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SUMMARY

MYC is one of the most frequently overexpressed
oncogenes in human cancer, and even modestly de-
regulated MYC can initiate ectopic proliferation in
many postmitotic cell types in vivo. Sensitization of
cells to apoptosis limits MYC’s oncogenic potential.
However, the mechanism through which MYC in-
duces apoptosis is controversial. Some studies
implicate p19ARF-mediated stabilization of p53, fol-
lowed by induction of proapoptotic BH3 proteins
NOXA and PUMA, whereas others argue for direct
regulation of BH3 proteins, especially BIM. Here,
we use a single experimental system to systemati-
cally evaluate the roles of p19ARF and BIM during
MYC-induced apoptosis, in vitro, in vivo, and in
combination with a widely used chemotherapeutic,
doxorubicin. We find a common specific requirement
for BIM during MYC-induced apoptosis in multiple
settings, which does not extend to the p53-respon-
sive BH3 family member PUMA, and find no evidence
of a role for p19ARF during MYC-induced apoptosis
in the tissues examined.

INTRODUCTION

Oncogene-induced tumor suppression presents an efficient cell-

autonomous restraint to tumor formation in the face of mitogenic

signaling by deregulated proto-oncogenes (Evan et al., 2005).

MYC serves as a paradigm example of this phenomenon (Askew

et al., 1991; Evan et al., 1992; Strasser et al., 1990): deregulated

MYC expression simultaneously drives both cell proliferation

and apoptosis, with the relative rates of each ultimately deter-

mining whether the affected population expands or contracts.

Importantly, the threshold level of MYC required to engage

apoptosis is set higher than the level required to initiate cell pro-
Cell Re
liferation, thereby enabling healthy cells to proliferate in response

to physiological signaling, all the while maintaining an effective

barrier to supraphysiological (i.e., oncogenic) MYC expression

(Murphy et al., 2008).

MYC-induced apoptosis is widely thought to be mediated by

the ARF-p53 pathway. Overexpression of MYC induces accu-

mulation of p19ARF (p14ARF in human cells), which counteracts

MDM2-mediated degradation of p53 (Kamijo et al., 1998; Stott

et al., 1998; Zindy et al., 1998; Eischen et al., 1999; Schmitt

et al., 1999). Activated p53 in turn induces apoptosis via tran-

scriptional upregulation of BH3-only proteins PUMA and NOXA

(Nakano and Vousden, 2001; Villunger et al., 2003). However,

apoptosis is not the only possible outcome from p53 stabiliza-

tion, and recent work has shown that acetylation of K117

(K120 in human p53) is also specifically required for induction

of NOXA, PUMA, and thereby apoptosis. Significantly, a

K117R mutant p53 is still competent to induce cell-cycle arrest,

senescence, and tumor suppression (Li et al., 2012). Thus, a

dual-signal mechanism governs cell fate in response to p53

accumulation. Additionally, several groups have reported

MYC-induced apoptosis in the absence of either p19ARF or

p53, strongly suggesting the existence of an alternative pathway

to MYC-induced killing (Hsu et al., 1995; Blyth et al., 2000; Ei-

schen et al., 2001; Finch et al., 2006).

A growing body of evidence supports a central role for the

BCL2 homologous (BH) family of proteins in mediating MYC-

induced apoptosis. This family of proteins is subdivided into anti-

apoptotic (e.g., BCL2, BCLXL, MCL1, and A1), proapoptotic

BH3-only (including BIM, BID, BAD, PUMA, and NOXA), and

effector BH3 proteins, BAX and BAK. In response to proapopto-

tic stimuli, BAX and BAK oligomerize to cause mitochondrial

outer membrane permeabilization, triggering release of cyto-

chrome c, SMAC/DIABLO, and consequent activation of effector

caspases (Sarosiek et al., 2013b; Czabotar et al., 2014). Antia-

poptotic BH family proteins buffer against pore formation,

whereas proapoptotic BH3-only proteins counteract this buff-

ering and, in some instances, can directly stimulate BAX/BAK

oligomerization (Llambi et al., 2011; Sarosiek et al., 2013a).
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Figure 1. P19ARF Is Dispensable for MYC-

