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Royal jelly-like protein localization reveals differences in
hypopharyngeal glands buildup and conserved expression pattern
in brains of bumblebees and honeybees

Štefan Albert*, Johannes Spaethe, Kornelia Grübel and Wolfgang Rössler

ABSTRACT

Royal jelly proteins (MRJPs) of the honeybee bear several open

questions. One of them is their expression in tissues other than the

hypopharyngeal glands (HGs), the site of royal jelly production. The

sole MRJP-like gene of the bumblebee, Bombus terrestris (BtRJPL),

represents a pre-diversification stage of the MRJP gene evolution in

bees. Here we investigate the expression of BtRJPL in the HGs and

the brain of bumblebees. Comparison of the HGs of bumblebees

and honeybees revealed striking differences in their morphology with

respect to sex- and caste-specific appearance, number of cells per

acinus, and filamentous actin (F-actin) rings. At the cellular level, we

found a temporary F-actin-covered meshwork in the secretory cells,

which suggests a role for actin in the biogenesis of the end apparatus

in HGs. Using immunohistochemical localization, we show that

BtRJPL is expressed in the bumblebee brain, predominantly in the

Kenyon cells of the mushroom bodies, the site of sensory integration

in insects, and in the optic lobes. Our data suggest that a dual gland-

brain function preceded the multiplication of MRJPs in the honeybee

lineage. In the course of the honeybee evolution, HGs dramatically

changed their morphology in order to serve a food-producing

function.
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INTRODUCTION
Glands serve manifold functions in insects ranging from

reproduction, communication and food processing to defense
and nest building (Chapman, 2012). Hypopharyngeal glands

(HGs) are specific to Hymenoptera (Cruz-Landim, 1998). They
are paired secretory organs usually located bilaterally in

the frontal head region entering in the suboral plate of the
hypopharynx (Snodgrass, 1956). It was hypothesized that the

original function of HGs in food digestion and modification has

been modified in the course of evolution into a nutritive, food-
secreting function in honeybees, which was accompanied by their

growth (Kupke et al., 2012).

Hypopharyngeal glands are extremely variable in size and
morphology across and within species. Usually, the secretory
acini are connected by short necks with a collecting duct of

variable length. In honeybee workers, for example, the extended
HGs may reach the length of the entire body (own observations).
In wasps, HGs consist of secretory acini individually connected to
the hypopharyngeal plate (Britto and Caetano, 2006). Distinct

differences in HG size and morphology have also been reported
between sexes. In some stingless bees (Meliponini), HGs are
present only in the female caste, in others both females and males

possess HGs (Costa and Cruz-Landim, 1999). Honeybee nurses
possess large HGs, which enlarge their volume until about day 10
after adult eclosion and shrink after the onset of foraging (.day 15

(Deseyn and Billen, 2005)). HGs of honeybee queens and drones
are vestigial (Snodgrass, 1956). In contrast to honeybees, both
female castes in bumblebees (Bombus) possess HGs. In contrast to

honeybee, HGs of bumblebee queens are even larger than those of
workers (Kupke et al., 2012). Controversial data were published
about the presence of HGs in bumblebee drones (Palm, 1949;
Svensson and Bergström, 1977; Terzo et al., 2007).

Major royal jelly proteins (MRJPs) make up a subfamily of
closely related proteins belonging to a superfamily of Yellow/

MRJP proteins (Drapeau et al., 2006; Ferguson et al., 2011).
These proteins were named after their initial identification as a
dominant component of honeybee RJ (Schmitzová et al., 1998),

which is produced in the HGs. Due to their absence in the
genomes of other insects, MRJPs were thought to be diversified
only in the genus Apis and became a major component of the RJ
(Albert and Klaudiny, 2004; Drapeau et al., 2006). However,

identification of MRJP homologs in other Hymenoptera questioned
this evolutionary scenario (Smith et al., 2011; Werren et al., 2010).
Moreover, advances in honeybee biochemistry and neuroanatomy

revealed that MRJPs are also expressed outside the HGs, the major
site of MRJP production: two MRJPs, MRJP8 and MRJP9, were
found in the honeybee venom (Blank et al., 2012; de Graaf et al.,

2009; Peiren et al., 2008), and several others in different parts of
the brain (Hernández et al., 2012; Hojo et al., 2010; Kucharski
et al., 1998). MRJP1, but none of the other four tested MRJPs, was

found to play a central role in the queen–worker polymorphism,
in particular in determining the development of honeybee queens
(Kamakura, 2011). Apparently, functional diversification and
specialization have accompanied multiplications of MRJP genes

in the course of evolution (Albert et al., 1999b), but it remained
unclear, which function can be assigned as the plesiomorphic one.
Recently, we found that the bumblebee genome contains only a

single MRJP-like gene, which was suggested to represent a pre-
multiplication state of the MRJP evolution in Apidae (Kupke et al.,
2012). The gene, termed BtRJPL (Bombus terrestris royal jelly

protein-like), was shown to share many features with MRJPs
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of honeybees. Furthermore, it is expressed mainly in the
hypopharyngeal glands, even though bumblebees do not produce

larval food similar to the royal jelly in honeybees. We proposed
that the digestive/food modifying function was the most likely
original function of the MRJP protein before multiplication of its
gene and adaptation of a novel nutritive function took place

(Kupke et al., 2012). However, whether BtRJPL is also expressed
elsewhere from the HGs, like it was shown in the honeybee, is
unknown.

