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Abstract

The Fokker-Planck (FP) equation is a fundamental model in thermody-
namic kinetic theories and statistical mechanics. In general, the FP equa-
tion appears in a number of different fields in natural sciences, for instance
in solid-state physics, quantum optics, chemical physics, theoretical biol-
ogy, and circuit theory. These equations also provide a powerful mean to
define robust control strategies for random models. The FP equations are
partial differential equations (PDE) describing the time evolution of the
probability density function (PDF) of stochastic processes. These equa-
tions are of different types depending on the underlying stochastic process.
In particular, they are parabolic PDEs for the PDF of Itō processes, and
hyperbolic PDEs for piecewise deterministic processes (PDP).

A fundamental axiom of probability calculus requires that the integral
of the PDF over all the allowable state space must be equal to one, for
all time. Therefore, for the purpose of accurate numerical simulation,
a discretized FP equation must guarantee conservativeness of the total
probability. Furthermore, since the solution of the FP equation repre-
sents a probability density, any numerical scheme that approximates the
FP equation is required to guarantee the positivity of the solution. In ad-
dition, an approximation scheme must be accurate and stable. For these
purposes, for parabolic FP equations on bounded domains, we investi-
gate the Chang-Cooper (CC) scheme for space discretization and first-
and second-order backward time differencing. We prove that the result-
ing space-time discretization schemes are accurate, conditionally stable,
conservative, and preserve positivity. Further, we discuss a finite differ-
ence discretization for the FP system corresponding to a PDP process in
a bounded domain.

Next, we discuss FP equations in unbounded domains. In this case, finite-
difference or finite-element methods cannot be applied. By employing a
suitable set of basis functions, spectral methods allow to treat unbounded
domains. Since FP solutions decay exponentially at infinity, we consider
Hermite functions as basis functions, which are Hermite polynomials mul-
tiplied by a Gaussian. To this end, the Hermite spectral discretization is
applied to two different FP equations; the parabolic PDE corresponding
to Itō processes, and the system of hyperbolic PDEs corresponding to a
PDP process. The resulting discretized schemes are analyzed. Stability



and spectral accuracy of the Hermite spectral discretization of the FP
problems is proved. Furthermore, we investigate the conservativity of the
solutions of FP equations discretized with the Hermite spectral scheme.

In the last part of this thesis, we discuss optimal control problems governed
by FP equations on the characterization of their solution by optimality
systems. We then investigate the Hermite spectral discretization of FP
optimality systems in unbounded domains. Within the framework of Her-
mite discretization, we obtain sparse-band systems of ordinary differential
equations. We analyze the accuracy of the discretization schemes by show-
ing spectral convergence in approximating the state, the adjoint, and the
control variables that appear in the FP optimality systems. To validate
our theoretical estimates, we present results of numerical experiments.
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Chapter 1

Introduction

1.1 Motivation

The Fokker-Planck (FP) equation is a fundamental model in statistical mechanics
which governs an important class of Markov processes [91]. In general, it describes the
time evolution of the probability density function of random evolutionary processes,
and was used by Fokker and Planck [91] to describe the Brownian motion of a free
particle (i.e., in the absence of an external force); see Figure 1.1. For an historical
introduction see [38].

In the past several decades, the FP equation has been used in a number of differ-
ent fields in natural sciences with a wide range of application; for instance in model
systems [13, 15, 57, 77, 87, 92, 98], electron relaxation in gases [99], reactive systems
[70, 85, 107], polymer dynamics [101], optical bistability [14, 17, 40], nucleation [100],
dielectric relaxation [30], climate models [80], biological applications [26], astrophys-
ical problems [88, 103, 108], economics [106], ionospheric applications [71], plasma
physics [60], nuclear dynamics [1], and numerous other applications such as solid-
state physics, quantum optics, chemical physics and theoretical biology [37, 90, 91].
The FP equation also appears in various types of control problems. It provides a
powerful tool to define robust control strategies for stochastic models as proposed in
[6, 7, 8].

Because of its wide range of application, various methods of solutions for the FP
equation have been proposed in scientific literature. It includes transformation to
Schrodinger equations, WKB methods, and matrix continued-fraction methods; see,
e.g., [91]. Analytic solutions of the FP equations can be found in some special cases,
but in general they are difficult to obtain. Therefore, numerical methods have become
important in approximating the solutions of the FP equations.

Depending on the problem which is modeled by the FP equation, the solution of
the FP equation may be sought in a bounded or an unbounded domain. On the other
hand, the FP initial value problem differs from classical evolutionary PDEs because
of the additional requirements of positivity of solution and conservativeness of total
probability. The main objective of this thesis is to discuss numerical methods to
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Chapter 1. Introduction

Figure 1.1: The time evolution of a stochastic process governed by a FP equation.

approximate two important classes of FP equations and related optimality systems,
in both bounded and unbounded domains.

1.2 Problems and solution methods

In this thesis, we first consider the class of FP equations corresponding to Itō stochas-
tic differential equations described by the following multidimensional model{

dX(t) = b(X(t), t) dt+ σ(X(t), t) dW (t)
X(t0) = X0,

(1.1)

where the state variable X(t) ∈ Rd is subject to deterministic infinitesimal increments
driven by the vector valued drift function b, and to random increments proportional
to a multi-dimensional Wiener process W (t) ∈ Rm, with stochastically independent
components. The dispersion matrix σ ∈ Rd×m is full rank. We notice that in most
cases the state of a stochastic process can be completely characterized by the shape
of its statistical distribution which is represented by the probability density function
(PDF). If the initial point X0 is a random variable which is distributed as f 0(x), the
evolution of the PDF associated to the stochastic process X(t) is governed by the

2



1.2. Problems and solution methods

following FP model

∂tf(x, t)− 1

2

d∑
i,j=1

∂2
xixj

(aij(x, t) f(x, t)) +
d∑
i=1

∂xi (bi(x, t) f(x, t)) = 0, (1.2)

f(x, t0) = f 0(x), (1.3)

defined in Q = Ω × [t0, T ], where Ω ⊂ Rd and f denotes the PDF function. The
diffusion coefficient is given by the positive-definite symmetric matrix a = σ σ>, with
elements

aij =
m∑
k=1

σik σjk.

The initial PDF distribution f 0 must be nonnegative and normalized,
∫

Ω
f 0(x)dx = 1.

The FP model (1.2) is a parabolic problem on a multi-dimensional space domain,
where the dimension corresponds to the number of components of the stochastic
process. Moreover, this problem differs from a classical parabolic problem because
of the additional requirements of positivity of solution and conservativeness. In fact,
the FP equation guarantees the following

f(x, t) ≥ 0,

∫
Ω

f(x, t)dx = 1, for all t ≥ t0.

Therefore, to numerically approximate the solution of the FP model (1.2), an approx-
imation scheme is required to be conservative and positivity-preserving in addition to
be accurate and stable. For this purpose, we first focus on bounded domains and zero-
flux boundary conditions and discuss finite difference discretizations. We investigate
the Chang-Cooper (CC) scheme for space discretization and first- and second-order
backward time differencing. Since the pioneering work of Chang and Cooper [23],
different variants of this discretization strategy have been considered [21, 37, 64],
that focus on first-order time discretization. From the numerical functional analyt-
ical point of view, less results are available on the accuracy and stability properties
of the CC scheme. We prove that the resulting space-time discretization schemes are
accurate, conditionally stable, conservative, and positivity-preserving.

We then consider another class of FP equations, where the PDF corresponds to
a piecewise deterministic process (PDP). A PDP model consists of a set of differen-
tial equations that change their deterministic dynamics at random points in time.
We consider a PDP model that is a first-order system of ordinary differential equa-
tions, where the driving dynamics-function is chosen by a renewal process. The
d-components state function X(t), X : [t0,∞)→ Ω, Ω ⊆ Rd, satisfies the differential
equation {

d
dt
X(t) = AS (t) (X(t)) , t ∈ [t0,∞)

X(t0) = X0,
(1.4)

where S (t) : [t0,∞[→ S is a Markov process with discrete states S = {1, . . . , S}.
For each state s ∈ S, we say that the dynamics is in the state s, and it is driven by

3



Chapter 1. Introduction

the function As : Ω → Rd, that belongs to the set of Lipschitz continuous functions
{A1, . . . , AS}.

From a statistical point of view, the state of a PDP can be characterized by the
shape of its statistical distribution which is represented by the marginal PDFs; we
denote with fs the PDF corresponding to the state s. The time evolution of these
PDFs is governed by the following FP hyperbolic system [8],

∂tfs(x, t) + ∂x(As(x)fs(x, t)) =
S∑
j=1

Qsjfj(x, t), s ∈ S, (1.5)

where Qsj, s, j ∈ S, are the components of the transition matrix Q. Since the fs, for
s ∈ S, represent the PDFs it is required that

S∑
s=1

∫ d

R
fs(x, t) dx = 1.

The initial conditions for the PDFs of the FP system are given as follows

fs(x, 0) = f 0
s (x), s ∈ S, (1.6)

where f 0
s (x) ≥ 0, x ∈ Rd,

∑S
s=1

∫ d
R f

0
s (x) dx = 1. The model (1.5) is a first-order

hyperbolic system in differential diagonal form, with coupling given through zero-
order terms. This is a strictly hyperbolic model provided that the functions As are
distinct for all x ∈ Ω. We report theoretical results of a finite difference discretization
of the FP system corresponding to a PDP with dichotomic noise [8].

Since in many cases the natural setting for stochastic processes corresponds to
FP systems on unbounded domains, we discuss also the two FP models (1.2) and
(1.5) in unbounded domains. In this case, finite-difference or finite-element methods
cannot be applied. To treat an unbounded domain, one may truncate the domain to
a bounded one and solve the problem on the bounded domain supplemented with
artificial or transparent boundary conditions; see, e.g., [50, 109]. This approach
is applicable for problems with rapidly decaying solutions or when exact boundary
conditions are available at the truncated boundary. On the other hand, another
viable approximation strategy is to consider orthogonal systems with basis functions
with unbounded support. Among the orthogonal systems, Hermite functions have
been used successfully in approximating the solution to parabolic FP equations in
unbounded domains; see, e.g., [45, 46, 74, 75]. We further investigate the Hermite
spectral approximation of hyperbolic FP models.

Next, we discuss optimal control problems governed by FP models on unbounded
domains, that are investigated in our work, to find controls with the purpose of driving
the PDF to attain desired objectives.

We first formulate the problem to determine a control u ∈ Rl such that starting
with an initial distribution f 0 the Itō process (1.1) evolves towards a desired target

4



1.3. Outline of the thesis

probability density fd(x, t) at time t = T . This objective can be formulated by the
following tracking functional

J(f, u) :=
1

2
‖f(·, T )− fd(·, T )‖2

wα +
ν

2
|u|2,

where ‖ · ‖2
wα is a weighted L2 norm. The optimal control problem is to find u that

minimizes the objective J subject to the constraint given by the FP equation (1.2).
This problem can be written in a concise form as follows

min
u∈Rl

J(f, u), (f, u) subject to (1.2)− (1.3). (1.7)

We continue this discussion focusing on the control of a PDP FP model. We
introduce in (1.5) a control mechanism in the deterministic dynamics, and consider
As(x, us) where (x, us) ∈ (Ω, Us), and Us ⊂ Rl, s ∈ S, are closed compact sets.
We assume that for a given state (x, s) of the system, admissible open-loop control
functions us(t) : [0, T ) → Us, s ∈ S, exist and are continuous in the interval [0, T ).
Further, we assume that As(x, us), s ∈ S, are Lipschitz continuous and differentiable
in the set (Ω, Us) so that the differential system (1.4) has a unique solution. We
consider the problem to find optimal controls us, s ∈ S, such that the solution to the
FP model (1.5) minimizes the following cost functional

J(f, u) :=
1

2

S∑
s=1

‖fs(·, T )− fTs (·)‖2
wα +

ν

2

S∑
s=1

|us|2U ,

where (fT1 , · · · , fTS ) ∈ C∞0 (R,RS) is a vector of given functions with trace zero that
represents a desired target PDF at time T . This objective models the requirement
that the PDF of the PDP at final time, fs(·, T ), approaches as close as possible the
desired target fTs . In compact form, we have the following optimal control problem

min
u∈U1×...×Us

J(f, u), (f, u) subject to (1.5)− (1.6). (1.8)

For the two optimal control problems (1.7) and (1.8), we derive the corresponding
optimality systems and investigate their discretization in unbounded domains. We
analyze the accuracy of the discretization schemes by showing spectral convergence
in approximating the state, the adjoint, and the control variables.

1.3 Outline of the thesis

This thesis is organized as follows. In Chapter 2, we summarize the most impor-
tant concepts on random models which are necessary to have an understanding of
Itō stochastic processes and piecewise deterministic processes. In Chapter 3, we dis-
cuss the FP equations. In particular, we illustrate how to derive the FP equations
of parabolic and hyperbolic type. For these models we report theoretical results

5



Chapter 1. Introduction

concerning the existence and uniqueness of solutions. After establishing the funda-
mental definitions and setting for FP equations, we discretize the equations in both
bounded and unbounded domains. In the case of a bounded domain, in Chapter
4 we consider finite difference discretization schemes to approximate the solution of
FP equations. Specifically, for parabolic FP equations we illustrate the Chang and
Cooper (CC) space-discretization scheme, and discuss this scheme in combination
with a first-order backward Euler time-difference operator. We refer to this scheme
as the CC-BDF scheme. We prove conditional stability and first-order in time and
second-order in space accuracy. Furthermore, we show that the CC-BDF scheme is
conservative and that a nonnegative initial condition results in a nonnegative solution
for all times. Then, we consider a second-order backward time-differentiation formula
(BDF2) and show that the resulting CC-BDF2 scheme is stable and second-order ac-
curate in space and time and it possesses the required positivity and conservativeness
properties. We discuss the CC-BDF and CC-BDF2 schemes in a one-dimensional
space setting. We then discuss the extension of our results to the multi-dimensional
case. At the end of Chapter 4, we present results of numerical experiments to validate
the CC-BDF and CC-BDF2 schemes and our theoretical findings. In Chapter 5, we
investigate the Hermite spectral discretization of the FP equations, of both parabolic
and hyperbolic types, defined on unbounded domains. As a preliminary section, first
the required properties and equipment for spectral methods with Hermite approxi-
mation are discussed. The accuracy of the Hermite spectral method applied to (1.2)
and (1.5) is proved by showing that the error decreases spectrally as the number
of expansion terms increases. Furthermore, we investigate the conservativity of the
solutions of the FP equations with Hermite discretization schemes. The accuracy of
the discretization method is also investigated with numerical experiments. In Chap-
ter 6 we introduce optimal control problems. We derive the FP optimality systems
consisting of state, adjoint, and optimality condition equations corresponding to the
control of stochastic processes which have been studied in Chapter 2.

In Chapter 7, we present the discretization of FP optimality systems by the Her-
mite spectral method. The approximation method is analyzed and the accuracy of
discretization schemes are discussed by showing spectral convergence in approximat-
ing the adjoint and the control variables. To further investigate the effectiveness of
the method, results of numerical experiments are presented. A chapter of concluding
remarks completes this thesis.
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Chapter 2

Itō processes and PDP processes

The FP equations which we deal with in this thesis are modeled based on mathemat-
ical description of Itō stochastic processes and piecewise deterministic processes. We
therefore summarize in this chapter the most important concepts which are necessary
to have an intuitive understanding of these processes. Therefore, this chapter is of
an introductory nature with the material mainly presented from [10, 47, 62, 68]. We
start with recalling some basic notions and facts.

2.1 Random variables

Random variables deal with mathematical models whose outcome is determined by a
random experiment. The concept of a random variable is central to this chapter.

2.1.1 Definition

Let Ω be a sample space, and let P (ω) denote the probability of an event ω. We
remark that the triple (Ω,

∑
, P ) is called a probability space provided

∑
is an σ-

algebra of subsets of Ω. A random variable, also known as stochastic variable, is a
function X that associates a real number X(s) = x with each element s of Ω. We
denote by ΩX the set of all possible values of X.

If the set ΩX of values that the random variable X can take is finite or countably
infinite, we say that X is a discrete random variable. A continuous random
variable X is a random variable that can take an uncountably infinite number of
values. The distribution function of the random variable X is defined by

FX(x) = P (X ≤ x) ∀x ∈ R.

We can define a continuous random variable as a variable whose distribution function
FX is continuous. The probability mass function of the discrete random variable
X is defined by

PX(x) = P (X = x) ∀x ∈ ΩX .

7



Chapter 2. Itō processes and PDP processes

The term (probability) distribution is used to designate the set of possible values
of a discrete random variable, along with their respective probabilities given by the
probability mass function. By extension, the same term will be employed in the
continuous case.

2.1.2 The probability density function

The probability density function (PDF) of a continuous random variable X is defined
(at all points where the derivative exists) by

fX(x) =
d

dx
FX(x). (2.1)

Notice that the function fX(x) is not the probability P (X = x) for a continuous
random variable, since the probability that X is equal to some given precise value x
is generally zero; that is P (X = x) = 0 for all x ∈ ΩX . The simple interpretation
that can be given to fX(x) is the following:

εfX(x) ' P (x− ε

2
≤ X ≤ x+

ε

2
) (2.2)

where ε > 0. That is, the probability that X lies between x − ε
2
and x + ε

2
is of the

order εfX(x) for small ε. The equality is obtained by taking the limit as ε tends to
zero. We have the following two essential properties for a PDF.

i) fX(x) ≥ 0, by the formula (2.1) and also by the formula (2.2), because FX is
a nondecreasing function.

ii) We deduce from the formula (2.1) that

FX(x) =

∫ x

−∞
fX(t) dt.

It follows that ∫ ∞
−∞

fX(x)dx = 1,

since FX(∞) = 1.
We also have

P (a < X ≤ b) = FX(b)− FX(a) =

∫ b

a

fX(x)dx.

Thus, the probability that X takes a value in the interval (a, b] is given by the area
under the curve y = fX(x) from a to b. In this thesis, we simply use the notation f
instead of fX to represent a probability density function.
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2.2. Normal (or Gaussian) distribution

2.1.3 Mean of a random variable

The mean of a discrete random variable X, also known as the expectation, mathemat-
ical expectation, expected value, or first moment, is the probability-weighted average
of all possible values x ∈ ΩX . In other words, each possible value x ∈ X is multiplied
by its probability, and the resulting products are added together to produce the ex-
pected value. In the case of continuous random variables, the definition is the same
except that the sum is replaced by an integral and the probabilities by probability
densities.

More precisely, let X be a discrete random variable taking values x ∈ ΩX . The
expected value of this random variable is the finite or infinite sum

E[X] =
∑
x∈ΩX

xP (x),

provided that this series converges absolutely. Otherwise, we say that the expected
value of X does not exist.

In the case of a continuous random variable X, we have a probability density
function f(x). In this case, the expected value can be computed as follows

E[X] =

∫
x∈ΩX

xf(x) dx.

The mean of a random variable X is also designated as 〈X〉, X̄, or µ.

2.1.4 Moments and variance of a random variable

The kth moment, also known as the moment of order k, of the random variable X
about the origin is given by E[Xk], for k = 0, 1, 2, . . ..

In practice, we find that the most important quantities are related to the first and
second moments. In particular, for a random variable X, the variance is defined by

V [X] = E[(X − E[X])2],

which is a nonnegative quantity. As is well known, the variance V [X] or its square
root the standard deviation σ[X], is a measure of the degree to which the values of
X deviate from the mean value X. The variance is typically designated as V ar(X),
σ2
X , or simply σ2.

2.2 Normal (or Gaussian) distribution

By far the most important probability distribution is the Gaussian, or normal distri-
bution. This is because of the central limit theorem which states that under general
conditions the average of a sufficiently large number of iterates of independent random
variables tends to be distributed as a normal distribution. Here we collect together
the most important facts about this distribution.
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Chapter 2. Itō processes and PDP processes

The normal distribution with parameters µ and σ is a continuous distribution of
a random variable X whose probability density function is given by:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

The parameter µ = E[X] in this definition is the mean or expectation of the distri-
bution. The parameter σ is its standard deviation. Its variance is therefore σ2, which
is equal to

V(X) =

∫ ∞
−∞

(x− µ)2

√
2πσ2

e−
(x−µ)2

2σ2 dx = σ2.

A random variable with a Gaussian distribution is said to be normally distributed
and is called a normal deviate.

The normal distribution is also often denoted by N (µ, σ2). Thus when a random
variable X is distributed normally with mean µ and variance σ2, we write

X ∼ N (µ, σ2).

2.3 Stochastic process

Suppose that with each element s of a sample space Ω of some random experiment,
we associate a function X(t, s), where t belongs to T ⊂ R. The set {X(t, s), t ∈ T}
is called a stochastic (or random) process. The function X(t, s) is a random variable
for any particular value of t ∈ T. The set T is usually the set N0 = {0, 1, . . .} or the
interval [0,∞). For each point s ∈ Ω, the mapping t 7→ X(t, s) is the corresponding
sample path.

We consider the case when T is either a countably infinite set or an uncountably
infinit set. Moreover, the set of possible values of the random variables X(t, s) can
be discrete (that is, finite or countably infinite) or continuous (that is, uncountably
infinite). Consequently, there are four different types of stochastic processes.
If T is a countably infinite set (respectively, an interval or a set of intervals), then
{X(t, s), t ∈ T} is said to be a discrete-time (respectively, continuous-time)
stochastic process.
The set ΩX(t) of values that the random values X(t) can take is called the state
space of the stochastic process {X(t, s), t ∈ T}. If ΩX(t) is finite or countably infinite
(respectively, uncountably infinite), {X(t, s), t ∈ T} is said to be a discrete-state
(respectively, continuous-state) process.

Since it will not be necessary to write explicitly the argument s of the function
X(t, s), the stochastic process will be denoted by {X(t), t ∈ T}. However, in the
discrete case, it is customary to write {Xn, n ∈ T}.

Furthermore, corresponding to any continuous-time and continuous-state stochas-
tic process {X(t), t ∈ T} we have the following two important quantities.
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2.3. Stochastic process

i) The infinitesimal mean m(x; t) of X(t) is defined by

m(x; t) = lim
ε↓0

1

ε
E[X(t+ ε)−X(t)|X(t) = x].

We can also obtain m(x0; t0) as follows:

m(x0; t0) = lim
t↓t0

∂

∂t
E[X(t)|X(t0) = x0]. (2.3)

ii) The infinitesimal variance v(x; t) of X(t) is defined by

v(x; t) = lim
ε↓0

1

ε
E[(X(t+ ε)−X(t))2|X(t) = x].

We can also obtain v(x0; t0) as follows:

v(x0; t0) = lim
t↓t0

∂

∂t
V [X(t)|X(t0) = x0]. (2.4)

Suppose that the process {X(t), t ∈ T} has infinitesimal moments m(x; t) = m(x)
and v(x; t) = v(x) for all T, and that its state space is the interval [a, b] (or [a, b),
etc.). Let

Y (t) := g(X(t)) for t ∈ T.

If the function g is strictly increasing or decreasing on the interval [a, b] and if the
second derivative g′′(x) exists and is continuous, for a < x < b, then we can show
that the infinitesimal moments of the process {Y (t), t ∈ T} are given by

mY (y) = m(x)g′(x) +
1

2
v(x)g′′(x),

and
vY (y) = v(x)(g′(x))2

where x = g−1(y). Moreover, the state space of the process is the interval [g(a), g(b)]
(respectively, [g(b), g(a)]) if g is strictly increasing (respectively, decreasing).
It can be shown that the function P (x, t, x0, t0) satisfies the following partial differ-
ential equations:

∂tP + ∂x(m(x; t)P )− 1

2
∂xx(v(x; t)P ) = 0

and
∂t0P +m(x0; t0)∂x0P +

1

2
v(x0; t0)∂x0x0P = 0.

These equations are called the Kolmogorov equations. The first one is the Kolmogorov
forward equation (Fokker-Planck equation), and the second one is the Kolmogorov
backward equation.

11



Chapter 2. Itō processes and PDP processes

The Kolmogorov forward equation is used when we have information about the
state x of the system at time t, and we want to know the probability distribution
of the state at a later time s > t. The word "forward" refers to the fact that the
PDE is integrated forward in time. The Kolmogorov backward equation on the other
hand is useful when we want to know for every state x at time t, (t < s) what is
the probability of ending up in the target set at time s. In this case we integrate
"backward" in time from s to t.

2.4 Wiener process

A stochastic process {W (t), t ≥ 0} is called a Wiener process if

• W (0) = 0

• {W (t), t ≥ 0} has independent and stationary increments,

• W (t) ∼ N (0, σ2t) ∀t > 0.

The condition that it has independent increments means that if 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2
then W (t1)−W (s1) and W (t2)−W (s2) are independent random variables.

From the point of view of this thesis, the probability density function of the Wiener
process is the solution of the Fokker-Planck equation in which W (t) is the variable of
the equation, the drift coefficient is zero and the diffusion coefficient is one. Consider
the partial differential equation

∂tf(w, t|w0, t0) =
1

2
∂wwf(w, t|w0, t0). (2.5)

The solution to (2.5) is as follows [47],

f(w, t|w0, t0) = [2π(t− t0)]−1/2 exp[−(w − w0)2/2(t− t0)].

This represents a Gaussian, with

µ = E[W (t)] = w0,

σ2 = E[(W (t)− w0)2] = t− t0,

so that an initially sharp distribution spreads in time.
The one-variable Wiener process is often simply called Brownian motion, since

the Wiener process equation (2.5) is exactly the same as the differential equation of
diffusion, shown by Einstein to be obeyed by Brownian motion.
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2.5. Brownian motion

2.5 Brownian motion

The observation that, when suspended in water, small pollen grains are found to be
in a very animated and irregular state of motion, was first systematically investigated
by Robert Brown in 1827, and the observed phenomenon took the name Brownian
motion because of his fundamental pioneering work. Brownian motion is among the
simplest of the continuous-time stochastic processes, which is described by the Wiener
process.

2.6 Markov process

The ground work for the theory of Markov stochastic processes was laid in 1906
by A.A. Markov who formulated the principle that the future is independent of the
past when we know the present. On the other hand, this principle is the causality
principle of classical physics carried over to stochastic dynamic systems. It specifies
that knowledge of the state of a system at a given time is sufficient to determine its
state at any future time. If we carry this idea over to stochastic dynamic systems,
we get the Markov property. It says that if the state of a system at a particular time
s (the present) is known, additional information regarding the behavior of the system
at times t < s (the past) has no effect on our knowledge of the probable development
of the system at t > s (the future).

2.7 Diffusion Process

Diffusion processes are special cases of Markov processes with continuous sample
functions which serve as probability models of physical diffusion phenomena. The
simplest and oldest example is the motion of very small particles, such as grains of
pollen in a fluid, the so-called Brownian motion.

Mathematically, a Markov process {X(t), t ∈ [t0, T ]} with values in Rd, d ≥ 1,
and almost certainly continuous sample functions is called a diffusion process if its
transition probability P satisfies the following three conditions for every t ∈ [t0, T ),
x ∈ Rd, and ε > 0:
a)

lim
t↓s

1

t− s

∫
|y−x|>ε

P (x, t, dy, s) = 0;

b) there exists an Rd-valued function b(x, t) such that

lim
t↓s

1

t− s

∫
|y−x|≤ε

(y − x)P (x, t, dy, s) = b(x, t);

c) there exists a d× d matrix-valued function a(x, t) such that

lim
t↓s

1

t− s

∫
|y−x|≤ε

(y − x)(y − x)TP (x, t, dy, s) = a(x, t).
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Chapter 2. Itō processes and PDP processes

The functions b and a are called the coefficients of the diffusion process. In particular,
b is called the drift vector and a is called the diffusion matrix. a(x, t) ∈ Rd×d is
symmetric and nonnegative-definite.

The decisive property of diffusion process is that their transition probability P is,
under certain regularity assumptions, uniquely determined merely by the drift vector
and the diffusion matrix. To each diffusion process with coefficients b and a = (aij)
is assigned the second-order differential operator

D ≡
d∑
i=1

bi(x, t)∂xi +
1

2

d∑
i=1

d∑
j=1

aij(x, t)∂xixj .

Dg can be formally written for every twice partially differentiable function g(x) and
is determined by b and a.

Diffusion process is also a generalization of the Wiener process. Let

Y (t) := σW (t) + µt

where {W (t), t ≥ 0} is a Wiener process, and µ and σ 6= 0 are real constants. We
have

E[Y (t)|Y (t0) = y0] = y0 + µ(t− t0),

and
V [Y (t)|Y (t0) = y0] = σ2(t− t0),

for all t ≥ t0. We then deduce from the formulas (2.3) and (2.4) that

mY (y) = µ and vY (y) = σ2 ∀y.

The stochastic process {Y (t), t ≥ 0} is called a diffusion process whose infinitesimal
parameters are given by mY (y) ≡ µ and vY (y) ≡ σ2. The process {Y (t), t ≥ 0} is
also called a Brownian motion (or Wiener process) with drift µ.

