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Abstract  
Information on the state of the terrestrial vegetation cover is important for several ecological, 
economical, and planning issues. In this regard, vegetation properties such as the type, 
vitality, or density can be described by means of continuous biophysical parameters. One of 
these parameters is the leaf area index (LAI), which is defined as half the total leaf area per 
unit ground surface area. As leaves constitute the interface between the biosphere and the 
atmosphere, the LAI is used to model exchange processes between plants and their 
environment. However, to account for the variability of ecosystems, spatially and temporally 
explicit information on LAI is needed both for monitoring and modeling applications.  

Remote sensing aims at providing such information. LAI is commonly derived from remote 
sensing data by empirical-statistical or physical models. In the first approach, an empirical 
relationship between LAI measured in situ and the corresponding canopy spectral signature 
is established. Although this method achieves accurate LAI estimates, these relationships are 
only valid for the place and time at which the field data were sampled, which hampers 
automated LAI derivation. The physical approach uses a radiation transfer model to simulate 
canopy reflectance as a function of the scene’s geometry and of leaf and canopy parameters, 
from which LAI is derived through model inversion based on remote sensing data. However, 
this model inversion is not stable, as it is an under-determined and ill-posed problem.  

Until now, LAI research focused either on the use of coarse resolution remote sensing data 
for global applications, or on LAI modeling over a confined area, mostly in forest and crop 
ecosystems, using medium to high spatial resolution data. This is why to date no study is 
available in which high spatial resolution data are used for LAI mapping in a heterogeneous, 
natural landscape such as alpine grasslands, although a growing amount of high spatial and 
temporal resolution remote sensing data would allow for an improved environmental 
monitoring. Therefore, issues related to model parameterization and inversion regularization 
techniques improving its stability have not yet been investigated for this ecosystem. 

This research gap was taken up by this thesis, in which the potential of high spatial resolution 
remote sensing data for grassland LAI estimation based on statistical and radiation transfer 
modeling is analyzed, and the achieved accuracy and robustness of the two approaches is 
compared. The objectives were an ecosystem-adapted radiation transfer model set-up and an 
optimized LAI derivation in mountainous grassland areas. Multi-temporal LAI in situ 
measurements as well as time series of RapidEye data from 2011 and 2012 over the 
catchment of the River Ammer in the Bavarian alpine upland were used. 

In order to obtain accurate in situ data, a comparison of the LAI derivation algorithms 
implemented in the LAI-2000 PCA instrument with destructively measured LAI was 
performed first. For optimizing the empirical-statistical approach, it was then analyzed how 
the selection of vegetation indices and regression models impacts LAI modeling, and how 
well these models can be transferred to other dates. It was shown that LAI can be derived 
with a mean accuracy of 80 % using contemporaneous field data, but that the accuracy 
decreases to on average 51 % when using these models on remote sensing data from other 
dates. The combined use of several data sets to create a regression which is used for LAI 
derivation at different points in time increased the LAI estimation accuracy to on average 
65 %. Thus, reduced field measurement labor comes at the cost of LAI error rates being 
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increased by 10 - 30 % as long as at least two campaigns are conducted. Further, it was shown 
that the use of RapidEye’s red edge channel improves the LAI derivation by on average 5.4 %.  

With regard to physical LAI modeling, special interest lay in assessing the accuracy 
improvements that can be achieved through model set-up and inversion regularization 
techniques. First, a global sensitivity analysis was applied to the radiation transfer model in 
order to identify the most important model parameters and most sensitive spectral features. 
After model parameterization, several inversion regularizations, namely the use of a multiple 
sample solution, the additional use of vegetation indices, and the addition of noise, were 
analyzed. Further, an approach to include the local scene’s geometry in the retrieval process 
was introduced to account for the mountainous topography. LAI modeling accuracies of in 
average 70 % were achieved using the best combination of regularization techniques, which is 
in the upper range of accuracies that were achieved in the few existing other grassland 
studies based on in situ or air-borne measured hyperspectral data. Finally, further physically 
derived vegetation parameters and inversion uncertainty measures were evaluated in detail 
to identify challenging modeling conditions, which was mostly neglected in other studies. An 
increased modeling uncertainty for extremely high and low LAI values was observed. This 
indicates an insufficiently wide model parameterization and a canopy deviation from model 
assumptions on some fields. Further, the LAI modeling accuracies varied strongly between 
the different scenes. From this observation it can be deduced that the radiometric quality of 
the remote sensing data, which might be reduced by atmospheric effects or unexpected 
surface reflectances, exerts a high influence on the LAI modeling accuracy.  

The major findings of the comparison between the empirical-statistical and physical LAI 
modeling approaches are the higher accuracies achieved by the empirical-statistical approach 
as long as contemporaneous field data are available, and the computationally efficiency of the 
statistical approach. However, when no or temporally unfitting in situ measurements are 
available, the physical approach achieves comparable or even higher accuracies. 
Furthermore, radiation transfer modeling enables the derivation of other leaf and canopy 
variables useful for ecological monitoring and modeling applications, as well as of pixel-wise 
uncertainty measures indicating the robustness and reliability of the model inversion and 
LAI derivation procedure. The established look-up tables can be used for further LAI 
derivation in Central European grassland also in other years. 

The use of high spatial resolution remote sensing data for LAI derivation enables a reliable 
land cover classification and thus a reduced LAI mapping error due to misclassifications. 
Furthermore, the RapidEye pixels being smaller than individual fields allow for a radiation 
transfer model inversion over homogeneous canopies in most cases, as canopy gaps or field 
parcels can be clearly distinguished. However, in case of unexpected local surface conditions 
such as blooming, litter, or canopy gaps, high spatial resolution data show corresponding 
strong deviations in reflectance values and hence LAI estimation, which would be reduced 
using coarser resolution data through the balancing effect of the surrounding surface 
reflectances. An optimal pixel size with regard to modeling accuracy hence depends on the 
canopy and landscape structure. Furthermore, a reduced spatial resolution would enable a 
considerable acceleration of the LAI map derivation.  

This illustration of the potential of RapidEye data and of the challenges associated to LAI 
derivation in heterogeneous grassland areas contributes to the development of robust LAI 
estimation procedures based on new and upcoming, spatially and temporally high resolution 
remote sensing imagery such as Landsat 8 and Sentinel-2. 
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Zusammenfassung 
Informationen zum Zustand der Vegetation sind relevant für einige ökologische, 
ökonomische, und planerische Fragestellungen. Vegetationseigenschaften wie der Typ, die 
Vitalität oder die Dichte einer Pflanzendecke können dabei anhand von kontinuierlichen 
biophysikalischen Parametern beschrieben werden. Einer dieser Parameter ist der 
Blattflächenindex (engl. leaf area index, LAI), der als die halbe gesamte Blattoberfläche pro 
Bodenoberfläche definiert ist. Da die Blattfläche eine wichtige Schnittstelle zwischen der 
Biosphäre und der Atmosphäre darstellt, wird der LAI dazu verwendet, Austauschprozesse 
zwischen Pflanzen und ihrer Umwelt zu modellieren. Um die natürliche Variabilität von 
Ökosystemen berücksichtigen zu können, benötigt man für solche Monitoring- und 
Modellierungsanwendungen jedoch räumlich und zeitlich explizite LAI Informationen. 

Die Fernerkundung stellt solche Informationen zur Verfügung. Fernerkundungsbasierte LAI-
Kartierung basiert auf empirisch-statistischen und physikalischen Modellen. Im ersten 
Ansatz wird ein empirisches Verhältnis zwischen dem aufgezeichneten Reflexionssignal der 
Vegetationsdecke und in situ gemessenem LAI erstellt. Obwohl dieses Verfahren meist hohe 
Genauigkeiten erzielt, gilt das erstellte Verhältnis nur für den Ort und Zeitpunkt der 
Feldmessungen, was ein automatisiertes Verfahren behindert. Der physikalische Ansatz 
verwendet ein Strahlungstransfermodell um die spektrale Signatur einer Pflanzendecke in 
Abhängigkeit von der Szenengeometrie und verschiedenen Blatt- und Pflanzenparametern zu 
simulieren, von der LAI durch die Inversion des Modells basierend auf Fernerkundungsdaten 
abgeleitet wird. Die Modellinversion ist jedoch nicht stabil, da sie ein unterdeterminiertes 
und inkorrekt gestelltes Problem ist. 

Bisher fokussierten LAI-Studien entweder auf die Verwendung räumlich grob ausgelöster 
Fernerkundungsdaten für globale Anwendungen, oder auf LAI-Modellierung für Wälder und 
Anbaufrüchte innerhalb eines räumlich eingeschränkten Gebiets basierend auf mittel und 
hoch aufgelösten Daten. Obwohl die Menge an räumlich und zeitlich hoch aufgelösten 
Fernerkundungsdaten für ein verbessertes Umweltmonitoring kontinuierlich zunimmt, 
führte dies dazu, dass es keine Studie gibt die sich mit der Ableitung des LAI in heterogenen 
Landschaften wie beispielsweise alpinem Grünland, basierend auf räumlich hoch aufgelösten 
Daten, beschäftigen. Dementsprechend wurden damit verbundene Aspekte wie die 
Modellparametrisierung und Regularisierungsmöglichkeiten der Inversion für dieses 
Ökosystem noch nicht untersucht. 

Diesem Forschungsbedarf wird mit dieser Arbeit, in der das Potenzial räumlich hoch 
aufgelöster Fernerkundungsdaten für die Ableitung von Grünland-LAI basierend auf 
statistischen Modellen und Strahlungstransfermodellierung analysiert wird, und in der die 
Genauigkeiten und Stabilität beider Verfahren verglichen werden, begegnet. Die Ziele der 
Arbeit sind eine an das Grünlandökosystem angepasste Einrichtung des 
Strahlungstransfermodells und die Ableitung des LAI für Grünland im Gebirgsraum. 
Multitemporale in situ LAI-Messungen sowie RapidEye-Zeitreihen aus den Jahren 2011 und 
2012 aus dem Ammereinzugsgebiet im bayrischen Voralpenland wurden dazu verwendet. 

Um verlässliche in situ Messwerte zu erhalten, wurde zunächst ein Vergleich der im LAI-
2000 PCA Messinstrument implementierten Algorithmen mit destruktiv erhobenen LAI 
Werten durchgeführt. Zur Optimierung des empirisch-statistischen Ansatzes wurde dann 
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untersucht, in welchem Maße die Verwendung verschiedener Vegetationsindizes und 
Regressionsmodelle die LAI-Modellierung beeinflussen, und wie gut diese Modelle auf 
andere Zeitpunkte übertragen werden können. Es wurde gezeigt, dass unter Verwendung von 
zeitgleich erhobenen Felddaten der LAI mit einer mittleren Genauigkeit von 80 % abgeleitet 
werden kann, dass sich die Genauigkeit aber auf 51 % verringert, wenn die Modelle auf 
Fernerkundungsdaten anderer Zeitpunkte angewendet werden. Die gemeinsame Nutzung 
mehrerer Felddatensätze zur Erstellung einer Regression welche auf andere Zeitpunkte 
angewendet wird, erhöhte die Genauigkeit der LAI-Ableitung wiederum auf durchschnittlich 
65 %. Ein verringerter Arbeitsaufwand für Feldmessungen wird also durch erhöhte 
Fehlerraten von 10 - 30 % pro Szene ausgewogen, solange mindestens zwei Messkampagnen 
durchgeführt werden. Außerdem wurde gezeigt, dass die Verwendung des “red edge” Bandes 
des RapidEye Sensors die LAI-Ableitung um im Mittel 5.4 % verbessert. 

Im Hinblick auf die physikalische LAI-Modellierung waren vor allem die Verbesserung der 
Genauigkeit, die anhand von Modelleinstellungen und Regularisierungstechniken erzielt 
werden konnten, von Interesse. Zunächst wurde eine globale Sensitivitätsanalyse des 
Strahlungstransfermodells durchgeführt, um die wichtigsten Modellparameter und die 
sensitivsten spektralen Bereiche zu identifizieren. Nach der darauf basierenden 
Modellparametrisierung wurden in den nächsten Schritten mehrere Verfahren zu 
Stabilisierung der Inversion, nämlich die Verwendung multipler Lösungen, von 
Vegetationsindizes als Inputdaten, und von simuliertem Datenrauschen, analysiert. 
Außerdem wurde ein Ansatz eingeführt, der die Berücksichtigung der lokalen 
Szenengeometrien, und damit der Topographie des Untersuchungsgebietes, erlaubt. 
Genauigkeiten von im Mittel 70 % konnten für die LAI-Modellierung unter Verwendung der 
besten Modell- und Inversionseinstellungen erreicht werden. Diese sind mit den Ergebnissen 
anderer Grünland-Studien, die jedoch auf in situ oder flugzeuggetragen gemessenen 
hyperspektralen Daten beruhen, vergleichbar. Zuletzt wurden weitere physikalisch 
modellierte Vegetationsparameter sowie Inversionsunsicherheitsmaße evaluiert, um 
besonders schwierige Modellierungsbedingungen zu identifizieren, was in anderen Studien 
bisher meist vernachlässigt wurde. Erhöhte Modellierungsunsicherheiten wurden für die 
Ableitung besonders niedriger und hoher LAI Werte beobachtet, was auf eine ungenügend 
weit gefasste Modellparametrisierung und stellenweise Abweichungen der Vegetationsdecke 
von den Modellannahmen hinweist. Außerdem variieren die Genauigkeiten der LAI-
Modellierung stark zwischen den einzelnen Szenen woraus abgeleitet werden kann dass die 
radiometrische Qualität der Fernerkundungsdaten, welche beispielsweise durch 
atmosphärische Effekte oder unerwartete Oberflächenreflexionen beeinfluss werten kann, 
einen großen Einfluss auf die Modellierungsgenauigkeit hat. 

Im Vergleich der empirisch-statistischen und physikalischen LAI-Modellierung fiel der 
empirisch-statistische Ansatz mit höheren Genauigkeiten, solange zeitgleich aufgenommene 
Felddaten vorliegen, sowie mit einer geringeren Berechnungszeit auf. Wenn jedoch keine 
zeitlich passenden Felddaten vorhanden sind, erreicht die physikalische Modellierung 
vergleichbare oder sogar höhere Genauigkeiten. Des Weiteren ermöglicht das 
Strahlungstransfermodel die Ableitung weiterer Blatt- und Pflanzeneigenschaften, welche für 
ökologische Monitoring- und Modellierungsanwendungen nützlich sind. Außerdem werden 
pixelgenaue Unsicherheitsmaße generiert, welche die Stabilität und Verlässlichkeit der 
Modellinversion und des gewonnenen LAI-Wertes charakterisieren. Die erstellten 
Datenbanken können darüber hinaus für die LAI-Modellierung in anderen 
Mitteleuropäischen Grünländern auch in anderen Jahren verwendet werden. 
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Die Verwendung von hochaufgelösten Fernerkundungsdaten ermöglicht eine verlässliche 
Landbedeckungsklassifikation und verringert damit Fehler in der LAI-Modellierung die 
durch Fehlklassifikationen verursacht werden. Da die RapidEye-Pixel außerdem kleiner als 
einzelnen Felder sind, konnte das Strahlungstransfermodell in den meisten Fällen über 
homogenen Pflanzendecken invertiert werden. Angesichts unerwarteter lokaler 
Oberflächenreflexionen, hervorgerufen beispielsweise durch Blüten, Streu, oder Lücken, 
zeigen die hochaufgelösten Daten jedoch auch entsprechend starke Abweichungen, welche in 
gröber aufgelösten Daten durch die Reflexion der umgebenden Oberflächen verringert sind. 
Eine optimale Pixelgröße im Hinblick auf die Modellierungsgenauigkeit hängt also von der 
Struktur der Vegetationsdecke und der Landschaft ab. Eine verringerte Pixelgröße würde 
darüber hinaus die Ableitung von LAI-Karten deutlich beschleunigen. 

Diese Darstellung des Potenzials von RapidEye Daten für LAI-Modellierung und der 
speziellen Herausforderungen an die genutzten Verfahren in heterogenen Grünländern kann 
zur Entwicklung von robusten LAI-Ableitungsverfahren beitragen, anhand welcher neue, 
räumlich und zeitlich hoch aufgelöste, Fernerkundungsdaten wie die der Landsat 8 oder 
Sentinel-2 Sensoren in Wert gesetzt werden können. 
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1. Introduction
This thesis analyzes and compares the potential of high spatial resolution remote sensing 
(RS) data for the estimation of grassland leaf area index (LAI) based on statistical 
relationships and radiation transfer modeling. The overall aim is an ecosystem-adapted 
radiation transfer model (RTM) set-up and optimized LAI derivation in mountainous 
grassland areas of the Ammer catchment. In this introduction, the relevance of 
environmental monitoring based on RS data for various applications is emphasized (chapter 
1.1), with special focus on the LAI parameter (chapter 1.2). The common procedures for LAI 
estimation as well as their limitations in general and with regard to grasslands and 
mountainous landscapes are briefly outlined (chapter 1.3). Subsequent to that, emerging 
research issues, the objectives, and innovative analyses of this thesis are presented, followed 
by a short overview of the structure of the thesis (chapter 1.4). 

1.1. Remote sensing for environmental monitoring 

Information on the state of the earth’s surface is important for several ecological, economical, 
and planning issues. For instance, in addition to information about land cover and land use, 
monitoring the phenological stage, vitality, or density of vegetation is of high interest for 
agricultural applications and environmental protection. Furthermore, these vegetation 
properties directly influence natural processes in vegetation canopies, which makes their 
knowledge crucial for understanding terrestrial biosphere processes (Foley et al., 2000; Baret 
and Buis, 2008). Process-based models, which simulate these interactions between plants 
and their environment by linking them to driving variables like weather condition and 
nutrient availability, are increasingly being used to understand ecosystem dynamics. The 
simulations from these models are highly dependent on the accuracy of vegetation 
biophysical properties (Running et al., 1989). Hence, sciences such as climatology, hydrology, 
and ecology, which aim at emulating, quantifying, and ultimately predicting natural 
processes over a wide range of scales, strongly rely on this knowledge. Vegetation properties 
can be described by means of continuous physical, chemical, and biological state parameters 
such as the LAI, chlorophyll and water content, the fraction of photosynthetically active 
radiation (FPAR), or the fraction of vegetation ground cover. However, spatially and 
temporally explicit information on these vegetation properties is needed both for scientific 
monitoring and input for modelling applications (Dorigo, 2007). 

RS aims at providing such information. What makes RS interesting for environmental 
sciences is its ability to deliver spatially continuous and periodical observations of vegetation 



1. Introduction

2 

over large extents and also in remote areas. With the launch of the Landsat satellites in the 
1970s, the scientific community recognized RS as a valuable tool. In the subsequent decades, 
the retrieval of vegetation parameters has been largely addressed by the use of sensors such 
as Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging 
Spectroradiometer (MODIS). These sensors can provide almost daily global information, 
albeit at the expense of coarser1 observation supports, e.g. 1 km pixel size for AVHRR. 

However, due to the increasingly relevant role of RS in environmental monitoring (Baret and 
Buis, 2008) and other sectors of human activities such as urban planning, disaster 
management, or civil protection, great efforts have been made to continuously improve RS 
technologies. During the last two decades, a number of new high spatial resolution satellites 
such as RapidEye (Tyc et al., 2005) and Landsat 8 (Irons et al., 2012) emerged. Currently, a 
new generation of high spatial and temporal resolution multi-spectral land monitoring 
missions is being launched including the upcoming Sentinel mission (Drusch et al., 2012) 
within the Copernicus2 program, or the upcoming VENμs mission (Ferrier et al., 2010). Such 
a growing amount of high temporal and spatial resolution RS data allows for improved 
environmental monitoring, but also calls for the development of accurate, robust and 
effective methods for vegetation parameter retrieval. These methods should be capable of 
deriving vegetation information without requiring field calibration and be applicable to a 
wide range of landscape types (Liang, 2008; Duveiller et al., 2011b; Verrelst et al., 2014). 

1.2. Relevance of LAI for ecological processes 

Environmental monitoring based on RS data traditionally relies on the use of vegetation 
indices (VIs), which trace the relative abundance and health of vegetation. However, VIs 
should only be used as measures of canopy light absorption, as they have no inherent 
physical meaning related to structural, chemical, and biological vegetation state properties 
(Glenn et al., 2008). Biophysical parameters on the other hand are quantifiable measures of 
mass or area. One such key biophysical parameter and perhaps the most commonly used 
canopy structure parameter is the LAI, which quantifies the green plant area that constitutes 
the canopy-atmosphere interface. RS provides the only practical option for mapping LAI 
continuously over the landscape. The importance of LAI estimates from RS for vegetation 
monitoring has also been recognized by the Global Climate Observing System (GCOS), which 
identified LAI as an Essential Climate Variable (ECV) and its operational generation as one of 
GCOS’s main tasks (GCOS, 2006). Therefore, LAI mapping has been a major objective in RS. 

The LAI is a dimensionless variable and was first defined by Watson (1947) as the total one-
sided leaf area per unit horizontal ground surface area. Although this definition is precise for 
flat broad leaves, it is ambiguous for cylindrical needles and wrinkled, bent or rolled leaves, 
as the one-sided leaf area is not clearly defined in these cases. Lang et al. (1991) and Chen 
and Black (1992) proposed to define LAI as half the total intercepting leaf area per unit 
ground surface area, because this definition is valid regardless of leaf shape, and because it 
has an actual physical (e.g. radiation interception) and biological (e.g. gas exchange) 
meaning. Myneni et al. (1997) suggested the use of the maximum projected leaf area per unit 

1 Although no universally accepted definition of spatial resolution categories exists, in this dissertation 
remote sensing data are defined as very high resolution (≤ 1 m), high resolution (1 - 20 m), medium 
resolution (20 - 100 m), and coarse resolution (≥ 100 m) systems (see chapter 2.2.1). 
2 Copernicus is a joint initiative of the European Commission (EC) and the European Space Agency (ESA) 
that aims at the provision and use of operational high resolution monitoring information for environment 
and security applications. For information see http://www.copernicus.eu/. Last access: April 4, 2014. 
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ground surface area, which can also be related to total exchange and interception areas. 
Further definitions have been proposed (e.g. Bolstad and Gower, 1990; Smith, 1991), and it is 
crucial to note that the application of different LAI definitions can result in large differences 
in LAI estimates for some biomes. In this thesis and close to Watson’s definition, LAI is 
defined as one half the total leaf area per unit ground surface area (Jonckheere et al., 2004). 

Usually, LAI measures between zero for bare soil and ten or higher for dense forests. Values 
between zero and one mean that there is less leaf area than soil area. Values above one do not 
necessarily mean that the soil is completely covered, as the leaves can be situated one above 
the other. In contrast to other biophysical vegetation parameters such as albedo, FPAR, or 
the mean foliage angle, LAI has no theoretical upper limit. LAI depends on the canopy 
species composition, development stage and seasonality, site conditions, and – if 
anthropogenically influenced – management practices. Hence, it is a temporally and spatially 
(horizontally as well as vertically) highly variable parameter (Jonckheere et al., 2004). 

Green leaves constitute the interface between biosphere and atmosphere, and thus play a 
major role in several biological and ecological energy and matter exchange processes. Firstly, 
photosynthesis takes place in leaves, which directly drives gas exchange of oxygen and carbon 
oxide, biogenic emissions, and biomass production. Being a proxy for vegetation biomass, 
LAI is an important variable for characterizing vegetation abundance and distribution across 
the landscape. The estimation of biomass is required for carbon stock accounting and 
monitoring, which is crucial within the framework of several international conventions 
(Brown, 2002; Rosenqvist et al., 2003). Another important impact of LAI is its effect on the 
hydrological cycle by quantifying the water exchange through canopy interception and 
transpiration, thus influencing evapotranspiration, infiltration and runoff generation. 
Further, changes in foliage density alter the albedo of a surface and thus processes on scales 
from local micro-meteorological fluxes up to the earth’s radiation balance (Bonan, 1997). 

Due to these interrelations with gas, water and energy fluxes, the availability of spatially and 
temporally distributed information on LAI is crucial for spatially explicit ecological, 
hydrological, and climate modeling over a wide range of grid scales (Bonan, 1993; Dorigo et 
al., 2007; van Gorsel et al., 2011). LAI is employed in most land surface process models, 
which are also called ecosystem process models (Running and Coughlan, 1988; Nemani et al., 
1993) or Soil-Vegetation-Atmosphere-Transfer (SVAT) models (Flerchinger et al., 1998; 
Foley et al., 2000). On the large scale (regional to global), SVAT models are linked to 
hydrological models (Kunstmann, 2008), atmospheric circulation models (Bonan, 1995; 
Sellers et al., 1996; Sellers, 1997), net primary productivity models (Running et al., 1989; 
Cayrol et al., 2000; Matsushita and Tamura, 2002), or carbon cycle models (Turner et al., 
2004) through the fluxes in terrestrial vegetation described above. Next to LAI, other 
remotely sensed vegetation properties such as albedo (Lucht et al., 2000), FPAR (Sellers et 
al., 1996), surface roughness (Lefsky et al., 2002), and phenology (Stöckli et al., 2008) are 
inputs to SVAT models (Sellers, 1997). Temporal changes in LAI or other state variables are 
adjusted by means of assimilation techniques (Dorigo et al., 2007; Quaife et al., 2008). Due 
to limited CPU resources and partly coarse resolution meteorological input data, most of 
these models use spatial grid resolutions (10 - 50 km) that are coarser than vegetation 
information provided by RS (0.3 - 1 km). This more accurate sub-grid information is still 
accounted for through aggregation techniques (Kunstmann, 2008). 

LAI is also required on the high and medium resolution scales. For instance, runoff, sediment 
transport, and soil erosion models rely on LAI information on the catchment scale (Wigmosta 
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et al., 1994; Mueller et al., 2008). The scale invariant FAO Penman-Monteith method for 
evapotranspiration computation also uses LAI as input data (Allen et al., 2000). The Joint 
European Research Center (JRC)3 conducts comprehensive agricultural monitoring activities 
on the regional scale using medium resolution data. High spatial resolution LAI is relevant 
for investigations on the field-scale and sub-field scale, e.g. for agricultural applications such 
as precision farming, fertilizer and pesticide management, or yield modeling (Moulin et al., 
1998, Dorigo et al., 2007). Thereby, LAI and other biochemical and structural properties are 
relevant to accurately representing agricultural units and within-field variabilities (Dorigo et 
al., 2007). A large number of studies coupling satellite data and canopy state variables within 
crop production models exist (e.g. Doraiswamy et al., 2004; Faivre et al., 2004; Olioso et al., 
2005; Dente et al., 2008; Atzberger, 2013). 

1.3. LAI derivation in mountainous grassland 

RS observations do not directly sample LAI. Instead, changes in the chemical, physical, and 
structural characteristics of a vegetation canopy can cause variations in the spectral 
reflectance signature, which in turn can be measured by RS and quantified with changes in 
LAI. Two methods for RS based LAI retrieval are commonly used: 

1) Empirical-statistical LAI derivation: this radiometric data-driven technique
establishes a statistical relationship between the spectral signatures of a surface measured by 
a RS system and LAI measured in situ. This relationship expressed as a regression model is 
used for mapping LAI based on the RS imagery. Due to its simplicity, accurate results over a 
confined area and known land cover, and its computational efficiency, this approach has been 
widely used in the RS community. However, in reality the relationship between canopy 
reflectance and LAI is not linear, but complex and saturates with high LAI, which limits the 
approach for dense canopies (Glenn et al., 2008). Further, the method relies on the 
availability of time consistent field measurements, which are usually time-consuming and 
expensive. Another drawback is that empirical relationships typically depend on site and 
sampling conditions and are sensitive to variations in space and time, and thus cannot be 
automated (Baret and Guyot, 1991; Meroni et al., 2004). Empirical-statistical LAI derivation 
has therefore mostly been applied to medium to high resolution data covering a small area at 
one point in time, representing LAI as a single snap-shot (Gobron et al., 1997a; Turner et al., 
1999; Chen et al., 2002b; Johnson et al., 2003; Colombo et al., 2003; Dorigo et al., 2009; 
Rinaldi et al., 2010). Only few studies investigated the seasonal development of LAI using 
statistical methods and mostly in forested areas (e.g. Cohen et al., 2003a; Wang et al., 2005; 
Heiskanen et al., 2012; Potithep et al., 2013). 

2) Radiation transfer modeling: During the last few decades, physical algorithms for
estimating vegetation properties have been increasingly used as an alternative to empirical 
approaches (Liang, 2008). The physical approach uses a RTM that describes transmittance, 
absorbance, and reflectance of light within a canopy as a function of canopy characteristics 
(i.e. structural, chemical and biophysical parameters) and of the illumination and viewing 
geometries. This simulation of a radiation field reflected by a canopy is called “forward mode” 
of the RTM. In the so-called “inverse mode”, LAI and other canopy parameters can be 
derived from the RTM based on matching simulated reflectances to reflectance 
measurements (see chapter 6). As these models do not rely on in situ measurements, they are 
appealing for automated procedures. LAI derivation studies based on RTMs in the last few 

3 http://mars.jrc.ec.europa.eu/mars/About-us/AGRI4CAST/Crop-Monitoring-and-Yield-Forecasting 
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decades have focused primarily on the improvement of forward modeling of the radiative 
transfer problem (Liang, 2004). Only recently has inverse modeling come to the fore in RS 
research. However, model inversion is not straight-forward as, due to the complex character 
of RTMs, an analytical closed-form solution is mostly not possible. Consequently, numerical 
schemes have to be used for solving the inverted transport equation. Canopy reflectance is, 
however, not only influenced by LAI but also by other canopy variables such as leaf 
orientation or soil reflectance, so that several parameter combinations can lead to similar 
reflectances, which makes the inversion of a physical model an ill-posed problem. Further, 
due to the high number of model parameters together with the limited number of 
independent data dimensions in most RS systems, inversion is also an under-determined 
problem (Baret and Guyot, 1991; Verstraete et al., 1996; Kimes et al., 2000; Tarantola, 2005). 
To minimize these problems for RTM inversion and to stabilize the LAI derivation, model 
parameterization adaptation based on prior information and regularization techniques such 
as the selection of multiple inversion solutions or the addition of noise to the simulated 
spectra can be applied (Combal et al., 2002b; Bacour et al., 2006; Baret and Buis, 2008). 
However, a conclusive solution to these challenges has not yet been found and optimization 
strategies have not been consolidated yet (Verrelst et al., 2014). 

Until now, operational LAI derivation relied on the use of coarse resolution RS data due to 
their availability for several decades and their high temporal resolution provided, which is 
needed for various applications such as phenological analysis. No high spatial resolution 
optical sensor was available that could fulfill this requirement. The use of coarse resolution 
data fostered research and validation activities in large-scale ecosystems, such as forests or 
monoculture crops. Regional LAI studies that used medium to high spatial resolution data for 
LAI derivation over a confined area also focused on these vegetation types because they were 
either simple to characterize (crops), or led to the development of more complex models 
(forests) (see chapter 2.2.3 for a review). Although this is a comprehensible approach, it has 
resulted in the fact that very little research has been conducted in relatively heterogeneous as 
well as spatial and temporal variable natural ecosystems such as alpine grassland 
(Darvishzadeh et al., 2008c). Unlike most agricultural crops, which grow in rather 
homogeneous canopies and mostly exhibit a regular annual life cycle, grasslands are 
composed of different plant species, all of which have unique morphologic and chemical 
features, and whose dynamic consists of periods of growth and re-growth (Vohland and 
Jarmer, 2008). Additionally, grassland occurrence, composition and structure depend on the 
individual management techniques such as mowing or pasturing, for which the timing is 
mostly highly irregular. To date, no study is available in which high spatial resolution data 
are used for the derivation of grassland LAI, and accordingly, issues related to RTM 
parameterization or inversion regularization techniques have not yet been investigated for 
this ecosystem. However, especially in heterogeneous landscapes with small-scale land use 
patterns, monitoring of agricultural areas needs frequent observations throughout the 
growing season, as well as a high spatial resolution to differentiate between various land uses 
and management forms, thus observations that will be provided by the use of recent and 
upcoming RS systems.  

In Central Europe, more than one third of the agricultural land is made up of permanent 
grassland (FAO, 2013). On a global scale, grasslands are among the largest biomes in the 
world as they cover 40.5% of the earth’s landmass excluding Greenland and Antarctica 
(Suttie et al., 2005). Grassland is an important land cover with essential functions for 
regulating ecosystem services, and an agro-ecosystem used for the production of domestic 
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livestock. In this context, the mapping of grasslands for subsidies is relevant in the European 
rural economy. Besides this economic importance, grassland habitats play an important role 
for biodiversity conservation, carbon storage, soil protection and slope stability, water 
purification, and regulating hydrologic and metabolic balances (Reid, 2005; Hopkins and 
Holz, 2006; Silva, 2008). Furthermore, the cultural and recreational services of grasslands, 
which are also of great relevance to tourism in rural areas, should be mentioned. Monitoring 
the ecosystem services of grasslands and the impact of environmental changes in regular 
inventories is of high interest with regard to ecological, economic, and political issues 
(Vohland and Jarmer, 2008). LAI is a suitable parameter for such inventories, offering 
information based on the current state and productivity of grasslands. However, information 
and data on the spatial distribution and changes in grasslands are scarce even in Central 
Europe (Smit et al., 2008). Such information is especially seldom available for areas that are 
hard to access, such as mountain regions.  

Mountainous areas are mostly fragmented and vertically structured ecosystems in which 
grasslands, apart from forests, are the dominant land cover. The monitoring of mountain 
ecosystems is of interest as they are biologically valuable habitats and especially affected by 
climate change and anthropogenic influence (Nagy et al., 2003; Pauli et al., 2003b; Dirnböck 
et al., 2011). Further, alpine grasslands are very suitable for studying climate and global 
change effects, as a wide range of environmental conditions are set up by topography at 
relatively small spatial scales (Becker et al., 2007). From a RS perspective, mountains present 
extreme conditions. Strong topographic and climatic gradients over small distances 
frequently result in high spatial heterogeneity with a mixture of patchy land cover and 
continuous transitions between cover types. Topography complicates data preprocessing by 
the need to correct for shadows, exposition, and atmosphere layers of different thicknesses. 
Finally, the very limited availability of representative reference samples caused by the 
difficult access to these regions hampers training and validation activities (Pasolli, 2012). 
Therefore, the retrieval of alpine grassland LAI from RS imagery has been only marginally 
investigated up to now (e.g. Vescovo and Gianelle, 2008; Pasolli, 2012) and the above 
mentioned established methodologies require further investigations to adapt to the 
complexity of LAI retrieval in this environment.  

1.4. Objectives and innovative analyses 

As outlined above, the high relevance of LAI for monitoring and modeling applications in 
conjunction with the future abundance of high spatial resolution RS data call for robust and 
adapted LAI retrieval techniques. In this regard, the question remains which data and 
technique to use, especially for fragmented ecosystems. Only few studies have used high 
spatial resolution time series data in physical LAI derivation methods so far, which is why the 
knowledge of their potential for robust LAI derivation and possible limitations is still 
tentative. Indeed, at the time of writing this thesis no LAI estimation from RTMs based on 
high spatial resolution satellite data has been conducted in alpine grassland ecosystems. To 
fill this gap, grassland LAI is derived in this thesis using two different LAI estimation 
methods based on high spatial resolution RS data to assess and compare the accuracy and 
robustness of the retrieval approaches. In perspective, this thesis can contribute to the 
development of automated data analysis protocols in challenging landscapes. 

The objective of this thesis is the optimization of an RTM for grassland LAI mapping over a 
heterogeneous mountainous landscape using high resolution RS data, and the evaluation of 
its performance in comparison to empirical-statistical models. Multi-temporal in situ LAI 
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measurements as well as time series of RapidEye data from 2011 and 2012 over the Ammer 
catchment in southern Germany are used as input. So far, only a few studies have analyzed 
the potential of RapidEye with regard to mapping biophysical parameters (Vuolo et al., 2010; 
Ehammer et al., 2010; Eitel et al., 2011; Friese et al., 2011; Lex et al., 2013; Mannschatz and 
Dietrich, 2013; Tillack et al., 2014), and none have used RapidEye for LAI derivation in 
grasslands. The following research questions and are hence addressed in this thesis: 

1) How does the selection of VIs and regression models impact the statistical modeling of
LAI, and how well can these models be transferred to other points in time? 

For empirical-statistical LAI derivation, model optimization comprises the testing of a large 
number of spectral indices and statistical models. Benefits achieved through the use of 
RapidEye’s red edge band, as well as through the combination of data sets from different 
phenological phases, are quantified for the first time. Overall, the hypothesis is that once a 
robust statistical transfer function is established, it can be used on other points in time for 
which no observations are available, as managed grasslands present a similarly wide range of 
LAI occurrences at all points in time. The focus therefore lies on the accuracy loss caused by 
temporal transfer of established models, which has not been quantitatively evaluated so far.  

2) Which RTM settings are most relevant for establishing an adapted and robust LAI
derivation procedure, and which grassland-specific limitations occur during inversion? 

The optimization of physical LAI modeling aims at the reduction of its under-determined and 
ill-posed character. Several inversion regularization techniques are tested which have been 
suggested in the literature (e.g. Weiss et al., 2000; Combal et al., 2002b; Rivera et al., 2013), 
but have never been applied to high spatial resolution RS data for grassland LAI derivation. 
To improve the model parameterization, a comprehensive global sensitivity analysis covering 
the visible and near infrared spectrum is applied to the used RTM for the first time to identify 
the relevance of each model parameter and of additional spectral features. Finally, further 
physically derived vegetation parameters and RTM inversion uncertainty measures are 
evaluated in detail, which has been mostly neglected in other studies. Based on these 
analyses, the potential and limitations of RTM inversion in general and specific to grassland 
LAI derivation are assessed. 

3) Which of the empirical-statistical and physical LAI modeling approaches is more
appropriate for grassland LAI derivation? 

The performances of statistical and physical models are finally evaluated and compared using 
LAI measured in situ. In order to obtain accurate in situ data, a comparison of the LAI 
derivation algorithms implemented in the LAI-2000 PCA instrument with destructively 
measured LAI was performed first. The aim is to assess the LAI mapping potential of these 
methods over a heterogeneous grassland landscape. Apart from the LAI estimation accuracy, 
aspects regarding the reliability and practicability of the approaches are also of interest. 

4) Does the use of high spatial resolution remote sensing data for LAI derivation involve
specific advantages and limitations? 

The use of high spatial resolution RS data for grassland LAI derivation on a landscape scale 
allows for an assessment of benefits and drawbacks resulting from the increased spatial 
detail, also with regard to the technical implementation of the approaches. 
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The conceptual framework as well as the new aspects of this thesis are depicted in Figure 1-1. 
This thesis is structured as follows: a comprehensive description of the theoretical 
background and the state of the art technologies for LAI measurement and estimation is 
given first (chapter 2). The study area is presented, with special focus on the occurring 
grassland types, in chapter 3. Then the in situ and satellite data used in this thesis, the data 
preprocessing, as well as the applied land cover classification are described (chapter 4). 
Chapter 5 comprises the first of the two LAI derivation methods, statistical LAI derivation. A 
range of spectral indices and statistic models is tested to identify the best fitting models for 
each time step as well as for some combinations of in situ samples. The achieved accuracies 
are investigated and the temporal transferability of the transfer functions is analyzed. The 
properties of the RTM, its sensitivity analysis, its parameterization, and the optimized 
inversion strategies are presented in chapter 6. To account for the mountainous topography 
in the RTM, an approach to include local viewing geometry in the retrieval process is 
introduced, and the results of the physical LAI derivation procedure are presented and 
discussed. In chapter 7, the performance of both approaches is compared, conclusions on the 
potential of high spatial resolution data for LAI derivation are drawn, and an outlook on 
possible future fields of research is provided. 

Figure 1-1: Overview of the conceptual framework and objectives of this thesis. 
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2. State of the art in LAI derivation
LAI is a parameter which has been used in ecology and forestry for decades to characterize 
vegetation canopies. As it has a high spatial and temporal variability, it is difficult to quantify. 
Various methods for LAI derivation have been developed since the early 1930s. The 
suitability of these methods for application in grassland varies. The family of in situ 
measurement techniques and related limitations are described first (chapter 2.1). The second 
section (chapter 2.2) gives an overview of the theoretical background of vegetation RS 
relevant for grassland LAI estimation, as well as on empirical-statistical methods and RTMs. 
Finally, an overview of available LAI products is provided (chapter 2.3), followed by some 
conclusions on research needs with regard to grassland LAI mapping (chapter 2.4). 

2.1. In situ measurement methods 

Two main categories of in situ LAI measurement can be distinguished: direct and indirect 
methods. The former group consists of direct LAI measurement techniques, while the latter 
comprises methods in which LAI is derived from parameters which are easier to measure, 
with both of them being applicable to grassland canopies. 

2.1.1. Direct and semi-direct measurements 

In this thesis, a direct method is defined as a technique to quantify LAI during which the 
plants are touched in some manner. The only way to truly determine LAI is by measuring the 
surface of all the leaves within a certain surface area (Bréda, 2003). In the early stages, this 
was performed by harvesting the biomass, drawing the outline of each leaf after it had been 
horizontally fixed to a flat surface, and measuring the shape’s area using a planimeter or a 
reference grid (Ross, 1981). This method is obviously not feasible for small or non-flat leaves 
and plant parts. Modern leaf area meters measure the LAI by scanning the leaf shape or the 
leaf surface. In the field, the leaves within an area are measured employing a portable area 
meter e.g. the LI-3000 (LI-COR, NE, USA, see Figure 2-1) that uses an electronic method of 
rectangular approximation for area estimation while a leaf is drawn through the scanning 
head. In the laboratory, detached leaves can be measured using e.g. the LI-3100 area meter 
(LI-COR, NE, USA, see Figure 2-2), which scans the leaves while they pass by a camera on a 
transparent conveyor belt. Further alternatives include the portable scanning planimeter CI-
202 from CID Inc. (NW Camas, WA, USA), the WinDIAS color image analyzer (Delta-T 
devices, Cambridge, UK), and the DIAS II Digital Image Analysis System (Decagon Devices 
Inc., Pullman, USA). The two latter companies also offer video image analysis systems 
(Jonckheere et al., 2004). A similar approach is to photograph or scan the flattened 
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harvested plants and to use image analysis to identify the leaves in the picture (see Figure 
2-3). For practical considerations, the direct method is most widely used for crops and 
grasses (Bréda, 2003), as it also is in this thesis. However, it is destructive and hence not 
feasible for LAI monitoring over time. Furthermore, the approach is too laborious to be 
applied on large samples. 

Thus, to derive the LAI for whole canopies, the specific leaf area (SLA) is used for scaling. The 
SLA, as well as its reciprocal, leaf mass per area (LMA), is an empirical quantity of leaf area 
per unit dry biomass (Bréda, 2003). It is established by taking a sub-sample of the harvested 
foliage, measuring its LAI directly, drying the biomass in an oven at between 75 and 105 °C 
until constant weight, and weighing it. Simultaneously, the remaining material of the entire 
sample collected within a known area is dried and the total dry mass of leaves is converted 
into LAI by multiplying it with the SLA established on the sub-sample. A balanced 
distribution of different leaves (sun / shade, old / young) in the sub-samples is important in 
this regard. The SLA is species-specific and also varies between different years and sites, 
which is why care has to be taken for its establishment, since it otherwise potentially 
introduces errors in the LAI up-scaling (Bréda, 2003; Jonckheere et al., 2004). SLA is also 
used for leaf characterization in some RTMs. 

These techniques, for the purpose of which all leaves in a defined area need to be harvested 
or scanned, are useful for herbaceous vegetation but not for monitoring forest stands, as the 

Figure 2-3: Leaf area 
estimation from harvested 
biomass. The leaves are 
photographed (left) with a 
known picture size. The 
photo is then classified into 
leaf pixels and background 
pixels (right), from which 
the area can be calculated. 
Source: Own illustration. 

Figure 2-2: Usage of the LI-COR LI-3100C area
meter (Adapted from LI-COR, 2004). 

Figure 2-1: Usage of the LI-COR LI-3000 leaf 
area meter (Adapted from LI-COR, 2006). 
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leaves are not easily reachable, and a destructive method would strongly affect the integrity of 
the forest. Therefore, foresters have developed so-called allometric methods that relate LAI to 
more easily measureable plant parameters such as tree height, crown base height, or 
diameter at breast height (see e.g. Rogers and Hinckley, 1979; O'Hara and Valappil, 1995; 
Vertessy et al., 1995; Le Dantec et al., 2000). Another direct method relevant for deciduous 
forests is leaf litter collection in a number of traps distributed below the canopy during leaf 
fall. See e.g. Neumann et al. (1989), Dufrêne and Bréda (1995), Eriksson et al. (2005), and 
Wagner and Hagemeier (2006) for more details. 

A method applied to both woody and herbaceous canopies is the inclined point quadrat 
method. With this method, the number of contacts (‘relative frequency’) of a long needle with 
vegetation in a certain direction is counted, which equals the LAI (Wilson, 1960). As the 
variation in relative frequency not only dependents on LAI but also on leaf inclination, the 
optimal probe angle varies with species. However, as the lowest variability occurs at a point 
quadrat inclination angle of 32.5°, this angle is mostly chosen for measurements, irrespective 
of species composition (Wilson, 1960). The method is attractive because it is non-destructive 
and quick. However, many measurements (typically at least 1000) are required in order to 
obtain a reliable result (Vanderbilt et al., 1979; Caldwell et al., 1983; Jonckheere et al., 2004). 
A derivation from this method is the needle technique for sampling litter. A needle of 
1 - 2 mm in diameter is stuck vertically into the litter and the number of leaves collected on 
the needle corresponds to LAI. This method also requires intensive sampling to quantify LAI 
correctly (Dufrêne and Bréda, 1995; Bréda, 2003).  

The disadvantage of all direct methods is that they are mostly destructive as well as extremely 
expensive. Because of this time-consuming and labor-intensive character, direct LAI 
determination is not compatible for long-term monitoring of spatial and temporal LAI 
dynamics (Jonckheere et al., 2004). However, as they can account for leaves which are 
located above each other, and as they solely relate to foliage but no other vegetation elements 
such as flowers or stems, they are the only approaches which give access to real LAI. 
Therefore, direct LAI derivation methods provide the reference for calibration and validation 
of indirect methods. As in most studies working on crops or grassland, in this thesis the 
scanning of leaves as well as the derivation of a grassland SLA is used to measure real LAI. 

2.1.2. Indirect measurement methods 

Indirect methods derive LAI from observations of other variables and are generally faster, 
feasible to automation, and thus allow for larger areas to be measured (Jonckheere et al., 
2004). They are based on radiation transfer theory, which is shortly outlined below due to its 
relevance for the LAI derivation approaches tested in chapter 4.3.2, and for the functioning of 
RTMs. Afterwards, the instrument used in this thesis (the LAI-2000), as well as further 
popular measurement devices are introduced to provide an overview. The inherent 
limitations of indirect methods are finally explained as they also affected the in situ 
measurements in this thesis. 

Radiation transfer theory 

As incident light travels through the canopy, it is intercepted by plants. In this regard, the 
attenuation of downward radiation corresponds to the vertical depth and structure of the 
canopy (Saeki, 1975). Because radiative transfer and canopy structure are linked in this way, 
information about one can be used to predict the other. Thus, relatively simple radiation 
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measurements can be used to estimate structural quantities of the canopy (Ross, 1981; 
Welles, 1990). The basic principle is the simulation of light transmission through the canopy 
using statistical models that describe the probability of radiation interception. Under the 
assumptions that leaves are randomly distributed within the canopy, that individual leaf size 
is small compared to the canopy height, and that radiation is measured at wavelengths where 
leaves are opaque (i.e. non-reflecting and non-transmitting), transmittance is equivalent to 
gap fraction (Lang, 1986). Gap fraction is the fraction of view looking up from beneath the 
canopy at a given zenith angle that is not blocked by foliage (Baret et al., 1995).  

A statistical model describing transmittance can eventually be inverted to calculate LAI if gap 
fraction information for a range of angles is available (Norman and Campbell, 1989). Though 
several probabilistic models are in use to approximate the distribution of foliage elements, 
gap fraction probability is most commonly described by a Poisson distribution, as no 
additional parameters for the description of canopy structure are needed (Monsi and Saeki, 
1953). Other theoretical models of vegetation structure are positive and negative binominal 
models and Markov models (see Nilson, 1971 for more details). The Poisson model assumes 
that the canopy is divided into ݊ statistically independent layers. If ݊ → ∞, the probability of 
gaps decreases and can be described by the Poisson distribution. Gap fraction is therefore the 
probability P(θ) of light transmitting the canopy, i.e. of zero layer overlaps (Lang et al., 1985): 

Pሺߠሻ ൌ eିୋሺఏሻஜୗሺఏሻ (2.1)

with Gሺߠሻ being the fraction of leaf area projected in the direction of the zenith angle ߠ, μ 
being the foliage density and Sሺߠሻ being the length of the light path in the direction ߠ	 . 
According to Miller (1967), the foliage density μ is 

ߤ ൌ 2න െ
lnܲሺߠሻ
ܵሺߠሻ

sin ߠ݀ߠ
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ଶൗ

଴

 (2.2)

with ݀ߠ  being the angle width in the direction ߠ	 . Assuming a homogeneous horizontal 
canopy, the path length Sሺߠሻ can be derived by 

ܵሺߠሻ ൌ
௛

ୡ୭ୱఏ
 . (2.3) 

As the vegetation height ݄ can be set to one, Sሺߠሻ becomes a relative path length depending 
on the angle ߠ (Welles, 1990). With the foliage density relating to the LAI by 

ܫܣܮ ൌ  (2.4)  ,݄ߤ	

Equation 2.1 can be written as 

Pሺߠሻ ൌ eିୋ
ሺఏሻ

ైఽ౅
ౙ౥౩ሺഇሻ. (2.5)

Based on the approach by Miller (1967), LAI can be derived from Equation 2.5 without a 
prior knowledge of Gሺߠሻ as 

ܫܣܮ ൌ 2න െ lnܲሺߠሻ cos θ sin ߠ݀ߠ
గ
ଶൗ

଴
. (2.6)

Equation 2.6 shows that LAI can be mathematically derived by measuring the gap fraction 
over several zenith angles θ. Several measurement methods that rely on this approximation 
are described below. While gap fraction-based methods (e.g. hemispherical images) measure 
gap fraction directly, transmittance measurement devices (e.g. LAI-2000) make use of the 
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Beer-Lambert extinction law to estimate gaps (Bréda, 2003; Jonckheere et al., 2004). 
Measurement inaccuracies and unfulfilled model assumptions that hamper indirect LAI 
estimation methods are discussed at the end of this chapter. 

LAI-2000, DEMON, ceptometers  

There are four commercial canopy analyzers available to optically measure the transmittance 
in canopies. The instruments which are most widely used is the LAI-2000 Plant Canopy 
Analyzer (PCA) (LI-COR Biosciences, Lincoln, NE, USA, see Figure 2-4) and its successor LAI-
2200 PCA. This is a portable sensor system designed to derive transmittance by relating the 
irradiation of diffuse light measured below the canopy to the diffuse irradiation measured 
above the canopy (LI-COR, 2009). The field of view of the optical hemispherical sensor head 
is divided into five concentric light-detecting silicon rings ݅ , thus having five constant ߠ 
values. There are several approaches implemented in the LAI-2000 to derive LAI from 
transmission measured in these rings (see chapter 4.3.2). The LAI-2000 PCA has been 
successfully used in a number of studies, especially in homogeneous canopies such as crops 
and grassland (Gower and Norman, 1991; Dufrêne and Bréda, 1995; Levy and Jarvis, 1999; 
Lee et al., 2004; Gonsamo Gosa et al., 2007; Darvishzadeh et al., 2008b; Garrigues et al., 
2008b; Vuolo et al., 2010; Tang et al., 2014), and it is also used in this thesis. It is a popular 
device as it does not require additional data acquisition and is able to provide LAI 
instantaneously. Further, the simultaneous measurement of radiation at different angles 
reduces the workload. A potential weakness of the LAI-2000 is the requirement of above-
canopy readings (Kraus, 2008). However, in contrast to tall stands, alternating below- and 
above-canopy measurements can be easily performed in grassland. Further, LAI-2000 
measurements should only be taken under diffuse irradiance, reducing the possible operating 
time. For more details on the functioning and handling of the LAI-2000, see chapter 4.3.2. 

The DEMON instrument (CSIRO, Canberra, Australia) adapts the basic functioning from the 
above mentioned point quadrat method (Wilson, 1960). It measures direct beam radiation 
above and below the canopy through a directional narrow angle of view, thereby replacing the 
needle (Welles, 1990). DEMON measurements have to be conducted under clear conditions 
and repeated several times over the day to collect data over a range of sun zenith angles 
(Dufrêne and Bréda, 1995). In tall canopies, the operator moves beneath the canopy along a 
linear path, directing the instrument to the sun. In crops, the sensor is driven along a track 
beneath the canopy. The DEMON instrument has been reported to derive similar results as 
the LAI-2000 (Dufrêne and Bréda, 1995). However, the requirement of repeated 
measurements over the day reduces its applicability if many plots have to be investigated. 

Figure 2-4: The LI-COR LAI-2000 Plant Canopy Analyzer (Source: LICOR, 2005) 
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The SunSCAN (Delta-T Devices Ltd, Cambridge, UK) as well as the Sunfleck Ceptometer and 
its successor AccuPAR LP-80 Ceptometer (Decagon Devices Inc., Pullman, WA, USA) are 
sensitive to incident photosynthetic active radiation (PAR, 400 - 700 nm). They are also 
known as line quantum sensors, as they are equipped with a linear probe that has several (64 
to 80) individual photodiodes (Welles, 1990). Like the other optical devices, they derive the 
transmitted PAR by relating readings above and below canopy, but recorded at several of the 
available sensors on the bar at a time. LAI is calculated based on PAR, the sun zenith angle, 
and an estimate of the leaf angle distribution provided by the user in a simple light scattering 
model (Wilhelm et al., 2000; Tewolde et al., 2005; Decagon Devices, 2013). 

