
Multiobjective Traveling Salesman Problems
and Redundancy of Complete Sets

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

vorgelegt von

Maximilian Witek

aus Trier

Würzburg, 2014

Eingereicht am: 20.8.2014
bei der Fakultät für Mathematik und Informatik
1. Gutachter: Prof. Dr. Christian Glaßer
2. Gutachter: Prof. Dr. Pavan Aduri
Tag der mündlichen Prüfung: 4.2.2015

Acknowledgements

I am grateful for all the support I received during my studies and the completion of this thesis.

Most of all, I would like to thank my advisor Christian Glaßer for his continuous support and
for sharing his profound understanding of theory and mathematics with me.

Special thanks go to Heinz Schmitz, who encouraged my interest in the theoretical aspects of
computer science and introduced me to research at an early stage of my studies.

I owe my gratitude to Klaus Wagner and Alexander Wolff, who both gave me the opportunity
to work at their chairs.

I want to thank Christian Reitwießner for the excellent and fruitful collaboration.

I further thank Alan L. Selman and Dung T. Nguyen for the joint work on autoreducibility and
mitoticity. Moreover, I thank Pavan Aduri for agreeing to examine this thesis.

Finally, I want to thank my family and friends for their patience and support.

iii

iv Acknowledgements

Abstract

The first part of this thesis deals with the approximability of the traveling salesman problem.
This problem is defined on a complete graph with edge weights, and the task is to find a cycle of
minimum or maximum weight that visits each vertex exactly once. We study the most important
multiobjective variants of this problem. In the multiobjective case, the edge weights are vectors
of natural numbers, and we approximate the Pareto set, which contains those solutions whose
weights are optimal tradeoffs between the different objectives.

We first study the two-objective minimization version of the traveling salesman problem
with metric weight functions. We obtain improved approximation algorithms and show that
similar techniques lead to approximation algorithms for related Hamiltonian path problems. We
demonstrate that our algorithms also apply to more general multigraph versions of the problem,
and we develop arguments against a significant improvement of our results.

Furthermore, we investigate the k-objective maximization versions of the traveling salesman
problem. We distinguish between directed and undirected graphs, and in both cases, we
develop improved approximation algorithms by transferring single-objective algorithms to the
multiobjective case. The single-objective algorithms compute a maximum weight cycle cover and
remove the lightest edge per cycle. A trivial adaption of these algorithms to the multiobjective
case fails, because multiobjective weights can be incomparable, and the meaning of the term
“lightest edge” is unclear. We develop a general lemma that helps to deal with this difficulty. While
our algorithms provide the currently best approximation ratio for the k-objective maximization
versions, they have the disadvantage of being randomized. We show that with a very small
deviation in the approximation ratio, we can obtain deterministic versions of our algorithms.

In the second part of this thesis, we study redundancy properties of complete sets. We call
a set A autoreducible if membership information about an input instance x can be efficiently
determined from the membership information of other instances y 6= x. If A can be split into two
equivalent parts, then it is called weakly mitotic, and if the splitting is obtained by an efficiently
decidable separator set, then it is called mitotic.

For a given reducibility notion and complexity class, we analyze how redundant its complete
sets are. Previous research in this field concentrates on polynomial-time reducibility notions,
often on many-one or Turing complete sets. Our main contribution is a systematic study of
the redundancy of logspace complete sets for typical complexity classes. Depending on the
computational strength of the complexity class and reducibility notion considered, we use different
techniques to show redundancy. For small complexity classes such as NL and P, we apply self-
reducibility to establish autoreducibility, while for large complexity classes such as PSPACE and
EXP, which have enough computational power to simulate arbitrary logspace reductions, we use
diagonalization to establish mitoticity. For intermediate classes such as NP and the levels of the
polynomial-time hierarchy, we use local checkability to provide autoreducibility of complete sets.

In many cases, we obtain autoreducibility, while mitoticity is not known to hold. We finish
our study by an adaption of a deterministic coin tossing technique to the logspace setting, which
shows that in some cases, autoreducibility at least implies weak mitoticity.

v

vi Abstract

Contents

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 Multiobjective Traveling Salesman Problems . 1

1.2 Redundancy of Complete Sets . 3

1.3 Outline . 4

1.4 Publications and Bibliographical Remarks . 8

2 Preliminaries 11

2.1 Basic Mathematical Notations . 11

2.2 Graph Theory . 12

2.3 Boolean Formulas . 13

2.4 Complexity Theory . 14

2.4.1 Turing Machines and Transducers . 14

2.4.2 Complexity Classes and Function Classes 15

2.4.3 Alternating Turing Machines . 16

2.4.4 Oracle Turing Machines . 17

2.4.5 Reducibilities and Complete Problems . 18

I Multiobjective Traveling Salesman Problems 21

3 Multiobjective Optimization 23

3.1 Basic Definitions . 25

3.2 Relevant Multiobjective Problems . 27

3.3 Previous Work and Contributions in this Part . 29

4 Minimum Traveling Salesman Problems 33

4.1 Problem Definitions . 36

4.2 Multigraph Approximation Schemes . 38

4.3 Approximation of Multigraph 2-MinTSP . 41

4.3.1 Deterministic Approximation . 41

4.3.2 Randomized Approximation . 44

4.4 Approximation of Multigraph 2-MinTSPP . 46

4.4.1 Randomized Approximation . 46

4.4.2 Deterministic Approximation . 50

4.5 Lower Bound Arguments . 51

vii

viii Contents

4.5.1 Lower Bound Arguments for TSP . 51

4.5.2 Lower Bound Arguments for TSPP . 54

4.6 Summary and Discussion . 55

5 Applications of Discrepancy Theory 57

5.1 Problem Definitions . 60

5.2 Approximation of Cycle Cover Problems . 61

5.3 Discrepancy Results . 62

5.4 Randomized Approximation of k-MaxTSP . 64

5.5 Deterministic Approximation of k-MaxSAT . 67

5.6 Summary and Discussion . 71

6 Applications of Necklace Splitting 73

6.1 Problem Definitions . 75

6.2 Necklace Splitting Results . 76

6.3 Deterministic Matching Approximation . 78

6.4 Deterministic Cycle Cover Approximation . 87

6.5 Deterministic Approximation of k-MaxTSP . 91

6.6 Summary and Discussion . 94

II Redundancy of Complete Sets 97

7 Autoreducibility and Mitoticity 99

7.1 Definition of Autoreducibility and Mitoticity . 100

7.2 Previous Results and Related Work . 101

7.3 Contributions in this Part . 102

7.4 Simple Properties . 103

8 Self-Reducibility 107

8.1 Definition of Self-Reducibility . 108

8.2 Autoreducibility by Self-Reducibility . 109

8.3 Applications to Low Complexity Classes . 111

8.4 Reductions with Fixed Binary Boolean Functions 112

8.5 Summary and Discussion . 116

9 Local Checkability 117

9.1 Bounded Truth-Table Complete Sets . 118

9.2 Logspace Turing Autoreducibility . 124

9.3 Separation Implications . 127

9.4 Summary and Discussion . 132

10 Redundancy by Diagonalization 135

10.1 General Results . 136

10.2 Complete Sets for PSPACE and EXP . 139

10.3 Complete Sets for NEXP . 144

10.4 Summary and Discussion . 147

Contents ix

11 Deterministic Coin Tossing 149
11.1 Autoreductions and Ruling Sets . 151
11.2 Many-One Complete Sets . 157
11.3 Truth-Table Complete Sets with One Query . 158
11.4 Disjunctive Truth-Table Complete Sets for PSPACE 161
11.5 Summary and Discussion . 162

Bibliography 163

Index 169

x Contents

Chapter 1

Introduction

A central subject of theoretical computer science is the study of complexity classes. Such classes
categorize algorithmic problems according to the computational resources that are needed to
solve them. Most prominently, the class P contains those problems that can be solved in efficient
runtime, and the class NP contains those problems whose solutions can be efficiently verified.
Today, there exists a large number of important problems that are known to belong to NP, but
whose membership to P is yet unknown. For that reason, the question whether P equals NP has
become one of the most important and popular open questions in mathematics.

The general subject of this thesis is the study of complete problems for NP and further
complexity classes. Such problems are the most difficult problems that belong to a given
complexity class, and they are closely related to the class itself. For instance, in order to show
that P equals NP, it suffices to show that an NP-complete problem belongs to P. Many practical
problems in NP turned out to be NP-complete, hence their study is a challenging and difficult
task.

This thesis studies complete problems from two perspectives. In the first part, we study
multiobjective optimization variants of the traveling salesman problem, a prominent example of
an NP-complete problem. In the second part of this thesis, we look at complete problems in a
very general way, and we analyze redundancy properties that hold for all complete problems of
a given complexity class. Below, we give a more detailed introduction to these topics.

1.1 Multiobjective Traveling Salesman Problems

Suppose we are given a set of cities on a map, and we want to find the shortest roundtrip that
visits every city exactly once. This problem is known as the minimum traveling salesman problem
(MinTSP) and has become one of the most studied combinatorial optimization problems in
mathematics until today. More generally, it is defined as a graph problem, where the input
consists of a complete graph with edge weights, and we want to find a Hamiltonian cycle of
minimum weight. This general problem has a large number of practical applications, such as
vehicle routing, job sequencing, and computer wiring [LLKS85].

Despite its simple formulation, all efforts to find efficient algorithms that solve MinTSP so
far have failed. Karp [Kar72] gave a mathematical explanation by showing the NP-hardness of
MinTSP. This means that MinTSP is at least as difficult as all problems that are contained
in the complexity class NP, such as scheduling, bin packing, partitioning, and many more
practically relevant problems (see Garey and Johnson [GJ79] for a survey). Moreover, a fast
algorithm for MinTSP would show that P equals NP and hence would yield fast algorithms for
all of these problems. Today there exist many further arguments that indicate how difficult it is

1

2 Chapter 1. Introduction

to show that P equals NP, hence we cannot expect to find an exact and fast solution algorithm
for the general MinTSP, and we need other ways to cope with its NP-hardness.

Recall that in the original problem formulation we want to find a Hamiltonian cycle of
minimum weight. If we relax the optimality condition and search for Hamiltonian cycles that
have a small but not necessarily minimal weight, then finding a solution to our problem becomes
easier. Such a relaxation of the original problem is captured by the notion of an approximation
algorithm. For α ≥ 1, an algorithm is called α-approximation for MinTSP if it runs fast and
always finds a Hamiltonian cycle that weighs at most α times the minimal possible weight. If
MinTSP has an α-approximation, then it is simply called α-approximable.

A large amount of research has been spent on the approximability of MinTSP. For instance,
Sahni and Gonzalez [SG76] showed that there does not exist an α-approximation of MinTSP
(where α is an arbitrary constant), unless P = NP, while Christofides [Chr76] showed that its
restriction to metric problem instances is 3/2-approximable. Interestingly, Christofides’ algorithm
is still the best known approximation algorithm for metric MinTSP.

In the first part of this thesis, we will study the approximability of the traveling salesman
problem in the presence of multiple objectives. We will concentrate on the following k-objective
problem variants, where k ∈ N denotes the number of objectives:

k-Min∆TSP: For a complete undirected graph with edge weights in Nk that satisfy the triangle
inequality in each objective, find Hamiltonian cycles of minimum weight.

k-MaxSTSP: For a complete undirected graph with edge weights in Nk, find Hamiltonian
cycles of maximum weight.

k-MaxATSP: For a complete directed graph with edge weights in Nk, find Hamiltonian cycles
of maximum weight.

Observe that in the multiobjective setting, the weights of Hamiltonian cycles are vectors
of natural numbers and hence can be incomparable, so there might not exist a unique optimal
solution. The Pareto set as the set of all optimal tradeoffs captures the notion of optimality in
this setting, and our goal is to compute sets of solutions that approximate the Pareto set.

The previously best known approximation algorithms for these problems are due to Manthey
and Ram [MR09] and Manthey [Man12b, Man12a] (we refer to Chapter 3 for a summary of
previous work). Our main contributions are as follows:

• In the case of k-Min∆TSP, we concentrate on two objectives. We work with Christofides-
like algorithms and obtain a 2-approximation. We further use our technique to approximate
similar Hamiltonian path problems, and we show that our algorithms actually solve more
general multigraph problems that cover the metric problems as a special case.
• In the case of k-MaxATSP and k-MaxSTSP, we generalize known cycle cover based

algorithms to the multiobjective case and again obtain improved approximation results.

While our minimization algorithms improve the previously best known approximation algorithms,
they leave a significant gap to the approximation ratio that is obtained by Christofides’ algorithm
in the single-objective case. We give a partial explanation of this discrepancy by showing that
significant improvements of our results yield improved algorithms for well-studied single-objective
problems.

The maximization algorithms that we develop match the approximation ratio of their single-
objective counterpart. In order to generalize these algorithms to the case of multiple objectives,
we solve a very general problem: given a list of multidimensional weights and some c ≥ 1, we
can find a selection that roughly weighs a fraction of 1/c of the entire list in each objective. We
demonstrate how to apply this result to approximate further multiobjective problems.

1.2. Redundancy of Complete Sets 3

1.2 Redundancy of Complete Sets

In the second part of this thesis we shift our focus to general properties of complete sets. Consider,
for instance, the following question:

• Are all NP-complete sets infinite?

It is quite often the case that such questions can easily be answered for all known complete
problems, while an answer that holds for all complete problems has important consequences. In
the above case, it is easy to see that all problems that are known to be NP-complete (such as the
traveling salesman problem) are infinite. However, if all NP-complete problems are infinite, then
finite sets in P are not NP-complete and hence P 6= NP, and if some NP-complete problem is
finite, then all problems in NP are reducible to a finite set and hence polynomial-time decidable.
So the above question is just another formulation of the question whether P equals NP.

Instead of infiniteness, we will consider redundancy properties and ask similar questions for
complete sets for different complexity classes and with respect to different reducibility notions.
So suppose we have a reducibility notion ≤ and a complexity class C. Our general question in
the second part of this thesis will be as follows:

• Are all ≤-complete sets for C redundant?

A strong form of redundancy is the paddability property. This notion goes back to the work of
Berman and Hartmanis [BH77]. Inspired by the similarities between P and REC (resp., NP and
RE), they tried to show that all NP-complete sets are polynomial-time isomorphic to each other.
They observed that a set is polynomial-time isomorphic to SAT if and only if it is paddable,
which means that in polynomial time, one can encode and decode arbitrary information into
its instances without changing their membership status to the set. Observe that for arbitrary
elements, the membership information to a paddable set is redundantly stored in the membership
information of a large number of different elements, so we can think of paddability as a strong
form of redundancy. For all known NP-complete problems, Berman and Hartmanis could show
paddability, and they conjectured that paddability holds for all NP-complete problems, and
hence that all NP-complete problems are polynomial-time isomorphic to each other. Observe
that a positive answer to their conjecture would imply P 6= NP, because SAT is not isomorphic
to finite sets. The conjecture is still unsolved, and we study weaker forms of redundancy in
order to obtain partial progress on these difficult questions.

The properties of autoreducibility and mitoticity have their origins in recursion theory.
Trakhtenbrot [Tra70] called a set A autoreducible if there exists an algorithm that determines
the membership of x with additional access to the membership information of arbitrary elements
y 6= x to A, and Ladner [Lad73] introduced mitoticity for sets that are a disjoint union of
two sets in the same degree. It is known that in general, mitoticity implies autoreducibility.
Ladner showed that for recursively enumerable sets, also the reverse implication holds, so here,
autoreducibility and mitoticity are equivalent.

Ambos-Spies [AS84] studied these concepts in the complexity-theoretic setting. With respect
to polynomial-time many-one reductions, he called a set A autoreducible if A reduces to itself
via a reduction function f that never maps to its own input, and he called A weakly mitotic if
A can be split by a separator set S into two parts A ∩ S and A ∩ S such that A and the two
parts are equivalent to each other. If additionally S ∈ P, then A is simply called mitotic. Note
that for further reducibility notions, one can define autoreducibility and mitoticity analogously.

The concepts of autoreducibility and mitoticity can be interpreted as weaker forms of
redundancy. If a set is autoreducible, then membership information about its elements can
be derived locally from that of other elements. Moreover, the membership information of

4 Chapter 1. Introduction

elements of a mitotic set is redundantly stored in two parts of the set. Consequently, we will
think of autoreducibility and mitoticity as local and global forms of redundancy. Note that
mitoticity generally implies autoreducibility, while the converse does not necessarily hold. So for
a reducibility notion ≤ and a complexity class C, our redundancy questions will be as follows:

Are all ≤-complete sets for C ≤-autoreducible or even ≤-mitotic?

A significant amount of research has been spent on the study of this question for polynomial-
time reducibility notions. For instance, the following results are known for non-trivial sets:

• All ≤p
m-complete sets for NP are ≤p

m-mitotic [GPSZ08].
• All ≤p

dtt-complete sets for PSPACE are ≤p
dtt-autoreducible [GOP+07].

• There exists a ≤p
btt-complete set for EXP that is not ≤p

btt-autoreducible [BFvMT00].

These few results already lead to very interesting situations. The first two results show that even
though complete sets are the most difficult sets of a complexity class, they contain some kind
of regularity, while this might not hold for all sets of the class. Moreover, extending the first
result to all ≤p

btt-complete sets for NP is very difficult, because, by the third result, there are
≤p

btt-complete sets for EXP that are not ≤p
btt-autoreducible, and hence we would have separated

NP and EXP. On the other hand, showing the third result for NP would separate P and NP,
because all sets in P are trivially ≤p

btt-autoreducible.
A lot of further redundancy results are known for various reducibility notions and complexity

classes (we refer to Chapter 7 for a detailed summary). However, most research in this field
concentrates on polynomial-time reducibility notions. While we obtain some progress on these
questions, our main contribution is a systematic study of autoreducibility and mitoticity of sets
that are complete with respect to logspace reducibility notions. Using logspace reductions enables
us to further look into small classes such as NL and P, but at the same time it restricts the
techniques we can use. Consequently, we will use different techniques to establish autoreducibility
or even mitoticity that depend on the particular context:

• For small classes such as NL or P, we will use a tree-traversal technique that is based on
the concept of self-reducibility to establish autoreducibility properties.
• For large classes such as PSPACE or EXP, we will apply diagonalization techniques to

enforce mitoticity properties.
• For intermediate classes such as NP and the levels of the polynomial-time hierarchy, we

will use techniques that locally check objects such as computational transcripts or Boolean
formulas to establish autoreducibility properties.

In many cases, we obtain that complete sets are autoreducible, and the question remains open
whether these sets are mitotic. We conclude our study with a very general result, which shows
that in some cases, autoreducibility at least implies weak mitoticity. Improvements to mitoticity
remain a challenging task for future work.

1.3 Outline

Chapter 2 contains notations and mathematical foundations that are relevant for the entire
thesis. The remainder of the thesis is split into two parts. In Chapters 3 to 6, we study the
approximability of multiobjective traveling salesman problems. In Chapters 7 to 11, we study
autoreducibility and mitoticity properties of complete sets. Chapters 3 and 7 are introductory
chapters to each of the two parts of the thesis. At the end of Chapter 3 we give a summary of
the first part, and at the end of Chapter 7 we give a summary of the second part.

Below we give a more detailed description of the contents of each chapter.

1.3. Outline 5

Chapter 2

This chapter serves as a reference for notations and definitions that we use throughout this
thesis. It includes the basic mathematical notations, the graph-theoretic concepts, a notation for
Boolean formulas and operators, and the complexity-theoretic foundations on which this thesis
is based. The first part of this thesis deals with multiobjective traveling salesman problems,
for which the graph-theoretic concepts are of particular importance. The complexity-theoretic
concepts are important for the second part of the thesis that deals with redundancy properties
of complete sets.

Chapter 3

In this chapter we give a general introduction to multiobjective optimization and traveling
salesman problems. We use the notation that we developed in previous papers [GRSW10a,
FGL+12] to give a precise definition of multiobjective problems and their solution, and we
show how to approximately solve such problems. We further define the relevant multiobjective
traveling salesman problems and additional multiobjective graph problems that we consider in
the first part of this thesis. In particular, we work with multiobjective versions of the minimum
perfect matching problem, the minimum spanning tree problem, and the minimum shortest
path problem. We include the important result by Papadimitriou and Yannakakis [PY00], who
showed that these problems admit polynomial-time approximation schemes.

Chapter 4

We first study multiobjective versions of the minimum traveling salesman problem and related
path problems. Since a constant-ratio approximation algorithm for the general single-objective
minimum traveling salesman problem would imply P = NP, one often works on restrictions
with metric distance functions. We argue that a straightforward generalization to multiple
objectives (i.e., multiobjective distance functions that are metric in each component) is very
restrictive, and a more general and practically relevant multiobjective version can be obtained by
considering spanning walks in multigraphs. We show reductions that adapt the approximation
results by Papadimitriou and Yannakakis [PY00] for multiobjective matching, shortest path
and spanning tree problems to the corresponding multigraph problems. As the main result
of this chapter, we give a deterministic and a randomized approximation algorithm for the
two-objective minimum traveling salesman problem on multigraphs. Our deterministic algorithm
is a modification of a tree-doubling technique, while our randomized algorithm is inspired by
Christofides’ algorithm [Chr76]. Moreover, we develop similar algorithms for the traveling
salesman path problems on multigraphs. We finish the chapter with lower bound considerations,
where we show that certain improvements of the multiobjective case would yield improvements
of well-studied single-objective problems.

Chapter 5

We shift our focus to maximization variants of the multiobjective traveling salesman problem.
We allow arbitrary multiobjective weights on the edges and distinguish between the problem
version on directed and on undirected graphs. For both versions there exist basic approximation
algorithms in the single-objective setting. These algorithms first compute a maximum weight
cycle cover, then remove the lightest edge per cycle, and then connect the remaining paths to
a Hamiltonian cycle. Since in directed and undirected graphs, each cycle consists of at least
two and three edges, one obtains a 1/2 and a 2/3 approximation, respectively. For more than

6 Chapter 1. Introduction

one objective, the situation is more complicated, because then the term “lightest edge” is not
well-defined, and a straightforward adaption of the algorithm to multiple objectives fails. The
main result in this chapter is a lemma that solves this problem in a very general way. We
use results from discrepancy theory to show that for a matrix with c rows of multidimensional
vectors, we can choose one vector per column such that the selection roughly weighs 1/c of the
entire matrix in each dimension. Moreover, we can compute such a selection in polynomial
time. These results provide us with an algorithm that chooses for each cycle of a cycle cover an
edge that we can remove without losing too much overall weight. We are hence able to transfer
the single-objective approximation algorithms to the multiobjective case, where we obtain a
1/2 and a 2/3 approximation, respectively. We note that these algorithms rely on the matching
approximation by Papadimitriou and Yannakakis [PY00] and hence are randomized. Moreover,
we show that our technique is not restricted to traveling salesman problems but rather solves
a problem that generally occurs in multiobjective optimization. As another example, we use
our lemma to generalize a basic approximation algorithm for the single-objective maximum
satisfiability problem on Boolean formulas to multiple objectives.

Chapter 6

We finish the first part of this thesis by considering the deterministic approximation properties of
the multiobjective maximum traveling salesman problems. Our results rely on necklace splitting
results by Stromquist and Woodall [SW85], who showed how to split necklaces that consist
of different materials with very few cuts into evenly balanced parts. Their result provides us
with a vector balancing lemma that is similar to the result in the previous chapter, but which
has more structure. Namely, given a matrix of c rows of multidimensional vectors, we can
choose one vector per column such that the entire selection roughly weighs 1/c in each dimension.
Moreover, this selection consists of very few row blocks that together form the selection. We
show that this lemma enables us to combine different matchings in a convex way into a single
matching that roughly has the same weight as a convex combination of the different matching
weights. Together with an algorithmic version of Carathéodory’s theorem [Car11], we can find
for arbitrary multidimensional weight vectors d a matching that almost weighs as much as d,
if such a matching exists. By using standard reductions, this provides us with a PTAS-like
approximation algorithm for cycle cover, and by applying an algorithm that is similar to the
one we used in the previous chapter, we obtain deterministic (1−ε)/2 and (2−ε)/3 approximation
algorithms for the multiobjective maximum traveling salesman problems for arbitrary ε > 0.

Chapter 7

We continue with a general introduction to the study of redundancy properties of complete sets.
We first give a general introduction to this field. Next we define the concepts of autoreducibility,
mitoticity, and weak mitoticity. We summarize the known results for various reducibility notions
and complexity classes, before we finish the chapter with some simple observations and properties
that are helpful for the remainder of the second part of this thesis. We include an overview of
the currently known autoreducibility, mitoticity, and weak mitoticity results of complete sets.

Chapter 8

We first show a technique to establish autoreducibility of complete sets that is based on self-
reducibility. This property of sets was introduced by Balcázar [Bal90] and denotes a stronger
form of autoreducibility, where for an arbitrary input x, the membership information to the
self-reducible set can be obtained from the membership information of elements y that are strictly

1.3. Outline 7

smaller than x. We show that if for some class there exists a complete set that is self-reducible,
then its autoreducibility applies to all complete sets in that class. This is particularly useful
for small classes such as NL and P, where complete, self-reducible sets are known to exist. We
hence obtain autoreducibility of complete sets for NL and P with respect to various reducibility
notions. Moreover, a modification of the self-reducibility technique shows autoreducibility with
respect to truth-table reductions that only use fixed binary Boolean functions.

Chapter 9

We continue our investigation by applying local checkability to complete sets. Suppose, for
instance, we have a complete set A for P and a Turing machine M that shows A ∈ P. We
consider the transcript (i.e., the sequence of configurations) of M on some input x. With an
appropriate encoding, each transcript bit only depends on a constant number of previous bits.
So if we are given a transcript, then we can locally check its consistency by a bitwise verification.
Note that the transcript bits of a polynomial-time computation are computable in polynomial
time and hence reducible to A. By reducing the transcript bits to the sets A ∪ {x} and A− {x}
we obtain two candidate transcripts without querying x. Using the local checkability technique
we can verify the correct transcript and determine whether x ∈ A holds or not.

With this technique we obtain new autoreducibility results for logspace bounded truth-
table complete sets for P and the ∆p

k-levels of the polynomial-time hierarchy. As a second
application, we transfer redundancy results from the polynomial-time setting to the logspace
setting by looking at transcripts of polynomial-time autoreductions. This is particularly useful
for logspace-complete sets for NP or coNP, where so far, only polynomial-time mitoticity was
known. We show that these sets are logspace Turing autoreducible. We conclude the chapter
with an adaption of negative results by Buhrman et al. [BFvMT00] to the logspace setting. We
obtain that improving some of the results shown in this chapter is difficult, as it would lead to
new separations of complexity classes.

Chapter 10

We proceed by analyzing complete sets of classes that are sufficiently powerful to simulate
logspace or polynomial-time reductions, such as PSPACE, EXP, and NEXP. For these sets
we use diagonalization to prevent “unwanted cases” in the reductions. For instance, if we
consider a complete set A for PSPACE, then we can define another complete set B that enforces
every reduction to A on input x to query a value different from x, which enables us to show
autoreducibility. In some cases, we can enforce the autoreduction to be length-squaring, and
by standard techniques, this provides even mitoticity. A similar technique applies to complete
sets for PSPACE and EXP with respect to various logspace or polynomial-time reducibility
notions. For NEXP, the situation is more complicated, because we do not know whether NEXP
is closed under complementation or not. Using diagonalization techniques we show that complete
sets for NEXP with respect to various logspace and polynomial-time reducibility notions are
autoreducible.

Chapter 11

We finish our study of redundancy of complete sets by showing that in some cases, logspace
autoreducibility of complete sets implies weak logspace mitoticity. The difference to mitoticity
is that we do not require the separator that splits our set into two equivalent parts to be
polynomial-time or even logspace decidable. Glaßer et al. [GPSZ08] showed that for polynomial-
time many-one reductions, autoreducibility and mitoticity are equivalent for non-trivial sets.

8 Chapter 1. Introduction

They follow the “trace” of an autoreduction for polynomially many steps in order to consistently
decide whether the input belongs to the separator set or not. This approach is difficult to
translate to the logspace setting, because here, the autoreduction can only be followed for a
constant number of steps. We show that we can shift some of the complexity into the separator
such that after constantly many steps of the autoreduction, we change the membership to the
separator. In order to reduce the one part of the set to the other, we only need to consider the
next few elements on the trace of the autoreduction, which shows that our set is weakly mitotic.
In the logspace setting, we obtain new weak mitoticity results for P, ∆p

k, and NEXP, and in the
polynomial-time setting, we obtain new weak mitoticity results for PSPACE.

1.4 Publications and Bibliographical Remarks

This thesis is based on a technical report [GRW09] and the following publications:

[GW14] C. Glaßer and M. Witek. Autoreducibility and mitoticity of logspace-complete
sets for NP and other classes. In Proceedings 39th International Symposium of
Mathematical Foundations of Computer Science (MFCS), volume 8635 of Lecture
Notes in Computer Science, pages 311–323. Springer, 2014.

[GNR+13a] C. Glaßer, D. T. Nguyen, C. Reitwießner, A. L. Selman, and M. Witek. Au-
toreducibility of complete sets for log-space and polynomial-time reductions. In
Proceedings 40th International Colloquium on Automata, Languages, and Program-
ming (ICALP), volume 7965 of Lecture Notes in Computer Science, pages 473–484.
Springer, 2013.

[FGL+12] K. Fleszar, C. Glaßer, F. Lipp, C. Reitwießner, and M. Witek. Structural complexity
of multiobjective NP search problems. In Proceedings 10th Latin American
Symposium on Theoretical Informatics (LATIN), volume 7256 of Lecture Notes in
Computer Science, pages 338–349. Springer, 2012.

[GRW11a] C. Glaßer, C. Reitwießner, and M. Witek. Applications of discrepancy theory in
multiobjective approximation. In Proceedings Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), volume 13 of LIPIcs, pages 55–65.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[GRSW10a] C. Glaßer, C. Reitwießner, H. Schmitz, and M. Witek. Approximability and
hardness in multi-objective optimization. In Proceedings 6th Conference on Com-
putability in Europe (CiE), volume 6158 of Lecture Notes in Computer Science,
pages 180–189. Springer, 2010.

For each conference publication, a technical report can be found online [GW13, GNR+13b,
FGL+11, GRW11b, GRSW10b]. The above papers relate to this thesis as follows.

Chapter 3 uses the framework we developed in [GRSW10a, FGL+12] to give a precise
definition of multiobjective problems and their approximation. Chapters 4 and 5 summarize the
results of our work on multiobjective traveling salesman problems [GRW09, GRW11a]. Chapter 6
is based on unpublished joint work with Christian Reitwießner on deterministic versions of the
results of Chapter 5. Chapters 8 to 10 contain results from our paper about autoreducibility and
mitoticity [GNR+13a], and Chapter 11 shows our most recent results on weak mitoticity [GW14].

1.4. Publications and Bibliographical Remarks 9

Our work on autoreducibility and mitoticity was initiated by Dung T. Nguyen and Alan L.
Selman [NS12], who showed autoreducibility results for NEXP and further noted that similar
techniques lead to mitoticity results for PSPACE and EXP. A complete proof of these results
was obtained in joint work [GNR+13a]. In Sections 10.2 and 10.3 we give a shorter proof of
these results.

10 Chapter 1. Introduction

Chapter 2

Preliminaries

2.1 Basic Mathematical Notations

Sets, Words and Numbers We denote by N = {0, 1, 2, . . . } and Z = {. . . ,−2,−1, 0, 1, 2, . . . }
the set of natural numbers and the set of integers. For the set of positive natural numbers we
use N+ = {1, 2, . . . }. We denote by Q and R the set of rational numbers and the set of real
numbers. Moreover, we use standard notation to denote intervals of numbers, so for instance we
write [a, b) := {x | a ≤ x < b}. In some cases, we will use intervals of integers, and in some cases,
we will use intervals of rational or real numbers. The difference will always be clear from the
context. Let x be a number. We will use abs(x) to denote the absolute value, and analogously
we will use sgn(x) to denote the sign of x. Moreover, we use dxe := min{n ∈ Z | n ≥ x} and
bxc := max{n ∈ Z | n ≤ x}.

For a finite alphabet Σ, let Σ∗ denote the set of all words over Σ, including the empty word
ε. For w ∈ Σ∗, let |w| denote the length of w. If x is an integer, then let |x| denote the length of
the binary representation of x. For n ∈ N we will sometimes use the notation Σ≥n, Σ≤n, and Σn

to denote the set of words over Σ of length at least n, at most n, and equal to n, respectively.
We use A to denote the complement of the set A (with respect to some base set B, which will
always be clear from the context). For a set A ⊆ Σ∗ we define the characteristic function cA of
A and the semicharacteristic function χA of A by

cA : Σ∗ → {0, 1} cA(x) =

{
1 if x ∈ A, and

0 if x /∈ A,

χA : Σ∗ → {0, 1} χA(x) =

{
1 if x ∈ A, and

not defined if x /∈ A,

for all x. For A ⊆ N we define cA and χA over N analogously. For sets A and B we denote the
set difference of A and B by A−B = {x ∈ A | x /∈ B}. Moreover, we use A4B = {x ∈ A∪B |
cA(x) 6= cB(x)} to denote the symmetric difference operator on sets. We denote the cardinality
of the set A by |A|. Moreover, we call A non-trivial if neither A nor A are finite. In some cases
we will use 2A = {B | B ⊆ A} to denote the power set of A.

Encodings of Further Objects We will sometimes work with further objects such as graphs,
sets or sequences. We will use an encoding function 〈·〉 to encode such objects into integers. For
a sequence a1, . . . , an of integers, the binary representation of 〈a1, . . . , an〉 can be obtained by
doubling the bits in the binary representations of each ai and appending the results to a single
bit string, where we use the bit string 10 as a separation block and as start and end marker. For

11

12 Chapter 2. Preliminaries

further objects, we assume that an appropriate encoding into integers exists. We can hence use
objects and lists of objects as input to our algorithms, where we define the length of an object
or a list of objects as the length of its encoding.

Functions and Landau Notation For functions f and g, we define the composition f ◦ g
by (f ◦ g)(x) = f(g(x)). For a total function f , we will use f (i) to denote the i-th iteration
of f , which is defined inductively by f (0)(x) = x for all x, and f (i+1) = (f ◦ f (i)) for all i ∈ N.
Moreover, let log denote the logarithm to base 2. For simplicity, we define log(x) = 0 for all
x < 1, hence log and the iterated logarithm log(i) for all i are total functions. For a total function
f , we will use the Landau notation to denote the following classes of functions.

O(f) := {g : N→ N | g is total and ∃c ∈ N such that ∀n > c it holds that g(n) ≤ c · f(n)}
Ω(f) := {g : N→ N | g is total and ∃c ∈ N such that ∀n > c it holds that g(n) ≥ c · f(n)}
Θ(f) = O(f) ∩ Ω(f)

Moreover, we use 2O(f) := {g : N→ N | ∃h ∈ O(f) : ∀x ∈ N : g(x) ≤ 2h(x)}.

2.2 Graph Theory

Graphs We define a graph as a tuple G = (V,E), where V is a set of vertices and E is a set
of edges . Throughout the first part of this thesis we will only consider graphs with finite V and
E. We distinguish between a directed graph, where E ⊆ {(u, v) | u, v ∈ V }, an undirected graph,
where E ⊆ {{u, v} | u, v ∈ V }, and a multigraph, where E ⊆ {({u, v}, i) | u, v ∈ V, i ∈ N}. In
directed graphs, an edge (u, v) connects the vertices u and v and has the direction from u to
v, while in an undirected graph and in a multigraph, the edge {u, v} and the edge ({u, v}, i)
connect the vertices without a direction. The last component i of an edge of a multigraph is used
to distinguish different edges that connect the same pair of vertices. An edge e that connects
vertices u and v is said to be incident to u (and v), and we define [e] = {u, v}. In this case we
also say that e covers u (and v). Moreover, if E is an edge set and u is a vertex, we say that E
covers u if there exists an edge e ∈ E such that e covers u. We say that a graph G′ = (V ′, E′) is
a subgraph of a graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E. A directed graph is called loop-free if it
does not contain an edge of the form (u, u), and an undirected graph where every edge connects
two distinct vertices is called simple. A graph is called complete if it is a directed, loop-free
graph, and for every pair of distinct vertices u, v there exists an edge from u to v, or if it is an
undirected, simple graph, and every pair of distinct vertices is connected. For a graph G = (V,E),
v ∈ V , and F ⊆ E, we define the degree of v in F by degF (v) = |{e ∈ F | e is incident to v}|.
Moreover, we denote the degree of v in G by degG(v) = degE(v). A graph G = (V,E) is called
bipartite if there exists a partition of V into two disjoint sets V1 and V2 such that for every e ∈ E
it holds that |[e] ∩ V1| = |[e] ∩ V2| = 1.

Walks, Paths, Cycles Let G = (V,E) be a graph. An sequence v0, e1, v1, e2, . . . , em, vm that
alternates between vertices v0, . . . , vm ∈ V and edges e1, . . . , em ∈ E is called walk (from v0 to
vm) if for all 1 ≤ i ≤ m it holds that [ei] = {vi−1, vi}, and furthermore ei = (vi−1, vi) (if G
is directed). The vertices v0 and vm are called the endpoints of the walk. A closed walk is a
walk with v0 = vm, a spanning walk is a walk whose edges cover all vertices of G, a path is a
walk without repeated vertices, and a cycle is a closed walk without repeated edges and vertices
(except the endpoints) and at least two distinct vertices. Spanning cycles and spanning paths
are also called Hamiltonian. If G is undirected or a multigraph, then we call G connected if for

2.3. Boolean Formulas 13

every pair of vertices u, v of G there exists a walk from u to v in G. If G is directed, then we
call G weakly connected if G is connected if we consider it as an undirected graph, and we call
G strongly connected if for every pair of vertices (u, v) there exists a walk from u to v in G. A
connected graph G is called Eulerian if degG(v) is even for all vertices v of G. It is well-known
that the edge set of an Eulerian graph corresponds to a closed spanning walk of the graph that
can easily be constructed from the graph.

Trees Let G = (V,E) be a graph, let T ⊆ E, and let U ⊆ V be the set of vertices covered by
T . Then T is called tree if (U, T) is (weakly) connected and does not contain a cycle or an edge
e with [e] = {u}. If G is directed, then we further require that if T 6= ∅, then there exists exactly
one vertex u ∈ U called root such that for all v ∈ U there exists a unique walk from u to v in
(U, T). If U = V , then T is called spanning tree (of G).

Matchings Let G = (V,E) be a graph and let M ⊆ E. We call M a matching (of G) if for all
v ∈ V it holds that degM (v) ≤ 1. If M is a matching (of G), then we say that v ∈ V is matched
by M if degM (v) = 1. If every vertex of G is matched by M , then M is called perfect. Clearly,
if M is a perfect matching of G, then G has an even number of vertices, and |M | = |V |/2. A
matching is called near-perfect if exactly one vertex is not matched. We will slightly change this
notion in such a way that if M is a matching of G and r ∈ N, then we say that M is r-near
perfect if |M |+ r ≥ |V |/2. Hence, a matching is perfect if and only if it is 0-near perfect.

Cycle Covers For the graph G = (V,E), a set C = {C1, . . . , Cm} with m ∈ N and
C1, . . . , Cm ⊆ E is called cycle cover of G if each Ci ∈ C is a cycle of G and for every
v ∈ V there exists exactly one Ci ∈ C such that v is covered by Ci. Clearly, if C is a cycle cover
of G, then C uses exactly |V | edges. If C is a set of paths and cycles of G such that for every
v ∈ V there exists at most one path or cycle in C that covers v, then C is called partial cycle
cover. For r ∈ N we define an r-near cycle cover to be a partial cycle cover that uses at least
|V | − r edges. Hence, C is a cycle cover of G if and only if C is a 0-near cycle cover. Observe
that Hamiltonian cycles can be interpreted as special cycle covers consisting of a single cycle.
For the sake of simplicity we will often consider cycle covers and partial cycle covers as sets of
edges instead of sets of paths and cycles.

Edge-Labeled Graphs Let k ∈ N. An Nk-labeled graph is a triple G = (V,E,w), where (V,E)
is a graph, and w : E → Nk is a total labeling function. We also refer to w as the weight function
(of G). For an Nk-labeled graph G = (V,E,w), we extend w to walks, edge sets, and sets of edge
sets as follows. For a walk W = v0, e1, v1, . . . , em, vm of G, we define w(W) =

∑
i∈{1,...,m}w(ei),

for a set E′ ⊆ E, we define w(E′) =
∑

e∈E′ w(e), and for a set of edge sets F = {E1, . . . , Em}
with Ei ⊆ E for all 1 ≤ i ≤ m, we define w(F) =

∑
i∈{1,...,m}w(Ei). Hence, if R is a walk, path,

cycle, tree, matching, or (partial) cycle cover of G, then w(R) denotes the weight of R.

2.3 Boolean Formulas

We will consider propositional variables over the values 1 (for true) and 0 (for false). Let V be
a finite set of propositional variables. A literal over V is a propositional variable v ∈ V or its
negation, denoted by v. A clause over V is a set of literals over V , and a formula in conjunctive
normal form (CNF, for short) over V is a set of clauses over V . A truth assignment over V is a
total function I : V → {0, 1}.

14 Chapter 2. Preliminaries

Let I be a truth assignment over V , and let v ∈ V be a variable. We say that I satisfies v if
I(v) = 1, and I satisfies v if I(v) = 0. For a clause C over V , we say that I satisfies C if there
exists a literal l ∈ C such that I satisfies l, and for a formula F in CNF we say that I satisfies
F if I satisfies all clauses C ∈ F . A formula F in CNF over V is called satisfiable if there exists
a truth assignment over V that satisfies F .

We omit V if it is clear from the context.

2.4 Complexity Theory

2.4.1 Turing Machines and Transducers

Throughout this thesis we will use a standard Turing machine model that consists of a read-only
input tape, k ≥ 1 working tapes with infinite space to both sides, a finite set of states, including
a starting state and accepting and possibly rejecting states, and a finite program that controls
each step of the Turing machine. For a formal definition we refer to standard textbooks about
computational complexity (see for instance the textbooks by Papadimitriou [Pap94] or by Arora
and Barak [AB09]).

Terminology and Acceptance Behavior Let M be some Turing machine and x be some
input. A configuration of M on input x is a complete description of some situation of M on input
x, consisting of information about its state, its position on the input tape, and its position on the
working tapes and their contents. The start configuration of M on input x is the configuration
where the input tape contains x with the read-only head on the first symbol of x, where all
working tapes are empty, and where M is in its starting state. An accepting configuration of
M on input x is a configuration with an accepting state, and a rejecting configuration of M on
input x is a configuration with a rejecting state. We will sometimes refer to the accepting and
rejecting configurations as the stop configurations.

The configurations of M on some particular input x form a directed graph, where the nodes
are the configurations of M on input x, and there exists an edge from configuration C1 to
configuration C2 if and only if the Turing machine can reach the configuration C2 from C1 in
one step, and C1 is not a stop configuration. We will refer to this graph as the configuration
graph of M on input x and denote it by M(x). In some cases, we will also use M(x) to denote
the computation of M on input x.

A computation path (or simply a computation) of M on input x is a path in the configuration
graph of M on input x that starts with the start configuration of M on input x. A computation
or computation path is called accepting if it ends with an accepting configuration, and it is
called rejecting if it ends with a rejecting configuration. We say that M accepts x if there exists
an accepting computation path in the computation graph of M on input x, and we denote
L(M) = {x ∈ Σ∗ | M accepts x} as the language accepted by M .

We will also refer to Turing machines as described above as nondeterministic, because in
every situation, more than one instruction might be applicable. Throughout this thesis we will
assume that in every situation at most two instructions are applicable. If the program of the
Turing machine has the property that in every situation at most one instruction of the program
is applicable, then we call the Turing machine deterministic. If M is deterministic and for every
input x there exists either an accepting or a rejecting computation path, then we say that M
decides L(M).

We further consider Turing machines that can output words and hence compute functions. A
Turing transducer is a deterministic Turing machine M with no rejecting states that additionally
has write-only access to an output tape. Initially, the output tape is empty, and in each step, the

2.4. Complexity Theory 15

transducer can additionally append one symbol to its current output. We say that M computes
the function f if for all input words x the following holds:

• If f(x) is defined, then the computation of M on input x is accepting, and in the accepting
configuration, the output tape of M contains f(x).
• If f(x) is not defined, then the computation of M on input x is not accepting.

Time and Space Bounds Let s, t : N → N be total functions and consider an arbitrary
k-tape Turing machine or transducer M .

1. We say that M works in space s if for all but finitely many inputs x and for every
computation path of M on input x it holds that in each configuration on the path, M
uses at most s(|x|) cells on its working tapes. Note that we count neither the space on the
input nor the space on the output tape, if applicable.

2. We say that M works in time t if for all but finitely many inputs x and for every computation
path of M on input x it holds that M terminates after at most t(|x|) steps by reaching a
stop configuration.

We will sometimes concentrate on the following space or time bounds.

1. The function s is called space-constructible if there exists a deterministic Turing machine
that for every n ∈ N stops on input 1n and uses exactly space s(n).

2. The function t is called time-constructible if there exists a deterministic Turing machine
that for every n ∈ N stops on input 1n after exactly t(n) steps.

2.4.2 Complexity Classes and Function Classes

We define the following generic complexity classes and function classes. Let s, t : N→ N be total
functions.

DSPACE(s) := {L(M) |M is a deterministic Turing machine
that works in space s}

NSPACE(s) := {L(M) |M is a nondeterministic Turing machine
that works in space s}

DTIME(t) := {L(M) |M is a deterministic Turing machine
that works in time t}

NTIME(t) := {L(M) |M is a nondeterministic Turing machine
that works in time t}

FSPACE(s) := {f | there is a Turing transducer that computes f
and works in space s}

FTIME(t) := {f | there is a Turing transducer that computes f
and works in time t}

Moreover, for a class of functions F we define

DSPACE(F) :=
⋃
f∈F

DSPACE(f) DTIME(F) :=
⋃
f∈F

DTIME(f)

NSPACE(F) :=
⋃
f∈F

NSPACE(f) NTIME(F) :=
⋃
f∈F

NTIME(f)

FSPACE(F) :=
⋃
f∈F

FSPACE(f) FTIME(F) :=
⋃
f∈F

FTIME(f)

which enables us to use the Landau notation in the definition of complexity classes as well.

16 Chapter 2. Preliminaries

Prominent Space Classes We will mainly work on the following space classes.

FL := FSPACE(O(log n))

L := DSPACE(O(log n)) NL := NSPACE(O(log n))

LIN := DSPACE(O(n)) NLIN := NSPACE(O(n))

PSPACE :=
⋃
k∈N

DSPACE(O(nk)) NPSPACE :=
⋃
k∈N

NSPACE(O(nk))

Note that by Savitch’s Theorem [Sav70], NSPACE(s) ⊆ DSPACE(s2) for every space-
constructible function s ≥ log, hence PSPACE = NPSPACE. Moreover, by linear compression
we can scale down the space required on working tapes of Turing machines by arbitrary constant
factors, which means that FSPACE(O(s)) = FSPACE(s), DSPACE(O(s)) = DSPACE(s) and
NSPACE(O(s)) = NSPACE(s). So we obtain:

FL = FSPACE(log n) L = DSPACE(log n) NL = NSPACE(log n)

LIN = DSPACE(n) NLIN = NSPACE(n) PSPACE =
⋃
k∈N

DSPACE(nk)

The functions in FL are called logarithmic-space computable. We will use logspace as a synonym
for logarithmic-space.

Prominent Time Classes Analogously we will consider the following time classes.

FP :=
⋃
k∈N

FTIME(O(nk))

P :=
⋃
k∈N

DTIME(O(nk)) NP :=
⋃
k∈N

NTIME(O(nk))

E := DTIME(2O(n)) NE := NTIME(2O(n))

EXP :=
⋃
k∈N

DTIME(2O(nk)) NEXP :=
⋃
k∈N

NTIME(2O(nk))

The functions in FP are called polynomial-time computable.

Complements of Complexity Classes For a complexity class C we define

coC := {L | L ∈ C}

as the class of languages whose complements are contained in C. Immerman [Imm88] and
Szelepcsényi [Sze88] showed that for s ≥ log it holds that NSPACE(s) = coNSPACE(s), so in
particular we have NL = coNL and NLIN = coNLIN.

2.4.3 Alternating Turing Machines

An alternating Turing machine is a generalization of a Turing machine, where we additionally
partition the states into universal and existential states. Let M be an alternating Turing
machine and let x be some input. We consider the configuration graph of M on input x and call
a configuration existential if its state is existential and universal if its state is universal. We
define accepting subgraphs of the configuration graph inductively as follows.

1. If C is an accepting configuration, then ({C}, ∅) is an accepting subgraph with root C.

2.4. Complexity Theory 17

2. If C is an existential configuration that has a successor configuration C ′ in the configuration
graph, and C ′ is the root of an accepting subgraph (V,E), then (V ∪ {C}, E ∪ {(C,C ′)})
is an accepting subgraph with root C.

3. If C is a universal configuration that has successor configurations C1 and C2 in the
configuration graph such that C1 is the root of an accepting subgraph (V1, E1) and C2 is
the root of an accepting subgraph (V2, E2), then (V1∪V2∪{C}, E1∪E2∪{(C,C1), (C,C2)})
is an accepting subgraph with root C.

We say that an alternating Turing machine accepts x if its start configuration is the root of an
accepting subgraph, and use L(M) to denote the set of words accepted by an alternating Turing
machine M . Note that we can think of nondeterministic Turing machines as alternating Turing
machines with only existential states. We use space and time bounds for alternating Turing
machines analogously to those for nondeterministic Turing machines. We define the following
generic complexity classes, where s, t : N→ N are total functions.

ASPACE(s) := {L(M) |M is an alternating Turing machine that works in space s}
ATIME(t) := {L(M) |M is an alternating Turing machine that works in time t}

Again we extend our definition to classes of functions F .

ASPACE(F) :=
⋃
f∈F

ASPACE(f) ATIME(F) :=
⋃
f∈F

ATIME(f)

We will use the complexity class AL := ASPACE(O(log n)) = ASPACE(log n). Chandra et
al. [CKS81] showed that AL = P, hence alternating logspace characterizes P. This relation
between alternating logspace and polynomial time will be helpful in the following chapters.

2.4.4 Oracle Turing Machines

Oracle Machines and Oracle Access An oracle Turing machine is a Turing machine that
further has a fixed number of oracle tapes and some additional states. Moreover, we assign an
oracle set O to the oracle Turing machine. We generally require write-only access to the oracle
tapes. In each step, an oracle Turing machine can additionally append a single symbol to the
contents of some oracle tape or enter a special query state qi (where i is the number of some
oracle tape). If the Turing machine enters the query state qi, then in the next step it will enter
the special state qy if the content of oracle tape i is contained in O, and it will enter the special
state qn if the content of the oracle tape i is not contained in O. In either case it will erase the
oracle tape i. We will denote an oracle Turing machine M that uses the oracle set O by MO

and the language accepted by M with oracle O by L(MO). Moreover, if M is nondeterministic,
then we require M to work deterministically whenever its oracle tapes are not empty.

Relativized Complexity Classes Note that for oracle Turing machines we can use the same
definition of space and time bounds that we used without oracle access. We will not count the
space used on oracle tapes, and we will count every oracle query as a single step. Hence we can
define relativized complexity classes analogously to the complexity classes considered so far. Let
O be an arbitrary set, let t : N→ N be a total function, and let C be a complexity class.

DTIME(t)O := {L(MO) |M is a deterministic oracle Turing machine
that works in time t}

DTIME(t)C :=
⋃
O∈C

DTIME(t)O

18 Chapter 2. Preliminaries

We have analogous definitions for the remaining space and time classes and obtain classes such
as PO or NPO, for instance. We note at this point that PO and NPO are very robust against
modifications of the oracle access mechanism. In particular, it makes no difference if we allow
multiple oracle tapes or restrict ourselves to a single oracle tape. For relativized space classes,
the situation is more complicated, and there is no canonical oracle access method. For instance,
Lynch [Lyn78] showed that logspace oracle Turing machines become more powerful if they are
allowed to use more oracle tapes. We use the general model proposed by Lynch [Lyn78] and
restrict the number of oracle tapes whenever necessary.

The Polynomial-Time Hierarchy The polynomial-time hierarchy is a hierarchy of com-
plexity classes between P and PSPACE, introduced by Stockmeyer [Sto76]. It includes NP and
coNP and is inductively defined as follows, where i ∈ N.

Σp
0 := Πp

0 := ∆p
0 := P

∆p
i+1 := PΣp

i

Σp
i+1 := NPΣp

i

Πp
i+1 := coΣp

i+1

Moreover, we define PH :=
⋃
i∈N Σp

i .

2.4.5 Reducibilities and Complete Problems

Reducibilities Let A and B be two sets. We will work with reducibility notions that are
defined as follows.

1. A is polynomial-time Turing reducible to B (A ≤p
T B) if and only if there exists a

polynomial-time oracle Turing machine that accepts A with B as its oracle.
2. A is polynomial-time log-Turing reducible to B (A ≤p

log-T B) if and only if A ≤p
T B via an

oracle Turing machine that asks at most O(log n) many queries.
3. A is polynomial-time truth-table reducible to B (A ≤p

tt B) if and only if A ≤p
T B via an

oracle Turing machine whose queries are nonadaptive (i.e., independent of the oracle).
4. A is polynomial-time k-truth-table reducible to B (A ≤p

k-tt B) if and only if A ≤p
tt B via

an oracle Turing machine that asks at most k queries.
5. A is polynomial-time bounded-truth-table reducible to B (A ≤p

btt B) if and only if A ≤p
k-tt B

for some k.
6. A is polynomial-time α-truth-table reducible to B (A ≤p

αtt B) if and only if there exists a
polynomial-time computable function f such that for all x it holds that f(x) = 〈y1, . . . , yk〉
with cA(x) = α(cB(y1), . . . , cB(yk)), where α is a fixed k-ary Boolean function.

7. A is polynomial-time disjunctive-truth-table reducible to B (A ≤p
dtt B) if and only if there

exists a polynomial-time computable function f such that for all x, f(x) = 〈y1, . . . , yn〉 for
some n ≥ 1 and cA(x) = max{cB(y1), . . . , cB(yn)}.

8. A is polynomial-time k-disjunctive-truth-table reducible to B (A ≤p
k-dtt B) if and only if

A ≤p
dtt B via some f such that f(x) = 〈y1, . . . , yn〉 implies n ≤ k.

9. A is polynomial-time bounded-disjunctive-truth-table reducible to B (A ≤p
bdtt B) if and

only if A ≤p
k-dtt B for some k.

10. A is polynomial-time conjunctive-truth-table reducible to B (A ≤p
ctt B) if and only if there

exists a polynomial-time computable function f such that for all x, f(x) = 〈y1, . . . , yn〉 for
some n ≥ 1 and cA(x) = min{cB(y1), . . . , cB(yn)}.

2.4. Complexity Theory 19

11. A is polynomial-time k-conjunctive-truth-table reducible to B (A ≤p
k-ctt B) if and only if

A ≤p
ctt B via some f such that f(x) = 〈y1, . . . , yn〉 implies n ≤ k.

12. A is polynomial-time bounded-conjunctive-truth-table reducible to B (A ≤p
bctt B) if and

only if A ≤p
k-ctt B for some k.

13. A is polynomial-time many-one reducible to B (A ≤p
m B) if and only if there exists some

f ∈ FP such that cA(x) = cB(f(x)) for all x.

We also use the following logspace reducibility notions, which are defined analogously in terms of
logspace oracle Turing machines and logspace-computable functions:

≤log
T ,≤log

log-T,≤
log
tt ,≤

log
k-tt,≤

log
btt,≤

log
αtt,≤

log
dtt,≤

log
k-dtt,≤

log
bdtt,≤

log
ctt ,≤

log
k-ctt,≤

log
bctt,≤

log
m

Observe that for polynomial-time bounded reducibility notions and for truth-table reducibility
notions, the number of oracle tapes we use is not relevant, so here we will always assume that
we use only one oracle tape. In the general case of logspace-bounded Turing reductions, we will
further consider the number of oracle tapes that we use. So we have the following additional
definitions.

1. A is logspace k-tape Turing reducible to B (A ≤log[k]
T B) if and only if A ≤log

T B via some
oracle Turing machine with k oracle tapes.

2. A is logspace k-tape log-Turing reducible to B (A ≤log[k]
log-T B) if and only if A ≤log

log-T B via
some oracle Turing machine with k oracle tapes.

Ladner and Lynch [LL76] showed that A ≤log[1]
T B if and only if A ≤log

tt B.
Moreover, we will sometimes use poly-logspace reducibilities, which are defined analogously

to logspace reducibilities, except that we have a space bound of logk for some k ∈ N.

Equivalence Let ≤ be an arbitrary reducibility notion and let A and B be sets. We say that
A is ≤-equivalent to B (A ≡ B) if and only if A ≤ B and B ≤ A.

Hardness and Completeness Let C be some complexity class and let ≤ be some reducibility
notion. Let A be a set. We say that A is ≤-hard for C if and only if for every B ∈ C it holds
that B ≤ A. If additionally it holds that A ∈ C, then we say that A is ≤-complete for C.

20 Chapter 2. Preliminaries

Part I

Multiobjective Traveling Salesman
Problems

21

Chapter 3

Multiobjective Optimization

In the first part of this thesis we study the approximability of the traveling salesman problem
and its most important multiobjective variants. This problem is defined on complete graphs
with edge weights, and we want to find a Hamiltonian cycle (i.e., a cycle that visits every vertex
exactly once) of minimal or maximal weight. Figure 3.1 shows an example of an instance of the
traveling salesman problem and a minimal Hamiltonian cycle.

a b

c

d

e

a) Complete graph K5

4

1

8

3 1

2

7

7

9

4

a b

c

d

e

b) Hamiltonian cycle in K5

1

3 1

2

4

Figure 3.1: Part a) shows the complete graph K5 with edge weights in N. Part b) shows a minimum
weight Hamiltonian cycle with overall weight 11.

In most real-world scenarios, however, we have to deal with multiple objectives at the same
time. For instance, in a typical application of the traveling salesman problem, we want to find
the shortest roundtrip for a given set of cities, but at the same time, we want to minimize
further objectives, such as travel costs or also travel time. We can easily modify our problem
definition by considering complete graphs with edge weights in Nk, where k is the number of
objectives, but solving the problem becomes more complicated. Already in the case k = 2,
different Hamiltonian cycles can be incomparable, and a unique optimal solution does not exist.

Pareto Sets and Approximation We use the concept of Pareto sets to cope with this
difficulty. Suppose we have a complete graph with edge weights in Nk, and we want to find
a Hamiltonian cycle that has a low weight in all objectives. We call a Hamiltonian cycle
Pareto-optimal if no other Hamiltonian cycle exists that is at least as good in all objectives and
even better in at least one objective. Such cycles are optimal tradeoffs between the different

23

24 Chapter 3. Multiobjective Optimization

objectives, because we cannot improve them in one objective without degrading them in another
objective again. The Pareto set is defined as the set of all Pareto-optimal Hamiltonian cycles,
and the general idea in multiobjective optimization is to compute the Pareto set and present it
to the user, who can then choose some optimal tradeoff. Figure 3.2 demonstrates an example of
such a Pareto set.

x
y

z

w1

w2

Figure 3.2: Example of the solution value space of a two-objective minimization problem. Every
point corresponds to the value of one or more solutions (in the case of the traveling salesman problem,
Hamiltonian cycles) with components w1 and w2. The solution z is better than the solution y in both
objectives, hence y is not Pareto-optimal. The solutions x and z are incomparable, because w1(x) < w1(z)
and w2(z) < w2(x). However, x is Pareto-optimal, because there does not exist a solution to the left
and below x, so the values of x cannot be improved any further. The solid points are the values of the
solutions in the Pareto set.

Recall that already in the case of a single-objective, the traveling salesman problem is
NP-hard. This in particular means that we cannot expect to compute the Pareto set in the
case of multiple objectives, so again we work on approximations. It is quite straightforward to
generalize the concept of approximations to the multiobjective case. We call a set of solutions an
α-approximate Pareto set, if for every Pareto-optimal solution there exists a solution in our set
that α-approximates the Pareto-optimal solution. In general, we will compute such approximate
Pareto sets. We will give a precise definition of this concept in Section 3.1.

Multiobjective Variants of the Traveling Salesman Problem In the single-objective
case, the minimum traveling salesman problem does not admit an α-approximation for constant α,
unless P = NP [SG76], so we concentrate on its metric variant. Recall that Christofides [Chr76]
showed a 3/2-approximation algorithm for this problem. We will analyze its approximability in
the case of two objectives, and we will further study similar Hamiltonian path problems.

Moreover, we will study the approximability of maximization variants of the traveling
salesman problem, where we want to find Hamiltonian cycles of maximum weight. We distinguish
between directed and undirected graphs. In the single-objective case, Fisher, Nemhauser and
Wolsey [FNW79] showed a basic approximation algorithm for the maximum traveling salesman
problem that is based on cycle covers. They obtained a 1/2 and a 2/3 approximation for the case
of directed and undirected graphs, respectively. We will demonstrate a non-trivial adaption of
their approach to the multiobjective case and obtain improved approximation ratios.

We refer to Section 3.2 for a definition of the multiobjective problems we study, and we refer
to Section 3.3 for a summary of the contributions we obtain.

3.1. Basic Definitions 25

3.1 Basic Definitions

We proceed with a general definition of multiobjective optimization concepts.

Multiobjective Problems We adapt the notation from Glaßer et al. [GRSW10a] and Fleszar
et al. [FGL+12]. Let k ≥ 1. A k-objective NP optimization problem (k-objective problem, for
short) is a tuple (S, f,←) with the following properties.

• S : N→ 2N maps an instance x ∈ N to the set of feasible solutions for this instance, denoted
as Sx = S(x) ⊆ N. There must be some polynomial p such that for every x ∈ N and every
s ∈ Sx it holds that |s| ≤ p(|x|), and we require {〈x, s〉 | x ∈ N, s ∈ Sx} ∈ P.
• f : {〈x, s〉 | x ∈ N, s ∈ Sx} → Nk maps an instance x ∈ N and a solution s ∈ Sx to its

value, denoted by fx(s) ∈ Nk. The function f must be polynomial-time computable.
• ← ⊆ Nk×Nk is a partial order on the values of solutions. It must hold that (a1, . . . , ak)←

(b1, . . . , bk) ⇐⇒ a1 ←1 b1∧· · ·∧ak ←k bk, where←i is ≤ if the i-th objective is minimized,
and ←i is ≥ if the i-th objective is maximized.

