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Abstract

Words are built from smaller meaning bearing parts, called morphemes. As one word can contain multiple morphemes, one
morpheme can be present in different words. The number of distinct words a morpheme can be found in is its family size.
Here we used Birth-Death-Innovation Models (BDIMs) to analyze the distribution of morpheme family sizes in English and
German vocabulary over the last 200 years. Rather than just fitting to a probability distribution, these mechanistic models
allow for the direct interpretation of identified parameters. Despite the complexity of language change, we indeed found
that a specific variant of this pure stochastic model, the second order linear balanced BDIM, significantly fitted the observed
distributions. In this model, birth and death rates are increased for smaller morpheme families. This finding indicates an
influence of morpheme family sizes on vocabulary changes. This could be an effect of word formation, perception or both.
On a more general level, we give an example on how mechanistic models can enable the identification of statistical trends
in language change usually hidden by cultural influences.
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Introduction

Languages change. This change happens on levels as different

as phonology, grammar and the vocabulary, to name just a few.

For the speakers of a language, vocabulary change might be one of

the most visible processes, as it happens on a comparably small

time scale [1]. As words are lost from a language, new ones can

emerge. New words can be based on the new association of a

string to a meaning, they can be loaned from another language [2]

or they can be derived from already existing words. Arguably, the

latter is the most frequent process in current Indo-European

languages [3]. It can be broken down into two types, namely

derivation which changes the syntactic class of a word (e.g. animal

R animalish) and compounding, which joins two words (earth-

quake). Fundamental for the understanding of these two processes

is the concept of morphemes, minimal structural and meaning

bearing parts of words. The description of how morphemes can be

combined to build words has a long standing tradition and

comprises a field of linguistics on its own, morphology [4]. But,

there is more to morphology than just structure of words. From a

completely different viewpoint morphology is also important in the

production and perception of words. Classical psycholinguistic

experiments revealed that in the process of recognition complex

words are decomposed morphologically [5,6]. Accordingly it was

proposed that morphemes are represented in the mental lexicon,

the human word store [7]. To understand, how language change

influences morphemes, we have recently traced their history in

German and English over 200 years. As one result, we found that

new words are preferentially built with morphemes which are not

already present in many words [8]. But, does this tendency have

an effect on the vocabulary of a language?

In general, reasons behind language changes can be intrinsic

ones like the perception, processing and learning of language or

extrinsic as in the case of cultural changes [9]. Because of this

multitude of factors it is far from trivial to quantitatively unravel

the importance of different factors. In the best case, a null model is

developed which omits defined factors. Following, it is tested,

whether this null model is able to describe observed data or

whether a more complex model fits the data significantly better

[10]. Here, we perform such a study to analyze vocabulary on the

level of morphemes. We focused on ‘accepted’ words, and omit

nonce formation [11]. Thereby, we look at two processes

simultaneously, the formation of a new word and the acceptance

of the new word in the community of speakers.

Results

Birth-Death-Innovation Models for morpheme family size
distribution

If one follows the life history of a morpheme, it starts with an

innovation, i.e. its first emergence in a single word of a language.

Following, new words containing the morpheme can be build. At

the same time, a word containing the morpheme might be lost

from the language. If all words with the morpheme are lost, also

the morpheme is lost from the language. In this simple but

intuitive model, a morpheme is treated as core unit and no

correlation between morphemes is considered. Thus, the model

can easily be extended to describe the history of all morphemes of

a language.

Analogous processes are widespread in biological systems

ranging from population genetics to the evolution of cancer

[12]. Intriguingly, already in the beginning of the last century a

stochastic framework for their description was developed and

named Birth-Death Models or Birth-Death-Innovation Models

(BDIMs) [13–15]. These models are widely applied in the
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biological sciences [12]. The BDIMs are discrete Markov

processes, i.e. a stochastic process where the state at time t

depends on the state at time t-1 alone. If the matrix of state

transition probabilities is irreducible and aperiodic, the process has

exactly one stationary distribution which is reached by the process

within a finite number of steps. Here, we are focusing on the

stationary solutions of the processes.

