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Summary 

Microbial species (bacteria and archaea) in the gut are important for human 

health in various ways. Not only does the species composition vary considerably 

within the human population, but each individual also appears to have its own 

strains of a given species. While it is known from studies of bacterial pan-genomes, 

that genetic variation between strains can differ considerably, such as in 

Escherichia coli, the extent of genetic variation of strains for abundant gut species 

has not been surveyed in a natural habitat. This is mainly due to the fact that most 

of these species cannot be cultured in the laboratory. Genetic variation can range 

from microscale genomic rearrangements such as small nucleotide polymorphism 

(SNP) to macroscale large genomic rearrangements like structural variations. 

Metagenomics offers an alternative solution to study genetic variation in 

prokaryotes, as it involves DNA sequencing of the whole community directly from 

the environment. However, most metagenomic studies to date only focus on 

variation in gene abundance and hence are not able to characterize genetic 

variation (in terms of presence or absence of SNPs and genes) of gut microbial 

strains of individuals. 

The aim of my doctorate studies was therefore to study the extent of genetic 

variation in the genomic sequence of gut prokaryotic species and its phenotypic 

effects based on: (1) the impact of SNP variation in gut bacterial species, by 

focusing on genes under selective pressure and (2) the gene content variation (as 

a proxy for structural variation) and their effect on microbial species and the 

phenotypic traits of their human host. 

In the first part of my doctorate studies, I was involved in a project in which 

we created a catalogue of 10.3 million SNPs in gut prokaryotic species, based on 

metagenomes. I used this to perform the first SNP-based comparative study of 

prokaryotic species evolution in a natural habitat. Here, I found that strains of gut 

microbial species in different individuals evolve at more similar rates than the 
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strains within an individual. In addition, I found that gene evolution can be 

uncoupled from the evolution of its originating species, and that this could be 

related to selective pressure such as diet, exemplified by galactokinase gene 

(galK). Despite the individuality (i.e. uniqueness of each individual within the 

studied metagenomic dataset) in the SNP profile of the gut microbiota that we 

found, for most cases it is not possible to link SNPs with phenotypic differences. 

For this reason I also used gene content as a proxy to study structural variation in 

metagenomes. 

In the second part of my doctorate studies, I developed a methodology to 

characterize the variability of gene content in gut bacterial species, using 

metagenomes. My approach is based on gene deletions, and was applied to 

abundant species (demonstrated using a set of 11 species). The method is 

sufficiently robust as it captures a similar range of gene content variability as has 

been detected in completely sequenced genomes. Using this procedure I found 

individuals differ by an average of 13% in their gene content of gut bacterial strains 

within the same species. Interestingly no two individuals shared the same gene 

content across bacterial species. However, this variation corresponds to a lower 

limit, as it is only accounts for gene deletion and not insertions. This large variation 

in the gene content of gut strain was found to affect important functions, such as 

polysaccharide utilization loci (PULs) and capsular polysaccharide synthesis 

(CPS), which are related with digestion of dietary fibers. 

In summary, I have shown that metagenomics based approaches can be 

robust in characterizing genetic variation in gut bacterial species. I also illustrated, 

using examples both for SNPs and gene content (galK, PULs and CPS), that this 

genetic variation can be used to predict the phenotypic characteristics of the 

microbial species, as well as predicting the phenotype of their human host (for 

example, their capacity to digest different food components). Overall, the results 

of my thesis highlight the importance of characterizing the strains in the gut 

microbiome analogous to the emerging variability and importance of human 

genomics. 
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Zusammenfassung 

Mikrobielle Arten (Bakterien und Archaeen) im menschlichen Darm sind 

wichtige Begleiter für unsere Gesundheit. Jedoch gibt es nicht nur starke 

Unterschiede zwischen individuellen Wirten in der Artenzusammensetzung des 

Darmmikrobioms, sondern es scheint sogar Individuen-spezifische 

Bakterienstämme zu geben. Analysen von Bakterien wie z.B.  Escherichia coli 

haben schon früh gezeigt, dass die Genome von Bakterienstämmen derselben Art 

große Unterschiede aufzeigen können; jedoch wurden diese Unterschiede bisher 

noch nicht in einer natürlichen Umgebung gezeigt. Genetische Variation kann viele 

Ausprägungen haben und reicht von kleinen Veränderungen wie „small nucleotide 

polymorphism“ (SNP) zu makroskopischen Veränderung, wie z.B. chromosomalen 

Restrukturierungen. All diese genetischen Variationen wurden bis jetzt nicht in der 

natürlichen Umgebung der Bakterien studiert, vorallem bedingt durch fehlende 

Methoden um die meisten dieser Bakterien um Labor zu kultivieren. 

Metagenomische Studien können hier helfen, da sie unabhängig von 

Kultivierungen jegliche DNS aus einer natürlichen Bakteriengemeinschaft 

untersuchen. Jedoch wurde dies in den meisten bisher veröffentlichten 

metagenomischen Studien nicht ausgenutzt da diese hauptsächlich auf die Anzahl 

der gefunden Gene ausgerichtet waren. 

Das Ziel meiner Doktorarbeit war es, die genetische Variation in 

Darmbakterien zu beschreiben und phenotypische Veränderungen zu 

untersuchen. Dies habe ich umgesetzt durch die Erforschung (1) der SNP-Varianz 

in Darmbakterien, mit besonderem Augenmerk auf Gene, die unter einem 

selektivem Druck stehen und (2) der Variationen in der  Genzusammensetzung 

eines Genomes (als eine Annäherung an strukturelle Variationen) und welchen 

Effekt dies auf Mikrobenarten und Wirtsphenotypen hat. 

Im ersten Kapitel meiner Doktorarbeit beschreibe ich meine Arbeit in einem 

Projekt unserer Gruppe, in dem wir basierend auf metagenomischen Daten 10 
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Millionen SNPs in menschlichen Darmbakterien beschrieben haben. Diesen 

Datensatz habe ich verwendet um die erste SNP-basierte, vergleichende Studie 

der Bakterienevolution in einem natürlichen Habitat zu realisieren. Ich entdeckte, 

dass Bakterienstämme unabhängig vom Wirt ähnliche evolutionäre Raten haben. 

Genauer gesagt, die evolutionäre Rate für eine Art ist stabiler zwischen Wirten, als 

die von verschiedenen Spezies innerhalb eines Wirtes. Ausserdem fand ich 

heraus, dass die Evolution von einzelnen Genen unabhängig vom restlichen 

Genom einer Spezies ist. Dies könnte durch einen Selektionsdruck wie z.B. die 

Ernährung des Wirtes ausgelöst werden, was ich am Beispiel des 

Galactokinasegenes (galK) gezeigt habe. Obwohl wir zeigen konnten, dass das 

SNP-Profil der Darmbakterien spezifisch für den jeweiligen Wirt ist, konnten wir 

keine Assoziation zwischen SNPs und Wirtsphänotypen finden. Auch aus diesem 

Grund habe ich mich in meiner weiteren Arbeit verstärkt auf makroskopische 

Genomvariationen konzentriert. 

Im zweiten Teil meiner Doktoarbeit entwickelte ich eine neue Methode, um 

Variationen in der genomische Zusammensetzung von einzelnen Bakterienarten 

zu beschreiben, wieder basierend auf metagenomischen Daten. Hierbei 

fokussiere ich mich insbesondere auf Gene, die in unseren metagenomischen 

Daten im Verglich zum Referengenom fehlen und wende dies auf die 11 

dominantesten Bakterienspezies an. Diese neue Methode ist robust, da die 

gefundene Genomvarianz in unseren metagenomischen Daten übereinstimmt mit 

Daten aus komplett sequenzierten Genomen. So konnte ich herausfinden, dass 

im Durchschnitt 13% der Gene einer Bakterienart zwischen einzelen Wirten 

varieren. Besonders interessant ist hier, dass wir keine zwei Wirte gefunden 

haben, die für eine Bakterienart genau diesselben Gene haben. Jedoch ist die 

erwarte Varianz aller Wahrscheinlichkeit nach noch größer, da ich mit dieser 

Methode nur fehlende Gene beschreiben kann, aber nicht neu hinzugekommende. 

Diese Varianz kann auch wichtige bakterielle Funktionen betreffen, z.B. Gene für 

„polysaccharide utilization loci“ (PULs) und „capsular polysaccharide synthesis“ 

(CPS), welche wichtig sind um Ballaststoffe in der Nahrung zu verwerten. 
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Zusammenfassend konnte ich in dieser Arbeit zeigen, dass 

metagenomische Methoden robust genug sind um die genetische Varianz von 

Darmbakterien zu beschreiben. Ausserdem konnte ich zeigen, dass die 

beschriebene Varianz benutzt werden kann, um phenotypische Veränderungen 

von Bakterien vorherzusagen (demonstriert für die galK, PULs and CPS-Gene). 

Dies wiederrum könnte benutzt werden um Vorhersagen für den Wirt über z.B. 

seine Ernährung zu machen. Meine Doktorarbeit zeigt wie wichtig es ist, einzelne 

Bakterienstämme zu charakterisieren, ganz analog zu der Bedeutsamkeit der 

genetischen Varianz des menschlichen Genomes. 
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CHAPTER 1 

INTRODUCTION  

 

1.1 Prokaryotic species in the human gut 

The human gastrointestinal tract houses a complex community of microbial 

species (bacteria and archaea) that are important for human health, termed the 

human microbiota. The complexity of this community is one of the major 

challenges when characterizing the genetic variation within gut microbial species 

and therefore this paragraph is dedicated to illustrate its complexity. In terms of 

dimension the gut microbiota weighs up to 1.5kg [1] and is composed by 3-fold [2] 

to 10-fold [3] more cells than the number of human cells. The gut community is 

mostly composed of species from two phyla, Bacteroidetes and Firmicutes, 

constituting more than 90% [4–7]. Besides these two phyla, prokaryotic species 

belonging to Actinobacteria, Proteobacteria and Verrucomicrobia phyla are also 

found in minority [4, 8]. In contrast to phyla, both gut microbial species composition 

and abundance have a large variability among individuals, ranging between 10- 

and 10.000-fold [9]. Recently it was found that human individuals mainly stratify 

into three clusters that were named “enterotypes” [8]. These enterotypes were 

mostly driven by species composition, with Prevotella, Bacteroides and 

Ruminococcus genus being predominant in each enterotype. Two of these 

enterotypes have been related with long-term dietary habits [10] suggesting that 

taxonomical composition might be linked with individuals diet. Indepedently of the 

variation in taxonomic composition, the number of species found per human 

individual is rather large, highlighting the complexity of this community, estimated 

with different technologies and varied between 101±21 species, which is 16S rRNA 

based, and 160 species, which is metagenomic based (Faith et al. 2013; Qin et al. 

2010). 
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One of the key roles of the gut microbiota is to help our gut to obtain 

nutritional value from our food [12], without the help of the microbiota the gut would 

not be able to assimilate nutritional value from a substantial fraction of dietary 

components as demonstrated in a germ-free mice study (mice without a 

microbiota). The study found that germ-free mice required 30% more caloric intake 

to reach the same weight as normal mice [12]. The composition of the gut 

microbiota is also relevant [13–15]. In addition, the relation between gut microbiota 

and diet is dynamic that is dietary changes have been associated with changes in 

the composition of the gut microbiota [16, 17]. To understand the importance of 

the gut microbiota, one can view these communities as a natural and stable 

bioreactor where they break down several indigestible food components 

(indigestible by human enzymes), and the components that they do not digest are 

excreted in the faeces [18]. Food components, which only the microbiota can 

degrade include the majority of complex carbohydrates and plant polysaccharides 

[19], present in vegetables, fruits, cereals and leguminous seeds [18]. Examples 

include, plant cell wall polysaccharides, lignin, resistant starch and inulin [20]. 

Human genome do not encode these enzymes because of the wide structural 

diversity of these dietary fibres, which would require a large repertoire of catalytic 

enzymes with different specificities [21]. Instead the prokaryotic gene reservoir 

(which is 20-fold higher than the number of human genes, and also larger in 

number of carbohydrate enzymes [22–24]), can provide these functions. For 

example, Bacteroides cellulosilyticus, has 56 carbohydrate active enzymes that 

are not seen in the human genome, highlighting the increase in metabolic capacity 

given by only a single species [25]. 

The vastness of the prokaryotic gene reservoir (in terms of the total number 

of prokaryotic genes, which is a proxy for prokaryote richness) has also been linked 

to differences in individuals both dietary habits and health conditions. Higher fibre 

consumption, in the form of fruit and vegetables, appear to be associated with a 

higher number of prokaryotic genes [26]. Whereas, low prokaryotic gene number 

and thus decrease prokaryotic richness was found to be associated with more 
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pronounced disease and inflammatory phenotype [27]. Decreased prokaryotic 

richness has also been associated with inflammatory bowel disease [9, 28, 29] and 

elderly populations [30] Also recently it has been shown that the structure of the 

gut microbiota is related with long-term dietary habits [10, 16, 17]. Overall these 

studies highlight the importance of understanding the relation between long-term 

diet and microbial gene reservoir variation. 