We also use ≤ as the partial order ← where ←i = ≤ for all i, and ≥ is used analogously. The
projection of fx to the i-th component is denoted as fxi where fxi (s) = vi if fx(s) = (v1, . . . , vk).
If a← b we say that a weakly dominates b (i.e., a is at least as good as b). If a← b and a 6= b
we say that a dominates b. Note that ← always points in the direction of the better value. If f
and x are clear from the context, then we extend ← to combinations of values and solutions,
i.e. we write s← t if fx(s)← fx(t), s← c if fx(s)← c, and so on, where s, t ∈ Sx and c ∈ Nk.
Furthermore, we define opt← : 2N

k → 2N
k
, opt←(M) = {y ∈M | ∀z ∈M [z ← y =⇒ z = y]} as

a function that maps sets of values to sets of optimal values. The operator opt← is also applied
to sets of solutions S′ ⊆ Sx as opt←(S′) = {s ∈ S′ | fx(s) ∈ opt←(fx(S′))}. If even ← is clear
from the context, we write Sxopt = opt←(Sx) and opti(S

′) = {s ∈ S′ | fxi (s) ∈ opt←i
(fxi (S′))}.

The set Sxopt is called the Pareto set (of x) and contains all non-dominated solutions, and for a
given problem instance x, our goal is to compute the Pareto set of x.

For better readability, when we define a k-objective problem, we will often omit an explicit
definition of the corresponding tuple and explain its components instead. For each problem we
consider there exists a simple encoding into natural numbers, so we can also define our problems
on objects such as formulas or graphs instead of natural numbers. Below we give an example of
such a problem definition.

Example 3.1.1 The satisfiability problem on formulas in conjunctive normal form is defined as
CNF-SAT = {F | F is a satisfiable Boolean formula in CNF}. We can define a corresponding
1-objective NP optimization problem as follows:

Maximum Weighted Satisfiability
Notation: MaxSAT
Instance: formula F in CNF over a set of variables V and weight function w : F → N
Solution: truth assignment I : V → {0, 1}
Objective: maximize w(I) =

∑
C∈F : I(C)=1w(C)

This corresponds to the tuple definition MaxSAT = (S, f,≥), where a problem instance x encodes
a set of propositional variables V , a Boolean formula F in CNF over V , and a weight function
w : F → N. Moreover, the function S maps the instance x to the set of all truth assignments I
over V , and the function f maps the instance x and the truth assignment I to the sum of the
weights of all clauses of F that are satisfied by I.

26 Chapter 3. Multiobjective Optimization

Multiobjective Approximation We generalize the approximation concept to the multiob-
jective case as follows. Let a ≥ 1. We define:

u
a
≤ v ⇐⇒ u ≤ a · v u

a
≥ v ⇐⇒ a · u ≥ v

Fix some ← = (←1, . . . ,←k) where ←i ∈ {≤,≥}, and let p, q ∈ Nk and α ∈ Rk such that
α1, . . . , αk ≥ 1. We further define

p
α← q ⇐⇒

k∧
i=1

pi
αi←i qi,

hence
α← always points to the better value, relaxed by a factor α.

Let O = (S, f,←) be a k-objective problem, x ∈ N be a problem instance of O, and α ∈ Rk
such that α1, . . . , αk ≥ 1. For solutions s, t ∈ Sx we say that s α-approximates t if f(s)

α← f(t).
A set of solutions S′ ⊆ Sx is called α-approximate solution set for x if for every t ∈ Sx there
exists some s ∈ S′ such that s α-approximates t. If all αi are equal, we may use the scalar α1

instead of the vector α and call S′ an α1-approximate solution set for x. An α-approximate
solution set for x is also called an α-approximate Pareto set (of x).

Deterministic Approximation While Pareto sets are typically hard to compute (and in
many cases can have exponential cardinality in the length of the instance x), it is often much
easier to compute approximate Pareto sets. We will consider polynomial-time algorithms that
compute good approximations. An algorithm is called α-approximation algorithm for O if there
exists a polynomial p such that for every input x ∈ N, the algorithm computes an α-approximate
solution set for x in time at most p(|x|). An algorithm is called polynomial-time approximation
scheme (PTAS, for short) for O if there exists a polynomial p such that for every input x ∈ N
and for every ε > 0, the algorithm computes a (1 + ε)-approximate solution set for x in time at
most p(|x|). A PTAS is called fully polynomial-time approximation scheme (FPTAS, for short)
for O if its runtime is bounded by p(|x|+ 1/ε).

Randomized Approximation An algorithm is called randomized if it has bitwise read-only
access to an arbitrary sequence of random bits. Hence, on some particular input x, if we execute
a randomized algorithm twice, it may behave different during the second execution. In particular,
it is possible that a randomized algorithm does not terminate at all.

An algorithm is called a randomized α-approximation algorithm for O if there exists a
polynomial p such that for every problem instance x of O, the algorithm terminates after at
most p(|x|) steps if executed on x, and moreover, with probability at least 1/2, it returns an
α-approximate solution set for x. In case that the algorithm returns such an approximate
solution set, we say that the algorithm succeeds, otherwise we say that the algorithm fails.
Analogously we define the notions of polynomial-time randomized approximation scheme (PRAS,
for short) and fully polynomial-time randomized approximation scheme (FPRAS, for short).

We will construct new randomized algorithms that call existing randomized algorithms
several times. In these cases we will often use amplified versions of the existing randomized
algorithms, where the original algorithm is called several times in order to increase the overall
success probability. Here, the following lemma will be useful.

Lemma 3.1.2 For all m ∈ N+ it holds that (1− 1
2m)m ≥ 1

2 .

3.2. Relevant Multiobjective Problems 27

Proof By induction we can show that m
2m ≤

1
2 for all m ∈ N+. This clearly holds for m = 1,

and for m ≥ 1 we further have

m+ 1

2m+1
=

1

2
·
(
m

2m
+

1

2m

)
≤ 1

2
·
(m

2m
+
m

2m

)
=

m

2m
≤ 1

2

where the last step holds by the induction hypothesis. Bernoulli’s inequality states that

(1 + x)m ≥ 1 +mx

for all x ∈ R with x ≥ −1 and m ∈ N. Since 1
2m ≤ 1 for all m ∈ N+ we obtain(

1− 1

2m

)m
≥ 1− m

2m
≥ 1− 1

2
=

1

2
.

2

Approximability of Problems We say that the k-objective problem O is α-approximable if
there exists an α-approximation algorithm for O. Analogously, we say that O is randomized
α-approximable if there exists a randomized α-approximation algorithm for O. When we work
on maximization problems, i.e., O = (S, f,≥), we will typically use an approximation factor β
such that 0 < β < 1. In this case, we say that O is β-approximable if it is α-approximable with
α = 1/β in the way defined above.

Example 3.1.3 Recall the definition of MaxSAT from Example 3.1.1 and consider an algorithm
that on input 〈V, F,w〉, where V is a set of propositional variables, F is a formula in CNF over
V , and w : F → N, returns the set {I0, I1}, where I0, I1 : V → {0, 1} are truth assignments with
I0(v) = 0 and I1(v) = 1 for all v ∈ V . The algorithm runs in polynomial time in the length of the
input. Moreover, let I : V → {0, 1} be an arbitrary truth assignment over V . For every non-empty
clause C ∈ F it holds that at least one of I0 and I1 satisfies C, hence w(I0) +w(I1) ≥ w(I), and
so w(Ij) ≥ 1/2 · w(I) for some j ∈ {0, 1}. Hence MaxSAT is 1/2-approximable.

3.2 Relevant Multiobjective Problems

Let k ≥ 1. In the following we define the most relevant multiobjective problems whose
approximation ratio we improve in this thesis. In Chapter 4 we will first consider a generalization
of the classical minimum metric traveling salesman problem to the multiobjective case.

k-Objective Minimum Traveling Salesman on Multigraphs
Notation: Multigraph k-MinTSP
Instance: Nk-labeled undirected multigraph G = (V,E,w)
Solution: closed spanning walk W
Objective: minimize w(W)

Unlike the case studied in the literature so far (see for instance Manthey and Ram [MR09]),
we consider multigraphs and do not restrict ourselves to weight functions that are metric in
every component. We will later see that this case is more general and practically relevant.
Analogously we will consider generalizations of the single-objective minimum traveling salesman
path problems.

28 Chapter 3. Multiobjective Optimization

k-Objective Minimum Traveling Salesman Path on Multigraphs
Notation: Multigraph k-MinTSPP
Instance: Nk-labeled undirected multigraph G = (V,E,w)
Solution: spanning walk W
Objective: minimize w(W)

k-Objective Minimum Traveling Salesman s-Path on Multigraphs
Notation: Multigraph k-MinTSPPs
Instance: Nk-labeled undirected multigraph G = (V,E,w) and s ∈ V
Solution: spanning walk W , starting at s
Objective: minimize w(W)

k-Objective Minimum Traveling Salesman s-t-Path on Multigraphs
Notation: Multigraph k-MinTSPPst
Instance: Nk-labeled undirected multigraph G = (V,E,w) and s, t ∈ V
Solution: spanning walk W , starting at s and ending at t
Objective: minimize w(W)

In Chapter 5 and Chapter 6 we will shift our focus to generalizations of the maximization
variant of the traveling salesman problem. We will distinguish between directed and undirected
graphs and show results for the following problems.

k-Objective Maximum Asymmetric Traveling Salesman Problem
Notation: k-MaxATSP
Instance: Nk-labeled directed complete graph G = (V,E,w)
Solution: Hamiltonian cycle C ⊆ E of G
Objective: maximize w(C)

k-Objective Maximum Symmetric Traveling Salesman Problem
Notation: k-MaxSTSP
Instance: Nk-labeled undirected complete graph G = (V,E,w)
Solution: Hamiltonian cycle C ⊆ E of G
Objective: maximize w(C)

We will further show that the method we apply to k-MaxATSP and k-MaxSTSP is
not restricted to these particular problems. For this purpose we show its application to a
multiobjective satisfiability problem, which is defined as follows.

k-Objective Maximum Weighted Satisfiability
Notation: k-MaxSAT
Instance: formula H in CNF over a set of variables V and weight function w : H → Nk
Solution: truth assignment I : V → {0, 1}
Objective: maximize w(I) =

∑
C∈H : I(C)=1w(C)

Further Problems Our multiobjective algorithms rely upon approximations of the following
multiobjective problems.

k-Objective Minimum Spanning Tree
Notation: k-MST
Instance: Nk-labeled undirected graph G = (V,E,w)
Solution: spanning tree T ⊆ E
Objective: minimize w(T)

3.3. Previous Work and Contributions in this Part 29

k-Objective Shortest Path
Notation: k-SP
Instance: Nk-labeled undirected graph G = (V,E,w) and s, t ∈ V
Solution: path P ⊆ E from s to t
Objective: minimize w(P)

k-Objective Minimum Weight Perfect Matching
Notation: k-MinPM
Instance: Nk-labeled undirected graph G = (V,E,w)
Solution: perfect matching M ⊆ E of G
Objective: minimize w(M)

k-Objective Maximum Weight Perfect Matching
Notation: k-MaxPM
Instance: Nk-labeled undirected graph G = (V,E,w)
Solution: perfect matching M ⊆ E of G
Objective: maximize w(M)

Note that in the single-objective setting, minimum spanning trees, shortest paths, and perfect
matchings can be computed in polynomial time, while already in the presence of two objectives, it
is easy to construct families of problem instances such that there exists a number of incomparable
solutions that is exponential in the length of the instance. Hence, for the above problems, an
algorithm that computes the complete Pareto set in polynomial time does not exist.

Papadimitriou and Yannakakis [PY00] show that a multiobjective problem admits an FPTAS
if its exact version is solvable in pseudo-polynomial time. Since the exact weight spanning
tree problem was solved in pseudo-polynomial time by Barahona and Pulleyblank [BP87] and
the exact weight shortest path problem is solvable in pseudo-polynomial time by dynamic
programming [PY00], their multiobjective counterparts admit an FPTAS each. Furthermore,
there exists a randomized pseudo-polynomial-time algorithm for the exact weight perfect matching
problem if there exists a randomized polynomial-time algorithm for the exact perfect matching
problem with unary weights. The latter problem can be reduced to the exact perfect matching
problem with (0, 1) weights [PY82], for which a randomized NC2 algorithm exists [MVV87]. So
overall, the following approximation schemes exist.

Theorem 3.2.1 ([PY00, BP87, PY82, MVV87]) Let k ≥ 1.

1. There exists an FPTAS for k-MST.
2. There exists an FPTAS for k-SP.
3. There exists an FPRAS for k-MinPM.
4. There exists an FPRAS for k-MaxPM.

3.3 Previous Work and Contributions in this Part

Multiobjective Optimization For a general introduction to multiobjective optimization, we
refer to the textbook by Ehrgott [Ehr05]. We further refer to Ehrgott and Gandibleux [EG02]
who provide a detailed guide over the existing literature on multiobjective optimization up to
that time. The paper by Papadimitriou and Yannakakis [PY00] is of particular importance
for this thesis. First, it shows that for all multiobjective problems we consider in this thesis,
even if the exact Pareto set consists of too many solutions, for arbitrary ε > 0 there exist
(1 + ε)-approximate Pareto sets of polynomial cardinality in the length of the input instance.

30 Chapter 3. Multiobjective Optimization

So there might exist approximation algorithms. Moreover, we obtain Theorem 3.2.1 from their
work, whose approximation algorithms we will often use in our algorithms. Third, they show
how to obtain good approximation algorithms by solving a subproblem, where one either has to
find a solution that approximately satisfies a given constraint, or to assert that no solution exists
that satisfies the constraint. We will apply this approach in a later chapter. Finally we want to
mention that general work on multiobjective optimization also considers further interpretations
of “solving a multiobjective problem”. For instance, one can aggregate the different objectives
into a single objective by taking a weighted sum, which is then optimized, or one can also
search for solutions that satisfy a given constraint. For a general comparison of different solution
notions we refer to the work by Glaßer et al. [GRSW10a] and Fleszar et al. [FGL+12].

Multiobjective Traveling Salesman Problems The previously best known approximation
algorithms for the multiobjective minimum traveling salesman problem (with a multiobjective
distance function that is metric in each component) is due to Manthey and Ram [MR09]. They
deterministically approximate the Pareto set of Hamiltonian cycles by computing minimum
spanning trees, doubling the edges, and taking shortcuts. In the multiobjective setting, this
provides a (2 + ε)-approximation for arbitrary small ε > 0.

For the symmetric and asymmetric maximization variants, the previously best known approx-
imation algorithms are due to Manthey [Man12b], who gave a randomized (2−ε)/3-approximation
for k-MaxSTSP and a randomized (1−ε)/2-approximation for k-MaxATSP for arbitrary ε > 0.
Moreover, Manthey [Man12a] analyzed the deterministic approximability of these problems and
showed that k-MaxATSP is deterministically (1−ε)/(4k−2)-approximable, and k-MaxSTSP is
deterministically (1−ε)/2k-approximable, for k ≥ 2 and ε > 0.

Improved Approximation Results We summarize the improvements on the approximability
of the multiobjective variants of the traveling salesman problem that we show in the first part of
this thesis in Table 3.1.

Problem Deterministic Approximation Randomized Approximation Reference

Multigraph 2-MinTSP (2, 2) (3/2 + ε, 2), (3/2, 2 + ε) 4.3.2, 4.3.3

Multigraph 2-MinTSPP (2 + ε, 2 + ε) (3/2 + ε, 5/3 + ε) 4.4.3, 4.4.2

Multigraph 2-MinTSPPs (2 + ε, 2 + ε) (3/2 + ε, 2 + ε) 4.4.3, 4.4.2

Multigraph 2-MinTSPPst (2 + ε, 2 + ε) (2 + ε, 2 + ε) 4.4.3

k-MaxATSP (1−ε)/2 1/2 6.5.2, 5.4.2

k-MaxSTSP (2−ε)/3 2/3 6.5.2, 5.4.2

Table 3.1: Improved approximation ratios for TSP problems, where ε > 0 and k ≥ 1.

We note that the multigraph problems cover the conventional problems considered by
Manthey and Ram [MR09] as a special case. For the minimum traveling salesman and traveling
salesman path problems studied in Chapter 4 we will further provide arguments that indicate
the hardness of improving our approximation results.

In addition to the problems mentioned in Table 3.1, we obtain approximation results for
further multiobjective problems. In Chapter 4 we translate existing approximation schemes
for matching, shortest path, and minimum spanning tree to multigraphs. In Chapter 5 we
additionally show that k-MaxSAT is 1/2-approximable. In Chapter 6 we further consider the
deterministic approximability of matching and cycle cover problems and obtain PTAS and
PTAS-like approximation algorithms. Note that by Papadimitriou and Yannakakis [PY00], a

3.3. Previous Work and Contributions in this Part 31

FPRAS for matching and hence for cycle cover exists. The algorithms we obtain have a weaker
approximation ratio but work deterministically.

Vector Balancing Lemma In order to approximate k-MaxATSP and k-MaxSTSP, we
solve the following problem. Suppose we are given a matrix of k-dimensional vectors of natural
numbers, and we want to choose one vector per column such that the sum over the chosen
vectors is small in each dimension. We provide a lemma that shows how to compute such a
selection in polynomial time. In particular, we can guarantee that if the matrix consists of c
rows, then in each dimension, the sum of our selection roughly equals a fraction of only 1/c of the
sum of all vectors in the matrix. While this general balancing lemma provides us with a simple
and elegant way to approximate k-MaxATSP and k-MaxSTSP, it solves a subproblem that
frequently occurs in multiobjective optimization. Namely, it provides us with the opportunity to
find a balanced selection of objects that have multidimensional weights. As another example, we
show that our lemma provides a simple way to approximate k-MaxSAT.

32 Chapter 3. Multiobjective Optimization

Chapter 4

Minimum Traveling Salesman
Problems

Introduction to Minimum Traveling Salesman Problems We first consider the approx-
imability of minimum traveling salesman problems. In the single-objective setting, we are given
an undirected, complete input graph with edge labels in N, and we want to compute Hamiltonian
cycles of minimum weight. We denote this problem by MinTSP.

Recall that a Hamiltonian cycle covers all vertices exactly once. Hence in the very general
case of MinTSP, we want to find a roundtrip where no city is visited more than once. Johnson
and Papadimitriou [JP85] state that the substantial majority of real-world traveling salesman
problems, including all geometric versions, do not need this restriction. Moreover, this case does
not admit a constant factor approximation algorithm, unless P = NP [SG76]. We concentrate
on metric problem instances, where the distance function satisfies the triangle inequality. We
will denote the corresponding restriction of MinTSP to problem instances with metric distance
functions by Min∆TSP. It is easy to see that with a single objective, Min∆TSP is equivalent
to the variant of MinTSP where multiple visits of cities are allowed.

For a long time, the best known approximation algorithm for the Min∆TSP was the simple
tree-doubling method. For the input graph G, one proceeds as follows:

1. compute a minimum spanning tree T of G
2. double the edges of T to obtain an Eulerian multigraph H
3. compute an Eulerian tour in H and take shortcuts to obtain a Hamiltonian cycle C

Note that minimum spanning trees can be computed in polynomial time. The crucial observation
is that every Hamiltonian cycle contains a spanning tree, and since T is minimal, it must have
weight less than every Hamiltonian cycle. Taking shortcuts does not increase the weight, because
the weight function is metric. Hence by the tree-doubling method, one obtains a 2-approximation.

The tree-doubling method was significantly improved by Christofides [Chr76], who observed
that in order to obtain an Eulerian graph, it suffices to connect the edges of odd degree in T .
On the input graph G, his approach works as follows:

1. compute a minimum spanning tree T of G
2. let U denote the vertices of odd degree in T
3. compute a minimum perfect matching M of U in G
4. combine the edges of T and M to obtain an Eulerian multigraph H
5. compute an Eulerian tour in H and take shortcuts to obtain a Hamiltonian cycle C

In addition to the arguments that we used for the tree-doubling method, he argued that each
Hamiltonian cycle contains two distinct perfect matchings of U . Consequently, the minimum

33

34 Chapter 4. Minimum Traveling Salesman Problems

perfect matching M cannot weigh more than half of the weight of the Hamiltonian cycle, and we
obtain a 3/2-approximation. Figure 4.1 describes the execution of Christofides’ algorithm on an
example graph. We refer to standard textbooks on approximation algorithms [ACG+99, Vaz01]
for a more detailed description of the single-objective tree-doubling method and Christofides’
algorithm.

0

1

2

3

4

5

6

7

8

9

a) Minimum Spanning Tree

0

1

2

3

4

5

6

7

8

9

b) Eulerian graph

0

1

2

3

4

5

6

7

8

9

c) Hamiltonian Cycle

Figure 4.1: Example for the execution of Christofides’ algorithm. Suppose we are given the complete
input graph G with vertices {0, . . . , 9}, where the distance between two vertices is determined by their
Euclidean distance. In the first step, we compute a minimum spanning tree T of G. T corresponds to the
dashed edges. We obtain that the vertices U = {0, 5, 6, 7, 8, 9} have odd degree in T . In the second step,
we compute a minimum perfect matching M for the vertices in U . M corresponds to the dotted edges.
Observe that M ∪ T connects all vertices, and all vertices have even degree, hence M ∪ T is an Eulerian
graph. In the last step we compute a Hamiltonian cycle in M ∪ T , where we follow an arbitrary closed
walk and skip vertices that we have already visited. In the above example we started the walk at vertex 1
and skipped the vertices 3 and 4, since we visited them before already.

More recent work on the Min∆TSP improved the approximation ratio of Christofides’
algorithm for special cases. Most prominently, Arora [Aro98] showed that there exists a PTAS
for the Euclidean variant of Min∆TSP, where vertices are points in the plane, and where the
distance between vertices is defined by their Euclidean distance. Another variant is studied by
Papadimitriou and Yannakakis [PY93], who construct a 7/6-approximation algorithm for the
traveling salesman problem, where all distances are either 1 or 2. There also exist lower bounds
on the approximability of the problem. Here, Papadimitriou and Vempala [PV06] showed that
Min∆TSP cannot be approximated with a ratio better than 220/219, unless P = NP. However,
Christofides’ algorithm is still the best known approximation of Min∆TSP.

Minimum Traveling Salesman Path Problems The metric traveling salesman problem
motivates several path problems where for given cities, one has to find a shortest path that
visits each city exactly once and that additionally starts or also ends in specified cities. We will
use Min∆TSPP, Min∆TSPPs, and Min∆TSPPst to denote the metric traveling salesman
path problems on undirected, complete, N-labeled graphs with a metric distance function for
0, 1, and 2 specified end vertices, respectively. These problems were studied by Hoogeveen
[Hoo91], who adapted Christofides’ idea to the path setting and showed 3/2-approximations
for the problems Min∆TSPP and Min∆TSPPs, and a 5/3-approximation for the problem
Min∆TSPPst. The approximation algorithm for Min∆TSPPst was recently improved by An,
Kleinberg and Shmoys [AKS12], who showed a (1+

√
5)/2-approximation for the case of given start

and end cities. For Min∆TSPP and Min∆TSPPs, Hoogeveens algorithms are still the best
known approximation algorithms.

35

Multiple Objectives The multiobjective traveling salesman problem was first studied by
Gupta and Warburton [GW86]. Angel, Bampis, and Gourvès [ABG04] give a 3/2-approximation
for the two-objective variant where the components of the distance vectors are either 1 or
2. Furthermore, Angel et al. [ABGM05] investigate the non-approximability of this problem.
Ehrgott [Ehr00] studies the multiobjective traveling salesman problem and uses the l1-norm
(i.e., the sum of the components) to aggregate the weight functions into one. In general,
the approximation ratio obtained by this approach is incomparable to the multi-component
approximation ratios that we consider in this work (see Glaßer et al. [GRSW10a] and Fleszar
et al. [FGL+12] for a detailed analysis of different solution and approximation notions of
multiobjective problems). Manthey and Ram [MR09] apply a generalization of the tree-doubling
method to the multiobjective traveling salesman problem, where the cost function is metric in
each component. Their deterministic algorithm achieves an approximation ratio of 2 + ε.

Motivation for our Work In contrast to tree-doubling, a straightforward adaption of
Christofides’ algorithm to multiple objectives fails. Recall that the crucial observation in
the analysis of Christofides’ algorithm is that a minimum weight Hamiltonian cycle can be split
into two disjoint perfect matchings, and hence there must exist a perfect matching that weighs
at most half as much as a minimum weight Hamiltonian cycle. Already in the presence of a
second objective, it is possible that the two matchings we extract from a Hamiltonian cycle are
incomparable, and so the above argumentation fails. So our goal is to either find approximation
algorithms that are better than the simple tree-doubling method for multiple objectives, or
to find arguments that show why the multiobjective case is harder than the single-objective
case. Analogously, one can see that tree-doubling methods work for the multiobjective traveling
salesman path problems as well. Here, the same problem arises when we switch to more than
one objective, and we are also interested in better approximation algorithms and in hardness
arguments.

Contributions We summarize the contributions of this chapter as follows.

1. Generalized Realistic Models. We propose a generalized definition for the multiobjective
traveling salesman problem that is based on multigraphs and that allows multiple visits of
cities. It captures typical real-world scenarios and it contains as a special case the con-
ventional definition, the componentwise metric multiobjective traveling salesman problem
[MR09, Ehr00].

2. Improved Approximations. We restrict ourselves to the case of two objectives. For the
multigraph versions of the two-objective traveling salesman and of the two-objective
traveling salesman path problems we provide deterministic and randomized approximation
algorithms that improve the previously known results. We summarize our approximation
results in Table 4.1.

Problem Deterministic Approximation Randomized Approximation Reference

Multigraph 2-MinTSP (2, 2) (3/2 + ε, 2), (3/2, 2 + ε) 4.3.2, 4.3.3

Multigraph 2-MinTSPP (2 + ε, 2 + ε) (3/2 + ε, 5/3 + ε) 4.4.3, 4.4.2

Multigraph 2-MinTSPPs (2 + ε, 2 + ε) (3/2 + ε, 2 + ε) 4.4.3, 4.4.2

Multigraph 2-MinTSPPst (2 + ε, 2 + ε) (2 + ε, 2 + ε) 4.4.3

Table 4.1: Approximation ratios shown in this chapter, where ε > 0.

36 Chapter 4. Minimum Traveling Salesman Problems

3. Approximation Schemes for Multigraph Problems. Our approximation algorithms generalize
Christofides’ algorithm and the tree-doubling method to the multigraph setting. These
algorithms, however, work with minimum spanning trees and matchings. We will first
analyze the approximability of multiobjective minimum spanning tree, matching, and
shortest path problems on multigraphs, and obtain approximation preserving reductions
to the case of simple graphs. Together with Theorem 3.2.1 it follows that there exist
approximation schemes for the multigraph problems.

4. Lower Bound Arguments. We present arguments that indicate the hardness of improving
our approximation algorithms by showing approximation preserving reductions that allow
us to translate approximation ratios for the two-objective multigraph minimum traveling
salesman and traveling salesman path problems to the single-objective case. Table 4.2
summarizes our main arguments.

Problem Approximation ratio . . . yields . . . for problem Reference
of . . . ratio of . . .

Multigraph 2-MinTSP (1+
√

5
2

− ε1, 2 − ε2) 1+
√
5

2
− ε1 Min∆TSPPst 4.5.7

Multigraph 2-MinTSPP (1+
√

5
2

− ε1,
3
2
− ε2) 1+

√
5

2
− ε1 Min∆TSPPst 4.5.9

Multigraph 2-MinTSPP (2 − ε1,
3
2
− ε2) 3

2
− ε2 Min∆TSPPs 4.5.9

Multigraph 2-MinTSPPs (1+
√

5
2

− ε1, 2 − ε2) 1+
√
5

2
− ε1 Min∆TSPPst 4.5.9

Table 4.2: Arguments that indicate the difficulty of improving the obtained randomized approximations,
where ε1, ε2 > 0. The first row indicates that an approximation algorithm for Multigraph 2-MinTSP with an

approximation ratio better than (1+
√
5

2
, 2) in both objectives yields an approximation algorithm for Min∆TSPPst

with approximation ratio better than 1+
√
5

2
.

Organization of this Chapter Section 4.1 contains the preliminary definitions and notations
used in this chapter. It also includes a definition of all optimization problems we approximate in
this chapter. Furthermore, in this section we will motivate why we work on the more general
multigraph model. In Section 4.2 we will then translate the existing approximation schemes for
minimum spanning tree, matching, and shortest path to multigraphs. We will also introduce a
combination of shortest path and matching problems, which will help us to deterministically
approximate the two-objective minimum traveling salesman problem. We will present our
approximation algorithms for the multiobjective traveling salesman problems in Section 4.3 and
for the multiobjective traveling salesman path problems in Section 4.4. We will conclude the
chapter with the lower bound arguments presented in Section 4.5 and a summary and discussion
in Section 4.6.

4.1 Problem Definitions

Recall the definition of undirected graphs and multigraphs, and further recall the concepts of
(closed, spanning) walks, and (Hamiltonian) paths and cycles. For a graph G = (V,E) and
U ⊆ V with |U | even, we define a path matching of U in G as a set P of |U |/2 paths in G such
that every vertex in U is endpoint of exactly one path in P .

Main Problems Recall the definition of the generalized version of the minimum traveling
salesman problem defined with vertex repetitions on multigraphs with k ≥ 1 objectives.

4.1. Problem Definitions 37

k-Objective Minimum Traveling Salesman on Multigraphs
Notation: Multigraph k-MinTSP
Instance: Nk-labeled undirected multigraph G = (V,E,w)
Solution: closed spanning walk W
Objective: minimize w(W)

The conventional metric problem k-Min∆TSP is defined analogously, where the input is an Nk-
labeled undirected complete simple graph, whose weight function satisfies the triangle inequality
in each component, and where we compute Hamiltonian cycles instead. If k = 1, then we omit
the prefix k and use Min∆TSP.

Further recall the definition of the generalized versions of minimum traveling salesman path
problems on multigraphs.

k-Objective Minimum Traveling Salesman Path on Multigraphs
Notation: Multigraph k-MinTSPP
Instance: Nk-labeled undirected multigraph G = (V,E,w)
Solution: spanning walk W
Objective: minimize w(W)

The problems Multigraph k-MinTSPPs (resp., Multigraph k-MinTSPPst) are defined
analogously, where in addition to G = (V,E,w), the input contains a vertex s ∈ V (resp., two
vertices s, t ∈ V), and the spanning walk must have endpoint s (resp., endpoints s and t).

We define the metric variants k-Min∆TSPP, k-Min∆TSPPs, and k-Min∆TSPPst analo-
gously, where the input contains an Nk-labeled undirected complete simple graph instead, whose
weight function satisfies the triangle inequality in each component, and where we compute
Hamiltonian paths. If k = 1, then we omit the prefix k and obtain Min∆TSPP, Min∆TSPPs,
and Min∆TSPPst.

Justification of the Multigraph Model From a practical point of view, the conventional,
componentwise metric definition of the multiobjective minimum traveling salesman problem is
very restrictive. Consider a problem instance G = (V,E,w) of 2-Min∆TSP. Hence w : E → N2

is metric in each component. Moreover, for two vertices u, v ∈ V , suppose there exist two
incomparable paths P1, P2 ⊆ E from u to v in G with w1(P1) < w1(P2) and w2(P2) < w2(P1).
If w is metric in each component, then there exists a path P from u to v with w(P) ≤ w(P1)
and w(P) ≤ w(P2). However, for many real-world applications, this is not the case, and hence
we switch to multigraphs and compute closed spanning walks. This reformulation captures the
conventional definition as a special case but is more general.

Proposition 4.1.1 Let k ≥ 1 and α ∈ Rk such that αi ≥ 1 for all i.

1. If there exists an α-approximation algorithm for Multigraph k-MinTSP, then there
exists an α-approximation algorithm for k-Min∆TSP.

2. If there exists an α-approximation algorithm for Multigraph k-MinTSPP, then there
exists an α-approximation algorithm for k-Min∆TSPP.

3. If there exists an α-approximation algorithm for Multigraph k-MinTSPPs, then there
exists an α-approximation algorithm for k-Min∆TSPPs.

4. If there exists an α-approximation algorithm for Multigraph k-MinTSPPst, then there
exists an α-approximation algorithm for k-Min∆TSPPst.

Proof We show the first item. The proof of the other items works analogously.

38 Chapter 4. Minimum Traveling Salesman Problems

We interpret the complete input graph G = (V,E,w) for k-Min∆TSP as a multigraph
without multiple edges, call the α-approximation algorithm for Multigraph k-MinTSP on G,
and obtain a set of closed spanning walks W of G. We output every W ∈ W, where we take
arbitrary shortcuts to obtain Hamiltonian cycles. Note that the last step is possible because the
input graph is complete.

Let C be a Hamiltonian cycle of G. Then C can be interpreted as a closed spanning walk of
G. Hence there exists a closed spanning walk W ∈ W with w(W) ≤ α · w(C). Taking shortcuts
does not increase the weight, because the triangle inequality holds in every component, so the
algorithm outputs a Hamiltonian cycle C ′ with w(C ′) ≤ α · w(C). 2

As a consequence of Proposition 4.1.1, our approximation algorithms focus on Multigraph k-
MinTSP, while we develop lower bound arguments on the approximation ratio for k-Min∆TSP.

Matchings, Spanning Trees, and Shortest Paths on Multigraphs The classical approx-
imation algorithms for Min∆TSP work with minimum perfect matchings, minimum spanning
trees and shortest path algorithms. We extend the problem definitions to multigraphs as follows.

k-Objective Minimum Spanning Tree on Multigraphs
Notation: Multigraph k-MST
Instance: Nk-labeled undirected multigraph G = (V,E,w)
Solution: spanning tree T ⊆ E
Objective: minimize w(T)

k-Objective Shortest Path on Multigraphs
Notation: Multigraph k-SP
Instance: Nk-labeled undirected multigraph G = (V,E,w) and s, t ∈ V
Solution: path P ⊆ E from s to t
Objective: minimize w(P)

k-Objective Minimum Weight Perfect Matching on Multigraphs
Notation: Multigraph k-MinPM
Instance: Nk-labeled undirected multigraph G = (V,E,w)
Solution: perfect matching M ⊆ E of G
Objective: minimize w(M)

k-Objective Minimum Weight Perfect Matching Path on Multigraphs
Notation: Multigraph k-MinPMP
Instance: Nk-labeled undirected multigraph G = (V,E,w) and U ⊆ V
Solution: path matching M ⊆ E of U in G
Objective: minimize w(M)

4.2 Multigraph Approximation Schemes

Recall that by Theorem 3.2.1, there exist (randomized) approximation schemes for the mul-
tiobjective variants of the minimum spanning tree, minimum perfect matching, and shortest
path problem on simple graphs. In this section we will translate this result to multigraphs, and
further show that the minimum path matching problem on multigraphs also admits a randomized
approximation scheme.

We will describe a reduction of each multigraph problem to the case of simple graphs, where
for a given multigraph we construct a simple graph by splitting edges into separate parts and

4.2. Multigraph Approximation Schemes 39

introducing new vertices. Observe that edges ({u, v}, i1) and ({u, v}, i2) of a given multigraph
can be “simulated” in a simple graph by the edges {u, zi1}, {zi1 , v}, {u, zi2}, and {zi2 , v}, where
zi1 and zi2 are new vertices. By a slight modification of this scheme (depending on the problem
we consider) and an accordingly defined new weight function, we obtain reductions to the case
of simple graphs. This shows the following result.

Theorem 4.2.1 Let k ≥ 1.

1. There exists an FPTAS for Multigraph k-MST.
2. There exists an FPTAS for Multigraph k-SP.
3. There exists an FPRAS for Multigraph k-MinPM.
4. There exists an FPRAS for Multigraph k-MinPMP.

Proof We reduce the multigraph problems to their counterparts on simple graphs, for which
approximation schemes are known by Theorem 3.2.1.

1. Multigraph Minimum Spanning Tree Let G = (V,E,w) be an Nk-labeled multigraph.
We transform G to a simple graph G′ by splitting each edge into three parts. If an edge e ∈ E
connects the vertices u and v, then we add two new vertices ue and ve to the graph and replace
e by the three edges f(e) = {{u, ue}, {ue, ve}, {ve, v}}. Furthermore, the edge in the middle
{ue, ve} is labeled with w(e), while the remaining two edges are labeled with (0, . . . , 0) ∈ Nk.

Formally, G′ = (V ∪ U,E′, w′) where U = {ve | e ∈ E, v ∈ [e]}, E′ =
⋃
e∈E f(e), and

w′ : E′ → Nk such that

w′(e′) =

{
w(e) if [e′] = {ue, ve} for some u, v ∈ V, e ∈ E and

(0, . . . , 0) if [e′] * U.

We extend f to subsets E1 ⊆ E:

f(E1) =
⋃
e∈E1

f(e)

So f translates subsets E1 ⊆ E into subsets E′1 ⊆ E′. For the converse translation, let

g(E′1) = {e ∈ E | {ue, ve} ∈ E′1 for some u, v ∈ V }

for E′1 ⊆ E′. Observe that f and g respect the sum of the labels, i. e.,

w(E1) = w′(f(E1)) and w′(E′1) = w(g(E′1)). (4.1)

Each path in some E′1 ⊆ E′ that starts and ends in nodes from V induces a path in g(E′1) with
the same start and end nodes. Therefore,

E′1 is connected and covers V =⇒ g(E′1) is connected and covers V . (4.2)

We describe the FPTAS for Multigraph k-MST on input G = (V,E,w) and ε > 0:
Transform G into G′ as described above and run the FPTAS of Theorem 3.2.1 for k-MST on
input G′ and ε. We obtain a (1 + ε)-approximation A of all minimum spanning trees of G′. For
each T ′ ∈ A, compute g(T ′), prune this graph as long as it contains any cycles, and output the
resulting tree.

The running time of the algorithm is polynomial in |G| and 1/ε.
Let T be a spanning tree of G. We argue that the algorithm above outputs a (1 + ε)-

approximation of T . Observe that f(T)∪{e′ ∈ E′ | [e′] * U} is a spanning tree of G′ with weight
w′(f(T)) = w(T). So A contains a spanning tree T ′ of G′ such that w′(T ′) ≤ (1 + ε) · w(T). By
(4.2), g(T ′) is connected and by (4.1), w(g(T ′)) = w′(T ′) ≤ (1 + ε) · w(T). Hence the algorithm
outputs a spanning tree of G with weight at most (1 + ε) · w(T).

40 Chapter 4. Minimum Traveling Salesman Problems

2. Multigraph Shortest Path We use exactly the same construction as in part 1. So recall
the notions from part 1. The algorithm works as follows: On input of an Nk-labeled multigraph
(V,E,w), s, t ∈ V and ε > 0, construct the simple graph G′ = (V ∪ U,E′, w′) as in part 1, run
the FPTAS of Theorem 3.2.1 for k-SP on G′, s, t and ε, apply g to the paths found by the
FPTAS and return the results. The algorithm obviously runs in polynomial time and solves the
problem because of the properties of f , g and w already noted in part 1.

3. Multigraph Minimum Weight Perfect Matching Let G = (V,E,w) be an Nk-labeled
multigraph. We transform G to the same Nk-labeled simple graph G′ = (V ∪ U,E′, w′) as in
the first part, only the weight function w′ is defined differently. So recall U and E′ from the
first part. The label of the original edge w(e) is put on both outer edges, while the edge in the
middle is labeled with zero. More formally:

w′(e′) =

{
w(e) if [e′] = {v, ve} for some v ∈ V, e ∈ E and

(0, . . . , 0) if [e′] ⊆ U

We also define a different converse translation h (which is not inverse to f):

h(E′1) = {e ∈ E | {ue, ve} /∈ E′1 for u, v ∈ V with {u, v} = [e]}

for E′1 ⊆ E′.
The FPRAS for Multigraph k-MinPM on input G = (V,E,w) and ε > 0 works as follows:

Transform G into G′ as described above and run the FPRAS from Theorem 3.2.1 for k-MinPM
on input G′ and ε. If the FPRAS succeeds, we obtain a (1 + ε)-approximation A of all minimal
perfect matchings of G′. For each M ′ ∈ A, output h(M ′).

The running time of the algorithm is polynomial in |G| and 1/ε, and the probability that the
execution of the FPRAS succeeds is at least 1/2.

So suppose that the called FPRAS is executed successfully. It remains to show that the
returned edge sets are in fact perfect matchings and that they approximate the minimal perfect
matchings of G.

For the first part, consider some perfect matching M ′ ⊆ E′ of G′. Observe that for any e ∈ E
with [e] = {u, v}, we have {u, ue}, {ve, v} ∈ M ′ ⇐⇒ {ue, ve} /∈ M ′. Consider an arbitrary
vertex v ∈ V . Since v ∈ V must be matched exactly once in M ′, there is exactly one e ∈ E such
that {v, ve} ∈M ′. Since u is uniquely determined by {u, v} = [e], we get that there is exactly
one u ∈ V such that {u, v} ∈ h(M ′), hence v is matched exactly once, and h(M ′) is a perfect
matching of G′.

For the second part, first note that for every perfect matching M ′ of G′ we have

w′(M ′) = 2w(h(M ′)). (4.3)

Now let M be a perfect matching of G and consider M ′ = {{v, ve} | v ∈ [e], e ∈M} ∪ {{ue, ve} |
{u, v} = [e], e ∈ E \M}. Obviously, M ′ is a perfect matching of G′ and h(M ′) = M . So we have
w′(M ′) = 2w(M), and the output of the FPRAS must contain some perfect matching M̃ ′ of G′

such that w′(M̃ ′) ≤ (1 + ε)w′(M ′) = 2(1 + ε)w(M). From M̃ ′, we obtain a perfect matching
M̃ = h(M̃ ′) of G such that w(M̃) = 1

2w
′(M̃ ′) ≤ (1 + ε)w(M).

4. Multigraph Minimum Weight Path Matching We use the approximation schemes for
multigraph minimum weight shortest path and multigraph minimum weight perfect matching.

Let G = (V,E,w) be an Nk-labeled multigraph, U ⊆ V be a set of even cardinality and
ε > 0. Let ε′ = min{ε/3, 1}.

4.3. Approximation of Multigraph 2-MinTSP 41

We start with the construction of an Nk-labeled multigraph G′ = (U,E′, w′) by approximately
computing shortest paths between vertices of U and letting each path be an edge in G′ between
its endpoints. More formally: For every two-element subset {s, t} of U , run the FPTAS for

Multigraph k-SP on G, s, t and ε′ to obtain the approximate Pareto set {p{s,t}1 , . . . , p
{s,t}
m{s,t}} of

shortest paths between s and t in G and let E′ = {({s, t}, i) | s, t ∈ U, s 6= t and 1 ≤ i ≤ m{s,t}}
and w′({s, t}, i) = w(p

{s,t}
i) for ({s, t}, i) ∈ E′. Now run the FPRAS for Multigraph k-MinPM

on G′ and ε′. If the FPRAS succeeds, we obtain an approximate Pareto set of perfect matchings

M of G′. For each perfect matching M ∈M of G′, output {p{s,t}i | ({s, t}, i) ∈M}.
The running time of the algorithm is polynomial in |G| and 1/ε, and the probability that the

execution of the FPRAS succeeds is at least 1/2.
So suppose that the called FPRAS is executed successfully. The returned sets are path

matchings, since every vertex s ∈ U is matched by exactly one edge in M , and hence is endpoint
of exactly one path. Concerning the approximation ratio, let P be a path matching of U in G.
Every path p ∈ P with endpoints s, t ∈ U is approximated by the FPTAS for Multigraph

k-SP, which means that there is some 1 ≤ i ≤ m{s,t} such that w(p
{s,t}
i) ≤ (1 + ε′)w(p). For P̃

being the set of these approximations p
{s,t}
i for all paths p ∈ P , we obtain w(P̃) ≤ (1 + ε′)w(P).

Furthermore, P̃ is a path matching and thus corresponds to a perfect matching M of G′ with
the same weight. This perfect matching is approximated by a perfect matching M̃ using the
FPRAS for Multigraph k-MinPM. For the path matching P̃ ′ finally obtained from M̃ , we
have the inequality

w(P̃ ′) = w′(M̃) ≤ (1 + ε′)w′(M) = (1 + ε′)w(P̃)

≤ (1 + ε′)(1 + ε′)w(P) = (1 + 2ε′ + ε′2)w(P) ≤ (1 + 3ε′)w(P) ≤ (1 + ε)w(P).

2

4.3 Approximation of Multigraph 2-MinTSP

In the case of a single objective, we can compute minimum spanning trees and minimum perfect
matchings in polynomial time. Hence, Christofides’ algorithm beats the tree-doubling method in
every respect. In the presence of multiple objectives, however, the two problems are not known to
have equal approximability. While multiobjective minimum spanning trees can be approximated
deterministically by an FPTAS, we only know that there exists a randomized approximation
scheme for multiobjective minimum perfect matchings. However, Christofides’ algorithm relies
heavily upon a matching approximation. We will distinguish between deterministic, tree-doubling
based algorithms, and randomized, Christofides-like algorithms that also work with randomized
matching approximations.

4.3.1 Deterministic Approximation

Manthey and Ram [MR09] show how to adapt the tree-doubling method to k-Min∆TSP for
k ≥ 2. They first compute a (1 + ε)-approximate Pareto set of spanning trees, and then double
the edges of each tree to obtain a set of Eulerian graphs. Since the input graph is complete and
componentwise metric, each Eulerian graph can be transformed into a Hamiltonian cycle by
taking shortcuts. Moreover, since each Hamiltonian cycle contains a spanning tree, this results
in a (2 + 2ε)-approximate Pareto set of Hamiltonian cycles.

We improve the result of Manthey and Ram for the case of two objectives. Observe that
for each Hamiltonian cycle we can construct a spanning tree by removing the heaviest edge

42 Chapter 4. Minimum Traveling Salesman Problems

in a given objective. In the spanning tree approximation, we will choose ε > 0 small enough
such that the error introduced is less than the weight we lost by removing the heavy edge. This
enables us to remove the error ε in one objective. We show that instead of doubling the edges of
the obtained spanning tree, we can combine it with edges from a second spanning tree, which
will enable us to remove ε in a second objective. Hence, for the two-objective case, we will
obtain a deterministic (2, 2)-approximation algorithm.

We will first describe our method to combine two different spanning trees. Here, for the
second tree, we will have to switch to the notion of path matchings. For a tree T and two
vertices u, v of T , let pT (u, v) denote the (unique) path in T connecting u and v. We consider
the algorithm match, which is described as follows.

Algorithm: match(U, T)

Input : tree T and subset U of its vertices of even cardinality
Output : path matching P on U in T

1 let M ⊆ U × U be some subdivision of U into pairs
2 P := {pT (u1, u2) | (u1, u2) ∈M}
3 while there are distinct but non-disjoint pT (u, u′),pT (v, v′) ∈ P do

4 P := P \ {pT (u, u′), pT (v, v′)}
5 if pT (u, v) ∩ pT (u′, v′) = ∅ then
6 P := P ∪ {pT (u, v),pT (u′, v′)}
7 else

8 P := P ∪ {pT (u, v′),pT (u′, v)} // note that pT (u, v′) ∩ pT (u′, v) = ∅
9 return P

Lemma 4.3.1 For k ≥ 1, let G = (V,E,w) be an Nk-labeled multigraph and T ⊆ E be a
spanning tree of G. For every U ⊆ V of even cardinality, match(U, T) finds in polynomial time
a path matching M of U in T such that w(M) ≤ w(T).

Proof Let m denote the number of edges of T , and S(P, T) :=
∑

p∈P |p| be the sum of the
number of edges of all paths used in T for some path matching P . Note that at any time in the
algorithm, the value of the variable P is a path matching on U in T . Clearly, S(P, T) ≤ m2/2, since
there are at most m edges per path and at most m/2 distinct pairs of endpoints of paths. In every
iteration, we redirect two paths, which reduces S(P, T) by at least two. Hence, the algorithm
terminates after at most m2/4 iterations. Since all operations of the algorithm (comparison of
two unique paths in a tree and set operations) are polynomially time-bounded, we obtain a
polynomial-time algorithm.

After the termination of the algorithm, any two distinct pT (u, v), pT (u′, v′) ∈ P are completely
disjoint. We can now estimate the overall weight of P by w(P) =

∑
p∈P

w(p) ≤ w(T). 2

Theorem 4.3.2 Multigraph 2-MinTSP is (2, 2)-approximable.

Proof Let k-Multigraph-MST(G, ε) denote the FPTAS for k-objective minimum spanning tree
on multigraphs from Theorem 4.2.1 on input of an Nk-labeled multigraph G and approximation
parameter ε > 0. We show that the algorithm 2-Multigraph-MinTSP as described below is a
(2, 2)-approximation algorithm for Multigraph 2-MinTSP.

We argue for correctness and polynomial runtime, and show that the algorithm has an
approximation ratio of 2. Let G = (V,E,w) be an arbitrary input and n = |G|.

4.3. Approximation of Multigraph 2-MinTSP 43

Algorithm: 2-Multigraph-MinTSP(V,E,w)

Input : N2-labeled multigraph G = (V,E,w)
Output : closed spanning walks of G

1 call 2-Multigraph-MST(G, 1/2|V |) to obtain set of spanning trees T
2 foreach (T1, T2) ∈ T × T do

3 U := {v ∈ V | degT1(v) is odd}
4 M := match(U, T2)
5 output closed spanning walk of G using the edges of T1 and M

Correctness: We show that the algorithm works correctly. Fix an arbitrary iteration of the
algorithm, where two spanning trees T1, T2 are considered. In the spanning tree T1 of G, the
set U of vertices of odd degree has even cardinality. By Lemma 4.3.1, M is a path matching
of U in G, hence for each vertex v it holds that the degree of v in M is odd if and only if v is
contained in U . Hence the graph formed by the edges of M and T is a spanning subgraph of G
where each vertex has even degree, and this graph can trivially be transformed into a closed
spanning walk of G. So in each iteration we obtain a closed spanning walk of G.

Runtime: 2-Multigraph-MST(G, 1
2|V |) runs in time polynomial in |G|+ 2|V |, hence the set

T has polynomial cardinality. So there are polynomially many pairs of spanning trees, and we
have polynomially many iterations of the loop. From Lemma 4.3.1 it follows that M can be
computed in polynomial time. All remaining operations only take time polynomial in n, so we
obtain that the overall running time is polynomial in n.

Approximation Ratio: Let W be an arbitrary closed spanning walk of G. We show that
2-Multigraph-MinTSP(V,E,w) outputs a closed spanning walk W ′ such that w(W ′) ≤ 2w(W).

Let m = |V | and ε = 1
2m . We split W into contiguous subwalks W1, . . . ,Wm such that every

vertex is at one end of at least one of the subwalks. This can be achieved by letting every
subwalk start at the first occurrence of some vertex in W . For every i ∈ {1, 2} there is some
1 ≤ pi ≤ m such that wi(Wpi) ≥ 1

mwi(W). By removing Wpi from W , the multiset of edges Ei
thus obtained is connected and covers every vertex of V . Thus G contains spanning trees T ′i
with no higher weights than Ei, which means that

w
(
T ′1
)
≤
((

1− 1

m

)
w1 (W) , w2 (W)

)
and w

(
T ′2
)
≤
(
w1 (W) ,

(
1− 1

m

)
w2 (W)

)
.

The FPTAS for the minimum spanning tree provides an ε-approximation of every spanning tree
of G. So T ′1 and T ′2 are approximated by say T1 and T2 such that

w (T1) ≤
(

1 +
1

2m

)
w
(
T ′1
)

and w (T2) ≤
(

1 +
1

2m

)
w
(
T ′2
)

.

Fix the iteration of the loop with exactly this pair of trees and let M be as in the algorithm
and W ′ denote the output in this iteration. From Lemma 4.3.1 we obtain w(M) ≤ w(T2), hence

w
(
W ′
)
≤ w (T1) + w (M) ≤ w (T1) + w (T2) ≤

(
1 +

1

2m

)(
w
(
T ′1
)

+ w
(
T ′2
))

≤
(

1 +
1

2m

)((
1− 1

m

)
+ 1

)
w (W) =

(
2− 1

2m2

)
w (W) < 2w (W) .

2

44 Chapter 4. Minimum Traveling Salesman Problems

4.3.2 Randomized Approximation

We will now show how to improve the approximation ratio of Multigraph 2-MinTSP by
using the matching algorithm from Theorem 3.2.1. This approach has the drawback of being
randomized, which means that the algorithm we obtain may fail with probability at most 1/2.

Theorem 4.3.3 For every ε > 0, Multigraph 2-MinTSP is randomized (3/2 + ε, 2)-
approximable and randomized (3/2, 2 + ε)-approximable.

Proof We show that the algorithm Min2TSPApproxRandε as described below is a randomized
(3/2 + ε, 2)-approximation algorithm and a randomized (3/2, 2 + ε)-approximation algorithm for
Multigraph 2-MinTSP.

Algorithm: Min2TSPApproxRandε(V,E,w)

Input : N2-labeled multigraph G = (V,E,w)
Output : closed spanning walks of G

1 m := |V |, ε1 := ε/m2, ε2 := ε/2m

2 compute ε1-approximation P of minimum spanning trees for G using the FPTAS from
Theorem 4.2.1

3 foreach T ∈ P do

4 U := {v ∈ V | degT (v) is odd}
5 compute ε2-approximation A of minimum weight path matchings for U in G using a

polynomially amplified version of the FPRAS from Theorem 4.2.1
6 foreach M ∈ A do

7 output closed spanning walk using the edges of T and M

We will now argue for correctness, polynomial runtime, success probability, and the claimed
approximation ratio. We consider a fixed 1 > ε > 0. Let G = (V,E,w) be an arbitrary input
graph, and let m = |V | and n = |G|. We assume that m ≥ 2.

Correctness: In every spanning tree T of G, the set U of vertices of odd degree has even
cardinality. Moreover, if M is a path matching of U in G, then v ∈ V has odd degree in M if
and only if v ∈ U . Together we obtain that the graph formed by the edges of M and T is a
spanning subgraph of G where each vertex has even degree, which can trivially be transformed
into a closed spanning walk of G. Hence whenever all randomized parts of the algorithm succeed,
we output a closed spanning walk of G.

Runtime: Observe that the FPTAS for minimum spanning tree and the polynomially amplified
version of the FPRAS for minimum path matching run in time polynomial in n + m2/ε and
n + 2m/ε, respectively. Since ε is constant and m ≤ n, this is polynomial in n, and hence the
sets P and A (for each T ∈ P) have cardinality polynomial in n. Hence the number of nested
iterations is polynomial in n. In each nested iteration, all remaining operations only take time
polynomial in n, so we obtain that the overall running time is polynomial in n.

Success Probability: The only randomized parts of the algorithm are the calls of the amplified
version of the FPRAS from Theorem 4.2.1 in line 5. Let p be the polynomial that bounds the
runtime of the FPTAS for minimum spanning tree for ε fixed. Hence there are at most p(n)
calls of the amplified version of the FPRAS for minimum path matching. We use an amplified

4.3. Approximation of Multigraph 2-MinTSP 45

version of the FPRAS where the original FPRAS is called p(n) times, hence the amplified
version of the FPRAS has success probability of at least 1− 1/2p(n), and by Lemma 3.1.2, the
probability that all calls of the amplified FPRAS and hence the overall algorithm succeed is at
least (1− 1/2p(n))p(n) ≥ 1

2 .

Approximation Ratio: Suppose that the algorithm succeeds and consider an arbitrary closed
spanning walk W of G. We show that the algorithm outputs a (3/2 + ε, 2)-approximation and a
(3/2, 2 + ε)-approximation of W .

We split W into contiguous subwalks W1, . . . ,Wm such that every vertex is at one end of
at least one of the subwalks. This can be achieved by letting every subwalk start at the first
occurrence of some vertex in W . Then, there is some 1 ≤ r ≤ m such that w2(Wr) ≥ 1

mw2(W).
By removing Wr from W , the multiset of edges E′ thus obtained is connected and covers every
vertex of V . Thus, G has a spanning tree T ′ with no higher weight than E′, which means that

w
(
T ′
)
≤

(
w1 (W) ,

m− 1

m
w2 (W)

)
.

By ε1 = ε/m2, in line 2 we find a spanning tree T1 with weight

w(T1) ≤
(

1 +
ε

m2

)(
w1(W),

m− 1

m
w2(W)

)
.

By a symmetric argumentation, in line 2 we find a spanning tree T2 with weight

w (T2) ≤
(

1 +
ε

m2

)(m− 1

m
w1 (W) , w2 (W)

)
.

Let U1 ⊆ V be the vertices of odd degree in T1 and note that U1 has even cardinality. From W
we can easily construct two path matchings M1 and M2 of U1 in G such that w(M1) +w(M2) ≤
w(W): For each u ∈ U1, fix the first occurrence in W , and cut W at each of those |U1| positions
to obtain |U1| subwalks S1, . . . , S|U1|. For each i, we remove any cycles from Si and obtain
a path Pi with w(Pi) ≤ w(Si). Then, both M1 = {Pi | i even} and M2 = {Pj | j odd} are
path matchings of U1 in G. Hence, there is some path matching M ′ of U1 in G such that
w(M ′) ≤ (1

2w1(W), w2(W)).
By ε2 = ε/2m, in the iteration of line 3 where T = T1 we find some approximate minimum

path matching M1 of U1 in G such that

w (M1) ≤
(

1 +
ε

2m

)
w
(
M ′
)
≤
(

1 +
ε

2m

)(1

2
w1 (W) , w2 (W)

)
.

Again using symmetric arguments, in the iteration of line 3 where T = T2 we find some
approximate minimum path matching M2 of U2 in G such that

w (M2) ≤
(

1 +
ε

2m

)(1

2
w1 (W) , w2 (W)

)
.

By combining T1 and M1 we obtain a spanning walk W ′1 such that

w1

(
W ′1
)
≤ w1 (T1) + w1 (M1) ≤

(
1 +

ε

m2

)
w1 (W) +

(
1 +

ε

2m

) 1

2
w1 (W)

=

(
3

2
+ ε

(
1

m2
+

1

4m

))
w1 (W) ≤

(
3

2
+ ε

)
w1 (W)

46 Chapter 4. Minimum Traveling Salesman Problems

and

w2

(
W ′1
)
≤ w2 (T1) + w2 (M1) ≤

((
1 +

ε

m2

) m− 1

m
+
(

1 +
ε

2m

))
w2 (W)

≤
((

1 +
1

m2

)
m− 1

m
+ 1 +

1

2m

)
w2 (W)

=

(
2 +

2m−m2 − 2

2m3

)
w2 (W) ≤ 2w2 (W) .

This shows the first part of the theorem. For the second part, we combine T2 and M2, which
results in a spanning walk W ′2 such that:

w1

(
W ′2
)
≤ w1 (T2) + w1 (M2) ≤

(
1 +

ε

m2

) m− 1

m
w1 (W) +

(
1 +

ε

2m

) 1

2
w1 (W)

≤
(

1 +
1

m2

)
m− 1

m
w1 (W) +

(
1 +

1

2m

)
1

2
w1 (W)

=

(
3

2
+

4m− 3m2 − 4

4m3

)
w1(W) ≤ 3

2
w1 (W)

and

w2

(
W ′2
)
≤ w2 (T2) + w2 (M2) ≤

(
1 +

ε

m2

)
w2 (W) +

(
1 +

ε

2m

)
w2 (W)

≤
(

1 +
ε

4

)
w2 (W) +

(
1 +

ε

4

)
w2 (W) ≤ (2 + ε)w2 (W) .

2

4.4 Approximation of Multigraph 2-MinTSPP

Recall the definition of Multigraph k-MinTSPP, Multigraph k-MinTSPPs, and Multi-
graph k-MinTSPPst. We first show the following results.

1. Multigraph 2-MinTSPP is randomized (3/2 + ε, 5/3 + ε)-approximable.
2. Multigraph 2-MinTSPPs is randomized (3/2 + ε, 2 + ε)-approximable.

We further use a tree-doubling technique to show that for arbitrary k, the problems Multi-
graph k-MinTSPP, Multigraph k-MinTSPPs, and Multigraph k-MinTSPPst are
deterministically (2 + ε)-approximable.

4.4.1 Randomized Approximation

We will use the following lemma.

Lemma 4.4.1 Let G = (V,E,w) be a N2-labeled multigraph, let W be a spanning walk of G,
and let U ⊆ V such that U 6= ∅.

1. If |U | is odd, then there exist a vertex s ∈ U and a path matching M of U −{s} in G such
that w1(M) ≤ 1

2w1(W) and w2(M) ≤ w2(W).
2. If |U | is even, then there exist distinct vertices s, t ∈ U and a path matching M of U−{s, t}

in G such that w1(M) ≤ 1
2w1(W) and w2(M) ≤ 2

3w2(W).

4.4. Approximation of Multigraph 2-MinTSPP 47

Proof The lemma is obvious for |U | < 3, so assume |U | ≥ 3. Furthermore we assume that the
walk is not closed (otherwise, we remove the last edge of W , which only decreases the weight
further).

Let v1 and vr denote the start and the end vertex of W , and let (v2, . . . , vr−1) denote the
vertices of U − {v1, vr} in the order of their first appearance in W . The first appearance of
each vi, 2 ≤ i ≤ r − 1, partitions W into a set of r − 1 subwalks {W1,W2, . . . ,Wr−1}, where Wi

connects vi and vi+1. We extract a set of paths P = {P1, P2, . . . , Pr−1} by removing cycles in
each Wi. It holds that w(P) ≤ w(W) and Pi connects vi and vi+1. Define the following distinct
sets that partition P .

Modd := {Pi ∈ P | i is odd}
Meven := {Pi ∈ P | i is even}

We will now show both items of the lemma.

1. Suppose |U | is odd. Then, Modd is a path matching on U − {vr}, and Meven is a path
matching on U − {v1}. Choose the path matching with the lower weight in w1. From
Meven ∪Modd = P and w(P) ≤ w(W), the first part of the lemma follows.

2. Suppose |U | is even. Then, Modd is a path matching on U and Meven is a path matching
on U − {v1, vr}. We show this part by contradiction. Hence assume that the second part
of the lemma does not hold, which means that for all distinct s, t ∈ U and every path
matching M of U − {s, t} it holds that

w2(M) ≤ 2
3w2(W) =⇒ w1(M) > 1

2w1(W). (4.4)

This also holds for every path matching of U , since otherwise, by removing an arbitrary path,
we obtain a path matching that leaves two vertices unmatched and that contradicts (4.4).
We have the following cases.

Case 1: w2(Modd) ≤ 2
3w2(W) and w2(Meven) ≤ 2

3w2(W).
From w(Meven) + w(Modd) = w(P) ≤ w(W) it follows that w1(Modd) ≤ 1

2w1(W) or
w1(Meven) ≤ 1

2w1(W). So Modd or Meven contradicts (4.4).

Case 2: w2(Modd) > 2
3w2(W).

