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Zusammenfassung

Diese Doktorarbeit behandelt die Modellierung und Simulation von epitaktischem Kris-
tallwachstum, wie es beispielsweise in der Molekularstrahlepitaxie (MBE) realisiert ist.
Die Grundidee besteht darin, fiir die Darstellung der Kristallstruktur ein Gittergas-
modell zu verwenden, bei dem Atome nur diskrete Plédtze eines vordefinierten Gitters
besetzen konnen. Die Dynamik des Kristallwachstums wird mit Hilfe kinetischer Monte
Carlo (KMC) Simulationen beschrieben. Der Hauptvorteil des KMC Ansatzes besteht
darin, atomistische Details des Wachstums beriicksichtigen zu konnen, und gleichzeitig
die fiir das Kristallwachstum relevanten Zeitskalen in der Simulation zu erreichen.

Im ersten Kapitel wird zunéchst das Prinzip der MBE erldutert, wobei auf wichtige
Oberflachenprozesse sowie den Einfluss experimenteller Kontrollparameter eingegan-
gen wird. Es folgt eine Darstellung wichtiger Methoden zur theoretischen Beschreibung
epitaktischen Wachstums. AnschlieBend werden die KMC Methode und das Gittergas-
konzept detailliert erldutert. Dabei werden fiir den Entwurf eines konkreten Gitter-
gasmodells relevante Aspekte diskutiert, wie zum Beispiel die solid-on-solid Naherung
der Kristallstruktur oder die Wahl einer geeigneten Gittertopologie. Ein zentraler Be-
standteil jeder KMC Simulation ist die Auswahl erlaubter Ereignisse und die Berech-
nung der Arrhenius-Raten thermisch aktivierter Prozesse. Hierfiir sind Kenntnisse iiber
die zugehorigen Energiebarrieren erforderlich. Wir diskutieren vereinfachende Ansétze
zur Néaherung der Energiebarrieren, wie die sogenannte bond counting Methode. Ab-
schlieBend wird die Umsetzung der KMC Methode in einem effizienten Simulationsal-
gorithmus beschrieben. In den nachfolgenden Kapiteln werden konkrete Beispiele fiir
die Anwendung der Gittergas- und KMC Methode besprochen.

In Kapitel 2 wird ein Gittergasmodell vorgestellt, das der Beschreibung der (001)
Oberflache von I1-VI Halbleitern wie z.B. CdTe oder ZnSe dient, wobei der Schwer-
punkt der Betrachtungen auf CdTe liegt. Das Modell beriicksichtigt u.a. die korrekte
Zinkblende-Gitterstruktur sowie die relevanten Oberflichenrekonstruktionen von Cd-
und Te-terminierten Oberflachen. Wir nehmen anisotrope Wechselwirkungen zwischen
nédchsten und iibernéchsten Nachbarn an der Oberfliche an, wéhrend sich Teilchen
im Inneren des Kristalls isotrop anziehen. Die anisotropen Wechselwirkungen spie-
geln die bekannten Eigenschaften der Oberfliche wider, wie zum Beispiel den gerin-
gen Energieunterschied zwischen der ¢(2 x 2) und der (2 x 1) Leerstellenstruktur der
Cd-terminierten Oberflache. Ein wichtiger Bestandteil des Modells ist die Einbindung
zuséitzlicher Te-Atome in einem schwach gebundenen Te*-Zustand. Dessen Existenz wird
gestiitzt durch experimentell beobachtete Te-Bedeckungen von mehr als einer Monolage
bei tiefen Temperaturen und hohen Te-Fliissen. Der tatsédchliche Bindungsmechanismus
der Te*-Atome wurde bisher nicht geklart. Im Modell wird im Rahmen eines mean-field
Ansatzes ein Te*-Reservoir mit begrenzter Kapazitdt angenommen.

In Kapitel 3 wird das Gittergasmodell aus dem vorherigen Kapitel zur Simulation
der Atomlagenepitaxie (ALE) von CdTe verwendet. Wir untersuchen die Selbstregulie-
rung der ALE-Wachstumsrate und zeigen, dass das Zusammenspiel der Te*-Reservoir
Besetzung mit kinetischen Effekten an der Oberfliche zu zwei verschiedenen Wachs-



tumsbereichen fiihrt. Bei hohen Temperaturen ist die Wachstumsrate auf eine halbe
Lage CdTe pro ALE-Zyklus beschréinkt, wiahrend bei tiefen Temperaturen eine volle
Lage pro Zyklus deponiert wird. Der Ubergang zwischen beiden Bereichen findet bei
einer charakteristischen Temperatur statt, die im wesentlichen nur von den verwendeten
Teilchenfliissen abhéngt. Sowohl die Temperaturabhéingigkeit der ALE-Wachstumsrate
als auch die Flussabhiingigkeit der charakteristischen Ubergangstemperatur stimmen
qualitativ gut mit experimentellen Ergebnissen fiir CdTe iiberein. Eine Abschétzung
der makroskopischen Aktivierungsenergie fiir die Desorption schwach gebundener Te*-
Atome in unserem Modell ergibt eine semiquantitative Ubereinstimmung mit experi-
mentell beobachteten Werten. Ein quantitativer Vergleich mit experimentellen Ergeb-
nissen sollte daher moglich sein, sobald zusétzliche Daten aus Experimenten oder ab
initio Rechnungen vorliegen, die zur Anpassung des Modells verwendet werden kénnen.

In Kapitel 4 untersuchen wir anhand eines Dreikomponentensystems die Bildung von
Nanostrukturen mit alternierenden Streifen wiahrend der Submonolagen-Heteroepitaxie.
Dabei sind zwei unterschiedliche Mechanismen von Interesse: Trennung der Adsorbat-
sorten aufgrund verschieden hoher Diffusionsbarrieren, sowie der Abbau von Verspan-
nungen durch abwechselnde Anordnung der beteiligten Materialien. KMC Simulatio-
nen eines einfach kubischen Gittergasmodells mit schwacher Bindung zwischen unter-
schiedlichen Adsorbatsorten zeigen, dass die Streifenbildung allein durch kinetische Ef-
fekte wiahrend des Wachstums hervorgerufen werden kann. Wir untersuchen den Ein-
fluss mehrerer Kontrollparameter auf die Streifenbreite und finden u.a. ein Arrhenius-
Verhalten fiir die Temperaturabhingigkeit, in Ubereinstimmung mit experimentellen
Untersuchungen zur Phasenseparation in bindren und ternéren Systemen. Kanonische
Monte Carlo Simulationen bestétigen, dass die Streifenbildung ein rein kinetischer Ef-
fekt ist: unter Gleichgewichtsbedingungen beobachten wir eine nahezu vollsténdige Se-
paration der Adsorbatsorten. Gleichgewichtssimulationen mit einem gitterfreien Modell,
das die unterschiedlichen Teilchengrofien der beteiligten Materialien beriicksichtigt, zei-
gen, dass die Konkurrenz zwischen Teilchenbindungen und Gitterunterschied zu einem
regelméfBigen Streifenmuster mit wohldefinierter Streifenbreite fiihrt. Unter Nichtgleich-
gewichtsbedingungen beobachten wir sowohl die Streifenbildung als auch die experi-
mentell berichtete Verédstelung der Adsorbatinseln. Zur genaueren Untersuchung der
Veréstelung wird ein erweitertes Gittergasmodell betrachtet, dessen Parameter an cha-
rakteristische Diffusionsbarrieren aus dem gitterfreien Modell angepasst wurden. Die
Ergebnisse der Simulationen mit dem erweiterten Gittergas zeigen, dass eine zufrie-
denstellende Beschreibung im Rahmen eines Gittergasmodelles nur moglich ist, wenn
langreichweitige elastische Wechselwirkungen explizit beriicksichtigt werden.

Im Anhang der Arbeit werden ergénzende Themen behandelt, die im Zusammen-
hang mit den Gittergassimulationen aus Kapitel 4 stehen. Dies sind die Realisierung der
kanonischen Monte Carlo Simulationen, die Bestimmung der Gittergaskonfigurationen
minimaler Energie, sowie die Methode zur Anpassung der Gittergasparameter an die
Barrieren aus den gitterfreien Simulationen.



Abstract

In this PhD thesis, we develop models for the numerical simulation of epitaxial crystal
growth, as realized, e.g., in molecular beam epitaxy (MBE). The basic idea is to use a
discrete lattice gas representation of the crystal structure, where atoms can occupy only
predefined lattice sites, and to apply kinetic Monte Carlo (KMC) simulations for the
description of the growth dynamics. The main advantage of the KMC approach is the
possibility to account for atomistic details and at the same time cover MBE relevant
time scales in the simulation.

In chapter 1, we first describe the principles of MBE growth, pointing out relevant
physical processes at the surface and the influence of experimental control parameters.
We discuss different methods that are used in the theoretical description of epitaxial
growth. The underlying concepts of the kinetic Monte Carlo method and the lattice
gas approach are presented in detail. Important aspects concerning the design of a
lattice gas model are considered, e.g. the solid-on-solid approximation of the crystal or
the choice of an appropriate lattice topology. A key element of any KMC simulation
is the selection of allowed events and the evaluation of Arrhenius rates for thermally
activated processes. We discuss simplifying schemes like the bond counting ansatz that
are used to approximate the corresponding energy barriers if detailed knowledge about
the barriers is not available. Finally, the efficient implementation of the Monte Carlo
kinetics using a rejection-free algorithm is described. In the following chapters we apply
the combined lattice gas and KMC approach to different situations of epitaxial growth.

In chapter 2, we present in detail a solid-on-solid lattice gas model which aims
at the description of (001) surfaces of II-VI semiconductors like CdTe or ZnSe, the
main focus being on CdTe. The model accounts for the correct zincblende lattice
structure as well as the relevant surface reconstructions of both Cd- and Te-terminated
surfaces. Particles at the crystal surface interact via anisotropic nearest and next nearest
neighbor interactions, whereas interactions in the bulk are isotropic. The strengths of
the anisotropic interactions reflect known properties of the surface, e.g. the small energy
difference between the ¢(2x2) and (2 x 1) vacancy structures of Cd-terminated surfaces.
A key element of the model is the presence of additional Te atoms in a weakly bound
Te* state, which is motivated by experimental observations of Te coverages exceeding
one monolayer at low temperatures and high Te fluxes. The true mechanism of binding
excess Te to the surface has not been clarified yet. In our model, we use a mean-field
approach assuming a Te* reservoir with limited occupation.

In chapter 3, we perform KMC simulations of atomic layer epitaxy (ALE) of CdTe,
using the lattice gas model from chapter 2. We study the self-regulation of the ALE
growth rate and demonstrate how the interplay of the Te* reservoir occupation with the
surface kinetics results in two different regimes: at high temperatures the growth rate
is limited to one half layer of CdTe per ALE cycle, whereas at low enough temperatures
each cycle adds a complete layer. The temperature where the transition between the two
regimes occurs depends mainly on the particle fluxes. Both the temperature dependence
of the ALE growth rate and the flux dependence of the transition temperature are



in good qualitative agreement with experimental results for CdTe. Comparing the
macroscopic activation energy for Te* desorption in our model with experimentally
determined values we find semiquantitative agreement. Our results indicate that a
quantitative match with experiments should be feasible as soon as additional data from
experiments or first principles calculations are available.

In chapter 4, we study the formation of nanostructures with alternating stripes
during submonolayer heteroepitaxy of two different adsorbate species on a given sub-
strate. We evaluate the influence of two mechanisms considered in the literature: ki-
netic segregation due to chemically induced diffusion barriers and strain relaxation by
alternating arrangement of the adsorbate species. KMC simulations of a simple cubic
lattice gas with weak inter-species binding energy show that kinetic effects are suffi-
cient to account for stripe formation during growth. The dependence of the average
stripe width on several control parameters is investigated. We find, for instance, an
Arrhenius temperature dependence, in agreement with experimental investigations of
phase separation in binary or ternary material systems. Using canonical Monte Carlo
simulations we demonstrate that the observed stripes are not stable under equilibrium
conditions: the adsorbate species rather separate into very large domains. Simulations
with an off-lattice model that takes the lattice misfit of the involved particle species into
account show that, under equilibrium conditions, the competition between binding and
strain energy results in regular stripe patterns with a well-defined width that depends
on both misfit and binding energies. In KMC growth simulations, the formation of
stripe patterns as well as the experimentally reported ramification of adsorbate islands
are reproduced. In order to clarify the origin of the island ramification, we investigate
an enhanced lattice gas model whose parameters are fitted to a set of characteristic
off-lattice diffusion barriers. The simulation results show that a satisfactory explana-
tion of experimental observations within the lattice gas framework requires a detailed
incorporation of long-range elastic interactions.

In the appendix of the work we discuss supplementary topics related to the lattice
gas simulations in chapter 4. These are the realization of the canonical Monte Carlo
simulations, the determination of lattice gas configurations with minimum energy, and
the method used for fitting the lattice gas parameters to the off-lattice barriers.
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Chapter 1

Modeling of Epitaxial Growth

The fabrication of modern semiconductor-based devices like computer chips, solar cells
or light emitting diodes relies to a large extent on the controlled growth of high quality
thin crystalline films on monocrystalline substrates. In this context epitaxial growth
techniques [1] such as molecular beam epitaxy (MBE) and its variants play an important
role as they allow for a very precise control of the growth conditions [2]. By means of
epitaxial methods it is, for example, possible to achieve very sharp interfaces between
layers of different material species in compound semiconductors.

Despite the successful application of epitaxy in the fabrication of numerous material
systems, there are still many open questions concerning, for instance, the influence of
atomistic processes at the crystal surface on the macroscopic growth behavior [3]. In this
context, numerical simulations provide a particularly important tool for the theoretical
understanding of the involved microscopic mechanisms [4-6]. In this work we focus on
the computational treatment of epitaxial crystal growth by combining a discrete lattice
gas representation of the crystal structure with kinetic Monte Carlo simulations for the
description of the growth dynamics.

In the following section we first describe the principles of MBE growth, pointing
out relevant physical processes at the crystal surface and the influence of experimental
control parameters. We then introduce important methods used for the theoretical
description of epitaxial growth. In the remaining part of the chapter, we discuss in
detail the underlying concepts of the kinetic Monte Carlo method and the lattice gas
approach used in this work.

1.1 Molecular Beam Epitaxy

In an MBE growth chamber, one or several adsorbate materials are evaporated from
effusion cells and subsequently directed as thermal atomic or molecular beam onto a
substrate crystal which is kept at an elevated temperature, see Fig. 1.1(left). The arriv-
ing particles arrange on the substrate and contribute to the growth of a thin epilayer.
If adsorbate and substrate material are chemically identical, the term homoepitaxy is
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Figure 1.1: Left: Schematic illustration of an MBE growth system. Right: Schematic
depiction of relevant surface processes during MBE growth.

used, whereas heteroepitaxy denotes the case when they are different. The epitaxial
growth process is usually carried out under ultrahigh vacuum (UHV) conditions in order
to suppress the contamination of the crystallized epilayer with unintentional impurities
from the residual gas in the MBE chamber. Furthermore, the UHV environment allows
for the in-situ monitoring of the growth process by, e.g., reflection high-energy electron
diffraction (RHEED) measurements [2].

1.1.1 Microscopic Processes at the Surface

The morphology of the growing film is essentially determined by the interplay of three
distinct microscopic processes at the crystal surface [3,6,7]: deposition of new atoms or
molecules onto the surface, diffusion of adsorbed atoms (adatoms) on the surface, and
desorption of atoms or molecules from the surface, see Fig. 1.1(right).

Deposition

Particles from the molecular beam impinge on the substrate with a constant flux F
which is commonly measured in monolayers (ML) per second. Typical values for F'
range between 1072 MLs™! and 1 MLs™!. In the modeling of MBE growth it is most
frequently assumed that single atoms arrive at the surface, though in many experimental
setups binary molecules or small clusters are evaporated from the effusion cells and
dissociate upon arrival at the surface [2]. Atoms which approach the substrate surface
are accelerated by the attractive potential of the substrate. The thus acquired kinetic
energy is of the order of a few electron volts (eV) which is significantly higher than the
energy of particles which are thermalized at the substrate temperature [6]. This may
result in an enhanced, so-called transient mobility of the newly deposited particles until
the excess energy is dissipated. The particles get trapped at energetically favorable sites
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with high coordination (i.e. number of neighboring atoms) which are generally close to
the substrate. In simulation models this process may be accounted for by effective
rules such as downward funneling [8,9] or incorporation [10,11]. In the latter case,
the particle is moved to the site of lowest height within an incorporation radius r;,.
around the location of deposition. Molecular dynamics simulations of condensation
processes indicate that 7;,. should be of the order of a few lattice constants [6,12-14].
Incorporation processes may have a smoothening effect on the surface profile and thus
favor layer-by-layer growth (cf. Sec. 1.1.2). At the end of the deposition process the now
thermalized adatom is assumed to reside in a chemisorbed binding state with energy
E}, corresponding to a local minimum in the potential energy.

Sometimes, chemisorption of the incident atom cannot be achieved immediately as
there are, for example, no appropriate adsorption sites available in the vicinity of the
deposition site. Nevertheless, the incoming atom may be captured in an intermedi-
ate weakly bound state close to the surface before reaching a regular adsorption site.
Such weakly bound atoms play an important role in the context of epitaxial growth of
compound semiconductors, cf. Chap. 3.

Diffusion

Diffusion of adsorbate particles on the surface is described as thermally activated pro-
cess: due to thermal fluctuations at the surface a particle at a binding site may gain
enough energy to escape the corresponding potential well and make a lateral jump to a
neighboring binding site. In this hopping diffusion process, the adatom has to overcome
an energy barrier (or activation energy) E, which is given by the difference between the
transition state energy E; and the binding energy FEj at the initial site: £, = E; — Fj.
The rate (probability per unit time) R of such a diffusion jump depends both on the
energy barrier F, and the substrate temperature T'. Normally, this dependence is de-
scribed by an Arrhenius law R = v,exp [—E,/(kgT)] where kp denotes Boltzmann’s
constant, and the prefactor v, is called the attempt frequency, cf. Sec. 1.2.3. In many
experimental systems, the above described hopping diffusion of single adatoms consti-
tutes the most important mechanism for mass transport on the surface. Alternatively,
the migration of adatoms can sometimes be realized through the concerted movement of
several atoms. In these so-called exchange-diffusion processes a diffusing adatom takes
the place of an incorporated atom which then becomes the new adatom and continues
the diffusion [15]. Whether a given diffusion process occurs predominantly via hopping
or exchange mechanisms depends essentially on the heights of the corresponding energy
barriers [6].

Desorption

Similar to surface diffusion, the desorption of adatoms can also be considered as ther-
mally activated process. In this case the energy gain of the adatom due to thermal
fluctuations is sufficient to overcome the binding energy E) to the surface: the particle



desorbs into the gas phase. The desorption rate is again given by an Arrhenius law
where the activation energy F, is simply equal to Ej. The value of the binding energy
depends, e.g., on the particle species and the local geometry of the surface where the
adatom sticks. In general, the binding energy increases with increasing coordination
of the atom. Consequently, the desorption of free adsorbate particles is more frequent
than that of particles which are incorporated in a step edge or in the flat terrace. Due
to the high binding energies (typically a few eV) the desorption rate is usually small
compared to the rates of deposition or surface diffusion. For many materials desorption
thus can be neglected under typical MBE conditions. In the absence of a particle flux,
though, desorption of adatoms becomes crucial, and a surface left in vacuum starts to
sublimate with a temperature dependent sublimation rate.

1.1.2 Influence of Control Parameters

Apart from the selected adsorbate materials the most important experimental control
parameters in MBE are the substrate temperature and the beam fluxes of the con-
stituent material species. While the beam fluxes determine the rates with which new
particles arrive at the surface, the substrate temperature influences the frequency of
thermally activated diffusion or desorption processes: higher temperatures lead to in-
creased particle diffusion and desorption.

In many cases, the particle fluxes and substrate temperature in MBE are adjusted
such that diffusing adatoms have enough time to find favorable binding sites for in-
corporation before they will be overgrown or desorb from the surface. In the case of
homoepitaxial growth on an initially flat substrate, high enough temperatures or low
fluxes typically result in a smooth layer-by-layer growth mode, where the nucleation of
new islands only starts after the previous layer has been completed [6].

In experiments, the substrate surfaces are not perfectly flat but exhibit a certain
density of steps due to an unavoidable miscut of the substrate. On such a stepped (or
vicinal) surface growth may proceed in a step flow mode if the temperature is high
enough: in this case all atoms which are deposited onto a terrace bounded by two
consecutive steps are captured by either the upper or lower step edge. Thus, island
nucleation on the terraces is suppressed, and all steps move laterally with an average
speed which depends on the deposition rate and the step spacing [6].

At low temperatures the reduced mobility of diffusing particles leads to frequent
nucleation of new islands on the surface. Sometimes the transport of atoms between
different atomic layers may be hindered by an additional energy barrier at the island
edge (cf. Sec. 1.2.3). Then the formation of three-dimensional structures (mounds) on
the surface can be observed. Mound formation leads to a steadily growing number of
exposed atomic layers and thus to an increase of the roughness of the surface profile [6].

In the case of heteroepitaxy, the competition between strain—caused by a possible
lattice-mismatch of the involved particle species—and interfacial energies leads to ad-
ditional phenomena during growth like, for instance, the formation of dislocations in
the crystal, or three-dimensional island growth, see e.g. [1,3,6,16,17].
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1.2 Theoretical Description

The large variety of phenomena occurring during MBE growth constitutes a challenging
task for a theoretical description, both under practical and fundamental aspects. From
the practical viewpoint there is particular interest in understanding how the growth
behavior can be influenced by material parameters or external control parameters such
as temperature or particle fluxes. From the theoretical point of view, MBE growth is
highly attractive as it provides an example of a system which is driven far from thermal
equilibrium. In this case, no general theoretical framework like equilibrium statistical
mechanics is available. Instead, new concepts may be developed and tested for their
applicability in the description of growth phenomena as well as other, more general
non-equilibrium systems.

In epitaxial growth, physical processes on a very wide range of length and time
scales are involved. On the one hand, atomistic processes related to the adsorption or
diffusion of particles operate in the nanometer and femto- to picosecond regime. On the
other hand, the formation of micrometer-thick epilayers containing several thousands
of atoms requires deposition times between seconds and hours. Consequently, a variety
of rather different methods is currently applied in the theory, modeling and simulation
in order to obtain a comprehensive picture of the growth process. They range from the
detailed quantum mechanical treatment of microscopic processes to the macroscopic
description in terms of stochastic differential equations or other continuum approaches,
see e.g. [3,4,6,16,18].

In this work we focus on the combination of kinetic Monte Carlo simulations with
discrete lattice gas models which constitutes one of the most widely used approaches in
the computational treatment of epitaxial growth [18]. One advantage of this technique
is, for instance, that atomistic details can be taken into account in the modeling, while
at the same time the investigation of relatively large systems and long timescales is
possible. In the following two sections we briefly discuss two other important methods
which are used in the computational modeling of epitaxial growth, that is density
functional theory and molecular dynamics. In the remaining part of this chapter we
will discuss the underlying concepts of the kinetic Monte Carlo method and the lattice
gas method, following the outline given by Biehl in Ref. [18].

1.2.1 Density Functional Theory

In principle, all macroscopic features evolving during growth can be traced back to
the interplay of microscopic processes such as deposition, diffusion and desorption of
atoms, which in turn imply the formation or breaking of chemical bonds at the surface.
Consequently, a faithful description should account for the quantum mechanical nature
of the electrons involved in the bonding.

In this context, density functional theory (DFT) has proved to be a very useful
tool [19]. The method is based on the fact that, in principle, all information about a
many-electron system can be derived from its ground state electron density by means
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of an appropriate density functional. Despite the enormous advantage of DFT over
an explicit treatment of the many-particle Schrodinger equation the computational
effort involved in the calculations is still very high and restricts the applicability of the
method to relatively small systems containing only a few atoms or unit cells of periodic
structures.

By means of DFT it is for example possible to calculate and compare the specific
ground state energies of different surface reconstructions of a particular material sys-
tem, see e.g. [20-23]. Besides the energies, also the corresponding surface structures,
that is the precise positions of the atoms at the surface, are obtained by the calcula-
tions. Information about relevant surface configurations is particularly useful for the
development of models which aim at the description of a specific surface or its evolution
under non-equilibrium conditions, see Sec. 2.2.

For the investigation of dynamical properties during crystal growth, though, the
knowledge of the ground state energies of only a few surface configurations is not suffi-
cient. The growth behavior is essentially determined by thermally activated processes
as e.g. surface diffusion of an adatom which lead from one configuration to a neighbor-
ing one. Such a transition occurs with a rate that is governed by the energy barrier
which has to be overcome in the process, and an associated attempt frequency, cf. Sec.
1.2.3. In order to calculate the correct transition rate for a given process it is thus
necessary to obtain reliable estimates of both parameters. Within the DFT formalism,
the energy barriers of relevant diffusion processes can be determined by mapping out
the potential energy surface as a function of the adatom position on the surface, see
e.g. [24-27]. Using further assumptions from transition state theory (TST), also the
attempt frequencies may be obtained [6,27-29]. Thus, all the information necessary
to calculate the transition rates can, in principle, be accessed within the DFT formal-
ism. Having calculated the rates, they may then be used as input into realistic growth
simulations, see e.g. [25-27,30].

1.2.2 Molecular Dynamics

Another important method used successfully for the investigation of processes occurring
in crystal growth is molecular dynamics (MD). In MD simulations the time evolution of
an interacting many-particle system is modeled by numerically integrating the classical
equations of motion [31]. By the use of appropriate algorithms it is possible to maintain
specific physical conditions in the simulation, e.g. constant temperature or energy [31].
The forces acting between the particles are frequently derived from empirical potentials
or DFT calculations [32]. The potentials used in the simulations range from simple pair-
potentials of e.g. Lennard-Jones type, to highly sophisticated many-body potentials
which have been fitted to reproduce certain bulk properties (e.g. lattice constants,
elastic constants, cohesive energy, specific heat) of a specific material.

