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Abstract

The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are
critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium
(human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC)
on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells
(DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to
fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell
membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-
relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial
cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number
of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and
CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-
regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and
exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated
the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.
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Introduction

Aspergillus fumigatus is a ubiquitous mould that is generally found

in soil or decaying vegetation [1]. It produces vast numbers of

spores (conidia) which readily become airborne to aid dispersal

and their small size, app. 2.5–3.5 mm in diameter, allows them to

enter the lung alveoli [2]. Depending on the immune status of the

host, Aspergillus species are responsible for a spectrum of diseases in

humans [3]. In patients with haematological malignancies who

undergo allogeneic stem cell transplantation, invasive aspergillosis

(IA) is the leading infective cause of death [4].

The human lung alveolar surface is the initial site of interaction

between the host and the fungus. Inhaled resting conidia that

reach the alveoli are inert to the immune system [5]. Ordinarily

germinating conidia encounter a number of pulmonary defenses

including respiratory mucus, antimicrobial molecules, such as

defensins, and innate immune cells such as pulmonary macro-

phages and dendritic cells [6]. Furthermore, the alveoli, which

consist of an epithelial cell layer and extracellular matrix

surrounded by capillaries, may play an important role in host

innate immunity [7,8]. Understanding these initial events of IA is

of great importance to fully characterize the pathogenesis and to

identify potential novel therapeutic strategies. Increasingly com-

plex tissue culture models have assisted in the understanding of

fungal infections at epithelial barriers, especially for Candida [9]. It

was shown that proteases were important for inducing a pro-

inflammatory response in epithelia [10] and that polymorphonu-

clear cells added to the model reduced tissue damage and more

closely mimicked the in vivo situation [11]. A model of the human

alveolus consisting of a bilayer of human epithelial and endothelial

cells was used to monitor the invasion of alveolar epithelium by A.

fumigatus [6,12].

In epithelial models and direct interactions between A. fumigatus

and monocytes [13,14], dendritic cells [15,16] and neutrophils

[17] gene expression analyses have indicated the importance of a

host Th1 pro-inflammatory response. The importance of a pro-

inflammatory response in defense against A. fumigatus suggests a

direct role for dendritic cells (DC), which act as sentries of the

innate immune system [18]. A network of DC is present in the

lungs and at mucosal surfaces of most tissues where they sample

their immediate microenvironment to detect pathogenic microbes
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[19]. Pulmonary DC phagocytose microbes and through cytokine

signalling mature during migration to the lymph nodes where they

present microbial antigens to activate T-cell populations [20]. In

addition to antigen presentation it was found that pulmonary

retention of inflammatory DC in a murine model of IA was

correlated to improved outcomes [21]. Without immunomodula-

tory signaling from neutrophils there was increased recruitment of

DC to the lungs in the neutropenic mice, these DC were probably

able to assist in compensating for the absence of neutrophils [21].

It has been observed that DC can distinguish between hyphae and

conidia leading to rapid killing of hyphae but extended survival of

conidia within the phagosome [15,20]. There are different DC

subsets present in tissues and may induce different kinds of

immune responses and determine the outcome of infection. In

addition, for Bacillus anthracis spores, it has been shown that

primary antimicrobial defenses are orchestrated by lung epithelial

cells interacting in very close association with CD11c+ DCs, which

phagocytose spores and transport them to lymph nodes [22,23].

In this study, a previously described bilayer model of the human

alveolus [8], which was developed for pharmacological studies,

was adapted to analyze expression profiles of immune-relevant

genes in different subsets of DC interacting with A. fumigatus. To

date, immune cell and A. fumigatus interaction experiments have

been performed in planktonic culture. This model was chosen to

better approximate how immune cells would interact with A.

fumigatus in a local lung environment, at the alveolar interface

where early infection occurs. Experiments included two relevant

DC subpopulations, myeloid DC (mDC) and monocyte-derived

DC (moDC). mDC, which carry CD1c as a characteristic marker

were isolated from peripheral blood ex vivo and perform complex

functions, including production of various chemokines. The in vitro

generated moDC were produced under standardized conditions

and in large quantities; these cells are regularly used in

immunotherapy protocols. The major goals of this research were

to analyze if this bilayer model was suitable for expression profiling

studies to approximate local early IA in vitro and if moDC and

mDC subpopulations interacting with A. fumigatus in this setting

differ in their gene expression profiles.

Results

The human alveolar bilayer model is suitable for gene
expression profiling experiments

The average yield of total RNA from the epithelial layer was

71.5 (616) ng ml21 and from the endothelial layer was 41.2 (617)

ng ml21. The RIN (RNA integrity) values were constantly .8 (data

not shown). Consequently, these numbers indicate that the RNA

extracted from the bilayer model system was of sufficient quantity

and quality, which is a major prerequisite for microarray analyses.

Gene expression profiles were based on a tailored array, which

was designed according to previous results from a genome-wide

expression array analyses in DCs [16]. In a basic initial analysis,

genes that had log fold change values (ratios of target gene to

house-keeping gene expressed as log2 values) of ,20.5 or .1.0

and a p-value ,0.05 were considered significantly differentially

expressed for analysis. Correspondence analysis of the array data

indicated that the most important factors influencing differential

gene expression are the fungus and moDC (Figure 1).

To confirm the relative fold change values obtained by

microarray analyses, we performed RT-qPCR assays for genes

showing the greatest differential expression on the array. All genes

tested showed similar expression patterns for both RT-qPCR and

microarray assays (Figure 2). Thus, RT-qPCR results supported

the data generated by the microarray analysis.

Gene expression analysis in structural cell layers of the
alveolar bilayer model

No genes were differentially regulated in the HPAEC cell layer

after 3 h and 6 h of exposure to conidia. The response of the A549

cell layer was more dynamic (Table 1) but of 15 differentially

regulated genes only GSK3A showed up-regulation. Similarly the

addition of germ tubes caused the differential regulation of 10

genes in the A549 cell layer with only SOD1 showing up-regulation

(Table 2). These data indicated that positive regulation of immune

genes in this model suggests only limited interaction between the

fungus and the epithelial cell layer A549.