Here we investigated the morphology of the HG in bumblebee
males and females and the expression of the BtRJPL protein in
the HGs and the brain by means of immunohistochemistry.

MATERIALS AND METHODS
Honeybees, A. mellifera, were collected from the apiary of the University

Würzburg. Bumblebees, B. terrestris, were purchased from Koppert

(Berkel en Rodenrijs, Netherlands) and kept in an air-controlled room at

constant 60% humidity and 25 C̊ temperature and a 12/12 hours day/

night regime. To collect individuals of defined age, freshly eclosed

animals were captured, marked individually with a plastic tag on their

thoraces and put back into the colony.

SDS-PAGE and immunoblotting
Dissected glands or brains were homogenized in 100 ml of SDS-PAGE

loading buffer and boiled for 5 min. Appropriate amounts of extracts

(between 0.2 and 6.0 brain and HG equivalent, respectively) were loaded

on a vertical 10% SDS-PAGE gel and electrophoresed at 15 V/cm

(horizontal gel system, PeqLab, Erlangen, Germany). Obtained gels were

either stained with colloidal Coomassie blue G-250 (Sigma, St Louis,

USA) or blotted onto nitrocellulose membrane (semidry system,

2 V/cm2, PeqLab). Blotting membranes were blocked overnight with

5% skimmed milk in Tris-buffered saline with Tween 20 TBST (10 mM

Tris, pH57.4, 150 mM NaCl, 0.05% Tween 20). Primary antibodies

were diluted in TBST as follows: rabbit affinity-purified a-BtRJPL

(Kupke et al., 2012) 1:1,000, and goat a-actin (Santa Cruz, San Diego,

USA) 1:500. Incubation varied from 3 hours to overnight. After washing

4610 min with TBST, the blots were incubated for 1 hour with

fluorescence-labeled secondary antibodies (anti-goat 680 and anti-

rabbit 800; LI-COR Biosciences, USA) diluted 1:20,000 in TBST.

After final washing 4610 min with TBST, immunoreactive bands were

detected by an Odyssey infrared imaging system (LI-COR Biosciences,

USA).

Immunohistochemistry
Glands and brains were dissected under a stereo microscope (Wild M3C,

Leica Wetzlar, Germany) and fixed in ice-cold 4% formaldehyde in

phosphate buffered saline (PBS) overnight. After washing 3610 min in

fresh PBS, the tissues were embedded in 5% LMP agarose (Amresco,

Solon, USA), and 100 mm sections were prepared using a vibrating

microtome (Leica VT 1000S, Nussloch, Germany).

Sections were washed with 2% Triton X-100 in PBS, then 0.2% Triton

X-100 in PBS and pre-incubated with 2% normal goat serum (NGS,

Dianova, Hamburg, Germany) in PBS + 0.2% Triton X-100 (PNGT).

Afterwards the sections were incubated with affinity-purified rabbit

antibodies against BtRJPL (Kupke et al., 2012), diluted 1:50 in PNGT

buffer for two days at 4 C̊. After washing 5610 min with PBS the

sections were incubated with secondary Alexa 568-conjugated goat anti-

rabbit serum (1:250) and CF633-conjugated phalloidin (Biotrend,

Cologne, Germany), diluted 1:200 in PBS + 1% NGS overnight at 4 C̊.

Next day, the samples were washed 2610 min with PBS and incubated

for 15 min with Hoechst 34580 (Molecular Probes, Leiden, The

Netherlands) diluted 1:1,000 in PBS. After final washes for 4610 min

with PBS the samples were transferred into 60% glycerol in PBS,

incubated for 30 min and mounted in 80% glycerol in PBS on slides.

Sealed slides were stored at 4 C̊. Control specimens were treated

identically with omission of primary anti-BtRJPL antibodies. All

experiments were repeated at least five times.

Laser-scanning confocal microscopy
Preparations of bee brains and glands were scanned at different

magnifications using a laser-scanning confocal microscope (Leica TCS

SP2, Leica Microsystems, Wetzlar, Germany). Image processing and

F-actin ring diameter measurements were done using IMAGE-J software.

Significance of measured differences was tested by Mann–Whitney

U-test. For the reconstruction of the nuclear shape, 54 optical sections of

1 mm thickness were taken through the whole nucleus. Obtained stacks

were used for reconstruction of 3-D shape using AMIRA software

(Mercury Computer Systems, Berlin, Germany).

