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Abstract

Fish otoliths, biominerals composed of calcium carbonate with a small amount of

organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm)

from zebrafish (Danio rerio) was the first protein found to be capable of controlling

the formation of otoliths. Recently, a gene was identified encoding the Starmaker-

like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and

human dentine sialophosphoprotein. Although there is no sequence similarity

between Stm-l and Stm, Stm-l was suggested to be involved in the

biomineralization of otoliths, as had been observed for Stm even before. The

molecular properties and functioning of Stm-l as a putative regulatory protein in

otolith formation have not been characterized yet. A comprehensive biochemical

and biophysical analysis of recombinant Stm-l, along with in silico examinations,

indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein.

Stm-l possesses an elongated and pliable structure that is able to adopt a more

ordered and rigid conformation under the influence of different factors. An in vitro

assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size,

shape and number of calcium carbonate crystals. The functional significance of

intrinsically disordered properties of Stm-l and the possible role of this protein in

controlling the formation of calcium carbonate crystals is discussed.
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Introduction

Otoliths in teleost fish and otoconia in mammals are involved in the function of

the inner ear, the sensory organ that plays an important role in hearing and

balance [1, 2]. Several human disorders are associated with otoconia deficiency,

dislocation, malformation, or age-related degeneration [3–5]. Both otoliths and

otoconia are composed of calcium carbonate with a small amount of organic

matrix composed of a mixture of different macromolecular components,

including proteins, saccharides, glycans, and lipids [6]. These components act as a

template for crystal nucleation and modulate crystal growth in desired directions

[1, 2, 7]. Although the presence of otoliths or otoconia is conserved in all

vertebrates, their developmental origins, growth, and the role of the matrix,

especially the protein component, are still poorly understood. Thus, an

investigation of the structural features of specific proteins which control crystal

growth is an important step to help in understanding, and possibly imitating, the

process of calcium carbonate biomineralization. It has been shown that many

organic matrix proteins are extremely acidic and have extensive post-translational

modifications [8]. Moreover, they often belong to the family of intrinsically

disordered proteins (IDPs) [9], a class of proteins devoid of a rigid tertiary

structure [10–12].

Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be

capable of controlling the process of calcium carbonate biomineralization in

otoliths [13]. Stm is a functional analog of human dentin sialophosphoprotein

(DSPP) which is a key factor required for proper teeth formation and is also

expressed in the human ear [3, 14]. Stm is a highly acidic protein with many

putative phosphorylation sites and potential calcium binding ability, thus it is

considered to be a member of the secretory calcium-binding phosphoprotein

family [15]. Stm controls the size, shape, and polymorph of the mineral

component of the otolith and is, therefore, a key regulator of otolithic

biomineralization [13]. As calcium-binding phosphoproteins are poorly evolu-

tionarily conserved, the identification and characterization of other family

members is a challenge [16]. Recently, the starmaker-like (stm-l) gene was

identified in a large-scale random in situ hybridization screen of genes expressed

in the developing ear of the medaka (Oryzias latipes). Its genomic structure and

expression pattern are highly similar to the starmaker (stm) gene [15]. Although

there is no obvious sequence similarity between stm-l and stm encoded proteins

(Stm-l and Stm, respectively) and Stm has a significantly higher molecular weight

than Stm-l (64.0 kDa for Stm without a signal peptide, and 39.4 kDa for Stm-l), it

has been suggested that Stm-l could be involved in the biomineralization of

otoliths as had been earlier observed for Stm [13]. Just as the human dspp gene

(encoding DSPP), stm-l is also expressed in fry teeth [15], which might suggest a

common origin. However, the protein encoded by the stm-l gene has not been

characterized yet.

To facilitate exploration of the molecular basis of the Stm-l protein function,

we have elaborated and optimized a protocol for the efficient expression and
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purification of homogeneous, non-tagged Stm-l. We present comprehensive

biochemical and biophysical characteristics of the Stm-l protein along with in

silico examinations which indicated, despite the fact that the Stm-l primary

structure is different than Stm, that Stm-l exhibits properties typical of a coil-like

IDP. Moreover, Stm-l possesses a highly pliable structure which can be easily

modulated by external factors. Temperature or TFE (2,2,2-trifluoroethanol)

caused the formation of ordered secondary structures in Stm-l. On the other

hand, small concentrations of GdmCl (guanidine hydrochloride) and counter ions

resulted in the compaction of the protein, which did not correlate with an increase

in the content of secondary structures. In vitro experiments demonstrated that

Stm-l controlled the size, shape and number of calcium carbonate crystals. The

pliability of Stm-l, which leads to the formation of a more compact protein

structure, may play a crucial role in the biomineralization of calcium carbonate.

The possible roles of the structural features of Stm-l and how they function in the

biomineralization process are discussed in the article.

Materials and Methods

Buffers

All buffers were prepared at 24 C̊. Buffer A was 20 mM Tris, 150 mM NaCl,

pH 7.5. Buffer B was 20 mM Tris, 1 M NaCl, pH 7.5. Buffer L was 20 mM Tris,

150 mM NaCl, 1 mM dithiothreitol (DTT), 0.2 mg/ml phenylmethylsulfonyl

fluoride (PMSF), pH 7.5.

Construction of the expression vector

The sequence of the full-length Stm-l protein, the putative product of the stm-l

gene, was taken from the Protein database (GenBank: ACR78440.1). cDNA of

Stm-l was de novo synthesized in GeneArtH (Life Technologies, USA) and the

gene sequence was optimized using GeneOptimizerH software to maximize the

expression of the synthetic gene in Escherichia coli. Optimized full-length Stm-l

cDNA was amplified using PCR [17] and the following primers: 59-

GCCGCGGGATCCatgaaaaattccgatgatgaaagc-39 as a forward primer and 59-

GCCGCGAAGCTTTCAcattgctgcatctgccggcg-39 as a reverse primer, containing

the BamHI and HindIII restriction enzyme sites, respectively (underlined). The

small letters in the primer sequences indicate sequences originating from Stm-l

optimized cDNA, whereas capitalized letters indicate nucleotides added for

cloning purposes. Italic letters represent the stop codon on the reverse primer. The

PCR product was purified using a Clean-Up kit (A&A Biotechnology, Poland),

double-digested by BamHI and HindIII endonucleases and cloned into

corresponding sites of the pQE-80L (Qiagen, Germany) vector derivative obtained

in our laboratory without the His-tag. The presence of the insert within the vector

was confirmed by restriction analysis (data not shown) and the purified construct
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was verified by DNA sequencing. The final expression product designated Stm-l,

had MGS amino acids added to the N-terminus.

Overexpression and purification of recombinant Stm-l

The final plasmid construct containing the optimized Stm-l cDNA sequence was

transformed into competent cells of E. coli strain BL21(DE3)pLysS (Novagen,

Germany). A single colony was amplified in 50 mL of TB (Terrific Broth) media

containing 50 mg/mL carbenicillin and 35 mg/mL chloramphenicol, in an

incubator at 29 C̊ at 220 rpm. Cell aliquots (3% of the total culture volume) were

then used to inoculate larger volume cultures. When the OD600 of the culture

reached a value of 0.8–0.9, the protein expression was induced by adding

isopropyl-b-D-thiogalactopyranoside (IPTG) to the final concentration of

0.25 mM. After 3 h of incubation, bacterial cells were harvested by centrifugation

at 4000 rpm using an Eppendorf A-4-81 rotor (Eppendorf AG, Germany) for

20 min at 4 C̊. The resulting cell pellet was washed with buffer L (24 mL per 1 L

of bacterial culture), centrifuged at 4000 rpm using an Eppendorf A-4-81 rotor

for 20 min at 4 C̊, resuspended in buffer L (24 mL per 1 L of bacterial culture),

and finally divided into 50 mL Falcon tubes (600 mL of bacterial culture per each)

and stored at 280 C̊.

The frozen cells from a total of 1.2 L of culture, were disrupted by quick

thawing in a 24 C̊ water bath, refrozen at 280 C̊, thawed again at 24 C̊ and placed

on ice. Then, DNase I and RNase A were added to the final concentration of

20 mg/mL of each enzyme and the lysates were incubated on ice until the bacterial

nucleic acids were completely digested. The cell extract was then clarified by

centrifugation at 12 000 rpm using an Eppendorf F-34-6-38 rotor for 40 min at

4 C̊, and the supernatant was fractionated on ice by salting out using solid

(NH4)2SO4 (55% to 75% saturation). The pellet was immediately dissolved in

6 mL of buffer A and dialyzed overnight with buffer A (36250 mL). The

resulting solution was concentrated to a volume of 1 mL using the Amicon

Ultracel-4 Centrifugal Filter Unit (Merck Millipore, USA) with a cut-off limit of

30 kDa and injected to the HiLoad 16/600 Superdex 200 prep grade column

(Amersham Bioscience, UK) equilibrated with buffer A. The column was operated

at room temperature at a 0.8 mL/min flow rate on the ÄKTAexplorer system

(Amersham Bioscience, UK). Fractions containing Stm-l (ca. 15 mL) were

combined and applied to the MonoQ 5/50 GL column (Amersham Bioscience,

UK) equilibrated with buffer A and connected to the ÄKTAexplorer system. We

experimentally elaborated the linear gradient of NaCl (150–500 mM, using buffer

B) at a 1 mL/min flow rate applied for 20 min at room temperature. Fractions

containing purified Stm-l were combined, concentrated to a volume of 200 mL

using the Amicon Ultracel-4 Centrifugal Filter Unit with a cut-off limit of 10 kDa

and desalted using a HiTrap Desalting column (Amersham Bioscience, UK)

equilibrated with buffer A and connected to the ÄKTAexplorer system. All Stm-l

fractions were combined, divided into small volumes (25 mL, 50 mL and 100 mL)

and stored at 280 C̊.
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The protein concentration was determined spectrophotometrically at 280 nm.

The absorption coefficient for Stm-l was 0.139 mL/(mg 6 cm), calculated

according to the method proposed by Gill and von Hippel [18]. For the in vitro

calcium carbonate mineralization assay, the concentration of purified protein was

determined using the biuret method [19].