Gene expression analysis of DC interacting with A.
fumigatus

The expression of immune genes from DCs interacting with A.

fumigatus were measured as a control to compare to the results

obtained from the interaction experiments on the bilayer model

(Table 2 and Table 3). Exposure to conidia caused the up-

regulation of seven genes (total of 13 differentially regulated) in

mDC and eight genes (total of eight differentially regulated) in

moDC (Table 3). This was greater than the number of up-

regulated genes observed in the A549 cells exposed to the same

Figure 1. Correspondence analysis indicating the factors with
the greatest influence on the microarray data. The triangles
represent the A549 cells and these clustered closely even in the
presence of A. fumigatus germ tubes. Whereas mDC, represented by
squares, clustered close to the A549 data except when germ tubes were
added which caused a distinct cluster to be formed. The moDC,
represented by circles, formed two distinct clusters one consisting of
datasets without fungus. The second cluster for datasets with germ
tubes was closer to the mDC dataset with germ tubes. These data
indicate that including moDC with the A549 layer leads to greater
changes in gene expression compared to the A549 layer than in the
absence of exogenous immunostimulators such as A. fumigatus. The
data indicate that conidia are not strong immunostimulators of A549
cells. The addition of germ tubes caused similar gene expression
responses when mDC or moDC were present.
doi:10.1371/journal.pone.0098279.g001
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stimulus (Table 1). Exposure to germ tubes caused a greater degree

of differential regulation than conidia with up-regulation of nine

genes (from a total of 19) in mDC and 10 genes (from a total of 17)

in moDC (Table 4). This reflects the greater immunogenicity of

germ tubes and indicates a similar response by both subsets of DC

to A. fumigatus.

Gene expression analysis with the addition of DCs
To mimic the in vivo situation more specified, mDC or moDC

were added to the bilayer model. The rationales to compare these

two DC types were that (i) we already published data on gene

expression analysis with moDC co-cultured with A. fumigatus and

therefore are able to compare our results to the bilayer model

system and (ii) different DC sub-populations may induce different

immune responses, e.g., Th1 or Th17 types.

The addition of either mDC or moDC to the bilayer model

greatly increased the number of up-regulated genes (Table 5)

compared to the gene expression observed in the A549 layer plus

A. fumigatus (Tables 1 and 2). The addition of mDC led to the

differential regulation of 12 genes (five up-regulated) whereas the

addition of moDC caused differential regulation of 27 genes (nine

up-regulated) (Table 5). Interestingly mDC showed greater

expression of IL1B compared to moDC, which expressed more

CLEC7A, CD209 and 30% more C-C-motif chemokine ligands.

This indicated that the moDC were in a state of greater regulatory

excitation than mDC, which may be expected since moDC were

induced to become moDC through exposure to cytokines in vitro

whereas the mDC were primary immune cells isolated directly

from the peripheral blood.

The introduction of A. fumigatus germ tubes onto the A549 cell

layer along with DC induced a greater increase in the number of

differentially expressed genes in treatments with mDC than in

those with moDC (Table 6) compared to the treatments without

germ tubes (Table 5). The number of differentially regulated genes

was 42 (14 up-regulated) in mDC compared to 49 genes (17 up-

regulated) in moDC. The significant up-regulation of IL8 and

CCL20 in both types of DC was consistent with previous studies on

the interaction between moDC and A. fumigatus [15,16]. IL1B

showed increased expression in mDC and moDC indicating the

Figure 2. RT-qPCR validation of differential gene expression observed in microarray experiments measuring cellular interactions
involving (a) moDC and (b) mDC. Gene expression data from the immune gene microarray shown as mean log2 values of ratios of relative
expression determined by RT-qPCR compared to array data. Error bars in both charts indicate the standard error.
doi:10.1371/journal.pone.0098279.g002
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initiation of a pro-inflammatory response, the mDC value was

more than two-fold greater than the response in moDC.

Gene Ontology and interaction network analyses
In order to better evaluate the complex patterns of up- and

down-regulated genes and to compare the immune response after

addition of moDC versus mDC, gene ontology and interaction

network analyses were performed based on the lists of differentially

expressed genes. Gene ontology (GO, over-representation of genes

responsible for particular biological functions) analysis of the

addition of DC and addition of A. fumigatus to the A549 cell layer

led to an increase in the expression genes involved in chemotaxis,

immune response and the inflammatory response (Table S1 and

S2). By contrast the addition of mDC only increased the

expression of genes involved in cell-to-cell signaling (Table S1),

whereas the addition of moDC led to a response similar to that

induced by A. fumigatus with genes involves in cell-to-cell signaling,

chemotaxis, immune and inflammatory response (Table S2).

The interaction network analysis (Figure 3) reflected the GO

analysis in that the addition moDC in the absence of A. fumigatus

led to a greater number of genes interacting in the absence of A.

fumigatus compared to the addition of mDC. The data for both

groups of DC in the presence of A. fumigatus was very similar. Both

showed the up-regulation of pro-inflammatory cytokines and up-

regulation of CXCR4. Overall there was an increase in the

expression of genes related to secreted proteins and a reduction in

intracellular signaling molecules such as Myd88. There was very

limited activity in the A549 cell layer in the presence or absence of

A. fumigatus.

Table 1. Gene Expression in A549 epithelial cell layer induced by addition of A. fumigatus conidia.

Fold Change

Gene Gene Name 3 h 6 h

CCL2 Chemokine (C-C-Motif) Ligand 2 21.28 21.47

CCL17 Chemokine (C-C-Motif) Ligand 17 21.43 -

CCL19 Chemokine (C-C-Motif) Ligand 19 21.55 21.29

CCL21 Chemokine (C-C-Motif) Ligand 21 - 21.43

CCL23 Chemokine (C-C-Motif) Ligand 23 - 21.69

CCL25 Chemokine (C-C-Motif) Ligand 25 - 21.27

CXCL3 Chemokine (C-X-C-Motif) Ligand 3 21.40 21.07

CXCL6 Chemokine (C-X-C-Motif) Ligand 6 21.56 21.54

CXCL9 Chemokine (C-X-C-Motif) Ligand 9 21.27 21.39

DCSIGN Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin - 21.45

Dectin1 Dectin-1 - 21.31

GSK3a Glycogen synthase kinase 3 alpha 1.42 -

LTA Lymphotoxin alpha -1.82 -

NFKBIA nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha - 21.11

PECR peroxisomal trans-2-enoyl-CoA reductase - 21.37

Expression is expressed as Fold Change (Log2); ratio of gene expression in cells plus A. fumigatus relative to cells minus A. fumigatus.
doi:10.1371/journal.pone.0098279.t001

Table 2. Gene Expression in A549 epithelial cell layer induced by addition of A. fumigatus germ tubes.