Since w(Meven) + w(Modd) = w(P) ≤ w(W), we have

w2(Meven) ≤ w2(W)− w2(Modd) < 1
3w2(W). (4.5)

For every 1 ≤ k < r we partition P − {Pk} into the following sets:

Lk := {Pi | 1 ≤ i < k} Rk := {Pi | k < i < r}

Consider the largest odd k such that w2(Lk ∩Modd) ≤ 1
2w2(Modd). From Pk ∈ Modd,

Pk /∈ Lk ∪Rk, and the maximality of k, it follows that w2(Rk ∩Modd) ≤ 1
2w2(Modd). We

define the following sets:

M1 := (Lk ∩Modd) ∪ (Rk ∩Meven)

M2 := (Lk ∩Meven) ∪ (Rk ∩Modd)

Observe that M1 is a path matching on U − {vk, vr} and M2 is a path matching on
U − {v1, vk+1}. We argue that either M1 or M2 contradicts (4.4).

48 Chapter 4. Minimum Traveling Salesman Problems

Let us estimate the weights in the second component of M1 and M2:

w2(M1) = w2(Lk ∩Modd) + w2(Rk ∩Meven) w2(M2) = w2(Lk ∩Meven) + w2(Rk ∩Modd)

≤ 1
2w2(Modd) + w2(Meven) ≤ w2(Meven) + 1

2w2(Modd)

By (4.5) we know that w2(Meven) < 1
3w2(W) and thus for all i ∈ {1, 2} we obtain

w2(Mi) ≤ 1
2w2(Modd) + w2(Meven) = 1

2(w2(P)− w2(Meven)) + w2(Meven)

= 1
2(w2(P) + w2(Meven)) < 1

2(w2(W) + 1
3w2(W)) = 2

3w2(W).

Note that M1 and M2 are disjoint. Therefore, w(M1) +w(M2) ≤ w(P) ≤ w(W) and hence
w1(M1) ≤ 1

2w1(W) or w1(M2) ≤ 1
2w1(W). So M1 or M2 contradicts (4.4).

Case 3: w2(Meven) > 2
3w2(W).

This case is very similar to the second, so we concentrate on the differences. We get
w2(Modd) < 1

3w2(W) and define Lk and Rk in the same way as in the second case.
Consider now the largest even k such that w2(Lk∩Meven) ≤ 1

2w2(Meven). From Pk ∈Meven,
Pk /∈ Lk ∪Rk, and the maximality of k, it follows that w2(Rk ∩Meven) ≤ 1

2w2(Meven). We
now show that either the path matching M1 := (Lk∩Modd)∪(Rk∩Meven) on U−{vk+1, vr}
or the path matching M2 := (Lk ∩Meven) ∪ (Rk ∩Modd) on U − {v1, vk} contradicts (4.4).
For all i ∈ {1, 2} we similarly get w2(Mi) ≤ w2(Modd)+ 1

2w2(Meven) and using w2(Modd) <
1
3w2(W) we obtain w2(Mi) <

2
3w2(W). Since again w1(M1) ≤ 1

2w1(W) or w1(M2) ≤
1
2w1(W) holds, M1 or M2 contradicts (4.4).

2

With Lemma 4.4.1, we can now prove that there exist the following approximations.

Theorem 4.4.2 Let ε > 0.

1. Multigraph 2-MinTSPP is randomized (3/2 + ε, 5/3 + ε)-approximable.
2. Multigraph 2-MinTSPPs is randomized (3/2 + ε, 2 + ε)-approximable.

Proof We consider the following algorithm. Recall that 4 denotes the symmetric difference
operator on sets.

Algorithm: ApproxMin2TSPPε(V,E,w, S)

Input : N2-labeled multigraph G = (V,E,w), and S ⊆ V with |S| ≤ 1
Output : spanning walks of G (each using the startpoint in S, if S 6= ∅)

1 compute ε/2-approximation P of spanning trees for G using FPTAS by Theorem 4.2.1
2 foreach T ∈ P do

3 U := {v ∈ V | degT (v) is odd} 4 S
4 foreach R ⊆ U such that 1 ≤ |R| ≤ 2 and |U −R| is even do

5 compute ε/2-approximation A of minimum weight path matchings for U −R in G
using a polynomially amplified version of the FPRAS from Theorem 4.2.1

6 foreach M ∈ A do

7 output spanning walk using edges of T and M , starting at s ∈ S if S 6= ∅

We argue for correctness, polynomial runtime, success probability, and the claimed approxi-
mation ratio. We consider a fixed 1 > ε > 0. Let G = (V,E,w) be an arbitrary input graph, and
let m = |V | and n = |G|. We assume that m ≥ 2. Furthermore, let S ⊆ V such that |S| ≤ 1.

4.4. Approximation of Multigraph 2-MinTSPP 49

Correctness: Consider an arbitrary spanning tree T of G. Choose U for T as in the algorithm,
and consider an arbitrary set R chosen in line 4. The set U −R has even cardinality, so let M
be an arbitrary path matching for U − R in G. Now consider the graph W consisting of all
edges from T and M . Observe that W is connected. We have the following cases.

• S = ∅. Then, U has even cardinality, hence |R| = 2, and so in W , exactly two vertices
have odd degree, hence W corresponds to a spanning walk in G.
• S = {s}. Then, U has odd cardinality, hence |R| = 1. Let R = {t}. We further distinguish

the following cases.

– s 6= t. If s has even degree in T , then s ∈ U , hence s is matched in M , and so the
degree of s in W is odd. If s has odd degree in T , then s /∈ U , hence the degree of s
remains odd in W . In both cases, the vertex t is the only other vertex of odd degree
that is not matched by M , hence W corresponds to a spanning walk connecting s
with t and thus starting at s.

– s = t. Hence, s ∈ R ⊆ U , so s must have even degree in T . In this case, U −R is the
set of all vertices of odd degree in T , which are then matched in M . Hence W is a
closed spanning walk, which we can shorten to a spanning walk starting at s.

Hence, in each case, we output spanning walks of G, and if S = {s}, then each spanning walk
starts at s.

Runtime: Since we assume ε > 0 to be constant, the runtime of the FPTAS for minimum
spanning tree and the polynomially amplified version of the FPRAS for minimum path matching
is polynomial in n. Hence the sets P and A (in each iteration) have polynomially bounded
cardinality. Moreover, there are at most n2 sets R ⊆ U such that |R| ≤ 2. This means that the
number of nested iterations of the algorithm is polynomially bounded in n. Observe that in each
iteration, every step of the algorithm can be carried out in time polynomial in n. Hence the
overall algorithm has runtime polynomial in n.

Success Probability: The only randomized parts of the algorithm are the calls of the amplified
version of the FPRAS from Theorem 4.2.1 in line 5. Let p be the polynomial that bounds the
runtime of the FPTAS for minimum spanning tree for ε fixed, and note that the loop in line 4
is iterated at most n2 often. Hence there are at most p(n) · n2 calls of the amplified version of
the FPRAS for minimum path matching. We use an amplified version of the FPRAS where
the original FPRAS is called p(n) · n2 times, hence the amplified version of the FPRAS has
success probability of at least 1− 1

2p(n)·n2
, and by Lemma 3.1.2, it follows that the probability

that all calls of the amplified FPRAS and hence the overall algorithm succeed is at least
(1− 1

2p(n)·n2
)p(n)·n2 ≥ 1

2 .

Approximation Ratio: We first consider the case where S = ∅. Suppose that the algorithm
succeeds and consider an arbitrary spanning walk W of G. We show that the algorithm outputs
a (3/2 + ε, 5/3 + ε)-approximation of W .

The spanning walk W can be transformed into a spanning tree of at most the same weight
by cutting off some edges. Hence there exists an approximation T ′ ∈ P such that w(T ′) ≤
(1 + ε

2)w(W). Fix the iteration in line 2 with T = T ′, hence w(T) ≤ (1 + ε
2)w(W).

As in the algorithm, let U denote the set of vertices of odd degree in T . Clearly, U is
non-empty and has even cardinality. By Lemma 4.4.1, there exist distinct vertices s, t ∈ U and a
path matching M ′ of U − {s, t} in G with w1(M ′) ≤ 1

2w1(W) and w2(M ′) ≤ 2
3w2(W). Fix the

iteration in line 4 where R = {s, t}.

50 Chapter 4. Minimum Traveling Salesman Problems

The FPRAS for path matching finds a path matching M ′′ of U −R in G such that w(M ′′) ≤
(1+ ε

2)w(M ′). Fix the iteration in line 6 where M = M ′′, hence we have w1(M) ≤ (1+ ε
2)1

2w1(W)
and w2(M) ≤ (1 + ε

2)2
3w2(W).

Let W ′ denote a spanning walk using the edges of T and M . From w(W ′) = w(T) + w(M)
we obtain

w1(W ′) ≤
(
1 + ε

2

)
w1(W) +

(
1 + ε

2

) (
1
2w1(W)

)
≤ (3

2 + ε)w1(W) and

w2(W ′) ≤
(
1 + ε

2

)
w2(W) +

(
1 + ε

2

) (
2
3w2(W)

)
≤ (5

3 + ε)w2(W).

Now consider the case where S = {s} for some s ∈ V . We only point out the differences to
the above estimation. We additionally assume that W starts at s. Again we find an (1 + ε

2)-
approximate spanning tree T ′ for W and fix the iteration with T = T ′. The set U obtained
in the next step has odd cardinality, so Lemma 4.4.1 only assures that there exists a vertex
t ∈ U and a path matching M ′ of U − {t} in G with w1(M ′) ≤ 1

2w1(W) and w2(M ′) ≤ w2(W).
Again we fix the iteration with R = {t}. In this iteration we find a path matching M ′′ such that
w(M ′′) ≤ (1 + ε

2)w(M ′). In the iteration where M = M ′′ we let W ′ denote the spanning walk
obtained and get

w1(W ′) ≤
(
1 + ε

2

)
w1(W) +

(
1 + ε

2

) (
1
2w1(W)

)
≤ (3

2 + ε)w1(W) and

w2(W ′) ≤
(
1 + ε

2

)
w2(W) +

(
1 + ε

2

)
w2(W) = (2 + ε)w2(W).

2

4.4.2 Deterministic Approximation

We use a tree-doubling method to obtain deterministic approximations for the multiobjective
traveling salesman path problems on multigraphs.

Theorem 4.4.3 Let k ≥ 1 and ε > 0.

1. Multigraph k-MinTSPP is (2 + ε)-approximable.
2. Multigraph k-MinTSPPs is (2 + ε)-approximable.
3. Multigraph k-MinTSPPst is (2 + ε)-approximable.

Proof We first show that tree doubling deterministically finds a (2 + ε)-approximation for
Multigraph k-MinTSPPst.

Let G = (V,E,w) be an arbitrary Nk-labeled multigraph, s, t ∈ V with s 6= t and ε > 0.
First, compute an ε

2 -approximation A of minimum spanning trees for G using the FPTAS from
Theorem 4.2.1. For each tree T ∈ A we double each edge in T and then delete the unique path
from s to t once. Clearly, we obtain a connected multigraph whose vertices have even degree
except for s and t. Therefore, for each spanning tree T we can find a spanning walk W ′ from s
to t with weight w(W ′) ≤ 2w(T).

Fix any arbitrary spanning walk W from s to t. Since W contains a spanning tree, there is a
spanning tree T ∈ A such that w(T) ≤ (1 + ε

2)w(W). By the tree doubling method we get a
spanning walk W ′ from s to t with w(W ′) ≤ 2w(T) ≤ (2 + ε)w(W).

It remains to argue for Multigraph k-MinTSPP and Multigraph k-MinTSPPs. These
problems can be reduced to Multigraph k-MinTSPPst by iterating over all vertices t ∈ V
and s, t ∈ V , respectively. 2

4.5. Lower Bound Arguments 51

4.5 Lower Bound Arguments

We will now discuss arguments that indicate the hardness of finding better approximations for the
two-objective traveling salesman and traveling salesman path problems. By Proposition 4.1.1, it
suffices to consider such arguments for the conventional two-objective problems defined on simple
graphs with componentwise metric weight functions, because their approximability reduces to
the general case of multigraphs.

4.5.1 Lower Bound Arguments for TSP

We first show that Min∆TSPPst can be reduced to 2-Min∆TSP in an approximation preserving
way. Given a complete metric input graph for Min∆TSPPst with start and end vertex, we will
construct an instance of 2-Min∆TSP that contains two copies of the input graph, which are
connected by two paths that consist of sufficiently many additional edges, such that the first
path connects the copies of the start vertex, and the second path connects the copies of the
end vertex. Our construction introduces a second weight function and makes sure that every
Hamiltonian cycle in the new graph contains a Hamiltonian path in the first and a Hamiltonian
path in the second copy. We will use the path with the lower weight to obtain a good solution
to the original Min∆TSPPst instance.

Theorem 4.5.1 For every α > 1 and ε > 0, if 2-Min∆TSP is (α, 2− ε)-approximable, then
Min∆TSPPst is α-approximable.

Proof Suppose there exists an (α, 2 − ε)-approximation algorithm for 2-Min∆TSP. Let
G = (V,E,w) be an N-labeled complete undirected graph with metric w and let P be a
Hamiltonian path in G that connects the vertices s and t. We show how to obtain an α-
approximation of P by the following steps.

Step 1: Construction of a reduction graph H. We construct an exact copy G′ = (V ′, E′, w′)
of G, where we denote the copy of v ∈ V by v′. With r = 1 + d1/εe > 1/ε, we further
introduce 2r − 2 new vertices S = {s1, s2, . . . , sr−1} and T = {t1, t2, . . . , tr−1}. Furthermore,
let s0 = s, sr = s′, t0 = t, tr = t′, and define ES = {{s0, s1}, {s1, s2}, . . . , {sr−1, sr}} and
ET = {{t0, t1}, {t1, t2}, . . . , {tr−1, tr}}. Our reduction graph H will have the vertex set V H =
V ∪ V ′ ∪ S ∪ T and the edge set EH = {{u, v} | u, v ∈ V H ∧ u 6= v}. We will make sure that we
find a Hamiltonian cycle that uses the edges ES and ET and hence enters and exits G and G′ at
the vertices s, s′, t and t′. Figure 4.2 shows the structure of the graph H.

V V ′

s s1 s2 s3 . . . sr−1 s′

t t1 t2 t3 . . . tr−1 t′

S

T

Figure 4.2: Structure of the graph H. We obtain a copy G′ = (V ′, E′) of the graph G = (V,E) and
then connect the vertices s with s′ and t with t′ by new paths that consist of 2(r − 1) new vertices
S = {s1, . . . , sr−1} and T = {t1, . . . , tr−1} and 2r new edges ES and ET . The sets V, V ′, S, T partition
the graph H.

52 Chapter 4. Minimum Traveling Salesman Problems

In the remainder of this step, we define a weight function wH : EH → N2 that is metric in
both components.

Let Ẽ = E ∪ E′ ∪ ES ∪ ET and define w̃ : Ẽ → N2 by

w̃(e) =


(w(e), 0) if e ∈ E,

(w′(e), 0) if e ∈ E′, and

(0, 1) if e ∈ ES ∪ ET .

We extend w̃ to sets F ⊆ Ẽ by w̃(F) =
∑
e∈F

w̃(e).

Claim 4.5.2 For all u, v ∈ V H with u 6= v and e = {u, v} there exists a path Pe ⊆ Ẽ connecting
u and v such that w̃(Pe) ≤ w̃(P ′) for every path P ′ ⊆ Ẽ connecting u and v.

Proof Let u, v ∈ V H such that u 6= v and let e = {u, v}. First, observe that there exists a
path in Ẽ connecting u and v. It remains to show that a minimal path exists. For this purpose,
recall that w is metric. We have the following cases.

• u, v ∈ V . For Pe = {{u, v}} it holds that w̃2(Pe) = 0. We also show minimality in w̃1.
Suppose that P ′ ⊆ Ẽ connects u and v. If P ′ ⊆ E then we have w̃1(P ′) = w(P ′) ≥
w({u, v}) = w̃1({u, v}) = w̃1(Pe). If P ′ 6⊆ E, then P ′ covers s, s′, t′, and t. Hence P ′

contains paths P1, P2, P3 such that P1 and P3 connect u with s (or t) and v with t (or
s), and P2 connects s′ with t′. Then we have w̃1(P ′) = w̃1(P1) + w̃1(P2) + w̃1(P3) ≥
w(P1) + w({s, t}) + w(P3) ≥ w({u, v}) = w̃1(Pe). Hence in both cases it holds that
w̃(Pe) ≤ w̃(P ′).
• u, v ∈ V ′. Analogously to the case where u, v ∈ V .
• u, v ∈ S∪{s, s′}. Let Pe ⊆ ES be the unique path connecting u and v, hence w̃(Pe) ≤ (0, r).

For every path P ′ ⊆ Ẽ connecting u and v it holds that if P ′ 6= Pe then ET ⊆ P ′, hence
w̃2(P ′) ≥ r, and thus w̃(Pe) ≤ w̃(P ′).
• u, v ∈ T ∪ {t, t′}. Analogously to the case where u, v ∈ S ∪ {s, s′}.
• u ∈ V − {s} and v ∈ S ∪ {s′}. Let Pe = {u, s} ∪ P{s,v}. If P ′ ⊆ Ẽ is a path connecting u

and v with ET ⊆ P ′, then w̃(Pe) = w̃({u, s}) + w̃(P{s,s′}) ≤ w̃({u, t}) + w̃({t, s}) + (0, r) =

w̃({u, t}) + w̃({t′, s′}) + w̃(P{t,t′}) ≤ w̃(P ′). On the other hand, if P ′ ⊆ Ẽ is a path
connecting u and v with ET 6⊆ P ′, then P ′ consists of a first part connecting u and s and a
second part connecting s and v, and from the previous cases it follows that w̃(Pe) ≤ w̃(P ′).
• u ∈ V −{t} and v ∈ T ∪{t′}, and all symmetric cases where u and v are switched or where

we consider V ′. Analogously to the case where u ∈ V − {s} and v ∈ S ∪ {s′}.
• u ∈ V and v ∈ V ′, or u ∈ V ′ and v ∈ V . Every path P ′ ⊆ Ẽ connecting u and v must

either contain ET or ES , hence w̃2(P ′) = r. Choose Pe as such a path P ′ with w̃1(P ′)
minimal.
• u ∈ S and v ∈ T , or u ∈ T and v ∈ S. For every path P ′ ⊆ Ẽ connecting u and v

there exists a path P ′′ ⊆ Ẽ connecting u and v with w̃2(P ′′) = w̃2(P ′) and w̃1(P ′′) =
w̃1({s, t}) ≤ w̃1(P ′). Choose Pe as such a path P ′′ with w̃1(P ′′) = w̃1({s, t}) and w̃2(P ′′)
minimal.

2

With Claim 4.5.2 we can now define the weight function wH : EH → N2 by wH(e) = w̃(Pe)
for all e ∈ EH , where Pe is a minimal path in Ẽ guaranteed to exist by Claim 4.5.2. This
in particular means that wH is metric in both objectives. We define the N2-labeled complete
reduction graph by H = (V H , EH , wH).

4.5. Lower Bound Arguments 53

Step 2: Construction of a Hamiltonian cycle C in H. Since wH is metric in each component,
we can call the (α, 2− ε)-approximation algorithm for 2-Min∆TSP on input H. Recall that P is
a Hamiltonian path in G and let P ′ denote the copy of P in G′. Observe that P ∪P ′∪ES ∪ET is
a Hamiltonian cycle in H with weight (2w(P), 2r). Hence the (α, 2−ε)-approximation algorithm
for 2-Min∆TSP must return an (α, 2 − ε)-approximation of it. So we obtain a Hamiltonian
cycle C of H such that wH1 (C) ≤ 2αw(P) and wH2 (C) ≤ 4r − 2εr.

Step 3: Transformation of C into a closed spanning walk W using only edges from Ẽ. Recall
that {V, V ′, S, T} is a partition of V H . Consider an arbitrary edge e = {u, v} ∈ C such that
e /∈ Ẽ, and recall that wH(e) = w̃(Pe) = wH(Pe), where Pe ⊆ Ẽ is the path connecting u and v
from Claim 4.5.2. We replace each edge e ∈ C − Ẽ with the according path Pe and obtain a
closed spanning walk W with wH(W) = wH(C) that uses only edges from Ẽ.

Step 4: Extraction of a Hamiltonian path P ′ from s to t. For e ∈ EH , let u(e) denote
the number of times e is used in W , and for v ∈ V H , let d(v) denote the degree of v in W
(where W is considered as a multigraph). Furthermore, d(V) = u({s, s1}) + u({t, t1}) and
d(V ′) = u({sr−1, s

′}) + u({tr−1, t
′}). We have the following claims.

Claim 4.5.3 The degrees d(v) for every vertex v and d(V) and d(V ′) are all even.

Proof This holds because W is a closed spanning walk. 2

Claim 4.5.4 The parity of u(e) is the same for all e ∈ ES ∪ ET .

Proof We first show that the parity of u(e) is the same for all edges e ∈ ES . So assume
this is not the case. Then there exists a vertex si such that u({si−1, si}) is odd if and only if
u({si, si+1}) is even. Hence d(si) is odd, which contradicts Claim 4.5.3. Analogously we show
that the parity of u(e) is the same for all edges e ∈ ET . Now assume that the parity of u({s, s1})
is different from the parity of u({t, t1}). Then, d(V) is odd, which contradicts Claim 4.5.3. Since
the parity of u(e) is equal for all e ∈ ES , the parity of u(e) is equal for all e ∈ ET , and the parity
of u({s, s1}) is equal to the parity of u({t, t1}), the claim follows. 2

Claim 4.5.5 There can be at most one e ∈ ES ∪ ET such that u(e) = 0.

Proof If there were two such edges, W would not be connected. 2

Claim 4.5.6 All e ∈ ES ∪ ET have odd usage count u(e).

Proof Suppose this is not the case, hence all e ∈ ES ∪ ET have even usage count u(e). This
means that u(e) ≥ 2 for all edges with at most one exception (Claim 4.5.5) and thus

wH2 (C) = wH2 (W) =
∑

e∈ES∪ET

u(e) ≥ (2r − 1) · 2 = 4r − 2 > 4r − 2εr (since r > 1/ε)

which contradicts the approximation rate of C guaranteed in Step 2. 2

We can now extract a Hamiltonian path in G as follows. Recall that wH1 (W) = wH1 (C) ≤
2αw(P). We interpret W as the multigraph M . We remove the edges ES ∪ ET and the vertices
S ∪ T from M to obtain two connected components, where we interpret the component with

54 Chapter 4. Minimum Traveling Salesman Problems

vertices V as the multigraph MV and the component with vertices V ′ as the multigraph MV ′ .
Since all edges in ES ∪ ET had odd usage count, s and t are the only vertices in MV with
odd degree, and s′ and t′ are the only vertices in MV ′ with odd degree. Hence we can find a
spanning walk W1 in MV with start and end vertices s and t, and analogously a spanning walk
W2 in MV ′ with start and end vertices s′ and t′. We transform W1 and W2 into Hamiltonian
paths P1 and P2 by taking shortcuts. Note that in each step we did not increase weight, hence
wH1 (P1)+wH1 (P2) ≤ wH1 (W1)+wH1 (W2) ≤ wH1 (W) = wH1 (C) ≤ 2αw(P), hence there exists some
i ∈ {1, 2} with wH1 (Pi) ≤ αw(P). Since wH1 (P1) = w(P1) and P2 is the copy of some P̃2 ⊆ E
with wH1 (P2) = wH1 (P̃2) = w(P̃2), we have found a path Hamiltonian path in G connecting s
and t with weight at most αw(P). 2

Corollary 4.5.7 For every ε1, ε2 > 0, if Multigraph 2-MinTSP is ((1+
√

5)
2 − ε1, 2 − ε2)-

approximable, then Min∆TSPPst is ((1+
√

5)
2 − ε1)-approximable.

4.5.2 Lower Bound Arguments for TSPP

Analogously to Theorem 4.5.1 we show that Min∆TSPPs and Min∆TSPPst can be reduced
to 2-Min∆TSPP and 2-Min∆TSPPs by an approximation preserving reduction. By a second
weight function we make sure that the end vertex constraints are satisfied. We obtain the
following result.

Theorem 4.5.8 Let α > 1 and ε > 0.

1. If 2-Min∆TSPP is (α, 3/2− ε)-approximable, then Min∆TSPPst is α-approximable.
2. If 2-Min∆TSPP is (α, 2− ε)-approximable, then Min∆TSPPs is α-approximable.
3. If 2-Min∆TSPPs is (α, 2− ε)-approximable, then Min∆TSPPst is α-approximable.

Proof The proofs are similar to the proof of Theorem 4.5.1. We will give a full proof of the
first item and show the differences for the remaining items.

1. We reduce Min∆TSPPst to 2-Min∆TSPP. So suppose there exists an (α, 3/2 − ε)-
approximation algorithm for 2-Min∆TSPP. Let G = (V,E,w) be an N-labeled complete
undirected graph with metric w and let P be a Hamiltonian path in G that connects
vertices s and t. We show how to obtain an α-approximation of P that connects vertices s
and t.
We define a new weight function w′ : E → N2 as follows. For each e ∈ E, define w′1(e) = w(e)
and

w′2({u, v}) =


0 if {u, v} ∩ {s, t} = ∅,
1 if |{u, v} ∩ {s, t}| = 1, and

2 if {u, v} = {s, t}.

Both w′1 and w′2 are metric functions on V . Moreover, for every Hamiltonian path P ′

connecting s and t it holds that w′2(P ′) = 2, which includes P . On the other hand, all
remaining Hamiltonian paths P ′′ must have w′2(P ′′) ≥ 3.
We call the (α, 3/2 − ε)-approximation algorithm for 2-Min∆TSPP on input (V,E,w′).
Hence we find a Hamiltonian path P ′ that approximates P . If P ′ does not connect s and
t, we have w′2(P ′) ≥ 3, contradicting w′2(P ′) ≤ (3/2− ε)w′2(P) = (3/2− ε)2 < 3. Hence P ′

connects s and t. Moreover we have w(P ′) = w′1(P ′) ≤ αw′1(P) = αw(P).

4.6. Summary and Discussion 55

2. Analogously to the first item, we reduce Min∆TSPPs to 2-Min∆TSPP. We define
w′′ : E → N2 such that for all e ∈ E, w′′1(e) = w(e) and

w′′2({u, v}) =

{
0 if s /∈ {u, v}, and

1 otherwise.

Again, w′′1 and w′′2 are metric. Moreover, for every Hamiltonian path P it holds that
w′′2(P) = 1 if P starts or ends at s, and w′′2(P) = 2 otherwise. Hence, for every Hamiltonian
path P starting at s it holds that w′′2(P) = 1, and the (α, 2−ε)-approximation algorithm for
2-Min∆TSPP on input (V,E,w′′) finds a Hamiltonian path such that w(P ′) = w′′1(P ′) ≤
αw′′1(P) = αw(P) and w′′2(P ′) = 1, hence P ′ also starts at s.

3. Analogously to the second item, we reduce Min∆TSPPst to 2-Min∆TSPPs. We use w′′

for the reduction and call the (α, 2− ε)-approximation algorithm for 2-Min∆TSPPs on
input (V,E,w′′) and t. Hence, every output path starts or ends at t. By the argumentation
from the second item, for every Hamiltonian path P starting at s, we obtain a Hamiltonian
path P ′ that starts at s and has weight w(P ′) ≤ αw(P). Since every output path starts or
ends at t, the result follows.

2

Corollary 4.5.9 Let ε1, ε2 > 0.

1. If Multigraph 2-MinTSPP is (1+
√

5
2 − ε1, 3/2− ε2)-approximable, then Min∆TSPPst

is (1+
√

5
2 − ε1)-approximable.

2. If Multigraph 2-MinTSPP is (3/2 − ε1, 2 − ε2)-approximable, then Min∆TSPPs is
(3/2− ε1)-approximable.

3. If Multigraph 2-MinTSPPs is (1+
√

5
2 − ε1, 2− ε2)-approximable, then Min∆TSPPst

is (1+
√

5
2 − ε1)-approximable.

4.6 Summary and Discussion

We introduced a multigraph model for multiobjective minimum traveling salesman problems
that captures realistic scenarios and covers the conventional definition that can be found in
the literature [MR09, Ehr00]. For the two-objective case, we showed new randomized and
deterministic algorithms and hence improved the previously best known upper bound on the
approximation ratio for these problems. As a byproduct, we demonstrated how to generalize
known approximation schemes for multiobjective matching, spanning tree, and shortest path
problems to the multigraphs variants of these problems.

We further showed reductions from well-studied single-objective problems to the two-objective
traveling salesman problems considered here. These reductions generally show that significant
improvements of our results are difficult to obtain, as they would lead to new results on
well-studied, single-objective problems such as Min∆TSPPs or Min∆TSPPst.

In the case of Multigraph 2-MinTSP, our results are particularly interesting. On the
one hand, we have a randomized (3/2 + ε, 2)-approximation algorithm and a deterministic
(2, 2)-approximation algorithm for this problem, while on the other hand, we know that an
(1/2 +

√
5/2 − ε1, 2 − ε2)-approximation algorithm would improve the currently best known

approximation algorithm for Min∆TSPPst. We have no argument for or against the existence
of an α-approximation algorithm for Multigraph 2-MinTSP, where 1, 618 ≈ 1/2+

√
5/2 ≤ α < 2.

The search for such an algorithm remains a challenging task.

56 Chapter 4. Minimum Traveling Salesman Problems

Chapter 5

Applications of Discrepancy Theory

Introduction to Maximum Traveling Salesman Problems We now shift our focus to
the approximability of multiobjective maximization variants of the traveling salesman problem.
We distinguish between the symmetric and the asymmetric variant. In the single-objective
setting, we denote these problems by MaxSTSP and MaxATSP, respectively. The input
for MaxSTSP is a complete, N-labeled, undirected graph, and the input for MaxATSP is
a complete, N-labeled, directed graph. In both cases we want to obtain a Hamiltonian cycle
of maximum weight. The maximization problems admit approximations already in this very
general setting, where in particular no metric weight assumptions are required.

A common strategy to approximate maximum traveling salesman problems works on cycle
covers. Note that every Hamiltonian cycle is a cycle cover that consists of a single cycle. In
contrast to Hamiltonian cycles of maximum weight, a maximum weight cycle cover for a directed
or undirected graph can be computed in polynomial time (see the work of Manthey [Man05]
for a detailed discussion of the cycle cover problem and its variants). A general approach
to approximate a maximum weight Hamiltonian cycle computes a cycle cover of maximum
weight, then breaks the cycles into paths by removing an edge per cycle, and connects the
remaining paths to a single Hamiltonian cycle. In 1979, Fisher, Nemhauser and Wolsey [FNW79]
argued that removing the lightest edge in each cycle results in a 1/2-approximation algorithm for
MaxATSP. Note that each cycle in a directed graph consists of at least two edges, hence by
removing the lightest edge per cycle we lose at most half of the weight of the maximum weight
cycle cover, which in turn must be at least as heavy as every maximum weight Hamiltonian
cycle. This shows the approximation ratio of 1/2. Since undirected cycles always contain at
least three edges, the same approach applies to MaxSTSP, which hence is 2/3-approximable. In
Figure 5.1 we give an example application of such an algorithm.

Since then, many improvements were achieved. In 2005, Kaplan et al. [KLSS05] showed
a 2/3-approximation for MaxATSP, which was simplified by Paluch et al. [PEvZ12] and in
2014 improved by Paluch [Pal14], who gave a 3/4-approximation algorithm for MaxATSP. The
currently best known approximation ratio of 7/9 for MaxSTSP is due to Paluch, Mucha and
Madry [PMM09].

Maximum Traveling Salesman Problems with Multiple Objectives We obtain the
multiobjective versions k-MaxATSP and k-MaxSTSP by considering complete, Nk-labeled,
directed and undirected input graphs, respectively, where k ≥ 1. Note that the approximation
scheme for maximum weight perfect matching from Theorem 3.2.1 is randomized. As a conse-
quence, most cycle cover based algorithms for k-MaxATSP and k-MaxSTSP that compute
cycle covers by a reduction to the randomized matching algorithms are also randomized. More-

57

58 Chapter 5. Applications of Discrepancy Theory

1

23

4

5

6

7

8

9

a) Cycle Cover

1

23

4

5

6

7

8

9

b) Path Cover

1

23

4

5

6

7

8

9

c) Hamiltonian Cycle

Figure 5.1: Example for the execution of a cycle cover based algorithm. Suppose we have computed a
cycle cover of an undirected, complete graph as a first step. Every cycle contains at least three edges. In
the next step we remove the shortest edge per cycle. Since every cycle consisted of at least three edges
and since we removed the shortest edge, we removed at most 1/3 of the overall distance. We obtain a set
of paths. In the last step we arbitrarily connect the paths to a Hamiltonian cycle.

over, a trivial adaption of the above cycle cover based approximation algorithms for MaxATSP
and MaxSTSP to the case of multiple objectives fails, because the term “lightest edge” is not
well-defined in the multiobjective setting.

Bläser et al. [BMP08] were the first to give a randomized (1−ε)/k-approximation for k-
MaxSTSP and a randomized (1−ε)/(k+1)-approximation for k-MaxATSP, where k ≥ 2 and
ε > 0. Manthey [Man12b] significantly improved these results by showing a randomized (2−ε)/3-
approximation for k-MaxSTSP and a randomized (1−ε)/2-approximation for k-MaxATSP,
where the approximation ratio is independent on the number of objectives.

Note that all above mentioned approximation algorithms for k-MaxATSP and k-MaxSTSP
are randomized. Manthey [Man12a] further studied deterministic approximation algorithms for
both problems. For multiobjective matching problems and hence also for multiobjective cycle
cover problems, no FPTAS is known so far, so deterministically computing approximations for
k-MaxATSP and k-MaxSTSP becomes significantly harder. Manthey [Man12a] showed that
k-MaxATSP is deterministically (1−ε)/(4k−2)-approximable, and k-MaxSTSP is deterministi-
cally (1−ε)/2k-approximable, where k ≥ 2 and ε > 0. Moreover, in the two-objective case, he
obtained a deterministic (1−ε)/4-approximation algorithm for 2-MaxATSP and a deterministic
(3−ε)/8-approximation algorithm for 2-MaxSTSP. We will study deterministic algorithms for
k-MaxATSP and k-MaxSTSP in the next chapter.

Discrepancy Theory in Multiobjective Optimization A trivial adaption of the cycle
cover based algorithms to multiple objectives fails, because in this setting we cannot choose the
lightest edge per cycle. In particular, it might be the case that the weights are distributed in
such a way that for every edge, whenever the weight in one objective is low, then it is high in
another objective. So for cycle covers with multiobjective edge weights, the following questions
arise.

1. Is it possible to choose a set of edges with one edge per cycle such that the overall weight
is at most half of the weight of the entire cycle cover in each objective?

2. If this is possible, can we compute such a set of edges in polynomial time?

We show that with a slight deviation, both questions can be answered positively. Moreover,
our results are not restricted to the graph-theoretic setting, but rather generally apply to
multidimensional vectors. Our proof is based on discrepancy theory. Here, a well-known

59

result by Beck and Fiala [BF81] considers the deviation of discrete colorings from an “ideal
coloring” in a set system. Suppose we are given a universe U = {u1, . . . , un} and a set system
S = {S1, . . . , Sm} ⊆ 2U . Beck and Fiala show that whenever each element of U is contained
in no more than t sets of S, then there exists a coloring χ : U → {+1,−1} such that for each
Sj ∈ S it holds that abs(

∑
u∈Sj χ(u)) ≤ 2t− 1. Hence in such a setting, the discrepancy between

the ideal situation where each set in S has a balanced coloring and the best existing coloring is
at most 2t − 1. Doerr and Srivastav [DS03] further extend the result of Beck and Fiala to a
multicolor setting. We will include their proof and show how to obtain our result as a corollary.

Contributions We summarize the contributions of this chapter as follows.

1. A General Tool for Balancing Vectors. The problem of having incomparable weight vectors
appears frequently in multiobjective optimization. Using the discrepancy-theoretic results
by Doerr and Srivastav [DS03] we provide a tool for choosing a subset of given vectors
such that the subset is “balanced” in each component. This tool enables us to translate
some single-objective approximation algorithms to the multiobjective case. Although we
developed our balancing tool to obtain approximations for the maximum traveling salesman
problems with multiple objectives, it also applies to further optimization problems. In
addition to the traveling salesman problems, we will show its application to a multiobjective
version of MaxSAT.

2. Improved Approximations. We obtain cycle cover based algorithms for k-MaxATSP
and k-MaxSTSP that generalize the basic approximations of Fischer, Nemhauser and
Wolsey [FNW79] to the k-objective setting, where k ≥ 1. Since there are FPRAS that
approximate the cycle cover problems, we can even fix heavy edges before executing
our algorithm to remove the small approximation error introduced by the cycle cover
algorithm. We obtain a randomized 1/2-approximation for k-MaxATSP and a randomized
2/3-approximation for k-MaxSTSP, which improves the results of Manthey [Man12b].
Moreover, we apply our vector balancing result in a similar way to a k-objective version of
MaxSAT, which we denote by k-MaxSAT. For k-MaxSAT, we obtain a deterministic
1/2-approximation. We summarize our approximation results in Table 5.1.

Problem Deterministic Approximation Randomized Approximation Reference

k-MaxATSP 1/2 5.4.2

k-MaxSTSP 2/3 5.4.2

k-MaxSAT 1/2 5.5.2

Table 5.1: Approximation ratios shown in this chapter, where k ≥ 1.

Organization of this Chapter In Section 5.1 we give a precise definition of the problems
we consider in this chapter. Recall that we consider cycle cover based algorithms. In Section 5.2
we will show how to obtain randomized approximation schemes for the cycle cover problems we
use in our approximation algorithms. In Section 5.3 we show how to obtain the vector balancing
results. For completeness we include a proof of the result by Doerr and Srivastav [DS03], which
also shows how to compute a vector balancing in polynomial time. In Section 5.4 we will
then show our randomized approximation results for k-MaxATSP and k-MaxSTSP, and in
Section 5.5 we will show how to obtain a deterministic approximation for k-MaxSAT using
the same balancing result and a similar algorithmic approach. We summarize and discuss our
results in Section 5.6.

60 Chapter 5. Applications of Discrepancy Theory

5.1 Problem Definitions

Let k ≥ 1 denote the number of objectives. The k-objective traveling salesman problems
k-MaxATSP and k-MaxSTSP are defined as follows.

k-Objective Maximum Asymmetric Traveling Salesman Problem
Notation: k-MaxATSP
Instance: Nk-labeled directed complete graph G = (V,E,w)
Solution: Hamiltonian cycle C ⊆ E of G
Objective: maximize w(C)

k-Objective Maximum Symmetric Traveling Salesman Problem
Notation: k-MaxSTSP
Instance: Nk-labeled undirected complete graph G = (V,E,w)
Solution: Hamiltonian cycle C ⊆ E of G
Objective: maximize w(C)

While this chapter mainly focuses on approximation algorithms for k-MaxATSP and k-
MaxSTSP, the balancing tool we develop is generally applicable. We will show a similar
approximation of the k-objective maximum weight satisfiability problem. Recall the definition
of variables, literals, clauses, formulas, and truth assignments from Section 2.3. The k-objective
maximum weight satisfiability problem is defined as follows.

k-Objective Maximum Weighted Satisfiability
Notation: k-MaxSAT
Instance: formula H in CNF over a set of variables V and weight function w : H → Nk
Solution: truth assignment I : V → {0, 1}
Objective: maximize w(I) =

∑
C∈H : I(C)=1w(C)

Our approximation algorithms for k-MaxATSP and k-MaxSTSP are based on multiobjective
cycle cover approximations. We consider the following cycle cover problems, where c ≥ 0.

k-Objective Maximum Weight Undirected Edge-Fixed c-Cycle Cover
Notation: k-MaxUFCCc

Instance: Nk-labeled undirected graph G = (V,E,w) and F ⊆ E
Solution: cycle cover C of G with F ⊆ C and at least c edges per cycle
Objective: maximize w(C)

k-Objective Maximum Weight Directed Edge-Fixed c-Cycle Cover
Notation: k-MaxDFCCc

Instance: Nk-labeled directed graph G = (V,E,w) and F ⊆ E
Solution: cycle cover C of G with F ⊆ C and at least c edges per cycle
Objective: maximize w(C)

If we restrict the above cycle cover problems to instances with F = ∅, we obtain the k-objective
maximum weight undirected c-cycle cover problem (k-MaxUCCc) and the k-objective maximum
weight directed c-cycle cover problem (k-MaxDCCc). In directed graphs, every cycle consists of
at least 2 edges, and in undirected graphs, every cycle consists of at least 3 edges. Hence, for
small c we can omit the index and define k-MaxDCC as k-MaxDCC2 and k-MaxUCC as
k-MaxUCC3. Analogously we define k-MaxDFCC and k-MaxUFCC as k-MaxDFCC2 and
k-MaxUFCC3, respectively.

These cycle cover problems will be reduced to the multiobjective maximum perfect matching
problem, which we define as follows.

5.2. Approximation of Cycle Cover Problems 61

k-Objective Maximum Weight Perfect Matching
Notation: k-MaxPM
Instance: Nk-labeled undirected graph G = (V,E,w)
Solution: perfect matching M ⊆ E of G
Objective: maximize w(M)

5.2 Approximation of Cycle Cover Problems

Recall that by Papadimitriou and Yannakakis [PY00], for every k ≥ 1 there exists an FPRAS
for k-MaxPM (cf. Theorem 3.2.1). In this section we show that the matching FPRAS can be
used to obtain FPRAS for the cycle cover problems we defined in the previous section.

We first consider the cycle cover problems without fixed edge sets and without minimum
cycle length restrictions. We show reductions to the perfect matching problem that are analogous
to the single-objective case. First consider the case of directed graphs. Every directed loop-free
graph can be transformed into an undirected bipartite graph, by splitting each vertex v into two
new vertices v1 and v2 and connecting all incoming edges of v to v1 and all outgoing edges of v
to v2. Then, every perfect matching of the undirected bipartite graph corresponds to a cycle
cover of the directed loop-free graph. Now, consider the case of undirected graphs. Here, we can
simply use Tutte’s reduction [Tut54] that reduces the cycle cover problem on undirected graphs
to the perfect matching problem on undirected graphs. Below we show how to adapt these
reductions to the case of Nk-labeled graphs. Together with Theorem 3.2.1 we obtain randomized
approximation schemes for k-MaxDCC and k-MaxUCC.

Lemma 5.2.1 For every k ≥ 1 there exists an FPRAS for k-MaxDCC and k-MaxUCC.

Proof We first describe the FPRAS for k-MaxDCC. On input of an Nk-labeled, directed
graph G = (V,E,w) and ε > 0, we define the Nk-labeled undirected graph G′ = (V ′, E′, w′) by

V ′ = {1, 2} × V
E′ = {{(1, u), (2, v)} | (u, v) ∈ E and u 6= v}

w′(e) = w(u, v) for each e = {(1, u), (2, v)}, (u, v) ∈ E.

We call the FPRAS for k-MaxPM from Theorem 3.2.1 on G′ and ε. Suppose the FPRAS
succeeds, then we obtain an ε-approximate set of perfect matchings of G′. For each approximate
perfect matching M ′ we output {(u, v) | {(1, u), (2, v)} ∈M ′}.

Let C be a cycle cover of G. Then, M = {{(1, u), (2, v)} | (u, v) ∈ C} is a perfect matching of
G′ with w′(M) = w(C). Hence we find a perfect matching M ′ of G′ with w′(M ′) ≥ (1−ε)w′(M).
Then, C ′ = {(u, v) | {(1, u), (2, v)} ∈ M ′} is a cycle cover of G with w(C ′) = w′(M ′) ≥
(1− ε)w′(M) = (1− ε)w(C).

Note that the FPRAS from Theorem 3.2.1 succeeds with probability at least 1/2, hence our
algorithm is an FPRAS for k-MaxDCC.

Next we describe the FPRAS for k-MaxUCC. Here, on input of an Nk-labeled, undirected
graph G = (V,E,w) and ε > 0, we construct an undirected graph G′ = (V ′, E′, w′) as defined by
Tutte’s reduction [Tut54]. For each cycle cover C in G there exists a perfect matching M in G′

with w(C) = w′(M ′) and vice versa. Hence we can again apply the FPRAS from Theorem 3.2.1
to the reduction graph and ε. This shows that there also exists an FPRAS for k-MaxUCC. 2

We obtain FPRAS for the problems k-MaxDFCC and k-MaxUFCC by a simple reduction
to k-MaxDCC and k-MaxUCC, respectively. We introduce an additional weight function

62 Chapter 5. Applications of Discrepancy Theory

and set the additional weight to 1 for the fixed edges, and to 0 otherwise. By choosing the
approximation parameter ε > 0 sufficiently small, we make sure that all edges with weight 1
have to appear in each solution. We hence have the following result.

Lemma 5.2.2 For every k ≥ 1 there exists an FPRAS for k-MaxDFCC and k-MaxUFCC.

Proof On input of an Nk-labeled graph G = (V,E,w), F ⊆ E, and ε > 0, define w′ : E → Nk+1,

w′i(e) =


wi(e) for 1 ≤ i ≤ k
1 for i = k + 1 and e ∈ F
0 for i = k + 1 and e /∈ F .

Call the FPRAS from Lemma 5.2.1 on the (k + 1)-objective cycle cover instance (V,E,w′) with
approximation parameter ε′ = min{ε, 1/(|F |+1)}, and return all cycle covers C with F ⊆ C.

We only return cycle covers C with F ⊆ C, so the algorithm is correct. Since the FPRAS from
Lemma 5.2.1 succeeds with probability at least 1/2, our algorithm also succeeds with probability
at least 1/2. It remains to argue for the approximation ratio. So suppose the algorithm succeeds,
and consider some cycle cover C of G with F ⊆ C. Then we find a cycle cover C ′ of G with
w′(C ′) ≥ (1− ε′)w′(C). By the definition of w′ this means

|F | ≥ w′k+1(C ′) ≥ (1− ε′)w′k+1(C) ≥
(

1− 1

|F |+ 1

)
|F | > |F | − 1,

hence we have w′k+1(C ′) = |F |, and this shows F ⊆ C ′. Moreover, for all 1 ≤ i ≤ k it holds that
wi(C

′) = w′i(C
′) ≥ (1 − ε′)w′i(C) ≥ (1 − ε)wi(C), so the approximation ratio is correct. This

shows that there exists an FPRAS for k-MaxDFCC and k-MaxUFCC. 2

5.3 Discrepancy Results

We continue to show how to appropriately combine incomparable weight vectors. This will later
help us to select one edge per cycle of a cycle cover that we can remove without losing too
much overall weight in any objective. We rely on a result of Doerr and Srivastav [DS03], who
provide a polynomial-time algorithm to compute colorings of low discrepancy for matrices of
multidimensional vectors. For the sake of completeness, we include their proof below, for which
we need to introduce some more terminology.

For a vector x ∈ Qm let ‖x‖∞ = maxi(abs(xi)), and for a matrix A ∈ Qm×n let ‖A‖1 =
maxj

∑
i abs(aij). For c ≥ 2, n ≥ 1 let Mc,n = {x ∈ (Q ∩ [0, 1])cn |

∑c−1
k=0 xcb−k = 1 for all

b ∈ {1, . . . , n}} and Mc,n = Mc,n ∩ {0, 1}cn.

Theorem 5.3.1 (Doerr and Srivastav [DS03]) There is a polynomial-time algorithm that
on input of some A ∈ Qm×cn, m,n ∈ N, c ≥ 2 and p ∈Mc,n finds a coloring χ ∈Mc,n such that
‖A(p− χ)‖∞ ≤ 2‖A‖1.

Proof Let ∆ := ‖A‖1. We start with χ = χ(0) = p ∈Mc,n and will successively change it to a
vector in Mc,n. We will first describe the algorithm and then argue about its runtime.

Let J := J(χ) := {j ∈ {1, . . . , cn} | χj /∈ {0, 1}} and call the columns from J floating. Let
I := I(χ) := {i ∈ {1, . . . ,m} |

∑
j∈J(χ) abs(aij) > 2∆}. We will ensure that during the rounding

process the following conditions are fulfilled (this is clear from the start, because χ(0) = p):

5.3. Discrepancy Results 63

(A(p− χ))|I = 0 (C1) χ ∈Mc,n (C2)

Let us assume that the rounding process is at step t where the current coloring is χ = χ(t)

and the conditions (C1) and (C2) hold. If there is no floating column, i.e., J = ∅, then χ ∈Mc,n

and thus χ has the desired form.
Otherwise, assume that there are still floating columns. Let B = {b ∈ {1, . . . , n} | ∃k ∈

{0, . . . , c − 1} : cb − k ∈ J} be the c-blocks that contain floating columns. Since χ ∈ Mc,n, a
c-block of χ contains either none or at least two floating columns, thus |B| ≤ 1

2 |J |.
Since

|J | ·∆ =
∑
j∈J

∆ ≥
∑
j∈J

m∑
i=1

abs(aij) ≥
∑
j∈J

∑
i∈I

abs(aij) =
∑
i∈I

∑
j∈J

abs(aij) >
∑
i∈I

2∆ = |I| · 2∆

it holds that |I| < 1
2 |J |. Consider the inhomogeneous system of linear equations

(A(p− χ))|I = 0

c−1∑
k=0

χcb−k = 1 for b ∈ B

where each χj is considered as a variable if j ∈ J and as a constant if j /∈ J . This system consists
of at most |I|+ |B| < 1

2 |J |+
1
2 |J | = |J | equations and |J | variables and hence is under-determined.

Note that the system has the solution χ|J because χ fulfills the conditions (C1) and (C2). Since

it is under-determined, it also has a second solution x ∈ QJ . We extend x to xE ∈ Qcn by

(xE)j =

{
xj if j ∈ J
χj otherwise.

Consider the line {(1− λ)χ+ λxE | λ ∈ Q}. Each point on this line (or rather its restriction to
the components in J) fulfills the system of equations and thus condition (C1). By condition
(C2) and the definition of J it holds that 0 < χj < 1 for all j ∈ J and thus there is some λ ∈ Q
such that χ(t+1) := (1 − λ)χ + λxE ∈ Mc,n and at least one component becomes 0 or 1, i.e.,
J(χ(t+1)) (J(χ(t)). Note that χ(t+1) fulfills (C1) and (C2) even for the larger sets J(χ(t)) and
I(χ(t)). Continue the rounding process with χ := χ(t+1).

Since at least one column is removed from J in each iteration, the rounding process will
eventually stop. Let χ be the final value of the coloring. We show ‖A(p− χ)‖∞ ≤ 2∆. Let
1 ≤ i ≤ m. Since at the end it holds that J = ∅, we also have I = ∅. Let χ(t) be the first
coloring such that i /∈ I. Since χ(t) fulfills (C1) also for I(χ(t−1)) (or I(χ(0)) if t = 0) we have

(A(p− χ(t)))i = 0. Furthermore it holds that χ
(t)
j = χj for all j /∈ J(χ(t)) and abs(χ

(t)
j − χj) < 1

for all j ∈ J(χ(t)). Finally note that
∑

j∈J(χ(t)) abs(aij) ≤ 2∆ since i /∈ I(χ(t)). Combining these
facts, we obtain

abs((A(p− χ))i) = abs((A(p− χ(t)))i + (A(χ(t) − χ))i)

= abs(0 +
∑

j∈J(χ(t))

aij(χ
(t)
j − χj)) ≤ 2∆.

We now analyze the runtime. Note that we have at most cn iterations, which is polynomial
in the input length. In each iteration, we have to solve an inhomogeneous system of linear

64 Chapter 5. Applications of Discrepancy Theory

equations and we have to find a certain λ ∈ Q. The system, whose size is polynomial in the input
length, can be solved in polynomial time (see for instance the book by Grötschel et al. [GLS88,
Theorem 1.4.8]). By adding an equation of the form χj = 2 for some suitable j ∈ J , we can find
a solution different to χ. The value for λ can be obtained in polynomial time by successively
trying to fix each floating column to 0 or 1, solving for λ and checking if the resulting vector is
still in Mc,n. 2

Corollary 5.3.2 There is a polynomial-time algorithm that on input of a set of vectors vj,r ∈ Qm

for 1 ≤ j ≤ n, 1 ≤ r ≤ c computes a coloring χ : {1, . . . , n} → {1, . . . , c} such that for each
1 ≤ i ≤ m it holds that

abs

1

c

n∑
j=1

c∑
r=1

vj,ri −
n∑
j=1

v
j,χ(j)
i

 ≤ 2mmax
j,r

abs(vj,ri).

Proof The result is obvious for c = 1. For c ≥ 2, we use Theorem 5.3.1. Because the error
bound is different for each row, we need to scale the rows of the vectors. Let δi = maxj,r abs(vj,ri)

for 1 ≤ i ≤ m. Let A = (ai,j′) ∈ Qm×cn where ai,(c(j−1)+r) = 1
δi
vj,ri (if δi = 0, set it to 0) and

p ∈ Qcn such that pi = 1
c for all 1 ≤ i ≤ cn. We obtain a coloring χ ∈ {0, 1}cn such that

for each 1 ≤ j ≤ n there is exactly one 1 ≤ r ≤ c such that χc(j−1)+r = 1 and it holds that
‖A(p− χ)‖∞ ≤ 2‖A‖1. Note that because of the scaling, the largest entry in A is 1 and thus we
have ‖A‖1 ≤ m. Define χ′ : {1, . . . , n} → {1, . . . , c} by χ′(j) = r ⇐⇒ χc(j−1)+r = 1. We obtain
for each 1 ≤ i ≤ m:

2mδi ≥ 2‖δiA‖1 ≥ abs((δiA(p− χ))i)

= abs

 cn∑
j′=1

δiaij′(pj′ − χj′)

 = abs

 n∑
j=1

c∑
r=1

1

c
vj,ri −

n∑
j=1

v
j,χ′(j)
i


2

5.4 Randomized Approximation of k-MaxTSP

With the cycle cover algorithms and the vector balancing results from the last two sections, we
are now ready to describe our approximation algorithms for k-MaxATSP and k-MaxSTSP.
Generally speaking, our algorithm works in the same way as the basic algorithm by Fisher,
Nemhauser and Wolsey [FNW79]. On input of an Nk-labeled complete graph, we first compute
a set of approximate cycle covers. For each cycle cover we fix two or three arbitrary edges. Our
vector balancing results tell us which edge to remove per cycle such that we do not lose much
more than 1/2 (in the case of directed graphs) and 1/3 (in the case of undirected graphs) of the
weight of the cycle cover in each objective. The remaining paths are then arbitrarily connected
to a Hamiltonian cycle.

Given an arbitrary Hamiltonian cycle of the input graph, our cycle cover approximation must
contain a (1− ε)-approximate cycle cover (where ε > 0 is small), and furthermore, we might
lose slightly more than 1/2 or 1/3 of the cycle cover weight due to the error bound of the vector
balancing result. Hence the above described algorithm computes an approximation with a ratio
slightly below 1/2 or 2/3. We remove this error by guessing and fixing a set of heavy edges of the
Hamiltonian cycle for each component in advance. We will see that only a constant number

5.4. Randomized Approximation of k-MaxTSP 65

of such heavy edges are necessary to balance out the error introduced, hence an exhaustive
search is possible in polynomial time. This way we obtain a randomized 1/2-approximation for
k-MaxATSP and a randomized 2/3-approximation for k-MaxSTSP.

Consider the algorithm k-MaxTSPApprox. Our algorithm uses an additional parameter c ≥ 2
and is generally applicable whenever there exists a cycle cover approximation algorithm that
guarantees at least c edges per cycle. We will apply the general algorithm to directed graphs
with c = 2 and to undirected graphs with c = 3.

Algorithm: k-MaxTSPApprox(V,E,w) with parameter c ≥ 2

Input : Nk-labeled directed/undirected complete graph G = (V,E,w)
Output : Hamiltonian cycles of G

1 foreach F = FH ∪ FL ⊆ E with 3ck ≤ |FH | ≤ 3ck2, |FL| ≤ c|FH | do
2 let β ∈ Nk with βi = max{n ∈ N | there are 3ck edges e ∈ FH with wi(e) ≥ n}
3 for the current iteration of line 1, let w′ : E → Nk such that

w′(e) =

{
w(e) if w(e) ≤ β or e ∈ FH , and

0 otherwise

for all e ∈ E
4 compute (1− 1/|V |)-approximation C of k-MaxDFCCc / k-MaxUFCCc on

((V,E,w′), F)
5 foreach cycle cover C ∈ C do

6 let C1, . . . , Cr denote the cycles in C
7 if for each i ∈ {1, . . . , r}, (Ci − FH) contains a path of length c then
8 foreach i ∈ {1, . . . , r} do choose path ei,1, . . . , ei,c ∈ (Ci − FH) arbitrarily
9 compute some coloring χ : {1, . . . , r} → {1, . . . , c} such that

r∑
i=1

w′(ei,χ(i)) ≤ 2k · β +
1

c

r∑
i=1

c∑
j=1

w′(ei,j)

and remove the edges {ei,χ(i) | 1 ≤ i ≤ r} from C

10 output the remaining edges, connected to a Hamiltonian cycle

Lemma 5.4.1 Let c ≥ 2 and k ≥ 1. If there exists an FPRAS for k-MaxDFCCc

(resp., k-MaxUFCCc), then the algorithm k-MaxTSPApprox computes a randomized (1− 1/c)-
approximation for k-MaxATSP (resp., k-MaxSTSP) in polynomial time.

Proof Let k ≥ 1 and c ≥ 2. We argue that the algorithm k-MaxTSPApprox with parameter c,
using a polynomially amplified version of the FPRAS for k-MaxDFCCc (resp., k-MaxUFCCc)
as a subroutine, is a randomized approximation algorithm for k-MaxATSP (resp., k-MaxSTSP)
with approximation ratio (1− 1/c). Our argumentation works for both directed and undirected
input graphs. So let G = (V,E,w) be some Nk-labeled input graph with m = |V | sufficiently
large.

Observe that for every input we return a set of Hamiltonian cycles, hence the algorithm is
correct. We argue for polynomial runtime, success probability, and approximation ratio.

66 Chapter 5. Applications of Discrepancy Theory

Runtime: Since there are only polynomially many subsets FH , FL ⊆ E with cardinality
bounded by a constant, the loop in line 1 is executed polynomially often. In each iteration the
polynomially amplified version of the FPRAS on (V,E,w′) and F terminates in time polynomial
in the length of (V,E,w′) and F , which means that the set C contains only polynomially many
cycle covers. Hence, for each iteration of the loop in line 1, the loop in line 5 is also executed at
most polynomially many times, and overall we have polynomially many nested iterations. In
each nested iteration where each cycle of the cycle cover contains a path as required, we compute
a coloring of {1, . . . , r} with low discrepancy. By Corollary 5.3.2 this can be done in polynomial
time. Observe that all further steps require at most polynomial time, and hence the algorithm
terminates after polynomially many steps.

Success Probability: The only randomized parts of the algorithm are the calls of the amplified
version of the FPRAS in line 4. Recall that the outer loop is iterated polynomially often, and
let p be a polynomial that bounds the number of times the amplified FPRAS is executed.
We use an amplified version of the FPRAS where the original FPRAS is called p(n) times,
hence the amplified version of the FPRAS has success probability of at least 1− 1

2p(n)
, and by

Lemma 3.1.2, it follows that the probability that all calls of the amplified FPRAS succeed is at
least (1− 1

2p(n)
)p(n) ≥ 1

2 . Therefore the overall algorithm has success probability of at least 1/2.

Approximation Ratio: It remains to show that if the algorithm k-MaxTSPApprox succeeds,
it outputs some (1− 1/c)-approximate set of Hamiltonian cycles. Hence, for the remainder of
the proof, let us assume that the algorithm and hence all calls to the internal amplified FPRAS
succeed. Furthermore, let R ⊆ E be some Hamiltonian cycle of G. We will argue that there is
some iteration where the algorithm outputs an (1− 1/c)-approximation of R.

For each 1 ≤ i ≤ k, let FH,i ⊆ R be some set of 3ck heaviest edges of R in the i-th component,

breaking ties arbitrarily. Let FH =
⋃k
i=1 FH,i. We define FL ⊆ R such that FL ∩ FH = ∅ and

each edge in FH is part of a path in FL ∪ FH that contains c edges from FL. This is always
possible as long as R is large enough. We now have 3ck ≤ |FH | ≤ 3ck2 and |FL| ≤ c|FH |. Hence
in line 1 there will be some iteration that chooses FH and FL. We fix this iteration for the
remainder of the proof.

Let β ∈ Nk as defined in line 2 and observe that βi = min{wi(e) | e ∈ FH,i} for all i, which
means that for all edges e ∈ (R−FH) we have w(e) ≤ β. Hence after line 3 we have w′(e) = 0 for
all edges e ∈ (E −R) with w(e) 6≤ β, and w′(e) = w(e) for all remaining edges e. In particular,
it holds that w′(e) = w(e) for all e ∈ R, hence w′(R) = w(R). Further note that w′ does not
increase the weight of any edge.

Next we obtain a (1 − 1/|V |)-approximate set C of c-cycle covers of (V,E,w′) that contain
FH ∪ FL. Since R is a c-cycle cover of (V,E,w′) with FH ∪ FL ⊆ R, there must be some c-cycle
cover C ∈ C with FH ∪ FL ⊆ C that (1− 1/|V |)-approximates R. Hence in line 5 there will be
some iteration that chooses this C. Again we fix this iteration for the remainder of the proof.

As in line 6, let C1, . . . , Cr denote the cycles in C. Note that each cycle contains at least c
edges. Since each edge in FH is part of a path in FH ∪ FL with at least c edges from FL, we
even know that each cycle contains at least c edges not from FH and thus the condition in line 7
is fulfilled. Let these edges ei,j be defined as in the algorithm.

By the definition of w′ and ei,j /∈ FH it holds that w′(ei,j) ≤ β for all i, j. In line 9 we
compute some χ : {1, . . . , r} → {1, . . . , c} such that

r∑
i=1

w′(ei,χ(i)) ≤ 2k · β +
1

c

r∑
i=1

c∑
j=1

w′(ei,j) ≤ 2k · β +
1

c
· w′(C − FH).

5.5. Deterministic Approximation of k-MaxSAT 67

Recall that by Corollary 5.3.2 such a coloring exists and can be computed in polynomial
time. Removing the chosen edges breaks the cycles into simple paths, which can be arbitrarily

connected to a Hamiltonian cycle R′. For the following estimation note that β ≤ w′(FH)
3ck and

w′(FH) ≥ 3ck
m w′(R) and recall that m = |V | = |R|. Further recall that w′(R) = w(R). We

obtain the following estimation:

w(R′) ≥ w′(R′)

≥ w′(C)−
r∑
i=1

w′(ei,χ(i))

≥ w′(C)− 2k · β − 1

c
· w′(C − FH)

=

(
1− 1

c

)
w′(C) +

1

c
w′(FH)− 2k · β

≥
(

1− 1

c

)
w′(C) +

1

3c
w′(FH)

≥
(

1− 1

c

)(
1− 1

m

)
w′(R) +

k

m
w′(R)

≥
(

1− 1

c

)
w′(R)

=

(
1− 1

c

)
w(R)

2

Recall that in directed graphs, every cycle contains at least 2 edges, and in undirected
graphs, every cycle contains at least 3 edges. Together with the approximation algorithms from
Lemma 5.2.2 we hence obtain the following theorem.