In silico analysis

The amino acid composition was analyzed using the Composition Profiler [20]

available on the web page http://www.cprofiler.org. Analysis of disordered regions

was carried out using PONDR-VLXT [21], available at http://www.pondr.com,

PONDR-FIT [22] at http://www.disprot.org/pondr-fit.php, DISOPRED2 [23] at

http://bioinf.cs.ucl.ac.uk, FoldIndex [24] at http://bip.weizmann.ac.il/fldbin/

findex, IUPred [25] at http://iupred.enzim.hu, GlobPlot 2.3 [26] at http://

globplot.embl.de. The prediction for secondary structures was performed using

the network protein sequence server (NPS) [27] available at http://npsa-pbil.ibcp.

fr. Charge-hydropathy plot [12] calculations were made using the PONDR server

(http://www.pondr.com).

SDS-PAGE gel electrophoresis

12% SDS-PAGE gels (1.0 mm thickness) were prepared according to Laemmli

[28]. Electrophoresis was performed at a constant current of 20 mA/gel. After

protein separation, gels were stained with either Coomassie Brilliant Blue R 250

[29] or carbocyanine dye (Stains-All; Sigma, Poland) [30, 31]. An Unstained

Protein Molecular Weight Marker was used (Thermo Fisher Scientific Inc., USA).

ESI mass spectrometry

Purified Stm-l (30 mg) was desalted using a PepRPC HR 5/5 column (Amersham

Bioscience, UK) connected to the ÄKTAexplorer system, equilibrated with 0.05%

trifluoroacetic acid (TFA). The linear gradient of acetonitrile (0–70%) at a 1 mL/

min flow rate was applied for 30 min at room temperature. High-resolution mass

spectrometry was performed using the microTOF-GTM spectrometer (Bruker

Daltonik GmBH, Germany), equipped with an Apollo II electrospray ionization

source with a ion funnel. The protein solution was infused at a flow rate of 3 mL/

min. The mass spectrometer was operated in the positive ion mode. The mass

resolution was 15 000 FWHM. The instrument parameters were as follows: a scan

range of m/z 300–2300, the dry gas was nitrogen, and at a temperature of 180 C̊.

Before performing each measurement the instrument was externally calibrated

with the Tunemix mixture (Bruker Daltonik GmBH, Germany) in the quadratic

regression mode.
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Analytical ultracentrifugation

Analytical ultracentrifugation (AUC) sedimentation velocity (SV) experiments

were performed at 20 C̊ on a Beckman XL-I analytical ultracentrifuge (Beckman

Coulter Inc., USA) in an An-60 Ti rotor. Detection of the protein concentration as

a function of radial position and time was performed by optical density

measurements at a wavelength of 280 nm. Stm-l samples (400 mL in a

concentration of 2.50 mg/mL, 1.22 mg/mL, or 0.40 mg/mL in buffer A) were

loaded in 1.2 mm-thick two-channel centerpieces and centrifuged at 40 000 rpm.

Data were analyzed with SEDFIT software using a continuous size distribution

c(s) model to extract the sedimentation coefficients, s [32]. These s-values, after

correction for solvent density and viscosity in relation to the density and viscosity

of water at 20 C̊, were expressed as s20,w. Stm-l dimensions (Stokes radius, RS and

molecular weight, MW) were calculated by SEDFIT [32].

Analytical size-exclusion chromatography

Analytical size-exclusion chromatography (SEC) was performed using a Superdex

200 10/300 GL column (Amersham Bioscience, UK) connected to the

ÄKTAexplorer system, equilibrated with buffer A at room temperature with a flow

rate of 0.5 ml/min. Purified Stm-l in three different concentrations (0.1 mg/mL,

0.5 mg/mL, or 2.5 mg/mL) were loaded in a total volume of 0.2 mL. Detection

was achieved by monitoring the UV absorbance at 280 nm and 220 nm. The

column was calibrated using the following standard proteins: thyroglobulin,

85.0 Å [33], apoferritin, 67.0 Å [34], bovine serum albumin, 35.5 Å [33],

ovalbumin, 30.5 Å [33], chymotrypsinogen A, 20.9 Å[33], myoglobin, 20.2 Å

[35], and cytochrome c, 17.0 Å [35]. The elution volumes for each standard and

sample were measured and used to calculate the partition coefficients, Kav [36].

Kav for each standard was plotted against the corresponding RS to generate a

standard curve which was used to determine the approximate radius of Stm-l.

To perform SEC in the presence of GdmCl or counter ions, purified Stm-l was

dissolved to a final concentration of 0.5 mg/mL in buffer A, supplemented with

an appropriate concentration of GdmCl or counter ions in a total volume of

0.2 mL and incubated for 1 h at room temperature. The column was equilibrated

with buffer A that contained the same amount of GdmCl or counter ions as the

loaded sample. The previously calculated standard curve (see above) was used to

estimate the RS of Stm-l under all conditions [35]. Experiments with calcium and

magnesium ions in the absence of sodium chloride were done as described above

using 20 mM Tris pH 7.5 (24 C̊) instead of buffer A.

Circular dichroism spectroscopy

Circular dichroism (CD) measurements were performed with a Jasco J-815

spectropolarimeter (Jasco Inc, USA) equipped with the Jasco Peltier-type

temperature controller (CDF-426S/15) using quartz cuvettes with a path length of

0.1 cm in a spectral range of 190–260 nm. The Stm-l concentration was 10 mM.
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The study of intact protein was carried out in buffer A, whereas other

measurements were performed after 1 h incubation at room temperature in the

same buffer supplemented with appropriate concentrations of guanidine

hydrochloride (GdmCl), trimethylamine N-oxide (TMAO), 2,2,2-trifluoroethanol

(TFE) or calcium ions (CaCl2). In the experiment without sodium chloride, buffer

A was changed to 20 mM Tris pH 7.5 (24 C̊) using the Amicon Ultracel-4

Centrifugal Filter Unit with a cut-off limit of 10 kDa and then supplemented with

CaCl2. Spectra were collected (an average of 5 spectra) at a scanning speed of

20 nm/min at 20 C̊ (for solution-induced protein folding/unfolding) and 50 nm/

min at temperatures ranging from 20 C̊ to 80 C̊ and backward at 10 C̊ intervals

(for thermal-induced protein denaturation). Temperature-dependent denatura-

tion was also monitored by following the changes in ellipticity at 222 nm, 208 nm,

and 200 nm by increasing the temperature from 20 C̊ to 80 C̊ and then decreasing

it from 80 C̊ to 20 C̊ at a constant rate of 1 C̊/min. All spectra were corrected for

the effect of the respective buffers and converted to molar residual ellipticity units

on the basis of the molar molecular mass per residue of 108.87 for Stm-l [37]. The

analysis of secondary structure content was performed with deconvolution

software CDPro [38] using IBasis 7 (SDP48) as the reference protein data set.

Fluorescence Measurements

Fluorescence measurements were performed at 24 C̊ using the Fluorolog-3

spectrofluorometer (HORIBA Jobin Yvon Inc., France). Intrinsic tryptophan

fluorescence spectra of Stm-l (5 mM) were recorded with an excitation wavelength

of 280 nm, and then fluorescence spectra were taken between 300 and 400 nm. A

3 mm path-length quartz cuvette 105.251-QS (Hellma GmbH & Co. KG,

Germany) was used. In the experiment without sodium chloride, buffer A was

changed to 20 mM Tris pH 7.5 using the Amicon Ultracel-4 Centrifugal Filter

Unit with a cut-off limit of 10 kDa. The collected data were corrected for the

contribution of the buffers.

In vitro calcium carbonate mineralization assay

Calcium carbonate mineralization was performed using a slight modification of

the technique described by Addadi et al. [39], which had been previously used in

calcium carbonate mineralization in the presence of Stm [40]. This method is

based on the decomposition of (NH4)2CO3 or NH4HCO3 into CO2 and NH3 and

on slow carbon dioxide diffusion into the solution which contains calcium

dichloride. We used Nunc MicroWel 96-Well Microplates (Thermo Fisher

Scientific Inc., USA) with a circle cover glass (Waldemar Knittel Glasbearbeitungs

GmbH, Germany) and 5 mm diameter on the bottom of each well. Thirty

microliters of protein (final concentrations of 1, 5, 10, 20, and 50 mg/mL in buffer

A) were incubated with CaCl2 (final concentrations of 5, 10, and 20 mM in Milli

Q grade water) in a total volume of 0.3 mL per well. Control experiments were

performed under the same conditions, except that either buffer A or trypsin
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(diluted in buffer A) in a concentration of 100 mg/mL was added instead of Stm-l.

Two grams of solid ammonium hydrocarbonate (used instead of ammonium

carbonate to minimalize the final concentration of ammonia) was covered with

Parafilm (Bemis Company Inc., USA) with several holes (to slow down the

diffusion) and placed above the 96-well plate in a closed desiccator. After 48 or

336 hours incubation at room temperature, the crystallization solution was

removed and the crystals were washed with water and 96% ethanol and finally air-

dried at room temperature.

Scanning electron microscopy

The structural surface characterization of the calcium carbonate crystals was made

by scanning electron microscopy (SEM) using a JEOL JSM-7500F scanning

microscope (JEOL Ltd., Japan) at 5.0 kV. Each cover glass, with crystals on it, had

been previously coated approx. 10–20 nm with gold/palladium (80/20) in argon

gas using a BAL-TEC SCD 005 Sputter Coater (Leica Mikrosysteme Vertrieb

GmbH, Germany). The size of the calcium carbonate crystals was determined

from SEM images by measuring crystals for the edge length of parallele-piped

crystals or the diameter of rounded crystals.