Fold Change

Gene Gene Function 3 h 6 h

MPO Myeloperoxidase 20.75 20.91

NCF-1 Neutrophil cytosolic factor 1 20.97 20.93

NFKBIL1 nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1 21.08 21.03

NFKB2 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 20.57 20.89

PTX3 Pentraxin 3 20.76 20.81

SOD1 Superoxide dismutase 1 2 1.75

TLR1 Toll-like Receptor 1 20.88 20.80

TLR3 Toll-like Receptor 3 20.59 20.68

TLR5 Toll-like Receptor 5 20.52 20.69

TLR7 Toll-like Receptor 7 20.68 20.61

Expression is expressed as Fold change (Log2); ratio of gene expression in cells plus A. fumigatus relative to cells minus A. fumigatus.
doi:10.1371/journal.pone.0098279.t002
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Discussion

The alveoli of the lung are usually the initial site for the

establishment of infection by A. fumigatus [8]. They provide a

nutrient rich environment that promotes the germination of

conidia. Furthermore, the dense network of capillaries that carries

blood to and from the alveoli provides a route for innate immune

cells, including DC, into the lungs and for dissemination of the

pathogen from the lungs [6]. In vitro models using human cell lines

and primary human cells help to better understand the complex

processes during these early stages of infection, including invasion

of fungi into tissue and their local interaction with the host

immune system.

Thus, we utilised a bilayer model [12] of the human alveolus to

determine the changes in gene expression induced, in the

structural cell layers of the alveolus and in DC subsets, within

this system by A. fumigatus. We demonstrated that gene expression

profiling experiments are possible with RNA extracted from this

system, and that the bilayer model provides a useful tool to mimic

the complex inflammatory situation when more than one cell type

is involved. Furthermore, it allowed for the comparison of different

immune cell subpopulations.

Both conidia and germ tubes induced the differential regulation

of a limited number of genes in both the endothelial (HPAEC) or

epithelial (A549) cell layers of the bilayer model (Tables 1 and 2).

Only two genes were up-regulated (GSK3A and SOD1) in the A549

cell layer interacting with conidia and germ tubes. GSK3A plays a

role in the immune response to fungi [24] but these data do not

reflect gene expression analyses from A549 monolayers exposed to

A. fumigatus [25]. It has been shown by RT- qPCR analysis that

IL8, TNF and CSF2 were differentially regulated by A549 cells

exposed to A. fumigatus [25], however it is difficult to compare such

studies since qPCR is more sensitive than microarrays, which can

generally be seen in Fig. 2. However, qPCR is impractical for large

numbers of genes.

Relatively modest fold changes in differentially expressed genes

in epithelial cells have been reported for other microarray studies

[26]. This may be because there was limited exposure of HPAEC

cells to A. fumigatus since it takes approximately 16 h for the fungus

to penetrate the alveolar-capillary boundary [6]. Thus, the

experiments in this study focused on the interaction at the

epithelial surface and were allowed to proceed for three to six

hours. The limited damage caused by A. fumigatus when traversing

cellular boundaries may also limit the extent of transcriptional

responses in structural cell layers [6].

In contrast the addition of either mDC or moDC to the alveolar

bilayer model led to a marked increase in the number of

differentially regulated immune genes (Tables 5 and 6). The

majority of studies examining the interaction between A. fumigatus

and DC have used moDC [15,16,27] because they can be

generated in vitro in relatively large quantities. This is one of the

first studies to examine the interaction between A. fumigatus and

human mDC. The moDC were more immunologically active than

mDC in the absence of A. fumigatus which might be because moDC

are differentiated from precursor monocytes through the addition

of the cytokines IL-4 and GM-CSF. Primary immune cells such as

mDC do not undergo this ex vivo differentiation and will be

relatively un-stimulated by exogenous cytokines at the initiation of

the experiment (Table 5). In addition, it has been postulated that

moDC in the body may represent an auxillary inflammatory

pathway whereas mDC are the specialized surveillance subset of

DC [28].

Comparison of the expression profile from interactions of DC

with A. fumigatus in planktonic culture (Tables 3 and 4) compared

Table 3. Gene expression of immune-related genes in donor myeloid dendritic cells or monocyte-derived dendritic cells with the
addition of A. fumigatus conidia (after 6 hours incubation).

Fold Change

Gene Gene Name mDC moDC

CCL2 Chemokine (C-C-Motif) Ligand2 2.68

CCL4 Chemokine (C-C-Motif) Ligand 4 2.24 3.46

CCL5 Chemokine (C-C-Motif) Ligand 5 1.72

CCL7 Chemokine (C-C-Motif) Ligand 7 2.22 1.5

CCL20 Chemokine (C-C-Motif) Ligand 20 1.7

CCR2 Chemokine (C-C-Motif) Receptor 2 21.23

CXCL1 Chemokine (C-X-C-Motif) Ligand 1 1.97

CXCL2 Chemokine (C-X-C-Motif) Ligand 2 4.1

CXCL5 Chemokine (C-X-C-Motif) Ligand 5 2.29

IL1A Interleukin-1 alpha 1.82 1.2

IL1B Interleukin-1 beta 3.35

IL8 Interleukin-8 1.8

IL8RB Interleukin-8 Receptor B 20.92

IL10RA Interleukin-10 Receptor A 21.44

IL10RB Interleukin-10 Receptor B 21.00

NCF-1 Neutrophil Cytosolic Factor 1 20.93

NFKBIA Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 2.49

TNFRSF1A Tumour necrosis factor-receptor superfamily 1A 21.51 20.74

Expression is expressed as Fold Change (Log2); ratio of gene expression in DC minus A. fumigatus relative to DC plus A. fumigatus.
doi:10.1371/journal.pone.0098279.t003
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to interactions on the alveolar epithelium (Tables 5 and 6) revealed

differences in the expression of PTX3 and CCL20 which are

important for immune response against A. fumigatus. Pentraxin 3 is

a soluble pathogen recognition receptor that is important for the

phagocytosis and killing of A. fumigatus by immune cells since it acts

as an opsonin [29]. It has recently been shown that mutations in

PTX3 may contribute to the risk of IA [30]. The difference in

CCL20 gene expression was only observed in mDC, not expressed

in the presence of A. fumigatus in planktonic culture (Table 4);

CCL20 has been shown to enhance recruitment of inflammatory

DCs to the lungs of neutropenic mice [21]. These results

correspond to data which indicated that innate immune cells such

as alveolar macrophages and neutrophils react to environmental

dimensionality [31]. Specifically, phagocytosis of A. fumigatus was

inhibited in 3-D growth models constructed from collagen. It may

be expected that DCs on a model of the alveolar surface would

react perform better than in planktonic culture which further

emphasizes the importance of creating more accurate in vitro

models to study host-pathogen interactions.

