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Preface

Abstract

This thesis deals with the hp-finite element method (FEM) for linear quadratic optimal
control problems. Here, a tracking type functional with control costs as regularization
shall be minimized subject to an elliptic partial differential equation. In the pres-
ence of control constraints, the first order necessary conditions, which are typically
used to find optimal solutions numerically, can be formulated as a semi-smooth pro-
jection formula. Consequently, optimal solutions may be non-smooth as well. The
hp-discretization technique considers this fact and approximates rough functions on
fine meshes while using higher order finite elements on domains where the solution is
smooth.

The first main achievement of this thesis is the successful application of hp-FEM to two
related problem classes: Neumann boundary and interface control problems. They are
solved with an a-priori refinement strategy called boundary concentrated (bc) FEM
and interface concentrated (ic) FEM, respectively. These strategies generate grids that
are heavily refined towards the boundary or interface. We construct an elementwise
interpolant that allows to prove algebraic decay of the approximation error for both
techniques. Additionally, a detailed analysis of global and local regularity of solutions,
which is critical for the speed of convergence, is included.

Since the bc- and ic-FEM retain small polynomial degrees for elements touching the
boundary and interface, respectively, we are able to deduce novel error estimates in
the L2- and L∞-norm. The latter allows an a-priori strategy for updating the regular-
ization parameter in the objective functional to solve bang-bang problems.

Furthermore, we apply the traditional idea of the hp-FEM, i.e., grading the mesh
geometrically towards vertices of the domain, for solving optimal control problems
(vc-FEM). In doing so, we obtain exponential convergence with respect to the number
of unknowns. This is proved with a regularity result in countably normed spaces for
the variables of the coupled optimality system.

The second main achievement of this thesis is the development of a fully adaptive
hp-interior point method that can solve problems with distributed or Neumann con-
trol. The underlying barrier problem yields a non-linear optimality system, which
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Preface

poses a numerical challenge: the numerically stable evaluation of integrals over pos-
sibly singular functions in higher order elements. We successfully overcome this diffi-
culty by monitoring the control variable at the integration points and enforcing feasi-
bility in an additional smoothing step.

In this work, we prove convergence of an interior point method with smoothing step
and derive a-posteriori error estimators. The adaptive mesh refinement is based on
the expansion of the solution in a Legendre series. The decay of the coefficients serves
as an indicator for smoothness that guides between h- and p-refinement.
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CHAPTER 1
Introduction

Optimal control theory is a versatile mathematical discipline with applications in many
fields. It has gained interest over the last decades mainly because increasing computa-
tional power allowed to tackle large and complex real life problems numerically. For
offering reliable results, a thorough theoretical analysis of solution algorithms, their
convergence properties, and approximation quality is inevitable. The investigation of
optimal control problems started in the 1970’s (see [101]) and is still the center of
attention for many books such as [81, 98, 99, 144].

This thesis is concerned with numerical solution techniques for linear quadratic op-
timal control problems with elliptic partial differential equations (PDEs). There are
two major issues that need to be handled:

• the discretization of the PDE, building on results from regularity and approxi-
mation theory,

• the optimization process, building on functional analysis and (numerical) opti-
mization.

Depending on the order of these concepts, the terminology first-discretize-then-optimize
or first-optimize-then-discretize is common.

We are going to follow the first-optimize-then-discretize approach and stay in infinite–
dimensional function spaces for the construction of optimization algorithms. The
semi-smooth Newton-method and the interior point method will be of major inter-
est. Only after the construction of solution algorithms, the problem is discretized with
the finite element method (FEM).

1.1 The Finite Element Method

The term Finite Element Method (FEM) appeared first in 1960, but the ideas behind
it are even older and can be traced back to the engineering sciences. Being a powerful
numerical tool for a variety of engineering disciplines, the FEM quickly found its way
into applied mathematics where stability, discretization errors, and convergence rates
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Chapter 1 Introduction

are thoroughly investigated (see [85]). It has been a very active field of research ever
since.

The standard way to gain accuracy of the approximate solution is to refine the tri-
angulation of the computational domain, which introduces more degrees of freedom.
A vast amount of publications deals with this so called h-version. We merely mention
[34, 35, 43].

An alternative way of enlarging the number of unknowns is to increase the poly-
nomial degree of finite elements. This, so called, p-version is less common and its
convergence speed strongly depends on the regularity of the solution to the PDE. See
[17, 26, 93, 135].

Let us explain this briefly using an example from [48]. Consider the smooth function
ex and the non-differentiable function

j(x) =


−1 if x < −1/2,

1 if x > 1/2,

2x if x ∈ [−1/2, 1/2].

We project the functions onto two different discrete approximation spaces:

• polynomials on I := [−1, 1] of degree p collected in R[x]p,

• piecewise linear function on an equidistant partition of I.

Figure 1.1 shows the maximal error between ex, j(x) and the projections ep(x), jp(x)
onto R[x]p with respect to increasing values for p.

0 2 4 6 8 10

10−10

10−8

10−6

10−4

10−2

100

polynomial degree

‖ep(x)− ex‖L∞(I)

0 10 20 30 40
10−2

10−1

100

polynomial degree

‖jp(x)− j(x)‖L∞(I)

Figure 1.1. The approximation error of polynomials of increasing degree.
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1.1 The Finite Element Method

We see that the convergence speed for ep(x) and the smooth function ex is much faster
than for jp(x) and the non-differentiable function j(x). In fact, the p-version converges
exponentially, whereas the piecewise linear approximation of ex shows an algebraic
error decay (see Figure 1.2). If we project j(x) onto the space of piecewise linear
functions, the approximation jh is exact (jh(x) = j(x)) after two repeated bisections
of [−1, 1].

100 101 102 103

10−10

10−8

10−6

10−4

10−2

100

number of unknowns

‖ep(x)− ex‖L∞(I)

‖eh(x)− ex‖L∞(I)

Figure 1.2. The approximation error for high-
degree polynomials and piecewise linear func-
tions.

This example heuristically shows that h-refinement should be favored for non-smooth
functions, whereas p-refinement is efficient for smooth functions.

The core idea of the hp-finite element method (hp-FEM) is to combine both refine-
ment techniques as follows: Approximate functions by

• polynomials of high degree on large elements in regions of high regularity,

• polynomials of low degree on small elements in regions of low regularity.

This strategy has been thoroughly investigated in the 1980’s and 1990’s in [9, 10, 11,
12, 13, 14] and [52, 119, 123]. The monographs [51, 53, 87, 135, 152] and [106]
give an overall and self-contained access to the topic.

We now have a feeling for the two main ingredients that are necessary for establish-
ing error estimates: the regularity of functions and the ’character’ of the approximation
space. Only if both concepts ’match each other’, it is possible to obtain optimal con-
vergence rates. In this thesis, we will encounter countably normed spaces with weight
functions that are specifically designed for the approximation space.

3



Chapter 1 Introduction

1.2 Application to Control Constrained Optimization
Problems

The main goal of this thesis is the application of hp-FEM to the optimal control problem
(P), which is rigorously introduced in Section 2.2.

minimize J(u, y) :=
1

2
‖ y − yd ‖2L2(Ω) +

ν

2
‖u ‖2L2(U)

subject to
Ay = Bu on Ω,
u ∈ Uad.

(P)

This formulation covers the case of distributed, Neumann, interface, and other con-
trol problems all at once. We follow the classical notation of [144] and denote the
control by u and the state by y. The adjoint state, which is introduced for a compact
formulation of the first order necessary conditions (see Theorem 2.3.4), is denoted by
q. In presence of control constraints and ν > 0, the optimal control can be expressed
as (see Theorem 2.3.5)

u∗ = PUad

(
−1

ν
B∗q∗

)
, (?)

where PUad
is the projection onto the feasible set Uad.

This fact poses a challenge for numerical solution algorithms using the hp-FEM: the
non-smooth projection formula restricts the global regularity of optimal controls in
general. It may occur that the optimal control u∗ has discontinuous derivatives at the
interface of active and inactive sets. What weighs even more, the location of these
’kinks’ is not known a-priori. Further bounds on the regularity of the state and adjoint
variable are set by the domain Ω, which is assumed to be polygonal. Usually, the
solution of a PDE displays singular behavior at the vertices of the boundary ∂Ω.

In order to profit from the hp-idea, we carefully investigate the smoothness of the
optimal variables and then examine how well functions are approximated by the un-
derlying finite-dimensional FE space.

There are very few works that use the hp-FEM for solving optimal control problems
with box constraints on the control (see [27, 28, 157, 158]). The reasons for this are
twofold. First, the general implementation of higher order methods is more involved
due to the need of

• high-order quadrature formulas for discretizing the weak formulation of the PDE
constraint,

• handling the degrees of freedom through connectivity arrays and orientation
information,

• sophisticated methods that guide between h- and p-refinement.

4



1.3 Solution Techniques and their Main Ideas

Second, the projection formula (?) is challenging if it is applied to functions of higher
polynomial degree. On a linear finite element, approximations q∗h of the adjoint q∗ are
typically represented by the values at the nodes of the discretized domain. A projection
is necessary if and only if at least one of these values is out of bounds. The values
that represent q∗h on higher order finite elements, however, may all be admissible
but still q∗h /∈ Uad. This is due to ’oscillatory’ behavior of non-linear polynomials.
Identifying the points that need to be projected or the corresponding sets is challenging
but inevitable for the implementation of practical solvers.

1.3 Solution Techniques and their Main Ideas

The contribution of this thesis is the development of solution algorithms for (P) and
an elliptic state equation using the hp-FEM. The latter has hardly been used for optimal
control problems. Rather, it is common to employ solution techniques like (projected)
gradient methods, (semi-smooth) Newton methods, SQP or interior point methods
with the h-FEM.

1.3.1 The Semi-Smooth Newton Method and A-Priori Discretizations

The first approach to find optimal solutions is the solution of the optimality condition
(?) with a semi-smooth Newton method. An a-priori error analysis regarding the
accuracy of piecewise constant functions with respect to the mesh size h was started
by the early works [64, 67]. Since then, different ways of discretization have been
thoroughly investigated for problems with Neumann boundary control (see, e.g., [4,
38, 39, 80, 104, 125]) and distributed controls (see, e.g., [7, 40, 110, 126, 127]).
Some of the results even hold for semi-linear state equations and non-quadratic cost
functionals. A more detailed survey on the exact order of accuracy is given at the
beginning of Chapter 5.

In the same spirit of these publications, but equipped with the hp-FEM, we are going
to investigate the accuracy of approximation and derive a-priori error estimates for
Neumann boundary control problems. We carefully examine the regularity of the
optimal variables of (P) because this critically influences the speed of convergence,
which we have illustrated by the above example.

We investigate different FE methods on hp-meshes that are heavily h-refined towards
regions of non-smoothness:

• the boundary concentrated (bc) FEM (see [57, 88]),

• the interface concentrated (ic) FEM,

• the vertex concentrated (vc) FEM (in the spirit of [9, 12]).

The bc-FEM is designed to solve problems with smooth data everywhere except for the
boundary of the domain. While larger elements of higher polynomial degree approx-
imate the solution in the interior of the domain, lower order elements of smaller size
are employed with decreasing distance to the boundary. The literature describes such
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Chapter 1 Introduction

meshes as geometrically refined towards the boundary. The method can be viewed
as a generalization of the boundary element method (BEM) (see [76, 129] and the
references therein), but it is applicable to a wider range of elliptic problems.

The ic-FEM is a further generalization insofar as it is designed for 2d-networks with
piecewise analytic data. It consists of applying the bc-idea on each subdomain, which
is the reason why most results carry over. In this thesis, we investigate the application
to transmission problems, which are characterized by a low global regularity of the
solutions.

The vc-FEM carries the idea of geometric mesh refinement to an extreme and uses
lower order elements only near the vertices of the domain and near points where the
data is irregular. This procedure is well known from PDEs, where a correct discretiza-
tion yields exponential error decay (see [9, 12, 106, 135]) similar to the 1-dimensional
example in Figure 1.2. We are going to extend this result for the application to optimal
control problems with control constraints (see Section 3.3 and 4.4), which is one of
the key findings of this work. In order to judge the quality of the hp-algorithms, we
relate the error bounds to the number of unknowns because the concept of a mesh
size h does not need to be available for higher order methods.

1.3.2 The Interior Point Method and A-Posteriori Discretizations

The second approach to find optimal solutions of (P) is via an adaptive interior point
algorithm. Adaptive mesh refinement relies on a-posteriori estimates which aim at
reducing the error in a certain norm (see, e.g., [2, 16, 62, 149] and the references
therein) or reducing a quantity of interest (see the survey [20]). This idea has been
transferred to control problems with box constraints (see the survey [124] and [19,
66, 78, 83, 90, 91, 100, 102, 103, 151]) as well as integral constraints ([41, 70]). In
the latter case, the projection formula (?) only consists of scaling the adjoint, which
makes the application of hp-FEM simpler (see [42]).

The advantage of using interior point methods is the fact that the first order nec-
essary conditions become non-linear but smooth. They possess a smoothing property
that can be used for guaranteeing feasibility during the iterations of the algorithm.
Theoretical and algorithmic properties have been thoroughly investigated not only
for the control constrained case (e.g., [122, 130, 134, 148, 160] but also for state
constraints (e.g., [131, 132, 133]). Here, we refer the to reader the overview at the
beginning of Chapter 6.

The known results are exploited to construct a fully adaptive interior point method.
In order to benefit from higher order methods, the smoothness of the control variable
is estimated a-posteriori. To the best of our knowledge, this is the first adaptive method
that solves (P) with the hp-FEM.

6
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1.4 Outline of the Thesis

Chapter 2 begins with functional analytic preliminaries and several remarks on the
physical domain Ω. Afterwards, we introduce a collection of function spaces which
allow the study of solutions to elliptic PDEs. Then we rigorously introduce the model
problem and establish existence, uniqueness, and first order optimality conditions.

Chapter 3 is dedicated to the study of regularity of optimal solutions in different
function spaces. We start by classical Sobolev-Slobodeckij spaces and then treat count-
ably normed spaces that contain weight functions to control the blow-up towards dif-
ferent regions of Ω, such as the boundary, interface, or vertices.

Chapter 4 presents the hp-FEM. We provide general concepts, implementational de-
tails, and approximation results. For this purpose, an interpolation operator is con-
structed, which maps smooth functions into a special polynomial space. Depending
on the type of discretization, we show algebraic or exponential convergence with re-
spect to mesh size or number of unknowns, respectively.

In Chapter 5, we formulate the discrete numerical algorithm for solving the model
problem. Afterwards, several convergence results are established. We perform numeri-
cal experiments for the bc-,vc-, and ic-FEM in order to support our theoretical findings.
Additionally, we compare the algorithms to each other and discuss their advantages.
The chapter also contains an excursion to problems with bang-bang character.

Chapter 6 offers a very different algorithmic approach: the interior point method
as an adaptive path-following method. We collect results on the underlying barrier
problem and prove convergence of an interior point method with smoothing step.
After that, we give a detailed description of the implementation, which adaptively
steers hp-mesh refinement and the update of the barrier parameter. We also derive
a-posteriori error estimates for this purpose. The chapter is closed by numerical tests
regarding hp-adaptivity and path-following properties.

Chapter 7 sums up the results of this thesis: the hp-FEM as an efficient, accurate and
flexible discretization method for optimal control problems. For future research, we
list possible extensions and further applications of higher order methods in the context
of control theory.

Parts of the thesis are published, see [27, 156, 157, 158].
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CHAPTER 2
Optimal Control of Partial Differential Equations

Optimal control theory is a branch of mathematical optimization that is concerned
with influencing a physical system in an optimal way. The system is usually de-
scribed by differential equations, which may be coupled and subjected to additional
constraints. While the theoretical investigation of real life applications can be very
challenging, increasing computational power and storage of modern workspaces al-
low to solve more and more problems numerically. Applications comprise problems
from aerodynamics, fluid mechanics, biology, engineering, mechanics, and many more
disciplines.

In this thesis, we are interested in controlling an elliptic partial differential equa-
tion (PDE), where the state variable y can be influenced by a control u. An optimal
control shall minimize a tracking type cost functional J , which favors a desired state
yd. We will introduce a model problem which allows us to examine basic features
both from the theoretical and numerical point of view, while being general enough for
applications.

In Section 2.1 we collect functional analytic preliminaries before we introduce the
domain Ω and various functions spaces. Sobolev, Sobolev-Slobodeckij, and count-
ably normed spaces are introduced because they are necessary for approximation the-
ory. Section 2.2 is concerned with the rigorous formulation of the model problem
for smooth Neumann and transmission problems. Finally, existence, uniqueness, and
optimality conditions of optimal solutions are formulated.

2.1 Preliminaries

We start by some theory from functional analysis and collect several properties of
the domain Ω afterwards. As a variety of function spaces is needed for regularity
investigations, we provide their definitions and main characteristics as well as density
results and embedding theorems.

9



Chapter 2 Optimal Control of Partial Differential Equations

More details on functional analysis can be found in the textbook [163]. The theory of
Sobolev spaces is covered in [1] or textbooks on PDEs such as [63, 72, 114]. We also
mention [95, 96] regarding weighted function spaces.

2.1.1 Functional Analysis

We restrict ourselves to real Banach spaces V,W with norms ‖ · ‖V , ‖ · ‖W , respectively.
An operator A : V → W is called bounded if there exists a constant c ≥ 0 such that
‖Av ‖W ≤ c‖ v ‖V for all v ∈ V . The set of all linear and bounded operators is denoted
by L(V,W ) and is a Banach space under the norm

‖A ‖L(V,W ) := sup
‖ v ‖V =1

‖Av ‖W .

It is well known that for linear operators the concepts of boundedness and continuity
are equivalent.

The dual space of V is defined by V ∗ := L(V,R) and V is called reflexive if and only
if (V ∗)∗ = V . We will make use of the duality pairing

〈v′, v〉V ∗,V , v′ ∈ V ∗, v ∈ V.

We say a sequence {vk}k∈N ⊂ V converges weakly to v ∈ V (vk ⇀ v) if and only if

lim
k→∞

〈v′, vk − v〉V ∗,V = 0 ∀v′ ∈ V ∗.

If the norm ‖ · ‖H of a Banach space H is induced by an inner product, we speak of a
Hilbert space and denote its inner product by (·, ·)H .

The following two results are classic and proved in, e.g., [163, Theorem III.6, Theo-
rem III.7].

Theorem 2.1.1 (Riesz Representation). Let H be a real Hilbert space. For all l′ ∈ H∗,
there exists an l ∈ H such that (l, v)H = 〈l′, v〉H∗,H and ‖ l′ ‖H∗ = ‖ l ‖H .

Theorem 2.1.2 (Lax-Milgram). Let H be a Hilbert space and a : H ×H → R a bilinear
mapping which is coercive, i.e.,

|a(x, x)| ≥ c0‖x ‖2 ∀x ∈ H,

and bounded, i.e.,
|a(x, y)| ≤ c1‖x ‖‖ y ‖ ∀x, y ∈ H.

Then there exists a uniquely determined bounded linear operator S : H → H with a
bounded linear inverse S−1 such that

a(x, Sy) = (x, y)H ∀x, y ∈ H.

Additionally, ‖S ‖L(H,H) ≤ c−1
0 and ‖S−1 ‖L(H,H) ≤ c1.

10



2.1 Preliminaries

For w′ ∈ W ∗ and an operator A : V → W , the adjoint operator A∗ : W ∗ → V ∗ is
defined by

(A∗w′)v := w′(Av).

With the duality pairing, we can write 〈A∗w′, v〉V ∗,V = 〈w′, Av〉W∗,W . It is well
known, that the mapping of an operator to its adjoint is linear and isometric. Since
(A∗)−1 = (A−1)∗, we use the abbreviated notation A−∗ for the inverse of A∗. For the
case of V = W being a Hilbert space, we call A self-adjoint if and only if (A∗)∗ = A.

An operator A : V → W is called Gâteaux-differentiable at v in direction h ∈ V , if
and only if there exists a map A′ ∈ L(V,W ) such that

lim
t↘0

A(v + th)−A(v)

t
= A′h+ o(‖h ‖V ).

We say that V is continuously embedded in W (V ↪→ W ) if and only if there is a
continuous, injective and linear mapping i : V → W . Since continuity of linear
mappings is equivalent to boundedness, it follows that ‖ i(v) ‖W ≤ c(i)‖ v ‖V , where
c(i) is a positive constant depending on the map i. This definition aims at continuous
embeddings of function spaces.

2.1.2 The Domain

Generally, a domain Ω is an open and connected subset of Rn, n ∈ N. We will only
investigate the case of bounded domains in R2 whose boundary ∂Ω =: Γ is a polygon.
The boundary is split into a Dirichlet and Neumann part, denoted by ΓD and ΓN ,
respectively. It may be partitioned into l straight line segments Γi, i = 1, . . . , l that are
collected in E . Each line segment either belongs to the Dirichlet boundary (Γi ∈ ED)
or Neumann boundary (Γi ∈ EN ). We denote the end-points of these segments by
X1, . . . , Xl, and set X := {X1, . . . , Xl}. Furthermore, it holds Γi ∩ Γi+1 = Xi with the
convention Γl+1 := Γ1. A point Xi is called vertex.

We say the boundary of a domain is C0,1 or Lipschitz if for each x ∈ ∂Ω there is a
neighborhood V of x and new orthogonal coordinates (y1, y2) such that

1. V = {(y1, y2) ∈ R2 : |yi| < ai ∈ R+, i = 1, 2},

2. there exists a Lipschitz continuous function Ψ : (−a1, a1) → (−a2, a2) such that

• Ω ∩ V = {y ∈ V : y2 < Ψ(y1)},

• Γ ∩ V = {y ∈ V : y2 = Ψ(y1)}.

Obviously, polygonal domains have Lipschitz-boundary, which in turn implies the
segment- or cone-property (see [1]).

11



Chapter 2 Optimal Control of Partial Differential Equations

We speak of a 2d-network {Ωi}i∈I with I = {1, . . . , nI} if Ω can be partitioned into
nI ∈ N pairwise disjoint, polygonal subdomains Ωi such that Ω = ∪i∈IΩi. We further
stipulate a compatibility condition among the subsets, i.e., exactly one of the following
holds for i, j ∈ I, i 6= j:

• Ωi ∩ Ωj = ∅,

• Ωi ∩ Ωj is a common vertex,

• Ωi ∩ Ωj is a common side, denoted by γi,j . These parts of the boundary are
referred to as interface and are collected in I.

In the context of 2d-networks, the set of vertices X is enlarged by the set of interior
vertices. The restriction of a function u : Ω → R to one subdomain Ωi is denoted by
ui : Ωi → R.

2.1.3 Function Spaces

For 1 ≤ p < ∞, we denote the space of functions whose p-th power is integrable
by Lp(Ω). The underlying measure is the Lebesgue-measure, which will sometimes
be denoted by measi for the dimension i = 1, 2. Essentially bounded functions are
collected in L∞(Ω).

A property of v ∈ Lp(Ω) holds almost everywhere (a.e.) in Ω, if it is violated only
on a set of Lebesgue-measure zero. In fact, functions are only defined up to a set of
measure zero, which is why Lp-spaces contain equivalence classes of functions.

Endowed with the norm

‖ v ‖Lp(Ω) :=

(∫
Ω

|v(x)|p dx
)1/p

for 1 ≤ p < ∞,

‖ v ‖Lp(Ω) := ess supΩ|v(x)| for p = ∞,

Lp(Ω) becomes a Banach space. In the sequel, we sometimes omit Ω in the notation
of Lebesgue or other function spaces if the context forbids confusion or the domain is
of no relevance. For the special case p = 2 and the inner product

(v, w)L2(Ω) :=

∫
Ω

v(x)w(x) dx,

L2(Ω) is a Hilbert space. Owing to the boundedness of the domain Ω, we have the
embedding Lp(Ω) ↪→ Lq(Ω) with p > q. This is proved with Hölder’s inequality∫

Ω

vw dx ≤
(∫

Ω

|v|p dx
)1/p(∫

Ω

|w|q dx
)1/q

,

where 1/p + 1/q = 1 (and the obvious extension for p = ∞). The case p = q = 2
reproduces the Cauchy-Schwarz inequality.
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It is well known that for 1 ≤ p < ∞ the dual space of Lp(Ω) can be identified with
Lq(Ω), where q is the dual exponent q = p/(p − 1). The well-definedness of the dual
pairing

〈v, w〉Lp(Ω),Lq(Ω) =

∫
Ω

vw dx

follows, again, from Hölder’s inequality.
Sobolev spaces have turned out to be suitable for developing a notion of weak so-

lutions of PDEs. For k being a positive integer, we denote by W k,p(Ω) the space of
functions which are k-times weakly differentiable and whose derivatives lie in Lp(Ω).
For a multi-index α ∈ Nn

0 we denote (weak) derivatives by

Dαv = ∂α1
x1

. . . ∂αn
xn

v.

The Sobolev space is complete under the norm

‖ v ‖p
Wk,p(Ω)

:=
∑

0≤|α|≤k

‖Dαv ‖pLp(Ω).

We agree on the notation W 0,p(Ω) = Lp(Ω). The highest derivative is measured by
the semi-norm

|v|p
Wk,p(Ω)

:=
∑
|α|=k

‖Dαv ‖pLp(Ω).

The Sobolev-Slobodeckij space W s,p(Ω) with a real value s = k + σ > 0, k ∈ N, σ ∈
(0, 1) extends the above definitions. It comprises functions from W k,p(Ω) with the
finite norm

‖ v ‖pW s,p(Ω) := ‖ v ‖p
Wk,p(Ω)

+

∫
Ω

∫
Ω

∑
|α|=k

|Dαv(x)−Dαv(y)|p

|x− y|2+σp
dx dy. (2.1)

The expression |x−y| = dist(x, y) denotes the Euclidean distance between two points.
An alternative way to define spaces with ’fractional’ derivatives, is to proceed by real
interpolation. For more details see [1, Chapter 7], [35, Chapter 14], and [22]. We
now use s ∈ R+

0 as exponent and agree on the notation Hs(Ω) := W s,2(Ω) because we
are dealing with a Hilbert space. The well known trace theorem states the existence of
a linear and bounded trace operator

TΓD : W s,p(Ω) → W s−1/p,p(ΓD), v 7→ TΓDv = v|ΓD

if s ≤ 1 and s− 1/p > 0 is not integer, see [1, 72]. This is a generalization of the clas-
sical restriction of continuous functions to the boundary. The trace space W s−1/p(ΓD)
can be characterized as in (2.1) with the exponent 1 + σp in the denominator and ΓD
as domain of integration, see [117, Subsection 1.2.3].

The trace operator allows us to define functions which are zero at (parts of) the
boundary, i.e.,

W s,p
ΓD

(Ω) := {v ∈ W s,p(Ω) : TΓDv = 0}.

13
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The classical result that C∞(Ω)∩W k,p(Ω) is dense in W k,p(Ω) holds for general open
sets Ω and 1 ≤ p < ∞ (see [1, Theorem 3.17]). If Ω satisfies the segment-property
(which is weaker than Γ ∈ C0,1), the set of restrictions to Ω of functions C∞

c (Rn) is
dense as well (see [1, Theorem 3.22]). This result extends to W s,p(Ω) with s > 0 if
the domain Ω allows for a continuous extension operator from W s,p(Ω) to W s,p(Rn)
(see [115, Theorem 2.4]).

We also mention the standard Sobolev embeddings.

Theorem 2.1.3. Let Ω ⊂ Rn be bounded with Lipschitz boundary. Then the following
continuous embeddings hold true for k, k′ ∈ N, 1 ≤ p, p′ < ∞ and β ∈ (0, 1):

W k,p(Ω) ↪→ W k′,p′
(Ω), k ≥ k′, k − n

p
≥ k′ − n

p′
,

W k,p(Ω) ↪→ Cm,β(Ω), k > 0, k − n

p
≥ m+ β.

The result is proved in, e.g., [1, Theorem 4.12]. For the special case s ∈ [0, 1], we can
combine Theorem 5.4 and Theorem 6.5 of [115] to obtain

W s,p ↪→ Lq(Ω)

{
q ∈ [1, np

n−sp ] if sp < n,

q ∈ [1,∞) if sp ≥ n.
(2.2)

Proposition 2.1.4. Let σ ∈ (0, 1) and n = 2, then

H1+σ(Ω) ↪→ C0,σ(Ω). (2.3)

Proof. First, we see that Theorem 2.1.3 yields H1+σ(Ω) ↪→ H1(Ω) ↪→ Lq(Ω) for 1 ≤
q < ∞. For v ∈ H1+σ(Ω), we find ∇v ∈ Hσ(Ω) ↪→ Lq′(Ω) with q′ ∈ [1, 2

1−σ ] by (2.2).
Consequently,

H1+σ(Ω) ↪→ W 1,min{q,q′}(Ω) = W 1,q′(Ω).

Applying Theorem 2.1.3 to W 1,2/(1−σ)(Ω) proves the result.

It is commonly known that irregular domains promote singularities in the solution
of elliptic PDEs (see Section 3.1). For instance, a blow-up in the first derivative can
occur in reentrant corners. Weighted Sobolev spaces allow a more rigorous description
of such phenomena and are a generalization of the previous spaces because weak
derivatives no longer have to be integrable.

Definition 2.1.5. A function r : Ω → R is called weight function if and only if r is
measurable and attains only positive values almost everywhere.

Obviously,
rM (x) := inf

X∈M
min{1,dist(x,X)}, M ⊂ Ω (2.4)

satisfies the properties of Definition 2.1.5.
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Let us mention two important examples.

• The boundary weight function

rΓ(x) := inf
X∈Γ

min{1,dist(x,X)}, x ∈ Ω (2.5)

for the boundary Γ = ∂Ω.

• The vertex weight function

rV(x) :=
∏
X∈V

min{1,dist(x,X)}, x ∈ Ω (2.6)

for a finite set of points (usually vertices) X ⊂ V = {X1, . . . , Xm} ⊂ Γ with
m ≥ l. Note that this function is defined slightly different from (2.4) because it
contains a product over the distances to the vertices. Since Ω is assumed to be
polygonal, we can find a constant c > 0 such that

c−1rV(x) ≤ inf
X∈V

min{1,dist(x,X)} ≤ crV(x).

The definition in (2.6) has the advantage that a specific weight can be assigned
to each vertex. Let β ∈ Rm be a multi-index satisfying β = (β1, . . . , βm) ∈ (0, 1),
where the inclusion is understood component-wise. We set for x ∈ Ω, p ∈ Z

rV(x)
p+β :=

∏
X∈V

min{1,dist(x,X)}p+βi .

The weight function rΓ will play an important role in Sections 3.2 and 4.3, whereas
rV appears in Sections 3.3 and 4.4. Weight functions give rise to the space Lp(Ω, r),
which is defined as the set of measurable functions with finite norm

‖ v ‖Lp(Ω,r) =

(∫
Ω

r(x)|v(x)|p dx
)1/p

.

Additionally, W k,p(Ω, r) comprises all functions whose weak derivatives up to order
k ∈ N lie in Lp(Ω, r). If there exist constants 0 < c1 ≤ r(x) ≤ c2, we obviously have

W k,p(Ω, r) = W k,p(Ω).

For a bounded weight function r, such as rV , rΓ, embeddings for function spaces with
decreasing powers of r, e.g.,

W k,p(Ω, rε1) ↪→ W k,p(Ω, rε2) with 0 ≤ ε1 ≤ ε2 < ∞.

are straightforward. Interestingly enough, the space W k,p(Ω, r) is not necessarily a
Banach space and density results may fail to hold (see [121]). We mention the Muck-
enhoupt class Ap of weight functions, satisfying

sup
B⊂Rn

(
1

|B|

∫
B

r dx
)(

1

|B|

∫
B

r−
1

p−1 dx
)p−1

< ∞, p > 1.
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This condition guarantees the completeness as well as the density of smooth functions
(see [69]) and is satisfied if r−1/(p−1) ∈ L1(Ω). It is directly shown in [96, Proposition
7.6] that C∞(Ω) is dense in W k,p(Ω, rε) for ε ≥ 0 and r ∈ {rV , rΓ}.

A further generalization of the above function spaces is obtained if each derivative
Dα is weighted with rε(α). Let

V k,p
β (Ω) := {v ∈ Lp(Ω) : rβ+|α|−kDαv ∈ Lp(Ω), |α| ≤ k}.

This space has already been used in the seminal work [92]. Various properties and
embeddings for V k,p

β can be found in [117, Chapter 1]. For sufficiently large β, i.e., if

β > kp − 1, [95, Proposition 9.6] states that the spaces V k,p
β/p(Ω) and W k,p(Ω, rβ) are

the same and their norms equivalent. Note that the weight function in V k,p
β generally

can blow up for small values of |α|, which forces functions to vanish at points where r
is zero (see [117, Theorem 1.23]).

Furthermore, we denote by H l,l
β (Ω) with β ≥ 0 the completion of C∞(Ω̄) with re-

spect to the norm

‖ v ‖2
Hl,l

β (Ω)
= ‖ v ‖2Hl−1(Ω) + ‖ rβ+p−l∇pv ‖2L2(Ω), l ≥ 1, (2.7a)

‖ v ‖2
H0,0

β (Ω)
= ‖ v ‖2H0

β(Ω) = ‖ rβ+p∇pv ‖2L2(Ω), l = 0, (2.7b)

where

‖ rβ+p∇pv ‖2L2(Ω) :=

n=2∑
α1=1,...,αp=1

‖ rβ+pDαv ‖2L2(Ω).

The following result can be found in [15, Equation (2.2)].

Proposition 2.1.6. For l ≥ 2 and Ω ⊂ R2, we have the continuous embedding

H l,l
β (Ω) ↪→ Cl−2(Ω). (2.8)

For controlling the derivatives near the boundary of the domain, we introduce count-
ably normed spaces for constants C, γ > 0 and β ∈ [0, 1).

Bl
β(Ω, C, γ) := {v ∈ H l,l

β (Ω) : ‖ v ‖Hl,l
β (Ω) ≤ C, ‖ rβ+p∇p+lv ‖L2(Ω) ≤ Cγpp!, p ∈ N0}.

(2.9)
Functions belonging to countably normed spaces are analytic away from the zeros of
the weight function (see [13, Lemma 2.4]).

Theorem 2.1.7. Let u ∈ Bl
β(Ω, C, γ) for some l ∈ N0 and β ∈ (0, 1). Then u is analytic

on Ω \ {x ∈ Ω : r(x) = 0}.

Remark 2.1.8. Countably normed spaces can measure the blow up of solutions to elliptic
PDEs, which typically occurs near a vertex X ∈ X . The singularity for the Laplacian
is known to have the form sλX

= ρλX

X sin(λXθ) with λX ∈ (0, 1) (see (3.10)) in polar
coordinates (ρX , θ) with origin in X. By changing variables in the definition of B2

β

(see [12, Theorem 1.1]), it can be proved that sλX
∈ B2

β with β ∈ (1 − λX , 1) but
sλX

/∈ B2
1−λX

(confer [12, Remark 1]).
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The set of traces of B2
β(Ω, C, γ) is defined by

B
3/2
β (Γ, C, γ) := {v ∈ C0(Γ) : ∃ṽ ∈ B2

β(Ω, C, γ) with ṽ|Γ = v}

in view of (2.8). An intrinsic characterization of the trace space is given in [13].
We stress that countably normed spaces depend on the weight function. As the

weight function differs in parts of our exposition, we will specify which r is used in
the corresponding chapter.

2.2 The Model Problem

Let us denote by U ⊂ Ω ⊂ R2 the domain where the control acts. We investigate the
linear quadratic optimal control problem

minimize J(u, y) :=
1

2
‖ y − yd ‖2L2(Ω) +

ν

2
‖u ‖2L2(U)

subject to
Ay = Bu on Ω,
u ∈ Uad.

(P)

The constraint Ay = Bu is called state equation and is an elliptic PDE, where A repre-
sents an elliptic differential operator in its weak formulation. The operator B models
the way the control variable u influences the physical system modeled by the equation.

The functional J is said to be of tracking type because the minimization process
intends to drive the state variable y to a desired state yd. In order to model the costs
for controlling the system, a regularization term ν

2‖u ‖
2
L2(U) with ν ≥ 0 is included.

The optimization is subject to additional control constraints which are described by
the admissible set

Uad := {u ∈ L2(U) | ua ≤ u ≤ ub a.e. in U}.

Naturally, we demand ua ≤ ub.
The state equation will take different forms in the course of this thesis. For now, it

will be convenient to distinguish between two types of problems:

• smooth Neumann problems,

• transmission problems.

This separation makes sense because of the differences regarding global regularity,
numerical treatment, and the way the control enters (U = ΓN or U = I). Here, we
generally stipulate ua, ub ∈ H1/2(U) because we want the optimal control to inherit as
much smoothness as possible through the projection formula. Additionally, we always
assume yd ∈ L2(Ω).

Only in Chapter 6, we will encounter distributed control problems where U = Ω.
In this context, the bounds need to be essentially bounded because we apply path-
following techniques.
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Chapter 2 Optimal Control of Partial Differential Equations

2.2.1 Smooth Neumann Problems

The following problem is distinguished by the smoothness properties of the differential
operator. This will allow special regularity results in countably normed spaces (see
Section 3.2). Let Ay = Bu be the Neumann boundary value problem−∇ · (D(x)∇y) + c(x)y = f in Ω,

y = 0 on ΓD,
∂nD

y = u on ΓN

(N)

with a matrix valued D and scalar c. Here, ∂nD
is the co-normal derivative n(x)·D(x)∇

at a point x ∈ ΓN . For the Laplacian (D ≡ I), ∂nD
becomes the normal derivative ∂n

with the outward unit normal vector n(x). The properties of the involved functions
are summed up in the following assumption.

Assumption 2.2.1. Let f ∈ L2(Ω), u ∈ L2(ΓN ) and let c(x) ≥ 0 on Ω (c(x) ≥ c0 >
0 if ΓD = ∅). We assume that D is symmetric and positive definite on Ω, i.e., there
exists λmin > 0 such that for all x ∈ Ω it holds ξTD(x)ξ ≥ λmin|ξ|2 for all x, ξ ∈ R2.
Moreover, the functions D, c are assumed to be analytic on Ω, i.e., there are constants
CD, γD, Cc, γc > 0 such that

‖∇pD ‖L∞(Ω) ≤ CDγp
Dp!, (2.10)

‖∇pc ‖L∞(Ω) ≤ Ccγ
p
c p! ∀p ∈ N0. (2.11)

Solutions y ∈ H1
ΓD

are understood in the weak sense. They satisfy the equation∫
Ω

D(x)∇y · ∇v + c(x)yv dx = (f, v)L2(Ω) + (u, v)L2(ΓN ) ∀v ∈ H1
ΓD

(Ω). (2.12)

Theorem 2.2.2. Under Assumption 2.2.1, the weak formulation (2.12) of the Neumann
problem (N) possesses a unique solution that satisfies

‖ y ‖H1
ΓD

(Ω) ≤ C(‖ f ‖L2(Ω) + ‖u ‖L2(ΓN ))

for a positive constant C depending on D, c.

Proof. The bilinear form of the weak formulation (2.12) is bounded and coercive due
to Assumption 2.2.1. Furthermore, the right hand side of (2.12) lies in the dual space
of H1

ΓD
(Ω). An application of Theorem 2.1.1 and 2.1.2 yields the result.

It is clear that unique existence of a solution can be established under weaker as-
sumptions. We need the analyticity of c and D for obtaining analytic regularity results
and approximation results in finite dimensional spaces. Problem (P) subject to (N) is
referred to as Neumann control problem.
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2.2 The Model Problem

2.2.2 Transmission Problems

Transmission problems are an extension of the previous smooth Neumann problems
insofar as they are posed on a 2d-network, which can model multi-composite materials
in real life applications. The differential operator, on the other hand, is less general
and consists of the Laplacian weighted by a constant coefficient κ.

The strong formulation of the transmission problem on a 2d-network {Ωi}i∈I reads
−κi∆yi = fi in Ωi,
yi − yj = 0 on γi,j ∈ I,

κi∂ni
yi + κj∂nj

yj = u on γi,j ∈ I,
yi = 0 on Γi ∈ ED,

κi∂niyi = hi on Γi ∈ EN .

(T)

The discontinuity of the coefficient κ across subdomain boundaries causes a jump in
the normal derivative (see the third subequation of (T)), which is often written as

[κ∂ny(x)] := lim
ε↘0

(∇y(x+ εn)−∇y(x− εn)) · n, x ∈ I.

Note that the expression is independent of the sign of the normal vector n. We also
speak of (T) as an interface problem.

Again, we sum up the properties of the data in a general assumption. We define

u ∈ Hs(I) :⇔ u|γi,j
∈ Hs(γi,j) ∀γi,j ∈ I

for a compact notation of the regularity of interface functions on I.

Assumption 2.2.3. Assume that {Ωi}i∈I is a 2d-network and that ΓD 6= ∅. Furthermore,
let

h ∈ H1/2(ΓN ), u ∈ H1/2(I), κi > 0, fi ∈ L2(Ωi) for i ∈ I.

Using the characteristic function χ for sets, we define κ(x) :=
∑

i∈I χΩi
κi and write

down the weak formulation of (T). Find y ∈ H1
ΓD

(Ω) such that∫
Ω

κ∇y · ∇v dx =

∫
Ω

fv dx+
∑

γi,j∈I
(u, v)L2(γi,j) +

∑
Γi∈EN

(hi, v)L2(Γi) ∀v ∈ H1
ΓD

(Ω).

(2.13)

Theorem 2.2.4. Under Assumption (2.2.3), the transmission problem (T) possesses a
unique solution y, which satisfies

‖ y ‖H1
ΓD

(Ω) ≤ C(‖ f ‖L2(Ω) + ‖h ‖H1/2(ΓN ) + ‖u ‖H1/2(I))

for a positive constant C depending on mini∈I κi.

Proof. The bilinear form of the weak formulation (2.13) is bounded and coercive due
to Assumption 2.2.3. Furthermore, the right hand side of (2.13) lies in the dual space
of H1

ΓD
(Ω). Again, the application of Theorem 2.1.1 and 2.1.2 yields the result.
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Chapter 2 Optimal Control of Partial Differential Equations

Since we want to promote solutions in the space H1+σ(Ω) (see Section 3.1) we stipu-
lated more regularity in the data u, h than necessary for an existence and uniqueness
result. We refer to (P) subject to (T) as interface control problem.

Transmission problems have been thoroughly studied in literature. The homoge-
neous case u ≡ 0 is treated in [55, 75, 120, 161] while inhomogeneous data is
discussed for general elliptic operators in [117, 118]. Note that the normal jump
generally limits the global regularity of a solution to only H3/2−ε(Ω) for small ε > 0.

2.3 Solvability and Optimality Conditions

The following assumption is met by our model problem (P) because of Theorem 2.2.2
and 2.2.4 for smooth Neumann and transmission problems, respectively.

Assumption 2.3.1. We assume that yd ∈ L2(Ω) and A ∈ L(Y, Z), B ∈ L(L2(U), Z)
with Banach spaces Y, Z. Moreover,

• Uad is nonempty, convex, and closed in L2(U). In the case ν = 0, it is assumed to
be bounded.

• the operator A has a bounded inverse A−1 ∈ L(Z, Y ).

This assumption allows to formulate a general existence result for optimal solutions.

Definition 2.3.2. A pair (u∗, y∗) ∈ Uad × Y is called (optimal) solution of problem
(P) if and only if Ay∗ = Bu∗ and

J(u∗, y∗) ≤ J(u, y) ∀(u, y) ∈ Uad × Y with Ay = Bu.

Theorem 2.3.3. Under Assumption 2.3.1, problem (P) possesses an optimal solution. If
ν > 0 or A−1B is injective, the solution is unique.

The proof is standard (e.g., [81, 144]) and only shown for completeness.

Proof. As A is boundedly invertible, we obtain an equivalent problem formulation if
we eliminate the state from the optimization by replacing y with A−1Bu. The reduced
problem reads

minimize Ĵ(u) := J(u,A−1Bu) subject to u ∈ Uad

and depends only on u. As Ĵ ≥ 0 and Uad 6= ∅, we can take a minimizing sequence
{uk}k∈N ⊂ Uad with J(uk) → Ĵ∗ := infu∈Uad

Ĵ(u). The sequence is bounded be-
cause either Uad is bounded or Ĵ(uk) ≥ ν/2‖uk ‖L2(U). Further, the admissible set
is weakly sequentially compact due to the Theorem of Mazur [163, Theorem V.1.2]
and Eberlein-Shmulyan [163, Chapter A.V.4], which is why we can pass from uk to a
subsequence (also denoted by uk) that converges weakly to u∗ ∈ Uad. As the image of
weakly convergent sequences under bounded, linear mappings (here A−1B) remain
weakly convergent, we find

yk := A−1Buk ⇀ A−1Bu∗ =: y∗.
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2.3 Solvability and Optimality Conditions

Thus, the pair (u∗, y∗) satisfies Ay∗ = Bu∗ and is admissible. Since Ĵ is continuous and
convex, it is also weakly lower semi-continuous ([61, Corollary I.2.2]). Consequently,
we have

J∗ = lim inf
k→∞

Ĵ(uk) ≥ Ĵ(u∗) ≥ J∗.