As molecular dynamics allows, in principle, for the description of the true dynamics
of a system it is clearly a highly desirable method for the investigation of growth
processes [5]. However, there are two problems which limit the practical application of
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MD simulations in the context of crystal growth.

One problem concerns the reliability of the used interaction potentials [5]: pair
potentials, which are attractive because of the moderate computational effort involved,
have been applied with some success in the modeling of metals [33]. However, they
are inadequate for the description of covalent materials where, e.g., the presence of
directed bonds requires the incorporation of more complex many-body interactions
[34,35]. On the other hand, material-specific potentials which have been fitted to
reproduce properties of the bulk may yield only a poor representation of surface effects
as e.g. surface reconstructions.

The second, and actually more severe problem of the MD method is its restriction
to short time scales. This limitation is caused by the fact that a MD simulation should
account faithfully for all dynamical processes in the crystal. Consequently, the time step
used in the numerical integration procedure has to be small compared to the shortest
natural time scale in the system which is of the order of 1075, corresponding to the
atomic vibrations in the crystal. Hence, time should be advanced in intervals of, say,
< 1075 in the simulation. Under the assumption that for a moderate system size of
1000 particles about 10® simulation steps can be carried out by a standard MD scheme
within a reasonable amount of simulation time, one arrives at a simulated physical real
time of about 10~ s which is far away from MBE relevant time scales of seconds up to
hours.

The problem with molecular dynamics is that a large part of the simulation time is
actually spent for the description of collective vibrations of the crystal atoms which do
not change the system configuration significantly over a relatively long period of time.
The properties of a growing crystal, though, are governed essentially by rare thermally
activated processes like the diffusion jump of an adatom on the surface, cf. Fig. 1.3.
These events occur with an exponentially decreasing probability (see Sec. 1.2.3), and
during the time interval covered by a typical MD simulation only a very small number
of them will take place.

In conclusion, MD is currently not suitable for the description of crystal growth
as the number of rare events which occur in the course of the simulation is too small.
Nevertheless, MD is invaluable for the modeling of events which occur on short time
scales or which involve the concerted movement of several atoms (e.g. exchange diffusion
processes [6]). Furthermore, MD should be used for the modeling of processes which
cannot be described as thermally activated, e.g. the transient mobility of deposited
atoms along the surface (cf. Sec. 1.1.1).

1.2.3 Kinetic Monte Carlo Simulations

The time scale limitation of molecular dynamics can be overcome if only those processes
are considered explicitly which lead to a significant change of the system configuration,
whereas the fast vibrations of the atoms around their equilibrium positions are treated
implicitly. This is the idea of the kinetic Monte Carlo method which is used in the
simulations of the present work. In this section we will describe the basic concepts of



this method.

Thermodynamic Monte Carlo

A Monte Carlo (MC) simulation is the numerical realization of a stochastic process
where a system evolves over a set of configurations {i} according to prescribed transi-
tion rates R;_,; for passing from configuration ¢ to 7. Monte Carlo simulations have been
used extensively in equilibrium thermodynamics for the calculation of average values
of thermodynamical quantities of interest, see e.g. [36]. In this context, a sequence of
system configurations is generated such that they form a Markov chain [36] with a dis-
tribution that converges to the correct equilibrium distribution, that is the Boltzmann

distribution
1 E;
P =— - . 1.1
oo (~ir) (11)

Here, F; denotes the energy of the system in configuration ¢, kg is Boltzmann’s constant
and Z =) exp[—FE,/(kgT)] is the partition function.

A reasonable MC dynamics should satisfy the condition of ergodicity which states
that it should be possible to reach any system configuration from any other configuration
if one waits long enough [36]. Usually, one requires in addition that the transition rates
fulfill the condition of detailed balance,

Ri;P.= R, ;P (1.2)

Then the convergence of the generated Markov chain to the equilibrium distribution P;
is guaranteed. Note that detailed balance is a sufficient but not necessary condition for
the convergence [36].

By combination of Egs. (1.2) and (1.1) the detailed balance condition reads

Ri; E, - E
ko A — ), L.
R exp ( T ) (1.3)

One of the most widely used simulation algorithms which satisfies both the condition
of ergodicity and detailed balance is the Metropolis scheme [36]. Here, a possible
transition, say, from configuration ¢ to j, is chosen at random and the corresponding
energy change AE = FE; — E; is calculated. If the energy of the system is lowered
(AE < 0) the transition is accepted with certainty, otherwise the transition is only
accepted with probability exp [-AE/(kgT)].

In general, there is quite some freedom in the choice of the transition rates as only
the ratio of the R's is determined by Eq. (1.3). If one is not interested in how the
system approaches thermal equilibrium, the actual choice does not have to reflect the
real dynamic evolution of the system. In fact, in many cases the use of an “unphysical”
dynamics yields a considerably faster equilibration of the system (cf. A.1).
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Kinetic Monte Carlo

In contrast to thermodynamic MC simulations, the aim of kinetic Monte Carlo (KMC)
simulations is to reproduce faithfully nonequilibrium or relaxation processes [5|. Here,
the focus is on the correct time evolution of the considered system. Simulations of crys-
tal growth are always of the kinetic type, and configurational changes now correspond
to real physical processes (e.g. adatom diffusion). Consequently, the transition rates in
KMC simulations of crystal growth have to reflect the physical properties of the system.

Figure 1.2: Potential energy sur-
face (PES) for single adatom hop-
ping diffusion on the surface of
a two-dimensional Lennard-Jones
crystal. Ej is the energy of a bind-
ing state, and F; corresponds to
the transition state of hopping dif-
fusion. The Schwoebel barrier Eg
hinders interlayer hops at the ter-
race edge. Figure courtesy of F.

Much [17].

In order to illustrate the basic idea of the KMC approach, we consider as example
the hopping diffusion of an adatom on the crystal surface. A simplifying interpretation
of this situation is shown in Fig. 1.2: if we assume that the rest of the crystal is
frozen, the adatom moves in a potential energy surface (PES) that results from its
interactions with the other atoms. In reality, the underlying crystal rearranges and
reacts to any movement of the adatom. However, as long as this does not lead to
topological changes, the frozen crystal picture is essentially valid and appropriate for
the following considerations. The local minima in the PES (Fig. 1.2) correspond to
the relevant system configurations in the KMC approach and are termed the binding
states. Due to thermal fluctuations, occasionally a jump from one such minimum to
a neighboring one will occur. The typical waiting time for a transition is given by an
Arrhenius law of the form 7 = 7, exp [E,/(kgT)] or

E
R = v, exp (_k: £ ) (1.4)
B

for the corresponding transition rate, respectively. The rate R decreases exponentially
with the height of the energy barrier (activation energy)

E,=E, — E, (1.5)

which has to be overcome in the process, cf. Fig. 1.2. Here, E, denotes the energy of
the binding state, whereas E; is the energy of the transition state. The energy barrier
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FE, is compared with the typical thermal energy kg7 in the system, i.e. the higher the
temperature T the more frequent becomes the event. The preexponential factor v, is
often referred to as the attempt frequency. In the Arrhenius law it is assumed to be
independent of the temperature.

Figure 1.2 shows the PES for a single particle in the vicinity of a terrace edge. In
the center of the upper or lower terrace, the PES is oscillatory with equivalent minima
at the regular lattice sites and identical barriers. Near the edge, the shape of the PES
shows some distinct features: a very deep minimum is found right at the step due to the
good coordination, i.e. the interaction with many neighbors. Consequently, a particle
that has attached to the upper terrace will detach with a relatively low rate as the
associated energy barrier E, is high. A second pronounced feature is the additional,
so-called Schwoebel barrier Eg [3,4,6] for hops from the upper to the lower terrace (or
vice versa). Here, the transition state corresponds to a very weak binding of the adatom
and hence interlayer diffusion is hindered effectively. This can result in the formation
of pronounced mounds in the course of growth, see e.g. [3,4, 6]

In transition state theory (TST), the Arrhenius law for thermally activated tran-
sitions is motivated by arguing that the occupation of binding and transition states
should correspond to effective thermal equilibrium situations. Following this line of
thought one obtains the expression in Eq. (1.4). In principle, the value of the attempt
frequency v, can be derived by taking into account the (vibrational) entropies, i.e. the
free energies of binding and transition state. However such an evaluation can be quite
involved and goes well beyond the frozen crystal approximation. Consequently, good
estimates of attempt frequencies are rarely available in the literature. For this reason,
in many simulations a common attempt frequency is assumed for all possible diffusion
processes in the system. Commonly, values on the order of 102 — 103 s~! are chosen
for v,, corresponding to the typical frequency of atomic vibrations in the crystal [3].
For a discussion of several approaches to the evaluation of transition rates and attempt
frequencies, see e.g. [6,27,29,37,38].

The use of a single attempt frequency v, in the system has the advantage that the
Arrhenius rates [Eq. (1.4)] immediately satisfy the detailed balance condition [Eq. (1.3)].
Consider for example two neighboring binding states ¢ and j with binding energies F;
and E;, respectively. Going from one binding state to the other, the system has to
pass the transition state with energy E; yielding R;_.; = v, exp|—(E: — E;)/(kgT)] and
R;_.; =v, exp|—(E; — E;)/(kgT)] as transition rates for the forward and the backward
process, respectively. Thus one recovers directly Eq. (1.3) as v, and the dependence on
E; cancel in the ratio of the rates. The detailed balance condition is by no means a
necessary requirement for meaningful simulations, especially not in situations far from
equilibrium [18]. However, it conveniently guarantees that the system—in absence of
deposition and desorption— would approach the correct thermal equilibrium eventually,
i.e. a Boltzmann distribution [Eq. (1.1)] of binding states [36].

Note that deposition and desorption processes in MBE models always violate the
detailed balance condition [18]. Since deposition is not an activated process, the discus-
sion of detailed balance becomes meaningless in this context. In desorption a particle
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Figure 1.3: Illustration of the lattice gas representation of a two-dimensional crystal.
Left: atoms in the crystal assume continuous positions. Straight lines denote nearest
neighbor bonds. In an MD simulation thermal fluctuations of the whole structure may
lead to a jump of the adatom (black) to a neighboring pair of surface atoms. Right: in
the lattice gas approximation atoms can occupy only predefined lattice sites (indicated
by the hexagonal cells). In a KMC simulation the adatom can jump to the left or right
neighbor site with a given rate. The cross marks a vacancy in the bulk, and the open
circle denotes an atom which forms an overhang. Both features would be forbidden
under the solid-on-solid condition.

has to overcome an energy barrier £, which is simply given by its binding energy at
the surface. Hence, desorption can be implemented as activated process with a corre-
sponding Arrhenius rate [Eq. (1.4)]. However, the process is irreversible: in an ideal
MBE environment a perfect vacuum is maintained in the growth chamber and desorbed
particles will be removed immediately. The situation differs significantly from a surface
that may exchange particles with a surrounding vapor or melt.

1.3 Lattice Gas Models

In principle, the kinetic Monte Carlo method described in Sec. 1.2.3 can be applied
to off-lattice models with continuous particle positions, see e.g. [17]. This requires the
determination of the relevant energy barriers from the PES “on the fly” which can
become quite involved. Therefore the vast majority of KMC studies uses additional
simplifications in the simulations [18].

If the material under consideration is expected to crystallize in a regular lattice
without dislocations or other defects one can use a discrete representation of the crystal
where particles can occupy only predefined sites of a given lattice structure. In such
lattice gas models, each lattice site is either empty or occupied by (at most) one atom,
cf. Fig. 1.3. In a deposition process, the state of a particular lattice site changes from
empty to occupied. Conversely, the desorption of an atom changes the state of a lattice
site from occupied to empty. A diffusion process corresponds to a jump of an atom from
one lattice site to a neighboring one. Hence, the states of both sites are exchanged, cf.
Fig. 1.3.

A particular configuration of the lattice gas can, for instance, be represented by a
set of integer variables {n;}, where n; denotes the occupation state of the i-th lattice
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Figure 1.4: Sketch of a simple cu-
bic solid-on-solid lattice gas model.
For clarity alternating layers are col-
ored differently. Since vacancies and
overhangs are not allowed, the system
configuration is fully described by an
integer array which stores the height
of the surface above the square sub-
strate. The deposition of a new par-
ticle (black arrow) and the diffusion
hop of an adatom attaching to a small
cluster (white arrow) are shown.

site. For example, in a monoatomic lattice gas model, n; = 0 corresponds to an empty
site and n; = 1 indicates a lattice site which is occupied by an atom. In a model with
m different particle species, n; = 0 still would represent an empty site whereas n; = k
would correspond to the occupation of site ¢ with a particle of type k (1 < k < m).

In some material systems (e.g. semiconductors), atoms at the crystal surface may be
slightly shifted from their corresponding bulk positions due to surface reconstructions
(cf. Sec. 2.2). As long as the topology of the lattice remains unchanged, this effect can
be taken into account within the lattice gas framework by adding additional discrete
degrees of freedom to the model, see the discussion of the growth model of II-VI(001)
semiconductor surfaces presented in Chap. 2.

1.3.1 Solid-On-Solid Representation

Under the assumption that neither vacancies nor overhangs are formed in the growing
crystal, the so-called solid-on-solid (SOS) approximation may be used in the modeling,.
Here, each atom of a given layer has the maximal possible number of binding partners
in the layer below. For example, in the case of a simple cubic (sc) structure the SOS
condition requires that each atom sits on top of another atom (cf. Fig. 1.4) whereas
in an SOS representation of a face-centered cubic (fcc) crystal with (001) (or (111))
surface orientation each atom must have four (three) nearest neighbors in the layer
below, see Fig. 1.5. For other crystal structures similar conditions can be derived,
see e.g. Sec. 2.3.1 for an SOS representation of the zincblende lattice. If the SOS
approximation is used in a lattice gas model then a given system configuration can be
described conveniently by an integer array of variables which stores the height of the
surface above the substrate. The main advantage is that the array size is fixed by the
surface area, that is, the required memory to store the system configuration does not
increase when the thickness of the simulated system becomes larger.

14



0.0.0.0.0.0.0.6
Sl 0l

‘9 ‘90000
anﬁﬁﬁﬁ

SINRY I
0.0.5.9.5.5.0
0.0.69.0.0.0.0,
0000000

Figure 1.5: Different surface orientations of a face-centered cubic (fcc) crystal. Darker
circles mark atoms which are located deeper. Atoms which make up an fcc(001) facet
form a square lattice (left panel) whereas atoms of an fce(111) facet arrange in a trian-
gular lattice (right panel). In both cases the edges of adsorbate islands align with the
lattice axes. On the fcc(111) surface two distinct types of binding sites are available:
the upper single adatom and the atoms of the small island sit in fcc sites whereas the
lower single atom sits in an hcp site. The combined set of fcc and hep sites forms
a honeycomb lattice. In an SOS model of the fcc(001) surface each atom must have
four nearest neighbors in the layer below, in the case of the (111) surface three nearest
neighbors are required.

1.3.2 Choice of the Lattice

In principle, all relevant lattice structures [39] can be represented in a solid-on-solid
fashion, see e.g. [36] for the practical implementation of several lattice types. The
specific choice of the lattice geometry depends on the purpose of the KMC simulation.
If the simulation aims at the description of a specific material system, clearly the correct
topology should be represented in the model as it determines, for instance, neighborhood
relations and the potential diffusion events. On the other hand, if the focus is on the
influence of certain atomistic processes on the qualitative features of the morphology
the use of a simple lattice structure (e.g. simple cubic) is justified.

Note that the required lattice representation may depend on the considered sur-
face orientation. For example, atoms of an fcc(001) surface arrange in a square lattice
whereas for the fcc(111) orientation the surface atoms occupy sites on a triangular lat-
tice, see Fig. 1.5. The modeling of growth on an fcc(111) surface should furthermore
account for the two nonequivalent adsorption sites at the surface, i.e. the fcc and the hep
sites [39], see Fig. 1.5. An adatom which occupies an fcc site continues the regular ABC
stacking sequence, whereas adsorption on an hep site leads to ABA [39]. In experiments,
both islands with regular fce-stacking and islands with faulted hep-stacking have been
observed, depending on the considered material system and experimental conditions
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(e.g. [40]). A simulation model which aims at the description of stacking-fault forma-
tion thus necessarily has to incorporate the appropriate lattice representation for the
adsorption sites which would be a honeycomb structure in this case [36].

In general, the shape of growing adsorbate islands directly reflects the symmetry of
the lattice as the island edges usually align with the lattice axes. Thus, rectangular
islands are commonly observed on substrates with square symmetry whereas islands
with triangular or hexagonal shape form on an fee(111) surface (cf. Fig. 1.5), depending
on the experimental conditions [6]. In this context, the choice of a reasonable substrate
geometry and the use of appropriate (periodic) boundary conditions in the model are
essential in order to reduce boundary effects in the simulation of finite systems [18].
The use of an inadequate geometry, e.g. a square shape substrate for the representation
of an fee(111) surface, may yield complications as the shape of large islands that align
with the lattice axes might conflict with the substrate geometry. In order to avoid such
artefacts, the design of the substrate should reflect the lattice symmetry [36].

In the literature, lattice gas models with simple cubic symmetry and only one parti-
cle species have been used frequently as they allow for a straightforward implementation.
Due to their conceptual simplicity these models obviously cannot describe properties of
real materials faithfully. Nevertheless, they are quite useful for the investigation of basic
and qualitative features of epitaxial growth as, e.g., kinetic roughening or coarsening of
the surface [4]. For example, growth models with sc symmetry and effective one-particle
dynamics allow for the simulation of large system sizes and time-scales [10,41]. Thus,
the influence of, e.g., step edge diffusion barriers, Schwoebel barriers, or incorporation
mechanisms on the growth morphologies or scaling exponents in kinetic roughening
may be studied efficiently [42]. Several properties of growth processes are believed to
be universal, i.e. they should not depend on the symmetry of the crystal anyway, see
e.g. [43].

1.3.3 Full Diffusion Models

In the conceptually simplest growth models, only the most recently deposited particle
is considered mobile at a given time [4]. For example, upon arrival at the surface,
an adatom may migrate a few lattice spacings to an empty site of lower height (in
the vicinity of the deposition site) where it sticks irreversibly. After that, the simula-
tion continues with the deposition of a new particle. In the simplest case, deposited
particles become immobile immediately after incorporation into the crystal. Since time-
consuming activated diffusion steps are completely neglected in this scheme, the sim-
ulation of large system sizes and the deposition of many adlayers becomes possible.
Such models with limited adatom mobility are well suited for the description of basic
phenomena like kinetic roughening of self-affine surfaces [4]. However, the assumption
that only the incoming particle is mobile is rather unrealistic.

A more realistic, material-specific model should account for simultaneous diffusion
and desorption events of many adatoms on the surface. In so-called full diffusion models,
all atoms are considered mobile at the same time, in principle. Here, the deposition of a
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particle is only one possible event among all other processes and has to be implemented
with the corresponding rate [18]. The simultaneous movement of many adatoms in the
system leads to a much broader spectrum of possible events which in turn increases the
computational costs of the model.

In the standard SOS approach only atoms right at the surface are considered mobile
[18]. In the case of the simple cubic lattice this would mean that only atoms could
move which have no nearest neighbor sitting on top, cf. Fig. 1.4. Bulk particles are
surrounded by occupied lattice sites and vacancies are excluded. Concerted moves or
exchange processes are usually omitted, thus the entire bulk remains fixed. In many
cases the adatom mobility is further restricted due to simplifying assumptions in the
model design, see Sec. 1.4.3.

1.4 Determination of Events and Rates

A key element of any kinetic Monte Carlo model is the determination of allowed pro-
cesses (events) in the simulation and the calculation of the corresponding rates [18]. In
contrast to e.g. molecular dynamics where all atomic movements arise naturally from
the many-particle interactions, in KMC simulations a “catalogue” of possible micro-
scopic events has to be predefined, and rates have to be assigned to the considered
processes [18]. If the simulation aims at a faithful description of a specific material,
then as many atomistic details as possible should be captured in the model, and the
rates should be based on reliable (possibly first-principles) calculations. One problem is
that it is sometimes hard to tell in advance what are the relevant processes: a multitude
of different atomic configurations can occur in the course of growth, and some processes
may possibly be overlooked, especially if the associated atomic motions appear counter-
intuitive. By unintentional exclusion of potentially crucial mechanisms it might be that
essential properties of the system are missed in the simulation.

A typical KMC simulation of MBE growth accounts for the three basic mecha-
nisms occurring at the surface: deposition, diffusion and desorption of adatoms. In the
modeling of deposition, usually an ideal beam of particles is assumed which deposits,
on average, the same amount of material per unit time and area everywhere on the
surface [18]. Fluctuations on the atomistic level are represented in an SOS model by
choosing randomly one of the available lattice sites for each deposition event. The
rate for a deposition event at a given lattice site is defined as the number of incoming
particles at this site per unit time, and the overall deposition rate R, is obtained by
multiplication with the system size.

The modeling of thermally activated diffusion and desorption processes requires
knowledge about the energy barriers E, which enter the corresponding Arrhenius rates
[Eq. (1.4)]. In this context, input from experiments, molecular statics using semi-
empirical potentials (e.g. [33,44]) or DFT calculations [27] may help identify the rele-
vant physical processes and associated energy barriers or rates. For example, in GaAs
growth simulations by Kratzer et al. [25,26], 30 distinct process types had to be taken
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into account based on DFT results. In general, the numerical evaluation of energy bar-
riers or rates can become quite involved. For instance, in many cases diffusion events
can be realized either by a hopping or exchange mechanism. In principle, for each
configurational change, all possible realizations along with the correct transition paths
would have to be identified which is a demanding task (e.g. [45]).

1.4.1 Bond Counting

In those cases where the knowledge about energy barriers is not sufficient or even
not available, simplifying schemes have to be used in the calculation of the transition
rates. Sometimes, the relevant barriers for surface diffusion or desorption of adatoms
can be represented efficiently by a small number of independent parameters [18]. In
this context, bond counting schemes have been used successfully in KMC simulations.
The idea is to use only a few number of distinct barriers but explicitly account for the
energies of the involved binding states [18]. In the bond counting approach one assumes
that the binding energy of an adatom at a given site is essentially determined by the
interactions (“bonds”) with its nearest or next nearest neighbors, whereas the influence
of atoms which are farther away can be neglected. This accounts for the short-range
character of chemical bonds in real material systems.

A straightforward realization of the bond counting scheme in a simple cubic SOS
model could be that each pair of nearest neighbor atoms forms a bond of equal strength.
The determination of the energy Fj, of a given binding state (i.e. system configuration)
then amounts to adding up the contributions of all nearest neighbor interactions in the
system.

For transitions between neighboring system configurations, e.g. by a diffusion hop
of an adatom, both the energy of the initial binding state (E,) and the energy of
the transition state (F;) are needed as they determine the corresponding energy barrier
E, = E;— E,. A reasonable assumption is that F, increases with the depth of the initial
binding state. In a particularly simple implementation of the bond counting method,
the activation energy F, is thus determined solely by the binding energy of the adatom
at the initial site. In the example from above this would mean that the activation
energy for a diffusion hop of an adatom can be obtained by counting the number of
nearest neighbor bonds which are broken in the process. This simple approximation
of E, implies that the energy of the transition state is the same for all possible moves
in the system. Another consequence is that e.g. the barriers for the diffusion of an
adatom along the border of a terrace (step edge diffusion) and that for detachment
from the step edge are always the same as the number of broken bonds is equal in both
processes. In many cases, this is not a very good representation of the physical reality.
In fact it is frequently observed experimentally that adatoms which are captured by a
step edge display fast diffusion along the step edge whereas detachment from the step
edge occurs only with a very low probability. This implies that the step edge diffusion
barrier can be much lower than the barrier for detachment which cannot be reproduced
by the simple bond counting scheme.
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1.4.2 Kawasaki-Type Energy Barriers

A better representation of the energy barriers F, within the bond counting approach
can be achieved if the energies of both initial and final system configuration are taken
into account. For example, one could assume that the energy of the transition state
FE; is given by the maximum of the energies of initial and final binding state, F; and
Ey, plus a constant B, which plays the role of a characteristic barrier for all nearest
neighbor hops within the layer: E; = max{E; + B,, E; + B,}, see Fig. 1.6(a). Then,
the activation energy F, = E; — E; for the transition from state i to f becomes

E, =max{B,, B, + AH}, (1.6)

with AH = Ey — E; being the energy difference between initial and final state. In the
simplest case, F; and E; are obtained, as above, by counting nearest or next nearest
neighbor bonds and adding up the associated binding energies.

In the literature the barriers given by Eq. (1.6) are referred to as Kawasaki-type
energy barriers due to the relationship with the Kawasaki-algorithm for the conserved-
order-parameter Ising model, see [36]. From Eq. (1.6) it follows that the activation
energy F, is directly given by B, if AH < 0. This is the case for e.g. free surface diffusion
but also for diffusion along a step edge if the initial and final site are energetically
equivalent and hence AH = 0. On the other hand, detachment of an adatom from a
step edge always implies breaking the bond to the atom sitting in the step edge. Here,
the associated energy gain AH > 0 adds to the barrier B,, and thus the activation
energy F, for detachment is larger than that for step edge diffusion.

The rates for the different processes are obtained by substituting Eq. (1.6) into
the Arrhenius form [Eq. (1.4)]. Note that the detailed balance condition is satisfied
by construction: apart from the extra barrier B,, which cancels out in Eq. (1.2), the
prescription is equivalent with Metropolis like rates in equilibrium Monte Carlo simu-
lations [36].

If only one characteristic barrier B, is present in the system, the factor exp [—B,/(kgT)]
appears in all rates and can be taken to re-define the time scale. In general, though,
several such barriers may apply to different types of events. For example, the diffusion
of a free adsorbate particle on the substrate may be faster than the diffusion along
a step edge. Consequently, a higher barrier would have to be assumed for the latter
process. However, this cannot be realized by the simple expression in Eq. (1.6) which
yields B, for both processes since AH = 0, cf. Fig. 1.6(a).