Remark. The parameter µ is the drift coefficient, and σ2 is the diffusion coefficient.
The term parameter, rather than coefficient, is used as well.

2.8 Stochastic differential equations

A deterministic system is a system in which no randomness is involved in the develop-
ment of the system. A deterministic model will thus always produce the same output
from a given starting condition or initial state. In many applications, however, the
system modeled by differential equations do not behave as predicted.

A stochastic differential equation (SDE) is a model in which one or more of the
terms are stochastic processes, resulting in a solution which is itself a stochastic
process. In many applications such equations result from the incorporation of random
fluctuations in the dynamical description of a system. An example is the molecular
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2.9. Itō processes

bombardment of a speck of dust on a water surface, which results in Brownian motion
[61]. The intensity of this bombardment does not depend on the state variables, for
instance the position and velocity of the speck. Taking X(t) as one of the components
of the velocity of the particle, Langevin wrote the equation

d

dt
X(t) = −γX(t) + σξ(t), (2.6)

for the acceleration of the particle. Here ξ(t) is a white noise process and σ is intensity
which is independent of the velocity. The Langevin equation (2.6) is symbolically
interpreted as a stochastic differential equation

dX(t) = −γX(t) dt+ σ dW (t),

that is as a stochastic integral equation

X(t) = X(t0)−
∫ t

t0

γX(s) ds+

∫ t

t0

σ dW (s)

where the second integral is an Itō stochastic integral. This example is one of the
simplest and the oldest stochastic differential equations.

2.9 Itō processes

A very wide class of continuous stochastic processes can be obtained by modeling var-
ious diffusion processes. They are generally characterized by being Markov processes
and having local drift and diffusion; that is, behaving near a point x on the time
interval ∆t like σ(x)∆wt + b(x)∆t, where σ(x) is the local diffusion coefficient and
b(x) is the local drift. A quite satisfactory model of such processes is given by solu-
tions of stochastic Itō equations. A stochastic quantity X(t) obeys an Itō stochastic
differential equation written as

dX(t) = b(X(t), t) dt+ σ(X(t), t) dW (t) (2.7)

if for all t and t0,

X(t) = X(t0) +

∫ t

t0

b(X(s), s) ds+

∫ t

t0

σ(X(s), s) dW (s).

The conditions which are required for existence and uniqueness of solutions to the
SDE (2.7) in a time interval [t0, T ] are:
i) Lipschitz condition: a K exists such that

|σ(x, t)− σ(y, t)|+ |b(x, t)− b(y, t)| ≤ K|x− y|

for all x, y and t in the range [t0, T ].
ii) growth condition: a K exists such that for all t in the range [t0, T ],

|σ(x, t)|2 + |b(x, t)|2 ≤ K2(1 + |x|2).
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Chapter 2. Itō processes and PDP processes

Under these conditions there will be a unique solution X(t) in the range [t0, T ].
Almost every stochastic differential equation encountered in practice satisfies the
Lipschitz condition since it is essentially a smoothness condition. However, the growth
condition is often violated. This does not mean that no solution exists; rather, it
means the solution may explode to infinity, that is, the value of x can become infinite
in a finite time (blow up); in practice, a finite random time. This phenomenon occurs
in ordinary differential equations. Failing to satisfy the Lipschitz condition does not
necessarily imply that the solution will explode.

If b and σ are linear, that is b(X(t), t) = b1(t)X(t) + b2(t) and σ(X(t), t) =
σ1(t)X(t) + σ2(t), where the coefficients b1, b2, σ1, σ2 are specified functions of time,
we have a linear Itō stochastic differential equation. When σ1(t) ≡ 0 we say that the
SDE is linear in the narrow sense.

2.10 The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is the historically oldest example of a stochastic
differential equation. As already remarked in subsection 2.8, for the Brownian motion
of a particle under the influence of friction we have the Langevin equation. The
corresponding stochastic differential equation

dX(t) = −γX(t) dt+ σ dW (t), X(0) = c,

is linear in the narrow sense and autonomous. Therefore, its unique solution is given
by

X(t) = e−αtc+ σ

∫ t

0

e−γ(t−s)dW (s),

where the integration is the Itō stochastic integral defined, e.g., in [47]. For nor-
mally distributed or constant c, the solution X(t) is a Gaussian process, the so-called
Ornstein-Uhlenbeck velocity process.

By integration of the velocity X(t), we obtain the position

Y (t) = Y0 +

∫ t

0

X(s)ds

of the particle. If c and Y0 are normally distributed or constant, Y (t) is, with X(t),
a Gaussian process, the so-called Ornstein-Uhlenbeck (position) process.

2.11 PDP processes

A piecewise deterministic process (PDP) is a model governed by a set of differential
equations that change their deterministic structure at random points in time. PDP
models define the largest class of Markov processes including most of the non-diffusion
models of applied probability. This general class of deterministic-stochastic models
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was proposed in [36]. It has many important applications in mathematical biology,
finance, and physics.

Piecewise deterministic processes appear in probability calculus and operation
research, stochastic hybrid systems, reliability analysis, statistical physics, and finan-
cial mathematics; see, e.g. [2, 12, 22, 27, 31, 32, 42], for recent works and additional
references.

In this thesis, we focus on processes that switch randomly between deterministic
states driven by a renewal process, denoted with S (t), that is a discrete stochastic
process. For illustration, we consider a PDP model that is a first-order system of
ordinary differential equations where the known driving function of the dynamics is
affected by a renewal process. The d-components state function X(t), X : [t0,∞)→
Ω, Ω ⊆ Rd, is defined by the following properties. We have

(a) The state function satisfies the following equation

d

dt
X(t) = AS (t)(X), t ∈ [t0,∞), (2.8)

where S (t) : [t0,∞[→ S is a Markov process (defined below in (c) and (d))
with discrete states S = {1, . . . , S}. Correspondingly, given s ∈ S, we say that
the dynamics is in the (deterministic) state s, and it is driven by the function
As : Ω → Rd, that belongs to the set of functions {A1, . . . , AS}. We require
that all As(·), s ∈ S, be Lipschitz continuous, so that for fixed s, the solution
X(t) exists and is unique and bounded.

(b) The state function satisfies the initial condition X(t0) = X0 ∈ Ω, being in the
initial state s0 = S (t0).

(c) The process S (t) is characterized by an exponential probability density function
ψs : R+ → R+, of transition events, as follows

ψs(t) = µse
−µst, with

∫ ∞
0

ψs(t) dt = 1, (2.9)

for each state s ∈ S. In other words, it is the PDF for the time that the system
stays in the state s, that is the time between consecutive events of a Poisson
process.

(d) The process S (t) is modeled by a stochastic transition probability matrix, q̂ :=
{qij}, with the following properties

0 ≤ qij ≤ 1,
S∑
i=1

qij = 1, ∀i, j ∈ S. (2.10)

When a transition event occurs, the PDP system switches instantaneously from
a state j ∈ S, with the driving function Aj, randomly to a new state i ∈ S,
driven by the function Ai. Virtual transitions from the state j to itself are
allowed for this model, that is, qjj > 0.
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Chapter 2. Itō processes and PDP processes

Both (c) and (d) define the Markov renewal process S (t), that generates a temporal
sequence of transition events (t0, t1, . . . , tk, tk+1, . . .) and states (s0, s1, . . . , sk, sk+1, . . .).
It is said that (d) defines the embedded discrete Markov chain of the process S (t),
while (c) defines a continuous time process for the epochs where the Markov chain
changes its state, i.e. a renewal process.

The state space of the PDP process is the union of S disjoint copies of Rd. In the j-
th copy, the vector field is Aj and, at a jump time, a change to another component Ai,
with i randomly chosen, can occur. Notice that the state function X(t) is continuous
through the events of the renewal process.
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Chapter 3

Fokker-Planck equations

The origin of the name "Fokker-Planck Equation" is from the work of Fokker (1914)
and Planck (1917) where the former investigated Brownian motion in a radiation
field and the latter attempted to build a complete theory of fluctuations based on
it. Mathematically oriented works tend to use the term "Kolmogorov’s Equation"
because of Kolmogorov’s work in developing its rigorous basis. Yet others use the term
"Smoluchowski Equation" because of Smoluchowski’s original use of this equation.

In this thesis, we consider two classes of Fokker-Planck (FP) equations correspond-
ing to Itō stochastic processes and piecewise deterministic processes. This chapter
introduces these two classes of FP equations, and includes details on derivation of the
equations. In the case of Itō models, we will have FP equations of parabolic type,
which have been studied deeply in the literature written about stochastic models.
Therefore, we present some details taken from [47]. However, regarding the FP equa-
tions corresponding to PDP processes the investigation in literature is very rare and
the topic is new. In this case, we have a system of FP equations of hyperbolic type.

3.1 Itō stochastic models

3.1.1 Fokker-Planck equation in one dimension

In one dimension, the FP equation has the simple form

∂tf(x, t) = −∂x (b(x, t)f(x, t)) +
1

2
∂xx (a(x, t)f(x, t)) ,

for the Itō process introduced in Chapter 2, which is given by the stochastic differential
equation

dX(t) = b(X(t), t)dt+ σ(X(t), t) dW (t)

with drift b(X(t), t), dispersion σ(X(t), t) =
√
a(X(t), t), and Wiener process W (t).

The conditional probability satisfies the FP equation, that is,

f(x, t) = P (x, t|x0, t0)
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for any initial x0 and t0, and with the initial condition

P (x, t|x0, t0) = δ(x− x0). (3.1)

However, using the definition for the one time probability

P (x, t) =

∫
P (x, t;x0, t0) dx0 =

∫
P (x, t|x0, t0)P (x0, t0) dx0,

we see that it is also valid for P (x, t) with the initial condition

P (x, t)|t=t0 = P (x, t0).

This initial condition is generally less singular than (3.1), which is the Dirac delta
function.

3.1.2 Fokker-Planck equation in several dimensions

In multidimensional cases, FP equations show more complex behavior than is possible
in the case of one variable. Boundaries are no longer simple end points of a line but
rather curves or surfaces, and the nature of the boundary can change from place to
place [47].

If X(t) is an d-dimensional random vector obeying the stochastic differential equa-
tion

dX(t) = b(X(t), t) dt+ σ(X(t), t) dW (t),

and W (t) is an m-dimensional Wiener process, then the probability density f(x, t)
for the random vector X(t) satisfies the Fokker-Planck equation

∂tf(x, t) = −
d∑
i=1

∂xi (bi(x, t)f(x, t)) +
1

2

d∑
i=1

d∑
j=1

∂xixj (aij(x, t)f(x, t)) ,

with drift vector b = (b1, . . . , bd) and diffusion tensor

aij(x, t) =
m∑
k=1

σik(x, t)σkj(x, t).

3.1.3 Boundary conditions

The FP equation is a second-order partial differential equation, and for solutions
we need boundary conditions at the end points of the domain inside which x is
constrained. These take on a variety forms.

We note that the FP equation

∂tf(x, t) = −
d∑
i=1

∂xi (bi(x, t)f(x, t)) +
1

2

d∑
i=1

d∑
j=1

∂xixj (aij(x, t)f(x, t))
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can also be written in the following form

∂tf(x, t) +
d∑
i=1

∂xiFi(x, t) = 0 (3.2)

where the components of the flux F are defined as

Fi(x, t) = bi(x, t)f(x, t)− 1

2

d∑
j=1

∂xj (aij(x, t)f(x, t)) .

Equation (3.2) has the form of a local conservation equation, and can be written in
an integral form as follows.

Consider some region R with a boundary S , and define

P (R, t) =

∫
R

f(x, t) dx.

Then (3.2) is equivalent to

∂tP (R, t) = −
∫
S

n · F (x, t) dS, (3.3)

where n is the outward pointing normal to S . Thus, (3.3) indicates that the total loss
of probability of being in R is given by the surface integral of F over the boundary
of R. We can now consider the different boundary conditions separately.

a) Reflecting Barrier
We can consider the situation where the process cannot leave a region R, hence there
is zero net flow of probability across S , the boundary of R. Thus we require

n · F (x, t) = 0 forx ∈ S , n = normal to S .

Since the process cannot cross S , it must be reflected there, and hence the name
reflecting barrier is used for this condition.

b) Absorbing Barrier
Here, one assumes that the moment the process reaches S , it is removed from the sys-
tem, thus the barrier absorbs. Consequently, the probability of being on the boundary
is zero, i.e.

f(x, t) = 0 for x ∈ S .

c) Periodic Boundary Condition
We assume that the process takes place on an interval [c, d] in which the two end-
points are identified with each other. This occurs, for example, if the diffusion is on
a circle. Then we impose periodic boundary conditions

(I) : lim
x→d−

f(x, t) = lim
x→c+

f(x, t), (3.4)

(II) : lim
x→d−

F (x, t) = lim
x→c+

F (x, t). (3.5)
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Most frequently, periodic boundary conditions are imposed when the functions a(x, t)
and b(x, t) are periodic on the same interval so that we have

a(d, t) = a(c, t),

b(d, t) = b(c, t).

It means that (I) and (II) simply reduce to an equality of f(x, t) and its derivatives
at the points c and d.

d) Natural Boundaries
If the diffusion coefficient vanishes at a boundary, we have a situation in which the
boundary may be automatically prescribed. The detailed formulation can be found
in [47]. The natural boundary condition typically is applied when the range of the
random variable X(t) is infinite or semi-infinite. In this case f(x, t)→ 0 as x→∞ or
x→ −∞ with the decay to zero being sufficiently fast to ensure that the normalisation
integral is ∫ ∞

−∞
f(x, t)dx = 1.

In the one-dimensional case, this requires that f(x, t) tends to zero faster than |x|−1

as |x| tends to ∞.

e) Boundaries at infinity
All of the above kinds of boundaries can be considered at infinity, provided we can
simultaneously guarantee the normalisation of the probability. If f(x) is reasonably
well behaved, it requires

lim
x→∞

f(x, t) = 0.

If ∂xf(x) is reasonably well behaved, that is does not oscillate infinitely rapidly as
x→∞,

lim
x→∞

∂xf(x, t) = 0

so that a nonzero flux at infinity will usually require either a(x, t) or b(x, t) to become
infinite there. Treatment of such cases is usually best carried out by changing to
another variable which is finite at x =∞.

Where there are boundaries at x = ±∞ and nonzero fluxes at infinity are permit-
ted, we have two possibilities which do not allow for loss of probability:

i) F (±∞, t) = 0,

ii) F (+∞, t) = F (−∞, t).

These are the limits of reflecting and periodic boundary conditions, respectively.
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3.1.4 Stationary solutions

3.1.4.1 Homogeneous Fokker-Planck equations

In a homogeneous process, the drift and diffusion coefficients are time independent.
In such a case, the equation satisfied by the stationary distribution is

d

dx
(b(x)f(x))− 1

2

d2

dx2
(a(x)f(x)) = 0,

which can also be written in terms of the flux as follows

d

dx
F (x) = 0,

which clearly has the solution

F (x) = constant.

Suppose the process takes place on an interval (c, d). Then we must have

F (c) = F (x) = F (d) ≡ F, (3.6)

and if one of the boundary conditions is reflecting, this means that both are reflecting,
and F = 0.

If the boundaries are not reflecting, (3.6) requires them to be periodic. We then
use the boundary conditions given by (3.4) and (3.5). We find the following station-
ary solutions corresponding to different boundary conditions.

a) Zero flux - Potential solution
Suppose that the boundary conditions are reflecting. This means zero flux trough the
boundary. Setting F = 0, we rewrite (3.6) as follows

b(x)f(x) =
1

2

d

dx
(a(x)f(x)) = 0,

for which the solution is

f(x) =
N
a(x)

exp(2

∫ x

c

b(s)/a(s) ds), (3.7)

where N is a normalisation constant such that∫ d

c

f(x) dx = 1.

Such a solution is known as a potential solution, for various historical reasons, but
mainly because the stationary solution is obtained by a single integration.
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b) Periodic boundary condition
In this case, the flux

F = b(x)f(x)− 1

2

d

dx
(a(x)f(x)). (3.8)

is not arbitrary, but is determined by normalisation and the periodic boundary con-
dition

f(c) = f(d), (3.9)
F (c) = F (d). (3.10)

For convenience, define

ψ(x) = exp(2

∫ x

c

b(s)/a(s) ds).

Then we can easily integrate (3.8) to get

f(x)a(x)/ψ(x) = f(c)a(c)/ψ(c) + F

∫ x

c

ds/ψ(s).

By imposing the boundary condition (3.9), we find that

F = (a(d)/ψ(d)− a(c)/ψ(c))f(c)/

(∫ d

c

ds/ψ(s)

)
,

so that

f(x) = f(c)


∫ x

c

ds

ψ(s)

a(d)

ψ(d)
+

∫ d

x

ds

ψ(s)

a(c)

ψ(c)

a(x)

ψ(x)

∫ d

c

ds

ψ(s)

 . (3.11)

c) Infinite range and singular boundaries
In either of these cases, one or the other of the above possibilities may turn out to be
forbidden. In general, it is very complicated to enumerate the possibilities. We shall
demonstrate these by means of the following subsections.

3.1.4.2 Diffusion in a gravitational field

A strongly damped Brownian particle moving in a constant gravitational field is often
described by the SDE

dX(t) = −b dt+
√
a dW (t),

for which the Fokker-Planck equation is

∂tf = ∂x(bf) +
1

2
a∂xxf.
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On the interval (c, d) with reflecting boundary conditions, the stationary solution is
given by (3.7), that is

f(x) = N exp(−2bx/a),

where we have absorbed constant factors into the definition of N .
Clearly this solution is normalisable on (c, d) only if c is finite, though d may

be infinite. The result is no more profound than to say that particles diffusing in
a beaker of fluid will fall dawn, and if the beaker is infinitely deep, they will never
stop falling. Diffusion upwards against gravity is possible for any distance but with
exponentially small probability.

Now assume periodic boundary conditions on (c, d). Substitution into (3.11) yields

f(x) = f(c);

a constant distribution. The interpretation is that the particles pass freely from c to
d and back.

3.1.4.3 Ornstein-Uhlenbeck process

Corresponding to the Ornstein-Uhlenbeck process

dX(t) = −γX(t) dt+
√
a dW (t)

we have the Fokker-Planck equation

∂tf = ∂x(γxf) +
1

2
a∂xxf,

whose stationary solution on the interval (c, d) with reflecting barrier is

f(x) = N exp(−γx2/a).

Provided γ > 0, this is normalisable on (−∞,∞). If γ < 0, one can only make sense
of it on a finite interval. Suppose c = −d < 0. If we consider periodic boundary
condition on this interval, we find that

f(x) = f(c) exp
(
−γ
a

(x2 − c2)
)
,

so that the symmetry yields the same solution as in the case of reflecting barriers.
Letting c → ∞, we see that we still have the same solution. The result is also

true if c→∞ independently of d→ −∞, provided γ > 0.
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3.1.4.4 Chemical reaction model

Although chemical reactions are normally best modelled by a birth-death master
equation formalism, approximate treatments are often given by means of a Fokker-
Planck equation. The reaction

A+B 
 2A

is of interest since it possesses an exit boundary at x = 0 (where x is the number of
molecules of A). Clearly if there is no A, a collision between A and B cannot occur,
so no additional A is produced. The corresponding Fokker-Planck equation is [47]

∂tf = −∂x((cx− x2)f(x, t)) +
1

2
∂xx((cx+ x2)f(x, t)).

We introduce reflecting boundaries at x = α and x = β. In this case, the stationary
solution is

f(x) = exp(−2x)(c+ x)4α−1/x

which is not normalisable if α = 0. The pole at x = 0 is a result of the absorption
there. The stationary solution has relevance only if α > 0, since it is otherwise not
normalisable. The physical meaning of a reflecting barrier is quite simple: whenever
a molecule of A disappears, we simply add another one immediately. The time for
all x to disappear is in practice extraordinarily long, and the stationary solution is a
good representation of the distribution except near x = 0.

3.1.5 Derivation of Fokker-Planck equation

In this section, we illustrate a classical heuristic construction of the Fokker-Planck
equation starting from a discrete random walk; see, e.g., [33]. Let us consider the
random motion of a particle that can take small steps of amount −∆x, 0 and +∆x
in an interval of time ∆t. For now, we assume both ∆x and ∆t be fixed. Further, let
us denote π(+)

∆x (x) and π(−)
∆x (x) the probabilities that the particle starting at x at time

t, will be at x + ∆x and x −∆x, respectively. So that, 1 − π(+)
∆x (x) − π(−)

∆x (x) is the
probability that the particle remains at x at time t + ∆t. The subscript ∆x of π(+)

∆x

means that the probability is scale dependent and it changes as ∆x approaches zero.
We assume that P (x0, x; t)∆x is the conditional probability that the particle arrives
at x at time t starting from x0 at t = 0 following a random path. The following
equation holds for the conditional probabilities

P (x0, x; t)∆x = P (x0, x−∆x; t−∆t)π
(+)
∆x (x−∆x)∆x

+ P (x0, x+ ∆x; t−∆t)π
(−)
∆x (x+ ∆x)∆x

+ P (x0, x; t−∆t)(1− π(+)
∆x (x)− π(−)

∆x (x))∆x.

(3.12)

From this discrete model of a stochastic process, we want to build one with in-
finitesimal increments for ∆x,∆t → 0. In order that the limiting process has a
statistical meaning, the probabilities π(+)

∆x and π(−)
∆x , and the space scale ∆x must be
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subject to some constraint while scaling ∆t→ 0. These are the following infinitesimal
mean of change particle position X(t), conditional on X(t) = x,

b(x) = lim
∆t→0

E[X(t+ ∆t)−X(t)|X(t) = x]

∆t
(3.13)

and the infinitesimal variance is given by

a(x) = lim
∆t→0

V [X(t+ ∆t)−X(t)|X(t) = x]

∆t
. (3.14)

Given the particle at x at time t, then at time t + ∆t the mean value of change in
position is as follows

∆x(π
(+)
∆x (x)− π(−)

∆x (x)) (3.15)

and the variance is given by

∆x2(π
(+)
∆x (x) + π

(−)
∆x (x)− (π

(+)
∆x (x)− π(−)

∆x (x))2). (3.16)

From (3.13), we obtain

b(x) = lim
∆x,∆t→0

(π
(+)
∆x (x)− π(−)

∆x (x))
∆x

∆t
(3.17)

and from (3.14), we have

a(x) = lim
∆x,∆t→0

(π
(+)
∆x (x)− π(−)

∆x (x)− (π
(+)
∆x (x)− π(−)

∆x (x))2)
∆x2

∆t
. (3.18)

These last two equations provide constraints for the form of π(+)
∆x (x) and π

(−)
∆x (x).

Here, we are building an infinitesimal stochastic process with mean b(x) and variance
a(x). In order that a(x) be a non-vanishing function and bounded a(x) < A, we
suppose the scale law (∆x)2 = A∆t. The choices

π
(+)
∆x (x) =

1

2A
(a(x) + b(x)∆x)

and
π

(−)
∆x (x) =

1

2A
(a(x)− b(x)∆x)

make the requirements on the mean and variance satisfied. Moreover, π(+)
∆x , π

(−)
∆x ≥ 0

and π(+)
∆x + π

(−)
∆x ≤ 1 must be satisfied, so that we require a(x) ≥ b(x)∆x. We notice

that the scaling law ∆x = O(
√

∆t) is typical of the Wiener or Gaussian white noise.
By expanding in Taylor series (3.12) up to second order in ∆t and then in ∆x, we

obtain

P ' (P − Px∆x+ 1
2
Pxx∆x

2 − Pt∆t)(π(+)
∆x − π

(+)
∆x

′
∆x+ 1

2
π

(+)
∆x

′′
∆x2)

+ (P + Px∆x+ 1
2
Pxx∆x

2 − Pt∆t)(π(+)
∆x + π

(+)
∆x

′
∆x+ 1

2
π

(+)
∆x

′′
∆x2)

+ (P − Pt∆t)(1− π(+)
∆x − π

(−)
∆x ).

(3.19)
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Finally, by using (3.17) and (3.18), and the scale law for ∆x, we obtain the Fokker-
Planck equation

∂tP (x0, x; t) =
1

2
∂xx(a(x)P (x0, x; t))− ∂x(b(x)P (x0, x; t)).

If we insert the time in a(x, t) and b(x, t), there is no change in the proof and we get
a more general form of the FP equation.

3.1.6 Existence and uniqueness of solutions

We introduce some assumptions on the FP model that guarantee its solvability. Let
ρ be the initial PDF distribution. Consider the following Fokker-Planck model

∂tf(x, t)− 1

2

d∑
i,j=1

∂xixj (aij(x, t) f(x, t)) +
d∑
i=1

∂xi (bi(x, t) f(x, t)) = 0, (3.20)

f(x, t0) = ρ(x), (3.21)

We have the following

Assumption 1.

1. The coefficient function aij is bounded and satisfies the following uniform ellip-
ticity condition for a constant θ > 0,

d∑
ij=1

aij(x, t)ξiξj ≥ θ |ξ|2, ∀ ξ ∈ Rd, (x, t) ∈ Q.

2. The coefficient functions bi and ∂xiaij, i, j = 1, . . . , d, satisfy the following

bi, ∂xiaij ∈ Lq(0, T ;Lp(Ω))

where p and q are such that 2 < p, q ≤ ∞, and d
2p

+ 1
q
< 1

2
.

3. The functions ∂xibi, i = 1, . . . , d, satisfy

∂xibi ∈ Lq(0, T ;Lp(Ω))

where p and q are such that 1 < p, q ≤ ∞, and d
2p

+ 1
q
< 1.

These assumptions were introduced in [11] to prove existence and uniqueness of
non-negative solutions of parabolic problems. In [7], the results of [11] have been
specialized to prove existence, uniqueness, and positivity of solutions to the forward
FP problem (3.20)-(3.21) in a bounded domain. We have the following

Theorem 1. Suppose that bi and aij in (3.20) satisfy the Assumption 1, and take the
initial condition ρ ∈ H1

0 (Ω) and homogeneous boundary conditions on Σ = ∂Ω×(0, T ).
Then there exists a unique weak solution f to (3.20)-(3.21). Further, the solution f
has the following additional property
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If 0 ≤ ρ ≤ m a.e. in Ω, then

0 ≤ f(x, t) ≤ m(1 + C k), in Q

where k = 1
2

∑d
i=1 ‖

∑d
j=1 ∂xjaij‖p,q + ‖

∑d
i=1 ∂xibi‖p,q and C depends only on T ,

Ω, and the structure of the FP operator.

For the definition of a weak solution we refer to [102]. We use Theorem 1 to discuss
existence, uniqueness, and positivity of the solution to the FP problem (3.20)-(3.21)
in an unbounded domain Ω = Rd. To this end, we define some special boundary value
problems, as it is proposed in [11].

Let Ωk = {x; |x| < k} and Qk = Ωk×(0, T ). For each integer k ≥ 3, let ζk = ζk(x)
denote a C∞0 (Rn) function such that ζk = 1 for |x| ≤ k − 2, ζk = 0 for |x| ≥ k − 1,
0 ≥ ζk ≤ 1 and |∂xζk| is bounded independent of k. According to Theorem 1, for
each k there exists a unique and bounded weak solution fk to the boundary value
problem

∂tf
k − 1

2

∑d
i,j=1 ∂

2
xixj

(
aij f

k
)

+
∑d

i=1 ∂xi
(
bi(u) fk

)
= 0 in Qk,

fk(x, 0) = ζk(x)ρ(x) in Ωk,
(3.22)

with homogeneous boundary conditions. Extend the domain of definition of fk by
setting fk = 0 for |x| ≥ k.

In [11] one can find the arguments which prove the following theorem.

Theorem 2. If bi and aij in (3.20) satisfy the Assumption 1, the function fk in
(3.22) is bounded, ρ ∈ H1(Ω), and ρ ≥ 0 almost everywhere in Ω, then the problem
(3.20)-(3.21) possesses a unique and non-negative weak solution

Although the results presented in [11] and later generalized in [58] prove the
existence of a unique non-negative solution for our problem belonging to the space
L∞((0, T );L2

loc(Ω))∩L2((0, T );H1
loc(Ω)), the arguments provided in [63] show that this

solution may have higher regularity. In fact, we have that for r > 0, f ∈ Hr+2,r/2+1(Q)
as long as ρ ∈ Hr+2(Ω) and the coefficients aij and bi belong to Hr,r/2(Q).

Notice that in our case and in many applications the FP parameter functions are
smooth and Assumption 1 and the assumptions in [63] are immediately satisfied. For
additional results on the Fokker-Planck equation with irregular coefficients see [67].

3.2 Piecewise Deterministic Processes

In this thesis, we also deal with a class of PDP models described by a state function
that is continuous in time and driven by a discrete state Markov process. These
models are used to describe phenomena where a deterministic motion is subject to a
sudden interaction that produces randomization of the motion for a short time com-
pared to the time scale where the process is observed. In this framework, applications
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include dichotomic noise, random telegraph processes, transport processes, and bi-
nary noise. Further applications include reacting-diffusing systems [55], biological
dispersal [54], non-Maxwellian equilibrium [5, 9, 43, 82], and filtered telegraph signal
analysis [89].

