1984a, 1984b). The use of satellite
data was only pursued in the mid-1990s (Jacquemoud et al., 1995a; Kuusk, 1995a).

Every vegetation RTM is at least composed by a leaf model and a canopy structure model (see
Figure 2-15). In addition to this, soil reflectance is crucial for radiation transfer modeling as it
describes the lower boundary condition of the canopy with its own spectral properties (see
Huete, 1989). It is integrated in the canopy model by spectra measured in the field, spectra
taken from the scene, a standard soil spectrum, or by spectra provided by a soil BRF model,

29



2. State of the art in LAI derivation

e.g. the Hapke model (Hapke, 1981), its successors SOILSPECT (Jacquemoud et al., 1992) or
4SOIL (Laurent et al., 2011). In the works of Atzberger (2003b; 2004) simple empirical
relationships and scaling factors have been used to adjust band specific soil reflectances.

Further, a model for the simulation of radiance propagation in the atmosphere can be used to
calculate TOA radiance, i.e. the radiance as it would have been measured by a sensor (see e.g.
Gastellu-Etchegorry et al., 2004; Baret et al., 2006; Verhoef and Bach, 2007; Lauvernet et al.,
2008; Houborg et al., 2009; Laurent et al., 2011). An overview of atmosphere radiation
transfer modeling and on established models is given in Grau and Gastellu-Etchegorry
(2013). The use of TOA radiance is adopted because atmospheric RTMs are more accurate
when run in the forward mode, so that atmospheric, adjacency, and surface directional
effects can be incorporated more accurately in the LAI retrieval process (Liang, 2004).
Further, in this approach all errors and uncertainties are contained in the LAI simulation
process, which makes it easier to study their impact (Laurent et al., 2011; Grau and Gastellu-
Etchegorry, 2013). Nonetheless, the use of modeled TOC reflectances together with
atmospherically corrected RS data has been directive in the last few decades, which is why
the discussion will be limited to the simulation of reflectance at TOC level below. The
derivation of LAI is achieved by model inversion. Before the inversion of RTMs is discussed,
an overview of leaf and canopy models is given.

Forward mode

//rRadiation transfer mod;\\

Leaf model Soil model
Parameter of
: —>
interest (LAI) \ 1/ Simulated
Canopy model —>| reflectance
Additional : Gt liss)
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Figure 2-15: Concept of radiation transfer modeling: forward mode (above) and inverse mode
(below).
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Leaf optical models

The purpose of a leaf optical model is to simulate scattering and absorption of light at plant
material depending on leaf biochemical composition and structure. Input parameters to leaf
models are at least the concentrations and absorption spectra measured in vivo of the most
important leaf pigments and water, as well as a refractive index. However, the models differ
in the complexity of the modeled leaf structure and distribution of compounds.

The simplest approach is to describe the leaf as a homogeneous medium. This was developed
by Allen and Richardson (1968), who published a model based on the theory of Kubelka and
Munk (K-M theory, Kubelka and Munk, 1931) that describes the one-dimensional (1D)
radiation transfer in scattering media with two parameters, a scattering and an absorption
coefficient. Allen and Richardson stated that their theory can be applied to leaves as well as to
plant canopies (see below). In their approach, the leaf is considered as one slab of scattering
and absorbing material, with incoming light being perpendicular to the leaf. Such models are
generally called “N-flux models” (see e.g. Richter and Fukshansky, 1996). An extension of this
approach is the “plate model”, in which the leaf is composed of one or n homogeneous plates
with rough isotropic surfaces in a pile with n — 1 intermediate air layers. One of the oldest
and most popular plate models is PROSPECT (Jacquemoud et al., 2009, see chapter 6.1.1). In
contrast to Allen and Richardson’s initial expression, a variable angle of incident light is
introduced. It calculates reflectance and transmittance in the spectrum between 400 -
2500 nm based on two types of input variables, the leaf structure parameter N and leaf
biochemical content (water and leaf pigments) (Jacquemoud and Baret, 1990). In the
following versions, the simulation of reflectance is continuously improved by accounting for
further leaf biochemical constituents (Jacquemoud et al., 1996), by the condensation of these
components into one parameter (‘dry matter’, Baret and Fourty, 1997; Jacquemoud et al.,
2000), by increasing the model’s spectral resolution from 5 nm to 1nm (Le Maire et al.,
2004), and by separating chlorophylls and carotenoids (Féret et al., 2008).

This approach is contrasted with more complex but realistic models that take into account
the structural heterogeneity of leaves, which is achieved by stochastic, radiosity, or ray
tracing methods. The trajectories of photons are simulated, which interact with leaf material
according to defined probabilities for scattering and absorption along their way. The model
SLOPE (Stochastic model for Leaf Optical Properties Extended for fluorescence, Maier,
2000) is a stochastic approach that approximates radiation transport through 30 layers as
transitions between photon states based on Markov Chains (Oehmichen, 2004), while the
LEAFMOD model by Ganapol et al. (1998) uses only one layer. A method derived from
computer graphics applications is radiosity modeling (Liang, 2004). The best known leaf
model of this type is the ABM presented by Baranoski and Rokne (1997). Once a ray hits a
leaf, it performs a ‘random walk’, i.e. can be reflected or scattered multiple times, until it is
absorbed or leaves the leaf (Hammersley and Handscomb, 1964). Ray tracing models
simulate the propagation of photons through the leaf, taking into account the properties of
the cells (shape, size, position, biochemical content) and the optical parameters of the cell
constituent. They are therefore the most realistic leaf realizations (Baranoski and Rokne,
1997). An example is RAYTRAN, which can be applied independently of scale (Govaerts et al.,
1996). While the strength of these models is their ability to incorporate a lot of information,
their drawback is the required detailed description of the cells. This makes them
computationally very expensive and inversions difficult to implement.
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Figure 2-16: Homogeneous vegetation canopy with randomly distributed finite-size scatterers
simulated by a 1D model (image downloaded from the RAMI homepage®).

A weakness of most leaf models is the ignorance towards the anisotropic reflectance behavior
of leaves, although some work on measuring anisotropic leaf BRF and incorporating it in leaf
models has been carried out (Jacquemoud and Ustin, 2001; Bousquet et al., 2005; Combes et
al., 2007; Comar et al., 2014). Further, biochemical compounds with only relatively small
absorption features cannot be accurately retrieved (Fourty et al., 1996), which is however of
minor relevance for LAI modeling.

Canopy models

Several canopy models evolved, which can be distinguished according to the degree of detail
in representing canopy structures, as well as to the numerical or analytical solution technique
used to solve the radiation transfer equations. For a detailed description of radiative transfer
equations and their solutions, see Goel (1988), Myneni and Ross (1991), or Verhoef et al.
(2007). Most techniques used for leaf modeling are also applied to canopy modeling.

The simplest kind of canopy models are 1D turbid medium model. They rely, as the leaf
models, on the approach introduced by Allen and Richardson (1968). The plant canopy is
considered a turbid plane-parallel medium (see Figure 2-16), based on a number of
simplifications: The canopy is horizontally homogeneous and infinite but vertically variable
and finite. It contains infinitely small, flat leaves (comparable to particles) of defined optical
properties that are randomly distributed in space. Allen and Richardson’s approach
considered only two types of radiant fluxes, diffuse upward and downward radiation. In its
successor model (Allen et al., 1970) a direct solar flux is also included. Finally, in the Suits
(1972) model, directional upwards radiance is considered. The four radiation fluxes are
expressed in four differential equations, making this kind of model a ‘four stream model’. The
Suits model represents leaves as elements with finite size, and the canopy as a mixture of
vertical and horizontal leaves. Through extending the Suits model by a leaf inclination
distribution function (LIDF) to allow for randomly distributed leaf angles, Verhoef (1984)
developed the SAIL (Scattering by Arbitrarily Inclined Leaves) model. The inputs to SAIL are
LAI, LIDF, layer thickness, leaf transmittance and reflectance, and a soil spectrum (chapter
6.1.1). It provides canopy BRF and absorption (Goel, 1988).

Other turbid medium models were also developed in the early 1990s, each using different
analytical (Verstraete et al., 1990; Pinty and Verstraete, 1991; Knyazikhin et al., 1992;

6 http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI3/RAMI3.php. Last access: 20.02.2014
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Iaquinta and Pinty, 1997) or semi-analytical (Ganapol and Myneni, 1992; Ahmad and
Deering, 1992; Gobron et al., 1997b) methods to solve the transport equations. However,
SAIL is the most widely used and validated vegetation canopy model (Jacquemoud et al.,
2009). It has been improved and extended several times. In 1995, the single-scattering
component of direct solar radiation of the Nilson-Kuusk model (Nilson and Kuusk, 1989) was
introduced into SAIL in the form of a hot spot parameter forming SAILh (Kuusk, 1991;
Kuusk, 1995a). A numerically robust and speed-optimized version (SAIL++) that accounts for
multiple scattering was published by Verhoef et al. (2002). To simulate vertical gradients in
canopies, e.g. higher leaf area density and pigment concentrations towards the top, Weiss et
al. (2001) proposed the 2M-SAIL model. It distinguishes four different layers consisting of
fractions of soil, green pigments and brown pigments. Similarly, Verhoef and Bach (2003)
propose two layers of different concentrations of brown and green pigments in the GeoSAIL
model (not to be confused with the “GeoSail” model, see below). Other versions take into
account chlorophyll fluorescence (FLSAIL, Rosema et al., 1991; FluorSAIL, Miller et al.,
2005) or can be used for thermal applications (4SAIL, Verhoef et al., 2007).

In 1992, SAIL was combined with the PROSPECT leaf model to form the well-known
PROSAIL model (Jacquemoud et al., 2009), which is described in more detail in chapter 6 as
it is used in this thesis. By linking the variation of reflectance depending on biochemical leaf
contents with its directional variation depending on canopy architecture, PROSAIL is a
valuable tool for vegetation characterization. As PROSAIL is a 1D model based on a relatively
small number of input parameters, it is computationally effective and invertible. It is
especially suitable for representing dense and homogeneous vegetation (Schlerf and
Atzberger, 2006; Dorigo et al., 2007). To account for the cases in which these assumption do
not apply, e.g. for clumped canopies such as forests or row crops, three-dimensional (3D)
methods have been developed.

In geometrical-optical radiation transfer (GORT) models, the canopy is represented by
objects of geometrical shapes. To represent the plants, ellipsoids, cones, or cylinders are used
(e.g. Strahler and Jupp, 1990; Cescatti, 1997; Widlowski et al., 2006b), or they are
constructed from small cubic voxels in a regular grid (e.g. Gastellu-Etchegorry et al., 2004;
Béland et al., 2011; Bittner et al., 2012; Grau and Gastellu-Etchegorry, 2013). The spatial
distribution of these objects is specified, so that sunlit and shadowed canopy regions can be
calculated. This model type is therewith able to handle sparse canopies where shadowing
plays an important role. To describe the geometrical objects, additional input parameters are
necessary, at least a cover fraction index and a crown shape parameter. The first geometrical
model was presented by Li and Strahler (Li and Strahler, 1985, 1986). It constructs a canopy
spectrum by linearly combining reflectance from sunlit and shaded tree crowns and
backgrounds. This concept was extended by the use of ellipsoidal crown shapes and mutual
shading (Li and Strahler, 1992) and by including other sunlit or shaded surfaces (Jupp et al.,
1986). Other examples are the Simple Geometric Model (Chopping, 2003), the KUUSK
model (Kuusk, 1995b), the approaches of Myneni et al. (1990), of Welles and Norman (1991),
or the “4-scales” model of Chen and Leblanc (1997). A review is given by Chen et al. (2000).

Hybrid models represent the canopy as GORT models, with the geometrical objects/voxels no
longer being opaque but treated as turbid media to approximate the distribution of scatterers
therein (Widlowski et al., 2014, see Figure 2-17). The number of input factors for these
models is often increased by the need of describing several horizontal layers. Examples are
the Three-dimensional Radiation Interaction Model (TRIM, Goel and Grier, 1988), the model
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Figure 2-17: Simulated canopy of spectrally and structurally mixed vegetation (from the RAMI
homepage®). See there and Widlowski et al. (2014) for further examples of simulated homogeneous
and heterogeneous canopies, which correspond to the structure of advanced 1D and 3D RTMs.

introduced by Bégué (1992), the Forest Light Interaction Model (FLIM, Rosema et al., 1992),
the FRT model (Nilson and Peterson, 1991; Kuusk, 2000), the GeoSail model (Huemmrich,
2001) and the 4SAIL2 (Verhoef and Bach, 2007), both coupled with SAIL. The Invertible
FOrest Reflectance Model (INFORM) by Atzberger (2000) is a hybrid model that solves the
energy transport based on a stochastic method.

So-called numerical computer simulation models account for location, size, shape, color and
orientation of every single object in the canopy by using 3D virtual plants generated from
growth simulation algorithms (Allen et al., 2005; Disney et al., 2006; Lamanda et al., 2007;
Da Silva et al., 2008; Roupsard et al., 2008). They give a realistic image of canopies and
radiation transfer, however, their complexity leads to a high computational demand, which
restricted the use of such algorithms for decades (Jacquemoud et al., 2000; Widlowski et al.,
2014). Further, inverting numerical computer simulation models is not trivial. Two typical
methods are Monte Carlo ray tracing and radiosity methods. Using Monte Carlo ray tracing
(e.g. PARCINOPY, Chelle, 1997; DART, Gastellu-Etchegorry et al., 1996; SPRINT, Goel and
Thompson, 2000; FLIGHT, North, 1996; Rayspread, Widlowski et al., 2006a; FLIiES,
Kobayashi and Iwabuchi, 2008), the path of rays through the canopy is calculated through
stochastic decisions for each contact, until they are absorbed or leave the scene. Since the
number of photons leaving the scene in each direction is small, millions of simulations have
to be performed to ensure an accurate BRDF estimation. Radiosity models are widely used in
computer graphics for realistic scene rendering. They represent each scattering element in
terms of polygons and each polygon is assumed to be a Lambertian surface (Borel et al., 1991;
Goel et al., 1991; Chelle and Andrieu, 1998; Qin and Gerstl, 2000). The advantage is that once
the radiation transport is solved, canopy reflectance can be simulated from any view angle.

Overall, RTMs become increasingly important in the RS community. Since the 1980s, the
ability of radiation transfer modeling in complex canopies has considerably evolved. At the
JRC, the comparison program RAMI (RAdiation transfer Model Intercomparison) aims at
benchmarking the performance of RTMs. In this program, complex 3D models are used for
validating simple RTMs and for testing the impact of approximations made in less complex
models (Disney et al., 2000). The results of this initiative are summarized in Pinty et al.
(2001; 2004) and Widlowski et al. (2007; 2013).
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Leaf and canopy model selection is always a trade-off with regard to the number of input
parameters employed (Jacquemoud et al., 2000). The inclusion of many parameters
increases the realism of the modeling result but decreases the invertibility and computational
efficiency of the model. In cases where the parameters are not adequately known, many
parameters will even increase the under-determination of the inversion (see below). A good
model is therefore a compromise between realism and simplifications (Nilson and Kuusk,
1989; Kimes et al., 1998; Verhoef and Bach, 2007). The choice of a canopy model depends
further on the canopy type under consideration, with particular attention on the way canopy
structure is represented, and on the spatial resolution of the RS observation (Pinty et al.,
2004; Widlowski et al., 2005; Widlowski et al., 2014). For selection criteria relevant for
grassland modeling and an associated literature review see chapter 6.1.2

Inversion techniques

To retrieve canopy parameters from measured reflectances, an RTM needs to be inverted (see
Figure 2-14). Due to the complex character of RTMs, an analytical closed-form solution is
mostly not possible. Consequently, numerical schemes have to be used for solving the
inverted transport equation. These schemes can deal with complex RTMs, since the model is
used only in the forward mode. Relating to Equation 2.8 (chapter 2.2.1), which describes the
dependencies of surface reflectance in the forward mode, the inverse problem consists in
estimating the set of variables {ay, by, c3, s3,0;} that produced the observed spectrum R;.
Some of the parameters influencing canopy reflectance (e.g. LAI of ¢;) are derived given R,
and other subsystem properties (Goel, 1988; Kimes et al., 2000):

¢y = g(Ra, s3,a3, by, 03) (2.17)

Avoiding the need to retrieve atmospheric properties by using atmospherically corrected TOC
data and with full knowledge of the sun and sensor properties, the inverse problem becomes

{by, ca} = g(Ra, 53, 03) (2.18)

where s; and o, contain only fixed parameters. Further, some of the soil (b;) and canopy (c;)
parameters are often known or predictable at a sufficient accuracy and can be fixed with
estimates. Thus, only a subset of the parameters in Equation 2.18, called free parameters p,
needs to be derived through inversion (Kimes et al., 2000). The number of free parameters p
determines the number n of independent equations in the form of Equation 2.17 needed to
evaluate them, as n at least has to equal p. If n < p, the equation system is under-determined
for a unique solution. Additional independent equations are most easily achieved by varying
the well-known sun and sensor properties, i.e. by sampling radiation in several viewing
directions. Generally, inversion techniques can be classified into two groups, depending on
whether the emphasis is put on the match between measured and simulated reflectance, or
on the relation of the canopy parameter of interest to the modeled spectra (Goel, 19809;
Jacquemoud et al., 2009). A special issue of Remote Sensing Reviews (Liang and Strahler,
2000), Tarantola (2005), and Baret and Buis (2008) review inversion theory and methods
for LAI derivation. While several aspects influence the selection of an inversion method, it
does not depend on the studied canopy type, thus all are potentially suitable for grassland
LAI derivation. In the following a short description of the most important techniques —
iterative optimization, look-up tables, and neural networks — is given.
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Iterative Optimization

Traditional inversion of RTMs uses iterative optimization (Goel, 1988). Multidimensional
optimization algorithms search for the set of input variables that leads to the best match
between simulated and measured reflectances by iteratively trying different model parameter
configurations within a certain range (Figure 2-18). In this regard, a so-called merit or cost
function J calculates the dissimilarity between the simulated reflectance R; and the measured
reflectance R, , weighted by the variance o} associated to measurements and model
uncertainties (Pinty et al., 1990; Jacquemoud et al., 2000; Combal et al., 2002a).

Nmeas 5 52

J= z (Ra ZRA) (2.19)
- O
A=1

The measurement uncertainties are mainly related to sensor and processing errors, while
model uncertainties result from model simplifications compared to actual canopies (Koetz et
al., 2005b). The minimization of the cost function is then used as a stopping criterion for the
optimization. In this regard, the number of free parameters and the number of configurations
considered define the size of the inverse problem. Further, the definition of tolerance
thresholds is important for optimal performance (Jacquemoud et al., 2009).

There are several minimization techniques available in standard libraries, often classified
according to their search strategy and to reliance on the model’s partial derivatives. Non-
derivative based algorithms include the “conjugate directions” method, which iterates from a
single starting point (Goel, 1989; Liang and Strahler, 1993; Liang and Strahler, 1994; Bacour
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Figure 2-18: Schematic concept of the iterative optimization inversion algorithm. Adapted from
Kimes (2000). The ‘state parameter’ is the parameter of interest, i.e. the LAI, while the ‘vegetation
characteristics’ comprise all other leaf and canopy parameters used in the RTM.
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et al., 2002b), or the “simplex” method, which starts from a family of points (Jacquemoud et
al., 1994; Privette et al., 1994; Bicheron and Leroy, 1999). The “Steepest-Descent”, “conjugate
gradient”, “Newton-Raphson”, or “Quasi-Newton” methods rely on a single starting point and
derivative information (Pinty et al., 1990; Iaquinta et al., 1997; Combal et al., 2002a;
Lauvernet et al., 2008). In the last decade, Bayesian probability approaches such as the
“Markov Chain Monte Carlo” method are increasingly used (Zhang et al., 2005a; Verhoef,
2007). The algorithms differ in their stability and in computation efficiency. Research
suggests that the best optimization algorithm varies with the model. The technique has been
applied for various vegetation types such as crops (Goel and Thompson, 1984b; Fang, 2003;
Laurent et al., 2013), grassland (Privette et al., 1997; Vohland and Jarmer, 2008), and forests

(Bicheron and Leroy, 1999; Meroni et al., 2004; Zhang et al., 2005a).

The strength of the iterative optimization approach lies in its simplicity and wide availability,
as well as its flexibility and the control the user can maintain over the process. A major
drawback of iterative optimization is that it requires an initial guess of the solution to start
the search in the parameter space. The correctness of this initial guess can be critical if it
causes the solution to get trapped in a local minimum (Qiu et al., 1998; Bacour et al., 2002b;
Combal et al., 2002a). The problem can partly be reduced by limiting the range of parameter
variation (Lavergne et al., 2007), which however reduces the ability of modeling the natural
variability of canopies, or by restarting the optimization algorithm several times at different
points in the parameter space, which increases computation time. Similar approaches are
genetic algorithms (Jacquemoud et al., 1994; Fang, 2003), which use a population of initial
guesses that can be recombined and mutated. Either way, as the RTM has to be rerun
iteratively, the computational inefficiency of the approach is a major concern. Thus, although
iterative minimization methods proved to be efficient for case studies, they could not be
applied operationally over large spatial or temporal domains or for 3D RTMs (Kimes et al.,
2000; Kimes et al., 2002; Jacquemoud et al., 2006).

Look-up tables

Look-up tables (LUT) constitute a simple inversion technique also based on the minimum
distance between measured and modeled spectra (see Figure 2-19). By running the model
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Figure 2-19: Schematic concept of the Look-up table inversion approach.
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several times in the forward mode with different combinations of input parameters, a data
base with a large number of spectra is computed, a so-called LUT. The aim is to cover all
relevant canopy realizations. During inversion, a merit function (see Equation 2.19)
calculates the matches between a measured reflectance spectrum and all simulated spectra
stored in the LUT. This merit function most frequently is a least squares estimate (LSE)
(Rivera et al., 2013; Leonenko et al., 2013b). The parameter configuration that generated the
best fit spectrum is then selected as a solution.

The approach has several advantages. It is faster than optimization techniques, as the
inversion of each pixel only involves the LUT searching procedure, while the computationally
expensive LUT simulation is performed just once. Also, the LUT approach does not require a
training phase, which is necessary with machine learning methods and time-consuming in
most cases. Apart from the efficiency of the approach, the procedure has the advantage of
performing a global search and thus avoiding the danger of getting trapped in a local
minimum. This robustness is reinforced by not selecting the parameter set of the single best
spectrum as the solution of the inversion, but by deriving the average or median of the
parameters of multiple best fitting spectra (Weiss et al., 2000). Further, due to this best fit
sample strategy a posteriori distribution of the variable of interest can be routinely derived,
indicating the reliability of the final estimate (Kotz et al., 2004, see chapter 6.5.3). Another
advantage is the easy integration of prior knowledge on the target parameter or on
uncertainties into the process (Weiss et al., 2000, see also below and chapter 6.4). There is a
range of studies that used LUT inversion to estimate chlorophyll, water content, LAI, fAPAR
or fractional cover from RTMs (Weiss et al., 2000; Combal et al., 2002a; K6tz et al., 2004;
Gonzalez-Sanpedro et al.,, 2008; Knyazikhin et al., 1998; Darvishzadeh et al., 2008b;
Leonenko et al., 2013a; North, 2002; Richter et al., 2009; Soenen et al., 2009; Atzberger and
Richter, 2012). However, to achieve a high accuracy with this inversion method, the canopy
needs to be accurately represented in the LUT. This means that the variable space must be
sufficiently and systematically sampled, which increases the LUT size and slows down the
estimation procedure. Thus, the parameterization of the model, a realistic distribution of
variables, and the step sizes between variable states are crucial (Weiss et al., 2000; Combal et
al., 2002a; Combal et al., 2002b). Another drawback e.g. for the processing of RS time series
is that each sun and viewing geometry has to be accounted for in the LUT. To overcome this,
Gastellu-Etchegorry et al. (2003) suggest interpolating between angles using an analytical
BRF model, while Pasolli (2012) uses angle combination classes and associated individual
LUTs. Further, when the model and measurement uncertainties are not well known, the
definition of the cost function is a critical issue (Verger et al., 2011a; Leonenko et al., 2013b).

