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Abstract

Even though heavy fermion systems have been studied for a long time, a strong interest in
heavy fermions persists to this day. While the basic principles of local moment formation,
Kondo effect and formation of composite quasiparticles leading to a Fermi liquid, are under-
stood, there remain many interesting open questions. A number of issues arise due to the
interplay of heavy fermion physics with other phenomena like magnetism and superconduc-
tivity.

In this regard, experimental and theoretical investigations of He-3 can provide valuable
insights. He-3 represents a unique realization of a quantum liquid. The fermionic nature of
He-3 atoms, in conjunction with the absence of long-range Coulomb repulsion, makes this
material an ideal model system to study Fermi liquid behavior.

Bulk He-3 has been investigated for quite some time. More recently, it became possible
to prepare and study layered He-3 systems, in particular single layers and bilayers. The pos-
sibility of tuning various physical properties of the system by changing the density of He-3
and using different substrate materials makes layers of He-3 an ideal quantum simulator for
investigating two-dimensional Fermi liquid phenomenology.

In particular, bilayers of He-3 have recently been found to exhibit heavy fermion behavior.
As a function of temperature, a crossover from an incoherent state with decoupled layers to a
coherent Fermi liquid of composite quasiparticles was observed. This behavior has its roots in
the hybridization of the two layers. The first is almost completely filled and subject to strong
correlation effects, while the second layer is only partially filled and weakly correlated. The
quasiparticles are formed due to the Kondo screening of localized moments in the first layer
by the second-layer delocalized fermions, which takes place at a characteristic temperature
scale, the coherence scale T.,.

T.on can be tuned by changing the He-3 density. In particular, at a certain critical filling,
the coherence scale is expected to vanish, corresponding to a divergence of the quasiparticle
effective mass, and a breakdown of the Kondo effect at a quantum critical point. Beyond the
critical point, the layers are decoupled. The first layer is a local moment magnet, while the
second layer is an itinerant overlayer.

However, already at a filling smaller than the critical value, preempting the critical point,
the onset of a finite sample magnetization was observed. The character of this intervening
phase remained unclear.

Motivated by these experimental observations, in this thesis the results of model calcula-
tions based on an extended Periodic Anderson Model are presented. The three particle ring
exchange, which is the dominant magnetic exchange process in layered He-3, is included in



the model. It leads to an effective ferromagnetic interaction between spins on neighboring
sites. In addition, the model incorporates the constraint of no double occupancy by taking the
limit of large local Coulomb repulsion.

By means of Cellular DMFT, the model is investigated for a range of values of the chemical
potential u and inverse temperature 5 = 1/7. The method is a cluster extension to the Dy-
namical Mean-Field Theory (DMFT), and allows to systematically include non-local correla-
tions beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion
CTQMC cluster solver, which provides unbiased, numerically exact results for the Green’s
function and other observables of interest.

As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature,
the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile,
the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. Both observations
serve as fingerprints of the Fermi liquid state.

The heavy fermion state appears at a characteristic coherence scale 7,,. This scale depends
strongly on the density. While it is rather high for small filling, for larger filling 7, is increas-
ingly suppressed. This involves a decreasing quasiparticle residue Z ~ T, and an enhanced
mass renormalization m*/m ~ Teo . Extrapolation leads to a critical filling, where the co-
herence scale is expected to vanish at a quantum critical point. At the same time, the effective
mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for
the formation of quasiparticles, due to a vanishing of the effective hybridization between the
layers.

Taking only single-site DMFT results into account, the above scenario seems plausible.
However, paramagnetic DMFT neglects the ring exchange interaction completely. In or-
der to improve on this, Cellular DMFT simulations are conducted for small clusters of size
N. = 2and 3. The results paint a different physical picture. The ring exchange, by favor-
ing a ferromagnetic alignment of spins, competes with the Kondo screening. As a result,
strong short-range ferromagnetic fluctuations appear at larger values of u. By lowering the
temperature, these fluctuations are enhanced at first. However, for 7' < T, they are increas-
ingly suppressed, which is consistent with Fermi liquid coherence. However, beyond a certain
threshold value of u, fluctuations persist to the lowest temperatures. At the same time, while
not apparent in the DMFT results, the total occupation n increases quite strongly in a very
narrow range around the same value of u. The evolution of n with u is always continuous,
but hints at a discontinuity in the limit N. — co. This first-order transition breaks the Kondo
effect. Beyond the transition, a ferromagnetic state in the first layer is established, and the
second layer becomes a decoupled overlayer.

These observations provide a quite appealing interpretation of the experimental results. As a
function of chemical potential, the Kondo breakdown quantum critical point is preempted by a
first-order transition, where the layers decouple and the first layer turns into a ferromagnet. In



the experimental situation, where the filling can be tuned directly, the discontinuous transition
is mirrored by a phase separation, which interpolates between the Fermi liquid ground state
at lower filling and the magnetic state at higher filling. This is precisely the range of the
intervening phase found in the experiments, which is characterized by an onset of a finite
sample magnetization.

Besides the interplay of heavy fermion physics and magnetic exchange, recently the spin-
orbit coupling, which is present in many heavy fermion materials, attracted a lot of interest.
In the presence of time-reversal symmetry, due to spin-orbit coupling, there is the possibility
of a topological ground state.

It was recently conjectured that the energy scale of spin-orbit coupling can become dom-
inant in heavy fermion materials, since the coherence scale and quasiparticle bandwidth are
rather small. This can lead to a heavy fermion ground state with a nontrivial band topology;
that is, a topological Kondo insulator (TKI). While being subject to strong correlation effects,
this state must be adiabatically connected to a non-interacting, topological state.

The idea of the topological ground state realized in prototypical Kondo insulators, in par-
ticular SmBg, promises to shed light on some of the peculiarities of these materials, like a
residual conductivity at the lowest temperatures, which have remained unresolved so far.

In this work, a simple two-band model for two-dimensional topological Kondo insulators
is devised, which is based on a single Kramer’s doublet coupled to a single conduction band.
The model is investigated in the presence of a Hubbard interaction as a function of interaction
strength U and inverse temperature 5. The bulk properties of the model are obtained by DMFT,
with a hybridization expansion CTQMC impurity solver. The DMFT approximation of a local
self-energy leads to a very simple way of computing the topological invariant.

The results show that with increasing U the system can be driven through a topological
phase transition. Interestingly, the transition is between distinct topological insulating states,
namely the I'-phase and M-phase. This appearance of different topological phases is possible
due to the symmetry of the underlying square lattice. By adiabatically connecting both in-
teracting states with the respective non-interacting state, it is shown that the transition indeed
drives the system from the I'-phase to the M-phase.

A different behavior can be observed by pushing the bare position of the Kramer’s doublet
to higher binding energies. In this case, the non-interacting starting point has a trivial band
topology. By switching on the interaction, the system can be tuned through a quantum phase
transition, with a closing of the band gap. Upon reopening of the band gap, the system is in
the I'-phase, 1. e. a topological insulator. By increasing the interaction strength further, the
system moves into a strongly correlated regime. In fact, close to the expected transition to
the M phase, the mass renormalization becomes quite substantial. While absent in the para-
magnetic DMFT simulations conducted, it is conceivable that instead of a topological phase
transition, the system undergoes a time-reversal symmetry breaking, magnetic transition.



The regime of strong correlations is studied in more detail as a function of temperature,
both in the bulk and with open boundary conditions. A quantity which proved very useful
is the bulk topological invariant N;, which can be generalized to finite interaction strength
and temperature. In particular, it can be used to define a temperature scale 7™ for the onset
of the topological state. Rescaling the results for Ny, a nice data collapse of the results for
different values of U, from the local moment regime to strongly mixed valence, is obtained.
This hints at 7 being a universal low energy scale in topological Kondo insulators. Indeed, by
comparing 7" with the coherence scale extracted from the self-energy mass renormalization, it
is found that both scales are equivalent up to a constant prefactor. Hence, the scale 7" obtained
from the temperature dependence of topological properties, can be used as an independent
measure for Fermi liquid coherence. This is particularly useful in the experimentally relevant
mixed valence regime, where charge fluctuations cannot be neglected. Here, a separation of
the energy scales related to spin and charge fluctuations is not possible.

The importance of charge fluctuations becomes evident in the extent of spectral weight
transfer as the temperature 1s lowered. For mixed valence, while the hybridization gap emerges,
a substantial amount of spectral weight is shifted from the vicinity of the Fermi level to the
lower Hubbard band. In contrast, this effect is strongly suppressed in the local moment regime.

In addition to the bulk properties, the spectral function for open boundaries is studied as
a function of temperature, both in the local moment and mixed valence regime. This allows
an investigation of the emergence of topological edge states with temperature. The method
used here is the site-dependent DMFT, which is a generalization of the conventional DMFT to
inhomogeneous systems. The hybridization expansion CTQMC algorithm is used as impurity
solver.

By comparison with the bulk results for the topological quantity Ny, it is found that the
temperature scale for the appearance of the topological edge states is T, both in the mixed
valence and local moment regime.









Zusammenfassung

Obwohl Heavy-Fermion-Systemen bereits seit vielen Jahrzehnten intensiv untersucht werden,
ist auch heute ein grofes Interesse an Heavy Fermions vorhanden. Obwohl die grundlegenden
Konzepte wie die Ausbildung lokaler Momente, der Kondo-Effekt und die zur Entstehung
einer Fermi-Fliissigkeit fiihrenden, kohédrenten Quasiteilchen gut verstanden sind, gibt es wei-
terhin viele offene Fragestellungen. Diese ergeben sich u.a. aus dem Zusammenspiel von
Heavy Fermions mit anderen Phinomenen wie Magnetismus und Supraleitung.

In dieser Hinsicht konnen Untersuchungen an He-3 sehr wertvolle Einsichten liefern. Das
liegt darin begriindet, dass He-3 eine einzigartige Realisierung einer Quanten-Fliissigkeit dar-
stellt. Da He-3-Atome Fermionen sind, und da die langreichweitige Coulomb-Absto3ung
keine Rolle spielt, ist dieses Material in idealer Weise dazu geeignet, um Fermi-Fliissigkeiten
zu studieren.

In drei Dimensionen wird He-3 bereits seit Lingerem untersucht. Vor Kurzem gelang es
dann auch, Schichtsysteme aus He-3 zu erzeugen und zu untersuchen. Damit ergibt sich die
Moglichkeit, die Phinomenologie zweidimensionaler Fermi-Fliissigkeiten detailliert zu unter-
suchen. He-3-Schichtsysteme stellen einen idealen Quanten-Simulator fiir diese Systeme dar,
da sich durch Variation der He-3-Konzentration und durch die Wahl verschiedener Substrat-
materialien unterschiedliche Eigenschaften der Fermi-Fliissigkeit gezielt einstellen lassen.

So wurde in He-3-Doppellagen ein Heavy-Fermion-Verhalten nachgewiesen. In Abhédngig-
keit der Temperatur wurde ein kontinuierlicher Ubergang von einem inkohirenten Zustand mit
entkoppelten Lagen zu einer kohédrenten Fermi-Fliissigkeit aus Quasiteilchen mit gemischtem
Charakter beobachtet. Dieses Verhalten hat seinen Ursprung in der Hybridisierung der beiden
Lagen. Die erste Lage ist beinahe vollstindig gefiillt und von starken Korrelationseffekten
beeinflusst, wihrend die zweite Lage nur teilgefiillt ist und Korrelationen eine geringe Rolle
spielen. Die Quasiteilchen entstehen bei der Kondo-Abschirmung der lokalisierten Momente
der ersten Lage durch die delokalisierten Fermionen der zweiten Lage, die bei einer charak-
teristischen Temperatur-Skala, der Kohédrenz-Skala T, stattfindet.

Durch das Veridndern der Dichte von He-3-Atomen ldsst sich T, variieren. Dabei zeigte
sich, dass bei einer kritischen Dichte ein Verschwinden der Kohédrenzskala zu erwarten ist.
Dies korrespondiert mit einer Divergenz der effektiven Masse der Quasiteilchen, und einem
Zusammenbrechen des Kondo-Effekts an einem quantenkritischen Punkt. Jenseits dieses kri-
tischen Punktes sind die Lagen vollstindig entkoppelt. Die erste Lage ist ein Magnet von
lokalen Momenten, wihrend die zweite Lage einen itineranten Overlayer darstellt.



Allerdings wurde bereits bei einer Dichte, die kleiner ist als der kritische Wert, die Her-
ausbildung einer endlichen Magnetisierung der Probe beobachtet. Der Charakter dieser Zwi-
schenphase, die dem kritischen Punkt voraus geht, blieb allerdings ungeklirt.

In dieser Arbeit werden Resultate von Modellrechnungen eines erweiterten Periodischen
Anderson Modell vorgestellt, die von den experimentellen Beobachtungen motiviert wur-
den. Dabei ist der Ringaustausch dreier Teilchen, also der dominante magnetische Aus-
tauschmechanismus in Schichtsystemen aus He-3, im Modell explizit enthalten. Dieser fiihrt
zu einer effektiv ferromagnetischen Wechselwirkung zwischen Spins auf benachbarten Git-
terplidtzen. Zudem beriicksichtigt das Modell die Bedingung, dass keine Doppelbesetzung
von Gitterplétzen auftritt, indem der Grenzfall einer sehr grolen lokalen Coulomb-AbstoBung
angenommen wird.

Mit Hilfe der Cellular DMFT wird das Modell als Funktion der Parameter chemisches Po-
tential x und inverse Temperature S = 1/T untersucht. Diese Methode stellt eine Cluster-
Erweiterung der Dynamical Mean-Field Theory (DMFT) dar, und erlaubt es, auf systemati-
sche Weise nichtlokale Korrelationen zu beriicksichtigen, die iiber die DMFT-Approximation
hinaus gehen. Fiir die Losung der in jedem Iterationsschritt auftretenden Cluster-Modelle wird
ein CTQMC-Cluster-Loser eingesetzt, der auf der Hybridisierungentwicklung basiert. Dieser
liefert unverzehrte, numerisch exakte Ergebnisse fiir die Greensche Funktion und andere Ob-
servablen.

In einem ersten Schritt wird die Entstehung der kohdrenten Fermi-Fliissigkeitsphase unter-
sucht. Bei ausreichend tiefer Temperatur zeigt die Selbst-Energie in Matsubara-Frequenzen
eine lineare Frequenzabhiingigkeit. Gleichzeitig findet in der Spin-Suszeptibilitiit ein Uber-
gang von einem Verhalten nach Curie-Weiss-Gesetz zu einem Pauli-Verhalten statt. Beide
Beobachtungen sind eindeutige Hinweise auf einen Fermi-Fliissigkeitszustand.

Heavy Fermions bilden sich unterhalb der Kohidrenz-Skala T, aus. Diese hidngt stark
von der He-3-Dichte ab. T, ist bei kleiner Fiillung recht hoch, wird bei groerer Fiillung
allerdings zunehmend unterdriickt. Dies bedingt ein abnehmendes Quasiteilchen-Gewicht
Z ~ Ten und eine zunehmende Massenrenormierung m*/m ~ T.on~'. Durch Extrapolation
erhdlt man einen quantenkritischen Punkt, an dem die Kohérenzskala verschwindet. Gleich-
zeitig divergiert hier die effektive Masse. Dies entspricht dem Zusammenbrechen des Kondo-
Effekts, der fiir die Entstehung der Quasiteilchen verantwortlich ist, da die effektive Hybri-
disierung zwischen den Lagen verschwindet.

Beriicksichtigt man nur Ergebnisse von paramagnetischer DMFT, so erscheint das obige
Szenario plausibel. Allerdings wird in diesem Fall der Ringaustausch komplett vernachléssigt.
Um diese Situation zu verbessern, werden Simulationen mit Hilfe von Cellular DMFT an
kleinen Clustern der GroBBen N, = 2 and 3 durchgefiihrt. Die Ergebnisse zeichnen ein anderes
physikalisches Bild. Der Ringaustausch konkurriert mit der Kondoabschirmung der lokalen
Momente, da er eine ferromagnetische Ausrichtung der Spins bevorzugt. Daraus resultieren



auf kurzen Lingenskalen fiir steigendes u starke ferromagnetische Fluktuationen. Mit sink-
ender Temperatur werden diese zunichst verstirkt, dann fiir 7 < T, allerdings zunehmend
unterdriickt. Dies ist konsistent mit einer kohirenten Fermi-Fliissigkeit. Bei Uberschreiten
eines gewissen Schwellwertes fiir 4 bestehen die starken Fluktuationen bis zu den tiefsten
Temperaturen, die in der Simulation erreicht wurden. Gleichzeitig, zeigt sich ein starker
Anstieg der Gesamtbesetzung n in einem engen Fenster um denselben Schwellwert von p.
Dieses Verhalten fehlt in den DMFT-Resultaten vollstindig. Die Entwicklung von n mit u
ist stets kontinuierlich, weist allerdings auf eine Diskontinuitit im Grenzfall N. — oo hin.
Dieser Ubergang erster Ordnung lisst den Kondo-Effekt abrupt zusammenbrechen. Jenseits
des Ubergangs ist in der ersten Lage ein ferromagnetischer Zustand ausgebildet, wihrend die
zweite Lage ein davon entkoppelter Overlayer wird.

Diese Ergebnisse erlauben eine sehr iiberzeugende Interpretation der experimentellen Re-
sultate. Als Funktion des chemischen Potentials findet vor dem erwarteten quantenkritische
Punkt des Zusammenbrechens des Kondo-Effekts ein Ubergang erster Ordnung statt, bei dem
die Lagen entkoppeln, und in der ersten Lage ein ferromagnetischen Zustand entsteht. Im
Experiment wird allerdings direkt die Fiillung eingestellt. In dieser Situation tritt anstelle
des diskontinuierlichen Phaseniibergang eine Phasenseparation auf, die zwischen dem Grund-
zustand einer Fermi-Fliissigkeit bei niedrigerer Dichte und dem magnetischen Zustand bei
groBerer Dichte interpoliert. Dieser Bereich ist aber gerade die im Experiment beobachtete
Zwischenphase, die durch die Ausbildung einer endlichen Probenmagnetisierung charakter-
isiert ist.

Neben dem Zusammenspiel von Heavy Fermions und magnetischem Austausch erregte die
Spin-Bahn-Kopplung, die in vielen Heavy-Fermion-Materialien relevant ist, ein zunehmendes
Interesse. Bei Vorliegen von Zeitumkehr-Symmetrie ergibt sich aufgrund von Spin-Bahn-
Kopplung die Moglichkeit eines topologischen Grundzustandes.

Kiirzlich wurde daher vermutet, dass Spin-Bahn-Kopplung in Heavy-Fermion-Materialien
eine dominante Rolle spielt, da die Kohdrenzskala und die Breite der Quasiteilchen-Bénder
sehr klein sind. Dies kann zu einem Grundzustand von Heavy Fermions mit einer nicht-
trivialen Topologie der Bandstruktur fiihren, also einem topologischen Kondo-Isolator. Ob-
wohl dieser Zustand von starken Korrelationseftfekte gekennzeichnet ist, muss er dennoch adi-
abatisch mit einem nichtwechselwirkenden, topologischen Zustand verbunden sein.

Die Idee, dass ein topologischer Grundzustand in typischen Kondo-Isolatoren realisiert sein
konnte, insbesondere in SmBg, ldsst hoffen, dass sich dadurch einige Eigenheiten dieser Ma-
terialien erkldren lassen. So zeigen einige dieser Materialien eine Rest-Leitfdhigkeit bei sehr
tiefen Temperaturen, die sich bisher nicht erkliren lieB.

In dieser Arbeit wird ein einfaches Zwei-Band-Modell fiir topologische Kondo-Isolatoren in
zwei Dimensionen entwickelt, das auf einem Kramerschen Dublett aufbaut, das an lediglich
ein Leitungsband gekoppelt ist. Dieses Modell wird als Funktion der Stiarke der Hubbard-



Wechselwirkung U und der inversen Temperatur 8 untersucht. Die Bulk-Eigenschaften des
Modells werden mit Hilfe von DMFT untersucht, mit einem CTQMC-Storstellen-Loser auf
Basis der Hybridisierungsentwicklung. Dabei ergibt sich aufgrund der Approximation einer
lokalen Selbst-Energie eine sehr einfache Moglichkeit, die topologische Invariante zu berech-
nen.

Die Ergebnisse zeigen, dass das System mit steigendem U einen topologischen Phasentiber-
gang durchliuft. Interessanterweise findet der Ubergang zwischen unterschiedlichen topolo-
gischen Zustdnden statt, ndmlich zwischen der I'-Phase und der M-Phase. Das Auftreten ver-
schiedener topologischer Phasen wird durch die Symmetrie des zugrundeliegenden Quadrat-
gitters bedingt. Indem die beiden Zustinde mit Wechselwirkungen adiabatisch mit den je-
weiligen nichtwechselwirkenden Zustinden verbunden werden, ist gezeigt, dass der wechsel-
wirkungsgetriebene Phaseniibergang tatsdchlich von der I'-Phase zur M-Phase fiihrt.

Ein anderes Verhalten kann beobachtet werden, wenn die energetische Lage des Kramer-
schen Dubletts zu groBeren Bindungsenergien verschoben wird. In diesem Fall weist der
nichtwechselwirkende Startpunkt eine topologisch triviale Bandstruktur auf. Durch das Ein-
schalten der Wechselwirkung kann das System durch einen Quanten-Phaseniibergang gefiihrt
werden, bei dem sich die Bandliicke schlieBt. Nach dem erneuten Offnen der Bandliicke
befindet sich das System allerdings in der I'-Phase, d.h. in einem topologisch nichttrivialen
Zustand. Wird die Stiarke der Wechselwirkung weiter erhoht, bewegt sich das System in ein
stark korreliertes Regime. Tatsichlich ist die Massenrenormierung in der Nihe des erwarteten
Ubergangs zur M-Phase sehr groB. Daher ist es vorstellbar, dass anstelle des erwarteten topo-
logischen Phaseniibergangs eine Brechung der Zeitumkehr-Symmetrie aufgrund eines mag-
netischen Ubergangs stattfindet, auch wenn dies in paramagnetischen DMFT-Simulationen
nicht realisiert ist.

Das Regime starker Korrelationen wird in Abhingigkeit von der Temperatur ndher unter-
sucht, sowohl im Bulk als auch mit offenen Randbedingungen. Eine in diesem Zusammen-
hang sehr niitzliche GroBe ist die topologische Invariante Ny, die sich auf wechselwirkende
Systeme bei endlicher Temperatur verallgemeinern ldsst. Insbesondere ldsst sich damit eine
Temperaturskala 7" definieren, die das Entstehen des topologischen Zustandes als Funktion
der Temperatur beschreibt. Durch Reskalieren der Ergebnisse fiir Ny wird ein guter Datenkol-
laps der Resultate fiir unterschiedliche Werte von U erreicht, die sich vom Regime lokaler
Momente bis hin zu stark gemischter Valenz erstrecken. Dies deutet darauf hin, dass 7" eine
universelle Niederenergieskala in topologischen Kondo-Isolatoren ist. Tatsédchlich zeigt ein
Vergleich von T mit der Kohédrenzskala, die sie aus der Massenrenormierung aufgrund der
Selbst-Energie ergibt, dass beide Skalen bis auf einen konstanten Faktor d4quivalent sind. Da-
her kann 7", dass sich aus der Temperaturabhingigkeit topologischer Eigenschaften ableitet,
als unabhingige Grofe fiir die Kohdrenz einer Fermi-Fliissigkeit herangezogen werden. Dies
erweist sich im experimentell relevanten Regime gemischter Valenz als besonders niitzlich, wo



Ladungsfluktuationen nicht vernachléssigt werden konnen. Eine Separation der Energieskalen
von Ladungs- und Spinfluktuationen ist in diesem Fall anders nicht mdglich.