A similar approach was recently used to analyze the distribution

of domains (structural, evolutionary and functional parts of

proteins) within genomes [16,17]. This model can be easily

adopted to describe the family size distribution of morphemes

(meaning bearing parts of words) in a language (Figure 1). Here,

the family size is defined as the number of words containing a

given morpheme. For example the morpheme ‘work’ might be

found in 30 distinct words. Thus, it is the member of the class 30

which contains all morphemes present in 30 words. If a single new

word containing the morpheme ‘work’ emerges, for example the

word ‘workday’, its class will be changed to 31. Analogously, if one

word with the morpheme is lost from the language, the new class

would be 29. To each of these processes a rate is assigned – li, the

birth rate, for transition of a morpheme from class i into class i+1

and di, the death rate, for the transition from class i to class i-1.

Finally, the rate of emergence of a new morpheme can be modeled

by n. In the following, we test, whether the family size distribution

of morphemes can be modeled by such a BDIM and if yes, how

the death and birth rate have to be chosen.

Fitting BDIMs to morpheme family size distribution
Morpheme family size distributions were calculated for lemmata

from different dictionaries and word lists covering about 200 years

of English and German. These languages were chosen as they are

both Indo-European but differ slightly in their degree of synthesis,

i.e. German words tend to contain more morphemes than English

ones. As our focus is on word formation, only lemmata (the base

form of words) were considered and inflection was deliberately

omitted. Each morpheme was assigned to a class according to the

number of words it was found in. Finally, the size of each class, i.e.

the number of morphemes assigned to the class, was calculated.

As the simplest model, we fitted the distribution against a

general power law, well known in linguistics as Zipfs law or the

Yule-Simon distribution. Next, a simple BDIM with birth and

death rates independent of the classes was fitted. This model has a

proportional relationship between the class number i and the

birth/death rate of this class: li = li, di = di (simple BDIM). The

innovation rate n is considered constant. Finally, a generalization

of the simple BDIM, the linear BDIM with li =l(i+a) and

di = d(i+b) was tested. With positive parameters a and b, both the

birth and the death rate per morpheme decrease with increasing

class number. We investigated two cases of linear BDIMs: the

second order balanced (solb) BDIM does accept l= d where the

first order balanced (folb) BDIM does not have this restriction. For

fitting the models to the data, we omitted the morphemes found in

less than six words and in more than an upper limit (Table S1 in

File S1). The fitting was performed on normal scale. Figure 2

shows an example of the fitted models; the other word lists are

shown in Figures S4 to S8 in File S1. The fit of the models was

assessed using the residual sum of squares of the model (RSS) and

the result of chi square goodness of fit tests. As the models differ in

their number of parameters and are not nested, we furthermore

used the Akaike Information Criterion (AIC) and the Bayes

Information Criterion (BIC) to measure the fitting of the model to

the data. Here, models with more parameters are penalized. Due

to the sparsely distributed large word families at the tail, the data

needed to be grouped for this analysis into bins with at least 10

morphemes in each bin. This can result in non-monotonic

behavior of the model and the data, but is merely an artifact

introduced for testing and does not change the data itself, which

decay monotonic.

The RSS for all word lists showed the worst fit for the power law

and the second worst for the simple BDIM. Both linear models

(solb and folb BDIM) showed the same low RSS values and hence

the best fit (Figure S1 in File S1). The chi square goodness of fit

tests rejected the power law and the simple BDIM for all word lists

with highly significant p-values. In contrast, the two linear models

were not rejected on a 1% significance level (Table 1). AIC and

BIC further supported the choice of the linear BDIMs (Table 1).

Thus both the solb and the folb BDIM are suitable models for the

family size distribution of morphemes.