Induced Apoptosis in the Intestine

(A) Representative images of TUNEL staining of

apoptotic cells in small and large intestine (SI and

LI, respectively) of mice of the indicated geno-

types, treated daily with Tam (50mg/kg) to activate

MycERT2 for 3 days. Scale bars, 100 mm.

(B) Quantification (mean ± SEM) of TUNEL-posi-

tive cells (percentage [%] of total) in the small

intestine of Tam-treated wild-type (WT) control

(n = 3), R26MER/MER (n = 3), R26MER/MER;Bim null

(n = 4), and R26MER/MER;Arf null (n = 3) mice.

(C) Quantification (mean ± SEM) of TUNEL-

positive cells in the large intestine of Tam-treated

wild-type control (n = 3), R26MER/MER (n = 3),

R26MER/MER;Bim null (n = 4), and R26MER/MER;Arf

null (n = 3) mice.

Two-tailed, unpaired t tests were used to deter-

mine statistical significance: **p < 0.01; ***p <

0.001; ns, not significant.

See also Figure S1.
MYC-induced apoptosis requires BAX/BAK (Dansen et al., 2006;

Juin et al., 2002), release of cytochrome c (Juin et al., 1999), and

activation of effector caspases, contingent upon tonic signaling

through CD95 (Hueber et al., 1997), and is blocked by coexpres-

sion of antiapoptotic family proteins (Bissonnette et al., 1992;

Fanidi et al., 1992; Pelengaris et al., 2002). Conversely, MYC-

dependent suppression of BCLXL and BCL2 sensitizes cells to

g-irradiation-induced apoptosis (Eischen et al., 2001; Maclean

et al., 2003). The recent identification of BIM as a transcriptional

target of MYC suggests that this BH3-only protein may directly

mediate MYC’s proapoptotic signal (Campone et al., 2011; Lee

et al., 2013). MYC induces BIM accumulation in Burkitt’s lym-

phoma, and MYC point mutants that fail to induce BIM also fail

to induce apoptosis. Notably, such mutants are fully competent

to induce p19ARF, p53, and indeed accumulation of p21 down-

stream of p53 (Hemann et al., 2005). These observations promp-

ted us to reexamine the relative contributions of p19ARF and

BIM to MYC-induced apoptosis. We employed here a single

transgenic model to systematically evaluate MYC-induced

apoptosis in a variety of settings. Our data reveal that BIM is

the primary mediator of MYC-induced apoptosis in multiple solid

tissues.

RESULTS

BIM Is Required for MYC-Induced Apoptosis in the
Intestine
To investigate the mechanistic requirements of MYC-induced

apoptosis in multiple tissues, we used a previously described

Rosa26-MycERT2mouse line that ubiquitously expressesa latent,
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tamoxifen (Tam)-inducible, chimeric pro-

tein comprised of full-length human

c-MYC fused to a modified ligand-binding

domain from the human estrogen receptor

(MycERT2). DeregulatedMYC functioncan

thus be induced acutely in Rosa26-

MycERT2 mice by systemic injection of
Tam. Owing to the relatively weak activity of the endogenous

Rosa26 promoter, the level of MycERT2 expressed is sufficient

to drive ectopic proliferation without triggering apoptosis in

most adult R26MER/MER tissues, with the exception of the small

and large intestine, wherein MycERT2 is expressed at somewhat

higher levels as comparedwith other tissues. Consequently, acti-

vation of MycERT2 in the intestine breaches the threshold level of

MYC deregulation required to drive apoptosis (Murphy et al.,

2008).