Die Bedeutung von Ladungsfluktuationen zeigt sich in dem AusmalB des Transfers von
spektralem Gewicht, der beim Absinken der Temperatur stattfindet. Bei gemischter Valenz
wird mit der Ausbildung der Hybridisierungsliicke ein erheblicher Anteil spektralen Gewichts
aus der Umgebung der Fermienergie in das untere Hubbard-Band verschoben. Im Regime
lokaler Momente ist dieser Effekt hingegen stark unterdriickt.

Neben Bulk-Eigenschaften wird die Spektralfunktion bei offenen Rindern als Funktion der
Temperatur untersucht, sowohl fiir lokale Momente als auch gemischte Valenz. Dadurch ldsst
sich die Entstehung topologischer Randzustinde als Funktion der Temperatur studieren. Die
hier eingesetzte Methode ist die gitterplatzabhingige DMFT. Diese ist eine Erweiterung der
DMEFT auf inhomogene Systeme. Zudem wird hier erneut ein Storstellen-Loser auf Basis der
Hybridisierungsentwicklung eingesetzt.

Ein Vergleich der so erzielten Ergebnisse mit den Bulk-Resultaten fiir die topologische
GroBe N; zeigt, dass die Temperaturskala fiir das Auftreten der topologischen Randzustinde
gerade T™ ist, sowohl fiir lokale Momente als auch gemischte Valenz.
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1.1 Heavy Fermions

1.1.1 Introduction

Strongly correlated electron systems have attracted a lot of interest over the last decades.
Heavy fermions are a particular class of systems, where the strong renormalization of quasi-
particles due to interactions leads to interesting phenomena.

In heavy fermion materials, the result of strong correlation effects is an effective quasiparti-
cle mass, which is orders of magnitude larger than the mass of a free electron or band electrons
in conventional metals [48]].

As a consequence of this large mass renormalization, the energy scale at which heavy
fermion physics comes into play, the coherence scale T, is very low. While T, is the
only low-temperature scale in heavy fermions, which results in universal behavior of physi-
cal observables, at higher temperatures other energy scales can come into play. Out of this, a
complicated temperature dependence of physical properties results, which reflects the different
energy scales dominating in different temperature regimes.

In Sec. [I.1.2] the basics of Fermi liquid theory are presented. It provides a remarkably
accurate description of the properties of many metals, and serves as the basic concept to build
on in the subsequent sections. This is followed in Sec. by a discussion of the Kondo
effect. This phenomenon gives rise to the interesting properties of heavy fermions. The most
important aspects of heavy fermions are reviewed in Sec. [I.1.4] Finally, in Sec. [I.1.5]the
Periodic Anderson Model is introduced as the principal model for the microscopic description
of heavy fermion systems.

1.1.2 Fermi Liquid Theory

In the absence of interactions, a macroscopic ensemble of fermions comprises a Fermi gas. It
is governed only by an external potential and fermionic statistics: Due to the Pauli exclusion
principle, two or more particles are forbidden to occupy the same state. For temperature 7 and
chemical potential u, a state with energy & is occupied with probability

-1
n(e) = (1 + exp(‘skBT“)) = f(s), (1.1.1)

i. e. according to the Fermi-Dirac distribution f(g). Hence, at zero temperature, all states up
to the Fermi energy Er = u(T = 0), i. e. with momentum k smaller than the Fermi momentum
kr, are occupied. In vacuum, the wavefunctions ¥ are plane waves with momentum k and a
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quadratic dispersion &(k)

P, (r, 1) = exp (ikr — i e(k) ) (1.1.2)
hik?
S(k) = %

In the case of electrons in a solid, due to the periodic potential of the ions, £(k) is no longer
the free dispersion, but depends on the microscopic details of the system. The wavefunctions
are Bloch waves

Wi(r, 1) = w(r)exp (ikr —ie(k)t), (1.1.3)

where u;(r) has the periodicity of the lattice, and crystal momentum k is only defined modulo
a reciprocal lattice vector [S3]].

What happens when interactions between electrons are introduced? By slowly increasing
the interaction strength U according to

U(1) = U exp (nt)

such that U(—oc0) = 0, and 7 is positive and infinitesimally small, in the absence of electronic
phase transitions, the system adiabatically evolves from the non-interacting Fermi gas state at
t = —oo to the fully interacting state at + = 0; that is, a Fermi liquid [75]. This concept of
adiabatic continuity 6] provides a one-to-one correspondence between the low-energy Fermi
liquid states and the original states. Landau-Fermi liquid theory rests precisely on this concept.
It predicts that due to the adiabatic evolution of states, many aspects of the Fermi gas carry
over to the Fermi liquid, even in the presence of strong Coulomb interactions, which is quite
remarkable.

The low-energy excitations of a Fermi liquid are dressed particles or quasiparticles. How-
ever, in contrast to the elementary excitations of the non-interacting system, quasiparticles are
well-defined only in the vicinity of the Fermi energy [75]. The reason is that a quasiparticle
excited to an energy € > Ey, due to the limited phase space available for scattering, has an
inverse lifetime 7! ~ (¢ — E)>. Hence, the excitations are long-lived only around the Fermi
energy. In terms of the fermionic self-energy X, this means that the imaginary part, which
encodes the lifetime, vanishes like Im[Z(w)] ~ w?.

Two of the physical observables most often employed to study Fermi liquid behavior are
the specific heat cy and the static, uniform magnetic susceptibility y. For a Fermi gas, both
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quantities are directly related to the density of states at the Fermi energy A(Er) [[75]

E 2
ov=%E) =y = TaEn T (1.1.4)
ar ), 3
Y
oM
X=-2g= 15 A(EF)
mkF

where A(Efp) = ey
Hence, the specific heat is linear in temperature, with the Sommerfeld coefficient v, and the
susceptibility is a temperature-independent constant.
In a Fermi liquid, the quasiparticles are subject to a mass renormalization, and acquire an ef-
fective mass meg. The mass renormalization brings about a number of important consequences
for physical observables, since [24]

meg = m(1 + F?) (1.1.5)
Mty

= A(Er) = A(EF)

Mty

m

Cy — Cy

Meff 1
m 1+F§

X —

Hence, the specific heat is still linear in temperature, but reflects the mass renormalization.
Meanwhile the spin susceptibility remains a constant. In the above expressions, the Landau
parameters F ;/ “ arise due to a multipole expansion of the interaction, and describe the renor-
malization [75]. The superscripts s and a denote contributions symmetric and antisymmetric
in spin.

In addition, Fermi liquid theory predicts a quadratic dependence of the electrical resistivity
on temperature due to electron-electron scattering, i. e. p ~ py + aT?, which results from the
same phase space argument used to derive the quasiparticle lifetime. A constant contribution
from scattering of nonmagnetic impurities is denoted by py.

The quasiparticle renormalization is equally reflected in the momentum-dependent spectral
function A(k, w) [24]. For a Fermi gas, A(k, w) = 6(w — &) 1s a delta function. With interac-
tions, the delta peak transforms into a coherent quasiparticle peak, with a width in accordance
with the finite lifetime, and an incoherent background. The weight of the quasiparticle peak is

the quasiparticle residue Z = < 1. In terms of the self-energy, this quantity reads

Mty

-1
Z:(I—M‘ ) (1.1.6)
dw w=0
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Hence, the slope of the real part of the self-energy around w = 0 reflects the mass renormal-
ization.
Without interaction, the momentum distribution function at zero temperature

0

n(k) = fde(k,w) (1.1.7)

—00

exhibits a jump of magnitude one at the Fermi momentum k = kg, i. e. at the Fermi surface.
This fact is simply a result of the singularity of the Fermi-Dirac distribution at zero tempera-
ture, 1. e. limy_ f(g) = O(EF — €). In the Fermi liquid, the discontinuity is still present, there
is still a Fermi surface, but the size of the jump is reduced to Z < 1.

Finally, the Luttinger sum rule, which reflects the fact that the volume enclosed by the Fermi
surface measures the particle number, is invariant while adiabatically transitioning from the
non-interacting Fermi gas to the interacting Fermi liquid [24]. This results from the one-to-one
correspondence between bare particles and quasiparticles, i. e. adiabatic continuity.

The characteristic temperature for the appearance of Fermi liquid behavior is the coherence
scale T.,. In a non-interacting Fermi gas, Ty, is simply the Fermi temperature 7T = k,;lE F.
In the interacting case T, is suppressed, since T, ~ Z. Therefore, Fermi liquid behavior is
only observed at sufficiently low temperature 7" < Top.

1.1.3 Local Moment Physics and the Kondo Effect

The Kondo effect is at the heart of heavy fermion physics. The term describes the spin-flip
scattering of conduction electrons off localized magnetic moments [61]. This process can
occur e.g. in a metal with conduction band states derived from s-orbitals or p-orbitals, which
hybridize with d-orbitals or f-orbitals from dilute magnetic impurities, like transition metals
or lanthanides.

The impurity orbitals act as isolated, local moment. Since charge fluctuations, i. e. hopping
of electrons from the impurity into the host band and back are frozen, the only remaining
degree of freedom is the electron’s spin [24]. A model description for local moment formation
and the Kondo effect is provided by the Single Impurity Anderson Model (SIAM) [5]. In
second quantized form it reads

Fsnn = Y b)) &, + Y eofof + Uhphpy+» V(e B, +he).  (118)
k,o loa o
conduction band impurity orbital hybridization

Here &.(k) is the dispersion of the conduction band states ¢, ., while & is the orbital energy of

AT A

the impurity orbital state f;, where o is the spin. U is a local Coulomb repulsion, fiy, = f_
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the density of impurity electrons, and V' the hybridization amplitude between the impurity
orbital and conduction band state at the location of the impurity r = 0.
The energy scale associated with the hybridization is A = 7V?A(Er) [48]. In the Kondo
regime, i. e. for
—gy>Aand gy + U > A, (1.1.9)

transitions to the unoccupied and doubly occupied state are blocked. Virtual processes lead to
an effective, antiferromagnetic coupling Ji between the impurity spin S and the conduction
electron spin §j at site 0, which is captured in the Kondo model

Hicondo = ) | 8()&] &, + Jx 8 0 %, (1.1.10)

k,o

Formally, the Kondo model can be obtained from the STAM in the Kondo limit Eq. (I.1.9) by
a Schrieffer-Wolf transformation [48]]. In particular, the Kondo coupling Ji reads

J —V2( : +L)
K — .

g+ U —&p

The magnetic susceptibility of local moments is given by the Curie-Weiss law

x(T) ~ (1.1.11)

T+6
where 6 is the Weiss temperature, which is a phenomenological parameter describing the
interaction between spins. Positive 6 corresponds to antiferromagnetic coupling, while for
0 < 0 the susceptibility diverges at T = —6 due to ferromagnetic interactions. A Curie-Weiss
magnetic susceptibility is a clear signature of the formation of local moments.

The spin-flip scattering mechanism, encoded in the Kondo model (I.I.10) by the antifer-
romagnetic exchange Jg, screens the magnetic moments and results in the formation of a
composite fermion or Kondo singlet of localized impurity orbital and conduction electrons.
As exemplified in the STAM (I.1.8)) and Kondo model (I.1.10), the hybridization or interac-
tion between impurity and conduction electrons is restricted to the site of the local moment.
Hence, the Kondo effect is local in space, and arises only due to dynamical fluctuations.

The characteristic temperature for the formation of the Kondo singlet is the single impurity
Kondo temperature Tx. As a consequence of the Kondo effect, as a function of decreasing
temperature, the electrical resistivity of the host metal exhibits a minimum. The behavior
results from the impurity scattering, which gives rise to a logarithmic term p ~ log(1/T). This
term counters the T2 behavior predicted by Fermi liquid theory, which results in the minimum.

In fact, a more involved calculation reveals that the logarithmic divergence of the resistivity
is avoided as T — 0 due to the complete screening of the magnetic moments. Since impurities,
being magnetic initially, act more and more like potential scatterers, eventually they contribute
a constant, i. e. temperature independent term to the resistivity [124].
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1.1.4 Heavy Fermion Metals and Kondo Insulators

In certain compounds, the approximation of dilute, isolated impurities giving rise to the Kondo
effect, is not justified anymore. As the concentration of localized orbitals increases, one can
imagine at every impurity site a composite fermion is formed by the Kondo effect. The scat-
tering at the impurities takes place in an increasingly coherent fashion [24], giving rise to a
highly renormalized band of width T, the lattice Kondo temperature. Indeed, a Fermi liquid
state is realized. Hence, one can associate T with the coherence temperature T, of the Fermi
liquid.

The heavy fermion state arises due to the interplay between delocalized degrees of free-
dom and a dense arrangement of localized, strongly interacting degrees of freedom. In heavy
fermion compounds, the former are usually conduction electrons, which are formed from ex-
tended atomic p- or d-orbitals, while the latter are usually derived from f-orbitals. In most
cases, these orbitals originate from rare-earth elements, in particular Ce, which have partially
filled 4f shells [101].

In a mean-field picture, as shown in Fig. [I.1.1] the hybridization between the flat f-band
and the strongly dispersing conduction band leads to two heavy bands separated by a gap of
order 7.

e(k) hybridized
bands

>

k

Figure 1.1.1: Schematic mean-field band structure of heavy fermions. The flat f-band and
the conduction band (c-band) hybridize, forming two bands separated by a small
band gap, which become very flat in the vicinity of the gap. Figure adapted from
Ref. 24!

Even though the quasiparticles are strongly renormalized, in the temperature range below
the coherence scale T, the heavy fermion state still exhibits the hallmark features of a Fermi
liquid; that is, a linear in temperature specific heat and a constant magnetic susceptibility.
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However, T, can be very low compared to the Fermi temperature of metals, i. e. conventional
Fermi liquids. Therefore, the effective quasiparticle mass meg ~ 1/Tcon is of the order of
100-1000 bare electron masses. This enormous mass renormalization becomes apparent from
the Sommerfeld coefficient ¥ ~ mcg, which can amount to more than 1000 mJ/(mol K?) in
heavy fermion materials [101], in contrast to single digit values for conventional metals.

In many heavy fermion materials, the chemical potential is located inside the heavy quasi-
particle band. Hence, they are metals, but the relevant charge carriers are heavy fermions.
Prominent examples include CeAls;, CeCug, UBe,3, and UPt; [101].

In contrast, for integer filling, i. e. when the chemical potential is located inside the band
gap between the heavy bands, a so-called Kondo insulator or heavy fermion semiconduc-
tor is realized. This class of materials includes compounds like SmBg, YbB;,, CeNiSn and
Ce;BiyPt; [[1]. These materials exhibit an intriguing crossover from metallic to insulating,
with the crossover temperature scale being the coherence scale T.,. This behavior can be un-
derstood from the temperature-dependent formation of the hybridization gap, which separates
the heavy bands, and which develops with the onset of heavy fermion coherence.

Besides the Kondo interaction between conduction electrons and localized electrons, other
types of interactions can influence the behavior of heavy fermions. Of particular importance
is magnetic exchange between f-electrons. A magnetic ion induces Friedel oscillations in
the density of conduction electron spins. A second ion can couple to these oscillations [24],
establishing an effective exchange interaction between the two ions, the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction. It can be either ferromagnetic or antiferromagnetic,
depending on the microscopic details, but is usually of the latter type. The RKKY energy
scale 1S Trxky ~ JIZ( A.(EF), where A.(EF) is the density of states of conduction electrons.
Trkxy favors a singlet of f-electrons, and therefore competes with the Kondo temperature
Tx ~ exp((=2JxA(EF))"), which favors a Kondo singlet. Depending on the value of
Jx A.(EF), Kondo lattice coherence (Tx > Trkky) or antiferromagnetic order (Trxkxy > Tk)
is realized [28]. Indeed, in some heavy fermion materials, the true ground state is a magnetic
state [101], with the Kondo effect broken by antiferromagnetic exchange.

A phase transition at a zero temperature quantum critical point (QCP) separates the heavy
fermion phases from the antiferromagnet or spin-density wave. Meanwhile, the Kondo ef-
fect is broken down in the magnetic phase. The hybridization between conduction band and
f-band vanishes, while simultaneously the effective quasiparticle mass diverges. Hence, the
f-electrons localize completely, resulting in a transition from a large volumen of the Fermi
surface — including conduction and f-electrons — to small volume, counting only conduction
electrons.

In the context of the competition between frustration, either geometrical or due to competing
interactions, and Kondo effect, it is debated, whether magnetic transition, i. e. to an antiferro-
magnet, and localization transition, i. e. Kondo breakdown and Fermi surface transition, co-
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incide due to so-called local quantum criticality. In a different perspective, the two transitions
are decoupled, with two distinct QCPs present in the system. Therefore, either an orbital-
selective Mott transition to a state without magnetic order, i. e. a quantum spin liquid state, or
a coexistence of antiferromagnetism and Kondo effect is possible [25, 127].

The schematic phase diagram provided in Fig. [I.1.2]summarizes the discussion about heavy
fermion systems. The two different perspectives of adiabatic continuity (horizontal) and tem-
perature dependent crossover (vertical) both reappear in the second part of the thesis.

T A

mixed
valence

adiabatic continuity QCP U

Figure 1.1.2: Phase diagram of heavy fermions, with temperature 7 and interaction strength
U. In the weak-coupling regime, charge fluctuations prevail, while in the strong-
coupling local moment regime spin fluctuations are dominant. The heavy Fermi
liquid is adiabatically connected to the non-interacting state. In addition, as a
function of temperature, a series of crossovers leads to a complicated tempera-
ture dependence of physical properties (vertical arrow). For strong interactions,
a QCP might appear. Beyond the QCP, different phases are possible, which is
denoted by the question mark. Figure adapted from Ref.

10
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1.1.5 Periodic Anderson Model
1.1.5.1 A Model for Heavy Fermions

The Periodic Anderson Model (PAM) is one of the principal models for the investigation of
heavy fermion systems. It represents a generalization of the SIAM to a periodic array of
impurities, and is able to capture many aspects of Fig.

In the PAM, two bands of very different character are coupled by a hybridization term:
On the one hand there is a conduction band of delocalized, weakly correlated fermions, on
the other hand there is a band of almost localized, strongly interacting fermions. In second
quantization, the model reads

Hoan = H. + Hy + H.p +H, (1.1.12)
Heo=) ek)], 8,
k,o

~ At A
7_{f = Z €o fk,a'fk,o'

k.o
Her= ) VIO By +hc.

k,o

7‘{] = Z Uﬁf,i,Tﬁf,i,L
i

The operator é}:g creates a fermion of momentum k and spin o in the conduction band with

dispersion €.(k), while f,zg creates a fermion in the strongly correlated, flat band with energy
gy. The c-fermions are uncorrelated, while f-fermions interact locally on each site i via a
Hubbard interaction U. The hybridization Hamiltonian H, ¢ describes the mixing between the
two fermion species.

The PAM in the formulation of Eq. (I.1.12) is closely related to another prototypical model
for strongly correlated systems: The Kondo lattice model (KLM). It is obtained in the Kondo
limit, where the f-orbitals reside well below the conduction band, while the local Hubbard
repulsion is much larger than the bandwidth (c.f. Eq. (I.1.9))

Fam = ) 8 (k)E] &, + > JSio8, (1.1.13)

k,o

Here all the charge fluctuations on the f-sites are frozen out. The model describes a conduction
band, where the conduction electron spin §; at site i interacts locally via a Kondo coupling with
an impurity spin S;. The coupling strength is J > 0 for antiferromagnetic, or less common
J < 0 for ferromagnetic exchange.

11
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1.1.5.2 Generalization to Multiple Bands and General Interactions

In many cases, the two-band formulation of the PAM is not sufficient to describe the physics of
realistic materials. In this situation a generalization to multiple bands and more complicated,
in general non-local interaction terms is necessary. In order to facilitate the discussion in the
second part of this work, a more general model is proposed here.

The model is formulated in terms of N, conduction bands, with the c-fermions acquiring
an additional band index m, and N localized f-orbitals, with an orbital index «, which are
closely related to atomic orbitals. In addition a finite, but usually small overlap of f-orbitals at
different sites is allowed for, which results in a finite dispersion of the f-bands. Finally, a very
general expression for the interaction is used to include correlations beyond the local Hubbard
term. The different parts of the generalized Hamiltonian read

H, = Z & 9%, (1.1.14)

H = kaa D0,

H,s = Z & Vinal) £y + hec

k,m,a

A

A AT A A

7_(I = Z U(I,Byé(k’ P q) fa/,k+qfﬁ,p—qf6,pfy,k
k.p.q
a.B,y,0

The generalized dispersions t,(,?(k) and tg;(k) contain both on-site energies for the different
orbitals at the same site, as well as the dispersion arising from hopping processes between
orbitals at different sites. The hybridization has become a matrix in band and orbital space.

The non-interacting part of the Hamiltonian can be conveniently written in a matrix-vector
notation,

~ 19k)  Vk)\ (e ~
age o e
where &; = (&;,...,&y)andf = (. .. ,f‘Nf). The PAM (I.1.12) is recovered for N. = Ny = 2
for the two spin directions, a dispersionless f-band, a spin-diagonal hybridization of f-fermions
and c-fermions, and a momentum independent, i. e. local interaction.

Different interaction terms supplementing the local Hubbard repulsion are conceivable, in
particular non-local terms. The most straightforward addition is a density-density repulsion
term between different orbitals on the same or neighboring sites, like in the extended Hubbard
model. In real—space, it reads

Z Upiliiofipis  + Z Uy hfifiafiy s
@)

interorbital repulsion intersite repulsion

12
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At rather large values of U, the double occupancy of individual orbitals is suppressed. Effective
non-local magnetic interactions are dynamically generated [79] via virtual processes, like the
direct exchange between neighboring sites, the RKKY interaction discussed above or ring-
exchange processes. The corresponding interaction can be described by a Heisenberg term

7:(1:2.][’1'@,'@]'. (1116)
bj
Depending on the number of sites involved, J is either negative, leading to ferromagnetic
exchange, or positive, for antiferromagnetic exchange.

1.1.5.3 Phenomenology

The PAM (I.1.12) has been studied extensively in the context of heavy fermions [48]. In
exploring the phase diagram, one can take different perspectives. The first is the adiabatic
approach. Here, starting from the uncorrelated case at zero temperature, the interactions are
gradually increased, with the system evolving accordingly. For U = 0, the hybridization of
the two bands leads to the formation of two hybridized bands (c.f. Fig. [I.I.I). Gradually
switching on the interaction, bare particles evolve into renormalized quasiparticles, and the
bands become increasingly flat around the band gap [24]. At the same time, the size of the
hybridization gap decreases, reflecting the mass renormalization.

The second perspective explores the temperature dependence of the system from high to
low temperatures. In the process, depending on the model parameters, the system exhibits
a quite remarkable behavior. For —gy > A and U + gy > A, i. e. in the Kondo regime,
local moments form at a crossover scale ~ U [24]. The impurity orbitals are occupied by
one electron almost all the time. The energy barrier to the unoccupied and doubly occupied
states is so large that charge fluctuations are almost completely frozen out. The particles,
which reside in the impurity orbitals, are therefore only characterized by their spin. As the
temperature is lowered, due to the Kondo effect, the local moments and conduction electrons
start to hybridize, forming composite quasiparticles. The quasiparticles become coherent at
even lower temperatures 7 ~ T o, giving rise to a Fermi liquid state, and a well-defined
hybridization gap. Due to the clear separation of energy scales, the different regimes can be
easily identified in physical observables like the magnetic susceptibility: The local moment
regime is dominated by the Curie-Weiss behavior of f-electrons, while the coherent Fermi
liquid exhibits a constant Pauli susceptibility.

Moving away from the Kondo regime to mixed valence by letting either gy or & + U ap-
proach the hybridization scale, charge fluctuations become increasingly important. Hence,
the f-electrons form incomplete local moments at a lower temperature, while the temperature
for Fermi liquid coherence is higher. In this situation, which is relevant for heavy fermion
materials like SmBg [87]], disentangling the two energy scales becomes increasingly difficult.