In a generalized version of the Kawasaki-type energy barriers, the single parameter
B, in Eq. (1.6) is thus replaced by two distinct barriers B; and By which correspond
to the initial and final system configuration:

E,=max{B;,B;+ AH}. (1.7)

Again, AH = E; — E; denotes the energy difference between initial and final binding
state. With this modification it is possible to assign different energy barriers to the two
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Figure 1.6: Illustration of Kawasaki-type energy barriers. The energies F;, E; and F;
of two neighboring binding states and the corresponding transition state are indicated,
respectively. In this example, F; could correspond to the binding energy of a free
adatom on the surface whereas Ey marks the binding energy of the adatom at a step
edge. (a) In the simple version [Eq. (1.6)] the barrier for free surface diffusion and
diffusion along the step edge is the same, that is B,. (b) In the generalized version [Eq.
(1.7)] the barrier for free surface diffusion is B; whereas a higher barrier By holds for
step edge diffusion.

situations mentioned above, see Fig. 1.6(b). Note that Arrhenius transition rates with
the modified energy barriers [Eq. (1.7)] still satisfy the detailed balance condition as
the barriers B; and By cancel out in Eq. (1.2).

1.4.3 Simplifications in the Model Design

Frequently, further simplifying assumptions are made in the simulations in order to
reduce the computational effort [18]. In some cases certain processes may be excluded
explicitly from the simulation if the associated time-scales are larger by orders of mag-
nitude than those for other processes. For instance, depending on the material species
and the experimental conditions in the MBE environment, the typical waiting time for
a desorption event of an atom may be large compared to the time needed to deposit an
entire monolayer (ML) of adsorbate material. For example, at an MBE growth temper-
ature of 500°C the macroscopic sublimation rate of Si is of the order of 1071 MLs™! [3].
Thus, assuming typical MBE deposition rates of 1073 — 1 MLs™!, obviously desorption
of Si atoms is negligible at this temperature and could be omitted in a simulation of Si
growth. On the other hand, for very small particle fluxes or high temperatures adatom
desorption becomes clearly relevant: the crystal does not grow but rather evaporates
in this case, and desorption should thus be incorporated in the simulation.

The detachment of atoms from terrace edges or small islands is also expected to occur
only with a very small rate if the corresponding binding energies are large. Hence, in an
extreme case one might consider all detachment processes forbidden in the simulation
(i.e. their rate is set to zero) which reduces the number of possible events consider-
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ably [18]. The justification of this simplification is again based on the comparison of
the relevant time scales which are essentially determined by the incoming flux and the
substrate temperature. For example, one could argue that in the presence of a strong
particle flux, two-dimensional islands on the surface would grow rapidly by capturing
new adatoms, and thus atoms at the island edges would be enclosed before they could
possibly detach. Note that the implementation of irreversible attachment in the sim-
ulation violates the detailed balance condition as only one of the rates in Eq. (1.2) is
NonN-Zero.

In many cases, one is interested in the morphology of adsorbate islands during the
initial stages of growth for which the adsorbate coverage is less than one monolayer
[4,6]. In this so-called submonolayer regime, the growing islands are essentially two-
dimensional, that is they have a thickness of one atomic layer. At low coverages most of
the deposited atoms will land on the substrate, only a small fraction will be deposited
on top of existing islands. An atom which lands on top of an island will start diffusing
until it reaches the island edge. At the edge the adatom may jump down or—in the
presence of a high Schwoebel barrier (cf. Sec. 1.2.3)—will be reflected. In the latter
case, the atom continues moving on top of the island. In the extreme case of an infinite
Schwoebel barrier the atom will be reflected each time it encounters the island edge
and thus never leaves the upper terrace. A simulation which focuses only on the first
layer of the islands could neglect the movement of second layer atoms as they do not
contribute to the growth of the base layer.

1.5 Implementation of the Monte Carlo Kinetics

A straightforward implementation of the stochastic Monte Carlo kinetics in a simulation
algorithm could be realized as follows [5]: (i) select one of the possible events k at
random with equal probability, (ii) calculate or look up its rate Ry, and (iii) accept
(perform) the event k with probability Ry/Rpaz, Where Ry, is the largest of all rates
of possible events in the model.

However, this algorithm is not very efficient for the simulation of crystal growth [5]
as the acceptance probabilities for diffusion or desorption events can become rather
small due to the exponential decrease of the Arrhenius rates [Eq. (1.4)]. Thus, es-
pecially at low temperatures a large fraction of selected events will be rejected, and
possibly time-consuming computations have been performed for the determination of
the corresponding rates without changing the system at all [18].

1.5.1 Rejection-Free Method

To circumvent the problem of small acceptance probabilities we use a rejection-free
(continuous-time) algorithm in our simulations [36]. Here, in each Monte Carlo step
an event k is selected according to its rate Rj and performed. Thus, the number of
non-modifying steps in the simulation is zero, that is we never reject any moves at all.
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The use of a rejection-free algorithm involves some additional computational effort:
as the re-calculation of all the rates from scratch every time would be very expensive we
have to keep track of the possible events and corresponding rates during the simulation.
We then re-calculate only the rates of those events which are affected by some given
event. The required bookkeeping effort may slow down the simulations to some extent.
However, the gained speedup caused by the fact that no Monte Carlo steps are wasted
usually outweighs the extra complexity of the algorithm, especially for simulations at
low temperature [36].

In continuous-time Monte Carlo simulations the simulated physical time is not di-
rectly proportional to the number of MC steps since for different processes the associ-
ated time intervals have different lengths [5]. Under the assumption that no two events
occur at the same time and that the sequence of events forms a Poisson process, it
follows [46] that the time interval 7 between two successive events (waiting time) is
exponentially distributed with probability density P(r) = Rexp(—RT) and average
value (1) = 1/R. Here, R denotes the sum of the rates of all possible events for a given
system configuration.

In the simulation, exponentially distributed time intervals are generated from a
uniformly distributed random variable through appropriate transformation of the cor-
responding probability densities [36]. Accordingly, the time increment between two
Monte Carlo steps is given by

Inp

R

where p is a uniformly distributed random number with p €]0, 1].

T =

(1.8)

1.5.2 Simulation Algorithm

At the beginning of a simulation run the rates of all possible microscopic events,
i.e. deposition, desorption, and diffusion of particles, have to be calculated: particle
deposition occurs with a rate R4 which follows from the given particle fluxes, and
for diffusion and desorption processes we assume an Arrhenius dynamics with rates
R, = v; exp[—FE,,;/(kgT)], cf. Sec. 1.2.3. Subsequently, the events and the correspond-
ing rates are stored in an appropriate data structure, and the total rate R = Rq+) . R;
is calculated. Following the work by Ahr [11] we use a complete binary tree for the
storage and selection of particular events.
One iteration of the Monte Carlo algorithm then consists of the following steps:

1. Draw an event k according to its probability px, = Ry/R and perform it.

2. Re-calculate the rates of all affected events and the total rate R. Update the
search tree accordingly.

3. Increase the system time by a time interval 7 which is given by Eq. (1.8).
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4. Go to step 1 unless some condition to terminate is fulfilled (e.g. a certain amount of
physical time has passed or a maximum number of particles has been deposited).

Usually, interactions in a lattice gas model are only short-ranged (e.g. nearest neigh-
bor or next nearest neighbor particle interactions). Then the number of events whose
rates have to be re-calculated in step 2 is small, e.g. of order O(1).

1.6 Summary

In this chapter we have discussed the combined use of kinetic Monte Carlo simulations
and discrete lattice gas models in the computational treatment of epitaxial crystal
growth. A major advantage of this approach is the possibility to account for the relevant
atomistic processes at the surface (deposition, diffusion, desorption of adatoms), while
at the same time MBE relevant time scales of seconds or minutes can be covered in
the simulation. The time scale enhancement compared to, e.g., molecular dynamics
simulations is essentially due to the implementation of appropriate short cuts in the
treatment of rare thermally activated diffusion or desorption events within the stochastic
Monte Carlo method.

Depending on the specific purpose of the simulation, a variety of aspects has to be
considered in the construction of the lattice gas model: among others, the choice of
an appropriate lattice structure, the incorporation of the relevant atomistic processes,
and the assignment of correct transition rates to the considered events are particularly
important in this context.

In the absence of sufficient input from experimental studies or DFT calculations the
energy barriers which enter the Arrhenius rates of thermally activated processes have to
be approximated. In this context, the popular bond counting approach and the concept
of Kawasaki-type energy barriers have been discussed. Finally, the implementation of
the Monte Carlo kinetics by means of a rejection-free simulation algorithm has been
described.

In the following, we will present applications of the lattice gas and kinetic Monte
Carlo method in different situations of epitaxial growth. A lattice gas model which
aims at the faithful description of (001) surfaces of II-VI semiconductors as e.g. CdTe
or ZnSe is introduced in the next chapter. The model accounts for the correct zincblende
structure of the considered material systems, as well as relevant surface reconstructions.
Using kinetic Monte Carlo simulations we will show in Chap. 3 that the experimentally
observed temperature dependence of growth rates in atomic layer epitaxy of CdTe can
be explained within the framework of this model.

In Chap. 4 we focus on the formation of nanostructures during submonolayer het-
eroepitaxy of two different adsorbate materials on a given substrate. One aim is to
determine the influence of kinetic effects on the morphology of growing islands. There-
fore kinetic Monte Carlo simulations of a model ternary system are performed, using a
simple cubic lattice gas with a small number of interaction parameters. In order to allow
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for a comparison with results obtained by an off-lattice simulation method the lattice
gas model will be refined later by fitting the model parameters to a set of off-lattice
energy barriers.
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Chapter 2

Kinetic Model of IT-VI(001)
Semiconductor Surfaces

Research on II-VI compound semiconductors (e.g., CdTe, ZnSe, BeTe, ZnO, CdS and
others) has become a field of growing interest during the past years [47]. In particu-
lar, their potential applicability in electronic or optoelectronic devices has made them
a promising material class from the technological point of view. For example, wide
bandgap compounds such as BeTe allow for the development of green or blue light-
emitting diodes (LED) [48]. On the other hand, incorporation of Mn in II-VI com-
pounds results in diluted magnetic or even ferromagnetic semiconductors with unique
magneto-optic or magneto-transport properties which may be used in magnetic storage
devices [47].

A wide range of topics is currently under investigation, including the formation and
optical or electronic properties of self-assembled quantum dots, synthesis and characteri-
zation of nanocrystals [49], or the injection of spin-polarized electrons into non-magnetic
semiconductors. The latter is essential for the development of future electronic devices
relying on the deliberate manipulation of electron spins (so-called spintronics) [50].

High-quality samples of II-VI materials required for practical devices are usually
prepared by epitaxial growth techniques such as MBE, cf. Sec. 1.1. In order to obtain
structures which satisfy the device-quality demands a detailed knowledge of the atomic
mechanisms involved in the growth process is indispensable. In particular, the surface
structure of a given material and its dependence on experimental conditions play a
decisive role during the growth of thin films with sharp interfaces.

In the case of II-VI epitaxy surface reconstructions have a considerable impact
on the growth process, and various experimental studies have addressed the question
which reconstructions are present [51-54] and how experimental control parameters
as temperature or particle flux influence the reconstructions [54-56]. For example, a
temperature driven reordering of the surface atoms has been observed at Cd-terminated
CdTe(001) surfaces [51,54].

The majority of the cited studies has focused on the properties of CdTe and ZnSe,
where a fairly complete qualitative overview over the surface phase diagram has been
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obtained, see e.g. [57,58] for a review on the surface structure of CdTe. Additional
knowledge about the chemical bonding of surface atoms and ground state energies of
several reconstructions has been gained from density functional theory (DFT) calcula-
tions for both CdTe [22,23] and ZnSe [20,21,59]. For example, the results indicate that
the two relevant surface reconstructions for Cd-terminated CdTe(001) surfaces are en-
ergetically nearly degenerate [22]. Within the framework of two-dimensional lattice gas
simulations in thermal equilibrium it has been demonstrated that the above mentioned
reordering of CdTe(001) surfaces can be traced back to the very small energy difference
between the two reconstructions [11,60,61].

In the following we will investigate the influence of surface reconstructions under
non-equilibrium growth conditions. We study a three-dimensional lattice gas model
of II-VI(001) surfaces which extends the concepts developed by Ahr [11]. The (001)
surface is of particular technological relevance as it frequently serves as substrate surface
for epitaxy of II-VI compounds and heterostructures. We will focus on the description of
CdTe(001), though many aspects of the considerations apply to other II-VI compounds
like, e.g., ZnSe or ZnTe. Before presenting the model in Sec. 2.3 a brief review over
known properties of CdTe(001) surfaces is given in the following.

2.1 Lattice Structure of CdTe

Like many other binary II-VI compounds CdTe crystallizes in the zincblende structure
which basically consists of two interpenetrating face-centered cubic (fcc) lattices [39].
Each of the two sublattices is occupied by either only metal (Cd) or non-metal (Te)
atoms. In the bulk, an atom of a given type is surrounded by four nearest neighbor
(NN) atoms of the opposite type which form the corners of a tetrahedron, see Fig. 2.1.

Figure 2.1: Unit cell of the
zincblende structure of a CdTe crys-
tal. Cd atoms are shown in dark
gray, Te atoms are light gray. Bonds
between nearest neighbor atoms are
drawn as thick lines. a denotes the
lattice constant.

[001]

[010]

a\b
[100]

If the CdTe crystal is viewed along the [001] direction, an alternation of Cd and Te
layers can be observed. The ideal (001) surface would be obtained by merely cutting the
crystal parallel to one of these layers [57]. In the absence of relaxation or reconstruction
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of the surface atoms the surface would thus be terminated by either a full monolayer
(ML) of Cd or a full ML of Te, arranged in a two-dimensional square lattice of period
a/v/2. Here, a = 0.648nm denotes the lattice constant of the full three-dimensional
zincblende structure, see Fig. 2.1.

For both Cd- and Te-terminated surfaces each atom in the topmost layer has two
dangling bonds. The projection of these onto the (001) surface plane define the [110]
direction (Cd dangling bonds) and the [110] direction (Te dangling bonds), respectively.

2.2 Reconstructions of CdTe(001) Surfaces

The geometric structure of a CdTe(001) surface, derived experimentally from, e.g., low
energy electron diffraction (LEED) [53] or scanning tunneling microscopy (STM) [62]
measurements, deviates from the ideal one where all surface atoms retain their bulk
positions [57,58]. This is due to the fact that, in general, the creation of a surface is
energetically unfavorable and atoms at the surface attempt to reduce the surface excess
energy by relaxation and reconstruction. While relaxation indicates the displacement
of surface atoms along the surface normal, reconstruction includes lateral movements
of the surface atoms, the incorporation of adatoms, or the creation of vacancies or
dimers. For compound semiconductors like CdTe surface reconstructions are a common
phenomenon and the stability of a given surface structure can be estimated by electron
counting rules [63]. According to these, the number of available electrons in the surface
layer should be distributed such that the anion (Te) dangling bonds at the surface are
fully occupied whereas the cation (Cd) dangling bonds remain empty: the energy levels
of the cation dangling bonds are located in or close to the conduction band whereas the
ones of the Te dangling bonds are in or close to the valence band. Thus, the surface
energy is lowered when an electron is transferred from a cation dangling bond to a Te
dangling bond.

Figure 2.2 illustrates the relevant surface reconstructions of CdTe(001) which comply
with the electron counting rule and are indeed observed experimentally. Figure 2.3
shows a schematic phase diagram of the surface structure as a function of temperature
and particle fluxes in a typical MBE environment, following [57].

Under vacuum conditions and in the absence of particle deposition, the CdTe(001)
surface is Cd-terminated. The surface is characterized by vacancy structures with lim-
ited Cd coverage 6“1 < 1/2. At low temperatures one finds a dominant ¢(2 x 2)
reconstruction which corresponds to a checkerboard-like occupation of the available
square lattice sites [Fig. 2.2(left)]. Frequently, one observes a contribution of a (2 x 1)
structure where the Cd atoms arrange in rows along the [110] direction which alternate
with rows of vacancies [Fig. 2.2(middle)]. Note that in both arrangements lateral Cd
neighbors along [110] do not occur as this would imply a local concentration of pos-
itive charges which is energetically extremely unfavorable. DFT calculations for zero
temperature and §°Y = 1/2 have shown that the ¢(2 x 2) ordering has a slightly lower
surface energy than the competing (2 x 1) structure [22,23]. The calculated energy
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Figure 2.2: Schematic representation of the prevalent reconstructions of CdTe(001).
These are the ¢(2 x 2) and (2 x 1) vacancy structures for the Cd-terminated surface
(left and middle) and the (2 x 1) arrangement of Te dimers for the Te-terminated
surface (right). Filled/empty circles represent Cd/Te atoms, their size corresponds to
the height: the smaller the circle, the deeper the atom is buried. Crosses mark missing
Cd atoms in the topmost layer, shaded areas denote the surface unit cells.

difference of AE ~ 16 meV per (1 x 1) surface unit cell’ accounts for spontaneous lo-
cal transitions between the two reconstructions which were observed experimentally by
STM measurements at room temperature [62,64].

For temperatures 7' 2 570 K the surface is dominated locally by the (2 x 1) struc-
ture [54]. Despite the fact that significant sublimation sets in even below 570 K, the
temperature driven reordering has been discussed in terms of an order-disorder phase
transition in effective equilibrium by means of planar lattice gas models [11,60,61]: at
low temperature, there is a long-range ordered Cd-rich phase with a ¢(2 x 2) reconstruc-
tion. At a critical temperature the Cd atoms lose their long-range order and arrange
preferentially in a (2 x 1) pattern. The results are consistent with the experimental
observation of small (2 x 1) domains which indicate a high degree of disorder [54].

In the presence of a stationary Cd flux the ¢(2 x 2) structure can be stabilized at
temperatures above the transition in vacuum [51,57]. On the other hand, a steady
deposition of Te stabilizes Te-terminated surfaces [51,57]: at relatively small fluxes
and high temperatures a Te coverage 6™ ~ 1 is observed, hence there is no vacancy
structure as for Cd-terminated surfaces. The Te atoms arrange in rows of dimers along
the [110] direction at the surface, corresponding to a (2 x 1) reconstruction pattern [Fig.
2.2(right)].

At high Te flux and low temperatures Te coverages 0™ ~ 3/2 with a (2 x 1) surface
symmetry are observed, cf. Fig. 2.3. The evaporation of terminating Te layers after
ending deposition has been studied in different temperature regimes and the analysis
of the corresponding Arrhenius plots suggests the presence of a very weak binding of
excess Te [51,57,58]. It has been hypothesized that additional Te atoms are introduced

!Similar calculations for a Zn-terminated ZnSe(001) surface yield a higher value of AE ~ 30 meV
per (1 x 1) unit cell [20,21].
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Figure 2.3: Schematic surface
ch phase diagram of CdTe under typ-
c(2x2)~(2x1) 0.5 ML Cd pure c(2x2) ical MBE conditions according to
[57]. Shown are the prevalent re-
£ constructions and the correspond-
g | ing surface coverage as function of
g (&) LML Te temperature and particle flux. The
‘ middle part corresponds to vacuum
Te | (2x1) 1.5 ML Te conditions, upper and lower part
(2x1) 1 ML Te ; ) )
! display the situation under Cd and
2%0 ‘ 3‘00 ‘ 3,‘50 ‘ Te flux, respectively.
T(°C)

into dimers, thus forming trimers [51,55,57]. On the contrary, high resolution STM
images of the (2 x 1) Te-stabilized surface [65] indicate the presence of physisorbed Te,
molecules on the surface which might also account for Te coverages 6™ > 1. However,
the precise mechanism of binding the excess Te to the surface remains unknown [58].

The presence of excess Te is of particular importance, e.g., for the explanation of the
temperature dependent growth rate of CdTe in atomic layer epitaxy (ALE), cf. Chap.
3. In principle, a growth rate of one complete layer of CdTe per ALE cycle could be
achieved. However, in a wide range of temperatures, one observes a growth rate of at
most 1/2 layer per ALE cycle [66,67]. This limitation reflects the restricted coverage of
Cd-terminated surfaces. Only for sufficiently low temperatures one finds the expected
rate of approximately one layer per cycle, with a temperature driven, sudden transition
from one regime to the other [66,67]. In the lattice gas model presented below we will
account for additional weakly bound Te atoms in an effective way, and we will explain
how the presence of these weakly bound atoms allows to overcome the growth rate
limitation.

2.3 Lattice Gas Model

In the following we describe the three-dimensional lattice gas model of II-VI(001) semi-
conductor surfaces which accounts for both the correct zincblende structure of the
material systems and the relevant surface reconstructions of Cd- and Te-terminated
surfaces.

2.3.1 Representation of the Crystal Structure

In our model we exclude the incorporation of defects or vacancies into the crystal. Then
the zincblende structure (Fig. 2.1) can be represented in a solid-on-solid (SOS) manner,
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cf. Sec. 1.3.1. We use cartesian coordinates where the [110], [110] and [001] directions
define the z-, y- and z-axis, respectively. If the zincblende lattice is projected onto the
x-y plane in the z-direction, the images of all atoms are located on a square lattice (cf.
Fig. 2.4) with lattice constant a/(2v/2). Again, a denotes the lattice constant of the full
zincblende structure, cf. Fig. 2.1. If we measure all distances in appropriate units and
assume that the origin of our coordinate system is at the center of a Te atom then the
images of Te atoms lie at (7, ) in the z-y plane with integer values 7,7 and i + j even.
Conversely, the images of Cd atoms are located at (', j') with ¢’ + j" odd, see Fig. 2.4.

In our SOS representation the (001) surface now is described by a two-dimensional
2N, x 2N, array h(z,y) of integers. Each value h(z,y) corresponds to the maximal
z-coordinate or, loosely speaking, height of the column of atoms whose images lie at
(x,y), measured in units of the spacing between a Cd and a Te layer.

An atom in the zincblende lattice may have at most four binding partners, see Fig.
2.1. Due to the SOS condition, each atom must have at least two bonds to NN atoms
of the opposite species in the layer below: an atom with only one bond would form an
overhang which is not allowed in an SOS model.

An atom with exactly two bonds may be removed from the crystal without violating
the SOS condition and is considered as mobile in the following. A Cd atom at (z,y)
is bound to Te atoms at (z,y & 1) in the layer below and can be bound to Te atoms
at (z £ 1,y) in the layer above, see Fig. 2.4. The atom is mobile if it has no bonds to
Te atoms in the layer above which implies h(x,y) > h(x £ 1,y). For example, the Cd
atom labeled “A” in Fig. 2.4 is mobile. For a Te atom at (2’,y’), a similar consideration
yields h(2',y’) > h(2’,y" £ 1) as condition for mobility, which is fulfilled for, e.g., the
Te atom labeled “D” in Fig. 2.4.

On the other hand, removing an atom with three or four bonds would create an
overhang or a vacancy, respectively, and is thus forbidden: the corresponding atom is
considered as immobile. Examples for immobile atoms in Fig. 2.4 are the Cd atom “B”
with four bonds and the Te atom “E” with three bonds.

Similarly, an atom may be deposited only at sites where it forms exactly two bonds
to the atoms in the layer below. Deposition at sites with only one bond would create
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an overhang whereas the formation of three or four bonds during deposition implies
the presence of an overhang or a vacancy, respectively, which do not occur in the SOS
model. As a consequence, the diffusion process of a mobile atom which is removed from
one site and deposited at another cannot change the number of chemical bonds in the
system.

An atom can be deposited at a site if the SOS condition is fulfilled and the atomic
species matches the character of the site. At a Cd site at (z,y), the SOS condition
requires h(z,y — 1) = h(z,y + 1) and h(x,y) < h(z,y £ 1). A Te site at (2/,y’) can
be occupied if h(x’ — 1,y") = h(z' + 1,y") and h(2',y’) < h(2’ £ 1,%y’). The deposition
of an atom at (z,y) is performed by setting h(x,y) < h(x,y) + 4. Similarly, setting
h(z,y) < h(z,y) —4 removes the atom at (z,y). In Fig. 2.4 for instance sites “C”, “G”,
and “H” are available for Cd deposition whereas “F” can be occupied by a Te atom.

The positions of the atoms in one layer of the zincblende lattice lie on a square
lattice. Note that the distance between nearest neighbor atoms in this square lattice
(denoted as lateral nearest neighbors in the following) is twice the distance between
neighboring images of atoms in the projection of the whole crystal onto the x-y plane,
see Fig. 2.4. Accordingly, lateral nearest neighbors are separated by a/v/2 with a from
above.

In addition to h(z,y) which basically describes the positions of the atoms a second
array d(z,y) is used to store the reconstruction of Te terminated surfaces. The array
value d(z,y) denotes the dimerization of a Te atom by giving the direction in which
the dimer bond is formed: d(x,y) = £1 corresponds to a Te atom at (x,y) which is
shifted toward the lateral NN Te atom at (z,y + 2), see Fig. 2.5, whereas d(z,y) = 0
corresponds to an undimerized Te atom. A similar scheme has been applied by Rockett
et al. [68,69] for the representation of Si dimers in simulations of epitaxial growth on
Si(001) surfaces. Note that Te dimers are always oriented along the y-direction. A Te
dimer is thus characterized by a d value of +1 for one Te atom and —1 for the other.
As a consequence, a Te atom can be involved in at most one dimer. Te dimerization
introduces additional degrees of freedom to the model without changing the topology
of the lattice.

2.3.2 Energetics

A faithful representation of the crystal energetics would certainly require the imple-
mentation of long-range interactions as well as interactions which depend on the simul-
taneous occupation of three or more lattice sites. In order to make the simulation of
our model feasible we make the reasonable assumption that the dominant contribution
to the total binding energy stems from the chemical bonds between nearest neighbors
of Cd and Te, and further (effective) short-ranged pair interactions between lateral
nearest neighbors and lateral diagonal neighbors in the same layer, see Fig. 2.5. The
interaction strengths are chosen such that essential properties of the system are repro-
duced, e.g., the termination of the surface with Cd under vacuum conditions and the
reconstructions of Cd- and Te-terminated surfaces, see Fig. 2.2.
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Figure 2.5: Particle interactions
in the lattice gas model as de-
scribed in the text. Filled/empty
circles correspond to Cd/Te atoms.
Te dimers are represented by
smaller distances between lat-
eral nearest neighbors in the y-
direction.

