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Abstract

1. Abstract

Fear conditioning is an efficient model of associative learning, which has greatly 

improved our knowledge of processes underlying the development and maintenance of 

pathological  fear  and  anxiety.  In  a  differential  fear  conditioning  paradigm,  one  initially 

neutral  stimulus  (NS)  is  paired  with  an  aversive  event  (unconditioned  stimulus,  US), 

whereas another stimulus does not have any consequences. After a few pairings the NS is 

associated with the US and consequently becomes a conditioned stimulus (CS+), which 

elicits a conditioned response (CR). 

The  formation  of  explicit  knowledge  of  the  CS/US  association  during  conditioning  is 

referred to  as  contingency awareness.  Findings about  its  role  in  fear  conditioning are 

ambiguous. The development of a CR without contingency awareness has been shown in  

delay  fear  conditioning  studies.  One  speaks  of  delay  conditioning,  when  the  US 

coterminates with or follows directly on the CS+. In trace conditioning, a temporal gap or  

“trace  interval”  lies  between  CS+  and  US.  According  to  existing  evidence,  trace 

conditioning is not possible on an implicit level and requires more cognitive resources than 

delay conditioning. 

The associations formed during fear conditioning are not exclusively associations between 

specific cues and aversive events.  Contextual  cues form the background milieu of the 

learning  process  and  play  an  important  role  in  both  acquisition  and  the  extinction  of 

conditioned fear and anxiety. A common limitation in human fear conditioning studies is the 

lack of ecological validity, especially regarding contextual information. The use of Virtual 

Reality (VR) is a promising approach for creating a more complex environment which is 

close to a real life situation.
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Abstract

I  conducted three studies to  examine cue and contextual  fear  conditioning  with 

regard to the role of contingency awareness. For this purpose a VR paradigm was created, 

which allowed for exact manipulation of cues and contexts as well as timing of events. In 

all three experiments, participants were guided through one or more virtual rooms serving 

as contexts, in which two different lights served as CS and an electric stimulus as US. 

Fear potentiated startle (FPS) responses were measured as an indicator of implicit fear  

conditioning. To test whether participants had developed explicit awareness of the CS-US 

contingencies, subjective ratings were collected. 

The first study was designed as a pilot study to test the VR paradigm as well as the 

conditioning protocol. Additionally, I was interested in the effect of contingency awareness. 

Results  provided  evidence,  that  eye  blink  conditioning  is  possible  in  the  virtual 

environment  and  that  it  does  not  depend  on  contingency  awareness.  Evaluative 

conditioning,  as  measured  by  subjective  ratings,  was  only  present  in  the  group  of 

participants who explicitly learned the association between CS and US. 

To examine acquisition and extinction of both fear associated cues and contexts, a 

novel cue-context generalization paradigm was applied in the second study. Besides the 

interplay  of  cues  and  contexts  I  was  again  interested  in  the  effect  of  contingency 

awareness. Two different virtual offices served as fear and safety context, respectively. 

During acquisition, the CS+ was always followed by the US in the fear context. In the 

safety context, none of the lights had any consequences. During extinction, a additional 

(novel) context was introduced, no US was delivered in any of the contexts. Participants 

showed enhanced startle responses to the CS+ compared to the CS- in the fear context. 

Thus,  discriminative  learning  took  place  regarding  both  cues  and  contexts  during 

acquisition. This was confirmed by subjective ratings, although only for participants with 
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explicit  contingency  awareness.  Generalization  of  fear  to  the  novel  context  after 

conditioning did not depend on awareness and was observable only on trend level.

In a third experiment I looked at neuronal correlates involved in extinction of fear 

memory by means of functional magnetic resonance imaging (fMRI). Of particular interest  

were differences between extinction of  delay and trace fear conditioning. I applied the 

paradigm tested in the pilot study and additionally manipulated timing of the stimuli: In the  

delay conditioning group (DCG) the US was administered with offset of one light (CS+), in  

the  trace  conditioning  group  (TCG)  the  US was  presented  4s  after  CS+ offset.  Most  

importantly,  prefrontal  activation  differed between the  two groups.  In  line  with  existing 

evidence, the ventromedial prefrontal cortex (vmPFC) was activated in the DCG. In the 

TCG  I  found  activation  of  the  dorsolateral  prefrontal  cortex  (dlPFC),  which  might  be 

associated with modulation of working memory processes necessary for bridging the trace 

interval and holding information in short term memory.

Taken together, virtual reality proved to be an elegant tool for examining human fear 

conditioning  in  complex  environments,  and  especially  for  manipulating  contextual 

information.  Results  indicate  that  explicit  knowledge  of  contingencies  is  necessary for 

attitude formation in fear conditioning, but not for a CR on an implicit level as measured by 

FPS  responses.  They  provide  evidence  for  a  two  level  account  of  fear  conditioning.  

Discriminative learning was successful regarding both cues and contexts. Imaging results 

speak for different extinction processes in delay and trace conditioning, hinting that higher 

working memory contribution is required for trace than for delay conditioning.
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Zusammenfassung

2. Zusammenfassung

Furchtkonditionierung  ist  ein  effizientes  Modell  für  assoziatives  Lernen  und  hat 

unser  Wissen  über  Prozesse,  die  der  Entstehung  und  Aufrechterhaltung  von 

pathologischer  Furcht  und  Angst  zugrunde  liegen,  entscheidend  vergrößert.  In  einem 

differentiellen  Furchtkonditionierungparadigma  wird  ein  zunächst  neutraler  Reiz  (NS) 

gemeinsam mit einem aversiven Ereignis (unbedingter Reiz, US) dargeboten, während ein 

zweiter Stimulus nicht mit  dem Ereignis gepaart  wird.  Nach mehrmaliger  gemeinsamer 

Darbietung wird der NS mit dem US assoziiert. Dadurch wird er zu einem bedingten Reiz  

(CS+) und löst eine konditionierte Furchtreaktion (CR) aus. 

Die Bildung expliziten Wissens über die CS/US-Assoziation während der Konditionierung 

bezeichnet man als Kontingenzbewusstsein. Befunde über die Rolle dieses Bewusstseins 

in  der  Furchtkonditionieung  sind  uneinheitlich.  In  Delay-Furchtkonditionierungsstudien 

konnte die Entwicklung einer CR unabhängig von Kontingenzbewusstsein gezeigt werden. 

Man spricht von Delay-Konditionierung, wenn der US direkt auf den CS+ folgt. Bei der 

Trace-Konditionierung liegt zwischen dem CS und dem US ein kurzer zeitlicher Abstand 

(Trace-Interval).  Für  Trace-Konditionierung werden mehr kognitive Ressourcen benötigt 

als für Delay-Konditionierung. Auf einer impliziten Ebene ist Trace-Konditionierung nicht 

möglich.

Die Assoziationen, die während der Furchtkonditionierung gebildet werden, beschränken 

sich nicht  auf  Assoziationen zwischen spezifischen Reizen und aversiven Ereignissen. 

Kontextuelle Reize bilden den Hintergrund des Lernprozesses und spielen sowohl bei der 

Akquisition als auch bei der Extinktion von Furcht und Angst eine wichtige Rolle.  Eine 

häufige Einschränkung in Furchtkonditionierungsstudien beim Menschen ist der Mangel an 

ökologischer Validität, besonders hinsichtlich der Kontextinformationen. Der Einsatz von 
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virtuellen  Realtitäten  (VR)  stellt  einen  vielversprechenden  Ansatz  dar  um  komplexe 

Umgebungen nachzubilden, die nahe an Alltagssituationen sind.

Um  Hinweisreiz-  und  Kontextkonditionierung  unter  Berücksichtigung  des 

Kontingenzbewusstseins zu untersuchen habe ich drei Experimente durchgeführt. Dafür 

wurde ein Paradigma in virtueller Realität entwickelt, das es ermöglicht, Reize, Kontexte 

sowie zusätzlich das Timing der Ereignisse exakt zu manipulieren. In allen drei Studien 

wurden Versuchspersonen durch einen oder mehrere virtuelle Räume geführt, in denen 

zwei verschiedene Lichter als bedingte Reize und ein elektrischer Reiz als unbedingter 

Reiz  dienten.  Furchtpotenzierte  Startlereaktionen  wurden  gemessen  als  Indikator  für 

implizite  Furchtkonditionierung.  Um  zu  überprüfen,  ob  die  Versuchspersonen  auch 

explizites Kontingenzbewusstsein erwoben hatten, wurden subjektive Ratings erfasst.

Die erste Studie wurde als Pilotstudie konstruiert, um sowohl das VR Paradigma als 

auch  das  Konditionierungsprotokoll  zu  testen.  Zusätzlich  hat  mich  der  Effekt  des 

Kontingenzbewusstseins  interessiert.  Die  Ergebnisse  zeigten,  dass  Lidschlag-

konditionierung  im  VR  Paradigma  möglich  ist  und  dass  sie  nicht  vom  Kontingenz-

bewusstsein  abhängt.  Allerdings  war  evaluative  Konditionierung,  gemessen  durch 

subjektive  Ratings,  nur  erkennbar  bei  Personen,  die  die  Assoziation  von  CS und  US 

explizit gelernt hatten.

Um  Akquisition  und  Extinktion  sowohl  furchtassoziierter  Reize  als  auch 

furchtassoziierter Kontexte zu untersuchen, wurde in der zweiten Studie ein neues Reiz-

Kontext-Generalisierungsparadigma eingesetzt. Neben dem Zusammenspiel von Reizen 

und Kontexten war ich auch hier an der Rolle des Kontingenzbewusstseins interessiert. 

Zwei verschiedene virtuelle Büros dienten als Furcht- bzw. Sicherheitskontext. Während 

der Akquisition folgte auf den CS+ im Furchtkontext immer ein US. Im Sicherheitskontext  
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hatte  keines  der  Lichter  Konsequenzen.  In  der  Extinktionsphase  wurde  zusätzlich  ein  

neuer  Kontext  eingeführt.  In  keinem  der  Kontexte  wurde  ein  US  appliziert.  Die 

Versuchspersonen reagierten nur im Furchtkontext mit erhöhter Startlereaktion auf den 

CS+ im Vergleich zum CS-. Diskriminatives Lernen hat sowohl hinsichtlich der Reize als 

auch hinsichtlich der Kontexte stattgefunden. Dies wurde bestätigt durch die subjektiven 

Ratings, allerdings nur bei Probanden mit Kontingenzbewusstsein. Eine Generalisierung 

der  Angst  vom  Furchtkontext  auf  den  neuen  Kontext  war  nicht  abhängig  vom 

Kontingenzbewusstsein,  konnte  allerdings  in  der  Gesamtgruppe  nur  tendenziell 

beobachtet werden.

In  der  dritten  Studie  betrachtete  ich  neuronale  Korrelate  der  Extinktion  von 

Furchtgedächtnis  mit  Hilfe  von  funktioneller  Magnetresonanztomographie  (fMRI).  Von 

besonderem Interesse waren dabei die Unterschiede zwischen der Extinktion von Delay-  

und Trace-Konditionierung. Ich habe das Paradigma aus der Pilotstudie angewendet und 

zusätzlich das Timing der Reize manipuliert. In der Delay-Konditionierungsgruppe (DCG) 

wurde  der  US  zeitgleich  mit  dem  Ende  des  CS+  appliziert,  in  der  Trace-

Konditionierungsgruppe (TCG) vier  Sekunden nach Ende des CS+. Interessanterweise 

unterschieden  sich  die  beiden  Gruppen  in  ihrer  präfrontalen  Aktivierung.  In 

Übereinstimmung mit der Literatur war der ventromediale Präfrontalkortex (vmPFC) in der 

DCG aktiviert.  In  der  TCG konnte man Aktivierung des dorsolateralen Präfrontalkortex 

(dlPFC)  beobachten.  Dies  könnte  mit  erhöhter  Beteiligung  des  Arbeitsgedächtnisses 

zusammenhängen,  die  notwendig  ist,  um  das  Trace-Interval  zu  überbrücken  und  die 

Informationen im Kurzzeitgedächtnis zu halten.

Zusammengefasst  hat  sich  virtuelle  Realität  als  ein  elegantes  Instrument  zur 

Fuchtkonditionierung  beim  Menschen  herausgestellt,  besonders  zur  Manipulation  von 

19



Zusammenfassung

Kontextinformation. Die Ergebnisse deuten darauf hin, dass explizites Kontingenzwissen 

notwendig  ist  für  evaluative  Furchtkonditionierung,  nicht  jedoch  für  eine  implizite  CR 

gemessen an FPS Reaktionen. Außerdem liefern sie Evidenz für den “two level account of 

fear  conditioning”.  Die  Ergebnisse  der  Bildgebung  sprechen  für  zwei  unterschiedliche 

Extinktionsprozesse bei Delay- und Trace-Konditionierung und weisen darauf hin, dass für 

Trace-Konditionierung eine höhere Beteiligung des Arbeitsgedächtnisses notwendig ist als 

für Delay-Konditionierung.
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General Introduction

3. General Introduction

Fear  conditioning  and  the  extinction  of  conditioned  fear  have  considerably 

advanced the understanding of anxiety disorders in the last decades. The characteristics 

of anxiety disorders like specific phobias, post traumatic stress disorder (PTSD), panic 

disorder (PD) or generalized anxiety disorder (GAD) are increased levels of anxiety, fear,  

or both. Both deficient fear learning as well  as impaired extinction of fear may lead to 

maladaptive  fear  responses  and  by  this  means  contribute  to  the  development  and 

maintenance of anxiety disorders. Although plenty is already known about the neural and 

behavioral mechanisms underlying both fear learning and extinction, we are still far away 

from understanding the big picture. There are for example different theories about what 

exactly is learned during acquisition and extinction and about the role of the context of fear 

conditioning. Additionally,  the debate about the role of contingency awareness which is 

defined as the explicit knowledge of the association between CS and US has not been 

fully resolved yet. Individual risk factors for anxiety disorders have been identified such as 

for example trait anxiety, but evidence regarding these factors is not always unambiguous. 

In almost a century of research after Pavlovs discovery in 1927, classical conditioning in 

general and fear conditioning in particular turned out to be much more complex as they 

might look like at first glance.

3.1. An evolutionary perspective on fear

Emotions have long been subject  of  research in  psychology and neuroscience. 

From an evolutionary perspective, they can be described as states of readiness within a 

simple two-factor model of motivation (Lang, Bradley & Cuthbert, 1998). According to this 
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theory, affects developed from reflexive reactions elicited by appetitive or aversive stimuli 

that are essential for survival: When an organism is confronted with a threatening stimulus, 

e.g. a predator, the defensive system is activated and triggers an appropriate defensive 

reaction like fight or flight. Correspondingly, stimuli like food or a mating partner activate 

the appetitive system, which triggers an approach reaction. 

Hence,  from  an  evolutionary  point  of  view,  fear  is  the  aversive  emotional  state  that 

motivates  a  defensive  reaction  in  response  to  an  external  threat.  Reflexive  escape 

responses for example are self protection mechanisms that allow for coping with imminent 

dangers like predators or other physical threats. Therefore, fear is central  in evolution, 

since  the  associated  defensive  reactions  are  often  essential  for  the  survival  of  an 

organism.  Öhmann  and  Mineka  (2001) proposed  a  fear  system  shaped  by  natural 

selection, which contains four characteristics: selectively with regard to input, automaticity, 

encapsulation and a specialized neural circuitry. 

By  evolution,  some  stimuli,  for  example  snakes,  spiders  or  height,  are  innate 

sources of fear for us because they have been associated with threat in our evolutionary 

past. However, we live in a rapidly changing environment. For example, more and more 

people move to big cities: In 2010, already 50.5 per cent of the word population lived in 

cities (“Globalisierung”, 2010). In modern city life, threats like cars or weapons appear to 

be much more salient than innate sources of fear shaped by evolution. Still, fear of snakes, 

spiders or heights is much more common than fear of todays everyday life threats like cars 

or weapons. The fear system can be activated by an innate fear-relevant stimulus much 

easier than by an initially neutral stimulus like a flower or a neutral face or also a car ( e.g. 

Tomarken,  Mineka  &  Cook,  1989;  Hughdahl  &  Öhmann,  1980).We  are  biologically 

prepared to associate innate fear-relevant stimuli with a defensive response much faster 
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and also much more sustainably than stimuli which are, from an evolutionary perspective,  

fear-irrelevant (Seligman, 1971). However, in a changing environment, the ability to form 

associations  between  initially  neutral  stimuli  and  possible  threats  is  also  essential  for 

survival of an animal or a human being  (Mineka & Öhman, 2002).  The fear system is 

provided with a high plasticity, which allows not only for biologically prepared fear learning 

facilitated by evolutionary history and natural selection. Additionally, the fear system can 

be  elicited  by  random,  initially  fear-irrelevant  stimuli  that  have  been  associated  with 

threatening or painful events in the personal history of an individual (Öhman, 2009). The 

less fear-relevant a stimulus is to begin with, the more environmental input is necessary to 

associate it with threat.

The second feature of the fear system proposed by Öhman and Mineka (2001) is  

automaticity of fear activation. In order to provoke a defensive reaction in response to a 

fear-relevant stimulus, higher order cognitive processing is not necessary. This means, a 

very short and cursory perception can be enough for the stimulus to enter the fear system 

and elicit  a  defensive  reaction.  This  has,  amongst  others,  been tested by confronting 

human beings with subliminally presented fear-relevant stimuli like pictures of snakes or 

spiders. In this case, the picture is presented for approximately 30 ms, which is too short 

for higher order processing to take place. However, a physiological fear reaction has still 

been found (Öhmann & Soares, 1993). 

Besides its automatic activation and selectivity with regard to input, the fear system 

described by Öhmann and Mineka (2001) can also be characterized as an encapsulated 

system. Once elicited, it is relatively resistant to conscious cognitive control  (Mineka & 

Öhman, 2002). This can often been observed in people with phobic fears: Usually these 
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individuals  are  consciously  aware  that  their  fear  is  irrational  and  disproportional,  but 

nonetheless they cannot gain rational control over their reaction to the phobic stimulus.

Furthermore, the fear system is mediated by a specific neuronal circuitry. Since the 

development of the fear system began early in evolution, the neuronal circuitry contolling 

an automatic fear response is, basically, similar across species. It is located in the older  

parts of the brain, the limbic system. Evidence for the central role of the amygdala in fear  

learning the production of a fear response derives mainly from rodent studies. Up to now,  

these findings from the animal model have been vastly extended and also confirmed in 

human studies (see for example LeDoux, 2000).

3.2. Classical conditioning

3.2.1. Pavlov´s conditioning paradigm

In a changing environment, it is essential for an organism to be capable of learning 

associations  between  environmental  stimuli  and  corresponding  appetitive  or  aversive 

events.  In  1927,  Ivan  Pavlov  began  to  study  this  kind  of  associative  learning  in  the 

laboratory.  He  described  the  famous  phenomenon  called  Pavlovian  Conditioning:  An 

initially neutral stimulus as a tone or a light is paired with primary reinforcer which can be 

appetitive (e.g. food) or aversive (e.g. an electric shock) in nature. After several of these 

pairings, the initially neutral conditioned stimulus (CS) is associated with the appetitive or 

aversive unconditioned stimulus (US) and evokes an appropriate conditioned response 

(CR) when presented on its own. Learning that a certain environmental stimulus predicts 

an aversive event is called fear conditioning. This is the mechanism, which allows us to 

learn to fear certain objects, animals, places or people (Maren, 2001). Without that ability, 

we would hardly be able to cope with survival threats by escaping or avoiding them.
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In the past 25 years, fear conditioning has been studied intensely (e.g. Davis, 1992; Fendt 

& Fanselow, 1999; LeDoux, 2000; Maren, 1996; Fanselow, 1994). It is one of the most 

important animal models and has greatly improved the knowledge about mechanisms of 

fear and anxiety as well as fear mediating neuronal structures (Davis, 1997) in rodents as 

well  as  in  humans  (LeDoux,  2000).  According  to  Joseph  LeDoux  (2000),  it  has  also 

opened the way for a new wave of research on emotion in neuroscience, inter alia since 

fear conditioning is a paradigm which allows for examining emotional mechanisms within a 

cognitive learning paradigm. 

Of course, the mechanisms of fear are also extremely important from a clinical point of  

view.  An  adaptive  fear  reaction,  which  requires  functioning  fear  learning,  enables  an 

individual  to  cope  with  survival  threats  by  escaping  or  avoiding  them.  However,  fear 

reactions can become maladaptive when they are no longer  appropriate to  the actual 

situation.  The ability to  readjust  behavior  is  especially important  in  a  rapidly changing 

environment.  In  anxiety  disorders,  this  ability  usually  is  impaired  (e.g.  Rauch,  Shin  & 

Phelps, 2006). A person suffering from claustrophobia will react with a disproportional and 

irrational fear reaction when exposed to, for example, a narrow and crowded elevator. The 

high prevalence of anxiety disorders - in Germany approximately 15,3% within 12 months 

according to the  DEGS1-MH (Jacobi et al., 2014) - has led to extensive research in the 

field of fear learning and unlearning as well as the neural systems involved in fear learning.

In a classical fear conditioning paradigm, an initially neutral CS, mainly a tone ore a light, 

is paired with an initially aversive US, such as an electric shock. After several pairings, the 

CS  is  associated  with  the  US  and  evokes  a  conditioned  fear  response  (CR)  when 

presented on its own. These are the basics of classical conditioning - however, there is a  

lot more to it than that. 
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3.2.2. Concepts and underlying processes of classical conditioning

3.2.2.1. Contiguity and contingency in classical conditioning

According  to  Robert  A.  Rescorla 

(Rescorla,  1988),  ”Pavlovian  Conditioning  is  

not  a  stupid  process  by  which  an  organism 

willy-nilly forms associations between any two  

stimuli  that  happen  to  co-occur.  Rather,  the 

organism  is  better  seen  as  an  information  

seeker  using  logical  and  perceptual  relations  

among  events,  along  with  its  own  

preconceptions,  to  form a sophisticated representation of the world.”  Conditioning only 

occurs when an organism can see the coherence in the pairing of two stimuli and when it  

benefits  from learning  the  association  (e.g.  because it  can avoid  a threat).  The mere 

temporal proximity of two stimuli which is referred to as contiguity has long been thought of 

as responsible for conditioning to take place. 

However, already in 1968, Rescorla (1968) demonstrated that contiguity is not sufficient for 

associative learning. A rat was exposed to tone and an electric shock. In one experimental 

condition (see figure 1), the tone and the shock occurred in the same two minute time 

window, but the tone did not actually provide information about the shock. This is the case 

when the shock can occur both shortly after the tone but also in time intervals without any 

tone, making the shock equally likely whether or not a tone is presented. In the second 

condition (see figure 1), tone and shock always coincided. That is, the tone provided all the 

information about  the appearance of  the shock.  In  this  case,  the contingency,  i.e.  the 

probability of the shock in the presence of the tone is 100%. The higher the contingency 
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between CS and US, the faster leaning will take place. When the CS signals an increase 

in the probability that the US will occur, one speaks of positive contingency. For example in  

fear conditioning, the amount of fear in reaction to the CS is positively correlated with the 

number of tone - shock (CS-US) pairings (see for example Miller, 2006). On the contrary, a 

subsequent negative contingency between the same two stimuli  signals a decrease of  

probability of the shock when the tone occurs. This will lead to inhibitory conditioning and a 

conditioned  inhibitory  response:  The  fear  reaction  to  the  tone  will  decrease  with  the 

number  of  tone  -  no  shock  pairings.  Since  the  1960s  when  Rescorla  presented  his 

contingency theory, the concept has often been confirmed  (e.g. Murphy & Baker, 2004) 

and  often  been  criticized  (for  a  review  see  for  example  Papini  &  Bitterman,  1990). 

However,  it  was an early explanation for a decrease of the fear reaction when – after  

excitatory conditioning – the CS is presented without the US for several times. 

A theory derived from the contingency concept is the safety signal theory by Seligman and 

Blinik (1977). If an aversive event is signaled by a CS, the event becomes predictable.  

However,  if  there  is  no  information  available  about  the  occurrence  of  the  event,  an 

organism lives in constant anxiety, since it cannot know when it will be exposed to the 

aversive  stimulus  again.  According  to  the  safety  signal  theory,  it  is  necessary  for  an 

organism to learn the association between a predictive signal and the following aversive 

event in order to be able to identify periods of safety. A CS which is associated with an 

aversive outcome not only signals danger and elicits fear when it  is presented. It  also 

signals absence of danger when it is not present and therefore it serves as a safety signal.  

A similar process can be observed in a differential conditioning paradigm, in which one 

conditioned stimulus (CS+) is followed by the US and a second one (CS-) is not. In this  

case,  both  excitatory and inhibitory conditioning  takes place:  The positive  contingency 
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between the CS+ and the US leads to a fear reaction in response to the CS+, whereas the 

CS- is associated with the absence of the US. Therefore the CS- serves as a safety signal  

or an inhibitor of the conditioned fear response. The safety-signal theory attracted a lot of 

attention, especially in the research in anxiety disorders like PD or GAD. Grillon and Ameli 

(2001) reported that high anxious individuals show an enhanced fear response to the CS- 

compared to low anxious ones. This has also been found in clinical studies comparing 

anxiety patients and healthy controls (see for example Lissek et al.,  2005).  Davis and 

colleagues (Davis, Falls and Gerwitz, 2000) suggested that the insufficient inhibition of a 

fear reaction in response to safety signals might be responsible for the development of 

anxiety disorders.

In more recent studies, PTSD patients have been found to show deficits in discriminative 

learning  of  the  danger  and  the  safety  stimulus.  They  show higher  physiological  fear  

reactions and report higher expectancies of dangerous outcomes in response to the safety 

stimulus compared to healthy controls (Grillon, Pine, Lissek, Rabin, Bonne, & Vythilingam, 

2009; Lissek et al., 2009). 

3.2.2.2. Classical conditioning and predictability

Besides  contiguity  and  contingency,  a  third  factor  has  been  shown  to  play  an 

important  role  in  classical  conditioning.  An  experiment  indicating  that  contiguity  and 

contingency do not necessarily have to be sufficient for learning to take place was already 

conducted in 1968 (Kamin, 1968): Two groups of animals were exposed to a compound 

CS which was followed by a US. A compound stimulus could for example be realized by a  

tone and a light  presented together.  One of  the two groups had already been trained 

before being exposed to the CS: The animals had learned that the light alone signals the  

US. The other group of animals had no prior learning experiences related to either of the 
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stimuli. Both groups were tested for conditioning of the tone, but only the group with no 

pretraining showed an adequate conditioned response to the CS  (Rescorla, 1988). This 

result is known as the Kamin Blocking Effect. The two groups share the same contiguity  

and contingency information between the compound CS and the US. Then why does the 

pretraining group not learn the association between the tone and the US? This question 

was answered by Rescorla and Wagner, who suggested that the lacking component for 

the pretraining group is surprise. The animals already knew that the light signals the US. 

Thus, they were not surprised that the light in combination with the tone also signals the 

US  –  the  US  was  already  predictable  for  them.  For  the  other  group  however,  this 

information was completely new. In their famous Rescorla-Wagner Model, the two authors 

stated  that  learning  (or  change  of  associative  strength)  is  only  possible,  if  there  is  a 

discrepancy between  expectancy and  actual  outcome (Resorla  &  Wagner  1972).  The 

change of associative strength in one learning trial  depends on the maximum possible 

associative strength and the current  associative strength between the stimuli  involved. 

Accordingly, in the first few learning trials, in which the discrepancy between expectancy 

and actual outcome is still large, the change of associative strength, i.e. learning, is greater 

than  in  later  trials.  This  discrepancy  is  also  referred  to  as  prediction  error.  In  fear 

conditioning one speaks of an aversive prediction error. If the discrepancy between actual  

outcome of a conditioning trial ( λ) and expected outcome (ΣV, consisting of the sum of the 

associative  strengths  of  all  present  stimuli)  is  positive,  excitatory  conditioning  occurs. 

However,  if  it  is  negative  and  the  actual  outcome  undermatches  the  expected  one, 

conditioning is inhibitory (McNally & Westbrook, 2006).
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3.2.3. What is learned?

Next to the factors that are necessary for the formation of associations, researchers 

came across another very fundamental question regarding classical conditioning: “What 

exactly is learned?”. There are two basic theories about the formation of associations in 

conditioning.  Back  in  1927,  Pavlov  already  suggested  that  an  organism  forms  an 

association between the US and the CS (stimulus-stimulus model). In his opinion, the CS 

serves as a substitute for the US. This is referred to as Stimulus-Substitution Theory. In 

other words, when dogs are conditioned on a light which is paired with food, the light will  

become a substitute for the food and therefore elicit salivation. In an experiment conducted 

in 1941, Pavlov showed that the dogs even started to lick at the lamp after the light had  

been associated with the food. Today, this phenomenon is referred to as sign tracking. 

However, there is also evidence in favor of another theory called stimulus-response model, 

which has been suggested by Watson and Hull. According to them, the organism does not 

form  an  association  between  the  CS  and  the  US,  but  between  the  CS  and  the 

unconditioned response. In contrast to the just mentioned example, the light would be 

associated with salivation and not with the food. One finding in favor of the S-R (stimulus-

response)  model  by Watson and Hull  is,  that  the  conditioned response is  not  always 

identical to the unconditioned response, sometimes not even similar (see for example Hull,  

1943; Watson, 1913). For example in a fear conditioning experiment, in which a rat  is  

conditioned on a tone that is a paired with a foot shock, the rat will not show the same 

reaction in response to the tone (CS) as to the foot shock (CS). The expected reaction to  

the  foot  shock  would  be  jumping,  however,  in  response to  the  tone  the  rat  will  most 

certainly  show  freezing  behavior.  This  can  be  explained  by  the  preparatory-response 

theory, which states that the CR prepares the organism for the US: Freezing behavior  
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prepares the rat for the foot shock just as salivation prepares the dog for food (compare 

(Powell, Honey & Symbaluk, 2012). In general, evidence for the S-S model is stronger 

than evidence for the S-R model. For example, in a US devaluation study conducted with  

rats, a tone (CS) was paired with food (US). The US was later devaluated by inducing 

nausea. When the CS is presented again after devaluation, the rats show a reduced CR 

(Holland & Straub, 1979). These findings argue for an association between the CS and the 

US. But, as stated above, there is also evidence in favor of the CS being a signal for the 

US and not a substitute. The two level hypotheses is an approach to solve this problem by 

including  both  types of  learning.  It  suggests  that  two  systems can be involved in  the 

conditioning process: the associative and the cognitive system. The associative system is 

an automatic response system allowing for the formation of associations between stimuli  

without cognitive contributions. When expectations are built in a way that the CS serves as 

a signal for the US, the cognitive system in involved. There has been great interest in a  

two-level  account  in  human fear  conditioning  (LeDoux,  2000; Hamm & Weike,  2005), 

which will be discussed in more detail in the next chapter. 

3.3. Basic Phenomena of fear conditioning

3.3.1. Acquisition

As described above, in fear conditioning an initially neutral stimulus  is repeatedly 

paired with an aversive US. After several pairings, the initially neutral CS is associated with 

the US and evokes an appropriate CR like freezing or jumping. This learning process is 

referred  to  as  acquisition.  In  the  first  few  conditioning  trials  (i.e.  CS-US  pairings) 

acquisition takes place quite rapidly, resulting in a steep learning curve which flattens after  

several  trials  and levels  out  when the  asymptote  of  conditioning is  reached (compare 
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Powell et al. 2012). The speed and sustainability of acquisition depends amongst other 

things on the nature and the intensity of the US. A stronger US leads to more rapid and 

sustainable conditioning. The same is the case for a US which has a strong relevance 

from  an  evolutionary  perspective  (like  food  or  pain).  Another  important  factor  is  the 

contingency  during  the  acquisition.  If  the  CS  is  always  followed  by  the  US  (100% 

contingency), acquisition takes place much faster than in a paradigm in which for example 

only every second CS is paired with the US. However, it is also easier to extinguish the 

learned CR after a 100% contingency learning period. 

3.3.1.1. Delay and trace conditioning

The timing of the CS - US pairing during acquisition also plays an important role in 

the learning process. Two common paradigms regarding event timing in fear conditioning 

are delay and trace conditioning. In delay conditioning, the US coterminates with or follows 

directly on the CS. In trace conditioning, a temporal gap lies between the offset of the CS 

and the onset of the US. This temporal gap is referred to as “trace interval”. In this case, a  

“memory trace” is necessary in order to form an association between the CS and the US 

(Pavlov,  1927),  because the  CS is  no  longer  present  when  the  US occurs.  For  trace 

conditioning to occur, the temporal gap between the CS and the US should not be longer 

than a few seconds in most cases. Already back in 1954, Moeller tested whether aversive 

conditioning  takes  place  after  trace  intervals  of  different  duration.  He  found  that  the 

greatest learning effect can be achieved with a trace interval of only 0.5 seconds (Moeller, 

1954). In more recent human fear conditioning studies, trace conditioning is possible after 

much longer trace intervals of 4 to 5 seconds (Weike, Schupp, & Hamm, 2007; Knight, 

Waters & Bandettini, 2006). Under special circumstances, for example when evolutionary 

relevant stimuli are involved, associations between a CS and a US can be formed after  
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much longer temporal gaps. Taste aversions for example also develop when the food (CS) 

has been consumed many hours  before  nausea is  induced  (Welzl,  D’Adamo,  & Lipp, 

2001)

3.3.1.2. Contingency awareness

There is an ongoing debate about whether contingency awareness, which can be 

defined as the explicit knowledge of the association between CSs and UCS, is required for 

fear acquisition (Klucken, Tabbert, Schweckendiek, Merz, Kagerer, Vaitl & Stark, 2009). As 

suggested by (Lovibond & Shanks, 2002; Mitchell, De Houwer, & Lovibond, 2009), it is 

likely that awareness of contingencies between the CS and the UCS is necessary for  

establishing  a  conditioned  response.  There  are  findings  which  indicate  that  even  an 

implicit  CR  cannot  be  found  without  explicit  awareness  of  CS/UCS  contingencies 

(Dawson, Rissling, Schell,  & Wilcox,  2007;  Klucken, Kagerer,  Schweckendiek,  Tabbert, 

Vaitl,  &  Stark,  2009a).  However,  there  is  also  opposing  evidence,  demonstrating  that 

implicit conditioned responses may occur without contingency awareness (Hamm, Weike, 

Schupp, Treig, Dressel & Kessler, 2003; Knight, Nguyen, & Bandettini, 2006; Weike et al., 

2007). Weike and colleagues (2007) for example showed that in delay fear conditioning, 

acquisition was independent of contingency awareness, whereas in trace conditioning, a 

conditioned response was only found for participants who were able to explicitly name the 

association between the CS and the US. Knight and colleagues (2006) came to the same 

conclusion in their study. The concept of awareness will be discussed in more detail in 

chapter two.
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3.3.1.3. The two level account of fear conditioning

As mentioned before, the amygdala plays a central role in the acquisition of fear. 