13
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1.2 Topological Insulators

1.2.1 Basic Notions of Topological States

Many heavy fermion compounds contain rare-earth elements, where spin-orbit coupling can
play an important role. In this context, the idea of topological Kondo insulators was brought
forward, which combines the physics of topological insulators with heavy fermions. To facil-
itate the discussion on topological Kondo insulators in the second part of the thesis, here the
notion of topological states of matter is introduced, and properties of topological insulators
and topological invariants for these states are discussed. In the following, the general aspects
of the topological insulator (TT) is introduced for the non-interacting case. However, in many
cases, generalization to correlated TIs.

In the conventional Ginzburg-Landau theory of phase transitions, different phases are char-
acterized in terms of broken symmetries, with a corresponding vanishing or finite value of the
respective order parameter [4]. As an example, an antiferromagnetic phase is distinct from a
paramagnetic phase due to the breaking of translational symmetry. The order parameter, which
vanishes in the paramagnet, but is finite in the antiferromagnet, is the staggered magnetisation

m(q) = Z exp (iq(r; — rj))(ﬁi,T —1i;)) (1.2.1)

i,j

Here, g is the ordering vector, where g = (i, m) corresponds to the Néel antiferromagnet on a
square lattice.

As it turns out, not all the different phases realized in nature can be differentiated in this
scheme. Beyond the Landau theory, this brings about the notion of topological order [43]. In
the sense of topology, states are equivalent when they can be continuously transformed into
one another. As an example, the conventional band insulator can be transformed into an atomic
insulator by appropriately increasing the lattice spacing, such that the lattice sites eventually
become isolated atoms.

A topological classification of states depends only on global properties, while local details
have no influence. Smooth deformations of the state cannot change the global properties, 1. €.
the topological character [85].

Time-reversal invariant insulators permit such a topological classification. In two and three
spatial dimensions, all such states can be grouped according to a Z, classification, with a
topological invariant v [94]. While a trivial band insulator is characterized by v = 0, the
topological insulator (TI) has v = 1. This state is hence topologically distinct from the band
insulator. The TI as an insulator has a bulk band gap. However, a transformation from the
TI to the band insulator is only possible via a quantum phase transition, where the band gap
closes.

15
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1.2.2 Properties of Topological Insulators
1.2.2.1 Time-reversal Symmetry

The topological insulator is protected by time-reversal symmetry. The time-reversal operation
can be written as an antiunitary operator ©,

O =exp(in$,) K. (1.2.2)

K is the operator for complex conjugation, and gy is the y-component of the spin. It follows
A2 . . o S . .

that ® = —1 for spin-1/2 fermions. A Hamiltonian, which is invariant under time-reversal

symmetry, has to obey

OH k) 6" = F(~k). (1.2.3)

Therefore, the eigenstates have to be at least doubly degenerate [43]. In a conventional, time-
reversal invariant band insulator, this so-called Kramer’s theorem corresponds to the degener-
acy of up- and down-spins.

Special points in the Brillouin zone, the time-reversal invariant momenta I';, are mapped
onto themselves by the application of ®. On a square lattice, these are the points I', M, X and
Y. At the I'; there have to be two degenerate states, which are time-reversal conjugate partners.

1.2.2.2 Topological Edge States

Since the TI is distinct from the trivial band insulator, at an interface to a trivial insulator or at
the surface — the interface to vacuum — the topological character of the state changes. Hence,
there has to be a closing of the band gap at the surface, which results in a metallic surface
state. Indeed, due to the so-called bulk-boundary correspondence, the topological insulator in
n-dimensional space gives rise to robust, gapless surface states in (n-1) dimensions [85]. In
this sense, the edge states are “holographic”, since they can only exist on the edge of a higher-
dimensional topological insulator. They are exponentially localized, and can be described by
an effective helical edge theory [85]. The protection of the time-reversal symmetry makes the
edge states stable against disorder or weak interaction effects [83]].

The quantum spin Hall effect is an example for the unique properties of topological states. It
was first realized experimentally in HgCdTe quantum well structures [62]. The edge states of a
quantum spin Hall insulator, which is a two-dimensional topological insulator, are helical, i. e.
spin and momentum are tightly locked. Therefore, backscattering is suppressed. As a result,
transport along the edge channels is ballistic, with each channel contributing a conductance
quantum Gy, = €*/h.

Because of time-reversal symmetry, the Hall conductance is zero, since the Hall effect of up
and down spins cancel. In contrast, the spin Hall conductance is quantized. This means that
the transport properties are directly related to the topological properties of the system. The
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conductance is hence non-local, and independent on the sample geometry [89]. The notion of
local transport, which is the basis of Ohm’s law, does not hold in these systems.

1.2.2.3 Models for Topological Insulators

In the presence of spin conservation, the quantum spin Hall state can be understood as two
time-reversal conjugate copies of the quantum Hall (QH) state, one for each spin orientation.
This construction restores time-reversal symmetry, which is broken in the QH state. It is
employed in deriving the Kane-Mele model for graphene with spin-orbit coupling [56, 571,
where the QSH effect was proposed. In its simplest form, it reads

Fow =1 ) 8¢, +id ) vi¢ o2&, (1.2.4)
(. j).o «i.gn
Here, the ¢, are two-component spinors at lattice site i. The second term is a next-nearest
neighbor hopping term, where v;; = +1 depending on whether the hopping is clockwise or
counterclockwise. This term encodes the spin-orbit coupling.
Another model to describe prototypical topological insulators is the Bernevig-Hughes-Zhang

(BHZ) model for HgTe quantum wells [[1'7]. It represents a two-band model with spin-orbit
coupling, which can be written as

NN (st At (R0 (G
Hynz = Zkl(ck’l ck’z)( o i (_k)) (ék,z) (1.2.5)
where /(k) = (m — cos(k,) - cos(k,)) o + A (sin(k,) o, + sin(k,) ) .

The Hamiltonian is constructed in a such way, that the lower right 2 x 2 block is related to the
upper left block by application of the time-reversal operator, i. e. they are Kramer’s conjugate.

1.2.3 Topological Invariant
1.2.3.1 Topological Invariants for the Quantum Spin Hall State

To characterize topological states, the notion of a global topological invariant is employed, in
contrast to the conventional, local order parameters. A topological invariant takes only integer
values, and cannot change continuously as a function of parameters. In the case of the QH
insulator, the topological invariant is the Chern number or TKNN invariant [43] defined by

1
Cim=— f d*kF,(k)y €Z (1.2.6)
2w
BZ

where F, (k) is the Berry flux associated with the Bloch state in band m with momentum k,
and the integral runs over the whole Brillouin zone. Since the Chern number is defined by
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an integration, local changes to the system cannot change the topological properties. The
quantized value of the Hall conductance o, is directly related to C; = }},, Cy , 1. €. C; counts
the number of edge channels.

In contrast, the topological insulator is characterized by the Z, topological invariant v,
which is zero for a trivial band insulator, and one for a topological insulator.

In a QSH insulator, the total Chern number is zero due to time-reversal symmetry

C1 = CI,T + CI,L =0

However, being essentially two copies of the QH state, one can define the spin Chern number
C,; = 1/2(Cy; — Cy), which is non-zero. In this case, the Z, topological invariant v is given
by v = C; mod 2, since an even number of edge channels yields a trivial insulator, while an
odd number is necessary for a topological insulator.

So far, the definition of the topological invariants relied on Bloch states. While Eq. (1.2.6)
can be generalized to systems with interactions, the evaluation can be cumbersome or even not
possible [49]. However, by defining the topological invariant in terms of the Green’s function,
one can readily extend the concept to interacting systems [[113,115]]. For the two-dimensional
case, a topological invariant can be defined via

3 1
2472

Here £'# is the fully antisymmetric tensor, ko = iw is the imaginary frequency, and summation

N, f dky dk tr |17 GO, G GO, G™ G, G| (1.2.7)

over repeated indices «, A, p = 0, 1,2 is implied. In fact, one can show that N, = C [115].
Based on N,, and similar in spirit to Cy, a topological invariant N; of the quantum spin Hall
state can be defined as

ag
Ny=>" 5 Moo (1.2.8)

However, as N is given in terms of the Green’s functions, it can be readily generalized to
correlated systems. With interactions, it retains its topological character as long as there is an
adiabatical connnection to the non-interacting case [20, 41].

The notion of topological states and topological invariants is rigorously defined only at
T = 0. At finite temperatures, the expression for N, can take arbitrary real values, and ap-
proaches zero as T — oo. Nevertheless, as discussed in the second part of this thesis, it can be
used to quantify the emergence of the topological state as the temperature is lowered.

The above method of calculating topological invariants can be simplified by noting that
only the zero-frequency Green’s function is necessary for the topological classification [116]].
This can be most easily visualized in the form of the so-called topological Hamiltonian [[114].
This auxiliary Hamiltonian describes the system in terms of its topological character. The
topological Hamiltonian is given by

opo(k) = =GV (k, iw = 0) = h(k) + Z(k, iw = 0), (1.2.9)
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1.2 Topological Insulators

and is hence completely determined by the single-particle part of the Hamiltonian and the
self-energy at zero frequency. It is suitable to obtain the correct topological invariant, however
it should not be confused with an effective quasiparticle Hamiltonian [114].

In the presence of inversion symmetry [34], it is only necessary to consider the parity eigen-
values ¢ at the time-reversal invariant momenta I';

=& (1.2.10)

where 8 = | | ().

m 1s a band index, and &,,,(I';) is a corresponding parity eigenvalue at I';.

As a remark, in three spatial dimensions, there is not one, but four topological invariants
Vo = (Vo, V1, V2, V3), Where vy = ]_[?:l 0; 1s the strong invariant, while the other three are weak
invariants constructed from a subset of the parities 9;.

1.2.3.2 Space-group Classification of Topological Insulators

With the investigation of topological phases in prototypical models, it became clear that not
only time-reversal symmetry, but also lattice symmetries play a role in determining topological
properties. In particular, the lattice symmetry gives rise to additional topological phases and
indices, which are related to the high-symmetry points.

In Ref. 55, two distinct topological phases of the BHZ model were discussed, the so-called
I'-phase and M-phase. They differ not only in the parities at the I' and M point, but also in
physical properties. Indeed, it was found that a lattice dislocation can act as a -flux in the
M-phase, which is not the case in the I'-phase.

In Ref. |99/ this result was generalized. For every group of equivalent high-symmetry points,
there is an associated phase, which can have trivial or non-trivial topological properties. Con-
sidering the square lattice, in addition to the trivial band insulator, there are three phases.
These are the topological I'-phase and M-phase, as well as the trivial X-Y-phase.

In fact, it was already recognized in Ref. 34 that with inversion symmetry the individual
parity eigenvalues ¢; become gauge independent, and hence topological invariants. Without
breaking time-reversal symmetry, a parity ¢; can only change via a band gap closing at the
corresponding high-symmetry point I';.

1.2.4 Interacting Topological Insulators

The interplay of topology and correlation effects is a very active field of research [49], even
though topological states are to some extent robust against correlation effects. As was dis-
cussed in the previous section, the notion of topological states and topological invariants can
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be carried over to systems with interaction effects. In particular, the prototypical lattice models
for topological insulators have been studied in the presence of correlation effects. The Kane-
Mele model supplemented by a Hubbard interaction term was found to exhibit a transition
from a quantum spin Hall state to an antiferromagnetic state at intermediate couplings, thereby
breaking time-reversal symmetry [19} 50, 51]. With the inclusion of long-range Coulomb
interactions, the critical interaction strength, where the transition is located, is significantly
enhanced [52], but the general phase diagram remains unchanged.

Different possible mechanisms for topological phase transitions driven by interactions have
been discussed [41, [110]. While weak interactions can drive a quantum phase transition from
a normal to topological band insulator via a mean-field like energy level shift, i. e. a band
renormalization, transitions can equally result from strong correlations. Since for an interact-
ing system the topological invariant v = y C; [110], where 7 is the frequency-domain winding
number and C; the spin Chern number, in this case, the strong frequency dependence of the
self-energy can result in a trivial state, i. e. v = 0, even though C; # 0.

In studies of the correlated BHZ model, such topological phase transitions were equally ob-
served. For a Hubbard interaction, within the DMFT approximation a possible first-order tran-
sition from a topological insulator to Mott insulator was found [129]. With the possibility of
symmetry-breaking, an antiferromagnetic phase is realized, which might even coexist with the
topological phase [[130]. The inclusion of the full Hund’s rule instead of only density-density
interactions shifts the critical interaction strength for the Mott transition to lower values [21]].

In related studies, an interaction-driven phase transition from the conventional band insula-
tor to the topological insulator could be realized [21, [111].
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1.3 Dynamical Mean-Field Theory

1.3 Dynamical Mean-Field Theory

1.3.1 Introduction

The idea of a classical mean-field theory is very appealling. Instead of solving a complicated
many-particle problem, which is almost always intractable, one approximates the interaction
of a particle with other particles by an effective, average potential [4]. Hence, every particle
feels the presence of the other particles in its neighborhood only via this effective field which
is obtained from a self-consistency condition by minimizing the free energy.

This simplifies the many-particle problem to a single-particle problem with an effective,
self-consistent potential. In addition, at least in classical physics, by scaling the model pa-
rameters appropriately, mean-field theory becomes exact in the limit of an infinite number of
neighboring sites, because spatial fluctuations can be neglected in this limit.

In quantum physics, not only spatial fluctuations, but also purely quantum mechanical fluc-
tuations in imaginary time come into play. While the spatial fluctuations can be equally ne-
glected in the limit of infinite coordination number, the same is not true for quantum fluc-
tuations. Hence, not even in this limit a static mean-field approximation is correct, since it
neglects both kinds of fluctuations.

To find an analog of a mean-field approximation for quantum physics problems, which be-
comes exact in the limit of infinite coordination number, one has to retain dynamical quantum
fluctuations. This leads to the Dynamical Mean-Field Theory (DMFT) [37/], which proved to
be a very successful method for the investigation of strongly correlated electron systems.

The general concept of the DMFT approximation is introduced in Sec. A different
perspective on the DMFT is provided by the Self-Energy Functional Approach (SFA) pre-
sented in Sec. [I.3.3] Here a derivation of the DMFT equations is given. The SFA can be used
equally to motivate various extensions to the DMFT. The site-dependent DMFT, a general-
ization of the translationally invariant DMFT to inhomogeneous systems, is the topic of Sec.
Finally, in Sec. |1.3.5|cluster extensions to the DMFT are introduced, which were devel-
oped in order to systematically incorporate non-local correlations neglected in the single-site
DMFT.

1.3.2 DMFT Approximation

The idea of the Dynamical Mean-Field Theory is to map a given lattice problem, e.g. the
PAM (I.1.12), onto an effective single-site problem. This can be formulated as an action [37]

B B

’ il - " £ ’ »

S = —fdrdr D DGO - Ty + fdr%m(f) (1.3.1)
0 ap 0
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with an effective, time-dependent Weiss field G”(7). It encodes the dynamical quantum fluc-
tuations, namely the process of a particle leaving the impurity at time 7/, propagating through
the bath and finally returning at time 7. « and 8 are impurity orbital quantum numbers with
energies &imp = (£,). The action given in Eq. (I.3.1) can be recast into a Hamiltonian form

Flux = 3 50 EZ + Y Valb(E, +18) + > eulof, + Pl (1.3.2)
k.a

k a

in terms of auxiliary bath degrees of freedom ¢. &(k) is the energy of the bath orbital with quan-
tum number k, which can encode e.g. momentum and spin. The auxiliary Hamiltonian takes
the form of the single impurity Anderson model (SIAM). To solve the effective action (1.3.1)),
or equivalently the auxiliary Hamiltonian (1.3.2)), the techniques developed for the solution of
impurity models can be employed.

In order to arrive at a closed set of equations, the effective action is supplemented by a
self-consistency condition, which determines the effective Weiss field in terms of impurity
correlation functions. At the same time it provides the connection to the original lattice prob-
lem. It demands that the Green’s function of the effective impurity problem is equal to the
local lattice Green’s function

Gimp(iw) = Gioc(iw) (1.3.3)
where  Gimpap(t — ') = (T fZ(T ) fﬁ(T'»

Goeliw) = % > Gk iw)
k

While Eq. (I.3.7)) represents a simplification when compared to the original lattice problem,
e.g. the PAM given in Eq. (I.1.12)), there still remains a fully quantum-mechanical many-body
problem to be solved. In particular, quantum fluctuations, i. e. a particle undergoing transitions
in imaginary time between different impurity states, are still included.

By comparison with the expression for the impurity Green’s function, one can find a more
explicit expression for the Weiss field

Gimplie0) = (i = Eimp = Ali) = Zip(i)) (13.4)
= G(iw) = (i = Emp — M) (13.5)
where  Aliw) = Y Viliw - 80) V.

3
To obtain the actual solution to the dynamical mean-field equations, the bare Green’s function
G(iw), or the hybridization functions A(iw), i. e. the auxiliary parameters &k) and V,(k),
have to be determined self-consistently. In practice, this is achieved by iteration, as sketched

in Fig. [[.3.1]
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(" DMFTloop )

DMFT self-
consistency
initial 2 2 converged
self-energy G Go,A self-energy
impurity
solver

- J

Figure 1.3.1: The DMFT self-consistency is achieved by iteration of impurity solver and self-
consistency equation, starting from an initial guess for the self-energy. The con-
verged self-energy is used to calculate lattice correlation functions.

Starting from an initial guess for the self-energy, e.g. ¥ = X; = 0, an initial bath function is
obtained, which is fed into the impurity solver. The solution to the impurity problem, i. e. the
interacting Green’s function, subsequently yields a new self-energy via the Dyson equation.

Y(iw) = GO (iw) - G (iw) (1.3.6)

This loop is iterated until the self-energy is converged. Once a self-consistent solution is
found, all correlation functions of the original lattice problem can be obtained from correlation
functions of the auxiliary impurity problem. In particular, the lattice self-energy is given by
the impurity self-energy

2k, iw) = Zimp(iw). (1.3.7)

Thus, it is momentum-independent, and consequently its Fourier transform is purely local
2ii(iw) = 6;;2(iw).
The momentum-dependent lattice Green’s function is given by
Gk, iw) = (iw - t(k) - Z(iw))_l. (1.3.8)

As mentioned above, the Dynamical Mean-Field Theory provides the exact solution to the
lattice problem in the limit of infinite coordination number. In this limit the self-energy be-
comes purely local. Hence, Eq. (I.3.7) is the exact expression for the self-energy. For finite
coordination number, i. €. a finite number of spatial dimensions, the use of the DMFT can be
regarded as an approximation, which neglects spatial correlations, but fully retains dynamical
(quantum) fluctuations.

The Dynamical Mean-Field Theory can be obtained from a truncation of the Luttinger-
Ward functional ®, which can be defined as a series of skeleton diagrams [10, [11]]. Taking
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only local diagrams into account yields the DMFT. Hence, the DMFT approximation is a
conserving, i. e. thermodynamically consistent approximation, which respects a number of
macroscopic conservation laws [82]].

The calculation of the topological invariant by means of the topological Hamiltonian (1.2.9)
is significantly simplified within the DMFT. This is a direct consequence of the locality, i. e.
momentum-independence, of the self-energy:

iopo(k) = =GV (k, iw = 0) = h(k) + Z(iw = 0)
= h(k) + X. (1.3.9)

The topological Hamiltonian is simply given by the original, non-interacting Hamiltonian
renormalized by the constant energy shift £y = X(iw = 0). As shown in Sec. [2.2.5] this allows
for a complete mapping of the phase diagram of the topological Hamiltonian in terms of model
parameters, and the renormalization constant X£,. Once its value, £y = Xy(U) is known for a
particular value of the interaction strength U, one can immediately obtain the topological
properties of the system. In addition, the topological invariant N, given in Eq. (1.2.8)) can be

simplified:
G, " (k,iw)  dhy(k)
Ok; Ok
Im K (i
SN, = Im[iK(w +i0M)] = 1lim Im KGv) (1.3.10)
dw w=0  iy=0 v
1 ho(k ho(k
with K(iv) = a7 % tr[a 6(’1'6(}’ ) Gtk ito + iv) 9 8‘2 ) G (k. iw)].

In summary, the DMFT turned out to be a powerful approach to study strongly correlated
electron systems. In particular, as dynamical fluctuations are fully retained, it is able to capture
the Kondo screening of local moments by delocalized degrees of freedom [48]. The method
is very successful in describing the Mott metal-insulator transition. In the correlated metal a
quasiparticle peak of weight Z forms, which vanishes at some critical interaction strength [37]],
where the system turns into an insulator. In addition, the method is widely used in conjunction
with band structure method e.g. in LDA+DMFT, where it allows to take correlation effects
beyond the mean-field level into account [63]].

However, there are areas where the DMFT fails to describe the physics correctly. In gen-
eral, since the method neglects spatial fluctuations, this applies to phenomena coupled to a
momentum-dependence of the self-energy [90], as well as to non-local order parameters for
e.g. dimerization or d-wave superconductivity [18]. Concerning long-range order, like anti-
ferromagnetism, DMFT is able to capture the symmetry breaking, but not the non-local fluc-
tuations, which preempt the transition [37]. Since the DMFT is exact in the limit D — oo, and
used as an approximation at finite D, it becomes progressively worse as D becomes lower. In
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particular, many aspects of one-dimensional systems are beyond the scope of DMFT, like Lut-
tinger liquid formation [90]. Methods developed to improve on some of these shortcomings
are discussed in Sec. [1.3.5

1.3.3 Self-energy Functional Theory Perspective on the DMFT
1.3.3.1 Self-energy Functional Approach

While in the previous section the central ideas and equations of the Dynamical Mean-Field
Theory were presented, this section provides a derivation of the DMFT equations. At the
same time, a different perspective on the DMFT approximation is given.

To this end, the self-energy functional approach (SFA) s employed. It amounts to formu-
lating a variational principle in terms of the self-energy, such that the physical self-energy is
a stationary point of the grand potential. The SFA can be used to derive thermodynamically
consistent and systematic approximations to quantum-mechanical many-body problems.

The derivation follows Ref. 81, where the SFA was first proposed, and Ref. 80, which
contains additional details and applications of the approach.

The starting point is a Hamiltonian of the form

H = Hy(t) + H,(U), (1.3.11)

where H, is the one-particle hopping part, with the hopping amplitudes parameterized by f,
while H, contains interaction terms, with interaction strength U. The corresponding grand
potential Q, ;; is given as a functional of the Green’s function by

Q,u[G] = ®y[G] + trIn(-G) - (G - G G). (1.3.12)

Here, ®y[G] is the Luttinger-Ward functional and tr is the trace over internal indices. The
notation makes the dependence on the parameters ¢ and U explicit. The dependence of € on
the hopping amplitudes # is due to the non-interacting Green’s function G©.

Note that ®;[G] depends explicitly only on U. Hence, it is universal, i. e. the same for
models with different values of . However, a closed expression for ® cannot be obtained, so
that evaluating Eq. (I.3.12) directly is not possible. Instead, an alternate approaches based on
writing the Green’s function as a functional of the self-energy, 1. e. G = G[X], is pursued. X is
given by the functional derivative

00y[G]
X=1/T . 1.3.13
T —& ( )
By a Legendre transform of @ to the new variable X via
FylZ] = Oy[G[Z]] - tr(Z G[Z]), (1.3.14)
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the grand potential can be written as a functional of X:

Q, (%] = win(~(G*™ = 2)™") + Fy[z] (1.3.15)
0Fy[X]
oz

while G[X] = 1/T

From the stationarity condition of the grand potential with respect to the self-energy follows

the Dyson equation.
0Q, y[X]

ox
This implies that the grand potential is stationary with respect to X at the true, physical self-

-0 o G2 = GO~ (1.3.16)

energy.
As a next step, the self-energy is parameterized as X = X(#’), meaning that the self-energy
corresponds to the Hamiltonian with hopping parameters #’. Hence

00,0 _

5 0 at? =t

The functional Fy[X] prevents the evaluation of €, ;[X]. However, F inherits the universal-
ity of ®@. It is the same for a different reference system H

H' = FHo () + H,(U). (1.3.17)

with the same interaction parameters U, but different hoppings ¢’ # t.
An explicit comparison of the grand potential Q, ;; for hopping ¢ with Eq. (I.3.15)) yields

Qo ylZ] = trin(~(Gy ™" = 2)7") + Fylz]
= 0, y[Z] = Qv y[Z] + trln(—(c;<0>‘1 -3 - win(-G). (1.3.18)
In the form of Eq. (I.3.18)), the grand potential €, ;; can be evaluated rigorously for reference

system self-energies X = X(t").
Demanding stationarity with respect to ¢’ leads to

0Q, y[E(1)]
or

0 i(t")

=0=T Z ((G(O)_l —X() - G,)ij or

w,i,j

(1.3.19)

A feasible way to find an approximate solution to the original Hamiltonian therefore pro-
ceeds by first defining a suitable reference system with the same interaction parameters as the
original model, but different single-particle parameters . The simpler structure of the refer-
ence system allows to find a solution to the many-body problem, in particular determining the
trial self-energy X(#'). By varying the reference system parameters ¢ to minimize Eq. (I.3.19),
an optimal solution is obtained.
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1.3.3.2 Motivating the DMFT using the SFA

In the following, the idea of a reference system is illustrated using a concrete example, which
serves to elucidate the relation to the DMFT. The original, translationally invariant and homo-
geneous lattice system is schematically shown in Fig. [I.3.2a] while possible reference systems
are shown in Fig.