The gene for intercellular adhesion molecule 1 (ICAM-1) was

only expressed when mDC and moDC interacted with the fungus

on the alveolar model (Table 6), which suggested that the format of

the interaction study may have an important effect on the

behaviour of cells interacting with pathogenic fungi. It has been

demonstrated that A. fumigatus can modulate vascular adhesion

molecule (VCAM-1) in endothelial cells grown in vitro which has

been suggested as a mechanism of enhancing host defence against

angioinvasion through leukocute recruitment [32].

There was a significant increase in the number of immune genes

up-regulated in mDC and moDC in response to A. fumigatus germ

tubes (Table 6). This was in accordance with previous studies from

our group using moDC in co-cultures with A. fumigatus germlings

and subsequent Affymetrix array analysis [16] but also in

experiments with the immune gene array used in this study [15].

In agreement with these studies A. fumigatus induced a pro-

inflammatory response as indicated by the up-regulation of IL1B,

IL8 and CCL20 (Table 6) and the up-regulation of pentraxin-3

(PTX3) gene expression, which was a characteristic response to

fungal infection [33]. It is of interest that there was greater

Table 4. Gene expression of immune-related genes in donor myeloid dendritic cells or monocyte-derived dendritic cells induced
by the addition of A. fumigatus germ tubes (after 6 hours incubation).

Fold Change

Gene Gene Function mDC moDC

CCL1 Chemokine (C-C-Motif) Ligand 1 1.53

CCL4 Chemokine (C-C-Motif) Ligand 4 2.4 3.52

CCL5 Chemokine (C-C-Motif) Ligand 5 2.1

CCL7 Chemokine (C-C-Motif) Ligand 7 1.5

CCL20 Chemokine (C-C-Motif) Ligand 20 2.51

CCR5 Chemokine (C-C-Motif) Receptor 5 21.69

CD81 CD81-Molecule 20.99

CXCL1 Chemokine (C-X-C-Motif) Ligand 1 1.98

CXCL2 Chemokine (C-X-C-Motif) Ligand 2 4.2

CXCL3 Chemokine (C-X-C-Motif) Ligand 3 2.2 1.11

CXCL5 Chemokine (C-X-C-Motif) Ligand 5 3.13

CXCL6 Chemokine (C-X-C-Motif) Ligand 6 1.05

CXCL13 Chemokine (C-X-C-Motif) Ligand 13 21.13

DCSIGN Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin 22.1

GSK3a Glycogen synthase kinase 3 alpha 20.53

IL1A Interleukin-1 alpha 1.92 1.53

IL1B Interleukin-1 beta 3.3

IL8 Interleukin-8 2.1 2.2

IL1R1 Interleukin-1 Receptor 1 20.58

IL10RA Interleukin-10 Receptor A 21.43

IL10RB Interleukin-10 Receptor B 21.33 20.72

MYD88 Myeloid differentiation primary response gene (88) 20.68

NCF-1 Neutrophil Cytosolic Factor 1 20.93

NFKBIA Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 2.4

PSMA7 Proteasome (prosome, macropain) subunit, alpha type, 7 20.59

TNF Tumour necrosis factor 1.56 2.3

TNFRSF1A Tumour necrosis factor-Receptor Superfamily 1A 21.52 21.0

TXN Thioredoxin 1.32

Expression is expressed as Fold Change (Log2); ratio of gene expression in DC plus A. fumigatus relative to DC minus A. fumigatus.
doi:10.1371/journal.pone.0098279.t004
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expression of IL1B in mDC (146expression in mDC compared to

36 in moDC). This cytokine possesses a strong pro-inflammatory

capacity with high potential for chemotaxis of monocytes and

macrophages. In addition, IL1B, in synergy with IL23 is able to

induce a Th17 response; both originate from an inactive IL1B

precursor, pro-IL1B [34]. Polymorphisms in IL1B are associated

with an increased risk of invasive pulmonary aspergillosis [35]

further highlighting the importance of this cytokine in the anti-

Aspergillus response.

Along with IL1B, both, CXCL1 and CCL23 showed greater

expression in mDC than moDC (Table 6). These data indicate

that mDC may possess a greater capacity for the expression of

neutrophil chemoattractant cytokines than moDC. Furthermore,

three additional chemokine genes (CXCL2, CXCL5 and CCL20),

which were markedly up-regulated in DC upon stimulation with A.

fumigatus exhibit essential roles in neutrophil recruitment. CXCL5

has chemotactic and activating functions on neutrophils and is

produced following stimulation of cells with the inflammatory

cytokine IL-1B [36]; this cytokine was strongly up-regulated in our

settings as well. CCL20 attracts neutrophils and dendritic cells,

especially towards epithelial cells surrounding lymphoid tissues

[37]. In addition to its neutrophil attraction, CXCL2 is able to

trigger the in vitro adhesion of neutrophils to endothelial cells.

Thereby, CXCL2 acts synergistically with ICAM-1 (Table 6), a

strong mediator of leukocyte binding to endothelial cells, which is

usually followed by their transmigration into tissues [38]. Taking

Table 5. Gene Expression in A549 epithelial cell layer and donor myeloid dendritic cells or monocyte-derived dendritic cells
without the addition of A. fumigatus germ tubes (after 6 hours incubation).