Every Cd-Te bond in the system contributes an energy €. < 0, the sum of which
representing the greatest part of the total binding energy of the crystal. The crystal
structure is further stabilized by effective, isotropic intra-layer interactions 54 and e®
between lateral nearest neighbor pairs of two immobile Cd or Te atoms, respectively. For
pairs of one mobile and one immobile atom of the same species we introduce interactions
efd (Cd-Cd) and &® (Te-Te) which shall also be isotropic.

As in the planar lattice gas models studied in [60,61] an infinite repulsion excludes
lateral NN pairs of mobile Cd in y-direction at the surface, owing to the fact that
neighboring Cd atoms in [110] direction are not observed in the ¢(2 x 2) and (2 x 1)
reconstructions (cf. Fig. 2.2). An attractive interaction €59 < 0 between lateral NN of
mobile Cd in z-direction and a competing interaction €4 < 0 between lateral diagonal
neighbors favor the (2x 1) or ¢(2x2) arrangement, respectively. As demonstrated in [60,
61], the temperature dependence of the Cd reconstruction is reproduced qualitatively
if [e$Y] < 2 [e§Y| holds.

Lateral NN pairs of mobile Te which do not form a dimer contribute an energy

el < 0, whereas the energy /9 < €® is assigned to a pair which forms a dimer,

m
reflecting the energy gain due to dimerization. Pairwise interactions €19 of neighboring
dimers in z-direction favor their arrangement in rows along [110], corresponding to a

(2 x 1) surface symmetry.

2.3.3 Reservoir of Weakly Bound Te

In addition to Te particles at regular SOS lattice sites, we include the capture of Te
atoms in a weakly bound state, denoted as Te* atoms in the following. The energy
contribution of each Te* atom is ¢* with |¢*| < 2]|e.|. The latter accounts for the fact
that the binding of a Te* is weaker compared to that of an isolated mobile atom at a
regular lattice site which has two Cd-Te bonds of strength e..

Following an earlier hypothesis [51,57] these weakly bound Te* might be associated
with atoms which occupy Cd sites temporarily and hence form a Te trimer [11]. How-
ever, as already mentioned in Sec. 2.2 the precise nature of the Te* is still unknown. In
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this work, we abandon the assumption of Te trimers and instead include Te* particles
in an effective fashion.

We introduce a reservoir of Te* with n* = 0* N, N, particles, where N, N, is the
number of atoms in one complete bulk layer of Te. The total reservoir occupation 6* is
composed of two parts: 6* = 0+ 0" .. The quantity 6} . accounts for the fraction of
Te* which are localized on top of mobile Cd and thus neutralize the infinite repulsion
between Cd lateral NN in y-direction [11]. This effect will be discussed in more detail
in Sec. 2.3.5. Localized Te* are represented by a two-dimensional 2N, x 2N, array
[(x,y): a Te* atom which sits on top of a Cd atom at (z,y) corresponds to l(x,y) = 1,
otherwise [(x,y) = 0.

On the contrary, 6 , corresponds to the remaining Te* atoms which are highly
mobile and no assumption is made about their precise location and the nature of the
binding. In general, during our simulations 6;, . < 67, , holds for most of the time.

For the calculation of the overall Te coverage besides mobile Te atoms at regular
lattice sites also localized and mobile Te* atoms are taken into account. According to
the experimentally observed range of Te coverages [57,58] the total reservoir occupation
thus is restricted to values 0 < 6* < 1/2. In our model we will exclude larger values by
a simple cut-off: if 6* has reached its maximum value 1/2 all processes leading to an
increase of #* are forbidden, i.e. their rate is set to zero.

We furthermore assume that an attractive pairwise interaction between Te* atoms
stabilizes the reservoir. In a mean field fashion we represent the latter by an energy
contribution e 8* n* with parameter ¢ < 0.

In summary, the total energy of a given configuration can be written as

Cd ,,Cd Te , Te Cd ,,Cd Te , Te

Cd ,,Cd Cd ., Cd Te , T

+ Ep Ny +Ed Nq +€menme
Td  Td Td Td
+ g ny +e,n,

+ e'n"+e, 60 07, (2.1)

which depends on the number of Cd-Te bonds (n.), bulk lateral NN pairs of Cd (ng?)
and Te (nf®), lateral NN pairs of one mobile and one immobile Cd (n{?) or Te (nj°),
lateral NN and NNN pairs of mobile Cd at the surface (n$4 and n$?), and lateral NN
pairs of mobile Te not forming a dimer (n}°). The number of Te dimers is denoted as
nid, whereas nl counts pairs of neighboring Te dimers along the x-direction. The last
line in Eq. (2.1) accounts for the contribution of the Te* reservoir which is occupied by
n* atoms. Additionally, we consider only surface configurations where the number of

lateral y-neighbors of mobile Cd atoms without a localized Te* atom is zero.

2.3.4 Dynamics and Growth

As we are interested in the non-equilibrium dynamics of the system under sublimation
or growth conditions, specifying the energy of a given configuration is not sufficient. In
fact, only the energy contribution of a few active layers which contain mobile particles
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will be relevant in the following. The kinetics of the system is governed by the energy
barriers which have to be overcome in thermally activated transitions between the
different configurations, cf. Sec. 1.2.3.

So far, the available experimental data and first principles results are not sufficient
for a systematic fit of our model parameters. In particular, reliable evaluations or
estimates of, e.g., diffusion barriers are not available, apart from very few exceptions.
Therefore, we do not aim at a precise quantitative description of the CdTe(001) surface.

Nevertheless, essential features can be deduced from experimental data and physical
insight. Important qualitative features of the model turn out to be quite robust against
variations of the parameters, as long as they comply with some essential conditions. In
our simulations we will use a parameter set which is based on previous investigations
of related models and their comparison with experimental findings [11,70]. There, the
observed temperature dependent structure of Cd-terminated surfaces under step-flow
sublimation has been reproduced qualitatively by appropriate choice of the parameter
set. Furthermore, a semi-quantitative match of, e.g., the reordering temperature and
macroscopic sublimation rates has been achieved [11,70].

The microscopic processes incorporated in our kinetic Monte Carlo simulations are
deposition of adatoms, diffusion and desorption of mobile atoms, transitions of Te atoms
between regular lattice sites and the reservoir, and desorption of reservoir atoms.

We consider only the deposition of single atoms, although in experimental systems
Te probably arrives as binary molecule at the surface. The deposition of a Cd or Te
atom occurs via an incorporation process: first, the particle type and a lattice site
are chosen randomly. Then, a search is performed within an incorporation radius r;,.
for the site with the lowest height where deposition is possible [4,6]. If this is, for a
Cd atom, a site with a neighboring mobile Cd atom in y-direction, deposition is only
possible if there is either a localized Te* on top of the Cd neighbor, already, or a mobile
Te* attaches to the impinging Cd. The latter occurs with probability 07 .

For a Te atom proper adsorption sites include, besides regular Te sites, mobile Cd
atoms with no localized Te* attached as well as empty Cd sites. In the latter two cases,
the Te atom becomes a mobile reservoir Te* with probability 1 — 26* which is zero
for 6* = 1/2 as required. With probability 26* deposition is rejected and the particle
evaporates. As a consequence, the reservoir occupation is limited to values 0* < 1/2.

The rates for all thermally activated processes are of the Arrhenius form

E
R = avexp (_k ?F)’ (2.2)
B

where E, and v denote the activation energy and attempt frequency for a given process,
respectively. The prefactor o accounts for rates which depend explicitly on the reservoir
occupation, see Table 2.1 and the discussion in Sec. 2.3.5.

The desorption of mobile atoms from regular lattice sites or mobile Te* from the
reservoir requires an activation energy F, = AH where AH denotes the energy differ-
ence between the initial and the final system configuration and is given by Eq. (2.1).
As in the modeling of a deposition process we consider only desorption of single atoms,
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process Q v E,
Cd or Te diffusion 1 v, max{B,, B,+ AH}
Cd diffusion (Te* involved)  6F ., v, max{B,, B,+AH}
Cd or Te desorption 1 v, AH
Te — Te! . 1—-20" v, max{B,, B*+AH}
Te — Tej . 1—-20* v, max{B,, B*+AH}
Ter ., — Te r o VY max{B*,B,+ AH}
Tef . — Te 1 v* max{B*, B, + AH}
Te* , desorption 0 UV AH

Table 2.1: Thermally activated processes and corresponding values of attempt fre-
quencies v, prefactors a and activation energies F, used for calculating the Arrhenius
rates [Eq. (2.2)] as described in the text.

neglecting the fact that Te probably evaporates from the surface in the form of Te,
molecules, in reality.
Diffusion of mobile atoms at the surface and transitions of Te atoms between regular

SOS sites and the reservoir are modeled using Kawasaki-type energy barriers (cf. Sec.
1.4.2)

E,=max{B;,B; + AH}. (2.3)

Here, the barriers B; and By, corresponding to the initial and final configuration, re-
spectively, depend on the type of process, and the energy difference AH is, again, given
by Eq. (2.1).

For all diffusion steps we use equal barriers B; = By = B, in Eq. (2.3) similar to ear-
lier studies [11,70]. A mobile particle at site & = (z, y) may diffuse to all available lateral
NN or lateral diagonal neighbor sites @ = (2/,y') in the same layer provided the SOS
and other conditions are fulfilled. This corresponds to the following set of hopping vec-
tors AZ = & — & AZ € {(2,0),(-2,0),(0,2),(0,-2),(2,2),(-2,2),(2,-2),(-2,-2)}
For example, the Cd atom “A” in Fig. 2.4 may jump to one of the lateral NN sites
“C” or “H”, corresponding to hopping vectors AZ = (—2,0) and AZ = (2,0), respec-
tively, whereas the Te atom “D” may jump to site “F”, corresponding to Az = (0, 2).
With the above defined set of hopping vectors it is not yet possible for a particle
to cross a step without violating the SOS condition. For example, in Fig. 2.4 the
nearest site to “A” available for Cd deposition on the lower terrace is “G” which cor-
responds to a hopping vector AZ = (—1,3). By symmetry considerations we obtain
{(3,1),(-3,1),(3,—-1),(—3,-1),(1,3),(—1,3),(1,-3), (—1,—3)} as the minimal set of
additional hopping vectors which enable the crossing of steps of one monolayer height
oriented in arbitrary direction [11]. If steps higher than one monolayer were to cross we
would have to incorporate further hopping vectors which would increase the complexity
of the model significantly. Since steps of two or more monolayers height rarely occur in
our simulations, neglecting diffusion across such high steps is not a severe restriction.

A mobile Te atom at the surface may enter the Te* reservoir provided the reservoir
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is not full, that is #* < 1/2. The assumption that Te* atoms are less strongly bound
than Te atoms at regular surface sites implies B; = B, and By = B* < B, in Eq. (2.3)
for the transition of a Te atom into the reservoir. Conversely, B; = B* and By = B,
hold for the opposite process, see Table 2.1.

For all diffusion processes and the desorption of mobile atoms at regular surface
sites we assume a common attempt frequency v, = 102 s7! whereas a lower frequency
v* is used for the transition of Te* atoms to regular Te states and the evaporation of
mobile Te*. This choice is based on the reasonable assumption that Te* atoms reside in
potential energy minima which are much shallower than those for Te atoms at regular
surface sites [7]. According to transition state theory the attempt frequency v* which
corresponds to the harmonic oscillation frequency at the local energy minimum will
become smaller [29,38]. A similar argument has been used by Itoh [71] in order to
motivate an attempt frequency of weakly bound arsenic as low as 10®s~! in simulations
of InAs(001). In our simulations, the choice of a lower frequency v* can be further
motivated by comparison with experimental observations as will be discussed in Chap.
3.

The formation or breaking of dimers from lateral NN pairs of mobile Te atoms is
taken into account implicitly. A diffusion hop of a Cd atom onto a Te dimer, for instance,
requires the breaking of the dimer which has to be considered in the energy balance AH
of the process. The deposition of a Cd atom will always break all underlying Te dimers
involved. On the other hand, dimer formation is assumed to occur instantaneously,
whenever it is possible due to the resulting energy gain. A similar simplification has been
used before for the description of Si-dimerization on Si(001) surfaces [68,69]. Hence, if
any event results in two undimerized Te atoms which are in the correct configuration for
forming a dimer pair, a dimer bond will be created immediately. If there is more than
one possible dimerization, the configuration with the lowest total energy [Eq. (2.1)] will
be chosen.

2.3.5 The Role of Te* Atoms

The existence of a weakly bound state for Te atoms is essential to facilitate growth in
our model. For example, consider a Cd-terminated surface with ¢(2 x 2) reconstruction
and maximum coverage §“¢ = 1/2. Clearly, deposition of Te at a regular lattice site
would violate the SOS condition. On the other hand, the incorporation of additional
Cd is impossible due to the infinite repulsion of lateral nearest neighbors in y-direction,
see Fig. 2.6(a).

It is plausible to assume, however, that an additional Te bound to a Cd would
neutralize the repulsion as it provides three negatively charged dangling bonds. Such
Te atoms which stay on top of mobile Cd atoms are treated as part of the Te* reservoir
where they form the fraction 6}, of localized Te* atoms, cf. Sec. 2.3.3. In our model,
mobile Cd atoms can hop to empty sites neighboring another mobile Cd in y-direction,
provided there is either already a localized Te* on top of the neighboring Cd, or a mobile
Te* attaches to the diffusing Cd atom. This Te* then would become a localized Te*
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Figure 2.6: Incorporation of a Te atom on a ¢(2 x 2) reconstructed surface through
mediation of the Te* reservoir. (a) In the absence of appropriate SOS sites, newly
deposited Te atoms will occupy mobile Te* states. (b) A mobile Te* attaches to the
Cd atom which has jumped to the center lattice site and becomes a localized Te* (open
circle with a star inside) neutralizing the infinite repulsion. (c¢) The localized Te* from
(b) gets incorporated at the right adjacent regular SOS site.

itself, see Fig. 2.6(b).

The latter process is assumed to happen with a probability 6 . which is reflected in
the prefactor av of the corresponding rate [Eq. (2.2)], see Table 2.1. Thus, we assume that
mobile Te* which are not attached to Cd atoms are available instantaneously everywhere
at the surface. Note that after the diffusion step of the Cd atom the reservoir occupation
0* = 0; .+07,, remains the same while the ratio 0} ./0* . has increased. If at any point
of the simulation a localized Te* is no longer needed it will become a mobile Te* again.
For example, consider the backward process in Figs. 2.6(b) and (a): if the center Cd
atom in Fig. 2.6(b) makes a diffusion hop to the lateral nearest neighbor site in positive
y-direction, the localized Te* is no longer required and thus joins the fraction of mobile
Te* atoms, see Fig. 2.6(a). Hence, the ratio 6} ./6% , decreases leaving 6* unchanged,
though.

Through the mediation of Te* atoms, Cd atoms at the surface can coalesce into
islands in spite of the NN repulsion, provided the reservoir of Te* is not empty. Thus
the completion of Cd layers can be achieved during growth.

In our simulations we consider also transitions of Te between regular lattice sites
and reservoir states as well as the desorption of mobile Te* into the vacuum. All of
these processes change the reservoir occupation and in general, the rates also depend
explicitly on the reservoir occupation, i.e. a # 1 (see Table 2.1).

For instance, mobile Te atoms at the surface may become mobile Te* provided the
reservoir is not fully occupied, i.e. §* < 1/2. This happens with a rate according to Eq.
(2.2) with a = 1 — 26* which is zero if the reservoir density has reached its maximum
value 1/2. Conversely, the rates for transition of a mobile Te* to a regular Te state or
desorption of a mobile Te* are proportional to the density 6, , of mobile Te* atoms.

A localized Te* atom which sits on top of a Cd atom at (z,y) may become bound
at one of the two neighboring regular Te sites at (z 1, y), if available, see Figs. 2.6(b)
and (c). This reduces the density 6. and consequently also 6*. The opposite process
is possible for a suitable configuration, again under the condition that 6* < 1/2.
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Figure 2.7: Coalescence of two small islands through mediation of the Te* reservoir.
The Te atom from the upper island in (a) enters the Te* reservoir (b) and the Cd
atoms diffuse towards the lower island (c),(d). Then, a mobile Te* of the reservoir gets
incorporated at the newly created SOS lattice site and forms a dimer bond with the Te
atom of the lower island (e).

The corresponding prefactor in Eq. (2.2) is @« = 1 — 26*. As an example, the Te
atom in Fig. 2.6(c) may jump on top of the center Cd atom, restoring the configuration
of Fig. 2.6(b).

The availability of Te* states is also important for preserving the ergodicity of our
model. Consider for example the surface configuration in Fig. 2.7(a): the merging of
the two small islands would be energetically favorable due to the increased number of
attractive bindings (two additional Cd—Cd bonds plus one dimer bond), see Fig. 2.7(e).
However, in the absence of a Te flux it is not possible to construct a sequence of single
particle moves on the SOS lattice which leads from (a) to (e) without violating the SOS
condition: neither of the Cd atoms of the islands in Fig. 2.7(a) may jump away for this
would lead to an Te atom forming an overhang. On the other hand, a Te atom that
jumped off the island would land in the wrong sublattice which is not allowed. With
the help of the Te* reservoir the coalescence of the two islands can now be achieved:
the Te atom of the upper island in Fig. 2.7(a) temporarily enters a mobile Te* state
[Fig. 2.7(b)]. Then, the two Cd atoms can diffuse towards the lower island [Figs. 2.7(c)
and (d)]. Finally, a mobile Te* atom may become incorporated at the SOS lattice site
provided by the two Cd atoms [Fig. 2.7(e)].

2.3.6 Surface Characterization

For the characterization of the surface we calculate the average surface height

1 2Nz,2Ny

Furthermore, the surface coverage with Cd or Te is determined. To this end, we intro-
duce two 2N, x 2N, arrays c(z,y) and t(z,y) of integers which denote the mobile Cd
and Te atoms: c(x,y) = 1 if a mobile Cd atom is located at site (z,y) and zero other-
wise. Conversely, t(z,y) = 1 holds for a mobile Te atom at (z,y) whereas t(z,y) = 0
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in all other cases. The Cd and Te coverages are then defined as

1 2N,2Ny

6% = s 2 clay), (2.5)
Y py=1
1 2N,2Ny

g = ~ > tay). (2.6)
=y z,y=1

Additionally, we determine the reservoir occupation 0* = (n’, ., + n..)/(NoNy) Where
ny ., denotes the number of mobile Te* atoms and the number nj . of localized Te*
given by n; = Zi]\;zf]vy [(z,y) with the array I(z,y) defined in Sec. 2.3.3.

In order to quantify the contribution of the Cd reconstructions we consider the pair

correlations

. 2N, 2N,
K¢ TN N c(z,y)e(z +2,y), (2.7)
=y z,y=1
. 2N, 2N,
K§ = —— Z c(z,y) [e(x + 2,y +2) + c(x + 2,y — 2)] (2.8)
Cd ’ ’ ’
204N, N, Ryt

which measure the probability to find two mobile Cd atoms occupying lateral NN sites
in the z-direction or lateral diagonal neighbor sites, respectively. K¢ and K$¢ are
normalized by the Cd coverage such that they are equal to the fraction of mobile Cd
atoms which are part of locally (2 x 1) or ¢(2 x 2) reconstructed regions of the surface.

2.3.7 Parameter Estimation

As mentioned above, the experimental data and first principles results are insufficient
for a systematic fit of the model parameters. Therefore any parameter set will, to some
extent, be based on estimates and physical reasoning. In our simulations we focus on the
following parameter set which reflects the results obtained from previous investigations

(11,60, 61]: 7ipe = 2, ¥4 = 195|5 d, et = gfe = gff = —0.8/e9Y], 54 = 0,
gre = 06|5gd| M = —1.0[e§|, eld = O.4|sgd|, g. = —6.5/e54], e = —5|5d ,
e = =8eYY, B, = 7|€ ¢4 B* = 2|z—: | The motivation of this choice follows the

outline given in [1 1]: the interaction between lateral diagonal neighbors of mobile Cd
is attractive, which is reflected in a negative value of €. For a mobile Cd atom in a

¢(2 x 2) domain the interaction with its four lateral diagonal neighbor atoms amounts
to —4/e§4]. On the other hand, Cd atoms Which are part of the (2 x 1) arrangement
have two lateral nearest neighbors yielding 2e9. The choice €54 = —1.95[e4| ensures
that the ¢(2 x 2) vacancy structure is energetically favorable compared to (2 x 1) and
that the difference between the surface energies of the two reconstructions—which is
1254 —£%4| /2 per (1 x 1) surface unit cell—is small compared to the total surface energy.
The parameters e5d, gf°, efe gd gle  old 2Td are chosen such that under vacuum a
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Cd terminated surface with ¢(2 x 2) reconstruction is obtained at low temperatures.
By comparing the activation energy for desorption of a mobile Cd from a (2 x 1)
domain with the activation energy for desorption of a Te atom from a (2 x 1) dimer
arrangement, we obtain 2e$4 < 3e™® 4 g4 4 2¢Td ag approximate condition for the
stability of the Cd termination under vacuum. The dimer interaction f should be
stronger than the coupling ¢ between mobile Te which do not form a dimer. Te dimers
tend to arrange in rows, leading to a (2 x 1) symmetry: thus e19 is necessarily negative.
From simulations of planar lattice gas models [11,61] |¢$4] has been estimated to be
approximately 0.1eV. Additionally, it has been argued [11] that the activation energy
for the desorption of a single atom—which is &~ 2|e.|—should be on the same order
as the macroscopic activation energy for sublimation. For the latter, experimentally
determined values range from 0.96eV to 1.95eV depending on the particle species and
sublimation mode [51,57,72]. A value of . = —6.5|e$4| corresponding to a desorption
energy of =~ 1.3eV should thus be a reasonable starting point. The binding energy
€* in the reservoir must not be too small such that Te* are not desorbed too fast and
incorporation of Te atoms on ¢(2 x 2) reconstructed surfaces via the reservoir becomes
possible. At low temperatures, a reservoir occupation of 6* ~ 1/2 should be stabilized.
Thus, a negative value of €} is required. We choose ¢; = —8/¢$4| such that for a fully
occupied reservoir (6* = 1/2) the mean field interaction £;6* between Te* atoms is on
the same order as the intra-layer interaction of mobile Cd atoms in a perfect ¢(2 x 2)
or (2 x 1) reconstruction with 4 = 1/2.

The barrier for diffusion of a Te atom on the SOS surface should be smaller than
the barrier for the transition into a Te* state. This implies B, < |2e, — ¢*|. On the
other hand, the barrier for the transition of a Te* atom to a regular SOS site should be
smaller than the one for desorption of Te* which yields B* < |£*].

For the attempt frequencies in the Arrhenius rates [Eq. (2.2)] we choose v, = 10'?s
for the diffusion of mobile atoms at the surface, following earlier investigations [10, 11,
72]. The transition of Te* atoms to regular Te states and the evaporation of mobile
Te* is modeled using v* = 108s™!, similar to the value used in [71] for the diffusion of
weakly bound arsenic.

By setting the value of the interaction between lateral diagonal Cd neighbors to
e§d = —1 we fix the energy scale in our simulations. In addition we set kp = ‘agd} =1
formally and, hence, measure the temperature 7' on the same scale. In the next chapter
we will comment on a potential quantitative comparison with experimental data.

-1

2.4 Summary

We have presented and discussed in detail a solid-on-solid lattice gas model for the
simulation of epitaxial growth on II-VI(001) semiconductor surfaces. In our discussion
we have focused on the description of CdTe surfaces though many aspects would carry
over to other material systems such as, e.g. ZnSe or ZnTe. The model accounts for the
zincblende lattice structure of CdTe as well as the relevant surface reconstructions of
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both Cd and Te terminated surfaces. Two different particle species, Cd and Te, are con-
sidered in our model. The particles interact via effective short-range pair-interactions,
the strength of which is partially based on the results of DFT total energy calculations
and available experimental data. For example, the interactions between lateral nearest
and diagonal neighbors of mobile Cd atoms reflect the fact that there is a very small
difference in the surface energies of the ¢(2 x 2) and (2 x 1) vacancy structures for a Cd
terminated surface at maximum coverage and zero temperature.

In addition to Cd and Te atoms which reside at SOS surface sites, we allow for the
storage of additional Te in a weakly bound Te* state. This is motivated by experimental
studies where surface coverages 6T > 1 have been observed at low temperatures and
high Te fluxes. Though the presence of excess Te at the surface is rather obvious, the
true nature of the binding state has not been resolved yet. In our model, we incorporate
the weakly bound Te* in terms of a mean field ansatz by introducing a reservoir with
limited Te* occupation. The reservoir is also essential to facilitate growth in the model
as Te* atoms may be localized on top of Cd atoms and thus neutralize the infinite
repulsion between lateral nearest neighbors of mobile Cd in the y-direction. Since
the experimental data and results from first principle calculations are not sufficient
for a systematic fit of the model parameters, in its present state the model is not
intended to give a full quantitative matching with experiments. In simpler versions of
the model [11,70] a semi-quantitative matching of macroscopic activation energies for
step-flow and layer-by-layer sublimation with experimental results has been achieved.
In comparative studies with the present extension of the model we obtain activation
energies which are of equal quality. This confirms that the used parameters (Sec. 2.3.7),
although partially based on estimates, correspond to a physically reasonable region of
the parameter space.
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Chapter 3

Growth Rates in Atomic Layer
Epitaxy

In standard molecular beam epitaxy (MBE) of binary II-VI semiconductors (e.g. CdTe,
ZnSe, Zn'Te), where the constituent elements are brought to the surface simultaneously,
the reduced surface mobility of the incoming species may result in rough growth fronts
and thus makes it difficult to grow perfectly flat layers. An alternative technique,
developed by Suntola and Antson in the mid 1970s, is the so-called atomic layer epitaxy
(ALE) [2,73]. Here, cations and anions are sent sequentially onto the substrate in pulses
with flux F' and duration ¢,, leaving dead times ¢, in-between. The whole sequence
comprising a pulse of each element and the intermediate dead times is called ALE or
reaction cycle, see Fig. 3.1 for an illustration.