Besides extracting nutritional value, the microbiota plays other important 

roles, such as the synthesis of vitamin K and B [31, 32], producion of short-chain 

fatty acids (SCFAs) such as acetate, butyrate and propionate, which are the main 

end-product of bacterial fermentation. Also 60-70% of the energy content of 

indigested carbohydrates are stored in the form of SCFA after digestion [33]. SCFA 

are important in stimulating the intestinal blood flow [34, 35], affect epithelial 

proliferation and differentiation [36–38] and have anti-inflammatory properties [39–

41]. Furthermore, the gut community forms a layer around the mucosa layer, 

creating a barrier against the colonization of foreign pathogenic strains through 

competitive exclusion [42]. The gut microbiota has also a role in the development 

of an individual immune system, for example by helping in the development of 

lymphoid structures and epithelial functions [43, 44]. For a more detail view of gut 

microbiota effect on human health please have a look into Hooper et al. 2003 and 

2012 [45, 46]. Due to its importance the human gut microbiota has been loosely 

termed “another human organ”, and therefore it is important to study the impact of 

microbiota on human health. 

1.2 Characterization of gut prokaryotic species variation to complement 

human population genetics 

Genetic variations, such as SNPs and structural variations, across a 

genome have been extensively characterized in large human populations. The 

publication of the first human genome in 2004 was a milestone in human genetics 

[47, 48]. Created using Sanger sequencing technology, the project cost 3 billion 

dollars and took 15 years to complete. The sequencing rate was the main limiting 
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step and was associated with both monetary and time constraints. Subsequently 

these limitations motivated the development of high-throughput sequencing 

technologies, such as sequencers produced by Illumina (Solexa) company. The 

project provided a reference genome that would serve as a guide for future 

sequencing projects, paving the way towards the usage of whole genomes in 

human population genetic studies. For example, two large-scale international 

landmark projects were the HapMap [49–51] and the 1000 Genome Project [52, 

53] with the goals of characterizing the genetic variation of human population and 

contribution of genetic variation to human health. 

The HapMap project and the 1000 Genome Project aimed at cataloguing 

genetic variation in terms of SNPs (both common and rare) and structural 

variations. The HapMap project was mainly focused on SNP discovery, as it aimed 

at identifying haplotype blocks of common SNPs (that are present in 5% or greater 

allele frequency). The outcome of the project was the identification of more than 8 

million common SNPs, constituting an important catalogue of variation across 

different ethnic backgrounds [49–51]. Soon we realised that individuals differences 

were beyond single nucleotide differences and included a panoply of small and 

large variations, such as insertions and deletions (indels) and large structural 

variations [54, 55]. Therefore, the 1000 Genome Project was created with the 

objective of characterizing both common and rare SNPs and structural variations. 

They catalogued the haplotype map of 38 million SNPs, 1.4 million short insertions 

and deletions and 14.000 large deletions across 1.092 individuals from 14 

populations (drawn from European, East Asia, sub-Saharan Africa and the 

Americas) [52, 53]. Together both projects revealed the extent of and formulated 

conceptual aspects of genomic variation observed across the human population. 

They also lead to some clinical applications such as diagnostic testing of hereditary 

disorders (as reviewed in Rehm et al. 2013 [56]). As gut prokaryotic species are 

important for human heath, characterizing the genomic variability of these species 

in a similar fashion as has been done for the human genome may largely improve 

our understanding of their effect on human phenotypic traits. 
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In contrary to variations in the human genome, such variations had not yet 

been characterized prior to the commencement of my PhD studies. Most human 

associated microbiota studies focus on either the study of changes in the relative 

abundance of either microbial species or gene repertoire, whereas the genetic 

variation of each species is not yet characterized. Similar to human population 

genetics, characterization of prokaryotic species genetic variation can also be 

based on reference genomes. Reference genomes for a large number of gut 

prokaryotic species were previously unavailable in public domains prior to 2010, 

this reality changed with the first catalogue of reference genomes associated with 

the human microbiome which was later expanded to 800 reference genomes [57, 

58], among other resources that became available [9]. These constituted the 

necessary resources for us to move towards characterization of the genetic 

variation (SNP´s and structural variation which gene content is used as a proxy) of 

species within the gut microbiome. 

1.3 Genetic variation of gut prokaryotic species and its unexplored impact 

on human phenotype 

Genetic variation of gut prokaryote community members can change not 

only the species’ phenotypes but also lead to changes in their human host 

phenotypes and health conditions. Examples of gut associated human phenotypes 

include the capacity to diggest different food sources and drugs. Determination of 

the exact phenotypic impact on each gut microbiota member is still impossible due 

to the infinitesimal conditions that would need to be tested to explore the complete 

phenotypic landscape of a given genome. A small number of studies for a few 

species have linked genetic variation to certain aspects of the bacterial phenotype 

(reviewed by Read et al. 2014 [59]). Initial screening of genetic variation can 

provide an estimation of potential prokaryote and human phenotypes. 

Mechanistic demonstration of links between key gut community members 

and human phenotypic variability is hard to establish. This is because the degree 

of variability between individual´s strain is unknown and therefore it is hard to 
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establish what constitute the key members. While the prokaryotic species 

composition vary greatly (in the thousands range) between human individuals [8, 

23], the number of genes of the prokaryote community can vary even more (in the 

millions range) [23]. From the total of 10 million microbial genes identified in faecal 

samples from 1.267 individuals only 300.000 are shared by at least 50% of the 

individuals [23]. Note that these number of gut microbial genes per individual are 

calculated for the whole gut microbiota independently of the species and hence 

the actual number of genes in each individual gut strains are not known. The 

diversification of the gene pool can be a result of three different scenarios: 1) by 

difference in the composition of the gut community members, 2) by differences in 

the relative abundance of the gut community members or 3) by changes to the 

genomes of gut community members through mutation or horizontal gene transfer 

(HGT) [60]. Whereas (1) and (2) have been studied, (3) is still unknown. Therefore, 

it is important to investigate whether the variability in gene content and other 

genomic traits, such as SNP´ variation, is mainly due to changes in taxonomical 

composition, or reflects differences in strain composition for the same species, if it 

is the latter strain variation needs to be characterized. 

Recent pan-genome studies [61–65] have revealed that bacterial strains 

within a species varied greatly in their gene content, such as the gut bacterial 

species Escherichia coli, indicating that their genomes are highly dynamic. These 

studies focused on the entire gene repertoire of a given species, where bacterial 

strains of the species are compared. Such pan-genome studies typically involves 

the categorization of genes into core genes that are shared among strains and 

accessory genes that are present in only some strains. Accessory genes can even 

be specific to only a single strain, for example in Haemophilus influenza, 19% of 

their genes were unique genes, exemplifying the extent of strain-specific variability. 

Accessory genes can encode antibiotic resistance, virulence factors or other loci 

that contribute to the adaptation of the organism to the environment [62]. In terms 

of the human gut, variation of specific genes in the microbiota has also been 

associated with differences in individuals’ capacity to degrade fibres (for example 
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cellulose and algae) [21, 66–68]. The algae example (porphyran enzyme) was only 

found in Japanese but not in American individuals. This enzyme is an interesting 

case as it was likely acquired by HGT from marine bacterial species associated 

with the algae. This example suggests that dietary changes might introduce novel 

genes to the resident gut prokaryote strains from non-sterile food related bacteria 

and hence might change the original genetic composition of resident strains. 

Besides gene content variation, SNPs are another type of genetic variation 

that can also have a phenotypic impact, even when the variation is due to a few 

mutations. For example, a single nucleotide exchange in E. coli is sufficient to 

cause differences in lipopolysaccharide phenotype and serum sensitivity [69] also 

three point mutations in two genes are sufficient to confer clinically relevant 

antibiotic resistance [70]. Variation in terms of SNPs can explain phenotypic 

variability among strains for any species [71] but it is especially important in 

distinguishing strains in clonal species where recombination rate is low, such as in 

Mycobacterium tuberculosis [72]. In 2013, the first bacterial GWAS based on SNP 

profiling investigated host adaptation in 192 Campylobacter jejuni and C. coli [73]. 

In the same year GWAS study for Mycobacterium tuberculosis found mutations in 

genes involved in resistance to anti-tuberculosis drugs which were detected in 

resistant lineages of M. tuberculosis [71]. These whole-genome characterization 

of SNP variation among strains (referred here as SNP profiling) have revealed that 

SNPs variation was associated with certain phenotypic traits in genome-wide 

association studies (GWAS), such as host adaptation, virulence and antibiotic 

resistance [71, 73–76]. 

1.4 Mechanistic understanding of genetic variation of gut prokaryote  

Understanding the mechanism that lead to genetic variation are important 

as they determine the frequency of changes in genetic variation and the 

architecture of prokaryote genomes. Genetic variation in prokaryotic species 

originate from different driving forces than in human where they are mainly a result 

of gene duplication and mutation. In prokaryotes, genetic variation are mainly a 



 

33 

result of HGT and gene deletion except for highly clonal species, where mutation 

is the main driving force [59]. HGT can occur through transformation, conjugation 

or transduction [77]. Transformation is a process where extracellular DNA is stably 

uptaken and integrated into the genome. For natural transformation to happen 

bacterial cells need to develop a regulated physiological state that involves 

between 20 and 50 proteins and is time-limited in response to an environmental 

stimulus called natural competence [77]. Conjugation is a transfer process that 

involves the direct contact between two cells, process mediated by cell-to-cell 

junctions and a pore through which the DNA is transferred [78]. Transduction is a 

gene transfer mechanism that is mediated by certain types of bacteriophages. A 

HGT event is usually divided into three steps excision (if the genes are present in 

the host chromosome), transfer through conjugation, transduction or 

transformation, and integration through homologous recombination, although the 

first and second step are not mandatory [77]. Large part of the gene content 

variation is associated with mobile genetic elements (MGE) [77, 79]. Mobile 

genetic elements are segments of DNA that encode proteins used to build the 

machinery that mediates the transfer of DNA within genomes (intracellular mobility) 

or between bacterial cells (intercellular mobility) [80]. The classical MGE include 

plasmids, bacteriophages and transposons. The list now includes more ancient 

MGE that have underwent certain erosion throughout the history of the strain [81, 

82]. These includes various genomic islands (syntenic blocks of accessory genes 

acquired by HGT detected through strain genome comparison), large 

megaplasmids and other elements with less defined structure and function (e.g. 

even restriction-modification systems have been referred as part of MGEs).  

1.5 Metagenomics for characterization of genetic variation in prokaryotic 

species 

Population genomic studies of a complex community such as the human 

gut have been partly impossible due to technological limitations mainly related with 

isolation. Isolation is a key step in the traditional whole genome sequencing based 

approach. First, 56%±4% of the gut species are still not cultivable and the value 
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can even be lower depending on the phyla the species belongs to, for Firmicutes 

79% are not cultivable [83]. Also, culture conditions do not represent well the 

situation bacteria live in their natural environment, constituting a simplified version 

of the environment (where environmental stresses such as antibiotic therapy and 

immune system effect are not emulated) [64]. Furthermore, culture conditions can 

introduce changes to the bacterial genome [84]. Finally, both isolating and whole-

genome sequencing a complex community such as the human gut have time and 

monetary cost limitations that do not enable to scale the method across a large 

human population. Instead, there is a pre-selection of the strains to be studies. For 

example, in a recent study of Staphylococcus epidermidis only 9% out of 800 

strainss were chosen based on morphology and sequenced [85]. 

As an alternative, metagenomics offers a culture-independent technique 

that enables the study of complex communities such as the human gut in nature 

conditions, meaning set in natural environment where the community is under 

natural selection. Metagenomics involves extracting the DNA directly from 

environmental samples without requiring isolation. The field of gut metagenomics 

has progressed dramatically in the last few years, and several metagenomic 

studies have associated changes in the gut microbiota with several diseases, both 

related with the GI tract [26, 27, 86–89], but also not directly related with the GI 

tract, such as atherosclerosis [90]. However, most of these metagenomic studies 

either focus on taxonomical differences, or in terms of genetic content they only 

study variation in relative abundances [91]. In either cases the link between strain 

genotypes and their respective phenotype is hard to establish, as discussed in 

sub-chapter 1.3. Instead characterization of gene content in terms of gene 

presence or absence and SNP´s profiling can provide a better estimate of 

phenotype. 

Initial population genetic studies using metagenomics have been done in 

simpler systems (in terms of number of dominant strain´s) such as acid mine 

drainage [92, 93] and infant gut microbiota [94, 95], but not for complex 

communities, such as the adult human gut. The acid mine drainage system 
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described is mainly dominated by one dominant bacterium (Leptospirillum group 

II), and sequence variation between strains were reconstructed across a time-

scale of 9 years. The infant gut microbiota, which was tracted over short time-frame 

(one month) was mostly composed of 6 genomes comprising 96% of the 

sequenced reads.  

At the start of my PhD studies, two large gut metagenomic datasets had 

recently been published from two consortiums the European Metagenomics of the 

Human Intestinal Tract consortium (MetaHIT) [9] and the NIH Human Microbiome 

Project (HMP) [58], which included 139 and 124 faecal metagenomes, 

respectively. The MetaHIT project was a large and collaborative consortium effort 

with the central objective to establish associations between the genes of the 

human gut microbiota and the health of the sampled individuals. Participants were 

either healthy, or had either obesity and/or inflammatory bowel disease. The the 

HMP project aimed at characterizing the gut microbiota from the human gut, but 

also from other body sites, in healthy individuals [96]. These dataset had an 

unprecedented coverage (in total the 252 samples amounted to 1.56 terabases) 

and were ideal datasets to characterize the genetic variation of gut prokaryotic 

species in terms of SNPs and gene content. 