The amygdala is a small structure located in the medial temporal lobe which belongs to the 

older parts of the brain. From animal research derives the knowledge that the amygdala is 

crucial for the formation of a conditioned fear response to a CS that has been paired with a 

threatening stimulus (see for example  Davis, 1992; LeDoux, 1995). These findings have 

been transferred to humans. For example Bechara et al. 1995 demonstrated that a patient 

with bilateral damage of the amygdala shows deficits in fear conditioning (Bechara, Tranel, 

Damasio,  Adolphs,  Rockland  &  Damasio,  1995). LaBar  and  colleagues  (1995)  found 

similar  results  in  a  group  of  patients  with  unilateral  removal  of  the  amygdala  due  to 

epileptic seizures. These participants also did not develop a conditioned fear response 

(LaBar, LeDoux, Spencer, & Phelps, 1995).  Interestingly, patients' declarative learning in 

both studies was intact, meaning that they were able to correctly report the contingency 

between CS and US after acquisition. This indicates that the amygdala is not necessary 

for the formation of explicit contingency knowledge.

In neuro-imaging studies, increased functional activity in the amygdala can be observed 

during fear conditioning (eg. Büchel, Morris, Dolan, & Friston, 1998; Knight, Smith, Cheng, 

Stein,  &  Helmstetter,  2004).  In  more  detail,  in  the  first  trials  of  acquisition,  when  the 

learning curve is still rising steeply, amygdala activation is higher during presentations of 

the  CS+ compared  to  the  CS-.  Knight  et  al.  (2004)  reported  that  the  amygdala  was 

activated when contingencies between the stimuli changed and therfore they concluded 

that it is crucial for the formation of new associations.
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Today we know that  during fear  conditioning information about  the CS and the US is 

transmitted from sensory cortices via the thalamus to the amygdala, which controls the 

expression of the fear reaction via projections to the brainstem (LeDoux, 2000). 

According to Joseph LeDoux,  there are two different pathways over which threatening 

stimuli  can be processed.  The subcortical  way or  „low road“  is  a  rather  fast  but  also 

inaccurate way. This road is obviously very convenient when an organism finds itself in a 

situation of imminent danger, in which a fast reaction is necessary for survival. But there is  

also a „high road“ involving higher order cognitive processing of the threatening stimulus. 

The amygdala is a central structure in both of these pathways. Following the low road, a  

signal is encoded and then transferred to to the amygdala via the thalamus. The amygdala 

directly triggers the fear reaction via the brainstem. Following the high road, the amygdala 

does not directly trigger a fear reaction, but the signal is transmitted from the amygdala to 

higher order sensory cortices like the primary visual or auditory cortex. Here, a cognitive 

representation and evaluation of the stimulus is generated.

In  figure  2  (LeDoux,  2000) 

describing the pathway of an 

auditory CS,  the  low road is 

indicated  by  the  arrow 

connecting  the  thalamus 

[medial division of the medial 

geniculate body (MGm/PIN) ] 

and the lateral amygdala (LA). 

In  the  lateral  amygdala, 

information about the CS and the US get together. From there, the signal is transmitted to 
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the  central  amygdala  (CE)  and  to  the  brainstem,  eliciting  a  defensive  response  by 

influencing behavior, the autonomic nervous system (ANS) and the hypothalamic-pituitary 

axis (HPA) (LeDoux, 2000).

Correspondant to the idea of an automatic low road and a cognitive high road, Hamm and 

Weike (2005) proposed a two level account for fear conditioning (Hamm & Weike, 2005). 

One the one hand, the CS is capable of eliciting the subcortical fear network described 

above  and  thus  automatically  resulting  in  a  fear  response.  But  during  human  fear 

conditioning, usually also the declarative knowledge of the contingency between the CS 

and the US is formed, requiring higher order processing as described in the “high road”. 

Hence, an expectancy is build that the CS will be followed by the US. Studies showing that 

delay fear  conditioning  is  possible  without  contingency awareness  indicate  declarative 

knowledge is not always formed during fear conditioning. 

An important index for measuring whether fear conditioning worked on a non conscious 

level  is  the  fear  potentiated  startle  (FPS)  reflex.  The  startle  reflex  is  a  cross-species 

response  to  sudden,  intense  and  unexpected  stimulation,  e.g.  a  sharp  loud  noise.  In 

humans, presentation of such a startle tone leads to an eye-blink, i.e. to a rapid contraction 

of the M. Orbicularis oculi, which can be measured using electromyographic recordings 

(Blumenthal,  Cuthbert,  Filion,  Hackley,  Lipp  &  Van  Boxtel,  2005;  Lang,  Bradley,  & 

Cuthbert, 1990). Since the startle reflex is an automatic defensive response which does 

not depend on cortical input, it is often used to test learning processes on an unconscious 

and implicit level. Importantly, the magnitude of the reflex varies with the affective state of  

the organism: Fear-inducing stimuli for example increase the startle response, whereas 

positive  stimuli  reduce  it.  This  effect  is  dependent  on  subcortical  brain  structures 

influencing the brainstem acoustic startle pathway (Koch, 1999; LeDoux, 2000). 
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Another reliable index for conditioned fear is the electro-dermal activity (EDA). Changes in 

skin conductance have been shown to be an indicator for fear conditioning on an explicit 

level. According to Hamm and Weike (2005), declarative knowledge about contingencies is 

associated with an increased skin conductance response (SCR). In numerous studies, a 

dissociation between FPS and SCR could be found. For example in the study conducted 

by Weike and collegues (2007) mentioned earlier, startle potentiation was independent of  

contingency awareness, a change in SCR however was only present in aware participant 

(see also Lovibond and Shanks, 2002). Tabbert and colleagues also found a dissociation 

between  neural  correlates  of  fear  conditioning  and  SCR  –  they  did  find  increased 

activation of the amygdala in both aware and unaware participants, however, a change in 

SCR was again only present in aware participants (Tabbert, Stark, Kirsch, & Vaitl, 2006).

As mentioned before, fear conditioning serves as a model to investigate the maladaptive 

processes resulting in anxiety disorders. In humans, FPS and SCR as well as imaging 

studies have greatly extended our knowledge of fear learning. However, for understanding 

the  mechanisms  of  fear  and  the  development  and  maintenance  of  anxiety  disorders, 

studying the acquisition of fear is not sufficient. An anxiety disorder can result from either a 

disproportionately rapid or strong acquisition of fear or from the resistance to extinction of  

the fear reaction if it is no longer appropriate (Baas, van Ooijen, Goudriaan & Kenemans, 

2008).

3.3.2. Extinction

3.3.2.1. Unlearning and relapse

After  an  organism  has  learned  the  association  between  a  CS  and  a  US  and 

responds to the CS with the appropriate CR, the repeated presentation of the CS without  
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the US usually leads to a weakening of the CR. This process is called extinction. For 

example, when a rat is trained to associate a light with a foot shock, it will – after a few 

pairings  -  show  freezing  behavior  in  response  to  the  light  alone.  If  the  light  is  now 

presented  repeatedly  without  the  aversive  foot  shock,  the  rat  will  eventually  return  to 

normal  behavior  as  the  freezing  response  will  slowly  decrease  until  it  disappears 

completely.

This  does  not  mean  that  the  association  between  the  light  and  the  foot  shock  is 

extinguished completely.  Today we know that,  although the CR gradually dies out,  the 

association between the CS and the US is not at all deleted completely during extinction.  

An  organism does  not  forget  or  unlearn,  but  rather  forms new memory inhibiting  the 

acquired fear memory (Bouton, 2002; Bouton, 2004;  Myers & Davis 2002, Quirk 2002; 

Milad & Quirk, 2002). According to Bouton (2002), there are several phenomena indicating 

that extinction does not result in unlearning (for a review see Bouton, 2002). One of them 

is called spontaneous recovery (SR), meaning that, some time after extinction training, a  

presentation of the CS will elicit the same (or a weakened) CR without having been paired 

with  the  US again  (e.g.  Brooks  &  Bouton,  1993). In  a  recent  fear  conditioning  study 

including 43 participants, Norrholm and colleagues paired visual and acoustic CS with an 

aversive airblast serving as US. Twenty-four hours after extinction training, a presentation 

of the CS+ alone led to a significant return of the FPS reflex  (Norrholm et al.,  2011). 

Besides SR, reinstatement and renewal are phenomena which are regarded as evidence 

for  CS-US  associations  not  being  deleted  during  extinction.  In  reinstatement,  a 

presentation  of  the  US  after  extinction  leads  to  recovery  of  the  fear  reaction.  This 

phenomenon is context-dependent, which means that the reaction will be stronger if the 

US is presented in the same context, in which the CS had been associated with the US 
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before. When acquisition takes place in a first context and extinction training in a second 

context,  fear  will  return when the subject  is  confronted once more with  the CS in  the 

acquisition context. In more general terms, an extinguished fear response recovers when 

the subject is exposed to the CS in a context that is different from the extinction context.  

This is referred to as renewal. In a rodent study, Myers, Ressler and Davis (2006) showed 

that extinction, when conducted immediately after acquisition, might actually lead to the 

complete erasure of the fear memory. Rats which underwent extinction training only ten 

minutes  after  extinction  showed  neither  SR,  nor  reinstatement  or  renewal  in  a  FPS 

paradigm.  By contrast,  extinction  conducted  one  hour  after  acquisition  lead  to  partial  

recovery of the fear reaction, and extinction conducted several days after acquisition lead 

to clear recovery of the rear reaction. Their conclusion was that extinction training shortly 

after acquisition interrupts consolidation of the CS-US association. Once fear learning is 

consolidated, extinction only leads to the formation of a new memory trace which has an 

inhibitory effect on the original fear memory. Schiller et al. (2009) replicated these findings 

in humans. Before extinction training, they presented a reminder (a single presentation of 

the CS+) to activate the fear memory and open the reconsolidation window, in which the 

memory trace is labile after retrieval. Extinction training conducted within this window (10 

minutes after presenting the reminder) lead complete extinction: The fear did not return,  

even up to one year after extinction training  (Schiller,  Monfils, Raio, Johnson, LeDoux & 

Phelps,  2009).  These findings have not  been replicated until  recently  (Oyarzún et  al., 

2012; Schiller, Raio, & Phelps, 2011).

3.3.2.2. Context dependency of extinction

Once an association between a CS and a US has been formed, this memory is very 

stable. Usually it is transferred to other contexts, and also to stimuli that are similar to the  
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original  CS. For  example,  when one is  bitten by the neighbor's  dog in  the neighbor's  

garden, one will most likely not only fear this particular dog in this particular garden, but 

also other dogs in other situations. In contrast, extinction – when not conducted during the 

reconsolidation window - is highly context dependent, meaning that extinction learning is 

not generalized to different contexts. In the described example this means that it is very 

difficult  to completely extinguish the acquired fear of  dogs by conducting an extinction 

training with one dog in a certain therapeutic setting. It  is likely that extinction training 

leaves the original fear memory intact, unless it has been activated and therefore rendered 

labile before the training.

3.3.2.3. Neuronal correlates of extinction

As mentioned before, the CR becomes weaker and eventually disappears during 

extinction training. So how does this new information about the CS, namely that it is no 

longer  followed  by  the  US,  inhibit  the  learned  fear  reaction?  The  knowledge  about 

neuronal structures involved in the acquisition of fear exceeds that of structures involved in 

extinction learning. However, the amygdala is known to be crucial for both acquisition and 

extinction learning. In addition, after a few trials of extinction, activation of the prefrontal 

cortex has been found to be increased, which is assumed to inhibit  the expression of 

conditioned  fear  as  new learning  takes  place  (Quirk,  Garcia  &  González-Lima  2006). 

Animal  models  provide  evidence that  a  new memory trace between  the  ventromedial 

prefrontal cortex (vmPFC) and amygdala is established during extinction learning (Sotres-

Bayon,  Bush  &  LeDoux, 2004;  Sotres-Bayon,  Bush  &  LeDoux,  2007),  which  has  an 

inhibitory effect  on the formerly conditioned fear memory and thus modulates the fear 

reaction. In human delay conditioning studies,  the involvement of  the vmPFC and the 

amygdala  in  extinction  learning  has  been  confirmed  (Gottfried  &  Dolan,  2004;  Milad, 
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Wright, Orr, Pitman, Quirk & Rauch, 2007; Phelps, Delgado, Nearing, & LeDoux, 2004). 

The  neural  circuit  for  extinction  learning  and  recall  is  assumed  to  include,  besides 

amygdala  and  vmPFC,  also  the  hippocampus.  Extinction  learning  takes  place  in  the 

amygdala, and the vmPFC is responsible for the inhibition of fear during extinction recall.  

Presumably,  the hippocampus contributes  contextual  information which determines the 

setting in which extinction memory can be recalled (Corcoran & Quirk, 2007). Kalisch et al 

(2006) showed that a network containing the vmPFC and the hippocampus provides for 

context  dependent  recall  of  extinction  memory.  More  precisely,  they found that  during 

extinction a strong activation of the hippocampus correlates with a strong activation in the 

VMPFC,  but  only in  the  extinction  context.  According  to  Kalisch  and colleagues,  their 

findings add evidence to the notion that contextual information stored in the hippocampus 

facilitates  recall  of  the  extinction  memory  which  is  mediated  by  the  vmPFC (Kalisch, 

Korenfeld, Stephan, Weiskopf, Seymour & Dolan, 2006).

A well functioning interaction between the vmPFC, the amygdala and the hippocampus is 

crucial for adaptation to a fast changing environment. Without this extinction mechanism, 

fear reactions are no longer flexible and can become inadequate and maladaptive, leading 

to emotional perseveration. 

3.4. Fear and anxiety in classical conditioning

Fear is associated with a real and distinct source of danger, whereas the emotion 

one feels in a more sustained and unclear threatening situation is referred to as anxiety.  

An adequate defensive reaction in response to an imminent danger is of course crucial for 

survival. When an animal is threatened by a predator, it will naturally react with a fight-or-

flight response which is triggered by the sympathetic nervous system. However, in periods 
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of diffuse but not imminent danger, a fight-or-flight response would be a waste of energy. 

More appropriate in  this  situation is  a  state  of  increased vigilance and tension,  which 

enables the animal to adapt its behaviour rapidly if necessary. In humans, this state can be 

compared to a state of anxiety. Anxiety is more diffuse than fear, involving worry or anxious 

apprehension  about  possible  and  unpredictable  future  threats  or  dangers  (Mineka  & 

Oehlberg, 2008). From a clinical point of view, fear can lead to panic symptoms and is 

associated with for example specific phobias. Anxiety is more likely to lead to chronic 

worry, tension and enhanced arousal. Therefore, unlike fear, it is related to generalized 

anxiety disorder (GAD) and also to depression (see for example Hamm & Weike, 2005).

3.4.1. Context conditioning and anxiety

As already mentioned in the last chapter, the associations which are formed during 

fear conditioning are not exclusively associations between specific cues and an aversive 

stimulus. When contextual cues are present during acquisition, they form the background 

milieu  of  the  learning  process  and  play  an  important  role  in  both  the  formation  of 

associations and the extinction of conditioned fear (Baas, Nugent, Lissek, Pine, & Grillon, 

2004). However, the context does not necessarily serve merely as background information 

during  cue conditioning.  It  can also  be  the  cue  itself.  During  context  conditioning,  an 

experimental context like a cage or a room is paired with an aversive stimulus. Cue and 

context  conditioning  differ  with  regard  to  temporal  information  about  the  threatening 

stimulus.  Whereas  a  distinct  cue  allows  for  an  exact  prediction  of  the  onset  of  the 

associated US, a contextual cue offers no exact temporal information (see for example 

Grillon, 2008). This sort of conditioning leads to a response that is closer to a state of  

sustained anxiety than to distinct fear, because the organism finds itself in a setting of 

uncued  and  therefore  less  predictable  danger.  According  to  the  safety-signal  theory 
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described earlier, a distinct cue associated with a threatening stimulus does not only signal 

danger. It also serves as a safety signal, because it guarantees absence of danger when it  

is not present.  Without distinct cues serving as safety signals, the organism experiences 

chronic  anxiety.  According  to  Baas  and  colleagues,  successful  cue  conditioning  both 

signals threat and provides information about safety periods, which in turn allows for a 

reduction of contextual anxiety (Baas et al., 2008). Consequently, a deficit in learning the 

association between a present cue and an aversive US might lead to enhanced contextual 

anxiety instead. Grillon postulates a causal relationship between the failure to learn the 

CS–US contingency and increased contextual anxiety (Grillon, 2002a). In consideration of 

this  concept,  not  only  hyper-conditionability  can lead to  maladaptive  fear  reactions  or  

anxiety disorders like specific phobias. Also hypo-conditionability or the failure to associate 

a cue with a threat can result in anxiety disorders, however not to specific phobias but  

rather to GAD or phobic avoidance in panic disorders which are associated with sustained 

anxiety. 

3.4.2. Predictability and anxiety

In humans, contextual conditioning has only recently become an area of interest. 

Due to its relevance for the development of anxiety disorders, it is very important to further  

investigate  the way context  conditioning  is  modulated and the way it  elicits  emotional 

responses in humans. Predictability of the aversive event is one major factor influencing 

contextual conditioning that has been studied in humans recently. Already in the 1970s, it 

has been shown in animal studies that unpredictable cues lead to more anxiety and more  

avoidance behaviour  than predictable ones (Mineka and Kihlstrom 1978,  Odling-Smee 

1975). In humans, recent studies have come to similar results. Grillon (2002a) for example 

found  higher  levels  of  anxiety  and  greater  avoidance  among  participants  who  were 
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unaware about the association between the CS and the US and thus experienced a higher 

level of unpredictability. In a study conducted in virtual reality contexts, Baas et al. (2008) 

found similar results: Participants who learned the contingency between the distinct cue 

and the US showed less contextual fear compared to participants unaware of the CS-US 

association. On average, the unaware subjects had higher levels of trait anxiety according 

to  Spielberger's  self  report  scale,  indicating that  there might be a connection between 

general trait anxiety and conditionability (Baas et al., 2008). Recently, Baas reported that  

higher  trait  anxiety  is  associated  with  a  maladaptive  modulation  of  contextual  anxiety 

(Baas, 2013). In a clinical study, Grillon and colleagues compared sensitivity of patients 

with PTSD or GAD and healthy controls. They found that, compared to healthy controls, 

anxious reactivity to unpredictable aversive events was heightened in PTSD patients, but 

not in GAD patients (Grillon et al., 2009). 

3.4.3. Virtual reality as a tool for studying anxiety in humans

Despite  the  important  contributions  context  conditioning  has  to  offer  for  the 

understanding of anxiety disorders, there is relatively few evidence from human studies. In  

animal research, context conditioning is widely used as a model to measure sustained 

anxiety. Usually, different cages are used during conditioning and/or extinction (e.g. Myers 

et al., 2006). One reason for the comparatively small number of human studies probably 

lies in difficulties to realize a change of context in the laboratory. In the last decade, a new 

tool has been used to realize contexts both in experimental settings and in therapy. Virtual  

reality (VR) has been shown to  be quite  effective  in  fear  conditioned studies (see for 

example Baas et al., 2004; Grillon, Baas, Cornwell & Johnson, 2006; Mühlberger, Wieser 

& Pauli, 2008a; Alvarez,  Biggs, Chen, Pine, & Grillon, 2008; Huff,  Hernandez,  Fecteau, 

Zielinski, Brady & LaBar, 2011;  Glotzbach, Ewald, Andreatta, Pauli & Mühlberger, 2012) 
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and also in treatment of anxiety disorders such as aviophobia, public speaking anxiety or  

PTSD (Mühlberger, Weik, Pauli & Wiedemann, 2006; McLay et al., 2012). VR enables the 

observer to immerse into and to interact with the scene he or she is currently experiencing. 

Hoffmann and colleagues could show that immersive VR works as a powerful distractor 

and therefore as an effective pain reduction technique for burn patients during wound care 

(Hoffmann,  Patterson,  Seibel,  Soltani,  Jewett-Leahy  &  Sharar  2008).  For  a  fear 

conditioning experiment, the learning environment can be designed a lot more complex 

and realistic in VR compared to a laboratory setting involving a 2D computer screen. In  

everyday  life,  people  are  confronted  with  complex  learning  environments  involving 

ambiguous  associations  between  cues  and  consequences.  These  situations  can  be 

reproduced in VR environments. Also, a conditioning or extinction context can be created 

and manipulated without the need to physically change for example the room in analogy to 

the cage in animal studies. VR allows the experimenter to control every detail of contexts  

as  well  as  cues  and  aversive  events  presented  during  conditioning.  Moreover, 

physiological fear responses like FPS or SCR and verbal reactions such as explicit fear 

ratings can be measures in a controlled way.

3.5. Aim of Dissertation

The aim of this dissertation is to study fear conditioning in humans in a setting which 

is close to a real life learning situation. So far, little effort has been put into studying fear  

conditining in the presence of many potential distractors which we usually encounter in 

everyday life. In such a setting, associations between different CS and US become less 

evident and therefore are more difficult to learn. One can expect that participants do not  

necessarily become aware of the contingencies between the CS and the US and that  
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learning is more likely to take place on an implicit level. In this dissertation I examine cue 

and contextual fear conditioning with regard to the effects of contingency awareness. For 

this  purpose  a  VR  paradigm with  high  ecological  validity  was  created.  In  spite  of  its 

complexity,  this  learning  environment  allowed  for  exact  manipulation  of  cues  and 

contextual stimuli as well as the timing of the events. 

In  a  first  pilot  study,  which  was  conducted  to  test  the  paradigm for  further  studies,  I  

examine whether conditioning is successful in the newly created virtual environment using 

a classic differential cue conditioning paradigm. Of special interest is whether participants 

would actually become aware of the associations between CS-, CS+ and US within the 

complex learning situation. Fear learning and extinction of fear are examined both on an 

implicit and on an explicit level. 

For the second experiment, the complexity of the learning situation has been enhanced to 

investigate cue conditioning in combination with contextual conditioning. The contexts are 

realized by three different virtual rooms. I expect higher contextual fear in participants who 

fail to explicitly learn the association between CS and US. Besides information about the 

existing  threat,  this  knowledge  also  provides  information  about  safety  periods.  For 

unaware participants the threat is much more unpredictable, which has been shown to 

lead to higher contextual fear. 

As  third  experiment  I  conduct  an  imaging  study,  in  which  I  use  the  same  virtual 

environment. Since there is relatively few evidence on neuronal structures involved in fear 

extinction,  I  apply the paradigm tested during the pilot  study to take a closer  look on  

neuronal structures involved in fear extinction of both implicit and explicit fear memory. Of 

particular  interest  in  this  study  are  the  differences  in  neuronal  activity  between  the 

extinction of fear memory acquired during delay and trace conditioning. There is evidence 
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that trace conditioning requires more cognitive resources than delay conditioning and does 

not occur on an implicit level. I am interested in whether I find neural activation correlating 

to extinction of fear memory in unaware participants after trace conditioning. Of special 

interest  are  also  differences  between  extinction  of  trace  and  delay  conditioning  and 

differences of extinction in aware and unaware participants.

Taken together,  this  work investigates fear  conditioning and extinction in  complex and 

ecologically valid virtual environments with regard to awareness and its consequences on 

neurological processes and contextual anxiety.
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4. Fear conditioning in virtual reality: Effects of 
awareness in a complex learning environment

4.1. Summary

Human studies of classical fear conditioning are often realized in a rather abstract 

way which might lead to a lack of ecological validity. The use of Virtual Reality has been 

shown to be a promising tool to create more complex environments, which are closer to 

real  life situations.  In a differential  fear conditioning paradigm participants were guided 

through a virtual office, in which two different light colors served as CS and an electric 

stimulus as US. FPS responses and evaluative conditioning in form of subjective ratings 

were measured. My findings give evidence that eye blink conditioning is possible in a 

complex environment containing many distractors. Additionally, the FPS response did not 

depend on contingency awareness. However, conditioning was not reflected in valence, 

arousal  and anxiety  ratings  of  participants  who  did  not  explicitly  learn  the  association 

between CS and US. On the contrary the aware group rated the CS+ as more arousing 

and more anxiety eliciting than the CS-. These results indicate that explicit  memory of 

contingencies is necessary for attitude formation in fear conditioning.

4.2. Introduction

When confronted with an external threat an organism experiences fear, which leads 

to  an  appropriate  defensive  reaction.  This  reaction  is  crucial  for  the  survival  of  the 

organism, since it results in adjustment to the imminent danger by triggering self protection 

mechanisms  like  reflexive  escape  responses.  By  evolution,  some  stimuli  are  innate 
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sources  of  fear,  e.g.  snakes,  spiders,  or  heights.  Additionally,  the  ability  to  learn 

associations between an initially neutral  stimulus and a possible threat  is essential  for 

survival of an animal or a human being (Mineka & Öhman, 2002). The fear conditioning 

paradigm is used to study this mechanism in the laboratory. It is one of the most important  

animal models and has greatly improved our knowledge about mechanisms of fear and 

anxiety as well as fear mediation neuronal structures (Davis, 1997).

In a differential fear conditioning paradigm one initially neutral stimulus (CS+) is paired with 

an aversive event (US), for example an electric stimulus, whereas another stimulus (CS-) 

is never followed by this event. After a few pairings, the CS+ is associated with the US 

elicits a CR. This response usually involves behavioral and autonomic changes as well as 

increased activity in the neural fear network. 

Once a stimulus has acquired fear eliciting properties, it activates the fear network in a 

rather automatic way. According to LeDoux (2000) there is a low road of fear processing, 

which follows the thalamo-amygdala pathway and does not involve cortical structures. This 

means  that  conscious  processing  of  the  stimulus  is  not  necessary for  eliciting  a  fear 

reaction. Yet, findings concerning the actual learning processes in fear conditioning are 

ambiguous regarding the role of awareness. There is an ongoing debate about whether 

contingency awareness which can be defined as the explicit knowledge of the association 

between CS and US is required for fear acquisition (Klucken et al., 2009b). As suggested 

by (Lovibond & Shanks, 2002;  Mitchell,  De Houwer, & Lovibond, 2009), it  is likely that 

awareness of contingencies between the CS and the US is necessary for establishing a 

conditioned response. There are findings which indicate that even an implicit CR cannot 

be found without explicit awareness of CS/US contingencies (Dawson, Rissling, Schell, & 

Wilcox,  2007;  Klucken  et  al.,  2009a).  However,  there  is  also  evidence  that  implicit 
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conditioned responses may occur without  contingency awareness (Hamm et al.,  2003; 

Knight, Nguyen, & Bandettini, 2006; Weike, Schupp, & Hamm, 2007).

The  FPS  response  is  often  used  to  test  whether  cued  fear  conditioning  had  been 

successful  on a non conscious level.  The startle reflex is a cross-species response to 

sudden, intense stimulation, e.g. a sharp loud noise. In humans, presentation of a startle  

tone leads to an eye-blink, i.e. to a rapid contraction of the M. Orbicularis oculi, which can 

be measured using electromyographic recordings (Blumenthal et al., 2005; Lang, Bradley, 

& Cuthbert, 1990). Importantly, the magnitude of the reflex varies with the affective state of 

the organism: Fear-inducing stimuli for example increase the startle response, whereas 

positive  stimuli  reduce  it.  This  effect  is  dependent  on  subcortical  brain  structures 

influencing the brainstem acoustic startle pathway (Koch, 1999; LeDoux, 2000). Since the 

startle reflex does not depend on cortical input, it may reflect learning processes on an 

unconscious and implicit level. 

To test conditioning effects on an explicit level, subjective ratings of stimulus valence as 

well as levels of arousal and anxiety in response to the stimulus are often used. There is 

strong evidence that a change of valence is not possible without contingency awareness 

(Dawson, et al., 2007; Pleyers, Corneille, Luminet, & Yzerbyt, 2007; Stahl, Unkelbach, & 

Corneille, 2009). 

One problem of most conditioning studies is their lack of ecological validity. They mostly 

realized context free conditioning paradigms with picture stimuli as CSs, presented on a 

blank screen (Klucken et al., 2009; Phelps, Delgado, Nearing, & LeDoux, 2004; Weike et 

al., 2007). In real life however, a person is usually situated in a complex and changing 

environment, when confronted with a new association between a specific stimulus and an 

aversive event. Thus, it might be quite difficult to become aware of possible contingencies, 
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because  many and  changing distracters  are  present  simultaneously.  Hence,  it  is  very 

interesting to investigate fear conditioning in a complex environment in more detail.

Virtual  Reality  (VR)  has  proven to  be  a  very  useful  tool  to  study fear  conditioning  in 

complex environments (Alvarez, Biggs, Chen, Pine, & Grillon, 2008; Baas, Nugent, Lissek, 

Pine, & Grillon, 2004; Grillon et al., 2006). Important advantages of VR paradigms are the 

high  ecological  validity  and  the  simultaneous  possibility  to  experimentally  control  all 

aspects of these stimuli  (Baas et al.,  2004; Mühlberger, Bülthoff,  Wiedemann, & Pauli, 

2007a; Mühlberger, Wieser, Kenntner-Mabiala, Pauli, & Wiederhold, 2007b; Mühlberger, 

Wieser, & Pauli, 2008a;  Glotzbach, Ewald, Andreatta, Pauli & Mühlberger, 2012; Tröger, 

Ewald,  Glotzbach, Pauli  & Mühlberger,  2012). Participants view the environment via  a 

Head Mounted Display. They immerse in this environment and can act like in a real world.

I  created a differential  cue conditioning paradigm in VR to study fear conditioning in a 

complex environment. The VR consisted of an office which participants could explore and 

were guided through. CSs were realized by turning on a lamp which illuminated the room 

in a specifically colored light. The offset of the CS+ was followed by a mildly painful electric 

stimulus  serving  as  US.  Based  on  studies  mentioned  above  which  found  conditioned 

responses in spite of the absence of awareness, I expected startle responses to the CS+ 

compared to the CS- to be enhanced after the conditioning process, regardless of whether 

participants were able to explicitly report the association between CS+ and UCS. However, 

I expected a difference between aware and unaware participants for ratings of valence and 

arousal of the CSs, as well as for ratings of anxiety.
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4.3. Method and materials

4.3.1. Participants

In total, 30 volunteers (16 female; age 20-31) participated in this study. Excluding criteria 

were past or present psychiatric disorders, use of antipsychotic drugs, present alcohol or 

drug abuse, hearing impairment and uncorrected amblyopia. Five participants had to be 

excluded due to low startle reactivity,  regular drug consumption, or technical problems. 

The final sample consisted of 25 participants (16 female, mean age = 24.2 years, SD = 2.9 

years). All  participants gave their written informed consent. Participants gained 12€ for 

their  participation.  The  investigation  was  approved  by  the  Ethics  Committee  of  the 

University of Wuerzburg.

4.3.2. Stimuli and apparatus

VR environment. I  used  the  Valve  Source  engine  (Valve  Corporation,  Bellevue, 

Washington, USA), which is also used in the computer game Half-Life 2, to create the 

virtual environment consisting of a corridor and an office. Two different lights, blue and 

yellow, served as CS+ and CS-, respectively (see figure 3). One light (CS+) was always 

followed by a mildly painful electric stimulus (US), while the other one (CS-) did not have 

any consequences. Colors of CS+ and CS- were counterbalanced across participants. The 

origin of the lights was a standard-lamp situated in the middle of the office. It was always 

switched  on for  8  seconds and illuminated the  whole  room.  Participants  were  guided 

through the VR environment on a prerecorded path but were able to change their field of 

view by moving their head. To manipulate the VR environment during the experiment I  

used  the  software  CyberSession  which  has  been  written  in-house.  Rendering  was 

completed by the Cortona VRML Renderer (ParallelGraphics, Dublin, Ireland). The virtual 
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environment was displayed by a Z800 3D Visor head-mounted display (HMD; eMagin, 

USA).  In  order  to  adapt  the  field  of  view  to  head  movements  and  to  assess  head 

orientation,  the  head  position  was  monitored  with  the  Patriot  electromagnetic  tracking 

device (Polhemus Corporation, Colchester, Vermont, USA).

Figure  3: Office  in  neutral  illumination  and  with  yellow  and  blue  light  (serving  as  CS+  and  CS-,  

counterbalanced across participants) switched on.