Micro-Raman microscopy

Micro-Raman analysis of the calcium carbonate crystals was performed with a

LabRAM 800 HR Raman confocal microscope (Horiba Jobin Yvon, Japan)

equipped with a LPF Iridia edge filter, a 600 groove mm21 holographic grating

and a 10246256 pixel Peltier-cooled Synapse CCD detector. The microscope

attachment was based on an Olympus BX41 system with a MPLN50x objective

and a motorized software-controlled x-y-z stage. The excitation source was the

Excelsior-532-100 laser (Spectra-Physics, USA) operating at 523 nm with ca.

2 mW power on the sample. The Raman maps were recorded at 5 s integration

time with 1 mm61 mm spatial resolution. The Raman spectra were collected in

the range of 50–4000 cm21 (each spectral profile is an average of 5 spectra).

Results

Expression, purification and in silico analyses of Stm-l

To facilitate exploration of the molecular basis of the Stm-l function, we have

elaborated and optimized a protocol for the efficient expression and purification

of non-tagged Stm-l. The non-tagged Stm-l was overexpressed in an E. coli

BL21(DE3)pLysS strain from a pQE80L vector derivative encoding the optimized

cDNA sequence of Stm-l. Initially, a purification protocol for Stm without a signal

peptide was used in the experiments [41], but unfortunately, because of the

different molecular properties of Stm-l, it was not possible to obtain a

homogenous protein sample (data not shown). Thus, a new purification method

for obtaining a good yield of pure protein was elaborated. Small-scale experiments
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revealed that Stm-l is soluble in a fraction of ammonium sulfate up to 55%,

whereas increasing the saturation to 75% led to the complete precipitation of

Stm-l (data not shown). Thus, we decided to use a 55–75% ammonium sulfate

saturation to precipitate Stm-l. Preliminary size-exclusion chromatography (SEC)

experiments showed that Stm-l had an elution volume that corresponded to a

protein with a higher apparent molecular mass. SEC was then chosen as the next

step of the purification procedure, which made it possible to separate Stm-l from

the large amount of contaminants present in the ammonium sulfate fraction

(Fig. 1A). Ion-exchange chromatography with a MonoQ column was a key step in

the Stm-l purification method (Fig. 1B). Because of the high content of amino

acids with acidic side chains (calculated pI53.81), Stm-l was sufficiently attached

to the column to separate it from the remaining contaminants including the

degradation products (Fig. 1C, and D, lane 6). In the final step of the Stm-l

purification procedure the sample was desalted using a HiTrap Desalting column

to obtain the protein in the buffer with a standard concentration of NaCl. Purified

Stm-l appeared as a single band on the 12% SDS-PAGE gel (Fig. 1C, and D, lane

7). Because of the poor binding of the Coomassie Brilliant Blue R-250 dye to Stm-

l because of its low hydrophobicity [42], we decided to also use a different dye to

detect Stm-l. The high content of acidic amino acids in the Stm-l sequence

enabled us to use Stains-All (carbocyanine) dye, which stained acidic and calcium-

binding proteins blue, while all other proteins were stained red [31]. The sample

was subjected to the electrospray ionization mass spectrometry to identify Stm-l.

The resulting value of 39 520.0 Da (data not shown) differed from the expected

value calculated with the ProtParam tool [43] (39 651.3 Da) by 131.3 Da. This

was most probably caused by the specific digestion of the N-terminal

formylmethionine [44]. The described purification procedure usually yielded up

to 4 mg of Stm-l from 1.2 L of growth medium used for the cell culture.

Interestingly, SDS-PAGE analysis revealed some abnormal characteristics of

Stm-l. The apparent molecular mass of the recombinant protein calculated by the

SDS-PAGE electrophoretic mobility was 52 320¡230 Da (Fig. 1C, and D, black

arrowheads), which represents 132% of the value of the molecular mass of Stm-l

obtained in the ESI mass spectrometry (39 520 Da). This is typical for members of

the family of intrinsically disordered proteins (IDPs), which fail to form rigid 3D

structures under physiological conditions in vitro [11]. Flexible and dynamic IDPs

can have very different structural features, ranging from the collapsed, molten

globule-like conformation to the extended, premolten globule-like conformation,

or even the coil-like conformation [10, 45, 46]. The major functional advantages

of these proteins are believed to be their structural plasticity and pliability

originating from the lack of a definite, ordered 3D structure, and enabling them to

interact with a broad range of binding partners including other proteins,

membranes, nucleic acids and various small molecules [47, 48]. It was previously

demonstrated that IDPs are involved in many important biological processes such

as signal transmission, the regulation of cell cycles, the regulation of gene

expression, the activity of chaperone proteins, neoplastic processes, and

biomineral formation [9, 46, 49, 50]. Amino acid sequences and compositions of
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IDPs are very different from those of ordered globular proteins. Thus, IDPs bind

less SDS molecules and the apparent molecular mass obtained from SDS-PAGE is

often 1.2–1.8 times higher than the real one calculated from sequence data or

measured by mass spectrometry [11].

The extremely high acidic character of Stm-l, its lowered electrophoretic

mobility and the elution volume in the SEC that corresponded to an unusually

high hydrodynamic radius, suggests that Stm-l belongs to the family of IDPs. It

was previously demonstrated that proteins involved in biomineralization are

frequently disordered. Intrinsic disorder was suggested as providing benefits to

these proteins and enabling them to carry out their functions [9, 51]. This all

inspired us to take a closer look at the molecular properties of Stm-l. The amino

acid composition of Stm-l was first examined in silico. The Composition Profiler

[20] web-based tool was used to identify statistically significant patterns of amino

Fig. 1. Purification of Stm-l. (A) Size exclusion chromatography using a HiLoad 16/600 Superdex 200 prep grade column. The absorption was measured at
280 nm. The hatched area on the chromatogram (elution volume 55–70 mL) indicates fractions which were combined and applied to the next step of the
purification procedure. (B) Ion-exchange chromatography of Stm-l using a MonoQ 5/50 GL column. Fractions from gel filtration step containing Stm-l (ca.
15 mL) were combined and applied to the MonoQ 5/50 GL column. Because of the poor absorption of Stm-l at 280 nm, absorption was measured at 280 and
additionally at 220 nm. The arrowheads indicate injection of the sample. Fractions containing purified Stm-l (hatched area) were combined, concentrated
and desalted using a HiTrap Desalting column. (C) Commassie Brilliant Blue R 250-stained SDS-PAGE of the samples from the expression and purification
of Stm-l. Lanes 1 and 2, the whole bacterial cell extract before and 3 h after the induction of the overexpression of Stm-l with IPTG, respectively; lane 3, the
fraction of soluble proteins obtained after cell lysis; lane 4, proteins from a 55–75% ammonium sulfate fraction; lane 5, the combined gel filtration fractions;
lane 6, the combined fractions after ion-exchange chromatography; lane 7, purified Stm-l after desalting using a HiTrap Desalting column; lane 8, molecular
mass standards. The arrowheads in (C) and (D) mark the positions of Stm-l. (D) Analogical analysis as in (C), but the gel was stained using Stains-all dye
[31].

doi:10.1371/journal.pone.0114308.g001

Disordered Stm-l Affects Calcium Carbonate Crystals Growth

PLOS ONE | DOI:10.1371/journal.pone.0114308 December 9, 2014 10 / 36



acid abundance (above zero) or depletion (below zero). Fig. 2A shows the

composition profiles of Stm-l, Stm and the set of consensus sequences of the

experimentally determined disordered regions represented by the DisProt 3.4

dataset [52] compared to the amino acid composition profiles found in nature

that are listed in the SwissProt 51 dataset [53]. Amino acids are arranged from the

most order-promoting on the left to the most disorder-promoting on the right,

according to the TOP-IDP scale [54]. This analysis revealed that Stm-l has a

Fig. 2. In silico analysis of the Stm-l sequence. (A) Amino acid composition. Composition Profiler [20] was used to analyze amino acid composition of
Stm-l, IDRs represented by the DisProt 3.4 dataset [52], and Stm (black, white, and checked bars respectively). Values above zero indicate an abundance
and values below zero indicate a deficiency of a given residue relative to the protein from the SwissProt 51 database. The amino acids are arranged from the
most order-promoting on the left to the most disorder-promoting on the right according to the TOP-IDP scale [54]. (B) Charge-hydropathy analysis. The
Uversky plot [12] compares the absolute, mean net charge and the mean hydropathy of 54 completely disordered proteins (open circles) and 105 completely
ordered proteins (gray circles). The line represents the boundary between ordered and disordered proteins. The black triangle and square correspond to
Stm-l and Stm respectively. (C) The prediction of disordered regions from an amino acid sequence. The prediction of a tendency for intrinsic disorder in Stm-l
was calculated from its primary structure using different globular and disordered region predictors. PONDR-VLXT (dashed line) [21] is based on local amino
acid composition, flexibility and other sequence features while PONDR-FIT (solid line) [22] combines the outputs of several individual disorder predictors. A
score above 0.5 indicates a high probability of disorder. (D) The prediction of the degree of disorder. The plot represents the consensus predictions from 9
secondary structure predictors available within the NPS (Network Protein Sequence Analysis): SOPM, HNNC, MLRC, DPM, DSC, GOR I, GOR III, PHD,
PREDATOR [27]. Each bar corresponds to one amino acid residue. The longest bars stand for a-helices, the medium bars represent b-structures and the
shortest bars represent residues that were expected to form a random coil conformation.

doi:10.1371/journal.pone.0114308.g002
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distinctive distribution of amino acids. It is depleted in amino acid residues

classified as order-promoting (W, F, I, L, V, and N), and two of them (Y, C) were

completely absent in the protein. At the same time, the Stm-l sequence is rich in

amino acid residues characterized as disorder-promoting (D, K, S, and E).

According to the literature, this kind of amino acid distribution is typical of IDPs

[10]. There were, however, some disorder promoting residues (G, H, Q, and P)

that were clearly underrepresented in Stm-l. The high content of E and D residues

(highlighted in bold in S1 Figure) could be responsible not only for the flexibility

of Stm-l, but also for the extremely acidic character that is probably needed for it

to function as a protein involved in calcium carbonate biomineralization.