RESULTS
Honeybee MRJPs are recognized by anti-BtRJPL antibodies
In the bumblebee HGs, the antibody recognizes a polypeptide
of 51–54 kDa, which is approximately the size found in

immunoblots from head extracts of bumblebee queens and
workers (Kupke et al., 2012). Due to the high similarity of
MRJP and BtRJPL primary structures (69–73% by BLAST, with

several blocks of amino acids that are completely identical
(supplementary material Fig. S1)), we asked whether polyclonal
antibodies raised against BtRJPL would also recognize honeybee

MRJPs in HGs and RJ. To test this we prepared protein extracts
of honey bee HGs in addition to the bumblebee HGs. Honeybee
HGs are larger and have very high protein content. Therefore we

took equal amounts of total proteins, electrophoresed them and
tested the antibodies by immunoblotting. Immunoblot analysis
confirmed the cross-reactivity of the BtRJPL-specific antibodies
with at least MRJP1–3 proteins of the honeybee HGs (Fig. 1)

(Albert et al., 1999a; Schmitzová et al., 1998).

BtRJPL expression in secretory cells of the hypopharyngeal
gland
Using RT-qPCR and immunoblotting, HGs were previously shown
to express BtRJPL (Kupke et al., 2012). Applying

immunohistochemistry for detection of BtRJPL-ir in HGs, an
intensive cytosolic labeling of HG secretory cells in both
bumblebees and honeybees was observed (Fig. 2A). For

orientation, F-actin was stained with fluorescently labeled
Phalloidin. Besides the well known cytoplasmic membrane-
localized cortical actin, it also formed conspicuous tubular

Fig. 1. Western blotting analysis with a-BtRJPL antibodies. Western
blotting analysis with a-BtRJPL antibodies shows that the antibody
recognizes a single BtRJPL band in the HGs of bumblebees and multiple
MRJP bands in the honeybee HGs, which were marked according to their
electrophoretic mobility (Schmitzová et al., 1998).
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structures in the cytosol of bumblebee secretory cells (Fig. 2B).

Cytosolic BtRJPL signal was concentrated in globular, possibly
membrane-enclosed structures of different sizes that were often
stacked near the F-actin tubes. In some cases BtRJPL signal could

clearly be identified in the lumen of the F-actin tubes (Fig. 2C).
Interestingly, BtRJPL signal intensity was weaker in the region
surrounding the actin tubes (Fig. 2A,C; supplementary material

Fig. S2). The localization of the BtRJPL signal in immunostainings
gives strong support to our previous assumption that this protein
appears to be secreted by the HGs (Kupke et al., 2012).

Hypopharyngeal glands are present in bumblebee males and
females
As mentioned above, we found that in contrast to the honeybee,

both female castes in bumblebees possess HGs. HGs in queens
are even larger than in workers. Previous reports on the presence
of HGs in bumblebee males were inconsistent. Male HGs

were mentioned by Palm (Palm, 1949), but without a detailed

description, and HGs were not mentioned at all in a number of
other publications describing the cephalic glands of bumblebee

males (Svensson and Bergström, 1977; Terzo et al., 2007). To
re-investigate the presence/absence of HGs in the light of
our findings on BtRJPL localization, we dissected heads of
B. terrestris females (Fig. 3A) and males (Fig. 3B). As described

previously (Svensson and Bergström, 1977; Terzo et al., 2007),
and in contrast to females, the frontal area of the drone heads was
filled with the glandular tissue of labial glands (LGs) containing

large acini (Fig. 3B). In addition we found in the medial frontal
region an additional pair of glands with much smaller acini
attached to a brownish duct (Fig. 3A,B, dashed lines). These

glands opened into the mandibular plate. Thus the morphology
and location of these putative male HGs resemble that of female
HGs, but at a much smaller size (Fig. 3C). We hypothesized that,

if this glandular tissue differs from the LGs (and is probably part
of the HGs), it should express different proteins than the LGs,
which are assumed to produce the male sex pheromone (Terzo
et al., 2007). We size-separated proteins of male LGs and the

putative HGs by means of SDS-PAGE and compared the protein
pattern with that of the worker HGs and LGs. The protein profiles
of male HGs and LGs differed significantly (Fig. 4A, lanes

marked with HG and LG). On the other hand, the protein profiles
of female and putative male HGs appeared rather similar

Fig. 2. BtRJPL immunoreactivity in hypopharyngeal glands.
(A) Comparison of bumblebee and honeybee hypopharyngeal glands.
Dissected hypopharyngeal glands were treated with Hoechst stain (blue),
fluorescently labeled phalloidin (green), a-BtRJPL antibodies (red). Multiple
nuclei in honeybee HG (blue spots) indicate multicellular organization of
secretory acini. Bumblebee acini are unicellular. Both pictures were taken at the
same magnification. (B) Detailed view of the secretory cells of bumblebee
hypopharyngeal glands. BtRJPL-ir is present in the cytosol and concentrated in
the vesicular compartments. F-actin forms conspicuous tubes in the cytosol of
secretory cells (green). These structures were previously termed end apparatus
(Noirot and Quennedey, 1974). (C) Detailed view of the end apparatus of a
secretory cell. The tube consists of densely packed actin rings (green). The
BtRJPL signal in the lumen of the end apparatus, which transports secretion
towards secretory ductus (arrows), confirms that the protein is secreted by the
secretory cells. White arrows in the middle panels of B and C point to actin
spikes (see main text). Scale bars: 100 mm (A), 50 mm (B), 10 mm (C).