Of particular importance for the choice of a suitable reference system is leaving the inter-
action parameters unchanged from the original lattice problem, to ensure that the functional F
is the same for both original and reference system.

a)

Figure 1.3.2: In the self-energy functional approach, the original, interacting lattice system
depicted in a) is approximated by a simpler reference system with variational
parameters. In b) a possible choice of a reference system, leading to the DMFT,
is shown. The black bold lines represent the hybridization with the bath (solid

gray dots). c) is a possible reference system for the VCA, where each site of the
plaquette is connected to a single bath site (open dots).

In the case of Fig. [1.3.2b] the reference system is obtained from the original system by
switching off the hopping ¢, and introducing an additional hybridization with a non-interacting
bath. The system therefore consists of equivalent, isolated lattice sites coupled to a bath.

In the absence of hopping between correlated sites (Fig. [[.3.2b), the self-energy is local,
%;; = 6;;X. As a consequence, for the stationary point (I.3.19) it is sufficient to fulfill

(G -z -¢) =0, (1.3.20)

which is just the DMFT self-consistency condition (1.3.3). The original lattice system is
replaced by a set of identical impurities, where each is coupled to a non-interacting bath.
The stationary point of the grand potential is at the same time a solution to the dynamical
mean-field equations. The variational parameters are the hybridization amplitudes V and the
auxiliary dispersion &, which are optimized via the hybridization function A.
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The SFA permits other reference systems, which lead to different approximation schemes.
One possible choice is shown in Fig. Here, the reference system is obtained by keeping
only the hoppings on isolated clusters. In addition, each lattice site is coupled to one additional
bath site. In fact, this is a particular realization of the variational cluster approach (VCA) [83]].
In this case, the variational parameters are the intracluster hoppings and the bath parameters.

1.3.4 Site-dependent DMFT

The formulation of the DMFT in Eq. (1.3.8) is translation invariant. However, in the case of
an inhomogeneous system, or with open boundary conditions, a real-space formulation has to
be employed, which enables a spatially inhomogeneous, but still local self-energy [84]:

2i(iw) = 6;;Z(iw). (1.3.21)
Here the index i labels the inequivalent sites within a unit cell of the super lattice, or the layer

number in the non-periodic direction. The latter case, with translational invariance broken in
one direction, is of interest in Sec. and is therefore discussed here.
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Figure 1.3.3: Lattice with open boundaries in the y-direction. In the x-direction, the lattice is
periodic, with the unit cell boundary given by the dashed box. For each of the
lattice sites within the unit cell (shaded boxes), the self-energy is assumed to be
local, but site-dependent.

In addition to the momentum k; related to the periodic direction, the Green’s function ac-
quires a layer index

. 1 . .
Gij(ky, iw) = ﬁl Z exp (i ky (r + 1 = 1)) Gririr,(iw), (1.3.22)

|5
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where N, is the number of sites within one layer. Another perspective on the same problem is
given in Fig. In the direction with open boundaries, all the lattice sites are included in a
large unit cell, which is repeated in the periodic direction. In this basis, the Green’s function is
a matrix of the size of the unit cell, while the periodic direction corresponds to the momentum

In the spirit of the conventional DMFT, non-local correlations, i. e. between different sites
within the unit cell and between different unit cells, are neglected. Each of the inequivalent
sites is then mapped to a separate impurity problem, with the impurity action given by

B B
S, = f dr dt’ ZfiU(T)Ai(T—T/)fi’O_(T/)+ f AT Fignp (7). (1.3.23)
0 o

0

The inequivalence of the sites is mirrored by the inequivalent hybridization functions A;(7).
All the impurity problems are coupled only at the single-particle level via the self-consistency
condition
-1
Gi(iw) = (iw = timp = A(iw) = Z(iw)) = | Gioeliw)|, (1.3.24)

where  Gioelie) = Ni” > = Holhy) - =) -
K

From the viewpoint of the SFA, the site-dependent DMFT is obtained by removing the hop-
pings between neighboring sites, instead coupling each site to a non-interacting bath. How-
ever, in contrast to the homogeneous DMFT, the baths are not equivalent, 1. e. the stationary
point corresponds to different values for the variational parameters for each site. Hence, the
self-energy is local, but site-dependent.

1.3.5 Non-local Extensions to the DMFT

To improve on the shortcomings of the DMFT, the so-called cluster extensions were de-
vised [69]. The goal of these approaches is to go beyond the local self-energy approximation
and include non-local correlation effects in a systematic way. The general idea is to consider
local degrees of freedom on a cluster of size N, exactly, while replacing the remaining degrees
of freedom by a bath of non-interacting sites. Within this scheme, the DMFT is recovered by a
cluster of size N. = 1, while larger clusters systematically incorporate non-local correlations.
In the limit of very large cluster size, the solution converges to the exact result.

While there is a unique way to define the single-site DMFT, there are different possibilities
to formulate a cluster extension. One of the central requirements is that the self-consistency
condition does not produce solutions violating causality [18]]. This is fulfilled in the case of the
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two most widely used flavors of cluster DMFT, namely the Cellular DMFT and the Dynamical
Cluster approximation. In the following, both are introduced briefly.

The Cellular DMFT [64] represents a straightforward generalisation of the single-site DMFT
to a real-space cluster of N, site. The self-consistency condition is now a matrix equation,
which is formulated in the reduced Brillouin zone of the super-lattice.

N,
Geliw) = =< Z G(K, w) (1.3.25)
Kered.BZ
where  G(K, i) = (i - 1(K) = Z(iw))
and 1;;(K) = ) e KRB (K 4 k) (1.3.26)

k(,‘

R; are the positions of the sites within the cluster, K is a momentum in the reduced Brillouin
zone and k. is a cluster momentum.

The scheme manifestly breaks translational invariance. As the symmetry is present in the
original lattice problem, it has to be recovered by periodizing the self-energy. To this end,
different schemes were proposed [18]. Maybe the most straightforward possibility is

Yk, iw) = Nic ZZ]: exp (ik (R; — R))) Z¢; j(iw) (1.3.27)
On the other hand, the breaking of translational symmetry allows to capture symmetry-broken
phases with further modifications.

From the perspective of the SFA, the Cellular DMFT is obtained from a reference sys-
tem, where the system is split into isolated clusters. In order to compensate for the miss-
ing intercluster hoppings, to each cluster site a bath is attached. Just like in the DMFT, the
stationarity condition is fulfilled by the self-consistent solution to the dynamical mean-field
equation (1.3.25).

In contrast to the Cellular DMFT, the Dynamical Cluster Approximation (DCA) is formu-
lated in reciprocal space [47]]. While the DMFT self-energy is constant in the whole Brillouin
zone, here the extension to a cluster of size N. means that the self-energy is approximated as
a constant on N, patches of the Brillouin zone, which are located around the coarse-grained
momenta K [46]

(K + k,w) ~ 2K, w) (1.3.28)

- _ - N,
Ge(R.w) = Gun(R.w) = % Gk, w).

The DMFT is contained in this scheme in the limit, where the whole Brillouin zone is covered
by a single patch. Due to the formulation as a periodic cluster, i. e. in reciprocal space,
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translational invariance is not broken by the DCA. However, to capture phases with broken
symmetry, the symmetry-breaking has to be allowed for by a modified formulation of the
algorithm. In the SFA framework, there is no reference system which can by used to generate
the DCA.

Besides these two methods, other approaches were proposed to go beyond the single-site
DMFT. Examples are Extended Dynamical Mean-Field Theory [63.100], Dual Fermions [90]
and the Dynamical Vertex Approximation [106]].

Finally it should be noted, that the (cluster) DMFT can be regarded as a complementary
approach to direct simulations of the models on finite size lattices [69], which can be con-
ducted by e.g. exact diagonalization of the Hamiltonian matrix or lattice Quantum Monte
Carlo methods [7, [91]].
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1.4 Continuous Time Quantum Monte Carlo

1.4.1 General concept

Continuous Time Quantum Monte Carlo (CTQMC) methods are numerical simulation meth-
ods for quantum mechanical models. In particular, CTQMC methods are commonly employed
as solvers for the auxiliary impurity problems arising in the DMFT and generalization thereof.

Here some general remarks about the basics of Monte Carlo methods in general and the un-
derlying concept of CTQMC are made. Section|1.4.2|is devoted to the detailed description of
a particular CTQMC algorithm, hybridization expansion CTQMC (CT-HYB) method. A de-
tailed discussion of the different flavors of CTQMC and their applications can be found in Ref.
39 Section [I.4.3]introduces the stochastic analytical continuation, which is a method applied
to QMC results in order to obtain physical observables, in particular correlation functions, on
the real-frequency axis.

The general idea of Monte Carlo methods is the stochastic sampling of quantities of interest
from a known or unknown distribution. The CTQMC methods are a particular realization of
this general concept. They are based on a quantum mechanical action

B
S = f dr (\P(r)% Y(1) + H[P(1), ¥Y(1)] (1.4.1)

0

Here ¥ is the complex conjugate (conjugate) of the complex-valued boson field (Grassmann-
valued fermion field) W.

In the following, the algorithm is formulated quite generally. To facilitate the later pre-
sentation of results, the methods are introduced using a fermionic quantum impurity model.
Nevertheless, they can be formulated equally for a lattice model.

The derivation starts with the general Hamiltonian (I.1.14)). Noting that there is no inter-
action on the c-fermions, i. e. the Hamiltonian is quadratic in &' and &, the corresponding
degrees of freedom can be integrated out. As a consequence, the hybridization term gives
rise to a hybridization function A, which contains all the relevant information about the bath
degrees of freedom.

Aiw) = )" Vi(iw=19)" v, (14.2)

ij
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In total, the effective retarded action reads
B
AT d o) 2
Ser= | drft (0)|— +V| {(1) (1.4.3)
dr
B
+ f drdr () A - 7) (@)
0

B
drdet () GO ¢ - i) + f dt Hip (7). (1.4.4)
0

S

The first expression is the basis for the hybridization expansion CTQMC (CT-HYB) presented
in the next section. The second expression can be obtained by noting that the non-interacting
impurity Green’s function is given by

_ d
GO 1) = (- + 1) 8r — ) + Al = T)
T

It is the starting point for the interaction expansion CTQMC (CT-INT) [91] and the related
auxiliary field CTQMC (CT-AUX) [39], which sample terms from a systematic expansion of
the partition function in powers of the interaction vertex.

1.4.2 Hybridization expansion CTQMC
1.4.2.1 Introduction

While the interaction expansion can be used to solve a variety of models, there are still a
large number of situations which are almost intractable with this method. On the one hand,
the calculations may become computationally very expensive. This is the case for f-electron
systems with almost localized orbitals, where the interaction strength is very large, so that the
expansion order becomes very large as well.

On the other hand, the expansion can become very complicated, like in realistic simulations
for multi-orbital systems, where the complexity of the Hund’s rule exchange makes a separate
expansion for each of the multiple interaction parameters necessary.

Under these circumstances, a complementary approach is advantageous: the hybridization
expansion CTQMC algorithm (CT-HYB). This method was first proposed by P. Werner et al.
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in Refs. [118| and [120, and later generalized by C. Haule in Ref. 144! to clusters, making the
method applicable for C-DMFT and DCA calculations.

In contrast to the interaction expansion methods, here the starting point is the atomic limit,
i. e. the isolated impurity. All interactions which act locally are fully included. There is
no expansion in the interaction necessary, so that one can incorporate all relevant exchange
processes, irrespective ot the interaction strength. This makes it very well suited for model
calculations with large interaction parameters, as well as for multi-orbital models with a large
number of interaction matrix elements.

A performance analysis conducted in Ref. 40 revealed the advantages of this algorithm
compared to the CT-INT and Hirsch-Fye QMC methods. In particular, in the case of the
SIAM, which is relevant for DMFT calculations of the single-band Hubbard model, the scal-
ing with the Hubbard interaction U is very favorable. In fact, the average expansion order
decreases for large values of U. This is in marked contrast to the polynomial scaling of the
interaction expansion methods.

The drawback of the CT-HYB method is its scaling with the number of correlated orbitals
or cluster sites N.. As the method is based on an perturbation expansion around the atomic
limit, the isolated impurity or cluster has to be solved exactly, i. e. by means of an exact
diagonalization. Thus, the CT-HYB inherits the scaling from the exact diagonalization of its
atomic limit, which is exponential in N.. This represents a huge barrier for large-scale multi-
orbital and cluster simulations, which ultimately limits the method’s application to DMFT
calculations and extensions thereof. The scaling with inverse temperature 5 = 1/T is cubic,
1. e. equivalent to the interaction expansion methods.

1.4.2.2 General Formulation

To begin, the Hamiltonian given in Eq. (I.1.14)) is considered, namely

H= H + H; + FH+H . (1.4.5)

bath  hybridization correlated part

In the case of an impurity calculation, the correlated part of the system contains only few
degrees of freedom f,. The corresponding grand-canonical partition function Z is given by

Z = f D[c, ¢, , fleSteetd (1.4.6)

As argued in the previous section, the uncorrelated bath degrees of freedom c¢ can be inte-
grated out, which yields an effective impurity action for the remaining, correlated degrees of
freedom given in Eq. (1.4.3)), such that the partition function becomes

7= f DIF, fle~Senltl (1.4.7)
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The effect of the bath degrees of freedom is encoded in the time-dependent hybridization
function A(7) (c.f. Eq. (I.4.3)), which is the dynamical Weiss field in the case of DMFT.

The task is to calculate impurity correlation function like the single-particle Green’s func-
tion, and other observables like the double occupancy, in the presence of the bath.

The idea from Refs. [118/and [120/is to do a perturbation expansion of the partition function
in powers of the hybridization. The final expression of the partition function reads

B
+0o0 1
Z:ZiZZafd“ dty ---drdt), X (1.4.8)

n=0 a 0
A AT s ’ af B ’
X (Tt, (x) g (1) - -£, () 15 (T)))i X
A

1
X — det(Aij)
D
where A,‘j :Adiﬁj(Ti - T;)

T is the time-ordering operator. The result tells, that for each order n, there is a sum over all
possible configurations of f-operators in orbital space and imaginary time. For each configu-
ration, the contribution to the partition function is given by the expectation value of the time-
ordered string of operators taken with respect to the impurity degrees of freedom A = (7T ---);,
multiplied by the determinant of the matrix constructed from all possible hybridization events
D = det(A;;). Equation (1.4.8)) is the central result for the CT-HYB algorithm.

Thus, starting from the isolated impurity at zeroth order, the algorithm does a perturbation
expansion to all orders in the hybridization. As an example, Fig. [I.4.1] schematically shows
a second-order contribution to this expansion. Thus, one systematically samples all possible
ways that particles can hop from the bath to the impurity and vice versa. Every hybridiza-
tion line connects a pair of operators, which annihilate and create particles on the impurity
orbital, and encodes the time-evolution of the particle’s state while it resides in the bath. The
determinant represents all possible ways of connecting operators by hybridization lines.

One can write the partition function as a sum over configuration C, where each realization
contributes according to its weight

7= Z P[C]A[C]DIC]. (1.4.9)
C

Here, P[C] is a prefactor which depends only on the expansion order n, while A[C] and D[C]
are the value of the local trace and the determinant for the configuration C. In the form
of Eq. (1.4.9), it becomes evident, that the partition function can be evaluated by a Monte
Carlo integration. To be specific, in a random walk along a Markov chain in configuration
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Figure 1.4.1: Second-order contribution to the hybridization expansion. The blue (red) dots
represent creation (annihilation) operators at time 7; (7}). In addition to the di-
agonal hybridization terms (solid), the determinant takes into account all other
possible hybridization events (dashed).

space, a sequence of configurations C of operators is generated. For each configuration, the
values of A[C] and D[C] have to be computed. A new configuration is generated starting
from the previous one by proposing an update to the string of operators. This is the subject of
Sec.

In a very general implementation of the CT-HYB algorithm, a so-called “matrix code”, the
operators are represented by matrices in some basis of the local Hilbert space. A convenient
choice is the eigenbasis of the local Hamiltonian. In this basis, the operator matrices become
dense, while the time evolution becomes straightforward.

This kind of implementation can treat any type of local interaction. The problem is that
the size of local Hilbert space, and thus of the operator matrices, grows exponentially with
the number of local degrees of freedom. This makes the simulation of larger systems unfea-
sible. In Sec. some strategies are presented to get to as large as possible systems.
Nevertheless, the exponential scaling ultimately limits the applicability of a general matrix
implementation of the CT-HYB method to small systems.

One important case, where additional simplifications are possible is given for a model with
only density-density type of interaction and no inter-orbital hopping [39]]:

HO = Z oy (1.4.10)

a

Pl A
HP = ) Ugholiy
o
N ata
where fi, =f f

a a*

The simplification results from the fact, that the impurity Hamiltonian commutes with the

37



1 Models and Numerical Methods for Heavy Fermions

occupation number of each individual orbital
[7/‘\11', ﬁa] =0.

Therefore, the time evolution does not mix different orbitals, which makes a representation
of the configuration of operators C using so-called ”segments” possible. These are intervals
on the imaginary time axis, where an orbital is occupied by a fermion. Then it suffices to
calculate for the current configuration the length of segments L,[C] for all orbitals, as well
as the overlap between segments of different orbitals O,3[C]. The calculation of A[C] then
proceeds as follows:

AIC] = sexp(= ) 8aLalCl = )" UapOuplC1) (14.11)

a af

with a sign factor s = =1 which results from the time-ordering. The advantage of this for-
mulation becomes immediately visible: This algorithm has only polynomial complexity in the
number of local degrees of freedom, in contrast to the exponential scaling of the “matrix code”.

As a short remark, another proposal for an efficient evaluation of the trace of operator prod-
ucts was brought forward in Ref. 65 The difference compared to the above algorithm is,
that here particle-number basis is chosen, such that the application of creation and annihila-
tion operators is trivial. Meanwhile, the time-evolution is accomplished by a Krylov-subspace
method. The authors still observe an exponential increase of computational complexity, but
with a reduced slope compared to the “matrix code”, which makes this method favorable for
more than 3 orbitals.

Besides these optimized methods of evaluating the trace, the CT-HYB method was extended
in Ref. [121] to include electron-phonon coupling. Basically, the coupling of the electrons to
a bath of non-interacting bosons leads to an effective, frequency dependent interaction U(w).
This kind of interaction can be incorporated into the algorithm at no computational cost. In
general, a screened, frequency-dependent interaction can arise in other context, like in the
down-folding of a multi-band model onto an effective single-band model. Here the method is
equally applicable [123]].

1.4.2.3 Measurement of Observables

The measurement of observables is the actual goal of performing numerical simulations. In
general, the Monte Carlo average of the expectation value of an operator O, e.g. the occupation
of an orbital fi, or an equal-time correlation function, yields an observable value O

A At ~ , AT ~ LA
(T fw1 (11) fﬁl () fa,,(TVl) fﬁ,,("'n) 0);
A[C]

0=(0)=>"

C

(1.4.12)
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which is exact up to statistical uncertainty. A particular observable, which can provide inter-
esting insights into the state of the system is the reduced impurity density matrix p = {p)). By
investigating the occupation of individual states |i), given by p;;, one can infer the character
of the states contributing to the properties of the system.

To measure time-displaced correlation functions, one uses a different approach. This is
exemplified by the single-particle Green’s function in imaginary time

Gopl(r =) = (P, @ By, (14.13)
which is a very important quantity, in particular for DMFT applications, In the standard pro-

cedure of measuring the Green’s function in the CT-HYB algorithm, the measurement values
are direcly read of from the inverse of the hybridization function matrix [39], 1. e.

Gap(™ =) = { D Gua, 05, 8 = 7,71 = ) (A7) (1.4.14)
ij=1
ot—1), >0

where o(7,7) =
-0t -1 -p), 7 <0

For a configuration of order n this yields n* correlated measurement values, which can be
gathered in fine imaginary time bins, and used to calculate the imaginary frequency Green’s
function after the simulation. Directly measuring the Green’s function in Matsubara frequen-
cies is possible as well, by a simple Fourier transform of the above expression. Both methods
yield very accurate results at low frequencies, while the statistical noise becomes quite sub-
stantial at higher frequencies. As discussed in Sec. this can lead to problems when
computing the self-energy.

Besides the single-particle Green’s function, higher-order correlation functions like the two-
particle Green’s function G, can be measured in a very similar way. However, the standard
approach described here has some shortcomings, which are discussed in Sec. [I.4.2.6]in the
context of improved estimators.

1.4.2.4 Applications

Here a short overview of selected applications of CT-HYB is given, mainly DMFT and cluster
DMEFT studies, where the method is used to efficiently solve the auxiliary impurity problem.
The CT-HYB solver was employed in DMFT investigations of multiorbital Mott systems,
where it allows to include the complicated Hund’s rule exchange and to access low tempera-
tures. These studies are relevant for transition metal oxides with partially filled d-orbitals.
In a two-orbital model, the Hund’s exchange J greatly influences the critical Hubbard U
for the Mott transition [122]]. The introduction of a crystal field splitting Acgr, which lifts
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the degeneracy of the orbitals, additionally shifts the critical U. For larger values of Acgr an
orbitally polarized insulator may be realized in the non-interacting case, while the interactions
can stabilize a metallic state. By doping the system away from half-filling, an orbital-selective
Mott state is found.

In a three-orbital model studied in Ref. [119, in addition to the Mott phases at integer
fillings, a non-Fermi-liquid frozen moment phase was found, with a square-root dependence
of the self-energy on frequency.

The inclusion of an orbital splitting Acgr in a three-orbital model in Ref. 160 leads to a slight
suppression of the metallic phase for small Acgr. For larger splitting, a correlated insulating
state adiabatically connected to a band insulator is found. For large values of the Hund’s
exchange J an orbital-selective Mott insulator is found even at commensurate filling.

In Ref. [7/ a comparison was conducted between models with only d-orbitals and with
d- and additional oxygen p-orbitals, respectively. The inclusion of the p-orbitals strongly
influences the filling of the d-orbitals, which changes from n; = 1 to close to 2. Thereby,
the influence of the Hund’s exchange on the effective crystal field splitting is reversed. In
summary, this leads to a marked difference in the low-energy behavior.

In Ref. 76 the Kondo lattice model, a prototypical model for the interplay of delocalized
electrons with localized moments (c.f. Eq. (I.I.13)), was investigated using the DMFT ap-
proximation. The CT-HYB algorithm was employed for the self-consistent solution of the aux-
iliary impurity problem. As a function of temperature, the crossover from the local-moment
regime with a small Fermi surface to the Fermi-liquid regime with a large Fermi surface was
observed. The associated crossover scale 7" was obtained from the renormalization of the
chemical potential due to the self-energy.

