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Summary (English) 

 

I. Nowadays, tropical landscapes experience large-scale land use intensification and land 

conversion driven by increasing demand for resourses. Due to the continuously high demand 

for tropical timber and politically intended step increase in palm oil production, multiple 

rounds of logging and subsequent conversion to oil palm plantations became a regionally 

wide-spread land conversion pattern in Southeast Asia. Although many tree species and some 

animals are highly threatened by logging, a great number of species groups, such as birds or 

mammals, have been shown to persist in logged forests. Accordingly, many ecosystem 

services, such as dung removal, seed dispersal or the activity of scavengers, are functionally 

maintained in logged forests. In contrast, oil palm plantations have been shown to not only 

dramatically alter the species composition and reduce biodiversity, but also curtail many 

crucial biotic and abiotic ecosystem functions. The focus of this dissertation was to 

investigate the response of anuran species richness and community composition to logging 

and conversion to oil palm plantation in northern Borneo (chapter II). I analysed the diet of 

various frog species and their change with habitat degradation. Furthermore, I assessed the 

shift in the trophic position of the anuran community as well as the response of anuran 

phylogenetic, dietary, and functional diversity to logging and conversion to oil palm 

plantations (chapter III). Finally, the resilience of the predator-prey interaction between an 

ant-specialist toad and its ant prey was analysed using shifts in species-level interactions 

(chapter IV). 

II. This part of the study compares the species richness, relative abundance and community 

composition of stream anuran assemblages among primary forests, repeatedly logged forests 

and oil palm plantations. I used a highly standardised sampling setup applying transect-based 

sampling. Surprisingly, most of the anuran species native to primary forests were able to 

survive in logged forest streams. In contrast, on average only one third of the forest species 

richness was found in oil palm plantation streams. However, a high percentage of canopy 

cover above the plantation streams was able to mitigate this loss substantially. This study 

demonstrates the high conservation value of logged forests for Southeast Asian anurans. In 

contrast, the conversion to oil palm plantations leads to a dramatic decline of forest species. 

However, they have a mainly unused potential to contribute to the protection of parts of the 

regional anuran biodiversity if conservation-oriented management options are implemented. 
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III. In this part, I analysed the shifts in trophic position and multiple diversity layers of 

Southeast Asian stream-dependent anuran species across a gradient of disturbance from 

primary forest through intensively logged forest to oil palm plantation. For this purpose, I 

identified the diet composition of 59 anuran species by means of stomach flushing. 

Furthermore, I use diet composition of frog species as well as species traits to calculate 

dietary and functional diversity, respectively. I found that the trophic position of the entire 

anuran community is elevated in heavily disturbed habitats. Furthermore, species diversity, 

phylogenetic species variation, dietary diversity, and functional diversity were reduced. 

However, beyond the effect of the decreased species richness, only phylogenetic species 

variability and functional diversity were significantly impacted by land conversion, indicating 

a non-random loss of phylogenetic groups and functionally unique species. Overall, the 

observed changes to species interactions and functional composition suggest a greatly 

modified role of anurans in altered habitats and major foodweb reorganisation. Such far-

reaching changes to the way species groups interact are likely to threaten local biodiversity 

and ecosystem functioning in natural and particularly modified habitats. However, I could 

also show, that small-scale habitat quality, provided by riparian reserves, is able to mitigate 

the negative consequences of land conversion considerably. 

IV. Here I assess how logging of rain forest and conversion to oil palm plantations affect the 

populations of the ant-specialist giant river toad (Phrynoidis juxtaspera), and availability and 

composition of its ant prey. I measured canopy cover as an estimate for the degree of 

disturbance. I found that toad abundance decreased with increasing disturbance.  At the same 

time, ant community composition was altered, and local ground-foraging ant species richness 

increased with disturbance. However, for a given amount of canopy cover, primary forest 

supported more ant species than altered habitats. Despite these changes, composition of ants 

consumed by toads was only weakly affected by habitat change, with the exception of the 

invasive yellow crazy ant (Anoplolepis gracilipes), which was positively selected in oil palm 

plantations. This suggests that predator-prey interactions can be mostly maintained with 

habitat disturbance despite shifts in community composition, and even that some predators are 

capable of exploiting new prey sources in novel ecosystems. 

V. I could show that anuran diversity and their trophic interaction is negatively impacted by 

logging and in particular by conversion to oil palm plantations. From species richness and 

community composition, my study expanded to phylogenetic, dietary and functional diversity. 

Furthermore, I investigated the interaction of a particular toad species with its preferred prey 
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(ants), on species level. This increasing degree of detail in my study provided comprehensive 

results, beyond the detail of many related studies. Overall, conservation of the remaining 

forest in Southeast Asia is urgently required to protect anuran biodiversity and their trophic 

interactions.
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Zusammenfassung (German) 

 

I. Durch den stetig steigenden Bedarf an vielfältigen Ressourcen stehen heutzutage vor allem 

tropische Ökosysteme unter enormem Druck hin zu intensiver Landwirtschaft und der 

Umwandlung von natürlichen Lebensräumen. Getrieben durch die hohe Nachfrage an 

Tropenhölzern und dem politisch gewollten Anstieg der Palmölproduktion, etablierte sich in 

Südostasien eine weit verbreitete Landnutzungsumwandlung charakterisiert durch 

wiederkehrende Holznutzung und die anschließende Umwandlung zu Ölpalmplantagen. 

Manche Tiergruppen und vor allem Baumarten sind dadurch stark gefährdet. Dennoch können 

andere Organismengruppen wie Vögel oder Säuger auch in genutzten Wäldern überleben. 

Auch Ökosystemdienstleistungen, wie Kotbeseitigung oder die Aktivität von Aasfressern 

bleiben vielfach in genutzten Wäldern erhalten. Im Gegensatz dazu stellen Ölpalmplantagen 

keinen geeigneten Lebensraum für viele Tier und Pflanzenarten dar und viele 

Ökosystemserviceleistungen können in diesen Plantagen nicht aufrecht erhalten werden. Ziel 

dieser Arbeit war die Auswirkungen dieser massiven Habitatumwandlung auf die Artenzahl 

und die Artenzusammensetzungen von Fröschen und Kröten in Nordborneo zu untersuchen 

(Kapitel II). Ich untersuchte die Nahrungszusammensetzung von mehreren Froscharten und 

wie sich diese mit Habitatumwandlung verändert. Zusätzlich habe ich die Stellung von 

Fröschen in der Nahrungskette sowie ihre phylogenetische, nahrungs- und funktionelle 

Diversität untersucht (Kapitel III). Schließlich habe die Interaktion von Fröschen mit ihrer 

Beute (in diesem Fall Ameisen) auch auf Artebene untersucht (Kapitel IV). 

II. Dieser Teil der Arbeit vergleicht die Artenzahl, relative Häufigkeit und die 

Artenzusammensetzung der bachlebenden Froscharten zwischen Primärwäldern, genutzten 

Wäldern und Ölpalmplantagen. Dazu nahm ich die Froschbestände mit einer standardisierten 

Transektmethode auf. Ich fand heraus, dass die meisten Froscharten aus Primärwäldern auch 

in forstwirtschaftlich intensiv genutzten Wäldern überleben konnten. Im Gegensatz dazu 

wiesen Ölpalmplantagen nur durchschnittlich ein drittel der Froscharten aus Wäldern auf. 

Jedoch konnte dieser Artenschwund durch einen hohen Kronenschluss über den 

Plantagenbächen reduziert werden. Diese Studie belegt den hohen naturschutzfachlichen Wert 

von genutzten Wäldern in Südostasien und die geringe Bedeutung von Ölpalmplantagen in 

diesem Zusammenhang. Jedoch zeigt es auch Wege auf, wie Ölpalmplantagen 

naturschutzfachlich aufgewertet werden können. 
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III. Dieser Teil der Arbeit befasst sich mit den Auswirkungen der Habitatumwandlung auf die 

trophischen Interaktionen und mehrere Ebenen der Froschbiodiversität. Dazu untersuchte ich 

die Nahrungszusammensetzung von 59 Froscharten mittels Magenspülung. Darüber hinaus 

nutzte ich diese Daten um die Nahrungsvielfalt zu untersuchen und Daten aus der Literatur 

und die funktionelle Diversität zu erfassen. Dabei fand ich heraus, dass Frösche bei 

zunehmender Habitatzerstörung eine höhere Stellung in der Nahrungskette einnahmen. 

Darüber hinaus sank die allgemeine Diversität, die phylogenetische Verwandtschaft, die 

Nahrungsvielfalt und die funktionelle Diversität der Frösche. Also lässt sich schließen, dass 

diese tiefgreifenden Veränderungen eine deutlich andere Rolle der Frösche in den 

umgewandelten Habitaten zur Folge hat. Solche dramatischen Eingriffe in das Nahrungsnetz 

können negative Auswirkungen auf die Stabilität von Ökosystemen haben, jedoch zeigt sich 

auch hier, dass diese durch die Erhöhung des Kronenschlusses deutlich abgemildert werden 

können. 

IV. In diesem Abschnitt befasse ich mich auf die Auswirkungen der Habitatumwandlung auf 

die Häufigkeit der Kröte Phrynoidis juxtaspera, ihre Beute (Ameisen), sowie die Interaktion 

von Räuber und Beute. Dabei fand ich heraus, dass die Kröte in ungestörten Bächen am 

häufigsten war und gleichzeitig mehr (und andere) Ameisenarten in Ölpalmplantagen 

vorkamen. Jedoch war die Artenzahl von Ameisen bei konstantem Kronenschluss in 

Primärwäldern immer höher als in Ölpalmplantagen. Im großen Gegensatz zu diesen 

Veränderungen, war die Nahrungszusammensetzung der verbleibenden Kröten in den 

Plantagenbächen kaum unterschiedlich im Vergleich mit Primärwaldbächen. Eine Ausnahme 

war ein deutlich gestiegener Anteil der invasiven Ameisenart Anoplolepis gracilipes. Diese 

Ergebnisse zeigen, dass die Räuber-Beute Interaktion unter Umständen unverändert die 

Habitatumwandlung überstehen können, aber auch in gewissem Umfang neue Ressourcen 

erschlossen werden können. 

V. Mit dieser Arbeit konnte ich zeigen, dass sich die großflächige Habitatumwandlung von 

Wäldern hin zu Ölpalmplantagen negativ auf die Froschbiodiversität, wie auch die Räuber-

Beute Interaktionen von Fröschen auswirkt. Ausgehend von Artenzahl und 

Artenzusammensetzung konnte ich in meiner Arbeit darüber hinaus auch die Biodiversität der 

Frösche auf verschiedenen Ebenen beleuchten und schließlich sogar die Räuber-Beute 

Interaktion auf Artebene untersuchen. Dadurch konnte ich diesen komplexen Zusammenhang 

in ganz besonderer Tiefe beleuchten. Insgesamt liefert diese Arbeit einen weiteren wichtigen 
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Beleg dafür, dass Primärwälder, aber neuerdings auch immer mehr genutzte Wälder 

entscheidend für den Erhalt von tropischer Biodiversität sind.
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I. General introduction 

 

Biodiversity describes the degree of variation in the biotic part of ecosystems. It is often 

confused with species richness (Stirling and Wilsey, 2001), which however is only a part of 

biodiversity. Genetic variation, the variety of habitats, and complexity of species interactions 

are also crucial parts of the variation in life (Noss, 1990). Whereas living organisms can be 

found across the globe, on all continents and in a vast spectrum of even the most extreme 

habitats, such as Antarctica or hydrothermal vents (Chown, 2012), global biodiversity is not 

equally distributed. In particular, terrestrial ecosystems tend to be more diverse around the 

equator, in humid tropical regions (Gibson et al., 2011; Jenkins et al., 2013; Pimm and Raven, 

2000). The reasons for this mostly universal pattern are still part of scientific discussion, but 

include theories such as the mid-domain effect, niche conservatism or the species-energy 

hypothesis (Brown, 2014; Romdal et al., 2013). Furthermore, especially tropical rainforest 

support an exceptionally high level of spatial and ecological niches provided by their 

composition comprising multiple strata (Slik et al., 2003; Whitmore, 1990). These multiple 

and three-dimensional layers support individual sub-systems and unique species assemblages. 

Hence, many global biodiversity hotspots can also be found in the tropical regions, and 

particularly in tropical rainforests (Myers et al., 2000). 

Global biodiversity is nowadays threatened by a number of factors; many of them are 

typically summarised as ‘global change’ (Sala et al., 2000). Global change describes the 

impact of the modern society on planet earth and include carbon cycle, energy development, 

or land use. Main drivers of global change are increased demand for resources and ultimately 

global population growth (Grimm et al., 2008). Again, these causes and the effects of global 

change are not equally distributed (Lewis et al., 2004). Whereas, population-rich and 

industrialised countries lead the global demand for resources, many of these need to be 

imported. Not uncommonly, tropical countries export products to satisfy global demand 

(Tucker, 2000). Typical tropical products include timber, soya bean, coffee, cocoa, and palm 

oil (FAO 2013). 

Southeast Asia is an important tropical biodiversity hotspot (Myers et al., 2000) with a natural 

vegetation of mainly tropical rainforests of various types. At the same time it is the tropical 

region with the world-wide highest deforestation rates (Miettinen et al., 2011) and it is 
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leading global palm oil production by far (FAO 2013). These processes have lead to massive 

changes to regional forests, with only a small percentage of primary forest remaining (Sodhi 

et al., 2004). In contrast, the vast majority of the current forests have experienced (multiple) 

logging in the past (Reynolds et al., 2011), particularly in the lowlands. Commonly, most 

logging in Southeast Asia is targeting economically important tree species from the family 

Dipterocarpaceae (Cannon, 1998). These are typically the tallest trees in the forests, shaping 

the composition of rainforest strata (Slik et al., 2003). By their large-scale removal, the not to 

be underestimated collateral damage to other trees (Asner et al., 2006), and the establishment 

of logging road infrastructures (Konopik et al., 2014b; Laurance et al., 2009), local biotic and 

abiotic characteristics are massively altered. 

The effect of logging on Southeast Asian rainforests and its implications for conservation are 

controversially discussed in the scientific community. On the one hand, there is an apparent 

need for more large-scale protected areas (Barlow et al., 2007a; Gibson et al., 2011). These 

need to be established to protect the last remaining patches of mostly unlogged rainforest in 

Southeast Asia. On the other hand, the protection of large parts of biodiversity, habitats, and 

some large mammals will not be feasible if only protected areas remain, particularly in the 

light of climate change (Hannah et al., 2007). Furthermore, most of the lowland forests in the 

region are nowadays (repeatedly) logged forests (Reynolds et al., 2011). For a long time, 

conservation efforts have been trying to work out the differences between primary forests and 

logged forests, to focus conservation on these primary habitats. This has led to a premature 

policy, that the remaining logged forest, which supposedly has little conservation value, is 

eagerly and in large-scale converted to oil palm plantations (Wicke et al., 2011). However, 

even repeatedly logged forests in Southeast Asia have an undeniably high biodiversity 

(Berry et al., 2010), compared to plantation landscapes. As a result, conservation efforts are 

more and more focusing on protecting any kind of natural or semi-natural forest in the region 

(Edwards et al., 2010; Putz et al., 2012), to maintain large blocks of connected habitat. 