\ \ \ \ \ \ \ \ substrate

7 ﬂ ﬁ ﬂ ﬁ Y ﬁ ﬂ effusion cells
with shutter

time —— @cd OTe

Figure 3.1: Schematic illustration of one reaction cycle in ALE growth of CdTe. The
constituent elements are sent sequentially in pulses onto the substrate. The pulses are
separated by dead times during which the effusion cells are closed.

ALE makes use of the fact that for II-VI materials like CdTe the bond strengths of
the compound to be grown are usually much larger than those of the pure constituent
elements (Cd or Te). Thus, throughout a, say, Te pulse the incoming Te is bound to
the surface by strong Cd—Te bonds until saturation with Te is reached. The surplus
Te will then be bound to the surface only very weakly and quickly evaporates during
the subsequent dead time, provided the substrate temperature is sufficiently high. The
same happens to Cd during the following Cd pulse. Consequently, growth proceeds
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in a surface-controlled mode instead of a source-controlled mode as is the case for
conventional thin film techniques like MBE. In principle, a self-regulated growth rate
of one complete monolayer (ML) of the compound per ALE cycle is obtained, and the
cycle may be repeated indefinitely until the desired film thickness is reached.

However, in the case of II-VI semiconductors surface reconstructions may lead to
deviations from the ideal growth rate of 1 ML per ALE cycle. For instance, the vacancy
structures of cation terminated (001) surfaces (cf. Fig. 2.2) allow for coverages of at most
1/2 during the cation pulse. For CdTe(001) [66,67], ZnSe(001) [74] and ZnTe(001)
[52, 75], growth rates of only 1/2ML per ALE cycle are reported experimentally for
a wide range of temperatures, directly related to the submonolayer coverage of the
reconstructed surfaces.

At sufficiently low temperatures, though, an increase of the growth rate from 1/2 ML
to approximately 1 ML per ALE cycle is observed for, e.g., CdTe despite the limited
coverage of the cation terminated surface [66,67]. As a possible explanation for this
increase the presence of additional Te at the end of the Te pulses has been discussed
[57,58], cf. Sec. 2.2. This should allow for the incorporation of more than 1/2 ML of
Cd during the subsequent Cd pulse. Although the precise nature of the binding of
this excess Te to the surface is yet unknown it is clear that the binding state must
be relatively weak because for higher temperatures the ALE growth rate decreases to
1/2ML per cycle.

In this chapter we will show by means of KMC simulations of ALE growth, that
within the framework of the lattice gas model from Chap. 2 we are able to explain the
experimentally observed temperature dependence of the ALE growth rate of CdTe(001).
We argue that the presence of weakly bound excess Te at low temperatures is indeed
crucial for the transition between the different growth rate regimes. In our model
this weakly bound excess Te is realized by the reservoir of Te* introduced in Sec. 2.3.3.
Before presenting results of the ALE simulations we will therefore discuss the properties
of the Te* reservoir in greater detail.

3.1 Analysis of the Te® Reservoir Dynamics

In the model presented in Chap. 2, the occupation 6* of the Te* reservoir results from the
complex interplay of deposition, evaporation and transitions between Te* and Te states.
However, the basic temperature dependence of #* can be understood from considering
a flat surface in the presence of a steady flux of Te atoms.

After the Te coverage has reached the value 6T = 1, only deposition directly into
the reservoir is possible. If we neglect the desorption of regular Te from the surface
and transitions of the type Te — Te*, the temporal evolution of 6* is governed by the
balance of direct deposition and evaporation of Te*. The rate of the latter is a function
of 6* itself and one obtains the following simplifying ordinary differential equation:

dor
dt

1
~ FTO(1/2 - 0%) — 0" v exp —?(\€*| + 0" |e7]) | - (3.1)
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Figure 3.2: (a) Schematic representation of the r.h.s. of Eq. (3.1) for temperatures
below and above the characteristic temperature 7% as described in the text. (b) Sta-

tionary reservoir occupation (solid line) versus temperature as derived from Eq. (3.1).
The dotted line marks 7" = T"*.

Whereas the Te flux F'™ increases §*, desorption of Te* occurs with a frequency propor-
tional to 8* multiplied with the Arrhenius rate for single particle evaporation from the
reservoir. Clearly, the filling of the reservoir must saturate at 6* ~ 1/2. However, the
precise nature of the saturation process is not essential for the following considerations
and we choose a simple cut-off represented by the Heaviside function: ©(z) = 1 for
x > 0 and 0 otherwise.

Given e*, &5, v* and F'™®, the right-hand side in Eq. (3.1) is positive for all §* € [0, 1/2]
if the temperature T is low enough, see Fig. 3.2(a). Hence, the occupation 6* reaches
a stationary value 0%, _, = 1/2, that is the reservoir will be filled in this case. Above
a characteristic temperature T the r.h.s. displays two zeros at fairly small values of
0%, see Fig. 3.2(a). As a consequence, the differential equation has an attractive fixed
point with a stationary value 6%, ~ 0 for 7" > T*. In Fig. 3.2(b) the temperature
dependence of the stationary reservoir occupation 6%, , is plotted schematically. Note
that 6%,,, jumps discontinuously at 7" = T™.

Figure 3.3(a) shows T as function of F™ for the choice of parameters e* = —5,
e = —8 and v* = 10®s™!. There is a rapid increase of T* for very low values of F'T°
which becomes weaker and weaker for higher fluxes. For F''® = 5MLs~! we obtain
T =~ 0.39, as an example, and at 17" = 0.40 the stationary occupation is already as
low as 07,,, ~ 0.02 in this case. Hence, starting from 6* = 0, the reservoir cannot be
filled significantly for 7" > T*. The behavior predicted from Eq. (3.1) is in excellent
agreement with simulations of the situation in the full model. Note that in [66] a simple
evaporation model of ALE growth was proposed which produces a flux-dependence of
the characteristic temperature which is similar to the one in Fig. 3.3(a).

The simplified Eq. (3.1) is also useful in investigating the initial sublimation of Te*
from a surface with maximum Te coverage 3/2, i.e. 0™ = 1 and 6* = 1/2. Figure
3.3(b) displays the evolution of 6* for e* = —5, ef = —8, v* = 10%s™! and three
different temperatures as obtained from the numerical integration of Eq. (3.1) with
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Figure 3.3: Analysis of the reservoir dynamics for e* = —5, ef = —8, v* = 10857

(a) The temperature T* above which an initially empty reservoir of Te* cannot be
filled. The curve shows the result as obtained from Eq. (3.1). Additionally, symbols
indicate the temperature where the growth rate drops from ~ 1 ML to ~ 0.5 ML CdTe
per ALE cycle in the KMC simulations (cf. Sec. 3.2).

(b) Sublimation of Te* from an initially filled reservoir for three different temperatures.
Solid lines represent the numerical integration of Eq. (3.1) with FT = 0, symbols
correspond to simulations of the situation in the full model.

FT = 0. The results from simulations of the corresponding situation in the full kinetic
model are again in excellent agreement with the simplified description, which neglects
evaporation of regular Te and other processes.

We obtain a well-defined characteristic time 7* for the decrease of 6* from 1/2 to,
say, 0% = 0.05. The precise value of 0* is of little relevance as 6*(t) decreases to zero
very rapidly, cf. Fig. 3.3(b). The temperature dependence of 7% is very well described

T
055 05 045 0.4 0.35
10001 : ‘
100F el . .
g ] Figure 3.4: Temperature depen-
10k o ] dence of the characteristic time 7*
@ F = : o
ELUE ] for Te* sublimation. The dashed
1S o 4 line shows a fit to the data with an
F 'B’ 1 . . .
. w” ] Arrhenius law as described in the
0.1; ‘El’ E
E ] text.
0.017 L | L | L | L | L | L
18 2 22 24 26 28 3
T

by an Arrhenius law 7% = 7, exp (F,/T') with macroscopic activation energy F, ~ 8.5
and prefactor 7, ~ 3.8 x 107%s, see Fig. 3.4. In Refs. [51,57] experimental data is
discussed for the initial sublimation of Te starting from a Te-terminated surface with
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coverage 3/2. There, the macroscopic activation energy is reported to be E, ~ 0.96 eV,
providing a potential reference point for attempting a quantitative fit of our model.

Note that the prefactor 7, ~ 107%s obtained from Fig. 3.4 is not too different from
the time constant 1/v* = 107%s assumed for Te* desorption. This should be expected,
as the latter is the limiting microscopic process of the scenario. In an attempt to
extract the prefactor from an analogous Arrhenius plot of experimental data [51] we
obtain a value of about the same order, i.e. 7, ~ 107%s. On the contrary, the value
from data for Cd desorption [51] corresponds to frequencies which are larger by orders
of magnitude. The determination of prefactors from experimental data for relatively
small temperature ranges will most likely be flawed to some extent. Nevertheless the
rough comparison may serve as additional qualitative justification for choosing »* much
smaller than other frequencies in our model.

3.2 Simulation of ALE Growth

In order to gain a qualitative understanding of the ALE growth scenario we perform
KMC simulations according to the standard scheme described in Sec. 1.5.2. All simula-
tion results presented in the following are obtained with the parameter set specified in
Sec. 2.3.7 and system sizes N, = N, = 64, averaging over five independent simulation
runs. We model a situation in which Cd and Te are deposited in alternate pulses of
length ¢, = 0.9s, each with a constant flux F° = F™ = 5MLs™'. The pulses are
separated by a dead time t; = 0.1, hence, the duration of one complete ALE cycle is
2(t, +tq) = 2s in total. Note that the characteristic time 7* for reservoir sublimation
is large compared with the dead time interval for all relevant temperatures, cf. Fig. 3.4.
For the following simulations the initial surface is perfectly flat and Te-terminated with
coverage 0™ = 1 and 6* = 0. Deposition always starts with a Cd pulse.

[lustrating surface snapshots of growing surfaces at T = 0.44 and T' = 0.36 are
shown in Figs. 3.5 and 3.7, corresponding to the two different growth regimes discussed
in the following.

3.2.1 High Temperature Regime

At fairly high temperatures, growth proceeds according to the following scenario in our
simulations:

I) The first Cd pulse adds half a layer of Cd to the system. The infinite repulsion of
lateral NN in y-direction prevents coverages 8¢ > 1/2. Except for a very short
period at the beginning of the Cd pulse the predominant arrangement of Cd atoms
is in a local ¢(2 x 2) ordering, i.e. a checkerboard pattern which is reflected in the
magnitude of the Cd correlations K9 and K$4, see Fig. 3.6(a). The contribution
of the (2 x 1) row structure as a thermal excitation increases with higher T
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Figure 3.5: ALE simulations at
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32 x 32 sections of the surface at t =
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Figure 3.6: (a) Time dependence of the Cd correlations K¢ (solid line) and K34
(dashed line) for the simulation run with 7" = 0.44 shown in Fig. 3.5. For clarity of
plotting, the curves have been smoothed by averaging over an time interval At = 0.06s
around each data point. (b) Time dependence of the reservoir occupation for the
simulation runs with 7" = 0.44 (solid line) and 7" = 0.36 (dashed line) shown in Figs.
3.5 and 3.7.

1)

I11)

V)

After the first Te pulse and the dead time, half a layer of Te has been incorporated.
Diffusion of particles leads to the formation of islands upon the Te-terminated
surface. Note that the existence of the Te*-reservoir state is crucial for this process,
as discussed in Sec. 2.3.5. Surface Te atoms form dimers, preferentially, and these
arrange in rows along the z-direction, yielding a predominant (2 x 1) symmetry of
the surface. Although incorporation of Te occurs to a considerable degree through
the reservoir state Te*, at the end of the dead time one finds 6* ~ 0, as discussed
above. This is confirmed by Fig. 3.6(b) which shows the time evolution of the
reservoir occupation (solid line): #* remains close to zero except for a very short
period at the beginning of the Te pulse when the Te terminated islands begin to
form.

The second Cd pulse places mobile atoms on top of existing islands and in between.
The pre-dominant local ordering is the (2 x 1) pattern, i.e. rows of Cd alternating
with empty rows, again signaled by the Cd correlations in Fig. 3.6(a). This is
due to the influence of the island edges on the reconstruction, an analogous effect
occurs in layer by layer sublimation [11,70,76]. At the end of the dead time, the
islands from stage II are still present but now they are Cd-terminated.

During the second Te pulse, atoms are deposited onto the Cd-terminated islands
and in between. The particles rearrange by means of diffusion, leveling off the
islands and forming a flat Te-terminated surface. At the end of the dead time, the
initial state of the system is restored with one complete layer of CdTe added to
the system. In the simulations the filling of gaps is incomplete to a degree which
depends on the temperature and the length of the dead time interval.
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Hence, at temperatures 7" > T*, our model reproduces ALE growth in the same dou-
ble cycle sequence which was hypothesized and discussed for CdTe and ZnTe in the
literature [57,58]. Figure 3.8 shows the evolution of the film height with time in the
ALE process at T' = 0.44, which is well above the characteristic T ~ 0.39 obtained for
FTe = 5MLs™!.

3.2.2 Low Temperature Regime

The picture changes qualitatively for temperatures 7" < T*. We again prepare a flat
Te-terminated surface with coverage 6™ = 1, §* = 0, and deposition starts with a Cd
pulse. The surface structures obtained after the first Cd and Te pulse are very much
alike the ones of stages I and II of the high temperature scenario, since initially the
Te* reservoir is empty. Note however, that due to a decreased mobility of the atoms
the islands on the Te terminated surface are less compact. Since T" < T™, at the end of
the Te pulse the surface is not only Te terminated but also the Te* reservoir is filled,
i.e. 0* =~ 1/2, as can be seen in Fig. 3.6(b). Thus, from this point on the ALE growth
scenario proceeds along the following lines in our model:

A) The Cd pulse places atoms onto the islands and in between which is analogous to
stage III of the high temperature scenario. But now Cd particles at the surface
can coalesce, because Te* from the reservoir are available to neutralize the NN
repulsion of mobile Cd in y-direction. Therefore the gaps between the islands are
leveled out by half a monolayer of Cd atoms and the reservoir which provides also
approx. 1/2 monolayer of Te. The surface is then covered by another half layer
of Cd atoms arranging in a mixed ¢(2 x 2)-(2 x 1) vacancy structure. Thus, the
adsorption of one complete monolayer of Cd and a half monolayer of Te which
came from the reservoir leads to an increase of the surface height by 3/4 of a
complete CdTe layer. At the end of step A) the reservoir is empty, see Fig.
3.6(b).

B) The following Te pulse leads to a Te terminated surface with islands, which is
identical to the one described above. Again, due to low temperature and short
dead time, also the Te* reservoir is filled. Hence, another half monolayer of Te is
adsorbed and in total one complete layer of CdTe added in only one ALE cycle.
At the end of step B) the reservoir has reached its maximum occupation, see Fig.

3.6(b).

Figure 3.8 shows the evolution of the mean surface height (h) with time at 7" = 0.36,
i.e. below T* for FT* = 5MLs™!. Note that for the first Cd and Te pulse (¢ < 2s), the
curve is essentially identical with that of the high T regime, because in both simulations
the reservoir is empty, initially. Hence the upper curve of Fig. 3.8 corresponds to the
sequence of stages A/B only for times ¢ > 2s. The mean height as displayed in Fig. 3.8
increases by 3/4 of a complete CdTe layer during the Cd pulse A) because (h) takes
into account only particles at SOS lattice sites, disregarding the Te* reservoir.
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T " Figure 3.8: Mean height of the
A | film vs time for ALE simulations
| with T = 0.44 and T = 0.36. (h)
A takes into account only particles at
" \% | regular lattice sites, excluding the
I reservoir of Te*. Numbers I-IV and
letters A,B mark the stages of the
two different growth scenarios as de-
scribed in the text.
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From simulations for various temperatures we have obtained the average growth rate
per ALE cycle. Figure 3.9(b) shows that, with increasing 7', the growth rate drops very
rapidly in the vicinity of the characteristic T* as obtained from the considerations of Sec.
3.1. The comparison with Fig. 3.9(a) shows qualitative agreement with experimental
results for an analogous growth scenario studied by Faschinger and Sitter [66]. Very
similar data has been published by Hartmann et al. [67] and is also discussed in Ref. [57].
Note that in both experiments growth rates above 1 layer of CdTe per ALE cycle were
observed at very low temperatures. This is presumably due to the formation of Cd
crystallites at the surface and cannot be reproduced in our model [58].

The temperature driven break-down of the growth rate is due to the fact that the
reservoir cannot be filled significantly for 7' > T™. Simulation results for various values
of the flux strongly support this assumption as can be seen from Fig. 3.3(a): the
symbols which indicate the temperature where the growth rate drops in the simulations
lie almost exactly on the curve that marks 7.

In principle, the re-evaporation of Te* during the dead time interval could be an
alternative cause for the reduced growth rate. Note, however, that even for a flux as
high as F'™® = 10MLs™! with T* ~ 0.41, one finds that the characteristic time for
reservoir sublimation is 7% & 4s, cf. Fig. 3.3(b). Hence, it appears safe to say that
during dead time intervals shorter than, say, 1s, 6* will remain close to the maximum
value 1/2; provided all other conditions allow for the filling of the reservoir during a
Te pulse. As a consequence, we expect that the characteristic value of T" which marks
the drop of the growth rate in Fig. 3.9 should be essentially independent of the pulse
duration or dead time interval within a wide range of reasonable values.

Comparing the experimental results by Hartmann et al. [67] and Faschinger and
Sitter [66] for the ALE growth rate one finds that the temperature where the growth
rate drops to approximately 1/2 layers of CdTe per cycle is different in the two studies:
a temperature of &~ 250°C is reported in [67], whereas in [66] the drop of the growth
rate has been observed at a higher temperature of ~ 290°C. Within the framework
of our model the temperature difference can be explained if one takes into account
the respective experimental conditions. Whereas Hartmann et al. combined particle
fluxes of about 0.5MLs™! with 8s pulse time and 1s dead times, the flux used by
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Figure 3.9: Growth rates in layers of CdTe per ALE cycle vs temperature 7'

(a) Experimentally observed growth rates of CdTe(001) as published by Faschinger and
Sitter (plot generated after Fig. 3 in Ref. [66]). The pulse duration was 0.8 s with a total
deposition of 1.5 layers of each element, followed by dead time intervals of length 0.2s.
The most prominent feature is the sudden decrease of the growth rate at T' ~ 290°C.
One additional data point has been omitted (growth rate 1.4 layers per cycle at 230°C).
(b) Average growth rates in the ALE simulations with parameters as described in Sec.

3.2. The temperature is measured in dimensionless units of }591’ = 1. The growth rate
drops at T ~ T* ~ 0.39 for F'™ = 5 MLs!.

Faschinger and Sitter was about 2MLs™! with a pulse duration of 0.8s and a dead

time of 0.2s. As discussed above, the difference of the dead times can be neglected, but
for the given fluxes one reads from Fig. 3.3(a) a significant increase of T by about 9%.
As demonstrated, T* practically coincides with the temperature where the growth rate
drops which consequently is expected to increase by the same amount. The difference
of the absolute temperatures observed in Refs. [67] and [66] is about 8% (of the lower
one) which is indeed comparable with our results.

For very high T, sublimation of the crystal dominates over the incoming flux and
growth becomes impossible. The ALE growth rate vanishes at a temperature which is
essentially independent of the properties of Te* atoms.

3.2.3 Growth on a Vicinal Surface

For completeness, we have also performed ALE simulations on a stepped surface. The
steps are parallel to the [100] direction and the terraces have a width of 16 lattice
constants. All other parameters are the same as in the preceding simulations. Starting
with a Te terminated surface and 6* = 0 we find that for low temperatures growth
proceeds along the same sequence as described in Sec. 3.2.2. Again, we obtain a growth
rate of about 1 ML of CdTe per ALE cycle. At T ~ T™* the growth rate drops to =
0.5 ML CdTe per ALE cycle and for both high and low temperatures the time evolution
of the mean surface height looks similar to the one shown in Fig. 3.8.

In the high temperature regime, though, we do not observe the double cycle sequence
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Figure 3.11: Time evolution of the
Cd correlations K$¢ (solid line) and
K$? (dashed line) for the ALE sim-
ulation run shown in Fig. 3.10. For
clarity of plotting, the curves have
been smoothed by averaging over an
‘ i ; time interval At = 0.06s around
e e R each data point.
t[s]

as described in Sec. 3.2.1, that is, there is no alternation between a rough surface with
islands and a flat surface in subsequent ALE cycles. Instead, all deposited particles are
captured by the step edges and growth proceeds in a step flow mode as can be seen
from Fig. 3.10 which shows surface snapshots for a simulation run at 7" = 0.46.

Due to the absence of island formation the ¢(2 x 2) reconstruction dominates during
each Cd pulse which is reflected in the Cd correlations, see Fig. 3.11. Note that at
the beginning of each Cd or Te pulse K¢ is peaked because for low Cd coverages it
is locally favorable for Cd atoms to align along the z-direction, contributing thus to
the (2 x 1) arrangement. The same effect has already been observed at the beginning
of stages I and II in the high temperature regime for growth on a flat surface, cf. Fig.

3.6(a).

3.3 Summary and Outlook

In summary, we have shown by means of KMC simulations of the growth model from
Chap. 2 that the reservoir of weakly bound Te* may explain the experimentally observed
temperature dependence of ALE growth rates for, e.g., CdTe(001). Although the precise
nature of such a weakly bound Te* state at the surface is unknown, its existence is clearly
evident from various experimental observations [57,58]. In our simulations, only below
a characteristic temperature T a significant amount of Te* is present and facilitates
growth rates of approximately 1 layer of CdTe per ALE cycle. As in the corresponding
experiments, we observe a sudden transition from the self-limited growth rate of about
1/2 layer per ALE cycle at high T to the low temperature regime with a rate close to
1 complete layer per cycle.

Our analysis shows that the characteristic transition temperature should depend
only weakly on the model (or experimental) parameters within a wide range of rea-
sonable choices. The key dependence is on the particle flux during Cd and Te pulses,
respectively, and our model reproduces its effect on the transition qualitatively correct.

As an attempt towards a more quantitative comparison with experiments, one might
identify the temperature T* ~ 0.365 for a flux of 2 MLs™! in our model (cf. Fig 3.3) with
the experimental value T' =~ 290°C by Faschinger et al. [66]. Thus, the energy scale €54
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of our model may be fixed, and we obtain €54 = —0.133eV. This, in turn, yields a value
of E, = 1.13 eV for the macroscopic activation energy for desorption of Te* atoms which
roughly agrees with the experimentally determined 0.96eV [51,57]. Furthermore, the
value of T for our simulations with 5 ML s™! translates into 7 ~ 329°C which agrees
well with results of the simple evaporation model discussed in [66].

Thus, a quantitative match with experimental data seems feasible. In simpler ver-
sions of the model it was possible to reproduce the temperature dependence of the
surface reconstruction as well as macroscopic sublimation rates on a semiquantitative
level [70]. The larger number of parameters in the current extension, however, requires
further input from experiment. In addition, reliable estimates of microscopic energy
barriers from, e.g., first principle quantum chemical or density functional calculations
as are available for ITT-VI semiconductors [26, 30, 77, 78] would be extremely useful.
Such calculations should also shed light on the nature of the weakly bound Te* states
on the surface.
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Chapter 4

Nanostructure Formation in
Surface-Confined Alloys

Heteroepitaxial growth of thin films has been a field of growing interest in recent years [1]
as it displays a variety of highly non-trivial phenomena. Among these are, e.g., the self-
organized formation of three-dimensional islands, so-called Quantum Dots [79], self-
assembly of ordered nanoscale domain patterns [80] or lateral multilayers [81], or the
emergence of misfit dislocations [82].

In this chapter we use (kinetic) Monte Carlo simulations of a model ternary system to
determine the influence of kinetic and strain effects on the morphology of self-assembled
nanostructures during submonolayer heteroepitaxy. Therefore we study the growth of
two different types of adsorbate particles on a given substrate. Our investigations are
mainly motivated by experimental studies on metal epitaxy where a variety of material
systems have been found which, though immiscible in the bulk, form stable alloy layers
if deposited as a thin film onto specific substrate materials. This form of surface-
confined alloying is reported for, e.g., CoAg/Ru(0001) [82-85], CoAg/Mo(110) [81],
FeAg/Mo(110) [81], CuAg/Ru(0001) [86], and PdAu/Ru(0001) [87]. All these material
systems, as diverse as they may seem at first sight, have one thing in common: the lattice
constant of the first adsorbate component is smaller with respect to the substrate (i.e.
it has a negative misfit) whereas the lattice constant of the second component is larger
(positive misfit). For such systems which are dominated by atomic size mismatch it
has been shown theoretically [88] that surface alloying may serve as a possible strain
relaxation mechanism. The condition is that the decrease of the strain energy caused
by the intermixing outbalances the increase of the interface energy.

Besides the presence of both positive and negative misfit in the same heteroepitaxial
system, differences in binding energies play a decisive role as they tend to separate the
two adsorbate materials. From both theoretical models [89,90] and experimental ob-
servations [83] it is known that the competition between chemical interactions, favoring
phase separation, and elastic interactions, favoring alloying [88], may result in stripe-
like structures. Furthermore the alloying can lead to a change in the morphology of the
grown films. For example, in the case of CoAg/Ru(0001) both Co and Ag form islands
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Figure 4.1: 50 x 50 nm? scanning tunnel-
ing microscopy image of a dendritic CoAg
island on Ru(0001) (taken from Ref. [83]).

of compact shape if deposited alone onto the substrate. Their co-deposition however

yields ramified islands [83] which consist of alternating veins of approximately constant
width (see Fig. 4.1).

It has been conjectured in [83] that the difference in the chemical binding energies
of the two adsorbate species results in an enhanced diffusion barrier for a particle trying
to cross the interface at the edge of a vein structure. This again should cause atoms
diffusing along step edges to become either reflected or desorbed at the interface and
thus naturally lead to ramification. Following this hypothesis the island ramification
observed for CoAg/Ru(0001) should be generic for multi-component growth where dif-
ferent chemical binding energies are inherently present. However, it is still an open
question which are the real underlying microscopic mechanisms for the formation of
the described multi-component structures and to what extent e.g. kinetic effects are
involved.