54



Fear conditioning in virtual reality: Effects of awareness in a complex learning environment

Electric stimuli. The US was a mildly painful electric stimulus generated by a current 

stimulator (Digitimer DG2A, Digitimer Ltd, Hertfordshire, England) and delivered through 

an electrode at the dominant inner forearm. Electric shocks were triggered automatically 

by CyberSession for 200 ms with a frequency of 50 Hz. They were sent by the simulator  

with  a voltage of  400 V and duration of  2 ms. The intensity of  the current could vary 

between 0 and 9.9 mA and was individually adjusted for each participant at their pain 

threshold.  In  four  alternately  ascending  and  descending  series  of  electric  stimuli  the 

current was increased and decreased in steps of 0.5 mA, respectively, and the intensity of 

pain was rated by the participants on a scale from 0 (“no sensation at all”) to 10 (“very 

strong pain”), whereas 4 meant “a pain just noticeable”. The first ascending series started 

from  0  mA and  was  stopped  when  the  electric  stimulus  was  rated  4  or  more.  The 

descending  series  started  0.5  mA higher  than  the  stopping  point  of  the  preceding 

ascending  series  and  stopped  when  the  electric  shock  was  rated  below 4.  The  next 

ascending series started 0.5 mA below this stopping point. After this procedure, the lowest 

current of each series that was rated at least 4 was taken to calculate a mean intensity of 

current. This mean was multiplied by 1.3 and the resulting current was used as individual 

US. In case that this final US was rated below 4, intensity was increased to the next half or  

full mA until rated above 4. In this sample, the realized electric stimuli had a mean current 

of 1.8 mA (SD = 0.8) and participants rated its intensity with a mean of 5.7 (SD = 1.4) at 

the beginning and 5.1 (SD = 1.5) at the end of the experiment. 

Recording  of  Physiological  Data.  The startle  reflex  was  measured  by recording 

electromyographic activity (EMG) from the M. orbicularis oculi with two 13/7 mm miniature 

Ag-AgCl electrodes filled with electrolyte placed centrally beneath the left eye and about 1 

cm closer to the outer corner of the left eye. Impedance level was kept below 10 kΩ. The 
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acoustic startle stimuli was a 103 dB burst of white noise presented for 50ms binaurally via 

headphones.

All physiological data were assessed using electrodes connected to a digital amplifier (V-

Amp 16, Brain Products Inc., Munich, Germany) and recorded on a computer using Vision 

Recorder  (Brain  Products  Inc.,  Munich,  Germany),  which  also  was  used to  check the 

impedances of the Ag/AgCl electrodes. 13/7 mm 10 miniature electrodes were fixed to the 

left and right mastoid each as reference and ground electrode, respectively. Impedances 

were kept below 10 kΩ.

4.3.3. Psychometric measures

Ratings. At several times during the experiment ratings of valence (very negative – 

very positive), arousal (not arousing at all – very arousing), anxiety (no anxiety – extreme 

anxiety) and contingency (not likely at all – very likely) were collected, each on scales from 

0 to 100. 

Awareness. Explicit knowledge of contingencies between CSs and US was assessed on 

the  basis  of  the  questions  “Were the  electric  shocks predictable?”  (possible  answers: 

“Yes”, “No”, “Don´t know”) and “During which light presentation did you receive electric 

shocks?”. Participants who confirmed predictability and were able to state the correct light 

colour after the second acquisition run were labelled “aware”,  the others were labelled 

“unaware”.  Nineteen participants  met  the  above mentioned criteria  for  awareness;  the 

remaining six were labelled „unaware”.

4.4. Procedure

After participants had given written informed consent, EMG electrodes and electric 

stimuli were adjusted as described above. In order to get accustomed to the volume of the 
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startle  tone,  participants  were  exposed  to  three  startle  probes before  the  start  of  the 

experiment. They were told that they will be able to predict the electric stimuli when they 

pay close attention to the experiment, and that the tones are not associated with the US.

This preparation phase was followed by a habituation block, in which participants 

were guided through the office once. Both lights were switched on and five startle tones 

were presented for startle habituation and as a baseline measurement.  After habituation, 

participants rated the blue and yellow lights regarding valence and arousal.

The  actual  experiment  consisted  of  3  phases,  two  acquisition  phases  and  one 

extinction phase. Each phase contained 3 trials, in which the office was visited once for 2 

minutes each (see Figure 4).  While moving through the office, CS+ and CS- appeared 

twice for 8 seconds. Hence, participants visited the office three times in one phase and 

were  exposed  to  six  CS+  and  six  CS-.  During  both  acquisition  phases  the  US  was 

administered at  the  end of  each CS+,  resulting  in  a  total  of  12  electric  stimuli  during 

acquisition. During extinction no US was applied.

Three startle probes were delivered in the office during each acquisition trial: one 

during the inter stimulus interval (ISI), one during CS+ and one during CS- presentation (5-

6 sec after  stimulus onset),  i.e.,  there were three startle probes per stimulus category 

(CS+, CS-, ISI) during each acquisition phase. This number was increased to 5 startle 

probes for each stimulus category in the extinction phase. I did not include more startle  

trials  because  I  expected  strong  habituation  effects.  Moreover,  too  many startle  trials 

during acquisition could lead to confusion regarding the contingency learning. If  startle 

probes were more salient than the electric stimuli, participants might form an association 

between CSs and startle probes instead of the US. In the extinction phase I increased the 

number of startle probes because the learning process should already be completed.
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Importantly,  CS+  and  CS-  were  presented  when  participants  were  at  different 

locations in the office, thus preventing associations between cues like distinct pieces of 

furniture with startle probe or US administration. The startle probes were delivered every 

15-30 sec during a trial. Additionally, there was an interval of at least 10 seconds between 

US and startle probe to avoid an influence of the shock on the startle reaction (Davis, 

1998). Order of stimuli and duration of the ISI were pseudorandomized across participants. 

In total, there were four different event sequences, two of them with the blue light and two  

with the yellow light serving as CS+. 

Figure 4: Schematic drawing of  the course of  the experiment. The main experiment consisted of three  

phases (two acquisition blocks, one extinction block). Before conditioning, there was a short habituation trial.  

The three main blocks consisted of three trials each. During one trial participants were guided through the  

office for two minutes, CS+ and CS- were switched on twice for eight seconds. In the acquisition phases,  

startle probes were presented during 3 out of 6 CS presentations, in the extinction phase during 5 out of 6  

CS presentations

After each acquisition phase awareness was measured as described above. Participants 

rated valence and arousal of the two different lights after both acquisition phases and the  

extinction phase. Ratings of anxiety and contingency were conducted after acquisition 2 
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and extinction.  For  all  ratings,  situations in  the  experiment  were  described orally  and 

questions were presented via headphones. Participants were told to relate their answers to 

the way they felt during the last phase of the experiment. Answers were given orally and 

recorded by the investigator.  At the end of the experiment,  they received 12 Euros for 

participation.

4.5. Data analysis

Alpha was set at .05 for all statistical tests, effect sizes are reported as partial  ηp² 

scores. t-tests were conducted one-tailed because of directed hypotheses.

4.5.1. Startle reflex

Raw EMG signals were further processed with the Vision Analyzer (Brain Products 

Inc., Munich, Germany). The raw values recorded with the outer electrode were subtracted 

from the raw values recorded with the inner electrode. Then data epochs were extracted 

from 100 ms before to 1000 ms after the startle tone. A 500 Hz high cutoff filter, a 30 Hz 

low cutoff filter and a 50Hz notch filter was administered, the data were rectified (positive  

values remain the same and negative values are converted into positive values of the 

same magnitude)  and  moving  averages  of  50  ms were  calculated.  The  epochs  were 

baseline corrected using the 50 ms before probe onset. After that, a macro was used to 

search for startle peaks during 21-200 ms after probe onset. The placement of the peak 

markers was manually controlled and corrected if  necessary. Invalid epochs containing 

artifacts were marked and removed. Artifacts were defined as follows: amplitude higher 

than 5 µV or lower than -5 µV during baseline. Peak data were exported to SPSS 16 

where peak amplitudes below 5 µV were scored as zero (non-response). T-values for the 

startle amplitudes were calculated and the mean T-values for each Cue (CS+/CS-/ISI)  
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during  each  phase  (acquisition1,  aquisition2,  extinction)  were  used  for  analysis.  One 

participant was excluded from analysis because of less than two artifact-free responses 

per stimulus category.

Startle responses were analyzed separately for each phase with MANOVAs with repeated 

measures,  including  the factors Stimulus (CS+,  CS-,  ISI)  and Contingency Awareness 

(aware, unaware). 

4.5.2. Ratings

Contingency  ratings  were  used  as  a  manipulation  check  for  the  breakup  of 

participants into aware and unaware. A multivariate analysis of variance (MANOVA) with 

repeated measures and the factors Awareness (aware,  unaware),  Phase (acquisition2, 

extinction)  x  Stimulus  (CS+,  CS-)  was  conducted  to  test  whether  participants  labeled 

“aware” compared to those labeled unaware rated the CS+/US contingency as higher than 

the CS-/US contingency after  conditioning.  Unaware participants were expected to not 

differ in the contingency ratings of CS+ and CS-. For the ratings of valence and arousal  

MANOVAs  with  repeated  measures  and  factors  Phase  (aquisition1,  acquisition2, 

extinction) x Stimulus (CS+, CS-) x Awareness (aware, unaware) were conducted. The 

same analysis was applied to anxiety ratings, but the factor Phase contained only two 

steps (acquisition2,  extinction).  t-tests  were  conducted for  valence and arousal  ratings 

assessed  after  the  habituation  phase  to  check  for  initial  differences  between  the  two 

different lights.
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4.6. Results

4.6.1. Manipulation check for awareness

Nineteen participants  met  the  above  mentioned  criteria  for  awareness;  the 

remaining six were labelled „unaware”.  The 2 (Awareness [aware, unaware]) x 2 (Phase 

[acquisition  2,  extinction])  x  2  (Stimulus  [CS+,  CS-])  MANOVA of  contingency  ratings 

revealed significant main effects of  Phase (F(1,  23) = 83.34,  p < .001,  ηp² = .78) and 

Stimulus (F(1, 23) = 59.75, p < .001, ηp² = .72) as well as significant interactions of Phase 

x Stimulus (F(1, 23) = 49.43, p < .001, ηp² = .68), Stimulus x Awareness (F(1, 23) = 63.84, 

p < .001, ηp² = .74) and Phase x Stimulus x Awareness (F(1, 23) = 23.49, p < .001, ηp² = .

59). After acquisition 2, aware participants rated the US /CS+ contingency as almost 100% 

and as significantly higher (t(18) = 31.14, p < .001) than the CS-/US contingency. On the 

contrary,  unaware  participants  did  not  show  any  significant  differences  between  the 

contingency ratings of CS+ and CS- after the acquisition phase (p > .77). They rated the 

CS+/UCS contingency as significantly lower than aware participants (t(6.106) = 4.38,  p 

=.001), the CS-/US contingency as significantly higher (t(6.654) = -5.41, p =.005). After the 

extinction phase, only in the aware group the difference between CS+/US and CS-/US 

contingency was marginally significant (t(18) = 2.00,  p =.061). There were no significant 

group differences after extinction (all ps > .47) (see figure 5).
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Figure 5: Contingency ratings on a scale from 0% to 100% in the aware and unaware group. 

** p<=.001; † p>=.01

4.6.2. Startle reflex

As a first important finding, the factor awareness had no influence on the startle 

data  in  all  three  phases  (acquisition  1,  2,  and  extinction).  The  MANOVAs  for  both 

acquisition blocks did not reveal any significant effects. In the extinction phase, which was 

the most important test phase for conditioning effects and FPS, I observed a significant 

main effect of Stimulus (F(1, 22) = 6.07, p = .008, ηp² = .36). Follow up t-tests revealed that 

difference between startle reactions to CS+ compared to CS- did not reach significance 

(t(24) = 1.13, p = .13), but were significantly increased compared to the ISI (t(24) = 3.32, p 

= .002). The difference between CS- and ISI also reached significance (t(23) = 2.53, p = .

010) (see figure 6). 
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Figure 6: Mean startle reactions (T-Scores) of  the complete sample in  acquisition 1,  2,  and extinction.  

* p<=.005

In a following explorative analysis I looked at reactions of aware and unaware participants 

separately, in order to confirm that both groups differed in the responses to the stimuli 

independent  of  awareness.  FollowUp  t-tests  revealed  differences  between  the  stimuli 

according to the results in the whole group. In the aware group, I did not find a significant  

difference between CS+ and CS-. The reaction to CS+ and CS- both were significantly 

higher than the reactions to the ITI (CS+/ISI: t(18) = 2.11, p = .025, CS-/ISI:  t(18) = 1.81, p 

= .044). Interestingly, next to significantly increased reactions of CS+ to ISI (t(5) = 6.09, p = 

.001) and CS- to ISI (t(5) = 2.47, p = .029), in the unaware group the startle reactions to 

CS+ were also marginally higher than the reactions to CS- (t(5) = 2.11, p = .077) (see 

figure 7). 
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Figure 7: Mean startle reactions (T-Scores) of the aware and unaware participants during extinction.

4.6.3. Ratings

t-tests for valence and arousal ratings before conditioning revealed no differences 

between CS+ and CS- (all ps >.40). 

For valence ratings after conditioning, the MANOVA did not show any significant 

effects  or  interactions.  Explorative  t-tests  suggested  that  the  CS+ was  rated  as  more 

negative than the CS- after acquisition 2 only in the aware group (t(18) = -2.40, p = .014). 

Ratings of the unaware group did not differ significantly in any of the phases, (all ps > .30).

For arousal ratings, the main effect stimulus (F(1, 23) = 3.18, p = .088, ηp² = 0.12) 

as well as the interaction Phase x Stimulus (F(1, 22) = 2.74,  p = .087,  ηp² = 0.20) were 

marginally significant, the interaction Stimulus x Awareness reached significance (F(1, 23) 

= 4.92, p = .037, ηp² = 0.18). One-tailed paired t-tests showed differences between arousal 

ratings after the acquisition phases only for the aware participants (acquisition 1:  t(18) = 
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2.13, p = .02; acquisition 2: t(18) = 3.95, p < .001). After extinction, this difference was only 

marginally significant (t(18) = 1.51, p = .07). Again, ratings of the unaware group did not 

differ significantly in any of the phases, (all ps > .14).

Anxiety was only measured after acquisition 2 and extinction. I found a marginally 

significant main effect  Phase (F(1,  23)  = 3.25,  p =  .084,  ηp² = 0.12) and a significant 

interaction of Stimulus x Awareness (F(1, 23) = 4.50, p = .045, ηp² = 0.16). Once more only 

in the aware group anxiety ratings for the CS+ were significantly higher compared to the 

CS- after the second acquisition phase (t(18) = 2.89, p = .005, d´= 0.89). The difference in 

ratings after the extinction phase was no longer significant (t(18) = 1.45, p = .08). As well 

as for valence and arousal ratings there were no significant differences between the stimuli  

in the unaware group (all  ps > .07). Interestingly, unaware participants rated the CS+ as 

marginally less anxiety inducing than CS- after the second acquisition phase (t(5) = -1.78, 

p = .07). 

In  sum,  ratings  indicate  that  evaluative  conditioning  was  successful  only  in  the 

aware group (see figure 8). After acquisition 2, the CS+ was rated as more arousing and 

more anxiety inducing compared to the CS-. After the extinction phase only the arousal 

rating for the CS+ was still marginally enhanced, the other differences had disappeared as 

expected. Results in the unaware group have to be interpreted with care due to very small  

sample sizes.
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Figure 8: Ratings in the aware (left) and unaware (right) groups: (a) valence (from 0 = “very negative” to 100  

= “very positive”), (b) arousal (from 0 = “not arousing at all” to 100 = “very arousing”, (c) anxiety (from 0 = “no  

anxiety” to 100 = “extreme anxiety”). ** p<=.001; * p<=.005; † p>=.01

4.7. Discussion

In  the  present  study  I  examined  cued  fear  conditioning  in  a  complex  virtual 

environment.  Results  from  startle  data  and  subjective  ratings  showed  that  differential 
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conditioning was mostly successful. During the learning phase, I did not find any significant 

differences between startle reactions. During extinction, the test phase after the learning 

phases,  reactions  to  the  CS+  were  significantly  stronger  than  reactions  during  ITI. 

Compared to CS-, I found a trend for stronger reactions to CS+. This difference did not  

reach significance. As expected, the effect of awareness did not have an influence in any 

of the MANOVAs conducted on the startle data. These results are consistent with the view 

that awareness is not necessary for fear conditioning reflected in an implicit measurement 

such  as  the  startle  response.  On  the  contrary,  as  revealed  by  separate  exploratory 

analyses of aware and unaware participants, fear potentiation in response to the CS+ was 

even stronger in the unaware group compared to the aware group. Due to small sample 

sizes in both groups I cannot state clear evidence for a conditioning effect.

However, contingency awareness did play a significant role in subjective ratings. 

Here  conditioning  effects  were  only  present  in  participants  who  explicitly  learned  the 

contingency between the US and the CS+. Aware participants rated the CS+ as more 

arousing and more anxiety inducing compared to the CS- after the second acquisition 

phase. Arousal ratings already differed after the first acquisition phase. After the extinction 

these differences had disappeared except for marginally enhanced arousal and anxiety 

ratings of the CS+. There were no significant differences between ratings of CS+ and CS- 

in the unaware group.

An important point regarding the separation of the sample into aware and unaware 

participants  is  the  validity  of  contingency  awareness  measures.  There  is  an  ongoing 

debate about how to measure awareness to not misclassify aware participants as unaware 

or vice versa. In their review, Lovibond and Shanks (2002) suggest that assessment of 

awareness should occur under optimal retrieval conditions, or at least testing conditions 
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should be as similar to learning conditions as possible. Additionally, long time intervals can 

lead to forgetting. I asked participants after the first and second acquisition block verbally, 

whether electric stimuli  were predictable and whether they could explicitly tell  in which 

situation they received an electric shock. Since recognition tasks are more sensitive than 

free recall, I also included contingency ratings with visual analog scales for every situation. 

I did not ask for contingencies after every trial in between the acquisition bocks. This might 

lead to a higher number of aware participants because it  directs attention towards the 

association between the stimuli (Dawson & Reardon, 1973). I checked whether the results 

of the contingency ratings were congruent with conclusions based on the open questions 

to control the quality of the assessment of awareness. A significant difference between 

ratings  of  the  CS+  and  the  CS-  after  the  conditioning  process  was  present  only  for 

participants classified as aware. After the acquisition this group rated the contingency of 

CS+ and US as 80 to 100%, the contingency of CS- and US as 0 to 30%.

Taken together, startle data results are consistent with prior findings suggesting that 

explicit  knowledge of contingency is not  necessary for the production of a conditioned 

response in delay conditioning (Manns, Clark, & Squire, 2002;  Smith,  Clark, Manns, & 

Squire, 2005;  Weike, et al., 2007). But due to the above mentioned small sample size, 

further research is required to answer this question more reliably. The here applied method 

of not manipulating awareness directly but exposing participants to a complex environment 

containing many distractors is a promising approach to investigate the influence of explicit  

knowledge of contingencies in close analogy to real life situations.

Contrary to the fact that awareness did not have an influence in the MANOVAS on 

the startle data, it did definitely have an impact on evaluative conditioning. The finding that 

unaware participants did not differentiate between CS+ and CS- in subjective ratings is in  
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line with a growing number of studies (Dawson, et al., 2007; Pleyers, et al., 2007; Pleyers, 

Corneille, Yzerbyt, & Luminet, 2009).

Findings from startle data and ratings taken together,  my results  provide further 

evidence for a dual process model of classical fear conditioning, which assumes that two 

different  learning  processes  take  place  during  conditioning.  The  first  one  leads  to 

conscious awareness, whereas the second one leads to the production of a CR by forming 

an excitatory link between the CS and US nodes (Lovibond & Shanks, 2002) Results from 

imaging studies indicate that separate memory systems are involved in explicit memory of 

fear on the one hand, and the implicit and unconscious production of a fear response in 

classical fear conditioning on the other hand (Knight, Waters, & Bandettini, 2009; Tabbert, 

Stark,  Kirsch, & Vaitl,  2006). For example Knight et  al.  (2009) showed that the medial 

temporal  lobe,  especially  the  hippocampus  and  parahippocampal  gyrus  are  activated 

when explicit, aware learning occurs. However, these regions are not necessary for the 

production of a CR, which can be mediated by the amygdala complex.

In the third study I plan to take a closer look on neuronal structures involved in extinction of 

both explicit an implicit fear memory. Before that, I extended the paradigm tested in the 

present  study to  investigate both  cue and context  conditioning in  a  between-subjects-

design under consideration of contingency awareness and individual differences regarding 

trait anxiety.
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5. Effects of awareness revisited: Combined cue- and contextual 
conditioning in a virtual reality environment1

5.1. Summary

To examine acquisition and extinction of both fear associated cues and contexts, a 

a  novel  cue-context  generalization  paradigm  was  designed.  Participants  were  guided 

through two distinguishable virtual rooms (again designed as offices), in which the two 

different lights already mentioned in the first study were presented. Additionally, one room 

served as fear context, the other one as safety context. During acquisition, one light (CS+) 

was always followed by an electric shock (US) in the fear context, the other light (CS-) had  

no consequences. In the safety context however, none of the lights was followed by the 

US. During extinction, a third novel context was introduced in addition to fear and safety 

context. Participants were guided through all three rooms, no US was delivered in any of  

the three contexts. 

Participants showed enhanced startle responses on the CS+ compared to the CS- in the 

fear context. Thus, discriminative learning took place regarding both cues and contexts 

during acquisition. This was confirmed by subjective ratings, although only for participants  

who developed explicit contingency awareness. Unaware participants did not differentiate 

fear and safety cues and contexts. Generalization of the fear response to the novel context 

after  conditioning  could  be  found  for  all  participants,  though  only  on  trend  level. 

Participants with high trait anxiety developed fear of the CXT+ compared to the CXT- as 

indicated by startle responses to the contexts alone during the ISI.

1   Data reported in this chapter are part of the study published by Mühlberger et al. (2013)
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5.2. Introduction

Classical fear conditioning has been serving as a model for the development and 

maintenance of anxiety disorders for many years. Pathological states of phasic fear, such  

as specific phobias, have been studies by applying cued fear conditioning. Here, a distinct 

cue is paired with an aversive event, creating a rather predictable situation with an explicit 

threat. But the associations which are formed during fear conditioning are not exclusively 

associations between specific cues and an aversive stimulus. The two stimuli seldom exist 

in isolation, but are usually embedded in a certain context.  When contextual cues are 

present during acquisition, they form the background milieu of the learning process and 

play  an  important  role  in  both  the  formation  of  associations  and  the  extinction  of 

conditioned fear (Baas, Nugent, Lissek, Pine & Grillon, 2004). The context functions as a 

predictor  of  the relationship  between the  cue and the aversive  event.  This  concept  is 

referred  to  as  occasion  setting  (Delamater  2012).  However,  the  context  does  not 

necessarily serve merely as background information during cue conditioning. It can also be 

the cue itself. During context conditioning, an experimental context like a cage or a room is 

paired  with  an  aversive  stimulus.  Cue  and  context  conditioning  differ  with  regard  to 

temporal information about the threatening stimulus. Whereas a distinct cue allows for an 

exact prediction of the onset of the associated US, a contextual cue offers no temporal 

information (see for example Grillon, 2008). This sort of conditioning leads to a response 

that is closer to a state of sustained anxiety than to distinct fear, because the organism 

finds itself in a setting of uncued and therefore less predictable danger. According to the 

safety-signal  theory by Seligman and Binik (1977) already described in chapter two,  a 

distinct cue associated with a threatening stimulus does not only signal danger. It  also 

serves as a safety signal, because it guarantees absence of danger when it is not present.  
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Without distinct cues serving as safety signals, the organism experiences chronic anxiety. 

According to Baas and colleagues, successful cue conditioning both signals threat and 

provides information about safety periods, which in turn allows for a reduction of contextual 

anxiety  (Baas,  van  Ooijen,  Goudriaan  &  Kenemans, 2008).  Consequently,  a  deficit  in 

learning  the  association  between  a  present  cue  and  an  aversive  US  might  lead  to 

enhanced contextual anxiety instead. Grillon postulates a causal relationship between the 

failure to learn the CS–US contingency and increased contextual anxiety (Grillon, 2002a).  

In consideration of this concept, not only hyper-conditionability can lead to maladaptive 

strong fear reactions or anxiety disorders like specific phobias. Also hypo-conditionability  

or the failure to associate a cue with a threat can result in anxiety disorders, however not 

to specific phobias but rather to GAD or phobic avoidance in panic disorders which are 

associated  with  sustained  anxiety.  Grillon  and  colleagues  showed  that,  compared  to 

healthy controls,  patients with  post  traumatic stress disorder as well  as panic disorder 

react  with  increased  anxiety  in  response  to  unpredictable  aversive  stimuli,  but  not  to  

predictable (cued) ones (Grillon et al. 2009; Grillon, Lissek, Rabin, McDowell, Dvir, & Pine, 

2008). Additionally, different neural systems have been found to be involved in phasic fear 

vs. sustained anxiety: The amygdala has been related to responses to cued threat (see for 

example  Alvarez, Biggs,  Chen,  Pine  &  Grillon, 2008).  The  bed  nucleus  of  the  stria 

terminalis (Alvarez, Chen, Bodurka, Kaplan & Grillon, 2011) and the hippocampus (Alvarez 

et  al.,  2008;  Marschner,  Kalisch,  Vervliet,  Vansteenwegen & Büchel,  2008) have been 

associated with responses to unpredictable threat .

Besides hyper-  and hypo-conditionability during acquisition of  fear,  also deficits  during 

extinction can lead to the development or maintenance of pathological states of fear or 

anxiety. For example, conditioned fear often returns with the course of time after extinction 
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training in exposure therapy. This is a widely known problem in the treatment of anxiety 

disorders. Acquisition of fear is rather context independent and is usually generalized over 

different contexts and situations, whereas extinction of conditioned fear has been found to 

be highly context dependent  (Bouton, 2004). There is strong evidence that extinction of 

conditioned fear does not imply forgetting or unlearning of an existing association between 

a cue and an aversive stimulus. Instead, it is generally assumed that new learning takes 

place. A new association is formed between the cue and the aversive event (or, in the case 

of extinction, the absence of the aversive stimulus), which then competes with the existing 

association. The context of extinction sets the occasion for which association is recalled in 

a specific situation . For example, if a person who suffers from fear of dogs is treated in a  

specific environment and probably also with the help of one particular dog, it is very likely 

that the fear will return in a different context and with a different dog.

Evidence  for  extinction  being  context  specific  comes  from  renewal  studies.  In  such 

experiments, fear acquisition takes place in a first context (A), and extinction in a second 

context (B). After extinction, a test can be carried out either in context A or B, or in a third  

context C. The fear reaction returns in contexts A and C, and is only suppressed in context 

B, that is when extinction and test take place in the same context.  Context specificity of 

extinction has been demonstrated in animal studies (Bouton, 2004), and more recently 

also  in  human studies  (LaBar  and Phelps  2005;  Milad,  Orr,  Pitman & Rauch, 2005a; 

Vansteenwegen et al., 2005; Neumann, 2006).

According  to  animal  models,  the  acquisition  of  contextual  information  during  fear 

conditioning  also  involves  different  brain  regions  than  forming  a  simple  association 

between a specific cue and an aversive US. The standard view of fear conditioning is that 

information about the CS is encoded by the amygdala complex, whereas the hippocampus 
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is assumed to be the crucial structure for encoding contextual information (Yoon, Graham 

&  Kim,  2011). There is also evidence that the orbitofrontal cortex is involved in context 

conditioning. In the amygdale, information about CS and context converge (Maren, 2001).

The neural circuit for extinction learning and recall is assumed to include  the amygdala, 

vmPFC,  and  hippocampus.  Extinction  learning  takes  place  in  the  amygdala,  and  the 

vmPFC is responsible for the inhibition of fear during extinction recall.  Presumably, the 

vmPFC  receives  contextual  information  from  the  hippocampus  to  determine  the 

circumstances under which extinction or fear will be recalled (Corcoran & Quirk, 2007). 

An individual factor which might play a role in the development and maintenance of anxiety 

disorders is trait anxiety (Mineka and Oehlberg, 2008). In contrast to state anxiety, trait 

anxiety is a stable tendency to interpret ambiguous situations as threatening and to react  

with state anxiety  (Spielberger et al., 1970). In an fMRI study, Indovina and colleagues 

(Indovina, Robbins, Núñez-Elizalde, Dunn & Bishop, 2011) provided evidence for high trait 

anxiety being a risk factor for both the development of phobic fear and the maintenance of  

fear and GAD: High trait-anxious individuals reacted with increased amydala activation in 

response  to  distinct  cues  predicting  an  aversive  event.  Additionally,  activation  of  the 

vmPFC was  reduced  in  response  to  both  cued  and  contexts  after  the  US had  been 

omitted, providing evidence for deficient inhibition of phasic fear and sustained anxiety.  

Startle  studies  illuminate  another  aspect  of  the  influence  of  high  trait  anxiety  in  fear 

conditioning. Intuitively,  one would expect  that  individuals scoring  high  on trait  anxiety 

learn the association between a cue and an aversive event very quickly, because the pay 

close attention to the threat. Interestingly, there is evidence that high-anxious individuals 

do indeed show enhanced fear reactions, but have deficits in discriminating fear and safety 

signals. Grillon et al. (2002a) as well as Baas et al. (2008) found that individuals who did  
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not learn the association between the CS+ and the US in a differential fear conditioning 

paradigm scored higher on trait anxiety. In a complex fear learning procedure containing 

blocking and protection from overshadowing, Arnoudova et al. (2013) also found deficits in 

discriminatory fear learning in high-anxious individuals. Thus, high trait anxiety might lead 

to diminished discrimination between fear and safety cues and might therefore result in 

increased contextual anxiety (Glotzbach et al., 2013). This has recently been confirmed by 

Baas  (2013),  who  found  an  inverse  association  between  trait  anxiety  and  adaptive 

modulation  of  contextual  anxiety.  In  a  virtual  reality  study by Glotzbach et  al.  (2013), 

examining isolated contextual conditioning, high trait-anxious participants showed faster 

contextual  fear  learning  compared  to  low  trait-anxious  participants.  Taken  together, 

findings  provide  evidence  that  high  trait  anxiety  is  a  vulnerability  factor  for  deficient 

interpretations of safety-signals, increased contextual anxiety and resistance to extinction 

due  to  reduced  inhibition.  In  this  study,  I  plan  to  investigate  cue  and  contextual 

conditioning  under  consideration  of  trait  anxiety  and  contingency  awareness  of 

associations between cues and aversive event.  For examining interactions of cue and 

contextual  conditioning during acquisition and extinction learning a novel  virtual  reality 

paradigm  was  developed.  During  acquisition,  differential  cued  fear  conditioning  was 

conducted  in  one  context  (fear  context),  whereas  the  cues  were  not  followed  by  an 

aversive event (US) in a second context (safety context). In the extinction phase, a third 

(novel) context was introduced. The cues were presented in all three contexts, no US was 

delivered.  As  measures  for  fear  reactions  I  recorded  startle  responses  and  collected 

subjective ratings. Trait anxiety was measures with the STAI questionnaire, contingency 

awareness by means of subjective reports. In general, I expected participants to react with 

increased fear in response to the CS+ compared to the CS-. This fear reaction should be 
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weaker in the safety context, but extended to the novel context during early extinction. 

Considering individual differences, I expected participants with high trait anxiety to show 

deficits in discriminating fear and safety cues. Therefore they should be more likely to be 

unaware of the association between CS+ and US on both an implicit and an explicit level,  

resulting in higher contextual fear. The effects of contingency awareness are interesting in 

and on itself. Not developing contingency awareness is not the same as not learning the 

association between the CS+ and the US. Differential cue conditioning can be successful 

on an implicit level, which can be shown fear potentiated startle (FPS) responses to the 

CS+, but at the same time unsuccessful on an explicit level, represented by subjective 

ratings (see for example Weike et al. 2007). I plan to investigate whether participants who 

are not explicitly aware of the CS+/US association but show FPS reactions all the same, 

develop higher contextual fear than aware participants.

5.3. Method and Materials

5.3.1. Participants

Sixty-one volunteers were recruited from the panel of participants collected for the 

Z2 project within the Collaborative Research Center SFB TRR 58. During the registration 

process for the Z2 panel participants had already completed various questionnaires and a 

structured clinical interview for DSM disorders (SCID). They had given written informed 

consent to being contacted for following studies. Excluding criteria were past or present 

psychiatric disorders, use of antipsychotic drugs, present alcohol or drug abuse, hearing 

impairment,  uncorrected amblyopia and allochromasia (for blue and yellow).  Moreover, 

students of  psychology were not  included in the study due to  possible  bias.  The final 

sample consisted of 37 participants (28 female, mean age = 25.3 years, SD = 4.1 years). A 
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total  of  24  participants had to  be  excluded due to  low startle  reactivity  (overall  mean 

amplitude  below 5),  regular  drug  consumption,  technical  problems with  the  course  of 

events in the VR paradigm, or nausea (motion sickness). All participants gave their written 

informed consent and received 25 Euros for participation. The investigation was approved 

by the Ethics Committee of the medical faculty of the University of Würzburg. 

