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1 Introduction

Published in 1974, Merton’s model of asset valuation revolutionized academic finance as
well as the practices of asset valuation and credit risk management. Since then, many
refinements and extensions have been made (an overview may be found in a paper by
Bohn [2000]), but the crucial insight that the value of a firm’s equity can be regarded
as a European call option on the firm’s asset value with strike price equal to the firm’s
face value of debt, if the firm’s financial structure is sufficiently simple, is still inherent
to all these subsequent versions. Merton’s approach provides a comparatively easily
accessible framework to value a firm’s debt and equity, but a great part of the models
based on it are applicable to a single firm only, and hence they are unable to explain
the fact that, for example, defaults of firms do not occur independently of each other,
as becomes evident in the work of Lucas [1995]. As noted by Elsinger et al. [2006a]
and Gouriéroux et al. [2012], among others, this correlation of defaults results from two
sources. First, firms of the same industry or sector for example are exposed to common
economic factors, causing dependencies in these firms’ asset values and therefore between
the occurrences of defaults. Further dependencies arise from financial interconnections
between firms, which are “[o]ne of the most pervasive aspects of the contemporary fi-
nancial environment” [Eisenberg and Noe, 2001, p. 236]. In a system of firms linked
by mutual financial claims and obligations, for example in the form of bonds or shares,
every firm’s balance sheet contains financial assets issued by other firms in the system.
This makes clear that the default of one firm – induced by a decline in its exogenous
asset value, for example – might lead to the default of further firms in the system, as the
triggering firm is not able to repay its debt in full and its equity value becomes zero. In
addition, if a chain reaction forces an initially healthy firm to default, in the presence of
bilateral or cyclical cross-holdings this event might revert to the triggering firm, causing
its financial situation to deteriorate even further, “potentially a financial vicious circle”
[Fischer, 2014, p. 98]. Therefore, financial interconnections between firms necessitate
a simultaneous valuation of these firms and any of their liabilities, instead of applying
Merton’s model or one of its successors to each firm separately.

In the last 15 years, and especially in the aftermath of the recent banking crisis, this topic
has received increased attention in the literature. In the spirit of Merton [1974], so-called
structural models directly incorporate the network architecture of cross-holdings and
the structures of the firms’ balance sheets to determine the firms’ values, probabilities
of default and the propagation of defaults through the network. In contrast to that,
“[r]educed-form models avoid these details and directly provide a stochastic model of
correlated defaults” [Staum, 2013, p. 517], for example in the form of Markov chains.
Hence, it is not considered how defaults occur, only that they occur, which is modelled
by a stochastic process with a given default intensity that might depend on common
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2 1 Introduction

state variables, for example some macroeconomic factor. Overviews and some subtypes
of reduced-form models are provided by Davis [2011] and Staum [2013], for example.
Structural models for multiple firms can be further divided into what are called cascade
models and clearing models by Staum [2013]. In cascade models, there are no feedback
loops of losses, i.e. as soon as a firm defaults, its recovery value of debt is transferred
to its creditors, but successive defaults of its own debtors do not reduce this residual
loss retroactively. Several simulation studies on contagion and network stability using
this approach have been conducted, see Furfine [2003], Nier et al. [2007] and Gai and
Kapadia [2010], for example. In contrast to that, such feedback effects are taken into
account in clearing models, where the statuses of all firms with respect to solvency and
default are determined simultaneously.
To our knowledge, the origin of clearing models lies in the very influential work of Eisen-
berg and Noe [2001], who consider a system of n firms where the assets of each firm con-
sist of an exogenous asset and endogenous assets resulting from mutual cross-holdings of
debt. Each firm has a single liability, which is completely held within the system, whereas
equity is completely held outside the system. For this set-up Eisenberg and Noe [2001]
provide a “fictitious default algorithm” which takes the “standard rules of value division
between debtors and creditors” [Eisenberg and Noe, 2001, p. 240] into account, namely
the absolute priority of debt over equity, limited liability of equity and a proportionate
recovery rate of debt. The resulting “clearing vector” contains the no-arbitrage prices
of all firms’ liabilities and therefore also reveals the financial status of all firms and the
individual recovery rates of debt of the firms in default. Such a clearing vector always
exists, and it is unique under rather mild conditions on the network structure. By lim-
iting themselves to what they call “default averse clearing vectors”, i.e. clearing vectors
with the minimum possible number of defaults, Pokutta et al. [2011] further attenuate
the conditions on the clearing vector to be unique. Later on, the model of Eisenberg and
Noe [2001] was extended in several ways. For example, Cifuentes et al. [2005] include
the possibility of fire sales of the illiquid part of a firm’s exogenous assets, with such fire
sales becoming necessary in order to maintain a regulatory solvency constraint, which
might have been violated due to the default of other firms in the system. Rogers and
Veraart [2013] expand the model of Eisenberg and Noe [2001] by default costs, i.e. if a
firm defaults, it can sell both, its exogenous and endogenous assets at a fraction of their
actual price only. Even in the presence of such default costs a clearing vector always ex-
ists, but the conditions of Eisenberg and Noe [2001] for the clearing vector to be unique
are not sufficient anymore. The possible network structure of interconnections itself is
considerably enlarged by Elsinger [2009], as he incorporates cross-holdings of debt of
differing seniority as well as cross-holdings of equity. In doing so, he develops a new
algorithm to find the no-arbitrage prices of all debt and equity. Furthermore, Elsinger
[2009] allows for a part of a firm’s liabilities to be held by creditors outside the system of
firms. This also applies to the model of Fischer [2014], which is even more general than
the model of Elsinger [2009]. In contrast to all other models mentioned, in the model of
Fischer [2014] liabilities are not necessarily zero-coupon bonds. Instead, they might be
derivatives of any underlying in the model. As in almost all the other models (the only
exception is the work of Pokutta et al. [2011] providing an algorithm incorporating debt
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of differing maturity), all liabilities have the same maturity. The main result of Fischer
[2014] consists of an existence and uniqueness theorem of no-arbitrage prices of equity
and liabilities of all seniorities under cross-ownership (“XOS”) of possibly both, debt
and equity. These no-arbitrage prices can be calculated by a fixed point iteration. The
frameworks of Suzuki [2002] and Gouriéroux et al. [2012] can be seen as special cases of
the models of Elsinger [2009] and Fischer [2014], since they deal with the situation of n
firms linked by cross-ownership of possibly both, debt and equity, where each firm has
a single, homogeneous class of debt only.

Our work directly continues the work of Suzuki [2002] and Gouriéroux et al. [2012], since
we consider the same model. Each firm is assumed to have a single outstanding liability,
whereas its assets consist of one system-exogenous asset, as well as system-endogenous
assets comprising some fraction of other firms’ liability and/or equity. In contrast to
Suzuki [2002] we do not incorporate time-continuous coupon payments and dividend
payments, as we almost always consider no-arbitrage prices at maturity, which are not
affected by such intertemporal cash flows. Within this set-up, the aim of our work is
to explore the consequences of not taking financial interconnections between firms into
account properly when it comes to firm valuation at maturity, and to study the effects on
the related probabilities of default. Furthermore, we aim for a better understanding of
the conditions that facilitate or impede the propagation of losses and defaults throughout
the system of firms. In our analysis we will mainly consider the ’firm value‘ of each firm,
which we calculate as the sum of the no-arbitrage prices of a firm’s debt and equity at
maturity. By the balance sheet identity, the firm value equals the no-arbitrage price
of a firm’s total assets, and since a firm is in default if and only if its total assets are
insufficient to repay all of its nominal debt, the firm value is directly linked to a firm’s
probability of default. This renders the firm value a natural object to study, with our
analysis being structured as follows.
After the introduction of some notation in Section 2, Section 3 deals with the calculation
of firm values under cross-ownership. It can be shown that firm values under cross-
ownership are non-trivial derivatives of exogenous asset values (see Suzuki [2002] and
Fischer [2014], for example), but an explicit determination of these firm values is rather
tedious for the n firms case, at it requires a case differentiation with 2n cases referring
to the financial statuses (solvency or default) of the n firms. Hence, in a first step,
we limit ourselves to the two firms case and employ the explicit formulae for the firm
values provided by Suzuki [2002]. Recall that Merton [1974] starts from a single class of
exogenous assets with values following a geometric Brownian motion, which means that
asset values are lognormally distributed at maturity. Therefore, in Merton’s model, firm
values are lognormally distributed too, since the values of the liability and the equity
add up to the exogenous asset’s value, which has lognormal distribution by assumption.
In a system of firms with financial interconnections, a firm’s value is in general not
lognormally distributed, if cross-ownership is correctly accounted for, so the question
arises to what extent this distribution differs from a lognormal distribution that would
emerge if we ignored that a part of the firm’s assets is priced endogenously and instead
treated all assets as a single, homogeneous class of assets with lognormally distributed
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values as in the Merton model. We address this issue in a simulation study where we
examine how the discrepancy between the distribution of firm values obtained from our
model and a correspondingly matched lognormal distribution depends on the realized
amounts of cross-holdings of debt and equity and the ratio of nominal liabilities to
expected exogenous assets value. Similarly, we compare the related probabilities of
default and Values-at-Risk, where we calculate the Value-at-Risk (VaR) of a firm in the
system as the negative α−quantile of the firm value at maturity minus the firm’s risk
neutral price in t = 0, which means that we consider the (1−α)100%-VaR of the change
in firm value.
In Section 4 we let the cross-ownership fractions, i.e. the fraction that one firm holds
of another firm’s debt or equity, converge to 1 (which is the supremum of the possible
values that cross-ownership fractions can take), as this makes a theoretical analysis of
default probabilities possible. Then we compare the resulting limiting univariate and
bivariate probabilities of default arising from the actual distribution of firm values under
cross-ownership and the lognormal distribution, showing that the direction of the effect
strongly depends on whether the firms have established cross-ownership of debt only or
cross-ownership of equity. Furthermore, we provide a formula that allows us to check for
an arbitrary scenario of cross-ownership and any non-negative distribution of exogenous
asset values whether the approximating lognormal model will over- or underestimate the
related probability of default of a firm.
After this analysis of the univariate distribution of firm values under cross-ownership
in a system of two firms with bivariate lognormally distributed exogenous asset values,
Section 5 deals with the copula of these firm values as a distribution-free measure of
the dependency between these firm values. Without cross-ownership, this would be the
Gaussian copula. Under cross-ownership, we especially consider the behaviour of the
copula of firm values in the lower left and upper right corner of the unit square, and
depending on the type of cross-ownership and the considered corner, we either obtain
error bounds indicating how well the copula of firm values under cross-ownership can
be approximated with the Gaussian copula, or we see that the copula of firm values
can be written as the copula of two linear combinations of exogenous asset values (note
that these linear combinations are not lognormally distributed). These insights serve
as a basis for our analysis of the tail dependence coefficient of firm values under cross-
ownership. In addition, we use results of Asmussen and Rojas-Nandayapa [2008], Gao
et al. [2009] and Gulisashvili and Tankov [forthcoming] on the asymptotic behaviour of
the sum of lognormally distributed random variables. In general, firm values may be
both, perfectly tail independent and perfectly tail dependent, depending on the param-
eters of the bivariate distribution of exogenous asset values and the considered type of
cross-ownership.
In Section 6 we return to systems of n ≥ 2 firms and analyze sensitivities of no-arbitrage
prices of equity and the recovery claims of liabilities with respect to the cross-ownership
fractions and the nominal level of liabilities. This complements the results of Liu and
Staum [2010] and Gouriéroux et al. [2012], who consider such sensitivities with respect to
exogenous asset values. Our insights can be used to evaluate how the no-arbitrage price
of any liability or equity in the system reacts to changes within the network structure or
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the balance sheet of any firm at maturity, caused by a partial unwinding of cross-holdings
or some debt cancellation, for example. We show that all prices are non-decreasing in any
cross-ownership fraction in the model, and by use of a version of the Implicit Function
Theorem we determine exact derivatives. The recovery value of debt of a firm is non-
decreasing and the equity value of a firm is non-increasing in the firm’s nominal level of
liabilities, but the firm value is in general not monotone in the firm’s level of liabilities.
All these prices are in general non-monotone in the nominal level of liabilities of other
firms in the system, but if we limit ourselves to one type of cross-ownership, we can derive
more precise relationships. All the results can be transferred to risk-neutral prices before
maturity.
As a kind of extension of the results of Liu and Staum [2010] and Gouriéroux et al.
[2012] we consider in Section 7 how immediate changes in exogenous asset values of one
or more firms at maturity affect the firm values and thus the financial health of a system
of n ≥ 2 initially solvent firms. In the presence of cross-ownership, a firm is affected
twice by such shocks, namely by the direct effect on its exogenous asset value as well as
the indirect effect consisting of the change in its endogenous asset value. We will call
this change the effect of contagion, since it quantifies the additional repercussions of a
system-wide shock due to financial interconnections. We explicitly calculate the effect
of contagion for the two firms case, revealing that in general, the effect of contagion can
have both, the same and the opposite sign as the direct effect, which means that it can
mitigate and exacerbate the change in the firm value. If the effect of contagion is so large
that the firm defaults, even though it could have borne the direct effect, we call this a
contagious default in reference to Elsinger et al. [2006a], who define this term for firms
linked by cross-ownership of debt only. As the scope of this work lies in the ramifications
of financial interconnectedness between firms, we examine the occurrence of contagious
defaults in more detail. For two firms with mutual cross-holdings we identify scenarios
where a firm experiencing a negative shock can pass on this shock to the other firm
experiencing a non-negative shock, leading to a contagious default of the latter firm. In
the presence of cross-holdings of equity, it is even possible that the former firm stays
solvent. We expand these considerations to the n firms case by analyzing situations where
a given subset of firms receives non-positive shocks and another given subset of firms
receives non-negative shocks. Extending the results of Glasserman and Young [2015] by
allowing cross-ownership of debt and/or equity and by incorporating multiple shocks,
we provide a necessary condition for these shocks to cause the default of all firms in the
latter subset. This also yields an upper bound for the probability of such an event. After
this analysis of how shocks propagate through a given system, we continue by examining
to what extent the network architecture might increase the system’s resilience to negative
shocks. In the past, several simulation studies on this topic have been conducted (see
Nier et al. [2007], Gai and Kapadia [2010], Gai et al. [2011] and Elliott et al. [2014],
for example), but except for the work of Elliott et al. [2014], they are based on cascade
models. Complementing the existing literature, we investigate in a simulation study
how the stability of a system of firms exposed to multiple shocks depends on the model
parameters within our clearing model. In doing so, we consider three network types
(incomplete, core-periphery and ring networks) with simultaneous shocks on some of the
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firms which wipe out a certain percentage of their exogenous assets. Then we analyze
for all three types of cross-ownership how the shock intensity, the shock size and the
network architecture influence several output parameters, comprising the total number
of defaults, the proportion of contagious defaults and the relative loss in the sum of
firm values, for example. The obtained results are compared to those of Elsinger et al.
[2006a], Nier et al. [2007], Gai and Kapadia [2010] and Elliott et al. [2014]. We conclude
our work with a theoretical comparison of the complete network (where each firm holds
a part of any other firm) and the ring network with respect to the number of defaults
caused by a shock on a single firm, as it is done by Allen and Gale [2000]. In line with
the literature, we find that under cross-ownership of debt only, complete networks are
“robust yet fragile” [Gai and Kapadia, 2010, p. 2403] in that a moderate shock can be
completely withstood or drive only the firm directly hit by it in default, but as soon as
the shock exceeds a certain size, all firms are simultaneously forced into default.
Section 8 contains some final remarks, the Appendix provides some auxiliary results and
complementing analyses.
All simulations and graphs were realized with the software R 2.12.0 and R 3.0.2 (R Core
Team [2013]).



2 Notation

In the following, all vectors are column vectors. For two vectors a = (ai)1≤i≤n ∈ Rn and
b = (bi)1≤i≤n ∈ Rn we will write a < b if ai ≤ bi for all i ∈ {1, . . . , n} and ai < bi for at
least one i ∈ {1, . . . , n}. Furthermore, we will write a≪ b if ai < bi for all i ∈ {1, . . . , n}.
The same convention will be used for matrices. The n-dimensional identity matrix will
be denoted by In, the zero vector and the quadratic zero matrix of dimension n will be
denoted by 0n and 0n,n, respectively. If the dimension is obvious, the index n will be
left out. In the analysis of the limiting behaviour of functions f, g : R → R, we will
make use of the Landau big oh notation and small oh notation. If g(x) 6= 0 for all x in
a neighbourhood of x0 ∈ R ∪ {−∞,∞}, f is of order O(g(x)) for x → x0, in symbols
f(x) = O(g(x)), x→ x0, if

lim sup
x→x0

∣∣∣∣
f(x)

g(x)

∣∣∣∣ <∞. (2.1)

f is of smaller order than g for x→ x0, in symbols f(x) = o(g(x)), x→ x0, if

lim
x→x0

f(x)

g(x)
= 0. (2.2)

Furthermore, f and g are called asymptotically equivalent for x→ x0, in symbols f(x) ∼
g(x), x→ x0, if

lim
x→x0

f(x)

g(x)
= 1. (2.3)

For a function h : R2 → R in two arguments, D1h and D2h denote the partial derivatives
of h with respect to the first and second argument, respectively, provided they exist.
For random variables X and Y let FX , FY and FX,Y stand for the univariate distribution
functions of X and Y and the bivariate distribution function of X and Y , respectively.
Densities are denoted by small fs and analogous indices, survival functions are denoted
by F̄ and analogous indices. If X and Y follow the same distribution, we will write
X =D Y . The distribution function and the density of the normal distribution with
mean µ and variance σ2 will be denoted by Φµ,σ2 and ϕµ,σ2 , respectively, and we set
Φ := Φ0,1 and ϕ := ϕ0,1. Φρ stands for the bivariate standard normal distribution
function with correlation ρ. For a distribution function F defined on an interval I, F−1

denotes the generalized inverse of F , i.e.

F−1(t) := inf{x ∈ I : F (x) ≥ t}, (2.4)

where we follow the convention that the infimum of the empty set is ∞. If F is strictly
increasing and continuous, the generalized inverse is just the ordinary inverse of F .
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3 The Model of Cross-Ownership and Basic

Properties

Several results of this section can be found in Karl and Fischer [2014]. In some cases,
we use identical formulations.

3.1 Firm Valuation with and without Cross-Ownership

3.1.1 Merton’s Model

In Merton’s asset valuation model [Merton, 1974], a single firm is assumed to have one
class of exogenously priced assets of value a and a certain amount of zero-coupon debt
with face value d due at some future time T . In this context, “exogenously” means that
the value is independent of the firm’s capital structure. At maturity, debt has to be
paid back, but if the asset value has fallen below the face value of debt at this time, the
firm is said to be in default1 and all assets are handed over to the creditor. Thus, the
creditor receives the minimum of d and a, which we call the recovery value of debt, r.
The value of equity, s, then is the value of the remaining assets, so, at maturity:

r = min{d, a}, (3.1)

s = (a− d)+. (3.2)

The firm’s balance sheet at maturity is given in Table 3.1. This leads us to the following
definition.

Definition 3.1. Based on (3.1)–(3.2) we define the firm value v of a firm as the firm’s
total asset value:

v := r + s = a. (3.3)

Assets Liabilities

a s
r

Table 3.1: Single Firm: Balance sheet at maturity.

