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Abstract

Localization microscopy is a class of super-resolution fluorescence microscopy tech-
niques. Localization microscopy methods are characterized by stochastic temporal
isolation of fluorophore emission, i.e., making the fluorophores blink so rapidly that
no two are likely to be photoactive at the same time close to each other. Well-known
localization microscopy methods include dSTORM, STORM, PALM, FPALM, or
GSDIM. The biological community has taken great interest in localization microscopy,
since it can enhance the resolution of common fluorescence microscopy by an order
of magnitude at little experimental cost. However, localization microscopy has con-
siderable computational cost since millions of individual stochastic emissions must be
located with nanometer precision. The computational cost of this evaluation, and the
organizational cost of implementing the complex algorithms, has impeded adoption
of super-resolution microscopy for a long time.

In this work, I describe my algorithmic framework for evaluating localization mi-
croscopy data. I demonstrate how my novel open-source software achieves real-time
data evaluation, i.e., can evaluate data faster than the common experimental setups
can capture them. I show how this speed is attained on standard consumer-grade
CPUs, removing the need for computing on expensive clusters or deploying graphics
processing units. The evaluation is performed with the widely accepted Gaussian
point spread function (PSF) model and a Poissonian maximum-likelihood noise model.

I extend the computational model to show how robust, optimal two-color evalu-
ation is realized, allowing correlative microscopy between multiple proteins or struc-
tures. By employing cubic B-splines, I show how the evaluation of three-dimensional
samples can be made simple and robust, taking an important step towards precise
imaging of micrometer-thick samples. I uncover the behavior and limits of localization
algorithms in the face of increasing emission densities.

Finally, I show up algorithms to extend localization microscopy to common biolog-
ical problems. I investigate cellular movement and motility by considering the in vitro
movement of myosin-actin filaments. I show how SNAP-tag fusion proteins enable
imaging with bright and stable organic fluorophores in live cells. By analyzing the
internal structure of protein clusters, I show how localization microscopy can provide
new quantitative approaches beyond pure imaging.
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Zusammenfassung

Lokalisationsmikroskopie ist eine Methodenklasse der superauflösenden Fluoreszenz-
mikroskopie, deren Methoden sich durch stochastische zeitliche Isolation der Fluores-
zenzemission auszeichnen. Das Blinkverhalten von Fluorophoren wird so verändert,
dass gleichzeitige Aktivierung von einander nahen Fluorophoren unwahrscheinlich
ist. Bekannte lokalisationsmikroskopische Methoden umfassen dSTORM, STORM,
PALM, FPALM, oder GSDIM. Lokalisationsmikroskopie ist von hohem biologischem
Interesse, weil sie die Auflösung des Fluoreszenzmikroskops bei minimalem techni-
schem Aufwand um eine Größenordnung verbessert. Der verbundene Rechenaufwand
ist allerdings erheblich, da Millionen von Fluoreszenzemissionen einzeln mit Nano-
metergenauigkeit lokalisiert werden müssen. Der Rechen- und Implementationsauf-
wand dieser Auswertung hat die Verbreitung der superauflösenden Mikroskopie lange
verzögert.

Diese Arbeit beschreibt meine algorithmische Grundstruktur für die Auswertung
lokalisationsmikroskopischer Daten. Die Echtzeitfähigkeit, d.h. eine Auswertegeschwin-
digkeit oberhalb der Datenaufnahmegeschwindigkeit an normalen Messaufbauten,
meines neuartigen und quelloffenen Programms wird demonstriert. Die Geschwin-
digkeit wird auf verbrauchermarktgängigen Prozessoren erreicht und dadurch spezia-
lisierte Rechenzentren oder der Einsatz von Grafikkarten vermieden. Die Berechnung
wird mit dem allgemein anerkannten Gaussschen Punktantwortmodell und einem
Rauschmodell auf Basis der größten Poissonschen Wahrscheinlichkeit durchgeführt.

Die algorithmische Grundstruktur wird erweitert, um robuste und optimale Zwei-
farbenauswertung zu realisieren und damit korrelative Mikroskopie zwischen verschie-
denen Proteinen und Strukturen zu ermöglichen. Durch den Einsatz von kubischen
Basissplines wird die Auswertung von dreidimensionalen Proben vereinfacht und sta-
bilisiert, um präzisem Abbilden von mikrometerdicken Proben näher zu kommen.
Das Grenzverhalten von Lokalisationsalgorithmen bei hohen Emissionsdichten wird
untersucht.

Abschließend werden Algorithmen für die Anwendung der Lokalisationsmikrosko-
pie auf verbreitete Probleme der Biologie aufgezeigt. Zelluläre Bewegung und Moti-
lität werden anhand der in vitro Bewegung von Myosin-Aktin-Filamenten studiert.
Lebendzellbildgebung mit hellen und stabilen organischen Fluorophoren wird mittels
SNAP-tag-Fusionsproteinen realisiert. Die Analyse des Aufbaus von Proteinklumpen
zeigt, wie Lokalisationsmikroskopie neue quantitative Ansätze jenseits reiner Bildge-
bung bietet.
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Chapter 1

Introduction

We often frame our understanding of what the [instrument] will do
in terms of what we expect to find, and actually it would be terribly
anticlimactic if in fact we find what we expect to find. [...] The most
important discoveries will provide answers to questions that we do not yet
know how to ask and will concern objects we have not yet imagined.

— John Norris Bahcall, NY Times 08/19/2005

1.1 Motivation and Overview

Fluorescence microscopy is so fundamental to biological research that Ehrenberg
[2008] spoke of a “revolution in the biological sciences” when supporting the Nobel
prize for a single fluorescent marker, the green fluorescent protein (GFP). While fluo-
rescent markers make single biomolecules visible, classical light microscopy is limited
by diffraction to a spatial resolution of roughly 200 nm.

With typical procaryote cell sizes in the 1–5 µm range and eucaryote cells in
the 10–100 µm range, this resolution is sufficient to see individual cells and their
macrostructure. However, many important cell organelles are a single order of mag-
nitude smaller than the diffraction limit, such as mitochondria with 100–500 nm
width [Frey and Mannella, 2000], microtubuli with ∼ 50 nm [Heilemann et al., 2008]
and the cell membrane with ∼ 10 nm. Many macromolecules have similar sizes, e.g.
the ribosome with ∼ 20 nm and the RNA polymerase at ∼ 10 nm. If the resolu-
tion of the optical microscope was improved by a single order of magnitude beyond
the diffraction limit, we could observe the substructure of these molecules and see
individual biomolecules in their cellular context.

While the diffraction limit is fundamental and cannot be broken [Abbe, 1873],
several methods for its circumvention have been established and are known as su-
per-resolution microscopy. There is a wide variety of super-resolution microscopy
methods, ranging from optical, excitation-based methods such as structured illumi-
nation (SIM) to highly fluorophore-specific methods such as super-resolution optical
fluctuation imaging (SOFI).

One of the most promising super-resolution methods is single-molecule localiza-
tion microscopy: By combining physics, chemistry, biology and scientific computing,
researchers can trade temporal resolution for a ten-fold increase in spatial resolution.

1



2 CHAPTER 1. INTRODUCTION

Single-molecule localization microscopy can be realized on standard wide-field fluo-
rescence microscopes and with common-place chemical and biological knowledge, and
has the potential to become a staple technique of the biological laboratory.

The prime obstacle to wide use of single-molecule localization microscopy is the
computational effort involved in evaluating single-molecule localization data. Mil-
lions of individual, isolated, and stochastic fluorescence emissions (spots) must be
detected, localized and displayed with computationally demanding algorithms. The
generation of a single small super-resolution image, whose raw data can be acquired
within minutes, takes several hours with a näıve implementation [Schüttpelz, 2008]
on consumer hardware. This costly computation delays the experimental feedback
and is a great hindrance in the biological laboratory. Fast, reliable and easy-to-use
software is commercially unavailable and exceeds the scope of ad-hoc development
both quantitatively and qualitatively.

In this thesis, I document and demonstrate my progress on fast, reliable and
easy-to-use algorithms and software programs to evaluate single-molecule localiza-
tion microscopy data. Chapter 1 gives the theoretical and experimental context of
single-molecule localization microscopy for readers that are unfamiliar with the topic.
Chapter 2 contains the major scientific publications I have authored and co-authored
on the topic. Each article has its own introduction, which is directed at and sufficient
for the experienced reader. Chapters 3 and 4 provide discussion, conclusions and out-
looks that surpass the scope of an individual article or were unknown at the original
articles’ creation time.