Hybrid inversion approaches

The second group of inversion techniques, biophysical variable driven methods, is based on
calibrating a statistical relationship over a learning data set consisting of the input and
output of an RTM. They are called “predictive”, “semi-empirical”, or “hybrid” approaches, as
they combine physical and statistical models (Weiss et al., 2000; Liang, 2004). As the
statistical methods described in chapter 2.2.2, inversion consist in adjusting the coefficients
of a relationship between the reflectance and the LAI during a calibration phase in order to
minimize the difference between this data base parameter value and the values predicted by
the inverse model. Once the calibration is achieved, the operational retrieval is rapid and
straight-forward (Duveiller et al., 2011b). The difference to a purely statistical approach is

that training data for establishing the relationship is not measured by an RS sensor or in the
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field. Instead, an RTM is used to build a synthetic data set, preserving the data from
uncertainties associated with ground and RS measurements. Further, with RTMs a wider
range of canopy realizations can be simulated than could be covered by in situ measurements
(Haboudane et al., 2002; Dorigo et al., 2007; Lauvernet et al., 2008). Due to the highly
complex relationships modeled in an RTM, non-parametric machine learning techniques are
mostly preferred over simple parametric regressions.

Inversions based on ANNs are the most prominent type of hybrid approaches (see Figure
2-20). An ANN interconnects the synthetic inputs and outputs of an RTM during the learning
phase (see chapter 2.2.2 for more details). Then, RS measurements are input into the trained
ANN and transformed into biophysical variables (Jacquemoud et al., 2009). ANNs have
lately become a popular method of inverting RTMs, mainly because of their high
computational speed and their retrieval performance. As the optimization operates directly
over the variables of interest, hybrid inversion approaches are potentially more accurate than
other techniques (Schlerf and Atzberger, 2006; Bacour et al., 2006; Baret and Buis, 2008).
Further, they are less sensitive to model uncertainties (Combal et al., 2002a). Verger at al.
(2008) even showed that a single ANN trained across several ecosystems performs in a
manner similar to ANNs trained for each ecosystem, which potentially reduces the
computational time considerably when working on complex landscapes. As a further
advantage, hybrid inversion schemes provide continuous solutions whereas LUTs yield
results based on their discrete entries (Duveiller et al., 2011b).

Major drawbacks of ANNs are the time-consuming training phase, the dependency of the
retrieval performance on the modalities of the training data set and the network architecture,
and the unpredictable behavior of ANNs when an RS signal is not well represented in the
training data set. Further, due to their black-box character, they are unsuitable for studying
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Figure 2-20: Schematic concept of the artificial neural networks inversion approach.
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cause-effect relationships. Also, they are tuned for a specific number of inputs, limiting the
transferability to other RS data (Schlerf and Atzberger, 2006; Duveiller et al., 2011b; Verger
et al., 2011a). There is a wide range of studies that use ANNs with a range of different sensors
to determine LAI, gap fraction, fAPAR, or the canopy chlorophyll content (see e.g. Baret et
al., 1995; Abuelgasim et al., 1998; Gong, 1999; Weiss et al., 2002; Kimes et al., 2002; Combal
et al.,, 2002b; Atzberger, 2004; Fang and Liang, 2005; Bacour et al., 2006; Verger et al.,
2008; Duveiller et al., 2011b). An overview of the method is given by Kimes et al. (1998).

The under-determined and ill-posed nature of RTM inversion

The most serious restriction of RTM inversion is its instability, as it is an under-determined
and ill-posed problem. According to Hadamard’s postulates, a problem is well-posed if and
only if its solution exists, this solution is unique, and depends continuously on the data
(Hadamard, 1902). The inversion of RTMs does not fulfill these criteria for two reasons.

First, the equation system is mathematically often under-determined for a unique solution,
because the number of unknown parameters p is larger than the number n of independent
spectral measurements. Thus, the problem of underdetermination increases with an
increasing number of free input parameters. According to Baret and Buis (2008), even a
simple RTM requires at least 13 input parameters. Thus, theoretically, at least 13
independent observations (bands or viewing directions) would be required to solve the
inversion using RS data. This requirement can mostly not be fulfilled, even if RS sensors
could provide a high number of measurements, because of the high correlation between
bands and view directions (Gemmell, 2000; Zhang et al., 2002; Verhoef, 2007). If, however,
only limited spectral information is provided, the signal can become ambiguous due to
compensations between canopy parameter that affect canopy reflectance in a similar way (so-
called parameter equifinality). For example, the spectral reflectance of a canopy with low LAI
but planophile leaf orientation is very similar to that of an erectophile canopy with high LAI
in certain spectral domains (Baret and Guyot, 1991; Jacquemoud and Baret, 1993; Combal et
al., 2002b; Atzberger, 2004).

The second aspect is the ill-posedness, which relates to the required continuous dependency
of the solution on the data. This means that the more accurately an RTM describes radiation
transfer in the canopy, and the more accurate the RS information is, the more accurate the
model output will be (Kimes et al., 2000). However, in reality, model and measurement
uncertainties do not result in equal uncertainties of the solution, i.e. the solution being near
the true solution, but might lead to leaps in the solution space. A continuous dependency of
the model output on the input is thus not given (Atzberger, 2004). Especially over dense
canopies for which reflectance saturates, a small variation in the input can translate to a large
output variation (Combal et al., 2002b; Baret and Buis, 2008). Therefore, retrieval technique
for solving ill-posed problems ideally should include uncertainty as an input parameter.

A straight-forward way to reduce the dimensionality of the inverse problem is the coupling of
leaf, canopy, and atmosphere models (Lauvernet et al., 2008; Kobayashi and Iwabuchi,
2008; Houborg et al.,, 2009; Jacquemoud et al.,, 2009; Laurent et al., 2013). When
reflectance and transmittance are provided to a canopy model by a leaf model, not only the
number of p decreases, but due to the independence of the remaining variables from
wavelength, an increase in spectral sampling in fact reduces the under-determination (Baret
and Buis, 2008). Equally, increasing the dimensionality of the RS observation with
directional information reduces the problem (Lavergne et al., 2007; Verhoef, 2007; Vuolo et
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al., 2008). According to Jacquemoud et al. (2000) and Widlowski et al. (2004), especially the
retrieval of structural canopy variables benefits from multi-angular observations. However,
most RS sensors have a limited number of viewing angles (Knyazikhin et al., 1998), although
recently there has been an expansion of sensors providing multi-angular imagery (see
chapter 2.3). The combination of several scenes recorded at different angles on consecutive
days as provided by MODIS strongly depends on pixel quality and is not available from high
resolution sensors (He and Yang, 2013). Thus, increasing independent spectral
measurements is not trivial.

Instead, regularization techniques have been introduced to stabilize RTM inversions, which
rely on the use of “prior information” to a greater or lesser extent (Combal et al., 2002b).
Prior knowledge includes any ancillary information about the “true” distributions of RTM
input variables, e.g. land cover type, structural or phenological characteristics, or viewing and
illumination conditions. It could be gained from literature, field measurements, model
sensitivity (see chapter 6.2), other sensors, or the scene itself (Baret and Buis, 2008). Based
on this knowledge, the under-determination is reduced through variables being set, which
either are exactly known or have a small influence on the model output, to an assumed real
value. The use of a priori information is indicated in Figure 2-18 to Figure 2-20 by the
dashed arrow between “in situ measurements” and “RTM”. A comprehensive overview of
regularization techniques is given by Tarantola (2005). Prior information can be introduced
to the inversion in different ways. Techniques which try to fit the simulated and measured
reflectances using a cost function (LUT and optimization techniques) can be modified by
adding an a priori vector term to the cost function, creating a Bayesian approach (see e.g.
Meroni et al., 2004; Lavergne et al., 2007; Lauvernet et al., 2008; Dorigo et al., 2009):

J=(R-R) *Wlx(R=R)+ (V-V,) * C1%(V-V,) (2.20)

Radiometric information Prior information

where V7 is the vector of the input biophysical variables, Vj, corresponds to the vector of a

priori variable values, R is the vector of RS measuremens, and R is the vector of the
simulated reflectances. Matrices W and C are the covariance matrices containing the
observation and model uncertainties and the uncertainties of the prior information,
respectively, as well as the covariance terms (Tarantola, 2005). Each term is weighted by the
inverse of its covariance matrix, which represents the Bayesian degree of belief. However, as
the uncertainties are often unknown and difficult to estimate in practice, they are assumed to
be uncorrelated and W and/or C become diagonal (e.g. Laurent et al., 2013). Note that the
first part of the equation is equal to Equation 2.19.

Alternatively, prior information can be introduced to approaches which use a pre-computed
data base (LUT and ANN) by adapting range, sampling intervals, and distribution of the
input parameters used for canopy realizations (e.g. Darvishzadeh et al., 2008b; Dorigo et al.,
2009). In this regard, ecosystem specific parameterizations strongly reduce the ranges of
input variables and increase the retrieval performance as long as no misclassification occurs
(Baret and Buis, 2008; Dorigo et al., 2009). Otherwise, as proposed by Koetz et al. (2005a), a
pre-selection of LUT entries based on the radiometric similarity can be exploited based on a
prior guess of the result. Further, LUTs and ANNs can account for model and measurement
uncertainties by adding noise to the LUT or learning data set (Combal et al., 2002b).

Constraints can also be derived from spatial or temporal information (Lauvernet et al.,
2008). Atzberger (2004) introduced the inclusion of neighborhood signatures of a land use
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object (agricultural fields). Based on the assumption of a constant canopy structure, intra-
field radiometric variability is used in combination with radiometric information to
distinguish between planophile and erectophile canopies. This leads to a reduction of the
confounding effects between LAI and LAD often observed for RTMs. Based on these findings,
Houborg et al. (2009), Laurent et al. (2013), and Atzberger and Richter (2012) use a 2-step
inversion approach. The first inversion over an object is used to derive the values of most
model parameters for the second, pixel-wise inversion. This reduces the ill-posedness of the
second inversion, which focuses on the variable of interest. These methods require RS
imagery with a spatial resolution sufficient to detect different pixels within one field.

The introduction of temporal constraints is based on the known dynamic of biophysical
variables over time, which can be used to determine the typical ranges of input parameters in
a particular development stage (Koetz et al., 2005a). These constraints can be introduced
either directly when known, or through additional models such as SVAT or canopy structure
dynamics models, which mimic the evolution of vegetation variables over time (Launay and
Guerif, 2005; Koetz et al., 2007a; Duveiller et al., 2011b). K6tz (2005a) reported improved
parameter estimates, particularly for large LAI values where signal saturation occurs.
However, this approach cannot include abrupt changes caused by events such as harvesting,
lodging, fire, or pest infestation. Lauvernet et al. (2008) minimized a cost function
simultaneously over multi-temporal observation of a patch of reflectances. A certain spatial
and temporal stability is assumed for the atmosphere and canopy parameters, respectively,
thus reducing the overall number of unknown parameters.

A variety of parameter fixation is the coupling of parameters, which is often performed for
leaf water and dry matter content (see e.g. Weiss et al., 2000; Bacour et al., 2006; Duveiller
et al., 2011b; Richter et al., 2011). This is based on the knowledge that relative water content
in healthy green leaves is about 80 %, so that the water to dry matter ratio is fixed as 4:1.
Another option is integrating individual parameters into synthetic parameters at the canopy
level. Examples are the canopy chlorophyll content (leaf chlorophyll content x LAI) or total
water content (leaf water content x LAI). These variables are physically meaningful, as they
correspond to the actual optical thickness of the canopy, and their estimation using RS data
has been proven to be more accurate than chlorophyll or water estimation on the leaf level
(Jacquemoud et al., 1995a; Fourty and Baret, 1997; Lauvernet et al., 2008).

2.3.LAI products

Advances in radiation transfer modeling have enabled the operational derivation of LAI for
about one and a half decades. The derivation of LAI from RS imagery has been a trade-off in
this regard: high spatial resolution imagery came to the expense of low revisit frequency. As a
high temporal resolution is crucial for monitoring vegetation parameters, so far only coarse
resolution data are used for automated LAI derivation. Global LAI is thus provided at about
250 - 1000 m spatial and 4 - 30 days temporal resolution. Improved atmospheric correction,
radiometric calibration and model formulation have continuously enhanced their retrieval
accuracy, although discrepancies between products and with ground data still remain (Weiss
et al., 2007; Garrigues et al., 2008a; Baret et al., 2013). Besides, some regional, data fusion,
as well as first global medium resolution LAI products have been developed (Table A-1).

One of the most widely used LAI products is the MODIS LAI at 1 km spatial resolution, which
has been made available since 2000. The theoretical basis of the algorithm is given in
Knyazikhin et al. (1998). It is based on ecosystems specific 3D formulation of radiation
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transfer. The inversion is performed using LUTSs, with daily imagery derived from MODIS-
Terra and/or Aqua acquisitions, and the mean value of all acceptable solutions is retained as
the final output value. The daily values are then integrated into one 4-day (both sensors
combined) and three 8-day composites (each individual sensor and both sensors combined).
If the main algorithm fails (in about 25 - 40 % of all cases), a backup algorithm based on LAI-
NDVI relationships is used (Myneni et al., 2002; Yang et al., 2006). Additional per pixel
information on product quality is provided. Since its first release, the MODIS LAI product
has been widely used and received considerable validation. As the former collection 4 product
was reported to have temporal and spatial inconsistencies and to overestimate LAI especially
over forests (Cohen et al., 2006; Weiss et al., 2007; Garrigues et al., 2008a), collection 5 was
improved in this regard (Kraus, 2008; Sprintsin et al., 2009; Fang et al., 2012).

The Multiangle Imaging Spectroradiometer (MISR) LAI product has been routinely
processed since October 2002. It is based on the same 3D RTM and LUT algorithm as the
MODIS product, but makes synergistic use of the spectral and directional information
collected by MISR. The latest version is the level 3 product. As no backup algorithm is
implemented, the algorithm provides LAI retrievals for 60 - 90 % of the input data (Hu et al.,
2003; Hu et al., 2007).

Based on global data from the multi-angle POLDER (POLarization and Directionality of
Earth Reflectance) sensor on ADEOS, LAI was derived over synthesis periods of 30 days
using the PROSPECT Kuusk models and ANN inversion. In total, eight months of POLDER-1
data (Roujean, 2002) and seven months of POLDER-2 data are available (Lacaze, 2005).

CYCLOPES (Carbon Cycle and Change in Land Observational Products from an Ensemble of
Satellites) LAI is operationally derived from VEGETATION data at 1 km resolution and with
a temporal resolution of 10 days. Its algorithm is based on PROSAIL, with the option of pixels
being a mixture of bare soil and vegetation patches. The PROSAIL output is used to train an
ANN which is inverted over atmospherically corrected and BRDF normalized daily
VEGETATION data, and smoothed with a moving window of 30 days (Baret et al., 2007).
Validation and comparisons to other LAI products have shown good performance and stable
temporal profiles, even though it suffers from saturation of LAI values larger than 4 (Weiss et
al., 2007; Garrigues et al., 2008a; Duveiller et al., 2011b). CYCLOPES LAI has been
developed within the CYCLOPES project and its successors “geoland” and “geoland2”, and is
now provided as the “LAI Version 0” product in the Copernicus program.

GEOV1 is one of the BioPar products developed within the “geoland2” project (Baret et al.,
2010a). It is a version of the CYCLOPES product, with the same spatial and temporal
resolution and also based on ANNs, but with different training data. Instead of employing an
RTM, the GEOV1 product exploits pre-existing LAI maps, namely the MODIS and
CYCLOPES products. Their reflectances and LAI estimates are smoothed and corrected to
overcome known deficiencies for low LAI values of MODIS and high LAI values of
CYCLOPES, and used as a learning data set for the ANN. Inversion is then performed over
VEGEGATION data (Verger et al., 2008; Verger et al., 2011b; Baret et al., 2013). Validation
shows that GEOV1 LAI has smooth and intra-annually consistent temporal profiles
(Camacho-de Coca et al.,, 2013). It is provided under the Copernicus program as “LAI
Version 1”. Another geoland2 BioPar LAI product is based on MERIS data. It uses PROSAIL
in addition to a surface shadow model and an ANN inversion technique, and has a spatial
resolution of 300 m and a temporal resolution of 10 days (Bacour et al., 2006). The product
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is provided for the years 2003 to present at near-real-time for Europe. In addition, on-
demand products can be generated on geoland2 sites (Poilvé, 2012).

Another global LAI product based on VEGETATION data is GLOBCARBON, developed by
ESA for the years 1998 - 2007. It additionally exploits data from the ENVISAT/ATSR-2 and
MERIS (Medium Resolution Imaging Spectrometer) sensors. GLOBCARBON has a spatial
resolution of 1 km and provides monthly global LAI maps. The algorithm encompasses a two-
step LAI derivation (Deng et al., 2006): preliminary LAI values are derived for six different
plant functional types using a land cover classification. Based on this LAI, a BRDF correction
is applied to the RS data. The final LAI value is derived using land cover specific statistical
relationships with VIs established on the 4-scale GORT model by Chen and Leblanc (1997).
LAI is estimated from each sensor for each time interval, and then the monthly median is
computed (Plummer et al., 2006). The GLOBCARBON LAI has few missing values, but large
spatial and temporal instabilities (Garrigues et al., 2008a). The Canadian Center for Remote
Sensing (CCRS) is routinely generating Canada-wide LAI products from AVHRR and
VEGETATION at 1 km resolution as 10-day composites using empirical algorithms. However,
considerable errors and biases have been reported (Chen et al., 2002a; Fernandes and G.
Leblanc, 2005). Rochdi and Fernandes (2010) also introduce an algorithm using empirical
relationships to map LAI across Canada, however using 250 m MODIS data.

ECOCLIMAP differs from the other products in that it is a climatology based on land cover
maps, climate maps, and NDVI data. It is empirically derived using LAI values extracted from
literature which are scaled over the growth period according to AVHRR NDVI dynamics. In
this regard, LAI is not computed for each pixel but is estimated for an entire ecosystem
(Masson et al., 2003; Champeaux et al., 2005). ECOCLIMAP has weaknesses in describing
inter-annual and spatial variations of LAI, and generally overestimates LAI. At Boston
University, another monthly LAI product (8 km spatial resolution) based on the AVHRR
NDVI time series for 1981 - 1994 was developed using global land cover information and
relationships established on a 3D RTM (Myneni et al., 1997; Buermann, 2002).

An important step forward to higher spatial resolution LAI global products has been taken by
Ganguly et al. (2012) at NASA, who recently proposed an algorithm for a provisional global
LAI product at the 30 m Landsat scale. The implementation is based on a modified MODIS
algorithm, and, in addition to the red and NIR reflectances, a SWIR band is used. Based on
Landsat 5 and 7 (TM/ETM+) data, LAI has been derived for the years 2004 - 2007 over
California. So far, global coverage has not been achieved?.

2.4.Current research needs

The measurement of LAI in the field and LAI derivation based on remotely sensed imagery
has been an active field of research for about four decades. This chapter presented an
overview of the relevant methods. Indirect in situ measurement techniques have been
developed, which still have some shortcomings, but proved to measure LAI handily within a
certain accuracy given a sound sampling procedure. Various empirical-statistical techniques
have been extensively used although they are still restricted to the conditions that prevailed
during the experiment. Also the understanding of the radiation regime within vegetation
canopies has strongly increased and led to the development and validation of sophisticated
RTMs of varying degrees of complexity.

7 http://landsat.usgs.gov/LAI_Products.php. Last access: February 22, 2014.
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Nowadays, the focus lies on developing robust techniques making use of these models. Three
challenges that have persisted since the beginning of LAI derivation in this regard are signal
saturation, inversion ill-posedness, and the dependency on field data for model tuning. These
issues still impair the operational derivation of LAI based on physical as well as empirical-
statistical models. Approaches to overcoming these problems, e.g. by scaling or interpolating
of non-sensitive spectral signals (Duveiller et al., 2011b; Baret et al.,, 2013), by using
regularization techniques in RTM inversion (Combal et al., 2002b; Laurent et al., 2013;
Rivera et al., 2013), or by extracting additional information directly from the RS data
(Atzberger, 2004; Lauvernet et al., 2008) have been proposed during the last decade.
Another issue is the missing knowledge and management of uncertainties — of the resulting
LAI estimates as well as of data and model uncertainties — which are necessary to implement
Bayesian inversion approaches and to use the LAI estimates in a range of applications (Baret
and Buis, 2008). None of these aspects has been consolidated so far (Verrelst et al., 2014).

New and upcoming multispectral sensor systems, which will combine high revisit frequency
with high spectral and spatial resolution, will on the one hand improve the usage of spatial
and temporal constraints during inversion by enabling the identification of individual fields
and growth trajectories, and on the other hand ease the discrimination of land cover types
and thus RTM parameterization due to a reduced amount of mixed pixels (Baret and Buis,
2008; Jacquemoud et al., 2009; Duveiller and Defourny, 2010; Baret et al., 2013). However,
with higher resolutions, the computational efficiency of LAI derivation approaches also
becomes of greatest interest (Duveiller et al., 2011b). Technical issues such as efficient
optimization algorithms, appropriate LUT construction, regularization techniques, or the
handling of different observation geometries in one process could be mentioned.

As stated above, the coupled PROSPECT+SAIL model is the most widely used RTM, due to
its availability and the extensive investigation of its strengths and weaknesses (Jacquemoud
et al., 2009). Shabanov et al. (2000) point out that 1D RTMs are a valid approximation for
small and relatively homogeneous canopies. Indeed, some studies have used PROSAIL or one
of its versions for crop LAI derivation based on different high resolution data: air-borne RS
data (1 - 5 m spatial resolution, Atzberger et al., 2003b; Laurent et al., 2013; Laurent et al.,
2014), AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data (20 m, Jacquemoud
and Baret, 1993), Landsat data (30 m, Atzberger, 2004), or CHRIS (Compact High
Resolution Imaging Spectrometer) data (34 m, Atzberger and Richter, 2012). However, only
few studies analyzed time series of high spatial resolution data, e.g. of SPOT data with 20 m
resolution (Duveiller et al., 2011b) and air-borne data of 20 m (Koetz et al., 2005a). In these
studies the general usefulness of inversion techniques based on pre-computed reflectance
databases for multi-temporal analysis is mentioned, but the advantages, difficulties, and
necessary considerations associated with the LUT approach are not discussed. Weiss et al.
(2000) and Darvishzadeh et al. (2008b) used a LUT based inversion of PROSAIL and raised
specific questions on the LUT and cost function settings, but none of them investigated them
in detail with regard to temporal and spatial high resolution RS data.

For these reasons and due to the general requirement of time series information for
environmental monitoring purposes, multi-temporal LAI derivation based on the PROSAIL
model and LUT inversions are pursued in this thesis. The RapidEye sensor (6.5 m spatial
resolution) has been barely used for physical LAI derivation (Vuolo et al., 2010; Vuolo et al.,
2012). Furthermore, no study on LAI estimation from RTMs based on high spatial resolution
satellite data has been conducted so far in grassland ecosystems that consist of a range of
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different species. Available grassland studies are all based on data generated using field
spectrometers (Dorigo, 2007; Darvishzadeh et al., 2008b; Vohland and Jarmer, 2008).
Therefore, the main objective of this thesis is to quantify the performance of RapidEye time
series data in a LUT inversion for a heterogeneous grassland landscape over two growing
seasons. The potential of the RTM approach is compared to that of empirical-statistical LAI
derivation which serves as a benchmark.
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3. Study area

In this chapter, the area in which this thesis is conducted is presented. To gain an impression
of the variety of grassland occurrences prevailing in this region, the climate and topography
as well as the anthropogenic influences that shape the ecological conditions for grasslands
are described. The catchments of the River Ammer and its tributary Rott in the Bavarian Alps
and alpine foreland cover an area of about 770 km2. They are situated between the Lake
Ammer and the German-Austrian border at latitude 47°30' to 47°57' and longitude 10°51' to
11°16' and stretch over the administrative districts of Garmisch-Partenkirchen and Weilheim-
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Figure 3-1: Topography of the Ammer catchment. The map shows a digital elevation model (DEM)
provided by the DLR based on Shuttle Radar Topography Mission (SRTM) data (see chapter 4.2).
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3. Study area

Schongau (Figure 3-1). The River Ammer originates from the Ammergau Alps, situated partly
in Bavaria (Germany) and partly Tyrol (Austria). Its headwater is the creek Linder, which
sinks into its riverbed between Linderhof Palace and Graswang due to karstic underground
and resurfaces as Ammer about 5 km before it passes by Oberammergau. Before entering
lower areas near Peissenberg, where the river bed becomes wider, the Ammer has carved a
gorge of up to 80 m depth through the molasse hills near Rottenbuch. The river drains into
the Lake Ammer, located 35 km south-west of Munich, up to where the length of Linder and
Ammer is 84 km. Downstream of Lake Ammer, the river continues as Amper, which flows
into the River Isar north of Munich and thus belongs to the drainage basin of the Danube
(Rippl, 2011). The catchment is delimited to the west by the catchment of the River Lech and
to the east by the catchment of the River Loisach. It is primarily characterized by its
topography, which causes a large spatial differentiation in climate, soil, and land use
(Smiatek et al., 2012). The highest elevation (Kreuzspitze) is at 2185 m above sea level (a.s.l.)
in the Ammergau Alps, and the outflow into the Lake Ammer is at 533 m a.s.l.