1 Since we have one class of perfectly liquid exogenous assets, we do not distinguish between insolvency
and bankruptcy, and the terms default, insolvency and bankruptcy are used interchangeably.

9
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A generalization of this firm value to the case of n (n ∈ N) firms linked by cross-ownership
is provided in the next section.

3.1.2 Suzuki’s Model

For n ≥ 2 firms linked by cross-ownership, the assets of the firms not only consist of
exogenous assets of value a = (ai)1≤i≤n ≥ 0, but also of financial assets issued by other
firms, for example in the form of bonds or shares. Let r = (ri)1≤i≤n resp. s = (si)1≤i≤n
denote the no-arbitrage prices of liabilities resp. equity of the n firms at maturity. Then
the value of firm i’s assets originating from cross-ownership can be written as

n∑

j=1

Md
ij rj

︸ ︷︷ ︸
cross-owned debt

+
n∑

j=1

M e
ij sj ,

︸ ︷︷ ︸
cross-owned equity

(3.4)

where Md
ij and M e

ij stand for the fraction that firm i owns of firm j’s debt and equity,
respectively. Note that the value of cross-owned debt is a fraction of the recovery value
of debt, and not of the face value of debt.
In general, the so-called cross-ownership fractions Md

ij and M e
ij (i, j ∈ {1, . . . , n}) can

take values in the interval [0, 1]. We collect these cross-ownership fractions in two ma-
trices Md = (Md

ij)1≤i,j≤n ∈ [0, 1]n×n and Me = (M e
ij)1≤i,j≤n ∈ [0, 1]n×n indicating the

realized cross-holdings of debt and equity, respectively. We will assume that no firm’s
debt or equity is held completely within the system, but that some part of each firm’s
debt and equity is held by a firm or investor outside of the system of n firms. Hence,

||Md||1 < 1, ||Me||1 < 1, (3.5)

i.e. we assume Md and Me to be strictly left sub-stochastic. In particular, this implies
Md
ij , M

e
ij ∈ [0, 1) for all i, j ∈ {1, . . . , n}. Furthermore, we suppose that no firm holds a

part of its own debt or equity, i.e.

diag(Md) = diag(Me) = 0. (3.6)

Based on the entries of Md and Me we define three types of cross-ownership.

Definition 3.2. The n firms are said to be linked by

1. cross-ownership of debt only, if

Md > 0n,n, Me = 0n,n, (3.7)

that is at least one firm holds a part of another firm’s debt, but there are no cross-
holdings of equity;

2. cross-ownership of equity only, if

Md = 0n,n, Me > 0n,n, (3.8)
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Firm 1

Assets Liabilities

a1 s1
Md

1,2 × r2 r1
M e

1,2 × s2

Firm 2

Assets Liabilities

a2 s2
Md

2,1 × r1 r2
M e

2,1 × s1

Table 3.2: Two firms linked by cross-ownership: Balance sheets at maturity.

that is at least one firm holds a part of another firm’s equity, but there are no
cross-holdings of debt;

3. cross-ownership of both, debt and equity, if

Md > 0n,n, Me > 0n,n, (3.9)

that is at least one firm holds a part of another firm’s debt and at least one firm
holds a part of another firm’s equity.

Note that our definition of cross-ownership would not impose any restrictions with re-
spect to the type of debt that is cross-owned. For example, a firm could hold a derivative
on any underlying considered in the model, e.g. exogenous assets. However, following
Eisenberg and Noe [2001], Elsinger [2009] and Gouriéroux et al. [2012], we will as-
sume all liabilities to be zero-coupon bonds with identical maturity and face values
d = (di)1≤i≤n ≥ 0. For a model with more complicated liabilities of possibly differing
seniority, see Fischer [2014]. In contrast to Suzuki [2002] we assume that there are nei-
ther dividend payments on equity holdings nor coupon payments on debt before or at
maturity.

It is clear from Table 3.2, which shows the balance sheets of two firms linked by cross-
ownership, that the value of firm 1 also depends on the financial health of firm 2: if firm 2
defaults, this will affect both, the value of its equity and the recovery value of its debt,
which will possibly be smaller than the actual outstanding amount. Therefore, the total
asset value of firm 1 will decrease and thus firm 1 might also get into trouble, which again
might affect firm 2 in a negative way. If we applied Merton’s model of firm valuation to
each firm separately in order to obtain no-arbitrage prices of debt and equity, we would
ignore this circular dependence between the two firms. Of course, these considerations
also hold for systems of more than two firms. The work of Suzuki [2002] shows how to
overcome this problem by applying Merton’s idea to all firms simultaneously.
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Obviously, the total assets of firm i consist of an exogenous and an endogenous part,
and we set

a∗i := ai︸︷︷︸
value of

exogenous
asset

+
n∑

j=1

Md
ij rj +

n∑

j=1

M e
ij sj

︸ ︷︷ ︸
value of

endogenous
assets

, i ∈ {1, . . . , n}, (3.10)

where “endogenous” means that the price is determined within the system of n firms.
If we apply Merton’s approach to all firms simultaneously, we obtain in analogy to
(3.1)–(3.2) the following system of equations:

ri = min{di, a∗i } = min



di, ai +

n∑

j=1

Md
ij rj +

n∑

j=1

M e
ij sj



 , (3.11)

si = (a∗i − di)+ =


ai +

n∑

j=1

Md
ij rj +

n∑

j=1

M e
ij sj − di




+

, i ∈ {1, . . . , n}, (3.12)

or equivalently,

r = min{d, a+Mdr+Mes}, (3.13)

s = (a+Mdr+Mes− d)+. (3.14)

As in Section 3.1.1, the recovery value of debt of a firm still is the minimum of the firm’s
liability and total asset value, but under cross-ownership this recovery value now also
depends on the other firms’ recovery value of debt and equity value. Similarly, the value
of equity at maturity is now influenced by the other firms’ recovery value of debt and
equity value. Since we assume liabilities to be zero-coupon bonds, the system (3.13)–
(3.14) has a unique solution by Theorem 3.8 of Fischer [2014], which can be obtained by
the fixed point algorithm provided by Fischer [2014]. Hence, for given d, Md and Me,
r and s are deterministic functions of a and thus derivatives of a, just as in the Merton
model. In the Merton model for a single firm, we defined the firm value v as the sum
of the recovery value of debt and the equity value (cf. Definition 3.1). Definition 3.3
transfers this definition to the case of cross-ownership.

Definition 3.3. The firm value v = (vi)1≤i≤n of n firms linked by cross-ownership is
given by the firms’ total asset value, i.e.

vi := ai +
n∑

j=1

Md
ij rj +

n∑

j=1

M e
ij sj . (3.15)

By Lemma 3.5 of Fischer [2014], the recovery value of debt r (as part of a solution of
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(3.13)–(3.14)) and thus the firm value v are always non-negative. Furthermore, (3.13)–
(3.14) and Definition 3.3 imply

v = a+Mdr+Mes = r+ s, (3.16)

i.e. also firm values are derivatives of exogenous asset values, and we will sometimes
write v(a) if it seems helpful. As the following lemma shows, v is continuous in all
model parameters.

Lemma 3.4. For a system of n firms linked by cross-ownership, let r and s be given by
(3.13)–(3.14), and let v be given as in Definition 3.3. Then r, s and v are continuous
in each entry of a, d, Md and Me.

Proof. As noted by Fischer [2014], (rT , sT )T is a fixed point of the mapping

Φa,d,Md,Me : R2n → R2n,

(
r

s

)
7→
(

min{d, a+Mdr+Mes}
(a+Mdr+Mes− d)+

)
. (3.17)

By Lemma 4.1 of Fischer [2014], Φa,d,Md,Me is a strict contraction with Lipschitz con-

stant L := max{||Md||1, ||Me||1} with L < 1 because of (3.5). Furthermore, Φa,d,Md,Me

is continuous in each of its 2n variables. Since R2n is locally compact, Theorem 2 of
Kwieciński [1992] yields the assertion.

By definition, firm i (i ∈ {1, . . . , n}) is in default if and only if its total assets (i.e.
its firm value) do not suffice to pay back all of its debt, i.e. if vi = a∗i < di. With
z = (zi)1≤i≤n ∈ {s, d}n indicating the conditions with respect to solvency or default of
the n firms, where “s” stands for solvent and “d” for in default, we set

Az :=


 ⋂

{i:zi=s}

{
a ∈ (R+

0 )
n : vi(a) ≥ di

}

 ∩


 ⋂

{i:zi=d}

{
a ∈ (R+

0 )
n : vi(a) < di

}

 ,

(3.18)

i.e. on some Az, the firms with zi = s have a firm value of at least di, whereas the firms
with zi = d have a firm value smaller than their outstanding liabilities, i.e. they are
in default. Of course, Az depends on d, Md and Me via v, but we suppress them in
the notation for better readability. In reference to Suzuki [2002] we will call the sets Az

Suzuki areas. Obviously, the 2n Suzuki areas form a partition of (R+
0 )

n.

In particular, for fixed d, Md and Me, since the financial status (solvency or default)
remains unchanged for all firms for all values of a within a certain Suzuki area, the
system (3.13)–(3.14) becomes linear within a Suzuki area and can be solved by Gaussian
elimination, for example. Hence, instead of determining r and s as fixed points of (3.17)
by the algorithm of Fischer [2014], one could solve 2n linear systems of equations and
then check on which Suzuki area the obtained values of r and s match the imposed
assumptions as to the financial status of the n firms.
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For n = 2, the system (3.13)–(3.14) consisting of four equations and four unknowns is
solved by Suzuki [2002]. The resulting no-arbitrage prices r and s at maturity are given
in the following lemma.

Lemma 3.5. For n = 2, the system (3.13)–(3.14) is solved by

r1 =





d1, (a1, a2) ∈ Ass,

d1, (a1, a2) ∈ Asd,
1

1−Me
1,2M

d
2,1

(a1 +M e
1,2a2 + (Md

1,2 −M e
1,2)d2), (a1, a2) ∈ Ads,

1
1−Md

1,2M
d
2,1

(a1 +Md
1,2a2), (a1, a2) ∈ Add,

(3.19)

r2 =





d2, (a1, a2) ∈ Ass,
1

1−Md
1,2M

e
2,1

(M e
2,1a1 + a2 + (Md

2,1 −M e
2,1)d1), (a1, a2) ∈ Asd,

d2, (a1, a2) ∈ Ads,
1

1−Md
1,2M

d
2,1

(Md
2,1a1 + a2), (a1, a2) ∈ Add,

(3.20)

s1 =





1
1−Me

1,2M
e
2,1

(a1 +M e
1,2a2 − (1−Md

2,1M
e
1,2)d1 + (Md

1,2 −M e
1,2)d2, (a1, a2) ∈ Ass,

1
1−Md

1,2M
e
2,1

(a1 +Md
1,2a2 − (1−Md

1,2M
d
2,1)d1), (a1, a2) ∈ Asd,

0, (a1, a2) ∈ Ads,

0, (a1, a2) ∈ Add,

(3.21)

s2 =





1
1−Me

1,2M
e
2,1

(M e
1,2a1 + a2 + (Md

2,1 −M e
2,1)d1 − (1−Md

1,2M
e
2,1)d2, (a1, a2) ∈ Ass,

0, (a1, a2) ∈ Asd,
1

1−Me
2,1M

d
2,1

(Md
2,1a1 + a2 − (1−Md

1,2M
d
2,1)d2), (a1, a2) ∈ Ads,

0, (a1, a2) ∈ Add,

(3.22)

and firm values equal

v1 =



1
1−Me

1,2M
e
2,1

(a1 +M e
1,2a2 +M e

1,2(M
d
2,1 −M e

2,1)d1 + (Md
1,2 −M e

1,2)d2), (a1, a2) ∈ Ass,

1
1−Md

1,2M
e
2,1

(a1 +Md
1,2a2 +Md

1,2(M
d
2,1 −M e

2,1)d1), (a1, a2) ∈ Asd,

1
1−Me

1,2M
d
2,1

(a1 +M e
1,2a2 + (Md

1,2 −M e
1,2)d2), (a1, a2) ∈ Ads,

1
1−Md

1,2M
d
2,1

(a1 +Md
1,2a2), (a1, a2) ∈ Add,

(3.23)
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v2 =



1
1−Me

1,2M
e
2,1

(M e
2,1a1 + a2 + (Md

2,1 −M e
2,1)d1 +M e

2,1(M
d
1,2 −M e

1,2)d2), (a1, a2) ∈ Ass,

1
1−Md

1,2M
e
2,1

(M e
2,1a1 + a2 + (Md

2,1 −M e
2,1)d1), (a1, a2) ∈ Asd,

1
1−Me

1,2M
d
2,1

(Md
2,1a1 + a2 +Md

2,1(M
d
1,2 −M e

1,2)d2), (a1, a2) ∈ Ads,

1
1−Md

1,2M
d
2,1

(Md
2,1a1 + a2), (a1, a2) ∈ Add,

(3.24)

with

Ass = {(a1, a2) ≥ 0 : a1 +M e
1,2a2 ≥ (1−M e

1,2M
d
2,1)d1 + (M e

1,2 −Md
1,2)d2,

M e
2,1a1 + a2 ≥ (M e

2,1 −Md
2,1)d1 + (1−Md

1,2M
e
2,1)d2},

(3.25)

Asd = {(a1, a2) ≥ 0 : a1 +Md
1,2a2 ≥ (1−Md

1,2M
d
2,1)d1,

M e
2,1a1 + a2 < (M e

2,1 −Md
2,1)d1 + (1−Md

1,2M
e
2,1)d2},

(3.26)

Ads = {(a1, a2) ≥ 0 : a1 +M e
1,2a2 < (1−M e

1,2M
d
2,1)d1 + (M e

1,2 −Md
1,2)d2,

Md
2,1a1 + a2 ≥ (1−Md

1,2M
d
2,1)d2},

(3.27)

Add = {(a1, a2) ≥ 0 : a1 +Md
1,2a2 < (1−Md

1,2M
d
2,1)d1,

Md
2,1a1 + a2 < (1−Md

1,2M
d
2,1)d2}.

(3.28)

Proof. For (3.19)–(3.22) see Suzuki [2002]. Equations (3.23) and (3.24) then follow from
(3.16). By (3.18), the Suzuki areas for a system of two firms are

Ass = {(a1, a2) ≥ 0 : v1 ≥ d1, v2 ≥ d2}, (3.29)

Asd = {(a1, a2) ≥ 0 : v1 ≥ d1, v2 < d2}, (3.30)

Ads = {(a1, a2) ≥ 0 : v1 < d1, v2 ≥ d2}, (3.31)

Add = {(a1, a2) ≥ 0 : v1 < d1, v2 < d2}. (3.32)

Equivalence of (3.25)–(3.28) and (3.29)–(3.32) follows from straightforward calculations
based on (3.23)–(3.24).

An example of the Suzuki areas for n = 2 is provided in Figure 3.1. The boundaries
between the four areas always belong to the Suzuki area above the line. Note that if
d1 ≤Md

1,2d2 or d2 ≤Md
2,1d1, the area Ads resp. Asd vanishes.

In the following section we will compare the behaviour of firm values under cross-
ownership of debt only and cross-ownership of equity only in a stochastic set-up. The
restriction to one type of cross-holdings at a time not only facilitates the derivation of
both, theoretical and simulation results, it also provides some valuable insights into the
opposed effects of the two types of cross-ownership.
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a1

a2

d1−Md
1,2d2

d2−Md
2,1d1

Add

Ads Ass

Asd

Figure 3.1: Suzuki areas if d1 > Md
1,2d2 and d2 > Md

2,1d1.

3.2 Distribution of Firm Values under Cross-Ownership for

Systems of two Firms

3.2.1 Theoretical Distribution of Firm Values under XOS of Debt only and

XOS of Equity only

In the following we will assume exogenous asset values to be stochastic, and since firm
values are continuous functions of exogenous asset values by Lemma 3.4, this also turns
the firm value v into a random variable. Henceforth, we will denote random asset values
and random firm values with capital As and V s, respectively.

Remark 3.6. In the remainder we will display several results for firm 1 only. For reasons
of symmetry, the corresponding results for firm 2 can be obtained by switching the roles
of firm 1 and firm 2 in the related proofs.

By (3.23) the random value of firm 1 under cross-ownership of debt only equals

V d
1 :=





A1 +Md
1,2d2, (A1, A2) ∈ Ass ∪Ads,

A1 +Md
1,2A2 +Md

1,2M
d
2,1d1, (A1, A2) ∈ Asd,

1
1−Md

1,2M
d
2,1

(A1 +Md
1,2A2), (A1, A2) ∈ Add,

(3.33)
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and under cross-ownership of equity only, the random value of firm 1 equals

V e
1 :=





1
1−Me

1,2M
e
2,1

(A1 +M e
1,2A2 −M e

1,2M
e
2,1d1 −M e

1,2d2), (A1, A2) ∈ Ass,

A1, (A1, A2) ∈ Asd ∪Add,

A1 +M e
1,2A2 −M e

1,2d2, (A1, A2) ∈ Ads.

(3.34)

The distribution functions of V d
1 and V e

1 are provided in the next lemma.

Lemma 3.7. Let (A1, A2) ≫ 0 P−a.s. with continuous bivariate distribution. Then,
for all v1 ≥ 0,

P (V d
1 ≤ v1) = P (A1 ≤ max{v1 −Md

1,2d2, v1 −Md
1,2M

d
2,1min{v1, d1} −Md

1,2A2}),
(3.35)

P (V e
1 ≤ v1) = P (A1 ≤ min{v1, v1 +M e

1,2M
e
2,1min{0, d1 − v1}+M e

1,2(d2 −A2)}).
(3.36)

Proof. If we let v2 go to infinity in Lemma A.1, we obtain

P (V d
1 ≤ v1) =

{
P (A1 ≤ max{v1 −Md

1,2d2, (1−Md
1,2M

d
2,1)v1 −Md

1,2A2}, v1 ≤ d1,
P (A1 ≤ max{v1 −Md

1,2d2, v1 −Md
1,2M

d
2,1d1 −Md

1,2A2}, v1 > d1.

(3.37)

Similarly, if we let v2 go to infinity in Lemma A.2,

P (V e
1 ≤ v1) =

{
P (A1 ≤ min{v1, v1 +M e

1,2(d2 −A2)}), v1 ≤ d1,
P (A1 ≤ min{v1, v1 +M e

1,2M
e
2,1(d1 − v1) +M e

1,2(d2 −A2)}), v1 > d1.

(3.38)

Lemma 3.8. For (A1, A2) distributed as in Lemma 3.7, let this distribution be strictly
2-increasing2. Then FV d

1
and FV e

1
are strictly increasing on R+

0 .