1.6 Outline 

 During my PhD I participated in a project to characterize the genomic 

variation of gut microbiota, in the project we characterized the SNP catalogue of 

101 gut prokaryotic species, the catalogue contained 10.3 million SNPs across 252 

faecal metagenomes from 207 individuals. The size of the catalogue is close to the 

SNP catalogue created for human genomes which was based on 179 individuals 

(14.4 million) [52]. My role in the project was to find an approach to estimate the 

potential phenotypic impact of strains SNP variation, as the phenotype of 

individual´s bacterial strains is not known. For this purpose I measured the 

bacterial gene and genome evolution based on SNPs using a measure akin to the 
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classical dN/dS ratio but applicable to haplotype independent SNP data, pN/pS 

ratio, the results of this project can be found in sub-chapter 3.1. 

 Estimation of phenotypic outcome is still impossible for the majority of 

SNPs, instead estimation of bacterial strain´s gene content provides a direct 

prediction. For this purpose I developed a methodology applicable to abundant 

bacterial species for determination of genes presence or absence in a 

metagenome. The method provides a clear estimation of phenotypic outcome in 

comparison to typical functional studies in metagenomes which are based on 

relative abundance and where this is not possible. 
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CHAPTER 2 

  METHODS 

2.1 Resource building 

The generation of a reference genome set and the mapping of the reads to 

the reference genomes for both SNP profiling and gene content projects were done 

by several members of the Bork group (Jens Kultima, Shinichi Sunagawa and 

Siegfried Schloissnig). The generation of a set of representative genomes for a 

given species was critical to provide a consistent taxonomical definition of species 

across the tree-of-life, further details about the motivation for this classification can 

be found in mOTU or specI paper [97]. 

2.1.1 Source of faecal metagenomic samples 

A set of illumina reads from 252 out of the initial 266 published faecal 

metagenomes (124 from the European MetaHIT Project [9] and 142 from the US 

HMP [57]) were used in my doctoral studies, Appendix 1. 14 metagenomes were 

removed after quality control, for more details see Schloissnig et al. [98].  

The metagenomes from the MetaHIT Project originated from danish 

individuals and spanish individuals. The danish individuals (part of a obesity study) 

were composed of healthly controls and patients with obese/diabetes, whereas the 

spanish (part of an inflammatory bowel disease or IBD study) were composed of 

healthly controls and patients with ulcerative colitis or Crohn´s disease in clinical 

remission. Both controls and patients collected the faecal samples and were asked 

to freeze the samples in their home freezer after collection. The samples were 

delivered to the Hospital using insulating polystyrene foam containers, and stored 

at -80% until analysis. The DNA was isolated as previously described [28]. 

The faecal samples from HMP studies originated from healthly individuals 

and were collected by the individual and stored in a Styrofoam box surrounded by 
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frozen gel packs for a maximum periods of 24h until the samples were delivered 

to the clinical laboratory and DNA was isolated using the commercial kit MoBio 

PowerSoil TM [57]. From the total of 51 individuals, 41 of those were sampled 

twice and 2 individuals sampled three times. 

2.1.2 Generation of a non-redundant reference genome  

The number of sequenced genomes for a prokaryotic species vary 

considerably, and this variation introduce biases in the quantity of genetic variation 

that can be detected in metagenomic samples. For example, reads belonging to a 

given species are more likely to find a perfectly matched sequence in species with 

more genomes available and hence would capture less polymorphic sites (SNPs). 

To take into consideration these biases, we generated a set of non-redundant 

reference genomes as follows.  

A set of 1.511 prokaryote genomes were downloaded from GenBank and 

the MetaHIT Consortium 

(http://www.sanger.ac.uk/resources/downloads/bacteria/metahit/). A set of 40 

universal single copy marker genes was identified for each genome using 40 HMM 

profiles (one HMM profile for the orthologous group in eggNOG for each marker 

gene). For each marker gene, pairwise comparison between all genomes were 

calculated and the median identity between all marker genes was used as an 

approximation for average nucleotide identity (ANI) between two genomes. An 

operational cut-off of more than 95% ANI was used for species identification as 

recommended [99], and genomes were clustered into 929 clusters using complete 

linkage, constituting the non-redundant reference genome set used in the following 

analysis. Mapping of Illumina reads to reference genomes, Appendix 2.  

2.1.3 Mapping of Illumina reads to non-redundant reference genome 

catalogue 

Illumina reads from 266 fecal metagenomes (124 from the European 

MetaHIT study [9], 139 from the US Human Microbiome Project [57], 3 obtained 

http://www.sanger.ac.uk/resources/downloads/bacteria/metahit/)&
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from Washington University [100]) were quality controlled by applying a 

customized trimming and filtering pipeline (described in [8] in section 5.2 of 

Schloissnig et al. 2013) with minor modifications, Appendix 3. In short, (1) bases 

of reads 5´end were trimmed when the number of base calls for any base (A, T, G 

and C) was within the average across all cycles plus/minus two standard 

deviations, (2) bases of reads 3´end were trimmed if the quality score was below 

20 and (3) both reads shorter than 45 bp and reads with a median quality score 

below 20 were removed from further analysis. 252 samples passed this quality 

control step and were used throughout the study. With the intent of choosing a 

reference genome that can represent each cluster (defined above), high quality 

reads obtained from a subset of metagenomes (TS1, TS4, TS25, MH0006 and 

MH0012) were mapped to the 1,511 genomes using an alignment identity cutoff of 

85% in the Mosaik program (version 1.1.0021; 

http://bioinformatics.bc.edu/marthlab/Mosaik) with the options “-a all -m all -hs 15 

-mmp 0.85 -mmal -minp 0.9 -mhp 100 -act 20”. Next, for each genome included in 

the cluster based on the ANI criteria (see above), the genome possessing the 

highest read coverage was selected resulting in a set of 929 reference genomes, 

each likely representing a unique species. Finally, all metagenomic dataset (252 

samples) were mapped to these 929 reference genomes with an alignment identity 

cutoff of 95% applying the same options as above, except for using “-mmp 0.95” 

instead of “-mmp 0.85” using Mosaik. The relative abundance of each genome 

within a sample was calculated by counting the number of reads mapped to a 

reference genome, and this number is normalized by the genome size. 

2.1.4 Detection of species presence in a metagenome 

Reads can map to a species without the species actually existing within the 

sample, for example if: (1) the reads map to genes that originally belonged to this 

species but have been acquired by another species through HGT or (2) reads map 

to highly conserved genes. When two species are closely related highly conserved 

genes can be more than 95% identical. 
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To ensure that the species is actually present within the sample we required 

that reads mapped to at least 40% of the nucleotide positions of the representative 

reference genome. The 40% was chosen as a proxy for the lower bound of shared 

gene content for an average bacterial species based on an E. coli study, where 

they used a wide range of strains and measure the minimum fraction of genes 

shared between two strains. 

2.1.5 Functional annotation of genes 

Genes from each species were mapped to orthologous groups (OGs), 

which were composed of both Cluster of Orthologous Groups (COGs) and  Non-

supervised Orthologous Groups (NOGs) from the eggNOG v3.0 pipeline [105] by 

using Blastp [106] and a bit-score higher than 60. The orthologous groups were 

further clustered in their COG functional categories [107]. Enrichment of COG 

functional categories were done using fisher test and multiple testing was adjusted 

with FDR. Genes in sub-chapter 3.2 were also annotated with KEGG v62 [108] 

and MEROPs [109] by using Blastp [106] and a bit-score also higher than 60. 

2.2 Single nucleotide variation analysis in metagenomes 

In this sub-chapter 2.2 I describe a metagenomic-based methodology to 

characterize the evolution of bacterial species and genes that is based on SNP 

profile. The method used pN/pS ratio since this method does not require the 

reconstruction of haplotypes. 

2.2.1 Prevalent and dominant species in our cohort 

A species was selected if it (1) was detected in at least one sample 

(according to the detection criteria in section 2.1.3), (2) accumulated a depth of 

genome coverage of at least 10x when pooled over all samples. The second filter 

is used to avoid rare and transient species that are present in a small number of 

individuals. In total there were 101 species out of the original 929 species (non-

redundant genomes) that fulfill the criteria (1) and (2), and these species were 



 

42 

named “prevalent”. From the 101 prevalent species selected we found that 99% of 

the 7.4 billion reads mapped to only 66 species (Figure 1), suggesting that these 

are the “dominant” species in our cohort Appendix 2. 

 

Figure 1: Procedure used for selection of metagenomes and species for SNP-

based methods 

The initial dataset consisted of 252 metagenomic samples and a non-redundant set of 

reference genomes representative of 929 species based on 40 universal, single-copy 

marker genes. Metagenomic reads from each sample were aligned to each species and 

was followed by a multi-step filtering procedure used in sample and genome selection. 

The final dataset corresponded to 207 samples that mapped to 66 species. For individuals 

where there existed more than one time-point the first time point was used. 

2.2.2 SNP calling 

A multi-sample SNP calling was done based on the pooled samples to 

identify a catalogue of 10.3 million SNPs. Only bases with a quality of at least 15 

were considered. The following criteria were used to identify SNPs: (1) the single 

nucleotide variant had a minimum allele frequency of 1%, (2) was supported by a 

minimum of 4 reads. The first criterion is the classical definition of polymorphism 

and is used to exclude random sequencing errors that accumulate in the same 

position when depth of coverage is very high. The second criterion eliminates 



 

43 

sequencing errors that are randomly distributed across the genome. For further 

details please read Schloissnig et al. 2013 [98]. 

2.2.3 Measurement of species evolution (based on pN/pS ratio) 

To measure the evolutionary pressure I used pN/pS ratio a measure akin to 

the classical dN/dS ratio. To calculate pN/pS ratio we needed to calculate the 

expected and observed ratio of non-synonymous and synonymous substitutions 

for the detectable parts of genomes and genes. 

For the calculation of expected ratio first all the codon of the genome/gene 

were taken and determined the effect of all possible mutational events on the 

codon. The outcome could be either a synonymous or a non-synonymous 

mutation, and both outcomes were counted for each genome or gene in a given 

sample. This expected ratio was calculated assuming a uniform model for the 

occurrence of mutations across the genomic sequence. 

To calculate the observed ratio between non-synonymous and synonymous 

substitutions all codons that contained polymorphic sites were extracted and the 

alleles were categorized into non-synonymous and synonymous. This observed 

ratio between non-synonymous and synonymous substitutions was then 

compared to the expected ratio resulting in the pN/pS ratio. 

 For all dominant species with at least 10x genome coverage found in a 

given metagenome, the pN/pS ratio was calculated for all the genes in each 

species and the average across the genes was used to estimate the pN/pS ratio 

of a species, Figure 5. 

2.2.4 Measurement of gene evolution (based on pN/pS ratio) 

To reliably estimate pN/pS ratio for a gene I followed the methodology in 

section 2.2.3 and further required that average gene base pair coverage of 3 

reads and that non-protein coding genes were discarded. Next I estimated the 
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average pN/pS ratio of a gene across all samples. Also, to ensure that the genes 

examined are ubiquitous I only considered genes that were found in at least half 

of the samples (>=126). 

Orthology was assumed when the bit score was higher than 60 bits. The 

pN/pS ratio of a given OG was calculated based on the average across all genes 

mapped to an OG pooled from all species (8,122 OGs). The OGs with the lowest 

and highest score were then analyzed. 

2.2.5 Comparison between the evolution of two species (Roseburia 

intestinalis and Eubacterium eligens) 

To evaluate how different species respond under the gut environment I 

chose two species with similar conditions, which differed considerably in their 

pN/pS ratio (and average genome pN/pS ratio of 0.236 for R. intestinalis and 0.141 

for E. eligens) that is:  

(1) had similar genome coverage (R. intestinalis had an average coverage: 

5.05x and a sum coverage overall samples of 1,046x; while E. eligens had an 

average coverage: 5.65x and a sum coverage overall samples of 1,169x) and 

(2) were observed in similar number of samples (106 and 147 respectively). 

Gene pN/pS ratio were determined and mapped to OG according to sub-

chapter 2.2. Genes either of the species, R. intestinalis or E. eligens, were pooled 

separately and the median was used to calculate the pN/pS ratio of a given OG. 

For the 611 OGs that were detected in both species the log2 ratio between the 

OGs of the E. eligens (low genome pN/pS ratio) and R. intestinalis (high pN/pS 

ratio) were calculated. Finally, the galK gene was selected in both species to 

illustrate (1) the difference in the mutation profile between genes with high and low 

pN/pS ratio and (2) to show that the pN/pS ratios are not affected by SNP density. 
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2.3 Gene content based methods 

In sub-chapter 2.3 I describe a metagenomic-based methodology to 

characterize the gene content variation of microbial species within an environment 

that can be applied to any complex microbial community. The framework, which is 

based on gene deletions [101], avoids known biases in pan-genome studies (such 

as cultivation requirement and genome pre-selection) since it captures the species 

in their natural habitats. 

2.3.1 Detection of species presence in a metagenome for gene content 

analysis 

A species was detected in a metagenomic sample according to section 

2.1.4 with the following additional filtering criteria, and a random set of 10 samples 

were picked (Figure 2). 

(1) a minimum of 30x genome coverage (considered the de facto standard 

for high coverage [102]) was necessary to guarantee that the determination of 

gene presence is not influenced by sequencing depth and 

(2) the 10 universal single-copy marker genes [103] had to be present. 

Criteria (1) and (2) are used to ensure that the genome detected corresponds to 

the species in study and not a close relative species with a similar genome 

composition.  

(3) species seen in at least 10 samples were selected to increase statistical 

power. 
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Figure 2: Procedure used for selection of metagenomes and species used in 

gene content analysis 

The initial dataset consisted of 252 metagenomic samples (HMP and MetaHIT) and a non-

redundant set of reference genomes representative of 929 species based on 40 universal, 

single-copy marker genes. Metagenomic reads from each sample were mapped to each 

representative genome of a given species and was followed by a multi-step filtering 

procedure used in metagenomic samples and species selection. The final dataset 

corresponded to 119 samples that mapped to 11 species. 