Fold Change

Gene Gene Name mDC moDC

CCL4 Chemokine (C-C-Motif) Ligand 4 1.114

CCL13 Chemokine (C-C-Motif) Ligand 13 4.904

CCL17 Chemokine (C-C-Motif) Ligand 17 3.816 3.067

CCL18 Chemokine (C-C-Motif) Ligand 18 5.349

CCL23 Chemokine (C-C-Motif) Ligand 23 1.669

CCL24 Chemokine (C-C-Motif) Ligand 24 1.616

CXCL5 Chemokine (C-X-C-Motif) Ligand 5 1.201

CXCL10 Chemokine (C-X-C-Motif) Ligand 10 20.576

CXCR4 Chemokine (C-X-C-Motif) Receptor 4 1.894 1.520

Dectin1 Dectin - 1 1.557

DCSIGN Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin 2.402

GSK3a Glycogen synthase kinase 3 alpha 21.156

HSPA8 Heat shock 70 kDa protein 8 21.271

IL1A Interleukin-1 alpha 20.627

IL1B Interleukin-1 beta 1.250

IL1R1 Interleukin-1 Receptor 1 20.710 20.736

IL6R Interleukin-1 Receptor 6 20.511

IL8RA Interleukin-8 Receptor A 20.631

IL11RA Interleukin-11 Receptor A 20.834

IL12B Interleukin-12 Receptor B 20.723

IL23 Interleukin-23 20.663

MYO1C Myosin 1C 20.766 20.689

PECR peroxisomal trans-2-enoyl-CoA reductase 21.006 21.022

PSMA7 proteasome (prosome, macropain) subunit, alpha type, 7 20.904 21.185

SOD1 Superoxide dismutase 1 20.887

TLR1 Toll-like Receptor 1 21.172

TLR2 Toll-like Receptor 2 20.751

TLR3 Toll-like Receptor 3 20.900

TLR5 Toll-like Receptor 5 21.103

TLR7 Toll-like Receptor 7 21.229

TNFRSF1A Tumour necrosis factor-Receptor Superfamily 1A 20.841

TNFRSF1B Tumour necrosis factor-Receptor Superfamily 1B 1.054

TOLLIP Toll interacting protein 20.508

Expression is expressed as Fold Change (Log2); ratio of gene expression in cells plus DC relative to cells minus DC.
doi:10.1371/journal.pone.0098279.t005
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Table 6. Expression of immune-related genes in A549 epithelial cell layer and donor myeloid dendritic cells or monocyte-derived
dendritic cells induced by the addition of A. fumigatus germ tubes (after 6 hours incubation).

Fold Change

Gene Gene Function mDC moDC

ACTB Actin B - 1.018

ATP6V1A ATPase, H+ transporting, lysosomal 70 kDa, V1 subunit A 21.875 21.616

CCL4 Chemokine (C-C-Motif) Ligand 4 3.274 5.244

CCL5 Chemokine (C-C-Motif) Ligand 5 1.144 1.024

CCL13 Chemokine (C-C-Motif) Ligand 13 - 2.632

CCL17 Chemokine (C-C-Motif) Ligand 17 - 1.043

CCL18 Chemokine (C-C-Motif) Ligand 18 - 2.377

CCL19 Chemokine (C-C-Motif) Ligand 19 20.911 20.718

CCL20 Chemokine (C-C-Motif) Ligand 20 4.189 3.084

CCL21 Chemokine (C-C-Motif) Ligand 21 20.787 20.772

CCL23 Chemokine (C-C-Motif) Ligand 23 1.128 -

CCL24 Chemokine (C-C-Motif) Ligand 24 - 20.703

CCL26 Chemokine (C-C-Motif) Ligand 26 20.873 20.679

CCR4 Chemokine (C-C-Motif) Receptor 4 20.894 20.646

CCR5 Chemokine (C-C-Motif) Receptor 5 20.557 20.567

CD81 CD81-Molecule 21.139 20.918

CSF2 Colony stimulating factor 2 (granulocyte-macrophage) - 1.311

CXCL1 Chemokine (C-X-C-Motif) Ligand 1 3.071 -

CXCL2 Chemokine (C-X-C-Motif) Ligand 2 4.033 3.307

CXCL3 Chemokine (C-X-C-Motif) Ligand 3 2.216 1.009

CXCL5 Chemokine (C-X-C-Motif) Ligand 5 3.282 2.116

CXCR4 Chemokine (C-X-C-Motif) Receptor 4 1.111 1.799

GOLGA4 Golgi autoantigen, golgin Subfamily a, 4 20.504 -

GSK3a Glycogen synthase kinase 3 alpha 21.831 22.737

HSPA8 Heat shock 70 kDa protein 8 - 20.809

HSP90AB1 Heat shock protein 90 kDa alpha (cytosolic), class B member 1 - 21.957

ICAM1 Intercellular adhesion molecule 1 1.658 1.931

IL1B Interleukin-1 beta 3.857 1.363

IL1R1 Interleukin-1 Receptor 1 20.514 20.595

IL8 Interleukin-8 1.894 2.268

IL10RB Interleukin-10 Receptor B - 20.638

IL11 Interleukin-11 -1.046 20.968

IL11RA Interleukin-11 Receptor A 21.773 21.724

IL12B Interleukin-12 Receptor B - 20.512

MIF Macrophage migration inhibitory factor 20.880 21.461

MYD88 Myeloid differentiation primary response gene (88) 20.782 21.337

MYO1C Myosin 1C 21.598 21.471

NFKBIA Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 1.262 1.377

NIBP Trafficking protein particle complex 9 20.507 20.564

PECR Peroxisomal trans-2-enoyl-CoA reductase 21.268 21.048

PSMA7 Proteasome (prosome, macropain) subunit, alpha type, 7 22.081 22.079

PTX3 Pentraxin 3 1.188 1.306

SOD1 Superoxiddismutase 1 22.049 22.518

TLR2 Toll-like Receptor 2 20.965 21.521

TNFRSF1A Tumour necrosis factor-Receptor Superfamily 1A 22.886 22.623

TOLLIP Toll interacting protein 21.357 21.395

TXN Thioredoxin 22.049 -
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the data from our alveolar model together, they underline the

important role of DCs for the recruitment and adhesion of

neutrophils to alveolar tissue.

In conclusion, we were able to demonstrate that this bilayer

model, which reflects the human alveolus, allowed gene expression

profiling of A549 cell layers interacting with human DC

subpopulations and A. fumigatus. The system offers a feasible and

robust approach for analyzing the interaction of human airway

tissue with other cells or pathogens that complements animal

models of infection. Thereby, interaction studies can be extended

and in consequence this bilayer model can function as a basis for

alternative approaches, including the analysis of other immune cell

populations, further probe sets for alternative expression profiling

(including miRNA profiling) and different respiratory pathogens.

Improved understanding of the pathophysiology of Aspergillus

infection, including local processes in human alveoli will help to

understand the complexity of this infection and support the

development of alternative therapeutic approaches.