We specifically consider a process in which the d-components state function X(t),
X : [t0,∞)→ Ω, Ω ⊆ Rd, satisfies the differential equation

d

dt
X(t) = AS (t) (X(t)) , t ∈ [t0,∞), (3.23)

where S (t) : [t0,∞[→ S is a Markov process with discrete states S = {1, . . . , S}. For
each state s ∈ S, we say that the dynamics is in the state s, and it is driven by the
function As : Ω→ Rd, that belongs to the set of functions {A1, . . . , AS}. We require
that all As(·), s ∈ S, be Lipschitz continuous, so that for fixed s the solution X(t)
exists and is unique.

In the following, we present the arguments from [8] to show that the time evolution
of the probability density function of the process (3.23) is governed by the following
FP hyperbolic system,

∂tfs(x, t) + ∂x(Asfs(x, t)) =
S∑
j=1

Qsjfj(x, t), s ∈ S, (3.24)

where Qsj, s, j ∈ S, are the components of the transition matrix Q. Since the fs, for
s ∈ S, represent the PDFs, we require the following

S∑
s=1

∫
Ω

fs(x, t) dx = 1. (3.25)

The initial conditions for the solution of the FP system are given as follows

fs(x, 0) = f 0
s (x), s = 1, . . . , S, (3.26)

where f 0
s (x) ≥ 0, x ∈ Ω,

∑S
s=1

∫
Ω
f 0
s (x) dx = 1.

3.2.1 Derivation of Fokker-Planck equation

We present the derivation of the one-dimensional FP equation from [8], and for multi-
dimensional case we refer to [3].

Consider small time steps of size ∆t. At each time step there is the probability
(µs∆t) that a transition event occurs and (1−µs∆t) that the jump in the process does
not occur. In the latter case, the motion is deterministic. Let P be the probability
measure on the hybrid space state of the system; then for a small interval of time ∆t
and displacement ∆x, the change of the probability distribution Fs(x, t) := P(X(t) ≤
x,S(t) = s) for the state s is as follows

Fs(x+ ∆x, t+ ∆t) ' (1− µs∆t)Fs(x, t).
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Notice that the right-hand side of this expression represents the probability that the
jump in time does not occur and the evolution of the probability distribution follows
a deterministic law. Next, we assume enough regularity of Fs and As and use Taylor
expansion to obtain the following approximation

Fs + As(x) ∆t ∂xFs + ∂tFs∆t ' (1− µs∆t)Fs,

where we used the approximation ∆x ≈ As(x)∆t.
Now, by considering the first-order terms, we obtain the following

∂tFs(x, t) = −As(x) ∂xFs(x, t)− µs Fs(x, t). (3.27)

This equation is valid as long as no switching event occurs. To take into account a
switching event within the time interval (t, t+∆t), we must include on the right-hand
side the amount of ingoing probability from the other states. This is given by the
joint probability described by the stochastic matrix qsj, with

∑S
s=1 qsj = 1, multiplied

by µj Fj(x, t)∆t. Therefore, (3.27) becomes the following

∂tFs(x, t) + As(x) ∂xFs(x, t) = −µs Fs(x, t) +
S∑
j=1

qsjµjFj(x, t). (3.28)

We refer to this equation as the Liouville master equation for the probability distri-
bution function.

The marginal PDF fs for the state s is related to the corresponding probability
distribution as follows

Fs(x, t) =

∫ x

−∞
fs(z, t) dz, s = 1, . . . , S.

Hence, by differentiating (3.28) with respect to x, we obtain the following FP system
for the probability density functions

∂tfs(x, t) + ∂x (As(x) fs(x, t)) =
S∑
j=1

Qsjfj(x, t), s = 1, . . . , S, (3.29)

where
Qsj =

{
µj qsj if j 6= s,
µs (qss − 1),

(3.30)

for s ∈ S, x ∈ Ω ⊂ R, for the scalar process X(t) in the state s. We have
∑S

s=1Qsj =
0.

Notice that we consider PDP processes whose PDFs represent the absolutely con-
tinuous part of the Lebesgue measure. For a rigorous derivation of the FP system
for a general PDP process see [29], where an existence and uniqueness theorem is
proved for the weak formulation solution of the FP system. In [29], the PDP is
defined by a space-depending transition rate matrix a(i, j, x) for jumps from i to
j of the Markov chain, and a transition measure dµ(i, j, x)(dy) for random jumps
on the deterministic dynamics. In our case, the transition rate is constant, i.e.
a(i, j, x) = µiqji, and discontinuous jumps in the values of X(t) are not allowed,
hence dµ(i, j, x)(dy) = δ(x− y) dy, where δ(x) is the δ-Dirac function.
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Chapter 3. Fokker-Planck equations

3.2.2 Existence and uniqueness of solutions

The FP system given by (3.24) can be written in the following form

∂tfs(x, t) + As(x, us) ∂xfs(x, t) =
S∑
j=1

Q̃sj(x, us) fj(x, t), s = 1, . . . , S, (3.31)

where Q̃sj(x, us) = Qsj − δsj∂xAs(x, us), with Qsj depending on µj as defined in
Eq. (3.30), and δsj denotes the Kronecker’s delta. We denote with f = (fs)

S
s=1 and

u = (us)
S
s=1.

The model (3.31) is a first-order hyperbolic system in diagonal form, with coupling
given through zero-order terms. This is a strictly hyperbolic model provided that the
functions As are distinct for all (x, us) ∈ (Ω, Us). It is well known that for first-
order strictly hyperbolic PDEs, the solution to the initial value problem exisits and
is unique with the same regularity as the initial data, see, e.g., [65].
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Chapter 4

Finite difference discretization of FP
equations

4.1 The Fokker-Planck equation for Itō processes

In this section, the Chang-Cooper discretization scheme for Fokker-Planck equations
corresponding to Itō processes in bounded domains is investigated. It is shown that
the Chang-Cooper scheme combined with backward first- and second-order finite dif-
ferencing in time provides stable and accurate solutions that are conservative and
positive. These properties are theoretically proven and validated by numerical exper-
iments.

Consider the d-dimensional Itō stochastic process modelled by{
dX(t) = b(X(t), t) dt+ σ(X(t), t) dW (t)
X(t0) = X0,

(4.1)

having an initial probability density of X0 given by f0(x) ≥ 0 with
∫

Ω
f0(x) dx = 1.

This stochastic process has been introduced in Chapter 2, and in Chapter 3 it was
shown that the time evolution of the PDF of this stochastic process is governed by
the following FP equation

∂tf(x, t)− 1

2

d∑
i,j=1

∂2
xixj

(aij(x, t)f(x, t)) +
d∑
i=1

∂xi (bi(x, t)f(x, t)) = 0 (4.2)

f(x, 0) = f0(x) (4.3)

where (x, t) ∈ Ω× (0, T ), and the diffusion coefficient is given by the positive-definite
symmetric matrix a = σ σ>, with elements

aij =
m∑
k=1

σik σjk.

We choose Ω ⊂ Rd and Q = Ω×(0, T ); we also denote Σ = ∂Ω×(0, T ). Notice that in
the FP model (4.2), the ‘space’ dimension corresponds to the number of components
of the stochastic process.
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Chapter 4. Finite difference discretization of FP equations

The FP equation can be written in flux form and therefore in the case of bounded
domains the condition of zero fluxes (reflection) on the boundary guarantees conser-
vativeness of the total probability. In our analysis, we choose this type of boundary
conditions. To write the FP equation (4.2) in conservative flux form, we consider the
flux at (x, t) in th i-th direction as follows

F i(x, t) =
1

2

d∑
j=1

aij(x, t)∂xjf(x, t) +

(
1

2

d∑
j=1

∂xjaij(x, t)− bi(x, t)

)
f(x, t).

To have a more compact notation, we define the vector B with the elements

Bi(x, t) =
1

2

d∑
j=1

∂xjaij(x, t)− bi(x, t), 1 ≤ i ≤ d

and the matrix C with the elements

Cij(x, t) =
1

2
aij(x, t).

Therefore the d-dimensional flux can be written as follows

F (x, t) = B(x, t)f(x, t) + C(x, t)∇f(x, t), (4.4)

and the multi-dimensional FP equation can be expressed in the following flux form

∂tf(x, t) = ∇ · F (x, t). (4.5)

Our FP problem consists of solving (4.5) in a bounded domain with initial condition
given by f0 and zero-flux boundary conditions.

4.1.1 Discretization of the Fokker-Planck equation

We consider the FP problem in the time interval (0, T ). Although the discretization
scheme is applicable for all bounded domains, we set Ω = (0, L)d for the ease of nu-
merical experiment where the FP equation corresponding to the Ornstein-Uhlenbeck
process will be considered to validate the theoretical results. The time-step size is de-
fined with δt = T/M , in which M is a positive integer, and tn = nδt, n = 0, 1, . . . ,M
are the time steps. Further, we consider a uniform mesh with mesh size h = L/N .
We have the following spatial mesh

Ωh = {xj ∈ Rd : xj = jh, j ∈ Zd} ∩ Ω,

where j = (j1, . . . , jd) is a multi-index for the spatial position. The unit-coordinate
vector in the ith direction is denoted with 1i.

For grid functions u and v defined on Ωh, we introduce the discrete L2-scalar
product

(u, v) = hd
∑
|j|≤dN

ujvj,
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4.1. The Fokker-Planck equation for Itō processes

with associated norm ‖u‖ = (u, u)1/2. We also represent f(xj, t
n) by the approximated

value fnj .
Next, we consider the following discretization scheme

Dtf
n
j =

1

h

d∑
i=1

(F i,n
j+1i/2

− F i,n
j−1i/2

), (4.6)

where, for simplicity, we assume a diagonal diffusion matrix and therefore adopt the
following simpler notation

Ci(x, t) =
1

2
aii(x, t), Bi(x, t) =

1

2
∂xiaii(x, t)− bi(x, t).

Within this setting, we consider first- and second-order backward time-differencing
as follows

Dtf
n
j =

fn+1
j − fnj
δt

, Dtf
n
j =

3fn+1
j − 4fnj + fn−1

j

2δt
,

where, for simplicity of notation, in Dtf
n
j we use the time index n to denote time

differencing at tn+1.
For space discretization, we need a second-order scheme which guarantees pos-

itivity of the probability density function together with conservation of the total
probability. These are essential features that characterize the Chang-Cooper scheme.
With this scheme, the following numerical flux in the i-th direction at the position
xj+1i/2 is constructed

F i,n
j+1i/2

=

(
(1− δi,nj )Bi,n

j+1i/2
+

1

h
Ci,n

j+1i/2

)
fn+1

j+1i
−
(

1

h
Ci,n

j+1i/2
− δi,nj Bi,n

j+1i/2

)
fn+1

j , (4.7)

in which
δi,nj =

1

wi,nj

− 1

exp(wi,nj )− 1
, (4.8)

with wi,nj = hBi,n
j+1i/2

/Ci,n
j+1i/2

, where we assume that Ci and Bi are positive functions
[23].

This formula results from the following linear convex combination of f at the
points j and j + 1i. We have

fn+1
j+1i/2

= (1− δi,nj ) fn+1
j+1i

+ δi,nj fn+1
j , δi,nj ∈ [0, 1/2].

The idea of implementing this combination was proposed by Chang and Cooper in
[23] and it was motivated with the need to guarantee positive solutions that pre-
serve equilibrium configuration. For this reason, Chang and Cooper notice that at
equilibrium the numerical fluxes must be zero, F i

j+1i/2
= 0. Therefore, one obtains

fn+1
j+1i

fn+1
j

=

(
1
h
Ci,n

j+1i/2
− δi,nj Bi,n

j+1i/2

)
[
(1− δi,nj )Bi,n

j+1i/2
+ 1

h
Ci,n

j+1i/2

] . (4.9)
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Chapter 4. Finite difference discretization of FP equations

On the other hand, if we solve F (xj+1i/2, t
n+1) = 0, we have the following

fn+1
j+1i

fn+1
j

= exp

(
−
∫ xj+1i

xj

Bi(x, tn+1)

Ci(x, tn+1)
dxi

)
≈ exp

(
−
Bi,n

j+1i/2

Ci,n
j+1i/2

h

)
. (4.10)

Comparison of (4.9) with (4.10) shows that we can choose the value of the parameter
δi,nj such that (4.9) gives the exact ratio value (4.10). Thus, we obtain (4.8) where
δi,nj can be shown to be monotonically decreasing from 1/2 to 0 as wi,nj goes from 0

to ∞; see [23]. Notice that with the choice of δi,nj given above, the resulting scheme
shares the same properties of the continuous FP equation that guarantee positiveness
and conservativeness.

4.1.1.1 The Chang-Cooper scheme with first-order time differencing

In our discussion, we first focus on the numerical solution of the FP equation in one
spatial dimension and later generalize the results for d > 1. The one-dimensional FP
problem reads as follows

∂tf(x, t) = ∂x F (x, t) + g(x, t), (x, t) ∈ Q,
F (x, t) = 0, (x, t) ∈ Σ,
f(x, 0) = f0(x), x ∈ Ω.

(4.11)

where F (x, t) = [B(x, t)f(x, t)+C(x, t)∂xf(x, t)] represents the flux. We assume that
C is a positive continuous scalar function, and B satisfies Lipschitz continuity, that
is, |B(x+ h, t)− B(x, t)| ≤ γh, where γ > 0 is the Lipschitz constant. In particular,
notice that in the case of an Ornstein-Uhlenbeck process, C(x, t) is a positive constant
function and B(x, t) is constant in time and linear in the space variable. Therefore
in this case the global growth conditions and the Lipschitz condition given in [18] are
satisfied.

For convenience of the numerical analysis that follows, we consider a source term
g added to the equation. However, positivity and conservativeness of the FP equation
are claimed for g = 0.

In their work [23], Chang and Cooper proposed the following discretization of the
one-dimensional FP equation with first-order implicit time-differencing

fn+1
j − fnj
δt

=
1

h
{
[
(1− δnj )Bn

j+ 1
2

+
1

h
Cn
j+ 1

2

]
fn+1
j+1

−
[

1

h

(
Cn
j+ 1

2

+ Cn
j− 1

2

)
+ (1− δnj−1)Bn

j− 1
2

− δnjBn
j+ 1

2

]
fn+1
j

+

[
1

h
Cn
j− 1

2

− δnj−1B
n
j− 1

2

]
fn+1
j−1 }

+ gn+1
j , j = 0, . . . , N,

(4.12)

with the following zero-flux boundary conditions

F n
− 1

2
= 0, F n

N+ 1
2

= 0, (4.13)
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4.1. The Fokker-Planck equation for Itō processes

where

F n
j+ 1

2
= Bn

j+ 1
2

(
(1− δnj )fn+1

j+1 + δnj f
n+1
j

)
+ Cn

j+ 1
2

(
fn+1
j+1 − fn+1

j

h

)
.

Notice that in order to define the numerical zero-flux boundary conditions, ghost
points and ghost variables at j = −1 and j = N + 1 must be formally introduced.
However, we show later how these variables are not required.

In the sequel, we investigate the approximation properties of this scheme, that we
call the CC-BDF scheme. Conservativeness of the FP equation derives straightfor-
wardly from the discrete FP equation in flux form. We have

Lemma 1. The following conservativeness property holds

N∑
j=0

fn+1
j =

N∑
j=0

fnj , n ≥ 0.

Proof. The claim can be proved by summing over j in the equation (4.6) with Dtf
n
j =

fn+1
j − fnj
δt

, which leads to

N∑
j=0

(fn+1
j − fnj ) =

δt

h

N∑
j=0

(F n
j+ 1

2
− F n

j− 1
2
).

The right-hand side vanishes since this is the difference of the fluxes at the boundaries,
therefore

∑N
j=0 f

n+1
j =

∑N
j=0 f

n
j .

In order to investigate stability of the CC scheme with first-order time differencing,
we define the following

D+f
n
j = (fnj+1 − fnj )/h,

D−f
n
j = (fnj − fnj−1)/h,

Mδf
n
j = (1− δn−1

j−1 )fnj + δn−1
j−1 f

n
j−1.

With this setting, the CC-BDF scheme becomes

fn+1
j − fnj
δt

= D+C
n
j− 1

2
D−f

n+1
j +D+B

n
j− 1

2
Mδf

n+1
j + gn+1

j , (4.14)

where

D+C
n
j− 1

2

D−f
n+1
j = D+C

n
j− 1

2

(
fn+1
j − fn+1

j−1

h

)

=
1

h

{
Cn
j+ 1

2

(
fn+1
j+1 − fn+1

j

h

)
− Cn

j− 1
2

(
fn+1
j − fn+1

j−1

h

)}

=
1

h

{
1

h
Cn
j+ 1

2

fn+1
j+1 −

1

h

(
Cn
j+ 1

2

+ Cn
j− 1

2

)
fn+1
j +

1

h
Cn
j− 1

2

fn+1
j−1

}
,
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and

D+B
n
j− 1

2

Mδf
n+1
j = D+

(
(1− δnj−1)Bn

j− 1
2

fn+1
j + δnj−1B

n
j− 1

2

fn+1
j−1

)
=

1

h

{
(1− δnj )Bn

j+ 1
2

fn+1
j+1 − (1− δnj−1)Bn

j− 1
2

fn+1
j

}
+

1

h

{
δnjB

n
j+ 1

2

fn+1
j − δnj−1B

n
j− 1

2

fn+1
j−1

}
.

Theorem 3. If δt ≤ 1
2γ
, then we have the following bound for the solution of the

discretization scheme (4.14).

‖fk‖ ≤ 2k/2‖f 0‖+ δt
k−1∑
n=0

2
k−n+1

2 ‖gn+1‖, k = 1, · · · ,M.

Proof. Taking discrete L2 inner product of (4.14) with fn+1, we have(
fn+1 − fn

δt
, fn+1

)
=
(
D+C

n
− 1

2
D−f

n+1, fn+1
)

+
(
D+B

n
− 1

2
Mδf

n+1, fn+1
)

+
(
gn+1, fn+1

)
.

Next, we find upper bounds for the terms on the right-hand side.(
D+C

n
− 1

2

D−f
n+1, fn+1

)
=

∑N
j=0(D+C

n
j− 1

2

D−f
n+1
j )fn+1

j h

=
∑N

j=0

[
Cn
j+ 1

2

(
fn+1
j+1 − fn+1

j

h

)
fn+1
j − Cn

j− 1
2

(
fn+1
j − fn+1

j−1

h

)
fn+1
j

]

=
∑N+1

j=1 Cn
j− 1

2

(
fn+1
j − fn+1

j−1

h

)
fn+1
j−1

−
∑N

j=0C
n
j− 1

2

(
fn+1
j − fn+1

j−1

h

)
fn+1
j

= −
∑N

j=1C
n
j− 1

2

(
fn+1
j − fn+1

j−1

h

)(
fn+1
j − fn+1

j−1

h

)
h

+Cn
N+ 1

2

(
fn+1
N+1 − f

n+1
N

h

)
fn+1
N − Cn

− 1
2

(
fn+1

0 − fn+1
−1

h

)
fn+1

0

≤ Cn
N+ 1

2

(
fn+1
N+1 − f

n+1
N

h

)
fn+1
N − Cn

− 1
2

(
fn+1

0 − fn+1
−1

h

)
fn+1

0
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4.1. The Fokker-Planck equation for Itō processes

Further, we have(
D+B

n
− 1

2

Mδf
n+1, fn+1

)
=

∑N
j=0((1− δnj )Bn

j+ 1
2

fn+1
j+1 f

n+1
j − (1− δnj−1)Bn

j− 1
2

(fn+1
j )2

+δnjB
n
j+ 1

2

(fn+1
j )2 − δnj−1B

n
j− 1

2

fn+1
j−1 f

n+1
j )

=
∑N

j=0(1− δnj )Bn
j+ 1

2

fn+1
j+1 f

n+1
j −

∑N−1
j=−1 δ

n
jB

n
j+ 1

2

fn+1
j fn+1

j+1

+
∑N

j=0 δ
n
jB

n
j+ 1

2

(fn+1
j )2 +

∑N−1
j=−1(δnj − 1)Bn

j+ 1
2

(fn+1
j+1 )2

=
∑N−1

j=0 (1− δnj )Bn
j+ 1

2

fn+1
j+1 f

n+1
j −

∑N−1
j=0 δnjB

n
j+ 1

2

fn+1
j fn+1

j+1

+(1− δnN)Bn
N+ 1

2

fn+1
N+1f

n+1
N − δn−1B

n
− 1

2

fn+1
−1 fn+1

0

+
∑N−1

j=0 δnjB
n
j+ 1

2

(fn+1
j )2 +

∑N−1
j=0 (δnj − 1)Bn

j+ 1
2

(fn+1
j+1 )2

+δnNB
n
N+ 1

2

(fn+1
N )2 + (δn−1 − 1)Bn

− 1
2

(fn+1
0 )2.

Now, we employ the zero-flux boundary conditions F n
− 1

2

= 0 and F n
N+ 1

2

= 0 given
by

Bn
− 1

2

(
(1− δn−1)fn+1

0 + δn−1f
n+1
−1

)
+ Cn

− 1
2

(
fn+1

0 − fn+1
−1

h

)
= 0,

and

Bn
N+ 1

2

(
(1− δnN)fn+1

N+1 + δnNf
n+1
N

)
+ Cn

N+ 1
2

(
fn+1
N+1 − f

n+1
N

h

)
= 0.

We obtain (
D+C

n
− 1

2

D−f
n+1, fn+1

)
+
(
D+B

n
− 1

2

Mδf
n+1, fn+1

)
≤

∑N−1
j=0

[
(fn+1
j )2 + (fn+1

j+1 )2
]
Bn
j+ 1

2

(
1−2δnj

2
)

+
∑N−1

j=0 δnjB
n
j+ 1

2

(fn+1
j )2 +

∑N−1
j=0 (δnj − 1)Bn

j+ 1
2

(fn+1
j+1 )2

≤
∑N−1

j=0
1
2
Bn
j+ 1

2

(fn+1
j )2 −

∑N−1
j=0

1
2
Bn
j+ 1

2

(fn+1
j+1 )2

≤
∑N−1

j=0
1
2
Bn
j+ 1

2

(fn+1
j )2 −

∑N
j=1

1
2
Bn
j− 1

2

(fn+1
j )2

+1
2
Bn
N+ 1

2

(fn+1
N )2 − 1

2
Bn
− 1

2

(fn+1
0 )2

=
∑N

j=0
1
2
Bn
j+ 1

2

(fn+1
j )2 −

∑N
j=0

1
2
Bn
j− 1

2

(fn+1
j )2

≤
∑N

j=0
1
2
|Bn

j+ 1
2

−Bn
j− 1

2

||fn+1
j |2

≤ 1
2
γ
∑N

j=0 |f
n+1
j |2h

= 1
2
γ‖fn+1‖2.
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Therefore, we have the following estimate(
fn+1 − fn

δt
, fn+1

)
≤ 1

2
γ‖fn+1‖2 + ‖gn+1‖‖fn+1‖.

On the other hand, we have

1

2δt
(‖fn+1‖2 − ‖fn‖2) ≤

(
fn+1 − fn

δt
, fn+1

)
,

which is easily proved by considering fn+1 = 1
2
(fn+1− fn) + 1

2
(fn+1 + fn). Hence, we

obtain
1

2δt
(‖fn+1‖2 − ‖fn‖2) ≤ 1

2
γ‖fn+1‖2 + ‖gn+1‖‖fn+1‖.

Since δt ≤ 1
2γ
, we have 1

1−γδt ≤ 2, and consequently

‖fn+1‖2 ≤ 2‖fn‖2 + 4δt‖gn+1‖‖fn+1‖,

‖fn+1‖2 − 4δt‖gn+1‖‖fn+1‖+ 4δt2‖gn+1‖2 ≤ 2‖fn‖2 + 4δt2‖gn+1‖2,(
‖fn+1‖ − 2δt‖gn+1‖

)2 ≤
(√

2‖fn‖+ 2δt‖gn+1‖
)2

,

‖fn+1‖ ≤
√

2‖fn‖+ 4δt‖gn+1‖.

This recursion relation gives us the following bound

‖fk‖ ≤ 2k/2‖f 0‖+ δt
k−1∑
n=0

2
k−n+1

2 ‖gn+1‖, k = 1, · · · ,M.

To investigate the order of accuracy of the CC-BDF scheme, we assume f ∈
C3([0, T ], C4(Ω)) and estimate the size of the truncation error.

Lemma 2. The truncation error of the discretization scheme (4.14) is of order O(h2+
δt).

Proof. First we notice that

fn+1
j − fnj
δt

= ∂tf
n+1
j − δt

2

∂2

∂t2
fn+1
j +

δt2

6

∂3

∂t3
fn+1
j +O(δt3).

Therefore, we have

∂tf
n+1
j −

fn+1
j − fnj
δt

=
δt

2

∂2

∂t2
fn+1
j +O(δt2),
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and also

D+C
n
j− 1

2

D−f
n+1
j =

1

h

{
Cn
j+ 1

2

(
fn+1
j+1 − fn+1

j

h

)
− Cn

j− 1
2

(
fn+1
j − fn+1

j−1

h

)}

=
1

h
∂xf

n+1
j (Cn

j+ 1
2

− Cn
j− 1

2

) + 1
2
∂xxf

n+1
j (Cn

j+ 1
2

+ Cn
j− 1

2

)

+
h

6
∂3

∂x3
fn+1
j (Cn

j+ 1
2

− Cn
j− 1

2

) +
h2

24
∂4

∂x4
fn+1
j (Cn

j+ 1
2

+ Cn
j− 1

2

) +O(h3)

= ∂xf
n+1
j ∂xC

n
j +

h2

24
∂xf

n+1
j

∂3

∂x3
Cn
j + ∂2

∂x2
fn+1
j Cn

j

+
h2

8
∂2

∂x2
fn+1
j

∂2

∂x2
Cn
j +

h2

6
∂3

∂x3
fn+1
j ∂xC

n
j +

h2

12
Cn
j
∂4

∂x4
fn+1
j +O(x4).

Therefore, we obtain the following intermediate estimate

D+C
n
j− 1

2

D−f
n+1
j − ∂x(Cn∂xf)tn+1

xj

=
h2

2
( 1

12
∂xf

n+1
j

∂3

∂x3
Cn
j + 1

4
∂2

∂x2
fn+1
j

∂2

∂x2
Cn
j + 1

6
∂3

∂x3
fn+1
j ∂xC

n
j + 1

6
Cn
j
∂4

∂x4
fn+1
j )

+O(h4).

We also have

D+B
n
j− 1

2

Mδf
n+1
j

=
1

h

{
(1− δnj )Bn

j+ 1
2

fn+1
j+1 − (1− δnj−1)Bn

j− 1
2

fn+1
j

}
+

1

h

{
δnjB

n
j+ 1

2

fn+1
j − δnj−1B

n
j− 1

2

fn+1
j−1

}
=

1

h

{
Bn
j+ 1

2

(
(1− δnj )fn+1

j+1 + δnj f
n+1
j

)
−Bn

j− 1
2

(
(1− δnj−1)fn+1

j + δnj−1f
n+1
j−1

)}
=

1

h
fn+1
j (Bn

j+ 1
2

−Bn
j− 1

2

) + ∂xf
n+1
j

(
(1− δnj )Bn

j+ 1
2

+ δnj−1B
n
j− 1

2

)
+

h

2
∂xxf

n+1
j

(
(1− δnj )Bn

j+ 1
2

− δnj−1B
n
j− 1

2

)
+O(h2)

= fn+1
j ∂xB

n
j + ∂xf

n+1
j Bn

j (1− δnj + δnj−1) + h
2
∂x(f

n+1
j Bn

j )(1− δnj − δnj−1)

+ h
2
∂xxf

n+1
j Bn

j (1− δnj − δnj−1) +O(h2).

Therefore, we have

D+B
n
j− 1

2

Mδf
n+1
j − ∂x(Bn f)tn+1

xj
= ∂xf

n+1
j Bn

j (δnj−1 − δnj )

+ h
2
∂x(∂xf

n+1
j Bn

j )(1− δnj − δnj−1) +O(h2).

Now, we note that

δnj =
1

wj
− 1

expwj − 1
,
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where wj = h
Bn
j+1

2

Cn
j+1

2

.

Since

δnj =

∑∞
k=1

wkj
(k+1)!∑∞

k=1

wkj
k!

,

we have

δnj−1 − δnj =

∑∞
k=1

wkj−1

(k+1)!∑∞
k=1

wkj−1

k!

−
∑∞

k=1

wkj
(k+1)!∑∞

k=1

wkj
k!

=

∑∞
p=1

∑∞
q=1

wpj−1w
q
j

(p+1)!q!
−
∑∞

p=1

∑∞
q=1

wpj−1w
q
j

p!(q+1)!∑∞
p=1

∑∞
q=1

wpj−1w
q
j

p!q!