If ν > 0 or A−1B is injective, the objective functional is strictly convex, which implies
uniqueness of the solution pair (u∗, y∗).

The solution can be characterized by optimality conditions.

Theorem 2.3.4. Let Assumption 2.3.1 hold. An optimal solution (u∗, y∗) to (P) satisfies
the first order necessary conditions

Ay∗ = Bu∗, (2.14a)

(B∗q∗ + νu∗, u− u∗)L2(U) ≥ 0 ∀u ∈ Uad, (2.14b)

A∗q∗ = y∗ − yd. (2.14c)

Proof. Similarly as in the previous proof, we eliminate the state in the objective J and
obtain the reduced problem. The functional Ĵ : Uad → R is Gâteaux-differentiable on
its whole domain and in every direction. From the optimality Ĵ(u∗) ≤ Ĵ(u) ∀u ∈ Uad

we derive

Ĵ(u∗)′(u− u∗) = (A−1Bu− yd, A
−1B(u− u∗))L2(U) + ν(u, u− u∗)L2(U) ≥ 0.

Introducing the adjoint variable q∗ as a solution to (2.14c) yields the first order neces-
sary conditions in form of the variational inequality

(B∗q∗ + νu∗, u− u∗)L2(U) ≥ 0 ∀u ∈ Uad. (2.15)

In the case of convex optimization, the conditions of (2.14) are also sufficient. There
is a convenient reformulation of (2.14b) in form of a projection formula. Again, we
refer to [81, 144].

Theorem 2.3.5. Let PUad
: L2(U) → Uad be the pointwise projection

max{ua(x),min{u(x), ub(x)}}, x ∈ U (2.16)

with the obvious modification if less than two bounds are present. If ν > 0, then (2.14b)
is equivalent to the projection formula

u∗ = PUad

(
−1

ν
B∗q∗

)
. (2.17)
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Chapter 2 Optimal Control of Partial Differential Equations

Definition 2.3.6. The set

A := {x ∈ U : u∗(x) = ua(x) ∨ u∗(x) = ub(x)}

is called active set. The complement Ac = U \ A is called inactive set. Accordingly,
the points of A and Ac are called active and inactive, respectively. If Ac is a set of
Lebesgue-measure zero, u∗ is called bang-bang control.

Note that the active set is only defined up to a set of Lebesgue-measure zero unless the
optimal control happens to be continuous. We close this section by elucidating how
the projection PUad

promotes regularity of the optimal control (see also [5, 97]).

Theorem 2.3.7. Assume that v ∈ Wσ,p(U) along with ua, ub ∈ Wσ,p(U) and σ ∈ [0, 1].
Then it holds u := PUad

(v) ∈ Wσ,p(U) for U = Ω,ΓN , I.

Proof. The case σ = 0 is trivial. For σ = 1, it is well known that max{0, v} and also
min{0, v} are in W 1,p(U). The result follows by rewriting (2.16) as

max{ua,min{v, ub}} = v +min{0, ub − v}+max{0, ua − v −min{0, ub − v}}.

Let σ ∈ (0, 1) and dim(U) := 2 for meas2(U) = 2 and dim(U) := 1, otherwise. We
follow [5, Equation (4.10)] and directly compute

‖u ‖pWσ,p(U) = ‖u ‖pLp(U) +

∫
U

∫
U

|u(x)− u(y)|p

|x− y|dim(U)+σp
dx dy

= ‖PUad
v ‖pLp(U) +

∫
U

∫
U

|PUad
v(x)− PUad

v(y)|p

|x− y|dim(U)+σp
dx dy

≤ ‖ v ‖pLp(U) +

∫
U

∫
U

|v(x)− v(y)|p

|x− y|dim(U)+σp
dx dy = ‖ v ‖pWσ,p(U).

The last step is a consequence of the Lipschitz continuity of the projection and can
also be seen by distinguishing the nine possible cases of how v(x) and v(y) lie in or
around [ua(x), ub(x)] and [ua(y), ub(y)], respectively.

The above theorem shows that smoother controls occur if the PDE fosters regularity
in the adjoint variable, provided that the control constraints are smooth enough. This
matter will be investigated in the next chapter.

Remark 2.3.8. For the Neumann or interface control problem, the optimal adjoint q∗

lies in H1(Ω) and ua, ub ∈ H1/2(U) with U = ΓN or U = I, respectively. Therefore,
Theorem 2.3.7 implies u∗ ∈ H1/2(U).
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CHAPTER 3
Regularity Results

In this chapter we are going to deduce regularity results for the state and adjoint
equation of the optimal control problem (P) because the smoothness of solutions is
crucial for the derivation of approximation results.

In Section 3.1, we show how the shape of the domain and an abstract eigenvalue
problem determine over higher regularity in classical Sobolev-Slobodeckij spaces. Typ-
ically, the solution of an elliptic equation can be decomposed into a regular part y0 ∈
H2(Ω) and singularities limiting the global smoothness to H1+σ(Ω) with σ ∈ [0, 1].
We mention the expansion for Poisson’s equation (Remark 3.1.2), and the transmis-
sion problem (Theorem 3.1.7, Theorem 3.1.12). The results relate to the seminal work
[92], are collected from [49, 117, 118], and can also be found in [158].

Afterwards, Section 3.2 builds on the classical regularity and investigates the affil-
iation of solutions to Ay = Bu to countably normed spaces B2

1−σ with the weight
function rΓ. This weight is designed to control the singularities near the boundary
and allows to bound all orders of derivatives. With the help of [88], we establish
regularity of the state and adjoint variable (see Theorem 3.2.1 and Corollary 3.2.2,
respectively) for the smooth Neumann problems (N). We carry over the results to
transmission problems (T) on 2d-networks (Corollary 3.2.3).

The last Section 3.3 contains the lengthy and technical proof of regularity in vertex
weighted spaces (Theorem 3.3.24). The weight function rV only measures the dis-
tance to a finite set of points where the solution possesses singular components. It
damps the blow up of derivatives and allows to prove the affiliation of the optimal
variables to the countably normed space B2

β of [9, 12, 13] with a multi-index β. A key
ingredient is the coupled optimality system of the Neumann control problem, which
restricts the result to the optimal variables (u∗, y∗, q∗). The result is submitted for
publication ([156]).
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Chapter 3 Regularity Results

3.1 Classical Sobolev-Slobodeckij Spaces

In this section, we aim at the maximal regularity that can be obtained for solutions
to elliptic PDEs on polygonal domains or 2d-networks. This may require additional
regularity of the data.

Convention: The control problem (or state equation Ay = Bu) is referred to as
H1+σ-regular with σ ∈ (0, 1] if and only if A−1 and A−∗ map into H1+σ(Ω) for ’suffi-
ciently smooth data’.

For instance, the Neumann boundary problem (N) can only be H1+σ-regular with
σ ∈ (1/2, 1] if u ∈ Hσ−1/2(ΓN ). An optimal Neumann control u∗ satisfies this assump-
tion because of Remark 2.3.8 and the standing assumption ua, ub ∈ H1/2(ΓN ). The
minimal regulariy u ∈ L2(ΓN ) is enough to facilitate σ ∈ (0, 1/2] (confer [86]).

It turns out that the properties of Ω and the differential operator A decide over that
value of σ. We will derive expansion results that split the solution into a regular part
and singular contributions which decide over the global regularity.

Since the procedure is complicated and tedious, we start by sketching the basic ideas
for a simpler case, mainly following the exposition in [96].

3.1.1 Expansions in Regular and Singular Components

Poisson’s Equation

We look for weak solutions to the Dirichlet problem

−∆y = f in Ω, y = 0 on Γ. (3.1)

It is well known that the Laplacian ∆ in Cartesian coordinates transforms to

1

ρ
∂ρ (ρ∂ρ) +

1

r2
∂2
θ (3.2)

in polar coordinates with (x1, x2) = (ρ cos θ, ρ sin θ) and ρ ≥ 0, θ ∈ [0, 2π). Analogous
formulas are available for the n-dimensional case which allows for treating higher
dimensional problems.

If we formally set ρ∂ρ =: λ, Poisson’s equation becomes

(λ2 + ∂2
θ )y = ρ2f.

Neglecting boundary and interface conditions, this equation is uniquely solvable if and
only if

λ2v + ∂2
θv = 0 (3.3)

has only trivial solutions v ≡ 0. This illustrates the important role of the non-linear
eigenvalue problem (3.3).
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3.1 Classical Sobolev-Slobodeckij Spaces

Let us give a short but more rigorous outline of the derivation of the (Sturm-Liouville-)
eigenvalue problem and the resulting expansion of the solution of (3.1). As regularity
is a local concept, we only need to worry about the smoothness of y at the vertices of
Ω. For interior balls

Bd(x0) with x0 ∈ Ω, d < dist(x0,Γ),

we know that y ∈ H2(Bd(x0)). The same is true for smooth parts of the boundary,
which can be locally flattened and become half balls B+(x0) := {x ∈ R2 | x2 = 0}.
After the change of coordinates y ∈ H2(B+

d (x0)) for d small enough and x0 ∈ Γ, x0 /∈
X .

For treating the irregularities in a vertex X ∈ X of the domain, we localize the
problem using a smooth cut-off function ηX = ηX(dist(x,X)) ∈ C∞(R2). We stipulate
0 ≤ η ≤ 1 such that ηX ≡ 1 for all x near X and ηX decreases rapidly to 0 so that all
other vertices are not ’visible’. Locally, a solution of (3.1) satisfies

−∆(ηXy) = g := −(∆ηX)y + ηXf + 2∇ηX · ∇y, (3.4)

where we can change the coordinates such that the domain becomes a cone with
origin in X and opening angle ωX ∈ (0, 2π), i.e.,

CX := {(ρ, θ) ∈ R2 | ρ ∈ R+, θ ∈ (0, ωX)}.

Applying this change to the differential operator yields the equivalent problem for the
new variable y := ηXy (we dispense with writing yX everywhere)

−
(
∂2
ρy +

1

ρ
∂ρy +

1

ρ2
∂2
θy

)
= g in CX ,

y(ρ, 0) = y(ρ, ωX) = 0.

(3.5)

The operation which manages to send ρ∂ρ to λ ∈ C is the Mellin-transform. It reads
for fixed θ ∈ (0, ωX)

M [y(., θ)](λ) =
1√
2π

∫ ∞

0

ρ−λ−1y(ρ, θ) dρ =: Y (λ, θ).

It is closely connected to the Fourier-Transform F [y(., θ)](z ∈ C) by Euler’s change of
variables, which substitutes ρ =: eτ , τ ∈ (−∞,∞). If we suppress the dependence on
θ, which is assumed to be arbitrary but fixed in [0, 2π), the use of the definitions of
both transforms yields the relation

M [y](λ) = F [y](z), z = −iλ.

Several known properties from the Fourier-Transform, therefore, carry over to the
Mellin-Transform. We only state a few important ones (see [96]).
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Chapter 3 Regularity Results

Theorem 3.1.1. Let < and = denote the real and imaginary part of a complex number.
For λ ∈ C and h := −<(λ) fixed, the Mellin-Transform M

• is an isomorphism

M :
{
f |

∫ ∞

0

|f(ρ)|2ρ2h−1 dρ < ∞
}
→ L2(−h+ iR),

• possesses an inverse mapping M−1
h given by

M−1
h [Y ](ρ) :=

1

i
√
2π

∫ −h+i∞

−h−i∞
ρλY (λ) dλ,

• satisfies
M [(ρ∂ρ)

ky](λ) = λkM [y](λ), k ∈ N.

We can apply M to (3.5) and solve the simpler problem for Y (λ, θ), i.e.,

λ2Y + ∂2
θY = M [−ρ2g], in (0, ωX),

Y (λ, 0) = Y (λ, ωX) = 0.
(3.6)

In order to solve (3.6) with the help of Theorem 3.1.1, the integrability of −ρ2g as
defined in (3.5) has to be investigated. Since the cut-off function ηX is smooth and
y ∈ H1(Ω), the behavior of f near the vertex X is crucial.

Let f ∈ V 0,2
β (Ω) with β ≥ 0 and set <(λ) = 1− β = −h, then∫

CX

ρ2βg(x)2 dx =

∫ ωX

0

∫ ∞

0

ρ2βg(ρ, θ)2ρ dρ dθ =

∫ ωX

0

∫ ∞

0

ρ2h−1|ρ2g(ρ, θ)|2 dρ dθ.

(3.7)

is finite. This proves that the Mellin-Transform of −ρ2g exists for <(λ) ≤ 1. The case
<(λ) = 1 corresponds to f ∈ L2(Ω).

The inverse mapping of the Mellin-Transform works on lines parallel to the imagi-
nary axis. We find a solution y of (3.4) if we apply the inverse mapping of Theorem
3.1.1 to solutions Y of (3.6) on a line {<(λ) = −h} where

λ2V + ∂2
θV = 0,

V (λ, 0) = V (λ, ωX) = 0
(3.8)

has only trivial solutions (implying that Y is unique). The behavior of the resulting
function for r → ∞ depends on the value of <(λ) = 1 − β = −h that was chosen for
the inverse transform. We have the following regularity ([92, 96]):

M−1
h [Y (λ)] ∈ V 2,2

β (CX). (3.9)
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=(λ)

<(λ)
0

Li 1 + Li

1− Li−Li

Q

Figure 3.1. The domain of
integration for evaluating in-
verse Mellin-Transforms.

An expansion of the solution to Poisson’s equation
is obtained as follows. The solutions of (3.8) are
given by

V = C sin(λθ) +D cos(λθ), C,D ∈ C.

The constants need to be adjusted to fit the bound-
ary conditions, which implies that only the case
λk = kπ/ω allows non-trivial solutions for k ∈
Z \ {0}, i.e., Vk = sin( kπ

ωX
θ). Obviously, the

eigenvalues are real and distributed symmetrically
around zero.

For ωX > π the lines {<(λ) = 1} and {<(λ) = 0}
are free of eigenvalues. Due to [92], the origi-
nal problem (3.5) has a solution in V 2,2

1 (Ω) which
corresponds to the inverse Mellin-Transform with
<(λ) = h = 0 because of (3.9). Consequently, we
need to evaluate

1

i
√
2π

∫ 1+i∞

1−i∞
Y (λ, θ)ρλ dλ.

This is done with the help of the residue theorem and the box domain Q depicted in
Figure 3.1.

√
2π lim

L→∞

∫
Q

Y ρλ dλ =
1

i
√
2π

∫ +i∞

−i∞
Y (λ, θ)ρλ dλ− 1

i
√
2π

∫ 1+i∞

1−i∞
Y (λ, θ)ρλ dλ

=
√
2π
∑
λ∈Q

Res(Y (λ, θ)ρλ)

because the integrals for the horizontal parts of Q vanish in the limit ([96]).
The only pole in the domain of integration is located at λ1 = π/ωX , where the

residue reads
cXρπ/ωX sin(θπ/ωX), cX ∈ R. (3.10)

On account of the regularity property (3.9), we obtain the expansion

y(ρ, θ) = wX(ρ, θ) + cXρπ/ωX sin(θπ/ωX) (3.11)

with wX ∈ H2(CX).
This procedure can be done for all X ∈ X . Remember that we implicitly agreed on

y := ηXy previously, so it follows for the true solution y of (3.1) that

y =
∑
X∈X

η2Xy +

(
1−

∑
X∈X

η2X

)
y,

where ηXy has the form (3.11).
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Chapter 3 Regularity Results

Thus,
y =

∑
X∈X

ηXcX ρ
π/ωX

j sin (θπ/ωX) + y0 (3.12)

with ρX := dist(·, X) and the regular part

y0 =
∑
X∈X

ηXwX + (1−
∑
X∈X

η2X)y

being clearly in H2(Ω).

Remark 3.1.2. From the expansion (3.12), we see that the regularity of a solution y to
(3.1) is limited to H1+σ(Ω), where

σ = min
X∈X

{π/ωX} − ε, ε > 0

on domains with reentrant corners. On convex domains, there is no pole in Q yielding a
smooth solution y ∈ H2(Ω).

Transmission Problems

The following investigations are made under the standing Assumption 2.2.3. Proceed-
ing as before, we obtain the following non-linear eigenvalue problem for 2d-networks.
Suppose J subdomains Ωj meet at a vertex X ∈ X , see Figure 3.2 for the notations.
Then the non-linear eigenvalue problem is given by

λ2V + ∂2
θV = 0 in (θj , θj+1), j = 1, . . . , J, (3.13a)

V (λ, θj + 0) = V (λ, θj − 0) j = 2, . . . , J, (3.13b)

κj∂θV (λ, θj + 0) = κj−1∂θV (λ, θj − 0) j = 2, . . . , J, (3.13c)

compare also (3.6).

θ1

ω1

θ2
ω2. . .

θ3θJ

θJ+1
ωJ

X ∈ V
Figure 3.2. A vertex X in the domain Ω (after a
change of variables) where J different materials meet.
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3.1 Classical Sobolev-Slobodeckij Spaces

If no exterior boundary is involved, i.e., X ∩ ∂Ω = ∅, we set θJ+1 = θ1 and let both
sums in (3.13b),(3.13c) run from 1, . . . , J with the convention κ0 = κJ . Otherwise,
we have additional boundary conditions

V (λ, θ1 = 0) = 0 if ∂Ω1 ∩ ΓD 6= ∅ ∨ ∂θV (λ, θ1 = 0) = 0 if ∂Ω1 ∩ ΓN 6= ∅,
(3.13d)

V (λ, θJ+1) = 0 if ∂ΩJ ∩ ΓD 6= ∅ ∨ ∂θV (λ, θJ+1) = 0 if ∂ΩJ ∩ ΓN 6= ∅.
(3.13e)

A candidate for an eigensolution is (as for the Laplacian) the function

Vj = Cj sin(λ(θ − θj)) +Dj cos(λ(θ − θj)), θ ∈ (θj , θj+1). (3.14)

The boundary and transmission conditions at the interface give rise to a system of
equations for the unknowns Cj , Dj .

It is proved by induction ([117, Example 2.29]) that the Dirichlet-Dirichlet problem
(3.13) with V (λ, 0) = V (λ, θJ+1) = 0 in (3.13d), (3.13e) is solved by

Cj+1 =
D1

Πi
ν=2κν

dDj (λ), Dj+1 =
D1

Πj+1
ν=2κν

dMj (λ)

with the recursion formula

dD1 (λ) = sin(λω1), (3.15a)

dM1 (λ) = κ1 cos(λω1), (3.15b)

dDj (λ) = κj cos(λωj)d
D
j−1(λ) + sin(λωj)d

M
j−1(λ), (3.15c)

dMj (λ) = −κ2
j sin(λωj)d

D
j−1(λ) + κj cos(λωj)d

M
j−1(λ). (3.15d)

The Dirichlet condition V (λ, θJ+1) = 0 in (3.13e) is equivalent to DJ+1 = 0. Hence,
there are non-trivial solutions if and only if dDJ (λ) is zero. Let us note that the condi-
tion dMJ (λ) = 0 determines the eigenvalues for the transmission problem with mixed
boundary conditions, i.e., V (λ, 0) = 0 in (3.13d) and ∂θV (λ, θJ+1) = 0 in (3.13e).

In an analogous way, the discriminant dNJ (λ) for the Neumann-Neumann problem
with the boundary condition ∂θV (λ, 0) = 0 in (3.13d) and ∂θV (λ, θJ+1) = 0 in (3.13e)
can be derived. It involves the discriminant dM

′

J (λ) for the mixed transmission prob-
lem with ∂θV (λ, 0) = 0 in (3.13d) and V (λ, θJ+1) = 0 in (3.13e). We find

Cj+1 =
C1

Πj
ν=2κν

dM
′

j (λ), Dj+1 = − C1

Πj+1
ν=2κν

dNj (λ)

with the recursion formula

dN1 (λ) = κ1 sin(λω1), (3.15e)

dM
′

1 (λ) = cos(λω1), (3.15f)

dNj (λ) = κ2
j sin(λωj)d

M′

j−1(λ) + κj cos(λωj)d
N
j−1(λ), (3.15g)

dM
′

j (λ) = κj cos(λωj)d
M′

j−1(λ)− sin(λωj)d
N
j−1(λ). (3.15h)
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Chapter 3 Regularity Results

Remark 3.1.3. The eigenvalues of the transmission problem are real numbers because the
problem can be written as a self-adjoint operator (see [116, Theorem 2.2]). Additionally,
the set of eigenvalues is countable without a cluster point (see [68] with the result of [118,
Theorem 3.4]). Furthermore, the roots of dDJ (λ), d

N
J (λ), dMJ (λ), dM

′

J (λ) are symmetric
around zero.

Note that, at interior vertices, the function V ≡ const solves the eigenvalue problem
for λ = 0 because there are no boundary conditions present.

Let us introduce some new notation and definitions that allow us to rigorously for-
mulate the main result of this section, i.e., an asymptotic expansion for the transmis-
sion problem.

Definition 3.1.4. Let X ∈ X and LX(λ) denote the differential operator corresponding
to (3.13a) and BX(λ) denote the operator collecting (3.13b)-(3.13e) depending on the
problem posed at vertex X. The eigenvalue problem is abbreviated by

AX(λ) := (LX(λ), BX(λ)).

As the eigenvalue problem for AX(λ) of Definition 3.1.4 is non-linear, we provide a
generalized Definition of eigenvalues, eigensolutions, and generalized Jordan chains.
The following definitions are made under the assumption of one arbitrary but fixed
vertex X ∈ X .

Definition 3.1.5. Let C∩s
X := CX ∩ {ρ = 1} be the intersection of the cone CX with the

one-dimensional sphere. A number λ0 ∈ C is an eigenvalue of the operator AX(λ) if
there is a non-trivial function sλ0,0 ∈ H2(C∩s

X ) (called eigensolution) with

AX(λ0)sλ0,0 = 0.

If λ0 is an eigenvalue of A(λ), there are dimKer(AX(λ)) =: Iλ0 linearly indepen-
dent eigensolutions sλ0,i,0 with i = 1, . . . , Iλ0

. Besides them, there may exist Nλ0,i

associated eigenfunctions sλ0,i,j .

Definition 3.1.6. The system {sλ0,i,j} with i = 1, . . . Iλ0 , j = 0, . . . , Nλ0,i consists of
eigensolutions and associated eigensolutions (called a system of Jordan chains) if

k∑
ν=0

1

ν!
∂ν
λAX(λ0)sλ0,i,k−ν = 0

for k = 0, . . . , Nλ0,i, where Nλ0,i (decreasing with respect to i) denotes the size of the
Jordan chain. An eigenvalue λ0 is called simple if no associated eigensolutions exist,
i.e., Nλ0 = 0.

Theorem 3.1.7. Let λX,j , j = 1, . . . , NX denote all eigenvalues of AX(λ) in (0, 1] and
assume that λX,j 6= 1. Then the solution of (T) with u = 0 on a 2d-network admits the
expansion

y = y0 +
∑
X∈V

NX∑
j=1

cX,j ηX ρ
λX,j

X sX,j(θ)
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3.1 Classical Sobolev-Slobodeckij Spaces

with ρX := dist(·, X). Here, u0,i ∈ H2(Ωi) i ∈ I, cX,j ∈ R, sX,j ∈ H1(]0, θJ(X)[) and
ηX is a smooth cut-off function.

This result comprises Remark 3.1.2 and is rigorously proved in [117, Theorem 2.27].
The eigenvalues of (3.13) are simple, which is why a similar result holds in weighted
Sobolev spaces (see [117, Theorem 3.6]).

An expansion of the solution y into a regular part y0 and singular contributions
can be derived for more general 2m-coercive problems (m ≥ 1) and transmission
problems. The proofs are more involved and use (semi-)Fredholm properties of the
general operators. At the core, however, a non-linear eigenvalue problem similar
to (3.8) and its solvability is discussed on the infinite cone (see [117, 118] and the
references therein).

Allowing non-homogeneous jumps in the normal derivative, i.e., u 6= 0 in (T), se-
riously complicates the analysis. In order to formulate an expansion result for the
inhomogeneous problem, it is necessary to introduce the concept of injectivity modulo
polynomials, which is described in [118] or [49].

For a cone CX , we define the restriction CX,i to be the part of CX on which κ =
κ(θ) = κi. Analogous to the notation on 2d-networks {Ωi}i∈I , we use EN , ED, and I
for the Neumann boundary, Dirichlet boundary, and interface, respectively. Further-
more, yX,i := y|CX,i

for functions y defined on CX .

Definition 3.1.8. Let D be an open subset of Rn and let l ∈ Z and X ∈ X . We define
the homogeneous polynomial spaces of degree l as

PH
l (D) := {q | q is a homogeneous polynomial of degree l defined on D}, l ≥ 0,

PH
l (D) := {0}, l < 0,

PH
l (CX) := {q : CX → R | qi ∈ PH

l (CX,i)}.

For the data of (T), we define the polynomial space

ΥH
l (CX) := PH

l−2(CX)×
∏

γi,i′∈I
PH
l (γi,i′)×

∏
γi,i′∈I

PH
l−1(γi,i′)

×
∏

Γi∈ED

PH
l (Γi)×

∏
Γii′∈EN

PH
l−1(Γi).

Definition 3.1.9. We say AX(λ) is injective modulo polynomials of order l (short
i.m.p) for l ∈ N on CX if and only if any solution wX that solves

−κi∆wX,i = fi in CX ,
wX,i − wX,i′ = di,i′ on γi,i′ ∈ I,

κi∂θiwX,i − κi′∂θi′wX,i′ = ui,i′ on γi,i′ ∈ I,
wX,i = gi on Γi ∈ ED,
wX,i = hi on Γi ∈ EN

(3.16)

with a right hand side in ΥH
l (CX) belongs to the space PH

l (CX).
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Chapter 3 Regularity Results

Remark 3.1.10. If the operator is i.m.p., then every solution wX of (3.16) with polyno-
mial data is itself polynomial.

In order to answer the question on injectivity modulo polynomials in practice, a char-
acterization of wX is necessary.

Proposition 3.1.11. Let wX be a solution of (3.16) with polynomial data from ΥH
l (CX)

with l > 0. Then the restriction wX,i to one subdomain CX,i looks like (we suppress the
index i for better readability)

wX,l(ρX , θ) = PX,l(ρX , θ) +
∑

λX,j=l

cX,j ρ
l
X(ln(ρX)sX,j(θ) + θ∂θsX,j(θ)), (3.17)

where ρX = dist(·, X) and PX,l is a homogeneous polynomial of degree l (in Cartesian
coordinates).

For the proof, we refer the reader to [117, Theorem 3.10], where the result extends
to l ≥ 0. Note that general elliptic equations lead to higher powers of ln(ρX) owing to
the presence of more associated eigenfunctions (see [118, Lemma 7.1]).

A discussion of injectivity modulo polynomials for elliptic boundary value problems
can be found in [49]. Under the assumption of injective modulo polynomials we have
the following result.

Theorem 3.1.12. Assume that AX(λ) is i.m.p. of order 1 for all X ∈ X and the line
{<(λ) = 1} contains no eigenvalue of A(λ) except possibly at λ = 1. Then there exists a
solution y to (T) that satisfies the expansion

y = y0 +
∑
X∈V

∑
j

cX,j ηX ρ
λX,j

X sX,j(θ)

with ρX = dist(·, X). Here, y0 ∈ L2(Ω) and y0,i ∈ H2(Ωi), cX,j ∈ R, sX,j ∈
H2(]0,

∑
i ωX,i[) and ηX is a smooth cut-off function.

Proof. The proof is the same as [118, Theorem. 7.4] where we set k = 0, m = 1, p = 2
to cover the situation considered here. We only point out some important steps. The
fact u ∈ H1/2(I) allows to construct a lift function v ∈ V 2,2

0 (Ω) that exactly fulfills the
transmission conditions [118, Lemma 4.3]. A unique solution and its expansion with a
regular part in the weighted Sobolev space V 0,p

0 (Ω) follows from [118, Corollary 4.4].
The result for p = 2 is then obtained by an interpolation argument which exploits the
property of injectivity modulo polynomials of order 1.

The eigenvalues of AX(λ), which is defined for transmission problems (see Definition
3.1.4), are real (Remark 3.1.3). Hence, the only prerequisite we have to check for is
the injectivity modulo polynomials. Note that the result also holds for more general
problems and corresponding operators AX(λ) (see [118]).
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3.1 Classical Sobolev-Slobodeckij Spaces

3.1.2 Lower Bounds for eigenvalues

An expansion like the one provided in Theorem 3.1.7 or Theorem 3.1.12 allows to
establish higher regularity (locally and globally) by bounding the eigenvalues of A(λ)
from below. The singular functions in the expansion of Theorem 3.1.7 or 3.1.12 satisfy

ηXρλXsX ∈ H1+λ−ε(Ω) and ηXρλXsX /∈ H1+λ(Ω) (3.18)

for small ε > 0 (see [71, Theorem 1.2.18] or [117, Theorem 1.26]). Hence, the
lowest exponent of ρX decides on the global regularity of a solution to the transmission
problem.

Corollary 3.1.13. Assume that AX(λ) is i.m.p. of order 1 for all X ∈ V and that there
is a σ ∈ (0, 1] such that λX,j > σ. Then the solution y of (T) satisfies for small ε > 0

yi ∈ H1+σ(Ωi), y ∈ H1+min{1/2−ε,σ}(Ω).

Proof. For the homogeneous case u = 0, the result follows from Theorem 3.1.7 and
[71, Theorem 1.2.18]. In the case of λX,j 6= 1, we have to rely on Sobolev embeddings
and sharper results in Lp-spaces (see [120, Corollary 2.1]).

In the inhomogeneous case, we resort to Theorem 3.1.12 and [71, Theorem 1.2.18].
The global regularity is a general consequence of the observation that y ∈ H3/2−ε(Ω).

The Theorem could be refined by allowing lower bounds σi for the vertices of each
subdomain Ωi of the 2d-network.

Quasi-Monotone Distributions

Without additional assumptions, it is impossible to find a lower bound for the eigen-
value distribution of AX(λ), which the following example shows. For a mixed bound-
ary value problem with ω1 = ω2 = π/2, it holds

dM2 (λ) = −κ2
2 sin

2(λπ/2) + κ1κ2 cos
2(λπ/2).

A vanishing discriminant dM2 (λ) = 0 leads to

tan(λπ/2) = ±
√

κ1

κ2
.

Letting κ2 → ∞ sends λ → 0.
Such phenomena can be avoided with the help of quasi-monotone distributions of

diffusion coefficients (see [120]), first introduced in [56].

Definition 3.1.14. Let κi > 0 with i ∈ I be the distribution of diffusion coefficients for
a 2d-network. Assume that

i 6= j, meas1(Ωi ∩ Ωj) > 0 ⇒ κi 6= κj .
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Chapter 3 Regularity Results

Let at X ∈ V meet J different domains with κj , j = 1, . . . , J . We denote by κaj , κbj the
material constants of the domains which abut on material j with positive one dimensional
measure (one of them being zero if there is only one neighbor). The distribution of κi is
called quasi-monotone if the following assumptions hold for all X ∈ V:

• If X lies in Ω \ ΓD, then

∃! j ∈ {1, . . . , J} : κj > max(κaj
, κbj ).

• If X lies on ΓD, then κj > max(κaj , κbj ) implies that meas1(Ωj ∩ ΓD) > 0.

Remark 3.1.15. Three materials meeting at an interior point are automatically dis-
tributed in a quasi-monotone way, i.e., the first condition only poses restrictions for k ≥ 4.
The second condition states that, locally, the domain with maximal material constant has
to touch the Dirichlet boundary.

Using this definition, we can prove the following result ([120, Theorem 2.8 and 2.9]).

Theorem 3.1.16. If the coefficients κi are quasi-monotone, then the eigenvalues λX,i of
AX(λ) satisfy for each X ∈ X

λX,i >
1

4
.

Proposition 3.1.17. Let Ω consist only of two subdomains Ω1,Ω2. For each X ∈ X and
opening angle ωX ∈ (0, 2π], we have in the case of EN = ∅

λX,i ≥
1

2
.

Proof. The result for X ∈ Γ can be found in [46, Theorem 8.1]. For interior vertices,
we refer to [89, Section 2.2].

Two numerical examples for the eigenvalue distribution are shown in Figure 3.3: there
the dependence of eigenvalues of AX(λ) is depicted for the case where two materials
meet with angles ω1, ω2 at a boundary and an interior vertex, respectively. We refer
the reader to [120] and [89] regarding a further discussion of lower bounds.

Corollary 3.1.18. Suppose that the coefficients κi are distributed in a quasi-monotone
way and that AX(λ) is i.m.p of order 1 for all X ∈ X . Under Assumption 2.2.3, the
solution of (T) lies in H5/4(Ω).

Proof. Due to Theorem 3.1.16, we can apply Corollary 3.1.13 with the lower bound
σ = 1/4.
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0◦ 45◦ 90◦ 135◦ 180◦
0

1

2

3

4

5

ω1

R
eλ

0◦ 90◦ 180◦ 270◦ 360◦
0

0.5

1

1.5

2

2.5

3

ω1

R
eλ

Figure 3.3: eigenvalue distribution for a boundary (left, ω1 + ω2 = 180◦ ) and interior (right,
ω1 + ω2 = 360◦) vertex with κ1 = 0.25, κ2 = 5 .

Examples

Let us discuss the concept of injectivity modulo polynomials of order 1 for the trans-
mission problem with EN = ∅ and some showcase vertices X ∈ X . After that, we
provide several examples for elliptic PDEs that are H1+σ-regular, which is a property
that is often needed in the following chapters.

Let CX be the cone at an exterior vertex X ∈ X with Dirichlet-Dirichlet boundary
conditions and two materials (see Figure 3.4).

ω1

ω2

X ∈ V
γ1 ∈ ED

γ2 ∈ ED

Figure 3.4. The Dirichlet-Dirichlet problem at a
conical point with two materials.

From (3.15c) we get

dD2 (λ) = κ2 cos(λω2) sin(λω1) + κ1 sin(λω2) cos(λω1).
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For ω1 = ω2 it is obvious that λ = 1 is an eigenvalue if sin(ω1) = 0, i.e., ω1 = π/2. For
the decomposition in (3.17), we find with (3.14) that

sX,1 = sin(θ), sX,2 = cos(θ − π/2) = sin(θ).

Observing that

PX =

{
1
κ1
ρX cos(θ) if θ ∈ (0, π/2),

− 1
κ2
ρX cos(θ) if θ ∈ (π/2, π),

is a polynomial that solves (3.16)v with polynomial data from ΥH
1 (CX), we set

wX,i = PX,i +
ρX
κi

(ln(ρX) sin(θ) + θ cos(θ)).

A simple calculation shows that ∆wX = 0. Continuity of wX at θ = π/2 is also fulfilled
as well as the jump in the normal derivative

κ1∂θwX,1 = −ρX − π/2 = −(ρX + π/2) = −κ2∂θwX,2.

So wX solves a problem with polynomial data but is itself non-polynomial. Conse-
quently, the operator AX(λ) is not i.m.p. of order 1 at such a vertex X ∈ X .

The situation is different if 1 is no eigenvalue of AX(λ). Then the sum in (3.17)
is empty and Proposition 3.1.11 yields a unique (polynomial) solution, which in turn
guarantees i.m.p. of order 1. This can be also seen in the left diagram of Figure 3.3.
There, eigenvalues λ were computed for

κ1 = 0.25, κ2 = 5,

0 < ω1 < π, ω1 + ω2 = π.

According to Figure 3.3, λ = 1 is only an eigenvalue if ω1 = π/2. As vertices with only
one material do not pose a problem due to [49, Section 4], the operator A(λ) is i.m.p.
of order 1 for the domain shown in Figure 3.5.

For two materials and an interior vertex, λ = 1 is never an eigenvalue. This can
be seen as follows. Setting J = 2 in (3.13) and inserting the solution candidate
from (3.14) yields a system of equation with the determinant (see also [117, Example
2.30])

d(λ) = (κ1 − κ2)
2 sin2(λ(π − ω1)) + (κ1 + κ2)

2 sin2(λπ).

Assume d(1) = 0, then it follows

ω1 = 0 ∨ ω1 = π,

which can also be observed in the right diagram of Figure 3.3. However, these two
cases do not allow for an interior vertex with two materials. Hence, the operator A(λ)
is i.m.p on the model domain of Figure 3.6.
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γ12 Ω2Ω1

ω1 ω2

Figure 3.5. A suitably shaped domain to
apply Theorem 3.1.12: For ω1 6= π/2 the ex-
terior vertices exclude λ = 1 as eigenvalue,
which results in injectivity modulo polyno-
mials.

Ω2 Ω1

ω2

ω1

Figure 3.6. A suitably shaped domain to
apply Theorem 3.1.12: For ω1 6= π the in-
terior vertices exclude λ = 1 as eigenvalue,
which results in injectivity modulo polyno-
mials.

Let us comment on the consequences of the asymptotic expansions of solutions to el-
liptic PDEs on polygonal domains. The lower bound of an abstract eigenvalue problem
decides over the exponents of the singular components of the solution and, hence, over
the H1+σ-regularity of the PDE. For instance, a convex domain implies H2-regularity
for Poisson’s equation with homogeneous Dirichlet conditions (confer Remark 3.1.2
or [72]). This result continues to hold for general boundary conditions if each corner
where ΓD and ΓN meet has an opening angle ω ≤ π/2 (see [72, Corollary 4.4.3.8]).
The analysis of the corresponding eigenvalue problem for mixed and Neumann bound-
ary conditions ([96, Section 2.1]) shows that the state equation is H1+σ-regular with
σ = 1/4 on general domains. This also holds true for σ = 1/2 and the pure Neumann
problem as shown in [86].

The transmission problem is H1+σ-regular with σ = 1/4 if the the coefficients are
distributed quasi-monotone and the operator A(λ) is i.m.p. of order 1 (combine The-
orem 3.1.13 and 3.1.16). Optimal global regularity, i.e., σ = 1/2− ε is obtained under
the assumptions of Proposition 3.1.17. Note that the local regularity of a solution on
a 2d-network can be higher. Instead of appealing to theoretical results, we can numer-
ically evaluate the eigenvalues for each vertex of a specific problem and obtain and
estimate for σ, confer Figure 3.3.

3.2 Analytic Regularity far From the Boundary and Interface

Assuming a higher regularity of the PDE constraint, we now show that the state and
adjoint variable y, q belong to the countably normed space B2

1−σ(Ω), σ ∈ (0, 1]. Neu-
mann control problems are treated with the weight function rΓ, whereas interface
problems use rI∪Γ in the sense of (2.4). In the view of Theorem 2.1.7, this establishes
analytic regularity distant from the boundary and interface, respectively.

We recall a result from [88].
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Theorem 3.2.1. Let f ∈ B0
1−σ(Cf , γf ) with Cf , γf > 0, σ ∈ (0, 1] and the weight

function rΓ. Additionally, let y ∈ H1+σ(Ω) solve the differential equation

−∇ · (D(x)∇y) + c(x)y = f in Ω,

which fulfills Assumption 2.2.1. Then there exist constants C, γ > 0 that depend only on
Ω, CD, Cf , γD, γf , and σ such that

‖rp+1−σ
Γ ∇p+2y‖L2(Ω) ≤ Cγpp!

(
Cf + ‖y‖H1+σ(Ω)

)
∀p ∈ N0,

which implies y ∈ B2
1−σ

(
C(Cf + ‖y‖H1+σ(Ω)), γ

)
.

Proof. By closely inspecting the technical proof of [88, Theorem A.1], which builds on
[106], one can see that the assumptions on f are sufficient for obtaining the theorem.

We would like to stress that this regularity result holds without any assumptions on the
boundary data because the weight function rΓ damps possible singularities. Therefore,
Theorem 3.2.1 is suitable for Neumann control problems whose solution u∗ may have
kinks stemming from the projection formula.

Corollary 3.2.2. Let the assumptions of Theorem 3.2.1 hold. Let additionally yd ∈
B0

1−σ(Cd, γd) for Cd, γd > 0 and the weight function rΓ. If q ∈ H1+σ(Ω) is a solution of
the adjoint equation

−∇ · (D(x)∇q) + c(x)q = y − yd in Ω,

then there exists constants C, γ > 0 such that q ∈ B2
1−σ(C, γ).

Proof. From Theorem 3.2.1 we get y ∈ B2
1−σ(Cy, γy) with Cy, γy > 0. As rΓ is bounded

by one, we easily obtain y ∈ B0
1−σ(Cy, γy). The regularity of yd allows to apply Theo-

rem 3.2.1 again, which concludes the proof.

The countably normed spaces B2
1−σ use the weight function rΓ to control the blow-up

towards the whole boundary and are of importance for convergence of the bound-
ary concentrated finite element method (see Section 4.3). The above results can
be extended to piecewise analytic data or subdomain observation by using appro-
priate weight functions for the countably normed spaces (see [27]). Similarly, we
use rI∪Γ instead of rΓ and obtain analogous regularity features for the transmission
problem (T).

Corollary 3.2.3. Let {Ωi}i∈I be a 2d-network and y, q ∈ H1+σi(Ωi) be solutions of

−∇ · (κi∇y) = fi, −∇ · (κi∇q) = yi − yd,i in Ωi,

with κi > 0, σi ∈ (0, 1] and fi, yd,i ∈ B0
σi
(Ωi, C, γ) with the weight function r = r∂Ωi .

Then there exist constants C, γ > 0 that depend only on the data such that y, q ∈
B2

1−σ(Ω, C, γ) for the weight function rI∪Γ and σ := mini∈I{σi}.
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Proof. Applying Theorem 3.2.1 on each subdomain Ωi, we obtain y, q ∈ B2
1−σi

(Ωi, Ci, γi)

for r∂Ωi
and positive constants Ci, γi. Setting C := maxi∈I{Ci} and γ := maxi∈I{γi}

yields the result.

3.3 Analytic Regularity far From Singular Points

The main result of this section is Theorem 3.3.24, where global analytic regularity of
the optimal variables (u∗, y∗, q∗) is established. It can be viewed as a generalization
of the previous section because we now take the regularity of the boundary data into
account. This manifests in the use of a different weight function, which measures the
distance to a finite set of ’singular’ points.

3.3.1 Preliminary Assumptions and Remarks

We only consider the Neumann control problem and refer to Subsection 3.3.5 for
remarks on the transmission problem. The smoothness of the optimal variables is
limited by

• the vertices X of Ω, which may cause a blow-up in higher derivatives (confer
Section 3.1),

• the projection formula (2.17), which may introduce kinks in the optimal control.

The projection representation (2.17) implies that the optimal control inherits regular-
ity from the trace of the adjoint state. This allows to conclude higher regularity of the
solution of (P).

However, the regularity of the optimal control is also limited by the non-smooth
structure of the projection. In general, the optimal control will be at most Lipschitz
continuous due to the appearance of kinks at points x ∈ ΓN , where ua(x) = − 1

ν q
∗(x)

or ub(x) = − 1
ν q

∗(x). In the subsequent analysis, we will assume that the set of kinks
in the control is finite.

Assumption 3.3.1. We assume that there exists a finite set S of switching points of u∗.
That is, there exists a finite set S such that u∗ fulfills one of the equations

u∗ = ua,

u∗ = −1

ν
q∗,

u∗ = ub

on every connected component of ΓN \ S.
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This assumption will be of essential importance in Subsection 3.3.4. If the optimal
control u∗ is continuous, the assumption can be replaced by: the boundary of the
active set A := {x ∈ ΓN : u∗(x) = ua or u∗(x) = ub(x)} is finite. This is not fulfilled
in general, we refer to [104, Remark 4.1] for an example of a smooth control with
infinitely many switching points. Moreover, the assumption implies that the switching
points of u∗ are known a-priori. In Section 4.2 we describe how we cope with this
difficulty in the numerical computations.

Remark 3.3.2. Assumption 3.3.1 is slightly stronger than other regularity assumptions
used in the literature. In [104], the following assumption was used to prove a-priori
finite element error estimates: the set of elements K ⊂ ΓN such that u∗ is not in Hs(K)
for some s ∈ ( 32 ,

5
2 ) has measure proportional to the mesh-size h. If the set of switching

points is finite and the elements K are of size h, then clearly this assumption is fulfilled.

Assumption 3.3.1 ensures that the amount of points where the control changes from
inactive to active behavior (or vice versa) is finite and can be included into the weight
function.

Definition 3.3.3. Define the set V := X ∪ S = {X1, . . . , Xm}. Let β ∈ Rm be a
multi-index satisfying (β1, . . . , βm) ∈ (0, 1) (understood component-wise). For x ∈ Ω,
p ∈ Z, we set

r(x) := rV(x)
p+β =

m∏
i=1

min{1,dist(x,Xi)}p+βi , p ∈ Z. (3.19)

Accordingly, we partition the boundary into straight line segments Γ =
⋃m

i=1 Γi such
that each intersection Γi ∩ Γj 6= ∅, i 6= j lies in V.