The pnictides based on iron and arsenic, represent a new class of superconductors, where
correlations might play an important role. In Ref. 45, a microscopic model for these mate-
rials was derived and investigated using LDA+DMFT. The resulting five-orbital model was
simulated numerically using the CT-HYB method. In the normal state, the authors found a
crossover from an incoherent, anomalous phase to a coherent Fermi liquid. The crossover
scale depends strongly on the value of the Hund’s exchange J. Taking the full, rotationally
invariant Hund’s exchange into account turns out the be crucial for the stability of the Fermi
liquid at zero temperature.

Within the emerging field of topological insulators, there is a recent interest in correlated
topological insulators [49] (c.f. Sec. [[.2.4). In this context, a series of studies investigated
the correlated BHZ model for HgTe quantum wells, using DMFT. The CT-HYB method was
employed as impurity solver, which allowed to reach large interaction parameters and low
temperatures.

In particular, a first-order transition from the topological band insulator to a Mott state
was found, which is hidden inside an antiferromagnetic phase once a symmetry-breaking is
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allowed for [129]. Even a coexistence region of antiferromagnetic and topological state was
observed [130]. However, this coexistence might be an artifact of the approximation.

The inclusion of the full Hund’s rule coupling of the two orbitals involved results in a shift of
the critical interaction strength to smaller values [21]]. In addition, this particular investigation
found, that the system can be driven from the topologically trivial state without interactions to
a non-trivial state by gradually switching on the interactions.

One particular class of materials attracting increased interest are Kondo insulators, which
were conjectured to host a topological state. Recently, a study of the optical conductivity of
topological Kondo insulators revealed that the Drude weight associated with the edge states
scales precisely with the bulk coherence scale T, [23]. Meanwhile, the density of states at
the edge remains constant as 7., decreases with increasing interaction strength, which is due
to the renormalization of edge velocity. Away from half-filling, another investigation found
that a topological state is hidden inside a ferromagnetic, metallic state [131]].

A detailed discussion of model calculations for topological Kondo insulators conducted by
means of DMFT+CT-HYB is presented in Sec. [2.2

1.4.2.5 Update Rules

The Monte-Carlo algorithm proceeds by creating a sequence of configurations. A new config-
uration of operators is created from the previous one by means of an update. Thus, the whole
sequence represents a Markov chain.

There are several possibilities for defining a valid update procedure. The main criterion for
the choice of update moves is that the ergodicity has to be fulfilled. This means that it must
be possible to get from one particular configuration to any other one by a finite number of
allowed updates.

In addition, the configurations have to be sampled from the equilibrium distribution P, such
that each configuration C is visited by the Monte Carlo process with the probability

WIC]

p=P[C]= (1.4.15)

Thus, every configuration has to be realized with a probability proportional to its contribution
to the partition function. This is accomplished by enforcing the detailed balance condition on
the transition probability £(C — C’) between configurations C and C’
P[C']&(C - C') = P[C]E&(C" - ©)
§C—-C) _ PIC]
£C'—C)  PIC]
A Metropolis sampling is employed, which splits the transition probability into two parts:
First, a proposal probability 7(C’, C) and second, an acceptance probability S (C’, C)

EC-C)=T(,C)S(C',0). (1.4.17)

(1.4.16)
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This allows to choose a simple form for 7(C’,C) and solve for S(C’,C) by enforcing the

detailed balance condition:
S, 0 3 PIC']T(C,C)

= , (1.4.18)
S, Cc) PICIT(C,O)
which yields
, PIC']T(C,C")
SC,O)=F|——r—
(@0 (P[C] T(C’,C))
F(VICITC C (1.4.19)
WIC]T(C,C)
F(x)
h = x. 1.4.20
where F0) X ( )
For the Metropolis sampling, the function F is chosen as
F(x) = min(1, x). (1.4.21)

In order to keep the notation simple, in the following description of possible update moves,
the arguments of transition and acceptance probabilities are written in such a way, that they
reflect only the most important aspect of the configurations that changes during the update.

The first possible update of the current configuration C of expansion order n is to add a pair
of creation and annihilation operators at randomly chosen imaginary time positions. The result
is a new configuration C’ with expansion order n + 1. The opposite is achieved by removing
a random pair of operators. The proposal probability for adding operators is obtained in the
following way:

1. Pick randomly one of the N possible orbitals (including spin) @ for the creation operator,
and another one g for the annihilation operator.

2. Choose two random times on the time axis, 7 and 7, between 0 and 3.

3. Place the operator pair randomly at one of the n + 1 possible positions in the string of
operators.

Gathering the different contributions to the proposal probability yields the result

1

T(}’l—)l’l-i—l):m.

(1.4.22)

For the remove update, from picking randomly one of the n creation operators and one of the
annihilation operators, one obtains the result

1
Tn—->n-1)=—. (1.4.23)
n
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Finally, the acceptance probabilities are given by

. Wh+1)Tn+1 - n)
S(mn—->n+1)=min|l1, W T(n—>n+1))
. nln!  An+1)Dn+1) N*B>(n+ 1)
TS A D0 i+ DI+ D! (n+ 1) )
2 02
~minf1 A8 A(n+1)D(n+1)) (a2,
(n+1)>2 A(n) D(n)
. n? An-1)Dn-1)
and S(n > n-1)=min|l, N2 A D) ) (1.4.25)

Another possible update of the configuration of operators is to shift one operator chosen
randomly on the time axis from its current position, denoted by 7,4, t0 a new position Tpey.
This move is self-balancing, i. e. the update is reversed by an additional shift, but of opposite
direction. Therefore, the acceptance probability is simply given by

A(Tiew) D(Thew) )
’ A(Told)D(Told) .

In the case of a symmetry-broken phase, the pair of add and remove updates is not sufficient
to ensure ergodicity. Instead, higher-order updates involving more than two operators have to

S (Told = Thew) = Min (1 (1.4.26)

be employed [95]]. As an example, consider the flipping of the spin of a pair of operators. This
emulates the removal of a pair of operators and the subsequent addition of a pair of operators
with opposite spin at the same positions in time. The acceptance probability for this kind of
move is given by

S(o — —0) = min(l, o A(_J)D(_‘T_)).

n,+1 A(o)D(o)

Here, n, is the number of operator pairs with spin orientation o.

(1.4.27)

1.4.2.6 Tricks and Optimizations

The bottleneck of the CT-HYB algorithm is usually the evaluation of the trace of local oper-
ators. At expansion order n, this corresponds to a product of 2n matrices. Each matrix is the
size of the local Hilbert space Dy, which scales unfavorably with the number of local degrees
of freedom N

Dy = dim(local Hamiltonian)®.

One way of reducing the computational complexity of the matrix multiplications was intro-
duced in Ref. 44, By exploiting symmetries of the Hamiltonian, it is possible to split the
Hamiltonian and operator matrices into blocks. The most obvious simplification result by
exploiting conservation of the total particle number N. Creation and annihilation operators
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connect blocks with different particle number in a well-defined way, e.g. the creation oper-
ators &' connect the block with N particles to the block with N + 1 particles. An additional
conserved quantity is the z-component of the total spin S,. As an example, &, connects the
blocks (N,S,)and (N + 1,5, + 1/2).

A more thorough analysis for interactions obeying S U(2)-symmetry done in Ref. [78|reveals
another set of conserved quantities, which can be used in models without a direct hopping
between correlated sites or orbitals. In this case, the projector onto states with just a single
fermion

+
1

PS, = (g —f,))% a=1...M (1.4.28)

commutes with the local Hamiltonian. The sequence of PS = (PSy,...,PSy) is a good
quantum number, and can be exploited in the same way as N and S, to reduce the size of the
matrix blocks. The possible reduction of the matrix block size by exploiting different sets of
symmetries is shown in Table

. . considered symmetries
number of orbitals or sites M 0 N |N.S.|N.S.PS
M=2 16 = 42 6 4 2
M=3 64 = 43 20 9 3
M=4 256 =4* | 70 36 6
M=5 1024 = 4* | 252 | 100 10
. i " 4M 4M 2M
asymptotic scaling (M — o0) 4 i | W N

Table 1.1: Size of the largest matrix block for different number of sites or orbitals, when ex-
ploiting different sets of symmetries.

In some models it is reasonable to assume that the sites are occupied by at most one fermion
at a time. This can be the case in Ce-based compounds, which has a 4f! configuration, or in
models for He-3 layer systems as discussed in Sec. where the fermions are in fact atoms
with a hard-core repulsion. Such a situation can be realized in a model Hamiltonian by taking
the limit of an infinitely large Hubbard repulsion U. Thus, the energy penalty for putting two
particles on the same sites becomes so large, that the states with double occupancy are never
populated. As a consequence, one can project out these states, arriving at a formulation of
the Hamiltonian in a restricted Hilbert space. In the case of the Hubbard model or PAM this
decreases the size of the local Hamiltonian from 4 states to only 3 states, which can amount
to a quite substantial reduction in the case of clusters with multiple sites.

Another possibility of reducing the time spent calculating the local trace can be realized by
recycling results from previous updates. The easiest way is to split the chain of matrix products
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Figure 1.4.2: Structure of the Hamiltonian of a 3-site cluster, with Dy = 64.

into Vk individual segments [39]. Since only a limited number of segments is affected by an
update, the remaining can be left untouched, reducing the number of matrix multiplication
from O (k) to O (%) More advanced techniques have been employed as well, involving self-
balancing binary trees [39] or skip lists [102].

Besides the evaluation of the trace of operators A[C], the other part, which contributes to
the weight of a certain configuration C is the determinant D[C] of the hybridization function
matrix

Aalﬁl (t1 - T'l) Aalﬁn(Tl - T;,)
A= : : (1.4.29)
Ag,p (Tn = T) A5, (Tn = T,)
In principle, the evaluation of the determinant of the matrix scales like the cube of the expan-
sion order n. However, by inspection one notices, that the updates described above usually
change the matrix only at a very limited number of positions. The rank of the update is k < n.
Most of the rows and columns remain unchanged. This can be exploited to reduce the com-
putational complexity of evaluating the determinant to be quadratic in n by employing fast
updates [39]].

The self-energy is a very important quantity, in particular in DMFT applications. However,
inverting the Dyson equation and calculating the self-energy from the CT-HYB results for the
Green’s function, i. €.

S(iw) = (G%w) ' - (Gliw) (1.4.30)

has the disadvantage of introduces strong statistical noise at large frequencies. The reason is,
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1 Models and Numerical Methods for Heavy Fermions

that the interacting and non-interacting Green’s function are the same asymptotically, which
amplifies the statistical error for large frequencies. This can be overcome by an improved
estimator for the self-energy developed in Ref. 42l It is based on the equations-of-motion
approach

(i = £0) Goali) = 1+ > Tga(icw)
B
& G(iw) = GViw) + GO (W) (iw) (1.4.31)
where I is a higher-order correlation function.
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Figure 1.4.3: Self-energy obtained by the conventional method based on Eq. (1.4.30) (red),
and by the improved estimator based on Eq. (1.4.32)) (green). For w, > 10 the
first starts to exhibit substantial statistical error, while the improved estimator
yields much better results.

The Dyson equation connects this expression to the self-energy, i. e.

G(iw) = GV(iw) + GV (iw)L(iw)G(iw)
-1
= X(iw) = [(iw)(G(iw)) (1.4.32)
Equations (1.4.30) and (1.4.32)) are formally equivalent. However, because in the latter
approach the self-energy is given by the ratio of two noisy quantities, it is more stable against
numerical uncertainty. The significant increase in data quality by employing the improved

estimator is shown in Fig. [I.4.3] Another advantage of this method of calculating the self-
energy is that it yields the correct non-interacting U = 0 limit, namely £ = 0. To reap these
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1.4 Continuous Time Quantum Monte Carlo

benefits, one has to measure the correlation function I' in addition to the Green’s function G.
This is only feasible for models with density-density interactions:

H') = Z Uapliofig
ap
= Top(r — 1) = Ung (T, (0 B0 E,0)). (1.4.33)

In this case, I" can be obtained quite easily from the Green’s function matrix.

Tap(t = 7) = Unp § D e O35, 8 = 7/, 71 = ) a1 (A7)
ij
Note that another improved method of measuring the Green’s function was proposed, which
yields better results than the standard approach, in particular at small expansion orders and at
high frequencies [8]].

1.4.3 Analytical Continuation

The quantum Monte Carlo method yields all quantities on the imaginary time or imaginary
frequency axis. In contrast, experimentals and other numerical methods yield results on the
real axis. In order to derive real-frequency results from quantum Monte Carlo, one has to
resort to some kind of analytical continuation.

The connection between the imaginary time Green’s function G(7) or imaginary frequency
Green’s function G(iw,,) and the spectral density A(w) or real frequency Green’s function
G(w + i0%) is given by

exp(-7(w — p))

G(r) = fde(w) I+ exp(—Ble — 1) (1.4.34)
K(t,w)
G(iw,,) = fde(w) —
K(iw,,, w)

where A(w) = -7 Im [G(w + i07)].

Equation (1.4.34)) represent an integral transform of the spectral function A(w) with a kernel
K(t,w) and K(iw,, 7), respectively.

This relations have to be inverted, i. €. deconvoluted, in order to obtain A(w) from G(7).
This is an ill-posed problem [98], since many different spectral functions A(w) exist, which
fit the data equally well. Hence, direct inversion of the kernel K by least-squares fitting is
unstable [[12]], i. e. the result is extremely sensitive to small errors in the initial data G(7).
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One method successfully employed for the analytical continuation of QMC results like the
Green'’s function is the Maximum Entropy method (MaxEnt) [98]. It infers the most probable
spectral function from the data using Bayesian methods. In the process, MaxEnt is able to take
prior information on the properties of the spectral function into account, in particular positivity
and moments M,

Alw) = 0,
M, = fdwa)”A(a)),
e.g. M,=1.

In addition, it provides an error estimation based on the statistical uncertainties of the input
data G(7) given by the standard deviation o(7) or covariance cov(r, 7).
The central equation of the MaxEnt method is Bayes’ theorem

P[A(w)|G(1)] ~ P[G(7)|A(w)] P[A(w)] (1.4.35)

posterior prob. likelihood prior prob.

which relates the probability of obtaining A(w) conditional on the G(7) data to the probability
of observing G(7) given A(w) and the total probability of getting (Aw). MaxEnt works by
maximizing the posterior probability, and in this sense yields the “best” or most probable
spectral function A(w) given the data G(r). The likelihood and prior probability take the form

P[G(1)|A(w)] ~ exp(—x*[A]/2) (1.4.36)
P[A(w)] ~ exp(-a™'S[A]).

Here y?*[A] is the goodness-of-fit function [12]],
2
Y[A] = f dr o (1) [ f dw K(t, w)A(w) — G(T)]

which estimates how good the data G(7) can be reproducing by the spectral function A(w).
S[A] is the information entropy

S[A] = f dwA(w) In (A(“’))

D(w)

of the spectral function relative to the so-called ’default model” D(w), which is usually a
completely flat spectral function D(w) = 1/W, where W is the bandwidth. While the y? term
favors a perfect fit to the data, the entropy term regularizes the spectral function by suppressing
arbitrary structure, such that only features relevant for the reconstruction of G(r) are kept. The
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parameter « plays the role of an artificial temperature, and controls the relative influence of
the two terms.

In practice, MaxEnt is able to reproduce finer details close to the chemical potential, while
at higher frequencies only much broader features are obtained [98]. In addition, the method
has the tendency to yield overly smooth solutions [[12]. In Ref. [93| the stochastic analytical
continuation was proposed to overcome this shortcoming: By a stochastic averaging over a
certain set of different spectral functions, each fitting the data equally well, a better final result
can be obtained, and finer features can be resolved.

In Ref. |12/ this approach was extended, by employing an analogy of the analytical continu-
ation to a classical, interacting field theory. From this point of view, the MaxEnt method can
be understood as the saddle point approximation to the field theory. By Monte Carlo sam-
pling of all possible field configuration, parametrized by delta function random walkers, an
improved estimate for the spectral function can be obtained. In addition, by running multiple
simulations for different values of the parameter « in parallel, and constructing a final spectral
function as a weighted average of the individual results, the method is able to resolve sharp
peaks and gap edges much better than the conventional MaxEnt method. A formulation of
the above approach in terms of Bayesian logic, getting rid of any free parameters and ad hoc
assumptions, was published in Ref. |36.

An additional improvement, in particular in applications of DMFT, can be achieve by an-
alytical continuation of the self-energy instead of the Green’s function. As the self-energy is
momentum-independent, instead of having to continue the results for each momentum-point
to the real axis, only a single run is necessary. In addition, in calculating the spectral function,
all effects of the bare band structure can be included analytically. The procedure detailed in
the following was introduced in Ref. [112/ and extended in Refs. 35/ and [38l

Expanding the bare and full Green’s function and the self-energy at high frequencies yields
the expressions

GO ) = M’(’O) - i + MO + O( _3) 1.4.37)
T Loy w7 ey T\ (1.4
G(iw):z M, :i+ML+0(w—3) (1.4.38)

— (iw)"  iw *(iw)2 a

= 1 1
Yiw)= Y L—— =30+ — +O0(w™?
(iw) nz:(; (iw)" 0 Viw (a) )
where MY = f dw w"A%(w). (1.4.39)

M are the moments of the interacting (non-interacting) spectral function, and the coefficients
¥, can be obtained order by order from the Dyson equation (1.4.30) [38]]. In particular, for
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the Hubbard model [[112], but equally for the generalized PAM employed in Sec. in the
paramagnetic phase the first two coeflicients read

U
Z0 = E<n>’
U2
2= T<n>(2 - (n)).

The expression (n) is the total occupation of correlated sites.
Therefore, the idea is to subtract the Hartree term X, and to rescale the remaining expression
by X; to obtain a quantity X’ which fully resembles a Green’s function:
Y(iw) - X 1
iy = D720 1 (1.4.40)
Z] lw
The quantity X’ can be fed into the analytical continuation just like a Green’s function, since
it can be represented by a spectral function Ag(w) in the very same way:

Y (iw) = fda)'AS(w')

iw—w’

Having obtained Ag(w) from the analytical continuation, one readily calculates X'(w + i0"),
and inverting Eq. (1.4.40)) finally yields X(w + i0*). Via the Dyson equation (1.4.30)) one can
calculate the momentum-resolved Green’s function on the real frequencies axis.
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2.1 Bilayers of He-3

2.1.1 Introduction

A prominent example for a Fermi liquid is bulk He-3. At very low temperatures, it forms
a liquid of coherent quasiparticles [[75], which are strongly renormalized due to correlation
effects. In addition, since there is no crystal lattice, there is no coupling to lattice excitations,
and since He-3 atoms are neutral, the long-range Coulomb interaction is absent [24]. This is
in stark contrast to electronic Fermi liquids in metals.

In Sec. an overview is given on experimental investigations of different He-3 systems.
Section[2.1.3] summarizes previous model studies of the He-3 bilayer system. Next, Sec. [2.1.4]
introduces the approach employed here and presents some details of the methods to investigate
the model. What follows is the presentation of the numerical results. While Sec. [2.1.5] deals
with the heavy fermion phase, in Sec. 2.1.6]results are presented which exhibit clear signatures
of a first-order phase transition taking place in this system. Note that part of these results were
published in the paper J. Werner and F. F. Assaad, Phys. Rev. B 90, 205122 (2014).

2.1.2 Experimental Results

This section is devoted to the presentation of some experimental results for layered systems of
He-3, with particular emphasis on bilayers. Since He-3 atoms consist of two protons and one
neutron, they have a residual nuclear spin of 1/2; that is, they are fermions. This is in contrast
to He-4, which is bosonic.

At the same time, He-3 atoms are neutral. Hence, the long-range Coulomb interaction does
not play a role here. This makes systems of He-3 a very interesting playground to study
fermions, and in particular Fermi liquid behavior.

While bulk He-3 is a strongly renormalized Fermi liquid which has been investigated ex-
tensively (73], the possibility of preparing thin layers of He-3 on top of a variety of substrates
opens up the way to study different realizations of the Fermi liquid state in two dimensions.
The relevant parameters in these experiments are the choice of the substrate and the amount
of He-3 applied. While the substrate provides a surface potential and, depending on the setup,
couples to the He-3 layers to different extent, the density of He-3 atoms tunes the relative
strength of kinetic energy and interactions.

The experimental results discussed here were obtained in the group of John Saunders at the
Royal Holloway University of London, and were published by M. Neumann et al. in Refs. [72
and (/3.

The setup employed in the experimental investigation involves a substrate of graphite, on
top of which two completely filled layers of superfluid He-4 were grown. On top of that, dif-
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ferent amounts of He-3 were applied. The resulting layer structure is depicted in Fig. 2.1.1]
The graphite and completely filled He-4 bilayer provide a periodic potential for the He-3. Oth-
erwise there is a negligible coupling between the top-most He-4 layer and the He-3 layers [72]].

graphite
substrate

Figure 2.1.1: Schematic layer stacking of layers of He-4 and He-3 on a graphite substrate.
Figure adapted from Ref. [73.

The experimental control parameters were the density of He-3 atoms n3 = 4.0...12.0nm™
and the temperature 7', which was varied in the range from 100 mK down to less than 1 mK.
As a function of these two parameters, the phase diagram of the He-3 system was mapped out.
The different phases were identified and characterized by measurements of the heat capacity
¢(T) and measurements of the total magnetization M(T).

2.1.2.1 Heavy Fermion Phase

The phase diagram, which summarizes the experimental findings, is shown in Fig. 2.1.2] At
a density of n3 = n, ~ 6.3nm™2, where the first layer is completely filled, the atoms start
to populate the second layer. Further increasing the density changes the number of particles
in the second layer, while the first-layer density stays constant. The hybridization of the two
layers leads to a crossover from an incoherent phase at high temperatures, where the layers are
decoupled, to a coherent Fermi-liquid state at low temperatures. The Fermi liquid is made of
quasiparticles of composite character, which originate in the spin-flip scattering of the second-
layer fermions off the first-layer fermions; that is, the Kondo effect. This mechanism screens
the first-layer local moments, which dissolve in the bath of second-layer, delocalized states.
The energy and temperature scale around which the crossover takes place is the coherence
temperature 7T.,. With increasing filling, 7.y, 1s found to be suppressed. As a consequence, the
effective mass of the quasiparticles m.q ~ 1/T.o, increases, leading to a heavy-fermion state.
The heat capacity develops a maximum at a temperature 7, and is linear at temperatures
T < T,. The linear coeflicient of the heat capacity v ~ meg increases with filling, thus
signaling the heavy-fermion character of the phase. Meanwhile, the behavior of the small-field
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Figure 2.1.2: Phase diagram of the He-3 bilayer. The second layer is established at a filling
n3 = npp. With increasing filling, the Fermi liquid coherence scale is suppressed,
and by extrapolation vanishes at a quantum critical point located at n3 = ngcp. In
the range n; < n3 < ngocp, an anomalous intervening phase is observed. Figure
adapted from Ref. [73|

magnetization changes from a Curie-law behavior at high temperatures, which is characteristic
of local moments, to a Pauli behavior below T, which is consistent with a Fermi liquid.

2.1.2.2 Quantum Criticality and Intervening Phase

With rising filling, the coherence scale T.,, becomes smaller. This results in a shift of the
maximum of the heat capacity T to lower temperatures, and an increase of the linear co-
efficient y. By extrapolation, both 7, and the inverse effective mass vanish at a density
ny = nocp = 9.9/nm?. The critical exponents with respect to § = 1 — n/ngcp are meg ~ 6
and Ty ~ 6* witha = 1.7 £ 0.1.

Therefore, at ngcp the Kondo screening of the first-layer moments breaks down, and the
quasiparticle fraction Z ~ 1/m.g vanishes at a quantum critical point. At the QCP, an orbital-
selective Mott transition, which affects the first layer, takes place. The localization transition
and the breakdown of the Kondo effect leave behind a system of two decoupled layers: The
first layer hosts localized moments, which interact via magnetic exchange, while the second
layer is an itinerant overlayer, i. e. a two-dimensional Fermi liquid.