Theorem 5.4.2 Let k ≥ 1.

1. There exists a randomized 1/2-approximation algorithm for k-MaxATSP.
2. There exists a randomized 2/3-approximation algorithm for k-MaxSTSP.

Proof First, consider k-MaxATSP. By Lemma 5.2.2 there exists an FPRAS for k-MaxDFCC2.
Hence we can apply Lemma 5.4.1 with c = 2 and obtain a randomized 1/2-approximation algorithm
for k-MaxATSP.

Next, consider k-MaxSTSP. Here, by Lemma 5.2.2 there exists an FPRAS for k-MaxUFCC3.
Hence we can apply Lemma 5.4.1 with c = 3 and obtain a randomized 2/3-approximation algorithm
for k-MaxSTSP. 2

5.5 Deterministic Approximation of k-MaxSAT

Our vector balancing results are not restricted in their application to the multiobjective maximum
traveling salesman problems. They rather solve a more general problem that frequently appears as
a subproblem in multiobjective optimization. Suppose we are given objects with multidimensional
weights that are partitioned into disjoint groups, and from each group we need to select one
object. Our balancing result shows how to select the objects in a balanced way, such that the

68 Chapter 5. Applications of Discrepancy Theory

overall sum of the weight vectors is balanced in each objective. We will now show a second
application of this result to the k-objective maximum weight satisfiability problem k-MaxSAT.

Recall Example 3.1.3, where we describe the following simple approximation algorithm for
MaxSAT. For a given formula F in CNF over the set of variables V and a weight function
w : F → N, we define I0, I1 : V → {0, 1} with I0(v) = 0 and I1(v) = 1 for all v ∈ V and return
Ii with w(Ii) maximal. In Example 3.1.3 we argued that w(I0) + w(I1) ≥ w(I) for every truth
assignment I, and hence the above algorithm computes a 1/2-approximation for MaxSAT. Again,
a trivial adaption to the case of k-MaxSAT fails, because w(I0) and w(I1) can be incomparable.

We will describe a different approach, where, for each variable, we define two “influence
vectors” on the overall weight of a truth assignment, once when the variable is set to 0, and
once when the variable is set to 1. Our balancing result tells us for each variable which influence
vector and hence which truth value for the variable we can choose such that the overall weight of
the truth assignment thus obtained is roughly 1/2 of the sum of all influence vectors. Since the
sum of the influence vectors will equal the weight of the entire formula, we hence obtain roughly
a 1/2-approximation. Again we have to deal with the small error introduced by the balancing
result. Analogously to the case of k-MaxATSP and k-MaxSTSP we can remove this error by
fixing constantly many “most influential” variables to their optimal truth value. We now give a
detailed description of our algorithm.

For a set of clauses H and a variable v let H[v = 1] = {C ∈ H | v ∈ C} be the set of clauses
that are satisfied if this variable is assigned one, and analogously H[v = 0] = {C ∈ H | v ∈ C}
be the set of clauses that are satisfied if this variable is assigned zero. This notation is extended
to sets of variables V by H[V = i] =

⋃
v∈V H[v = i] for i = 0, 1. We will first show that for a

given Nk-weighted formula in CNF and every truth assignment, there exist 4k2 most influential
variables such that the weight of the remaining variables can be appropriately bounded.

Lemma 5.5.1 Let k ≥ 1, H be a formula in CNF over the variables V = {v1, . . . , vm},
w : H → Nk, and I : V → {0, 1}. There are sets V i ⊆ I−1({i}), i = 0, 1 with |(V 0 ∪ V 1)| ≤ 4k2

such that for G = (H − (H[V 0 = 0] ∪H[V 1 = 1])) and each v ∈ (V − (V 0 ∪ V 1)) it holds that

w(G[v = I(v)]) ≤ 1

4k
w(H −G). (5.1)

Proof The lemma obviously holds for |V | ≤ 4k2. If |V | > 4k2, we will show the existence of
the sets V 0, V 1 by the algorithm GreedyVariableSelection.

Algorithm: GreedyVariableSelection(H,w, I)

Input : Formula H in CNF over the variables V = {v1, . . . , vm}, w : H → Nk, and truth
assignment I : V → {0, 1}

Output : Set {u1, . . . , u4k2} ⊆ V with 4k most influential variables in I per objective

1 H0 := H
2 for t := 0 to 4k − 1 do

3 for r := 1 to k do

4 j := kt+ r
5 choose v ∈ (V − {u1, . . . , uj−1}) such that wr(Hj−1[v = I(v)]) is maximal
6 uj := v
7 Hj := (Hj−1 −Hj−1[v = I(v)])
8 αj := w(Hj−1[v = I(v)])

9 return {u1, . . . , u4k2}

5.5. Deterministic Approximation of k-MaxSAT 69

Let {u1, . . . , u4k2} be defined by GreedyVariableSelection on input (H,w, I). Note that
we use I only to show the existence of V 0, V 1. Let V i = I−1({i})∩{u1, . . . , u4k2} for i = 0, 1. We
now show inequality (5.1), so let v ∈ (V − (V 0 ∪ V 1)). Assume that there is some r ∈ {1, . . . , k}
such that wr(G[v = I(v)]) > 1

4kwr(H−G). Because the union
⋃4k2

j=1Hj−1[uj = I(uj)] = (H−G)
is disjoint, we get

w(H −G) =
k∑

r′=1

4k−1∑
t=0

αkt+r′ ≥
4k−1∑
t=0

αkt+r

and thus

4k · wr(G[v = I(v)]) >
4k−1∑
t=0

(αkt+r)r .

Hence, by the pigeonhole principle, there must be some t ∈ {0, 1, . . . , 4k−1} such that wr(G[v =
I(v)]) > (αkt+r)r. But since G ⊆ Hkt+r−1 and thus even wr(Hkt+r−1[v = I(v)]) ≥ wr(G[v =
I(v)]) > (αkt+r)r, the variable v should have been chosen in step j = kt + r, which is a
contradiction. This means that w(G[v = I(v)]) ≤ 1

4kw(H −G) holds for all v ∈ (V − (V 0 ∪ V 1)).
2

We will now describe the approximation algorithm for k-MaxSAT, where k ≥ 1.

Algorithm: k-MaxSATApprox(H,w)

Input : Formula H in CNF over the variables V = {v1, . . . , vm}, and w : H → Nk
Output : Truth assignments I : V → {0, 1}

1 foreach disjoint V 0, V 1 ⊆ V with |(V 0 ∪ V 1)| ≤ 4k2 do

2 G := (H − (H[V 0 = 0] ∪H[V 1 = 1]))

3 V̂ (1−i) := {v ∈ (V − (V 0 ∪ V 1)) | 4k · w(G[v = i]) 6≤ w(H −G)}, i = 0, 1

4 if V̂ 0 ∩ V̂ 1 = ∅ then
5 V ′ := (V − (V 0 ∪ V 1 ∪ V̂ 0 ∪ V̂ 1)), L′ := V ′ ∪ {v | v ∈ V ′}
6 G′ := ((G[V ′ = 0] ∪G[V ′ = 1])− (G[V̂ 0 = 0] ∪G[V̂ 1 = 1]))

7 for vj ∈ V ′ let xj,i =
∑{

w(C)
|(C∩L′)| | C ∈ G

′[vj = i]
}

for i = 0, 1

8 compute some coloring χ : V ′ → {0, 1} such that∑
vj∈V ′

xj,χ(j) ≥ 1

2

∑
vj∈V ′

(xj,0 + xj,1)− 2kδ

where δ ∈ Nk such that δr = max{xj,ir | vj ∈ V ′, i ∈ {0, 1}}
9 let I(v) := i for v ∈ V i ∪ V̂ i ∪ χ−1({i}), i = 0, 1

10 output I

Theorem 5.5.2 For every k ≥ 1, k-MaxSAT is 1/2-approximable.

Proof We show that this approximation is realized by k-MaxSATApprox. So let (H,w) be the
input, where H is a formula in CNF over the variables V = {v1, . . . , vm} and w : H → Nk is the
k-objective weight function.

The algorithm only returns truth assignments of V and hence works correctly. We argue for
polynomial runtime and the claimed approximation ratio.

70 Chapter 5. Applications of Discrepancy Theory

Runtime: Since k is a constant, there are only polynomially many disjoint sets V0, V1 ⊆ V
with |(V0 ∪ V1)| ≤ 4k2. So there are only polynomially many iterations of the algorithm. The
coloring in line 8 can be computed in polynomial time using Corollary 5.3.2, while all remaining
steps are trivial. So overall we obtain a polynomial-time algorithm.

Approximation Ratio: Let Io : V → {0, 1} be an arbitrary truth assignment. We show that
there is an iteration of k-MaxSATApprox(H,w) that outputs a truth assignment I such that
w(I) ≥ w(Io)/2.

We first note that there are sets V 0 and V 1 with a bounded cardinality of at most 4k2 that
define a partial truth assignment that contributes a large weight.

We choose the iteration of the algorithm k-MaxSATApprox where V 0 and V 1 equal the sets
whose existence is guaranteed by Lemma 5.5.1. In the following, we use the variables as they
are defined in the algorithm. Observe that by Lemma 5.5.1 it holds that Io(v) = i for all v ∈ V̂ i

for i = 0, 1 and thus V̂ 0 ∩ V̂ 1 = ∅. Note that∑
vj∈V ′

(xj,0 + xj,1) =
∑
vj∈V ′

∑
i∈{0,1}

∑
C∈G′[vj=i]

w(C)

|(C ∩ L′)|
=
∑
C∈G′

|(C ∩ L′)| w(C)

|(C ∩ L′)|
= w(G′).

Furthermore, for all vj ∈ V ′ and i = 0, 1, we have the bound xj,i ≤ w(G′[vj = i]) ≤ w(G[vj =
i]) ≤ 1

4kw(H − G) because of the definition of V ′ and V̂ (1−i). By Corollary 5.3.2, we find a
coloring χ : V ′ → {0, 1} such that for each 1 ≤ i ≤ k it holds that

abs

1

2

∑
vj∈V ′

1∑
r=0

xj,ri −
∑
vj∈V ′

x
j,χ(vj)
i

 ≤ 2kmax
j,r

abs(xj,ri) ≤ 2k
1

4k
wi(H −G) =

1

2
wi(H −G)

and hence ∑
vj∈V ′

xj,χ(vj) ≥ 1

2

∑
vj∈V ′

(xj,0 + xj,1)− 1

2
w(H −G) =

1

2
(w(G′)− w(H −G)).

For I being the truth assignment generated in this iteration it holds that

w({C ∈ G′ | I(C) = 1}) ≥
∑
vj∈V ′

xj,χ(vj) ≥ 1

2
(w(G′)− w(H −G)). (5.2)

Furthermore, since I and Io coincide on (V − V ′), we have

w({C ∈ (H −G′) | I(C) = 1}) = w({C ∈ (H −G′) | Io(C) = 1}) (5.3)

≥ w({C ∈ (H −G) | Io(C) = 1})
= w(H −G). (5.4)

Thus we obtain

w(I) = w({C ∈ (H −G′) | I(C) = 1}) + w({C ∈ G′ | I(C) = 1})
≥ w({C ∈ (H −G′) | I(C) = 1}) + 1

2(w(G′)− w(H −G)) (by (5.2))

= w({C ∈ (H −G′) | Io(C) = 1}) + 1
2(w(G′)− w(H −G)) (by (5.3))

≥ 1
2w({C ∈ (H −G′) | Io(C) = 1}) + 1

2w(G′) (by (5.4))

≥ 1
2w(Io).

2

5.6. Summary and Discussion 71

5.6 Summary and Discussion

In this chapter we shifted our attention to multiobjective maximization variants of the traveling
salesman problem. We distinguished between the version on directed graphs and the version on
undirected graphs, where we obtained a randomized 1/2 and a randomized 2/3 approximation
algorithm, respectively. Both algorithms improve the previously best known approximation
algorithms, which are due to Manthey [Man12b], by removing the ε-error in the approximation
ratio.

In order to obtain these approximation algorithms, we considered typical single-objective
algorithms that are based on cycle covers and generalized them to the multiobjective setting.
Such a generalization is not trivial, which is due to a subproblem that frequently occurs in
multiobjective optimization: elements with multiobjective weights can be incomparable, and
terms like “lightest edge” are not well-defined if the weights have multiple components, so we
cannot simply remove the “lightest edge” but need more sophisticated techniques.

We showed that results from discrepancy theory yield a solution to this subproblem. Corol-
lary 5.3.2 provides us with a polynomial-time algorithm that selects multidimensional weight
vectors from a list of such vectors such that some selection constraints are satisfied and such
that the selected vectors have a weight that is balanced (i.e., that roughly equals a fixed fraction
of the weight of all vectors) in each objective. This subproblem is very general and common
in multiobjective optimization, hence Corollary 5.3.2 is of particular interest here. As another
application we used it to find an approximation algorithm for a multiobjective version of the
maximum satisfiability problem.

72 Chapter 5. Applications of Discrepancy Theory

Chapter 6

Applications of Necklace Splitting

Deterministic Approximation of Multiobjective Maximum Traveling Salesman Re-
call from the last chapter that there exists a randomized 1/2-approximation algorithm for
k-MaxATSP and a randomized 2/3-approximation algorithm for k-MaxSTSP, where k ≥ 1.
These algorithms compute cycle covers by a reduction to the multiobjective maximum perfect
matching problem, for which randomized approximation algorithms are known by Theorem 3.2.1.
Hence the algorithms for k-MaxATSP and k-MaxSTSP are randomized.

Manthey [Man12a] was the first to study the deterministic approximability of k-MaxATSP
and k-MaxSTSP. Since no FPTAS is known for the multiobjective maximum perfect matching
problems, it becomes more difficult to find a deterministic approximation for k-MaxATSP and
k-MaxSTSP. Manthey [Man12a] showed that k-MaxATSP is deterministically (1−ε)/(4k−2)-
approximable, and k-MaxSTSP is deterministically (1−ε)/2k-approximable, where k ≥ 2 and
ε > 0. Moreover, in the two-objective case, he obtained a deterministic (1−ε)/4-approximation
algorithm for 2-MaxATSP and a deterministic (3−ε)/8-approximation algorithm for 2-MaxSTSP.

Necklace Splitting in Multiobjective Approximation We use cycle cover based algo-
rithms to deterministically approximate the multiobjective traveling salesman problems. In the
last chapter we showed how to deterministically transform a cycle cover into a Hamiltonian
cycle without losing too much weight in every objective. So it remains to find a good cycle
cover approximation, which again reduces to multiobjective matching problems. Since we want
to find deterministic algorithms, we will not use the randomized approximation scheme for
multiobjective matching. Instead we will use necklace splitting results to deterministically obtain
multiobjective matching approximations.

For a given graph G = (V,E,w) with w : E → Nk, we will consider the (perfect) matching
polytope, which is defined as the convex hull of incidence vectors of (perfect) matchings of G. We
will show that for every d ∈ Nk we can either find a point x ∈ RE in the matching polytope that
corresponds to a fractional matching M with w(M) ≥ d, or we obtain the assertion that no such
fractional matching exists. Given a fractional matching M , we can use an algorithmic version of
Carathéodory’s Theorem [Car11, GLS88] to compute a constant number of matchings M1, . . . ,Ml

such that M is a convex combination of M1, . . . ,Ml. It remains to combine M1, . . . ,Ml into a
single matching M ′ whose weight roughly equals the weight of the fractional matching M .

At this point we will apply solutions to the necklace splitting problem. In its original problem
formulation, two thieves want to split a valuable necklace into two halves such that each of them
obtains exactly one half of the material and hence of the value of the necklace. The task is
to use as few cuts as possible. Clearly, if the necklace consists of a single material, then two
cuts are sufficient to split the necklace evenly. The question becomes more interesting if one

73

74 Chapter 6. Applications of Necklace Splitting

considers necklaces that consist of multiple, different materials. A result by Stromquist and
Woodall [SW85] states that if we are given a necklace made of k ≥ 2 different materials and
some α ∈ [0, 1], then 2(k − 1) cuts are sufficient to split the necklace in such a way that one can
remove a fraction of α of each material. We apply these necklace splitting results and obtain
that if the fractional matching M is a convex combination of the matchings M1, . . . ,Ml with
known coefficients, then we can extract a matching M ′ from M1, . . . ,Ml that has almost the
same weight as M in every objective. The few cuts of the necklace splitting result make sure
that the difference between the weights of M and M ′ is small. Moreover, we can show that if
M1, . . . ,Ml are perfect, then M ′ is r-near perfect, where r is relatively small.

Since now we can decide for every d ∈ Nk whether there exists a matching at least as good
as d in every objective, and we can further compute a matching that is almost as good as
d if a matching at least as good as d exists, we can apply a method by Papadimitriou and
Yannakakis [PY00] and obtain a PTAS for the multiobjective maximum matching problem.
We remark at this point that recently, Chekuri et al. [CVZ11] have shown that there exists
a PTAS for multiobjective maximum matching. They work with fractional solutions in the
matching polytope and use randomized rounding to obtain a good approximate solution. While
our approach also works on the matching polytope, we use necklace splitting to combine multiple
solutions into a good approximation.

Since we can make sure that perfect matchings are combined into r-near perfect matchings
for some small r, we also obtain a PTAS-like approximation algorithm that approximates
perfect matchings by r-near perfect matchings. By a number of reductions we show that
the multiobjective cycle cover problems on directed and on undirected graphs admit PTAS-
like approximation algorithms, which we will then use to obtain deterministic approximation
algorithms for k-MaxATSP and k-MaxSTSP.

Contributions We summarize the contributions of this chapter as follows.

1. A Structured Vector Balancing Tool. We apply the necklace splitting results by Stromquist
and Woodall [SW85] and obtain a balancing result for vectors that is similar to the result
of the last chapter, where for a set of given vectors we obtained a subset that was almost
balanced in each component. While the result in this chapter has a bigger deviation from
an optimal balance, it is more structured. Namely, for every list of vectors, we can find an
almost balanced coloring of the vectors that only has a constant number of jump points.
This in particular shows that the coloring can be found in polynomial time by brute force.

2. Improved Approximations. Using the structured balancing tool we provide a PTAS for the
multiobjective maximum matching problem (k-MaxM) and a PTAS-like approximation
algorithm for the multiobjective maximum perfect matching problem (k-MaxPM) that
approximates perfect matchings by near-perfect matchings. Note that by Chekuri et
al. [CVZ11], a PTAS for the multiobjective maximum matching problem exists. Our
approach uses necklace splitting and can also be used to approximate perfect matchings
by l-near perfect matchings for some small l. By a number of reductions we obtain a
PTAS for the multiobjective maximum partial cycle cover problem on directed graphs,
where up to r edges can be fixed (k-r-MaxDFPCC), and a PTAS-like approximation
algorithm for the multiobjective maximum cycle cover problem on undirected graphs, where
up to r edges can be fixed (k-r-MaxUFCC), that approximates cycle covers by l-near
cycle covers. As the main result of this chapter we obtain that there exist a deterministic
(1−ε)/2-approximation algorithm for k-MaxATSP and a deterministic (2−ε)/3-approximation
algorithm for k-MaxSTSP. We summarize our approximation results in Table 6.1.

6.1. Problem Definitions 75

Problem Approximation Reference Remark

k-MaxM PTAS 6.3.11

k-MaxPM PTAS-like 6.3.12 algorithm outputs 8k2-near perfect matchings

k-r-MaxDFPCC PTAS 6.4.1

k-r-MaxUFCC PTAS-like 6.4.5 algorithm outputs 8k2-near cycle covers

k-MaxATSP (1−ε)/2 6.5.2

k-MaxSTSP (2−ε)/3 6.5.2

Table 6.1: Deterministic approximation ratios shown in this chapter, where ε > 0 and k ≥ 1, r ≥ 0.

Organization of this Chapter In Section 6.1 we define the problems we consider in this
chapter. In Section 6.2 we apply the necklace splitting results from the literature to obtain a
structured vector balancing tool. We continue to study deterministic approximation algorithms for
the multiobjective matching problems in Section 6.3. In Section 6.4 we will reduce multiobjective
cycle cover problems to the multiobjective matching problems. By the results of Section 6.3
we will obtain PTAS-like approximation algorithms for the cycle cover problems. We apply
the cycle cover approximation algorithms in Section 6.5 to show how to obtain deterministic
approximation algorithms for k-MaxATSP and k-MaxSTSP. Our results are summarized in
Section 6.6.

6.1 Problem Definitions

Recall the notions of a r-near perfect matching and a r-near cycle cover from Section 2.2. Let
k ≥ 1 and further recall the definition of k-MaxATSP and k-MaxSTSP from the previous
chapter. We will develop deterministic approximation algorithms for k-MaxATSP and k-
MaxSTSP using reductions to cycle cover problems, which can be reduced to matching problems.
We consider the following multiobjective matching problems.

k-Objective Maximum Weight Perfect Matching
Notation: k-MaxPM
Instance: Nk-labeled undirected graph G = (V,E,w)
Solution: perfect matching M ⊆ E of G
Objective: maximize w(M)

k-Objective Maximum Weight Matching
Notation: k-MaxM
Instance: Nk-labeled undirected graph G = (V,E,w)
Solution: matching M ⊆ E of G
Objective: maximize w(M)

We show that k-MaxM admits a PTAS and that k-MaxPM admits a PTAS-like approximation
that outputs 8k2-near perfect matchings instead of perfect matchings. Using these algorithms,
we will show approximation algorithms for the following cycle cover problems.

k-Objective Maximum Directed r-Fixed Partial Cycle Cover
Notation: k-r-MaxDFPCC
Instance: Nk-labeled directed graph (V,E,w) and F ⊆ E with |F | ≤ r
Solution: partial cycle cover C ⊆ E with F ⊆ C
Objective: maximize w(C)

76 Chapter 6. Applications of Necklace Splitting

k-Objective Maximum Undirected r-Fixed Cycle Cover
Notation: k-r-MaxUFCC
Instance: Nk-labeled undirected graph (V,E,w) and F ⊆ E with |F | ≤ r
Solution: cycle cover C ⊆ E with F ⊆ C
Objective: maximize w(C)

6.2 Necklace Splitting Results

Stromquist and Woodall [SW85] use a general form of the so-called ham sandwich theorem by
Stone and Tukey [ST42] to show that, given k probability measures on the unit circle S1, for
every portion α ∈ [0, 1] there exists a union of k−1 intervals from the unit circle whose measures
all equal α.

Theorem 6.2.1 ([SW85]) Let n ≥ 2 and let µ1, . . . , µn be non-atomic probability measures on
S1. For each α ∈ [0, 1] there is a set Kα ⊆ S1 such that Kα is a union of at most n− 1 intervals
and µi(Kα) = αµi(S

1) = α for each i (i = 1, . . . , n).

Corollary 6.2.2 Let k ≥ 2 and f1, . . . , fk : [0, 1]→ R be integrable and non-negative. For every
α ∈ [0, 1] there is some coloring χ : [0, 1]→ {0, 1} with at most 2(k − 1) jumps such that for all
i ∈ {1, . . . , k}, ∫

χ−1(1)
fi(x)dx = α

∫
[0,1]

fi(x)dx.

Proof We assume that for each i it holds that
∫

[0,1] fi(x)dx > 0, otherwise the equation in
Corollary 6.2.2 trivially holds for fi. For each i we define a non-atomic probability measure µi
on S1 by

µi(R) :=

∫
R f(x)dx∫

[0,1] f(x)dx

for all R ⊆ S1. From Theorem 6.2.1 we obtain a set Kα ⊆ S1 such that Kα is a union of
at most k − 1 intervals and µi(Kα) = α for all i. So for the coloring χ : [0, 1] → {0, 1} with
χ(x) = 1 ⇐⇒ x ∈ Kα we obtain∫

χ−1(1)
fi(x)dx =

∫
Kα

fi(x)dx = µi(Kα) ·
∫

[0,1]
fi(x)dx = α

∫
[0,1]

fi(x)dx

for each i. Since Kα is a union of at most k − 1 intervals, the coloring χ has at most 2(k − 1)
jumps. 2

Corollary 6.2.3 Let c, k ≥ 1 and for r = 1, . . . , c and i = 1, . . . , k let fr,i : [0, 1] → R be
integrable and non-negative, and let α ∈ [0, 1]c such that ‖α‖1 = 1. There is a coloring
χ : [0, 1]→ {1, . . . , c} with at most 2kc2 jumps such that for all i ∈ {1, . . . , k},∫

[0,1]
fχ(x),i(x)dx =

c∑
r=1

αr ·
∫

[0,1]
fr,i(x)dx.

6.2. Necklace Splitting Results 77

Proof We show this by induction on c. The case that αc = 1 is trivial, which includes the
induction base c = 1. For the induction step, we ignore the grouping of the c · k functions and
obtain from Corollary 6.2.2 some χ′ : [0, 1]→ {0, 1} with at most 2(ck − 1) jumps such that for
all r, i, ∫

χ′−1(1)
fr,i(x)dx = αc

∫
[0,1]

fr,i(x)dx.

Now define f ′r,i(x) = (1− χ′(x)) · fr,i(x). The induction hypothesis applied to f ′r,i, 1 ≤ r ≤ c− 1,

1 ≤ i ≤ k and the vector α′ ∈ [0, 1]c−1, α′r = αr
1−αc yields a coloring χ′′ : [0, 1] → {1, . . . , c− 1}

with at most 2k(c− 1)2 jumps such that for all i ∈ {1, . . . , k},∫
[0,1]

f ′χ′′(x),i(x)dx =
c−1∑
r=1

α′r ·
∫

[0,1]
f ′r,i(x)dx.

For

χ(x) =

{
c if χ′(x) = 1, and

χ′′(x) otherwise

we obtain for all 1 ≤ i ≤ k,∫
[0,1]

fχ(x),i(x)dx =

∫
χ′−1(1)

fc,i(x)dx+

∫
χ′−1(0)

fχ′′(x),i(x)dx

=

∫
χ′−1(1)

fc,i(x)dx+

∫
[0,1]

f ′χ′′(x),i(x)dx

= αc

∫
[0,1]

fc,i(x)dx+

c−1∑
r=1

α′r ·
∫

[0,1]
f ′r,i(x)dx

= αc

∫
[0,1]

fc,i(x)dx+

c−1∑
r=1

α′r · (1− αc)
∫

[0,1]
fr,i(x)dx

=
c∑

r=1

αr

∫
[0,1]

fr,i(x)dx.

The number of jumps of χ is 2(ck − 1) + 2k(c− 1)2 ≤ 2kc2. 2

Corollary 6.2.4 Let c, k ≥ 1 and n ≥ 0, and let α ∈ [0, 1]c such that ‖α‖1 = 1. For each set
of vectors vj,r ∈ Rk with non-negative components for j = 1, . . . , n and r = 1, . . . , c, there is
a coloring χ : {1, . . . , n} → {1, . . . , c} with at most 2kc2 jumps such that for each 1 ≤ i ≤ k it
holds that

abs

 n∑
j=1

v
j,χ(j)
i −

c∑
r=1

αr

n∑
j=1

vj,ri

 ≤ 2kc2 max
j,r

vj,ri .

Proof For each i = 1, . . . , k and r = 1, . . . , c define the function fr,i : [0, 1]→ R with fr,i(x) =

n · vdxne,ri and fr,i(0) = 0. From Corollary 6.2.3, we obtain a coloring χ′ : [0, 1]→ {1, . . . , c} with
at most 2kc2 jumps such that for all i ∈ {1, . . . , k}∫

[0,1]
fχ′(x),i(x)dx =

c∑
r=1

αr ·
∫

[0,1]
fr,i(x)dx =

c∑
r=1

αr

n∑
j=1

vj,ri .

78 Chapter 6. Applications of Necklace Splitting

Define χ′′ : [0, 1]→ {1, . . . , c} from χ′ by moving each jump point at x ∈ [0, 1] to the next value
such that n · x is an integer. Since we have to move at most 2kc2 jump points each over a
distance of at most 1

n , we get for i ∈ {1, . . . , k}

abs

(∫
[0,1]

fχ′(x),i(x)dx−
∫

[0,1]
fχ′′(x),i(x)dx

)
≤ 2kc2 max

j,r
vj,ri .

The assertion is obtained for the coloring χ : {1, . . . , n} → {1, . . . , c}, χ(j) := χ′′(
j− 1

2
n). 2

Note that Corollary 5.3.2 and Corollary 6.2.4 are very similar. However, while Corollary 5.3.2
has a smaller error factor, Corollary 6.2.4 guarantees a constant number of jumps. This will be
crucial in the remainder of this chapter.

6.3 Deterministic Matching Approximation

We next show that there exists a PTAS for the multiobjective maximum matching problem and a
PTAS-like approximation algorithm for the multiobjective maximum perfect matching problem.
The PTAS-like algorithm has the same approximation guarantee as a PTAS but approximates
perfect matchings only by r-near perfect matchings for some small r. Let G = (V,E,w) be an
Nk-labeled undirected graph. We will proceed as follows.

1. We first show that for every d ∈ Nk we can find out whether there exists a fractional
matching M (i.e., a point in the matching polytope) with w(M) ≥ d or not. Moreover, if
there exists such a fractional matching, then we can compute it in polynomial time.

2. We next argue that the fractional matching M is a convex combination of constantly many
matchings M0, . . . ,Mk, which can be computed from M and G in polynomial time.

3. We proceed to prove that in polynomial time we can combine M0, . . . ,Mk to a single
matching M ′ such that the difference between w(M ′) and w(M) is relatively small. The
combination of different matchings into a single matching uses the necklace splitting results
from the last section and only introduces a relatively small error.

4. For a given ε > 0 we can repeat the above steps at polynomially many points d ∈ Nk and
obtain a set of matchings such that for every matching M∗ of G there exists a matching in
our set that (1− ε)-approximates M∗.

Notations and Definitions Let E be a set. For convenience, in this section we will adapt
the notation that RE is the set of mappings from E to R, where the components of an element
x ∈ RE are indexed by the elements e ∈ E, hence x = (xe)e∈E . Let M ⊆ E. A vector x ∈ RE is
called incidence vector of M if and only if xe = 1 if e ∈M and xe = 0 if e /∈M for all e ∈ E.

Let n, k ∈ N. We say that a vector x ∈ Rn is a linear combination of the vectors y1, . . . , yk ∈
Rn if there exists some λ ∈ Rk such that x =

∑k
i=1 λiyi. A linear combination with

∑k
i=1 λi = 1

is called affine, and an affine combination with λi ≥ 0 for all 1 ≤ i ≤ k is called convex.
Let P ⊆ Rn be a set. We define the convex hull of P by

conv(P) := {x ∈ Rn | x is a convex combination of some y1, . . . , ym ∈ P with m ∈ N}.

P is called affinely independent if there do not exist distinct x, y1, . . . , ym ∈ P with m ≥ 1 such
that x is an affine combination of y1, . . . , ym. The affine rank of P is defined by

arank(P) := max{|S| | S ⊆ P and S is affinely independent}.

6.3. Deterministic Matching Approximation 79

It is well-known that from P ⊆ Rn it follows that arank(P) ≤ n + 1. If arank(P) = n + 1,
then P is called full-dimensional. P is called a polyhedron if P = {x ∈ Rn | Ax ≤ b} for some
A ∈ Rm×n and b ∈ Rm, and if it further holds that P is contained in a sphere in Rn, then P is
called a polytope. If P is a polyhedron and x ∈ P , we call x a vertex of P if x is not a convex
combination of other elements of P .

Matching Polytopes Let G = (V,E) be some undirected graph.

M(G) := conv({x ∈ RE | x is incidence vector of a matching in G})
P (G) := conv({x ∈ RE | x is incidence vector of a perfect matching in G})

We call M(G) the matching polytope of G and P (G) the perfect matching polytope of G.
Clearly it holds that P (G) ⊆ M(G). Note that for all x ∈ RE it holds that x is a vertex
of M(G) if and only if x is the incidence vector of a matching of G, and x is a vertex of
P (G) if and only if x is the incidence vector of a perfect matching of G. Observe that the set
{x ∈ {0, 1}E |

∑
e∈E xe ≤ 1} ⊆M(G) is affinely independent and has cardinality |E|+ 1, hence

M(G) is full-dimensional.
Edmonds [Edm65] gave a characterization of the matching polytopes by a system of inequal-

ities (see Schrijver [Sch83] for an alternative proof).

Theorem 6.3.1 ([Edm65, Sch83]) Let G = (V,E) be an undirected graph.

1. M(G) = {x ∈ RE | x satisfies (6.1) - (6.3)}, where:

xe ≥ 0 (for each e ∈ E) (6.1)∑
e∈E : v∈e

xe ≤ 1 (for each v ∈ V) (6.2)

∑
e∈E : e⊆U

xe ≤
|U | − 1

2
(for each U ⊆ V with |U | odd) (6.3)

2. P (G) = {x ∈ RE | x satisfies (6.4) - (6.6)}, where:

xe ≥ 0 (for each e ∈ E) (6.4)∑
e∈E : v∈e

xe = 1 (for each v ∈ V) (6.5)∑
e∈E : |e∩U |=1

xe ≥ 1 (for each U ⊆ V with |U | odd) (6.6)

Separation Problems for the Matching Polytopes Let P ⊆ Rn be some polytope. Fol-
lowing Grötschel, Lovász and Schrijver [GLS81], we define separation problems for P as follows.

Strong Separation Problem for P :
Given a vector y ∈ Rn, either assert that y ∈ P , or find a vector c ∈ Rn such that
cT y > cTx for all x ∈ P .

We can hence think of {x ∈ Rn | cTx = cT y} as a hyperplane in Rn that separates y and P .
Without any further assumptions, it might be possible that c is not a vector with rational
components, hence we also introduce a weak version that allows a small deviation and makes
sure that for every separating hyperplane there exists a separating hyperplane with rational c.

80 Chapter 6. Applications of Necklace Splitting

Weak Separation Problem for P :
Given a vector y ∈ Qn and ε > 0, either assert that d(y, P) ≤ ε, or find a vector
c ∈ Qn with ‖c‖1 ≥ 1 such that cT y + ε ≥ cTx for all x ∈ P .

Here, d(y, P) denotes the Euclidean distance of y from P . It is known that there exist polynomial-
time algorithms that solve the separation problem for the matching polytope and for the perfect
matching polytope. For the sake of completeness we give a short proof.

Theorem 6.3.2 ([GLS81, PR82]) There are polynomial-time algorithms that on input of an
undirected graph G = (V,E) and y ∈ QE solve the strong separation problems (on rational
inputs) and hence also the weak separation problems for M(G) and P (G), respectively.

Proof Suppose we have the input G = (V,E) and y ∈ QE . Let us first argue for the perfect
matching polytope. Recall that P (G) is the set of all solutions to the inequalities from (6.4)
- (6.6). We can easily check whether y satisfies the inequalities from (6.4) and (6.5), where
a violation immediately yields a hyperplane separating y and P (G). So it remains to check
whether the inequalities from (6.6) hold for y, i.e., whether it holds that∑

e∈E : |e∩U |=1

ye ≥ 1 (for each U ⊆ V with |U | odd).

This test is non-trivial, because there are exponentially many subsets U ⊆ V . However, Padberg
and Rao [PR82] showed how to perform this test in polynomial time. They argue that finding a
set U ′ ⊆ V such that |U ′| is odd and

∑
e∈E : |e∩U ′|=1 ye is minimal can be done in polynomial

time by a reduction to a polynomial-time solvable minimum odd cut problem. Now we have the
following cases.

•
∑

e∈E : |e∩U ′|=1 ye < 1. Then U ′ yields a violation of (6.6) and hence a separating hyper-
plane.
•
∑

e∈E : |e∩U ′|=1 ye ≥ 1. Then 1 ≤
∑

e∈E : |e∩U ′|=1 ye ≤
∑

e∈E : |e∩U |=1 ye holds for all U ⊆ V
with |U | odd, so U ′ asserts that (6.6) also holds for y.

The matching polytope M(G) is treated in a similar fashion. We can again trivially check (6.1)
and (6.2), while Padberg and Rao [PR82] show how to reduce (6.3) to (6.6) by introducing slack
variables. 2

Corollary 6.3.3 Let k ∈ N. There are polynomial-time algorithms that on input of an Nk-
labeled, undirected graph G = (V,E,w) and d ∈ Nk perform as follows.

1. Return some x ∈M(G) such that w(x) ≥ d, or correctly state that no such x exists.
2. Return some x ∈ P (G) such that w(x) ≥ d, or correctly state that no such x exists.

Proof We begin with the first item. For the input G = (V,E,w) and d ∈ Nk we define the
polytope

M ′(G) = M(G) ∩ {x ∈ RE | w(x) ≥ d}.

Recall that by Theorem 6.3.2, the strong separation problem for M(G) (on rational inputs)
can be solved in polynomial time, and observe that the strong separation problem for {x ∈
RE | w(x) ≥ d} (on rational inputs) can trivially be solved in polynomial time by checking

6.3. Deterministic Matching Approximation 81

each inequality, where a violation yields a separating hyperplane. Hence the strong separation
problem for M ′(G) (on rational inputs) can be solved in polynomial time.

Plummer and Lovász [PL86] state that for classes of “well-behaved polytopes”, if the strong
separation problem on rational inputs can be solved in polynomial time, then the ellipsoid
method (see Grötschel, Lovász and Schrijver [GLS88]) can be used to maximize arbitrary linear
functions over each contained polytope in polynomial time. In this context, “well-behaved”
means that the dimension of M ′(G) is polynomial in the input, and moreover, the vertices of
M ′(G) are vectors of rational numbers whose numerator and denominator can be described with
at most polynomially many bits. Observe that this is satisfied by M ′(G), hence we can optimize
an arbitrary linear function over M ′(G) and either obtain some x ∈M ′(G) or the assertion that
M ′(G) is empty. If M ′(G) is empty, then x ∈ M(G) implies w(x) 6≥ d and hence there is no
x ∈M(G) such that w(x) ≥ d. Otherwise we obtain some x ∈M ′(G). In this case it holds that
x ∈M(G) and w(x) ≥ d, and we are done.

The second item is shown analogously, where we consider the polytope P (G) instead. 2

Computations in the Matching Polytope Carathéodory’s theorem states that if a point
x ∈ Rm lies in the convex hull of a set of points P ⊆ Rm, then x is a convex combination of
m+ 1 or fewer points of P . There also exists an algorithmic version of Carathéodory’s theorem,
shown by Grötschel, Lovász and Schrijver [GLS81]. We will show that the algorithmic version
can be applied to the matching polytope, which will enable us to find for arbitrary rational goal
points in the matching polytope a convex combination of matchings that results in the goal
point.

Theorem 6.3.4 (Carathéodory’s theorem, [Car11]) Let k ∈ N and P ⊆ Rk. For all
x ∈ conv(P) there are (not necessarily distinct) points y0, . . . , yk ∈ P such that x ∈
conv({y0, . . . , yk}).

Before we state the result of Grötschel, Lovász and Schrijver [GLS81], we adapt some of their
terminology.

• A rational polytope is a quadruple (P ;n, a0, T), where P ⊆ Rn is a full-dimensional
polytope, a0 ∈ Qn is a point in the interior of P , and every component of a0 as well as of
every vertex of P is a rational number with numerator and denominator not exceeding T
in absolute value.
• A class of rational polytopes K is called solvable if there exists a polynomial-time algorithm

that solves the weak separation problem for the members of K. Note that we will assume
a fixed encoding for all members of K. The input to the algorithm will hence contain the
code of some particular K ∈ K.

Grötschel, Lovász and Schrijver [GLS81] show the following result.

Theorem 6.3.5 ([GLS81]) Let K be a solvable class of rational polytopes. Then there exists an
algorithm which, given (P ;n, a0, T) ∈ K and a rational vector y ∈ P , yields vertices x0, x1, . . . , xn
of P and coefficients λ0, λ1, . . . , λn ≥ 0 such that λ0 + λ1 + · · ·+ λn = 1 and λ0x0 + λ1x1 + · · ·+
λnxn = y, in time polynomial in n, log T and logS, where S is the maximum absolute value of
numerators and denominators of components of y.

Corollary 6.3.6 There is a polynomial-time algorithm that on input of an undirected graph
G = (V,E) and a rational vector x ∈M(G) computes vertices y1, . . . , ym ∈M(G) and a rational
λ ∈ [0, 1]m such that ‖λ‖1 = 1 and x =

∑m
r=1 λryr, where m = |E|+ 1.

82 Chapter 6. Applications of Necklace Splitting

Proof Consider some input G = (V,E) such that E 6= ∅ and x ∈ QE such that x ∈M(G). It is
easy to see that aG = (1/m, 1/m, . . . , 1/m)T ∈ QE satisfies each inequality in (6.1) - (6.3) strictly,
hence aG lies in the interior of M(G). The vertices of M(G) are the matchings of G with entries
from {0, 1} in each component, hence the quadruple (M(G); |E|, aG,m) is a rational polytope.

Grötschel, Lovász and Schrijver [GLS81] further state that the class of matching polytopes
is solvable, which follows from the existence of a polynomial-time algorithm that solves the weak
separation problem for M(G) on input G and some vector in QE (cf. Theorem 6.3.2). We can
hence apply Theorem 6.3.5.

We run the algorithm from Theorem 6.3.5 on input x and (M(G); |E|, aG,m), where M(G)
is encoded by G, and obtain vertices x1, x2, . . . , xm of M(G) and coefficients λ1, λ2, . . . , λm ≥ 0
such that λ1 + λ2 + · · ·+ λm = 1 and λ1x1 + λ2x2 + · · ·+ λmxm = y in time polynomial in m,
logm and logS, where S is the maximum absolute value of numerators and denominators of
components of x. Hence the overall running time is polynomial in the length of the input. 2

Corollary 6.3.7 For every k ≥ 1 there is a polynomial-time algorithm that on input of an
Nk-labeled undirected graph G = (V,E,w) and a rational point x ∈M(G) computes matchings
M1, . . . ,Mk+1 in G and α ∈ ([0, 1] ∩ Q)k+1, ‖α‖1 = 1 such that for all 1 ≤ i ≤ k, wi(x) =∑k+1

r=1 αrwi(Mr).

Moreover, if x ∈ P (G), then M1, . . . ,Mk+1 are perfect.

Proof Let m = |E|+1. We apply the algorithm from Corollary 6.3.6 to (V,E) and x, and obtain
vertices y1, . . . , ym ∈M(G) and some rational λ ∈ [0, 1]m such that ‖λ‖1 = 1 and x =

∑m
r=1 λryr.

We assume that λr > 0 for all 1 ≤ r ≤ m. Recall that each vertex yr ∈M(G) corresponds to a
matching Mr of G. Hence we have

w(x) =
∑
e∈E

xew(e) =
∑
e∈E

m∑
r=1

λr(yr)ew(e) =

m∑
r=1

λr
∑
e∈E

(yr)ew(e) =

m∑
r=1

λrw(Mr),

so w(x) is contained in the convex hull of the points w(M1), . . . , w(Mm).

Moreover, it holds that w(x), w(M1), . . . , w(Mm) ∈ Qk. By Theorem 6.3.4, there exist k + 1
matchings Mi1 , . . . ,Mik+1

such that w(x) is a convex combination of w(Mi1), . . . , w(Mik+1
).

Since m is polynomial and k is constant in the length of the input, we can find Mi1 , . . . ,Mik+1

and the coefficients α1, . . . , αk+1 by brute force, where in each iteration we only need to solve a
system of linear equations of constant size.

Finally, consider the case where x ∈ P (G) and suppose for some 1 ≤ s ≤ m it holds that Ms

is not perfect. Then,
∑

e∈E(ys)e < |V |/2 and hence

∑
e∈E

xe =
∑
e∈E

m∑
r=1

λr(yr)e =

m∑
r=1

λr
∑
e∈E

(yr)e =

 ∑
r∈{1,...,m}−{s}

λr
∑
e∈E

(yr)e

+ λs
∑
e∈E

(ys)e

≤ (1− λs)
|V |
2

+ λs
∑
e∈E

(ys)e <
|V |
2
,

a contradiction to x ∈ P (G). Hence M1, . . . ,Mm and in particular Mi1 , . . . ,Mik+1
are perfect.

2

6.3. Deterministic Matching Approximation 83

Convex Combinations of Matchings By Corollary 6.3.7 we already know how to obtain a
number of (perfect) matchings from a point in the (perfect) matching polytope, such that the
point is a convex combination of the (perfect) matchings. We will now show that from such a
set of matchings we can extract a matching that has roughly the same weight as the point in
the matching polytope that we started with. Our proof uses the necklace splitting results from
the last section.

Theorem 6.3.8 (Convex Combinations of Matchings) For each k ≥ 1 there exists a poly-
nomial-time algorithm that on input of an Nk-labeled, directed or undirected graph G = (V,E,w),
matchings M1, . . . ,Mc in G with c ≥ 1, and some α ∈ ([0, 1] ∩ Q)c, ‖α‖1 = 1, computes a
matching M in G such that for each 1 ≤ i ≤ k it holds that

abs

(
wi(M)−

c∑
r=1

αrwi(Mr)

)
≤ 16(c− 1)kmax

e∈E
wi(e).

Moreover, if M1, . . . ,Mc are perfect, then M is 8k(c− 1)-near perfect.

Proof The algorithm recurses by decrementing c. Again, the case that αc = 1, which includes
the base case c = 1, is trivial. Otherwise, we assume that we recursively obtained a (8k(c−2)-near
perfect) matching M ′ such that

abs

(
wi(M

′)−
c−1∑
r=1

αr
1− αc

wi(Mr)

)
≤ 16(c− 2)kmax

e∈E
wi(e). (6.7)

It remains to combine M ′ and Mc. For this we first assume that M ′ and Mc are disjoint perfect
matchings. In this case, if we ignore any edge directions, then M ′ ∪Mc is a set of cycles of even
length, which alternate strictly between edges from M ′ and Mc. Let

m1,1,m1,2,m2,1,m2,2, . . . ,mn,1,mn,2

be an enumeration of the edges in M ′ ∪Mc such that this sequence alternates strictly between
M ′ and Mc and each cycle (opened at an arbitrary vertex) appears as an infix of this sequence,
starting with an edge from M ′. Let χ : {1, . . . , n} → {1, 2} be the coloring obtained from the
application of Corollary 6.2.4 to vj,r = w(mj,r) and (1− αc, αc)T . This coloring can be found in
polynomial time by exhaustive search since it has at most 8k jump points and it suffices to find
such a coloring that fulfills the error bound. For M∗ = {mj,χ(j) | j = 1, . . . , n} we obtain for
i = 1, . . . , k:

abs
(
wi(M

∗)−
(
(1− αc)wi(M ′) + αcwi(Mc)

))
≤ 8kmax

e∈E
wi(e). (6.8)

Note that M∗ can violate the matching condition but it can be modified to be a matching in G
by removing only few edges: Observe that violations of the matching condition can be resolved
for each cycle independently, since they do not share vertices. So let ms,1, . . . ,mt,2 be one of the
cycles. Such a violation can only occur if

1. χ(j) = 2 and χ(j + 1) = 1 for s ≤ j < t or
2. χ(s) = 1 and χ(t) = 2.

Observe that the number of violations is bounded by 8k, the number of changes of χ, and for
each of these violations, it suffices to remove a single edge from M∗. This means that for the
matching M obtained by removing these edges from M∗, for i = 1, . . . , k it holds that:

84 Chapter 6. Applications of Necklace Splitting

abs

(
wi(M)−

c∑
r=1

αrwi(Mr)

)

≤ abs

(
wi(M

∗)−
c∑

r=1

αrwi(Mr)

)
+ 8kmax

e∈E
wi(e)

(6.8)

≤ abs

((
(1− αc)wi(M ′) + αcwi(Mc)

)
−

c∑
r=1

αrwi(Mr)

)
+ 16kmax

e∈E
wi(e)

= abs

(
(1− αc)wi(M ′)−

c−1∑
r=1

αrwi(Mr)

)
+ 16kmax

e∈E
wi(e)

(6.7)

≤ abs

(
(1− αc)

c−1∑
r=1

αr
1− αc

αrwi(Mr)−
c−1∑
r=1

αrwi(Mr)

)
+ 16k(c− 1) max

e∈E
wi(e)

= 16k(c− 1) max
e∈E

wi(e).

In the case of non-disjoint matchings M ′ and Mc, we first remove the edges in M ′ ∩Mc

(together with their vertices and all incident edges) from the graph and the matchings, apply the
procedure above to the remaining edges and add M ′ ∩Mc to M afterwards. Observe that the
resulting edge set is a matching that fulfills the error bound. If the matchings are not perfect,
we add zero-weight edges and possibly a single vertex to the matchings and possibly the graph,
apply the procedure and remove them afterwards.

Finally, suppose that Mc is perfect and M ′ is 8k(c − 2)-near perfect. Then, |Mc| = |V |/2

and |M ′| ≥ |V |/2 − 8k(c − 2). Following the above procedure, we first add at most 8k(c − 2)
dummy edges to M ′ to make it perfect, then combine M ′ with Mc, make the result a matching
by removing at most 8k edges, and then remove the dummy edges again to obtain M . Hence
|M | ≥ |V |/2− (8k(c− 2) + 8k) = |V |/2− 8k(c− 1), so M is 8k(c− 1)-near perfect. 2

Deterministic Approximation of Multiobjective Matching Problems We can now
develop deterministic approximation algorithms for the problems k-MaxM and k-MaxPM. In
the first case we will obtain a PTAS. In the second case, the situation is slightly more complicated,
because the matching combination lemma does not always provide perfect matchings. We can,
however, show that for every ε > 0 we obtain a polynomial-time algorithm that (1 − ε)-
approximates every perfect matching by some r-near-perfect matching, where r only depends on
the number of objectives. This will be sufficient to obtain a deterministic approximation for
k-MaxATSP and k-MaxSTSP, because here we work on complete graphs.

We first show that a gap problem for k-MaxM can be solved in polynomial time.

Lemma 6.3.9 For every k ≥ 1 there is a polynomial-time algorithm that on input of an
Nk-labeled, undirected graph G = (V,E,w) and d ∈ Nk does one of the following:

• compute a matching M in G such that wi(M) ≥ di − 16k2 maxe∈E wi(e) for all 1 ≤ i ≤ k
• state (correctly) that there is no matching M with w(M) ≥ d

Proof We run the algorithm from Corollary 6.3.3 on input G and d and either obtain some
x ∈M(G) such that w(x) ≥ d, or the correct assertion that no such x exists. If no such x exists,
then there is no matching M of G such that w(M) ≥ d, and we are done.

6.3. Deterministic Matching Approximation 85

Otherwise, let x ∈ QE with x ∈ M(G) and w(x) ≥ d be the solution we obtained. From
Corollary 6.3.7 we get matchings M1, . . . ,Mk+1 and some α ∈ ([0, 1]∩Q)k+1, ‖α‖1 = 1 such that
for all 1 ≤ i ≤ k it holds that wi(x) =

∑k+1
r=1 αrwi(Mr). From Theorem 6.3.8 we obtain a matching

M such that for all 1 ≤ i ≤ k it holds that abs(wi(M)−
∑k+1

r=1 αrwi(Mr)) ≤ 16k2 maxe∈E wi(e)

and thus wi(M) ≥
∑k+1

r=1 αrwi(Mr) − 16k2 maxe∈E wi(e) = wi(x) − 16k2 maxe∈E wi(e) ≥ di −
16k2 maxe∈E wi(e). 2

Note that the error in Lemma 6.3.9 is quite large but still bounded by a constant times the
weight of the heaviest edge. We can hence downscale the error by guessing constantly many
heavy edges of some optimal matching. This results in the following lemma.

Lemma 6.3.10 For every k ≥ 1 and for every ε > 0 there is a polynomial-time algorithm that
on input of an Nk-labeled, undirected graph G = (V,E,w) and d ∈ Nk does one of the following:

• compute a matching M in G such that wi(M) ≥ (1− ε)di for all 1 ≤ i ≤ k
• state (correctly) that there is no matching M with w(M) ≥ d

Proof Let r = 16k2/ε. We iterate over all F ⊆ E with r ≤ |F | ≤ kr. For each F we proceed
as follows. For each 1 ≤ i ≤ k, choose (βF)i ∈ N maximal such that there are distinct edges
e1, . . . , er ∈ F with wi(ej) ≥ (βF)i for all 1 ≤ j ≤ r. We construct the graph GF = (VF , EF , wF)
from G by the following modifications:

• for each e ∈ F and each u ∈ [e] we remove all edges incident to u
• we remove all edges e ∈ E with wj(e) > (βF)j for some 1 ≤ j ≤ k

We further define (dF)i = max(di −wi(F), 0). Then we call the algorithm from Lemma 6.3.9 for
GF and (dF)1, . . . , (dF)k. If for some F , the algorithm from Lemma 6.3.9 returns some matching
MF ⊆ EF of GF , and MF ∪ F is a matching of G with wi(MF ∪ F) ≥ (1 − ε)di for all i, we
return MF ∪ F . Otherwise, we state that no matching M of G with wi(M) ≥ di for all i exists.
We will now argue that this algorithm runs in polynomial time and is correct.

Runtime: Since k, ε and hence r are constant, there are polynomially many subsets F ⊆ E of
constant size to check. Each check executes the polynomial-time algorithm from Lemma 6.3.9 and
performs some polynomial-time operations. So overall the above algorithm runs in polynomial
time.

Correctness: Clearly, the case where we return (MF ∪ F) in some iteration is correct. We
argue that the other case also is correct.

Suppose we state that no matching M with wi(M) ≥ di for all 1 ≤ i ≤ k exists. Then, for
each F ⊆ E, if the algorithm of Lemma 6.3.9 returns some matching MF ⊆ EF of GF such that
(MF ∪F) is a matching of G, then there exists some 1 ≤ j ≤ k such that wj(MF ∪F) < (1−ε)dj .
Now assume that some matching M of G with wi(M) ≥ di for all 1 ≤ i ≤ k exists. We show
that this leads to a contradiction.

Choose a minimal set F̃ ⊆ E such that for each i, the set F̃ contains the r edges from M
with the highest weight in wi, breaking ties arbitrarily. Then, r ≤ |F̃ | ≤ rk. Consider the
iteration with F = F̃ . Let MF = M − F and observe that MF is a matching in GF , and it
holds that (wF)i(MF) = wi(M)− wi(F) ≥ max(di − wi(F), 0) = (dF)i for all 1 ≤ i ≤ k. Hence
the algorithm from Lemma 6.3.9 returns some matching M ′F of GF such that (wF)i(M

′
F) ≥

(dF)i − 16k2 maxe∈EF (wF)i(e) ≥ (dF)i − 16k2(βF)i for all 1 ≤ i ≤ k.

86 Chapter 6. Applications of Necklace Splitting

Let M ′ = M ′F ∪ F and observe that M ′ is a matching in G. Moreover, for each 1 ≤ i ≤ k it
holds that

wi(M
′) = wi(F) + (wF)i(M

′
F)

≥ wi(F) + (dF)i − 16k2(βF)i

≥ (1− ε)(wi(F) + (dF)i) + εwi(F)− 16k2(βF)i

≥ (1− ε)di + εr(βF)i − 16k2(βF)i

= (1− ε)di + ε
16k2

ε
(βF)i − 16k2(βF)i

= (1− ε)di.

This contradicts the observation that wj(M
′) = wj(M

′
F ∪ F) < (1− ε)dj for some j, hence the

assumption was wrong and there exists no matching M of G with wi(M) ≥ di for all 1 ≤ i ≤ k.

So, in both cases the algorithm works correctly. 2

Corollary 6.3.11 For every k ≥ 1 there exists a PTAS for k-MaxM.

Proof Papadimitriou and Yannakakis [PY00] argue that there exists an FPTAS (for arbitrary
k-objective problems) if and only if there exists a polynomial-time algorithm that for every input
consisting of b ∈ Nk, problem instance x, and ε > 0, either returns a solution with measure
not worse than b in every objective, or correctly answers that no solution exists that is better
than d by factor (1 + ε) in each objective. Combined with Lemma 6.3.10, their proof shows
Corollary 6.3.11. 2

Maximum Weight r-Near Perfect Matching We now state a similar result for r-near
perfect matchings.

Lemma 6.3.12 For every k ≥ 1 there exists a polynomial-time algorithm that on input of an
Nk-labeled undirected graph G = (V,E,w) and d ∈ Nk does one of the following:

• state (correctly) that there is no perfect matching M with w(M) ≥ d
• compute a 8k2-near perfect matching M in G such that wi(M) ≥ di − 16k2 maxe∈E wi(e)

for all i

Proof If |V | is odd, then there is no perfect matching of G, and we are done. So assume that
|V | is even.

We run the algorithm from Corollary 6.3.3 on input G and d and either obtain some x ∈ P (G)
such that w(x) ≥ d, or the correct assertion that no such x exists. If no such x exists, then there
is no perfect matching M of G such that w(M) ≥ d, and we are done.

Otherwise, let x ∈ QE with x ∈ P (G) and w(x) ≥ d be the solution we obtained. We
apply the algorithm from Corollary 6.3.7 and obtain perfect matchings M1, . . . ,Mk+1 of G and
some α ∈ ([0, 1] ∩ Q)k+1, ‖α‖1 = 1 such that for all 1 ≤ i ≤ k it holds that di ≤ wi(x) =∑k+1

r=1 αrwi(Mr). By the algorithm from Theorem 6.3.8 we obtain an 8k2-near perfect matching

M of G such that wi(M) ≥
∑k+1

r=1 αrwi(Mr)− 16k2 maxe∈E wi(e) ≥ di − 16k2 maxe∈E wi(e). 2

6.4. Deterministic Cycle Cover Approximation 87

6.4 Deterministic Cycle Cover Approximation

Recall the definition of k-r-MaxDFPCC and k-r-MaxUFCC, which we defined on directed and
undirected graphs, respectively, and where we computed (partial) cycle covers that contained at
most r fixed edges. We will next show that both problems have good deterministic approximation
algorithms. In the case of directed graphs we can find a PTAS. In the case of undirected graphs,
we can find an algorithm that works like a PTAS but only returns 8k2-near cycle covers.

Cycle Covers in Directed Graphs We first show that k-r-MaxDFPCC admits a PTAS.

Theorem 6.4.1 For all k ≥ 1 and r ≥ 0 there exists a PTAS for k-r-MaxDFPCC.

Proof Let ε > 0. On input of an Nk-labeled, directed graph G = (V,E,w) and F ⊆ E with
|F | ≤ r, we define G′ = (V ′, E′, w′) by

V ′ = {1, 2} × V
E′ = {{(1, u), (2, v)} | (u, v) ∈ E and u 6= v}

w′i(e) = wi(u, v) (e = {(1, u), (2, v)}, (u, v) ∈ E, 1 ≤ i ≤ k)

w′i+1(e) =

{
1 if (u, v) ∈ F ,
0 otherwise

(e = {(1, u), (2, v)}, (u, v) ∈ E).

Observe that every matching M of G′ corresponds to a partial cycle cover C of G with the same
weight in the first k objectives, and vice versa.

We define ε′ = min{ε, 1/(r+1)} and call the algorithm from Corollary 6.3.11 for (k+ 1) and ε′

on input G′. We obtain a set of matchings of G′, which corresponds to a set of partial cycle
covers of G, and return those partial cycle covers that contain F .

The above algorithm runs in time polynomial in |G|+ |F |. We now argue for the correctness
and the approximation ratio of the above algorithm. So let C ⊆ E be a partial cycle cover
of G with F ⊆ C. Hence there is a matching M of G′ such that for all 1 ≤ i ≤ k it holds
that w′i(M) = wi(C), and w′k+1(M) = |F |. The PTAS from Corollary 6.3.11 hence returns a
matching M ′ of G′ with w′i(M

′) ≥ (1− ε′)w′i(M) for all 1 ≤ i ≤ k + 1, which corresponds to the
partial cycle cover C ′ of G. So we obtain

|F | ≥ w′k+1(M ′) ≥ (1− (1
r+1)) · |F | = |F | − |F |

r+1 ≥ |F | −
r
r+1 > |F | − 1,

hence w′k+1(M ′) = |F | and thus F ⊆ C ′. So C ′ is a partial cycle cover of G returned by the
above algorithm. Moreover, C ′ is an (1− ε)-approximation of C, because for each 1 ≤ i ≤ k it
holds that wi(C

′) = w′i(M
′) ≥ (1− ε′)w′i(M) ≥ (1− ε)w′i(M) = (1− ε)wi(C). 2

Cycle Covers in Undirected Graphs The case of undirected graphs is more complicated
than the case of directed graphs, so here we obtain a weaker result. Namely, we will show that
cycle covers can be approximated arbitrarily good by 8k2-near cycle covers. For the purpose of
deterministically approximating k-MaxSTSP, this will be sufficient.

Lemma 6.4.2 For every k ≥ 1 there exists a polynomial-time algorithm that on input of an
Nk-labeled undirected graph G = (V,E,w) and d1, . . . , dk ∈ N does one of the following:

• state (correctly) that no cycle cover C of G exists such that wi(C) ≥ di for all i
• output an 8k2-near cycle cover C of G such that wi(C) ≥ di − 32k2 maxe∈E wi(e) for all i

88 Chapter 6. Applications of Necklace Splitting

Proof Recall that degE(v) denotes the number of edges in E incident to v. If there exists
some v ∈ V with degE(v) < 2, then there does not exist a cycle cover of G and we are done. So
assume that degE(v) ≥ 2 for all v ∈ V .

We apply Tutte’s reduction [Tut54] that reduces the general f -factor problem to the perfect
matching problem. Since we can compute 8k2-near perfect matchings, we will obtain 8k2-near
cycle covers. We construct Tutte’s [Tut54] reduction graph G̃ = (V1 ∪ V2, E1 ∪E2, w̃) as follows:

V1 = {uv | u, v ∈ V and {u, v} ∈ E}
V2 = {v′i | v ∈ V and 1 ≤ i ≤ (degE(v)− 2)}
E1 = {{uv, vu} | {u, v} ∈ E}
E2 = {{uv, u′i} | uv ∈ V1 and u′i ∈ V2}

w̃(e) =

{
w({u, v}) if e = {uv, vu} ∈ E1

(0, . . . , 0)T else

Figure 6.1 shows an example of this reduction.

a

b

c

d

e

f

a) Example graph G b) Tutte’s reduction graph G̃

ab

ac ca c′2 ce

cb c′1 cd

ec e′1

ed ef

ba bc

b′1 bd

dc d′2 de

db d′1 df

fe

fd

Figure 6.1: Example for Tutte’s reduction. Suppose we are given the graph G, where the solid edges
correspond to a cycle cover. In the reduction graph G̃, this corresponds to a perfect matching (solid
edges).