Proof. Let 0 ≤ v1 < v′1. Then Lemma 3.7 yields P (V d
1 ≤ v1) = P ((A1, A2) ∈ S(v1))

with

S(v1) := {(a1, a2) ≥ 0 : a1 ≤ max{v1 −Md
1,2d2, v1 −Md

1,2M
d
2,1min{v1, d1} −Md

1,2a2}}.
(3.39)

We show that S(v1) ( S(v′1) and that P ((A1, A2) ∈ S(v′1)\S(v1)) > 0. If v1 < v′1 ≤ d1

2Cf. Definition 5.1 and replace all three inequalities in 3. with strict inequalities.
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or d1 < v1 < v′1, then obviously S(v1) ( S(v′1). If v1 ≤ d1 < v′1,

S(v1) = {(a1, a2) ≥ 0 : a1 ≤ max{v1 −Md
1,2d2, (1−Md

1,2M
d
2,1)v1 −Md

1,2a2}} (3.40)

( {(a1, a2) ≥ 0 : a1 ≤ max{v′1 −Md
1,2d2, (1−Md

1,2M
d
2,1)v

′
1 −Md

1,2a2}} (3.41)

⊆ {(a1, a2) ≥ 0 : a1 ≤ max{v′1 −Md
1,2d2, v

′
1 −Md

1,2M
d
2,1d1 −Md

1,2a2}} (3.42)

= S(v′1). (3.43)

Furthermore, for reasons of continuity, we can find a non-degenerate rectangle R(v1) such
that S(v1) ( S(v1)∪R(v1) ( S(v′1), and since we assume the distribution of (A1, A2) to
be strictly 2-increasing (i.e. P ((A1, A2) ∈ R(v1)) > 0), we obtain P ((A1, A2) ∈ S(v1)) <
P ((A1, A2) ∈ S(v′1)). The assertion for FV e

1
can be shown similarly.

3.2.2 Simulation Study on the Distribution of Firm Values and Probabilities

of Default under Cross-Ownership

In the following we assume exogenous asset values to follow a bivariate geometric Brow-
nian motion, similar to common extensions of the Merton model to the multivariate
case, i.e. we have bivariate lognormally distributed exogenous asset values (A1, A2) at
maturity.

Without cross-ownership, the assumption of lognormally distributed asset values would
imply that firm values are also lognormally distributed because of Vi = Ai in this sit-
uation (cf. Definition 3.1). But as we have seen in (3.23) and (3.24), firm values are
non-trivial derivatives of exogenous asset values under cross-ownership. Consequently,
the distribution of firm values is a transformation of the lognormal distribution, which
is generally not lognormal anymore. However, we are not able to derive a closed-form
solution of the resulting distribution function, because, alongside other problems, there
is no convolution theorem for lognormal distributions, i.e. we only have formulae such
as the ones given in Lemma 3.7. In this situation, one could ask to what extent the
actual distribution of firm values under cross-ownership differs from the lognormal dis-
tribution. Or expressed differently: what mistake do we make if we ignore that a part
of the assets is priced endogenously, and treat all assets as a single, homogeneous class
of exogenous assets with values following a lognormal distribution which has the same
first two moments as the actual firm value under cross-ownership? Since this approach
would result in lognormally distributed firm values, this question essentially aims at the
effects of applying Merton’s model of firm valuation to both firms separately, despite the
presence of financial interconnectedness. We address this issue in a simulation study,
where we compare the actual distribution of firm values resulting from Suzuki’s model
to the lognormal distribution used in Merton’s model. Since firm i is in default if and
only if its firm value is smaller than the face value of its outstanding liability at matu-
rity, its probability of default at maturity is given as P (Vi < di). In our simulations we
will compare this probability of default between Suzuki’s model and what we will call
lognormal model in the remainder, i.e. a model where firm values are assumed to follow
a lognormal distribution despite the presence of cross-ownership.
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3.2.2.1 Set-Up and Parameter Values

In our simulations we mainly consider two firms linked by cross-ownership of either debt
or equity. For the case of cross-ownership of both, debt and equity, some exemplary
analyses of the distribution of firm values are provided.
Let exogenous asset values of the two firms be independent and identically lognormally
distributed at maturity T with

Ai ∼ LN (−0.5σ2 + ln(a), σ2) (3.44)

with some a > 0, implying that E(Ai) = a and Var(Ai) = a2(exp(σ2) − 1), i = 1, 2.
Furthermore, we assume the liabilities of the two firms to have identical face values
d1 = d2 =: d. Because of this kind of symmetry between the two firms, we only analyze
the outcome of firm 1. Note that any two set-ups for which the ratio d/a is identical
can be interpreted as the same set-up under a different currency at a constant exchange
rate, i.e. only the relative size of d to a is important. This is why we set a = 1 in all our
simulations and let only d take different values. In particular, we have E(Ai) = 1 and
Var(Ai) = exp(σ2) − 1, i = 1, 2. The value of the liabilities, d, runs through {0.1, 0.2,
. . . , 2.9, 3}, which means that

face value of debt

expected ex. asset value
=
d

a
∈ {0.1, 0.2, . . . , 2.9, 3}. (3.45)

Moreover, σ2 took values in {0.00995, 0.08618, 0.03922, 0.22314, 0.44629, 0.69315, 1,
1.17865, 1.60944, 1.98100, 2.30259, 3.25810, 4.04743, 4.61512}, which approximately
resulted in coefficients of variation3 of Ai of {0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.31, 1.5, 2, 2.5,
3, 5, 7.5, 10}. The respective cross-ownership fractions (Md

1,2,M
d
2,1) and (M e

1,2,M
e
2,1)

took values in {0.1, 0.2, . . . , 0.9}2. Although cross-ownership fractions of equity bigger
than 0.5 are not relevant from a practical point of view as such firms would be forced
to create a common balance sheet, we nevertheless consider the same range of values for
Md and Me, as we hope to obtain some useful insights into the mechanics behind the
two types of cross-holdings from a direct comparison.
For every combination of parameter values and both types of cross-ownership we first
simulated 100,000 of values of (A1, A2) according to (3.44) and calculated the related
empirical firm values v1. Then we fitted a lognormal distribution F̃LOG to the obtained
empirical distribution F̂V1 of V1 under cross-ownership. The parameters of this lognormal
distribution were determined in analogy to the Fenton–Wilkinson method [Fenton, 1960]
of moment matching, where the first and second moments are chosen such that they
correspond to the first and second moments of F̂V1(cf. Section A.2.1). Note that under
the risk-neutral probability, our approach of matching the first moments of firm values
obtained under Suzuki’s model and the lognormal model at maturity is equivalent to
matching the initial firm values under the lognormal model to the initial firm values
under Suzuki’s model.

3For a random variable X with mean µ and standard deviation σ, the coefficient of variation is defined
as σ

µ
.
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Let FLOG denote the lognormal distribution fitted to the theoretical distribution FV1 of
V1 by the Fenton–Wilkinson method. As already mentioned, a closed formula for FV1 is
not available, so we approximate it with the empirical distribution function F̂V1 based
on firm values obtained from our simulation study. Of course, since the exact moments
of V1 are unknown, the obtained (theoretical) lognormal distribution F̃LOG is only an
approximation to FLOG. However, the Strong Law of Large Numbers almost surely
yields limm→∞ F̃LOG = FLOG, with m denoting the number of observations underlying
F̂V1 . Note that V1 is square-integrable as A1 and A2 are square-integrable. As a measure
for the discrepancy between F̂V1 and F̃LOG we use the one-sample Kolmogorov–Smirnov
statistic

KS := KS(F̂V1 , F̃LOG) := sup
x∈R

∣∣F̂V1(x)− F̃LOG(x)
∣∣, (3.46)

which is the supremum of the vertical distance between the two distribution functions.
Furthermore, the Glivenko–Cantelli Theorem (cf. Theorem 20.6 of Billingsley [1995], for
example) implies that

lim
m→∞

KS(F̂V1 , F̃LOG) = KS(FV1 , FLOG) a.s., (3.47)

i.e. for a sufficiently large number of iterations m, the Kolmogorov–Smirnov statistic
based on the empirical distribution function F̂V1 and the matched lognormal distribution
function F̃LOG are close to the Kolmogorov–Smirnov statistic between the theoretical
distribution FV1 and the corresponding lognormal distribution FLOG. Hence, we will
interpret all results in terms of KS(FV1 , FLOG) instead of KS(F̂V1 , F̃LOG).

Since firm 1 is in default if and only if V1 < d1, we estimate the probability of default
under Suzuki’s model by

p̂S :=
#{(A1, A2) ∈ Ads ∪Add}

100,000
(3.48)

(cf. (3.31)–(3.32)). Since p̂S has five decimal places only, we round the probabilities of
default obtained from the lognormal model, given as F̃LOG(d1), to five decimal places as
well for better comparability. The result will be denoted by p̂LOG. As a measure for the
discrepancy between the two models we use the relative risk (‘RR’) of the two models,
estimated by

R̂R :=





p̂LOG
p̂S

, p̂S > 0,

1, p̂S = 0 and p̂LOG = 0,

∞, p̂S = 0 and p̂LOG > 0.

(3.49)

For cross-ownership of debt only and cross-ownership of equity only we first try to figure
out which circumstances (i.e. values of cross-ownership fractions) lead to a big discrep-

ancy between F̂V1 and F̃LOG and to relatively big or small values of R̂R. After that, we
carry out a more detailed simulation for scenarios with high levels of cross-ownership
and maximize the discrepancy between the two distribution functions with respect to
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Figure 3.2: Kolmogorov–Smirnov statistics in dependence of the cross-ownership frac-
tions under XOS of debt only, σ2 = 0.22314; (a) d/a = 0.1; (b) d/a = 2; (c)
d/a = 4; (d) d/a = 20.

the face value of liabilities d. For the constellation yielding the highest Kolmogorov–
Smirnov value, we then have a look at the shape of the two distribution functions and
the resulting probabilities of default. Some generic analyses for the case of simultaneous
cross-ownership of debt and equity follow.

3.2.2.2 Results for XOS of Debt only and XOS of Equity only

Influence of σ2 and d/a

For each combination of σ2 and d/a we made surface plots of the obtained Kolmogorov–
Smirnov values on the (Md

1,2,M
d
2,1)- resp. (M

e
1,2,M

e
2,1)-plane. Depending on the relative

size of σ2 and d/a, we observed rather different relationships between the cross-ownership
fractions and the corresponding Kolmogorov–Smirnov values (cf. Figure 3.2 and Fig-
ure 3.3), suggesting that for every considered value of σ2, there seems to be a range
of values of d/a where we observe a relationship between the realized cross-ownership
fractions and the obtained Kolmogorov–Smirnov values. Outside of this range (i.e. d/a
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Figure 3.3: Kolmogorov–Smirnov statistics in dependence of the cross-ownership frac-
tions under XOS of equity only, σ2 = 0.22314; (a) d/a = 0.1; (b) d/a = 0.5;
(c) d/a = 0.8; (d) d/a = 3.
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chosen too small or too large), the Kolmogorov–Smirnov values appear to be essentially
independent of the actual cross-ownership structure (cf. Figure 3.2(a) and (d), and Fig-
ure 3.3(a) and (d)). Note that under cross-ownership of debt only we had to extend the
range of values of d/a (cf. (3.45)) by the additional values {4, 5,. . . , 19, 20} to observe
this vanishing effect (cf. Figure 3.2(d)). These findings can be justified as follows. First,
note that the Suzuki areas and their probabilities change with d/a = d1 = d2 and σ

2 (re-
call that E(Ai) is independent of σ

2, whereas its variance increases with σ2 increasing). If
d/a is chosen relatively small compared to σ2, P (Ass) is close to one and we have V d

1 ≈ A1

(cf. (3.33)), i.e. V d
1 is approximately lognormally distributed, and we obtain a small

Kolmogorov–Smirnov statistic, independently of the exact levels of cross-ownership. Fur-
thermore, we have V e

1 ≈ (A1 + M e
1,2A2 − M e

1,2M
e
2,1d1 − M e

1,2d2)/(1 − M e
1,2M

e
2,1) (cf.

(3.34)) for small d/a = d1 = d2, i.e. the constants can be neglected, which means
we are roughly in the situation of Section A.2.2. As becomes evident in Figure A.3,
(A1 +M e

1,2A2)/(1−M e
1,2M

e
2,1) can be well approximated with a lognormal distribution

by the Fenton–Wilkinson method, as long as σ2 does not exceed a certain level. However,
we could not find an intuitive explanation why the quality of the approximation does
not depend on the cross-ownership fractions. If d/a is chosen large compared to σ2, so
that P (Add) is close to one, we have V d

1 ≈ (A1 +Md
1,2A2)/(1−Md

1,2M
d
2,1) and V

e
1 ≈ A1,

and we can reason as above.
As it was to be expected, both models yield (rounded) estimated default probabilities of
0 resp. 1 if d/a = d1 is relatively small resp. large compared to σ2, and the estimated

relative risk ratios R̂R are 1 in such scenarios. However, note that the theoretical prob-
abilities of default under either model can never take a value of exactly 0 or exactly 1,
since we assume exogenous asset values to follow a lognormal distribution and due to
d1 > 0. Hence, even if d/a is chosen very small or large, the theoretical risk ratio is
probably different from 1, but our short simulations cannot reveal whether we have to
expect the lognormal model to over- or underestimate the actual risk in such scenarios.
For very high levels of cross-ownership, the results of Section 4.1 will offer more insight.

For “medium” values of d/a the value of the Kolmogorov–Smirnov statistic seems to
depend on the realized level of cross-ownership, and in most cases, this relationship was
of the type as in Figure 3.3(b) and (c): the higher the levels of cross-ownership, the
bigger the discrepancies between Suzuki’s model and the lognormal model. Under cross-
ownership of debt only we also observed scenarios where the biggest discrepancies were
not obtained for the highest levels of cross-ownership, but lower ones (cf. Figure 3.2(c)).
However, an intuitive explanation for this effect is not available. Similarly, the relative
sizes of p̂S and p̂LOG differ most for high levels of cross-ownership, which can be explained
by the fact that for low levels of cross-ownership, the endogenous part of a firm’s assets
can be neglected, i.e. its total asset value is approximately lognormally distributed, and
the estimated probabilities of default obtained from the two models roughly coincide.
Under cross-ownership of debt only, the values of R̂R were non-decreasing in the con-
sidered levels of cross-ownership (cf. Figure 3.4(a) for an example), i.e. for scenarios
with high levels of cross-ownership (and d/a chosen appropriately in the sense explained
earlier) we always obtained risk ratios greater than 1, which means that the lognormal
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Figure 3.4: Estimated relative risk R̂R in dependence of the cross-ownership fractions;
(a) XOS of debt only, σ2 = 1.60944, d/a=0.4; (b) XOS of equity only, σ2 =
0.22314, d/a = 0.7.

distribution overestimates the actual probability of default in these scenarios. Under
cross-ownership of equity only we observed the opposite effects, i.e. roughly speaking,
the higher the cross-ownership fractions, the smaller the obtained values of R̂R. These
values tended to be bigger than 1 or about 1 if M e

1,2 was small. For M e
1,2 and M e

2,1 close
to 1, we observed relative risks close to 0, i.e. the lognormal model then underestimates
the actual probability of default. An example is given in Figure 3.4(b).

To summarize, we can state that if the quality of the lognormal approximation is
poor, the biggest discrepancies between the actual distribution of firm values under
cross-ownership and the matched lognormal distribution occur for high levels of cross-
ownership. In our simulations, the maximal Kolmogorov–Smirnov values were 0.57 un-
der cross-ownership of debt only and 0.34 under cross-ownership of equity only. This
transfers to the estimated probabilities of default, with cross-ownership of debt only
and cross-ownership of equity only having opposed effects. If the system is likely to
be always solvent or to be always in default, the lognormal approximation works well,
provided that σ2 is not too big. In this case, also the estimated probabilities of default
are roughly the same. Our results show that a careful estimation of the parameters
of the distribution of exogenous asset values and the network structure is necessary in
order to be able to assess the potential consequences of not taking the realized cross-
ownership structure into account properly and treating the sum of asset values of a firm
as lognormally distributed.

Qualitative Comparison of Distribution Functions

Based on the insight that in most of the considered scenarios the empirical distribu-
tion function of the firm value of firm 1 differs most from the matched lognormal
distribution function if the corresponding cross-ownership fractions are close to 1, we
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Figure 3.5: Empirical distribution function of firm values V1 under Suzuki’s model and
matched lognormal distribution function with corresponding probabilities of
default; the dotted vertical lines refer to v1 = d1 = d/a; σ2 = 1; (a) XOS
of debt only, Md

1,2 = Md
2,1 = 0.95, d/a = 11.3, KS = 0.28, p̂S = 0.53758,

p̂LOG = 0.67671; (b) XOS of equity only, M e
1,2 = M e

2,1 = 0.95, d/a = 0.8,

KS = 0.35, p̂S = 0.45733, p̂LOG = 0.11582.

fixed these fractions to 0.95 and then selected the value of d/a leading to the high-
est Kolmogorov–Smirnov values. Under cross-ownership of equity only we considered
d/a ∈ {0.1, 0.2, . . . , 10}, under cross-ownership of debt only we also considered higher
levels of liabilities (up to 15) in order to be able to identify the value of d/a yield-
ing the highest Kolmogorov–Smirnov statistic. For every level of d/a we simulated
100,000 values of (A1, A2) according to (3.44) with σ2 = 1 to obtain F̂V1 and from that
a Kolmogorov–Smirnov statistic representing the discrepancy to the matched lognormal
distribution.

Figure 3.5 shows the pairs of distribution functions F̂V1 and F̃LOG exhibiting the highest
Kolmogorov–Smirnov values (XOS of debt only: 0.28, XOS of equity only: 0.35). Intu-
itively, one might think that the bend of the distribution functions F̂V1 results from the
section-wise definition of V1 (cf. (3.23)). However, this is not the case, because there is
no “total” order of firm values with respect to the four Suzuki areas Ass, Asd, Ads and
Add, we only have

V1
∣∣
Add∪Ads

< d1 ≤ V1
∣∣
Asd∪Ass

(3.50)

(cf. (3.29)–(3.32)), and as becomes clear from the dotted lines referring to v1 = d/a = d1
in Figure 3.5, the bends do not occur on the boundary between Add∪Ads and Asd∪Ass.

As we will see in Remark 4.2, forMd
1,2 andM

d
2,1 sufficiently big, the distribution functions

FV1 and FLOG always intersect at least twice under cross-ownership of debt only, as it is
the case in Figure 3.5(a) for F̂V1 and F̃LOG.

In consistence with Figure 3.4, the lognormal model over- resp. underestimates the
actual probability of default under cross-ownership of debt only resp. cross-ownership
of equity only in Figure 3.5. This was the case for all considered values of d/a = d1
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Figure 3.6: Estimated relative risk ratio R̂R in dependence of d1, σ
2 = 1; (a) XOS of

debt only, Md
1,2 =Md

2,1 = 0.95; (b) XOS of equity only, M e
1,2 =M e

2,1 = 0.95.

(cf. Figure 3.6). As we will see in Section 4.1, this is no coincidence. However, we
do not have an intuitive explanation why the discrepancy between the probabilities of
default obtained from Suzuki’s model and the lognormal model (expressed in terms

of R̂R) is biggest for small values of d/a = d1 for both types of cross-ownership in
Figure 3.6. For d/a = 0.1 the corresponding Kolmogorov-Smirnov statistic was 0.047
under cross-ownership of debt only and 0.021 under cross-ownership of equity only,
showing that despite the relatively high quality of the lognormal approximation in terms
of the maximum discrepancy between the two distribution functions, the relative sizes
of the corresponding probabilities of default can strongly differ.