2.3.2 Determination of core and accessory genes 

For each species, a gene was categorized as core if detected in all 10 

samples (that is at least 40% of the basepairs in a gene are covered by reads) 

otherwise was categorized as accessory, see Figure 3. The 40% gene length 

coverage filter was used to ensure that the gene is not called present due to 

spuriously assigned reads or reads that have origins in an ortholog from a close 

relative species. To chose the optimal gene length coverage filter, the gene content 

between pairs of biological replicates (time-series) was calculated for different cut-

offs ranging between 0% and 100% in intervals of 10% (Appendix 15) and 

affected 3% of the genes (Appendix 16). 
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Figure 3: Diagram illustrating gene coverage of core and accessory genes of 

one species (Dialister invisus) for 10 individual metagenomes. 

Dialister invisus is used to exemplify the typical variability in the coverage of core and 

accessory genes and their location across the genome in different individual 

metagenomes. Green represents core genes; red represents accessory genes and white 

represents missing genes, or genes below the 40% gene length coverage filter cut-off. 

The bottom bar shows the consensus between the 10 individual metagenomes and 

illustrates the definition of core and accessory genes but also illustrating the presence of 

regions where no gene in the reference genome was found in the 10 metagenomes. 

Since the species had different abundances and coverage within 

metagenomes, either of the factors could influence the core and accessory gene 

categorization. However, neither abundance or coverage have an effect on the 

fraction of accessory genes, since none of the two variables correlated with the 

fraction of accessory genes (correlation with coverage has a R=0.08 , p-val=0.82 

and correlation with abundance has a R=0.07 and a p-val=0.84, Appendix 17).  

2.3.3 Estimation of accessory genes fraction 

The fraction of accessory genes was estimated by applying a subsampling 

procedure followed by model building. The subsampling procedure was based on 

random subsample sets that had a defined sample size. Several sample sizes 
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were used from 2 to 10 and for each sample size all combinations of random 

subsamples were used, except when the number of combinations was too high, in 

which cases I limited the sample size to only 500 combinations due to time 

constraints. For every subsample set I calculated the fraction of genes that were 

missing in at least one of the samples and was termed “subsample-based fraction”. 

The mean subsample-based fraction was calculated for each sample size 

independently and used to build the model. Two main models have been applied 

in pan-genome studies, exponential regression model [58] and power law 

regression model [6]. Additionally, negative exponential model and the spline 

function were also tested.  

To evaluate the models it is necessary to determine the expected value in 

order to compare with the estimated values generated by the models. An 

appropriate candidate for the expected value is the calculation of subsample-

based fraction for sample sizes larger than 10. For the species where I had these 

many samples, I calculated the subsample-based fraction for sample sizes ranging 

between 11 and the total sample size of a species. These subsample-based 

fractions were named the “expected fraction” to differentiate them from the 

observed subsample-based fraction. Subsequently, I compared the curve that was 

extrapolated from the model with the curve observed using the expected fraction, 

as an example see Appendix 14. 

I observe that the exponential model predicts the curve that is closest to the 

expected fraction. While the exponential model deviates from the expected fraction 

by 8%, the other models performed worse with the closest the power law 

regression model deviating by 12%. Consequently, the exponential model was 

chosen to predict the fraction of accessory genes. The exponential model tended 

to underestimate the fraction, and hence the values obtained are a lower bound to 

the fraction of accessory genes. 
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2.3.4 Comparison of gene content differences between pairs of individuals 

and pairs of reference genomes 

For a given bacterial species pair-wise comparison were done between all 

pairs of individuals A and B in the following way. The set of genes found in 

individual A and B are respectively defined as: 

𝐴 = {𝑎|𝑎 𝑖𝑠 𝑎 𝑔𝑒𝑛𝑒 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑋 𝑖𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐴 and  

          𝐵 = {𝑏|𝑏 𝑖𝑠 𝑎 𝑔𝑒𝑛𝑒 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑋 𝑖𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐵} 

Then, I calculated the number of genes in the symmetric difference |𝐴∆𝐵| 

and the number of genes in the union |𝐴 ∪ 𝐵| of individual pairs. The symmetric 

difference defines the set of genes that are present in either of the individuals but 

not found in the intersection of the two individuals, whereas the union defines the 

set of all distinct genes that are found in both individuals and in the reference 

genome. The gene content difference between two individuals is calculated 

according to the following formula and corresponds to the number of genes in the 

symmetric difference after normalization by the number of genes in the union. 

𝑓 =  
|𝐴∆𝐵|

|𝐴 ∪ 𝐵| 
× 100 

 The pair-wise individual comparison was dependent on the reference 

genome selected to map the sequencing reads of samples. To emulate this 

reference genome dependency in comparison of gene content between 

sequenced genomes, a randomly selected genome was used for each species as 

“reference” genome. This “reference” genome was used as a third genome and 

only genes in this “reference” genome were considered in the pair-wise 

comparison. Hence, the genes that were counted in the symmetric difference, 

corresponds to genes found in the “reference” genome and in either of the two 

compared genomes but not in both, whereas the union corresponds to genes that 

were found in the “reference” genome and in either or both the other two genomes. 
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2.3.5 Determination of accessory gene deletion blocks  

To determine the accessory gene deletion blocks, the representative 

reference genome was used as a reference of the gene order, and the location of 

the genes that were missing in each sample was determined. Contiguous 

accessory genes that are absent were clustered and called gene deletion blocks. 

In situations where an accessory gene is absent and neither of its neighbour genes 

are present, the absent gene is called single-gene deletion block. For 7 of our 

species, the representative reference genome was not completely assembled and 

the genome was composed of several contigs (Table 1). For these species, gene 

deletion block were counted in each contig. Therefore, there is the possibility that 

a gene deletion block is split into two contigs. Also, single-gene deletion blocks 

that occur in the start or end of a contig were not counted, so as to not inflate the 

number of single-gene deletion blocks. For each species gene deletion blocks 

were determined for 10 samples separately and the number of genes and number 

of gene deletion blocks were counted for each block size. 

2.3.6 Determination of paralog within and between reference genome 

To find paralog genes within and between reference genomes the 

methodology described in Alonso-Saéz et al. 2012 [104] was used. In summary, 

95% ANI of the 40 universal single copy marker genes was applied to find the 

sequenced genomes that belonged to the Bacteroides thetaiotaomicron species. 

Three more genomes were found besides the genome used in our study 

(Bacteroides sp. 1.1.6), the type strain Bacteroides thetaiotaomicron VPI-5482 

(ATCC, NCBI TaxID 226186), Bacteroides thetaiotaomicron dnLKV9 (NCBI TaxID 

1235785) and Bacteroides sp. 1.1.14 (NCBI TaxID 469585). These genomes were 

used to construct the Bacteroides thetaiotaomicron-specific orthologous groups 

(NOG) using the eggNOG pipeline. The genes were assigned to a given B. 

thetaiotaomicron NOG by using Blastp with a bit score cut-off of 60 and 95% 

identity. In addition, to ensure that genes detected in the large-deletion block also 
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do not have less conserved paralogs within Bacteroides sp. 1.1.6 a less stringent 

cut-off was used (40% identity and 80% protein length). 

2.3.7 Detection of genomic islands 

Genomic islands were detected using Islandviewer methods IslandPath-DIMOB 

and SIGI-HMM using default options [105]. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

SCHLOISSNIG, S., ARUMUGAM, M., SUNAGAWA, S., MITREVA, M., TAP, J., ZHU, A., ET 

AL., NATURE 2013 

“Genomic variation landscape of the human gut microbiome” 

 

3.1 SNP variation in gut prokaryotic species with phenotypic implications 

This sub-chapter 3.1 is integrated in a larger group project intended to 

characterize the human gut microbiome based on SNP profilling and has been 

published in Nature 2013 [98]. In this project my aim was to create a methodology 

to estimate the phenotypic outcome of SNP variability from metagenomic dataset 

using a measurement of evolution based on SNP´s (pN/pS ratio). The calculation 

of SNP density, nucleotide diversity (π) and the downsampling used in Appendix 

13 were done by Siegfried Schloissnig. 

3.1.1 Introduction 

As detailed in sub-chapter 1.3 SNP variation can have a phenotypic effect 

in both the commensal bacteria where the SNP is found but also in its human host. 

Since most species genomes were only recently sequenced [57], evaluation of the 

phenotypic impact of each SNP is impossible, especially for such a large SNP 

catalogue composed of 10.3 million SNPs (sub-chapter 1.6). Another approach 

to study the phenotypic impact is to focus on genes undergoing selection. Natural 

selection acts by increasing the survival of the fittest microbial strains, and genes 

that contribute to strains fitness. Over time, microbial strains can maintain inherited 

traits (conservation via purifying selection), novel beneficial traits can emerge 

(adaptation via positive selection) or traits can be lost by a relaxation of purifying 
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selection. In terms of genetic variation, long-term purifying and positive selection 

results in genes which are slow or fast evolving. Whereas for some genes the 

evolutionary outcome is similar across the majority of species, for others it can 

differ among species [106]. To measure the evolutionary effect of SNPs for both 

gut microbial strains and their respective microbial genes, I measure the ratio of 

non-synonymous to synonymous polymorphisms (pN/pS ratio) a measurement 

akin to classical dN/dS ratio [92, 107]. pN/pS ratio has been previously applied to 

the study of genome evolution for isolation based genome and also metagenomes 

of simple communities [92, 108, 109]. This method has the advantage compared 

to other population genetic measurements that it does not require the 

establishment of genomes haplotypes, as this is still currently not possible for 

complex metagenomic samples. pN/pS ratio tends to capture the evolutionary 

effect of relatively recent events in the history of the population [109] and pN/pS 

ratio is relatively insensitive to confounding factors related with divergence data 

such as generation time (contrary to dN/dS ratio) [109]. Hence pN/pS ratio 

constitutes a good measurement of the effect of natural selection on SNPs and 

can be used to predict the phenotypic outcome. In this project I measured pN/pS 

ratios for 229,692 genes from 66 dominant species measured in metagenomic 

samples of 207 individuals. 

3.1.2 Large variation in SNP evolution of prokaryotic species within 

individuals rather than between individuals  

The genome coverage varies greatly across gut prokaryotic species in the 

metagenomes, therefore we evaluated whether pN/pS ratio is affected by genome 

coverage, as other SNP based measurements such as SNP density (SNP kb -1) 

and nucleotide diversity are affected by coverage biases, Figure 4. Nucleotide 

diversity is a measurement for the degree of polymorphism in a population. I found 

that pN/pS ratio is not affected by genome coverage, as shown in Figure 4. 

Independency of pN/pS ratio from coverage is also supported by the finding that 

pN/pS ratio remained considerably stable when the genome coverage was 

downsampled to different coverages using genomes with more than 10x coverage. 
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The reason for this independency is related with pN/pS ratio corresponding to a 

ratio and therefore the coverage effect is nullified between nominator and 

denominator. Moreover, we found that pN/pS ratio is in accordance with π(N)/π(S) 

ratio and π(non-degenerate sites)/π(4-fold degenerate sites) ratio, with the latter 

being less affected by properties of the mutation spectra such as the likelihood of 

transversion and transitions. These agreements further support pN/pS ratio as 

reliable and appropriate to estimate the degree of polymorphism in the population 

and to infer evolution. 

To ensure that sufficient samples were available with high sequencing 

depth pN/pS ratios were only calculated for dominant species, which we defined 

as species that have at least 10x coverage across samples and 99% of the reads 

in metagenomes where these genomes were found, in Figure 1. Since the SNP 

profile is relatively constant across time-points, usage of time-points from the same 

individual would introduce biases towards the individuals where more time-points 

are available, hence only the first time-point for a given individual was used. The 

pN/pS ratio for each pair of species-individual was calculated for 66 dominant 

species across 207 individuals. I found that pN/pS ratios were relatively stable 

across individuals but varied considerably in range among species with an average 

pN/pS ratio of 0.11, and ranging between 0.03 (Bacteroides plebeius) and 0.17 

(Acidaminococcus sp. D21) across species in Figure 5 and Appendix 4. The 

pN/pS ratio calculated for gut dominant prokaryotic species is in agreement with 

previous reports of pN/pS ratio and dN/dS ratio [92, 108–111]. The relatively low 

pN/pS ratios were constant across different individuals, despite the variation in 

individuals phenotype (gender, age, disease status, etc), except for two genomes 

Parabacteroides merdae and Bacteroides uniformis. The reason for these two 

exception remains currently unknown. These low pN/pS ratios might indicate that 

similar constraints exist across individuals, hence the evolution of gut microbial 

species is likely to be dominated by long-term purifying selection and drift instead 

of rapid adaptations to a given host environment. I found that the mean pN/pS ratio 

between the two continents were statistically siginicant), however the signal could 
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also be due to lower sequencing depth of European samples which could lead to 

less dominant species (such as the top species with high pN/pS ratios) not to be 

detected, Figure 5. Instead the wide variety of pN/pS ratios across species, in 

comparison to across individuals suggest that the evolution constraint acts 

differently in different gut species, and could be related to niche specialization of 

each bacteria. 

Figure 4: Statistics of genomic variation across 101 gut microbial species 

prevalent in 252 metagenomes from 207 individuals.  

The statistics regarding genomic variation were calculated for 101 prevalent species. 