Surprisingly, the Stm-l sequence was rich in M residues, even compared to

ordered proteins represented by the PDB S25 dataset (data not shown) [55]. The

data presented in Fig. 2A indicated that the composition profile of Stm-l is very

similar to the profile of Stm, which was classified as being a member of the IDPs

[41]. Noteworthy is that both of these proteins have completely different primary

structures [13, 15]. The molecular mass of Stm-l (39 651.3 Da) is almost two

times smaller than Stm (64 628.2 Da) [41]. Moreover, in the Stm-l sequence there

were no highly conserved internal repeats as was seen in the case of Stm [13]. The

charge-hydropathy plot [12] showed that Stm-l is more hydrophobic than Stm

and at the same time is more charged, although it can still be clearly classified as

an IDP (Fig. 2B).

The putative intrinsic disorder propensities of Stm-l were also evaluated by an

in silico analysis of the amino acid sequences using several different disorder

predictors, such as PONDR-VLXT [21], PONDR-FIT [22], DISOPRED2 [23],

FoldIndex [24], IUPred [25], GlobPlot 2.3 [26], and nine secondary structure

predictors available within the network protein sequence (NPS) analysis [27].

Since the results of most of the predictors were compatible, we decided to show

only three sets of results. The data clearly indicate that Stm-l is a highly disordered

protein, although some potential regions of order were predicted by PONDR-

VLXT and the NPS algorithm (Fig. 2C, and D).

Altogether, the unusual properties of Stm-l that were observed, including the

unusually high hydrodynamic radius in SEC, the differences between the

molecular mass value determined theoretically and by SDS-PAGE, the composi-

tion of the characteristic amino acid sequences and the predicted presence of

disordered regions suggest that Stm-l exhibits the properties of an IDP.

Hydrodynamic properties of Stm-l

IDPs are known to have substantially larger hydrodynamic parameters compared

to globular proteins [12, 56]. Thus, we decided to analyze this in detail for Stm-l.

The hydrodynamic behavior of Stm-l was characterized by two independent

methods: SEC and analytical ultracentrifugation (AUC). Both of these analytical

techniques have been shown to be very useful in identifying IDPs [57–59]. SEC is

the simplest method for analyzing hydrodynamic properties like the hydro-

dynamic radius of protein (Stokes radius, RS). The elution volumes (Ve) of
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standard proteins were used to calculate the partition coefficients, Kav (Fig. 3A,

inset) [36]. Interestingly, Stm-l was eluted from the Superdex 200 10/300 GL

column with a Ve corresponding to the RS 66.83¡1.00 Å. This is significantly

higher –2.45 times – than the 27.27 Å which was calculated from the sequence

data assuming it is a globular protein (Table 1). The remarkably bigger RS,exp, in

comparison to the theoretical value, placed the Stm-l on the RS versus MW plot in

the area for natively unfolded proteins with coil-like properties (U-like) (Fig. 3B)

[12]. The apparent molecular mass value of 377 710¡1000 Da was almost 10

times larger in comparison with the theoretical value (39 520.0 Da). These results

together with the observed Ve, which was independent of the sample

concentration and had a single symmetric peak in all tested concentrations

(Fig. 3A), suggests that Stm-l occurs as a monomer with a highly extended

conformation [60].

Fig. 3. Hydrodynamic properties of Stm-l. (A) Analytical size-exclusion chromatography (SEC). Experiments were performed for three different protein
concentrations: 0.1 mg/mL (dotted line), 0.5 mg/mL (dashed line), and 2.5 mg/mL (solid line). The inset shows the calibration curve with a black circle which
corresponds to Stm-l. (B) Dependencies of the hydrodynamic radii (RS) to the relative molecular masses (MW) of four equilibrium states of globular proteins
(solid lines) and for two subclasses of IDPs (dashed lines). The globular proteins are shown as open symbols: native (glob-Native, reverse triangles), molten
globules (glob-MG, circles), pre-molten globules (glob-PMG, triangles), and 6 M GdmCl-unfolded proteins (glob-U, squares). The IDPs are shown as gray
symbols: U-like (squares), and PMG-like (reverse triangles). The data for globular proteins were taken from [62] and for IDPs from [60]. Values for Stm-l are
represented by black symbols: theoretical (square), and experimental (circle). (C) Sedimentation velocity (SV) analytical ultracentrifugation analysis.
Superposition of the sedimentation coefficient distributions, c(s) derived via SEDFIT [32] from SV data for Stm-l in three different concentrations: 2.50 mg/
mL (solid line), 1.22 mg/mL (dashed line), and 0.40 mg/mL (dotted line) measured at 280 nm during the SV experiment at 40 000 rpm at 20˚C, standardized
to water at 20˚C. (D) Sedimentation profile of Stm-l. Superposition of selected experimental (circles) and fitted SV profiles (solid lines) corrected for all
systematic noises for Stm-l at 2.50 mg/mL. An rmsd of 0.00493 indicates a good fit of the SV data. The inset shows the superposition of the differences
between the experimental and fitted curves.

doi:10.1371/journal.pone.0114308.g003
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To unequivocally determine whether Stm-l is an oligomer or an extended

monomer, we decided to perform velocity sedimentation AUC experiments to

estimate the shape of the protein as a complementary technique to the methods

based on size determination (e.g., SEC) [57]. We analyzed three different sample

concentrations: 0.40, 1.22, and 2.50 mg/mL (Fig. 3C, Table 2). Data analysis for

all three concentrations yielded a very good fit with a rmsd of 0.0039, 0.0049 and

0.0069 (Fig. 3D). The computed sedimentation coefficients (s20,w) appeared to be

independent of the sample concentration (Table 2). IDPs have been shown to

have extended shapes with a large value of the frictional ratio (f/fmin) which

increases with the size of the IDP [61]. For example, the f/fmin is 2.1 for a 20-kDa

and 3.0 for a 200-kDa coil-like IDPs, and 1.75 for a 20-kDa and 2.05 for a 200-

kDa PMG-like IDPs. These f/fmin values are remarkably higher than those

observed for globular proteins, where there is only a very slight increase in the f/

fmin with increases in MW (1.19 and 1.25 for MWs of 20 and 200 kDa,

respectively) [12, 62]. The f/fmin calculated for Stm-l was unusually high, ranging

from 2.70 to 3.35, indicating that Stm-l is a coil-like IDP. The obtained Stokes

radii for different protein concentrations (68.4 Å for 0.40 mg/mL and 74.5 Å for

1.22 mg/mL) are in good agreement with the SEC data (66.83¡1.00). The AUC

technique usually determines MW with good accuracy. However, there was a

problem in calculating the MW of Stm-l at higher concentration (2.50 mg/mL).

This may have been due to the high negative charge of the protein. During the

experiment, electrostatic repulsion of the Stm-l molecules at the bottom of the

chamber could have prevented the protein from being concentrated with high

density. In order to analyze the protein in higher concentrations, all data obtained

for a radius above 6.9 cm had to be cut off, which is usually not necessary for non-

charged proteins. Based on the results obtained in the SEC and AUC experiments,

Stm-l may be safely assumed to be a monomeric protein. This is supported by the

calculated experimental MW (39 679 Da for 2.50 mg/mL), similar to the value

obtained in ESI mass spectrometry (39 520.0 Da) when the f/fmin was fixed at

2.64.

In summary, the unusually high f/fmin and RS of Stm-l and the fact that this

protein exists as a monomer in its native state according to two independent

research methods (SEC and AUC), indicate that Stm-l is a highly asymmetric and

unfolded molecule that exhibits properties of coil-like IDP.

Table 1. Identification of Stm-l by size exclusion chromatography.

RS [Å] VS 61023 [Å3] r6105 [kDa/Å3]

MW [kDa] theora expb theorc expd theorc expd

39.5200 27.27 66.83¡1.00 84.95 1250.27¡56.02 46.52 3.16¡0.14

aDetermined from the equation: log (RS) 5 (0.395¡0.016) log (MW) + (0.805¡0.031).
bDetermined from the equation: log (RS) 5 2(1.277¡0.027) Kav + (2.022¡0.012).
cCalculated using the theoretical RS.
dCalculated using the experimental RS.

doi:10.1371/journal.pone.0114308.t001
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Secondary structure analysis of Stm-l by far-UV CD spectra

Circular dichroism (CD) is a method for rapidly evaluating the secondary

structure and folding properties of proteins. It has been demonstrated that

different secondary structures in proteins exhibit distinctive far-UV CD spectra

[63]. The CD spectrum of IDPs has a large negative peak at around 200 nm and a

value close to zero at 222 nm, which is different from that of ordered

conformations and make it possible to identify partially or fully disordered

proteins [11]. The Stm-l spectrum is similar to spectra typical of other IDPs.

Despite the fact that Stm-l displays the characteristic deep minimum at 200 nm

([h]2005218.061023 [deg 6 cm2 6 dmol21]), it also possesses a slight negative

band at 222 nm ([h]222522.061023 [deg 6 cm2 6 dmol21]), suggesting the

existence of some residual ordered structures [64] (Fig. 4A). Analysis of the

spectrum by CDPro spectra deconvolution software using SELCON3, CDSSTR,

and CONTIN/LL programs with IBasis 7 [38] revealed that the dominant type of

ordered structures in Stm-l are a b-strand (19.6¡4.0%, with major contributions

of a regular type: 12.0¡2.5%) and turns (11.4¡1.5%). Interestingly, Stm-l

contains a very small amount of the a-helix (5.6¡5.0%); however, the main part

of Stm-l is unordered (62.7 5.5%; Table 3). A double-wavelength plot [h]222

versus [h]200 is used to classify IDPs into two structurally different groups: coil-

like and PMG-like [60]. According to data obtained from the CD spectrum, Stm-l

belongs to the group of proteins which are coil-like and which have almost no

ordered secondary structure (data not shown). Data calculated from the CD

spectra of Stm-l supports the observations obtained from the hydrodynamic

properties analyses done by SEC and AUC techniques showing that Stm-l exhibits

properties of a coil-like IDP.