3.2.2.3 Results for XOS of both, Debt and Equity

In departure from the results of Section 3.2.2.2, we cannot state that the higher the
amounts of cross-ownership, the bigger the discrepancy to the lognormal model in sys-
tems of two firms linked by cross-ownership of both, debt and equity. If for example
Md

1,2 = M e
1,2 and Md

2,1 = M e
2,1, i.e. if firm i (i = 1, 2) holds identical fractions of

firm j’s debt and equity (j = 1, 2, j 6= i), the constants in (3.23) vanish and V1 equals
(A1 +Md

1,2A2)/(1 −Md
1,2M

d
2,1). As becomes evident in Figure 3.7(a) and Figure A.3,

such a sum can be well approximated by a lognormal distribution, provided that the
variance σ2 is not too big. Instead, (3.23) suggests the assumption that the discrepancy
between the actual distribution of firm values and the matching lognormal distribution
become largest if there is a big difference between the cross-ownership fractions of debt
and equity. In this case, the constants in (3.23) in the first three Suzuki areas become
relatively large (all other parameters held fixed), which means that in these areas V1
is a weighted sum of lognormally distributed exogenous asset values shifted by some
constants. Although we have no shift on Add, it is plausible that the stronger the shift
in the remaining areas, the worse the fit to the (unshifted) lognormal distribution.

As it was to be expected, under cross-ownership of both, debt and equity, the shape
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Figure 3.7: Empirical distribution function of V1 under Suzuki’s model and matched
lognormal distribution function under cross-ownership of both, debt and
equity, σ2 = 1, d/a = 0.8; (a) balanced levels of XOS of debt and XOS
of equity (Md

1,2 = Md
2,1 = M e

1,2 = M e
2,1 = 0.95), KS = 0.02; (b) high

level of XOS of debt, low level of XOS of equity (Md
1,2 = Md

2,1 = 0.95,
M e

1,2 = M e
2,1 = 0.05), KS = 0.19; (c) low level of XOS of debt, high level of

XOS of equity (Md
1,2 =Md

2,1 = 0.05, M e
1,2 =M e

2,1 = 0.95), KS = 0.35.

of the distribution function of V1 and the associated shortcomings of the lognormal
approximation strongly depend on which type of cross-ownership is dominant in the
system of firms (cf. Figure 3.7(b) and (c)). Obviously, the actual distribution of firm
values under cross-ownership of both, debt and equity, can have both, a heavier and
lighter head portion than the lognormal distribution. Similarly, the lognormal model
can under- and overestimate the actual probability of default.

3.2.3 Simulation Study on the Value-at-Risk

In addition to our results on the distribution of firm values and the related probabilities
of default, we consider the Value-at-Risk (VaR) of firm 1 linked to firm 2 by cross-
ownership as well as the VaR of a portfolio (e.g. a bank portfolio) consisting of two indices
representing the values of firm 1 and firm 2. According to McNeil et al. [2005], VaR “is
probably the most widely used risk measure in financial institutions and has also made
its way into the Basel II capital-adequacy framework” [McNeil et al., 2005, p. 37], hence
we preferred it over other risk measures, although it has certain theoretical deficiencies
[McNeil et al., 2005], for example it is not subadditive (cf. Axiom 6.2 of McNeil et al.
[2005]). For its calculation, we proceeded as follows. In (3.44), no time horizon is



28 3 The Model of Cross-Ownership and Basic Properties

specified, but if we assume exogenous asset values to follow a geometric Brownian motion
with drift 0, (3.44) can be interpreted as the physical distribution of exogenous asset
values with expectation a at maturity t = T = 1 and starting value a at time t = 0. If we
further assume the force of interest r to be 0, (3.44) also is the risk-neutral distribution
of the exogenous asset values at maturity, i.e. there is no change of measure and our σ2

is identical to σ2 in the Black–Scholes model. This special set-up will be used for our
Value-at-Risk considerations. As the risk-neutral price of firm i’s debt and equity (= firm
value) at time t = 0 is then given by the expectation E(Vi) (as there is no discounting
and no change in measure), we consider the negative α-quantile of Vi − E(Vi) as the
(1− α)100%-VaR of the change in firm i’s value, i.e.

VaRi,1−α := −F−1
Vi−E(Vi)

(α) = E(Vi)− F−1
Vi

(α), i = 1, 2. (3.51)

Similarly, for the VaR of the portfolio,

VaRP,1−α := −F−1
V1+V2−E(V1+V2)

(α) = E(V1) + E(V2)− F−1
V1+V2

(α). (3.52)

For a set of m realizations (v1,j , v2,j) (j = 1, . . . ,m) of (V1, V2) with bivariate empirical
distribution function F̂V1,V2 we calculate the corresponding empirical VaRs as

V̂aRi,1−α :=
1

m

m∑

j=1

v1,j − F̂−1
Vi

(α), i = 1, 2, (3.53)

V̂aRP,1−α :=
1

m

m∑

j=1

(v1,j + v2,j)− F̂−1
V1+V2

(α), (3.54)

where the empirical quantiles were computed with the default method of the function
’quantile’ implemented in R 2.12.0.

In our simulations we set α = 0.01. The parameter d/a = d1 = d2 and the cross-
ownership fractions were as in Section 3.2.2.1, whereas σ2 was set to 0.09, as a somewhat
realistic choice in conjunction with T = 1. For every scenario, 100,000 values of (V1, V2)
were simulated. From them we calculated the estimated VaRs of firm 1 and of the
portfolio as in (3.53)–(3.54). In order to obtain VaRs under the lognormal model, we
fitted a bivariate lognormal distribution to F̂V1,V2 by the Fenton–Wilkinson method,
imposed with the additional condition that the covariances of the two distributions
coincide. Let (W1,W2) follow this bivariate lognormal distribution. In analogy to (3.53)
and (3.54) the 99%-VaR of firm 1 and of the portfolio of firm 1 and firm 2 under the
lognormal model were estimated from 100,000 simulated values of (W1,W2). Note that
this approach differs from the approach of Section 3.2.2.1, where we directly used the
theoretical CDF F̃LOG instead of simulating values from it. Since the sum of lognormals
is not lognormal in general, the α-quantile ofW1+W2 needed for the VaR of the portfolio
under the lognormal model must be estimated from simulated values of W1 and W2, so
we used the same rationale for the VaR under the lognormal model of a single firm for
better comparability. Due to the Strong Law of Large Numbers, we will interpret all
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results in terms of the theoretical VaRs instead of the empirical VaRs for both, Suzuki’s
model and the lognormal model.

Let us first consider the results for the VaR of firm 1. Roughly speaking, for fixed
cross-ownership fractions, the 99%-VaRs of firm 1 were non-decreasing in d/a under
cross-ownership of debt only and non-increasing in d/a under cross-ownership of equity
only. After extending the simulation under cross-ownership of debt only to values of
d/a from 0.1-7, it became clear that the 99%-VaR as a function of d/a has a sigmoid
shape. For small values of d/a under cross-ownership of debt only and big values of
d/a under cross-ownership of equity only (cf. Figure 3.8(a) and (f)), the 99%-VaRs
are independent of the established level of cross-ownership, which can be explained as
follows. In the former case, firm 1 is likely to be solvent, i.e. V d

1 ≈ A1 +Md
1,2d2, where

d2 = d/a is small, i.e. changes inMd
1,2 hardly matter. In the latter case, firm 1 is likely to

be in default, and it follows that V e
1 ≈ A1, which is independent of any cross-ownership

fraction. Under cross-ownership of equity only, the 99%-VaR was non-decreasing in
M e

1,2 and M e
2,1 for all considered values of d/a (cf. Figure 3.8(d)–(f) for some examples).

This means that the higher the level of cross-ownership, the bigger the loss in value of
firm 1 over time exceeded in the worst 1% scenarios. In contrast to that, very high
levels of cross-ownership of debt only can reduce the 99%-VaR (cf. Figure 3.8(c)), i.e.
under cross-ownership of debt only we cannot state that the tighter the cross-ownership
structure the bigger the 99%-VaR.

For the comparison of the Values-at-Risk under Suzuki’s model and the lognormal model
we calculated the difference of the estimated VaRs under the lognormal model and
Suzuki’s model, i.e. positive differences indicate an overestimation of the actual VaR by
the lognormal model, whereas negative differences stand for an underestimation. Some
examples can be found in Figure 3.9. Under cross-ownership of equity only with a high
level of d/a, we are likely to be in Add, where V

e
1 = A1 by (3.33), i.e. both models

yield the same VaR (cf. Figure 3.9(f)). Otherwise, any effect is possible under both,
cross-ownership of debt only and cross-ownership of equity only, and it is difficult to
derive general conclusions. Whether the lognormal model will over- or underestimate
the actual 99%-VaR of firm 1 strongly depends on the underlying parameters, which
therefore need to be analyzed carefully.
The results for the 99%-VaR of the portfolio under Suzuki’s model were qualitatively
the same as for the 99%-VaR of firm 1. Also over- and underestimation, expressed as
the difference of VaRs between the two models, was similar.

Since the VaR is in general not subadditive, we cannot expect the VaR of the portfolio
to be smaller or equal to the sum of the VaRs of firm 1 and firm 2. However, in only
four of the 8100 considered scenarios, the 99%-VaR of the portfolio was greater than the
sum of the 99%-VaRs of firm 1 and firm 2, i.e. in 99.95% of the scenarios, the 99%-VaR
was subadditive. In the four scenarios without subadditivity, which all occurred under
cross-ownership of equity only, we had (M e

1,2,M
e
2,1) ∈ {(0.8, 0.9), (0.9, 0.8), (0.9, 0.9)}, so

the question arises whether the VaR of the portfolio can become arbitrarily high under
a suitable cross-ownership structure. For fixed cross-ownership fractions, McNeil et al.
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Figure 3.8: 99%-VaR of firm 1 under Suzuki’s model, σ2 = 0.09; (a) XOS of debt only,
d/a = 0.9; (b) XOS of debt only, d/a = 2; (c) XOS of debt only, d/a = 4;
(d) XOS of equity only, d/a = 0.6; (e) XOS of equity only, d/a = 0.9; (f)
XOS of equity only, d/a = 2.
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Figure 3.9: Difference of 99%-VaR of firm 1 under Suzuki’s model and the lognormal
model, σ2 = 0.09; (a) XOS of debt only, d/a = 0.9; (b) XOS of debt only,
d/a = 2; (c) XOS of debt only, d/a = 4; (d) XOS of equity only, d/a = 0.6;
(e) XOS of equity only, d/a = 0.9; (f) XOS of equity only, d/a = 2.
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[2005] provide an upper bound for the VaR of a portfolio consisting of n ≥ 2 firms.
In our set-up, the loss in value of a single firm over time equals −(Vi − E(Vi)) (recall
that in our set-up, E(Vi) is the risk-neutral price of firm 1 in t = 0), and the inverse
distribution function of this loss evaluated at u ∈ (0, 1) equals E(Vi) − F−1

Vi
(1 − u).

Hence, by equations (6.13) and (6.15) of McNeil et al. [2005] and the appendant remarks
therein, an upper bound for the (1 − α)100%-VaR of a portfolio consisting of n firms
linked by cross-ownership is

inf
(u1,...,un)∈[0,1]n,
Wn(u1,...,un)=1−α

n∑

i=1

(
E(Vi)− F−1

Vi
(1− ui)

)
= inf

(u1,...,un)∈[0,α]n,
∑n

i=1 ui=α

n∑

i=1

(
E(Vi)− F−1

Vi
(ui)

)
,

(3.55)
where Wn(u1, . . . , un) := max {0,∑n

i=1 ui − n+ 1} is the lower Fréchet-Hoeffding bound
(cf. p. 47 of Nelsen [2006] for example; for n = 2, Wn coincides with W in (5.5)). Note
that our definition of α corresponds to 1− α of McNeil et al. [2005]. By Theorem 6.19
of McNeil et al. [2005], the upper bound (3.55) is sharp for n = 2.
Since the sum of the (1−α)100%-VaRs of the n firms equals

∑n
i=1(E(Vi)−F−1

Vi
(α)) by

(3.51), an upper bound for the difference between the (1−α)100%-VaR of the portfolio
and the sum of the (1− α)100%-VaRs is given by

inf
(u1,...,un)∈[0,α]n,

∑n
i=1 ui=α

n∑

i=1

(F−1
Vi

(α)− F−1
Vi

(ui)) <
n∑

i=1

F−1
Vi

(α)− max
1≤i≤n

F−1
Vi

(α), (3.56)

which reduces to min{F−1
V1

(α), F−1
V2

(α)} for n = 2.



4 More on Probabilities of Default under

Cross-Ownership

Most of the results of this sections have been published in Karl and Fischer [2014], with
some parts taken over unchanged.

4.1 Limiting Probability of Default

In our simulations of Section 3.2.2.2 we saw that if the two firms have established a high
level of cross-ownership, the two types of cross-ownership seem to have opposite effects
on the probabilities of default obtained under the lognormal model, compared to Suzuki’s
model. Unfortunately, we cannot calculate the exact values under either model, because
we can determine neither the distribution of V1, nor its first and second moments in
closed form. Hence, we cannot justify our findings theoretically. However, the situation
becomes tractable, if we let the cross-ownership fractions converge to 1. In this case,
both, the Suzuki areas in (3.25)–(3.28) and the formula of V1 simplify, which makes an
analytical approach possible. In the following we consider the “limiting” probability of
default of firm 1 resulting from both, Suzuki’s model and the corresponding matching
lognormal model. This will be done separately for cross-ownership of debt only and
cross-ownership of equity only.

As in our simulations, we assume exogenous asset values to be lognormally distributed,
i.e.

(A1, A2) ∼ LN (µ,Σ) (4.1)

with µ = (µ1, µ2)
T and Σ =

( σ2
1 σ12

σ12 σ2
2

)
, but we do not impose any restrictions on µ and

Σ, except that σ1, σ2 > 0. Since we are mainly concerned with the probability of default
of firm 1, we set

µ := µ1, σ := σ1. (4.2)

In contrast to our simulations, we do not confine ourselves to the case of d1 = d2, we
only assume d1, d2 > 0 in order to exclude degenerate cases.

4.1.1 XOS of Debt only

For the comparison of the limiting probabilities of default under Suzuki’s model and
the lognormal model we first determine the pointwise limit of V d

1 for Md
1,2 and Md

2,1

33
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converging to 1, which we will call V d∗
1 . Based on (3.33) we can write

V d
1 =1Ass(A1, A2)× (A1 +Md

1,2d2)

+ 1Asd
(A1, A2)× (A1 +Md

1,2A2 +Md
1,2M

d
2,1d1)

+ 1Ads
(A1, A2)× (A1 +Md

1,2d2)

+ 1Add
(A1, A2)× (A1 +Md

1,2A2)/(1−Md
1,2M

d
2,1),

(4.3)

where 1A stands for the indicator function of a set A. For the determination of the
pointwise limit of V d

1 for Md
1,2,M

d
2,1 → 1, we first consider the limits of the indicator

functions in (4.3). By Lemma A.3, their pointwise limits exist and we set

lim
Md

1,2,M
d
2,1→1

1Aij
=: 1A∗

ij
, ij ∈ {ss, sd, ds, dd}, (4.4)

with A∗
dd = {(0, 0)} by Lemma A.4. Hence, P (A∗

dd) = 0 and

V d∗

1 := lim
Md

1,2,M
d
2,1→1

V d
1 =1A∗

ss
(A1, A2)× (A1 + d2)

+ 1A∗
sd
(A1, A2)× (A1 +A2 + d1)

+ 1A∗
ds
(A1, A2)× (A1 + d2) P−a.s.

(4.5)

Since almost sure convergence implies convergence in distribution, the limiting proba-
bility of default of firm 1 under Suzuki’s model equals

lim
Md

1,2,M
d
2,1→1

P (V d
1 < d1) = P (V d∗

1 < d1). (4.6)

In order to determine the latter probability of default, we have to distinguish between
the following two cases.

If d1 ≤ d2, it follows from (4.5) that V d∗
1 > d1 P−a.s. and thus P (V d∗

1 < d1) = 0.
Because of d1 > 0 and σ1 > 0 it is clear that any lognormal distribution would yield a
strictly positive probability of default, i.e. the lognormal model overestimates the actual
risk of a firm under cross-ownership of debt only if the cross-ownership fractions converge
to 1. Recall that we had d1 = d2 in our simulations. In Figure 3.4(a) we saw that under
cross-ownership of debt only, the actual risk was considerably overestimated already for
cross-ownership fractions about 0.7.

If d1 > d2, the situation is somewhat trickier. Equation (4.5) and Lemma A.4 now yield
V d∗
1 = A1 + d2 P−a.s., i.e. P (V d∗

1 < d1) > P (V d∗
1 < d2) = 0 and the argumentation

used for the case d1 ≤ d2 cannot be applied. Instead, let

W d∗

1 ∼ LN (µ̃, σ̃2), (4.7)

where µ̃ and σ̃2 are determined such that E(W d∗
1 ) = E(V d∗

1 ) = E(A1) + d2 and
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Var(W d∗
1 ) = Var(V d∗

1 ) = Var(A1), i.e.

µ̃ =
1

2
ln

(
(E(A1) + d2)

4

Var(A1) + (E(A1) + d2)2

)
>

1

2
ln

(
E(A1)

4

Var(A1) + E(A1)2

)
= µ, (4.8)

σ̃2 = ln

(
Var(A1)

(E(A1) + d2)2
+ 1

)
< ln

(
Var(A1)

E(A1)2
+ 1

)
= σ2. (4.9)

Then we have the following limiting probabilities of default:

P (V d∗

1 < d1) = P (A1 < d1 − d2) = Φ

(
ln(d1 − d2)− µ

σ

)
, (4.10)

P (W d∗

1 < d1) = Φ

(
ln(d1)− µ̃

σ̃

)
, (4.11)

i.e. for d1 > d2, in the limit the lognormal model overestimates the actual risk if and
only if

ln(d1 − d2)− µ
σ

<
ln(d1)− µ̃

σ̃
(4.12)

⇔ σ̃ ln(d1 − d2)− σ ln(d1) < σ̃µ− σµ̃ (4.13)

⇔ (d1 − d2)σ̃
(d1)σ

< exp(σ̃µ− σµ̃). (4.14)

Straightforward calculations show that the LHS of (4.14) as a function of d1 has a
maximum value of (

σ̃
σ−σ̃d2

)σ̃
(

σ
σ−σ̃d2

)σ =: LHSmax (4.15)

taken in d1 = σ
σ−σ̃d2 =: d1,max > d2, where the inequality holds because of σ > σ̃.

Furthermore,

lim
d1→d+2

(d1 − d2)σ̃
(d1)σ

= 0, lim
d1→∞

(d1 − d2)σ̃
(d1)σ

= 0, (4.16)

which implies that the LHS of (4.14) is a bell-shaped, continuous function of d1 with
domain (d2,∞) and maximum value LHSmax taken in d1 = d1,max. Note that the RHS
of (4.14) is independent of d1. It can be shown (cf. Lemma A.5) that

LHSmax =

(
σ̃

σ−σ̃d2
)σ̃

(
σ

σ−σ̃d2
)σ > exp(σ̃µ− σµ̃), (4.17)

independently of the exact values of µ, σ and d2, which means that the maximum value
of the LHS of (4.14) as a function of d1 is always greater than the constant exp(σ̃µ−σµ̃).
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exp(σ̃µ− σµ̃)

d1d2 d
∗
1 d∗∗1

LHS of(4.14)

Figure 4.1: Sketch of the LHS of (4.14) as a function of d1.