1.2 Classical microscopy

The optical microscope is designed to enhance the capacity of the human eye to
discern structures in the micrometer domain. The quality of a microscopic image
is determined by three criteria: freedom from aberrations, resolution and contrast
(Fig. 1.1).

An aberration-free image truthfully reports the spatial relations between the im-
aged objects. An aberrated image appears distorted, and light of different wavelengths
from the same light source is often projected onto different points of the image (chro-
matic aberration). While aberrations are an unavoidable side effect of the use of
nontrivial optics, they can be minimized with careful optical design and rarely hinder
biological microscopy.

Resolution measures the ability of the microscope to differentiate between spatially
close entities. A microscope with perfect resolution maps the signal of point-like
light sources in the sample to single points in the image plane, and thereby makes
distinction of arbitrarily close points possible. However, the resolution of microscopes
is fundamentally limited due to the wave nature of light Abbe [1873], and therefore
all microscopes display point-like light sources as a diffraction pattern. The spatial
intensity distribution of the diffraction pattern is described by the PSF. The PSF
is a property of the microscope and takes the form of an Airy disc for a standard
wide-field microscope.

The image of a microscope is the convolution of the observed sample’s intensity and
the PSF. Details in the resulting convoluted image are limited by the size of the PSF.
The mathematical field of deconvolution studies algorithms to revert the process and
obtain information about the original intensity distribution from a convoluted image
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(a) No image errors (b) Aberrations (c) Low resolution (d) Low contrast

Figure 1.1: Illustration of typical image errors in microscopy. The image of Hans
Lipperhey, a microscopy pioneer, was artificially reduced in quality to show the types
of typical quality-degrading effects that occur in microscopy.

[Starck et al., 2002].
Microscopic resolution is usually quantified by the Rayleigh criterion, which states

that the minimum distance between resolvable light sources is the distance from the
central diffraction maximum of the PSF to the first diffraction minimum [Born and
Wolf, 1975]. Since the limiting factor of an optical microscope is the aperture of the
objective, the limit can be calculated explicitly. The limit depends on the optical
density of the medium between object and objective n, on the objective opening
half-angle α, and on the detection light’s wavelength λ (Eq. 1.1).

d =
0.61λ

n sinα
(1.1)

Contrast is the microscope’s ability to distinguish structures of interest from back-
ground. Typical background sources include stray excitation light, uninteresting bio-
logical structures or detector readout noise. The primary complication introduced by
high background levels is intensity variance: Intensity levels within the background
can fluctuate sufficiently to mask the difference between the structure of interest and
the background.

1.2.1 Illumination techniques

Most microscopy methods rely on externally illuminating the sample with excitation
light and observing the response. The choice of the illumination method determines
which part of the sample can be detected, and thereby can greatly enhance contrast
and resolution.

Widefield illumination provides approximately constant illumination over the whole
field of view and the whole depth of the sample. The advantage is that the whole
sample can, within the focal limits of the optics, be viewed at once. The dis-
advantage is that the parts of the sample that are not in the detection focus
contribute considerable noise to the image. Widefield illumination is easy to
achieve and the standard approach in microscopy.

total internal reflection (TIR) illumination limits the illumination to an evanes-
cent field close to the cover slip. By angling the illumination beam over the
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critical angle of the boundary between cover slip and sample, the illumina-
tion light is reflected at the boundary. However, an evanescent electromagnetic
field penetrates into the sample. The intensity of the evanescent field decreases
exponentially in the axial direction. Consequently, the effective range of illu-
mination is limited to up to ∼ 200 nm from the cover slip [Ambrose, 1956].
TIR microscopy combined with fluorescence microscopy is abbreviated as TIRF
microscopy.

Dirty-TIR illumination provides illumination along a thin, oblique sheet of light
by angling the illumination beam close to the critical angle of the boundary
between cover slip and sample. Contrary to true TIR illumination, dirty-TIR
lets illumination light penetrate into the sample. Dirty-TIR is also known as
highly inclined and laminated optical sheet (HILO) [Tokunaga et al., 2008],
critical angle fluorescence microscopy (CAFM) [Nakata and Hirokawa, 2003] or
low-angle oblique (LAO) [Sako, 2006].

Point illumination limits illumination to a diffraction limited region in the sample.
It is used in confocal microscopy together with single-point detection to increase
both resolution and contrast at the cost of seeing only a minimal, spatially
unresolved volume of the sample at any given time [Minsky, 1955].

1.2.2 Providing contrast

Since acceptable levels of aberration and resolution close to the Abbe limit can be
achieved fairly easily with optical components, the primary achievements of biological
microscopy have been made in the improvement of contrast. The primary methods in
microscopy are therefore distinguished by the physical effect that provides contrast.

Bright-field microscopy relies on absorption and is the basic microscopy tech-
nique. The sample is uniformly illuminated from behind (standard) or above
(inverted microscope), and the image appears dark where light is absorbed by
the sample. Many biological samples show poor contrast in bright-field mi-
croscopy.

Polarized light microscopy relies on polarization change. Excitation light is po-
larized, and the detection path is polarization-sensitive [Inoué and Oldenbourg,
1998].

Dark-field microscopy relies on light scattering in the sample. Transmitted light
is blocked from the detection path and contrast is improved at the expense of
signal intensity [Kudo et al., 1990].

Phase-contrast microscopy relies on the phase contrast difference due to different
optical densities of sample and medium [Hughes and Swann, 1948].

Fluorescence microscopy relies on the Stokes shift and is described in detail in
section 1.2.3.

1.2.3 Fluorescence microscopy

Fluorescence is an optical phenomenon where the absorption of light by a fluorescent
sample causes the emission of longer-wavelength light within nanoseconds. Fluores-
cence has been known since the 19th century [Herschel, 1845, Stokes, 1852] and the
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Figure 1.2: Bovine pulmonary artery endothelial cells under the fluorescence micro-
scope. Nuclei are stained blue, microtubuli are stained green and actin filaments are
stained red [Rasband, 1997-2008].

fluorescence microscope has been a core tool of cellular biology since the 20th century.
The importance of fluorescent proteins has been so central to biological microscopy
that the chemistry Nobel prize in 2008 has been awarded to Osamu Shimomura,
Martin Chalfie, and Roger Y. Tsien for the discovery of GFP.

Biological fluorescence microscopy is performed by labelling cellular structures
with fluorescent dyes, illuminating the sample with short-wavelength light and viewing
it through a suitable long-pass filter so that only the light emitted by fluorophores
is visible. Since wild-type cells show very little fluorescence, the artificially labelled
structures become visible with very high contrast and specificity.

Labelling is usually performed by attaching fluorescent antibodies to the structures
of interest (immunofluorescence) or by inserting recombinant deoxyribonucleic acid
into the observed organism to cause expression of fluorescent proteins that are spliced
to the proteins of interest. For economy reasons, the immunofluorescence approach is
performed with a pair of antibodies, with a primary antibody that specifically targets
the structure of interest and is produced by a host organism such as goat, mouse or
rabbit, and a secondary antibody that targets the host organism and is fluorescent.
Section 2.2 gives a detailed overview over labelling techniques.

1.2.4 Photochemistry of fluorophores

Fluorophore behavior is characterized through four states in which molecules may
reside (Fig. 1.3):

Inactive fluorophores show no fluorescence. Their activation into the bright state
can be performed through irradiation (photoactivation) or through physical,
chemical or biological processes.

Bright fluorophores currently show fluorescence.
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BleachedInactive

Bright

Dark

kact

koffkon

kbleach

Figure 1.3: Abstract fluorophore model. A fluorophore can be in one of the four
states of being inactive, dark, bleached or bright. The transitions from inactive to
bright and bright to bleached are irreversible. All allowed transitions have associated
rates k. Super-resolution methods mostly use a subset of this graph: photoactivation
methods do not use a dark state, but rather the transition from inactive to bleached,
while photoswitching methods focus on the dark-bright-dark transitions while not
actively using photobleaching.

Dark fluorophores currently show no fluorescence, but can switch into the bright
state through chemical reactions. Irradiation may be used to induce the transi-
tion, but is often not necessary. Cycling a fluorophore between the bright and
the dark state is called photoswitching.

Bleached fluorophores have ceased to show fluorescence and cannot be recovered
into the bright state. When irradiation causes fluorophores to go into the dark
state, the process is called photobleaching.