=
1
12
wj−1wj(wj−1 − wj) +O(h4)∑∞

p=1

∑∞
q=1

wpj−1w
q
j

p!q!

,

and

1− δnj − δnj−1 = 1−
∑∞

k=1

wkj
(k+1)!∑∞

k=1

wkj
k!

−
∑∞

k=1

wkj−1

(k+1)!∑∞
k=1

wkj−1

k!

=

∑∞
p=1

∑∞
q=1

wpjw
q
j−1

p!q!
−
∑∞

p=1

∑∞
q=1

wpjw
q
j−1

(p+1)!q!
−
∑∞

p=1

∑∞
q=1

wpj−1w
q
j

(p+1)!q!∑∞
p=1

∑∞
q=1

wpj−1w
q
j

p!q!

= −
1
12
wj−1wj(wj−1 + wj) +O(h4)∑∞

p=1

∑∞
q=1

wpj−1w
q
j

p!q!

,

Notice that

wj−1 − wj = h(
Bn
j− 1

2

Cn
j− 1

2

−
Bn
j+ 1

2

Cn
j+ 1

2

) = O(h2),

and

wj−1 + wj = h(
Bn
j− 1

2

Cn
j− 1

2

+
Bn
j+ 1

2

Cn
j+ 1

2

) = O(h),

we obtain
δnj−1 − δnj = O(h2),

and
1− δnj − δnj−1 = O(h).

Using (4.11), the truncation error can be written as follows

φn+1
j = [∂tf

n+1
j −

fn+1
j − fnj
δt

] + [D+C
n
j− 1

2

D−f
n+1
j − ∂x(Cn∂xf)tn+1

xj
]

+ [D+B
n
j− 1

2

Mδf
n+1
j − ∂x(Bn f)tn+1

xj
].
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Hence, the truncation error is O(h2 + δt).

Next, we define the global error as follows

enj = f(xj, t
n)− fnj , j = 0, . . . , N,

and investigate the accuracy of the method by the following theorem.

Theorem 4. If δt ≤ 1
2γ
, then the discretization scheme (4.14) converges with an

error of order O(h2 + δt).

Proof. By definition of the truncation error, we have

en+1
j − enj
δt

= D+C
n
j− 1

2
D−e

n+1
j +D+B

n
j− 1

2
Mδe

n+1
j + φn+1

j .

That is, the solution error satisfies the discretized FP equation discussed above with
the right-hand side given by the truncation error function. Hence, Theorem 3 implies
accuracy as follows

‖ek‖ ≤ δt
k−1∑
n=0

2
k−n+1

2 ‖φn+1‖.

Therefore the difference scheme (4.14) converges with error O(h2 + δt).

We now notice that the fundamental theorem of numerical analysis, also known
as the Lax-Richtmyer theorem [66], which states that for consistent numerical ap-
proximations stability and convergence are equivalent, proves the stability of the
discretization scheme (4.14).

In order to investigate the positivity property of the CC-BDF scheme, we write
the discrete FP equation in the following form

−Ãjf
n+1
j+1 + B̃jfn+1

j − C̃jfn+1
j−1 = fnj , j = 0, ..., N, (4.15)

where
Ãj = δt

h2
Cn
j+ 1

2

Wj expwj,

B̃j = δt
h2

(Cn
j+ 1

2

Wj + Cn
j− 1

2

Wj−1 expwj−1) + 1,

C̃j = δt
h2
Cn
j− 1

2

Wj−1,

(4.16)

and
Wj = wj/(expwj − 1). (4.17)

By summing (4.15) over j, we have

−
N∑
j=0

Ãjf
n+1
j+1 +

N∑
j=0

B̃jfn+1
j −

N∑
j=0

C̃jfn+1
j−1 =

N∑
j=0

fnj .

43



Chapter 4. Finite difference discretization of FP equations

The left-hand side of the equation above can be simplified as follows

−
∑N

j=0 Ãjf
n+1
j+1 +

∑N
j=0 B̃jf

n+1
j −

∑N
j=0 C̃jf

n+1
j−1

= −
∑N+1

j=1 Ãj−1f
n+1
j +

∑N
j=0 B̃jf

n+1
j −

∑N−1
j=−1 C̃j+1f

n+1
j

=
∑N−1

j=1 (−Ãj−1 + B̃j − C̃j+1)fn+1
j − ÃN−1f

n+1
N − ÃNf

n+1
N+1

+B̃0f
n+1
0 + B̃Nfn+1

N − C̃0f
n+1
−1 − C̃1f

n+1
0

=
∑N−1

j=1

(
1 + δt

h2
(Cj+ 1

2
Wj + Cj− 1

2
Wj−1 expwj−1 − Cj− 1

2
Wj−1 expwj−1 − Cj+ 1

2
Wj)

)
fn+1
j

+(B̃N − ÃN−1)fn+1
N + (B̃0 − C̃1)fn+1

0 − ÃNf
n+1
N+1 − C̃0f

n+1
−1

=
∑N

j=0 f
n+1
j + ÃN

(
fn+1
N exp(−wN)− fn+1

N+1

)
+ C̃0

(
fn+1

0 expw−1 − fn+1
−1

)
.

The conservation property is given, if the following holds

ÃN

(
fn+1
N exp(−wN)− fn+1

N+1

)
= 0,

and
C̃0

(
fn+1

0 expw−1 − fn+1
−1

)
= 0.

On the other hand, the boundary fluxes can be written as follows

F n
− 1

2
=
h

δt
C̃0

(
fn+1

0 expw−1 − fn+1
−1

)
,

and
F n
N+ 1

2
= − h

δt
ÃN

(
fn+1
N exp(−wN)− fn+1

N+1

)
.

Therefore, the zero-flux boundary conditions read as follows

fn+1
−1 = fn+1

0 expw−1, and fn+1
N+1 = fn+1

N exp(−wN),

which is consistent with the conservativeness of the discretization scheme.
We notice that the resulting tridiagonal problem can be written in the following

matrix form
A fn+1 = fn,

with the matrix of coefficients given by the following

Aij =


−Ãi, j = i+ 1, 0 ≤ i ≤ N − 1,

B̆i, j = i, 0 ≤ i ≤ N,

−C̃i, j = i− 1, 1 ≤ i ≤ N,

0, otherwise,

(4.18)

where B̆i = B̃i for 1 ≤ i ≤ N − 1, and

B̆0 = B̃0 − C̃0 exp(w−1) and B̆N = B̃N − ÃN exp(−wN),
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4.1. The Fokker-Planck equation for Itō processes

consistently with the zero-flux boundary conditions.
Now, proving that the CC-BDF scheme preserves the positivity of the solution is

equivalent to showing that A−1 ≥ 0. To this end, we define D as an (N+1)× (N+1)
diagonal matrix whose diagonal entries are as follows

Dii =
1

B̆i
, 0 ≤ i ≤ N,

and consider the following lemma where a restriction on the time-step size is required.
We remark that with a convergent matrix we mean a matrix whose spectral radius is
less than one.

Lemma 3. The matrix S := I −DA is non-negative and convergent, provided that
δt < 1

γ
.

Proof.

Sij =


Ãi
B̆i
, j = i+ 1,

C̃i
B̆i
, j = i− 1,

0, otherwise,

0 ≤ i, j ≤ N.

According to (4.16), the matrix S is non-negative since Ãi, B̆i, C̃i ≥ 0 for 0 ≤ i ≤ N .
We show that S is convergent in the sense that ρ(S), the spectral radius of S, is

less than one. Based on the theorem of Gerschgorin, ρ(S) ≤ ν where

ν = max
0≤i≤N

N∑
j=0

|Sij|.

It is enough to show that ν < 1. This is proved by contradiction. In fact, the
assumption ν ≥ 1 means that there exists an i, 0 ≤ i ≤ N , such that

∑N
j=0 |Sij| ≥ 1.

In the following, we prove that in this case δt ≥ 1
γ
, which is contrary to the assumption
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of the lemma. For 0 < i < N we have∑N
j=0 |Sij| ≥ 1⇒

Ãi

B̆i
+

C̃i
B̆i
≥ 1⇒

Cn
i+ 1

2

Wi expwi + Cn
i− 1

2

Wi−1

Cn
i+ 1

2

Wi + Cn
i− 1

2

Wi−1 expwi−1 + h2

δt

≥ 1⇒

Cn
i+ 1

2

Wi expwi + Cn
i− 1

2

Wi−1 ≥ Cn
i+ 1

2

Wi + Cn
i− 1

2

Wi−1 expwi−1 + h2

δt
⇒

Cn
i+ 1

2

Wi(expwi − 1) ≥ Cn
i− 1

2

Wi−1(expwi−1 − 1) + h2

δt
⇒

Cn
i+ 1

2

wi ≥ Cn
i− 1

2

wi−1 + h2

δt
⇒

Bn
i+ 1

2

h ≥ Bn
i− 1

2

h+ h2

δt
⇒

h
δt
≤ Bn

i+ 1
2

−Bn
i− 1

2

≤ γh⇒

δt ≥ 1
γ
.

We have similar results for i = 0 and i = N .

The following lemma is proved in [105].

Lemma 4. If A is a real n × n matrix with non-positive off-diagonal entries, then
the following are equivalent:

1. A is nonsingular, and A−1 ≥ 0.

2. The diagonal entries of A are positive real numbers, and letting D be the diag-
onal matrix whose diagonal entries are defined as Dii = 1

Aii , 1 ≤ i ≤ n, then
the matrix S = I −DA is non-negative and convergent.

Theorem 5. If δt < 1
γ
, the discretization scheme (4.14) preserves positivity of the

solution of the FP equation.

Proof. For δt < 1
γ
, we can employ the Lemma 3 to conclude that A−1 ≥ 0, based on

the Lemma 4.

4.1.1.2 The Chang-Cooper scheme with second-order time differencing

In the following, we discuss second-order finite difference approximation to the time
derivative combined with the CC scheme for approximation in space. Specifically,
we consider the second-order backward differentiation formula (BDF2); see, e.g., [39]
and references therein.

We have the following discrete FP equation

3fn+1
j − 4fnj + fn−1

j

2δt
= D+C

n
j− 1

2
D−f

n+1
j +D+B

n
j− 1

2
Mδf

n+1
j + gn+1

j . (4.19)
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Summing over j and using the zero-flux boundary conditions, we obtain

3
N∑
j=0

fn+1
j = 4

N∑
j=0

fnj −
N∑
j=0

fn−1
j .

By induction and assuming
∑N

j=0 f
1
j =

∑N
j=0 f

0
j and

∑N
j=0 f

n
j =

∑N
j=0 f

n−1
j , we

find that
N∑
j=0

fn+1
j =

N∑
j=0

fnj , n ≥ 1.

Next, we investigate the numerical stability of this CC-BDF2 scheme. We use the
following lemma [102].

Lemma 5. Let (ak), (bk), (ck), and (dk) be four sequences of non-negative numbers
such that the sequence (ck) is non-decreasing, and

ak + bk ≤ ck +
k−1∑
n=1

dnan, k ≥ 2; a1 + b1 ≤ c1.

Then

ak + bk ≤ ck exp

(
k−1∑
n=1

dn

)
, k ≥ 2.

Theorem 6. If δt ≤ 1
2γ
, then we have the following bound for the solution of the

discretization scheme (4.19).

‖fk‖+ ‖fk−1‖ ≤ e2
√

2(k−1)

(
‖f 0‖+ ‖f 1‖+ 2δt

k−1∑
n=1

‖gn+1‖

)
, k = 2, · · · ,M.

Proof. Taking the inner product of equation (4.19) with fn+1, we have(
3fn+1 − 4fn + fn−1

2δt
, fn+1

)
=

(
D+C

n
− 1

2

D−f
n+1, fn+1

)
+
(
D+B

n
− 1

2

Mδf
n+1, fn+1

)
+ (gn+1, fn+1) .

First, we note that(
3fn+1 − 4fn + fn−1

2δt
, fn+1

)
=

∑N
j=0

h

2δt
(3fn+1

j − 4fnj + fn−1
j )fn+1

j

=
∑N

j=0

h

2δt
(3|fn+1

j |2 − 4fnj f
n+1
j + fn−1

j fn+1
j )

≥
∑N

j=0

h

2δt
(3|fn+1

j |2 − 4|fnj |2 − |fn+1
j |2

+1
2
(fn−1
j + fn+1

j )2 − 1
2
|fn−1
j |2 − 1

2
|fn+1
j |2)

≥
∑N

j=0

h

2δt
(3

2
|fn+1
j |2 − 4|fnj |2 − 1

2
|fn−1
j |2)

=
1

2δt
(3

2
‖fn+1‖2 − 4‖fn‖2 − 1

2
‖fn−1‖2).
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Since (
D+C

n
− 1

2

D−f
n+1, fn+1

)
+
(
D+B

n
− 1

2

Mδf
n+1, fn+1

)
+ (gn+1, fn+1) ≤

1
2
γ‖fn+1‖2 + ‖gn+1‖‖fn+1‖,

we obtain
1

2δt
(
3

2
‖fn+1‖2 − 4‖fn‖2 − 1

2
‖fn−1‖2) ≤ γ

2
‖fn+1‖2 + ‖gn+1‖‖fn+1‖,

3

2
‖fn+1‖2 − 4‖fn‖2 − 1

2
‖fn−1‖2 ≤ 2δt‖gn+1‖‖fn+1‖+ γδt‖fn+1‖2,

3

2
‖fn+1‖2 − 4‖fn‖2 − 1

2
‖fn−1‖2 ≤ 2δt2‖gn+1‖2 +

1

2
‖fn+1‖2 + γδt‖fn+1‖2,

‖fn+1‖2 ≤ 4‖fn‖2 +
1

2
‖fn−1‖2 + 2δt2‖gn+1‖2 + γδt‖fn+1‖2,

(1− γδt)‖fn+1‖2 ≤
(

2‖fn‖+
1√
2
‖fn−1‖+

√
2δt‖gn+1‖

)2

.

Since (1− γδt) ≥ 1
2
we can write

1√
2
‖fn+1‖ − 2‖fn‖ − 1√

2
‖fn−1‖ ≤

√
2δt‖gn+1‖.

Multiplying with
√

2 and summing over n, we obtain
k−1∑
n=1

‖fn‖−‖f 1‖+ ‖fk‖− 2
√

2
k−1∑
n=1

‖fn‖−
k−1∑
n=1

‖fn‖+ ‖fk−1‖−‖f 0‖ ≤ 2δt
k−1∑
n=1

‖gn+1‖,

(−2
√

2)
k−1∑
n=1

‖fn‖+ ‖fk‖+ ‖fk−1‖ ≤ ‖f 0‖+ ‖f 1‖+ 2δt
k−1∑
n=1

‖gn+1‖,

for 2 ≤ k ≤M . Hence,

‖fk‖+ ‖fk−1‖ ≤ ‖f 0‖+ ‖f 1‖+ 2δt
k−1∑
n=1

‖gn+1‖+ 2
√

2
k−1∑
n=1

‖fn‖. (4.20)

We apply Lemma 5 to (4.20) with the following setting

ak = ‖fk‖, k ≥ 1,

bk = ‖fk−1‖, k ≥ 2; b1 = 0,

ck = ‖f 0‖+ ‖f 1‖+ 2δt
k−1∑
n=1

‖gn+1‖, k ≥ 2; c1 = ‖f 0‖,

dk = 2
√

2.
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We obtain the following

‖fk‖+ ‖fk−1‖ ≤ e2
√

2(k−1)

(
‖f 0‖+ ‖f 1‖+ 2δt

k−1∑
n=1

‖gn+1‖

)
, k = 2, · · · ,M.

Theorem 7. If δt ≤ 1
2γ
, then the discretization scheme (4.19) converges with error

O(h2 + δt2).

Proof. By Taylor expansion, we have the following

3fn+1
j − 4fnj + fn−1

j

2δt
= ∂tf

n
j + δt

∂2

∂t2
fnj +

δt2

6

∂3

∂t3
fnj +O(δt3),

and

∂tf
n
j = ∂tf

n+1
j − δt ∂

2

∂t2
fnj −

δt2

2

∂3

∂t3
fnj −O(δt3),

Therefore, the estimate

∂tf
n+1
j −

3fn+1
j − 4fnj + fn−1

j

2δt
=
δt2

3

∂3

∂t3
fnj +O(δt3).

Using Equation (4.19), the truncation error can be written as follows

φn+1
j = [∂tf

n+1
j −

3fn+1
j − 4fnj + fn−1

j

2δt
] + [D+C

n
j− 1

2

D−f
n+1
j − ∂x(Cn∂xf)tn+1

xj
]

+ [D+B
n
j− 1

2

Mδf
n+1
j − ∂x(Bn f)tn+1

xj
].

Hence the truncation error is O(h2 + δt2).
Further, it is easily seen that

3en+1
j − 4enj + en−1

j

2δt
= D+C

n
j− 1

2
D−e

n+1
j +D+B

n
j− 1

2
Mδe

n+1
j + φn+1

j ,

hence based on Theorem 6, we have the following

‖ek‖+ ‖ek−1‖ ≤ e2
√

2(k−1)

(
‖e0‖+ ‖e1‖+ 2δt

k−1∑
n=1

‖φn+1‖

)
.

Therefore the difference scheme (4.19) converges with error O(h2 + δt2).

The Lax-Richtmyer theorem [66], which states that for consistent numerical ap-
proximations stability and convergence are equivalent, shows that the discretization
scheme (4.19) is stable.

To investigate the positivity of the CC-BDF2 solution, we consider (4.19) in the
semi-discretized form ∂tf

n = Asf
n+1, that is, the FP equation is discretized only in
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space. The matrix As is given by As = 1
δt

(I −A), where A is defined in (4.18). Then
the CC-BDF2 scheme is as follows(

I − 2

3
δtAs

)
fn+1 =

4

3
fn − 1

3
fn−1.

Notice that in this formula the presence of a negative factor on the right-hand side
prevents us from claiming positivity of the solution for arbitrary f 0, f 1 ≥ 0. However,
as shown in [56], to initialize the BDF2 scheme, we prove that the backward Euler
method can be used to compute f 1 such that 2f 1 ≥ f 0. Further, following [19, 73]
we prove that under appropriate conditions on the time-step size and on As, one has
2fn+1 ≥ fn ≥ 0 for n ≥ 1. As a consequence, we give a sufficient condition that
guarantees positivity of the solution obtained with the CC-BDF2 scheme.

We start this discussion with the following lemma.

Lemma 6. Let A be an m × m matrix, and f : R → Rm. The BDF2 scheme,
initialized with the backward Euler scheme, applied to the following equation

∂tf = Af, f(0) ≥ 0,

is positive preserving, provided that (I−δtA)−1 ≥ 0, (I− 2
3
δtA)−1 ≥ 0, and (I+δtA) ≥

0, (I + 2δtA) ≥ 0.

Proof. As discussed in [73], the following backward Euler method

f 1 − f 0

δt
= Af 1

can be written as
(I − δtA)(2f 1 − f 0) = f 0 + δtAf 0.

Therefore,
2f 1 − f 0 = (I − δtA)−1((I + δtA)f 0),

and consequently 2f 1 ≥ f 0, since (I − δtA)−1, (I + δtA), f 0 ≥ 0.
The BDF2 method

3fn+1
j − 4fnj + fn−1

j

2δt
= Afn+1

can be also written in the form

(I − 2

3
δtA)(2fn+1 − fn) =

2

3
(2fn − fn−1) +

1

3
(fn + 2δtAfn).

Then it follows that having 2fn ≥ fn−1, (I − 2

3
δtA) ≥ 0, and (I + 2δtA) ≥ 0, one

obtains 2fn+1 ≥ fn. By induction we have 2fn+1 ≥ fn for n ≥ 1.

Theorem 8. There exists a positive constant q, such that if δt < min{ 1
γ
, h

2

2q
}, then

the discretization scheme (4.19), initialized with the backward Euler scheme, preserves
positivity of the solution of the FP equation.
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Proof. The scheme (4.19) is obtained applying the BDF2 scheme to the semi-discretized
equation ∂tf = Asf . From Lemma 4, we know that the condition δt < 1

γ
provides

A−1 ≥ 0. Since A = I − δtAs, we can state that if δt < 1
γ
then (I − δtAs)−1 ≥ 0.

Straightforwardly, we also have (I − 2
3
δtAs)

−1 ≥ 0.
Next, in order to apply Lemma 6, we find a condition such that (I + δtA) ≥ 0

and (I + 2δtA) ≥ 0. For this purpose, notice that

(As)ij =



1
h2
Cn
i+ 1

2

Wj expwi, j = i+ 1,

− 1
h2
Qi, j = i,

1
h2
Cn
i− 1

2

Wi−1, j = i− 1,

0, otherwise

0 ≤ i, j ≤ N,

where Qi = Cn
i+ 1

2

Wi +Cn
i− 1

2

Wi−1 expwi−1 ≥ 0. Therefore, the condition (I+ δtA) ≥ 0

is equivalent to (1 − δt
h2
Qi) ≥ 0, and the condition (I + 2δtA) ≥ 0 is equivalent to

(1− 2 δt
h2
Qi) ≥ 0, for all 0 ≤ i ≤ N .

Now, we require that 2 δt
h2
Qi ≤ 1, that is, δt ≤ h2

2Qi
. Further, for 0 ≤ δni ≤ 1/2, we

haveQi ≤ Cn
i+ 1

2

+Cn
i− 1

2

expwi−1. Therefore, we choose q = max{Cn
i+ 1

2

+Cn
i− 1

2

expwi−1 :

0 ≤ i ≤ N}. Hence δt ≤ h2

2q
guarantees (I + δtA) ≥ 0 and (I + 2δtA) ≥ 0.

Taking δt < min{ 1
γ
, h

2

2q
}, we can apply Lemma 6 to obtain the positivity result.

4.1.2 Analysis in the multidimensional case

Similar to the one-dimensional case, the CC-BDF difference scheme for the d-dimensional
FP equation with diagonal diffusion can be written as follows

fn+1
j − fnj
δt

=
d∑
i=1

(
Di

+C
i,n
j−1i/2

Di
−f

n+1
j +Di

+B
i,n
j−1i/2

M i
δf

n+1
j

)
+ gn+1

j , (4.21)

where

Di
+C

i,n
j−1i/2

Di
−f

n+1
j =

1

h

{
1

h
Ci,n

j+1i/2
fn+1

j+1i
− 1

h

(
Ci,n

j+1i/2
+ Ci,n

j−1i/2

)
fn+1

j +
1

h
Ci,n

j−1i/2
fn+1

j−1i

}
,

and

Di
+B

i,n
j−1i/2

M i
δf

n+1
j = Di

+

(
(1− δi,nj−1i

)Bi,n
j−1i/2

fn+1
j + δi,nj−1i

Bi,n
j−1i/2

fn+1
j−1i

)
=

1

h

{
(1− δi,nj )Bi,n

j+1i/2
fn+1

j+1i
− (1− δi,nj−1i

)Bi,n
j−1i/2

fn+1
j

}
+

1

h

{
δi,nj Bi,n

j+1i/2
fn+1

j − δi,nj−1i
Bi,n

j−1i/2
fn+1

j−1i

}
.
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Taking the inner product of (4.21) with fn+1, we have(
fn+1 − fn

δt
, fn+1

)
=

∑d
i=1

(
Di

+C
i,n
−1i/2

Di
−f

n+1, fn+1
)

+
∑d

i=1

(
Di

+B
i,n
−1i/2

M i
δf

n+1, fn+1
)

+ (gn+1, fn+1) .

With the same argument provided for the one-dimensional case and under similar
assumptions on Ci(x, t) > 0 for 1 ≤ i ≤ n, existence of a constant γ > 0 such that∑n

i=1 |Bi(x+ h, t)−Bi(x, t)| ≤ γh, and δt ≤ 1
2γ
, we may conclude

1

2δt
(‖fn+1‖2 − ‖fn‖2) ≤ 1

2
γ‖fn+1‖2 + ‖gn+1‖‖fn+1‖,

which leads to the following bound for the solution

‖fk‖ ≤ 2k/2‖f 0‖+ δt

k−1∑
n=0

2
k−n+1

2 ‖gn+1‖,

and consequently the convergence order, O(h2 + δt).
In a similar way, it is proven that the CC-BDF2 scheme has order of convergence

O(h2 + δt2).
To investigate positivity of the solution, we consider the CC-BDF scheme in the

following form

fn+1
j − fnj
δt

=
∑d

i=1
1
h2
{ Ci,n

j+1i/2
W i,n

j expwi,nj fn+1
j+1i

− (Ci,n
j+1i/2

W i,n
j + Ci,n

j−1i/2
W i,n

j−1i
expwi,nj−1i

)fn+1
j

+ Ci,n
j−1i/2

W i,n
j−1i

fn+1
j−1i
}

where W i,n
j = wi,nj /(expwi,nj − 1). This can be written in the form of a system of

linear equations composed of (N + 1)d unknowns fn+1
j , |j| ≤ dN . To this end, we

give an order to the mesh points and associate integer j to the mesh point xj with
the rule j =

∑d
i=1(N + 1)i−1ji. The (N + 1)d-dimensional vector fn having the given

value fnj as the j-th element, 0 ≤ j ≤ (N + 1)d− 1, constitutes the right-hand side of
the system. The matrix of the coefficients A is an (N + 1)d × (N + 1)d matrix with
the elements

Apq =


−α, q = p+ (N + 1)i−1, i = 1, · · · , d,
β, q = p,

−γ, q = p− (N + 1)i−1, i = 1, · · · , d,
0, otherwise,

0 ≤ p, q ≤ (N + 1)d − 1,

where
α =

δt

h2
Ci,n

j+1i/2
W i,n

j expwi,nj ,
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β = 1 +
d∑
i=1

δt

h2
(Ci,n

j+1i/2
W i,n

j + Ci,n
j−1i/2

W i,n
j−1i

expwi,nj−1i
),

γ =
δt

h2
Ci,n

j−1i/2
W i,n

j−1i
,

and j is the corresponding multi-index to the integer p.
The same argument presented for the one-dimensional case shows that A−1 ≥ 0

provided δt < 1
γ
. Therefore, under this condition, the CC-BDF scheme produces

positive solutions starting from positive initial conditions.
As in the one-dimensional case, following the reasoning of Theorem 8, we can

prove positivity of the CC-BDF2 scheme.

4.1.3 Numerical experiments

In this section, we present results of numerical experiments to validate our theoreti-
cal findings. We consider the FP problem corresponding to the Ornstein-Uhlenbeck
process, where B(x, t) = γ0x, and C(x, t) = σ2, and γ0 and σ are two constants of
the stochastic process. Specifically, we choose γ0 = 1 and σ = 1. Further, we take
T = 1 and Ω = (0, L).

We assume zero-flux boundary conditions at the boundary of Ω = (0, L). Choosing
g(x, t) = (L − x)(2x − L)/ exp((x − L/2)2 + t) and f0(x) = 1/ exp((x − L/2)2), we
have the exact solution fexact(x, t) = 1/ exp((x−L/2)2 + t) whose corresponding flux
tends to zero at the boundary of the domain Ω = (0, L). For L = 10 the flux is of
order 10−10.

The size of the solution error is evaluated based on the following L2-norm. We
have

‖v‖2
L2
h,δt(Q) = hδt

M∑
n=1

N∑
j=0

|vnj |2,

where v is a space-time grid function.
In Table 4.1, we report results of experiments that evaluate the accuracy of the CC-

BDF numerical solution. We see that the resulting order of convergence is O(h2 +δt).

N M ‖f − fexact‖L2
h,δt(Q)

50 50 1.34e-2
100 200 3.5e-3
200 800 8.8097e-4

Table 4.1: Convergence of the CC-BDF scheme.

We use the same setting to validate the CC-BDF2 scheme. The corresponding re-
sults are given in Table 4.2, that confirm second-order convergence in space and time.
With the CC-BDF2 scheme, two cases are considered concerning initial conditions.
We denote with fα the numerical solution obtained in the case when both f 0 and
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f 1 are exactly known. Further, we denote with fβ the numerical solution obtained
in the case where only f 0 is exactly given, and f 1 is numerically approximated by a
first-order backward Euler method with time-step size δt2. The norms of the solution
errors resulting from these two approaches are give in Table 4.2. We see that second-
order convergence in space and time is obtained, that is the convergence is of order
O(h2 + δt2).

N M ‖fα − fexact‖L2
h,δt(Q) ‖fβ − fexact‖L2

h,δt(Q)

50 50 1.46e-2 1.57e-2
100 100 3.8e-3 4.0e-3
200 200 9.5491e-4 1.0e-3

Table 4.2: Convergence of the CC-BDF2 scheme with two different initializations.

By numerical inspection, we find that the proposed schemes preserve positiveness
and are conservative.