Thus (cf. Figure 4.1), there are two values d∗1 and d∗∗1 , d2 < d∗1 < d1,max < d∗∗1 , such that

(d∗1 − d2)σ̃
(d∗1)

σ
=

(d∗∗1 − d2)σ̃
(d∗∗1 )σ

= exp(σ̃µ− σµ̃), (4.18)

i.e. (4.14) holds if and only if d2 < d1 < d∗1 or d1 > d∗∗1 . In these cases, the lognormal
model overestimates the actual risk, if the cross-ownership fractions of debt converge to 1.

Our case differentiation with respect to the relative sizes of d1 and d2 can be summarized
as follows.

Proposition 4.1. Under cross-ownership of debt only with lognormally distributed ex-
ogenous asset values, the lognormal model underestimates the actual limiting probability
of default of a firm, i.e.

lim
Md

1,2,M
d
2,1→1

P (V d
1 < d1) > P (W d∗

1 < d1), (4.19)

if and only if
d∗1 < d1 < d∗∗1 , (4.20)

with d∗1 and d∗∗1 given by (4.18). In particular, if d1 ≤ d2, the actual limiting default
probability of 0 is overestimated by the lognormal model.

Remark 4.2. If we replace d1 in (4.10)–(4.11) with an arbitrary v1 > d2, our analysis
shows that in the limit of Md

1,2,M
d
2,1 → 1, the distribution functions of V d∗

1 and W d∗
1

intersect twice in the interval (d2,∞) if d1 ≥ d2 (for d1 < d2 we would not have V d
1 =

A1 + d2 P−a.s., which is the starting point of all considerations for the case d1 > d2).
As we will see in the following, this transfers to cross-ownership fractions close to 1.

Let (Md
1,2,n)n∈N and (Md

2,1,n)n∈N be sequences in (0, 1) with limit 1 for n → ∞, and

let V d
1,n be the firm value of firm 1 calculated with Md

1,2 = Md
1,2,n and Md

2,1 = Md
2,1,n.

Similarly to (4.7) we define
W d

1,n ∼ LN (µ̃n, σ̃
2
n), (4.21)

with µ̃n and σ̃2n such that E(W d
1,n) = E(V d

1,n) and Var(W d
1,n) = Var(V d

1,n). As we will see

in the following, W d
1,n converges in distribution to W d∗

1 defined in (4.7). First, (3.25)–
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(3.26) and (3.31)–(3.33) imply for all Md
1,2,M

d
2,1 ∈ (0, 1) that

V d
1 ≤ 1Ass(A1, A2)× (A1 +Md

1,2d2)

+ 1Asd
(A1, A2)× (A1 +Md

1,2A2 +Md
1,2M

d
2,1d1) + 1Ads∪Add

(A1, A2)× d1
(4.22)

= 1Ass∪Asd
(A1, A2)× (A1 +Md

1,2min{d2, A2 +Md
2,1d1}) + 1Ads∪Add

(A1, A2)× d1
(4.23)

≤ A1 +A2 + d1, (4.24)

which is square-integrable. Hence, application of the dominated convergence theorem to
(V d

1,n)n∈N and ((V d
1,n)

2)n∈N yields

lim
n→∞

E(W d
1,n) = lim

n→∞
E(V d

1,n) = E(V d∗

1 ) = E(W d∗

1 ), (4.25)

lim
n→∞

Var(W d
1,n) = lim

n→∞
Var(V d

1,n) = Var(V d∗

1 ) = Var(W d∗

1 ). (4.26)

Since µ̃n and σ̃n are continuous functions of E(W d
1,n) and Var(W d

1,n), we also have
limn→∞ µ̃n = µ̃ and limn→∞ σ̃n = σ̃. Furthermore, as the normal distribution func-
tion is continuous, it follows for x > 0 that

lim
n→∞

P (W d
1,n ≤ x) = lim

n→∞
Φ

(
ln(x)− µ̃n

σ̃n

)
= Φ

(
lim
n→∞

ln(x)− µ̃n
σ̃n

)
(4.27)

= Φ

(
ln(x)− µ̃

σ̃

)
= P (W d∗

1 ≤ x), (4.28)

i.e. the RHS of (4.19) is equal to limn→∞ P (W d
1,n < d1). Hence, since the derivation of

Proposition 4.1 implies that limn→∞ P (V d
1,n < x) > limn→∞ P (W d

1,n < x) if and only if
d∗1 < x < d∗∗1 , there are points x1, x2, x3 with d2 < x1 < d∗1 < x2 < d∗∗1 < x3 and

P (V d
1,n < x1) < P (W d

1,n < x1) for all n > N1, (4.29)

P (V d
1,n < x2) > P (W d

1,n < x2) for all n > N2, (4.30)

P (V d
1,n < x3) < P (W d

1,n < x3) for all n > N3, (4.31)

for some N1, N2, N3 ∈ N. Therefore, the CDFs of V d
1,n and the approximated lognormally

distributed W d
1,n intersect at least twice for all n ≥ max{N1, N2, N3}, i.e. generally the

distribution functions of V d
1 and W d

1 do not have the so-called single-crossing property
as defined by Diamond and Stiglitz [1974] for example.

4.1.2 XOS of Equity only

Under cross-ownership of equity only, the probability of default for M e
1,2, M

e
2,1 → 1

is not very interesting from a practical point of view, since firms exceeding a certain
degree of cross-holdings would be forced to create a common balance sheet, i.e. separate
calculation of default probabilities is not relevant. However, the limiting probability of
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default is interesting in comparison to the results under cross-ownership of debt only
derived in the previous section.

Due to V e
1

∣∣
Ass

= (A1 +M e
1,2A2 −M e

1,2M
e
2,1d1 −M e

1,2d2)/(1 −M e
1,2M

e
2,1), we are faced

with the problem that V e
1

∣∣
Ass
→∞ for M e

1,2, M
e
2,1 → 1 if A1 + A2 > d1 + d2 (by (A71),

this holds for all (A1, A2) ∈ Ass\{(d1, d2)}). Thus, if we want to evaluate the limiting
probability of default under cross-ownership of equity only, this cannot be done by
considering the pointwise limit of V e

1 and the resulting limiting distribution. Instead, we
will first calculate the probabilities of default for M e

1,2,M
e
2,1 < 1 under both models and

then consider the limits of these probabilities if the cross-ownership fractions converge
to 1.
Since firm 1 is in default if and only if its firm value is smaller than the face value of its
debt at maturity, we have under Suzuki’s model by (3.31)–(3.32)

P (V e
1 < d1) = P (Ads ∪Add) = P

(
{(a1, a2) ≥ 0 : a1 < d1, a2 < d2 + (d1 − a1)/M e

1,2}︸ ︷︷ ︸
=:Ad.(M

e
1,2)

)
,

(4.32)

if M e
1,2 6= 0, where the second equality follows from (3.27)–(3.28) with Md

1,2 = Md
2,1 =

0. With M e
1,2 increasing, the set Ad.(M

e
1,2) becomes smaller, and it follows from the

continuity of a probability measure that if M e
1,2 → 1,

P (V e
1 < d1)→ P ({(a1, a2) ≥ 0 : a1 < d1, a1 + a2 ≤ d1 + d2}) > 0, (4.33)

where the strict positivity follows since we assume d1, d2 > 0 and σ1, σ2 > 0 (cf. (4.1)).

As in our simulations, let
W e

1 ∼ LN (µ̃, σ̃2), (4.34)

where µ̃ and σ̃2 are determined such that E(W e
1 ) = E(V e

1 ) and Var(W e
1 ) = Var(V e

1 ).
Note that σ̃ is strictly positive since the variance of V e

1 is strictly positive due to σ1, σ2 >
0. Then the probability of default of firm 1 under the lognormal model equals

P (W e
1 < d1) = Φ

(
ln(d1)− µ̃

σ̃

)
. (4.35)

If the cross-ownership fractions of equity converge to 1, this affects both, expectation
and variance of V e

1 and thus also the parameters of W e
1 , because

µ̃ =
1

2
ln

(
E(V e

1 )
4

Var(V e
1 ) + E(V e

1 )
2

)
, (4.36)

σ̃ = ln

(
Var(V e

1 )

E(V e
1 )

2
+ 1

)0.5

, (4.37)

More specifically, we have µ̃ → ∞ for M e
1,2,M

e
2,1 → 1, and limMe

1,2,M
e
2,1→1 σ̃ < ∞ by
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Lemma A.6, i.e.
ln(d1)− µ̃

σ̃
→ −∞, M e

1,2, M
e
2,1 → 1, (4.38)

and thus

P (W e
1 < d1) = Φ

(
ln(d1)− µ̃

σ̃

)
→ 0, M e

1,2, M
e
2,1 → 1. (4.39)

Comparing (4.33) and (4.39), we obtain the following proposition.

Proposition 4.3. Under cross-ownership of equity only with lognormally distributed
exogenous asset values, the lognormal model underestimates the actual limiting default
probability of a firm, i.e.

lim
Me

1,2,M
e
2,1→1

P (V e
1 < d1) > lim

Me
1,2,M

e
2,1→1

P (W e
1 < d1) = 0. (4.40)

In our simulation study (cf. Figure 3.4(b)), this was already evident for cross-ownership
fractions about 0.7.

Remark 4.4. Note that all the results obtained for cross-ownership of equity only also
hold without the assumption of lognormally distributed exogenous asset values made in
(4.1), if we still approximate the distribution of V e

1 with a lognormal distribution. We
only have to require the distribution of exogenous asset values to be continuous, non-
negative, square-integrable and to yield a strictly positive limiting probability of default
P ({(a1, a2) ≥ 0 : a1 < d1, a1 + a2 ≤ d1 + d2}), and both, a strictly positive expectation
and variance of A1 +A2 − d1 − d2 on A∗

ss, which is needed in the proof of Lemma A.6.

4.1.3 Summary and Comparison

In general, the comparison of default probabilities obtained from Suzuki’s model and the
lognormal model under cross-ownership of either debt or equity can lead to the following
three cases: either both firms’ probabilities of default are overestimated by the lognor-
mal model, or both firms’ probabilities of default are underestimated by the lognormal
model, or one probability of default is overestimated and one probability of default is un-
derestimated. If the corresponding cross-ownership fractions converge to 1, these cases
can be exactly classified. Under cross-ownership of equity only, Proposition 4.3 shows
that the lognormal model will always underestimate the limiting probabilities of default
of both firms. Under cross-ownership of debt only, this cannot happen. By Proposi-
tion 4.1, the limiting probability of default of firm 1 is underestimated if and only if
d∗1 < d1 < d∗∗1 , where d∗1 > d2, and in this case, the limiting probability of default of
firm 2 is overestimated by Proposition 4.1. If d1 6∈ (d∗1, d

∗∗
1 ) and d2 6∈ (d∗2, d

∗∗
2 ) (with d∗2

and d∗∗2 defined in analogy to d∗1 and d∗∗1 ), the limiting probabilities of default of both
firms are overestimated.
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4.1.4 Bivariate Probabilities of Default

In the following we consider the event that both firms default simultaneously and com-
pare the related limiting probabilities under Suzuki’s model and the lognormal model.
Under the lognormal model we consider random variables

(W1,W2) ∼ LN (µ̃, Σ̃) (4.41)

with µ̃ = (µ̃1, µ̃2)
T and Σ̃ =

( σ̃2
1 σ̃12

σ̃12 σ̃2
2

)
such that E(Wi) = E(Vi), Var(Wi) = Var(Vi)

and Cov(W1,W2) = Cov(V1, V2). Then we have as in (4.36) and (4.37)

µ̃i =
1

2
ln

(
E(Vi)

4

Var(Vi) + E(Vi)2

)
, (4.42)

σ̃i = ln

(
Var(Vi)

E(Vi)2
+ 1

)0.5

= ln

(
E(V 2

i )

E(Vi)2

)0.5

> 0, i = 1, 2, (4.43)

and the work of Nalbach-Leniewska [1979] yields

σ̃12 = ln

(
E(V1V2)

E(V1)E(V2)

)
. (4.44)

By Sylvester’s criterion (cf. Theorem 7.2.5 of Horn and Johnson [2013], for example),
Σ̃ is positive semidefinite and thus a proper covariance matrix if and only if |σ̃12| ≤
σ̃1σ̃2, i.e. otherwise, (W1,W2) as in (4.41) does not exist. For |σ̃12| = σ̃1σ̃2, ln(W1)
and ln(W2) are perfectly correlated. If (W1,W2) exists, (4.44) yields Cov(W1,W2) =
E(W1)E(W2)(exp(σ̃12) − 1). For 0 ≤ σ̃12 ≤ σ̃1σ̃2 it follows that Cov(W1,W2) ≤
E(W1)E(W2)(exp(σ̃1σ̃2)− 1). If −σ̃1σ̃2 ≤ σ̃12 < 0, we have E(W1)E(W2)(exp(−σ̃1σ̃2)−
1) ≤ Cov(W1,W2) < 0 and therefore

|Cov(W1,W2)| ≤ E(W1)E(W2)| exp(−σ̃1σ̃2)− 1| < E(W1)E(W2)(exp(σ̃1σ̃2)− 1),
(4.45)

where the second inequality can be seen as follows. For x > 0, | exp(−x)−1| < exp(x)−
1 ⇔ 1 − exp(−x) < exp(x) − 1. Obviously, we have equality for x = 0, and for x > 0,
the derivative of the LHS is smaller than the derivative of the RHS. Altogether, we have
for |σ̃12| ≤ σ̃1σ̃2,

|Cov(W1,W2)| ≤ E(W1)E(W2)(exp(σ̃1σ̃2)− 1). (4.46)

Hence, if
E(V1)E(V2)(exp(σ̃1σ̃2)− 1) < |Cov(V1, V2)|, (4.47)

we cannot match a bivariate lognormally distributed random vector to (V1, V2). This
will be important for the bivariate limiting probability of default under both, cross-
ownership of debt only and cross-ownership of equity only. Note that by Lemma A.8,
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E(V1)E(V2)(exp(σ̃1σ̃2) − 1) ≤ E(V1)E(V2)
√
(exp(σ̃21)− 1)(exp(σ̃22)− 1), with the RHS

denoting the upper bound for |Cov(V1, V2)| implied by the Cauchy–Schwarz inequality,
i.e. the existence of scenarios where (4.47) holds cannot be ruled out by the Cauchy–
Schwarz inequality.

Keeping this in mind, we now consider the limiting bivariate probability of default for
two firms linked by cross-ownership of debt only. For Md

1,2,M
d
2,1 ∈ (0, 1), their bivariate

probability of default equals P (V d
1 < d1, V

d
2 < d2) = P (Add), i.e. with V d∗

1 and V d∗
2

defined as and as in analogy to (4.5), respectively, we obtain

P (V d∗

1 < d1, V
d∗

2 < d2) = lim
Md

1,2,M
d
2,1→1

P (V d
1 < d1, V

d
2 < d2) (4.48)

= lim
Md

1,2,M
d
2,1→1

P (Add) = P (Add∗) = 0, (4.49)

where (4.48) holds because almost sure convergence implies convergence in distribution,
and (4.49) follows from the fact that Add is strictly decreasing in Md

1,2 and Md
2,1 (cf.

(A23)), the continuity of a probability measure and Lemma A.4. If (V d∗
1 , V d∗

2 ) can be
approximated with a lognormally distributed random vector (W d∗

1 ,W d∗
2 ) as in (4.41),

the lognormal model will yield a strictly positive probability of default since we assume
d1, d2 > 0 and σ1, σ2 > 0, i.e. it will overestimate the limiting bivariate probability of
default. Our findings are summarized in the following proposition.

Proposition 4.5. Under cross-ownership of debt only with bivariate lognormally dis-
tributed exogenous asset values, the lognormal model overestimates the actual limiting
bivariate probability of default of firm 1 and firm 2, i.e.

0 = lim
Md

1,2,M
d
2,1→1

P (V d
1 < d1, V

d
2 < d2) < P (W d∗

1 < d1,W
d∗

2 < d2), (4.50)

provided that (W d∗
1 ,W d∗

2 ) exists.

Comparing Proposition 4.5 to Proposition 4.1, we see that the relative sizes of d1 and
d2 are irrelevant now.

Under cross-ownership of equity only the bivariate probability of default under Suzuki’s
model for arbitrary values of M e

1,2 and M e
2,1 is given by (cf. (3.34))

P (V e
1 < d1, V

e
2 < d2) = P (Add) = P (A1 < d1, A2 < d2), (4.51)

which does not depend on the realized cross-ownership fractions. Hence,

lim
Me

1,2,M
e
2,1→1

P (V e
1 < d1, V

e
2 < d2) = P (A1 < d1, A2 < d2) > 0, (4.52)

where the last inequality holds since we assume d1, d2 > 0 and σ1, σ2 > 0.
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Recall that we cannot fit a bivariate lognormal distribution to (V e
1 , V

e
2 ) if |σ̃12| > σ̃1σ̃2.

Of course, σ̃1, σ̃2 and σ̃12 depend on M e
1,2 and M e

2,1, and we set M := {(M e
1,2,M

e
2,1) ∈

(0, 1)2 : |σ̃12| ≤ σ̃1σ̃2}. If there is no sequence (M e
1,2,n,M

e
2,1,n)n∈N in M such that

limn→∞(M e
1,2,n,M

e
2,1,n) = (1, 1), the limiting bivariate probability of default under the

lognormal model is not defined, since there is no suitable sequence of lognormal distri-
butions we could consider for that. If such a sequence (M e

1,2,n,M
e
2,1,n)n∈N in M exists,

let µ̃i,n, σ̃i,n and W e
i,n denote the (well-defined) versions of µ̃i, σ̃i and W e

i (i = 1, 2)
calculated by use of M e

1,2,n and M e
2,1,n. Then

P (W e
1,n < d1,W

e
2,n < d2) ≤ P (W e

1,n < d1) = Φ

(
ln(d1)− µ̃1,n

σ̃1,n

)
→ 0, n→∞, (4.53)

by Lemma A.6, i.e. the limiting bivariate probability of default under the lognormal
model is 0. Comparing (4.52) and (4.53), we obtain the following proposition.

Proposition 4.6. Under cross-ownership of equity only with bivariate lognormally dis-
tributed exogenous asset values, the lognormal model underestimates the actual limiting
bivariate probability of default of firm 1 and firm 2, i.e.

lim
Me

1,2,M
e
2,1→1

P (V e
1 < d1, V

e
2 < d2) > lim

n→∞
P (W e

1,n < d1,W
e
2,n < d2) = 0, (4.54)

provided the existence of a sequence (M e
1,2,M

e
2,1) in M with limit (1, 1) for n→∞.

Thus, if we can approximate (V e
1 , V

e
2 ) with a bivariate lognormally distributed random

vector for M e
1,2,M

e
2,1 → 1, the result is similar to Proposition 4.3 for the univariate

probabilities of default under cross-ownership of equity only.