The behavior of synthetic organic dyes of the carbocyanine, oxacine and rho-
damine families is well understood, and the transition mechanisms are well known.
These molecules show fluorescence through a dislocalized electron [Kuhn, 1948]. The
electron is excited from its ground state (S0) by the excitation light and reaches an ex-
cited singlet state. Through a combination of non-radiative relaxation of vibrational
energy and light emission, the electron can return to the ground state. Due to the
Franck-Condon principle [Franck and Dymond, 1926, Condon, 1926], the excitation
process will favor vibrational levels that have a high wave function overlap between
the ground and the excited state, and excitation into a both both electronically and
vibrationally excited state is the norm. The density of vibrational states facilitates
a quick dissipation of the vibrational part into the local environment, while the elec-
tronic part is re-emitted as a photon. Because of the loss of vibrational energy, the
emitted photon has a longer wavelength than the absorbed photon had. This effect
is known as the Stokes shift.

While the singlet cycle is the most likely path, an electron in the excited singlet
state can perform inter-system crossing, i.e. revert its spin to produce a triplet state.
While the triplet state is energetically unfavorable, its decay into the singlet state is
forbidden by quantum mechanics and therefore a very slow process [Fujisawa et al.,
2002]. While the singlet cycle is usually performed in nanoseconds, the triplet cycle
is on the order of microseconds or even milliseconds. This long lifetime in an excited
state makes reaction with radicals likely, and the product is nonfluorescent.

When no recovery of the oxidized or reduced state is possible, this reaction is
known as photobleaching and is usually an undesired effect, because it reduces the
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Figure 1.4: Typical Jablonski diagram for a switchable fluorescent dye [van de Linde
et al., 2011a]. The majority of the dye population rests in the ground state. Excitation
light pushes single molecules into an excited singlet state, and they usually return
through a combination of internal, nonradiative relaxation and fluorescence emission.
Sometimes, the excited singlet state will instead transmute into a triplet state, i.e.
have parallel instead of antiparallel spins on the active electrons, with a considerably
longer lifetime than the singlet state. The triplet state is both long-lived and radical,
and can react with reducing agents to form semireduced or fully-reduced forms that
have lifetimes on the scale of seconds and do not show fluorescence. Oxygen can
recover the triplet and the radical states and thereby has considerable influence on
the fluorescence.

population of available fluorophores. Kottke et al. [2010] and van de Linde et al.
[2011a] have shown that chemical recovery of the oxidized or reduced state is possible
under suitable buffer conditions, and the resulting reaction is known as photoswitching.
The recovery time of the ground state from the oxidized or reduced state is usually on
the order of seconds, nine orders of magnitude slower than the fluorescence process.

1.2.5 Electron microscopy

Eq. 1.1 gives a simple, scalable approach to enhance the resolution: reducing the wave-
length of the detection particle. By using short-wavelength light such as ultraviolet
light, X rays or even γ rays, the resolution can easily be enhanced. Ultimately, even
atomic particles can be used since they show wave effects due to the particle-wave
duality.

Technical implementation details favor the electron microscope over the X ray,
γ or proton microscopes. Electron microscopy has a long and successful history in
biology, and super-resolution light microscopy techniques must be measured against
electron microscopy. Electron microscopy has the distinct advantage of being a well-
established technique with comparatively cheap costs (Tbl. 1.1). It is handicapped
by the need for expensive and difficult sample preparation that precludes the use on
living cells [Bozzola and Russell, 1999], and thereby also prevents dynamic imaging
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Table 1.1: Comparative costs of super-resolution microscopes.
Type Resolution Manufacturer Cost
TM-3000 Electron 30 nm Hitachi 60,000 $
Microscope [Soulskill, 2009]
TCS 4Pi microscope 100 nm Leica N/A
Alpha NSOM 25 nm WITec 210,000 $

[Harris, 2003]
TCS STED microscope 60 nm Leica 1,000,000 $

[Perkel, 2011]
Blaze SIM microscope ∼120 nm Applied 500,000 $

Precision [Dance, 2010]
dSTORM microscope 40 nm Holm et al. 16,000 $

of intracellular processes.

1.2.6 Short-distance energy transfer

The strong dependency of dipole-dipole energy transfers on the distance between
donor and acceptor can be exploited to measure the distance between two spectrally
differentiable emitters on a nanometer scale. In biological research, Förster resonance
energy transfer (FRET) and photoinduced electron transfer (PET) are commonly
used. However, energy transfer methods can only give a small number of distances in
the sample, with most practical applications limited to measuring one pair distance
per diffraction limited region. Therefore, while being generally quite useful, energy
transfer methods can not produce super-resolution images.

1.3 Super-resolution microscopy

Once we add sound, color, and stick Eddie Murphy in there somewhere,
it’ll be a smash.

— ALF, Like an old time movie

Super-resolution microscopy is the umbrella term for microscopy methods that cir-
cumvent the diffraction barrier. Super-resolution methods are classified (Fig. 1.5) into
true super-resolution methods that work emitter-independently and functional super-
resolution methods that exploit the characteristic behavior of fluorophores. True
super-resolution methods include structured illumination (SIM), additional objectives
as in 4Pi microscopy (4PI), near-field scanning optical microscopy (NSOM), and pure
computational approaches as in the field of geometrical super-resolution methods,
all of which are experimentally or computationally quite complex and outside the
implementation scope of a biological research group.

Functional super-resolution methods are in general much simpler due to the special
photochemistry of many fluorophores described in 1.2.4. Functional super-resolution
methods fall into three broad categories:

Saturation methods such as stimulated emission depletion (STED), saturated struc-
tured illumination microscopy (SSIM) or ground-state depletion (GSD) use
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Figure 1.5: Venn diagram of the super-resolution microscopy methods. The teal
ellipse groups the methods that apply to synthetic dyes only, while the fuchsia ellipse
groups the fluorescent-proteins-only methods.
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strong irradiation to saturate the fluorescence process and achieve a qualita-
tive difference between close-by fluorophores. The surviving fluorophore emis-
sion is deterministic in time and space. Consequently, saturation-based super-
resolution microscopes yield images directly and require no computational post-
processing. The saturation methods are also known as deterministic methods
or reversible saturable optical flurorescence transitions (RESOLFT).

Single-molecule localization methods such as stochastic optical reconstruction
microscopy (STORM), direct stochastic optical reconstruction microscopy (dSTORM),
photoactivated localization microscopy (PALM) or fluorescence photoactivation
localization microscopy (FPALM) modify the blinking rates of fluorophores to
isolate the individual fluorophore emissions in time. The isolated emissions
can be fitted with a model of the PSF with very high precision. The pro-
cess is stochastic, and computational post-processing is essential, but can be
performed in real-time. Single-molecule localization microscopy is also known
as AWESOME wide-field excitation super-resolution optical microscopy except
SOFI (AWESOME) or spectral precision distance microscopy (SPDM).

Ensemble localization methods such as SOFI and bayesian analysis of blinking
and bleaching (3B) observe the natural or slightly modified stochastic blink-
ing of fluorophores and compute likely fluorophore distributions. The isolation
of individual fluorophore emissions is not necessary, but computational post-
processing is essential and costly.

Single-molecule and ensemble localization methods have a common excitation and
acquisition scheme, and raw data from single-molecule localization methods can be
evaluated with ensemble localization software, but not vice versa. Therefore, both
groups are often summarized as stochastic methods in contrast to the deterministic
saturation methods.

Stochastic methods have a considerable experimental cost advantage over satu-
ration, true optical super-resolution and electron microscopy techniques. Table 1.1
lists the comparative costs of building or buying a relevant microscope. The single-
molecule localization microscope beats microscopes with comparable resolution by
orders of magnitude. While some of these savings are the natural result of scratch-
building a microscope, the dSTORM microscope is the only one that can be built
from very simple components that are already present in many biological groups,
and is within the scope of a graduate student. The core complexity of stochastic
super-resolution methods is within the evaluation software, and software is easily and
cheaply replicated.

1.3.1 Single-molecule localization methods

“The battle of wits has begun,” said the man in black. “It ends when
you decide and we drink and find out who is right and who is dead.”

— William Goldman, The Princess Bride

Single-molecule localization methods are a subgroup of functional super-resolution
and are defined by the basic common concept of separation and localization. Single-
molecule localization microscopy is performed by manipulating the photochemistry so
that only a small subset of the total fluorophore population is active (i.e. in the singlet
cycle) at a given time. The sparsity of the active fluorophores isolates individual
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emissions and allows the assumption of singularity, i.e. that every observed bright
spot corresponds to exactly one fluorophore, and thereby allows to cheaply revert
the PSF and localize the isolated fluorophore with subdiffraction precision. The most
likely fluorophore position obtained by this procedure is known as a localization. After
observing the fluorophore population for some time to ensure that most fluorophores
have been in the active state at least once, the density distribution of the localizations
is a super-resolved microscopy image of the sample. The plethora of super-resolution
methods all share this basic concept and differ in the used fluorophore type and
excitation scheme.