Hemispherical photographs 

A straight approach to deriving canopy gap fraction is to visually identify it in a photograph. 
In doing so, photographs of single directions (see e.g. Macfarlane et al., 2007; Baret et al., 
2010b) as well as of the hemisphere can be used. In digital hemispherical photography 
(DHP), photographs are acquired through a fisheye lens from within the canopy oriented 
upwards, or placed above the canopy looking downwards (Rich, 1990; Jonckheere et al., 
2004). A circular image is produced, with the zenith in the center and the horizon at the 
edges (see Figure 2-5 a) (Goel and Norman, 1990; Rich, 1990). To represent the canopy 
structure adequately, several images should be taken within one plot, and under diffuse light 
and uniform sky conditions, to avoid sun glares, chromatic lens aberration, foliage 
reflections, and sky luminance heterogeneity (Neumann et al., 1989; Weiss et al., 2004). The 
selections of exposure time and shutter speed are also critical steps, as they influence the 
image’s brightness and contrast (Zhang et al., 2005b; Macfarlane et al., 2007). In downward-
looking images taken e.g. over dense grassland, shaded areas impede the identification of 
gaps. The use of infrared light measurement (see e.g. Kucharik et al., 1997) can reduce this 
limitation (Rich, 1990; Welles, 1990). Through the classification of the photographs, the 
soil/sky and canopy elements are distinguished. Several tools have been developed for this 
purpose, e.g. the CAN-EYE software (Weiss and Baret, 2010), HemiView PCA (Delta-T 
Devices, Cambridge, UK), and Gap Light Analyzer (GLA, Frazer et al., 1997). A range of 
image classification algorithms have been proposed and discussed in the literature, with the 
most common approach being interactive or automatic thresholding, i.e. the selection of a 
brightness value which is used to differentiate the classes (Leblanc et al., 2005; Wagner and 

Figure 2-5: Hemispherical photograph taken on September 9, 2011 near the Fendt measurement 
site. a) Illustration of the angular field of sight. b) Subdivision of hemisphere into regular segments 
in order to derive gap fraction information for individual viewing directions. 
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Hagemeier, 2006; Macfarlane et al., 2007; Englund et al., 2000; Jonckheere et al., 2005). 
After classification, the hemisphere is subdivided into regular segments to exploit different 
directions concurrently (Figure 2-5 b), and gap fraction is extracted in each segment. Canopy 
parameters such as LAI, leaf angle, and gap frequency distributions are subsequently derived 
by inverting Equation 2.6 (Norman and Campbell, 1989; Weiss et al., 2004).  

Although there are many steps involved in deriving LAI from DHP, there has been a renewal 
of interest in this method with the development of high resolution digital cameras and 
advances in image processing software. Its advantages are low purchase costs and the rapid 
picture acquisition in the field. One of the most important assets is the high amount of 
information recorded (gap fraction, size and distribution), which enables the use of different 
light extinction models. A further advantage is the possibility of detecting green and non-
green elements (Jonckheere et al., 2004; Kraus, 2008). Several authors have successfully 
used DHPs for studies in forests (Neumann et al., 1989; Chen et al., 1997; White et al., 2000; 
Jonckheere et al., 2004; Leblanc et al., 2005; Macfarlane et al., 2007), while the approach is 
less often used in crops (e.g. Garrigues et al., 2008b) or grassland due to the above 
mentioned shadows and an insufficient plant-soil contrast (Demarez et al., 2008). 

Limitations of indirect LAI measurement methods 

A large number of studies compare the results of direct and indirect measurement techniques 
for crops (Levy and Jarvis, 1999), shrubs (Brenner et al., 1995), and forest stands (Neumann 
et al., 1989; Chason et al., 1991; Smith, 1993; Fassnacht et al., 1994; Comeau et al., 1998; 
Barclay and Trofymow, 2000), with some of them revealing great differences. The main 
factor causing errors in indirect LAI measurements is the result of most canopies deviating 
from the assumption behind the Poisson model of random foliage dispersion, i.e. clumping of 
vegetation elements (Figure 2-6). Clumping results in higher canopy transmittance than 
predicted for random canopies, and thus in LAI underestimation (Black et al., 1991; 
Fassnacht et al., 1994; Chen and Cihlar, 1995). Therefore, indirectly derived LAI has been 
named effective LAI (LAIeff) by Chen et al. (1991). LAIeff is defined as the product of LAI and a 
clumping index Ω (Nilson, 1971; Macfarlane et al., 2007; Ryu et al., 2010).  

Several approaches have been suggested to overcome this issue. It would be straight-forward 
to incorporate the non-random distribution of plant elements in a probabilistic model 
underlying the inversion process. A canopy consisting of non-randomly distributed leaves 
could be described more adequately by binomial models or Markov models (Nilson, 1971). 
However, these models require additional information on leaf angle or gap distribution 
within the canopy, which is not measured by the devices presented above (Chason et al., 
1991). Lang and Xiang (1986) proposed to correct for clumping at plant level by modifying 

Figure 2-6: Illustration of the clumping effect with leaves being either randomly distributed or 
arranged to shoots. While the same amount of leaves is present, the gap fraction in b) is bigger than 
in a), leading to an underestimation of LAI using indirect measurement techniques (adapted from 
Nilson, 1999). 
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the use of the Beer-Lambert law. The basic assumption is that the required random 
distribution of foliage is fulfilled when looking at a small part of the canopy. Lang and Xiang 
(1986) showed that if multiple transmittance measurements are made in small sectors and 
combined by averaging the logarithms of the transmittances, an improved LAI can be 
derived. Instead of using the logarithm of the mean of ܲሺߠሻ over all azimuth ranges, the 
logarithm of ܲሺߠሻ for each sector is averaged (Ryu et al., 2010). Equation 2.6 hence becomes 

ܫܣܮ ൌ 2න െ lnܲሺߠሻ cos θ sin ߠ݀ߠ
గ
ଶൗ

଴
 (2.7)

The clumping parameter Ω is then provided by the ratio of Equation 2.6 to Equation 2.7. This 
method is implemented in the LAI-2000 algorithm. Chen and Cihlar (1995) developed 
another procedure for deriving Ω based on gap fraction, size and distribution using the 
Tracing Radiation and Architecture of Canopies (TRAC) instrument (3rd Wave Engineering, 
Ontario, Canada; Kucharik et al., 1997; Chen et al., 1997; Chen et al., 2002b). Further 
development of this method has been conducted by Leblanc (2002), who normalized Ω, and 
by Leblanc (2004) in developing a software which connects the TRAC to fisheye photographs. 
Leblanc et al. (2005) finally combined the gap size distribution theory with Lang’s and 
Xiang’s method. The TRAC can also be used in combination with the LAI-2000 (Chen et al., 
1997), but care has to been taken not to overcorrect clumping by using TRAC together with 
the LAI-2000 output, which is already corrected (Ryu et al., 2010). Some authors (Chen et 
al., 1991; Fournier et al., 1997) indicated that clumping occurs at several scales, i.e. between 
plants, branches and shoots. For that reason they divide the clumping factor into two 
components, a between-shoots clumping factor Ωe and a within-shoot clumping factor γe. The 
γe values of Gower et al. (1991) are implemented in the LAI-2000 software.  

Apart from the clumping issue, another characteristic of most measurement devices is that 
they cannot distinguish between leaves and non-photosynthetically active plant parts such as 
branches, flowers, or fruits. In fact, indirect methods do not measure leaf area, as all canopy 
elements intercepting radiation are included. Therefore, the terms “Plant Area Index (PAI)” 
(Neumann et al., 1989), “Vegetation Area Index” (Fassnacht et al., 1994), “Foliage Area 
Index” (Welles and Norman, 1991), or “Surface Area Index” (Bréda, 2003) are sometimes 
used. Some studies tried to derive true LAI by measuring the “Wood Area Index” (WAI) in 
deciduous forests in winter (e.g. Neumann et al., 1989; Cutini et al., 1998; Barclay et al., 
2000). However, a simple subtraction of WAI from PAI does not equal LAI, as the 
contribution of woody material to LAI at its maximum is far less than WAI (Dufrêne and 
Bréda, 1995; Gower et al., 1999). On the other hand, WAI which is derived during vegetation 
maximum (e.g. from photographs) cannot simply be subtracted, due to leaves that are 
obscured by the stems. Macfarlane et al. (2007) suggest that the use of upward-looking 
photographs would reduce the influence of woody material, because stems contribute little to 
LAI at the zenith. As a further drawback, most transmittance measurement instruments 
reach an asymptotic signal saturation level in dense canopies (Gower et al., 1999). Finally, 
indirect methods do not account for leaves that lie on top each other and essentially act as 
one leaf.  

Due to these issues, most comparisons between direct and indirect methods point to an 
underestimation of LAI by 25% to 50% in different ecosystems with the latter techniques 
(Gower and Norman, 1991; Fassnacht et al., 1994; Stenberg et al., 1994; Cutini et al., 1998; 
Comeau et al., 1998; van Gardingen et al., 1999; Gower et al., 1999; Küßner and Mosandl, 
2000; Macfarlane et al., 2000; Wilhelm et al., 2000). A measurement device which 
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overcomes this restriction is still not available. In RS, in situ measurements are indispensable 
for the validation of LAI estimates. It can be thus concluded that a sound measurement 
technique and sampling design as well as correction for clumping are crucial when measuring 
LAI, and that a comparison of directly and indirectly measured LAI is advised to assess the 
accuracy of indirect in situ measurements. 

2.2. Estimation of LAI from remote sensing data 

The spectral signal recorded over vegetation results from radiative processes within canopies, 
depending on plant parameters and observation configurations. This relationship enables the 
derivation of LAI from spectral vegetation properties. The two most common approaches to 
retrieve LAI, the empirical-statistical (subchapter 2.2.2) and the physical approach 
(subchapter 2.2.3), are presented here. The concepts and some examples of all relevant 
methods for LAI estimation are presented, while the specific details of the methods applied in 
this study are discussed in chapters 5 and 6. Beforehand, an overview of basic terms and the 
theoretical background of solar-reflective RS of vegetation is given (subchapter 2.2.1), as 
these processes also constitute the basis of RTMs. 

2.2.1. Theoretical background of vegetation remote sensing 

RS is the science and technology of deriving information about an area of interest without 
being directly in contact with it. A sensor is used to measure the energy emitted or reflected 
by a surface. A detailed description of the physical principles of optical RS is given in 
Richards and Jia (2006) and Asrar (1989). Only the most relevant aspects of RS for radiation 
transfer in vegetation canopies are explained here. 

Basic terms 

The physical quantity that is measured by an RS sensor is the electromagnetic radiant flux ϕ 
emitted or reflected by an object. The total amount of radiation incident on a surface, i.e. the 
flux density per area, is called irradiance	ܧ, with ܧ௦௨௡ being used for direct solar irradiance, 
and ܧ௦௞௬  for diffuse hemispherical irradiance. When only the irradiance coming from a 

certain direction is considered, it is called radiance	݀ܮ and expressed as flux density per unit 
projected area and unit solid angle. By relating radiance measured at the sensor to the 
irradiance at the surface, reflectance	ߩఒ can be derived, which is commonly used to describe 
the spectral properties of surfaces. The reflectance factor ܴఒ of each wavelength ߣ is the ratio 
of the radiant flux reflected by a surface to that reflected into the same direction by a 100 % 
reflecting surface (Martonchik et al., 2000; Schaepman-Strub et al., 2006). 

Optical RS systems record energy from around 400 to 2500 nm that is emitted from an 
external illumination source, such as the sun or the target itself. This wavelength range can 
be subdivided into visible (VIS; 400 - 700 nm), near infrared (NIR; 700 - 1300 nm) and 
shortwave infrared (SWIR; 1300 - 2500 nm) radiation. The energy measured at the sensor is 
integrated over wavelength intervals. The number and width of these bands defines the 
spectral resolution of the system (Richards and Jia, 2006). The spatial resolution of the 
sensor is defined as the smallest distance between two objects that can be distinguished by 
the sensor. Although spatial resolution is defined quite differently in the literature (e.g. 
Franklin and Wulder, 2002; Navulur, 2006) and no standard definition exists, here RS 
systems are divided into very high resolution (with a resolution ≤ 1 m), high resolution (1 < 

20 m), medium resolution (20 < 100 m), and coarse resolution (≥ 100 m) systems.  
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The spectral signal coming from a vegetation surface is a combination of scattering, 
absorption, and emission processes that take place in the atmosphere and on the surface. 
According to Goel (1988) and Kimes (2000) the reflectance factor ܴఒ detected by a sensor is 
determined by the properties of the atmosphere (aλ), background (bλ), the optical and 
structural plant properties of the canopy (cλ), the solar source parameters (sλ) including the 
angular location (θs, ϕs), and the sensor properties (oλ) including the view angle (θo, ϕo)4: 

Rఒ ൌ fሺܽఒ, ఒܾ, ఒܿ, ,ఒݏ ఒሻ݋ (2.8)

In this chapter, soil reflectance is not explicitly discussed. The influence of the soil is 
wavelength-dependent and largest in the near infrared region (see Figure 2-7). Soil 
reflectance is dominated by soil composition, roughness and moisture content, although also 
plant residues, litter, and organic and salt crusts can contribute to it. See Verhoef and Bach 
(2007), Cierniewski and Verbrugghe (1997), or Farys (2003) for more details. Thus, when 
looking only at processes within the canopy, ܴఒ is a result of incident light that interacts with 
pigments, water, and intercellular air parcels within plant elements. These processes as well 
as directional and atmospheric effects are discussed in below.  

Leaf optical properties 

A typical signal of healthy green vegetation is dominated in the VIS by overall low reflectance 
values but a small peak in the green region (see Figure 2-7). This strong absorption is caused 

4 The zenith angles of the sun (θs) and the sensor (θo) are measured relative to nadir, i.e., a zenith angle of 0° 
is equal to nadir, while the horizon has a zenith angle of 90°. 

Figure 2-7: Typical spectral signals of soil and healthy green vegetation. Figure adapted from 
Jensen (2000), data generated using PROSAIL (Verhoef et al., 2007). 

(SWIR) 
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by leaf pigments relevant for photosynthesis, namely chlorophyll pigments concentrated 
within the palisade mesophyll cells (Jones and Vaughan, 2010). Photons are absorbed by 
chlorophyll a + b molecules, yet only the PAR between approximately 350 and 700 nm is 
used for photosynthesis. Chlorophyll absorbs mainly blue and red light (see Figure 2-8): 
chlorophyll a at wavelengths of 430 and 660 nm and chlorophyll b at 450 and 650 nm 
(Wellburn, 1994). The lack of absorption in between the chlorophyll bands produces a 
relative maximum around 540 nm, i.e. in the green spectral range, which explains the natural 
color of plants (Richards and Jia, 2006). There are also other pigments present in mesophyll 
cells that are masked in healthy vegetation by the abundance of chlorophyll pigments 
(Jacquemoud and Baret, 1990). The most important are carotenes and xanthophyll pigments 
with an absorption maximum in the blue wavelength region. As for brown pigment, their 
concentration increases with the decay of a plant (Jacquemoud and Baret, 1990; Féret et al., 
2008).  

In contrast to the VIS part of the spectrum, reflectance and transmittance increases strongly 
in the NIR part. This strong increase between red and NIR canopy reflectance is called the 
red edge region (Baret et al., 1992). The high amount of reflected NIR energy is caused by 
high leaf surface reflectance as well as by the cell structure of the spongy mesophyll with its 
intercellular air spaces causing scattering at the cell wall/air interfaces (Gausman et al., 
1969). Another reason for the high NIR reflectance is the fact that energy transmitted 
through the leaf (about 40 - 60 % of irradiance) can be potentially reflected by leaves below. 
Thus, NIR reflectance increases with the number of leaf layers. This so-called leaf additive 
reflectance enables NIR reflectance to distinguish vegetation densities and to provide 3D 
information about the canopy. This is of high value for optical vegetation monitoring. 

In the SWIR, tissue materials (e.g. lignin, protein, cellulose) dominate absorption and lead to 
a decreased reflectance with respect to the NIR plateau. Especially strong local reflectance 
reductions are caused by water absorption bands at 1400 nm, 1900 nm and 2700 nm. Based 
on this, RS in the NIR, SWIR, and thermal infrared can provide information about the plant 
turgidity. While all these properties describe healthy vegetation, senescence is marked by an 
overall reflectance increase. As leaf structure decomposes, it gives room to extra intra-leaf 
scattering in the NIR. At the same time, reduced chlorophyll content increases VIS 
reflectance and unmasks the characteristics of the other leaf pigments, leading to a flattening 
of the red edge. Reflectance in the SWIR increases due to reduced water content. Thus, the 
spectral shape of senescent vegetation gradually approximates that of soil.  

Figure 2-8: Chlorophyll a + b absorption coefficient in the VIS and NIR spectrum as implemented 
in the PROSAIL model. Adopted from Feret et al. (2008). 



2. State of the art in LAI derivation

20 

Canopy structure 

The spatial configuration of plants in a canopy determines the magnitude and the directional 
variation in reflectance over all wavelengths. Therefore, the most important canopy structure 
characteristics are briefly presented. Canopy architecture is described at the plant level 
through LAI and the leaf angle distribution (LAD). LAI represents the quantity of leaves. As 
scattering and absorption within the canopy increases with LAI, canopy reflectance changes 
accordingly. However, Haboudane et al. (2004) showed that incoming radiation does not 
reach lower leaves at LAI values greater than 3 and 5 for the VIS and NIR, respectively. This 
means that no light reflected from more leaves can contribute to the spectral signal, leading 
to so-called signal saturation over dense canopies (Baret and Guyot, 1991). 

The LAD describes the distribution of leaf inclination and orientation angles and is often also 
indicated as leaf inclination distribution function (LIDF), average leaf angle (ALA) or mean 
tilt angle (MTA). While the distribution of leaf azimuth angles is usually assumed to be 
uniform, zenith angle distributions are often mathematically described by one of six LAD 
types: planophile, erectophile, plagiophile, extremophile, uniform, or spherical (see Figure 
2-9, Wit, 1965). The spherical foliage orientation is popular because the fraction of projected 
area is always 0.5 (Welles, 1990). Goel and Strebel (1984) showed that all of these ideal 
distributions are special cases of a “universal” distribution, the “two parameter beta 
distribution”. Campbell (1986) equated the LAD to the surface of an ellipsoid which can be 
continuously derived by varying the ratio between its two principle axes. This is a less flexible 
but more intuitive one-parameter approach. For a detailed description of LAD functions, see 
Liang (2004) or Wang (2007). The LAD varies among vegetation species, and sometimes also 
with phenological stages and stress (Wirth et al., 2001; Medhurst and Beadle, 2001). It plays 
a prominent role in any description of canopy structures and thus in RTMs (Welles, 1990). 

The canopy structure is described through the relationship between LAI and LAD, but also 
leaf size, plant density, canopy height, and canopy heterogeneity (Verhoef, 1984; Widlowski 
et al., 2004). Examples of a heterogeneous vertical canopy profile are forest canopies with 
litter, understory vegetation, and several tree layers, or cereal crops with a top layer of fruit, a 
green leaves layer, and a bottom layer of senescent material. A strong horizontal 

Figure 2-9: Common leaf angle distributions: uniform, erectophile, planophile, extremophile, 
plagiophile, and spherical distribution functions. Plot generated using the ‘LeafAngle’ R package 
provided by Duursma (2012). 
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heterogeneity is found in open forest canopies or row crops. Although such heterogeneities 
are highly important, they are not further described as this thesis investigates solely 
grasslands, which show no horizontal or vertical structure profiles. 

BRDF effect 

The directional behavior of leaf, canopy, and soil reflectance has already been mentioned 
above. Reflectance of a surface depends on the sun and sensor angles relative to the target as 
most terrestrial surfaces are not isotropic. Isotropic surfaces, also called “Lambertian”, reflect 
incoming light equally in all directions. In vegetation canopies, anisotropy is mainly caused 
by surface roughness, foliage orientation, shading, and gaps (Roujean, 2002). Figure 2-10 
illustrates the geometries resulting from the orientation of the sun (θୱ,φୱ) and of the observer 
(θ୭ ,φ୭ ) to the target (Kimes, 1983; Sandmeier and Itten, 1999). Due to this twofold 
dependency on illumination and viewing angles, anisotropic reflectance is characterized as 
“bidirectional”. The mathematical description of the hemispheric scattering of incident light 
over all combinations of illumination and viewing angles is the bidirectional reflectance 
distribution function (BRDF) (Martonchik et al., 2000; Lillesand and Kiefer, 2000). The 
BRDF	 ௥݂ is formally defined as the ratio of the radiance ݀ܮ (W m-2 sr-1 nm-1) reflected in one 
direction (θ୭ ,φ୭) to the sun’s incident irradiance	݀ܧ௦௨௡  (W m-2 nm-1) from the direction 
(θୱ,φୱ) for each wavelength λ (Sandmeier and Itten, 1999): 

௥݂ሺߠ௦, ߮௦;	ߠ௢, 	߮௢; ሻߣ ൌ
,௦ߠሺܮ݀ ߮௦; ,௢ߠ ߮௢; ሻߣ

,௦ߠ௦௨௡ሺܧ݀ ߮௦; ሻߣ
 (2.9) 

Since both ݀ܮ and ݀ܧ௦௨௡ are defined in terms of infinitesimal solid angles, and since natural 
irradiance does not consist of a single direction, ௥݂ cannot be measured, making it a useful 
but non-measurable concept (Schaepman-Strub et al., 2006). Instead, the BRDF is assumed 
to be retrievable from actual bi-conical radiance measurements made over a small solid 
angle. Thus, if using an ideal Lambertian surface (i.e. a Spectralon panel) as reference ݀ܮ௥௘௙, 

for which the BRDF is 1/π, a dimensionless bidirectional reflectance factor (BRF) can be 
derived for each wavelength and angle combination from the radiant flux ݀ܮ  actually 

Figure 2-10: The geometry of solar irradiance and observer viewing direction. The amount of 
reflected radiance depends on the zenith (θo) and azimuth (φo) angles of the observer and on the 
zenith (θs) and azimuth (φs) angles of the sun with respect to the target. For modeling purposes, the 
relative azimuth angle (φr) between the sun and the sensor is often used. 
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reflected from a surface in a specific direction (Sandmeier and Itten, 1999): 

ܨܴܤ ൌ ܴሺߠ௦, ߮௦; ,௢ߠ 	߮௢; ሻߣ ൌ 	 ቈ
,௦ߠሺܮ݀ ߮௦; ,௢ߠ ߮௢; ሻߣ

,௦ߠ௥௘௙ሺܮ݀ ߮௦; ሻߣ
቉ ൈ ܴ௥௘௙ሺߠ௦, ߮௦; ,௢ߠ 	߮௢; ሻ (2.10)ߣ

The hemispherical-directional reflectance factor (HDRF) is similar to the BRDF, but assumes 
additional diffuse sky illumination from the hemisphere. HDRF thus depends on 
atmospheric conditions and reflectance of the surrounding terrain (Martonchik et al., 2000).  

Depending on the viewing and illumination geometry, surfaces appear brighter or darker. 
Broadly, the bidirectional reflectance can be distinguished in backward and forward 
scattering (Figure 2-11). This distinction is described by the relative azimuth angle	φ௥. In 
backward scattering view, when the surface is seen from the same side at which it is 
illuminated (i.e.	φ୰ ൏ 90°), most of the shadows are hidden and the terrain appears brighter. 
In forward scattering mode, the sun and the viewer are on opposite sides (i.e.	φ୰ ൐ 90°) and 
surfaces seem darker. The so-called solar principal plane is formed when the sun, the target, 
and the sensor are in the same plane (i.e.	φ୰ ൌ ሾ0°, 180°ሿ). This is where BRDF effects are 
most pronounced. The overall highest BRF occurs in the viewing direction that is equal to the 
sun azimuth and zenith angles, due to the fact that the sensor views only sunlit surfaces. This 
area of increased reflectance is called hot spot (Kuusk, 1995a; Lillesand and Kiefer, 2000).  

In the nadir view, a maximum of the background can be seen by the sensor, particularly over 
canopies with a vertical structure such as grasses or conifer forests (Sandmeier et al., 1998; 
Sandmeier and Deering, 1999). These canopies show a very strong anisotropy effect, due to 
the quickly changing fraction of soil seen by the sensor with changing view angles, and they 
have a typical bell shape of the BRF in the principle plane. Canopies having a predominant 
horizontal structure have a rather bowl-shaped anisotropy (Widlowski et al., 2004; 
Widlowski et al., 2005; Koetz et al., 2005b). Further, the BRDF varies considerably with 
wavelength. In the blue and red spectra, BRDF effects are strong, while they are less 
pronounced in the green and most of the NIR ranges because multiple scattering reduces the 
contrast between shadowed and illuminated canopy components (Sandmeier et al., 1998). 

The BRDF effect is relevant for sensors with a large instantaneous field of view (IFOV5) or for 
sensors that provide off-nadir measurements. Furthermore, the BRDF is crucial for multi-
temporal studies with varying illumination angles, as the spectra measured at different points 

5 IFOV is the angle over which the detector records radiation. Together with the platform altitude, this 
controls the pixel size. 

Figure 2-11: Principle of forward and backward scattering. 
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in time cannot be directly compared (Jensen, 2000). VIs (see chapter 2.2.2) can also be 
biased by the BRDF effect. Overall, the incorporation of the BRDF is essential when the 
detailed comparison of surface reflectance data is concerned. 

Atmospheric and topographic influences 

As can be seen from Equation 2.8, radiance which reaches the sensor is not only influenced 
by surface properties, but also by processes occurring during the downward and upward 
transfer of radiance through the atmosphere. Molecular and aerosol scattering and 
absorption contribute to the measured radiance, especially at shorter wavelengths (Richter 
and Schläpfer, 2012). The radiance ܮ  that actually reaches the sensor consists of three 
components: 

ܮ ൌ ௣௔௧௛ܮ ൅ ௣௜௫௘௟ܮ ൅ ௔ௗ௝ (2.11)ܮ

with	ܮ௣௔௧௛ being the photons scattered into the sensor’s IFOV without having ground contact, 

and ܮ௔ௗ௝  being radiance originating from the land surface surrounding a pixel but scattered 

by air into the instantaneous direction (‘adjacency effect’, see Figure 2-12). The surface 
information ܮ௣௜௫௘௟ that is of interest for RS analysis is masked, as it were. In areas of rugged 

terrain, an additional radiation component is the radiance reflected from the terrain to the 
detected pixel (L୲ୣ୰ in Figure 2-12). Furthermore, the terrain introduces variations to the 
spectral signals recorded over a certain surface as it changes the local viewing and 
illumination geometry. In areas with steep slopes, the local solar zenith angle (i.e. the angle 
between the sun zenith angle and the slope surface normal) may vary over a wide range 
(0 - 90°) and thus creates areas with maximum solar irradiance as well as with zero direct 
irradiance, i.e. shadowed areas (Richter and Schläpfer, 2012). 

For a meaningful comparison of surface reflectances and RTM outputs, it is therefore 
indispensable to unmask the object spectral properties and thus to eliminate the influence of 
atmosphere and topography on the RS signal. Butson and Fernandes (2004) showed that an 
automated atmospheric correction with a fixed aerosol concentration used on different 
overlapping satellite images can lead to significant differences in the LAI retrieval, and that 
abandoning the atmospheric correction even slightly increases the consistency between the 
LAI maps. The proper correction of atmospheric effects is thus crucial, but at the same time 

Figure 2-12: Radiation components in rugged terrain. Adapted from Richter and Schläpfer (2012). 
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runs the risk of introducing new errors to the RS data (see Mannschatz and Dietrich, 2013). 

As the overall aim of atmospheric correction is the derivation of top-of-canopy (TOC) 
reflectances from remotely sensed top-of-atmosphere (TOA) radiances, an integral part is the 
conversion of radiance values to reflectances (see chapter 4.1.2). This is achieved by relating 
the radiance ܮ at a certain earth-sun distance ݀ to the extraterrestrial irradiance ܧ	from a 
solar zenith angle	ߠ: 

ை஺்ߩ ൌ
ߨ ݀ଶ ܮ
ܧ ߠݏ݋ܿ

 (2.12)

To account for the atmosphere influence, absolute or relative atmospheric corrections can be 
applied (Song et al., 2001). Absolute correction methods employ an atmospheric RTM that 
explicitly accounts for the optical properties of the atmosphere and models the resulting 
atmospheric transmittance ߬ and path radiance ܮ௣௔௧௛ (Gao et al., 2009). Based on equations 

2.11 and 2.12, and disregarding the adjacency component, TOC reflectance can be derived by 
equation 2.13., which is a key formula of atmospheric correction: 

ை஼்ߩ ൌ
ߨ ሼ݀ଶܮ െ ௣௔௧௛ሽܮ

߬ ܧ
(2.13)

To simulate the atmosphere transfer processes sufficiently well, scene acquisition conditions 
as well as atmosphere conditions need to be known. Information specifying the conditions of 
the scene (e.g. location coordinates, acquisition date and time, elevation data, viewing 
geometries) is mostly provided by the scene’s metadata. The atmosphere can be characterized 
by its aerosol type, water vapor content, or visibility. As the aerosol contribution is the most 
influential atmospheric component, aerosol optical depth (AOD), rather than visibility, is 
often used to characterize the atmosphere (Liang et al., 2001; Richter and Schläpfer, 2012). 
An ideal method of visibility or AOD determination would be to obtain atmospheric 
measurements at the time of sensor overpass, which is however rarely possible because 
aerosols are very variable in space and time. Therefore, this value is either estimated by the 
operator or derived directly from the used RS scene (Kaufman et al., 1997; Liang et al., 1997). 
The automatic derivation is most frequently performed over dark objects, as these are 
especially sensitive to AOD estimates because their reflectances become negative if the AOD 
is estimated too high. An accurate estimate of the main atmospheric parameters is necessary, 
because these influence the values of path radiance, transmittance, and global irradiance. The 
adjacency component is calculated in a second step by relating the average reflectance of the 
surrounding area to the ratio of the diffuse and direct transmissions and adding it to the term 
in equation 2.13 (Richter and Schläpfer, 2012). 

A relative atmospheric correction is a simple and straight-forward statistical method that 
assumes a linear relationship between image bands across time, but does not account for 
individual radiance components. Examples are the invariant-object method, histogram 
matching, or contrast reduction. For empirical methods such as the empirical line approach, 
reflectance spectra field measurements are required (Liang et al., 2001; Gao et al., 2009). 

2.2.2. Empirical-statistical LAI derivation 

Empirical-statistical LAI derivation is one of the two approaches pursued in this thesis. It 
searches for a continuous relationship between the spectral signature of a canopy and LAI. 
Thereby a statistical model, also referred to as transfer function, relates LAI measured in situ 
to corresponding RS spectral information. The RS reflectance measurements are then 
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converted to LAI by inverting the transfer function (see Figure 2-13, Cohen et al., 2003a; 
Dorigo et al., 2007). In addition to the selected spectral information and transfer function 
described below, the accuracy and range of in situ measurements sampled for model training 
determine the validity of the derived map (Turner et al., 1999; Sims and Gamon, 2002).  

Empirical-statistical approaches to derive properties of vegetation canopies have been in use 
since the early exploitation of satellite data in the 1970s (Weiss et al., 2000). Statistical LAI 
derivation was first used on crop canopies. One of the earliest attempts was carried out by 
Kanemasu (1974), who derived wheat LAI using Landsat MSS data. Recent studies on crop 
LAI have been published by Broge and Mortensen (2002), Colombo et al. (2003), Yang et al. 
(2007), or Ehammer et al. (2010). After investigations on crop LAI yielded promising results, 
LAI estimation for forests started in the 1980s. Since the first forest LAI mapping by Peterson 
et al. (1987), a high number of empirical studies have been conducted (see e.g. Chen and 
Cihlar, 1996; White et al., 1997; Turner et al., 1999; Cohen et al., 2003a; Fernandes et al., 
2003; Kalácska et al., 2004; Soudani et al., 2006). With regard to grassland LAI, the number 
of studies is smaller. Since the BigFoot site in the Konza Prairie has been used for ecological 
research since 1980, several LAI studies focused on this tallgrass prairie (see e.g. Asrar et al., 
1986; Turner et al., 1999; Cohen et al., 2003b; Lee et al., 2004; Cohen et al., 2006). Other 
studies using empirical relationships to derive grassland LAI are He et al. (2006), Frank and 
Karn (2003), Mutanga et al. (2004), or Vescovo and Gianelle (2008). 

Vegetation indices 

For the establishment of empirical relationships, the spectral signature is rarely directly used, 
as it is influenced by various factors (Equation 2.8). Therefore band reflectance is often 
transformed to enhance the spectral contribution of green vegetation while minimizing those 
from soil background, senescent vegetation, atmosphere, and variations in viewing geometry 
(Huete, 1989). Although several manipulations have been proposed (see Dorigo, 2007), the 
most common method is to mathematically combine spectral band reflectance to create a VI. 

Figure 2-13: Schematic concept of the empirical-statistical approach. Adapted from Dorigo et al. 
(2007). 
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VIs are dimensionless variables that mostly rely on the strong reflectance difference between 
VIS and NIR described above. VIs are hence basically linked to relative abundance and 
activity of green vegetation (Baret and Guyot, 1991; Baret et al., 1992; Glenn et al., 2008). 
Due to this relationship, VIs constitute a convenient tool to monitor spatial and temporal 
patterns of vegetation canopies and to estimate biophysical vegetation properties (He et al., 
2006; Dorigo et al., 2007; Glenn et al., 2008). The number of VIs used in scientific studies is 
constantly increasing, as each VI tries to reach maximum sensitivity to a specific biochemical 
or biophysical parameter under different conditions (Haboudane, 2004; Dorigo et al., 2007). 
Classical broad band VIs based on multispectral sensors are distinguished from VIs based on 
narrow bands recorded by hyperspectral sensors. A review of the latter group of VIs is given 
in Dorigo et al. (2007) or Liang (2004). Broadband VIs can be divided into ratio, orthogonal, 
and hybrid indices (Broge and Mortensen, 2002).  

Ratio VIs are based on the ratio between red and NIR reflectance and computed irrespective 
of soil properties. Their LAI isolines, i.e. lines of equal LAI values from different vegetation 
structures and soil types, join the origin in the red-NIR feature space (see Figure 2-14). The 
first VI was the NIR reflectance divided by the reflectance in the red band, named Simple 
Ratio (SR) or Ratio Vegetation Index (RVI) (Jordan, 1969). Rouse et al. (1974) developed the 
Normalized Difference Vegetation Index (NDVI), which is the difference between the NIR 
and red reflectance, related to their sum. The NDVI is adopted in many studies as well as for 
operational monitoring and is probably the most widely used VI. Further, several variations 
have been proposed (an overview is given by Huete and Liu, 1994, and Karnieli et al., 2001).  

Orthogonal indices have been developed to minimize the influence of soil reflectance. For 
these VIs, the LAI isolines do not converge at the origin of the Red-NIR space but stay 
parallel to the soil line (Huete, 1988). The difference between NIR and red reflectance was 
the first index of this category (DVI, Jordan, 1969), which was modified by Clevers et al. 
(1989) as Weighted Difference Vegetation Index (WDVI). The Tasseled Cap transformation 
presented by Kauth and Thomas (1976) is also an orthogonal transformation. Quite similarly, 
Richardson and Wiegand (1977) used the perpendicular distance to the soil line as an 
indicator of plant development and created the Perpendicular Vegetation Index (PVI).  

Hybrid VIs contain elements of both ratio and orthogonal VIs. The Soil Adjusted Vegetation 

Figure 2-14: Simulated LAI isolines of a planophile canopy (ALA = 30°) in the red-NIR feature space 
generated using the PROSAIL model. LAI values range from 0 (bare soil, bold line) to 6 by 0.2 steps. 
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Index (SAVI, Huete, 1988) introduces a soil calibration factor to minimize soil background 
influences. The SAVI has also been further modified, e.g. in the Transformed Soil Adjusted 
Vegetation Index (TSAVI, Baret et al., 1989), the Modified Soil Adjusted Vegetation Index 
(MSAVI, Qi et al., 1994), the Soil adjusted and Atmospherically Resistant Vegetation Index 
(SARVI), and the modified SARVI (MSARVI, Huete and Liu, 1994). Using SWIR reflectances 
in VIs enables the monitoring of LAI (Brown et al., 2000), dead plant material (Xu et al., 
2014), and of water content (Bowyer and Danson, 2004). However, as no RS data providing 
SWIR bands are used in this study, the review of those indices would be out of scope.  

Overall, soil adjusted indices are reported to be especially suitable for estimating structural 
canopy parameters such as LAI (Baret et al., 1995; Huete, 1997; Haboudane, 2004). 
However, the SR being linearly related and the NDVI and TSAVI being exponentially related 
have also been identified as suitable VIs (Wiegand et al., 1992; Liang, 2004). Thus, a general 
recommendation on which VI performs best for LAI derivation cannot be given. Systematic 
comparisons of VI performances have been conducted using synthetic (Broge and Leblanc, 
2001; Haboudane, 2004; Féret et al., 2011) and measured data (Jordan, 1969; Broge and 
Mortensen, 2002; Darvishzadeh et al., 2008a), but even these studies only refer to a limited 
data set, specific vegetation types, and specific atmospheric conditions.  

Transfer functions 

The most established way to model the relationship between VIs and the variable of interest 
is by ordinary least squares (OLS) regressions (see e.g. Fassnacht et al., 1997; Schlerf et al., 
2005; Heiskanen, 2006) of the form 

Y ൌ 	β଴ ൅ βଵX ൅ ε  (2.14) 

where Y is the response variable (LAI), X is the explanatory variable (VI), ߚ଴  and ߚଵ  are 
intercept and slope, and ε is the error term. Although it can be argued that the spectral signal 
is dependent on vegetation state and not vice versa, in most studies the vegetation parameter 
is modeled as the dependent variable Y (Cohen et al., 2003a). The unknown parameters 
 ଵof the best fit are identified using the OLS method, which minimizes the sum ofߚ ଴andߚ
squared vertical distances between the observed and the predicted variable X values. Due to 
the fact that the spectral signal reaches a saturation level at higher canopy densities (chapter 
2.2.1), the relationships between VIs and LAI are often reported to be non-linear (Weiss et 
al., 2000; Baret and Buis, 2008). Thus, several studies used transformed predictors in 
logarithmic, exponential, power, or polynomial regression models (see e.g. Clevers, 1989; 
Turner et al., 1999; Hansen and Schjoerring, 2003; Kalácska et al., 2004; Ehammer et al., 
2010). Cohen et al. (2003a) mention the limitations of traditional linear models for RS 
applications. Assumptions about the data sets’ statistical properties are often violated when 
using RS data and data measured in situ, as there are errors in both measured X and Y 
variables (Brown, 1979). Larsson (1993) and Heiskanen (2006) therefore used the Reduced 
Major Axis (RMA) method instead of OLS for the establishment of regressions. For a detailed 
discussion, see Curran and Hay (1986) and Cohen et al. (2003a). 

Integrating multiple data (e.g. several VIs, angle measurements, or dates) into one index or 
empirical model is another approach to improving the estimate of the variable of interest. In 
multiple regressions, the regression equation contains two or more predictor variables. In 
stepwise multiple regressions (SMR) these predictors are added and removed successively to 
automatically select the most relevant variables. The use of SMR for LAI estimation has e.g. 



2. State of the art in LAI derivation

28 

been tested by Jacquemoud et al. (1995b), De Jong et al. (2003), Mutanga et al. (2004), 
Atzberger et al. (2010) and Duveiller et al. (2011b). Cohen et al. (2003a), Lee et al. (2004), 
and Heiskanen (2006) incorporated multiple information by means of canonical correlation 
analysis (CCA), which permits the use of several weighted explanatory variables in a linear 
model. The partial least squares (PLS) regression is an extension of the multiple regression 
approach well suited for dealing with highly multicollinear data. The multidimensional 
feature space is transformed such that information which correlates with the variable of 
interest is combined into a few factors, while irrelevant information is grouped into less 
important factors (Hansen and Schjoerring, 2003; Cho et al., 2007; Darvishzadeh et al., 
2008c; Atzberger et al., 2010). Huang et al. (2004) and Curran et al. (2001) further tested the 
continuum-removal analysis of Kokaly and Clark, an approach that pursues the same strategy 
of isolating the spectral features of interest by normalizing the reflectances. 

Machine learning techniques constitute another group of statistical approaches. In contrast 
to OLS approaches, machine learning techniques do not assume a linear relationship but can 
model complex non-linear functions. An advantage thereof is that no assumptions have to be 
made about the data distribution (Fourty and Baret, 1997; Beale and Jackson, 1998; Huang et 
al., 2004). For empirical-statistical LAI derivation, artificial neural networks (ANN) are often 
used. ANNs mimic biological mechanisms used to process information. During a calibration 
phase, a relation between the predictor variables ܺ  (inputs) and a response variable ܻ 
(output), that minimizes the difference between the actual and desired output, is iteratively 
learned based on a training data set, and an interpolating response surface ܯ is set up: 

Y ൌ 	MሺXሻ ൅ ε.  (2.15) 

The response surface M consists of at least one “hidden layer” composed of processing nodes, 
referred to as neurons. The inputs are connected to the neurons in the hidden layers, which, 
in turn, are connected to the output. Each neuron is a nonlinear processor ݂	of its input 
signals ௜ܵ before forwarding it to another layer or the output. Thus the output O of a node is 

O ൌ f ൭෍w୧S୧ ൅ b

୬

୧ୀଵ

൱ (2.16) 

Thereby, the weights ݓ௜ and biases ܾ are unique for each neuron. The learning phase is an 
iterative optimization process involving the modification of the weights and biases and the 
evaluation of the output error. Thus, the structure of an ANN adaptively develops its own 
basis functions and the corresponding coefficients (Rumelhart et al., 1986; Kimes et al., 1998; 
Combal et al., 2002a). A drawback of the method is that the network can over-fit the data, 
although techniques such as pruning or stopping criteria reduce this risk. ANNs are also 
frequently used for radiative transfer model inversion (chapter 2.2.3). Other machine 
learning approaches that are used as a transfer function are Support Vector Regression (SVR, 
see Vapnik, 1999; Durbha et al., 2007; Camps-Valls et al., 2009; Yang et al., 2011; Verrelst et 
al., 2012a) or, less often, random forest approaches (Powell et al., 2010; Le Maire et al., 2011; 
Vuolo et al., 2013). No general conclusion can be drawn for the choice of the regression 
model, as the performance of each model depends on the used VI, ecosystem, site, and field 
data. However, most studies report that VIs are linearly related to LAI in sparse canopies and 
non-linearly when high LAI values occur. Further, multivariate and machine learning 
techniques often outperform univariate techniques (Baret et al., 1995; Broge and Mortensen, 
2002; Baret and Buis, 2008; Darvishzadeh et al., 2008c; Atzberger et al., 2010). 
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Potentials and Limitations 

The empirical-statistical approach is often used due to its simplicity, computational 
efficiency, and the good results that can be achieved if extensive ground measurements are 
available and if the transfer function is applied on a confined region and known land cover 
(Gobron et al., 1997a; Cohen et al., 2003a; Colombo et al., 2003; Atzberger et al., 2003a). 
Apart from its use for LAI mapping, the empirical approach is further indispensable for the 
upscaling of in situ data for validating coarse resolution data (Baret et al., 2003; Morisette et 
al., 2006). However, there are considerable limitations to the empirical-statistical approach. 
A prerequisite of a transfer function is the assumption that variations in a spectral signal are 
caused by variations in LAI only. This assumption is never fulfilled, as canopy reflectance 
depends on several factors (Dorigo, 2007; Ustin et al., 2009). Explicitly, reflectance is 
sensitive to variations in space and time (e.g. phenological stages), species composition, and 
site (e.g. soil properties) and sampling (e.g. atmospheric properties, viewing and illumination 
geometries) conditions. Further, even if extensive field measurements are conducted, it is 
nearly impossible to cover all occurring scenarios (Clevers, 1989; Jacquemoud et al., 1995b; 
Turner et al., 1999). Therefore, no universally valid VI-LAI relationship can be expected. This 
implies that the derived relationship is only reliable for the data set it is trained on, and new 
relationships would ideally have to be established for each place and time, which is costly and 
time-intensive, as corresponding in situ measurements are needed. Therefore, empirical 
relationships are not suitable for global and operational LAI mapping. Partly due to this 
limitation, increasing interest goes towards RTMs for the retrieval of LAI. 

2.2.3. Physical approach 

The physical approach is rooted in the understanding and theoretical description of radiation 
transport through vegetation canopies. Spectral reflectance is the result of scattering and 
absorbing in the canopy and at boundary layers. Physics-based RTMs aim at providing these 
processes and relate radiation leaving a vegetation canopy in a given direction to the spectral 
and structural properties of the leaves and the canopy (Widlowski et al., 2014). An RTM is 
run in the “forward mode” to calculate reflectances given the specific characteristics of a 
canopy and observation configurations (see Figure 2-15). The canopy characterization by leaf 
and canopy parameters is called parameterization. Through parameterization, RTMs can 
simulate a great variety of vegetation characteristics and sensor acquisition geometries 
(Dorigo et al., 2007). These explicit input parameters, which can later be directly derived by 
running the model in the ‘inverse mode’, are called ‘primary variables’. FPAR and the 
fractional vegetation cover (fCover) have also been estimated as so-called ‘secondary 
variables’, as they are combinations of RTM primary variables (Weiss et al., 2000; Combal et 
al., 2002b). The physical approach was developed since the beginning of the 
1980s, concurrently with the empirical approach. First studies showed that the 
estimation of biophysical and biochemical properties using an RTM from reflectances 
measured in situ is possible given a certain amount of ancillary data on leaf and soil 
properties (Goel and Strebel, 1983, Goel and Thompson, 1984a, 1984b). The use of satellite 
data was only pursued in the mid-1990s (Jacquemoud et al., 1995a; Kuusk, 1995a). 

Every vegetation RTM is at least composed by a leaf model and a canopy structure model (see 
Figure 2-15). In addition to this, soil reflectance is crucial for radiation transfer modeling as it 
describes the lower boundary condition of the canopy with its own spectral properties (see 
Huete, 1989). It is integrated in the canopy model by spectra measured in the field, spectra 
taken from the scene, a standard soil spectrum, or by spectra provided by a soil BRF model, 
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e.g. the Hapke model (Hapke, 1981), its successors SOILSPECT (Jacquemoud et al., 1992) or 
4SOIL (Laurent et al., 2011). In the works of Atzberger (2003b; 2004) simple empirical 
relationships and scaling factors have been used to adjust band specific soil reflectances.  

Further, a model for the simulation of radiance propagation in the atmosphere can be used to 
calculate TOA radiance, i.e. the radiance as it would have been measured by a sensor (see e.g. 
Gastellu-Etchegorry et al., 2004; Baret et al., 2006; Verhoef and Bach, 2007; Lauvernet et al., 
2008; Houborg et al., 2009; Laurent et al., 2011). An overview of atmosphere radiation 
transfer modeling and on established models is given in Grau and Gastellu-Etchegorry 
(2013). The use of TOA radiance is adopted because atmospheric RTMs are more accurate 
when run in the forward mode, so that atmospheric, adjacency, and surface directional 
effects can be incorporated more accurately in the LAI retrieval process (Liang, 2004). 
Further, in this approach all errors and uncertainties are contained in the LAI simulation 
process, which makes it easier to study their impact (Laurent et al., 2011; Grau and Gastellu-
Etchegorry, 2013). Nonetheless, the use of modeled TOC reflectances together with 
atmospherically corrected RS data has been directive in the last few decades, which is why 
the discussion will be limited to the simulation of reflectance at TOC level below. The 
derivation of LAI is achieved by model inversion. Before the inversion of RTMs is discussed, 
an overview of leaf and canopy models is given. 

Figure 2-15: Concept of radiation transfer modeling: forward mode (above) and inverse mode 
(below). 
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Leaf optical models 

The purpose of a leaf optical model is to simulate scattering and absorption of light at plant 
material depending on leaf biochemical composition and structure. Input parameters to leaf 
models are at least the concentrations and absorption spectra measured in vivo of the most 
important leaf pigments and water, as well as a refractive index. However, the models differ 
in the complexity of the modeled leaf structure and distribution of compounds.  

The simplest approach is to describe the leaf as a homogeneous medium. This was developed 
by Allen and Richardson (1968), who published a model based on the theory of Kubelka and 
Munk (K-M theory, Kubelka and Munk, 1931) that describes the one-dimensional (1D) 
radiation transfer in scattering media with two parameters, a scattering and an absorption 
coefficient. Allen and Richardson stated that their theory can be applied to leaves as well as to 
plant canopies (see below). In their approach, the leaf is considered as one slab of scattering 
and absorbing material, with incoming light being perpendicular to the leaf. Such models are 
generally called “N-flux models” (see e.g. Richter and Fukshansky, 1996). An extension of this 
approach is the “plate model”, in which the leaf is composed of one or ݊ homogeneous plates 
with rough isotropic surfaces in a pile with ݊ െ 1 intermediate air layers. One of the oldest 
and most popular plate models is PROSPECT (Jacquemoud et al., 2009, see chapter 6.1.1). In 
contrast to Allen and Richardson’s initial expression, a variable angle of incident light is 
introduced. It calculates reflectance and transmittance in the spectrum between 400 - 
2500 nm based on two types of input variables, the leaf structure parameter ܰ  and leaf 
biochemical content (water and leaf pigments) (Jacquemoud and Baret, 1990). In the 
following versions, the simulation of reflectance is continuously improved by accounting for 
further leaf biochemical constituents (Jacquemoud et al., 1996), by the condensation of these 
components into one parameter (‘dry matter’, Baret and Fourty, 1997; Jacquemoud et al., 
2000), by increasing the model’s spectral resolution from 5 nm to 1nm (Le Maire et al., 
2004), and by separating chlorophylls and carotenoids (Féret et al., 2008).  

This approach is contrasted with more complex but realistic models that take into account 
the structural heterogeneity of leaves, which is achieved by stochastic, radiosity, or ray 
tracing methods. The trajectories of photons are simulated, which interact with leaf material 
according to defined probabilities for scattering and absorption along their way. The model 
SLOPE (Stochastic model for Leaf Optical Properties Extended for fluorescence, Maier, 
2000) is a stochastic approach that approximates radiation transport through 30 layers as 
transitions between photon states based on Markov Chains (Oehmichen, 2004), while the 
LEAFMOD model by Ganapol et al. (1998) uses only one layer. A method derived from 
computer graphics applications is radiosity modeling (Liang, 2004). The best known leaf 
model of this type is the ABM presented by Baranoski and Rokne (1997). Once a ray hits a 
leaf, it performs a ‘random walk’, i.e. can be reflected or scattered multiple times, until it is 
absorbed or leaves the leaf (Hammersley and Handscomb, 1964). Ray tracing models 
simulate the propagation of photons through the leaf, taking into account the properties of 
the cells (shape, size, position, biochemical content) and the optical parameters of the cell 
constituent. They are therefore the most realistic leaf realizations (Baranoski and Rokne, 
1997). An example is RAYTRAN, which can be applied independently of scale (Govaerts et al., 
1996). While the strength of these models is their ability to incorporate a lot of information, 
their drawback is the required detailed description of the cells. This makes them 
computationally very expensive and inversions difficult to implement. 
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A weakness of most leaf models is the ignorance towards the anisotropic reflectance behavior 
of leaves, although some work on measuring anisotropic leaf BRF and incorporating it in leaf 
models has been carried out (Jacquemoud and Ustin, 2001; Bousquet et al., 2005; Combes et 
al., 2007; Comar et al., 2014). Further, biochemical compounds with only relatively small 
absorption features cannot be accurately retrieved (Fourty et al., 1996), which is however of 
minor relevance for LAI modeling.  

Canopy models 

Several canopy models evolved, which can be distinguished according to the degree of detail 
in representing canopy structures, as well as to the numerical or analytical solution technique 
used to solve the radiation transfer equations. For a detailed description of radiative transfer 
equations and their solutions, see Goel (1988), Myneni and Ross (1991), or Verhoef et al. 
(2007). Most techniques used for leaf modeling are also applied to canopy modeling.  