Fig. 3. Hypopharyngeal glands in bumblebee males. Frontal cuticle was
removed from the heads of B. terrestris worker (A) and drone (B). The
underlying space was mainly filled with labial glands (LG) with large acini in
males and with hypopharyngeal glands (HG) in females. In the central part of
the male head the distinct glandular tissue of HGs with brownish duct and
small acini could be observed (dashed lines). Hypopharyngeal glands were
uncovered from the overlaying LG tissue by forceps. Red circles in both
pictures indicate the positions of ocelli (OC). (C) Dissected head glands of a
worker (left) and a drone (right). Labial glands (LGs) fill the posterior space of
the head in both males and females. Anterior part of the male’s head is filled
by large LGs hiding small HGs. Scale bars: 1 mm (A,B), 2 mm (C).
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(Fig. 4A). Finally, the protein profiles of male and female LGs
differed substantially, indicating different roles in the physiology

of males and females. HG-specific expression of BtRJPL, in
female and male putative HGs was confirmed by immunoblotting
(Fig. 4B). Confocal microscopy investigations (Fig. 4C) revealed

that male HGs are formed by single secretory cells, similar as it is
known from female HGs, whereas LGs are formed by a layer of
epithelial cells.

Taken together, our results strongly suggest that B. terrestris

drones possess small but distinct HGs. These glands are located
more centrally compared to females, often localized beneath the
large LGs. The LGs and HGs in males and females differ

morphologically at both macro- and microscopic levels, and they
produce different and distinct subsets of proteins.

Comparison of the bumblebee and honeybee HG secretory
cells
Secretory cells of the bumblebee HGs exhibited several distinct

features. Each acinus of B. terrestris HGs is formed by a single
secretory cell (diameter ,60 mm; Figs 2, 4). In contrast, in the
honeybee HGs acini are visibly larger (diameter ,200 mm),
consisting of at least 8 cells (8 nuclei could be identified in a

single focus layer of one acinus; Fig. 2A). In both species
secretory cells contained long convoluted filamentous actin

(F-actin)-decorated tubular structures (Fig. 2A) connected to an
extracellular ductus (not shown). According to the classification
of Noirot and Quennedey, these cells belong to class 3 insect

secretory cells (Noirot and Quennedey, 1974) and the
intracellular tubes have been termed ‘end apparatus’ (EA).

In B. terrestris, rings formed by F-actin were tightly stacked to

form a nearly contiguous tube (Fig. 5A). In the honeybee,
individual rings were regularly but more loosely distributed along
the EA (Fig. 5B). Interestingly, in some bumblebee individuals

we observed actin ‘‘spikes’’ protruding from the rings towards
cytosol (Fig. 2B,C, white arrows). These spikes appear longer
and sometimes curved at higher magnification. The F-actin rings
in the bumblebee workers had diameters of 1.9960.06 mm

(n524), which is about one third smaller than those found in
honeybee workers (3.1160.13 mm, n58) (compare Fig. 5A and
Fig. 5B; see also supplementary material Fig. S3). Ring diameters

in the bumblebee did not differ between young and old workers,
as well as between workers and queens. However, ring diameters
were slightly, but significantly smaller in males (1.6960.08 mm,

n517) (supplementary material Fig. S3).
Interestingly, the shapes of nuclei of secretory cells were

always found to be irregular in both species. We noticed that the

vicinity of the EA was often associated with nuclear deformations
(Fig. 2A, Fig. 4C, Fig. 6C,D). Apparently, the intracellular
tubings of the EA were included in these deformations of the
cell nuclei; this was confirmed by 3D reconstructions of the

nucleus (supplementary material Fig. S4). We speculate that
the BtRJPL-free region surrounding the actin tube may be due to

Fig. 4. Biochemical and immunohistochemical characterization of the
B. terrestris male head glands and their comparison with head glands
of females. (A) Protein profiles. Proteins of hypopharyngeal and labial
glands were size-separated by SDS-PAGE and stained with Coomassie
blue. Protein profiles of male and female HGs are similar, those of LGs show
sex-specific differences. Red arrowheads point to some of the protein bands
differing between male and female LGs. Observed differences suggest
different functions of male and female LGs. (B) BtRJPL is express in male
HGs but absent in LGs. Actin (as a control protein) was detected by
immunoblotting of size-separated protein extracts of both HGs and LGs.
Male HGs extract is a pool of six HGs. Female HGs extract represents 20%
of total HGs of a single worker. (C) Histology of male LG (left) and HG (right)
secretory acini. LG acini are build-up of multiple cells forming an epithelial
sac, the acini of HG are unicellular. Blue: nuclei (Hoechst), green: phalloidin-
labeled F-actin, red: BtRJPL. Scale bars: 100 mm.