The catchments are part of the German Helmholtz Initiative TERENO (TERrestrial
ENvironmental Observatories, Bogena et al., 2012). Together with the research stations
Schechenfilz (south of Lake Starnberg), Hoglwald (near Augsburg), and Scheyern (north of
Munich), they form the TERENO Alps/pre-Alps Observatory. At the stations Graswang,
Geigersau, Rottenbuch, and Fendt (see Figure 3-1) a measurement network collects data
about biosphere-atmosphere exchange processes as well as meteorological data, of which the
irradiance measurements are used in this thesis (see chapter 4.3.2). The main objectives of
the TERENO observatory are the long-term monitoring of global change effects on C-/N-
cycles, nutrient deposition, trace gas exchange, vegetation and microbial biodiversity, and
Alpine watershed hydrology.

3.1. Climate

Southern Germany is characterized by a warm temperate humid mid-latitude climate with
predominating westerly winds throughout the year. Due to the topography of the study area,
temperature and precipitation have latitude and height dependent gradients, contributing to
the variety of environmental conditions in the study area (Kunstmann et al., 2004). The long-
term annual air temperature averages (reference period 1981 - 2010) are around 8 °C in the
alpine foreland and around 4.5 °C in the mountainous areas (Figure 3-2). Precipitation rates
are relatively high overall and reach their maximum in the summer season. Long-term mean
annual precipitation increases from its minimum in the north (~ 1000 mm) to maximum
values above 2000 mm in the southern mountain ranges (Figure 3-3). The number of days
with snow cover (depth > 10 cm) in the catchment is around 130 days per year (Ludwig,
2000). Winds differing from the common westerlies produce special weather conditions in
the alpine foreland: in the winter months, southerly winds, the so-called Fohn, cause air
masses to descend in the lee of the Alps, bringing warm and dry weather conditions with
sometimes stormy winds. Northerly winds, however, often cause cloud formation and heavy
precipitation as a result of the forced uplift of the air on the windward side of the mountains.
This weather situation with extreme convective precipitation over restricted areas
occasionally leads to severe flooding in the Ammer and neighboring catchments, such as in
August 2005 or August 2010, due to the fast response of river runoff to precipitation events
in Alpine catchments (Smiatek et al., 2012). With regard to the vegetation cover, the climatic
conditions in the area inhibit the intensive cultivation of crops but favor grassland and forest
ecosystems.
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the German Weather Service (DWD)3. the German Weather Service (DWD)3.

3.2.Geology, geomorphology and soils

The study area stretches over two major natural regions of Germany: while the southern half
is part of the Bavarian-Tyrolean Intermediate Limestone Alps, the northern part belongs to
the Subalpine New Moraine Land, which is a hill country characterized by its Pleistocene
glaciations and recent processes (Dongus, 1993). The three main geological units are the lime
and dolomite alpine zone in the south, the intermediate flysch zone, and the folded and
unfolded molasses in the northern part of the catchment. Soil genesis only started after the
end of the most recent ice age (Stolz, 1998).

The region roughly south of 47° 35' N is called the Ammergau Alps. In contrast to the rather
homogeneous Northern Limestone Alps bordering to the south, they consist of complexly
stratified and folded series of different facies (Figure 3-4). Lying in this transition zone, the
Ammergau Alps’ geomorphology is characterized by three different mountain forms (Figure
3-6). The southern part of the Ammer mountain range consists of Mesozoic rocks. In the
southernmost part, Triassic Principal Dolomite rocks have the main share, which are
characterized by huge walls with rather monotonous summits such as the Kreuzspitze (2185
m a.s.l.). Dolomite rock generates a lot of debris, thus vast debris screes (so called Griese)
shape the slopes and valley bottoms. The area north of the Graswang valley is dominated by
lithographic and Wetterstein limestone with accordingly more diverse and rugged mountain
formations such as the Klammspitze (1924 m a.s.l.) or the Hochplatte (2082 m a.s.l.). In

8 Data downloaded on March 4, 2014, from http://www.dwd.de/bvbw/appmanager/bvbw/
dwdwwwDesktop?_nfpb=true&_pageLabel=dwdwww_result_page&gsbSearchDocld=960246.
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these areas, only shallow alpine soils sparsely covered by vegetation have developed (e.g.
Rendzic and Umbric Leptosols, dark brown and pink signature in Figure 3-5, Hartwich et al.,

1998).

The so-called Flysch Alps (red signature in Figure 3-5) north of a fault zone at
Oberammergau constitute the northern fringe of the Ammergau Alps. Their parent rock
consists of Cretaceous subaquatic sediments such as marlstone and calcareous gravels and is
therefore quite erosive. This created rather low and round mountain ranges that are almost
completely covered by forests such as the Hornle (1548 m a.s.l.). Their soils, mostly Eutric
Cambisols and Podzols, are prone to erosion and landslides (Freudenberger and Schwerd,
1996; Fischer, 2002). In addition to the large geological units, small areas of marl, sandstone,
radiolarite, and the debris screes on the valley bottoms contribute to the pedological and
hence ecological heterogeneity of this area, which shelters a range of rare species. Not least
because of this, but also due to the low human impact in this area, the Ammergau Alps
became a nature reserve in 1963 and are still the largest site under the habitats directive
(NATURA 2000) in Bavaria (Bundesamt fiir Naturschutz, 2013, see Figure 3-7).

The area north of the fault zone near Unternogg belongs to the Alpine foreland. It consists of
hill country and moorland with landforms such as moraines and drumlins shaped by the last

9 Geological data of Bavaria can be viewed under http://www.bis.bayern.de/bis/initParams.do. Last access:
March 13, 2014
10 Data downloaded on March 4, 2014, from http://www.geoshop-hannover.de/.
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3.2. Geology, geomorphology and soils

Figure 3-6: View of the Upper Ammer Valley with the Hornle and Aufacker summits as part of the
lower Flysch Alps in the background and the Laber and Ettaler Mandl summits from calcareous
rock to the right. The brownish area at the valley bottom is the Weidmoos.

glacial period (Wiirm glaciation) (Frank, 1979; Meyer and Schmidt-Kaler, 1997). The bedrock
of the new moraine landscape is Tertiary molasse, which can be further differentiated into a
southern part of folded molasses (subalpine molasses) and a northern part of undisturbed
molasses (foreland molasses), with the fault zone near Peissenberg being the border. It is
overlaid by Pleistocene sedimentary rock such as gravel (ocher signature in Figure 3-5) and
moraine till (red-brown signature) left behind by the Isar-Loisach glacier, which weathered to
loamy and sandy Cambisols. Only in a few places can outcrops of the molasse bedrock, such
as the Hohen Peissenberg (988 m a.s.l.), be found. Fluvisols and Gleysols (turquoise
signature) evolved in depressions and on the fluviatile sediments along the river valleys.
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Overall, the pedogenesis in the Ammer
catchment resulted in relatively shallow soils
unfavorable for crop cultivation, but
sufficient for grassland ecosystems. Further,
relatively large parts of the study area are
covered by fens and bogs, mostly along the
river valleys and in the littoral zones of the
lakes (green signatures in Figure 3-5,
Hartwich et al., 1998). Due to their size and
integrity, most of them are protected under
the habitats directive. Examples of big fens
are the Weidmoos and the Pulvermoos in the
Natura 2000 site Upper Ammer Valley (beige
signature in Figure 3-7), the Grasleitner
moorland (purple signature), or the
moorlands west of Lake Staffelsee (yellow
signature). They include inter alia the
habitats ‘alkaline fens’, ‘transition mires and
quaking bogs’, ‘active raised bogs’, and
‘natural dystrophic lakes and ponds’. These
very humid and alkaline areas are covered by
grasses and herbaceous species to a great
extent, and are thus treated as grasslands in
this study as long as they are not covered by
standing water (see chapter 4.1.3).

1 Spatial data on the Natura 2000 sites can be downloaded from http://www.eea.europa.eu/data-and-
maps/data/natura-2/natura-2000-spatial-data. Last access: March 10, 2014
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3.3.Land cover

The rural land cover of the study area is representative of the alpine upland of Central
Europe. It is a heterogeneous landscape fragmented by small settlements, forest patches and
small-scale agricultural areas. According to the CORINE (COoRdination of INformation on
the Environment) land cover classification for the reference year 2006 (CLC2006) provided
by the European Union, the Ammer catchment is dominated by agricultural areas (43.7 %)
and forests (41.4 %), while only 3.7 % of the area is constituted by urban areas, 4 % are fens
and bogs, 4.2 % are transitional shrub-woodland, and 1.8 % are sparsely vegetated areas and
bare rock (Figure 3-8). These latter two classes occur mainly above 1200 m in the Alpine
areas of the catchment. The high share of forested areas especially in the southern part of the
catchment is also caused by topography. These mountain areas have only shallow soils and
either too steep or erosion-prone slopes on the Flysch bedrock, and thus are not usable for
agriculture. In 2011, 217829 people lived in the two administrative districts of Garmisch-
Partenkirchen and Weilheim-Schongau (Bayerisches Landesamt fiir Statistik und
Datenverarbeitung, 2013a, 2013b), although only 40 % of the area of both districts is covered
by the Ammer catchment, excluding big towns such as Garmisch-Partenkirchen. The largest
towns inside the catchment are Weilheim (about 21300 inhabitants), Peilenberg (about
12 300 inhabitants), and Murnau (about 11 500 inhabitants).
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Figure 3-8: Simplified CORINE land cover classification of the Ammer catchment (colors according
to official legend) and its location in Germany (upper right).
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3.4. Economy

The importance of the individual economic sectors in the districts of Garmisch-Partenkirchen
and Weilheim-Schongau (Table 3-1) is in line with the economic structure of Bavaria,
although the relevance of agriculture and forestry in both districts is higher than the Bavarian
average (0.5 %). As mentioned above, due to the humid climatic conditions, a short growing
season length, and the relatively young and shallow soils, the cultivation of field crops is
rather unproductive in most agricultural areas in the Ammer catchment (Stolz, 1998).
According to the CLC2006, only few fields (6.6 % of the agricultural areas) in the Ammer
catchment are used for crop cultivation, which is far below the Bavarian average of about
65 % (Bayerisches Landesamt fiir Statistik und Datenverarbeitung, 2013c). Following the
climatic gradient, the crop fields are rather arranged in the northern part of the catchment
and are mostly used for winter wheat and winter barley, rape and forage maize. The major
part of the region’s agricultural areas is thus grassland used for hay production and cattle
livestock farming (see below). The mean proportion of the industrial sector in the districts is
slightly lower than the Bavarian average (difference of 0.4 %), and the industrial production
is distributed unequally between the northern and the southern parts of the region (Table
3-1, Bayerisches Staatsministerium fiir Wirtschaft und Medien Energie und Technologie,
2013). Garmisch-Partenkirchen has neither got big firms nor much space for industrial
facilities due to the orography, protected areas (more than 50% of the district’s area) and vast
forested areas. Weilheim-Schongau, however, has better topographical conditions as well as a
longer industrial tradition (e.g. pitch coal mining in Peienberg and Penzberg with its heyday
in the 1960s, Balthasar et al., 1975) and a range of medium-sized enterprises.

Apart from the above-average relevance of agriculture and forestry in the Ammer catchment,
tourism stands out, especially in the district Garmisch-Partenkirchen. The development of
tourism in the region was fostered early on through the construction of the train connection
from Munich that reached the town of Murnau in 1879 and Garmisch-Partenkirchen in 1889.
Tourism is nowadays an important economic sector and contributes strongly to the region’s
gross sales (e.g. 18.4 % of the primary income in Garmisch-Partenkirchen for the year 2012,
Bengsch and Neumann, 2013). With more than 3 million overnight stays, Garmisch-
Partenkirchen ranks under the 10 most frequently visited places in Bavaria. Nature plays an
important role for tourism, with the main activities being hiking and skiing (Wagner, 2013).
Thus the state of the grasslands in the area is also relevant for this economic sector. Further,
the fens played an important role in the economic and touristic evolution of the region, as the
extraction of mountain pine peat in the Ammer Valley laid ground to the development of
several health resorts. Spa tourism and the associated economic branches such as the health
and social services sectors still account for 25 % of all insurable employments in Garmisch-
Partenkirchen (Bayerisches Landesamt fiir Statistik und Datenverarbeitung, 2013b).

Table 3-1: Economic structure of the administrative districts in the Ammer region (differentiated
for the districts of Garmisch-Partenkirchen and Weilheim-Schongau; Bundesamt fiir Bauwesen
und Raumordnung, 2007). The share of each sector in the economy of the districts is indicated.

Garmisch-Partenkirchen Weilheim-Schongau

Agriculture and forestry 0.9% 1.1%
Industries 19.3% 48.0%
Tertiary sector 79.8% 50.9%
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3.5.Grasslands

In contrast to most crops, the grassland ecosystem can be quite productive under humid and
rather cold conditions and even develop dense canopy structures with LAI values of up to 10
(Wohlfahrt and Cernusca, 2002; Becker et al., 2007). Although the plant communities of
these grasslands are natural, they are often referred to as semi-natural grasslands since
almost all European grasslands have been created by agricultural activities to a major extent
and are more or less modified by human activity (Silva, 2008). Different fertilization
intensities have led to differentiations of plant community and biomass production.

The grasslands in the region are maintained through grazing and cutting regimes, as
agriculture consists mainly of dairy and meat production. In the two administrative districts,
a total of 93600 cattle were kept in 2010 (Bayerisches Landesamt fiir Statistik und
Datenverarbeitung, 2013b, 2013c). Grassland communities consist of two thirds of grass
species and one third of leguminous and herbaceous species. However, due to different
management practices, this ratio and the specific species composition can vary considerably.
Meadows are grasslands that are never grazed but cut several times a year for fodder
production. This sudden intervention favors grass species and more light resistant
herbaceous species. After the first harvest in late spring, manure fertilization is often applied
on meadows in the alpine upland. Pastures are grazed by animals, which is a more
continuous and selective process and brings forth herbaceous species that are resistant to
steps and disdained by cattle. Also here, the nutrient input through animal excretions
constitutes a fertilization that in turn favors demanding species, leading to additional spatial
differentiation of species composition (Klapp, 1971). Further, pastures can be separated into
year-round pastures and rotational grazing systems. The latter are hayfields that are
subdivided into grazing lots, which are alternately grazed for 2 - 4 days to allow for
regeneration afterwards. In some areas, such pastures are in addition periodically cut to
remove weeds and lush vegetation patches of animal rest areas, or to obtain winter fodder
(Ellenberg and Leuschner, 2010). In the alpine upland, most pastures are cultivated using
these rotational grazing and cutting hayfield systems. With the grazing and/or vegetation
cuttings followed by rapid plant re-growth, these grasslands undergo multiple growing cycles
within a single vegetation period (Wohlfahrt and Cernusca, 2002).

Apart from the intensively used mesophile grasslands, there are many extensively managed
grassland types in the Ammer catchment. Two European agro-environmental schemes that
aim to preserve biodiversity, the High Nature Value (HNV) farmland indicator and the
habitats Natura 2000 directive are implemented in the area. The designation of both area
types relies on the abundance and kind of occurring species or habitats, and especially on
grasslands, these areas do overlap. In HNV areas, the aim is to preserve low-intensity
agriculture with 1-2 harvests per year and no or little fertilization, as well as the resulting
semi-natural biomes (BfN, 2014). The Natura 2000 habitats may be but do not have to be
areas used for agriculture. Habitats such as ‘semi-natural dry grasslands‘, ‘species-rich
Nardus grasslands’, ‘lowland hay meadows’, and ‘mountain hay meadows’ are characteristic
for dry grassland communities on the region’s calcareous bedrock. All of these habitats are of
high relevance for rare plant and animal species, and can for example be found in the Natura
2000 site Ammertaler Wiesmahdhdnge (light green signature in Figure 3-7). Rather humid
grassland sites, often situated on alkaline fens and other moorlands, are cultivated hay
meadows including the habitats “Molinia meadows on calcareous, peaty or clayey-silt-laden
soils” and “hydrophilous tall herb fringe communities”. Large Molina sites are located in the
Upper Ammer Valley or north and west of Lake Staffelsee. All these sites are developed and
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cultivated by man and need regular anthropogenic intervention to prevent the invasion of
reed and scrubs. Therefore, they are managed according to specific guidelines that require
farmers to mow the grassland no more than once per year (after September 1st), but at least
once every second year to maintain the respective habitat type and species composition.
Livestock farming and fertilization is not allowed on these meadows (Bundesamt fiir
Naturschutz, 2013).

As shown above, the topography and geology in the Ammer catchment creates a
heterogeneous and fragmented landscape. A wide variety of ecological niches is laid out by
the microclimate, relief, and soils at relatively small spatial and temporal scales, creating
different grassland species compositions (Pauli et al., 2003a). This diversity is extended
through the above mentioned farmers’ management techniques, differing in their frequency
and timing of (selective) plant removal through mowing and grazing. They further increase
the high spatial and temporal variability of grassland types and occurrences in the region, as
illustrated in Figure 3-9.

a)

Figure 3-9: Examples of the grassland types and occurrences due to different managing
techniques. a) The meadows vary in occurrences on a very small scale. b) and ¢) Examples of dense
meadows shortly before harvest in differently nutritious sites. d) Intensively mowed meadow with a
high herbage share. e€) and f) Meadows shortly after harvest, with traces from the combine
harvester. g) Meadow of a rotational grazing-mowing system still showing patterns caused by
pasturing. h) and i) Intensively grazed pastures with reptant herbs and patches of species spurned
by cattle. Photos taken in May 2011 (a, b, ¢, d, f, and i) and September 2011 (e, g, and h).
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3. Study area

The productivity and functioning of the different grassland ecosystems in the Ammer
catchment can be altered and even lost through land abandonment and consequent
afforestation, changes in livestock density, or intensification of grassland management (e.g.
through fertilizers, pesticides, and alien grass varieties). The conversion into arable land due
to its higher profitability and recent developments such as increased biofuel production are
also relevant in the region (Silva, 2008). The state of the grasslands in the alpine upland can
thus not be taken for granted, and their monitoring is of high relevance for several reasons
(Smit et al., 2008). Firstly, this agro-ecosystem is used for fodder and cattle production, so its
surveillance is important for agrarian issues such as yield monitoring, but also for political
and economic reasons, as proper grassland management is subsidized e.g. on the Natura
2000 sites. Apart from the feed supply, grasslands are responsible for the supply of a range of
ecosystem services, such as reducing erosion by supporting slope stability, regulating water
regimes and purifying water from fertilizers and pesticides (Reid, 2005). Further, the
conservation of biodiversity in managed agricultural landscapes is of high relevance, as
extensive grasslands are among the most species-rich habitats in Europe (WallisDeVries et
al., 2002). Grasslands also support cultural services, for example by contributing to a region’s
cultural heritage and recreational values (Hopkins and Holz, 2006). To ensure these services,
the ecological functions of this ecosystem need to cope with a range of global changes. While
grasslands are already under great pressure due to the various human activities, alpine
ecosystems are assumed to be particularly sensitive to changes in the climate system and
ecological changes such as nutrient deposition (Beniston, 2005; Becker et al., 2007; Rammig
et al., 2010).
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4. Data and preprocessing

In this chapter the RS and in situ data used in this thesis for statistical LAI modeling as well
as for RTM calibration and validation are presented. The RapidEye data specifications, their
preprocessing and the land cover classification applied to the RapidEye data, which are
applied to identify the grassland areas and correct their reflectances, are presented first
(chapter 4.1). Chapter 4.2 presents the used digital elevation model (DEM), while in chapter
4.3 the sampling design and the data collected during the field campaigns are summarized.

Figure 4-1 gives an overview of the number of all available data sets and the timing of the in
situ measurement campaigns (green) with regard to the RapidEye acquisitions (blue) over
the study area for the years 2011 and 2012. Each field campaign took between two and seven
days, depending on the number and type of measurements conducted. It was intended to
have the field measurements well distributed over the growing season in order to cover as
many phenological stages as possible. As the fastest changes in natural vegetation occur in
spring, measurements were taken more often during this period. The April campaign of 2011
was repeated in 2012, as snow fall and a defective measurement device prevented a sound
measurement procedure during the first campaign. Additionally, measurements were
conducted in August 2012 to better cover the phenological maximum.

In total, 20 RapidEye images are available for both years. However, this includes all scenes
that have even a little coverage of the catchment. Thus, during the two years a complete cover
of the catchment is achieved only eight times (Figure 4-2). Only a narrow corridor between
approximately 10°55' E and 11°15' E longitude, that is a stripe of 4.3 km width, is covered ten
times. Clouds further reduce the spatial information available individually for each scene.
The scenes are rarely taken directly at nadir, but the view angles of the scenes do not exceed
15° from nadir. The sun zenith angle ranges from 24.2° to 48.8°. An overview of the
acquisition conditions of the RapidEye scenes is given in Table A-2.

2011 15 March 1. April 1 May 1. June 1. July 1. August 1. September

= = = = 5] .
Campaigns

P (I 11 I | | | I
scenes

2012 15 March 1. April 1 May 1. lune 1. luly 1. August 1. September

Field
Cam‘:aigm - I

| 1 | I I I 11 111
scenes

Figure 4-1: Dates of ground measurements and RapidEye acquisition dates. The green boxes
indicate the field campaigns while the blue lines indicate the days of the RapidEye acquisitions.
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Figure 4-2: Number of available RapidEye scenes in 2011 and 2012 over the Ammer catchment.
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4.1. RapidEye data

4.1.1. Data specifications

The RapidEye constellation was launched on August 29, 2008 from the spaceport Baikonur
in Kazakhstan by the RapidEye AG and is now run by the company BlackBridge. It consists of
five satellites located in the same sun-synchronous orbital plane at an altitude of 630 km.
They carry identical sensors that are calibrated equally to one another, hence can be treated
identically. The cameras are push broom scanners with five spectral bands in the VIS and
NIR domain (see Table 4-1) built by Jena Optronic (Reulke and Weichelt, 2012). In this
regard the red edge band is an exceptional feature as up to the time of the RapidEye launch,
the MERIS sensor was the only multispectral sensor equipped with a channel in the red edge
region. Each of the five linear arrays contains 12 000 sensor elements. With a field of view
(FOV) of + 6.75° about nadir, RapidEye has a swath width of 77 km. The FOV can be oriented
across track by up to £25°. The spatial resolution of RapidEye is 6.5 m. This is converted to
5 m resolution for the level 3 product. 4 million km2 of data are recorded by the five sensors

Table 4-1: Wavelengths and band width of the RapidEye bands.

Band Wavelength [nm] Bandwidth [nm]

Blue 440 — 510 70
Green 520 — 590 70
Red 630 — 685 55
Rededge 690 — 730 40
NIR 760 — 850 Q0
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4.1. RapidEye data

every day. The broad swath width, wide field of regard, and the use of five identical satellites
enable a high temporal resolution despite the high spatial resolution. Daily images can be
recorded in the off-nadir, while the revisit frequency for at nadir acquisitions is 5.5 days. All
images are collected, stored, and sent to the receiving station at a radiometric resolution of
12 bit, where they are radiometrically corrected and scaled to 16 bit dynamic range
(RapidEye, 2011). With its high spatial resolution, frequent revisits, large area coverage, and
the additional red edge band, RapidEye is potentially highly suited for the monitoring of
vegetation properties (Tyc et al., 2005).

4.1.2.Data preprocessing

RapidEye imagery is available in two processing levels, the basic product (level 1B data) and
the ortho-suite product (level 3A data). In this thesis, level 1B data with a spatial resolution of
6.5 m were used. The bands are delivered as individual NITF 2.0 files. Level 1B data are
sensor level data with basic radiometric and geometric sensor corrections (RapidEye, 2011).