The simplest kind of canopy models are 1D turbid medium model. They rely, as the leaf 
models, on the approach introduced by Allen and Richardson (1968). The plant canopy is 
considered a turbid plane-parallel medium (see Figure 2-16), based on a number of 
simplifications: The canopy is horizontally homogeneous and infinite but vertically variable 
and finite. It contains infinitely small, flat leaves (comparable to particles) of defined optical 
properties that are randomly distributed in space. Allen and Richardson’s approach 
considered only two types of radiant fluxes, diffuse upward and downward radiation. In its 
successor model (Allen et al., 1970) a direct solar flux is also included. Finally, in the Suits 
(1972) model, directional upwards radiance is considered. The four radiation fluxes are 
expressed in four differential equations, making this kind of model a ‘four stream model’. The 
Suits model represents leaves as elements with finite size, and the canopy as a mixture of 
vertical and horizontal leaves. Through extending the Suits model by a leaf inclination 
distribution function (LIDF) to allow for randomly distributed leaf angles, Verhoef (1984) 
developed the SAIL (Scattering by Arbitrarily Inclined Leaves) model. The inputs to SAIL are 
LAI, LIDF, layer thickness, leaf transmittance and reflectance, and a soil spectrum (chapter 
6.1.1). It provides canopy BRF and absorption (Goel, 1988). 6 

Other turbid medium models were also developed in the early 1990s, each using different 
analytical (Verstraete et al., 1990; Pinty and Verstraete, 1991; Knyazikhin et al., 1992; 

6 http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI3/RAMI3.php. Last access: 20.02.2014 

Figure 2-16: Homogeneous vegetation canopy with randomly distributed finite-size scatterers 
simulated by a 1D model (image downloaded from the RAMI homepage6). 
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Iaquinta and Pinty, 1997) or semi-analytical (Ganapol and Myneni, 1992; Ahmad and 
Deering, 1992; Gobron et al., 1997b) methods to solve the transport equations. However, 
SAIL is the most widely used and validated vegetation canopy model (Jacquemoud et al., 
2009). It has been improved and extended several times. In 1995, the single-scattering 
component of direct solar radiation of the Nilson-Kuusk model (Nilson and Kuusk, 1989) was 
introduced into SAIL in the form of a hot spot parameter forming SAILh (Kuusk, 1991; 
Kuusk, 1995a). A numerically robust and speed-optimized version (SAIL++) that accounts for 
multiple scattering was published by Verhoef et al. (2002). To simulate vertical gradients in 
canopies, e.g. higher leaf area density and pigment concentrations towards the top, Weiss et 
al. (2001) proposed the 2M-SAIL model. It distinguishes four different layers consisting of 
fractions of soil, green pigments and brown pigments. Similarly, Verhoef and Bach (2003) 
propose two layers of different concentrations of brown and green pigments in the GeoSAIL 
model (not to be confused with the “GeoSail” model, see below). Other versions take into 
account chlorophyll fluorescence (FLSAIL, Rosema et al., 1991; FluorSAIL, Miller et al., 
2005) or can be used for thermal applications (4SAIL, Verhoef et al., 2007).  

In 1992, SAIL was combined with the PROSPECT leaf model to form the well-known 
PROSAIL model (Jacquemoud et al., 2009), which is described in more detail in chapter 6 as 
it is used in this thesis. By linking the variation of reflectance depending on biochemical leaf 
contents with its directional variation depending on canopy architecture, PROSAIL is a 
valuable tool for vegetation characterization. As PROSAIL is a 1D model based on a relatively 
small number of input parameters, it is computationally effective and invertible. It is 
especially suitable for representing dense and homogeneous vegetation (Schlerf and 
Atzberger, 2006; Dorigo et al., 2007). To account for the cases in which these assumption do 
not apply, e.g. for clumped canopies such as forests or row crops, three-dimensional (3D) 
methods have been developed.  

In geometrical-optical radiation transfer (GORT) models, the canopy is represented by 
objects of geometrical shapes. To represent the plants, ellipsoids, cones, or cylinders are used 
(e.g. Strahler and Jupp, 1990; Cescatti, 1997; Widlowski et al., 2006b), or they are 
constructed from small cubic voxels in a regular grid (e.g. Gastellu-Etchegorry et al., 2004; 
Béland et al., 2011; Bittner et al., 2012; Grau and Gastellu-Etchegorry, 2013). The spatial 
distribution of these objects is specified, so that sunlit and shadowed canopy regions can be 
calculated. This model type is therewith able to handle sparse canopies where shadowing 
plays an important role. To describe the geometrical objects, additional input parameters are 
necessary, at least a cover fraction index and a crown shape parameter. The first geometrical 
model was presented by Li and Strahler (Li and Strahler, 1985, 1986). It constructs a canopy 
spectrum by linearly combining reflectance from sunlit and shaded tree crowns and 
backgrounds. This concept was extended by the use of ellipsoidal crown shapes and mutual 
shading (Li and Strahler, 1992) and by including other sunlit or shaded surfaces (Jupp et al., 
1986). Other examples are the Simple Geometric Model (Chopping, 2003), the KUUSK 
model (Kuusk, 1995b), the approaches of Myneni et al. (1990), of Welles and Norman (1991), 
or the “4-scales” model of Chen and Leblanc (1997). A review is given by Chen et al. (2000). 

Hybrid models represent the canopy as GORT models, with the geometrical objects/voxels no 
longer being opaque but treated as turbid media to approximate the distribution of scatterers 
therein (Widlowski et al., 2014, see Figure 2-17). The number of input factors for these 
models is often increased by the need of describing several horizontal layers. Examples are 
the Three-dimensional Radiation Interaction Model (TRIM, Goel and Grier, 1988), the model 
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introduced by Bégué (1992), the Forest Light Interaction Model (FLIM, Rosema et al., 1992), 
the FRT model (Nilson and Peterson, 1991; Kuusk, 2000), the GeoSail model (Huemmrich, 
2001) and the 4SAIL2 (Verhoef and Bach, 2007), both coupled with SAIL. The Invertible 
FOrest Reflectance Model (INFORM) by Atzberger (2000) is a hybrid model that solves the 
energy transport based on a stochastic method.  

So-called numerical computer simulation models account for location, size, shape, color and 
orientation of every single object in the canopy by using 3D virtual plants generated from 
growth simulation algorithms (Allen et al., 2005; Disney et al., 2006; Lamanda et al., 2007; 
Da Silva et al., 2008; Roupsard et al., 2008). They give a realistic image of canopies and 
radiation transfer, however, their complexity leads to a high computational demand, which 
restricted the use of such algorithms for decades (Jacquemoud et al., 2000; Widlowski et al., 
2014). Further, inverting numerical computer simulation models is not trivial. Two typical 
methods are Monte Carlo ray tracing and radiosity methods. Using Monte Carlo ray tracing 
(e.g. PARCINOPY, Chelle, 1997; DART, Gastellu-Etchegorry et al., 1996; SPRINT, Goel and 
Thompson, 2000; FLIGHT, North, 1996; Rayspread, Widlowski et al., 2006a; FLiES, 
Kobayashi and Iwabuchi, 2008), the path of rays through the canopy is calculated through 
stochastic decisions for each contact, until they are absorbed or leave the scene. Since the 
number of photons leaving the scene in each direction is small, millions of simulations have 
to be performed to ensure an accurate BRDF estimation. Radiosity models are widely used in 
computer graphics for realistic scene rendering. They represent each scattering element in 
terms of polygons and each polygon is assumed to be a Lambertian surface (Borel et al., 1991; 
Goel et al., 1991; Chelle and Andrieu, 1998; Qin and Gerstl, 2000). The advantage is that once 
the radiation transport is solved, canopy reflectance can be simulated from any view angle.  

Overall, RTMs become increasingly important in the RS community. Since the 1980s, the 
ability of radiation transfer modeling in complex canopies has considerably evolved. At the 
JRC, the comparison program RAMI (RAdiation transfer Model Intercomparison) aims at 
benchmarking the performance of RTMs. In this program, complex 3D models are used for 
validating simple RTMs and for testing the impact of approximations made in less complex 
models (Disney et al., 2000). The results of this initiative are summarized in Pinty et al. 
(2001; 2004) and Widlowski et al. (2007; 2013).  

Figure 2-17: Simulated canopy of spectrally and structurally mixed vegetation (from the RAMI 
homepage6). See there and Widlowski et al. (2014) for further examples of simulated homogeneous 
and heterogeneous canopies, which correspond to the structure of advanced 1D and 3D RTMs. 
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Leaf and canopy model selection is always a trade-off with regard to the number of input 
parameters employed (Jacquemoud et al., 2000). The inclusion of many parameters 
increases the realism of the modeling result but decreases the invertibility and computational 
efficiency of the model. In cases where the parameters are not adequately known, many 
parameters will even increase the under-determination of the inversion (see below). A good 
model is therefore a compromise between realism and simplifications (Nilson and Kuusk, 
1989; Kimes et al., 1998; Verhoef and Bach, 2007). The choice of a canopy model depends 
further on the canopy type under consideration, with particular attention on the way canopy 
structure is represented, and on the spatial resolution of the RS observation (Pinty et al., 
2004; Widlowski et al., 2005; Widlowski et al., 2014). For selection criteria relevant for 
grassland modeling and an associated literature review see chapter 6.1.2 

Inversion techniques 

To retrieve canopy parameters from measured reflectances, an RTM needs to be inverted (see 
Figure 2-14). Due to the complex character of RTMs, an analytical closed-form solution is 
mostly not possible. Consequently, numerical schemes have to be used for solving the 
inverted transport equation. These schemes can deal with complex RTMs, since the model is 
used only in the forward mode. Relating to Equation 2.8 (chapter 2.2.1), which describes the 
dependencies of surface reflectance in the forward mode, the inverse problem consists in 
estimating the set of variables {ܽఒ, ఒܾ, ఒܿ, ,ఒݏ ఒሽ that produced the observed spectrum݋ 	ܴఒ . 
Some of the parameters influencing canopy reflectance (e.g. LAI of ఒܿ) are derived given	ܴఒ 
and other subsystem properties (Goel, 1988; Kimes et al., 2000): 

ఒܿ ൌ ݃ሺܴఒ, ,ఒݏ ܽఒ, ఒܾ, ఒሻ݋ (2.17)

Avoiding the need to retrieve atmospheric properties by using atmospherically corrected TOC 
data and with full knowledge of the sun and sensor properties, the inverse problem becomes  

ሼ ఒܾ, ܿఒሽ ൌ ݃ሺܴఒ, ,ఒݏ ఒሻ݋ (2.18)

where s஛	and o஛ contain only fixed parameters. Further, some of the soil ( ఒܾ) and canopy (cఒ) 
parameters are often known or predictable at a sufficient accuracy and can be fixed with 
estimates. Thus, only a subset of the parameters in Equation 2.18, called free parameters	݌, 
needs to be derived through inversion (Kimes et al., 2000). The number of free parameters ݌ 
determines the number	݊ of independent equations in the form of Equation 2.17 needed to 
evaluate them, as	݊ at least has to equal	݌. If ݊ ൏  the equation system is under-determined ,݌
for a unique solution. Additional independent equations are most easily achieved by varying 
the well-known sun and sensor properties, i.e. by sampling radiation in several viewing 
directions. Generally, inversion techniques can be classified into two groups, depending on 
whether the emphasis is put on the match between measured and simulated reflectance, or 
on the relation of the canopy parameter of interest to the modeled spectra (Goel, 1989; 
Jacquemoud et al., 2009). A special issue of Remote Sensing Reviews (Liang and Strahler, 
2000), Tarantola (2005), and Baret and Buis (2008) review inversion theory and methods 
for LAI derivation. While several aspects influence the selection of an inversion method, it 
does not depend on the studied canopy type, thus all are potentially suitable for grassland 
LAI derivation. In the following a short description of the most important techniques – 
iterative optimization, look-up tables, and neural networks – is given. 
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Iterative Optimization 

Traditional inversion of RTMs uses iterative optimization (Goel, 1988). Multidimensional 
optimization algorithms search for the set of input variables that leads to the best match 
between simulated and measured reflectances by iteratively trying different model parameter 
configurations within a certain range (Figure 2-18). In this regard, a so-called merit or cost 
function ܬ calculates the dissimilarity between the simulated reflectance Rఒ and the measured 

reflectance R෡	஛ , weighted by the variance ߪఒ
ଶ associated to measurements and model

uncertainties (Pinty et al., 1990; Jacquemoud et al., 2000; Combal et al., 2002a). 
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ଶ

୬ౣ౛౗౩

ఒୀଵ

(2.19)

The measurement uncertainties are mainly related to sensor and processing errors, while 
model uncertainties result from model simplifications compared to actual canopies (Koetz et 
al., 2005b). The minimization of the cost function is then used as a stopping criterion for the 
optimization. In this regard, the number of free parameters and the number of configurations 
considered define the size of the inverse problem. Further, the definition of tolerance 
thresholds is important for optimal performance (Jacquemoud et al., 2009).  

There are several minimization techniques available in standard libraries, often classified 
according to their search strategy and to reliance on the model’s partial derivatives. Non-
derivative based algorithms include the “conjugate directions” method, which iterates from a 
single starting point (Goel, 1989; Liang and Strahler, 1993; Liang and Strahler, 1994; Bacour 

Figure 2-18: Schematic concept of the iterative optimization inversion algorithm. Adapted from 
Kimes (2000). The ‘state parameter’ is the parameter of interest, i.e. the LAI, while the ‘vegetation 
characteristics’ comprise all other leaf and canopy parameters used in the RTM. 
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et al., 2002b), or the “simplex” method, which starts from a family of points (Jacquemoud et 
al., 1994; Privette et al., 1994; Bicheron and Leroy, 1999). The “Steepest-Descent”, “conjugate 
gradient”, “Newton-Raphson”, or “Quasi-Newton” methods rely on a single starting point and 
derivative information (Pinty et al., 1990; Iaquinta et al., 1997; Combal et al., 2002a; 
Lauvernet et al., 2008). In the last decade, Bayesian probability approaches such as the 
“Markov Chain Monte Carlo” method are increasingly used (Zhang et al., 2005a; Verhoef, 
2007). The algorithms differ in their stability and in computation efficiency. Research 
suggests that the best optimization algorithm varies with the model. The technique has been 
applied for various vegetation types such as crops (Goel and Thompson, 1984b; Fang, 2003; 
Laurent et al., 2013), grassland (Privette et al., 1997; Vohland and Jarmer, 2008), and forests 
(Bicheron and Leroy, 1999; Meroni et al., 2004; Zhang et al., 2005a).  

The strength of the iterative optimization approach lies in its simplicity and wide availability, 
as well as its flexibility and the control the user can maintain over the process. A major 
drawback of iterative optimization is that it requires an initial guess of the solution to start 
the search in the parameter space. The correctness of this initial guess can be critical if it 
causes the solution to get trapped in a local minimum (Qiu et al., 1998; Bacour et al., 2002b; 
Combal et al., 2002a). The problem can partly be reduced by limiting the range of parameter 
variation (Lavergne et al., 2007), which however reduces the ability of modeling the natural 
variability of canopies, or by restarting the optimization algorithm several times at different 
points in the parameter space, which increases computation time. Similar approaches are 
genetic algorithms (Jacquemoud et al., 1994; Fang, 2003), which use a population of initial 
guesses that can be recombined and mutated. Either way, as the RTM has to be rerun 
iteratively, the computational inefficiency of the approach is a major concern. Thus, although 
iterative minimization methods proved to be efficient for case studies, they could not be 
applied operationally over large spatial or temporal domains or for 3D RTMs (Kimes et al., 
2000; Kimes et al., 2002; Jacquemoud et al., 2006). 

Look-up tables 

Look-up tables (LUT) constitute a simple inversion technique also based on the minimum 
distance between measured and modeled spectra (see Figure 2-19). By running the model 

Figure 2-19: Schematic concept of the Look-up table inversion approach. 
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several times in the forward mode with different combinations of input parameters, a data 
base with a large number of spectra is computed, a so-called LUT. The aim is to cover all 
relevant canopy realizations. During inversion, a merit function (see Equation 2.19) 
calculates the matches between a measured reflectance spectrum and all simulated spectra 
stored in the LUT. This merit function most frequently is a least squares estimate (LSE) 
(Rivera et al., 2013; Leonenko et al., 2013b). The parameter configuration that generated the 
best fit spectrum is then selected as a solution.  

The approach has several advantages. It is faster than optimization techniques, as the 
inversion of each pixel only involves the LUT searching procedure, while the computationally 
expensive LUT simulation is performed just once. Also, the LUT approach does not require a 
training phase, which is necessary with machine learning methods and time-consuming in 
most cases. Apart from the efficiency of the approach, the procedure has the advantage of 
performing a global search and thus avoiding the danger of getting trapped in a local 
minimum. This robustness is reinforced by not selecting the parameter set of the single best 
spectrum as the solution of the inversion, but by deriving the average or median of the 
parameters of multiple best fitting spectra (Weiss et al., 2000). Further, due to this best fit 
sample strategy a posteriori distribution of the variable of interest can be routinely derived, 
indicating the reliability of the final estimate (Kötz et al., 2004, see chapter 6.5.3). Another 
advantage is the easy integration of prior knowledge on the target parameter or on 
uncertainties into the process (Weiss et al., 2000, see also below and chapter 6.4). There is a 
range of studies that used LUT inversion to estimate chlorophyll, water content, LAI, fAPAR 
or fractional cover from RTMs (Weiss et al., 2000; Combal et al., 2002a; Kötz et al., 2004; 
González-Sanpedro et al., 2008; Knyazikhin et al., 1998; Darvishzadeh et al., 2008b; 
Leonenko et al., 2013a; North, 2002; Richter et al., 2009; Soenen et al., 2009; Atzberger and 
Richter, 2012). However, to achieve a high accuracy with this inversion method, the canopy 
needs to be accurately represented in the LUT. This means that the variable space must be 
sufficiently and systematically sampled, which increases the LUT size and slows down the 
estimation procedure. Thus, the parameterization of the model, a realistic distribution of 
variables, and the step sizes between variable states are crucial (Weiss et al., 2000; Combal et 
al., 2002a; Combal et al., 2002b). Another drawback e.g. for the processing of RS time series 
is that each sun and viewing geometry has to be accounted for in the LUT. To overcome this, 
Gastellu-Etchegorry et al. (2003) suggest interpolating between angles using an analytical 
BRF model, while Pasolli (2012) uses angle combination classes and associated individual 
LUTs. Further, when the model and measurement uncertainties are not well known, the 
definition of the cost function is a critical issue (Verger et al., 2011a; Leonenko et al., 2013b).  

Hybrid inversion approaches 

The second group of inversion techniques, biophysical variable driven methods, is based on 
calibrating a statistical relationship over a learning data set consisting of the input and 
output of an RTM. They are called “predictive”, “semi-empirical”, or “hybrid” approaches, as 
they combine physical and statistical models (Weiss et al., 2000; Liang, 2004). As the 
statistical methods described in chapter 2.2.2, inversion consist in adjusting the coefficients 
of a relationship between the reflectance and the LAI during a calibration phase in order to 
minimize the difference between this data base parameter value and the values predicted by 
the inverse model. Once the calibration is achieved, the operational retrieval is rapid and 
straight-forward (Duveiller et al., 2011b). The difference to a purely statistical approach is 
that training data for establishing the relationship is not measured by an RS sensor or in the 
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field. Instead, an RTM is used to build a synthetic data set, preserving the data from 
uncertainties associated with ground and RS measurements. Further, with RTMs a wider 
range of canopy realizations can be simulated than could be covered by in situ measurements 
(Haboudane et al., 2002; Dorigo et al., 2007; Lauvernet et al., 2008). Due to the highly 
complex relationships modeled in an RTM, non-parametric machine learning techniques are 
mostly preferred over simple parametric regressions.  

Inversions based on ANNs are the most prominent type of hybrid approaches (see Figure 
2-20). An ANN interconnects the synthetic inputs and outputs of an RTM during the learning 
phase (see chapter 2.2.2 for more details). Then, RS measurements are input into the trained 
ANN and transformed into biophysical variables (Jacquemoud et al., 2009). ANNs have 
lately become a popular method of inverting RTMs, mainly because of their high 
computational speed and their retrieval performance. As the optimization operates directly 
over the variables of interest, hybrid inversion approaches are potentially more accurate than 
other techniques (Schlerf and Atzberger, 2006; Bacour et al., 2006; Baret and Buis, 2008). 
Further, they are less sensitive to model uncertainties (Combal et al., 2002a). Verger at al. 
(2008) even showed that a single ANN trained across several ecosystems performs in a 
manner similar to ANNs trained for each ecosystem, which potentially reduces the 
computational time considerably when working on complex landscapes. As a further 
advantage, hybrid inversion schemes provide continuous solutions whereas LUTs yield 
results based on their discrete entries (Duveiller et al., 2011b). 

Major drawbacks of ANNs are the time-consuming training phase, the dependency of the 
retrieval performance on the modalities of the training data set and the network architecture, 
and the unpredictable behavior of ANNs when an RS signal is not well represented in the 
training data set. Further, due to their black-box character, they are unsuitable for studying 

Figure 2-20: Schematic concept of the artificial neural networks inversion approach. 
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cause-effect relationships. Also, they are tuned for a specific number of inputs, limiting the 
transferability to other RS data (Schlerf and Atzberger, 2006; Duveiller et al., 2011b; Verger 
et al., 2011a). There is a wide range of studies that use ANNs with a range of different sensors 
to determine LAI, gap fraction, fAPAR, or the canopy chlorophyll content (see e.g. Baret et 
al., 1995; Abuelgasim et al., 1998; Gong, 1999; Weiss et al., 2002; Kimes et al., 2002; Combal 
et al., 2002b; Atzberger, 2004; Fang and Liang, 2005; Bacour et al., 2006; Verger et al., 
2008; Duveiller et al., 2011b). An overview of the method is given by Kimes et al. (1998).  

The under-determined and ill-posed nature of RTM inversion 

The most serious restriction of RTM inversion is its instability, as it is an under-determined 
and ill-posed problem. According to Hadamard’s postulates, a problem is well-posed if and 
only if its solution exists, this solution is unique, and depends continuously on the data 
(Hadamard, 1902). The inversion of RTMs does not fulfill these criteria for two reasons. 

First, the equation system is mathematically often under-determined for a unique solution, 
because the number of unknown parameters ݌ is larger than the number ݊ of independent 
spectral measurements. Thus, the problem of underdetermination increases with an 
increasing number of free input parameters. According to Baret and Buis (2008), even a 
simple RTM requires at least 13 input parameters. Thus, theoretically, at least 13 
independent observations (bands or viewing directions) would be required to solve the 
inversion using RS data. This requirement can mostly not be fulfilled, even if RS sensors 
could provide a high number of measurements, because of the high correlation between 
bands and view directions (Gemmell, 2000; Zhang et al., 2002; Verhoef, 2007). If, however, 
only limited spectral information is provided, the signal can become ambiguous due to 
compensations between canopy parameter that affect canopy reflectance in a similar way (so-
called parameter equifinality). For example, the spectral reflectance of a canopy with low LAI 
but planophile leaf orientation is very similar to that of an erectophile canopy with high LAI 
in certain spectral domains (Baret and Guyot, 1991; Jacquemoud and Baret, 1993; Combal et 
al., 2002b; Atzberger, 2004). 

The second aspect is the ill-posedness, which relates to the required continuous dependency 
of the solution on the data. This means that the more accurately an RTM describes radiation 
transfer in the canopy, and the more accurate the RS information is, the more accurate the 
model output will be (Kimes et al., 2000). However, in reality, model and measurement 
uncertainties do not result in equal uncertainties of the solution, i.e. the solution being near 
the true solution, but might lead to leaps in the solution space. A continuous dependency of 
the model output on the input is thus not given (Atzberger, 2004). Especially over dense 
canopies for which reflectance saturates, a small variation in the input can translate to a large 
output variation (Combal et al., 2002b; Baret and Buis, 2008). Therefore, retrieval technique 
for solving ill-posed problems ideally should include uncertainty as an input parameter. 

A straight-forward way to reduce the dimensionality of the inverse problem is the coupling of 
leaf, canopy, and atmosphere models (Lauvernet et al., 2008; Kobayashi and Iwabuchi, 
2008; Houborg et al., 2009; Jacquemoud et al., 2009; Laurent et al., 2013). When 
reflectance and transmittance are provided to a canopy model by a leaf model, not only the 
number of ݌  decreases, but due to the independence of the remaining variables from 
wavelength, an increase in spectral sampling in fact reduces the under-determination (Baret 
and Buis, 2008). Equally, increasing the dimensionality of the RS observation with 
directional information reduces the problem (Lavergne et al., 2007; Verhoef, 2007; Vuolo et 
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al., 2008). According to Jacquemoud et al. (2000) and Widlowski et al. (2004), especially the 
retrieval of structural canopy variables benefits from multi-angular observations. However, 
most RS sensors have a limited number of viewing angles (Knyazikhin et al., 1998), although 
recently there has been an expansion of sensors providing multi-angular imagery (see 
chapter 2.3). The combination of several scenes recorded at different angles on consecutive 
days as provided by MODIS strongly depends on pixel quality and is not available from high 
resolution sensors (He and Yang, 2013). Thus, increasing independent spectral 
measurements is not trivial. 

Instead, regularization techniques have been introduced to stabilize RTM inversions, which 
rely on the use of “prior information” to a greater or lesser extent (Combal et al., 2002b). 
Prior knowledge includes any ancillary information about the “true” distributions of RTM 
input variables, e.g. land cover type, structural or phenological characteristics, or viewing and 
illumination conditions. It could be gained from literature, field measurements, model 
sensitivity (see chapter 6.2), other sensors, or the scene itself (Baret and Buis, 2008). Based 
on this knowledge, the under-determination is reduced through variables being set, which 
either are exactly known or have a small influence on the model output, to an assumed real 
value. The use of a priori information is indicated in Figure 2-18 to Figure 2-20 by the 
dashed arrow between “in situ measurements” and “RTM”. A comprehensive overview of 
regularization techniques is given by Tarantola (2005). Prior information can be introduced 
to the inversion in different ways. Techniques which try to fit the simulated and measured 
reflectances using a cost function (LUT and optimization techniques) can be modified by 
adding an a priori vector term to the cost function, creating a Bayesian approach (see e.g. 
Meroni et al., 2004; Lavergne et al., 2007; Lauvernet et al., 2008; Dorigo et al., 2009): 

J ൌ ൫R െ R෡൯
୲
∗ Wିଵ ∗ ൫R െ R෡൯ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ

ୖୟୢ୧୭୫ୣ୲୰୧ୡ	୧୬୤୭୰୫ୟ୲୧୭୬

൅ 	൫V෡ െ V୮൯
୲
∗ 	Cିଵ ∗ ൫V෡ െ V୮൯ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ

୔୰୧୭୰	୧୬୤୭୰୫ୟ୲୧୭୬

(2.20) 

where ෠ܸ  is the vector of the input biophysical variables, ௣ܸ corresponds to the vector of a 

priori variable values, ܴ  is the vector of RS measuremens, and ෠ܴ  is the vector of the 
simulated reflectances. Matrices ܹ  and ܥ  are the covariance matrices containing the 
observation and model uncertainties and the uncertainties of the prior information, 
respectively, as well as the covariance terms (Tarantola, 2005). Each term is weighted by the 
inverse of its covariance matrix, which represents the Bayesian degree of belief. However, as 
the uncertainties are often unknown and difficult to estimate in practice, they are assumed to 
be uncorrelated and ܹ and/or ܥ become diagonal (e.g. Laurent et al., 2013). Note that the 
first part of the equation is equal to Equation 2.19.  

Alternatively, prior information can be introduced to approaches which use a pre-computed 
data base (LUT and ANN) by adapting range, sampling intervals, and distribution of the 
input parameters used for canopy realizations (e.g. Darvishzadeh et al., 2008b; Dorigo et al., 
2009). In this regard, ecosystem specific parameterizations strongly reduce the ranges of 
input variables and increase the retrieval performance as long as no misclassification occurs 
(Baret and Buis, 2008; Dorigo et al., 2009). Otherwise, as proposed by Koetz et al. (2005a), a 
pre-selection of LUT entries based on the radiometric similarity can be exploited based on a 
prior guess of the result. Further, LUTs and ANNs can account for model and measurement 
uncertainties by adding noise to the LUT or learning data set (Combal et al., 2002b).  

Constraints can also be derived from spatial or temporal information (Lauvernet et al., 
2008). Atzberger (2004) introduced the inclusion of neighborhood signatures of a land use 
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object (agricultural fields). Based on the assumption of a constant canopy structure, intra-
field radiometric variability is used in combination with radiometric information to 
distinguish between planophile and erectophile canopies. This leads to a reduction of the 
confounding effects between LAI and LAD often observed for RTMs. Based on these findings, 
Houborg et al. (2009), Laurent et al. (2013), and Atzberger and Richter (2012) use a 2-step 
inversion approach. The first inversion over an object is used to derive the values of most 
model parameters for the second, pixel-wise inversion. This reduces the ill-posedness of the 
second inversion, which focuses on the variable of interest. These methods require RS 
imagery with a spatial resolution sufficient to detect different pixels within one field. 

The introduction of temporal constraints is based on the known dynamic of biophysical 
variables over time, which can be used to determine the typical ranges of input parameters in 
a particular development stage (Koetz et al., 2005a). These constraints can be introduced 
either directly when known, or through additional models such as SVAT or canopy structure 
dynamics models, which mimic the evolution of vegetation variables over time (Launay and 
Guerif, 2005; Koetz et al., 2007a; Duveiller et al., 2011b). Kötz (2005a) reported improved 
parameter estimates, particularly for large LAI values where signal saturation occurs. 
However, this approach cannot include abrupt changes caused by events such as harvesting, 
lodging, fire, or pest infestation. Lauvernet et al. (2008) minimized a cost function 
simultaneously over multi-temporal observation of a patch of reflectances. A certain spatial 
and temporal stability is assumed for the atmosphere and canopy parameters, respectively, 
thus reducing the overall number of unknown parameters. 

A variety of parameter fixation is the coupling of parameters, which is often performed for 
leaf water and dry matter content (see e.g. Weiss et al., 2000; Bacour et al., 2006; Duveiller 
et al., 2011b; Richter et al., 2011). This is based on the knowledge that relative water content 
in healthy green leaves is about 80 %, so that the water to dry matter ratio is fixed as 4:1. 
Another option is integrating individual parameters into synthetic parameters at the canopy 
level. Examples are the canopy chlorophyll content (leaf chlorophyll content × LAI) or total 
water content (leaf water content × LAI). These variables are physically meaningful, as they 
correspond to the actual optical thickness of the canopy, and their estimation using RS data 
has been proven to be more accurate than chlorophyll or water estimation on the leaf level 
(Jacquemoud et al., 1995a; Fourty and Baret, 1997; Lauvernet et al., 2008).  

2.3. LAI products 

Advances in radiation transfer modeling have enabled the operational derivation of LAI for 
about one and a half decades. The derivation of LAI from RS imagery has been a trade-off in 
this regard: high spatial resolution imagery came to the expense of low revisit frequency. As a 
high temporal resolution is crucial for monitoring vegetation parameters, so far only coarse 
resolution data are used for automated LAI derivation. Global LAI is thus provided at about 
250 - 1000 m spatial and 4 - 30 days temporal resolution. Improved atmospheric correction, 
radiometric calibration and model formulation have continuously enhanced their retrieval 
accuracy, although discrepancies between products and with ground data still remain (Weiss 
et al., 2007; Garrigues et al., 2008a; Baret et al., 2013). Besides, some regional, data fusion, 
as well as first global medium resolution LAI products have been developed (Table A-1). 

One of the most widely used LAI products is the MODIS LAI at 1 km spatial resolution, which 
has been made available since 2000. The theoretical basis of the algorithm is given in 
Knyazikhin et al. (1998). It is based on ecosystems specific 3D formulation of radiation 
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transfer. The inversion is performed using LUTs, with daily imagery derived from MODIS-
Terra and/or Aqua acquisitions, and the mean value of all acceptable solutions is retained as 
the final output value. The daily values are then integrated into one 4-day (both sensors 
combined) and three 8-day composites (each individual sensor and both sensors combined). 
If the main algorithm fails (in about 25 - 40 % of all cases), a backup algorithm based on LAI-
NDVI relationships is used (Myneni et al., 2002; Yang et al., 2006). Additional per pixel 
information on product quality is provided. Since its first release, the MODIS LAI product 
has been widely used and received considerable validation. As the former collection 4 product 
was reported to have temporal and spatial inconsistencies and to overestimate LAI especially 
over forests (Cohen et al., 2006; Weiss et al., 2007; Garrigues et al., 2008a), collection 5 was 
improved in this regard (Kraus, 2008; Sprintsin et al., 2009; Fang et al., 2012).  

The Multiangle Imaging Spectroradiometer (MISR) LAI product has been routinely 
processed since October 2002. It is based on the same 3D RTM and LUT algorithm as the 
MODIS product, but makes synergistic use of the spectral and directional information 
collected by MISR. The latest version is the level 3 product. As no backup algorithm is 
implemented, the algorithm provides LAI retrievals for 60 - 90 % of the input data (Hu et al., 
2003; Hu et al., 2007).  

Based on global data from the multi-angle POLDER (POLarization and Directionality of 
Earth Reflectance) sensor on ADEOS, LAI was derived over synthesis periods of 30 days 
using the PROSPECT Kuusk models and ANN inversion. In total, eight months of POLDER-1 
data (Roujean, 2002) and seven months of POLDER-2 data are available (Lacaze, 2005). 

CYCLOPES (Carbon Cycle and Change in Land Observational Products from an Ensemble of 
Satellites) LAI is operationally derived from VEGETATION data at 1 km resolution and with 
a temporal resolution of 10 days. Its algorithm is based on PROSAIL, with the option of pixels 
being a mixture of bare soil and vegetation patches. The PROSAIL output is used to train an 
ANN which is inverted over atmospherically corrected and BRDF normalized daily 
VEGETATION data, and smoothed with a moving window of 30 days (Baret et al., 2007). 
Validation and comparisons to other LAI products have shown good performance and stable 
temporal profiles, even though it suffers from saturation of LAI values larger than 4 (Weiss et 
al., 2007; Garrigues et al., 2008a; Duveiller et al., 2011b). CYCLOPES LAI has been 
developed within the CYCLOPES project and its successors “geoland” and “geoland2”, and is 
now provided as the “LAI Version 0” product in the Copernicus program. 

GEOV1 is one of the BioPar products developed within the “geoland2” project (Baret et al., 
2010a). It is a version of the CYCLOPES product, with the same spatial and temporal 
resolution and also based on ANNs, but with different training data. Instead of employing an 
RTM, the GEOV1 product exploits pre-existing LAI maps, namely the MODIS and 
CYCLOPES products. Their reflectances and LAI estimates are smoothed and corrected to 
overcome known deficiencies for low LAI values of MODIS and high LAI values of 
CYCLOPES, and used as a learning data set for the ANN. Inversion is then performed over 
VEGEGATION data (Verger et al., 2008; Verger et al., 2011b; Baret et al., 2013). Validation 
shows that GEOV1 LAI has smooth and intra-annually consistent temporal profiles 
(Camacho-de Coca et al., 2013). It is provided under the Copernicus program as “LAI 
Version 1”. Another geoland2 BioPar LAI product is based on MERIS data. It uses PROSAIL 
in addition to a surface shadow model and an ANN inversion technique, and has a spatial 
resolution of 300 m and a temporal resolution of 10 days (Bacour et al., 2006). The product 
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is provided for the years 2003 to present at near-real-time for Europe. In addition, on-
demand products can be generated on geoland2 sites (Poilvé, 2012). 

Another global LAI product based on VEGETATION data is GLOBCARBON, developed by 
ESA for the years 1998 - 2007. It additionally exploits data from the ENVISAT/ATSR-2 and 
MERIS (Medium Resolution Imaging Spectrometer) sensors. GLOBCARBON has a spatial 
resolution of 1 km and provides monthly global LAI maps. The algorithm encompasses a two-
step LAI derivation (Deng et al., 2006): preliminary LAI values are derived for six different 
plant functional types using a land cover classification. Based on this LAI, a BRDF correction 
is applied to the RS data. The final LAI value is derived using land cover specific statistical 
relationships with VIs established on the 4-scale GORT model by Chen and Leblanc (1997). 
LAI is estimated from each sensor for each time interval, and then the monthly median is 
computed (Plummer et al., 2006). The GLOBCARBON LAI has few missing values, but large 
spatial and temporal instabilities (Garrigues et al., 2008a). The Canadian Center for Remote 
Sensing (CCRS) is routinely generating Canada-wide LAI products from AVHRR and 
VEGETATION at 1 km resolution as 10-day composites using empirical algorithms. However, 
considerable errors and biases have been reported (Chen et al., 2002a; Fernandes and G. 
Leblanc, 2005). Rochdi and Fernandes (2010) also introduce an algorithm using empirical 
relationships to map LAI across Canada, however using 250 m MODIS data. 

ECOCLIMAP differs from the other products in that it is a climatology based on land cover 
maps, climate maps, and NDVI data. It is empirically derived using LAI values extracted from 
literature which are scaled over the growth period according to AVHRR NDVI dynamics. In 
this regard, LAI is not computed for each pixel but is estimated for an entire ecosystem 
(Masson et al., 2003; Champeaux et al., 2005). ECOCLIMAP has weaknesses in describing 
inter-annual and spatial variations of LAI, and generally overestimates LAI. At Boston 
University, another monthly LAI product (8 km spatial resolution) based on the AVHRR 
NDVI time series for 1981 - 1994 was developed using global land cover information and 
relationships established on a 3D RTM (Myneni et al., 1997; Buermann, 2002).  

An important step forward to higher spatial resolution LAI global products has been taken by 
Ganguly et al. (2012) at NASA, who recently proposed an algorithm for a provisional global 
LAI product at the 30 m Landsat scale. The implementation is based on a modified MODIS 
algorithm, and, in addition to the red and NIR reflectances, a SWIR band is used. Based on 
Landsat 5 and 7 (TM/ETM+) data, LAI has been derived for the years 2004 - 2007 over 
California. So far, global coverage has not been achieved7. 

2.4. Current research needs 

The measurement of LAI in the field and LAI derivation based on remotely sensed imagery 
has been an active field of research for about four decades. This chapter presented an 
overview of the relevant methods. Indirect in situ measurement techniques have been 
developed, which still have some shortcomings, but proved to measure LAI handily within a 
certain accuracy given a sound sampling procedure. Various empirical-statistical techniques 
have been extensively used although they are still restricted to the conditions that prevailed 
during the experiment. Also the understanding of the radiation regime within vegetation 
canopies has strongly increased and led to the development and validation of sophisticated 
RTMs of varying degrees of complexity.  

7 http://landsat.usgs.gov/LAI_Products.php. Last access: February 22, 2014. 
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Nowadays, the focus lies on developing robust techniques making use of these models. Three 
challenges that have persisted since the beginning of LAI derivation in this regard are signal 
saturation, inversion ill-posedness, and the dependency on field data for model tuning. These 
issues still impair the operational derivation of LAI based on physical as well as empirical-
statistical models. Approaches to overcoming these problems, e.g. by scaling or interpolating 
of non-sensitive spectral signals (Duveiller et al., 2011b; Baret et al., 2013), by using 
regularization techniques in RTM inversion (Combal et al., 2002b; Laurent et al., 2013; 
Rivera et al., 2013), or by extracting additional information directly from the RS data 
(Atzberger, 2004; Lauvernet et al., 2008) have been proposed during the last decade. 
Another issue is the missing knowledge and management of uncertainties – of the resulting 
LAI estimates as well as of data and model uncertainties – which are necessary to implement 
Bayesian inversion approaches and to use the LAI estimates in a range of applications (Baret 
and Buis, 2008). None of these aspects has been consolidated so far (Verrelst et al., 2014). 

New and upcoming multispectral sensor systems, which will combine high revisit frequency 
with high spectral and spatial resolution, will on the one hand improve the usage of spatial 
and temporal constraints during inversion by enabling the identification of individual fields 
and growth trajectories, and on the other hand ease the discrimination of land cover types 
and thus RTM parameterization due to a reduced amount of mixed pixels (Baret and Buis, 
2008; Jacquemoud et al., 2009; Duveiller and Defourny, 2010; Baret et al., 2013). However, 
with higher resolutions, the computational efficiency of LAI derivation approaches also 
becomes of greatest interest (Duveiller et al., 2011b). Technical issues such as efficient 
optimization algorithms, appropriate LUT construction, regularization techniques, or the 
handling of different observation geometries in one process could be mentioned. 

As stated above, the coupled PROSPECT+SAIL model is the most widely used RTM, due to 
its availability and the extensive investigation of its strengths and weaknesses (Jacquemoud 
et al., 2009). Shabanov et al. (2000) point out that 1D RTMs are a valid approximation for 
small and relatively homogeneous canopies. Indeed, some studies have used PROSAIL or one 
of its versions for crop LAI derivation based on different high resolution data: air-borne RS 
data (1 - 5 m spatial resolution, Atzberger et al., 2003b; Laurent et al., 2013; Laurent et al., 
2014), AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data (20 m, Jacquemoud 
and Baret, 1993), Landsat data (30 m, Atzberger, 2004), or CHRIS (Compact High 
Resolution Imaging Spectrometer) data (34 m, Atzberger and Richter, 2012). However, only 
few studies analyzed time series of high spatial resolution data, e.g. of SPOT data with 20 m 
resolution (Duveiller et al., 2011b) and air-borne data of 20 m (Koetz et al., 2005a). In these 
studies the general usefulness of inversion techniques based on pre-computed reflectance 
databases for multi-temporal analysis is mentioned, but the advantages, difficulties, and 
necessary considerations associated with the LUT approach are not discussed. Weiss et al. 
(2000) and Darvishzadeh et al. (2008b) used a LUT based inversion of PROSAIL and raised 
specific questions on the LUT and cost function settings, but none of them investigated them 
in detail with regard to temporal and spatial high resolution RS data.  

For these reasons and due to the general requirement of time series information for 
environmental monitoring purposes, multi-temporal LAI derivation based on the PROSAIL 
model and LUT inversions are pursued in this thesis. The RapidEye sensor (6.5 m spatial 
resolution) has been barely used for physical LAI derivation (Vuolo et al., 2010; Vuolo et al., 
2012). Furthermore, no study on LAI estimation from RTMs based on high spatial resolution 
satellite data has been conducted so far in grassland ecosystems that consist of a range of 
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different species. Available grassland studies are all based on data generated using field 
spectrometers (Dorigo, 2007; Darvishzadeh et al., 2008b; Vohland and Jarmer, 2008). 
Therefore, the main objective of this thesis is to quantify the performance of RapidEye time 
series data in a LUT inversion for a heterogeneous grassland landscape over two growing 
seasons. The potential of the RTM approach is compared to that of empirical-statistical LAI 
derivation which serves as a benchmark. 



47 

3. Study area
In this chapter, the area in which this thesis is conducted is presented. To gain an impression 
of the variety of grassland occurrences prevailing in this region, the climate and topography 
as well as the anthropogenic influences that shape the ecological conditions for grasslands 
are described. The catchments of the River Ammer and its tributary Rott in the Bavarian Alps 
and alpine foreland cover an area of about 770 km2. They are situated between the Lake 
Ammer and the German-Austrian border at latitude 47°30' to 47°57' and longitude 10°51' to 
11°16' and stretch over the administrative districts of Garmisch-Partenkirchen and Weilheim-

Figure 3-1: Topography of the Ammer catchment. The map shows a digital elevation model (DEM) 
provided by the DLR based on Shuttle Radar Topography Mission (SRTM) data (see chapter 4.2). 
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Schongau (Figure 3-1). The River Ammer originates from the Ammergau Alps, situated partly 
in Bavaria (Germany) and partly Tyrol (Austria). Its headwater is the creek Linder, which 
sinks into its riverbed between Linderhof Palace and Graswang due to karstic underground 
and resurfaces as Ammer about 5 km before it passes by Oberammergau. Before entering 
lower areas near Peissenberg, where the river bed becomes wider, the Ammer has carved a 
gorge of up to 80 m depth through the molasse hills near Rottenbuch. The river drains into 
the Lake Ammer, located 35 km south-west of Munich, up to where the length of Linder and 
Ammer is 84 km. Downstream of Lake Ammer, the river continues as Amper, which flows 
into the River Isar north of Munich and thus belongs to the drainage basin of the Danube 
(Rippl, 2011). The catchment is delimited to the west by the catchment of the River Lech and 
to the east by the catchment of the River Loisach. It is primarily characterized by its 
topography, which causes a large spatial differentiation in climate, soil, and land use 
(Smiatek et al., 2012). The highest elevation (Kreuzspitze) is at 2185 m above sea level (a.s.l.) 
in the Ammergau Alps, and the outflow into the Lake Ammer is at 533 m a.s.l. 

The catchments are part of the German Helmholtz Initiative TERENO (TERrestrial 
ENvironmental Observatories, Bogena et al., 2012). Together with the research stations 
Schechenfilz (south of Lake Starnberg), Höglwald (near Augsburg), and Scheyern (north of 
Munich), they form the TERENO Alps/pre-Alps Observatory. At the stations Graswang, 
Geigersau, Rottenbuch, and Fendt (see Figure 3-1) a measurement network collects data 
about biosphere-atmosphere exchange processes as well as meteorological data, of which the 
irradiance measurements are used in this thesis (see chapter 4.3.2). The main objectives of 
the TERENO observatory are the long-term monitoring of global change effects on C-/N-
cycles, nutrient deposition, trace gas exchange, vegetation and microbial biodiversity, and 
Alpine watershed hydrology.  

3.1. Climate 

Southern Germany is characterized by a warm temperate humid mid-latitude climate with 
predominating westerly winds throughout the year. Due to the topography of the study area, 
temperature and precipitation have latitude and height dependent gradients, contributing to 
the variety of environmental conditions in the study area (Kunstmann et al., 2004). The long-
term annual air temperature averages (reference period 1981 - 2010) are around 8 °C in the 
alpine foreland and around 4.5 °C in the mountainous areas (Figure 3-2). Precipitation rates 
are relatively high overall and reach their maximum in the summer season. Long-term mean 
annual precipitation increases from its minimum in the north (~ 1000 mm) to maximum 
values above 2000 mm in the southern mountain ranges (Figure 3-3). The number of days 
with snow cover (depth > 10 cm) in the catchment is around 130 days per year (Ludwig, 
2000). Winds differing from the common westerlies produce special weather conditions in 
the alpine foreland: in the winter months, southerly winds, the so-called Föhn, cause air 
masses to descend in the lee of the Alps, bringing warm and dry weather conditions with 
sometimes stormy winds. Northerly winds, however, often cause cloud formation and heavy 
precipitation as a result of the forced uplift of the air on the windward side of the mountains. 
This weather situation with extreme convective precipitation over restricted areas 
occasionally leads to severe flooding in the Ammer and neighboring catchments, such as in 
August 2005 or August 2010, due to the fast response of river runoff to precipitation events 
in Alpine catchments (Smiatek et al., 2012). With regard to the vegetation cover, the climatic 
conditions in the area inhibit the intensive cultivation of crops but favor grassland and forest 
ecosystems. 
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3.2. Geology, geomorphology and soils 

The study area stretches over two major natural regions of Germany: while the southern half 
is part of the Bavarian-Tyrolean Intermediate Limestone Alps, the northern part belongs to 
the Subalpine New Moraine Land, which is a hill country characterized by its Pleistocene 
glaciations and recent processes (Dongus, 1993). The three main geological units are the lime 
and dolomite alpine zone in the south, the intermediate flysch zone, and the folded and 
unfolded molasses in the northern part of the catchment. Soil genesis only started after the 
end of the most recent ice age (Stolz, 1998).  8 

The region roughly south of 47° 35' N is called the Ammergau Alps. In contrast to the rather 
homogeneous Northern Limestone Alps bordering to the south, they consist of complexly 
stratified and folded series of different facies (Figure 3-4). Lying in this transition zone, the 
Ammergau Alps’ geomorphology is characterized by three different mountain forms (Figure 
3-6). The southern part of the Ammer mountain range consists of Mesozoic rocks. In the 
southernmost part, Triassic Principal Dolomite rocks have the main share, which are 
characterized by huge walls with rather monotonous summits such as the Kreuzspitze (2185 
m a.s.l.). Dolomite rock generates a lot of debris, thus vast debris screes (so called Griese) 
shape the slopes and valley bottoms. The area north of the Graswang valley is dominated by 
lithographic and Wetterstein limestone with accordingly more diverse and rugged mountain 
formations such as the Klammspitze (1924 m a.s.l.) or the Hochplatte (2082 m a.s.l.). In 
                                                            
8  Data downloaded on March 4, 2014, from http://www.dwd.de/bvbw/appmanager/bvbw/ 
dwdwwwDesktop?_nfpb=true&_pageLabel=dwdwww_result_page&gsbSearchDocId=960246. 

Figure 3-2: Annual long-term average of air 
temperature in the Ammer catchment for the 
reference period 1981 - 2010. Data provided by 
the German Weather Service (DWD)8.  

Figure 3-3: Annual long-term average of 
precipitation in the Ammer catchment for the 
reference period 1981 - 2010. Data provided by 
the German Weather Service (DWD)8. 
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these areas, only shallow alpine soils sparsely covered by vegetation have developed (e.g. 
Rendzic and Umbric Leptosols, dark brown and pink signature in Figure 3-5, Hartwich et al., 
1998). 

The so-called Flysch Alps (red signature in Figure 3-5) north of a fault zone at 
Oberammergau constitute the northern fringe of the Ammergau Alps. Their parent rock 
consists of Cretaceous subaquatic sediments such as marlstone and calcareous gravels and is 
therefore quite erosive. This created rather low and round mountain ranges that are almost 
completely covered by forests such as the Hörnle (1548 m a.s.l.). Their soils, mostly Eutric 
Cambisols and Podzols, are prone to erosion and landslides (Freudenberger and Schwerd, 
1996; Fischer, 2002). In addition to the large geological units, small areas of marl, sandstone, 
radiolarite, and the debris screes on the valley bottoms contribute to the pedological and 
hence ecological heterogeneity of this area, which shelters a range of rare species. Not least 
because of this, but also due to the low human impact in this area, the Ammergau Alps 
became a nature reserve in 1963 and are still the largest site under the habitats directive 
(NATURA 2000) in Bavaria (Bundesamt für Naturschutz, 2013, see Figure 3-7). 9 10 

The area north of the fault zone near Unternogg belongs to the Alpine foreland. It consists of 
hill country and moorland with landforms such as moraines and drumlins shaped by the last 

9 Geological data of Bavaria can be viewed under http://www.bis.bayern.de/bis/initParams.do. Last access: 
March 13, 2014 
10 Data downloaded on March 4, 2014, from http://www.geoshop-hannover.de/. 

Figure 3-5: Soil Map of the Ammer 
catchment. The soil map BUEK1000DE 
(Hartwich et al., 1998) is provided by the 
German Bundesanstalt für Geowissenschaften 
und Rohstoffe (BGR)10. 

Figure 3-4: Geology of the Ammer catchment. 
Data provided by the Bayrisches Landesamt für 
Umwelt (LfU)9. The fault zones are indicated as 
black lines. 
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glacial period (Würm glaciation) (Frank, 1979; Meyer and Schmidt-Kaler, 1997). The bedrock 
of the new moraine landscape is Tertiary molasse, which can be further differentiated into a 
southern part of folded molasses (subalpine molasses) and a northern part of undisturbed 
molasses (foreland molasses), with the fault zone near Peissenberg being the border. It is 
overlaid by Pleistocene sedimentary rock such as gravel (ocher signature in Figure 3-5) and 
moraine till (red-brown signature) left behind by the Isar-Loisach glacier, which weathered to 
loamy and sandy Cambisols. Only in a few places can outcrops of the molasse bedrock, such 
as the Hohen Peissenberg (988 m a.s.l.), be found. Fluvisols and Gleysols (turquoise 
signature) evolved in depressions and on the fluviatile sediments along the river valleys. 11  

Overall, the pedogenesis in the Ammer 
catchment resulted in relatively shallow soils 
unfavorable for crop cultivation, but 
sufficient for grassland ecosystems. Further, 
relatively large parts of the study area are 
covered by fens and bogs, mostly along the 
river valleys and in the littoral zones of the 
lakes (green signatures in Figure 3-5, 
Hartwich et al., 1998). Due to their size and 
integrity, most of them are protected under 
the habitats directive. Examples of big fens 
are the Weidmoos and the Pulvermoos in the 
Natura 2000 site Upper Ammer Valley (beige 
signature in Figure 3-7), the Grasleitner 
moorland (purple signature), or the 
moorlands west of Lake Staffelsee (yellow 
signature). They include inter alia the 
habitats ‘alkaline fens’, ‘transition mires and 
quaking bogs’, ‘active raised bogs’, and 
‘natural dystrophic lakes and ponds’. These 
very humid and alkaline areas are covered by 
grasses and herbaceous species to a great 
extent, and are thus treated as grasslands in 
this study as long as they are not covered by 
standing water (see chapter 4.1.3).  

                                                            
11 Spatial data on the Natura 2000 sites can be downloaded from http://www.eea.europa.eu/data-and-
maps/data/natura-2/natura-2000-spatial-data. Last access: March 10, 2014 

Figure 3-6: View of the Upper Ammer Valley with the Hörnle and Aufacker summits as part of the 
lower Flysch Alps in the background and the Laber and Ettaler Mandl summits from calcareous 
rock to the right. The brownish area at the valley bottom is the Weidmoos. 

Figure 3-7: Distribution of Natura 2000 sites 
within the Ammer catchment with their 
(shortened) German names. The data are 
provided by the European Environmental 
Agency11. 
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3.3. Land cover 

The rural land cover of the study area is representative of the alpine upland of Central 
Europe. It is a heterogeneous landscape fragmented by small settlements, forest patches and 
small-scale agricultural areas. According to the CORINE (COoRdination of INformation on 
the Environment) land cover classification for the reference year 2006 (CLC2006) provided 
by the European Union, the Ammer catchment is dominated by agricultural areas (43.7 %) 
and forests (41.4 %), while only 3.7 % of the area is constituted by urban areas, 4 % are fens 
and bogs, 4.2 % are transitional shrub-woodland, and 1.8 % are sparsely vegetated areas and 
bare rock (Figure 3-8). These latter two classes occur mainly above 1200 m in the Alpine 
areas of the catchment. The high share of forested areas especially in the southern part of the 
catchment is also caused by topography. These mountain areas have only shallow soils and 
either too steep or erosion-prone slopes on the Flysch bedrock, and thus are not usable for 
agriculture. In 2011, 217 829 people lived in the two administrative districts of Garmisch-
Partenkirchen and Weilheim-Schongau (Bayerisches Landesamt für Statistik und 
Datenverarbeitung, 2013a, 2013b), although only 40 % of the area of both districts is covered 
by the Ammer catchment, excluding big towns such as Garmisch-Partenkirchen. The largest 
towns inside the catchment are Weilheim (about 21 300 inhabitants), Peißenberg (about 
12 300 inhabitants), and Murnau (about 11 500 inhabitants). 