The derivation of regularity in boundary weighted spaces relied on the assumption
f, yd ∈ B0

1−σ(Ω, C, γf ) with the weight function rΓ. Similar assumptions are necessary
if r only measures the distance to a finite set of points.

Assumption 3.3.4. Let us assume that f ∈ L2(Ω) ∩ B0
β(Ω, Cf , γf ) and yd ∈ L2(Ω) ∩

B0
β(Ω, Cd, γd) for a given multi-index β ∈ (0, 1) and the weight function rX , i.e., for

p ≥ 0

‖ rp+β
X ∇pf ‖L2(Ω) ≤ Cfγ

p
fp!,

‖ rp+β
X ∇pyd ‖L2(Ω) ≤ Cdγ

p
dp!.

(3.20)

In addition, we assume that ua, ub ∈ B2
β(Ω, Cg, γg).

The assumptions on the control bounds imply that ua, ub ∈ B
3/2
β (ΓN , C, γ) and streng-

then the standing assumption of ua, ub ∈ H1/2(ΓN ). In particular, the embedding
H2,2

β (Ω) ↪→ C0(Ω) implies the continuity of the optimal control.

Remark 3.3.5. In the following investigations, it will be necessary to work with the
weight function rV from above, which satisfies rV ≤ rX on Ω. Hence, Assumption 3.3.4
implies that (3.20) remains valid if we exchange rX for rV .
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3.3 Analytic Regularity far From Singular Points

Remark 3.3.6. The results can also be extended to non-homogeneous Dirichlet boundary
conditions by a lifting trace argument provided that the boundary values are regular
enough.

The global regularity result (Theorem 3.3.24) is obtained with the help of the fol-
lowing strategy:

1. Cover the domain with balls with a finite overlap property.

2. Apply local estimates for interior balls or half balls with boundary conditions.

3. Add up the estimates and obtain global bounds on the derivatives.

We will carry out this strategy in the following sections.

3.3.2 Covering Results

We will denote by Br(x) the open ball of radius r > 0 around x ∈ R2.

Definition 3.3.7. Let B be a collection of open balls. We say B is a dichotomic with
respect to Ω if one of the following two conditions is satisfied for each B ∈ B.

1. B is contained in Ω, i.e., B ∩ Ω = Ω,

2. B ∩ Ω is a half-ball with the same center and radius as B.

We will now show the existence of a dichotomic covering of the polygonal domain
Ω that helps to resolve singularities of the solution near the vertices X of Ω and ∂A.
Moreover, the covering resolves the active and inactive sets: if for a ball B of the
covering B ∩ ΓN 6= ∅, then it holds either u∗|ΓN∩B = ua or u∗|ΓN∩B = −ν−1q∗ or
u∗|ΓN∩B = ub. Thus, locally on B the optimal control problem has no inequality
constraints.

The distance that helps to localize the area around vertices is defined as

δ := min

 1, min
Xi,Xj∈V,
Xi 6=Xj

dist(Xi, Xj), inf{r > 0 | Br(X) ∩ Ω is a sector ∀X ∈ V}

 .

(3.21)

X2

X3

X4

X5

Ω X1

Figure 3.7: A domain where small neigh-
borhoods around a vertex X1 may not be
sectors in Ω.

The last component of the set in (3.21)
is included because straight parts Γi of
the boundary may have arbitrarily small
distance to points X ∈ V with X∩Γi = ∅.
Controlling the mutual distance of points
is, therefore, not enough, as Figure 3.7
illustrates.

Observe that δ > 0 is well defined, be-
cause each of the finitely many points in
V has an opening angle in (0, 2π).
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Before we construct the desired covering of Ω, we need the following technical Lemma,
which collects some necessary trigonometric relations.

Lemma 3.3.8. Let ω ∈ (0, π) and ε ∈ (0, 1) be given. Then there exists positive numbers
c ∈ (0, 1/2) and α satisfying the following conditions:

0 < α < arctan(c) < ω/4, (3.22a)

arcsin((1 + ε)c) < 2α < arcsin(2c), (3.22b)

tan(arcsin(sin(2α)− c)) < c. (3.22c)

Proof. Let us first choose c ∈ (0, 1/2) such that arctan(c) < ω/4, 2
1+c2 > 1 + ε. The

latter inequality implies (1 + ε)c < 2c
1+c2 = sin(2 arctan(c)), and by monotonicity it

follows arcsin((1+ ε)c) < 2 arctan(c). Let us now choose α such that arcsin((1+ ε)c) <
2α < 2 arctan(c) holds. Thus, it follows

sin(2α)− c < sin(2 arctan(c))− c =
2c

c2 + 1
− c =

c(1− c2)

c2 + 1
< min

(
c,

2c

c2 + 1

)
.

With the identity tan(arcsinx) = x√
1−x2

it follows

tan(arcsin(sin(2α)− c)) <
c(1− c2)

c2 + 1

1√
1− ( 2c

c2+1 )
2
= c.

Hence, with c and α as chosen above, the conditions (3.22a)–(3.22c) are satisfied.

Lemma 3.3.9. Let δ be given by (3.21). For each ε ∈ (0, 1) there exist c ∈ (0, 1/2)
depending on the shape of Ω and a countable set B of open balls Bi = Bri(xi), i ∈ N,
such that the following conditions hold.

C1. The balls Bi ∈ B satisfy

Bi =

{
Bcδ/4(xi) if dist(xi, V) ≥ δ/4,

Bc dist(xi,Xj)(xi) if dist(xi, Xj) < δ/4.

Furthermore, B is dichotomic with respect to Ω.

C2. B covers Ω, i.e., Ω ⊂ ∪i∈NBri(xi).

C3. B has finite overlap, which means that there exists N ∈ N such that

#{i ∈ N | x ∈ Bri(xi)} ≤ N ∀x ∈ Ω.

C4. The family of stretched balls

B̂ := {B̂i | B̂i = B(1+ε)ri(xi), Bi ∈ B}

is dichotomic with respect to Ω and covers Ω with finite overlap, thus also satisfies
C2 and C3.
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3.3 Analytic Regularity far From Singular Points

Bδ/4

Ω

α

2α

Ω \ Ωc

Bδ/4 ∩ Ω

Figure 3.8: Schematic visualization of Ωc for the construction of a dichotomic covering.

Proof. Let ε ∈ (0, 1) be given. Let us denote by ω the minimal opening angle ω :=
minXi∈V{ωi}. Let c ∈ (0, 1/2) and α ∈ (0, arctan(c)) be given by Lemma 3.3.8.

In the proof we will use local polar coordinates near vertices Xj ∈ V. Let x ∈ Ω
with dist(x,Xj) < δ. Then we will denote by (dist(x,Xj), φ(x)) the polar coordinates
of x centered at Xj ∈ V. We will choose φ(x) as the smaller one of the (positive)
angles between the line from Xj to x and the two adjacent edges of Ω, leading to
φ(x) ∈ (0, ωj/2).

We will first construct a covering of Ω by balls centered on Γ and in points with a
certain distance to the boundary. To this end, let us define the set of centers by

Ωc :=

{
x ∈ Ω : dist(x,Xj) < δ/4, φ(x) ∈ [2α, ωj/2]

}
∪
{
x ∈ Ω : dist(x,V) ≥ δ/4,dist(x,Γ) ≥ sin(2α)δ/4

}
.

Finally, we define the cover

Bu :=
⋃

xi∈(Γ\V)∪Ωc

B(xi), B(xi) :=

{
Bcδ/4(xi) if dist(xi, V) ≥ δ/4,

Bc dist(xi,Xj)(xi) if dist(xi, Xj) < δ/4.

(3.23)

Apart from being an uncountable set, the balls in Bu satisfy C1 by construction. The
dichotomy follows from the dichotomy of the scaled balls, which will be shown below.
In order to prove C2, we need to show that the points from Ω \ Ωc are covered. An
example of this area is depicted as the shaded set of Figure 3.8.

First, let x ∈ Ω \ Ωc with dist(x,Xj) < δ/4 be given. Suppose that its azimuth angle
satisfies φ(x) ∈ (0, α]. Let x̄ ∈ Γ be such that dist(x, x̄) = dist(x,Γ). We find with the
help of tan(α) < c by (3.22a)

dist(x, x̄) = tan(φ(x)) dist(x̄,Xj) ≤ tan(α) dist(x̄,Xj) < c dist(x̄,Xj).
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Hence, it holds x ∈ Bc dist(x̄,Xj)(x̄). Analogously, we can show that points with
dist(x,Xj) < δ/4 and φ(x) ∈ (α, 2α) are covered by Bu.

Second, let x with dist(x,V) ≥ δ/4 be given. Again, let x̄ ∈ Γ be such that
dist(x,Γ) = dist(x, x̄). Let x̄c be on the ray from x̄ through x such that x̄c ∈ ∂Ωc.
Now, if dist(x, x̄c) < cδ/4 then x is covered by the ball in Bu with center x̄c. If
dist(x, x̄c) ≥ cδ/4 and dist(x̄,V) ≥ δ/4, then by (3.22b)

dist(x, x̄) = dist(x̄, x̄c)− dist(x, x̄c) ≤ sin(2α)δ/4− cδ/4 < cδ/4,

and x is covered by the ball in Bu with center x̄.
It remains to study the case dist(x, x̄c) ≥ cδ/4 and dist(x̄,Xj) < δ/4 for some j. This

implies dist(x, x̄) ≤ (sin(2α) − c)δ/4, and sin(φ(x)) ≤ sin(2α) − c. Using (3.22c), we
find

dist(x, x̄)

dist(x̄,Xj)
= tan(φ(x)) ≤ tan(arcsin(sin(2α)− c)) < c.

This implies dist(x, x̄) < c dist(x̄,Xj), and x is covered by the ball around x̄ with
radius cdist(x̄,Xj). Hence, it follows that Bu indeed covers Ω.

Now, let us argue that balls with stretched radius fulfill the dichotomy C4. Let x ∈ Ωc

with dist(x,V) ≥ δ/4. Since dist(x,Γ) ≥ sin(2α)δ/4 > (1 + ε)cδ/4 by (3.22b), the ball
B(1+ε)cδ/4(x) is contained in Ω. Now take x ∈ Γ with dist(x,Xj) < δ/4 and φ(x) = 0.
The ball B̂ := B(1+ε)c dist(x,Xj)(x) intersects the sector

{x : dist(x,Xj) ≤ δ/2, φ(x) ∈ (0, arcsin((1 + ε)c))}.

on a half-ball with the same radius and center. Since (3.22a) and (3.22b) imply

arcsin((1 + ε)c) < 2α < ωj ,

the intersection of B̂ with Ω has the same properties. Analogously, one argues that
for φ(x) = ωj the intersection of the stretched ball B̂ with Ω is a half-ball. Moreover,
for φ(x) ∈ [2α, ωj/2], the ball B̂ is contained in Ω. Hence, the stretched balls form a
dichotomic covering, thus the dichotomies of C1 and C4 are proven.

With the help of the Besicovitch covering theorem [164, Theorem 1.3.5], which
works for open balls as well, we can pass to a countable subset B of Bu which covers
Ω (C2) and has finite overlap (C3). The finite overlap (C4) of B̂ can be proven as in
[109, Lemma A.1] by setting M = V.

We will use the covering provided by Lemma 3.3.9 above to transfer between local
and global regularity of functions in weighted spaces.

Lemma 3.3.10. Let B = {Bi | i ∈ N} with Bi := Bri(xi) be a covering that satisfies C1,
C2, and C3 of Lemma 3.3.9, for c ∈ (0, 1

2 ), δ given by (3.21). Let a multi-index β ∈ (0, 1)
and l ∈ N0 be given.

Define

β′
i :=

{
βj if dist(xi, Xj) <

δ
4 for some j ∈ {1, . . . ,m},

1 otherwise.
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Let f ∈ Bl
β(Ω, Cf , γf ) be given. Then there are positive constants γ and C(i), for i ∈ N,

depending only on Cf , γf , and C̃ independent of f such that

‖∇p+lf ‖L2(Ω∩Bi) ≤ C̃
C(i)

r
β′
i

i

(
γ

ri

)p

p! ∀p ∈ N0, i ∈ N,

C(i) ≤
√

4

3
Cf ,

∞∑
i=1

C(i)2 ≤ 4

3
NC2

f < ∞.

(3.24)

Conversely, let f in H l,l
β (Ω) be given. Suppose that there are positive constants c̃, γ̃, c(i),

for i ∈ N, such that

‖∇p+lf ‖L2(Ω∩Bi) ≤
c(i)

r
β′
i

i

(
γ̃

ri

)p

p! ∀p ∈ N0, i ∈ N,

∞∑
i=1

c(i)2 ≤ c̃2 < ∞.

(3.25)

Then there exist positive constants Cf , which depends on c̃, and γf , which depends on γ̃,
such that f ∈ Bl

β(Ω, Cf , γf ).

The proof follows the lines of the proof of a similar result [106, Lemma 4.2.17] con-
cerning regularity on sectors.

Proof. Suppose f ∈ Bl
β(Ω, Cf , γf ). Let us define for i ∈ N

C(i)2 :=

∞∑
p=0

1

(p!)2(2γf )2p
‖ rβ+p∇p+lf ‖2L2(Ω∩Bi)

.

By (2.9), it holds ‖ rβ+p∇p+lf ‖L2(Ω∩Bi) ≤ Cfγ
p
fp!. Hence, the series in the definition

of C(i) is convergent, and we can estimate

C(i)2 ≤ C2
f

∞∑
p=0

1

4p
=

4

3
C2

f .

The finite overlap property of the covering B yields

∞∑
i=1

‖ rp+β∇p+lf ‖2L2(Ω∩Bi)
≤ N‖ rp+β∇p+lf ‖2L2(Ω).

Consequently, the series
∑∞

i=1 C(i)2 is convergent, and we obtain as above

∞∑
i=1

C(i)2 ≤ 4

3
NC2

f .
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The definition of C(i) also implies

‖ rp+β∇p+lf ‖L2(Ω∩Bi) ≤ C(i)(2γf )
pp!. (3.26)

Now we relate the weight function r(x) to the radius ri to prove (3.24). Let us take
Bi ∈ B with center xi and radius ri.

Assume first that there is Xj ∈ V such that dist(xi, Xj) < δ/4. By property C1 of B,
we obtain ri = cdist(xi, Xj).

Let x ∈ Bi. Then we have

|min(1,dist(Xj , xi))−min(1,dist(Xj , x))| ≤ ri = cdist(xi, Xj) = cmin(1,dist(xi, Xj)),

which implies

min(1,dist(Xj , x)) ≥ (1− c)min(1,dist(Xj , xi)) =
1− c

c
ri ≥ ri,

where we used 1−c
c ≥ 1 for c ∈ (0, 1/2). Now let k 6= j. Then we obtain

δ ≤ dist(Xk, Xj) ≤ dist(Xk, x) + dist(x, xi) + dist(xi, Xj) ≤ dist(Xk, x) +
δ

2
,

and consequently it holds dist(Xk, x) ≥ δ/2, which implies by δ < 1 that

min(1,dist(Xk, x)) ≥
δ

2
.

Define |β| :=
∑m

k=1 βk. By construction of β′, we have β′
i = βj . Using the lower

bounds from above, we can estimate

r(x)p+β =

m∏
k=1

min(1,dist(Xk, x))
p+βi ≥

(
δ

2

)mp+|β|

r
p+β′

i
i ≥ C−1

1 γ−p
1 r

p+β′
i

i , (3.27)

where we set

C−1
1 :=

(
δ

2

)|β|

, γ−1
1 :=

(
δ

2

)m

.

Secondly, assume that dist(xi, Xj) ≥ δ/4, for all xj ∈ V. Property C1 of the covering
yields ri = c δ4 . Then we obtain as above for j = 1, . . . ,m

|min(1,dist(Xj , xi))−min(1,dist(Xj , x))| ≤ ri = c
δ

4
≤ cmin(1,dist(Xj , xi)),

which yields

min(1,dist(Xj , x)) ≥ (1− c)min(1,dist(Xj , xi)) ≥ (1− c)
δ

4
=

1− c

c
ri ≥ ri.

Using the definition of r and the inequality (1− c) δ4 < 1, we find

r(x)p+β ≥
(
(1− c)

δ

4

)mp+|β|

r
p+β′

i
i = C−1

2 γ−p
2 r

p+β′
i

i (3.28)
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with

C−1
2 :=

(
(1− c)

δ

4

)|β|

, γ−1
2 :=

(
(1− c)

δ

4

)m

.

Now, inequalities (3.27) and (3.28) constitute lower bounds of r(x) in terms of ri,
where x ∈ Bi. Define C̃ := max(C1, C2), γ̃ := max(γ1, γ2). Then we have for x ∈ Bi,

r(x)p+β ≥ C̃−1 γ̃−p r
p+β′

i
i . (3.29)

Combining (3.26) and (3.29), we find

C(i)(2γf )
pp! ≥ ‖ rp+β∇p+lf ‖L2(Ω∩Bi) ≥ ‖∇p+lf ‖L2(Ω∩Bi)C̃

−1 γ̃−p r
p+β′

i
i ,

which proves with the choice γ := 2γf γ̃

‖∇p+lf ‖L2(Ω∩Bi) ≤ C̃
C(i)

r
β′
i

i

(
2γf γ̃

ri

)p

p!.

Now let us assume that f ∈ H l,l
β (Ω) satisfies (3.25). To prove the claim, we first derive

upper bounds of r(x) in terms of ri for x ∈ Bi. For x ∈ Bi, we find

min(1,dist(Xj , x)) ≤ ri +min(1,dist(Xj , xi)) ∀j = 1, . . . ,m.

If on one hand dist(Xj , xi) < δ
4 for some j, then ri = cdist(Xj , xi), and it holds for

x ∈ Bi

min(1,dist(Xj , x)) ≤ (1 + c−1)ri.

If k 6= j, we exploit that the contribution of dist(Xk, x) as a factor in r(x) is bounded
by one and, therefore,

r(x)p+β ≤ (1 + c−1)p+1r
p+β′

i
i .

If on the other hand dist(Xj , xi) ≥ δ
4 for all j then it holds ri = c δ4 . Hence with β′

i = 1,
we estimate

r(x)p+β ≤
(

4

cδ

)p+1

r
p+β′

i
i .

Let us define

C3 :=

(
1 + c−1 +

4

cδ

)
, γ3 :=

(
1 + c−1 +

4

cδ

)
.

Then for all x ∈ Bi, i arbitrary, it holds

r(x)p+β ≤ C3 γp
3 r

p+β′
i

i . (3.30)
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Finally, we obtain

‖ rp+β∇p+lf ‖2L2(Ω) ≤
∞∑
i=1

‖ rp+β∇p+lf ‖2L2(Ω∩Bi)

≤ (C3γ
p
3 )

2
∞∑
i=1

r
2(p+β′

i)
i ‖∇p+lf ‖2L2(Ω∩Bi)

≤ (C3γ
p
3 )

2
∞∑
i=1

r
2(p+β′

i)
i

(
c(i)

r
β′
i

i

(
γ̃

ri

)p

p!

)2

≤ (C3c̃ (γ3γ̃)
p p!)2,

which is the claim if we set Cf := C3c̃, γf := γ3γ̃.

Note that changing from local to global estimates (and vice versa) enlarges the con-
stants γ, γ̃. Thus, both directions of the result are not exact reverses of each other.

Corollary 3.3.11. Let ε ∈ (0, 1) be given. Let B be the covering given by Lemma 3.3.9.
Let B̂ denote the family of stretched balls B̂i, i ∈ N. Let a multi-index β ∈ (0, 1) be given.
Then there is a constant C > 0 such that

r
β′
i−1

i ≤ C r(x)β−1

for all x ∈ B̂i ∩ Ω and for all B̂i ∈ B̂.

Proof. This can be proven analogously to the inequality (3.30) in the proof of the
previous lemma.

3.3.3 Local Regularity

Due to the previous results, it suffices to prove local regularity results on balls and
half-balls. These regularity results hold for domains in Rn, although we will only
need regularity in R2 for the optimal control problem. In this section, we follow the
exposition of [106], which builds on techniques of [112] and [12].

Let us set BR := BR(0) ⊂ Rn for R > 0. Furthermore, we will work with half-balls
B+

R := BR(0) ∩ {x : xn > 0}. We set ΓR := {x ∈ BR | xn = 0}.
Define

[p] := max{1, p} for p ∈ Z.
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Let now p, q be integers. Following [106, 112], we will use the following notation to
capture local regularity:

NR,p(v) :=
1

[p]!
sup

R/2≤r<R

(R− r)p+2‖∇p+2v ‖L2(Br), p ≥ −2,

N+
R,p(v) :=

1

[p]!
sup

R/2≤r<R

(R− r)p+2‖∇p+2v ‖L2(B+
r ), p ≥ −2,

N ′
R,p(v) :=


1
p! sup

R/2≤r<R

(R− r)p+2‖∇2∇p
xv ‖L2(B+

r ), p ≥ 0,

sup
R/2≤r<R

(R− r)p+2‖∇2+pv ‖L2(B+
r ), p = −2,−1,

N ′
R,p,q(v) :=

1

[p+ q]!
sup

R/2≤r<R

(R− r)p+q+2‖ ∂q+2
y ∇p

xv ‖L2(B+
r ), p ≥ 0, q ≥ −2.

Here, ∇x means the differentiation in tangential directions x1, . . . , xn−1. The normal
derivative ∂xn is denoted by ∂y. Hence, N ′

R,p(v) is used to control regularity of tangen-
tial derivatives, whereas N ′

R,p,q(v) controls normal derivatives. Estimates of NR,p(v)

and N+
R,p(v) will be used later in order to prove the global regularity. Controlling terms

as NR,p(v) is intimately connected with the analyticity of functions. We mention [113]
and also [112, Section 5.7].

First, let us state a result that allows to estimate N+
R,p(v) against N ′

R,p,q(v).

Lemma 3.3.12. Let 0 < R < R′ ≤ 1 be given. Let v ∈ H1(B+
R′) such that N ′

R,p,q(v) is
finite for all p ≥ 0, q ≥ −2. Assume that there exists positive constants Cv > 0, γ1, γ2
such that

N ′
R,p,q(v) ≤ Cv γp

1γ
q+2
2 ,

for all p ≥ 0, q ≥ −2 with p+ q 6= −2. Then it holds with γ =
√
2max(γ1, γ2)

N+
R,p(v) ≤ Cv γp+2,

for all p ≥ −1.

Proof. Let p ≥ −1. Then per definition it holds

‖∇p+2v ‖2
L2(B+

r )
=

p∑
q=−2

‖ ∂q+2
y ∇p−qv ‖2

L2(B+
r )
.

By definition of N+
R,p and N ′

R,p,q we obtain

N+
R,p(v)

2 =
1

[p]!2
sup

R/2≤r<R

(R− r)2(p+2)‖∇p+2v ‖2
L2(B+

r )

≤ 1

[p]!2

p∑
q=−2

sup
R/2≤r<R

(R− r)2(p+2)‖ ∂q+2
y ∇p−qv ‖2

L2(B+
r )

≤
p∑

q=−2

(N ′
R,p−q,q)

2.
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Chapter 3 Regularity Results

Let γ :=
√
2max(γ1, γ2). Then if p ≥ 0,

p∑
q=−2

(N ′
R,p−q,q)

2 ≤ C2
v

p∑
q=−2

γ
2(p−q)
1 γ

2(q+2)
2 ≤ C2

vγ
2(p+2)

p∑
q=−2

(
γ1
γ

)2(p−q)(
γ2
γ

)2(q+2)

≤ C2
vγ

2(p+2)(p+ 3)2−(p+2).

The function x 7→ (x+ 3)2−(x+2) is monotonically decreasing for x ≥ 0, it follows

p∑
q=−2

(N ′
R,p−q,q)

2 ≤ 3

4
C2

vγ
2(p+2).

In the case p = −1, we have

N+
R,−1(v)

2 ≤ (N ′
R,0,−1)

2 + (N ′
R,1,−2)

2 ≤ C2
v (γ

2
2 + γ2

1) ≤ C2
vγ

2.

Regularity Results for Optimal Control Problem on Half-Balls

Now, we establish regularity results for optimal control problems on half-balls. Here
the control u∗ acts on boundary ΓR′ , and it is coupled to the adjoint state with the
condition νu∗ + q∗ = 0 on ΓR′ . Thus, these results cover the situation, where the
control constraints are inactive. Consequently, this local optimal control problem has
no control constraints.

Theorem 3.3.13 (Regularity for local optimality systems). Let 0 < R < R′ ≤ 1 be
given. Let the differential operator A fulfill Assumption 2.2.1 on Ω = B+

R′ . Let (u∗, y∗, q∗)
solve the following system

−∇ · (D∇y∗) + cy∗ = f in B+
R′ , −∇ · (D∇q∗) + cq∗ = y∗−yd on ΓR′ , (3.31a)

∂nD
y∗ = u∗ in B+

R′ , ∂nD
q∗ = 0 on ΓR′ , (3.31b)

νu∗ + q∗ = 0 on ΓR′ . (3.31c)

Assume that there are positive constants Cd, Cf , γd, γf such that f , yd satisfy

‖∇pf ‖L2(B+

R′ )
≤ Cf

(γf
R′

)p
p!,

‖∇pyd ‖L2(B+

R′ )
≤ Cd

(γd
R′

)p
p! ∀p ∈ N0.

(3.32)

Then there exist a constant γ > 0 depending only on the constants in Assumption 2.2.1
and (3.32) and on ν such that y∗, q∗ satisfy for p ≥ −1,

N+
R,p(y

∗) ≤ C γp+2,

N+
R,p(q

∗) ≤ C γp+2
(3.33)
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3.3 Analytic Regularity far From Singular Points

with

C := R‖∇y∗ ‖L2(B+
R) +R2(Cf + Cc‖ y∗ ‖L2(B+

R)) +R2‖ y∗ ‖L2(B+
R)

+R‖∇q∗ ‖L2(B+
R) +R2(Cd + Cc‖ q∗ ‖L2(B+

R)) +R‖ q∗ ‖L2(B+
R).

(3.34)

Proof. The proof will be given at the end of this section.

The remainder of this subsection is dedicated to the proof of this theorem. Here, the
following steps are important: first we need to prove that weak derivatives of y∗ and
q∗ of arbitrary order exist. Then regularity of tangential derivatives is proven, which
is followed by the proof of regularity of normal derivatives.

Let us first cite a result from [106]. In order to state this result, let us define for
p ∈ N0

HR,p(v) :=
1

[p− 1]!
sup

R/2≤r<R

(R− r)p+1

[
‖∇p

xv ‖L2(B+
r ) +

R− r

[p]
‖∇p

x∇v ‖L2(B+
r )

]
,

M ′
R,p(v) :=

1

p!
sup

R/2≤r<R

(R− r)p+2‖∇p
xv ‖L2(B+

r ).

Lemma 3.3.14. Let R ∈ (0, 1]. Let the coefficient function D of the differential operator
A fulfill the conditions of Assumption 2.2.1 on Ω = B+

R . Let p ∈ N0 be such that
f ∈ Hp(B+

R) and G ∈ Hp+1(B+
R). Then there exists a constant CB > 0 depending solely

on the properties of D and the space dimension, but not on p, F , and G such that any
solution y ∈ H1(B+

R) of the Neumann problem

−∇ · (D∇y) = f in B+
R , ∂nD

y = G on ΓR

satisfies

N ′
R,p(y) ≤ CB

[
M ′

R,p(f) +HR,p(G) + SR,p(y) +N ′
R,p−1(y) +N ′

R,p−2(y)
]

(3.35)

with

SR,p(y) =

p+1∑
q=1

(
p+ 1

q

)[(
R

2

)q

‖∇qD ‖L∞(B+
R) +

(
R

2

)q−1

q‖∇q−1D ‖L∞(B+
R)

]

· [p− q]!

p!
N ′

R,p−q(y). (3.36)

For p = 0, we have the sharper bound

N ′
R,0(y) ≤ CB

[
R2‖ f ‖L2(B+

R) +R‖G ‖L2(B+
R) +R2‖∇G ‖L2(B+

R) +R‖∇y ‖L2(B+
R)

]
.

(3.37)

Proof. The proof follows the lines of the proof of [106, Lemma 5.5.23]. The bound
(3.37) is from [106, Lemma 5.5.26].
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Chapter 3 Regularity Results

We formulate two further lemmas regarding the relation between HR,p,M
′
R,p, N

′
R,p.

Lemma 3.3.15. Let R ∈ (0, 1]. Let v be such that M ′
R,p(v) and N ′

R,p(v) are well defined
for all p ∈ N0. Then it holds

M ′
R,p(v) ≤

1

[p][p− 1]
N ′

R,p−2(v) ∀p ∈ N0.

Proof. We use the fact that (R− r)j ≤ 1 for j ≥ 0 and r ∈ [R/2, R]. Together with the
definition of M ′

R,p(v) we estimate for p ≥ 2

M ′
R,p(v) =

1

p!
sup

R/2≤r<R

(R− r)p+2‖∇p
xv ‖L2(B+

r )

≤ 1

p!
sup

R/2≤r<R

(R− r)p‖∇2∇p−2
x v ‖L2(B+

r ) =
1

p(p− 1)
N ′

R,p−2(v).

For p = 0, 1, the same estimate without the term 1
p(p−1) is valid.

Lemma 3.3.16. Let R ∈ (0, 1]. Let v be such that HR,p(v) and N ′
R,p(v) are well defined

for all p ∈ N0. Then it holds

HR,p(v) ≤
1

[p− 1]
N ′

R,p−2(v) +N ′
R,p−1(v) ∀p ∈ N0.

Proof. The estimate can be established analogously to the proof of Lemma 3.3.15.

Finally, we need higher regularity of the optimal variables on half balls. A part of the
proof is based on the following supporting lemma

Lemma 3.3.17. Let p ∈ N0. Then it holds

p+1∑
j=1

p+ 1

[p− j + 1]

1

2j
≤ 3. (3.38)

Proof. First, we see
p+ 1

p− j + 1
= 1 +

j

p− j + 1
≤ 1 + j.

The addend for j = p + 1 in (3.38) is equal to (p + 1)2−(p+1), which is smaller than
(p+ 2)2−(p+1). Consequently, it holds

p+1∑
j=1

p+ 1

[p− j + 1]

1

2j
≤

p+1∑
j=1

(1 + j)
1

2j
.
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3.3 Analytic Regularity far From Singular Points

Using the power series

(1− x)−2 =

∞∑
j=0

(1 + j)xj , |x| < 1,

we can estimate

p+1∑
j=1

p+ 1

[p− j + 1]

1

2j
≤

∞∑
j=1

(1 + j)
1

2j
=

(
1− 1

2

)−2

− 1 = 3.

Lemma 3.3.18. Let 0 < R < R′ ≤ 1 be given. Let the differential operator A fulfill
Assumption 2.2.1 on Ω = B+

R′ . Let (u∗, y∗, q∗) ∈ L2(ΓR′) × H1(B+
R′) × H1(B+

R′) be a
solution of the local control problem (3.31) on the half ball B+

R′ . Then it holds

u∗ ∈ Hp−1/2(ΓR), y∗, q∗ ∈ Hp(B+
R) ∀p ≥ 2.

The proof basically exploits the optimality system (3.31) for a bootstrapping argument

u∗ ∈ H1/2 ⇒ y∗ ∈ H2 ⇒ q∗ ∈ H4 ⇒ u∗ ∈ H3.5 ⇒ . . . (3.39)

on half balls with decreasing radii.

Proof. Let 0 < R < R′. First, we note that for f ∈ Hm(B+
R′), g ∈ Hm−1/2(ΓR′) a

solution v to

Av = f in B+
R ,

∂nD
v = g on ΓR

lies in Hm+2(B+
R). This can be shown by an induction on m (see the proof [63, The-

orem 6.5]) triggered by the method of difference quotients developed by Nirenberg
(see the proof of [63, Theorem 6.4] or [72, Theorem 2.2.2.5]).

Define r(p) := R + R′−R
p . As q∗ ∈ H1(B+

R′), the optimality system yields u∗ ∈
H1/2(Γr(1)). Hence, y∗ ∈ H2(B+

r(2)). As the adjoint equation has smooth boundary
data, it follows q∗ ∈ H4(B+

r(4)). Applying the trace operator yields u∗ ∈ H3.5(Γr(4)).
The assertion then follows by induction and the fact that r(p) ≥ R.

We remark that the result solely proves the regularity. The proof does not offer a way
to control norms of derivatives, which will be done in the next Lemma 3.3.19 below.

Lemma 3.3.19. Let 0 < R < R′ ≤ 1 be given. Let the differential operator A fulfill
Assumption 2.2.1 on Ω = B+

R′ . Let (u∗, y∗, q∗) be a solution of the local control problem
(3.31) with f and yd satisfying (3.32).
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Define

Ct := R‖∇y∗ ‖L2(B+
R) +R2(Cf + Cc‖ y∗ ‖L2(B+

R)) +R‖ q∗ ‖L2(B+
R) +R2‖∇q∗ ‖L2(B+

R)

+R‖∇q∗ ‖L2(B+
R) +R2(Cd + Cc‖ q∗ ‖L2(B+

R)) +R2‖ y∗ ‖L2(B+
R). (3.40)

There there is a constant γt > 0 depending only on the constants in Assumption 2.2.1
and (3.32) and on ν such that for all p ≥ −1

N ′
R,p(y

∗) ≤ Ctγ
p+2
t , (3.41a)

N ′
R,p(q

∗) ≤ Ctγ
p+2
t . (3.41b)

Proof. Let us choose a γt larger than max{1, γf/2, γd/2, γc, γD} such that

CB

(
2γ−2

t + (2Cc + 1) γ−2
t + 6CD(γD + 1)γ−1

t + (1 + ν−1)(γ−2
t + γ−1

t )
)
≤ 1 (3.42)

with the constant CB from Lemma 3.3.14. This constant only depends on the data of
the problem.

Let us prove (3.41) for p = −1. From the definition of N ′
R,p we obtain

N ′
R,−1(y

∗) = sup
R/2≤r<R

(R− r)‖∇y∗ ‖L2(B+
r ) ≤

R

2
‖∇y∗ ‖L2(B+

R) ≤ Ct ≤ Ctγt.

Similarly, we can prove N ′
R,−1(q

∗) ≤ Ctγt.
Let now p = 0. Using the sharp bound (3.37) of Lemma 3.3.14 we find

N ′
R,0(y

∗) ≤ CB

(
R2‖ f − cy∗ ‖L2(B+

R) +Rν−1‖ q∗ ‖L2(B+
R)

+R2ν−1‖∇q∗ ‖L2(B+
R) +R‖∇y∗ ‖L2(B+

R)

)
. (3.43)

With the help of Assumption 2.2.1 and (3.32), we estimate

‖ f − cy∗ ‖L2(B+
R) ≤ Cf + Cc‖ y∗ ‖L2(B+

R).

Inserting these estimates in (3.43) yields by the definition (3.40) of Ct and γt ≥ 1

N ′
R,0(y

∗) ≤ CBCt(1 + ν−1) = Ct
CB(1 + ν−1)

γt
γt ≤ Ctγt ≤ Ctγ

2
t .

Using again (3.37), we obtain analogously

N ′
R,0(q

∗) ≤ CB

(
R2‖ y∗ ‖L2(B+

R) +R2Cd +R2Cc‖ q∗ ‖L2(B+
R) +R‖∇q∗ ‖L2(B+

R)

)
= CBCt ≤ Ct

CB

γt
γt ≤ Ctγ

2
t .
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We finish by induction. Let p ≥ 1 be given. Suppose (3.41) holds for all p′ with
−1 ≤ p′ < p. Because of the regularity results of Lemma 3.3.18 we can apply Lemma
3.3.14. In combination with the estimates of Lemmas 3.3.15 and 3.3.16, we can derive
the bound

N ′
R,p(y

∗) ≤ CB

(
M ′

R,p(f − cy∗) + SR,p(y
∗) +HR,p

(−q∗

ν

)
+N ′

R,p−1(y) +N ′
R,p−2(y)

)
≤ CB

(
M ′

R,p(f − cy∗) + SR,p(y
∗) +

1

ν[p− 1]
N ′

R,p−2(q
∗) +

1

ν
N ′

R,p−1(q
∗)

+N ′
R,p−1(y) +N ′

R,p−2(y)
)

≤ CB

(
M ′

R,p(f) +M ′
R,p(cy

∗) + SR,p(y
∗) + (1 + ν−1)Ct(γ

p
t + γp+1

t )
)
.

(3.44)
It remains to estimate M ′

R,p(f), M
′
R,p(cy

∗) and SR,p(y
∗). By assumption (3.32), we

have

M ′
R,p(f) ≤

1

p!
sup

R/2≤r<R

(R− r)p+2‖∇pf ‖L2(B+
r ) ≤

(
R

2

)p+2

Cf

(γf
R

)p
≤ R2Cfγ

p
t

(
γf
2γt

)p

≤ Ctγ
p
t .

(3.45)

By [106, Lemma 5.5.13], we have the following upper bound of M ′
R,p(cy

∗)

M ′
R,p(cy

∗) ≤ Cc

p−1∑
q=0

(
γc

R

2

)q (
R

2

)2
[p− q − 2]

(p− q)!
N ′

R,p−q−2(y
∗)

+

(
γc

R

2

)p

Cc

(
R

2

)2

N ′
R,−2(y

∗).

Let us note that N ′
R,−2(y

∗) does not satisfy the induction hypothesis, rather it holds
N ′

R,−2(y
∗) ≤ ‖ y∗ ‖L2(B+

R). We continue the estimation procedure using the inequality

Cc

(
R
2

)2
N ′

R,−2(y
∗) ≤ Ct.

M ′
R,p(cy

∗) ≤ Cc

p−1∑
q=0

(
γc

R

2

)q (
R

2

)2

Ctγ
p−q
t + Ct

(
γc

R

2

)p

≤ CcCtγ
p
t

p−1∑
q=0

1

2q
+ Ctγ

p
t ≤ (2Cc + 1)Ctγ

p
t .

(3.46)

The next step is estimating SR,p(y
∗), for its definition we refer to (3.36). Here, we

obtain by Assumption 2.2.1

R

2
‖∇qD ‖L∞(B+

R)+q‖∇q−1D ‖L∞(B+
R) ≤

R

2
CDγq

Dq!+CDγq−1
D q! ≤ CD(γD+1)γq−1

D q!.

55



Chapter 3 Regularity Results

Hence, we get the following bound

SR,p(y
∗) ≤

p+1∑
q=1

(
p+ 1

q

)(
R

2

)q−1

CD(γD + 1)γq−1
D q!

[p− q]!

p!
N ′

R,p−q(y
∗)︸ ︷︷ ︸

≤Ctγp−q+2

= CDCt2(γD + 1)γp+1
t

p+1∑
q=1

(p+ 1)[p− q]!

(p− q + 1)!

1

2q

(
RγD
γt

)q−1

≤ CDCt2(γD + 1)γp+1
t

p+1∑
q=1

p+ 1

[p− q + 1]

1

2q
.

Applying Lemma 3.3.17 yields

SR,p(y
∗) ≤ 6CD(γD + 1)Ctγ

p+1
t . (3.47)

Inserting the estimates (3.45), (3.46), (3.47) of M ′
R,p(f), M

′
R,p(cy

∗), and SR,p(y
∗) in

(3.44) results in

N ′
R,p(y

∗)

≤ CB

(
Ctγ

p
t + (2Cc + 1)Ctγ

p
t + 6CD(γD + 1)Ctγ

p+1
t + (1 + ν−1)Ct(γ

p
t + γp+1

t )
)

= Ctγ
p+2
t CB

(
γ−2
t + (2Cc + 1) γ−2

t + 6CD(γD + 1)γ−1
t + (1 + ν−1)(γ−2

t + γ−1
t )
)
.

By (3.42), we find
N ′

R,p(y
∗) ≤ Ctγ

p+2
t ,

which finishes the prove of the estimate of N ′
R,p(y

∗).
Let us briefly show the relevant arguments for estimating N ′

R,p(q
∗). First, by Lemma

3.3.14, we obtain for p ≥ 1

N ′
R,p(q

∗) ≤ CB

(
M ′

R,p(y
∗)−M ′

R,p(yd)−M ′
R,p(cq

∗)

+ SR,p(q
∗) +N ′

R,p−1(q
∗) +N ′

R,p−2(q
∗)
)
.

By Lemma 3.3.15, it holds M ′
R,p(y

∗) ≤ N ′
R,p−2(y

∗). Analogously to (3.45), (3.46),
and (3.47) we can prove

M ′
R,p(yd) ≤ Ctγ

p
t ,

M ′
R,p(cq

∗) ≤ (2Cc + 1)Ctγ
p
t ,

SR,p(q
∗) ≤ 6CD(γD + 1)Ctγ

p+1
t .

Since γt satisfies (3.42), we finish the proof of (3.41) by estimating

N ′
R,p(q

∗)

≤ CB

(
Ctγ

p
t + Ctγ

p
t + (2Cc + 1)Ctγ

p
t + 6CD(γD + 1)Ctγ

p+1
t + Ctγ

p+1
t + Ctγ

p
t

)
≤ Ctγ

p+2
t CB

(
2γ−2

t + (2Cc + 1) γ−2
t + 6CD(γD + 1)γ−1

t + γ−1
t + γ−2

t

)
≤ Ctγ

p+2
t .
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Lemma 3.3.20. Let 0 < R < R′ ≤ 1 be given. Let the differential operator A fulfill
Assumption 2.2.1 on Ω = B+

R′ . Let (u∗, y∗, q∗) be a solution of the local control problem
(3.31) with f and yd satisfying (3.32). Then there exist constants γ1, γ2 > 0 depending
only on the constants in Assumption 2.2.1 and (3.32) and on ν such that y∗, q∗ satisfy
for p ∈ N0, q ≥ −2, and p+ q 6= −2

N ′
R,p,q(y

∗) ≤ C γp
1 γq+2

2 , (3.48a)

N ′
R,p,q(q

∗) ≤ C γp
1 γq+2

2 , (3.48b)

with C given by (3.34).

Proof. The proof essentially relies on the proof of [106, Proposition 5.5.2] with Lemma
3.3.19 as an induction start. Please note that the technique of the proof of [106,
Proposition 5.5.2] is independent of the boundary conditions of the local problem.
Due to the coupling between y∗ and q∗ in the right-hand side of the adjoint equation
the induction proof for the estimates of N ′

R,p,q(y
∗) and N ′

R,p,q(q
∗) has to be performed

simultaneously.
The only modification of the proof concerns the estimate of the right-hand side y∗ of

the adjoint equation. There, one needs to estimate

1

[p+ q]!
sup

R/2≤r<R

(R− r)p+q+2‖∂q
y∇p

x(d̃y
∗)‖L2(B+

r ) (3.49)

for p ≥ 0 and q ≥ 0, where d̃ := D−1
nn , and Dnn is the (n, n)-entry of the coefficient

matrix D. According to [106, Lemma 5.5.19], there are γ′
D and C ′

D depending only
on the constants in Assumption 2.2.1, such that ‖∇pd̃‖L∞(B+

R) ≤ C ′
Dγ′p

Dp! for all p ≥ 0.
By [106, Lemma 5.5.18], one can now estimate the term (3.49) analogously to the
estimates of mixed derivatives of c̃y∗ := (d̃c) · y∗ and c̃q∗ := (d̃c) · q∗. The rest of the
proof of [106, Proposition 5.5.2] can be transferred line-by-line to our situation, and
the induction can be concluded.

Proof of Theorem 3.3.13. The claim of the theorem follows from Lemma 3.3.20 and
Lemma 3.3.12.

Regularity Results for Coupled State-Adjoint Systems

In this part, we briefly formulate regularity on balls and half-balls for the coupled
system of state and adjoint equation. First, we consider the situation that the control
constraint is active on the normal boundary of the half-ball.

Theorem 3.3.21 (Coupled state-adjoint system - Neumann case). Let 0 < R < R′ ≤ 1
be given. Let the differential operator A fulfill Assumption 2.2.1 on Ω = B+

R′ . Let (y∗, q∗)
solve (3.31a) with the boundary conditions

∂nD
y∗ = ua, ∂nD

q∗ = 0 on ΓR′ . (3.50)
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Assume that there are positive constants Cd, Cf , Cg, γd, γf , γg such that f , yd, ua satisfy
(3.32) as well as

‖ua ‖L2(B+

R′ )
≤ Cg, ‖∇p+1ua ‖L2(B+

R′ )
≤ Cg

(γg
R′

)p
p! ∀p ∈ N0. (3.51)

Then there exist a constant γ > 0 depending only on the constants in Assumption 2.2.1,
(3.32), and (3.51) such that y∗, q∗ satisfy (3.33) with

C := R‖∇y∗ ‖L2(B+
R) +R2(Cf + Cc‖ y∗ ‖L2(B+

R)) +R2‖ y∗ ‖L2(B+
R)

+R‖∇q∗ ‖L2(B+
R) +R2(Cd + Cc‖ q∗ ‖L2(B+

R)) +R‖ua ‖L2(B+

R′ )
+R2 Cg.