 

Study sites 

The field work for this study was conducted in northern Borneo between April 2011 and 

March 2014 for a total of 14 month. The study sites were located in the sultanate of Brunei 

Darussalam and the state of Sabah (Malaysia). Within the study sites multiple forest and 

plantation streams with a catchment size of 2.5 km
2
 were studied (Fig. I.1). I sampled a total 
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of seven streams in primary rainforests (Fig. I.2a, page 18), eight streams in logged forests 

(Fig. I.2b, page 18), and seven streams in oil palm plantations (Fig. I.2c, page 19). 

 

Figure I.1: A typical primary forest stream that was included in this study (Sg. Injing, 

UTNP, Brunei Darussalam). All streams were rocky and typically free of vegetation. 

They are frequently subjected to heavy flash floods. 

The Ulu Temburong National Park (UTNP) is located in the sparsely populated Temburong 

district in Brunei. It is characterised by a very rough terrain, gorges, the lack of roads, and by 

the major streams Sg. Temburong and Sg. Belalong (Cranbrook and Edwards, 1994). The 

forest in the park has never been logged, but there is some hunting within the park borders, 

mainly by the local population and tribes. The UTNP has been shown to be a local amphibian 

hotspot (Grafe and Keller, 2009) with far over 60 species known to occur within the park 

borders (Grafe et al., 2010). The two intensively studied streams were within walking 

distance from the Kuala Belalong Field Studies Centre (Sg. Sibut) or only reachable by boat 

(Sg. Injing). 
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b) 

a) 
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Figure I.2: The tree different types of landscapes included in this study. Primary 

dipterocarp lowland rainforests (page 18, a), logged lowland rainforests (page 18, b), 

and oil palm plantations (c). 

Danum Valley Conservation Area (DVCA) is a 438 km
2
 protected area in Sabah. Its forest 

consists of mainly undisturbed patches and some areas, which experienced logging in the 

past. However, there was historically no hunting within the park borders 

(Reynolds et al., 2011), and many large mammals, including Bornean pygmy elephants and 

Orang Utans, can regularly be observed. All three studied streams (Sg. Tembaling, Sg. Rhino, 

West Stream) were located within primary forests. However, natural disturbance, mainly by 

elephants, was evident, particularly around West Stream. So far over 50 anuran species have 

been recorded from Danum valley (Sheridan et al., 2012). 

Maliau Basin Conservation Area (MBCA) is a remote protected area located in central Sabah. 

It covers an area of 588 km
2
 and is dominated by a large natural basin, the source of 

Sg. Maliau. The inside of the basin is characterised by montane heath forests and tannin-rich 

streams (Hazebroek et al., 2004). The studied stream is a tributary of Sg. Maliau and located 

outside the basin along its slopes.  

c) 
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The SAFE project area is located between DVCA (~50 km) and MBCA (~60 km). Its forest is 

continuous with a major protected forest block, including DVCA and MBCA. The 25 km
2
 

project area consist mainly of repeatedly logged forest. Forest quality is very patch and ranges 

from 16% to 63% forest cover remaining. Adjacent to the experimental area is a 2200 ha 

block of mainly unlogged forest (VJR) and oil palm plantations managed by Benta Wawasan 

Sdn Bhd. Hunting is common in the area, however elephants and Orang Utans can also 

frequently be observed. The SAFE project (http://www.safeproject.net) is a large-scale, 

international forest fragmentation project, led by Imperial College London and the Southeast 

Asian Rainforest Research Program by the Royal Society (Ewers et al., 2011). A total of eight 

streams have been studied in the logged forest of the experimental area, one stream in VJR, 

and seven streams in the surrounding plantations. 

DVCA, MBCA and the SAFE project area and the oil palm plantations are managed by the 

Sabah foundation (Yayasan Sabah). 

 

Bornean frogs 

To date more than 160 amphibian species have been described from Borneo (Inger, 2009). 

Salamanders and newts are absent from most of Southeast Asia, including Borneo, leaving 

anurans (frogs and toads) and caecilians (Gymnophiona). The latter is only represented by 

few species, all of which are mainly fossorial or aquatic and generally their specific taxonomy 

and ecology is mostly unknown (Nishikawa et al., 2012). Hence, the vast majority of Bornean 

amphibian species are frogs and toads. 

In 2009, a total of 156 frog species from 8 families are known to occur on Borneo 

(Inger, 2009). Bornean anurans are closely related to the anuran fauna of Sumatra and 

Peninsular Malaysia. These regions were connected during the last ice ages, leading to a 

limited species exchange (Inger and Voris, 2008). However, particularly in montane habitats 

Borneo has a mostly unique anuran fauna with a high overall percentage of endemic species. 

Most Bornean species can be found along streams and many have stream-living larval stages. 

However, various reproductive modes, including direct development, are represented amongst 

Bornean anurans (Das et al., 2007; Inger, 2009). The community composition of Bornean 

stream-dependent frogs has been shown to depend greatly on environmental heterogeneity 

(Keller et al., 2009). Borneo is also home to the so-called “flying frogs” (Fig. I.3), such as the 

charismatic Wallace’s Flying Frog and the mostly endemic foot-flagging frogs (Grafe and 
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Wanger, 2007) of the genus Staurois. Furthermore, the enigmatic lungless frog (Barbourula 

kalimantanensis) can be found exclusively on Borneo. So far it has only been found a few 

times in the Bornean central mountain range. It is the only known anuran that totally lacks 

lungs (Bickford et al., 2008). 

Some frog species are locally hunted in Borneo (Warkentin et al., 2009). These are mostly 

large-bodied representatives of the genus Limnonectes and some large toads. Furthermore, the 

non-native Taiwanese Frog (Hoplobatrachus rugulosus) is locally farmed for food and has 

occasionally established free-living populations in highly modified landscapes (Inger and 

Stuebing, 2005). 

 

Research questions 

The impact of logging and conversion to oil palm plantations on anuran diversity in 

Southeast Asia is hardly understood. I want to investigate the effect of this regionally 

wide-spread land conversion pattern on: 

1. the species richness, abundance, and community composition of Bornean 

stream-dwelling amphibians; 

2. other layers of anuran diversity, including phylogenetic diversity, and functional 

diversity; 

3. the diet composition and dietary diversity of anuran communities; 

4. the predator-prey interaction of the largest Bornean anuran (Phrynoidis 

juxtaspera) with its main prey (ants, Formicidae); 
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Figure I.3: Rhacophorus borneensis is a Bornean endemic belonging to the “flying 

frogs”. It is rarely seen due to its life high up in the forest canopy.
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Methods 

 

All methods, study sites, and materials are described in chapter II, III, and IV.
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II. Effects of logging and oil palm expansion on stream frog 

communities on Borneo, Southeast Asia 

 

This chapter is submitted as: Konopik, O., Steffan-Dewenter, I., Grafe, T. U. Effects of 

logging and oil palm expansion on stream frog communities on Borneo, Southeast Asia. 

Biotropica, in review 

Running title: Species richness and community composition 

 

Abstract 

The conversion of tropical rainforests to oil palm plantations is a major threat to Southeast 

Asia’s rich biodiversity. Although primary forests have a unique role in conservation, 

improving biodiversity in secondary forests, agroforestry systems, or plantations is 

increasingly gaining attention. This study compares the species richness, density and 

community composition of stream anuran assemblages among primary forests, repeatedly 

logged forests and oil palm plantations in northern Borneo. We applied a standardised 

sampling setup using transect-based sampling. In primary forest streams, we recorded 19 frog 

species on average, compared to 15 species in logged forests and 11 species in oil palm 

plantation streams, respectively. However, a high percentage of canopy cover above the 

plantation streams was able to mitigate this loss to some extent. This study demonstrates the 

high conservation value of logged forests for Bornean stream-dependent anurans and supports 

the broadly assumed dramatic effects of oil palm plantations on the region’s biodiversity. 

However, oil palm plantations have a mainly unused potential to contribute to the protection 

of parts of the regional anuran biodiversity if conservation-oriented management options are 

implemented. 
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Introduction 

Southeast Asia is among the world’s most important biodiversity hotspots (Myers et al., 

2000) with a unique bio-geographical history. Presently, this diversity is severely threatened 

by a combination of factors, most notably the loss of primary forests and forest conversion 

(Sodhi et al., 2004). Nevertheless, huge areas of forest of varying quality continue to be 

converted into oil palm plantations in the region (Koh and Wilcove, 2008). Southeast Asia 

generates over 80 percent of the global palm oil production (FAO 2013). Accordingly, palm 

oil plantations are taking up an increasingly high percentage of the region’s land cover 

(Miettinen et al., 2011), mostly at he expense of non-primary forests. 

There is increasing evidence that most of Southeast Asia’s animal species are able to survive 

in disturbed rain forests and even repeatedly logged forests and agroforestry systems (Berry 

et al., 2010; Edwards et al., 2010; Steffan-Dewenter et al., 2007). The extensive distribution 

of these altered forests might even be advantageous for large scale forest habitat protection, 

particularly in the light of the massive expansion of oil palm plantations in the region (Wicke 

et al., 2011). Thus, the importance of non-primary forest for conservation of tropical 

biodiversity is increasingly gaining attention (Wilcove et al., 2013). However, primary forests 

are frequently considered a key element in overall conservation strategies as some animal 

species and in particular tropical tree species are severely threatened by logging (Gibson 

et al., 2011) and conservation of original species communities is likely to depend on pristine 

frontier forests (Barlow et al., 2007b). 

In contrast to the protection of natural or semi-natural habitats, optimisation of agroforestry in 

converted landscapes (Chazdon et al., 2009; Clough et al., 2011), such as oil palm 

plantations, is seen as an alternative. Based on their great extent and on-going expansion, oil 

palm plantations should not be ignored by conservation efforts in Southeast Asia. Instead, 

plantations could be ecologically designed and optimised to increase the number of forest 

species that can survive in the altered habitat and to maintain important ecosystem services 

(Foster et al., 2011). Hence, the identification of conservation measures for the different taxa 

and ecosystem functions is of particular importance for oil palm plantations. 

Amphibians are among the most threatened taxa worldwide (Stuart et al., 2004). Habitat loss, 

together with other factors like overexploitation, fragmentation, introduction of alien species, 

disease, pesticides, and climate change have been identified as important drivers of species 

decline (Beebee and Griffiths, 2005). In addition, the interaction of these factors has led to a 



II. Species richness and community composition 

 

 26 

dramatic loss of species richness (Stuart et al., 2004; Wake and Vredenburg, 2008). Southeast 

Asian amphibians, in particular, have been shown to face a conservation crisis, caused by 

these factors (Bickford et al., 2010; Rowley et al., 2010). Nevertheless, until now amphibians 

in Southeast Asia have mainly been spared from enigmatic declines, such as chytridiomycosis 

(Kaiser and Grafe, 2011; Swei et al., 2011). However, Southeast Asian anurans together with 

other taxa remain extremely vulnerable to habitat loss (Sodhi et al., 2009). 

Commonly, amphibians are characterised by complex life cycles involving both aquatic and 

terrestrial stages (Wells, 2007). However, there are also direct developing anuran lineages in 

Southeast Asia (Grosjean et al., 2008) and in some species the reproductive mode is 

unknown. Although dependence on water bodies as breeding sites varies among species, 

many amphibians have been shown to be sensitive to changes in temperature, humidity, water 

quality or canopy cover (Wanger et al., 2010). In particular, stream-breeding amphibians are 

susceptible to these environmental changes (Welsh and Ollivier, 1998). Furthermore, based 

on their high habitat specificity and exposure to diseases, they are assumed to have an 

underestimated extinction risk (Almeida-Gomes et al., 2014). In the context of the 

considerable increase in temperature and decreased humidity in oil palm plantations (Luskin 

and Potts, 2011), stream-dependent anuran communities can be predicted to suffer from this 

land conversion. 

In this study we compare Bornean stream frog communities along the gradient of the three 

major habitat types in the region: primary forest, logged forest, and oil palm plantations. Our 

aim is to understand the response of stream frog species richness, density and community 

composition to this regionally wide-spread land conversion pattern and the underlying factors 

causing this response. Specifically, we ask the following questions: 

1) Are species richness and anuran density decreases by logging and conversion to oil 

palm plantations? 

2) Does logging and conversion to oil palm plantation change the community 

composition by local extinction of forest species and immigration of generalist 

species? 

3) Does local habitat quality (canopy cover provided by forested riparian strips) have a 

positive effect on persistence of anurans within logged forests and oil palm 

plantations? 
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Methods 

Study sites 

The study was conducted in northern Borneo (Fig. II.1). We sampled eight streams located in 

logged lowland dipterocarp rainforest and seven streams in oil palm plantations in the 

Malaysian state of Sabah. Sampling 

of logged forests and plantations 

was conducted within the 

framework of the SAFE project 

(Stability of Altered Forest 

Ecosystems) and the surrounding 

plantations (Ewers et al., 2011). 

The SAFE project is a large-scale 

(7200 ha) ecological experiment 

investigating the impact of 

fragmentation of Southeast Asian 

rainforest and conversion to oil 

palm plantation. Within the project 

area, logged forest has undergone 

two rounds of selective logging in 

the past: once during the 1970s and 

again from the late 1990s-2000s. It 

is continuous with a major forest 

block (>1 million ha) of lowland 

rainforest forest, including Danum 

Valley and Maliau Basin (Reynolds 

et al., 2011). The forest structure in 

the SAFE project area is highly 

variable, ranging from open areas to 

those with closed canopies. The 

terrain is generally very rough and 

fast flowing rocky streams are 

Figure II.1: Position of the study area on Borneo and 

the location of the sampling sites (A). Numbers in 

brackets indicate the number of sampled primary 

forest streams per site. The distribution of the 

sampled streams at the SAFE project site and the 

surrounding oil palm plantations is illustrated in 

detail (B). Shown are streams in a primary forest 

(PF) fragment, logged forest (LF) and oil palm 

plantations (OP). 
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embedded in steep valleys. This leads to a lack of natural ponds or standing water bodies apart 

from side pools next to streams. Mean annual precipitation at Danum Valley is about 

2600 mm (Douglas, 1999). 