At a lower filling n; ~ 9.2/nm* < ngcp, the heat capacity develops a second maximum at
higher temperatures. At the same time, there is a strong increase of the magnetization at the
lowest temperatures. It is even larger than one would expect from unscreened, isolated local
moments. In the experimental work, this range of fillings was termed intervening phase.
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2.1.2.3 Discussion

As the experiments presented above clearly demonstrate, layered systems of He-3 can give
rise to unique Fermi liquid states, including heavy fermions. In the particular case relevant
here, the first-layer fermions represent the almost localized, strongly interacting degrees of
freedom, while the fermions in the second layer are delocalized and weakly interacting. In
solid state heavy fermion compounds, the interplay between these two types of fermions gives
rise to the heavy fermion behavior. The results of the above experiments can be equally
interpreted as heavy fermion physics. Indeed, the Sommerfeld coefficient of the specific heat
grows with increasing filling, which signifies an enhancement of the mass renormalization of
quasiparticles due to strong correlations.

By extrapolation of the experimental results, the vanishing of the inverse effective mass and
related quantities was proposed to take place at a quantum critical point. However, the Kondo
breakdown QCP could not be studied directly in the experiments.

An additional, very interesting ingredient which comes into play in He-3 is the magnetic
exchange interaction. In the interpretation of the experimental results, it becomes dominant
beyond the QCP, making the first layer a two-dimensional magnet of coupled magnetic mo-
ments. However, as the large magnetization in the intervening phase suggests, the magnetic
exchange already comes into play prior to the QCP.

2.1.3 Theoretical Works on He-3 Bilayers

Following the experiments on He-3 bilayers, a series of theoretical investigations of suitable
microscopic models were conducted. In Refs. (15} [16/ and |86, the bilayer was modeled by
a Periodic Anderson Model. In addition, an interlayer repulsion was included in the model
besides the Hubbard interaction. The hard-core character of the atoms was taken into account
in a slave boson treatment of the infinite U limit.

The first-layer fermions were found to be close to a Mott transition, with strong correlation
effects. As a function of filling, a sudden drop to zero of the slave boson amplitude was
observed. This quantity encodes the renormalization of the hybridization. It was argued, that
the vanishing of the effective hybridization marks the physical QCP, where the Kondo effect
breaks down. This QCP preempts the experimentally found quantum critical point.

In Refs. [13/ and [14), a different model for bilayers of He-3 was investigated by means
of Cellular DMFT. The Hubbard interaction U was chosen sufficiently large to suppress the
double occupancy and to resemble the hard-core repulsion. The study of different cluster sizes
revealed a significant difference between clusters with an odd or even number of sites. For
odd cluster sizes, there is always a crossover from the high-temperature phase with a small
Fermi surface volume to the low-temperature, heavy fermion phase with a large Fermi surface

58



2.1 Bilayers of He-3

volume. As a function of filling, the crossover scale T, and corresponding quasiparticle
residue decrease smoothly.

In contrast, the even cluster sizes exhibit a discontinuous, orbital-selective Mott transition
of the first layer at a critical value of the chemical potential .. Across the transition, there is
a jump in the Fermi surface volume, which signals that the first-layer fermions drop out of the
Fermi surface count. In a filling controlled situation, which is the case in the experiments, this
density-driven first-order transition translates to a phase separation.

In this approach, magnetic exchange interactions are dynamically generated, which couple
the local moments antiferromagnetically. Hence, the different behavior for even cluster sizes
results from the competition of the different possibilities to screen the local moments. While
the Kondo effect results in the formation of composite quasiparticles, it breaks down at ..
Instead, intralayer singlets generated from first-layer fermions become more favorable, and
supersede the interlayer Kondo singlets. However, the antiferromagnetic coupling seems to
be an artifact of the method used. As argued below, in He-3 bilayers the three-particle ring
exchange is dominant, which generates an effective ferromagnetic coupling.

2.1.4 Ring Exchange Periodic Anderson Model

The starting point for the model of He-3 bilayers is the generalized Periodic Anderson Model
(PAM) (I.1.14), which was introduced in Sec. as a prototypical model for heavy fermions.
The operators f ro are identified with first-layer fermions, while ¢, , represent particles in the
second layer.

Following Refs. [13/and [14, the model is considered on a triangular lattice. The layers are
stacked in such a way, that the atoms are closed-packed, resembling the stacking of billiard
balls. Within each layer, a hopping between neighboring sites with a layer dependent hopping
amplitude 7. ; is introduced. The hybridization of amplitude V' is interpreted as an interlayer
hopping. Due to the geometrical arrangement of lattice sites, the fermions of one layer can
hybridize with three nearest sites on the opposite layer. The spatial arrangement of He-3 atoms
and the hopping processes included in the model are depicted in Fig.

The corresponding hopping part of the model Hamiltonian can be written in momentum
space in the form of Eq. (I.1.13)), which is reproduced here for convenience,

~ oA %) V(k)\(e
7_{():Z(Ck fZ)(vT(k) t(f)(k))(f‘:)' 2.1

k

Note that H, is diagonal in spin, so that the hopping and hybridization matrices are diagonal
matrices as well.

Each fermion species has a dispersion which results from the intra-layer hopping. In addi-
tion, there is a momentum-dependent hybridization, which mixes different layers. They are
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Figure 2.1.3: Spatial arrangement of He-3 atoms in the bilayer. The a; are the lattice unit
vectors. Second-layer sites (gray) are on top of and shifted with respect to sites
in the first layer (black). The double arrows indicate hopping processes within
layers with amplitude 7. ; and hybridization processes with amplitude V.;. The
shaded regions represent the cluster geometries employed, containing one (1),
two (2) and three (3) correlated first-layer sites.

given by

e(k) = =2t.y(k) (2.1.2)
gr(k) = g9 — 2ty y(k)
V(k) = Vep 3+ 2y(k)
where (k) = cos(k - a,) + cos(k - a,) + cos(k - a, — k - ay).
Here, the a; are the vectors, which span the unit cell in real space, while g is the difference

in binding energy between the two layers. The hopping parameter ¢, = t = 1 is taken as the
reference energy. Finally, the resulting eigenenergies of the hopping Hamiltonian are

1
Eio =3 (8c(k> +&p(k) £ \/(sc(k) —&7(k) + 4|V(k)|2). (2.13)

In Fig. the first Brillouin zone of the reciprocal lattice with the high-symmetry points
I', K and M is shown, as well as the bare dispersion &.(k).

Concerning the interaction part of the Hamiltonian, two aspects have to be taken into ac-
count, which are described in detail in Ref. [88|

The first is the hard-core repulsion, which prevents the interpenetration of electron shells.
A Lennard-Jones potential with a hard-core diameter of dy. = 2. 144 and a weakly attractive
tail phenomenologically describes the interaction of two atoms of He-3 [88]. The hard-core
constraint of the atoms upon close approach can be captured in a lattice model quite nicely by
introducting a very large local repulsion, i. e. a Hubbard term with a very large U parameter. In
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Figure 2.1.4: First Brillouin zone of the reciprocal space of a triangular lattice, with indicated
high-symmetry points I', K and M. The bare dispersion &.(k) is shown with color
code.

fact, it is reasonable to take the limit U — oco. Thus, double occupation of lattice sites is strictly
forbidden. This allows to project out the corresponding states, which results in a reduction of
the local Hilbert space size from four to three states, as mentioned in Sec. [1.4.2.6]

The second interaction mechanism in He-3 is magnetic ring exchange of multiple parti-
cles. In fact, there is a whole hierarchy of n-particle ring exchange processes, which can be
visualized as permutations of atoms, see Fig. 2.1.3]

Starting from a tightly packed lattice, no exchange at all is possible, essentially because the
surrounding atoms not involved have to be pushed out of their equilibrium positions. However,
the Lennard-Jones potential barrier prevents particles from coming too close to each other.

By slowly increasing the separation between particles, the potential barrier is lowered. Of
the exchange processes discussed here, the four-particle exchange is the first, which becomes
possible. Increasing the lattice spacing further, also three-particle exchange takes place, while
two particle exchange is frustrated up to an even larger lattice spacing. Therefore, geometry
favors higher-order processes. On the other hand, higher-order exchange becomes increasingly
unfavorable due to the length of the path between equilibrium positions.

As a result, exchange processes involving three- and four-particle are favored the most,
depending on the geometry. In particular, in a triangular geometry, and in layered systems of
only a few layers, three-particle exchange is dominant [88].
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Figure 2.1.5: Ring exchange processes on a triangular lattice, involving two, three and four
particles (filled circles), depicted as permutations of spheres. The more particles

are directly involved in the exchange, the smaller is the influence on surrounding
particles (white circles). Figure adapted from Ref. [88.

In general, exchange processes can be described in terms of spin permutations P,. A suit-
able pseudo-Hamiltonian reads [88]]

H==Y Jo(-D"P, Jy>0. (2.1.4)

It follows that exchange of an even number of particles, which is an odd permutation, is
antiferromagnetic. In contrast, exchange processes involving an odd number of particles are
even permutations, and are therefore ferromagnetic [[1035].

More explicitly, the two and three-particle exchange processes, written in terms of spin
operators S, read

1
1
Pije = PiPi= Z(1 4558+ 8+ SiS: +iSi(S % 50)
= 7:\{exch = _JZ SiSj
)
1
where J = 5(6J3 - D).
Note that the imaginary part of P;; cancels in the summation over all possible permutations.
Depending on the particular values of the exchange constants J, and J3, the effective nearest-
neighbor exchange is antiferromagnetic or ferromagnetic. As stated above, the three-particle
ring exchange is dominant in the present case, so that the effective exchange constant J > 0.

The hard-core constraint and the ring exchange can be included in the model via an inter-
action Hamiltonian of the form

N U . .
Hy = lim = ) i (Bog =)= D) Sai-Spy (2.1.6)

U—oo -
@,i {a,ib 8,71
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a and B denote the layer, while i and j are lattice site indices. The notation ({e, i}, {5, j})
denotes distinct pairs of neighboring sites within a single layer (@ = ) and on different layers

(a # B).

In order to facilitate the numerical investigation of the above model, it is assumed that
all correlations involving fermions in the second layer can be neglected. This is justified as
long as the filling of the second layer is much smaller than one; that is, half-filling. In this
case, correlations in the second layer can result at most in a small renormalization of the band
energies. Thus, what remains is a correlated first layer subject to the local repulsion U and
nearest-neighbor magnetic exchange J, which is coupled to an uncorrelated second layer.

The non-local magnetic exchange can be included in the single-site DMFT only at the static
mean-field level. As discussed in Sec. [I.3] this approach is able to describe a possible phase
transition, but fails to capture the relevant fluctuations. It is therefore not appropriate in the
present case. However, using a cluster extension of the DMFT allows to incorporate the ring
exchange directly. In the following, the Cellular DMFT with N, cluster sites is used for the
investigation of the above model. Given the interaction part of the Hamiltonian with both hard-
core constraint and magnetic ring exchange, the CT-HYB algorithm introduced in Sec. [I.4.2]
is the cluster solver of choice.

Because the effective spin-spin interaction resulting from the ring exchange is included
explicitly in the model, already the smallest non-trivial cluster with N. = 2 captures an im-
portant part of the ring exchange physics, despite that fact, that it does not contain a single
ring. Simulating larger clusters allows to systematically include larger parts of the non-local
correlations. Hence, by comparing the results for different cluster geometries, it is possible to
assess the error introduced by the truncation of the interactions.

In order to draw robust conclusions about the thermodynamic limit, a careful extrapolation
of results for different cluster sizes to N, — oo is necessary [69]. However, with the proposed
model making the use of the CT-HYB cluster solver necessary, the number of cluster sites N,
is severely limited. As it turned out during the simulation runs, even simulations for small
clusters in the parameter regime of interest require extensive simulation time. This is due to
another obstacle, the negative sign problem [108]]. In particular, it prohibits the simulation
from accessing very low temperatures for N. > 3, as shown in Fig. [2.1.6] Therefore, only the
cluster geometries shown in Fig. could be investigated. As a consequence, the simula-
tions are restricted to the cluster sizes N, = 1 — 3, where N, = 1 corresponds to the single-site
DMEFT. As indicated above, for the three-site cluster, the inverse temperature St < 50, while
for N. = 1 and 2 inverse temperatures up to St = 60 are simulated, and even higher values,
i. e. lower temperatures, are in principle accessible.
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Figure 2.1.6: Average sign (s) for the cluster with N. = 3 for different inverse temperatures f3,
as a function of chemical potential p.

2.1.5 Numerical Results: Heavy Fermions

In the following, the model is investigated by systematically raising the chemical potential
u. With increasing u, its conjugate variable, the filling, increases as well. To find signatures
of a Fermi liquid, which develops at low temperatures, the first quantity studied here is the
self-energy.

For a Fermi liquid, the imaginary part of the Matsubara self-energy vanishes linearly at the
Fermi energy: Im[2](iw) ~ iw. This is a consequence of the infinite lifetime of quasiparticles
at the Fermi energy. In Fig. the imaginary part of the local self-energy

Y(iw) = % Z > (k, iw) (2.1.7)
k

is shown, for N, = 1 — 3. Starting with the lowest values of u/¢, a linear regime appears at
small frequencies. At larger values of y, the linear behavior develops only at smaller frequen-
cies. However, the last two data sets for each cluster size exhibit significant differences when
compared to the other data. Except for the data at N, = 1 and u/t = 0.05, they do not seem to
obey the linear relationship at all. Instead they seem to extrapolate to a finite value as iw — O.

Before discussing these data points in more detail, first, another quantity is investigated,
which can be equally used to identify a Fermi liquid state: The static magnetic susceptibility y.
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Figure 2.1.7: Imaginary part of the local self-energy at small Matsubara frequencies, for dif-
ferent cluster sizes N, and chemical potential u. The results shown for each
parameter set correspond to the lowest temperatures attainable.

While the low temperature Fermi liquid state has a Pauli susceptibility, 1. e. y ~ const., at high
temperatures the unscreened local moments exhibit a Curie-Weiss susceptibility according to
Eq. (I.I.TI). The results for the static magnetic susceptibility of the f-spins are shown in
Fig.2.1.8] Here, the cluster susceptibility is taken as an approximation to the corresponding
lattice quantity, which becomes exact for large clusters:

N,
C

X=Xy ) = Nic Z<Sf,i5f,j>, (2.1.8)
ij

where (S;; S/, j> = f dr <S 7S, j(0)>

At high temperatures all data exhibit a linear dependence on temperature. This corresponds
to a Curie-Weiss susceptibility, which is the expected behavior, given that at temperatures
above the coherence scale the two layers are decoupled. Hence, the f-spins considered here
represent localized moments, at least to a certain extent. Comparing the data with the idealized
case of isolated spin-1/2 moments, in the single-site case the susceptibility is lowered by the
residual charge fluctuations. These are due to inter- and intralayer hopping, which is not
completely suppressed. For N, = 2 and 3, at lower filling the susceptibility is also suppressed.
However, with increasing particle number the susceptibility becomes enhanced compared to
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Figure 2.1.8: Static cluster f-spin susceptibility, for different cluster sizes N. and chemical
potential u, as a function of temperature. The dashed line is the susceptibility of
isolated spin-1/2 local moments; that is, a Curie law (® = 0).

the isolated spin case. This is a consequence of the ring exchange between f-spins, which is
becoming increasingly important at larger filling, while at the same time the residual screening
due to hopping is more and more suppressed. In total, this gives rise to a positive ordering
temperature or Weiss temperature 6.

At low temperatures most of the data start to deviate substantially from the linear behavior.
This marks the crossover to the Fermi liquid as the temperature crosses the coherence scale
Teon. At T < T, this leads to a constant susceptibility. With increasing filling, T, is shifted
to lower temperatures, and the zero-temperature value of y ; increases accordingly.

However, for N. = 2 and 3, for the two last data sets, which correspond to the highest values
of u, the crossover is clearly absent. Instead, the data still follow the Curie-Weiss law with a
positive Weiss temperature. Compared to the case of isolated moments, the susceptibility is
enhanced due to the ring exchange.

To better quantify the evolution of the Fermi liquid coherence scale, the focus is again put
on the self-energy. The linear coeflicient at small frequencies is connected to the quasiparticle
residue Z (c.f. Eq. (I.1.6)), which is approximated by the first Matsubara frequency value

_ Im[Z(iw,)]
Wy

-1
) ) (2.1.9)
w, =wy =nT

ZzZM:(l
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Figure 2.1.9: Approximate quasiparticle residue Z,, for different inverse temperatures, as a
function of total filling. The dashed lines indicate results, where the imaginary
part of the self-energy is not yet linear in frequency because of the high tem-
perature or where Z, is not well defined because the self-energy is not linear at
all. The black, dashed line is a guide to the eye. It suggests the existence of a
quantum critical point at n = 1.58.

As the temperature decreases, this quantity approaches the true quasiparticle residue, i. e.
Zu(T — 0) — Z, which is in turn related to the coherence scale and effective mass via

Z ~ Toon ~ Mg (2.1.10)

In Fig. the approximate quasiparticle residue Z,, is plotted for the cluster of size
N. = 3. For smaller filling up to n = 1.5, the values of Z,, for the inverse temperature
investigated have already converged to the zero-temperature value Z. This is mirrored by the
imaginary part of the self-energy being almost perfectly linear. Hence, the Fermi liquid is
well established. However, with increasing filling the deviation at higher temperature from
the converged result becomes more apparent, which results from the decreasing coherence
temperature. This becomes equally manifest in the smaller Z values. At larger filling, as was
visible already in the self-energy, the quasiparticles are not well-defined. As the self-energy is
not linear, Z,, is meaningless. The corresponding values are nevertheless included in Fig.
for completeness, but differentiated by the use of dashed lines.

An extrapolation of the trend yields a vanishing Z and T, at a quantum critical point at
n ~ 1.58. Simultaneously, the quasiparticle effective mass has to diverge, i. e. the Kondo
effect breaks down. While the scenario of a Kondo breakdown QCP seems plausible, and is in
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good agreement with the conclusions from the experiments, there are other observables which
have to be taken into account. This is the topic of the next section, while for the moment, the
heavy fermion state is discussed a little further.
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Figure 2.1.10: Momentum-resolved spectral function A(k, w), for N. = 3 and different values
of the chemical potential 4. The inverse temperature is St = 40, except for
u/t = —1.40, where gt = 20.

The coherent heavy fermion state can be visualized quite nicely in the momentum-resolved
spectral function A(k, w). This quantity is obtained by analytical continuation of the lattice
Green’s function from the Matsubara frequencies to real frequencies. As Fig. 2.1.10] shows,
the heavy quasiparticle states are located close to the chemical potential around w = 0, except
for the last panel of Fig. 2.1.10] For pu/t = —1.40 < p, the bandwidth of the quasiparticle
band is quite large. This is also true for the coherence scale, since both quantities are closely
connected. The bandwidth decreases considerably as the chemical potential is raised from
u/t = =140 to u/t = —0.77, which is a consequence of the decrease of the coherence scale.
There is also a small direct hybridization gap at the chemical potential, which prevents the
crossing of the narrow heavy band and the wide second-layer band.

Since the quasiparticle residue is small (Z < 1), only little spectral weight is contained in
the heavy fermion band. There is a broad, incoherent feature far below the chemical potential,
where most of the spectral weight is concentrated.

In the last panel, where ¢ > u., the heavy fermion feature is almost gone, as well as the
hybridization gap at w = 0. In addition, the incoherent part of the spectrum has gained in
intensity, i. e. spectral weight is shifted from the vicinity of the chemical potential to energies
far below w = 0. In the case of a complete breakdown of the Kondo effect, the quasiparticle
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residue Z would go to zero, and the heavy quasiparticle band would have disappeared com-
pletely. However, as Fig. shows, around the chemical potential some spectral weight is
left, which suggests that some residual hybridization remains. As argued in the next section,
this is merely an artifact of the approximation. For N, — oo, the Kondo effect breaks down
completely and the layers perfectly decouple.

2.1.6 Numerical Results: Phase Transition

In the preceding section, beyond a certain threshold value u. of the chemical potential, a
rather abrupt change was observed in several physical properties. In the self-energy, the linear
dependence on frequency was absent. Simultaneously, the f-moments remained unscreened,
which became manifest in the spin susceptibility. In this section, this issue is investigated
using additional observables.

First, in Fig. the first-layer occupation n; = (fis) is plotted. While the result is
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Bt=10 —%
Bt=20
Bt=40 —
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Figure 2.1.11: Occupation of the first-layer (f) sites, for the different cluster sizes N, and
inverse temperatures (3, as a function of chemical potential 4. For N, = 2 and 3
the chemical potential is shifted by a cluster size dependent constant y., as
explained in the main text.

smooth for N, = 1 at all temperatures, at lower temperatures the cluster results exhibit a
strong increase of f-occupation in a narrow range of parameter values. Comparing N. = 2
with N, = 3, the increase in occupation becomes even steeper. This allows to define p. as
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the point of the steepest ascent at low temperatures. The corresponding values are given in
Table 2.1l

N.=1| No=2 | N.=3

-0.44(1) | -0.76(2)

cluster size N,
:uc/ t ‘ -

Table 2.1: Point of steepest ascent of n; with respect to u, with the uncertainty in the last digit
given in brackets.

Along these lines, in Fig. [2.1.12] the total occupation is shown. Here, the different clusters
are compared at fixed temperatures. With increasing cluster size, the occupation is enhanced.
In addition, going from high temperatures to low temperatures, a very strong increase can
be observed for N, = 2 and even more so for N. = 3. By comparison with the black lines
depicting 1 + n,, it becomes clear that this results from the strong increase of ny at u ~ p.
The second-layer occupation increases smoothly across this point. For u > pu., the first layer
is almost completely filled (n; — 1), so thatn — 1 + n,.

1.80
170 |

n o 1.60 f

150 |

/

-0.80 -0.40 0.00 -0.80 -0.40 0.00
wit wt wit

3
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Figure 2.1.12: Total particle number n = ns+n, for different inverse temperatures 5 and cluster
sizes N, as a function of chemical potential . For comparison, 1 +n. is plotted
with black lines. The dashed lines in the right panel indicate the position of .
for N, = 2 (green) and N, = 3 (blue).

As both Figs. 2.1.1T| and 2.1.12] show, the increase in n; is steep. However, for all cluster
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sizes investigated here, it remains continuous. However, from comparing N. = 2 and N, = 3,
it seems plausible that as N, — oo, at u. a discontinuity develops.
In Fig. [2.1.13|the effective f-level position relative to the chemical potential y,

Ag; = &0+ Re[Z(iw — 0)] — u, (2.1.11)

is plotted. It contains information about the effective renormalization of the bare f-level posi-
tion g at low energies due to interaction effects, which is encoded in the zero-frequency real
part of the self-energy. While for N. = 1, there is a smooth decrease with increasing filling,
for the larger clusters a strong drop of the effective f-level develops in a very narrow range
of p-values around p.. Thus, the strong increase of filling around y. can be understood by a
sudden drop of the f-level to a value far below the chemical potential. Again the drop is more
pronounced at lower temperatures and for the larger cluster size.
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Figure 2.1.13: Effective f-level position Ag; as defined in Eq. (2.1.T1), for different inverse
temperatures S and cluster sizes N, as a function of chemical potential p.

As discussed in Sec. [1.4.2.3] the CT-HYB method allows to measure the contribution of
individual cluster states to the cluster density matrix. The occupation of states grouped by sec-
tors of particle number and z-component of the total spin is shown Fig. Across p., the
contribution of different sectors changes significantly. In particular, comparing u = —0.77¢ < y.
and u = —0.75¢ > u., the states with particle number N = 3 gain weight, while states with
N = 0-2 contribute less. Thus, the number of particles in the cluster increases, which mirrors
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the jump in occupation observed above. For N = 3, the sector with a large z-component of the
total spin gain the most. However, since no symmetry-breaking is allowed, states with large
x-component or y-component equally contribute a larger proportion to the density matrix, so
that the S, = +1/2 sectors contribute more as well.
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Figure 2.1.14: Occupation of different sectors of states for N, = 3 at fr = 40. States with
larger particle number and parallel alignment of spins gain weight across ..