4.1 Lattice Gas Description

In the following we will set up a lattice gas model to investigate the influence of kinet-
ics on the film morphologies during multi-component growth. The implementation of
different chemical binding energies between different particle species allows for a clarifi-
cation of the hypothesis made in [83]. Additionally, we will gain knowledge about how
features of nanostructures depend on control and material parameters which is essen-
tial for the preparation of such nanostructures. Since an explicit treatment of strain
effects is inherently beyond the scope of a simple lattice-based simulation method, at a
later point we will compare our results with those obtained by an off-lattice simulation
method where both strain and binding energy effects are taken into account [17].
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4.1.1 Simulation Model

We consider a solid-on-solid model with two adsorbate species, denoted A and B in the
following, which grow on a different planar substrate S with simple cubic (sc) structure.
The topmost layer of the substrate provides a square lattice with N x M adsorption
sites (z,y) for the adsorbate particles. The sc symmetry is chosen for computational
benefits: each lattice site has only four in-plane nearest neighbor (NN) sites compared
to six in-plane NN in the case of a close-packed lattice [e.g., face-centered cubic (fcc)
or hexagonal close-packed (hcp)]. This allows for a faster calculation of the activation
energies F, for diffusion events since we have to take only four NN into account in the
bond-counting procedure, cf. Sec. 1.4.1. Another reason for choosing the sc structure is
the possibility to compare our simulation results with those from the off-lattice model
(Sec. 4.4) where also the sc symmetry is considered.

One important problem with this choice, though, is that the majority of the exper-
imental results mentioned above are given for metals grown on substrates with fcc/hep
symmetry. However, it is reasonable to assume that the symmetry of the underlying
substrate will primarily affect the geometry of the grown adsorbate islands. In the
case of the experimental systems one finds triangular shaped islands whereas for the sc
structure square shaped islands are expected, cf. Sec. 1.3.2.

In our model each lattice site (z,y) may be either empty or occupied by an A or
B particle. Adsorbate particles interact with their lateral NN through attractive two-
particle interactions with the energy parameters E4%, EBB and EAB. Here, EA* and
EPB denote the binding of two A-particles or two B-particles, respectively, whereas E4P
represents the inter-species binding between A- and B-particles. The total energy of
the system can then be written as

H = —EAAnAA . EBBnBB . EABnAB . luAnA . ,U/BnB, (41>

A BB ,,AB

where n®, nP denote the number of A and B particles, and n**, nPB nAB count the
number of A-A, B-B and A-B bonds, respectively. The binding of adsorbate particles
to the substrate is represented by the effective chemical potentials u? and uP.

Two basic microscopic processes are taken into account: random deposition of ad-
sorbate particles onto the substrate, and diffusion of adatoms on the substrate. Since
here we are only interested in the submonolayer regime we disregard second layer nucle-
ation, i.e. particles which are deposited onto other particles will be ignored. This would
correspond to the presence of a very high Schwoebel barrier for diffusion across step
edges, cf. Sec. 1.4.3. Note that for the same reason diffusion jumps of particles onto oth-
ers are suppressed. For the temperature regime considered in the following, desorption
of adsorbate particles is also negligible and therefore omitted from our simulations.

Diffusion of adatoms on the surface is described by thermally activated NN hopping
processes with Arrhenius rates

Eq
R=vy, exp(—kB—T) (4.2)
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where we choose v, = 10257 as common attempt frequency for all diffusion processes.

For the activation energy FE, of a diffusion event which leads from the initial (i) to
the final (f) configuration we use Kawasaki-type energy barriers (cf. Sec. 1.4.2)

E, =max{B;, B+ AH}, (4.3)

where AH denotes the total energy change caused by the diffusion event and is given
by Eq. (4.1). The diffusion barriers B; and By depend on the type of the diffusing
particle as well as the local surrounding at its initial and final position (cf. Sec. 1.4.2).
Note that a diffusion event does not change the number of A and B particles (n*, n®)
in Eq. (4.1). Without loss of generality we may thus set u* = P = 0 in the absence of
desorption.

4.1.2 Symmetric Parameter Set

In order to obtain a general insight into the behavior of the model and at the same
time keep the number of parameters low, in the basic variant of our model we assume
a common value for all barriers B;, By in Eq. (4.3), i.e.

Bi=B;=B" Vi f (4.4)
Also, the strength of A-A and B-B bonds shall be the same in this (simplifying) case:
EAA = BB — EO (4.5)

The model then is mainly governed by the interaction E® between A and B particles
which is assumed to be weaker than between two particles of the same type,

EAB < E°, (4.6)

following the hypothesis in [83]. We will refer to this situation as the symmetric param-
eter set since A and B particles are treated identically apart from the weaker binding
energy between them. Later, the comparison between lattice gas and off-lattice sim-
ulation results requires the use of an enhanced parameter set which is fitted to a set
of off-lattice diffusion barriers corresponding to characteristic diffusion situations (see
Sec. 4.5).

Figure 4.2(a) shows exemplary diffusion processes of a free B particle (light gray)
on the substrate and B particles at the boundary of a small A-B cluster together with
their corresponding activation energies [Eq. (4.3)] for the symmetric parameter set. For
A particles the picture is essentially the same, except that the activation energies for
crossing the A—B interface have to be exchanged, as well as those for detachment from
A and B step edges. In Fig. 4.2(b) the activation energies F, for a diffusion jump of
a B particle parallel (in negative z-direction) and perpendicular to the step edge of a
small A-B cluster are plotted versus the z-position of the B particle. As long as the
particle is away from the step edge the activation energies for both diffusion directions
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Figure 4.2: Diffusion processes and corresponding activation energies for the symmet-
ric version of the lattice gas model. (a) Diffusion of a free B particle (light gray) and B
particles at the step edge of a small A-B cluster. (b) Activation energies for diffusion
of a B particle parallel (from right to left) and perpendicular to the step edge of a small
A-B cluster. The values correspond to B® = 0.37eV, E° = 0.51eV, EAB =0.16eV.

are the same and equal to B°. When the particle sits at the step edge the value of E,
for perpendicular diffusion, that is detachment from the step edge, is larger because
the particle has to break the bond to the NN sitting in the step edge. The barrier for
diffusion along the step edge remains B° as long as the particle is away from the A-B
interface. Now the fact that EAP < E° has two main implications. First, the B particle
faces an enhanced diffusion barrier B® + E° — EAB > BO when it attempts to cross the
A-B interface coming from the B side. Note that for the reverse jump the barrier is
B, cf. Fig. 4.2(a). The same happens to an A particle which tries to cross the interface
coming from the A side. Thus, A and B particles diffusing along step edges are likely
to be reflected at A—B interfaces. Second, the activation energy for detachment of a B
particle from a step edge made up of A particles is lower than that for detachment from
a B step edge and vice versa, cf. Fig. 4.2(b). This should lead to preferential sticking
of particles to regions of the same type.

4.2 Simulations with Symmetric Parameter Set

In the following we will investigate the influence of the interaction EAP between A
and B adsorbate particles on the morphology of growing films. Therefore we perform
KMC simulations using the symmetric parameter set [Eqs. (4.4)-(4.6)]. We fix B =
0.37eV and E° = 0.51 eV, corresponding to typical values for metal self-diffusion and
detachment barriers (see, e.g., [33,44,91]). On the other hand, E*® is varied between
0.06 eV and 0.51 eV, corresponding to 0.12 < a < 1 for the ratio a = EAB/E? of the
binding energies. If not otherwise mentioned the temperature is set to 7" = 500 K.
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4.2.1 Island Geometry

At time t = 0s we prepare a flat square substrate with N = M = 150 and periodic
boundary conditions in both lattice directions. The deposition rate for both A and B
particles is set to 5 x 1073 ML s~ ! resulting in an overall deposition rate of 1072 MLs™*.
When the total adsorbate coverage § = (n* + nP)/N? has reached 0.5 the particle
fluxes are switched off and the simulation is halted. The realization of the simulation
algorithm follows the outline given in Sec. 1.5.2.

Figure 4.3: Typical island configurations obtained at the end of simulation runs with
the symmetric parameter set for T = 500K and different values of a = EAB/EC:
a = 0.86, 0.71, 0.59, 0.51, 0.47 and 0.12 (from top left to bottom right). The system
size is 150 x 150 and the total coverage is 6 = 0.5.

Figure 4.3 shows snapshots of exemplary system configurations obtained at the end
of simulation runs for different values of & = EAB/E°. For the whole range of a values
one observes compact island shapes with the island boundaries roughly parallel to the
lattice directions. The weaker binding energy between A particles (dark gray) and B
particles (light gray) leads to an aggregation of particles of the same type in clusters
which can be characterized as stripes. For the higher values of « these stripes are rather
thin and show a considerable degree of irregular intermixing. In the limit « — 1 A and
B particles become indistinguishable and the stripe structures of Fig. 4.3 completely
vanish in favor of compact islands with randomly distributed light and dark gray areas.

For intermediate values of a the stripes become much thicker and their average size
increases with decreasing EF4B. Furthermore, there is a tendency for them to stretch
outwards and become wider during growth. At a certain stage of the island growth a
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stripe of one particle type may become wide enough for particles of the other type to
form a stable nucleus within this stripe, thus leading to a branch-like structure. For
low values of a there are only a few big clusters with sizes comparable to the system
size, and in the limit o — 0 the separation of A and B particles is more or less complete
such that the branching is no longer noticeable.

Figure 4.4 shows the length of the A-B interface (i.e. the number n*® of A-B bonds)
normalized by the total number of adsorbate particles n = n* +n® in dependence on a.
The ratio [AB = nB/n is directly related to the compactness of the A and B clusters:
a low value of [*P corresponds to large compact clusters whereas many small clusters
imply a high value of [*B. From Fig. 4.4 it can be seen that [P increases monotonously
with increasing a from a value close to zero for low « to a value close to unity at
a = 1. Both limits may be readily explained: for @ — 0 the island consists only
of one compact A and B cluster with a more or less straight interface between them.
The length of this interface, that is the number n*® of A-B bonds, scales with the
square root of the number of adsorbate particles, n*® ~ \/n. Consequently, the ratio
IAB = nAB/n ~ 1/y/n goes to zero for n becoming large. On the other side, for a = 1
(EAB = EY) the types of two NN particles are completely uncorrelated, as discussed
above. Assuming an ideal square island with n particles the total number of NN bonds
is 2(n — y/n) where the second term accounts for the reduced number of bonds at the
island boundary. Given any two NN particles, the probability for them not being of
the same type is 1/2. This yields n*® = n — \/n for the number of A-B bonds in the
island and thus [*B =1 —1/y/n ~ 1 for large n.

4.2.2 Equilibrium Simulations

The occurrence of stripe-like structures and branching in Fig. 4.3 must be attributed to
the kinetic segregation of A and B particles during the island growth. From thermody-
namic considerations one would expect more or less complete separation of both particle
types for not too high temperatures and not too large values of the inter-species binding
energy EAB. We test this assumption by performing canonical equilibrium simulations
where the adsorbate coverage remains constant. Since we are not interested in how the
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Figure 4.5: Equilibrium simulation at 7 = 500K for E° = 0.51eV and EAP =
0.26eV. (a) Time dependence of the total energy per adsorbate particle. The values
are obtained by averaging over ten independent simulation runs. Errorbars are given by
the standard deviation. The dashed line marks the theoretical value for the minimum
energy configuration at 7' = 0 K given by Eq. (A.5). (b) Typical system configuration
at t = 3 x 10%s. A 150 x 150 section of the 250 x 250 system is shown.

system approaches equilibrium we apply a simulation scheme with non-local dynamics
where in each step an A or B particle from site ¢ may jump to any vacant lattice site j of
the system [11,61]. This yields considerably faster equilibration compared to the local
Kawasaki dynamics with NN diffusion only. The details of the simulation algorithm are
described in App. A.1.

For the simulations we prepare a square substrate with A and B particles randomly
distributed, and the number n = n® 4+ nP and ratio n*/n® being the same as at the
end of the KMC simulations from above. Here, we have to take care of a effect which
is caused by our use of periodic boundary conditions: since in the KMC simulations
0 > 6, = 1/4 the minimum energy configuration for 77 = 0K would be given by a
band which wraps around the boundaries, see App. A.2. In order to avoid simulation
runs being trapped in this somewhat artificial configuration we increase the system
size from N = 150 to N’ = 250. Thus, the coverage decreases from # = 0.5 > 6. to
¢ = 6(N/N')?> = 0.18 < . while the number of adsorbate particles n = N§? = N'§"
remains constant. The resulting equilibrium shapes may then be compared with the
KMC simulation results.

Figure 4.5(a) shows the time dependence of the total energy per particle e obtained
by equilibrium simulations for EAB = 0.26eV (a = 0.51) at T = 500K. Similar
results are obtained for a range of EP values. As one can see, € converges to a value
slightly above the one corresponding to the theoretical minimum energy configuration
at T = 0K (dashed line) which is given by Eq. (A.5) of App. A.2: ¢ = —2E° +
2E%/2 —a/(Nv6) ~ —1.008eV.

Figure 4.5(b) shows a typical system configuration obtained after 3 x 10% s simulated
time which confirms that A and B particles separate and due to the attractive binding
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energy EAB form a single rectangular island consisting of one A and one B region.
The interface between the A and the B region is not perfectly straight and the island
edges are rounded, in accordance with theoretical calculations which yield T = 0 as
roughening temperature of two-dimensional crystals. Thus, at any finite temperature
neither facets nor angular points are expected [3]. Note that the ratio d,/d, of the
island diameters in x- and y-direction is close to 1.5 and not to 1 which would be the
case if A and B particles were indistinguishable, i.e. EA® = E° (cf. App. A.2).

In conclusion, our equilibrium simulations confirm the above stated assumption that
the formation of stripes and the branching during growth are caused by the kinetic
segregation of adsorbate particles under the non-equilibrium growth conditions. Under
equilibrium conditions we observe separation of the different species into very large
domains. Note that an increase of the temperature in the growth simulations results
in an enhanced mobility of the diffusing adsorbate particles which in turn leads to a
more efficient segregation of A and B particles. For a given value of EAB the stripes
thus become thicker with increasing temperature as was observed in comparative KMC
simulations with temperatures up to 600 K.

4.2.3 Step Geometry

Due to the square lattice and the island topology chosen the grown stripe-structures
from Sec. 4.2.1 exhibit a fourfold symmetry. In the following we focus on the stripe
formation in only one growth direction. For this purpose we choose a different growth
topology for our simulations where the growth proceeds from a step edge. All other
parameters are the same as in Sec. 4.2.1.

We assume that our NV x M system represents one particular terrace of a vicinal sur-
face with elongated terraces of constant width M as depicted in Fig. 4.6. Therefore we
use periodic boundary conditions in the direction parallel to the step edge (z-direction).
In the perpendicular y-direction the system is bounded by the lower part of a step edge
at y = 0 and the upper part of the next step edge at y = M, see Fig. 4.6. Adsorbate
particles may attach to and diffuse at the lower part of the step edge where we choose
E° and B for the interaction between adsorbate particles and the step edge. At the
upper part of the next step edge adsorbate particles are reflected, again representing

% o N/

Figure 4.6: Illustration of the step geometry: N x M system bounded by two consec-
utive steps of a vicinal surface.
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an infinite Ehrlich-Schwoebel barrier for interlayer jumps.

The terrace width is set to M = 100 in our simulations. Since for the used parameter
set the diffusion length [3] of free adsorbate particles is large compared to the terrace
width, newly deposited adatoms are very likely to attach to the step edge at y = 0.
Thus, terrace nucleation is suppressed and growth proceeds from the step edge.

4.2.4 Influence of the Binding Energy

Figure 4.7 shows snapshots of exemplary system configurations obtained at the end
of simulation runs for N = 512 and different values of o = EAB/E°?. The difference
between EAB and E° leads to a separation of A and B particles in stripe-like clusters.
The average thickness of the stripes tends to increase with a decreasing value of EAB,
For low EAB A and B clusters are well separated and almost always extend from the
step edge to the free surface. With increasing £AP though they become more and more
intertwined. These observations can be explained by the fact that with decreasing EAP
it is more favorable for A and B particles to attach to particles of the same type. We
notice further that there is no clear orientation of the stripes, for example parallel to
the growth (y-) direction. On the contrary, stripes of one particle type may very well
grow sideways leading to a rough stripe interface, as can be seen best in the bottom
panel of Fig. 4.7. We also observe that for all values of EAB the profiles of the grown
films are rather rough. This is caused by two different effects: on the one hand the
enhanced barrier for A particles crossing an A-B interface (and vice versa), leads to
preferential nucleation near the interfaces. This is the dominant effect for low values of
EAB as can be seen by the large protrusions in the bottom panel of Fig. 4.7. On the
other hand, there is a reduced probability for particles to diffuse around a corner since
this implies detachment from the step edge which is energetically costly. This leads to
the characteristic crevices in the simulations with higher values of EAB (cf. the upper
panels of Fig. 4.7) and will be discussed in more detail in Sec. 4.2.6.

We now have a closer look at the influence of EP on the stripe width. Due to the
absence of straight interfaces and the considerable degree of irregularity for the higher
values of EAB the stripe width determination cannot be done straightforwardly by,
e.g., means of Fourier transform. Instead we calculate for each connected cluster of A
particles the ratio between its perimeter length and its volume. This is done by counting
the number of perimeter particles n, together with the total number of particles n. in
the same cluster and forming the ratio A = n,/n.. The average of A over all clusters
should then give a measure for the average thickness of the clusters. For example, for
a rather thin cluster most of its particles sit at the edge and therefore A should be
close to 1, whereas with increasing cluster thickness A should decrease towards 0. For
each value of EAB we perform ten independent simulation runs and average over the
occurring A clusters. To get a better statistics the clusters are initially sorted by their
size and very small clusters (< 0.2x the mean cluster size), for which A ~ 1 holds, are
omitted from averaging.

Figure 4.8 shows the dependence of A on a = EAB/E?. As one sees A increases
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Figure 4.7: System configurations obtained at the end of simulation runs with the
step geometry for different values of & = EAB/E°: o = 0.63, 0.55, 0.47, 0.39 and 0.31
(from top to bottom). A particles appear dark gray, B particles are light gray. The
system size is 512 x 100.
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monotonously with increasing o confirming that the stripe width decreases with the
difference in binding energies becoming smaller. The errorbars in Fig. 4.8 indicate
that the stripes become more uniform in size with decreasing E*P which can also be
noticed in Fig. 4.7. For a = 0.31 we obtain A ~ 0.08. This is close to the value
4(N 4+ M)/(NM) =~ 0.05 which we would expect in the limit o — 0 if all A particles
assembled in a single rectangular cluster of length N/2 and width M/2. When «
approaches 1, A also should tend to 1 because A and B particles should then be perfectly
mixed, since there is no longer a preference for a particle to stick to its own kind (cf.
Sec. 4.2.1). Accordingly, most of the clusters contain O(1) particles which results in
A = 1. This assumption is clearly supported by the behavior of A as shown in Fig. 4.8.

4.2.5 Influence of the Adsorbate Concentration

In the preceding sections we have seen that the reduced binding energy EAP between
A and B particles may lead to stripe formation where the stripe width increases with
decreasing EAB. In the following we will investigate the influence of another control
parameter, namely the concentration of one particle species, on the stripe width. There-
fore the A particle flux F'4 is varied between 1073 MLs™! and 5 x 107> MLs™! leaving
the total flux FA+FPB = 1072 MLs™! constant. Again, we start our simulations with an
empty substrate and subsequently co-deposit A and B particles until a total adsorbate
coverage of 0.5 is reached.

Figure 4.9 shows simulation results for & = 0.31 (left column) and o = 0.51 (right
column). The picture shows that for an increasing A particle flux the width of the A
stripes seems to increase which is understandable because due to the higher binding
energy additional A particles are more likely to stick to existing A clusters than form
new nuclei within regions of B particles. The tendency for the stripes to become thinner
with increasing EAB—noticed already in the previous section for equal A and B fluxes—
applies for all ratios /4 / F® of the particle fluxes. Furthermore, the rough surface profile
is clearly visible.

In order to quantify the stripe width we measure again the quantity A as in the
simulations before. Figure 4.10 shows the dependence of A on the A particle flux F4
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Figure 4.9: Simulation results for & = 0.31 (left column), o = 0.51 (right column) and
FA=10"3MLs 1,3 x 103*MLs™! and 5 x 107> MLs! (top to bottom). A particles
appear dark gray, B particles are light gray. The system sizes are 512 x 100 and the
total flux is FA + F® = 1072 MLs .

for various values of a which confirms the assumptions from above: for all values of «
A decreases with increasing A flux, indicating that the average stripe width increases.
Also, for a fixed value of the A flux A increases with increasing «, that is the stripes
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become thinner on average. The errorbars in Fig. 4.10 indicate that, apart from the
rough surface profile, for low values of o we obtain a rather narrow distribution of stripe
widths. This implies that for systems with a weak binding energy EAP between A and
B particles—compared to the one between particles of the same type—the kinetic phase
separation may indeed yield well-ordered arrays of stripes of about equal width.

4.2.6 Kinetic Instability

From Figs. 4.7 and 4.9 one observes that for the higher values of E® the grown film
structures are split into several blocks divided by deep crevices leading to a rough
surface profile. This behavior reveals a kinetic growth instability, similar to the Bales-
Zangwill instability for stepped surfaces [4,92], and is due to a reduced corner rounding
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Figure 4.11: Corner diffusion mechanisms. (a) Two consecutive NN diffusion steps.
(b) One NNN diffusion step. (c) Exchange diffusion.

probability of adsorbate particles [93].

Since in our model we consider only diffusion jumps to NN sites the diffusion past
the outside of a corner requires two steps, see Fig. 4.11(a). First, a particle has to detach
from the step edge which implies crossing an enhanced energy barrier and therefore is
less favorable than diffusion at the step edge. In fact, this additional barrier can be
thought of as an Ehrlich-Schwoebel barrier for step edge diffusion [41]. Second, after
detachment the now free particle has to attach again at the other side of the corner
which happens with a probability of 1/4 since all four diffusion directions are equivalent.
As a consequence, the process of corner rounding is strongly inhibited. If now at some
stage during growth a small indentation forms by local fluctuations, it may develop
into a deep crevice as—due to the argument given above—the filling through particles
diffusing at the step edge is suppressed. In principle, such a crevice can also be filled
up by newly deposited particles. However, the probability for a particle to be deposited
right into the crevice is comparatively low.

In order to determine the influence of the reduced corner rounding we now compare
two different diffusion modes: in the first case only NN diffusion is allowed as in the
simulations before. In the second case we include diffusion jumps to next nearest
neighbor (NNN) sites which implies that only one (diagonal) jump is needed for a
particle to get around a corner, see Fig. 4.11(b). As consequence of the chosen dynamics
[Eq. (4.3)] the energy barrier for such a corner rounding step is the same as for diffusion
at the step edge.

In many experimental systems corner diffusion affects significantly the morpholo-
gies of growing islands (compact or fractal, see, e.g., [94-96]). Two different atomic
mechanisms are discussed in this context [97]: a particle at the step edge may either
get around the corner by single diffusion steps [cf. Fig. 4.11(a)], or the corner rounding
is achieved via a concerted move of that edge particle and the one sitting in the corner.
In the latter scenario the corner particle is pushed out by the edge particle, see Fig.
4.11(c). Such exchange processes which are also relevant in the case of terrace and
interlayer diffusion [15,33,44,98] may serve as motivation for including NNN diffusion
in our simulations, see Fig. 4.11(b).

The simulations are carried out with only one adsorbate species, which corresponds
to the limit £EA® = E° and the profile roughness of the growing film given by w =
V/<y?> — <y>?2 is measured [4]. Here, y = y(x) denotes the maximal y-coordinate of
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Figure 4.12: Surface configurations obtained for simulations with NN diffusion only
(left column) and with NNN diffusion included (right column). The coverages are

6 = 0.1 (top), # = 0.25 (middle) and 6 = 0.5 (bottom). Only 512 x 100 sections of the
1024 x 100 systems are shown.

the growing film at given x-position, and < - > means the average over all z-positions.

Figure 4.13 shows the dependence of w on the adsorbate coverage 6 for the two
different situations. For the case of NN diffusion only and coverages up to ~ 0.1 we
find a power-law increase w ~ 6° of the surface roughness with a growth exponent
B ~ 0.52 comparable to the one for 1d random deposition [4]. For § > 0.1 the above
mentioned crevices begin to evolve leading to a slightly faster increase of w. The left
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column of Fig. 4.12 shows corresponding system configurations for § = 0.1,0.25 and
0.5. The development of the growth instability is clearly visible: in the initial stage of
growth adsorbate particles form immobile nuclei at the step edge which then serve as
nucleation centers for additional particles. Thus several mounds form which grow both
in - and y-direction. Since corner rounding is inhibited there is a net inward current of
particles in the upper layers of each mound. This leads to a wavy profile, see Fig. 4.12
(top left), with indentations at the locations where the bases of two mounds meet. This
meeting occurs at a coverage # =~ 0.1 and the indentations are then in turn amplified
by the reduced corner rounding and develop into deep crevices, see Fig. 4.12 (middle
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and bottom left).

The situation is completely different for the case where NNN diffusion is included.
Here, particles may easily get around a corner and growth proceeds in a layer-by-layer
fashion, as can be seen in Fig. 4.12 (right column). Hence, the profile remains basically
flat during the simulations and w merely fluctuates around a low value of =~ 0.5, see Fig.
4.13. This is in agreement with recent investigations on unstable epitaxial growth in
simple cubic geometries. Here, compact island morphologies with straight edges along
the (100) and (010) directions have been observed in the presence of strong corner
diffusion [41,99,100].

In conclusion, we find that the formation of crevices in the simulations with high
EAB reflects a generic growth instability which is due to the reduced corner rounding
probability in the model with NN diffusion only. Note that with decreasing E*P the
formation of crevices is less pronounced, cf. Figs. 4.7 and 4.10, since, e.g., A particles
may round a B corner more easily (and vice versa) due to the reduced detachment
barrier. The surface profiles though still are rather rough.

In principle, the discussed growth instability should also be observable in the island
geometry investigated in Sec. 4.2.1. However, the distance of the crevices in the film
structures grown with the step geometry suggests that for the given values of the pa-
rameters (e.g. temperature) this should occur on length scales which exceed the used
system size.