To assess the relative contributions of p19ARF and BIM to

MYC-induced apoptosis in these tissues, we interbred Rosa26-

MycERT2 mice with Cdkn2atm1(GFP)Cjs (ARF GFP) mice, wherein

GFP is inserted into exon 1b of the Cdkn2a locus, abrogating

p19ARF expression (Zindy et al., 2003), and Bcl2l11tm1.1Ast

(BIM�/�) mice (Bouillet et al., 1999), to generate R26MER/MER;

Arf GFP/GFP and R26MER/MER;Bim�/� progeny, respectively.

MycERT2 was induced systemically in adult mice via daily injec-

tion with Tam for 3 days, by which time MYC-induced ectopic

proliferation peaks, as previously shown (Figure S1A) (Murphy

et al., 2008). Tissues were harvested within 24 hr of the final

injection, and apoptotic cells were identified by nuclear terminal

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)

staining (Figure 1). In the small intestine,MYC-induced apoptosis

is largely restricted to the crypt region andwasmodestly reduced

by Arf deletion. In the large intestine, where MYC-induced

apoptosis is more widely distributed, apoptosis was unaffected

by p19ARF loss. Deletion of Bim on the other hand abrogated

MYC-induced apoptosis in these two tissues.

BIM is thought to act primarily via broad antagonism of prosur-

vival BH3 family proteins including BCL2, BCLXL, and MCL1,
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Figure 2. Bim Is Required for MYC-Induced

Sensitization to Doxorubicin

(A) Representative images of TUNEL staining of

apoptotic cells in tissues of mice of the indicated

genotypes treated daily with Tam (50 mg/kg) for

3 days and doxorubicin (10 mg/kg) on the third

day. Scale bar, 50 mm.

(B) Quantification (mean ± SEM) of TUNEL-posi-

tive cells (percentage [%] of total) in the indicated

tissues of Tam-and-doxorubicin-treated R26WT/WT

control (n = 3), R26MER/MER (n = 3), R26MER/MER;

Bim null (n = 3), and R26MER/MER;Arf null (n = 5)

mice. Two-tailed, unpaired t tests were used to

determine statistical significance: *p < 0.05; **p <

0.01; ***p < 0.001; ns, not significant.

See also Figure S2.
although direct activation of the effector BH3 protein BAX likely

contributes to BIM’s potency (Sarosiek et al., 2013a). PUMA is

the primary BH3-only effector of p53-mediated apoptosis in

the intestine (Yu et al., 2003). Like BIM, PUMA is a broad speci-

ficity antagonist of prosurvival BH3 proteins, and like BIM dele-

tion, PUMA deletion accelerates MYC-induced B cell lympho-

magenesis (Michalak et al., 2009). We asked therefore if loss of

PUMA (in Bbc3tm1Ast mice) suppresses MYC-induced apoptosis

in the intestine. Acute activation of MycERT2 in R26MER/MER;

Puma�/� mice revealed modestly reduced MYC-driven

apoptosis in the small intestine, relative to PUMA-replete con-

trols, whereas deletion of Puma had no effect on MYC-induced

apoptosis in the large intestine (Figures S1B–S1D). Thus, among

the proapoptotic BH3-only proteins, there is a specific require-

ment for BIM during MYC-induced apoptosis in these tissues.

BIMMediates Proapoptotic Signaling byMYC inMultiple
Tissues
The level of MycERT2 expressed in other tissues of R26MER/MER

mice is alone insufficient to breach the apoptotic threshold but
Cell Reports 8, 1347–1353, Sep
does sensitize cells to additional proapo-

ptotic stimuli, such as doxorubicin (Mur-

phy et al., 2008). To determine if

subthreshold apoptotic signaling by

MYC is mediated by p19ARF or BIM,

we primed R26MER/MER;Arf GFP/GFP and

R26MER/MER;Bim�/� mice by activating

MycERT2 for 3 days, then treated mice

with a dose of doxorubicin that alone fails

to drive apoptosis in most tissues. The

combination of deregulated MYC and

doxorubicin drove measurable apoptosis

in liver and pancreatic islets of Langer-

hans, and enhanced MYC-induced killing

in colonic epithelium (Figure 2). Again,

deletion of Bim abrogated the apoptotic

response in all three tissues, whereas

disruption of Arf had no effect. Deletion

of Puma protected all three tissues to

the same extent as Bim loss, confirming

the cooperative nature of death in
response to these two proapoptotic stimuli (Figure S2A).