To learn more about the character of the putative phase transition, in the following the spin
correlations in the effective cluster between neighboring first-layer sites are investigated. This
observable is given by the equal-time correlation

1
8,80 =~ Z(S 140)S . (0). (2.1.12)

P o<ij>

The sum runs over the N, distinct pairs of neighboring sites < i, j > in the cluster: N, = 1
for two sites, and N, = 3 for three sites. Due to the fact that SU(2) symmetry is preserved, it
follows that

($,8,)=3 (S;S;).

Hence, it is sufficient to measure the correlation in the z-component. In Fig. the spin
correlation is plotted for the two- and three-site clusters. For u < u., with lower temperatures
the spin correlation drops to a rather small value. This is a consequence of the almost complete
screening of the local moments due to the Kondo effect. Crossing u., the behavior changes:
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Figure 2.1.15: Spin correlation between neighboring f-sites on the cluster, for different cluster
sizes N, and inverse temperatures 3, as a function of chemical potential u. For
perfectly aligned spins (S .S ;) = 1/4.

Now the spin correlation takes a large value down to the lowest temperature, which corre-
sponds to a substantial positive, i. e. ferromagnetic correlation between neighboring spins.
This strong enhancement of spin correlation happens across a very narrow y-range around ..
It becomes more pronounced for lower temperatures and the larger cluster. Since a symmetry
breaking is not allowed for in the simulations, a paramagnetic state is found at all fillings.
However, after crossing u > u., strong ferromagnetic fluctuations appear, which could lead to
a breaking of the symmetry.

This allows to conclude that a crossover from a heavy fermion state at small filling to a
ferromagnetic state at large filling is observed, which takes place in a very narrow u-range.
This observation is consistent for both cluster sizes investigated. The ascent observed in the
data for the f-occupation number and the spin correlation becomes even steeper for the larger
cluster.

This suggests that extrapolating of the trends observed to the thermodynamic limit N, — oo,
the transition becomes discontinuous. Thus, the heavy fermion phase and a truly ferromag-
netic state are separated by a discontinuous transition at a critical chemical potential ..
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2.1.7 Discussion

The numerical simulations of the PAM (I.1.12), adapted to the He-3 bilayers in Eq. (2.1.1)
and Eq. (2.1.6), reveal a number of interesting observations. The main results are summarized
in the phase diagram of Fig.

First, the onset of the coherent Fermi liquid can be observed. It becomes manifest in a
linear dependence of the self-energy on frequency. This is accompanied by a screening of the
first-layer moments due to the Kondo effect, which becomes apparent in the spin susceptibility.

An analysis of the evolution of the quasiparticle residue Z with increasing filling reveals,
that the coherence scale T,,, becomes increasingly suppressed. Hence, the effective mass
Meg ~ 7!

coh
the experimentally observed development of the heavy fermion state with increasing filling.

increases, and gives rise to a heavy Fermi liquid. This is in good agreement with

An extrapolation of the quasiparticle residue Z ~ T, leads to a putative Kondo breakdown
QCP at a filling ngcp = 1.58.

However, for values of the chemical potential larger than a threshold p., the self-energy as
well as the spin susceptibility deviate from the Fermi liquid behavior. In particular, the linear
part of the self-energy is absent down to the lowest temperatures attainable. Meanwhile, the
spin susceptibility follows a Curie-Weiss law. However, a phase transition is implausible for
finite size clusters. Instead, the local moments at the cluster sites, which are coupled due to the
ferromagnetic exchange J, eventually become screened. However, the coherence temperature
is strongly suppressed for larger clusters, so that it cannot be accessed with the numerical
method used here.

In conjunction with the disappearance of the Fermi liquid signatures, a rather steep increase
in the filling of the first-layer (n5) is observed for the cluster simulations around u = .. This
behavior is absent in the single-sitt DMFT case. The increase becomes more pronounced at
lower temperatures and for the larger cluster. This hints at a discontinuity in the occupation
of the first-layer sites as N. — oo, i. e. a first-order transition. The spin-spin correlation
in the first-layer exhibits a similiar behavior; that is, a strong enhancement of short-ranged
ferromagnetic spin fluctuations in a very narrow range of u-values.

All the above points are consistent for the cluster sizes investigated. Hence, they hint at
a first-order phase transition in the limit N. — oco. The temperature scale for the screening
of the local moments on the N, cluster sites is increasingly suppressed, and vanishes in the
thermodynamic limit. Hence, screening is not possible, and the Kondo effect breaks down in
a discontinuous manner. In the process, the Fermi liquid state of composite quasiparticles is
replaced by a ferromagnetic state of the first-layer localized moments, with the second layer
as a fluid overlayer. The effective hybridization between the layers is completely suppressed,
so that first and second layer are decoupled. On a finite size cluster, the transition is always a
continuous crossover, leaving a small residual hybridization between the two layers.
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Figure 2.1.16: Phase diagram of the model for the He-3 bilayer. In the incoherent phase,
there is a positive (ferromagnetic) Weiss temperature 6. Below the coherence
temperature 7o, the heavy fermion state (HF) forms. a) At a critical chemical
potential u., a first-order Kondo breakdown transition (KB) to a ferromagnetic
state (F) takes place in the first layer. b) In terms of filling, the transition is
mirrored by a phase separation (PS) for n > n;. Extrapolation of the coherence
scale yields a putative QCP at nycp.

The first-order transition is a consequence of the competition between Fermi liquid co-
herence, characterized by T, and the ferromagnetic exchange with an effective coupling
strength J* = J + Jag. Jar < O is the antiferromagnetic coupling due to direct and indirect
virtual exchange processes. As T, is suppressed with increasing filling, eventually the en-
ergy gain due to the ferromagnetic alignment of spins becomes comparable to or larger than
the gain from forming composite quasiparticles. When this is the case, the ferromagnetic
alignment of f-spins becomes favorable, and the Kondo effect breaks down.

By comparison with the experimental findings, the numerical results allow for the following
conclusion. The intervening phase, which preempts the experimental QCP, can be understood
as resulting from the first-order transition between two competing ground states: the Fermi
liquid state at lower density and ferromagnetic state at higher density. In the simulations, the
tuning parameter is the chemical potential, which couples to the density, while in the experi-
ments the density is tuned directly. Translating the simulation results of a first-order transition
at a critical chemical potential y,. to a description in terms of the density (c.f. Fig.[2.1.16), it is
concluded that the intervening phase is in fact the result of a phase separation. In this range of
densities, the two phases coexist. The proportion each phase occupies depends on the filling.
This interpretation is consistent with a continuous onset of a finite sample magnetization at
the lowest temperatures, which is found for densities n3 > n;.

In summary, the model for bilayers of He-3 investigated here is able to capture important
aspects of the experimental results. While at smaller filling the heavy fermion phase is recov-
ered, at larger filling the consistent results for different cluster sizes strongly hint at a first-order
transition in the thermodynamic limit. This allows to interpret the observed intervening phase
at larger filling in terms of a phase separation.
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2.2 Topological Kondo Insulators

2.2.1 Introduction

In heavy fermion systems, the relevant degrees of freedom are strongly correlated, almost lo-
calized fermions, e.g. f-electrons, and weakly correlated, delocalized fermions, e.g. conduc-
tion electrons. The two fermion species hybridize, giving rise to a coherent Fermi liquid state
of composite quasiparticles. With increasing interaction strength, the quasiparticle effective
mass is enhanced, while the width of the quasiparticle band decreases. Hence, the character-
istic energy scale of Fermi liquid coherence, the coherence temperature 7, is small. On the
other hand, in many heavy fermion materials, the almost localized electrons originate from
f-orbitals of rare-earth elements like Ce, where spin-orbit coupling is strong. Hence, for suf-
ficiently large correlation effects, the width of the quasiparticle band can become smaller than
the characteristic energy scale of spin-orbit coupling. In this case, spin-orbit coupling has a
significant influence on the properties of the Fermi liquid state.

In particular, as was proposed by M. Dzero et al. in Refs. [30/and [31] in the case of Kondo
insulators, the spin-orbit coupling can give rise to a topologically non-trivial band structure;
that is, a topological Kondo insulator. Just like the conventional Kondo insulator, this state
has to be adiabatically connected to a non-interacting band insulator. However, here the non-
interacting state is a topological insulator. The authors hint at the possibility, that such a state
might indeed be realized in Kondo insulating materials like SmBg, YbB, and Ce;Bi Pt;.

The prospect of a topological Kondo insulator sounds promising, as it combines the compli-
cated temperature dependence of heavy fermions with the intriguing properties of topological
states of matter. As discussed in Sec. [2.2.2] the proposal sparked a number of experimental
investigations on candidate materials for a topological Kondo insulator. In particular, expec-
tations are high, that this new perspective can solve some of the open questions in the field
of heavy fermion physics. The aim of Sec. [2.2.3]is to review some theoretical results for
topological Kondo insulators. In Sec. [2.2.4] a simple model for topological Kondo insulators
is devised, which takes spin-orbit coupling and interaction effects into account. After that the
model is investigated with the help of DMFT+CTQMC, and sections [2.2.5| and [2.2.6] present
different aspects of the numerical results. Finally, Sec. summarizes the findings on
topological Kondo insulators.

Part of the results presented here appeared in the publications J. Werner and F. F. Assaad,
Phys. Rev. B 88, 035113 (2013) and J. Werner and F. F. Assaad, Phys. Rev. B 89, 245119
(2014).
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2.2.2 Experimental Results

In this section the most important experimental results for topological Kondo insulators are
summarized. The focus is on SmBg, which is the most promising candidate material for the
realization of such a state [29]].

SmBg¢ has been investigated extensively in the past [87]. Of particular importance is the
fact, that SmByg 1s a mixed valence material. Hence, the material changes valence while the
temperature is lowered into the Kondo insulating regime.

One of the unsolved mysteries is the temperature dependence of the resistivity, which does
not fit the picture of a insulator. In particular, while exhibiting an exponential dependence in
an intermediate temperature range, the resistivity saturates at the lowest temperatures [3].

In the following, only recent results concerned in one way or another with the topological
character of the material are presented briefly. One of the challenges present in different
investigations is to differentiate between experimental signatures originating from the surface
and bulk effects [[70, [74, [128]].

The method of choice to reveal possible surface state is Angle Resolved Photoemission
Spectroscopy (ARPES), which provides direct access to the occupied part of the momentum-
resolved spectral density. The sensitivity to the surface can be tuned by the photon energy.

Following the proposal of topological Kondo insulators, the renewed interest in SmBg¢ lead
to a series of ARPES investigations [26]. Reaching the energy resolution necessary in order
to detect surface states at low enough temperature proved to be a major barrier [32, [126].
Dispersive in-gap states were found [71], which appeared only at temperatures significantly
lower than the characteristic temperature for the formation of the hybridization gap [126]].
The surface states were robust against thermal recycling [74], favoring the interpretation of
a topological origin. At the same time, a significant redistribution of spectral weight was
observed during the gap formation, where conduction band states shift out of the gap. This
signifies the importance of charge fluctuations in this mixed-valence compound [70]].

Relating ARPES results with transport can provide additional, valuable insights. The tem-
perature at which the conduction band crosses the Fermi level and the hybridization gap forms
was found to coincide with a sign change of the Hall coefficient. In addition, the bulk con-
ductivity and ARPES intensity at the Fermi level were found to vanish in a very similar fash-
ion [27]]. Besides these bulk properties, a mapping of the Fermi surface revealed an odd num-
ber of pockets around the high-symmetry points X and I of the surface Brillouin zone [54}[74].

A property of SmBg, which complicates interpreting ARPES results, is that different surface
terminations are possible. Hence, depending on the termination, trivial metallic surface states
might arise, from B-2p dangling bonds [[133]].

Other experimental probes which were employed to study SmB¢ include Point Contact
Spectroscopy (PCS) [128] and Scanning Tunneling Spectroscopy (STS) [92} [132], which can
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access local electron states, the latter with very high spatial resolution. In these works, the
formation of the bulk gap and associated hybridizated bands is observed around the lattice co-
herence temperature. In addition, in Ref. [132]it was found that different surface morphologies
to different spectral features. However a robust residual spectral weight at the Fermi level was
found down to the lowest temperatures irrespective of the surface [92].

Quantum oscillation experiments relying on the de Haas-van Alphen effect, which is absent
for an insulator, can provide valuable insights into the Fermi surface topology. In Ref. 67, two
Fermi surface features were found. Both exhibit a small effective mass m.g ~ 0.1m, consistent
with a Dirac dispersion of the relevant states, and the chemical potential being located close
to the crossing point. Plotting the highest occupied Landau level as a function of magnetic
field and extrapolating to infinite field strength yields an intercept y = —1/2, characteristic of
a topological state.

Another hallmark of topological insulators is anomalous transport properties, which result
from topological surface states. In particular, a local resistivity or conductivity as described by
Ohm’s law is not a valid notion in topological insulators. Experiments devised to distinguish
bulk from surface conductance by using a special sample geometry found a crossover from
three-dimensional to two-dimensional conductance at T ~ 4K [125]]. Different scenarios of
conventional, non-topological origin of the surface conductance were discussed, but found too
fragile to explain the robustness of the effect. In particular, doping SmB¢ with non-magnetic
Y and Yb impurity atoms cannot destroy the surface effect, as found by investigating the
resistance ratio for different sample thicknesses [39]. However, doping with magnetic Gd
impurities, hence destroying time-reversal symmetry, leads to a bulk-like result.

Hall effect measurements found a similar result, namely that at high temperature, the Hall
resistance differs between different sample geometries, but converges to the same value at low
temperatures [58]]. Measurements at very low temperatures found a saturation of the resistance
below T' = 4K, leading to a plateau down to the lowest temperature 7 = 20mK. In addition, in
a magnetic field oriented perpendicular to the surface, a dip in the magnetoresistance around
zero field was observed, which is absent for in-plane orientation. This hints at weak antilocal-
ization due to the locking of spin and momentum found in topological surface states [104]. In
another work, a surface-roughness dependence of the conductivity was observed, which was
interpreted in terms of a coexistence of trivial and non-trivial surface states [22].

2.2.3 Theoretical Results

In the presence of spin-orbit coupling, f-electron states are characterized by the total angu-
lar momentum J and the z-component m,;. In contrast, the conduction electron states, where
the spin-orbit interaction is small, are characterized by spin o. In order to determine the hy-
bridization amplitude between f-electrons and conduction electrons, the f-orbital Wannier
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states have to be decomposed in terms of the plane-wave Bloch states. The different symme-
tries of the f-electron and conduction electron states lead to a non-diagonal structure of the
hybridization amplitude in the hybridization part of the Hamiltonian [30]

Whyb = Z Vij,O'aéZo—fj,a + h.c.

i,J,0,a

Vijga = V D oK) exp (i (R; = R)) ),
k

@, (k) is the momentum-dependent form factor, which is given by the overlap between the
f-electron and conduction electron states, and is a general (2J + 1) X 2 matrix.

The degenerate (2J + 1)-multiplet of the f-states is split in the presence of a crystal electric
field (CEF), with the splitting depending on the particular crystal symmetry. For half-integer
values of J, the presence of time-reversal symmetry guarantees, that the ground-state is at least
a Kramer’s doublet.

The angular momentum states for f-electron Kondo insulators are J = 5/2, which are the
most relevant, and J = 7/2. In a cubic environment, the CEF splits the sixfold degenerate
J = 5/2 multiplet into a doublet of I'; symmetry and a I's quartet [9]. For a tetragonal lattice
symmetry, the quartet is split, resulting in three doublets.

In Ref. [107 a detailed derivation of the form factor is given. The basic steps of the derivation
and the result are reproduced here for later use. The hybridization amplitude V;; ., is basically
the overlap between a conduction electron state |io-) at site i with spin orientation o and an
f-electron state | jar) at site j in the state a of the multiplet of total angular momentum J = 5/2
split by the CEF.

Vij,o‘a = <lO'|_]CZ> (221)

By successively decomposing the states in suitable basis states as described below, one obtains
the expression

3 5/2
<ia|ja>=2(<z‘a|ma>x 2 (Unaljmmx >, <jmm|jm,>x<jm]|ja>]]. (22.2)

1,0 mp=-3 my=-5/2

Here, since the system has cubic symmetry, | jno) is the basis of orbital angular momentum
L = 3 cubic harmonics at site j, |jmyo) are L = 3 spherical harmonics, and |jm,) are
total angular momentum J = 5/2 states. The matrix elements (io| jno) are overlap integrals
between s-orbitals and f-orbitals centered at different sites, which have been estimated in
Ref. [103. The coefficients (jno | jm; o) decompose the spherical harmonics in terms of cubic
harmonics, and (jm o | jm;) are Clebsch-Gordan coefficients. Finally, (jm;|ja) can be read
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of from the CEF multiplet in a cubic environment [9],

IT7.) = \1/6] +5/2) — v/5/6] +3/2) (2.2.3)

T = {|F8(1),¢> = V5/6| £5/2) + V1/6| +3/2)
o) =
T's2)+) = | £1/2)

Collecting all the coefficients, performing the internal summations in Eq. (2.2.2) and a Fourier
transform, the form factor can be written using the vector of Pauli matrices o = (o, 0y, 07;)

(k) = d(k) o o (2.2.4)
where dr;(k) =0
drs (k) = (2 sin(k,), 2 sin(k,), 0)

drsy(k) = \/1/3 (=2 sin(k,), 2 sin(k,), 4 sin(k,)) .

All additional prefactors are included in the definition of the hybridization amplitude V.

The simplest possible case of a topological Kondo insulator is obtained by taking only one
of the I'g doublets into account. This amounts to a single Kramer’s doublet coupled to a single
conduction band. This case was discussed in Ref. [30] on a cubic lattice on the level of
an effective, mean-field Hamiltonian. The key parameter, which determines the state of the
system, is the bare f-orbital energy ;. As Fig. shows, depending on the position of &,
either a topological insulator (strong or weak) or a trivial insulator is realized, with metallic
states at the transition points. In addition, for a system with open boundaries, the presence of

NI STI

WTI ‘ STI ‘ NI

-6.0 -2.0 2.0 6.0
gt
Figure 2.2.1: Different phases of a simple model for topological Kondo insulator in three di-
mensions. Depending on the position of the f-band g, relative to the conduc-
tion band, a trivial insulator (NI), a strong topological insulator (STI) or a weak
topological insulator may be realized. The black vertical lines denote the phase
transition points, where the band gap closes. Adapted from Ref. [31.

a metallic surface state was shown by the direct calculation of the energy spectrum.

In Ref. 1107, a phase diagram for the same model was obtained within the slave-boson
mean-field approach. For a fixed value of the f-orbital energy &,, with increasing hybridiza-
tion strength V, a sequence of phase transitions between Mott insulator, strong and weak topo-
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logical Kondo insulator and conventional Kondo insulator was found. In addition, interaction-
driven quantum phase transitions between different topologically trivial and non-trivial phases
were discussed [66].

While the approach of a single Kramer’s doublet is appealing due to its simplicity, a treat-
ment geared towards realistic topological Kondo insulating materials has to take into account
the cubic symmetry usually found in these compounds. The full I'y quartet of lowest lying
f-states has to be included, which hybridizes with an e, quartet of d-states. As discussed in
Ref. 2 for three spatial dimensions within a slave-boson mean-field approximation, in this
case, three Dirac cones at X/Y and M are possible. Being an odd number, this is a prerequisite
for a non-trivial band topology. Compared to Fig. [2.2.1] the weak topological insulator is
eliminated. Instead, the range of parameters leading to a strong T1 is enlarged.

In Ref. 68| the candidate material SmB¢ was investigated within the LDA+Gutzwiller ap-
proach, which combines a first-principle band structure calculation with an approximate treat-
ment of correlation effects. By calculating the parities in Eq. (I.2.10), the material was shown
to be a topological insulator. Compared to the LDA results, the inclusion of correlations within
the Gutzwiller variational ansatz shifts the J = 7/2 states up in energy, such that only J = 5/2
and 5d bands prevail around the Fermi level.

A similar study using LDA+Gutzwiller and LDA+DMFT of YbB¢ and YbB;2 found that
the former is a topological insulator comparable to SmBg, while the latter is a realization of a
topological crystalline insulator [33]] with a mirror Chern number of 2 [[117].

However, the realistic modeling using a sophisticated many-body method like DMFT brings
about a number of serious complications, in particular due to the Hund’s rule exchange and the
increased size of the local Hilbert space. Therefore, in the next section a simple model is in-
troduced, which neglects material-specific aspects, but captures the fundamental and universal
properties of topological insulators.

2.2.4 A Model for Topological Kondo Insulators

In the following, a simple model for topological Kondo insulators is devised. It is based on a
single Kramer’s doublet of f-states and a single conduction band. As a starting point, again
the Periodic Anderson Model in two spatial dimensions is considered, now on a square lattice.
Taking spin-orbit coupling into account, one can derive the following one-particle parameters
of the Hamiltonian of Eq. (I.1.12)

£.(k) = =21, (cos(ky) + cos(k,)) (2.2.5)
£7(k) = &9 = 2t7 (cos(ky) + cos(ky))
V(k) = V. (k)
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2.2 Topological Kondo Insulators

The form factor ®(k) is constructed according to Eq. (2.2.4), where the f-state is assumed to
have I's;) symmetry. Therefore, the vector d(k) takes the form

d(k) = (d.(k). dy(k). d.(k)) = (2 sin(k,), 2 sin(k,),0). (2.2.6)

Inserting the parameters from Eq. (2.2.5) in the general expression of Eq. (I.1.15)), the one-
particle part of the Hamiltonian reads

—2t.(cy + cy) 0 0 2Vep(sy — isy)
A n 0 = 2t.(cy +¢)) 2V.e(s, + isy) 0 |f¢
7_{(0) — AT ¥ y f Y Tk ) 227
TKI Zk: € ) 0 2Vilsy—is,) & —2tce+ey) 0 |\F 22.7)
2Vep(sy +isy) 0 0 & —2tp(cytcy)

Here, the shorthand notation ¢; = cos(k;), s; = sin(k;) is used. As one can easily see, the
Hamiltonian splits into two independent blocks, which are in fact Kramer’s conjugate.

The model for the topological Kondo insulator as defined in Eq. (2.2.3) can be related to
another prototypical model for topological insulators, the BHZ model, which was introduced
in Sec. By appropriately choosing model parameters, such that

t; = —t., Vor/t = A, and g9/t = —4m (2.2.8)

the model of Eq. (2.2.5) can be transformed into Eq. (1.2.5). Even though the motivation
of the BHZ model is different from the present situation, some of the results for this model
certainly carry over, in particular in the weak coupling regime. However, in this work the main
focus is on the strongly correlated regime.

For the current model, a Hubbard interaction on the f-orbitals is considered,

Hy =U Y figpifipy (2.2.9)
Y
= ﬂTKI = ﬂTKI + 7"[1.
To investigate the topological properties of the model, the topological invariant Z, is cal-
culated from the parity eigenvalues at the high-symmetry points I'; using Eq. (I.2.10). As the

form factor ® vanishes at the I';, following Ref. 30, the one-particle part of the Hamiltonian
can be written as

E;, 06
hWiIH=—+—=P 2.2.10
=5+ (2.2.10)
where P = diag(+1, +1, -1, —1). (2.2.11)

Hence, one obtains the following expression for the Z, topological invariant v

(=1)" = sign(4t; — 41, — &) sign(4t, — 4ty — &9) sign(—gp) sign(—&o) . (2.2.12)
———
or Om Ox Oy
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Figure 2.2.2: Phase diagram of the topological Hamiltonian in two dimensions, as a function
of the bare f-level position gy and the renormalization constant X,, which results
from the interaction. Depending on the choice of parameters, a trivial normal
insulator (NI) as well as the non-trivial I'-phase and M-phase may be realized.
At Xy = 0 it contains the non-interacting case as well. At the black transition
lines the argument of at least one sign function in Eq. (2.2.13)) is zero.