The sampled oil palm plantation streams were of comparable characteristics and their 

catchments were isolated by 1km to 5km from the logged forests. Plantations varied in age 

but were generally established between 2000 and 2005. All plantation streams had riparian 

reserves (riparian strips or river reserves) of differing vegetation and quality. Under 

Malaysian law riparian reserves are required to extend at least 20m on both sides of the 

stream into the plantations (Sabah Water Resources Enactment 1998). However, the riparian 

reserves ranged from gallery forests shading the streams to shrubby and grassy vegetation on 

the streamside.  

As primary forest control, we selected the closest accessible streams in continuous and 

undisturbed areas of comparable elevation, terrain, and natural vegetation. The closest (one 

stream) was a Virgin Jungle Reserve of 2200 ha, adjacent and continuous to the SAFE project 

area and the sampled oil palm plantations. Furthermore, we sampled streams in Danum Valley 

(three streams, 30km distance), Maliau Basin (one stream, 70 km distance), and Ulu 

Temburong National Park (two streams, 250 km distance). 

 

Sampling 

All sampled streams were independent first order streams. To standardise stream size, 

sampling was conducted where the stream catchments reached the size of 2.5 km
2
. A line 

transect was then established starting from the point where the respective catchment is 

2.5 km
2
 and leading 200 m upstream, following the stream. Transect walks where performed 

walking in the streams. 

To assess species richness and density of frogs we conducted six standardised visual and 

acoustic encounter surveys at intervals of at least one week per transect. Frogs were actively 

searched during the highest calling activity of most species (1845 h – 2030 h) by a single 

person within the stream bed using a headlamp (Petzl Myo RXP) for one hour. All audible 

and identifiable anuran calls that were heard from within the stream bed were recorded. 

Visual and acoustic records were treated equally and summed up to get final numbers. 

However, to avoid double counting of individuals of a respective species, we applied a 

conservative approach by discarding acoustic records from locations where individuals of the 
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same species could already be visually recorded during the same transect walk. We only 

recorded adult and subadult individuals (both males and females) and metamorphs were 

excluded from the analysis. Finally, the average number of individuals per stream was used as 

a density estimate. However, these densities (abundances) should rather be treated as 

conservative estimates or relative densities compared to absolute densities. All frogs were 

identified in the field using morphological or acoustic characteristics following Inger & 

Stuebing (2005). 

The date of sampling of the three habitat types was randomised as far as logistically possible 

to avoid confounding impact of the year of sampling or climate patterns. Primary forest 

streams were sampled between June and July 2011 (UTNP), April and July 2012 (DVCA, 

MBCA) and January to May 2013 (UTNP). Logged forests and oil palm plantations were 

sampled between April to June 2011 and January to April 2013. General sampling was 

planned to avoid dry seasons and extremely wet periods. Furthermore, sampling was 

discontinued during periods of heavy flooding or extensive dry spells. 

To assess suitability of altered habitats for the forest frog community (primary forest species), 

we grouped the frog species into forest species and generalist species. Forest species were 

defined as the species, which were recorded from the primary forest sites. Species that could 

only be recorded in logged forest and oil palm plantations were treated as generalist species. 

 

Habitat parameters 

To account for the highly heterogeneous degree of disturbance in the logged forest, the 

differing age of the oil palm plantations and the different quality of riparian reserves in both 

habitats, we used the canopy cover above the stream as an estimate of the degree of 

disturbance. Canopy cover was obtained from canopy pictures taken from the ground. The 

camera (Pentax K20D) was positioned at the centre of the stream at a height of 0.5 m above 

the water surface. Pictures were taken perpendicular to the stream and in full wide angle, 

using a fisheye lens (Pentax SMC DA 10-17 mm). Subsequently, using Adobe Photoshop 

pictures were converted to black and white images and the percentage of the sky covered by 

vegetation (black pixels) was used as canopy cover (%). 

In addition, we measured both width and slope of the streams. Stream width and slope have 

already been shown to shape Bornean anuran communities (Keller et al., 2009), so we 
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included these variables to account for differing stream characteristics. Stream width was 

measured at an intermediate water level. If the stream split up into two or more branches, their 

individual width was added up to get the total stream width. Stream slope was measured 

applying the principle of communicating vessels (LaPerriere and Martin, 1986). First, a 14 m 

water-filled translucent hose was submerged in the stream. Then, the downstream end was 

lifted perpendicularly out of the water. Finally, the height of the water column from the 

ground (on the downstream end) was divided by the stream distance being measured to obtain 

the stream slope. 

All habitat parameters were measured at intervals of ten m and once per transect. Individual 

values were averaged per transect to get overall values. 

 

Data analyses, species richness estimation 

To test the effect of habitat type and habitat parameters on species richness and frog density, 

we used analysis of variance (ANOVA) and applied linear models. We analysed the species 

richness and density of all frog species (overall species richness/ density) as well as the 

species richness and density of forest species. Furthermore, we used the average of two 

sample-based (sampling rounds) species richness estimators (Chao2, ICE) to estimate the total 

number of frog species per stream. Calculation of species richness estimators was done using 

EstimateS (Version 9, R. K. Colwell, http://purl.oclc.org/estimates). 

For all statistical analyses we used the open source software R (R Development Core Team 

2008). The respective full models contained habitat type and the three habitat parameters, as 

well as all interaction terms. To select the most parsimonious model we applied stepwise 

backward selection using likelihood ratio tests. Afterwards, we tested the significance of the 

predictors of our final models using analysis of variance (ANOVA). Finally, post-hoc tests 

(Tukey's HSD) were used to identify significant differences between habitat types. All 

parameters were tested for normality and collinearity before analysis. 

Frog community composition was analysed using permutation-based multivariate analysis of 

variance (PerMANOVA). To calculate the distance matrix for the PerMANOVA, we used 

Bray-Curtis dissimilarity. To calculate the pseudo-F values and the p-statistic, we performed a 

total of 999 permutations of the raw matrix.  
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To display the variation in frog community composition among habitat types and the impact 

of habitat parameters we used non-metric multidimensional scaling (NMDS) using the same 

distance matrix as for the PerMANOVA. We set the program to generate 1,000 iterations to 

find the final ordination with minimum stress and best fit. All calculations of the frog 

community analyses were done using the “vegan” package for R (Oksanen et al., 2013). 

 

Results 

We recorded a total of 5549 frogs and toads (32% acoustic records) belonging to 43 species 

(21 genera, 6 families) in the 22 streams sampled in this study. 37 species could be recorded 

in primary forests, 28 in logged forests and 19 frog species in oil palm plantations. Six frog 

species (Fejervarya limnocharis, Limnonectes paramacrodon, Hylarana erythrea, Hylarana 

nicobariensis, Polypedates leucomystax, Polypedates otilophus) were categorised as 

generalist species. They were mostly found in oil palm plantations and were never recorded in 

primary forests during our study. 

 

Impact of land conversion on species richness 

Estimated species richness varied among habitat types (ANOVA: F2,18 = 25.8, P < .001) and 

increased with stream slope (ANOVA: F1,18 = 13.8, P = .0016) but was unaffected by canopy 

Figure II.2: Effect of habitat type (A) and canopy cover (B) on estimated, recorded, and 

forest species richness of stream-dependent anuran species. Shown are habitat means 

(± SE), respectively. Differing letters above bars indicate significant differences (at least 

P < 0.05) between groups. Vertical lines (in B) indicate the difference between forest species 

and overall frog species richness. Primary forest: PF (circles); logged forest: LF (squares); 

oil palm plantation: OP (triangles). 
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cover and stream width. Estimated species richness was highest in primary forest streams 

(21.2 ± 4.0). Furthermore, the highest species richness for all habitat types was estimated for 

the Maliau Basin primary forest stream (28.1). Estimated species richness dropped to 

87 percent (18.4 ± 2.4) in logged forests and only 56 percent (11.8 ± 3.4) of the species 

richness of primary forests was calculated for oil palm plantations. Robustness of sampling 

was generally good. However, the six rounds of sampling per stream resulted in marginally 

different values per habitat type. On average 89 percent of the estimated species richness was 

recorded in primary forests, 84 percent for logged forests and 93 percent for oil palm 

plantation streams.  

Overall species richness (recorded species richness) varied among habitat types (ANOVA: 

F2,18 = 20.6, P < .001), but was unaffected by stream characteristics. Habitat type was the only 

remaining significant predictor in this model. Recorded species richness was highest in 

primary forest streams (18.7 ± 2.7). Furthermore, the overall highest species richness was 

recorded from a primary forest stream in the UTNP (24). However, species richness dropped 

to 83 percent (15.4 ± 1.8) in logged forests, but this difference was only marginally significant 

(Tukey's HSD: P = 0.046). In contrast only 58 percent (10.9 ± 2.6) of the primary forest 

species richness could be recorded in oil palm plantations. 

Accordingly, richness of forest species was depending upon habitat type (ANOVA: 

F2,17 = 48.6, P < .001), but also decreased with diminishing canopy cover (F1,18 = 10.4, 

P = .0047). Stream width and stream slope were not included in this model. Forest species 

richness was highest in primary forest streams (18.6 ± 2.8). It dropped to 80 percent 

(14.9 ± 1.9) in logged forests. However, we found considerably less species in oil palm 

plantations compared to primary forests. Only 42 percent (7.9 ± 2.9) of the primary forest 

species richness could be recorded in oil palm plantations. On average, forest species richness 

decreased by 0.9 species with ten percent reduction in canopy cover. Slopes were the same for 

all habitat types, because no interaction term remained in the final models. In summary, most 

forest species were found in primary forest streams with high levels of canopy cover and the 

lowest values were recorded for oil palm plantation streams with low canopy cover (Fig. II.2). 

 

Impact of land conversion on frog density 

 Overall frog density was depending upon habitat type (ANOVA: F2,17 = 6.1, P = .0101), 

decreased with lost canopy cover (F1,17 = 9.6, P = .0066), and decreased with stream width 
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(ANOVA: F1,17 = 8.6, P = .0093). For all habitat types Meristogenys cf. orphnocnemis was 

the most abundant species. This species represented 15.4 percent of the individuals recorded 

in primary forests, 32.5 percent in logged forests, and 35.2 in oil palm plantations. However, 

it was totally absent from two plantations streams. Three frog species could only be recorded 

once during the whole study. 

Contrary to the pattern for species richness, the highest frog densities were recorded from 

logged forests. However, especially those logged forest streams featuring a high level of 

canopy cover had the highest overall densities. At the bottom of the canopy cover scale, oil 

palm plantation streams, with a canopy cover under 20 percent, had low frog densities 

between five and seven frogs per 100 m.  

This pattern was consistent considering only forest species. Accordingly, forest species 

density varied with habitat type (ANOVA: F2,17 = 7.3, P = .0052), decreased with lost canopy 

cover (F1,17 = 11.2, P < .0039), and decreased with stream width (ANOVA: F1,17 = 8.5, 

P = .0098). Excluding the generalist species, the low frog density in oil palm streams becomes 

even more evident and dropped to two to five individuals per 100 m. Generally, there was a 

high variance of individual numbers between streams within habitat type, particularly in 

logged forests and oil palm plantations (Fig. II.3). 

 

Figure II.3: Effect of habitat type (A) and canopy cover (B) on the density of overall and 

forest anuran species. Shown are habitat means (± SE), respectively. Differing letters above 

bars indicate significant differences (at least P < 0.05) between groups. Vertical lines (in B) 

indicate the difference between forest species and overall frog density. Primary forest: PF 

(circles); logged forest: LF (squares); oil palm plantation: OP (triangles). 
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Community composition 

Habitat type had significant impact on the composition of the frog communities 

(PerMANOVA: F2,16 = 1.9, R
2
 = 0.13, P = .043). Both canopy cover and stream slope were 

significant covariates explaining a considerable amount of this variation. The influence of 

canopy cover on the community composition was strongest (PerMANOVA: F1,16 = 7.6, 

R
2
 = 0.24, P < .001). Yet, the composition of anuran communities of oil palm plantation 

streams with high canopy cover was more similar to forested streams (both logged and 

primary forest) than to oil palm streams with low canopy cover. Furthermore, stream slope 

explained a minor part of the variation (PerMANOVA: F1,16 = 2.5, R
2
 = 0.08, P < .033) and 

stream width did not have a significant impact at all (Fig. II.4). 

The recorded frog species were typical for the hilly parts of northern Borneo. Furthermore, 

the species overlap between the sampled primary forest control streams was generally high. 

However, in MBCA we found one unique species (Huia cavitympanum) and in the UTNP 

several frog species were replaced by ecologically similar sister species (e.g. UTNP: Ansonia 

longidigita and Rhacophorus belalongensis, East-Sabah: A. spinulifer and R. gauni).             

Figure II.4: Ordination (non-metric multidimensional scaling) of the anuran community 

composition of the primary forest streams (circles), logged forest streams (rectangles) and 

oil palm plantation streams (triangles). Primary forest streams are tagged according to the 

respective sampling site (1: SAFE; 2: DVCA; 3: MBCA; 4: UTNP). Included are significant 

(P < 0.05) environmental vectors. Additionally, only significant frog species that act as 

indicator species (Dufrêne and Legendre, 1997) for both forest types or oil palm plantation 

are displayed. 
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In contrast, frog communities in oil palm plantations were clearly differing from communities 

of forested habitats. Staurois spp. were mostly absent from plantation streams and five species 

(F. limnocharis, L. paramacrodon, H. erythrea, H. nicobariensis, P. leucomystax) were 

exclusively found in oil palm plantation streams and (less abundant) in logged forests. Only 

two species (Phyrnoidis juxtaspera, Limnonectes kuhlii) were found in every sampled stream, 

independent of habitat type.  

Stream characteristics 

Overall, stream width (ANOVA: F2,19 = 0.4, ns) and stream slope (ANOVA: F2,19 = 0.3, ns) 

did not differ between the three habitat types. Average stream width was 4.0 m and average 

slope was 6.4 m per 100 m stream segment. In contrast to the width and slope of the streams, 

canopy cover was significantly different between habitats (ANOVA: F2,19 = 14.8, P < .001), 

but was not highly correlated (< 0.7) with habitat type. Primary forest streams had the highest 

percentage of canopy cover and were more homogenous (81.6 % ± 7.9). Mean canopy cover 

in logged forest (68.7% ± 15.6) and oil palm plantation streams (32.9% ± 21.9) were 

considerably lower and more variable compared to primary forest streams. 

 

Discussion 

Our study on the impact of land conversion in Southeast Asia on frog species richness, 

density, and community composition has several important implications for anuran 

conservation and the design of oil palm plantations. Whereas primary forests, from various 

protected areas, and logged forests were mostly comparable in respect to their species 

richness and community composition, oil palm plantations did not provide suitable habitat for 

two thirds of the original forest species. However, we showed that high canopy cover, 

provided by riparian reserves, was able to mitigate this loss to some extent. 