Materials and Methods

Ethics Statement
This study, using whole blood specimens obtained from human

healthy volunteer donors, was approved by the Ethical Committee

of the University Hospital of Wuerzburg. Informed consent was

written and provided by all study participants. Data analysis was

conducted anonymously.

Isolation of mDC and generation of moDC
Peripheral blood monocytes (PBMCs) were purified from donor

buffy coat using MACS CD14 positive selection (Miltenyi Biotec)

and induced to become immature dendritic cells (moDC) by

incubation with IL-4 and GM-CSF [16]; moDC were generated

from three different donors to 97% purity.

Myeloid DC (mDC) were purified from donor buffy coat using

the CD1c (BDCA-1)+ dendritic cell isolation kit (Miltenyi Biotec)

as described in the manufacturer’s instructions. mDC were

isolated from three different donors to 95% purity.

Fungal strains and growth conditions
Aspergillus fumigatus strain Af293 was used in all experiments and

cultures were maintained on malt extract agar. Suspensions of

conidia were prepared as previously described and adjusted to a

concentration of 26105 ml21 in RPMI medium [15]. Germ tubes

were generated by incubating conidia (26105 ml21) overnight at

room temperature in RPMI medium followed by incubation at

37uC for 6 h.

Alveolar bilayer model
A model of the alveolar epithelium/endothelium was construct-

ed on transwell membranes as described by Hope et al. [12].

Briefly, Human pulmonary artery endothelial cells (HPAEC) and

Human alveolar epithelial cells (A549) were obtained from Lonza.

The bilayer was constructed by incubating 16105 HPAECs on the

under surface of a 6.5 mm diameter Transwell Clear membrane

with 3-mM pores (Corning) for 2 h. The membrane was then

placed right side up into the well of a 24-well tissue culture plate

(Greiner) containing EGM-2 medium (Lonza), the upper chamber

was filled with 100 ul EGM-2 medium and the assembly was

incubated for 24 h at 37uC and 5% CO2. The contents of the

upper chamber were removed and replaced by 56104 A549 cells

in 100 ml EBM-2 plus 10% FBS, the assembly was then incubated

at 37uC and 5% CO2. The respective media were changed daily

and the experiment performed on the fifth day following addition

of the A549 cells.

Interaction experiments
Fungal elements, conidia or germ tubes (56104 per membrane),

were added to the upper chamber of the transwell assembly to

allow direct interaction of the fungus with the alveolar epithelium

(A549 cell layer). Dendritic cells, either mDC or moDC, were

added to the upper chamber at a concentration of 26105 per

membrane. In interactions between the fungus and dendritic cells

on the epithelium surface the MOI was one. Interactions were

incubated for 3 h and 6 h at 37uC and 5% CO2.

RNA extraction
After incubation each cell layer on the transwell membrane was

removed using a cell scraper and pipette, the recovered cells were

immediately transferred to eppendorf tubes containing buffer RLT

(Qiagen). The A549 cell layer was transferred with the 200 ml of

medium from the upper chamber to capture dendritic cells. RNA

was extracted using the RNeasy mini kit (Qiagen) as per the

manufacturer’s protocol for RNA extraction from animal cells.

After extraction the RNA was quantified and the RIN (RNA

Integrity) value established using a 2100 Bioanalyzer (Agilent).

Immune gene microarray
RNA from host cell layers was labelled and hybridised to a

custom microarray of 117 oligos (Operon) targeting genes that are

generally relevant for regulation of immune defence mechanisms

(Genpak) [15]. This array has been listed on GEO under accession

number GPL10270. This array was designed based on an

Affymetrix array analysis of DC interacting with A. fumigatus

[16]. This indicated that the selected immune genes showed the

greatest differential regulation and had the most relevance to the

interaction. This array reduced the complexity of analysis and

allowed for potentially greater resolution of DC responses in the

background of a second human cell type.

The experimental treatments tested were: (1) A549 cells plus

conidia or germ tubes compared to uninfected A549 cells. (2)

HPAEC cells in the bilayer model plus or minus A. fumigatus

infection. (3) mDC or moDC plus conidia or germ tubes compared

Table 6. Cont.

Fold Change

Gene Gene Function mDC moDC

USP49 Ubiquitin specific peptidase 49 20.820 20.695

ZNF710 Zinc-fingerprotein 710 20.697 20.807

Expression is expressed as Fold Change (Log2); ratio of gene expression in cells plus A. fumigatus relative to cells minus A. fumigatus.
doi:10.1371/journal.pone.0098279.t006
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to uninfected cells. (4) A549 cells plus mDC or moDC compared

to A549 cells with no added immune cells. (5) A549 cells plus

mDC or moDC with germ tubes compared to uninfected A549

cells plus mDC or moDC.

Arrays were hybridised and analysed as previously described

[15]. Briefly, 400 ng of total RNA was amplified using the

‘‘MessageAmp II aRNA Amplification Kit’’ from Ambion. The

amplified aRNA from samples (stimulated and un-stimulated)

were Cy3-labelled and a pool of all samples was Cy5-labelled by in

Figure 3. Gene network analyses of the expression data. Interaction networks identified when: (A) moDCs were added to the A549 cell layer.
(B) moDCs and A. fumigatus germ tubes were added to the A549 layer. (C) mDCs were added to the A549 layer. (D) mDCs and A. fumigatus germ
tubes were added to the A549 layer. The red circles indicate genes with an expression value .1.0; green circles had expression values ,21.0; white
circles had expression less than 1.0 and greater than 21.0. The Network analyses were conducted through the Innate DB website and were visualized
in Cytoscape. The predicted physical locations of expressed genes are also indicated: extracellular (Ext), cell surface (CS), plasma membrane (PM),
cytoplasm (Cy) and nucleus (Nu).
doi:10.1371/journal.pone.0098279.g003
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vitro transcription from 500 ng of aRNA, respectively (LabelStar

Array Kit, Qiagen). The gene chips were washed and probe arrays

were scanned by using a GeneChip Scanner 3000 (Affymetrix).

RT-qPCR validation of expression
For microarray validation by RT-qPCR, aliquots of the above

mentioned RNA samples (500 ng) were reverse transcribed with

the QuantiTect RT kit (Qiagen), containing a blend of oligo dT

and random primers. RT-qPCR assays were performed using a

StepOnePlus instrument (Applied Biosystems) using the TaqMan

Universal PCR mix (Applied Biosystems) and commercially

available primers and probes (Gene Expression assays) for IL-1B,

IL-8 and CCL20, with ALAS1 as the endogenous control gene. All

RT-PCR assays were run with an initial denaturation step (10 min

at 95uC), followed by 40 cycles of repeated denaturation (15 s at

95uC) and primer annealing and extension (60 s at 60uC).