Stm-l folding and unfolding

Protein folding and unfolding induced by various factors can provide information

about protein conformation and compactness. IDPs have been shown to adopt a

more ordered and rigid structure under the influence of different factors such as

temperature, denaturants, osmolytes, binding partners, molecular crowding, or

counter ions [65]. CD far-UV spectra in various solvents and temperatures

Table 2. Identification of Stm-l by sedimentation velocity analytical ultracentrifugation.

Main species

Concentration (mg/mL) rmsd f/fmin s20,w (S) s (S) %a RS [nm] MW [Da]

0.40 0.00371 2.91 1.555 1.720 66.1 6.84 43 252

1.22 0.00650 3.35 1.598 1.784 99.3 7.45 48 485

2.50 0.00493 2.57 1.496 1.670 98.2 9.10 55 370

2.50 2.64 39 679b

aA percentages given with 100% for all types of species.
bMW value obtained when the f/fmin was fixed at 2.64.

doi:10.1371/journal.pone.0114308.t002
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[63, 66] were recorded to test whether Stm-l has properties similar to those of

IDPs and can adopt a more ordered secondary structure in the presence of some

of the factors mentioned above. The process of folding and unfolding was

simultaneously monitored by SEC, since it is usually accompanied by changing

hydrodynamic properties [67, 68].

Fig. 4. Conformational changes in Stm-l. (A) The far-UV CD spectra of Stm-l in denaturing conditions. Representative spectra recorded in buffer A at 20˚C
in the absence and presence of increasing concentrations of GdmCl. (B) SEC analysis of Stm-l in denaturing conditions. Using the calibration curve (Fig. 3A,
inset), the RS values of Stm-l were calculated and plotted versus the GdmCl concentration. (C) The effect of Ca2+ on the far-UV CD spectra of Stm-l in a
buffer with 150 mM NaCl. Representative spectra recorded in buffer A at 20˚C in the absence and presence of increasing concentrations of Ca2+. (D)
Changes of the Stm-l RS induced by calcium ions in the absence and presence of 150 mM NaCl estimated by a series of SEC analyses. Using the
calibration curve (Fig. 3A, inset), the RS values of Stm-l were calculated and plotted versus the ion concentration. Bovine serum albumin (BSA) was used as
a control (shown on the plot as circles). Additional analysis of the effect of magnesium ions on the RS of Stm-l was performed. Symbols for Stm-l are:
squares, triangles and reversed triangles for Ca2+ with Na+, Ca2+ without Na+ and Mg2+ without Na+ ions, respectively.

doi:10.1371/journal.pone.0114308.g004

Table 3. Determination of the structure of Stm-l by circular dichroism in the far-UV spectrum.

Agent a-Helix (%) b-Strand (%) Turns (%) Unordered (%)

Regular Distorted Total Regular Distorted Total

20˚C 2.2¡2.3 3.4¡2.7 5.6¡5.0 12.0¡2.5 7.6¡1.6 19.6¡4.0 11.4¡1.5 62.7¡5.5

TFE 70% 12.8¡0.4 11.5¡1.4 24.3¡1.4 8.0¡0.5 6.0¡0.4 14.0¡0.9 15.1¡2.0 45.7¡4.5

The content of the secondary structure was calculated using CDPro spectra deconvolution software with IBasis 7 (SDP48). The results from SELCON3,
CDSSTR, and CONTIN/LL were averaged and the standard deviation was calculated.

doi:10.1371/journal.pone.0114308.t003
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Fig. 4A shows the representative spectra obtained for Stm-l in a buffer

containing increasing concentrations of GdmCl. Because of the poor transparency

of buffers with high concentrations of GdmCl, it was impossible to record CD

spectra around 200 nm. Thus, the quantitative analysis of the whole spectra (in a

spectral range of 190–260 nm) in denaturing conditions with CDPro software was

not possible. Nevertheless, we performed analysis of the 222 nm signal change

(data not shown). It is noteworthy that we observed relatively poor changes when

GdmCl concentrations were equal or below 1 M. At high concentrations of the

denaturant (3 M, and 6 M), however, ellipticity at 222 nm increased, reflecting

the denaturation of ordered secondary structures. SEC in denaturing conditions

was performed to gain additional information about the unfolding of Stm-l. The

estimated RS plotted against GdmCl concentrations showed that small amounts of

denaturant (up to 0.5 M) caused a decrease in the RS for Stm-l of 13.6% (from

66.8¡0.1 Å in native conditions to 57.7¡0.3 Å in 0.5 M GdmCl). An increase in

GdmCl concentration led to the loosening of the previously compacted

conformation and denaturation of Stm-l (Fig. 4B), showing a relatively small

change in the RS of 1.8%, from 66.8¡0.1 Å in native conditions to 68.0¡0.4 Å in

6 M GdmCl (Fig. 4B).

Because Stm-l was suggested as being a novel homolog of zebrafish Stm [15]

which plays a crucial role in calcium carbonate mineralization [13], it is possible

that calcium ions may influence its conformation, as was previously shown for

Stm [59, 69]. Representative far-UV CD spectra in the absence and presence of

increasing concentrations of calcium ions are shown in Fig. 4C. Analysis of the

ellipticity at 222 nm indicates that calcium ions did not change the content of

secondary structures in Stm-l (data not shown). However, a series of SEC

experiments provided evidence that different concentrations of calcium ions

could modulate the extended overall conformation of Stm-l. The plot of RS as a

function of divalent ion concentrations in a semi-logarithmic scale (Fig. 4D)

confirmed that there was a gradual decrease in the RS with increasing divalent ion

concentration. Note that when a buffer was used which did not contain sodium

chloride, the RS of Stm-l significantly increased by 34.0% (66.8 Å in the presence

and 89.4 Å in the absence of sodium chloride). The addition of 100 mM

concentrations of calcium ions caused the Stm-l RS to drop by about 12.9% (from

66.8 Å to 58.2 Å) when the buffer contained sodium chloride and by 34.7% (from

89.4 Å to 58.4 Å) in the absence of sodium chloride. BSA was used as a control

and showed a very low degree of compaction with a change in dimension of only

about 4.9% (from 36.3 Å to 34.5 Å) in the presence of NaCl. Although the

presence of sodium chloride seemed to have had an influence on the Stm-l RS in

the absence of Ca2+, the addition of 50 mM of calcium ions eliminated the impact

of sodium chloride on the compaction of Stm-l. Moreover, the far-UV CD spectra

of Stm-l recorded in increasing concentrations of calcium ions in a buffer without

sodium chloride was exactly the same as when a buffer with 150 mM NaCl was

used. There was no noticeable impact from calcium ions on the content of the

ordered secondary structure of Stm-l (data not shown). Interestingly, analysis of

the W residue fluorescence emission spectrum revealed that the presence of NaCl
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did not affect the maximum fluorescence of Stm-l (data not shown). Both in the

presence and in the absence of sodium chloride, the fluorescent emission

spectrum of Stm-l, measured with an excitation of 280 nm had a maximum

fluorescence of 359 nm, suggesting the presence of a W312 residue in a polar

environment. However, this experiment cannot exclude the existence of a

hydrophobic cluster. In conclusion, we have clearly shown, that calcium ions can

modulate the extended conformation of Stm-l. Despite the fact that there was no

impact on the formation of ordered secondary structures, calcium ions were

found to cause the compaction of Stm-l conformation, depending on the presence

of sodium chloride.

The majority of IDPs can form a more ordered structure upon binding to their

targets. When the factors involved are unknown, the folding propensity of an IDP

can be tested by using different agents which had been previously found to impact

the conformation of IDPs [70, 71]. To test the structure-forming potential of Stm-

l, we used 2,2,2-trifluoroethanol (TFE), which is known to increase the propensity

of amino acids usually to form an a-helix [71]. Fig. 5A shows the impact of

increasing TFE concentrations on the CD far-UV spectrum of Stm-l, and Fig. 5B

shows changes in the ellipticity at 222 nm, 208 nm, and 200 nm as a function of

the TFE concentration. The disappearance of the ellipticity minimum at 200 nm

and the simultaneous appearance of two minima at 208 nm and 222 nm at

increasing TFE concentrations, suggests that there was an increase in the content

of secondary structures (Fig. 5A). Quantitative analysis of the spectra in the

absence and presence of 70% TFE, computed using CDPro software, are shown in

Table 3. At the highest concentration of TFE, the helical content increased by ca.

18.7%. At the same time, there was a decrease in the b-strand content by ca. 5.6%.

This observation is consistent with previous reports which showed that TFE

induced the transition of a b-strand to an a-helix [72, 73]. However, even at the

highest concentration of TFE, the main part of Stm-l remained unordered

(45.7%). Another agent used to assess the folding propensity of Stm-l was

trimethylamine N-oxide (TMAO), the naturally occurring osmolyte [74] which

induces folding not by binding but by solvophobic effects on the peptide

backbone exposed in an unfolded state [70]. We recorded the far-UV CD spectra

of Stm-l with increasing concentrations of TMAO up to 4.0 M, but the shape of

all CD spectra were almost the same as the CD spectrum in the native condition

(data not shown).

According to Uversky [65], analysis of the effect of temperature on the

structural properties of IDPs characterized as native coils and native pre-molten

globules revealed that they exhibit a so-called turned out response to heat, where

increasing temperatures induce the formation of a secondary structure. Stm-l

revealed similar properties as illustrated by Fig. 5, where the temperature-induced

changes in the far-UV CD spectrum of Stm-l (Fig. 5C) and the temperature-

dependence of the ellipticity at 222 nm (Fig. 5D) are shown. As the temperature

increased, [h]222 decreased, reflecting the temperature-induced formation of a

secondary structure (Fig. 5D, black reversed triangles). Interestingly, changes in

the [h]222 versus temperature plot were linear, which means that the nature of
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folding was noncooperative. The structural heating-induced changes in Stm-l

were completely reversible (Fig. 5D, open triangles). Because of the poor

transparency of the buffer above 60 C̊, it was impossible to collect CD data around

200 nm. Thus, the quantitative analysis of the spectra at higher temperatures with

CDPro software was not possible.