When fluorescent proteins are used, the terms PALM, FPALM and photoacti-
vated localization microscopy with independently running acquisition (PALMIRA)
are common. PALM and FPALM are synonymous and refer to microscopy on pho-
toactivatable fluorescent proteins with alternating activation (ultraviolet light) and
readout (visible light) phases. The term PALMIRA is used when activation and
readout run concurrently.

Most other methods use synthetic organic dyes. The ancestor of the synthetic dye
group is the STORM method that used pairs of different dyes with concurrent activa-
tion and recorded the FRET radiation. The dSTORM, ground state depletion with
individual molecule return (GSDIM), reversible photobleaching microscopy (RPM)
and blink microscopy (BM) methods are synonyms and simplify STORM by using
only a single dye instead of a pair. According to a recommendation by Baddeley
[2011], I use the term dSTORM in this work. In recent times, the original STORM
method fell largely out of use in favor of dSTORM, and some researchers [Jones et al.,
2011] now use STORM as a synonym for dSTORM.

The high-density problem

Moonlight drowns out all but the brightest stars.
— J.R.R. Tolkien, The Lord of the Rings

Single-molecule localization microscopy relies on the assumption that emitters are
visible individually and resolved optically. This condition is somewhat fuzzy for two
reasons: Firstly, while the term “resolved” is defined via the capacity of the human
eye and a resolution criterion such as the Rayleigh resolution, it is unclear whether
localization algorithms can reliably resolve all Rayleigh-resolved spots. Secondly, the
single-molecule localization methods work stochastically and will produce optically
unresolved molecules with an increasing probability at high spot densities. Therefore,
it is not trivial to define where the high-density regime begins.

However, simple mathematics [Small, 2009] indicate that more than 10 diffraction
limited regions of a common width, e.g. 300 nm, will hardly be resolvable when
packed into a square micrometer. This density is easy to reach with photoswitching
fluorophores when the ratio of the lifetimes of the dark (off) and the bright (on)
state is insufficient. With a ratio of 100, less than 1000 molecules must be present
in a square micrometer to reach even the very lax condition of 10 active fluorophores
per square micrometer. This condition is in stark contrast to the Shannon-Nyquist
sampling theorem [Shannon, 1984], which states that a signal (such as the presence
or non-presence of a structure) must be sampled with at least twice the frequency
at which it will be truthfully represented. Therefore, a continuous structure labelled
in a perfectly equidistant pattern in our example would be resolvable to less than 60
nm.
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1.4 Cellular biology

The cellular biology context for most super-resolved targets is well-known, and since
I submit this thesis to a biological faculty, I assume familiarity with most of the
concepts.

The discussion of the results of super-resolution microscopy depends strongly on
the relevant biological sizes and scales. Many important cell organelles are below the
diffraction limit, such as mitochondria with ∼ 100–500 nm width [Frey and Mannella,
2000], microtubuli ∼ with 50 nm [Heilemann et al., 2008] and the cell membrane with
∼ 10 nm. Many macromolecules have similar sizes, e.g. the ribosome with ∼ 20 nm
and the RNA polymerase at ∼ 10 nm.

Optical super-resolution microscopy in the 20 nm domain can resolve the structure
of small cell organelles [van de Linde et al., 2008] and map the spatial organization
of the macromolecules, e.g. for the nuclear pore complex [Löschberger et al., 2012] or
transcription factories [Cseresnyes et al., 2009].

Currently, the most common targets for super-resolution microscopy are the fila-
mentous structures of actin or microtubulin. Both proteins have the advantage of be-
ing very common and forming the easily recognized cytoskeleton. The cytoskeleton’s
structure can be observed in a fluorescence microscope, but details remain unresolv-
able where individual filaments meet or overlap, thereby providing both a reference
and a proof of resolution for super-resolution microscopy. Besides these technical
points, the cytoskeleton has a considerable biological relevance as a key component
of eukaryotic cells and as a factor in pathogen infection [Alberts et al., 2002].

Recently, critics [van de Linde et al., 2010] have shown that the filamentous na-
ture of actin and microtubulin obscures the high-density problem (Section 1.3.1). A
key non-filamentous target for super-resolution microscopy is the nuclear pore com-
plex, which crosses the nuclear envelope membrane and provides transport through
it. The nuclear pore complex’s structure is well-documented through electron mi-
croscopy [Rout and Blobel, 1993] and both the ring macrostructure of 120 nm di-
ameter and the eightfold-symmetric microstructure provide excellent observables for
microscopy. As the main gateway for proteins and ribonucleic acid between the nu-
cleus and the cytoplasm, the nuclear pore complex is of interest in many processes,
and research into its dynamic behavior could yield very interesting scientific results.

1.5 Single-molecule localization algorithms

The core computational task of single-molecule localization microscopy is to find the
position of a fluorophore (the localization) in a noisy camera image (the spot). Since
a fluorophore may be approximated as point-like, its image on the camera is given by
the PSF of the microscope as a function PSF(x, P, I) of the image plane position x,
fluorophore position P and fluorophore intensity I. The image is distorted by noise
from background signal, photon counting and readout noise effects [Mortensen et al.,
2010].

Localization has been performed with one of three principal approaches:

• by building a functional model of the PSF and fitting it to the spot, or

• by using statistical properties of the spot, or

• by comparing the spot to previously taken calibration data.
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The model-fitting approach has the advantages of a well-established theoretical
framework and explicit modelling of defocusing effects, multi-plane setups and the
various noise sources. It has the disadvantages of requiring a workable approximation
of the PSF and of a high computational cost, since fitting algorithms are iterative and
require one evaluation of the PSF per pixel and iteration step. The workable approxi-
mation of the PSF can be problematic because of the multitude of optical components
in a modern microscope, which are almost impossible to model theoretically.

Statistical properties such as the center of mass are usually cheap to compute,
but susceptible to noise. The separation of the localized fluorophore, other close-
by fluorophores and background is difficult. Adapting statistical properties to the
different PSFs found in dipole imaging or defocusing approaches is as complex as
adapting a model function, since both approaches must prove the correctness of their
approximations.

Comparing a spot to calibration data solves the approximation problem by mea-
suring images of the real PSF on the same microscope at known offsets (template
images) and then comparing each spot with the templates. This approach can easily
deal with any form of PSF, but controlling noise is very difficult due to the lack of
a theoretical model. Additionally, it is usually impossible to obtain and maintain
a complete set of templates for each combination of spatial offsets, intensity differ-
ences and dipole orientation. Therefore, interpolation techniques must be employed
to reduce the number of templates.

Early comparisons of localization algorithms have been made by Cheezum et al.
[2001] and Thompson et al. [2002], who both arrived at the conclusion that fitting
with a Gaussian PSF outperformed the simple statistical and template-based models
of the time for 2D measurements. Later, Abraham et al. [2010] have extended the
comparison on more precise PSF models in 3D, Mlodzianoski et al. [2009] have ex-
perimentally compared additional 3D PSF models, and Mortensen et al. [2010] have
treated directional dipole imaging. A number of authors have advanced the PSF
fitting algorithms with higher speed, 3D capabilities, and more precise PSF mod-
els [Thompson et al., 2002, 2010, Thomann et al., 2003, Ram et al., 2008, Starr et al.,
2012, Aguet et al., 2005, Huang et al., 2008, Smith et al., 2010, Quan et al., 2010] or
with approaches for high emitter densities [Holden et al., 2011, Huang et al., 2011,
Babcock et al., 2012]. Statistical models were championed by Thompson et al. [2002],
Hedde et al. [2009], Izeddin et al. [2012] and Ngo et al. [2012]. Baddeley et al. [2011]
and Quirin et al. [2012] have improved the template-based methods beyond simple
autocorrelation procedures.

1.5.1 The Gaussian point spread function model

Most researchers localize molecules by fitting a functional approximation of the PSF to
the observed data. A functional approximation has the advantages that background,
three-dimensional distortions or close-by fluorophores can be explicitly included in
the model. However, the approach needs a functional model of the PSF that is both
realistic and cheap to compute.