(3.52)

Proof. We briefly sketch the modifications of the proof compared to the proof of The-
orem 3.3.13 in the previous section. The regularity result of Lemma 3.3.18 remains
valid due to the regularity of the Neumann datum ua. Some estimates in Lemma
3.3.19 have to be modified to take the boundary data into account: First, from the
assumptions it follows ‖∇ua ‖L2(B+

R′ )
≤ Cg, which implies with Lemma 3.3.14, that

N ′
R,0(y

∗) ≤ CB(R
2(Cf +Cc‖ y∗ ‖L2(B+

R)) +R‖ua ‖L2(B+

R′ )
+R2 Cg +R‖∇y∗ ‖L2(B+

R))

holds, compare (3.37) and (3.43). Second, one can derive the bound HR,p(ua) ≤
R2Cg(γ

p−1
g + γp

g ) for all p ≥ 1. Using γt ≥ γg/2, this term can be compensated in the
induction argument of Lemma 3.3.19. Thus, estimate (3.40) holds with the modified
constant

Ct := R‖∇y∗ ‖L2(B+
R) +R2(Cf + Cc‖ y∗ ‖L2(B+

R)) +R‖ua ‖L2(B+

R′ )
+R2 Cg

+R‖∇q∗ ‖L2(B+
R) +R2(Cd + Cc‖ q∗ ‖L2(B+

R)) +R2‖ y∗ ‖L2(B+
R).

The rest of the proof is completely analogous to the proof of Theorem 3.3.13.

The second regularity result concerns half-balls with Dirichlet boundary.

Theorem 3.3.22 (Coupled state-adjoint system - Dirichlet case). Let 0 < R < R′ ≤ 1
be given. Let the differential operator A fulfill Assumption 2.2.1 on Ω = B+

R′ . Let (y∗, q∗)
solve (3.31a) with the boundary conditions

y∗ = 0, q∗ = 0 on ΓR′ . (3.53)

Assume that there are positive constants Cd, Cf , γd, γf such that f , yd satisfy (3.32).
Then there exist a constant γ > 0 depending only on the constants in Assumption 2.2.1
and (3.32) such that y∗, q∗ satisfy (3.33) with

C := R‖∇y∗ ‖L2(B+
R) +R2(Cf + Cc‖ y∗ ‖L2(B+

R)) +R2‖ y∗ ‖L2(B+
R)

+R‖∇q∗ ‖L2(B+
R) +R2(Cd + Cc‖ q∗ ‖L2(B+

R)).
(3.54)
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3.3 Analytic Regularity far From Singular Points

Proof. The proof is completely analogous to the proofs of Theorems 3.3.13 and 3.3.21.
One only has to exchange Lemma 3.3.14 by the analogous result [106, Lemma 5.5.15]
for Dirichlet problems. The analogue of Lemma 3.3.18 only involves the state and
adjoint variable and can be proved similarly.

Finally, let us state the result for the case of an interior ball.

Theorem 3.3.23 (Coupled state-adjoint system - interior case). Let 0 < R < R′ ≤ 1
be given. Let the differential operator A fulfill Assumption 2.2.1 on Ω = BR′ . Let (y∗, q∗)
solve (3.31a) on BR′ . Assume that there are positive constants Cd, Cf , γd, γf such that
f , yd satisfy (3.32) with L2(B+

R′)-norms replaced with L2(BR′)-norms. Then there exist
a constant γ > 0 depending only on the constants in Assumption 2.2.1 and (3.32) such
that y∗, q∗ satisfy

NR,p(y
∗) ≤ C γp+2, NR,p(q

∗) ≤ C γp+2, (3.55)

with C given by (3.54).

Proof. Here, the only change consists of replacing Lemma 3.3.14 by [106, Lemma
5.5.12] and Lemma 3.3.18 by [63, Theorem 6.3] in order to account for interior reg-
ularity.

Note that the bound (3.55) holds for NR,p replaced by NR′,p because [63, Theorem
6.3] yields regularity on balls of the same radius, in contrast to Lemma 3.3.18.

3.3.4 Global Regularity

Equipped with the Besicovitch covering of Lemma 3.3.9, the local estimates on balls
and half balls of the previous section, and the correlation of local and global estimates
(Lemma 3.3.10), it is now possible to prove the main result.

Theorem 3.3.24. Let Ω be a polygonal domain. Let Assumption 2.2.1 be satisfied.
Suppose that (u∗, y∗, q∗) is the solution to (P) and that u∗ has finitely many switching
points as in Assumption 3.3.1.

Then there exist multi-indices β, β̃ ∈ (0, 1) such that for data satisfying Assumption
3.3.4 with the weight function r of (2.1.5) there are constants C∗, γ∗, Cu, γu > 0 such
that

u∗ ∈ B
3/2

β̃
(ΓN , Cu, γu), y∗, q∗ ∈ B2

β(Ω, C∗, γ∗)

holds. The constants C∗, γ∗, Cu, γu depend only on the data A, f, yd, ua, ub and the do-
main Ω.

The proof will be given at the end of the section. We first start with proving the
regularity of y∗ and q∗ in weighted H2-spaces.

Theorem 3.3.25. Let Ω be a polygonal domain. Let Assumption 2.2.1 be satisfied.
Suppose that (u∗, y∗, q∗) is the solution to (P) and that u∗ has finitely many switching
points as in Assumption 3.3.1. There exists a multi-index β ∈ (0, 1) such that for data
satisfying Assumption 3.3.4 we have y∗, q∗ ∈ H2,2

β (Ω).
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Proof. Recall that we denote the edges of Ω by Γj , j = 1, . . . ,m. Let us renumber
the vertices in V if necessary to obtain Γj ∩ Γj+1 = Xj for all j = 1, . . . ,m with
Γm+1 := Γ1.

We split the domain into different (overlapping) parts. The first part is a neigh-
borhood of the corners, consisting of sectors, defined by Ω0 := ∪Xj∈VSj with Sj :=
Ω ∩ Bδ/2(Xj). Here, we need the assumption that the number of switching points is
finite. The second part is a covering of the boundary away from the corners. Take
ε ∈ (0, 1). Let B be given by Lemma 3.3.9. Define the index set I by I := {i ∈ N :
Bi ∩ Ω is a half-ball, dist(xi,V) > δ/4}, and set Ω1 := ∪i∈IBi. Then Ω0 ∪ Ω1 covers
a neighborhood of the boundary. Moreover, we can choose Ω2 ⊂ Ω such that Ω2 has
positive distance to the boundary and such that it holds Ω = Ω0 ∪ Ω1 ∪ Ω2.

Let us first prove the regularity of the adjoint state q∗.

1. Depending on the type of boundary condition on ∂Sj ∩ Γ, i.e., homogeneous
Dirichlet, Neumann, or mixed boundary conditions, we apply [106, Proposition
5.3.2, 5.4.4, or 5.4.7] and obtain the existence of βj ∈ (0, 1) such that

‖ dist(x,Xj)
βj∇2q∗ ‖L2(Sj) ≤ C(‖ y − yd ‖L2(Ω) + Cc‖ q∗ ‖L2(Ω)) ∀Xj ∈ V.

Here it is important to note that the value of βj only depends on the opening
angle ωj at the corner Xj and on the coefficient D(Xj).

2. The solution q∗ is H2-regular on the half-balls Bi ∩Ω, i ∈ I, which follows from
[106, Proposition 5.5.7 and 5.5.9]. Here, we obtain

‖∇2q∗ ‖L2(Ω∩Bi) ≤ C(‖ y∗ − yd ‖L2(Ω∩B̂i)
+ Cc‖ q∗ ‖L2(Ω∩B̂i)

).

Since the balls Bi all have the same radius, the estimate is uniform in i ∈ I.
Due to the finite-overlapping property, this yields ‖∇2q∗ ‖L2(Ω1) ≤ C(‖ y∗ −
yd ‖L2(Ω) + Cc‖ q∗ ‖L2(Ω)).

3. The closed set Ω2 has positive distance to the boundary, and by standard interior
regularity, e.g., [63, Theorem 6.2], it holds

‖∇2q∗ ‖L2(Ω2) ≤ C(‖ y − yd ‖L2(Ω) + Cc‖ q∗ ‖L2(Ω)).

Since Ω = Ω0 ∪ Ω1 ∪ Ω2, we conclude by the previous bounds ‖ q∗ ‖H2,2
β (Ω) < ∞.

The line of reasoning to prove regularity of y∗ is very similar, and we only point out
the necessary modifications. Assume that Γj ⊂ ΓN . By the construction of V, the
optimal control satisfies on Γj one of the conditions u∗|Γj

= ua|Γj
, u∗|Γj

= −ν−1q∗|Γj
,

or u∗|Γj
= ub|Γj

. In either case, u∗|Γj
∈ H1/2(Γj). Furthermore, due to the regularity

of q∗ and the assumptions on ua, ub, the control u∗|Γj
is the restriction of a function

gj ∈ H2,2
β (Ω) to Γj , where gj is one of q∗, ua, ub.

Now assume that ∂Sj ∩ Γ ⊂ ΓN . Then by [106, Proposition 5.4.4] it follows

‖ dist(x,Xj)
βj∇2y∗ ‖L2(Sj) ≤ C(‖ f ‖L2(Ω) + Cc‖ y∗ ‖L2(Ω)

+‖ gj ‖L2(Sj)+‖ dist(x,Xj)
βjgj ‖L2(Sj)+‖ gj+1 ‖L2(Sj)+‖ dist(x,Xj)

βjgj+1 ‖L2(Sj)).
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3.3 Analytic Regularity far From Singular Points

Analogous results holds if there are mixed boundary condition on Sj . For balls Bi with
Bi ∩ Γ ⊂ ΓN , we have by H2-regularity

‖∇2y∗ ‖L2(Ω∩Bi) ≤ C(‖ f ‖L2(Ω∩B̂i)
+ Cc‖ y∗ ‖L2(Ω∩B̂i)

+ ‖u∗ ‖H1/2(Γ∩B̂i)
).

The proof can now be completed as above, and this proves y∗ ∈ H2,2
β (Ω).

Remark 3.3.26. Let us briefly discuss the operator A = −∆ + id. If Xj is a vertex of
the domain, then the value of βj satisfies βi ∈ [0, 1) ∩ (1 − π/ωi, 1) as stated in [106,
Proposition 5.2.1]. If Xj is a switching point of the optimal control but not a vertex of
the domain, then due to the H2-regularity on half-balls, we can choose βj > 0 arbitrary.

Remark 3.3.27. Let us remark that ua, ub ∈ B1
β(Ω, Cg, γg) is sufficient to prove y∗, q∗ ∈

H2,2
β (Ω) in Theorem 3.3.25 and y∗, q∗ ∈ B2

β(Ω, C∗, γ∗) in Theorem 3.3.24.

Corollary 3.3.28. Let the assumptions of Theorem 3.3.25 be satisfied. Then it holds
u∗ ∈ C(ΓN ).

Proof. We have ua, ub, q
∗ ∈ H2,2

β (Ω) by Assumption 3.3.4 and Theorem 3.3.25. Then
by the continuity of the embedding H2,2

β (Ω) ↪→ C(Ω), see [15], and by the projection
formula (2.17), we conclude u∗ ∈ C(ΓN ).

Lemma 3.3.29. Let (ρ, φ) be polar coordinates centered at the origin. Define Sε(ω) :=
{x ∈ R2 | 0 < ρ(x) < ε, 0 < φ(x) < ω} for ω ∈ (0, 2π) and ε ∈ (0, 1). Then there is a
constant C = C(ε) > 0 independent of ω such it holds

‖ ρβ−1y ‖L2(Sε(ω)) ≤ C(‖ ρβ∇y ‖L2(Sε(ω)) + ‖ y ‖L2(Sε(ω)))

for all y such that the right-hand side is bounded.

Proof. We use Hardy’s inequality in one dimension (see [106, Lemma A.1.6]) to com-
pute

‖ ρβ−1y ‖2L2(Sε(ω)) =

∫ ω

0

∫ ε

0

ρ2β−1y2 dρ dφ

≤ C

∫ ω

0

(∫ ε

0

ρ1+2β(∂ρy)
2 dρ+

∫ ε

ε/2

y2 dρ

)
dφ

≤ C(‖ ρβ∇y ‖2L2(Sε(ω)) + ‖ y ‖2L2(Sε(ω))).

61



Chapter 3 Regularity Results

Lemma 3.3.30. Let β be a multi-index with β ∈ (0, 1). Then there is a constant C > 0
such that

‖rβ−1v‖L2(Ω) ≤ C‖v‖H1,1
β (Ω)

for all v ∈ H1,1
β (Ω).

Proof. Let δ be given by (3.21). Then Si := Ω ∩Bδ/4(Xi) is a sector for all Xi ∈ V for
all i = 1, . . . ,m. Let us define ρi(x) := dist(x,Xi) for x ∈ Si. Then by the previous
Lemma 3.3.29, we obtain

‖ ρβi−1
i v ‖L2(Si) ≤ C(‖v‖L2(Si) + ‖ρβi

i ∇v‖L2(Si)).

For x ∈ Si, we have min(1,dist(x,Xi)) = ρi(x) and δ/4 ≤ min(1,dist(x,Xj)) ≤ 1 for
i 6= j. Thus it follows for x ∈ Si.

rβ−1(x) ≤ ρi(x)
βi−1 (δ/4)

|β|−m
, ρi(x)

βi ≤ rβ(x).

This proves ‖ rβ−1v ‖L2(Si) ≤ C(‖v‖L2(Si) + ‖rβ∇v‖L2(Si)). On S0 := Ω \ ∪Si it holds
r(x) ≥ δ/4. Hence ‖ rβ−1v ‖L2(S0) ≤ (δ/4)|β|−m‖ v ‖L2(S0). Combining the estimates
on Si for i = 0, . . . ,m proves the claim.

Now, we turn to the proof of Theorem 3.3.24.

Proof of Theorem 3.3.24. The goal is to establish estimates of type (3.25) for y∗, q∗.
Then, the result follows from Lemma 3.3.10.

Step 1: Covering.
Let the vertex set V with elements Xj be as in Definition 2.1.5. Let ε ∈ (0, 1) be given.
Then by Lemma 3.3.9 we obtain the countable covering B = {Bi, i ∈ N}. Let us
denote by ri the radius of the ball Bi. Let B̂i denote the ball with same center as Bi

and with stretched radius r̂i := (1 + ε)ri. Set B̂ := {B̂i | i ∈ N}.
Let the multi-index β be the one of Theorem 3.3.25 and set

β′
i :=

{
βj if dist(xi, Xj) <

δ
4 for some j ∈ {1, . . . ,m},

1 otherwise,

with δ as in (3.21).
Step 2: Local estimates of the data.

Due to the regularity assumption 3.3.4 and Lemma 3.3.10, there exist positive con-
stants γf , Cf (i) for i ∈ N with

∑∞
i=1 Cf (i)

2 < ∞ such that

‖∇pf ‖L2(Ω∩B̂i)
≤ Cf (i)

r̂
β′
i

i

(
γ̃f
r̂i

)p

p! ∀p ∈ N0. (3.56)

Analogously, there are constants γd, Cd(i) for i ∈ N with
∑∞

i=1 Cd(i)
2 < ∞, γg, Cg(i)

for i ∈ N with
∑∞

i=1 Cg(i)
2 < ∞, such that it holds

‖∇pyd ‖L2(Ω∩B̂i)
≤ Cd(i)

r̂
β′
i

i

(
γ̃d
r̂i

)p

p! ∀p ∈ N0 (3.57)
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and

‖∇p+1ua ‖L2(Ω∩B̂i)
, ‖∇p+1ub ‖L2(Ω∩B̂i)

≤ Cg(i)

r̂
β′
i

i

(
γ̃g
r̂i

)p

p! ∀p ∈ N0. (3.58)

Step 3: Local estimates of the solution.
Let Bi ∈ B. If on one hand Bi is such that Bi ⊂ Ω then (y∗, q∗) satisfy (3.31a) on Bi.
Due the construction of the covering, on the other hand (y∗, q∗) with u∗ satisfy (3.31a)
on Bi with one of the following sets of conditions on Bi ∩Γ: (3.31b)–(3.31c), (3.31b)
and (3.50), or (3.53). Thus, we can use the results of Subsection 3.3.3 to estimate the
regularity of solutions on Bi ∩Ω. We will use these estimates with R := r̂i and r := ri.
Applying one of the Theorems 3.3.13, 3.3.21, 3.3.22, or 3.3.23 we obtain for p ∈ N0

(r̂i − ri)
p+2‖∇p+2y∗ ‖L2(Ω∩Bi) ≤ C(i)γp+2p!

with

C(i) := r̂i‖∇y∗ ‖L2(Ω∩B̂i)
+ r̂

2−β′
i

i Cf (i) + r̂2iCc‖ y∗ ‖L2(Ω∩B̂i)
+ r̂2i ‖ y∗ ‖L2(Ω∩B̂i)

+ r̂i‖∇q∗ ‖L2(Ω∩B̂i)
+ r̂

2−β′
i

i Cd(i) + r̂2iCc‖ q∗ ‖L2(Ω∩B̂i)
+ r̂i‖ q∗ ‖L2(Ω∩B̂i)

+ r̂
2−β′

i
i Cg(i) + r̂i‖ua ‖L2(Ω∩B̂i)

+ r̂i‖ub ‖L2(Ω∩B̂i)
.

Observe that we can choose γ independent of the index i. The constant C(i) is a com-
bination of (3.34), (3.52), and (3.54). Here, we used the inequalities (3.56)–(3.58)
to estimate the contributions of the data f , yd, ua, ub. Hence, we obtain

‖∇p+2y∗ ‖L2(Bi∩Ω) ≤ C(i)

(
γ

εri

)p+2

p! = γ2 C(i)r
β′
i−2

i

1

r
β′
i

i

(
γ

εri

)p

p!

Step 4: Global estimates of the solution.
In order to invoke Lemma 3.3.10, it remains to prove

∑∞
i=1 r

2(β′
i−2)

i C(i)2 < ∞. Due
to the properties of Cf (i), Cd(i), Cg(i), it holds

∞∑
i=1

r
2(β′

i−2)
i

(
r̂
2−β′

i
i Cf (i) + r̂

2−β′
i

i Cd(i) + r̂
2−β′

i
i Cg(i)

)2
< ∞.

By the finite overlap property B̂, we find using ri < 1

∞∑
i=1

r
2(β′

i−2)
i r̂4i ‖ y∗ ‖2L2(Ω∩B̂i)

≤ (1 + ε)4
∞∑
i=1

r
2β′

i
i ‖ y∗ ‖2

L2(Ω∩B̂i)
≤ (1 + ε)4N‖ y∗ ‖2L2(Ω).

Analogously, we obtain

∞∑
i=1

r
2(β′

i−2)
i

(
r̂2iCc‖ y∗ ‖L2(Ω∩B̂i)

+ r̂2iCc‖ q∗ ‖L2(Ω∩B̂i)

)2
< ∞.
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Let us turn to estimate the contribution of r̂i‖∇y∗ ‖L2(Ω∩B̂i)
. Using Corollary 3.3.11

and r̂i = (1 + ε)ri we find

∞∑
i=1

r
2(β′

i−2)
i r̂2i ‖∇y∗ ‖2

L2(Ω∩B̂i)
= (1 + ε)2

∞∑
i=1

r
2(β′

i−1)
i ‖∇y∗ ‖2

L2(Ω∩B̂i)

≤ (1 + ε)2C−2
∞∑
i=1

‖ rβ−1∇y∗ ‖2
L2(Ω∩B̂i)

≤ C ′‖ rβ−1∇y∗ ‖2L2(Ω),

where in the last step we relied on the finite overlap property of B̂. Using Lemma
3.3.30, yields

∞∑
i=1

r
2(β′

i−2)
i r̂2i ‖∇y∗ ‖2

L2(Ω∩B̂i)
≤ C ′‖ rβ−1∇y∗ ‖2L2(Ω)

≤ C‖∇y∗ ‖H1,1
β (Ω) ≤ C‖ y∗ ‖H2,2

β (Ω) < ∞.

Similarly, we can prove

∞∑
i=1

r
2(β′

i−2)
i r̂2i (‖∇q∗ ‖2

L2(Ω∩B̂i)
+ ‖ q∗ ‖2

L2(Ω∩B̂i)
+ ‖ua ‖2L2(Ω∩B̂i)

+ ‖ub ‖2L2(Ω∩B̂i)
)

≤ C(‖ q∗ ‖H2,2
β (Ω) + ‖ q∗ ‖H1,1

β (Ω) + ‖ua ‖H1,1
β (Ω) + ‖ub ‖H1,1

β (Ω)) < ∞.

Thus, the convergence
∑∞

i=1 r
2(β′

i−2)
i C(i)2 < ∞ is proven. By Lemma 3.3.10, we find

y∗, q∗ ∈ B2
β(Ω, C∗, γ∗) for some positive constants C∗, γ∗.

Step 5: Regularity of u∗.
To prove the regularity u∗ ∈ B

3/2

β̃
(ΓN , Cu, γu) we need to construct an extension

ũ∗ ∈ B2
β̃
(Ω, Cu, γu). Let us partition Γ into pieces Γi, i = 1, . . . ,m as in the proof of

Theorem 3.3.25. Further, let us take Γi with Γi ⊂ ΓN . Then the optimal control u∗|Γi

is the trace of a function in B2
β(Ω). Using the trace theorem [13, Theorem 4.1] shows

that u∗|Γi
∈ Bki

β̂i
(Γi) with βi ∈ R2 a multi-index satisfying βi ∈ (0, 1), and ki ∈ {1, 2},

where the value of ki depends on βi, βi+1.
Let us note that the optimal control u∗ is continuous on ΓN because (see [15])

q∗ ∈ B2
β(Ω, C∗, γ∗) ⊂ H2,2

β (Ω) ↪→ C0(Ω).

Then, we can apply the extension theorem [13, Theorem 4.3] to obtain the regularity
u∗ ∈ B

3/2

β̃
(ΓN , Cu, γu), where β̃ ∈ (0, 1) is a multi-index satisfying β̃i ∈ (βi, 1).
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3.3.5 Comments on the Derivation of Analyticity

The boundary weighted spaces in Section 3.2 damp any singularity towards the bound-
ary and, therefore, allow to prove regularity results independent from the smoothness
of the boundary data. A ’sequential’ argument of the following type is possible:

u ∈ H1/2(ΓN ) ⇒ y ∈ B2
1−σ(Ω) ⇒ q ∈ B2

1−σ(Ω).

Unfortunately, this procedure is not applicable in Section 3.3 because the boundary
data has to be considered. The optimality system serves as remedy and is exploited
for obtaining higher regularity.

The amount of lemmas and tedious observations of various constants around the
proof of Theorem 3.3.24 raise the question whether a ’simpler’ or at least shorter
line of reasoning is available. The trick of our proof is to localize the domain by a
dichotomic covering and to stay on the local level to use the projection formula for
a bootstrapping argument. This way, the local regularity results can be added up to
obtain a global result.

It is possible to take the viewpoint of [106], where the author only investigates the
regularity on sectors. The results are then transferred to polygonal domains by a par-
tition of unity argument. It is unclear whether such a two-step procedure would lead
to a simpler proof. Our approach has the advantage of requiring only one localization
step.

The restriction to sectors is also done in [12]. Here, a sector is transformed into
an infinite strip with the Mellin-transformation (see Subsection 3.1.1). An induction
argument then yields the affiliation to countably normed spaces. This line of reasoning
seems impossible for the coupled state-adjoint system because no a-priori regularity
of the optimal variables is given. Instead, the projection formula has to be exploited
for deriving smoothness in the manner of (3.39). In the induction step, however, the
involved constants increase because one has to switch between the global and local
view (Lemma 3.3.10). Hence, no global bound for the derivatives of the optimal
variables seems to be available.

We showed analytic regularity for the solution of (P) subject to (N) with the help of
local regularity estimates and a dichotomic covering. A shift theorem in the weighted
space H2,2

β (Ω) enabled us to add up the local results and obtain a global estimate.
We believe that an analogous version of Theorem 3.3.24 holds for interface control
problems. The covering of Lemma 3.3.9 can be extended to 2d-networks. Moreover, a
local regularity result holds ([106, Proposition 5.5.4]), as well as a shift theorem in the
space H2,2

β ([106, Proposition A.2.1]). Note that the latter needs to deal with the case
of jumping coefficients κi in the differential operator A (confer [106, Remark 5.2.3]).
We presume that a bootstrapping technique with the projection formula allows to
prove an analogous version of Lemma 3.3.19 that bounds tangential derivatives. This
would amend the available results by a local regularity result at the interface (analo-
gous to Theorem 3.3.13). For brevity, we omit a rigorous proof of analytic regularity
in the context of transmission problems, confer [75].
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CHAPTER 4
The hp-Finite Element Method

In the 1980’s and 1990’s, a solid theoretical and algorithmic foundation for the hp–
version of the FEM as a reliable and efficient discretization technique was laid by
[9, 10, 11, 12, 13, 14] and [52, 119, 123]. The articles [59, 107, 108, 139] are
younger. We also mention the monographs [51, 53, 87, 135, 152] and [106], which
give an overall and self-contained access to the topic.

The hp-FEM is a solution technique for PDEs that achieves higher accuracy by both
refining the triangulation of Ω and increasing the polynomial degree of finite elements.
This discretization method tries to approximation functions by

• polynomials of high degree on large elements in regions of high regularity,

• polynomials of low degree on small elements in regions of low regularity.

Obviously, the hp-FEM combines the h-version of FEM, which gains accuracy by de-
creasing the sizes of elements of fixed (low) polynomial degree, and the p-version of
FEM, which gains accuracy by increasing the polynomial degree on a fixed discretiza-
tion of the domain. See, e.g, [34, 35, 43] and [17, 26, 93, 135], respectively.

The number of unknowns N , i.e., the dimension of the approximation space, is
the typical reference variable for comparing the efficiency of the different methods.
Standard error estimates for higher order methods are of type

‖ y − yh ‖H1(Ω) ≤ CN−t, t > 0 (4.1)

for the solution y and its FE approximation yh. As N appears polynomially in (4.1),
we speak of algebraic convergence.

The symbol yh originates from the uniform h-FEM, where the accuracy is measured
with respect to the mesh size h. The polynomial relation

√
N ∼ h−1, or equivalently

h ∼ N−1/2, yields bounds O(hs), s > 0 for the discretization error of 2d problems.
Measuring the error in different norms, e.g., the energy norm as in (4.1) or Lebesgue
norms, leads to different orders of N or h.
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Chapter 4 The hp-Finite Element Method

As indicated above, it is inevitable to thoroughly study the smoothness of the true
solutions to the PDE, as done in the previous chapter. Now, we examine the (finite-
dimensional) FE space as regards its approximation quality for functions of the given
regularity. The chapter is organized as follows.

We start by introducing basic notations, definitions and ideas of the (hp-)FEM in
Section 4.1. After that, we provide details on the implementation of the code that
produced the numerical results for this thesis. The reader who does not care about
programming issues is encouraged to skip Section 4.2.

In Section 4.3, we prove approximation results for the boundary concentrated (bc)
FEM of [88] (see also [57]). This type of discretization heavily refines the mesh near
the boundary of the domain while keeping the element size and polynomial degree
large in the interior. The main result of this section is Theorem 4.3.13, which proves
(4.1) with t = σ for H1+σ-regular problems. This result is possible because of the
novel interpolant of Subsection 4.3.1 and because the number of unknowns of the
bc-FEM is related to the boundary mesh size h via h ∼ N−1 (see Theorem 4.3.3).
We formulate a similar result (Corollary 4.3.15) for interface concentrated (ic) finite
elements, which is an application of the bc-FEM on the subdomains of a 2d-network.
Additionally, we present new estimates in the L2- and L∞-norm at the boundary.

Section 4.4 closes the chapter with the famous result of [9] that states that the
hp-approximation error can be bounded in terms of e−b

3√
N for a constant b > 0 (Theo-

rem 4.4.4). This exponential convergence can be achieved by meshing the domain with
so called geometric mesh patches that are heavily refined towards vertices, where
solutions tend to be singular (confer Section 3.1). The results will later be used in
Chapter 5 for error estimates of what we call the vertex concentrated (vc) FEM.

Some of the presented results can also be found in [27, 156].

4.1 General Concepts

Finite element methods typically use the Galerkin method on a weak formulation of a
PDE in an infinite-dimensional space V , which we generally write as

a(y, v) = lu(v) ∀v ∈ V. (4.2)

Here, a(·, ·) is a coercive bilinear form that maps V × V → R and lu is a member of
V ∗ (see (2.12) or (2.13) as concrete examples).

The solution y ∈ V is approximated in a finite-dimensional subspace

Vh := span{φ1, . . . , φN} ⊂ V.

Since the approximating space is contained in the infinite-dimensional one, this method
is referred to as conformal discretization. We do not allow discontinuous Galerkin
methods (see the overview article [44] by Cockburn) which are also amenable to the
hp-idea (see, e.g., [18, 32, 36]).
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4.1 General Concepts

Functions in vh ∈ Vh can be uniquely represented as a vector ṽh ∈ RN , where

vh(x) =

N∑
j=1

ṽhj φj(x) (4.3)

and Φ := {φj} is a basis of Vh.

Definition 4.1.1. A coefficient ṽhj in (4.3) is called (global) degree of freedom (short:
dof, plural: ddof). We also refer to N as the number of unknowns.

There is a one-to-one correspondence between vh ∈ Vh and ṽh ∈ RN , which is why
we implicitly change between the two and generally write vh. Solving the discrete
equations means finding a yh that satisfies

a(yh, vh) = lu(v
h) ∀vh ∈ Vh. (4.4)

Note that we use the same space for testing the equation and representing the solution.
The unique solvability of both (4.2) and (4.4) is guaranteed by Theorem 2.1.2.

In practice, we plug (4.3) into (4.4) and obtain a linear system of equations Ayh = l̄u.
Let the indices i, j run from 1, . . . , N and let (4.4) be the discrete weak formulation of
−∆y + y = u in Ω. It holds

Ayh = Kyh +Myh = l̄u

with the stiffness and mass matrix

Kij =

∫
Ω

∇φi · ∇φj dx, Mij =

∫
Ω

φiφj dx,

and the load vector

l̄u :=

∫
Ω

uφi dx.

The following result is standard.

Theorem 4.1.2. Let y and yh be solutions to (4.2) and (4.4), respectively. Then Galerkin-
orthogonality holds, i.e.,

a(y − yh, vh) = 0 ∀vh ∈ Vh.

Furthermore, we have Cea’s lemma

‖ y − yh ‖V ≤ C inf
vh∈Vh

‖ y − vh ‖V .

The finite-dimensional approximation space Vh is constructed from a triangulation of
Ω.
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Chapter 4 The hp-Finite Element Method

Definition 4.1.3. A k-irregular triangulation τ of Ω is a collection of open, convex,
and nonempty elements K such that

• Ω =
⋃

K∈τ K,

• Ki ∩Kj is either empty, a vertex or an edge,

• Each edge contains at most k irregular nodes (see Definition 4.1.4).

The word mesh will be used interchangeably with triangulation.

Definition 4.1.4. An element vertex is called a regular node if and only if it is a vertex
to each neighboring element. Irregular or hanging nodes are those vertices that are not
regular.

The elements K usually are quadrilaterals or triangles formed by the edges eK ∈ EK .

Definition 4.1.5. Let τ be a triangulation of Ω and hK be the diameter of an element
K ∈ τ . We say τ is γ-shape regular if each K is the image of a reference element K̂ ⊂ R2

under a diffeomorphism FK and there is a constant γ > 0 such that

h−1
K ‖F ′

K ‖L∞(K) + hK‖ (F ′
K)−1 ‖L∞(K) ≤ γ ∀K ∈ τ.

Here, F ′
K denotes the Jacobian.

Definition 4.1.6. Let τ be a 1-irregular mesh which is γ-shape regular. If all mappings
FK are affine linear, we say that τ is admissible.

The word admissible is sometimes used in the context of regular/irregular meshes
but merely signifies the class of triangulation we want to use in this thesis. Admis-
sible meshes are compatible with Ω in so far, as we assumed in Section 2.1.2 that Ω
and 2d-networks are polygonal. Therefore, admissible triangulations can capture the
boundary and interface, which are not curved.

The mapping F−1
K allows a pull-back of K ∈ τ to K̂ which is often used both for

theoretical investigations (e.g., scaling arguments) and for numerical computations.
An example for a conform finite element space Vh ⊂ V is

V p
h := {v ∈ H1(Ω) : v|K is a polynomial of degree p}.

If p is kept constant (h-FEM), accuracy is gained by refining the triangulation. An al-
ternative would be to work with a fixed triangulation and increase only the polynomial
degree (p-FEM). We are going to investigate a combination of both methods: hp-FEM.
The FE approximation space is enlarged by refining the triangulation (h-refinement)
on the one hand and by increasing the polynomial degree of elements (p-refinement)
on the other hand.

Definition 4.1.7. Let τ be an admissible triangulation. The collection of polynomial
degrees pK ∈ N on elements K ∈ τ is called polynomial degree vector p := (pK)K∈τ .
The edges of K are collected in the set EK and each edge eK ∈ EK has an associated
polynomial degree

peK := min{pK′ : eK ∩K
′ 6= ∅, K ′ ∈ τ}. (4.5)
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4.2 Implementational Remarks

The minimum condition has to be seen in the context of designing conform Vh ⊂
H1(Ω) that contain continuous functions across edges (which may have hanging nodes).

Definition 4.1.8. Let τ be an admissible mesh and p its polynomial degree vector. Define
the space of polynomials

R[x]p := span{xi}i=0,...,p,

R[x, y]p := span{xiyj}0≤i,j≤p

(with 0 ≤ i+ j ≤ p for meshes consisting of triangles). Then the FE approximation space
Sp(τ) is defined as

Sp(τ) :=
{
v ∈ H1(Ω) : v|K ◦ FK ∈ R[x, y]pK

, v|eK ◦ FK ∈ R[x]peK

for all K ∈ τ and all eK ∈ EK

}
.

In view of Cea’s lemma, the properties of Sp(τ) determine the numerical accuracy that
is achieved by the hp-FEM (see section 4.3, 4.4).

4.2 Implementational Remarks

This section is intended to briefly describe the main issues that appear during the
implementation of an hp-FEM code. While higher order methods are distinguished by
good approximation properties, their implementation is more challenging.

There are several methods for designing the approximation space Sp(τ), efficiently
computing and assembling element matrices as well as solving the arising system of
equations. The coding techniques should be sophisticated because a trivial approach
often leads to high complexity, especially if the space dimension of the PDE is larger
than one.

The basis function in the physical domain Ω need to be constructed in a way that pro-
motes sparsity while retaining small condition numbers. The construction is achieved
by shape functions on the reference domain, which are then mapped into the physical
domain by FK . Since the mappings are affine linear (see Definition 4.1.6), we obtain
a sub-parametric mapping as soon as the polynomial degree of an element is greater
than one.

4.2.1 Designing Basis Functions

Two strategies for constructing a basis Φ of the hp-FEM space are possible: the modal
and nodal approach (see [87]). A nodal basis is constructed from shape functions
that are Lagrange-polynomials on a set of discretization points. Evaluated at such a
discretization point, the polynomial vanishes at all but one point, where it takes the
value 1. The advantage of such a basis is the simple connection of the discrete function
vh(x) and its representation as a linear combination of basis vectors. The drawback,
however, is the fact that every time we increase the polynomial degree of an element
K in the discretization τ , many basis functions need to be recomputed.
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Chapter 4 The hp-Finite Element Method

That is why we use a modal (hierarchical) basis. When p-refining the mesh, we keep
the old basis and enrich the approximation space by additional functions. This way,
the previous basis spans a subspace of the new approximation space.

The choice of the basis significantly determines the numerical properties of hp-me-
thods and many different types have been discussed in literature (see [8, 37, 93] and
the references therein). It is typical for hp-FEM to categorize the basis functions in the
following way.

Sp(τ) = spanΦ = span(ΦV ∪ ΦE ∪ ΦI).

• ΦV comprises all hat functions which are 1 at exactly one regular node of the
mesh, and zero at all other regular nodes.

• ΦE comprises so called edge bubble functions, which are non-zero at exactly one
edge e with regular beginning and end node. They vanish at all other edges. Its
support is formed by the union of all elements containing e.

• ΦI comprises so called element bubble functions, whose support is contained in
exactly one element.

The global basis functions shall have small support in the physical domain Ω so that
the stiffness and mass matrix become sparse. An exemplary stiffness matrix is depicted
in Figure 4.1, where we can see a 3 × 3 block structure resulting from the above
categories.

Figure 4.1. The sparsity pattern of a 12000 × 12000
stiffness matrix for a typical hp-discretization.

A basis function φi ∈ Φ is constructed from contributions of local shape functions
defined on the reference element K̂ (see Figure 4.2).
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4.2 Implementational Remarks

It is desired to obtain sparse element matrices with small condition numbers. Suppose
that we use Legendre polynomials, i.e., orthogonal polynomials with respect to the
L2 inner product. Then, for example, the mass matrix on the reference element is the
identity matrix and very easy to invert. In order to exploit a similar orthogonality effect
for the stiffness matrix, we use integrated Legendre polynomials as a hierarchical basis
(see [26, 93]).

ê1

ê2ê4

ê3

(−1,−1)

(−1, 1)

(1,−1)

(1, 1)

1 2

34

K̂

ê1

ê2ê3

(−1,−1) (1,−1)

(0, 1)

1 2

3

K̂

Figure 4.2. The quadrilateral and triangular reference element.

In order to emphasize that the following functions are constructed on reference do-
mains, we use the notation x̂ ∈ (−1, 1). The (integrated) Legendre polynomials Li(x̂)
(respectively L̂i(x̂)) are defined as

Li(x̂) :=
1

2ii!

di

dx̂i
(x̂2 − 1)i, i ∈ N0, (4.6)

L̂i(x̂) := (−1)iγi

∫ x̂

−1

Li(s) ds, i ≥ 2, (4.7)

with the scaling factor

γi =

√
(2i− 3)(2i− 1)(2i+ 1)

4
.

Furthermore, we set

L̂0(x̂) := −1

2
(x̂− 1) and L̂1(x̂) :=

1

2
(x̂+ 1).

Proposition 4.2.1. [26, Lemma 2.1]. The Legendre polynomials Li and integrated
Legendre polynomials L̂i satisfy the following properties:

1. d
dx̂ L̂i(x̂) = (−1)iγiLi(x̂).

2. The Li(x̂) are orthogonal with respect to the L2((−1, 1)) inner product, i.e.,∫ 1

−1

Li(x̂)Lj(x̂) dx̂ = δij
2

2i+ 1
.

3. The polynomials obey the recurrence formulas

(i+ 1)Li+1(x̂) + iLi−1(x̂) = (2i+ 1)x̂Li(x̂), i ≥ 1, (4.8)
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Chapter 4 The hp-Finite Element Method

L̂i(x̂) = (−1)i

√
(2i+ 1)(2i− 3)

4(2i− 1)
(Li(x̂)− Li−2(x̂)), i ≥ 2. (4.9)

We mention that the Legendre polynomials are a special case of Jacobi polynomials
P

(α,β)
i (x̂) which are orthogonal on (−1, 1) with respect to the weight (1− x̂)α(1 + x̂)β ,

α, β > −1. Jacobi polynomials are well investigated (see [143]) and can be used for
the evaluation of higher derivatives of L̂ (see [87, Appendix C]) or sparsity optimized
shape functions on triangles/simplices (see [29, 30, 31]).

For the reference square K̂ = [−1, 1]2 ⊂ R2, we construct shape functions by ten-
sorizing integrated Legendre polynomials (see Figure 4.3). Let

L̂ij = L̂ij(x̂, ŷ) := L̂i(x̂)L̂j(ŷ), deg(L̂ij) := max{deg(L̂i),deg(L̂j)}.
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ŷ
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Figure 4.3. Shape basis functions in the hp-FEM on the reference square.

We adopt the same notation for the Legendre polynomials. The local shape functions
up to degree p > 0, i.e., Φ̂ := {L̂ij}0≤i,j≤p benefit from the special properties of L̂i in
one dimension and produce sparse element matrices (see [26]).

The local numbering of shape functions L̂ij(x̂, ŷ) on the reference element K̂ auto-
matically introduces the concept of local ddof v̂hK , which are a selection of the global
ddof vh ∈ RN from a function in Vh in a special order. This connection of local and
global ddof is described by a distribution mapping ΩK (see [3] and [87, Section 4.2])
which satisfies the equation

v̂hK = ΩKvh

with a sparse matrix ΩK that requires a memory saving implementation.
Let us mention an important fact about working with a hierarchical basis. Unlike

nodal based functions, the sign of edge bubble functions (see Figure 4.3) may depend
on the orientation of an edge. As most of the mathematical operations are performed
on the reference element, both the edges of K̂ and the physical element K possess a
direction. If an orientation changed during the pull-back, the sign of the affected local
ddof needs to be inverted in order to retain conformity. This phenomenon does not
occur when using a nodal basis.
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4.2 Implementational Remarks

A Transformation to Legendre Polynomials

Now we show how the coefficients of a FE function vh ∈ Sp(τ) transform if the basis
is changed from integrated Legendre polynomials to Legendre polynomials. This is
necessary for estimating the smoothness of v which helps to decide between h- and
p-refinement, see [59] and Subsection 6.3.2.

We start with the basis transformation in one dimension. First,

L̂0(x̂) = −1

2
(x̂− 1) =

1

2
− x̂

2
=

1

2
L0(x̂)−

1

2
L1(x̂), (4.10)

L̂1(x̂) =
1

2
(x̂+ 1) =

1

2
+

x̂

2
=

1

2
L0(x̂) +

1

2
L1(x̂). (4.11)

Second, we have from (4.9) that for i ≥ 2

L̂i(x̂) = ti(Li(x̂)− Li−2(x̂)), where ti := (−1)i

√
(2i+ 1)(2i− 3)

4(2i− 1)
.

Using these results, we can already set up the matrix for the basis transformation,
i.e.,

Tp :=

1
2 − 1

2 0 0

1
2

1
2 0 0

−t2 0 t2 0 0

0 −t3 0 t3 0 0

0 0 −tp 0 tp




.

Let p ≥ 2 and i, j ∈ {0, . . . , p}. Let λi be the coordinates of a univariate polynomial
P ∈ R[x̂]p in the ordered basis {L̂i}. We compute

P =
∑
i

λ̂iL̂i =
∑
i

λ̂i

∑
j

(Tp)ijLj =
∑
i

Li

∑
j

(T>
p )ij λ̂j =:

∑
i

Liλi.

Hence, the matrix T>
p describes the transformation of λ̂i to the coordinates λi that

represent P in the ordered basis {Li}.

Definition 4.2.2. Let A ∈ Ck×l and B ∈ Cm×n with k, l,m, n ∈ N. The matrix

A⊗B :=

a11B a1lB

ak1B aklB




is called Kronecker product.
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It is easy to verify that

(A⊗B)> = A> ⊗B>. (4.12)

As the 2d shape functions were constructed by tensorizing integrated Legendre poly-
nomials, the Kronecker product provides a compact notation of the 2d-transformation
matrix if the both type of shape functions are arranged in the following lexicographic
order.(

L0(x̂) · L0(ŷ), . . . , L0(x̂) · Lp(ŷ), L1(x̂) · L0(ŷ), . . . , L1(x̂) · Lp(ŷ),

. . . , Lp(x̂) · Lp−1(ŷ), Lp(x̂) · Lp(ŷ)
)>

.

Let K ∈ τ be an element with degree pK . We collect and order the local ddof of
v ∈ Sp(τ) in v̂K . Recall that this corresponds to the pull-back which may involve the
sign change of some coefficients as a consequence of changing orientations. Some
additional zeros may have to be inserted into v̂K if the finite element has different
polynomial degrees on its edges. The coefficients ṽhK in the ordered basis {Li}, corre-
sponding to the coefficients v̂K in the ordered basis {L̂i}, can be computed with the
following formula:

ṽhK = (Tp ⊗ Tp)
>v̂hK = (T>

p ⊗ T>
p )v̂hK .

4.2.2 The Assembly Process

Element Matrices and Sum Factorization

We have seen that the three categories ΦV ,ΦE ,ΦI of the global basis functions are
transferred to the elemental level such that Φ̂ = Φ̂V ∪ Φ̂E ∪ Φ̂I (see Figure 4.3). If
the basis functions follow this order, an element matrix AK , K ∈ τ is structured as
follows.

AK =

AV V AV E AV I

A>
V E AEE AEI

A>
V I A>

EI AII

 . (4.13)

The condition number, number on non-zero entries, and preconditioners of such ele-
ment matrices has been investigated in many publications. See, e.g., [8, 26, 31, 60,
93] and the references therein.

Computing an element matrix AK for the degree p and a n-dimensional domain Ω
means calculating O(p2n) entries. This is usually done by Gaussian quadrature with
O(pn) integration points. Hence, the overall complexity is of order O(p3n). This is too
slow since the polynomial degree is increased significantly in hp-FEM.