4.2 The Fokker-Planck equation for PDP processes

In this section, we consider another class of FP equations, where the PDF corresponds
to a piecewise deterministic process. We recall the PDP model introduced in Chapter
3 which is a first-order system of ordinary differential equations, where the driving
dynamics-function is chosen by a renewal process. The d-components state function
X(t), X : [t0,∞)→ Ω, Ω ⊆ Rd, satisfies the differential equation

d

dt
X(t) = AS (t) (X(t)) , t ∈ [t0,∞), (4.22)

where S (t) : [t0,∞[→ S is a Markov process with discrete states S = {1, . . . , S}. Let
us denote with fs the PDF corresponding to the state s. The time evolution of these
PDFs is governed by the following FP hyperbolic system,

∂tfs(x, t) + ∂x(As(x)fs(x, t)) =
S∑
j=1

Qsjfj(x, t), s ∈ S, (4.23)

where Qsj, s, j ∈ S, are the components of the transition matrix Q.
We present finite difference discretization for the FP model (4.23). The discretiza-

tion scheme is first-order that guarantees positivity and conservativeness of the numer-
ical PDF solution. We focus on a particular PDP process. This choice is motivated by
the wish to provide a detailed discussion and implementation for a specific problem.
We consider the case of a dissipative process subject to dichotomic noise; see, e.g.,
[4, 5, 89]. The finite difference discretization for the corresponding FP equation is
presented from [8].

54



4.2. The Fokker-Planck equation for PDP processes

4.2.1 A PDP process with dichotomic noise

Let X(t) be a process whose evolution is described by the following equation

dX(t)

dt
= −γ X +W ξ(t), (4.24)

where the noised input ξ(t) represents a dichotomic noise (or random telegraph sig-
nal), that takes values ±1, with exponential statistics of the switching time given by
the PDF µ exp(−µt). The solution to (4.24) is composed of pieces of increasing and
decreasing exponentials, but the whole process X(t) is not deterministic. In fact, it
represents a random sample path in a probability space. For simplicity, we take γ = 1
and W = 1. Therefore, we have the following dynamics

A1(x) = 1− x, A2(x) = −(1 + x). (4.25)

For the purpose of illustration, we depict in Figure 4.1 the characteristics of the
hyperbolic FP system (4.23) corresponding to the setting (4.25). There are two
families of curves, one for each state of the system. It is clear that if the initial
non-zero PDF data is contained in the interval (−1, 1), then the PDF will never
escape from this interval during the time evolution. On the other hand, the PDF
outside (−1, 1) remains equal to zero. Within (−1, 1), the PDF can switch between
characteristics belonging to the two different families, but it will never cross the points
x = ±1. We name the interval (−1, 1) the invariant set, while the set R\[−1, 1] is
named transient, since an initial PDF located in this region will soon be transported
and trapped in the invariant set.

For our special setting, the system of equations (4.23) become

∂tf1(x, t) + ∂x ((1− x) f1(x, t)) = −µ f1(x, t) + µ f2(x, t) (4.26)
∂tf2(x, t)− ∂x ((1 + x) f2(x, t)) = +µ f1(x, t)− µ f2(x, t), (4.27)

Further, we assume appropriate initial conditions

fs(x, 0) = f 0
s (x), s = 1, 2, (4.28)

where f 0
s (x) ≥ 0,

∑2
s=1

∫
Ω
f 0
s (x) = 1.

Combining (4.26) and (4.27), and using integration by parts, we obtain

∂t

(∫
Ω

f1(x, t) dx+

∫
Ω

f2(x, t) dx

)
= 0.

This proves conservativeness of the FP system. In particular, we have∫
Ω

f1(x, t) dx+

∫
Ω

f2(x, t) dx =

∫
Ω

f 0
1 (x) +

∫
Ω

f 0
2 (x) = 1. (4.29)
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Figure 4.1: Characteristics of the FP equation for a PDP process with dichotomic
noise.

4.2.2 Discretization of the FP system

Consider the dichotomic FP problem in the time interval (0, T ) and a bounded spatial
domain Ω = (−L,L). We choose L sufficiently large to include the invariant set and
the space-time support of the FP solution.

For the time discretization, we define the time-step size δt = T/M , in which M is
a positive integer, and Iδt = {tn = n δt, n = 0, 1, . . . ,M} is the time mesh. Moreover,
we consider a uniform mesh on the state space with mesh size h = 2L/N , and the
mesh-point coordinates are denoted with xj = jh − L, j = 0, . . . , N . We have the
following mesh

Ωh = {x ∈ R : xj = j h, j ∈ Z} ∩ Ω.

For grid functions w and v defined on Ωh × Iδt, with values wnj = w(xj, tn), we
introduce the discrete L2-scalar product

(wn, vn)h = h

N−1∑
j=1

wnj v
n
j ,

with associated L2-norm ‖vn‖ = (vn, vn)1/2. Further, we introduce the following inner
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product

〈w, v〉h,δt = δt

M−1∑
n=0

(wn, vn)h.

Here and below, we denote the approximation to f(xj, tn) with fnj .
Next, we consider the following explicit discretization of the time derivative

Dtf
n
j =

1

δt

(
fn+1
j − fnj

)
, (4.30)

and the first-order forward and backward space derivatives are given by

D+
x f

n
j =

1

h

(
fnj+1 − fnj

)
, D−x f

n
j =

1

h

(
fnj − fnj−1

)
.

For ease of notation, let us denote with f = f1 and g = f2. According to upwind
discretization, the discrete FP equations are as follows

Dtf
n
j +D−x

(
(1− xj) fnj

)+
+D+

x

(
(1− xj) fnj

)−
= −µ fnj + µ gnj (4.31)

Dtg
n
j −D+

x

(
(1 + xj) g

n
j

)+ −D−x
(
(1 + xj) g

n
j

)−
= +µ fnj − µ gnj , (4.32)

where the symbols (f)+ and (f)−, denote max(f, 0) and min(f, 0), respectively, and
we assume the boundary conditions fn0 = 0 and gnN = 0 for n = 0, . . . ,M . Further,
we have the following initial conditions

f 0
j = f0,j, g0

j = g0,j. (4.33)

We have the following theorem.

Theorem 9. The discretization scheme (4.31)-(4.32) is stable, positivity preserving,
conservative, and first-order accurate with respect to the solution of Eqs. (4.26)-
(4.27), provided that the following Courant-Friedrichs-Lèwy (CFL) condition on the
time step size is satisfied

δt ≤ min

{
h

2 + u1 + µh
,

h

2 + u2 + µh

}
. (4.34)

Proof. Let us define the grid functions

b1(xj) = (1− xj)
δt

h
, b2(xj) = −(1 + xj)

δt

h
.

The discrete FP system (4.31)-(4.32) becomes

fn+1
j = fnj (1− |b1(xj)|) + (b1(xj−1)fnj−1)+ − (b1(xj+1)fnj+1)−

−δtµ fnj + δtµ gnj (4.35)
gn+1
j = gnj (1− |b2(xj)|) + (b2(xj+1)gnj+1)+ − (b2(xj−1)gnj−1)−

+δtµ fnj − δtµ gnj . (4.36)
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Further, we have

fn+1
j + gn+1

j = fnj (1− |b1(xj)|) + (b1(xj−1))+fnj−1 − (b1(xj+1))−fnj+1 (4.37)
+gnj (1− |b2(xj)|) + (b2(xj+1))+gnj+1 − (b2(xj−1))−gnj−1.

By inspection of (4.35)-(4.36) and (4.37), we conclude that positivity of fnj , gnj and
of fnj +gnj , n = 1, . . . ,M and j = 0, . . . , N , is guaranteed if the following requirements
are satisfied:

max
x∈Ω

(|b1(x)|, |b2(x)|) ≤ 1

and
min
j

(1− b1(xj))− δtµ ≥ 0, min
j

(1− b2(xj))− δtµ ≥ 0.

Notice that we assume that f 0
j + g0

j ≥ 0 for j = 0, . . . , N . Now, it is immediate to see
that these two conditions hold if (4.34) is true; see also [4].

Next, to prove conservativeness, we take the sum of (4.37) on all interior grid
points. We obtain

N−1∑
j=1

(
fn+1
j + gn+1

j

)
=

N−1∑
j=1

(
fnj + gnj

)
− δt fnN−1 − δt gn1 , (4.38)

where we use the fact b1(xM−1) = δt and b2(x1) = δt. Notice that in the case of a
compactly supported solution such that fnN−1 = 0 and gn1 = 0, our first order scheme
is conservative and positive preserving. In addition, the same result proves that the
scheme is stable.

Next, we discuss the accuracy of the scheme (4.31)-(4.32). We assume sufficient
regularity of the data such that the solution of the continuous problem is twice con-
tinuously differentiable in space and time. Denote with φ and ψ the local truncation
error for the discretization of (4.31) and (4.32), respectively. It is a standard calcula-
tion [4] to show that the following holds

|φnj | ≤ C (δt+ h), |ψnj | ≤ C (δt+ h), (4.39)

where C depends on the maximum of the second derivatives of f and g in the space
time domain. Therefore, it is a consequence of the Lax-Richtmyer equivalence theorem
[83] that the estimate (4.39) and the stability of the scheme prove that the scheme is
first-order accurate.

As a numerical experiment, we assume that initial distribution of the PDP system
is given by two Gaussian distributions, defined in Ω = (−2, 2), centered in x = 0 and
variance σ2 = 10−2. The transition rate of the underlying Markov process is µ = 2.
See Figure 4.2 for a snapshot of the FP solution at t = 10.
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Figure 4.2: The PDF functions at time t = 10 resulting from the FP evolution.
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Chapter 5

Hermite spectral discretization of FP
equations

5.1 Spectral methods

Spectral methods involve seeking the solution to a differential equation in terms of
a series of known, smooth functions which are called basis functions. They involve
representing the solution to a problem as truncated series of known functions of the
independent variables. Along with extensive applications of Legendre and Chebyshev
spectral methods for bounded domains, considerable progress has been made recently
in spectral methods for unbounded domains. Among these methods, a direct and
commonly used approach is based on certain orthogonal approximations on infinite
intervals, in particular the Hermite and Laguerre spectral methods [52, 97].

Spectral methods for solving PDEs on unbounded domains can be essentially clas-
sified into four approaches [97]:
(i) Domain truncation: truncate unbounded domains to bounded domains and solve
the PDEs on bounded domains supplemented with artificial or transparent boundary
conditions;
(ii) Approximation by classical orthogonal systems on unbounded domains, e.g., La-
guerre and Hermite polynomials/functions;
(iii) Approximation by other, non-classical orthogonal systems, or by mapped orthog-
onal systems, e.g., image of classical Jacobi polynomials through a suitable mapping;
(iv) Mapping: map unbounded domains to bounded domains and use standard spec-
tral methods to solve the mapped PDEs in the bounded domains.

In general, the domain truncation approach is only a viable option for problems
with rapidly (exponentially) decaying solutions or when accurate non-reflecting or
exact boundary conditions are available at the truncated boundary. On the other
hand, with proper choices of mappings and/or scaling parameters, the other three
approaches can all be effectively applied to a variety of problems with rapid or slow
decaying (or even growing) solutions. We note that the last two approaches are
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mathematically equivalent, but their computational implementations are different.
More precisely, the last approach involves solving the mapped PDEs (which are often
cumbersome to deal with) using classical Jacobi polynomials while the approach (iii)
solves the original PDE using the mapped Jacobi polynomials. The main advantage
of the approach (iv) is that it can be implemented and analyzed using standard pro-
cedures and approximation results, but its main disadvantage is that the transformed
equation is usually very complicated which, in many cases, makes its implementation
and analysis unusually cumbersome [95].

While spectral methods have been used for solving PDEs on unbounded domains
for over thirty years, and there have been several isolated efforts in the early years
on the error analysis of these methods, it is only in the last ten years or so that the
basic approximation properties of these orthogonal systems, and their applications to
PDEs, were systematically studied [95].

5.2 Hermite approximation space

5.2.1 Hermite polynomials

The Hermite polynomials, denoted by Hn(x), are the eigenfunctions of the Sturm-
Liouville problem:

ex
2 d

dx

(
e−x

2 d

dx
u(x)

)
+ λu(x) = 0, x ∈ R,

with the eigenvalue λn = 2n grows linearly with respect to n.
The Hermite polynomials are orthogonal with respect to the weight w(x) = e−x

2 ,
i.e., ∫ ∞

−∞
Hn(x)Hm(x)e−x

2

dx = γnδn,m,

where γn =
√
π2nn! and δn,m is the Kronecker delta. Note that the constant γn

grows exponentially as n increases, so it is necessary to normalize this factor in actual
computations. The three-term recurrence formula reads

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1,

and the first few members are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12.
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One verifies by induction that the leading coefficient of Hn(x) is 2n. The Hermite
polynomials have a close connection with the generalized Laguerre polynomials [97]:

H2n(x) = (−1)n22nn!L−1/2
n (x2),

H2n+1(x) = (−1)n22n+1n!xL1/2
n (x2).

Hence, Hn(x) is odd (resp. even) for n odd (resp. even), that is,

Hn(−x) = (−1)nHn(x).

Moreover,

H2n(0) = (−1)n
(2n)!

n!
, H2n+1(0) = 0.

We also have the orthogonality∫ ∞
−∞

d

dx
Hn(x)

d

dx
Hm(x)e−x

2

dx = λnγnδn,m,

The Hermite polynomials are generally not suitable in practice due to their asymp-
totic behavior at infinities [95]:

Hn(x) ∼ Γ(n+ 1)

Γ(n/2 + 1)
ex

2/2 cos
(√

2n+ 1x− nπ

2

)
∼ nn/2ex

2/2 cos
(√

2n+ 1x− nπ

2

)
.

5.2.2 Convergence of Hermite expansions and the Gibbs phe-
nomenon

Since in some of our FP problems we encounter singularities in the equilibrium so-
lutions, we present here the related discussion from [49], which explains the Gibbs
phenomenon occurring at the singular points.

We first consider the expansion of a function f(x) in terms of the eigenfunctions
φn of a Sturm-Liouville problem. The eigenfunction φn(x) is a nonzero solution to

d

dx
p(x)

dφn
dx

+ (λnw(x)− q(x))φn(x) = 0 (5.1)

satisfying homogeneous boundary conditions in the interval [a, b]. To be specific, we
assume the boundary conditions φn(a) = φn(b) = 0, although the analysis applies
more generally. We assume that p(x) ≥ 0, w(x) > 0, q(x) ≥ 0 for a ≤ x ≤ b. We will
also assume that the eigenfunctions are normalized so that they satisfy∫ b

a

w(x)φn(x)φm(x)dx = δnm, (5.2)

and that they form a complete set; the latter property follows if λn →∞ as n→∞.
The requirement that λn → ∞ follows heuristically as follows: (5.1) suggests that
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Chapter 5. Hermite spectral discretization of FP equations

φn(x) has a typical spatial scale of 1/
√
λn, so the requirement that arbitrary f(x) be

expansible in terms of φn implies that λn must grow unboundedly with n.
We wish to estimate the rate of convergence of the eigenfunction expansion

f(x) =
∞∑
n=1

anφn(x). (5.3)

Using the orthonormality relation (5.2), the L2-error after N terms is[∫ b

a

|f(x)−
N∑
n=1

anφn(x)|2w(x)dx

]1/2

=

[
∞∑

n=N+1

a2
n

]1/2

.

Thus, the L2-error may be estimated by calculating the rate of decrease of an as
n→∞. Orthonormality of φn implies that

an =

∫ b

a

f(x)φn(x)w(x)dx. (5.4)

Substituting w(x)φn(x) from the Sturm-Liouville equation (5.1) gives

an =
1

λn

∫ b

a

(
− d

dx
p(x)

dφn
dx

+ q(x)φn

)
f(x)dx.

Integrating twice by parts, we obtain

an =
1

λn
p(x)[φn(x)f ′(x)− φ′n(x)f(x)]|bx=a +

1

λn

∫ b

a

h(x)φn(x)w(x)dx, (5.5)

where
h(x) = [− d

dx
p(x)

df

dx
+ q(x)f(x)]/w(x). (5.6)

This integration by parts is justified if f is twice differentiate and h is square integrable
with respect to w. Under these conditions and recalling that φn(a) = φn(b) = 0, we
obtain

an =
1

λn
[p(a)φ′n(x)f(a)− p(b)φ′n(b)f(b)] +O(

1

λn
)

as n→∞, since |
∫ b
a
hφnwdx|2 5

∫ b
a
h2wdx

∫ b
a
φ2
nwdx = O(1) as n→∞.

To proceed further we must distinguish between nonsingular and singular Sturm-
Liouville problems. A problem is nonsingular if p(x) > 0 and w(x) > 0 throughout
a ≤ x ≤ b. The important conclusion from (5.5)-(5.6) is that if the Sturm-Liouville
problem is nonsingular and if f(a) or f(b) is nonzero then

an ∼
1

λn
[p(a)φ′n(x)f(a)− p(b)φ′n(b)f(b)], n→∞. (5.7)
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5.2. Hermite approximation space

Notice that if φ′n(a) = 0, then φn(x) ≡ 0 since (5.1) is a second-order differential equa-
tion and p(x) 6= 0. It is well known that the asymptotic behavior of the eigenvalues
and eigenfunctions of a nonsingular Sturm-Liouville problem are given by

λn ∼
[
nπ

/∫ b

a

√
w

p
dx

]
, n→∞, (5.8)

φn(x) ∼ An sin

(√
λn

∫ x

a

√
w

p
dx

)
, n→∞. (5.9)

Using (5.8)-(5.9) in (5.7), we find that an behaves like 1/n as n→∞ if either f(a) 6= 0
or f(b) 6= 0. This behavior of an leads to the Gibbs phenomenon in the expansion
(5.3) near those boundary points at which f(a) or f(b) 6= 0. If f(a) = f(b) = 0, then
an � 1/n as n → ∞. However, a further integration by parts in (5.5) shows that if
the Sturm-Liouville problem is nonsingular and if h(a) or h(b) 6= 0, then an behaves
like 1/n3 as n → ∞. In general, unless f(x) satisfies an infinite number of very
special conditions at x = a and x = b, then an decays algebraically as n→∞. These
results on algebraic decay of errors in expansions based on nonsingular second-order
eigenvalue problems generalize to higher-order eigenvalue problems.

If p(a) = 0 in (5.7) then it is not necessary to require that f(a) = 0 to achieve
an � φ′n/λn as n → ∞. For this reason, expansions based on eigenfunctions of
a Sturm-Liouville problem that is singular at x = a do not normally exhibit the
Gibbs phenomenon at x = a. Furthermore, if the argument that led to (5.7) can be
repeated on h(x) given by (5.6) (this is possible if p/w, p′/w, and q/w are bounded
and all derivatives of f are square integrable with respect to w) then the boundary
contribution to an from x = a is smaller than φ′n/λ2

n as n →∞. If there are also no
boundary contributions from x = b when the operations leading to (5.7) are repeated
indefinitely (which is true if p(b) = 0), then an decreases more rapidly than any power
of 1/λn as n→∞.

The important conclusion is that eigenfunction expansions based on Sturm-Liouville
problems that are singular at x = a and at x = b converge at a rate governed by the
smoothness of the function being expanded not by any special boundary conditions
satisfied by the function.

Hermite polynomials satisfy (5.1) with p = e−x
2 , q(x) = 0, w(x) = e−x

2 for
−∞ < x < ∞, φn(x)e−x

2/2 bounded as |x| → ∞. The Hermite polynomial Hn(x)
of degree n is associated with the eigenvalue λn = 2n. If f(x) and all its derivatives
satisfy

f(x) = O(eαx
2

), |x| → ∞,

for some α < 1
2
, then the Hermite expansion

f(x) =
∞∑
n=0

anHn(x)

65



Chapter 5. Hermite spectral discretization of FP equations

0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

1.5

2

x

S
in

(x
)

0 2 4 6 8 10 12 14 16 18 20
−50

0

50

100

150

200

250

300

x
S

in
(x

)

Figure 5.1: Exact representation (solid line) and Hermite polynomial approximation
(dash-dot line) of sin(x). The Hermite polynomial expansion is truncated after N =
20 terms. The spatial domain is [0, 18] in the left figure, and [0, 20] in the right figure.

converges faster than algebraically as the number of terms N → ∞. This is proved
by retracting the steps leading from (5.4) to (5.7).

To study the rate of convergence of Hermite series, we consider the expansion of
sinx as follows.

sinx =
∞∑
n=0

1

22n+1(2n+ 1)!
H2n+1(x). (5.10)

Since the asymptotic behavior of Hn(x) is given by

Hn(x) ∼ ex
2/2 n!

1
2
n!

cos(
√

2n+ 1x− 1

2
nπ)

as n → ∞ for fixed x, it follows that the error after N terms of (5.10) goes to zero
rapidly at x only if N & x2/ log x. This result is not good; to resolve m wavelengths
of sinx requires nearly m2 Hermite polynomials; see Figure 5.1 and Figure 5.2. By
expanding in the series

∑
anHn(x)e−αx

2 and optimizing the choice of α, it is possi-
ble to reduce the number of required Hermite polynomials to about 5

2
π u 7.85 per

wavelength.

5.2.3 Hermite functions

Since the Hermite polynomials are not suitable for our FP problems due to their
asymptotic behavior at infinities, we shall consider the so called Hermite functions.
Hermite functions are defined as follows

H̃n(x) =
1√
2nn!

Hn(αx)w−1
α (x), α > 0, n ≥ 0,
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Figure 5.2: Exact representation (solid line) and Hermite polynomial approximation
(dash-dot line) of sin(x). The Hermite polynomial expansion is truncated after N =
25 terms. The spatial domain is [0, 20] in the left figure, and [0, 22] in the right figure.

where wα(x) = exp(α2x2) is a weight function and Hn is the Hermite polynomial of
degree n given by

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2

).

The function H̃n(x) is the n-th eigenfunction of the following singular Liouville prob-
lem:

d

dx

(
e−α

2x2 d

dx

(
eα

2x2u(x)
))

+ λu(x) = 0, x ∈ R.

The corresponding eigenvalues are λn = 2α2n. In contrast to the Hermite polynomi-
als, the Hermite functions are well behaved with the decay property:

|H̃n(x)| → 0, as |x| → ∞,

and the asymptotic formula with large n is

H̃n(x) ∼ n−1/4 cos
(√

2n+ 1x− nπ

2

)
.

Some sample graphs of the Hermite polynomials and the Hermite functions are pre-
sented in Figures 5.3 and 5.4, respectively.

We introduce the following inner product and the associated norm

(y, z)wα =

∫
R
y(x)z(x)wα(x)dx, ‖y‖wα = (y, y)1/2

wα , y, z ∈ L2
wα(R),

and also consider the weighted Sobolev space

Hr
wα(R) =

{
y
dky
dxk
∈ L2

wα(R), 0 ≤ k ≤ r

}
,
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Figure 5.3: The first five Hermite polynomials Hn(x), n = 0, 1, 2, 3, 4.
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Figure 5.4: The first five Hermite functions H̃n(x), n = 0, 1, 2, 3, 4.
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equipped with the following semi-norm and norm, respectively,

|y|k,wα = ‖d
ky

dxk
‖wα , ‖y‖r,wα =

(
r∑

k=0

|y|2k,wα

)1/2

.

We note that the set of functions {H̃n(x), n ≥ 0} defines a L2
wα(R)-orthogonal

system with

(H̃n, H̃m)wα =

√
π

α
δn,m.

Therefore for all y ∈ L2
wα(R), we can write

y(x) =
∞∑
n=0

ŷnH̃n(x),

with the coefficients

ŷn =
α√
π

∫
R
y(x)H̃n(x)wα(x)dx, n ≥ 0.

We define
VN = {q(x)w−1

α (x)
q ∈ PN},

and note that VN = span{H̃n(x), 0 ≤ n ≤ N}, where PN is the set of polynomials
of degree at most N . Therefore we can consider the L2

wα(R)-orthogonal projection
PN : L2

wα(R)→ VN , with

PNy(x) =
N∑
n=0

ŷnH̃n(x).

In [45] the following theorem is proved, which is used in our work to estimate the
approximation error in the space VN .

Theorem 10. For any y ∈ Hr
wα(R) and r ≥ 0,

‖y − PNy‖wα ≤ c(α2N)−r/2‖y‖r,wα ,

where c = ( α
2r
√
π
)1/2.

This theorem also helps us to estimate the Hermite coefficients. We prove the
following lemma.

Lemma 7. For any y ∈ Hr
wα(R), r ≥ 0, and n ≥ 2,

|ŷn(t)| ≤ α1−r
√
π
n−r/2‖y(., t)‖r,wα .
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Proof. Considering n ≥ 1 and the orthogonality relation between Hermite functions,
we can write the following inequality

|ŷn(t)|2 ≤
∞∑
k=n

|ŷk(t)|2 =
α√
π

∞∑
k=n

√
π

α
|ŷk(t)|2 =

α√
π

∫
R

(
∞∑
k=n

ŷk(t)H̃k(v)

)2

wα(v)dv

=
α√
π

∫
R

(
∞∑
k=0

ŷk(t)H̃k(v)−
n−1∑
k=0

ŷk(t)H̃k(v)

)2

wα(v)dv

=
α√
π
‖y − Pn−1y‖2

wα .

By Theorem 10, we have

‖y − Pn−1y‖wα ≤ (
α

2r
√
π

)1/2(α2(n− 1))−r/2‖y‖r,wα .

Therefore,

|ŷn(t)| ≤ 2−r/2√
π
α1−r(n− 1)−r/2‖y(., t)‖r,wα .

Since for n ≥ 2 we have 2(n− 1) ≥ n, and consequently 2−r/2(n− 1)−r/2 ≤ n−r/2, the
following holds for n ≥ 2,

|ŷn(t)| ≤ α1−r
√
π
n−r/2‖y(., t)‖r,wα .

To discretize the FP equation, we employ the following facts

αxH̃n(x) =

√
n+ 1

2
H̃n+1(x) +

√
n

2
H̃n−1(x),

d

dx
H̃n(x) = −α

√
2(n+ 1) H̃n+1(x),

x
d

dx
H̃n(x) = −

√
(n+ 1)(n+ 2) H̃n+2(x)− (n+ 1)H̃n(x),

d2

dx2
H̃n(x) = 2α2

√
(n+ 1)(n+ 2) H̃n+2(x),

for n ≥ 0, with H̃j(x) = 0, j < 0.
We also have

xHn(x) =
1

2
Hn+1(x) + nHn−1(x),

d

dx
Hn(x) = 2nHn−1(x),

x
d

dx
Hn(x) = nHn(x) + 2n(n− 1)Hn−2(x),
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d2

dx2
Hn(x) = 4n(n− 1)Hn−2(x),

or equivalently,

αxHn(αx) =
1

2
Hn+1(αx) + nHn−1(αx),

d

dx
Hn(αx) = 2αnHn−1(αx),

x
d

dx
Hn(αx) = nHn(αx) + 2n(n− 1)Hn−2(αx),

d2

dx2
Hn(αx) = 4α2n(n− 1)Hn−2(αx).

which provide the appropriate means to descretize the optimal control system.
We also prove the following lemma to discuss the conservativity of the discretized

FP equation.

Lemma 8. For n ≥ 1 ∫
R
H̃n(x)dx = 0.

Proof. Based on
H̃n(−x) = (−1)nH̃n(x),

we see that H̃n is an even function when n is even, and it is an odd function when n
is odd. Therefore, it is clear that

∫
R H̃n(x)dx = 0 when n is odd. Assuming that n is

even, and using the following fact∫ x

0

e−t
2

Hn(t)dt = Hn−1(0)− e−x2Hn−1(x),

we obtain∫
R
H̃n(x)dx =

1√
2nn!

∫
R
Hn(αx)e−α

2x2dx

=
1

α
√

2nn!

∫
R
Hn(t)e−t

2

dt

=
1

α
√

2nn!

(∫ 0

−∞
Hn(t)e−t

2

dt+

∫ ∞
0

Hn(t)e−t
2

dt

)
=

2

α
√

2nn!
lim
x→∞

∫ x

0

Hn(t)e−t
2

dt

=
2

α
√

2nn!
lim
x→∞

(
Hn−1(0)− e−x2Hn−1(x)

)
.

Since Hn−1 is an odd function, Hn−1(0) = 0 and the desired statement is proved.
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5.3 Discretization schemes

In this chapter, we investigate the Hermite spectral discretization of the FP equa-
tions, of both parabolic and hyperbolic types, defined on unbounded domains. The
accuracy of the Hermite spectral method is proved by showing that the error decreases
spectrally as the number of expansion terms increases. Furthermore, we investigate
the conservativity of the solutions of the FP equations with Hermite discretization
schemes. The accuracy of the discretization method is also investigated with numer-
ical experiments.

5.3.1 The Fokker-Planck equation for Itō processes

We recall from Chapter 3 that in one dimension, the FP equation has the form

∂tf(x, t) = −∂x (b(x, t)f(x, t)) +
1

2
∂xx (a(x, t)f(x, t)) , (5.11)

for the Itō process given by the stochastic differential equation

dX(t) = b(X(t), t)dt+ σ(X(t), t) dW (t)

with drift b(X(t), t), dispersion σ(X(t), t) =
√
a(X(t), t), and Wiener process W (t).