The Gaussian PSF with constant background is the most common choice and
has been proven suitable for 2D and near-focal 3D imaging of molecules without a
pronounced dipole orientation [Stallinga and Rieger, 2010, Zhang et al., 2007]. Its
functional form for the image position (x, y, z), the fluorophore position (x0, y0, z0),
the fluorescence intensity I and the background intensity B is given in Eq. 1.2. The
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PSF half-widths σx and σy are used to determine 3D behavior. For 2D imaging,
suitable constants are chosen, and for 3D imaging they are functions of z and z0.

G = B +
I

2πσxσy
exp

[
−1

2

(
(x− x0)2

σ2
x

+
(y − y0)2

σ2
y

)]
(1.2)

More precise models for the PSF have been researched by Ram et al. [2008] for very
defocussed fluorophores and by Mortensen et al. [2010] for fixed dipole orientations.

The various noise effects cause uncertainty in the localization and prevent an exact
localization. However, we can give a likelihood `(S,E) of obtaining the spot S when
observing an event E. An event is characterized by the parameters of the PSF, e.g.
the variables in G for a Gaussian PSF. Accordingly, the objective of a localization
algorithm is to find event that has the maximum likelihood among all possible events.

1.5.2 Least squares fitting and Levenberg-Marquardt

The difference between the model G(xi) and the data Si is known as the residue.
When we assume that the noise is normally distributed, the likelihood is maximal if
and only if the squared sum of residues, i.e., the function χ2

LS given by Eq. 1.3 is
minimal. This assumption is reasonable in localization microscopy because hundreds
of photons contribute to the photon-counting statistics in the center of the PSF and
the side-lobes of the PSF have little overall contribution to the determined center
position.

χ2
LS =

1

σ2

∑
i

[G(xi)− Si]
2

(1.3)

The minimization problem is formalized by combining the unknown parameters of
the PSF into a parameter vector a and considering χ2 as a function of a. For nonlinear
functions like the Gaussian PSF, there is no closed-form solution for the minima of
χ2(a). Therefore, the solution is determined iteratively by guessing an initial position
a0 and iteratively improving the position with the update equation ai+1 = ai + δi.
Several iterative algorithms exist to provide values for δi.

The steepest descent method (Eq. 1.4) is the simplest solution. For every up-
date step, we follow the negative gradient at the current position to obtain the next
position. The length of the step is determined by a constant c. In practice, the choice
of c is difficult, since high values overshoot the minimum and low values necessitate
many update steps [Press et al., 1992].

δi = −c∇χ2(ai) (1.4)

Newton’s method avoids the constant by determining the minimum of the locally
approximating paraboloid, which can be expressed as a linear equation system of
the first and second derivatives (Eq. 1.5). Newton’s method is parameter-free and
converges quickly. However, Newton’s method is prone to divergent oscillations [Press
et al., 1992], and because the matrix of second-order derivatives is sometimes singular,
Eq. 1.5 is not reliably solvable. The singularity problem is addressed by neglecting the
second-order terms in the Hessian matrix H(a) (Eq. 1.6). This approximation is valid
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because the second-order terms are weighted by the residues. Because the residues
close to a minimum are mostly caused by noise and therefore show little spatial
correlation, they are equally likely to be positive or negative and their contributions
cancel out. Since the reduced Hessian H̃(a) is positive definite, Eq. 1.5 is always
solvable.

Hδi = −∇χ2(ai) (1.5)

Hjk =
(
∇2χ2

)
jk

(1.6)

=
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−
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The Levenberg-Marquardt method combines the steepest descent and New-
ton’s method [Press et al., 1992]. The diagonal elements of the reduced Hessian are
multiplied by a factor of λ+ 1, where λ is an adaptive parameter (Eq. 1.7). For low
values of λ, Eq. 1.7 is identical to Newton’s method with the reduced Hessian matrix.
For high values of λ, the diagonal terms of the matrix dominate and the equation
degenerates to steepest descent with c = λ−1.

[
H̃(ai) + λdiag

(
H̃(ai)

)]
δi = −∇χ2(ai) (1.7)

The λ parameter is initialized with a pre-defined value, decreased whenever a step
reduced the value of χ2, and increased whenever the computed step would increase the
residues. Thereby, Newton’s method is preferred when the function is well-behaved,
and the more reliable steepest descent method is preferred with increasingly shorter
steps when the function is ill-behaved.

The implementation chooses criteria for stopping the iteration. Usually, relative
or absolute thresholds for the shift vector δi, the remaining value of χ2 or an absolute
limit on the number of steps are used. The initial guess a0 is provided by using
elementary statistics on the spot. The choice of initial values is an important influence
on the performance of the fitting algorithm.

1.5.3 Maximum-likelihood fitting

A statistical estimator is termed a maximum likelihood estimator (MLE) when its
estimated quantities have maximal likelihood. In other terms, when a MLE estimates
a set of model parameters, there should be no other choice of the model parameters
that yields a higher probability of producing the observed data.

Least-squares fitting is a MLE when the noise is normally distributed. While this
is a fairly close approximation for the very intense center pixels of the bright emission
of a good fluorophore in focus, the approximation is insufficient for low photon yields,
smeared-out spots in 3D, or dipole-directed imaging [Mortensen et al., 2010]. Even
for classic localization microscopy, the peripheral pixels of a spot receive few photons,
therefore show Poissonian instead of Gaussian noise distribution, are inaccurately
accounted by least-squares algorithms, and therefore can contribute to more precise
localizations with a MLE method.
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Using MLE for Poissonian statistics can be implemented with the reliable Levenberg-
Marquardt method [Laurence and Chromy, 2010] by weighting the differences between
model function and measured data according to Eq. 1.8 when both model and mea-
sured data are given in photons. However, the use of a Poissonian MLE requires the
additional parametrization of camera sensitivity and offset to compute estimated pho-
ton counts, and computational effort is higher than least-squares estimation [Laurence
and Chromy, 2010].

χ2
MLE = 2

∑
i

G(xi)− Si

(
1 + ln

Gi

Si

)
(1.8)

1.6 Software development

Science is what we understand well enough to explain to a computer.
Art is everything else we do.

— Donald Knuth, Foreword to the book A = B

Software development for single-molecule localization software faces three critical
issues. Firstly, the field is far from stable, and the requirements for data evalua-
tion change daily and often in response to the advances made in the software itself.
Secondly, the field is quickly expanding, and the simple core localization algorithm
must be made available in a great range of situations, ranging from traditional, well-
understood two-dimensional (2D) dSTORM measurements to extremely complex and
little-understood scenarios with nine different optical paths [Hajj, 2012]. The former
experiments require fire-and-forget software that can be used with minimal training
and expertise, while the latter experiments necessitate a great deal of control and
diagnostic on the software. Thirdly, performance is an issue, since millions of local-
izations must be computed and the number of variable parameters in experiment and
evaluation makes short feedback loops essential.

1.6.1 Prior and concurrent art

Prior and concurrent art to this thesis has been published mostly by the scientific
community. From the one direction, experimental groups have established a number
of ad-hoc scripts and ImageJ plugins, such as QuickPALM [Henriques et al., 2010],
Palm3D [York et al., 2011], FluoroBancroft [Hedde et al., 2009], Octane [Niu and
Yu, 2008], or Thomann’s pioneer work [Thomann et al., 2002]. From the other di-
rection, theoretical groups have scrutinized and extended the theoretical limits of
localization microscopy and produced tools and algorithms such as MUMLA [Ram
et al., 2008] used in EstimationTool [Abraham et al., 2010], Mortensen’s maximum-
likelihood fitting [Mortensen et al., 2010], Gaussian mask fitting [Thompson et al.,
2002], M2LE [Starr et al., 2012], DAOSTORM [Holden et al., 2011], Izeddin’s wavelet
localization [Izeddin et al., 2012], Huang’s GPU multi-emitter fitting [Huang et al.,
2011] or Zhu’s compressed sensing approach [Zhu et al., 2012].

All of these projects have limited utility in the biological laboratory since they
lacked the scope to comprehensively solve the localization task or were intended as a
proof of concept. From the group of theoretically-motivated tools, only Estimation-
Tool, DAOSTORM and M2LE were released to the public, and only the Estimation-
Tool has made it past an early prototype stage. The rest of the projects have been
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abandoned shortly after the initial release according to their public code repositories,
since their scientific usefulness to the original authors had ended after the feasibility of
the algorithm had been tested. The experimentally-motivated software projects have
all suffered under their side-project natures and have received neither the time nor the
expertise necessary to implement high-precision localization algorithms that approach
or surpass the precision of least-squares Gaussian fitting. Due to the extreme speed
of advances in localization microscopy, the maintainer of a local microscopy setup is
unable to keep both the physical setup and the software maintained, and the latter
slowly obsoletes.