Data Analysis
Data was analysed using software packages from the Biocon-

ductor project (www.bioconductor.org; [39]) were run under R

(www.r-project.org). After normalization (quantile-quantile) [40],

differential expression of genes was calculated using the moderated

t-statistic approach as implemented in the R-package Limma [41],

which has been specifically developed for the analysis of small

sample size experiments. By exploiting information across genes it

delivers more stable results than a conventional t-test. The P-

values of all results were corrected for multiple testing by

application of the false discovery rate [42]. Correspondence

analysis was performed using the routines implemented in the R-

Package ‘vegan’[43].

Gene ontology and network analysis
To facilitate interpretation the datasets were analysed by gene

ontology and network analysis. The gene expression data for the

interactions on the A549 cell layer induced by the addition of DCs

and A. fumigatus germ tubes were uploaded to InnateDB (http://

www.innatedb.com/). This is a comprehensive database and

analysis platform that enables testing of differentially expressed

genes in known immune response pathways. Gene Ontology and

Network analyses were carried out using the default parameters

(hyper-geometric test and Benjamini Hochberg correction for false

discovery rate) [44,45]. Networks of interacting genes were

visualized in Cytoscape [46].

Microarray accession numbers
The microarray data for the gene expression analyses in this

study were submitted to the Gene Expression Omnibus (GEO,

NCBI) under the accession number GSE28806.

Supporting Information

Table S1 Gene Ontology Analysis of A549 cells and
mDC in the presence or absence of A. fumigatus germ
tubes.

(DOCX)

Table S2 Gene Ontology Analysis of A549 cells and
moDC in the presence or absence of A. fumigatus germ
tubes.

(DOCX)

Author Contributions

Conceived and designed the experiments: COM WH TR HE JL.

Performed the experiments: COM MF RB SK. Analyzed the data:

COM TM MD SK JL MF. Contributed reagents/materials/analysis tools:

TR HE JL MD SK TM. Wrote the paper: COM MF MD JL.

References

1. Gugnani HC (2003) Ecology and taxonomy of pathogenic aspergilli. Front

Biosci 8: s346-357.

2. Latge JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:

310–350.

3. Hope WW, Walsh TJ, Denning DW (2005) The invasive and saprophytic

syndromes due to Aspergillus spp. Med Mycol 43 Suppl 1: S207–238.

4. Neofytos D, Horn D, Anaissie E, Steinbach W, Olyaei A, et al. (2009)

Epidemiology and outcome of invasive fungal infection in adult hematopoietic

stem cell transplant recipients: analysis of Multicenter Prospective Antifungal

Therapy (PATH) Alliance registry. Clin Infect Dis 48: 265–273.

5. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, et al. (2009)

Surface hydrophobin prevents immune recognition of airborne fungal spores.

Nature 460: 1117–1121.

6. Hope WW (2009) Invasion of the alveolar-capillary barrier by Aspergillus spp.:

therapeutic and diagnostic implications for immunocompromised patients with

invasive pulmonary aspergillosis. Med Mycol 47 Suppl 1: S291–298.

7. Park SJ, Mehrad B (2009) Innate immunity to Aspergillus species. Clinical

microbiology reviews 22: 535–551.

8. Hope WW, Kruhlak MJ, Lyman CA, Petraitiene R, Petraitis V, et al. (2007)

Pathogenesis of Aspergillus fumigatus and the kinetics of galactomannan in an in

vitro model of early invasive pulmonary aspergillosis: implications for antifungal

therapy. The Journal of infectious diseases 195: 455–466.

9. Schaller M, Mailhammer R, Korting HC (2002) Cytokine expression induced by

Candida albicans in a model of cutaneous candidosis based on reconstituted

human epidermis. Journal of medical microbiology 51: 672–676.

10. Schaller M, Korting HC, Borelli C, Hamm G, Hube B (2005) Candida albicans-

secreted aspartic proteinases modify the epithelial cytokine response in an in

vitro model of vaginal candidiasis. Infect Immun 73: 2758–2765.

11. Schaller M, Boeld U, Oberbauer S, Hamm G, Hube B, et al. (2004)

Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine

epithelial responses in an in vitro model of oral candidosis. Microbiology 150:

2807–2813.

12. Hope WW, Kruhlak MJ, Lyman CA, Petraitiene R, Petraitis V, et al. (2007)

Pathogenesis of Aspergillus fumigatus and the kinetics of galactomannan in an in

vitro model of early invasive pulmonary aspergillosis: implications for antifungal

therapy. J Infect Dis 195: 455–466.

13. Loeffler J, Haddad Z, Bonin M, Romeike N, Mezger M, et al. (2009) Interaction

analyses of human monocytes co-cultured with different forms of Aspergillus

fumigatus. J Med Microbiol 58: 49–58.

14. Cortez KJ, Lyman CA, Kottilil S, Kim HS, Roilides E, et al. (2006) Functional

genomics of innate host defense molecules in normal human monocytes in

response to Aspergillus fumigatus. Infect Immun 74: 2353–2365.

15. Morton CO, Varga JJ, Hornbach A, Mezger M, Sennefelder H, et al. (2011)

The temporal dynamics of differential gene expression in Aspergillus fumigatus

interacting with human immature dendritic cells in vitro. PLoS One 6: e16016.

16. Mezger M, Kneitz S, Wozniok I, Kurzai O, Einsele H, et al. (2008)

Proinflammatory response of immature human dendritic cells is mediated by

dectin-1 after exposure to Aspergillus fumigatus germ tubes. J Infect Dis 197:

924–931.

17. Sugui JA, Kim HS, Zarember KA, Chang YC, Gallin JI, et al. (2008) Genes

differentially expressed in conidia and hyphae of Aspergillus fumigatus upon

exposure to human neutrophils. PLoS One 3: e2655.

18. McDonagh A, Fedorova ND, Crabtree J, Yu Y, Kim S, et al. (2008) Sub-

telomere directed gene expression during initiation of invasive aspergillosis.

PLoS Pathog 4: e1000154.

19. Vermaelen K, Pauwels R (2005) Pulmonary dendritic cells. Am J Respir Crit

Care Med 172: 530–551.