Prevalent species are defined as having a cumulative coverage bigger than 10 and at 

least 40% breadth of the genome covered. The 66 dominant species that are indicated by 

an asterisk account for 99% of the mapped reads and were further selected for pN/pS 

ratio analysis. Species names are given without specifying the strain details. In the last 

subplot the blue point cloud plots shows the coverage (more than 1x) across all 

metagenomes, with the blue dot above each line corresponding to the cumulative 

coverage and red dot the maximum coverage observed across all metagenomes where 

the species is found. Nucleotide diversity (π) follows the trend in SNPs kb -1 and pN/pS 

ratio is in agreement with π(N)/π(S) ratio. 
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Figure 5: pN/pS ratio distribution across 66 dominant species and across 207 

individuals 

Heat map of pN/pS ratios for 66 dominant species (rows) and 207 individuals (columns, 

only the first time-point was used per individual) is displayed and summarized by species 

(boxplot on the right). Rows and columns are sorted by their mean pN/pS ratio, which 

varied greatly across species compared to across individuals. The panel above the heat 

map annotated the continent of residence for each individual, North American or Europe. 

The purple box and green box highlight the two genomes (Roseburia intestinalis and 

Eubacterium eligens) which are used in further analysis in Figure 6. The mean pN/pS ratio 

was significantly different between the two continents, with European individuals tending 

to have lower pN/pS ratios. This continental difference is likely to be due to an effect of 

lower sequencing depth in samples from European individuals and therefore these 

samples are not able to capture the less abundant species, as for example shown in 

species displayed in the top-right corner. 

3.1.3 Type IV secretion system is slow evolving and bile acid hydrolase is 

fast evolving in the human gut prokaryotic species 

For each metagenome I calculated the pN/pS ratio for each gene among all 

genes found across the 66 dominant species (229,692). The genes were further 

grouped into their orthologous groups (8,000) using the eggNOG pipeline [112]. 

Here I focused on the genes with lowest and highest pN/pS ratios. As expected, 

housekeeping genes were frequently associated with genes that had the lowest 

pN/pS ratios (Appendix 5). For example, tRNA synthetases, DNA polymerases, 

RNA polymerases, Transcription elongation factors, chaperonin among others 

were found in this list. Less obvious were the finding of genes related with type IV 

secretion system. Type IV secretion system are used for gene transfer among 

prokaryotic species [113] and are involved in the interaction of the host with 

pathogenic [114] and commensal bacteria [115], especially in immune modulation 

and anti-inflammatory responses [116]. Several genes with conserved but 

currently unknown functions also have low pN/pS ratio, suggesting that their 

functions could be targeted for further phenotypic characterization Appendix 6. 
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On the other side of the spectrum, several transposases and antimicrobial 

resistance genes are among the genes with high pN/pS ratios. Interestingly I also 

find among the highest pN/pS ratios gut-specific genes such as bile salt hydrolase 

(BSH) [117] in Appendix 5. BSH encodes the gene involved in the “gateway 

reaction” for a wide variety of pathways involved in production of secondary bile 

acids from conjugated bile acids (CBAs) initially produced by the human host. 

3.1.4 galK gene evolution is uncoupled from prokaryotic species evolution 

 

Figure 6: Comparison between Eubacterium eligens and Roseburia intestinalis 

(b) Distribution of pN/pS ratio for each gene in two genomes, R. intestinalis and E. eligens, 

based on the average pN/pS ratio across all metagenomes where each species is 

detected. Despite having a similar genome coverage pN/pS ratios for most genes are 

higher in R. intestinalis. Inset of (b) shows the log2 ratio between orthologues from E. 

eligens and orthologues from R. intestinalis with the average log2 ratio showed by solid 

vertical line and random expectation by a dashed vertical line. Outliers can be shown in 

this way, like the galactokinase gene (galK), whose pN/pS ratio is among the lowest in R. 

intestinalis and highest in E. eligens. (c) Illustrates the distribution of synonymous (green) 

and non-synonymous (brown) SNPs across the galK genes from R. intestinalis (top panel) 

and E. eligens (bottom panel), both plots are based on cumulative read coverage. E. 

eligens displays a higher number of polymorphisms and is enriched in synonymous SNPs, 

whereas the opposite is observed in R. intestinalis. 

In order to investigate the congruence between pN/pS ratio of a given 

species and pN/pS ratio of its respective genes, I compared the pN/pS ratios of all 
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genes between two species Roseburia intestinalis and Eubacterium eligens. 

These species differed considerably in their species pN/pS ratios across similar 

metagenomes and similar genome coverage range. Whereas the average pN/pS 

ratio of R. intestinalis (across 106 metagenomes) is 0.236 for E. eligens (across 

147 metagenomes) the ratio is only 0.131, Figure 5. The majority of genes (75%) 

in R. intestinalis had systematically higher pN/pS ratios compared to their 

orthologous genes in E. eligens, with only a few exceptions Figure 6b and 

Appendix 7. The exceptions whose pN/pS ratios deviate considerably point to 

different evolutionary constraints for these genes. For instance, galK gene which 

encodes galactokinase had a low pN/pS ratio for R. intestinals but a high pN/pS 

ratio for E. eligens (0.03 and 0.48 respectively Figure 6b and Figure 6c). galK is 

an essential enzyme in the Leloir pathway for galactose metabolism for the 

majority of organisims. The galK example reveals that the same gene can undergo 

different evolutionary outcomes that are independent of the species evolutionary 

pressures (one species can undergo tight negative selection while relaxed 

negative selection for another). 

3.1.5 Discussion 

The goal of this project was to estimate whether pN/pS ratio can be used to 

estimate the phenotypic impact of strains variation in their SNPs. pN/pS ratio was 

found to be reliable and applicable for metagenomic datasets. The stable pN/pS 

ratio observed for gut microbial species (based on 66 dominant species) across 

207 individuals suggest that host conditions (which include variation in diet, host 

genetic compostion and immune tolerance) have minor effects on the evolution of 

species compared to constraints that are constant across the human population 

(such as gut physiology, anaerobic conditions and pH). Instead most of the 

variation is species specific suggesting the niche that a given species occupies 

might have an effect upon genome evolution, although there is also the possibility 

that the the species have naturally different speeds of evolution.  
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Next, l I analyzed the evolution of 229 000 genes from 8 000 orthologous 

groups, and found as expected several housekeeping genes to be slow evolving 

and transposases to be fast evolving. Unexpectedly I found that among the slowest 

evolving there were genes related with type IV secretion system (associated with 

conjugation) which is associated typically with strain variability [62]. This suggest 

that genes in type IV secretion system undergo purifying selection because 

bacteria need to maintain genome plasticity by gene transfer through conjugation 

in a changing environment such as the human gut [113] and/or due to their 

important role in the cross-talk with the host immune system [116]. The contrast 

between type IV secretion system and transposases evolution indicate that mobile 

machineries do not necessarily undergo the same evolutionary trajectory. Among 

the fast evolving genes, I found a gut-specific BSH, which catalyzes deconjugation 

of CBAs to release free primary bile acids and amino acids [118]. CBAs are 

cholesterol derivatives synthesized in the liver that can inhibit the bacterial growth 

and upregulate the defense system of the host mucosa [117]. Deconjugation and 

modification of bile acids have been associated with colorectal cancer and 

gallstone formation [119, 120], and more directly BSH has been linked to dysbiosis 

in IBD patients [121]. The high pN/pS ratio may indicate genome plasticity required 

to metabolize and respond to a variety of different bile acid that exist in the gut and 

also be related with dysbiosis in different diseases.  

 Finally, I measured whether gene evolution can be uncoupled from species 

evolution. Here I compared genes from E. eligens with R. intestinalis and found 

that most genes (75%) follow the genome trend, with only a small proportion of 

outliers. Among the outliers I found a carbohydrate degradation enzyme galK 

(galactokinase). Galactokinase is the first enzyme used in the Leloir pathway and 

is the only reaction that can convert galactose to glucose [122]. This pathway is 

important for usage of galactose or other more complex carbohydrates that have 

galactose in its constitution, such as melibiose. Although galK is present in E. 

eligens, the gene may not perform its main function (see also [123]), since E. 

eligens is not able to ferment galactose or galactose-containing disaccharides 
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lactose and melibiose [124], which are substrates of galK. The statement is 

supported by findings in Bacillus subtilis in which the pathway is inactivated and 

galk must be non-functional in order to not accumulate galactose derivatives that 

are toxic for the cell [125]. In comparison, R. intestinalis is able to ferment melibiose 

[126], validating that galK is functional in this species. 

 Overall, the results show that certain phenotypic inferences can be already 

estimated based on evaluation of gene evolution, however the method is limited to 

genes in the extreme spectrum of evolution, whereas for the remaining further 

studies are needed. 
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ANA ZHU, SHINICHI SUNAGAWA, DANIEL R. MENDE AND PEER BORK, GENOME BIOLOGY 

(MINOR REVISION) 

“Inter-individual differences in the gene content of human gut bacterial 

species” 

 

3.2 Inter-individual variation in gene content of human gut bacterial 

species 

In subchapter 3.2 I describe the findings obtained from using a 

metagenomic-based approach to determine gene content of bacterial species from 

complex environments. Taken as an example, I analyzed 11 abundant gut species 

across 10 human individuals for each species, and find a large inter-individual 

variation in gene content between gut bacterial species. Moreover, I find that for 

the same species the gene content differences between individual´s strains are 

associated with important functional traits such as polysaccharide degradation and 

capsule polysaccharide synthesis, both of which have an effect on the digestive 

capacity of the human host. These findings imply that functional variation cannot 

be explained by species composition alone. 

The results of this project are currently in revision with Genome Biology 

where I am the leading author. Within the project, Daniel Mende contributed with 

analysis to benchmark my approach to completely sequenced genomes. 

3.2.1 Introduction 

We found when analysing the SNP catalogue of the gut microbiota that 

individuals have a temporally stable SNP profile that is individual-specific 

(individuality) [98]. This suggests that the pool of strains that inhabit the human 

population is rather large and not limited to a set of strains. The interpretation of 

the phenotypic outcome due to variation in SNP profile is however rather 
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complicated. Instead variation in bacterial gene content is easier to interpret and 

provides a more direct estimation of a bacterium phenotypic traits, therefore the 

aim of sub-chapter 3.2 was to create a methodology to characterize bacterial 

strain gene content based on metagenomic data. 

In the current study I categorized genes into core (seen in all metagenomes) 

and accessory genes (seen in a subset of metagenomes) for a given species, (see 

Table 1 for core and accessory definition and Table 2 for details of species used 

in the study). This nomenclature derives from pan-genome studies, please note 

that other nomenclatures have been used to describe the same or similar 

concepts. The accessory genes [62] have also been named dispensable [63] and 

variable genes [127]. Genes have also been categorized by their frequency in 

HGT, with genes being separated into hard core (genes that seldom or never 

undergo exchange), soft core (genes where it is hard to establish if they have 

undergone exchange) and shell (freely exchangeable genes) [128]. Moreover, the 

species accessory genes can further be separated into unique genes (genes that 

only exist in one strain) and non-unique genes (genes that exist in two or more, 

but not all strains) [129] and can also be named volatile genes (present in less than 

20% of the strains) or persistent genes (present in more than 90% of the strains) 

[64]. Since for a few species that I analyzed only 10 metagenomes were available, 

I have simplified the nomenclature and focused on core, accessory and unique 

genes. As accessory genes are what differentiate strains from each other in terms 

of gene content, they provide the genetic basis for strain specificity. Accessory 

genes encode supplementary biochemical pathways and functions that can 

provide a selective advantage to the bacteria [130]. Note that the core and 

accessory concept is not restricted to strains of the same species as used in the 

context of this sub-chapter 3.2 but can also be extended to other taxon. Bapteste 

et al. 2004 [131] named taxon core to define the set of genes that are shared by 

all members of a given taxonomic rank, hence any taxonomic rank can be used as 

an taxon core. Taxon core have been explored among species, genus, phyla, 

bacterial domain and even the universal core (reviewed in [130]). For example the 
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universal core represent the genes that are present in all organisms and is 

composed of 40 marker genes. These marker genes are present as a single copy 

in all domains and have constraints against HGT [132, 133]. The bacteria core, 

which is present in all bacterial species is estimated to be composed of 

approximately 250 genes [134]. 

Gene content affects the genome architecture, two forces interplay in 

accessory genome architecture, one in maintaining the gene synteny (operon, 

genomic islands) after gene transfer, and another in destroying it. Examples of 

both cases have been previously reported in the literature. Operons, mosaic 

operons [135] and genomic islands [82] have been shown to maintain their original 

synteny after HGT. While another study has shown that megaplasmids suffered 

selective deletion removing up to 10% of the plasmid genome after insertion into 

the bacterial cell [84]. On the other hand, Price et al. 2005 has shown that operon 

structure can be destroyed in order to form new operon structures, either through 

multiple gene addition or through deletion of DNA between functionally unrelated 

genes that are close to each other [136]. I intend to investigate how accessory 

genes distribution affects genome architecture in the abundant gut bacterial 

species. 

Previous studies of accessory genes and pan-genomes have either been 

conducted on single species (reviewed in [62]), or via comparisons of closely 

related species (such as species within the same genus) [137, 138]. Since in a 

metagenomic sample several species exist in the same habitat, my approach 

enables a comparative study of bacterial species within the same environment. 

Here I performed a comparative study of the 11 most abundant gut bacterial 

species that passed my filtering procedure (described in section 2.3.1). This 

comparative study enabled me to calculate the fraction of accessory genes in 

these species and characterize details of the genomic architecture and functions 

of these genes. Taken together, our study provides the first metagenomic insight 

into gene content variability of abundant gut microbial species across individuals. 
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In addition, I show capsular polysaccharide synthesis (CPS) and polysaccharide 

utilization loci (PUL) as examples for associated functional implications. 