Fig. 5. F-actin rings of bumblebee and honeybee secretory cells.
Dissected hypopharyngeal glands were treated with Hoechst stain (blue) and
fluorescently labeled phalloidin (green). Actin rings of the bumblebee’s end
apparatus are smaller in diameter (,2.0 mm), densely stacked, and slightly
leaned to each other; those of honeybees have a larger diameter (,3.1 mm)
and do not contact each other. Scale bars: 10 mm.
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a cuticular septum separating the plasma membrane and the EA
(Deseyn and Billen, 2005).

Novel F-actin structures in hypopharyngeal gland cells of the
bumblebee
In samples of freshly eclosed bumblebees we identified additional
F-actin surrounded stacks of spheres or ovals accumulating near
the actin tube of the EA (Fig. 6). About 6 hours later, such

structures were almost completely vanished (n55), indicating that
the presence of these structures near the EA was transient. We
checked the F-actin structures at different pupal stages. In HGs of
young pupae (approximately P5 with dark eyes, cuticle not

melanised; Fig. 6A), we found only dispersed F-actin and regularly
shaped nuclei. Only in some cells, initial stages of EA tubes were
observed (red arrows). In older pupae (P6/P7, dark eyes, melanized

cuticle; Fig. 6B), the F-actin tubes of the EA were formed, but no
surrounding actin spheres/ovals could be seen and nuclei were still
regularly shaped. The F-actin-covered spheres/ovals appeared,

for the first time, in freshly eclosed bumblebees (Fig. 6C) and
disappeared only few hours later (Fig. 6D).

BtRJPL is expressed in bumblebee brains
We have previously shown that besides the HGs, BtMRJP mRNA
is also expressed in the brain of bumblebee workers, queens and
drones, albeit to a lower extent (Kupke et al., 2012). We therefore

set out to detect BtRJPL expression in brain tissues by using
immunohistochemical staining of bumblebee brain sections.

BtRJPL immunoreactivity (ir) was found in different parts of the
brain (Fig. 7A). More precisely, we found distinct labeling in the
Kenyon cells, in the outer layer of the ocelli and in the first chiasm
of the optic lobes (Fig. 7A–C). Double staining with Hoechst

nucleic acid stain revealed that the BtRJPL signal is most likely
localized in the cell nuclei (Fig. 7D), but not in axons or dendrites.
In addition, some, but not all, nuclei of cells located in the outer

layers of the antennal lobes were labeled (supplementary material
Fig. S5). Control sections without the a-BtRJPL primary antibody
showed no immunoreactivity, indicating the specificity of the

antibody staining (Fig. 8; supplementary material Fig. S5). Similar
staining patterns were detected in drone and queen brains (not
shown), suggesting that the brain localization of BtRJPL is caste-

and gender-independent.

Immunohistochemical detection of MRJPs in honeybee brains
For comparison, we investigated MRJP-ir in honeybee brains by

means of the a-BtRJPL antibody. We observed an essentially
similar staining pattern compared to bumblebees with the most

Fig. 6. Changes of F-actin organization in the end apparatus and the
nuclear morphology of secretory cells. Hypopharyngeal glands of
bumblebee workers from different pupal stages ((A) P5 stage, dark eyes,
light cuticle; (B) P6/P7, dark eyes and cuticle), and from young adults
((C) ,2 hours post eclosion; (D) ,8 hours post eclosion) were dissected,
treated with Hoechst stain (blue) and fluorescently labeled phalloidin (green).
(A) The F-actin tubes of the end apparatus begin to arise (red arrows), nuclei
are largely round-shaped. (B) More advanced stage of actin tubes formation,
septum membrane not delivered, nuclei still round. (C) Septum membrane
delivered by directed exocytosis, freshly secreted septal cuticle solidifies,
microvilli of the septum held in shape by cortical F-actin (yellow arrows),
nuclei become deformed. (D) Septal cuticle solidified, underlying cortical
F-actin depolymerizes, shapes of nuclei remain deformed. All figures are at
the same magnification. Scale bar: 20 mm. Fig. 7. BtRJPL expression in the bumblebee brain. (A) Overview of a

frontal section of a worker brain immunolabeled with a-BtRJPL antibodies
(red), DNA stain (Hoechst, blue) and phalloidin against the filamentous actin
(green). Strong BtRJPL-ir was found in Kenyon cells, cell bodies in the optic
lobe and ocelli (yellow arrows). Boxes indicate areas shown in panels B and
C (different samples). (B) BtRJPL-ir of cell bodies in the first chiasm of the
optic lobes. (C) Detailed view of the median calyx. Both the cell bodies of the
inner and clawed Kenyon cells are immunoreactive. (D) Differences in
BtRJPL-ir intensity can be seen between inner compact cells (IC) and non-
compact cells (NC). Scale bars: 500 mm (A), 100 mm (B,C), 10 mm (D).
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intensive staining in the central region of Kenyon cell somata in
the MB calyces (Fig. 8), the site where MRJP1 was previously
identified by in situ hybridization (Kucharski et al., 1998).

However, we cannot assign the ir-signal to a particular MRJP
protein, since obviously all abundant MRJP proteins bind the
a-BtRJPL antibodies with similar affinities (see above; Fig. 1).