5.3.2. Stimuli and apparatus

VR environment. As in the pilot study, the Valve Source engine (Valve Corporation, 

Bellevue,  Washington,  USA)  was  used  to  create  the  virtual  environment  for  the 

experiment. It consisted of three offices (fear, safety and novel context) and a connecting 

quadratic corridor. The contexts differed in furniture and window views. Two colored lights, 

blue and yellow, served as CS+ and CS-, respectively (see figure 9). One light (CS+) was 

always followed by a mildly painful  electric stimulus (US) in the fear context, while the 

other  one  (CS-)  never  had  any  consequences.  Colors  of  CS+  and  CS-  were 

counterbalanced across participants. The origin of the lights was the same standard lamp 

situated in the middle of each office. CS+ and CS- were always presented for 8 seconds 

and illuminated the whole room. In a first habituation phase participants were required to  

navigate  freely through the  virtual  rooms using  a  joystick.  Later  on  they were  guided 

through the VR environment on a prerecorded path but were able to change their field of 

view by moving their head. To manipulate the VR environment during the experiment, the 

in-house written software CyberSession was applied. Rendering was completed by the 

Cortona VRML Renderer (ParallelGraphics, Dublin, Ireland). The virtual environment was 

displayed by a Z800 3D Visor head-mounted display (HMD; eMagin, USA). Head positions 

were monitored with the Patriot electromagnetic tracking device (Polhemus Corporation, 
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Colchester, Vermont, USA), allowing the adaption of the field of view to head movements 

and the assessment of head orientation.

Figure 9:  A corridor (a) served as starting position for each trial. Three different rooms serving as CXT+,  

CXT- and novel context were arranged around the corridor. In the contexts, two colored lights (b and d)  

served as CS+ and CS-. Contexts and lights were counterbalanced across participants.

Electric stimuli. The US was the same mildly painful electric stimulus as in the pilot 

study, also generated by a current stimulator (Digitimer DG2A, Digitimer Ltd, Hertfordshire, 

England) and delivered via two gold-plated stainless steel disk surface electrodes (9 mm 

diameter, 30 mm spacing) at the dominant inner forearm. Current of electric stimuli was 

adjusted for each participant according to their  individual pain threshold. For details of 

application and adjustment of electric stimuli please see chapter 4.3.2. (page 55). In this 

sample,  the  realized  electric  stimuli  had  a  mean  current  of  1.8  mA (SD =  0.9)  and 
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participants rated its intensity with a mean of 5.4 (SD = 0.9) at the beginning and 4.9 (SD = 

1.3) at the end of the experiment. 

Recording of Physiological Data. As tested in the pilot study, the startle reflex was 

measured by recording electromyographic activity (EMG) from the M. orbicularis oculi with 

two 13/7 mm miniature Ag-AgCl electrodes. For a detailed description please see chapter  

4.3.2. (page 55f). The acoustic startle stimuli was a 95 dB burst of white noise. It was  

presented  binaurally  via  headphones  for  50ms. For  assessing  and  recording  of 

physiological data, the same digital amplifier and software was used as described in the 

pilot study. 

5.3.3. Psychometric measures

Questionnaires  and  Ratings.  Participants  were  required  to  complete  several 

questionnaires  including  personal  information  and  excluding  criteria.  Additionally,  I 

assessed general state anxiety with the STAI (State-Trait Anxiety Inventory, Spielberger,  

Gorsuch  &  Edward,  1970,  German  version  from  Laux,  Glanzmann,  Schaffner  & 

Spielberger, 1981).

At several times during the experiment ratings of  anxiety (no anxiety – extreme anxiety) 

and contingency (not likely at all – very likely) were collected, each on scales from 0 to 

100. 

Awareness.  Explicit  knowledge  of  contingencies  between  CS  and  UCS was 

assessed on the basis of the questions “Were the electric shocks predictable?” (possible 

answers:  “Yes”,  “No”,  “Don´t  know”) and “During which light  presentation and in which 

room did you receive electric shocks?”. I differentiated between participants who did learn 

the  contingency between  the  CS and  the  US and  participants  who  learned  both  the 

contingency between lights and US and contexts and US. In the result section I report  
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analyses with group factor awareness regarding CS and UCS: Participants who confirmed 

predictability and were able to state the correct light colour after the second acquisition run 

were  labelled  “aware”,  the  others  were  labelled  “unaware”.  23  participants  met  these 

criteria of awareness; the remaining 14 were labelled „unaware”.

5.4. Procedure

After  giving written informed consent,  participants completed a questionnaire on 

personal information and excluding criteria. Then they filled in the STAI questionnaire. After 

having read written instructions,  EMG electrodes and electric stimuli  were adjusted as 

described above. In order to get accustomed to the volume of the startle tone, participants 

were exposed to three startle probes before the start of the experiment. They were told 

that  they will  be  able  to  predict  the  electric  stimuli  if  they  pay close  attention  to  the 

experiment, and that the tones are not associated with the electric stimulus. 

These  preparations  were  followed  by  a  habituation  phase  (pre-acquisition),  in  which 

participants navigated freely through each room using a joystick, starting from the end of 

the corridor. They were instructed to stay in each room for two minutes and familiarize 

themselves with the environment. After exploring one room, they were re-placed to the 

starting point. Both lights were switched on and two startle tones were presented in each 

room  for  startle  habituation  and  also  as  a  baseline  measurement.  After  habituation, 

participants rated each room with neutral illumination as well as with the blue and yellow 

light switched on regarding anxiety. 

The main experiment consisted of two phases, an acquisition and an extinction phase. 

During acquisition, two of the three offices (fear and safety context) were visited for four 

times each in  a  pseudo randomized order.  Participants  were  now guided through the 

81



Effects of awareness revisited: Combined cue- and contextual conditioning in a virtual reality environment1

rooms on a prerecorded path, they were able to change their field of view by moving their 

head. The same room was never visited more than twice in a row. The whole acquisition 

phase consisted of eight trials, which lasted 2,5 minutes each, resulting in a total duration  

of 25 minutes. While moving through one office, CS+ and CS- appeared three times each 

for  8  seconds  at  a  time.  The  US  was  administered  at  the  end  of  the  CS+  with  a 

contingency of 100%, but only in one of the two rooms (fear context, CXT+), while in the 

other  room  (safety  context,  CXT-)  the  CS+  did  not  have  any  consequences.  Hence, 

participants  were  exposed to  24 CS+ and 24 CS-  during acquisition and received 12 

electric shocks. The inter-stimulus interval (ISI),  i.e. the time interval between one lights 

offset and the next lights onset lasted between 10 to 21 seconds (mean 15,5 s). The inter-

trial interval (ITI) defined as the end of one trial and the entry of the next room varied from 

20 to 30 seconds. In both contexts, six startle stimuli were presented during CS+, CS- and 

ISI, respectively. Overall, 36 startle probes were delivered during acquisition.

The extinction phase consisted of six trials. Each of the three rooms was visited twice,  

again for 2,5 minutes at a time. Frequency of the CS+ and the CS- presentations per trial  

were the same as in the acquisition phase, resulting in a total  of 18 CS+ and 18 CS- 

during  extinction,  6  presentations  of  each  in  every  room.  No  UCS  was  applied. 

Classification of rooms as CXT+, CXT- and unconditioned (novel) context was pseudo-

randomized across participants.

The number of startle probes was increased to five startle probes per context per stimulus 

category, resulting in 45 startle probes during extinction. I did not include more startle trials 

because I  expected strong habituation effects.  Moreover,  too many startle trials during 

acquisition could lead to confusion regarding the contingency learning. If  startle probes 

were more salient than the electric stimuli, participants might form an association between 
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CS and startle probes instead of the CS and the US. In the extinction phase I increased  

the number of startle probes because of fewer trials per context and because the learning 

process should already be completed. 

Importantly, CS+ and CS- were presented when participants were at different locations in 

the office, thus preventing associations between cues like distinct pieces of furniture with  

startle probe or US administration. The startle probes were delivered every 15-30 sec 

during a trial. Additionally, there was an interval of at least 10 seconds between US and 

startle probe to avoid an influence of the shock on the startle reaction (Davis, 1998). Order  

of stimuli and duration of the ISI were pseudo-randomized across participants. In total, 

there were six different event sequences, three of them with the blue light and three with 

the yellow light serving as CS+. 

After acquisition, awareness was measured by posing a free recall question as described 

above. Participants rated the two different rooms with neutral illumination and both lights 

switched on regarding valence,  arousal,  anxiety  and contingency after  acquisition and 

extinction. For all ratings (after pre-acquisition, acquisition and extinction), the HMD was 

removed and screen shots of situations in the experiment were presented on a screen in 

front of the participants. Questions were presented via headphones. Participants were told 

to  relate  their  answers  to  the  way they felt  during  the  last  phase  of  the  experiment.  

Answers  were  given  verbally  and  recorded  by  the  investigator.  At  the  end  of  the 

experiment, participants were once more exposed to the UCS and the startle tone and 

rated  these  on  the  appropriate  scales.  Then  headphones,  HMD and  electrodes  were 

removed  and  participants  filled  in  the  IPQ  questionnaire  and  received  25  Euros  for 

participation.

83



Effects of awareness revisited: Combined cue- and contextual conditioning in a virtual reality environment1

5.5. Data analysis

5.5.1. Startle reflex. 

The Brain Vision  Analyzer  Software  (Version 1.05;  Brain  Products  Inc.,  Munich, 

Germany) was used to process the raw EMG signals. Raw values recorded with the outer 

electrode were subtracted from raw values recorded with the inner electrode. After that,  

data epochs were segmented and extracted from 100 ms before to 1000 ms after the 

startle tone. A 500 Hz high cutoff filter and a 28 Hz low cutoff filter were administered. For 

details on preparation of raw data (including rectifying, calculation of moving averages and 

baseline  correction)  please  see  chapter  4.5.1.  (page  59).  Identification  of  peaks  and 

correction of  artifacts  was also executed according to  the pilot  study.  Peak data were 

exported to  SPSS 18 where peak amplitudes below 5 µV were  scored as zero (non-

response).  Participant  with  less  than  two  artifact-free  and  above  zero  responses  per 

stimulus category were excluded from analysis. T-values for the startle amplitudes were 

calculated  and  the  mean  T-values  for  each  Cue  (CS+/CS-/ITI)  during  each  phase 

(acquisition and extinction) were used for analysis.

Startle responses were analyzed separately for each phase as well as separately for cue 

in context and context conditioning. I looked at the complete acquisition phase, but since I  

expected a fast learning process and rapid habituation of startle responses I additionally 

divided the acquisition phase in two parts (acquisition 1 and acquisition 2) and analyzed 

those parts  separately.  For cue in context  conditioning,  repeated measures MANOVAs 

were calculated, including within factors Stimulus (CS+, CS-) and Context (CXT+, CXT-) 

for acquisition and Stimulus (CS+, CS-) and Context (CXT+, CXT-, Novel) for extinction. 

Between factor was Contingency Awareness (aware, unaware) for all phases. For context 

conditioning, data were analyzed with separated MANOVAs with Contingency Awareness 
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as  between-subjects  factor  (aware,  unaware)  and  the  within-subjects  factor  Context 

(CXT+, CXT- for acquisition; CXT+, CXT-, Novel for extinction). 

In  addition  to  these  analysis  including  the  between  factor  Contingency  Awareness,  I 

calculated the same repeated measures MANOVAs with the between factor trait-anxiety.  

Results of analysis including contingeny awareness and those including trait-anxiety are 

reportet separately.

5.5.2. Ratings. 

Contingency  ratings  were  used  as  a  manipulation  check  for  the  breakup  of 

participants into aware and unaware. A multivariate analysis of variance (MANOVA) with 

repeated  measures  and  the  between  factor  Awareness  (aware,  unaware)  and  within 

factors Stimulus (CS+, CS-) and Context (CXT+, CXT-) was conducted to test whether 

participants  labeled  “aware”  compared  to  those  labeled  unaware  rated  the  CS+/UCS 

contingency as higher than the CS-/UCS contingency. For anxiety ratings, MANOVAs with 

repeated measures and between factor Awareness (aware, unaware) and within factors 

Stimulus (CS+, CS-) x Context (CXT+, CXT- for acquisition; CXT+, CXT-, Novel for pre-

acquisition and extinction ) were conducted. As for startle responses, I conducted separate 

MANOVAs with Contingency Awareness as between-subjects factor (aware, unaware) and 

the within-subjects factor Context (CXT+, CXT- for acquisition; CXT+, CXT-, Novel for pre-

acquisition and extinction). 

5.5.3. Questionnaires

For  analyzing  the  effect  of  trait  anxiety  on  cue  and  contextual  conditioning, 

participants were divided into two groups (high-anxious and low-anxious) by means of a 

median  split  with  respect  to  STAI  Trait  sum scores.  The  two  groups  were  compared 
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regarding startle responses and subjective ratings. For this purpose, they were included 

into MANOVAs with repeated measures with between factor Trait Anxiety (high, low) in the 

same manner as in the analysis with between factor Contingency Awareness.

Alpha was set at .05 for all statistical tests, effect sizes are reported as partial ηp² scores. 

Multivariate procedures were used due to violation of sphericity.  Follow up  t-tests were 

conducted one-tailed because of directed hypotheses. Data was analyzed using SPSS for 

windows (Version 18.0.2, SPSS Inc.).

5.6. Results

5.6.1. Analysis including contingency awareness

5.6.1.1. Manipulation check 

In the sample, 24 participants were classified as “aware” regarding the two different 

lights,  meaning  that  they  were  able  to  state  the  correct  light  colour  after  the  second 

acquisition run. The remaining 13 were classified as unaware, resulting in a total of 37  

participants in the analysis including the factor awareness. The MANOVA on contingency 

ratings after acquisition revealed two significant main effects (Stimulus F(1,34) = 50.23, p 

< 0.001, ηp
2 = 0.596, Context F(1,34) = 19.37, p < 0.001, ηp

2 = 0.363), significant two way 

interactions (Stimulus x Awareness  F(1,34) = 43.96,  p < 0.001, ηp
2 = 0.564, Context x 

Awareness F(1,34) = 26.33, p < 0.001, ηp
2 = 0.436, Stimulus x Context F(1,34) = 16.33, p 

< 0.001, ηp
2 = 0.324) and also a significant three way interaction Stimulus x Context x 

Awareness (F(1,34) = 22.92,  p < 0.001, ηp
2 = 0.403). In the aware group, the CS+/US 

contingency  was  rated  significantly  higher  than  CS-/US  contingency  in  both  the  fear 

context (t(23) = 13.69, p < 0.001) and the also safety context (t(23) = 2.98, p = 0.004). The 
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CS+/US contingency in the fear context was rated higher than in the safety context (t(23) = 

6.29 p < 0.001). In the unaware group, no significant differences were found (all ps > .117). 

Compared to unaware participants, aware participants rated the CS+/US contingency as 

higher in the fear context (t(35) = -7.68, p < 0.001) and the CS-/US contingency as lower in 

both the fear (t(35) = 4.55, p < 0.001) and the safety context (t(34) = 5.13, p < 0.001). 

5.6.1.2. Conditioned responses to cues in context

Pre-Acquisition

Ratings:  Analysis of anxiety ratings revealed a marginally significant interaction of 

Context  x Awareness (F(2,34) = 3.00,  p = 0.063, ηp
2 = 0.150).  In post hoc  t-tests,  no 

significant differences could be found.

Acquisition

Startle  Response:  Analysis  of  the  acquisition phase  revealed  a  significant 

interaction  of  Stimulus  x  Awareness  (F(1,35)  =  4.12,  p =  0.050,  ηp
2 =  0.105)  and 

additionally the interaction of Stimulus x Context (F(1,35) = 3.68, p = 0.063, ηp
2 = 0.095) 

just failed to reach significance. A more detailed look on the first half of acquisition (A1)  

revealed a significant interaction of Stimulus x Context (F(1,35) = 6.37,  p = 0.016,  ηp
2 = 

0.154).  No  main  effects  or  interactions  involving  the  factor  Awareness  reached 

significance. The CS+ elicited higher startle responses than the CS- in the fear context 

(t(36) = 2.25,  p = 0.015).  In the safety context  however,  I  found the opposite pattern: 

Startle responses on CS- were higher than those on CS+ (t(36) = -1.72, p = 0.048) (see 

figure 10). In the second acquisition phase (A2), I found a significant interaction of stimulus 

x awareness (F(1,35) = 9.44,  p = 0.004, ηp
2 = 0.212).  Again, no main effects reached 

significance, and also no interactions involving the factor context. Following t-tests showed 

that, regardless of context, startle responses to CS+ were generally higher compared to 
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CS- in the aware group (t(23) = 4.20,  p < 0.001), but not in the unaware group (t(12) = 

-0.67, p < 0.258) (see figure 10). 

Anxiety  Ratings: Analysis  of anxiety  ratings  also  revealed  two  significant  main 

effects (Stimulus  F(1,35) = 4.27,  p = 0.046, ηp
2 = 0.109, Context  F(1,35) = 6.76,  p = 

0.014,  ηp
2 =  0.162),  significant  two  way interactions  (Stimulus  x  Awareness  F(1,35)  = 

10.57, p = 0.003, ηp
2 = 0.232, Context x Awareness F(1,35) = 9.43, p = 0.004, ηp

2 = 0.212, 

Stimulus x Context  F(1,35) = 9.13,  p = 0.005, ηp
2 = 0.207) and a significant three way 

interaction Stimulus x Context x Awareness (F(1,35) = 6.37, p = 0.016, ηp
2 = 0.154). Since 

the three way interaction reached significance, I calculated separate MANOVAS for both 

groups.  In  the  unaware  group,  no  main  effects  or  interactions  remained  significant. 

However, in the aware group, I again found significant main effects of Stimulus (F(1,23) = 

16.73, p < .001, ηp
2 = 0.421) and Context (F(1,23) = 15.40, p = 0.001, ηp

2 = 0.401) as well 

as a significant interaction Stimulus x Context (F(1,23) = 14.63,  p = 0.001, ηp
2 = 0.389) 

(see figure 2): The CS+ was perceived as more anxiety inducing than the CS- in both the 

fear context  (t(23) = 4.17, p  < 0.001) and the safety context (t(23) = 2.77, p  = 0.006), 

Additionally, both CS+ (t(23) = 4.24, p < 0.001) and CS- (t(23) = 2.54, p = 0.009) elicited 

more anxiety in the fear context than in the safety context. Unaware participants did not 

differentiate  between stimuli  (all ps > .123). Compared to  unaware participants,  aware 

participants rated the CS+ as more anxiety inducing in the fear context  (t(35)=, -2.58, 

p=.007).
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Figure 10.  Startle response and anxiety ratings during acquisition: In A1 the CS+ elicited higher startle  

responses than the CS- in the CXT+, in the CXT- this pattern was reversed. In A2, startle responses to CS+  

were generally higher than to CS- in the aware group. In the aware group, the CS+ was perceived as more  

anxiety inducing than the CS- in both contexts. Both stimuli elicited more anxiety in CXT+ than in CXT-.  

Unaware participants did not differentiate between stimuli. * p<=.05; *** p<=.001

Extinction

Startle Response: Analysis revealed a marginally significant interaction of Stimulus 

x Context (F(2,34) = 2.73,  p = 0.079,  ηp
2 = 0.139). Exploratory post hoc t-tests indicated 

that the CS+ elicited higher startle responses than the CS- only in the fear context (t(36) = 

2.44, p = 0.010). Startle responses to the CS+ were significantly higher in the fear context 

than in the safety context (t(36) = 2.58, p = 0.008) and marginally higher than in the novel 

context (t(36) = 1.53, p = 0.068) (see figure 11). 

Anxiety Ratings:  The interaction of Context x Awareness still reached significance 

(F(2,34) = 5.79, p = 0.007, ηp
2 = 0.254) after extinction learning, the main effect of Stimulus 

(F(1,35) = 3.56,  p = 0.067, ηp
2 = 0.92) and the interaction Stimulus x Context (F(2,34) = 

2.71, p = 0.081, ηp
2 = 0.138) reached trend level. In the aware group, stimuli presented in 

the fear context were rated as significantly more anxiety inducing than in the safety context 
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(t(23) = 2.59, p  = 0.008).  Interestingly, in the unaware group stimuli in the fear context 

were rated as less anxiety inducing compared to those in the safety context (t(12) = -2.13, 

p = 0.028), and marginally less than those in the novel context (t(12) = -1.48, p = 0.083). 

Explorative post hoc t-tests for further examination of the trend level results revealed that 

the CS+ was still rated as more anxiety inducing than the CS- in general (t(36) = 2.44, p = 

0.010). This difference only reached significance in the fear context  (t(36) = 3.33, p = 

0.001), not in the safety (p = 0.067) or the novel context (p = 0.146).

Figure 11.  Startle response and anxiety ratings during extinction: Exploratory analysis showed that startle  

responses  to  the  CS+  were  significantly  higher  in  CXT+  than  in  CXT-  and  marginally  higher  than  in  

CXTnovel. In the aware group, stimuli presented in CXT+ were rated as more anxiety inducing than in CXT-. 

In the unaware group stimuli in CXT+ were rated as less anxiety inducing compared to those in CXT-. 

* p<=.05; ** p<=.01

5.6.1.3. Conditioned response to contexts

Pre-Acquisition

Before conditioning, the three contexts did not differ in valence, arousal or anxiety ratings. 

No main effects or interactions reached significance (all ps > .159). 

90



Effects of awareness revisited: Combined cue- and contextual conditioning in a virtual reality environment1

Acquisition

Startle response: The main effects of context and group did not reach significance, 

nor  did  the  interaction  Stimulus  x  Group.  In  explorative  post  hoc  t-Tests,  unaware 

participants displayed startle reactions to the CXT+ compared to aware participants (t(35) 

= 2.08, p = 0.023) and also marginally higher startle responses to the CXT+ compared to 

the CXT- (t(12) = 1.57, p = 0.071). 

Ratings: After conditioning, analysis of anxiety ratings revealed only a marginally 

significant interaction of Context x Awareness  (F(1,35) = 3.03,  p = 0. 090, ηp
2 = 0.080), 

indicating that, in the aware group, CXT+ was experienced as more anxiety inducing than 

CXT- (t(23) = 1.86, p = 0.038), whereas in the unaware group no difference was found.

Extinction

Startle Response: As in the acquisition phase, neither main effects nor interaction 

reached the significance level in the extinction phase.

Ratings: Analysis of anxiety ratings also did not reveal any significant effects.

5.6.2. Analysis including trait anxiety

5.6.2.1. STAI trait analysis

A median split with respect to STAI Trait sum scores was calculated. The scores of 

three participants were identical with the median of the sample. These three participants 

were excluded from further analyzes including trait anxiety, resulting in two groups with 17 

participants each and a total  of  34 participants.  Unaware participants tended to  score 

higher on trait anxiety than participants who did learn the association between the CS and 

the US (t(32) = -1.48, p = 0.074).
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5.6.2.2. Conditioned responses to cues in context

Pre-Acquisition

Ratings: I did not find any significant main effects or interactions the analysis of 

anxiety ratings before conditioning.

Acquisition

Startle Response: In the acquisition, I found a significant main effect of Stimulus 

(F(1,32) = 4.88,  p = 0.034, ηp
2 = 0.132) as well as a marginally significant interaction of 

Stimulus x Context (F(1,32) = 3.65, p = 0.065, ηp
2 = 0.102). After splitting up acquisition in 

two parts, the Stimulus x Context interaction turned out to be significant in A1 (F(1,32) = 

4.95, p = 0.033, ηp
2 = 0.134) , wheres the main effect of stimulus could still be found in A2 

(F(1,32)  = 4.88,  p =  0.034,  ηp
2 =  0.132) .  No other  effects,  especially no interactions 

including  the  factor  trait  anxiety,  reached  significance  level  in  any  of  the  acquisition 

phases.

Post  hoc tests revealed that,  after  the first  part  of  acquisition,  the CS+ elicited higher 

startle responses than the CS- in the fear context (t (33) = 2.38, p = 0.017), but not in the 

safety context (p > 0.124). In the second part of acquisition, the CS+ in general elicited 

higher startle responses than the CS- (t (33) = 2.479, p = 0.009) (see figure 12).

Anxiety Ratings: The same pattern of  significance was found for anxiety ratings 

(stimulus  F(1,32) =  7.34, p = 0.011, ηp
2 = 0.187, context  F(1,32) = 9.44, p = 0.004, ηp

2 = 

0.288, stimulus x context  F(1,32) = 13.89,  p = 0.001, ηp
2 = 0.303).  The CS+ was more 

anxiety inducing than the CS- in the CXT+ (t (33) = 3.26, p = 0.002), but not in the CXT- (p 

>.147). The CS also was more anxiety inducing in the CXT+ than the CXT- (t (33) = 3.52, 

p = 0.001) (see figure 12). 
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Figure 12.  Startle response and anxiety ratings during acquisition: Trait anxiety did not have an effect on  

cued in context conditioning. After A1 the CS+ elicited higher startle responses than the CS- in CXT-, but not  

in the safety context (p > 0.124). In the second part of acquisition, the CS+ in general elicited higher startle  

responses than the CS-. 

Extinction

Startle  Response:  The  main  effects  of  context  and  stimulus  did  not  reach 

significance, nor did any interaction.

Anxiety Ratings: The main effect of Stimulus reached significance  F(1,32) = 4.72, p 

= 0.037, ηp
2 = 0.128, as well as two way interaction Stimulus x Context F(2,31) = 4.10, p = 

0.026, ηp
2 = 0.209. In the fear context, the CS+ elicited more anxiety than the CS- (t (33) = 

3.13, p = 0.002). This was neither the case in the safety context nor in the novel context 

(ps > .124). Also, the CS+ induced more anxiety in the fear context compared to the safety 

context (t (33) = 1.87, p = 0.036) and also compared to the novel context (t (33) = 1.89, p = 

0.034).
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5.6.2.3. Conditioned response to contexts

Pre-Acquisition

Regarding subjective ratings, no effects reached significance before conditioning.

Acquisition

Startle response: In the acquisition phase, analysis revealed a significant interaction 

of Context x Trait anxiety (F(1,32) = 4.94, p = 0.033, ηp
2 = 0.134). Post hoc t-Tests showed 

that in the low anxiety group, CXT+ elicited marginally lower startle responses than CXT- (t  

(16) = -1.49,  p = 0.079).  In the high anxiety group, the opposite was the case: CXT+ 

elicited higher startle responses than CXT- (t(16) = 1.67, p = 0.057) (see figure 13). 

In A1 and A2 the main effects of context and group did not reach significance, nor did the 

interaction stimulus x group.

Figure  13. Startle  Responses  during  

acquisition in the high and low anxiety group: 

In the low anxiety group, the CXT+ elicited  

marginally lower startle responses than CXT-  

during acquisition. In the high anxiety group,  

the  opposite  was  the  case:  CXT+  elicited  

higher startle responses than CXT-. + p<=.01

Anxiety Ratings: As after pre-acquisition, for subjective ratings no significant effects 

could be found.

Extinction

Startle Response: In the analysis of FPS, no effects reached significance during 

extinction training. An explorative post hoc analysis revealed that high-anxious participants 
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still reacted with slightly enhanced startle amplitudes in the CXT+ compared to the CXT- 

( t(16)=1.39, p=.092) and the novel context ( t(16)=1.66, p=.058), though this was only 

observable  on  trend  level  (see  figure  14).  This  was  not  the  case  for  low-anxious 

participants (all ps > .269). 

Figure  14. Startle  Responses  during  

extinction  in  the  high  and  low  anxiety  

group: Only  high-anxious  participants  

reacted with enhanced startle amplitudes  

in the CXT+ compared to the CXT- and 

the novel context on trend level.

Anxiety  Ratings:  For  anxiety  ratings,  no  main  effects  or  interactions  reached 

significance.

5.7. Discussion

Summary. Fur  further  understanding  the  mechanisms  which  facilitate  the 

development and maintenance of anxiety disorders it is crucial to investigate the influence 

of context on the acquisition and expression of fear (Huff et al., 2011). Up to now, there are  

relatively few studies on human fear conditioning which include rich contextual cues due to 

practical difficulties. For studying contextual modulation of differential cue conditioning, a 

virtual reality paradigm was established including three different virtual rooms: One fear 

context,  one  safety  context  and  one  generalization  context.  I  was  interested in  the 

differential  responses to  CS+ and CS-,  its  modulation by the  contexts  and contextual 
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anxiety measured in between  presentation of cues.  In general, participants reacted with 

increased fear to the CS+ compared to the CS-. Fear of cues was acquired preferential to  

contextual anxiety, but conditioned responses to cues were modulated by contexts: They 

were most prominent in the fear context and significantly weaker in the safety context. 

Regarding the novel context introduced in extinction, I found only trend level generalization 

of acquired contextual fear to the unknown and therefore ambiguous environment. Cued 

fear was not generalized to the novel context. Furthermore, I investigated fear conditioning 

against the background of individual differences in contingency learning and trait-anxiety.  

Participants who did not become aware of the CS-UC contingency during the experiment 

tended to score higher on trait-anxiety than participants who could explicitly report  the 

association between CS and US. I found a dissociation between implicit and explicit fear 

reactions to the CS regarding contingency awareness, providing further evidence for a 

dual  process  model  of  fear  conditioning.  Individual  difference  in  trait-anxiety  primarily 

influenced contextual anxiety: Only high-anxious individuals displayed increased anxiety in 

the fear context compared to the safety context. However, against my expectation, high-

anxious participants did not show deficits in discriminating fear and safety cues.

Contingency  Awareness  -  Acquisition. Results  of  both  startle  responses  and 

anxiety  ratings  clearly  indicate  successful  cue  conditioning.  Participants  showed  FPS 

responses  to  the  CS+  specifically  in  the  fear  context  in  the  first  acquisition  phase, 

independent  of  contingency  awareness.  Hence,  discriminative  learning  took  place 

regarding both cues and contexts. In the safety context, startle reactions to the CS- were 

stronger than those to CS+, though not as high as reactions to CS+ in the fear context.  

Possibly,  the safety context  did  not  serve as a safety signal  from the very beginning. 

Participants realized that CS-US contingency was different in this second context, possibly 

96



Effects of awareness revisited: Combined cue- and contextual conditioning in a virtual reality environment1

resulting in ambiguity regarding the CS- during the first trials. In A2, this effect was no  

longer  present,  the  safety  context  had  become  inhibitory.  Surprisingly,  contingency 

awareness had an influence on startle responses in the second acquisition phase: Only 

aware  participants  showed  FPS  responses  to  the  CS+  in  the  fear  context,  unaware 

participants did no longer discriminate between the stimuli or the contexts. As expected, 

contingency awareness had a strong effect on anxiety ratings: In both contexts, aware 

participants rated the CS+ as more anxiety inducing than the CS-. Additionally, both the 

CS+ and the CS- were more alarming when presented in the fear context. Not only the 

CS-  but  also  the  safety  context  seemed  to  have  become  a  safety-signal  for  aware 

participants.  Unaware participants again did not differentiate between cues or contexts 

regarding anxiety ratings. 

Effects of contingency awareness on isolated contextual conditioning, tested on the basis 

of startle reactions to and anxiety ratings of the different contexts in between stimulus 

presentation, did not reach significance. On an explicit level tested with subjective anxiety 

ratings, I found a marginal difference indicating that only aware participants rated the fear 

context as more anxiety inducing than the safety context. This finding is quite surprising, 

since  I  expected participants  who  did  not  explicitly  become  aware  of  the  CS-UC 

association to develop higher contextual fear than aware participants. This assumption is 

based on prior studies (e.g. Grillon, 2002a; Baas et al., 2008) showing that deficient cue 

conditioning leads to higher contextual fear because the absence of a cue cannot signal 

safety for unaware participants. Hence, in an exploratory analysis, I took a closer look on 

startle  responses  to  the  contexts  during  acquisition.  Unaware  participants  displayed 

stronger fear reactions to the CXT+ compared to aware participants  and also marginally 

higher startle responses to the CXT+ compared to the CXT-. These findings point to a 

97



Effects of awareness revisited: Combined cue- and contextual conditioning in a virtual reality environment1

dissociation between implicit and explicit measures regarding contextual fear. But, since 

the interaction Context x Awareness did not reach significance in the first place, these 

results have to be interpreted with care. 

Baas  et  al.  (2008)  investigated  the  influence  of  contingency awareness  on  cued  and 

contextual  fear.  They found that  both aware  and unaware participants  displayed clear 

contextual conditioning, and those participants who did not learn the CS-US contingency 

did not report reduced fear in the absence of the CS. They were in a state of anxiety in the 

fear context, because for them the absence of the CS did not imply a period of safety. In  

contrast, I  only found a trend of contextual conditioning, in unaware participants on an 

implicit level and in aware participants on an explicit level. However, Baas et al. did not  

investigate differential cue conditioning within contexts. Only one cue was presented in 

form of a neutral light illuminating the virtual rooms. The contexts were more prominent 

than  the  cue,  explaining  their  clear  change  in  associative  strength  during  acquisition. 

Compared to the neutral light applied by Baas et al. (2008), both cues in the present study 

were much more salient, which might have caused the cue contingency to be learned 

preferential to the context contingency. My findings regarding cue conditioning are similar 

to those of Baas et al. (2008). Only aware participants reported differential subjective fear 

to  CS+  and  CS-  in  the  fear  context.  Fear  potentiation  of  startle  reactions  was  not 

influenced  by  contingency  awareness  at  the  beginning.  Yet  in  the  second  part  of 

acquisition, startle responses of unaware participants did not differ significantly between 

CS+ and CS-. This is surprising because the startle reflex depends on sub-cortical brain  

structures  and  thus  does  not  require  cortical  input.  In  the  debate  about  whether 

contingency awareness is necessary for establishing a conditioned response, my results 

are  –  at  first  glance -  not  explicit.  But  although  unaware  participants  did  not  show a 
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conditioned response to the CS+ in A2, they did so in A1 – showing that contingency 

awareness is not a necessary precondition for the occurrence of a conditioned response. 