Term Definition 

core gene species specific gene seen in all samples 

accessory gene species specific gene seen in some samples 

single-gene 
deletion block 

single gene missing in a sample when compared to the 
reference genome 

gene deletion 
block 

block of one or consecutive neighbour genes missing in a 
sample compared to reference genome 

large-gene 
deletion block 

deletion of 50 or more genes when compared to the 
reference genome in a sample 

consecutive-gene 
block 

consecutive genes that are present in a given sample 

Individual refers to a individual gut sample for a given species 

Table 1: Definitions used in the scope of sub-chapter 3.2 

Description of definitions used throughout sub-chapter 3.2, the terminology was adapted 

from pan-genome studies to suit metagenomic studies. 

3.2.2 Fraction of accessory genes increases with genome size 

A description of 11 species (Figure 2) used in this chapter can be viewed 

in Table 2 and for each species 10 random metagenomes were used, Appendix 

8. For all the species studied the accessory genes were found to have a patchy 

distribution [139], which means that they are not evenly distributed across the 

genome with certain regions such as genomic islands being highly concentrated 

in accessory genes. The patchy distribution of accessory genes are likely a result 

of HGT and gene deletion [139] and are common observations in pan-genome 

studies of other species [62]. In total 60 genomic islands were detected across the 

11 species with sizes up to 57kb, Appendix 9. These genomic islands are likely 

derived from mobile elements such as prophages, integrative plasmids or ICEs 

[82]. 
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NCBI 
taxID 

Representative 
strain name 

Nº of 
contigs 

Nº genes 
in 
reference 

Nº of 
individuals 

Nº genes in 
metagenomes 

592028 Dialister invisus 
DSM 15470 

1 2015 16 1905 

657321 Ruminococcus 
bromii L2-63 

1 1852 22 1807 

511680 Butyrivibrio 
crossotus DSM 
2876 

31 2576 13 2493 

657322 Faecalibacterium 
prausnitzii SL3/3 

1 2816 11 2670 

445970 Alistipes putredinis 
DSM 17216 

11 2795 58 2790 

537012 Bacteroides 
cellulosilyticus DSM 
14838 

66 5771 15 5542 

483216 Bacteroides 
eggerthii DSM 
20697 

20 3769 10 3714 

717959 Alistipes shahii WAL 
8301 

1 2616 29 2584 

563193 Parabacteroides sp. 
D13 

22 4558 32 4473 

469586 Bacteroides sp. 
1_1_6 

71 5648 41 5639 

537011 Prevotella copri 
DSM 18205 

28 3413 32 3195 

Table 2: Information regarding the 11 species references genomes and the 

metagenomes used in the current study. 

Description of the 11 species representative genomes that were selected after the filtering 

procedure and to which our metagenomes were mapped. General information regarding 

the reference genomes such as their corresponding NCBI TaxID, strain name, number of 

contigs and number of genes are described. The total number of individuals (from which 

metagenomes were obtained) where a given species was found is shown together with 

the number of the genes from each species that were detected in any of the 

metagenomes. 

The number of accessory genes can differ greatly among bacterial species 

[62, 130]. To estimate the fraction of accessory genes across the 11 species I used 
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the methodology described in section 2.3.3 consisting of a subsampling procedure 

followed by a model fitting. The exponential model and power law were tested 

(typically used in pan-genome studies, see Appendix 14 [63, 140]. In addition the 

negative exponential and spline were also tested. The exponential model provided 

the best fitting to the observed data and was therefore chosen. The asymptotic 

number obtained from the exponential model was used to extrapolate the fraction 

of accessory genes for the 11 species as shown in Figure 7. 

 

Figure 7: Estimation of the fraction of accessory genes (%) based on 

exponential model 

Boxplot shows the estimated fraction of accessory genes based on the exponential 

regression model fitting for the 11 gut bacterial species.  

The fraction of accessory genes ranges between 20.94% (Dialister invisus) 

and 45.16% (Prevotella copri, which is one the main drives of the Prevotella-

enterotype) with an average of 32.28% (Figure 7 and Figure 8). Note that only 

gene deletions are accounted for in the estimates, that is genes that are missing 

in the metagenomes in comparison to the species respective reference genome. 

Since I only account for gene deletions, there will be individual unique genes (i.e. 

genes specific to an individual´s strains, and hence not present in the reference 

genome). Individual unique genes can significantly increase the percentage of 
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accessory genes, such as observed in Haemophilus influenza, where unique 

genes constitute 19% of a species gene repertoire [65]. Therefore, these estimates 

should be considered as the lower limit of gene content variability. To have a proxy 

for individual unique genes, the fraction of unique genes in the 11 reference 

genomes (i.e. genes in reference genome not detected in any of the individuals) 

was calculated, to circumvent the impossibility of estimating the number of 

individual unique genes. On average only 3% (up to 5%) of the genes in reference 

genomes were found to be unique, and can be used as a minimum estimate of 

percentage of genes that are missed by my reference dependent approach. In 

conclusion, the high fraction of accessory genes per species that is estimated in 

metagenomes is in similar range as estimates found in pan-genome studies [61–

65]; and the estimates are likely to increase as only gene deletions are counted 

and the number of individuals is limited (as more individuals are sequenced the 

likelihood of finding an individual where the gene is missing also might increase, 

as shown in Appendix 14). 

The 11 species belonged to two phyla, Firmicutes and Bacteroidetes. 

Interestingly, Bacteroidetes had a larger fraction of accessory genes compared to 

Firmicutes (p-val <0.01) and that the fraction of accessory genes correlated with 

genome size (r=0.72), see Figure 8. This correlation is not simply a result of an 

increase of accessory genes in larger genomes, since the number of core genes 

also correlate with genome size, instead it reflects a pattern where the number of 

accessory genes increases faster than those for core genes in larger genomes 

(Figure 8). Further investigation using species from more phyla is needed to 

elucidate if this between-phylum difference is a general pattern or solely an effect 

of differences in genome size. 



 

70 

 

Figure 8: Display of the percentage of accessory genes for 11 gut bacterial 

species. 

(a) The bars correspond to the percentage of accessory genes which were calculated 

based on the asymptotic number originated from the exponential regression model. The 

values were estimated for the 11 gut bacterial species which are grouped according to 

their phyla. (b) Dot plot displays the relation between number of core genes or total 

number of genes and genome size. The graph shows that number of core genes also 

correlates with genome size; however the total number of genes grows faster with genome 

size than the number of core genes. 

3.2.3 Gut strains of the same species have large inter-individual variation in 

gene content 

To measure the gene content differences of strain´s that exist between 

individual’s gut, pairwise comparison between individual’s strains was done for 

each of the 11 species that is shared independently of the other species present 

in the two individuals. The genes that are present in one individual but not in the 

other were counted according to section 2.3.4 and the average across the 11 

species corresponded to 13%± 4.5% (mean ± SD), as shown in Figure 9. This 

inter-individual difference was considerably larger than differences observed 

between biological replicates (same individual, samples from different time points) 

and between technical replicates (same individual, same sample, different 
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sequencing reactions), which were on average 0.81% and 0.51%, respectively, 

and statistically not significantly different among each other (p-val=0.71, Figure 9). 

Among the 11 species, Bacteroides thetaiotaomicron (represented by 

reference genome Bacteroides sp. 1_1_6 [98]) has the highest average inter-

individual difference in gut bacterial gene content (16%), whereas Dialister invisus 

(represented by reference genome Dialister invisus DSM 15470 [98]) has the 

lowest (6%). As mentioned before these estimates correspond to lower limits due 

to the dependency on reference genomes. Yet, for all 11 species, no two 

individuals shared the same gene content, even when the analysis was extended 

to all 103 individuals. 

To measure how the gene content differed between strains in their natural 

habitat and to compare with those found classically in pan-genome studies, we 

created a database of complete genome sequences for Firmicutes and 

Bacteroidetes species (1,077 genomes belonging to 35 species). This dataset was 

used for comparison as 10 out of 11 species investigated in this sub-chapter 3.2 

do not have enough completely sequenced genomes of other strains available in 

public databases. The metagenomic dataset studied here had a significantly higher 

gene content variation compared to published pan-genomes (a mean of 12.97% 

±4.51% and 10.69% ±5.13% respectively, p-val < 10-16  Figure 10). The difference 

is even higher if we consider the pan-genomes from all available species (a mean 

of 9.19% ±6.22% for completely sequenced genomes, p-val < 10-16, Figure 10). 

For only one of the species, Parabacteroides D.13, sufficient data was also 

available for completely sequenced genomes (8 different strains). The results 

show that pairwise differences of metagenomes (4.32%- 22.64%) are in similar 

ranges as those observed for completely sequenced genomes (6.68%-20.61%, 

Figure 11). Overall, these comparisons show no large systematic differences 

between gene content estimations obtained from metagenomes and the ones 

obtained from genomes from isolated strains, demonstrating the validity of the 

proposed method. 
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Figure 9: Variability between pairs of metagenomes  

For each of the 11 species, the gene content differences between pairs of individual were 

calculated. Boxplots are colored according to phyla (red for Bacteroidetes and blue for 

Firmicutes), and the species are ordered according to their mean. The inter-individual 

boxplot (green) represent pairwise comparison of the same species between different 

individuals for 11 species. Biological replicates boxplot (purple) show pairwise 

comparisons of the same species in samples from the same individual at different time-

points (11 species). Technical replicates represent gene content differences of Prevotella 

copri of the same sample in four sequencing replicates (no other technical replicates were 

available). 
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Figure 10: Variability between (1) sequenced reference genomes, (2) 

Bacteroidetes and Firmicutes reference genomes and (3) metagenomes. 

Boxplot show difference in number of genes (%) between pairs of: (1) sequenced 

reference genomes across bacterial species from all available phyla, (2) sequenced 

reference genomes across species from Bacteroidetes and Firmicutes phyla (3) 

metagenomes across the 11 gut bacterial species used in this study (belonging to 

Bacteroidetes and Firmicutes). Only species with at least 10 sequenced reference 

genomes or metagenomes are included. Each boxplot corresponds to a pooling of all 

available species (based on pairwise comparisons between two samples of the same 

species). The differences observed in metagenomes were significantly higher than the 

ones observed in completely sequenced genomes, even when considering reference 

genomes from the same phyla. 
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 Figure 11: Variability between sequenced reference genomes and 

metagenomes for Parabacteroides distasonis 

Boxplots show differences in number of genes (%) between pairs of sequenced reference 

genomes and pairs of metagenomes of P. distasonis. The differences observed in 

metagenomes were in similar ranges as found for sequenced reference genomes. 

The large inter-individual variation in gut bacteria’s strain´s gene content 

implies considerable structural variation that needs to be factored into 

interpretation of metagenomic studies (note that gene content variation covers a 

large proportion of structural variation in prokaryotes due to high coding density). 

In addition, the structural variability of gut bacterial strains across individuals 

(based on gene content variation as a proxy) is considerably larger compared to 

that of human genomes, since less than 1% of base pairs in structurally variable 

regions are different between two individuals human genome [52]. This large inter-

individual variation in gut bacteria’s strain gene content could be because of a 

particularly high frequency of HGT events in the gut compared to any other human 

body site or non-human habitats [141], which has been linked to antibiotic usage 

(e.g. tetracycline) and inflammation [142, 143]. Independently of the underlying 

mechanisms, I found that the concept of individuality based on SNP variations [98] 

also holds true at the level of gene content variations, at least within this limited 

data set. 
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3.2.4 Accessory genes are enriched in mobile elements and functions 

associated with cell wall and membrane 

To determine the functions that contribute the most to individual variability 

in bacterial gene content, the core and accessory genes were mapped to 

orthologous groups (OGs) and each OG to their respective functional categories 

[26]. Expectedly, variation in bacterial gene content was associated with functions 

related to mobile elements, like recombination (this functional category includes 

several transposases and viral proteins), and defence mechanisms (such as 

modification-restriction systems [144], ABC-type antimicrobial and multidrug 

transporters), in Figure 12. Accessory genes were also enriched in functions 

pertaining to cell wall and cell membranes, which is dominated by genes encoding 

glycosyltransferases (33%). Glycosyltransferases are important for modification of 

surface epitopes like capsular polysaccharides, O-antigens and 

exopolysaccharides. The large diversity of glycosyltransferases may help the 

bacteria in colonizing the gut environment [145, 146]. In agreement with my 

observations, glycosyltransferases have been associated with HGT in 

Bacteroidetes living in the gut [145]. Finally, accessory genes were also enriched 

in unknown genes, suggesting that there is a large range of unexplored functions 

that could potentially have an impact on an individual´s phenotype. On the other 

hand, the core genes were mainly associated with genes involved in essential 

functions such as translational and ribosomal related genes, as well as amino-acid 

transport and metabolism, Figure 12. 
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Figure 12: Difference plot of orthologous group’s functional categories between 

gene number of core and accessory genes 

The difference plot shows the difference between the numbers of core genes and the 

number of accessory genes which belong to a certain functional category. Darker green 

shades corresponds to functional categories with higher ratio between accessory genes 

than core genes. 