If the initial point X(0) is a random variable which is distributed as ρ(x), the FP
model starts the evolution process from the initial probability density f(x, 0) = ρ(x).

We consider a FP model corresponding to a representative stochastic process given
by the Ornstein-Uhlenbeck process, and for simplicity we focus on a case in which the
function b is linear and a is constant. We have b(x, t;u) = γx + u and a(x, t) = 2c,
where γ < 0, u and c > 0 are constants. In this case, the FP problem is given by

∂tf(x, t) = −∂x ((γx+ u)f(x, t)) + c∂xxf(x, t), in R× [0, T ], (5.12)
f(x, 0) = ρ(x), in R. (5.13)

As the first step of the Hermite discretization, the probability density f is approx-
imated in the space of Hermite functions as follows

f(x, t) =
∞∑
n=0

f̂n(t)H̃n(x).

The initial data f(x, 0) = ρ(x) is also represented in the Hermite functions space
by ρ(x) =

∑∞
n=0 f̂

0
nH̃n(x), where

f̂ 0
n =

α√
π

∫
R
ρ(x)H̃n(x)wα(x)dx, n ≥ 0.

Introducing the Hermite expansion for f into the equation (5.12), for n ≥ 0 we
have

d

dt
f̂n(t) = nγf̂n(t) + αu

√
2nf̂n−1(t) + (γ + 2α2c)

√
n(n− 1)f̂n−2(t), (5.14)
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with f̂−1 = 0, f̂−2 = 0.
The equation (5.14) represents an infinite system of ODEs. This system is trun-

cated by considering the approximation

[f̂∆,0(t), f̂∆,1(t), · · · , f̂∆,N(t)]

for
[f̂0(t), f̂1(t), · · · ].

Therefore, the system of ODEs which we solve is as follows

d
dt
f̂∆,n(t) = nγf̂∆,n(t) + α

√
2nf̂∆,n−1(t) + (γ + 2α2c)

√
n(n− 1)f̂∆,n−2(t),

f̂∆,n(0) = ρ̂n,
(5.15)

for 0 ≤ n ≤ N, 0 ≤ t ≤ T , with f̂∆,i = 0, i = −1,−2. This corresponds to a Galerkin
projection of f(·, t) onto the Hermite approximation space

VN = span{H̃n(x), 0 ≤ n ≤ N}.

The system (5.15) can be written in the following matrix form,

df̂∆

dt
= Mf f̂∆, (5.16)

where
f̂∆ = [f̂∆,0(t), f̂∆,1(t), · · · , f̂∆,N(t)]T ,

and Mf is an (N + 1)× (N + 1) three-diagonal matrix with the elements

(Mf )ij =


nγ, i = j,

α
√

2n, i− j = 1,

(γ + 2α2c)
√
n(n− 1), i− j = 2,

0, otherwise,

1 ≤ i, j ≤ N + 1,

where n = i− 1. Notice that, the first row in Mf is zero.

5.3.1.1 Conservativity

Another important property of the numerical scheme is that the Hermite spectral
discretization provides conservativeness. We prove the following∫

R
f∆(x, t)dx =

∫
R
f∆(x, 0)dx, t > 0.

First, we note that for any t > 0∫
R
f∆(x, t)dx =

N∑
n=0

f̂∆,n(t)

∫
R
H̃n(x) dx

= f̂∆,0(t)

∫
R
H̃0(x) dx.
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This is true because of Lemma 8 which states that
∫
R H̃n(x)dx = 0 for n ≥ 1.

Noting that
df̂∆

dt
= Mf f̂∆, and the fact that the first row of the matrix Mf is

zero, we have
f̂∆,0(t) = f̂∆,0(0), t > 0.

Therefore, we have ∫
R
f∆(x, t)dx = f̂∆,0(t)

∫
R
H̃0(x) dx

= f̂∆,0(0)

∫
R
H̃0(x) dx

=
N∑
n=0

f̂∆,n(0)

∫
R
H̃n(x) dx

=

∫
R
f∆(x, 0) dx.

5.3.1.2 Convergence analysis

Substituting the Hermite expansion into the FP equation results in an infinite system
of linear ODEs. Corresponding to this system, there is a matrix M∞, which is lower
triangular. To have a practical scheme, we have to truncate this matrix, or equiva-
lently, consider some truncated system of ODEs. However, this truncation is a source
of error in our discretization scheme. Let ‖.‖2 be the Euclidean norm in RN+1. We
have the following.

Lemma 9. Assuming N is sufficiently large so that there is no error in the spectral
representation of the initial data, and f(·, t) ∈ VN for any t ∈ [0, T ], then

‖f̂N − f̂∆‖2 = 0.

That is, there will be no error for the truncation of the infinite ODE system.

Proof. No truncation error appears in calculating the Hermite coefficients f̂n by solv-
ing the finite ODE system (5.16). This is because of the fact that the system (5.14)
is uncoupled in the sense that for m > n the value of f̂n is independent of the value
of f̂m. That is, PNf(·, t) = f∆(·, t) for every t ∈ [0, T ].

To analyze the accuracy of the scheme, we show that the approximation for the
state variable is spectrally convergent.

Theorem 11. If f ∈ L∞(0, T ;Hr
wα(R)), r > 1, then for all t ∈ [0, T ] the following

holds
‖f(·, t)− f∆(·, t)‖2

wα = O(N−r).
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Proof. We have

f(x, t)− f∆(x, t) =
∞∑
n=0

f̂n(t)H̃n(x)−
N∑
n=0

f̂∆,n(t)H̃n(x)

=
N∑
n=0

(
f̂n(t)− f̂∆,n(t)

)
H̃n(x) +

∞∑
n=N+1

f̂n(t)H̃n(x).

From Lemma 9 we know that the first term in the last line of the equation above is
zero, hence Lemma 7 gives us the following bound for the error

‖f(·, t)− f∆(·, t)‖2
wα =

∫
R

[
∞∑

n=N+1

f̂n(t)H̃n(x)

]2

w(x)dx

=

√
π

α

∞∑
n=N+1

|f̂n(t)|2

≤
√
π

α

∞∑
n=N+1

α2−2r

π
n−r‖f(·, t)‖2

r,wα .

Therefore, we have ‖f(·, t)− f∆(·, t)‖2
wα = O(N−r).

The following lemma provides an appropriate means to show that the Hermite
discretization method is stable.

Lemma 10. Let ŷ(t) be the solution to

d

dt
ŷ(t) = Mf ŷ, ŷ(0) = ŷ0.

Then there exists a constant CN such that for all t > 0

‖ŷ(t)‖2 ≤ CN‖ŷ0‖2.

Proof. Since the matrix Mf is triangular, it has N + 1 distinct eigenvalues λn = nγ,
n = 0, 1, · · · , N , which are the diagonal elements of Mf . Therefore, Mf is diagonal-
izable and can be decomposed as Mf = S−1DS, where D = diag(λn)Nn=0. Hence, the
system of ODEs has the solution

ŷ(t) = eMf tŷ0,

which implies the following

‖ŷ(t)‖2 ≤ ‖S−1‖2‖eDt‖2‖S‖2‖ŷ0‖2.

Since γ < 0, we have e2λnt ≤ 1, n = 0, 1, · · · , N , and consequently

‖eDt‖2 = σmax(eDt) =
√
λmax(e2Dt) ≤ 1.
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It is easy to show that the matrices S and S−1 are also lower triangular. Since S is
consist of the eigenvectors ofMf , it can be constructed in such a way that all diagonal
elements are 1. Defining s̃ := ‖S‖max we have

‖S‖2 ≤ (N + 1)‖S‖max = (N + 1)s̃.

Furthermore, in [69] it is proved that

‖S−1‖∞ ≤ (s̃+ 1)N ,

which results in

‖S−1‖2 ≤
√
N + 1‖S−1‖∞ =

√
N + 1(s̃+ 1)N .

Therefore, we have
‖ŷ(t)‖2 ≤ CN‖ŷ0‖2.

where CN = (N + 1)3/2(s̃+ 1)N+1.

Based on Lemma 10, we have the following stability result.

Theorem 12. There exists a constant CN such that for all t > 0

‖f∆(., t)‖wα ≤ CN‖f̂0‖2.

Proof. We have

‖f∆(., t)‖2
wα =

∫
R
(f∆)2wα(x)dx =

∫
R

(
N∑
n=0

f̂∆,n(t)H̃n(x)

)2

wα(x)dx

=

√
π

α

N∑
n=0

(f̂∆,n(t))2 =

√
π

α
‖f̂∆(t)‖2

2 ≤ C‖f̂0‖2
2.

5.3.1.3 Numerical experiments

Since the system of ODEs which we need to solve in order to obtain the numerical solu-
tions are first order linear systems, there exists no time discretization in our numerical
scheme. That is, we can calculate the Hermite expansion coefficients analytically and
without any time discretization error. The triangular structure of the matrices of
coefficients with distinct eigenvalues, makes it possible to decompose the mentioned
matrices and solve the system of ODEs simply by matrix products. Therefore, the
errors presented in this section are only induced by spatial discretization.

In [45] it is stated that the Hermite spectral method does not provide good reso-
lution for all scaling factor α. It is thence proved that to approximate Gaussian type
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functions e−sx2 , the scaling factor α must satisfy 0 < α <
√

2s. Consider the forward
FP equation

∂tf(x, t)− c∂xxf(x, t) + ∂x ((γx+ u)f(x, t)) = 0.

It is easy to see that the stationary solution, which satisfies ∂tf = 0, or equivalently

∂x (c∂xf − (γx+ u)f) = 0,

is as follows
f(x) = C0 exp(

γ

2c
x2 +

u

c
x),

where C0 is a constant. Comparing the stationary solution with the weight function
wα(x), while the control variable u = 0, motivates us to set α =

√
−γ
2c
. This choice

satisfies the condition mentioned in [45], and seems to be the best option since to find
the optimal scaling factor is still an open problem.

To illustrate the importance of choosing a proper scaling factor, consider Case 1
with a known exact solution for the following FP equation

∂tf − ∂xxf − ∂x(xf) = 0,

with the initial condition

f(x, 0) = e(−x
2

2
)

(
1 + cos(

π

2
x) exp(

π2

8
)

)
.

The exact solution of this problem is given by

f(x, t) = e(−x
2

2
)

(
1 + cos(

π

2
xe−t) exp(

π2

8
)e−2t

)
.

Since the parameters of the FP equation are c = 1, γ = −1, and u = 0, we set
α :=

√
−γ
2c

= 1√
2
≈ 0.7071. Figure 5.5 illustrates how different values for the scaling

factor may lead to different approximations for a given N . However, as mentioned
in [45] the Hermite approximation is accurate in solving for the asymptotic solution
also without an optimal α.

In Table 5.4, we see how fast the error decreases when t increases. After reaching
to the equilibrium solution the error remains at the value of the machine error. We
can investigate more about Hermite discretization with this experiment. Table 5.2
shows the decay of the error regarding increasing N .

Since in our Hermite spectral discretization, the initial condition of the differential
equation has to be mapped into the approximation space VN , if N is not large enough
to have a precise representation of the initial data, one cannot expect a satisfactory
numerical result. However, in Figure 5.6 we see that for the problems dealing with
a Gaussian type function, the influence of the error in representing the initial data
becomes negligible along time evolution.
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Figure 5.5: Case 1: numerical (cross-marks) and exact solution (solid line) to the
FP equation with different scaling factors; left: α = 0.4, middle: α = 0.7071, right:
α = 1; N = 10 and T = 10.

T ‖f∆ − fexact‖L2

1 2.0101e-11
2 1.2132e-16
3 3.0412e-18
4 3.0428e-18
5 3.0450e-18

Table 5.1: Case 1: decay of the solution error at final time when T increases; N = 10,
α = 0.7071.

N ‖f∆ − fexact‖L2

5 4.2193e-07
10 2.0101e-11
15 1.0275e-14
20 2.9166e-18

Table 5.2: Decay of the error in case 1 when N increases; T = 1, α = 0.7071

To examine the Hermite discretization scheme concerning positivity preserving
and conservativity, we introduce Case 2. In this experiment, we can also compare the
approximated solution with the exact solution of an FP equation with a non-zero u,
which is presented in [6] and will be emphasized in Chapter 7 where u plays the role
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Figure 5.6: Case 1: Accurate approximation for the solution at T = 1 (top graph),
even if the initial solution is not well approximated (bottom graph). Top figure:
N = 5, bottom figure: N = 10. Cross-marks represent the numerical solution and
the solid lines represent the exact solution.
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of a control variable. The exact solution of the FP equation

∂tf(x, t)− c∂xxf(x, t) + ∂x ((γx+ u)f(x, t)) = 0

with the initial condition
f0(x) = δ(x)

is a Gaussian distribution with mean µ(t, u) = −u/γ+ (u/γ)eγt and variance σ̄2(t) =
−c/γ(1− e2γt), that is

f(x, t, u) =
1√

2πσ̄2(t)
exp

(
−(x− µ(t, u))2

2σ̄2(t)

)
.

Since it is impossible to represent the Dirac delta function δ(0) by Hermite functions,
we apply a temporal shift in the exact solution in order to have a Gaussian function
as the initial condition. In Figure 5.7, time t = 1 has been considered to be the
starting time of the process which evolves under the action of the control u = 2. We
observe how fast the approximation becomes accurate as N increases.

Since in this case, u 6= 0 and consequently the stationary solution is not centered at
zero, it becomes harder to deal with a proper choice of the scaling factor α. By trying
different values of α, we gain the best estimate corresponding to α = 0.7. however,
the error estimate presented in Table 5.3 is not as perfect as the estimation in Case
1, which is due to considering a constant scaling factor instead of a time dependent
one. The idea of the time dependent scaling factor is discussed in [75], while one can
also think about inserting a translating factor into the Hermite functions to treat the
non zero-centered Gaussian functions. This strategy is applied in [74].

Further, Table 5.3 verifies that when the number of the expansion terms is large
enough to have a non-negative representation of the initial PDF, the discretization
scheme leads to a non-negative solution of the forward FP equation. We observe that
the property

∫
R f(x, t) = 1, t ≥ 0, is perfectly preserved independent of the number

of expansion terms.

N Error min
x∈R

f∆(x, 0) min
x∈R

f∆(x, 5)
∫
R f∆(x, 0)dx

∫
R f∆(x, 5)dx

5 0.4307 -3.1391e-04 -0.2628 1.0000 1.0000
10 0.0403 -5.8202e-05 -0.0095 1.0000 1.0000
15 0.0054 -2.3574e-06 -8.5076e-05 1.0000 1.0000
20 0.0053 -2.7610e-08 -2.5495e-07 1.0000 1.0000
25 0.0053 -7.8068e-10 -1.2459e-11 1.0000 1.0000
30 0.0053 -2.9185e-11 0 1.0000 1.0000

Table 5.3: Case 2: Positivity preserving and conservativity of Hermite discretization.
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Figure 5.7: Case 2: Approximations of the initial PDF and the solution at T = 5.
Top figure: N = 5, middle figure: N = 10, bottom figure: N = 15. Cross-marks
represent the numerical solution and the solid lines represent the exact solution.
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5.3.2 The Fokker-Planck equation for PDP processes

To apply Hermite spectral discretization, we consider another class of FP equations,
where the PDF corresponds to a piecewise deterministic process. We consider the
PDP model introduced in Chapter 3, that is a first-order system of ordinary differen-
tial equations, where the driving dynamics-function is chosen by a renewal process.

We recall from Chapter 3 that the time evolution of the PDFs of the piecewise
deterministic process

d

dt
X(t) = AS (t) (X(t)) , t ∈ [t0,∞), (5.17)

is governed by the following FP hyperbolic system,

∂tfs(x, t) + ∂x(As(x)fs(x, t)) =
S∑
j=1

Qsjfj(x, t), s ∈ S, (5.18)

where Qsj, s, j ∈ S, are the components of the transition matrix Q. The initial
conditions for the PDFs of the FP system are given as follows

fs(x, 0) = f 0
s (x), s ∈ S, (5.19)

where f 0
s (x) ≥ 0, x ∈ Rd,

∑S
s=1

∫ d
R f

0
s (x) dx = 1.

For Hermite spectral discretization, we focus on the following structure: As(x) =
asx+cs, where as and cs are constants s ∈ S. This choice of the dynamics As includes
the dissipative process subject to dichotomic noise considered in [8]. In this case, the
proposed scheme can be validated by comparison with some exact solutions.

After replacing As, equation (5.18) becomes

∂tfs = −asx ∂xfs − cs∂xfs + (Qss − as)fs +
S∑
j=1

j 6=s

Qsjfj, s ∈ S. (5.20)

We denote the approximation of fs(·, t) with f s∆(·, t) ∈ VN , where

f s∆(x, t) =
N∑
n=0

f̂ sn(t)H̃n(x). (5.21)

We insert (5.21) into (5.20) and obtain

d

dt
f̂ sn(t) = dsnf̂

s
n(t) + lsnf̂

s
n−1(t) + hsnf̂

s
n−2(t) +

S∑
j=1

j 6=s

ksj f̂
j
n(t), s ∈ S, (5.22)

where dsn = Qss + asn, lsn = α
√

2n(cs), hsn = as
√
n(n− 1), ksj = Qsj and f̂ s−1 = f̂ s−2 =

0. Equation (5.22) is valid for 0 ≤ n ≤ N and gives the following system of ODEs

df̂∆(t)

dt
= Mf (t)f̂∆(t), (5.23)
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where
f̂∆ = [f̂ 1

0 , · · · , f̂ 1
N , f̂

2
0 , · · · , f̂ 2

N , · · · , f̂S0 , · · · , f̂SN ]T .

The matrix Mf is a S(N + 1)× S(N + 1) sparse matrix as follows

Mf =



d1
0

l11 d1
1

h1
2 l12 d1

2
. . . . . . . . .

h1
N l1N d1

N

k1
2

k1
2

k1
2

. . .
k1

2

· · ·

k1
S

k1
S

k1
S

. . .
k1
S

k2
1

k2
1

k2
1

. . .
k2

1

d2
0

l21 d2
1

h2
2 l22 d2

2
. . . . . . . . .

h2
N l2N d2

N

· · ·

k2
S

k2
S

k2
S

. . .
k2
S

...
... . . . ...

kS1
kS1

kS1
. . .

kS1

kS2
kS2

kS2
. . .

kS2

· · ·

dS0
lS1 dS1
hS2 lS2 dS2

. . . . . . . . .
hSN lSN dSN



.

The initial data fs(x, 0) = f 0
s (x), s ∈ S, needs also to be represented in the Hermite

functions space by the following

f̄ s∆(x) =
N∑
n=0

f̄ snH̃n(x),

where
f̄ sn =

α√
π

∫
R
f 0
s (x)H̃n(x)wα(x)dx, n ≥ 0.

Let
f̄∆ = [f̄ 1

0 , · · · , f̄ 1
N , f̄

2
0 , · · · , f̄ 2

N , · · · , f̄S0 , · · · , f̄SN ]T ,

Now the PDE problem of approximating the solution of the forward FP equations
reduces to the problem of solving the following linear first-order system of ODEs,

df̂∆(t)

dt
= Mf (t)f̂∆(t), f̂∆(0) = f̄∆.

We notice that the solution f̂∆ is given by

f̂∆(t) = exp(Mf t) f̄∆.
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5.3.2.1 Conservativity

Here, we deal with conservativity of the discretization scheme, which is another es-
sential property for the discretized FP system. In fact, we require

S∑
s=1

∫
R
f s∆(x, t) dx =

S∑
s=1

∫
R
f 0
s (x) dx, t > 0.

Lemma 8 makes it possible to prove the following theorem.

Theorem 13. The Hermite spectral discretization of the FP system is conservative,
that is,

d

dt

(
S∑
s=1

∫
R
f s∆(x, t) dx

)
= 0, t > 0.

Proof. We have

d

dt

(
S∑
s=1

∫
R
f s∆(x, t) dx

)
=

d

dt

S∑
s=1

∫
R

(
N∑
n=0

f̂ sn(t)H̃n(x)

)
dx

=
S∑
s=1

N∑
n=0

d

dt
f̂ sn(t)

∫
R
H̃n(x)dx

=
S∑
s=1

d

dt
f̂ s0 (t)

∫
R
H̃0(x)dx

=

∫
R
H̃0(x)dx

S∑
s=1

d

dt
f̂ s0 (t).

Notice that, we have used Lemma 8, which says that the integral of all Hermite
functions over R is zero except H̃0. Now, we have the following

S∑
s=1

d

dt
f̂ s0 (t) =

S∑
s=1

Qssf̂ s0 (t) +
S∑
j=1

j 6=s

Qsj f̂ j0 (t)


=

S∑
j=1

S∑
s=1

Qsj f̂ j0 (t)

=
S∑
j=1

f̂ j0 (t)
S∑
s=1

Qsj

=
S∑
j=1

f̂ j0 (t)× 0

= 0.
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This proves conservativeness of the FP system. In particular, we have

S∑
s=1

∫
R
f s∆(x, t) dx =

S∑
s=1

∫
R
f 0
s (x) dx = 1, t > 0.

5.3.2.2 Convergence analysis

In this section, we discuss the approximation properties of our Hermite discretization
scheme applied to the FP optimality system (6.12). We show that the approximations
for the state variable is spectrally convergent.

Theorem 14. If fs ∈ L∞(0, T ;Hr
wα(R)) for s ∈ S and r > 1, then for all t ∈ [0, T ]

the following holds
‖fs(·, t)− f s∆(·, t)‖2

wα = O(N−r).

Proof. For any s ∈ S, we have

fs(x, t)− f s∆(x, t) =
∞∑
n=0

f̂ sn(t)H̃n(x)−
N∑
n=0

f̂ sn(t)H̃n(x)

=
∞∑

n=N+1

f̂ sn(t)H̃n(x).

Notice that for constant controls no truncation error appears in calculating the
Hermite coefficients f̂ sn by solving the ODE system (5.16). This is because of the
fact that for m > n the value of f̂ sn is independent of the value of f̂ sm. That is,
PNfs(·, t) = f s∆(·, t) for every t ∈ [0, T ]. So we have the following bound for the error

‖fs(·, t)− f s∆(·, t)‖2
wα =

∫
R

[
∞∑

n=N+1

f̂ sn(t)H̃n(x)

]2

w(x)dx

=

√
π

α

∞∑
n=N+1

|f̂ sn(t)|2

≤
√
π

α

∞∑
n=N+1

α2−2r

π
n−r‖fs(·, t)‖2

r,wα .

Therefore, we have ‖fs(·, t)− f s∆(·, t)‖2
wα = O(N−r).

5.3.2.3 Numerical experiments

The forward equations are expected to approach the steady equilibrium state asymp-
totically. As discussed in [4] and [82], the steady state is known in the case of a PDP
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with dichotomic noise where the dynamics corresponds to a linear filter. We have
A1(x) = −a1x+ c1 and A2(x) = −a2x+ c2 and the following FP model

∂tf1(x, t) + ∂x ((−a1x+ c1)f1(x, t)) = Q11f1(x, t) +Q12f2(x, t), (5.24)
∂tf2(x, t) + ∂x ((−a2x+ c2)f2(x, t)) = Q21f1(x, t) +Q22f2(x, t). (5.25)

In particular, we choose a1 = a2 = γ, c1 = W , c2 = −W , Q11 = Q22 = −µ and
Q12 = Q21 = µ.

Defining δ = µ/γ, one has limt→∞(f1 + f2) = Peq where Peq is the equilibrium
density given by

Peq(x) =
γ

W
√
π

Γ(δ + 1/2)

Γ(δ)

(
1− (

xγ

W
)2
)δ−1

.

The equilibrium density is defined in the interval Ω = [−W/γ,W/γ], and is zero
outside of Ω. Peq(x) has the transition point at δ = 1. The point x = 0 is the
maximum if δ > 1, and is the minimum if δ < 1. We consider these three cases
regarding the value of δ, and compare with Peq at time t = 20. Let W = 1, and
consider the initial conditions

f 0
1 (x) = f 0

2 (x) =
1√

8πσ2
0

exp(
−x2

2σ2
0

),

with σ2
0 = 0.5. Notice that these initial condition functions are infinitely differentiable.

In the first case, Case 1, we set µ = 2 and γ = 0.25, so that δ = 8 > 1 and
Ω = [−4, 4]. Figure 5.8 along with Table 5.4 show the spectral rate of convergence
for α = 0.7. We obtain evidence of accurate approximation of Hermite spectral
discretization regarding the Gaussian-type functions. Therefore, for the setting with
δ � 1 just a few expansion terms are adequate to have an accurate approximation,
since the equilibrium solution presents a Gaussian shape in this case [5].

N ‖f 1
∆ + f 2

∆ − Peq‖L2

∫
R(f 1

∆ + f 2
∆)(x, 0) dx

∫
R(f 1

∆ + f 2
∆)(x, 30) dx

3 2.04e-2 1.0000 1.0000
10 1.36e-3 1.0000 1.0000
15 4.90e-4 1.0000 1.0000
30 2.22e-5 1.0000 1.0000
60 7.34e-6 1.0000 1.0000
120 5.86e-7 1.0000 1.0000

Table 5.4: Conservativity and spectral convergence in Case 1; α = 0.7.

In the second case, Case 2, we set µ = 0.2 and γ = 1 to have δ = 0.2 < 1.
The domain of definition of Peq is Ω = [−1, 1]. Since we have singularity points at
the boundary of Ω, we cannot expect to observe a good approximation in the space
of continuous Hermite functions when N is not very large. In this case, the scaling
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Figure 5.8: Case 1, δ = 8; Numerical (dash-dot line) and equilibrium solution (solid
line) to the summation of states f1 + f2; top: N = 3, bottom: N = 10; α = 0.7.
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factor plays an essential role, which we notice by plotting the solutions corresponding
to different values of α. For instance, in Figure 5.9 we plot the results for α = 0.7.
Figure 5.10 shows that with a proper scaling factor, we can improve with Hermite
functions to represent singularities. However, the number of expansion terms must
be large in this case to remove undesired oscillations which are due to singularities.

In the third case, Case 3, we choose µ = γ = 0.5, and consequently δ = 1 and
Ω = [−2, 2]. We again encounter a discontinuous solution, which is Peq(x) = 0.25
for x ∈ Ω, and Peq(x) = 0 for x /∈ Ω. In Figure 5.11, we can see that we need a
high resolution to overcome this discontinuity. Figure 5.12 illustrates the effect of the
scaling factor in improving the accuracy for a fixed number of expansion terms.

The results show that the Hermite approximation attempts to capture the sin-
gularities, which are at the boundary points of the domain of definition in the cases
where δ < 1 and δ = 1. It leads to an oscillation near the boundary points, and
results in negative values. To illustrate the influence of non-differentiability on the
numerical results, we present the solutions for Case 2 at early times t = 1 and t = 2.
It can be seen that undesired oscillations appear near the boundary of the domain of
definition as time proceeds. The same behavior is expected for Case 3, which is con-
firmed by the solutions plotted at times t = 2 and t = 3 in Figure 5.14. Notice that
in these cases, we reach the steady state at time t ≈ 10. In spite of non-negativity, it
can be observed and numerically verified that in all cases the discretization scheme
is conservative. That is, the integral of the summation of the PDFs over the whole
domain is preserved as time proceeds.
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Figure 5.9: Case 2, δ < 1; Numerical (dash-dot line) and equilibrium solution (solid
line) to the summation of states f1 + f2; top: N = 10, bottom: N = 50; α = 0.7.
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Figure 5.10: Case 2, δ < 1; Numerical (dash-dot line) and equilibrium solution (solid
line) to the summation of states f1 + f2; top: α = 0.7, bottom: α = 1.4; N = 100.
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Figure 5.11: Case 3, δ = 1; Numerical (dash-dot line) and equilibrium solution (solid
line) to the summation of states f1 + f2; top: N = 10, bottom: N = 50; α = 0.5.
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Figure 5.12: Case 3, δ = 1; Numerical (dash-dot line) and equilibrium solution (solid
line) to the summation of states f1 + f2; top: α = 0.5, bottom: α = 0.8; N = 100.
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Figure 5.13: Case 2, δ < 1; Numerical solutions at t = 1 (top) and t = 2 (bottom);
α = 1.4 and N = 100. Thin lines correspond to f1 and thick lines correspond to f2.
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Figure 5.14: Case 3, δ = 1; Numerical solutions at t = 2 (top) and t = 3 (bottom);
α = 0.8 and N = 100. Thin lines correspond to f1 and thick lines correspond to f2.
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Chapter 6

Fokker-Planck optimality systems

6.1 Definition of optimal control problems

Optimal control problems consist of the mathematical models in which the underlying
task is to transfer the state of a dynamical system from a given initial position into
a desired terminal condition. Naturally, there are always practical constraints that
are imposed by a particular situation. Nevertheless, there exists generally freedom
in the choice of the controls over time to achieve a desired objective. This leads
to optimization problems. In some cases, problems are naturally associated with
an objective function to be minimized or maximized. However, we also encounter
problems in which there is no such choice, and imposing a criterion may simply
be a means to generate procedures that allow one to come up with a reasonable
solution to the underlying problem. Therefore, the problem of transferring the state
of a dynamical system from a given initial condition into a set of desired terminal
conditions, while at the same time minimizing some objective associated with the
motion, and possibly a penalty on the terminal state, is a most natural one. These
belong to the general type of problems that are analyzed with the tools and techniques
of optimal control theory. In this chapter, we study two infinite-dimensional optimal
control problem.