To distinguish the solb BDIM from the folb BDIM we analyzed

h=l/d. For the solb BDIM, h was set to 1. Indeed the estimations

of h for all word lists did not differ significantly from 1 as the 95%

confidence intervals all covered 1 (Figure S2 in File S1).

Furthermore, the estimation of the parameters in the solb BDIM

was better than in the folb BDIM, shown by smaller confidence

intervals for solb BDIM (Figure S3 in File S1). Together, this

indicated that the solb BDIM is more appropriate to describe the

morpheme family size distribution.

The estimators for the linear parameters a and b in the solb

BDIM range from 3.36 to 7.84 and from 4.18 to 10.35,

respectively (Figure S3 in File S1). With positive a and b the

average morpheme birth and death rate (normalized to class i)

drop with increasing family class from l+la and d+db for small

Figure 1. A general scheme of the BDI model for morpheme family distributions. Adopted from [34].
doi:10.1371/journal.pone.0093978.g001
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Figure 2. Current English (BNCbaby) with fitted power law (green), simple BDIM (orange), solb BDIM (red) and folb BDIM (blue) to
the middle section [5,120]; Word family distribution in double logarithmic scale.
doi:10.1371/journal.pone.0093978.g002

Table 1. AIC, BIC and P-values of chi square goodness of fit tests for all investigated models.

Power Law simple BDIM solb BDIM folb BDIM

Adelung German 18th AIC 888.02 816.45 804.40 805.91

BIC 896.28 824.71 815.42 819.68

Chi2 ,10274 ,1026 0.4865 0.4201

WDG German 20th AIC 1084.84 933.90 881.98 882.73

BIC 1093.58 942.64 893.63 897.30

Chi2 ,102172 ,10212 0.1901 0.0383

BLL German 20th AIC 1248.20 1137.54 1056.08 1057.12

BIC 1257.35 1146.69 1068.28 1072.37

Chi2 ,10275 ,10237 0.2549 0.3287

Johnson English 18th AIC 727.73 665.38 654.17 653.36

BIC 735.42 673.07 664.43 666.18

Chi2 ,10248 ,10215 0.0352 0.0838

Webster English beg. 20th AIC 762.28 650.06 643.25 653.36

BIC 769.97 657.76 653.51 666.18

Chi2 ,10291 ,10214 0.0156 0.3621

BNCbaby English end 20th AIC 897.26 779.25 744.72 744.47

BIC 905.52 787.51 755.73 758.24

Chi2 ,102111 ,1026 0.9135 0.7068

For AIC and BIC, lower values mean better fit. In the case of the chi square test, not significant p-values (.0.01) indicate a good fit of the model.Best fitting models are
indicated in bold.
doi:10.1371/journal.pone.0093978.t001
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family class i to l and d for large i. For all wordlists, a was smaller

than b. This indicates an existing synergy between morphemes in

one class [14]. However the confidence intervals are very wide and

overlap for a and b. Thus, the difference between the two

parameters is not large enough to be proven as statistical

significant.

Discussion

The vocabulary of a language is determined by a multitude of

intrinsic and extrinsic factors. Here, we showed that despite these

influences a pure stochastic Birth Death Innovation model is

sufficient to describe the morpheme family size distribution in

German and English as well as in historical data. Obviously, a

BDIM is only one of many mechanistic models to generate scale-

free distributions. We have recently used a network based

representation to analyze the evolution of morphemes in words

[8]. A multitude of such networks ranging from the internet to

protein interactions have been analyzed. Indeed, their features can

be modeled quite well with a preferential attachment approach

[18]. Furthermore, many other approaches for the generation of

scale-free distributions have been developed. For a review see for

example [19].

Here, we decided to adopt BDIMs for modeling as their charm

lies in the self-evident interpretability of their parameters.