At-sensor corrections

The radiometric corrections performed on the level 1B data comprise the correction of
radiometric differences between the five detectors, non-responsive detector filling, and the
conversion to values directly related to the initial at-sensor spectral radiance. The
radiometric calibration is necessary because the sensors convert the signal of incoming
energy to a digital number (DN). To convert the relative pixel DNs into absolute radiance
values, scaling constants (gain c¢; and offset ¢,) are used:

L=cg+c; XxDN (4.1)

The calibration coefficients ¢; and ¢, have been determined during pre-launch for each
sensor element of each band and are periodically updated through statistical checks of all
recorded image data, additional acquisitions over calibration sites and absolute ground
calibration campaigns. The resulting DN values in the RapidEye images correspond to a TOA
radiance of 0.01 W/m?2 srum-scaled to 16 bit (RapidEye, 2011).

The basic geometric sensor correction accounts for distortions caused by the internal detector
geometries, by the combination of the two sensor chipsets into a virtual array, and by the co-
registration of all bands which have imaging time differences of up to three seconds.
Additionally, ephemeris corrections are performed. This means that the images are
geometrically corrected to an idealized sensor and satellite model, but no terrain model is
used in the processing of the 1B products. Therefore, the indicated default image horizontal
accuracy of the basic product, which is at least 23 m CE9o0*2 in areas of higher Ground
Control Points (GCP) quality, is only valid for images collected at nadir over flat terrain
(RapidEye, 2011). The data used in this thesis have an accuracy of 12.3 - 30.4 m CEgo.

Geometric corrections

The overall aim of geometric rectification of RS data is to ensure the spatial comparability of
different data sources, in this work of different RapidEye scenes, the DEM, and in situ
measurements. An overview of sources for systematic and non-systematic geometric
distortions is given by Richards and Jia (2006). While the first kind of errors is corrected

2 CEQoO is the minimum diameter of the circle centered on all GCPs that contain 90 % of their respective
counterparts acquired in the scene.
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4. Data and preprocessing

during the basic geometric corrections of level 1 imagery, non-systematic errors cannot be
accounted for automatically and thus require manual corrections. In the Ammer catchment,
strong non-systematic geometric distortions are mainly introduced by the terrain. For this
reason, in addition to georectification, orthorectification was performed.

As the Rational Polynomial Coefficients (RPC)®3 useful for geo- and orthorectification are
encoded in the NITF file subheader, the original data files were used in a first step for
orthorectification of each individual band, based on the RPCs and a 30 m SRTM DEM (see
below). After the composition of the individually orthorectified bands in a GeoTIFF format,
the layer stacks were transformed into the Universal Transverse Mercator (UTM) projection
(Zone 32N, WGS 84 datum). As the resulting scenes did not match each other exactly but still
showed deviations of up to 40 m in some parts of scenes, the RapidEye image from May o,
2011 was georeferenced using 14 GCPs collected in the field as well as a first order polynomial
warp. The resulting geometric error was less than one RapidEye pixel (RMSE of 0.77). This is
higher than the general rule of remaining under half a pixel location error (Richards and Jia,
2006), but could not be reduced due to the complex terrain. Afterwards, all other RapidEye
scenes were co-registered to the May 9, 2011 scene.

Masking

In the next step, all water bodies, snow covered areas, clouds, and cloud shadows were
masked manually in the RapidEye images. The same water mask was applied to all 20
images, whereas all other masks were created scene-specifically. Manual masking of water
became necessary as a wide variety of water bodies — rivers, creeks, lakes and ponds of
differing depth and sediment load — with very different spectral properties occur in the study
area, which made an automated detection difficult. Clouds were not extracted from the cloud
masks delivered with the RapidEye L1B product, as these masks had weaknesses over the
bright rock outcrop and snow areas in the alpine areas, as well as in detecting thin clouds and
contrails. Cloud shadows could not be identified automatically based on the cloud masks due
to the complex terrain. Additionally, snow areas were masked in six of the RapidEye images.

Atmospheric and topographic corrections

As described in chapter 2.2.1, radiance reaching the sensor is influenced by processes that
occur during the downward and upward transfer of radiance through the atmosphere, and
thus needs to be corrected for these effects. In this thesis, the IDL code of the ATCOR3
software (Richter and Schlapfer, 2012) was used. ATCOR uses large sensor-specific databases
(LUTSs) of atmospheric correction functions, which are the results of pre-calculated radiative
transfer simulations with the MODTRAN5 (MODerate resolution atmospheric
TRANsmission) model (Berk et al., 2008). The LUTs cover a wide range and various
combinations of aerosol types, water vapor content, visibility, solar angles, and ground
elevations. The automatic estimation of the AOD over dark reference pixels in ATCOR was
applied in this thesis. Further, the option of having variable AOD in the scene was chosen, as
potentially significant visibility differences were assumed for the alpine and foothill areas of
the study region. The automatic AOD estimation resulted in visibility ranges between 15 and
70 km for the different scenes (Table A-3). In three scenes, additional haze removal was

13 To gain a relation between image and ground coordinates for every pixel, each sensor relies on a model,
i.e. a set of equations incorporating information such as platform altitude, viewing angle, and sensor focal
length. To approximate this relationship without inverting the sensor model, RPCs (Rational Polynomial
Coefficients or Rapid Positioning Coordinates) are used in analytical models (Xiong and Zhang, 2009).
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4.1. RapidEye data

Figure 4-3: Example of
overcorrection effects due to
topographic correction in
steep, shaded terrain (right
image) in comparison to the
original scene (left image).
Shown is a subset of the April
8, 2011 RapidEye scene in the
Loisach Valley near Oberau,
band combination 5-3-2.

applied. The rural aerosol type was chosen for the corrections, as well as the mid-latitude
summer atmosphere, which corresponds to a 2-3 cm water vapor column. The range of
adjacency effects, which accounts for the adjacency radiation L,,;, was set to 0.1 km.

Due to the rugged terrain in the alpine region of the study area, topographic correction is
necessary. The aim of topographic correction is twofold: to account for L., on the surface
reflectance and to normalize the reflectances to the viewing direction, thus to create
reflectances as they would have been measured over flat terrain. The ATCOR3 program
provides the possibility of topographic corrections concurrently with the atmospheric
correction by incorporating a DEM. The DEM enables a BRDF correction as well as the
calculation of L., based on a sky view factor4 (Richter and Schlapfer, 2012). However, no
satisfying results could be achieved for the RapidEye scenes. Very steep, shaded slopes were
strongly overcorrected, probably due to the extreme viewing geometries and the bright
limestone background (see Figure 4-3). This overcorrection on faintly illuminated areas with
local solar zenith angles above 60°, caused by the usual but unfitting assumption of an
isotropic reflectance behavior, is also mentioned by Richter and Schlipfer (2012).
Furthermore, the use of the relatively high resolution slope and aspect maps derived from the
DEM led to artefacts (stripes) in the corrected image even on flat terrain. Although this
problem is also mentioned in the ATCOR manual and the selection of a larger kernel size is
recommended, the smoothing of these maps prior to their application in the topographic
correction did not solve the problem entirely, but simultaneously falsified the BRDF
correction by reducing the high frequency spatial information.

Therefore, a different strategy was pursued. No topographic correction was applied to the
RapidEye images to avoid introducing the above mentioned errors. Instead, the ATCOR2
code for flat terrain was used and the local viewing and illumination geometries were
included directly in the RTM forward and inverse runs (see chapter 6.4). For the
classification and the empirical-statistical approach, the subtle spectral differences due to
exposition were assumed negligible in comparison to measurement errors and noise,
especially as the LAI samples used for training are located mostly in flat terrain. To still
account for the strong elevation differences in the study area which are influencing the
dimension of the atmospheric column and thus the length of the radiation path through it,
the study area was segmented in three elevation zones (Figure 4-4, hatching signatures).
Each elevation class covers an altitude range of 400 m, for which the average ground
elevations (760 m, 1290 m, 1680 m) were used in the ATCOR2 processing of the respective

14 The sky view factor Vi determines the fraction of the hemispherical diffuse sky flux (1 indicating a full
hemispherical view) and 1- Vs, determines the fraction of radiation L., reflected from surrounding
mountains onto the considered pixel (Richter and Schlapfer (2012).
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4. Data and preprocessing

image segments. All other ATCOR parameters were kept identical. After the individual
atmospheric corrections of the three elevation segments of each scene, the segments were
mosaicked. This procedure neglected the influence of the terrain reflected radiation L,,, but
was nevertheless recommended in personal communication with Mr. Richter. The adjacency
radiance L, is still accounted for in the ATCOR2 procedure.

In a last step the preprocessed 2011’s April 17 and April 20 scenes were mosaiked, as each of
the scenes covered half of the study area and were sufficiently close in time.

4.1.3.Land cover classification

A land cover map for the Ammer catchment was derived from multi-temporal RapidEye
imagery using the random forest (RF) classifier. Each supervised classification relies on pairs
of land cover observations (responses) and associated spectral characteristics (predictors).
These characteristics are called features, and a classification is performed by generating rules
that assign a land cover class to specific features. Classifiers can be divided in parametric and
non-parametric methods, determined by their dependence or independence from
assumptions on the statistical distribution of the input data (Hastie et al., 2009).

RF is a non-parametric ensemble of decision tree classifiers. Decision trees need to be trained
(built) before they can be used to assign (predict) land cover classes based on RS data. They
are hierarchical schemes that split the feature space into sub-spaces using binary decisions.
At each decision (node) a certain threshold value of a single feature is used to split the data
set into two subsets. Thereby, the aim is to increase the purity of the response values in the
two subsets, which can be achieved and automated using statistical metrics. Following this
scheme, the resulting subsets are split, in turn. Terminal nodes (leaves) are reached when the
response variables in the node consist of a single class, or if further splitting is constrained
(e.g. by specifying a minimum amount of pixels per node), in which case the class label is
assigned to the majority class within the node (Breiman, 1998). Apart from their fast
generation compared to other iterative methods, decision trees have several advantages. First
of all, there is no need to reduce the feature space beforehand to the most important and
preferably un-correlated features, as the most significant feature is automatically selected at
each split (Breiman, 2001). Further, the tree construction is resistant to noise and outliers.
Since not only continuous but also ordinal and nominal scaled data can be included as
predictors, the approach is directly applicable to multi-source RS and geographic data (Seni
and Elder, 2010). The ability of treating different spectral profiles of a land cover class by
assigning them to different leaves is a further asset, especially given the omitted topographic
correction, which probably amplifies the spectral within-class variability. However, a
drawback of the approach is its sensitivity to the influence of single features, and the
resulting variance of the predictions. A slight change in training data can lead to a different
tree architecture. Thus, to optimize the robustness of the approach, to avoid over-fitting, and
to increase the prediction accuracy, decision tree ensembles are normally used (Ho, 1998).

Ensembles are created by building multiple trees in parallel and independently by randomly
changing their construction parameters and finally combining the predictions of the trees
based on majority voting. This is on the one hand achieved in the RF classifier by bagging,
i.e. training each tree in the forest on a different training data set randomly sampled from the
original data (referred to as ‘bootstrap aggregation’, Breiman, 1996, 2001). On the other hand
boosting is applied, which consists of randomly sub-setting the features available for splitting
at each node from the feature vector (Ho, 1998; Chan and Paelinckx, 2008). Tree-based
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4.1. RapidEye data

ensemble classifiers, and thereby especially
RF, have repeatedly proven to be effective for
land-cover classifications (Pal, 2005; Watts
and Lawrence, 2008; Hiittich et al., 2011; Low
et al., 2012).

The RF classifier in this thesis was built using
the “randomForest” package implemented in
the R statistics language (Liaw and Wiener,
2002). For classification, three RapidEye
scenes (May 9, July 16, and September 6)
were used. A multi-temporal classification
approach was chosen, as some of the land
cover classes, for example “winter wheat” and
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for classification and elevation classes used for
atmospheric correction of each pixel.
The training and validation data were

collected in situ as well as derived visually within the RapidEye scenes with the help of
Google Earth imagery. As water bodies, snow, clouds, and cloud shadows had already been
masked manually, the remaining land cover classes in the area were ‘rock/concrete’, ‘forest’,
‘grassland’, ‘moor’, as well as the field crops “rape”, “maize”, and “wheat”. 298 polygons
covering about 83 000 pixels were marked first, as the selection of polygons is a quick and
robust procedure. However, as the number of collected pixels per class varied strongly due to
different shares of the classes in the area and the different sizes of land cover objects and the
associated polygons, random subsets of 3 000 pixels were drawn per class from the polygons
for training as well as for testing. This was done by splitting the 298 polygons into two groups
and then drawing 3 000 pixels per class from each group. Although on the one hand this
poses the risk of grouping all small and all big polygons of a land cover class, which might
restrict the number of available pixels for training and validation, it ensures on the other
hand that pixels from the same land segment (e.g. field or forest patch) are not used for both
training and validation, which seemed more relevant. Indeed, the above mentioned
bottleneck was only seldom reached, and only for the rather small classes of rape, maize and
wheat, and 3 000 pixels could be drawn for training and validation of most classes.

The number of trees within the RF was set to 500 in order to achieve convergence (Low et al.,
2013). For bagging, the size of the sampling subset was defined as two thirds of the training
data set, and the number of features to split the nodes during boosting was set to five, which
is the rounded square root of the number of input features, as commonly recommended
(Liaw and Wiener, 2002; Gislason et al., 2006). The remaining third of training data, which
is not used for the construction of the tree, is automatically used for testing the tree. The
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Figure 4-5: Workflow of the multi-temporal classification and iterative mosaicking procedure
based on the randomForest classifier. The layer stack just based on the May 9 scene is not affected
by missing values due to clouds or snow and therefore provides a classification result for every
pixel.

error measure derived from this sample is called out-of-bag (OOB) error and equals an n-fold
cross-validation. The stabilization of the OOB error after several tree generations indicates
the stabilization of the prediction (Hastie et al., 2009). However, studies showed that the
OOB is a rather conservative error assessment (Breiman, 2001; Gislason et al., 2006).
Therefore, the independent test set for the class-wise validation has been used additionally.

As the use of a stack of three RapidEye scenes (having different cloud and snow covers)
increased the amount of pixels in the stack with missing values in at least one of the layers,
which creates an NA output, an iterative classification and mosaicking procedure was applied
(see Figure 4-5). Additionally to the three time steps layer stack, the same RF classification
was performed on a two time steps stack (May 9 and July 16) as well as on the single May 9
scene which had no missing values from masking. Using an iterative rule set, the
classifications were composed afterwards by filling the NA value gaps of the three-scene
classification with values of the two-scene classifications, or, if no data were available in this
map either, with the single-scene classification. Figure 4-4 shows that the classification of
most areas could rely on three scenes (86.1 %, green signature) while only a minor area
(0.15 %, orange signature) consists of information from only one time step.

The resulting land cover map is displayed in Figure 4-6. The landscape structure with its
rather small agricultural parcels, the forest fragments, and the fen and bog areas as well as
the settlements are represented with a high level of detail. The overall test set error of the
three scene classification is 3.4 % (OOB error: 0.1%), the error of the two scene classification
is 6.4 % (OOB error: 0.3%), and the overall test set error of the single classification scene is
the highest with 8.8 % (OOB error: 2.0 %; see Table 4-2, Table A-4, and Table A-5). With
regard to the combined classification, these accuracies are valid for the respective areas
indicated in Figure 4-4. Thus, apart from its use for filling cloud gaps, the multi-temporal
classification ensured higher classification accuracy for most pixels of the map. The confusion
matrices show the number of correctly classified pixels on the diagonal in relation to the
omission and commission errors for each individual class. As this thesis focuses on the
grassland class, special interest lies on the error of this class (Table 4-2). In the three scene
classification, its commission error is 2.0 % and thus even lower than the overall error. Most
confusion occurred with the moorland class, which is caused by the high spectral
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Table 4-2: Confusion matrix for the land cover classification based on 3 RapidEye scenes (May 9,
July 16, and September 6), i.e. covering 86.1 % of the study area. The overall test set error rate is 3.4 %.

Rock / Forest Grassland Moorland Rape  Maize  Wheat N va'hdatlon Commission

Concrete pixels Error [%]
Rock / 20926 2 o 2 (o} 2 000 2
Concrete 9 4 3 7 3 47
Forest o 2988 12 (o} o (o} o 3000 0.40
Grassland 2 37 2039 22 o) 0 o) 3000 2.03
Moorland o) 0 239 2514 0 247 o) 3000 16.2
Rape 6 (o} (o} 1695 (o} o 1706 0.64
Maize 0 0] 0 8 0 2992 0 3000 0.27
Wheat 0 0 0 0 [} 0 2676 2676 0.00
N° classified 2 02 2 2 16 2 270
pixels 934 3027 3235 547 97 3239 703
Omission 0.27 1.29 9.15 1.30 0.18 7.63 1.00 3.4 %.

Error [%]
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resemblance of the moorland and grassland ecosystems. Both biomes consist to a great
extent of Poaceae and herbaceous species. Their occurrence differs mostly by the varying land
management. Thus, it can be argued that these classes are rather land use than land cover
classes, and this blurred class definition caused these misclassifications. However, in most
cases grassland areas were wrongly assigned to moor, which translates to the high grassland
omission error of 9.2 % and to the high commission error of the moor class of 16.2 % (Table
4-2). As in this thesis analyses have only been performed on the grassland areas, this means
that some grasslands in the study area are omitted, but at least no other land cover is
accidently treated as grassland. The land cover map was finally used to create a grassland
mask and to replace all other land cover pixels with NA values.

4.2.Digital elevation model

In this thesis, a DEM was used for the correction of atmospheric and orographic effects as
well as for the derivation of local viewing and illumination geometries (chapter 6.3). The data
set is a 1 arc sec (~30 m) resolution DEM based on Shuttle Radar Topography Mission
(SRTM) data provided by the DLR (German Aerospace Center). The distinguishing feature of
the SRTM DEM is that it was the first global elevation data set at medium resolution levels
and entirely produced with a single technique. The mission provides DEM data between
60°N and 57°S based on the synergistic use of the US C-band (5.6 cm) system and the
German/Italian X-band system X-SAR (synthetic aperture radar, 3.1 cm), which were
processed by NASA (National Aeronautics and Space Administration), DLR, and the Italian
Space Agency, respectively. Both sensors were on board the Endavour shuttle during an
eleven days mission in February 2000 and were simultaneously operated. Sensors were
installed in a stereo arrangement, i.e. both instruments’ receivers were flying on parallel
tracks to their antennas (separated by a 60 m mast), thus viewing the earth’s surface from
slightly different angles. Due to this, they provided two interferometric SAR data sets from
which surface elevation was derived based on the phase difference measurements of the two
signals by triangulation (Rabus et al., 2003; Farr et al., 2007). The two radars produced data
sets of different spatial resolution, coverage, and accuracy and are processed into one DEM.

The DEM vertical accuracy requirements of 16 m absolute and 6 m relative error are valid at
90% confidence level, as well as the requirement of maximum absolute 20 m displacement
for the horizontal accuracy. The relative accuracy describes the error in a local 225 x 225 km
area, while the absolute value stands for the absolute difference from true height throughout
the mission (Rabus et al., 2003). As dense forests may not be penetrated by the radiance to
the ground level, the DEM will not correspond to the ground surface in those areas but rather
provides elevation measurements from near the top of the canopies. In addition, smooth
surfaces such as lakes often do not scatter enough energy back to the sensor and thus may
have higher errors (Farr et al., 2007). However, water bodies and forests are excluded from
the analysis, and given the high relief energy in the study area these errors do not alter the
overall topography. The original data use WGS84 as the horizontal and vertical datum. They
were projected to UTM and resampled to the 6.5 m RapidEye resolution for further usage.

4.3.Field measurements

In this subchapter, the sampling design, measurement methods as well as the resulting in
situ LAI values are described, which are referred to as LAIinsiw, in this thesis. Intensive field
measurements were performed during the growing seasons of 2011 and 2012. The overall aim
was to generate a validation data base to assess the accuracy of both LAI derivation methods.
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Thereby, the field data sampling was designed in a way that ensured they could be used for
LAI validation on different scales. Further, field measurements are needed for the
establishment of transfer functions (see chapter 5.1) as well as for the parameterization of the
RTM (see chapter 6.3). A special focus was put on the assessment and comparison of
different algorithms for deriving LAI indirectly from light transmittance measurements.

4.3.1.Sampling design

Five measuring campaigns where conducted in 2011 (April 11 - 17, May 2 - 6, May 22 - 27,
July 25 - 28, and September 8 - 14), however, the weather conditions and a defect sampling
instrument prevented reliable indirect LAI measurements during the first campaign. In 2012,
two field campaigns were conducted during April 16 - 20 and August 13 - 14. For easier
reference, these seven periods are in the following termed calendar weeks 15, 18, 21, 30 and
36, as well as 16 and 33, respectively (see Figure 4-1).

When performing ground-based measurements for collecting reliable, representative and
sufficient field data, the spatial sampling design is of major importance. In this thesis, three
criteria where especially considered:

e Sample size — To establish statistically sound transfer functions and validation
protocols, a sufficient number of data across the entire value range should be
sampled. Ideally, the number of measurements is related to the error variance. A high
number of random samples would thus be preferable in this context. However, the
sample size is often rather determined by pragmatic considerations, and no strict rule
on minimum sampling size is available (McCoy, 2005). However, as it was intended
to derive transfer functions for the individual scenes, 20 plot measurements per
campaign were considered the minimum requirement (Kohl et al., 2011).

e Scale issue - To validate a RS based map of a certain resolution, the sampling units
need to be scaled and spread correspondingly, in a way that field data do on the one
hand represent all conditions composing the pixel reflectance, and can on the other
hand be compared directly to individual pixels or groups of pixels. This can be
problematic for coarse resolution data, as many measurements are needed to derive
an integrative value. However, there is also a lower spatial limit, as for example
indirect LAI measurements — relying on repeated hemispherical sensor
measurements — cannot be conducted on a very small area of a few meters. To
circumvent both issues, the measurements were arranged within a two-stage nested
design with such distance between them that single measurements can be treated
individually over several scales, but still allow for up-scaling. This scheme is also
recommended by the CEOS (Committee on Earth Observation Satellites) Land
Product Validation group and the VALERI (VAlidation of Land European Remote
sensing Instruments) project (Baret et al., 2003; Morisette et al., 2006). For
consistent upscaling, the complete sampling area should be relatively homogeneous,
i.e. the biophysical variable / radiometric values should change only marginally
within one plot. This implied that only those areas were considered that consist of
homogeneous land cover on a kilometer scale, which strongly reduced the amount of
feasible areas in the heterogeneous landscape.

e North-south gradient — It was intended to cover the altitudinal and thus climatic
gradients in the study area in order to cover the corresponding differences in
phenology and grassland management. The sampling sites were therefore distributed
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across the Ammer catchment, which reduced convenience and the overall number of
visited plots. Further, no plots could be selected in the high mountain region of the
Graswang Valley, for reasons of accessibility, prolonged snow cover, and insufficient
spatial homogeneity of the alpine meadows.

Four grassland sampling sites (‘plots’) were selected in the study region (see Figure 4-7). The
relative homogeneity of the plots was determined beforehand by calculating the variance of
Band 3 of a Landsat 5 TM scene from July 2009 of the study region in a 1 km x 1 m moving
window. Not all sites were investigated during each campaign due to time constraints. In
week 30, the site in the Murnauer Moos was not visited. In week 33 only the Fendt site and
meadows in the surrounding were covered due to a simultaneous air-borne mission which
was restricted to this small area. Furthermore, the Haunshofen site was shifted about 0.8 km
to the east after the campaign in week 21 to increase the homogeneity of the site.

Each plot had an area of 750 x 750 m in order to cover 3 x 3 MODIS 250 m pixels, i.e. a target
pixel and the close surrounding, for potential upscaling procedures to the MODIS scale while
accounting for adjacency effects (Baret et al., 2003). To cover the grassland variability in each
plot, several elementary sampling units (ESUs) are distributed within, each situated in an
individual meadow. Special attention was paid to a sufficient distance of the ESUs from field
boundaries to avoid border effects (McCoy, 2005). According to VALERI, the ESUs should be
spread spatially equally within a plot to improve the geostatistical variable estimation. The
center square should be more densely sampled. While during the first few campaigns, five
ESUs were chosen per plot as suggested in Si et al. (2012), this was identified as insufficient
after the third campaign. Hence, the number of sampled ESUs was continuously increased
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Table 4-3: Number and kind of measurements conducted during the field campaigns.