4.2 Probabilities of Default for Arbitrary Scenarios of

Cross-Ownership

After our analysis of the probability of default of firm 1 if the respective cross-ownership
fractions converge to 1 we now examine the probability of default of a firm if the cross-
ownership fractions are strictly smaller than 1. In the previous section the assumption
of lognormally distributed exogenous asset values proved to be crucial for the case of
cross-ownership of debt only, whereas the results for the case of cross-ownership of equity
only also hold under far less restricting conditions. In the following, we will drop any
distributional assumption with respect to exogenous asset values, we only require their
distribution to be square-integrable and non-degenerate in a certain sense. This will be
clarified later.

Our results will not only be valid for systems of n ≥ 2 firms and all three types of cross-
ownership (hence, we do not need a case differentiation as in Section 4.1), they can even
be derived under a rather general set-up that does not rely on the interpretation of V1
as the value of a firm under cross-ownership, determined under Suzuki’s model. We first
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derive the general formula allowing us to compare the actual CDF of V1 to the matched
lognormal CDF, then we analyze some of its properties. Finally, we apply the gained
insights to our situation of interest, namely scenarios of firms linked by cross-ownership.

4.2.1 Derivation of a General Formula

In this section we consider a certain family of non-negative random variables, and to each
of these random variables we fit a lognormally distributed random variable according
to the Fenton–Wilkinson method of moment matching. For each pair we then compare
the probabilities that the respective random variable takes a value smaller than some
threshold c > 0. We start by constructing our family of random variables of interest.
Let

I1 := [0, c), I2 := [c,∞), (4.55)

and let XI1 and XI2 be two random variables with values in I1 and I2, respectively. We
do not make any specific assumptions with respect to the distributions of XI1 : Ω→ I1
and XI2 : Ω→ I2, we only require them to be continuous with finite and strictly positive
variances, which implies 0 < E(XIi), E(X2

Ii
) <∞, i = 1, 2.

Furthermore, let the family {Xp : p ∈ [0, 1]} of non-negative random variables be such
that Xp |Xp ∈ I1 =D XI1 for all p ∈ (0, 1] and Xp |Xp ∈ I2 =D XI2 for all p ∈ [0, 1),
and with P (Xp ∈ I1) = p. Then the distribution of Xp is uniquely determined, and for
x ≥ 0 we have P (X0 ≤ x) = P (XI2 ≤ x), P (X1 ≤ x) = P (XI1 ≤ x) and, for p ∈ (0, 1),

P (Xp ≤ x) = P (Xp ≤ x, I1) + P (Xp ≤ x, I2) (4.56)

= p× P (Xp ≤ x | I1) + (1− p)× P (Xp ≤ x | I2) (4.57)

= p× P (XI1 ≤ x) + (1− p)× P (XI2 ≤ x). (4.58)

Hence, p can be interpreted as a mixing parameter of XI1 and XI2 . Of course, the
moments of Xp, p ∈ [0, 1], depend on p as well:

E(Xp) = p× E(XI1) + (1− p)× E(XI2) > 0, (4.59)

E(X2
p ) = p× E(X2

I1) + (1− p)× E(X2
I2) > 0. (4.60)

Furthermore, Var(X0) = Var(XI2), Var(X1) = Var(XI1) and for p ∈ (0, 1),

Var(Xp) = p×Var(Xp | I1) + (1− p)×Var(Xp | I2)
+ p× (1− p)× (E(Xp | I1)− E(Xp | I2))2

(4.61)

≥ p×Var(Xp | I1) + (1− p)×Var(Xp | I2) (4.62)

= p×Var(XI1) + (1− p)×Var(XI2), (4.63)

i.e.
0 < Var(Xp) <∞ for all p ∈ [0, 1]. (4.64)

We now match a lognormally distributed random variable Yp to Xp such that E(Yp) =
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E(Xp) and Var(Yp) = Var(Xp), i.e.

Yp ∼ LN (µ̃p, σ̃
2
p) (4.65)

with

µ̃p =
1

2
ln

(
E(Xp)

4

E(X2
p )

)
, (4.66)

σ̃2p = ln

(
E(X2

p )

E(Xp)2

)
> 0 (4.67)

due to (4.64). In the following, we will calculate the probability P (Yp ∈ I1) and compare
it to the probability P (Xp ∈ I1), which is p by construction. For that, we set

E(XI1)− E(XI2) =: x1 < 0, (4.68)

E(XI2) =: x2 ≥ c, (4.69)

E(X2
I1)− E(X2

I2) =: y1 < 0, (4.70)

E(X2
I2) =: y2 ≥ c2. (4.71)

Then

P (Yp ∈ I1) = P (Yp < c) = Φ

(
ln(c)− µ̃p

σ̃p

)
(4.72)

= Φ



ln(c)− 1

2 ln
(
E(Xp)4

E(X2
p)

)

ln
(
E(X2

p)

E(Xp)2

)0.5


 = Φ



ln(c)− 1

2 ln
(
(p×x1+x2)4
p×y1+y2

)

ln
(

p×y1+y2
(p×x1+x2)2

)0.5


 (4.73)

by (4.59)–(4.60) and (4.68)–(4.71). Thus, for all p ∈ [0, 1],

P (Yp ∈ I1) < P (Xp ∈ I1) ⇔ h(p) := Φ



ln(c)− 1

2 ln
(
(p×x1+x2)4
p×y1+y2

)

ln
(

p×y1+y2
(p×x1+x2)2

)0.5


 < p. (4.74)

Hence, if we approximate an almost arbitrarily distributed non-negative random vari-
able Xp with a lognormally distributed random variable Yp by the method of moment
matching, (4.74) yields a criterion as to which random variable has a smaller probability
of falling below the threshold c > 0. The reason why we assume Yp to be lognormally
distributed will become clear in Section 4.2.3. In the following section we analyze the
RHS of (4.74) with respect to p.
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4.2.2 Comparison of Probabilities

4.2.2.1 Values of p close to or identical to 0 and 1

Let us consider the RHS of (4.74). If p = 0, we obtain h(0) > 0, because the standard
normal distribution function takes values in (0, 1) only. Since h : [0, 1] → (0, 1) is
continuous in p, we know that there is an ǫ(x1, x2, y1, y2) =: ǫ ∈ (0, 1) such that

h(p) > p for all p ∈ [0, ǫ). (4.75)

Hence, P (Yp < c) > P (Xp < c) if p ∈ [0, ǫ). For p = 1 we obtain h(1) < 1, i.e. there is
an ǫ′(x1, x2, y1, y2) =: ǫ′ ∈ (0, 1) such that

h(p) < p for all p ∈ (ǫ′, 1]. (4.76)

In this case, P (Yp < c) < P (Xp < c).

4.2.2.2 Arbitrary Values of p ∈ (0, 1)

For a given p ∈ (0, 1), let

c ≥ E(Xp)
2

E(X2
p )

0.5
. (4.77)

Because of Jensen’s inequality we have

E(Xp)
2

E(X2
p )

0.5
= E(Xp)

E(Xp)

E(X2
p )

0.5

︸ ︷︷ ︸
≤1

≤ E(Xp) for all p ∈ (0, 1), (4.78)

so (4.77) is met if for example E(Xp) ≤ c. Under assumption (4.77) the numerator of Φ
in (4.74) is non-negative, which implies

Φ



ln(c)− 1

2 ln
(
E(Xp)4

E(X2
p)

)

ln
(
E(X2

p)

E(Xp)2

)0.5


 ≥ 0.5, (4.79)

i.e. P (Yp < c) ≥ 0.5 independently of the value of p, as long as (4.77) is met. However,
the assumption of c ≥ E(Xp)

2/E(X2
p )

0.5 does not impose any restrictions on p, which
can be seen as follows. Recall that E(Xp) = pE(XI1) + (1 − p)E(XI2) with E(XI1) <
c < E(XI2), which means that for any conditional distribution of Xp on I1, i.e. for
any distribution of XI1 on I1, we only have to choose the distribution of XI2 such that
E(XI2) becomes small enough (i.e. close enough to c) to fulfil the sufficient condition
E(Xp) ≤ c (cf. (4.78)). Thus, the initial condition c ≥ E(Xp)

2/E(X2
p )

0.5 can be met
for any p ∈ (0, 1), if the distributions of XI1 on I1 and XI2 on I2 are chosen suitably.
Hence, the probability P (Xp < c) = p can be arbitrarily small, whereas the probability
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P (Yp < c) is at least 0.5, assuming that c ≥ E(Xp)
2/E(X2

p )
0.5. However, if p ≥ 0.5, it is

also possible that P (Yp < c) ≤ P (Xp < c).

Let now

c ≤ E(Xp)
2

E(X2
p )

0.5
(4.80)

for a given p ∈ (0, 1). Then the numerator of Φ in (4.74) is non-positive, and

P (Yp < c) = Φ



ln(c)− 1

2 ln
(
E(Xp)4

E(X2
p)

)

ln
(
E(X2

p)

E(Xp)2

)0.5


 ≤ 0.5. (4.81)

However, (4.80) does not impose any restrictions on the value of p, which can be seen as
follows. By (4.78), a necessary condition for (4.80) is E(Xp) > c. For some E > c, let
XI1 andXI2 be such that P (XI1 = 0.5 c) = 1 and P (XI2 = (E−0.5 c p)/(1−p)) = 1. It is
straightforward to see that (E−0.5 c p)/(1−p) > c, i.e. indeed (E−0.5 c p)/(1−p) ∈ I2.
Then, for an arbitrary p ∈ (0, 1),

Xp =

{
0.5 c, with probability p,
E−0.5 c p

1−p , with probability 1− p. (4.82)

Note that since we consider p ∈ (0, 1) instead of p ∈ [0, 1] here, it is guaranteed that
Var(Xp) > 0 for all p ∈ (0, 1), i.e. the conditions Var(XI1) > 0 and Var(XI2) > 0 are not
necessary here. Obviously, Xp ≥ 0 because of E > c, and E(Xp) = E, so the necessary
condition for (4.80) is met. Furthermore,

E(X2
p ) = 0.25 c2 p+

(
E − 0.5 c p

1− p

)2

(1− p) (4.83)

= 0.25 c2 p+
0.25 c2 p2 − c pE + E2

1− p =
0.25 c2 p− c pE + E2

1− p (4.84)

and thus

E(Xp)
2

E(X2
p )

0.5
≥ c ⇔ E(Xp)

4

E(X2
p )
≥ c2 (4.85)

⇔ E4(1− p) ≥ 0.25 c4p− c3 pE + E2c2 (4.86)

⇔ E4(1− p) + c3 pE − E2c2 − 0.25 c4p ≥ 0. (4.87)

For given p, the inequality is always met if E is chosen large enough. For p > 0.5 this
means that P (Yp < c) ≤ 0.5 < P (Xp < c). However, if p ≤ 0.5, it is also possible that
P (Yp < c) ≥ P (Xp < c).
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4.2.3 Application to Probabilities of Default under Cross-Ownership

In the following we employ the insights of Section 4.2.1 and Section 4.2.2 to compare
probabilities of default under Suzuki’s model and the lognormal model. In detail, we are
concerned with the probability of default of a firm that is part of a system of n ≥ 2 firms
linked by cross-ownership, without loss of generality we refer to this firm as firm 1. For
that, we first need to see how our scenario of firms linked by cross-ownership corresponds
to the set-up described in Section 4.2.1.

By definition, firm 1 is in default if and only if its total asset value is not sufficiently high
to repay all of its nominal debt, i.e. if V1 < d1. Hence, we can split the non-negative
real axis of possible firm values into two disjoint intervals [0, d1) and [d1,∞), i.e. we
can identify d1 with c of (4.55), and we set I1 := [0, d1) and I2 := [d1,∞), which means
that I1 and I2 stand for sets of firm values, where firm 1 is in default, or not. Since
firm values are derivatives of exogenous asset values, analogously the space (R+

0 )
n of

exogenous asset values a can be divided into two subsets where firm 1 is in default or
solvent, and we set (cf. (3.18))

Ad :=
⋃

z∈{s,d}n,
z1=d

Az = {a ∈ (R+
0 )

n : v1(a) < d1}, (4.88)

As :=
⋃

z∈{s,d}n,
z1=s

Az = {a ∈ (R+
0 )

n : v1(a) ≥ d1}. (4.89)

Then the probability of default under Suzuki’s model can be written as

P (V1 < d1) = P (V1 ∈ I1) = P (A ∈ Ad) =: p. (4.90)

According to the above partition of R+
0 we consider the distribution of V1 as a weighted

average of the two conditional distributions of V1 on the intervals I1 and I2. These
conditional distributions can be identified with the distribution of XI1 and XI2 of Sec-
tion 4.2.1, i.e. V1 corresponds to Xp with p given by (4.90). In order to be able to
use the results of Section 4.2.1, we have to assume that the distribution of exogenous
asset values A on (R+

0 )
n is such that the conditional distributions of V1 on I1 and I2 are

continuous and have strictly positive variances (cf. (4.64)). For a given cross-ownership
scenario and given values of d we then can calculate x1, x2, y1 and y2 as in (4.68)–(4.71).
Under the lognormal model, the probability of default of firm 1 is determined under the
assumption that firm values are lognormally distributed, as it would be the case under
Merton’s model for a single firm. Hence, we fit a lognormally distributed random variable
to V1 by the Fenton–Wilkinson method, i.e. we can identify this lognormally distributed
random variable with Yp of Section 4.2.1, with p given in (4.90). If we compare the
actual probability of default of firm 1, namely the probability of default derived under
Suzuki’s model, to the probability of default under the lognormal model, (4.74) implies
that the lognormal model underestimates the actual probability of default p if and only
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if

Φ



ln(d1)− 1

2 ln
(
(p×x1+x2)4
p×y1+y2

)

ln
(

p×y1+y2
(p×x1+x2)2

)0.5


 < p. (4.91)

Since (4.91) cannot be solved for p, it is difficult to make a general statement for which
values of p this actual probability of default will be underestimated, when all other
parameters are held constant. In order to gain further insight, we assume the conditional
distributions of V1 on I1 and I2 to be fixed, only their mixing parameter p (i.e. the
probability that firm 1 is in default) varies.

Remark 4.7. Any given distribution µA of exogenous asset values A on (R+
0 )

n can
be transformed into a new distribution µA,p̃ such that the induced distribution of V1,
denoted by µV1,p̃, yields µV1,p̃(I1) = p̃ for a desired value p̃, while the conditional distri-
butions of V1 on I1 and I2 remain unchanged. For that, let

µA,p̃(A) := p̃
µA(A ∩Ad)

µA(Ad)
+ (1− p̃) µA(A ∩As)

µA(As)
, p̃ ∈ [0, 1], A ∈ B((R+

0 )
n), (4.92)

where B(M) stands for the Borel-σ-algebra over a setM ⊂ Rm,m ∈ N. Then µA,p̃(Ad) =
p̃ and

µV1,p̃(I1) = µA,p̃(V
−1
1 (I1)) = µA,p̃(Ad) = p̃, (4.93)

with V −1
1 (B) := {a ∈ (R+

0 )
n : v1(a) ∈ B}, B ∈ B(R+

0 ). Straightforward calculations
show that the transformation in (4.92) does not alter the conditional distributions of
V1 on I1 and I2, i.e. it only alters the mixing parameter p and thus the probability of
default of firm 1.

Using the results of Section 4.2.2 we now analyze how the inequality in (4.91) depends
on the parameter p, i.e. in the following, p stands for an arbitrarily chosen probability
of default under Suzuki’s model (cf. (4.90)). Note that the values of x1, x2, y1 and y2
do not vary with p since we assume the conditional distribution of V1 on I1 and I2 to be
fixed.

By (4.75) we know that there is an interval [0, ǫ) such that if the actual probability of
default p lies in this interval, the lognormal model overestimates the actual probability
of default. Recall that in Section 4.1.1 we observed a somewhat similar effect for the case
of two firms linked by cross-ownership of debt only for d1 ≤ d2. There, cross-ownership
fractions converged to 1, which resulted in an actual limiting default probability of
firm 1 of 0, whereas the lognormal model yielded a strictly positive limiting probability
of default. For continuity reasons, there is a whole range of cross-ownership fractions such
that the actual risk is overestimated. Hence, for two firms linked by cross-ownership of
debt only with d1 ≤ d2, there are at least two ways of constructing scenarios leading to an
overestimation of the actual default probability of firm 1: first, as done in Section 4.1.1,
we can alter the cross-ownership structure between the two firms such that the actual
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probability of default converges to 0, and second, we can transform the distribution of
exogenous asset values (cf. Remark 4.7) such that the actual probability of default is
sufficiently close to 0, as done in this section. In both approaches, the lognormal model
yields a probability of default bigger than 0. Note that the results of Section 4.1.1 for
d1 ≤ d2 hold without the assumption of exogenous asset values following a lognormal
distribution.

Similarly, we know from (4.76) that there is an interval (ǫ, 1] such that if p, the actual
probability of default of firm 1, lies in this interval, the lognormal model underestimates
the actual probability of default. By Proposition 4.3 for two firms linked by cross-
ownership of equity only, underestimation of default probabilities can also be constructed
by either a structural approach (i.e. letting cross-ownership fractions converge to 1) or
a distributional approach by weighting the distribution of exogenous asset values (cf.
Remark 4.7) such that the actual probability of default is sufficiently close to 1.

Recall that the only assumption we made about the distribution of exogenous asset values
was that it is continuous and yields strictly positive conditional variances of V1 on I1
and I2. Any given distribution µA fulfilling this weak requirement can be transformed
according to (4.92) with p̃ < ǫ(x1, x2, y1, y2) = ǫ(µA) or p̃ > ǫ′(x1, x2, y1, y2) = ǫ′(µA),
so that (4.75) resp. (4.76) follows.

Estimation of ǫ and ǫ′

In order to gain an impression of the sizes of ǫ and ǫ′ we did a short simulation study
for a system of two firms linked by cross-ownership of either debt or equity with the
respective cross-ownership fractions taking values in {0.1, 0.2, . . . , 0.9}2. Furthermore,
we considered lognormally distributed exogenous asset values as in (3.44) with a = 1 and
σ2 = 1, and d1 ∈ {0.1, 0.5, 1, . . . , 2.5, 3}. For a given scenario, we simulated 1,000,000
firm values V1 to obtain point estimates of x1, x2, y1 and y2. Due to the high number
of simulated values, the conditional variances Var(V1 | I2) = y2 − x22 and Var(V1 | I1) =
y1 + y2 − (x1 + x2)

2 were always strictly positive (which is necessary and sufficient for
(4.64)). Then we used the R package rootSolve by Soetaert [2009] to find the roots of
h(p) − p, p ∈ [0, 1], where the smallest and largest roots served as estimates for ǫ and
ǫ′, respectively. For every scenario, this procedure was repeated 500 times to obtain
confidence intervals for ǫ and ǫ′. Point estimates ǫ̂ and ǫ̂′ were calculated as the median
of the respective 500 simulated values.