4.3 Simulations with Next Nearest Neighbor Diffu-
sion

In this section we will further concentrate on simulations with NNN diffusion included.
Based on the observations from the previous section we conjecture not only smoother
surface profiles in this case but also straighter interfaces between A and B regions
leading to a more well-defined wavelength of the stripe patterns. Due to the NNN
diffusion the number of possible diffusion events for a free particle doubles (4 NN sites
+ 4 NNN sites). In order to avoid a slowing-down of the simulations caused by excessive
terrace diffusion we adopt a further simplification. Whenever a deposition event occurs
the newly arrived particle is placed directly at the growing film interface at random
position. This deposition scheme is similar to the ones applied in a wide range of one-
dimensional SOS growth models [4]. Since the profile roughness is small (cf. Fig. 4.13)
the modified deposition mechanism has no impact on the growing morphologies as was
confirmed by us in comparative simulations with “normal” deposition.

4.3.1 Influence of the Binding Energy

We first check on the EAP dependence of the stripe width for a fixed temperature
T = 450 K. We perform simulations for various values of a = EAB/E°?. The system
sizes are chosen to be 1024 x 100 and the remaining parameters are the same as above.
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Figure 4.14: Surface snapshots at the end of simulation runs with NNN diffusion and

T = 450K. E*B/E® = 0.51 (top) and EAB/EY = 0.31 (bottom). The system size is
1024 x 100 and the total coverage is § = 0.5.

Figure 4.14 shows simulation results for « = 0.51 and a = 0.31. As expected the
surface profiles are much smoother than for the simulations with NN diffusion only.
The stripes extend from the step to the free interface and the stripe width increases
with decreasing EAP as before. For the lower value of EAP both stripes with straight
interfaces and rough interfaces are observed whereas for higher EAP the stripe interfaces
are always quite rough. In order to derive the stripe width A we make a one-dimensional
cut through the film parallel to the step edge at y = 40, which is ten lattice sites
below the average y-value of the film profile. From this one-dimensional section A is
obtained by averaging over the widths of all A regions. Figure 4.15 shows the average
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width A of the A stripes in dependence on the scaled A-B binding energy. Similar to
the simulations with NN diffusion only (cf. Sec. 4.2.4) the stripe width increases with
decreasing « as it becomes more favorable for particles to stick to their own kind.

It is remarkable that for low values of EAB both stripes with straight interfaces and
stable width occur together with stripes with rough interfaces and large fluctuations of
their width. Later, we will argue that for this type of simulations indeed a broad range
of stripe widths is at least metastable under growth conditions.
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4.3.2 Influence of the Adsorbate Concentration

In order to determine the dependence of the stripe width on the concentration of one
adsorbate species we perform simulations with variable A particle flux F* and constant
total flux FA + FB = 1072MLs™! as in Sec. 4.2.5. Figure 4.16 shows typical surface
configurations for F4 = 107*MLs™!,3 x 107 MLs™! and 5 x 1073 MLs™! (from top
to bottom), and in Fig. 4.17 the width of both A and B stripes is plotted versus the A
particle flux.

Figure 4.16: Surface snapshots at the end of simulation runs with NNN diffu-
sion, EAB/E® = 0.31 and T = 450K for FA = 1073MLs',3 x 1073MLs™! and
5 x 1073 MLs™! (top to bottom). The system size is 1024 x 100 and the total flux is
1072MLs %

150 ‘ T ‘ ‘ ‘ T ‘ T
=2 Astipes Figure 4.17: Dependence of the
1001 % 1 width of A and B stripes on the A
- %%} | particle flux F* (with FA + FB =
102MLs™!) for @« = 0.31 and
50+ %i . T = 450 K. Each data point is ob-
e T | tained by averaging over ten inde-
= pendent simulation runs. Errorbars
O 55— % are given by the standard deviation.

F*[10°ML s

The A stripes become thicker with increasing A particle concentration while the
number of stripes stays about the same as can be seen from Fig. 4.16. Conversely, the
width of the B stripes decreases on average. However, already for low values of F4
both thick and thin B stripes exist, as can be seen from the top panel of Fig. 4.16. This
observation is also confirmed by the relatively large errorbars of the B stripe width, as
shown in Fig. 4.17.



Since the width of the B stripes directly corresponds to the distance between A
stripes this implies that for low A particle concentration the A stripes—although rather
uniform in their width—are not at all uniformly spaced. In order to obtain film con-
figurations where both A and B stripes have a narrow width distribution additional
size-limiting mechanisms have to be present as will be discussed further below.

4.3.3 Temperature Dependence

Since the separation of A and B particles is driven by thermally activated adatom
diffusion we expect a strong dependence of the domain sizes on the growth temperature
which is another important control parameter. In this section we will investigate the
temperature dependence of the stripe width for fixed values of the A—B binding energy
and particle fluxes. Therefore we perform simulations with EAB/E? = 0.31, FA =
FB =5x10"2MLs™!, and different temperatures 7. Figure 4.18 shows typical system
configurations at the end of simulation runs with 7" = 350 K, 400 K, 450 K and 500 K
(from top to bottom). As one can see the average stripe width becomes larger with

Figure 4.18: Surface snapshots at the end of simulation runs with NNN diffusion,
EAB/E® =031 and FA = FB =5x103MLs! for T = 350K, 400 K, 450 K and 500 K
(top to bottom). The system size is 1024 x 100 and the total coverage is § = 0.5.

increasing temperature. For high temperatures both diffusion at and detachment from
step edges become more likely. Thus, adsorbate particles may sample a larger region of
the system and may find the energetically most favorable sites—that is, sites with many
NN of the same particle type—more frequently than at low temperatures. Hence, larger
stripes form at higher temperatures. We notice further that, similar to decreasing EFAB,
increasing the temperature yields a higher percentage of stripes with straight interfaces.

In Fig. 4.19 we have plotted the average width A of the A stripes on a logarith-
mic scale versus the inverse temperature (Arrhenius plot) which shows that in the
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range 325 K — 500K the stripe width can be described by an Arrhenius law A ~
exp [—E,/(kgT)] quite well (dashed line). As activation energy we obtain E, ~ 0.183 V.
This behavior agrees with experimental findings for lateral phase separation in epitaxial
layers of binary [101] or ternary [102] systems where also an Arrhenius type temperature
dependence of the domain sizes has been observed. In [102] the wavelength A of the
composition modulation is related to the surface diffusion coefficient Dy by A\? ~ D,
which in turn yields \* ~ exp [—E,/(kgT)] for the temperature dependence. Here,
E, is the activation energy for surface diffusion of the atomic constituent that is rate
controlling. The above argument yields £y, = 2 E, = 0.366 eV which is indeed close to
the diffusion barrier B = 0.37 eV for free surface diffusion and diffusion at step edges
in our model.
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From the simulations with NNN diffusion we conclude that the average stripe width
can be controlled by the inter-species binding energy EP as well as the two control
parameters temperature and adsorbate particle concentration. In comparison with the
simulations with only NN diffusion the film profiles are much smoother and the stripe
interfaces are in general less rough. Hereby, a decrease of the binding energy between A
and B particles and/or increase of the temperature yields a higher percentage of stripes
with straight interfaces. Although the dependence of the average stripe width A on the
control parameters is clearly evident—e.g., increase of \ with increasing temperature—
rather large fluctuations of A indicate that both very thin and very thick stripes may
coexist, see e.g. Fig. 4.18. The simulations with variable A particle flux showed that
for low values of F'* the width distribution of the resulting A stripes is rather narrow.
However, the distribution of their distances—which corresponds to the width of the B
stripes—is rather broad, see Fig. 4.16 (top panel).

Simulations of a 1024 x 100 system at T' = 500 K and EAB/E°? = 0.31 with a regular
arrangement of alternating A and B stripes of m lattice constants width as initial state
show that for m = 32,64 and 128 their width remains almost constant during growth,
see Fig. 4.20. A newly deposited particle of, say, A type will either arrive at an A
section or B section of the step edge. In the first case, the A particle will sample the
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Figure 4.20: Simulation runs for 7 = 500K, EAB/E° = 0.31 and alternating A and
B stripes of m lattice constants width as initial state. m = 32,64, 128 and 256 (top to
bottom). The system size is 1024 x 100 and the total coverage is 6 = 0.5.

A region but is unlikely to detach or cross the A-B interface due to the high energy
barriers. In the second case, the particle will diffuse within the B region until it reaches
one of the adjacent A regions (there is no extra barrier for diffusion from an A to a
B region). Here it will become trapped, again. A similar mechanism applies to the
B particles. Thus, the density of A (B) particles in the B (A) regions is very low and
both A (B) stripes grow preferentially by nucleation of new A (B) particles leaving their
width constant. For m > 256 we observe nucleation of B particles within A regions and
vice versa. In this case, it takes longer for particles to reach the “right” section of the
step edge. Thus, the density of A particles in B regions is sufficient to form a stable
nucleus as can be seen from the bottom panel of Fig. 4.20.

The results from above suggest that a very broad range of stripe widths is metastable
under growth conditions and thus no sharp characteristic stripe width or wavelength
emerged in the simulations. In order to obtain a narrow stripe width distribution for
both A and B stripes additional size-limiting mechanisms are needed apart from the
kinetic segregation of A and B particles. In the next section we will see that surface
strain caused by the lattice mismatch of the different adsorbate species may serve as
such a size-limiting process.

4.4 Off-Lattice Description

In our lattice gas simulations we have concentrated on the influence of different binding
energies on the growing film structures, neglecting though all effects caused by elastic
interactions. In the following we will also incorporate strain effects which arise from
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the lattice mismatch of the different material species involved. In order to account
for strain effects in a simulation of epitaxial growth it is necessary to overcome the
limitations of a pre-defined lattice [17,103,104]. This can be achieved, e.g., by means
of an off-lattice model developed by Much [105] which has been shown to successfully
describe a variety of phenomena observed in strained heteroepitaxial growth like, e.g.,
dislocation formation or wetting layer and island formation in the Stranski-Krastanov
growth mode [105-107]. Here, we consider the application of this method to our stud-
ies of surface-confined alloying in multi-component growth. The off-lattice simulation
results discussed in the following are provided by courtesy of F. Much [17].

4.4.1 Simulation Model

In the considered off-lattice model two particles which are separated by a continuous
distance r interact via a simple pair-potential U(r), an example being the Lennard-
Jones (LJ) potential [39]

Uns(r) = 4B [(ffz - (fﬂ , (4.7)

T r

where E determines the depth of the potential and the equilibrium distance between
two isolated particles is given by 1y = v/2¢. By appropriate choice of the parameters
FE and o, different material properties may be specified in the model qualitatively. For
example, interactions between two substrate or adsorbate particles are governed by the
sets {Es, 05} and {E, 04}, respectively. To keep the number of parameters small the
standard choice Eag = v/ EaEs, oas = (0a + 05)/2 is used for the interaction between
adsorbate and substrate particles [104]. Since the lattice spacing in a Lennard-Jones
crystal is proportional to o [39] the relative lattice misfit & in the model may directly
be controlled by the values of og and oa:

oA — Oy

(4.8)

0s

In [105-107] rather fundamental aspects of heteroepitaxial growth were studied instead
of focusing on specific material properties. In order to save computer time, the simu-
lations therefore were done in 1 + 1 dimensions. Here, the description of phenomena
like the formation of alternating vein structures or ramified growth requires the adap-
tation of the simulation method to 2 + 1 dimensions. To keep the computational effort
acceptable a simple cubic (sc) symmetry is chosen for the simulations discussed in the
following. The advantage is that due to the lower coordination number less particles
have to be taken into account for energy calculations than in a closed-packed lattice.
In order to stabilize the sc lattice the method proposed in [108] is adapted by choosing

Vir) = <0.1 +8 <f—z - %) <§{—z - %) <j—z _ %)) U(r) (4.9)
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as interaction potential between two particles separated by a distance r. Two kinds
of pair-potentials U(r) are used: the LJ potential given by Eq. (4.7) and the Morse
potential [109]

Uni(r) = E ™) (e —2). (4.10)

Similar to the LJ potential, the depth of the Morse potential is given by E, and the
equilibrium distance between two isolated particles becomes ry = ¢. The additional
parameter a in Eq. (4.10) determines the steepness of the Morse potential around its
minimum. In the simulations, a = 5.0, 5.5 and 6.0 are used, corresponding to an in-
crease of the steepness. In order to save computer time, U(r) is cut off for particle
distances greater than r.,; = 2ry during energy calculations, whereas for the calcula-
tion of diffusion barriers the cut-off distance is set to 37y. These simplifications are
absolutely reasonable since both the LLJ and the Morse potential decline fast towards
zero with increasing particle distance.

In the following we consider two different adsorbate types, called A and B, with
negative and positive misfit, respectively, relative to a substrate S. The interaction
strength between two substrate particles is given by Eg and og = 1 whereas Ey, oa and
Eg, op are chosen for A-A and B-B interactions, respectively. The interaction between
adsorbate particles of type X € {A,B} and the substrate is set to Exs = +/ExFEs,
oxs = (ox + 05)/2 whereas Eap and oap = (0a + 0p)/2 hold for the interaction
between A and B adsorbate particles. The misfit is assumed to be symmetric in the
system:

opn=1—¢ and op=1+¢ (4.11)

with € > 0. Although experimental systems fulfill this symmetry only approximately
we do not expect this to be crucial and restrict ourselves to a single parameter ¢.

The potential depths are chosen in such a way that they meet two demands: on the
one hand the ratio between Fs and E,, Eg is kept fixed for all potentials,

1
Ex = Ep = s, (4.12)

and is chosen such that substrate particles are bound much more strongly and thus
intermixing of adsorbate and substrate particles is suppressed. On the other hand, in
the case of homoepitaxy (¢ = 0) the diffusion barrier on plain substrate F, s, should
have roughly the same value for all used potentials to facilitate the comparison of the
results. The substrate-substrate interaction strength Eg is chosen in such a way that
in the homoepitaxial case the diffusion barrier for free adsorbate particles becomes
E, sy = 0.37€V recovering the value of BY in the lattice gas simulations of Sec. 4.2.
Table 4.1 shows the corresponding values of Fg for the different potentials.

4.4.2 Equilibrium Simulations

In order to determine the influence of the misfit and binding energy between A and B
particles on the resulting surface patterns canonical equilibrium simulations with a fully
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potential FEg [eV]

LJ 3.0 Table 4.1: The substrate-substrate interaction Eg
Ms.o 3.0 used in the Lennard-Jones (LJ) potential and the
Ms. 2.814 Morse (M,) potential with parameter a.

Mo 2.7

covered substrate and fixed concentrations 7, 77 of A and B particles (na + g = 1)
were carried out [17]. In these simulations the substrate is prepared as a six-layer-thick
crystal with 100 x 100 particles in each layer and fixed particle positions in the bottom
layer. Periodic boundary conditions are applied in the z- and y-direction. Since for
the considered range of misfits € even at full coverage no dislocations are observed each
adsorbate particle can be allocated at a distinct site of the 100 x 100 square lattice [17].

At the beginning of each simulation run the substrate is randomly covered with
adsorbate particles with a given ratio 74 /ng. Then the system is driven towards thermal
equilibrium at temperature 7" by means of an algorithm similar to the one used for the
lattice gas equilibrium simulations in Sec. 4.2.2. The main difference here is that the
system is fully covered. Thus, in each Monte Carlo step an A particle at site i of
the square lattice exchanges its binding site with a B particle at site 7 according to
the rate R;_.; = exp [(AH; — AH;) / (2kgT)] where AH, = H,(A) — H,(B) gives the
energy difference of the system with site x occupied with an A or B particle. Details
of the simulation algorithm are described in [17]. In order to avoid accumulation of
artificial strain due to the local relaxation for the calculation of AH,, the system is
globally relaxed after a fixed number of simulation steps (here 5000) and all rates are
re-evaluated. The system’s total energy is registered after each global relaxation. All
simulation runs are halted after 20 global relaxation events, i.e. after 10° elementary
simulation steps.

Figure 4.21 shows simulation results for the cubic Lennard-Jones potential [Eqs.
(4.7), (4.9)] for two different values of the misfit € and strengths of the A-B interaction

Figure 4.21: Snapshots for equilibrium simulations with the Lennard-Jones potential
at T = 250 K. The results correspond to Eag = 0.6, with ¢ = 4.5%, ¢ = 5.5%, and to
Exp = 0.9E, with e =4.5%, ¢ = 5.5% (from left to right). The particle concentrations
are Ny = ng = 0.5. The panels show 80 x 80 sections of the 100 x 100 system. The
bigger B particles appear in light gray. Figures courtesy of F. Much [17].
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Figure 4.22: Equilibrium simulations with the Lennard-Jones potential at T" = 250 K.
(a) Misfit dependence of the stripe width for Exp = 0.6 s and particle concentrations
na = ng = 0.5. Due to the onset of stripe formation along (10) the determination of the
stripe width becomes inaccurate for misfits ¢ < 0.01. (b) Stripe width for Exp = 0.9F}4,
e = 5% as a function of the A particle concentration 75 (78 = 1 — 74, consequently).
Each value is obtained by averaging over three independent simulation runs. Errorbars
are given by the standard deviation. Figures courtesy of F. Much [17].

Exg. The particle concentrations are ny = ng = 0.5. For each parameter set a regular
arrangement of alternating A and B stripes may be identified, which are oriented along
the (11) directions, preferentially. As known from other atomistic models with size
mismatch [88,90] regular patterns may arise from the competition between binding
energy of the particles and strain energy. As one can see in Fig. 4.21, with increasing
Exp and increasing € the stripes become thinner and more regular in size and shape.
For the case Exp = Ex = Ep the system approaches a checkered state, i.e. a stripe
width of one [17]. The alignment of the stripes along the (11) directions is due to the
cubic symmetry of the potential: both particle types try to reach their preferred stripe
width in each lattice direction (z and y). Note that the used cubic form of the potential
[Eq. (4.9)] has only a weak interaction in the (11) direction [17].

Figure 4.22(a) shows the width [ of A and B stripes for Exp = 0.6 E5 in dependence
on the misfit. Since the concentrations of A and B particles are equal the stripes have
about the same width for both adsorbate types. For very small misfits the alignment
of the stripes along (11) vanishes in favor of a (10) orientation which decreases the
interfacial energy between A and B regions. This process is reflected in the large
deviations of the stripe width at ¢ = 0.01 in Fig. 4.22(a). For ¢ = 0 one observes
complete separation of A and B particles into two stripes of width = 50 (half the
system size) which wrap around the periodic boundaries. This is not surprising since
in the homoepitaxial case the off-lattice model should behave like the lattice gas model
from Sec. 4.1.1.

The situation changes completely for s # ng. As Fig. 4.22(b) shows for Exp =
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0.9F, and ¢ = 5%, the stripe width increases with increasing concentration of the
particle type. It is noticeable that the bigger B particles form thinner stripes at high
B concentration than the smaller A particles at high A concentration. This is due to
the asymmetric pair-potential, which is steeper in compression than in tension and thus
(compressed) B stripes are slightly more restricted in their width than A stripes.

Similar stripe patterns and stripe width dependencies are obtained for the a = 6.0
Morse potential which is steeper in both—compression and tension—than the Lennard-
Jones potential. The main difference is that for the same misfit and Fag < 0.6F, the
stripes for the Morse potential are systematically thicker, whereas at higher values
of Fap the mean stripe width is nearly identical for both potentials at a given misfit.
However, even at values Fag < 0.6 F the deviations are small compared to the influence
of the particle concentration on the stripe width [17].

In conclusion, the off-lattice simulations show that for the heteroepitaxial case (¢ >
0) the equilibrium configurations are not characterized by complete separation of the
two particle types as was the case in the lattice gas simulations. The combination of
an attractive inter-species binding energy Eap together with a non-vanishing misfit €
yields regular patterns of alternating stripes. This morphology is produced for a wide
range of parameters and independently of the details of the interactions. The width of
the stripes is controlled by the value of € together with the binding energy.

4.4.3 Morphology under Non-Equilibrium Conditions

In the following we investigate how the system behaves under non-equilibrium growth
conditions, and in particular how the grown structures compare to those observed in
thermal equilibrium. To this end kinetic Monte Carlo simulations with the off-lattice
model from Sec. 4.4.1 were done [17]. Like in the lattice gas simulations, random
deposition and diffusion of adsorbate particles on the surface are included in these
simulations whereas desorption and second layer nucleation are disregarded. Growth
takes place on a 100 x 100 substrate of six layers height with fixed bottom layer and
periodic boundary conditions in z- and y-direction. For all simulation runs the depo-
sition rate for both types of particles is set to 5 x 1072 MLs~! resulting in an overall
deposition rate of Ry = 1072MLs~!. The simulations are halted when half the sub-
strate is covered with adsorbate particles. The diffusion of adatoms is described by
thermally activated hopping processes between neighboring binding sites with Arrhe-
nius rates R = v, exp [—F,/ (kgT)]. Again, v, = 10?s7! is used as common attempt
frequency for all diffusion events. The activation energy F, for a diffusion jump of a
particle between two binding sites is given by F, = E; — E, where E; and FEj are the
potential energies of the particle at the transition state and the initial binding site,
respectively. As mentioned in Sec. 4.4.2, in the misfit regime considered we do not have
to worry about dislocations. Hence, Fj is readily determined by placing the particle
on the perfect square lattice site and subsequent relaxation with respect to the precise,
continuous particle positions [17]. The calculation of F; implies searching for a first or-
der saddle point in the potential energy surface (PES) generated by the superposition
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of all pair-interactions according to Eq. (4.9) [17].
The interaction strength between A and B particles is chosen to be

Eap = 0.6 Ex, (4.13)

which—under equilibrium conditions—Ileads to the formation of rather thick stripes and
for which the influence of the misfit should be clearly observable. Furthermore, on the
basis of the equilibrium simulation results, one expects a noticeable dependence on the
choice of the potential for this interaction strength. Note that Fy = Eg = Eg/6 with
the value of Eg given by Table 4.1 for the different potentials.

Note that this choice of the potential depths yields a higher barrier for edge diffusion
than for diffusion on plain substrate. However, the edge diffusion barrier is still smaller
than that for detachment from the edge. So particles attached to an island edge are
more likely to diffuse there than to detach. This is of particular importance since we
focus here on phenomena, where edge diffusion is supposed to have a strong impact,
see the introduction of this chapter. Note also that for the cubic lattice [Eq. (4.9)]
diagonal diffusion jumps can be neglected since they imply traversing a maximum in
the PES [17].

The kinetic Monte Carlo simulations are carried out according to the standard
scheme described in Sec. 1.5.2. Here, prior to the re-evaluation of the rates affected by
a chosen event the system is locally relaxed around the location of this particular event.
Similar to the equilibrium simulations, a relaxation of the entire system is performed
after 4 x 10° steps in order to avoid strain accumulation.

We present now results on the influence of the misfit and the used potential at a
temperature 7" = 500 K. Comparative simulation runs showed that under the same
growth conditions both particle types form compact, rectangular islands if they are
deposited alone onto the substrate. Additionally, one observes for the B particles with
positive misfit that an island which becomes larger than a critical island size splits up
into smaller islands [110]. This can be understood as relaxation of the accumulated
compressive strain in the island. A similar effect has been observed experimentally
for Cu/Ni(110) where copper islands undergo a shape transition when they exceed a
critical island size [111].

In the case of co-deposition we observe a completely different situation. Figure 4.23
shows snapshots of simulation runs for the Morse potential [Eq. (4.10)] for various values
of a and €. These structures are exemplary for all simulation results: the B particles
(shown in light gray) assemble into a few big clusters. With increasing misfit the
branches of these clusters become thinner and of more uniform width. The A particles
surround these branches without showing a similar shape. It is also seen from Fig. 4.23
that with increasing misfit the ramification of the structure as a whole increases. This
is clearly related to the restricted width of the B stripes: a B particle rather attaches
to the thin end of a stripe. This implies that thinner stripes of material B (light gray)
grow outwards faster, leading to increasing ramification of the structure.

At a given misfit the B branches are the thinner the smaller the value of a in the
Morse potential is. Consequently, at a given misfit the island ramification is more
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Figure 4.23: Exemplary surface configurations obtained by KMC simulations with the
Morse potential [Eq. (4.10)] for different values of the parameter a and misfit . The
bigger B particles are shown in light gray. Figures courtesy of F. Much [17].

pronounced for a = 5.0 than for a = 6.0. This is in agreement with the equilibrium
simulations where a steeper potential yields thicker stripes.

In order to quantify the observations, for each connected cluster of B particles the
ratio A between its perimeter length and its volume is calculated, in the same way as
described in Sec. 4.2.4. Only the backbone of the structures is taken into account and
smaller clusters (less than 700 particles) are neglected. Again, A gives a measure for
the average thickness of the cluster, see Fig. 4.24(a).

In addition, the species-independent quantity I' is measured, which is given by the
number of particles in the system with less then 4 NN, divided by the square root of
the total number of adatoms. I' provides a measure for the length of the structure’s
perimeter and therefore the ramification, see Fig. 4.24(b). A single perfect quadratic
island on the substrate corresponds to I' ~ 4, whereas larger values of I' indicate
roughening of the island shape. The correlation between A and I is clearly observable
for all used potentials: A increases with increasing misfit indicating thinner B clusters.
Simultaneously the ramification increases. The formation of B branches of well-defined
thickness is a common phenomenon for the used pair-potentials.

One might suspect that the observed ramification of the islands is merely due to
temperature effects, i.e., the used temperature may be high enough for the formation
of cubic clusters of a single species, but enlarged edge diffusion barriers in the case of
mixed deposition might cause dendritic growth at the same temperature.