DISCUSSION
Hypopharyngeal glands are present in all bumblebee castes
Unlike in honeybees, HGs appear to be not restricted to the

worker caste in bumblebees. Previously, HGs were described in
bumblebee queens, but their presence in males was still a matter
of controversy (Palm, 1949; Svensson and Bergström, 1977;

Terzo et al., 2007). Here we identified HGs in B. terrestris males.
We could show that HG tissue is distinct from labial gland tissue
at both the morphological and cellular levels (Figs 3, 4). In

addition, protein profiles of HGs and LGs differed markedly from
each other, and, at the same time, male and female HG profiles
appeared to be similar (Fig. 4).

Using specific antibodies, we were able to confirm the expression
of BtRJPL in HG cells of all adult castes and sexes. Microscopic
observations of bumblebee and honeybee HGs combined with
phalloidin-labeling of F-actin and Hoechst labeling of DNA

revealed so far unknown or only poorly described morphological
features of HG secretory cells. Their differences from secretory
cells of honeybee HG will be discussed below.

Differences in morphology of HG cells and their end
apparatus between honeybees and bumblebees
Besides the most remarkable differences in size (,60 mm in
B. terrestris and ,200 mm in A. mellifera) and the anatomical
features of glandular units (mono- and oligocellular,
respectively), major differences were observed in the fine

structure of the EA. Honeybee EA contained individual F-actin
rings distributed at regular spacing throughout the entire length
(Kheyri et al., 2012) (Fig. 5). In contrast, F-actin rings in the

bumblebee formed densely packed nearly contiguous stacks of
rings forming a tube of about 1/3 smaller diameter compared to
that in the honeybee. The morphology of B. terrestris EA actin

rings resembles roughly these found in Tetragonula carbonaria

(Kheyri et al., 2012).
Differently shaped HGs and their EA may reflect adaptations

to the production of different amounts and physical properties of

secretions. Royal jelly, secreted by honeybee HGs, is produced in
large amounts and is extremely viscous; it does not drip down

from bottom-up oriented queen cells. Wider EA diameter could
facilitate movement of this secretion. In fact, supplemental
mechanisms may be necessary to move the secreted RJ through
EA in the honeybee. However, Kheyri et al. did not find any signs

of contractibility of the EA (Kheyri et al., 2012). Little is known
about secretion of bumblebee HGs, but its appearance is clear and
not particularly viscous (Pereboom, 2000). It contains digestive

enzymes such as amylase and invertase and, therefore, most
probably participates in food digestion, i.e. saliva-like function
(Palm, 1949).

Actin re-arrangements during postembryonic development of
the end apparatus
The two novel actin structures we found in bumblebees, stacks of
spheres or ovals and actin ‘‘spikes’’, may be related to each other.
The F-actin spikes extending from the surface of EA (Fig. 2,
yellow arrows) may be remnants of actin-covered ovals seen in

early stages of HGs development (Fig. 6). We hypothesize that
the function of the latter could be in the generation and early
maintenance of membrane microvilli. Microvilli are common to

many secretory cells including bee HGs, where they form the
septum around the EA (Deseyn and Billen, 2005). Usually, the
shape of microvilli is stabilized by cortical actin microfilaments

beneath the membrane. However, insect cells are covered by an
extracellular cuticular exoskeleton, which also fills the cell–EA
interface (Kheyri et al., 2012; Noirot and Quennedey, 1974).

Absence of F-actin underneath microvilli of older animals may
indicate that the cuticle took over the role of microvilli shaping.
However, cuticle needs to be secreted and requires some time to
harden (Moussian, 2010). Thus the process of microvilli

formation and shaping in a period immediately after eclosion,
before cuticle solidifies, may be supported by actin filaments.
Once the cuticle becomes solid, F-actin may depolymerize

(Fig. 6C,D). Our hypothesis contradicts the common view
claiming that EA is formed by invagination of the cytoplasmic
membrane (Beams et al., 1959; Cruz-Landim, 1998; Painter and

Biesele, 1966). It explains how an intracellular structure, such as
the recently found F-actin tube of the EA (Kheyri et al., 2012),
which is in fact located extracellularly, makes its way out of the
cytosol. Accordingly, the actin tube is initially formed in the

cytosol and later isolated from the cytosol by directed exocytosis
and fusion of the secretory vesicles forming the septum
membrane. Later, septum membrane microvilli are formed and

secreted cuticle solidifies and fixes them, forming a mature EA
and surrounding septum.

Rigid tubings of the EA and surrounding septum appear to

represent a mechanical hindrance affecting morphology of
intracellular organelles of secretory cells. This is best
documented by the deformed shape of the nuclei, which always

notch in the proximity of the EA (Fig. 4C, Fig. 6; supplementary
material Fig. S4). It is difficult to conceive that such deformed
nuclei could condense chromosomes near their central plane and
enter mitosis. Also further phases of mitosis characterized by

regularly arranged chromosomes (i.e. in the metaphase) and their
concerted separation between daughter cells (telophase) would be
problematic due to rigid tubes in the cytosol.