Under both types of cross-ownership, we always had ǫ̂ = ǫ̂′. However, we do not have
a theoretical proof for that. Some of the results for moderate levels of cross-ownership
are displayed in Table 4.1 and Table 4.2. Apparently, ǫ̂ is strongly influenced by the
value of d1, whereas the cross-ownership fractions seem to be of less importance. If d1 is
chosen relatively small, which means that the two firms tend to be healthier, the values
of ǫ̂′ are close to 0, i.e. the lognormal model underestimates the actual probability of
default p for most values of p in (0, 1) (cf. Section 4.2.2.1). If d1 is chosen relatively
big, which means that the two firms are more likely to be in default, the values of ǫ̂ are
close to 1, i.e. the lognormal model overestimates the actual probability of default p
for most values of p in (0, 1). Similarly, the probability of default porig. associated with
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Md
1,2 = 0.1 Md

1,2 = 0.5

d1 Md
2,1 ǫ̂ = ǫ̂′ 95% CI ǫ̂ = ǫ̂′ 95% CI

0.1 0.1 0.03462 0.03345− 0.03618 0.02948 0.02838− 0.03078
0.1 0.4 0.03465 0.03345− 0.03611 0.02935 0.02830− 0.03082
0.1 0.7 0.03466 0.03349− 0.03609 0.02937 0.02826− 0.03060

1.0 0.1 0.64907 0.64577− 0.65260 0.53229 0.52839− 0.53725
1.0 0.4 0.64615 0.64298− 0.64976 0.51022 0.50634− 0.51419
1.0 0.7 0.64254 0.63957− 0.64663 0.48515 0.48174− 0.49000

2.0 0.1 0.85912 0.85794− 0.86034 0.75629 0.75501− 0.75754
2.0 0.4 0.85629 0.85510− 0.85758 0.72339 0.72224− 0.72455
2.0 0.7 0.85278 0.85154− 0.85401 0.67792 0.67673− 0.67928

3.0 0.1 0.93391 0.93236− 0.93510 0.87725 0.87550− 0.87886
3.0 0.4 0.93219 0.93087− 0.93348 0.85499 0.85337− 0.85655
3.0 0.7 0.93012 0.92876− 0.93131 0.82076 0.81916− 0.82228

Table 4.1: Estimated values ǫ̂ and ǫ̂′ under cross-ownership of debt only, σ2 = 1,
1,000,000 iterations, 500 repetitions for confidence intervals CI.

the original distribution of exogenous asset values is over- resp. underestimated by the
lognormal model if porig. < ǫ̂ = ǫ̂′ resp. porig. > ǫ̂ = ǫ̂′.
In a certain sense, our empirical findings with respect to the value of d1 are supported
by the following theoretical considerations, which are based on Section 4.2.2.2.

Comparison of Default Probabilities

Let d1 ≥ E(V1)
2/E(V 2

1 )
0.5. Then, by (4.79), the lognormal model will yield a probability

of default of at least 0.5, whereas the above condition does not allow any conclusions on
the value of p, the probability of default under Suzuki’s model. By (4.78), a sufficient
condition for d1 ≥ E(V1)

2/E(V 2
1 )

0.5 is d1 ≥ E(V1) = pE(V1 | I1) + (1 − p)E(V1 | I2),
i.e. it is sufficient to ensure that the conditional expectation of V1 on I2 is close enough
to d1. Since V1 is a continuous function of exogenous asset values A (cf. Lemma 3.4),
this means that the conditional distribution of A on As has to be chosen such that
much of its mass is near the ’border’ to Ad (because we have V1 = d1 on this border).
Thus, the initial condition E(V1)

2/E(V 2
1 )

0.5 ≤ d1 can be met for any p ∈ (0, 1), if the
distribution of exogenous asset values A on (R+

0 )
n is chosen suitably. Hence, if p, the

probability of default of firm 1 under Suzuki’s model, is smaller than 0.5 and if d1 ≥
E(V1)

2/E(V 2
1 )

0.5, the lognormal model will always overestimate the actual probability of
default. However, if p > 0.5, it is also possible that the lognormal model underestimates
the actual probability of default. Note that although the condition E(V1)

2/E(V 2
1 )

0.5 ≤
d1 implies E(V1) ≤ d1, this does not necessarily mean that a firm would have to declare
bankruptcy in this circumstance. The requirement to declare bankruptcy would depend
on the regulator’s particular choice of the distribution of the exogenous asset values,
which could be different than that of any other observer’s choice.

Let now E(V1)
2/E(V 2

1 )
0.5 ≥ d1. Then (4.81) implies that the probability of default under
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M e
1,2 = 0.1 M e

1,2 = 0.5

d1 M e
2,1 ǫ̂ = ǫ̂′ 95% CI ǫ̂ = ǫ̂′ 95% CI

0.1 0.1 0.02142 0.02055− 0.02248 0.00240 0.00227− 0.00258
0.1 0.4 0.02000 0.01923− 0.02119 0.00141 0.00133− 0.00152
0.1 0.7 0.01871 0.01793− 0.01966 0.00071 0.00066− 0.00076

1.0 0.1 0.67313 0.67021− 0.67631 0.61828 0.61499− 0.62257
1.0 0.4 0.66912 0.66624− 0.67238 0.58350 0.57918− 0.58889
1.0 0.7 0.66303 0.65958− 0.66660 0.51472 0.50744− 0.52244

2.0 0.1 0.87887 0.87770− 0.88006 0.86873 0.86767− 0.86986
2.0 0.4 0.87713 0.87596− 0.87840 0.85597 0.85487− 0.85705
2.0 0.7 0.87429 0.87321− 0.87544 0.83398 0.83277− 0.83514

3.0 0.1 0.94377 0.94254− 0.94499 0.94042 0.93922− 0.94155
3.0 0.4 0.94302 0.94173− 0.94404 0.93421 0.93270− 0.93546
3.0 0.7 0.94147 0.94003− 0.94274 0.92214 0.92046− 0.92335

Table 4.2: Estimated values ǫ̂ and ǫ̂′ under cross-ownership of equity only, σ2 = 1,
1,000,000 iterations, 500 repetitions for confidence intervals CI.

the lognormal model is at most 0.5, whereas Suzuki’s model may yield any probability of
default (cf. Section 4.2.2.2). For that, we only need to see that there is a distribution of
exogenous asset values A on (R+

0 )
n such that V1 is given as Xp in (4.82). For example,

this distribution could be chosen as follows. Let D := {a ∈ (R+
0 )

n : v1(a) = 0.5d1}
and S := {a ∈ (R+

0 )
n : v1(a) = (E − 0.5 p d1)/(1 − p)}. In order to obtain the desired

distribution of V1, we thus only have to ensure that

P (A ∈ D) = p, (4.94)

P (A ∈ S) = 1− p, (4.95)

P (A ∈ (R+
0 )

n\(D ∪ S)) = 0, (4.96)

which can be constructed easily. In particular, the lognormal model underestimates the
actual probability of default of firm 1 under Suzuki’s model if this probability is bigger
than 0.5.

Conclusion

The above analysis shows that we cannot arrive at definite conclusions as to whether the
lognormal model over- or underestimates the actual probability of default of a firm in
the general case (i.e. for arbitrary cross-ownership fractions). Although (4.74) provides
an exact formula, we cannot solve this inequality for p or the conditional moments of V1
to gain further insight. However, if p, the probability of default of firm 1 under Suzuki’s
model, is 0 or 1, risk is systematically over- and underestimated, respectively. Further,
for given conditional distributions of V1 on I1 and I2, there is a whole interval [0, ǫ) and
hence a whole family of distributions µV1,p (p ∈ [0, ǫ)) of V1 (cf. Remark 4.7) such that
the approximating lognormal model leads to an overestimation of the actual probability
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of default p. Similarly, there is an interval (ǫ′, 1] with corresponding distributions of V1
such that the approximating lognormal model leads to an underestimation of the actual
probability of default p ∈ (ǫ′, 1]. In particular, any given non-negative distribution of
exogenous asset values fulfilling some weak requirements (cf. p. 47) can be transformed
into a new, “extreme” distribution of exogenous asset values yielding such a low or high
actual probability of default that the approximating lognormal model will over- and
underestimate this risk, respectively.
If the expected firm value is smaller than the firm’s nominal level of liabilities, the
lognormal model yields a probability of default of at least 0.5, independently of the
variance of the firm value. If the variance is small, the actual probability of default
can be much smaller. On the other hand, there are also situations where the lognormal
model grossly underestimates the actual risk of default.



5 Tail Dependence of Firm Values under

Cross-Ownership

Having mainly been concerned with the analysis of the univariate distributions of firm
values and probabilities of default of a firm evolving under various cross-ownership sce-
narios, the aim of this section is to study the bivariate behaviour of firm values in a
system of two firms linked by cross-ownership. In particular, we will consider the si-
multaneous occurrence of extreme events, i.e. that both firm values fall below a low
threshold or exceed a high threshold. For that, we will employ the tail dependence coef-
ficient, but in order to be able to derive some of its properties and to calculate its value
under cross-ownership, we first need to consider some properties of copulas and their
asymptotic behaviour under cross-ownership.

5.1 Copula of Firms Values under Cross-Ownership

5.1.1 Definition and Basic Properties of Copulas

In the following we will give a short overview over the definition and the main properties
of two-dimensional copulas. Most of the results can be found in Nelsen [2006]. A
historical review on the subject may be found in Durante and Sempi [2010].
In the remainder we will write I for the unit interval [0, 1] and R̄ for the extended real
line R ∪ {−∞,∞}.
Definition 5.1. A two-dimensional copula (or briefly, a copula) is a function C with
the following properties:

1. C is a function from I2 to I.

2. For every u, v ∈ I,

C(u, 0) = C(0, v) = 0 (“groundedness”), (5.1)

C(u, 1) = u, C(1, v) = v. (5.2)

3. C is 2-increasing, that is for every u1, u2, v1, v2 such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0. (5.3)

Copulas are 1-Lipschitz continuous with respect to the ℓ1-norm on I2 and thus uniformly
continuous on I2 (cf. Theorem 2.2.4 in Nelsen [2006]). The following bounds for copulas
are an immediate consequence of (5.1)–(5.3).

53
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Theorem 5.2. Let C be a copula. Then for every u, v in I,

max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v}, (5.4)

where
W (u, v) := max{u+ v − 1, 0} and M(u, v) := min{u, v} (5.5)

are called the Fréchet-Hoeffding lower and upper bound, respectively.

In the two-dimensional case, both W and M are again copulas.

As Nelsen [2006] writes, the following theorem of Sklar “is central to the theory of
copulas and is the foundation of many, if not most, of the applications of that theory
to statistics. Sklar’s theorem elucidates the role that copulas play in the relationship
between multivariate distribution functions and their univariate margins” [Nelsen, 2006,
p. 17].

Theorem 5.3. Let X and Y be random variables with marginal distribution functions
FX and FY and bivariate distribution function FX,Y . Then there exists a copula C such
that for all x, y in R̄,

FX,Y (x, y) = C(FX(x), FY (y)). (5.6)

If FX and FY are continuous, then C is unique; otherwise, C is uniquely determined on
RanFX × RanFY .

If X and Y have continuous distribution functions, we will denote the unique copula of
X and Y with CX,Y . As noted by Nelsen [2006], for U and V uniformly distributed on I,
Theorem 5.3 yields FU,V (u, v) = CU,V (FU (u), FV (v)) = CU,V (u, v), i.e. bivariate copulas
are bivariate distribution functions with uniform margins.

Let F (−1) : I → R̄ denote the quasi-inverse of a distribution function F as defined in
Nelsen [2006] for example, i.e.

F (−1)(t)

{
is any number x ∈ R̄ such that F (x) = t, t ∈ RanF,

= inf{x ∈ R̄ : F (x) ≥ t} = sup{x ∈ R̄ : F (x) ≤ t}, t /∈ RanF.
(5.7)

Note that the generalized inverse defined in (2.4) is a special case of a quasi-inverse.

The following corollary to Theorem 5.3 shows how copulas can be constructed from
univariate and bivariate distribution functions.

Corollary 5.4. Let FX , FY and FX,Y be as in Theorem 5.3, and let F
(−1)
X and F

(−1)
Y be

quasi-inverses of FX and FY , respectively. Furthermore, let FX and FY be continuous.
Then for any (u, v) ∈ I2,

CX,Y (u, v) = FX,Y

(
F

(−1)
X (u), F

(−1)
Y (v)

)
. (5.8)

The next theorem deals with the stability of copulas under certain transformations.
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Theorem 5.5. Let X and Y be continuous random variables with copula CX,Y . If α
and β are strictly increasing on RanX and RanY , respectively, then Cα(X),β(Y ) = CX,Y .
Thus CX,Y is invariant under strictly increasing transformations of X and Y .

Proofs of Theorem 5.2, Theorem 5.3, Corollary 5.4 and Theorem 5.5 can be found in
Nelsen [2006].

By Theorem 5.3, copulas provide a link between bivariate distribution functions and
their univariate margins, i.e. between probabilities that random variables fall below
certain thresholds. In addition, one can also consider so-called survival copulas, which
relate the univariate and bivariate survival functions to each other. Let

C̄X,Y (u, v) := u+ v − 1 + CX,Y (1− u, 1− v) for all u, v ∈ I. (5.9)

Then straightforward calculations yield (cf. Nelsen [2006], p. 32)

F̄X,Y (x, y) = C̄X,Y (F̄X(x), F̄Y (y)), (5.10)

C̄X,Y (u, v) = F̄X,Y

(
F̄

(−1)
X (u), F̄

(−1)
Y (v)

)
, (5.11)

with F̄ (−1) defined in analogy to F (−1), i.e. F̄ (−1)(t) = inf{x ∈ R̄ : F̄ (x) ≤ t} = sup{x ∈
R̄ : F̄ (x) ≥ t} for t /∈ RanF̄ . C̄X,Y is called the survival copula of X and Y , and it can
be shown that C̄X,Y is indeed a copula.

5.1.2 Copula under Cross-Ownership

By Lemma 3.7 and Remark 3.6, the univariate distribution functions of V1 and V2
are continuous if we assume the bivariate distribution of exogenous asset values to be
continuous. In this case, the copula of V1 and V2 under cross-ownership exists and is
unique by Theorem 5.3. As becomes evident in Lemma 3.5, Vi in general depends on
both, A1 and A2, i.e. the functional relationship between firm values and exogenous
asset values cannot be described by strictly increasing functions f1, f2 such that Vi =
fi(Ai), i = 1, 2. Hence, the conditions of Theorem 5.5 are not met, and the copula of firm
values is likely to differ from the copula of exogenous asset values under cross-ownership.
By Corollary 5.4,

CV1,V2(u, v) = FV1,V2

(
F

(−1)
V1

(u), F
(−1)
V2

(v)
)
, (5.12)

but a detailed analysis of CV1,V2 is difficult due to the piecewise definition of V1 and V2
(cf. Lemma 3.5) and since we do not have explicit formulae for their univariate and
bivariate distribution functions. Fortunately, we only need to know the behaviour of
CV1,V2 in the lower left and upper right corner of the unit square I2 in order to be able to
determine the tail dependence coefficient under cross-ownership of debt only and cross-
ownership of equity only.
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In the remainder of Section 5 we will always assume that Md
1,2,M

d
2,1 > 0 under cross-

ownership of debt only and M e
1,2,M

e
2,1 > 0 under cross-ownership of equity only. Fur-

thermore, we will always assume exogenous asset values to be distributed as follows.

Assumption 5.6.

(A1, A2) ∼ LN ((µ1, µ2)
T ,Σ) (5.13)

where Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
with

0 < σ1 ≤ σ2 (5.14)

and with |ρ| < 1.

Under Assumption 5.6 the univariate distribution function of Ai (i = 1, 2) is given by

FAi
(x) =

{
Φ
(
ln(x)−µi

σi

)
, x > 0,

0, x ≤ 0,
(5.15)

and it follows for y ∈ (0, 1) that FAi
(x) = y ⇔ x = exp(σiΦ

−1(y) + µi), which is strictly
increasing and continuous in y, i.e. the inverse of FAi

on [0, 1) is given by

F−1
Ai

(y) =

{
exp(σiΦ

−1(y) + µi), y > 0,

0, y = 0.
(5.16)

Furthermore,

fAi
(x) =

{
1√

2πσix
exp

(
− (ln(x)−µi)2

2σ2
i

)
, x > 0,

0, x ≤ 0.
(5.17)

The following two propositions deal with the asymptotic behaviour of CV1,V2 in the lower
left and upper right corner of the unit square under Assumption 5.6 for cross-ownership
of debt only and cross-ownership of equity only.

Proposition 5.7. Let exogenous asset values (A1, A2) be distributed as in Assump-
tion 5.6. Then

CV d
1 ,V

d
2
(u, v) = CA1,A2(u, v) +O

(
fA1(F

−1
A1

(u)) + fA2(F
−1
A2

(v))
)
, u, v → 1, (5.18)

and

CV e
1 ,V

e
2
(u, v) =

{
CA1,A2(u, v) + o(fA1(F

−1
A1

(u)) + fA2(F
−1
A2

(v))), u, v → 0, if ρ ≤ 0,

CA1,A2(u, v) + o(u+ v), u, v → 0, if ρ > 0.

(5.19)

Proof. In order to prove (5.18) we first show some asymptotic convergence results for
the univariate and bivariate distribution functions of V d

1 and V d
2 . Let q1 ≥ d1 be such
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that fA1(x) ≤ fA1(q1 −Md
1,2d2) for all x ≥ q1 −Md

1,2d2. Since the lognormal density is
strictly decreasing for x sufficiently big, such a q1 always exists. By Lemma 3.7,

P (V d
1 ≤ q1) = P (A1 ≤ q1 −Md

1,2d2)

+ P (q1 −Md
1,2d2 < A1 ≤ q1 −Md

1,2M
d
2,1d1 −Md

1,2A2),
(5.20)

where

P (q1 −Md
1,2d2 < A1 ≤ q1 −Md

1,2M
d
2,1d1 −Md

1,2A2) (5.21)

≤ P (q1 −Md
1,2d2 < A1 ≤ q1 −Md

1,2M
d
2,1d1) (5.22)

=

∫ q1−Md
1,2M

d
2,1d1

q1−Md
1,2d2

fA1(x) dx (5.23)

≤Md
1,2(d2 −Md

2,1d1) fA1(q1 −Md
1,2d2) (5.24)

= O(fA1(q1 −Md
1,2d2)), q1 →∞. (5.25)

Hence, P (V d
1 ≤ q1) = P (A1 ≤ q1 − Md

1,2d2) + O(fA1(q1 − Md
1,2d2)), q1 → ∞. Note

that if d2 ≤Md
2,1d1, the probability in (5.21) is zero, but nevertheless, the derived result

remains valid. Analogously we obtain

P (V d
2 ≤ q2)

= P (A2 ≤ q2 −Md
2,1d1) + P (q2 −Md

2,1d1 < A2 ≤ q2 −Md
1,2M

d
2,1d2 −Md

2,1A1) (5.26)

= P (A2 ≤ q2 −Md
2,1d1) +O(fA2(q2 −Md

2,1d1)), q2 →∞. (5.27)

Furthermore, Lemma A.1 yields for q1, q2 sufficiently big,

P (V d
1 ≤ q1, V d

2 ≤ q2) = P (A1 ≤ q1 −Md
1,2d2, A2 ≤ q2 −Md

2,1d1)

+ P (q1 −Md
1,2d2 < A1 ≤ q1 −Md

1,2M
d
2,1d1 −Md

1,2A2)

+ P (q2 −Md
2,1d1 < A2 ≤ q2 −Md

1,2M
d
2,1d2 −Md

2,1A1),

(5.28)

where again, depending on the relative sizes of d2 and Md
2,1d1, and d1 and Md

1,2d2, the
second or third probability of (5.28) might be zero. For u, v ∈ (0, 1), let q1, q2 ∈ R be
such that u = FA1(q1 −Md

1,2d2) and v = FA2(q2 −Md
2,1d1), and we assume u and v to

be sufficiently big so that (5.28) holds. Then

|CV d
1 ,V

d
2
(u, v)− CA1,A2(u, v)|

= |CV d
1 ,V

d
2
(FA1(q1 −Md

1,2d2), FA2(q2 −Md
2,1d1))

− CA1,A2(FA1(q1 −Md
1,2d2), FA2(q2 −Md

2,1d1))|
(5.29)

≤ |CV d
1 ,V

d
2
(FV d

1
(q1), FV d

2
(q2))− CV d

1 ,V
d
2
(FA1(q1 −Md

1,2d2), FA2(q2 −Md
2,1d1))|

+ |CV d
1 ,V

d
2
(FV d

1
(q1), FV d

2
(q2))− CA1,A2(FA1(q1 −Md

1,2d2), FA2(q2 −Md
2,1d1))|

(5.30)
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≤ |FV d
1
(q1)− FA1(q1 −Md

1,2d2)|+ |FV d
2
(q2)− FA2(q2 −Md

2,1d1)|
+ |FV d

1 ,V
d
2
(q1, q2)− FA1,A2(q1 −Md

1,2d2, q2 −Md
2,1d1)|

(5.31)

= 2|FV d
1
(q1)− FA1(q1 −Md

1,2d2)|+ 2|FV d
2
(q2)− FA2(q2 −Md

2,1d1)| (5.32)

= O(fA1(q1 −Md
1,2d2)) +O(fA2(q2 −Md

2,1d1)), q1, q2 →∞, (5.33)

= O(fA1(F
−1
A1

(u)) + fA2(F
−1
A2

(v))), u, v → 1, (5.34)

where (5.31) follows from the Lipschitz continuity of copulas and Theorem 5.3, (5.32) fol-
lows from (5.20), (5.26) and (5.28), and (5.33) follows from (5.25) and (5.27). Altogether,
(5.18) is shown.