In our code we made use of sum factorization (see, e.g., [57, 87]) which reduces the
costs for computing an element matrix to O(p2n+1). Its basic idea is to precompute
integrals so that some parts of the code can be moved out of nested for-loops. This
intuitive code optimization is appealing because it is easy to implement and allows to
treat PDEs with non-constant coefficients.
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4.2 Implementational Remarks

Suppose that we want to set up a c-weighted mass matrix

MK =

∫
K

c(x, y)φr(x, y)φs(x, y) dx dy

=

∫
K̂

(c ◦ FK)(x̂, ŷ) · (L̂ijL̂kl)(x̂, ŷ) · | det(F ′
K(x̂, ŷ))| dx̂ dŷ

for an element of degree p. Let G be a Gaussian quadrature rule on [−1, 1] consisting of
pairs of integration points x̂ and their weights wx̂. For integrating the product of two
basis functions, G needs to be at least exact up to degree 2p. We abbreviate c ◦FK = ĉ
and approximate the element matrix by

MK ≈
∑

(x̂,wx̂)∈G

∑
(ŷ,wŷ)∈G

ĉ(x̂, ŷ)L̂i(x̂)L̂j(ŷ)L̂k(x̂)L̂l(ŷ)|det(F ′
K(x̂, ŷ))|wx̂wŷ

=
∑

(x̂,wx̂)∈G

L̂i(x̂)L̂k(x̂)wx̂

∑
(ŷ,wŷ)∈G

L̂j(ŷ)L̂l(ŷ)ĉ(x̂, ŷ)|det(F ′
K(x̂, ŷ))|wŷ︸ ︷︷ ︸

=:Hj,l,x

.

Precomputing Hj,l,x and using its values for numerical quadrature saves costs of order
O(p) (one ’for-loop’ in the implementation). Sum factorization can be extended to
triangular or tetrahedral elements as well.

Other methods for speeding up the assembly of the full system or matrix vector
multiplication for iterative solvers can be found in [57].

Connectivity Arrays and Constrained Degrees of Freedom

In order to compute the full matrix A corresponding to (4.4), the element matrices
need to be assembled in a global matrix. This is done by connectivity matrices ΛK =
Ω>

K which describe the connection of local to global ddof and the process of adding up
the contributions of the single element matrices. The system A can be computed as

A =
∑
K∈τ

ΛKAKΛ>
K . (4.14)

Some diligence is required when setting up ΛK for irregular meshes because the global
basis functions need to be continuous across edges which contain a hanging node in
its interior. Local ddof that correspond to an element with an irregular vertex are con-
strained by the values of global ddof. The following considerations are made according
to Figure 4.4 and shall explain how constrained ddof are (uniquely) determined by the
value of those ddof stemming from elements with only regular vertices. The procedure
is similar to the basis transformation from Section 4.2.1.

Suppose that e ⊂ K ∈ τ is an edge that contains an irregular node in its interior.
The hanging node is a vertex of two elements Kl,Kr and beginning/end node of
el := e ∩ Kl, er := e ∩ Kr. As we pull-back e to ê = [−1, 1] orientated from left to
right, we demand that the orientation of el, er point into the same direction as the
orientation of e.
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K
Kl

Kr

e

el

er

F−1
e

ê

êl êr−1 1
x̂

Figure 4.4. The pull-back for a constraining edge e onto the reference
interval [−1, 1].

The basis functions on ê are the integrated Legendre functions L̂i(x̂). They can be
expressed by the basis functions

L̂l
i(x̂) :=

{
L̂i(2x̂+ 1) if 0 ≥ x̂ ≥ −1,

0 if 0 < x̂,
(4.15)

L̂r
i (x̂) :=

{
L̂i(2x̂− 1) if 0 ≤ x̂ ≤ 1,

0 if 0 > x̂,
(4.16)

whose support is êl and êr, respectively. For the vertex based functions L̂0,1(x̂), we
obviously have

L̂0(x̂) = L̂l
0(x̂) +

1

2
(L̂l

1(x̂) + L̂r
0(x̂)), (4.17)

L̂1(x̂) = L̂r
1(x̂) +

1

2
(L̂l

1(x̂) + L̂r
0(x̂)). (4.18)

For abbreviation, we introduce L̂m(x̂) := L̂l
1(x̂) + L̂r

0(x̂) which corresponds to a hat
function for the hanging node.

It remains to find a representation

L̂i(x̂) = aiL̂
m(x̂) +

∑
j≥2

ali,jL̂
l
i(x̂) +

∑
j≥2

ari,jL̂
r
i (x̂), i ≥ 2.

For representing L̂i, we only need Legendre polynomials up to the same degree. That
is why the matrices ali,j , a

r
i,j are lower triangular.
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4.2 Implementational Remarks

If we list L̂l
0, L̂

r
1, L̂

m first, followed by the left and right edge bubble functions L̂l
i≥2,

L̂r
i≥2, the transformation matrix for p ≥ 2 reads

Pp :=

1 0 1
2 0 0

0 1 1
2 0 0

0 0 a2 al2,2 ar2,2

0 0 ap alp,2 alp,p arp,2 arp,p




.

The matrix Pp describes how the basis functions on êl, êr add up to the basis functions
on ê. It can be computed by equating the coefficients. With the notation

(r)n = r · (r + 1) · . . . · (r + n− 1), r ∈ R, n ∈ N

and the convention ai = γiâ
r
i,1, a

r
i,j =

γi

γj
âri,j we find

âr2i,1 = (−1)i+1 (−1/2)i
i!

, i ≥ 1,

âr2i+1,1 = 0, i ≥ 1,

âri,i = 2−i, i ≥ 2,

âr2i,2 =
3

2
â2,i, i ≥ 2,

âr2i+1,2 = (−1)i
(−3/2)i+1

(i+ 1)!
, i ≥ 1,

âri,j = 0, i > j ≥ 2.

The remaining values can be computed with the recurrence formula

âri,j = −âri−2,j−1 +
1

2
âri−1,j−1 − âri−1,j +

1

2
âri−1,j+1, i ≥ 4, j ≥ 3.

The entries of al read

al2i,1 = ar2i,1, j ≥ i ≥ 2,

al2i,j = (−1)j+1ar2i,j , i ≥ 1, j ≥ 2, i < j,

al2i+1,j = (−1)jar2i+1,j , i ≥ 1, j ≥ 2, i < j.

Given the matrix Pp, it is easy to determine the values of the constrained ddof: Let
v ∈ Sp(τ) and vê be the coefficients corresponding to edge bubble functions of an edge
ê with irregular node in its interior. Denote by vl,m,r the ddof belonging to the left,
middle (constrained) and right node that form ê. Denote by vêl , vêr the constrained
ddof corresponding to the left and right sub edge of ê (see Figure 4.4). Then the
constrained ddof are determined by

(vl, vr, vm, vêl , vêr )
> = P>

p (vl, vr, vê)
>.
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With this knowledge, the connectivity matrices ΛK can be set up as described in [3] .
Note that the assembly according to (4.14) does not consider Dirichlet boundary

conditions. These have to be enforced in a second step. Suppose i is the index of a
Dirichlet node. Then we overwrite the i-th row of A with the unit vector ei ∈ RN .
The desired Dirichlet value is written to the corresponding entry of the load vector
l. Non-linear boundary data as well as higher order boundary elements are more
complicated because the data has to be mapped into the right polynomial space and
the coefficients for bubble functions need to be computed.

Inverting the full N × N system A means solving a discretized PDE. Direct solvers
are desirable in the context of optimal control problems because optimization meth-
ods, such as projected gradient, semi-smooth Newton, interior point or SQP methods,
require a lot of solves of the state and adjoint equation. Thus, it is efficient to store
the decomposition of A and reuse it during the optimization process. Since the matrix
A is generally very sparse (see Figure 4.1), a direct solver must exploit the sparsity
pattern for being efficient. We used UMFPACK2 as a sparse LU solver. Other possibilities
are PARDISO3 or SUPERLU4.

4.3 Algebraic Convergence of the Boundary Concentrated
Finite Element Method

In the following, we will provide approximation results for a special hp-strategy: the
boundary concentrated finite element method (bc-FEM). A novel interpolant is con-
structed in Subsection 4.3.1 (see also [27]). It helps establish the main result of this
chapter (Theorem 4.3.13), which states that the error decay is algebraic with respect
to the boundary mesh size. Such an energy-norm estimate also holds for the interface
concentrated (ic-) FEM (see Corollary 4.3.15), which is an application of bc-FEM on
the subdomains of a 2d-network.

Additionally, we are going to derive a-priori error estimates measured by Lebesgue-
norms in Subsection 4.3.2. Although the theory is formulated for quadrilaterals it
extends to triangular elements.

Definition 4.3.1. Let τh be an admissible triangulation and h := minK∩Γ6=∅{hK}<1 be
a measure for the mesh size at the boundary. We speak of τh as a boundary concen-
trated (bc) mesh, if and only if there exist constants c1, c2 > 0 such that for all K ∈ τh:

1. if K ∩ ∂Ω 6= ∅, then h ≤ hK ≤ c2h,

2. if K ∩ ∂Ω = ∅, then c1 infx∈K dist(x,Γ) ≤ hK ≤ c2 supx∈K dist(x,Γ).

Note that condition 1 implies that the discretization of the boundary, originating from
the triangulation of Ω, is quasi-uniform. This justifies to speak of the boundary mesh
size h.

2http://www.cise.ufl.edu/research/sparse/umfpack/
3http://www.pardiso-project.org/
4http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
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4.3 Algebraic Convergence of the Boundary Concentrated FEM

Definition 4.3.2. Let τh be a bc-mesh on Ω with mesh size h. The polynomial degree
vector p = (pK)K∈τh is said to be linear with slope α > 0 if there exist constants c1,
c2 > 0 such that

1 + αc1 log
hK

h
≤ pK ≤ 1 + αc2 log

hK

h
. (4.19)

We speak of boundary concentrated (bc) FEM if we solve an elliptic PDE with Vh = Sp(τ)
in (4.4), where Sp(τ) is the approximation space arising from discretizations accord-
ing to Definition 4.3.1 and 4.3.2

In the context of 2d-networks {Ωi}i∈I and interface problems, we can apply the
bc-FEM on each subdomain Ωi, which leads to the interface-concentrated (ic) FEM.
This corresponds to replacing the boundary Γ by Γ ∪ I in Definition 4.3.1.

Theorem 4.3.3. Let τh be a bc-mesh with polynomial degree of slope α > 0. Then there
exists a C > 0 independent of h such that ∑

K∈τh

1 ≤ Ch−1,

max
K∈τh

pK ≤ C| lnh|,

dim(Sp(τ)) ∼
∑
K∈τ

p2K ≤ Ch−1

The result is proved in [88, Proposition 2.7] and extends to the ic-FEM. It points out
that the number of unknowns increases linearly if the boundary mesh size is decreased.
For uniform refinement in h-FEM, we have the relation h ∼ N−1/2 on two dimensional
domains. Thus, the bc- and ic-FEM solve a two dimensional problem ’for the costs of a
one dimensional problem’, which is the reason for its fast convergence (see Chapter 5).

To some degree, the bc-FEM can be regarded as a generalization of the boundary
element method (BEM), see [76, 129] and the references therein. There, the PDE is
reformulated to an equation posed only on the boundary, which yields the same reduc-
tion in the dimension. However, BEM is restricted to equations where a fundamental
solution is known, which generally fails to be the case for non-constant differential op-
erators. The bc-FEM, on the other hand, can handle analytic coefficients in the elliptic
equation.

4.3.1 Energy Norm Estimates

In the sequel, we will construct a bc-FEM interpolation operator. Since we allow hang-
ing nodes, the result generalizes [88]. Regarding the interpolation error, we obtain
approximation results comparable to those obtained in [88] for regular meshes.

Estimates of local element size and polynomial degrees

In the interpolation estimates below, it will be important to have comparable element
size and element polynomial degree for neighboring elements. For meshes without
hanging nodes, we have the following result from [107, Lemma 2.3], its extension to
meshes with hanging nodes as used here is straightforward.
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Chapter 4 The hp-Finite Element Method

Lemma 4.3.4. Let τ be a γ-shape-regular mesh. Then there exists a constant C(γ) such
that for two neighboring elements K,K ′ with K ∩K

′ 6= ∅ there holds

C(γ)−1hK ≤ hK′ ≤ C(γ)hK . (4.20)

Theorem 4.3.5. Let τh be a bc-mesh on Ω with a linear polynomial degree vector p of
slope α. Then there is a constant C(α) depending on γ such that for two neighboring
elements K,K ′ with K ∩K

′ 6= ∅ it holds

C(α)−1pK ≤ pK′ ≤ C(α)pK .

Moreover, C(α) ∈ O(α).

Proof. The constants c1, c2 defining the linear degree vector naturally satisfy c2 > c1,
cf. Definition 4.3.2. Using the properties of the linear degree vector and Lemma 4.3.4
we can estimate

pK′ ≤ 1 + αc2 log(hK′/h)

≤ 1 + αc2 log(C(γ)hK/h)

≤ 1 + αc2 log(hK/h) + αc2 log(C(γ))

≤ c2c
−1
1 (1 + αc1 log(hK/h) + αc2 log(C(γ)))

≤ c2c
−1
1 (pK + pKαc2 log(C(γ)))

≤ c2c
−1
1 (1 + αc2 log(C(γ)))pK .

The same computation yields a bound of pK from above. This proves the claim with
C(α) := c2

c1
(1 + αc2 log(C(γ))).

Extension and projection operators

The reference element we have in mind is the square (−1, 1)2, but we will keep the
notation relatively neutral to make the results applicable to triangles as well. The
index i is taken from {1, 2, 3(, 4)}. We denote the reference element by K̂ and recall
the space R[x, y]p := span{xiyj : 0 ≤ i, j ≤ p}. Triangles would require the space
span{xiyj : 0 ≤ i+ j ≤ p}.

As our mesh will have hanging nodes, we assume that each edge ei of the reference
element has an associated polynomial degree pi := pei (see also (4.5)) with pi ≤ pK .
Here, pK is the polynomial degree of an arbitrary element K that is pulled back to K̂.
The constructed approximant will lie in

Pp(K)(K̂) := {f ∈ R[x, y]p : deg(f |ei) ≤ pi} with p(K) := (pK , p1, . . . , p4).
(4.21)
We first need an extension operator acting from ∂K̂ to K̂ (see [106, Lemma 3.2.3]).
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4.3 Algebraic Convergence of the Boundary Concentrated FEM

Lemma 4.3.6. Let f ∈ C(∂K̂) be a polynomial of degree pi on the i-th edge of the
reference element. There exists a linear extension mapping E : C(∂K̂) → Pp(K)(K̂) with
the following properties:

(Ef)|ei = f, (4.22)

‖Ef ‖L∞(K̂) + p−2‖∇Ef ‖L∞(K̂) ≤ c‖ f ‖L∞(∂K̂). (4.23)

Proof. We prove this only in the case of K̂ being the reference square. The extension
to triangular K̂ is straightforward, see, e.g., [106, Lemma 3.2.3].

By subtracting a bilinear function from f we can assume that it vanishes on the
vertices of the reference element. For each fi := f |ei we construct an extension
Ei(fi) ∈ Pp(K)(K̂) which is zero at all other edges ej , j 6= i.

Let us demonstrate the construction of Ei(fi) for e1, e1 := {(x, y) ∈ R2 : x ∈
[−1, 1], y = −1}. Here we define E1(f1) := 1−y

2 f(x). Analogously we define the
extension from the edges ei, i > 1. This way we get an extension F := E(f) :=∑

i Ei(fi).
With the inverse estimate ‖∇F ‖L∞(K̂) ≤ cp2‖F ‖L∞(K̂) ([135, Theorem 4.76]) with

p ≥ pi we only need to show ‖F ‖L∞(K̂) ≤ c‖ f ‖L∞(∂K̂). This is a trivial estimate:

‖E1(f1)‖L∞(K̂) ≤ ‖f1‖L∞(e1), as 1−y
2 ≤ 1 on K̂.

In the case that f does not vanish in the vertices let us denote by F0 the bilinear
interpolation of f that is exact in the vertices. Then we set Ef := F0+

∑
i Ei(fi−F0).

It is now easy to argue that the extension fulfills the claim.

Element-wise Interpolation on Boundary Concentrated Meshes

For the remaining part of the subsection, we adopt the notation from the theory/nu-
merics of PDEs and use the variable u for a general function and not the control vari-
able. The aim of this section is to construct an interpolant on the reference element.
It is desired to interpolate a function u living on the physical domain Ω by pulling it
back to the reference element for each element of the finite element discretization τ .

The constructed interpolator will be needed for elements in the interior of Ω. There,
we need to distinguish between elements possessing a hanging node or not.

At first, we will construct the interpolator for elements without hanging nodes. The
following theorem is similar to [88, Lemma 2.9]. We give a proof here in order to
track the dependence of the constants on the parameter α of the linear degree vector.

In the sequel, we will denote by GL(q, f) the one-dimensional Gauss-Lobatto inter-
polant of degree q ≥ 1 for the function f on I = [−1, 1]. The Gauss-Lobatto interpola-
tion points x0, . . . , xq are defined as the roots of (1− x̂2)L′

q−1(x̂) (see (4.6)). It is well
known that these roots are real, distinct, and lie in [−1, 1] (see [143, Theorem 3.3.1]).
Hence, the definition is well-posed and we have the representation

GL(q, f) =

q∑
i=0

f(xi)

q∏
j=0
j 6=i

x− xj

xi − xj
.
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Theorem 4.3.7. Let K̂ be the reference element. Let u be a function on Ω whose pull
back û = u ◦ FK is analytic on K̂ and satisfies

‖∇q+2û ‖L∞(K̂) ≤ Cuγ
q
uq!, q = 0, 1, 2, . . . .

Then there exists an interpolant I(u) ∈ Pp(K)(K̂) such that

1. I(û)|ei = GL(pi, û|ei),

2. ‖ I(û)− û ‖W 1,∞(K̂) ≤ CαCue
−bpm ,

where b > 0 depends on γu, and Cα > 0 depends on γu and α with Cα = O(α6) for
α → ∞.

Here, pm denotes the minimal polynomial degree is defined by pm := mini{pi} and
naturally pm ≤ pi ≤ p with p being the degree of the image of I, i.e., Pp(K)(K̂).

Proof. We restrict û ∈ C(K̂) to the boundary ∂K̂ and define the piecewise Gauss-
Lobatto interpolation operator

i : C(∂K̂) → {f ∈ C(∂K̂) : f |ei is polynom with degree pi},
i(û)(x) = GL(pi, û|ei)(x) ∀x ∈ ∂K̂.

Let us define the finite-dimensional subspace

V := {u ∈ Pp(K)(K̂) : û|∂K̂ = 0}.

Since V is finite-dimensional, there is a linear and bounded projection operator Π :
Pp(K)(K̂) → V with ‖Π‖

L(C(K̂),C(K̂))
≤

√
dimV , confer [106, Theorem A.4.1]. As

V ⊂ Pp(K) ⊂ R[x, y]p(K̂), we have dim(V ) ≤ (p+1)2, which shows ‖Π‖
L(C(K̂),C(K̂))

≤
p+ 1.

The interpolation operator I is now defined by

I(û) := E(i(û)) + Π(û− E(i(û)))

with the extension operator E from Lemma 4.3.6. By construction, the first property
is fulfilled. If û ∈ Pp(K)(K̂) it follows that i(û) = û|∂K̂ and therefore û−E(i(û)) ∈ V .
Thus, I interpolates functions of Pp(K)(K̂) exactly.

Let û ∈ C(K̂) be given. Let us first estimate the norm of I by

‖ I(û) ‖L∞(K̂) ≤ c‖ i(û) ‖L∞(∂K̂) + (p+ 1)‖ û− E(i(û)) ‖L∞(K̂)

≤ c(1 + ln p)‖ û ‖L∞(∂K̂) + (p+ 1)‖ û ‖L∞(K̂)

+ c(1 + ln p)(p+ 1)‖ û ‖L∞(∂K̂),

where we used [106, Lemma 3.2.1] to bound the Gauss-Lobatto-interpolation operator
i. Exploiting ‖ û ‖L∞(∂K̂) ≤ ‖ û ‖L∞(K̂) for û ∈ C(K̂) yields the estimate

‖ I(û) ‖L∞(K̂) ≤ CIp(1 + ln p)‖ û ‖L∞(K̂).
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4.3 Algebraic Convergence of the Boundary Concentrated FEM

Regarding approximation properties, it now follows with arbitrary v ∈ Pp(K)(K̂) and
using v = Iv that

‖ û− I(û) ‖L∞(K̂) = ‖ (û− v)− I(û− v) ‖L∞(K̂)

≤ (1 + CIp(1 + ln p))‖ û− v ‖L∞(K̂).

In order to achieve an approximation property in W 1,∞(K̂), we need to estimate the
first derivatives of û− I(û):

‖∇(û− I(û)) ‖L∞(K̂)

= ‖∇((û− v)− I(û− v)) ‖L∞(K̂)

≤ ‖∇(û− v) ‖L∞(K̂) + ‖∇(I(û)− v) ‖L∞(K̂)

≤ ‖∇(û− v) ‖L∞(K̂) + Cp2‖ (I(û)− v) ‖L∞(K̂)

≤ ‖∇(û− v) ‖L∞(K̂) + Cp2(‖ (I(û)− û) ‖L∞(K̂) + ‖ û− v ‖L∞(K̂))

≤ ‖∇(û− v) ‖L∞(K̂) + Cp2(2 + CIp(1 + ln p))‖ û− v ‖L∞(K̂).

In the last two estimates, we can pass to the infimum because v was arbitrary, which
shows

‖ û− I(û) ‖L∞(K̂) ≤ Ĉ1p(1 + ln p) inf
v∈Pp(K)(K̂)

‖ û− v ‖L∞(K̂),

‖∇(û− I(û)) ‖L∞(K̂) ≤ inf
v∈Pp(K)(K̂)

{‖∇(û− v) ‖L∞(K̂)

+ Ĉ2p
3(1 + ln p)‖ û− v ‖L∞(K̂)}.

Relying on best approximation results in the space Pp(K)(K̂), we have [106, Theorem
3.2.19]

inf
v∈Pp(K̂)

‖ û− v ‖L∞(K̂) ≤ CCue
−b′pm ,

inf
v∈Pp(K̂)

‖∇(û− v) ‖L∞(K̂) ≤ CCue
−b′pm

with constants C, b′ depending both on γu. Collecting the estimates above, we obtain

‖ I(û)− û ‖W 1,∞(K̂) ≤ Ĉ1p(1 + ln p)CCue
−b′pm

+ CCue
−b′pm + Ĉ2p

3(1 + ln p)Ĉ1p(1 + ln p)CCue
−b′pm .

We have from Theorem 4.3.5 that C(α)−1pK′ ≤ pK ≤ C(α)pK′ for two neighboring
elements K,K ′. Hence, we can bound p ≤ C(α)pm because the minimal polynomial
degree is determined by at least one neighbor. This way we get

‖ I(û)− û ‖W 1,∞(K̂) ≤ Ĉ3C(α)6p6mCCue
−b′pm . (4.24)
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x̂

ŷ

K̂

K̃
ẽj

ej

(−1,−1)

(1, 1)

Figure 4.5. A reference element with hanging
node and its neighbor (possibly distorted).

Absorbing p6m by decreasing the constant b′ yields

‖ I(û)− û ‖W 1,∞(K̂) ≤ CαCue
−bpm

with Cα depending on α, γu and b on γu, and Cα = O(α6) for α → ∞.

Remark 4.3.8. We cannot avoid the constant p(1 + ln p) in the estimates of the inter-
polation errors ‖ û − I(û) ‖L∞(K̂) and ‖∇(û − I(û)) ‖L∞(K̂) because we allow different
polynomial degrees in the interior and on the edges of elements.

In the second step, we will construct an interpolation operator that can deal with
hanging nodes. To begin with, we cite an one-dimensional interpolation result of
[106, Lemma 3.2.6].

Lemma 4.3.9. Let u be analytic on the interval I = (−1, 1) and satisfy for some Cu, γu

‖∇q+2u ‖L∞(I) ≤ Cuγ
q
uq!, q = 0, 1, 2, . . . .

There are constants C, b > 0 depending on γu such that GL(q, u) satisfies for p = 1, 2, . . .

‖u−GL(p, u) ‖W 1,∞(I) ≤ CCue
−bp.

Proof. In [106, Lemma 3.2.6], the estimate ‖u − GL(p, u) ‖W 1,∞(I) ≤ κCu

(
1

1+σ

)p+1

is proved with κ, σ > 0 depending on γu. With C = κ(1 + σ)−1 and b = ln(1 + σ) we
obtain the desired estimate.

Let us describe now the construction of an interpolator on elements with hanging
nodes. Depending on the position of the hanging nodes, we prolong the local edge ej
to the full coarse edge ẽj , with j from {1, 2, 3(, 4)}. An exemplary situation is depicted
in Figure 4.5.
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4.3 Algebraic Convergence of the Boundary Concentrated FEM

Theorem 4.3.10 (hanging nodes). Let K̂ be the reference element. Let u be a function
on Ω whose pull back û is analytic on K̂ and satisfies

‖∇q+2û ‖L∞(K̂) ≤ Cuγ
q
uq!, q = 0, 1, 2, . . . . (4.25)

Let the indices i represent the free edges, whereas j denotes constrained edges due to the
existence of hanging nodes. If additionally it holds

‖∇q+2û ‖L∞(ẽj) ≤ Cuγ
q
uq!, q = 0, 1, 2, . . . (4.26)

with Cu, γu > 0, then there exists an interpolant Ĩ(û) ∈ Pp(K)(K̂) such that

1. Ĩ(û)|ei = GL(pi, û|ei),

2. Ĩ(û)|ej = GL(pj , û|ẽj )|ej ,

3. ‖ Ĩ(û)− û ‖W 1,∞(K̂) ≤ C̃(α)Cue
−bpm ,

where b depends on γu, γ2. The constant C̃(α) is at most O(α6) for α → ∞.

Let us comment on the impact of Theorem 4.3.10. Because of property 1. and 2.,
it is possible to construct a complete interpolant in an element by element fashion.
Together with Theorem 4.3.7 it is guaranteed that the resulting function is continuous
across each edge and, therefore, lies in the conforming finite element space Sp(τh).
This is possible as the definition of the finite element space enforces that the poly-
nomial degree on a constrained edge coincides with the polynomial degree on the
corresponding coarse edge.

Proof. We define the piecewise Gauss-Lobatto interpolation operator as

ĩ : C(∂K̂ ∪
⋃
j

ẽj) → {f ∈ C(∂K̂) : fi|ei is polynomial of degree pi},

ĩ(û)(x) = GL(pi, û|ei)(x), x ∈ ei,

ĩ(û)(x) = GL(pj , û|ẽj )|ej , x ∈ ej .

The function û = u◦FK can also be evaluated at points outside of K̂ since the mapping
FK is analytic. Thus, the Gauss-Lobatto interpolation on ẽ is well defined.

With the operators defined in the proof of Theorem 4.3.7 we define the interpolation
operator as

Ĩ = E(̃i(û))−Π(û− E(i(û))).

We compute

‖ Ĩ(û)− û ‖W 1,∞(K̂) ≤ ‖ I(û)− û ‖W 1,∞(K̂) + ‖ I(û)− Ĩ(û) ‖W 1,∞(K̂),
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where I is given by Theorem 4.3.7. The first addend is bounded by CαCue
−bpm (The-

orem 4.3.7). So we only need to estimate the second one. Using Lemma 4.3.6 we
find

‖ I(û)− Ĩ(û) ‖W 1,∞(K̂)

= ‖E(i(u))− E(̃i(u)) ‖W 1,∞(K̂) ≤ cp2‖ i(û)− ĩ(û) ‖L∞(∂K̂)

= cp2‖
∑
j

GL(pj , û|ej )−GL(pj , û|ẽj )|ej ‖L∞(ej)

≤ cp2
∑
j

(
‖GL(pj , û|ej )− û ‖L∞(ej) + ‖GL(pj , û|ẽj )|ej − û ‖L∞(ej)

)
. (4.27)

The first addends are bounded due to (4.25) and Lemma 4.3.9.∑
j

‖GL(pj , û|ej )− û ‖L∞(ej) ≤
∑
j

CCue
−b1pj ≤ 4CCue

−b1pm . (4.28)

If we use an affine mapping from ẽj to [−1, 1], the prerequisite (4.26) transforms into

‖∇q+2û ‖L∞(−1,1) ≤ Cu(2γu)
qq!, q = 0, 1, 2, . . . .

Using again Lemma 4.3.9 we find∑
j

‖GL(pj , û|ẽj )|ej − û ‖L∞(ej) ≤
∑
j

‖GL(pj , û|ẽj )− û ‖L∞(ẽj)

≤
∑
j

CCue
−b2pj ≤ 4CCue

−b2pm .

Due to the inequality cp2 ≤ cC(α)2, the final estimate reads

‖ Ĩ(û)− û ‖W 1,∞(K̂) ≤ CαCue
−bpm + cC(α)2(CCue

−b1pm + CCue
−b2pm)

≤ C̃αCue
−b̃pm

with C̃α depending on α, γu and b̃ on γu. As Cα ∈ O(α6), it follows C̃α ∈ O(α6).

Remark 4.3.11. Note that the interpolation operator projects û − E(i(û)) instead of
û−E(̃i(û)) onto the subspace V of polynomials vanishing at the boundary of the element.
This simplifies the interpolation error estimates (see (4.27)).

The Final Error Estimate

First we establish an easy lemma to conveniently check the prerequisites of Theorem
4.3.7 and 4.3.10.
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Lemma 4.3.12. Let u be a function on Ω that satisfies

‖∇qu ‖L2(Ω) ≤ Cuγ
q
uq!, q = 0, 1, 2, . . . . (4.29)

Then u is analytic on Ω and scaling constants Cs, cs > 0 exist such that

‖∇qu ‖C(Ω) ≤ CsCu(csγu)
qq!, q = 0, 1, 2, . . . .

Proof. For an arbitrary but fixed q, we have ∇qu ∈ H2(Ω). A Sobolev embedding
implies

‖∇qu ‖C(Ω) ≤ C‖∇qu ‖H2(Ω).

Estimating each derivative of u appearing in the H2(Ω)-norm separately with (4.29)
yields

‖∇qu ‖C(Ω) ≤ C(1 + γu + γ2
u)Cuγ

q
u(q + 2)!.

Choosing Cs := 2C(1 + γu + γ2
u) and cs = 6, which implies cqs ≥ (q + 2)(q + 1) for

q ≥ 1, proves the estimate, which in turn gives analyticity of u on Ω.

The proof of the following theorem is inspired by [88, Proposition 2.10].

Theorem 4.3.13. Let τh be a bc-mesh on Ω with a linear degree vector p of slope α. Let
u ∈ B2

1−σ(Ω, Cu, γu) for some σ ∈ (0, 1] and r = rΓ. Then it holds for sufficiently large α

inf
{
‖u− v ‖H1(Ω) : v ∈ Sp(τh)

}
≤ C Cu h

σ.

Here, C depends on Ω, γu, α and the shape regularity constant γ but not on Cu. The
choice of α also depends on all these constants but not on Cu.

We want to construct the interpolant element by element. On elements abutting the
boundary we will use the linear interpolant because the linear degree vector does not
allow larger polynomial degrees on elements of size h.

For elements not abutting the boundary we want to take advantage of the increased
polynomial degree to achieve good approximation quality. The previous error esti-
mates of the interpolants, however, depend on the minimal polynomial degree pm
which is determined by at least one neighbor element. To guarantee that the neigh-
bor’s polynomial degree (and thus pm) can be increased sufficiently, we introduce a
second layer of elements near the boundary.

Proof. Overall we distinguish the following cases:

1. Elements K collected in τb abutting the boundary, i.e., K ∩ ∂Ω 6= ∅.

2. Elements in the ’second’ layer near the boundary, i.e., K ∈ τh such that K∩∂Ω =

∅ and ∃K ′ ∈ τh with K ∩K
′ 6= ∅, K ′ ∩ ∂Ω 6= ∅. These elements are collected in

τs.
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3. Elements without hanging nodes which do not belong to τb ∪ τs. They are col-
lected in τf (free elements).

4. Elements that do not fall into the previous categories, i.e., elements with hanging
(constrained) nodes which do not belong to τb ∪ τs. They form the set τc.

Let u ∈ B2
1−σ(Cu, γu). In the following, we simply write r for rΓ. For an element K,

we define the constant CK by

C2
K =

∞∑
q=0

1

(2γu)2q(q!)2
‖ rq+1−σ∇q+2u ‖2L2(K).

It holds

‖ rq+1−σ∇q+2u ‖L2(K) ≤ CK(2γu)
qq!, (4.30)∑

K∈τh

C2
K ≤ 4

3
C2

u. (4.31)

Additionally, we define
C̃2

K := C2
K +

∑
K′:K∩K

′ 6=∅

C2
K′ ,

which implies
∑

K∈τh
C̃2

K ≤ (c + 1) 43C
2
u, where c is a general upper bound for the

amount of neighbors that an element K ∈ τh can have.
We construct an interpolant uh ∈ Sp(τh) of u for each element K falling into one of

the four categories above. In the sequel, the index q will always be from N0.

1. K ∈ τb. Let Ilin denote the linear or bilinear interpolation. We set uh|K :=
Ilinu|K . We use [88, Appendix B.4] and the property 1. of Definition 4.3.1 to
obtain

‖u− uh ‖H1(K) ≤ ‖u− Ilin(u) ‖H1(K) ≤ Chσ
K‖ r1−σ∇2u ‖L2(K) ≤ ChσCK .

3. K ∈ τf . The pullback û of u on K̂ satisfies

‖∇q+2û ‖L2(K̂) ≤ Chq+1
K ‖∇q+2u ‖L2(K)

≤ Chq+1
K ‖ rq+1−σ∇q+2u ‖L2(K)

1

infx∈K r(x)q+1−σ
.

(4.32)

Since r(x) for x ∈ K is bounded from below by the diameter of the largest
inscribed circle of a neighboring element, γ-shape-regularity yields

inf
x∈K

r(x) ≥ c̃(γ)hK

for a c̃(γ) > 0. Consequently,

‖∇q+2û ‖L2(K̂) ≤ CCKhσ
K(2c̃γu)

qq!,

where C is possibly rescaled by c̃(γ).
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4.3 Algebraic Convergence of the Boundary Concentrated FEM

We set uh|K := I(û)◦F−1
K , where I is given by Theorem 4.3.7. Owing to Lemma

4.3.12, we can apply Theorem 4.3.7 and get

‖u− uh ‖H1(K) ≤ CαCCKhσ
Ke−bpm,K

with b, Cα given by Theorem 4.3.7 depending on γu but not on Cu and K. Using

pm = pK′ ≥ cα ln(hK′/h)

for a neighbor K ′ of element K, we arrive at

‖u− uh ‖H1(K) ≤ CαCCKhσ−αb
K′ hαb.

Using hK′ ≥ ch yields
hσ−αb
K′ hαb ≤ hmin{σ,αb}.

4. K ∈ τc. We set K̂ := F−1
K (K) and denote the edges of K̂ that possess a hanging

node by ej , j ∈ {1, . . . , 4}. The coarse edge that contains ej is denoted by ẽj in
reference coordinates. Let Kj denote the neighboring element of K that contains
the same hanging node, i.e., Kj ∩ FK(ẽj) 6= ∅, and set K̂j := F−1

K (Kj). For an
illustration see Figure 4.6.

x̂

ŷ

K̂

K̂j

Êj

ẽj

êj

(−1,−1)

(1, 1)

Figure 4.6. A reference element
K̂ enlarged to Êj to handle a
hanging node.

In order to apply Theorem 4.3.10, we have to estimate L∞-norms of the pullback
on the extended edge ẽj . With the properties of the elements in τc we deduce

‖∇q+2û ‖L∞(ẽj) ≤ ‖∇q+2û ‖C(ẽj) ≤ C‖∇q+2û ‖C(Êj)

with Êj = int conv(K̂ ∪ êj) ⊂ K̂ ∪ K̂j . Let us emphasize that the constant C
depends on Ẽj but not on K̃j . Hence, C is independent of Kj , and thus it is
independent of the mesh.
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Since hK′
j

and hK are comparable (Lemma 4.3.4), we deduce analogously to
(4.32)

‖∇q+2û ‖L2(K̂j)
≤ CCKjh

σ
K(2γu)

qq! (4.33)

with a possibly larger constant C independent of K,Kj . The two estimates
(4.32) and (4.33) yield

‖∇q+2u ‖L2(Êj)
≤ C(CKj + CK)hσ

K(2γu)
qq!

and Lemma 4.3.12 shows that the prerequisites for Theorem 4.3.10 are fulfilled.
So we set uh|K := Ĩ(û) ◦F−1

K with Ĩ given by Theorem 4.3.10. The result of this
theorem yields

‖u− uh ‖H1(K) ≤ C̃αC

CK +
∑

K′:K∩K
′ 6=∅

CK′

hσ
Ke−bpm,K

= C̃αCC̃Khσ
Ke−bpm,K .

Arguing as in the case K ∈ τf , we find

‖u− uh ‖H1(K) ≤ C̃αCC̃Khmin{σ,αb}.

2. K ∈ τs. Here, we set uh|K := I(û) ◦ F−1
K if K has no hanging nodes or uh|K :=

Ĩ(û) ◦ F−1
K otherwise. Analogously as in the cases K ∈ τf , K ∈ τc, we obtain

‖u− uh ‖H1(K) ≤ C̃αCC̃Khσ
Ke−bpm,K .

However, we cannot apply pm ≥ α ln(hK/h) because pm = 1, and thus pm is
fixed and cannot be increased. In bc-meshes, the element size hK is proportional
to the size of a neighboring element. In the second layer, there is a neighbor
abutting the boundary, so we find C(γ)−1h ≤ hK ≤ C(γ)c2h. Thus, we obtain
for a possibly adapted C

‖u− uh ‖H1(K) ≤ C̃αCC̃Khσ.

Overall we now estimate∑
K∈τh

‖u− uh ‖2H1(K) ≤ C2
( ∑

K∈τb

C2
Kh2σ + C̃2

α

∑
K∈τs

C̃2
Kh2σ

+ C2
α

∑
K∈τf

C2
Kh2 min{σ,αb} + C̃2

α

∑
K∈τc

C̃2
Kh2 min{σ,αb}

)
.

As b is independent of α, we can choose α large enough to obtain∑
K∈τ

‖u− uh ‖2H1(K) ≤ C2 C2
u h2σ.
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4.3 Algebraic Convergence of the Boundary Concentrated FEM

By construction uh is a continuous function on Ω. Thus, it holds uh ∈ H1(Ω) and

‖u− uh ‖H1(Ω) ≤ C Cu hσ.

Remark 4.3.14. The proof only works for affine linear or bilinear mappings FK . The
reason is that prolonged edges of the reference element have to be straight lines under
FK , so that in global coordinates they coincide with the coarse edges. Together with the
property that hanging nodes are in the middle of a coarse edge, the described procedure
and usage of interpolation operators works.

Just as in Section 3.2 we can extend this result to 2d-networks. Since ic-FEM is the
local application of bc-FEM on each subdomain, we deduce the following corollary.

Corollary 4.3.15. Let τh be a ic-mesh on the 2d-network {Ωi}i∈I with a linear degree
vector p of slope α. Let u ∈ B2

1−σ(Ω, Cu, γu) for some σ ∈ (0, 1] and r = rI∪Γ. Then it
holds for sufficiently large α

inf
{
‖u− v ‖H1(Ω) : v ∈ Sp(τh)

}
≤ C Cu h

σ.

Here, C depends on Ω, γu, α and the shape regularity constant γ but not on Cu. The
choice of α also depends on all these constants but not on Cu.

The corollary can be shown by replacing rΓ with rI∪Γ in the previous proof.

4.3.2 Lebesgue Norm Estimates at the Boundary

It is well known from h-FEM that the error in the L2-norm decays twice as fast than
in the energy-norm. This can be shown by the well known Nitsche trick ([34]). Fur-
thermore, uniform estimates in the L∞-norm are available. Inspired by these results,
we are going to establish similar error estimates for the bc-FEM.

The Nitsche Trick

Theorem 4.3.16. Let τh be a bc-mesh on Ω with mesh size h and p be a linear degree
vector of slope α. Let y ∈ H1+σ(Ω) with σ ∈ (0, 1] be the weak solution of the Neumann
problem (N), i.e.,

−∇ · (D(x)∇y) + c(x)y = f in Ω,

y = 0 on ΓD,

∂nD
y = u on ΓN ,

which satisfies Assumption 2.2.1. Let f ∈ B0
1−σ(Cf , γf ) for Cf , γf > 0 and r = rΓ.

Denote by yh ∈ Sp(τh) the FE solution of the corresponding discretized problem. If α is
sufficiently large and the stability estimate

‖ y ‖H3/2(Ω) ≤ C(‖ f ‖L2(Ω) + ‖u ‖L2(ΓN ))
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holds, then there is a constant C > 0 independent of h and y such that

‖y − yh‖L2(ΓN ) ≤ Chσ+ 1
2

(
Cf + ‖y‖H1+σ(Ω)

)
.

Proof. We proof this result by the standard Nitsche trick. Let z denote the solution of
the dual problem

−∇ · (D(x)∇z) + c(x)z = 0 in Ω,

z = 0 on ΓD,

∂nD
z = y − yh on ΓN

with zh ∈ Sp(τh) being its bc-FEM approximation.
Then it holds by Galerkin-orthogonality

‖y − yh‖2L2(ΓN ) = a(z, y − yh) = a(z − zh, y − yh) = a(z − zh, y − Ihy),

where Ih is the bc-FEM interpolation operator from Theorem 4.3.13. According to
Theorem 4.3.13 the solution y satisfies

‖rp+1−σ∇p+2y‖L2(Ω) ≤ Cyγ
p
yp!
(
Cf + ‖y‖H1+σ(Ω)

)
∀p ∈ N0

with Cy, γy > 0 independent of u. By Theorem 4.3.13 we obtain the interpolation
error estimate

‖y − Ihy‖H1(Ω) ≤ C Cy

(
Cf + ‖y‖H1+σ(Ω)

)
hσ

holds for sufficiently large α. The solution z of the dual problem satisfies

‖rp+1−σ∇p+2z‖L2(Ω) ≤ Czγ
p
zp!‖z‖H1+σ(Ω) ∀p ∈ N0

with σ = 1
2 and Cz, γz > 0 independent of y − yh, cf. Theorem 4.3.13.

With the same arguments as above and applying Cea’s lemma as well as Theorem
4.3.13 we conclude

‖z − zh‖H1(Ω) ≤ C‖z − Ihz‖H1(Ω) ≤ C Cz‖z‖H3/2(Ω)h
1/2

with Cz > 0 independent of y − yh and sufficiently large α, where the choice of α is
independent of y − yh and thus independent of the discretization. Using the stability
assumption in the H3/2-norm implies

‖z − zh‖H1(Ω) ≤ C Cz‖z‖H3/2(Ω)h
1
2 ≤ C Cz h

1
2 ‖y − yh‖L2(ΓN ).

Hence, we obtain the estimate

‖y − yh‖2L2(ΓN ) ≤ C‖z − zh‖H1(Ω)‖y − Ihy‖H1(Ω)

≤ Chσ+ 1
2

(
Cf + ‖y‖H1+σ(Ω)

)
‖y − yh‖L2(ΓN ),

which ends the proof.

Unfortunately, this technique cannot be applied to obtain an enhanced estimate in
L2(Ω). The dual problem would contain y − yh as a source term, which no longer lies
in B2

1−σ and prevents Theorem 4.3.13 from being applicable.
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Using the Bramble-Hilbert Lemma

Lemma 4.3.17 (Bramble-Hilbert). Let Ω ⊂ R2 be a domain with Lipschitz boundary.
Futher, let L ∈ L(Hk(Ω), V ) be a bounded, linear map from Hk(Ω) to a normed space V
with k ≥ 2. If the polynomials up to degree k − 1 are a subset of kerL := {v ∈ Hk(Ω) :
L(v) = 0}, there is a C > 0 depending on Ω and L such that

‖Lv ‖ ≤ C|v|Hk(Ω) ∀v ∈ Hk(Ω).

See [34, Lemma II.6.3] for the proof. We use the lemma with the domain K̂ and set
k = 2, L := id−Ilin with the linear interpolator operator Ilin and obtain

‖ v − Ilin(v) ‖H2(K̂) ≤ C|v|H2(K̂). (4.34)

For an L∞-estimate on the boundary, we need two further estimates. First, for 1 ≤
p < ∞ and domains with Lipschitz boundary, there is a constant C > 0 such that (see
[35, Theorem 1.6.6])

‖ v ‖Lp(Γ) ≤ C‖ v ‖1−1/p
Lp(Ω) ‖ v ‖1/pW 1,p(Ω) ∀v ∈ W 1,p(Ω). (4.35)

Second, let τh be a quasi-uniform triangulation of a Lipschitz domain Ω ⊂ R2, then
the linear interpolation operator Ilin satisfies(∑

K∈τ

‖ v − Ilinv ‖2Hl(K)

)1/2

≤ Ch2−l|v|H2(Ω) ∀v ∈ H2(Ω), l = 0, 1, 2, (4.36)

for a C > 0, independent of h. This result is well known from approximation theory
and proved in, e.g., [35, Theorem 4.4.20], [34, Theorem II.6.7].