 

The value of secondary forest 

Our results indicate that repeated logging has an impact on anurans in hilly Bornean rain 

forests. However, in terms of species richness and community composition we showed that 

logged forests are only subjected to a minor loss of the original species and a small shift in the 
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community composition, which is rather based on altered abundances than on altered species 

occurrences. 

This is in line with other studies, showing that light or selective logging does not have strong 

effects on tropical amphibian communities (e.g. Vallan et al. 2004, Fredericksen & 

Fredericksen 2004). However, the logged forest in our study has experienced at least two 

rounds of intensive logging, which has, in parts, resulted in heavily degraded landscapes. 

Hence, Bornean stream anuran assemblages seem to be partially resistant to logging, as long 

as riparian reserves are spared from harvesting. Nevertheless, in other tropical regions logging 

has also been shown to have a significantly negative effect on amphibian communities (e.g. 

Ernst et al., 2006). Furthermore, stream amphibians are generally assumed to be highly 

sensitive to habitat modification (Konopik et al., 2014b; Welsh and Ollivier, 1998) and 

physical as well as chemical stream properties should be highly affected by logging (Gomi et 

al., 2006). In fact, long-term effects have not been the focus of this study and extinction debts 

(e.g. caused by further degradation or isolation of forest fragments) might lead to a significant 

meltdown of forest species in the long term (Kuussaari et al., 2009). 

 

Oil palm plantations 

Gillespie et al. (2012) and Faruk et al. (2013) found no difference in overall species richness 

between forests (logged forests) and oil palm plantations in Peninsular Malaysia and Sabah 

(Borneo), respectively. However, both studies found a shift in anuran community composition 

between forested habitats and oil palm plantations. Our study provides further evidence for 

this major species turnover. Furthermore, we are able to confirm this effect for hilly areas 

with fast flowing, rocky streams, which are typical for central Borneo and other regions in 

Southeast Asia. However, in contrast to the previous studies we found considerably lower 

species richness in oil palm plantations compared to forested habitats (both primary and 

logged forest). Additionally, we expanded this comparison by including primary forests and 

showed that species richness in primary forests is slightly higher compared to logged 

rainforests. 

We explain this differing result with a combination of three factors. First, we suggest that 

amphibian communities from flat and swampy habitats might have some kind of 

preadaptation to plantation habitat. Most likely, they utilise the numerous ditches, ponds and 

drainages in a typical tropical plantation landscape (e.g. Limnonectes finchi in Sabah). 
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Second, forests of lowland areas do not contain the same full complement of species as found 

in more hilly terrain (Gillespie et al., 2012). In particular, the hilly lowland rainforest in 

Borneo is known to be a diversity hotspot for anurans (Grafe and Keller, 2009). Third, our 

study suggests that even logged forests with canopy cover comparable to pristine forests, have 

lower frog species richness, compared to primary forest. 

Our study clearly highlights the importance of canopy cover for riparian amphibian 

communities. Oil palm plantation streams with high percentage of canopy cover had a 

significantly higher species richness, frog density and the community composition was closer 

to those from forested habitats. However, other habitat parameters such as water temperature 

or pesticide use are likely to be correlated with canopy cover and hence, have to be taken into 

consideration. Especially the use of agricultural chemicals is known to threaten amphibians 

worldwide (Mann et al., 2009). Furthermore, the effect of terrestrial pesticide exposure on 

amphibians has recently been shown to be highly underestimated (Brühl et al., 2013). 

Presumably, the use of agricultural chemicals in oil palm plantations is widespread. Potential 

pollutants include palm oil mill effluent, fertilisers, insecticides, rodenticides and herbicides 

(Fitzherbert et al., 2008). How these factors influence frog communities in oil palm 

plantations remains to be studied. 

However, we could also show that canopy cover plays an important role in logged forests and 

even primary rainforests. Therefore, in habitat types which should not be affected by 

agricultural chemicals. This supports the high importance of an intact or semi-natural canopy 

above logged forest and oil palm plantation streams. In fact, this suggests possibilities to 

improve oil palm plantation habitat by maintaining or even restoring riparian reserves. 

Especially against the background of high drainage densities of about 20 km/ km
2
 in the 

region (Clarke and Walsh, 2006), riparian reserves could contribute significantly to enhancing 

biodiversity in oil palm plantations. However, according to our experience many streams in 

conventional oil palm plantations are effectively lacking adequate riparian reserves, although 

these practices are mostly integrated in local legislation (e.g. Sabah Water Resources 

Enactment 1998). Furthermore, appropriate riparian reserves could not just help protect frog 

species. They are also known to provide other ecologically important functions, such as 

connecting habitats (Tabarelli and Gascon, 2005) or reduce soil erosion (Gomi et al., 2006). 

However, they cannot be seen as an alternative to large scale protected areas (Marczak et al., 

2010). 
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Conclusions 

Our study outlines that Bornean stream-dependent anurans are highly impacted by the on-

going large-scale land conversion in the region. However, we show that even repeatedly 

logged forests have high conservation value for Southeast Asian anurans. Furthermore, we 

conclude that the conversion to oil palm plantation dramatically reduces the original species 

richness. Thus, the conversion of large tracts of repeatedly logged forest into palm oil 

plantations will lead to a decline of anuran species richness. However, a solid implementation 

of riparian reserves along oil palm plantation streams together with large-scale protected areas 

could mitigate this species loss to a great extent
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Abstract 

Global change is known to dramatically impact the diversity and composition of amphibians, 

particularly in the tropics. However, anthropogenically driven impacts on functional diversity 

and trophic interactions of amphibians are mainly unknown. Here, we analysed the shifts in 

trophic position, functional and phylogenetic diversity of Southeast Asian stream-dependent 

anuran species across a gradient of disturbance from primary forest through intensively 

logged forest to oil palm plantation. We determined the diet composition of 59 anuran species 

by means of stomach flushing. Furthermore, we use diet composition of frog species to 

calculate dietary diversity. The trophic position of the entire anuran community was elevated 

in heavily disturbed habitats. Furthermore, species phylogenetic, dietary, and functional 

diversity were reduced. However, beyond the effect of the decreased species richness, only 

phylogenetic species variability and functional diversity were significantly impacted by land 

conversion, indicating a non-random loss of phylogenetic groups and functionally unique 

species. Overall, the observed changes in species interactions and functional composition 

suggest a massively modified role of anurans in altered habitats and a major reorganisation of 

foodwebs. Such far-reaching changes to the way species groups interact are likely to threaten 

local biodiversity and ecosystem functioning in heavily disturbed natural and particularly in 

human-modified habitats. However, we could also show, that small-scale habitat quality, 

provided by riparian reserves, is able to mitigate the negative consequences of land 

conversion considerably. 
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Introduction 

The negative impacts of land conversion and the consequent habitat loss on a wide range of 

species are increasingly well documented (Hoekstra et al., 2004; Sala et al., 2000). 

Understanding the anthropogenic impact on biotic communities is vital to answering 

questions about the ecological consequences of species extinctions and shifts community 

composition on trophic cascades and ecosystem functioning (Flynn et al., 2011). Predation, 

competition, and mutualism influence the structure of animal and plant communities, and 

affect the stability and function of ecosystems (Ives and Cardinale, 2004; Petchey et al., 

2008). Species interactions play essential roles in both natural and human-dominated 

ecosystems, providing key services such as pollination (Klein et al., 2007) and herbivore 

control (Bianchi et al., 2006; Wielgoss et al., 2014). Given the ecological and economic 

importance of ecological processes and associated ecosystem services, documenting the 

impact of human activity on interactions between species is a priority (Herrera and Doblas-

Miranda, 2013).  We need to understand the causes and consequences of changes to complex 

species interactions, such as foodwebs to properly predict and manage human impact on 

ecosystems (Morris, 2010; Reiss et al., 2009; Tylianakis et al., 2010). 

Trophic interactions are known to link spatially separated subsystems, such as aquatic and 

terrestrial habitats or aboveground and belowground systems (Kupfer et al., 2006; Wardle 

et al., 2004). Particularly predators play a key role in these foodwebs by having so-called 

“cascading effects” on lower trophic groups, such as herbivores or lower trophic 

mesopredators (Duffy et al., 2007; Ritchie and Johnson, 2009). The impacts of these trophic 

cascades on ecosystems are far-reaching, yet the strength of these impacts differ among 

particular foodwebs and species communities (O’Gorman and Emmerson, 2009). Generally, 

removing (apex) predators from ecosystems, or adding them (e.g. Ripple and Beschta, 2012), 

can have far-reaching impacts on the composition of the remaining species assemblage and 

the overall appearance of ecosystems (Estes et al., 2011). However, the impact of an altered 

(meso) predator community, such as amphibian communities, on foodwebs and trophic 

interactions is less clear. Only recently, first studies have shown that amphibian predation can 

have indirect effects on plant growth or inhibit dung removal (González-Bernal et al., 2013; 

Wu et al., 2014). 

It has been proposed that the trophic position of organisms is mainly explained by phylogeny 

and adaptation (Cattin et al., 2004). These main drivers of food web structure result in 
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specific traits characterising species and species communities. Hence, traits based on trophic 

interactions, such as body size, activity pattern, and most notably feeding type, are often used 

to determine the functional diversity (FD) of animal communities (McGill et al., 2006). 

Generally, FD can be seen as ‘the number, type and distribution of functions performed by 

organisms within an ecosystem or within a specific species group (Sandra and Cabido, 2001). 

FD is a crucial part of biodiversity, affecting available ecosystem function (Cadotte et al., 

2011; Griffin et al., 2009; Hoehn et al., 2008) and improving ecosystem stability, particularly 

in a changing world (Johnson et al., 1996). 

FD has widely been shown to decrease following anthropogenic disturbances, such as land 

use intensification (Flynn et al., 2009), logging (Ernst et al., 2006), or forest conversion to oil 

palm plantations (Edwards et al., 2014). These processes are widespread in SE Asia, a highly 

threatened and globally important biodiversity hotspot (Myers et al., 2000; Sodhi et al., 

2004). 

Anurans are particularly vulnerable to the wide-spread land conversion pattern found in 

Southeast Asia (Faruk et al., 2013; Gillespie et al., 2012; Wanger et al., 2010; chapter II). 

However, despite documented decreases in species richness and abundances, the shifts in 

anuran functional diversity in SE Asia is currently unknown. Moreover, globally the 

functional diversity of anuran communities has hardly been studied (but see Ernst et al., 

2006), or refers to larval anurans (Strauss et al., 2010). 

Typically, FD and species richness are closely correlated. Hence, FD of communities depends 

on the number of species present in the particular system. However, independent effects of 

land use intensification have been shown for some small mammal and bird communities 

(Flynn et al., 2009). 

In this study we investigate the changes to the anuran diversity and particularly the trophic 

ecology of anuran communities caused by the widespread conversion of rainforest into palm 

oil plantations in Borneo. Based on the quantity and composition of their diet, we (1) 

categorise anuran species from primary lowland tropical rainforest, logged forest, and oil 

palm plantations based on their diet; (2) identify the trophic position of the community and its 

response to logging and conversion to oil palm plantation. 

Furthermore, we hypothesise that (3) phylogenetic diversity, dietary diversity and functional 

diversity of the anuran community decrease in logged forests and oil palm plantations, 

following the expected drop in species richness. 
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Methods 

Study sites 

The study was conducted in northern Borneo in the state of Sabah, Malaysia and the sultanate 

Brunei Darussalam between April 2011 and May 2013. Anurans were sampled along seven 

streams in primary lowland dipterocarp rainforest, eight streams in continuous logged forest 

and seven streams in oil palm plantations. Logged forest and oil palm plantation streams were 

sampled under the framework of the SAFE project (Stability of Altered Forest Ecosystems; 

Ewers et al., 2011). 

Primary forest sites were located within the Ulu Temburong National Park (UTNP, Brunei 

Darussalam, 55 000 ha), Danum Valley Conservation Area (DVCA, 43 800 ha), Maliau Basin 

Conservation Area (MBCA, 58 840 ha), and an isolated patch (2200 ha) of mainly unlogged 

forest (lightly logged along its edges), which is continuous with the SAFE project area and a 

major forest block (>1 million ha) of both logged and unlogged forest (Reynolds et al., 2011). 

Logged forest sites were located in the SAFE project area, which has undergone two rounds 

of selective logging. The forest structure in the SAFE project area is highly variable, with 

canopy cover ranging from 16% to 71% (Ewers et al., 2011). The oil palm plantation sites 

and their catchments were isolated by 1 - 5 km from continuous forests. All plantation streams 

were managed by the same company (BentaWawasan Sdn Bhd) but had riparian reserves of 

differing vegetation and quality. These ranged from forested riparian strips shading the 

streams to shrubby and grassy, heavily degraded streamside vegetation. To standardise stream 

size, all data were collected at the outlets of 2.5 km² stream catchments. Furthermore, all 

sampled streams were independent first order streams. 

 

Sampling anuran community and relative densities 

To assess species richness and abundance of frogs we conducted six standardised visual and 

acoustic encounter surveys at intervals of at least one week per transect (chapter II). Surveys 

were performed using a line transect starting from the point where the respective catchment 

was 2.5 km
2
 and leading 200 m upstream, following the stream. Transect walks were 

performed while walking in the streambed. Frogs were actively searched for by a single 

person using a headlamp (PetzlMyo RXP) between 1845 h and 2030 h for one hour. Visual 
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and acoustic records were treated equally and summed up to get final numbers. Finally, the 

average number of individuals per stream was used as averaged relative abundance. However, 

these abundances (densities) should rather be treated as conservative estimates or relative 

densities. All frogs were identified in the field using morphological or acoustic characteristics 

(Inger and Stuebing, 2005). Sampling was planned to avoid dry seasons and extremely wet 

periods and was discontinued during periods of heavy flooding or extensive dry spells. 

 

Phylogenetic relatedness 

To compare the degree to which anurans in a stream community are phylogenetically related 

we calculated phylogenetic species variability (PSV), which is independent of the number of 

species occurring in the different communities (Helmus et al., 2007). We used the amphibian 

phylogeny published in Pyron and Wiens (2011) to construct a subtree of the species 

occurring in our study. If a particular species was not present in the initial tree (about 1/3 of 

the species), we subsidised these species with congeneric species, where possible. However, 

since these substitutions were mainly at the genus level, they are likely to have a negligible 

effect on the main outcome. 

 

Diet sampling and categorisation 

Stomach contents were collected from randomly selected individuals at night between 18:45 h 

and 01:00 h by means of stomach flushing (Solé et al., 2005). Stomach flushing is a gentle 

method to get dietary information, without harming anurans. Furthermore, we adhered to high 

ethical standards (Beaupre et al., 2004) for handling the individuals to prevent handling-based 

injuries or overheating. Male and female individuals were sampled according to their 

abundance in the field, but were treated equally throughout the analysis. Amplecting 

individuals were spared from sampling. 