The different topological and non-topological phases arising in the model, which are con-
tained in the above expression, are discussed in the next section in the context of a DMFT
investigation of the full, interacting model for topological Kondo insulators.

In the DMFT, the topological Hamiltonian is simplified according to Eq. (1.3.9). Hence,
the only difference arising due to correlations in Eq. (2.2.12)) is that one has to replace
&y — & + 2o, SO that

(=1)" = sign(4t; — 4t. — gy — Xo) sign(4t. — 4ty — g9 — o) sign(—gp — %0)>. (2.2.13)

During this work, the c-hopping amplitude ¢, is chosen as the energy unit, i.e. . =t = 1,
while the f-hopping amplitude and hybridization are chosen as t; = —0.2¢ and Vs = 0.4z. The
bare f-orbital energy & is varied.

For this situation, using the result from Eq. (2.2.13), one is able to calculate the topological
ground state phase diagram of the current model in terms of the f-level position &y and the
renormalization constant X. It is shown in Fig. [2.2.2]

As already expected from the discussion in Sec. [1.2.3.2] about the space-group classifica-
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2.2 Topological Kondo Insulators

tion of topological states, three distinct phases are realized: A conventional band insulator with
parities (+1,+1, +1,+1), as well as two topological phases, the I'-phase with (-1, +1,+1, +1)
and the M-phase with (—1,+1,-1,-1) = (+1,—-1,+1,+1). In principle, an additional phase,
the X-Y-phase is possible, which is a so-called topological crystalline insulator [33]]. The cor-
responding parities are (+1, +1,—1, —1), which yields a topological invariant v = 0. However,
it can only be realized by including hopping processes between next-nearest neighbors [99].

6.00
5.00
4.00
3.00
2.00
o/t
1.00
0.00
-1.00

-2.00

-3.00

Figure 2.2.3: Energy spectrum a) for open boundaries, with N, = 16, and b) for periodic
boundaries, as a function of momentum in the surface and bulk Brillouin zone.
The dashed lines correspond to the case with no hybridization (V¢ = 0).

In Fig. [2.2.3] the energy spectrum of the non-interacting Hamiltonian (2.2.5)) is shown for
g/t = —2.0. This point in parameter space is located in the I'-phase, since calculating the
parity eigenvalues ¢; yields

(5F,5M,6X,5Y) = (_1’+l’+19+1)

=>v=+1

The topological character of the state becomes apparent in the left panel with open boundary
conditions, where topological surface states crossing at I' can be seen. Comparing in the
right panel the cases with hybridization (solid lines) and without hybridization (dashed lines)
reveals the band inversion between I" with parity —1 and X/Y and M, which have parity +1, as
well as the vanishing of the form factor ®(k) at all of these high-symmetry points. Hence, the

85



2 Application to Heavy Fermion Systems

system has a non-trivial band topology, and by placing the chemical potential inside the bulk
band gap, i. e. the insulating case, a topological insulator is realized.

2.2.5 Topological Phase Transitions

In the previous discussion it became clear that the character of the phase, topological or not,
depends on the model’s bare parameters as well as on the renormalization due to correlations.
The second point brings about the possibility of driving the system through phase transitions
by changing the interaction strength.

Here, results of DMFT studies of the model introduced above are presented. The auxiliary
impurity problem of the DMFT is solved by means of the CT-HYB method, which allows
to study the model from U = O up to very high interaction strength, and at sufficiently low
temperatures to gain insight into the ground state.

To proceed, different non-interacting starting points are chosen, namely i) g9/t = —2.0
(I"-phase) as well as ii) g3/t = 1.0 (M-phase) and iii) &)/t = —6.0 (NI). In each case, the
chemical potential u is located inside the bulk band gap, such that the system is half-filled,
with one filled band below u and another empty band above u, and is hence an insulator.

First, the evolution of the bulk band gap A, is studied. While U is adiabatically increased,
the chemical potential i is adapted in order to stay in the middle of the band gap. The band gap
size is determined by A, = A, — Ay,, where Ay, (Ay,) is the energy difference from the lowest
unoccupied (highest occupied) state to the chemical potential. The energy differences can be
obtained from the decay of the local imaginary time Green’s function by fitting appropriate
exponentials in the range 7 < 5/2 and 7 > 5/2:

et T<B/2

(2.2.14)
e_AIu (ﬂ_T), T> ﬁ/z

Gloc(T) ~ {
1
where G (T) = N Zk: Gk, 7).

This is exemplified in Fig. In order to get a robust estimate for the band gap, the
temperature has to be T < A,. For T > A,, the exponential decay cannot be resolved due to
thermal broadening.

The result for the band gap size of case i) is shown in Fig. [2.2.4b] As mentioned in the
beginning, the non-interacting starting point is located in the I'-phase. With increasing of the
interaction strength U, the gap size starts to decrease. Approaching U/t = 4.0, the gap size
becomes so small that eventually the temperature necessary to reliably determine A, cannot be
reached. However, as can be seen in Fig. [2.2.4a] at U/t = 4.0 there is clearly no exponential
dependence on 7 around /2, even at the very high inverse temperature 8/t = 300. Instead, the
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Figure 2.2.4: a) local Green’s function for case 1) (g9/t = —2.0) at different U and 8. For U/t =
2.0 the decay of the Green’s function around 7 = /2 is fitted by exponentials
shown with dashed and dotted lines. For U/t = 4.0, there is a plateau around
T = /2, which indicates the presence of spectral weight at the Fermi level;
that is, a closing of the band gap. b) Size of the bulk band gap as a function of
interaction strength U/t. The solid line is a guide to the eye.

plateau around 3/2 is a clear signature of finite spectral weight located right at the chemical
potential. Further increasing U, the gap size starts to increase again. From these observations
it becomes clear that in fact the band gap closes at U/t = 4.0.

In order to better understand what happens at U/t = 4.0, one has to turn to the phase diagram
of Fig. [2.2.2] For this, the renormalization constant X has to be obtained from extrapolation of
the self-energy to zero frequency. This quantity is shown in Fig. 2.2.5a] While the imaginary
part vanishes linearly, the real part extrapolates to a constant as w, — 0. In Fig. the
results for 2y and the effective mass, i. e. the slope of the imaginary part, are plotted. By
looking specifically for the point U/t = 4.0, one sees that here the value of % is precisely
at the transition line between the I'-phase and M-phase, which is located at £,/t = 2.0. In
conclusion, a quantum phase transition induced by the interactions is found, where the system
is driven from the non-interacting starting point of the I'-phase via a band gap closing into the
M-phase.

In the following, it is shown that the system is indeed in the M-phase for interactions
U/t > 4.0. To this end, the adiabatical connection to the non-interacting M-phase has to
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Figure 2.2.5: a) Real and imaginary part of the local self-energy for case i) (gy/t = =2.0) at
U/t = 2.0 and Bt = 100. b) Effective mass and renormalization constant X,
for case 1). The solid lines are guides to the eye. The gray horizontal line at
Yo/t = +2.0 indicates the transition line predicted from Eq. (2.2.13).

be established. To do so, the case ii) is considered. To adiabatically connect it to the case
i) at U/t > 4.0, U has to be increased slowly. At the same time the bare f-level has to be
shifted from the initial value &)/t = 1.0 to &/t = —2.0, while keeping track of the band gap
size. That this approach does indeed work out can be seen in Fig. Along the path
starting at g/t = +1.0, the band gap never closes. Meanwhile, the closing of the gap at
(e0/t = =2.0,Zy/t = +2.0) is the transition point discussed above. Both paths meet at around
(—2.0,+2.3). Thus, the adiabatical connection from case i) at U/t > 4.0, which corresponds to
%o/t > 2.0, to the non-interacting M-phase is established. Hence, this proves that by tuning the
interaction, the system can be driven through a phase transition between distinct topological
phases, namely from the I'-phase to the M-phase.

2.2.6 Topological Heavy Fermion Phase
2.2.6.1 Bulk Topological Kondo insulator

In this section, the focus is put on case iii) (gy/t = —6.0), which has not yet been discussed.
Here, the non-interacting starting point is located in the trivial phase (NI). By increasing the
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Figure 2.2.6: Part of the phase diagram of Fig. , superimposed with the size of the band
gap color-coded along the paths in parameter space which correspond to the
cases 1) and iii).

interaction strength U, a band gap closing at U/t ~ 1.2 is found, as Fig. shows. At
the same time, the renormalization constant X, crosses the transition line from the NI-phase
to the I'-phase, which can be seen in Fig. By the reasoning already applied above, it
is concluded that in case iii) it is possible to drive a transition from the NI-phase to I'-phase
by changing the interaction. While it is not proven here, there is no doubt that an adiabatical
connection to the non-interacting I'-phase is possible.

Beyond the transition, the band gap starts to grow up to U/t ~ 3.0, where it again decreases
in size. For U/t > 8.0 it becomes very small. At the same time, the renormalization constant
¥, while approaching the value of the transition to the M-phase, seems to saturate at a some-
what smaller value. In contrast, the effective mass starts to grow quickly, and for U/t = 8.0
takes on very large values. In fact, it seems to diverge on approaching U/t = 9.0. This could
in principle be understood in the framework of a Mott transition. However, within the DMFT
approximation, it is more reasonable to assume that the effective mass does not diverge, hence
the coherence temperature does not vanish: It just takes a very small values. Thus, the ground
state is still a Fermi liquid. A more thoroughly founded answer about the nature of the state
for U/t > 9.0 can only be found by using methods that go beyond the DMFT.

Therefore, no definitive statements is made here on the nature of phase transition. However,
in order to shed some light on this issue, the range of parameters in the vicinity of the apparent
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Figure 2.2.7: Evolution as a function of interaction strength U for case iii) (gy/t = —6.0) of

a) bulk gap size and, b) effective mass and renormalization constant. The solid
lines are guides to the eye. The gray lines at Xy/f = 1.2 and %/t = 6.0 mark the
transitions from NI-phase to I'-phase and from I'-phase to M-phase, respectively.

divergence is studied in more detail below. Here, the effective mass is large, but clearly finite.

The phase diagram of Fig. summarizes the results for the bulk of the topological
Kondo insulators. It shows the different phases predicted by the topological Hamiltonian,
and the numerically found band gap size. Most of the predicted phase transitions can indeed
be identified in our simulation results, indicated by the band gap closing coinciding with the
transition lines between distinct phases. The shaded region indicates the possible Mott phase.

To find out more about the region close to the apparent phase transition, the possibility
of local moment formation in the f-orbitals at high temperatures is investigated, which is a
prerequisite for the coherent heavy fermion state at low temperatures.

To this end, the quantity
_ (Appfipy)

(B )(hyy)

is studied. Here, (fi;,) is the occupation of the f-orbital with spin o, and (fis;fis;) is the
double occupancy. In the non-interacting limit ® = 0, while a perfect local moment yields
® = 1, because the double occupancy is completely suppressed. In Fig. [2.2.9a] the quantity
O is plotted as function of U. It grows slowly, such that at the transition from the normal

@ = (2.2.15)
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Figure 2.2.8: Complete phase diagram of the model for the topological Kondo insulators. The
numerically found band gap size is included in the same fashion as in Fig. [2.2.6]
for the cases i) to iii).

insulator to the I'-phase at U/t ~ 1.2, there are almost no correlation effects visible. Hence,
this transition can be understood equally in a mean-field decoupling of the interaction Hamil-
tonian H ; [111]. With increasing U and decreasing filling of the f-orbitals, correlation effects
become more pronounced. In particular, as the f-orbital occupancy ny = ns; +ny| approaches
half-filling, ® is getting closer to 1.

In Fig. [2.2.9b] the evolution of @ is tracked as the temperature changes. Starting at very high
temperatures, where correlations play hardly any role, ® increases, and reaches a maximal
value before decreasing at lower temperature and finally saturating as 7 — 0. From this
behavior, one can define a temperature scale 7, as

O(Ty) =1/2, (2.2.16)

which tracks the onset of local moment formation. In this way, it is possible to define 7, for
parameters U/t > 7.0.

Hence, the ingredients for a heavy fermion state are complete: The f-orbital local moments
formed below T hybridize with delocalized conduction electrons, thereby creating composite
quasiparticles as the temperature becomes lower than the coherence scale 7o, < 7.

As was already visible in Fig. [2.2.7b] in the vicinity of the putative Mott transition, the
effective quasiparticle mass can take quite large values. This results from a large renormaliza-
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Figure 2.2.9: a) f-orbital occupancy, double occupancy and ® defined in Eq. for the
case iil) (g9/t = —6.0), as a function of interaction strength U, at the lowest
temperatures. b) Evolution of ® with temperature for a range of values of U.
The solid gray line indicates the threshold value for defining 7, in Eq. (2.2.16).

tion of the bands due to correlations, which becomes visible quite convincingly in the spectral
function. This quantity is shown in Fig. The left panel corresponds to the weakly cor-
related system close to the transition from NI-phase to I'-phase: The bulk band gap is almost
closed at I', where the band inversion takes place. The other panels correspond to the I'-phase.
For moderate correlations (U/t = 5.0), the bands are becoming increasingly flat around the
band gap. However, the upper Hubbard band is located close to the chemical potential, so that
charge fluctuations still play a significant role. In the strongly correlated case (U/t = 8.4), the
renormalization leads to very flat heavy fermion bands. Hence, the band gap is very small, in
particular around X/Y. There the band gap has to close and reopen in order to perform the
transition to the M-phase. As was discussed in the previous section, it is not clear whether
this phase transition takes place at all. At least, since Ty, is rather small in the heavy fermion
regime, one cannot rule out the possibility that it is superseded by a magnetic scale J.

In the heavy fermion regime, the lower and upper Hubbard band are already well formed,
containing a significant portion of spectral weight, with only little spectral weight ~ Z left
in the quasiparticle bands. However, even with the large renormalization of the bulk bands
and band gap, and the small quasiparticle fraction Z, the state is still adiabatically connected
to the non-interacting state. What is exciting here is that this non-interacting state is not a
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Figure 2.2.10: Spectral function for case iii) (¢y/t = —6.0) for different values of U at the low-
est temperatures. The second row of plots shows the frequency range around
w = 0 in more detail.

conventional band insulator, but rather a topological insulator. Since the topological character
of the state is preserved, in the presence of interactions and at half filling the system is hence
in a topological heavy fermion state; that is, a topological Kondo insulator.

As discussed in Sec. [2.2.6.3] due to its topological nature, this state gives rise to topological
edge states inside the gap between the heavy bulk bands.

2.2.6.2 Temperature Dependence of Topological Properties

In this part, the relation between the heavy fermion state and topological properties of bulk
topological Kondo insulators are investigated in more detail. Of particular interest is be the
temperature dependence of spectral and topological properties. The above model is be studied
with periodic boundary conditions here, and with open boundary conditions in Sec. [2.2.6.3]
The interaction strength U is chosen in the range from U/t = 5.0to U/t = 8.4.

To this end, the quantity N, defined in Eq. (I.3.10) is considered. It is plotted in Fig. [2.2.114]
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Figure 2.2.11: N, topological invariant for case ii1) (g9/t = —6.0), for different interaction
strength U, a) as a function of temperature, b) with the temperature rescaled by
T

as a function of temperature for a range of interactions U.
From the data, one can define a temperature scale 7" for the emergence of the topological
state in the bulk via
Ny(T") = 1/2. (2.2.17)

Rescaling the temperature with respect to 7", as is done in Fig. yields a very nice
data collapse. This hints at the possibility that the emergence of the topological band structure
with lowering of the temperature is governed by a single scale.

The temperature scale in question might well be the quasiparticle coherence scale T, of
the heavy fermion state. Starting at 7 = 0, with increasing temperature, the topological state
is expected to disappear at a temperature T ~ A,; that is, the bulk band gap. At higher
temperatures, the system becomes metallic, because electrons can be thermally excited to
unoccupied states. However, since the band gap A, ~ Ty, the coherence temperature should
equally be the temperature scale relevant for the emergence of the topological state.

That this is indeed the case can be seen by comparing 7" with the inverse effective mass,
Mg ' ~ Toop in Fig. Here, the different energy scales, which can be extracted from
the simulation results, are shown. It becomes apparent that the two scales T* and T, are the
same up to a constant prefactor.

This observation signifies, that 7" can be employed as a measure for the Fermi liquid co-
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Figure 2.2.12: Comparison of different energy scales of the topological Kondo insulator.

herence scale, which is the only low energy scale. Thus, the topological property N; turns out
to be an independent and convenient measure of coherence.

Meanwhile, by comparing the local moment scale 7, with the energy difference between
the upper Hubbard band and the chemical potential,

Ayp=¢+U —M (2.2.18)

it becomes evident that both scales are very similar. Hence, the local moment formation can be
equally captured by Ayy. This seems plausible, since Ayy is more or less the energy necessary
to excite charge fluctuations.

Thus, Fig. [2.2.12]summarizes the main findings about the bulk topological Kondo insulator.
It combines the different energy scales inherent to the model of topological Kondo insulators
to a complete temperature phase diagram.

The local moment scale and coherence scale are well separated at large U. Hence, the
temperature range of the local moment regime can be nicely distinguished from the coherent
Fermi liquid state. As U becomes smaller, both scales become comparable. While the ground
state is still a Fermi liquid, charge fluctuations play a significant role, and prohibit the forma-
tion of local moments. The magnitude of charge fluctuations is related to the coherence scale.
As the coherent quasiparticles are established, spectral weight is shifted from the chemical
potential towards the quasiparticle bands. This shift can be assessed from the evolution of the
density of states with temperature, which is shown in Fig. 2.2.13] For U/t = 5.0 the large

95



2 Application to Heavy Fermion Systems

U/t=5.0 U/t=8.4
1.5 — K — ‘ ‘ ‘ ‘
Th=2 ——— : Th=1/30 ——
Th=1/2 o5 120 T/=1/50
Th=1/6 1.0 . T/t=1/100
. Th=112 —— | 2.0 |59 =X 1 Th=1/210 ——
1.0 00 1.0 02 00 02
p() 15
0.5 1 1.0
il
{
\ 0.5
A U -
, ‘
0.0 0.0 — -

-8.0 -6.0 -4.0 -20 0.0 2.0 4.0 6.0 80 6.0 40 -20 0.0 20 4.0 6.0
o/t o/t

Figure 2.2.13: Bulk density-of-states as a function of temperature for U/t = 5.0 (T*/t = 0.21)
and U/t = 8.4 (T*/t = 0.014).

value of T, is mirrored by a large transfer of spectral weight, which takes place during the
formation of the hybridization gap. Here, charge fluctuations cannot be neglected due to the
upper Hubbard band being located very close to the chemical potential.

In contrast, the spectral weight transfer for U/t = 8.4 is very small, owing to the strong
renormalization; that is, a small coherence scale T.,, < T,. Hence, charge fluctuations are
frozen out for T < T. In this case, the separation of the two energy scales is clearly visible, as
the upper Hubbard band is far away from the chemical potential, while the quasiparticle peaks
are close to the chemical potential and very narrow.

2.2.6.3 Topological Surface States

In this section, the emergence of the topological surface states and its relation to the onset
of coherence in the bulk is investigated. To this end, results for case iii) with open boundary
conditions are present, which are obtained using the site-dependent DMFT. In x-direction, the
system is periodic, while it has open boundaries in the y-direction. Therefore, k, is a good
quantum number, while this is not the case for k,. The number of sites in y-direction is chosen
in the range from N, = 8 to N, = 24, and is given in each figure.

To make the appearance of the topological surface states visible, total spectral function is

considered.
N,

N W ) (22.19)

Y =1 a=c,f
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This quantity is obtained from analytical continuation of the layer-dependent self-energy. In
Fig. 2.2.14] A,y (k, w) is plotted for U/t = 5.0. The same quantity is shown in Fig. [2.2.15]for
U/t = 8.4. The different values of U correspond to different positions in the phase diagram.
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Figure 2.2.14: Spectral density as a function of temperature for U/t = 5.0, where N, = 8, and
T/t ~0.21.

For the smaller value, U/t = 5.0, the system is in the mixed valence regime, wile U/t = 8.4 is
in the local moment regime. The results are shown for a series of temperatures ranging from
well above to far below the bulk coherence scale, which is given in the caption.

Moving from high to low temperatures, one sees a considerable sharpening of features, in
particular in the vicinity of the chemical potential. While at first the surface states with the
crossing point at k, = 0 are completely washed out, they become more easily visible as the
temperature crosses the coherence scale.

In the mixed valence regime at U/t = 5.0, the importance of charge fluctuations becomes
apparent in the shift of the whole band structure as the temperature is lowered from 7'/t = 2
toT/t=1/2.

For U/t = 8.4 the emergence of the topological surface states happens in the same way, only
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at much lower temperatures. This is due to the smaller value of the coherence scale. Hence,
the surface states equally appear at temperatures 7 = To,. A shift of the band structure due to
charge fluctuations is almost completely absent in this temperature range as the energy scales
are well separated, i. e. T > Tcop.

T/ =1/30 T/ =1/50 T/t=1/100 T/t=1/210 10
o/t 0.
’ 1

8.0
6.0

4.0 0.1
2.0
/T 0.0
2.0
-4.0
-6.0

-8.0 0.01
- 0 T -T 0 T -T 0 T -T 0 T
kX kX kX kX

Figure 2.2.15: Spectral density as a function of temperature for U/t = 8.4, where N, = 16,
and 7"/t ~ 0.014.

In the case of U/t = 8.4, the width of the ribbon is increased to N, = 16. This is necessary
due to the penetration depth £ of the surface states, which correlates with the inverse coherence
scale & ~ Ty, While for U/t = 5.0, £ is small, such that the overlap between the surface
states on opposite sides of the ribbon ~ ¢ 2M/¢ is negligibile, for U/t = 8.4 this is only the
case at larger N,

2.2.7 Discussion

The model proposed in Eq. (2.2.6) contains the most important ingredients for topologi-
cal Kondo insulators. These are the spin-orbit coupling, which gives rise to a non-diagonal,
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momentum-dependent form factor, and the Hubbard interaction. As the results presented in
the previous sections clearly show, this conceptually simple model yields a number of very
interesting results. In particular, as discussed in Sec. [1.2.3.2] the presence of the lattice sym-
metry leads to distinct topological phases, the I'-phase and M-phase. These phases differ in
the parity eigenvalues at high-symmetry points in the Brillouin zone. This allows for driving
the system through quantum phase transitions by tuning the interactions, from non-topological
to topological states as well as between different topological phases. During the transitions,
the bulk band gap has to close at some of the high-symmetry points. In the absence of time-
reversal symmetry breaking, this is the only way that the corresponding parities can change.

By tracking the evolution of the bulk band gap, the adiabatical connection of the strongly
renormalized Kondo insulator to the non-interacting topological insulator could be established.
Hence, by appropriately tuning the parameters, the system can be driven smoothly into the
strong coupling regime while retaining the topological properties. No phase transition, in
particular no breaking of time-reversal symmetry takes place.

The adiabatical connection to the non-interacting, topologically non-trivial state is exploited
in order to extend the definition of the topological invariant N; to the case with interactions
and finite temperatures. The data for this quantity at finite temperature allow to define a
characteristic temperature scale 7" for the emergence of the topological state. By rescaling
the temperature with 7%, the data for different values of the interaction parameter collapsed to
a single curve. This suggests that 7~ is a universal low-energy scale.

In fact, 7™ is precisely the characteristic energy scale of the coherent Fermi liquid state,
the coherence scale T.,,. Because of this relation, the topological properties can provide
a convenient, independent way for accessing T.o,. This is of particular importance in the
mixed valence regime, where different energy scales are of the same magnitude. In this case,
extracting 7o, from other measures is not possible.

The tight locking of the two energy scales also means that the appearance of the topological
surface states, which is observed in the spectral function, takes place at the same temperature
as the onset of bulk coherence. Hence, in order for the surface states to emerge, the coherent
quasiparticle bands have to be established. Therefore, with increasing renormalization of the
quasiparticles in the bulk, which become heavy fermions, the appearance of the topological
surface states is shifted to lower temperatures as well.
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