Figure 3-8: Simplified CORINE land cover classification of the Ammer catchment (colors according 
to official legend) and its location in Germany (upper right). 
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3.4. Economy 

The importance of the individual economic sectors in the districts of Garmisch-Partenkirchen 
and Weilheim-Schongau (Table 3-1) is in line with the economic structure of Bavaria, 
although the relevance of agriculture and forestry in both districts is higher than the Bavarian 
average (0.5 %). As mentioned above, due to the humid climatic conditions, a short growing 
season length, and the relatively young and shallow soils, the cultivation of field crops is 
rather unproductive in most agricultural areas in the Ammer catchment (Stolz, 1998). 
According to the CLC2006, only few fields (6.6 % of the agricultural areas) in the Ammer 
catchment are used for crop cultivation, which is far below the Bavarian average of about 
65 % (Bayerisches Landesamt für Statistik und Datenverarbeitung, 2013c). Following the 
climatic gradient, the crop fields are rather arranged in the northern part of the catchment 
and are mostly used for winter wheat and winter barley, rape and forage maize. The major 
part of the region’s agricultural areas is thus grassland used for hay production and cattle 
livestock farming (see below). The mean proportion of the industrial sector in the districts is 
slightly lower than the Bavarian average (difference of 0.4 %), and the industrial production 
is distributed unequally between the northern and the southern parts of the region (Table 
3-1, Bayerisches Staatsministerium für Wirtschaft und Medien Energie und Technologie, 
2013). Garmisch-Partenkirchen has neither got big firms nor much space for industrial 
facilities due to the orography, protected areas (more than 50% of the district’s area) and vast 
forested areas. Weilheim-Schongau, however, has better topographical conditions as well as a 
longer industrial tradition (e.g. pitch coal mining in Peißenberg and Penzberg with its heyday 
in the 1960s, Balthasar et al., 1975) and a range of medium-sized enterprises.  

Apart from the above-average relevance of agriculture and forestry in the Ammer catchment, 
tourism stands out, especially in the district Garmisch-Partenkirchen. The development of 
tourism in the region was fostered early on through the construction of the train connection 
from Munich that reached the town of Murnau in 1879 and Garmisch-Partenkirchen in 1889. 
Tourism is nowadays an important economic sector and contributes strongly to the region’s 
gross sales (e.g. 18.4 % of the primary income in Garmisch-Partenkirchen for the year 2012, 
Bengsch and Neumann, 2013). With more than 3 million overnight stays, Garmisch-
Partenkirchen ranks under the 10 most frequently visited places in Bavaria. Nature plays an 
important role for tourism, with the main activities being hiking and skiing (Wagner, 2013). 
Thus the state of the grasslands in the area is also relevant for this economic sector. Further, 
the fens played an important role in the economic and touristic evolution of the region, as the 
extraction of mountain pine peat in the Ammer Valley laid ground to the development of 
several health resorts. Spa tourism and the associated economic branches such as the health 
and social services sectors still account for 25 % of all insurable employments in Garmisch-
Partenkirchen (Bayerisches Landesamt für Statistik und Datenverarbeitung, 2013b). 

Table 3-1: Economic structure of the administrative districts in the Ammer region (differentiated 
for the districts of Garmisch-Partenkirchen and Weilheim-Schongau; Bundesamt für Bauwesen 
und Raumordnung, 2007). The share of each sector in the economy of the districts is indicated. 

 Garmisch-Partenkirchen Weilheim-Schongau 

Agriculture and forestry 0.9% 1.1% 

Industries 19.3% 48.0% 

Tertiary sector 79.8% 50.9% 
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3.5. Grasslands 

In contrast to most crops, the grassland ecosystem can be quite productive under humid and 
rather cold conditions and even develop dense canopy structures with LAI values of up to 10 
(Wohlfahrt and Cernusca, 2002; Becker et al., 2007). Although the plant communities of 
these grasslands are natural, they are often referred to as semi-natural grasslands since 
almost all European grasslands have been created by agricultural activities to a major extent 
and are more or less modified by human activity (Silva, 2008). Different fertilization 
intensities have led to differentiations of plant community and biomass production. 

The grasslands in the region are maintained through grazing and cutting regimes, as 
agriculture consists mainly of dairy and meat production. In the two administrative districts, 
a total of 93 600 cattle were kept in 2010 (Bayerisches Landesamt für Statistik und 
Datenverarbeitung, 2013b, 2013c). Grassland communities consist of two thirds of grass 
species and one third of leguminous and herbaceous species. However, due to different 
management practices, this ratio and the specific species composition can vary considerably. 
Meadows are grasslands that are never grazed but cut several times a year for fodder 
production. This sudden intervention favors grass species and more light resistant 
herbaceous species. After the first harvest in late spring, manure fertilization is often applied 
on meadows in the alpine upland. Pastures are grazed by animals, which is a more 
continuous and selective process and brings forth herbaceous species that are resistant to 
steps and disdained by cattle. Also here, the nutrient input through animal excretions 
constitutes a fertilization that in turn favors demanding species, leading to additional spatial 
differentiation of species composition (Klapp, 1971). Further, pastures can be separated into 
year-round pastures and rotational grazing systems. The latter are hayfields that are 
subdivided into grazing lots, which are alternately grazed for 2 - 4 days to allow for 
regeneration afterwards. In some areas, such pastures are in addition periodically cut to 
remove weeds and lush vegetation patches of animal rest areas, or to obtain winter fodder 
(Ellenberg and Leuschner, 2010). In the alpine upland, most pastures are cultivated using 
these rotational grazing and cutting hayfield systems. With the grazing and/or vegetation 
cuttings followed by rapid plant re-growth, these grasslands undergo multiple growing cycles 
within a single vegetation period (Wohlfahrt and Cernusca, 2002).  

Apart from the intensively used mesophile grasslands, there are many extensively managed 
grassland types in the Ammer catchment. Two European agro-environmental schemes that 
aim to preserve biodiversity, the High Nature Value (HNV) farmland indicator and the 
habitats Natura 2000 directive are implemented in the area. The designation of both area 
types relies on the abundance and kind of occurring species or habitats, and especially on 
grasslands, these areas do overlap. In HNV areas, the aim is to preserve low-intensity 
agriculture with 1-2 harvests per year and no or little fertilization, as well as the resulting 
semi-natural biomes (BfN, 2014). The Natura 2000 habitats may be but do not have to be 
areas used for agriculture. Habitats such as ‘semi-natural dry grasslands‘, ‘species-rich 
Nardus grasslands’, ‘lowland hay meadows’, and ‘mountain hay meadows’ are characteristic 
for dry grassland communities on the region’s calcareous bedrock. All of these habitats are of 
high relevance for rare plant and animal species, and can for example be found in the Natura 
2000 site Ammertaler Wiesmahdhänge (light green signature in Figure 3-7). Rather humid 
grassland sites, often situated on alkaline fens and other moorlands, are cultivated hay 
meadows including the habitats “Molinia meadows on calcareous, peaty or clayey-silt-laden 
soils” and “hydrophilous tall herb fringe communities”. Large Molina sites are located in the 
Upper Ammer Valley or north and west of Lake Staffelsee. All these sites are developed and 
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cultivated by man and need regular anthropogenic intervention to prevent the invasion of 
reed and scrubs. Therefore, they are managed according to specific guidelines that require 
farmers to mow the grassland no more than once per year (after September 1st), but at least 
once every second year to maintain the respective habitat type and species composition. 
Livestock farming and fertilization is not allowed on these meadows (Bundesamt für 
Naturschutz, 2013). 

As shown above, the topography and geology in the Ammer catchment creates a 
heterogeneous and fragmented landscape. A wide variety of ecological niches is laid out by 
the microclimate, relief, and soils at relatively small spatial and temporal scales, creating 
different grassland species compositions (Pauli et al., 2003a). This diversity is extended 
through the above mentioned farmers’ management techniques, differing in their frequency 
and timing of (selective) plant removal through mowing and grazing. They further increase 
the high spatial and temporal variability of grassland types and occurrences in the region, as 
illustrated in Figure 3-9.  

Figure 3-9: Examples of the grassland types and occurrences due to different managing 
techniques. a) The meadows vary in occurrences on a very small scale. b) and c) Examples of dense 
meadows shortly before harvest in differently nutritious sites. d) Intensively mowed meadow with a 
high herbage share. e) and f) Meadows shortly after harvest, with traces from the combine 
harvester. g) Meadow of a rotational grazing-mowing system still showing patterns caused by 
pasturing. h) and i) Intensively grazed pastures with reptant herbs and patches of species spurned 
by cattle. Photos taken in May 2011 (a, b, c, d, f, and i) and September 2011 (e, g, and h). 
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The productivity and functioning of the different grassland ecosystems in the Ammer 
catchment can be altered and even lost through land abandonment and consequent 
afforestation, changes in livestock density, or intensification of grassland management (e.g. 
through fertilizers, pesticides, and alien grass varieties). The conversion into arable land due 
to its higher profitability and recent developments such as increased biofuel production are 
also relevant in the region (Silva, 2008). The state of the grasslands in the alpine upland can 
thus not be taken for granted, and their monitoring is of high relevance for several reasons 
(Smit et al., 2008). Firstly, this agro-ecosystem is used for fodder and cattle production, so its 
surveillance is important for agrarian issues such as yield monitoring, but also for political 
and economic reasons, as proper grassland management is subsidized e.g. on the Natura 
2000 sites. Apart from the feed supply, grasslands are responsible for the supply of a range of 
ecosystem services, such as reducing erosion by supporting slope stability, regulating water 
regimes and purifying water from fertilizers and pesticides (Reid, 2005). Further, the 
conservation of biodiversity in managed agricultural landscapes is of high relevance, as 
extensive grasslands are among the most species-rich habitats in Europe (WallisDeVries et 
al., 2002). Grasslands also support cultural services, for example by contributing to a region’s 
cultural heritage and recreational values (Hopkins and Holz, 2006). To ensure these services, 
the ecological functions of this ecosystem need to cope with a range of global changes. While 
grasslands are already under great pressure due to the various human activities, alpine 
ecosystems are assumed to be particularly sensitive to changes in the climate system and 
ecological changes such as nutrient deposition (Beniston, 2005; Becker et al., 2007; Rammig 
et al., 2010).  
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4. Data and preprocessing 
In this chapter the RS and in situ data used in this thesis for statistical LAI modeling as well 
as for RTM calibration and validation are presented. The RapidEye data specifications, their 
preprocessing and the land cover classification applied to the RapidEye data, which are 
applied to identify the grassland areas and correct their reflectances, are presented first 
(chapter 4.1). Chapter 4.2 presents the used digital elevation model (DEM), while in chapter 
4.3 the sampling design and the data collected during the field campaigns are summarized.  

Figure 4-1 gives an overview of the number of all available data sets and the timing of the in 
situ measurement campaigns (green) with regard to the RapidEye acquisitions (blue) over 
the study area for the years 2011 and 2012. Each field campaign took between two and seven 
days, depending on the number and type of measurements conducted. It was intended to 
have the field measurements well distributed over the growing season in order to cover as 
many phenological stages as possible. As the fastest changes in natural vegetation occur in 
spring, measurements were taken more often during this period. The April campaign of 2011 
was repeated in 2012, as snow fall and a defective measurement device prevented a sound 
measurement procedure during the first campaign. Additionally, measurements were 
conducted in August 2012 to better cover the phenological maximum. 

In total, 20 RapidEye images are available for both years. However, this includes all scenes 
that have even a little coverage of the catchment. Thus, during the two years a complete cover 
of the catchment is achieved only eight times (Figure 4-2). Only a narrow corridor between 
approximately 10°55' E and 11°15' E longitude, that is a stripe of 4.3 km width, is covered ten 
times. Clouds further reduce the spatial information available individually for each scene. 
The scenes are rarely taken directly at nadir, but the view angles of the scenes do not exceed 
15° from nadir. The sun zenith angle ranges from 24.2° to 48.8°. An overview of the 
acquisition conditions of the RapidEye scenes is given in Table A-2.  

Figure 4-1: Dates of ground measurements and RapidEye acquisition dates. The green boxes 
indicate the field campaigns while the blue lines indicate the days of the RapidEye acquisitions. 
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4.1. RapidEye data 

4.1.1. Data specifications  

The RapidEye constellation was launched on August 29, 2008 from the spaceport Baikonur 
in Kazakhstan by the RapidEye AG and is now run by the company BlackBridge. It consists of 
five satellites located in the same sun-synchronous orbital plane at an altitude of 630 km. 
They carry identical sensors that are calibrated equally to one another, hence can be treated 
identically. The cameras are push broom scanners with five spectral bands in the VIS and 
NIR domain (see Table 4-1) built by Jena Optronic (Reulke and Weichelt, 2012). In this 
regard the red edge band is an exceptional feature as up to the time of the RapidEye launch, 
the MERIS sensor was the only multispectral sensor equipped with a channel in the red edge 
region. Each of the five linear arrays contains 12 000 sensor elements. With a field of view 
(FOV) of ± 6.75º about nadir, RapidEye has a swath width of 77 km. The FOV can be oriented 
across track by up to ±25°. The spatial resolution of RapidEye is 6.5 m. This is converted to 
5 m resolution for the level 3 product. 4 million km2 of data are recorded by the five sensors 

Figure 4-2: Number of available RapidEye scenes in 2011 and 2012 over the Ammer catchment.  

Table 4-1: Wavelengths and band width of the RapidEye bands. 
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every day. The broad swath width, wide field of regard, and the use of five identical satellites 
enable a high temporal resolution despite the high spatial resolution. Daily images can be 
recorded in the off-nadir, while the revisit frequency for at nadir acquisitions is 5.5 days. All 
images are collected, stored, and sent to the receiving station at a radiometric resolution of 
12 bit, where they are radiometrically corrected and scaled to 16 bit dynamic range 
(RapidEye, 2011). With its high spatial resolution, frequent revisits, large area coverage, and 
the additional red edge band, RapidEye is potentially highly suited for the monitoring of 
vegetation properties (Tyc et al., 2005). 

4.1.2. Data preprocessing 

RapidEye imagery is available in two processing levels, the basic product (level 1B data) and 
the ortho-suite product (level 3A data). In this thesis, level 1B data with a spatial resolution of 
6.5 m were used. The bands are delivered as individual NITF 2.0 files. Level 1B data are 
sensor level data with basic radiometric and geometric sensor corrections (RapidEye, 2011). 

At-sensor corrections 

The radiometric corrections performed on the level 1B data comprise the correction of 
radiometric differences between the five detectors, non-responsive detector filling, and the 
conversion to values directly related to the initial at-sensor spectral radiance. The 
radiometric calibration is necessary because the sensors convert the signal of incoming 
energy to a digital number (DN). To convert the relative pixel DNs into absolute radiance 
values, scaling constants (gain ܿଵ	and offset	ܿ଴) are used: 

 L ൌ c଴ ൅ cଵ ൈ DN  (4.1) 

The calibration coefficients ܿଵ	and 	ܿ଴  have been determined during pre-launch for each 
sensor element of each band and are periodically updated through statistical checks of all 
recorded image data, additional acquisitions over calibration sites and absolute ground 
calibration campaigns. The resulting DN values in the RapidEye images correspond to a TOA 
radiance of 0.01 W/m2 sr-1μm-1 scaled to 16 bit (RapidEye, 2011).  

The basic geometric sensor correction accounts for distortions caused by the internal detector 
geometries, by the combination of the two sensor chipsets into a virtual array, and by the co-
registration of all bands which have imaging time differences of up to three seconds. 
Additionally, ephemeris corrections are performed. This means that the images are 
geometrically corrected to an idealized sensor and satellite model, but no terrain model is 
used in the processing of the 1B products. Therefore, the indicated default image horizontal 
accuracy of the basic product, which is at least 23 m CE9012 in areas of higher Ground 
Control Points (GCP) quality, is only valid for images collected at nadir over flat terrain 
(RapidEye, 2011). The data used in this thesis have an accuracy of 12.3 - 30.4 m CE90.  

Geometric corrections 

The overall aim of geometric rectification of RS data is to ensure the spatial comparability of 
different data sources, in this work of different RapidEye scenes, the DEM, and in situ 
measurements. An overview of sources for systematic and non-systematic geometric 
distortions is given by Richards and Jia (2006). While the first kind of errors is corrected 
                                                            
12 CE90 is the minimum diameter of the circle centered on all GCPs that contain 90 % of their respective 
counterparts acquired in the scene. 
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during the basic geometric corrections of level 1 imagery, non-systematic errors cannot be 
accounted for automatically and thus require manual corrections. In the Ammer catchment, 
strong non-systematic geometric distortions are mainly introduced by the terrain. For this 
reason, in addition to georectification, orthorectification was performed.  

As the Rational Polynomial Coefficients (RPC)13 useful for geo- and orthorectification are 
encoded in the NITF file subheader, the original data files were used in a first step for 
orthorectification of each individual band, based on the RPCs and a 30 m SRTM DEM (see 
below). After the composition of the individually orthorectified bands in a GeoTIFF format, 
the layer stacks were transformed into the Universal Transverse Mercator (UTM) projection 
(Zone 32N, WGS 84 datum). As the resulting scenes did not match each other exactly but still 
showed deviations of up to 40 m in some parts of scenes, the RapidEye image from May 9, 
2011 was georeferenced using 14 GCPs collected in the field as well as a first order polynomial 
warp. The resulting geometric error was less than one RapidEye pixel (RMSE of 0.77). This is 
higher than the general rule of remaining under half a pixel location error (Richards and Jia, 
2006), but could not be reduced due to the complex terrain. Afterwards, all other RapidEye 
scenes were co-registered to the May 9, 2011 scene. 

Masking 

In the next step, all water bodies, snow covered areas, clouds, and cloud shadows were 
masked manually in the RapidEye images. The same water mask was applied to all 20 
images, whereas all other masks were created scene-specifically. Manual masking of water 
became necessary as a wide variety of water bodies – rivers, creeks, lakes and ponds of 
differing depth and sediment load – with very different spectral properties occur in the study 
area, which made an automated detection difficult. Clouds were not extracted from the cloud 
masks delivered with the RapidEye L1B product, as these masks had weaknesses over the 
bright rock outcrop and snow areas in the alpine areas, as well as in detecting thin clouds and 
contrails. Cloud shadows could not be identified automatically based on the cloud masks due 
to the complex terrain. Additionally, snow areas were masked in six of the RapidEye images. 

Atmospheric and topographic corrections 

As described in chapter 2.2.1, radiance reaching the sensor is influenced by processes that 
occur during the downward and upward transfer of radiance through the atmosphere, and 
thus needs to be corrected for these effects. In this thesis, the IDL code of the ATCOR3 
software (Richter and Schläpfer, 2012) was used. ATCOR uses large sensor-specific databases 
(LUTs) of atmospheric correction functions, which are the results of pre-calculated radiative 
transfer simulations with the MODTRAN5 (MODerate resolution atmospheric 
TRANsmission) model (Berk et al., 2008). The LUTs cover a wide range and various 
combinations of aerosol types, water vapor content, visibility, solar angles, and ground 
elevations. The automatic estimation of the AOD over dark reference pixels in ATCOR was 
applied in this thesis. Further, the option of having variable AOD in the scene was chosen, as 
potentially significant visibility differences were assumed for the alpine and foothill areas of 
the study region. The automatic AOD estimation resulted in visibility ranges between 15 and 
70 km for the different scenes (Table A-3). In three scenes, additional haze removal was 

                                                            
13 To gain a relation between image and ground coordinates for every pixel, each sensor relies on a model, 
i.e. a set of equations incorporating information such as platform altitude, viewing angle, and sensor focal 
length. To approximate this relationship without inverting the sensor model, RPCs (Rational Polynomial 
Coefficients or Rapid Positioning Coordinates) are used in analytical models (Xiong and Zhang, 2009). 
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applied. The rural aerosol type was chosen for the corrections, as well as the mid-latitude 
summer atmosphere, which corresponds to a 2-3 cm water vapor column. The range of 
adjacency effects, which accounts for the adjacency radiation	ܮ௔ௗ௝, was set to 0.1 km. 

Due to the rugged terrain in the alpine region of the study area, topographic correction is 
necessary. The aim of topographic correction is twofold: to account for ܮ௧௘௥ on the surface 
reflectance and to normalize the reflectances to the viewing direction, thus to create 
reflectances as they would have been measured over flat terrain. The ATCOR3 program 
provides the possibility of topographic corrections concurrently with the atmospheric 
correction by incorporating a DEM. The DEM enables a BRDF correction as well as the 
calculation of ܮ௧௘௥ based on a sky view factor14 (Richter and Schläpfer, 2012). However, no 
satisfying results could be achieved for the RapidEye scenes. Very steep, shaded slopes were 
strongly overcorrected, probably due to the extreme viewing geometries and the bright 
limestone background (see Figure 4-3). This overcorrection on faintly illuminated areas with 
local solar zenith angles above 60°, caused by the usual but unfitting assumption of an 
isotropic reflectance behavior, is also mentioned by Richter and Schläpfer (2012). 
Furthermore, the use of the relatively high resolution slope and aspect maps derived from the 
DEM led to artefacts (stripes) in the corrected image even on flat terrain. Although this 
problem is also mentioned in the ATCOR manual and the selection of a larger kernel size is 
recommended, the smoothing of these maps prior to their application in the topographic 
correction did not solve the problem entirely, but simultaneously falsified the BRDF 
correction by reducing the high frequency spatial information. 

Therefore, a different strategy was pursued. No topographic correction was applied to the 
RapidEye images to avoid introducing the above mentioned errors. Instead, the ATCOR2 
code for flat terrain was used and the local viewing and illumination geometries were 
included directly in the RTM forward and inverse runs (see chapter 6.4). For the 
classification and the empirical-statistical approach, the subtle spectral differences due to 
exposition were assumed negligible in comparison to measurement errors and noise, 
especially as the LAI samples used for training are located mostly in flat terrain. To still 
account for the strong elevation differences in the study area which are influencing the 
dimension of the atmospheric column and thus the length of the radiation path through it, 
the study area was segmented in three elevation zones (Figure 4-4, hatching signatures). 
Each elevation class covers an altitude range of 400 m, for which the average ground 
elevations (760 m, 1290 m, 1680 m) were used in the ATCOR2 processing of the respective 

                                                            
14 The sky view factor Vsky determines the fraction of the hemispherical diffuse sky flux (1 indicating a full 
hemispherical view) and 1- Vsky determines the fraction of radiation ܮ௧௘௥	 reflected from surrounding 
mountains onto the considered pixel (Richter and Schläpfer (2012). 

Figure 4-3: Example of 
overcorrection effects due to 
topographic correction in 
steep, shaded terrain (right 
image) in comparison to the 
original scene (left image). 
Shown is a subset of the April 
8, 2011 RapidEye scene in the 
Loisach Valley near Oberau, 
band combination 5-3-2. 
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image segments. All other ATCOR parameters were kept identical. After the individual 
atmospheric corrections of the three elevation segments of each scene, the segments were 
mosaicked. This procedure neglected the influence of the terrain reflected radiation ܮ௧௘௥, but 
was nevertheless recommended in personal communication with Mr. Richter. The adjacency 
radiance ܮ௔ௗ௝  is still accounted for in the ATCOR2 procedure. 

In a last step the preprocessed 2011’s April 17 and April 20 scenes were mosaiked, as each of 
the scenes covered half of the study area and were sufficiently close in time. 

4.1.3. Land cover classification 

A land cover map for the Ammer catchment was derived from multi-temporal RapidEye 
imagery using the random forest (RF) classifier. Each supervised classification relies on pairs 
of land cover observations (responses) and associated spectral characteristics (predictors). 
These characteristics are called features, and a classification is performed by generating rules 
that assign a land cover class to specific features. Classifiers can be divided in parametric and 
non-parametric methods, determined by their dependence or independence from 
assumptions on the statistical distribution of the input data (Hastie et al., 2009). 

RF is a non-parametric ensemble of decision tree classifiers. Decision trees need to be trained 
(built) before they can be used to assign (predict) land cover classes based on RS data. They 
are hierarchical schemes that split the feature space into sub-spaces using binary decisions. 
At each decision (node) a certain threshold value of a single feature is used to split the data 
set into two subsets. Thereby, the aim is to increase the purity of the response values in the 
two subsets, which can be achieved and automated using statistical metrics. Following this 
scheme, the resulting subsets are split, in turn. Terminal nodes (leaves) are reached when the 
response variables in the node consist of a single class, or if further splitting is constrained 
(e.g. by specifying a minimum amount of pixels per node), in which case the class label is 
assigned to the majority class within the node (Breiman, 1998). Apart from their fast 
generation compared to other iterative methods, decision trees have several advantages. First 
of all, there is no need to reduce the feature space beforehand to the most important and 
preferably un-correlated features, as the most significant feature is automatically selected at 
each split (Breiman, 2001). Further, the tree construction is resistant to noise and outliers. 
Since not only continuous but also ordinal and nominal scaled data can be included as 
predictors, the approach is directly applicable to multi-source RS and geographic data (Seni 
and Elder, 2010). The ability of treating different spectral profiles of a land cover class by 
assigning them to different leaves is a further asset, especially given the omitted topographic 
correction, which probably amplifies the spectral within-class variability. However, a 
drawback of the approach is its sensitivity to the influence of single features, and the 
resulting variance of the predictions. A slight change in training data can lead to a different 
tree architecture. Thus, to optimize the robustness of the approach, to avoid over-fitting, and 
to increase the prediction accuracy, decision tree ensembles are normally used (Ho, 1998).  

Ensembles are created by building multiple trees in parallel and independently by randomly 
changing their construction parameters and finally combining the predictions of the trees 
based on majority voting. This is on the one hand achieved in the RF classifier by bagging, 
i.e. training each tree in the forest on a different training data set randomly sampled from the 
original data (referred to as ‘bootstrap aggregation’, Breiman, 1996, 2001). On the other hand 
boosting is applied, which consists of randomly sub-setting the features available for splitting 
at each node from the feature vector (Ho, 1998; Chan and Paelinckx, 2008). Tree-based 
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ensemble classifiers, and thereby especially 
RF, have repeatedly proven to be effective for 
land-cover classifications (Pal, 2005; Watts 
and Lawrence, 2008; Hüttich et al., 2011; Löw 
et al., 2012). 

The RF classifier in this thesis was built using 
the “randomForest” package implemented in 
the R statistics language (Liaw and Wiener, 
2002). For classification, three RapidEye 
scenes (May 9, July 16, and September 6) 
were used. A multi-temporal classification 
approach was chosen, as some of the land 
cover classes, for example “winter wheat” and 
“grasslands”, show similar spectral signatures 
in advanced development stages, but distinctly 
different phenologies (continuous grassland 
vegetation cover vs. bare soil of harvested 
crops). The scenes were stacked into one data 
frame together with three VIs which were 
derived from each scene, namely the NDVI, 
SAVI, and the NDVI with the red edge band 
substituting the red band (NDVIre), resulting 
in a 24 layer feature space. 

The training and validation data were 
collected in situ as well as derived visually within the RapidEye scenes with the help of 
Google Earth imagery. As water bodies, snow, clouds, and cloud shadows had already been 
masked manually, the remaining land cover classes in the area were ‘rock/concrete’, ‘forest’, 
‘grassland’, ‘moor’, as well as the field crops “rape”, “maize”, and “wheat”. 298 polygons 
covering about 83 000 pixels were marked first, as the selection of polygons is a quick and 
robust procedure. However, as the number of collected pixels per class varied strongly due to 
different shares of the classes in the area and the different sizes of land cover objects and the 
associated polygons, random subsets of 3 000 pixels were drawn per class from the polygons 
for training as well as for testing. This was done by splitting the 298 polygons into two groups 
and then drawing 3 000 pixels per class from each group. Although on the one hand this 
poses the risk of grouping all small and all big polygons of a land cover class, which might 
restrict the number of available pixels for training and validation, it ensures on the other 
hand that pixels from the same land segment (e.g. field or forest patch) are not used for both 
training and validation, which seemed more relevant. Indeed, the above mentioned 
bottleneck was only seldom reached, and only for the rather small classes of rape, maize and 
wheat, and 3 000 pixels could be drawn for training and validation of most classes. 

The number of trees within the RF was set to 500 in order to achieve convergence (Löw et al., 
2013). For bagging, the size of the sampling subset was defined as two thirds of the training 
data set, and the number of features to split the nodes during boosting was set to five, which 
is the rounded square root of the number of input features, as commonly recommended 
(Liaw and Wiener, 2002; Gislason et al., 2006). The remaining third of training data, which 
is not used for the construction of the tree, is automatically used for testing the tree. The 

Figure 4-4: Number of RapidEye scenes used 
for classification and elevation classes used for 
atmospheric correction of each pixel. 
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error measure derived from this sample is called out-of-bag (OOB) error and equals an n-fold 
cross-validation. The stabilization of the OOB error after several tree generations indicates 
the stabilization of the prediction (Hastie et al., 2009). However, studies showed that the 
OOB is a rather conservative error assessment (Breiman, 2001; Gislason et al., 2006). 
Therefore, the independent test set for the class-wise validation has been used additionally. 

As the use of a stack of three RapidEye scenes (having different cloud and snow covers) 
increased the amount of pixels in the stack with missing values in at least one of the layers, 
which creates an NA output, an iterative classification and mosaicking procedure was applied 
(see Figure 4-5). Additionally to the three time steps layer stack, the same RF classification 
was performed on a two time steps stack (May 9 and July 16) as well as on the single May 9 
scene which had no missing values from masking. Using an iterative rule set, the 
classifications were composed afterwards by filling the NA value gaps of the three-scene 
classification with values of the two-scene classifications, or, if no data were available in this 
map either, with the single-scene classification. Figure 4-4 shows that the classification of 
most areas could rely on three scenes (86.1 %, green signature) while only a minor area 
(0.15 %, orange signature) consists of information from only one time step. 

The resulting land cover map is displayed in Figure 4-6. The landscape structure with its 
rather small agricultural parcels, the forest fragments, and the fen and bog areas as well as 
the settlements are represented with a high level of detail. The overall test set error of the 
three scene classification is 3.4 % (OOB error: 0.1%), the error of the two scene classification 
is 6.4 % (OOB error: 0.3%), and the overall test set error of the single classification scene is 
the highest with 8.8 % (OOB error: 2.0 %; see Table 4-2, Table A-4, and Table A-5). With 
regard to the combined classification, these accuracies are valid for the respective areas 
indicated in Figure 4-4. Thus, apart from its use for filling cloud gaps, the multi-temporal 
classification ensured higher classification accuracy for most pixels of the map. The confusion 
matrices show the number of correctly classified pixels on the diagonal in relation to the 
omission and commission errors for each individual class. As this thesis focuses on the 
grassland class, special interest lies on the error of this class (Table 4-2). In the three scene 
classification, its commission error is 2.0 % and thus even lower than the overall error. Most 
confusion occurred with the moorland class, which is caused by the high spectral 

Figure 4-5: Workflow of the multi-temporal classification and iterative mosaicking procedure 
based on the randomForest classifier. The layer stack just based on the May 9 scene is not affected 
by missing values due to clouds or snow and therefore provides a classification result for every 
pixel. 
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Figure 4-6: Land cover classification of the Ammer catchment based on a mosaic of different random 
forest classifications. 

Table 4-2: Confusion matrix for the land cover classification based on 3 RapidEye scenes (May 9, 
July 16, and September 6), i.e. covering 86.1 % of the study area. The overall test set error rate is 3.4 %. 

 
Rock / 

Concrete 
Forest Grassland Moorland Rape Maize Wheat 

N° validation 
pixels 

Commission 
Error [%] 

Rock / 
Concrete 

2926 2 40 3 2 0 27 3000 2.47 

Forest 0 2988 12 0 0 0 0 3000 0.40 

Grassland 2 37 2939 22 0 0 0 3000 2.03 

Moorland 0 0 239 2514 0 247 0 3000 16.2 

Rape 6 0 5 0 1695 0 0 1706 0.64 

Maize 0 0 0 8 0 2992 0 3000 0.27 

Wheat 0 0 0 0 0 0 2676 2676 0.00 

N° classified 
pixels 

2934 3027 3235 2547 1697 3239 2703   

Omission 
Error [%] 

0.27 1.29 9.15 1.30 0.18 7.63 1.00  3.4 %. 
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resemblance of the moorland and grassland ecosystems. Both biomes consist to a great 
extent of Poaceae and herbaceous species. Their occurrence differs mostly by the varying land 
management. Thus, it can be argued that these classes are rather land use than land cover 
classes, and this blurred class definition caused these misclassifications. However, in most 
cases grassland areas were wrongly assigned to moor, which translates to the high grassland 
omission error of 9.2 % and to the high commission error of the moor class of 16.2 % (Table 
4-2). As in this thesis analyses have only been performed on the grassland areas, this means 
that some grasslands in the study area are omitted, but at least no other land cover is 
accidently treated as grassland. The land cover map was finally used to create a grassland 
mask and to replace all other land cover pixels with NA values.  

4.2. Digital elevation model 

In this thesis, a DEM was used for the correction of atmospheric and orographic effects as 
well as for the derivation of local viewing and illumination geometries (chapter 6.3). The data 
set is a 1 arc sec (~30 m) resolution DEM based on Shuttle Radar Topography Mission 
(SRTM) data provided by the DLR (German Aerospace Center). The distinguishing feature of 
the SRTM DEM is that it was the first global elevation data set at medium resolution levels 
and entirely produced with a single technique. The mission provides DEM data between 
60°N and 57°S based on the synergistic use of the US C-band (5.6 cm) system and the 
German/Italian X-band system X-SAR (synthetic aperture radar, 3.1 cm), which were 
processed by NASA (National Aeronautics and Space Administration), DLR, and the Italian 
Space Agency, respectively. Both sensors were on board the Endavour shuttle during an 
eleven days mission in February 2000 and were simultaneously operated. Sensors were 
installed in a stereo arrangement, i.e. both instruments’ receivers were flying on parallel 
tracks to their antennas (separated by a 60 m mast), thus viewing the earth’s surface from 
slightly different angles. Due to this, they provided two interferometric SAR data sets from 
which surface elevation was derived based on the phase difference measurements of the two 
signals by triangulation (Rabus et al., 2003; Farr et al., 2007). The two radars produced data 
sets of different spatial resolution, coverage, and accuracy and are processed into one DEM. 

The DEM vertical accuracy requirements of 16 m absolute and 6 m relative error are valid at 
90% confidence level, as well as the requirement of maximum absolute 20 m displacement 
for the horizontal accuracy. The relative accuracy describes the error in a local 225 x 225 km 
area, while the absolute value stands for the absolute difference from true height throughout 
the mission (Rabus et al., 2003). As dense forests may not be penetrated by the radiance to 
the ground level, the DEM will not correspond to the ground surface in those areas but rather 
provides elevation measurements from near the top of the canopies. In addition, smooth 
surfaces such as lakes often do not scatter enough energy back to the sensor and thus may 
have higher errors (Farr et al., 2007). However, water bodies and forests are excluded from 
the analysis, and given the high relief energy in the study area these errors do not alter the 
overall topography. The original data use WGS84 as the horizontal and vertical datum. They 
were projected to UTM and resampled to the 6.5 m RapidEye resolution for further usage. 

4.3. Field measurements 

In this subchapter, the sampling design, measurement methods as well as the resulting in 
situ LAI values are described, which are referred to as LAIinsitu in this thesis. Intensive field 
measurements were performed during the growing seasons of 2011 and 2012. The overall aim 
was to generate a validation data base to assess the accuracy of both LAI derivation methods. 
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Thereby, the field data sampling was designed in a way that ensured they could be used for 
LAI validation on different scales. Further, field measurements are needed for the 
establishment of transfer functions (see chapter 5.1) as well as for the parameterization of the 
RTM (see chapter 6.3). A special focus was put on the assessment and comparison of 
different algorithms for deriving LAI indirectly from light transmittance measurements. 

4.3.1. Sampling design 

Five measuring campaigns where conducted in 2011 (April 11 - 17, May 2 - 6, May 22 - 27, 
July 25 - 28, and September 8 - 14), however, the weather conditions and a defect sampling 
instrument prevented reliable indirect LAI measurements during the first campaign. In 2012, 
two field campaigns were conducted during April 16 - 20 and August 13 - 14. For easier 
reference, these seven periods are in the following termed calendar weeks 15, 18, 21, 30 and 
36, as well as 16 and 33, respectively (see Figure 4-1).  

When performing ground-based measurements for collecting reliable, representative and 
sufficient field data, the spatial sampling design is of major importance. In this thesis, three 
criteria where especially considered: 

 Sample size – To establish statistically sound transfer functions and validation 
protocols, a sufficient number of data across the entire value range should be 
sampled. Ideally, the number of measurements is related to the error variance. A high 
number of random samples would thus be preferable in this context. However, the 
sample size is often rather determined by pragmatic considerations, and no strict rule 
on minimum sampling size is available (McCoy, 2005). However, as it was intended 
to derive transfer functions for the individual scenes, 20 plot measurements per 
campaign were considered the minimum requirement (Köhl et al., 2011).  

 Scale issue - To validate a RS based map of a certain resolution, the sampling units 
need to be scaled and spread correspondingly, in a way that field data do on the one 
hand represent all conditions composing the pixel reflectance, and can on the other 
hand be compared directly to individual pixels or groups of pixels. This can be 
problematic for coarse resolution data, as many measurements are needed to derive 
an integrative value. However, there is also a lower spatial limit, as for example 
indirect LAI measurements – relying on repeated hemispherical sensor 
measurements – cannot be conducted on a very small area of a few meters. To 
circumvent both issues, the measurements were arranged within a two-stage nested 
design with such distance between them that single measurements can be treated 
individually over several scales, but still allow for up-scaling. This scheme is also 
recommended by the CEOS (Committee on Earth Observation Satellites) Land 
Product Validation group and the VALERI (VAlidation of Land European Remote 
sensing Instruments) project (Baret et al., 2003; Morisette et al., 2006). For 
consistent upscaling, the complete sampling area should be relatively homogeneous, 
i.e. the biophysical variable / radiometric values should change only marginally 
within one plot. This implied that only those areas were considered that consist of 
homogeneous land cover on a kilometer scale, which strongly reduced the amount of 
feasible areas in the heterogeneous landscape.  

 North-south gradient – It was intended to cover the altitudinal and thus climatic 
gradients in the study area in order to cover the corresponding differences in 
phenology and grassland management. The sampling sites were therefore distributed 
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across the Ammer catchment, which reduced convenience and the overall number of 
visited plots. Further, no plots could be selected in the high mountain region of the 
Graswang Valley, for reasons of accessibility, prolonged snow cover, and insufficient 
spatial homogeneity of the alpine meadows. 

Four grassland sampling sites (‘plots’) were selected in the study region (see Figure 4-7). The 
relative homogeneity of the plots was determined beforehand by calculating the variance of 
Band 3 of a Landsat 5 TM scene from July 2009 of the study region in a 1 km x 1 m moving 
window. Not all sites were investigated during each campaign due to time constraints. In 
week 30, the site in the Murnauer Moos was not visited. In week 33 only the Fendt site and 
meadows in the surrounding were covered due to a simultaneous air-borne mission which 
was restricted to this small area. Furthermore, the Haunshofen site was shifted about 0.8 km 
to the east after the campaign in week 21 to increase the homogeneity of the site. 

Each plot had an area of 750 x 750 m in order to cover 3 x 3 MODIS 250 m pixels, i.e. a target 
pixel and the close surrounding, for potential upscaling procedures to the MODIS scale while 
accounting for adjacency effects (Baret et al., 2003). To cover the grassland variability in each 
plot, several elementary sampling units (ESUs) are distributed within, each situated in an 
individual meadow. Special attention was paid to a sufficient distance of the ESUs from field 
boundaries to avoid border effects (McCoy, 2005). According to VALERI, the ESUs should be 
spread spatially equally within a plot to improve the geostatistical variable estimation. The 
center square should be more densely sampled. While during the first few campaigns, five 
ESUs were chosen per plot as suggested in Si et al. (2012), this was identified as insufficient 
after the third campaign. Hence, the number of sampled ESUs was continuously increased 

Figure 4-7: Sampling design for LAI in situ measurements. The grassland in 
situ measurement plots in the study area are indicated as yellow rectangles in 
the middle map. The two sampling designs on the plot scale applied in this 
study are shown in the zoom insets. The bottom right scheme shows the 
sampling design at the ESU scale. 
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during the following campaigns (see Table 4-3) through additional student help, the 
reduction of sampled parameters, and more experienced measurement devices handling. The 
ESUs constitute an area of 20 x 20 m, covering about 3 x 3 RapidEye pixels (see e.g. Justice 
and Townshend, 1982). Within every ESU, 20 measurement points were arranged on two 
diagonal transects, constituting a cross sampling scheme. This scheme is not significantly 
different in its representativeness from random sampling (Garrigues et al., 2002), but offers 
rather short paths and thus quick sampling.  

4.3.2. Measurement of biophysical parameters 

LAI and MTA 

The general principles and available instruments for LAI measurements are already 
summarized in chapter 2.1. Here, the methodology that was actually implemented in this 
thesis is described. For indirect LAI measurements, the LAI-2000 PCA (see Figure 2-4) as 
well as the software FV2200 (LI-COR, 2009) were used. The LAI-2000 relies on the Beer-
Lambert extinction law, which describes the attenuation of the radiation in a canopy (Monsi 
and Saeki, 1953). Light attenuation can be expressed with LAI, the mean projection of unit 
leaf area ܩሺߠሻ, the normalized path length through canopy in direction (ߠݏ݋ܿ/1) ߠ, and the 
transmission probability Pሺθሻ (see chapter 2.1.2), as  

 LAI ∗ Gሺθሻ ൌ 	െ ln Pሺθሻ ∗ cosθ (4.2) 

under the assumption, that only light that is not intercepted by plant material reaches the 
ground. Therefore, only visible light (320 – 490 nm) is measured, for which the amount of 
reflected or transmitted light is low. The transmittance probability ܲሺߠሻ	is estimated by 
comparing measured light intensities above (A) and below (B) the canopy using a fisheye lens 
(Jonckheere et al., 2004; Weiss et al., 2004). Within each ESU, 20 B measurements were 
conducted at the sampling points, while the A measurements were repeated only four times 
just before the first of five B readings, assuming stable irradiance conditions for these five 
measurements, which normally took about two minutes. As the transmission information is 
needed explicitly for single directions, the field of view of the optical hemispherical sensor 
head of the LAI-2000 is divided into five concentric ring detectors ݅, each covering an angle 

range centered around the angles 7°, 23°, 38°, 53°, and 68°, thus having five constant ߠ௜ 
values (see Figure 4-8 and Table 4-4).The left-hand term of Equation 4.2 is equivalent to the 

Table 4-3: Number and kind of measurements conducted during the field campaigns. 

Week 
Number of 

ESUs 

 Number of valid samples 

LAI 
indirect 

LAI direct MTA* Chlorophyll 
SLA / 
LMA  

Canopy 
height 

2011        
  15 20  5  12 5 20 
  18 20 19 4 19   15 
  21 20 20 4 20   19 
  30 26 26  26   25 
  36 33 33 6 33  6 33 
2012        
  16 29 29 2 29    
  33 22 22  22 22 10  

*The MTA is also the input parameter to the LIDF used in the RTM (chapter 6). 
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number of contacts made by a probe passing through the canopy at an angle θ and is 
therefore called contact number ߢ. The LAI-2000 derives ߢ௜of each ring by dividing the 
logarithm of the A and B readings ratio in each ring ݅ by the respective path length Sሺߠ௜ሻ:  

పഥߢ ൌ

1
݊∑ െlnሺ

ܤ
ሻܣ

௡
௜ୀଵ

௜ߠܵ
 (4.3)

There are several empirical approaches implemented in the LAI-2000 to derive LAI from ߢపഥ . 
The two most widely used approaches, the Miller and the Lang method, were investigated in 
this thesis in more detail. Miller (1967) demonstrated that LAI can be calculated with 
Equation 2.6 if ܲሺߠሻ observations are available over the angle range 0 to π/2. Integration 
over these directions is achieved in the LAI-2000 instrument by means of the sensor rings, 
which cover nearly the entire hemisphere and due to which the sinߠ݀ߠ term of Equation 2.6 
is constant. This term is implemented in the instrument as so-called weighting factors ௜ܹ 
representing the coverage of the hemisphere of each ring: 

 ௜ܹ 	 ൌ 	 dߠ௜ ∗ sin ௜ߠ ∗  (4.4) ݐݏ݊݋ܿ

with dߠ௜ being the respective angle width in radian units,	ߠ௜ being the central angle of each 
ring, and ܿݐݏ݊݋ being a scaling constant of 1.58 in the 5-ring case in order to normalize the 
weights to unity (see Table 4-4). The LAI is calculated as twice the sum of the contact 
number	ߢ௜ in each ring, weighted with the respective ௜ܹ 	factor:   

LAIெ௜௟௟௘௥ ൌ 2෍ κ୧ ∗ ୧ܹ

ହ

୧ୀଵ

 
(4.5)

Table 4-4: Central angles, angle widths, and weighing factors of each LAI-2000 sensor head ring. 

Figure 4-8: Viewing angles of the LAI-2000 PCA sensor. While the left sketch (adapted from LI-COR,
2009) shows the five viewing angles in a cross-section, on the right an example of the sections ‘seen’ by
the detector rings is given.  

Ring ߠ݀ [°] ߠ݀ [°] ߠ [rad] sin  ௜ܹ ߠ

1 7 12.2 0.213 0.212 0.041 

2 23 12.2 0.213 0.391 0.131 

3 38 11.8 0.206 0.616 0.200 

4 53 13.2 0.230 0.798 0.290 

5 68 13.2 0.230 0.927 0.337 
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This method is referred to as the “LAI-2000 method” in the instrument’s manual, as it is the 
algorithm implemented in the portable console. In this thesis, the approach is called “Miller 
method”, because it is close to the original formulation (Miller, 1967; Weiss et al., 2004).  

Based on Equation 4.2, Lang (1987) proposed another algorithm for computing LAI without 
requiring the leaf angle distribution ܩሺߠሻ and with no need for all values of ߢሺߠሻ. By assuming 
that ܩሺߠሻ is approximately linear with ߠ and has a value near 0.5 at 57.3° = ߠ over a wide 
range of canopy structures (Figure 4-9), Lang showed that the ߢሺߠሻ function is quasi linear: 

 κሺθሻ ൌ a ൅ bθ (4.6) 

where ܽ and b are the empirically derived slope and intercept of a linear approximation of the 
projected leaf area ܩሺߠሻ. Thus, by simply interpolating a value of ߢ for 57.3° =ߠ, Lang derives:  

 LAI୐ୟ୬୥ ൌ 	2 ∗ ሺa ൅ bሻ (4.7) 

In the LAI-2000, the ߢపഥ  values are used to fit a linear relationship. The most significant 
difference between the approaches thus is that Lang’s algorithm weights all rings equally in 
fitting the linear approximation, while the Miller’s algorithm weights the rings according to 
their hemisphere coverage, which can, however, introduce errors as plant elements are 
generally not randomly distributed over the hemisphere in a real canopy, but rather in the 
outmost ring. For both algorithms, the plot LAI value was derived by logarithmical averaging 
over the 20 B measurements according to Lang and Xiang (1986) and Weiss et al. (2004) in 
order to reduce LAI underestimation due to clumping (chapter 2.1.2). 

It has been observed that the Miller method underestimates the actual effective LAI, and the 
reason for this has been assumed in most studies to be increased foliage scattering effects in 
the fifth ring and a corresponding overestimation of gap fraction (Chason et al., 1991; Chen 
and Black, 1991; Fassnacht et al., 1994; Dufrêne and Bréda, 1995; Wilhelm et al., 2000; Chen 
et al., 2006). These authors suggest discarding one or two of the outer rings of the LAI-2000 
sensor for LAI calculation. Planchais and Pontailler (1999), however, contradict this 
assumption and show that no bias in scattering with high ߠ	exists. Instead, they state that the 
underestimation of LAI is caused by clumping and that the counterbalancing effect of 

Figure 4-9: Theoretical relationship between projected foliage area and viewing direction for various
foliage inclination angels. According to Wilson (1959). 
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discarding observations at higher viewing angles results from producing an error in the 
estimation of the leaf projection function Gሺߠሻ and thus of the MTA. Leaves are supposed to 
be more erect than they are, which results in an increased LAI estimate. As this error is 
variable with	ߠ, it is however not a stable clumping correction procedure. Unfortunately, 
their analysis only relies on data derived using the Lang algorithm, and neither this nor other 
studies have tested different LAI-2000 algorithms in grassland canopies. Thus, in this thesis 
all combinations of derivation algorithm and rings are tested to assess the difference between 
the two algorithms (LAIMiller-5 and LAILang-5, respectively) and between the four and five rings 
settings (LAIMiller-4 and LAILang-4, respectively). 

Weiss et al. (2004) and Leblanc and Chen (2001) further plead for the use of a single 
direction measurement for LAI derivation. However, using one single ring does not allow for 
the derivation of leaf angle distributions, which also had to be collected in the field. 
Therefore, this technique was not taken into account. The LAI-2000 PCA can calculate the 
MTA of the foliage given a LAI value by solving equation 4.2 for ܩሺߠሻ:  

 Gሺθሻ ൌ 	
சሺ஘ሻ

ஜୗሺ஘ሻ
 (4.8) 

whereby ܵߤሺߠሻ corresponds to the LAI estimate in each ring. Figure 4-9 shows the idealized 
relationship between the projected foliage area ܩሺߠሻ and the viewing direction for various 
foliage inclination angels for an ideal canopy with random azimuth leaf orientation (Wilson, 
1959; LI-COR, 2009). The MTA is calculated using an empirical polynomial relating 
inclination angle to the slopes of this idealized curves after Lang (1986). 

The 360° azimuthal field of view of the sensor can introduce errors to the measuring 
procedure. One unwanted effect is the shadow of the operator in the image, which can be 
restricted using view caps. A 270° view cap was used on the sensor lens in this thesis (see 
Figure 4-10 a). Another issue is the risk of heterogeneous conditions viewed by the sensor, 
which can be caused by brightness gradients in the sky or especially by strongly clumped 
canopies. Therefore, larger view caps are often used in row crops and forests (Nackaerts et 
al., 2000). An actual problem for the measurement of grass canopies is the close proximity of 
the sensor head to the vegetation elements as the LAI-2000 responds non-linearly to light 
interception by close foliage, which could not be avoided, however (Hyer and Goetz, 2004). 

Ideally, the LAI-2000 PCA measurements should be made under diffuse light conditions, i.e. 
under homogeneously overcast skies or close to sunrise or sunset, because these conditions 

Figure 4-10: LAI in situ measurements. a) LAI-2000 sensor head with 270° view cap. b) Direct LAI
measurement by clipping the above ground biomass. 
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are closest to the assumption that leaves are exclusively absorbing radiation. Light reflected 
from the canopy to the sensor would add to the recorded radiation below the canopy and lead 
to an underestimation of LAI (Leblanc and Chen, 2001). In addition, heterogeneous skies and 
rapidly changing conditions should be avoided (Hyer and Goetz, 2004).  

Due to the workload, these recommendations could however only partly be taken into 
account. Measurements were conducted during overcast conditions as well as under direct 
sunlight, in which case the sensors head and the canopy under investigation were shaded. To 
ensure similar conditions the sensor head was always pointed away from the sun, with the 
observer/sun direction being masked using the view cap (LI-COR, 2009, see Figure 4-10 a.) 
Measurements for which the light intensity below the canopy exceeded the above value due to 
changing light conditions or operator errors were later excluded from the calculations. As a 
result, the averaged LAI value of each ESU relies in 75 % of all cases on 20 single 
measurements, in 23 % on 19-16 measurement pairs, and only in 2 % of all cases on less than 
16 measurements. The LAI values were therefore considered to be representative of the 
respective ESU. The footprint of the LAI-2000 PCA depends on the view angle of the sensor, 
i.e. the number of sensor rings used, and the canopy height (LI-COR, 2009). In view of the 
fact that the canopy heights measured in the field range from roughly 3 to 40 cm, the 
theoretical area seen by the sensor is a circle with a radius of 0.11 - 1.5 m. The effective range 
can be further reduced by foliage. Hence, about 3 m distance is kept between each sample 
point to guarantee statistical independence. 

Although the LAI-2000 cannot distinguish photosynthetic active leaf tissue from other plant 
elements as discussed in chapter 2.1.2, in this thesis, the term LAI is still used, as in 
grasslands most vegetation parts seen by the sensor are green leaves. However, the canopy 
elements are not randomly distributed in space, which is one of the basic assumptions behind 
LAI retrieval algorithms (Chen and Black, 1992). Due to this clumping, the indirectly derived 
LAI has to be seen as effective LAI and is expected to underestimate the true LAI from 
destructive sampling (LAIdestr), even though a logarithmic averaging procedure was chosen. 
Further, underestimation is caused by vegetation elements not completely fulfilling the above 
mentioned assumption of absorbing all radiation in the VIS. The bias introduced by residual 
scattering effects is estimated to be around 8 % (Leblanc and Chen, 2001). Thus, while 
indirect measurement methods are useful for assessing temporal or spatial relative LAI 
variation, they require an extra calibration for absolute accuracy (Cutini et al., 1998; 
Planchais and Pontailler, 1999; Wilhelm et al., 2000; Jonckheere et al., 2004).  

The LAI-2000 measurements are corrected in this thesis using direct LAI measurements. 
LAIdestr was determined at 21 ESUs by destructive sampling. However, five values from 
week 15 could not be used as no correct respective LAI-2000 measurement was available due 
to malfunctioning of the instrument, so 16 data pairs were available. The collection of more 
samples would have been desirably, but was not possible due to the high workload of manual 
LAI measurements and the need of measuring the leaf area immediately after harvesting.  