Prey items were counted, analysed and identified as far as possible based on their condition, 

but at least to order level, using a dissection microscope. Generally, in holometabolic insects 

we distinguished between larval stage and imago to account for possible dietary and 

ecological shifts between these stages. Beetles were assigned to families where possible and 

ants were identified to subfamilies. Finally, the volume of the remains of each prey item was 
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estimated by measuring length and width and applying volumetrical formulas of the 

respective general shape (e.g. sphere, ellipsoid body, cylinder). 

All anuran species were clustered according to their dietary composition and grouped into 

feeding types. We applied “ward” clustering for displaying purposes and prey item categories 

were weighted after the square root of their overall volumetrical percentage. We used the diet 

composition of frogs, based on functional prey categories, and ecological traits to calculate 

the dietary diversity as well as the functional diversity, respectively. For functional diversity 

(FD) we collected trait data for all species in our study (Inger and Stuebing, 2005). Both 

indices were calculated using the tree-based method described in Petchey and Gaston (2007). 

Empty samples were excluded from the analysis for dietary diversity. 

 

Data analysis 

All prey items were grouped into functional categories and assigned to either predators 

(including parasites and parasitoids) or non-predators (mainly herbivores). In some cases of 

highly heterogeneous insect groups, such as beetles or ants, generalisations were necessary. 

For example, coleopterans were assigned to the respective groups based on the general 

feeding ecology of their respective family (Crowson, 1981). For coleopterans that could not 

be assigned to families due to progressed digestion, the same predator-ratio as for the family-

identified coleopterans was used. Furthermore, ants were grouped based on their main carbon 

source (Andersen, 1995; Blüthgen et al., 2003). For example, the subfamily Ponerinae was 

categorised as predator and the subfamily Formicinae was categorised as non-predator, based 

on their affiliation with honeydew-producing insects. Finally, parasitic groups that were likely 

gastric parasites of anurans, such as nematodes, were excluded from the analysis. 

We used beta regression to test the effect of habitat type and canopy cover on the percentage 

of predatory prey consumed by the anuran communities per stream. We averaged all samples 

collected per stream and species to get mean diet compositions (including empty samples). 

Subsequently, these averaged diet compositions were weighted by each anuran species’ 

density. Finally, the sum of these averaged and weighted diet compositions was used as the 

overall composition of the respective anuran community (per stream). 

Species richness and diversity indices were analysed using linear models. To test for the effect 

of species richness on the diversity indices, species richness was also used as covariate in the 
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respective models. Post-hoc tests (Tukey HSD) were used to identify significant (p < 0.05) 

differences between habitat types. 

The statistical platform R (R Development Core Team, 2012) was used for calculations and to 

produce graphics. We used the R-packages “betareg” (Cribari-Neto and Zeileis, 2010) to 

perform beta-regression, “vegan” (Oksanen et al., 2013) for calculations of functional indices, 

and “MuMIn” (Bartoń, 2014) for model selection and model averaging. 

 

Results 

We collected a total of 3532 diet samples of 59 anuran species, belonging to 29 genera and 

7 families. 73 048 different prey items were identified in total including predatory prey, such 

as spiders, centipedes or lizards and non-predatory prey, such as caterpillars, true bugs or stick 

insects. Ants represented 70% of the total number of prey items solely. Overall mean sample 

size of stomach content samples per species was 59 ± 83 and varied between five for 

extremely rare species and 251 for the most common anuran species. For single streams 

sample size was ranging from 1 to 51 for each occurring frog species.  

Based on the functional clustering, anuran species could be divided into two main categories 

comprising species specialised on social insects (ants and termites) and a second, more 

heterogeneous group. The latter can be further subdivided into species with a vertebrate-

focused diet (mainly other anurans and lizards), a group of species with a generalist feeding 

pattern, and ant avoiders (Fig. III.1). 
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Figure III.1: Dietary clustering of 59 anuran species sampled in the study areas. 
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Effect of habitat change on the predator-non-predator ratio 

Non-predatory prey was the main dietary component of the anuran community in primary 

forests, logged forests, and oil palm plantations. However, the volumetrical percentage of 

predatory prey significantly decreased with canopy cover (z-value= 9.628, p < 0.001; 

Fig. III.2). Yet, habitat type did not have a significant effect on predator percentage (z-value= 

1.567, n.s.). Accordingly, the volumetrical percentage of non-predatory prey (100% - 

“percentage of predators”) increased with the percentage of canopy cover, but was 

independent of habitat type (Tab. III.1). 

 

Figure III.2: The effect of logging and conversion to oil palm plantation (A) as well as 

the small-scale habitat quality (B) (provided by riparian reserves, shading the streams) 

on the percentages of predatory (blue) and non-predatory prey (green) of the anuran 

community. 

Primary forest streams had the highest percentage of canopy cover (81.6% ± 7.9). It dropped 

to 68.7% (± 15.6) in logged forests and was lowest in oil palm plantation streams (32.9% ± 

21.9). However, there was a wide variation in canopy cover within each habitat type. 
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Table III.1: Model-averaged coefficients of the remaining explanatory variables 

explaining the percentage of predators. (ΔAICc< 4) 

 

  Estimate SE z-value P value RelVar Imp N cont mod 

Percentage of predators 

 

(Intercept) 0.63 0.13 4.87 < 0.001 - - 

 

Canopy 

cover 
-0.018 0.0019 9.63 < 0.001 1 2 

 

Habitat type -0.089 0.057 1.57 0.12 0.43 1 

 

Effect of habitat type and canopy cover on anuran diversity 

Species richness, Shannon diversity, phylogenetic species variability, dietary diversity, and 

functional diversity were significantly higher in primary forests, compared to oil palm 

plantations (Fig. III.3, Tab. III.2). However, compared to logged forests, phylogenetic species 

variability as well as functional diversity of primary forests was not significantly higher. At 

the same time, logged forest had only significantly higher values for species richness and 

functional diversity compared to oil palm plantations. 

Accordingly, all indices were significantly dropping with reduced canopy cover. However, 

only for phylogenetic species variability and functional diversity, this trend was independent 

of species richness. 
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Figure III.3: Effect of forest conversion on multiple measurements of anuran 

diversity and functional diversity. Differences between primary rainforests (PF, 

circles), logged forests (LF, squares), and oil palm plantations (OP, triangles) are 

shown on the left. The right hand side displays the relative impact of the percentage 

of the remaining canopy cover above the sampled streams (as continuous 

measurement of habitat degradation) on the diversity. Species richness (a), Shannon 

diversity (b), phylogenetic species variability (c), dietary diversity (d), and 

functional diversity (e) are declining with habitat degradation. However, if species 

richness is included in the models, only phylogenetic species variability and 

functional diversity remain significantly declining with habitat degradation (red). 

See Tab. III.2 for statistics. 
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Discussion 

This is the first study testing the effects of logging and the conversion to oil palm plantations 

on different components of diversity and trophic interactions of anuran communities in 

parallel. We show that forest conversion leads not only to a loss of species richness but also to 

a significant reduction in phylogenetic and functional diversity. The diet of anuran 

communities changed from a dominance of herbivorous prey in forests streams with high 

canopy cover to an increased preference of predatory prey in low canopy cover streams 

indicating strong shifts in food web interactions with consequences far beyond the loss of 

species richness of this globally endangered group of amphibians.  

Especially with respect to the high abundance of anurans in tropical SE Asia (chapter II.), the 

changes to the trophic ecology of the studied anuran community is likely to have cascading 

effects on arthropod mesopredators, and ultimately herbivores in the studied semi-natural and 

agricultural systems. 

Systematic studies on the feeding ecology of anurans are rare and typically focus on single 

species or subsets of communities (e.g. Toft, 1981). So far, the knowledge on the feeding 

ecology of SE Asian anurans was mostly based on anecdotal observations (e.g. Dehling, 

2009) and a few ecological studies involving diet (Inger and Greenberg, 1966; Inger, 2009). 

We studied the diet of an entire anuran community systematically and identified six distinct 

feeding guilds. The vertebrate feeding guild and the aquatic feeding guild contained only few 

species. However, the other guilds were represented by many more species. Taxonomic 

clustering was evident, but not strong. For instance, all studied bufonids and microhylids were 

represented in a group specialised on social insects. The only representative of another anuran 

family in this feeding guild was the dicroglossid L. palavanensis. Myrmecophagy is known 

from several bufonids and microhylids (Mebs et al., 2010; Toft, 1980), but has so far only 

rudimentarily been shown for true frogs (Hirai and Matsui, 2000). Furthermore, 

L. palavanensis is characterised not only by a divergent feeding pattern, but also by a 

regionally exceptional behaviour of male parental care (Inger and Voris, 1986). The cluster of 

anurans with a vertebrate focused diet was represented by two species only (L. ingeri, 

L. leporinus). This is in accordance with other studies showing that large representatives of 

the genus Limnonectes are able to feed an large-bodied prey, such as vertebrates (Dehling, 

2009; McLeod, 2009). The remaining species were more or less ordered in the clusters of ant 

avoiders and generalist species, with Staurois latopalmatus and few other species being 
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remarkable exceptions in being specialised on aquatic prey. Aquatic prey is common for 

purely aquatic anurans, such as pipid frogs (Carreño and Nishikawa, 2010). However, it is 

unusual for terrestrial and semi-aquatic frogs to prey on aquatic organisms (Duellman and 

Trueb, 1994), but has occasionally been documented (Hirschfeld and Rödel, 2011). Most 

likely and with care, our classification of feeding guilds could be extrapolated to other frog 

species occurring on Borneo and SE Asia, analogous to feeding guilds in the Neotropics 

(Toft, 1980). However, the region is also home to anuran species with unusual habitats and 

traits, such as the lungless frogs (Barbourula spp.), crab-eating frog (Fejervarya cancrivora), 

or fossorial species (e.g. Gastrophrynoides spp.). The composition of their diet is likely to 

differ greatly and is certainly a promising goal for future research. 

 

Changes to functional composition and amount of anuran prey 

The detailed study of the anuran diets along a disturbance gradient provides the possibility to 

analyse the trophic response of the entire anuran community. The increased percentage of 

predatory prey and vice-versa decreased percentage of non-predatory prey (most notably 

herbivores) in highly modified habitats, indicates a massive shift in the trophic position of the 

anuran community. From a first order predator, mainly feeding on herbivores, in primary 

forests and logged forests with high canopy cover, anuran communities became higher order 

predators in highly disturbed, low canopy cover habitats, such as oil palm plantations. The 

reasons for this shift could be based on the habitat change directly or the local extinction of 

other relevant predators, such as the pangolin (Pantel and Chin, 2008). So far, changes in the 

trophic position of anuran communities caused by land conversion have not been documented, 

and few studies have been published on other terrestrial organisms, such as tropical birds (D. 

P. Edwards et al., 2013) or ants (Woodcock et al., 2013) indicating altered trophic position 

with increasing habitat disturbance. Yet, the loss of trophic interactions or changes by 

introduced species is known to affect ecosystem services (Dobson et al., 2006) and 

biodiversity (Ritchie and Johnson, 2009). Accordingly, the changes we found are likely to 

interact with other key mesopredator groups, such as ants or spiders, which contribute a 

considerably larger part of the anurans’ diet in heavily disturbed habitats. In particular, by 

shifting the dietary focus of the anurans to these mesopredators, this inverted preference is 

likely to further release herbivores from predation pressure. However, both invertebrate 

abundance and anuran abundance has been shown to be reduced in oil palm plantations 

(chapter II.; Turner and Foster, 2008), so ultimately predictions can only be made tentatively 
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and require the study of both predator and prey abundances simultaneously (Konopik et al., 

2014a). The trophic interaction between apex predators, several levels of mesopredators, and 

ultimately herbivores is broadly known to be crucial for ecosystem regulation and stability 

(Estes et al., 2011; Martin et al., 2013; O’Gorman and Emmerson, 2009; Ritchie and Johnson, 

2009). However, particularly the response of the hyper-diverse tropical species communities 

to altered trophic interactions is complex and hard to predict (Lewis, 2009). 

So far the impact of adult anurans on trophic interactions and related ecosystem functions 

such as herbivore regulation and primary productivity have mainly been ignored. However, 

recently it could be shown that anurans have an indirect effect on plant growth via the 

predation of detritivores (Wu et al., 2014) and invasive cane toads have been shown to inhibit 

dung removal by preying on dung beetles in Australia (González-Bernal et al., 2013). These 

single species approaches highlight the importance and potential far-reaching effects of our 

findings. However, the actual consequences of these complex cascading effects on the local 

ecosystems can only be analysed by large-scale exclusion experiments (e.g. Klimes et al., 

2011). Such exclusion experiments will be essential to ultimately understand the impact of the 

presented shift in the trophic role of an entire anuran community on plant-herbivore-

antagonist interactions in natural and human-altered ecosystems. 

 

Loss of multiple layers of anuran diversity following land conversion 

Species richness in logged forests and oil palm plantations declined following the loss of 

canopy cover (chapter II.). Beyond species richness we showed that multiple layers of anuran 

diversity are reduced with land conversion and the degree of disturbance. This highlights the 

enormous loss of biodiversity beyond species richness. Whereas all of these different layers of 

diversity should be justifiably viewed on its own, some are closely connected to the initial 

loss of anuran species. If species richness was considered as covariate, Shannon diversity and 

dietary diversity were no longer significantly reduced with the degree of disturbance. In 

contrast, canopy cover has an independent positive effect on phylogenetic species variability, 

which is by its nature already independent of species richness (Helmus et al., 2007), as well as 

functional diversity. The first indicates that species in heavily disturbed habitats are more 

likely to be related to each other. This can be traced back to the absence of some genera (e.g. 

Staurois) and entire families (Ceratobatrachidae, Microhylidae) and vice-versa the dominance 

of the true frogs (Dicroglossidae, Ranidae) in Bornean oil palm plantations. Especially the 
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loss of microhylids has also been reported in other studies from the region (Gillespie et al., 

2012), whereas disturbance resistant microhylid lineages exist in peninsular Malaysia (Faruk 

et al., 2013) or on Sumatra (pers. obs.). 

Dietary diversity was highest in primary forests, where all major dietary groups where present 

in all studied streams. Dietary diversity in logged forests and in oil palm plantations was 

comparable. However, representatives of all main feeding types were present in both forests 

and oil palm plantations, with the exception of vertebrate predators, which were lacking in 

most oil palm streams. Additionally, P. juxtaspera, a species that has been shown to prey on 

more than 200 ant species (Konopik et al., 2014a), was mostly the only remaining ant 

specialist in oil palm streams. The assessment of the dietary diversity of entire anuran 

communities is a novel approach, and hence, lacks comparison. 

The loss of FD in oil palm plantations follows the anuran species richness decline with land 

conversion (chapter II), and the altered community composition (Faruk et al., 2013). 