Notably, however, death induced by doxorubicin alone, confined

in these experiments to the small intestine, is unaffected by Bim

deletion but does require PUMA, as expected for a canonical

p53-mediated response to DNA damage (Figure S2B). More-

over, doxorubicin neither induces BIM nor augments MYC

induction of BIM protein, and Bim is not required for doxoru-

bicin-induced killing inmouse embryonic fibroblasts (MEFs) (Fig-

ures S2C and S2D). Thus, MYC and doxorubicin elicit apoptotic

signaling via induction of distinct proapoptotic BH3 family

proteins.

MYC Directly Regulates BIM Expression
Elevated expression of Bim-EL is evident in RNA and protein

derived from the small intestine of Tam-treated R26MER/MER

mice (Figures S3A and S3B). We generated MEFs from

Rosa26-MycERT2 mice and acutely activated MycERT2 with

4-hydroxy-tamoxifen (4-OHT) in vitro to determine if MYC

directly regulates Bim expression. Increased expression of

Bim-EL mRNA was found after 6 hr of MycERT2 activation and
tember 11, 2014 ª2014 The Authors 1349
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Figure 3. MYC Directly Regulates BIM

Expression

(A) Upper panel: quantitative real-time PCR anal-

ysis on mRNA from R26MER/WT MEFs, treated with

4-OHT for the indicated durations (hours).Odc1, an

established MYC target, was used as a positive

control. Mean ± SEM is shown (n = 3). Lower panel

shows immunoblot of BIM-EL expression in a par-

allel time course. ODC, ornithine decarboxylase.

(B) ChIP-seq read counts documenting binding of

endogenous MYC to the promoter region of murine

Bcl2l11 encoding BIM. N262 denotes specifically

immunoprecipitated protein/DNA complexes. IgG,

immunoglobulin G.

(C) ChIP on R26MER/WT MEFs treated with or

without 4-OHT using IgG control or MYC antibody,

followed by quantitative real-time PCR with

primers amplifying the BIM promoter region and

control fragment.

(D and E) Early-passage (p < 5) R26MER/WT MEFs,

WT, or nullizygous for Bim or Arf were treated with

4-OHT (100 nm) for 30 hr under low (0.2%) serum

conditions. The graph shows the percentage of

cells stained positive for Annexin V only (black) or

both Annexin V and propidium iodide (red). Mean ±

SEM from representative experiments performed

in biological triplicate is shown. Consistent results

were obtained in MEFs derived from at least two

embryos for each genotype.

(F) Clonogenic assay on R26MER/MER;Bim null and

R26MER/MER;BimWT early-passage MEFs cultured

in growth media plus 100 nM OHT.

Two-tailed, unpaired t testswere used to determine

statistical significance: **p < 0.01; ***p < 0.001; ns,

not significant. See also Figures S3 and S4.
was followed by clear accumulation of BIM-EL protein