1.6.2 Free, open source and open access software

The terms free software and open source software are both well defined and different
in meaning, and they should be contrasted to the scientific term open access. The
term of free software was defined by the Free Software Foundation as Stallman [2002]

software that respects users’ freedom and community. Roughly, the users
have the freedom to run, copy, distribute, study, change and improve the
software. With these freedoms, the users (both individually and collec-
tively) control the program and what it does for them.

The term is distinguished from open source software by the Open Source Initia-
tive, which defines open source software as software where the source code is freely
available, free from royalties or restrictive licenses [Perens, 1999].

The essential difference, as described by Stallman [2009], is the focus of free soft-
ware on the user’s freedom of changing, adapting and controlling his software, while
open source software focuses on the chance to examine, modify and redistribute the
software source code. While the difference have been mostly academic in the past and
the categories of free and open-source mostly overlap, free and open-source software
diverge on the practice of “tivoization” [Stallman, 2009], i.e. software-controlled de-
vices that do not allow the user to install his own software such as Android-controlled
smart phones. Tivoized software is never free, but can be open-source.

The software developed in this thesis is both free and open software. The scientific
merits of open-source software are immediately clear and, in my view, indispensable to
reproducible and traceable computational science: When research advances are driven
largely by software, the exact details of the algorithm and its implementation are
essential to understanding and interpreting the results. The methodical section of the
scientific article must contain at least pseudocode about the computational part, as a
multitude of hardly reproducible articles about single-molecule localization strategies
shows. Textual descriptions of algorithms are always incomplete and lack essential
detail. However, the task of converting real code to pseudocode is both lengthy and
error-prone, and should be avoided. Therefore, I pushed for rapid, accurate program
implementing direct stochastic optical reconstruction microscopy (rapidSTORM) to
be open-source software in the interest of the scientific principle.

The benefit of free software to the community is also clear: When researchers can
freely copy, modify and use the essential software on their field, software-driven meth-
ods become truly open and are easily reproduced, reviewed and improved throughout
the scientific community. The merits of this process have become clear for traditional
experimental methods and protocols in the scientific revolution, and should be applied
to software as well.
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Free and open-source software must be contrasted against the open access paradigm.
Open access is a movement that tries to free scientific writing of the ever-increasing
burden of the subscription-fee-heavy scientific journal. Open access articles may be
viewed in full text at no cost to the reader, but the open access confers no right to
derivative work. As such, open access is a much weaker principle than free or open
source. However, it is well suited to the realities of scientific research, since research
papers are made to be understood, not to be executed, and because the typical research
paper has 500 lines of text rather than 50,000 like a reasonably complete software sys-
tem. When the ideas in a research paper need to be re-used, a partial rewrite can
be done with a long afternoon and a bottle of wine; for research software, a semester
and a barrel of rum are a low estimate.

1.6.3 Agile development

I’ve found from past experiences that the tighter your plan, the more
likely you are to run into something unpredictable.

— MacGyver, The Heist

The speed of change in localization microscopy poses a challenge to traditional
software development methods. Waterfall development, i.e. a single sequence of the
stages of specification, design, implementation, testing and deployment of software,
is impossible to implement because any sufficiently complete and usable software is
obsolete before it is deployed.

This problem is common in software development and a core question of the disci-
pline of software engineering. However, many established solutions such as Scrum [Schwaber,
2004] or Kanban [Epping, 2011] focus on the software development team and the in-
dustrial process, with only few lessons applicable to the scientific environment.

The work of Martin [2003] and Beck [2002] is a notable exception because of its
focus on refactoring and automated testing. By establishing a test suite that covers the
program’s functionality, safe changes to the program structure (refactoring) become
possible. Through the speed of automated tests, the cost of releasing tested software
becomes small, and a quick release cycle can be adopted safely. Since users always
hold a current and usable version, the vital cycle between usage feedback and program
design and development is kept so short that continuous software improvement is
possible.
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Articles

This chapter contains the most important articles that I have written in my thesis.
The articles appear as they were typeset by the publishing journal. Every article is
followed by a related declaration of independent work that states, in German language,
my share of the work in the article.
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Chapter 3

Discussion

3.1 Software creation

The scientific advance due to the rapidSTORM project lies in two aspects, the sim-
plification and the publication of the data evaluation for single-molecule localiza-
tion microscopy. Section 2.1 was the first published real-time localization software
for full least-squares fitting with a Gaussian function. At the time, the community
considered least-squares Gaussian fitting as a very precise, but computationally too
expensive method, and searched heavily for alternatives that would provide cheaper
real-time analysis [Thompson et al., 2002, Hedde et al., 2009]. Section 2.1 proved
that least-squares Gaussian fitting is real-time capable with a comfortable speed mar-
gin, and gave a concise description of the algorithm. However, it did not provide
a publicly available program, and it did not show any three-dimensional or multi-
color algorithms. Therefore, its primary value to the scientific community was the
demonstration of the potential speed of Gaussian fitting. While the highly precise
maximum-likelihood formulations of super-resolution microscopy had been known for
years [Aguet et al., 2005], late 2010 and 2011 saw a much refreshed interest in highly
precise super-resolution microscopy [Mortensen et al., 2010, Quan et al., 2010]. As
such, the work by Wolter et al. [2010] considerably advanced the field.

In the following years, rapidSTORM was constantly expanded in functionality, re-
leased to the public by Wolter and Sauer [2012] (Section 2.3), and its use on a breadth
of multi-color and 3D applications was demonstrated by Wolter et al. [2012a] (Section
2.4). The second article marked the first time that broadly applicable, mature super-
resolution software made all algorithmic details available as open-source software, and
the scientific community has recognized this fact by downloading the rapidSTORM
software from over 200 second-level domains (as of early 2013, see Chapter D). The
accumulated knowledge was integrated into textbooks by Wolter et al. [2014] (Section
2.6).

I primarily spent the two years between the first and the last rapidSTORM pub-
lication on the rapidSTORM project. rapidSTORM went through two major revi-
sions as the design evolved, and saw a considerable number of succeeding and fail-
ing interface experiments, platform changes, refactoring, and technological issues.
rapidSTORM is still the most extensive and a very fast solution for localization mi-
croscopy [Wolter et al., 2012a]. It currently has around 60,000 lines of code with low
duplication, roughly comparable to the UNIX operating system version 6 Etsion et al.
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[2007], which was one of the first publicly available operating systems and ran the
majority of academia’s computers.1

From the viewpoints of software engineering, the rapidSTORM project was suc-
cessful. The application of continuous integration, test-driven development and release-
early-release-often to rapidSTORM was successful. In the year of 2012, rapidSTORM
went through 15 public releases, more than one per month on average and five per
month, a one-week cycle, in busy times. Currently, 110 use cases and regressions are
under test, with an estimated code coverage of 60%. The project was able to survive
a complete reimplementation of the core fitting function with minimal branching.

However, one of the core goals of open-source projects, a wide and self-supporting
user community that participates in development, could not be reached. I explain
this failure by three reasons, prioritized by estimated impact:

1. The choice of the implementation language C++ has been motivated techni-
cally without taking the skills of the wider community into account. Computer
literacy in the biological community is focused on scripting languages like Mat-
lab or Python and may include memory-managed object-oriented languages at
best. C++ combines the considerable complexities of explicit memory man-
agement, object orientation and its unique template mechanism. While all of
these features have played important roles in the success of rapidSTORM, they
also complicate the search for codevelopers and maintainers greatly. In the fu-
ture, the rapidSTORM project will have to find ways to interoperate with the
non-C++ community.

2. Public releases had to be unified with the demands of the scientific publishers.
The editorial boards of important journals such as Nature Methods consider
open-source software as prior publication. Consequently, important advances
needed to await the lengthy board-review and peer-review processes.

3. Inter-group competition in single-molecule localization microscopy is intense.
The principal drivers of the three major single-molecule localization microscopy
methods Eric Betzig (PALM), Xiaowei Zhuang (STORM) and Markus Sauer
(dSTORM) have not co-authored a single paper. In this view, the close asso-
ciation of the rapidSTORM project with the Sauer group has been a mixed
blessing; while the group has given invaluable support to the project2, it has
also tied the project into its sphere of influence, and the intense atmosphere
of competition in single-molecule localization microscopy has prevented wider
cooperation.