However, beyond amphibians, functional diversity has been shown to be greatly reduced in 

oil palm plantations for other taxa, such as dung beetles (Edwards et al., 2014), ants (Luke 

et al., 2014) or birds (F. A. Edwards et al., 2013). By following the same pattern, anurans join 

this list of ecologically important animal groups with greatly reduced functional diversity in 

oil palm plantations. 

Additionally, we were able to disentangle the effect of species richness and habitat conversion 

on functional diversity. An independent effect of habitat degradation was so far mostly known 

from bird and mammal communities (Flynn et al., 2009). Beyond the effect of species 

richness, functional diversity was driven by habitat quality (canopy cover) and ultimately by 

land conversion. This indicates, that anuran species sensitive to logging and land conversion 

are more likely to have unique functional traits and hence, ecological function. This 

implicates, that by increasing canopy cover (via riparian reserves) in oil palm plantations 

streams, not only forest frog species richness can be increased (chapter II), but also the 

functional diversity. 

 

Conclusions 

We showed that multiple layers of anuran biodiversity are heavily impacted by a wide-spread 

and important land conversion pattern. Logging and subsequent conversion of degraded forest 
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to oil palm plantation alters the trophic position and reduces the diversity of anuran 

communities. However, the positive effect of (small-scale) habitat quality, such as canopy 

cover associated with riparian reserves, mitigates these negative consequences to some extent. 

By enhancing anuran diversity and their trophic interactions, riparian reserves showed 

potential in interacting with natural pest control in oil palm plantations. This suggests that 

management efforts should focus on maintenance and restoration of high quality riparian 

forests in human-modified tropical habitats. Conservation of anuran biodiversity and the 

maintenance of their trophic interactions require the protection of the remaining forests in 

Southeast Asia and urgent actions to improve habitat quality in existing oil palm plantations. 
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Table III.2: ANOVAs and linear models describing the impact of habitat type (primary 

forest, logged forest, oil palm plantation) and the degree of habitat degradation (canopy 

cover) on species richness, Shannon diversity, phylogenetic species variability, dietary 

diversity, and functional diversity of Bornean anurans. Red: Models with species 

richness as covariate. 

  

Habitat type 

(ANOVA) 

 

Canopy cover (linear model) 

  

F P 

 

Estimate SE t P 

Species richness 

       

 

Canopy cover 18.2 < 0.001 

 

0.0049 0.00091 5.37 < 0.001 

Shannon diversity 

       

 

Canopy cover 13.4 < 0.001 

 

0.0020 0.00081 2.44 < 0.05 

Phylogenetic species variability 

     

 

Canopy cover 4.4 < 0.05 

 

0.0021 0.00048 4.49 < 0.001 

Dietary diversity 

       

 

Canopy cover 14.5 < 0.001 

 

0.0023 0.00076 3.05 < 0.01 

Functional diversity 

        Canopy cover 21.3 < 0.001 

 

0.0040 0.00062 6.35 < 0.001 

         Shannon diversity 

       

 

Species richness 30.3 < 0.001 

 

0.0280 0.0067 4.22 < 0.001 

 

Canopy cover 2.2 n.s. 

 

-0.0010 0.0009 -1.12 n.s. 

Phylogenetic species variability 

     

 

Species richness 7.4 < 0.05 

 

-0.0010 0.0056 -0.19 n.s. 

 

Canopy cover 0.8 n.s. 

 

0.0023 0.0008 2.96 < 0.01 

Dietary diversity 

       

 

Species richness 60.6 < 0.001 

 

0.0312 0.0050 6.25 < 0.001 

 

Canopy cover 1 n.s. 

 

-0.0010 0.0007 -1.15 n.s. 

Functional diversity 

       

 

Species richness 74.9 < 0.001 

 

0.0212 0.0053 3.98 < 0.001 

 

Canopy cover 2.3 n.s. 

 

0.0017 0.0007 2.30 < 0.05 
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IV. From rainforest to oil palm plantations: shifts in predator 

population and prey communities, but resistant interactions 

 

This chapter is published as: Konopik, O., Gray, C., H., Grafe, T. U., Steffan-Dewenter, I., 

Fayle, T. M. (2014) From rainforest to oil palm plantations: shifts in predator population and 

prey communities, but resistant interactions. Global Ecology and Conservation, 

http://dx.doi.org/10.1016/j.gecco.2014.10.011 

Running title: Species level interactions 

 

Abstract 

Anthropogenic habitat change can dramatically alter biotic communities in tropical 

landscapes. Species that persist in human dominated landscapes are therefore likely to modify 

the way they interact. Although human impacts on community composition are relatively well 

studied, changes in species interactions are less well documented. Here we assess how 

logging of rain forest and conversion to oil palm plantations affects the populations of the ant-

specialist giant river toad (Phrynoidis juxtaspera), and the availability and composition of its 

ant prey. We measured canopy cover as an estimate for the degree of disturbance and found 

that toad abundance decreased with increasing disturbance, and that retaining riparian 

vegetation should therefore help conserve this species. Both abundance and species richness 

of local ground-foraging ants increased with disturbance, and ant community composition 

was altered. Despite these changes, composition of ants consumed by toads was only weakly 

affected by habitat change, with the exception of the invasive yellow crazy ant (Anoplolepis 

gracilipes), which was positively selected in oil palm plantations. This suggests that predator-

prey interactions can be mostly maintained with habitat disturbance despite shifts in the 

community composition of potential prey, and even that some predators are capable of 

exploiting new prey sources in novel ecosystems. 
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Introduction 

The negative impacts of habitat loss and land conversion on a wide range of species are 

increasingly well documented (Hoekstra et al., 2004; Sala et al., 2000). However, our 

understanding of the impact of human activity on species interactions remains poor. 

Mutualisms and trophic interactions influence the structure of animal and plant communities, 

and affect the stability and function of ecosystems (Ives and Cardinale, 2004). Species 

interactions play essential roles in both natural and human-dominated ecosystems, providing 

services such as pollination (Klein et al., 2007) and pest control (Bianchi et al., 2006). Given 

the ecological and economic importance of ecological processes and associated ecosystem 

services, documenting the impact of human activity on interactions between species is a 

priority (Herrera and Doblas-Miranda, 2013; Millennium Ecosystem Assessment 2005).  We 

need to understand the causes and consequences of changes in networks of interactions if we 

are to properly predict and manage human impacts on ecosystems (Morris, 2010; Tylianakis 

et al., 2010). 

The complexity of ecological interactions may make it challenging to generate general rules 

for predicting the impacts of such changes (Tylianakis et al., 2008). For example, shifts in 

resource consumption following habitat fragmentation are likely to differ between generalists 

and specialists (Martinson and Fagan, 2014). Similarly, the removal of top predators can have 

a range of cascading effects on lower trophic levels (Ripple et al., 2014). Nevertheless, there 

is an increasing body of evidence indicating that resource extraction and land use change alter 

species interactions. For example, modification of tropical habitats reduces the diversity and 

breadth of host-parasitoid foodwebs (Tylianakis et al., 2007), alters the trophic position and 

narrows the niche breadth of bird communities (D. P. Edwards et al., 2013), and alters the 

trophic position of leaf-litter ant species (Senior et al., 2013; Woodcock et al., 2013). 

Understanding the variation in responses of different species interactions to habitat 

modification is potentially a greater challenge than documenting the changes in the 

communities themselves. 
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Our knowledge of how trophic interactions are altered by anthropogenic disturbance is 

particularly poor for tropical systems (Morris, 2010). This is a particular concern because 

tropical ecosystems exhibit high levels of biodiversity and are particularly vulnerable to on-

going anthropogenic threats (Brooks et al., 2002). Southeast Asia, and Sundaland in 

particular, is an important biodiversity hotspot (Myers et al., 2000) threatened by habitat loss 

(Sodhi et al., 2004). In this region, the important drivers of changes in community structure 

and function are logging and subsequent conversion of degraded forest to oil palm plantation 

(Wilcove et al., 2013). There is a substantial body of evidence showing that the community 

composition of many species in Southeast Asian rainforest changes with logging and 

conversion to oil palm dominated landscapes (Danielsen et al., 2009; Fitzherbert et al., 2008; 

Foster et al., 2011), including abundant tropical meso-predators such as anurans (Faruk et al., 

2013). Furthermore, there is some evidence that interactions of other ecologically important 

groups such as ants are altered by conversion to oil palm plantations (Fayle et al., 2013). 

However, the impact of oil palm expansion on species interactions and in particular on trophic 

interactions remains mostly unknown. 

Habitat conversion is often accompanied by the introduction of non-native species (Ricciardi, 

2007) and these invasions can also alter or inhibit interactions between native species 

(Traveset and Richardson, 2006). Understanding the effects of non-native species on food 

webs and trophic interactions is therefore of particular interest. We need to enhance our 

understanding of the interaction between land conversion and invasive species if we are to 

predict and manage species’ responses to anthropogenic change. Knowing the extent to which 

native species can respond to the ecological changes caused by the presence of these 

introduced groups will help with predicting the resilience of communities and targeting 

conservation efforts (Didham et al., 2007). 

The impact of habitat degradation on the trophic interaction between ants and frogs is 

currently unknown. However, ants are an important part of the diet of some tropical anuran 

communities (e.g. Inger, 2009; Konopik et al., 2014b; Toft, 1980). Here we assess the 

variation in the interaction between a common anuran predator, the giant river toad 

(Phrynoidis juxtaspera) and the ground dwelling ants on which it feeds. We quantify changes 

in toad populations, ant communities, and predator-prey interactions across different land uses 

in Malaysian Borneo. Specifically, we ask the following questions:  

1) How does the abundance of the toad P. juxtaspera vary with degree of disturbance 
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and stream characteristics? 

2) How does the abundance and species richness of ground dwelling ants vary with 

degree of disturbance and stream characteristics? 

3) How do the predator-prey interactions between the toad and ant communities 

change with degree of disturbance and stream characteristics? 

 

 

Figure IV.1: Phrynoidis juxtaspera is the larges anuran species on Borneo. Females can 

grow up to 215 mm snout-vent length. It occurs throughout the lowlands, both in 

primary rainforests and various disturbed habitats including oil palm plantations.  

 

Materials and Methods 

Study sites 

The study was conducted in northern Borneo in the state of Sabah, Malaysia from April to 

June 2011.  We sampled the abundance and diet of the giant river toad (Phrynoidis 

juxtaspera) and corresponding ground-dwelling ant communities along streams in primary 
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lowland dipterocarp rainforest, continuous logged forest and in oil palm plantations under the 

framework of the SAFE project (Stability of Altered Forest Ecosystems; Ewers et al., 2011).  

Primary forest sites were located within the Maliau Basin Conservation Area (MBCA, 

58 840 ha) and a patch (2200 ha) of mainly unlogged forest (lightly logged along its edges), 

which is continuous with both the SAFE project area and a major forest block (>1 million ha) 

of both logged and unlogged forest (Reynolds et al., 2011). Logged forest sites were located 

in the SAFE project area, which has undergone two rounds of selective logging. The forest 

structure in the SAFE project area is highly variable, with canopy cover ranging from 16% to 

71% (Ewers et al., 2011). The oil palm plantation sites and their catchments were isolated by 

1 - 5 km from the logged forests. All plantation streams were managed by the same company 

(Benta Wawasan Sdn Bhd) but had riparian reserves of differing vegetation and quality. 

These ranged from forested riparian strips shading the streams to shrubby and grassy, heavily 

degraded streamside vegetation. To standardise stream size, all data were collected at the 

outlets of 2.5 km² stream catchments, which were 1.5 – 9 km apart from each other. However, 

one primary forest stream was located in MBCA, approximately 50 km from the other 

streams (note that this is one of only two large continuous blocks of primary forest in the 

vicinity). 

 

Effects of habitat change on relative toad abundance 

P. juxtaspera (Fig. IV.1, page 59) is the largest native anuran species found in SE Asia. 

Females can grow up to 215 mm snout-vent length (SVL), while males typically reach no 

more than 120 mm (Inger and Stuebing, 2005). Sexes are hard to distinguish in the field, other 

than by size (individuals>120mm are females). It is a widespread, ground-dwelling species, 

which can frequently be found along the streams and has been recorded from both primary 

rainforests and disturbed forests (Inger and Stuebing, 2005). To date there has been no 

systematic study of the diet of P. juxtaspera, although congeneric species are also known to 

feed primarily on ants (Inger, 2009). 

Toads were sampled in a total of two primary forest streams, eight logged forest streams and 

seven oil palm plantation streams. To assess the relative abundance of toads we conducted six 

standardised visual encounter surveys at minimum intervals of one week per site (stream). We 

walked line transects in the streams, starting from the mouth of the 2.5 km
2
 catchment at each 

site and leading 200 m upstream. Toads were actively searched for one hour by a single 
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person using a headlamp (Petzl Myo RXP), always between 18:45 and 20:30. Stomach 

contents were collected from randomly selected individuals between 18:45 and 01:00 in the 

morning, using stomach flushing (Solé et al., 2005), which is a gentle method for obtaining 

dietary information, without harming the toads. We only sampled subadult and adult toads 

(snout-vent length > 60 mm), but did not distinguish between sexes. We applied high ethical 

standards (Beaupre et al., 2004) for handling the individuals and no toad was killed during 

our study. 

 

Effects of habitat change on ant communities 

Sampling of the ground-foraging ant fauna was conducted at the two primary forest streams, 

five (out of eight) logged forest streams and three (out of seven) oil palm plantation streams. 

At each site, ants were collected from 12 pitfall traps set in a grid adjacent to the river. Three 

traps were placed at 50 m intervals on each of four transects, with the first trap placed 

approximately 1 m above the high water line. Transects ran perpendicular to the river and 

were 100 m apart. Pitfall traps were plastic cups (dimension 8 cm top diameter, 5.5 cm 

bottom diameter, 12.5 cm depth), filled with a solution of water, salt and a small amount of 

detergent, and were collected after 48 hours. The traps were baited with 25 g human dung, 

since they also formed part of a separate study surveying dung beetles (Gray et al., 2014). The 

mean distance between toad transects and ant sampling grids was 152.9 (range± 96.7) m. The 

mean time between stomach content collection and the collection of the pitfall traps was 15 

(range± 14) days. 

 

Ant identification 

Ants from frog stomachs and the ground-foraging ant fauna were identified to genus using a 

binocular dissecting microscope (Fayle et al., 2014), divided into morphospecies, and 

assigned species names where possible (Pfeiffer, 2014). Ants from frog stomachs were often 

surprisingly well-preserved, allowing the generation of a dry-mounted voucher collection. 