6.2 Derivation of FP optimality systems

6.2.1 Optimal control of the FP equation for Itō processes

We formulate the problem to determine a control u ∈ R` such that starting with an
initial distribution ρ the probability density f satisfying the FP equation

∂tf(x, t)− 1

2

d∑
i,j=1

∂2
xixj

(aij(x, t) f(x, t)) +
d∑
i=1

∂xi (bi(x, t;u) f(x, t)) = 0
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evolves towards a desired target probability density fd(x, t) at time t = T . This
objective can be formulated by the following tracking functional

J(f, u) :=
1

2
‖f(·, T )− fd(·, T )‖2

wα +
ν

2
|u|2, (6.1)

where |u|2 = u2
1 + . . . + u2

` , and ν > 0 is a constant. With ‖ · ‖2
wα , we denote the

following

‖v‖2
wα =

∫
Ω

v(x)2wα(x)dx,

where wα(x) = exp(α2x2) is a weight function, and α must be appropriately chosen.
The optimal control problem to find u that minimizes the objective J subject to

the constraint given by the FP equation is formulated by the following

min
1

2
‖f(·, T )− fd(·, T )‖2

wα +
ν

2
|u|2 (6.2)

∂tf(x, t)− 1

2

d∑
i,j=1

∂2
xixj

(aij(x, t) f(x, t)) +
d∑
i=1

∂xi (bi(x, t;u) f(x, t)) = 0 (6.3)

f(x, 0) = ρ(x). (6.4)

Notice that for a given control function u, Theorem 2 states that the solution of the
FP model (6.3)-(6.4) is uniquely determined. We denote this dependence by f = f(u)
and one can prove that the mapping u→ f(u) is twice differentiable [72]. Therefore,
we can introduce the so-called reduced cost functional Ĵ given by

Ĵ(u) = J(f(u), u). (6.5)

Correspondingly, a local minimum u∗ of Ĵ is characterized by Ĵ ′(u∗; δu) = 0 for all
δu ∈ R`. h

To characterize the solution to our optimization problem, we consider the Lagrange
formalism and formulate the first-order optimality conditions. Consider the Lagrange
functional

L(f, u, p) = J(f, u)

+

∫
Ω

∫ T

0

(
∂tf −

1

2

d∑
i,j=1

∂2
xixj

(aij f) +
d∑
i=1

∂xi (bi(u) f)

)
pwα dx dt,

where p = p(x, t) represents the Lagrange multiplier. The first-order optimality
conditions for our FP optimal control problem are formally derived by equating to zero
the Frechét derivatives of the Lagrange function with respect to the set of variables
(f, u, p); see, e.g., [20, 72]. The optimality conditions result in the following optimality
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system. We have

∂tf − 1
2

∑d
i,j=1 ∂

2
xixj

(aij f) +
∑d

i=1 ∂xi (bi(u) f) = 0 in Q,
(state equation)
f(x, 0) = ρ(x) in Ω,

(initial condition)
−∂t(pwα)− 1

2

∑d
i,j=1 aij ∂

2
xixj

(pwα)−
∑d

i=1 bi(u) ∂xi (pwα) = 0 in Q,
(adjoint equation)

−p(x, T ) = f(x, T )− fd(x, T ) in Ω,
(terminal condition)

ν ul +
∫ T

0

∫
Ω

(∑d
i=1 ∂xi(

∂bi
∂ul

f)
)
pwα dx dt = 0 in Q, l = 1, . . . , `

(optimality equations)

(6.6)

Notice that the state variable evolves forward in time and the adjoint variable
evolves backwards in time. We remark that the FP equation is a particular instance
of the forward Kolmogorov equation and the adjoint equation resembles the backward
Kolmogorov equation.

It should appear [6, 7] clearly that the lth component of the reduced gradient ∇Ĵ
is given by

(∇Ĵ)l = ν ul +

∫ T

0

∫
Ω

(
d∑
i=1

∂xi

(
∂bi
∂ul

f

))
pwα dx dt, l = 1, . . . , `, (6.7)

where p = p(u) is the solution of the adjoint equation for the given f(u).
Notice that the optimization problem given by (6.2)-(6.4) represents a bilinear

control problem where the dependence of the state f on the control u is nonlinear and
the corresponding optimization problem is nonconvex. However, standard arguments
[6, 7, 20, 72, 104] allow to prove existence of optimal solutions of the open-loop control
in (0, T ).

6.2.2 Optimal control of the FP equation for PDP processes

We introduce in

∂tfs(x, t) + ∂x(As(x)fs(x, t)) =
S∑
j=1

Qsjfj(x, t), s ∈ S,

a control mechanism in the deterministic dynamics of a PDP process, and consider
As(x, us) in (Ω, Us), where Us ⊂ Rl, s ∈ S, are closed compact sets. We assume
that for a given state (x, s) of the system, admissible open-loop control functions
us(t) : [0, T )→ Us, s ∈ S, exist and are continuous in the interval [0, T ). Further, we
assume that As(x, us), s ∈ S, are Lipschitz continuous and differentiable in the set
(Ω, Us) so that the differential system

d

dt
X(t) = AS (t)(X, uS (t)(t)), t ∈ [0, T ),
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Chapter 6. Fokker-Planck optimality systems

has a unique solution. In the following, we denote with f = (fs)
S
s=1 and u = (us)

S
s=1.

Notice that the control strategy has a bilinear structure.
We consider the problem to find optimal controls us, s ∈ S, such that the solution

to the FP model

∂tfs(x, t) + ∂x(As(x, us)fs(x, t)) =
S∑
j=1

Qsjfj(x, t), s ∈ S, (6.8)

subject to
fs(x, 0) = f 0

s (x), s ∈ S. (6.9)

minimizes the following cost functional

J(f, u) :=
1

2

S∑
s=1

‖fs(·, T )− fTs (·)‖2
wα +

ν

2

S∑
s=1

|us|2U , (6.10)

where fT = (fT1 , · · · , fTS ) ∈ C∞0 (R,RS) is a vector of given functions with trace zero
that represents a desired target PDF at time T , ν > 0 is the weight of the cost of
the control, and |.|U denotes a norm in the space of the controls. It is assumed that
J(f, u) is twice Frechét-differentiable and that the second Frechét derivative J ′′ is
locally Lipschitz-continuous. This objective models the requirement that the PDF of
the PDP at final time, fs(·, T ), approaches as close as possible the desired target fTs .
We choose the following weighted L2-norm

‖v‖2
wα =

∫
R
v(x)2wα(x)dx,

where wα(x) = exp(α2x2) is a weight function and α is the scaling factor. In compact
form, we have the following optimal control problem

min
u∈U

J(f, u), (f, u) subject to (6.8)− (6.9), (6.11)

where U = U1 × · · · × US. This is an infinite-dimensional constrained minimization
problem [20], whose solution can be characterized by the corresponding first-order
optimality system. In order to derive this system, we introduce the following Lagrange
function

L(f, u, p) = J(f, u)

+
S∑
s=1

∫ T

0

∫
R

(
∂tfs + ∂x(As(us)fs)−

S∑
j=1

Qsjfj

)
pswα dx dt,

where p = (ps)
S
s=1 is the vector of adjoint PDF variables. The first-order optimality

conditions for the optimal control problem (6.11) are formally derived by equating
to zero the Frechét derivatives of the Lagrange function with respect to the set of
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variables (fs, us, ps); see, e.g., [20]. We obtain the following optimality system. For
s ∈ S, we have

∂tfs + ∂x(Asfs) =
∑S

j=1Qsjfj in R× (0, T ), (state equation)
fs(x, 0) = f 0

s (x) in R, (initial condition)
−∂t(pswα)− As∂x(pswα) =

∑S
j=1Qjspjwα in R× (0, T ), (adjoint equation)

−ps(x, T ) = fs(x, T )− fTs (x) in R, (terminal condition)
ν us +

∫
R ∂x(∂usAsfs) pswα dx = 0 in (0, T ). (optimality equation)

(6.12)
Note that the adjoint system describes the backward evolution of the adjoint

variables, starting with the terminal condition at t = T , and it is strictly hyperbolic
as the forward equation. Hence assuming f ∈ C∞(R× (0, T )) and a desired smooth
target fT ∈ C∞(R,RS), we have p ∈ C∞(R × (0, T ),RS). Based on these regularity
results and on the convexity and differentiability of the cost functional and on the
form of the optimality condition, standard arguments apply to prove existence of
optimal solutions; see, e.g., [20, 28, 59, 72, 78].

In the case that constant controls in [0, T ] are required, we have the following
optimality condition

ν us +

∫ T

0

∫
R
∂x(∂usAsfs) pswα dx dt = 0.

We mention this case because in [8] a model predictive control strategy is investigated
where on each time window constant controls are considered. For this reason, the error
estimate focuses on constant controls.
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Chapter 7

Hermite spectral discretization of FP
optimality systems

This chapter aims to introduce and analyse Hermite spectral discretization as an
appropriate discretization scheme in the field of optimal control problems involving
parabolic and hyperbolic FP equations in unbounded domains with bilinear control
structure.

7.1 A FP optimality system for an Itō stochastic pro-
cess

We consider a FP control problem corresponding to a representative stochastic process
given by the Ornstein-Uhlenbeck process, and for simplicity we focus on an one-
dimensional setting, d = 1, in which the drift function b is linear and the diffusion
coefficient a is constant. We have b(x, t;u) = γx + u and a(x, t) = 2c, where γ < 0,
u and c > 0 are constants. In this case, the optimality system is given by

∂tf(x, t)− c∂xxf(x, t) + ∂x ((γx+ u)f(x, t)) = 0, inQ,
f(x, 0) = ρ(x), inΩ,

−∂t(p(x, t)wα(x))− c∂xx(p(x, t)wα(x))− (γx+ u)∂x(p(x, t)wα(x)) = 0, inQ,
−p(x, T ) = f(x, T )− fd(x, T ), inΩ,

νu+

∫ T

0

∫
R
∂xf(x, t)p(x, t)wα dx dt = 0, inQ,

where wα(x) = exp(α2x2) is a weight function and α is the scaling factor.
The state and adjoint variables are approximated in the space of Hermite functions

as follows

f(x, t) =
∞∑
n=0

f̂n(t)H̃n(x), p(x, t) =
∞∑
n=0

p̂n(t)H̃n(x).
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For the adjoint equation, we note that the following approximation

p(x, t) =
∞∑
n=0

p̂n(t)H̃n(x),

is equivalent to

p(x, t)wα(x) =
∞∑
n=0

1√
2nn!

p̂n(t)Hn(αx).

The initial data f(x, 0) = ρ is also represented in the Hermite functions space by
ρ(x) =

∑∞
n=0 f̂

0
nH̃n(x), where

f̂ 0
n =

α√
π

∫
R
ρ(x)H̃n(x)wα(x)dx, n ≥ 0.

After calculating the numerical solution of the forward equation, we have f(x, T ) =∑∞
n=0 f̂n(T )H̃n(x). Since p(x, T ) = fd(x, T )− f(x, T ), the terminal condition for the

adjoint variable p can be approximated by p(x, T ) =
∑∞

n=0 p̂T,nH̃n(x), where

p̂T,n =
α√
π

∫
R
fd(x, T )H̃n(x)wα(x)dx− f̂n(T ), n ≥ 0.

Introducing the Hermite expansions for f and p into the state and adjoint equa-
tions, for n ≥ 0 we have

d

dt
f̂n(t) = nγf̂n(t) + αu

√
2nf̂n−1(t) + (γ + 2α2c)

√
n(n− 1)f̂n−2(t), (7.1)

with f̂−1 = 0, f̂−2 = 0, and

− d

dt
p̂n(t) = nγp̂n(t) + αu

√
2(n+ 1)p̂n+1(t) + (γ + 2α2c)

√
(n+ 2)(n+ 1)p̂n+2(t).(7.2)

The equations (7.1)-(7.2) represent two infinite systems of ODEs. These systems
are truncated by considering the approximations

[f̂∆,0(t), f̂∆,1(t), · · · , f̂∆,N(t)] ≈ [f̂0(t), f̂1(t), · · · ],

and
[p̂∆,0(t), p̂∆,1(t), · · · , p̂∆,N(t)] ≈ [p̂0(t), p̂1(t), · · · ].

Therefore, the systems of ODEs which we solve are as follows

d
dt
f̂∆,n(t) = nγf̂∆,n(t) + αu

√
2nf̂∆,n−1(t) + (γ + 2α2c)

√
n(n− 1)f̂∆,n−2(t),

f̂∆,n(0) = ρ̂n,
(7.3)

and

− d
dt
p̂∆,n(t) = nγp̂∆,n(t) + αu

√
2(n+ 1)p̂∆,n+1(t) + (γ + 2α2c)

√
(n+ 2)(n+ 1)p̂∆,n+2(t),

p̂∆,n(T ) = p̂T,n,
(7.4)
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for 0 ≤ n ≤ N, 0 ≤ t ≤ T , with f̂∆,i = 0 and p̂∆,N−i = 0, i = −1,−2. Defining
τ = T − t and q̂n(t) = p̂n(τ), the last equation is equivalent to

d
dt
q̂∆,n(t) = nγq̂∆,n(t) + αu

√
2(n+ 1)q̂∆,n+1(t) + (γ + 2α2c)

√
(n+ 2)(n+ 1)q̂∆,n+2(t),

q̂∆,n(0) = p̂Tk,n.
(7.5)

The systems (7.3) and (7.5) can be written in the following matrix form,

df̂∆

dt
= Mf f̂∆, (7.6)

and
dq̂∆

dt
= Mq q̂∆, (7.7)

where
f̂∆ = [f̂∆,0(t), f̂∆,1(t), · · · , f̂∆,N(t)]T ,

q̂∆ = [q̂∆,0(t), q̂∆,1(t), · · · , q̂∆,N(t)]T ,

and Mf and Mq are two (N + 1)× (N + 1) three-diagonal matrices with the elements

(Mf )ij =


nγ, i = j,

αu
√

2n, i− j = 1,

(γ + 2α2c)
√
n(n− 1), i− j = 2,

0, otherwise,

1 ≤ i, j ≤ N + 1,

(Mq)ij =


nγ, j = i,

αu
√

2(n+ 1), j − i = 1,

(γ + 2α2c)
√

(n+ 2)(n+ 1), j − i = 2,

0, otherwise,

1 ≤ i, j ≤ N + 1,

where n = i− 1. Notice that, the first row in Mf and also the first column in Mq are
zero.

Once we have calculated f̂∆ and q̂∆ by

f̂∆(t) = exp(Mf t) f̂
0
∆, and q̂∆(t) = exp(Mqt) q̂

0
∆,

the optimal control variable u can be computed. Representing the approximated
solutions by

f∆(x, t) =
N∑
n=0

f̂∆,n(t)H̃n(x), and p∆(x, t) =
N∑
n=0

p̂∆,n(t)H̃n(x),
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we have∫
R
(∂xf∆)p∆wαdx =

∫
R

(
N∑
n=0

f̂∆,n
d

dx
H̃n(x)

)(
N∑
n=0

p̂∆,nH̃n(x)

)
wαdx

= −α
∫
R

(
N∑
n=0

√
2(n+ 1)f̂∆,nH̃n+1(x)

)(
N∑
n=0

p̂∆,nH̃n(x)

)
wαdx

= −α
N∑
n=0

N∑
k=0

√
2(n+ 1)f̂∆,np̂∆,k

∫
R
H̃n+1(x)H̃k(x)wαdx

= −α
N−1∑
n=0

√
2(n+ 1)f̂∆,np̂∆,n+1

√
π

α

= −
N−1∑
n=0

√
2π(n+ 1)f̂∆,np̂∆,n+1.

Then νu+
∫ T

0

∫
R ∂xf(x, t) p(x, t)wα dx dt = 0 gives the following

u∆ = −1

ν
〈∂xf∆, p∆〉wα = −1

ν

∫ T

0

∫
R
(∂xf∆)p∆wαdx dt

=
1

ν

N−1∑
n=0

√
2π(n+ 1)

∫ T

0

f̂∆,np̂∆,n+1 dt.

7.1.1 Convergence analysis

We recall that substituting the Hermite expansion into the FP control system results
in two infinite systems of linear ODEs. Corresponding to each system, there is a
matrix M∞, which is lower triangular for the state equation and upper triangular for
the adjoint equation. To have a practical scheme, we have to truncate these matrices,
or equivalently, consider some truncated systems of ODEs. However, this truncation
is a source of error in our discretization scheme. In the following, we investigate the
influence of this error on the accuracy of our approximation method. Let ‖.‖2 be the
Euclidean norm in RN+1.

Lemma 11. Assuming f(·, t), fd(·, T ) ∈ VN for any t ∈ [0, T ], and N is sufficiently
large so that there is no error in the spectral representation of the initial data, then

‖f̂N − f̂∆‖2 = 0, and ‖p̂N − p̂∆‖2 = 0.

That is, there will be no error for the truncation of the infinite ODE systems.

Proof. For the forward case, no truncation error appears in calculating the Hermite
coefficients f̂n by solving the finite ODE system (7.6). This is because of the fact
that the system (7.1) is uncoupled in the sense that for m > n the value of f̂n is
independent of the value of f̂m. That is, PNf(·, t) = f∆(·, t) for every t ∈ [0, T ].
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The backward case can be analysed following the procedure proposed in [25].
Consider M∞ as the representing matrix for the ODE system transformed of the
adjoint equation, and M the corresponding truncated matrix. The matrix M is
obtained from M∞ by removing all rows and columns with index larger than N + 1.
We can write

q̂ = eM∞tq̂0 =

(
∞∑
j=0

tjM j
∞

j!

)
q̂0 =

∞∑
j=0

tj

j!
(M j
∞q̂

0).

That is, for n ≥ 1 we have

q̂n−1 =
∞∑
j=0

tj

j!
(M j
∞q̂

0)n =
∞∑
j=0

tj

j!
bjn,

in which bjn = (M j
∞q̂

0)n, and the notation (v)n refers to the n-th component of the
vector v. Since we have assumed that f(·, t), fd(·, T ) ∈ VN , we have (q̂0)n = 0 for
n > N+1. Noting thatM is an upper triangular matrix, it follows that (M∞q̂0)n = 0
for n > N + 1. Therefore, for j ≥ 1,

bjn =
N+1∑
k=1

(M j
∞)nk(q̂0)k =

N+1∑
k=1

(M∞)nk(M
j−1
∞ q̂0)k =

N+1∑
k=1

(M∞)nkb
j−1
k .

Similarly f̂∆,n−1 =
∑∞

j=0
tj

j!
bj∆,n, with

bj∆,n = (M j f̂ 0
∆)n =


∑N+1

k=1 (M)nkb
j−1
∆,k , j ≥ 1, n ≤ N + 1,

(f̂ 0
∆)n, j = 0, n ≤ N + 1,

0, n > N + 1.

Therefore we have

f̂n−1 − f̂∆,n−1 =
∞∑
j=0

tj

j!
(bjn − b

j
∆,n), n = 1, 2, · · · , N + 1,

and consequently by introducing θj =
∑N+1

n=1 |bjn − b
j
∆,n|,

N+1∑
n=1

|f̂n−1 − f̂∆,n−1| ≤
∞∑
j=0

tj

j!

N+1∑
n=1

|bjn − b
j
∆,n| =

∞∑
j=0

tj

j!
θj.

Through the following argument, we find an upper bound for θj.

θj =
N+1∑
n=1

|bjn − b
j
∆,n|

=
N+1∑
n=1

|
N+1∑
k=1

(M∞)nkb
j−1
k −

N+1∑
k=1

(M)nkb
j−1
∆,k | (7.8)

≤
N+1∑
n=1

N+1∑
k=1

|(M)nk||bj−1
k − bj−1

∆,k |.
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Therefore, we have

θj ≤
N+1∑
k=1

|bj−1
k − bj−1

∆,k |
N+1∑
n=1

|(M)nk| ≤ cN2

N+1∑
k=1

|bj−1
k − bj−1

∆,k | = cN2θj−1,

for some positive constant c. With some calculations, we see that θj ≤ (cN2)jθ0.
Since b0

n = f̂ 0
n and b0

∆,n = ˆf 0
∆,n, θ0 =

∑N+1
n=1 |b0

n − b0
∆,n| =

∑N
n=0 |f̂ 0

n − ˆf 0
∆,n| is the error

in the representation of the initial data which is assumed to be zero. Therefore, we
have

‖q̂N − q̂∆‖2
2 =

N∑
n=0

|q̂n − q̂∆,n|2 ≤

(
N∑
n=0

|q̂n − q̂∆,n|

)2

≤

(
∞∑
j=0

tj

j!
θj

)2

≤

(
∞∑
j=0

tj

j!
(cN2)jθ0

)2

= 0,

and thence the desired result.

To analyze the accuracy of the scheme, we first show that the approximations for
the state and adjoint variables are spectrally convergent.

Theorem 15. If f, p ∈ L∞(0, T ;Hr
wα(R)), r > 1, then for all t ∈ [0, T ] the following

holds

‖f(·, t)− f∆(·, t)‖2
wα = O(N−r) and ‖p(·, t)− p∆(·, t)‖2

wα = O(N−r)

for f∆(x, t) =
∑N

n=0 f̂∆,n(t)H̃n(x) and p∆(x, t) =
∑N

n=0 p̂∆,n(t)H̃n(x).

Proof. The argument is the same for f and p, so we only discuss the statement for p.
We have

p(x, t)− p∆(x, t) =
∞∑
n=0

p̂n(t)H̃n(x)−
N∑
n=0

p̂∆,n(t)H̃n(x)

=
N∑
n=0

(p̂n(t)− p̂∆,n(t)) H̃n(x) +
∞∑

n=N+1

p̂n(t)H̃n(x).

From Lemma 11 we know that the first term in the last line of the equation above is
zero, hence Lemma 7 in Chapter 5 gives us the following bound for the error

‖p(·, t)− p∆(·, t)‖2
wα =

∫
R

[
∞∑

n=N+1

p̂n(t)H̃n(x)

]2

w(x)dx

=

√
π

α

∞∑
n=N+1

|p̂n(t)|2

≤
√
π

α

∞∑
n=N+1

α2−2r

π
n−r‖p(·, t)‖2

r,wα .

Therefore, we have ‖p(·, t)− p∆(·, t)‖2
wα = O(N−r).
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The following lemma provides an appropriate means to show that the Hermite
discretization method is stable.

Lemma 12. Let M be the (N + 1)× (N + 1) matrix Mf or Mq, and let ŷ(t) be the
solution to

d

dt
ŷ(t) = Mŷ, ŷ(0) = ŷ0.

Then there exists a constant CN such that for all t > 0

‖ŷ(t)‖2 ≤ CN‖ŷ0‖2.

Proof. Since the matrix M is triangular, it has N + 1 distinct eigenvalues λn = nγ,
n = 0, 1, · · · , N , which are the diagonal elements ofM . Therefore,M is diagonalizable
and can be decomposed as M = S−1DS, where D = diag(λn)Nn=0. Hence, the system
of ODEs has the solution

ŷ(t) = eMtŷ0,

which implies the following

‖ŷ(t)‖2 ≤ ‖S−1‖2‖eDt‖2‖S‖2‖ŷ0‖2.

Since γ < 0, we have e2λnt ≤ 1, n = 0, 1, · · · , N , and consequently

‖eDt‖2 = σmax(eDt) =
√
λmax(e2Dt) = 1.

It is easy to show that the matrices S and S−1 have the same structure as the
matrix M . That is, they are lower triangular when M is lower triangular, and upper
triangular when M is upper triangular. Since S is consist of the eigenvectors of
M , it can be constructed in such a way that all diagonal elements are 1. Defining
s̃ := ‖S‖max we have

‖S‖2 ≤ (N + 1)‖S‖max = (N + 1)s̃.

Furthermore, in [69] it is proved that

‖S−1‖∞ ≤ (s̃+ 1)N ,

which results in

‖S−1‖2 ≤
√
N + 1‖S−1‖∞ =

√
N + 1(s̃+ 1)N .

Therefore, we have
‖ŷ(t)‖2 ≤ CN‖ŷ0‖2.

where CN = (N + 1)3/2(s̃+ 1)N+1.

Based on Lemma 12, we have the following stability result.
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Theorem 16. There exists a constant CN such that for all t > 0

‖f∆(., t)‖wα ≤ CN‖f̂0‖2, and ‖p∆(., t)‖wα ≤ CN‖p̂0‖2.

Proof. We only prove the inequality for f∆, since the argument is the same for p∆.
We have

‖f∆(., t)‖2
wα =

∫
R
(f∆)2wα(x)dx =

∫
R

(
N∑
n=0

f̂∆,n(t)H̃n(x)

)2

wα(x)dx

=

√
π

α

N∑
n=0

(f̂∆,n(t))2 =

√
π

α
‖f̂∆(t)‖2

2 ≤ CN‖f̂0‖2
2.

Now, we investigate the spectral convergence in approximating the control vari-
able.

Theorem 17. Let f ∈ L∞(0, T ;Hr
wα(R)), r > 2 and N ≥ 2. Then for a positive

constant c, we have

|u− u∆| ≤ c T
∞∑
n=N

n1−r.

Proof. We start from optimality equations in the continuous and discrete form:

νu+

∫ T

0

∫
R
(∂xf) pwα dx dt = 0,

νu∆ +

∫ T

0

∫
R
(∂xf∆) p∆wα dx dt = 0.

We note that∫
R
(∂xf)pwαdx =

∫
R

(
∞∑
n=0

f̂n∂xH̃n(x)

)(
∞∑
n=0

p̂nH̃n(x)

)
wαdx

= −α
∫
R

(
∞∑
n=0

√
2(n+ 1)f̂nH̃n+1(x)

)(
∞∑
n=0

p̂nH̃n(x)

)
wαdx

= −α
∞∑
n=0

∞∑
k=0

√
2(n+ 1)f̂np̂k

∫
R
H̃n+1(x)H̃k(x)wαdx

= −α
∞∑
n=0

√
2(n+ 1)f̂np̂n+1

√
π

α

= −
∞∑
n=0

√
2π(n+ 1)f̂np̂n+1.
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Similarly, we have∫
R
(∂xf∆)p∆wαdx = −

N−1∑
n=0

√
2π(n+ 1)f̂∆,np̂∆,n+1.

Therefore,

−
(∫

R
(∂xf)pwαdx−

∫
R
(∂xf∆)p∆wαdx

)
=

∞∑
n=0

√
2π(n+ 1)f̂np̂n+1

−
N−1∑
n=0

√
2π(n+ 1)f̂∆,np̂∆,n+1

=
N−1∑
n=0

√
2π(n+ 1)

(
f̂np̂n+1 − f̂∆,np̂∆,n+1

)
+

∞∑
n=N

√
2π(n+ 1)f̂np̂n+1.

Noting that

f̂np̂n+1 − f̂∆,np̂∆,n+1 = f̂np̂n+1 − f̂np̂∆,n+1 + f̂np̂∆,n+1 − f̂∆,np̂∆,n+1

= f̂n (p̂n+1 − p̂∆,n+1) + p̂∆,n+1

(
f̂n − f̂∆,n

)
,

we can write

1√
2π
|
∫
R
(∂xf)pwαdx−

∫
R
(∂xf∆)p∆wαdx| ≤

N−1∑
n=0

√
n+ 1|f̂n|.|p̂n+1 − p̂∆,n+1|

+
N−1∑
n=0

√
n+ 1|p̂∆,n+1|.|f̂n − f̂∆,n|

+
∞∑
n=N

√
n+ 1|f̂n|.|p̂n+1|.

From Lemma 11, we have

N∑
n=0

|f̂n − f̂∆,n|2 = 0, and
N∑
n=0

|p̂∆,n − p̂n|2 = 0,

which implies that |f̂n − f̂∆,n| = 0 and |p̂∆,n − p̂n| = 0 for n = 0, 1, · · · , N . Hence

1√
2π
|
∫
R
(∂xf)pwαdx−

∫
R
(∂xf∆)p∆wαdx| ≤

∞∑
n=N

√
n+ 1|f̂n|.|p̂n+1|.
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Assuming N ≥ 2, Lemma 7 in Chapter 5 gives us
∞∑
n=N

√
n+ 1|f̂n|.|p̂n+1| ≤

∞∑
n=N

√
n+ 1(

α1−r
√
π

)2n−r/2(n+ 1)−r/2‖f‖r,wα‖p‖r,wα

≤ cfp

∞∑
n=N

nn−r/2n−r/2 = cfp

∞∑
n=N

n1−r,

in which cfp = α2−2r

π
‖f‖r,wα‖p‖r,wα . Therefore, the desired accuracy estimate for the

control variable u can be written as follows

|u− u∆| ≤ c T

∞∑
n=N

n1−r,

where c =
√

2π
ν
cfp.