Admittedly, we analyzed only a small set of BDIMs and

modifications and refinements of these models are possible. For

example, Reed and Hughes used a BDIM to model gene and

protein families [20]. Contrasting our model, were new mor-

phemes are drawn from a reservoir of ‘not-yet-invented’

morphemes, here new protein families evolve as a mutation of

existing proteins. Indeed this model is well suited for the evolution

of protein families. In the case of morphemes, it is arguable

whether new morphemes are always derived from existing ones.

Still, adding this aspect could enable to model morphemes with

more than one meaning, i.e. a new meaning is added to an existing

morpheme. In a different application, BDIMs have been used to

model surname distributions [21]. This model deviates from the

ones analyzed here as the innovation rate is not fixed.

Furthermore a sampling effect is considered and the birth rate is

modeled as a random variable. These options might be interesting

starting points to refine the BDIMs presented here. From a

linguistic viewpoint, one could additionally distinguish between

derivation and compounding. Currently, the death and birth rates

are only depending on the class, not on the type of morpheme.

One could argue that derivation is used more frequently and

therefore morphemes like ‘-ish’ should be treated differently. In a

BDIM one could set different birth and death rates for these two

processes. Furthermore, our model assumes a fixed innovation

rate, i.e. the rate with which new morphemes are introduced into

the vocabulary is constant. More complex models which might

correlate the innovation rate to the existing number of morphemes

or even words are conceivable. Taken the simplicity of the BDIMs

tested here into account, it seems even more surprising that they

were sufficient to generate distributions fitting to the data.

More importantly, they provide a mechanistic rather than a

phenomenological model for morpheme family size distributions

[22]. Therefore the parameters can be directly interpreted. We

have shown that the best fitting model was not neutral. In a pure

neutral model, the birth and death rates would be independent of

the family size. Thus, when building a new word, one would catch

a morpheme from a bag containing all morphemes in the same

amount as their family size. Deviating from this random model,

the data could be better fitted by a second order linear balanced

BDIM. Here, absolute terms are added to both, the birth and the

death rate. This will have a larger effect for smaller than on larger

families. Thus, the birth and death events involve rare morphemes

more frequently than in the pure neutral model. This finding is

consistent with an analysis of historical language change [8],

indicating that our model is indeed capable to describe processes

driving language change.

We have already shown that morphemes are well suited to trace

cultural changes [8]. Mechanistic models as presented here could

enable the statistically sound quantification of these changes. As

the birth and death rates are estimated, the probability for a

change from class n to class m can be calculated. Thus, rapidly

changing morphemes can not only be identified but classified with

a p-value in a statistically sound framework [17].

It has to be noted that the morpheme distributions were fitted

against the stationary distribution of the BDIM. Although the best

fitting models were the same all word lists, the values of the

parameters differed (Figure S3 in File S1). This might indicate

differences between languages as e.g. the degree of synthesis.

Contrasting, it could be a side effect of the used word lists which

differ in size and type. It would be interesting to test, whether

indeed the parameters a and b change over time and if so whether

this change is gradual or in bursts [23]. Our approach would

enable to identify and quantify such a historical change in word

formation.

Still, the model itself cannot explain why morphemes from

smaller families are preferred in word formation. If one assumes an

utterance based selection model of language change [24], there are

two non-exclusive explanations. First, it could be a bias in word

invention. Here, the inventor of a word prefers morphemes which

are not yet in too many other words. Second, it could be a bias in

word selection. The speaker might try to avoid new words which

contain morphemes found in too many other words. So far, we

can only speculate about the reason behind this avoidance.

Psycholinguistic experiments revealed a positive correlation

between morpheme family size and recognition time which would

imply an advantage for morphemes from larger families [25,26].