At each sampling point, an area of 30 cm x 30 cm was chosen within the ESU and the 
complete above ground biomass was harvested (see Figure 4-10 b). The sampled subsets were 
selected considering their representativeness of the ESU. The samples where immediately 
packed into plastic bags and stored within a cooler until storage in a refrigerator. On the 
same day in each case, the harvested leaves were laid out on a white background in such a 
way that no overlap existed between adjacent leaves, flattened by a glass pane and 
photographed from nadir with a digital camera. In some cases, a scanner was available which 
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was used to gain a picture of the flattened plant elements instead. In a last step, these images 
were manually segmented into foliage and background pixels (see as example Figure 2-3). 
The number of pixels belonging to the foliage class was related to the total area of the picture, 
and summed up in case the samples could not fit within one photograph. For the LAI 
determination, no distinction was made between harvested green and senescent plant 
material, an assumption that is however in line with the LAI-2000 measurements. 

Dry matter, water, chlorophyll content, canopy height, and diffuse radiation 

In calendar weeks 15, 36 and 33, a drying oven and precision scale was available. They were 
used for two purposes (see Table 4-3): in weeks 15 and 36, the workload of directly measuring 
LAI was reduced by taking three subsets of the whole biomass of one sample. These were 
weighted, laid out and photographed in order to determine the LAI of the subset. 
Subsequently the samples were stored in thin paper bags to prevent lightweight plant parts 
from being blown away, dried in the oven at 90 °C for 12 hours, i.e. until they were constant 
in weight, and weighed again. The LAI was then scaled to the total harvested, dried, and 
weighed biomass by using the samples mean SLA (see chapter 2.1.1). This procedure was 
additionally applied to samples taken in week 33, although those samples did not represent a 
defined area, so they could not be used to estimate the plot LAI. Nevertheless, the total of 21 
samples collected in the field during the three weeks were used to determine the leave’s water 
content and the LMA as well as its reciprocal SLA from the comparison of the fresh and dry 
weights (Landsberg and Gower, 1997; Jonckheere et al., 2004).  

The chlorophyll was measured once in spring 2011 and once in summer 2012 at a total of 34 
EUSs. The chlorophyll content was measured indirectly using a SPAD-502Plus chlorophyll 
meter (Konica Minolta Sensing Inc., Japan). The SPAD determines the relative amount of 
chlorophyll a + b by measuring the absorbance of the leaf at two wavelengths (650 nm and 
940 nm). Using these two absorptions, the SPAD calculates an index which is highly 
correlated to the amount of chlorophyll present in the leaf (Konica Minolta). SPAD 
measurements were repeated at each measuring point in the ESUs at a randomly selected 
leaf. The most common species (e.g. grass species, clover, dandelion, plantain) and different 
positions in the canopy (i.e. sun and shade leaves) were selected for the measurements. The 
SPAD value was derived as the average of the 20 leaf readings. Several authors have 
published functional relationships between SPAD values and selected plant species (e.g. 
Markwell et al., 1995: soybean and maize; Guimaraes et al., 1999: tomatoes; Si et al., 2012: 
grassland). In this thesis, the exponential relationship according to Si et al. (2012) was used, 
as it was explicitly established for mixed grassland.  

Additionally, the canopy height was measured at each of the 20 sampling cross points during 
the campaigns in 2011. In order to obtain a representative sample, the leaves were selected 
with reference to the abundances of the plant species in a 10 cm radius around each sampling 
point. Total solar radiation as well as diffuse radiation were measured continuously at 10 
minute intervals at the three TERENO stations Graswang, Fendt and Rottenbuch (see Figure 
3-1) using Sunshine Pyranometers (Delta-T Devices Ltd, Burwell, UK).  

4.3.3. Results of in situ measurements 

Due to changing circumstances in sampling design, manpower, available instrumentation, 
and weather conditions, the kind and number of measurements that could be conducted 
varied between the campaigns. The unpredictable satellite coverage due to the high number 
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of cloudy days in the study area as well as the irregular RapidEye pass over times further 
reduced the number of field measurements that could be used for training and validation 
purposes (see chapter 5.1). While the kind and number of all measurements is summarized in 
Table 4-3, the descriptive statistics of the results is presented in Table 4-5.  

LAI and MTA 

The LAI-2000 PCA values (݊	 ൌ	148) vary with the four LAI derivation algorithms, the Miller 
and the Lang method applied to four and five of the LAI-2000 sensor ring measurements, in 
their mean (2.2 - 2.6) and their range (0.3 - 0.4 to 6.1 - 7.7). All data sets show a non-normal, 
right-skewed distribution. The comparison of the tested derivation algorithms reveals very 
high correlations15  between the accordant measurement values (correlation coefficient ݎ௦ 
between 0.97 and 0.99).  

However, the absolute differences between the LAI estimates increase for higher values, 
resulting in a mismatch of 7 - 25 % for LAI measurements larger than two (see Figure 4-11). 
As expected, the two 4-ring algorithms (orange and blue signature) produce continuously 
higher values, which, according to Planchais and Pontailler (1999), is caused by an 
overestimation of the MTA. To determine if the LAI algorithms produce significantly 
different results, the non-parametric Wilcoxon signed-rank test was applied (Bauer, 1972). 
The Wilcoxon test showed that in almost all cases the choice of algorithm significantly affects 
the derived LAI value (݌ ൏ 	5.9݁ି଴଻, two-tailed test). Only the LAIMiller-5 and LAILang-5 (violet 
and green signatures in Figure 4-11) show no statistically significant difference. This suggests 
that LAI in situ data collected using the LAI-2000 PCA using different algorithms and 
especially different hemisphere coverages cannot be equated in absolute terms, and that the 
discussion of the algorithm used is crucial for every LAI in situ investigation. 

                                                            
15 As the LAI-2000 in situ measurements are not normally distributed, Spearman’s rho statistic (Spearman 
(1907) is used. 

Figure 4-11: Comparison of the four tested LAI derivation algorithms, the Miller and Lang 
algorithms using the same transmission measurements from four or five of the LAI-2000 sensor 
rings. The derived LAI values are sorted in the order of the increasing Miller-4 algorithm results to 
show the increasing mismatch with higher LAI values. 
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The LAIdestr values derived from destructive sampling range from 1.5 to 6.5 with a mean of 3.6 
and thus seem to cover all prevailing grassland occurrences from freshly harvested to very 
dense meadows. The comparison between directly and indirectly measured LAI reveals an 
underestimation of the true LAI by nearly 50 % on average by the indirect methods. This 
strong underestimation is caused by canopy clumping (see discussion in chapter 2.2.2) and in 
fact also in this thesis the highest discrepancies between directly and indirectly measured LAI 
values occur on heterogeneous, strongly grazed pastures with reptant herbs and patches of 
species spurned by cattle (see photographs h) and i) in Figure 3-9). These meadows with a 
high degree of clumping on a canopy scale have a relatively high average coefficient of 
variation (CV) of 83 % within the 20 transmittance measurements. Apart from the 
inappropriate use of the Poisson model, the overall low measurements are also caused by the 
design of the LAI-2000 device. In very low canopies, the sensor cannot be placed completely 
underneath the vegetation, and, due to the height of the sensor head itself, the lower 3 - 4 cm 
of upright plants are not in the sensor’s field of view. In very dense canopies the LAI-2000 
also tends to underestimate the true LAI, due to its decreasing sensitivity to small changes of 
the optical signal in dark conditions. An asymptotic saturation level is reported to be reached 
by the PCA at a value of about 5 (Gower et al., 1999; Jonckheere et al., 2004). Hence, a 
correction using directly measured LAI is indispensable (Brantley et al., 2011).  

Due to their high correlation with each other, the different LAI-2000 values correlate overall 
similarly well with the corresponding in situ measurements (LAILang-4: ݎ௦ ൌ0.779, LAILang-5: 
௦ݎ ൌ0.786, LAIMiller-4: ݎ௦ ൌ0.762, LAIMiller-5: ݎ௦ ൌ0.755). Although the derivation of higher LAI 
values using a 4-ring algorithm might seem desirable to counterbalance the general 
underestimation of the LAI-2000 instrument, accepting this error in contact number 
estimation is no appropriate approach to correct for clumping (Planchais and Pontailler, 
1999). Instead, the similar results of the two 5-ring approaches indicate that the use of all 
sensor rings increases the stability of LAI derivation. Finally, as the Miller method has been 
criticized in the literature for overweighting transmission in the outmost ring (Garrigues et 
al., 2008b), the LAILang-5 values were used for correction with the directly measured LAIdestr 
values.  

A linear model fit between LAIdestr and LAILang-5 (Figure 4-12) was used to correct the 
underestimation of the 121 indirectly measured LAI values that will be used as LAIinsitu for 
further analysis, as suggested by Chason et al. (1991), Wilhelm et al. (2000) and Brantley et 

Table 4-5: Summary statistics of the biophysical parameters sampled in situ for all measurements. 

 LAIdestr LAILang-5 LAIinsitu MTA* 
Chlorophyll 

[μg cm-2] 

Water 
content  

[%] / [cm] 

SLA / LMA 
[cm2 g-1] / [g m-2] 

Canopy 
height 
[cm] 

Minimum 
value 

1.5 0.4 1.5 38 13.6 75.7 / 0.016 153.2 / 27 3.3 

Maximum 
value 

6.5 6.1 7.5 90 31.4 87.9/ 0.043 363.8 / 65 39.4 

Mean value 3.6 2.4 3.6 64 24.9 81.2/ 0.021 213.6 / 50 15.5 

Standard 
deviation 

1.9 1.4 1.5 10.5 4.3 3.0/ 0.006 51.4 / 10 8.0 

n 16 149 149 149 34 21 21 112 

* The MTA is also the input parameter to the LIDF used in the RTM (chapter 6). 
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al. (2011). The descriptive statistics of the LAILang-5 values as well as the corrected LAIinsitu 
values are summarized in Table 4-5. It can be seen that the corrected LAI values fit the 
distribution of LAIdestr quite well, especially the minimum and mean values. The scaling 
produced some very high values during the summer months, which are however not 
unrealistic. The value distributions of the individual sampling weeks are shown in Figure 
4-13. While the general increase of LAI over the phenological phase is represented in overall 
lower spring values (weeks 16 and 18) and higher values in the summer months (weeks 30, 
33, and 36), the week 21 values do not stick to this pattern. This is caused by the timing of the 
first grassland harvest in mid-May 2011. The MTA measurements vary widely between leaf 
angles of 40° and 90°, with a higher average leaf angle in spring (67.7°) than in summer 
(59.7°), which is probably caused by the different timing of the growth phases of grasses and 
herbs.  

Figure 4-13: Distributions of the LAI in situ values differentiated per week. The measured LAI-2000
PCA values using the Lang-5 algorithm are shown in orange, while the distributions of the corrected
LAI values are shown in blue. 

Figure 4-12: Comparison between directly measured LAI (LAIdestr) and indirect LAI derived using the
Lang method implemented in the LAI-2000 instrument (LAILang-5). 
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Dry matter, water, chlorophyll content, canopy height 

The chlorophyll measurements range from 13.6 to 31.4 μg cm-2, with a mean value of 24.9 μg 
cm-2. Overall, these values are rather low compared to other grassland studies. While 
Vohland and Jarmer (2008) only measure slightly higher values (mean of 25.7  μg cm-2), Si et 
al. (2012) measure a mean chlorophyll content of 30.2 μg cm-2, with values ranging from 21.9 
to 37.0 μg cm-2. A very similar grass chlorophyll mean value (30.1 μg cm-2) but a wider range 
(17.1 - 49.7 μg cm-2) is reported by Darvishzadeh et al. (2008b). For crops, even higher values 
are frequently measured (see e.g. Daughtry, 2000; Ruecker et al., 2006; Atzberger and 
Richter, 2012). It is also peculiar that the spring and summer measurements show only a 
little difference in mean value (April: 21.6; August: 26.8). These results indicate either an 
incorrect use of the SPAD instrument or of the relationship used to relate SPAD values to 
chlorophyll content. 

The water and dry matter content values show the expected behavior. The water content 
mean of 81.2 % is very close to the 80 % relative water content commonly assumed for a wide 
range of applications (see e.g. Lauvernet et al., 2008; Duveiller et al., 2011b). For the dry 
matter content, it is harder to judge the plausibility of the measured value of 50 (±10) g m-2, 
as only few literature values are available. While there are some studies measuring crop dry 
matter content (e.g. Atzberger and Richter, 2012, mean LMA = 79.2 g m-2), the values in the 
only RS study on grassland LMA values published (Vohland and Jarmer, 2008, mean LMA = 
428 g m-2) seem exceptionally high. Ecological studies such as He et al. (2010) report higher 
grassland LMA values (mean = 94 g m-2), and also a meta-analysis of Poorter et al. (2009) 
indicates higher mean LMA (72 g m-2) for graminoids. This underestimation of LMA could 
result from an overestimation of the samples’ LAI, given that the water content range seems 
correct. The canopy height measurements on the other hand show a reasonable range and 
variation (Wohlfahrt et al., 2001). Chlorophyll, water content, SLA, height, and irradiance 
values and ranges were used in this thesis to improve the parameterization of the RTM (see 
chapter 6.3). 
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5. LAI derivation using empirical-
statistical models 
In this chapter, the potential of LAI derivation from RapidEye data based on empirical-
statistical models is investigated. As described in chapter 2.2.2, these models search for 
consistent relationships between the LAI and the spectral signature of vegetation. Based on 
such a relationship, spatially continuous RS reflectance measurements are converted to LAI 
(see Figure 2-13). Empirical-statistical methods have the disadvantage of relying on field data 
(Dorigo et al., 2007). However, they produce accurate results if representative field data are 
available and if they are applied over a confined area and known land cover (see e.g. 
Haboudane, 2004; Brantley et al., 2011). Therefore, these models serve as benchmark models 
against which RTMs can be compared (Kimes et al., 1998), and it is as such that they are used 
in the framework of this thesis.  

For this comparative purpose, the overall aim of this chapter is to identify and assess robust 
and accurate statistical relationships based on six field campaign data sets that are used with 
six corresponding RapidEye scenes to establish transfer functions for LAI derivation. LAI 
varies over time due to phenology and environmental conditions, which makes a multi-
temporal analysis of surface reflectance necessary to identify changing vegetation states and, 
accordingly, potentially changing relationships to RS data. As only few studies have 
investigated the seasonal development of LAI using statistical methods so far, and as none of 
them used RapidEye data for LAI derivation in grasslands, estimation of grassland LAI in the 
Ammer catchment during different phenological stages is performed in this work based on 
repeated ground- and satellite-based measurements. This availability of multi-temporal in 
situ and RapidEye data enables the analysis of three aspects related to multi-temporal 
vegetation monitoring: 

 Transferability: Which error has to be expected when using a transfer function 
established at one point in time to derive LAI at other acquisition dates? 

 Data set combination: Does the combination of data sets from different dates 
strengthen the statistical relationships? How many data sets should be combined? Are 
there ideal collection times to gain reliable estimates over the entire vegetation 
period?  

 Potential of the red edge band: To which extent does the use of the red edge band in 
VIs enhance the relationship to the LAI measurements? 
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After establishing transfer functions based on different VIs and statistical models for each 
RapidEye scene, for several data set combinations, and for all scenes combined (chapter 5.1), 
the accuracy of the derived LAI is assessed. The results of LAI derivation based on single data 
sets are described and discussed first (chapter 5.2.1). The temporal transferability of the 
established models is analyzed in chapter 5.2.2, and the usefulness of combined data sets for 
model transfer in chapter 5.2.3. A comparison of selected VIs is performed to assess the 
potential of the red edge channel (chapter 5.2.4), followed by some conclusions (chapter 5.3).  

5.1. Establishment of transfer functions 

For each of the field measurement campaigns, a temporally matching Rapid Eye scene was 
selected (see Table 5-1). As is stressed by Morisette et al. (2006) and Lee et al. (2004), to 
build a meaningful relationship between phenologically varying vegetation and remotely 
sensed data, the field campaigns must be achieved within a short time period centered on the 
satellite acquisition date. This is of particular importance in variable ecosystems such as 
grasslands that are intensively used for mowing and pasturing. This condition was fulfilled 
for May 25 and August 13 scenes, as the field campaigns were conducted on the RapidEye 
overpass day. For the May 9 and September 6 scenes, a time lag of 5 days between acquisition 
and the middle date of the campaign was achieved, while for April 15 and July 16 scenes, the 
closest field data were acquired 7 days later and 10 days earlier, respectively. For these 
scenes, special care was taken to check the LAIinsitu - RS relationships regarding plausibility. 
Based on this check, some LAI measurements had to be excluded from further analysis, as at 
some ESUs the land cover had obviously changed between the in situ observation and the 
satellite image acquisition due to mowing or pasturing. In one case, the RapidEye scene did 
not cover all in situ measurements. This affected a total of 29 LAIinsitu measurements (7, 2, 1, 
and 19 measurements in weeks 18, 21, 30, and 16, respectively) resulting in 121 usable data 
pairs. Data pairs of LAIinsitu and reflectance observations were generated by relating the GPS 
points positioned in the field to pixels in the georeferenced RS scenes. A 3 x 3 pixel mean 
filter was applied to the RapidEye data before reflectance extraction, thus corresponding to 
the size (20 m x 20 m) of the ESUs. 

The spectral information of the RapidEye bands was transformed to VIs in a first step to 
enhance its sensitivity to LAI variations (see chapter 2.2.2). There is no agreement in the 
literature about which VI is best suited for estimating LAI, and a range of different VI types 
have been identified to relate to LAI using empirical and modeled data (see e.g. Jacquemoud 
et al., 2009, or He et al., 2006, for a review). Therefore, several VIs have been selected from 

Table 5-1: Data pairs of RapidEye scenes and in situ measurements. 

Week 
Date of RapidEye 

acquisition 

Time lag [days] between 
RS acquisition and in situ 

measurements 

Number of usable 
LAI observations 

2011    
18 09.05. - 5 13 
21 25.05. 0 18 
30 16.07. + 10 25 
36 06.09. + 5 33 

2012    
16 25.04. - 7 10 
33 13.08 0 22 
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the literature to account for different vegetation densities and potential influential factors in 
the regression analysis. The first group of VIs consists of ratio indices such as the SR and the 
NDVI, as well as modifications of these correcting for soil and atmosphere influences 
(Kaufman and Tanre, 1992; Roujean and Bréon, 1995). Ratio VIs are the most widely used 
VIs for LAI derivation and have been shown to be robust over a wide range of conditions 
(Chen and Cihlar, 1996; Berterretche et al., 2005). The second group of indices includes 
purely orthogonal indices that have been developed to minimize the soil background 
influence by establishing a soil line (Richardson and Wiegand, 1977). For the calculation of 
these indices, an average soil line has been sampled from each RapidEye scene.  

Hybrid VIs such as the SAVI and a range of SAVI variations (Huete, 1989) constitute the 
third type of indices. VIs employing the red edge band form the fourth group of indices, as 
they show promise in improving LAI estimation in dense canopies (Lee et al., 2004; Brantley 
et al., 2011; Potter et al., 2012). To test the benefit of the RapidEye red edge band, several 
rather new and partly experimental VIs were used. The red edge NDVI (Gitelson and 
Merzlyak, 1994) and the modified red edge SR (Sims and Gamon, 2002) substitute the red 
band used in the original VIs by the red edge band. Viña and Gitelson (2005) evaluated that 
the NDVIre overcomes the saturation effect of the NDVI in dense vegetation. The principle of 
exchanging the red band for the red edge band is also pursued by Ehammer et al. (2010), who 
introduced two red edge ratio VIs and tested their performance on irrigated crop land in 
Central Asia. Conrad et al. (2012) focused on the shape of the reflectance curve in the red - 
red edge - NIR domain. They introduced the indices Curvature, characterizing the direction 
and intensity of the spectral curve curvature in the red edge, Length, i.e. the Euclidian 
distance that is spanned by the three reflectance values, and Relative Length, which relates 
the Length to the distance between the red and the NIR reflectance. The fifth group of indices 
includes modified chlorophyll indices. These indices, which employ the green and sometimes 
the red edge band, were originally developed to react sensitively to variations in chlorophyll 
content. However, some modified chlorophyll VIs have also been reported to be strongly 
responsive to variations in LAI (Daughtry, 2000; Haboudane, 2004). A total of 25 indices 
were tested. An overview of the used VIs, their formulas and references is given in Table A-6.  

As mentioned earlier (chapter 2.2.2), there is no single best relationship between LAI and 
VIs, and there are a wide variety of published empirical LAI models. Therefore, four 
univariate statistical models were employed and compared in this thesis to identify the model 
with the highest explanatory power for each data set. Linear, qudratic polynomial, 
exponential, and power models were assessed. Logaritmic relationships were discarded after 
poor results had been achieved in preliminary studies (Asam et al., 2013). Multiple 
regressions were reported to achieve higher model fits than unvariate models (Baret et al., 
1995; Darvishzadeh et al., 2008c). However, the use of these techniques was renounced here, 
as the individual VIs are partly highly correlated (inducing the problem of multicollinearity, 
see Field et al., 2012). Further, the direct comparison of uni- and multivariate models using 
e.g. the coefficient of determination ܴଶ  is insignificant, complicating the model selection. 
Finally, the use of a simpler model with fewer predictors is always favored in inferential 
statistics (Field et al., 2012).  

The different regression models were computed for each index, for all six individual data sets, 
and for combined data sets. This means that the time series field and satellite data sets – or 
parts thereof – are considered as a single dataset. For the combination of data sets, several 
aspects were considered. Firstly, to generally test the transferability of the regression models 
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to other acquisition dates, six data sets were generated, each leaving out one other sample on 
whose corresponding RapidEye VIs the function was to be applied. Secondly, spring (April 
25, May 9, May 25) and summer (July 16, August 13, September 6) data sets were created to 
test for the transferability between seasons. To measure the accuracy loss caused by reducing 
the sampling density by half or two third, but still covering different phenological phases, 
data sets containing three (April 25, May 25, and August 13 scenes, and May 9, July 16, and 
September 6 scenes) and two (April 25 & July 16, April 25 & August 13, April 25 & September 
6, May 9 & July 16, May 9 & August 13, May 9 & September 6, May 25 & July 16, May 25 & 
August 13, May 25 & September 6) samples were generated. Together with the single data 
sets and the set combining all data, this resulted in 26 different data sets. 

To assess the accuracy of a statistical model, two aspects have to be investigated (Field et al., 
2012): Is the model a valid fit to the data, and can it be generalized to other samples? To 
assess the validity of the regression, several aspects have to be considered. According to Burt 
et al. (2009) and Field et al. (2012), there are three basic requirements on the fitted model 
residuals that need to be fulfilled for further inferential analyses. The residuals have to be 

 normally distributed with a mean equal to zero. The Shapiro-Wilk test (Royston, 
1982) was used to assess whether the residuals distribution differed significantly from 
a normal distribution. 

 homoscedastic, which means that the variance of residuals should be constant. The 
Breusch-Pagan test (Breusch and Pagan, 1979) was used to assure homoscedasticity 
of the residuals. 

 independent. To test for correlations between residuals, the two-sided Durbin-
Watson test (Durbin and Watson, 1971) was used. 

For these tests, the 0.05 confidence level was chosen for acceptance of the null hypothesis. 
Further, results of the t-test and the F-test were used to check if the regression coefficients 
and the coefficient of determination ܴଶ, respectively, were significantly different (significance 
level p < 0.1) from being null, and thus if they had an explanatory value for the predicted 
outcome. The strength of the model fit was investigated using ܴଶ. Models not fulfilling the 
residual assumptions and not reaching the significance level for the model coefficients were 
discarded from further analysis. They are indicated as blank spots in Table A-7. 

Apart from fulfilling these prerequisites, the generalizability of the model has to be assessed 
to ensure that it can be used for inferences beyond the sample of the collected data. Ideally, a 
second independent data set would be used to validate the model. However, the collection of 
field data is very laborious (see chapter 2.1), leading to generally small sample sizes. Due to 
this, there is a trade-off between using all available observations to develop a robust 
regression model and having no independent observations to test the model, versus 
excluding a predetermined number of observations for testing, but having a less robust 
model. To overcome this, cross-validation methods were used in this thesis in order to 
provide an unbiased estimation of model accuracy (Richter et al., 2012a). To assess the model 
fit, the adjusted coefficient of determination ܴ௔ௗ௝

ଶ  is used. This value indicates the loss of 

predictive power (shrinkage) of the model when applied to the population from which the 
sample is drawn. This value is generally lower than ܴଶ  and can be negative. In the R 
language, it is calculated using Wherry’s equation (R Development Core Team, 2008). To 
further measure the prediction error associated with the transfer function, cross-validation 
has been used to estimate the ܴܧܵܯ௖௩. This is done by iteratively dividing the sample in two 
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mutually exclusive subsets, fitting the model to the larger part of the samples and using the 
remaining values (the holdout set) for validation. K-fold cross-validation with k=10 has been 
reported to achieve better results for model validation than bootstrap and leave-one-out 
procedures (Kohavi, 1995; Borra and Di Ciaccio, 2010). However, for some of the very small 
samples used in this thesis (݊௠௜௡ = 10), a 10-fold sampling is equal or close to a leave-one-out 
procedure. Hence, in these cases, k was scaled linearly down to 5 for the smallest data set to 
achieve a good compromise between prediction bias and variance (Kohavi, 1995). The subsets 
were drawn randomly, and the cross-validation procedure was repeated 50 times and 
averaged to generate ܴܧܵܯ௖௩ . The relative cross-validated RMSE (ܧܵܯܴݎ௖௩ሻ  relates the 
RMSE to the samples mean and thus indicates the cross-validated model error in percentage. 

5.2. Results of LAI derivation using statistical models  

5.2.1. Single data set analysis 

Overview of all tested LAI-VI relationships for the individual data sets is given in Table A-7. 
For each scene, ܴ௔ௗ௝

ଶ  as well as the significance level α of each VI performing in each model is 

listed. The highest ܴ௔ௗ௝
ଶ  values, i.e. the best fit and those fits with a maximum of 5 % less 

explanatory power, are printed in bold. Blank spaces indicate VI-model combinations that 
did not achieve a significant relationship or violated at least one regression assumption. For 
the single data sets, no valid relationship could be established in 8.5 % of all cases. Although 
the model types failed almost equally as often, some differences exist for the different VIs and 
data sets. The success rate for the data sets varied between 82 and 98 %, but could not be 
linked to the sample size or a phenological phase. With regard to the indices, several VIs 
could establish sound relationships in every case, although some (MSR2, MSRre, Curvature, 
rLength, and MCARI, see Table A-6 for abbreviations) did not in 20 - 40 % of all cases.  

A valid and strong fit was found for each scene. Figure 5-1 displays the scatter plots of the 
respective best-fitting model for each date. The overall explanatory power of the models, with 
ܴ௔ௗ௝
ଶ  values ranging from 0.64 to 0.86 (݌ ൏ 0.001), is high. The cross-validated prediction 

errors ܧܵܯܴݎ௖௩ of 10.4 to 27.8 % also seem reasonable, although the target accuracy (see 
GCOS, 2006, and Drusch et al., 2010) of 10 % is clearly not met for some of the data sets 
(May 25, July 16, August 13). The relatively low explanatory power of the fit for the May 9 
scene might be on account of the small sample size, its narrow range of measured LAI values 
(1.8 - 4.5), and especially some outliers. The July 16 scene also seems to be distorted by 
outliers in the high LAI and VI value ranges, while the concave shape of the model fit of the 
May 25 scene indicates signal saturation of the MSRre index. As it was mentioned in chapter 
2.2, saturation is the effect of radiation emerging from the canopy without remaining 
sensitive to increasing LAI, impairing the estimation of high LAI values (Baret and Guyot, 
1991; Sellers et al., 1996; Turner et al., 1999; Liang, 2004; Duveiller et al., 2011b). Gobron et 
al. (1997a) explain that this happens when the canopy is optically not thin enough to allow an 
illumination of the underlying soil.  

Apart from these restrictions, the strength of the respective regression models compare 
favorably with other studies. In grassland, ܴଶ values of up to 0.44 (He et al., 2006), 0.68 
(Friedl et al., 1994), 0.79 (Fan et al., 2009), or 0.82 (Frank and Karn, 2003) were achieved 
based on common broad-band indices or transformations. Darvishzadeh et al. (2008c) 
improved the relationship between LAI and two narrow-band VIs (ܴଶ= 0.63) by using SMR 
(ܴଶ= 0.66) and PLS (ܴଶ= 0.69). Using CCA, ܴଶ values of up to 0.54 (Cohen et al., 2003b) and
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0.63 (Cohen et al., 2006) with Tasseled Cap parameters or up to 0.6 with hyperspectral 
indices (Lee et al., 2004) were established. Although in this thesis, it is not the	ܴଶ but the 
ܴ௔ௗ௝
ଶ  measure, which is generally lower, that is used, the accuracies are in the upper range of 

2011 

 
2012 

Figure 5-1: Best fitting LAI-VI relationship of the six single data sets, showing the adjusted 
coefficient of determination ܴ௔ௗ௝

ଶ , the cross-validated absolute and relative root mean squared 
errors (ܴܧܵܯ௖௩ and ܧܵܯܴݎ௖௩), as well as the 95 % prediction confidence intervals in grey. 

May 9 - Linear Model Fit May 25 - Quadratic Polynomial Model Fit 

September 6 - Exponential Model Fit July 16 - Quadratic Polynomial Model Fit 

April 25 - Linear Model Fit August 13 - Linear Model Fit 
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those results. The efficiency of the rather simple models and broad-band VIs used in this 
thesis is hence satisfying. 

With regard to the models and VIs used for LAI estimation, no universal recommendation 
can be given, as the regressions show a diverse picture for the different scenes (Table A-7). 
No model or VI can be identified that fits best for all data sets. The linear models achieved the 
highest	ܴ௔ௗ௝

ଶ ݌)  ൏ 0.001) for three of the scenes (April 25, May 9, and August 13). In the other 

scenes (apart from May 25), the linear models also have	ܴ௔ௗ௝
ଶ  values quite similar to those of 

the more complex models, and are thus useful for a rather conservative LAI estimation. In 
the May 25 and July 16 scenes, quadratic polynomial models fit best. The highest result for 
the September 6 scene is achieved by an exponential model. This mixed performance of 
different statistical models is in accordance with the varying findings in the literature, where 
the best results for an LAI–VI relationship were obtained with linear (Colombo et al., 2003), 
exponential (Hansen and Schjoerring, 2003; Wang et al., 2005; Yang et al., 2007; Vuolo et 
al., 2013), power and quadratic (Ehammer et al., 2010), or even cubic (Turner et al., 1999) 
models. This also supports the assumption that the LAI-VI relationship changes during one 
vegetation period, which has already been suggested for forest LAI (e.g. Wang et al., 2005; 
Heiskanen et al., 2012; Potithep et al., 2013). However, the pattern in the temporal order of 
the best fitting model shapes is not consistent (see Figure 5-1). The spring season is 
dominated by linear model fits (April 25 and May 9). Increasing vegetation densities would 
then hypothetically lead to a better fit of non-linear models due to saturation, which is indeed 
the case in the scenes of May 25, July 16, and September 6. However, the convex curve fitted 
to the July 16 data rather indicates an oversensitive VI than VI saturation. The August 13 
model shape is linear, which indicates either that the relationship is distorted by outliers or 
that saturation is already reduced by senescence in mid-August. However, the September 6 
scene regression is again exponential, representing a rather decreasing VI sensitivity with 
higher LAI values. It is hence not possible to derive a characteristic model shape 
development over the season from these observations. The fact that even temporally close 
relationships are not described by similar models supports the observations summarized by 
Dorigo et al. (2007) that statistical models are shaped by the canopy, soil, atmosphere, and 
illumination conditions that prevailed during data sampling and are hence restricted to them. 

The respective best fitting VI also varies considerably for the different data sets (Table A-7). 
While the ratio indices as well as some hybrid and red edge indices achieve highest fits for the 
April 25 scene, the VIs performing the best fit by far in the May 9 scene are the modified 
chlorophyll indices. The red edge indices are the only ones achieving significant results in the 
following sample (May 25). In the July 16 scene the red edge indices fit best again, while in 
the August 13 and September 6 scenes also orthogonal and ratio indices achieve equally 
high 	ܴ௔ௗ௝

ଶ  values. This variation in VIs suggests that the spectral canopy characteristics 

sampled during the different scenes vary in such a way that different band transformations 
are needed to unmask the LAI-VI relationships. Although the NDVI has been widely used for 
decades, it is shown here that LAI can be derived more accurately by other indices. The NDVI 
has 10 - 40 % less explanatory power than the respective best fitting VIs, apart from the 
April 25  scene, which supports the findings of Lee et al. (2004). An improvement of the 
NDVI-LAI relationship during senescence as observed by Eitel et al. (2011) and Tillack et al. 
(2014) cannot be confirmed, probably as they attributed this behavior to a decrease in 
chlorophyll content, which is not reached yet in grasslands by the beginning of September. 
He et al. (2006) concluded for grassland that ratio-based and soil-line related VIs performed 
better than chlorophyll corrected VIs, which can be confirmed apart from the May 9 scene. 
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Figure 5-2: Subsets of the statistically derived LAI maps for the six field campaign dates.  
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The overall analysis of the single time step ܴ௔ௗ௝
ଶ  values shows that the differences in 

regression strength between the VIs is, on average for the individual data sets, 2 - 30 times 
larger than the differences in between the model types. The same is true for the coefficients of 
determination of the combined data sets (see below). This observation suggests that the 
careful selection of a VI sensitive to the variable of interest at a certain point in time is of 
higher importance than an extensive selection of the model type. 

In the upper part of Table 5-2, the statistical figures and the established transfer function of 
the respective best fitting model for each date are specified. These functions were applied to 
map LAI based on the six RapidEye scenes. The scatterplots between field and satellite 
estimates of LAI are shown in Figure A-1. A subset of each generated LAI map is displayed in 
Figure 5-2. In the LAI maps, individual fields can be well distinguished. They show a 
heterogeneous, temporally and spatially variable pattern of growth stages due to the 
phenological development as well as varying grazing and mowing cultivations and intensities. 

n VI Model Function ܴ௔ௗ௝
ଶ  α RMSEcv rRMSEcv 

April 25 10 ARVI linear ܫܣܮ ൌ െ3.67 ൅ 7.75 ∗  10.4 0.25 ***0.76 ܫܸܴܣ

May 9 13 MCARI linear ܫܣܮ ൌ 0.05 ൅ 10.43 ∗  17.9 0.61 ***0.66 ܫܴܣܥܯ

May 25 18 MSRre poly ܫܣܮ ൌ 8.07 െ 5.39 ∗ ௥௘ܴܵܯ ൅ 1.11 ∗ ௥௘ଶܴܵܯ  0.74*** 0.81 27.8 

July 16 25 rLength poly ܫܣܮ ൌ െ320705 ൅ 639242 ∗ ݄ݐ݃݊݁ܮݎ െ 318534 ∗  ଶ 0.64 *** 1.14 27.1݄ݐ݃݊݁ܮݎ

August 13 22 Curv linear ܫܣܮ ൌ 1.70 ൅ 0.30 ∗  20.6 0.84 ***0.75 ݒݎݑܥ

September 6 33 SR expo ܫܣܮ ൌ 1.55 ∗ ݁ௌோ∗଴.଴଻ 0.86*** 0.59 16.2 
       

all scenes 121 RDVI expo ܫܣܮ ൌ 0.48 ∗ ݁ோ஽௏ூ∗ଷ.ହଶ 0.48*** 1.08 30.1 
        

all but April 25 111 RRI2 poly ܫܣܮ ൌ െ2.81 ൅ 2.59 ∗ 2ܫܴܴ െ 0.2 ∗  2ଶ 0.50*** 1.09 29.5ܫܴܴ
all but May 9 108 ARVI poly ܫܣܮ ൌ 8.97 െ 27.62 ∗ ܫܸܴܣ ൅ 27.06 ∗  ଶ 0.49*** 1.12 31.0ܫܸܴܣ
all but May 25 103 MSR2 poly ܫܣܮ ൌ 1.04 ൅ 0.14 ∗ 2ܴܵܯ െ 0.001 ∗  2ଶ 0.46*** 1.14 30.6ܴܵܯ
all but July 30 96 Length poly ܫܣܮ ൌ 3.83 െ 16.22 ∗ ݄ݐ݃݊݁ܮ ൅ 34.88 ∗  ଶ 0.65*** 0.84 24.6݄ݐ݃݊݁ܮ
all but Aug. 13 99 ARVI poly ܫܣܮ ൌ 10.69 െ 31.7 ∗ ܫܸܴܣ ൅ 29.35 ∗  ଶ 0.42*** 1.13 32.3ܫܸܴܣ
all but Sept. 6 88 SARVI expo ܫܣܮ ൌ 0.65 ∗ ݁ௌ஺ோ௏ூ∗ଶ.ଽ଺ 0.39*** 1.18 32.9 
        

April 25, May 25, 
Aug. 13 

50 RRI1 poly ܫܣܮ ൌ 6.47 െ 5.05 ∗ 1ܫܴܴ ൅ 1.3 ∗  1ଶ 0.65*** 0.85 25.5ܫܴܴ

May 9, July 16, 
Sept. 6 

71 RRI2 linear ܫܣܮ ൌ െ1.22 ൅ 1.46 ∗  26.4 1.00 ***0.58 2ܫܴܴ
        

April 25, July 16 35 MSRre poly ܫܣܮ ൌ 17.85 െ 11.73 ∗ ௥௘ܴܵܯ ൅ 2.26 ∗ ௥௘ଶܴܵܯ  0.40*** 1.40 37.8 
April 25, Aug. 13 32 DVI expo ܫܣܮ ൌ 0.51 ∗ ݁஽௏ூ∗ସ.ଷସ 0.72*** 0.86 24.2 
April 25, Sept. 6 43 Curv poly ܫܣܮ ൌ 2.11 ൅ 0.01 ∗ ݒݎݑܥ ൅ 0.01 ∗  ଶ 0.81*** 0.64 19.3ݒݎݑܥ
May 9, July 16 38 NDVI power ܫܣܮ ൌ 8.02 ∗  ଷ.ଷ଼ 0.39*** 1.24 31.4ܫܸܦܰ
May 9, Aug. 13 35 Length power ܫܣܮ ൌ 15.4 ∗  ଵ.଼ଵ 0.72*** 0.79 20.6݄ݐ݃݊݁ܮ
May 9, Sept. 6 46 SR expo ܫܣܮ ൌ 1.55 ∗ ݁ௌோ∗଴.଴଻ 0.79*** 0.65 18.3 
May 25 July 16 43 SR linear ܫܣܮ ൌ 0.13 ൅ 0.37 ∗ ܴܵ 0.51*** 1.16 31.6 
May 25, Aug. 13 40 NDVIre poly ܫܣܮ ൌ 12.7 െ 63.9 ∗ ௥௘ܫܸܦܰ ൅ 89.93 ∗ ௥௘ଶܫܸܦܰ  0.70*** 0.82 23.2 
May 25, Sept. 6 51 RRI1 poly ܫܣܮ ൌ 5.28 െ 3.38 ∗ 1ܫܴܴ ൅ 0.88 ∗  1ଶ 0.78*** 0.67 19.7ܫܴܴ
  

      

spring 41 RRI1 poly ܫܣܮ ൌ 10.98 െ 7.52 ∗ 1ܫܴܴ ൅ 1.6 ∗  1ଶ 0.43*** 0.96 32.7ܫܴܴ
summer 80 ARVI poly ܫܣܮ ൌ 7.71 െ 23.66 ∗ ܫܸܴܣ ൅ 24.58 ∗  ଶ 0.59*** 1.04 26.5ܫܸܴܣ

 

Table 5-2: Summary of the statistics of the respective best model fit for each data set. n indicates 
the size of each data set, ܴ௔ௗ௝

ଶ the adjusted coefficient of determination, ܴܧܵܯ௖௩ the absolute cross-
validated RMSE, ܧܵܯܴݎ௖௩ the RMSE, and α the significance level of the model fit: 0.1 ’.’ 0.05 ’*’ 
0.01 ’**’ 0.001 ’***’0. 
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Vegetation density follows the seasonal trend with a maximum in August. The late May 25 
scene stands out with considerably reduced LAI values in comparison to the May 9 scene. 
This is caused by anthropogenic influences, as, due to the prevalent weather conditions in 
2011, most parcels were mowed for the first time in mid-May. 

5.2.2. Temporal transferability of statistical relationships 

After LAI maps have been derived under these best-case conditions, i.e. using data collected 
in the field simultaneously with an RS observation, in this section the frequently encountered 
situation of having a satellite image but no field data is simulated. The aim is to quantify the 
error that is introduced to LAI estimation under such conditions. As described in chapter 3.5, 
the diverse management techniques in the study area result in a broad range of vegetation 
states at nearly any point in time. In theory, this is an advantage with regard to the 
establishment of transferable relationships, as this would enable in situ measurements of a 
wide range of LAI values at almost every point in time over the entire vegetation period. 
Based on these wide ranges and similar variances of LAI, robust and therewith transportable 
transfer functions could thus be established. To verify this assumption, the established 
transfer functions (see upper part of Table 5-2) were used on the respective VIs (i.e. the VIs 
by means of which the functions have been established) of the other scenes to test for their 
temporal transferability. Their prediction potential for LAI at other points in time has been 
measured against the available field data, hence using the RMSE and rRMSE (RMSE / mean 
value of the reference measurements). 

The six single transfer functions achieve variable results when applied to other data sets. The 
resulting error rates are summarized in the upper part of Table 5-3. It can be observed that 
the use of a transfer function established on a single field campaign data set increases the 
associated prediction error in all but one case. However, the rRMSE values of the LAI 
estimates range from 12 % in the best case up to 102 % for one data set, which corresponds to 
an LAI RMSE of 2.5 in this scene. This high error variance (the error being doubled, tripled, 
and increased even higher in a third of all cases each) complicates the derivation of an overall 
error magnitude introduced by function transferability to other RS scenes. The error tends to 
be higher when a spring or summer data set is used for LAI prediction in the respective other 
season. However, for the models of the May 9, May 25, and September 6 scenes, this 
connection is inverted with mostly higher prediction errors for the chronologically closer 
dates. With regard to the individual data sets, the July 16 transfer function yields the highest 
average error (70%), which can be explained by its extraordinary model shape and its large 
absolute LAI values (see Figure 5-1). Further, the field data sampled very early and very late 
in the year (April 25, May 9, September 6) transfer with a similar average error (44 - 52 %). 
Especially in the first two scenes, the transfer is probably hampered by the small LAI value 
range. The May 25 and August 13 scenes (linear and polynomial model fits) achieve the 
lowest errors of around 35 %. The sampled LAI values of April 25 are predicted with the 
highest errors, probably due to the overall low value range. 

It can be concluded from this experiment that the use of a transfer function on another RS 
scene is always unfavorable, as it will highly probably increase the prediction RMSE to over 1. 
This disproves the above mentioned general assumption of temporally stable transfer 
functions in grassland due to its high variability. Although it is possible to measure low and 
moderate LAI values in situ at every point in time (see Figure 4-15), extremely high values 
can neither be sampled nor reproduced for every date. Instead, these results confirm the 
impression generated by Figure 5-1 that the different models are fit to different densities, 
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biochemical conditions, and canopy structures in different vegetation stages. If a regression 
model transfer cannot be avoided, however, i.e. LAI can only be sampled once during a 
season, this sampling should be conducted in early or late summer to cover a wide data 
range, and carefully screened for outliers afterwards. In spring, the data range of LAI values 
is too narrow, and measurements in mid-summer tend to be affected by saturation. Further, 
a linear or a similarly conservative regression model should be used to prevent extreme LAI 
estimations. The effect of regression model transferability has not been quantified in other 
studies so far, which impedes a comparison of these results. Vuolo et al. (2013) test the 
spatial transfer of LAI models, but use model parameters calibrated on the whole season, not 
on individual points in time. 

5.2.3. Combined data sets analysis 

As shown above, the use of transfer functions based on data from a single point in time on 
other scenes does mostly not yield acceptable results. Thus, the motivation to combine data 
sets collected during several measurement campaigns is to increase the validity and 
robustness of relationships used for LAI derivations at other points in time. For field crops, 
this approach has often been pursued in order to integrate all development stages of the 
plants in the regression model (e.g. Ehammer et al., 2010; Rinaldi et al., 2010). The 
respective best fitting regression functions trained on the above-mentioned data set 
combinations (see Table 5-2) have thus been analyzed for their regression strength to test the 
possibility of deriving robust statistical relationship transferable in time, and to identify the 
number and timing of field campaigns needed. 

In a first step, the performance of a regression model based on all available in situ 
measurements is tested. The 2011 and 2012 data sets are thereby treated as one season’s time 
series. The ܴ௔ௗ௝

ଶ 	of the model fitted to all available data is considerably lower than that of the 

single time steps (see Table 5-2) and the relative prediction errors are overall higher than 
those achieved with the scene-adapted models (Table 5-3). While the mean error of the 
individual models is 17.9 %, the rRMSEcv of the combined data set is 30.1 %. Aggregating all 
available field data for building a regression model would only reduce the LAI mapping error 
for one scene (July 16). Scenes for which the rRMSEs are around 20% show even lower 
prediction errors for the individual data sets. This reduction of model strength when 
combining data sets has also been observed by Vuolo et al. (2013) and Wang et al. (2005).  

As the “all scenes” regression model is thus no suitable replacement for the adapted models, 
it would be of higher interest if gaps within a time series could be filled based solely on the 
satellite image and on combined field data sets of the same vegetation period. Thus, different 
scenarios of field data availability are tested also in this chapter. Therefore, a “leave-one-out” 
experiment has been applied to each scene’s data set. Polynomial model have almost 
exclusively achieved the best fits on these data sets, as other models had to be rejected due to 
the non-compliance of the residuals normality test in many cases. The ܴ௔ௗ௝

ଶ  and rRMSEcv 

values of these models are quite similar to those of the “all scenes” combination, varying 
around 0.49 and 30.2 %, respectively (Table 5 2). Only the data set leaving out the July 16 
scene achieves a noticeably better model fit and an RMSEcv below 1, indicating a possible 
distortion introduced by the July 16 data. The rRMSEs of the “interpolated” LAI values vary 
greatly between 21.7 and 92.6 % (Table 5 3). Two gaps can only be deficiently filled by the use 
of a model based on the remaining time series data. The LAI of April 25 has been almost 
impossible to predict using another date’s model (see upper part of Table 5 2), and it is also 
predicted with an error of 92.6 % in this experiment. With its overall very low values and 



5. LAI derivation using empirical-statistical models 

90 

narrow data range (LAI = 1.7 - 2.9) but at the same time rather high VI values (see Figure 5 
3), it obviously cannot be reproduced properly. The other exception is the July 16 scene. 
Despite the good model fit established on the remaining five data sets, this date’s LAI is 
estimated with a high error (41.1 %). This result strengthens the above-mentioned 
observation that the data set is distorted by outliers. Apart from these two dates, LAI can be 
predicted using the other times steps’ regression models with an error of around or below 30 
%. This equals the accuracies achieved using all data sets and represents an accuracy loss of 
approximately 10 % when filling a time series gap compared to the ideal use of coincident in 
situ measurements. 

In the next step, the performance of the empirical-statistical approach when further reducing 
the number of field campaigns by half or by two thirds is analyzed. This corresponds to the 

Table 5-3: Prediction errors of transfer functions applied to other points in time based on the 
individual and combined field data sets. Shaded cells indicate that no model transfer has been 
performed as the data sets have been used for training. The ‘all scenes’ data set is an exception 

rRMSE [%] Used on VI of 
Transfer  
function of 

      

April 25 May 9 May 25 July 16 August 13 September 6 

April 25  
42.1 47.3 61.2 52.0 56.0 

May 9 91.8 
 

41.5 40.4 34.4 31.3 

May 25 12.0 33.2 
 

54.6 41.1 25.9 

July 16 102.0 65.8 92.7 
 

29.9 58.7 

August 13 50.4 33.7 43.3 34.6 
 

21.1 

September 6 96.7 22.8 29.0 34.7 37 
 

       

all scenes 57.9 20.4 31.5 37.9 20.9 20.2 
       

all but April 25 92.6  

all but May 9  26.6  

all but May 25  33.4  

all but July 30  41.1   

all but Aug. 13  24.8  

all but Sept. 6  21.7 
       

April 25, May 25, 
Aug. 13 

 29.4  45.8  26.6 

May 9, July 16, 
Sept. 6 

126.5  23.6  47.7  

       

April 25, July 16  56.9 70.6  28.4 75.2 

April 25, Aug. 13  20.6 33.0 47.4  29.9 

April 25, Sept. 6  25.6 23.8 45.9 26.7  

May 9, July 16 96.9  37.8  28.3 22.8 

May 9, Aug. 13 41.7  30.8 43.3  25.0 

May 9, Sept. 6 94.2  29.0 35.1 35.6  

May 25, July 16 123.8 34.0   46.5 23.6 

May 25, Aug. 13 42.5 32.8  44.1  25.7 

May 25, Sept. 6 31.9 25.2  44.5 26.7  
       

spring  47.9 29.1 20.8 

summer 82.3 31.1 33.8  
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use of three or two combined in situ measurement data sets (see middle part of Table 5-3). 
The three data set combinations were created by evenly distributing the dates over the 
season, while for the two data set combinations, different spring and summer scenes were 
joined based on the findings of preliminary analyses (Asam et al., 2013). With regard to the 
ܴ௔ௗ௝
ଶ  values, the two different “three scenes” models are comparably strong. The prediction 

results are once again biased by the large prediction error on the April 25 data set. Leaving 
this result unconsidered, the two models perform similar well, with rRMSEs between 23.6 
and 47.7. In both cases, the vegetation maximum exhibits the largest prediction errors. 

From solely investigating the ܴ௔ௗ௝
ଶ  and ܧܵܯܴݎ௖௩ of the two date combinations, it can be seen 

that any regression model trained on the July 16 data achieves considerably lower results 
than the others. Their rRMSEs are also higher on average (54 %) than those of the other data 
sets (36 %). The LAI estimations for the July 16 scene have a correspondingly high error rate, 
which is not the case for the other mid-summer scene (August 13) and is thus probably not 
caused by saturation. As observed before, the April 25 data are mostly not reproducible with 
a reasonable error rate. Leaving the April 25 error rates unconsidered, the average rRMSEs of 
all models (apart from the April 25 & July 16 scenes combination) vary around 33 %. This 
indicates an approximately 15 % prediction improvement by using two data sets instead of 
only one measurement campaign randomly placed during the vegetation period. In several 
cases, this might be caused by the low sample size when using only one time step. No 
considerable difference can be found between the uses of two, three or five data sets. With 
regard to measurement timing, the combinations with the latest campaign (September 6) 
achieve better results overall than those of the mid-summer scenes (July 16 and August 13). 

These results suggest that the use of only two in situ data sets is sufficient for LAI time series 
derivation if an increased error rate of approximately 33 % is accepted. This is also an option 
if no robust regression model can be established on a single data set. As only models covering 
both, the spring and summer seasons, have been used so far, the transferability of models 
established on either one is tested last (see bottom part of Table 5-3). The establishment of 
valid regression models has been more difficult for the spring combination, as the residues of 
most tested models have not been normally distributed (most p > 0.05). Comparing the two 
model fits, the summer data sets combination yields better results (ܴ௔ௗ௝

ଶ 	equals 0.43 and 

0.59, see Table 5-2). However, this difference in model strength could also be explained by 
the sample size, which is twice as big for the summer sample. With regard to the LAI 
estimation error, the two models yield similar figures (32.5 %, once again leaving the April 25 
scene unconsidered). This surprisingly good performance of the spring model might be 
explained by the relatively high LAI in situ values of the May 25 scene (up to five), and 
indicates a reduced importance of field measurement timing when several data sets are 
combined. 

5.2.4. Red edge potential for LAI derivation 

As mentioned above, only few studies have used RapidEye data for the characterization of 
vegetation canopies so far (see e.g. Ehammer et al., 2010; Eitel et al., 2011; Friese et al., 
2011). None of them quantified or discussed the benefits of the red edge band for LAI 
derivation. Especially with regard to new and upcoming sensors such as WorldView-2 or 
Sentinel-2 (DigitalGlobe, 2010; Drusch et al., 2012), which are equipped with one or more 
red edge bands, the potential of this spectral domain for vegetation parameter mapping is of 
high interest. Therefore, the impact of the use of the RapidEye red edge band is assessed in 
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this thesis by comparing the statistical modeling results based on conventional VIs and their 
respective red edge equivalents, in which the red band is substituted by the red edge band. 
Three VI pairs (SR – RRI1, NDVI – NDVIre, and MSR2 – MSRre) are based on the respective 
same formula including the red band or red edge band (see Table A-6). All single data sets 
and all models were included in this analysis, however, only the models which achieve 
significant results (p < 0.01) were considered. As not a single significant model could be 
established for the May 9 scene using one of the above-mentioned indices (see Table A-7), no 
comparison could be performed for this scene. With this reduction to five scenes’ data, the 
analysis was conducted on 60 VI pairs. 