7.1.2 Numerical experiments

As the first case, Case 1, we set c = 1, γ = −1, ν = 0.1, T = 1, and introduce the
following initial condition for the FP equation

ρ(x) = e(−x
2

2
)

(
1 + cos(

π

2
x) exp(

π2

8
)

)
, x ∈ R.

We consider this case since the exact solution of the FP equation is known, which
makes it possible to evaluate the accuracy of the discretization method. The posi-
tivity of the FP equation is not considered in this experiment. In order to illustrate
the spectral accuracy of the adjoint and the control variables, we insert the desired
function

fd(x, t) = e(−x
2

2
)

(
1 + cos(

π

2
xe−t) exp(

π2

8
)e−2t

)
into the optimality system, which is the same as the solution of the forward FP
equation. with this setting, the exact solution of the optimality system is given by
f = fd, p = 0, and u = 0. We apply our spectral discretization for this optimality
system, and obtain very accurate numerical approximations; see Table 7.1 for the
norm of the solution errors. We observe that the Hermite spectral method converges
spectrally and is very accurate even for small N .

In Case 2, we impose the PDF to follow a desired function which is a Gaussian
with a varying mean value. The control variable, then must vary in order to keep the
PDF as close as possible to the desired function. Let ν = 0.1,

fd(x, t) =
1√

2πσ2
exp

(
−(x− 2 sin(πt/5))2

2σ2

)
with σ = 0.2, and consider the following setting for the evolution of PDF. The initial
PDF is

f0(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
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N ‖f∆ − fexact‖L2 ‖p∆ − pexact‖L2 |u∆ − uexact|
5 1.6858e-05 5.3832e-15 2.1653e-16
10 6.8641e-10 5.3836e-15 5.9684e-16
15 4.3062e-13 5.3870e-15 2.1858e-15
20 1.0100e-14 5.9588e-15 1.5715e-16

Table 7.1: Case 1: Accurate approximation results of the optimality system for dif-
ferent N .

with σ = 0.5, and the parameters in the forward equation are γ = −1, c = 0.32. We
consider a model predictive control scheme, which is introduced in [7] and presented at
the Appendix of this work, to track fd by the PDF. In this control scheme, we divide
the time interval [0, T ] into k subintervals, and solve the optimization problem for
any time window of size ∆t = T/k. At any time window (tk, tk+1] an optimal control
u imposes the PDF of that window to evolve towards the desired function fd(x, tk+1).
While for a given u, the state and the adjoint variables are approximated directly with
the Hermite spectral method, we employ the nonlinear conjugate gradient scheme
proposed in [7] to evaluate the optimal control u. The final PDF of a window is
considered to be the initial solution of the next window. Figure 7.1 along with Table
7.2 show the outcome of this control strategy. In this experiment, ∆t = 0.5, α = 0.7
and N = 50.

Time interval u
(0,0.5] 1.1374
(0.5,1] 1.7166
(1,1.5] 2.0767
(1.5,2] 2.1216
(2,2.5] 1.9601
(2.5,3] 1.5307
(3,3.5] 0.9934
(3.5,4] 0.4265
(4,4.5] 0.0019
(4.5,5] 0.0000

Table 7.2: Case 2: The optimal control variable u at different time windows.
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Figure 7.1: Case 2: Approximated solution of FP equation (cross-marks) tracking the
desired PDF (solid line) at different time windows.
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7.2 A FP optimality system for a PDP Process

We consider the FP optimality system corresponding to a PDP process, which has
been derived in Chapter 6, as follows

∂tfs + ∂x(Asfs) =
∑S

j=1Qsjfj in R× (0, T ), (state equation)
fs(x, 0) = f 0

s (x) in R, (initial condition)
−∂t(pswα)− As∂x(pswα) =

∑S
j=1Qjspjwα in R× (0, T ), (adjoint equation)

−ps(x, T ) = fs(x, T )− fTs (x) in R, (terminal condition)
ν us +

∫
R ∂x(∂usAsfs) pswα dx = 0 in R× (0, T ). (optimality equation)

(7.9)
and focus on the following structure, As(x, us) = asx+ bsus + cs, where as, bs and cs
are constants and the us are given, s ∈ S. This choice of the dynamics As includes
the dissipative process subject to dichotomic noise considered in [8]. In this case, the
proposed scheme can be validated by comparison with some exact solutions.

For developing the numerical scheme, we start by discretizing the forward system

∂tfs + ∂x(As(x, us)fs) =
S∑
j=1

Qsjfj, s ∈ S.

After replacing As, this system becomes

∂tfs = −asx ∂xfs − (bsus + cs)∂xfs + (Qss − as)fs +
S∑
j=1

j 6=s

Qsjfj, s ∈ S. (7.10)

We denote the approximation of fs(·, t) with f s∆(·, t) ∈ VN , where

f s∆(x, t) =
N∑
n=0

f̂ sn(t)H̃n(x). (7.11)

We insert (7.11) into (7.10) and obtain

d

dt
f̂ sn(t) = dsnf̂

s
n(t) + lsnf̂

s
n−1(t) + hsnf̂

s
n−2(t) +

S∑
j=1

j 6=s

ksj f̂
j
n(t), s ∈ S, (7.12)

where dsn = Qss + asn, lsn = α
√

2n(bsus + cs), hsn = as
√
n(n− 1), ksj = Qsj and

f̂ s−1 = f̂ s−2 = 0. Equation (7.12) is valid for 0 ≤ n ≤ N and gives the following system
of ODEs

df̂∆(t)

dt
= Mf (t)f̂∆(t), (7.13)

where
f̂∆ = [f̂ 1

0 , · · · , f̂ 1
N , f̂

2
0 , · · · , f̂ 2

N , · · · , f̂S0 , · · · , f̂SN ]T .
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The matrix Mf is a S(N + 1)× S(N + 1) sparse matrix as follows

Mf =



d1
0

l11 d1
1

h1
2 l12 d1

2
. . . . . . . . .

h1
N l1N d1

N

k1
2

k1
2

k1
2

. . .
k1

2

· · ·

k1
S

k1
S

k1
S

. . .
k1
S

k2
1

k2
1

k2
1

. . .
k2

1

d2
0

l21 d2
1

h2
2 l22 d2

2
. . . . . . . . .

h2
N l2N d2

N

· · ·

k2
S

k2
S

k2
S

. . .
k2
S

...
... . . . ...

kS1
kS1

kS1
. . .

kS1

kS2
kS2

kS2
. . .

kS2

· · ·

dS0
lS1 dS1
hS2 lS2 dS2

. . . . . . . . .
hSN lSN dSN



.

Next, we discuss the discretization of the following adjoint equations

−∂t(pswα)− As∂x(pswα) =
S∑
j=1

Qjspjwα, s ∈ S.

Replacing As(x, us) = asx+ bsus + cs, this set of equations becomes

−∂t(pswα) = asx∂x(pswα) + (bsus + cs)∂x(pswα) +
S∑
j=1

Qjspjwα, s ∈ S. (7.14)

We denote the approximation of ps by ps∆ =
∑N

n=0 p̂
s
n(t)H̃n(x) ∈ VN . We have

(ps∆wα) (x, t) =
N∑
n=0

1√
2nn!

p̂sn(t)Hn(αx). (7.15)

We insert (7.15) into (7.14) and obtain

− d

dt
p̂sn(t) = dsnp̂

s
n(t) + lsn+1p̂

s
n+1(t) + hsn+2p̂

s
n+2(t) +

S∑
j=1

j 6=s

kjsp̂
j
n(t), s ∈ S. (7.16)

By setting p̂sN+1 = p̂sN+2 = 0 for s ∈ S, equation (7.16), with 0 ≤ n ≤ N , gives
us a system of ODEs. We introduce the time transformation τ = T − t, and define
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qs(t) = ps(τ) and q̂n(t) = p̂n(τ) to make this system forward in time. The resulting
initial-value system can be written in the following matrix form

dq̂∆(t)

dt
= Mq(T − t)q̂∆(t), (7.17)

where
q̂∆ = [q̂1

0, · · · , q̂1
N , q̂

2
0, · · · , q̂2

N , · · · , q̂S0 , · · · , q̂SN ]T .

The matrix Mq is a S(N + 1)× S(N + 1) sparse matrix as follows

Mq =



d1
0 l11 h1

2
. . . . . . . . .

d1
N−2 l1N−1 h1

N

d1
N−1 l1N

d1
N

k2
1

k2
1

k2
1

. . .
k2

1

· · ·

kS1
kS1

kS1
. . .

kS1
k1

2

k1
2

k1
2

. . .
k1

2

d2
0 l21 h2

2
. . . . . . . . .

d2
N−2 l2N−1 h2

N

d2
N−1 l2N

d2
N

· · ·

kS2
kS2

kS2
. . .

kS2
...

... . . . ...
k1
S

k1
S

k1
S

. . .
k1
S

k2
S

k2
S

k2
S

. . .
k2
S

· · ·

dS0 lS1 hS2
. . . . . . . . .

dSN−2 lSN−1 hSN
dSN−1 lSN

dSN



.

The initial data fs(x, 0) = f 0
s (x), s ∈ S, needs also to be represented in the

Hermite functions space by the following

f̄ s∆(x) =
N∑
n=0

f̄ snH̃n(x),

where
f̄ sn =

α√
π

∫
R
f 0
s (x)H̃n(x)wα(x)dx, n ≥ 0.

Since ps(x, T ) = fTs (x) − fs(x, T ), after calculating the numerical solution of the
forward equations, the initial conditions for the variables qs, which are the terminal
conditions for the adjoint variables ps, can be approximated as follows

q̄s∆ =
N∑
n=0

p̄snH̃n(x),

where
p̄sn =

α√
π

∫
R
fTs (x)H̃n(x)wα(x)dx− f̂ sn(T ), n ≥ 0.
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Let
f̄∆ = [f̄ 1

0 , · · · , f̄ 1
N , f̄

2
0 , · · · , f̄ 2

N , · · · , f̄S0 , · · · , f̄SN ]T ,

q̄∆ = [q̄1
0, · · · , q̄1

N , q̄
2
0, · · · , q̄2

N , · · · , q̄S0 , · · · , q̄SN ]T .

Now the PDE problem of approximating the solution of the forward and backward
FP equations in the optimality system (6.12) reduces to the problem of solving the
following two linear first-order systems of ODEs,

df̂∆(t)

dt
= Mf (t)f̂∆(t), f̂∆(0) = f̄∆,

and
dq̂∆(t)

dt
= Mq(T − t)q̂∆(t), q̂∆(0) = q̄∆.

We notice that for the case of constant controls, the solutions f̂∆ and q̂∆ are given by

f̂∆(t) = exp(Mf t) f̄∆ and q̂∆(t) = exp(Mqt) q̄∆.

Next, we focus on the control variables us. Recall the Hermite expansions

f s∆(x, t) =
N∑
n=0

f̂ sn(t)H̃n(x), and ps∆(x, t) =
N∑
n=0

p̂sn(t)H̃n(x).

We have∫
R
∂x(∂usAsf

s
∆)ps∆wαdx =

∫
R
bs∂xf

s
∆p

s
∆wαdx

= bs

∫
R

(
N∑
n=0

f̂ sn∂xH̃n(x)

)(
N∑
n=0

p̂snH̃n(x)

)
wα(x)dx

= −bsα
∫
R

(
N∑
n=0

√
2(n+ 1)f̂ snH̃n+1(x)

)(
N∑
n=0

p̂snH̃n(x)

)
wα(x)dx

= −bsα
N∑
n=0

N∑
k=0

√
2(n+ 1)f̂ snp̂

s
k

∫
R
H̃n+1(x)H̃k(x)wα(x)dx

= −bsα
N−1∑
n=0

√
2(n+ 1)f̂ snp̂

s
n+1

√
π

α

= −bs
√

2π
N−1∑
n=0

√
n+ 1f̂ snp̂

s
n+1.

Therefore, the optimality condition νus+
∫
R ∂x(∂usAsfs)pswα dx = 0 gives the follow-

ing

us∆(t) = −1

ν

∫
R
∂x(∂usAsf

s
∆)ps∆wαdx

=
bs
√

2π

ν

N−1∑
n=0

√
n+ 1f̂ snp̂

s
n+1.
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For constant controls, we have

us∆ = −1

ν

∫ T

0

∫
R
∂x(∂usAsf

s
∆)ps∆wαdx dt

=
bs
√

2π

ν

N−1∑
n=0

√
n+ 1

∫ T

0

f̂ snp̂
s
n+1 dt.

7.2.1 Convergence analysis

In this section, we discuss the approximation properties of our Hermite discretization
scheme applied to the FP optimality system (7.9). To analyze the accuracy of the
scheme for constant controls, we first show that the approximations for the state and
adjoint variables are spectrally convergent.

Theorem 18. If fs, ps ∈ L∞(0, T ;Hr
wα(R)) for s ∈ S and r > 1, and the control

variables are constant, then for all t ∈ [0, T ] the following holds

‖fs(·, t)− f s∆(·, t)‖2
wα = O(N−r) and ‖ps(·, t)− ps∆(·, t)‖2

wα = O(N−r).

Proof. For any s ∈ S, we have

fs(x, t)− f s∆(x, t) =
∞∑
n=0

f̂ sn(t)H̃n(x)−
N∑
n=0

f̂ sn(t)H̃n(x)

=
∞∑

n=N+1

f̂ sn(t)H̃n(x).

Notice that for constant controls no truncation error appears in calculating the
Hermite coefficients f̂ sn by solving the ODE system (7.13). This is because of the
fact that for m > n the value of f̂ sn is independent of the value of f̂ sm. That is,
PNfs(·, t) = f s∆(·, t) for every t ∈ [0, T ]. So we have the following bound for the error

‖fs(·, t)− f s∆(·, t)‖2
wα =

∫
R

[
∞∑

n=N+1

f̂ sn(t)H̃n(x)

]2

wα(x)dx

=

√
π

α

∞∑
n=N+1

|f̂ sn(t)|2

≤
√
π

α

∞∑
n=N+1

α2−2r

π
n−r‖fs(·, t)‖2

r,wα .

Therefore, we have ‖fs(·, t)− f s∆(·, t)‖2
wα = O(N−r).

Regarding the adjoint variables ps, s ∈ S, we note that the coefficient matrix Mq

is the transpose of the matrix Mf . Therefore, in the framework of discretize-before-
optimize [20], we have the same estimate for the adjoint variables.
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Next, we investigate the spectral convergence in approximating the constant con-
trol variables in our bilinear control mechanism.

Theorem 19. Let fs ∈ L∞(0, T ;Hr
wα(R)), s ∈ S, r > 2 and N ≥ 2. Then for a

positive constant cs, we have the estimate

|us − us∆| ≤ cs

∞∑
n=N

n1−r.

Proof. Consider the optimality equations in the continuous and discrete form. We
have

νus +

∫ T

0

∫
R
∂x(∂usAsfs) pswα dx dt = 0,

νus∆ +

∫ T

0

∫
R
∂x(∂usAsf

s
∆) ps∆wα dx dt = 0.

We note that∫
R
∂x(∂usAsfs) pswαdx =

∫
R
bs

(
∞∑
n=0

f̂ sn∂xH̃n(x)

)(
∞∑
n=0

p̂snH̃n(x)

)
wαdx

= −bsα
∫
R

(
∞∑
n=0

√
2(n+ 1)f̂ snH̃n+1(x)

)(
∞∑
n=0

p̂snH̃n(x)

)
wαdx

= −bsα
∞∑
n=0

∞∑
k=0

√
2(n+ 1)f̂ snp̂

s
k

∫
R
H̃n+1(x)H̃k(x)wαdx

= −bsα
∞∑
n=0

√
2(n+ 1)f̂ snp̂

s
n+1

√
π

α

= −bs
∞∑
n=0

√
2π(n+ 1)f̂ snp̂

s
n+1.

Similarly, we have∫
R
∂x(∂usAsf

s
∆) ps∆wαdx = −bs

N−1∑
n=0

√
2π(n+ 1)f̂ snp̂

s
n+1.

Therefore, we obtain

−
∫
R
∂x(∂usAsfs)pswαdx+

∫
R

∂x(∂usAsf
s
∆) ps∆wαdx

= bs

∞∑
n=0

√
2π(n+ 1)f̂ snp̂

s
n+1 − bs

N−1∑
n=0

√
2π(n+ 1)f̂ snp̂

s
n+1

= bs

∞∑
n=N

√
2π(n+ 1)f̂ snp̂

s
n+1.
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Hence

|
∫
R
∂x(∂usAsfs) pswαdx−

∫
R
∂x(∂usAsf

s
∆) ps∆wαdx| ≤ |bs|

√
2π

∞∑
n=N

√
n+ 1|f̂ sn|.|p̂sn+1|.

Assuming N ≥ 2, Lemma 7 gives us the following
∞∑
n=N

√
n+ 1|f̂ sn(t)|.|p̂sn+1(t)| ≤

∞∑
n=N

√
n+ 1(

α1−r
√
π

)2n−r/2(n+ 1)−r/2‖fs(·, t)‖r,wα‖ps(·, t)‖r,wα

≤ csfp

∞∑
n=N

nn−r/2n−r/2 = csfp

∞∑
n=N

n1−r,

in which csfp = α2−2r

π
‖fs(·, t)‖r,wα‖ps(·, t)‖r,wα . Therefore, the desired accuracy esti-

mate for the control variable us can be written as follows

|us − us∆| ≤ cs
∞∑
n=N

n1−r,

where cs = |bs|
√

2π
ν

∫ T
0
csfp dt.

7.2.2 Numerical experiments

We present results of numerical experiments to validate the accuracy of the Hermite-
spectral discretization for approximating the solution of the PDP FP optimality sys-
tem. We anticipate that the results of numerical implementation depend on the value
assigned to the scaling factor α introduced in the weight function exp(α2x2) which
also appears in Hn(αx) to produce the n-th Hermite function. It is still an open prob-
lem how to find the optimal scaling factor, in spite of significant attentions payed to
the importance of this issue in scientific literature; see, e.g., [45, 74, 75]. When deal-
ing with a Gaussian function as an initial condition or as the equilibrium solution,
it is possible to follow the arguments presented in [45] and [74] to select a suitable
scaling factor. Concerning a Gaussian function like exp(−βx2), we can set α =

√
β

which is a simple choice satisfying the necessary condition α <
√

2β prescribed in the
above-mentioned references. However, concerning time dependent problems, where
the characteristics of the solution change during the time evolution, the best scaling
factor for representing the initial solution may depend on time. It means that for
evolutionary problems it may be advantageous to consider a time dependent scaling
factor, which is beyond the scope of this work. We find a proper scaling factor by
experimental trials.

To examine our discretization scheme for the optimal control problem we insert
time-dependent controls u1 and u2 into the FP equations (5.24)-(5.25). We specifically
have A1(x, u1) = −x+u1 +1 and A2(x, u2) = −x−u2−1, and introduce the following
target functions

fT1 (x) =
1

2
√

2πσ2
exp(
−(x− 1 + e−T )2

2σ2
),
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and

fT2 (x) =
1

2
√

2πσ2
exp(
−(x+ 1− e−T )2

2σ2
).

We set ν = 0.1, σ2 = 0.05, µ = 2, γ = 1, W = 1, T = 10, α = 1.5, and aim to
approach as close as possible to the target functions fT1 and fT2 starting with the
initial conditions

f 0
1 (x) = f 0

2 (x) =
1√

2πσ2
0

exp(
−x2

2σ2
0

),

with σ2
0 = 0.1. To solve the optimality system (6.12) with this setting and time-

dependent controls, we apply the nonlinear conjugate gradient method proposed in
[7, 20]. The results of approximating the state variables f1 and f2 are depicted in
Figures 7.2 and 7.3, which illustrate how the solutions improve by increasing the
number of expansion terms.

Figure 7.4 refers to the approximation of the adjoint variables p1 and p2 corre-
sponding to N = 50. In Figure 7.5, we can follow the time evolution of the control
variables u1 and u2. Since both f1 and f2 have the same initial PDFs and also follow
the same Gaussian targets which are centered differently, the controls u1 and u2 coin-
cide. Similar results are obtained in the case of different targets; see Figures 7.6-7.7.
In this experiment, we have considered the same setting as the previous test, with
the only difference that σ2 = 0.05 in fT1 while σ2 = 0.1 in fT2 .
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Figure 7.2: Numerical solutions to the states of the optimality system (dash-dot lines)
and the target functions (solid lines) at time t = T ; top: N = 5, bottom: N = 10;
α = 1.5. Thin lines correspond to f1 and thick lines correspond to f2.
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Figure 7.3: Numerical solutions to the states of the optimality system (dash-dot lines)
and the target functions (solid lines) at time t = T ; top: N = 50, bottom: N = 100;
α = 1.5. Thin lines correspond to f1 and thick lines correspond to f2.
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Figure 7.4: Numerical solutions to the adjoint variables p1 (top) and p2 (bottom);
N = 50, α = 1.5.
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Figure 7.5: Numerical solutions to the time-dependent control variables; N = 50,
α = 1.5. Thin line corresponds to u1 and thick line corresponds to u2 (both solutions
coincide).
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Figure 7.6: Top: Numerical solutions to the states of the optimality system (dash-
dot lines) and the target functions (solid lines) at time t = T . Bottom: Numerical
solutions to the time-dependent control variables. Thin lines correspond to f1 and u1

and thick lines correspond to f2 and u2; N = 50, α = 1.5.
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Figure 7.7: Numerical solutions to the adjoint variables p1 (top) and p2 (bottom)
when different targets are prescribed; N = 50, α = 1.5.
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Chapter 8

Conclusion

The Fokker-Planck equations which we considered in this thesis are mathematical
models describing the time evolution of the probability density function of Itō stochas-
tic processes and piecewise deterministic processes. We therefore summarized at the
beginning of the thesis the most important concepts which were necessary to have
an intuitive understanding of these stochastic processes. We then discussed the FP
equations as second order partial differential equations. In particular, we illustrated
how to derive the FP equations of parabolic and hyperbolic type from corresponding
stochastic process.

After establishing the fundamental definitions and setting for FP equations, we
discretized the equations in both bounded and unbounded domains. In the case
of a bounded domain, we considered and discussed finite difference discretization
schemes to approximate the solution of FP equations. Particularly, for parabolic FP
equations, finite difference schemes based on the Chang-Cooper method and first- and
second-order backward time differencing schemes were investigated. These schemes
provide conditionally stable solutions that are second-order accurate in space and
first- and second-order accurate in time, respectively. Moreover, these schemes satisfy
conservation and positivity properties of the Fokker-Planck solution. These properties
were theoretically proven and validated by numerical experiments.

Next, we investigated the Hermite spectral discretization of the FP equations, both
parabolic and hyperbolic types, defined on unbounded domains. First the required
properties and equipment for spectral methods and particularly Hermite approxima-
tion were discussed. Then the discretization schemes were analyzed, and the accuracy
of the Hermite spectral method was proved by showing that, in the both cases, the
error decreases spectrally as the number of expansion terms increases. Moreover, it
was proved that the proposed discretization schemes preserve conservativity of the FP
solutions. Results of numerical experiments demonstrated the theoretical estimates.
Since a weighted Hermite approximation method was used, the optimal choice for the
scaling factor in the weight function was investigated with numerical experiments.

The rest of the thesis was dedicated to the optimal control problems related to the
FP equations. We first shortly introduced the optimal control problems, and discussed
the optimal control problems governed by FP equations to find controls with the
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Chapter 8. Conclusion

purpose of driving the random processes to attain desired objectives. For the both
cases, Itō stochastic models and PDP processes, we derived the corresponding FP
optimality systems consisting of the state, the adjoint, and the optimality condition
equations. We then investigated the Hermite spectral discretization of these FP
optimality systems in unbounded domains. The accuracy of the discretization scheme
was discussed by showing spectral convergence in approximating the state, the adjoint,
and the control variables that appear in the FP optimality systems. To further
investigate the effectiveness of the method, results of numerical experiments were
presented as well.
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Appendix. A model predictive
control scheme

Our purpose is to define a control strategy for the probability density function of a
stochastic process to track a given sequence of desired PDFs in time. In mathematical
terms, this means to minimize the tracking objective at a given time instants. Let
(0, T ) be the time interval where the process is considered. We assume time windows
of size ∆t = T/N with N a positive integer. Let tk = k∆t, k = 0, 1, . . . , N . At
time t0, we have a given initial PDF denoted with ρ and with fd(·, tk), k = 1, . . . , N ,
we denote the sequence of desired PDFs. Our scheme starts at time t0 and solves
the minimization problem minu J(f(u), u) defined in the interval (t0, t1). Then, with
the probability density function f resulting at t = t1 that solves the optimal control
problem in (t0, t1), we define the initial PDF for the subsequent optimization problem
defined in the interval (t1, t2). This procedure is repeated by receding the time horizon
until the last time window is reached. This is an instance of the class of receding
horizon model predictive control (RH-MPC) schemes [76, 79] that is widely used in
engineering applications to design closed-loop algorithms. In fact, we implement a
MPC scheme where the time horizon used to evaluate the control coincides with the
time horizon where the control is used. One important aspect of this approach is that
it can be applied to infinite dimensional evolution systems [59], that is the case of the
FP model. We refer to [86] to show that the closed-loop system with the RH-MPC
scheme is nominally asymptotically stable.

The RH-MPC procedure is summarized in the following algorithm.

Algorithm 20 (RH-MPC Control). Set k = 0, ρ0 = ρ;

1. Assign the initial PDF, f(x, tk) = ρk(x) and the target fd(·, tk+1);

2. In (tk, tk+1), apply Algorithm 22 to solve minu∈R` J(f(u), u), thus obtain the
optimal pair (f, u);

3. If tk+1 < T , set k := k + 1, ρk = f(·, tk), go to 1.

4. End.
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Next, we discuss the first step of Algorithm 20, that consists in solving minu J(f(u), u).
In fact, the solution of the FP control problem given by the mapping u→ y(u) allows
to transform the constrained optimization problem in an unconstrained one as follows

min
u∈U

Ĵ(u). (9.1)

Thus the solution to the FP equation is included into the objective at u ∈ U ⊂ R`.
Further, to compute ∇uĴ(u) for a given u, we have to solve first the forward FP
equation and then the adjoint FP equation. This procedure is summarized in the
following

Algorithm 21 (Evaluation of the gradient at u).

1. Solve the discrete FP equation with given initial condition;

2. Solve the discrete adjoint FP equation with given terminal condition;

3. Compute the gradient ∇uĴ(u) using (6.7);

4. End.

It is clear that the solution of the FP optimality system may become prohibitive
when high-dimensional stochastic processes are considered. In this case, special tech-
niques for solving high-dimensional partial differential equations are in order; see,
e.g., [53, 110].

We solve the optimization problem by implementing the gradient given by Al-
gorithm 21 in a nonlinear conjugate gradient (NCG) scheme. Nonlinear conjugate
gradient schemes represent extensions of linear conjugate gradient methods to non-
quadratic problems; see, e.g., [48, 94]. In the common variants, the basic idea is to
avoid matrix operations and express the search directions recursively as

dk+1 = −gk+1 + βk dk, (9.2)

where gk = ∇Ĵ(uk), k = 0, 1, 2, . . ., with d0 = −g0. The iterates for a minimum point
are given by

uk+1 = uk + αk dk, (9.3)

where αk > 0 is a steplength that satisfies the Armijo condition of sufficient decrease
of Ĵ ’s value as follows

Ĵ(uk + αk dk) ≤ Ĵ(uk) + δ αk (∇Ĵ(uk), dk)U (9.4)

where 0 < δ < 1/2; see [84]. Notice that we use the inner product of the U = R`

space.
The parameter βk is chosen so that (9.2)–(9.3) reduces to the linear CG scheme if Ĵ

is a strictly convex quadratic function and αk is the exact one-dimensional minimizer
of Ĵ along dk. In this case the NCG scheme terminates in at most n steps in exact
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arithmetic. This case provides a lower bound to the computational complexity of
NCG schemes.

There are many different formula for βk which result in different performance
depending on the (nonlinear) problem. We use the formulation due to Dai and Yuan
[35] as follows

βDYk =
(gk+1, gk+1)U

(dk, yk)U
, (9.5)

where yk = gk+1 − gk.
The NCG scheme is implemented as follows.

Algorithm 22 (NCG Scheme).

• Input: initial approx. u0, d0 = −∇Ĵ(u0), index k = 0, maximum kmax, toler-
ance tol.

1. While (k < kmax && ‖gk‖R` > tol ) do

2. Search steplength αk > 0 along dk satisfying (9.4);

3. Set uk+1 = uk + αk dk;

4. Compute gk+1 = ∇Ĵ(uk+1) using Algorithm 21;

5. Compute βDYk given by (9.5);

6. Let dk+1 = −gk+1 + βDYk dk;

7. Set k = k + 1;

8. End while
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Chapter 9. Appendix. A model predictive control scheme
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