Number of valid samples

Number of
Week ESUs inflﬁict LAI direct MTA* Chlorophyll iLl\? A/ (iirllglrg
2011
15 20 5 12 5 20
18 20 19 4 19 15
21 20 20 4 20 19
30 26 26 26 25
36 33 33 6 33 6 33
2012
16 29 29 2 29
33 22 22 22 22 10

*The MTA is also the input parameter to the LIDF used in the RTM (chapter 6).

during the following campaigns (see Table 4-3) through additional student help, the
reduction of sampled parameters, and more experienced measurement devices handling. The
ESUs constitute an area of 20 x 20 m, covering about 3 x 3 RapidEye pixels (see e.g. Justice
and Townshend, 1982). Within every ESU, 20 measurement points were arranged on two
diagonal transects, constituting a cross sampling scheme. This scheme is not significantly
different in its representativeness from random sampling (Garrigues et al., 2002), but offers
rather short paths and thus quick sampling.

4.3.2. Measurement of biophysical parameters
LAI and MTA

The general principles and available instruments for LAI measurements are already
summarized in chapter 2.1. Here, the methodology that was actually implemented in this
thesis is described. For indirect LAI measurements, the LAI-2000 PCA (see Figure 2-4) as
well as the software FV2200 (LI-COR, 2009) were used. The LAI-2000 relies on the Beer-
Lambert extinction law, which describes the attenuation of the radiation in a canopy (Monsi
and Saeki, 1953). Light attenuation can be expressed with LAI, the mean projection of unit
leaf area G(0), the normalized path length through canopy in direction 6 (1/cos0), and the
transmission probability P(0) (see chapter 2.1.2), as

LAI x G(8) = —InP(0) * cosO (4.2)

under the assumption, that only light that is not intercepted by plant material reaches the
ground. Therefore, only visible light (320 — 490 nm) is measured, for which the amount of
reflected or transmitted light is low. The transmittance probability P(6) is estimated by
comparing measured light intensities above (A) and below (B) the canopy using a fisheye lens
(Jonckheere et al., 2004; Weiss et al., 2004). Within each ESU, 20 B measurements were
conducted at the sampling points, while the A measurements were repeated only four times
just before the first of five B readings, assuming stable irradiance conditions for these five
measurements, which normally took about two minutes. As the transmission information is
needed explicitly for single directions, the field of view of the optical hemispherical sensor
head of the LAI-2000 is divided into five concentric ring detectors i, each covering an angle

range centered around the angles 7°, 23°, 38°, 53°, and 68°, thus having five constant 6,
values (see Figure 4-8 and Table 4-4).The left-hand term of Equation 4.2 is equivalent to the
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Figure 4-8: Viewing angles of the LAT-2000 PCA sensor. While the left sketch (adapted from LI-COR,
2009) shows the five viewing angles in a cross-section, on the right an example of the sections ‘seen’ by
the detector rings is given.

number of contacts made by a probe passing through the canopy at an angle 6 and is
therefore called contact number k. The LAI-2000 derives k;of each ring by dividing the
logarithm of the A and B readings ratio in each ring i by the respective path length S(6;):

1 B
n =1 _IU(Z)

S6;

K, = (4-3)

There are several empirical approaches implemented in the LAI-2000 to derive LAI from k.
The two most widely used approaches, the Miller and the Lang method, were investigated in
this thesis in more detail. Miller (1967) demonstrated that LAI can be calculated with
Equation 2.6 if P(6) observations are available over the angle range o0 to m/2. Integration
over these directions is achieved in the LAI-2000 instrument by means of the sensor rings,
which cover nearly the entire hemisphere and due to which the sinfd6 term of Equation 2.6
is constant. This term is implemented in the instrument as so-called weighting factors W
representing the coverage of the hemisphere of each ring:

W; = d6; * sin 6; * const (4.4)

with d6; being the respective angle width in radian units, 6; being the central angle of each
ring, and const being a scaling constant of 1.58 in the 5-ring case in order to normalize the
weights to unity (see Table 4-4). The LAI is calculated as twice the sum of the contact
number k; in each ring, weighted with the respective W; factor:

5
— (4.5)
LAlyiier = 2 ) %+ W,
i=1

Table 4-4: Central angles, angle widths, and weighing factors of each LAI-2000 sensor head ring.

Ring 61[°] do [°] d6[rad] siné w;
1 7 12.2 0.213  0.212  0.041
2 23 12.2 0.213 0.391 0.131
3 38 11.8 0.206 0.616 0.200
4 53 13.2 0.230 0.798 0.290
5 68 13.2 0.230 0.927 0.337
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This method is referred to as the “LAI-2000 method” in the instrument’s manual, as it is the
algorithm implemented in the portable console. In this thesis, the approach is called “Miller
method”, because it is close to the original formulation (Miller, 1967; Weiss et al., 2004).

Based on Equation 4.2, Lang (1987) proposed another algorithm for computing LAI without
requiring the leaf angle distribution G (6) and with no need for all values of k(). By assuming
that G(0) is approximately linear with # and has a value near 0.5 at 6 = 57.3° over a wide
range of canopy structures (Figure 4-9), Lang showed that the x(8) function is quasi linear:

k(0) =a+bo (4.6)

where a and b are the empirically derived slope and intercept of a linear approximation of the
projected leaf area G(6). Thus, by simply interpolating a value of k for 6= 57.3°, Lang derives:

LAljang = 2% (a+b) (4.7)

In the LAI-2000, the k, values are used to fit a linear relationship. The most significant
difference between the approaches thus is that Lang’s algorithm weights all rings equally in
fitting the linear approximation, while the Miller’s algorithm weights the rings according to
their hemisphere coverage, which can, however, introduce errors as plant elements are
generally not randomly distributed over the hemisphere in a real canopy, but rather in the
outmost ring. For both algorithms, the plot LAI value was derived by logarithmical averaging
over the 20 B measurements according to Lang and Xiang (1986) and Weiss et al. (2004) in
order to reduce LAI underestimation due to clumping (chapter 2.1.2).

It has been observed that the Miller method underestimates the actual effective LAI, and the
reason for this has been assumed in most studies to be increased foliage scattering effects in
the fifth ring and a corresponding overestimation of gap fraction (Chason et al., 1991; Chen
and Black, 1991; Fassnacht et al., 1994; Dufréne and Bréda, 1995; Wilhelm et al., 2000; Chen
et al., 2006). These authors suggest discarding one or two of the outer rings of the LAI-2000
sensor for LAI calculation. Planchais and Pontailler (1999), however, contradict this
assumption and show that no bias in scattering with high 6 exists. Instead, they state that the
underestimation of LAI is caused by clumping and that the counterbalancing effect of
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Figure 4-9: Theoretical relationship between projected foliage area and viewing direction for various
foliage inclination angels. According to Wilson (1959).
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discarding observations at higher viewing angles results from producing an error in the
estimation of the leaf projection function G(6) and thus of the MTA. Leaves are supposed to
be more erect than they are, which results in an increased LAI estimate. As this error is
variable with 6, it is however not a stable clumping correction procedure. Unfortunately,
their analysis only relies on data derived using the Lang algorithm, and neither this nor other
studies have tested different LAI-2000 algorithms in grassland canopies. Thus, in this thesis
all combinations of derivation algorithm and rings are tested to assess the difference between
the two algorithms (LAIwmiter-5 and LATrang-5, respectively) and between the four and five rings
settings (LAIwmiller-4 and LAIyang-4, respectively).

Weiss et al. (2004) and Leblanc and Chen (2001) further plead for the use of a single
direction measurement for LAI derivation. However, using one single ring does not allow for
the derivation of leaf angle distributions, which also had to be collected in the field.
Therefore, this technique was not taken into account. The LAI-2000 PCA can calculate the
MTA of the foliage given a LAI value by solving equation 4.2 for G(6):

)
G(o) = 48)

whereby pS(0) corresponds to the LAI estimate in each ring. Figure 4-9 shows the idealized
relationship between the projected foliage area G(0) and the viewing direction for various
foliage inclination angels for an ideal canopy with random azimuth leaf orientation (Wilson,
1959; LI-COR, 2009). The MTA is calculated using an empirical polynomial relating
inclination angle to the slopes of this idealized curves after Lang (1986).

The 360° azimuthal field of view of the sensor can introduce errors to the measuring
procedure. One unwanted effect is the shadow of the operator in the image, which can be
restricted using view caps. A 270° view cap was used on the sensor lens in this thesis (see
Figure 4-10 a). Another issue is the risk of heterogeneous conditions viewed by the sensor,
which can be caused by brightness gradients in the sky or especially by strongly clumped
canopies. Therefore, larger view caps are often used in row crops and forests (Nackaerts et
al., 2000). An actual problem for the measurement of grass canopies is the close proximity of
the sensor head to the vegetation elements as the LAI-2000 responds non-linearly to light
interception by close foliage, which could not be avoided, however (Hyer and Goetz, 2004).

Ideally, the LAI-2000 PCA measurements should be made under diffuse light conditions, i.e.
under homogeneously overcast skies or close to sunrise or sunset, because these conditions

Figure 4-10: LAl in situ measurements. a) LAI-2000 sensor head with 270° view cap. b) Direct LAI
measurement by clipping the above ground biomass.
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are closest to the assumption that leaves are exclusively absorbing radiation. Light reflected
from the canopy to the sensor would add to the recorded radiation below the canopy and lead
to an underestimation of LAI (Leblanc and Chen, 2001). In addition, heterogeneous skies and
rapidly changing conditions should be avoided (Hyer and Goetz, 2004).

Due to the workload, these recommendations could however only partly be taken into
account. Measurements were conducted during overcast conditions as well as under direct
sunlight, in which case the sensors head and the canopy under investigation were shaded. To
ensure similar conditions the sensor head was always pointed away from the sun, with the
observer/sun direction being masked using the view cap (LI-COR, 2009, see Figure 4-10 a.)
Measurements for which the light intensity below the canopy exceeded the above value due to
changing light conditions or operator errors were later excluded from the calculations. As a
result, the averaged LAI value of each ESU relies in 75 % of all cases on 20 single
measurements, in 23 % on 19-16 measurement pairs, and only in 2 % of all cases on less than
16 measurements. The LAI values were therefore considered to be representative of the
respective ESU. The footprint of the LAI-2000 PCA depends on the view angle of the sensor,
i.e. the number of sensor rings used, and the canopy height (LI-COR, 2009). In view of the
fact that the canopy heights measured in the field range from roughly 3 to 40 cm, the
theoretical area seen by the sensor is a circle with a radius of 0.11 - 1.5 m. The effective range
can be further reduced by foliage. Hence, about 3 m distance is kept between each sample
point to guarantee statistical independence.

Although the LAI-2000 cannot distinguish photosynthetic active leaf tissue from other plant
elements as discussed in chapter 2.1.2, in this thesis, the term LAI is still used, as in
grasslands most vegetation parts seen by the sensor are green leaves. However, the canopy
elements are not randomly distributed in space, which is one of the basic assumptions behind
LAI retrieval algorithms (Chen and Black, 1992). Due to this clumping, the indirectly derived
LAI has to be seen as effective LAI and is expected to underestimate the true LAI from
destructive sampling (LAlgs), even though a logarithmic averaging procedure was chosen.
Further, underestimation is caused by vegetation elements not completely fulfilling the above
mentioned assumption of absorbing all radiation in the VIS. The bias introduced by residual
scattering effects is estimated to be around 8 % (Leblanc and Chen, 2001). Thus, while
indirect measurement methods are useful for assessing temporal or spatial relative LAI
variation, they require an extra calibration for absolute accuracy (Cutini et al., 1998;
Planchais and Pontailler, 1999; Wilhelm et al., 2000; Jonckheere et al., 2004).

The LAI-2000 measurements are corrected in this thesis using direct LAl measurements.
LAlgesr was determined at 21 ESUs by destructive sampling. However, five values from
week 15 could not be used as no correct respective LAI-2000 measurement was available due
to malfunctioning of the instrument, so 16 data pairs were available. The collection of more
samples would have been desirably, but was not possible due to the high workload of manual
LAI measurements and the need of measuring the leaf area immediately after harvesting.

At each sampling point, an area of 30 cm x 30 cm was chosen within the ESU and the
complete above ground biomass was harvested (see Figure 4-10 b). The sampled subsets were
selected considering their representativeness of the ESU. The samples where immediately
packed into plastic bags and stored within a cooler until storage in a refrigerator. On the
same day in each case, the harvested leaves were laid out on a white background in such a
way that no overlap existed between adjacent leaves, flattened by a glass pane and
photographed from nadir with a digital camera. In some cases, a scanner was available which
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was used to gain a picture of the flattened plant elements instead. In a last step, these images
were manually segmented into foliage and background pixels (see as example Figure 2-3).
The number of pixels belonging to the foliage class was related to the total area of the picture,
and summed up in case the samples could not fit within one photograph. For the LAI
determination, no distinction was made between harvested green and senescent plant
material, an assumption that is however in line with the LAI-2000 measurements.

Dry matter, water, chlorophyll content, canopy height, and diffuse radiation

In calendar weeks 15, 36 and 33, a drying oven and precision scale was available. They were
used for two purposes (see Table 4-3): in weeks 15 and 36, the workload of directly measuring
LAI was reduced by taking three subsets of the whole biomass of one sample. These were
weighted, laid out and photographed in order to determine the LAI of the subset.
Subsequently the samples were stored in thin paper bags to prevent lightweight plant parts
from being blown away, dried in the oven at 9o °C for 12 hours, i.e. until they were constant
in weight, and weighed again. The LAI was then scaled to the total harvested, dried, and
weighed biomass by using the samples mean SLA (see chapter 2.1.1). This procedure was
additionally applied to samples taken in week 33, although those samples did not represent a
defined area, so they could not be used to estimate the plot LAI. Nevertheless, the total of 21
samples collected in the field during the three weeks were used to determine the leave’s water
content and the LMA as well as its reciprocal SLA from the comparison of the fresh and dry
weights (Landsberg and Gower, 1997; Jonckheere et al., 2004).

The chlorophyll was measured once in spring 2011 and once in summer 2012 at a total of 34
EUSs. The chlorophyll content was measured indirectly using a SPAD-502Plus chlorophyll
meter (Konica Minolta Sensing Inc., Japan). The SPAD determines the relative amount of
chlorophyll a + b by measuring the absorbance of the leaf at two wavelengths (650 nm and
940 nm). Using these two absorptions, the SPAD calculates an index which is highly
correlated to the amount of chlorophyll present in the leaf (Konica Minolta). SPAD
measurements were repeated at each measuring point in the ESUs at a randomly selected
leaf. The most common species (e.g. grass species, clover, dandelion, plantain) and different
positions in the canopy (i.e. sun and shade leaves) were selected for the measurements. The
SPAD value was derived as the average of the 20 leaf readings. Several authors have
published functional relationships between SPAD values and selected plant species (e.g.
Markwell et al., 1995: soybean and maize; Guimaraes et al., 1999: tomatoes; Si et al., 2012:
grassland). In this thesis, the exponential relationship according to Si et al. (2012) was used,
as it was explicitly established for mixed grassland.

Additionally, the canopy height was measured at each of the 20 sampling cross points during
the campaigns in 2011. In order to obtain a representative sample, the leaves were selected
with reference to the abundances of the plant species in a 10 cm radius around each sampling
point. Total solar radiation as well as diffuse radiation were measured continuously at 10
minute intervals at the three TERENO stations Graswang, Fendt and Rottenbuch (see Figure
3-1) using Sunshine Pyranometers (Delta-T Devices Ltd, Burwell, UK).

4.3.3. Results of in situ measurements

Due to changing circumstances in sampling design, manpower, available instrumentation,
and weather conditions, the kind and number of measurements that could be conducted
varied between the campaigns. The unpredictable satellite coverage due to the high number
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of cloudy days in the study area as well as the irregular RapidEye pass over times further
reduced the number of field measurements that could be used for training and validation
purposes (see chapter 5.1). While the kind and number of all measurements is summarized in
Table 4-3, the descriptive statistics of the results is presented in Table 4-5.

LAI and MTA

The LAI-2000 PCA values (n = 148) vary with the four LAI derivation algorithms, the Miller
and the Lang method applied to four and five of the LAI-2000 sensor ring measurements, in
their mean (2.2 - 2.6) and their range (0.3 - 0.4 to 6.1 - 7.7). All data sets show a non-normal,
right-skewed distribution. The comparison of the tested derivation algorithms reveals very
high correlations?s between the accordant measurement values (correlation coefficient r;
between 0.97 and 0.99).

However, the absolute differences between the LAI estimates increase for higher values,
resulting in a mismatch of 7 - 25 % for LAI measurements larger than two (see Figure 4-11).
As expected, the two 4-ring algorithms (orange and blue signature) produce continuously
higher values, which, according to Planchais and Pontailler (1999), is caused by an
overestimation of the MTA. To determine if the LAI algorithms produce significantly
different results, the non-parametric Wilcoxon signed-rank test was applied (Bauer, 1972).
The Wilcoxon test showed that in almost all cases the choice of algorithm significantly affects
the derived LAI value (p < 5.9¢7%7, two-tailed test). Only the LAIuyilers and LAIjang5 (violet
and green signatures in Figure 4-11) show no statistically significant difference. This suggests
that LAI in situ data collected using the LAI-2000 PCA using different algorithms and
especially different hemisphere coverages cannot be equated in absolute terms, and that the
discussion of the algorithm used is crucial for every LAI in situ investigation.

Lang-4
Lang-5
— Miller-4
Miller-5

- Measuremenfé (sorted in incr:éasing order) -

Figure 4-11: Comparison of the four tested LAI derivation algorithms, the Miller and Lang
algorithms using the same transmission measurements from four or five of the LAI-2000 sensor
rings. The derived LAI values are sorted in the order of the increasing Miller-4 algorithm results to
show the increasing mismatch with higher LAI values.

15 As the LAI-2000 in situ measurements are not normally distributed, Spearman’s rho statistic (Spearman
(1907) is used.
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The LAlgestr values derived from destructive sampling range from 1.5 to 6.5 with a mean of 3.6
and thus seem to cover all prevailing grassland occurrences from freshly harvested to very
dense meadows. The comparison between directly and indirectly measured LAI reveals an
underestimation of the true LAI by nearly 50 % on average by the indirect methods. This
strong underestimation is caused by canopy clumping (see discussion in chapter 2.2.2) and in
fact also in this thesis the highest discrepancies between directly and indirectly measured LAI
values occur on heterogeneous, strongly grazed pastures with reptant herbs and patches of
species spurned by cattle (see photographs h) and i) in Figure 3-9). These meadows with a
high degree of clumping on a canopy scale have a relatively high average coefficient of
variation (CV) of 83 % within the 20 transmittance measurements. Apart from the
inappropriate use of the Poisson model, the overall low measurements are also caused by the
design of the LAI-2000 device. In very low canopies, the sensor cannot be placed completely
underneath the vegetation, and, due to the height of the sensor head itself, the lower 3 - 4 cm
of upright plants are not in the sensor’s field of view. In very dense canopies the LAI-2000
also tends to underestimate the true LAI, due to its decreasing sensitivity to small changes of
the optical signal in dark conditions. An asymptotic saturation level is reported to be reached
by the PCA at a value of about 5 (Gower et al., 1999; Jonckheere et al., 2004). Hence, a
correction using directly measured LAI is indispensable (Brantley et al., 2011).

Due to their high correlation with each other, the different LAI-2000 values correlate overall
similarly well with the corresponding in situ measurements (LAlrang-4: 75 =0.779, LAIrang-5:
7, =0.786, LAImiler-4: 7z =0.762, LAlmiler-5: 7, =0.755). Although the derivation of higher LAI
values using a 4-ring algorithm might seem desirable to counterbalance the general
underestimation of the LAI-2000 instrument, accepting this error in contact number
estimation is no appropriate approach to correct for clumping (Planchais and Pontailler,
1999). Instead, the similar results of the two 5-ring approaches indicate that the use of all
sensor rings increases the stability of LAI derivation. Finally, as the Miller method has been
criticized in the literature for overweighting transmission in the outmost ring (Garrigues et
al., 2008b), the LAlrang5values were used for correction with the directly measured LAIgestr
values.

A linear model fit between LAlgestr and LAliangs (Figure 4-12) was used to correct the
underestimation of the 121 indirectly measured LAI values that will be used as LAlinsitu for
further analysis, as suggested by Chason et al. (1991), Wilhelm et al. (2000) and Brantley et

Table 4-5: Summary statistics of the biophysical parameters sampled in situ for all measurements.

Water Canopy
Chl hyll
LATgestr LAILang—s LATinsitu MTA* [ OI'((:)HP;_%’ content [crnSzLél]/ /L%Vﬂ?n_z] helght
HE [%] / [em] 5718 [em]
Minimum
value 1.5 0.4 1.5 38 13.6 75.7 / 0.016 153.2 / 27 3.3
Maximum
value 6.5 6.1 7.5 90 31.4 87.9/ 0.043 363.8 / 65 39.4
Mean value 3.6 2.4 3.6 64 24.9 81.2/ 0.021 213.6 / 50 15.5
Standard 1 1 1 10 0/ 0.006 1.4 /10 8.0
deviation .9 4 .5 .5 4.3 3. . 51.4 .
n 16 149 149 149 34 21 21 112

* The MTA is also the input parameter to the LIDF used in the RTM (chapter 6).
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P =0623
6~ RMSE = 1.56
RSE =0.78
LAlLang 5= 0.59" L Aljestr 3115

LAldestr

Figure 4-12: Comparison between directly measured LAI (LAlIgest:) and indirect LAI derived using the
Lang method implemented in the LAI-2000 instrument (LAIang-5)-

al. (2011). The descriptive statistics of the LAlang5 values as well as the corrected LAIinsitu
values are summarized in Table 4-5. It can be seen that the corrected LAI values fit the
distribution of LAlgestr quite well, especially the minimum and mean values. The scaling
produced some very high values during the summer months, which are however not
unrealistic. The value distributions of the individual sampling weeks are shown in Figure
4-13. While the general increase of LAI over the phenological phase is represented in overall
lower spring values (weeks 16 and 18) and higher values in the summer months (weeks 30,
33, and 36), the week 21 values do not stick to this pattern. This is caused by the timing of the
first grassland harvest in mid-May 2011. The MTA measurements vary widely between leaf
angles of 40° and 90°, with a higher average leaf angle in spring (67.7°) than in summer
(59.7°), which is probably caused by the different timing of the growth phases of grasses and
herbs.

= BES Lang-5 LA
—1

B3 Corrected LA
2 | -

weekl1d weekZ1 week30 week3s weekls week3d

Figure 4-13: Distributions of the LAI in situ values differentiated per week. The measured LAI-2000
PCA values using the Lang-5 algorithm are shown in orange, while the distributions of the corrected
LAI values are shown in blue.
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4. Data and preprocessing

Dry matter, water, chlorophyll content, canopy height

The chlorophyll measurements range from 13.6 to 31.4 ug cm=2, with a mean value of 24.9 ug
cm2. Overall, these values are rather low compared to other grassland studies. While
Vohland and Jarmer (2008) only measure slightly higher values (mean of 25.7 ug cm), Si et
al. (2012) measure a mean chlorophyll content of 30.2 ug cm-, with values ranging from 21.9
to 37.0 ugcm. A very similar grass chlorophyll mean value (30.1 pg cm-2) but a wider range
(17.1 - 49.7 ug cm2) is reported by Darvishzadeh et al. (2008b). For crops, even higher values
are frequently measured (see e.g. Daughtry, 2000; Ruecker et al., 2006; Atzberger and
Richter, 2012). It is also peculiar that the spring and summer measurements show only a
little difference in mean value (April: 21.6; August: 26.8). These results indicate either an
incorrect use of the SPAD instrument or of the relationship used to relate SPAD values to
chlorophyll content.