Taken together with results of the pilot study, this indicates a dissociation between implicit 

and explicit conditioned responses and provides further evidence for a dual process model  

of  fear  conditioning  (for  details  see  for  example  Lovibond  and  Shanks  2002),  which 

postulates two independent learning processes, one propositional in nature and leading to 

conscious awareness, the second, lower level process non-propositional and activating the 

CR via a direct mechanism (Lovibond and Shanks 2002).  Carter and colleagues (Carter, 

Hofstotter,  Tsuchiya  &  Koch,  2003)  showed  that  the  higher  the  cognitive  load  during 

conditioning, the more contingency awareness is necessary for successful conditioning. 

Possibly, my results regarding the influence of contingency awareness on differential cue 

conditioning  can  be  explained  by  a  relatively  high  cognitive  load  due  to  a  complex 

conditioning paradigm. Examining the correlation of working memory capacity, contingency 

awareness and development of a conditioned response in the complex virtual environment 

would  be  an  interesting  extension  of  my  study  and  should  be  considered  in  further 

research.  Consand et al.  (2008) showed that  high working memory capacity facilitates 

contingency learning in a cognitive masking paradigm, but to my knowledge this has not 

yet been investigated in a virtual reality fear conditioning study.

Contingency Awareness – Extinction.  Startle responses of aware and unaware 

participants did no longer differ significantly in the extinction phase. Exploratory analysis of 

trend-level results regarding cues in context indicated that the CS+ elicited higher startle 

responses than the CS- only in the fear context. This result could be confirmed by anxiety 

ratings. Apparently,  aversive  cue  conditioning  did  not  generalize  to  a  novel  context. 

Context specificity of cued fear has also been shown in another human virtual reality study 
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by Huff et al. (2011). They tested whether cued fear acquired in one context would still be 

detectable during the test phase conducted 24 hours later in either the same or a different  

context. Fear was specific to the CS+ compared to the CS- only in participants tested in 

the same context as during acquisition during the test phase. According to the authors, 

contextually cued fear retention challenges “the assumption that fear conditioning to a cue 

is  not  initially  context-specific  relative  to  extinction  memories“  (Huff  et  al.  2011)  and 

provides  evidence  for  the  transformation  view  of  memory  storage,  stating  that  initial 

storage  of  episodic  events  is  context  dependend  and  involves  activation  of  the 

hippocampus (Wiltgen & Silva, 2007). My results indicate that this might also be true for 

stimuli which are not biologically prepared like the stimuli applied by Huff et al. (2011). 

However, since these results did not reach significance, they have to be interpreted with 

care.

The aware group rated stimuli presented in the fear context as more anxiety inducing than 

in the safety context.  Interestingly, in the unaware group stimuli in the fear context were 

rated as less anxiety inducing compared to those in the safety context. A reason for this 

might be, that the lack of a clear threat signal (like the CS followed by the US) also means 

a  lack  of  safety-signals.  In  the  safety  context  no  shock  was  administered,  and  since 

unaware participants did not have a clear and explicit representation of the CS-US paining, 

the safety context might have been more unpredictably for them than the fear context. For 

unaware participants, the CXT- did not obtain the properties of a safety-signal. This leads 

to higher contextual fear, as has been shown for example by Grillon et al. (2006).

Trait-Anxiety – Acquisition. In the study cited above, Baas et al. (2008) reported 

that trait-anxiety tended to be higher in unaware participants than aware participants. This 

has also been shown by Grillon (2002a) and can be explained by a deficient discrimination 
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of fear and safety cues in  high-anxious individuals (e.g. Arnoudova et al., 2013).  In my 

sample, unaware participants displayed marginally higher levels of trait-anxiety than aware 

participants. However, unaware participants did learn the CS-US association at least on an 

implicit level (see FPS in A1). Thus, they did not fail to discriminate fear and safety cues as 

has been shown by both Baas et al. (2008) and Grillon (2002a).  In a more recent study, 

Baas (2013) investigated the effect of trait-anxiety on cue and contextual fear conditioning 

in more detail. In the first part of the experiment, deficient cue conditioning resulted in 

sustained contextual anxiety, indicating that learning the CS-US contingency is important 

for  a successful  reduction of  contextual  fear  in the absence the threatening cue.  Trait 

anxiety per se did not affect learning of CS-US contingencies.  In the second part of the 

experiment  was  designed  somewhat  differently, In  the  first  blocks  only  contexts  were 

paired with the US, later a CS+ and a CS- were added to the conditioning paradigm. High-

anxious participants displayed less adaptive responding as a function of the presence or  

absence of the CS in the shock context, and also higher levels of contextual anxiety (Baas 

2013).  Apparently,  once  high-anxious  participants  had  learned  to  associate  the  fear 

context with the US, the cues could not obtain enough inhibitory associative strength to 

serve as safety-signals.  Cosand et al.  (2008)  showed that  lower levels of  arousal  are 

associated with better contingency learning. Possibly, contextual fear developed in the first  

trials was associated with higher levels of arousal, leading to deficient cue conditioning. In  

my study, participants were confronted with both cues and contexts from the beginning on.  

High-anxious individuals did not show deficits in cue conditioning. In  all participants the 

CS+ elicited higher startle responses in the fear context in A1, in A2 this was the case also  

in the safety contexts. Additionally, high-anxious individuals showed only mild  deficits in 

discriminating fear and safety cues in the later part of acquisition. On the other hand, my 
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findings  affirm  the  assumption  that  high  trait-anxiety is  associated  with  increased 

contextual  anxiety.  Glotzbach et  al.  (2013)  for  example  showed that  high  trait-anxious 

participants  showed  faster  contextual  fear  learning  compared  to  low  trait-anxious 

participants.  In  the  present  sample,  high-anxious  participants  showed  higher  startle 

responses in the fear context than in the safety context during acquisition, which was not 

the case for low-anxious participants. Interestingly, this effect could only be found on an 

implicit level – anxiety ratings did not differ significantly between groups or contexts.

Trait-Anxiety - Extinction.  Regarding trait-anxiety, I  did no longer find significant 

differences  during  extinction,  though  on  a  trend-level,  high-anxious  participants  still 

reacted with enhanced startle amplitudes in the CXT+ compared to the CXT- and the novel  

context,  which  was  not  the  case  for  low-anxious  participants.  To  some  extend,  high-

anxious individuals generalized contextual fear to the novel ambiguous context. This is in 

line with evidence coming from patients suffering from anxiety disorders associated with 

sustained anxiety like for example panic disorder (see Grillon et al. 2008). Wessa and Flor 

(2007)  showed  that  not  only  acquisition  was  facilitated  in  PTSD  patients  exposed  to 

trauma reminders during fear conditioning, but also extinction was impaired, resulting in 

more  negative  evaluations  of  the  conditioned  stimuli,  enhanced  peripheral  and  brain 

responses compared to  healthy participants.  There  were  no differences between trait-

anxiety  groups  in  subjective  anxiety  ratings.  In  general,  the  CS+ was  rated  as  more 

anxiety-inducing in the fear context, but neither in the safety nor in the novel context. 

Clinical implications. Interestingly, in my sample, contingency awareness had an 

effect on differential  cue conditioning, wheres trait-anxiety did only influence contextual 

learning. Taking account of the evidence that lack of awareness might lead to higher trait-

anxiety  (e.g.  Baas  et  al.,  2008;  Grillon,  2002a)  as  well  as  evidence  that  attentional 

102



Effects of awareness revisited: Combined cue- and contextual conditioning in a virtual reality environment1

processes play a role in fear conditioning in a way that they facilitate acquisition of cued or 

contextual fear (Baas et al., 2008; Fani et al. 2012), it seems very important to further 

disentangle the associations between attentional processes, contingency awareness, and 

trait anxiety.

Trait anxiety is seen as a risk factor for developing anxiety disorders, but nevertheless 

evidence on the matter is ambiguous. High trait anxiety has been associated with impaired 

safety learning (e.g. Baas et al., 2008, Gazendam, Kamphuis & Kindt, 2013, Lissek et al. 

2009), impaired extinction (Gazendam et al., 2013), overgeneralization of fear (Lissek et 

al., 2010; Wessa & Flor, 2007) and enhanced contextual fear (Glotzbach-Schoon et al.  

2013, Baas 2013). There is also evidence that both acquisition and generalization of fear 

is not impaired in high-anxious individuals (Torrents-Rodas et al.,  2013). In the present 

sample  I  found  evidence  for  enhanced  contextual  fear  learning  as  well  as  hints  for 

impaired extinction and generalization of contextual anxiety to a novel context, although 

the latter results did not reach significance. Even so, I  think that it would be of special 

interest  to  transfer  the  paradigm to  a  clinical  setting  to  investigate  the  modulation  of 

context-dependent  cue  conditioning  in  panic-disorder  patients,  as  well  as  the 

generalization of cued fear and contextual anxiety to the novel context. As pointed out for  

example by Glotzbach et al. (2013), existing theories about safety behaviour and safety 

signals in panic-disorder patients are controversial: For example Lissek et al. (2009) state  

that panic-disorder patients display impaired discriminative fear conditioning, as indexed 

by enhanced startle potentiation to learned safety-cues and aberrant reactivity to danger  

cues. I could not replicate this finding in the high trait-anxiety group. Curiously, I did find a  

similar pattern of results – i.e. enhanced startle responses in reaction to the CS- - in the  

unaware group. But regarding trait anxiety as a non clinical model for panic-disorder, my 
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results  point  to  Rachman`s  safety signal  perspective  (Rachman,  1984),  assuming that 

panic  disorder  patients  avoid  fearful  situations  and  seek  safety.  Consequentially  they 

should not only show enhanced fear reactions in the fear but also in the novel context  

compared to the safety context during extinction. 

Limitations. I  found hints for deficient cue conditioning in unaware participants, 

enhanced  contextual  conditioning  in  high-anxious  participants  and  a  mild  correlation 

between contingency awareness and trait-anxiety. These findings combined do not allow 

for a clear distinction whether high-anxious individuals suffer from an over-activated fear 

network, or rather from an altered inhibitory system.  It  has to be mentioned that in my 

study, participants were divided into a high-anxious and a low-anxious group by means of 

a median split. Therefore, they do hardly represent extreme groups regarding trait anxiety. 

A larger sample allowing for the examination of more extreme groups would be beneficial,  

as well as the above mentioned transfer of the paradigm to a clinical setting. Including a  

larger sample might also solve this problem.

Conclusions.  In sum, the novel virtual reality paradigm proved to be suitable for 

examining differential fear conditioning embedded in distinguishable contexts, as well as 

generalization of  cued and contextual  fear to  a novel  environment.  My results provide 

further evidence for differential modulation of phasic fear by contingency awareness and 

contextual  anxiety  by  trait  anxiety.  Interestingly,  individual  difference  in  trait-anxiety 

influenced  contextual  anxiety  only,  high-anxious  participants  did  not show  deficits  in 

discriminating  fear  and  safety  cues.  Additionally,  only  trend  level  generalization  of 

contextual anxiety to a novel context was present, whereas cued fear was not generalized 

at  all.  As  contextual  conditioning  is  an  appropriate  paradigm  for  investigating  the 

development and maintenance of  anxiety disorders,  the chances opened up by virtual 
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reality research for translating findings from animal research to humans should be used 

and extended. Next to gaining a deeper understanding of the role of trait-anxiety in the 

development of anxiety disorders, it would be of special interest to further study neural  

processes underlying contextual anxiety.
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Delay and trace fear conditioning in a complex virtual learning environment - neural substrates of extinction2

6. Delay and trace fear conditioning in a complex virtual 
learning environment - neural substrates of extinction2

6.1. Summary

During extinction, existing fear memory is not erased, but rather new memory is 

formed which inhibits an initially acquired fear response. The vmPFC plays an important 

role in this process. According to existing evidence, an inhibitory memory trace is formed 

between vmPFC and amygdala during extinction learning of delay fear conditioning. To my 

knowledge, the role of the prefrontal cortex (PFC) in the extinction of trace conditioning 

has not been examined so far. In an fMRI study conducted in VR, I compared neuronal  

activation during extinction of  delay and trace fear conditioning in a between-subjects-

design. A mildly painful electric stimulus served as US and two different lights represented 

conditioned  stimuli  (CS).  The  CS+  coterminated  with  the  US  in  the  delay  condition,  

whereas in the trace condition the CS+ was followed by a 4s trace interval. Interestingly, 

the delay (DCG) and the trace conditioning group (TCG) showed differences in prefrontal 

activation during early extinction. As expected, the vmPFC was activated in the DCG. In 

the TCG however I observed activation of the dorsolateral prefrontal cortex (dlPFC). This 

dissociation  indicates  that  extinction  processes after  trace fear  conditioning  differ  from 

those after delay fear conditioning. Activation of the vmPFC probably reflects the inhibition 

of  the  fear  response.  In  contrast,  activation  of  the  dlPFC  could  be  associated  with 

modulation of working memory processes which are involved in bridging the trace interval  

and hold information in short term memory.

2 The following chapter ist based upon Ewald & Glotzbach-Schoon et al. (2014)
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6.2. Introduction

Fear can be critical for survival when an individual faces a threatening situation. It  

serves as an important alert  mechanism which prepares us for the adequate reaction, 

such as escaping or avoiding a predator. However, fear can become maladaptive when a 

fear reaction is unproportional and no longer appropriate in the actual situation. In anxiety 

disorders, the ability to readjust behavior to the actual situation is usually impaired (Rauch 

et  al.,  2006;  Schiller  et  al.,  2011).  According to Jacobi  et  al.  (2014),  anxiety disorders 

including PD, agoraphobia, GAD, and social and specific phobias, are the most frequent  

mental disorders in Germany with a twelve month prevalence of 15.3%. Not surprisingly, 

this has led to extensive research in the field of fear and anxiety, also regarding the neural  

systems involved in fear learning and its extinction. Fear learning in animal and human 

research is mainly examined on the basis of Pavlovian fear conditioning (Pavlov, 1927).  

According to timing aspects of the CS–US pairing in classical fear conditioning, several 

forms can be distinguished. Two important forms are delay fear conditioning and trace fear 

conditioning. In delay conditioning, the US follows directly on the CS (or the CS and the 

US coterminate). In contrast, in a trace conditioning paradigm, a trace interval follows the 

CS, meaning that there is a temporal gap between CS offset and US onset. This trace 

interval  needs  to  be  bridged in  the  learning  process,  meaning  that  a  “memory trace”  

between CS and US has to be formed in order to learn the CS/US association (Pavlov, 

1927).  This  is  not  possible  without  contingency  awareness  (Weike  et  al.,  2007)  and 

requires higher order cognitive processing. 

Trace and delay fear conditioning have been found to be associated with different neural  

structures.  There  is  vast  evidence that  the  amygdala  is  crucial  for  acquisition  of  fear. 

Information about the CS and the US is transmitted from sensory cortices via the thalamus 
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first  to  the lateral  and then to  the central  amydala (for  details see  figure 2 in  chapter 

3.3.1.3., page 35f). From there, a fear reaction is triggered via projections to the brainstem 

(e.g., LeDoux, 2000). Besides the amygdala, the ACC has been shown to be involved in 

fear acquisition in delay conditioning. For example,  Knight et al. (2004) and Milad  et al. 

(2007) provided evidence that the ACC is involved in the expression of the fear response.  

Moreover, activation of the ACC has been associated with the anticipation of pain. More 

precisely, it is assumed to integrate nociceptive input with memory in cooperation with the 

anterior insula (Büchel et al., 1998)., allowing for an appropriate response to subsequent 

stimuli (e.g. Coghill et al., 1994). Price (1988) suggested that the links between insula and 

limbic system might be essential for the integration of current pain with memory, which in  

turn is necessary for evaluation and interpretation of a stimulus under consideration of  

previous  experience.  In  line  with  this  assumption, Phelps, O'Connor,  Gatenby,  Gore, 

Grillon  &  Davis (2001)  proposed  that  the  insula  is involved  in  transmitting  a  cortical 

representation of fear to the amygdala. Hartley, Fischl & Phelps (2011) examined brain 

structure correlates of individual differences in fear conditioning. They found that greater 

thickness in the posterior insula was associated with larger conditioned responses during 

acquisition.  Hippocampal activation has been associated with fear conditioning as well, 

particularly with trace fear conditioning. Human delay fear conditioning has been reported 

to occur without explicit hippocampal activity (LaBar,  Gatenby, Gore, LeDoux & Phelps, 

1998; Phelps et al., 2004; Schiller et al., 2008). Büchel et al. (1999) reported activation of 

the hippocampus only in trace, but not in delay conditioning.  They suggested that the 

hippocampus playes an important role for bridging the trace interval between CS and US. 

Moreover, Clark, Manns & Squire (2002) showed that activations of the cerebellum and the 

brainstem  are  sufficient  for  delay  eyeblink  conditioning,  whereas  trace  eyeblink 
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conditioning additionally depends on the hippocampus and the neocortex. According to 

O’Keefe and Dostrovsky (1971), contextual information is represented in the hippocampus. 

A context can not only be of spacial nature. If there is a temporal gap between the CS and 

the  US,  conditioning  requires  the  formation  of  a  temporal  context.  Another  possible 

explanation  for  the  involvement  of  the  hippocampus  in  trace  conditioning  is  that 

hippocampal activation is necessary for establishing contingency awareness (e.g. Klucken 

et al., 2009; Tabbert et al., 2011). Taken together, I conclude that the main neural structures 

involved in delay fear conditioning are the amygdala, the insula, and the ACC (Sehlmeyer  

et al., 2009). During trace fear conditioning, declarative memory is formed, which requires 

additional activity of the hippocampus.

For  gaining  further  understanding  of  the  development  and  maintenance  of  anxiety 

disorders, it  is  not sufficient  to study the acquisition of fear.  Maladaptive responses to 

threatening stimuli can also result from a deficit in extinction of the fear (Baas et al., 2008).  

According to existing evidence, fear memory is not erased during extinction learning, but  

rather new memory is formed which inhibitis the acquired fear memory (Bouton, 2002,  

2004;  Milad  &  Quirk,  2002;  Myers  &  Davis,  2002;  Quirk,  2002).  To  date,  the  neural  

correlates  of  extinction  are  less  understood  than  those  of  fear  acquisition.  In  both 

acquisition and extinction, activation of the amygdala has been shown to play an important 

role. The prefrontal cortex is assumed to inhibit the expression of conditioned fear, after 

new  memory  has  been  formed  during  extinction  (Quirk  et  al.,  2006).  In  more  detail, 

evidence  from  rodent  models  of  extinction  suggest  that  an  inhibitory  memory  trace 

between vmPFC and amygdala is established during extinction (Sotres-Bayon et al., 2004, 

2007),  by  means  of  which  the  expression  of  fear  is  inhibited.  The  vmPFC  activates 

GABAergic intercalated cells in the amygdala which in turn inhibit the central nucleus of 
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the  amygdala  (Quirk  et  al.,  2006;  Sotres-Bayon  et  al.,  2007).  Burgos-Robles,  Vidal-

Gonzalez, Santini & Quirk (2007) reported that the infusion of an N-methyl-D-aspartate 

receptor (NMDAR) antagonist into the vmPFC prior to or directly after extinction training 

impaired 24 hour recall of extinction. They assumed that stabilization of extinction memory 

requires activation of NMDARs in the vmPFC. Evidence for the formation of an inhibitory 

memory trace between vmPFC and amygdala during extinction has also been provided by 

lesion studies (Morgan & LeDoux, 1993; Quirk,  Russo, Barron & Lebron, 2000; Morgan, 

Schulkin & LeDoux 2003; Lebron,  Milad & Quirk, 2004). Rats with lesions of the medial 

PFC were for example resistant to extinction learning in a delay fear conditioning paradigm 

(Morgan & LeDoux, 1993). Human studies on the extinction of delay conditioning have 

confirmed the role of the amygdala and the vmPFC (Phelps et al.,  2004; Milad et al.,  

2007). Other brain structures associated with extinction learning in humans are the insula 

and the ACC (Gottfried & Dolan, 2004; Phelps et al., 2004). The hippocampus has been 

reported to be important in extinciton, since extinction recall is highly context dependent. 

According to Kalisch et al. (2006), during context dependent recall of extinction memory, a 

network containing the vmPFC and the hippocampus is activated. The striatum has been 

shown  to  be  involved  in  affective  learning  too.  More  precisely,  it  is  associated  with 

processing of prediction errors which occur when the expected result does not coincide 

with the actual result (Delgado, Schiller & Phelps, 2008). Evidence for involvement of the 

striatum in  the  processing  of  prediction  errors in  classical  fear  conditioning  comes for 

example from Jensen, McIntosh, Crawley, Mikulis, Remington & Kapur (2003). Delgado et 

al.  (2008)  reported  activation  in  the  striatum  in  response  to  prediciton  errors  in  fear 

conditioning  paradigms with  both  primary reinforcers  (such as  shocks)  and secondary 

reinforcers (such as monetary loss). The absence of the US during extinction represents a 
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positive  prediction  error,  because  the  expected  aversive  event  does  not  occur. 

Consequently, the striatum should be considered as an important region in the extinction 

of conditioned fear. Imaging studies investigating neural correlates of extinction focused 

mainly on delay conditioning so far.  Therefore little  is  known about  extinction of  trace 

conditioning in humans. Since differences in neuronal activation have been found during 

acquisition of delay and trace fear conditioning (see discussion above), it is likely that also 

in  extinction  different  brain  structures  are  involved.  When  fear  is  learned  in  real  life 

situations, usually a temporal gap between lies between the predictive stimulus and the 

aversive event. Hence, those situations are closer to trace than to delay fear conditioning 

in  the  laboratory.  Given  the  relevance  of  fear  extinction  for  the  treatment  of  anxiety 

disorders, it is important to detect possible differences in the neural networks involved in 

different types of fear conditioning.

A model of prefrontal organization postulates different funtions of the ventrolateral and the 

dorsal part of the PFC: The ventrolateral part of the PFC is assumed to be involved in the  

maintenance of information, such as retaining a sequence of letters in working memory.  

The dorsal part of the PFC is more important when it comes to manipulation of information, 

such as reordering the sequence into alphabetical  order (D’Esposito,  Postle,  Ballard & 

Lease, 1999). Lesion studies also revealed that both nonhuman primates and humans with 

lesions of the dlPFC are less capable of adjusting their behavior appropriately in delayed 

response tasks (e.g., D’Esposito, Postle & Rypma 2000). In these tasks it is necessary to 

retain information in working memory over a short period of time before making choices 

and decisions based on this information. This demand is similar to forming and adjusting a 

memory  trace  necessary for  bridging  the  trace  interval  during  trace  fear  conditioning. 

Against this background one can assume that the dlPFC is involved in the extinction of  
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trace memory, either exclusively or in addition to the vmPFC. Evidence for the involvement  

of the dlPFC in trace eyeblink conditioning as already been found in the animal model.  

Weiss and Disterhoft (2011) propose a neural network in which the dlPFC orchestrates 

neural activity that bridges the trace interval in cooperation with prelimbic areas. 

In  line  with  existing  evidence  I  expected  that  extinction  of  both  delay  and  trace  fear 

conditioning is associated with activation in the amygdala and the vmPFC. Additionally, I  

anticipated involvement of the insular and the anterior cingulate cortices as well as the 

striatum.  Next  to  joint  activation  in  both  types  of  conditioning,  I  assumed  differences 

between  extinction  of  delay  and  trace  conditioning  regarding  the  involvement  of  the 

prefrontal  cortex.  Finally,  since  the  hippocampus  is  assumed  to  be  involved  in  the 

formation of  declarative memory during fear conditioning, I expected it to play a greater 

role in the extinction of trace than delay memory.

In the present I implemented both delay and trace fear conditioning in a VR paradigm. VR 

is  a  powerful  tool  for  investigating  fear  reactions  in  ecologically  valid  environments 

(Mühlberger et al., 2007a; 2007b; 2008a; Mühlberger, Neumann, Wieser & Pauli, 2008b). 

It has successfully been applied in conditioning studies (Baas et al., 2004, 2008; Alvarez et 

al., 2008; Glotzbach et al., 2012; Tröger et al., 2012; Glotzbach-Schoon et al., 2013) as 

well as in the actual treatment of specific phobias such as fear of flying (Mühlberger et al.,  

2006).  In  VR, full  control  of  events is possible.  Due to its complexity,  the conditioning 

situation is closer to real life learning situations than in most laboratory designs. The virtual  

environment applied in the present study was identical with the paradigm tested in the pilot 

study.  It  consisted  of  a  corridor  and an office,  through which  subjects  were  passively 

guided while lying in the scanner. In both the DCG and the TCG, a blue and a yellow light 

presented in the office served as CS+ and CS−, respectively. The US consisted of mildly 
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painful electric stimulus. Differences in BOLD responses to CS+  minus CS−  served as 

indices of  brain responses related to  conditioning.  The main focus was on differences 

between  delay  and  trace  fear  conditioning  during  extinction.  Bold  responses  during 

acquisition were not analyzed because of an overlap of brain responses to the CS and US 

in the learning phase due to their temporal closeness.

6.3. Method and Materials

6.3.1. Participants

For  the  experiment,  43  right-handed  volunteers  (29  female;  age  19–29)  were 

recruited  and randomly assigned to  one of  the  two groups (DGC or  TCG).  Excluding 

criteria were assessed by self-report. Participants who reported past or present psychiatric 

disorders,  use  of  antipsychotic  drugs,  regular  alcohol  or  drug  consumption,  or 

allochromasia (for blue and yellow) were not included in the analysis. Twelve subjects had 

to be excluded due to technical problems, one subject due to regular drug consumption 

and one subject because of extensive head movements during scanning. Since only three 

subjects did not become aware of the CS/US contingency, these participants were also 

excluded.  The small  group size did  not  allow for  an analysis  of  differences related to 

contingency awareness.  The final sample consisted of 26 participants, 13 in the DCG (8 

female, mean age = 23.1 years, SD = 3.0 years) and 13 in the TCG (9 female, mean age = 

23.5  years,  SD  =  2.5  years).  All  participants  gave their  written  informed consent  and 

received 12 Euros per  hour  for  participation.  The study protocol  was approved by the 

Ethics Committee of the Medical Faculty of the University of Würzburg.
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6.3.2. Stimuli and apparatus

VR environment. In this experiment, the same virtual environment was applied as in 

the  pilot  study.  In  the  office,  the  blue  and  the  yellow light  served  as  CS+  and  CS-, 

respectively (see figure 3, chapter 4.3.2., page 54). The US, again a mild electric stimulus, 

was paired with the CS+ with 100% contingency, the CS− was never followed by the US. 

Colors  of  CS+  and  CS−  were  counterbalanced  across  participants  and  conditioning 

groups. The delay (DCP) and trace conditioning protocol (TCP) differed in timing of the 

CS: In the delay protocol the lights were switched on for 8s and the CS+ coterminated with 

presentation of the US. In the trace protocol the lights were presented only for 4s, meaning 

that the CS+ was followed by a 4s trace interval. The US was presented 8s after onset of  

the CS+ in both protocols (see figure 15). 

Figure 15

A, DCP: The CS+ is presented for 8s and  

coterminates with the onset of the US

B,  TCP:  The  CS+  is  presented  for  4s,  

followed by a 4s trace interval (TI) before  

presentation of the US

Participants were guided through the virtual environment on a prerecorded path in order to 

enhance control  over  the course of events during the experiment,  but  also to prevent 

strong movement in the scanner. Events in the virtual environment were – as in the former 

experiments  –  manipulated  by  means  of  the  in-house  written  VR simulation  software 

CyberSession. VR rendering was done by an image generator running the in-house written 

Source SDK modification VRSessionMod 0.3. The virtual environment was displayed via 

MRI-compatible goggles (VisuaStim; Magnetic Resonance Technologies, Northridge, CA, 

USA).
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Electric stimuli. The US was a mildly painful electric stimulus generated by a current 

stimulator (Digitimer DS7A, Digitimer Ltd, Hertfordshire, England). It was delivered at the 

left index finger through surface bar electrodes. Electrodes consisted of two durable gold-

pasted stainless steel  disk electrodes with  9mm diameter,  30mm spacing and with  an 

impedance of max 5 kΩ. Electric stimuli were triggered automatically by CyberSession for 

a duration of 200 ms and with a frequency of 50 Hz. Before conditioning, current intensity  

was  determined  for  each  participant  according  to  the  individual  pain  threshold  (for  a 

detailed description see chapter 4.3.2., page 55). Both conditioning groups did not differ in 

current intensity (delay group: M = 2.25 mA, SD = 0.99; trace group:M = 2.18, SD = 0.90), 

t(23) = 0.19, p = 0.853, and pain rating (delay group: M = 5.00, SD = 0.84; trace group: M 

= 5.04, SD = 1.57), t(23) = −0.08, p = 0.934, of the US.

6.3.3. Psychometric measures

Ratings. Participants rated screenshots of the room with either the CS+ or the CS− 

switched on regarding valence (from “very negative” to “very positive”), arousal (from “not 

arousing at  all”  to  “very arousing”),  fear  (from “no fear”  to “extreme fear”)  and CS/US 

contingency (from “not likely at all” to “very likely”), each on scales from 0 to 100. In this 

study,  all  questions and screenshots  were  presented via  the  MRI-compatible  goggles. 

Participants were supposed to relate their answers to the way they felt  during the last 

phase of the experiment. The investigator recorded the answers, which were given orally 

via the speaker system of the scanner room.

Awareness.  On  the  basis  of  the  question  “During  which  light  presentation  did  you 

receive electric shocks?” I assessed explicit knowledge of CS/US contingencies. Twenty-

six participants met the criteria of awareness and were labelled “aware”, meaning that they 

were  able  to  state  the  correct  color  of  light  after  the  second  acquisition  run.  Three 
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participants in the DCG failed to learn the contingency and were labeled “unaware.” There 

were no unaware participants in the TCG.

6.4. Procedure

As a first step participants were informed about the scanning procedure. After that 

they completed questionnaires on personal information and excluding criteria and received 

written instructions related to the experiment. They gave their written informed consent 

after having read these instructions. When participants were in the scanner room, they 

were  brought  into  position  for  scanning  and  electrodes  for  electric  stimulation  were 

attached to the left index finger. Before the experiment startet, the individual pain threshold 

was determined. 

After  preparations  were  completed,  a  preacquisition  block  followed.  Participants  were 

guided through the virtual office to get used to the environment and the two different lights 

(each  light  was  presented  once).  The  first  ratings  of  valence,  arousal  and  fear  were 

collected  at  this  point.  Before  conditioning  started,  participants  were  informed  by  the 

investigator that they would be able to predict the electric stimuli if they paid close attention 

to  the experiment.  The following experiment consisted of three blocks,  two acquisition 

blocks and one extinction block. Each of these blocks consisted of two passages through 

the  virtual  office.  Participants  were  exposed  to  four  CS+  and  four  CS−  during  one 

passage, which lasted 172s. This means that one block lastet approximately 6 min. During 

both acquisition blocks taken together, participants were exposed to 16 CS+ and 16 CS− 

and they  received 16 US. The extinction block included two visits to the office with the 

same duration and CS frequency as the acquisition trials (i.e., 8 CS+ and 8 CS−). No US 

was applied during  extinction. After each of the two acquisition blocks, awareness was 
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measured as  described above and CS/US contingencies  were  measured.  Additionally, 

ratings of valence, arousal and fear were collected after each acquisition block and after 

extinction.

Whether the blue or the yellow light served as CS+ or CS-, respectively,  was pseudo-

randomized across participants. The same was true for the order  of stimuli. There were 

four different courses of events, two of them with the blue light and two with the yellow light 

serving as CS+. The length of the interstimulus interval (ISI) varied between 11 and 13 s in 

steps of 250 ms was also pseudo randomized.

Magnetic  resonance  imaging:  For  acquisition  of  structural  and  functional  brain 

images,  a  1.5-T  whole-body  magnetic  resonance  tomograph  (MagnetomAvanto, 

SiemensHealthcare,  Erlangen,  Germany)  with  standard  12-channel  head  coil  and 

integrated head holder was used. Recording of structural images was conducted at the 

end  of  the  experiment.  Structural  imaging  consisted  of  160  T1-weighted  sagittal 

magnetization-prepared  rapid  gradient-echo  imaging  (MPRAGE)  3D  MRI  sequence 

(MPRAGE, 1 mm slice thickness, TR = 2250 ms, TE = 3.93 ms, flip angle: 8°, FOV: 256 

mm, matrix: 256 × 256, voxel size: 1 × 1 × 1 mm³). 

Functional  imaging  was  conducted  in  all  of  the  four  phases  of  the  experiment  (pre-

acquisition,  first  and  second  acquisition  phase  and  extinction).  After  every  phase, 

subjective ratings were collected. Imaging was paused in the meantime. For functional 

imaging, a total of 161 volumes was registered using a T*2-weighted gradient echo-planar 

imaging  sequence  (EPI)  with  25  axial  slices  (slice  thickness  5-mm  with  1-mm  gap, 

interleaved (descending) order) covering the whole brain (TR: 2500 ms; TE: 40 ms; flip 

angle: 90°; FOV: 240 mm × 240 mm; matrix size: 64 × 64; voxel size: 3.1 × 3.1 × 3mm³).  
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Axial slices were orientated parallel to the AC-PC line. In each of the four phases, the first  

eight images were excluded from analysis to allow for T1 equilibration.

Image preprocessing and statistical analysis

Imaging. Analysis of fMRI data was performed with Statistical Parametric Mapping 

(SPM8, Wellcome Department of Cognitive Neurology, London) integraded in MatLab 7.0 

(Mathworks  Inc.,  Sherborn,  MA).  In  image  preprocessing,  functional  images  were 

realigned after  slice time correction.  T1-scans were co-registered to  each participant´s 

mean of the realigned images. Then the mean functional images were normalized to the 

Montreal  Neurological  Institute  (MNI)  single-subject  template  (Evans  et  al.  1992). 