20. Bozza S, Gaziano R, Spreca A, Bacci A, Montagnoli C, et al. (2002) Dendritic

cells transport conidia and hyphae of Aspergillus fumigatus from the airways to

the draining lymph nodes and initiate disparate Th responses to the fungus.

J Immunol 168: 1362–1371.

21. Park SJ, Burdick MD, Brix WK, Stoler MH, Askew DS, et al. (2010)

Neutropenia enhances lung dendritic cell recruitment in response to Aspergillus

via a cytokine-to-chemokine amplification loop. J Immunol 185: 6190–6197.

22. Tournier JN, Mohamadzadeh M (2010) Key roles of dendritic cells in lung

infection and improving anthrax vaccines. Trends Mol Med 16: 303–312.

23. Shetron-Rama LM, Herring-Palmer AC, Huffnagle GB, Hanna P (2010)

Transport of Bacillus anthracis from the lungs to the draining lymph nodes is a

rapid process facilitated by CD11c+ cells. Microb Pathog 49: 38–46.

DC and A. fumigates Interactions on Model Alveolar Surface

PLOS ONE | www.plosone.org 11 May 2014 | Volume 9 | Issue 5 | e98279

www.bioconductor.org
www.r-project.org
http://www.innatedb.com/
http://www.innatedb.com/


24. Spinnler K, Mezger M, Steffens M, Sennefelder H, Kurzai O, et al. (2010) Role

of glycogen synthase kinase 3 (GSK-3) in innate immune response of human
immature dendritic cells to Aspergillus fumigatus. Medical mycology: official

publication of the International Society for Human and Animal Mycology 48:

589–597.
25. Bellanger AP, Millon L, Khoufache K, Rivollet D, Bieche I, et al. (2009)

Aspergillus fumigatus germ tube growth and not conidia ingestion induces
expression of inflammatory mediator genes in the human lung epithelial cell line

A549. J Med Microbiol 58: 174–179.

26. Oosthuizen JL, Gomez P, Ruan J, Hackett TL, Moore MM, et al. (2011) Dual
organism transcriptomics of airway epithelial cells interacting with conidia of

Aspergillus fumigatus. PLoS One 6: e20527.
27. Gafa V, Lande R, Gagliardi MC, Severa M, Giacomini E, et al. (2006) Human

dendritic cells following Aspergillus fumigatus infection express the CCR7
receptor and a differential pattern of interleukin-12 (IL-12), IL-23, and IL-27

cytokines, which lead to a Th1 response. Infect Immun 74: 1480–1489.

28. Osugi Y, Vuckovic S, Hart DN (2002) Myeloid blood CD11c(+) dendritic cells
and monocyte-derived dendritic cells differ in their ability to stimulate T

lymphocytes. Blood 100: 2858–2866.
29. Moalli F, Jaillon S, Inforzato A, Sironi M, Bottazzi B, et al. (2011) Pathogen

recognition by the long pentraxin PTX3. J Biomed Biotechnol 2011: 830421.

30. Cunha C, Aversa F, Lacerda JF, Busca A, Kurzai O, et al. (2014) Genetic PTX3
deficiency and aspergillosis in stem-cell transplantation. N Engl J Med 370: 421–

432.
31. Behnsen J, Narang P, Hasenberg M, Gunzer F, Bilitewski U, et al. (2007)

Environmental dimensionality controls the interaction of phagocytes with the
pathogenic fungi Aspergillus fumigatus and Candida albicans. PLoS Pathog 3:

e13.

32. Chiang LY, Sheppard DC, Gravelat FN, Patterson TF, Filler SG (2008)
Aspergillus fumigatus stimulates leukocyte adhesion molecules and cytokine

production by endothelial cells in vitro and during invasive pulmonary disease.
Infect Immun 76: 3429–3438.

33. Gaziano R, Bozza S, Bellocchio S, Perruccio K, Montagnoli C, et al. (2004)

Anti-Aspergillus fumigatus efficacy of pentraxin 3 alone and in combination with
antifungals. Antimicrob Agents Chemother 48: 4414–4421.

34. Romani L (2008) Cell mediated immunity to fungi: a reassessment. Med Mycol
46: 515–529.

35. Ok M, Einsele H, Loeffler J (2011) Genetic susceptibility to Aspergillus fumigatus

infections. Int J Med Microbiol 301: 445–452.

36. Hieshima K, Imai T, Opdenakker G, Van Damme J, Kusuda J, et al. (1997)

Molecular cloning of a novel human CC chemokine liver and activation-

regulated chemokine (LARC) expressed in liver. Chemotactic activity for

lymphocytes and gene localization on chromosome 2. J Biol Chem 272: 5846–

5853.

37. Chang MS, McNinch J, Basu R, Simonet S (1994) Cloning and characterization

of the human neutrophil-activating peptide (ENA-78) gene. J Biol Chem 269:

25277–25282.

38. Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, et al. (2005) ICAM-1

regulates neutrophil adhesion and transcellular migration of TNF-alpha-

activated vascular endothelium under flow. Blood 106: 584–592.

39. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004)

Bioconductor: open software development for computational biology and

bioinformatics. Genome Biol 5: R80.

40. Smyth GK, Speed TP (2003) Normalization of cDNA microarray data. Methods

31: 265–273.

41. Smyth GK (2004) Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Statistical applications in

genetics and molecular biology 3: Article3.

42. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. J Roy Stat Soc B Met 57: 289–300.

43. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, et al. (2011) vegan:

Community Ecology Package.

44. Ballarin A, Bazzan E, Zenteno RH, Turato G, Baraldo S, et al. (2012) Mast cell

infiltration discriminates between histopathological phenotypes of chronic

obstructive pulmonary disease. American journal of respiratory and critical

care medicine 186: 233–239.

45. Lynn DJ, Winsor GL, Chan C, Richard N, Laird MR, et al. (2008) InnateDB:

facilitating systems-level analyses of the mammalian innate immune response.

Mol Syst Biol 4: 218.

46. Hanley PJ, Kronlage M, Kirschning C, del Rey A, Di Virgilio F, et al. (2012)

Transient P2X7 receptor activation triggers macrophage death independent of

Toll-like receptors 2 and 4, caspase-1, and pannexin-1 proteins. The Journal of

biological chemistry 287: 10650–10663.

DC and A. fumigates Interactions on Model Alveolar Surface

PLOS ONE | www.plosone.org 12 May 2014 | Volume 9 | Issue 5 | e98279