The water and dry matter content values show the expected behavior. The water content
mean of 81.2 % is very close to the 80 % relative water content commonly assumed for a wide
range of applications (see e.g. Lauvernet et al., 2008; Duveiller et al., 2011b). For the dry
matter content, it is harder to judge the plausibility of the measured value of 50 (+10) gm2,
as only few literature values are available. While there are some studies measuring crop dry
matter content (e.g. Atzberger and Richter, 2012, mean LMA = 79.2 gm2), the values in the
only RS study on grassland LMA values published (Vohland and Jarmer, 2008, mean LMA =
428 gm—2) seem exceptionally high. Ecological studies such as He et al. (2010) report higher
grassland LMA values (mean = 94 gm=), and also a meta-analysis of Poorter et al. (2009)
indicates higher mean LMA (72 gm™=) for graminoids. This underestimation of LMA could
result from an overestimation of the samples’ LAI, given that the water content range seems
correct. The canopy height measurements on the other hand show a reasonable range and
variation (Wohlfahrt et al., 2001). Chlorophyll, water content, SLA, height, and irradiance
values and ranges were used in this thesis to improve the parameterization of the RTM (see
chapter 6.3).
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5. LAI derivation using empirical-
statistical models

In this chapter, the potential of LAI derivation from RapidEye data based on empirical-
statistical models is investigated. As described in chapter 2.2.2, these models search for
consistent relationships between the LAI and the spectral signature of vegetation. Based on
such a relationship, spatially continuous RS reflectance measurements are converted to LAI
(see Figure 2-13). Empirical-statistical methods have the disadvantage of relying on field data
(Dorigo et al., 2007). However, they produce accurate results if representative field data are
available and if they are applied over a confined area and known land cover (see e.g.
Haboudane, 2004; Brantley et al., 2011). Therefore, these models serve as benchmark models
against which RTMs can be compared (Kimes et al., 1998), and it is as such that they are used
in the framework of this thesis.

For this comparative purpose, the overall aim of this chapter is to identify and assess robust
and accurate statistical relationships based on six field campaign data sets that are used with
six corresponding RapidEye scenes to establish transfer functions for LAI derivation. LAI
varies over time due to phenology and environmental conditions, which makes a multi-
temporal analysis of surface reflectance necessary to identify changing vegetation states and,
accordingly, potentially changing relationships to RS data. As only few studies have
investigated the seasonal development of LAI using statistical methods so far, and as none of
them used RapidEye data for LAI derivation in grasslands, estimation of grassland LAI in the
Ammer catchment during different phenological stages is performed in this work based on
repeated ground- and satellite-based measurements. This availability of multi-temporal in
situ and RapidEye data enables the analysis of three aspects related to multi-temporal
vegetation monitoring:

e Transferability: Which error has to be expected when using a transfer function
established at one point in time to derive LAI at other acquisition dates?

e Data set combination: Does the combination of data sets from different dates
strengthen the statistical relationships? How many data sets should be combined? Are
there ideal collection times to gain reliable estimates over the entire vegetation
period?

e Potential of the red edge band: To which extent does the use of the red edge band in
VIs enhance the relationship to the LAI measurements?
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5. LAI derivation using empirical-statistical models

After establishing transfer functions based on different VIs and statistical models for each
RapidEye scene, for several data set combinations, and for all scenes combined (chapter 5.1),
the accuracy of the derived LAI is assessed. The results of LAI derivation based on single data
sets are described and discussed first (chapter 5.2.1). The temporal transferability of the
established models is analyzed in chapter 5.2.2, and the usefulness of combined data sets for
model transfer in chapter 5.2.3. A comparison of selected VIs is performed to assess the
potential of the red edge channel (chapter 5.2.4), followed by some conclusions (chapter 5.3).

5.1. Establishment of transfer functions

For each of the field measurement campaigns, a temporally matching Rapid Eye scene was
selected (see Table 5-1). As is stressed by Morisette et al. (2006) and Lee et al. (2004), to
build a meaningful relationship between phenologically varying vegetation and remotely
sensed data, the field campaigns must be achieved within a short time period centered on the
satellite acquisition date. This is of particular importance in variable ecosystems such as
grasslands that are intensively used for mowing and pasturing. This condition was fulfilled
for May 25 and August 13 scenes, as the field campaigns were conducted on the RapidEye
overpass day. For the May 9 and September 6 scenes, a time lag of 5 days between acquisition
and the middle date of the campaign was achieved, while for April 15 and July 16 scenes, the
closest field data were acquired 7 days later and 10 days earlier, respectively. For these
scenes, special care was taken to check the LATiniw - RS relationships regarding plausibility.
Based on this check, some LAI measurements had to be excluded from further analysis, as at
some ESUs the land cover had obviously changed between the in situ observation and the
satellite image acquisition due to mowing or pasturing. In one case, the RapidEye scene did
not cover all in situ measurements. This affected a total of 29 LAl measurements (7, 2, 1,
and 19 measurements in weeks 18, 21, 30, and 16, respectively) resulting in 121 usable data
pairs. Data pairs of LAlixsira and reflectance observations were generated by relating the GPS
points positioned in the field to pixels in the georeferenced RS scenes. A 3 x 3 pixel mean
filter was applied to the RapidEye data before reflectance extraction, thus corresponding to
the size (20 m x 20 m) of the ESUs.

The spectral information of the RapidEye bands was transformed to VIs in a first step to
enhance its sensitivity to LAI variations (see chapter 2.2.2). There is no agreement in the
literature about which VI is best suited for estimating LAI, and a range of different VI types
have been identified to relate to LAI using empirical and modeled data (see e.g. Jacquemoud
et al., 2009, or He et al., 2006, for a review). Therefore, several VIs have been selected from

Table 5-1: Data pairs of RapidEye scenes and in situ measurements.

Time lag [days] between

Week Date of l.le.q?idEye RS acquisition and in situ Number of us.able
acquisition LAI observations
measurements
2011
18 09.05. -5 13
21 25.05. 0 18
30 16.07. +10 25
36 06.09. +5 33
2012
16 25.04. -7 10
33 13.08 0 22
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5.1. Establishment of transfer functions

the literature to account for different vegetation densities and potential influential factors in
the regression analysis. The first group of VIs consists of ratio indices such as the SR and the
NDVI, as well as modifications of these correcting for soil and atmosphere influences
(Kaufman and Tanre, 1992; Roujean and Bréon, 1995). Ratio VIs are the most widely used
VIs for LAI derivation and have been shown to be robust over a wide range of conditions
(Chen and Cihlar, 1996; Berterretche et al., 2005). The second group of indices includes
purely orthogonal indices that have been developed to minimize the soil background
influence by establishing a soil line (Richardson and Wiegand, 1977). For the calculation of
these indices, an average soil line has been sampled from each RapidEye scene.

Hybrid VIs such as the SAVI and a range of SAVI variations (Huete, 1989) constitute the
third type of indices. VIs employing the red edge band form the fourth group of indices, as
they show promise in improving LAI estimation in dense canopies (Lee et al., 2004; Brantley
et al., 2011; Potter et al., 2012). To test the benefit of the RapidEye red edge band, several
rather new and partly experimental VIs were used. The red edge NDVI (Gitelson and
Merzlyak, 1994) and the modified red edge SR (Sims and Gamon, 2002) substitute the red
band used in the original VIs by the red edge band. Viha and Gitelson (2005) evaluated that
the NDVI,. overcomes the saturation effect of the NDVI in dense vegetation. The principle of
exchanging the red band for the red edge band is also pursued by Ehammer et al. (2010), who
introduced two red edge ratio VIs and tested their performance on irrigated crop land in
Central Asia. Conrad et al. (2012) focused on the shape of the reflectance curve in the red -
red edge - NIR domain. They introduced the indices Curvature, characterizing the direction
and intensity of the spectral curve curvature in the red edge, Length, i.e. the Euclidian
distance that is spanned by the three reflectance values, and Relative Length, which relates
the Length to the distance between the red and the NIR reflectance. The fifth group of indices
includes modified chlorophyll indices. These indices, which employ the green and sometimes
the red edge band, were originally developed to react sensitively to variations in chlorophyll
content. However, some modified chlorophyll VIs have also been reported to be strongly
responsive to variations in LAI (Daughtry, 2000; Haboudane, 2004). A total of 25 indices
were tested. An overview of the used VIs, their formulas and references is given in Table A-6.

As mentioned earlier (chapter 2.2.2), there is no single best relationship between LAI and
VIs, and there are a wide variety of published empirical LAI models. Therefore, four
univariate statistical models were employed and compared in this thesis to identify the model
with the highest explanatory power for each data set. Linear, qudratic polynomial,
exponential, and power models were assessed. Logaritmic relationships were discarded after
poor results had been achieved in preliminary studies (Asam et al., 2013). Multiple
regressions were reported to achieve higher model fits than unvariate models (Baret et al.,
1995; Darvishzadeh et al., 2008c). However, the use of these techniques was renounced here,
as the individual VIs are partly highly correlated (inducing the problem of multicollinearity,
see Field et al., 2012). Further, the direct comparison of uni- and multivariate models using
e.g. the coefficient of determination R? is insignificant, complicating the model selection.
Finally, the use of a simpler model with fewer predictors is always favored in inferential
statistics (Field et al., 2012).

The different regression models were computed for each index, for all six individual data sets,
and for combined data sets. This means that the time series field and satellite data sets — or
parts thereof — are considered as a single dataset. For the combination of data sets, several
aspects were considered. Firstly, to generally test the transferability of the regression models
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5. LAI derivation using empirical-statistical models

to other acquisition dates, six data sets were generated, each leaving out one other sample on
whose corresponding RapidEye VIs the function was to be applied. Secondly, spring (April
25, May 9, May 25) and summer (July 16, August 13, September 6) data sets were created to
test for the transferability between seasons. To measure the accuracy loss caused by reducing
the sampling density by half or two third, but still covering different phenological phases,
data sets containing three (April 25, May 25, and August 13 scenes, and May 9, July 16, and
September 6 scenes) and two (April 25 & July 16, April 25 & August 13, April 25 & September
6, May 9 & July 16, May 9 & August 13, May 9 & September 6, May 25 & July 16, May 25 &
August 13, May 25 & September 6) samples were generated. Together with the single data
sets and the set combining all data, this resulted in 26 different data sets.

To assess the accuracy of a statistical model, two aspects have to be investigated (Field et al.,
2012): Is the model a valid fit to the data, and can it be generalized to other samples? To
assess the validity of the regression, several aspects have to be considered. According to Burt
et al. (2009) and Field et al. (2012), there are three basic requirements on the fitted model
residuals that need to be fulfilled for further inferential analyses. The residuals have to be

e normally distributed with a mean equal to zero. The Shapiro-Wilk test (Royston,
1982) was used to assess whether the residuals distribution differed significantly from
a normal distribution.

e homoscedastic, which means that the variance of residuals should be constant. The
Breusch-Pagan test (Breusch and Pagan, 1979) was used to assure homoscedasticity
of the residuals.

e independent. To test for correlations between residuals, the two-sided Durbin-
Watson test (Durbin and Watson, 1971) was used.

For these tests, the 0.05 confidence level was chosen for acceptance of the null hypothesis.
Further, results of the t-test and the F-test were used to check if the regression coefficients
and the coefficient of determination R?, respectively, were significantly different (significance
level p < 0.1) from being null, and thus if they had an explanatory value for the predicted
outcome. The strength of the model fit was investigated using R?. Models not fulfilling the
residual assumptions and not reaching the significance level for the model coefficients were
discarded from further analysis. They are indicated as blank spots in Table A-7.

Apart from fulfilling these prerequisites, the generalizability of the model has to be assessed
to ensure that it can be used for inferences beyond the sample of the collected data. Ideally, a
second independent data set would be used to validate the model. However, the collection of
field data is very laborious (see chapter 2.1), leading to generally small sample sizes. Due to
this, there is a trade-off between using all available observations to develop a robust
regression model and having no independent observations to test the model, versus
excluding a predetermined number of observations for testing, but having a less robust
model. To overcome this, cross-validation methods were used in this thesis in order to

provide an unbiased estimation of model accuracy (Richter et al., 2012a). To assess the model

2

aaj is used. This value indicates the loss of

fit, the adjusted coefficient of determination R
predictive power (shrinkage) of the model when applied to the population from which the
sample is drawn. This value is generally lower than R? and can be negative. In the R
language, it is calculated using Wherry’s equation (R Development Core Team, 2008). To
further measure the prediction error associated with the transfer function, cross-validation

has been used to estimate the RMSE_,. This is done by iteratively dividing the sample in two
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5.2. Results of LAI derivation using statistical models

mutually exclusive subsets, fitting the model to the larger part of the samples and using the
remaining values (the holdout set) for validation. K-fold cross-validation with k=10 has been
reported to achieve better results for model validation than bootstrap and leave-one-out
procedures (Kohavi, 1995; Borra and Di Ciaccio, 2010). However, for some of the very small
samples used in this thesis (n,,;;, = 10), a 10-fold sampling is equal or close to a leave-one-out
procedure. Hence, in these cases, k was scaled linearly down to 5 for the smallest data set to
achieve a good compromise between prediction bias and variance (Kohavi, 1995). The subsets
were drawn randomly, and the cross-validation procedure was repeated 50 times and
averaged to generate RMSE,,. The relative cross-validated RMSE (rRMSE,,) relates the
RMSE to the samples mean and thus indicates the cross-validated model error in percentage.

5.2. Results of LAI derivation using statistical models

5.2.1.Single data set analysis

Overview of all tested LAI-VI relationships for the individual data sets is given in Table A-7.

2

aaj as well as the significance level a of each VI performing in each model is

For each scene, R

listed. The highest RZ;; values, i.e. the best fit and those fits with a maximum of 5 % less
explanatory power, are printed in bold. Blank spaces indicate VI-model combinations that
did not achieve a significant relationship or violated at least one regression assumption. For
the single data sets, no valid relationship could be established in 8.5 % of all cases. Although
the model types failed almost equally as often, some differences exist for the different VIs and
data sets. The success rate for the data sets varied between 82 and 98 %, but could not be
linked to the sample size or a phenological phase. With regard to the indices, several VIs
could establish sound relationships in every case, although some (MSR2, MSR,., Curvature,

rLength, and MCARI, see Table A-6 for abbreviations) did not in 20 - 40 % of all cases.

A valid and strong fit was found for each scene. Figure 5-1 displays the scatter plots of the
respective best-fitting model for each date. The overall explanatory power of the models, with
Rfld]- values ranging from 0.64 to 0.86 (p < 0.001), is high. The cross-validated prediction

errors rRMSE_,, of 10.4 to 27.8 % also seem reasonable, although the target accuracy (see
GCOS, 2006, and Drusch et al., 2010) of 10 % is clearly not met for some of the data sets
(May 25, July 16, August 13). The relatively low explanatory power of the fit for the May 9
scene might be on account of the small sample size, its narrow range of measured LAI values
(1.8 - 4.5), and especially some outliers. The July 16 scene also seems to be distorted by
outliers in the high LAI and VI value ranges, while the concave shape of the model fit of the
May 25 scene indicates signal saturation of the MSR;. index. As it was mentioned in chapter
2.2, saturation is the effect of radiation emerging from the canopy without remaining
sensitive to increasing LAI, impairing the estimation of high LAI values (Baret and Guyot,
1991; Sellers et al., 1996; Turner et al., 1999; Liang, 2004; Duveiller et al., 2011b). Gobron et
al. (1997a) explain that this happens when the canopy is optically not thin enough to allow an
illumination of the underlying soil.

Apart from these restrictions, the strength of the respective regression models compare
favorably with other studies. In grassland, R? values of up to 0.44 (He et al., 2006), 0.68
(Friedl et al., 1994), 0.79 (Fan et al., 2009), or 0.82 (Frank and Karn, 2003) were achieved
based on common broad-band indices or transformations. Darvishzadeh et al. (2008c)
improved the relationship between LAI and two narrow-band VIs (R?= 0.63) by using SMR
(R?= 0.66) and PLS (R?= 0.69). Using CCA, R? values of up to 0.54 (Cohen et al., 2003b) and
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5. LAI derivation using empirical-statistical models
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Figure 5-1: Best fitting LAI-VI relationship of the six single data sets, showing the adjusted
coefficient of determination RZ,;, the cross-validated absolute and relative root mean squared
errors (RMSE,, and rRMSE_,), as well as the 95 % prediction confidence intervals in grey.

0.63 (Cohen et al.,, 2006) with Tasseled Cap parameters or up to 0.6 with hyperspectral
indices (Lee et al., 2004) were established. Although in this thesis, it is not the R? but the
RZ, ; measure, which is generally lower, that is used, the accuracies are in the upper range of
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5.2. Results of LAI derivation using statistical models

those results. The efficiency of the rather simple models and broad-band VIs used in this
thesis is hence satisfying.

With regard to the models and VIs used for LAI estimation, no universal recommendation
can be given, as the regressions show a diverse picture for the different scenes (Table A-7).
No model or VI can be identified that fits best for all data sets. The linear models achieved the

highest RZ; ;7 (p < 0.001) for three of the scenes (April 25, May 9, and August 13). In the other

2

scenes (apart from May 25), the linear models also have Rz

values quite similar to those of

the more complex models, and are thus useful for a rather conservative LAI estimation. In
the May 25 and July 16 scenes, quadratic polynomial models fit best. The highest result for
the September 6 scene is achieved by an exponential model. This mixed performance of
different statistical models is in accordance with the varying findings in the literature, where
the best results for an LAI-VI relationship were obtained with linear (Colombo et al., 2003),
exponential (Hansen and Schjoerring, 2003; Wang et al., 2005; Yang et al., 2007; Vuolo et
al., 2013), power and quadratic (Ehammer et al., 2010), or even cubic (Turner et al., 1999)
models. This also supports the assumption that the LAI-VI relationship changes during one
vegetation period, which has already been suggested for forest LAI (e.g. Wang et al., 2005;
Heiskanen et al., 2012; Potithep et al., 2013). However, the pattern in the temporal order of
the best fitting model shapes is not consistent (see Figure 5-1). The spring season is
dominated by linear model fits (April 25 and May 9). Increasing vegetation densities would
then hypothetically lead to a better fit of non-linear models due to saturation, which is indeed
the case in the scenes of May 25, July 16, and September 6. However, the convex curve fitted
to the July 16 data rather indicates an oversensitive VI than VI saturation. The August 13
model shape is linear, which indicates either that the relationship is distorted by outliers or
that saturation is already reduced by senescence in mid-August. However, the September 6
scene regression is again exponential, representing a rather decreasing VI sensitivity with
higher LAI values. It is hence not possible to derive a characteristic model shape
development over the season from these observations. The fact that even temporally close
relationships are not described by similar models supports the observations summarized by
Dorigo et al. (2007) that statistical models are shaped by the canopy, soil, atmosphere, and
illumination conditions that prevailed during data sampling and are hence restricted to them.

The respective best fitting VI also varies considerably for the different data sets (Table A-7).
While the ratio indices as well as some hybrid and red edge indices achieve highest fits for the
April 25 scene, the VIs performing the best fit by far in the May 9 scene are the modified
chlorophyll indices. The red edge indices are the only ones achieving significant results in the
following sample (May 25). In the July 16 scene the red edge indices fit best again, while in
the August 13 and September 6 scenes also orthogonal and ratio indices achieve equally
high R2, j values. This variation in VIs suggests that the spectral canopy characteristics
sampled during the different scenes vary in such a way that different band transformations
are needed to unmask the LAI-VI relationships. Although the NDVI has been widely used for
decades, it is shown here that LAI can be derived more accurately by other indices. The NDVI
has 10 - 40 % less explanatory power than the respective best fitting VIs, apart from the
April 25 scene, which supports the findings of Lee et al. (2004). An improvement of the
NDVI-LAI relationship during senescence as observed by Eitel et al. (2011) and Tillack et al.
(2014) cannot be confirmed, probably as they attributed this behavior to a decrease in
chlorophyll content, which is not reached yet in grasslands by the beginning of September.
He et al. (2006) concluded for grassland that ratio-based and soil-line related VIs performed
better than chlorophyll corrected VIs, which can be confirmed apart from the May 9 scene.
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Figure 5-2: Subsets of the statistically derived LAI maps for the six field campaign dates.
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5.2. Results of LAI derivation using statistical models

Table 5-2: Summary of the statistics of the respective best model fit for each data set. n indicates
the size of each data set, R;,;the adjusted coefficient of determination, RMSE,, the absolute cross-
validated RMSE, rRMSE_, the RMSE, and a the significance level of the model fit: 0.1 ’.” 0.05 ™*’
0.01°** 0.001 ***0.

n VI Model Function R%4j @ RMSEe rRMSEx
April 25 10 ARVI  linear LAl = —3.67 + 7.75 * ARVI 0.76*** 0.25  10.4
May 9 13 MCARI linear LAI = 0.05 + 10.43 « MCARI 0.66*** 0.61 17.9
May 25 18 MSRre poly LAl = 8.07 — 5.39 x MSR,, + 1.11 x MSR?, 0.74*** 0.81 27.8
July 16 25 rlength poly LAI =—320705+ 639242 xrLength — 318534 » rLength? 0.64 *** 1.14  27.1
August 13 22 Curv linear LAI = 1.70 + 0.30 * Curv 0.75** 0.84 20.6
September 6 33 SR €xpo LAI = 1.55 % ¢SR*007 0.86*** 0.59 16.2
all scenes 121 RDVI expo LAI = 0.48 x gRPV1+3.52 0.48** 1.08 30.1
all but April 25 11 RRI2 poly LAl = —2.81 + 2.59 « RRI2 — 0.2 = RRI2? 0.50"* 1.09 29.5
all but May 9 108 ARVI  poly  LAI =897 —27.62 ARVI +27.06 x ARVI?>  0.49™ 112 31.0

all but May 25 103 MSR2  poly LAI = 1.04 + 0.14 * MSR2 — 0.001 * MSR2? 0.46"™* 114 30.6
all but July 30 96  Length  poly LAl =3.83—16.22* Length + 34.88  Length? 0.65"* 0.84 24.6
all but Aug. 13 99  ARVI  poly  LAI =10.69 —31.7 « ARVI + 2935 ARVI>  0.42"** 113 32.3

all but Sept. 6 88 SARVI  expo LAI = 0.65 % eSARVI*2.96 0.39" 1.18 32.9
April 25, May 25,
Aﬁg 135 Y2> 50 RRIt poly LAI = 6.47 — 5.05 * RRI1 + 1.3 * RRI12 0.65"* 0.85 25.5
May 9, July 16, .

Y9, July 71 RRI2  linear LAl = —1.22 + 1.46 = RRI2 0.58"* 1.00 26.4
Sept. 6
April 25,July16 35 MSRee poly LAl =17.85—11.73 * MSR,, + 2.26 x MSR?,  0.40"* 140 37.8
April 25, Aug. 13 32 DVI expo LAI = 0.51 % gPVI*4.34 0.72"** 0.86 24.2
April 25, Sept. 6 43 Curv poly LAl = 2.11 + 0.01 = Curv + 0.01 * Curv? 0.81"** 0.64 19.3
May 9, July 16 38 NDVI  power LAI = 8.02 « NDV 338 0.39"* 1.24 314
May 9, Aug. 13 35 Length power LAI = 15.4 * Length'8! 0.72"** 0.79 20.6
May 9, Sept. 6 46 SR €xpo LAI = 1.55 % ¢SR*007 0.79"* 0.65 18.3
May 25 July 16 43 SR linear LAI = 0.13 + 0.37 * SR 0.51"* 1.16 31.6
May 25, Aug.13 40 NDVIe poly LAl = 12.7 — 63.9 x NDVI,, + 89.93 « NDVIZ, 0.70* 0.82 23.2
May 25, Sept. 6 51 RRI1 poly LAI = 5.28 — 3.38 * RRI1 + 0.88 * RRI1? 0.78* 0.67 19.7
spring 41 RRI1 poly LAI = 10.98 — 7.52 « RRI1 + 1.6 * RRI1? 0.43"** 0.96 32.7
summer 80 ARVI  poly LAl =7.71-23.66*ARVI+ 2458« ARVI>  0.59"* 1.04 26.5

The overall analysis of the single time step RZ; ; values shows that the differences in
regression strength between the VIs is, on average for the individual data sets, 2 - 30 times
larger than the differences in between the model types. The same is true for the coefficients of
determination of the combined data sets (see below). This observation suggests that the
careful selection of a VI sensitive to the variable of interest at a certain point in time is of
higher importance than an extensive selection of the model type.

In the upper part of Table 5-2, the statistical figures and the established transfer function of
the respective best fitting model for each date are specified. These functions were applied to
map LAI based on the six RapidEye scenes. The scatterplots between field and satellite
estimates of LAI are shown in Figure A-1. A subset of each generated LAI map is displayed in
Figure 5-2. In the LAI maps, individual fields can be well distinguished. They show a
heterogeneous, temporally and spatially variable pattern of growth stages due to the
phenological development as well as varying grazing and mowing cultivations and intensities.
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5. LAI derivation using empirical-statistical models

Vegetation density follows the seasonal trend with a maximum in August. The late May 25
scene stands out with considerably reduced LAI values in comparison to the May 9 scene.
This is caused by anthropogenic influences, as, due to the prevalent weather conditions in
2011, most parcels were mowed for the first time in mid-May.