Normalization  parameters  (attained  from  the  previous  segmentation  procedure  of  co-

registered T1 images) were applied and images were resampled (voxel size 2 × 2 × 2  

mm³). For spatial  smoothing of EPI images, an 8-mm full-width-half-maximum (FWHM) 

Gaussian kernel was applied and images were filtered with a 128 ms high pass filter.

I  modeled  the  different  experimental  conditions  using  a  boxcar  reference  vector 

convolved with a canonical hemodynamic response function (general linear model, Kiebel  

and Holmes, 2003). To regard variance caused by residual movement I included the six 

movement  parameters  of  the  rigid  body  transformation,  applied  by  the  realignment 

procedure. By means of a first-order autoregressive model, low-frequency signal drift was 

filtered. For the calculation of parameter estimates for each voxel, weighted least squares  

were  used  to  provide  maximum  likelihood  estimates  based  on  the  non-sphericity 

assumption (in order to get identical and independently distributed error terms). 

In this experiment the extinction phase served as main test phase, since I was especially 

interested in neural correlates of the extinction of fear memory. Moreover, not only a steep 

learning  curve,  but  also  a  rapid  decrease  of  fear  reactions  is  to  be  expected  in  a 
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conditioning paradigm with a CS-US contingency of 100% during acquisition. To account 

for this, the extinction phase was divided into two parts of equal duration and an equal 

number  of  stimuli.  The  first  and  second  half  of  extinction  were  analyzed  separately. 

Additionally,  I  compared  activation  during  early  extinction  (first  to  fourth  CS+)  with 

activation during late extinction (fifth to eighth CS+).

In the second-level analysis, first level individual contrast images (CS+ > CS-) were used 

(one sample  t-test). First the contrast CS+ > CS- was analyzed separately for the DCG 

and the TCG in both early and late extinction. Subsequently, I analyzed the contrast early 

extinction (CS+ > CS-) > late extinction (CS+ > CS-) for both groups. For the amygdala, 

the  hippocampus,  the  insula,  the  ACC (Brodmann areas  24,  32  and 33)  the  striatum 

(caudate and putamen) and the ventromedial (medial orbital frontal gyrus) and dorsolateral  

prefrontal cortices (middle frontal gyrus) ROI analyses were carried out at an uncorrected 

threshold of  p = .005 and with a minimum cluster size of 10 voxel. I also conducted an 

explorative  whole  brain  analysis  at  an  uncorrected  threshold  of  p =  .001  and  with  a 

minimum cluster  size of  5  voxel.  ROIs  were  based on masks of  the  WFU Pick Atlas 

(Maldjian et al 2003) and Brodmann Areas (BA).

Ratings. For the preacquisition and the extinction phase, ratings of valence, arousal, 

and fear were analyzed with ANOVAS with between factors stimulus (CS+, CS-) and group 

(delay, trace). Ratings collected after the first and second acquisition phase were analyzed 

with repeated measures ANOVAs with the between factors stimulus (CS+, CS-) and group 

(delay,  trace)  and  the  additional  within  factor  phase  (Acquisition  1,  Acquisition  2). 

Contingency ratings were not collected after preacquisition and thus were only analyzed 

for acquisition and extinction (according to valence, arousal and fear ratings). 
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All rating data were analyzed using SPSS for Windows (Release 17.0). Alpha was 

set at .05 for all statistical tests, effect sizes are reported as ηp² scores.

6.5. Results

Ratings

Baseline. 

CS+ and CS- did not differ in valence, arousal, or fear in either of the groups after the pre-

acquisition phase (all ps > .23).

Acquisition.

Valence ratings. For valence ratings, I found a significant main effect of stimulus, 

(F(1, 24) = 13.49, p = .001, ηp² = .360) and a marginally significant interaction of Phase × 

Stimulus (F(1, 24) = 3.92, p = .059, ηp² = .140). The CS+ was rated more negative than the 

CS- in general (CS+: M = 36.83, SD = 20.49; CS-: M = 65.38, SD = 27.88). 

Arousal rating. As for valence ratings the main effect of stimulus (F(1, 24) = 33.05, p 

< .001, ηp² = .579), reached significance. Additionally, the analysis revealed a significant 

three way interaction of Phase x Stimulus x Group (F(1, 24) = 4.30, p = .049, ηp² = .152). 

Post hoc t-Tests showed that the CS+ elicited more arousal than the CS- in both the delay 

group [t(12) = 2.578, p = .024 (CS+: M = 40.38, SD = 25.70; CS-: M = 14.62, SD = 19.84)], 

and the trace group, [t(12) = 5.41, p < .001 (CS+: M = 51.15, SD = 28.88; CS-: M = 8.46,  

SD  =  9.87)]  after  the  first  acquisition  phase.  Results  were  similar  after  the  second 

acquisition phase in the trace group [t(12) = 4.38, p = .001 (CS+: M = 40.77, SD = 26.91; 

CS-: M = 6.92, SD = 9.47)) and even more pronounced in the delay group [t(12) = 3.534, p 

= .004, (CS+: M = 43.46, SD = 27.03; CS-: M = 9.62, SD = 18.76)]. 
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Fear ratings. For fear ratings I also found a significant main effect of stimulus (F(1, 

24) = 22.32, p < .000, ηp² = .482), indicating that the CS+ elicited overall more fear than 

the CS- (CS+: M = 36.25, SD = 30.40; CS-: M = 5.58, SD = 11.57).

Contingency  ratings.  After  the  acquisition,  participants  rated  the  CS+  as 

considerably more likely to be followed by the US than the CS-, the main effect of stimulus 

was highly significant [F(1, 24) = 201.45,  p < .001, ηp² = .894 (CS+:  M  = 88.65,  SD = 

18.72; CS-:  M  = 9.62,  SD = 14.69)]. The interaction of Phase x Stimulus also reached 

significance (F(1, 24) = 5.66, p = .026, ηp² = .191). Post hoc t-Tests revealed that the CS+ 

was rated as more likely to be followed by the US than the CS- [ t(25) = 6.681, p < .001 

(CS+: M = 81.73, SD = 29.29; CS-: M = 15.00, SD = 27.75)] already after the first phase, 

but after the second phase this difference between CS+ and CS- had further increased 

[t(25) = 26.239, p < .001 (CS+: M = 95.58, SD = 14.45; CS-: M = 4.23, SD = 11.38)]. In 

general, the contingency between the CS+ and the US was rated higher after the second 

than after the first phase (t(25) = -2.612, p = .015).

Extinction

Valence ratings. Valence of CS+ and tCS- did no differ significantly any longer after 

extinction (F(1, 24) = 3.48, p = .075, ηp² = .127), although a marginal difference was still 

present.

Arousal ratings. I still found a significant main effect of stimulus (F(1, 24) = 20.30, p 

< .000, ηp² = .458) as well as a significant interaction of Stimulus x Group (F(1, 24) = 5.26, 

p = .050, ηp² = .151) after extinction. In the DCG, CS+ and CS- did not differ significantly 

any longer. In contrast, the TCG still rated the CS+ as more arousing than the CS- [t(12) = 

4.368, p = .001 (CS+: M = 21.76, SD = 6.03; CS-: M = 10.05, SD = 2.91)].
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Fear ratings.  Also the main effect of  stimulus still  reached significance after the 

extinction phase (F(1, 24) = 11.61,  p = .002, ηp² = .326). Additionally, I found a marginal 

interaction of Stimulus x Group (F(1, 24) = 3.76,  p = .064, ηp² = .136), indicating similar 

results as for arousal ratings: The CS+ was still associated with more fear than the CS-  

after extinction [t(12) = 3.726, p = .003 (CS+: M = 25.77, SD = 21.39; CS-: M = 6.15, SD = 

10.44)] only in the TCG. There was no such difference in the DCG (t(12) = 1.054,  p = .

313).

Contingency  ratings.  The main  effect  of  stimulus  persisted  during  the  extinction 

phase also for contingency ratings (F(1, 24) = 18.39, p < .001, ηp² = .434). The CS+ was 

still rated as more likely to be followed by the US than the CS- (CS+:  M = 47.31,  SD = 

35.98; CS-: M = 12.31, SD = 20.06).

Taken together, results of fear and arousal ratings suggest that extinction learning 

proceeded more slowly in the TCG than in the DCG. After extinction, fear and arousal 

ratings of the DCG did no longer differ between CS+ and CS-. In contrast, the TCG rated 

the CS+ still as more arousing and more frightening than the CS-.

Imaging data

Early extinction

ROI analysis: During early extinction, both the DCG and the TCG showed activation 

in the insula and the striatum in the contrast  CS+ minus CS-. Importantly,  the groups 

differed  in  their  prefrontal  activation  (see  figure  16).  Analyses  revealed  significant 

activation of the vmPFC (medial orbital frontal gyrus R) in the DCG, while in the TCG the  

dlPFC was significantly activated (middle frontal gyrus R). Additionally, the TCG showed 

activation of the dorsal part of the ACC (BA 33).
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Whole brain analysis: Next to activation in areas defined as ROIs the whole brain 

analysis revealed significant activation in several other regions. The cuneus (L), the left 

motor cortex (precentral gyrus L), and the middle occipital gyrus (R) were activated in the 

DCG. In the TCG, analysis revealed activations in the somatosensory cortex (postcentral 

gyrus L), the calcarine (R), the rolandic operculum (R), and the ventral ACC (middle 

cingulate cortex L, BA 24). 

For exact coordinates see table 1.
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Table 1
Significant activations during early extinction in whole brain (WB) and regions of interest 
analysis (ROI) for contrast CS+ > CS- 

Group Brain structure x y z Z Cluster size p

Delay

Cuneus R (WB) 12 -76 24 3,7 29 < 0.001

Precentral gyrus (WB) -22 -14 62 3,67 26 < 0.001

Caudate body (WB) -18 20 8 3,67 7 < 0.001

Medial orbital frontal gyrus 
R / BA 10 (WB)

12 58 -12 3,53 5 < 0.001

Middle occipital gyrus (WB) -34 -66 18 3,43 7 < 0.001

Insula R (ROI) 44 2 0 3,01 10 < 0.001

Caudate L (ROI) -18 20 8 3,53 17 < 0.001

Putamen R (ROI) 36 -12 -8 3,07 14 < 0.001

Medial orbital frontal gyrus R 
(ROI)

12 58 -12 3,43 11 < 0.001

Trace

Postcentral gyrus L (WB) -42 -32 54 4,70 6 < 0.001

Rolandic Operculum R (WB) 42 -22 26 4,37 86 < 0.001

Putamen L (WB) -30 -14 2 4,11 8 < 0.001

Calcarine R (WB) 12 -92 12 4,09 19 < 0.001

Middle frontal gyrus R (WB) 40 6 40 3,55 7 < 0.001

Ventral ACC L (WB) -12 10 30 3,55 8 < 0.001

Insula R (ROI) 36 -18 22 3,78 15 < 0.001

Dorsal ACC R (ROI) 4 22 34 2,93 11    0.002

Putamen L (ROI) -30 -14 2 4,11 14 < 0.001

Middle frontal gyrus R (ROI) 40 6 40 3,55 12 < 0.001

alpha < 0.001 uncorrected for WB analysis, alpha < 0.005 for uncorrected ROI analysis
minimum cluster size k = 5 (WB) or k = 10 (ROI); L = left and R = right hemisphere

The cluster with the largest number of significant voxels within each region is reported.
Coordinates x,y and z of peak voxels are given in Montreal Neurological Institute Space.
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Late extinction

ROI analysis: In the second phase of extinction I observed significant activation in 

the ventral part of the ACC, though only in the DCG.

Whole brain analysis: The ventral ACC (R), the inferior frontal gyrus (R), and the 

supramarginal gyrus (R) were activated in the DCG during late extinction. In the TCG I 

found significant activation of the precuneus (both L and R).

For exact coordinates see table 2.

Table 2
Significant activations during late extinction in whole brain (WB) and regions of interest 
analysis (ROI) for contrast CS+ > CS- 

Group Brain structure x y z Z Cluster size p

Delay

Ventral ACC R (WB) 6 10 30 4,84 13 < 0.001

Triangular part of inferior 
frontal gyrus R (WB)50

50 18 14 3,67 35 < 0.001

Supramarginal gyrus R (WB) 60 -34 28 3,66 25 < 0.001

Ventral ACC R (ROI) 6 10 30 4,84 17 < 0.001

Trace

Precuneus R (WB) 14 -58 24 3,74 62 < 0.001

Precuneus L (WB) -10 -62 30 3,37 10 < 0.001

ROI analysis: no significant 
voxel

alpha < 0.001 uncorrected for WB analysis, alpha < 0.005 for uncorrected ROI analysis
minimum cluster size k = 5 (WB) or k = 10 (ROI); L = left and R = right hemisphere

The cluster with the largest number of significant voxels within each region is reported.
Coordinates x,y and z of peak voxels are given in Montreal Neurological Institute Space.

Early extinction > late extinction

ROI analysis: In an additional analysis I examined in which areas activation was 

stronger in the early extinction compared to the late extinction (in the contrast CS+ > CS+).  

In the DCG, activation in the insula (L) was stronger in the early than in the late extinction,  
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whereas in the TCG the hippocampus (R) and the striatum (putamen L) showed greater 

activation.

Whole brain  analysis: Whole brain  analysis  revealed additional  activation of  the 

ACC  (ventral  anterior  cingulate  area),  the  precentral  gyrus  (L),  and  the  transverse 

temporal gyrus (Heschl L) in the DCG. In the TCG I also found activation of the ventral  

ACC (L), and additionally in the parahippocampal area.

For exact coordinates see table 3.

Table 3
Significant activations in whole brain (WB) and regions of interest analysis (ROI) for 
contrast CS+ > CS- : Early extinction (CS+ > CS-) > late extinction (CS+ > CS-)

Group Brain structure x y z Z Cluster size p

Delay

Precentral gyrus L (WB) -22 -14 62 4,10 59 < 0.001

Ventral ACC L (WB) -16 0 44 3,65 14 < 0.001

Heschl L (WB) -32 -28 16 3,29 5 < 0.001

Insula L (ROI) -38 -20 14 3,05 25 < 0.001

Trace

Putamen L (WB) -30 -14 2 3,74 13 < 0.001

Ventral ACC L (WB) -10 14 30 3,61 10 < 0.001

Parahippocampus R (WB) 32 -34 -12 3,51 11 < 0.001

Hippocampus R (ROI) 30 -32 -8 3,87 11 < 0.001

Putamen L (ROI) -30 -14 2 3,74 23 < 0.001

alpha < 0.001 uncorrected for WB analysis, alpha < 0.005 for uncorrected ROI analysis
minimum cluster size k = 5 (WB) or k = 10 (ROI); L = left and R = right hemisphere

The cluster with the largest number of significant voxels within each region is reported.
Coordinates x,y and z of peak voxels are given in Montreal Neurological Institute Space.
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6.6. Discussion

To my knowledge, this is the first study investigating neural correlates of extinction 

after acquisition of both delay and trace fear memory in humans. During early extinction, 

the  two  conditioning  groups  showed common activation  in  the  insular  cortex  and  the 

striatum, but more importantly they differed in  prefrontal  activation. In line with existing 

evidence  on  extinction  of  delay  fear  conditioning,  the  vmPFC  was  activated  during 

extinction in the DCG. In contrast, I observed activation of the dlPFC in the TCG. In the 

late part of extinction I only found significant activation of the ventral ACC in the DCG. In 

the  predefined  ROIs  no  significant  activation  could  be  found  in  the  TCG. Moreover, 

activation in the insula (delay group), the hippocampus, and the striatum (trace group) was 

greater during early extinction compared to late extinction.

Prefrontal  cortex. The  most  important  finding  in  the  present  study  is  the 

dissociation of prefrontal activation during early extinction in delay vs. trace conditioning.  

The vmPFC has been shown to play an important role in the extinction of fear memory. It  

is assumed that during extinction an inhibitory memory trace is established between the 

vmPFC and the amygdala, which allows for the modulation of the fear response. This has 

been shown the animal model (see for example Sotres-Bayon et al., 2004, 2007), but also 

been  confirmed in  human fear  conditioning  studies  (e.g.,  Phelps  et  al.,  2004).  To my 

knowledge, evidence from human studies for this model comes mainly from delay fear 

conditioning. Activation of the vmPFC during early extinction of delay fear memory in the 

present sample provides further evidence for its involvement in inhibition of the conditioned 

fear response. Interestingly, I did not find activation of the vmPFC in the TCG, but instead 

activation of the dlPFC. This finding points to different processes during extinction in delay 
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and trace conditioning. According to a model of functional organization of the lateral PFC, 

the vmPFC is mainly involved in the mere maintenance of information, whereas the dorsal 

part is assumed to be involved in the manipulation of information, requiring more working 

memory  capacities  (D’Esposito  et  al.,  1999).  As  mentioned  in  the  introduction,  lesion 

studies provide evidence that the dlPFC is crucial for adjusting behavior appropriately in 

delayed  response  tasks  (e.g.,  D’Esposito  et  al.,  2000).  In  a  delayed  response  task,  

decisions have to  be  made on the  basis  of  this  information,  which  had to  be  kept  in 

working  memory  for  a  short  period  of  time.  In  contrast  to  delay  conditioning,  trace 

conditioning and its extinction afford higher working memory contributions to bridge the 

trace interval and hold information in short term memory. Results of subjective ratings in 

this study indicate that extinction learning preceded more slowly in the TCG compared to 

the DCG. Arousal  and fear ratings of the CS+ and the CS− did no longer  differ  after  

extinction in the DCG. However, in the TCG, the CS+ was still rated as more arousing and 

more  frightening  than the  CS−.  The  slower  extinction  process  after  trace conditioning 

might be an indicatior for a higher working memory contribution in the extinction of trace 

compared to delay conditioning. Besides possible parallels with evidence regarding the 

role of the dlPFC in working memory processes, there is also an interesting connection 

between my results and findings in trace eyeblink conditioning in rabbits.  According to 

Weiss and Disterhoft (2011), the dlPFC plays an important role in the acquisition of trace 

conditioning.  More  precisely,  they  showed  that  activation  of  dlPFC  and  hippocampus 

potentiates the effect of the CS at pontine nuclei on the way to the cerebellum and by this 

means bridges the trace interval during acquisition. Structures mediating the conditioned 

response reorganize after consolidation of the association between CS und US. While the 

hippocampus  becomes  less  important,  the  dlPFC  becomes  more  important.  For 
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investigating to what extend these findings from the rabbit model can be transferred to 

human fear conditioning, further research with regard to both acquisition and extinction of  

trace conditioning is necessary.

Figure 16: BOLD Signal(CS+ > CS−) during early extinction (ROI, α < 0.005, uncorrected). In both DCG and 

TCG, Insula and Putamen were activated during early extinction. In the DCG, significant activation of the  

vmPFC (medial orbitalfrontal gyrus R) was observed, while in the TCG the dlPFC (middle frontal gyrus R)  

was significantly activated.

Striatum. During acquisition, an initially neutral stimulus is paired with an aversive 

event such as an electric stimulus. Consequently, an individual forms the expectation that 

the  aversive  event  follows  the  stimulus.  This  expectation  is  violated  during  extinction, 

because  the  aversive  event  does  no  longer  occur.  Such  a  discrepancy  between  the 

expected and the actual  outcome is  referred to  as prediction error  (Schultz,  Dayan & 

Montague, 1997). In both appetitive and aversive classical and instrumental conditioning, 

the striatum has been shown to be involved in the coding of prediction errors. This is true 

for  both  primary  reinforcers  such  as  pain  (Phelps  et  al.,  2004;  Seymour,  O’Doherty, 
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Koltzenburg, Wiech, Frackowiak & Friston, 2005), and also for secondary reinforcers ones 

such as monetary gains (e.g., Delgado et al., 2007). In the present study, striatal activation 

was significant  in both the DCG and the TCG. These results  provide evidence for  an 

important role of the striatum not only in the acquistion (Jensen et al., 2003; Delgado et al., 

2008; Klucken et al., 2009; Tabbert et al., 2011), but also in the extinction of fear memory. 

Raczka et al. (2011) showed that a functional polymorphism of the dopamine transporter 

gene, which is mainly expressed in the striatum, has an influence extinction learning. The 

9-repeat allele is associated with enhanced phasic dopamine release and higher learning 

rates in the extinction of conditioned fear. They reported that 9R carriers showed stronger 

activation  of  the  ventral  striatum  in  response  to  prediction  errors  during  extinction. 

Because of these findings they proposed that extinction, rather than a learning process 

driven by an aversive prediction  error, is an appetitive-like learning process mediated by 

the mesostriatal dopamine system. 

Insula and ACC. During early extinction, I found significant activation of the insular 

cortex in both conditioning groups. Additionally, though only in the DCG, insular activation 

was greater in the early compared to the late extinction. Phelps et al.  (2001) provided 

evidence for the involvement of the insula in classical fear conditioning. According to them, 

insular  activation  in  the  conditioning  paradigm  occurred  not  until  the  later  trials  of 

acquisition, when participants were consciously aware of the association between the CS+ 

and the US. In contrast, in an instructed fear paradigm, they found activation of the  insula 

already in early trials. This is in line with evidence coming from pain research, in which the 

insula has been found to play an important role in the anticipation of pain (e.g., Ploghaus 

et  al.,  1999;  Wiech,  Brodersen,  Bingel,  Ploner  &  Tracey,  2010).  Phelps  et  al.  (2004) 

suggested that the anticipation of pain leads to cortical representation of fear, and that this 
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representation is transmitted to the amygdala via the insular cortex. During extinction, the 

CS+ is no longer paired with a painful stimulus. However, particularly in the first trials of 

extinction, it is still associated with the US and thus it still leads to the anticipation of pain. 

In addition to the insula, the dorsal ACC was activated during early extinction. Interestingly,  

this was only the case in the TCG, but not in the DCG. In the comparison of early and late  

extinction, I found that ACC activation was stronger during early extinction. This could be 

observed in both groups. Coghill et al. (1994) discussed that the combined activation of 

ACC and insula represents a pathway for the integration of nociceptive input in memory 

processes. Following this model, not only the insula, but also the ACC is involved in the 

adjustment of behavior in response to a stimulus predicting pain (Büchel et al.,  1998). 

There is broad evidence that sustained attention is essential for trace fear conditioning,  

though  not  for  delay conditioning.  Without  contingency awareness,  the  formation  of  a 

conditioned fear response is not  possible in trace conditioning. For delay conditioning, 

participants do not necessarily have to establish declarative memory of the association 

between the CS and the US (e.g., Manns, Clark & Squire, 2001; Clark et al., 2002; Weike 

et al., 2007). In a conditioning study conducted by Yágüez et al. (2005), neural correlates 

of actual and anticipated visceral pain were investigated. They report that the ACC was 

activated both  during  the  learning  phase as  well  as  during  anticipation  and extinction 

phases.  They suggest  that  ACC activation might  be dependent  on sustained attention 

toward the stimulus followed by pain. Han et al. (2003) provided additional evidence for the 

association of ACC activation and sustained attention during trace fear conditioning. They 

reported  that  attention-distracting  stimuli  interfere  only  with  trace,  but  not  delay  or 

contextual fear conditioning in mice. Moreover, in the ACC of mice that had undergone 

trace fear conditioning, a higher density of c-fos-positive cells was found than in mice that  
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had undergone delay conditioning.  Additionally,  they observed that  lesions of  the ACC 

selectively impaired trace conditioning. These results offer an explanation why we found 

combined activation of the insula and the ACC only during the early extinction of trace but 

not delay fear memory.

Hippocampus. The hippocampus is assumed to be involved in the representation 

of  the  temporal  context  in  a  conditioning  process.  Especially  in  trace  conditioning 

paradigms this context plays an important role, due to the temporal gap between CS and 

US (e.g., Phillips & LeDoux, 1992). Accordingly, I found hippocampal activation only in the 

TCG. Knight et al. (2004) reported a rapid decrease of hippocampal activation during the 

early trials of extinction, matching the fact that in this sample, hippocampal activation was 

significantly greater in the early compared to the late extinction. Clark et al. (2002) stated 

that the hippocampus is crucial for explicit or declarative memory processes. There is vast 

evidence  that  trace  conditioning  is  not  possible  without  contingency  awareness  and 

requires  declarative  knowledge  about  the  CS/US association  (e.g.  Clark  et  al.,  2002; 

Weike  et  al.,  2007).  Unfortunately,  I  could  not  investigate  the  association  between 

contingency awareness and hippocampal  activity  directly,  since only  three participants 

remained unaware. 

Amydala. Against  my  expectation,  I did  not  find  significant  activation  of  the 

amygdala in either  one of  the two groups.  Echoplanar  imaging is  highly vulnerable to 

susceptibility artifacts, which occur near the interfaces of substance of different magnetic 

susceptibility  and  thus  are  likely  in  structures  of  the  medial  temporal  lobe,  like  the 

amygdala (Bellgowan,  Bandettini, van Gelderen, Martin & Bodurka, 2006; Stöcker et al., 

2006). LaBar et al. (1998) address this problem. The amygdala is a small structure located 

near sinus cavities, which cause susceptibility artifacts. This might have been one reason 
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for  the  lack  of  significance.  Additionally,  I  applied  a  conditioning  paradigm with  100% 

contingency between CS+  and US during acquisition. This has been shown to lead to 

rapid habituation of amygdala activity during extinction learning, making it harder to detect 

this acticvity (e.g., LaBar et al., 1998). 

Conclusion. In summary,  these results are in line with  existing evidence of the 

involvement  of  the  PFC,  insula,  ACC,  striatum,  and  hippocampus  in  the  extinction  of 

conditioned fear memory. Additionally, my findings also confirm that the hippocampus and 

ACC are mainly involved in trace conditioning. Most importantly, different parts of the PFC 

were activated during extinction of delay vs. trace fear conditioning: the vmPFC in the 

DCG and the dlPFC in the TCG. These results point to different processes underlying the 

extinction of he two types of conditioning. However, results have to be interpreted with 

care  because of  limited  power.  Moreover,  a  relatively  liberal  level  of  significance  was 

applied. Nevertheless, results provide valuable input for the discussion about the role of 

the PFC in the extinction of fear. Further evidence is needed to elucidate the role of the 

PFC in the extinction of trace conditioning in more detail and to translate results from the 

animal model to trace fear conditioning in humans. 
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7. General discussion

The intention of this work was to study fear conditioning in a virtual reality setting  

close to  real  life learning situations,  in which explicit  learning of  associations between 

threatening  stimuli  and  aversive  events  was  manipulated  by  the  complexity  of  the 

environment. By placing participants into a virtual environment, different contexts can be 

simulated  and  manipulated  easily,  allowing  for  a  translation  of  animal  research  in 

contextual  conditioning to humans. The virtual  reality paradigm can also be applied in  

imaging studies, which led to new possibilities in this field of research. I planned to test the  

paradigm and its effects on contingency awareness in a first pilot study, followed by the 

extension of the paradigm for studying context-dependent differential fear conditioning and 

generalization of  fear  in a  second study.  Additionally,  the paradigm was applied in  an 

imaging study using fMRI, in which I focused on neural correlates of extinction learning 

with regard to timing of stimuli.

7.1. Contingency awareness

Several  interesting  findings  result  from the  three  experiments.  First  of  all,  they 

provide further evidence for the two level account of classical fear conditioning (Hamm & 

Weike, 2005), which assumes that fear learning can take place on two different levels: For 

the  development  of  a  conditioned  response,  an  implicit,  unconscious  and  automatic 

processing of the CS via the subcortical fear network consisting of the amygdala complex 

and  the  brainstem  can  be  sufficient.  However,  humans  usually  also  develop  explicit 

knowledge of the association between CS and US, referred to as contingency awareness. 

This kind of learning requires higher order processing.  Tabbert et al. (2011) investigated 
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the  influence  of  contingency  awareness  on  neural,  electrodermal  and  evaluative  fear 

responses.  They found amygdala  acitvation  in  both  aware  and unaware  subjects,  but 

differential responses in the dorsal anterior cingulate, insula and ventral striatum were only 

present in aware subjects. The hippocampus was identified as especially important for the 

development  of  contingency  awareness.  Only  aware  subjects  showed  conditioned 

subjective and electrodermal responses. Thus, fear conditioning takes place irrespective of 

contingency awareness, but aware and unaware participants display different neural and 

physiological responses (see also Cacciaglia, Pohlack, Flor & Nees, 2014). 

Hamm and Vaitl  (1996)  showed that  FPS 

responses  were  completely  unrelated  to 

contingency  awareness,  whereas 

enhanced skin conductance in response to 

the  CS+  was  only  present  in  participants 

who  had  acquired  a  cognitive 

representation  of  the  CS-UCS 

contingencies  and  were  able  to  report 

them. In contrast to the startle reflex, skin 

conductance  response  is  associated  with 

higher  order  processing,  for  example with 

prefrontal  activations  (Hamm  &  Weike, 

2005) (see figure 17).  This dissociation between startle response and skin conductance 

response has frequently been replicated until today (e.g. Weike, Schupp & Hamm 2007, 

Singh,  Dawson, Schell, Courtney & Payne, 2013; Sevenster,  Beckers & Kindt, 2014). In 

both my first and second study I found evidence for a dissociation between implicit and 
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explicit measures in unaware participants, i. e. between startle response and subjective 

ratings: Unaware participants did not differentiate between the fear and the safety stimulus 

in subjective ratings, only participants who explicitly learned the CS-US association rated 

the  CS+ as  more  anxiety-inducing  than  the  CS-.  Evidence  for  evaluative  conditioning 

taking place as a function of contingency awareness comes also from many other studies 

(e.g. Dawson et al., 2007; Pleyers et al., 2007; Pleyers et al., 2009; Tabbert et al., 2011; 

Hütter & Sweldens, 2013). However, both aware and unaware participants reacted with an 

enhanced startle response to the fear stimulus compared to the safety stimulus. Since the 

FPS reflex is modulated by cubcortical structures via the brainstem (LeDoux, 2000) and 

does not depend on cortical input, it  is often consulted as an implicit  measure of fear,  

anxiety or enhanced arousal. The results point to the production of a conditioned response 

without  contingency  awareness.  Although,  in  the  second  study,  I  found  an  effect  of  

awareness on the startle response in the later part of acquisition: In the unaware group I  

did no longer find a significantly enhanced startle response to the CS+ compared to the 

CS-. These results regarding contingecny awareness being to some point conflicting is 

reflected in the ongoing debate about whether awareness is necessary for establishing a 

conditioned response or not. Findings concerning the actual learning processes in fear 

conditioning are ambiguous regarding the role of awareness. Next to the vast evidence for 

a two level account reflected by a dissociation of subjective ratings and FPS responses 

(e.g. Weike et al., 2007; Tabbert et al., 2011; Sevenster et al., 2014), there are also results 

indicating that even an implicit CR cannot be found without explicit knowledge of CS/UCS 

contingencies (Dawson et al., 2007;  Klucken et al., 2009,  Grillon, 2002a; Purkis &  Lipp, 

2001).  However,  recent  evidence  mainly  supports  a  dual  process  theory  of  classical 

conditioning,  assuming that  conditioning  on an implicit  level  can occur  without  explicit 
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contingency awareness. In the second study, a differential  startle reaction and thus an 

implicit conditioned response had already been present at the beginning of acquisition in 

the  unaware  group.  I  suspect  that my  results  regarding  the  influence  of  contingency 

awareness on differential cue conditioning in the later part of extinction are a consequence 

of the high cognitive load due to a complex conditioning paradigm. For example Carter et 

al.  (2003)  showed  that  the  higher  the  cognitive  load  during  conditioning,  the  more 

contingency awareness is necessary for successful conditioning and the production of a 

CR. To further contribute to the debate about the role of contingency awareness in the  

acquisition of fear, it would be enlightening to investigate the interplay of cognitive load, 

contingency awareness and development of a conditioned response. 

7.2. Delay and trace fear conditioning 

Apparently,  contingency awareness is  not  necessary for  fear  conditioned startle 

potentiation. However, this is not true for all types of fear conditioning. Above mentioned 

evidence is built  on studies using delay fear conditioning, where the aversive stimulus 

usually coterminates with the CS+. In trace conditioning, there is a short temporal gap 

between CS and US, meaning that individuals have to keep the representation of the CS 

in short-term memory to bridge this gap. Active processing of the stimulus is required for 

this, which is supported by findings indicating that trace conditioning is not possible without 

contingency awareness. Weike at al. (2007) compared delay and trace fear conditioning in 

detail.  Next  to  replicating  previous  findings  regarding  startle  and  skin  conductance 

responses in delay conditioning, they found that FPS was only present in participants who 

were aware of the CS–UCS contingency in trace conditioning. 
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This difference between delay and trace conditioning are reflected in neural  structures 

underlying fear acquisition. As mentioned above, a subcortical fear network consisting of  

the sensory cortices, thalamus, amygdala and brainstem is sufficient for successful delay 

fear conditioning. During trace conditioning however, declarative memory is formed, which 

is associated with hippocampus activity. Since neural structures involved in the acquisition 

of fear in both delay and trace conditioning as well as the development of contingency 

awareness are relatively well  understood, I  focused on the extinction of fear after both 

types of learning in more detail.  Although I  planned to do so I  unfortunately could not  

evaluate  neural  mechanisms  of  extinction  as  a  function  of  contingency  awareness, 

because only three participants did not explicitly learn the CS-US association. 