In order to investigate the temperature dependence of the island morphologies ad-
ditional simulations were done for the Lennard-Jones potential with e = 5.0% and the
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Figure 4.24: (a) Ratio A between perimeter particles and total number of particles in
the big B clusters for the used potentials. (b) Number of perimeter particles divided by
the square root of deposited particles I' vs €. Each value is obtained by averaging over
ten independent simulation runs. The errorbars are given by the standard deviation.
Figures courtesy of F. Much [17].

a = 6.0 Morse potential with ¢ = 6.5% for temperatures between 400 K and 550 K [17].
For the given parameters strongly ramified islands grow at 7' = 500 K. At low temper-
atures we observe multiple islands due to the reduced diffusion length. They exhibit
frayed edges and rather thin and disordered B stripes. With increasing temperature the
B stripes become wider and more regular in shape, the island edges become smoother.
The observations are reflected in the temperature dependence of A and I' as shown in
Figs. 4.25(a) and (b). Note that the ramification I' does not decrease monotonously
with increasing temperature (as one might expect). For both potentials it exhibits a
minimum at T" ~ 475 K and then slowly increases with 7T for higher temperatures. This
observation clearly rules out that the observed ramification is merely an artefact of the
low growth temperature.

The enhanced mobility of the particles causes a more distinct separation of the two
particle types, resulting in more regular B stripes. As Fig. 4.25(a) shows the width of
the B stripes approaches a constant value for the high temperature region. Note that
for high enough temperatures nearly all B clusters are aligned in the (11) directions in
order to achieve the energetically most favorable arrangement of particles like in the
equilibrium simulations (see [17]).

In conclusion, we have seen that in the off-lattice model the combination of both
strain and binding energy effects leads to stripe formation and—under non-equilibrium
growth conditions—to island ramification. However, it is not yet completely clear to
what extent each of the two parts (strain and binding interaction) is responsible for
the observed structures. For instance, the different sign of the misfits causes different
diffusion barriers for A and B particles, respectively, the substrate diffusion of the bigger
B particles being always faster than that of the smaller A particles [17,108]. Furthermore
the barriers for edge diffusion are higher than the substrate diffusion barriers. This could
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Figure 4.25: Temperature dependence of (a) A and (b) I' for the Lennard-Jones
potential with e = 5.0% (filled circles) and the Morse a = 6.0 potential with ¢ = 6.5%
(open circles). Figures courtesy of F. Much [17].

also give rise to a ramified island morphology.

4.5 Enhanced Lattice Gas

The lattice gas simulations of Sec. 4.2 showed that a weaker binding energy EAB be-
tween A and B particles causes stripe formation. Similar to the off-lattice equilibrium
simulations the stripe width can be controlled by adjusting EAB. However, neither
asymmetries between A and B clusters nor island ramification were observed under
growth conditions (cf. Fig. 4.3) which is not surprising since A and B particles were
treated in in a symmetric way apart from the weaker binding energy E4® between them.

The symmetric parameter set certainly oversimplifies matters since A and B particles
have different diffusion barriers which depend on the misfit, see above. In the following
we will investigate whether the incorporation of such misfit dependent diffusion barriers
suffices to reproduce the observed structures as, e.g., island ramification, within a lattice
based method. Therefore we use the lattice gas model from Sec. 4.1.1 together with
an enhanced parameter set which is fitted to reproduce the barriers of characteristic
diffusion processes in the off-lattice model.

For the parameter fitting we extract the diffusion barriers of free A and B particles
on the substrate as well as averaged values for edge diffusion and detachment for a
fized island size. These barriers are then used to determine E*%, EPB and EAP as
well as the B; and By for the different diffusion processes [cf. Eq. (4.3)] in our lattice
gas model. From the fitting procedure which is described in detail in App. A.3 we
obtain six characteristic B’s of type BX*Y. Here X € {A,B} denotes the type of the
diffusing particle at a given site and Y € {A,B,S} indicates whether the particle at
this site is bound to an A or B particle or has no NN, see Fig. A.2(a). For example,
BAB corresponds to an A particle located at a step edge made up of B particles. The

86



o i Figure 4.26: Barriers for diffusion of a
05 0 RS 1 B particle (light gray) from right to left
S eeewes Theeet nearby a small A-B cluster. The panel
L ' ‘ shows values obtained from the off-lattice
- model (open circles) using the Lennard-

o jsﬂ«reef) \»Do»(ree-f
0.2t - ) Jones potential and ¢ = 4%, and the

01l ] corresponding lattice gas approximation
| ‘ ‘ ‘ | (dashed line).

X

barriers for particles with more than one NN are derived through averaging over all
corresponding BXY .

Figure 4.26 shows the diffusion barriers for a B particle diffusing from right to left
nearby a small A-B cluster. Open circles denote off-lattice barriers for the Lennard-
Jones potential with ¢ = 4% and the dashed line gives the lattice gas approximation
with the fitted parameter set, cf. Table A.2. Note that although the lattice gas barrier
for crossing the B-A interface is not a free parameter but derived from Eq. (4.3) it
agrees well with the off-lattice barrier which is given by the potential energy difference
of binding and transition state. Note also the reduced barrier for jumps towards the
island in the off-lattice case which is due to the range of the potential. Furthermore,
a slight modulation of the barrier at the step edge results from strain relaxation in
the cluster [17]. These effects have to be neglected in the lattice gas model with NN
interactions only.

Figure 4.27 shows a comparison between off-lattice simulations with the Lennard-
Jones potential and lattice gas simulations with the fitted parameter set given by Table
A.2. Similar results are obtained for the Morse potential. As expected, the islands
for both models look very much alike in the case of zero misfit. However, for ¢ = 5%
the results for both models seem to have little in common. In the case of the lattice

Figure 4.27: Comparison of snapshots for the enhanced lattice and the off-lattice
model in the case of the Lennard-Jones potential. The panels show (from left to right)
lattice/off-lattice results for e = 0 and lattice/off-lattice results for ¢ = 5%. Off-lattice
results courtesy of F. Much [17].
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model, the separation of A and B regions is more pronounced as for ¢ = 0 but neither
size limitation of the stripes nor island ramification is observable here. To confirm
this we have measured the ramification I' for both lattice and off-lattice simulations
results. Figure 4.28 shows I" for various values of the misfit €. For € = 0 the islands are
roughly quadratic in both types of simulations and thus the curves coincide at I' & 4.
With increasing misfit the islands in the off-lattice simulations become more and more
ramified leading to a significant increase of I" for ¢ > 3%. For the lattice simulations
though I' remains constant, i.e. no ramification is observed.

Additional off-lattice simulations, where the reduced barrier for jumps towards an
island (cf. Fig. 4.26) is eliminated by hand show that the resulting islands are less
ramified whereas the width of the B branches remains unchanged [17]. The reduced
island ramification can be traced back to a higher mobility of the particles: once a
particle detaches from an island it has the same probability for jumps towards the
island as away from it. The capturing of diffusing adatoms by islands is therefore less
pronounced and the particles are more uniformly distributed around the island [17].

In conclusion, our examinations clearly demonstrate that species-dependent diffu-
sion barriers at edges alone are not sufficient to explain the width restriction of the B
branches or the ramification of the islands with increasing misfit. Our enhanced lattice
gas model with fitted diffusion barriers thus lacks important features observed in both
experiment and off-lattice simulations. The considerations in Sec. 4.2.6 suggest that the
instability due the reduced corner rounding may eventually lead to some sort of island
ramification in the lattice gas simulations as well. However, this effect will probably be
much weaker and occur on much larger length scales than the ramification observed in
the off-lattice simulations.

A more successful lattice based simulation would have to incorporate further, non-
local effects. Diffusion barriers can depend on quite large neighborhoods in the off-
lattice model. As an example, the above mentioned breaking up of pure B clusters
at a characteristic size indicates that the misfit yields island size dependent barriers
for attachment or detachment. Such effective long range interactions can be mediated
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through elastic deformation of the substrate, for instance. Clearly, an explicit incor-
poration of cluster size dependent barriers is beyond the scope of a simple lattice gas
model and would destroy its conceptional advantages. Alternative routes, e.g. the eval-
uation of the strain energy for a given lattice configuration, have been suggested and
used in the literature, see for instance [112].

4.6 Summary and Discussion

In this chapter we have studied a model ternary material system with adsorbates A and
B on a substrate S of intermediate lattice spacing by complementary simulations with
lattice gas and off-lattice growth models.

The systems display the formation of nanometer-scale stripes in a first layer of
mixed A-B adsorbate in kinetic and equilibrium Monte Carlo simulations. The models
incorporate the two main features that have been discussed as the driving force of stripe
formation: (a) A weaker inter-species binding energy influences the barriers relevant
for adatom diffusion along edges and results in kinetic segregation of the elements.
(b) The presence of positive and negative misfit in the adsorbate favors an alternating
arrangement of the species leading to strain relaxation in the system.

Simulations with a simple cubic lattice gas model which completely neglects the
atomic size mismatch show that stripe patterns may arise under growth conditions as
consequence of the weaker binding energy alone. The pattern formation is a purely
kinetic effect as was demonstrated by equilibrium simulations where complete demix-
ing occurs. The stripe width is found to increase with decreasing inter-species binding
energy or with increasing temperature. For the temperature dependence, an Arrhe-
nius law behavior is observed, consistent with experimental results for lateral phase
separation in epitaxial layers of binary or ternary systems (e.g. [101,102]).

In an off-lattice model, we allow for continuous particle positions and specify inter-
actions by means of simple pair-potentials which favor a simple cubic lattice structure.
Equilibrium simulations of a completely filled monolayer show that the adsorbate mate-
rials segregate and form nanoscale stripes, the width of which depending on the relative
misfits and the inter-species binding energy.

Under non-equilibrium growth conditions we have observed the formation of highly
ramified monolayer islands which consist of both adsorbate materials arranged in al-
ternating stripes. A pronounced asymmetry is observed in the sense that the bigger B
particles form a backbone of ramified branches, with the smaller A particles filling in
the gaps.

Within the limitations of our lattice gas model we have tried to represent the features
of the off-lattice model as faithful as possible by using an enhanced parameter set which
has been fitted to characteristic diffusion barriers in the off-lattice model. However, it
turns out that an explicit treatment of misfit effects is hardly possible within this
framework: simulation results obtained with the enhanced lattice gas have shown that
the model still lacks characteristic features observed both experimentally and in the
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off-lattice simulations. We conclude that indeed both above mentioned mechanisms,
(a) and (b), are relevant and crucial for a satisfactory explanation of essential features
observed in experiment as, e.g., island ramification.

On the one hand, kinetic segregation and stripe formation can be observed in a
mixed system with zero misfits and sufficiently weak inter-species interaction under non-
equilibrium growth conditions. However, close-to-equilibrium configurations display
segregation into very large domains. No stable characteristic length is selected, whereas
far-from-equilibrium growing islands lack the characteristic ramification and asymmetry
of species.

On the other hand, a system with nonzero misfits but otherwise equivalent particle
species would display a checkerboard like mixing of species without the formation of
stripes in the whole range of considered misfits. In conclusion, only the interplay of
kinetic effects and misfit induced strain effects can explain experimental observations
as reported, e.g., by Hwang [83] qualitatively.

Our considerations show that a satisfactory treatment within the framework of a
lattice gas model will only be possible, if it incorporates effectively long range elastic
interactions. For instance, barriers for diffusion along an island edge should depend
explicitly on the island size in a more faithful lattice gas picture.

Several interesting questions still remain: for example, the dependence of the ad-
sorbate structure on the growth parameters should be studied in greater detail. In
particular, it is an open question, whether the model displays the concentration depen-
dent competition between alloying and dislocation formation in island growth, which
was reported, for instance, in [82] for CoAg/Ru(0001).

In order to obtain a closer comparison with experiments the extension of the model to
more realistic lattice geometries [e.g. fcc(111) surfaces| is currently under consideration
[113]. In this context, a more realistic description of specific material systems would
also require the use of more sophisticated many-body-potentials, like, e.g., tight-binding
potentials [114]. This would clearly increase the computational effort significantly.

A case of particular interest is that of an anisotropic substrate which favors the
self-assembly of aligned stripes [81]. Such nanostructures exhibit anomalous magnetic
properties [115] which are expected to be relevant in the development of novel storage
devices.

Finally, it will be highly interesting to study how the submonolayer structures persist
in subsequent adsorbate layers (see e.g. [81]). To this end co-deposition of several
monolayers of material has to be simulated within the growth model.
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Appendix A

Supplementary Topics

A.1 Canonical Monte Carlo Simulations

In order to determine the equilibrium shape of adsorbate islands in the lattice gas model
from Sec. 4.1.1 we carry out canonical Monte Carlo simulations with a fixed coverage
of adsorbate particles. In each Monte Carlo step a particle jumps from its initial site to
another site which is empty, that is the states of the two sites are exchanged and the
number of particles remains the same. We apply a rejection-free non-local dynamics
where the range of particle jumps is unlimited [11,61]. This yields considerably faster
equilibration than a local Kawasaki dynamics with nearest neighbor diffusion only [36].
For simplicity, we permit only jumps to a site where the binding energy of the particle is
independent of the state of the initial site, that is we forbid jumps to nearest neighbor
sites. Note that this does not violate the ergodicity condition as nearest neighbor
exchanges can still be realized in appropriate sequences of the considered long distance
processes. If now an A or B particle jumps from site ¢ to site j, the energy difference
between the final and the initial state is AH = AH; — AH;, where AH, is the energy
difference of the system with site x occupied with a particle and empty. The rates

(A.1)

AH; — AH;
e

2%hpT

fulfill the detailed balance condition. Then, the probability for a jump from site i to
site j factorizes, i.e.
- Ry
— + _ x
pi—j =p; -p; where p; = S R (A.2)
Here, R} and R, denote the rates for deposition and removal of a particle at site z, re-
spectively. R = exp [-AH,/(2kgT)] if site  is empty and zero otherwise. Conversely,
R, =exp|[AH,/(2kgT)] on occupied sites and zero on empty sites. This factorization
property allows for proceeding in two steps: in the first step the site ¢ from which the
particle starts is selected with p; , using a binary search tree. Then, the site 7 where the
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Figure A.1: Configurations which minimize the total energy of the N x N system
with adsorbate coverage 6. (a) 6 < 6.: rectangular island with d, d, = N 20 and dg,d,
determined by Egs. (A.4). (b) 8 > 6.: band of width N6 which wraps around the
periodic boundary conditions. 6, is given by Eq. (A.7).

particle is landing is selected with probability p;r from a different search tree. If ¢ and
7 are not nearest neighbors the particle is moved and the rates of all affected events are
updated. Otherwise, the event is rejected and the system remains unchanged. Since the
number of rejected events is small for large systems, the loss of speed can be neglected.

A.2 Minimum Energy Configurations

In Sec. 4.2.2 we determine the shape of mixed A-B adsorbate islands corresponding
to the equilibrium configuration of the lattice gas model from Sec. 4.1.1 with binding
energies E°, EAB and equal adsorbate concentrations. It is known from basic thermo-
dynamics [36] that the equilibrium state of the system corresponds to the minimum
of the free energy ' = E — T'S at temperature 7. Here E and S denote the internal
energy and the entropy of the system, respectively. For T = 0 the entropic contribution
vanishes and the minimum of F' is given by the system configuration which minimizes
E. For temperatures 7' > 0, but well below the melting temperature, the equilibrium
configuration is expected to be similar to the minimum energy configuration.

In case of a vanishing binding energy E*P between A and B particles the minimum
energy configuration of the lattice gas model would be given by two square islands of
equal size, one of which made up of only A particles, the other made up of B particles.
For EAB > 0 we expect a merging of the two islands such that a rectangular island
forms which consists of an A and B region with equal sizes and a straight interface in-
between, see Fig. A.1(a). Note however, that due to the periodic boundary conditions
only for adsorbate coverages 6 < 6. is the system’s total energy minimized by such a
rectangular island. For # > 6. a band of width N with two straight A—B interfaces
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which stretches across the whole system and wraps around the boundary conditions has
a lower total energy, see Fig. A.1(Db).

The value 6, which separates the two regimes depends on the ratio a = E*B/EC
of the binding energies and may be obtained by the following considerations: Assume
a rectangular island with side lengths d,, d, and n = d,d, = N?6 particles made up
of an A and B area with a straight interface of length d, in-between, cf. Fig. A.1(a).
The total binding energy per particle ¢ = E/n = E/(N?0) as function of the interface
length d,, is given by

€ d, d, 1
= =2+ O‘)N29+(N2«9+dy)' (A.3)

The first term on the right-hand side of Eq. (A.3) corresponds to an infinite A or B
island with two nearest neighbor bonds per particle whereas the second and third term
mark the energy increase due to the A—B interface and the island boundary, respectively.
Minimizing e with respect to d,, yields

1 N2
N =~ —-\/2—aN A4
NeE VO and d, T V2 —aNVe (A.4)

for the side lengths and by combining Eqs. (A.4) and (A.3) we obtain

€ 242 — «
R _2+7
E° NVO

for the minimum of the total binding energy per particle. Note that for a vanishing
binding energy E*P between A and B particles (i.e. « = 0) one obtains d, = 2d, from
Egs. (A.4) which implies that both A and B particles form square islands of equal size
confirming the consideration from above. Conversely, EAE = E° (a = 1) results in
d; = d,: A and B particles are indistinguishable in this case and thus form a single
square island.

A similar calculation for the band configuration [cf. Fig. A.1(b)] with length N and
width N6 yields

dy =

(A.5)

€ i 2(1 — ) 1
B CTT N TNe
for the binding energy € per particle. Again, the first term on the r.h.s. of Eq. (A.6)
corresponds to an infinite island and the other two account for the A-B interface and
the boundary. Note the factor of 2 in the second contribution which is due to the two
A-B interfaces.
By equating Egs. (A.5) and (A.6) we obtain the coverage 6. where island and band
configuration have the same energy as function of the ratio o = EAB/EY:

(A.6)

1—yv/al2—a)

0 pum
¢ 2(1 — a)?

(A7)
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Figure A.2: Diffusion barriers for free adsorbate particles as well as for step edge
diffusion and detachment from step edges. (a) Barriers obtained from the off-lattice
model. (b) The same barriers expressed by the lattice gas parameters. A particles
appear dark gray, B particles are light gray.

For § < 6, the minimum energy state of the system is given by the island configuration
[Fig. A.1(a)] with the energy derived from Eq. (A.5) whereas for § > 6. the arrangement
of the particles as band [Fig. A.1(b)] with the energy given by Eq. (A.6) is preferred.
0. decreases monotonously from 0, = 1/2 at « =0 to 6, = 1/4 for a — 1.

A.3 Fitting of Lattice Gas Parameters

In Sec. 4.5 the parameters of the lattice gas model from Sec. 4.1.1 are fitted to the
off-lattice energy barriers. Therefore, diffusion barriers for the following characteristic
diffusion processes of A and B adsorbate particles are extracted from the off-lattice
model as a function of the misfit € [see Fig. A.2(a)]:

e diffusion of free A or B particles on the substrate — Bag, Bgg

e diffusion of an A (B) particle along a step edge made up of A (B) particles
— Baa, Bgg

e diffusion of an A (B) particle along a step edge made up of B (A) particles
— Bag, Bpa

e detachment of an A (B) particle from a step edge made up of A (B) particles
~ B Bl

e detachment of an A (B) particle from a step edge made up of B (A) particles
~ B, B
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The determination of Bag and Bgg is done straightforwardly by putting a single A
or B test particle on the (large enough) empty substrate S and calculating the energy
difference between two adjacent transition and binding states. For the determination
of Bxy, B (with XY € {A,B}) a test particle of type X is put at a step edge of
a square island which is made up of Y particles. The barriers for step edge diffusion
and detachment are then again given by the energy difference between corresponding
transition and binding states for all combinations of X and Y. Here, one has to consider
that Bxy, Bt depend both on the island size and the position of the particle at the step
edge, though not very strongly. Since for conceptual reasons these dependencies cannot
easily be implemented in the lattice gas formulation anyway, Bxy, Bt are determined
for a fized island size of 20 x 20 lattice constants squared, averaging though over all
positions of the test particle at the step edge.

The set of diffusion barriers determined from the off-lattice model is then mapped
to the lattice gas model by adjusting the parameters EA4, EBB EAB for the nearest
neighbor interactions as well as the B’s from Eq. (4.3), see Fig. A.2 as illustration. The
assumption that the lattice gas barriers for free diffusion on the substrate shall coincide
with those of the off-lattice model immediately yields

BA = Bag (A.8)
B® = Bgg. (A.9)

Also, the barriers for step edge diffusion shall be the same in both models. Thus, one
obtains four different B’s corresponding to the four characteristic configurations:

B = B (A.10)
BP® = DBgp (A.11)
BB — B,4 (A.12)
BB% = DBgj. (A.13)

Finally, as a consequence of the chosen lattice gas dynamics, each step edge detachment
barrier from the off-lattice model has to be represented by a combination of two lattice

gas parameters, see Fig. A.2. This leads to the following system of equations for the
determination of EA4, EBB and EAB:

BAS 4 gAY = pét (A.14)
B + EB® = pi (A.15)
BA 4 pAB = pi (A.16)
B® + EAB = Bt (A.17)

which is overdetermined since there are only three different nearest neighbor interactions
in the lattice gas model. This is due to the constraint that the total energy of the
system given by Eq. (4.1) has to be well-defined. Thus, the same parameter EAB for
the interaction between A and B particles appears in Eqgs. (A.16) and (A.17) instead
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of two independent parameters. Now, combining Eqs. (A.8),(A.9) with Egs. (A.16),
(A.17) yields
B — BEX = Bas — Bs. (A.18)

If this condition is fulfilled an exact mapping between off-lattice barriers and lattice gas
parameters is possible. Equation (A.18) holds for the homoepitaxial case (¢ = 0) where
from the symmetry of the off-lattice interactions [see Eq. (4.12)] follows Bas = Bgs,
Bl = Bg and also Baa = Bgp, Bap = Bga, B = B&%. Then the original set of
ten equations reduces to a set of five equations which can be solved exactly, yielding

BA = BBS = pB,g (A.19)
BA = BBB—p,, (A.20)
BAB = BPA = B (A.21)
EAN = EBB = Bl _ By (A.22)
EAB = BY _ Byg (A.23)

as values for the lattice gas parameters.

For the heteroepitaxial case (¢ > 0) Eq. (A.18) in general does not hold. Conse-
quently, at least one of the off-lattice barriers can only be approximated by the lattice
gas parameters. Given the values of all other lattice gas parameters, E4P can be chosen
such that one of the two Eqs. (A.16), (A.17) is satisfied. Hence, one of the off-lattice
barriers B, Bi% would be matched exactly in the lattice gas whereas the represen-
tation of the other one would be inaccurate. To avoid this asymmetric distribution of
the error in the fitted parameter set, F*® is chosen such that both B! and B are
approximated. The value of EAB follows from the condition that the relative errors
of the lattice gas representation with respect to the off-lattice values shall cancel each

other, i.e.

(BAS + EAP) — B, N (B + EAB) — Bl

= 0. A.24
i 2 A2
Combining Eqgs. (A.24) and (A.8),(A.9), one obtains
EAB o B[‘ieé ng{ . BAS . BBS (A 25)
- Rdet _ Rdet Rdet Bdet :
BA AB AB BA

for the interaction between A and B particles in the lattice gas. Note that the right-
hand side in Eq. (A.25) is positive for all used potentials and values of the misfit. This
is due to the fact that in the off-lattice model the barrier for detachment of a B particle
from an A step edge is always larger than that for detachment of an A particle from a B
step edge, thus leading to Bg% — B4% > 0 in Eq. (A.25). Also the term in parentheses is
positive since the barrier for detachment of a particle from a step edge is always larger
than that for diffusion on the substrate.

With the value of EAB given by Eq. (A.25) the deviations from the off-lattice de-

tachment barriers B4 and B3¢ become less than 2.5% for all considered potentials
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qet et qet et
€ Bas Bgg Baa Bgg Bagp Bga By Bgg Bi% BgA

0% | 0.3771 0.3771 0.5705 0.5705 0.4949 0.4949 0.8783 0.8783 0.6756 0.6756

1% | 0.3878 0.3659 0.5950 0.5413 0.5051 0.4834 0.8936 0.8579 0.6837 0.6662

2% | 0.3983 0.3542 0.6146 0.5094 0.5138 0.4711 0.9038 0.8342 0.6905 0.6561

3% | 0.4083 0.3421 0.6302 0.4775 0.5213 0.4582 0.9093 0.8100 0.6959 0.6456

4% | 0.4179 0.3295 0.6430 0.4476 0.5279 0.4448 0.9106 0.7871 0.6999 0.6346

5% | 0.4271 0.3167 0.6538 0.4215 0.5347 0.4310 0.9080 0.7646 0.7023 0.6232

Table A.1: Diffusion barriers [eV] in the off-lattice model [see Fig. A.2(a)] with the
Lennard-Jones potential for various values of the misfit ¢.

c BAS BBS BAA BBB BAB BBA EAA EBB EAB

9]

0% | 0.3771 0.3771 0.5705 0.5705 0.4949 0.4949 0.5012 0.5012 0.2985

0

1% | 0.3878 0.3659 0.5950 0.5413 0.5051 0.4834 0.5058 0.4920 0.2981 0.33%

2% | 0.3983 0.3542 0.6146 0.5094 0.5138 0.4711 0.5055 0.4800 0.2972 0.72%

3% | 0.4083 0.3421 0.6302 0.4775 0.5213 0.4582 0.5010 0.4679 0.2958 1.19%

4% 1 04179 0.3295 0.6430 0.4476 0.5279 0.4448 0.4927 0.4576 0.2941 1.73%

5% | 0.4271 0.3167 0.6538 0.4215 0.5347 0.4310 0.4809 0.4479 0.2918 2.36%

Table A.2: Lattice gas parameters [eV] [see Fig. A.2(b)] fitted to the off-lattice dif-
fusion barriers from Table A.1 according to Eqgs. (A.8)—(A.17) and (A.25). Note that
the barriers for substrate diffusion and diffusion along step edges coincide with the
corresponding off-lattice values from Table A.1. The last column contains the absolute
value of the relative errors obtained by the approximation of the off-lattice detachment

: det det
barriers B{% and Bg% .

and values of the misfit e. Table A.1 shows the diffusion barriers as determined from
the off-lattice model for the Lennard-Jones potential and several values of €. The cor-
responding lattice gas parameters which are obtained by Eqs. (A.8)—(A.17) and (A.25)
are listed in Table A.2. The last column contains the absolute value of the relative
errors obtained by the approximation of the off-lattice barriers B and B, cf. Eq.

(A.24).
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