Altogether, the above results indicate that Stm-l is an IDP which has a pliable

structure and a significant propensity for folding. The Stm-l structure is very

sensitive to external factors and can be easily modulated by them, leading to the

formation of ordered secondary structures or the compaction of Stm-l molecules.

Stm-l changes the morphology of calcium carbonate crystals

It was previously suggested that Stm-l plays a biological role similar to Stm, which

is required for the proper formation of otoliths. However, until now there has not

been any experimental evidence to verify this hypothesis. An in vitro calcium

Fig. 5. The effect of TFE and temperature on the secondary structure of Stm-l. (A) TFE-induces secondary structure formation in Stm-l. Representative
spectra recorded in buffer A at 20˚C in the absence and presence of increasing concentrations of TFE. (B) TFE-induces changes in the far-UV CD spectrum
of Stm-l measured in the absence and presence of increasing concentrations of TFE. The linear plot showing [h]222 (squares), [h]208 (triangles), and [h]200
(circles) as a function of the TFE concentration. (C) Temperature-induced secondary structure formation in Stm-l. Representative far-UV spectra of the
protein measured at temperatures increased from 20˚C to 80˚C (black lines) and decreased (gray lines). (D) Temperature-induced changes in the far-UV CD
spectrum of Stm-l ([h]222 versus temperature dependence) measured at temperatures increased from 20˚C to 80˚C (black reversed triangles) and decreased
(open triangles) with 1˚ intervals.

doi:10.1371/journal.pone.0114308.g005
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Fig. 6. The effect of Stm-l on calcium carbonate mineralization. (A) SEM images of calcium carbonate crystals grown 48 h. Crystals grown in the
absence of any protein (a, h, o), in the presence of trypsin at a concentration of 100 mg/mL (b, i, p), and in the presence of Stm-l at the following
concentrations: 1 mg/mL (c, j, q), 5 mg/mL (d, k, r), 10 mg/mL (e, l, s), 20 mg/mL (f, m, t), 50 mg/mL (g, n, u). Concentrations of calcium ions were 5 mM (a–g),
10 mM (h–n), or 20 mM (o–u). Asterisks indicate additional, less thermodynamically stable, large spherical vaterite crystals which were present at every
calcium ion and protein concentration and in the controls. The scale bar on the upper left corner of each panel represents a 200 mm-distance. (B) 106
magnification of the representative crystals shown on panel (A). The scale bar on the upper left corner of each panel represents a 20 mm-distance. Other
details as in (A).

doi:10.1371/journal.pone.0114308.g006
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carbonate mineralization assay was done to see if this hypothesis was true and to

see if Stm-l had an impact on calcium carbonate mineralization.

Fig. 6 shows the SEM morphologies of crystals grown in the presence of Stm-l

in various concentrations, or in the presence of trypsin (as a control protein not

involved in biomineralization), or without any protein during mineralization

period of 48 h. Calcium carbonate crystals grown in the presence of Stm-l (Fig. 6A

and B, images c–g, j–n, q–u) differed significantly in shape and size from the

crystals obtained without any protein (Fig. 6A and B, images a, h, o), or in the

presence of trypsin (Fig. 6A and B, images b, i, p). Noteworthy is the fact, that all

the control crystals were prismatic. It was previously shown that synthetic calcite

usually grows as an almost isotropic rhombohedron in the hexagonal lattice in

which the calcium and carbonate ions are closely packed to obtain the most

thermodynamic stability [75]. In contrast, crystals with Stm-l had a significantly

different growth pattern which changed with increasing protein concentrations.

The impact of Stm-l was already visible at a concentration of 1 mg/mL, when all

the crystals became rounded at the edges (Fig. 6A and B, images c, j, q). However,

a higher concentration of 5 mg/mL revealed crystals with noticeably rounded

edges and characteristic stair-like structures (Fig. 6A and B, images d, k, r). At a

protein concentration of 10 mg/mL – independent of the calcium ion

concentration – we observed a heterogenic, two-sized population of crystals with

significantly different dimensions (Fig. 6A and B, images e, l, s). Crystals were the

most modified at a concentration of 20 mg/mL, when the edges and some of the

faces of the crystals completely disappeared and the stair-like structures that had

formed on the surface of the crystals were distinctly noticeable (Fig. 6A and B,

images f, m, t). This effect was enhanced at the highest protein concentration of

50 mg/mL (Fig. 6A and B, images g, n, u). A higher protein concentration of

100 mg/mL was also tested, but the effect on the calcium carbonate mineralization

was similar that for 50 mg/mL (data not shown). Micro-Raman analysis showed

that crystals obtained in the presence of Stm-l even at the highest concentration of

protein are calcite (Fig. 7). The same results was obtained for crystals obtained

without any proteins or in the presence or trypsin (data not shown).

In addition to the crystals described above in the in vitro biomineralization

assay, we observed rare crystals with a completely different morphology, which

were present at any calcium ion and protein concentration and in the controls

(Fig. 6A, marked with asterisks). They were characterized by a large size – much

larger than the rest of the crystals – and a spherical shape with a small hole in the

central part of the crystal. Interestingly, they were absent after a test period of

336 h, which means that they were less thermodynamically stable than other

crystals (S2A Figure). Micro-Raman spectra showed, that these spherical deposits

obtained in every test conditions are vaterite (Fig. 7).

Fig. 8 shows a comparison of the number and size of the crystals under

determined different conditions in an experiment after 48 h of crystal formation.

It is clear that Stm-l dramatically increased the number of crystals in comparison

with the number of crystals obtained in the absence of the protein or in the

presence of trypsin (Fig. 8A). The greatest increase in the number of crystals was

Disordered Stm-l Affects Calcium Carbonate Crystals Growth

PLOS ONE | DOI:10.1371/journal.pone.0114308 December 9, 2014 21 / 36



seen for a calcium ion concentration of 20 mM. Stm-l also changed the dimension

of the calcium carbonate crystals. The presence of 50 mg/mL of Stm-l decreased

the size of crystals in comparison with crystals obtained in all control conditions

with trypsin or without any protein (Fig. 8B). The smallest crystals were obtained

in the highest calcium ion concentration of 20 mM. Moreover, there was a wide

range in the crystal dimensions obtained for the negative control (without any

protein) and for the control with trypsin, while the range of crystal sizes grown in

the presence of the highest Stm-l concentration (50 mg/mL) was rather narrow.

This suggests that at higher concentrations Stm-l inhibited crystal growth and

maintained a uniform crystal size for given concentrations of calcium ions

(Fig. 7B). Similar results were obtained with a mineralization period of 336 h;

however, crystals were slightly larger than those obtained with an experimental

period of 48 h (S2 Figure).

Altogether, these results indicate that Stm-l had an influence on the formation

of calcium carbonate crystals. The increase in the number of calcium carbonate

crystals and the decrease in their dimensions was depended on the concentration

of Stm-l (compare images in Fig. 6). The nucleation of calcium carbonate crystals

appeared to be controlled by Stm-l, acting as a template for crystal deposition.

Stm-l also exerted an influence on the shape of growing crystals and

simultaneously inhibited crystal growth, resulting in the formation of significantly

smaller crystals with rounded edges.

Fig. 7. Micro-Raman analysis of calcium carbonate crystals grown in the presence of Stm-l. (A) Micro-Raman map of carbonate (a), calcite (b) and
vaterite (c) for crystals obtained in the presence of Stm-l at a concentration of 50 mg/mL and 10 mM CaCl2 during mineralization period of 48 h. Asterisks
indicate large spherical vaterite crystals (as in Fig. 6An), and arrowheads indicate smaller calcite crystals similar to this presented in Fig. 6Bn. (B) Micro-
Raman spectra of calcite and vaterite of sample mapping in (A).

doi:10.1371/journal.pone.0114308.g007
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Discussion

Calcium carbonate biominerals are widespread in nature. In eukaryotes, all

biologically controlled calcium carbonate minerals are associated with an organic

matrix, which is involved in essential functions such as crystal nucleation, the

control of crystal shape, the inhibition of crystal growth and simply act as a

template for depositing crystals [7]. It has been demonstrated that many proteins

involved in biomineralization have an unusual amino acid composition with a

high content of acidic residues [8]. Many of them also exhibit an IDP-like

character or are simply IDPs [9], a class of proteins which do not form rigid 3D

structures under physiological conditions, either along their entire length or only

in localized regions [10, 11, 60]. AP7 is a mollusk shell IDP. The N-terminus of

AP7 is a calcite binging, random-coil region, which affects calcium carbonate

crystal growth in vitro, while C-terminal, a-helical region does not affect crystals

growth [76–78]. Another protein from the mollusk shell is n16. In solution n16

exhibits random-coil structure, however increasing concentration of peptide as

Fig. 8. Analysis of the impact of Stm-l on the calcium carbonate formation process. (A) The number of
calcium carbonate crystals was determined by counting them using 3 different SEM 1.260.9 mm images for
each experimental conditions and then calculating the average number of crystals. (B) The average size of
the calcium carbonate crystals was determined from SEM images by measuring crystals for their edge length
or diameter, for prismatic and rounded crystals, respectively. Panels (A) and (B) show respective data
obtained in the absence of any protein, in the presence of trypsin at a concentration of 100 mg/mL, and in the
presence of Stm-l at a concentration of 50 mg/mL. Calcium ion concentrations were 5 mM, 10 mM, and
20 mM (black, white, and checked bars respectively).

doi:10.1371/journal.pone.0114308.g008
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well as interaction with chitin cause disordered to ordered transition [79, 80].

CAP-1 is a protein responsible for exoskeleton formation of Procambrus clarkia

[81]. It has been shown that the N-terminal fragment of CAP-1 inhibits crystal

growth less efficiently, because it has more ordered structure than C-terminal

fragment which is disordered [82, 83].