In agreement with the statement above, we did not find a single
mitotic cell among thousands of HG secretory cells inspected in
the course of our study. However, it is known that foraging

honeybee workers can reverse their behavior from foraging back

Fig. 8. Putative MRJPs in honeybee brains. Sections of honeybee brain
were incubated with a-BtRJPL antibodies (red; upper row); in the control the
antibody was omitted (lower row). The a-BtRJPL antibody in the honeybee
worker MB seems to recognize similar cell bodies as in bumblebees. Scale
bars: 100 mm.
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to nursing, when nurses are scarce in the colony. During this
process they restore fully functional HGs (Hrassnigg and

Crailsheim, 1998; Maleszka et al., 2009; Ohashi et al., 2000). It
would be interesting to investigate in future studies whether the
F-actin system undergoes remodeling during this process.

MRJPs in the brain
Besides MRJPs expression in the honeybee HGs, several
independent studies reported on MRJP expression in the brain

(Hernández et al., 2012; Hojo et al., 2010; Kucharski et al., 1998;
Peixoto et al., 2009). In particular, selective MRJP1 expression in
Kenyon cells of the mushroom bodies (MBs) may indicate an

important non-nutritive function since the MBs were shown to be
associated with sensory integration and learning and memory in
bees (Hourcade et al., 2010; Komischke et al., 2005; Menzel,

2001). A single-copy MRJP-like protein in bumblebees, which
possibly represents an ancestral state of MRJP evolution (Kupke
et al., 2012), is an ideal candidate to ask for the original function
and localization of the MRJP in both secretory tissues and in

the brain.
Here we could show that the expression of BtRJPL occurs in

both HGs and in Kenyon cells of the brain, indicating that this

type of expression pattern is not honeybee specific but may
represent an original rather than a derived state. Moreover,
distinct localization of BtRJPL in the inner compact Kenyon cells

correlates with the finding of Kucharski et al. obtained by in situ
hybridization (Kucharski et al., 1998). There are several pieces of
circumstantial evidence supporting BtRJPL expression in the

brain: (1) BtRJPL mRNA was detected by RT-qPCR in
bumblebee brains (Kupke et al., 2012), (2) at least one of the
honeybee homologs of BtRJPL, MRJP1, was detected by in situ

hybridization to be localized in the Kenyon cell bodies

(Kucharski et al., 1998), and (3) similar neurons (predominantly
inner compact Kenyon cells) were labeled by the anti-BtRJPL
antibody in both B. terrestris and A. mellifera brains (compare

Figs 7 and 8).
The obviously multiple functions of MRJP proteins in bees

suggested by the diverse expression pattern are not uncommon.

For example, the oldest and most characterized protein of the
Yellow/MRJP protein family, Yellow, which is part of the insect
cuticle pigmentation, is also synthesized in Drosophila brains,
where it decisively regulates the courtship behavior of males

(Radovic et al., 2002). Currently, we can only speculate about a
potential function of MRJP proteins in the bee brain. One
possibility might be a function as a growth factor involved in the

growth or plasticity of Kenyon cells. Growth factor-like activity
of MRJP1 in worker/queen switch, documented in detail by
Kamakura (Kamakura, 2011), goes along this way. Another

possibility may reside in the intrinsic capability of several
proteins belonging to the Yellow/MRJP family to bind and
modify biogenic amines such as DOPA and dopamine (Han et al.,

2002; Xu et al., 2011). Since dopaminergic neuromodulation and
-transmission is common in insect brains (Blenau and Erber,
1998), a direct or indirect involvement of neuronal MRJPs in this
type of neuronal communication is possible, but further studies

are necessary to test these ideas.

Conclusions
By employing immunohistochemistry we could show that the
general appearance, cellular and subcellular structure of HGs
differs substantially between honeybees and bumblebees.

Whereas honeybee HGs are absent in males and queens, all

castes and sexes in bumblebees possess HGs, albeit, male HGs
are much smaller. We conclude that HGs may have evolved from

universal caste-independent glands to food-producing glands
in honeybee workers. Furthermore, we could show that the
MRJP-like protein of bumblebees is synthesized, besides the
hypopharyngeal glands (HGs), in somata of certain neuronal

cells, predominantly in the inner compact Kenyon cells of the
mushroom bodies, centers for learning and memory in the insect
brain. Our findings implicate multiple functions of the MRJP in

the brain and HGs of bumblebees.
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We thank Karin Möller for the maintenance of the bumblebee colonies, Frank
Sommerlandt for his help with handling and labeling the animals and Jan Kropf for
help with imaging and 3D reconstruction.

Competing interests
The authors have no competing interests to declare.

Funding
This publication was funded by the German Research Foundation and the
University of Würzburg in the funding programme Open Access Publishing.

References
Albert, S. and Klaudiny, J. (2004). The MRJP/YELLOW protein family of Apis
mellifera: identification of new members in the EST library. J. Insect Physiol. 50,
51-59.
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(1999b). The family of major royal jelly proteins and its evolution. J. Mol. Evol.
49, 290-297.

Beams, H. W., Tahmisian, T. N., Anderson, E. and Devine, R. L. (1959). An
electron microscopy study on the pharyngeal glands of the honeybee. J.
Ultrastruct. Res. 3, 155-170.