5.2.2. Temporal transferability of statistical relationships

After LAI maps have been derived under these best-case conditions, i.e. using data collected
in the field simultaneously with an RS observation, in this section the frequently encountered
situation of having a satellite image but no field data is simulated. The aim is to quantify the
error that is introduced to LAI estimation under such conditions. As described in chapter 3.5,
the diverse management techniques in the study area result in a broad range of vegetation
states at nearly any point in time. In theory, this is an advantage with regard to the
establishment of transferable relationships, as this would enable in situ measurements of a
wide range of LAI values at almost every point in time over the entire vegetation period.
Based on these wide ranges and similar variances of LAI, robust and therewith transportable
transfer functions could thus be established. To verify this assumption, the established
transfer functions (see upper part of Table 5-2) were used on the respective VIs (i.e. the VIs
by means of which the functions have been established) of the other scenes to test for their
temporal transferability. Their prediction potential for LAI at other points in time has been
measured against the available field data, hence using the RMSE and rRMSE (RMSE / mean
value of the reference measurements).

The six single transfer functions achieve variable results when applied to other data sets. The
resulting error rates are summarized in the upper part of Table 5-3. It can be observed that
the use of a transfer function established on a single field campaign data set increases the
associated prediction error in all but one case. However, the rRMSE values of the LAI
estimates range from 12 % in the best case up to 102 % for one data set, which corresponds to
an LAI RMSE of 2.5 in this scene. This high error variance (the error being doubled, tripled,
and increased even higher in a third of all cases each) complicates the derivation of an overall
error magnitude introduced by function transferability to other RS scenes. The error tends to
be higher when a spring or summer data set is used for LAI prediction in the respective other
season. However, for the models of the May 9, May 25, and September 6 scenes, this
connection is inverted with mostly higher prediction errors for the chronologically closer
dates. With regard to the individual data sets, the July 16 transfer function yields the highest
average error (70%), which can be explained by its extraordinary model shape and its large
absolute LAI values (see Figure 5-1). Further, the field data sampled very early and very late
in the year (April 25, May 9, September 6) transfer with a similar average error (44 - 52 %).
Especially in the first two scenes, the transfer is probably hampered by the small LAI value
range. The May 25 and August 13 scenes (linear and polynomial model fits) achieve the
lowest errors of around 35 %. The sampled LAI values of April 25 are predicted with the
highest errors, probably due to the overall low value range.

It can be concluded from this experiment that the use of a transfer function on another RS
scene is always unfavorable, as it will highly probably increase the prediction RMSE to over 1.
This disproves the above mentioned general assumption of temporally stable transfer
functions in grassland due to its high variability. Although it is possible to measure low and
moderate LAI values in situ at every point in time (see Figure 4-15), extremely high values
can neither be sampled nor reproduced for every date. Instead, these results confirm the
impression generated by Figure 5-1 that the different models are fit to different densities,
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5.2. Results of LAI derivation using statistical models

biochemical conditions, and canopy structures in different vegetation stages. If a regression
model transfer cannot be avoided, however, i.e. LAl can only be sampled once during a
season, this sampling should be conducted in early or late summer to cover a wide data
range, and carefully screened for outliers afterwards. In spring, the data range of LAI values
is too narrow, and measurements in mid-summer tend to be affected by saturation. Further,
a linear or a similarly conservative regression model should be used to prevent extreme LAI
estimations. The effect of regression model transferability has not been quantified in other
studies so far, which impedes a comparison of these results. Vuolo et al. (2013) test the
spatial transfer of LAI models, but use model parameters calibrated on the whole season, not
on individual points in time.

5.2.3. Combined data sets analysis

As shown above, the use of transfer functions based on data from a single point in time on
other scenes does mostly not yield acceptable results. Thus, the motivation to combine data
sets collected during several measurement campaigns is to increase the validity and
robustness of relationships used for LAI derivations at other points in time. For field crops,
this approach has often been pursued in order to integrate all development stages of the
plants in the regression model (e.g. Ehammer et al., 2010; Rinaldi et al., 2010). The
respective best fitting regression functions trained on the above-mentioned data set
combinations (see Table 5-2) have thus been analyzed for their regression strength to test the
possibility of deriving robust statistical relationship transferable in time, and to identify the
number and timing of field campaigns needed.

In a first step, the performance of a regression model based on all available in situ
measurements is tested. The 2011 and 2012 data sets are thereby treated as one season’s time
series. The R;,; of the model fitted to all available data is considerably lower than that of the
single time steps (see Table 5-2) and the relative prediction errors are overall higher than
those achieved with the scene-adapted models (Table 5-3). While the mean error of the
individual models is 17.9 %, the rRMSE,, of the combined data set is 30.1 %. Aggregating all
available field data for building a regression model would only reduce the LAI mapping error
for one scene (July 16). Scenes for which the rRMSEs are around 20% show even lower
prediction errors for the individual data sets. This reduction of model strength when
combining data sets has also been observed by Vuolo et al. (2013) and Wang et al. (2005).

As the “all scenes” regression model is thus no suitable replacement for the adapted models,
it would be of higher interest if gaps within a time series could be filled based solely on the
satellite image and on combined field data sets of the same vegetation period. Thus, different
scenarios of field data availability are tested also in this chapter. Therefore, a “leave-one-out”
experiment has been applied to each scene’s data set. Polynomial model have almost
exclusively achieved the best fits on these data sets, as other models had to be rejected due to
the non-compliance of the residuals normality test in many cases. The R;;; and rRMSE.
values of these models are quite similar to those of the “all scenes” combination, varying
around 0.49 and 30.2 %, respectively (Table 5 2). Only the data set leaving out the July 16
scene achieves a noticeably better model fit and an RMSE., below 1, indicating a possible
distortion introduced by the July 16 data. The rRMSEs of the “interpolated” LAI values vary
greatly between 21.7 and 92.6 % (Table 5 3). Two gaps can only be deficiently filled by the use
of a model based on the remaining time series data. The LAI of April 25 has been almost
impossible to predict using another date’s model (see upper part of Table 5 2), and it is also
predicted with an error of 92.6 % in this experiment. With its overall very low values and
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5. LAI derivation using empirical-statistical models

Table 5-3: Prediction errors of transfer functions applied to other points in time based on the
individual and combined field data sets. Shaded cells indicate that no model transfer has been
performed as the data sets have been used for training. The ‘all scenes’ data set is an exception

rRMSE [%] Used on VI of

Transfer

function of April 25 May 9 May 25 July 16 August 13 September 6
April 25 42.1 47.3 61.2 52.0 56.0
May 9 91.8 415 40.4 34-4 31.3
May 25 12.0 33.2 54.6 41.1 25.9
July 16 102.0 65.8 92.7 29.9 58.7
August 13 50.4 33.7 43-3 34.6 21.1
September 6 96.7 22.8 20.0 34.7 37

all scenes 57.9 20.4 315 37.9 20.9 20.2
all but April 25 92.6

all but May 9 26.6

all but May 25 33.4

all but July 30 41.1

all but Aug. 13 24.8

all but Sept. 6 21.7
April 25, May 25,

Aug. 13 29-4 45.8 26.6
May o9, July 16,

Sept. 6 126.5 23.6 47.7

April 25, July 16 56.9 70.6 28.4 75.2
April 25, Aug. 13 20.6 33.0 47.4 29.9
April 25, Sept. 6 25.6 23.8 45.9 26.7

May 9, July 16 96.9 37.8 28.3 22.8
May o, Aug. 13 41.7 30.8 43.3 25.0
May 9, Sept. 6 94.2 29.0 35.1 35.6

May 25, July 16 123.8 34.0 46.5 23.6
May 25, Aug. 13 42.5 32.8 44.1 25.7
May 25, Sept. 6 31.9 25.2 44.5 26.7

spring 47.9 20.1 20.8
summer 82.3 31.1 33.8

narrow data range (LAI = 1.7 - 2.9) but at the same time rather high VI values (see Figure 5
3), it obviously cannot be reproduced properly. The other exception is the July 16 scene.
Despite the good model fit established on the remaining five data sets, this date’s LAI is
estimated with a high error (41.1 %). This result strengthens the above-mentioned
observation that the data set is distorted by outliers. Apart from these two dates, LAI can be
predicted using the other times steps’ regression models with an error of around or below 30
%. This equals the accuracies achieved using all data sets and represents an accuracy loss of
approximately 10 % when filling a time series gap compared to the ideal use of coincident in
situ measurements.

In the next step, the performance of the empirical-statistical approach when further reducing
the number of field campaigns by half or by two thirds is analyzed. This corresponds to the

90



5.2. Results of LAI derivation using statistical models

use of three or two combined in situ measurement data sets (see middle part of Table 5-3).
The three data set combinations were created by evenly distributing the dates over the
season, while for the two data set combinations, different spring and summer scenes were
joined based on the findings of preliminary analyses (Asam et al., 2013). With regard to the
R%, ; values, the two different “three scenes” models are comparably strong. The prediction
results are once again biased by the large prediction error on the April 25 data set. Leaving
this result unconsidered, the two models perform similar well, with rRMSEs between 23.6
and 47.7. In both cases, the vegetation maximum exhibits the largest prediction errors.

From solely investigating the R2, ; and TRMSE,, of the two date combinations, it can be seen

that any regression model trained on the July 16 data achieves considerably lower results
than the others. Their rRMSEs are also higher on average (54 %) than those of the other data
sets (36 %). The LAI estimations for the July 16 scene have a correspondingly high error rate,
which is not the case for the other mid-summer scene (August 13) and is thus probably not
caused by saturation. As observed before, the April 25 data are mostly not reproducible with
areasonable error rate. Leaving the April 25 error rates unconsidered, the average rRMSEs of
all models (apart from the April 25 & July 16 scenes combination) vary around 33 %. This
indicates an approximately 15 % prediction improvement by using two data sets instead of
only one measurement campaign randomly placed during the vegetation period. In several
cases, this might be caused by the low sample size when using only one time step. No
considerable difference can be found between the uses of two, three or five data sets. With
regard to measurement timing, the combinations with the latest campaign (September 6)
achieve better results overall than those of the mid-summer scenes (July 16 and August 13).

These results suggest that the use of only two in situ data sets is sufficient for LAI time series
derivation if an increased error rate of approximately 33 % is accepted. This is also an option
if no robust regression model can be established on a single data set. As only models covering
both, the spring and summer seasons, have been used so far, the transferability of models
established on either one is tested last (see bottom part of Table 5-3). The establishment of
valid regression models has been more difficult for the spring combination, as the residues of
most tested models have not been normally distributed (most p > 0.05). Comparing the two
model fits, the summer data sets combination yields better results (R2, j equals 0.43 and

0.59, see Table 5-2). However, this difference in model strength could also be explained by
the sample size, which is twice as big for the summer sample. With regard to the LAI
estimation error, the two models yield similar figures (32.5 %, once again leaving the April 25
scene unconsidered). This surprisingly good performance of the spring model might be
explained by the relatively high LAI in situ values of the May 25 scene (up to five), and
indicates a reduced importance of field measurement timing when several data sets are
combined.

5.2.4. Red edge potential for LAI derivation

As mentioned above, only few studies have used RapidEye data for the characterization of
vegetation canopies so far (see e.g. Ehammer et al., 2010; Eitel et al., 2011; Friese et al.,
2011). None of them quantified or discussed the benefits of the red edge band for LAI
derivation. Especially with regard to new and upcoming sensors such as WorldView-2 or
Sentinel-2 (DigitalGlobe, 2010; Drusch et al., 2012), which are equipped with one or more
red edge bands, the potential of this spectral domain for vegetation parameter mapping is of
high interest. Therefore, the impact of the use of the RapidEye red edge band is assessed in
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5. LAI derivation using empirical-statistical models

this thesis by comparing the statistical modeling results based on conventional VIs and their
respective red edge equivalents, in which the red band is substituted by the red edge band.
Three VI pairs (SR — RRI1, NDVI — NDVI,,, and MSR2 — MSR;.) are based on the respective
same formula including the red band or red edge band (see Table A-6). All single data sets
and all models were included in this analysis, however, only the models which achieve
significant results (p < 0.01) were considered. As not a single significant model could be
established for the May 9 scene using one of the above-mentioned indices (see Table A-7), no
comparison could be performed for this scene. With this reduction to five scenes’ data, the
analysis was conducted on 60 VI pairs.

Regarding the regression modelling presented in this chapter, the additional value of the red
edge band is striking. In Table 5-4, the model results of the VI pairs are presented, with the
higher R2, ; value printed in bold in each case. In 88 % of all VI comparisons, the red edge VI

yields stronger relationships than the respective original VI. Averaged over all 60 VI
comparisons, the rRMSE_,, could be decreased by 5.4 % by using a red edge VI. Although the
red edge VIs could establish no valid models in 20 - 40 % of all cases as mentioned in chapter
5.2.1, they were robust in those cases where the respective conventional VIs failed. Regarding
the other VIs used in this thesis employing the red edge band, i.e. the experimental indices
Curvature, Length and relative Length proposed by Conrad et al. (2012) and the MCARI
(Daughtry, 2000), further analysis also seems promising. Each of these VIs achieved highest

Table 5-4: Comparison of regression R7,; values established using SR, MSR2, and NDVI with their

red edge band equivalents. Only significant model results (p < 0.01) were included in the
comparison.

2
RZqj values

Model Week SR RRI1 MSR2 MSR;e NDVI  NDVI.
linear April 25 0.63 0.72 0.65 0.73 0.74 0.74
May 25 0.37 0.57 0.33 0.61 0.45
July 16 0.51 0.63 0.35 0.61 0.48 0.62
August 13 0.62 0.70 0.56 0.71 0.53 0.64
September 6 0.83 0.79 0.74 0.76 0.62 0.72
power April 25 0.67 0.71 0.69 0.72 0.72 0.73
May 25 0.38 0.68 0.35 0.70 0.62
July 16 0.51 0.63 0.37 0.61 0.50 0.63
August 13 0.63 0.72 0.58 0.72 0.59 0.70
September 6 0.82 0.81 0.74 0.78 0.71 0.77
exponential April 25 0.59 0.69 0.59 0.70 0.72 0.72
May 25 0.41 0.71 0.73 0.66
July 16 0.49 0.62 0.32 0.61 0.51 0.63
August 13 0.57 0.71 0.48 0.72 0.61 0.71
September 6 0.86 0.83 0.68 0.80 0.74 0.80
polynomial April 25 0.74 0.74 0.81 0.76 0.74 0.75
May 25 0.73 0.74 0.69
July 16 0.50 0.61 0.35 0.59 0.52 0.61
August 13 0.61 0.71 0.60 0.71 0.61 0.71
September 6 0.86 0.82 0.74 0.80 0.78 0.81
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results on at least one of the data sets and thus indicates a useful sensitivity to certain
conditions. The shape indices were especially successful for very dense vegetation (July 16
and August 13). Such an improved ability to establish statistical relationships when using the
red edge channel was also observed by Tillack et al. (2014) for some phenological phases in
forest canopies, although they did not compare structurally identical indices and yielded
lower R;,;values on the whole.

5.3. Potential of statistical models for LAI derivation

In chapter 5, the potential of LAI derivation from single and combined RapidEye data based
on empirical-statistical models was investigated. The usefulness of repeated in situ

measurements and RapidEye images is proven by high RZ, j (0.64 - 0.86) and corresponding

low prediction errors (RMSE: 0.25 - 1.14, TRMSE.: 10.4 to 27.8 %) of most of the
established statistical models. The high spatial resolution of the RapidEye data enabled the
distinction of LAI variabilities within and between fields, and hence the direct relation
between different canopy states and associated reflectances. However, with such high spatial
resolution data, local disturbing factors such as changing viewing geometries, canopy gaps,
and saturation, also might have a potentially high influence on this relationship.

These modeling results are in the upper ranges of other LAI derivation studies and thus
satisfying, but with rRMSE., and absolute RMSE,, values above 10 % and 0.5, respectively,
which do not yet meet the target requirements determined by GCOS (2006) and the GMES
user committee (Drusch et al., 2010). Generally, it would therefore be of high interest to test
in further research whether the accuracies achieved with the empirical-statistical method
over grassland can still be improved, e.g. by using other models, different in situ
measurement methods, or a more detailed field sampling strategy, or whether this method
will always be restricted by the underdetermined problem (see chapter 2.2.3) of deriving a
single canopy variable from the spectral signature of a surface.

It was further deduced in this chapter that the proper selection of a VI is more important for
a sound regression model than the selection of a mathematical model type. With regard to
the potential of RapidEye’s red edge band, it was concluded that the red edge clearly
strengthens the LAI-VI relationships and improves the LAI prediction. The derived maps
show that LAI varies strongly over space and time due to phenology and managing practices.
The relation between field-based and satellite-based measurements also changes over the
season. Different VIs and models should therefore be used for estimating LAI during the
year. This supports the reasoning of Dorigo et al. (2007), who state that empirical-statistical
relationships are restricted to the conditions that prevailed during RS and field data
acquisition. Further, these investigations revealed inconsistencies and problems with the
July 16 data set, which seems to be influenced by outliers. Therefore, a proper outlier
screening (see Field et al., 2012) is highly recommended for empirical-statistical LAI
modeling.

The test on temporal transferability of regression models reveals an associated TRMSE,,
increase from on average 20% for the data sets on which the function has been established, to
on average of 49 % if used on other points in time. Compared to the ideal use of the
contemporaneous in situ measurements, this result represents an accuracy loss of 30 %. If
such a procedure cannot be avoided, the training data set should be sampled in early or late
summer, screened for outliers and used in a conservative regression model. However, for a
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rigorous analysis of optimal measurement times, the identical sample sizes for each
campaign would be ideal to prevent reduced model performances due to changing sample
sizes and insufficiently sampled variance ranges. These aspects should be considered for
future work. The analysis further showed that there are phenological phases for which LAI
cannot be reproduced using other field data. In none of the transferability experiments
models that were established on other single data sets proved to be suitable for LAI
estimation from the earliest scene (April 25). These periods of rapid change, i.e. green-up and
senescence, are thus only properly simulated using corresponding field data.

With regard to data set combinations, the union of all six available data sets results in higher
LAI estimation errors than the respective individual models. The prediction error is 31.5 % on
average and thus similar to the average accuracies that can be achieved when interpolating
time series gaps based on the respective other five scenes (rRMSE = 30.2 %). This error does
also not increase when using only half or one third of the available field measurements. From
this series of experiments, it can be derived that the LAI derivation for a date in time for
which no in situ measurements are available is improved by approximately 15 % when two
measurement campaigns are conducted instead of only one. Further campaigns do not
significantly reduce the estimation error. With regard to the timing of field measurements,
the RZ, jvalues of the models including a spring scene and the late summer scene

(September 6) achieve highest results, so that this combination is recommended for efficient
and representative field measurements.
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model

The second LAI derivation approach pursued in this thesis is the physical modeling of LAI
using an RTM. As presented in chapter 2.2.3, RTMs simulate the interactions of radiation
with vegetation elements and the soil while traveling through the canopy, i.e. absorbance,
reflectance and transmittance. Based on these processes, the radiation leaving a canopy can
be related to its spectral and structural properties (Widlowski et al., 2014). In LAI retrieval
procedures, the RTM is run first in the forward mode to calculate reflectances given specific
canopy and observation configurations. This canopy characterization by biophysical and
chemical input parameters is called parameterization. By iteratively changing the
parameterization, RTMs simulate the spectra of a great variety of vegetation conditions (see
Figure 6-1). In the second step, which is referred to as inversion, the canopy spectrum with its
parameters (including LAI) most similar to the measured reflectances is selected by spectral
matching or by a statistical relationship over the RTM input and output (Dorigo et al., 2007).

The advantage of LAI modeling using RTMs is its independence from field measurements. If
data on canopy characteristics are available from in situ observations, this might improve the
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Figure 6-1: Effect of LAI on PROSAIL canopy reflectance (6s = 30°, 8, = 0°, ¢ = 0°, ALA = 60°,
Cab = 35 pg cm2, Cyr = 10 pg cm2, Cy = 0.02 ¢cm, Cy, = 0.01 g cm2, N = 1.5, bf = 0.5, hs = 0.11, Cpp =
0.3, skyl = 0.13. For abbreviations see Table 6-1).
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LAI modeling, as it can be used as “prior information” for parameterization. However, the
workflow of physical LAI derivation does not rely on it. This enables an automated LAI
derivation and thus time series generation. Further, several factors influencing the canopy
reflectances, such as the soil reflectance, the illumination and observation geometry, or the
canopy structure, are explicitly accounted for in an RTM. Additionally, some inversion
techniques allow for the simultaneous derivation of several biophysical leaf and canopy
parameters, and provide pixel-wise quality information on the LAI modeling.

Despite these advantages, RTMs have so far never been used for the derivation of grassland
LAI from high spatial resolution multi-spectral RS data (see chapter 2.4). In view of the
expected increase in availability of high spatial resolution RS data over the next few years, the
aim of this chapter is to assess the potential of this data type for physical LAI derivation of
(semi-)natural grasslands in comparison to empirical-statistically derived LAI (chapter 5).
Additionally, the use of some innovative approaches, namely a global sensitivity analysis, the
use of additional input features, and the mapping of pixel-wise LAI estimation uncertainties
is analyzed.

Figure 6-2 displays the workflow of the physical LAI derivation algorithm used in this thesis.
The preprocessing of the RapidEye data used as input for model inversion was presented in
chapter 4.1. With regard to physical LAI modeling, Dorigo et al. (2007) state that LAI
retrieval accuracy depends on the selection of an appropriate RTM, an RTM
parameterization well adapted to canopy conditions and system geometry, and on the
inversion procedure. These are also the main points that are presented in this chapter (see
right part of Figure 6-2). In the first subchapter 6.1, the characteristics and the suitability

ﬁhapter 4.1
Vegetation PROSAIL
characteristics sensitivity
e/
RapldE?/Le image DEM R
parameterization

. . Atmospheric and
Classification B pher

T geogr. correction Occurring local
< | [Fustem SCOMEMes,) pROSAIL model
.4’ —> Masking \ ‘\.j‘ \ l,
k / i Scene specific local Band simulation
Land Cover system geometries :
VI calculation i

K Stacking j l«

LUT selection
System geometry ‘ T
o

Spectral Information

Spectral matching

S | I ; |
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Figure 6-2: Flowchart of the LAI retrieval algorithm used in this thesis. The left part illustrates the
RapidEye preprocessing chain, the steps involved in the establishment of a scene specific local
system geometries layer (see chapter 6.4) are depicted while in the middle. On the right, the model
set up (parameterization, LUT generation) and inversion procedure (spectral matching as well as
optimization techniques “feature selection” and “sample size”) discussed in this chapter are shown.
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specifically of the PROSAIL model (Jacquemoud et al., 2009) used in this thesis are
discussed. In order to optimize the parameterization of the most influential model
parameters, a sensitivity analysis is performed in a next step (subchapter 6.2). The gained
information is used together with the vegetation characteristics described in chapter 4.3 for
model parameterization (subchapter 6.3). Next, the integration of topographic information
(see chapter 4.2) within the model setup is assessed in subchapter 6.4. Subchapter 6.5
describes the tested inversion and regularization strategies, namely the selection of the LUT
approach as well as of a cost function for the spectral match, the test on multiple solution
sample sizes, spectral feature selection, and the addition of simulated noise. Subchapter 6.6
summarizes and discusses the results of physical LAI modeling. In subchapter 6.7,
conclusions on the potential and challenges of the procedure are drawn.

6.1. The PROSAIL model

6.1.1. Model characteristics

Due to the high diversity in leaves and vegetation canopies, a wide range of leaf and canopy
models has been developed (see chapter 2.2.3). The selection of an appropriate model from
this variety for the canopy under consideration is crucial for accurate LAI derivation (Dorigo
et al., 2007). According to Weiss et al. (2000), the choice of the RTM has to meet at least two
requirements: it has to allow a fair representation of the canopy architecture, but manage to
do so with a minimum of input information. Further, the computational efficiency is
important when time series of high spatial resolution data are analyzed. Limiting the number
of parameters increases model stability. A higher number of model parameters that need to
be specified inevitably increases the model output uncertainty, as the exact specifications of
these parameters is generally not known und varies strongly among canopy types. RTM
complexity is hence always a trade-off between realism and accuracy, as it is ambiguous
whether an increase in model realism would outbalance the retrieval uncertainty produced
from a more complex combination of parameters. LAI modeling in this thesis is facilitated by
the facts that only a single ecosystem is investigated, and that grassland canopies exhibit a
high level of randomness. The latter favors the use of a model that represents the canopy as
randomly distributed vegetation elements, i.e. turbid medium models (see chapter 2.2.3).