(Figure 3A). Whole-genome chromatin immunoprecipitation-

coupled deep sequencing (ChIP-seq) analysis revealed 4-OHT-

induced binding of MycER to the BIM (BCL2L11) promoter in

human MCF10A cells, and constitutive occupation of the Bim

promoter by endogenous MYC in murine KPC pancreatic tumor

cells (Morton et al., 2010), comparable to binding at the canoni-

cal MYC target geneODC1 (Figures 3B and S3C). Gene-specific

ChIP with the N262 antibody, which recognizes both endoge-

nous murine MYC and exogenous MycERT2, revealed increased

occupancy of the Bim promoter in R26MER/WT MEFs in response

to 4-OHT (Figure 3C), whereas ChIP analysis in HeLa cells

confirmed binding of MYC to the human BIM promoter region

(Figure S3D), consistent with previous reports by Campone

et al. (2011) and Lee et al. (2013).
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Activation of MycERT2 in R26MER/WT

MEFs cultured in low serum rapidly

leads to apoptosis. We generated MEFs

from multiple R26MER/WT;Arf GFP/GFP and

R26MER/WT;Bim�/� embryos to assess

the contribution of p19ARF and BIM to

MYC-induced apoptosis in this system,

and measured apoptosis 30 and 72 hr

after addition of 4-OHT to cells in low

serum. Again, deletion of Bim suppressed
MYC-induced apoptosis, whereas deletion ofArf did not (Figures

3D, 3E, S3E, and S3F). Although serum deprivation alone did

induce low levels of BIM expression, further induction of BIM

by MYC was unaffected by serum levels (Figure S3G), and,

notably, Bim deletion had no effect on the basal level of

apoptosis induced by culturing MEFs in low serum. Moreover,

deletion of Bim suppressed MYC sensitization of MEFs cultured

in growth media to both g-irradiation- and ABT-737-induced

apoptosis (Figure S4), and Bim null MEFs showed increased clo-

nogenic survival in the presence of deregulatedMYC (Figure 3F).

A Threshold Level of BIM Is Required for MYC-Induced
Apoptosis
Activation of MycERT2 in heterozygous R26MER/WT mice fails

to induce enterocyte apoptosis, whereas apoptosis is readily
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Figure 4. BIM Is Dose Limiting for MYC-

Induced Apoptosis

(A) Representative images of TUNEL staining

of apoptotic cells in small and large intestine

(SI and LI, respectively) of mice of the indi-

cated genotypes, treated daily with Tam

(50 mg/kg) to activate MycERT2 for 3 days. Scale

bars, 100 mm.

(B) Quantification (mean ± SEM) of TUNEL-posi-

tive cells in the small intestine of Tam-treated

R26MER/MER (n = 3), R26MER/MER;Bim null (n = 4),

and R26MER/MER;Bim heterozygous (n = 3) mice.

(C) Quantification (mean ± SEM) of TUNEL-posi-

tive cells in the large intestine of Tam-treated

R26MER/MER (n = 3) R26MER/MER;Bim null (n = 4),

and R26MER/MER;Bim heterozygous (n = 3) mice.

Two-tailed, unpaired t tests were used to deter-

mine statistical significance: *p < 0.05; **p < 0.01;

***p < 0.001.
detected in the same tissue of Tam-treated homozygous

R26MER/MER mice, indicating that a threshold level of MYC

deregulation is required for this effect (Murphy et al., 2008). We

therefore asked if reducing Bim expression would attenuate

the proapoptotic signal emanating from MYC deregulation to a

level below this threshold and thereby protect R26MER/MER intes-

tines from apoptosis. Comparing levels of apoptosis across

R26MER/MER;Bim�/�, R26MER/MER;Bim+/�, and R26MER/MER;

BimWT mice, it is clear that haploinsufficiency for Bim rescues

R26MER/MER intestines from MYC-induced apoptosis (Figure 4).

This result is in broad agreement with a previous report that

haploinsufficiency for Bim accelerates MYC-induced lympho-

magenesis and supports a model where a threshold level of

BIM is required to mediate MYC’s apoptotic signal (Egle et al.,

2004).

DISCUSSION

We present here evidence that the BH3-only protein BIM is the

primary mediator of MYC-induced apoptosis in vivo and in vitro.