After constructing the graph G̃, we call the algorithm from Lemma 6.3.12 on input G̃ and
d1, . . . , dk. If the algorithm states that no perfect matching M̃ of G̃ exists with w̃i(M̃) ≥ di for
all i, then we state that no cycle cover C of G exists with wi(C) ≥ di for all i. Otherwise, let M̃
be the 8k2-near perfect matching of G̃ returned by the algorithm from Lemma 6.3.12. For every
unmatched v′i ∈ V2 we choose an arbitrary vu ∈ V1 that is not matched to a vertex in V2, add
{v′i, vu} to M̃ and remove {vu, uv} from M̃ (if necessary). Denote the obtained matching by M̃ ′

and return C = {{u, v} ∈ E | {uv, vu} ∈ M̃ ′}.
The algorithm described above clearly runs in polynomial time, so it remains to argue for

the correctness.

We start with the first case. Observe that every cycle cover C of G can easily be transformed
into a perfect matching M̃ of G̃ such that w̃(M̃) = w(C). So, if there does not exist a perfect
matching M̃ of G̃ such that w̃(M̃) ≥ di for all i, then there does not exist a cycle cover C of G
with wi(C) ≥ di for all i, hence the first case is correct.

6.4. Deterministic Cycle Cover Approximation 89

We finish by considering the second case. Since M̃ is 8k2-near perfect, we have 2|M̃ | ≥
|V1|+ |V2| − 16k2. Since |M̃ ′| ≥ |M̃ | and in M̃ ′, every vertex of V2 is matched, we obtain

|{z ∈ V1 | z matched in M̃ ′}| = 2|M̃ ′| − |{z ∈ V2 | z matched in M̃ ′}|
≥ 2|M̃ | − |V2|
≥ |V1| − 16k2,

hence in M̃ ′, at most 16k2 vertices of V1 are not matched. Since all vertices of V2 are matched,
for every vertex v ∈ V there are at most two incident edges in C, hence C is a partial cycle cover
of G. Moreover, we need at most 8k2 dummy edges of the form {uv, vu} to make M̃ ′ perfect, so
C is an 8k2-near cycle cover of G.

By Lemma 6.3.12, for all 1 ≤ i ≤ k it holds that w̃i(M̃) ≥ di − 16k2 maxe∈Ẽ w̃i(e) =
di − 16k2 maxe∈E wi(e). Furthermore, we removed at most 16k2 edges to obtain the matching
M̃ ′, hence we have wi(C) = w̃i(M̃

′) ≥ w̃i(M̃) − 16k2 maxe∈Ẽ w̃i(e) ≥ di − 32k2 maxe∈E wi(e).
2

Lemma 6.4.3 Let k ≥ 1 and ε > 0. There exists a polynomial time algorithm that on input of
an Nk-labeled undirected graph G = (V,E,w) and d1, . . . , dk ∈ N does one of the following:

• output some 8k2-near cycle cover C of G such that wi(C) ≥ (1− ε)di for all 1 ≤ i ≤ k
• state (correctly) that no cycle cover C of G exists such that wi(C) ≥ di for all 1 ≤ i ≤ k

Proof Let r = 32k2/ε. We iterate over all F1 ⊆ E with r ≤ |F1| ≤ kr and all F2 ⊆ E − F1

with |F2| ≤ 2kr. Let F = F1 ∪ F2. If F is not a partial cycle cover of G, we continue with the
next iteration. Otherwise, for each 1 ≤ i ≤ k we choose (βF)i ∈ N maximal such that there
are distinct edges e1, . . . , er ∈ F1 with wi(ej) ≥ (βF)i for all 1 ≤ j ≤ r. Next we construct
GF = (V,EF , wF) as follows:

1. EF = E − {{u,w} ∈ (E − F) | ∃v ∈ V : {u, v} ∈ F1}
2. for each e ∈ F1, let (wF)i(e) = 0 for all 1 ≤ i ≤ k
3. for each e ∈ EF − F1 with wj(e) > (βF)j for some 1 ≤ j ≤ k, let (wF)i(e) = 0 for all

1 ≤ i ≤ k
4. for each e ∈ EF − F1 with wj(e) ≤ (βF)j for all 1 ≤ j ≤ k, let wF (e) = w(e)

Furthermore, we define (dF)i = max(di − wi(F1), 0) for all 1 ≤ i ≤ k. Next in the iteration,
we apply the algorithm from Lemma 6.4.2 to GF and (dF)1, . . . , (dF)k. If in some iteration we
obtain some 8k2-near cycle cover CF of GF such that wi(CF ∪ F1) ≥ (1− ε)di for all 1 ≤ i ≤ k,
we return CF ∪ F1. Otherwise we state that no cycle cover C of G exists such that wi(C) ≥ di
for all 1 ≤ i ≤ k.

The algorithm runs in polynomial time, because the size of each set F is bounded by a
constant, and hence there are only polynomially many iterations. So it remains to argue for the
correctness.

The case where we return the partial cycle cover is correct, because the set CF ∪ F1 is an
8k2-near cycle cover of GF and hence of G, and CF ∪ F1 contains enough weight.

So suppose that we state that no cycle cover C of G with wi(C) ≥ di for all 1 ≤ i ≤ k exists.
Hence in each iteration defined by a partial cycle cover F = F1 ∪ F2 ⊆ E of G, if the algorithm
from Lemma 6.4.2 returns some 8k2-near cycle cover CF of GF , then there exists some 1 ≤ j ≤ k
such that wj(CF ∪ F1) < (1− ε)dj . We show that in this case, our statement is also correct.

Assume for a contradiction that there exists some cycle cover C of G with wi(C) ≥ di for
all 1 ≤ i ≤ k. Consider the iteration where F1 ⊆ C contains the r heaviest edges of C in each

90 Chapter 6. Applications of Necklace Splitting

objective, breaking ties arbitrarily, and where F2 ⊆ C − F1 is the set of neighbour edges of F1

in C. Clearly, r ≤ |F1| ≤ kr and |F2| ≤ 2kr, so this iteration exists. Moreover, F = F1 ∪ F2 is
a partial cycle cover of G. Let (βF)1, . . . , (βF)k and GF = (V,EF , wF) as constructed above.
Observe that C cannot contain edges in E − EF , hence C is a cycle cover of GF , and for each
1 ≤ i ≤ k it holds that (wF)i(C) = wi(C) − wi(F1) ≥ max(di − wi(F1), 0) = (dF)i. Hence
the algorithm from Lemma 6.4.2 must return some 8k2-near cycle cover C̃F of GF such that
(wF)i(C̃F) ≥ (dF)i − 32k2 maxe∈EF (wF)i(e) for all 1 ≤ i ≤ k. Moreover, by construction of GF ,
the set C̃F ∪ F1 remains a 8k2-near cycle cover of GF and hence of G. So, for all 1 ≤ i ≤ k we
obtain

wi(C̃F ∪ F1) ≥ (wF)i(C̃F) + wi(F1)

≥ wi(F1) + (dF)i − 32k2 max
e∈EF

(wF)i(e)

≥ (1− ε)(wi(F1) + (dF)i) + εwi(F1)− 32k2(βF)i

≥ (1− ε)di + εwi(F1)− 32k2(βF)i

≥ (1− ε)di + εr(βF)i − 32k2(βF)i

= (1− ε)di + ε
32k2

ε
(βF)i − 32k2(βF)i

= (1− ε)di,

a contradiction. Hence the assumption was wrong, and we can correctly state there does not
exist a cycle cover C of G with wi(C) ≥ di for all 1 ≤ i ≤ k. 2

Lemma 6.4.4 For every k ≥ 1 and ε > 0, there exists a polynomial-time algorithm that on input
of an Nk-labeled, undirected graph G = (V,E,w) outputs a set S of 8k2-near cycle covers of G
such that for every cycle cover C of G there exists some C ′ ∈ S such that wi(C

′) ≥ (1− ε)wi(C)
for all 1 ≤ i ≤ k.

Proof We adapt a proof sketched by Papadimitriou and Yannakakis [PY00].
On input of an undirected, Nk-labeled graph G = (V,E,w), we subdivide the solution value

space Nk into hyperrectangles such that in each dimension, the ratio between the smaller and
the bigger value of each hyperrectangle is less than or equal to (1− ε′) with ε′ = 1−

√
1− ε. At

each cornerpoint d1, . . . , dk, we call the algorithm from Lemma 6.4.3 for ε′ and G. We initialize
S with the empty set and, for each corner point, if the algorithm from Lemma 6.4.3 returns
some solution s, we add s to S. After processing the last cornerpoint, we return S.

Note that there exists a polynomial p such that wi(E) ≤ 2p(|G|) for all 1 ≤ i ≤ k, and that
ε > 0 is constant. It hence suffices to consider polynomially many cornerpoints. The algorithm
from Lemma 6.4.3 is hence called polynomially often, and runs itself in polynomial time, so
overall we obtain a polynomial-time algorithm. For the correctness, first recall that the algorithm
from Lemma 6.4.3 only returns 8k2-near cycle covers of G. Let C be some cycle cover of G.
Hence there exists some cornerpoint d1, . . . , dk ∈ N such that (1− ε′)wi(C) < di ≤ wi(C) for all
i. Hence, when called at the point d1, . . . , dk, the algorithm from Lemma 6.4.3 must return some
8k2-near cycle cover C ′ of G which will then be contained in S, such that wi(C

′) ≥ (1− ε′)di ≥
(1− ε′)2wi(C) = (1− ε)wi(C) holds for all 1 ≤ i ≤ k. 2

Lemma 6.4.5 For every k ≥ 1, r ≥ 0 and ε > 0, there exists a polynomial-time algorithm that
on input of an Nk-labeled, undirected graph G = (V,E,w) and F ⊆ E with |F | ≤ r outputs a
set S of 8k2-near cycle covers C ′ of G with F ⊆ C ′ such that for every cycle cover C of G with
F ⊆ C there exists some C ′ ∈ S such that wi(C

′) ≥ (1− ε)wi(C) for all 1 ≤ i ≤ k.

6.5. Deterministic Approximation of k-MaxTSP 91

Proof For all e ∈ E, define w′ by w′i(e) = wi(e) for all 1 ≤ i ≤ k and w′k+1(e) = 1 if e ∈ F and
w′k+1(e) = 0 if e /∈ F . Call the algorithm from Lemma 6.4.4 for k′ = k+1 and ε′ = min(ε, 1/(r+1))
on input G′ = (V,E,w′). Denote the obtained set by S and return S ′ = {C ∈ S | F ⊆ C}.

Clearly, S ′ is a set of 8k2-near cycle covers, each containing F . Suppose that C is a cycle cover
of G with F ⊆ C. By Lemma 6.4.4 there exists a 8k2-near cycle cover C ′ ∈ S of G with w′i(C

′) ≥
(1− ε′)wi(C) for all 1 ≤ i ≤ k+ 1. Hence wi(C

′) = w′i(C
′) ≥ (1− ε′)wi(C) ≥ (1− ε)wi(C) for all

1 ≤ i ≤ k. Moreover, |F | ≥ w′k+1(C ′) ≥ (1− ε′)w′k+1(C) ≥ (1− 1
r+1)|F | = |F | − |F |

r+1 > |F | − 1,
hence w′k+1(C ′) = |F |, and F ⊆ C ′. So C ′ is contained in S ′ and has enough weight to
approximate C. 2

6.5 Deterministic Approximation of k-MaxTSP

With the deterministic cycle cover approximation algorithms we obtained in the last section we
can show how to deterministically approximate k-MaxATSP and k-MaxSTSP. We proceed
analogously to the randomized approximation algorithms for k-MaxATSP and k-MaxSTSP that
we defined in Section 5.4. On input of some Nk-labeled graph G = (V,E,w) we deterministically
compute a (1− ε)-approximate partial cycle cover and use the vector balancing result from the
last chapter (Corollary 5.3.2) to remove an edge from each cycle such that in each objective we do
not remove too much weight. The remaining paths can be arbitrarily connected to a Hamiltonian
cycle. We balance out the error introduced by Corollary 5.3.2 by fixing a constant number
of heavy edges. We further note that instead of Corollary 5.3.2 we could use the structured
balancing result from this chapter (Corollary 6.2.4). The latter, however, has a bigger error and
hence results in higher (but still polynomial) runtime.

Let us first summarize the results of the last section.

Corollary 6.5.1 For every k ≥ 1, r ≥ 0, and ε > 0 there exists a polynomial-time algorithm
that on input of a directed (resp., undirected), Nk-labeled graph G = (V,E,w) and F ⊆ E with
|F | ≤ r computes a set of partial cycle covers C with the following properties:

• F ⊆ C for each C ∈ C.
• For each Hamiltonian cycle R of G with F ⊆ R there exists some C ∈ C with w(C) ≥

(1− ε)w(R).

Proof Suppose we are given a graph G = (V,E,w) and F ⊆ E with |F | ≤ r.
If G is directed, we call the PTAS from Theorem 6.4.1 and obtain a set C of partial cycle

covers with the following properties:

• F ⊆ C for each C ∈ C.
• For each partial cycle cover C of G with F ⊆ C there exists some C ′ ∈ C with w(C ′) ≥

(1− ε)w(C).

Since every Hamiltonian cycle is a partial cycle cover, the assertion holds for directed graphs.
If G is undirected, we call the algorithm from Lemma 6.4.5 and obtain a set N of 8k2-near

cycle covers of G with the following properties:

• F ⊆ N for each N ∈ N .
• For every cycle cover C of G with F ⊆ C there exists some N ∈ N with w(N) ≥ (1−ε)w(C).

Since every 8k2-near cycle cover and every Hamiltonian cycle is a partial cycle cover, the assertion
also holds for undirected graphs. 2

92 Chapter 6. Applications of Necklace Splitting

We denote the algorithms from Corollary 6.5.1 for directed (resp., undirected), Nk-labeled
input graphs by k-MaxDFPCCApprox(r,ε) (resp., k-MaxUFPCCApprox(r,ε)). Given these algorithms,
for every k, c, ε we define the algorithm k-MaxTSPApproxDet(c,ε) below. The algorithm depends
on the parameter c which is used to define the minimum cycle length, and takes directed and
undirected complete graphs as inputs. We will show that k-MaxTSPApproxDet(2,ε), restricted to
directed input graphs, deterministically computes a (1/2− ε)-approximation for k-MaxATSP,
and k-MaxTSPApproxDet(3,ε), restricted to undirected input graphs, deterministically computes
a (2/3− ε)-approximation for k-MaxSTSP.

Algorithm: k-MaxTSPApproxDet(c,ε) for k ≥ 1, c ≥ 2 and ε > 0

Input : Nk-labeled directed/undirected complete graph G = (V,E,w)
Output : set of Hamiltonian cycles of G

1 let s = 2ck and r = (c+ 1)sk
2 foreach F = (FH ∪ FL) ⊆ E with s ≤ |FH | ≤ sk and |FL| ≤ c|FH | do
3 let β ∈ Nk such that βi = max{n ∈ N | there are s edges e ∈ FH with wi(e) ≥ n}
4 let G′ = (V,E′, w′), where E′ = F ∪ {e ∈ E | w(e) ≤ β} and w′ : E′ → Nk such that

w′(e) = 0 for all e ∈ FH and w′(e) = w(e) for all e ∈ (E′ − FH)
5 call k-MaxDFPCCApprox(r,ε)(G

′, F) / k-MaxUFPCCApprox(r,ε)(G
′, F) and obtain a set C

6 foreach partial cycle cover C ∈ C of G do

7 let C1, . . . , Ct denote the cycles in C
8 if for each i ∈ {1, . . . , t}, (Ci − FH) contains a path of length c then
9 foreach i ∈ {1, . . . , t} do choose path ei,1, . . . , ei,c ∈ (Ci − FH) arbitrarily

10 compute some coloring χ : {1, . . . , t} → {1, . . . , c} using the algorithm from

Corollary 5.3.2 such that
∑t

i=1w(ei,χ(i)) ≤ 2kβ + 1
c

∑t
i=1

∑c
j=1w(ei,j)

11 remove {ei,χ(i) | 1 ≤ i ≤ t} from C and output the remaining edges in C,

arbitrarily connected with edges from E to a Hamiltonian cycle

Theorem 6.5.2 Let k ≥ 1 and ε > 0.

1. There exists a deterministic (1/2− ε)-approximation algorithm for k-MaxATSP.
2. There exists a deterministic (2/3− ε)-approximation algorithm for k-MaxSTSP.

Proof For the problems k-MaxATSP and k-MaxSTSP, we will consider the algorithm
k-MaxTSPApproxDet(c,ε) with c = 2 and c = 3, restricted to directed and to undirected input
graphs, and calling the algorithm k-MaxDFPCCApprox(r,ε) and k-MaxUFPCCApprox(r,ε) in line 5,
respectively.

In the remainder we will argue for correctness, polynomial runtime, and the correct approxi-
mation ratio of the algorithm. So let G = (V,E,w) be some Nk-labeled input graph with |V |
large enough.

Correctness: We show that the algorithm is well-defined and outputs Hamiltonian cycles of
G. First we iterate over all sets F = (FH ∪ FL) ⊆ E of bounded cardinality. Fix an arbitrary
iteration. We define some β and a subgraph G′ = (V,E′, w′) of G by removing some edges
and modifying the weight function. These modifications ensure w′(e) = w(e) ≤ β for all
e ∈ (E′ − FH) and w′(e) = 0 for all e ∈ FH . Note that |F | ≤ (c+ 1)sk = r, hence we can call
k-MaxDFPCCApprox(r,ε) (resp., k-MaxUFPCCApprox(r,ε)) on input (G′, F) and obtain a set C of
partial cycle covers of G′. Since E′ ⊆ E, each C ∈ C is a partial cycle cover of G.

6.5. Deterministic Approximation of k-MaxTSP 93

Next we iterate over all C ∈ C. Fix some arbitrary such C and consider all cycles C1, . . . , Ct
in C. If some cycle (Ci − FH) does not contain a path of length c, we are done. So suppose
this is not the case. Then for each Ci we can choose some path ei,1, . . . , ei,c arbitrarily. From
ei,j ∈ Ci ⊆ C ⊆ E′ and ei,j /∈ FH we obtain that w(ei,j) ≤ β, hence Corollary 5.3.2 applies as
required in the algorithm. We obtain a coloring that selects one edge per cycle Ci. We delete
each selected edge and end up with a set of paths. Since G is complete, this set can be connected
to a Hamiltonian cycle in an arbitrary way. We output this Hamiltonian cycle.

Runtime: First, observe that the cardinality of the set F = (FH ∪ FL) is bounded by the
constant (c+1)sk, hence there are only polynomially many such sets, and the outer loop in line 2
is iterated polynomially often. In each iteration, we perform some polynomial-time operations
and then call the polynomial-time algorithms from Corollary 6.5.1. Hence the obtained set C
again has polynomial cardinality. This means that the loop in line 6 is iterated polynomially
often. Again, in each iteration, some polynomial-time operations are performed. Note that in
particular, by Corollary 5.3.2, the coloring in line 10 is computed in polynomial time. So overall
we obtain a polynomial-time algorithm.

Approximation Ratio: Let R be some arbitrary Hamiltonian cycle. We show that in some
iteration the algorithm outputs a Hamiltonian cycle R′ such that w(R′) ≥ (1− ε)w(R).

For each 1 ≤ i ≤ k, let FH,i ⊆ R be some set of s heaviest edges of R in the i-th objective,

breaking ties arbitrarily. Let FH =
⋃k
i=1 FH,i. We define FL ⊆ R such that FL ∩ FH = ∅ and

each edge in FH is part of a path in FL ∪ FH that contains c edges from FL. This is possible
because we only consider inputs with |R| = |V | large enough. We now have s ≤ |FH | ≤ sk and
|FL| ≤ c |FH |. Hence in line 2 there will be some iteration that chooses FH and FL. We fix this
iteration for the remainder of the proof.

Let β ∈ Nk as defined in line 3 and observe that βi = min{wi(e) | e ∈ FH,i} for all i, which
means

β ≤ 1

s
· w(FH) (6.9)

and that for all edges e ∈ (R− FH) we have w(e) ≤ β. Hence it holds that

w′(R) = w(R− FH) = w(R)− w(FH). (6.10)

Next we call the algorithm k-MaxDFPCCApprox(r,ε) (resp., k-MaxUFPCCApprox(r,ε)) on input
(G′, F) and obtain a set of partial cycle covers C of G. By Corollary 6.5.1 there exists some
C ∈ C such that F ⊆ C and

w′(C) ≥ (1− ε)w′(R). (6.11)

Hence in line 6 there will be some iteration that chooses this C. Again we fix this iteration for
the remainder of the proof. From C ⊆ E′ it follows that w(e) ≤ β for all e ∈ (C − FH), hence

w(C − FH) = w′(C − FH) = w′(C)− w′(FH) = w′(C). (6.12)

As in line 7, let C1, . . . , Ct denote the cycles in C. Note that since C is a partial cycle cover,
besides the cycles C1, . . . , Ct we also have paths contained in C, and vertices contained in V
that are not matched at all. However, a set of edges that only consists of paths can easily be
connected to a Hamiltonian cycle without losing weight, so we only have to break up the cycles
into paths without losing too much weight. By the choice of c (c = 2 for directed graphs, and

94 Chapter 6. Applications of Necklace Splitting

c = 3 for undirected graphs), each cycle contains at least c edges. Since each edge in FH is part
of a path in FH ∪ FL with at least c edges from FL, we even know that each cycle contains at
least c edges not from FH and thus the condition in line 8 is fulfilled. Let these edges ei,j be
defined as in line 9 of the algorithm. Note that from ei,j ∈ (C − FH) ⊆ (E′ − FH) we obtain
w(ei,j) ≤ β for all i, j.

In line 10 we compute some χ : {1, . . . , t} → {1, . . . , c} such that

t∑
i=1

w(ei,χ(i)) ≤ 2kβ +
1

c

t∑
i=1

c∑
j=1

w(ei,j) ≤ 2kβ +
1

c
w(C − FH). (6.13)

Recall that by Corollary 5.3.2 such a coloring exists and can be computed in polynomial time.
Removing the chosen edges from C breaks all cycles into paths. Hence, after the edge removal,
C only contains paths, which can be arbitrarily connected to a Hamiltonian cycle R′ with edges
from E. We obtain:

w(R′) ≥ w(C)−
t∑
i=1

w(ei,χ(i))

≥ w(FH) + w(C − FH)− 2kβ − 1

c
w(C − FH) (by (6.13))

≥
(

1− 1

c

)
w(C − FH) + w(FH)− 2k

s
w(FH) (by (6.9))

=

(
1− 1

c

)
w′(C) +

(
1− 2k

s

)
w(FH) (by (6.12))

≥
(

1− 1

c

)
(1− ε)w′(R) +

(
1− 2k

s

)
w(FH) (by (6.11))

=

(
1− 1

c

)
(1− ε)w(R) +

(
1− 2k

s

)
w(FH)−

(
1− 1

c

)
(1− ε)w(FH) (by (6.10))

=

(
1− 1

c
− ε+

ε

c

)
w(R) +

(
1− 1

c

)
w(FH)−

(
1− 1

c

)
(1− ε)w(FH)

≥
(

1− 1

c
− ε
)
w(R)

So we obtain w(R′) ≥ (1/2 − ε)w(R) for directed and w(R′) ≥ (2/3 − ε)w(R) for undirected
graphs G, respectively. 2

6.6 Summary and Discussion

We concluded our study of multiobjective traveling salesman problems by giving deterministic
approximation algorithms for its maximization variants. While the randomized results from
the last chapter provided a randomized 1/2 approximation for k-MaxATSP and a randomized
2/3 approximation for k-MaxSTSP, previously known deterministic algorithms only provided
approximation ratios that were linearly dependent on k, the number of objectives (see the work
of Manthey [Man12a]). Our results significantly improve this by providing deterministic (1−ε)/2

and (2−ε)/3 approximation algorithms, respectively. Note that our deterministic approximation
ratios are arbitrary close to the randomized ones.

In order to obtain the above approximation ratios, we used necklace splitting results that
enabled us combine different matchings in a convex way. By looking into the matching polytope,

6.6. Summary and Discussion 95

we showed how to obtain deterministic matching algorithms, that in turn gave us cycle cover
algorithms by which we could approximate k-MaxATSP and k-MaxSTSP.

We established our results by Corollary 6.2.4, which is very similar to Corollary 5.3.2 from the
last chapter. The difference is that Corollary 6.2.4 provides more structure than Corollary 5.3.2,
and this is crucial in our application, because it enables us combine (perfect) matchings into a
(r-near perfect) matching. It would be interesting to find further applications of this structured
balancing result.

96 Chapter 6. Applications of Necklace Splitting

Part II

Redundancy of Complete Sets

97

Chapter 7

Autoreducibility and Mitoticity

In the previous part of this thesis we studied approximation properties of the traveling salesman
problem, a very prominent example of an NP-complete problem. In this part, we will shift
our focus to properties that generally hold for all complete problems for NP and other classes.
Consider, for instance, the following questions:

• Are all complete sets infinite?
• Do all complete sets remain complete if we remove a polynomial-time decidable subset?
• Can all complete sets be split into two equivalent sets?
• Are all complete sets dense?

Some of these questions have already been studied (for instance, Mahaney [Mah82] showed that
≤p

m-complete sets for NP cannot be sparse, unless P = NP), and some questions are answered
(for instance, there are no finite ≤p

m-complete sets for EXP, because P 6= EXP). However, for
other properties, such basic questions are still open.

Redundancy and Paddability In this part of the thesis we will look at different reducibility
notions ≤ and complexity classes C and study the following question:

• How redundant are the ≤-complete sets for C?

In the case of ≤p
m-complete sets for NP, this question goes back to the so-called isomorphism

conjecture, which was raised by Berman and Hartmanis [BH77]. They observed that all known
≤p

m-complete problems A for NP are polynomial-time isomorphic to the satisfiability problem
SAT (i.e., there exists a bijective reduction function f ∈ FP such that f−1 ∈ FP and cA(x) =
cSAT(f(x)) for all x), and they conjectured that this holds for all ≤p

m-complete problems for NP.
It turned out that a positive answer to this conjecture implies P 6= NP, because finite sets are
not isomorphic to SAT. It is unknown whether the reverse direction holds, and the isomorphism
conjecture is still open.

Berman and Hartmanis [BH77] observed that a set is isomorphic to SAT if and only if it
is paddable, a property that was easy to show for the known NP-complete problems. They
call a set A paddable if and only if one can encode and decode in polynomial time arbitrary
information into an instance x without changing its membership to A. We can interpret such
sets as being very redundant, because the membership information of an arbitrary problem
instance x is redundantly stored in the membership information of a large number of different
problem instances y 6= x. So the isomorphism conjecture is equivalent to the following unsolved
redundancy question:

• Are all ≤p
m-complete sets for NP paddable?

99

100 Chapter 7. Autoreducibility and Mitoticity

Autoreducibility and Mitoticity Since the isomorphism conjecture and hence the paddabil-
ity question for all ≤p

m-complete sets for NP are still open, it is natural to consider weaker forms
of redundancy and ask whether all complete sets for NP at least have these weaker properties.
We call a non-trivial set A autoreducible if cA(x) can be efficiently computed from cA(y) for
y 6= x, and we call A mitotic if we can use an efficiently decidable separator to split A into
two parts that are equivalent to A and to each other. So we can think of autoreducibility and
mitoticity as local and global forms of redundancy, and it is easy to see that these forms of
redundancy are weaker than paddability. Figure 7.1 gives an intuition of how autoreducible and
mitotic sets are structured. We refer to the next section for a precise definition of these notions.

Σ∗

A

y1 y2

f

x1 x2

f

Σ∗

B

S

B ∩ S

B ∩ S

Figure 7.1: Example of autoreducible and mitotic sets over Σ∗. A is ≤p
m-autoreducible via f ∈ FP,

which means that f maps x1 ∈ A to some value x2 ∈ A with x2 6= x1, and f maps y1 /∈ A to some value
y2 /∈ A with y2 6= y1. B is ≤p

m-mitotic via the separator set S ∈ P, which means that S splits B into the
two parts B ∩ S and B ∩ S such that B ≡p

m B ∩ S ≡p
m B ∩ S.

Glaßer et al. [GOP+07] showed that all non-trivial ≤p
m-complete sets for NP are autoreducible

and even mitotic [GPSZ08]. Moreover, a large amount of research has been spent on the study
of these properties for complete sets of further complexity classes and with respect to different
reducibility notions (see Section 7.2 for a summary of previous and related work). However, most
research concentrates on polynomial-time reducibility notions. While we extend this knowledge,
our main contribution is a systematic study of autoreducibility and mitoticity properties of
complete sets with respect to logspace reducibility notions.

7.1 Definition of Autoreducibility and Mitoticity

Ambos-Spies [AS84] defined autoreducibility, mitoticity, and weak mitoticity as follows.

Definition 7.1.1 (Autoreducibility) Let A be a set.

1. A is called ≤p
T-autoreducible if A ≤p

T A via some polynomial-time oracle Turing machine
that on input x never queries x.

2. A is called ≤p
m-autoreducible if A ≤p

m A via some f ∈ FP, where f(x) 6= x for all x.

We define autoreducibility for the remaining reductions analogously, where the reduction oracle
machine or the reduction function satisfies the resource constraints and asks queries or maps to
values different from x. For instance, we say that A is ≤log

dtt-autoreducible if A ≤log
dtt A via some

function f ∈ FL such that from f(x) = 〈y1, . . . , yk〉 it follows that x /∈ {y1, . . . , yk}.

Definition 7.1.2 (Mitoticity and Weak Mitoticity) Let A be a set. A is called weakly
≤p

T-mitotic if there exists a set S such that A ∩ S ≡p
T A ∩ S ≡p

T A. If in addition it holds that
S ∈ P, then A is called ≤p

T-mitotic. We refer to S as a separator.

7.2. Previous Results and Related Work 101

We define mitoticity and weak mitoticity for the remaining reductions analogously. In the case
of logspace mitoticity, we require that the separator set is logspace decidable. Moreover, in the
case of non-transitive reductions (≤p

k-tt, for instance) we require that the sets A, A ∩ S, and
A ∩ S are pairwise equivalent.

7.2 Previous Results and Related Work

Redundancy in General The redundancy concepts we consider have their origins in com-
putability theory. For a set A, Trakhtenbrot [Tra70] defined A to be autoreducible if A = L(MA)
for some oracle Turing machine M that never queries its own input, and Ladner [Lad73] called A
mitotic if it is a disjoint union of two sets in the same degree. Ladner showed that for recursively
enumerable sets, autoreducibility and mitoticity coincide. Ambos-Spies [AS84] studied the
concepts of autoreducibility and mitoticity in the complexity-theoretic setting. He defined the
notions of autoreducibility and mitoticity for polynomial-time many-one and Turing reducibility.
Moreover, he distinguished between mitoticity and weak mitoticity by also taking the complexity
of the separator set into account. While in general, mitoticity implies autoreducibility and
weak mitoticity, the converse does not always hold. Ambos-Spies showed that there exists a
set that is ≤p

T-autoreducible and not ≤p
T-mitotic. The question whether ≤p

m-mitoticity differs
from ≤p

m-autoreducibility remained open until in 2008, Glaßer et al. [GPSZ08] showed that
for non-trivial sets, ≤p

m-autoreducibility implies ≤p
m-mitoticity, so here the notions coincide.

Their approach also works for ≤p
1-tt-autoreducibility. For space-bounded reducibility notions,

Glaßer [Gla10] analyzed a similar approach and showed that for many-one reductions that are
allowed to use poly-logarithmic space, autoreducibility implies mitoticity, while an analogous
result for logspace many-one reductions does not hold relative to some oracle.

Previous Work on Complete Sets The autoreducibility and mitoticity properties of com-
plete sets are of particular interest in complexity theory. Consequently, there is a considerable
amount of research spent on the redundancy of complete sets, which mostly concentrates on
polynomial-time complete sets for various complexity classes.

Let k ≥ 2 and l ≥ 2. Beigel and Feigenbaum [BF92] showed that for the classes NP, coNP,
the levels Σp

k, Πp
k, and ∆p

k of the polynomial-time hierarchy, and PSPACE, all non-trivial,
≤p

T-complete sets are ≤p
T-autoreducible. For the same classes, Glaßer et al. [GOP+07] showed

that all non-trivial, ≤p
m-complete sets are ≤p

m-autoreducible, and their result also holds for the
reducibility notions ≤p

1-tt, ≤
p
dtt, and ≤p

l-dtt. Recall that by Glaßer et al. [GPSZ08], in the case of
≤p

m-autoreducibility and ≤p
1-tt-autoreducibility, we even have ≤p

m-mitoticity and ≤p
1-tt-mitoticity,

respectively. These results answered several open questions asked by Buhrman and Torenvliet in a
survey paper [BT94] at once. Considering larger complexity classes, Berman [Ber77] showed that
all ≤p

m-complete sets for EXP are ≤p
m-complete with respect to length-increasing reductions. This

result implies that all ≤p
m-complete sets for EXP are ≤p

m-autoreducible. Moreover, Buhrman
et al. [BHT98] showed that every ≤p

m-complete set for EXP is weakly ≤p
m-mitotic. Glaßer

et al. [GOP+07] improved these results by showing that all ≤p
m-complete sets for EXP are

≤p
m-mitotic. Ganesan and Homer [GH92] showed that all ≤p

m-complete sets for NEXP are ≤p
m-

complete with respect to 1-1 reduction functions. Their result implies that all ≤p
m-complete sets A

are ≤p
m-autoreducible, because on input x we can look at the reduction function for 0A∪1A ≤p

m A
on input 0x and 1x. From Glaßer et al. [GPSZ08] we again obtain ≤p

m-mitoticity of these sets.
Furthermore, Homer et al. [HKR93] showed that all ≤p

1-tt-complete sets for EXP are ≤p
m-complete,

and Buhrman [Buh93] extended this result by showing that all ≤p
1-tt-complete sets for NEXP

are ≤p
m-complete. This in particular shows that all ≤p

1-tt-complete sets for EXP and NEXP are

102 Chapter 7. Autoreducibility and Mitoticity

≤p
m-mitotic. We further note that their result also applies in the logspace setting, hence every
≤log

1-tt-complete set for PSPACE, EXP and NEXP is ≤log
m -complete. Buhrman et al. [BFvMT00]

showed that every ≤p
T-complete set for EXP is ≤p

T-autoreducible, every ≤p
tt-complete set for

∆p
k is ≤p

tt-autoreducible, and every ≤p
2-tt-complete set for EXP is ≤p

2-tt-autoreducible. Moreover,
there exists a set that is ≤p

3-tt-complete for EXP and not ≤p
btt-autoreducible [BFvMT00], and a

set that is ≤p
T-complete for NEXP and not ≤p

tt-autoreducible [NS14].

7.3 Contributions in this Part

Polynomial-Time Bounded Reducibility Notions Table 7.1 summarizes the known au-
toreducibility and mitoticity results in the polynomial-time setting.

≤ NP coNP Σp
k Πp

k ∆p
k PSPACE EXP NEXP

≤p
m Mp

m Mp
m Mp

m Mp
m Mp

m Mp
m Mp

m Mp
m

≤p
1-tt M

p
1-tt M

p
1-tt M

p
1-tt M

p
1-tt M

p
1-tt M

p
1-tt Mp

m Mp
m

≤p
l-dtt A

p
l-dtt A

p
l-dtt A

p
l-dtt A

p
l-dtt A

p
l-dtt W

p
s-dtt, A

p
l-dtt M

p
l-dtt A

p
l-dtt

≤p
dtt A

p
dtt A

p
dtt A

p
dtt A

p
dtt A

p
dtt W

p
dtt, A

p
dtt M

p
dtt A

p
dtt

≤p
l-ctt A

p
l-tt A

p
l-tt M

p
l-ctt A

p
l-ctt

≤p
ctt A

p
tt M

p
ctt A

p
ctt

≤p
2-tt M

p
2-tt A

p
2-tt

≤p
btt 6 ∀Ap

btt

≤p
tt A

p
tt

≤p
T A

p
T A

p
T A

p
T A

p
T A

p
T A

p
T A

p
T 6 ∀Ap

tt

Table 7.1: Overview of polynomial-time redundancy results of non-trivial complete sets. It holds that
k ≥ 2, l ≥ 2, and s = l3 + l2 + l. In row ≤ and column C, the entry A

p
t means that every ≤-complete set for

C is ≤p
t -autoreducible, the entry M

p
t means that every ≤-complete set for C is ≤p

t -mitotic, and the entry
W

p
t means that every ≤-complete set for C is weakly ≤p

t -mitotic. The prefix 6 ∀ negates the statement, i.e.,
there are complete sets that are not autoreducible. Entries that follow from universal relations between
reducibility notions are omitted (for instance, all ≤p

ctt-complete sets for NP are ≤p
T-complete and hence

≤p
T-autoreducible).

In the polynomial-time setting, most of our contributions are on large complexity classes
such as EXP and NEXP. Here we can define complete sets that are strong enough to simulate
and hence diagonalize against polynomial-time reducibilities. We apply this technique in
Chapter 10 and obtain that for EXP, all sets that are complete with respect to the reducibility
notions ≤p

k-ctt, ≤
p
ctt, ≤

p
k-dtt, ≤

p
dtt, and ≤p

2-tt are mitotic, and for NEXP, all complete sets for the
reducibility notions ≤p

k-ctt, ≤
p
ctt, ≤

p
k-dtt, ≤

p
dtt, and ≤p

2-tt are autoreducible. For weaker classes,
the diagonalization technique does not apply, and we need other approaches. In Chapter 11, we
apply the deterministic coin tossing approach to show how to turn autoreducibility into weak
mitoticity. We obtain that all ≤p

l-dtt-complete sets for PSPACE are weakly ≤p
s-dtt-mitotic, where

l ≥ 2 and s = l3 + l2 + l, and all ≤p
dtt-complete sets for PSPACE are weakly ≤p

dtt-mitotic.

7.4. Simple Properties 103

Logspace Bounded Reducibility Notions Table 7.2 summarizes the logspace results that
we show in this thesis.

≤ NL P Σp
k,Π

p
k ∆p

k+1 PSPACE EXP NEXP

≤log
m A

log
1-tt, A

log
2-dtt, A

log
2-ctt A

log
1-tt, W

log
2-tt A

log
T A

log
1-tt, W

log
2-tt Mlog

m Mlog
m Alog

m , W
log
2-dtt

≤log
l-dtt A

log
l-tt, A

log
2l-dtt A

log
l-tt A

log
T A

log
l-tt M

log
l-dtt M

log
l-dtt A

log
l-dtt

≤log
dtt A

log
dtt A

log
tt A

log
T A

log
tt M

log
dtt M

log
dtt A

log
dtt

≤log
l-ctt A

log
l-tt, A

log
2l-ctt A

log
l-tt A

log
l-tt M

log
l-ctt M

log
l-ctt A

log
l-ctt

≤log
ctt A

log
ctt A

log
tt A

log
tt M

log
ctt M

log
ctt A

log
ctt

≤log
1-tt A

log
2-tt A

log
2-tt A

log
T A

log[1]
log-T Mlog

m Mlog
m Alog

m , W
log
2-dtt

≤log
2-tt A

log[1]
log-T A

log[1]
log-T A

log[1]
log-T M

log
2-tt M

log
2-tt A

log
2-tt

≤log
btt A

log[1]
log-T A

log[1]
log-T A

log[1]
log-T 6 ∀Alog

btt

≤log
tt A

log
tt A

log
tt A

log
tt

Table 7.2: Summary of the redundancy results of non-trivial logspace complete sets we show in this
thesis. It holds that k ≥ 1 and l ≥ 2. In row ≤ and column C, the entry A

log
t means that every ≤-complete

set for C is ≤log
t -autoreducible, the entry M

log
t means that every ≤-complete set for C is ≤log

t -mitotic, and

the entry W
log
t means that every ≤-complete set for C is weakly ≤log

t -mitotic. The prefix 6 ∀ negates the
statement, i.e., there are complete sets that are not autoreducible. Note that NP = Σp

1 and coNP = Πp
1 .

In the logspace setting, we systematically study the autoreducibility and mitoticity properties
of complete sets for different reducibility notions and complexity classes. We apply different
techniques, depending on the general computational strength of the class and on the reducibility
notion we consider. For small classes such as NL and P, a logspace computation can follow a single
computation path in the configuration graph of an appropriate machine model (nondeterministic
and alternating logspace Turing machines). In Chapter 8 we use self-reducibility of complete
sets to generalize this property, which leads to general autoreducibility results. For classes
that are sufficiently large such as PSPACE, EXP, and NEXP, the diagonalization technique
in Chapter 10 shows that complete sets are autoreducible or even mitotic. In Chapter 9 we
consider intermediate classes such as the different levels of the polynomial-time hierarchy. Local
checkability of transcripts of computations and similar objects shows autoreducibility results for
complete sets with respect to reducibility notions such as ≤log

btt and ≤log
tt . Moreover, we show

how to use this technique to translate autoreducibility results from the polynomial-time setting
to the logspace setting, which results in logspace autoreducibility results for complete sets of
classes such as NP and coNP. In Chapter 11 we finish our study by showing that in some cases,
logspace autoreducibility implies weak logspace mitoticity.

7.4 Simple Properties

We finish this chapter by providing some general properties about autoreducibility and mitoticity,
and complete sets. In particular, we obtain that for classes that are closed under complementation,
it is easy to show autoreducibility of complete sets (with respect to a weaker reducibility notion).

104 Chapter 7. Autoreducibility and Mitoticity

For non-trivial sets, it is easy to show that mitoticity implies weak mitoticity and autore-
ducibility.

Proposition 7.4.1 Let A be a non-trivial set.

1. If A is ≤p
m-mitotic, then A is weakly ≤p

m-mitotic.
2. If A is ≤p

m-mitotic, then A is ≤p
m-autoreducible.

Proof Let A be ≤p
m-mitotic. From the definition of mitoticity and weak mitoticity we directly

obtain that A is weakly ≤p
m-mitotic. Moreover, since A is ≤p

m-mitotic, there exists a separator
S ∈ P such that A ∩ S ≤p

m A ∩ S via f ∈ FP and A ∩ S ≤p
m A ∩ S via g ∈ FP.

On input x, we first test whether x ∈ S holds or not. Suppose x ∈ S (the other case works
analogously) and recall that cA∩S(x) = cA∩S(f(x)). Let y := f(x). If y ∈ S, then cA∩S(y) = 0,
hence x /∈ A, and so we can return a fixed value x0 6= x with x0 /∈ A. If y ∈ S, then y 6= x, and
we have cA(x) = cA∩S(x) = cA∩S(y) = cA(y). This shows that A is ≤p

m-autoreducible. 2

It is not difficult to see that the above proposition generally holds for the reducibility notions
we consider in this thesis. In general, the converse directions of the above implications are
more interesting. For instance, Ambos-Spies [AS84] showed that ≤p

T-autoreducibility does not
imply ≤p

T-mitoticity, while Glaßer et al. [GPSZ08] showed that ≤p
m-autoreducibility implies

≤p
m-mitoticity for non-trivial sets. So in general, we can think of mitoticity as a stronger form

of redundancy than autoreducibility and weak mitoticity, which for some reducibility notions
coincide.

We further have simple observations regarding autoreducibility of sets and their complements.
We first need some properties of complexity classes and complete sets.

Proposition 7.4.2 Let A be a set, let C be some complexity class, and for k ≥ 1 and r ∈ {p, log},
let ≤ be one of the following reducibility notions: ≤rm, ≤rk-tt, ≤rk-T, ≤rbtt, ≤rtt, ≤rlog-T, ≤rT.

1. If A is ≤-complete for C, then A is ≤-complete for coC.
2. If A is ≤rk-ctt-complete for C, then A is ≤rk-dtt-complete for coC.
3. If A is ≤rctt-complete for C, then A is ≤rdtt-complete for coC.
4. If A is ≤rk-dtt-complete for C, then A is ≤rk-ctt-complete for coC.
5. If A is ≤rdtt-complete for C, then A is ≤rctt-complete for coC.

Proof Let B ∈ coC, hence B ∈ C, and B is reducible to A.

In the case of ≤rk-tt,≤rk-T,≤rbtt,≤rtt,≤rlog-T,≤rT we can simulate the reduction from B to A

with queries to A, where we invert each answer and accept if and only the simulation rejects. In
the case of ≤rm we can simply use the same reduction function. Hence B ≤ A, and item 1 holds.

If A is ≤rk-ctt-complete for C, then there exists a reduction function f in FP or even in FL
from B to A such that cB(x) = min{cA(y) | y ∈ f(x)} and cB(x) = 1−min{cA(y) | y ∈ f(x)} =
max{cA(y) | y ∈ f(x)} for all x. The case where the number of queries is not bounded by a
constant is shown analogously. Hence item 2 and item 3 hold.

Item 4 and item 5 are shown analogously, where we replace max with min and vice versa. 2

Proposition 7.4.3 Let C be a complexity class that is closed under complementation. For every
Boolean function α : {0, 1}k → {0, 1}, if A is ≤log

αtt-complete for C, then A is ≤log
αtt-complete for

C, where α : {0, 1}k → {0, 1} with α(b1, . . . , bk) = 1− α(b1, . . . , bk) for all b1, . . . , bk ∈ {0, 1}.

7.4. Simple Properties 105

Proof Let B ∈ C. Since B ∈ C, there is a function f that shows B ≤log
αtt A. On input x, consider

〈y1, y2, . . . , yk〉 := f(x). We now have cB(x) = 1− cB(x) = 1− α(cA(y1), cA(y2), . . . , cA(yk)) =

α(cA(y1), cA(y2), . . . , cA(yk)), and thus f also shows B ≤log
αtt A. 2

Proposition 7.4.4 Let A be a non-trivial set, and for k ≥ 1 and r ∈ {p, log}, let ≤ be one of
the following reducibility notions: ≤rm,≤rk-tt,≤rk-T,≤rbtt,≤rtt,≤rlog-T,≤rT.

1. If A is ≤-autoreducible, then A is ≤-autoreducible.
2. If A is ≤rk-ctt-autoreducible, then A is ≤rk-dtt-autoreducible.
3. If A is ≤rctt-autoreducible, then A is ≤rdtt-autoreducible.
4. If A is ≤rk-dtt-autoreducible, then A is ≤rk-ctt-autoreducible.
5. If A is ≤rdtt-autoreducible, then A is ≤rctt-autoreducible.

Proof In the case of ≤rk-tt,≤rk-T,≤rbtt,≤rtt,≤rlog-T,≤rT we can simulate the autoreduction for A

with queries to A, where we invert each answer and accept if and only the simulation rejects. In
the case of ≤rm we can simply use the same autoreduction function. This shows item 1.

If A is ≤rk-ctt-autoreducible, then there exists an autoreduction function f in FP or even in
FL that maps x to k queries y1, . . . , yk different from x such that cA(x) = min{cA(y) | y ∈ f(x)}
and hence cA(x) = 1 − cA(x) = 1 −min{cA(y) | y ∈ f(x)} = max{cA(y) | y ∈ f(x)} for all x.
The case where the number of queries is not bounded by a constant is shown analogously. Hence
item 2 and item 3 hold.

Item 4 and item 5 are shown analogously, where we replace max by min and vice versa. 2

Proposition 7.4.5 Let k ≥ 1, r ∈ {p, log}, let A be a non-trivial set, and C be closed under
complementation.

1. If A is ≤rm-complete for C, then A is ≤r1-tt-autoreducible.
2. If A is ≤rk-dtt-complete for C, then A is ≤rk-tt-autoreducible.
3. If A is ≤rk-ctt-complete for C, then A is ≤rk-tt-autoreducible.
4. If A is ≤rdtt-complete for C, then A is ≤rtt-autoreducible.
5. If A is ≤rctt-complete for C, then A is ≤rtt-autoreducible.

Proof Let A be ≤rk-dtt-complete for C. Since C is closed under complementation, we have A ∈ C
and thus A ≤rk-dtt A via some f in FP or even in FL. This means cA(x) = 1−max{cA(y) | y ∈
f(x)}, where f(x) = {y1, . . . , yk}. If x /∈ f(x), this yields a ≤rk-tt-autoreduction for A. If x ∈ f(x),
then x ∈ A implies the contradiction 1 = cA(x) = 1−max{cA(y) | y ∈ f(x)} = 1− 1 = 0, hence
x /∈ A. In both cases we can easily obtain a ≤rk-tt-autoreduction for A. The case where the
number of queries is not bounded by a constant k is shown analogously. Hence item 2 and item 4
hold.

Let now A be ≤rk-ctt-complete for C. From Proposition 7.4.2 we obtain that A is ≤rk-dtt-
complete for coC. Since C is closed under complement we have coC = C, hence by the previous
argumentation we know that A is ≤rk-tt-autoreducible. From Proposition 7.4.4 we obtain that A
is ≤rk-tt-autoreducible. The case where the number of queries is not bounded is shown analogously.
Hence item 3 and item 5 hold.

Item 1 follows from item 2 for k = 1. 2

106 Chapter 7. Autoreducibility and Mitoticity

Chapter 8

Self-Reducibility

Autoreducibility by Tracing Computation Paths We analyze the logspace autoreducibil-
ity properties of complete sets for classes of low complexity such as NL and P. Suppose we are
given a logspace many-one complete set A for NL. Then there exists a nondeterministic logspace
Turing machine M that accepts A. Now suppose we want to define a logspace-computable
autoreduction function for A. Note that in logspace we can only memorize a constant number of
configurations of M on input x. While this is not enough to store an entire computation path
of M , it enables us to trace one particular computation path. Now the challenge is to trace a
computation path with the correct behavior, i.e., a path that is accepting if and only if x ∈ A.

So suppose we have traced some computation path with the correct behavior down to some
configuration C. If C is a stop configuration we are done, because then we know the acceptance
behavior of M and hence the membership status of x to A. Otherwise there are two successor
configurations C1 and C2 of C, and the question is whether to continue the trace with C1 or C2.
The crucial observation here is that the question whether Ci belongs to an accepting path of M
on input x or not can be answered in nondeterministic logspace and is hence reducible to A via
some reduction function f . If f maps Ci to x, then we know that Ci remains on a computation
path with the correct behavior, and we can continue our trace with Ci. Otherwise we obtain
two queries y, z different from x such that x ∈ A if and only if y ∈ A or z ∈ A, and we can use y
and z as the output of an autoreduction function for A.

Note that P = AL, hence for every complete set for P there exists an alternating logspace
Turing machine. Again, single configurations of those machines can be stored in logspace. With
minor modifications, the above technique can also be used to show autoreducibility of logspace
complete sets for P.

Autoreducibility by Self-Reducibility We use the concept of self-reducibility to generalize
the above scheme. Self-reducibility is a stronger form of autoreducibility, where a set is called
self-reducible if it can be reduced to itself via some reduction function that maps to strictly
smaller values. Our generalization will be applicable whenever a class has complete sets that
are self-reducible. It is known that NL and P have self-reducible, complete sets, so our general
result will in particular cover NL and P.

Contributions We summarize the contributions of this chapter as follows.

1. Autoreducibility by Equivalent, Self-Reducible Sets. We provide a general lemma to translate
the autoreducibility property of self-reducible sets to equivalent sets. This technique is in
particular applicable to classes that have self-reducible, complete sets.

107

108 Chapter 8. Self-Reducibility

2. Autoreducibility results for NL and P. Since NL and P have complete sets that are
self-reducible, our technique provides autoreducibility of all complete sets for certain
reducibility notions. Table 8.1 lists the new autoreducibility results we obtain by the
self-reducibility technique in this chapter.

3. Autoreducibility with Fixed Binary Boolean Functions. We further consider ≤log
αtt-complete

sets for NL and P, where α can be an arbitrary but fixed binary Boolean function. We
show that for every such α, every ≤log

αtt-complete set for NL and P is ≤log
btt-autoreducible.

In a later chapter, we will obtain negative results for 3-ary Boolean functions, which make
this result interesting.

reduction NL P

≤log
m A

log
2-dtt, A

log
2-ctt

≤log
1-tt A

log
2-tt A

log
2-tt

≤log
k-dtt A

log
2k-dtt

≤log
dtt A

log
dtt

≤log
k-ctt A

log
2k-ctt

≤log
ctt A

log
ctt

≤log
tt A

log
tt A

log
tt

Table 8.1: Autoreducibility results shown in this chapter, where k ≥ 2. An entry Alog
r in row ≤ and

column C means that every non-trivial ≤-complete set for C is ≤log
r -autoreducible.

Organization of this Chapter In Section 8.1 we give the original definition of self-reducibility
for the case of ≤log

T -reducibility and further define self-reducibility for the remaining reductions
we consider in this chapter accordingly. In Section 8.2 we present our lemma that translates
autoreducibility of self-reducible sets to equivalent sets. We apply this lemma in Section 8.3 to
complete sets for NL and P and obtain new autoreducibility results. In Section 8.4 we adapt
the proof technique we used for our general lemma to sets that are complete for NL or P with
respect to ≤log

αtt, where α is an arbitrary but fixed binary Boolean function. We close this chapter
with a summary and discussion in Section 8.5.

8.1 Definition of Self-Reducibility

Balcázar [Bal90] defines self-reducibility on sets as follows.

Definition 8.1.1 ([Bal90]) A is ≤log
T -self-reducible if there is a logspace oracle Turing machine

M that accepts A with oracle A such that on input x, the queries asked by M are of the same
length as x, lexicographically smaller than x, and differ from x at most in the last log |x| symbols.

Note that Balcázar used an oracle access model with one oracle tape in his definition. We allow
an arbitrary number of oracle tapes. Moreover, we can define self-reducibility for the reducibility

notions ≤log[k]
T and ≤log

tt analogously.

8.2. Autoreducibility by Self-Reducibility 109

Definition 8.1.2 The notions of ≤log[k]
T -self-reducibility and ≤log

tt -self-reducibility are defined

analogously to the case of ≤log
T -self-reducibility, where we consider logspace oracle Turing machines

with k oracle tapes and non-adaptive logspace oracle Turing machines with a single oracle tape,
respectively.

There is a technical difficulty in defining self-reducibility for disjunctive and conjunctive truth-
table reducibilities. In these cases, the reduction cannot simply accept or reject, but has to
generate queries that represent the answer. However, a self-reduction on input x = y0|y| is
not allowed to make any query, since the last log |x| symbols of x already reached the minimal
possible value. Therefore, in the definition below the self-reduction may accept or reject without
asking any queries.

Definition 8.1.3 A set A is called ≤log
dtt-self-reducible if there is a logspace-computable function

f whose values can be 0, 1, or a list of words 〈y1, . . . yn〉 where n ≥ 1 such that the following
holds: If f(x) ∈ {0, 1}, then cA(x) = f(x). Otherwise, it holds that f(x) = 〈y1, . . . yn〉 such that
the yi are of the same length as x, are lexicographically smaller than x, differ from x at most in
the last log |x| symbols, and cA(x) = max{cA(y1), cA(y2), · · · , cA(yn)}. If n is bounded by some

constant k, then A is called ≤log
k-dtt-self-reducible. The notions of ≤log

ctt-self-reducibility and ≤log
k-ctt-

self-reducibility are defined analogously, where max is replaced by min. A is ≤log
m -self-reducible

if it is ≤log
1-dtt-self-reducible.

8.2 Autoreducibility by Self-Reducibility

Observe that self-reducibility is stronger than autoreducibility, i.e., every self-reducible set is
autoreducible. We will show that in general, the autoreducibility of a self-reducible set translates
to equivalent sets. We will first sketch our technique for the many-one case.

Suppose that we have two non-trivial sets A,B such that A ≡log
m B and B is ≤log

m -self-
reducible. Clearly, B is ≤log

m -autoreducible. We can argue that this also holds for A. Let
A ≤log

m B via f , B ≤log
m A via g, and B ≤log

m -self-reduces to B via h. On input x we compute
y = f(x), hence it holds that cA(x) = cB(y). Let y0 = y. Suppose we have already computed yi
with cA(x) = cB(yi). Let zi = g(yi), hence it holds that cA(x) = cB(yi) = cA(zi). If zi 6= x, we
are done. Similarly, if the log(|y|) last bits of yi are all zero, we can compute cB(yi) and are done.
Otherwise we proceed with yi+1 = h(yi). The algorithm is correct because cB(yi+1) = cB(yi),
and it terminates and works in logspace because yi+1 is lexicographically smaller than yi and
differs from y only on the last log(|y|) bits. Hence the set A is ≤log

m -autoreducible as well.

Note that the algorithm we sketched above is not really useful for us, because if B is
≤log

m -self-reducible, then B ∈ L. However, it gives us a good intuition of how to proceed
with more complicated reducibility notions. In the following lemma, we will generalize this
approach to further reducibility notions, where logspace decidability does not trivially follow
from self-reducibility.

Lemma 8.2.1 Let l ≥ 1 and A,B be non-trivial sets.

1. If A ≤log
m B ≤log

tt A and B is ≤log
tt -self-reducible, then A is ≤log

tt -autoreducible.

2. If A ≤log
m B ≤log

1-tt A and B is ≤log
2-tt-self-reducible, then A is ≤log

2-tt-autoreducible.

3. If A ≤log
m B ≤log

dtt A and B is ≤log
dtt-self-reducible, then A is ≤log

dtt-autoreducible.

4. If A ≤log
m B ≤log

l-dtt A and B is ≤log
2-dtt-self-reducible, then A is ≤log

2l-dtt-autoreducible.

110 Chapter 8. Self-Reducibility

Proof We start with item 1. So suppose that A ≤log
m B via f ∈ FL. Let hqx be the unary

Boolean function that results from the reduction B ≤log
tt A on input q, when all queries r 6= x are

substituted by their answers cA(r). Hence hqx is the unary Boolean function with the property

cB(q) = hqx(cA(x)). Moreover, let M be the oracle Turing machine performing the ≤log
tt -self-

reduction of B. Figure 8.1 describes an oracle machine that computes a ≤log[1]
T -autoreduction

for A on input x.

On input x:
1. s := f(x), β := id
2. let q1, . . . , qk be the words queried by M on input s
3. if hq1x , ..., hqkx are all constants, then return the result of M on s,

modified with β, where queries are answered according to hq1x , . . . , h
qk
x

4. choose the smallest i such that hqix is not constant

5. let s := qi and β := hqix
6. goto 2

Figure 8.1: A ≤log[1]
T -autoreduction for A.

Observe that this computation can be executed in logarithmic space without querying the
input x. The machine only needs logarithmic space, since the queries qi differ from f(x) only
in the last log |x| symbols. Note that the computation eventually stops in line 3, since s is
always replaced by a lexicographically smaller string. For the correctness note that in line 2
we always have cA(x) = β(cB(s)), where cB(s) equals the result of M on input s. This is true
at the beginning of the computation, because f reduces A to B, and β is the identity function.
Moreover, in line 4 it holds that cB(qi) = hqix (cA(x)) and since hqix is either non or id, we obtain

cA(x) = hqix (cB(qi)). This shows that A is ≤log[1]
T -autoreducible and hence ≤log

tt -autoreducible by
Ladner and Lynch [LL76].

Item 2 is shown analogously. In this case, M asks at most two queries, hence k ≤ 2. Moreover
we can check whether the functions hq1x and hq2x are constants without actually answering any
query (since we consider ≤log

1-tt-reductions). So by the above argumentation we have a logspace
computation that eventually stops in line 3, where two non-adaptive queries different from x
determine cA(x).

In the case of item 3, let A ≤log
m B via f ∈ FL, let B ≤log

dtt A via h ∈ FL, and let g ∈ FL be

the ≤log
dtt-self-reducibility function for B. We consider the algorithm described in Figure 8.2.

On input x:
1. y := f(x)
2. if g(y) ∈ {0, 1} then return some z 6= x with cA(z) = g(y)
3. let 〈y1, . . . , yk〉 := g(y)
4. if x /∈ h(yi) for all 1 ≤ i ≤ k then return

⋃
i h(yi)

5. choose the smallest i such that x ∈ h(yi) and let y := yi
6. goto 2

Figure 8.2: A ≤log
dtt-autoreduction for A.

First observe that this algorithm can again be executed in logarithmic space, because the
functions f, g, h are logspace computable, and each yi only differs from f(x) in the last O(log(|x|))
bits. Moreover, for each new iteration we replace y by a lexicographically smaller value and
hence we eventually terminate. It remains to argue for the correctness of the algorithm. We first
argue that before each iteration it holds that cA(x) = cB(y). This clearly holds before the first

8.3. Applications to Low Complexity Classes 111

iteration, because f reduces A to B. Now suppose this holds before some iteration in which we
reach line 5. In line 5 we choose some i such that x ∈ h(yi). So, if x ∈ A, then yi ∈ B, because
the function h reduces B to A. Moreover, if x /∈ A, then we already know y /∈ B and hence
yi /∈ B, because g reduces B to B. Overall we obtain cB(yi) = cA(x), so line 5 does not change
our invariant that cA(x) = cB(y).

We have already argued that at some point the algorithm terminates. If we stop in line 2,
then we return some z 6= x where from the invariant it follows that cA(z) = g(y) = cB(y) = cA(x).
If we stop in line 4, then we return S =

⋃
i h(yi), where x /∈ S. From the invariant we know that

cA(x) = cB(y), since g is a reduction from B to B it holds that cB(y) = max{cB(y1), . . . , cB(yk)},
and since h is a reduction from B to A it holds that cB(yi) = max{cA(z) | z ∈ h(yi)}, hence

cA(x) = max{cA(z) | z ∈ S}. In both cases we obtain a ≤log
dtt-autoreduction for A.

Item 4 is shown analogously to item 3, where we further have the observation that h maps
to at most l elements and g maps to at most 2 elements, hence the set S can have at most 2l
elements and we obtain a ≤log

2l-dtt-autoreduction. 2

8.3 Applications to Low Complexity Classes

Lemma 8.2.1 translates the autoreducibility of self-reducible sets to equivalent sets. This property
is particularly useful when we consider classes that have self-reducible, complete sets. In this
case, Lemma 8.2.1 translates the autoreducibility of a single self-reducible, complete set to all
complete sets of that class. We show that this applies to complexity classes as low as NL or
P, where the characterization by nondeterministic logspace machines and alternating logspace
machines shows the existence of such complete, self-reducible sets.

Lemma 8.3.1 Let k ≥ 1.

1. There is a non-trivial ≤log
m -complete set for NL that is ≤log

2-dtt-self-reducible.

2. There is a non-trivial ≤log
m -complete set for P that is ≤log

2-tt-self-reducible.

Proof Balcázar [Bal90] considers the acyclic graph accessibility problem (AGAP, for short)
that contains strings of the form G#s#t, where G is a directed graph without cycles, and s and
t are vertices of the graph such that there exists a path from s to t. He notes that AGAP is
≤log

m -complete for NL and ≤log
dtt-self-reducible, if encoded appropriately. In the ≤log

dtt-self-reduction,
it suffices to check whether s = t holds, or whether there exists some predecessor t′ of t such that
a path from s to t′ exists. Note that in logspace we can transform G into a graph G′ with the
same properties such that each vertex has at most two incoming edges. The resulting problem is
≤log

m -complete for NL and ≤log
2-dtt-self-reducible.