Theorem 4.3.18. Let the Neumann problem (N) be H2-regular and satisfy Assumption
2.2.1. Denote by y the solution to (N) and by yh ∈ Sp(τh) its FE approximation on a
bc-mesh with linear polynomial degree vector of sufficiently large slope. Then

‖ y − yh ‖L∞(Γ) ≤ Ch.

The proof is an adaptation of [34].

Proof. First observe that the bc-FEM interpolator in the proof of Theorem 4.3.13 coin-
cides with the linear interpolator Ilin on all elements K abutting the boundary Γ. The
continuous embedding H2(K) ↪→ C(K) (Theorem 2.1.3), and (4.34) yield

‖ y − Iliny ‖L∞(K̂) ≤ C‖ y − Iliny ‖H2(K) ≤ c|y|H2(K̂) ∀K ∈ τh.

We set
Ωh :=

⋃
{K ∈ τh : K ∩ Γ 6= ∅}.
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As τh is quasi-uniform of size h at the boundary (see Definition 4.3.1), a scaling argu-
ment yields

‖ y − Iliny ‖L∞(K∩Γ) ≤ ‖ y − Iliny ‖L∞(K) = ‖ ŷ − Ilinŷ ‖L∞(K̂)

≤ c|ŷ|H2(K̂) ≤ ch|y|H2(K)

≤ ch|v|H2(Ωh) ∀K ⊂ Ωh.

Taking the maximum over the boundary elements leads to

‖ y − Iliny ‖L∞(Γ) ≤ ch|v|H2(Ωh). (4.37)

We use the scaling argument again and exploit the equivalence of norms in finite-
dimensional spaces (with a constant cf ), i.e.,

‖ vh ‖L∞(K∩Γ) = ‖ v̂h ‖L∞((−1,1)) ≤ cf‖ v̂h ‖L2((−1,1))

≤ cf (2h)
−1/2‖ vh ‖L2(K∩Γ) ∀vh ∈ Sp(τh).

Hence, the following inverse estimate holds (see also [35, Theorem 4.5.11]):

‖ vh ‖L∞(Γ) ≤ cf (2h)
−1/2‖ v ‖L2(Γ) ∀vh ∈ Sp(τh). (4.38)

Putting (4.37) and (4.38) together leads to

‖ y − yh ‖L∞(Γ) ≤ ‖ y − Iliny ‖L∞(Γ) + ‖ yh − Iliny ‖L∞(Γ)

≤ ch|y|H2(Ωh) + cf (2h)
−1/2‖ yh − Iliny ‖L2(Γ)

≤ ch|y|H2(Ωh) + cf (2h)
−1/2(‖ yh − y ‖L2(Γ) + ‖ y − Iliny ‖L2(Γ)).

(4.39)

Using Theorem 4.3.16, (4.35), and (4.36) yields

‖ yh − y ‖L2(Γ) + ‖ y − Iliny ‖L2(Γ)

≤ Ch3/2(Cf + ‖ y ‖H2(Ω)) + C‖ y − Iliny ‖1/2L2(Ω)‖ y − Iliny ‖1/2H1(Ω)

≤ Ch3/2(Cf + ‖ y ‖H2(Ω)) + Ch3/2|y|H2(Ω), (4.40)

where C is a generic constant independent of h. Inserting (4.40) into (4.39) concludes
the proof.

Remark 4.3.19. Note that (4.36), which is used in the previous proof, requires a quasi-
uniform discretization of Ω. Since Ωh|Γ is quasi-uniform, we can (virtually) extend Ωh to
a quasi-uniform triangulation of whole Ω and mesh size h
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4.4 Exponential Convergence of the Vertex Concentrated
Finite Element Method

The results of this section are formulated for quadrilaterals but extend also to trian-
gular elements (see [136]). We follow the exposition of [135] which gives a self-
contained outline of the hp-FEM and contains the famous result on exponential con-
vergence with respect to the number of unknowns (originally due to [9]).

Definition 4.4.1. An irregular geometric mesh patch τ̂mς (with m + 1 layers and
grading factor ς ∈ (0, 1)) is an (admissible) triangulation of (0, 1)2 which is defined
recursively. If m = 0, τ̂0ς := (0, 1)2. For a given τ̂mς , generate τ̂m+1

ς by subdividing K ∈
τ̂mς containing the point (0, 0) into four smaller rectangles. The refinement is achieved by
dividing the sides of element K in a ς/(1− ς) ratio.

An exemplary irregular geometric mesh patch is depicted in Figure 4.7.

K14K34

K24

K13K33

K23

K12K32

K22K11

(0, 0) (1, 0)

(1, 1)(0, 1)

Figure 4.7. An irregular geometric mesh patch τ̂m
ς with

m = 3, ς = 0.75.

Regular geometric mesh patches can be obtained by refining those elements which
possess a hanging node as a mid-side node into triangles.

Definition 4.4.2. An (irregular) geometric mesh τmς of Ω with m + 1 layers is an
admissible triangulation that is obtained by linearly mapping a combination of geometric
mesh patches to a finite set of points V ⊂ Ω. The possibly remaining part of Ω is meshed
with finitely many quadrilaterals.

It remains to specify the polynomial degree vector p.
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Definition 4.4.3. A polynomial degree vector p to the triangulation τ̂mς = {Kij : i =
1, 2, 3, 1 ≤ j ≤ m + 1} (see Figure 4.7 for the numbering) is called linear with slope
α > 0 if and only if p = (pKij

)Kij∈τ̂m
ς

satisfies

pK11 = 1, pKij = max{2, bαjc}, j > 1

with the numbering Kij according to Figure 4.7. The number of layers is hereby propor-
tional to the maximal polynomial degree, i.e., m ∼ |p|∞.

Irregular geometric meshes are defined by heavily h-refining a mesh towards V which
will always contain the vertices X of Ω in the following. Therefore, we speak of vertex
concentrated (vc) finite elements, in resemblance of the boundary concentrated (bc)
FEM.

The approximation error for this version of the hp-FEM decays exponentially with
respect to the number of unknowns.

Theorem 4.4.4. Let Ω ⊂ R2 be a polygonal domain and u ∈ B2
β(Ω, Cu, γu) with rV and

a multi-index β ∈ (0, 1). Let τmς be a geometric mesh whose polynomial degree vector p
is linear with sufficiently large slope α (assumed identical in each geometric mesh patch).
Then there exist constants C, b > 0 such that

inf
{
‖u− v ‖H1(Ω) : v ∈ Sp(τ)

}
≤ Ce−b

3√
N ,

where N := dim(Sp(τ)). The constants C, b are independent of N .

The proof can be found in [9] or [135, Theorem 4.63]. It is possible to choose ς to
maximize the constant b = b(ς), in order to achieve optimal convergence in an asymp-
totic sense, confer [9, Remark 1]. All of our numerical experiments were conducted
with ς = 0.5.
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CHAPTER 5
Numerical Investigations

In this chapter, we investigate the numerical solution of the model problem (P) with
the hp-FEM. As mentioned before, higher order methods are efficient if they approxi-
mate functions with large elements of high polynomial degree in regions of high regu-
larity, whereas small elements with low polynomial degree are used in regions of low
regularity. The results of Chapter 3 and 4 answered the question regarding regularity
and approximation quality of finite-dimensional FE spaces, respectively. Hence, we
have laid the theoretical foundation for numerical investigations of control problems.

The chapter is organized as follows. We introduce a discretized model problem (Ph)
in Section 5.1 and show how the semi-smooth Newton method can be used to find an
approximate solution.

In Section 5.2, we carry over the convergence rates of the bc- and vc-FEM to optimal
control problems (Theorem 5.2.1 and 5.2.3, respectively). Additionally, we compare
our higher order methods with the traditional h-FEM to judge the performance with
respect to the number of unknowns. Since the vc-FEM is distinguished by exponential
convergence, the other techniques are not expected to be able to compete because
they only allow algebraic error estimates.

We point out Subsection 5.2.3, where the bc-FEM is applied to a problem with bang-
bang character. This behavior may occur if ν = 0 in the model problem. Building on
L∞-results, we derive an a-priori update strategy for the regularization parameter ν,
which is sent to zero in an outer iteration of the semi-smooth Newton method.

Section 5.3 contains the proof of the convergence of the ic-FEM applied to interface
control problems (Theorem 5.3.1). We also use the vc-FEM for solving this problem
class.

Let us give an overview on existing results regarding the discretization of Neumann
control problems and our contributions. Generally, the estimates from h-FEM are of
the type

‖u∗ − u∗
h‖L2(Γ) ≤ Chs. (5.1)

This estimate is proved in [39] with s = 1 for a piecewise constant approximation u∗
h

of u∗ in the case of a convex domain. A piecewise linear discretization yields (5.1) with
s = 3/2− ε, as proved in [38]. The variational discretization with low order elements
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Chapter 5 Numerical Investigations

allows s = 3/2 and an L∞-estimate with s = 2 including the additional factor | log h|
for smooth domains (see [80]). We also mention [104], which contains approximation
results with s ∈ [1, 2] depending on the angles of a (possibly non-convex) domain Ω.
In the convex case, the rate of s = 2 − 1/p can be shown if the optimal state y is in
W 2,p(Ω). In the non-convex case and D(x) ≡ I, convergence rates with 1 < s < 1/2+
π/ω are obtained, where ω is the largest inner angle of the domain. The collaboration
[4] shows how the order s = 3/2 can be obtained for non-convex domains by using
sufficiently graded meshes. All these results were obtained for finite elements with
fixed polynomial degree for the discretization of the elliptic equation.

The bc-FEM (also investigated in [27, 28]) is an efficient technique because the
number of unknowns N behaves like h−1 (Theorem 4.3.3), where h denotes the mesh
size on the boundary (Definition 4.3.1). A uniform mesh of the classical h-FEM has
O(h−d) unknowns for Ω ⊂ Rd with d = 1, 2, 3. Loosely speaking, we can solve a two
dimensional problem for the costs of a one dimensional one if we use the bc-FEM.
Therefore, the bc-FEM is superior to many common h-discretizations.

Only recently, the authors of [5] show for suitably graded meshes that

‖u∗ − u∗
h‖L2(ΓN ) ≤ Ch2| lnh|3/2

holds even for non-convex domains. This puts graded h-FEM into a competitive posi-
tion, additionally because less regularity on the source term (only L2(Ω)) is needed.
Their result is, however, restricted to the case of the Laplacian, where the exact struc-
ture of the singularities at the vertices of Ω is known (see Section 3.1), while our
results remain valid for general elliptic operators. We refer the reader to the discus-
sion of Table 5.1 - 5.3 for a further comparison of the h- and bc-FEM.

Finally, we mention the publications [27, 156, 158], where similar numerical exper-
iments are conducted.

5.1 Variational Discretization

The optimal control problem (P) has theoretically been investigated in Chapter 2.
Regularity results and approximation estimates have been established in Chapter 3
and 4, respectively. We now have the machinery to derive convergence results for a
numerical approach. Let us define the following discrete optimal control problem:

minimize J(uh, yh) :=
1

2
‖ yh − yd ‖2L2(Ω) +

ν

2
‖uh ‖2L2(U)

subject to
a(yh, vh) = luh

(vh) ∀vh ∈ Vh

uh ∈ Uad.

(Ph)

In our experiments, we will choose Vh = Sp(τ) with different hp-spaces from the pre-
vious chapter. We emphasize that uh still stems from Uad and is not discretized. With
the same standard arguments as for problem (P), we can derive existence, unique-
ness, and first order necessary conditions for an optimal solution.
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5.1 Variational Discretization

Theorem 5.1.1. The discrete optimal control problem (Ph) with ν > 0 possesses a
unique solution (u∗

h, y
∗
h) ∈ Uad × Vh. There is an adjoint q∗h ∈ Vh such that the following

optimality system holds:

a(y∗h, vh) = lu∗
h
(vh) ∀vh ∈ Vh, (5.2a)

(B∗q∗h + νu∗
h, u− u∗

h)L2(U) ≥ 0 ∀u ∈ Uad, (5.2b)

a∗(q∗h, vh) = (y∗h − yd, vh)L2(Ω) ∀vh ∈ Vh. (5.2c)

Here, a∗(·, ·) denotes the bilinear form corresponding to A∗.

Note that the optimality system (5.2) for (Ph) is a discrete version of the first or-
der necessary conditions (2.14) for the original problem (P). Since the control has
not been discretized in the above formulation, Theorem 2.3.5 allows to rewrite the
variational inequality (5.2b) as

u∗
h = PUad

(
−1

ν
B∗q∗h

)
(5.3)

if ν > 0.
This representation is the typical variational discretization due to [79]. The control

u∗
h ∈ Uad is given implicitly by the discrete adjoint variable q∗h and is not necessarily a

’member’ of the chosen hp-space.

Definition 5.1.2. Define S := A−1B and S∗ := A−∗ as the solution operators to the
state and adjoint equation, respectively. For a general FE space Vh, we denote by Sh

and S∗
h the approximate solution operators, arising from the discrete version of the weak

formulation of the state and adjoint equation, respectively (confer Section 4.1).

We can solve (5.2a) and (5.2c) and eliminate q∗h in (5.3). With Definition 5.1.2, this
leads to

u∗
h = PUad

(
−1

ν
B∗S∗

h(Shu
∗
h − yd)

)
. (5.4)

It is well known that (5.4) is semi-smooth and can be solved with a semi-smooth
Newton-method ([146, 81]), which is equivalent ([84]) to a primal dual active set
strategy (see [24]). Implementational details for this approach can be found in [28].
Note that some adaptations are necessary because we study problems with distributed
observation (yd ∈ L2(Ω)) instead of boundary observation (yd ∈ L2(ΓN )).

Remark 5.1.3. For Neumann control problems (U = ΓN ), the projection operator PUad

acts on one dimensional elements and the result can be computed easily for elements of
low order. In the case of distributed controls (U = Ω), functions that live on 2d-elements
have to be projected. The numerical implementation is straightforward for triangular
elements of degree one but degree two or more seriously complicates the analysis (see
[137]). This also holds true for quadrilateral elements of polynomial degree one or
higher. Therefore, discretization techniques seek to retain linear elements at points where
the control switches from active to inactive and vice versa.
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Generally, a globalization technique is required to guarantee convergence of the op-
timization algorithm because Newton’s method only converges locally. Most of the
following examples have large regions of convergence and the algorithm terminates
successfully for a wide range of initial guesses. In the remaining cases, the (projected)
gradient method (see, e.g., [81, 144]) produces iterates that are close enough to the
solution and suitable for launching the semi-smooth Newton method.

The beauty of the solution strategy is the fact that the error in the state and control
variable is mainly determined by accuracy of the FE discretization.

Theorem 5.1.4. Denote by (u∗, y∗, q∗) and (u∗
h, y

∗
h, q

∗
h) the solutions to the optimal con-

trol problem (P) and (Ph), respectively. Let yh := Shu
∗ and qh := S∗

h(y
∗ − yd). Then

the following estimate holds:

ν‖u∗ − u∗
h ‖2L2(U) + ‖ y∗ − y∗h ‖2L2(Ω) ≤

1

ν
‖ q∗ − qh ‖2L2(U) + ‖ y∗ − yh ‖2L2(Ω). (5.5)

In particular, there is a C > 0 independent of u∗, y∗, q∗ such that

‖ y∗ − y∗h ‖H1(Ω) ≤ C‖u∗ − u∗
h ‖L2(U) + ‖ y∗ − yh ‖H1(Ω), (5.6)

‖ q∗ − q∗h ‖H1(Ω) ≤ C‖ y∗ − y∗h ‖L2(Ω) + ‖ q∗ − qh ‖H1(Ω). (5.7)

Proof. The proof of inequality (5.5) is given in [80, Theorem 1]. Observe that

‖ y∗ − y∗h ‖H1(Ω) = ‖Su∗ − Shu
∗
h ‖H1(Ω)

≤ ‖ (S − Sh)u
∗ ‖H1(Ω) + ‖Sh(u

∗ − u∗
h) ‖H1(Ω).

(5.8)

The first addend is nothing but ‖ y∗ − yh ‖H1(Ω). With the definition of yh, it follows
that

‖ yh − y∗h ‖2H1(Ω) ≤ a(yh − y∗h, y
h − y∗h) = a(Sh(u

∗ − u∗
h), y

h − y∗h)

= (u∗ − u∗
h, y

h − y∗h)L2(U) ≤ C‖u∗ − u∗
h ‖L2(U)‖ yh − y∗h ‖H1(Ω).

(5.9)

In the last step, we used the Cauchy-Schwarz inequality together with the trace the-
orem if U = ΓN and the stronger energy norm if U = Ω. Dividing (5.9) by ‖ yh −
y∗h ‖H1(Ω) and inserting the result into (5.8) proves (5.6). The remaining estimate
(5.7) can be established similarly.

We would like to emphasize that the estimate (5.5) is not robust with respect to ν↘0,
which can be overcome by using L∞- estimates (see [153, 154]). Similar estimates for
more general optimal control problems can be found in [91, Theorem 2.2]. Theorem
5.1.4 bounds the error towards the optimal variables in terms of the general approxi-
mation error resulting from a FEM discretization of the state and adjoint equation.
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5.2 Neumann Control Problems

Remark 5.1.5. Note that the right hand side of (5.5) only uses L2-norms whereas most
of our approximation results in Chapter 4 use the energy norm. This gap can be closed
with the trace theorem (or Theorem 4.3.16) and ‖ · ‖L2(Ω) ≤ ‖ · ‖H1(Ω). The latter
estimate is the reason why the results in the following sections do not yield optimal rates
when measuring the convergence speed in L2. Proving enhanced results is expected to be
connected with duality arguments in the spirit of Aubin-Nitsche. However, it is hard to
transfer the ideas from the h-FEM because higher order techniques require high regularity
of the data. We mention [27], where Theorem 4.3.16 was successfully used to prove faster
rates for control problems with boundary observation, i.e., yd ∈ L2(ΓN ). To the best of
our knowledge, no optimal L2(Ω) estimates are available for the bc-FEM.

The best currently available L2-estimate for H1+σ-regular problems is proven in [58].
It is shown that for every compact Ω′ ⊂⊂ Ω there exists σ′ ∈ [0, σ] such that for all
elements K ⊂⊂ Ω′ the error estimate ‖y − yh‖L2(K) ≤ Chσ+σ′

holds. However, σ′

depends on Ω′, and it is unclear under which conditions σ = σ′ can be proven.

5.2 Neumann Control Problems

We present the control problem for a series of numerical tests. The objective reads

minimize J(u, y) :=
1

2
‖ y − yd ‖2L2(Ω) +

ν

2
‖u ‖2L2(ΓN ) + (eq, y)L2(ΓN ) (5.10a)

and is a modification of the target functional of (P). The state equation reads

−∇ · (D(x)∇y) + c(x)y = f in Ω,

y = 0 on ΓD,

∂nD
y = u+ ey on ΓN .

(5.10b)

The adjoint equation (2.14c) now becomes

−∇ · (D(x)∇q) + c(x)q = y − yd in Ω,

q = 0 on ΓD,

∂nD
q = eq on ΓN .

The optimization is subject to

u ∈ Uad := {u ∈ L2(ΓN ) | ua ≤ u ≤ ub a.e. in ΓN }, (5.10c)

where ua, ub ∈ R with ua ≤ ub. If eq ≡ ey ≡ 0, we recover the Neumann control
problem, i.e., (P) subject to (N). The analysis of the previous chapters is not affected
by our modifications because

• the boundary conditions do not influence the regularity or approximation in the
context of the bc-FEM,

• we ensure that eq, ey is smooth enough in the context of the vc-FEM.
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Chapter 5 Numerical Investigations

Hence, we formulate the following convergence results for (P) subject to (N) and not
for (5.10), which is only referenced during computational investigations. Generally,
the inhomogeneities eq, ey can be used for the construction of test problems with a
known optimal solution.

We assume throughout this subsection that (N) satisfies Assumption 2.2.1. If we
speak of (u∗

h, y
∗
h, q

∗
h) as the numerical approximation of (u∗, y∗, q∗), we mean the opti-

mal variables of (Ph).

5.2.1 Boundary Concentrated FEM

Theorem 5.2.1. Let (u∗, y∗, q∗) be the optimal variables of the Neumann control problem
and (u∗

h, y
∗
h, q

∗
h) be their numerical approximations. Let τh be a bc-mesh and p a linear

degree vector of sufficiently large slope α. Let (P) subject to (N) be H1+σ-regular and
f, yd ∈ B0

1−σ(Ω, Cf , γf ) with Cf , γf > 0 and r = rΓ. Then there exists a constant C > 0,
independent of h, such that

‖u∗ − u∗
h ‖L2(ΓN ) + ‖ y∗ − y∗h ‖H1(Ω) + ‖ q∗ − q∗h ‖H1(Ω) ≤ Chσ. (5.11)

Proof. Because of (5.5), Cea’s lemma, and (y∗, q∗) ∈ B2
1−σ(Ω) × B2

1−σ(Ω) (Theorem
3.2.1, Corollary 3.2.2), we obtain ‖u − u∗

h ‖L2(ΓN ) ∈ O(hσ) as a consequence of the
best approximation properties of the space Sp(τh) on bc-meshes (Theorem 4.3.13).
We use Theorem 4.3.13 again in (5.6) and (5.7) to obtain the desired estimates for
the state and adjoint, respectively.

Mesh Refinement Strategy

In our computations, the bc-meshes are obtained by suitably refining a given coarse
mesh, which consists of quadrilateral elements with polynomial degree equal to one.
In each refinement step we either refine a finite element (h-refinement) or increase its
polynomial degree (p-refinement). Since each element is refined one way or the other,
this method can be regarded as a ’uniform’ refinement strategy.

The type of refinement depends on the location of an element K ∈ τh according to
the definition of bc-meshes: If K ∩ Γ 6= ∅, the element is h-refined. Otherwise, we
perform p-refinement. Note that this procedure only takes a-priori information, i.e.,
the location of the boundary, into account. An exemplary mesh is shown in Figure 5.1.

Example 1: Non-Convex Domain

We first study the numerically observed convergence of the bc-FEM for problems on
general domains before turning to the special case of convex domains. Let us take
a numerical example from [104]. The elliptic operator is of reaction-diffusion type
(D ≡ I, c ≡ 1) on the L-shape domain

Ω = (−1, 1)2 \ ([0, 1]× [−1, 0]), ΓN = ∂Ω. (5.12a)
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Figure 5.1. A bc-mesh of boundary size h ≈ 0.008 for an L-shape domain.

Furthermore, ν = 1, ua = −0.78, ub = 0.55. The rest of the data is given in polar
coordinates:

yd = −rλ cos(λθ), (5.12b)

eq = −∂nyd, (5.12c)

f ≡ 0 (5.12d)

with λ = 2/3. It is shown in [104] that the unique solution is given by

y∗ ≡ 0, u∗ = P[ua,ub] (yd) , q∗ = −yd. (5.13)

The adjoint q∗ admits the typical singularity appearing in problems posed on domains
with reentrant corners. We have q∗ ∈ H1+λ−ε(Ω) for ε > 0 because of [72, Theorem
1.2.18].

The computations begin on an initial mesh consisting of 12 quadrilaterals of polyno-
mial degree equal to one. We employ a warm start strategy and use the solution on a
coarser grid as initial guess for computations on a finer discretization. In the spirit of
the variational discretization, we prolong q∗h on the fine mesh.

First, we examine the convergence with respect to L2-norms. Theorem 5.2.1 predicts
an error decay of order O(h2/3−ε). However, Figure 5.2 shows that the state and
adjoint variable rather converge with order O(h4/3−ε). This faster rate (4/3 = 2λ) has
already been observed in [28], but the proof remains open.
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The control converges with algebraic order λ+ 1/2− ε = 7/6− ε in h, which is the
best approximation rate obtained by bc-FEM at the boundary (see Theorem 4.3.16).
In order to improve the rate in Theorem 5.2.1, an enhanced L2(Ω)-estimate for the
state variable would be necessary. See also Remark 5.1.5 regarding the theoretical gap
for Lebesgue norms.

100 101 102 103 104

10−7

10−5

10−3

10−1

O(h4/3)

O(h7/6)

mesh size 1/h

‖y∗h − y∗‖L2(Ω)

‖q∗h − q∗‖L2(Ω)

‖u∗
h − u∗‖L2(ΓN )

100 101 102 103 104

10−5

10−3

10−1

O(h2/3)

O(h4/3)

mesh size 1/h

‖y∗h − y∗‖H1(Ω)

‖q∗h − q∗‖H1(Ω)

Figure 5.2. The convergence history of the bc-FEM applied to (5.10) with
data (5.12).

The H1(Ω)-error for the adjoint variable decays with order O(hλ−ε), which is ex-
actly the approximation rate of Theorem 5.2.1. A reason for the fast convergence
order O(h2λ) in the state variable (see Figure 5.2) could be the fact that y∗ ≡ 0. In
this example, the error in the optimal variables is of the same order as the general
approximation error of the finite element method.

We summarize known approximation results for the optimal control from the h-FEM
in Table 5.1 in order to compare the convergence speed with respect to the number of
unknowns N .

Non-Convex Ω h-FEM proved in type of disc- note

⇒ σ < 1 L2(ΓN ) retization

[104] hσ+1/2 Thm. 6.2, post-process A=−∆+id

[104] hσ+1/2 Chap. 7, variational A=−∆+id

[5] h2| lnh|3/2 Thm. 7.7, graded mesh A=−∆+id

Table 5.1: The convergence rates of the h-FEM applied to Neumann control problems on non-
convex domains.
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Theorem 4.3.3 shows h ∼ N−1 for the bc-FEM and, naturally, h ∼ N−1/2 for the
uniform h-FEM. For this test problem, we observed with σ ≈ λ

‖u∗ − u∗
h ‖L2(ΓN ) ∈ O(hσ+1/2) = O(N−σ−1/2),

which is better than the rates of [104]. The optimal rate of h2| lnh|3/2 ∼ N−1(lnN)3/2

from [5] cannot be obtained by the bc-FEM. The latter, however, is designed for general
elliptic equations, while the mesh grading factor in [5] is given in terms of the singular
exponents of an expansion of the solution, which may be unknown.

Example 2: Convex Domain

The Laplacian on a convex domain is an H2-regular example for which we were able
to derive an L∞-result of the bc-FEM (Theorem 4.3.18). We now extend this result
to the approximation of the optimal control. The proof of the following theorem is
similar to [80, Theorem 2].

Theorem 5.2.2. Under the assumptions of Theorem 5.2.1 we have the error bound

‖u∗ − u∗
h ‖L∞(ΓN ) ≤ Ch| lnh|1/2.

Proof. Define qh := S∗
h(y

∗ − yd) and yh := Shu
∗. Due to the variational discretization,

we can exploit the projection formula and obtain the estimate

‖u∗ − u∗
h ‖L∞(ΓN ) ≤ ‖PUad

(−ν−1q∗)− PUad
(−ν−1q∗h) ‖L∞(ΓN )

≤ 1

ν
‖ q∗ − q∗h ‖L∞(ΓN ) ≤

1

ν
‖ q∗ − qh ‖L∞(ΓN ) + ‖ qh − q∗h ‖L∞(ΓN ).

The first addend is of order O(h) according to Theorem 4.3.18. The second addend is
estimated with the help of [162, Lemma 4.4] and the trace theorem. It holds

‖ qh − q∗h ‖L∞(Γ) ≤ C| lnh|1/2‖ qh − q∗h ‖H1/2(Γ) ≤ C| lnh|1/2‖ qh − q∗h ‖H1(Ω).

We proceed analogously to (5.9) and obtain

‖ qh − q∗h ‖2H1(Ω) ≤ C‖ y∗ − y∗h ‖L2(Ω)‖ qh − q∗h ‖H1(Ω).

The last two estimates and Theorem 5.2.1 yield ‖ qh−q∗h ‖L∞(Γ) ≤ C| lnh|1/2h. Hence,
it holds

‖u∗ − u∗
h ‖L∞(ΓN ) ≤ C(h+ h| lnh|1/2),

which concludes the proof.

The inverse estimate of [162, Lemma 4.4] is established with generalized discrete
harmonic extensions on a quasi-uniform triangulation τ̃ of Ω. As explained in Remark
4.3.19, we can apply the result in the context of bc-meshes.
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We use the same numerical solution strategy as before for a problem of [27] on the
convex domain Ω = (0, 1)2. The optimal variables read

q∗ = −x1x
2
2e

x1+x2 ,

u∗ = P[ua,ub]

(
x1x

2
2e

x1+x2 |ΓN

)
,

y∗ = (4x1x2 + 2x1x
2
2)e

x1+x2 .

We choose

f := −(4x1x
2
2 + 16x1x2 + 4x2

2 + 8x2 + 12x1)e
x1+x2 , (5.14a)

yd := (2x2
2 + 2x1)e

x1+x2 (5.14b)

with the inhomogeneities

eq :=

{
−2x2

2e
1+x2 if x1 = 1,

−3x1e
1+x1 if x2 = 1,

(5.14c)

and

ey := −u∗ +

{
(8x2 + 4x2

2)e
1+x2 if x1 = 1,

14x1e
x1+1 if x2 = 1.

(5.14d)

The rest of the data is given by

ν = 1, ua ≡ 1, ub ≡ 6, D ≡ I, c ≡ 0, (5.14e)

ΓN = {x1 = 1} ∪ {x2 = 1}, ΓD = Γ \ ΓN . (5.14f)

Our computations start on a uniform mesh consisting of 16 elements of degree one.
The L2-errors of y∗h, u

∗
h decay with order O(h2) (see [27, Figure 2]), while Theorem

5.2.1 only predicts O(h). This shows that the theory is not optimal in L2, as already
noted in Remark 5.1.5.

Here, we investigate the pointwise errors of the state and adjoint variable in view of
Theorem 5.2.2.

Convex Ω h-FEM proved in type of disc- notes

⇒ σ = 1 L∞(ΓN ) retization

[39] h1 Thm. 4.8 full uh piecewise constant

[38] h1 Thm. 6.7 full uh piecewise linear

[80] h2−2/p| lnh| Ex 2 variational smooth Γ, q∗ ∈ W 2,p(Ω)

Table 5.2: The L∞ convergence rates in of the h-FEM applied to Neumann control problems on
convex domains.
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Since the projection P[ua,ub] is non-expansive, the L∞(ΓN )-error of q∗h gives a bound
for the error in the control variable. We observe that the bc-FEM converges signifi-
cantly faster than the h-FEM with respect to the number of unknowns (Figure 5.3).
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Figure 5.3. The convergence histories in L∞ of the h, bc-FEM applied to (5.10)
with data (5.14).

Let us amend the previous overview on convergence results by enhanced L2 esti-
mates for convex domains (Table 5.3).

Convex Ω h-FEM proved in type of disc- notes

⇒ σ = 1 L2(ΓN ) retization

[39] h1 Thm. 4.9 full uh piecewise constant

[38] h3/2 Thm. 6.6 full uh piecewise linear

[38] h3/2−ε Thm. 5.4 variational semi-linear problem

[80] h3/2 Ex 1 variational smooth Γ, q∗ ∈ W 2,p(Ω)

[104] h2−1/p Thm. 5.2 post-process ω ≤ π/2, q∗ ∈ W 2,p(Ω)

[104] h3/2 Thm. 5.2 post-process ω < π, q∗ ∈ W 2,p(Ω)

[5] h2| lnh|3/2 Thm. 7.7 graded mesh A = −∆+ id

Table 5.3: The L2 convergence rates of the h-FEM applied to Neumann control problems on
convex domains.
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As regards the L∞(ΓN ) error, the result of Theorem 5.2.2 and h ∼ N−1 make the
higher order method superior to the low order methods of [39, 38] and about equal
to [80]. Owing to Theorem 5.2.1, the bc-FEM converges faster in L2(ΓN ) than the
uniform h-FEM in [39, 38, 80], for which we have h3/2 ∼ N−3/4. The same arguments
show that the proven error decay of the bc-FEM is basically of the same quality as in
[104, 5].

We observe that the convergence of the bc-FEM in L∞(ΓN ) is faster than predicted
by Theorem 5.2.2.

5.2.2 Vertex Concentrated FEM

Now we turn to the vc-FEM and its approximation quality for Neumann control prob-
lems. We carry over the approximation results of the hp-FEM to the discrete problem
(Ph).

Theorem 5.2.3. Let (u∗, y∗, q∗) be the optimal variables of the Neumann control problem
and (u∗

h, y
∗
h, q

∗
h) be their numerical approximations. Let the assumptions of Theorem

3.3.24 be valid. Let τmς be a geometric mesh with a linear polynomial degree vector p of
sufficiently large slope α. Then there exist constants C, b, independent of the number of
unknowns N = dim(Sp(τ)), such that

‖u∗
h − u∗ ‖L2(ΓN ) + ‖ y∗h − y∗ ‖H1(Ω) + ‖ q∗h − q∗ ‖H1(Ω) ≤ Ce−b

3√
N .

Proof. The proof is analogous to the proof of Theorem 5.2.1. First, we replace Theo-
rem 3.2.1 and Corollary 3.2.2 by Theorem 3.3.24. Second, we replace Theorem 4.3.13
by Theorem 4.4.4.

Mesh Refinement Strategy

The mesh refinement strategy for the vc-FEM mainly follows the ideas of the bc-FEM.
Our computations start on a coarse grid consisting of quadrilaterals with polyno-
mial degree one. In the consecutive refinement steps, we obtain finer discretiza-
tions by either refining an element (h-refinement) or increasing its polynomial degree
(p-refinement).

In the analysis above we assumed that the points of singularity of solutions are
known. Singularities arising from the differential equation are known to be confined to
the vertices of the domain. Singularities from switching points are features of optimal
control problems with inequality constraints. In general the location of switching
points is unknown.
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Let us describe how we cope with this difficulty. Once the discrete problem on a given
mesh is solved, we can compute the switching points of the discrete optimal control
u∗
h. Then we h-refine the elements containing these switching points. In addition, we

h-refine their neighbors that are closest to the switching point. If the discretization
error is small enough we expect that the switching points of u∗ are contained in these
h-refined elements. In this way, switching points are treated like points where the
boundary conditions changes, and we stay consistent with the usual geometric mesh
refinement, see [135, Chapter 4]. As we expect that the number of switching points
stays bounded, the number of geometric mesh patches is finite. Let us emphasize
that it is still open under what assumptions these meshes satisfy the requirements of
Theorem 5.2.3.

In addition, elements containing the vertices of the domain or vertices, where the
type of boundary condition changes, are h-refined. Elements that are not h-refined
will be p-refined. This lead to the characteristic discretization with geometric mesh
patches as shown in Figure 5.4.

On finer discretizations, we use the same warm start strategy as for the bc-FEM in
order to ensure that the first iterate of Newton’s method is close enough to the true
solution.

convex corner

reentrant corner

switching point

Figure 5.4. Schematic refinement of corners and switching points of
the control.

Example 1 Revisited

We apply the vc-FEM with the mixed a-priori a-posteriori refinement strategy from
above to problem (5.10) with data (5.12). The solution is given in (5.13) and we
already know that q∗ ∈ B2

β(C, γ,Ω) with β ∈ (1 − λ, 1) and the weight function rV ,
but q∗ /∈ B2

1−λ (Remark 2.1.8). For the parameters determining the geometric mesh,
we choose σ = 0.5 and α = 1. Again, the initial mesh consists of 12 quadriaterals of
degree one.
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Theorem 5.2.3 predicts an exponential error decay of the control and state variable
in the L2- and H1-norm, respectively. The numerical results, which are depicted in
Figure 5.5, reflect this behavior.
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Figure 5.5. The error decay of the vc-FEM applied to (5.10) with data (5.12).
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Figure 5.6. The geometric mesh of level 8 and the vc-FEM applied to
Problem (5.10) with data (5.12).

We point out that the approximation result in Theorem 5.2.3 was established for a
geometric mesh that exactly captures the switching points. However, the mesh patches
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from the mixed a-priori a-posteriori refinement strategy do not exactly reproduce the
geometric meshes as defined in Section 6.3. A resulting mesh is depicted in Figure 5.6.
Sometimes, kinks in the optimal control u∗

h , i.e., points where the active and inactive
set meet, move into neighboring elements. The algorithm, therefore, has to make sure
that the polynomial degree is kept low in a sufficiently large neighborhood (in practice,
two/three elements sufficed) because the projection formula has to be applied. This
leads to slightly different mesh patches in the course of successive refinements.

In order to provide a detailed error analysis, we list the discretization error for states
and adjoints with respect to the energy norm in Table 5.4 for the different refinement
levels. Note that there is no conception of a mesh size for geometric meshes.

For investigating the exponential decay numerically, we introduce the experimental
exponent of convergence (eec).

eec(y, L2(Ω)) :=
ln ‖ y∗ − y∗h1

‖L2(Ω) − ln ‖ y∗ − y∗h2
‖L2(Ω)

3
√
N2 − 3

√
N1

, (5.15)

where N1 < N2 are the degrees of freedom for two consecutive refinements. The EEC
is the numerical approximation for the constant b in Theorem 5.2.3. The convergence
history of Table 5.4 indicates that the EEC is bounded from below, which supports the
exponential convergence result.

level N ‖y∗h − y∗‖H1(Ω) eec(y,H1(Ω)) ‖q∗h − q∗‖H1(Ω) eec(q,H1(Ω))
1 21 1.56 · 10−2 - 2.11 · 10−1 -
2 65 7.86 · 10−3 5.46 · 10−1 1.36 · 10−1 3.48 · 10−1

3 199 3.60 · 10−3 4.29 · 10−1 8.75 · 10−2 2.42 · 10−1

4 535 1.57 · 10−3 3.64 · 10−1 5.52 · 10−2 2.02 · 10−1

5 1,167 5.92 · 10−4 4.05 · 10−1 3.44 · 10−2 1.97 · 10−1

6 2,251 2.32 · 10−4 3.64 · 10−1 2.16 · 10−2 1.80 · 10−1

7 3,845 9.12 · 10−5 3.64 · 10−1 1.36 · 10−2 1.81 · 10−1

8 6,075 3.61 · 10−5 3.60 · 10−1 8.57 · 10−3 1.79 · 10−1

9 9,049 1.43 · 10−5 3.58 · 10−1 5.40 · 10−3 1.78 · 10−1

10 12,875 5.65 · 10−6 3.56 · 10−1 3.40 · 10−3 1.78 · 10−1

11 17,649 2.24 · 10−6 3.56 · 10−1 2.14 · 10−3 1.78 · 10−1

12 23,465 8.88 · 10−7 3.57 · 10−1 1.35 · 10−3 1.78 · 10−1

13 30,419 3.52 · 10−7 3.57 · 10−1 8.50 · 10−4 1.79 · 10−1

14 38,607 1.4 · 10−7 3.58 · 10−1 5.36 · 10−4 1.79 · 10−1

15 48,565 5.55 · 10−8 3.44 · 10−1 3.37 · 10−4 1.72 · 10−1

Table 5.4: The convergence history for the vc-FEM applied to (5.10) with data (5.12).

Let us comment on the multi-indices β, β̃ in Theorem 3.3.24 for the current example.
After relabeling the vertices Xi ∈ V, we can assume that X1 is the origin and X2

the right switching point on the horizontal line {x2 = 0} (confer Figure 5.6). The
reentrant corner X1 of Ω yields the index β1 ∈ (1 − π/ωX1

, 1) = (1/3, 1) while the
remaining vertices or switching points allow for arbitrary βj ∈ (0, 1), j 6= 1, see Remark
3.3.26.
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Now we investigate the value of β̃ for the regularity of the optimal control. The
extension of u∗ in the proof of Theorem 3.3.24 is constructed with [13, Theorem
4.3], which relies on the continuity of u∗ (Corollary 3.3.28). The idea is to subtract a
polynomial that coincides with u∗ at all vertices, which restricts the extension problem
to the case u∗(Xj) = 0 for all Xj ∈ V. Then, each u∗|Γj

is extended separately with
the help of [13, Theorem 4.2] and the summation over j yields a global extension
u∗ ∈ B2

β̃
(Ω).

We exemplary show the generation of the values β̃ on the segment [X1, X2] = Γ2,
where the optimal control is inactive as can be seen from (5.13). Let i = 1, 2 and
−ν−1q∗ ∈ B2

β(Ω) with βi ∈ (1/2, 1). Then the trace theorem [13, Theorem 4.1] yields
u∗|Γ2 ∈ B1

β̂
(Γ2) with β̂i ∈ (βi − 1/2, 1/2). An extension from Γ2 into the domain,

constructed with [13, Theorem 4.2], lies in B2
β̃
(Ω) with β̃i ∈ (β̂i + 1/2, 1). We see

that β̃i is strictly larger than βi because the values need to be chosen from the open
interval (confer [13, Remark 4.2]). If on the other hand βi ∈ (0, 1/2), then u∗|Γ2

∈
B2

β̂
(Γ2) with β̂i ∈ (βi+1/2, 1) and the extension to the domain belongs to B2

β̃
(Ω) with

β̃i ∈ (β̂i − 1/2, 1/2). Again, the value of β̃ has increased compared to β.
Observe that the application of Theorem 4.1 and 4.2 of [13] is only possible if the

values of βj , βj+1 stem from the same interval (0, 1/2) or (1/2, 1) on both ends of
Γj . That is why a value βj ∈ (0, 1/2), e.g., β1 ∈ (1/3, 1/2) at the reentrant corner,
may need to be increased as soon as one βj′ , j 6= j′ lies in (1/2, 1) on a connected
component of the Neumann boundary.

We close this subsection with a survey on the error decay with respect to the number
of ddof for different mesh refinement strategies. Our hp-strategies can be regarded as
uniform refinement techniques because each element is refined. A comparison with
uniform h-FEM, therefore, seems to be adequate.

There are plenty of strategies which aim at enhancing the speed of convergence
for the h-FEM such as mesh grading (see [4, 5]), extended finite element methods
(see the overview article [21]), and adaptive mesh refinement (h-FEM ad.) based on
a-posteriori error estimators (see [90, 91]). We implemented the last approach with
the residual based error estimator of [106] (see also Subsection 6.4.3). Only those
elements whose error is greater than 50% of the maximal error among the elements are
marked for refinement. The different FEM discretizations are compared in Figure 5.7
regarding the approximation error with respect to the number of unknowns.
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Figure 5.7. The error decay for different FEM strategies applied to Problem
(5.10) with data (5.12).

As we would expect, the vc-FEM is superior regarding the approximation quality with
respect to the number of unknowns and eventually beats all other strategies. Both
the vc- and bc-FEM converge faster than the uniform h-FEM, which compensates for
the higher implementational efforts. Admittedly, the adaptive h-FEM converges faster
than bc-FEM, which on the other hand does not depend on an a-posteriori error esti-
mator.

Example 2 Revisited

The numerical results for the vc-FEM and the optimization problem with data (5.14)
posed on the unit square are similar to the previous example. The plots show ex-
ponential convergence and the EEC is bounded from below. We also note that the
vc-FEM can be applied to problems with small regularization parameter ν as done in
the preprint of [156].

Again, we compare the different FE methods for the data (5.14). We observe the
same qualitative behavior as for Example 1, except for the fact that the adaptive h-FEM
is no longer superior to the bc-FEM. This is a consequence of the convex domain,
which yields an H2-regular problem. In this case, the uniform h-FEM achieves optimal
order of convergence. All in all, the higher order methods are superior as regards the
convergence speed with respect to the number of unknowns (see Figure 5.8).
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Figure 5.8. The error decay for different FEM strategies applied to Problem
(5.10) with data (5.14).

5.2.3 Bang-Bang Problems

Recall from Definition 2.3.6 that an optimal control u∗ is called bang-bang if it is
active almost everywhere on its domain U . The previous numerical examples heavily
exploit the projection formula, which is an equivalent reformulation of the variational
inequality (2.14b) of the first order necessary conditions (2.14). This result fails to
hold for ν = 0, which is why we resort to the following equivalent representation (see
[144]):

u∗(x) =


ua(x) if B∗q∗(x) + νu∗(x) > 0,

∈ [ua(x), ub(x)] if B∗q∗(x) + νu∗(x) = 0,

ub(x) if B∗q∗(x) + νu∗(x) < 0.

(5.16)

As before, we treat the case U = ΓN .
A Neumann control is bang-bang for ν = 0 if the set {x ∈ ΓN | q∗(x) = 0} has

Lebesgue-measure zero. We control the measure of the level sets of |q(x)| with the
following inequality:

meas1{x ∈ ΓN | |q∗(x)| ≤ ε} ≤ cε. (5.17)

For ε↘ 0, we see that q∗ indeed produces bang-bang controls. Such a structural
assumption involving q∗ already appears in [50, 65, 147, 155, 159].