We show MYC binding to the BIM promoter, acutely elevating

BIM expression, and provide genetic evidence that BIM is

required for MYC-induced apoptosis under multiple circum-

stances and in multiple solid tissues. Strikingly, deletion of

Puma fails to phenocopy Bim deletion when apoptosis is

induced by MYC alone, despite the fact that loss of PUMA,

like loss of BIM, has been shown to accelerate MYC-induced

lymphomagenesis and despite similarities in their mechanism

of action (Egle et al., 2004; Czabotar et al., 2014). Conversely,

Bim deletion fails to phenocopy PUMA loss during doxoru-

bicin-induced apoptosis in the small intestine. However, both
Cell Reports 8, 1347–1353, Sep
BIM and PUMA are required for the syn-

thetic induction of apoptosis driven by

the combination of MYC and doxorubicin

in tissues where either alone is insuffi-

cient to trigger cell death. The differential

sensitivities of various tissues to experi-

mental apoptotic stimuli are partly ex-
plained by differences in MycERT2 expression levels (Murphy

et al., 2008) but also likely reflect the level of apoptotic priming

intrinsic to each tissue, where differential expression of specific

antiapoptotic BH3 proteins may determine the relative potency

of individual proapoptotic BH3 proteins (Ni Chonghaile et al.,

2011). Thus, these results argue for a model wherein individual

BH3-only proteins have evolved to transduce specific proapo-

ptotic signals yet can combine to overcome antiapoptotic

buffering.

Therapeutic Implications
MYC family oncogenes are among the most frequently overex-

pressed genes across a broad spectrum of human cancers.

Effective MYC-centric therapies could therefore have a

tremendous impact on cancer survival rates. Several strate-

gies to target MYC are being actively pursued, including

direct suppression of MYC protein (Soucek et al., 2008;

Popov et al., 2010), transcriptional suppression (Zuber et al.,

2011), and synthetic lethality (Goga et al., 2007; Liu et al.,

2012; Kemp and Grandori, 2013), and it is likely that com-

binatorial strategies will ultimately prove the most effective.

A rational strategy to exploit the intrinsic apoptotic potential

of MYC-overexpressing cells would complement these efforts

greatly. BH3 mimetics suppress lymphomagenesis in Em-

MYC mice, even in the absence of a functional p53 pathway

(Kelly et al., 2013, 2014). Given the prevalence of MYC

overexpression in human cancers, our data support the

approach of augmenting the intrinsic apoptotic response

through the use of BH3 mimetics and suggest that this strategy

may elicit therapeutic benefits in a spectrum of solid tumor

types.
tember 11, 2014 ª2014 The Authors 1351



EXPERIMENTAL PROCEDURES

Genetically Engineered Mice and Mouse Procedures

Rosa26-MycERT2 (Murphy et al., 2008), Cdkn2atm1(GFP)Cjs (Arf GFP; NCI Mouse

Repository; Zindy et al., 2003), Bcl2l11tm1.1Ast (BimNull; Jackson Laboratory;

Bouillet et al., 1999), andBbc3tm1Ast (PumaNull; Jackson Laboratory, distributed

by Charles River; Villunger et al., 2003) mice were maintained on a C57/bl6

background, housed on a 12hr light cycle, and fed andwatered ad libitum. Pro-

cedures involving mice were performed in accordance with protocol numbers

AN 076148 (UCSF IACUC, USA) and 55.2-2531.01-30/11 (University ofWuerz-

burg, Germany) and Home Office license number 60/4183 (CRUK BICR, UK)

and approved by the local animal research committees at all three locations.

All treatments were performed onmice aged 8–12weeks. Tam (Sigma-Aldrich)

dissolved in peanut oil was administered once a day by intraperitoneal injection

for 3 days at 50 mg/kg. Doxorubicin (LC Laboratories) dissolved in 0.9% NaCl

was administered once by intraperitoneal injection at 10 mg/kg. Tissues were

fixed overnight in zinc-buffered formalin (Thermo Scientific; 5701ZF).