Analogously, Balcázar [Bal90] considers the circuit value problem (CVP, for short) that
consists of strings u#G#g, where u is a binary string, G is a Boolean circuit with fan-in two and
|u| inputs, and g is a gate of G that evaluates to 1 under u. Ladner [Lad75] shows that CVP is

≤log
m -complete for P. Balcázar [Bal90] shows that under a suitable encoding, the problem is also

≤log
2-tt-self-reducible, because g evaluates to 1 if either g is an input gate and the corresponding

bit in u is set, or if the Boolean function of g applied to the values of the predecessor gates
evaluates to 1. 2

Theorem 8.3.2 Let k ≥ 1.

1. All non-trivial ≤log
m -complete sets for NL are ≤log

2-dtt-autoreducible.

112 Chapter 8. Self-Reducibility

2. All non-trivial ≤log
1-tt-complete sets for NL and P are ≤log

2-tt-autoreducible.

3. All non-trivial ≤log
k-dtt-complete sets for NL are ≤log

2k-dtt-autoreducible.

4. All non-trivial ≤log
dtt-complete sets for NL are ≤log

dtt-autoreducible.

5. All non-trivial ≤log
tt -complete sets for NL and P are ≤log

tt -autoreducible.

Proof Let k ≥ 1. From Lemma 8.3.1 we obtain two non-trivial sets B and C such that B is ≤log
m -

complete for NL and ≤log
2-dtt-self-reducible, and C is ≤log

m -complete for P and ≤log
2-tt-self-reducible.

Let A be an arbitrary non-trivial set. We apply Lemma 8.2.1 as follows.

1. If A is ≤log
m -complete for NL, then A ≤log

m B ≤log
1-dtt A, hence A is ≤log

2-dtt-autoreducible.

2. If A is ≤log
1-tt-complete for P, then A ≤log

m C ≤log
1-tt A, hence A is ≤log

2-tt-autoreducible. If A is

≤log
1-tt-complete for NL, then A ≤log

m B ≤log
1-tt A, hence A is ≤log

2-tt-autoreducible.

3. If A is ≤log
k-dtt-complete for NL, then A ≤log

m B ≤log
k-dtt A, hence A is ≤log

2k-dtt-autoreducible.

4. If A is ≤log
dtt-complete for NL, then A ≤log

m B ≤log
dtt A, hence A is ≤log

dtt-autoreducible.

5. If A is ≤log
tt -complete for P, then A ≤log

m C ≤log
tt A, hence A is ≤log

tt -autoreducible. If A is

≤log
tt -complete for NL, then A ≤log

m B ≤log
tt A, hence A is ≤log

tt -autoreducible.

2

Recall that NL is closed under complementation. We hence obtain the following corollary.

Corollary 8.3.3 Let k ≥ 1.

1. All non-trivial ≤log
m -complete sets for NL are ≤log

2-ctt-autoreducible.

2. All non-trivial ≤log
k-ctt-complete sets for NL are ≤log

2k-ctt-autoreducible.

3. All non-trivial ≤log
ctt-complete sets for NL are ≤log

ctt-autoreducible.

Proof Let k ≥ 1.

1. If A is ≤log
m -complete for NL, then A is ≤log

m -complete for NL. By Theorem 8.3.2 we
obtain that A is ≤log

2-dtt-autoreducible. By Proposition 7.4.4 we obtain that A is ≤log
2-ctt-

autoreducible.
2. If A is ≤log

k-ctt-complete for NL, then A is ≤log
k-dtt-complete for NL by Proposition 7.4.2. By

Theorem 8.3.2 we obtain that A is ≤log
2k-dtt-autoreducible. By Proposition 7.4.4 we obtain

that A is ≤log
2k-ctt-autoreducible.

3. If A is ≤log
ctt-complete for NL, then A is ≤log

dtt-complete for NL by Proposition 7.4.2. By

Theorem 8.3.2 we obtain that A is ≤log
dtt-autoreducible. By Proposition 7.4.4 we obtain

that A is ≤log
ctt-autoreducible.

2

8.4 Reductions with Fixed Binary Boolean Functions

In the proof of Lemma 8.2.1, we always follow a reduction path that preserves information about
the input. If A is complete for NL or P for the reducibility notions ≤log

m , ≤log
1-tt, or ≤log

k-dtt, then
this technique shows that A is autoreducible for a fixed number of queries. Does this still holds if
we turn towards ≤log

btt-completeness? In the remainder of this chapter, we will show that for fixed

8.4. Reductions with Fixed Binary Boolean Functions 113

binary Boolean functions α we can show that ≤log
αtt-completeness implies ≤log

btt-autoreducibility.
In the next chapter, we will show that some improvements of this result are difficult to obtain.

For the remainder of this section, let f2
0 , f

2
1 , . . . , f

2
15 denote an enumeration of all binary

Boolean functions such that

i = 23 · f2
i (1, 1) + 22 · f2

i (1, 0) + 21 · f2
i (0, 1) + 20 · f2

i (0, 0)

holds for all 0 ≤ i ≤ 15. So, for instance, f2
15 denotes the binary constant 1, while f2

9 denotes
the binary equivalence, and f2

11 denotes the binary implication.

Lemma 8.4.1 Let α = f2
9 , hence α(x, y) = 1 if and only if x = y. If A and ≤log

αtt-complete for

NL or P, then A is ≤log
btt-autoreducible.

Proof We will argue for P (the case of NL is shown analogously). Let A be ≤log
αtt-complete

for P, where α = f2
9 , hence α(x, y) = 1 if and only if x = y. If A is trivial, then we are

done, so assume that A is non-trivial. Recall that P = AL and let M be some alternating
logspace Turing machine that shows A ∈ P. We consider the configuration graph of M . Let
R = {〈x,C〉 | C is the root of an accepting subgraph in M(x)} and observe that R ∈ P, hence

R ≤log
αtt A via some logspace-computable function f . We take the following assumptions.

1. For every configuration C of M(x), f(〈x,C〉) queries two distinct words.
2. For the start configuration C0 of M(x), f(〈x,C0〉) queries x.
3. For every stop configuration Cs of M(x), f(〈x,Cs〉) does not query x.

Let us first show that these assumptions are not a restriction.

1. If f(〈x,C〉) = 〈y, y〉 for some y, then cR(〈x,C〉) = α(cA(y), cA(y)) = 1, so we can modify
f such that f(〈x,C〉) = 〈y1, y2〉 for two fixed elements y1 6= y2 with y1, y2 ∈ A.

2. Note that cA(x) = cR(〈x,C0〉), since C0 is the root of M(x). If we modify f such that
f(〈x,C0〉) = 〈x, y〉 for some fixed y ∈ A, then we have α(cA(x), cA(y)) = f2

9 (cA(x), 1) =

cA(x), which means that cR(〈x,C0〉) = α(cA(x), cA(y)). Hence f remains a ≤log
αtt-reduction

from R to A.
3. Note that we know the value cR(〈x,Cs〉). Choose y, z 6= x such that y ∈ A and z /∈ A.

If cR(〈x,Cs〉) = 1, we modify f such that f(〈x,Cs〉) = 〈y, y〉, and if cR(〈x,Cs〉) = 0, we

modify f such that f(〈x,Cs〉) = 〈y, z〉. In both cases, f remains a ≤log
αtt-reduction from R

to A.

So suppose the assumptions hold. Hence there must be a configuration C in the configuration
graph of M on input x with successors C1, C2 such that f(〈x,C〉) queries x, and both f(〈x,C1〉)
and f(〈x,C2〉) do not query x. We iterate over all configurations until we find such a configuration
C. Now we can determine cA(x) by at most five queries different from x. 2

Lemma 8.4.2 Let α = f2
11, hence α(x, y) = 1 if and only if x = 1 implies y = 1. If A is

≤log
αtt-complete for NL or P, then A is ≤log

btt-autoreducible.

Proof We argue for P (the case of NL is shown analogously). LetA be≤log
αtt-complete for P, where

α = f2
11, hence α(x, y) = 1 if and only if x = 1 implies y = 1. If A is trivial, then we are done, so

assume that A is non-trivial. Let M be some alternating logspace Turing machine that accepts A.
Consider the set R = {〈x,C〉 | configuration C is the root of an accepting subgraph in M(x)}
and observe that R,R ∈ P. Hence there are logspace-computable functions f, g that show
R,R ≤log

αtt A. Let C0 denote the start configuration of M on input x. We take the following
assumptions.

114 Chapter 8. Self-Reducibility

1. f(〈x,C0〉) queries 〈y, x〉 for some fixed y ∈ A.
2. For every stop configuration Cs, if f(〈x,Cs〉) = 〈y, z〉, then x /∈ {y, z}.
3. For every stop configuration Cs, if g(〈x,Cs〉) = 〈y, z〉, then x /∈ {y, z}.

Let us first show that these assumptions are not a restriction.

1. Note that cA(x) = cR(〈x,C0〉), since C0 is the root of M(x). If we modify f such that
f(〈x,C0〉) = 〈y, x〉 for some fixed y ∈ A, then we have α(cA(y), cA(x)) = f2

11(1, cA(x)) =

cA(x), which means that cR(〈x,C0〉) = α(cA(y), cA(x)). Hence f remains a ≤log
αtt-reduction

from R to A.
2. Note that we know the value cR(〈x,Cs〉). Choose y, z 6= x such that y ∈ A and z /∈ A.

If cR(〈x,Cs〉) = 1, we modify f such that f(〈x,Cs〉) = 〈y, y〉, and if cR(〈x,Cs〉) = 0, we

modify f such that f(〈x,Cs〉) = 〈y, z〉. In both cases, f remains a ≤log
αtt-reduction from R

to A.
3. Note that we know the value cR(〈x,Cs〉). Choose y, z 6= x such that y ∈ A and z /∈ A.

If cR(〈x,Cs〉) = 1, we modify g such that g(〈x,Cs〉) = 〈y, y〉, and if cR(〈x,Cs〉) = 0, we

modify g such that g(〈x,Cs〉) = 〈y, z〉. In both cases, g remains a ≤log
αtt-reduction from R

to A.

We consider the algorithm described in Figure 8.3.

On input x:
1. C := C0

2. (C1, C2) := successor configurations of C in M(x)
3. β := type of node C in M(x)
4. if β is existential, then:

5. let 〈y1, z1〉 = f(〈x,C1〉) and 〈y2, z2〉 = f(〈x,C2〉)
6. if x /∈ {y1, y2, z1, z2} then accept if max{α(cA(y1), cA(z1)), α(cA(y2), cA(z2))} = 1
7. else if x ∈ {y1, y2} then accept

8. else set C := Ci, where zi = x, and continue with line 2

9. if β is universal, then:

10. let 〈y1, z1〉 = g(〈x,C1〉) and 〈y2, z2〉 = g(〈x,C2〉)
11. if x /∈ {y1, y2, z1, z2} then accept if max{α(cA(y1), cA(z1)), α(cA(y2), cA(z2))} = 0
12. else if x ∈ {z1, z2} then reject

13. else set C := Ci, where yi = x, and continue with line 2

14. reject

Figure 8.3: A ≤log
btt-autoreduction for A.

We will show that the algorithm traverses M(x) and keeps the following invariant:

cA(x) = cR(〈x,C〉)

After line 1, the invariant clearly holds. We only change C in line 8 and in line 13. We hence
distinguish the following cases.

• Assume we reach line 8. Then β is existential, and f(〈x,Ci〉) = 〈yi, x〉. Since f reduces
R to A we have x ∈ A =⇒ cR(〈x,Ci〉) = α(cA(yi), cA(x)) = f2

11(cA(yi), 1) = 1. Since
β is existential it holds that x /∈ A =⇒ cR(〈x,Ci〉) = 0. So after setting C := Ci, the
invariant still holds.

8.4. Reductions with Fixed Binary Boolean Functions 115

• Assume we reach line 13. Then β is universal, and g(〈x,Ci〉) = 〈x, zi〉. Since g reduces
R to A it holds that x /∈ A =⇒ cR(〈x,Ci〉) = 1 − cR(〈x,Ci〉) = 1 − α(cA(x), cA(zi)) =
1− f2

11(0, cA(zi)) = 0. Since β is universal it holds that x ∈ A =⇒ cR(〈x,Ci〉) = 1. So
after setting C := Ci, the invariant still holds.

Since the invariant always holds, we can now show that the algorithm accepts correctly. We
have the following cases.

• We reach line 6 and it holds that x /∈ {y1, y2, z1, z2}. Here we further know that β is
existential. Hence it holds that cA(x) = cR(〈x,C〉) = max{cR(〈x,C1〉), cR(〈x,C2〉)} =
max{α(cA(y1), cA(z1)), α(cA(y2), cA(z2))}, so we either accept correctly in line 6, or we
reject correctly in line 14.
• We reach line 11 and it holds that x /∈ {y1, y2, z1, z2}. Since β is universal it holds that
cA(x) = cR(〈x,C〉) = min{cR(〈x,C1〉), cR(〈x,C2〉)} = 1−max{cR(〈x,C1〉), cR(〈x,C2〉)} =
1−max{α(cA(y1), cA(z1)), α(cA(y2), cA(z2))}, so we either accept correctly in line 11, or
we reject correctly in line 14.
• We reach line 7 and it holds that x = yi for some i ∈ {1, 2}. Suppose x /∈ A. Then we

have cR(〈x,Ci〉) = α(cA(x), cA(zi)) = α(0, cA(zi)) = 1. Since β is existential, we obtain
cR(〈x,C〉) = 1. This contradicts the invariant, so it holds that x ∈ A, and we accept
correctly.
• We reach line 12 and it holds that x = zi for some i ∈ {1, 2}. Suppose x ∈ A. Then we

have cR(〈x,Ci〉) = α(cA(yi), cA(x)) = α(cA(yi), 1) = 1, hence cR(〈x,Ci〉) = 0. Since β
is universal, this means that cR(〈x,C〉) = 0. This contradicts the invariant, so we have
x /∈ A, and we reject correctly.

Note that the algorithm will eventually terminate, because we assumed that the stop configura-
tions do not query x. Since the algorithm queries at most four nonadaptive queries y1, y2, z1, z2,
we obtain that A is ≤log

btt-autoreducible. 2

With our previous results and the two lemmas we have shown above we can now show that
for arbitrary binary Boolean functions α it holds that ≤log

αtt-completeness for NL or P implies

≤log
btt-autoreducibility.

Corollary 8.4.3 For every binary Boolean function α, if A is non-trivial and ≤log
αtt-complete

for NL or P, then A is ≤log
btt-autoreducible.

Proof Note that NL and P are closed under complementation, hence we can apply Proposi-
tion 7.4.3. So if A is ≤log

αtt-complete for NL or P, then A is ≤log
αtt-complete for NL or P, where

α : {0, 1}2 → {0, 1} such that α(b1, b2) = 1− α(b1, b2) for all b1, b2 ∈ {0, 1}. Note that if α = f2
i ,

then α = f2
15−i. So it suffices to show the corollary for α ∈ {f2

8 , f
2
9 , . . . , f

2
15}. We distinguish the

following cases.

• α ∈ {f2
15}. Then, α is constant. Since there are no ≤log

αtt-complete sets for NL and P with
constant α, the corollary holds.
• α ∈ {f2

10, f
2
12}. Then, α only depends on one variable, hence A is ≤log

1-tt-complete for NL or

P and thus ≤log
btt-autoreducible by Theorem 8.3.2.

• α ∈ {f2
8 , f

2
14}. Then, A is ≤log

2-dtt-complete or ≤log
2-ctt-complete for NL or P and thus

≤log
btt-autoreducible by Proposition 7.4.5.

• α ∈ {f2
9 }. By Lemma 8.4.1 it holds that A is ≤log

btt-autoreducible.

116 Chapter 8. Self-Reducibility

• α ∈ {f2
11, f

2
13}. By symmetricity, if A is ≤log

αtt-complete for NL or P with α = f2
13, then A is

≤log
βtt-complete for NL or P with β = f2

11. So it suffices to consider the case where α = f2
11.

By Lemma 8.4.2 we obtain that A is ≤log
btt-autoreducible.

2

8.5 Summary and Discussion

We started our study of logspace redundancy properties of complete sets on small classes such as
NL and P. We showed that the self-reducibility property of some complete sets for these classes
is very useful. Self-reducibility is a special form of autoreducibility, where the autoreduction
only asks queries that are strictly smaller than the input. We proved with Lemma 8.2.1 that the
autoreducibility property of a self-reducible set also holds for equivalent sets. Since NL and P
have complete sets that are self-reducible, we obtained that all complete sets for these classes
are autoreducible.

In the proof of Lemma 8.2.1, we followed the self-reduction graph of a self-reducible, complete
set down to a point where we had values different from the input. Analogously, we can traverse
the configuration graph of a nondeterministic or alternating logspace machine. We applied this
technique in Section 8.4 and obtained that for arbitrary but fixed binary Boolean functions α,
all ≤log

αtt-complete sets for NL and P are ≤log
btt-autoreducible. In the next chapter we show that

this is almost as far as we can hope to get: an analogous result for 3-ary Boolean functions
would separate P and PSPACE (cf. Section 9.3).

Chapter 9

Local Checkability

General Approach In the last chapter we traversed the self-reduction graph of a self-reducible
set until we found equivalent elements that could be used as an autoreduction. This approach
worked well, because we considered self-reductions for reducibility notions such as ≤log

m or ≤log
dtt

that have a very regular structure. In more complicated cases, we need additional properties.

In this chapter we consider ≤log
btt-complete sets for NL, P, and the levels ∆p

k of the polynomial-
time hierarchy, and we show how to establish autoreducibility with respect to more complicated
reducibility notions. Suppose, for instance, we want to show that a ≤log

btt-complete set A for P
is autoreducible. Since P = AL, there exists an alternating logspace Turing machine M that
accepts A, whose configurations on input x can be described by O(log(|x|)) many bits. By
arguments similar to those in the last chapter there exists a configuration C with successors
C1 and C2 that can be computed in polynomial time and that yields an autoreduction for x.
However, since now the set A is only ≤log

btt-complete for P, we cannot directly “navigate” from
the start configuration of M on input x to C, because the reduction is too complicated.

Instead of a tree traversal we will compute C bitwise by a reduction to A. Since the query
x ∈ A is not allowed, we will use A ∪ {x} and A− {x} as oracle sets and obtain two candidates
for C. Now we locally check whether the candidate obtained from A ∪ {x} or whether the
candidate obtained from A− {x} is correct. This way we obtain access to the correct oracle,
and hence we find out whether x ∈ A holds or not. Since C consists of O(log(|x|)) many bits,

and since each bit is determined by a ≤log
btt reduction to A, we obtain an autoreduction that asks

at most O(log(|x|)) many queries.

Further Applications By a careful adaption of this technique to quantified Boolean formulas
we show autoreducibility results for ≤log

btt-complete sets of the levels ∆p
k of the polynomial-time

hierarchy. Our proof will further show that all ≤log
tt -complete sets for ∆p

k are ≤log
tt -autoreducible.

In a similar way we can locally check the transcripts of polynomial-time autoreductions. This
will help us to transfer polynomial-time autoreducibility results to the logspace setting.

Contributions We summarize the contributions in this chapter as follows.

1. New Autoreducibility Results for NL, P and ∆p
k. We apply local checkability and obtain

new autoreducibility results for logspace complete sets for the above mentioned classes.
Table 9.1 lists the new results we obtain.

2. Translation of Polynomial-Time Autoreducibility Results to the Logspace Setting. We
locally check transcripts of polynomial-time autoreductions in logspace. For classes such
as NP, there exist autoreducibility results for polynomial-time reducibility notions. By

117

118 Chapter 9. Local Checkability

locally checking the transcripts of polynomial-time autoreductions, we obtain new logspace
autoreducibility results. Table 9.2 summarizes the results we obtain this way.

3. Negative Results. Buhrman et al. [BFvMT00] use diagonalization to show that there exists
a ≤p

btt-complete sets for EXP that is not ≤p
btt-autoreducible. We adapt their proof to the

logspace setting and obtain a ≤log
btt-complete set for PSPACE that is not ≤log

btt-autoreducible.

This shows that the results we obtained for ≤log
btt-complete sets for P and ∆p

k are difficult

to improve, because, for instance, ≤log
btt-autoreducibility of all ≤log

btt-complete sets for P or
∆p
k would separate P or ∆p

k from PSPACE.

reduction NL P ∆p
k

≤log
btt A

log[1]
log-T A

log[1]
log-T A

log[1]
log-T

≤log
tt A

log
tt

Table 9.1: Logspace autoreducibility results shown directly in this chapter, where k ≥ 2. An entry
Alog
r in row ≤ and column C means that every ≤-complete set for C is ≤log

r -autoreducible. We use the
superscript log[1] to indicate that the autoreduction uses only one oracle tape.

reduction NP coNP Σp
k Πp

k

≤log
m ,≤log

1-tt,≤
log
l-dtt,≤

log
dtt A

log
T A

log
T A

log
T A

log
T

Table 9.2: Logspace autoreducibility results obtained from polynomial-time autoreducibility results,
where k, l ≥ 2. An entry Alog

r in row ≤ and column C means that every ≤-complete set for C is
≤log

r -autoreducible.

Organization of this Chapter In Section 9.1 we will show direct applications of local
checkability to obtain autoreducibility of ≤log

btt-complete sets for the classes NL, P, and ∆p
k. In

Section 9.2 we will locally check transcripts of polynomial-time autoreductions to obtain logspace
autoreducibility. In Section 9.3 we show a negative autoreducibility result. We conclude this
chapter with a summary and discussion in Section 9.4.

9.1 Bounded Truth-Table Complete Sets

In the last chapter we have seen that for fixed binary Boolean functions α, every ≤log
αtt-complete set

for NL and P is ≤log
btt-autoreducible. We raised the question whether all arbitrary ≤log

btt-complete

sets for NL or P are ≤log
btt-autoreducible. We will now show that for NL and P, if we allow more

than a constant number of nonadaptive queries in the autoreduction, the answer is yes.

Theorem 9.1.1 All ≤log
btt-complete sets for NL and P are ≤log[1]

log-T-autoreducible.

Proof Let A be ≤log
btt-complete for P. Recall that P = AL and let M be an alternating logspace

Turing machine with L(M) = A. Let M(x) denote the configuration graph of M on input
x. We consider the set R = {〈x,C〉 | C is the root of an accepting subgraph in M(x)}. Note
that M(x) also contains those configurations of M on input x of length O(log |x|) that are not

9.1. Bounded Truth-Table Complete Sets 119

reachable from the start configuration of M on input x. Observe that R ∈ AL, hence R ≤log
btt A

via some logspace oracle Turing machine. Let hCx be the unary Boolean function that results
from the reduction R ≤log

btt A on input 〈x,C〉, where all queries q 6= x are substituted by their
answers cA(q). Hence cR(〈x,C〉) = hCx (cA(x)). We may assume that for every input x:

• hC0
x = id, where C0 is the start configuration of M on input x

• hCsx is constant for every stop configuration Cs of M on input x

So for every x, there exists a configuration C in M(x) with successors C1 and C2 such that hCx
is not constant, while hC1

x and hC2
x are constant. Let C(x) be the smallest such configuration

and let B = {〈x, i〉 | the i-th bit of C(x) is one}. Observe that B ∈ AL and hence B ≤log
btt A via

some logspace oracle Turing machine N . Further observe that |C(x)| ∈ O(log |x|). We consider
the algorithm described in Figure 9.1.

On input x:
1. compute C := b1b2 . . . b|C(x)| with bi := result of NA∪{x} on input 〈x, i〉
2. verify that C is a configuration in M(x) with two successors C1 and C2;

if verification fails, then reject

3. compute the unary Boolean functions hCx , hC1
x , and hC2

x

4. if hCx is constant, then reject

5. if hC1
x or hC2

x is not constant, then reject

6. if C is existential and hCx (hC1
x ∨ hC2

x) is true, then accept

7. if C is universal and hCx (hC1
x ∧ hC2

x) is true, then accept

8. reject

Figure 9.1: A ≤log[1]
log-T-autoreduction for A.

For the correctness, we distinguish the following two cases, where x is the input.

Case 1: The algorithm does not reach line 6. Then the algorithm rejects in line 2, in line 4 or
in line 5. This is only possible if C 6= C(x). Hence for some i it holds that cB(〈x, i〉) differs from
the result of NA∪{x} on input 〈x, i〉. Since N reduces B to A, it must hold that A ∪ {x} 6= A,
hence x /∈ A, and we reject correctly.

Case 2: The algorithm reaches line 6. At this point we have computed a configuration C with
successors C1 and C2 in M(x) such that hCx is not constant and hC1

x and hC2
x are constant. Recall

that hCx (cA(x)) = cR(〈x,C〉). If C is existential, then cR(〈x,C〉) = (cR(〈x,C1〉) ∨ cR(〈x,C2〉)) =
(hC1
x ∨ hC2

x). If C is universal, then cR(〈x,C〉) = (cR(〈x,C1〉)∧ cR(〈x,C2〉)) = (hC1
x ∧ hC2

x). So in
either case, our algorithm accepts or rejects correctly.

Since the configurations in M(x) have length O(log |x|), the algorithm can be executed in

logspace. Further note that N is a ≤log
btt-reduction, so if we execute N on some input, then it

asks at most a constant number of queries. Since |C(x)| ∈ O(log |x|), in line 1 we have O(log |x|)
many queries to A∪{x}, where we do not need to query x. Moreover, in line 3, the unary Boolean

functions hCx , hC1
x , and hC2

x are computed by the reduction R ≤log
btt A with a constant number

of queries that are different from x. Note that for all queries, one oracle tape is sufficient, and
moreover, we need to ask adaptive queries, because we first have O(log n) queries to determine
C and then O(1) queries to compute the Boolean functions hCx , hC1

x , and hC2
x in line 3. The last

O(1) queries depend on C and hence on the first O(log n) queries. So overall we obtain that the

above algorithm is a ≤log[1]
log-T-autoreduction for A.

120 Chapter 9. Local Checkability

It remains to consider the case where A is ≤log
btt-complete for NL. In this case, all configurations

in M(x) are existential, hence it holds that R ∈ NL. Moreover we have B ∈ NL. The remaining
part of the proof works analogously. 2

The situation for classes of higher complexity is more difficult. We will consider ≤log
btt-complete

sets for the levels ∆p
k of the polynomial-time hierarchy. We obtain a similar autoreducibility

result using more involved techniques that work with quantified satisfiability problems that are
complete for the different levels of the polynomial-time hierarchy. For z = z1 . . . zm ∈ {0, 1}m
and an (m+ n)-ary Boolean formula ϕ with variables y1, . . . , ym+n, let ϕ(z) denote the n-ary
Boolean formula obtained by substituting yi for zi where i ∈ {1, . . . ,m}. We say that a Boolean
formula is in 3-CNF if it is a conjunction of disjunctions, where each disjunction consists of
3 literals, and we say that it is in 3-DNF if it is a disjunction of conjunctions, where each
conjunction consists of 3 literals.

Definition 9.1.2 Let k ≥ 0. If k is even, let Q := ∀, R := ∃, and Q := ∃, R := ∀ otherwise.

1. Σk-3SAT := {ϕ | ϕ is a Boolean formula in 3-DNF if k is even and in 3-CNF otherwise,
has km variables, and ∃zk ∈ {0, 1}m∀zk−1 ∈ {0, 1}m · · ·Qz1 ∈ {0, 1}m ϕ(zk, . . . , z1) = 1}

2. Πk-3SAT := {ϕ | ϕ is a Boolean formula in 3-CNF if k is even and in 3-DNF otherwise,
has km variables, and ∀zk ∈ {0, 1}m∃zk−1 ∈ {0, 1}m · · ·Rz1 ∈ {0, 1}m ϕ(zk, . . . , z1) = 1}

3. ∆k-3SAT := {ϕ ∈ Σk-3SAT | if k ≥ 1 and ϕ has km variables, then the minimal
zk ∈ {0, 1}m such that ϕ(zk) ∈ Πk−1-3SAT is even}

Note that ∆0-3SAT = Σ0-3SAT = {ϕ | ϕ is a true Boolean sentence in 3-DNF}. The problems

Σk-3SAT and Πk-3SAT are ≤log
m -complete for Σp

k and Πp
k, respectively [Sto76]. We will next

show that ∆k-3SAT is ≤log
m -complete for ∆p

k+1.

Theorem 9.1.3 ([Wra76]) For k ≥ 1 and L ∈ Πp
k there exists an f ∈ FL such that for all n,

f(2n) = ϕn is an (n+ km)-ary Boolean formula such that for all x ∈ {0, 1}n it holds that x ∈ L
if and only if ϕn(x) ∈ Πk-3SAT.

Theorem 9.1.4 For k ≥ 1 it holds that ∆k-3SAT is ≤log
m -complete for ∆p

k+1.

Proof For every k ≥ 1, by using binary search with access to the oracle Σk-3SAT, we can decide
in polynomial time whether a formula ϕ is contained in ∆k-3SAT, hence ∆k-3SAT ∈ ∆p

k+1.
To show hardness for ∆p

k+1, we first consider the case where k = 1. Wagner [Wag87] shows
that the set of all Σ1-3SAT formulas whose maximum satisfying assignment is odd is ≤p

m-complete
for ∆p

2 . His proof even shows ≤log
m -completeness. Note that after negating all literals in the

formula, we can equivalently check whether the minimum satisfying assignment is even.
For the remainder of the proof, let k ≥ 2. Let A ∈ ∆p

k+1, hence A = L(MΣk-3SAT), where M
is an oracle Turing machine that runs in polynomial time. Without loss of generality we assume
that M on input x asks exactly p(|x|) queries, where p is some polynomial. Note that Σp

k is
closed under conjunction, hence for the set

Σk-3SAT∧ := {(H1, . . . ,Hr) | r ∈ N and for all 1 ≤ i ≤ r it holds that Hi ∈ Σk-3SAT}

it holds that Σk-3SAT∧ ∈ Σp
k. Let Σk-3SAT∧ ≤p

m Σk-3SAT via g ∈ FP. Let q be a
polynomial such that for all x, if H1, . . . ,Hm are queries asked by M on input x, then
|g(H1, . . . ,Hm)| ≤ q(|x|). We assume that H := g(H1, . . . ,Hm) is of the form H = ∃zk ∈
{0, 1}r∀zk−1 ∈ {0, 1}r · · ·Qz1 ∈ {0, 1}rG(zk, . . . , z1) for some r ≤ q(|x|). For z ∈ {0, 1}q(|x|), let
H[z] denote the formula we obtain by replacing zk by the last bits in z.

Let B denote the set decided by the algorithm in Figure 9.2.

9.1. Bounded Truth-Table Complete Sets 121

On input 〈x, y, z, b〉 with y ∈ {0, 1}p(|x|), z ∈ {0, 1}q(|x|), b ∈ {0, 1}:
1. simulate M on x, where queries are answered according to the bits in y
2. let H1, . . . ,Hm denote the queries that are answered positively in y
3. let H := g(H1, . . . ,Hm)
4. if the simulation in line 1 rejects and b = 1, then reject

5. accept if and only if H[z] ∈ Πk−1-3SAT

Figure 9.2: Definition of the set B.

Claim 9.1.5 For each x and n = |x| there exists a word yzb ∈ {0, 1}∗ with |y| = p(n), |z| = q(n),
and |b| = 1, such that 〈x, y, z, b〉 ∈ B, and for the lexicographically maximal such word it holds
that cA(x) = b.

Proof Let y∗ ∈ {0, 1}p(n) correspond to the correct answers to all queries of M on input x.
Hence for all y ∈ {0, 1}p(n) with y > y∗ there exists some query Hi /∈ Σk-3SAT of M on input x
that is answered positively in y. So for all z and b, the algorithm on input 〈x, y, z, b〉 constructs
a formula H /∈ Σk-3SAT and hence either rejects in line 4 or in line 5, so 〈x, y, z, b〉 /∈ B. Now
let H∗1 , . . . ,H

∗
m denote the queries that are answered positively in y∗. Then for all z and b, the

algorithm on input 〈x, y∗, z, b〉 constructs the formula H∗ := g(H∗1 , . . . ,H
∗
m) ∈ Σk-3SAT. Let

z∗ ∈ {0, 1}q(n) denote the largest word such that H∗[z∗] ∈ Πk−1-3SAT. For z > z∗ we have
H∗[z] /∈ Πk−1-3SAT, and the algorithm rejects, so for all b it holds that 〈x, y∗, z, b〉 /∈ B. We
finish with the following case distinction.

• Case 1: 〈x, y∗, z∗, 1〉 ∈ B. By the above argumentation, y∗z∗1 is the lexicographically
maximal such word. Since 〈x, y∗, z∗, 1〉 ∈ B, in the algorithm for B we did not reject in
line 4. Since b = 1, this is only possible if the simulation in line 1 accepts. Since we used
the correct answer vector, we have cA(x) = 1.
• Case 2: 〈x, y∗, z∗, 1〉 /∈ B. In this case, in the algorithm for B we do not reach line 5,

because here we would accept (recall that H∗[z∗] ∈ Πk−1-3SAT). So we reject in line 4,
which is only possible if the simulation in line 1 rejects. Since we used the correct answer
vector, we have cA(x) = 0. Further observe that on input 〈x, y∗, z∗, 0〉 we accept in line 5,
so 〈x, y∗, z∗, 0〉 ∈ B. So the word yzb with y = y∗, z = z∗, and b = 0 is lexicographically
maximal with 〈x, y, z, b〉 ∈ B.

2

Observe that B ∈ Πp
k−1. By Theorem 9.1.3 there exists an f ∈ FL such that for all n,

f(2n) = ϕn is an (n + (k − 1)m)-ary Boolean formula such that for all 〈x, y, z, b〉 ∈ {0, 1}n it
holds that 〈x, y, z, b〉 ∈ B if and only if ϕn(〈x, y, z, b〉) ∈ Πk−1-3SAT. So for every x and n = |x|
we obtain

x ∈ A ⇐⇒ there exists a word yzb with 〈x, y, z, b〉 ∈ B, and for the lexicographically
maximal such yzb it holds that b = 1

⇐⇒ there exists a word yzb with ϕn(〈x, y, z, b〉) ∈ Πk−1-3SAT, and for the lexico-
graphically maximal such yzb it holds that b = 1

⇐⇒ there exists a word yzb with ϕn,x(〈y, z, b〉) ∈ Πk−1-3SAT, and for the lexico-
graphically maximal such yzb it holds that b = 1

⇐⇒ there exists a word yzb with ψn,x(〈y, z, b〉) ∈ Πk−1-3SAT, and for the lexico-
graphically minimal such yzb it holds that b = 0

⇐⇒ ξn,x ∈ Σk-3SAT, and for the lexicographically minimal yzb with ξn,x(yzb) ∈
Πk−1-3SAT it holds that b = 0

122 Chapter 9. Local Checkability

⇐⇒ ξn,x ∈ ∆k-3SAT,

where ϕn,x is obtained from ϕn by substituting the variable x, ψn,x is obtained from ϕn,x by
negating all literals that contain a variable in yzb, and ξn,x = ∃yzbψn,x, where we further use
dummy variables to make sure that each block of quantifiers in ξn,x uses the same number of
variables. Observe that ξn,x can be computed from x in logspace. 2

Using the completeness of ∆k-3SAT, we now proceed to show the autoreducibility of ≤log
btt-

complete sets and ≤log
tt -complete sets for ∆p

k+1.

Theorem 9.1.6 Let k ≥ 1.

1. All ≤log
btt-complete sets for ∆p

k+1 are ≤log[1]
log-T-autoreducible.

2. All ≤log
tt -complete sets for ∆p

k+1 are ≤log
tt -autoreducible.

Proof Let A be ≤log
btt-complete for ∆p

k+1. Moreover, let F∆p
k+1 denote the class of functions

that can be computed in polynomial time with oracle access to a ≤log
m -complete set for Σp

k.

For every h ∈ F∆p
k+1 we define a ≤log

btt-reduction Rh and functions h+, h− ∈ F∆p
k+1 as follows:

Choose the smallest c ∈ N such that |h(x)| ≤ |x|c + c. Let Bh be the set of pairs (x, i) such that

bit i in h(x)’s binary representation is 1. Bh ∈ ∆p
k+1 and hence ≤log

btt-reduces to A via a machine

Rh, where Rh is the lexicographically first such machine. So the values RAh (x, i) for i < |x|c + c
tell us the binary representation of h(x). If the query x is not allowed, we can still compute the
following candidates for h(x):

h+(x) :=
∑

i<|x|c+c

2i ·RA∪{x}h (x, i) and h−(x) :=
∑

i<|x|c+c

2i ·RA−{x}h (x, i)

Note that if x ∈ A, then h+(x) = h(x), and if x /∈ A, then h−(x) = h(x).

By Theorem 9.1.4, there is an f ∈ FL and a polynomial r such that |f(x)| < r(|x|) and
x ∈ A ⇐⇒ f(x) ∈ ∆k-3SAT for all x. Let ϕx := f(x). We may assume that ϕx has the right
format (3-DNF if k is even, 3-CNF otherwise), has the m-bit variables yk, . . . , y1, and for all i
and all zk, . . . , z1 < 2m, the value ϕ(zk, . . . , z1) is independent of zi’s highest bit. For every i,
let ϕx,i := ϕx if (k − i) is even, and ϕx,i := ¬ϕx otherwise. For i = k, . . . , 1, we define:

zi(x) := min({z < 2m | ϕx,i(zk(x), . . . , zi+1(x), z) ∈ Πi−1-3SAT} ∪ {2m−1})
si(x) := max({j ≤ m | z+

i (x) and z−i (x) differ at the j-th bit from right} ∪ {0})
zi(x) := min(z+

i (x), z−i (x))

For fixed i, ϕx,i can be computed in space O(log(|x|)). Moreover, observe that zi, si, zi ∈ F∆p
k+1.

We further define the following sets.

Fi := {x | ϕx,i(zk(x), . . . , zi+1(x)) ∈ Σi-3SAT}
Ei := {x | ϕx,i(zk(x), . . . , zi+1(x)) ∈ ∆i-3SAT}

Observe that Fi, Ei ∈ ∆p
k+1 and x ∈ A ⇐⇒ ϕx ∈ ∆k-3SAT ⇐⇒ x ∈ Ek. So the theorem is

implied by the following statement, which we show by induction:

Fi, Ei ≤log[1]
log-T A for i = 0, . . . , k, where on input x the reduction does not query x.

9.1. Bounded Truth-Table Complete Sets 123

Induction Base: Let i = 0. Since E0 = F0, it suffices to argue for F0. If k is even, then
ϕx,0 = ϕx, and ϕx is in 3-DNF. If k is odd, then ϕx,0 = ¬ϕx, and ϕx is in 3-CNF. Hence in both
cases, after moving the negation to the literals, ϕx,0 is in 3-DNF. Define

s(x) := min({j < r(|x|) | conjunction j in ϕx,0(zk(x), . . . , z1(x)) is satisfied} ∪ {r(|x|)})

and note that s ∈ F∆p
k+1, hence s+(x) and s−(x) are computable in logarithmic space with

O(log |x|) queries to A− {x}. So x ∈ F0 ⇐⇒ ϕx,0(zk(x), . . . , z1(x)) = 1 ⇐⇒ s+(x) or s−(x)
point to a conjunction in ϕx,0(zk(x), . . . , z1(x)) that is satisfied. We argue that the right-hand
side of this equivalence can be tested with O(log |x|) queries to A − {x}: Both conjunctions
consist of 3 literals. The value of each such literal is determined by one bit of some zj(x). The
index j and the position of these bits can be determined in logarithmic space (without oracle
queries), since ϕx is computable in logarithmic space. Using s+

j (x), s−j (x), and the reduction

Rsj , we can determine whether zj(x) = z+
j (x) or zj(x) = z−j (x) (or both) holds. Hence we can

also obtain the value of each bit in zj(x) with O(log |x|) queries to A− {x}.

Induction Step: Suppose the claim holds for some i < k. We show the claim for i+ 1. On
input x, we determine s+

i+1(x) and s−i+1(x) with O(log |x|) queries to A− {x}.

Case 1: s+
i+1(x) 6= s−i+1(x).

Without loss of generality we assume s+
i+1(x) > s−i+1(x). Using Rzi+1 we can test with O(log |x|)

queries to A ∪ {x} whether z+
i+1(x) and z−i+1(x) differ at the s+

i+1(x)-th bit from right. If this
holds, then si+1(x) 6= s−i+1(x) and x ∈ A. Otherwise, si+1(x) 6= s+

i+1(x) and hence x /∈ A. Since
Fi+1, Ei+1 ∈ ∆p

k+1 and we know cA(x), we can determine with O(1) queries to A− {x} whether
x ∈ Fi+1 and whether x ∈ Ei+1.

Case 2: s+
i+1(x) = s−i+1(x) = si+1(x) = 0.

In this case, zi+1(x) = z+
i+1(x) = z−i+1(x), hence

x ∈ Fi+1 ⇐⇒ ϕx,i+1(zk(x), . . . , zi+2(x)) ∈ Σi+1-3SAT ⇐⇒ z−i+1(x) < 2m−1, and

x ∈ Ei+1 ⇐⇒ ϕx,i+1(zk(x), . . . , zi+2(x)) ∈ ∆i+1-3SAT ⇐⇒ z−i+1(x) is even and < 2m−1.

The right-hand sides correspond to bit m− 1 and bit 0 of z−i+1(x), which can be determined via
Rzi+1 with a constant number of queries to A− {x}.

Case 3: s+
i+1(x) = s−i+1(x) = si+1(x) > 0.

With Rzi+1 we test with O(log |x|) queries to A ∪ {x} whether z+
i+1(x), z−i+1(x) ≥ 2m−1. If so,

then zi+1(x) = 2m−1, ϕx,i+1(zk(x), . . . , zi+2(x)) /∈ Σi+1-3SAT, and ϕx,i+1(zk(x), . . . , zi+2(x)) /∈
∆i+1-3SAT, which means x /∈ Fi+1 and x /∈ Ei+1. Otherwise, z+

i+1(x) < 2m−1 or z−i+1(x) < 2m−1.
We can further distinguish the following cases.

• z+
i+1(x) = z−i+1(x).

This is not possible, because si+1(x) > 0, and hence z+
i+1(x) and z−i+1(x) are different.

• x ∈ A and z+
i+1(x) < z−i+1(x).

Then, zi+1(x) = z+
i+1(x) = zi+1(x) < 2m−1, and hence ϕx,i+1(zk(x), . . . , zi+1(x)) ∈

Πi-3SAT.
• x ∈ A and z+

i+1(x) > z−i+1(x).
Then, zi+1(x) = z+

i+1(x), but zi+1(x) = z−i+1(x), hence ϕx,i+1(zk(x), . . . , zi+1(x)) /∈
Πi-3SAT, because zi+1(x) is the smallest z with ϕx,i+1(zk(x), . . . , zi+2(x), z) ∈ Πi-3SAT.

124 Chapter 9. Local Checkability

• x /∈ A and z+
i+1(x) < z−i+1(x).

Then, zi+1(x) = z−i+1(x), but zi+1(x) = z+
i+1(x), hence ϕx,i+1(zk(x), . . . , zi+1(x)) /∈

Πi-3SAT, because zi+1(x) is the smallest z with ϕx,i+1(zk(x), . . . , zi+2(x), z) ∈ Πi-3SAT.
• x /∈ A and z+

i+1(x) > z−i+1(x).
Then, zi+1(x) = z−i+1(x) = zi+1(x) < 2m−1, and hence ϕx,i+1(zk(x), . . . , zi+1(x)) ∈
Πi-3SAT.

From the above case distinction we obtain

x ∈ A ⇐⇒ (z+
i+1(x) < z−i+1(x))⊕ ϕx,i+1(zk(x), . . . , zi+1(x)) /∈ Πi-3SAT

⇐⇒ (z+
i+1(x) < z−i+1(x))⊕ ϕx,i(zk(x), . . . , zi+1(x)) ∈ Σi-3SAT

⇐⇒ (z+
i+1(x) < z−i+1(x))⊕ x ∈ Fi.

Note that z+
i+1(x) < z−i+1(x) holds if and only if the si+1(x)-th bit from the right of z−i+1(x) is

set, which we can check using Rzi+1 with O(1) many queries to the oracle A− {x}. Together
with the induction hypothesis, we can further test x ∈ Fi with O(log |x|) queries to A− {x}. So
we obtain cA(x) which allows us to determine with O(1) queries to A−{x} whether x ∈ Fi+1

and whether x ∈ Ei+1. This completes the induction step, hence A is ≤log[1]
log-T-autoreducible.

If we only know that A is ≤log
tt -complete for ∆p

k, we can use the same proof, where we do not

count the number of queries. We obtain that A is ≤log
tt -autoreducible. 2

9.2 Logspace Turing Autoreducibility

We next show that in some settings, polynomial-time autoreducibility implies logspace autore-
ducibility. Consider for instance a logspace complete set for NP. We do not know whether NP
has enough computational power to diagonalize against logspace reductions. Moreover, logspace
reductions do not have enough memory to store entire computation paths of a nondeterministic
polynomial-time computation. However, we know that complete sets for NP are autoreducible
in the polynomial-time setting (see for instance the work of Glaßer et al. [GOP+07], where the
authors use the left-set technique of Ogiwara and Watanabe [OW91] to provide autoreducibility).
This gives us access to deterministic polynomial-time autoreductions. In logspace we locally
check the consistency of transcripts of such computations, which helps us to obtain logspace
autoreducibility results. The technique that we use works for sets that are polynomial-time
autoreducible and logspace Turing hard for P, and it shows new results for NP, coNP, Σp

k and
Πp
k.

Theorem 9.2.1 If A is ≤log[k]
T -hard for P and ≤p

tt-autoreducible, then A is ≤log[l]
T -autoreducible,

where l = 2k + 1.

Proof Since A is ≤p
tt-autoreducible, there are functions f, g ∈ FP such that for all x there exists

some m such that f(x) = 〈y1, . . . , ym〉, x /∈ {y1, . . . , ym}, and cA(x) = g(x, cA(y1), . . . , cA(ym)).
Let M1 be a polynomial-time Turing transducer that computes f , and let M2 be a polynomial-

time Turing transducer that computes g. We will consider the transcripts of the Turing
transducers, which are bit string representations of the sequence of configurations of the transducer
on some input, starting with the input itself, and ending on the function value computed. Given
a transcript of polynomial size in n, we can verify the consistency of each bit of the transcript in
space log(n) by looking at a constant number of previous bits of the transcript.

9.2. Logspace Turing Autoreducibility 125

On input x, let Fx denote the transcript of M1, and let Gx denote the transcript of M2. We
assume that there are polynomials p and q such that |Fx| = p(|x|) and |Gx| = q(|x|). Let c be
some constant such that each bit in Fx and Gx can be verified by reading at most c previous
bits in the transcript.

Let Fx[i] denote bit i in Fx, and let Gx[i] denote bit i in Gx. We define the sets B := {〈x, i〉 |
Fx[i] = 1} and C := {〈x, i〉 | Gx[i] = 1}. Since Fx and Gx are transcripts of polynomial-time

computations, we have B,C ∈ P. Since A is ≤log[k]
T -hard for P, there exist logspace oracle Turing

machines N1, N2 with k oracle tapes such that B = L(NA
1) and C = L(NA

2). We consider the
algorithm described in Figure 9.3.

On input x:
1. for i := 1 to p(|x|):
2. compute Ux[i] := N

A∪{x}
1 (〈x, i〉)

3. verify Ux[i] by reading Ux[j1], Ux[j2], . . . , Ux[jc] for some j1, . . . , jc < i
4. if the verification fails, reject

5. // here it holds that Ux[1]Ux[2] . . . Ux[p(|x|)] = Fx
6. compute m such that f(x) = 〈y1, . . . , ym〉 and let y := (x, cA(y1), . . . , cA(ym))
7. for i := 1 to q(|y|):
8. compute Vy[i] := N

A∪{x}
2 (〈y, i〉)

9. verify Vy[i] by reading Vy[j1], Vy[j2], . . . , Vy[jc] for some j1, . . . , jc < i
10. if the verification fails, reject

11. // here it holds that Vy[1]Vy[2] . . . Vy[q(|y|)] = Gy = G(x,cA(y1),...,cA(ym))

12. if Vy[q(|y|)] = 1 then accept, otherwise reject

Figure 9.3: Autoreduction for A.

Claim 9.2.2 The algorithm correctly decides A.

Proof Let x be some input, and let f(x) = 〈y1, . . . , ym〉 and y = (x, cA(y1), . . . , cA(ym)), hence
cA(x) = g(x, cA(y1), . . . , cA(ym)). We distinguish the following cases.

Case 1: x ∈ A. In this case, A = A ∪ {x}, hence in line 2, in each iteration we compute
NA

1 (〈x, i〉) = Fx[i]. So in iteration i we have Ux[j] = Fx[j] for all j ≤ i, hence the verification of
bit i succeeds. Hence we never reject in line 4. By a similar argumentation, we never reject in
line 10. This means that we reach line 12, where Vy = G(x,cA(y1),...,cA(ym)) holds. Since x ∈ A,
we have 1 = cA(x) = g(x, cA(y1), . . . , cA(ym)) = G(x,cA(y1),...,cA(ym))[q(|y|)] = Vy[q(|y|)], hence we
accept correctly.

Case 2: x /∈ A. The algorithm either correctly rejects in line 2 or in line 10, or it reaches
line 12. In the latter case, we have verified that Ux = Fx and Vy = G(x,cA(y1),...,cA(ym)). Since
x /∈ A, we have 0 = cA(x) = g(x, cA(y1), . . . , cA(ym)) = G(x,cA(y1),...,cA(ym))[q(|y|)] = Vy[q(|y|)],
hence we reject correctly. 2

Claim 9.2.3 On input x, the algorithm can be executed in space log(|x|) with oracle A and
(2k + 1) oracle tapes, such that it never queries x.

Proof Let x be some input, n = |x|, and let f(x) = 〈y1, . . . , ym〉 and y = (x, cA(y1), . . . , cA(ym)).
We assume that the algorithm reaches line 12, since this argumentation includes the case where
we reject earlier as well. We consider the parts of the algorithm separately.

126 Chapter 9. Local Checkability

Lines 1 to 5: The loop variable in line 1 can be stored in space O(log(n)), so consider some

particular iteration i. In line 2 we compute N
A∪{x}
1 (〈x, i〉), which is possible in space O(log(n))

with oracle A and k oracle tapes by simulation of N1 without querying x. The computed
value Ux[i] is verified in line 3, for which we need the values Ux[j1], Ux[j2], . . . , Ux[jc] for some
j1, . . . , jc < i. The values j1, . . . , jc can be computed in space O(log(n)). Since j1, . . . , jc < i, the
verification of Ux[j1], . . . , Ux[jc] already succeeded in previous iterations, so we can sequentially

simulate N
A∪{x}
1 on 〈x, j1〉, . . . , 〈x, jc〉 to obtain Ux[j1], . . . , Ux[jc] in logspace, again with k oracle

tapes and without querying x. Since c is a constant, we can store the values Ux[j1], . . . , Ux[jc]
temporarily for the verification on the working tape, and we are not required to store the entire
bit string Ux. With Ux[j1], . . . , Ux[jc] we verify Ux[i], which again works in space O(log(n)).

Hence the entire loop in line 1 can be executed in space O(log(n)) with oracle A and k oracle
tapes, such that we never query x, and after we exit the loop it holds that Ux = Fx.

Note that we do not store the bit string Ux.

Line 6: Having verified that Ux = Fx holds, we now have access to each single bit in Fx, say bit

i, by simulating N
A∪{x}
1 (〈x, i〉), which takes space O(log(n)) and occupies k oracle tapes. Recall

that the function value f(x) is encoded in the last bits of Fx. So by sequentially simulating

N
A∪{x}
1 on 〈x, 1〉, . . . , 〈x, p(|x|)〉, we also have access to each single bit of f(x) = 〈y1, . . . , ym〉,

and hence to each bit of yj for each j. So in logspace we can compute m with k oracle tapes
where we never query x.

Note that the value of m can be polynomial in n, hence again we cannot store y =
(x, cA(y1), . . . , cA(ym)) directly on a working tape. As argued above, in space O(log(n)) we can
compute each bit of yj with k oracle tapes such that we never query x. We sequentially compute
each bit of yj and copy it on the oracle tape (k + 1). Since f is an autoreduction, yj 6= x. So
after yj is written to the oracle tape, we can query yj and obtain cA(yj).

Hence each bit of y can be computed in space O(log(n)) with (k+1) oracle tapes and without
querying x.

Lines 7 to 11: The variable of the loop in line 7 can be stored in space O(log(n)), so consider

some particular iteration i. In line 8 we compute N
A∪{x}
2 (〈y, i〉). Note that we have not stored y

on the working tape, but instead in space O(log(n)) we have access to each bit of y, which occupies
(k + 1) oracle tapes. Hence, by recomputing the bits of y whenever necessary, we can compute

N
A∪{x}
2 (〈y, i〉) in space O(log(n)) with oracle A and (2k + 1) oracle tapes by simulation of N2

without querying x. The thus computed value Vy[i] is verified in line 9, where for the verification
we need the values Vy[j1], Vy[j2], . . . , Vy[jc] for some j1, . . . , jc < i. The values j1, . . . , jc can be
computed in space O(log(n)). Since j1, . . . , jc < i, the verification of Vy[j1], . . . , Vy[jc] already

succeeded in previous iterations, so we can sequentially simulate N
A∪{x}
2 on 〈y, j1〉, . . . , 〈y, jc〉 to

obtain Vy[j1], . . . , Vy[jc] in logspace, again with (2k+ 1) oracle tapes and without querying x. In
particular, since c is a constant, we can store the values Vy[j1], . . . , Vy[jc] temporarily for the
verification on the working tape, and we are not required to store the entire bit string Vy. With
the values Vy[j1], . . . , Vy[jc] we proceed to verify Vy[i], which again works in space O(log(n)).

Hence the entire loop in line 7 works in space O(log(n)) with oracle A and (2k + 1) oracle
tapes, such that we never query x, and after the loop it holds that Vy = Gy.

Again note that we do not store the bit string Vy.

Line 12: It remains to compute bit q(|y|) in Vy, which again is possible in space O(log(n)),
with (2k + 1) oracle tapes and without querying x.

9.3. Separation Implications 127

This means that we can execute the entire algorithm in space O(log(n)) and hence in space
log(n) with oracle A and (2k + 1) oracle tapes, such that on input x we never query x. 2

From Claim 9.2.2 and Claim 9.2.3 it follows that the set A is ≤log[2k+1]
T -autoreducible. 2

Corollary 9.2.4 If A is ≤log
T -hard for P and ≤p

tt-autoreducible, then A is ≤log
T -autoreducible.

Proof Let B be ≤log
m -complete for P. Since A is ≤log

T -hard for P, there exists some k such that

B ≤log[k]
T A. Hence for every C ∈ P it holds that C ≤log

m B ≤log[k]
T A, so A is ≤log[k]

T -hard for P.

By Theorem 9.2.1, A is ≤log[2k+1]
T -autoreducible, hence A is ≤log

T -autoreducible. 2

We finish this section by applying Corollary 9.2.4 to sets that are complete for some complexity
classes, where polynomial-time autoreducibility results are known.

Theorem 9.2.5 ([GOP+07]) Let r be one of the reductions ≤p
m, ≤p

1-tt, ≤
p
dtt,≤

p
l-dtt for l ≥ 2.

Then every nontrivial set that is r-complete for one of the following classes is r-autoreducible:
PSPACE, Σp

k, Πp
k, and ∆p

k.

Note that each of the classes mentioned in Theorem 9.2.5 contains P, so here we can apply
Corollary 9.2.4. For P and each further level ∆p

k of the polynomial-time hierarchy we have already

seen that all ≤log
tt -complete sets are ≤log

tt -autoreducible (see Theorem 8.3.2 and Theorem 9.1.6).
Moreover, PSPACE has enough computational power to diagonalize against logspace reductions,
and in the next chapter, we will even obtain mitoticity results for logspace complete sets for
PSPACE. For the classes NP, coNP, and all further levels Σp

k and Πp
k of the polynomial-time

hierarchy, Corollary 9.2.4 and Theorem 9.2.5 provide new logspace autoreducibility results.

Corollary 9.2.6 Let r be one of the reductions ≤log
m , ≤log

1-tt, ≤
log
dtt,≤

log
l-dtt for l ≥ 2. Then every

nontrivial set that is r-complete for one of the following classes is ≤log
T -autoreducible: NP, coNP,

Σp
k, and Πp

k.

Proof Let C be one of the above classes, and let A be nontrivial and r-complete for C. Then
A is ≤log

T -hard for P, because P ⊆ C. Furthermore, A is s-complete for C, where s is one
of the reductions ≤p

m, ≤p
1-tt, ≤

p
dtt,≤

p
l-dtt. By Theorem 9.2.5, A is s-autoreducible and hence

≤p
tt-autoreducible. We apply Corollary 9.2.4 and obtain that A is ≤log

T -autoreducible.

Note that A is actually ≤log[1]
T -hard for C, so from Theorem 9.2.1 we obtain that the Turing

autoreduction uses at most three oracle tapes. 2

9.3 Separation Implications

We finish this chapter by showing that there are complete sets that are not autoreducible.
Buhrman et al. [BFvMT00] showed the existence of a ≤p

3-tt-complete set for EXP that is not

≤p
btt-autoreducible. We adapt their proof and obtain that there exists a ≤log

3-tt-complete set for

PSPACE that is not ≤log
btt-autoreducible. This shows that some of the autoreducibility results

we obtained so far are very difficult to improve, since such improvements imply new separation
results.

128 Chapter 9. Local Checkability

Theorem 9.3.1 ([BFvMT00]) There is a ≤p
3-tt-complete set for EXP that is not ≤p

btt-
autoreducible.

Theorem 9.3.2 Let k ∈ N and p(n) = nk.

1. There is a ≤log[1]
2-T -complete set for PSPACE that is not ≤log

p(n)-tt-autoreducible.

2. There is a ≤log
btt-complete set for PSPACE that is not ≤log

btt-autoreducible.

Proof Let Σ = {0, 1}, and let M0,M1, . . . be an enumeration of all ≤log
p(n)-tt-autoreductions

with the following properties:

• Mi on input x can be simulated in space i log(|x|)
• Mi on input x asks queries of length at most |x|i
• Mi on input x asks exactly p(|x|) distinct queries

We will use the function t : N→ N with t(n) = 222
2n

and stagewise diagonalize against Mi on
input 0t(i). The choice of t will make sure that Mi(0

t(i)) only asks queries of length at most

t(i)i < t(i + 1). We further choose a set K ⊆ Σ∗ such that K is ≤log
m -complete for PSPACE,

and K ∩ Σt(i)−1 = ∅ for all i ∈ N. We define A−1 = ∅ and iteratively construct the stages
A0 ⊆ A1 ⊆ A2 ⊆ . . . such that A =

⋃
i∈NAi. We will show that the set A is complete for

PSPACE and not autoreducible.

Stage i of the Construction of A. Suppose we have already completed all stages j < i and
it holds that ∅ = A−1 ⊆ A0 ⊆ · · · ⊆ Ai−1. Let n = t(i) and x = 0n. We will consider Mi on
input x. Let Q = {q1, . . . , qp(n)} denote the queries of Mi(x) and note that Q is independent of
the oracle we use. Let

L = Q ∩ 1Σ≥n

R = Q ∩ 0Σ≥n

be the “left” and “right” queries in Q. Recall that for all q ∈ Q it holds that |q| ≤ ni. We
further subdivide L and R into log(i) many blocks by

Lj = L ∩ {x | n2j−1
< |x| ≤ n2j}

Rj = R ∩ {x | n2j−1
< |x| ≤ n2j}

for 1 ≤ j ≤ dlog(i)e. This will make sure that if two words y, z are in the same block j, then we
have |z| ≤ n2j = (n2j−1

)2 < |y|2.

Claim 9.3.3 At least one of the following statements is true:

∀l1 ⊆ L1∃r1 ⊆ R1∀l2 ⊆ L2∃r2 ⊆ R2 . . . ∀ldlog ie ⊆ Ldlog ie∃rdlog ie ⊆ Rdlog ie :

M
Ai−1∪l1∪l2∪···∪ldlog ie∪r1∪r2∪···∪rdlog ie
i (x) rejects

(9.1)

∀r1 ⊆ R1∃l1 ⊆ L1∀r2 ⊆ R2∃l2 ⊆ L2 . . . ∀rdlog ie ⊆ Rdlog ie∃ldlog ie ⊆ Ldlog ie :

M
Ai−1∪l1∪l2∪···∪ldlog ie∪r1∪r2∪···∪rdlog ie
i (x) accepts

(9.2)

Proof If (9.1) does not hold, then ∃l1 ⊆ L1∀r1 ⊆ R1 . . . ∃lm ⊆ Lm∀rm ⊆ Rm : MB
i (x) accepts,

with B = Ai−1 ∪ l1 ∪ l2 ∪ · · · ∪ ldlog ie ∪ r1 ∪ r2 ∪ · · · ∪ rdlog ie and m = dlog ie. This implies

∀r1 ⊆ R1∃l1 ⊆ L1 . . . ∀rm ⊆ Rm∃lm ⊆ Lm : MB
i (x) accepts. 2

We finish the construction of Ai with the following case distinction.

9.3. Separation Implications 129

Case 1: (9.1) holds. We define Ai = {x} ∪ {1y | y ∈ K ∧ t(i) ≤ |y| < t(i + 1) − 1} ∪ r1 ∪
· · · ∪ rdlog ie, where the lj result from K and the rj are chosen in the order r1, . . . , rdlog ie
as the lexicographically minimal rj ⊆ Rj such that ∀lj+1 ⊆ Lj+1∃rj+1 ⊆ Rj+1∀lj+2 ⊆
Lj+2 · · · : M

Ai−1∪l1∪···∪ldlog ie∪r1∪···∪rdlog ie
i (x) rejects.

Case 2: (9.1) does not hold. By Claim 9.3.3 we know that (9.2) holds. We analogously define
Ai = {0y | y ∈ K ∧ t(i) ≤ |y| < t(i+ 1)− 1} ∪ l1 ∪ · · · ∪ ldlog ie, where the rj result from K and
the lj are chosen in the order l1, . . . , ldlog ie as the lexicographically minimal lj ⊆ Lj such that

∀rj+1 ⊆ Rj+1∃lj+1 ⊆ Lj+1∀lj+2 ⊆ Lj+2 · · · : M
Ai−1∪l1∪···∪ldlog ie∪r1∪···∪rdlog ie
i (x) accepts. Note

that in this case, x /∈ Ai.

We will now show that A is ≤log[1]
2-T -complete for PSPACE and not ≤log

p(n)-tt-autoreducible. We
have the following claims.

Claim 9.3.4 A is not ≤log
p(n)-tt-autoreducible.