Body fragments were then compared with these entire specimens. Counts were based on 

numbers of alitrunks present. Reproductives and lone major workers were excluded from 

analyses, to prevent inadvertent splitting of species. 
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Habitat parameters 

To capture variance in primary forests and especially the highly heterogeneous degree of 

disturbance in the logged forest, the differing age of the oil palm plantations and the different 

quality of riparian reserves in both habitats, we used the canopy cover above the stream as an 

estimate of the degree of disturbance. A camera (Pentax K20D) was positioned at the centre 

of the stream at a height of 0.5 m above the water surface. Pictures were taken perpendicular 

to the stream and in full wide angle, using a fisheye lens (Pentax SMC DA 10-17 mm) facing 

upwards. Images were analysed using a graphics editor (Adobe Photoshop) and the 

percentage of the sky covered by vegetation was used as canopy cover (%). 

In addition, we measured both width and slope of the streams, as these variables are known to 

influence Bornean anuran communities (Keller et al., 2009). Stream width was measured at 

an intermediate water level, and combined across both channels for sites where the stream 

split within the sampling area. Stream slope was measured applying the principle of 

communicating vessels (LaPerriere and Martin, 1986). First, a 14 m water-filled transparent 

hose was submerged in the stream. Then, the downstream end was lifted perpendicularly out 

of the water. Finally, the height of the water column from the water surface was divided by 

the stream distance being measured to obtain the stream slope. Canopy cover, stream width 

and sloped were measured at intervals of 10 m and averaged to give a single value for each 

transect. 

 

Statistical methods 

We used linear models to analyse the impact of the degree of disturbance and habitat 

parameters on relative toad abundance. The impact on the number of ant species and number 

of ant individuals derived from pitfalls traps and toads’ stomachs was analysed using mixed 

models with site (stream) as a random factor to account for non-independence of data points 

collected at the same stream. Hence, fixed factors for all models were stream width, stream 

slope, and canopy cover. Additionally, the distance between the traps and the stream was 

included for the trap-models, as well as the length of the toads (SVL) for the toad-models. Ant 

abundances were log-transformed to meet the assumptions of normality. Model selection was 

conducted using a model averaging approach. All combinations of explanatory variables were 
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used and the models with the best fit were selected using the corrected Akaike’s information 

criterion (AICc). A model was included if the difference in AIC of that model from the best 

model (ΔAICc) was < 4 (Burnham and Anderson, 2002). All parameters were tested for 

normality and collinearity before analysis. 

To assess the dietary selectivity of the toad we used the Jacob’s Electivity Index (Jacobs, 

1974) on ant genus-level data. The index reaches “+1” for a taxon or prey category 

exclusively selected by the toad but rare in the environment and “-1” if the taxon is 

completely absent from the toads diet, but frequently found in the environment. 

Consequently, a value of “0” indicates an equal frequency of the respective ant genus in 

pitfall traps and the toads’ diet. Finally, we conducted chi-square tests on the original count 

data for each ant species in the frogs’ stomachs versus in the pitfall traps, using Bonferroni 

corrections to account for multiple comparisons. 

To compare the composition of the ant community obtained from traps and toads, we used a 

permutation-based multivariate analysis of variance (PerMANOVA), specifying Bray-Curtis 

dissimilarity and 999 permutations. To display the variation in species composition of ants 

derived from traps and toads among habitat types and the impact of habitat parameters we 

used non-metric multidimensional scaling (NMDS) on the same distance matrix calculated for 

the PerMANOVA. We set the program to generate 999 iterations to find the final ordination 

with minimum stress and best fit. To test for possibly confounding effects of the differing 

distances between the traps and the stream on both the genera composition and the species 

composition found in the traps, we used the same PerMANOVA setup. We ran general linear 

mixed models to test for differences in the species richness and abundance of ants in the 

pitfalls versus the stomach contents. 

All statistical analyses and graphics were conducted using the open source software R 

(R Core Development Team 2008) with the packages MuMIn (Bartoń, 2014), nlme (Pinheiro 

et al., 2014) and vegan (Oksanen et al., 2013). 
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Results 

Effects of habitat change on relative toad abundance 

The giant river toad (P. juxtaspera) was found in all studied streams and transects. The 

average number of recorded toads was higher in streams with more canopy cover (Fig. IV.2) 

and also in narrower streams (Tab. IV.1). Stream slope had no significant influence on the 

average number of recorded individuals of P. juxtaspera. 

 

Effects of habitat change on ant communities 

We identified 65,886 individuals from 56 ant genera and 140 morphological species. In the 

pitfall traps, the ant genera Diacamma, Leptogenys, Lophomyrmex, Odontoponera and 

Pheidologeton were commonly found in forest samples (logged forest and primary forest). 

The genera Cardiocondyla, Monomorium, Ochetellus, Plagiolepis and Solenopsis were nearly 

exclusively obtained from oil palm plantations. Pheidole and Tetramorium were abundant 

genera in all habitat types. The ant 

species with the highest frequency 

in forested habitat were Camponotus 

gigas and Odontoponera rixosus. In 

contrast the yellow crazy ant 

(Anoplolepis gracilipes) and 

Monomorium floricola were the 

species most frequently found in oil 

palm plantations.  

 

 

 

 

 

Figure IV.2: Impact of canopy cover above the 

streams on the relative abundance of the giant 

river toad (Phrynoidis juxtaspera). Abundance 

was significantly reduced with the degree of 

habitat disturbance (z-value = 3.84; P < 0.001). 

The primary forest stream sampled at Maliau 

Basin Conservation area (1) was excluded from 

this analysis. 



IV. Species level interactions 

 

 65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.3: Impact of the degree of disturbance (canopy cover) on the number of ant 

species (a,b) and the number of individuals (c,d) of samples derived from baited pitfall 

traps (left) and stomach content samples from Phrynoidis juxtaspera (right). 

 

The number of ant species per trap increased slightly with decreasing canopy cover 

(Tab. IV.1). Whilst we did not include habitat in the models due to collinearity with canopy 

cover, there was a trend for more ant species in primary forest, compared to logged forest and 

oil palm plantations at a given degree of canopy cover. Local scale ant species richness was 

highest in oil palm plantations (7.3 ± 2.2), followed by primary forest (6.3 ± 1.9) and logged 

forest (5.6 ± 2.5). Hence, the highest local ant species richness was found at streams with low 
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canopy cover in oil palm plantations (Fig. IV.3a). The total number of individuals per trap 

also increased significantly with decreasing canopy cover (Fig. IV.3c). 

Table IV.1: Average model coefficient estimates (β) with average standard errors (SE), 

and P-values for variables explaining changes in relative toad abundance, ant species 

richness, and ant abundance in response to ecologically important explanatory 

variables. 

   

β 

 

SE (β) 

 

z-value 

 

P-value 

          Relative toad abundance (linear 

model) 

      
 

Canopy cover 

 

0.252 

 

0.059 

 

3.84 

 

< 0.001 

 
Stream width 

 

-6.84 

 

1.84 

 

3.38 

 

< 0.001 

 

Stream slope 

 

-0.0014 

 

0.0028 

 

0.44 

 

0.66 

          Ant species richness in pitfall traps (mixed model) 

  
 

Canopy cover 

 

-0.031 

 

0.011 

 

2.32 

 

< 0.05 

 

Stream width 

 

-0.750 

 

0.333 

 

1.88 

 

0.06 

 

Stream slope 

 

0.0004 

 

0.0003 

 

1.09 

 

0.27 

 

Distance 

 

-0.001 

 

0.0048 

 

0.228 

 

0.82 

   

Ant species richness in toads stomachs (mixed model) 

  
 

Canopy cover 

 

-0.0008 

 

0.027 

 

0.027 

 

0.98 

 

Stream width 

 

-0.538 

 

0.599 

 

0.825 

 

0.41 

 

Stream slope 

 

0.0005 

 

0.0004 

 

1.151 

 

0.25 

 
Size of toad (SVL) -0.032 

 

0.011 

 

2.784 

 

< 0.01 

          Number of ants in pitfall traps (log-transformed, mixed model) 

 
 

Canopy cover 

 

-0.016 

 

0.006 

 

2.107 

 

0.04 

 

Stream width 

 

-0.458 

 

0.218 

 

1.755 

 

0.08 

 

Stream slope 

 

-0.0001 

 

0.0002 

 

0.619 

 

0.54 

 

Distance 

 

-0.0028 

 

0.0035 

 

0.780 

 

0.44 

          Number of ants in toads' stomachs (log-transformed, mixed model) 

 

Canopy cover 

 

-0.006 

 

0.006 

 

0.996 

 

0.32 

 

Stream width 

 

-0.187 

 

0.154 

 

1.265 

 

0.21 

 

Stream slope 

 

0.00004 

 

0.0001 

 

0.301 

 

0.76 

 

Size of toad 

(SVL) 

 

-0.002 

 

0.003 

 

0.859 

 

0.39 

 

How does toad diet change in converted habitats? 

For dietary analysis, we sampled a total of 189 toads with an average snout-vent length of 

86.9mm (±34). There was no significant size difference between toads sampled in primary 
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forests, logged forest, and oil palm plantations (ANOVA: F2,186=0.59, n.s.). Sixty four toads 

were sampled in primary forests, 84 toads in logged forest, and 41 toads in oil palm 

plantations. From the stomach contents we identified 16,840 individuals belonging to 57 ant 

genera and 224 morphological species. In general, ants made up 82% of the recovered prey 

items. We were able to obtain stomach content from all sampled toads. Furthermore, all 

samples contained ants. The number of ant species found in frogs’ stomachs varied only with 

the size of the toad (see Tab. IV.1 for statistics, Fig. IV.3b). There was no significant 

relationship between the number of individuals recovered from the toads’ stomachs and any 

explanatory variable (Fig. IV.3d). 

 

Figure IV.4: Non-metric multidimensional scaling showing difference on genera 

composition. Displayed are the centroids of the pitfall data (blue) and the data derived 

from the stomach contents of the ant-specialist toad Phrynoidis juxtaspera (red). Ellipses 

around the centroids indicate standard deviation of the respective categories. Arrows 

indicate shifts in composition between land-uses (primary forest – logged forest – oil 

palm plantation). Only the most frequent ant genera are displayed. 
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Comparing shifts in toad diet with changes in ground-dwelling ant communities 

There was a significant interaction between land use type and the origin of ant communities 

(stomach vs. pitfall traps) on the composition of both ant genera (PerMANOVA: df=2, 

Residuals=255, F=4.2; R
2
=0.02; p < 0.001) and species (PerMANOVA: df=2, Residuals=255, 

F=3.8; R
2
=0.02; p < 0.001). Ant communities found in pitfall traps in logged forest and 

primary forest sites showed similar compositions, but both were different from oil palm 

plantations, whereas the composition of ants found in toad stomachs was not strongly affected 

by land use change (Fig. IV.4). The distance of the pitfall traps from the stream did not have a 

significant impact on the composition of ant genera and ant species. 

Some ant genera were found significantly more frequently in stomach content samples of 

P. juxtaspera, compared to their frequency in pitfall traps, whereas others were found 

significantly less frequently (significant positive and negative electivity values respectively, 

Fig. IV.5). In cases where ant genera were found significantly more frequently or less 

frequently in stomach content samples of P. juxtaspera, these trends were constant across land 

uses and hence not affected by logging or land conversion to oil palm plantation. However, in 

some cases positively “selected” ant genera from primary forest simply did not occur in 

plantations.  There were twelve genera that in at least one habitat were significantly more 

frequently recorded in the toads’ stomachs than in pitfall traps (Anochetus, Anoplolepis, 

Camponotus, Crematogaster, Gnamptogenys, Lordomyrma, Myrmicaria, Nylanderia, 

Odontoponera, Pachycondyla, Platythyrea, Polyrhachis) and four genera that were found 

significantly less frequently (Euprenolepis, Loweriella, Pheidologeton, Plagiolepis). In 

particular, the invasive species Anoplolepis gracilipes (the only species in the genus 

Anoplolepis at our study sites) was significantly more commonly found in the toads’ stomachs 

than in the traps. However, this genus was absent from primary forest sites and very rare in 

logged forest.  
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Figure IV.5: Electivity 

of Phrynoidis 

juxtaspera for different 

ant genera per habitat 

type in relation to the 

ground-foraging ant 

fauna. Values of +1 

indicate a preference 

for this genus and 

values of -1 indicate a 

complete absence of 

this genus from the 

toad’s diet. 
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Discussion 

Because logging and conversion to oil palm plantation generally alters the species 

composition of both frogs and ants (e.g. Brühl and Eltz, 2009; Faruk et al., 2013; Woodcock 

et al., 2011), we expected there to be changes in the diet of the ant specialist frog 

P. juxtaspera. However, we found that interactions between these trophic levels remained 

relatively constant despite significant changes in the community composition of ants. 

Our results indicate that the degree of habitat disturbance (as measured by the remaining 

canopy cover) has a strong effect on the abundance of this toad species. However, the 

abundances in high canopy cover streams in oil palm plantations were comparable with 

logged forest streams. This suggests that retaining canopy cover adjacent to rivers (in riparian 

buffers or reserves) may help conserve the toad species. Interestingly, we found that the 

decrease in toad abundance with loss of canopy cover occurs despite increases in the 

abundance of potential prey items. This indicates that other factors, such as changes in 

breeding habitat availability, microclimate or pesticides are more likely to be driving the 

decline in giant river toad numbers than a shortage of prey.  

The changes in the ant community that we observed are consistent with previous findings that 

invasive species become more abundant in disturbed habitats (Didham et al., 2007; Dukes and 

Mooney, 1999). However, we found a higher local ant species richness in heavily modified 

habitats. This contrasts with previous observations that ant fauna are less species rich in 

degraded tropical forest compared to undisturbed habitats, both in terms of ground foraging 

(Brühl and Eltz, 2009; Woodcock et al., 2013) and arboreal communities (Klimes et al., 2012; 

Widodo et al., 2004). There are several possible explanations for this result. First, our use of a 

trapping method that assesses combined activity and density of ants (the former of which may 

be high in oil palm, due to elevated temperatures (Turner and Foster, 2006)), coupled with the 

small scales at which we analysed our data (the scale relevant to a single toad), could result in 

higher records of species richness and abundance with decreasing canopy cover. Second, we 

used baited traps that could potentially have differing degrees of attractiveness between 

habitat types and hence, lead to this unexpected pattern.  Third, the variation in riparian 

vegetation at oil palm sites could mean that the range of microhabitats available for ants 

adjacent to oil palm streams was higher than that in forested streams. As a result, there would 

be higher beta diversity within the area covered by the pitfall transects at oil palm sites, 

leading to a higher species richness overall. Lastly, it is possible that the increase in local 
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species richness is due to the simplification of the vegetation structure forcing arboreal 

species down to nest and/or forage at lower heights. Therefore even if both ground foraging 

species and arboreal species decline with habitat degradation, the merging of these 

communities could potentially result in an increase in terrestrial ant species richness. Indeed, 

the microclimate in logged forest and in particular in oil palm plantation has been shown to be 

more extreme (Luskin and Potts, 2011) and hence resembles the conditions in the canopy 

layer. This could favour canopy-adapted ant genera and decrease the number of leaf-litter ants 

on the forest floor. 