This is interesting on itself, since I applied the same paradigm I used in the pilot study, in  

which about one third of participants remained unaware. A common problem in human fear 

conditioning paradigms is that unconditioned stimuli are usually much less intense than in 

animal research, because participants get the chance to determine the averseness of for 

example an electric shock themselves. I tried to control this by increasing the intensity of 

current  chosen by participants by one third  after  the electric  stimulus was individually 

adjusted,  but  of  course  the  US  was  nowhere  as  aversive  as  stimuli  in  animal  fear 

conditioning.  Moreover,  participants  choose freely to  take part  in  an experiment:  They 

know that nothing bad is going to happen to them and that they can stop the experiment at  

any time. An animal in a fear conditioning experiment on the other hand finds itself  in  

extreme danger, leading to high arousal and probably much stronger fear reactions. If a 

participant is not sufficiently engaged in the experiment, it might as well happen that he 

does not learn CS-US contingencies. In an fMRI study however,  the situation is more 

threatening for most participants, especially when they have never been exposed to an 
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fMRI  scanner  before.  It  is  likely  that  this  leads to  increased  arousal  and a  facilitated 

acquisition process, resulting in less unaware participants.  Due to the lack of unaware 

participants I concentrated on neural activation during extinction of fear memory acquired 

in delay and trace fear conditioning. Taken together, results support previous findings of  

involvement  of  PFC,  insula,  ACC,  striatum,  and  hippocampus  in  the  extinction  of 

conditioned fear memory. In both groups I found activation of the insula, which has been 

associated with the anticipation of pain leading to a cortical representation of fear (Phelps 

et al., 2004). In a fear conditioning paradigm using painful stimuli as US, one can expect  

that  participants  still  anticipate  pain  during  the  first  trials  of  extinction  until  they  have 

learned that no US is administered any more in this phase of the experiment. Additionally, 

the  striatum  was  activated  in  both  the  delay  and  the  TCG  during  extinction.  Striatal 

activation is also related to anticipation of the US, or more precisely to the discrepancy 

between an expected and the actual outcome which is experienced when the US as no 

longer present during extinction. This discrepancy is referred to as prediction error. The 

striatum has been shown to be involved in  the coding of prediction errors in  aversive  

classical conditioning (e.g. Seymour et al., 2005). Accordingly, it also is assumed to play a 

crucial  role in the development of  contingency awareness. Klucken et al.  (2009) found 

striatal activation during acquistion only in learned aware participants, but not in unaware 

or instructed aware participants. Schiller et al. (2008) reported increased activation when a 

change in contingencies had to be learned. This is in line with the change of contingency 

during early extinction. Differences between the two groups were found in the involvement 

of  ACC,  hippocampus  and  especially  in  prefrontal  activation.  Both  the  ACC  and  the 

hippocampus have been found to  be important  for  trace but  not  necessarily for  delay 

conditioning, which my results confirm. The ACC has been linked to sustained attention, 
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which is necessary to bridge the trace interval between CS and US. The gap between CS 

and US forms a temporal  context which is represented by the hippocampus (Phillips & 

LeDoux, 1992).  Also, as mentioned above,  it  is  involved in explicit  memory processes 

(Clark et al., 2002) and important for the development of contingency awareness (Tabbert 

et al., 2011), which is a prerequisite for trace conditioning. 

However, the most interesting finding is the dissociation in prefrontal activation I observed 

in the extinction of  delay versus trace fear conditioning. During early extinction, I found 

activation of the vmPFC after delay conditioning, but activation of the dlPFC after trace 

conditioning, indicating distinct underlying processes between extinction of the two types 

of  conditioning.  There  is  considerable  evidence  that  the  vmPFC  is  involved  in  the 

extinction of fear memory in human (e.g. Phelps et al., 2004; Milad et al., 2007; Müller,  

Panitz, Hermann & Pizzagalli, 2014; Lonsdorf, Haaker & Kalisch, 2014) as well as animal  

research (e.g.  Moustafa et al.,  2013).  It  is  assumed that a memory trace between the 

vmPFC and the amygdala is formed during extinction, which enables the inhibition of the 

conditioned response (Sotres-Bayon et al 2004, 2007; Motzkin, Philippi, Wolf, Baskaya & 

Koenigs, 2014). In the DCG I can add further evidence to this model, however,  to my 

knowledge, there are no such findings for trace conditioning so far. In a study designed by 

Haritha and colleagues (Haritha, Wood, Ver Hoef & Knight, 2013), neural underpinnings of 

trace conditioning were examined in detail,  especially with regard to the differences in 

activation related to the cue vs. to the trace interval. Interestingly, they found a similar 

pattern of activation during the trace interval as I did during early extinction of trace fear 

memory, namely in the dorsomedial PFC (dmPFC), posterior cingulate cortex (PCC), right 

dlPFC, right IPL, right superior/middle temporal gyrus, and bilateral  insula. Activity was 

greater in right than in left dlPFC, IPL, and superior/middle temporal gyrus. They conclude 
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that a right-lateralized fronto-parietal circuit might be crucial for trace conditioning. Right 

dlPFC activation might be involved in bridging the temporal gap between the CS and the 

US during both acquisition of  trace conditioning and during early extinction.  In  a  very 

recent study, Vytal, Overstreet, Charney, Robinson & Grillon (2014) investigated the neural 

mechanisms of the maintenance of anxiety responses. They argued that the amygdala is 

only responsible for instantaneously eliciting a fear reaction, but not for maintaining a state 

of  anxiety.  Amygdala  responding  is  assumed  to  be  involved  in  the  initiation  of  a 

conditioned response shortly following the onset of the CS (Cheng et al., 2008). Rodent 

studies have identified the medial prefrontal cortex, studies with nonhuman primates the 

dorsal ACC to be crucial for maintaining defensive states in response to uncertain threats  

(Vytal et al. 2014). In humans, there is no direct equivalent for these regions, but dorsal  

parts of the PFC have been related to these functions: Robinson et al. (2012) reported that 

anxiety  significantly  increased  positive  dmPFC  –  amygdala  connectivity.  According  to 

Vythal  et  al.  (2014),  today`s evidence indicades that  the dmPFC – amygdala network 

might be involved in both the modulation and preservation of anxiety states. In their study, 

they  showed  that  anticipatory  anxiety  in  response  to  an  uncertain  threat  increases 

amygdala – dmPFC coupling,  indicating that  these regions work in concert  to support 

anxious responding or defensive readiness. Also, high trait-anxiety was associated with 

increased  amydala  –  dmPFC  coupling,  whereas  Kim  et  al.  (2011)  found  a  positive 

correlation  between  this  coupling  and  state  anxiety.  My results  can  of  course  not  be 

compared to the findings about amydala – dmPFC coupling directly.  First of all,  in the 

TCG, the dorsal prefrontal activation I found is situated much more lateral. Also, I cannot 

compare amygdala activation since it did not reach significance in my study, which I – at 

least partially, attribute to susceptibility artifacts during echo-planar imaging. Nevertheless, 
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there  are  some  interesting  similarities  which  should  be  considered  here:  First  if  all, 

according  to  a  model  of  the  functional  organization  of  the  lateral  PFC,  the  dlPFC is 

associated with  the manipulation of information, which requires a lot of working memory 

capacity (D´Esposito et al.,  1999). Evidence from lesion studies also indicates that the 

dlPFC activation is crucial for adjusting behavior appropriately in delayed response tasks 

(e.g.  D’Esposito  et  al.,  2000),  in which information has to  be kept  in working memory 

before an individual can make choices and decisions based on it. As mentioned above, 

trace conditioning and its extinction afford higher working memory contributions than delay 

conditioning to bridge the trace interval and hold information in short term memory. It is 

also conceivable that trace conditioning is not only associated with higher working memory 

contributions but also with more sustained anxiety than delay conditioning. At least for the 

duration of the trace interval, participants cannot know whether the CS will be followed by 

a US, especially after a change in contingencies at the beginning of extinction. In this 

case, the initiation of a conditioned response shortly following the onset of the CS is not 

sufficient.  The defensive state has to  be maintained at  least  during the trace interval. 

Accordingly, one can assume that during early extinction, the TCG is in a state closer to 

sustained  anxiety  elicited  by  uncertain  threat  than  the  DCG.  According  to  subjective 

ratings, extinction proceeded more slowly in the trace group compared to the delay group. 

The DCG no longer reported differences in arousal and fear ratings between CS+ and CS- 

after extinction. However, the CS+ was still rated more arousing and more frightening than 

the CS- in the TCG. A slower extinction process in the TCG can be seen as an indication 

for higher working memory contribution as well as a longer lasting threatening situation in  

the extinction of trace conditioning. Up to now, prefrontal contributions to extinction are not 

clear. It would be very interesting, also from a clinical point of view, to further elaborate 
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functions  and  contributions  of  the  different  parts  of  the  prefrontal  cortex  and  their 

connectivity.  For example Vytal and colleagues (2014) point out that the PFC-amygdala 

coupling during anticipatory anxiety being correlated to  trait  anxiety  might  constitute  a 

potential vulnerability marker for anxiety disorders. A problem in the treatment of anxiety 

disorders  is  that  the  responding behavior  of  patients  to  different  psychotherapeutic  of 

pharmacological interventions is highly variable and cannot be predicted very well. Shin, 

Davis,  VanElzakker,  Dahlgren  &  Dubois (2013)  reviewed  studies  using  neuroimaging 

measures to predict response to different types of anxiety disorders. Interestingly,  higher 

pre-treatment activity or gray  matter density in the mPFC predicted better response to 

behavioral or cognitive behavioral therapy in Obsessive Complusive Disorder (OCD) and 

PTSD as well as to venlafaxine medication in GAD. Also, lower amygdala activation before 

treatment is associated with better response to Cognitive Behavioral Therapy in PTSD and 

venlafaxine in GAD. In their  own study,  they found that  increased sustained metabolic 

activity in the dmPFC is a risk factor for PTSD (Shin et al., 2009). Evidence in this area is  

still  small,  however,  exact  knowledge about  the role of  different  parts of  the prefrontal 

cortex for the extinction of fear and anxiety promises to be of great help in improving the 

treatment of anxiety disorders.

7.3. Fear and anxiety in classical conditioning

7.3.1. Predictability and anxiety

There is a long history of studying the development and maintenance of anxiety 

disorders by means of the classical fear conditioning paradigm. The difference between 

fear  and  anxiety  has  been  modeled  by  predictable  versus  unpredictable  threat:  An 

individual confronted with predictable or cued threat experiences phasic and directed fear, 
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whereas an individual  confronted with  an  unpredictable  danger  such as  a  threatening 

environment or context experiences a more sustained state of apprehension and anxiety 

(Davis et al., 2010). Not being able to predict danger has been shown to lead to enhanced 

anxiety:  If  an  individual  does  not  learn  the  contingency  between  CS  and  US,  the 

environment becomes the best predictor of a danger, leading to higher contextual anxiety 

(Grillon, 2002a; Baas et al., 2008, Seligman & Blinik, 1977). In most anxiety disorders,  

both fear and anxiety are involved. The scope ranges from specific phobias, which are 

mainly  associated  with  phasic  fear,  to  GAD,  mainly  characterized  by  sustained  fear. 

Disorders such as PTSD and PD involve both fear and anxiety (for details see Grillon et  

al., 2008; Grillon et al., 2009). Studying sustained fear by means of contextual conditioning 

is important for understanding the mechanisms behind anxiety disorders characterized by 

diffuse states  of  anxiety  rather  than fear  (Andreatta  & Glotzbach-Schoon et  al.,  2015; 

Glotzbach  et  al.,  2013;  Grillon,  2002).  There  is  evidence  that  clinically  high-anxious 

individuals are overly sensitive to unpredictable threat: Grillon et al. (2009) for example 

showed that PTSD patients react with FPS to the same extend as healthy controls when 

confronted  with  predictable  threatening  cues,  but  with  raised  contextual  anxiety  in  an 

unpredictable  condition.  Similar  findings  about  panic-disorder  patients  have  also  been 

reported by Grillon and colleagues (Grillon et al., 2008). 

In sub-clinical studies, high trait-anxiety,  according to the State-Trait-Anxiety Model  the 

stable tendency  to interpret ambiguous situations as threatening and to react with state 

anxiety (Spielberger et al., 1970), has been identified as a risk factor for the development 

and  maintenance  of  anxiety  disorders.  For  example,  high-anxious  individuals  display 

deficient discriminative learning of fear and safety cues (Arnoudova et al.,  2013),  trait-

anxiety tends to be higher in unaware participants than aware participants (Baas et al., 
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2008;  Grillon,  2002a),  and individuals with  higher trait-anxiety  develop  higher levels  of 

contextual  anxiety  in  unpredictable  contexts  (Baas  2013).  To  investigate  context-

dependent cue conditioning under consideration of individual differences in awareness and 

trait-anxiety, I increased the complexity of the virtual environment used in the pilot study. 

Participants were exposed to differential cue conditioning in a fear and a safety context 

during  acquisition,  and  to  a  third  novel  context  during  extinction.  Although  unaware 

participants displayed deficits in cue conditioning on an explicit level (anxiety ratings) and 

only by trend also in startle responses, they did not react with enhanced contextual fear as  

one could expect  on the basis  of  existing evidence.  However,  an important  difference 

between my paradigm and for example the paradigm of Baas and colleagues (Baas et al., 

2008,  Baas  2013)  is  the  relative  salience  of  the  cues  compared  to  the  contexts. 

Additionally, Baas et al. used one cue instead of two as in a differential cue conditioning 

paradigm. One can assume that in my study, cue conditioning was learned preferentially to  

context conditioning, and contexts only modulated this memory in an inhibitory way. 

7.3.2. The role of the context in extinction

In  contrast  to  evidence  provided  by  Bass  et  al.  (2004,  2008)  for  cues  being 

generalized from the fear to the safety context even though participants were aware of the 

fact that cues in CXT- are not followed by shocks, I  did not find generalization of fear 

responses  to  cues  presented  in  the  safety  or  the  novel  context  during  acquisition  or 

extinction. Somehow surprisingly participants reacted with enhanced startle responses to 

the CS- in the safety context during acquisition. This contradicts the assumption that  a 

preferentially learned excitatory association with the cue causes the generalization of cued 

fear to the CXT- because it  is  stronger than the inhibitory association with  the safety-

context.  However,  these  findings  should  be  interpreted  with  care,  because  increased 
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startle  reactions  to  the  CS-  tended  to  invert  in  aware  participants  in  the  later  part  of 

acquisition and to disappear in unaware participants. 

During  extinction,  the  FPS  responses  to  the  CS+  in  the  fear  context  were  also  not 

generalized to the safety or even to the novel  context.  This was confirmed by anxiety 

ratings. In extinction research, there are different explanations for the problem that the 

associative strength between a CS and a US is rarely - if ever – extinguished completely 

(for  an  overview  see  Delamater  2012).  Rescorla  (2003)  for  example  described  the 

protection from extinction mechanism: A context acquires  inhibitory associative strength 

during extinction, because the absence of the US in presence of the CS elicits a prediction  

error  which  can  only  be  explained  by  the  new  contextual  information.  The  inhibitory 

associative strength then sums up with the excitatory associative strength of CS and US, 

lowering the expectation of the US. The association between context and US will finally 

lead to the retention of a residual excitatory CS-US association, which is referred to as 

„protection  from  extinction“.  The  fact  that  extinction  does  not  completely  erase  fear 

memory can be demonstrated by eliciting the renewal effect (Vervliet, Craske & Hermanns, 

2013). The already extinguished fear response recovers when an individual is exposed to 

the CS in a context that is different from the context of extinction. Besides the protection 

from extinction mechanism, other explanations for the renewal effect are discussed. The 

context in which acquisition takes place could for example gain own excitatory strength in  

addition to the CS, leading to a stronger conditioned response to the CS due to summation 

of associative strength of CS and context. Bouton (2004) explained the renewal effect on 

the basis of occasion setting. Assuming that higher order learning processes are involved 

in extinction, one stimulus can acquire both excitatory and inhibitory associations with the 

US (during acquisition and extinction, respectively), which then compete with each other. 
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In this case, the context sets the occasion, i.e. it determines which conditioned response is 

appropriate: while the acquisition context activates the excitatory association resulting in a 

fear response, the extinction context elicits the inhibitory association.

Although I did not investigate renewal, my results support the theory of occasion setting to 

some extend: I did not find isolated context conditioning, indicating that the contexts itself  

did not gain much associative strength. Additionally, cued fear was not generalized to the 

safety context. One explanation for this could be that association between the CS+ and 

the  US was  already ambiguous regarding  associative  strength  and the  safety context 

served as an occasion setter. However, it remains surprising that participants did not react 

with an enhanced fear response in the novel context, because without any clear contextual 

information,  the  excitatory  association  should  have  been  retrieved  preferentially. 

Unfortunately, small sample size and interindividual variance in startle responses in the 

study prevent further interpretations of the lack of generalization. This aspect should be 

given  more  attention  in  future  studies,  also  in  terms  of  renewal  and  the  possible 

mechanisms involved in extinction learning.

7.4. Trait-anxiety and fear conditioning

As mentioned before, I also analyzed the effect of individual differences in terms of 

trait-anxiety.  In  line  with  findings  reported  by Baas et  al.  (2008),  participants  who  did 

explicitly learn the CS-US contingency during acquisition scored higher on trait-anxiety 

than aware participants. However, trait-anxiety did not have an effect on differential cue 

conditioning. In fact, I did not find differences between high – and low-anxious participants.  

More importantly, it did have a clear effect on context conditioning. The high-anxious group 

reacted with increased anxiety in the fear context compared to the safety context, whereas 
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the low-anxious group did not display successful context conditioning at all. The fact that 

high-anxious individuals did not show deficient cue conditioning is somewhat surprising.  

According to rodent studies, high anxious rats have a poor ability to discriminate between 

cues but show high contextual  freezing  (see for example Duvarci, Bauer & Paré, 2009). 

Similar  results  have  been  shown  in  humans.  Arnoudova  et  al.  (2013)  also  reported 

deficient  discriminative  learning  of  fear  and  safety  cues  in high-anxious  individuals. 

According to Grillon (2002a), this lack of discrimination between cues leads to a higher 

level of unpredictability, since the CS- is not perceived as a safety-signal. Consequently,  

deficient cue conditioning leads to higher contextual anxiety. With these findings I cannot  

completely support this explanation. High-anxious individuals exhibited only mild deficits in 

discriminating fear and safety cues in the second part of acquisition.  Nevertheless, they 

reacted with higher contextual anxiety to the fear context. According to existing evidence 

one can assume that not fear learning per se is impaired, but that high-anxious individuals 

have  difficulties  to  inhibit  a  fear  reaction  to  a  presented  stimulus.  There  are  several  

possible explanations why high-anxious participants in my study did not displayed deficient 

discriminative learning. First of all, both groups did not differ strongly in trait-anxiety, since 

participants were split into the two groups by means of a median split. Possibly, a sample 

with higher trait-anxiety might have reacted differently. Also, evidence on the association 

between high trait-anxiety and deficient cue conditioning is not completely unambiguous. 

Lissek and colleagues (2005) reviewed studies on fear conditioning comparing anxiety 

patients and healthy controls. Results indicate both greater activation of fear in response 

to  threatening  cues  (CS+)  among  patients,  but  also  impaired  abilities  to  inhibit  a 

conditioned  response  to  safety  cues.  In  the  study  conducted  by  Baas  (2013),  the 

hypotheses  that  unaware  participants  would  score  high  on  trait  anxiety  could  not  be 
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confirmed.  Instead,  aware  subjects  displayed  higher  levels  of  attentional  control  as 

measured  with  the  Attentional  Control  Scale.  Baas  (2013)  assumed that  higher  order 

cognition was involved due to the complexity of the conditioning paradigm with a less than 

100% reinforcement schedule and many distractors.  Instead of  trait-anxiety,  attentional 

control might also have played a crucial role in the complex setting. 

Nevertheless, my  findings confirm existing evidence that high trait-anxiety is associated 

with increased contextual anxiety. In a virtual reality study investigating the influence of 

trait-anxiety  on  contextual  fear,  Glotzbach-Schoon  et  al.  (2013)  also  reported  faster 

contextual conditioning in high-anxious compared to low-anxious participants. Indovina et 

al.  (2011)  conducted  an  imaging  study  using  fMRI  to  investigate  neuronal  processes 

underlying both acquisition and extinction of conditioned fear in high-anxious individuals 

compared  to  low-anxious  participants.  They  found  two  main  differences  between 

neurocognitive  functions  in  the  two  groups.  Firstly,  high-anxious  participants  showed 

enhanced amygdala responsivity to fear cues. Secondly, they found  variability in ventral 

prefrontal cortex (vPFC) mechanisms to downregulate cued and contextual fear: Results 

revealed  increased  vPFC activation  in  response  to  both  fear  cues  and  unpredictable 

contexts in individuals with low trait-anxiety, which was associated with a downregulation 

of fear or sustained anxiety, respectively. Interestingly, this activation was found before the 

US  was  no  longer  presented,  which  might  be  a  protective  mechanism  against  the 

development  of  anxiety  disorders.  However,  high-anxious  individuals  showed  reduced 

vPFC activation  compared  to  low-anxious  participants,  indicating  a  higher  risk  for  the 

development and maintenance of pathological fear. 
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7.5. Virtual Reality in human fear conditioning

Taken together, recent evidence mainly indicates that high-anxious individuals both 

react with enhanced acquisition of fear in the presence of a fear signal and with deficient 

downregulation of fear in the presence of a safety signal, or, according to Indovina and 

colleagues (2011), to both safety and fear signals. Due to the devastating effects fear and 

anxiety  can  have  when  they become  and  remain  maladaptive,  it  is  crucial  to  further 

understand individual risk factors for and also mechanisms to go against anxiety disorders. 

Virtual reality extends the possibilities we have to investigate these processes in humans. 

Individual risk factors can only partially be studied in the animal model, thus we need to 

find ways to transfer fear conditioning paradigms to human research in an ecologically 

valid  way.  By moving participants into  a virtual  environment  we can simulate  different 

contexts, which can easily be controlled and manipulated. The situation becomes more 

real and probably also more aversive, leading to fear conditioning closer to threatening 

situations in real life. An astounding example for the immersion virtual reality can induce 

are  the  studies  by Hoffman and  colleagues  (Hoffman,  Patterson  &  Carrougher,  2000; 

Hoffman, Doctor, Patterson & Carrougher, 2000a), who used virtual reality as a distractor 

to  reduce  pain  experienced  during  wound  care  and  physical  therapy of  patients  with 

severe burns. They found that VR functioned as a strong nonpharmacologic pain reduction 

technique. Besides being a useful tool to study fear conditioning in complex environments 

(e.g. Baas 2013; Glotzbach-Schoon et al., 2013; Mühlberger et al. 2013), VR has proven 

to  be  very  effective  in  exposure  therapy.  Mühlberger  and  colleagues  (Mühlberger, 

Wiedemann & Pauli, 2003; Mühlberger et al., 2006) for example demonstrated that a one-

session VR treatment effectively reduced fear of flying, and that this effect was still present 

one year  after  treatment.  In  a  more  recent  study,  Shiban,  Pauli  &  Mühlberger (2013) 
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showed that exposure therapy in virtual reality successfully reduced fear of real spiders in  

spider phobics. Additionally, exposing spider phobics to virtual spiders in multiple virtual  

contexts reduced the likelihood of renewal. After reviewing thirty-eight studies using virtual 

reality,  Diemer,  Mühlberger,  Pauli  &  Zwanzger (2014)  concluded  that  VR  exposure  is 

capable of eliciting psychophysiological fear reactions in patients and healthy individuals,  

which  is  essential  for  successful exposure  treatment.  Hence,  VR  exposure  treatment 

seems to be an up-and-coming addition to cognitive behavioral therapy. 

7.6. Conclusions

Conclusively,  the  virtual  reality  paradigm has proven to  be  a  promising  tool  for 

creating a more complex environment which is closer to a real life situation. For advancing 

our understanding of the development, maintenance and treatment of pathological anxiety,  

we  need to  include contextual  information  into  studies  since threatening  stimuli  never 

occur in isolation in real life situations. For this purpose, virtual reality is well suited. 

With these studies I added further evidence to a dual process model of fear conditioning, 

indicating that two independent learning processes exist: one propositional in nature and 

leading to conscious awareness, the second, lower level process non-propositional and 

activating the CR via a direct mechanism. A complex conditioning paradigm containing 

many distractors can be used to passively manipulate the development of contingency 

awareness. Not all participants gained explicit knowledge about the CS-US associations, 

but they still  developed an implicit  conditioned response reflected by a FPS reaction. I  

found successful differential cue conditioning modulated by contextual information when 

participants were confronted with cues in a threatening and a safe environment. Increased 

fear reactions to the threatening stimulus were only present in the fear, not in the safety 
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context,  indication  that discriminative  learning  took  place  regarding  both  cues  and 

contexts. Trait-anxiety proved to be a vulnerability factor for contextual conditioning: High-

anxious individuals reacted with enhanced anxiety to the fear context, which was not the 

case for participants with low trait-anxiety. Generalization of contextual anxiety to a novel  

and therefore unpredictable context was only found on trend level, whereas cued fear was 

not generalized at all to the novel context. Especially gaining a deeper understanding of 

the role of the context in extinction of conditioned fear is essential for further research.  

Additionally,  the  mechanisms  making  trait-anxiety  a  vulnerability  factor  are  not  fully 

understood  up  to  now:  Safety  learning  is  assumed  to  be  impaired  in  high-anxious 

individuals,  leading to  higher  sustained and contextual  anxiety.  My results  in  fact  add 

evidence to enhanced contextual anxiety in high-anxious participants, however I could not 

confirm impaired discriminative learning between fear and safety cues. 

I  also  examined  neuronal  structured  involved  in  extinction  of  delay  and  trace  fear 

conditioning.  Contingency  awareness  has  been  found  to  be  a  prerequisite  for  trace 

conditioning, because higher working memory contributions are necessary to bridge the 

temporal gap between CS and US. My results confirm that the two times of learning differ 

significantly:  Besides  common  activation  in  neuronal  structures  which  have  frequently 

been  shown to  be  involved  in  extinction  of  fear  memory such  as  the  insula  and  the 

striatum, both groups differed primarily in prefrontal activation. The vmPFC was activated 

in the DCG, whereas the TCG showed activation of the dlPFC during extinction. These 

results point to different extinction processes in the two types of conditioning, presumably 

in  form  of  increased  involvement  of  working  memory  processes  in  trace  conditioning 

compared to delay conditioning. 
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9. Annex

A First Study

(1) Information for participants

(2) Written informed consent

(3) Demographic data and exclusion criteria

(4) Written instructions

(5) Determination of pain threshold

(6) List of subjective ratings

(7) Example of trial order and pseudo-randomization of stimuli

B Second Study

For “Determination of pain threshold” and “Written instructions” please see first 

study

(1) Preliminary interview (by phone)

(2) Information for participants

(3) Written informed consent

(4) Demographic data and exclusion criteria

(5) List of subjective ratings

     C Third Study

For “Written informed consent”, “Determination of pain threshold” and 

“Demographic data and exclusion criteria” please see first study

(1) Information for participants

(2) Written instructions

(3) List of subjective ratings
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Annex

A (1)

Lehrstuhl für Psychologie I, Marcusstr. 9-11, 97070 Würzburg 

Probandeninformation zur Studie

Teilprojekt B1 „Strukturelle/funktionelle Korrelate von kontextueller Furchtkonditionierung 
beim Menschen“ 
im Rahmen des SFB Transregio 58 Furcht, Angst, Angsterkrankungen

Sehr geehrte Versuchsteilnehmerin, sehr geehrter Versuchsteilnehmer,

Sie haben Gelegenheit, an einer von der Deutschen Forschungsgemeinschaft geförderten Studie 
teilzunehmen,  mit  der  wir  untersuchen  wollen,  unter  welchen  Bedingungen  bestimmte 
Gegenstände oder Umwelten unangenehme Gefühle (z. B. Angst) auslösen. Sie werden aus der 
Teilnahme keinen unmittelbaren Nutzen für sich ziehen können. Wir hoffen jedoch, durch unsere 
Arbeit  mehr  darüber  zu erfahren,  wie  Angststörungen entstehen und welche Bedingungen sie 
aufrecht erhalten, um so langfristig die Behandlung zu verbessern.

Vor der Untersuchung werden Sie einige Fragebögen ausfüllen, in denen wichtige Daten bezüglich 
Ihrer Person festgehalten werden. Dann wird der Versuchsleiter zur Messung Ihrer Herzrate, Ihrer 
Schweißdrüsenaktivität und Ihrer Muskelspannung mehrere Messelektroden in Ihrem Gesicht und 
auf  Ihrer  Brust  anbringen.  Dazu  wird  Ihre  Haut  mit  Alkohol  gereinigt,  um  den  elektrischen 
Widerstand zwischen Haut und Messelektrode so gering wie möglich zu halten. Aufgrund dieser 
Hautreinigung  kann  es  zu  Hautrötungen  oder  leichten  Hautirritationen  kommen,  die  aber 
normalerweise innerhalb kurzer Zeit abklingen.

Im ersten Teil der Untersuchung werden wir Ihnen eine Virtuelle Welt, d. h. von einem Computer 
erzeugte  Räume,  zeigen.  Sie  sollen  diese  Räume  und  die  darin  enthaltenen  Gegenstände 
aufmerksam betrachten.  In seltenen Fällen kann die Virtuelle Realität  Übelkeit  oder Schwindel 
auslösen, ähnlich wie eine Karussellfahrt. Falls dies passiert, so teilen Sie uns das bitte sofort mit.

Manchmal werden Sie elektrische Reize am Unterarm verspüren. Diese elektrischen Reize sind 
etwas schmerzhaft, aber sehr kurz und nicht gefährlich. Die Stärke der elektrischen Reize wird 
individuell ermittelt und vor Versuchsbeginn festgelegt.

Im zweiten Teil der Untersuchung bekommen Sie die virtuelle Welt ohne Einschränkung nochmals 
präsentiert, wobei wir Ihre körperlichen Reaktionen in diesen Räumen aufzeichnen werden.
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Während  dieser  Untersuchungen  werden  Sie  manchmal  über  Kopfhörer  ein  kurzes,  lautes 
Geräusch hören. Dieses Geräusch kann etwas unangenehm für Sie sein, es ist aber unschädlich. 
Bitte lassen Sie sich dadurch nicht stören. 

Damit  Sie  sich  den  Untersuchungsablauf  und  die  darin  vorkommenden  Virtuellen  Welten, 
elektrischen Reize und Geräusche besser  vorstellen können,  werden wir  Ihnen zu Beginn der 
Untersuchung jeweils Beispiele dafür präsentieren. 

Alle  Daten  dienen  ausschließlich  Forschungszwecken,  werden  vertraulich  behandelt  und  ohne 
Namensgebung unter einer Codenummer abgespeichert. Die Daten werden für unbestimmte Zeit 
gespeichert.  Der  Codierungsschlüssel  wird ein Jahr  nach Abschluss  der  Studie  vernichtet.  Bis 
dahin können Sie, auch noch nach der Untersuchung, die Löschung ihrer Daten verlangen.

Die Teilnahme an der Untersuchung ist völlig freiwillig. Sie können jederzeit - ohne Angabe 
von Gründen - die Teilnahme abbrechen. Dadurch entstehen Ihnen keinerlei  persönliche 
Nachteile. 

Falls Sie noch weitere Frage haben, stellen Sie diese bitte jetzt. 
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A (2)

Lehrstuhl für Psychologie I, Marcusstr. 9-11, 97070 Würzburg 

Einverständniserklärung  zur  Datenerhebung  im 
Rahmen der Studie

Teilprojekt B1 „Strukturelle/funktionelle Korrelate von kontextueller Furchtkonditionierung 
beim Menschen“ 
im Rahmen des SFB Transregio 58 Furcht, Angst, Angsterkrankungen

Durch meine Unterschrift bestätige ich:
Ich  nehme freiwillig  an  der  Untersuchung  „Strukturelle/funktionelle  Korrelate  von  kontextueller 
Furchtkonditionierung  beim  Menschen“  teil  und  bin  damit  einverstanden,  dass  die  erhobenen 
Daten  in  anonymisierter  Form  wissenschaftlich  ausgewertet  werden.  Ich  bin  auch  damit 
einverstanden,  dass die Ergebnisse der  Studie in  Gruppen zusammengefasst  wissenschaftlich 
veröffentlicht werden.

Über  mögliche  Risiken  wurde  ich  aufgeklärt.  Ich  weiß  auch,  dass  es  nicht  möglich  ist, 
Informationen über individuelle Untersuchungsergebnisse zu erhalten. 

Ich hatte ausreichend Zeit, mir zu überlegen, ob ich an der Datenerhebung teilnehmen will, sowie 
die  Gelegenheit,  Fragen zu stellen.  Mit  den erhaltenen Antworten bin  ich  zufrieden.  Ich  habe 
darüber hinaus eine Probandeninformation und eine Kopie dieser Einverständniserklärung (datiert 
und  unterschrieben)  erhalten.  Ich  wurde  darauf  hingewiesen,  dass  ich  jederzeit  von  dieser 
Untersuchung zurücktreten kann, ohne dass mir dadurch ein Nachteil entsteht. Die Daten werden 
in diesem Falle vernichtet.

Name des Teilnehmers: ............................................................... (bitte Blockbuchstaben) 

............................................................           ...................................................................... 
Ort, Datum Unterschrift des Teilnehmers 

      …...................................................................
      Unterschrift des aufklärenden Mitarbeiters
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A (3)

Untersuchung:

Datum: VP-Code:

Angaben zur Person: 

Bitte kreuzen Sie die für Sie zutreffenden Antworten an! 