In the remaining part of this section, we add the index ν to the control problem
to stress the dependence on the regularization parameter. The optimal variables are
denoted by (u, y, q)ν , where the index ν instead of the asterisk ? signifies optimality.
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For the un-regularized problem with ν = 0, the existence of a solution was established
under the additional assumption that Uad is bounded (see Assumption 2.3.1). An al-
ternative is to prove existence under the assumption that yd is in the range of A−1B.
Uniqueness only follows if A−1B is injective. Given a slight perturbation yd,δ ≈ yd
in the data, yd,δ may leave the range of the solution operator and the optimal solu-
tion ceases to exist. Hence, the un-regularized problem is ill-posed in the sense of
Hadamard because (unique) existence of solutions or continuous dependence on the
data may be violated.

It is a common technique to solve un-regularized problem (P0) by a sequence of
regularized problems (Pν) with ν↘0 and to split the error into

• the discretization error ‖uν − uν,h ‖L2(U) (see [154, Theorem 2.3]),

• the regularization ‖u0 − uν ‖L2(U) (see [154, Lemma 2.2]).

To control the latter, parameter choice rules have been investigated in the context of
inverse problems (see the overview in [153]). An important strategy for regularized
inverse problems is the discrepancy principle (see [111]), which is applied to contin-
uous optimal control problems in [155]. We also mention [50, 159, 154].

Changing the parameter ν in the course of computations is challenging with the
hp-FEM because the method constructs meshes for one particular solution. Adjusting ν
alters the problem and, consequently, the solution may no longer be smooth in regions
where higher order elements aimed at exploiting regularity. Vice versa, singular parts
of the solution may have moved away such that strongly refined elements lie in wrong
regions.

This is the reason why we do not apply the vc-FEM to bang-bang problems but rather
the bc-FEM. A changing solution does not affect the approximation properties of the FE
space because the method keeps low order elements on the whole Neumann boundary.

We use the results of [154] to establish an a-priori parameter choice rule.

Theorem 5.2.4. Let the model problem (P)=(Pν) and ua, ub ∈ L∞(ΓN )∩H1/2(ΓN ) be
given subject to an H2-regular Neumann boundary value problem (N). Let (5.17) hold.
Denote by (u, y, q)0 the solution to (P0) and by (u, y, q)ν(h)>0,h a sequence of solutions
to (Ph

ν(h)), obtained by the update strategy ν(h) ∼ h. Under the same assumptions as
in Theorem 5.2.1, there exists a C > 0 such that

‖u0 − uν(h),h ‖L1(ΓN ) ≤ Ch,

‖ y0 − yν(h),h ‖L2(Ω) ≤ Ch,

‖ q0 − qν(h),h ‖L∞(ΓN ) ≤ Ch.

The idea behind the strategy ν(h) ∼ h is to balance the error stemming from the
regularization with the error of discretization. The latter is measured in the L2- and
L∞-norm, which is why the assumptions on the state equation are taken from Section
4.3.2, where we derived error estimates for Lebesgue-norms.

Proof. From Theorem 3.2.1 we have y ∈ B2
0(Ω) for a solution y to the state equation.

Hence, Theorem 4.3.13 and 4.3.16 yield

‖ (S − Sh)u ‖L2(Ω) + ‖ (S∗ − S∗
h)(y − yd) ‖L2(ΓN ) ≤ c(h+ h3/2) =: δ2(h).
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Applying Theorem 4.3.18 yields

‖ (S − Sh)u ‖L∞(ΓN ) ≤ ch =: δ∞(h).

The a-priori estimates δ2, δ∞ can be inserted ([154, Remark 2.3]) into [154, Theorem
3.1], which proves the result.

We apply the a-priori regularization strategy ν(h) ∼ h to the optimal control problem
(5.10) with ν = 0 and eq ≡ 0. We choose the Laplacian (D ≡ I, c ≡ 0) on the
following domain:

Ω = (0, 1)2, (5.18a)

ΓD = ({x1 = 0} ∩ ∂Ω) ∪ ({x2 = 0} ∩ ∂Ω), (5.18b)

ΓN = ({x1 = 1} ∩ ∂Ω) ∪ ({x2 = 1} ∩ ∂Ω). (5.18c)

The rest of the data is inspired by [144]. We construct the data such that the optimal
control has bang-bang character in a checkerboard pattern. We set

yd = sin(πx1) sin(πx2) + sin(2.5πx1) sin(2.5πx2), (5.18d)

f = 2π2 sin(πx1) sin(πx2), (5.18e)

ey =

{
π(sin(πx2))− sign(sin(2.5πx2)) if x1 = 1,

π(sin(πx1))− sign(sin(2.5πx1)) if x2 = 1
(5.18f)

with the sign-function

sign : R → {−1, 0, 1}, sign(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

For ua ≡ −1, ub ≡ 1, straightforward forward calculations show that the unique
solution is given by

y0 = sin(πx1) sin(πx2),

u0 =

{
sign(sin(2.5πx2)) if x1 = 1,

sign(sin(2.5πx1)) if x2 = 1,

q0 = − 2

25π2
sin(2.5πx1) sin(2.5πx2).

Since the domain is convex, we deduce H2-regularity of the state equation (see [72]).
Applying the arguments of the proof of [50, Lemma 3.2] to the setting of boundary
controls shows that (5.17) holds true. Thus, all prerequisites of Theorem 5.2.4 are
met by the test example.

The numerical results depicted in Figure 5.9 are in very good concordance with the
proved error decay of order O(h).
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Figure 5.9. The problem (5.10) with data (5.18) is solved with
the bc-FEM and the a-priori regularization ν = ν(h) ∼ h of
Theorem 5.2.4.

5.3 Interface Control Problems

Very much related to the previous examples, solved with the bc-FEM, are interface
control problems posed on 2d-networks. We rigorously introduced the differential con-
straint, also called transmission problem, in Subsection 2.2.2 and guaranteed well-
posedness through Assumption 2.2.3.

For the readers convenience, we recall the interface control problem, i.e., (P) subject
to (T). It reads

minimize J(u, y) :=
1

2
‖ y − yd ‖2L2(Ω) +

ν

2
‖u ‖2L2(I)

subject to u ∈ Uad := {u ∈ L2(I) | ua ≤ u ≤ ub a.e. in I} with ua, ub ∈ H1/2(I) and
−κi∆yi = fi in Ωi,
yi − yj = 0 on γi,j ∈ I,

κi∂ni
yi + κj∂nj

yj = u on γi,j ∈ I,
yi = 0 on Γi ∈ ED,

κi∂ni
yi = hi on Γi ∈ EN .

(T)

For the remainder of this chapter, we assume that transmission problem satisfies As-
sumption 2.2.3. Therein, we find u ∈ H1/2(I) which is to be understood for the
optimal control that automatically possesses this regularity (Remark 2.3.8).
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Theorem 5.3.1. Let (u∗, y∗, q∗) be the optimal variables of the interface control problem
and (u∗

h, y
∗
h, q

∗
h) be their numerical approximations. Let τh be an ic-mesh on a 2d-network

{Ωi}i∈I with a linear degree vector p of sufficiently large slope α. Suppose that the state
equation allows solutions that belong to H1+σi(Ωi) with σi ∈ (0, 1] for all i ∈ I. If
f, yd ∈ B0

1−σi
(Ωi, Cf , γf ) with Cf , γf > 0 and the weight function r∂Ωi

, there exists a
constant C > 0, independent of h, such that

‖u∗ − u∗
h ‖L2(I) + ‖ y∗ − y∗h ‖H1(Ω) + ‖ q∗ − q∗h ‖H1(Ω) ≤ Chσ (5.19)

with σ := mini∈I{σi}.

By stipulating local H1+σi(Ωi)-regularity, the theorem does not depend on Section 3.1,
where we derived an expansion for the solution of transmission problems.

Proof. We use Theorem 5.1.4 and then apply Cea’s lemma. The optimal variables
y∗, q∗ lie in B2

1−σ(Ω, C, γ) for h-independent constants C, γ > 0 and rI∪Γ thanks to
Corollary 3.2.3. The result now follows from the best approximation properties of the
FE space Sp(τh) on ic-meshes (Corollary 4.3.15) and the estimates (5.5)-(5.7).

Ω1Ω2
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2

Figure 5.10. The 2d-network for
the interface control problem.

The domain for the numerical example is de-
picted in Figure 5.10. We have Ω = Ω1 ∪ Ω2 =
[0, 2]2 with the interface I = ∂Ω1 and ΓD = ∂Ω.
The data is chosen on the two subdomains Ω1,Ω2

as

f(x) =

{
f1 ≡ 10,

f2 ≡ 10,
yd(x) =

{
yd,1 ≡ 16,

yd,2 ≡ 10.

(5.20a)
with κ1 = 5 and κ2 = 0.25. Slightly different from
[158], we choose ub ≡ 5.5 and ν = 0.01.

A strict lower bound σ for the eigenvalues λX,j

of AX(λ) with X ∈ X is obtained by applying The-
orem 3.1.16 (σ = 1/4) or the refined estimate in
Proposition 3.1.17 (λX,j ≥ 1/2). By numerically
evaluating the eigenvalues at the interior vertices
of Ω, we find

λ1 = 0.70114949, λ2 = 1.2988505, λ3 = 2.7011495, . . . .

Note that all four vertices possess the same eigenvalues. Hence, we have for all i ∈ I
that y∗i ∈ H1+λ1−ε(Ωi) for small ε > 0 (Corollary 3.1.13).

Because of Theorem 5.3.1, we expect the error for the state and control variable to
decay approximately like O(h0.7). We compute the error in the optimal variables by
taking the solution on the finest discretization as reference (see Figure 5.11 and 5.12).
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Figure 5.11: The approximate optimal state (left) and adjoint (right) of the interface control
problem with data (5.20) on the finest discretization of the ic-FEM.

Figure 5.12. The approximate optimal control of the interface control with
data (5.20) on the finest discretization of the ic-FEM.

For investigating the convergence behavior, we introduce the experimental order of
convergence (eoc).

eoc(y,H1(Ω)) :=
ln ‖ y∗ − y∗h1

‖H1(Ω) − ln ‖ y∗ − y∗h2
‖H1(Ω)

ln(h1)− ln(h2)
. (5.21)

Here, h2 < h1 denote the mesh sizes of two consecutive discretizations.
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Chapter 5 Numerical Investigations

We start the computation on a coarse mesh that consists of 64 quadrilaterals and has
boundary mesh size 0.25. The convergence history for the state and adjoint variable is
shown in Table 5.5 and 5.6, respectively.

The eoc for the state y in the H1(Ω)-norm is in very good compliance with the theo-
retical results and the estimate of σ = λ1 − ε ≈ 0.7. The convergence for the adjoint
variable q and the H1(Ω) norm is significantly faster, which could be explained by the
fact that the optimal adjoint is close to zero in Ω1 (see Figure 5.11). The singulari-
ties at the interior vertices, therefore, do not have much impact on the approximation
quality.

h N ‖y∗h−y∗‖L2(Ω) eoc(y, L2(Ω)) ‖y∗h−y∗‖H1(Ω) eoc(y,H1(Ω))
0.25 81 3.04 · 10−1 - 5.69 -
0.125 289 1.04 · 10−1 1.55 3.51 6.95 · 10−1

0.0625 1,073 3.82 · 10−2 1.44 2.13 7.21 · 10−1

0.0312 3,425 1.39 · 10−2 1.45 1.27 7.46 · 10−1

0.0156 9,209 5.08 · 10−3 1.46 7.71 · 10−1 7.20 · 10−1

0.00781 22,177 1.85 · 10−3 1.46 4.69 · 10−1 7.16 · 10−1

0.00391 49,857 6.63 · 10−4 1.48 2.83 · 10−1 7.30 · 10−1

0.00195 107,329 2.25 · 10−4 1.56 1.65 · 10−1 7.76 · 10−1

0.000977 224,777 6.17 · 10−5 1.87 8.64 · 10−2 9.37 · 10−1

0.000488 462,593 - - - -

Table 5.5: The convergence history for the state variable and the ic-FEM applied to the interface
control problem with data (5.20).

As regards the error at boundary parts, we proved in Theorem 4.3.16 that the L2

approximation quality is of order O(hσ+1/2) at best. This rate can be observed in Table
5.6 and is also valid for ‖u∗−u∗

h ‖L2(∂Ω1) because the adjoint and control variable are
related through the (non-expansive) projection operator PUad

.

h N ‖q∗h−q∗‖L2(I) eoc(q, L2(I)) ‖q∗h−q∗‖H1(Ω) eoc(q,H1(Ω))
0.25 81 3.54 · 10−3 - 2.45 -
0.125 289 1.38 · 10−3 1.36 1.29 9.18 · 10−1

0.0625 1,073 5.55 · 10−4 1.31 5.99 · 10−1 1.11
0.0312 3,425 2.39 · 10−4 1.21 2.42 · 10−1 1.31
0.0156 9,209 1.08 · 10−4 1.15 9.29 · 10−2 1.38
0.00781 22,177 4.79 · 10−5 1.17 3.60 · 10−2 1.37
0.00391 49,857 2.08 · 10−5 1.21 1.48 · 10−2 1.28
0.00195 107,329 8.44 · 10−6 1.30 6.70 · 10−3 1.14
0.000977 224,777 2.79 · 10−6 1.60 3.08 · 10−3 1.12
0.000488 462,593 - - - -

Table 5.6: The convergence history for the adjoint variable and the ic-FEM applied to the inter-
face control problem with data (5.20) .

122



5.3 Interface Control Problems

Similarly, the convergence order O(h2σ) of the state variable measured in L2(Ω) is
not covered by Theorem 5.3.1. The ic-FEM basically consists of using the bc-FEM,
for which faster convergence in Lebesgue norms has already been observed, on each
subdomain Ωi of the 2d-network (see Figure 5.13).

Remark 5.3.2. A best approximation error estimate ‖ q − qh ‖L2(I) ≤ Chσ+1/2 can be
established with the Aubin-Nitsche trick (analogue to Theorem 4.3.16). Here, the idea
is to apply results from the bc-FEM on the subdomains of the 2d-network (confer the
proof of Theorem 5.3.1). For proving error estimates in the optimal variables, the same
theoretical gap as mentioned in Remark 5.1.5 appears.

We did not derive a regularity result in countably normed spaces for the optimal vari-
ables of the interface control problem. However, the remarks in Subsection 3.3.5
suggest that analytic regularity can be proved. The extension of the approximation
result on geometric meshes (Theorem 4.4.4) to 2d-networks should to be straightfor-
ward. Then, an analogous approximation result for the vc-FEM and interface control
problems could be derived.

Due to the above expectations, we apply the vc-FEM to the test problem with data
(5.20) and estimate the speed of convergence. We start the computations from the
same discretization as the ic-FEM. As expected, the algorithm designs geometric mesh
patches at the vertices and the kinks of the optimal control (see Figure 5.13).

Table 5.7 shows the eec, which is bounded from below.

level N ‖y∗h − y∗‖L2(Ω) eec(y, L2(Ω)) ‖q∗h − q∗‖L2(I) eec(q, L2(I))
1 81 3.04 · 10−1 - 3.54 · 10−3 -
2 249 1.07 · 10−1 5.30 · 10−1 1.93 · 10−3 3.10 · 10−1

3 765 8.81 · 10−2 6.87 · 10−2 8.32 · 10−4 2.94 · 10−1

4 1,853 3.18 · 10−2 3.25 · 10−1 3.86 · 10−4 2.45 · 10−1

5 3,685 6.66 · 10−3 4.94 · 10−1 1.41 · 10−4 3.18 · 10−1

6 6,489 2.38 · 10−3 3.20 · 10−1 6.59 · 10−5 2.38 · 10−1

7 10,481 1.14 · 10−3 2.29 · 10−1 3.63 · 10−5 1.85 · 10−1

8 15,877 6.25 · 10−4 1.84 · 10−1 2.2 · 10−5 1.54 · 10−1

9 22,893 3.75 · 10−4 1.57 · 10−1 1.42 · 10−5 1.34 · 10−1

10 35,349 1.12 · 10−4 2.74 · 10−1 4.71 · 10−6 2.49 · 10−1

11 48,333 5.72 · 10−5 1.85 · 10−1 2.36 · 10−6 1.92 · 10−1

12 64,177 - - - -

Table 5.7: The convergence history for the vc-FEM applied to the interface control problem with
data (5.20).

All in all, the various numerical tests that were conducted within this work clearly
show that the different hp-discretizations can successfully be integrated within a semi-
smooth Newton method to solve the inequality constrained Neumann or interface
control problem. We recover fast convergence rates with respect to the number of
unknowns that are predicted by theory.
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Figure 5.13: Left: An interface concentrated mesh of size h ≈ 0.008 for the 2d-network of Figure
5.10. Right: The corresponding geometric mesh of level 6 from the vc-FEM.
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CHAPTER 6
A Path-Following Approach

We recall the model problem
minimize J(u, y) :=

1

2
‖ y − yd ‖2L2(Ω) +

ν

2
‖u ‖2L2(U)

subject to
Ay = Bu,
u ∈ Uad,

(P)

where we now assume Uad = {u ∈ L2(U) | ua ≤ u ≤ ub a.e. on U} and ua, ub ∈ L∞(U)
with |ua − ub| ≥ ϑ > 0. This allows theoretical investigations for u ∈ Lq(U) and
2 < q ≤ ∞ (see [148]).

Instead of solving the problem with the semi-smooth Newton method, we dedicate
this chapter to the interior point method. This method solves (P) as a sequence of
perturbed problems, where the control constraints are dropped and barrier terms in
the cost functional enforce feasibility. The solution of a perturbed problem is a point
on the so called central path and the interior point method produces strictly feasible
iterates that stay close to the central path in order to remain within the convergence
region of Newton’s method. This explains the term path-following method, which will
be used interchangeably with interior point method. We stress that both distributed
and Neumann control problems can be solved with this technique. The contents of
this chapter are published in [157].

Let us comment on existing literature. A control reduced algorithm has successfully
been applied in [130, 134, 160]). Here, the control is eliminated from the optimality
system, which is similar to the concept of variational discretization from [79]. Addi-
tionally, super-linear convergence in problem specific norms is proved. This approach
has also turned out to be suitable for treating state constraints, see [160, 133, 131].

Interior point methods working with primal and dual variables and projection or
smoothing steps are explored in [148]. We also mention [122] for a problem with
mixed control and state constraints. In [147], an affine scaling method is augmented
by a smoothing step to prove super-linear convergence, which is related to semi-
smooth Newton methods in function space [145]. All authors use h-FEM with a fixed
polynomial degree (usually linear elements) as discretization.
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Chapter 6 A Path-Following Approach

We solve the model problem with an interior point method in function space. The im-
plementation uses the hp-FEM with adaptive mesh refinement during the individual
steps of the discrete algorithm. We heavily exploit the fact that the necessary optimal-
ity conditions of the barrier problems can be written as a smooth system of equations.
Thus, the optimization method does not introduce artificial non-smoothness that could
influence the hp-refinement. This fact was the main motivation to study an interior
point method with this type of discretization. To the best of our knowledge, there
are no available references about the application of adaptive hp-FEM to control con-
strained problems with pointwise inequality constraints.

We mention [41, 70], where the authors pursue an adaptive strategy for distributed
control problems with the integral control constraint

∫
Ω
u dx ≥ 0. Here, the regularity

of the optimal control is not restricted by the constraint, different from pointwise
constraints ua, ub (see also Theorem 2.3.7).

In the following section, we rigorously define the barrier problem and provide main
results such as existence of the central path and first order necessary optimality con-
ditions. The formulation of the interior point method and its convergence theorem
is located in Section 6.2. We use the general framework of [148], which can treat
solutions that touch the control bounds at isolated points.

In Section 6.3 we explain the implementation of a discrete version of the path-
following method. Adaptive updates for the barrier parameter and mesh refinement
will ensure that the iterates stay within the area of convergence for Newton’s method.
After that, a-posteriori error estimators for the central path as well as the Newton
system are derived. Both rely on residual based error estimators of the underlying
PDE.

Finally, in Section 6.5, we solve a test problem with known solution, where the
convergence radius for Newton’s method is large around the central path. Here, the
hp-character of our method will be the center of investigation. Then, a problem with
very small regularization parameter ν is solved. Due to adaptivity, the path-following
algorithm successfully manages to stay within the region of attraction of Newton’s
method, which is very sensitive to reductions in the homotopy parameter µ.

6.1 The Barrier Problem and Central Path

We follow [130] to introduce barrier functionals and their most important properties.
Proofs and further references can be found in [130, Chapter 2]. Recall that U 3 x is
the domain where the control u = u(x) acts.

Definition 6.1.1. Let B ⊂ U×R be measurable, such that B(x) := {u ∈ R | (x, u) ∈ B}
is closed, convex with non-empty interior for all x ∈ U . A function l(x, u) : U × R → R
is called barrier function if it fulfills

• l(., u) is measurable for any u ∈ R.

• l(x, .) is convex, continuous and differentiable on int(B(x)).
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• u ∈ ∂B(x) ⇔ l(x, u) = ∞ and
dist(∂B(x), u) ≥ d > 0 ⇔ l(x, u) < L for L ∈ R depending only on d.

• l(x, u) can be minorized by a(x)− c|u| with a ∈ L1(U).

The minorizing criterion guarantees that
∫
U
l(x, u(x)) > −∞ for u ∈ L1(U).

A barrier function generates a barrier functional with the following definition.

bµ : L1(U) → R, u 7→ µ

∫
Ω

l(x, u(x)) dx.

Theorem 6.1.2. For 1 ≤ p ≤ ∞ the barrier functional bµ : Lp(U) → R is convex and
lower semi-continuous. Furthermore, bµ(u) < ∞ ⇒ u ∈ int(B) a.e.

The result is shown in, e.g., [130, Corollary 2.1.6]. As the barrier functional suffers
from reduced regularity, it is necessary to apply subdifferential calculus.

Definition 6.1.3. Let f : V → R be a convex function. We define the set valued mapping

∂ : V ⇒ V ∗

v 7→ {∂f(v)}

where the image of v contains all linear and bounded functionals m ∈ V ∗, such that

f(v + δv) + 〈m, δv〉V ∗,V ≤ f(v)

In other words, the subdifferential ∂f(v) contains the slope of all affine minorants that
are exact at v.

Definition 6.1.4. We say u ∈ Uad is strictly feasible if and only if there is an ε > 0 such
that

|u(x)− ua(x)|+ |ub(x)− u(x)| > ε a.e. in U.

Theorem 6.1.5. Consider b : Lp(U) → R with 1 ≤ p ≤ ∞. If p < ∞ or u is strictly
feasible, then

∂bµ(u) 6= ∅ ⇒ ∂bµ(u) = {b′µ(u)}

with the first variation

b′µ(u)δu = µ

∫
U

∂ul(x, u(x))δu(x) dx.

In particular, we have b′µ(u) ∈ Lp(U)∗.

The result is proved in [130, Lemma 2.1.10, 2.1.11] and will be applied for the first
order necessary conditions of the barrier problem.

In this work, we will work with B(x) = [ua(x), ub(x)] ⊂ R a.e. on U and use the
logarithmic barrier function

l(x, u(x)) = − ln(u(x)− ua(x))− ln(ub(x)− u(x)), x ∈ U.
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We enforce u ∈ Uad by adding a barrier functional to J . This leads to the problem (Pµ).
minimize Jµ(u, y) := J(u, y) + bµ(u)

subject to
Ay = Bu,
u ∈ Uad.

(Pµ)

First, we have to assure that our homotopy approach makes sense insofar as the sub-
problem (Pµ) admits a unique solution.

Theorem 6.1.6. The problem (Pµ) admits a unique solution (uµ, yµ) for all µ > 0. Its
value of the objective functional is finite.

The assumptions on ua, ub imply that there is a ǔ with ua < ǔ < ub a.e. Then, the
proof is standard (see, e.g., [130, Lemma 2.2.2]) and basically builds on the minima of
convex functions (see [61, Proposition II.1.2]). For a more general setting, see [148].

In order to characterize the solution, we derive optimality conditions.

Theorem 6.1.7. The first order necessary optimality system for (Pµ) reads

Ayµ = Buµ, (6.1a)

νuµ +B∗qµ + b′µ(uµ) = 0, (6.1b)

A∗qµ = yµ − yd. (6.1c)

These conditions are also sufficient for a minimizer (uµ, yµ).

We remark that (6.1) is very similar to the optimality system (2.14), the only difference
being the non-linear equation (6.1b), which replaces the variational inequality (2.14b)
due to barrier terms in Jµ.

Proof. We eliminate the state from the objective function by inverting the state equa-
tion. Take a minimizer uµ from Theorem 6.1.6 and observe

Jµ(u) ≥ Jµ(uµ) = Jµ(uµ) + 〈0, u− uµ〉 ∀u ∈ Uad.

So we conclude 0 ∈ ∂Jµ(u
∗) 6= ∅ and compute the derivative with the sum and chain

rule ([61, Proposition I.5.6, I.5.7]). The fact that b′µ(uµ) ∈ L2(U) follows from The-
orem 6.1.5. The adjoint variable qµ is part of the optimality system as a Lagrange
multiplier for the state equation. Since the optimization problem is convex, the neces-
sary conditions are also sufficient.

Definition 6.1.8. For notational convenience, we set

Y := Q := H1(Ω).

The solution (uµ, yµ) together with the corresponding adjoint variable qµ are referred to
as the central path

(u, y, q)µ ∈ L2(U)× Y ×Q.
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Because of the bounds on the control and the boundedness of the solution operators
for the state and adjoint equation, we get for all µ ∈ (0, µ0]

‖ (u, y, q)µ ‖L2(U)×Y×Q ≤ Cµ0
.

Remark 6.1.9. As the operators A,A∗ are boundedly invertible, we can write down an
equivalent formulation of the optimality system: (u, y, q)µ ∈ L2(U)×Y ×Q solves (6.1)
if and only if

Fµ(u) = νuµ +B∗A−∗(A−1Buµ − yd) + b′µ(uµ) = 0. (6.2)

This equation holds a.e. in U .

Theorem 6.1.10. The central path is Hölder continuous with index 1/2, i.e.,

‖ (u, y, q)µ − (u, y, q)η ‖U×Y×Q ≤ Lc

√
|µ− η| (6.3)

for all µ, η ∈ (0, µ0]. Moreover, (u∗, y∗, q∗) = limµ↘0(u, y, q)µ exists and is the global
solution of (P).

For the proof we refer the reader to [148, Lemma 9]. Recall that a general solvability
result for µ = 0 is also established in Theorem 2.3.3. Passing to the limit (η↘ 0) in
(6.3) yields an error bound of order O(

√
µ) for the central path and the true solution.

This bound can be improved for some p < 2, see [33].

Remark 6.1.11. If the controls on the central path have positive distance to the bounds
ua, ub in the L∞ sense, the central path is differentiable (see, e.g., [130, 148]) and admits
the bound

‖ ∂µ(u, y, q)µ ‖L∞(U)×Y×Q ≤ Cµ−1/2.

6.2 The Interior Point Method

Interior point methods can be regarded as methods that systematically solve a per-
turbed optimality system of the original minimization problem. This perturbed system
is itself the exact optimality system for a barrier problem, which is characterized by
an additional term in the cost functional that penalizes the violation of constraints.
This strategy allows to deal with control and/or state constraints where the resulting
equations have the advantage of being smooth.

6.2.1 An Abstract Algorithm in Function Space

Let the first order necessary conditions of the central path be given by Fµ(x) = 0. A
general interior point algorithm in function space tries find a solution with Newton’s
method and drives µ↘0 at the same time (see [148, Algorithm PDPFS]). A schematic
outline of the method is given in Algorithm 1. We describe its building blocks in the
subsequent sections.
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Algorithm 1 Interior Point Method in Function Space

1: Choose initial point x0 and barrier parameter µ0 ∈ (0, µ−∞].
2: k := 0.
3: Solve the Newton system

∂Fµk
(xk)δx = −Fµk

(xk).

4: x̃k+1 := xk + δx.
5: Apply a smoothing step xk+1 := Z(x̃k+1).
6: Choose σk ∈ [σmin, 1) and set µk+1 := σkµk.
7: k := k + 1 and go to 3.

We remark that the smoothing step is not always necessary for convergence of the
algorithm. Note that more details and investigations are essential for implementing
this path-following algorithm in practice.

6.2.2 Well-Posedness

We take Fµ(u) from (6.2) and investigate the Newton system

∂Fµk
(uk)δuk = −Fµk

(uk). (6.4)

Let µk > 0 and uk denote an iterate of the interior point method. Moreover, let
1 ≤ p ≤ ∞ and

Dp := {u ∈ Uad | (u− ua)
−1, (ub − u)−1 ∈ Lp(U)}. (6.5)

A formal derivation at uk ∈ Dp in the direction h for 2 ≤ p ≤ ∞ yields

∂Fµ(uk)h = νh+B∗A−∗A−1Bh+
µh

(uk − ua)2
+

µh

(ub − uk)2
. (6.6)

In order to guarantee that the Newton system can be solved at the new iterate uk+δuk,
the smoothing operator is designed accordingly.

Lemma 6.2.1. The µ-dependent function

β : (ua, ub) → R, x 7→ νx− µ

x− ua
+

µ

ub − x
. (6.7)

is invertible and the Nemytzkij operator

β−1 : Lp(U) → {v ∈ Lp(U) |ua < v < ub}, (β−1v)(x) := β−1(u(x)),

is Lipschitz continuous for p ∈ [2,∞).
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The lemma is proved in [148]. Note that we use the same symbol for the scalar
function β−1 and its associated Nemytzkij operator β−1 (also named superposition
operator as in [6]). For 2 ≤ p < ∞, we set

W p := Lp(U)× Y ×Q× Lp(U)× Lp(U) with

w := (wu, wy, wq, wa, wb) ∈ W p

to address each component. Furthermore, we use the notation y(u) := A−1Bu for
the solution of the state equation and q(u) = q(y(u)) for the solution to the adjoint
equation, respectively.

As already in the previous chapters, we need an additional regularity assumption for
the constraint Ay = Bu at this point.

Assumption 6.2.2. Assume that the state equation is H1+σ-regular. For a fixed p, we
assume that 2 ≤ p < q ≤ ∞ with the continuous embedding

H1+σ(Ω) ↪→ Lq(U).

Examples are given at the end of Subsection 3.1.2. See also Equation (2.3). We use
the symbol σ to stay consistent with our previous notation and issue the warning not
the mistake it for the step size selection parameter σk ∈ [σmin, 1) in the interior point
method.

Definition 6.2.3. The smoothing operators zu : Lp(U) → Lq(U) and Z : W p → W q

are defined as

Z(w) :=


zu(wu)
zy(wu)
zq(wu)
za(wu)
zb(wu)

 =


β−1(q(wu))
y(zu(wu))
q(wu)

µ/(zu(wu)− ua)
µ/(ub − zu(wu))

 (6.8)

The definition of zu and za, zb is taken from (70) and (72),(73) of [148]. For the con-
vergence of the interior point method, it is essential that the smoothing step satisfies
a Lipschitz property.

Lemma 6.2.4. Let (µ, u) ∈ R+ × Lp(U) and s := (uµ, yµ, qµ, za(uµ), zb(uµ)) be a so-
lution to (Pµ). Under Assumption 6.2.2, the smoothing operators zu, Z are well defined
and there exist constants Lu, L > 0 such that

‖ zu(wu)− su ‖Lq(Ω) ≤ Lu‖wu − su ‖Lp(Ω), (6.9)

‖Z(w)− s ‖W q ≤ L‖w − s ‖Wp , ∀w ∈ W p. (6.10)

Moreover,
zu(wu) ∈ Dq.
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Proof. Obviously, s ∈ W q and s = Z(s) due to the first order necessary conditions.
Lemma 6.2.1 and the invertibility of A,A∗ yield

‖ zu(wu)− zu(su) ‖Lq(U) ≤
1

ν
‖ q(wu)− q(su) ‖Lp(U) ≤

C

ν
‖wu − su ‖Lp(U).

This proves the first claim. Similarly, we find

‖ zy(wu)− zy(su) ‖Y ≤ C‖u− uµ ‖Lp(U), ‖ zq(wu)− zq(su) ‖Q ≤ C‖wu − su ‖Lp(U).

The remaining components of Z can be treated as in the proof of [148, Theorem 2]
and we obtain with constants La, Lb

‖ za(wu)− za(su) ‖Lq(U) ≤ La‖wu − su ‖Lp(Ω) (6.11)

‖ zb(wu)− zb(su) ‖Lq(U) ≤ Lb‖wu − su ‖Lp(Ω). (6.12)

Thus, we can bound ‖Z(w)− Z(s) ‖W q by ‖wu − su ‖Lp(U) ≤ ‖w − s ‖Wp . It holds

‖Z(w)− s ‖W q ≤ max{Lu, C, La, Lb}‖w − s ‖Wp .

It remains to show the last claim, i.e., zu(wu) ∈ Dq.
From the definition of zu we get β(zu(wu)) = q(wu). Writing out the terms of β

yields
νzu(wu) + za(zu(wu)) + zb(zu(wu)) = q(wu).

Since zu(wu) ∈ Uad, it follows that νzu(wu) is essentially bounded. With q(wu) ∈
H1+σ(Ω), we conclude

za(zu(wu)) + zb(zu(wu)) ∈ Lq(U).

The possible singularities of the two addends do not interfere because |ua−ub| ≥ ϑ>0.
Consequently, each of them is q-times integrable and zu(wu) belongs to Dq.

Finally, we establish the invertibility of the Newton system (see also [148, Section 5]).

Theorem 6.2.5. Let µk > 0 and Assumption 6.2.2 be fulfilled. For any uk ∈ Dq and
r ∈ Lq(U)∗, there is a δuk : U → R such that

∂Fµ(zu(uk))δuk = r a.e. on U (6.13)

If r ∈ Lq(U) we also have ‖ δuk ‖Lt(U) ≤ C‖ r ‖Lp(U) for all t ∈ [p, q], where the constant
C can be chosen uniformly on bounded subsets (µ, u) ∈ R×Dq.

Proof. The result follows from the proof of [148, Lemma 4] if we show that Z(uk) lies
in

N−∞,q(µ) := {(u, y, q, wa, wb) ∈ Wq | u ∈ Uad, (u− ua)wa ≥ γµ, (ub − u)wb ≥ γµ,

wa|u>(ua+ub)/2 ≤ Θµ, wb|u<(ua+ub)/2 ≤ Θµ,

min{wa, wb}|u=(ua+ub)/2 ≤ Θµ}

with Θµ = 2max{µ−∞, µ/γ}/ϑ.
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6.2 The Interior Point Method

The value γ ∈ (0, 1) is arbitrary and for γ↘ 0 the set N−∞,q(µ) becomes Uad × Y ×
Q × {za ∈ Lq | za ≥ 0} × {zb ∈ Lq | zb ≥ 0}. In order to make µ−∞ an upper bound
for the homotopy parameters µk (see Algorithm 1), we simply pick a large but finite
value.

Remember that ub − ua ≥ ϑ > 0 almost everywhere. From the definition of the
smoothing operator Z it is clear that zu(uk) ∈ Uad and

(zu(uk)− ua)za(u) = µ ≥ γµ, (ub − zu(uk))zb(u) = µ ≥ γµ.

Define U+
k :=

{
x ∈ U | zu(uk) >

ua+ub

2

}
. Then,

za(uk)|U+
k
=

µ

(zu(uk)− ua)

∣∣∣
U+

k

≤ 2µ

ub − ua

∣∣∣
U+

k

≤ 2µ

ϑ
≤ Θµ.

The same estimate yields zb(u)|U−
k
≤ Θµ with U−

k :=
{
x ∈ U | zu(uk) <

ua+ub

2

}
.

For zu(uk) = (ua + ub)/2 we directly get

za(uk) = zb(uk) =
2µ

ub − ua
≤ Θµ,

which implies Z(uk) ∈ N−∞,q(µ).

6.2.3 Convergence

In this section we show that the Algorithm 1 converges. The Lipschitz continuity of Z,
which was proved in Lemma 6.2.4, is vital because it closes a p− q gap (see [148]) in
the convergence analysis of the interior point method.

Theorem 6.2.6. Let µ0, ρ0 > 0 be fixed. Assume that u∗ = limµ↘0 uµ satisfies strict
complementarity (as in [148, Definition 2]). Then there exists a sequence σmin,k ≤
σmax < 1 with σk ∈ [σmin,k, σmax] such that the iterates uk generated by Algorithm 1
with the smoothing operator zu are well defined and satisfy

‖uk − uµ ‖Lq(U) ≤ C
√
µk−1, (6.14)

‖uk − u∗ ‖Lq(U) ≤ (C + Lc)
√
µk−1. (6.15)

where C is some constant and Lc the Hölder constant of the central path (see Theorem
6.1.10) on (0, µ0].

Proof. The proof of convergence is achieved by showing equivalence of Algorithm 1
with the path-following method of [148]. The latter is designed for iterates in W q.
By choosing µ0 large enough we can launch the algorithms with

u0 :=
ua + ub

2
∈ Dq,

respectively

w0 := (u0, y(u0), q(u0), µ(ua − u0)
−1, µ(ub − u0)

−1)> ∈ W q

sufficiently close to the central path.
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It suffices to show that the iterates uk of Algorithm 1 (smoothed under zu) have a
corresponding sequence wk with uk = wk,u that is generated by the interior point
method of [148] (smoothed under Z). Convergence then follows from [148, Theorem
3] because the smoothing operator Z satisfies a Lipschitz property (due to Lemma
6.2.4).

The iterates in Wq are given by wk+1 = Z(wk + δwk) with the Newton update


ν 0 B∗ −I I
0 I A∗ 0 0
B A 0 0 0

wk,a 0 0 wk,u − ua 0
−wk,b 0 0 0 ub − wk,u

 δwk = −


wk,y − yd +A∗wk,q

νwk,u + wk,q − wk,a + wk,b

Awk,y −Bwk,u

wk,a(wk,u − ua)− µ
wk,b(ub − wk,u)− µ

 .

(6.16)
Now we show that δwk,u = δuk for k ≥ 0. By construction, we have uk = (wk)u and

Awk,y −Bwk,u = 0, wk,a(wk,u − ua) = µ, wk,b(ub − wk,u) = µwk,b (6.17)

for k = 0.
Assume by induction that these equalities hold for k ≥ 0. From (6.17) we deduce

that the last three components of the right hand side of (6.16) are zero. Eliminating
δwk,q, δwk,a, δwk,b from the first row of (6.16) yields (6.4) and proves that δwk,u equals
δuk.

As the smoothing operator only depends on (wk)u = uk, we find

uk+1 = zu(uk + δuk) = zu(wk + δwk) = Z(wk + δwk)u = wk+1,u.

The construction of Z guarantees that (6.17) remains valid. Thus, the induction is
complete and our algorithm is equivalent to the one of [148], where all claims are
established.

6.3 Discretization

First, we explain the discretization of the optimality system by finite elements. We
develop our ideas starting with the discretization of (6.1) and end up with a fully
discrete version for solving (6.2). This will show why some diligence is necessary for
the treatment of the non-linear optimality system when using higher order elements.
After that, we present an implementable path-following algorithm, which adaptively
controls the homotopy parameter, the area of convergence for Newton’s method, and
the discretization errors.
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6.3 Discretization

6.3.1 The Optimality System

In the following, we suppress the dependence on µ in (6.1). The state and adjoint
equation can be discretized with the hp-FEM as described in Section 4.1. Let τ be
an admissible triangulation of Ω and Sp(τ) = span{φ1, . . . , φM} the approximation
space. For the case of distributed controls, we obtain the discrete version of (6.1a)
and (6.1c).

Kyh −Muh = 0, (6.18)

K∗qh −Myh + ȳd = 0, (6.19)

where M is the mass matrix Mij =
∫
U
φiφj dx and K,K∗ shall represent the matrices

corresponding to the differential operator A,A∗. If A = ∆ = A∗, this is the stiffness
matrix with Kij =

∫
Ω
∇φi · ∇φj dx. The load vector is denoted by ȳd :=

∫
Ω
ydφi dx.

The main question is how to discretize the control in (6.1b). If we used a finite
element function uh ∈ Sp(τ), it would be hard to check whether a new Newton iterate
uh
k+1 = uh

k + δuh
k is feasible and produces finite integrals∫

U

µ(uh
k+1 − ua)

−1 dx,
∫
U

µ(ub − uh
k+1)

−1 dx.

An implementation has to ensure that the values at the integration points xj lie in
(ua(xj), ub(xj)). But this is challenging for polynomials of degree greater than one.

This issue is solved by representing the control not as a member of Sp(τ), but as
a vector consisting of values at the integration points, which are also used for the
evaluation of the barrier terms.

We approximate ∫
U

uφi dx ≈
M∑
j=1

u(xj)φi(xj)ωj (6.20)

where xj are integration points in U with weights ωj stemming from a Gaussian
quadrature rule (see Section 6.3.2). We set

R> = φi(xj), D = diag(ωj), i = 1, . . . , N, j = 1, . . . ,M. (6.21)

and use uh
j , j = 1, . . . ,M as a discrete control variable. Finding the values of vh ∈

Sp(τ) at xj is achieved by
vhj := vh(xj) = (Rvh)j .

The discrete version of the first order necessary optimality condition only enforces
(6.2) at each integration point, i.e.,

νuh
j + (Rqh)j −

µ

uh
j − ua

+
µ

ub − uh
j

= 0 ∀j = 1, . . . ,M.

We take the values of uh as a column vector (and understand non-linear terms as
vectors as well) and rewrite the last equation as

νuh +Rqh − µ

uh − ua
+

µ

ub − uh
= 0.
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Chapter 6 A Path-Following Approach

If we correct (6.18) according to the conventions in (6.20),(6.21), we have to solve
the discrete optimality system

Fh
µ (u

h, yh, qh) :=

 Kyh −R>Duh

K∗ph −Myh + ȳd
νuh +Rqh − µ

uh−ua
+ µ

ub−uh

 = 0

It can easily be verified that this is the exact optimality system of the following discrete
problem:



minimize Jh
µ (y

h, uh) :=
1

2
‖ yh − yd ‖2L2(Ω) +

ν

2

M∑
j=1

ωi(u
h
j )

2

− µ

M∑
j=1

ωi(ln(u
h
j − ua) + ln(ub − uh

j ))

subject to
Kyh = R>Duh,

(Ph
µ)

This non-linear system of equations is to be solved with Newton’s method. After rear-
ranging the rows of Fh

µ , the linearization reads

∂Fh
µ (u

h, yh, ph) =

νI + µdiag((uh
i − ua)

−2 + (ub − uh
i )

−2) 0 R
0 M −K

R>D −K 0


If we multiply the first row by D, the discretized optimality system in the variables
(uh, yh, qh) is symmetric. It can be solved either with direct methods or an iterative
solver such as MINRES.

As in the continuous case, where we eliminated the state and adjoint variable, we
can invert K,K∗ and get a discrete equation only in the variable uh

k . We find

∂Fh
µ (u

h
k)δu

h
k := (νI+µdiag((uh

k −ua)
−2+(ub−uh

k)
−2)+RK∗−1

MK−1R>D)δuh
k =

− νu+ µ(uh
k − ua)

−1 − µ(ub − uh
k)

−1 −RK∗−1

(MK−1R>Duh
k − ȳd) =: −Fh

µ (u
h
k).

which is a discretization of the continuous Newton system (6.6). Multiplying this
equation with D = D> from the left and reordering yields

(
νD + µD diag((uh

k − ua)
−2 + (ub − uh

k)
−2) +DRK∗−1

MK−1R>D
)
uh
k+1 =

µD(uh
k−ua)

−1−µD(ub−uh
k)

−1+µD diag
(
(uh

k − ua)
−2 + (ub − uh

k)
−2
)
uh
k+DRK∗−1

ȳd.
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6.3 Discretization

For the addends of the left hand side of the system, we now have

• νD is positive definite (> 0) if we use an integration scheme with positive
weights only,

• diag(uh
k − ua)

−2 > 0 and diag(ub − uh
k)

−2 > 0 if uh
k(xj) ∈ (ua, ub),

• DRK∗−1MK−1R>D > 0 because of M,K,K∗ > 0.

The symmetry of the left hand side is obvious. Thus, the system can be inverted by a
(P)CG-solver (see, e.g., [34]).

The pointwise smoothing operator Z calls for numerical solutions of the cubic equa-
tion (6.7), which can be implemented in a numerically stable way (see [130, Section
8.5]). It guarantees that the values uh

j are feasible and makes the numerical algorithm
well-defined.

The adaptive interior point method will have to control the discretization error and
perform hp mesh refinements. There are different strategies to guide between a finer
triangulation and higher order elements. We choose the estimate of the smoothness of
uk based on the expansion in a Legendre series ([59]). Several modifications are pos-
sible because the variables yk(uk) and/or qk(uk) can also be examined and included
in the decision process.