 

3.2.5 Single gene deletions are highly abundant and associated with mobile 

elements 

To study the effect of gene content variability on bacterial genome 

architecture I took an approach based on gene deletion blocks [30, 31]. I define a 

gene deletion block as a group of contiguous accessory genes that are absent in 

one individual when compared to the reference and a single-gene deletion block 

as a single gene that is absent, but whose neighbouring genes are certainly 

present in order to have a very strict criterion (Table 1). The following analysis, 

contrary to the previous sections are focused on accessory genes that are absent 
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instead of present. I focus on absent genes because this allows the study of 

genome architecture without requiring the determination of gene origin, age and 

ancestry within the genome [30]. Gene deletion blocks were found in each 

metagenomic sample by comparison with the reference genome. Please note that 

the gene deletion blocks detected can arise either by gene deletion within the 

strains of an individual or by gene insertion(s) in the reference genome. I 

determined the number of gene deletion blocks and the number of genes 

contained in each block for a given species in a metagenomic sample (Figure 13a 

and Figure 14). 

I found that the most frequent number of genes in a gene deletion block was 

single-gene deletion block, corresponding to a mean of 33.74% of all blocks and 

25% of all deleted genes (Figure 13 and Figure 14). Across the 11 species, 

several ATPases, transcription and recombination related proteins (e.g. retron-

type reverse transcriptase, transcriptional regulators and recombinases) were at 

the top of functions found in single-gene deletion blocks (Appendix 10). These 

functional categories clearly associate single gene deletion blocks to mobile 

elements and the functional nature of the genes involved supports hypothesis 

claiming that previously integrated elements underwent erosion through deletion 

of their mobilization and integration machinery [147], even though I cannot exclude 

the possibility that some of these are gene insertions occurring in the reference 

genome. 

3.2.6 Accessory genes have functions that imply phenotypic differences of 

an individual 

Apart from the single-deletion blocks, I also detected large-gene deletion 

blocks with 50 or more genes in several species, with the longest containing 172 

genes. These blocks have 50 to 172 genes, and their sizes ranges between 37Kb 

and 135Kb (Figure 13a, Figure 13b and Appendix 11). On average per species 

21% of all deleted genes were found in these large-gene deletion blocks (Figure 

14), which contain substantial number of operons that are likely to be integrated 
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into active mobile elements. Indeed, these large-gene deletion blocks have large 

integrons containing functions that may confer functional difference between 

strains (such as a likely queuosine biosynthetic pathway, several peptidases, that 

can for example be involved in the lysis of cell wall peptidoglycan, and a toxin-

antitoxin system), Appendix 12. Since differences in large-gene deletion are likely 

to have phenotypic consequences in the respective individuals, they were studied 

in more details. In total 21 large-gene deletion blocks were found in 8 species, and 

each species had between 1 and 7 large-gene deletion blocks. Not unexpectedly, 

these deletion blocks were often associated with prophages of both Bacteroidetes 

and Firmicutes or conjugative transposable elements for Bacteroidetes (Appendix 

11) implying a mechanism for the transfer of functionality. 

 

Figure 13: Gene deletion block size distribution 

a) Frequency of gene deletion blocks with a given number of contiguous absent genes 

(%) for 11 gut bacterial species. Each point corresponds to the mean frequency observed 

across 10 individuals for a given species. (b) Length of different large-gene deletion blocks 
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(50-172 genes) found in 8 gut bacterial species. Several large-gene deletion blocks are 

associated with prophages and conjugative elements and one of these blocks contains at 

least PULs loci and a CPS locus. (c) This large-gene deletion block in Bacteroides sp. 

1_1_6 is shows in more detail across 41 metagenomes and 4 sequenced reference 

genomes. The sequenced reference genomes are shown in the first four columns in purple 

and the metagenomes are shown in the remaining columns in blue, whenever the 

corresponding genes are present. The reference genome used for metagenomes 

mapping is highlighted in bold. The genes are labelled by its NCBI sequence identifier 

number (GI). Annotation of SusC/SusD and CPS annotation are based on Xu et al. 2003 

[148]. Three SusC/SusD genes are found upstream of the CPS locus which can be 

associated with at least one PUL, and one SusC/SusD is found downstream of the CPS 

indicating the existance of another PUL. These PULs have been associated with plant 

carbohydrate degradation [66]. For the majority of the individuals except one (where one 

SusC/SusD was missing), the CPS and both PULs related sub-regions, in the individuals 

where the sub-region is present, they show a conserved modularity. The results in 

metagenomes are also confirmed with sequenced strains, with the CPS and PULs loci 

present in strains and absent in one. 

 

Figure 14: Cumulative number of genes in deletion blocks of a given size. 

The total number of genes (%) that are absent in a metagenome and are located in a 

deletion block with a size smaller or equal to a given block size (x-axis) is plotted for each 
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of the 11 gut bacterial species. The block size (x-axis) corresponds to the number of 

consecutive absent genes and the block sizes were binned in bins of sizes multiples of 

10. Each data point corresponds to the mean across 10 individuals. 

One of these large-gene deletion blocks found in Bacteroides sp. 1.1.6 (B. 

thethaiomicron) contains four susC/susD genes that are associated with 

polysaccharide utilization loci (PULs) and one capsular polysaccharide synthesis 

locus (CPS) containing 25 genes, Figure 13c. Bacterial PUL helps the human 

intestine to forage glycans and polysaccharides [33, 34]. The two PULs detected 

are associated with plant carbohydrate degradation in the type strain of this 

species (Bacteroides thetaiotaomicron VPI-5482 ATCC) [148, 149]. Type strain 

denotes the nomenclatural type of a species or subspecies. CPS loci are sensitive 

to the nutrient availability and are involved in the defense of the bacteria against 

environmental factors (e.g. host immune system, phage attack and anti-peptide 

produced by the human body or by other bacteria [150, 151]). Comparison 

between individuals show that the gene deletion patterns in this large-gene 

deletion block are further separated into at least three different sub-regions of 

consecutive-gene blocks Figure 13c, with two sub-regions containing PULs and 

one corresponding to the CPS. Surprisingly, each sub-region is present in some 

but missing in other individuals independently of the other sub-regions. This 

pattern is observed not only for the initially randomly chosen 10 individuals, but 

extends to all individuals where Bacteroides sp. 1.1.6 species was detected (41 in 

total). 

The region containing this large-gene deletion block was also tested for 

presence in other four completely sequenced genomes of B. thetaiotaomicron 

(Figure 13c). The whole region was present in the type strain, Bacteroides 

thetaiotaomicron VPI-5482 ATCC, while some genes were missing in the other two 

strains. In one strain, the region suffered single-gene deletions with the majority of 

the accessory genes being present, and in another strain, large-gene deletion 

blocks were found with only a few genes present and not in consecutive-gene 

blocks. Therefore, the variation in gene content of this large-gene deletion block 
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observed in metagenomes is in accordance with the variation observed in 

completely sequenced genomes. Before functional inference of the results, 

paralogs of the genes in this large-gene deletion blocks had to be checked as they 

may compensate functionality at an alternative loci. Functional compensation by 

paralogs have been observed for some glycan-modifying enzymes of B. 

thetaiotaomicron [145], however for the genes in this large-gene deletion block no 

paralog was found. Hence, in some individuals the two PULs and the CPS seems 

to be completely absent in their respective B. thetaiotaomicron, unless the 

individuals have the corresponding functionality in insertions that my reference-

based methodology is not able to measure. This would limit the B. thetaiotaomicron 

potential for polysaccharide utilization and capsular polysaccharide synthesis and 

due to the central nature of this functionality for Bacteroides, change the expected 

phenotype drastically [152, 153]. 

3.2.7 Discussion 

The goal of this project was to create a methodology to robustly measure 

the gene content of bacterial species within a metagenomic samples based on 

gene presence or absence. The method, which was applied to 11 abundant 

species, only accounts for gene deletion and therefore only provides a lower 

estimate of gene content variability. For each species the core and accessory 

genes were determined. Using this method I calculated the fraction of accessory 

genes for each species, and found that fraction of accessory genes correlate with 

genome size. This results is in line with a number of genome size “scaling laws” 

which show that gene functional classes scale differently with genome size [154–

156], also this concordance shows the robustness of my metagenomic-based 

method. For example, the number of transcriptional factors, two component 

system, signal transduction genes increase more than linearly with genome size 

[155]. It is also in agreement with the observation that larger genomes have higher 

rates of HGT compared to smaller genomes [157]. Moreover, I found that my 

metagenomic approach is able to capture a similar range of gene content 

differences as observed for pan-genomes. This indicates that metagenomic based 
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comparisons do not show large systematic differences between gene content 

estimations from the ones obtained in isolated strains, demonstrating the validy of 

my proposed method. 

4 Another goal of this project was to determine the degree of variability in 

gene content between gut bacterial strains of the same species. For this purpose, 

I performed pairwise comparisons between two individuals and found that species 

differ on average by 13%, and found that this variation was considerably larger 

than variation detected between biological or technical replicates. Also, no two 

indivduals shared the same gene content, suggesting that individuality might also 

occur in gene content level as we showed for SNP variability. The proper 

demonstration of individuality in gene content level will however require a larger 

sample size and more gut microbial species. 

To study the effect of variation in gene content on the architecture of 

bacterial genome I used an approach based on gene deletion [158]. More 

specifically, the findings pertaining to the PULs support the idea that carbohydrate 

degradation is strain-specific as has also been found experimentally in 

Bifidobacteria [159]. In this genus, strains have different key enzymes which are 

able to diggest different carbohydrate sources. These differences in carbohydrate 

utilization potential are likely to be a reflection of differential niche adaptation [160–

162]. For example, comparison between B. thethaiomicron and B. ovatus has 

shown that each species acquires niche-specific PULs [162], which could be an 

effect of an individual´s dietary habits [160, 162]. The latter effect could also be 

influenced by strain-specific CPS architecture, since expression of B. 

thethaiomicron CPS has also been coupled with dietary changes [149, 151, 163] 

and since there is indication of coordinated regulation of CPS and PULs [151]. The 

response of CPS to dietary changes is likely to help the bacteria creating a capsule 

that mimics the glycan composition found in the individual´s gut and also is likely 

to affect the interaction between the bacteria and the individual´s immune system 

[150, 153]. In summary, CPS and PULs show that important functions such as 
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carbohydrate degradation can be present or absent in some individuals, indicative 

that strain information needs to be accounted for phenotypic inferences. 
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CHAPTER 4 

CONCLUSIONS 

Species in the gut microbiota play several functions that are important for 

human health. Metagenomics have enabled the study of gut species in their natural 

habitat, however most studies focus on either changes in taxonomical composition 

or in relative abundance. Since the publication of the first pan-genome for 

Streptococcus agalactiae [63], several studies have shown that microbial species 

can differ greatly in their strains both in small-scale and large-scale 

rearrangements and also that these variations are phenotypically relevant. 

However the extent of these variations for gut microbial species and its phenotypic 

impact in the microbial strains or human host are still unknown. 

My main goal of my doctorate studies was to investigate whether using 

metagenomes it is possible to infer phenotypic impact based on genetic variation 

(SNPs and gene content as a proxy for structural variations) of gut prokaryotic 

species. I showed for the first time that both SNPs (sub-chapter 3.1) and gene 

content variations (sub-chapter 3.2) can be used for functional inferences of 

strains in the complex gut community, which was not possible using previous 

metagenomic approaches based on relative abundances or taxonomical 

classification. 

In sub-chapter 3.1, I used a 10.3 million SNP catalogue that we generated 

to study their phenotypic effect. Due to the size of the SNP catalogue it is currently 

not possible to infer the effect of single SNP´s, instead I evaluated whether 

evolution could be used for functional inferences. For this purposes I used pN/pS 

ratio, a SNP based method used in population genetics for tracking recent 

evolutionary events, and the results have been published in Nature [98]. I found 

pN/pS ratios to be fairly constant across individuals in contrast to variation within 

an individual. Also, I exemplified using galK that indeed functional potential can be 

infered using gene evolution based on pN/pS ratio. Here galK was shown to have 

different evolutionary histories in different species (Roseburia intestinalis and 
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Eubacterium eligens) and this is likely a reflection of these species different 

capacities in utilizing carbohydrate sources (galactose and galactose derivatives). 

The different evolutionary outcome of these species, suggest that diet can have a 

strong effect in the genetic composition of gut species. Although gene evolution 

(pN/pS ratio) can be use to infer functional inferrences, for most genes it is still 

hard to interpret the functional outcome of SNP variation. Alternative, differences 

in gene presence or absence are easier for estimation of functional potential. 

In sub-chapter 3.2, I created a methodology for metagenomes based on 

gene deletion to detect if genes are present or absent within individual gut strains 

that was applied to 11 abundant species. The results in this sub-chapter are under 

minor revision in a publication sent to Genome Biology where I was the leading 

author. The method is sufficiently robust to find general rules found in prokaryotic 

species such as the scaling of accessory genes with genome size and is able to 

capture similar range of gene content variation as classical approaches based on 

pan-genomes. Hence the method is reliable for application in other complex 

natural habitats. Despite the limited sample size, I found large inter-individual 

differences corresponding to an average of 13%. Gene content of gut strains were 

found to be unique to each individual as we found for SNP pattern [98] although 

these results needs to be validated with more species and dataset. Importantly, 

these differences were associated with present or absence of important loci such 

as PUL and CPS indicative that strain resolution needs to be accounted for 

functional inferences. 

 In conclusion, genetic variation both in SNPs and gene content of strains 

can be used for phenotypic inferences and these affect important functions such 

as an individual digestive capacities.  
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APPENDICES 

SUPPLEMENTARY TABLES 

The supplementary tables that are not displayed in the current document 

are found in appendix in the CD that accompanies this thesis. 

 

Appendix 1 Information regarding 252 metagenomes used in this thesis. 