Alter              ________ Jahre

Geschlecht 

weiblich

männlich                                          

Höchster Schulabschluss

Volks-,Hauptschulabschluss

mittlere Reife                                

Fachhochschulreife

Hochschulreife                           

(Fach-)Hochschulabschluss

Derzeitige Tätigkeit

Student/in 

Wenn ja: Studienfach ……………………………………………………………

in Ausbildung

teilzeitbeschäftigt

voll berufstätig

Hausfrau, - mann

Rentner/in

arbeitslos

Händigkeit 

rechts 

links
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Untersuchung:

Datum: VP-Code:

Ein-/Ausschlusskriterien

Bitte kreuzen Sie an:

1. Sind Sie zurzeit in psychotherapeutischer/nervenärztlicher 
Behandlung?

 Ja Nein

2. Hatten Sie in der Vergangenheit eine 
behandlungsbedürftige psychische oder  neurologische 
Erkrankung?
Wenn ja: 
Was? 

Wann?

 Ja Nein

3. Nehmen Sie gegenwärtig Psychopharmaka ein?
Wenn ja: 
Was? 

Dosierung?

 Ja Nein

4. Wird Ihnen während Karussell-, Schiffs- oder 
Flugzeugfahrten schnell schwindlig oder übel?

Ja Nein

5. Konsumieren Sie regelmäßig Alkohol?
Wenn ja: 
Durchschnittliche Menge pro Tag:

Ja Nein

6. Konsumieren Sie Drogen? 
Wenn ja: 
Was? 

Wie häufig (Menge pro Tag):

 Ja Nein

7. Tragen Sie im Moment Kontaktlinsen?  Ja Nein

8. Sind Sie farbenblind? 
Wenn ja: 
Für welche Farben?

 Ja Nein

9. Leiden Sie unter Hörproblemen? Ja Nein
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A (4)

Instruktion zur Studie

Sehr geehrte Versuchsteilnehmerin, sehr geehrter Versuchsteilnehmer,

Vielen Dank, dass Sie sich bereit erklärt haben, an unserem Experiment teilzunehmen.

Im Laufe des Experiments werden wir Sie über ein Head Mounted Display in einen virtuellen Flur 
versetzen,  von dem eine Tür abgeht.  Hinter  dieser  Tür  befindet  sich  ein Büro,  durch das Sie 
mehrmals geführt werden.
Die Führungen durch das Büro werden passiv erfolgen, d.h. Sie können nicht aktiv in den Verlauf 
eingreifen,  aber  durch Kopfbewegungen Ihr  Blickfeld  verändern.  Auf  diese Weise ist  es Ihnen 
eingeschränkt möglich, den Raum frei zu erkunden. Sie können dies im Vorfeld ausprobieren.

Der eigentliche Versuch besteht aus mehren Phasen. In jeder Phase werden Sie mehrmals durch 
den virtuellen Büroraum geführt.

Nach jeder Phase werden Ihnen verschiedene Fragen gestellt, z.B.:

Wie groß war Ihre Angst in einer bestimmten Situation?
Nennen Sie  bitte  eine Zahl  von  0 (keine Angst) bis  100 (sehr starke Angst) auf  der  unten 
angegebenen Skala.

............................................................................................................................................................
0            50               100

Wie wahrscheinlich war es, einen elektrischen Reiz in dieser Situation zu erhalten? 
Nennen Sie bitte eine Zahl von 0 (unmöglich) bis 100 (sicher) auf der unten angegebenen Skala.

............................................................................................................................................................
0            50               100

Wie positiv oder negativ empfanden Sie diese Situation? 
Nennen  Sie  bitte  eine  Zahl  von  0  (sehr  negativ) bis  100  (sehr  positiv) auf  der  unten 
angegebenen Skala.

............................................................................................................................................................
0            50               100
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Wie aufgeregt waren Sie in dieser Situation? 
Nennen  Sie  bitte  eine  Zahl  von  0  (sehr  ruhig) bis  100  (sehr  aufgeregt) auf  der  unten 
angegebenen Skala.

............................................................................................................................................................
0            50               100

Bitte prägen Sie sich diese Skalen gut ein. Wenn Sie später danach gefragt werden, antworten Sie 
bitte mündlich und möglichst spontan und zügig.

Bevor  das  Experiment  startet,  möchten  wir  zunächst  Ihre  persönliche  Schmerzschwelle 
bestimmen.  Zum  einen  können  wir  so  die  auf  Sie  passende  Reizintensität  auswählen,  zum 
anderen können Sie die Reize, die Sie im Experiment erhalten werden, kennenlernen. Sie werden 
gleich das Head Mounted Display aufsetzen und in den virtuellen Flur versetzt werden. Über die 
Elektrode an Ihrem Unterarm werden Sie dann verschieden starke Reize erhalten. Manche Reize 
sind eventuell  so schwach, dass Sie diese gar nicht spüren können. Ihre Aufgabe ist  es, dem 
Versuchsleiter nach jedem Reiz mitzuteilen, wie stark dieser war. 
Dazu wird Ihnen folgende Frage gestellt:
 
Wie hoch war dieser elektrische Reiz auf der Skala von 0 bis 10?

………………………………………………………………………………………………...…...................
0    1        2           3              4          5            6      7         8           9           10   
↑                           ↑ ↑      
nichts                      eben                                           sehr
gespürt                      wahrnehmbarer                 starker

Schmerz    Schmerz
   

Bitte prägen Sie sich diese Skala gut ein. Wenn Sie das Head Mounted Display und die Kopfhörer 
aufgesetzt  haben,  werden  Sie  nach  jedem  Reiz  mündlich  dazu  aufgefordert,  den  Reiz  zu 
beurteilen. Sie werden die Skala nicht mehr sehen. Nennen Sie dann bitte die entsprechende Zahl.

Falls Sie noch weitere Fragen haben, stellen Sie diese bitte jetzt. 

174



Annex

A (5)

Untersuchung:

Datum: VP-Code:

Schmerzschwellenbestimmung – Intensität 

Serie1- 

Ansteigen

Serie1- 

Absteigen

Serie2- 

Ansteigen

Serie2 

-Absteigen

8 mA

7,5 mA

7 mA

6,5 mA

6 mA

5,5 mA

5 mA

4,5 mA

4,0 mA

3,5 mA

3 mA

2,5 mA

2 mA

1,5 mA

1 mA

0,5 mA

0 mA

Mittelwert der Intensität (gerundet):         ____________________

                                 + 30% (x 1.3):         ____________________

               Rating Schmerzschwelle:         ____________________
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A (6)

Untersuchung:

Datum: VP-Code:

Ratings 

Nach Habituation

Valenz Licht gelb _______________

Valenz Licht blau _______________

Arousal Licht gelb _______________

Arousal Licht blau _______________

Nach Akquisition 1

Waren die elektrischen Reize vorhersagbar? _______________

Wann kam der elektrische Reiz? ___________________________

Valenz Licht gelb _______________

Valenz Licht blau _______________

Arousal Licht gelb _______________

Arousal Licht blau _______________

Nach Akquisition 2

Angst Licht gelb _______________

Angst Licht blau _______________

Waren die elektrischen Reize vorhersagbar? _______________

Wann kam der elektrische Reiz? ___________________________

Kontingenz Licht gelb _______________

Kontingenz Licht blau _______________

Valenz Licht gelb _______________

Valenz Licht blau _______________

Arousal Licht gelb _______________

Arousal Licht blau _______________

Nach Extinktion

Angst Licht gelb _______________

Angst Licht blau _______________
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Kontingenz Licht gelb _______________

Kontingenz Licht blau _______________

Valenz Licht gelb _______________

Valenz Licht blau _______________

Arousal Licht gelb _______________

Arousal Licht blau _______________

Rating elektrischer Reiz _______________

Rating Startle Ton _______________
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A (7)

Acquisition 1 (Trials 1 - 3)

Acquisition 2 (Trials 4 – 6)
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Extinction (Trials 7 - 9)
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B (1)

SFB Transregio 58 / TP B1 – Studie CCC1, Diss. H.Ewald „Furcht, Angst und 
Angsterkrankungen“

Teilnehmer-Code:________________                                       Datum:_______________

Telefonische Vorbefragung(Ein- Ausschlusskriterien)

1. Wie viele Gläser Alkohol trinken Sie pro Woche? Menge:_______________

Weniger als 15 Gläser Alkohol pro Woche: □ ja   □ nein

2. Wie viele Zigaretten rauchen Sie täglich? Menge:______________________

Nicht mehr als 20 Zigaretten pro Tag: □ ja   □ nein

3. Konsumieren Sie illegale Drogen: □ ja   □ nein

4. Nehmen Sie regelmäßig verschreibungspflichtige Medikamente ein?: □ ja   □ nein

Falls ja: Welche?____________________________________________________

Kontraindikation: Zentral wirksame Medikamente, z.B. Neuroleptika, Antidepressiva, 

Antiepileptika, Opiate, Benzodiazepine

5. Leiden Sie an einer psychischen Erkrankung (Angststörungen, Depression, Schizophrenie, 

Alkohol-, Drogen-, Medikamentenabhängigkeit? □ ja   □ nein

Falls ja: Welche?____________________________________________________

isolierte Phobien (z.B. Spinnen, Spritzen) auch ausschließen!

6. Leiden Sie an einer neurologischen Erkrankung? □ ja   □ nein

Falls ja: Welche?____________________________________________________

Kontraindikation: Erkrankungen mit Beteiligung des ZNS, z.B. Schlaganfall, 

Gehirnblutungen, Epilepsie, Parkinson, MS

7. Leiden Sie an einer sonstigen Erkrankung (Herz-Kreislauf, Blut, Lunge, Leber, Nieren, 

Schilddrüse, Augen, Haut, Magen-Darmtrakt, Stoffwechsel): □ ja   □ nein

Falls ja: Welche?____________________________________________________

Kontraindikation: schwere Erkrankungen
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8. Bei Frauen: Sind Sie schwanger? □ ja   □ nein

9. Wird Ihnen während Karussell-, Schiffs- oder Flugzeugfahrten schnell schwindelig oder 

übel? □ ja   □ nein

10. Sind Sie farbenblind? □ ja   □ nein

11. Leiden Sie unter Hörproblemen? □ ja   □ nein

Termin VR-Experiment: _____________________________

181



Annex

B (2)

Lehrstuhl für Psychologie I, Marcusstr. 9-11, 97070 Würzburg   

Probandeninformation zur Studie

Teilprojekt B1 „Strukturelle/funktionelle Korrelate von kontextueller Furchtkonditionierung 
beim Menschen“ 
im Rahmen des SFB Transregio 58 Furcht, Angst, Angsterkrankungen

Sehr geehrte Versuchsteilnehmerin, sehr geehrter Versuchsteilnehmer,

Sie haben Gelegenheit, an einer von der Deutschen Forschungsgemeinschaft geförderten Studie 
teilzunehmen,  mit  der  wir  untersuchen  wollen,  unter  welchen  Bedingungen  bestimmte 
Gegenstände oder Umwelten unangenehme Gefühle (z. B. Angst) auslösen. Sie werden aus der 
Teilnahme keinen unmittelbaren Nutzen für sich ziehen können. Wir hoffen jedoch, durch unsere 
Arbeit  mehr  darüber  zu erfahren,  wie  Angststörungen entstehen und welche Bedingungen sie 
aufrecht erhalten, um so langfristig die Behandlung zu verbessern.

Vor der Untersuchung werden Sie einige Fragebögen ausfüllen, in denen wichtige Daten bezüglich 
Ihrer Person festgehalten werden. Dann wird der Versuchsleiter zur Messung Ihrer Herzrate, Ihrer 
Schweißdrüsenaktivität und Ihrer Muskelspannung mehrere Messelektroden in Ihrem Gesicht und 
auf  Ihrer  Brust  anbringen.  Dazu  wird  Ihre  Haut  mit  Alkohol  gereinigt,  um  den  elektrischen 
Widerstand zwischen Haut und Messelektrode so gering wie möglich zu halten. Aufgrund dieser 
Hautreinigung  kann  es  zu  Hautrötungen  oder  leichten  Hautirritationen  kommen,  die  aber 
normalerweise innerhalb kurzer Zeit abklingen.

In der Untersuchung werden wir Ihnen eine Virtuelle Welt, d. h. von einem Computer erzeugte 
Räume,  zeigen.  Sie sollen diese Räume und die darin enthaltenen Gegenstände aufmerksam 
betrachten. In seltenen Fällen kann die Virtuelle Realität Übelkeit oder Schwindel auslösen, ähnlich 
wie eine Karussellfahrt. Falls dies passiert, so teilen Sie uns das bitte sofort mit.

Manchmal werden Sie elektrische Reize am Unterarm verspüren. Diese elektrischen Reize sind 
etwas schmerzhaft, aber sehr kurz und nicht gefährlich. Die Stärke der elektrischen Reize wird 
individuell ermittelt und vor Versuchsbeginn festgelegt.

Während  dieser  Untersuchungen  werden  Sie  manchmal  über  Kopfhörer  ein  kurzes,  lautes 
Geräusch hören. Dieses Geräusch kann etwas unangenehm für Sie sein, es ist aber unschädlich. 
Bitte lassen Sie sich dadurch nicht stören. 
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Damit  Sie  sich  den  Untersuchungsablauf  und  die  darin  vorkommenden  Virtuellen  Welten, 
elektrischen Reize und Geräusche besser  vorstellen können,  werden wir  Ihnen zu Beginn der 
Untersuchung jeweils Beispiele dafür präsentieren. 

Angststörungen nehmen bisweilen einen sehr unterschiedlichen Verlauf und treten gelegentlich 
auch  familiär  gehäuft  auf.  Vermutlich  gibt  es  genetische  Faktoren,  die  einen  Einfluss  auf  die 
Entstehung oder Aufrechterhaltung von Angsterkrankungen haben. Diese Untersuchung dient auch 
der Suche nach genetischen Einflussfaktoren, die sich auf Lernmechanismen im Zusammenhang 
mit der Entstehung von Angststörungen auswirken können. Im Rahmen der Studie „Furcht, Angst 
und  Angsterkrankungen:  funktionelle  Genomik  und  Gen-Umwelt-Interaktionen in  dimensionalen 
Endophänotypen für Furcht und Angst“ (MEGA-Studie) wurde Ihnen eine Blutprobe entnommen, 
aus der Informationen über die Ausprägung bestimmter Gene gewonnen wurden.

Für die aktuelle Studie wurden Probanden unterschiedlicher Genausprägungen ausgewählt. Die 
Auswahl erfolgte durch eine unabhängige Schlüsselperson, die für de Dauer der Untersuchung 
Zugang  zu  Ihren  Daten  aus  der  MEGA-Studie  hat.  Ihre  Daten  wurden  von  dieser  Person 
pseudonymisiert,  d.h.  Sie  wurden  durch  einen  Code  verschlüsselt.  Der  „Schlüssel“,  der  die 
Zuordnung dieses Codes zu Ihrer Genausprägung erlaubt, wird getrennt von Ihren hier erhobenen 
Daten  von  der  unabhängigen  Schlüsselperson  aufbewahrt.  Der  Untersucher  hat  dazu  keinen 
Zugang und somit keine Kenntnis über Ihre Genausprägung. Er erhält lediglich den Code zu Ihrem 
Namen,  der  aber  ohne  den  Schlüssel  keine  Zuordnung  Ihrer  hier  erhobenen  Daten  zu  Ihrer 
Genausprägung möglich  macht.  Alle  hier  erhobenen Daten werden  nicht  unter  Ihrem Namen, 
sondern unter dem Code abgespeichert.
Nach Abschluss der Studie wird Ihre Genausprägung von der unabhängigen Schlüsselperson den 
hier erhobenen Daten zugeordnet. Danach wird der Schlüssel zusammen mit dem Code gelöscht. 
Ab diesem Zeitpunkt sind die Daten vollständig anonymisiert, d.h. Eine zuordnung der Daten zu 
Ihrem Namen ist nicht mehr möglich. Sie können deshalb nur bis zum Abschluss der Studie und 
somit  bis  zur  Vernichtung von Schlüssel  und Code die  Löschung Ihrer  hier  erhobenen Daten 
verlangen. Die anonymisierten Daten werden auf unbestimmte Zeit gespeichert. 

Die  erhobenen  Daten  dienen  rein  wissenschaftlichen  Zwecken  und  werden  ohne  Bezug  auf 
konkrete Personen ausgewertet und in wissenschaftlichen Fachzeitschriften veröffentlicht.

Die Teilnahme an der Untersuchung ist völlig freiwillig. Sie können jederzeit - ohne Angabe 
von Gründen - die Teilnahme abbrechen. Dadurch entstehen Ihnen keinerlei  persönliche 
Nachteile. 

Falls Sie noch weitere Frage haben, stellen Sie diese bitte jetzt. 
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B (3)

Lehrstuhl für Psychologie I, Marcusstr. 9-11, 97070 Würzburg 

Einverständniserklärung zur Datenerhebung im Rahmen der Studie

Teilprojekt B1 „Strukturelle/funktionelle Korrelate von kontextueller Furchtkonditionierung 
beim Menschen“ 
im Rahmen des SFB Transregio 58 Furcht, Angst, Angsterkrankungen

Durch meine Unterschrift bestätige ich:
Ich  nehme freiwillig  an  der  Untersuchung  „Strukturelle/funktionelle  Korrelate  von  kontextueller 
Furchtkonditionierung  beim  Menschen“  teil  und  bin  damit  einverstanden,  dass  die  erhobenen 
Daten  wissenschaftlich  ausgewertet  werden.  Ich  bin  auch  damit  einverstanden,  dass  die 
Ergebnisse der Studie in Gruppen zusammengefasst wissenschaftlich veröffentlicht werden.

Über mögliche Risiken wurde ich aufgeklärt. Ich weiß auch, dass es nicht möglich ist, nformationen 
über individuelle Untersuchungsergebnisse (z. B. persönliche Risikokonstellationen) zu erhalten.

Ich hatte ausreichend Zeit, mir zu überlegen, ob ich an der Datenerhebung teilnehmen will, sowie 
Gelegenheit, Fragen zu stellen. Mit den erhaltenen Antworten bin ich zufrieden. Ich habe darüber 
hinaus eine Probandeninformation und eine Kopie dieser Einverständniserklärung (datiert und 
unterschrieben) erhalten. Ich wurde darauf hingewiesen, dass ich die Untersuchung jederzeit 
abbrechen kann, ohne dass mir dadurch ein Nachteil entsteht. Die im Rahmen dieser Studie 
erhobenen Daten werden in diesem Falle vernichtet.

Ich kann auch nach der Teilnahme noch bis zum Abschluss der Studie die Löschung der hier 
erhobenen Daten verlangen. Nach Abschluss der Studie wird der Codierungsschlüssel gelöscht 
und damit ist die Zuordnung meines Namens zu meinen hier erhobenen Daten (und damit auch die 
Löschung der Daten) nicht mehr möglich.

Name des Teilnehmers: ............................................................... (bitte Blockbuchstaben) 

............................................................                     ................................................................... 
Ort, Datum                  Unterschrift des Teilnehmers 

             ...................................................................
             Unterschrift des aufklärenden Mitarbeiters
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B (4)

Untersuchung:

Datum: VP-Code:

Angaben zur Person: 

Bitte kreuzen Sie die für Sie zutreffenden Antworten an! 

Alter              ________ Jahre

Geschlecht 

weiblich

männlich                                          

Höchster Schulabschluss

Volks-,Hauptschulabschluss

mittlere Reife                                

Fachhochschulreife

Hochschulreife                           

(Fach-)Hochschulabschluss

Derzeitige Tätigkeit

Student/in 

Wenn ja: Studienfach: _________________________________________

in Ausbildung

teilzeitbeschäftigt

voll berufstätig

Hausfrau, - mann

Rentner/in

arbeitslos

Händigkeit 

rechts 

links
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Untersuchung:

Datum: VP-Code:

Ein-/Ausschlusskriterien

Bitte kreuzen Sie an:

1. Sind Sie zurzeit in psychotherapeutischer/nervenärztlicher 
Behandlung?

Ja Nein

2. Hatten Sie in der Vergangenheit eine behandlungsbedürftige 
psychische oder  neurologische Erkrankung?
Wenn ja: 
Was? 
Wann?

Ja Nein

3. Nehmen Sie gegenwärtig Psychopharmaka ein?
Wenn ja: 
Was? 
Dosierung?

Ja Nein

4. Wird Ihnen während Karussell-, Schiffs- oder Flugzeugfahrten 
schnell schwindlig oder übel?

Ja Nein

5. Konsumieren Sie regelmäßig Alkohol?
Wenn ja: 
Durchschnittliche Menge pro Tag:

Ja Nein

6. Konsumieren Sie Drogen? 
Wenn ja: 
Was? 
Wie häufig (Menge pro Tag):

Ja Nein

7. Tragen Sie im Moment Kontaktlinsen? Ja Nein
8. Sind Sie farbenblind? 

Wenn ja: 
Für welche Farben?

Ja Nein

9. Leiden Sie unter Hörproblemen? Ja Nein
10. Nur weibliche Versuchsteilnehmer:

Verwenden Sie hormonelle Verhütungsmittel?
Wenn ja: Was? (Art und Name/Marke):

                Sind Sie gerade in der 7-Tage Pause?

Wenn nein:
Der wievielte Tag seit dem 1. Tag Ihrer letzten Periode ist heute?

Wie viele Tage umfasst normalerweise ein Zyklus bei Ihnen?

Ja

Ja

Nein

Nein
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B (5)

Untersuchung: VP-Code:

Datum: Ablauf:

Rating Startle-Ton (Valenz) ______________

Prä-Akquisition Raumauswahl 1. Raum ______________

2. Raum ______________

3. Raum ______________

Nach Habituation/ Prä-Akquisition

Valenz Fear Room _______________

Valenz Fear: CS+ _______________

Valenz Fear: CS- _______________

Valenz Safety Room _______________

Valenz Safety: CS+ _______________

Valenz Safety: CS- _______________

Valenz Neutral Room _______________

Valenz Neutral: CS+ _______________

Valenz Neutral: CS- _______________

Arousal Fear Room _______________

Arousal Fear: CS+ _______________

Arousal Fear: CS- _______________

Arousal Safety Room _______________

Arousal Safety: CS+ _______________

Arousal Safety: CS- _______________

Arousal Neutral Room _______________

Arousal Neutral: CS+ _______________

Arousal Neutral: CS- _______________

Angst Fear Room _______________

Angst Fear: CS+ _______________

Angst Fear: CS- _______________

Angst Safety Room _______________
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Angst Safety: CS+ _______________

Angst Safety: CS- _______________

Angst Neutral Room _______________

Angst Neutral: CS+ _______________

Angst Neutral: CS- _______________

Nach Akquisition 

In welchem Raum und bei welchem Licht gab es elektrische Reize?

….........................................................................................................................................................

….........................................................................................................................................................

Valenz Fear Room _______________

Valenz Fear: CS+ _______________

Valenz Fear: CS- _______________

Valenz Safety Room _______________

Valenz Safety: CS+ _______________

Valenz Safety: CS- _______________

Arousal Fear Room _______________

Arousal Fear: CS+ _______________

Arousal Fear: CS- _______________

Arousal Safety Room _______________

Arousal Safety: CS+ _______________

Arousal Safety: CS- _______________

Angst Fear Room _______________

Angst Fear: CS+ _______________

Angst Fear: CS- _______________

Angst Safety Room _______________

Angst Safety: CS+ _______________

Angst Safety: CS- _______________

Kontingenz Fear Room _______________

Kontingenz Fear: CS+ _______________
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Kontingenz Fear: CS- _______________

Kontingenz Safety Room _______________

Kontingenz Safety: CS+ _______________

Kontingenz Safety: CS- _______________

Nach Extinktion

Valenz Fear Room _______________

Valenz Fear: CS+ _______________

Valenz Fear: CS- _______________

Valenz Safety Room _______________

Valenz Safety: CS+ _______________

Valenz Safety: CS- _______________

Valenz Neutral Room _______________

Valenz Neutral: CS+ _______________

Valenz Neutral: CS- _______________

Arousal Fear Room _______________

Arousal Fear: CS+ _______________

Arousal Fear: CS- _______________

Arousal Safety Room _______________

Arousal Safety: CS+ _______________

Arousal Safety: CS- _______________

Arousal Neutral Room _______________

Arousal Neutral: CS+ _______________

Arousal Neutral: CS- _______________

Angst Fear Room _______________

Angst Fear: CS+ _______________

Angst Fear: CS- _______________

Angst Safety Room _______________

Angst Safety: CS+ _______________

Angst Safety: CS- _______________

Angst Neutral Room _______________

Angst Neutral: CS+ _______________

Angst Neutral: CS- _______________
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Nach Extinktion

Kontingenz Fear Room _______________

Kontingenz Fear: CS+ _______________

Kontingenz Fear: CS- _______________

Kontingenz Safety Room _______________

Kontingenz Safety: CS+ _______________

Kontingenz Safety: CS- _______________

Kontingenz Neutral Room _______________

Kontingenz Neutral: CS+ _______________

Kontingenz Neutral: CS- _______________

Rating elektrischer Reiz_______________

Rating Startle-Ton (Valenz)_______________

Notizen:

….........................................................................................................................................................

….........................................................................................................................................................

….........................................................................................................................................................

….........................................................................................................................................................
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Lehrstuhl für Psychologie I, Marcusstr. 9-11, 97070 Würzburg   

Probandeninformation zur Studie

Teilprojekt B1 „Strukturelle/funktionelle Korrelate von kontextueller Furchtkonditionierung 
beim Menschen“ 
im Rahmen des SFB Transregio 58 Furcht, Angst, Angsterkrankungen

Sehr geehrte Versuchsteilnehmerin, sehr geehrter Versuchsteilnehmer,

Sie haben Gelegenheit, an einer von der Deutschen Forschungsgemeinschaft geförderten Studie 
teilzunehmen,  mit  der  wir  untersuchen  wollen,  unter  welchen  Bedingungen  bestimmte 
Gegenstände oder Umwelten unangenehme Gefühle (z. B. Angst) auslösen. Sie werden aus der 
Teilnahme keinen unmittelbaren Nutzen für sich ziehen können. Wir hoffen jedoch, durch unsere 
Arbeit  mehr  darüber  zu erfahren,  wie  Angststörungen entstehen und welche Bedingungen sie 
aufrecht erhalten, um so langfristig die Behandlung zu verbessern.

Vor der Untersuchung werden Sie einige Fragebögen ausfüllen, in denen wichtige Daten bezüglich 
Ihrer  Person  festgehalten  werden.  Dann  wird  der  Versuchsleiter  zur  Messung  Ihrer 
Schweißdrüsenaktivität Messelektroden auf Ihrer Hand anbringen. 

Während  der  Untersuchung  werden  wir  Ihnen  eine  Virtuelle  Welt,  d.  h.  von  einem Computer 
erzeugte  Räume,  zeigen.  Sie  sollen  diese  Räume  und  die  darin  enthaltenen  Gegenstände 
aufmerksam betrachten. 

Manchmal  werden  Sie  elektrische  Reize  am Finger  verspüren.  Diese  elektrischen  Reize  sind 
etwas schmerzhaft, aber sehr kurz und nicht gefährlich. Die Stärke der elektrischen Reize wird 
individuell ermittelt und vor Versuchsbeginn festgelegt.

Damit  Sie  sich  den  Untersuchungsablauf,  die  darin  vorkommenden Virtuellen  Welten  und  die 
elektrischen  Reize  besser  vorstellen  können,  werden  wir  Ihnen  zu  Beginn  der  Untersuchung 
jeweils Beispiele dafür präsentieren. 

Alle  Daten  dienen  ausschließlich  Forschungszwecken,  werden  vertraulich  behandelt  und  ohne 
Namensgebung unter einer Codenummer abgespeichert. Die Daten werden für unbestimmte Zeit 
gespeichert.  Der  Codierungsschlüssel  wird ein Jahr  nach Abschluss  der  Studie  vernichtet.  Bis 
dahin können Sie, auch noch nach der Untersuchung, die Löschung Ihrer Daten verlangen.
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Die Teilnahme an der Untersuchung ist völlig freiwillig. Sie können jederzeit - ohne Angabe 
von Gründen - die Teilnahme abbrechen. Dadurch entstehen Ihnen keinerlei  persönliche 
Nachteile. 

Falls Sie noch weitere Frage haben, stellen Sie diese bitte jetzt. 
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Instruktion zur Studie

Sehr geehrte Versuchsteilnehmerin, sehr geehrter Versuchsteilnehmer,

Vielen Dank, dass Sie sich bereit erklärt haben, an unserem Experiment teilzunehmen.  

Im Laufe des Experiments werden wir Sie über ein Head Mounted Display in einen virtuellen Flur 
versetzen,  von dem eine Tür abgeht.  Hinter  dieser  Tür  befindet  sich  ein Büro,  durch das Sie 
mehrmals geführt werden.
Die Führungen durch das Büro werden passiv erfolgen,  d.h. Sie können nicht aktiv in den Verlauf 
eingreifen,  aber  durch Kopfbewegungen Ihr  Blickfeld  verändern.  Auf  diese Weise ist  es Ihnen 
eingeschränkt möglich, den Raum frei zu erkunden. Sie können dies im Vorfeld ausprobieren.  

Der eigentliche Versuch besteht aus mehren Phasen. In jeder Phase werden Sie mehrmals durch 
den virtuellen Büroraum geführt.  

Nach jeder Phase werden Ihnen verschiedene Fragen gestellt, z.B.:

Wie groß war Ihre Angst in einer bestimmten Situation?
Nennen Sie  bitte  eine Zahl  von  0 (keine Angst) bis  100 (sehr starke Angst) auf  der  unten 
angegebenen Skala.

............................................................................................................................................................
0            50               100

Wie wahrscheinlich war es, einen elektrischen Reiz in dieser Situation zu erhalten? 
Nennen Sie bitte eine Zahl von 0 (unmöglich) bis 100 (sicher) auf der unten angegebenen Skala.

............................................................................................................................................................
0            50               100

Wie positiv oder negativ empfanden Sie diese Situation? 
Nennen  Sie  bitte  eine  Zahl  von  0  (sehr  negativ) bis  100  (sehr  positiv) auf  der  unten 
angegebenen Skala.

............................................................................................................................................................
0            50               100
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Wie aufgeregt waren Sie in dieser Situation? 
Nennen  Sie  bitte  eine  Zahl  von  0  (sehr  ruhig) bis  100  (sehr  aufgeregt) auf  der  unten 
angegebenen Skala.

............................................................................................................................................................
0            50               100

Bitte prägen Sie sich diese Skalen gut ein. Wenn Sie später danach gefragt werden, antworten Sie 
bitte mündlich und möglichst spontan und zügig.

Bevor  das  Experiment  startet,  möchten  wir  zunächst  Ihre  persönliche  Schmerzschwelle 
bestimmen.  Zum  einen  können  wir  so  die  auf  Sie  passende  Reizintensität  auswählen,  zum 
anderen können Sie die Reize, die Sie im Experiment erhalten werden, kennenlernen. Sie werden 
gleich das Head Mounted Display aufsetzen und in den virtuellen Flur versetzt werden. Über die 
Elektrode an Ihrem Unterarm werden Sie dann verschieden starke Reize erhalten. Manche Reize 
sind eventuell  so schwach, dass Sie diese gar nicht spüren können. Ihre Aufgabe ist  es, dem 
Versuchsleiter nach jedem Reiz mitzuteilen, wie stark dieser war. 
Dazu wird Ihnen folgende Frage gestellt:
 
Wie hoch war dieser elektrische Reiz auf der Skala von 0 bis 10?

………………………………………………………………………………………………...…...................
0    1        2           3              4          5            6      7         8           9           10   
↑                           ↑ ↑      
nichts                      eben                                           sehr
gespürt                      wahrnehmbarer                 starker

Schmerz    Schmerz
   

Bitte beachten Sie:
0 bedeutet „nichts gespürt“, 
1-3 bedeuten „etwas gespürt, aber nicht schmerzhaft“, 
4 bedeutet „eben wahrnehmbarer Schmerz“.

Bitte prägen Sie sich diese Skala gut ein. Wenn Sie das Head Mounted Display und die Kopfhörer 
aufgesetzt  haben,  werden  Sie  nach  jedem  Reiz  mündlich  dazu  aufgefordert,  den  Reiz  zu 
beurteilen. Sie werden die Skala nicht mehr sehen. Nennen Sie dann bitte die entsprechende Zahl.

Falls Sie noch weitere Fragen haben, stellen Sie diese bitte jetzt. 
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Untersuchung: Datum:  VP-Code:

Ratings 

Nach Habituation        

Valenz Licht blau _______________

Valenz Licht gelb _______________

Arousal Licht blau _______________

Arousal Licht gelb _______________

Angst Licht blau _______________

Angst Licht gelb _______________

Nach Akquisition 1

Valenz Licht blau _______________

Valenz Licht gelb _______________

Arousal Licht blau _______________

Arousal Licht gelb _______________

Angst Licht blau _______________

Angst Licht gelb _______________

Waren die elektrischen Reize vorhersagbar? ______________

Wann kam der elektrische Reiz? _______________

Kontingenz Licht blau _______________

Kontingenz Licht gelb _______________

Nach Akquisition 2

Valenz Licht blau _______________

Valenz Licht gelb _______________

Arousal Licht blau _______________

Arousal Licht gelb _______________

Angst Licht blau _______________

Angst Licht gelb _______________

Waren die elektrischen Reize vorhersagbar? _______________

Wann kam der elektrische Reiz? _______________

Kontingenz Licht blau _______________

Kontingenz Licht gelb _______________
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Nach Extinktion

Valenz Licht blau _______________

Valenz Licht gelb _______________

Arousal Licht blau _______________

Arousal Licht gelb _______________

Angst Licht blau _______________

Angst Licht gelb _______________

Kontingenz Licht blau _______________

Kontingenz Licht gelb _______________
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