The recently-identified medaka stm-l gene is a putative homologue of the

zebrafish stm gene [15]. Although there is no significant sequence similarity

between stm-l and stm encoded proteins, it was previously suggested that Stm-l

could be involved in the biomineralization of otoliths as was described earlier for

Stm [13]. However, the protein encoded by stm-l gene has not been characterized

yet. We aimed to characterize the structural properties of Stm-l, to lay the

foundation for systematic studies on this protein involved in molecular

mechanism of calcium carbonate biomineralization. We have elaborated and

optimized a protocol for the efficient expression and purification of homo-

geneous, non-tagged Stm-l, and using a diverse array of biochemical, biophysical

and bioinformatic methods, we carried out the first structural characterization of

Stm-l. In this paper we demonstrated that Stm-l appears to have properties that

are characteristic of an IDP with a tendency to form a locally ordered structure.

Moreover, we elaborated an experiment which showed that Stm-l affects calcium

carbonate biomineralization in vitro.

An examination of the amino acid composition of Stm-l showed that it was

deficient in order-promoting amino acid residues and at the same time abundant

in residues characterized as disorder-promoting, which is consistent with other

IDPs (Fig. 2A). Stm-l can be classified as a very acidic protein with a high content

of aspartyl and glutamyl residues, 16.9% and 20.4%, respectively, which

predispose it to bind a large number of calcium ions. It also has a number of basic

residues, 10.0%, that could be sites that enable interaction with carbonate counter

ions. These features may play a crucial role in calcium carbonate biomineraliza-

tion. Interestingly, in the primary Stm-l sequence, there are many EE motifs (16

repeats) and the content of E residues is higher than of D residues – something

that is rather rare in proteins associated with calcium carbonate biominerals [8]

(S1 Figure). The carboxylation of E residues is one of the post-translational

modifications of the protein and leads to the formation of c-carboxyglutamic

acid. It was previously shown that some proteins containing such modified

residues, like osteocalcin, are important constituents of calcium phosphate

biominerals [84]. However, it should be pointed out that c-carboxyglutamic acid

has not yet been detected in proteins involved in calcium carbonate

biomineralization [8]. Stm-l also contains many S residues, a total of 55 or 15.2%.

Bioinformatic tools NetPhos 2.0 [85] and Disphos 1.3 [86, 87] predict that almost

all these residues could be phosphorylated, 95% using NetPhos 2.0, and 96%

using Disphos 1.3 (data not shown). Proteins involved in biomineralization are

often highly phosphorylated, which is also associated with the disordered nature

of these proteins. The lack of a hydrophobic core and rapid fluctuations in the

peptide chain are known to expose a larger number of potential phosphorylation

sites and lead to significantly greater phosphorylation than in the case of globular
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proteins [87]. This post-translational modification significantly affects biological

functioning. It is noteworthy, that phosphorylation has a significant impact on the

structure of DSPP, a human homolog of Stm-l [88]. There are some well-

documented examples which have shown that the binding ability of counter ions

might dramatically change when a protein is post-translationally modified

[88, 89]. However, there are some examples, like osteopontin (OPN), where

phosphorylation did not affect the Mg2+ and Ca2+ binding capacity of protein in

solution [90]. It was suggested that counter ions occupy the majority of the acidic

residue within OPN, whereas free phosphate groups are engaged in the crystal

surface binding [90]. According to Wojtas et al. [40], the phosphorylation of Stm,

the putative functional analog of Stm-l, increases its ability to control the

formation of calcium carbonate crystals. Because our expression and purification

procedure resulted in a protein that was completely devoid of post-translational

modifications, further research steps could be to analyze of the possible role of

post-translational modifications on the structure and function of Stm-l.

An analysis of the amino acid composition revealed additional interesting

features of the Stm-l sequences. The high content of M residues in the Stm-l

sequence, a total number of 11, is surprising because of the order-promoting

character of this residue, which is rather hydrophobic and usually embedded

inside the protein structure. It was previously shown that surface-exposed M

residues could be involved in important functions such as antioxidant defense

[91, 92] and the regulation of protein functions [92, 93] by reversible oxidation

and reduction. Functional changes from the oxidation of M to methionine

sulfoxide in a given protein appear to have pathophysiological significance in

some cases [94–96]. A change in the hydrophobic M residue to the less

hydrophobic methionine sulfoxide also has an impact on the structure of a

protein [93, 95]. In addition, the oxidation of M residues increases the

susceptibility of some proteins to ligation with ubiquitin and targets them for

proteolytic degradation by the proteasome [97]. It is not clear at this time which

of these functions M could fulfill in Stm-l, but this fact seems to be worthy of

attention. The total protein concentration in the endolymph, a large acellular

compartment where the biomineralization of otoliths takes place, was observed to

change cyclically [98, 99]. Concentration fluctuations were postulated to be caused

by the cyclical secretion/synthesis activity of the saccular epithelium associated

with endolymphatic proteolysis [100]. If the oxidation of M residues increases the

proteolysis susceptibility of Stm-l, it may play an important role in the spatial and

temporal regulation of the prolificacy of Stm-l in vivo.

Predictions about the propensity of Stm-l for being disordered were generally

consistent when carried out using different bioinformatics tools (Fig. 2C). The

data clearly classified Stm-l as an IDP. However, some potential regions of order

were predicted by PONDR-VLXT and the NPS algorithm, and three of these

secondary structural elements were predicted by both tools (Fig. 2C and D).

PONDR-FIT is a meta-predictor that combines six individual predictors,

including PONDR-VLXT. PONDR-FIT has been shown to be somewhat more

accurate than each of the component predictors [22] and for this reason it is a
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more reliable tool for predicting disorder. PONDR-VLXT is also very sensitive to

local compositional bias and is capable of identifying potential interaction motifs,

or molecular recognition features (MoRFs). Potential binding regions able to fold

into a-helices upon binding to specific partners (a-MoRFs) are frequently

observed as sharp dips flanked by long regions of predicted disorder in the

PONDR-VLXT [101, 102]. All three potential MoRFs predicted by PONDR-VLXT

for Stm-l (around residues 11–23, 255–269 and 323–340) are consistent with the

NPS analysis, which shows the presence of a-helices in indicated parts of the Stm-l

sequence.

The hydrodynamic behavior of Stm-l indicates that, in solution, it exists as a

monomeric protein with a remarkably extended conformation, as evidenced by

the unusually high RS observed in the AUC and SEC experiments. In the far-UV

CD experiments, although almost all of Stm-l was found to be unordered, a small

amount of ordered secondary structures within the protein were observed

(Table 3). Such residual structures are presumed to play a crucial role in the

disorder-to-order transition of proteins and are involved in many molecular

recognition events and binding to the physiological target of a given protein

[103–105]. However, as was shown by the CD analysis, there was a low content of

ordered structures, which is consistent with the SEC and CD experiments that

showed there was no cooperative unfolding of Stm-l during GdmCl-induced

denaturation. Low concentrations of GdmCl induced a significant decrease in the

Stm-l RS, which suggests there was compaction of the protein (Fig. 4B). It has

been shown that low concentrations of GdmCl can cause stabilization of a protein

by eliminating the electrostatic repulsion of charged groups on the protein surface

[106]. Because Stm-l possesses many acidic amino acid residues which could bind

guanidinium ions, the observed compaction of Stm-l could have been induced by

these ions. However, the CD spectra obtained for Stm-l at given concentrations of

GdmCl indicated that this compaction did not correlate with an increase in the

content of secondary structures (Fig. 4A). When concentrations of GdmCl were

further increased, the stabilizing effect was overwhelmed by its own denaturing

properties. Nevertheless, even at the highest GdmCl concentration, there was a

slight change in the accessibility of Stm-l to the solvent compared to native

conditions.

One of the characteristic features of IDPs is the ability to gain structure in

response to variation in the environment [65]. We checked four agents that are

known to induce conformational changes in IDPs: temperature, an organic

solvent TFE, osmolyte TMAO, and counter ions. The analysis of temperature

effects on the structural properties of Stm-l revealed that it exhibits the so-called

turned out response to heat, characteristic for IDPs [65]. At low temperatures,

Stm-l had a far-UV CD spectrum typical of an IDP. As the temperature was

increased, the shape of the spectrum changed, reflecting the temperature-induced

formation of a secondary structure. This temperature-induced folding was

noncooperative and fully reversible (Fig. 5C). This is typical of coil-like IDPs and

is attributed to the increased strength of the hydrophobic interactions at higher

temperatures, which is the major driving force for folding [65]. Another sign of
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the folding propensity of Stm-l was provided by experiments where the CD

spectra in increasing concentrations of TFE were recorded (Fig. 5A). Despite the

fact that the shape and intensity of the CD spectra measured at different TMAO

concentrations remained unchanged, we observed that in the presence of TFE,

Stm-l underwent a conformational change which gave rise to an ordered

structure, in this case a-helices. This could be consistent with the presence of the

previously predicted a-MoRFs that bind to protein partners via disorder-to-order

transitions resulting in an a-helix. Thus, our research showed that Stm-l is an

extended coil-like IDP that is also very pliable with a tendency to form locally

ordered structures.

The role of Stm-l in otolith formation has not been described yet. However, it

has been suggested that Stm-l could be a functional analog of the zebrafish Stm

[15], which appears to be involved in the organization of a protein scaffold of the

otolith, and simultaneously in the intercalation of an organic matrix with calcium

carbonate crystals [13, 40, 41, 69, 107]. In order to carry out these two functions,

Stm-l would have to be capable of binding calcium ions and interacting with

proteins. Studies conducted on calcium carbonate mineral interaction domains

have identified that one of the key criterion that defines a calcium carbonate

mineral recognition sequence is the presence of carboxylate residues [108, 109]. It

is possible that the regular distribution of acidic amino acid residues in Stm-l

(S1 Figure) serves as a template for binding calcium ions. In the series of SEC

experiments, we demonstrated that an increase in the content of calcium ions was

accompanied by essential changes in the RS of Stm-l (Fig. 4D). The observed

compaction of Stm-l caused by calcium ions constitutes indirect proof of these

interactions. It is well known that counter ions are able to change the

conformation of IDPs to a more compact structure by reducing the electrostatic

repulsion between two regions of the protein [12, 65]. However, the far-UV CD

experiment indicated that calcium ions did not change the content of ordered

secondary structures in Stm-l. Currently, there are two hypotheses describing the

mechanisms of biomineral formation. One of them applies the classical crystal

growth theory. This theory assumes that crystals grow from saturated solution,

where the nucleation is initiated through reaching a critical size cluster, followed

by the ion-by-ion addition to the surface. According to this mechanism organic

molecules act as a template for crystal nucleation in order to modulate crystal

growth in desired directions via specific organic-inorganic interactions [1, 2, 7].