Proof Assume that A is ≤log
p(n)-tt-autoreducible. Then there exists a ≤log

p(n)-tt-autoreduction

Mi for A. Hence it holds that 0t(i) ∈ A ⇐⇒ MA
i (0t(i)) accepts. However, if 0t(i) ∈ A, then

in the construction of Ai, the first case holds, and hence MA
i (0t(i)) rejects, which contradicts

0t(i) ∈ A. Analogously, if 0t(i) /∈ A, then in the construction of Ai, the second case holds, and
hence MA

i (0t(i)) accepts, which contradicts 0t(i) /∈ A. In both cases we obtain a contradiction,

so A is not ≤log
p(n)-tt-autoreducible. 2

Claim 9.3.5 A is ≤log[1]
2-T -hard for PSPACE.

Proof We show that K ≤log[1]
2-T A. If x ∈ Σt(i)−1 for some i, we can immediately reject. So

suppose x /∈ Σt(i)−1 for all i. We first determine in logspace the stage i such that t(i) ≤ |x| ≤
t(i + 1) − 2. Next we query 0t(i) ∈ A. If the answer is yes, then we query 1x ∈ A, and if the
answer is no, then we query 0x ∈ A instead. In each case, the query belongs to the part where
K is encoded, hence the reduction is correct. 2

It remains to show that A ∈ PSPACE. In order to decide A, we will often have to determine
whether (9.1) or (9.2) holds. At first glance, this seems difficult. For i ∈ N, let n = t(i),
m = dlog(i)e, and x = 0n. If Mi(x) asks some query q, then we only know |q| ≤ ni with
i = log(4)(n), so we cannot write down q in polynomial space. However, in polynomial space,
we can write down the length of q, the number r such that q is the r-th query asked by Mi(x),
and we can further determine the first bit of q. Note that Mi(x) asks non-adaptive queries
q1, . . . , qp(n) in this order. For u1, v1, . . . , um, vm ∈ {0, 1}p(n), we define the set

Bi(u1, v1, . . . , um, vm) := {qj ∈ {q1, . . . , qp(n)} | ∃s ∈ {1, . . . ,m} such that n2s−1
< |qj | ≤ n2s

∧ if qj starts with 1, then bit j in us is 1
∧ if qj starts with 0, then bit j in vs is 1}.

So the string us can be used to encode the oracle answers to all queries qj with n2s−1
< |qj | ≤ n2s

that start with 1, and vs can be used analogously for those queries that start with 0. Hence if
we want to simulate Mi(x) on all possible oracle sets, it suffices to simulate Mi(x) on the oracle

130 Chapter 9. Local Checkability

sets Ai−1 ∪Bi(u1, v1, . . . , um, vm), where we iterate over all bit strings u1, v1, . . . , um, vm. So the
statements

∀u1∃v1∀u2∃v2 . . . ∀um∃vm : M
Ai−1∪Bi(u1,v1,...,um,vm)
i (0t(i)) rejects (9.3)

∀v1∃u1∀v2∃u2 . . . ∀vm∃um : M
Ai−1∪Bi(u1,v1,...,um,vm)
i (0t(i)) accepts (9.4)

with uj , vj ∈ {0, 1}p(n) for all j are equivalent to (9.1) and (9.2).

We consider the algorithm described in Figure 9.4.

On input x:
1. let n = |x|
2. if n < t(0), then reject

3. compute i such that t(i) ≤ n < t(i+ 1) and let m = dlog(i)e
4. recursively compute A∗i−1 = {q ∈ Σ<t(i) ∩A |Mi(0

t(i)) queries q}
5. if t(i) = n:
6. if x = 0n, and (9.3) holds with A∗i−1 instead of Ai−1, then accept

7. reject

8. if x = 1y:
9. if (9.3) holds with A∗i−1 instead of Ai−1, and y ∈ K, then accept

10. if (9.3) holds with A∗i−1 instead of Ai−1, and y /∈ K, then reject

11. compute s such that t(i)2s−1
< n ≤ t(i)2s

12. for j := 1 to s do:

13. compute v∗j ∈ {0, 1}p(t(i)) such that v∗j encodes cK(y) for all 0y ∈ Rs
14. compute the smallest u∗j such that (9.4) holds with ul = u∗l and vl = v∗l

for all l ≤ j and A∗i−1 instead of Ai−1

15. if x is the r-th query of Mi(0
t(i)) and the r-th bit in u∗s is set, accept

16. if x = 0y, proceed analogously to the case where x = 1y, with the roles of

(9.3) and (9.4), uj and vj, and u∗j and v∗j switched

17. reject

Figure 9.4: Decision Algorithm for A.

Claim 9.3.6 The algorithm in Figure 9.4 correctly decides A.

Proof By induction over i. Suppose we have the input x with n = |x|.

Induction Base: n < t(0). In this case we reject correctly, because A does not contain words
of such a small length.

Induction Step: t(i) ≤ n < t(i+ 1), and by our induction hypothesis we already know that
our algorithm works correctly on inputs of length less than t(i). Hence the set A∗i−1 is computed
correctly. If n = t(i) and x = 0n, then x ∈ A if and only if (9.1) holds, which is equivalent to
(9.3). Observe that in (9.3) we can even replace Ai−1 by A∗i−1, because we only need to consider
queries asked by Mi(0

n). So if x = 0n, then the algorithm either correctly accepts in line 6 or
correctly rejects in line 7. Moreover, if n = t(i), but x 6= 0n, then x /∈ A, and we correctly reject
in line 7. So it remains to consider the case where t(i) < n < t(i + 1). We will only consider
the case where x = 1y for some y, as the other case works analogously. If x = 1y and (9.3)
holds, then (9.1) holds, and K is encoded into the left region of Ai, hence we accept or reject

9.3. Separation Implications 131

correctly in line 9 or line 10. So suppose x = 1y, but (9.3) and hence (9.1) do not hold. Note
that in this case, (9.4) and hence (9.2) hold, so each part of the right region of Ai determines
the corresponding part of the left region of Ai. Moreover, K is encoded in the right region of Ai,
while the left region of Ai determines the membership of x. Here, the algorithm computes the
words v∗j that correspond to the answers to oracle queries to the right region of Ai, and for each
v∗j it computes the word u∗j that corresponds to the answers to oracle queries to the left region
of Ai. Moreover, it chooses the words u∗j lexicographically minimal, and hence they correspond
to the correct parts in Ai. This in particular means that if x ∈ Ai, then x ∈ Ls, hence x is the
r-th query of Mi(0

t(i)) for some r, and hence the r-th bit in u∗s is set and we accept. Moreover,
if x /∈ Ai, then no such bit is set (because u∗s was chosen minimal), and we reject correctly. 2

Claim 9.3.7 The algorithm in Figure 9.4 works in polynomial space.

Proof Let p′ denote a polynomial such that K ∈ DSPACE(p′). We show that there exists a
polynomial g such that the algorithm works in space g(n) by induction over i. So suppose we
work on input x with n = |x|.

Induction Base: If n < t(0), then we reject. This can be done in constant space, because the
test n < t(0) is a finite case distinction.

Induction Step: Suppose we have t(i) ≤ n < t(i+ 1) for some i, and on inputs of length less
than t(i), the algorithm works in space g. We reserve the following space for the execution on x:

• g(n− 1) to recursively decide Ai−1

• 2m · p(t(i)) ≤ n · p(n) to write down the strings u1, v1, . . . , um, vm
• m · p(t(i)) ≤ n · p(n) to write down the set A∗i−1

• 2 · i · log(|x|) ≤ n to simulate Mi(0
t(i)) twice in parallel

• p′(n2) to decide K on inputs of length at most n2

• n · p(n) to decide q ∈ Bi(u1, v1, . . . , um, vm)

Within the reserved space, we can decide whether (9.3) or (9.4) holds by iterating over all
u1, v1, . . . , um, vm, simulating Mi(0

t(i)), and answering queries either according to A∗i−1 or to

Bi(u1, v1, . . . , um, vm). Note that this can be done by simulating Mi(0
t(i)) twice in parallel,

once to find out whether Mi(0
t(i)) accepts or rejects, and once to decide Bi(u1, v1, . . . , um, vm)

on queries. Further note that we need to decide K on inputs of length at most n2, because
if n = t(i)2s−1

+ 1, then when we determine the bits of v∗s , we have to compute cK(y) with
|y| ≤ t(i)2s = t(i)2s−1·2 = (t(i)2s−1

)2 ≤ n2. So there exists a polynomial h such that in the
induction step we need space at most g(n− 1) + h(n). If we further choose h to be monotone
and g such that g(n) = n · h(n), then we obtain that in the induction step we also need space at
most g(n− 1) + h(n) = (n− 1) · h(n− 1) + h(n) ≤ (n− 1) · h(n) + h(n) = n · h(n) = g(n). This
proves the claim. 2

From the last two claims we obtain A ∈ PSPACE. Moreover, note that A is ≤log
btt-complete

and not ≤log
btt-autoreducible. This finishes the proof. 2

Theorem 8.3.2 states that all ≤log
1-tt-complete sets for NL and P are ≤log

btt-autoreducible.

Moreover, Corollary 8.4.3 states that all ≤log
αtt-complete sets for NL and P are ≤log

btt-autoreducible,
where α is an arbitrary but fixed binary Boolean function. On the other hand, Theorem 9.3.2

132 Chapter 9. Local Checkability

states that there exists a set A that is ≤log
3-tt-complete for PSPACE and not ≤log

btt-autoreducible.

From the proof it even follows that A is ≤log
αtt-complete for a fixed 3-ary Boolean function α.

Consequently, generalizing Corollary 8.4.3 to 3-ary Boolean functions is difficult, because such
an improvement shows A /∈ P and hence separates P and PSPACE.

• If all ≤log
3-tt-complete sets for P are ≤log

btt-autoreducible, then P 6= PSPACE.

On the other hand, Theorem 9.1.1 and Theorem 9.1.6 show that all ≤log
btt-complete sets for P

and the levels ∆p
k of the polynomial-time hierarchy are ≤log[1]

log-T-autoreducible. Showing ≤log
btt-

autoreducibility of these sets is again difficult, as it implies that A /∈ ∆p
k or A /∈ P and hence

again separates P or even ∆p
k and PSPACE.

• If all ≤log
3-tt-complete sets for ∆p

k are ≤log
btt-autoreducible, then ∆p

k 6= PSPACE.

We obtain a particularly interesting situation, because every nontrivial set in L is trivially
≤log

m -autoreducible and even ≤log
m -mitotic. Since we now have positive results for L and negative

results for PSPACE, settling the question whether all complete sets of intermediate classes are
autoreducible or mitotic either way would yield new separation results.

Corollary 9.3.8 Let k ≥ 1 and C be any of the complexity classes P, NP, Σp
k, Πp

k, ∆p
k.

1. If all ≤log
btt-complete sets for C are ≤log

btt-autoreducible, then C 6= PSPACE, otherwise L 6= C.

2. If all ≤log
btt-complete sets for C are ≤log

btt-mitotic, then C 6= PSPACE, otherwise L 6= C.

Proof By Theorem 9.3.2 there exists a set A that is ≤log
btt-complete for PSPACE and not

≤log
btt-autoreducible. If all ≤log

btt-complete sets for C are ≤log
btt-mitotic, then all ≤log

btt-complete sets

for C are ≤log
btt-autoreducible, and if all ≤log

btt-complete sets for C are ≤log
btt-autoreducible, then A

is not ≤log
btt-complete for C and hence C 6= PSPACE. If there exists a set B that is ≤log

btt-complete

for C and not ≤log
btt-autoreducible, then B is not ≤log

btt-mitotic, and if there exists a set B that is

≤log
btt-complete for C and not ≤log

btt-mitotic, then B /∈ L and hence L 6= C. 2

9.4 Summary and Discussion

We showed how to use local checkability to prove autoreducibility of complete sets. We generally
used objects such as transcripts of computations, configurations of logspace machines, or
quantified Boolean formulas, whose consistency can be checked in logspace by local computations.
We used the key observation that single bits of these objects can be reduced to the complete
set A. Since autoreductions are not allowed to query the input x, we computed two candidate
objects from the oracle sets A ∪ {x} and A− {x}. By locally checking the consistency of the
candidate objects, we obtained the correct object and hence the correct oracle set without
querying x.

We obtained that all ≤log
btt-complete sets for NL and P are ≤log[1]

log-T-autoreducible, and with

some more effort, we were able to show the same result for each level ∆p
k of the polynomial-time

hierarchy. Moreover, we proved that in some cases, polynomial-time autoreducibility implies
logspace autoreducibility, where we locally checked the transcripts of the polynomial-time
autoreductions in logspace. This was particularly helpful for logspace complete sets for NP,
coNP, and the remaining levels Σp

k and Πp
k of the polynomial-time hierarchy, where we were able

to show the first autoreducibility results in the logspace setting.

9.4. Summary and Discussion 133

We further adapted a result of Buhrman et al. [BFvMT00] to the logspace setting and

obtained that there exists a ≤log
btt-complete set for PSPACE that is not ≤log

btt-autoreducible. This
shows that improvements of the above mentioned autoreducibility results for P or ∆p

k to a
constant number of queries are very difficult to obtain. Such improvements would imply that all
complete sets for P or ∆p

k share a property that some sets in PSPACE do not have, and thus
separate PSPACE from P or even from ∆p

k.

134 Chapter 9. Local Checkability

Chapter 10

Redundancy by Diagonalization

Diagonalization and Enforced Properties Complexity classes such as PSPACE, EXP,
and NEXP have enough computational power to simulate arbitrary logspace reductions. We
define complete sets for these classes that simulate reductions and enforce certain properties.
Buhrman [Buh93] and Homer et al. [HKR93] use this technique to show that all ≤p

1-tt-complete
sets for EXP and NEXP are ≤p

m-complete. In a similar way we can make sure that reductions
do not need to query their own input, which can be used to show autoreducibility. We sketch
this technique more precisely as follows.

Consider a ≤log
m -complete set A for PSPACE, and suppose we want to show that A is ≤log

m -
autoreducible. Let f0, f1, . . . be an enumeration of all ≤log

m -reductions such that fi on input x
can be simulated in space i · log(1 + |x|). We define a set B by the algorithm that is described
in Figure 10.1.

On input 〈x, 0i〉:
1. let y := fi(〈x, 0i〉)
2. if y = x, then reject

3. accept if x ∈ A, and reject otherwise

Figure 10.1: Diagonalization enforces autoreducibility properties.

Note that B ∈ PSPACE, so B ≤log
m A via some reduction function fj . On input x, we consider

the value y = fj(〈x, 0j〉). If y = x, then we obtain 0 = cB(〈x, 0j〉) = cA(fj(〈x, 0j〉)) = cA(x) and
hence we know x /∈ A. If y 6= x, then we obtain cA(x) = cB(〈x, 0j〉) = cA(fj(〈x, 0j〉)) = cA(y),
so y can be used as an autoreduction value for x. So for the function g(x) := fj(〈x, 0j〉) we know
cA(x) = cA(g(x)), and we enforced that g(x) = x implies x /∈ A. This property enables us to
turn g into an autoreduction for A.

More General Applications In many cases, we can apply diagonalization to obtain even
stronger results. For complete sets of classes that satisfy some closure properties, we use
diagonalization to obtain logspace autoreductions that are length-increasing, and we show that
standard techniques even imply mitoticity. We further show that a similar technique applies to
reducibility notions that have a very regular structure, such as ≤log

dtt and ≤log
ctt .

Contributions We summarize our contributions in this chapter as follows.

1. General Results. We show results that can generally be applied to complexity classes
that have enough computational power to simulate logspace reductions and that further

135

136 Chapter 10. Redundancy by Diagonalization

have some additional closure properties. We show that if C is a complexity class that is

closed under union, complement, and ≤log2-lin
m -reducibility, then its ≤log

m -complete sets are
≤log

m -mitotic. This result is obtained using diagonalization in a way that enforces length-

squaring autoreductions. We further show that if C is closed under ≤log2-lin
1-tt -reducibility,

then all ≤log
2-tt-complete sets for C are ≤log

2-tt-autoreducible.
2. Results for PSPACE, EXP, NEXP. We consider different reducibility notions. For

PSPACE and EXP, we use diagonalization to enforce that complete sets are equivalent
with respect to length-increasing reductions. This enables us to show mitoticity of complete
sets. Since we do not know whether NEXP is closed under complementation or not, the
situation here is more complicated. We will use diagonalization to enforce that for various
reducibility notions, complete sets for NEXP are autoreducible. Table 10.1 summarizes
the new results we obtain for PSPACE, EXP and NEXP.

reduction PSPACE EXP NEXP

≤log
m ,≤log

1-tt,≤
log
k-ctt,≤

log
k-dtt,≤

log
ctt ,≤

log
dtt,≤

log
2-tt Mlog Mlog Alog

≤p
k-ctt,≤

p
k-dtt,≤

p
ctt,≤

p
dtt,≤

p
2-tt Mp Ap

Table 10.1: Autoreducibility and mitoticity results shown in this chapter. Let s ∈ {p, log}. An entry As

in row ≤s
r and column C means that every ≤s

r-complete set for C is ≤s
r-autoreducible, while the entry Ms

means that every ≤s
r-complete set for C is ≤s

r-mitotic.

Organization of this Chapter In Section 10.1 we show the mitoticity and autoreducibility
results that generally apply to complete sets for classes that are powerful enough. In Section 10.2
we show mitoticity results for the classes PSPACE and EXP and various logspace and polynomial-
time reducibility notions. In Section 10.3 we consider complete sets for NEXP. We conclude the
chapter with a summary and discussion in Section 10.4.

10.1 General Results

We first consider general classes that have powerful closure properties. We define the following
reducibility notions.

Definition 10.1.1 For sets A and B we define A ≤log2-lin
m B if and only if there exists a

function f ∈ FSPACE(log(n)2) and some c ∈ N such that for all x it holds that |f(x)| ≤ c · |x|
and cA(x) = cB(f(x)).

Definition 10.1.2 For sets A and B we define A ≤log2-lin
1-tt B if and only if there exists an oracle

Turing machine M such that A = L(MB) that uses at most log(n)2 space and asks at most one
oracle question of length at most c · n, where c is some constant.

Suppose a class C is closed under union, complement, and ≤log2-lin
m -reducibility, and we have

a set A ∈ C. Being closed under ≤log2-lin
m -reducibility ensures that we can define another set B

that simulates ≤log
m -reductions to A and still remains in C. In the definition of B we look at

these simulations and construct B in such a way that only length-increasing reductions to A are
possible. If A is complete for C, then B can be reduced to A via a length-increasing reduction.
We further make sure that B contains information about A and hence obtain a length-increasing
reduction from A to B and back to A.

10.1. General Results 137

Theorem 10.1.3 If the class C is closed under union, complement, and ≤log2-lin
m -reducibility,

then all ≤log
m -complete sets for C are ≤log

m -autoreducible via some f ∈ FL such that |f(x)| ≥ |x|2
for all x.

Proof Let A be ≤log
m -complete for C. Let f1, f2, . . . be an enumeration of all logspace bounded

Turing transducers such that the computation of fi on x can be simulated in space log i·(1+log |x|)
using a binary alphabet. We consider the following sets.

B1 = {y | y = 〈0i, x, 0|x|2〉, |fi(y)| ≤ |y|, and fi(y) /∈ A}

B2 = {y | y = 〈0i, x, 0|x|2〉, |fi(y)| > |y|, and x ∈ A}

Note that B1 ≤log2-lin
m A by first checking if y = 〈0i, x, 0|x|2〉 and then computing fi(y) in space

log(i) · (1 + log(|y|)) ≤ log(|y|) · (1 + log(|y|)) ∈ O(log(n)2) if the length does not exceed |y|.
Since C is closed under complementation we have A ∈ C, and since C is closed under ≤log2-lin

m -

reducibility we have B1 ∈ C. Analogously we show B2 ≤log2-lin
m A by first checking the form of y,

then computing fi(y) in space O(log(n)2) until we know that |fi(y)| > |y|, and finally returning
x. So we also obtain that B2 ∈ C.

Let B = B1 ∪B2. Since C is closed under union, we obtain B ∈ C. Hence we have B ≤log
m A

via some fj ∈ FL. If there exists some y = 〈0j , x, 0|x|2〉 such that |fj(y)| ≤ |y|, then we have
y ∈ B ⇐⇒ y ∈ B1 ⇐⇒ fj(y) /∈ A, which contradicts the fact that fj reduces B to A. Hence

for all y of the form y = 〈0j , x, 0|x|2〉 we have |fj(y)| > |y|. Therefore we obtain

cA(x) = cB2(〈0j , x, 0|x|2〉) = cB(〈0j , x, 0|x|2〉) = cA(fj(〈0j , x, 0|x|
2〉)),

where |fj(〈0j , x, 0|x|
2〉)| > |〈0j , x, 0|x|2〉| > |x|2. 2

Next suppose we have an autoreducible set whose autoreduction function at least squares
the length of its values. We subdivide the elements of the autoreducible set by their length into
stages that are large enough such that for each element we can find an equivalent element that
is contained in the next stage. We partition the autoreducible set into even and odd numbered
stages and obtain two equivalent sets. This shows that the autoreducible set is even mitotic.

Lemma 10.1.4 If A is ≤log
m -autoreducible via some f ∈ FL such that for all x it holds that

|f(x)| ≥ |x|2, then A is ≤log
m -mitotic.

Proof Since f ∈ FL there exists some c ≥ 3 such that |x|2 ≤ |f(x)| < |x|c for all x ∈ Σ≥2. Let

S = {x | min{i ∈ N | |x| ≤ 2c
i} is even }

and note that S ∈ L. Observe that for every x with 2c
i−1

< |x| ≤ 2c
i

and j = dlog(c)e it holds
that

2c
i+1 ≥ |x|c > |f(x)| and |f (j)(x)| ≥ |x|2j ≥ |x|2log(c) = |x|c >

(
2c
i−1
)c

= 2c
i

and so for every x there exists some j ∈ {1, . . . , dlog(c)e} such that cS(x) 6= cS(f (j)(x)). Let

r(x) =


f (i)(x) if |x| ≥ 2 and i = min{j ∈ {1, . . . , dlog(c)e} | cS(x) 6= cS(f (j)(x))} ,

a1 if |x| < 2 and x ∈ A, and

a0 if |x| < 2 and x /∈ A,

138 Chapter 10. Redundancy by Diagonalization

where a1 ∈ A and a0 /∈ A are fixed elements with a1 /∈ S and a0 /∈ S. Note that r ∈ FL,
since c is constant, S ∈ L and f ∈ FL. Since f is a ≤log

m -autoreduction for A we have
cA(x) = cA(r(x)) for all x. If |x| ≥ 2, then cS(x) 6= cS(r(x)), and if |x| < 2, then cS(x) = 1 and
cS(r(x)) = cS(a1) = cS(a0) = 0. So for all x we have cA(x) = cA(r(x)) and cS(x) 6= cS(r(x)),

which shows that A∩S ≤log
m A∩S via r and A∩S ≤log

m A∩S via r. We further have A ≤log
m A∩S,

because on input x we can check in logspace whether r(x) ∈ S holds and either use x or r(x) for

the reduction. The reduction A ∩ S ≤log
m A works similarly by first checking whether x ∈ S. If

x /∈ S, we return a0, otherwise we return x. This shows that A is ≤log
m -mitotic. 2

Corollary 10.1.5 If the class C is closed under union, complement, and ≤log2-lin
m -reducibility,

then all ≤log
m -complete sets for C are ≤log

m -mitotic.

Proof Let A be ≤log
m -complete for C. By Theorem 10.1.3, A is ≤log

m -autoreducible via some
autoreduction function f ∈ FL such that |f(x)| ≥ |x|2 for all x. By Lemma 10.1.4, A is

≤log
m -mitotic. 2

Corollary 10.1.6 All ≤log
m -complete sets for the following classes are ≤log

m -mitotic: QP =
DTIME(2polylog(n)), PSPACE, EXP, REC, DSPACE(s) and NSPACE(s) for all space-
constructible s ≥ log2.

Proof The classes satisfy the requirements in Corollary 10.1.5. 2

Corollary 10.1.7 All ≤log
1-tt-complete sets for PSPACE and EXP are ≤log

m -mitotic.

Proof Buhrman [Buh93] and Homer et al. [HKR93] showed that ≤p
1-tt-complete sets for EXP

are ≤p
m-complete. Their proof also shows that all ≤log

1-tt-complete sets for EXP and PSPACE are

≤log
m -complete. Hence we can apply Corollary 10.1.6 and obtain ≤log

m -mitoticity. 2

We continue with classes C that are closed under ≤log2-lin
1-tt -reducibility. For a set A that is

≤log
2-tt-complete for C we define a set D that simulates ≤log

2-tt-reductions to A. We define D in such
a way that it can be reduced to A with one query of linear length in space O(log(n)2), hence

we will have D ∈ C, so D ≤log
2-tt A via some machine Mj . We will make sure that whenever Mj

queries x, we have information about x by another query different from x. This will show that
A is autoreducible.

Theorem 10.1.8 If a class C is closed under ≤log2-lin
1-tt -reducibility, then all ≤log

2-tt-complete sets

for C are ≤log
2-tt-autoreducible.

Proof Let {Mi}i be an enumeration of all ≤log
2-tt-reductions such that Mi on input x can be

simulated in space log i · (1 + log |x|) using a binary alphabet. Without loss of generality, we

assume that all reductions always query exactly two distinct values. Let A be ≤log
2-tt-complete for

C and consider the algorithm described in Figure 10.2.

Let D denote the set decided by the above algorithm. The algorithm describes a ≤log2-lin
1-tt -

reduction to A, so we have D ∈ C. This means that D ≤log
2-tt A via some machine Mj .

For arbitrary x, let t denote the truth-table obtained in the algorithm for D on input 〈0j , x〉
with the query x replaced by cA(x) if possible. If t is constant, then we obtain that

〈0j , x〉 ∈ D ⇐⇒ the algorithm for D accepts 〈0j , x〉 ⇐⇒ t is false ⇐⇒ 〈0j , x〉 /∈ D,

10.2. Complete Sets for PSPACE and EXP 139

On input z:
1. if z is not of the form 〈0i, x〉, then reject

2. compute cA(x) with one query to the oracle A
3. simulate Mi on input 〈0i, x〉 and let t be the truth-table that is obtained

if we replace the query x with cA(x) (if applicable)

4. if t is constant:

5. accept if t is false, and reject if t is true

6. if t depends negatively on one query:

7. accept if cA(x) = 0, and reject if cA(x) = 1
8. accept if cA(x) = 1, and reject if cA(x) = 0

Figure 10.2: Definition of the set D.

a contradiction. Hence for all x we obtain that even if we replace x by cA(x) in t, then t is not
constant.

For our autoreduction on input x, we consider Mj(〈0j , x〉) and distinguish the following
cases.

Case 1: Mj(〈0j , x〉) does not query x. We have the following subcases:

• t depends positively on one query y 6= x. Then we have x ∈ A ⇐⇒ cA(x) = 1 ⇐⇒
〈0j , x〉 ∈ D ⇐⇒ t(cA(y)) is true ⇐⇒ cA(y) = 1.
• t depends negatively on one query y 6= x. Then we have x ∈ A ⇐⇒ cA(x) = 1 ⇐⇒
〈0j , x〉 /∈ D ⇐⇒ t(cA(y)) is false ⇐⇒ cA(y) = 1.
• t depends on two queries y1, y2 6= x. Then we have x ∈ A ⇐⇒ cA(x) = 1 ⇐⇒ 〈0j , x〉 ∈
D ⇐⇒ t(cA(y1), cA(y2)) is true.

Hence in this case we can either behave like cA(y) or like t(cA(y1), cA(y2)).

Case 2: Mj(〈0j , x〉) queries x. Then, t either depends positively or negatively on the second
query y 6= x. The argumentation in the first case shows that x ∈ A ⇐⇒ y ∈ A.

Note that j is constant, so the simulation of Mj(〈0j , x〉) can be done in logspace, hence the

above case distinction describes a ≤log
2-tt-autoreduction for A. 2

Corollary 10.1.9 All ≤log
2-tt-complete sets for the following classes are ≤log

2-tt-autoreducible:
QP = DTIME(2polylog(n)), PSPACE, EXP, REC, DSPACE(s) and NSPACE(s) for all space-
constructible s ≥ log2.

Proof The classes satisfy the requirements in Theorem 10.1.8. 2

10.2 Complete Sets for PSPACE and EXP

We continue by showing that for some restricted polynomial-time truth-table reductions, complete
sets for EXP are complete under length-increasing reductions, and the same holds considering
logspace reductions for PSPACE and EXP. By carefully repeating the length-increasing reduc-
tions in such a way that we switch between stages defined by a separator set we obtain mitoticity
for PSPACE and EXP.

140 Chapter 10. Redundancy by Diagonalization

Definition 10.2.1 Given two sets A and B, we define A ≤p
T-li B if there exists an oracle Turing

machine M such that A = L(MB) and all queries made by MB(x) are of length strictly greater
than |x|. The following reducibility notions are defined similarly: ≤p

2-tt-li, ≤
p
k-ctt-li, ≤

p
k-dtt-li, ≤

p
dtt-li,

≤p
ctt-li, ≤

p
m-li, ≤

log
T-li, ≤

log
2-tt-li, ≤

log
k-ctt-li, ≤

log
k-dtt-li, ≤

log
dtt-li, ≤

log
ctt-li, ≤

log
m-li.

Berman [Ber77] and Ganesan and Homer [GH92] show that all many-one complete sets
for EXP are many-one length-increasing equivalent. In the following lemma, we generalize
their approach to show that for certain polynomial-time reductions and logspace reductions,
completeness for EXP and PSPACE implies completeness with respect to length-increasing
reductions.

Lemma 10.2.2 Let k ≥ 1.

1. All ≤-complete sets for EXP are ≤-li equivalent, where ≤ can be each of the following
reducibility notions: ≤p

k-ctt,≤
p
k-dtt,≤

p
ctt,≤

p
dtt.

2. All ≤-complete sets for PSPACE and EXP are ≤-li equivalent, where ≤ can be each of the
following reducibility notions: ≤log

k-ctt,≤
log
k-dtt,≤

log
ctt ,≤

log
dtt.

Proof We begin with ≤p
k-dtt-complete sets for EXP. Let A be ≤p

k-dtt-complete for EXP, and
let C := K × Σ∗ for some ≤p

m-complete set K for EXP. Then, C is ≤p
m-li-complete for EXP. So

for all D ∈ EXP it holds that D ≤p
m-li C, and it suffices to show C ≤p

k-dtt-li A.

Let f1, f2, . . . denote an enumeration of all ≤p
k-dtt-reductions such that fi(x) can be computed

in time ni + i. We define a set B by the algorithm described in Figure 10.3.

On input 〈0i, x〉:
1. compute 〈y1, . . . , yk〉 := fi(〈0i, x〉)
2. if |yl| ≤ |〈0i, x〉| and yl ∈ A for some l, then reject

3. accept if x ∈ C, and reject otherwise

Figure 10.3: Definition of the set B.

Observe that B ∈ EXP, so B ≤p
k-dtt A via some reduction fj ∈ FP. We consider fj on input

〈0j , x〉 with n = |〈0j , x〉| and obtain the following case distinction.

Case 1: There exists some yl ∈ fj(〈0j , x〉) such that |yl| ≤ n and yl ∈ A. We obtain
0 = cB(〈0j , x〉) = max{cA(yi) | yi ∈ fj(〈0j , x〉)} = cA(yl) = 1, a contradiction. Hence this case
cannot occur.

Case 2: For all yl ∈ fj(〈0j , x〉), if |yl| ≤ n, then yl /∈ A. Then we obtain

cC(x) = cB(〈0j , x〉) = max{cA(yi) | yi ∈ fj(〈0j , x〉)}
= max{cA(yi) | yi ∈ fj(〈0j , x〉) and |yi| > n}

In particular note that n ≥ |x|.

On input x, let Qx := {yi ∈ fj(〈0j , x〉) | |yi| > |〈0j , x〉|}. Since only the second case can occur,
we have cC(x) = max{cA(yi) | yi ∈ Qx}, where |yi| > |〈0j , x〉| ≥ |x| for all yi ∈ Qx. Hence Qx
shows that C ≤p

k-dtt-li A. Moreover, the above argumentation also holds if we omit the boundary
k, hence it also shows that all ≤p

dtt-complete sets for EXP are ≤p
dtt-li-equivalent.

10.2. Complete Sets for PSPACE and EXP 141

In a similar way we show the lemma for the reducibility notions ≤p
k-ctt and ≤p

ctt. In these
cases, we modify line 2 of the algorithm for B such that we accept if yl /∈ A. Hence, if there
exists some yl ∈ fj(〈0j , x〉) such that |yl| ≤ n and yl /∈ A, then we obtain the contradiction
1 = cB(〈0j , x〉) = min{cA(yi) | yi ∈ fj(〈0j , x〉)} = cA(yl) = 0. So for all yl ∈ fj(〈0j , x〉),
if |yl| ≤ n, then yl ∈ A, and hence for Qx := {yi ∈ fj(〈0j , x〉) | |yi| > |〈0j , x〉|} we obtain
cC(x) = cB(〈0j , x〉) = min{cA(yi) | yi ∈ fj(〈0j , x〉)} = min{cA(yi) | yi ∈ Qx}. This completes
the proof of the first item of the lemma.

We show the second item of the lemma using an enumeration f1, f2, . . . of logspace reductions
such that fi can be simulated in space log(i) · (1 + log(n)) using a binary alphabet. 2

Lemma 10.2.3 All ≤p
2-tt-complete sets for EXP are ≤p

2-tt-li equivalent, and all ≤log
2-tt-complete

sets for PSPACE and EXP are ≤log
2-tt-li equivalent.

Proof Let A be ≤p
2-tt-complete for EXP, and let C := K ×Σ∗ for some ≤p

m-complete set K for
EXP. Then, C is ≤p

m-li-complete for EXP. So for all D ∈ EXP it holds that D ≤p
m-li C, and it

suffices to show C ≤p
2-tt-li A.

Let {Mi}i≥1 be an enumeration of all ≤p
2-tt reductions such that the computation of Mi on x

can be simulated in time |x|i+i. Note that for all L1, L2 ⊆ Σ∗ it holds that L1 ≤p
2-tt L2 if and only

if there exist polynomial-time computable functions f : Σ∗ → (Σ∗)2 and g : Σ∗×{0, 1}2 → {0, 1}
such that for all x, f(x) = 〈q1, q2〉 and cL1(x) = g(x, cL2(q1), cL2(q2)). Let fi and gi be the
functions that correspond to the reduction Mi. We assume that if fi(x) = 〈q1, q2〉, then |q1| ≤ |q2|.
This is not a restriction, because we can always switch q1 with q2 and modify gi on x accordingly.

Let B be the set of inputs 〈0i, x〉 accepted by the algorithm described in Figure 10.4.

On input 〈0i, x〉:
1. compute fi(〈0i, x〉) = 〈q1, q2〉
2. if |〈0i, x〉| < |q1| ≤ |q2| and x ∈ C, then accept

3. if |q1| ≤ |q2| ≤ |〈0i, x〉| and gi(x, cA(q1), cA(q2)) = 0, then accept

4. if |q1| ≤ |〈0i, x〉| < |q2|, then consider the following cases:

(a) if gi(x, cA(q1), 0) = gi(x, cA(q1), 1) = 0, then accept

(b) if gi(x, cA(q1), b) = b for all b, and x ∈ C, then accept

(c) if gi(x, cA(q1), b) 6= b for all b, and x /∈ C, then accept

5. reject

Figure 10.4: Definition of the set B.

Claim 10.2.4 B ∈ EXP.

Proof We consider the above algorithm on input 〈0i, x〉 with n = |〈0i, x〉|:
• Mi on input x can be simulated in time |x|i + i, where i ≤ n, hence computing fi(〈0i, x〉)

in step 1 and gi(x, α, β) in step 3 and step 4 is possible in exponential time in n.
• C ∈ EXP, so deciding x ∈ C in step 2 and step 4 takes exponential time in n.
• A ∈ EXP and in step 3 we have |q1| ≤ |q2| ≤ n. Hence computing cA(q1) and cA(q2) in

step 3 takes time exponential in n.
• Analogously, computing cA(q1) in step 4 takes time exponential in n.

2

Since A is ≤p
2-tt-complete for EXP, we have B ≤p

2-tt A by some reduction Mj . Let fj(〈0j , x〉) =
〈q1, q2〉. We distinguish the following cases in the execution of the algorithm for B on input
〈0j , x〉.

142 Chapter 10. Redundancy by Diagonalization

Case 1: |〈0j , x〉| < |q1| ≤ |q2|. Then, cC(x) = cB(〈0j , x〉) = gj(x, cA(q1), cA(q2)). Notice that
in this case, both q1 and q2 are longer than x.

Case 2: |q1| ≤ |q2| ≤ |〈0j , x〉|. Then, gj(x, cA(q1), cA(q2)) 6= cB(〈0j , x〉) = gj(x, cA(q1), cA(q2)),
where the inequality holds by the definition of B, and the equality holds because Mj reduces B
to A. This is a contradiction, hence this case cannot occur.

Case 3: |q1| ≤ |〈0j , x〉| < |q2|. We have the following subcases.

• gj(x, cA(q1), 0) = gj(x, cA(q1), 1). Again we obtain gj(x, cA(q1), cA(q2)) 6= cB(〈0j , x〉) and
cB(〈0j , x〉) = gj(x, cA(q1), cA(q2)), a contradiction. So this subcase cannot occur.
• gj(x, cA(q1), b) = b for all b. Then, cC(x) = cB(〈0j , x〉) = gj(x, cA(q1), cA(q2)) = cA(q2).
• gj(x, cA(q1), b) 6= b for all b. So, cC(x) = 1−cB(〈0j , x〉) = 1−gj(x, cA(q1), cA(q2)) = cA(q2).

So, in this case we have cC(x) = cA(q2) with |x| < |〈0j , x〉| < |q2|.

By the above case distinction, the algorithm described in Figure 10.5 is a ≤p
2-tt-li reduction

from C to A. Note that j is constant, hence the algorithm can be executed in polynomial time.

On input x:
1. compute fj(〈0j , x〉) = 〈q1, q2〉
2. if |〈0j , x〉| < |q1| ≤ |q2| and gj(x, cA(q1), cA(q2)) = 1, then accept

3. if |q1| ≤ |〈0j , x〉| < |q2| and cA(q2) = 1, then accept

4. reject

Figure 10.5: A ≤p
2-tt-li reduction from C to A.

The case where we consider ≤log
2-tt-complete sets for PSPACE and EXP is shown analogously,

where we use an enumeration f1, f2, . . . of logspace reductions such that fi can be simulated in
space log(i) · (1 + log(n)) using a binary alphabet. This completes the proof of the lemma. 2

Glaßer et al. [GOP+07] show that if L is complete for some class with respect to many-one
reductions that do not decrease the length too much, then L is many-one mitotic.

Theorem 10.2.5 ([GOP+07]) Let C be a complexity class closed under many-one reductions.
If L is many-one complete for C with respect to honest reductions, then L is many-one mitotic.

We adapt their proof and obtain the following lemma.

Lemma 10.2.6 Let A be a non-trivial set and let ≤ be any of the following reductions with
k ≥ 1: ≤p

2-tt,≤
p
k-ctt,≤

p
k-dtt,≤

p
ctt,≤

p
dtt,≤

log
2-tt,≤

log
k-ctt,≤

log
k-dtt,≤

log
ctt ,≤

log
dtt. If (A × Σ∗) ≤-li A, then A

is ≤-mitotic.

Proof We show the lemma for the case ≤p
ctt, the other cases are shown analogously.

Choose f ∈ FP such that for all x there exists some m with f(x) = 〈y1, . . . , ym〉, |yj | > |x|
for all j, and c(A×Σ∗)(x) = min{cA(y1), . . . , cA(ym)}. Note that there is an l > 0 such that for

all j it holds that |x|1/l < |yj | < |x|l.
Define t : N→ N by

t(i) =


0 if i = 0,

2 if i = 1, and

t(i− 1)2l2 if i > 1,

10.2. Complete Sets for PSPACE and EXP 143

and let S = {x | for some odd i it holds that t(i) ≤ |x| < t(i+ 1)}. Note that S ∈ P.

Claim 10.2.7 There exists a function h ∈ FP such that for all x there exists some m such that
it holds that h(x) = 〈y1, . . . , ym〉, cA(x) = min{cA(y1), . . . , cA(ym)}, and cS(x) 6= cS(yj) for all
j.

Proof On input x, we first compute i ∈ N such that t(i) ≤ |x| < t(i+1). Observe that this can be
done in polynomial time. Next we choose y large enough such that t(i+ 1)l < |〈x, y〉| < t(i+ 1)2l.
This is possible in polynomial time, because t(i + 1)l = (t(i)2l2)l = t(i)2l3 ≤ |x|2l3 , where l is
constant. Let 〈y1, . . . , ym〉 = f(〈x, y〉). Then, for each yj it holds that

t(i+ 1) = (t(i+ 1)l)1/l < |〈x, y〉|1/l < |yj | < |〈x, y〉|l < (t(i+ 1)2l)l = t(i+ 1)2l2 = t(i+ 2)

and hence we have t(i) ≤ |x| < t(i + 1) < |yj | < t(i + 2), which means that cS(x) 6= cS(yj)
for all j. Moreover, we have cA(x) = c(A×Σ∗)(〈x, y〉) = min{cA(y1), . . . , cA(ym)}, hence h(x) =
〈y1, . . . , ym〉 proves the claim. 2

We next show that A ≡p
ctt A ∩ S and A ∩ S ≤p

ctt A ∩ S.

• A ∩ S ≤p
ctt A: We first compute cS(x) in polynomial time. If cS(x) = 1, then we map to x.

Otherwise we have x /∈ A ∩ S, and we map to some fixed element outside A.
• A ≤p

ctt A ∩ S: We first compute cS(x) in polynomial time. If cS(x) = 1, then we map
to x. Otherwise we have cS(x) = 0. Let 〈y1, . . . , ym〉 = h(x). By Claim 10.2.7 it holds
that cS(yj) = 1 for all j, which means that c(A∩S)(yj) = cA(yj). By Claim 10.2.7 we
further know that cA(x) = min{cA(y1), . . . , cA(ym)} = min{c(A∩S)(y1), . . . , c(A∩S)(ym)},
which shows that A ≤p

ctt A ∩ S.
• A ∩ S ≤p

ctt A ∩ S: We first compute cS(x) in polynomial time. If cS(x) = 0, then we
have x /∈ A ∩ S, and we map to some fixed element outside A. Otherwise we have
cS(x) = 1. Let 〈y1, . . . , ym〉 = h(x). By Claim 10.2.7 it holds that cS(yj) = 0 for
all j, which means that c(A∩S)(yj) = cA(yj). By Claim 10.2.7 we further know that

c(A∩S)(x) = cA(x) = min{cA(y1), . . . , cA(ym)} = min{c(A∩S)(y1), . . . , c(A∩S)(ym)}, which

shows that A ∩ S ≤p
ctt A ∩ S.

The symmetric cases A ≡p
ctt A∩S and A∩S ≤p

ctt A∩S are shown analogously. Hence A, A∩S,
and A ∩ S are mutually ≤p

ctt-equivalent for S ∈ P, which shows that A is ≤p
ctt-mitotic. 2

Corollary 10.2.8 Let k ≥ 1.

1. For EXP, all ≤-complete sets are ≤-mitotic, where ≤ can be each of the following reducibility
notions: ≤p

2-tt,≤
p
k-ctt,≤

p
k-dtt,≤

p
ctt,≤

p
dtt.

2. For PSPACE and EXP, all ≤-complete sets are ≤-mitotic, where ≤ can be each of the
following reducibility notions: ≤log

2-tt,≤
log
k-ctt,≤

log
k-dtt,≤

log
ctt ,≤

log
dtt.

Proof For the class C and the reducibility ≤, let A be ≤-complete for C. Then, A × Σ∗ is
also ≤-complete for C. By Lemma 10.2.2 and Lemma 10.2.3 we have (A × Σ∗) ≤-li A. By
Lemma 10.2.6 it holds that A is ≤-mitotic. 2

144 Chapter 10. Redundancy by Diagonalization

10.3 Complete Sets for NEXP

The results in the previous two sections rely on the fact that the classes we considered are closed
under complementation. For NEXP, this property is not known, so we cannot directly apply
our results to NEXP. Instead we will show that complete sets for NEXP are autoreducible.

Theorem 10.3.1 ([NS12, GNR+13a]) Let k ≥ 1. For NEXP, all ≤-complete sets are ≤-
autoreducible, where ≤ can be each of the following reducibility notions: ≤p

k-dtt, ≤
p
k-ctt, ≤

p
dtt,

≤p
ctt, ≤

log
m , ≤log

k-dtt, ≤
log
k-ctt, ≤

log
dtt, ≤

log
ctt.

Proof Let A be a ≤p
dtt-complete set for NEXP. Hence there exists a nondeterministic Turing

machine M that accepts A and runs in nondeterministic exponential time. Recall that A ≤p
dtt

B if and only if there exists a polynomial-time computable function f such that for all x,
f(x) = 〈q1, . . . , qn〉 and cA(x) = max{cB(q1), . . . , cB(qn)}. Let {fi}i≥1 be an enumeration of all
polynomial-time Turing transducers such that the computation of fi on x can be simulated in
time |x|i + i. Let B be the set of inputs 〈0i, x〉 that are accepted by the algorithm described in
Figure 10.6.

On input 〈0i, x〉:
1. Q := set of all queries of fi on input 〈0i, x〉
2. if x /∈ Q, then accept if there exists an accepting path in M(x)
3. reject

Figure 10.6: Definition of the set B.

On input 〈0i, x〉 with n = |〈0i, x〉|, we first simulate fi on 〈0i, x〉. This takes time ni+i ≤ nn+n,
which is exponential in n. Then we compute cQ(x), which again takes exponential time, and
either behave like M(x) or reject. Since M is a nondeterministic exponential time machine we
obtain B ∈ NEXP. So B ≤p

dtt A via some disjunctive truth-table reduction fj .

Let x be some input. We distinguish the following two cases.

Case 1: The reduction fj(〈0j , x〉) queries x. Then, by the above algorithm, 〈0j , x〉 /∈ B. Hence
for each query q of fj(〈0j , x〉) we have q /∈ A, and in particular it holds that x /∈ A.

Case 2: The reduction fj(〈0j , x〉) does not query x. Let 〈q1, . . . , qm〉 = fj(〈0j , x〉). Hence it
holds that x 6= qi for all i. In this case, in the algorithm for B we behave like M on input x.
Hence we obtain cA(x) = cB(〈0j , x〉) = max{cA(q1), . . . , cA(qm)}.

Based on this observation, we obtain the ≤p
dtt-autoreduction for A as described in Figure 10.7.

On input x:
1. Q := set of all queries of fj on input 〈0j , x〉
2. if x /∈ Q, then return Q
3. return some fixed value x0 ∈ (A− {x})

Figure 10.7: A ≤p
dtt-autoreduction for A.

The case of ≤p
ctt-complete sets can be shown analogously. In this case, in line 3 of the

algorithm for B we accept. Then, if fj(〈0j , x〉) queries x, it holds that 〈0j , x〉 ∈ B, hence
all queries and in particular x are contained in A. Otherwise x is not queried, and cA(x) =

10.3. Complete Sets for NEXP 145

cB(〈0j , x〉) = min{cA(q1), . . . , cA(qm)}. So we obtain an ≤p
ctt-autoreduction for A from the

≤p
dtt-autoreduction by returning some fixed value x1 ∈ (A− {x}) in line 3.

The case of ≤p
k-ctt-complete sets and ≤p

k-dtt-complete sets follows from the above proof, if we
replace the enumeration of all fi by an enumeration of those fi whose outputs are bounded by k,
because in the autoreduction we return either a single query or we return the set Q = fj(〈0j , x〉).

Finally, the case of logspace reducibilities can be obtained analogously by considering an
enumeration where fi can be simulated in space log(i) · (1 + log(n)) using a binary alphabet.

The case of ≤log
m -complete sets follows from the case of ≤log

k-dtt-complete sets for k = 1. 2

Corollary 10.3.2 All ≤log
1-tt-complete sets for NEXP are ≤log

m -autoreducible.

Proof Buhrman [Buh93] showed that all ≤p
1-tt-complete sets for NEXP are ≤p

m-complete.

His proof also shows that all ≤log
1-tt-complete sets for NEXP are ≤log

m -complete. We apply

Theorem 10.3.1 and obtain ≤log
m -autoreducibility. 2

Theorem 10.3.3 ([NS12, GNR+13a]) Every ≤-complete set for NEXP is ≤-autoreducible,

where ≤ can be each of the following reducibility notions: ≤log
2-tt, ≤

p
2-tt.

Proof We first show that ≤p
2-tt-complete sets for NEXP are ≤p

2-tt-autoreducible.

Let A be a ≤p
2-tt-complete set for NEXP. Hence there exists a nondeterministic Turing

machine M that accepts A and runs in nondeterministic exponential time. Let {Mi}i≥1 be an
enumeration of all ≤p

2-tt reductions such that the computation of Mi on x can be simulated in time
|x|i+ i. Observe that L1 ≤p

2-tt L2 if and only if there exist polynomial-time computable functions
f : Σ∗ → (Σ∗)2 and g : Σ∗×{0, 1}2 → {0, 1} such that for all x it holds that f(x) = 〈q1, q2〉 and
cL1(x) = g(x, cL2(q1), cL2(q2)). For each i, let fi and gi be the functions that correspond to the
reduction Mi. Without loss of generality we can take the following assumptions:

• if fi(x) = 〈q1, q2〉, then q1 6= q2

• if fi(〈0i, x〉) = 〈q1, q2〉 and x ∈ {q1, q2}, then x = q1

This is not a restriction, because if q1 = q2, then we can change the second query to a value
different from q1 and change gi such that it ignores the answer to the second query, and if x = q2

then we can switch q1 and q2 and again modify gi accordingly. For each i and x, we further
define the binary Boolean function gxi : {0, 1}2 → {0, 1} by gxi (α, β) = gi(x, α, β).

Let f2
0 , f

2
1 , . . . , f

2
15 denote an enumeration of all binary Boolean functions such that

i = 23 · f2
i (1, 1) + 22 · f2

i (1, 0) + 21 · f2
i (0, 1) + 20 · f2

i (0, 0)

holds for all 0 ≤ i ≤ 15. So, for instance, f2
15 denotes the binary constant 1, while f2

8 denotes
the binary and, and f2

14 denotes the binary or.

Let B be the set of inputs 〈0i, x〉 that are accepted by the algorithm described in Figure 10.8.

Observe that B ∈ NEXP. So B ≤p
2-tt A via some ≤p

2-tt reduction Mj . We consider the
algorithm for B on some input 〈0j , x〉. Let fj(〈0j , x〉) = 〈q1, q2〉 and Q = {q1, q2}. If x /∈ Q, we
either accept in line 2 or we reject in line 4, depending on the behavior of M(x). Hence it holds
that cA(x) = cB(〈0j , x〉) = gj(x, cA(q1), cA(q2)) and x /∈ {q1, q2}.

So suppose x ∈ Q. By our assumption on fj we have x = q1 and x 6= q2. We have the
following cases.

146 Chapter 10. Redundancy by Diagonalization

On input 〈0i, x〉:
1. compute fi(〈0i, x〉) = 〈q1, q2〉 and let Q = {q1, q2}
2. if x /∈ Q and there exists an accepting path in M(x), then accept

3. if x ∈ Q, then consider the following cases:

(a) if gxi ∈ {f2
0 , f

2
1 , f

2
2 , f

2
4 , f

2
8 , f

2
9 }, then accept

(b) if gxi ∈ {f2
5 , f

2
10} and there is an accepting path in M(x), then accept

4. reject

Figure 10.8: Definition of the set B.

Case 1: gxj ∈ {f2
0 , f

2
15}. If gxj = f2

0 , then cB(〈0j , x〉) = 1 and gj(x, cA(x), cA(q2)) = 0. If

gxj = f2
15, then cB(〈0j , x〉) = 0 and gj(x, cA(x), cA(q2)) = 1. In both subcases we obtain a

contradiction to the fact that Mj reduces B to A. Hence this case cannot occur.

Case 2: gxj ∈ {f2
1 , f

2
2 , f

2
12, f

2
13, f

2
14}.

• If gxj = f2
1 , then 1 = cB(〈0j , x〉) = f2

1 (cA(x), cA(q2)), hence cA(x) = 0.

• If gxj = f2
2 , then 1 = cB(〈0j , x〉) = f2

2 (cA(x), cA(q2)), hence cA(x) = 0.

• If gxj = f2
12, then 0 = cB(〈0j , x〉) = f2

12(cA(x), cA(q2)) = cA(x), hence cA(x) = 0.

• If gxj = f2
13, then 0 = cB(〈0j , x〉) = f2

13(cA(x), cA(q2)), hence cA(x) = 0.

• If gxj = f2
14, then 0 = cB(〈0j , x〉) = f2

14(cA(x), cA(q2)), hence cA(x) = 0.

So in this case it holds that cA(x) = 0.

Case 3: gxj ∈ {f2
3 , f

2
4 , f

2
7 , f

2
8 , f

2
11}.

• If gxj = f2
3 , then 0 = cB(〈0j , x〉) = f2

3 (cA(x), cA(q2)) = 1− cA(x), hence cA(x) = 1.

• If gxj = f2
4 , then 1 = cB(〈0j , x〉) = f2

4 (cA(x), cA(q2)), hence cA(x) = 1.

• If gxj = f2
7 , then 0 = cB(〈0j , x〉) = f2

7 (cA(x), cA(q2)), hence cA(x) = 1.

• If gxj = f2
8 , then 1 = cB(〈0j , x〉) = f2

8 (cA(x), cA(q2)), hence cA(x) = 1.

• If gxj = f2
11, then 0 = cB(〈0j , x〉) = f2

11(cA(x), cA(q2)), hence cA(x) = 1.

So in this case it holds that cA(x) = 1.

Case 4: gxj ∈ {f2
5 }. Then, cA(x) = cB(〈0j , x〉) = f2

5 (cA(x), cA(q2)) = 1 − cA(q2). So in this
case it holds that cA(x) = 1− cA(q2).

Case 5: gxj ∈ {f2
6 , f

2
9 , f

2
10}.

• If gxj = f2
6 , then 0 = cB(〈0j , x〉) = f2

6 (cA(x), cA(q2)), hence cA(x) = cA(q2).

• If gxj = f2
9 , then 1 = cB(〈0j , x〉) = f2

9 (cA(x), cA(q2)), hence cA(x) = cA(q2).

• If gxj = f2
10, then cA(x) = cB(〈0j , x〉) = f2

10(cA(x), cA(q2)) = cA(q2).

So in this case it holds that cA(x) = cA(q2).

With this case distinction in mind, we can also handle the case where x ∈ Q by either rejecting
or accepting directly, or mapping to q2 accordingly. We obtain a ≤p

2-tt-autoreduction for A as
described in Figure 10.9.

10.4. Summary and Discussion 147

On input x:
1. compute 〈q1, q2〉 = fj(〈0j , x〉) and let Q = {q1, q2}
2. if x /∈ Q and gj(x, cA(q1), cA(q2)) = 1, then accept

3. if x ∈ Q, then consider the following cases:

(a) if gxj ∈ {f2
3 , f

2
4 , f

2
7 , f

2
8 , f

2
11}, then accept

(b) if gxj ∈ {f2
5 } and cA(q2) = 0, then accept

(c) if gxj ∈ {f2
6 , f

2
9 , f

2
10} and cA(q2) = 1, then accept

4. reject

Figure 10.9: A ≤p
2-tt-autoreduction for A.

In order to show the statement for ≤log
2-tt-complete sets, suppose that A is ≤log

2-tt-complete for

NEXP. Observe that the above enumeration {Mi}i≥1 includes all ≤log
2-tt-reductions. If B ≤log

2-tt A

via the ≤log
2-tt reduction Mj , then fj and gj are logspace computable, and hence the described

autoreduction of A on input x can be computed in logspace. 2

10.4 Summary and Discussion

We demonstrated that diagonalization is a powerful technique to establish redundancy properties
of complete sets. We considered classes such as PSPACE and EXP and enforced logspace
complete sets to be complete with respect to length-increasing reductions. This already implied
autoreducibility, and by standard techniques we were able to turn this into mitoticity. Similar
techniques established mitoticity for polynomial-time complete sets for EXP.

Our mitoticity results relied upon closure under complementation. Consequently, similar
techniques applied to NEXP only showed autoreducibility. Recent work by Nguyen and Sel-
man [NS14] studies negative results for complete sets for NEXP. The question remains open
whether logspace complete sets for NEXP with respect to different reducibility notions are
mitotic.

148 Chapter 10. Redundancy by Diagonalization

Chapter 11

Deterministic Coin Tossing

Autoreducibility versus Mitoticity We show that in some cases, autoreducibility of com-
plete sets implies weak mitoticity. Recall that in general, mitoticity implies autoreducibility.
Depending on the reducibility notion, the converse direction does not always hold. For instance,
Ambos-Spies [AS84] showed that ≤p

T-autoreducibility does not imply ≤p
T-mitoticity. Glaßer et

al. [GPSZ08] showed that for non-trivial sets, ≤p
m-autoreducibility implies ≤p

m-mitoticity, hence
the concepts of ≤p

m-autoreducibility and ≤p
m-mitoticity are equivalent. They also showed that

the same holds for ≤p
1-tt-reductions, but not for reductions between ≤p

3-tt and ≤p
T. We work on

similar questions in the logspace setting. Glaßer [Gla10] showed that poly-logspace many-one
autoreducibility implies poly-logspace many-one mitoticity. Moreover, he provided an oracle
relative to which there exists a set L that is ≤log

m -autoreducible and not ≤log
m -mitotic. Hence, it

is difficult to show that ≤log
m -autoreducibility implies ≤log

m -mitoticity. We will concentrate on
weak mitoticity instead.

Mitoticity by Ruling Sets We sketch our approach as follows. Suppose we have a set A
with a many-one autoreduction function f , and we want to show that A is many-one mitotic.
Given some input x, we know that the repeated application of f results in elements y with the
same membership to A as x. We call these elements the trace of f on x. One approach to show
mitoticity is to construct an r-ruling set S for f of low complexity. Such a set S has the property
that after at most r applications of f , the membership to S changes. Now we can reduce A ∩ S
to A ∩ S by applying f at most r times on x to obtain an equivalent element in A ∩ S. Since S
has low complexity, we can find out if we already changed the membership to S, or if we need to
apply f another time. The reductions A ∩ S to A and A to A ∩ S can be done in a similar way,
and so we obtain mitoticity. For polynomial-time many-one autoreduction functions, Glaßer et
al. [GPSZ08] showed how to construct such a ruling set that is polynomial-time decidable, hence
≤p

m-autoreducibility implies ≤p
m-mitoticity. Their construction of a ruling set S uses an idea

that was originally developed by Cole and Vishkin [CV86] and called deterministic coin tossing.
Glaßer [Gla10] further analyzed whether this approach is applicable in the logspace setting. For
a logspace many-one autoreduction f for A, he showed how to define a logspace decidable set
S such that after at most O(log log) steps of f , the membership to S changes. His approach
shows that poly-logspace many-one autoreducible sets are poly-logspace many-one mitotic, but
it is difficult to find a logspace decidable ruling set that changes membership after at most a
constant number of steps of f .

Weak Logspace Mitoticity Again consider a ≤log
m -autoreduction f for some set A.

Glaßer [Gla10] notes that the number of steps of f that are necessary to obtain a change

149

150 Chapter 11. Deterministic Coin Tossing

in the membership of S can be dropped down to O(log(c)) for arbitrary c. We show that we
can modify this result by shifting complexity from the reduction into the set S. We obtain
a separator S′ with complexity slightly above L such that after at most two steps we have a
membership change of f . So, for instance, if we want to show A ≤log

2-dtt A∩S
′ and A ≤log

2-dtt A∩S′,
for every input it suffices to consider the next two steps of f . If A is ≤log

m -complete for some class
C that contains S′ and that is closed under intersection, then we know that A ∩ S′ and A ∩ S′
are ≤log

2-dtt-complete for C, and hence we know that A is weakly ≤log
2-dtt-mitotic. Note that the

complexity of the separator set is only slightly above L, so we almost obtain ≤log
2-dtt-mitoticity.

We further show how to adapt our technique to similar reducibility notions.

Contributions We summarize our contributions in this chapter as follows.

1. General weak logspace mitoticity results. Let C ⊇ (DSPACE(log · log(c)) ∩ P) be some
complexity class that is closed under intersection, for some c > 0. We show:

(a) If A is ≤log
m -complete for C and ≤log

m -autoreducible, then A is weakly ≤log
2-dtt-mitotic.

(b) If A is ≤log
1-tt-complete for C and ≤log

1-tt-autoreducible, then A is weakly ≤log
2-tt-mitotic.

2. Applications to P, ∆p
k and NEXP. We show that the autoreducibility results of ≤log

m -
complete sets imply weak mitoticity. We summarize these results in Table 11.1.

3. Weak mitoticity for PSPACE. Recall that all ≤p
dtt-complete sets for PSPACE are ≤p

dtt-
autoreducible. We show that if we grant a separator set enough resources, then it can
determine a path in the disjunctive autoreduction tree with the “correct” behavior, hence
we can think of the ≤p

dtt-autoreduction as a ≤p
m-autoreduction, and by a similar technique

we obtain weak mitoticity. We summarize our improved results in Table 11.2.

reduction P ∆p
k NEXP

≤log
m W

log
2-tt W

log
2-tt W

log
2-dtt

≤log
1-tt W

log
2-dtt

Table 11.1: Weak logspace mitoticity results shown in this chapter. An entry Wlog
r in row ≤ and column

C means that every ≤-complete set for C is weakly ≤log
r -mitotic.

reduction PSPACE

≤p
k-dtt W

p
l-dtt

≤p
dtt W

p
dtt

Table 11.2: Weak polynomial-time mitoticity results shown in this chapter. An entry Wp
r in row ≤ and

column C means that every ≤-complete set for C is weakly ≤p
r -mitotic. We have k ≥ 2 and l = k3 +k2 +k.

Organization of this Chapter We show how to obtain ruling sets for autoreduction functions
in Section 11.1. We apply these results in the remaining sections. In Section 11.2 we consider
many-one autoreduction functions, and in Section 11.3 we generalize our approach to truth-
table autoreduction functions that map to a single value. These two sections show results for
logspace-computable functions. In Section 11.4 we show that a similar approach works for

11.1. Autoreductions and Ruling Sets 151

polynomial-time computable disjunctive truth-table autoreduction functions. We conclude this
chapter with a summary and discussion in Section 11.5.