Regarding the regression modelling presented in this chapter, the additional value of the red 
edge band is striking. In Table 5-4, the model results of the VI pairs are presented, with the 
higher ܴ௔ௗ௝

ଶ  value printed in bold in each case. In 88 % of all VI comparisons, the red edge VI 

yields stronger relationships than the respective original VI. Averaged over all 60 VI 
comparisons, the ܧܵܯܴݎ௖௩ could be decreased by 5.4 % by using a red edge VI. Although the 
red edge VIs could establish no valid models in 20 - 40 % of all cases as mentioned in chapter 
5.2.1, they were robust in those cases where the respective conventional VIs failed. Regarding 
the other VIs used in this thesis employing the red edge band, i.e. the experimental indices 
Curvature, Length and relative Length proposed by Conrad et al. (2012) and the MCARI 
(Daughtry, 2000), further analysis also seems promising. Each of these VIs achieved highest 

 
ܴ௔ௗ௝
ଶ  values 

Model Week 
 

SR RRI1 
 

MSR2 MSRre  
NDVI NDVIre 

linear April 25 0.63 0.72 
 

0.65 0.73 
 

0.74 0.74 

 May 25 0.37 0.57 
 

0.33 0.61 
  

0.45 

 July 16 0.51 0.63 
 

0.35 0.61 
 

0.48 0.62 

 August 13 0.62 0.70 
 

0.56 0.71 
 

0.53 0.64 

 September 6 0.83 0.79 
 

0.74 0.76 
 

0.62 0.72 

          power April 25 0.67 0.71 
 

0.69 0.72 
 

0.72 0.73 

 May 25 0.38 0.68 
 

0.35 0.70 
  

0.62 

 July 16 0.51 0.63 
 

0.37 0.61 
 

0.50 0.63 

 August 13 0.63 0.72 
 

0.58 0.72 
 

0.59 0.70 

 September 6 0.82 0.81 
 

0.74 0.78 
 

0.71 0.77 

          exponential April 25 0.59 0.69 
 

0.59 0.70 
 

0.72 0.72 

 May 25 0.41 0.71 
  

0.73 
  

0.66 

 July 16 0.49 0.62 
 

0.32 0.61 
 

0.51 0.63 

 August 13 0.57 0.71 
 

0.48 0.72 
 

0.61 0.71 

 September 6 0.86 0.83 
 

0.68 0.80 
 

0.74 0.80 

          polynomial April 25 0.74 0.74 
 

0.81 0.76 
 

0.74 0.75 

 May 25  
0.73 

  
0.74 

  
0.69 

 July 16 0.50 0.61 
 

0.35 0.59 
 

0.52 0.61 

 August 13 0.61 0.71 
 

0.60 0.71 
 

0.61 0.71 

 September 6 0.86 0.82 
 

0.74 0.80 
 

0.78 0.81 

Table 5-4: Comparison of regression ܴ௔ௗ௝
ଶ  values established using SR, MSR2, and NDVI with their 

red edge band equivalents. Only significant model results (p < 0.01) were included in the 
comparison. 
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results on at least one of the data sets and thus indicates a useful sensitivity to certain 
conditions. The shape indices were especially successful for very dense vegetation (July 16 
and August 13). Such an improved ability to establish statistical relationships when using the 
red edge channel was also observed by Tillack et al. (2014) for some phenological phases in 
forest canopies, although they did not compare structurally identical indices and yielded 
lower ܴ௔ௗ௝

ଶ values on the whole. 

5.3. Potential of statistical models for LAI derivation 

In chapter 5, the potential of LAI derivation from single and combined RapidEye data based 
on empirical-statistical models was investigated. The usefulness of repeated in situ 
measurements and RapidEye images is proven by high ܴ௔ௗ௝

ଶ  (0.64 - 0.86) and corresponding 

low prediction errors (RMSEcv: 0.25 - 1.14, rRMSEcv: 10.4 to 27.8 %) of most of the 
established statistical models. The high spatial resolution of the RapidEye data enabled the 
distinction of LAI variabilities within and between fields, and hence the direct relation 
between different canopy states and associated reflectances. However, with such high spatial 
resolution data, local disturbing factors such as changing viewing geometries, canopy gaps, 
and saturation, also might have a potentially high influence on this relationship. 

These modeling results are in the upper ranges of other LAI derivation studies and thus 
satisfying, but with rRMSEcv and absolute RMSEcv values above 10 % and 0.5, respectively, 
which do not yet meet the target requirements determined by GCOS (2006) and the GMES 
user committee (Drusch et al., 2010). Generally, it would therefore be of high interest to test 
in further research whether the accuracies achieved with the empirical-statistical method 
over grassland can still be improved, e.g. by using other models, different in situ 
measurement methods, or a more detailed field sampling strategy, or whether this method 
will always be restricted by the underdetermined problem (see chapter 2.2.3) of deriving a 
single canopy variable from the spectral signature of a surface. 

It was further deduced in this chapter that the proper selection of a VI is more important for 
a sound regression model than the selection of a mathematical model type. With regard to 
the potential of RapidEye’s red edge band, it was concluded that the red edge clearly 
strengthens the LAI-VI relationships and improves the LAI prediction. The derived maps 
show that LAI varies strongly over space and time due to phenology and managing practices. 
The relation between field-based and satellite-based measurements also changes over the 
season. Different VIs and models should therefore be used for estimating LAI during the 
year. This supports the reasoning of Dorigo et al. (2007), who state that empirical-statistical 
relationships are restricted to the conditions that prevailed during RS and field data 
acquisition. Further, these investigations revealed inconsistencies and problems with the 
July 16 data set, which seems to be influenced by outliers. Therefore, a proper outlier 
screening (see Field et al., 2012) is highly recommended for empirical-statistical LAI 
modeling. 

The test on temporal transferability of regression models reveals an associated rRMSEcv 
increase from on average 20% for the data sets on which the function has been established, to 
on average of 49 % if used on other points in time. Compared to the ideal use of the 
contemporaneous in situ measurements, this result represents an accuracy loss of 30 %. If 
such a procedure cannot be avoided, the training data set should be sampled in early or late 
summer, screened for outliers and used in a conservative regression model. However, for a 
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rigorous analysis of optimal measurement times, the identical sample sizes for each 
campaign would be ideal to prevent reduced model performances due to changing sample 
sizes and insufficiently sampled variance ranges. These aspects should be considered for 
future work. The analysis further showed that there are phenological phases for which LAI 
cannot be reproduced using other field data. In none of the transferability experiments 
models that were established on other single data sets proved to be suitable for LAI 
estimation from the earliest scene (April 25). These periods of rapid change, i.e. green-up and 
senescence, are thus only properly simulated using corresponding field data. 

With regard to data set combinations, the union of all six available data sets results in higher 
LAI estimation errors than the respective individual models. The prediction error is 31.5 % on 
average and thus similar to the average accuracies that can be achieved when interpolating 
time series gaps based on the respective other five scenes (rRMSE = 30.2 %). This error does 
also not increase when using only half or one third of the available field measurements. From 
this series of experiments, it can be derived that the LAI derivation for a date in time for 
which no in situ measurements are available is improved by approximately 15 % when two 
measurement campaigns are conducted instead of only one. Further campaigns do not 
significantly reduce the estimation error. With regard to the timing of field measurements, 
the ܴ௔ௗ௝

ଶ values of the models including a spring scene and the late summer scene 

(September 6) achieve highest results, so that this combination is recommended for efficient 
and representative field measurements. 
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6. LAI derivation using the PROSAIL 
model 
The second LAI derivation approach pursued in this thesis is the physical modeling of LAI 
using an RTM. As presented in chapter 2.2.3, RTMs simulate the interactions of radiation 
with vegetation elements and the soil while traveling through the canopy, i.e. absorbance, 
reflectance and transmittance. Based on these processes, the radiation leaving a canopy can 
be related to its spectral and structural properties (Widlowski et al., 2014). In LAI retrieval 
procedures, the RTM is run first in the forward mode to calculate reflectances given specific 
canopy and observation configurations. This canopy characterization by biophysical and 
chemical input parameters is called parameterization. By iteratively changing the 
parameterization, RTMs simulate the spectra of a great variety of vegetation conditions (see 
Figure 6-1). In the second step, which is referred to as inversion, the canopy spectrum with its 
parameters (including LAI) most similar to the measured reflectances is selected by spectral 
matching or by a statistical relationship over the RTM input and output (Dorigo et al., 2007).  

The advantage of LAI modeling using RTMs is its independence from field measurements. If 
data on canopy characteristics are available from in situ observations, this might improve the 

Figure 6-1: Effect of LAI on PROSAIL canopy reflectance (θs = 30°, θo = 0°, ϕr = 0°, ALA = 60°, 
Cab = 35 μg cm-2, Car = 10 μg cm-2, Cw = 0.02 cm, Cm = 0.01 g cm-2, ܰ = 1.5, bf = 0.5, hs = 0.11, Cbp = 
0.3, skyl = 0.13. For abbreviations see Table 6-1). 
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LAI modeling, as it can be used as “prior information” for parameterization. However, the 
workflow of physical LAI derivation does not rely on it. This enables an automated LAI 
derivation and thus time series generation. Further, several factors influencing the canopy 
reflectances, such as the soil reflectance, the illumination and observation geometry, or the 
canopy structure, are explicitly accounted for in an RTM. Additionally, some inversion 
techniques allow for the simultaneous derivation of several biophysical leaf and canopy 
parameters, and provide pixel-wise quality information on the LAI modeling.  

Despite these advantages, RTMs have so far never been used for the derivation of grassland 
LAI from high spatial resolution multi-spectral RS data (see chapter 2.4). In view of the 
expected increase in availability of high spatial resolution RS data over the next few years, the 
aim of this chapter is to assess the potential of this data type for physical LAI derivation of 
(semi-)natural grasslands in comparison to empirical-statistically derived LAI (chapter 5). 
Additionally, the use of some innovative approaches, namely a global sensitivity analysis, the 
use of additional input features, and the mapping of pixel-wise LAI estimation uncertainties 
is analyzed. 

Figure 6-2 displays the workflow of the physical LAI derivation algorithm used in this thesis. 
The preprocessing of the RapidEye data used as input for model inversion was presented in 
chapter 4.1. With regard to physical LAI modeling, Dorigo et al. (2007) state that LAI 
retrieval accuracy depends on the selection of an appropriate RTM, an RTM 
parameterization well adapted to canopy conditions and system geometry, and on the 
inversion procedure. These are also the main points that are presented in this chapter (see 
right part of Figure 6-2). In the first subchapter 6.1, the characteristics and the suitability 

Figure 6-2: Flowchart of the LAI retrieval algorithm used in this thesis. The left part illustrates the 
RapidEye preprocessing chain, the steps involved in the establishment of a scene specific local 
system geometries layer (see chapter 6.4) are depicted while in the middle. On the right, the model 
set up (parameterization, LUT generation) and inversion procedure (spectral matching as well as 
optimization techniques “feature selection” and “sample size”) discussed in this chapter are shown. 
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specifically of the PROSAIL model (Jacquemoud et al., 2009) used in this thesis are 
discussed. In order to optimize the parameterization of the most influential model 
parameters, a sensitivity analysis is performed in a next step (subchapter 6.2). The gained 
information is used together with the vegetation characteristics described in chapter 4.3 for 
model parameterization (subchapter 6.3). Next, the integration of topographic information 
(see chapter 4.2) within the model setup is assessed in subchapter 6.4. Subchapter 6.5 
describes the tested inversion and regularization strategies, namely the selection of the LUT 
approach as well as of a cost function for the spectral match, the test on multiple solution 
sample sizes, spectral feature selection, and the addition of simulated noise. Subchapter 6.6 
summarizes and discusses the results of physical LAI modeling. In subchapter 6.7, 
conclusions on the potential and challenges of the procedure are drawn. 

6.1. The PROSAIL model 

6.1.1. Model characteristics 

Due to the high diversity in leaves and vegetation canopies, a wide range of leaf and canopy 
models has been developed (see chapter 2.2.3). The selection of an appropriate model from 
this variety for the canopy under consideration is crucial for accurate LAI derivation (Dorigo 
et al., 2007). According to Weiss et al. (2000), the choice of the RTM has to meet at least two 
requirements: it has to allow a fair representation of the canopy architecture, but manage to 
do so with a minimum of input information. Further, the computational efficiency is 
important when time series of high spatial resolution data are analyzed. Limiting the number 
of parameters increases model stability. A higher number of model parameters that need to 
be specified inevitably increases the model output uncertainty, as the exact specifications of 
these parameters is generally not known und varies strongly among canopy types. RTM 
complexity is hence always a trade-off between realism and accuracy, as it is ambiguous 
whether an increase in model realism would outbalance the retrieval uncertainty produced 
from a more complex combination of parameters. LAI modeling in this thesis is facilitated by 
the facts that only a single ecosystem is investigated, and that grassland canopies exhibit a 
high level of randomness. The latter favors the use of a model that represents the canopy as 
randomly distributed vegetation elements, i.e. turbid medium models (see chapter 2.2.3).  

The PROSAIL model was chosen here, which is a nonlinear 1D turbid medium RTM. As 
outlined in chapter 2.2.3, the PROSAIL model (Jacquemoud et al., 2009) combines the most 
widely used leaf model, PROSPECT (Jacquemoud and Baret, 1990), with the most widely 
used vegetation canopy model, SAIL (Verhoef, 1984, 1985), and is itself the most popular 

Figure 6-3: Schematic structure of the PROSAIL model. The abbreviations indicate the PROSAIL 
input parameters (ܰ = leaf structure coefficient; Cab = chlorophyll a +b content, Car = carotenoid 
content, Cw = equivalent water thickness, Cm = dry matter content, Cbp = brown pigments content, 
LIDF = leaf inclination distribution function, hs = hot spot, SKYL = ratio of diffuse incident 
radiation). ߩ is the reflectance and ߬ the transmittance of leaves (l), soil (s), and canopy (c) that are 
wavelength dependent, θs and θo are the sensor and observer zenith angles, and ϕr is the relative 
azimuth angle. Adapted from Jacquemoud et al. (2009). 
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coupled leaf-canopy RTM. The structure of the model is depicted in Figure 6-3. The version 
used here is coded in MATLAB and is freely available16. 

PROSPECT simulates the leaf directional–hemispherical reflectance and transmittance in the 
spectrum between 400 - 2500 nm with a 1 nm spectral resolution (Le Maire et al., 2004). It 
represents leaves as a pile of ݊ homogeneous absorbing plates with rough isotropic surfaces 
separated by ݊ െ 1 intermediate air spaces. Within the plates, the absorption elements are 
assumed to be randomly distributed. The specific absorption coefficients of the different 
molecules, the surface roughness parameter, as well as the refractive index of leaf material 
were determined empirically and are stored in the model data base (Jacquemoud and Baret, 
1990). PROSPECT is thus a deterministic model. In this thesis, the PROSPECT 5b version 
with a separate treatment of chlorophylls and carotenoids is used (Féret et al., 2008). Model 
variables are the leaf structure parameter ܰ, specifying the average number of “plates” and 
thus of air-cell wall interfaces within the mesophyll, the dry matter (Cm) and water content 
(Cw), as well as the biochemical constituents chlorophyll (Cab), carotenoid (Car), and brown 
pigments (Cbp) (see Table 6-1). Cm comprises cell wall molecules such as cellulose and lignin, 
while Cbp represents the polyphenol pigments responsible for senescence. PROSPECT has 
been improved, applied, and validated in several studies (Fourty et al., 1996; Jacquemoud et 
al., 1996; Baret and Fourty, 1997; Bousquet et al., 2005).  

SAIL is an analytical canopy reflectance model that represents the canopy as a plane-parallel, 
horizontally uniform and infinite but vertically variable and finite slab. The canopy contains 
infinitely small leaves randomly distributed in space, between which multiple scattering 
occurs (Verhoef, 1984, 1985, 2002). For the development of canopy reflectance models and 
SAIL derivatives, see chapter 2.2.3. In this thesis, the numerically robust and speed-
optimized model version 4SAIL was used (Kuusk, 1985; Verhoef, 1998; Verhoef et al., 2007). 
The leaf transmittance and reflectance are provided by the PROSPECT model (see Figure 
6-3), while the canopy architecture is specified by LAI, LIDF, and the hot spot parameter hs 

                                                            
16 Downloaded from http://teledetection.ipgp.jussieu.fr/prosail/. Last access: May 12, 2014. 

Symbol Parameter Unit 

PROSPECT variables 

N Leaf structure coefficient - 
Cab Chlorophyll a +b content µg*cm-2 
Car Carotenoid content µg*cm-2 
Cw Equivalent water thickness cm 
Cm Dry matter content g*cm-2 
Cbp Brown pigments content - 

SAIL variables 
LAI Leaf area index m2*m-2 
LIDF Leaf inclination distribution function ° 
hs Hot spot parameter m*m-1 
ρsoil Soil reflectance  - 
SKYL Diffuse/total incident radiation - 
θs Solar zenith angle ° 
θo Observer zenith angle ° 
ϕr Relative azimuth angle ° 
    

Table 6-1: Input parameters of the PROSAIL model subdivided into PROSPECT and SAIL 
parameters. The symbol column contains the parameter abbreviations used throughout this text 
and the unit column indicates the parameters’ units. 



6.1. The PROSAIL model 

99 

(see Table 6-1). In this model implementation, LIDF is either assumed ellipsoidal and 
specified by its MTA (Campbell, 1990) or can be represented by a more complex 2-parameter 
LIDF model (Verhoef, 1998). hs is a single-scattering component of direct solar radiation 
connected with the finite size of leaves in a canopy, thus partly correcting for the infinitesimal 
size assumed in SAIL. It is implemented to better describe the hot spot effect and is estimated 
as relative leaf size, thus relating the average leaf size to canopy height (Nilson and Kuusk, 
1989; Kuusk, 1991). Further inputs to 4SAIL are the spectral properties of the soil ρs that can 
be externally provided by a soil model (Figure 6-4) or spectra sampled in the field or from RS 
data. In this thesis, a standard Lambertian soil spectrum stored in the model was used in 
combination with a soil brightness factor (bf) that scales the spectrum between dark and 
bright soils (see Figure 6-4). The three angles solar zenith θs, observer zenith θo, and relative 
azimuth ϕr define the system geometry of the radiation transport. SAIL provides the four 
radiance streams including TOC HDRF and BRF in a first step, from which the directional 
reflectance is calculated by relating both reflectances to the sum of direct (ܧ௦௨௡) and diffuse 
irradiance (ܧ௦௞௬) using the SKYL factor and the global radiation according to François et al. 

(2002). Additionally, fPAR and albedo are output variables of PROSAIL (Jacquemoud et al., 
2009). The eventual specification of all parameters is presented in chapter 6.3. 

PROSAIL links the spectral variation of canopy reflectance depending on leaf biochemical 
contents with its directional variation depending on canopy architecture. This link is 
essential, as the SAIL model alone cannot be inverted over several wavelengths (see chapter 
2.2.3). The use of multispectral data in SAIL would lead to an under-determined system 
because three unknowns (leaf reflectance, leaf transmittance, and soil reflectance) are 
wavelength dependent input variables to SAIL, which thus have to be estimated at each 
wavelength in addition to the canopy structure variables (see Figure 6-2). The inversion of 
SAIL alone at a given system geometry therefore requires at least three times as many 
observations as wavelengths, which makes a robust inversion of SAIL impossible unless 
several viewing angles are available, which is normally not the case with RS data. Thus, the 
use of a leaf model does not only enable the consideration of biochemical leaf constituents, 
but also reduces the dimensionality of the inverse problem by imposing a spectral constraint 
on the inversion process (Jacquemoud et al., 2009). 

Figure 6-4: PROSAIL soil spectra. The wet and dry soil spectra are stored in the PROSAIL model, 
and a brightness factor (bf) is used to scale between the two. Wet (and thus dark) soil corresponds 
to a bf of zero, while dry soil corresponds to a bf of one.  
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6.1.2. PROSAIL suitability for grassland LAI 

Since its publication in 1992, PROSAIL has been extensively used and validated. In a first 
step, model outputs have been successfully compared to measured spectra over different 
biomes and at different scales (see e.g. Major et al., 1992; Jacquemoud et al., 1995a; Andrieu, 
1997; Danson and Aldakheel, 2000; Schlerf et al., 2007). Due to its high accordance with 
measured spectra, it has been particularly useful for the evaluation and design of VIs (Baret 
et al., 1995; Broge and Leblanc, 2001; Haboudane, 2004; Zarco-Tejada et al., 2004; 
Chaurasia and Dadhwal, 2004; Le Maire et al., 2008). However, most applications of 
PROSAIL aim at deriving biophysical parameters from vegetation canopies. For LAI 
derivation, PROSAIL was inverted against spectral information gained from hand-held 
spectroradiometers (e. g. Jacquemoud et al., 1995a; Casa and Jones, 2004; Dorigo, 2007; 
Darvishzadeh et al., 2008b; Le Maire et al., 2008; Vohland and Jarmer, 2008), air-borne and 
spaceborne hyperspectral data (e.g. Jacquemoud et al., 1994; Jacquemoud et al., 2000; Weiss 
et al., 2002; Atzberger et al., 2003b; Meroni et al., 2004; Vuolo et al., 2008; Laurent et al., 
2013; Laurent et al., 2014), high spatial resolution multispectral RS data (e.g. Atzberger, 
2004; Koetz et al., 2005a; Soudani et al., 2006; Vuolo et al., 2010; Duveiller et al., 2011b; 
Atzberger and Richter, 2012), and medium to coarse resolution data (e.g. Zarco-Tejada et al., 
2003; Lacaze, 2005; Zhang et al., 2005a; Bacour et al., 2006; Baret et al., 2007; Pasolli et al., 
2011). In most of these studies, PROSAIL was used for crop characterization, although the 
number of studies focusing on forests and other natural vegetation canopies increased over 
the recent years. These applications led to the development of a range of ecosystem-adapted 
PROSAIL model variations (see chapter 2.2.3).  

PROSAIL has been reported to achieve accuracies similar to those of more complex 
reflectance models (Weiss et al., 2000; Jacquemoud et al., 2000; Bacour, 2002; Widlowski et 
al., 2007; Widlowski et al., 2013). PROSAIL thus proved to be a good compromise between 
accurate results and robust performance. As it is based on a relatively small number of input 
parameters, it is invertible and computationally effective (Jacquemoud et al., 2000). 
Representing dense and homogeneous vegetation in which small single vegetation elements 
(Shabanov et al., 2000; Goel and Thompson, 2000; Schlerf and Atzberger, 2006; Dorigo et 
al., 2007), it is highly suitable for grasslands. Additionally, its extensive documentation 
makes PROSAIL an attractive choice. For these reasons, the PROSAIL model was chosen for 
reflectance simulations. Next, a framework for the parameterization of PROSAIL suitable to 
the different RapidEye scenes had to be established. To render this model set-up efficient, a 
sensitivity analysis (SA) of the PROSAIL model was performed first. 

6.2.  PROSAIL sensitivity analysis 

6.2.1. Types of sensitivity analysis 

The aim of an SA is to apportion the variations in the output of a model to variations of 
different input parameters (Saltelli, 2000). For an RTM, each parameter’s contribution to the 
canopy reflectance variance must be quantified in each wavelength. The motivations to gain 
such information are diverse (Saltelli, 1999). Firstly, systematic model simulations are 
necessary to verify that the model behaves as expected. Secondly, an SA indicates whether the 
model is suitable for the intended use. Parameters which do not noticeably impact the model 
outcome can also not be retrieved accurately during inversion. Further, the sensitivity of an 
RTM towards measurement errors can be assessed (Goel, 1988). Finally, with regard to the 
design of sensors and satellite missions, SAs are relevant for the identification of optimal 
wavelength ranges and viewing directions for biophysical parameter derivation.  
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In this thesis, the most important aspect is the identification of influential input parameters 
in the RapidEye spectral bands, which is crucial for an efficient model parameterization. 
Parameters for which a small variation causes large RTM output variations must be modeled 
in small increments to ensure the simulation of all prevailing canopy spectra in the scene and 
hence the precise derivation of this parameter during inversion. At the same time, a detailed 
differentiation of non-impacting variables which do not generate significantly different model 
outputs would only increase inversion ambiguity and decrease computational efficiency and 
should therefore be omitted. Thus, the level of detail at which a parameter should be adjusted 
has to be relative to its impact on the canopy radiance. Further, the SA aims at identifying 
suitable or potentially negligible spectral bands and additional valuable features.  

Although some SAs of the PROSAIL model have been conducted during the last few decades, 
they either did not cover the whole parameter space, delivered only qualitative results, or 
focused on parameters or spectral ranges not relevant for LAI retrieval. The simplest kind of 
SA is a series of simulations performed by sequentially changing one input parameter at a 
time over a reasonable range while retaining the other parameters unchanged, and 
monitoring the relative change in model response (Saltelli, 1999). An example is given in 
Figure 6-1, as for the generation of the canopy spectra shown in the figure all parameters 
other than LAI were kept constant to highlight canopy reflectance changes due to LAI 
variation only. This kind of SA is called “one-at-a-time” (OAT) or “local”, as it is run at a given 
central point in the input parameter space (Saltelli et al., 1999). To gain quantitative 
measures of relative parameter importance, the sum of squared differences between a 
“standard canopy” case and each perturbation is calculated for each parameter. Such local 
SAs have been performed for the PROSPECT model by Zarco-Tejada et al. (2003) and 
Ceccato et al. (2001), for the SAIL model by Major et al. (1992) and Mu et al. (2008), and for 
PROSAIL by Jacquemoud (1993), Zarco-Tejada et al. (2003), Vohland and Jarmer (2008), 
Darvishzadeh et al. (2012) and Wang et al. (2013). Modified versions of this method have 
been used on other RTMs by Privette et al. (1996) and Bicheron and Leroy (1999), who varied 
the parameters by 10 % around a standard reflectance distribution, and Asner (1998; 2000) 
and Privette et al. (1994), who additionally performed a principal component analysis on the 
variances. Combal et al. (2000) used a statistical method, while Laurent et al. (2011) analyzed 
the partial derivatives of the relative model output with respect to the input parameters. 

However, these local SA approaches are limited (Saltelli, 2008). First, because a fixed 
baseline parameter set has to be defined for this analysis, which is often arbitrary, and any 
conclusion drawn on parameter importance is only legitimate around the baseline case. 
Second, a local SA is not comprehensive, because variations in the model output due to 
interactions between the parameters cannot be detected. Interactions describe effects in 
which variance of the model output due to one parameter depends on the level of another 
parameter. The combined change in two parameters may produce a greater effect than the 
sum of effects from either parameter alone (Bacour, 2002). Encountering no interactions is 
highly unlikely under natural conditions, because canopy biophysical and biochemical 
properties often co-vary (Jacquemoud, 1993; Jacquemoud et al., 2009).  

Thus, so-called “global” SAs should be used for sensitivity evaluations. In a global SA, the 
parameters are not only varied locally around a mean value, but over their entire plausible 
range. Additionally, parameter distribution functions can be specified for each of the model 
parameters, so that information on focus ranges can be included. Further, in global SAs, the 
input parameters vary simultaneously so that interactions between them can be quantified. 



6. LAI derivation using the PROSAIL model 

102 

Global SAs have not been performed extensively on RTMs. One global SA method that has 
been applied to PROSAIL is the Design Of Experiments for Simulation (DOES) (Bacour et al., 
2001; Bacour et al., 2002a; Bacour, 2002). The motivation to use DOES is to handle the 
potentially large number of model runs generated by simultaneous parameter variations. A 
statistical method is used to define a few model settings that cover the entire parameter 
space. In doing so, DOES aims at maximizing the information extraction while reducing the 
number of simulations by factors of up to 300. However, DOES estimates the input 
parameters’ effects with respect to an empirical linear model connecting model input and 
response, which reduces its usability for nonlinear models (Saltelli et al., 1999). Further, it 
does not explicitly quantify the effects of interactions. Therefore, another method, the 
Extended Fourier Amplitude Sensitivity Test (EFAST, Cukier et al., 1973; Saltelli et al., 1999), 
was used in this thesis. 

6.2.2. The extended Fourier amplitude sensitivity test 

Concept of EFAST 

Ceccato et al. (2001; 2002) and Bowyer and Danson (2004) were the first to apply EFAST, a 
method developed in chemistry, in a RS context and to PROSAIL. EFAST is a variance-based 
method that determines the fractional contribution of each ݔ௜  of a set of n input parameters 
ݔ ൌ ሺݔଵ, ,ଶݔ … , ௡ሻݔ  to the variance V of the output of any model ݕ ൌ ݂ሺݔሻ  from their 
conditional variances. Parameter combinations are also sampled systematically from the 
parameter space in this approach, with all ݔ௜  varying simultaneously. The core feature of 
EFAST is that the model’s multidimensional parameter space is explored by a suitable 
search-curve defined by a set of parametric equations (see Figure 6-5): 

 x୧ሺsሻ ൌ G୧ሺsin	ω୧sሻ (6.1) 

where ݏ is an independent scalar, ܩ௜ are transformation functions for each parameter, and ߱௜ 
is a set of ideally incommensurate frequencies associated with each parameter. As can be 
seen from Figure 6-5, the ܩ௜ functions used here are sets of straight lines, which results in 

uniform sample data distributions. Expressing ݂൫ݔଵሺݏሻ, ,ሻݏଶሺݔ … , ሻ൯ݏ௡ሺݔ  as ݂ሺsሻ , and 

expanding ݂ሺsሻ in a Fourier series, the multidimensional parameter space is reduced to a 
one-dimensional integral employing the Fourier coefficients ܣఠ೔

 and ܤఠ೔
 (Saltelli et al., 1999): 

݂ሺsሻ ൌ ෍ ൛ܣன౟
cos ω୧ ݏ ൅ ன౟ܤ

݊݅ݏ ω୧ ൟݏ

ାஶ

	ன౟ୀିஶ

 (6.2)

Each axis of the parameter space is hence explored with a frequency ߱௜, i.e. each ݔ௜  oscillates 
periodically at a different frequency ߱௜, so that the search curve could hypothetically pass 
through every point in the input space using incommensurate ߱௜ (Figure 6-5). In practice, the 
frequencies are commensurate (for more details see Saltelli et al., 1999) and the curve 
describes a closed path (see Figure A-2). The Fourier transformation finally allows for a 
decomposition of the model output variance ୧ܸ as function of the input parameter i, as  

୧ܸ ൌ 2෍Λ௣ఠ೔

ାஶ

௣ୀଵ

 (6.3)

where Λఠ೔
ൌ ఠ೔ܣ	

ଶ ൅ ఠ೔ܤ
ଶ , hence the computation of partial variances involves only the sum of 

squares of the Fourier coefficients at the fundamental and all harmonics ݌ of ߱௜. If ݔ௜  has a 
strong influence, the oscillation of the model output at frequency ߱௜ is of high amplitude. 
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This method can thus be compared to an analysis of variance (Cukier et al., 1973). EFAST 
decomposes the total variance ܸof the model output in a three-parameter case as 

 ܸ ൌ ଵܸ ൅ ଶܸ ൅ ଷܸ ൅ ଵܸଶ ൅ ଵܸଷ ൅ ଶܸଷ ൅ ଵܸଶଷ (6.4) 

where ଵܸ  is the variance of input parameter 1, ଵܸଶ is the variance of interaction between 
parameters 1 and 2, and ଵܸଶଷ is the variance of interaction between parameters 1, 2, and 3. 
The partial variances ଵܸ, ଶܸ, and ଷܸ represent the contribution of individual parameters to the 
model output and are called first-order variances. In EFAST, the ratio between the ݅th first-
order variance and the total variance ܸ  is called main effect or first-order index ௜ܵ  and 
represents the percentage of the output variance that is accounted for by the specific input 
parameter i, averaged over variations in other input parameters: 

௜ܵ ൌ
୧ܸ

ܸ
 (6.5)

The second- and higher-order variance terms and corresponding indices ௜ܵ௝ represent the 

percentage variance caused by parameter interactions. They are derived from the frequencies 
not used for the computation of ୧ܸ, as these contain the residual variances. A measure for the 
variance due to one individual parameter and all its interactions is the so-called total order 
index ்ܵ௜, which comprises all partial variances, thus for the three parameter case: 

்ܵଵ ൌ
ଵܸ ൅ ଵܸଶ ൅ ଵܸଷ ൅ ଵܸଶଷ

ܸ
 (6.6)

Figure 6-5: Example search-curve of the EFAST algorithm scanning the 3D LAI, LIDF, and ܰ 
parameter space, ideally using a set of incommensurate frequencies so that the curve can pass 
through every point in the space (bottom right plot). To illustrate the irregular path of the search-
curve, the parameter values sampled for the first 100, 1000, and 5000 PROSAIL runs are shown. 
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As such, the total index quantifies the degree of additivity of the model and its sum over all 
parameters is generally higher than one, as interaction effects between parameters 1 and 2 
are counted in both ்ܵଵ and ்ܵଶ. To make more efficient use of the model runs, additional 
random phase-shifts were introduced by Saltelli et al. (1999), which enable the generation of 
different search curves, over which the variances are finally averaged. The phase-shifts are 
depicted as black areas in Figure A-2 due to the significantly higher frequencies. 

Thus, EFAST is an information-rich approach that allows full exploration of the input 
parameter space, accounting for interactions, nonlinear responses, and self-verification. The 
main advantages of EFAST are its robustness and its computational efficiency (Saltelli et al., 
1999). EFAST has been applied to PROSPECT and PROSAIL to assess the parameters 
influencing canopy reflectance in two selected wavelengths (Ceccato et al., 2001; 2002) or on 
the entire spectrum (Bowyer and Danson, 2004), with special focus on the leaf water content. 
However, to the knowledge of the author, it has not yet been applied to the 
PROSPECT5+4SAIL model versions, and no sensitivity analysis has been performed so far 
for the spectral configurations of the RapidEye sensor. Therefore, PROSAIL sensitivity was 
assessed by calculating the first-order, interaction, and total-order indices for the entire 
spectrum as well as for the five RapidEye bands using the fast99 function of the “sensitivity” 
R package provided by Pujol et al. (2013). Further, the impact of LAI variations on selected 
VIs was tested as performed by Ceccato et al. (2001; 2002)(Ceccato et al., 2001), although 
not for designing a VI but to identify suitable additional spectral features for model inversion. 
The fast99 default settings (M = 4, ߱ values as given by Saltelli et al., 1999) have been used. 

The ranges used in the EFAST SA, between which the canopy parameters are sampled, are 
specified in Table 6-2. For the LIDF, the ellipsoidal 1-parameter implementation was used. 
The parameter ranges were similar to those of other studies (Bacour, 2002; Bowyer and 
Danson, 2004) and cover the entire realistic ranges of each parameter (Jean-Baptiste Féret, 
personal communication). During the design of the experimental plan, 11 parameters – thus 
all PROSAIL parameters but the viewing angles – were randomly drawn 3 000 times 
following a uniform distribution. This procedure resulted in 33 000 canopy realizations. The 

Parameter Unit Lower Bound Upper Bound 

PROSPECT variables 
N - 1 3 
Cab µg*cm-2 10 90 
Car µg*cm-2 2.5 22.5 
Cw cm 0.008 0.035 
Cm g*cm-2 0.002 0.02 
Cbp - 0 0.5 

SAIL variables 
LAI m2*m-2 0.1 7.5 
LIDF ° 5 85 
hs m*m-1 0.01 0.3 
bf - 0 0.9 
SKYL - 0.05 0.4 
θs ° 30 
θo ° 5 
ϕr ° 80 

Table 6-2: Ranges of the PROSAIL variables used in the global SA. In between these ranges, the 
parameters are uniformly sampled. Viewing angles were held constant. 
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system geometry, that is, the sun and sensor zenith as well as the relative azimuth angles, 
were fixed, as only mono-angular data were used in this thesis. Instead, the mean of the sun 
and observer zenith angles of the RapidEye scenes as well as the most frequent relative 
azimuth angle (see Table A-2) were used to gain information relevant to the available data. 
For investigation of the directional reflectance sensitivity of the PROSAIL model, the reader 
is referred to Gobron et al. (1997b), Asner (1998), Gastellu-Etchegorry et al. (1999), Bacour et 
al. (2001), Bacour (2002), and Wang et al. (2005). 

Results of EFAST 

The first order main effects, interactions, and total order indices of the eleven input 
parameters on PROSAIL reflectance in the VIS and NIR spectral range are shown in Figure 
6-6. While the wavelengths are given on the x-axis, the y-axis displays the respective index 
values of the main effects (top), interactions (middle), and total effects (bottom). The first-
order index describes spectral variations due to variations of the respective parameter, and a 
high interactions index value indicates that variations of a parameter at a certain wavelength 
strongly depend on the levels of other parameters. With regard to the first-order effects, the 
parameters LAI, LIDF and the soil factor bf have the largest influence in total, although they 
show considerable variation over the spectrum. The LAI plays an important role, accounting 
for over 20 % of the model output variance in the VIS between 400 and 700 nm and in the 
SWIR beyond 1400 nm, while its influence is reduced in the NIR. The influence of the soil bf 
varies around 15%, with a minimum between 750 and 1000 nm. The largest variances (20 - 
70 %) in the NIR and in the SWIR are generated by the LIDF. The diffuse irradiance factor 
SKYL is only relevant in the blue and green regions. The hot spot parameter barely influences 
the model output, which was to be expected given the chosen viewing geometry far off the hot 
spot region (߮௥ ൌ 80°). The PROSPECT parameters play a minor role overall, but show some 
characteristic influences (see chapter 2.2.1), e.g. chlorophyll content Cab in the green and red 
edge wavelength ranges, dry matter content Cm in the NIR, or water content Cw between 1200 
and 1900 nm. Overall, sums of the first-order indices are between 0.65 and 0.85, indicating 
that the remaining variance is caused by parameter interactions. 

The interaction effects show a slightly less variable behavior. Overall, most interactions occur 
in the VIS. The three most important parameters LAI, LIDF and soil brightness have rather 
constant partial variances due to interactions around 10 - 20 %, with narrow ranges of 
increased interaction effects in the green, red edge, and NIR. While the interaction effects of 
the canopy model parameters are rather lower than the first-order indices, those of the leaf 
model parameters are mostly as high as their first-order effects. Ceccato et al. (2001) found 
that only small interactions occur between leaf parameters. This indicates that the 
interactions observed here are caused by the scaling effect, which all leaf constituents 
undergo as the leaf area increases. The total index incorporating all first- and higher-order 
indices underlines the ranking observed for the first-order indices, with the LAI, LIDF and 
soil brightness accounting for the largest parts of the variance, while the leaf parameters 
influence the reflectance to a lesser extent in the sensitive wavelengths. 

Compared to other global SAs performed on the PROSAIL model, some similarities as well as 
some differences could be observed. Overall, evaluation of the EFAST results was difficult, as 
no comparable study using all parameters and all wavelengths exists. The comparison with 
the EFAST results of Ceccato et al. (2002) is limited to two wavelengths, as they only 
analyzed the reflectance at 820 nm and 1600 nm. Further, they included the viewing angles 
as well as the leaf reflectance and transmittance instead of the individual leaf parameters.  
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Figure 6-7: PROSAIL parameter influence on the 
RapidEye reflectances. The high relevance of the LAI, 
LIDF, and bf parameters is clearly illustrated. 

Indeed, these parameters which, have no direct equivalent in the above presented analysis 
 have the largest influence on the model output (25 - 40 %) in their study, leaving ,(௟, ߬௟, θsߩ)
only small portions for LAI, LIDF and the soil factor (total indices of 12 - 17 %), contradicting 
the results achieved above. In the EFAST study of Bowyer and Danson (2004), the LIDF and 
the soil parameter were fixed, precluding a direct comparison of parameter influences therein 
as well. Although the pattern of the LAI contribution was rather similar to the one detected 
here, the relative influence of leaf parameters was strongly increased, which might have been 
caused by the overall reduced number of parameters. 

Other published PROSAIL SAs also find a high sensitivity of the model to variations in the 
parameters LAI and LIDF. However, the DOES (Bacour et al., 2001; Bacour et al., 2002a; 
Bacour, 2002) identified the largest influence of both parameters in the NIR and a reduced 
importance of the LAI in the VIS, which is directly opposed to the sensitivities reported 
above. A comparison of the importance of the soil factor is difficult, as the results in the 
different studies of Bacour et al. varied. However, it can be stated that the influence of the soil 
parameter was low overall (<10 %) according to the DOES experiment (apart from the results 
in Bacour et al., 2001) and in contrast to the EFAST results. The interactions assessed in 
these studies did also not exceed 10 % of partial variances. The largest deviation has to be 
observed for the influence of the chlorophyll parameter, which did not exceed 17 % in this 
study, but accounts for up to 60% of the reflectance variation in the VIS and was the 
prevailing factor controlling the reflectance according to Bacour et al. (2001). Compared to 
the results of the local SAs performed by Jacquemoud (1993) over the 400-2500 nm range, 
quite similar results could be observed for the leaf model parameters and the LIDF, although 
the results for LAI differ strongly, with the predicted strongest effect of LAI being in the NIR. 
This was caused by the low average leaf angle value (40°) used in his base case scenario, as an 
increase of the area of such flat leaves would naturally influence the scattering in the NIR 
while rather erectophile leaves would not, illustrating the drawback of the OAT approach.  

The fact that different results were achieved in this SA compared to other approaches might 
well be explained by the varying model settings of each analysis. Furthermore, this was the 
first analysis of the PROSPECT5+4SAIL model versions using EFAST, and the different LIDF 
implementations for example can lead to differences in the model response. The partially 
strong discrepancies in the very few different SAs of the PROSAIL model suggest that further 
research is needed in this field.  

To assess the importance of the 
different input parameters on 
reflectance in the available RapidEye 
bands, the EFAST SA results were 
summarized for the simulated 
RapidEye band reflectances (see 
Table 6-3 and Figure 6-7). Naturally, 
the same trends as for the spectrum 
analysis described above could be 
observed, with the canopy structure 
parameters LAI and LIDF and the 
soil parameter first-order indices 
together accounting for 

approximately 60 - 75 % of variance 
in the model output. Parameters such 

NIR band 
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as the water content Cw, the carotenoid content Car, or the brown pigment content Cbp only 
marginally influenced the reflectance in the VIS and NIR, as their effects are either naturally 
small or their absorption bands are not met. The sensitivity of reflectance to the chlorophyll 
content Cab in the green and red edge bands constituted an exception in this regard. 

Besides the RapidEye bands, the sensitivity of the model in some of the VIs successfully used 
for empirical-statistical LAI derivation (see chapter 5) has been investigated. Figure 6-8 gives 
an impression on the overall sensitivities of seven different VIs in comparison to the 
RapidEye bands. It shows the reduced influence of the soil brightness on the VI variances. 
The effect of LAI differs across the VIs. The increased sensitivity of red edge VIs (NDVIrededge, 
RRI1, Curvature) to canopy chlorophyll content is clearly shown. 

Conclusions from the EFAST analysis 

It is possible to draw several conclusions for the model suitability and parameterization from 
Figure 6-7 and Figure 6-8. The results for the entire spectrum depict characteristics of the 
spectral behavior of vegetation as described in the literature and thus indicate that the 
PROSAIL model output is a valid representation of vegetation canopy reflectance. 
Furthermore, the prominent role of the LAI over large parts of the spectrum shows that the 
model is generally suitable for modeling the influence of LAI on the canopy radiance, and 
thus also for deriving LAI in the inverse mode. The relatively high importance of the LAI in 
the SWIR also indicates the high potential of bands situated in these wavelengths ranges 
provided e.g. by the upcoming Sentinel-2 sensor. 

With regard to RTM parameterization, the parameters LAI, LIDF and soil bf need to be 
especially carefully parameterized, as they had a large influence on the model output. This 
means that the parameter ranges need to cover all occurring states at small intervals to 
reproduce the associated canopy reflectances, but at the same time should be matched as 
closely as possible to the assumed true value, as even small variances might lead to a largely 

Table 6-3: Sensitivity analysis results for the five RapidEye bands: first-order, interactions, and total 
indices, which measure the respective influence on the model output variance, specified in percent. re 
= red edge. 

 
First-order indices (%) 

 
Interactions (%) 

 
Total order indices (%) 

 
blue green red re NIR 

 
blue green red re NIR 

 
blue green red re NIR 

PROSPECT 

N 0.1 3.9 0.5 4.6 1.5 
 

2.0 4.2 2.2 3.6 1.2 
 

2.1 8.1 2.6 8.2 2.7 

Cab 0.2 13.3 3.4 18.3 0.0 
 

1.5 8.4 3.2 9.3 0.1 
 

1.7 21.7 6.6 27.5 0.1 

Car 0.1 0.3 0.0 0.0 0.0 
 

1.4 1.1 0.8 0.4 0.1 
 

1.6 1.4 0.8 0.4 0.1 

Cw 0.0 0.0 0.0 0.0 0.0 
 

1.1 0.8 0.8 0.4 0.1 
 

1.1 0.8 0.8 0.4 0.1 

Cm 0.0 0.0 0.0 0.4 4.6 
 

1.1 0.8 0.8 0.7 2.6 
 

1.1 0.8 0.8 1.1 7.2 

Cb 0.0 0.4 0.0 0.6 1.1 
 

1.1 1.4 0.8 1.0 0.8 
 

1.1 1.7 0.9 1.6 2.0 

SAIL 

LAI 32.9 17.7 25.2 4.0 7.0 
 

16.1 15.1 13.2 14.4 9.6 
 

49.1 32.8 38.3 18.4 16.6 

LIDF 20.7 10.9 28.4 19.3 61.3 
 

18.2 25.2 18.4 26.3 12.4 
 

38.8 36.1 46.8 45.5 73.7 

hs 0.1 0.2 0.1 0.5 0.4 
 

1.2 1.1 0.9 1.0 0.6 
 

1.2 1.3 1.0 1.5 1.0 

bf 15.1 15.3 14.4 15.0 7.0 
 

21.7 20.0 19.2 16.9 5.2 
 

36.8 35.3 33.6 31.9 12.2 

skyl 1.8 1.3 0.7 0.6 0.1 
 

4.1 2.4 2.2 1.1 0.3 
 

6.0 3.7 2.9 1.7 0.5 
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different output. The chlorophyll content Cab, the dry matter content Cm, leaf structure N, and 
diffuse irradiance parameter SKYL should also be varied during parameterization, although 
their influence was reduced compared to the canopy and soil parameters and thus the 
number of variable levels can be smaller and with larger intervals. The parameters Car, Cw, Cbp 
and hspot could be fixed to a mean value, as their variance will not influence the modeled 
reflectances at a relevant rate, hence increasing the accuracy of LAI estimation and reducing 
the necessary number of model runs (Goel, 1988). 

This analysis resulted in the use of six free parameters17. Further information available from 
the EFAST results is the identification of useful and negligible bands and features, which can 
be used to reduce model complexity further, as the number of free parameters determines the 
number of independent equations needed to create a well-determined inversion problem (see 
chapter 2.2.3). An appropriate band selection has been reported to improve RTM inversion, 
for example because some bands may contain particularly high noise levels (Bacour et al., 
2001; Meroni et al., 2004; Schlerf and Atzberger, 2006). As can be seen from Figure 6-8, the 
RapidEye bands were not equally sensitive to LAI variations. Based on these results, it could 
be suggested to exclude the red edge and NIR bands from further analysis and to the 
alternatively use VIs. However, in inverted RTM modeling, all parameters are estimated 
simultaneously by choosing the canopy realization that produces the most similar 
reflectances. In addition, the parameter levels influence each other, as indicated by the 
partially high interaction indices. Therefore, the spectral features used for RTM inversion 
should not only be sensitive to LAI, but also to the other influential parameters, that is, LIDF, 
chlorophyll and soil brightness, to identify the fitting canopy structure. Furthermore, when 
analyzing the correlations between the bands and VIs discussed here (see Figure A-3), the red 
edge and NIR bands correlate only moderately strong (r = 0.2 - 0.6 except for one case) with 
the other bands, i.e. they carry different information, while the VIS bands correlate with 
about 0.8. Further, some studies have stressed the high importance of the NIR reflectances 
for LAI derivation (see e.g. Rivera et al., 2013). Despite their reduced sensitivity to LAI, the 
red edge and NIR bands were therefore kept for LAI derivation. From the same Figure A-3, 
the overall medium correlation coefficients of the RVI and the Curvature indices to the 

                                                            
17 It will be shown below that the SKYL parameter can be fixed. 

Figure 6-8: RapidEye band reflectance and VI sensitivities to the PROSAIL parameters. For each 
spectral feature, the total indices of the individual parameters are stacked above each other to show 
the overall sensitivity of each feature to changing leaf and canopy conditions and to illustrate the 
influence of each parameter.  
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RapidEye bands (0.63 and 0.54 on average) can be derived. These medium strong 
correlations as well as their high aggregated total index values and increased sensitivity to 
chlorophyll content (Figure 6-8) suggest that the VIs might enhance the inversion sensitivity 
to the target biophysical parameter and increase the robustness of the matching procedure. 
Therefore these two VIs were chosen together with all RapidEye bands, resulting in seven 
spectral features used for further analysis in RTM inversion. 

6.3. Parameterization of PROSAIL 

By running the PROSAIL model several times with changing input parameters, an ensemble 
of canopy reflectance simulations can be built. The range and rate at which the parameters 
are changed is defined through a parameterization framework. In doing so, the aim is to 
cover all occurring vegetation states and at the same time to reduce the underdetermined and 
ill-posed nature of RTM inversion. To overcome these problems, different regularization 
techniques exist (see chapter 2.2.3). One approach used in this thesis was the introduction of 
a priori knowledge on the PROSAIL variable ranges and sampling intervals (see e.g. Combal 
et al., 2002b; Baret and Buis, 2008). Further, if a variable is perfectly known, it should be 
considered as a fixed constant. These restrictions reduce the number of canopy realizations 
and thus the risk of parameter equifinality, i.e. the phenomenon whereby similar reflectance 
spectra are generated from different model settings (Kimes et al., 2000). The definition of 
ranges is generally carried out for each ecosystem individually (see e.g. Knyazikhin et al., 
1998; Dorigo et al., 2009). In this regard, one advantage of using high spatial resolution RS 
data is that they enable the identification of different land covers at a low rate of mixed 
pixels. This helps considerably in refining the prior information on the typical ranges of 
canopy biophysical parameters. However, it should be noted that while the managed 
grassland canopies in the Ammer catchment were spatially mostly homogeneous within one 
field, they were not with regard to the entire landscape for which the canopy 
characterizations have to be specified (see chapter 3.5). For that reason, a strict parameter 
limitation (as it would be possible for crops) was not feasible, but a rather tolerant 
parameterization had to be chosen to cover all canopy states occurring at a time. 
Nevertheless, a priori knowledge was used as far as possible for defining the ranges of 
variation of the RTM input parameters. An alpine grassland specific parameterization was 
hence generated based on knowledge about the grassland ecosystem under investigation. In 
the following, the PROSAIL parameterization for every RapidEye scene based on the EFAST 
SA, in situ measurements, and values used in studies conducted in similar conditions (see 
Table A-8 for a review) is discussed. 

From the set of leaf model parameters, only Cab, Cm, and ܰ were varied in the model. The in 
situ chlorophyll measurements (see chapter 4.3.3, Table 4-5) were lower than other 
chlorophyll concentrations Cab reported in the literature (see e.g. Ruecker et al., 2006, and 
Daughtry, 2000, for crop chlorophyll). Furthermore, Cab was only measured in the field at 
two points in time. Therefore, the upper range of the Cab parameterization was chosen 
according to other PROSAIL studies conducted in crop and grassland ecosystems (see Table 
A-8), with ranges even for grassland studies between 1 and 100 μg cm-2. The range of Cab was 
variable over the season, as the chlorophyll content commonly varies with the plant cycle, 
with a rather narrow range of lower values in spring (10 - 40 μg cm-2) and a wider range in 
summer (20 – 80 μg cm-2) sampled at constant intervals of 10 μg cm-2. The wide summer 
range with rather low values was chosen to account for the occurrence of freshly mown 
meadows covered by freshly exposed shade leaves, as well as for extensively used meadows 
without fertilizer treatments.  
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The in situ measurements of the dry matter content Cm (0.0027 - 0.0065 g cm-2) were 
realistic but slightly lower than those found in the literature. As the dry matter content 
measurement procedure is indeed prone to underestimation due to the loss of material 
during harvesting, drying, and weighing, the leaf mass was sampled between the lower bound 
of 0.004 g cm-2 and an upper bound of 0.012 g cm-2. Cm was sampled three times within this 
range constantly over the entire season. 

The structure parameter ܰ cannot be measured physically and empirical relationships to SLA 
are not continuous (see Ceccato et al., 2001, for a discussion), so the selection of this 
parameter was purely based on literature values. Other grassland studies (Table A-8) used 
relatively wide ܰ ranges between 1 and 2 to account for the large number of different species. 
As these species are mainly monocots, they have rather thin leaves, which correspond to ܰ 
between 1 and 1.7 (Jacquemoud, 1993; Bousquet et al., 2005). Therefore, in this work, ܰ is 
sampled between 1.3 and 1.9 in steps of 0.3 for all RapidEye scenes.  

The remaining PROSPECT parameters Car, Cw, and Cbp were fixed based on the findings of the 
EFAST analysis. According to one author of the PROSAIL model (Jean-Baptiste Féret, 
personal communication) the Cab/Car ratio is about 4, so the carotenoid Car value was varied 
over the season according to the mean of the Cab ranges between 4 and 12 μg cm-2. The water 
content Cw value was fixed at 0.02 according to the in situ data (see Table 4-5), because the 
absorption of leaf water does not significantly influence the canopy reflectance in the spectral 
range used. A rather high constant brown pigment Cbp value of 0.4 was chosen (the realistic 
value range being 0 to 0.5) to account for the relatively high amount of dead material in 
natural grasslands (see e.g. He et al., 2006) and for manure remnants on intensively used 
meadows and pastures. 