Blank, S., Bantleon, F. I., McIntyre, M., Ollert, M. and Spillner, E. (2012). The
major royal jelly proteins 8 and 9 (Api m 11) are glycosylated components of
Apis mellifera venom with allergenic potential beyond carbohydrate-based
reactivity. Clin. Exp. Allergy 42, 976-985.

Blenau, W. and Erber, J. (1998). Behavioural pharmacology of dopamine,
serotonin and putative aminergic ligands in the mushroom bodies of the
honeybee (Apis mellifera). Behav. Brain Res. 96, 115-124.

Britto, F. B. and Caetano, F. H. (2006). Morphological features and occurrence of
degenerative characteristics in the hypopharyngeal glands of the paper wasp
Polistes versicolor (Olivier) (Hymenoptera: Vespidae). Micron 37, 742-747.

Chapman, R. F. (2012). The Insects: Structure and Function. Cambridge:
Cambridge University Press.

Costa, R. A. C. and Cruz-Landim, C. (1999). Occurrence and morphometry of the
hypopharyngeal glands in Scaptotrigona postica Lat. (Hymenoptera, Apidae,
Melliponinae). J. Biosci. 24, 97-102.

Cruz-Landim, C. and Costa, R. A. C. (1998). Structure and function of the
hypopharyngeal glands of Hymenoptera: a comparative approach. J. Comp.
Biol. 3, 151-153.

de Graaf, D. C., Aerts, M., Danneels, E. and Devreese, B. (2009). Bee, wasp
and ant venomics pave the way for a component-resolved diagnosis of sting
allergy. J. Proteomics 72, 145-154.

Deseyn, J. and Billen, J. (2005). Age-dependent morphology and ultrastructure
of the hypopharyngeal gland of Apis mellifera workers (Hymenoptera, Apidae).
Apidologie (Celle) 36, 49-57.

Drapeau, M. D., Albert, S., Kucharski, R., Prusko, C. and Maleszka, R. (2006).
Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of
social behavior in honey bees. Genome Res. 16, 1385-1394.

Ferguson, L. C., Green, J., Surridge, A. and Jiggins, C. D. (2011). Evolution of
the insect yellow gene family. Mol. Biol. Evol. 28, 257-272.

RESEARCH ARTICLE Biology Open (2014) 3, 281–288 doi:10.1242/bio.20147211

287

B
io
lo
g
y
O
p
e
n

http://dx.doi.org/10.1016/j.jinsphys.2003.09.008
http://dx.doi.org/10.1016/j.jinsphys.2003.09.008
http://dx.doi.org/10.1016/j.jinsphys.2003.09.008
http://dx.doi.org/10.1016/S0965-1748(99)00019-3
http://dx.doi.org/10.1016/S0965-1748(99)00019-3
http://dx.doi.org/10.1016/S0965-1748(99)00019-3
http://dx.doi.org/10.1007/PL00006551
http://dx.doi.org/10.1007/PL00006551
http://dx.doi.org/10.1007/PL00006551
http://dx.doi.org/10.1016/S0022-5320(59)90012-7
http://dx.doi.org/10.1016/S0022-5320(59)90012-7
http://dx.doi.org/10.1016/S0022-5320(59)90012-7
http://dx.doi.org/10.1111/j.1365-2222.2012.03966.x
http://dx.doi.org/10.1111/j.1365-2222.2012.03966.x
http://dx.doi.org/10.1111/j.1365-2222.2012.03966.x
http://dx.doi.org/10.1111/j.1365-2222.2012.03966.x
http://dx.doi.org/10.1016/S0166-4328(97)00201-5
http://dx.doi.org/10.1016/S0166-4328(97)00201-5
http://dx.doi.org/10.1016/S0166-4328(97)00201-5
http://dx.doi.org/10.1016/j.micron.2006.03.002
http://dx.doi.org/10.1016/j.micron.2006.03.002
http://dx.doi.org/10.1016/j.micron.2006.03.002
http://dx.doi.org/10.1007/BF02941113
http://dx.doi.org/10.1007/BF02941113
http://dx.doi.org/10.1007/BF02941113
http://dx.doi.org/10.1016/j.jprot.2009.01.017
http://dx.doi.org/10.1016/j.jprot.2009.01.017
http://dx.doi.org/10.1016/j.jprot.2009.01.017
http://dx.doi.org/10.1051/apido:2004068
http://dx.doi.org/10.1051/apido:2004068
http://dx.doi.org/10.1051/apido:2004068
http://dx.doi.org/10.1101/gr.5012006
http://dx.doi.org/10.1101/gr.5012006
http://dx.doi.org/10.1101/gr.5012006
http://dx.doi.org/10.1093/molbev/msq192
http://dx.doi.org/10.1093/molbev/msq192


Han, Q., Fang, J., Ding, H., Johnson, J. K., Christensen, B. M. and Li, J.
(2002). Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins
as dopachrome-conversion enzymes. Biochem. J. 368, 333-340.

Hernández, L. G., Lu, B., da Cruz, G. C. N., Calábria, L. K., Martins, N. F.,
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