3.2 Three-dimensional evaluation

One of the important future challenges of localization microscopy will be the definition
and verification of widely usable and reliable 3D protocols. Despite large interest in 3D
microscopy, and a number of high-profile articles in the mid-2000s [Holtzer et al., 2007,

1Admittedly, in today’s numbers, this would be a classroom full of antiques that even under-
graduates wouldn’t touch with a 10 foot pole. I assume that the majority of the thesis examination
committee was young or very young back then, and I’d like to invite you to indulge in nostalgia.
Having a good feeling during grading time makes all of us happy.

2Please allow me to re-iterate the acknowledgements at this point: I thank the Sauer sincerely
and most gratefully for their unfailing, most helpful support and friendly atmosphere.
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Huang et al., 2008], 3D calibration methods have not been systematically compared
against ground truth data and each other. Even commercial products show large
inconsistencies in results [Proppert et al., 2014, Section 2.5]. Most researchers stop at
measuring the precision of new methods by determining the half-width of filaments or
other structures. Inaccurate lateral and axial measurements are not covered by this
test in any way, but cause wrong results for distance and speed measurements.

The problem did not surface in 2D microscopy due to the high reliability of two-
dimensional optics, and was not noticed earlier in 3D microscopy since most labora-
tories roll their own 3D solutions, give very little detail in publications and therefore
make reproduction of experiments prohibitively expensive, if not outright impossible.

The publication of full source code along with operational procedures is a scientific
necessity, and rapidSTORM’s open source nature has taken an important step. Even
more important, in Proppert et al. [2014, Section 2.5] I have greatly simplified the
calibration process, which is a necessary first step towards weeding out bad algorithms
instead of hunting for bad parameter choices. Cubic B-splines are a natural choice for
the interpolation and smoothing of the noisy 3D calibration data, and my coauthors
have demonstrated the feasibility in the laboratory process excellently.

3.3 Multi-color and multi-plane evaluation

rapidSTORM is still one of the few software solutions that offers support for biplane
3D and multi-color evaluation. Both approaches are impeded by the computational
need to aggregate the pixel data of multiple cameras, while dealing with optical mis-
alignment and different fluorophore types. Available software is either theoretically
motivated and slow [Ram et al., 2008], or is a postprocessing step that collects local-
ization data from independent evaluation of the two planes and gains only minimal
information from the cross-talk [Lampe et al., 2012]. Multifocus optics [Abrahamsson
et al., 2013] can increase the number of planes to nine, which is computable only by
very few software packages, including rapidSTORM [Hajj, 2012].

I strongly suspect that this relative lack of software support is due to the aggra-
vation of the overfitting effect that many researchers ignore in 2D evaluation. The
2D Gaussian has 5 free parameters: amplitude, position in X and Y, and width in
X and Y. The width in X and Y is a function of the optics and does not vary for
each spot, but is still fitted individually to every spot by most softwares. When doing
multi-color fitting in two planes, the gap between 3 necessary free parameters and 5
possible free parameters widens to 3 necessary free parameters (fluorophore bright-
ness, position in X and Y) against 10 possible free parameters. The overfitting with
10 free parameters is causing intense problems, and poses an unacceptable barrier for
ad-hoc development.

In rapidSTORM and Wolter et al. [2012a], I have demonstrated how the 3 nec-
essary free PSF parameters can be inserted into the PSF as explicit and mutually
independent parameters. This work is mathematical and adaptable to other soft-
ware, and I am confident that it will make multi-plane fitting much more reliable and
widespread.

3.4 High-density problem

van de Linde et al. [2010, Section 2.7] and Wolter et al. [2011, Section 2.8] defined,
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motivated and characterized the high-density problem of single-molecule localization
microscopy. To summarize, I have shown in these articles that classical single-molecule
localization algorithms quickly lose both precision and accuracy in spot identification
when too many molecules are concurrently active in the sample. Since the control
over the number of active molecules is not complete, this can pose a problem for
single-molecule localization microscopy on some samples.

I found that a realistic limit of concurrently active fluorophores is 0.6 molecules
per square micrometer. This limit not only places restrictions on the necessary level
of photophysical emitter control, but also defines a lower limit for the acquisition time
and thereby the observation of dynamic processes.

A number of algorithms capable of processing higher-density data has been sug-
gested while this work was performed. Both multi-molecule [Holden et al., 2011,
Huang et al., 2011, Babcock et al., 2012] and true ensemble [Dertinger et al., 2009,
Zhu et al., 2012, Cox et al., 2011] techniques have been established and tested. The
primary contribution of my work is the development and demonstration of methods
to quickly and reliably measure the performance of localization algorithms with the
three core observables of

1. spatial localization precision, i.e. the average spatial error in localization,

2. statistical precision, i.e. the rate of false positives in localization, and

3. statistical accuracy, i.e. the rate of false negatives in localization.

These three observables are critical to characterizing, comparing and observing algo-
rithms. Some authors combine statistical precision and accuracy into the F-measure
[Kř́ıžek et al., 2011], but most authors focus only on localization precision and do
not measure or characterize stochastic precision. So far, the improved measurement
methods proposed by [Wolter et al., 2011, Section 2.8] have failed to gain widespread
use in the field.

Consequently, the lasting contribution of these articles is the precise characteri-
zation of the widely used Gaussian-PSF single-kernel fit approach and the moderate
and simple improve in high-density performance gained with second-kernel checking.

3.5 Biological applications

Sections 2.9, 2.10 and 2.11 document my efforts to push single-molecule localization
microscopy into the dynamical domain. The ability to capture dynamic, real-world
biological processes will determine the role of super-resolution microscopy in biology
by giving super-resolution fluorescence microscopy a functional edge over electron mi-
croscopy. The electron microscope can be used for almost all static applications where
single-molecule localization microscopy is useful, but its high staining requirements
prevent the imaging of dynamic processes.

Endesfelder et al. [2010, Section 2.9] have shown how single-molecule localization
microscopy can be used to detect and track motion. I contributed the color-coded
sliding window visualization that made movement visible in much better context than
traditional video visualization. The findings of Endesfelder et al. [2010] are of par-
ticular importance to the method because they eliminate the common concern that
single-molecule localization would be too slow to address relevant biological questions.
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We have learned from these myosin-actin motility experiments that dSTORM is suf-
ficiently fast for certain dynamic biological processes, but also learned that the error
margin is not particularly large and that slower imaging methods, e.g. PALM, would
have been insufficient to conduct the experiments.

Klein et al. [2011, Section 2.10] have demonstrated the live-cell capability of
dSTORM, and thereby clarified whether super-resolution with synthetic dyes could
be performed in a cell environment. While my role in the research was mostly advi-
sory, I included this article in the thesis to stress its importance to super-resolution
microscopy. The question of intracellular super-resolution use of synthetic dyes gains
special relevance when combined with the results of sections 2.1 and 2.9: dSTORM
imaging has a strong advantage over both fluorescent proteins and electron microscopy
when imaging fast-moving processes, but since a process can only be meaningfully
monitored within the cell, methods for intracellular imaging are crucial for the suc-
cess of dSTORM and localization microscopy in general.

When live monitoring of dynamic processes is unavailable, researchers must sub-
stitute a sequence of snapshots. Bar-On et al. [2012, Section 2.11] have studied the
dynamic process of syntaxin clustering. This study is full of highly novel statistical
methods, and I contributed the idea and implementation of finding clusters of local-
izations by proximity to the local maximum in a smoothed density image. Both the
number of statistical methods and the length of scientific study from the first grant
2007 to the publication of results in 2012 shows the difficulty of using snapshots to an-
alyze complex dynamic processes. The methods once more underline the importance
of our ability to observe and evaluate dynamical processes in the cell.

Section 2.10 also shows the difficulties and problems associated with strong and
inhomogeneous background in localization microscopy. After the publication of the
article [Klein et al., 2011] I have addressed the problem in software with the introduc-
tion of a band-pass spot detection method and background-relative spot thresholding
methods [Wolter et al., 2012b]. While rigorous, peer-reviewed performance measure-
ments are still outstanding, the method has shown promising results on data sets with
high and inhomogeneous background.
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Chapter 4

Conclusion and Outlook

In this thesis, I have proven that single-molecule localization microscopy evaluation
software can be fast, flexible, versatile and precise at once. I have implemented and
documented a free, open-source software. The result is widely used and brought
single-molecule localization microscopy considerably closer to widespread use in the
biological laboratory.

I have demonstrated that the various branches and new techniques of single-
molecule localization microscopy can be united in a single evaluation software and
a single localization algorithm. Very precise maximum-likelihood estimation local-
ization, multi-plane microscopy and three-dimensional imaging were combined in
rapidSTORM with a single localization algorithm based on the well-established Gaus-
sian PSF, yielding an excellently tested and reliable implementation as a base for
future method research.