Immunohistochemistry

TUNEL staining was performed on paraffin-embedded sections (4 mm thick)

using the ApopTag peroxidase labeling kit (Millipore; S7100). An additional

blocking step (1% BSA for 1 hr at room temperature) was incorporated prior

to addition of peroxidase-conjugated antidigoxigenin. Tissues were counter-

stained in Gil 1 hematoxylin followed by blueing solution. For quantification,

the number of TUNEL-positive nuclei (pyknotic or intact) and the total number

of cells per 203 field were counted manually. Five representative fields per

tissue sample from each mouse were scored, yielding a percent apoptosis

value. Graphs represent the mean ± SEM percent apoptosis across number

(‘‘n’’) of mice as indicated in the figure legends.

ACCESSION NUMBERS

Complete ChIP-seq data sets can be accessed in the Gene Expression

Omnibus database under accession numbers GSE44672 (mouse) and

GSE59001 (human).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2014.07.057.
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Campone, M., Noël, B., Couriaud, C., Grau, M., Guillemin, Y., Gautier, F.,

Gouraud, W., Charbonnel, C., Campion, L., Jézéquel, P., et al. (2011). c-Myc
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Liu, L., Ulbrich, J., Müller, J., Wüstefeld, T., Aeberhard, L., Kress, T.R., Mutha-

lagu, N., Rycak, L., Rudalska, R., Moll, R., et al. (2012). Deregulated MYC

expression induces dependence upon AMPK-related kinase 5. Nature 483,

608–612.

Llambi, F., Moldoveanu, T., Tait, S.W., Bouchier-Hayes, L., Temirov, J.,

McCormick, L.L., Dillon, C.P., and Green, D.R. (2011). A unified model of

mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell

44, 517–531.

Maclean, K.H., Keller, U.B., Rodriguez-Galindo, C., Nilsson, J.A., and Cleve-

land, J.L. (2003). c-Myc augments gamma irradiation-induced apoptosis by

suppressing Bcl-XL. Mol. Cell. Biol. 23, 7256–7270.

Michalak, E.M., Jansen, E.S., Happo, L., Cragg, M.S., Tai, L., Smyth, G.K.,

Strasser, A., Adams, J.M., and Scott, C.L. (2009). Puma and to a lesser extent

Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ.

16, 684–696.

Morton, J.P., Timpson, P., Karim, S.A., Ridgway, R.A., Athineos, D., Doyle, B.,

Jamieson, N.B., Oien, K.A., Lowy, A.M., Brunton, V.G., et al. (2010). Mutant

p53 drivesmetastasis and overcomes growth arrest/senescence in pancreatic

cancer. Proc. Natl. Acad. Sci. USA 107, 246–251.

Murphy, D.J., Junttila, M.R., Pouyet, L., Karnezis, A., Shchors, K., Bui, D.A.,

Brown-Swigart, L., Johnson, L., and Evan, G.I. (2008). Distinct thresholds

govern Myc’s biological output in vivo. Cancer Cell 14, 447–457.

Nakano, K., and Vousden, K.H. (2001). PUMA, a novel proapoptotic gene, is

induced by p53. Mol. Cell 7, 683–694.

Ni Chonghaile, T., Sarosiek, K.A., Vo, T.T., Ryan, J.A., Tammareddi, A., Moore,

Vdel.G., Deng, J., Anderson, K.C., Richardson, P., Tai, Y.T., et al. (2011). Pre-
Cell Re
treatment mitochondrial priming correlates with clinical response to cytotoxic

chemotherapy. Science 334, 1129–1133.

Pelengaris, S., Khan, M., and Evan, G.I. (2002). Suppression of Myc-induced

apoptosis in beta cells exposesmultiple oncogenic properties of Myc and trig-

gers carcinogenic progression. Cell 109, 321–334.
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