The setting of the canopy model parameters was mainly driven by the in situ values sampled 
during the measurement campaigns. As it is the variable of interest, highest emphasis was 
put on the selection of the LAI data ranges. In situ measurements showed that the LAI ranges 
vary considerably over the season, although the minimum value always remained below 2 
due to repeated mowing events throughout the year (see Figure 4-15). Therefore, the lower 
bound of LAI was fixed at 0.2 for all points in time, while the maximum value was linearly 
interpolated between the maximum LAI values measured during the individual measurement 
campaigns (plus about 0.5 LAI to account for measurement uncertainties). For the spring 
and autumn scenes before and after the in situ measurement dates, a moderate decrease of 
maximum LAI was assumed. Based on this, LAI was dynamically increased from 3.6 in late 
March to 7.0 in July, and reduced again to 5.2 at the end of September, which is in 
accordance with ranges used in other studies (see Table A-8). These ranges were sampled at 
very small intervals of 0.2, which led to a large number of model runs in the summer scenes. 

The parameterization of the highly influential leaf angle distribution function LIDF 
parameter proved to be the most challenging aspect. For crop canopies, constraining the 
LIDF to a narrow realistic value range is feasible, as the canopy structure is spatially 
homogeneous and quite accurately measureable (see e.g. Koetz et al., 2005a). A grassland 
canopy, however, can consist of a large number of species with potentially very different leaf 
angles, such as erectophile grasses and planophile or reptant species such as clover or 
plantago species. Furthermore, as the species compositions of the alpine grasslands of the 
Ammer catchment vary significantly due to different management practices, the mean of all 
measurements would also not be representative for all grasslands. Therefore, the LIDF was 
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selected from a rather wide range of values based on field and literature data. The lower 
bound of the LIDF range was set to 36° for spring and 30° for summer scenarios according to 
the mean in situ minimum values of both seasons (46° and 41°, respectively, minus 10° to 
account for measurement uncertainties). Although a maximum MTA of 90° was measured in 
the field using the LAI-2000 PCA during each campaign, a purely erectophile canopy is an 
unrealistic value for grasslands. Literature values for grassland MTA are also rather low (see 
e.g. Darvishzadeh et al., 2008b: 55°). As a compromise, the upper bound was set to 78° 
(except for the late September scene, for which it was set to 72°), which is in the range of 
values that was used in RTMs for crop simulations (see e.g. Vuolo et al., 2008; Atzberger, 
2010; Atzberger and Richter, 2012). MTA was sampled in 6° intervals and used in the 
ellipsoidal one-parameter LIDF, which has the advantage of being a continuous function 
(Campbell, 1986, 1990). 

The remaining canopy parameters, i.e. the hot spot parameter hs and the ratio of diffuse to 
total incident radiation SKYL parameters, were fixed. The hs parameter for the four scenes in 
2011 for which field data were available was assessed relating the average leaf size (assumed 
to be 2 cm) to the measured mean canopy height, resulting in hs values between 0.1 and 0.14. 
For the remaining scene simulations, a value of 0.1 was selected, which seemed acceptable 
given the low range of variability in hs and as sensor geometries are far from the hot spot 
direction. The ratio of diffuse to total incident solar radiation (SKYL) was calculated for each 
scene based on continuous radiation measurements at the three micrometeorological 
TERENO stations Graswang, Fendt and Rottenbuch (see chapter 4.3.3). To quantify SKYL, 
the total and diffuse radiances measured during half an hour around the RapidEye over-flight 
time at the three stations were averaged.  

The settings of the soil brightness factor bf were barely limited, as soil conditions may vary 
strongly both temporally and spatially (see e.g. Lauvernet et al., 2008). To define the ranges 

Figure 6-9: PROSAIL soil spectra compared to RapidEye soil reflectances sampled from the May 
14, 2012 scene. To cover all soil conditions prevailing in the RapidEye scenes, the scene-specific 
PROSAIL parameterizations include all brightness factor levels that lie within the 90 % quantile of 
the observed spectra in each wavelength. 
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of bf for each scene, between 6000 and 18000 soil reflectance samples were taken manually 
from areas within each RapidEye image, which were visually identified as “bare field” (as 
proposed in Richter et al., 2012b, or Verrelst et al., 2014). The selected reflectances were then 
compared to the soil reflectances in the VIS and NIR at several brightness levels stored 
within PROSAIL (see Figure 6-9). In order to cover the full realistic range but not 
parameterize too wide due to outliers, the levels covered by the 90 % quantiles of the soil 
samples were selected in a first step. Further, one bf step towards lower values was added to 
account for potential darker soils underneath vegetation cover due to higher wetness. 

The ranges and interval values of all PROSAIL input variables used in the model runs for all 
dates are listed in Table A-9. For all parameters, a uniform distribution within the 
corresponding range was used as in Laurent et al. (2011), Koetz et al. (2005a) and 
Darvishzadeh et al. (2008b) (see Weiss et al., 2000, for the discussion of alternative sampling 
approaches). This parameterization resulted in 33 516 to 198 450 variable combinations for 
the different time steps, which is within the range of other studies that use a similar number 
of free parameters (e.g. Richter et al., 2012b: 49 152; Leonenko et al., 2013b: 90 404; Weiss et 
al., 2000: 100 000; Darvishzadeh et al., 2008b: 100 000; Wang et al., 2013: 190 080; Kötz et 
al., 2004: 130 000; Duveiller et al., 2011b: 204 800).  

6.4. Integration of topographic conditions 

The remaining three PROSAIL parameters which have not been specified so far, the solar 
zenith, observer zenith, and relative azimuth angles, required special treatment. Laurent et 
al. (2014) showed that it is favorable to use the original (not nadir-normalized) RS data in 
RTM modeling, which requires the simulation of reflectances using the scene’s system 
geometries. However, geometry information provided with the RapidEye data refers to the 
ideal case of flat terrain, and would thus have to be topographically corrected to account for 
local changes in the viewing and illumination geometries. This topographic correction of the 
RapidEye data did not achieve satisfactory results, as mentioned in chapter 4.1.2. Thus, to 
derive a pixel-wise sun and sensor angles map corrected for the terrain, the topography of the 
Ammer catchment is taken into account. The local slope and local aspect angles were 
extracted from the SRTM DEM (see 4.2) over the entire study area and combined with each 
individual RapidEye scene’s system geometry (see Figure 6-10). While the relative azimuth 
angle ߮௥ between the sun and the sensor does not change due to topography, the local sun 
and sensor zenith angles ߠ௢೗೚೎ೌ೗  and ߠ௦೗೚೎ೌ೗can be derived from the aspect and slope angles at 

position ሺݔ,  :ሻ according to Richter and Schläpfer (2012) byݕ

,ݔ௢೗೚೎ೌ೗ሺߠ ሻݕ ൌ cosିଵሺcos ௢ߠ ∗ cos ௧௢௣௢ߠ ሺݔ, ሻݕ ൅ sin ௢ߠ ∗ sin ௧௢௣௢ߠ ሺݔ, ሻݕ ∗ cosሺ߮௧௢௣௢ሺݔ, ሻݕ െ ߮௢ሻሻ (6.7)

 ௧௢௣௢ is the terrain slope, ߮௢ is the senor azimuth angle, andߠ ,௢ is the sensor zenith angleߠ

߮௧௢௣௢ is the terrain azimuth. While this is the formula for correcting the sensor view angle, 

using this equation with the respective sun angles delivers	ߠ௦೗೚೎ೌ೗. An approach presented by 

Pasolli (2012) produces nearly identical results: 

,ݔ௢೗೚೎ೌ೗ሺߠ ሻݕ ൌ ௢ߠ ൅ ሺcosିଵ ሺcos൫ߨ 2ൗ െ ,ݔ௧௢௣௢ሺߠ ሻ൯ݕ ∗ cos൫߮௧௢௣௢ሺݔ, ሻݕ െ ߮௢൯ሻ െ ߨ
2ൗ ሻ (6.8)

Equation 6.8 was thus used in this thesis to derive raster layers of the pixel-wise local sun 
and sensor zenith angles for each RapidEye scene. Both layers were combined into one layer 

and added to the RapidEye data sets. Pixels with ݈ܽܿ݋݈ݏߠ  > 90° were masked in the RapidEye 
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scenes, as completely shaded hills do not provide sufficient spectral information for RTM 
inversion. Further, the angle information was quantized in steps of 5 degrees to reduce the 
number of occurring viewing geometries in the scenes to a manageable quantity. From this 
procedure, 104 - 157 different combinations of sun and sensor zenith angles are derived for 
the different scenes in this thesis (see Table A-9). These combinations were then used, in 
turn, to parameterize ߠ௢ and ߠ௦ in the PROSAIL model.  

6.5. PROSAIL Inversion 

As mentioned above, the selection and configuration of an appropriate and robust inversion 
procedure is the third important aspect for accurate LAI derivation using an RTM, besides 
the model suitability and parameterization (Dorigo et al., 2007). In this chapter, the chosen 
inversion approach is justified first (chapter 6.5.1). Then, several optimization strategies in 
LUT-based RTM inversion that have been proposed in the literature are tested, namely the 
applied cost function (chapter 6.5.2), multiple best solutions (chapter 6.5.3), added noise, 
and additional features (chapter 6.5.4). 

6.5.1. LUT inversion approach 

For an overview of the different inversion approaches, i.e. iterative optimization, LUTs and 
ANNs, and their respective assets and drawbacks, see chapter 2.2.3. Generally, inversion 
techniques based on pre-computed reflectance databases, thus LUTs and ANNs, are 
preferred compared to iterative optimization methods, because they are not prone to getting 
trapped in local minima, and because the RTM is only used in the direct mode, which is less 
time consuming (Rowland et al., 2001; Combal et al., 2002b; Koetz et al., 2005a; Bacour et 
al., 2006; Dorigo et al., 2007). With regard to accuracy, the two approaches have also been 
observed to perform similarly (Richter et al., 2012b). However, with regard to computational 
efficiency, both, the LUT and ANN approach, still have limitations. For both methods, data 
bases have to be established first. LUT inversion then involves an LUT searching procedure 
for each pixel, which can be time consuming if large data bases are used and if the inversion 

Figure 6-10: Representation of the sensor viewing geometry for an inclined surface due to 
topography. The same conditions hold for the sun illumination geometry. Compare to Figure 2-10 
for viewing geometries over flat terrain. 
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is applied to a large number of pixels. While the pixel-wise ANN inversion itself is very quick, 
the ANN training can take a lot of time because many trials are required to choose the most 
adequate network architecture, and to validate it (Combal et al., 2002b). This becomes 
especially critical if many different local system geometries occur in one scene due to 
topography or due to the use of mosaics (e.g. MODIS data), as individual ANNs need to be 
trained based on individual LUTs for each geometry (Dorigo et al., 2007). Leaving the 
viewing angles as free parameters for training an ANN is not an option, as this would lead to 
a strong under-determination of the inversion. Thus, the time expenditure of both 
approaches might get high under certain circumstances, which, however, has never been 
compared for high spatial resolution data. 

One basic motivation to use the LUT approach is the simplicity of the approach. It is easy to 
implement, and during LUT inversion, the calculation of the spectral distances, the 
performance of individual bands, and the selection of solutions can be monitored and altered 
at any point. This contributes to the understanding of the procedure and to the identification 
of errors, and thus enables the improvement of parameterization and/or inversion. Another 
benefit of using LUTs is that all model parameters are estimated, that is, e.g. the leaf angle, 
chlorophyll and water content or soil conditions are retrieved in addition to LAI, while an 
ANN retrieves only one variable of interest. The gained additional information might be 
useful for various applications such as plant growth. Further, as a more complete picture of 
the vegetation canopy is given, the variability and plausibility of the other output parameters 
can indicate inconsistencies within the LAI estimate. Moreover, the LUT approach is less 
sensitive to errors from measurements or models (Kimes et al., 2000; Chen et al., 2003) and 
does not generate highly unpredictable output values (as it is possible using ANNs, see Baret 
et al., 2013), because its output will always be within the bounds of the model 
parameterization. An advantage of both approaches is that a posteriori uncertainties of the 
variable of interest can routinely be derived, indicating the reliability of the final estimate. 
Baret et al. (2013) showed that a theoretical performance can be derived for each biophysical 
variable using ANNs. However, with the LUT approach, such information can even be 
derived pixel-wise by analyzing a subset of the “best solutions” (see e.g. Rivera et al., 2013). 

Due to the sum of these arguments, LUTs are generated using the parameterization 
framework described above. Thereby, the number of variable combinations defines the 
number of entries (i.e. lines) in the LUT. From each of the simulated PROSAIL spectra, the 
band-equivalent reflectances of the five RapidEye bands are calculated in a next step using 
the band specific spectral response curves, i.e. the weights for the bands over all wavelengths 
(BlackBridge, 2012, see Figure 6-11). These band-equivalent reflectances were further used to 
calculate the VIs mentioned above (RVI and Curvature), which were stored in the LUTs 
together with the band reflectances. The dimension of the LUT is thus determined by the 
number of free parameters (LAI, LIDF, bf, Cab, Cm, N), the number of parameter variations, 
and the number of spectral bands and VIs. For each of the system geometry angle 
combinations occurring in one RapidEye scene, an individual LUT covering all 
parameterizations had to be generated, since each LUT is specific to the sensor view and sun 
directions for which it is designed. During inversion, the local system geometry information 
stored with the RapidEye data is used in a first step to select the fitting LUT from the LUT 
ensemble of each time step (see Figure 6-2). The selected LUT is then used for the pixel-wise 
spectral matching. 
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However, the size of the LUT is critical, as a small LUT may not consider all realizations, 
while an inversion on a very large LUT is time-consuming. However, Darvishzadeh et al. 
(2012) showed that the LUT size does not significantly influence biophysical parameter 
retrieval (see chapter 6.5.3). 

6.5.2. Least squares estimate cost function 

LUT-based RTM inversion consists in finding the simulated reflectances that match best with 
the reflectances measured by the sensor in all bands. Such an optimization problem is solved 
by the use of a so-called cost function. The question of how this “best match” is defined is 
discussed in this chapter. Traditionally, the minimum distance between the modeled and 
measured reflectances has been identified using a LSE (Rivera et al., 2013). Leonenko et al. 
(2013b) were the first to question this approach and reviewed over 60 alternative statistical 
measures as cost function for the derivation of biophysical parameters using RTM inversion. 
They argue that the LSE method is based on assumptions (such as the maximum likelihood 
estimation with a Gaussian distribution of residuals), which are often violated in physical 
modeling due to uncertainties in instrument calibration, atmospheric corrections, or 
simplified assumptions in the RTM. Three families of alternative cost functions were 
introduced: information measures, minimum contrast, and M-estimates. It should be noted 
that some of these cost functions have additional parameters that need to be tuned, which is 
an optimization problem in itself. Rivera et al. (2013), Leonenko et al. (2013a) and Verrelst et 
al. (2014) adopted these measures, but drew rather different conclusions. For both, simulated 
and MODIS data, Leonenko et al. (2013b; 2013a) found that statistical distances other than 
LSE (the Bregman, Hellinger, and Arimoto divergences for broadleaf forests, Bregman 
divergence, power divergence, and Pearson chi-squared measure for needle leaf forests) 
resulted in better LAI estimation using the FLIGHT model (North, 1996). Verrelst et al. 
(2014) also observed that the LSE was not the best performing cost function, in this case for 
crops, but that the cost function ‘Trigonometric’ achieved highest accuracies for LAI 
derivation. Rivera et al. (2013) on the other hand identified the classical LES as best-
performing function for LAI derivation in crops albeit its theoretical limitations, if noise and 
the mean of multiple solutions are introduced (see below). 

Figure 6-11: Spectral response curves of the RapidEye Sensor. Note that the data for each band 
have been normalized for that band. Based on data from the BlackBridge spectral response curves 
document (BlackBridge, 2012). 
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These studies hence suggest a range of different best performing algorithms. Additionally, the 
studies identified different optimal cost functions for different parameters, and for cases in 
which all parameters should be retrieved with the highest overall accuracy (Leonenko et al., 
2013b; Rivera et al., 2013), thus any choice has to be tested for each application individually. 
These differing results indicate that further research is needed in this field, especially with 
regard to the different kinds of error distributions (see Leonenko et al., 2013b). For that 
reason, a simple LSE-based distance measure is used in this thesis. 

When using the LSE measure, the question arises whether the spectral distance of each band 
should be normalized. This is not clarified in the literature, as studies supporting both 
approaches have been published (see e.g. Weiss et al., 2000; Meroni et al., 2004; Colombo et 
al., 2008; Soenen et al., 2009 for the use of normalized bands, and Koetz et al., 2005b; 
Darvishzadeh et al., 2008b; Richter et al., 2009; Laurent et al., 2011; Atzberger and Richter, 
2012; Si et al., 2012, for LAI derivation without normalization). However, two arguments in 
favor of normalization do apply to the data used in this thesis. Firstly, a normalization of 
bands increases the weight of the VIS bands as it reduces the emphasis of bands that have the 
largest absolute reflectance values, an effect which might be desirable given the results of the 
SA (see chapter 6.2.2). Secondly, normalization is practically inevitable if other features such 
as VIs are used, as those values most often exceed reflectance values (see e.g. Pasolli, 2012). 
Hence, the cost function to be minimized in this thesis was defined as the sum of the squared 
differences between modeled and observed reflectances normalized by the observed value, 
giving the normalized squared error (nSE): 
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൰
ଶ
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(6.9) 

In this equation, ܴ௠௘௔௦ are the RapidEye reflectances, ܴ௠௢ௗ are the simulated reflectances, 
and ݊௦ is the number of spectral bands. For each canopy realization, the nSE was calculated 
and sorted. Once the minimum distance between the observed and the simulated spectra is 
identified, the LUT entry with the respective parameter levels that have been used for the 
generation of the reflectances is selected. Traditional LUT inversion derives the LAI value 
associated with the simulated spectrum which is the closest match with the remotely sensed 
spectrum, i.e. the minimum	݊ܵܧ in this case. 

6.5.3. Multiple LAI solutions and uncertainty measures 

Under ideal imaging and modeling conditions, one single best inversion solution would 
return the best LAI estimation. The procedure can, however, become instable when noise 
affects the RS data or when the RTM result is not unique due to the above mentioned 
parameter interactions and spectrum compensating effects between them. Small variations in 
the modeled reflectances can be associated with large leaps in the parameter space in this 
regard, so that the single best solution can be distinctively different from the next best 
solutions.  

Multiple solution samples 

Thus, the robustness and accuracy of the inversion can be increased by not selecting the 
parameter set of the single best spectrum as output, but by deriving the parameters of 
multiple best fitting spectra, which, as a subset of the LUT, is called multiple solution sample. 
The benefit of selecting several LUT entries close to the absolute minimum has been shown 
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by several authors (see Weiss et al., 2000; Combal et al., 2002a; Koetz et al., 2005a; 
Darvishzadeh et al., 2008b; Soenen et al., 2009; Vohland et al., 2010; Richter et al., 2011; 
Darvishzadeh et al., 2012; Wang et al., 2013; Verrelst et al., 2014). Further, a confidence level 
around the final estimate can be derived pixel-by-pixel by analyzing the distributions of the 
spectral distance measure values and of the LAI values within the multiple solutions sample 
(see Rivera et al., 2013). 

The actual size of the sample of multiple best solutions as well as the statistical measure 
according to which the final estimate is calculated are crucial, but different strategies and 
numbers are reported in the literature for LAI derivation. The sample can either be defined 
by a fixed number of all cases (see Weiss et al., 2000; Combal et al., 2002b), as a certain 
percentage of all cases (see Wang et al., 2013; Verrelst et al., 2014), or by a threshold 
corresponding to measurement and model uncertainties (see Knyazikhin et al., 1998; Soenen 
et al., 2009). In absolute numbers, optimal sample sizes between ten (Combal et al., 2002a) 
and 250 (Darvishzadeh et al., 2012) entries have been identified as being optimal for LAI 
derivation, while the best LUT fraction percentage varies between 1% (Verrelst et al., 2014) 
and 20 % (Koetz et al., 2005a; Vohland et al., 2010; Richter et al., 2011).  

Uncertainty thresholds for the definition of the multiple solution sample were rejected in this 
thesis due to the missing knowledge on model and measurement uncertainties. Further, fixed 
sample sizes were not used because the considerable variability in the number of LUT entries 
for the different RapidEye scenes (chapter 6.5.1) would result in quite different information 
contents used for different scenes. In this context, a percental sample size for all LUTs 
seemed to be the most appropriate approach. The optimal percental sample size was 
identified using a subset of the available in situ data, i.e. the LAI data of three of the six field 
campaigns (May 25, July 16, and September 6, 2011). The list of ݊ܵܧ values obtained over the 
five RapidEye bands for each reference pixel is sorted, and different percentage sample 
subsets are tested for inversion. As the literature suggests that the consideration of multiple 
solutions influences the result only up to a selection of approximately one fourth of the model 
realizations (e.g. Rivera et al., 2013), and that the largest variations in accuracy occur in the 
lowest percentage ranges of selected cases (e.g. Weiss et al., 2000; Darvishzadeh et al., 2012), 
26 percentage values between 0.001 % (representing the single best solution case) and 25 % 
were realized, with finer intervals of up to 1.0 % in the lower range. For each sample size, the 
range of possible LAI solutions is retained.  

In some applications, such as LAI input to land surface models, it may be acceptable to 
specify a range of LAI values. In most other situations, however, it is desirable to provide just 
one solution. With regard to the statistical measures used for the derivation of a single value 
from the subset of multiple possible solutions, most of the above mentioned studies rely on 
measures of central tendency, i.e. on the mean or median of the LAI value distribution within 
the sample. Only few authors use different methods, such as Vohland et al. (2010), who apply 
a weighted mean, or Soenen et al. (2009), who use ancillary information (e.g. topography 
measures) to further reduce the potential solutions to those that match both reflectance and 
ancillary conditions. However, also in this regard, no preferred measure is identified in the 
literature. In this thesis, the mean and the median were tested, by calculating both measures 
for the different multiple solution subsets and comparing the resulting LAI values derived at 
the field campaign plots to the in situ values, i.e. calculating the RMSE for each scene and 
sample size. The RMSEs generated through this analysis are shown in Figure 6-12 for the 
three measurement campaigns’ data sets and the respective RapidEye reflectances. Apart 
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from the differences in absolute RMSE values for the three scenes which are not discussed 
here, it is remarkable that for each data set a different optimal sample size is identified, 
ranging between 0.1 % and 25 %. The July and September scenes show a rather similar 
behavior with a global minimum. For the May 25 scene, however, the derived minimum 
RMSE value is generated with the largest tested sample size of 25 %, so no final statement 
regarding the optimal size can be made, as the RMSE might drop further with larger samples. 
Presumably, the behavior of this scene’s LAI accuracy is rather due to scene-specific 
uncertainties in the RS or field data. An average LAI value derived from more than 25 % of all 
simulated cases cannot represent a specific canopy state. Thus, this large sample size is not 
adopted for further analysis. Instead, the percentage value minimizing the RMSE averaged 
over all three data sets, 0.5 %, is chosen for further analysis. 

As can further be seen from Figure 6-12, the RMSE values do not differ much between the 
mean and median LAI values, and no statistical measure performs overall better than the 
other. Based on this ambiguous result, the median has been selected as statistical measure 
for generating the final LAI maps for three reasons: First, the median value is less influenced 
by outlier values than the mean. Second, the median LAI is a value that can actually be found 
in the multiple solution sample, while e.g. the mean of a bimodal LAI distribution within the 
solution sample is no LAI for which a corresponding modeled spectrum is a close match to 
the RS spectrum. Finally, the small interval of 0.2 at which the LAI has been specified during 
parameterization allows for a gradual LAI estimation also without the use of mean values. 

Uncertainty measures of the inversion approach 

As mentioned above, a multiple solution sample provides further information through the 
use of descriptive statistics on the sample’s distributions of nSE and LAI values. The residuals 
of the spectral match indicate the degree of mismatch between the observed spectrum and 
the LUT spectra. Thus, the spectral distances, which is characterized here by the nRMSE 
(derived from the respective ݊ܵܧ values) between simulated and measured spectra, and by 

Figure 6-12: RMSE between modeled and measured LAI as a function of the percentage of 
selected cases in the LUT. The vertical solid lines mark the respective minima achieved for three in 
situ data sets, while the black dashed line marks the overall minimum (0.5 %). Note that the x-axis 
is logarithmically scaled. 
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the standard deviation (SD) of the selected nRMSEs, provide parameter-independent 
information regarding the uncertainty of the inversion process (Kötz et al., 2004; Rivera et 
al., 2013). The LAI SD of the sample can be interpreted as the uncertainty of the LAI estimate 
itself, as it outlines the variability encountered within the multiple solutions, i.e. the ill-
posedness of the inversion (Kimes et al., 2000). Since the SD directly depends on the 
magnitude of LAI, alternatively the LAI CV can be used. It maps the relative uncertainty of 
LAI derivation and allows for a comparison of inversion performance across all maps (Rivera 
et al., 2013).  

As these measures are available for each pixel, they are a spatially explicit uncertainty 
measures, and several quality layers for each LAI map can be generated. Thereby, the 
measures complement each other. For example, a large RMSE between the selected 
simulated and measured spectra would either indicate that the specific canopy type is not 
well covered by the LUT, or that the measured spectrum is affected by errors, either of which 
would reduce the reliability of the inversion result, even though the SD of the LAI estimates is 
small. On the other hand, a large LAI SD in combination with a low RMSE SD would indicate 
a close spectral match with a measured spectrum, which is however ambiguous, i.e. an ill-
posed inversion. The statistical measure also indicates a reduced robustness of LAI inversion 
in this case. This illustrates how these different measures can help to identify the source of 
error of LAI derivation. Thus, apart from the median LAI, the nRMSE of the selected median 
LAI, the SD of all nRMSEs, the SD of LAI, and the CV of LAI are output of the RTM inversion 
in this thesis and used for flagging uncertain LAI estimates. Such inversion quality 
information is only seldom analyzed in the literature ( see e.g. Dorigo, 2007; Rivera et al., 
2013; Verrelst et al., 2014), and generally only based on a single measure. 

6.5.4. Improvement of spectral model input features 

As mentioned in chapter 2.2.3, both, reflectances generated by a RTM and vegetation signals 
recorded by RS systems, can only be modeled or measured to a certain degree of accuracy. 
While assumptions simplifying the radiation transport through the canopy introduce errors 
to simulated reflectances, spectral measurements are influenced by atmospheric conditions 
and corrections, radiometric calibration, or BRDF normalization (Baret et al., 2007). This 
implies that an RTM actually predicts a domain around the model output to which the “true” 
reflectance belongs. For RS reflectances, it is also only possible to specify a range around a 
measured reflectance including the “true” value. Both domains are difficult to minimize, as 
the different uncertainties would need to be individually and precisely quantified (Baret and 
Buis, 2008). Uncertainties associated with RTMs are very complex and result in highly 
structured errors (Verger et al., 2011a).  

Added spectral noise 

Adding noise to the simulated canopy reflectances, as it has been pursued in a few studies so 
far, can however be seen as a regularization technique to at least partly account for 
uncertainties attached to spectral measurements. In most of these studies (e.g. Combal et al., 
2002b; Bacour et al., 2006; Baret et al., 2007; Lauvernet et al., 2008; Richter et al., 2011) 
relative Gaussian noise of about 2.5 % to 4 % is added to the simulated reflectances 
irrespective of wavelength to account for instrumental noise (Nieke et al., 1999). Koetz et al. 
(2005a) additionally introduced wavelength dependent errors of up to 10 % in the blue band 
to account for atmospheric influences. Verger et al. (2011a) considered the structure of RS 
data uncertainties in more detail and argue that atmospheric correction, radiometric 
calibration, and instrumental noise result in multiplicative and additive uncertainties, which 
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are both wavelength-dependent and wavelength-independent. Therefore, Verger et al. 
(2011a) suggest a noise generation approach in which both additive and multiplicative white 
Gaussian noise, band-dependent as well as band-independent, is considered :  

ܴ௡௢௜௦௬ሺߣሻ ൌ ܴ௦௜௠ሺߣሻ ∗ ሾ1 ൅ ,ሺ0ߝ ሻሻߣ௥௘௟ሺߪ ൅ ,ሺ0ߝ ௥௘௟ሺ݈݈ܽሻሻሿߪ ൅ ,ሺ0ߝ ሻሻߣ௔௕௦ሺߪ ൅ ,ሺ0ߝ ௔௕௦ሺ݈݈ܽሻሻ (6.10)ߪ

ܴ௡௢௜௦௬ሺߣሻ corresponds to the degraded band-specific reflectances in the LUT, ܴ௦௜௠ሺߣሻ to the 

LUT reflectances simulated by the RTM, ߝሺ0,  ሻ represents a normal distribution with a meanߪ
value equal to zero, ߪ௥௘௟ሺߣሻ being the relative uncertainty applied to band ߪ ,ߣ௥௘௟ሺ݈݈ܽሻ being 
the relative uncertainty applied to all bands, ߪ௔௕௦ሺߣሻ the absolute uncertainty applied to band 
 ௔௕௦ሺ݈݈ܽሻ the absolute error applied to all bands. This approach is also implementedߪ and ,ߣ
here, as also the noise affecting the RapidEye data is of additive and multiplicative nature 
(BlackBridge AG, personal communication).  

The influence of added noise on the five RapidEye bands was again tested on three of the six 
RapidEye scenes (May 9, May 25, and September 6), for which concurrent in situ data are 
available18. As variance coefficients, Verger et al. (2011a) use fixed relative and absolute 
values (4 % and 0.01, respectively) irrespective of individual bands. For the application 
described here, it would be favorable to use the specific signal-to-noise ratio of the original 
RapidEye data (Reulke and Weichelt, 2012), which however cannot be assumed unchanged 
after the preprocessing and resampling steps (see chapter 4.1.2). Therefore, noise levels were 
derived from the respective RapidEye scenes by sampling reflectances from visually 
homogeneous areas. Per scene, approximately 4000 pixels from around 10 different objects 
(agricultural fields and meadows) were derived, and for each object the absolute and relative 
SD were calculated. As it has to be assumed that by sampling pixels from a scene not only 
noise, but also natural variability is recorded, only the coefficients of the object showing the 
smallest relative and absolute SD values were selected for each scene. This value was 
assumed to be closest to the true spectral noise. The derived values range between 0.002 and 
0.01 for the absolute values and 1.9 and 9.3 for the relative values. As no knowledge on the 
band-dependent and the band-independent uncertainties existed, the respective lowest 
absolute and relative band-specific noise levels of each scene (i.e. 0.003 and 2.0 %, 0.003 
and 1.9 %, as well as 0.002 and 3.0 %) were treated as band-independent variances ߪ௔௕௦ሺ݈݈ܽሻ 
and ߪ௥௘௟ሺ݈݈ܽሻ, while the differences between these values and the band-specific coefficients 
(ranging between 0 % and 6.3 %) were treated as band-dependent variances ߪ௔௕௦ሺߣሻ and 
 ሻ. The used noise levels are thus rather conservative estimates in the range of otherߣ௥௘௟ሺߪ
literature values. 

For testing the influence of these noise levels on the LAI retrieval accuracy, three different 
approaches are pursued. Firstly, the LUTs are affected with noise by applying Equation 6.10 
on each LUT entry individually and therewith slightly changing the simulated reflectance 
values, and subsequently used for inversion, similarly to most of the above mentioned 
studies. Further, as suggested by Richter et al. (2012b), the noise modeling was applied to the 
LUTs 50 times, resulting in 50 LUTs containing slightly different reflectances. From these 50 
LUTs, LAI was derived in two different ways. On the one hand each LUT was inverted 
individually and LAI was derived by calculating the mean LAI of the 50 LAI estimates output. 
On the other hand, the entries of all 50 LUTs were joined together into one LUT and used for 
inversion, which generates one LAI estimate. For all inversions, the optimal multiple solution 
subset size of 0.5 % identified above and the median solution were used. 
                                                            
18 The May 9 scene was selected for this test instead of the July 16 scene as it has a smaller LUT and thus 
fewer computation effort was required for affecting the LUT reflectances with noise. 
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The overall LAI prediction error for all three RapidEye scenes was slightly reduced on 
average by 3.7 % from an RMSE of 0.82 to 0.79 for all three tested LAI derivation approaches 
using noisy LUT reflectances. This prediction error decrease is rather low compared to other 
studies (e.g. Verger et al., 2011a; Richter et al., 2012b). Thus, as this small error reduction is 
associated with a rather high computational effort of noise simulation for the many and 
partially large LUTs, the use of added noise is abandoned in this thesis. Nevertheless, further 
systematic evaluations of the role of added noise in grassland LAI derivation in combination 
with different noise levels, multiple solution sample sizes, and cost functions might result in 
further improvements. Without aiming for the noise level of a specific sensor, Rivera et al. 
(2013) and Verrelst et al. (2014) evaluated the influence of noise at levels between 1 - 50 and 
1 - 30 %, respectively. Both studies attested an improved biophysical parameter derivation 
through adding noise to the simulated spectra, but they also stressed the fact that the optimal 
noise levels depend on the selected cost function and multiple solution approach. Therefore, 
further analysis on noise influence on LAI in grasslands could also be expanded by taking 
into account such interactions. 

Test on additional spectral features 

Another approach to reduce the uncertainty associated with the spectral features which are 
used as input to the RTM inversion is the additional use of VIs as input, which are less 
sensitive to influences that disturb the spectral signal (see chapter 2.2.2). The benefit of using 
additional VIs in the inversion procedure has been tested based on all four RapidEye scenes 
of 2011 for which concurrent in situ data are available. The rationale behind this is on the one 
hand to increase the dimensionality of the multi-spectral RS data, reducing the ill-posedness 
of the inversion. On the other hand, the integration of information on vegetation properties 
highlighted by VIs might increase the robustness of the spectral match. Nevertheless, only 
very few RTM inversion studies used VIs as additional spectral features (Pasolli et al., 2011). 
VIs have been implemented by calculating the VI values based on the modeled and measured 
RapidEye band. While the overall LAI retrieval RMSE by the sole use of the five RapidEye 
bands is 0.93, the additional use of the RVI reduced the RMSE to 0.89. The use of the 
Curvature index as well as of both indices together with the RapidEye bands increased the 
RMSE to 1.05 and 1.20, respectively. Therefore, the RVI was chosen as additional band, 
resulting in six inversion features, which matches the number of free PROSAIL parameters.  

6.6.  Results of LAI derivation using the PROSAIL model 

In the following, the performance of physical LAI derivation using the PROSAIL RTM is 
presented. First, the similarity of the modeled and measured reflectances is evaluated. Then, 
the resulting LAI maps are described and their accuracies are assessed using in situ LAI 
measurements that coincide with six of the RapidEye images. In a next step, the spatial 
patterns of LAI derivation accuracy are discussed based on inversion uncertainty measures 
and additional canopy parameters, with special focus on the most challenging canopy 
occurrences. In the fourth subchapter, the generated LAI time series are evaluated. 

6.6.1. Comparison of RapidEye and PROSAIL reflectances 

In a first step, the ranges and distributions of the simulated reflectances and of the 
corresponding RapidEye reflectances are compared in each band and for each scene, since 
the capability of the RTM to properly simulate the canopy spectra and the consequential 
spectral match is a prerequisite of model inversion (Baret and Buis, 2008). Hence, the range 
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of simulated data necessarily needs to contain the range of the observed data, since a 
meaningful spectral match is not possible if the measured spectrum is not covered by the 
LUT. Further, significantly different data ranges indicate that many simulation runs were 
carried out in vain during the construction of the LUT. Regarding the distributions of the 
simulated and modeled spectra, a high similarity is unlikely to be due to the uniform 
sampling of the parameter spaces during parameterization, which aimed at covering all 
parameter levels and all possible combinations on the one hand, and probably rather 
normally distributed real-world observations on the other hand. Hypothetically, a high 
similarity of distributions would be desirable, because it indicates that the ecosystem under 
investigation is well represented. Further, it increases the chances of finding a suitable match 
for most measured reflectance values and the chances of a successful inversion for the 
spectral signals that can result from confounding parameter influences. However, a priori 
knowledge on the RS reflectances distributions and on the necessary parameterization 
scheme to achieve similar reflectance distributions is normally not available. 

In Figure 6-13, a random sample of grassland pixel reflectances measured in the five 
RapidEye bands of the July 16, 2011 scene is compared to the reflectances simulated by 
PROSAIL given the scene-specific parameterization. The simulated reflectances are taken 
from the LUT that was generated using the system geometry closest to the geometry of the 
RapidEye acquisition (θs= 27.5°, θo= 17.5°). Accordingly, the RapidEye reflectances were 
taken only from completely flat pixels, and the sample has the same size as the corresponding 
LUT. The density plots show clearly differing ranges and distributions in the five bands. 
According to a Kolmogorow-Smirnow test performed on the data set pairs, the null 
hypothesis that the samples are drawn from the same distribution had to be rejected for each 
band in this example. The same analysis is also presented in a more dense form using boxplot 
graphs for each of the six RapidEye scenes for which concurrent in situ data are available 
(Figure A-4). The simulated reflectances and the measurements also show some distinct 
differences here. A pattern similar for all scenes is evident from these figures: in the VIS, the 
simulated reflectances are on average a bit lower than the RapidEye grassland reflectances, 
but cover a wider range overall. This means that the VIS reflectances occurring in reality are 

Figure 6-13: Example 
density plots of measured and 
simulated reflectances per 
band. The reflectance values 
were sampled from grassland 
areas of the July 16, 2011 
RapidEye scene as well as 
from the respective PROSAIL 
LUT (n= LUT size = 198 450). 
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covered by the LUT and can be closely fitted to a solution by the cost function. However, a 
large part of the LUT entries containing low reflectance values and corresponding canopy 
parameters is only seldom selected as best fit, while the majority of RapidEye reflectances fit 
best to a relatively small number of canopy realizations that produced higher reflectances. 
This VIS distribution shift, which is most distinctive in the green, might either be caused by 
an inadequate parameterization (e.g. too low Cab rates or LAI values), or by inadequate 
RapidEye preprocessing (e.g. atmospheric correction). Alternatively, Vohland and Jarmer 
(2008) also mention inconsistencies between simulated and the measured grassland 
reflectances in the VIS, and attribute this to the chlorophyll absorption coefficients used in 
PROSPECT, which may not be true for many grassland plant species. Yet, without 
contemporaneous in situ canopy spectral measurements using a spectroradiometer, the 
question of which distribution is closer to reality cannot be conclusively solved. Further, the 
narrow distributions of the measured VIS reflectances may have negative consequences on 
LAI derivation using PROSAIL. In chapter 6.3, it was observed that the influence of LAI on 
the PROSAIL output is largest in the VIS. In turn, a small variability in VIS reflectances leads 
to a small variability of the LAI estimates. 

The situation is different, however, for the simulated red edge and especially the simulated 
NIR reflectances, which are on average significantly lower than the observed reflectances. In 
this case, it is clear that the RapidEye measurements are more in the range of realistic 
grassland NIR reflectances (cf. e.g. Darvishzadeh et al., 2008b; Vohland et al., 2010), i.e. that 
the PROSAIL NIR reflectances are too low. Most importantly, the PROSAIL simulations do 
not span the data range of RS reflectances in the NIR, preventing a close cost function match 
for high remotely sensed NIR reflectances. This has two implications: first, this great 
difference between the measured and modeled reflectances will put an emphasis on the NIR 
reflectance during inversion, as the ݊ܵܧேூோ will have the largest share in the overall ݊ܵܧ value 
of each LUT entry. In this context, the normalization introduced in the cost function proves 
valuable, as the influence of this error is somewhat reduced by it. Second, for pixels with a 
high NIR reflectance, the closest simulated NIR reflectances correspond to only a small 
number of canopy realizations generated probably by extreme input parameters. As these few 
cases will most probably be selected due to the high influence of this band as soon as a pixel’s 
NIR reflectance is above the highest simulated NIR value, this leads to an ‘artificial’ 19 
saturation effect over dense vegetation, however not necessarily returning the highest 
existing LAI level in the LUT.  

This partly strong mismatch between modeled and measured reflectance ranges reveals 
possibly important restraints for accurate LAI derivation. In general, the insufficient 
representation of the meadows and pastures by PROSAIL could suggest that the selected 
RTM is unsuitable for grassland canopies. Dorigo (2007), however, achieved a satisfying fit 
between PROSAIL results and grassland spectra. Thus, alternatively, it might be caused by 
unsuitable parameterization e.g. by including too low LAI or Cab values, too high LIDF values 
or unrealistic soil spectra. With regard to the reflectance distributions, as mentioned above, 
the uniform sampling scheme used for PROSAIL parameterization can be revised. 
Alternative, e.g. Gaussian, sampling strategies focusing on more frequent spectral ranges 
have been suggested e.g. by Weiss et al., 2000, Dorigo et al., 2007, Hedley et al., 2009, and 
Duveiller et al., 2011b. 

19 This „artificial“ saturation resulting from missing high reflectance simulations in the LUT should not be 
confused with the RS signal saturation resulting from insufficient light transmittance through dense canopies. 
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6.6.2. PROSAIL LAI derivation results and accuracy 

Based on the above described model set-up and optimization of the inverted PROSAIL 
model, and the RapidEye data described in chapter 4.1, a two-year high spatial resolution LAI 
time series, i.e. 19 LAI maps, was generated for the Ammer catchment. Additionally, maps 
displaying further canopy characteristics such as the leaf chlorophyll content or the mean leaf 
angle were generated. These data sets are useful for comprehensive descriptions of the 
vegetation cover, such as differentiating spectrally similar but structurally different canopy 
types (e.g. grassland and moorland), or estimating ecological processes and disturbances. 

Figure A-5 displays the LAI map derived from the May 9, 2011 scene and gives an impression 
of the landscape structure and spatial variability of LAI. In the mountainous south-western 
part of the catchment, only few grassland areas exist. They can be distinguished into valley 
bottom areas with a high LAI, and mountain pastures with overall lower LAI, which are not 
intensively used. Following the further course of the Ammer River, different grassland 
habitats around Unterammergau (see Figure 3-7) such as the Ammertaler Wiesmahdhänge 
with LAI values around 5, and the Moore im oberen Ammertal with a comparably lower LAI 
can be distinguished. In the alpine foreland to the north, significantly more areas are covered 
by grassland. These meadows and pastures have an overall higher LAI, as they are more 
intensively managed. The map also displays the partly strong spatial differences in between 
fields resulting from these managements. In the northern part of the catchment, the 
grassland area is somewhat reduced due to a higher settlement density and more areas which 
are used for crop cultivation. 

In Figure 6-14, subsets of six of the 2011 and 2012 LAI maps derived from the inverted 
PROSAIL model are displayed to illustrate the spatial and temporal dynamic of the grassland 
areas. The strong seasonal changes and spatially very heterogeneous occurrences of the 
managed alpine grassland LAI are well displayed. Overall relatively low LAI in April (bottom 
left) is followed by an increase in biomass from May onwards (upper left). As observed in 
chapter 5.3, LAI is lower locally at the end of May due to the first harvest in mid-May 2011. In 
these three spring scenes, the LAI distributions of individual parcels can be well 
differentiated, although the discernibility is reduced in some areas by high intra-field 
variability. LAI again strongly increases and characterizes very dense canopies in mid-July 
and especially mid-August. In these maps, the high LAI areas are very homogeneous and at 
the same maximum level, which might indicate saturation. This phenomenon might be 
caused by an RS signal saturation over dense canopies in the traditional sense (see chapter 
2.2), but also by the missing number of LUT entries representing high NIR reflectances 
observed above. The September scene displays homogeneous fields at reduced and spatially 
variable LAI levels, which seems more realistic. 

To quantify the accuracy of the derived maps, LAI values are compared to the in situ 
measurements. Measured and estimated LAI from the six field campaigns and the six 
RapidEye scenes are shown in Figure 6-15, analogous to the statistically derived LAI in 
Figure A-1. As for the empirical-statistical approach, a 3 x 3 pixel mean filter was applied to 
the resulting LAI maps before extracting the LAI values used for validation in order to 
spatially match the area over which the LAI data have been measured in situ. The results 
differ considerably for the different scenes (see also Table 6-4). In most cases, a medium to 
strong positive linear relationship exists between the estimated and measured values with R2 
values between 0.5 and 0.8. Only for the May 25 scene could no meaningful relationship be 
established. This is the same scene that also showed the unexpected behavior during the 
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Figure 6-14: Subsets of the physically modeled LAI maps for the six field campaign dates in 2011 
and 2012. LAI is scaled equally in all maps and the same subsets, time steps, and legend scaling as 
for the statistically derived LAI in Figure 5-2 is used. 
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2011 

2012 

Figure 6-15: Performance of the PROSAIL LAI estimates evaluated against in situ data for the 
six field campaign dates. The confidence interval indicates the interval estimate of a fitted linear 
model, “n” indicates the number of in situ measurements and “Multiple solution n” gives the size 
of the multiple solution sample from which the final solution is selected by the median. 

May 9 May 25

July 16 September 6 

April 25 August 13
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Table 6-4: Summary of LAI and LIDF retrieval accuracy generated using the PROSAIL model for 
each field campaign date. “n” is the number of in situ measurements, ܴଶ indicates the strength of 
the linear model fit, and α the significance level of the model fit: 0.1 ’.’ 0.05 ’*’ 0.01 ’**’ 0.001 
’***’0. 

   PROSAIL LAI  PROSAIL LIDF 

 n  ܴଶ α RMSE rRMSE [%]  rRMSE [%] 

2011         

May 9  13  0.46 * 0.73 21.4  41.2 
May 25 18  0.0  1.11 38.2  50.1 
July 16 25  0.64 *** 1.14 27.2  43.0 
September 6 33  0.81 *** 0.66 18.2  36.9 

2012         

April 25 10  0.55 * 1.27 52.6  42.6 
August 13 22  0.50 *** 1.53 37.7  40.7 

         

All scenes 121  0.50 *** 1.09 30.3  42.7 

 

multiple solution sample size test (see chapter 6.5.3). LAI was derived in the May 9, July 16, 
and September 6 scenes with a relative RMSE (rRMSE = RMSE / mean value of the reference 
measurements) in the range of 20 - 30 %. The September 6 scene stands out with an RMSE 
of 0.66 and an rRMSE below 20 %. In the remaining scenes (May 25 and August 13), the 
errors are around 40 %. The explanatory power of the April 25 LAI estimates with about 50 % 
rRMSE is strongly reduced. In most cases, LAI is overestimated at lower LAI values (<2-3). 
Additionally, the scatter plots of the summer scenes (July 16, August 13, and September 6) 
reveal that LAI tends to saturate at higher LAI values (> 5-6). In the May 9, May 25, and 
September 6 scenes, this reduced accuracy of very low and very high values is balanced, and 
these scenes accordingly have only a low negative bias. The July 16 scene, however, has a high 
negative bias, while in the two 2012 scenes, the RTM almost always overestimates in situ LAI. 
Overall, two limitations can be observed in these results, which on the one hand concern the 
missing modeling of very low LAI values during early spring but also for most of the other 
scenes. On the other hand, the reproduction of very high LAI, i.e. the selection of LAI values 
from the upper range of each parameterization, is also impaired. 

On average, the results of the inverted PROSAIL RTM fit the grassland LAI measured in situ 
with an ܴଶ of 0.5 (see Table 6-4 and Figure A-6). LAI can be derived with a 30 % error rate 
and a slight positive bias. These error rates are clearly above the target accuracy of 10 % 
(GCOS, 2006; Drusch et al., 2010). A direct comparison of the results to other grassland LAI 
studies using high spatial resolution multispectral RS data in an inverted RTM is not 
possible, as to the author’s knowledge no such study exists. However, based on HyMap data, 
Dorigo (2007) achieves a relative accuracy of 46 % for grassland LAI derivation. Using 
spectroradiometer measurements20, Vohland and Jarmer (2008) derive grassland LAI with 

                                                            
20 The comparison of LAI estimates derived from multispectral RS with air-borne or in situ hyperspectral 
data is naturally impaired, due to the fewer measurement distortions, higher canopy homogeneity, and the 
availability of more bands using spectroradiometer data. However, the number of bands must not be 
overrated. Although increasing the number of bands does lead to increased spectral dimensionality, this 
increased dimensionality does not necessarily imply increased information content. Verhoef (2007) reports 
that a nadir looking hyperspectral sensor contains up to 12 independent data dimensions, while this 
dimensionality significantly reduces as noise levels increase. Further, the additional dimensions offered by 
spectroradiometers appear to contribute mainly to improved estimates of biochemical leaf parameters. 
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an rRMSE of 36 %, Dorigo et al. (2009) with an rRMSE of 35 %, and Darvishzadeh et al. 
(2008b) with an rRMSE of approximately 33 % 21 . Darvishzadeh et al. (2008b) further 
observe an accuracy decrease by 61 %, with an increasing number of grassland species from 
one to four species, indicating the relevance of the heterogeneity of a canopy for LAI retrieval 
accuracy. The number of species occurring in the grasslands of the Ammer catchment 
exceeds four by far. Hence, the results presented here also illustrate the fact that radiation 
transfer modeling becomes more challenging in diverse ecosystems with a high spatio-
temporal variability compared to monocultures. 

Indeed, for physical LAI estimates of agricultural fields using high spatial resolution RS data, 
a range of 15 - 20% is currently regarded as the achievable accuracy (Baret, 2010). Within the 
crop LAI literature, errors range from 8 - 10 % (Richter et al., 2011) to 10 - 15 % (Houborg et 
al., 2009; Atzberger and Richter, 2012; Rivera et al., 2013) to 30 % (Duveiller et al., 2011b; 
Vuolo et al., 2012; Verrelst et al., 2014). However, as stated by Rivera et al. (2013) and 
Verrelst et al. (2014), these partially high accuracies were only achieved for single crops, and 
the algorithms would not be applicable to multi-species canopies or more natural ecosystems 
Further research on grassland properties which are more difficult to derive should therefore 
be continued in order to mitigate these limitations associated to grassland LAI mapping. 

6.6.3. Analysis of spatially explicit inversion uncertainty 

A first step towards the identification of model shortcomings but also of RS data deficiencies 
which might cause the above mentioned limitations in physical LAI modeling is taken by 
investigating the spatially explicit uncertainty measures introduced in chapter 6.5.3, as well 
as maps of other parameters that strongly influence the canopy reflectance (see chapter 
6.2.2) exemplarily for the September 6, 2011 scene. This sort of analysis is a recent 
development and has only been conducted by Dorigo (2007), Rivera et al. (2013) and Verrelst 
et al. (2014) so far. Figure 6-16 displays some canopy parameters as well as the statistics of 
model inversion for a subset of the scene.  

While no large variations occur overall, the nRMSE22 (bottom left plot) is above average in 
some, but not all, cases of high LAI estimates. Indeed, the areas of increased misfit between 
the selected LUT entry and the RapidEye reflectances are almost exclusively very dense 
canopies with very high RVI values (not shown). As was mentioned above, very high NIR 
reflectances are not well covered by the LUTs, and these thus are the areas where NIR values 
above approximately 0.5 lead to a large nRMSE and which are hence affected by saturation. 
The SD of the nRMSE values indicates the span of RMSE values in the multiple solution 
sample, i.e. it is low if it was possible to identify many closely fitting LUT entries and high if 
the best 0.5 % of all solutions also include strongly deviating spectral properties. It is 
depicted in the bottom middle plot of Figure 6-16 and shows that mostly fields other than 
those with high absolute nRMSE values are affected. These fields coincide with very sparsely 
vegetated areas strongly influenced by the soil signal. This increased difficulty to generate a 
close match over sparsely vegetated areas has also been observed by Rivera et al. (2013). 
Further, the inset histogram in the upper left plot shows a rather bimodal distribution, which 

21 The rRMSE in the study of Darvishzadeh et al. (2008b) is derived using the range of the reference 
measurements for normalizing the RMSE instead of the mean value. The rRMSE has therefore been 
recalculated using the reference data’s central value published in this study. As the true mean of the in situ 
data is not known, however, this can only be considered an estimate. 
22 Note that not the RMSE but the nRMSE is indicated due to the normalization implemented in the cost 
function. Thus, the nRMSE values do not represent the absolute spectral distance between modeled and 
measured reflectances but are increased in the order of two to three. 



 

 

130
 

 

6. L
A

I d
erivation

 u
sin

g th
e P

R
O

SA
IL

 m
od

el 

Figure 6-16: LAI, leaf angle, soil brightness factor (top row) as well as uncertainty measures (bottom row) for a subset of the September 6, 2011 scene. 
The nRMSE of the median fit indicates the average residual between the measured reflectances and the reflectances associated to the selected LUT entry, 
which is the median LAI of the multiple solution sample. The SD of the nRMSEs indicate the span of nRMSE values in this sample, while the LAI CV 
illustrates the range of LAI estimates the multiple solution sample. The inset scatter plots show the parameter distributions (top row) and the respective 
relationship with the estimated LAI (bottom row). 
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indicates that mostly LAI values around 2.5 and 5 have been selected. This distribution can 
be observed for most scenes and is especially distinct for the summer scenes (Figure A-8). 
These observations confirm the above mentioned difficulties with modeling very high and 
very low LAI values and can be localized. 

Analyzing the SD and the CV of the LAI values included in the multiple solution sample 
provides information on the reliability of the LAI estimate itself. Despite the large nRMSE 
SD, the SD of LAI is lowest (0 - 0.5 LAI) on most of the sparsely vegetated areas (not shown), 
i.e. a wide range of different spectra obviously resulted in similarly low LAI estimates. This 
suggests that the occurring, possibly quite different soil spectra of the RapidEye scenes are 
not well covered by the LUTs, but still sufficiently different from a vegetated canopy to 
prevent confusion. Over the more densely vegetated areas, the LAI SD varies around one. 
Finally, the LAI CV (bottom right plot in Figure 6-16) is overall low over areas of high LAI 
estimates (0 - 20 % of variation), but increases with lower LAI values (see inset scatter plot) 
for some of which a higher risk of parameter equifinality, i.e. of compensating effects between 
RTM parameters, obviously exists. On the one hand this means that high LAI values are 
estimated with high reliability, although this “reliability” is partly caused by the above 
mentioned “artificial” saturation in the modeled NIR reflectances. On the other hand it 
indicates that during the estimation of medium and low LAI values, the median LAI is 
selected out of a relatively wide range. This impedes the derivation of extreme values, as in 
these areas the median value will represent the center of the range (see also Combal et al., 
2002b, for a discussion of this problem). This might explain the reduced ability of the 
approach of mapping LAI values below 2 (see Figure A-5). 