11.1 Autoreductions and Ruling Sets

In order to transform many-one autoreducibility into mitoticity, we consider the trace of words
obtained by the repeated application of the autoreduction to some input x. The challenge is to
define a set S of low complexity such that when we follow such a trace for r steps, then we visit
at least one word in S and at least one word in S. In the field of parallel algorithms, Cole and
Vishkin [CV86] developed a technique called deterministic coin tossing. Their technique helps
us to construct such a set S. In their terminology, the set S is called an r-ruling set.

Recall that for arbitrary functions f , we denote by f (i) the i-th iteration of f .

Definition 11.1.1 For a total function f , a set S is called r-ruling set for f if and only if for
every x there exists an i ≤ r such that cS(x) 6= cS(f (i)(x)).

In this section we show that we can obtain a 2-ruling set S from autoreduction functions,
where S is only slightly more complex than f . Glaßer [Gla10] shows how to apply the coin
tossing technique for an autoreducible set L to obtain an autoreduction function g for L of
relatively low complexity and a 1-ruling set S for g.

Theorem 11.1.2 ([Gla10]) Let k ≥ 1 be an integer and let L be a non-trivial ≤logk
m -

autoreducible set. Then there exist a total function g ∈ FSPACE((logk
7
n) · log log n) and

a set S ∈ DSPACE(logk
4
n) such that for all x,

1. cL(x) = cL(g(x)), and
2. cS(x) 6= cS(g(x)).

In the proof of Theorem 11.1.2, the author considers the following distance function d, where

d(x, y) :=

{
0 if x = y, and

sgn(y − x) · blog(2abs(y − x))c otherwise.

The author uses the following lemma for integers.

Lemma 11.1.3 ([Gla10]) If z1, z2, and z3 are integers such that d(z1, z2) = d(z2, z3) 6= 0,
then there exist i, j ∈ [1, 3] such that for r := d(z1, z2),

bzi/2abs(r)c is even ⇐⇒ bzj/2abs(r)c is odd.

We will next show how to generalize Theorem 11.1.2 such that we find a change in the
membership to the separator after very few steps of the autoreduction function. Our proof is
based on the proof of Theorem 11.1.2 that can be found in the paper of Glaßer [Gla10].

Lemma 11.1.4 Let f be a polynomially length-bounded function such that f(x) 6= x for all x.
For all k ≥ 1 there exists a set S, a constant c0, and a polynomial q such that:

1. For all x there exists some i ≤ c0 · (log(k)(|x|) + 1) such that cS(x) 6= cS(f (i)(x)), and for
all j ≤ i it holds that |f (j)(x)| ≤ q(|x|).

2. If s(n) ≥ log(n) and f ∈ FSPACE(s), then S ∈ DSPACE(s).
3. If t(n) ≥ n and f ∈ FTIME(t), then S ∈ DTIME(O(t ◦ q)).

152 Chapter 11. Deterministic Coin Tossing

Proof Let f be a function and p(n) = nc + c be a polynomial such that f(x) 6= x and
|f(x)| ≤ p(|x|) for all x. We assume that c ≥ 2 is large enough such that log(k)(p(3)(n)) ≥ 3
holds for all n. According to this length bound we now define the tower function

l(i) :=

{
2 if i = 0, and

p(p(l(i− 1))) otherwise.

Note that for the inverse tower function l−1(n) := min{i | l(i) ≥ n} and for all n,

l−1(p(p(n))) = l−1(n) + 1. (11.1)

So from f ’s length bound we obtain for all x,

l−1(|f(x)|) ≤ l−1(|x|) + 1 and l−1(|f(f(x))|) ≤ l−1(|x|) + 1. (11.2)

We partition the set of all words as follows.

S0 := {x | l−1(|x|) ≡ 0 mod 2}
S1 := {x | l−1(|x|) ≡ 1 mod 2}

We can decide S0 and S1 as follows. On input x, compute and store n = |x|. Then, starting with
m = 2, determine how often we need to apply p(2) to m until we obtain a value larger than n.
For this we only need to store values less than or equal to n, which is possible in space log(|x|).
Hence S0, S1 ∈ L.

Recall the distance function d we defined above and note that d ∈ FL. Furthermore, it
holds that d(x, y) = 0 if and only if x = y. We will iteratively apply d to some value x and its
successors in f . We define

di(x) :=

{
d(di−1(x), di−1(f(x))) if i > 0, and

x if i = 0,

for all x and all i ≥ 0. Next, we define S to be the set decided by the algorithm described in
Figure 11.1.

On input x:
1. let y := f (1)(x) and z := f (2)(x)
2. if |x| < |y| and cS0(x) = cS1(y) then accept

3. if |y| < |z| and cS0(y) = cS1(z) then reject

4. if dk+1(x) > dk+1(y) then accept

5. if dk+1(x) < dk+1(y) then reject

6. for j := k + 1 downto 1 do

7. if dj(x) 6= 0, then accept if bdj−1(x)/2abs(dj(x))c is even, otherwise reject

8. reject

Figure 11.1: Algorithm for the set S.

Claim 11.1.5 If t ≥ n and f ∈ FTIME(t), then S ∈ DTIME(O(t(q(n)))) for a polynomial q.

Proof Let t(n) ≥ n such that f ∈ FTIME(t). On input x, let n = |x|. We proceed
by computing and storing f (1)(x), f (2)(x), . . . , f (k+2)(x). Since k is constant, this takes time

11.1. Autoreductions and Ruling Sets 153

O((k+ 2) · t(q′(n))) = O(t(q′(n))), where q′ is a polynomial such that q′(n) bounds the length of
each f (i)(x) for i ≤ k + 2.

Next, consider lines 2 and 3. Those lines can be executed in time O(q′′(n)) for some polynomial
q′′, because x, y, z are stored on some tape, are polynomially long, and S0, S1 ∈ L ⊆ P.

Observe that for each i ≤ k + 1, di(x) (and di(y)) can be computed by iteratively applying
d ∈ FL ⊆ FP at most (k + 1)2 times. This means that lines 4 and 5 can be executed in time
O((k+1)2 ·q′′′(n)) = O(q′′′(n)) for some polynomial q′′′. Moreover, the remaining loop is iterated
at most k + 1 times, and again, the values that are computed inside the loop can be computed
in time O(q′′′(n)), hence the entire loop can be executed in time O((k + 1) · q′′′(n)) = O(q′′′(n)).

Overall, the set S can be decided in time O(t(q(n))) for some polynomial q. 2

Claim 11.1.6 If s(n) ≥ log(n) and f ∈ FSPACE(s), then S ∈ DSPACE(s).

Proof Let s(n) ≥ log(n) such that f ∈ FSPACE(s). First, observe that for all i ≤ k + 2
we have f (i)(x) ∈ FSPACE(s), which is shown by induction on i using the facts that s ≥ log
and that f is polynomially length-bounded. By the polynomial length bound of f (i), and by
f (i) ∈ FSPACE(s) and d ∈ FL, we also obtain di ∈ FSPACE(s) for all i ≤ k + 1. Hence, all
variables and functions can be computed in FSPACE(s). Also recall that S0, S1 ∈ L, so we can
decide x, y, z ∈ S0, S1 in DSPACE(s). 2

By the above two claims, item 2 and item 3 of the lemma hold (for some polynomial q). We
now continue to prove the first item as well. First, choose some constant c′ that is large enough
such that

2 · log(k−1)(c3 · log(n+ 3c)) ≤ c′ · (log(k)(n) + 1) (11.3)

holds for all n. We further define h as the function computed by the algorithm described in
Figure 11.2.

On input x:
1. n := |x|, m := 6c′ · dlog(k)(n) + 1e+ k + 7
2. for i := 1 to m
3. // here |f (i)(x)| ≤ p(3)(n)
4. if cS(x) 6= cS(f (i)(x)) then return f (i)(x)
5. // this line is never reached

Figure 11.2: Algorithm for the function h.

Claim 11.1.7 ([Gla10]) In the algorithm for h, the invariant in line 3 holds.

Proof Assume there exists an i ∈ [1,m] such that the algorithm reaches the i-th iteration of the
loop and there it holds that |f (i)(x)| > p(3)(n). Choose the smallest such i and let r = l−1(n).
Note that i ≥ 4, since f ’s length is bounded by p(n).

Observe that by (11.1), l−1(|f (i)(x)|) ≥ l−1(p(p(n))) = r + 1. From (11.1) we also obtain
that either

l−1(p(n)) = r and l−1(p(p(n))) = r + 1 (11.4)

or

l−1(p(n)) = l−1(p(p(n))) = r + 1 and l−1(p(3)(n)) = r + 2. (11.5)

154 Chapter 11. Deterministic Coin Tossing

Recall that by (11.2), if j0 < j2 such that l−1(|f (j0)(x)|) = r and l−1(|f (j2)(x)|) = r + 2,
then there exists j1 ∈ (j0, j2 − 2] such that l−1(|f (j1)(x)|) = r + 1 and l−1(|f (j1+1)(x)|) = r + 1.
If (11.4) holds, then l−1(|f(x)|) ≤ r and so there exists j ∈ [2, i] such that for u = f (j−2)(x),
v = f (j−1)(x) and w = f (j)(x) it holds that l−1(|u|) = l−1(|v|) = r and l−1(|w|) = r+ 1. If (11.5)
holds, then there exists j ∈ [2, i] such that for u = f (j−2)(x), v = f (j−1)(x) and w = f (j)(x) it
holds that l−1(|u|) = l−1(|v|) = r+ 1 and l−1(|w|) = r+ 2. In both cases we have cS0(u) = cS0(v)
and cS0(v) = cS1(w). If we consider the algorithm for S, then we see that u /∈ S and v ∈ S.
Therefore, in the algorithm for h, the condition in line 4 is either satisfied for j − 2 < i or for
j − 1 < i. This contradicts our assumption that we reach the i-th iteration of the loop. 2

Claim 11.1.8 The algorithm for h never reaches line 5.

Proof Assume that for some input x, the algorithm reaches line 5. Let n = |x| and m =
6c′ · dlog(k)(n) + 1e + k + 7. Let xi = f (i)(x) for i ≥ 0. Hence, for all i ∈ [1,m] it holds that
cS(x) = cS(xi). Without loss of generality let us assume that xi ∈ S for all i ∈ [0,m].

All remaining arguments refer to the algorithm for S. For i ∈ [1,m] it holds that the
algorithm on input xi does not stop in line 2, since otherwise the algorithm on input xi−1 stops
in line 3 which contradicts the assumption xi−1 ∈ S (note that if the algorithm on input xi stops
in line 2, then by (11.2), on input xi−1 it cannot stop in line 2 as well.) So for all i ∈ [1,m], the
algorithm on input xi reaches line 4.

For i ≥ 1, let yi and zi denote the values of the program variables y and z when the algorithm
for S works on input xi. We show that there are not too many elements i ∈ [1,m] such that the
algorithm on input xi stops in line 4.

By Claim 11.1.7, for i ∈ [1,m], |xi| ≤ p(3)(n). First, we inductively show that for all j ∈ [0, k]
and all i ∈ [1,m− j − 1] it holds that abs(dj+1(xi)) ≤ 2 · log(j)(p(3)(n)).

• Let j = 0 and i ∈ [1,m− 1]. For abs(dj+1(xi)) we obtain:

abs(d1(xi)) = abs(d(d0(xi), d0(xi+1))) = blog(2 · abs(d0(xi+1)− d0(xi))c

≤ log(2 · 2p(3)(n)) = 1 + p(3)(n) ≤ 2 · p(3)(n) = 2 · log(0)(p(3)(n))

• Let 0 < j ≤ k and suppose the inequality holds for j − 1 and all i ∈ [1,m− (j − 1)− 1] =
[1,m− j]. For i ∈ [1,m− j − 1] we obtain:

abs(dj+1(xi)) = abs(d(dj(xi), dj(xi+1))) = blog(2 · abs(dj(xi+1)− dj(xi))c
≤ log(2 · (abs(dj(xi+1)) + abs(dj(xi))))

≤ log(2 · 2 · (2 · log(j−1)(p(3)(n))))

≤ 3 + log(log(j−1)(p(3)(n)))

≤ 2 · log(j)(p(3)(n))

Note that the last step holds because we have chosen c (and hence p) large enough such
that it holds that log(k)(p(3)(n)) ≥ 3 for all n.

We obtain that for all i ∈ [1,m− k − 1] it holds that

abs(dk+1(xi)) ≤ 2 · log(k)(p(3)(n)) = 2 · log(k)(((nc + c)c + c)c + c)

≤ 2 · log(k−1)(log((n+ 3c)c
3
)) = 2 · log(k−1)(c3 · log(n+ 3c))

≤ c′ · (log(k)(n) + 1),

11.1. Autoreductions and Ruling Sets 155

where the last step holds because of inequation (11.3).
We now consider the sequence of dk+1(xi) for i ∈ [1,m − k − 4]. This sequence is not

increasing, since otherwise we stop in line 5 which contradicts the assumption xi ∈ S. We have
seen that the values in this sequence are integers in [−c′ · (log(k)(n) + 1), c′ · (log(k)(n) + 1)]. So
the number of positions where the sequence decreases is at most

2c′ · (log(k)(n) + 1) ≤ m− k − 7

3
.

This shows that the number of i ∈ [1,m− k − 4] such that the algorithm on input xi stops in
line 4 is at most (m− k− 7)/3 = (m− k− 4)/3− 1. By a pigeon hole argument, there exists an
i ∈ [1,m− k − 4] such that the algorithm reaches the loop in line 6 for the inputs xi, xi+1, and
xi+2. We finish the proof of the claim with the following case distinction:

Case 1: On some u ∈ {xi, xi+1, xi+2}, the algorithm terminates after less than k+ 1 iterations.
Choose v ∈ {xi, xi+1, xi+2} such that the algorithm on input v terminates after k0 < k + 1
iterations, and for each w ∈ {xi, xi+1, xi+2}, the algorithm on input w does not terminate after
less than k0 iterations. Let j0 denote the value of the variable j of the algorithm on input v in
the iteration where the algorithm terminates. Hence we have dj0(v) 6= 0.

Next we will show that for all w ∈ {xi, xi+1, xi+2} we have dj0+1(w) = 0. If j0 = k + 1 we
have dj0+1(w) = dk+2(w) = d(dk+1(w), dk+1(f(w))) = 0, because for w we reach the loop and
do not terminate in line 4 or line 5, which is only possible if dk+1(w) = dk+1(f(w)). If j0 < k+ 1
we have dj0+1(w) = 0, because, by the choice of v, the algorithm on input w does not terminate
after less than k0 iterations. So for all w ∈ {xi, xi+1, xi+2} we have dj0+1(w) = 0.

This means dj0(xi) = dj0(xi+1) = dj0(xi+2). Together with dj0(v) 6= 0 we obtain dj0(xi) =
dj0(xi+1) = dj0(xi+2) 6= 0, hence d(dj0−1(xi), dj0−1(xi+1)) = d(dj0−1(xi+1), dj0−1(xi+2)) 6= 0.

By Lemma 11.1.3 it follows that there are i1, i2 ∈ [i, i+ 2] such that

bdj0−1(xi1)/2abs(dj0 (xi1))c is even ⇐⇒ bdj0−1(xi2)/2abs(dj0 (xi2))c is odd.

Hence the algorithm accepts xi1 if and only if it rejects xi2 . This contradicts xi1 , xi2 ∈ S.

Case 2: On each u ∈ {xi, xi+1, xi+2}, the algorithm reaches the (k + 1)-st iteration. Recall
that k ≥ 1. Since the algorithm does not stop in the k-th iteration we have d2(xi) = d2(xi+1) =
d2(xi+2) = 0, which means that d1(xi) = d1(xi+1) = d1(xi+2) = d(xi, xi+1). Since f(xi) 6= xi we
have xi 6= xi+1, hence d1(xi) = d1(xi+1) = d1(xi+2) 6= 0. By Lemma 11.1.3 it follows that there
are i1, i2 ∈ [i, i+ 2] where

bxi1/2abs(d1(xi1))c is even ⇐⇒ bxi2/2abs(d1(xi2))c is odd.

Hence the algorithm accepts xi1 if and only if it rejects xi2 . This contradicts xi1 , xi2 ∈ S.

In each case we obtain a contradiction, so our assumption was wrong, and the claim holds. 2

Given the last two claims, we can now finish our proof of item 1 as well. By Claim 11.1.8, there
must exist some iteration with i ≤ m = 6c′ · dlog(k)(n)+1e+k+7 ≤ (12c′+k+7) · (log(k)(n)+1)
where the algorithm for h on input x stops, hence cS(x) 6= cS(f (i)(x)). By Claim 11.1.7 it holds
that |f (j)(x)| ≤ p(3)(|x|) for all j ≤ i. Hence also item 1 of the lemma holds. Finally, note that
we have shown item 1 and item 3 for different polynomials. Clearly we can choose a single
polynomial q for which both items hold. 2

Our main result in this section is the following lemma. It shows that we can shift complexity
from the reduction function to the separator such that after at most two steps we find a change
in the membership to the separator.

156 Chapter 11. Deterministic Coin Tossing

Lemma 11.1.9 Let f be a polynomially length-bounded function such that f(x) 6= x for all x.
For every k ≥ 1 there exist a set S and a function g with the following properties:

1. cS(g(x)) 6= cS(f(g(x)))
2. g(x) ∈ {x, f(x)}
3. If s(n) ≥ log(n) and f ∈ FSPACE(s), then S ∈ DSPACE(s · log(k)) and g ∈ FSPACE(s).
4. If t(n) ≥ n and f ∈ FTIME(t), then S ∈ DTIME(O(t ◦ q)) and g ∈ FTIME(O(t ◦ q)),

where q is some polynomial.

Proof Let f be a function and p be a polynomial with f(x) 6= x and |f(x)| ≤ p(|x|) for all x.
By Lemma 11.1.4 there exist a set S′, a polynomial p′, and some constant c such that for all x
there exists some i ≤ c · (1 + log(k)(|x|)) with cS′(x) 6= cS′(f

(i)(x)) and |f (j)(x)| ≤ p′(|x|) for all
j ≤ i. We define S to be the set decided by the algorithm described in Figure 11.3.

On input x:
1. y := x, i := 0
2. while (y /∈ S′ or f(y) ∈ S′):
3. y := f(y), i := i+ 1
4. accept if i is even, and reject otherwise

Figure 11.3: Algorithm for the set S.

Furthermore, we define the function g by

g(x) :=

{
f(x) if x ∈ S′ and f(x) /∈ S′

x otherwise

for all x. Note that by this definition, item 2 of the lemma holds for g.
We will next show that item 1 of the lemma holds. Let x be some arbitrary input. Recall that

after at most O(log(k)(|x|)) iterations of f , the membership to S′ changes. Choose the minimal l
such that f (l)(x) ∈ S′ and f (l+1)(x) /∈ S′. Note that l ∈ O(log(k)(|x|)) and |f (l′)(x)| ≤ p′(p′(|x|))
for all l′ ≤ l. By the choice of l, for all l′ < l it holds that f (l′)(x) /∈ S′ or f (l′+1)(x) ∈ S′. This
means that the algorithm stops after exactly l iterations. We distinguish the following cases:

Case 1: l > 0. By the minimality of l we have x = f (0)(x) /∈ S′ or f(x) = f (1)(x) ∈ S′, which
means that g(x) = x. Moreover, for l′ = l−1 it holds that f (l′)(f(x)) ∈ S′ and f (l′+1)(f(x)) /∈ S′,
and l′ is minimal with this property. Hence, on input f(x), the algorithm for S stops after l − 1
iterations, and we obtain g(x) ∈ S ⇐⇒ x ∈ S ⇐⇒ l is even ⇐⇒ l − 1 is odd ⇐⇒ f(x) /∈
S ⇐⇒ f(g(x)) /∈ S.

Case 2: l = 0. This means that x ∈ S′ and f(x) /∈ S′, and hence g(x) = f(x). So, for the
smallest l′ ∈ N with f (l′)(f(x)) ∈ S′ and f (l′+1)(f(x)) /∈ S′ it holds that l′ > 0, and we obtain
g(x) ∈ S ⇐⇒ f(x) ∈ S ⇐⇒ f(f(x)) /∈ S ⇐⇒ f(g(x)) /∈ S.

In each case we obtain cS(g(x)) 6= cS(f(g(x))), so item 1 of the lemma holds for g. It remains
to argue for the runtime and the space requirements of the algorithm. We have the following
claims.

Claim 11.1.10 If f ∈ FTIME(t) for some t with t(n) ≥ n, then S ∈ DTIME(O(t(q(n)))) and
g ∈ FTIME(O(t(q(n)))), where q is some polynomial.

11.2. Many-One Complete Sets 157

Proof Suppose that t(n) ≥ n and f ∈ FTIME(t). By Lemma 11.1.4 we have S′ ∈
DTIME(O(t(q′(n)))) for some polynomial q′. Then, g ∈ FTIME(O(t(q′′(n)))) for some polyno-
mial q′′. Next, we consider the algorithm for S. There exists a constant c′ such that we iterate
at most

l ≤ c · (1 + log(k)(|x|)) + c · (1 + log(k)(p′(p′(|x|)))) ≤ c′ · (1 + log(k)(|x|))

times. In each iteration, we compute f and decide S′ on inputs of length at most p′(p′(|x|)), which
is possible in time O(t(p′(p′(|x|)))) and O(t(q′(p′(p′(|x|))))), respectively. Hence there exists a
polynomial q′′ such that the entire loop can be executed in time O(c′ · (1 + log(k)(n)) · t(q′′(n))),
and thus there exists a polynomial q such that the entire algorithm can be executed in time
O(t(q(n))). 2

Claim 11.1.11 If s(n) ≥ log(n) and f ∈ FSPACE(s), then S ∈ DSPACE(s · log(k)) and
g ∈ FSPACE(s).

Proof Suppose that s(n) ≥ log(n) and f ∈ FSPACE(s). By Lemma 11.1.4 we have S′ ∈
DSPACE(s), hence g ∈ FSPACE(s) (here we need to recompute each bit of the function f on
input x, which is possible in space s since |f(x)| ≤ p(|x|) and s(n) ≥ log(n)).

Next, consider the algorithm for S. We have already argued that we iterate at most
c′ · (1 + log(k)(|x|)) times, and that in each iteration, the length of y is bounded by p′(p′(|x|)),
and hence in each iteration, the single bits of y can be addressed by O(log(|x|)) many bits.
So by a blockwise recomputation we obtain S ∈ DSPACE(O(s(n) · c′ · (1 + log(k)(n)))) =
DSPACE(s(n) · log(k)(n)). This shows the claim. 2

2

11.2 Many-One Complete Sets

Given a ≤log
m -autoreduction f for some set A that is ≤log

m -complete for some class C, we apply
the main result of the previous section to generate a 2-ruling set S for f . Since the complexity
of S is only slightly higher than the complexity of f , we will obtain A ∩ S ∈ C and A ∩ S ∈ C.
Considering some input x, we then find two elements y, z on f ’s trace on x with the same
membership to A as x such that exactly one is contained in S. Hence, {y, z} reduces A to A∩ S
and A ∩ S. So A is ≤log

m -complete for C, and A ∩ S and A ∩ S are ≤log
2-dtt-complete for C. This

shows that A is weakly ≤log
2-dtt-mitotic.

Theorem 11.2.1 Let c ≥ 1 and let C ⊇ (DSPACE(log · log(c))∩P) be closed under intersection.

If A is ≤log
m -complete for C and ≤log

m -autoreducible, then A is weakly ≤log
2-dtt-mitotic.

Proof Let f ∈ FL be a ≤log
m -autoreduction for A. From Lemma 11.1.9 we obtain a set

S ∈ (DSPACE(log · log(c))∩P) and a function g ∈ FL such that for all x it holds that cS(g(x)) 6=
cS(f(g(x))) and g(x) ∈ {x, f(x)}. We show that A ∩ S and A ∩ S are ≤log

2-dtt-complete for C.
Note that (DSPACE(log · log(c)) ∩ P) is closed under complementation, hence we have S ∈ C

and S ∈ C. Since C is closed under intersection, we obtain A ∩ S ∈ C and A ∩ S ∈ C. So it
remains to show the ≤log

2-dtt-hardness of A ∩ S and A ∩ S for C. Since A is ≤log
m -hard for C, it

suffices to show A ≤log
2-dtt A∩S and A ≤log

2-dtt A∩S. Observe that cA(x) = cA(g(x)) = cA(f(g(x)))

158 Chapter 11. Deterministic Coin Tossing

and {g(x), f(g(x))} ∩ S 6= ∅. Let h(x) := {g(x), f(g(x))}. If x ∈ A, then h(x) ⊆ A, hence
h(x) ∩ (S ∩A) = (h(x) ∩A) ∩ S = h(x) ∩ S 6= ∅. If x /∈ A, then h(x) ∩ (A ∩ S) ⊆ h(x) ∩A = ∅.
Hence, h shows that A ≤log

2-dtt A ∩ S. Analogously, h shows that A ≤log
2-dtt A ∩ S. So, A is

≤log
m -complete, and A∩ S and A∩ S are ≤log

2-dtt-complete for C. This in particular implies that A

is weakly ≤log
2-dtt-mitotic. 2

Recall that by Theorem 10.3.1, every ≤log
m -complete set for NEXP is ≤log

m -autoreducible.
Since NEXP satisfies the requirements of Theorem 11.2.1, all ≤log

m -complete sets for NEXP are
weakly ≤log

2-dtt-mitotic. Moreover, Buhrman [Buh93] shows that all ≤p
1-tt-complete sets for NEXP

are even ≤p
m-complete for NEXP. His proof also shows that all ≤log

1-tt-complete sets for NEXP are

≤log
m -complete for NEXP, so even all ≤log

1-tt-complete sets for NEXP are weakly ≤log
2-dtt-mitotic.

Corollary 11.2.2 1. Every ≤log
m -complete set for NEXP is weakly ≤log

2-dtt-mitotic.

2. Every ≤log
1-tt-complete set for NEXP is weakly ≤log

2-dtt-mitotic.

11.3 Truth-Table Complete Sets with One Query

We generalize the approach that we used in the last section to truth-table autoreductions that
ask exactly one query. We can think of such a truth-table autoreduction for some set A as two
functions f and f ′, where f ′ maps to the set of all unary Boolean functions, such that for all x
it holds that f(x) 6= x and cA(x) = f ′(x)(cA(f(x))). Note that we can modify the autoreduction
such that f ′ never maps to a constant function. We construct an autoreduction that on each
input either has a few successive elements in its trace on which it behaves like a many-one
autoreduction, or ends up after a few steps in a small cycle. We treat cycles directly and proceed
on many-one parts of the trace similar to the previous section.

Theorem 11.3.1 Let c ≥ 1 and let C ⊇ (DSPACE(log · log(c))∩P) be closed under intersection.

If A is ≤log
1-tt-complete for C and ≤log

1-tt-autoreducible, then A is weakly ≤log
2-tt-mitotic.

Proof Since A is ≤log
1-tt-autoreducible, there are functions f and f ′ ∈ FL such that f ′ maps

to the set of all unary Boolean functions, and for all x it holds that x 6= f(x) and cA(x) =
f ′(x)(cA(f(x))). Note that we can assume that A is non-trivial (otherwise the result trivially
holds), and hence that further f ′(x) ∈ {id,not} for all x. We define a function g by

g(x) := f (k)(x) for k ≤ 3 minimal with x 6= f (k)(x) and cA(x) = cA(f (k)(x)),
if such a k exists, and

(11.6)

g(x) := f(x) otherwise. (11.7)

Observe that g ∈ FL (because we can decide cA(x) = cA(f (k)(x)) for k ≤ 3 by looking at f and
f ′) and g(x) 6= x for all x. Furthermore, for every x we have the following observation:

cA(x) = cA(g(x)) ⇐⇒ g(x) is defined according to (11.6) (11.8)

For the remainder of the proof, for every x and i, we denote xi := g(i)(x).

Claim 11.3.2 For every x, at least one of the following holds:

• x2 = x4

• cA(xk) = cA(xk+1) = cA(xk+2) for some k ≤ 2

11.3. Truth-Table Complete Sets with One Query 159

Proof Suppose for some x, the claim does not hold, hence x2 6= x4 (and so x1 6= x3 and
x0 6= x2), and the following holds:

cA(xk) = cA(xk+1) =⇒ cA(xk+1) 6= cA(xk+2), for all k ≤ 2 (11.9)

We distinguish the following cases and show that each case leads to a contradiction.

Case 1: cA(xk) 6= cA(xk+1) and cA(xk+1) 6= cA(xk+2) for some k ≤ 2. This means that
cA(xk) 6= cA(g(xk)) and cA(xk+1) 6= cA(g(xk+1)). By (11.8), this means that g(xk) and g(xk+1)
are defined according to (11.7). Hence we have g(xk) = f(xk) and g(xk+1) = f(xk+1). This
means that xk+2 = g(xk+1) = f(xk+1) = f(g(xk)) = f(f(xk)) = f (2)(xk).

We now argue that xk+2 = xk. Suppose this is not the case, hence xk+2 6= xk. By our
hypothesis, cA(xk+2) = cA(xk). So g(xk) is defined according to (11.6), hence cA(xk) = cA(g(xk)).
This contradicts cA(xk) 6= cA(g(xk)), so we have xk+2 = xk.

Since k ≤ 2, this contradicts either x0 6= x2, x1 6= x3, or x2 6= x4. Hence this case cannot
occur.

Case 2: cA(xk) = cA(xk+1) or cA(xk+1) = cA(xk+2) for all k ≤ 2. If cA(x0) 6= cA(x1), then
cA(x1) = cA(x2), hence cA(x2) 6= cA(x3) by (11.9). If cA(x0) = cA(x1), then cA(x1) 6= cA(x2)
by (11.9), hence cA(x2) = cA(x3), and hence cA(x3) 6= cA(x4) by (11.9). So in either case there
exists some k ≤ 1 such that cA(xk) 6= cA(xk+1), cA(xk+1) = cA(xk+2), and cA(xk+2) 6= cA(xk+3).
So, g(xk+1) is defined according to (11.6), and g(xk) and g(xk+2) are defined according to (11.7).
Hence we have g(xk) = f(xk) and g(xk+2) = f(xk+2).

We first argue that g(xk+1) = f(xk+1) holds. So suppose that g(xk+1) 6= f(xk+1). We
show that this implies a contradiction. Since g(xk+1) is defined according to (11.6), but
g(xk+1) 6= f(xk+1) holds, we know that cA(xk+1) 6= cA(f(xk+1)). Recall that cA(xk) 6= cA(xk+1),
hence we obtain cA(xk) = cA(f(xk+1)) = cA(f(g(xk))) = cA(f(f(xk))) = cA(f (2)(xk)). We now
argue that both xk 6= f (2)(xk) and xk = f (2)(xk) lead to a contradiction. If xk 6= f (2)(xk), then
g(xk) is defined according to (11.6), which contradicts cA(xk) 6= cA(xk+1). If xk = f (2)(xk),
then xk = xk+2, which contradicts either x0 6= x2 or x1 6= x3. So in both cases we obtain a
contradiction, hence g(xk+1) = f(xk+1). This means that xk+3 = g(3)(xk) = f (3)(xk).

We now argue that xk+3 = xk. Suppose this is not the case, hence xk+3 6= xk. From
cA(xk) 6= cA(xk+1) = cA(xk+2) 6= cA(xk+3) we obtain cA(xk) = cA(xk+3). So g(xk) is defined
according to (11.6). But this contradicts cA(xk) 6= cA(xk+1), hence xk+3 = xk.

This means that f (2)(xk+2) = f(f(xk+2)) = f(g(xk+2)) = f(xk+3) = f(xk) = xk+1. Recall
that xk+2 = g(xk+1) = f(xk+1). Since f is an autoreduction, we have xk+1 6= xk+2. Furthermore,
we have cA(xk+1) = cA(xk+2). So g(xk+2) is defined according to (11.6). This contradicts
cA(xk+2) 6= cA(g(xk+2)). Hence this case cannot occur. 2

From Lemma 11.1.9 we obtain a set S ∈ (DSPACE(log · log(c)) ∩ P) and a function h ∈ FL
such that

cS(h(x)) 6= cS(g(h(x))) (11.10)

h(x) ∈ {x, g(x)} (11.11)

for all x. Define the set

S′ := {x ∈ S | x 6= g(2)(x)} ∪ {x | x = g(2)(x) and x < g(x)}

and observe that also S′ ∈ (DSPACE(log · log(c))∩P) holds. We will show that A∩S′ and A∩S′
are ≤log

2-tt-complete for C.

160 Chapter 11. Deterministic Coin Tossing

Note that (DSPACE(log · log(c)) ∩ P) is closed under complement, thus S′, S′ ∈ C. Since C
is closed under intersection, we obtain A ∩ S′ ∈ C and A ∩ S′ ∈ C. So it remains to argue for
the ≤log

2-tt-hardness of A ∩ S′ and A ∩ S′ for C. Since A is ≤log
1-tt-hard for C, it remains to show

A ≤log
2-tt A∩S′ and A ≤log

2-tt A∩S′. We show A ≤log
2-tt A∩S′. Let x be some input. We distinguish

the following cases:

Case 1: x4 = x6. Recall that x4 6= x5. Let i ∈ {0, 1} such that x4+i < x5−i. Then we have
x4+i ∈ S′. We distinguish the following two subcases:

• cA(x) = cA(x4+i). Then we have cA(x) = cA∩S′(x4+i).
• cA(x) 6= cA(x4+i). Then we have cA(x) = 1− cA(x4+i) = 1− cA∩S′(x4+i).

In logspace we can determine i and find out which subcase holds by a constant number of
applications of f and f ′.

Case 2: x4 6= x6. Hence for all k ≤ 4 it holds that xk 6= xk+2, which in particular means
cS′(xk) = cS(xk) for all k ≤ 4, and x2 6= x4. By Claim 11.3.2 it holds that cA(xk) = cA(xk+1) =
cA(xk+2) for some minimal k ≤ 2. Let y = h(xk) and z = g(y). From (11.11) we obtain
cA(xk) = cA(y) = cA(z), and from (11.10) we obtain cS(y) 6= cS(z). Since y, z ∈ {x0, . . . , x4} we
have cS′(y) = cS(y) and cS′(z) = cS(z), which means that cS′(y) 6= cS′(z). We distinguish the
following subcases.

• cA(x) = cA(xk). Then, cA(x) = cA(y) = cA(z), hence cA(x) = max{cA∩S′(y), cA∩S′(z)}.
• cA(x) 6= cA(xk). Then we have 1− cA(x) = cA(y) = cA(z) = max{cA∩S′(y), cA∩S′(z)} and

hence cA(x) = 1−max{cA∩S′(y), cA∩S′(z)}.

In logspace we can determine k and find out which subcase holds by a constant number of
applications of f and f ′.

Hence in logspace we can determine cA(x) with at most two nonadaptive queries to A ∩ S′.
This shows A ≤log

2-tt A∩ S′. The proof for A ≤log
2-tt A∩ S′ works analogously. So overall we obtain

that A is ≤log
1-tt-complete for C and that A ∩ S′ and A ∩ S′ are ≤log

2-tt-complete for C. This in

particular means that A is weakly ≤log
2-tt-mitotic. 2

Corollary 11.3.3 Let c ≥ 1 and let C ⊇ (DSPACE(log · log(c))∩P) be closed under intersection

and complementation. If A is ≤log
m -complete for C, then A is weakly ≤log

2-tt-mitotic.

Proof For every trivial set, the conclusion holds, so consider a non-trivial set A. If A is
≤log

m -complete for C, then A is ≤log
1-tt-complete for C. Moreover, by Proposition 7.4.5 we know

that A is ≤log
1-tt-autoreducible. From Theorem 11.3.1 we obtain that A is weakly ≤log

2-tt-mitotic.
2

Corollary 11.3.4 Every ≤log
m -complete set for P and every ≤log

m -complete set for the levels ∆p
k

of the polynomial-time hierarchy is weakly ≤log
2-tt-mitotic.

11.4. Disjunctive Truth-Table Complete Sets for PSPACE 161

11.4 Disjunctive Truth-Table Complete Sets for PSPACE

We further generalize our approach to ≤p
dtt-complete sets for PSPACE. So suppose we consider

the reduction graph of some disjunctive truth-table autoreduction f for the set A. If we grant
the separator enough resources, then for each input x, it can determine the smallest y ∈ f(x)
such that cA(x) = cA(y) and hence treat f like a many-one reduction. Recall from Chapter 10
that for many complexity classes with sufficiently high computational power we obtain mitoticity
of complete sets by diagonalization techniques. For PSPACE, this works as long as we consider
logspace complete sets, but the simulation of arbitrary polynomial-time reductions might require
more than polynomial space. Consequently, only ≤p

dtt-autoreducibility of ≤p
dtt-complete sets for

PSPACE is known. We show weak ≤p
dtt-mitoticity of these sets.

Lemma 11.4.1 Let A ∈ PSPACE and let f ∈ FP be a ≤p
dtt-autoreduction for A such that f

never maps to the empty set. Then there exists a set S ∈ PSPACE such that for all x there exist
y ∈ f(x) and z ∈ f(y) with the following properties:

1. cA(x) = cA(y) = cA(z)
2. ∅ 6= ({x, y, z} ∩ S) 6= {x, y, z}

Proof We consider the function g with

g(x) :=

{
yi if f(x) = 〈y1, . . . , yk〉 ∧ yi ∈ A ∧ yj /∈ A for all j < i , and

y1 if f(x) = 〈y1, . . . , yk〉 ∧ yj /∈ A for all j ≤ k,

for all x. Since A ∈ DSPACE(p) for some polynomial p, there exists a polynomial q such that
g ∈ FSPACE(q). Furthermore, since g maps to values of f , we have g(x) 6= x for all x, and we
can modify q such that |g(x)| ≤ q(|x|).

We apply Lemma 11.1.9 and obtain a set S ∈ DSPACE(q · log(c)) ⊆ PSPACE (where c ≥ 1
is some constant) and a function h such that h(x) ∈ {x, g(x)} and cS(h(x)) 6= cS(g(h(x))) for all
x. Choose y := g(x) and z := g(y). Hence y ∈ f(x) and z ∈ f(y), and cA(x) = cA(y) = cA(z).
Furthermore, h(x) ∈ {x, y}, so we either have cS(x) 6= cS(y), or cS(y) 6= cS(z). 2

Theorem 11.4.2 Let k ≥ 2 and l = k3 + k2 + k.

1. All ≤p
k-dtt-complete sets for PSPACE are weakly ≤p

l-dtt-mitotic.
2. All ≤p

bdtt-complete sets for PSPACE are weakly ≤p
bdtt-mitotic.

3. All ≤p
dtt-complete sets for PSPACE are weakly ≤p

dtt-mitotic.

Proof If L is ≤p
k-dtt-complete for PSPACE, then L is ≤p

k-dtt-autoreducible [GOP+07]. Let f
be some ≤p

k-dtt-autoreduction for L. We assume that f never maps to the empty set. From
Lemma 11.4.1 we obtain S ∈ PSPACE with the specified properties. We show that L ∩ S is
≤p
l-dtt-complete for PSPACE, the completeness of L ∩ S is shown analogously.

Recall that PSPACE is closed under intersection, so L ∩ S ∈ PSPACE, and it remains
to show hardness. Let m = k2 + k + 1, hence l = k · m. For arbitrary A ∈ PSPACE we
already know that A ≤p

k-dtt L, hence it suffices to show L ≤p
m-dtt L ∩ S. On input x, return

Qx := {x}∪ f(x)∪
⋃
y∈f(x) f(y), which can be computed in polynomial time. The number of the

elements in the output is bounded by 1 + k+ k2 = m. To show that Qx is a reduction as claimed
above, choose y, z as in the lemma. If x ∈ L, then {x, y, z} ⊆ L. So from {x, y, z} ∩ S 6= ∅ and
{x, y, z} ⊆ Qx we obtain (L ∩ S) ∩Qx ⊇ (L ∩ S) ∩ {x, y, z} = S ∩ {x, y, z} 6= ∅. If x /∈ L, then
(L ∩ S) ∩Qx ⊆ L ∩Qx = ∅. This shows the ≤p

l-dtt-hardness.
We have shown item 1. The other items are shown analogously. 2

162 Chapter 11. Deterministic Coin Tossing

11.5 Summary and Discussion

We showed that for many complexity classes, ≤log
m -autoreducibility of ≤log

m -complete sets implies
weak ≤log

2-dtt-mitoticity, and an analogous result holds for ≤log
1-tt-reducibility. In the proof, we

considered the autoreduction graph of an autoreduction function f . We adapted the deterministic
coin tossing technique by Cole and Vishkin [CV86] and showed that it suffices to follow the
trace of f for very few steps to obtain a splitting of A into two equivalent parts. In order to
obtain logspace equivalence, we had to shift some complexity into the separator set, and since
the separator became more complex, we only obtained weak mitoticity.

Recall from the last chapters that ≤log
m -complete sets for P and ∆p

k are ≤log
1-tt-autoreducible,

and in the case of NEXP we even obtain ≤log
m -autoreducibility. The question whether these results

can be improved to logspace mitoticity is open. Our general results provide some progress on this
question, because they show that at least weak ≤log

2-tt-mitoticity or even weak ≤log
2-dtt-mitoticity

holds. It remains open whether this can be improved to ≤log
1-tt-mitoticity or even ≤log

m -mitoticity.

Finally, recall from the last chapter that all ≤log
dtt-complete sets for PSPACE are ≤log

dtt-mitotic,
which we showed by diagonalization. Note that if we consider ≤p

dtt-complete sets for PSPACE,
then this technique might not work, since we do not know whether we can simulate arbitrary
polynomial-time reductions in polynomial space. However, it is known that all ≤p

dtt-complete
sets for PSPACE are ≤p

dtt-autoreducible [GOP+07]. Following the same approach as described
above we showed that all ≤p

dtt-complete sets for PSPACE are weakly ≤p
dtt-mitotic, and a similar

result holds for all ≤p
k-dtt-complete sets for PSPACE. Improving this to ≤p

dtt-mitoticity remains
a challenging task for future work.

Bibliography

[AB09] S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009.

[ABG04] E. Angel, E. Bampis, and L. Gourvès. Approximating the Pareto curve with
local search for the bicriteria TSP(1, 2) problem. Theoretical Computer Science,
310(1-3):135–146, 2004.

[ABGM05] E. Angel, E. Bampis, L. Gourvès, and J. Monnot. (Non-)approximability for the
multi-criteria TSP(1,2). In Fundamentals of Computation Theory, volume 3623 of
Lecture Notes in Computer Science, pages 329–340. Springer Berlin / Heidelberg,
2005.

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and approximation: Combinatorial optimization problems
and their approximability properties. Springer Verlag, 1999.

[AKS12] H. C. An, R. Kleinberg, and D. B. Shmoys. Improving Christofides’ algorithm for
the s-t path TSP. In STOC, pages 875–886, 2012.

[Aro98] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman
and other geometric problems. J. ACM, 45(5):753–782, 1998.

[AS84] K. Ambos-Spies. P-mitotic sets. In E. Börger, G. Hasenjäger, and D. Roding,
editors, Logic and Machines, volume 171 of Lecture Notes in Computer Science,
pages 1–23. Springer Verlag, 1984.

[Bal90] J. L. Balcázar. Self-reducibility. Journal of Computer and System Sciences,
41(3):367–388, 1990.

[Ber77] L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell
University, Ithaca, NY, 1977.

[BF81] J. Beck and T. Fiala. ”Integer-Making” Theorems. Discrete Applied Mathematics,
3(1):1–8, 1981.

[BF92] R. Beigel and J. Feigenbaum. On being incoherent without being very hard.
Computational Complexity, 2:1–17, 1992.

[BFvMT00] H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Separating
complexity classes using autoreducibility. SIAM Journal on Computing, 29(5):1497–
1520, 2000.

[BH77] L. Berman and J. Hartmanis. On isomorphisms and density of NP and other
complete sets. SIAM Journal on Computing, 6(2):305–322, 1977.

163

164 Bibliography

[BHT98] H. Buhrman, A. Hoene, and L. Torenvliet. Splittings, robustness, and structure of
complete sets. SIAM Journal on Computing, 27(3):637–653, 1998.

[BMP08] M. Bläser, B. Manthey, and O. Putz. Approximating multi-criteria max-TSP. In
ESA, pages 185–197, 2008.

[BP87] F. Barahona and W. R. Pulleyblank. Exact arborescences, matchings and cycles.
Discrete Appl. Math., 16(2):91–99, 1987.

[BT94] H. Buhrman and L. Torenvliet. On the structure of complete sets. In Proceedings
9th Structure in Complexity Theory, pages 118–133, 1994.

[Buh93] H. Buhrman. Resource Bounded Reductions. PhD thesis, University of Amsterdam,
1993.

[Car11] C. Carathéodory. Über den Variabilitätsbereich der Fourier’schen Konstanten von
positiven harmonischen Funktionen. Rendiconti del Circolo Matematico di Palermo,
32(1):193–217, 1911.

[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA, 1976.

[CKS81] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981.

[CV86] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal
parallel list ranking. Information and Control, 70(1):32–53, 1986.

[CVZ11] C. Chekuri, J. Vondrák, and R. Zenklusen. Multi-budgeted matchings and matroid
intersection via dependent rounding. In D. Randall, editor, SODA, pages 1080–1097.
SIAM, 2011.

[DS03] B. Doerr and A. Srivastav. Multicolour discrepancies. Combinatorics, Probability
& Computing, 12(4):365–399, 2003.

[Edm65] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
Research of the National Bureau of Standards B, 69:125–130, 1965.

[EG02] M. Ehrgott and X. Gandibleux, editors. Multiple Criteria Optimization: State of
the Art Annotated Bibliographic Survey, volume 52 of Kluwer’s International Series
in Operations Research and Management Science. Kluwer Academic Publishers,
2002.

[Ehr00] M. Ehrgott. Approximation algorithms for combinatorial multicriteria optimization
problems. International Transactions in Operational Research, 7:5–31, 2000.

[Ehr05] Matthias Ehrgott. Multicriteria Optimization (2. ed.). Springer, 2005.

[FGL+11] K. Fleszar, C. Glaßer, F. Lipp, C. Reitwießner, and M. Witek. The complexity
of solving multiobjective optimization problems and its relation to multivalued
functions. Electronic Colloquium on Computational Complexity (ECCC), 18:53,
2011.

165

[FGL+12] K. Fleszar, C. Glaßer, F. Lipp, C. Reitwießner, and M. Witek. Structural com-
plexity of multiobjective NP search problems. In Proceedings 10th Latin American
Symposium on Theoretical Informatics (LATIN), volume 7256 of Lecture Notes in
Computer Science, pages 338–349. Springer, 2012.

[FNW79] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for
finding a maximum weight Hamiltonian circuit. Operations Research, 27(4):799–809,
1979.

[GH92] K. Ganesan and S. Homer. Complete problems and strong polynomial reducibilities.
SIAM Journal on Computing, 21(4):733–742, 1992.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[Gla10] C. Glaßer. Space-efficient informational redundancy. Journal of Computer and
System Sciences, 76(8):792–811, 2010.

[GLS81] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.

[GNR+13a] C. Glaßer, D. T. Nguyen, C. Reitwießner, A. L. Selman, and M. Witek. Au-
toreducibility of complete sets for log-space and polynomial-time reductions. In
Proceedings 40th International Colloquium on Automata, Languages, and Program-
ming (ICALP), volume 7965 of Lecture Notes in Computer Science, pages 473–484.
Springer, 2013.

[GNR+13b] C. Glaßer, D. T. Nguyen, C. Reitwießner, A. L. Selman, and M. Witek. Autore-
ducibility of complete sets for log-space and polynomial-time reductions. Electronic
Colloquium on Computational Complexity (ECCC), 20:47, 2013.

[GOP+07] C. Glaßer, M. Ogihara, A. Pavan, A. L. Selman, and L. Zhang. Autoreducibility,
mitoticity, and immunity. Journal of Computer and System Sciences, 73(5):735–754,
2007.

[GPSZ08] C. Glaßer, A. Pavan, A. L. Selman, and L. Zhang. Splitting NP-complete sets.
SIAM Journal on Computing, 37(5):1517–1535, 2008.

[GRSW10a] C. Glaßer, C. Reitwießner, H. Schmitz, and M. Witek. Approximability and hardness
in multi-objective optimization. In Proceedings 6th Conference on Computability in
Europe (CiE), volume 6158 of Lecture Notes in Computer Science, pages 180–189.
Springer, 2010.

[GRSW10b] C. Glaßer, C. Reitwießner, H. Schmitz, and M. Witek. Hardness and approxima-
bility in multi-objective optimization. Electronic Colloquium on Computational
Complexity (ECCC), 17:31, 2010.

[GRW09] C. Glaßer, C. Reitwießner, and M. Witek. Improved and derandomized approx-
imations for two-criteria metric traveling salesman. Electronic Colloquium on
Computational Complexity (ECCC), 16:76, 2009.

166 Bibliography

[GRW11a] C. Glaßer, C. Reitwießner, and M. Witek. Applications of discrepancy theory in
multiobjective approximation. In Proceedings Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), volume 13 of LIPIcs, pages 55–65.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[GRW11b] C. Glaßer, C. Reitwießner, and M. Witek. Applications of discrepancy theory in
multiobjective approximation. CoRR, abs/1107.0634, 2011.

[GW86] A. Gupta and A. Warburton. Approximation methods for multiple criteria traveling
salesman problems, towards interactive and intelligent decision support systems. In
Proceedings of 7th International Conference on Multiple Criteria Decision Making,
pages 211–217. Springer, 1986.

[GW13] C. Glaßer and M. Witek. Autoreducibility and mitoticity of logspace-complete sets
for NP and other classes. Electronic Colloquium on Computational Complexity
(ECCC), 20:188, 2013.

[GW14] C. Glaßer and M. Witek. Autoreducibility and mitoticity of logspace-complete
sets for NP and other classes. In Proceedings 39th International Symposium of
Mathematical Foundations of Computer Science (MFCS), volume 8635 of Lecture
Notes in Computer Science, pages 311–323. Springer, 2014.

[HKR93] S. Homer, S. A. Kurtz, and J. S. Royer. On 1-truth-table-hard languages. Theoretical
Computer Science, 115(2):383–389, 1993.

[Hoo91] J. A. Hoogeveen. Analysis of Christofides’ heuristic: Some paths are more difficult
than cycles. Operations Research Letters, 10:291–295, 1991.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17(5):935–938, 1988.

[JP85] D. S. Johnson and C. H. Papadimitriou. Performance guarantees for heuristics. In
E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors,
The Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization,
chapter 5, pages 145–180. Wiley, 1985.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[KLSS05] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation algorithms
for asymmetric TSP by decomposing directed regular multigraphs. Journal of the
ACM, 52(4):602–626, 2005.

[Lad73] R. E. Ladner. Mitotic recursively enumerable sets. Journal of Symbolic Logic,
38(2):199–211, 1973.

[Lad75] R. E. Ladner. The circuit value problem is log space complete for P. SIGACT
News, 7(1):18–20, January 1975.

[LL76] R. E. Ladner and N. A. Lynch. Relativization of questions about log space
computability. Mathematical Systems Theory, 10:19–32, 1976.

167

[LLKS85] E. L. Lawler, J. K. Lenstra, A. H. G. Kan, and D. B. Shmoys. The Traveling
Salesman Problem. Wiley Interscience Series in Discrete Mathematics. John Wiley
& Sons, 1985.

[Lyn78] N. A. Lynch. Log space machines with multiple oracle tapes. Theoretical Computer
Science, 6:25–39, 1978.

[Mah82] S. R. Mahaney. Sparse complete sets of NP: Solution of a conjecture of berman
and hartmanis. J. Comput. Syst. Sci., 25(2):130–143, 1982.

[Man05] B. Manthey. Approximability of cycle covers and smoothed analysis of binary search
trees. PhD thesis, Universität zu Lübeck, 2005.

[Man12a] B. Manthey. Deterministic algorithms for multi-criteria Max-TSP. Discrete Applied
Mathematics, 160(15):2277 – 2285, 2012.

[Man12b] B. Manthey. On approximating multicriteria TSP. ACM Transactions on Algo-
rithms, 8(2):17, 2012.

[MR09] B. Manthey and L. S. Ram. Approximation algorithms for multi-criteria traveling
salesman problems. Algorithmica, 53(1):69–88, 2009.

[MVV87] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987.

[NS12] D. T. Nguyen and A. L. Selman. Autoreducibility for NEXP. Seventh International
Conference on Computability, Complexity, and Randomness, 2012.

[NS14] D. T. Nguyen and A. L. Selman. Non-autoreducible sets for NEXP. In Proceedings
31st Symposium on Theoretical Aspects of Computer Science (STACS), Leibniz
International Proceedings in Informatics (LIPIcs), pages 590–601. Springer Verlag,
2014.

[OW91] M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibility
of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471–483, 1991.

[Pal14] K. Paluch. Better approximation algorithms for maximum asymmetric traveling
salesman and shortest superstring. CoRR, abs/1401.3670, 2014.

[Pap94] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[PEvZ12] K. Paluch, K. Elbassioni, and A. v. Zuylen. Simpler Approximation of the Maximum
Asymmetric Traveling Salesman Problem. In C. Dürr and T. Wilke, editors, 29th
International Symposium on Theoretical Aspects of Computer Science (STACS
2012), volume 14 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 501–506, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[PL86] D. Plummer and L. Lovász. Matching Theory. North-Holland Mathematics Studies.
Elsevier Science, 1986.

[PMM09] K. Paluch, M. Mucha, and A. Madry. A 7/9 - approximation algorithm for the
maximum traveling salesman problem. In I. Dinur, K. Jansen, J. Naor, and
J. Rolim, editors, Proceedings of APPROX/RANDOM, volume 5687 of Lecture
Notes in Computer Science, pages 298–311. Springer Berlin / Heidelberg, 2009.

168 Bibliography

[PR82] M. W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings. Mathe-
matics of Operations Research, 7(1):67–80, 1982.

[PV06] C. Papadimitriou and S. Vempala. On the approximability of the traveling salesman
problem. Combinatorica, 26(1):101–120, 2006.

[PY82] C. H. Papadimitriou and M. Yannakakis. The complexity of restricted spanning
tree problems. J. ACM, 29(2):285–309, 1982.

[PY93] C. Papadimitriou and M. Yannakakis. The traveling salesman problem with
distances one and two. Mathematics of Operations Research, 18(1):1–11, 1993.

[PY00] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs
and optimal access of web sources. In FOCS ’00: Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, pages 86–95, Washington, DC,
USA, 2000. IEEE Computer Society.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177 – 192, 1970.

[Sch83] A. Schrijver. Short proofs on the matching polyhedron. Journal of Combinatorial
Theory, Series B, 34(1):104 – 108, 1983.

[SG76] S. Sahni and T. F. Gonzalez. P-complete approximation problems. J. ACM,
23(3):555–565, 1976.

[ST42] A. H. Stone and J. W. Tukey. Generalized “sandwich” theorems. Duke Math J.,
9(2):356–359, 1942.

[Sto76] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1–22, 1976.

[SW85] W. Stromquist and D. R. Woodall. Sets on which several measures agree. Journal
of Mathematical Analysis and Applications, 108(1):241–248, 1985.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata.
Acta Inf., 26(3):279–284, 1988.

[Tra70] B. Trakhtenbrot. On autoreducibility. Dokl. Akad. Nauk SSSR, 192(6):1224–1227,
1970. Translation in Soviet Math. Dokl. 11(3): 814–817, 1970.

[Tut54] W. T. Tutte. A short proof of the factor theorem for finite graphs. Canad. J.
Math., 6:347–352, 1954.

[Vaz01] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[Wag87] K. W. Wagner. More complicated questions about maxima and minima, and some
closures of NP. Theoretical Computer Science, 51(1–2):53 – 80, 1987.

[Wra76] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Com-
puter Science, 3(1):23 – 33, 1976.

Index

(f ◦ g)(·) (composition of f and g), 12

A−B (set difference), 11

A4B (symmetric set difference), 11

L(M) (accepted language), 14

L(MO) (accepted language), 17

M(x) (configuration graph), 14

MO (oracle Turing machine), 17

[, (,),] (interval notation), 11

[e] (vertices of edge e), 12

Σ∗, 11

Σn, 11

Σ≥n, 11

Σ≤n, 11

abs(·), 11

〈·〉 (encoding), 11

|A| (cardinality of A), 11

χA(·) (semicharacteristic function of A), 11

coC (complement class), 16

degF (v), 12

ε (empty word), 11

d·e, 11

≤-autoreducible set, 100

≤-complete set for C, 19

≤-hard set for C, 19

≤-mitotic set, 100, 101

weakly ≤-mitotic set, 100, 101

≤-self-reducible set, 108, 109

|w| (length of w), 11

b·c, 11

log(·), 12

conv(·) (convex hull), 78

‖·‖1, 62

‖·‖∞, 62

A (complement of A), 11

Q, 11

R, 11

RE , 78

sgn(·), 11

Z, 11

N, 11
N+, 11
cA(·) (characteristic function of A), 11
d(·, ·) (distance function for integers), 151
f (i)(·) (ith iteration fo f), 12
r-ruling set, 151

affine
independent, 78
rank, 78

algorithm
α-approximation, 26
FPRAS, 26
FPTAS, 26
PRAS, 26
PTAS, 26
randomized, 26

amplification, 26
fails, 26
succeeds, 26

randomized α-approximation, 26
approximation, 26

α-approximate Pareto set, 26
α-approximate solution set, 26
s approximates t, 26

autoreducibility, 100

Boolean formula, 13
3-CNF, 120
3-DNF, 120
clause, 13
CNF (conjunctive normal form), 13
literal, 13
negation, 13
satisfiable, 14
truth assignment, 13

satisfies, 14
variable, 13

Christofides’ algorithm, 33

169

170 Index

combination
affine, 78
convex, 78
linear, 78

complexity class, 15
PH, 18
AL, 17
ASPACE(·), 17
ATIME(·), 17
DSPACE(·), 15
DTIME(·), 15
DTIME(·)O, 17
DTIME(·)C , 17
∆p
k, 18

E, 16
EXP, 16
L, 16
LIN, 16
NE, 16
NEXP, 16
NL, 16
NLIN, 16
NP, 16
NPSPACE, 16
NSPACE(·), 15
NTIME(·), 15
P, 16
PSPACE, 16
Πp
k, 18

Σp
k, 18

relativized, 17
cycle, 12

Hamiltonian, 12
cycle cover, 13

r-near, 13
partial, 13

deterministic coin tossing, 149
diagonalization, 135
discrepancy theory, 62

function class, 15
FSPACE(·), 15
FTIME(·), 15
FL, 16
FP, 16

graph, 12
Nk-labeled, 13
bipartite, 12

complete, 12
directed, 12

loop-free, 12
strongly connected, 13
weakly connected, 13

edge, 12
covers, 12
incident, 12

Eulerian, 13
labeling function, 13
multigraph, 12

connected, 12
subgraph, 12
undirected, 12

connected, 12
simple, 12

vertex, 12
degree, 12
matched, 13

weight function, 13

incidence vector, 78
isomorphism conjecture, 99

Landau notation, 12
2O(f), 12
O(f), 12
Ω(f), 12
Θ(f), 12

local checkability, 117
logspace, 16

computable, 16

matching, 13
r-near perfect, 13
fractional, 78
near-perfect, 13
path matching, 36
perfect, 13

mitoticity, 100
separator, 100
weak mitoticity, 100

necklace splitting problem, 73
non-trivial, 11

paddability, 99
Pareto set, 25
path, 12

Hamiltonian, 12

Index 171

poly-logspace
reduction, 19

polyhedron, 79
polynomial-time, 16

computable, 16
polynomial-time hierarchy, 18
polytope, 79

full-dimensional, 79
matching polytope, 79
perfect matching polytope, 79
rational, 81

solvable, 81
vertex, 79

problem
CNF-SAT, 25
∆k-3SAT, 120
Πk-3SAT, 120
Σk-3SAT, 120
α-approximable, 27
MaxSAT, 25
AGAP, 111
CVP, 111
k-objective problem, 25
Min∆TSP, 37
Min∆TSPP, 37
Min∆TSPPs, 37
Min∆TSPPst, 37
k-MaxATSP, 28
k-MaxDCCc, 60
k-MaxDCC, 60
k-MaxDFCC, 60
k-MaxDFCCc, 60
k-MaxM, 75
k-MaxPM, 29
k-MaxSAT, 28
k-MaxSTSP, 28
k-MaxUCCc, 60
k-MaxUCC, 60
k-MaxUFCC, 60
k-MaxUFCCc, 60
k-Min∆TSPPst, 37
k-Min∆TSPPs, 37
k-Min∆TSPP, 37
k-Min∆TSP, 37
k-MinPM, 29
k-SP, 29
k-MST, 28
Multigraph k-MinPM, 38
Multigraph k-MinPMP, 38

Multigraph k-SP, 38
Multigraph k-MST, 38
Multigraph k-MinTSPPst, 28
Multigraph k-MinTSPPs, 28
Multigraph k-MinTSPP, 28
Multigraph k-MinTSP, 27
k-r-MaxDFPCC, 75
k-r-MaxUFCC, 76
randomized α-approximable, 27

reducibility notion, 18
≡ (≤-equivalent), 19
≤-li (length-increasing reduction), 140

≤log[k]
T , 19

≤log2-lin
m , 136

≤log2-lin
1-tt , 136

≤log
αtt, 19

≤log
log-T, 19

≤log
k-ctt, 19

≤log
k-dtt, 19

≤log
k-tt, 19

≤log
T , 19

≤log
bctt, 19

≤log
bdtt, 19

≤log
btt, 19

≤log
ctt , 19

≤log
dtt, 19

≤log
m , 19
≤log

tt , 19
≤p
αtt, 18
≤p

log-T, 18

≤p
k-ctt, 19
≤p
k-dtt, 18
≤p
k-tt, 18
≤p

T, 18
≤p

bctt, 19
≤p

bdtt, 18
≤p

btt, 18
≤p

ctt, 18
≤p

dtt, 18
≤p

m, 19
≤p

tt, 18

≤log[k]
log-T, 19

complete, 19
hard, 19

self-reducibility, 108

172 Index

separating hyperplane, 79

separation problem, 79

strong, 79

weak, 80

space-constructible, 15

time-constructible, 15

trace of f , 149

traveling salesman path problem, 27

traveling salesman problem

maximum, 28

minimum, 27

tree, 13

root, 13

spanning, 13

tree doubling, 33

Turing machine, 14

accepted language, 14

accepts, 14

alternating, 16

accepting configuration subgraph, 16

accepts, 17

computation, 14

accepting, 14

rejecting, 14

configuration, 14

accepting, 14

existential, 16

rejecting, 14

start, 14

stop, 14

universal, 16

configuration graph, 14

decides L, 14

deterministic, 14

nondeterministic, 14

oracle Turing machine, 17

state

existential, 16

universal, 16

works in space s, 15

works in time t, 15

Turing transducer, 14

computes f , 15

transcript, 124

works in space s, 15

works in time t, 15

Tutte’s reduction, 88

walk, 12
closed, 12
endpoints, 12
spanning, 12