The change in local ant species richness, ant abundance, and ant community composition with 

land use was not reflected in the trophic interaction between the giant river toad and its prey. 

None of the significant positive or negative electivity patterns for ant genera differed between 

the habitat types, indicating that the toad shows a high degree of niche-fidelity. Even though 

the toad feeds on a great variety of ants (including predatory and marauding ants, such as 

Dorylus spp. and Leptogenys spp.) this niche fidelity suggests that the toad is not feeding on 

the ant species that drive the changes in ant community composition when habitats are 

converted. This feeding preference-fidelity could be explained by overlapping micro-climatic 

niches between the predator and its natural prey together with avoidance of extreme 

microclimates in disturbed habitats. However, testing this hypothesis would require a more 

detailed autecological study, e.g. involving radio tracking of the toads in different habitat 

types (e.g. Konopik et al., 2014b). 

We have also demonstrated that P. juxtaspera specialises on ants and that it preys on a great 

variety of different genera and species. Both small-bodied (e.g. Crematogaster, Loweriella) 

and large-bodied ant genera (e.g. Polyrhachis, Euprenolepis) were amongst the positively and 

negatively selected genera, respectively. Furthermore, well-defended ant genera such as 

Crematogaster and many of the Ponerines were part of the toads’ diet and were also found in 

the pitfall traps. This indicates that toads are not basing prey selection exclusively on ant body 

size or defences.  

 The toad also displays an interesting ability to adapt to the novel ecosystems created by the 

oil palm plantations. In contrast to its generally niche-conservative feeding behaviour, the 

toad showed a significant positive preference for the invasive yellow crazy ant (Anoplolepis 

gracilipes) in oil palm plantations. This finding does not necessarily contradict the mostly 

stable dietary pattern that we found for the remaining ant species, which is likely to be due to 
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restriction of the toad to remaining high quality habitat patches. In heavily degraded habitats 

such as oil palm plantations, A. gracilipes is typically not restricted to the plantation, but 

rather invades remaining high quality habitat patches, such as riparian strips. This overlap 

with the toads’ foraging habitat could explain the inclusion of A. gracilipes into the toad’s diet 

despite the lack of inclusion of other non-native ant species. The yellow crazy ant has been 

linked to dramatic changes to local ecosystems (Holway et al., 2002) and it is a widespread 

tropical invasive species, particularly in Southeast Asia (Wetterer, 2005). It is known to thrive 

in plantations and suppress native ant species (Bos et al., 2008). We did not find this species 

in primary forest, however it is highly abundant in oil palm plantations (Brühl and Eltz, 

2009). Our results indicate that the toad could be an effective native predator of this invasive 

species. Southeast Asian native toads have already been shown to promote native ant diversity 

and potentially increase crop yields in cocoa plantations (Wanger et al., 2011), and it is 

possible that they also deliver a similar ecosystem service in oil palm plantations. However, 

the low densities of this native predator in highly altered landscapes, such as conventional oil 

palm plantations together with its restriction to remaining high quality habitats for foraging, is 

likely to limit the extent to which it can help to control hyper-abundant invasive ants. 

Nevertheless, we demonstrated that P. juxtaspera is able to establish populations in oil palm 

streams reaching similar abundances to primary and logged forests as long as riparian reserves 

provide high canopy cover. This suggests that promoting populations of this toad species by 

increasing the quality of riparian strips could have both conservation and pest-control 

benefits.  

 

Conclusions 

We found that the abundance of the giant river toad declines with reductions in canopy cover, 

and at the same time the ground foraging ant communities increase in local species richness. 

However, despite these changes in the populations of both predator and prey, the feeding 

preferences of the toad remained mostly constant across different land uses. Our study 

indicates that predator-prey interactions can be somewhat robust to anthropogenic pressures, 

and highlights the importance of understanding food web structure for predicting and 

managing the responses of communities and ecological processes to increasing human impact. 

However, the ability of the giant river toad to exploit the highly invasive yellow crazy ant, 

coupled with its sensitivity to habitat quality, indicates the potential of high quality riparian 
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reserves in altered habitats for conservation of native anurans and the biological control of 

invasive species. 

Table IV.A1: Output of the PerMANOVA testing the effect of the distance between 

traps and the stream on the genera composition and species composition 

 

 

df F-Model R2 P-Value 

Genus level 

 Habitat type 2 14.51 0.19 < 0.001 

 Stream 7 2.47 0.11 < 0.001 

 Distance 1 1.28 0.01 0.28 

 Residuals 109 

   Species level 

 Habitat type 2 10.75 0.15 < 0.001 

 Stream 7 2.43 0.11 < 0.001 

 Distance 1 1.54 0.01 0.07 

 Residuals 109 

    

 

Figure IV.B1: Map of the study area. White symbols represent streams where only toads 

have been sampled and black symbols show streams with both toad and ant data. 

Symbols represent primary forest streams (PF), logged forest streams (LF), and oil palm 

plantation streams (OP). The primary forest stream from Maliau basin (both toad and 

ant data) is not shown, as it is 50 km to the east of the other sites. 
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Figure IV.B2: Non metric 

multidimensional scaling of ant 

community composition 

obtained from (a) pitfall traps 

from primary forest, logged 

forest and oil palm plantations 

and (b) pitfall traps together 

with toad stomach content ant 

communities from logged forest. 

In addition, the ant 

communities derived from 

stomach content samples over 

the habitat gradient is shown 

(c); each time the 20 most 

abundant ant genera are 

displayed. 

CC: canopy cover; S: slope of 

stream; SVL: length of toads. 

circles: primary forest, squares: 

logged forest; rectangles: oil 

palm; large symbols represent 

the respective centroid of the 

point cloud. Red from pitfall 

traps, blue from toad stomach 

content samples 
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V. General discussion 

 

In my PhD-thesis, I was investigating the response of different aspects of anuran diversity and 

their trophic interactions to logging of lowland rainforest and subsequent conversion to oil 

palm plantations. First, I was looking at the response of species richness, abundance, and 

community composition of anurans (chapter II). I found a significant decline of anuran 

species and a major shift of the community composition towards wide-spread disturbance-

tolerant frog species following land conversion. Forest frog species were found to be 

particularly vulnerable to habitat change. Second, following this decline in species richness, 

phylogenetic diversity, dietary diversity, and functional diversity were also negatively 

impacted by disturbance (chapter III). Yet, phylogenetic diversity and functional diversity was 

reduced by the degree of disturbance beyond the effect of species richness. Furthermore, by 

investigating the dietary composition of over 50 anuran species along the habitat gradient 

I was able to provide detailed ecological information for the studied species and to show that 

the trophic position of the anuran community is heavily altered by land conversion. Third, a 

detailed prey analysis of an ant-specialised toad revealed a certain robustness of trophic 

interactions on species level to land conversion (chapter IV). However, these interactions 

were crucially depending on the conservation of riparian reserves. 

 

The value of logged forest 

I could show that (repeated) logging has various impacts on Bornean anuran diversity and 

their trophic interactions. However, species richness, dietary diversity and community 

composition were only subjected to a minor loss of the original forest species and a minor loss 

in dietary diversity as well as a small shift in the community composition, which is rather 

based on altered abundances than on altered species occurrences. Furthermore, phylogenetic 

species variability and functionally diversity, albeit lower in logged forest, were statistically 

not different from primary forests. 

My results line up with other studies, showing that light or selective logging does not have 

significant effects on tropical amphibian diversity (e.g. Vallan et al. 2004, Fredericksen & 

Fredericksen 2004). However, the logged forest in the SAFE project area has experienced at 
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least two rounds of intensive logging (Ewers et al., 2011), which has, in parts, resulted in 

heavily degraded landscapes. Hence, Bornean anuran diversity and their trophic ecology seem 

to be partially insensitive to logging, as long as riparian reserves are spared from harvesting. 

In particular, canopy cover above the streams significantly improved anuran diversity and 

their trophic interactions in logged forests. Nevertheless, in other tropical regions logging has 

also been shown to have a significantly negative effect on amphibian communities and 

functional diversity (e.g. Ernst et al., 2006). Furthermore, stream amphibians are generally 

assumed to be highly sensitive to habitat modification (Konopik et al., 2014b; Welsh and 

Ollivier, 1998) and physical as well as chemical stream properties should be highly affected 

by logging (Gomi et al., 2006). In fact, long-term effects have not been the focus of this study 

and extinction debts (Kuussaari et al., 2009), which could be caused by further degradation or 

isolation of forest fragments, and long-term cascading effects in the trophic ecology (Estes 

et al., 2011; Ripple and Beschta, 2012) might lead to a significant meltdown of anuran 

diversity in the long term. 

 

Anuran diversity and trophic interactions in oil palm plantations 

In contrast to the rather mild effect of logging, the conversion of oil palm plantations has 

dramatic effects on multiple levels of anuran diversity and their trophic ecology. In fact oil 

palm plantations have been named the “greatest immediate threat to biodiversity in Southeast 

Asia” (Wilcove and Koh, 2010) and many studies demonstrate their negative effect on species 

richness (Brühl and Eltz, 2009; Fayle et al., 2010) and functional diversity (Edwards et al., 

2014; F. A. Edwards et al., 2013; Luke et al., 2014; Senior et al., 2013) of local ecosystems. 

Hence, my results that anuran diversity and functional diversity are greatly reduced in oil 

palm plantations match these studies. 

However, until now anuran diversity was thought to be comparable in oil palm plantations 

and forests, albeit with a different composition of species. In particular, Gillespie et al. (2012) 

and Faruk et al. (2013) found no difference in overall species richness between forests 

(logged forests) and oil palm plantations in Peninsular Malaysia and Sabah (Borneo), 

respectively. However, both studies found a shift in anuran community composition between 

forested habitats and oil palm plantations. My study provides further evidence for this major 

species turnover. However, in contrast to the previous studies (Faruk et al., 2013; Gillespie 

et al., 2012) I found considerably lower species richness in oil palm plantations compared to 
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forested habitats (both primary and logged forest). Furthermore, my study is the first study 

comparing anuran diversity between oil palm plantations and (true) primary forests.  

Hence, I explain this differing result by a combination of three factors. First, I suggest that 

amphibian communities from flat and swampy habitats (habitats where other studies have 

focused on) might have some kind of preadaptation to plantation environment. Most likely, 

they utilise the numerous ditches, ponds and drainages in a typical tropical plantation 

landscape (e.g. Limnonectes finchi in Sabah). Second, forests of lowland areas do not contain 

the same full complement of species as found in more hilly terrain (Gillespie et al., 2012). In 

particular, the hilly lowland rainforest in Borneo is known to be a diversity hotspot for 

anurans (Grafe and Keller, 2009). Third, my study suggests that even good secondary or 

logged forests have lower frog species richness, compared to pristine forest. 

 

Riparian reserves mitigate the negative effects of land conversion substantially 

All parts of this study showed that the presence and quality of riparian reserves (Fig. V.1, 

page 79) along the studied streams had a positive effect on all levels of anuran diversity and 

interactions. Riparian reserves are forest strips on both sides of the streams. They are a legal 

requirement in Malaysia and have to cover 30 m on both sides of the stream. However, many 

streams in the existing oil palm plantations in fact lack riparian reserves. Moreover, existing 

riparian reserves hardly reach the legal requirements and continuous logging of trees within 

the reserves significantly reduces canopy cover above the streams. 

Riparian reserves are typically established to reduce run-off into the streams and hence, 

aquatic organisms usually benefit greatly (Mayer et al., 2007; Sweeney et al., 2004). 

Furthermore, beyond aquatic organisms, riparian reserves are also known to support terrestrial 

forest species (Marczak et al., 2010) and ecosystem services, such as dung removal (Gray 

et al., 2014). Rodríguez-Mendoza and Pineda (2010) found that riparian reserves improve the 

habitat quality for frogs in Mexico. My results expand these findings into Southeast Asia and 

show for the first time that riparian reserves also support a high phylogenetic, dietary and 

functional diversity of anurans as well as their trophic interactions. The (only partially 

enforced) protection and legal requirement together with their linear and hence, connecting 

character make riparian reserves an important tool for protection of biodiversity in 

agricultural landscapes. They contribute to the urgent need (Foster et al., 2011) to improve 

biodiversity and ecosystem functions in oil palm landscapes. However, the required size of 
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the reserves and their enforcement, remain critical open questions and objectives for the 

future. They demand more research (which has already been initiated by the SAFE project) 

and a policy change by decision makers. Hence, my results suggest that (1) riparian reserves 

should be maintained in a mostly undisturbed condition, providing sufficient canopy cover for 

the streams and (2) in plantations which lack riparian reserves, these need to be restored to 

improve anuran diversity and enable crucial ecosystem services. 

 

Chances and perspectives for future research 

The outcome of my research answered several urgent questions concerning the resilience of 

anuran diversity and trophic interactions to the regionally important land conversion pattern. 

However, the consequences of the reduction of anuran diversity, dietary diversity, functional 

diversity and the shifting trophic position on the local ecosystems remain theoretical. Ideally, 

large-scale exclusion experiments of anurans should be used to determine their impact on 

local ecosystems and how this shifts with habitat degradation. Some studies have already 

shown that anurans can have indirect effects on plant growth or interact with other ecosystem 

services, such as dung removal (González-Bernal et al., 2013; Wu et al., 2014). 

Furthermore, the conservation value of logged forests needs long-term verification and the 

extent (width and length) as well as the isolation of riparian reserves requires more research to 

ensure their ecological functionality. The SAFE project (Ewers et al., 2011) is under way to 

answer these questions and the data gathered during my study should be used as a base line 

for further research. 

 

Conclusions 

Southeast Asia and Borneo in particular is home to a great diversity of frog species, both in 

terms of species richness and functional diversity. Furthermore, Bornean anuran communities 

comprise various feeding types, including ant-specialised or vertebrate-specialised species. 

This diversity is highest in undisturbed primary forests. However, logging of these forests 

leads only to a minor loss of anuran diversity and hence logged forests have a great potential 

for the conservation of the regional anuran diversity. Particularly in the light of the small 

areas of remaining and protected primary forests, logged forests are essential for anuran 
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conservation in large parts of Southeast Asia. In contrast, the conversion of forests to oil palm 

plantations leads to a dramatic loss of anuran diversity and trophic position. However, 

species-level interactions can be resilient to this disturbance. Additionally, high quality 

riparian reserves are able to mitigate the negative effects of oil palm plantations considerably. 

Hence, riparian reserves must be spared from logging and should be reinstalled in plantations 

where they have previously been removed. 

 

Figure V.1: Riparian reserve alongside a stream within an oil palm plantation (Merbau 

estate, Benta Wawasan Sdn Bhd, near SAFE project). 
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