As mentioned above, other PROSAIL parameters that strongly influence the canopy 
reflectance should also be analyzed in order to assess the quality of a RTM inversion. The 
LIDF, Cab and soil bf proved to be the other most influential parameters of the PROSAIL 
model and are therefore investigated in more detail. Spatializing the LIDF estimates shows 
that the within-field variability of LIDF is low, which is in accordance with assumptions 
presented by Atzberger (2004). Especially for 
dense fields, a small average leaf angle 
between 30 - 40° has been selected by the 
procedure. Only for some fields with low LAI, 
LIDF values of 50 - 60° are selected. This is 
probably caused by the rationale that model 
runs based on small leaf angle values produce 
the highest NIR reflectances. The leaf angle 
values measured in the field at each ESU 
using the LAI-2000 PCA are strongly 
underestimated by the physical approach (see 
Figure 6-17 ). It has however to be mentioned 
that, while the indirect LAI-2000 PCA LAI 
estimates have been corrected using directly 
measured LAI, the leaf angle values were not 
recalculated afterwards, although they might 
change with LAI according to equation 4.11. 
The accuracy of the in situ LIDF values thus 
has to be questioned. Nevertheless, other 
studies found in the literature (Table A-8) 

Figure 6-17: Scatterplot of all in situ LIDF 
measurements vs. PROSAIL LIDF estimates. 
Note that the RTM LIDF values are spread 
slightly around their true values to better 
indicate the value distribution. 
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also generally assume higher LIDF values for crop and grassland model parameterization, so 
that a certain LIDF underestimation can still be assumed to be valid. However, no direct 
validation of the LIDF outcome of PROSAIL exists yet, which is why the absolute evaluation 
of these results is not possible.  

As all PROSAIL parameters are estimated together, and as LAI and LIDF have strong 
compensating effects on each other (see e.g. Jacquemoud, 1993), a potential LIDF 
underestimation of densely vegetated areas has implications on LAI estimation. A high leaf 
angle value would entail a higher LAI estimate for the same pixel reflectance. As estimated 
LAI of the dense fields in the subset are already very close to the maximum LAI value used 
for parameterization of this September scene, however, this suggests that either the LAI or 
the LIDF was parameterized too narrowly. Atzberger (2004) also shows that low LIDF values 
result in higher LAI estimation errors, as the saturation situation is more quickly. Finally, 
when analyzing the PROSAIL estimation errors of LAI and reached LIDF for each scene (see 
Table 6-4), it is apparent that the LIDF rRMSE is lowest for those scenes for which the LAI 
could also be predicted with the lowest rRMSE. The quality of both parameters is thus 
interdependent. In conclusion, LIDF parameterization plays a very important role for 
biophysical parameter estimation using RTMs, but is at the same time often disregarded.  

The wide range of crop and grassland LIDF values and distribution types suggested in the 
literature, varying between 20 and 80 °, and between uniform, Gaussian, or spherical 
distributions, also indicate the fact that knowledge on this parameter is still sparse. Further 
investigations should therefore focus on the characterization of the leaf angle distribution in 
the field (see e.g. Koetz et al., 2007b, Hosoi et al., 2009, and Béland et al., 2011 who use 
terrestrial LIDAR (LIght Detection And Ranging) for LIDF measurements) in order to 
improve the definition of LIDF values for RTM parameterization. 

The physically modeled leaf chlorophyll contents (Figure A-7) are homogeneously low (20 - 
30 µg*cm-2) for the whole area except for very few pixels in densely vegetated areas. These Cab 
estimates, which are also very low in comparison to other grassland studies (Vohland and 
Jarmer, 2008), are probably caused by the above mentioned high RapidEye reflectances 
compared to the modeled reflectances. A low chlorophyll value is compensated by other 
PROSAIL parameters, such as a high LAI or a low LIDF, both of which are observed in this 
thesis. However, low assumed Cab concentrations also increase the influence of the soil in the 
model output since leaf transmittance is inversely related to Cab (Atzberger, 2004), which can 
distort the modeled signal.  

Finally, the soil bf map (upper right plot in Figure 6-16) is rather noisy in contrast to LAI and 
LIDF, and boundaries between parcels are less distinctive. It is difficult to assess the 
plausibility of these estimates, as on the one hand soil reflectance can be assumed to be 
homogeneous within a single field, which normally consists of the same soil type and 
experiences the same treatment and weather conditions. On the other hand, especially in a 
non-flat landscape, small-scale differences in soil humidity cannot be excluded. Nevertheless, 
this observation might indicate instabilities in RTM inversion. The introduction of spatial 
constraints on bf as suggested by Atzberger (2004) or the use of in situ soil spectrometer 
measurements might potentially reduce this instability. Overall, the analysis of the associated 
parameter maps reveals some shortcomings. However, as Rivera et al. (2013) showed, the 
simultaneous estimation of multiple biophysical parameters using one inversion strategy is 
not the best choice, but different cost functions and inversion setups should be individually 
optimized per variable of interest. It can therefore be assumed that the LIDF, Cab and soil bf 
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parameters are derived with reduced accuracy using an approach which has been 
continuously optimized for LAI derivation. 

The analyses of the quality layers associated with the derived LAI maps confirm the 
observation that the inverted PROSAIL model reproduces medium high LAI values well. 
However, it has a reduced ability of mapping very high and very low LAI values, which are 
marked by either high inversion nRMSE values or high nRMSE SD and LAI CV values. To 
visualize these challenging aspects, the modeled LAI values at two ESUs are further 
investigated. Figure 6-18 represents two cases of LAI overestimation selected from the 
especially weakly modeled May 25, 2011 scene, compared to the in situ values and to 
photographs taken in the field. Indeed, some differences can be observed with regard to LAI 
overestimation by physical LAI modeling. In the upper row of Figure 6-18, the area of a 
pasture is depicted which has some bare areas caused by grazing. On this plot, an LAI of 1.8 
has been measured, which is overestimated by the PROSAIL model by 0.7 LAI. The bottom 
row of the figure, however, shows a different kind of sparsely vegetated meadow, which 
results from harvesting. For these areas, LAI overestimation is distinctively more 
pronounced, as the measured LAI of 1.5 is reproduced by values around 2.8. While on both 
ESUs, the soil signal will play a prominent role, litter, brown plant material, and stubbles 
additionally distort the canopy spectrum on the second ESU. Presumably, these spectra are 
not covered by the LUT and their simulation would need a highly specifically adapted 
parameterization of the Cab, Cb, and soil bf values, i.e. stratified LAI modeling. Very similar 
restrictions in LAI derivation have been observed by Dorigo (2007), who noted a reduced 
average accuracy in LAI derivation using spectroradiometer measurements for the 
phenological types ‘meadow-cut’ and ‘pasture’ (around 60 %) in comparison the type 
‘meadow-long’, which is modeled with an accuracy of about 80 %. 

With regard to LAI underestimation and saturation effects, the misfit of the modeled and 
measured NIR reflectances has already been mentioned. The use of the median value out of a 

   

Figure 6-18: Examples of low LAI grassland overestimated by the PROSAIL model. In the upper 
row, a sparsely vegetated pastures is shown, while in the bottom row the subset depicts a freshly 
harvested meadow. The ▲ symbols mark the positions of the ESUs. The photographs were taken on 
May 24 and 25, 2001, respectively. 
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multiple solutions sample also influences the mapping of very high values, i.e. highest values 
are omitted. Thus, although saturation occurs, the upper range of possible LAI values is not 
met in any scene. While these analyses point towards limitations caused by the model, some 
areas of the May 25, 2011 scene are an example for the intrinsic limits of LAI derivation from 
RS data. For this spring scene, the RTM seems to be non-sensitive to high LAI values (see 
Figure 6-15). As an example, a subset of the ‘Hofheim’ plot is shown in Figure 6-19. On both 
ESUs, a high LAI (4.3 and 4.8, respectively) was measured, but the modeled LAI at these 
pixels are rather low (2.6 and 2.7, respectively). The RapidEye reflectances are also low in 
these areas (see middle plot) despite the dense and healthy vegetation observed in the field. 
Especially the green and red edge reflectances are reduced by about 20 %. A closer look at the 
canopy structure (right plot) reveals, however, that the grassland under observation is high 
and characterized by a large amount of grasses, i.e. erectophile species. In such conditions, 
more shadows are prevalent and photons might get trapped in the canopy more frequently, 
which leads to a reduced canopy reflectance (see e.g. Madeira et al., 2001). The photograph in 
Figure 6-18 further shows that many species, and especially grasses, were blooming during 
this measurement campaign, which reduces the greenness of the canopy. In this case it hence 
seems that the vegetation spectrum as seen by the RapidEye sensor is distorted from the 
outset, so that a simple RTM which does not explicitly take into account non-green 
vegetation elements or a heterogeneous canopy structure could not physically derive the LAI 
value based on a spectral match. Four of the five highest in situ LAI values of this campaign 
data set are located within such dense and blooming meadows, which is nearly one fourth of 
all validation data for this scene. In combination with the many low LAI values measured in 
the field shortly after the first harvest mid of May (see Figure 6-18), which are not properly 
reproduced by RTM inversion, this lead to the very high prediction error of almost 40 % in 
this scene. 

In this context the measurement errors associated with the sensor signal-to-noise ratio and 
atmospheric effects should also be mentioned as sensor intrinsic limitation (Combal et al., 
2002b). The July 16, 2011 scene, for example, for which LAI retrieval accuracy is rather low, 
was partly influenced by haze and cirrus clouds, which could influence the TOC reflectances 
despite the conducted sensor calibrations and atmospheric corrections. However, no further 
analysis has been conducted in this direction. To sum up, it can be stated that several factors 
negatively influence the performance of physical LAI estimation, which would have to be 
addressed individually at differing stated of the procedure. 

Figure 6-19: Example of grassland signal alteration during the blooming period. In the middle 
plot, the physically derived LAI map is shown, while the ▲ symbols mark two of the ESUs. In the 
left plot, the RapidEye data used as input for the inversion are displayed in a NIR-red-green false 
color composite. The photo on the right was taken on May 23, 2011 from the position of the upper 
left ESU and illustrates the canopy state during the RapidEye acquisition. 
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6.6.4. Derivation of a RapidEye LAI time series 

The generation of 19 high spatial resolution LAI maps of the Ammer catchment for the years 
2011 and 2012 enables the analysis of the temporal dynamics of individual grassland fields in 
the study region and the assessment of the temporal resolution of the RapidEye time series. 
Figure 6-20 shows the LAI time series (red signature) based on the available RapidEye scenes 
of a meadow at the TERENO Fendt site (47°49'58.48"N, 11° 3'38"E) in the Ammer 
catchment, which is mapped in the right-hand side inset map. At the Fendt station, a 
hemispherical camera was installed in the field to monitor the canopy development and 
especially LAI reduction due to mowing at a daily rate (star signature in the inset). As the 
camera had to be taken out of the meadow before mowing but was not always returned 
immediately afterwards, the timing of mowing can only be localized around several days of 
the year (DOY) in some cases. Additionally, in situ measurements were conducted at the 
Fendt site during the field campaigns.  

The RapidEye time series match the LAI measured in situ on this plot relatively well, apart 
from the spring LAI in 2012. Some measurements covering the high density states just before 
mowing would be needed to derive an overall estimate on RapidEye LAI time series accuracy. 
With regard to the temporal variability of the plot, it can be seen that the sudden LAI 
reductions due to mowing are fairly well reproduced, although the last harvests of the season 
in September are never covered. One harvest in 2011 (around DOY 170) is not represented by 
the course of LAI derived from the RapidEye data available and also in 2012 one additional 
scene in the beginning of July would be necessary to differentiate between the second and 
third mowing. The growth and re-growth cycles of this meadow are thus sketched nicely to a 

 

Figure 6-20: LAI time series at 
the Fendt station based on 
RapidEye and MODIS data. The 
phenological cycles of 2011 
(above) and 2012 (below) are 
shown, while the map inset 
indicates the position of the 
camera as well as the selected 
MODIS pixel. The black ∎ 
symbol represent LAI measured 
in situ at the site, while the 
stripes shaded in green depict the 
timing of mowing. 

2012

2011 
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certain degree, but not completely reproduced. Further, Figure 6-20 shows that acquisitions 
earlier and later during the year would be needed to reproduce the LAI values prevailing 
during spring and autumn. 

To further assess the quality of the RapidEye time series and for comparison with a coarser 
scale LAI product in this fragmented landscape, LAI time series based on MODIS data for the 
same area are shown. This time series were generated according to the algorithm described in 
Pasolli et al. (2011) at the Institute for Applied Remote Sensing at EURAC23 based on daily 
MODIS Terra surface reflectance data (MOD09). The LAI time series was also derived using 
an LUT based PROSAIL inversion. To better capture the spatial detail, only the bands with 
the highest spatial resolution (red and NIR at 250 m resolution) are considered. Based on 
these, three VIs, namely the SR, NDVI and the EVI, were calculated and used as additional 
features for inversion. The preprocessing of the data consisted of an 8-day composite 
generation to reduce the occurrence of cloudy scenes. In being a regional LAI product, the 
data differ from the global MODIS LAI product (see chapter 2.3) in their higher spatial 
resolution and the regionally adapted model parameterization. Its improved performance 
with respect to standard LAI products was shown by Pasolli et al. (2011).  

Nevertheless, the MODIS time series overestimates in situ as well as RapidEye LAI estimates 
in most cases. LAI reductions due to mowing are indicated by local minima, but the absolute 
minimum values are not reproduced. This is at least partially caused by the spatial 
heterogeneity within the MODIS pixel, which also includes a differently managed pasture as 
well as part of a maize field in the southern part. These reflectance contributions probably 
influence the non-linear estimation process of LAI (see e.g. Garrigues et al., 2006). 
Irrespective of this, the 8-day MODIS LAI time series reflects the temporal pattern of green-
up and senescence and the sudden LAI reductions caused by mowing well. The slight 
deviations in the timing of the LAI reduction from the RapidEye data (see e.g. around DOY 
200 in 2011, where high MODIS LAI is still provided while the RapidEye data already show a 
low LAI value) might be caused by the 8-day composite generation so that the indicated date 
does not necessarily reflect the day of acquisition for each pixel. Overall, this high frequency 
time series information could be used for the fitting of RapidEye or other high spatial 
resolution time series interpolation in future work. 

6.7. Potential of physical modeling for RapidEye based LAI 
derivation 

In this chapter, the potential of the PROSAIL model for the derivation of high spatial 
resolution grassland LAI was presented and evaluated. The model was adapted to a grassland 
ecosystem based on literature values, own field studies and a global sensitivity test. The 
resulting LAI maps provide detailed information on the spatial biomass distribution within 
the Ammer catchment as well as on intra-field LAI variability. The temporal dynamic of 
individual grassland parcels caused by management activities can also be monitored to a 
reasonable degree based on the RapidEye time series. The PROSAIL model proved to be an 
adequate RTM during model set-up due to the limited number of input parameters and its 
computational efficiency, and the chosen LUT inversion process allowed for testing and 
implementing a range of regularization techniques that aimed at stabilizing the procedure. 
The established LUTs for the different phenological phases can be further used to derive 
additional LAI maps for other years in the Ammer catchment or in similar grassland 

23 See at http://www.eurac.edu/en/research/institutes/remotesensing/default.html. Last access: June 19, 2014 
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landscapes in Central Europe as long as the local system geometries of the used RS scene are 
represented.  

Overall, LAI maps could be derived from the individual RapidEye scenes using PROSAIL 
with an rRMSE of 20 - 40 %, which is comparable to the accuracies achieved in the few 
existing other grassland studies, which are, however, based on hyperspectral data measured 
in situ or air-borne and therefore of a theoretically higher quality. The most often neglected 
leaf angle estimates were also validated using field data, which revealed an underestimation 
of this parameter by the RTM inversion and stresses the importance of a regular evaluation of 
this highly influential canopy parameter. 

Using multiple solutions during LUT inversion, a range of uncertainty measures was derived 
for each pixel. These quality layers provide spatial information on the physical LAI modeling 
procedure and were used on the one hand to identify grasslands areas for which LAI was 
estimated with a high reliability, and on the other hand to identify especially challenging 
cases, namely the mapping of extremely high and low LAI values. This information can be 
used for the improvement of shortcomings in the parameterization and inversion setup. 
However, it was also shown that both cases, i.e. over- and underestimation of LAI, are also 
partly caused not by modeling inadequacies but by highly unexceptional canopy occurrences 
such as blooming or plant litter on freshly harvested meadows. The uncertainty measures can 
further provide the basis for a backup procedure using empirical relationships or spatial 
interpolation in future work. 

The implementation of physical LAI modeling involves a wide range of technical aspects. 
However, the importance and setting of these individual adjustment possibilities strongly 
depend on the ecosystem under investigation and the used data types and qualities (see e.g. 
Verrelst et al., 2014). With regard to these technical details, it was shown that some 
regularization methods, for example the newly introduced additional VI as an input feature, 
improved the inversion performance to a large extent. The use of a multiple solutions sample 
could also reduce the overall error in LAI modeling, and the identified sample size of 0.5 % of 
all LUT entries proved to be a good compromise between inversion robustness and model 
sensitivity to the spectral signal. The addition of simulated noise to the LUT reflectances did 
not significantly improve the modeling results in this study, but might well improve the LAI 
derivation robustness based on other data sets. Thus, in further studies the interactions of 
these optimized regularization techniques should be considered, and extended to the analysis 
of alternative cost functions, in order to further strengthen the RTM inversion.  

LUT inversion proved to be useful and easily adaptable to such optimization tests as all 
regularization techniques, apart from the test for additional VIs, could be applied to the pre-
computed LUTs. Furthermore, it delivers acceptable results and provides very valuable 
information on the inversion quality. Nevertheless, with regard to computational efficiency, 
the use of the LUT approach has to be questioned. The generation and inversion of LUTs is 
computationally very expensive, which is especially problematic when individual LUTs have 
to be generated for different system geometries. Hence, the wide parameterization resulting 
in a large number of LUT entries, the need to generate about 100 different LUTs per scene to 
account for topography, and the large amount of pixels (approximately 35 M) constituting the 
Ammer catchment, brought the LUT approach to its limits. To enable operational physical 
LAI modeling, a reduced pixel count would therefore be an option. In contrast to the high 
spatial resolution of the RapidEye data, simulated lower resolution data used in a preliminary 
study (Asam et al., in press) showed that with a spatial degradation to 20 m and 30 m 
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resolution, thus Sentinel-2 or Landsat 8 type data, computation time was reduced by about 
80 and 90 %, respectively. Alternatively, the use of ANN inversion could be tested, especially 
since the use of fixed observation geometries for LAI derivation under different viewing 
geometries has recently been successfully used (Duveiller et al., 2011b).  

As this is the only LAI derivation study on a larger grassland area, i.e. heterogeneous and 
partly natural canopies with different phenological stages, it highlights the specific difficulties 
associated with physical LAI modeling in this ecosystem type. It is crucial to note that the 
canopy conditions of the managed alpine grasslands are very heterogeneous within one 
scene. Therefore, even though an individual meadow is spatially homogeneous and thus 
feasible to be characterized by an RTM, the LUT has to be generalized to all possibly 
prevailing conditions, which introduces uncertainties. Although this was aspired using a wide 
parameterization, the mismatch in simulated and measured reflectance data as well as the 
analysis of the LAI and LIDF output maps suggests that some parameterizations might need 
to be specified over even broader ranges. The parameterization of the RTM when working on 
grassland thus plays a crucial role. More in situ measurements of grassland canopy 
parameters and especially of reference spectra as well as the test of other parameter sampling 
schemes for parameterization are therefore suggested. Nevertheless, given the high spatio-
temporal variability of this ecosystem, a significantly more specialized parameterization as it 
is used for crops cannot be applied. Instead, the implementation of further pixel-based 
regularization techniques such as two-step LUT inversions, or the use of first-guess values to 
reduce the LUT (e.g. based on chlorophyll-VIs empirical relationships, see Dorigo, 2007) 
could be further investigated for an improvement of LAI derivation in such a spectrally 
heterogeneous landscape. 

The focus of this work lay on the derivation of the LAI. However, it was shown that using an 
RTM, LAI is always estimated in combination with and depending on a range of other 
biophysical parameters. Physical modeling is thus a comprehensive approach and enables an 
easy adaptation of the developed algorithm to other potential variables of interest. Not least 
due to this capacity, the use of RTM in RS vegetation analysis applications will likely increase 
over the next few years. On the one hand, approaches such as the ARTMO24 tool box (Verrelst 
et al., 2011; Verrelst et al., 2012b) published during the last few years aim at automated 
modeling of leaf and canopy properties and will strongly promote the use of RTMs in the RS 
community. On the other hand, upcoming sensors with a sufficient spatial resolution for the 
analysis of small-scale landscapes will probably foster the use of such techniques. Their 
improved revisit times will enable the mapping of rapid changes in vegetation conditions due 
to phenology or management techniques. Additionally, the availability of further spectral 
bands in the NIR, as they are provided e.g. by the Sentinel-2 sensor, are very promising for 
improved physical LAI modeling as reflectance between 1000 nm and 1400 nm is highly 
sensitive to LAI (see chapter 6.2). Further, the improved radiometric qualities and refined 
techniques for the removal of atmospheric effects will most likely also reduce the inaccuracies 
introduced to RTM (Jacquemoud et al., 2009) by measurement errors and thus foster the 
development of improved physical modeling approaches.  

                                                            
24 Online provided under http://ipl.uv.es/artmo/. Last access: June 16, 2014. 
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7. Synthesis on LAI derivation using 
high spatial resolution remote sensing 
data 
The potential of high resolution RS data for grassland LAI derivation and associated 
optimization possibilities, which were evaluated over a heterogeneous alpine landscape, are 
of high interest for future automated LAI derivation procedures. A two year LAI time series, 
i.e. 19 LAI maps based on 20 RapidEye scenes, was generated using radiation transfer 
modeling, and six LAI maps were derived using an empirical-statistical method. In the 
following subchapters, the results of the modeling activities are synthesized with regard to 
the research questions and future research activities. 

7.1. Assessment and comparison of empirical-statistical and 
physical LAI modeling 

1) How does the selection of VIs and regression models impact the statistical modeling of 
LAI and how well can these models be transferred to other points in time?  

Overall, LAI mapping accuracies of 70 - 90 % could be achieved for the six RapidEye scenes 
for which contemporaneous training data were available using empirical-statistical modeling, 
which is within the upper range of other statistical grassland LAI derivation studies. The 
systematic test of 25 VIs and four statistical model types revealed that the differences in 
regression strength between the VIs are, averaged for the individual RapidEye scenes, 2 - 30 
times larger than the differences between the model types. The explanatory power of 
different VIs varied by 20 - 60 % for the individual models and field campaign data sets. This 
suggests that in this thesis the selection of a VI is more important for the establishment of a 
sound transfer function than the identification of the best mathematical model fit. Especially 
indices that employed RapidEye’s red edge band strengthened the LAI-VI relationships and 
improved the LAI prediction, which was shown for the RapidEye bands based on a 
comprehensive model comparison. However, no clear conclusion on which VI to use can be 
drawn, as the respective best VI varied throughout the phenological season.  

These seasonal differences in best performing VI and model type already indicated a limited 
temporal transferability of the regression models. Indeed, the modeling error proved to 
increase to 49 % on average when using a regression transfer function on RS data from 
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different dates. The combined use of several data sets to create a regression which is used for 
LAI derivation at a different time step reduces this LAI estimation error to 30 - 35 % on 
average. Thus, reduced in situ LAI measurement labor comes at the cost of LAI time series 
error rates being increased by 10 - 30 % as long as at least two campaigns are conducted. 
These analyses indicate that a model calibration phase, i.e. the testing and identification of a 
best fitting combination of mathematical model and VI, is also necessary for empirical-
statistical LAI modeling. Further, the approach is not suitable for automated derivation of 
LAI time series if LAI accuracies higher than 50 % are to be achieved. 

In this context it was also shown that not only the selected VI and statistical model 
potentially influence the LAI estimation, but that also the techniques applied in the field 
sampling instrument, in this study the Miller and Lang algorithms applied on a differing 
number of directional light transmittance measurements, can strongly influenced the LAI 
measured in situ (see chapter 4.3.2). Thus, in order to achieve highly accurate and reliable 
LAI products, further efforts must also be put into the improvement of in situ LAI 
measurement techniques, in measurement standards which also comprehend suggestions 
with regard to the derivation algorithms used in these techniques to ensure their 
comparability, and in the establishment of continuously monitored validation sites. Being 
used for validation purposes, LAI in situ measurements must also meet and at best fall below 
the 10 % error rate. The continuous calibration of indirect LAI measurements as well as the 
improvement of conventional measurement techniques and instruments are hence necessary. 

2) Which RTM settings are most relevant for establishing an adapted and robust LAI
derivation procedure, and which grassland specific limitations occur during inversion? 

As LAI derivation using multispectral RS data is an ill-posed problem and thus unstable, 
special interest lies in assessing the improvements that can be achieved through model 
settings and inversion regularization techniques. A global sensitivity analysis, the EFAST 
approach, was applied to PROSAIL over the 400 - 2500 nm spectrum as well as on the 
simulated RapidEye bands and selected VIs in order to identify the most important model 
parameters and most sensitive spectral features. The results of this analysis are plausible but 
in parts different from other SAs. Therefore, further research should be based on the gained 
results in order to achieve a comparison with an identical model setting and to evaluate the 
EFAST approach and PROSAIL parameter importance over the relevant spectral range. 
Based on these results, in a next step several techniques for increasing the robustness of the 
approach, namely the use of a multiple sample solution, the selection of the statistical 
measure of central tendency, the use of VIs as additional features, and synthetic noise, were 
tested. The upper part of Table 7-1 summarizes the achieved improvements by indicating the 
range of RMSE that resulted from the different model inversion settings. The selection of an 
ideal multiple solution sample size as well as of a suitable additional spectral feature reduced 
the average RMSE by up to 0.5. The influence of added noise and the selection of either 
statistical measure (mean or median) was however not relevant for LAI modeling in this 
study.  

Despite the optimized model settings reduced the overall modeling error, notable differences 
in LAI estimation accuracy were still found for the different scenes. While in the best case 
(September 6), LAI is estimated with an RMSE of 0.66, the worst LAI estimates are modeled 
with an RMSE of 1.14 in the July 16 scene (see middle part of Table 7-1). These differences 
could result either from the only model setting which was variable for the different scenes – 
the PROSAIL parameter ranges– or from the remotely sensed reflectances, assuming that the 
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LAI measured in situ represents the true LAI. Although the question which of these aspects 
caused these large differences cannot be conclusively answered without contemporaneous in 
situ spectroradiometer reflectance measurements for each scene, the observed spectral 
mismatches between the simulated and measured reflectances (see chapter 6.6.1) could give 
an indication. Indeed, this misfit does not vary considerably between the different scenes (see 
Figure A-4 and the lower part of Table 7-1), although the seasonally adapted model 
parameterization changed between time steps. The model parameterization always seems to 
miss the observed spectral at the same degree. Also with regard to the LAI value distributions 
observed for the different scenes, no consistent relationship to the modeling accuracy could 
be observed, as the LAI in the three worst scenes with an rRMSE above 30 % exhibit normal, 
left-skewed, and bimodal distributions (see Table 6-4 and Figure A-8). Thus, the differences 
in model accuracy are probably caused by characteristics of the individual RapidEye scenes. 
This can on the one hand include errors associated with the sensors signal-to-noise ratio and 
atmospheric effects, i.e. the radiometric quality of the RapidEye imagery. The July 16 scene, 
for example, was partly influenced by haze and cirrus clouds, which could influence the TOC 
reflectances despite the conducted sensor calibrations and atmospheric corrections. On the 
other hand, unexpected canopy occurrences such as dense predominantly erectophile, 
blooming, or freshly mown canopies and their associated reflectances are challenging. It can 
hence be concluded that these influences on the RS spectra are relatively larger than the 
influence of the regularization techniques, and that sound RS data preprocessing is crucial 
for successful LAI estimation. Alternatively, a coupled soil-leaf-canopy-atmosphere model 
such as the one used in Laurent et al. (2011) might improve the data quality. Applying any 
necessary topographic and geometric correction on the resulting LAI map only might also 
reduce these problems.  

The EFAST analysis indicated the high relevance of other PROSAIL parameters in addition to 
LAI, namely the LIDF, Cab, and soil bf parameters. This is why in this thesis another 
emphasis was on the analysis and validation of these physically derived vegetation 
parameters, and on radiation transfer modeling uncertainty measures, which are only seldom 
assessed in the literature. Several indicators for impaired physical LAI estimation have been 
presented, such as high RMSE and LAI variances within the multiple solution sample, or 
improbable low LIDF and Cab estimates. The mapping of these measures indicated an 
increased modeling uncertainty for extremely high and low LAI values, most probably due to 
an insufficiently wide model parameterization. Further, it was shown that canopy 

Table 7-1: Overview of error ranges associated to regularization techniques (top), LAI modeling 
(middle), and the match between modeled and measured spectra (bottom). 

 Range of RMSEs 

Use of different no. solution samples 0.50* 

Use of mean or median 0.03* 

Use of additional VIs 0.29* 

Use of noise 0.02* 

Estimation error for individual scenes 
using the same model settings 

0.48 

Overall match of simulated and 
measured spectra for each scene 

0.01 

* mean over all tested scenes 
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occurrences which deviate strongly from model assumptions, e.g. blooming, canopy gaps, 
and large amounts of litter on the meadows are problematic for LAI modeling of grasslands. 
Thus, parameterization of the RTM with regard to the phenological phase constitutes an 
important but very sensitive procedure when working on grassland. 

3) Which of the empirical-statistical and physical LAI modeling approaches is more 
appropriate for grassland LAI derivation? 

After adapting both approaches to the sensor and to the canopy and terrain conditions of the 
area, the results of the inverted PROSAIL model are compared against the best performing 
regression models. Table 5-2 and Table 6-4 show the R2, RMSE, and rRMSE values of the six 
LAI maps for which contemporaneous validation data were available using statistical and 
physical models. For nearly all scenes, the statistical models based on in situ measurements 
perform better than the physical approach. However, the differences between these result 
varies among the different scenes. For the May 9, July 16, and September 6 scenes the 
differences in rRMSE are below 4 %, which indicates the high potential of the physical LAI 
derivation approach for all vegetation states during the phenological cycle. For the May 25 
and August 13 scenes the PROSAIL approach achieves 10.4 % and 17.1 % less accuracy than 
the statistical approach. As was outlined above, LAI derivation in the May 25 scene was 
confronted with two specific problems, namely freshly mown meadows as well as dense and 
blooming meadows. Both effects, overestimation and underestimation of LAI, were less 
pronounced for the statistically derived LAI of this scene, as here the time specific regression 
captures these systematic offsets better. The signal degradation due to blooming and a high 
amount or erected grasses was obviously not that influential as in the inverted RTM, 
probably as the most strongly affected green band is not used in the applied VI. Very low LAI 
values could also be well reproduced using a quadratic polynomial model. The RTM results of 
the August 13 scene show a strong negative bias, which might be caused by an unfitting 
model parameterization for this point in time. The accuracy of the statistically derived LAI 
from the April 25 scene is more than 40 % higher than the RTM result. Obviously, the 
modeling of such early vegetation stages is challenging, while empirical regression models 
can better adapt to the exceptional vegetation signals resulting from large shares of senescent 
leaf material and freshly sprouting grasses. Thus, overall a higher LAI prediction accuracy 
can be reported for the empirical-statistical approach, which decreases to only little above 
50 %, however, if no contemporaneous field data are available and a model trained on 
another data set has to be used.  

With regard to the resulting LAI maps, the same subset as used in chapters 5 and 6 is used 
here to illustrate differences in spatial distribution of estimated LAI for the September 6, 
2011 scene (see Figure 7-1). The pattern of low and high LAI values is consistent in both 
maps, but the empirical-statistically derived LAI is lower overall and shows much more 
nuances. In the RTM based LAI map, all densely vegetated fields seem to have a similar LAI 
value, but only few medium LAI areas occur. In the statistically derived map, fields of 
medium high LAI dominate in the middle and southern parts, while only few very high LAI 
areas occur, e.g. in the south-western part of the map. These are the same areas which were 
identified as affected by saturation in the RTM map (see Figure 6-16, bottom left plot). Thus, 
while the regression model scatter plots (Figure 5-1) indicated signal saturation in the 
summer scenes, it becomes clear in this comparison that the “artificial” saturation effect (see 
chapter 6.6.1) introduced by RTM modeling even outranges such reduced sensitivities. 
Hence, it can be concluded that, apart from the overall accuracy of the derived LAI maps, the 
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regression modeling approach better capture gradual LAI variability and better reproduce 
extreme values. 

Only few studies exist in which these two approaches, their LAI derivation accuracies and the 
derived maps, are systematically compared, and none have been performed for grasslands. 
Only Vuolo et al. (2010) briefly present LAI derivation results for crops at one point in time, 
which achieve higher accuracies with an LUT inversion approach compared to empirical 
relationships. As this is a very sparse reference data base, the representativeness of this 
comparison is difficult to assess, and further studies would be desirable. However, apart from 
the absolute accuracy and plausibility of the derived LAI, the two modeling approaches can 
be compared based on a range of other aspects (see Table 7-2). With regard to computational 
effort and time expenditure, the statistical approach performs much better, as it is 
computationally less demanding, whilst running the PROSAIL model as well as its inversion 
cannot be conducted in near real-time for this spatial resolution and topographic conditions 
(see below). Conversely, the RTM approach is superior to the statistical approach with regard 
to the delivery of more than one useful biophysical variable. Further, for the RTM based LAI 
maps pixel-wise uncertainty measures could be derived, while for the statistically derived LAI 
only one global model coefficient is available. 

  

Figure 7-1: Maps of the statistically (left) and physically (right) derived LAI, showing a subset of 
the September 6 scene. 

Table 7-2: Quantitative and qualitative comparison of the two LAI derivation methods. 

 Empirical-statistical PROSAIL 

Average accuracy   

 With date specific field data 80 % - 

 Without date specific field data 51 % 70 % 

Computing time Minutes Weeks 

Derivation of other plant canopy 
properties except LAI 

No Yes 

Generation of pixel-wise 
uncertainty measures  No Yes 
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The selection of one of the two LAI derivation approaches ultimately depends on the purpose 
of the derived grassland LAI information. To assess the spatial variability of LAI at a single 
point in time, a statistical regression model optimized with regard to the used mathematical 
model and VI would be the choice. If the aim is automated LAI derivation, especially if an 
assimilation of the data in a land surface process model is aspired, the independence from 
field data and the associated quality flag might compensate for approximately 10 % lower 
prediction accuracy.  

7.2. Potential and limitations of high resolution data for 
grassland LAI derivation 

4) Does the use of high spatial resolution remote sensing data for LAI derivation involve 
specific advantages and limitations? 

In this thesis, with RapidEye high spatial resolution multispectral RS data were used to 
derive LAI of spatially and temporally very variable grasslands over a medium size catchment 
and topographically demanding area. In this context, the high spatial resolution of the 
RapidEye data enabled a reliable land cover classification with a low number of spectrally 
mixed pixels in each class, and thus a reduced LAI mapping error due to misclassifications or 
pixel impurity (Dorigo et al., 2009). The high spatial resolution SRTM DEM also provided 
valuable information necessary for the calculation of the local system geometries in the partly 
mountainous landscape and thus reduced errors introduced by the use of wrong local system 
geometries. However, in case of missing system geometry information, e.g. when using 
topographically uncorrected RS data in the empirical-statistical approach, or also in case of 
pixel impurity due to canopy gaps, shadows or foreign objects, such high spatial resolution 
data potentially show strong deviations in reflectance values. These high contrasts in local 
reflectances, which are not balanced by the surrounding surface reflectances, can lead to 
unexpected behavior of the LAI derivation algorithm. 

With regard to RTM inversion, it has been reported in the literature that coarse spatial 
resolution can introduce a bias on LAI estimation due to the invalid assumption of spatially 
homogeneous pixels, and thus high spatial resolution data should be preferred (Garrigues et 
al., 2006; González-Sanpedro et al.; Duveiller et al., 2011a). Indeed, the use of RapidEye 
pixels being smaller than individual fields enabled RTM inversion over homogeneous 
canopies in most cases, besides the above mentioned disturbances. Widlowski et al. (2005), 
however, argue that turbid medium models are rather suitable for coarse resolution data 
especially in the face of clumped canopies or canopy gaps. In these cases, boundary effects 
would reduce the accuracy of low LAI estimates, as it was shown in this thesis for intensively 
grazed pastures. This overestimation error due to canopy gaps, for example, is reduced when 
using data with a spatial resolution of 20 or 30 m (Asam et al., in press). Thus, the optimal 
spatial resolution with regard to modeling accuracy depends on the landscape structure and 
the canopy homogeneity, and would need to be systematically analyzed over areas of different 
levels of heterogeneity. For the study site analyzed in this thesis, the preliminary analysis 
(Asam et al., in press) indicated that LAI estimation did not deteriorate significantly with a 
reduced pixel size of 20 - 50 m. Instead, the LAI estimation accuracy was stable around an 
RMSE of 0.9 averaged over four different scenes, as long as individual fields with a 
homogeneous structure could still be identified. The proposed model regularization 
techniques could also be applied regardless of a specific data type or spatial resolution. This 
reduced spatial resolution further enabled a considerable acceleration of the LAI map 
derivation. The computing time thus plays an important role for the evaluation of a suitable 
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spatial resolution. This time constraint might also be the restraining factor for the use of very 
high spatial resolution imagery such as from the IKONOS or Quickbird sensors for LAI 
derivation on a landscape scale, next to the reduced spectral resolution, i.e. a missing red 
edge band, of some of these sensors. 

7.3. Outlook 

RTMs are nowadays used to produce spatially and temporally continuous fields of LAI for 
environmental monitoring or to be integrated into process models, as this information 
cannot be provided routinely based on empirical-statistical methods with the required high 
accuracy. To develop routines based on RTMs, a robust and automated LAI deviation has 
been a prominent objective in the RS community for decades (Baret and Buis, 2008; Verrelst 
et al., 2014). However, the large scale mapping of other biophysical leaf and canopy 
parameters such as chlorophyll, water content, dry matter content, biomass, and fPAR using 
RTMs also developed during the last few years for purposes such as yield estimation, pest 
control, or forest fire risk assessment (Jacquemoud et al., 2009). Apart from these classical 
applications in vegetation monitoring, RTMs are also increasingly used for other purposes 
such as radiometric accuracy assessments (Vermote et al., 2014) or crop classification (Klug 
et al., 2014), so that their use and importance will probably increase over the next few years. 

Nevertheless, with regard to LAI derivation, and especially with regard to grassland LAI 
derivation, the aspired target accuracy of 10 % required by GCOS (2006) has not yet been 
met with the exception of a few local studies on crop LAI mapping. Hence, efforts will be 
continuously directed towards this parameter, and should increasingly focus on natural and 
semi-natural ecosystems. In this context, it is of practical relevance that the LUT algorithm 
proposed in this thesis is not defined to specific RS data and can be easily extended to other 
sensors.  

The Landsat 8 and the upcoming Sentinel-2 sensors will constitute a valuable basis for the 
development of algorithms, due to their improved temporal and spatial resolutions, which 
qualifies these sensors for an improved ecosystem monitoring (Drusch et al., 2012). The 
topographic and BRDF correction proposed for Sentinel-2 will probably also provide a high 
radiometric quality and reduce the need for multiple directional simulations (Gascon and 
Colin, 2014). However, apart from these properties, the improved spectral resolution, namely 
additional bands in the red edge, NIR, and SWIR spectral domains, is also expected to 
improve LAI modeling (Dorigo, 2007). As can be seen from the SA performed in chapter 
6.2.2, these wavelengths are especially sensitive to LAI variations, which is why their use 
might increase the stability of RTM inversions.  

Apart from the data type used in this thesis, several other RS data are already being used in 
the radiation transfer modeling context and might contribute to LAI derivation in the future. 
Due to the anisotropic behavior of vegetation canopies, which is largely influenced by its 
structure (see chapter 2.2.1), multi-angular RS data are able to capture such structural 
information. The use of multi-angular observations increases the dimensionality of the 
inversion problem (Martonchik et al., 2000; Kimes et al., 2002; Dorigo, 2007; Lavergne et 
al., 2007; Verhoef, 2007; Wang et al., 2013). Furthermore, laser scanning, radar detection, 
and microwave RS contribute to enhanced estimation of canopy structure elements (Hyyppä 
et al., 2000; Koetz et al., 2007b). As mentioned above, hyperspectral data also raise the 
dimensionality of the inversion problem, and have been increasingly used as an input to RTM 
inversion (Jacquemoud et al., 2000; Fernandes et al., 2004; Kötz et al., 2004; Meroni et al., 
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2004; Zarco-Tejada et al., 2004; Schlerf and Atzberger, 2006; Verhoef, 2007; Ustin et al., 
2009). However, these studies aim rather at the identification of optimal spectral resolution 
settings than at automated LAI derivation.  

The combined use of different data sets and data types is hence a promising approach to LAI 
estimation (Dorigo, 2007; Liang, 2008). This could either be achieved by automatically using 
additional RS data for restricting the LUT (e.g. deriving information on structural parameters 
from radar or LIDAR data), or by building a spectral data base that contains spectra 
simulated under several system geometries which is then inverted against contemporaneous 
mono- as well as multi-angular data. These approaches of integrating independent 
information sources are also the only means to overcome the saturation problem inherent in 
solar-reflective RS. Finally, the automated derivation of spatially and temporally continuous 
LAI might even be based on ensembles of LAI algorithms and RS input data (Baret et al., 
2013). 
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Table A-1: Overview of global and regional operationally available LAI products. This table contains
selected information and does not claim to be complete. 
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 Table A-2: Overview of the acquisition conditions of the RapidEye scenes used in this study. 
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Table A-3: Overview of the automatically derived scene visibilities [km] used in ATCOR for 
atmospheric corrections of the individual RapidEye scenes and elevation classes. 

Scene 
Elevation class 1 

(average ground 
elevation: 760 m) 

Elevation class 2 
(average ground 

elevation: 1290 m) 

Elevation class 3  
(average ground 

elevation: 1680 m) 

Haze 
Removal 

April 8, 2011 22.0 18.1 15.1 No 

April 17, 2011 49.5 39.4 33.5 No 

April 20, 2011 40.8 33.5 29.9 No 

May 5, 2011 88.9 65.7 54.0 No 

May 9, 2011 95.4 73.4 59.3 No 

May 25, 2011 42.3 32.6 27.0 No 

July 16, 2011 62.3 47.5 36.8 No 

August 21, 2011 22.9 19.9 18.1 Yes 

September 6, 2011 69.4 65.7 43.9 No 

September 26, 2011 73.4 69.4 45.6 No 

March 22, 2012 56.5 36.8 25.1 No 

April 25, 2012 24.5 21.5 19.1 Yes 

May 14, 2012 35.7 30.8 26.3 No 

May 26, 2012 27.6 22.9 19.9 No 

June 16, 2012 33.5 25.7 22.0 No 

July 18, 2012 42.3 33.5 33.5 No 

July 23, 2012 33.5 26.3 22.0 No 

August 13, 2012 32.6 25.7 21.1 No 

August 20, 2012 73.4 65.7 65.7 No 

August 29, 2012 65.7 51.6 42.3 Yes 
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Table A-4: Confusion matrix for the land cover classification based on two RapidEye scenes (May 9, 
2011, and July 16, 2011). The test set error rate is 6.4 %. 

Rock / 
Concrete 

Forest Grassland Moorland Rape Maize Wheat 
N° validation 

pixels 
Class 

Error [%] 

Rock / 
Concrete 

2675 2 14 6 0 0 1 2698 0.85 

Forest 0 2976 24 0 0 0 0 3000 0.80 

Grassland 237 22 2672 40 0 0 29 3000 10.93 

Moorland 144 0 198 2346 0 59 0 2747 14.60 

Rape 4 0 6 0 1630 0 5 1645 0.91 

Maize 19 0 0 372 0 2428 0 2819 13.87 

Wheat 0 0 22 0 0 0 2978 3000 0.73 

Table A-5: Confusion matrix for the land cover classification based on one RapidEye scene (May 9, 
2011). The test set error rate is 8.8 %. 

Rock / 
Concrete 

Forest Grassland Moorland Rape Maize Wheat 
N° validation 

pixels 
Class 

Error [%] 

Rock / 
Concrete 

2770 2 59 103 0 65 1 3000 7.67 

Forest 0 2693 205 0 0 0 102 3000 10.23 

Grassland 34 38 2719 152 14 10 33 3000 9.37 

Moorland 97 0 112 2481 0 107 0 2797 11.30 

Rape 0 0 5 0 1948 0 0 1953 0.26 

Maize 60 0 0 95 0 2708 0 2863 5.41 

Wheat 0 21 402 0 0 0 2577 3000 14.10 
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Table A-6: Overview of VIs used for the establishment of transfer functions. 

Vegetation Index Equation Reference 

Ratio Indices 

Simple Ratio ܴܵ ൌ
NIRߩ
Redߩ

 
(Jordan, 1969) 

(Pearson and Miller, 
1972) 

Normalized Difference 
Vegetation Index 

NDVI ൌ
NIRߩ െ ߩ Red
NIRߩ ൅ Redߩ

 (Rouse et al., 1974) 

Renormalized Difference 
Vegetation Index 

RDVI ൌ
NIRߩ െ Redߩ

ඥߩNIR ൅ Redߩ
(Roujean and Bréon, 
1995) 

Atmospherically Resistant 
Vegetation Index  

ܫܸܴܣ ൌ
NIRߩ െ ሺߩRed െ ሺߩBlue െ Redሻሻߩ
NIRߩ ൅ ሺߩRed െ ሺߩBlue െ Redሻሻߩ

 
(Kaufman and Tanre, 
1992) 

Modified SR 1 1ܴܵܯ ൌ

NIRߩ
Redߩ െ 1

ටߩNIRߩRed ൅ 1
(Chen, 1996) 

Modified SR 2 2ܴܵܯ ൌ
NIRߩ െ ߩ Blue
Redߩ െ ߩ Blue

 
(Sims and Gamon, 
2002) 

Orthogonal Indices 

Difference Vegetation 
Index  

ܫܸܦ ൌ NIRߩ െ  Red (Jordan, 1969)ߩ

Perpendicular Vegetation 
Index 

ܫܸܲ ൌ
NIRߩ െ ܽ ∗ Redߩ െ b

√ܽଶ ൅ 1

(Richardson and 
Wiegand, 1977) 

Hybrid Indices 

Soil Adjusted Vegetation 
Index  

SAVI ൌ
ሺ1 ൅ Lሻ ∗ ሺߩNIR െ Redሻߩ

ሺߩNIR ൅ Redߩ ൅ Lሻ
(Huete, 1988) 

Optimized SAVI ܱܵܫܸܣ ൌ ሺ1 ൅ 0.16ሻ ∗
ఘ୒୍ୖ ିఘୖୣୢ

ఘ୒୍ୖ ାఘୖୣୢା଴.ଵ଺
(Rondeaux et al., 1996) 

Modified SAVI ܫܸܣܵܯ ൌ 0.5 ቂሺ2ߩNIR ൅ 1 െ ඥሺ2ߩNIR ൅ 1ሻଶ െ 8ሺߩNIR െ  Redሻቃ (Qi et al., 1994)ߩ

Transformed SAVI ܶܵܫܸܣ ൌ ܽ ∗
NIRߩ െ a ∗ Redߩ െ b
ܽ ∗ NIRߩ ൅ Redߩ െ ab

 (Baret et al., 1989) 

Soil and Atmosphere 
Resistant Vegetation Index 

ܫܸܴܣܵ ൌ ሺ1 ൅ ሻܮ
NIRߩ െ ሺߩRed െ ሺߩBlue െ Redሻሻߩ

NIRߩ ൅ ൫ߩRed െ ሺߩBlue െ Redሻ൯ߩ ൅ ܮ
(Kaufman and Tanre, 
1992) 

Enhanced Vegetation Index ܫܸܧ ൌ 2.5
NIRߩ െ Redߩ

1 ൅ NIRߩ ൅ ଵܥ ∗ Redߩ െ ଶܥ ∗ Blueߩ
 (Huete et al., 2002) 

Rededge Indices 

Modified Red Edge SR ܴܵܯ௥௘ ൌ
NIRߩ െ ߩ Blue
REߩ െ ߩ Blue

 
(Sims and Gamon, 
2002) 

NDVI RedEdge NDVI୰ୣୢୣୢ୥ୣ ൌ
NIRߩ െ REߩ
NIRߩ ൅ REߩ

 
(Gitelson and Merzlyak, 
1994) 

Red edge Ratio Index 1 RRI1 ൌ
NIRߩ
REߩ

 (Ehammer et al., 2010) 
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(continued) 

Vegetation Index Equation Reference 

Red edge Ratio Index 2 RRI2 ൌ
REߩ
Redߩ

 (Ehammer et al., 2010) 

Curvature Curvature ൌ
ቀ
ܴܫܰߩ െ ܧܴߩ
ܴܫܰߣ െ ܧܴߣ ቁ െ ሺ

ܧܴߩ െ ܴ݀݁ߩ
ܧܴߣ െ ܴ݀݁ߣ ሻ

ܴܫܰߣ െ ܴ݀݁ߣ
(Conrad et al., 2012) 

Length 
݄ݐ݃݊݁ܮ ൌ ඥሺܴܫܰߩ െ ሻଶܧܴߩ ൅ ሺܴܫܰߣ െ ሻଶܧܴߣ

൅ ඥሺܧܴߩ െ ሻଶܴ݀݁ߩ ൅ ሺܧܴߣ െ  ሻଶܴ݀݁ߣ
(Conrad et al., 2012) 

Relative Length ݄ݐ݃݊݁ܮݎ ൌ
݄ݐ݃݊݁ܮ

ඥሺܴܫܰߩ െ ሻଶܴ݀݁ߩ ൅ ሺܴܫܰߣ െ ሻଶܴ݀݁ߣ
(Conrad et al., 2012) 

Modified Chlorophyll Indices 

Modified CARI ܫܴܣܥܯ ൌ ሾሺܧܴߩ െ ሻܴ݀݁ߩ െ 0.2ሺܧܴߩ െ ሻሿ݊݁݁ݎܩߩ
ܧܴߩ
ܴ݀݁ߩ

 (Daughtry, 2000) 

MCARI1 MCARI1 ൌ 1.2ሾ2.5ሺܴܫܰߩ െ ሻܴ݀݁ߩ െ 1.3ሺܴܫܰߩ െ  Greenሻሿ (Haboudane, 2004)ߩ

MCARI2 
2ܫܴܣܥܯ ൌ

1.5ሾ2.5ሺܴܫܰߩ െ ሻܴ݀݁ߩ െ 1.3ሺܴܫܰߩ െ ሻሿ݊݁݁ݎܩߩ

ටሺ2ܴܫܰߩ ൅ 1ሻଶ െ ൫6ܴܫܰߩ െ 5ඥܴ݀݁ߩ൯ െ 0.5
(Haboudane, 2004) 

Modified Triangular 
Vegetation Index  

MTVI=1.2ሾ1.2ሺܴܫܰߩ െ ሻ݊݁݁ݎܩߩ െ 2.5ሺܴ݀݁ߩ െ  ሻሿ (Haboudane, 2004)݊݁݁ݎܩߩ

Note: ρ = reflectance, λ  = wavelength, a= 1.0 – 1.6 (scene dependent), b= 0.002 – 0.1 (scene 
dependent), L = 0.5 (Baret and Guyot, 1991), C1= 6, C2= 7.5. 
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2011 

2012 

Figure A-1: Scatterplots of LAI estimation for the six different scenes. 	ܴ௔ௗ௝
ଶ is the adjusted 

coefficient of determination, ܴܧܵܯ௖௩  and ܧܵܯܴݎ௖௩  are the cross-validated absolute and relative 
root mean squared error. 
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Figure A-2: Example search curves of the EFAST algorithm scanning the LAI (above), LIDF (middle), 
and ܰ (below) parameter spaces using the altering frequencies ߱௅஺ூ= {26, 374, 31}, ߱௅ூ஽ி= {31, 374, 
36}, and ߱ே={36, 374,41}, respectively. The phase-shifts are depicted as black areas. 
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XVI 

a) Week 18

b) Week 21

c) Week 30

Figure A-4: Distributions of measured and simulated grassland reflectances for six RapidEye 
scenes. In each figure, the boxplots of the reflectances sampled from the grassland areas in the 
RapidEye scenes and from the LUTs are shown for each band side by side. The number of pixel 
reflectances sampled equals the number of the LUT entries for each scene. 
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 Figure A-4 (continued) 

f) Week 33 

e) Week 16 

d) Week 36 
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XVIII 

Figure A-5: Physically modeled grassland LAI map of the Ammer catchment for May 9, 2011. 
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XIX 

Figure A-6: Scatter plot of all in situ LAI measurements vs. PROSAIL LAI estimates. 

Figure A-7: Leaf chlorophyll content for a subset of the September 6, 2011 scene 
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2011 

2012 

Figure A-8: Parameter distributions of the physically modeled LAI maps for the six points in time 
for which contemporaneous in situ data were available. For the generation of the graphs, subsets of 
10 million pixels were drawn from the grassland areas within each scene. 
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