Details regarding 252 samples are listed, including sample name, data source, subject ID, 

sampling time point, continent which the sample was originated (NA stands for North 

America and EU stands for Europe). Statistics about the number of high quality 

sequencing reads or bases, average read length, and mapping rate to the 929 non-

redundant set of reference genomes are shown. The maximum mapping rate for a single 

sample corresponded to 75.1% and the minimum rate to 11.2%. 

Appendix 2 Information regarding 1,497 reference genome used in this thesis. 

Details regarding 1,497 reference genomes are listed, including each genome NCBI 

taxonomy identifier and species or strain name (column one and two). 14 genomes from 

the initial set of 1,511 were excluded because no reads in the 252 metagenomes mapped 

to these genomes. Genomes were clustered into 929 non-redundant species (section 

2.1.2) and sorted per cluster. For each cluster the representative genome is highlighted in 

bold. The last column categorizes genomes into either dominant, prevalent or non-

prevalent (section 2.2.1). In total there are 66 dominant genomes and 101 prevalent 

genomes (dominant genomes are also considered in the group of prevalent genomes). 

Genomes that are not selected to be a representative genome are referred as clustered. 

Appendix 3 Statistics regarding number of reads mapped to reference genomes. 

A total of 7.4 billion reads out of the initial 17.85 billion reads, that is 41.6% of the reads 

(in the 252 metagenomes) could be mapped to the set of 929 reference genomes 

(Appendix 2). Each row represents a reference genome and is identified by NCBI TaxID 
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and species or sample name (column 1 and 2).The reference genomes are sorted by 

decreasing numbers of reads that were mapped across all 252 samples (column 3). The 

cumulative percentage (column 4) represents the number of reads in all samples that are 

incrementally summed up and reported as percentage of the total number of mapped 

reads. The last 252 columns shows the number of reads mapped to each reference 

genome. The last row corresponds to a count of the total number of unmapped reads in 

all samples (column 3), total fraction of unmapped reads across samples (column 4), and 

the remaining cells show the number of unmapped reads in a given samples. 

Appendix 4 Table with pN/pS ratios calculated for each species-individual pair. 

Each cell corresponds to the average pN/pS ratio calculated for a given species-individual 

pair across all genes. The pN/pS ratios were calculated for 66 dominant species and 207 

individuals (corresponding to the first time-point of an individual, and includes 97 

Americans, 39 Spanish and 71 Danish). The pooled column corresponds to pN/pS ratios 

calculated from SNPs pooled from all samples, whereas the average column corresponds 

to average pN/pS ratios across samples. The values for pooled column are similar to the 

ones in the average column. NA corresponds to samples where the genome coverage 

was not sufficient to call the genome present in a sample, section 2.2.3.  
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Appendix 5 List of top fastest and slowest evolving orthologous groups. 

List of the 70 fastest (highest pN/pS ratio) and slowest (lowest pN/pS ratio) OGs in 

dominant gut species. The pN/pS ratio corresponds to the average of all genes from a 

given orthologous group across 252 samples and 66 species. Unexpectedly among the 

lowest pN/pS ratios there are genes COG3451 and COG3505 that are related with type 

IV secretion systems. Among the highest pN/pS ratios there is a gut specific OG, 

COG3328 a bile salt hydrolase. 

Appendix 6 List of unknown conserved genes among slowest evolving genes. 

14 genes whose function is currently unknown were found among the gut microbial genes 

that have the lowest average pN/pS ratios in at least 126 samples. In ProteinIDs column 

the identifiers corresponds to the NCBI GI number. 

Appendix 7 List of top fastest and slowest evolving genes in E. eligens and R. 

intestinalis. 

Median pN/pS ratio is displayed for all genes from E. eligens and R. intestinalis that can 

be mapped to OGs. For a total of 1.153 genes in E. eligens and 1.917 genes in R. 

intestinalis the median pN/pS ratio was calculated for 207 samples (first time point for an 

individual). 611 OGs were shared between the two species, for each of these OGs the 

log2 ratio between the pN/pS ratios of E. eligens and R. intestinalis are shown. Among 

these OGs, COG0153 Galactokinase has the highest ratio between E. eligens and R. 

intestinalis and Na+/proline symporter is one of the OGs with lowest ratio, both showing 

cases where the evolution of the gene differs from the species evolution. The proteinIDs 

corresponds to the NCBI GI numbers. 

Appendix 8 List of randomly chosen 10 individuals for each of the 11 species. 

Each species can be identified by the representative reference genome NCBI TaxID and 

strain name. For each species a list of metagenomes names from 10 randomly selected 

individuals that were used in sub-chapter 3.2 are shown. 
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Appendix 9 List of Genomic islands detected by IslandViewer 

List of genomic islands detected in 11 species, the location in the contig and length of 

each genomic island are shown. 

Appendix 10 List of OG that are associated with single-gene deletion blocks. 

Description of the number of genes in an OG, based on eggNOG, that are found in single-

gene deletion blocks. The number of occurrences counts the number of genes of a given 

OG found across the 11 species. The OGs are sorted by the number of occurrences. 

Appendix 11 Mobile elements annotation associated with the 21 large deletion 

block. 

NCBI 
taxID 

start end Deletion 
size 

contigID Annotation 

445970 100528 152840 52.312 445970.DS499577 phage proteins 

445970 966316 1091786 125.470 445970.DS499577 phage proteins 

469586 83 37485 37.402 469586.GG695913 conjugate transposon 

469586 89226 130510 41.284 469586.GG695902 phage protein 

469586 531042 580320 49.278 469586.GG695902 conjugate transposon 

469586 8913 58500 49.587 469586.GG695904 transposase 

469586 167866 223715 55.849 469586.GG695904 conjugate transposon, 
AraC proteins 

469586 466497 531978 65.481 469586.GG695899 phage proteins 

469586 754106 873999 119.893 469586.GG695900 Lipopoylsaccharide 
biosynthesis, 
xylosidase,glycosyl 
transferase, AracC, 
Arylsulfatase A 

483216 390037 433022 42.985 483216.DS995510 NA 

483216 598880 653321 54.441 483216.DS995508 transposase and a phage 
proteins 

483216 511759 588443 76.684 483216.DS995509 conjugate transposon 

483216 474391 571712 97.321 483216.DS995508 conjugate transposon, 
some integrases 

537011 26742 90606 63.864 537011.GG703858 glycosultransferase, 
lipopolysaccharides,  
integrase and transposase 

563193 22957 77703 54.746 563193.GG698743 phage proteins 

563193 723512 792457 68.945 563193.GG698739 conjugate transposon, 
phage proteins 
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592028 1263683 1305684 42.001 592028.GG698602 phage 

657322 2692869 2758766 65.897 657322.FP929046 phage 

657322 2248043 2383580 135.537 657322.FP929046 phage proteins 

717959 979506 1035890 56.384 717959.FP929032 proteins found in conjugate 
transposon, integrase 

717959 152741 230659 77.918 717959.FP929032 NA 

Each large deletion block is identified by its location in the representative reference 

genome. To identify the location the NCBI TaxID of the representative reference genome, 

contig, start and end nucleotide positions are listed. The large deletion blocks were 

annotated based on eggNOG [164], KEGG [165] and MetaCyc [166]. The deletion blocks 

are annotated as phage or conjugative transposons if the whole machinery is present or 

defined as such in MetaCyc. Deletion blocks are annotated as phage or conjugative 

transposon proteins if only some genes but not the whole machinery is annotated. NA is 

used for large deletion blocks where none of the genes are annotated with functions 

associated with mobile elements. The size of the deletion blocks are expressed in 

kilobases. Many large deletion blocks are observed to be related with prophages and 

conjugative transposons. 
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Appendix 12: Examples of function encoded in large deletion blocks that are likely to differ between strains. 

Region NCBI 
TaxID 

NCBI GI OG OG description KEGG 
ko 

Additional Annotation Additional 
Annotation 
source 

Region 
1 

469586 251838631 COG2856 Predicted Zn peptidase NA NA NA 

Region 
1 

469586 251838633 COG0739 Membrane proteins 
related to 
metalloendopeptidases 

NA Peptidase M23-involved in lyse of cell 
wall peptidoglycan 

MEROPS 

Region 
1 

469586 251838643 COG0739 Membrane proteins 
related to 
metalloendopeptidases 

NA Peptidase M23-involved in lyse of cell 
wall peptidoglycan 

MEROPS 

Region 
2 

445970 167658993 COG0302 GTP cyclohydrolase I K01495 Folate metabolism- queuosine 
biosynthetic pathway  

KEGG 

Region 
2 

445970 167658995 COG0720 6-pyruvoyl-
tetrahydropterin synthase 

K01737 Folate metabolism- queuosine 
biosynthetic pathway  

KEGG 

Region 
2 

445970 167658996 COG1738 Uncharacterized 
conserved protein 

K09125 Folate metabolism- queuosine 
biosynthetic pathway  

KEGG 

Region 
2 

445970 167658997 COG0603 Predicted PP-loop 
superfamily ATPase 

K06920 Folate metabolism- queuosine 
biosynthetic pathway  

KEGG 

Region 
3 

657322 locus_tag: 

FPR_27200 

NOG119748  NA Peptidase M15A - metallopeptidases, 
mostly specialised carboxypeptidases 
and dipeptidases  

MEROPS 

Region 
4 

483216 217988239 COG0739 Membrane proteins 
related to 
metalloendopeptidases 

NA NA NA 

Region 
4 

483216 217988249 COG0739 Membrane proteins 
related to 
metalloendopeptidases 

NA NA NA 
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Region 
5 

483216 217988965 COG0739 Membrane proteins 
related to 
metalloendopeptidases 

NA NA NA 

Region 
6 

592028 260403808 NA NA NA Putative lipoprotein MetaCyc 

Region 
6 

592028 260403809 COG2856 Predicted Zn peptidase NA Putative toxin-antitoxin,toxin 
component 

MetaCyc 

Region 
6 

592028 260403810 COG1396 Predicted transcriptional 
regulators 

NA Putative toxin-antitoxin,antitoxin 
component 

MetaCyc 

Genes found in a given large deletion block are grouped by regions in the deletion block. Each region can contain more genes than 

the ones listed in the table, however for most of unlisted genes their functions are unknown. Only the relevant genes involved in 

queuosine biosynthetic pathway (Folate metabolism), toxin-antitoxin system and peptidases are described. Each gene is described 

by the representative genome of origin (NCBI TaxID), the gene NCBI identifier and their annotation to eggNOG, KEGG [165], 

MEROPs [167] and MetaCyc [166]. NA is used when no annotation is found in a given database.  
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APPENDICES 

SUPPLEMENTARY FIGURES 

Appendix 13 Effect of downsampling on pN/pS ratios. 

 

SNPs of four dominant species (two samples were used per species) were downsampled 

starting from their native coverage down to 10x. At each downsampling step the SNPs 

remaining after the downsampling were used for the calculation of the genome pN/pS 

ratio. The plot illustrates that a strongly stable ratio across the whole coverage range for 

each of the eight instances. Moreover, for all the genome-sample pairs with a minimum 

coverage of 50x (635 pairs, in order for the downsampling to have a significant influence 

on the number of SNPs) we performed downsampling to 10x. Comparison between pN/pS 

ratio at 10x coverage with native coverage reveal that 87% of these genome-sample pairs 

have less than 0.01 difference between the two coverages. 
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Appendix 14 Subsampling based estimation of percentage of accessory genes 

curve in the 11 species. 

 

Each graph illustrates the comparison between “expected fraction” and the percentage of 

accessory genes estimated by the exponential regression and power law regression 

model. The boxplots show the “expected fraction”, blue curve plots the fitting of the 

exponential regression model and the red curve plots the fitting of power law regression 

model. “Expected fractions” were calculated as described in section 2.3.3 based on a 

subsampling procedure. The two models were fitted to the median values of “subsampled-

based fraction” which were based on 10 randomly chosen individuals. For small sample 
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sizes both the two curve fit similarly to the “expected fractions”, as sample size increases 

exponential regression model curve tend to underestimate the values and power law 

regression model tend to overestimate. For larger sample sizes the difference between 

the “expected fractions” and the two curves is smaller for exponential regression model 

compared to power law regression model. 

Appendix 15 Variation in gene content across the 11 species between biological 

replicates using several gene length coverage filters. 

 

Each boxplot represents the differences in gene content between two biological replicates 

(that is two time-series for a given individual) after applying a given gene length coverage 

filter. The gene length coverage filter corresponds to the fraction of a gene length that has 

been covered by reads. The filters ranged between 0% and 100% (in intervals of 10%). 

The figure shows that the minimum average variability is found at a gene length coverage 

filter of 40%. 
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Appendix 16 Fraction of genes with at least a given gene length coverage. 

 

Dotplot represents the percentage of genes that are called absent in all species-individual 

pairs (from the 11 species) when the gene length coverage filter is set at a given x value 

(in x axis). The gene length coverage filter corresponds to the fraction of a gene length 

that has been covered by reads. With the chosen gene length coverage filter of 40%, 3% 

of all genes had reads mapped and are considered as a result of spurious read mapping 

or homology to a closely relative species and therefore are regarded as absent. 
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Appendix 17 Percentage of accessory genes is not dependent on genome 

abundance nor genome coverage. 

 

Boxplot shows the (a) depth of genome coverage and (b) relative abundance of each 

species within an individual. The yellow triangle represents the fraction of accessory genes 

observed across 10 randomly chosen individuals. Species are sorted by the fraction of 

accessory genes and boxplots are colored according to the respective phylum a species 

belong to, pink for Bacteroidetes and blue for Firmicutes. 
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