The fast, free and quickly installed rapidSTORM software advances work in the
biological laboratory in three ways:

1. deployment costs for single-molecule localization imaging are decimated by the
ease of use, open access, wide platform compatibility and low dependencies,

2. transparency and reproducability of scientific protocols are guaranteed by allow-
ing access to versioned, reliably published and independently archived software,
and

3. the open-sourced code provides complete and human-readable documentation
of the algorithmic procedures.

I have characterized the performance of the Gaussian least-squares localization
method with respect to the high-density problem, and shown a low-cost way to im-
prove the performance using the two-kernel improvement. The development of a
method to measure spatial localization performance, recognition precision and recog-
nition accuracy independently of each other has been an important part of this work.
I have located the limit of sensible single-molecule localization microscopy with classic
localization algorithms to 0.6 concurrently active molecules per squared micrometer.

I have greatly simplified calibration for three-dimensional localization by introduc-
ing, testing and characterizing cubic B-splines for describing the relationship between
axial position and width of the Gaussian PSF. The model offers both high accuracy
and high precision, combining the best of previous approaches.

177



178 CHAPTER 4. CONCLUSION AND OUTLOOK

I have applied and extended single-molecule localization microscopy towards the
critical goal of visualizing dynamic processes in the living cell with super-resolution
fluorescence microscopy. To that end, I have developed software methods to study
myosin-actin motility in vitro, to analyze live-cell dSTORM measurements, and to
gain understanding about the dynamic processes of syntaxin clusters from static snap-
shots of the membrane.

The most lasting impact and greatest challenge for future work is the availability of
sufficiently complete open source software for single-molecule localization microscopy.
The current challenge for the field and the rapidSTORM project is the lack of a
vibrant, connected community to bundle and publish efforts, mostly for reasons of
technical complexity and lack of inter-lab communication. This challenge needs to be
overcome to make single-molecule localization microscopy a widely accepted staple
technique for microscopy.

Even though a host of high-density localization algorithms have been presented,
a rigorous comparison is still lacking. Most papers in the field do not give all three
relevant statistics of localization precision, recall and stochastic precision, or have
deficient measurement procedures.

Clear physical proof of the accuracy of three-dimensional localization microscopy
is desperately needed. The current literature contains only proof of the precision
by measuring the half-width of obtained distributions, but accuracy is critical to
determining distances or speeds in the sample. While our method has shown internal
consistency, a reference sample is needed to prove the correctness of the procedure.
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Acronyms

2D two-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3B bayesian analysis of blinking and bleaching. . . . . . . . . . . . . . . . . . . . . . . .10

4PI 4Pi microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

AWESOME AWESOME wide-field excitation super-resolution optical microscopy
except SOFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

BM blink microscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

BMBF Bundesministerium für Bildung und Forschung . . . . . . . . . . . . . . . . . . 181

CAFM critical angle fluorescence microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

DFG Deutsche Forschungsgemeinschaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

dSTORM direct stochastic optical reconstruction microscopy . . . . . . . . . . . . . . . . 10

FPALM fluorescence photoactivation localization microscopy . . . . . . . . . . . . . . 10

FRET Förster resonance energy transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

GFP green fluorescent protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

GSD ground-state depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

GSDIM ground state depletion with individual molecule return . . . . . . . . . . . . 11

HILO highly inclined and laminated optical sheet. . . . . . . . . . . . . . . . . . . . . . . . .4

LAO low-angle oblique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

MLE maximum likelihood estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

NSOM near-field scanning optical microscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

PALMIRA photoactivated localization microscopy with independently running
acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

PALM photoactivated localization microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

PET photoinduced electron transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

PSF point spread function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

rapidSTORM rapid, accurate program implementing direct stochastic optical
reconstruction microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

RESOLFT reversible saturable optical flurorescence transitions . . . . . . . . . . . . . . . 10
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RPM reversible photobleaching microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

SIM structured illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

SOFI super-resolution optical fluctuation imaging . . . . . . . . . . . . . . . . . . . . . . . . 1

SPDM spectral precision distance microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

SSIM saturated structured illumination microscopy. . . . . . . . . . . . . . . . . . . . . . .8

STED stimulated emission depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

STORM stochastic optical reconstruction microscopy . . . . . . . . . . . . . . . . . . . . . . 10

TIR total internal reflection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
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rapidSTORM downloads

This section lists the 219 second-level domains that initiated downloads of rapidSTORM.
The domain name component of ac was ignored in counting domain levels due to its
frequent use as an university qualificator in domain names. It can be reasonably ex-
pected that each of these domain names corresponds to at least one research group,
with the effects of multiple groups per domain and researchers accessing rapidSTORM
from multiple domains (e.g. home and work) cancelling out. To protect the privacy of
the involved people, access dates and IP addresses are not listed and available upon
request.

above.net alicedsl.de amc.nl amres.ac.rs
arcor-ip.net auckland.ac.nz azn.nl bbtec.net
bell.ca Berkeley.edu bionand.es bluewin.ch
broadviewnet.net btcentralplus.com buffalo.edu cablecom.ch
cableone.net caltech.edu cam.ac.uk cancerresearchuk.org
cas.cz cchmc.org cea.fr chalmers.se
charter.com cmu.edu cnrs.fr cnrs-gif.fr
co.in co.jp colorado.edu com.ar
com.au comcast.net com.cn com.sg
cornell.edu co.uk cox.net cuni.cz
dkfz-heidelberg.de dote.hu ed.ac.uk edu.au
edu.sg edu.tr edu.tw ehu.es
embl.de ens.fr ens-lyon.fr epfl.ch
erasmusmc.nl ethz.ch everestkc.net feico.com
fmp-berlin.de fraunhofer.de frontiernet.net fu-berlin.de
gla.ac.uk globonet.hu googlebot.com gulbenkian.pt
gwdg.de hamamatsu.ch harvard.edu helsinki.fi
hwk-ufr.de ibl.fr ic.ac.uk ifn-magdeburg.de
indiana.edu ipht-jena.de jhmi.edu kabel-badenwuerttemberg.de
kabsi.at kfa-juelich.de kit.edu ku.dk
kuleuven.be kyoto-u.ac.jp lanl.gov lbl.gov
masterplanet.fi mcgill.ca mcmaster.ca mediaways.net
meduniwien.ac.at mh-hannover.de mit.edu mnet-online.de
m-online.net mpg.de mrc.ac.uk mts.ru
mtu-net.ru muni.cz mwn.de net.au
net.br net.il netvigator.com nki.nl
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numericable.fr nyu.edu oaps.eu oist.jp
online.nl optonline.net ox.ac.uk pasteur.fr
pnl.gov princeton.edu proxad.net purdue.edu
qmul.ac.uk rice.edu rl.ac.uk rogers.com
rr.com rug.nl rwth-aachen.de salk.edu
sbcglobal.net scansafe.net scripps.edu sfr.net
shef.ac.uk spectral.ca stjude.org sunysb.edu
superkabel.de susx.ac.uk swmed.edu swmed.org
tamhsc.edu tau.ac.il t-dialin.net telekom.hu
teleweb.at t-ipconnect.de tohoku.ac.jp tropolys.de
tu-berlin.de tu-bs.de tu-darmstadt.de tudelft.net
tuwien.ac.at twtelecom.net u-3mrs.fr u-bordeaux2.fr
u-bordeaux.fr uchicago.edu uclm.es ucsd.edu
ucsf.edu uga.edu uio.no uiuc.edu
uk-erlangen.de umass.edu umds.ac.uk umich.edu
uniba.it uni-bielefeld.de uni-bonn.de uni-erlangen.de
uni-frankfurt.de uni-freiburg.de uni-goettingen.de uni-hamburg.de
uni-hannover.de uni-heidelberg.de uni-jena.de uni-karlsruhe.de
uni-kassel.de uni-konstanz.de unilever.com uni-magdeburg.de
uni-mainz.de uni-muenster.de unipd.it uni-regensburg.de
uni-siegen.de uni-stuttgart.de univ-mrs.fr uni-wuerzburg.de
uoc.gr uoregon.edu upc.es u-psud.fr
usc.edu u-strasbg.fr u-tokyo.ac.jp utu.fi
utwente.nl uu.nl uu.se uva.nl
verizon.net versatel.nl videotron.ca virginmedia.com
vtt.fi vu.nl wanadoo.fr wisc.edu
wsu.edu wustl.edu xs4all.nl yale.edu
yandex.com your-server.de ziggo.nl
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