Still, this effect was attenuated if there are many ‘higher-frequency

family members’ [27]. Although our approach does not include

frequency, one can assume that large family morphemes have a

higher chance of including higher frequency words and are

therefore avoided. Furthermore, these studies are based on

accepted words and might therefore not capture all aspects

related to word formation. One could imagine that if a morpheme

is used in many different words with slightly different meanings it

will be complicated to identify the correct meaning in the new

word. It might be interesting to test whether indeed an individual

prefers morphemes from smaller classes in word formation. If that

is the case, one might be able to establish a link between an

individual’s mental representation of a language in the accepted

vocabulary of the community speaking this language.

Materials and Methods

Word lists
Our analyses cover 200 years of English and German which are

related, but slightly different in their degree of synthesis [3], i.e.

German has more morphemes per word than English. As we were

mainly interested in derivational word-formation, ‘the relationship

between lexemes of a word family’ [4], we deliberately omitted

inflection (different word forms of a lexem) by using dictionaries

and lemmatized word lists. We defined a word as a head entry in a

dictionary or as the lemma of the lemmatized corpora. Possible

blank characters within a word like in ‘window pane’ were used as

Word Formation Is Aware of Morpheme Family Size
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morpheme boundaries. The following dictionaries and corpora

were used: Johnson – English 18th century [28], Webster – English

beginning 20th century [29], BNCbaby – English end 20th century

[30], Adelung – German 18th century [28] and WDG – German

20th century [31]. For size of the word and morpheme lists see

Table S1 in File S1.

Morpheme detection
Morphemes were identified automatically by Morfessor version

1.0 [32] with default settings. The decomposition into morphemes

was evaluated for 18th century German (Adelung) and 20th century

German (WDG), respectively, by comparing the results to a 1%

sample of manually decomposed words. 84.37% of the decompo-

sitions in WDG were correctly identified with a false positive rate

of 15.63% and a false negative rate of 36.15%. In Adelung 85.64%

of decompositions were correct with a false positive rate of 14.36%

and a false negative rate of 27.44%. In total, 83% of the

morphemes in WDG and 86% of those in Adelung were correctly

identified. Within the Morpho Challenge 2010, Morfessor 1.0 was

evaluated on a gold standard set for English and German with a

graph-based assignment algorithm. It reached a precision of

0.8686 and a recall of 0.7226 for English and a precision of 0.8128

and a recall of 0.4806 for German [33].

Supporting Information

File S1 This file contains Table S1 and Figures S1–S8.
Figure S1, RSS values for all wordlists and all investigated models.

Figure S2, 95%-confidence intervals of h = l/d for all wordlists.

All confidence intervals cover the value 1. Figure S3, 95%-

confidence intervals of the parameters a and b for solb and folb

BDIM. Figure S4, Adelung with fitted power law (green), simple

BDIM (orange), solb BDIM (red) and folb BDIM (blue) to the

middle section [5,120] Left: Word family distribution in double

logarithmic scale Right: Word family distribution grouped into

bins for chi square test. Figure S5, WDG with fitted power law

(green), simple BDIM (orange), solb BDIM (red) and folb BDIM

(blue) to the middle section [5,140] Left: Word family distribution

in double logarithmic scale Right: Word family distribution

grouped into bins for chi square test. Figure S6, BLL with fitted

power law (green), simple BDIM (orange), solb BDIM (red) and

folb BDIM (blue) to the middle section [5,160] Left: Word family

distribution in double logarithmic scale Right: Word family

distribution grouped into bins for chi square test. Figure S7,

Johnson with fitted power law (green), simple BDIM (orange), solb

BDIM (red) and folb BDIM (blue) to the middle section [5,100]

Left: Word family distribution in double logarithmic scale Right:

Word family distribution grouped into bins for chi square test.

Figure S8, Webster with fitted power law (green), simple BDIM

(orange), solb BDIM (red) and folb BDIM (blue) to the middle

section [5,100] Left: Word family distribution in double

logarithmic scale Right: Word family distribution grouped into

bins for chi square test. Table S1, Number of words and

morphemes in the word lists and upper border of family sizes

used for the fitting to the models.
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