6.3.2 Estimating Smoothness and hp-Adaptivity

Let us now comment on the estimation of the smoothness of uh
k , which is complicated

by the fact that uh
k is represented by the values at the integration points and, therefore,

does not fit into the framework of [59]. Assume that U = Ω (the case of boundary
control is analogous) and let K ∈ τ be an element with polynomial degree pK ≥ 1.
As we want to assemble element mass and stiffness matrix on K without errors, we
work with a Gaussian quadrature that which is at least exact for polynomials of order
2pK . Hence, we tensorize a one dimensional integration scheme with pK + 1 points
and obtain (pK + 1)2 points. A vector of values at these integration points uniquely
determines a polynomial of order pK . We therefore obtain a one to one mapping ΨK

ΨK : R(pK+1)2 → Q(pK) :=
{
v : K → R : v =

∑
i,j

aijx
iyj , 0 ≤ i, j ≤ pK ,

aij ∈ R, (x, y) ∈ K
}
. (6.22)

Let uh
K be the vector that consists of all uh

j with xj ∈ K ordered by the value of j. The
transformation of uh to a finite element function is realized by

Ψ : RN → Sp(Ω, τ)

uh 7→ arg min
u∈Sp(Ω,τ)

1

2
‖u−

∑
K∈τ

χKΨK(uh
K) ‖2L2(Ω).

(6.23)
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Chapter 6 A Path-Following Approach

The solution of this L2-projection can be computed by inverting the mass matrix for
the load vector with components given by∫

Ω

Φi ·
∑
K∈τ

χKΨK(uh
K) dx, Φi ∈ Sp(Ω, τ).

Let us briefly describe how the smoothness of a discrete function vh ∈ Sp(Ω, τ) is
assessed. We recall the Legendre polynomials Li(x̂) of degree i ≥ 0 on [−1, 1], which
were defined as

Li(x̂) :=
1

2ii!

di

dx̂i
(x̂2 − 1)i.

in the implementational remarks on the hp-FEM in Chapter 4. It is well known that
they are orthogonal with respect to the L2((−1, 1)) inner product. This property can be
retained in two space dimensions by tensorization, i.e., setting Lij(x̂, ŷ) = Li(x̂)Lj(ŷ).
For each K ∈ τ and vh ∈ Sp(Ω, τ), we can write vh|K as a linear combination of
Legendre shape functions. Let FK be the function that maps the reference element
K̂ = (−1, 1)2 to the physical element K ∈ τ . The orthogonality property of Lij(x̂, ŷ)
yields

(vh ◦ FK)(x̂, ŷ) =
∑

0≤i,j≤pK

vKijLij(x̂, ŷ),

where vKij =
∫
K̂
(vh ◦FK)(x̂, ŷ)Lij(x̂, ŷ) dx dy. In our implementation, we can also use

the basis transformation from Subsection 4.2.1.
The decay of the Legendre coefficients vKij is exponential if the function is analytic,

which means there are constants CK , bK > 0 such that |vKij | ≤ Ce−b(i+j). Given vKij we
compute CK and bK by a least-square fit. Elements whose estimated error η2K is larger
than a fraction of the mean value, i.e., σ

∑
K∈τ η

2
K/#τ are marked for refinement. The

value of bK is then used to decide between h-refinement (bK ≥ δ) and p-refinement
(bK < δ), see [59, Algorithm 5]. We chose σ = 0.75 and δ = 1.

In order to obtain sensible estimates of bK , sufficiently many Legendre coefficients
need to be computed, which is why the the initial mesh must consist of elements
with polynomial degree no less than two or three. In practice, the smoothness of all
optimal variables, the state, control, and adjoint variables can be considered. We now
have a way of numerically estimating the smoothness of FE functions which allows the
implementation of Algorithm 1.

6.3.3 A Fully Adaptive Interior Point Method

The implementation of Algorithm 1 is done as described in [130]. We borrow ideas
from [133, 131] as regards the adaptive update of µ, which builds on general results
about Newton and homotopy methods in [54]. The ideas are formulated for iterates
uk of Newton’s method, which intends to solve the optimality conditions of the central
path uµ, i.e., the non-linear equation Fµ(uµ) = 0.

A numerical realization of the homotopy method can only compute an inexact New-
ton step in function space, i.e.,

δuk = −∂Fµ(uk)
−1Fµ(uk) + ek.
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6.3 Discretization

In order to ensure that the inexact method converges, the error ek and the contraction

θk(µ) :=
‖ ∂Fµ(uk)

−1[∂Fµ(uk)(uk − uµ)− (Fµ(uk)− Fµ(uµ))] ‖
‖uk − uµ ‖

(6.24)

are controlled. The simple calculation

‖uk+1 − uµ ‖ = ‖uk + δuk − uµ ‖ = ‖uk − ∂F−1
µ Fµ(uk) + ek − uµ ‖

≤ ‖ ∂F−1
µ (uk)[∂Fµ(uk)(uk − uµ)− (Fµ(uk)− Fµ(uµ))] ‖+ ‖ ek ‖

≤ θk(µ)‖uk − uµ ‖+ ‖ ek ‖. (6.25)

shows that linear convergence

‖uk+1 − uµ ‖ ≤ γ‖uk − uµ ‖ (6.26)

with a factor γ ∈ (0, 1) is obtained if

θk(µ) +
‖ ek ‖

‖uk − uµ ‖
≤ γ. (6.27)

The estimates (6.26) and (6.27) describe the interaction of discretization error and
non-linearity of the barrier problem. For mildly non-linear problems we have θk � 1
and the relative discretization error is the main contribution in (6.27). Highly non-
linear problems, on the other hand, may allow the algorithm to perform several steps
without refining the mesh, because θk dominates in (6.27). Both types of problems
are solved in Section 6.5.

Algorithmically, we work with a desired contraction θd and two further parameters:

• θt with 0 < θd < θt < 1 to decide when the contraction parameter is too large
and whether the Newton corrector is successful,

• θc with θt < θc < 1 as the critical contraction that models the removal of the
iterates from the region of convergence. Too large values terminate the Newton
corrector with a failure.

For obtaining a numerical estimate of θk, we assume ek = 0, and insert uk+1 in
(6.24) as the best possible guess for the unknown uµ. This leads to

θk(µ) ≈ [θk(µ)] :=
‖ ∂Fµ(uk)

−1[∂Fµ(uk)(uk − uk+1)− (Fµ(uk)− Fµ(uk+1))] ‖
‖uk − uk+1 ‖

=
‖uk − uk+1 − ∂Fµ(uk)

−1(Fµ(uk)− Fµ(uk+1)) ‖
‖uk − uk+1 ‖

=
‖uk − ūk+1 ‖
‖uk − uk+1 ‖

(6.28)

with the simplified Newton iterate

ūk+1 := uk+1 +∆uk := uk+1 − ∂Fµ(uk)
−1Fµ(uk+1). (6.29)
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Chapter 6 A Path-Following Approach

The interior point method, as described in Algorithm 1, uses a smoothing step uk+1 :=
zu(uk + δuk). Inserting this into (6.28) and (6.29) yields

[θk(µ)] =
‖uk − (zu(uk + δuk)− ∂Fµ(uk)

−1Fµ(zu(uk + δuk))) ‖
‖ zu(uk + δuk)− uk ‖

. (6.30)

The discretization error ek is estimated with a robust a-posteriori error estimator (see
Section 6.4). If the distance of uk+1 to the central path uµk

is below a certain accu-
racy told and the contraction rate is acceptable ([θk] < θt), the Newton corrector is
considered successful and a new homotopy parameter is computed. Otherwise, more
Newton steps might be necessary. The simplified Newton step can be added to the
current iterate in order to reduce the distance to the central path. If the estimated
contraction is beyond the critical value θc, a more conservative value for µk is com-
puted and the Newton corrector is relaunched.

An adaptive choice of σk as an update of the barrier parameter µk shall ensure
that the iterates do not leave the area of convergence of Newton’s method. The two
main ingredients are slope information η about the central path and estimates of the
contraction θ that relates Newton updates and simplified Newton updates.

If the central path uµ is differentiable, we approximate the slope ηk at the current
iterate uk by

∂µuµ ≈ [ηk(µ)] := −∂F−1
µ (uk)∂µFµ(uk). (6.31)

Here and in the following, we stay consistent with our notation but remark that ∂µuµ

is the derivative of the central path with respect to µ evaluated at the point µ, which
is more commonly written as ∂µu(µ). If uk is close to the central path, we expect this
inexact quantity to be a good estimate.

We use the approximation of the slope for the termination criterion of the path-
following algorithm. The fundamental theorem of calculus yields

uµk
− u∗ = lim

µ↘0

∫ µk

µ

∂µuµ dµ.

From the result of Remark 6.1.11, i.e., ‖ ∂µuµ ‖ ∈ O(µ−1/2) we construct the approxi-
mation

∂µuµ ≈
√

µk

µ
∂µuµk

. (6.32)

We approximate the distance by

‖uµk
− u∗ ‖ ≈ lim

µ↘0

∫ µk

µ

∥∥∥∥√µk

µ
∂µuµk

∥∥∥∥ dµ = 2µk‖ [ηk(µk)] ‖L2(U) =: [‖uµk
− u∗ ‖].

(6.33)
As soon as a global tolerance tol is reached, the algorithm stops.

Assuming a linear model for the contraction we have

θk(µ) ≤ ωk(µ)‖uk − uµ ‖. (6.34)
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6.3 Discretization

The role of ωk(µ) is related to an upper bound of an affine covariant Lipschitz condi-
tion as used in [54]. For µ = µk, the best available guess for the central path is uk+1

and leads us the the estimate

ωk(µk) ≈ [ωk(µk)] :=
[θk(µk)]

‖uk − uk+1 ‖
. (6.35)

The numerical estimate of the contraction also provides an estimate for the error in
the central path via (6.25)

‖uk+1 − uµk
‖ ≈ [θk(µk)]‖uk − uµk

‖+ ‖ ek ‖
≤ [θk(µk)](‖uk − uk+1 ‖+ ‖uk+1 − uµk

‖) + ‖ ek ‖. (6.36)

Hence,

‖uk+1 − uµk
‖ ≈ [‖uk+1 − uµk

‖] := [θk(µk)]

1− [θk(µk)]
‖uk+1 − uk ‖+ ‖ ek ‖. (6.37)

In Section 6.4.2 we develop an a-posteriori error estimator for the error in the newton
step [‖ ek ‖] ≈ ‖ ek ‖. As as an alternative to (6.37) one could also use the a-posteriori
error estimator of section 6.4.1 to estimate ‖uk+1 − uµk

‖.
An adaptive step size selection aims at achieving

ωk(µ)‖uk − uµ ‖ ≈ θd ∈ [0.1, 0.75]. (6.38)

Assuming the model ωk(µ) ∈ O(µ−1/2) leads us to

[ωk(µ)] := [ωk(µk)]

√
µk

µ
.

Proceeding as in [132], we compute

‖uk+1 − uµk+1
‖L2(U) ≤‖uk+1 − uµk

‖L2(U) + ‖uµk
− uµk+1

‖L2(U) (6.39)

and approximate the first term on the right hand side as in (6.37). For the second one,
we use (6.32) and plug in (6.31) to obtain

‖uµk
− uµk+1

‖L2(U) ≤
∫ µk

µk+1

‖ ∂µuµ ‖L2(U) dµ ≈ ‖ [ηk](µk) ‖L2(U)

∫ µk

µk+1

√
µk

µ
dµ

= ‖ [ηk](µk) ‖L2(U)2
√
µk(

√
µk −√

µk+1). (6.40)

Since the algorithm sets µk+1 = σµk, we are lead to the following step size rule.

[ωk(µk)]σ
−1/2(‖uk − uµk

‖+ ‖ [ηk(µk)] ‖L2(U)2µk(1−
√
σ)) = θd. (6.41)

If the Newton corrector was not successful, we use same equation for computing a
more conservative µk. We simply replace [ηk] and ‖uk − uµk

‖ by the estimates of
the previous (successful) iterate (see also [131]). In detail, the conservative step size
selection reads

[ωk(µk)]σ
−1/2(‖uk−1 − uµk

‖+ ‖ [ηk−1(µk−1)] ‖L2(U)2µk(1−
√
σ)) = θd. (6.42)
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Now we have everything at hand to implement a version of Algorithm 1.

Algorithm 2 Interior Point Method in Finite Dimensional Space

1: Choose parameters Λd, σmin, σmax, θc, θd, θt, told, tol.
2: Choose (u0, µ0)
3: k := 0
4: εk := tol + 1
5: do
6: (ũ, success) :=NEWTON CORRECTOR(uk, µk)
7: if success then . Implementing Algorithm 1 line 6
8: compute [ηk] . see (6.31)
9: compute σk ∈ [σmin, σmax] . see (6.41)

10: µk+1 := σkµk

11: uk+1 := ũ
12: k := k + 1
13: compute [‖uk − u∗ ‖] =: εk . see (6.33)
14: else
15: if k > 0 then
16: compute conservative σk ∈ [σmin, σmax] . see (6.42)
17: µk := σkµk−1

18: restore mesh
19: else
20: terminate: ’bad initial guess (µ0, u0)’
21: end if
22: end if
23: while εk > tol

Let us close this section with some further remarks on the implementation. The
value of σmin is motivated by the best error reduction we can expect from uniform
h-refinements. For elliptic equations on convex domains, the error decays like h2. As
the central path is Hölder continuous with index 1/2, we set σmin = 1/16 to facilitate
an error reduction of 1/4. If the mesh is refined r times during one Newton corrector
step, we set σmin = 1/16r.

By demanding the relative error reduction Λd in the Newton corrector, the imple-
mented algorithm converges at least linearly.

Since the algorithm may require to prolong an iterate uk to a finer discretization.
This is difficult for a representation on integration points, which is why we keep the
adjoint qk that is used for the smoothing the control with zu (see Definition 6.2.3). As
an FE function, qk can be displayed exactly on a finer grid.

In order to find a sensible value for µ0, we compute the Newton update δǔ for
ǔ := (ua + ub)/2. Starting from µ0 = 1, we enlarge the initial homotopy parameter
by 1/σmax if ‖ zu(δǔ) ‖L2(Ω) > 1. For values smaller than 0.2, we decrease µ0 by σmin.
Otherwise, we start the algorithm with zu(ǔ+ δǔ) and the computed µ0. This way, we
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get slope information at the very first iterate from (6.31) because ∂µF (u0) 6= 0. To
avoid a too aggressive σ0, one may demand σ0 ≥ σ > 0.

Algorithm 3 Newton corrector in Finite Dimensional Space with Mesh Refinement

1: procedure NEWTON CORRECTOR(uk, µk) . Implementing Algorithm 1 line 3,5
2: do . Newton Step
3: do . Adaptive Refinement
4: refine marked elements
5: solve ∂Fµk

(uk)δuk = −Fµk
(uk)

6: compute [‖ ek ‖] . see Theorem 6.4.2
7: mark elements
8: while [‖ ek ‖]/‖ δuk ‖ < told
9: compute [θk(µk)] . see (6.28)

10: ũ := zu(uk + δuk) . see (6.8)
11: compute [‖ ũ− uµk

‖] . see (6.37)
12: success := ([‖ ũ− uµk

‖] < Λd‖ ũ− uk ‖ ∧ [θk(µk)] < θt) ?
13: failure := ([θk(µk)] > θc) ?
14: uk := zu(uk + δuk) . see (6.8)
15: while not(success ∨ failure)
16: return (ũ, success)
17: end procedure

6.4 A-Posteriori Error Estimators

The following error estimators exploit the structure of the optimality system. For
treating more problems one can proceed as in [90, 91]. A different approach was
taken in [128] to obtain a-posteriori error estimates for problems with additional state
constraints.

6.4.1 Error to the Central Path

Let an approximate solution (yh, uh, qh) of (Ph
µ) be given. We will derive an upper

bound of ‖uµ − uh ‖L2(U), which will be amenable for numerical realizations, see
Subsection 6.4.3 below.

Theorem 6.4.1. Let (yµ, uµ) be the solution to (Pµ), µ > 0. Let a discrete point
(yh, uh, qh) be given that satisfies b′µ(uh) ∈ L2(U). Then there is a constant c > 0

independent of µ, h, and (yh, uh, qh), such that

‖uµ − uh ‖2L2(U) ≤ c
(
‖ry‖2Y ∗ + ‖rq‖2Y ∗ + ‖ ru ‖2L2(U)

)
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with
ru := νuh +B∗qh + b′µ(u

h),

ry := Ayh −Buh,

rq := A∗qh − (yh − yd).

Proof. Let qµ be the adjoint state such that (6.1) is satisfied. Subtracting νuh+B∗qh+
b′µ(u

h) from both sides of (6.1b), multiplying with uh−uµ, and integrating on U yields

ν‖uh − uµ ‖2L2(U) +

∫
U

(b′µ(u
h)− b′µ(uµ))(u

h − uµ) dx+

∫
U

B∗(qh − qµ)(u
h − uµ) dx

=

∫
U

ru(uµ − uh) dx.

Due to monotonicity of the subdifferential, the second term is non-negative. Using
equations (6.1a) and (6.1c) we obtain∫
U

B∗(qh − qµ)(u
h − uµ) dx = 〈A(yh − yµ), q

h − qµ〉Y ∗,Y − 〈ry, qh − qµ〉Y ∗,Y

= 〈A∗(qh − qµ), y
h − yµ〉Y ∗,Y − 〈ry, qh − qµ〉Y ∗,Y

= ‖ yh − yµ ‖2L2(Ω) + 〈rq, yh − yµ〉Y ∗,Y − 〈ry, qh − qµ〉Y ∗,Y .

Combining with the previous estimate, we find

ν‖uh−uµ ‖2L2(U)+‖ yh−yµ ‖2L2(Ω) ≤
∫
U

ru(uµ−uh) dx−〈rq, yh−yµ〉Y ∗,Y +〈ry, qh−qµ〉Y ∗,Y .

It remains to estimate yh − yµ and qh − qµ. On account of the invertibility of A, it
follows

‖ yh − yµ ‖Y ≤ c‖Ayh −Ayµ‖Y ∗ ≤ c(‖ry‖Y ∗ + ‖uh − uµ‖L2(U)).

Similarly, we deduce

‖ qh − qµ ‖Y ≤ c(‖rq‖Y ∗ + ‖yh − yµ‖L2(Ω)).

Collecting all these estimates, we arrive at

ν‖uh − uµ ‖2L2(U) + ‖ yh − yµ ‖2L2(Ω)

≤ ‖ ru ‖L2(U)‖uµ − uh ‖L2(U) + ‖rq‖Y ∗‖yh − yµ‖Y + ‖ry‖Y ∗‖qh − qµ‖Y
≤
(
‖ ru ‖L2(U) + c‖rq‖Y ∗

)
‖uµ − uh ‖L2(U) + c‖ry‖Y ∗

(
2‖rq‖Y ∗ + ‖ yh − yµ ‖L2(Ω)

)
.

The claim follows now with Young’s inequality.
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6.4.2 Error in the Newton System

In addition to the results in the previous section, we will now derive an error estimator
for the discretization error of the Newton step. Recall that the first-order necessary
conditions (6.2) (or equivalently (6.1)) of (Pµ) are solved with Newton’s method.

Let an iterate (yk, uk, qk) be given. Then the Newton step (δu, δy, δq) is computed as
the solution of the system

Aδy = Bδu− (Ayk −Buk), (6.43a)

A∗δq = δy − (A∗qk − (yk − yd)) (6.43b)

νδu+B∗δq + b′′µ(uk)δu = −(νuk +B∗qk + b′µ(uk)) (6.43c)

This Newton system (6.4) is itself the optimality system of the following quadratic
subproblem under linearized constraints:



minimize Jq
µ(δy, δu) := (νuk+B∗qk+b′µ(uk), δu)L2(U) − (A∗qk−yk+yd, δy)L2(Ω)

+
1

2
(‖ δy ‖2L2(Ω) + ν‖ δu ‖2L2(U) + b′′µ(δu, δu))

subject to
Aδy −Bδu = −(Ayk −Buk),

δu ∈ Uad.

(Pq
µ)

Since b′′µ is non-negative, the necessary conditions (6.43) are also sufficient. Solv-
ability of the Newton system (Theorem 6.2.5) automatically proves the existence of a
minimizer (δy, δu) of (Pq

µ).
Let a discrete approximation (δyh, δuh, δph) of (δu, δy, δq) be given. We will now

derive an a-posteriori error estimator for ‖δuh − δu‖L2(U). In the notation of Section
6.3, we want to compute an estimate [‖ek‖] with ‖ δu− δuh ‖L2(U) ≤ c[‖ek‖].

Theorem 6.4.2. Let (yk, uk, qk) be given such that b′µ(uk) ∈ L2(U). Let (δu, δy, δq) be
the solution of (6.43), and let (δyh, δuh, δph) be a discrete approximation. Then there is
a constant c > 0 independent of µ, h, and (yh, uh, qh), (δu, δy, δq), such that

‖ δu− δuh ‖2L2(U) ≤ c
(
‖rδy‖2Y ∗ + ‖rδq‖2Y ∗ + ‖ rδu ‖2L2(U)

)
with

rδu := ν(uk + δuh) +B∗(qk + δqh) + b′µ(uk) + b′′µ(uk)δu
h,

rδy := A(yk + δyh)−B(uk + δuh),

rδq := A∗(qk + δqh)− (yk + δyh − yd).

Proof. The claim can be proved with similar arguments as Theorem 6.4.1. It exploits
the non-negativity of b′′µ.
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Remark 6.4.3. The solution algorithm in the previous section strongly relies on the
smoothing operator Z. The latter guarantees that the current iterate uk of the interior
point method lies in D2 and that the Newton system is invertible. Thus, b′µ(uk) ∈ L2(U)
and the Theorems 6.4.1, 6.4.2 are applicable for Algorithm 2.

6.4.3 Residual Based hp Error Estimates

Let us explain the estimates of Y ∗-norms of residuals in state and adjoint equations
as they appear in Theorems 6.4.1 and 6.4.2. We exemplarily show the derivation for
the residual ry = Ayh −Buh ∈ Y ∗ of the state equation with operator A chosen to be
Ay = −∆y + y and B = id for distributed controls.

Let now yh be the solution of the discrete equation (6.18) to the control uh. Then it
holds

〈ry, vh〉Y ∗,Y = 〈Ayh −Buh, vh〉Y ∗,Y = 0 ∀vh ∈ Sp(Ω, τ).

Let v ∈ H1(Ω), vh ∈ Sp(Ω, τ) be given. Then we obtain using integration by parts

〈ry, v〉Y ∗,Y = 〈ry, v − vh〉Y ∗,Y

=

∫
Ω

∇yh∇(v − vh) + yh(v − vh)− uh(v − vh) dx

=
∑
K∈τ

∫
K

(−∆yh + yh − uh)(v − vh) dx+

∫
∂K∩Ω

∂ny
h(v − vh) ds

=
∑
K∈τ

(∫
K

(−∆yh + yh − uh)(v − vh) dx+
1

2

∑
e∈∂K∩Ω

∫
e

[
∂ny

h
]
(v − vh) ds

)
,

(6.44)

where e ⊂ ∂K ∩ Ω is an abbreviation for the iteration over the set of all edges of an
element K that are not part of the boundary Γ. Moreover, [φ] denotes the jump of the
quantity φ across an edge e.

We will now choose vh := Ihv, where Ih is an Clément type interpolation operator
taken from [108]. Let us briefly introduce some notation to describe the approxima-
tion properties of Ih. For a vertex V of the triangulation τ , let us define the patches

ω0
V := {V },

ωj
V := ∪{K ∈ τ | K ∩ ωj−1

V 6= ∅}, j ≥ 1,

and set

hV := min{hK | V ∈ K, K ∈ τ},
pV := max{pK + 1 | V ∈ K,K ∈ τ}.

Then the interpolation operator Ih of [108] satisfies

‖ Ih(v)−v ‖L2(ω1
V )+

hV

pV
‖∇Ih(v) ‖L2(ω1

V )+

√
hV

pV
‖ Ih(v)−v ‖L2(e) ≤ C

hV

pV
‖∇v ‖L2(ω8

V ),

(6.45)
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where e ⊂ K is an edge with one of its endpoints being V . For an element K ∈ τ ,
let VK denote a vertex of K. Then it holds hVK

≤ hK and pVK
≥ pK . Using the

interpolation operator Ih in (6.44) and employing (6.45) we estimate

〈ry, v〉Y ∗,Y ≤ C
∑
K∈τ

(
hK

pK
‖ −∆yh + yh − uh ‖L2(K)

+
1

2

∑
e∈∂K∩Ω

(
hK

pK

)1/2 ∥∥ [∂nyh] ∥∥L2(e)

)
‖∇v ‖L2(ω8

Ve
) ≤ C

(∑
K∈τ

η2K

)1/2

‖ v ‖H1(Ω)

where

η2K :=
h2
K

p2K
‖ −∆yh + yh − uh ‖2L2(K) +

1

2

∑
e∈∂K∩Ω

hK

pK

∥∥ [∂nyh] ∥∥2L2(e)
. (6.46)

As v ∈ H1(Ω) was arbitrary, this implies

‖ry‖Y ∗ = ‖Ayh −Buh‖Y ∗ ≤ C

(∑
K∈τ

η2K

)1/2

.

Due to the construction, this error estimator is reliable, thus providing an upper bound
on the error. For results regarding local efficiency of the estimator, see [108].

The residual in the adjoint equation, rq = A∗q − (yh − yd), can be estimated using
similar arguments. For general yd one has to take integration errors into account,
leading to estimates involving data oscillation term.

Remark 6.4.4. The above error estimators would profit from an enhanced L2 a-posteriori
error estimators. If the problem is H2-regular, i.e., A,A−∗ ∈ L(L2(Ω),H2(Ω)), then
Theorems 6.4.1 and 6.4.2 are valid if the Y ∗-norms of the residuals are replaced by
(Y ∩H2(Ω))∗-norms. These then could be estimated by L2(Ω)-error estimators because
‖ry‖(Y ∩H2(Ω))∗ ≤ c‖A−1ry‖L2(Ω). Unfortunately, no L2-error estimators are available
so far. In h-FEM, they are constructed with the Aubin-Nitsche trick and estimates of the
type

‖ v − I(v) ‖L2(K) ≤ Ch2
K |v|H2(K), ‖ v − I(v) ‖L2(∂K) ≤ Ch

3/2
K |v|H2(K),

see [2, Section 3.3] for details. Only suboptimal hp-equivalents are available (confer
[135, Remark 4.70]) and the estimates

‖ v − I(v) ‖L2(K) ≤ C

(
hK

pK

)2

|v|H2(K), ‖ v − I(v) ‖L2(∂K) ≤ C

(
hK

pK

)3/2

|v|H2(K)

are expected to be true but remain to be proved.
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6.5 Numerical Examples

In the following, we present numerical results of the discretized interior point method.
First, we investigate the ability of the algorithm to identify regions where the optimal
control is non-smooth. If u∗ is continuous, the active set A is uniquely defined and we
expected fast convergence if the algorithm strongly refines the mesh towards ∂A, i.e.,
the interface where u∗ changes from active to inactive and vice versa.

Second, we solve a problem with a very small regularization parameter. Here, the
region of convergence for Newton’s method is small and sensible to perturbations in
µ. This fact allows us to examine the performance of the adaptive step size selection
of the discrete algorithm.

6.5.1 Testing hp-Adaptivity

Example 1: Neumann Control Problem Revisited

We solve the problem (5.10) with data (5.12). We recall that for small ε > 0 the
problem is H5/3−ε-regular because it is posed on an L-shaped domain with a reentrant
corner of angle 3

2π.
The parameters of the path-following method are chosen as follows:

θd = 0.1, θt = 0.5, θc = 0.8, σmax = 0.9, σmin =
1

4
.

with the tolerances
told = 0.7, tol = 10−3, Λd = 0.7.

We start the path-following method with the homotopy parameter µ0 = 0.05 on an
initial mesh consisting of 12 elements of degree two.

In order to investigate the ability of Algorithm 2 to adapt to the regularity properties
of the optimal variables, we refine the mesh uniformly: either h- or p-refinement takes
place on each element.

For elements abutting the Neumann boundary, we expand the control u in a Legen-
dre series and estimate the decay of the Legendre coefficients. This allows to judge
the smoothness and guide between h- or p-refinement (see [59] and Subsection 6.3.2).
The same technique is applied to the remaining elements using the variables y, q. We
favor h refinement and only increase the polynomial degree if both variables seem to
be smooth.

The problem turns out to have a large region of convergence for Newton’s method,
which in addition is relatively robust with respect to changes in the homotopy pa-
rameter µ. That is why the method rapidly decreases µk and finds the solution in
only 4 iterates. This fast convergence implies that many refinements are necessary
during the Newton corrector iteration (Algorithm 3). Due to the observed quadratic
convergence of the norm of the updates ‖ δuk ‖, the mesh is refined several times until
the relative error [‖ ek ‖]/‖ δuk ‖ < told is small, see steps 3–8 in Algorithm 3. This
enforced refinement ensures that the discretization error does not prevail, and that
linear convergence is achieved in function space.
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Figure 6.1. The adaptive mesh from Algorithm 2 after solving (5.10)
with data (5.12). The kinks in the optimal control are marked with
black points.

The final mesh at µ4 ≈ 2.29 · 10−6 is depicted in Figure 6.1 and comprises 27, 951
ddof and 816 integration points at the Neumann boundary. We see that the algorithm
identifies the re-entrant corner as an area where the variables are non-smooth. Fur-
thermore, the elements are heavily refined towards the kinks of the optimal control
(Figure 6.1).

The final number of integrations points for the boundary control is 816 and the errors
read

‖u∗ − u4,h ‖L2(ΓN ) ≈ 2.29 · 10−3,

‖ y∗ − y4,h ‖H1(Ω) ≈ 8.72 · 10−5,

‖ q∗ − q4,h ‖H1(Ω) ≈ 1.76 · 10−3.

Regarding accuracy with respect to the number of unknowns, the interior point algo-
rithm performs weaker than the discretization of the vc-FEM (see Table 5.4). This is
only seems natural because a sequence of perturbed problems is solved with adap-
tive discretization. Regarding convergence with respect to µ↘0, we observe the rate
O(

√
µ) of Theorem 6.1.10 (see Figure 6.2).
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‖ y∗ − yk,h ‖H1(Ω)

‖ q∗ − qk,h ‖H1(Ω)

‖u∗ − uk,h ‖L2(Ω)

Figure 6.2. The convergence history of Algorithm 2 and
problem (5.10) with data (5.12).

Example 2: Distributed Control Problem

Now we test Algorithm 2 for a distributed control problem on a convex domain.
As a faster convergence in the L2-norm has been observed in our previous numer-
ical experiments of the bc-FEM, we modified ηK in (6.46) to contain the weights
(hK/pK)4, (hK/pK)3 instead of (hK/pK)2, (hK/pK). This mimics an enhanced a-
posteriori estimator as mentioned in Remark 6.4.4.

The problem under consideration is taken from [144] and reads

minimize J(u, y) =
1

2
‖ y − yd ‖2L2(Ω) +

ν

2
‖u ‖2L2(Ω) + (eq, y)L2(Γ) (6.47a)

subject to

−κ∆y + y = u+ ey in Ω, (6.47b)

∂ny = 0 on ΓN , (6.47c)

y = 0 on ΓD, (6.47d)

and ua ≤ u ≤ ub a.e. in Ω for real numbers ua < ub. The problem is posed on

Ω = (0, 1)2, ΓN = Γ, ΓD = ∅ (6.48a)

with the data ν = κ = 1, ua = 0, ub = 1, and

yd = −142/3 + 12 dist(x, x0)
2, eq ≡ −12. (6.48b)
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The optimal solution is radially symmetric with origin in x0 = (0.5, 0.5) and reads

u∗ = PUad
(−ν−1q∗),

y∗ ≡ 1,

q∗ = −12 dist(x, x0)
2 + 1/3,

if the inhomogeneity ey is set to ey = 1 − u∗. The previous analysis is not affected by
the appearance of ey, eq.

The parameters of the algorithm are

θd = 0.1, θt = 0.5, θc = 0.8, σmax = 0.9, σmin =
1

16

with the tolerances
told = 0.5, tol = 0.005, Λd = 0.6.

We start path-following method with the homotopy parameter µ0 = 1 on a mesh
consisting of four elements of degree 2.

We apply the same solution strategy as before and either p or h refine an element
if the algorithm decides to reduce the discretization error. The hp refinement method
judges the smoothness of the control iterate uk by expanding it in a Legendre series
and estimating the decay of the Legendre coefficients (see [59] and Subsection 6.3.2).
If the coefficients decay fast enough, the element will be p-refined, otherwise it will be
h-refined.

The distributed control problem displays similar properties to the Neumann control
problem on the L-shape domain. It is characterized by the fact that Newton’s method
has a large region of convergence that is robust with respect to changes in µ. Again,
the mesh is refined several times to keep the relative discretization error small. This
way linear convergence in function space is guaranteed because the discretization
error does not prevail (confer steps 3–8 in Algorithm 3).

The adaptive path-following algorithm performs very well and nicely captures the
interface γ where the optimal control is non-smooth, namely

γ = {dist(x− x0) =
1

6
} ∪ {dist(x− x0) =

1

3
}.

In Figure 6.3 we depict the final mesh for µ4 ≈ 2.87 ·10−5 consisting of 149, 613 ddof
and 263, 216 integration points. In addition the interface γ is drawn as white circles.
We observe a strong h-refinement near the interface, whereas large parts of the active
and inactive sets are p-refined.

The convergence behavior is very similar to the previous example and the final errors
read

‖u∗ − u4,h ‖L2(ΓN ) ≈ 4.56 · 10−4,

‖ y∗ − y4,h ‖H1(Ω) ≈ 2.50 · 10−5,

‖ q∗ − q4,h ‖H1(Ω) ≈ 1.17 · 10−5.

The full convergence history is depicted in Figure 6.4.
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Figure 6.3. The adaptive mesh from Algorithm 2 after solving problem (6.47)
with data (6.48). The interface γ is marked by white circles.
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Figure 6.4. The convergence history of Algorithm 2 and
problem (6.47) with data (6.48).
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6.5.2 Testing Adaptive Path-Following

This test case is taken from [130] and turns out to be numerically challenging because
of the very small regularization parameter ν. Unlike the previous examples, the radius
of convergence around the central path is small and very sensitive with respect to
changes in µ. Problem (6.47) is posed on

Ω = (0, 1)2, ΓN = ∅, ΓD = Γ (6.49a)

with data

ν = 10−6, κ =
1

10
, ua = 0, ub = 1. (6.49b)

The desired state is rough with patch-wise behavior

yd = 0.01 · χ(−1,0.2)×(−1,0.6) − 0.01 · χ(−1,0.2)×(−0.6,1) + 0.02 · χ(0.2,1)×(−0.6,1).
(6.49c)

No inhomogeneities are used (ey ≡ eq ≡ 0). We choose the contraction parameters a
little stricter.

θd = 0.1, θt = 0.3, θc = 0.5, σmax = 0.9, σmin =
1

16
.

Similar as before,
told = 0.5, tol = 10−2, Λd = 0.6.

A too aggressive σ0 is avoided by σ0 ≥ σ = 1/4. The path-following method is
launched with µ0 = 16−3 on a mesh consisting of 64 elements of degree three.

Since the error estimators of Section 6.4 suffer from small ν, we rescaled them to
prohibit extensive mesh refinement at the beginning of the algorithm. If a mesh re-
finement is necessary, we adaptively refine the mesh according to Subsection 6.3.2.
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0

0.2

0.4

0.6

0.8

1

homotopy parameter µk

θk
σk

θd

Figure 6.5. The step sizes and contraction factors of
Algorithm 2 and problem (P) with data (6.49).
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Chapter 6 A Path-Following Approach

The algorithm manages to stay inside the convergence radius of Newton’s method by
choosing relatively large values for σ. This behavior occurs because of the high non-
linearity of the problem and the small convergence area for Newton’s method resulting
from a very small ν. The desired contraction θd is achieved nicely (Figure 6.5).
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Figure 6.6: The state (left) and adjoint (right) variable on the final discretization of Algorithm
2 and problem (P) with data (6.49).
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6.5 Numerical Examples

The approximate optimal state and adjoint variable are shown in Figure 6.6. Addi-
tionally, Figure 6.7 displays the discrete optimal control and the final mesh (208, 550
ddof and 312, 552 integration points). We see that the optimal control displays jumps
and exhibits a patchwise behavior similar to yd. Since the smoothness of u guided
between h- and p-refinement, we roughly recover the structure of the optimal control
in the final mesh.

On the whole, the numerical test examples clearly show that the adaptive hp-refine-
ment can be successfully integrated within a Newton path-following method to solve
the inequality constrained control problem.
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CHAPTER 7
Conclusion and Outlook

We successfully used the hp-finite element method (hp-FEM) as a discretization tech-
nique for linear quadratic optimal control problems. The constraints consisted of an
elliptic PDE as well as pointwise bounds on the control.

7.1 Semi-Smooth Newton Methods

The semi-smooth Newton method is capable of efficiently solving problems with con-
trol constraints by tackling the non-smooth optimality system. A general interpolation
operator has been presented for the boundary concentrated finite element method
(bc-FEM), which lead to energy-norm error estimates of algebraic order. The results
were extended to the interface concentrated finite element method (ic-FEM) for inter-
face control problems, which suffers from poor regularity. An expansion of solutions
into a regular part and singular components can be derived with the help of the eigen-
values of the Mellin-transformed differential operator and the concept of injectivity
modulo polynomials.

We also presented new error estimates in the L2- and L∞-norm at the boundary of
the domain. The result formed the basis of an a-priori update rule for the regulariza-
tion parameter in the context of problems with bang-bang character.

Additionally, we established a novel regularity result in countably normed spaces
with a weight function that includes the vertices of the domain and the points where
the optimal control exhibits kinks. Combined with known approximation results from
the hp-FEM, a mixed a-priori a-posteriori refinement strategy is capable of achieving
exponential convergence with respect to the number of unknowns (vc-FEM). We also
compared the different hp-strategies to each other as well as to standard h-FEM meth-
ods. The numerical examples underline the fact that higher order methods are very
efficient with respect to the number of unknowns.

Many of the presented results are expected to hold also in three space dimensions.
Unfortunately, their proofs are expected to be even more technical, which is why the
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Chapter 7 Conclusion and Outlook

numerical analysis for this case is far less complete than for the 2d case. We mention
[45, 47, 73, 74, 88].

The idea of ic-FEM can be extended to problems with distributed control where the
active and inactive set are determined a-posteriori. A mesh would look similar to the
one in Figure 6.3. A-priori information can be used to resolve corner singularities. This
procedure would be analogue to vc-FEM and can be transferred to boundary control
problems of 3d problems.

7.2 Path-Following Methods

Additionally to the mainly a-priori motivated refinement strategies, we were able to
present a fully adaptive interior point method that allows to solve problems with con-
trol constraints. By monitoring functions at integration points, we guaranteed strict
feasibility and obtained a sequence of solutions that converges to the optimal solution.
To the best of our knowledge, this is the first algorithm for optimal control problems
that works with hp-FEM and pure a-posteriori information. We tested adaptivity as
well as path-following performance for different examples and obtained good results.

From the point if view of applications, it is interesting to solve problems on higher di-
mensional domains (Ω ⊂ Rd, d > 2). Since the interior point method and the hp-FEM
also cover the three-dimensional setting, it is assumed that a working algorithm can
be implemented in higher space dimensions, too.

In addition, more general cost functionals can be considered. The convergence of
the interior point method carries over to general functionals provided that sufficient
second-order optimality conditions are satisfied [148]. If the cost functional is analytic
in y and u, one can expect that the convergence rate of the hp-method is unaffected.

7.3 Non-Linear State Equations

From the applicational point of view, it is interesting to extend the hp-idea to non-
linear control problems. This is challenging because hp meshes are heavily adapted to
a specific form of the active/inactive set which can change considerably along the so-
lution iterates. Coarsening techniques and the use of an underlying base grid, as used
for multi-grid methods, come to our mind. Alternatively, critical regions can be dis-
cretized with low order elements, similar to the bc- and ic-FEM. Confer [158], where
a heating problem with non-local radiation operator is solved.

In some cases, a direct application is possible as the following example shows.
minimize J(u, y) :=

1

2
‖ y − yd ‖2L2(Ω) +

ν

2
‖u ‖2L2(Γ)

subject to
−∆y + y3 + y = f on Ω,

∂ny = u on Γ,
u ∈ Uad.

(S)
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7.4 State Constraints

This semi-linear control problem is well posed and the optimality conditions can be
reformulated as a semi-smooth projection formula (see [144, 146]).

We expect that the techniques of Section 3.3 can be used to establish a similar reg-
ularity result in countably normed spaces. Together with the approximation qual-
ity of geometric meshes, we assume that a numerical solutions converges with order
O(e−b

3√
N ) for b > 0. At least the numerical results suggest that exponential conver-

gence is obtained (see Figure 7.1). The data is chosen as

ν = 0.5, ua = −0.3, yd = 4x2
1x

2
2, f ≡ 2.

The solution on the finest discretization is taken as a reference for computing the
errors.

0 10 20 30
10−12

10−9

10−6

10−3

number of unknowns N1/3

‖y∗h − y∗‖L2(Ω)

‖q∗h − q∗‖L2(Γ)

Figure 7.1. The error decay of the vc-FEM applied
to the semi-linear problem (S).

Note that the solution method that we used in Chapter 5 is designed for positive
definite matrices (see [28, Equation (4.7)]). In the context of non-linear equations,
this is not necessarily the case any more. For simplicity, we chose ν large enough to
avoid this issue.

7.4 State Constraints

Another aspect that often appears in the context of real-life applications, is the pres-
ence of state constraints. These model the fact that the controlled system shall stay
within a feasible set of states. Instead of u ∈ Uad, we demand

y ∈ Yad := {y ∈ C(Ω) | ya ≤ y ≤ yb}, (7.1)

where ya, yb ∈ C(Ω) with ya < yb pointwise. It is well known that the challenge of
such model problems is the fact that the Lagrange multipliers corresponding to (7.1)
have low regularity. They can be identified with regular Borel measures, which are
hard to approximate. Solution techniques range from regularization techniques (see,
e.g, [23, 25, 77, 110]) to interior point methods (see, e.g., [82, 130, 131, 133]).
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Chapter 7 Conclusion and Outlook

We can transfer the ideas of Chapter 6 and obtain a homotopy method for state con-
straints. The main issue is to guarantee feasibility of the state iterates. This can
be ensured by a damped Newton step as explained in [131, Equation (40)]. Unfortu-
nately, no smoothing operator like the one in (6.8) arises naturally from the optimality
conditions. Consequently, the prolongation of solutions to finer meshes may become
infeasible at the integration points if a naive implementation is chosen.

A-posteriori error estimators can be developed similar as in Section 6.4 by exploiting
the optimality system. Depending on the computations, it is necessary to switch be-
tween an FE representation and a pointwise representation. Sophisticated techniques
are necessary in order to retain feasibility and enforce Dirichlet boundary conditions.

We implemented a simplified interior point method, that uses a fixed step size re-
duction for µk = σµk−1. Moreover, we dispensed with grid adaptivity and refined the
mesh in each iteration. The obtained algorithm was applied to a test example from
[82].

The computational domain is the unit square Ω = (0, 1)2 with ΓN = ∂Ω and the
elliptic constraint reads −∆y + y = u. Besides,

ν = 10−3, yd = 2x1x2, yb = 0.55.

Starting with µ0 = 0.1, σ = 0.25 on a uniform mesh with four quadrilateral elements
of degree two, we obtain promising results after 7 iterations. The optimal variables
(see Figure 7.2) look like those in [82] and the interface is captured relatively nicely
(Figure 7.3).
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Figure 7.2: The optimal control (left) and state (right) variable for the state constrained prob-
lem.
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7.5 Miscellaneous
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Figure 7.3. The final mesh of the interior point method applied
to the state constrained problem. The approximate interface is
marked with a white arc.

Hence, we are optimistic that the idea of using higher order elements for the numeri-
cal solution of state constrained problems is principally possible. However, numerical
test showed that the implementation of a stable and fully adaptive path-following
algorithm is difficult. A success could also lead to solvers that can handle both state
and control constraints.

7.5 Miscellaneous

Time dependent problems have been successfully solved by higher order methods (see
[94, 141, 142] and the references therein). It would be interesting to employ the
known results in the context of non-stationary optimal control problems and investi-
gate the approximation quality.

Additionally, the applicability of higher order methods to Dirichlet control problems
can be studied. The theoretical and numerical analysis is challenging because the
Dirichlet boundary condition is hard to integrate into the variational setting. Further-
more, the projection formula contains the normal derivative of the adjoint variable,
which makes optimal convergence rates difficult to achieve. Often, very weak formu-
lations of the state equation are used (see, e.g., [97, 105, 150] and the references
therein).

In this work, all experiments were conducted on one spatial discretization for all
variables. Working with different meshes (confer [138, 140]) for the state and adjoint
variable could lead to higher numerical accuracy. Multi-grid methods could be an
interesting approach for iterative solution algorithms.
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