Second hypothesis states that biominerals are formed by an amorphous precursor,

where acidic proteins, as highly flexible polymers with ion-binding ability, induce

the formation of the amorphous precursor and further stabilize it [110]. It was

shown that at the early stages of calcium carbonate formation, a polymer-induced

liquid-precursor (PILP) is formed, which exists as a highly hydrated phase even

more labile than the amorphous phase [111]. Since disorder and flexibility of the

protein might be an advantage for PILP formation, it is possible that the disorder-

to-order transition of Stm-l does not occur during the crystal formation.

Conformational instability is a common feature of proteins that bind to inorganic

solids. Thus, proteins that belong to the family of IDPs have characteristic, which
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enable them to perform their functions in biomineralization processes [78, 112].

Their unusual acidic composition leads to strong electrostatic repulsion and

results in an extended conformation of the protein, providing a much larger

binding surface in comparison to the compact conformation of globular proteins.

This is highly advantageous, especially when interactions occur with crystalline

surfaces [108, 113]. We showed that Stm-l possesses the above-mentioned

properties which could facilitate its interaction with the calcium carbonate

crystals. It should be pointed out that the compaction of IDPs could be dependent

on post-translational modifications. An example of such a situation might be

DPP, one of the products from the proteolytic cleavage of DSPP. It was reported

that phosphorylated DPP underwent a calcium-induced conformation change

from an extended structure to a more compact one, but dephosphorylated DPP

did not [114, 115]. Another good example is osteocalcin, which adopted a more

ordered structure in the presence of calcium ions; however, these changes were

significantly diminished when c-carboxyglutamic acid residues were decarboxy-

lated to E [116].

In both trout and turbot, spatial chemical investigation of the endolymph

surrounding the otolith called the sagitta, the largest of the otoliths, showed a lack

of uniformity, including in the Na+ and K+ concentrations. This was probably

dependent on the activity of ion-transporting cells called ionocytes or

mitochondrial rich cells [117]; therefore, we hypothesize that ionic strength could

also have an impact on the properties of IDPs involved in biomineralization. Our

hypothesis is supported by well-documented examples of ionic strength-

dependent conformational changes in some proteins not involved in biominer-

alization [118, 119]. In our SEC experiments, we demonstrated that in the absence

of NaCl, the RS of Stm-l was significantly larger than in the presence of 150 mM of

NaCl (Fig. 4D). At the highest calcium ion concentrations, the hydrodynamic

properties of Stm-l were independent of the concentration of monovalent sodium

ions. The Stokes radii were almost the same with and without NaCl and the

calcium-induced conformational changes were definitely more pronounced in the

absence of NaCl. Thus, the ionic strength of the environment is the next factor to

exert an influence on the conformation of Stm-l and could also modulate the

effect of Stm-l on calcium carbonate biomineralization.

An in vitro biomineralization assay indicated that Stm-l had a considerable

impact on the size and morphology of calcium carbonate crystals (Fig. 6). The

increased number of crystals suggests that Stm-l may affect the crystal nucleation.

The highly charged character of Stm-l together with its potential calcium binding

ability might lead to an increase in the local concentration of ions that could in

turn facilitate the nucleation step. The ion-induced compaction of the Stm-l

molecule will further increase the ion density. Although, neither PILP nor an

amorphous phase were observed in our experiments, their presence at the early

stages of the crystal formation cannot be excluded. It has been shown that such

phases are usually formed after several hours [120]. It must be noticed that the

amorphous phase is highly unstable and its presence might be highly dependent

on the sample preparation procedures. In the case of Stm, PILP was observed on
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the crystal surface after 24 h of growth only when the crystals were not washed

before SEM [40]. The impact on the morphology of calcium carbonate crystals

seems to be dependent on the protein concentration. Crystals grown without the

protein using the slow diffusion method [39] typically form calcite rhombohedra.

When crystals were grown in the presence of Stm-l, there was a significant change

in crystal morphology. At low concentrations of protein, we observed crystals with

rounded edges, whereas further increases in the protein concentration caused the

formation of characteristic stair-like structures. Similar effect we observed for

crystals grown in the presence of Stm using our conditions in in vitro

biomineralization test (data not shown). Based on the SEM images, we suggest

that the effect of Stm-l on calcium carbonate mineralization could be also similar

to that obtained for AP8 proteins isolated from aragonitic abalone shell nacre

[121, 122]. In the presence of AP8 proteins, each rhombohedral face of the calcite

crystals exhibited rounded acute edges, while the obtuse edges remained

unmodified and straight [122]. We observed a similar result in crystals obtained in

the presence of Stm-l. However, at the highest concentration of Stm-l, the obtuse

edges were also slightly rounded. In both cases, in the presence of Stm-l or AP8

proteins, modified crystals were elongated along the c-axis and capped by

rhombohedral faces [121]. Interestingly, there is no significant similarity between

AP8 proteins and the Stm-l sequence. They are both unusually acidic [15, 122],

which may be crucial for the interaction between the proteins and the surface of

the crystal. It is also worth noting, that an increase in the protein concentration

was connected with a decrease in the size of the crystals obtained. The decrease in

the dimensions of the calcium carbonate crystals, depending on the protein

concentration used, indicates that Stm-l acted as an inhibitor of crystal growth.

Unfortunately, the molecular mechanism of the inhibitory activity of proteins on

calcium carbonate mineralization is still unclear. It was previously suggested, that

the inhibitory effect of proteins on crystal growth is related to the disordered

molecular structure of the proteins [83, 113, 123]. It was reported, for example,

that the flexibility of DPP facilitated the extension of the protein across the surface

of a hydroxyapatite crystal and allowed it to cover the surface with only a small

number of molecules, resulting in a highly inhibitory effect on crystal growth

[113]. A different mechanism has been proposed for statherin, where solid-state

NMR studies indicated that the N-terminal fragment of the protein had a helical

conformation and strongly interacted with hydroxyapatite crystals, while the

middle and C-terminal regions interacted weakly with crystals and were highly

mobile. This mobility of statherin on the surface of a crystal could allow it to more

effectively block nucleation sites than rigidly bound protein [123]. It is possible

that Stm-l may act according to one of these models. However, additional

experiments are needed to verify this hypothesis. Micro-Raman analysis of

calcium carbonate crystals has shown that Stm-l either stabilizes calcite or does

not affect crystal polymorph in our experimental conditions. Stm also promoted

calcite growth in vitro, even though Söllner et al. [13] have shown that in vivo Stm

is necessary to form aragonite otoliths. It is no so surprising, because endolimph

contains many different ions and other proteins which also affect polymorph
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selection. Firstly, magnesium ions can promote aragonite formation [124, 125].

Secondly, there are many experiments which shown that simultaneous action of at

least two components are required to switch calcite to less stable aragonite.

Usually one of the factor is acidic protein and the other is scaffold molecule.

Keene et al. [80] have shown that n16N protein can induce aragonite but only in

the presence of b-chitin, otherwise it induces calcite.

Conclusions

Biomineralization is a complex process involving a large number of macro-

molecules, yet there is still a lot of unknown information about how they affect

and modulate crystal growth. We believe that the knowledge gained on the

functioning of Stm-l could have direct implications in understanding the role of

proteins in otolith biomineralization. Our experimental data showed that Stm-l is

a highly disordered protein that exhibits a tendency to form locally ordered

structures. Using various methods, including SEC and CD, we have demonstrated,

that Stm-l is an extremely pliable protein able to adopt a more ordered and rigid

structure as a result of different factors such as temperature, denaturants, TFE,

and counter ions. Interestingly, these different factors induced different structural

changes. We showed that temperature and TFE caused an increase in more

ordered secondary structures, whereas a small concentration of denaturant and

counter ions induced compaction of the protein that was not accompanied by the

formation of additional secondary structures. Therefore, it is possible that

different environmental factors may exhibit different effects on the conformation

and function of Stm-l. We have demonstrated that Stm-l changed the morphology

of calcium carbonate crystals in vitro. Although Stm-l inhibited crystal growth, the

increased number of crystals in the presence of the protein might have been an

indication that more nucleation sites were formed. The high content of negative

residues in the Stm-l sequence might possibly have caused calcium ions from the

solution to gather and promote crystal nucleation. The extended and pliable

conformation of Stm-l may facilitate post-translational modifications of the

protein, or facilitate its interaction with inorganic constituents of biominerals and

other proteins in the organic matrix of otoliths. Thus, we can consider Stm-l to be

a multifunctional protein capable of binding calcium ions and interacting with

proteins.

Supporting Information

Figure S1. Amino acid sequence of Stm-l. All acidic amino acids are highlighted

in red.

doi:10.1371/journal.pone.0114308.s001 (TIF)

Figure S2. The effect of Stm-l on calcium carbonate mineralization. (A) SEM

images of calcium carbonate crystals grown 336 h. Crystals grown in the absence
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of any protein (a, h, o), in the presence of trypsin at a concentration of 100 mg/mL

(b, i, p), and in the presence of Stm-l in the following concentrations: 1 mg/mL

(c, j, q), 5 mg/mL (d, k, r), 10 mg/mL (e, l, s), 20 mg/mL (f, m, t), 50 mg/mL (g, n,

u). Concentrations of calcium ions were 5 mM (a–g), 10 mM (h–n), or 20 mM

(o–u). The scale bar on the upper left corner of each panel represents a 200 mm-

distance. (B) 106 magnification of representative crystals shown on panel (A).

The scale bar on the upper left corner of each panel represents a 20 mm-distance.

Other details as in (A).

doi:10.1371/journal.pone.0114308.s002 (TIF)
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