The PROSAIL model was chosen here, which is a nonlinear 1D turbid medium RTM. As
outlined in chapter 2.2.3, the PROSAIL model (Jacquemoud et al., 2009) combines the most
widely used leaf model, PROSPECT (Jacquemoud and Baret, 1990), with the most widely
used vegetation canopy model, SAIL (Verhoef, 1984, 1985), and is itself the most popular

PROSPECT SAIL Soil BRDF model
P, Tin Psx
R O o LA, LIDF, hs, SKYL
Cbp 9 9 ('pr

pch

Figure 6-3: Schematic structure of the PROSAIL model. The abbreviations indicate the PROSAIL
input parameters (N = leaf structure coefficient; C,, = chlorophyll a +b content, C, = carotenoid
content, C, = equivalent water thickness, Cy, = dry matter content, Cp, = brown pigments content,
LIDF = leaf inclination distribution function, hs = hot spot, SKYL = ratio of diffuse incident
radiation). p is the reflectance and 7 the transmittance of leaves (1), soil (s), and canopy (c) that are
wavelength dependent, 05 and 6, are the sensor and observer zenith angles, and ¢ is the relative
azimuth angle. Adapted from Jacquemoud et al. (2009).
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coupled leaf-canopy RTM. The structure of the model is depicted in Figure 6-3. The version
used here is coded in MATLAB and is freely available?®.

PROSPECT simulates the leaf directional-hemispherical reflectance and transmittance in the
spectrum between 400 - 2500 nm with a 1 nm spectral resolution (Le Maire et al., 2004). It
represents leaves as a pile of n homogeneous absorbing plates with rough isotropic surfaces
separated by n — 1 intermediate air spaces. Within the plates, the absorption elements are
assumed to be randomly distributed. The specific absorption coefficients of the different
molecules, the surface roughness parameter, as well as the refractive index of leaf material
were determined empirically and are stored in the model data base (Jacquemoud and Baret,
1990). PROSPECT is thus a deterministic model. In this thesis, the PROSPECT 5b version
with a separate treatment of chlorophylls and carotenoids is used (Féret et al., 2008). Model
variables are the leaf structure parameter N, specifying the average number of “plates” and
thus of air-cell wall interfaces within the mesophyll, the dry matter (C,) and water content
(Cw), as well as the biochemical constituents chlorophyll (Cab), carotenoid (Ca), and brown
pigments (Cyp) (see Table 6-1). Cr, comprises cell wall molecules such as cellulose and lignin,
while Cy, represents the polyphenol pigments responsible for senescence. PROSPECT has
been improved, applied, and validated in several studies (Fourty et al., 1996; Jacquemoud et
al., 1996; Baret and Fourty, 1997; Bousquet et al., 2005).

SAIL is an analytical canopy reflectance model that represents the canopy as a plane-parallel,
horizontally uniform and infinite but vertically variable and finite slab. The canopy contains
infinitely small leaves randomly distributed in space, between which multiple scattering
occurs (Verhoef, 1984, 1985, 2002). For the development of canopy reflectance models and
SAIL derivatives, see chapter 2.2.3. In this thesis, the numerically robust and speed-
optimized model version 4SAIL was used (Kuusk, 1985; Verhoef, 1998; Verhoef et al., 2007).
The leaf transmittance and reflectance are provided by the PROSPECT model (see Figure
6-3), while the canopy architecture is specified by LAI, LIDF, and the hot spot parameter hs

Table 6-1: Input parameters of the PROSAIL model subdivided into PROSPECT and SAIL
parameters. The symbol column contains the parameter abbreviations used throughout this text
and the unit column indicates the parameters’ units.

Symbol  Parameter Unit
PROSPECT variables

N Leaf structure coefficient -

Cab Chlorophyll a +b content ug*em-=2
Car Carotenoid content ug*em-2
Cw Equivalent water thickness cm

Cn Dry matter content g¥em2
Chop Brown pigments content -

SAIL variables

LAI Leaf area index m2*m-2
LIDF Leaf inclination distribution function  °

hs Hot spot parameter m*m-
Psoil Soil reflectance -

SKYL Diffuse/total incident radiation -

0s Solar zenith angle °

0o Observer zenith angle °

®r Relative azimuth angle °

16 Downloaded from http://teledetection.ipgp.jussieu.fr/prosail/. Last access: May 12, 2014.
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6.1. The PROSAIL model
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Figure 6-4: PROSAIL soil spectra. The wet and dry soil spectra are stored in the PROSAIL model,
and a brightness factor (bf) is used to scale between the two. Wet (and thus dark) soil corresponds
to a bf of zero, while dry soil corresponds to a bf of one.

(see Table 6-1). In this model implementation, LIDF is either assumed ellipsoidal and
specified by its MTA (Campbell, 1990) or can be represented by a more complex 2-parameter
LIDF model (Verhoef, 1998). hs is a single-scattering component of direct solar radiation
connected with the finite size of leaves in a canopy, thus partly correcting for the infinitesimal
size assumed in SAIL. It is implemented to better describe the hot spot effect and is estimated
as relative leaf size, thus relating the average leaf size to canopy height (Nilson and Kuusk,
1989; Kuusk, 1991). Further inputs to 4SAIL are the spectral properties of the soil ps that can
be externally provided by a soil model (Figure 6-4) or spectra sampled in the field or from RS
data. In this thesis, a standard Lambertian soil spectrum stored in the model was used in
combination with a soil brightness factor (bf) that scales the spectrum between dark and
bright soils (see Figure 6-4). The three angles solar zenith 0,, observer zenith 6,, and relative
azimuth ¢, define the system geometry of the radiation transport. SAIL provides the four
radiance streams including TOC HDRF and BREF in a first step, from which the directional
reflectance is calculated by relating both reflectances to the sum of direct (E,,) and diffuse
irradiance (Esy,) using the SKYL factor and the global radiation according to Francois et al.
(2002). Additionally, fPAR and albedo are output variables of PROSAIL (Jacquemoud et al.,
2009). The eventual specification of all parameters is presented in chapter 6.3.

PROSAIL links the spectral variation of canopy reflectance depending on leaf biochemical
contents with its directional variation depending on canopy architecture. This link is
essential, as the SAIL model alone cannot be inverted over several wavelengths (see chapter
2.2.3). The use of multispectral data in SAIL would lead to an under-determined system
because three unknowns (leaf reflectance, leaf transmittance, and soil reflectance) are
wavelength dependent input variables to SAIL, which thus have to be estimated at each
wavelength in addition to the canopy structure variables (see Figure 6-2). The inversion of
SAIL alone at a given system geometry therefore requires at least three times as many
observations as wavelengths, which makes a robust inversion of SAIL impossible unless
several viewing angles are available, which is normally not the case with RS data. Thus, the
use of a leaf model does not only enable the consideration of biochemical leaf constituents,
but also reduces the dimensionality of the inverse problem by imposing a spectral constraint
on the inversion process (Jacquemoud et al., 2009).
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6. LAI derivation using the PROSAIL model

6.1.2. PROSAIL suitability for grassland LAI

Since its publication in 1992, PROSAIL has been extensively used and validated. In a first
step, model outputs have been successfully compared to measured spectra over different
biomes and at different scales (see e.g. Major et al., 1992; Jacquemoud et al., 1995a; Andrieu,
1997; Danson and Aldakheel, 2000; Schlerf et al., 2007). Due to its high accordance with
measured spectra, it has been particularly useful for the evaluation and design of VIs (Baret
et al., 1995; Broge and Leblanc, 2001; Haboudane, 2004; Zarco-Tejada et al., 2004;
Chaurasia and Dadhwal, 2004; Le Maire et al., 2008). However, most applications of
PROSAIL aim at deriving biophysical parameters from vegetation canopies. For LAI
derivation, PROSAIL was inverted against spectral information gained from hand-held
spectroradiometers (e. g. Jacquemoud et al., 1995a; Casa and Jones, 2004; Dorigo, 2007;
Darvishzadeh et al., 2008b; Le Maire et al., 2008; Vohland and Jarmer, 2008), air-borne and
spaceborne hyperspectral data (e.g. Jacquemoud et al., 1994; Jacquemoud et al., 2000; Weiss
et al., 2002; Atzberger et al., 2003b; Meroni et al., 2004; Vuolo et al., 2008; Laurent et al.,
2013; Laurent et al., 2014), high spatial resolution multispectral RS data (e.g. Atzberger,
2004; Koetz et al., 2005a; Soudani et al., 2006; Vuolo et al., 2010; Duveiller et al., 2011b;
Atzberger and Richter, 2012), and medium to coarse resolution data (e.g. Zarco-Tejada et al.,
2003; Lacaze, 2005; Zhang et al., 2005a; Bacour et al., 2006; Baret et al., 2007; Pasolli et al.,
2011). In most of these studies, PROSAIL was used for crop characterization, although the
number of studies focusing on forests and other natural vegetation canopies increased over
the recent years. These applications led to the development of a range of ecosystem-adapted
PROSAIL model variations (see chapter 2.2.3).

PROSAIL has been reported to achieve accuracies similar to those of more complex
reflectance models (Weiss et al., 2000; Jacquemoud et al., 2000; Bacour, 2002; Widlowski et
al., 2007; Widlowski et al., 2013). PROSAIL thus proved to be a good compromise between
accurate results and robust performance. As it is based on a relatively small number of input
parameters, it is invertible and computationally effective (Jacquemoud et al., 2000).
Representing dense and homogeneous vegetation in which small single vegetation elements
(Shabanov et al., 2000; Goel and Thompson, 2000; Schlerf and Atzberger, 2006; Dorigo et
al., 2007), it is highly suitable for grasslands. Additionally, its extensive documentation
makes PROSAIL an attractive choice. For these reasons, the PROSAIL model was chosen for
reflectance simulations. Next, a framework for the parameterization of PROSAIL suitable to
the different RapidEye scenes had to be established. To render this model set-up efficient, a
sensitivity analysis (SA) of the PROSAIL model was performed first.

6.2. PROSAIL sensitivity analysis

6.2.1. Types of sensitivity analysis

The aim of an SA is to apportion the variations in the output of a model to variations of
different input parameters (Saltelli, 2000). For an RTM, each parameter’s contribution to the
canopy reflectance variance must be quantified in each wavelength. The motivations to gain
such information are diverse (Saltelli, 1999). Firstly, systematic model simulations are
necessary to verify that the model behaves as expected. Secondly, an SA indicates whether the
model is suitable for the intended use. Parameters which do not noticeably impact the model
outcome can also not be retrieved accurately during inversion. Further, the sensitivity of an
RTM towards measurement errors can be assessed (Goel, 1988). Finally, with regard to the
design of sensors and satellite missions, SAs are relevant for the identification of optimal
wavelength ranges and viewing directions for biophysical parameter derivation.
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6.2. PROSAIL sensitivity analysis

In this thesis, the most important aspect is the identification of influential input parameters
in the RapidEye spectral bands, which is crucial for an efficient model parameterization.
Parameters for which a small variation causes large RTM output variations must be modeled
in small increments to ensure the simulation of all prevailing canopy spectra in the scene and
hence the precise derivation of this parameter during inversion. At the same time, a detailed
differentiation of non-impacting variables which do not generate significantly different model
outputs would only increase inversion ambiguity and decrease computational efficiency and
should therefore be omitted. Thus, the level of detail at which a parameter should be adjusted
has to be relative to its impact on the canopy radiance. Further, the SA aims at identifying
suitable or potentially negligible spectral bands and additional valuable features.

Although some SAs of the PROSAIL model have been conducted during the last few decades,
they either did not cover the whole parameter space, delivered only qualitative results, or
focused on parameters or spectral ranges not relevant for LAI retrieval. The simplest kind of
SA is a series of simulations performed by sequentially changing one input parameter at a
time over a reasonable range while retaining the other parameters unchanged, and
monitoring the relative change in model response (Saltelli, 1999). An example is given in
Figure 6-1, as for the generation of the canopy spectra shown in the figure all parameters
other than LAI were kept constant to highlight canopy reflectance changes due to LAI
variation only. This kind of SA is called “one-at-a-time” (OAT) or “local”, as it is run at a given
central point in the input parameter space (Saltelli et al., 1999). To gain quantitative
measures of relative parameter importance, the sum of squared differences between a
“standard canopy” case and each perturbation is calculated for each parameter. Such local
SAs have been performed for the PROSPECT model by Zarco-Tejada et al. (2003) and
Ceccato et al. (2001), for the SAIL model by Major et al. (1992) and Mu et al. (2008), and for
PROSAIL by Jacquemoud (1993), Zarco-Tejada et al. (2003), Vohland and Jarmer (2008),
Darvishzadeh et al. (2012) and Wang et al. (2013). Modified versions of this method have
been used on other RTMs by Privette et al. (1996) and Bicheron and Leroy (1999), who varied
the parameters by 10 % around a standard reflectance distribution, and Asner (1998; 2000)
and Privette et al. (1994), who additionally performed a principal component analysis on the
variances. Combal et al. (2000) used a statistical method, while Laurent et al. (2011) analyzed
the partial derivatives of the relative model output with respect to the input parameters.

However, these local SA approaches are limited (Saltelli, 2008). First, because a fixed
baseline parameter set has to be defined for this analysis, which is often arbitrary, and any
conclusion drawn on parameter importance is only legitimate around the baseline case.
Second, a local SA is not comprehensive, because variations in the model output due to
interactions between the parameters cannot be detected. Interactions describe effects in
which variance of the model output due to one parameter depends on the level of another
parameter. The combined change in two parameters may produce a greater effect than the
sum of effects from either parameter alone (Bacour, 2002). Encountering no interactions is
highly unlikely under natural conditions, because canopy biophysical and biochemical
properties often co-vary (Jacquemoud, 1993; Jacquemoud et al., 2009).

Thus, so-called “global” SAs should be used for sensitivity evaluations. In a global SA, the
parameters are not only varied locally around a mean value, but over their entire plausible
range. Additionally, parameter distribution functions can be specified for each of the model
parameters, so that information on focus ranges can be included. Further, in global SAs, the
input parameters vary simultaneously so that interactions between them can be quantified.

101



6. LAI derivation using the PROSAIL model

Global SAs have not been performed extensively on RTMs. One global SA method that has
been applied to PROSAIL is the Design Of Experiments for Simulation (DOES) (Bacour et al.,
2001; Bacour et al., 2002a; Bacour, 2002). The motivation to use DOES is to handle the
potentially large number of model runs generated by simultaneous parameter variations. A
statistical method is used to define a few model settings that cover the entire parameter
space. In doing so, DOES aims at maximizing the information extraction while reducing the
number of simulations by factors of up to 300. However, DOES estimates the input
parameters’ effects with respect to an empirical linear model connecting model input and
response, which reduces its usability for nonlinear models (Saltelli et al., 1999). Further, it
does not explicitly quantify the effects of interactions. Therefore, another method, the
Extended Fourier Amplitude Sensitivity Test (EFAST, Cukier et al., 1973; Saltelli et al., 1999),
was used in this thesis.

6.2.2. The extended Fourier amplitude sensitivity test
Concept of EFAST

Ceccato et al. (2001; 2002) and Bowyer and Danson (2004) were the first to apply EFAST, a
method developed in chemistry, in a RS context and to PROSAIL. EFAST is a variance-based
method that determines the fractional contribution of each x; of a set of n input parameters
x = (xq,%,...,X%,) to the variance V of the output of any model y = f(x) from their
conditional variances. Parameter combinations are also sampled systematically from the
parameter space in this approach, with all x; varying simultaneously. The core feature of
EFAST is that the model’s multidimensional parameter space is explored by a suitable
search-curve defined by a set of parametric equations (see Figure 6-5):

X;(s) = Gj(sin w;s) (6.1)

where s is an independent scalar, G; are transformation functions for each parameter, and w;
is a set of ideally incommensurate frequencies associated with each parameter. As can be
seen from Figure 6-5, the G; functions used here are sets of straight lines, which results in
uniform sample data distributions. Expressing f(x,(s), x3(s), ..., xn(s)) as f(s), and
expanding f(s) in a Fourier series, the multidimensional parameter space is reduced to a
one-dimensional integral employing the Fourier coefficients 4, and B,,, (Saltelli et al., 1999):

+00
f(s) = Z {4 w; COS W; s + B, sin w; s} (6.2)
wj=—00
Each axis of the parameter space is hence explored with a frequency w;, i.e. each x; oscillates
periodically at a different frequency w;, so that the search curve could hypothetically pass
through every point in the input space using incommensurate w; (Figure 6-5). In practice, the
frequencies are commensurate (for more details see Saltelli et al., 1999) and the curve
describes a closed path (see Figure A-2). The Fourier transformation finally allows for a
decomposition of the model output variance V; as function of the input parameter i, as

+o00

h=2) Ay, (6.3)

p=1
where A, = A7, + B, hence the computation of partial variances involves only the sum of

squares of the Fourier coefficients at the fundamental and all harmonics p of w;. If x; has a
strong influence, the oscillation of the model output at frequency w; is of high amplitude.
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6.2. PROSAIL sensitivity analysis

This method can thus be compared to an analysis of variance (Cukier et al., 1973). EFAST
decomposes the total variance Vof the model output in a three-parameter case as

V= V1 + VZ + V3 + V12 + V13 + V23 + V123 (6.4)

where V; is the variance of input parameter 1, V;,is the variance of interaction between
parameters 1 and 2, and V;,5 is the variance of interaction between parameters 1, 2, and 3.
The partial variances V;, V,, and V5 represent the contribution of individual parameters to the
model output and are called first-order variances. In EFAST, the ratio between the ith first-
order variance and the total variance V is called main effect or first-order index S; and
represents the percentage of the output variance that is accounted for by the specific input
parameter 7, averaged over variations in other input parameters:

S;=— (6.5)

The second- and higher-order variance terms and corresponding indices S;; represent the
percentage variance caused by parameter interactions. They are derived from the frequencies
not used for the computation of V;, as these contain the residual variances. A measure for the
variance due to one individual parameter and all its interactions is the so-called total order
index Sr;, which comprises all partial variances, thus for the three parameter case:

Vi Vi + Vi3 4+ Vips

= 6.6
Sr1 7 (6.6)
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Figure 6-5: Example search-curve of the EFAST algorithm scanning the 3D LAI, LIDF, and N
parameter space, ideally using a set of incommensurate frequencies so that the curve can pass
through every point in the space (bottom right plot). To illustrate the irregular path of the search-
curve, the parameter values sampled for the first 100, 1000, and 5000 PROSAIL runs are shown.
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6. LAI derivation using the PROSAIL model

As such, the total index quantifies the degree of additivity of the model and its sum over all
parameters is generally higher than one, as interaction effects between parameters 1 and 2
are counted in both S;; and S;,. To make more efficient use of the model runs, additional
random phase-shifts were introduced by Saltelli et al. (1999), which enable the generation of
different search curves, over which the variances are finally averaged. The phase-shifts are
depicted as black areas in Figure A-2 due to the significantly higher frequencies.

Thus, EFAST is an information-rich approach that allows full exploration of the input
parameter space, accounting for interactions, nonlinear responses, and self-verification. The
main advantages of EFAST are its robustness and its computational efficiency (Saltelli et al.,
1999). EFAST has been applied to PROSPECT and PROSAIL to assess the parameters
influencing canopy reflectance in two selected wavelengths (Ceccato et al., 2001; 2002) or on
the entire spectrum (Bowyer and Danson, 2004), with special focus on the leaf water content.
However, to the knowledge of the author, it has not yet been applied to the
PROSPECT5+4SAIL model versions, and no sensitivity analysis has been performed so far
for the spectral configurations of the RapidEye sensor. Therefore, PROSAIL sensitivity was
assessed by calculating the first-order, interaction, and total-order indices for the entire
spectrum as well as for the five RapidEye bands using the fastgg function of the “sensitivity”
R package provided by Pujol et al. (2013). Further, the impact of LAI variations on selected
VIs was tested as performed by Ceccato et al. (2001; 2002)(Ceccato et al., 2001), although
not for designing a VI but to identify suitable additional spectral features for model inversion.
The fastgg default settings (M = 4, w values as given by Saltelli et al., 1999) have been used.

The ranges used in the EFAST SA, between which the canopy parameters are sampled, are
specified in Table 6-2. For the LIDF, the ellipsoidal 1-parameter implementation was used.
The parameter ranges were similar to those of other studies (Bacour, 2002; Bowyer and
Danson, 2004) and cover the entire realistic ranges of each parameter (Jean-Baptiste Féret,
personal communication). During the design of the experimental plan, 11 parameters — thus
all PROSAIL parameters but the viewing angles — were randomly drawn 3000 times
following a uniform distribution. This procedure resulted in 33 000 canopy realizations. The

Table 6-2: Ranges of the PROSAIL variables used in the global SA. In between these ranges, the
parameters are uniformly sampled. Viewing angles were held constant.

Parameter Unit Lower Bound Upper Bound
PROSPECT variables

N - 1 3
Cab ug*em-2 10 90
Car ug*em-2 2.5 22.5
Cw cm 0.008 0.035
Cn g¥em2 0.002 0.02
Chp - (0} 0.5
SAIL variables

LAI m2*m-2 0.1 7.5
LIDF ° 5 85
hs m*m-1 0.01 0.3
bf - 0 0.9
SKYL - 0.05 0.4
0s ° 30

0, © 5

®r ° 8o

104



6.2. PROSAIL sensitivity analysis

system geometry, that is, the sun and sensor zenith as well as the relative azimuth angles,
were fixed, as only mono-angular data were used in this thesis. Instead, the mean of the sun
and observer zenith angles of the RapidEye scenes as well as the most frequent relative
azimuth angle (see Table A-2) were used to gain information relevant to the available data.
For investigation of the directional reflectance sensitivity of the PROSAIL model, the reader
is referred to Gobron et al. (1997b), Asner (1998), Gastellu-Etchegorry et al. (1999), Bacour et
al. (2001), Bacour (2002), and Wang et al. (2005).

Results of EFAST

The first order main effects, interactions, and total order indices of the eleven input
parameters on PROSAIL reflectance in the VIS and NIR spectral range are shown in Figure
6-6. While the wavelengths are given on the x-axis, the y-axis displays the respective index
values of the main effects (top), interactions (middle), and total effects (bottom). The first-
order index describes spectral variations due to variations of the respective parameter, and a
high interactions index value indicates that variations of a parameter at a certain wavelength
strongly depend on the levels of other parameters. With regard to the first-order effects, the
parameters LAI, LIDF and the soil factor bf have the largest influence in total, although they
show considerable variation over the spectrum. The LAI plays an important role, accounting
for over 20 % of the model output variance in the VIS between 400 and 700 nm and in the
SWIR beyond 1400 nm, while its influence is reduced in the NIR. The influence of the soil bf
varies around 15%, with a minimum between 750 and 1000 nm. The largest variances (20 -
70 %) in the NIR and in the SWIR are generated by the LIDF. The diffuse irradiance factor
SKYL is only relevant in the blue and green regions. The hot spot parameter barely influences
the model output, which was to be expected given the chosen viewing geometry far off the hot
spot region (¢, = 80°). The PROSPECT parameters play a minor role overall, but show some
characteristic influences (see chapter 2.2.1), e.g. chlorophyll content Cy, in the green and red
edge wavelength ranges, dry matter content Cy, in the NIR, or water content C,, between 1200
and 1900 nm. Overall, sums of the first-order indices are between 0.65 and 0.85, indicating
that the remaining variance is caused by parameter interactions.

The interaction effects show a slightly less variable behavior. Overall, most interactions occur
in the VIS. The three most important parameters LAI, LIDF and soil brightness have rather
constant partial variances due to interactions around 10 - 20 %, with narrow ranges of
increased interaction effects in the green, red edge, and NIR. While the interaction effects of
the canopy model parameters are rather lower than the first-order indices, those of the leaf
model parameters are mostly as high as their first-order effects. Ceccato et al. (2001) found
that only small interactions occur between leaf parameters. This indicates that the
interactions observed here are caused by the scaling effect, which all leaf constituents
undergo as the leaf area increases. The total index incorporating all first- and higher-order
indices underlines the ranking observed for the first-order indices, with the LAI, LI