The proof of (5.19) has a similar structure. For 0 < q1 < d1 it follows from Lemma 3.7
that

P (V e
1 ≤ q1) = P (A1 ≤ q1)− P

(
q1 +M e

1,2(d2 −A2) < A1 ≤ q1
)

︸ ︷︷ ︸
=:p1(q1)

(5.35)

with

p1(q1) ≤ P (A1 ≤ q1, A2 > d2) (5.36)

=

∫ q1

0
P (A2 > d2 |A1 = x)fA1(x) dx (5.37)

=

∫ q1

0
Φ

(
−1√
1− ρ2

(
ln(d2)− µ2

σ2
− ρ ln(x)− µ1

σ1

))
fA1(x) dx (5.38)

≤ q1 fA1(q1) (5.39)

for q1 sufficiently small. Note that (5.38) follows from the fact that for a bivariate
standard normally distributed random vector (X,Y ) with correlation ρ, we have X |Y =
y ∼ N (ρy, 1− ρ2). Hence, by (5.39),

FV e
1
(q1) = FA1(q1) + o(fA1(q1)), q1 → 0. (5.40)

For ρ > 0, a stronger result can be derived. In this case, the Φ-term in (5.38) is strictly
increasing in x, i.e.

p1(q1) ≤ Φ

(
−1√
1− ρ2

(
ln(d2)− µ2

σ2
− ρ ln(q1)− µ1

σ1

))
× FA1(q1), (5.41)

and therefore

FV e
1
(q1) = FA1(q1) + o(FA1(q1)), q1 → 0, if ρ > 0. (5.42)
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Analogously, one can show that

FV e
2
(q2) = FA2(q2) +

{
o(fA2(q2)), q2 → 0, if ρ ≤ 0,

o(FA2(q2)), q2 → 0, if ρ > 0,
(5.43)

and by Lemma A.2, for q1 < d1 and q2 < d2,

FV e
1 ,V

e
2
(q1, q2) = FA1,A2(q1, q2). (5.44)

For 0 < u < FA1(d1) and 0 < v < FA2(d2), let q1, q2 ∈ R be such that u = FA1(q1) and
v = FA2(q2). Then

|CV e
1 ,V

e
2
(u, v)− CA1,A2(u, v)|

= |CV e
1 ,V

e
2
(FA1(q1), FA2(q2))− CA1,A2(FA1(q1), FA2(q2))| (5.45)

= |CV e
1 ,V

e
2
(FA1(q1), FA2(q2))− CV e

1 ,V
e
2
(FV e

1
(q1), FV e

2
(q2))| (5.46)

≤ |FA1(q1)− FV e
1
(q1)|+ |FA2(q2)− FV e

2
(q2)| (5.47)

=

{
o(fA1(q1)) + o(fA2(q2)), q1, q2 → 0, if ρ ≤ 0,

o(FA1(q1)) + o(FA2(q2)), q1, q2 → 0, if ρ > 0,
(5.48)

=

{
o(fA1(F

−1
A1

(u)) + fA2(F
−1
A2

(v))), u, v → 0, if ρ ≤ 0,

o(u+ v), u, v → 0, if ρ > 0,
(5.49)

where (5.46) follows from Theorem 5.3 and (5.44), (5.47) follows from the Lipschitz
continuity of copulas, and (5.48) follows from (5.40), (5.42) and (5.43).

For the analysis of the behaviour of CV1,V2 in the respective “opposite” corners of I2 we
do not need to assume that (A1, A2) follows a bivariate lognormal distribution.

Proposition 5.8. Let exogenous asset values (A1, A2) follow a continuous bivariate
distribution. Then

CV d
1 ,V

d
2
(u, v) = CA1+Md

1,2A2,Md
2,1A1+A2

(u, v) if u < min
{
FV d

1
(d1), FV d

1
(Md

1,2d2)
}

and v < min
{
FV d

2
(d2), FV d

2
(Md

2,1d1)
}
,

(5.50)

and

CV e
1 ,V

e
2
(u, v) = CA1+Me

1,2A2,Me
2,1A1+A2(u, v) if u > FV e

1

(
d1 +

1
Me

2,1
d2

)

and v > FV e
2

(
d2 +

1
Me

1,2
d1

)
.

(5.51)

Proof. For the proof of (5.50), let q1 < min{d1, Md
1,2d2} and q2 < min{d2, Md

2,1d1}.
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Then Lemma 3.7, Remark 3.6 and Lemma A.1 yield

P (V d
1 ≤ q1) = P (A1 +Md

1,2A2 ≤ (1−Md
1,2M

d
2,1)q1), (5.52)

P (V d
2 ≤ q2) = P (A2 +Md

2,1A1 ≤ (1−Md
1,2M

d
2,1)q2), (5.53)

P (V d
1 ≤ q1, V d

2 ≤ q2) = P (A1 +Md
1,2A2 ≤ (1−Md

1,2M
d
2,1)q1,

A2 +Md
2,1A1 ≤ (1−Md

1,2M
d
2,1)q2).

(5.54)

Let u < min{FV d
1
(d1), FV d

1
(Md

1,2d2)} and v < min{FV d
2
(d2), FV d

2
(Md

2,1d1)}. Setting

A′
1 := (A1 +Md

1,2A2)/(1−Md
1,2M

d
2,1) and A

′
2 := (A2 +Md

2,1A1)/(1−Md
1,2M

d
2,1), Corol-

lary 5.4 and (5.52)–(5.54) imply

CV d
1 ,V

d
2
(u, v) = FV d

1 ,V
d
2

(
F−1
V d
1
(u), F−1

V d
2
(v)
)
= FA′

1,A
′
2

(
F−1
A′

1
(u), F−1

A′
2
(v)
)
= CA′

1,A
′
2
(u, v),

(5.55)

and (5.50) follows from Proposition 5.5.

For the proof of (5.51), let q1 > d1+ d2/M
e
2,1 and q2 > d2+ d1/M

e
1,2. Lemma 3.7 implies

P (V e
1 ≤ q1) = P (A1 +M e

1,2A2 ≤ (1−M e
1,2M

e
2,1)q1 +M e

1,2M
e
2,1d1 +M e

1,2d2), (5.56)

since q1 ≥ q1 +M e
1,2M

e
2,1(d1 − q1) +M e

1,2(d2 −A2) ⇔ M e
2,1q1 ≥M e

2,1d1 + d2 −A2, which
holds because of q1 > d1 + d2/M

e
2,1 and A2 ≥ 0. Similarly, Remark 3.6 and Lemma A.2

yield

P (V e
2 ≤ q2) = P (A2 +M e

2,1A1 ≤ (1−M e
1,2M

e
2,1)q2 +M e

1,2M
e
2,1d2 +M e

2,1d1),

(5.57)

P (V e
1 ≤ q1, V e

2 ≤ q2) = P (A1 +M e
1,2A2 ≤ (1−M e

1,2M
e
2,1)q1 +M e

1,2M
e
2,1d1 +M e

1,2d2,

A2 +M e
2,1A1 ≤ (1−M e

1,2M
e
2,1)q2 +M e

1,2M
e
2,1d2 +M e

2,1d1).

(5.58)

Hence, by Corollary 5.4,

CV e
1 ,V

e
2
(u, v) = CA′′

1 ,A
′′
2
(u, v) if u > FV e

1
(d1 + d2/M

e
2,1) and v > FV e

2
(d2 + d1/M

e
1,2),

(5.59)

withA′′
1 := (A1+M

e
1,2A2−M e

1,2M
e
2,1d1−M e

1,2d2)/(1−M e
1,2M

e
2,1) andA

′′
2 := (A2+M

e
2,1A1−

M e
1,2M

e
2,1d2 −M e

2,1d1)/(1−M e
1,2M

e
2,1), and (5.51) follows from Theorem 5.5.

Proposition 5.7 and Proposition 5.8 will be crucial for the derivation of the tail depen-
dence coefficient under cross-ownership in Section 5.4 and Section 5.5.
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5.2 Definition of Tail Dependence

Following Frahm et al. [2005], we define the lower tail dependence coefficient (lower
TDC) of two random variables X and Y as

λL = lim
u→0

P (FX(X) ≤ u |FY (Y ) ≤ u), (5.60)

provided the limit exists. Analogously, the upper tail dependence coefficient (upper
TDC) is given by

λU = lim
u→1

P (FX(X) > u |FY (Y ) > u), (5.61)

provided the limit exists. Note that the lower and upper TDC is symmetric with respect
to X and Y (cf. (5.62) and (5.63)). As Frahm et al. [2005] note, “the TDC roughly
corresponds to the probability that one margin exceeds a high/low threshold under the
condition that the other margin exceeds a high/low threshold”[Frahm et al., 2005, p.
3]. If λL = 0, X and Y are called lower tail independent, if λL = 1, they are called
perfectly lower tail dependent. Similarly, for λU = 0 and λU = 1 they are called upper
tail independent and perfectly upper tail dependent, respectively.

If X and Y have continuous distributions, Theorem 5.3, Theorem 5.5, (5.9) and (5.10)
imply that λL and λU can also be expressed in terms of the copula CX,Y :

λL = lim
u→0

P (FX(X) ≤ u, FY (Y ) ≤ u)
P (FY (Y ) ≤ u) = lim

u→0

CX,Y (u, u)

u
, (5.62)

λU = lim
u→1

P (FX(X) > u, FY (Y ) > u)

P (FY (Y ) > u)
= lim

u→1

C̄X,Y (1− u, 1− u)
1− u (5.63)

= lim
u→1

1− 2u+ CX,Y (u, u)

1− u (5.64)

= lim
u→0

−1 + 2u+ CX,Y (1− u, 1− u)
u

. (5.65)

5.3 Tail Dependence without Cross-Ownership

In order to have a comparison, we first consider the lower and upper tail dependence
coefficient for firms not linked by cross-ownership. By Definition 3.1 we then have
Vi = Ai, i.e. the copula of firm values V1 and V2 of plain firms equals the copula of
the exogenous asset values A1 and A2. Since we assume (A1, A2) to follow a bivariate
lognormal distribution (cf. Assumption 5.6), we have Ai = exp(Zi) with Zi ∼ N (µi, σi),
i = 1, 2. Then Theorem 5.5 yields

CV1,V2 = CA1,A2 = Cexp(Z1),exp(Z2) = CZ1,Z2 = CZ1−µ1
σ1

,
Z2−µ2

σ2

= CG, (5.66)

where CG stands for the Gaussian copula, which is defined as follows. Let (X,Y ) be
a bivariate standard normally distributed random vector with correlation coefficient ρ
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(|ρ| < 1). By Theorem 5.3 there exists a unique copula CG such that

Φρ(x, y) = CG(Φ(x),Φ(y)), x, y ∈ R, (5.67)

and Definition 5.1 and Corollary 5.4 yield

CG(u, v) =





Φρ(Φ
−1(u),Φ−1(v)), u, v ∈ (0, 1),

0, u = 0 or v = 0,

u, v = 1,

v, u = 1.

(5.68)

Hence, under the assumption of bivariate lognormally distributed exogenous asset values,
the copula of firm values of plain firms equals the Gaussian copula.

If λL,G and λU,G stand for the lower and upper TDC of CG, respectively, straightforward
calculations show (cf. Example 3.4 and Section 5.2 in Embrechts et al. [2003]) that the
Gaussian copula with |ρ| < 1 is lower and upper tail independent, i.e.

λL,G = λU,G = 0. (5.69)

Hence, under Assumption 5.6, firm values of firms not linked by cross-ownership are
lower and upper tail independent. In the following, we will derive the lower and upper
TDC under cross-ownership of debt only and under cross-ownership of equity only, which
we will denote by λdL, λ

d
U, λ

e
L and λeU. Recall that we assumeMd

1,2,M
d
2,1 > 0 under cross-

ownership of debt only and M e
1,2,M

e
2,1 > 0 under cross-ownership of equity only, and

that exogenous asset values are distributed as in Assumption 5.6.

5.4 Tail Dependence under XOS of Debt only

5.4.1 λd
L

By Corollary 5.4, Proposition 5.8 and (5.62),

λdL = lim
u→0

CA1+Md
1,2A2,Md

2,1A1+A2
(u, u)

u
(5.70)

= lim
u→0

FA1+Md
1,2A2,Md

2,1A1+A2

(
F−1
A1+Md

1,2A2
(u), F−1

Md
2,1A1+A2

(u)

)

u
, (5.71)

provided the limit exists. Note that due to Assumption 5.6, FA1+Md
1,2A2

and FMd
2,1A1+A2

are strictly increasing on R+
0 , i.e. F

−1
A1+Md

1,2A2
and F−1

Md
2,1A1+A2

are ordinary inverses. For

the evaluation of (5.71) we will employ the insights of Section A.4.1 by identifying m1

and m2 of Section A.4.1 withMd
2,1 andM

d
1,2, respectively. We proceed with the notation

in terms of m1 and m2 for better readability and since the following considerations hold
beyond the context of cross-ownership (cf. Section 5.5.3). Hence, with m1 = Md

2,1 and
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m2 =Md
1,2, y := F−1

m1A1+A2
(u) and

ϑ(y) :=
F−1
A1+m2A2

(Fm1A1+A2(y))

y
, (5.72)

we have

λdL = lim
y→0

P (A1 +m2A2 ≤ ϑ(y) y, m1A1 +A2 ≤ y)
P (m1A1 +A2 ≤ y)

, (5.73)

provided the limit exists. Since the asymptotic distributions of A1+m2A2 andm1A1+A2

and the limit of ϑ(y) for y → 0 strongly depend on ρ, we need to distinguish between
the following three cases. In doing so, we always assume m1,m2 ∈ (0, 1).

5.4.1.1 Determination of λdL if −1 < ρ < σ1/σ2

In this section we always suppose ρ < σ1/σ2 in Assumption 5.6, i.e. by Lemma A.11,

lim
y→0

ϑ(y) = m
s1

s1+s2
2

(
1

m1

) s2
s1+s2 ∈

(
m2,

1

m1

)
, (5.74)

with s1, s2 > 0 defined as in Lemma A.10. Let γ ∈ (m2, 1/m1) be such that

m
s1

s1+s2
2

(
1

m1

) s2
s1+s2

< γ <
s1

s1 + s2
m2 +

s2
s1 + s2

1

m1
. (5.75)

Note that such a γ exists since the inequality of geometric and arithmetic means is strict
because of s1, s2 > 0. Then

P (A1 +m2A2 ≤ ϑ(y) y, m1A1 +A2 ≤ y)
P (m1A1 +A2 ≤ y)

≤ P (A1 +m2A2 ≤ γy, m1A1 +A2 ≤ y)
P (m1A1 +A2 ≤ y)

(5.76)

for y sufficiently small, and

P (A1 +m2A2 ≤ γy, m1A1 +A2 ≤ y)
P (m1A1 +A2 ≤ y)

=
1

Fm1A1+A2(y)

∫ y

0
P (A1 ≤ γy −m2x, A1 ≤ (y − x)/m1 |A2 = x) fA2(x) dx (5.77)

=
1

Fm1A1+A2(y)

(∫ δy

0
P (A1 ≤ γy −m2x |A2 = x) fA2(x) dx

+

∫ y

δy
P (A1 ≤ (y − x)/m1 |A2 = x) fA2(x) dx

) (5.78)

with

δ :=
1
m1
− γ

1
m1
−m2

∈ (0, 1). (5.79)
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In order to be able to apply L’Hôpital’s rule to (5.78) for y → 0, we need to see that
both integrals are differentiable with respect to y. For that we will employ the Leibniz
rule for the differentiation of parameter integrals (cf. Theorem 3 of Swartz [1994], for
example).

For x ∈ (0, a1) for some a1 > 0, and for y > 0, let

g1(x, y) := P (A1 ≤ γy −m2x |A2 = x) (5.80)

= 1{y>m2x/γ} × Φ

(
1√

1− ρ2

(
ln(γy −m2x)− µ1

σ1
− ρ ln(x)− µ2

σ2

))
. (5.81)

Obviously, for an arbitrary y > 0, g1(·, y) × fA2(·) is Lebesgue-integrable on (0, a1).
Furthermore, for a given x ∈ (0, a1),

∂

∂y
Φ

(
1√

1− ρ2

(
ln(γy −m2x)− µ1

σ1
− ρ ln(x)− µ2

σ2

))
(5.82)

=
1√

1− ρ2σ1
ϕ

(
1√

1− ρ2

(
ln(γy −m2x)− µ1

σ1
− ρ ln(x)− µ2

σ2

))
γ

γy −m2x
, (5.83)

which implies limy→m2x/γ D2g1(x, y) = 0, i.e. g1(x, ·) is continuously differentiable with

respect to y > 0. Furthermore, |D2g1(x, y)| ≤ const.× x−ρσ1/σ2 , as (5.83) implies

∣∣∣∣∣
∂

∂y
Φ

(
1√

1− ρ2

(
ln(γy −m2x)− µ1

σ1
− ρ ln(x)− µ2

σ2

))∣∣∣∣∣ (5.84)

= const.× exp

(
−(σ2(ln(γy −m2x)− µ1)− ρσ1(ln(x)− µ2))2

2(1− ρ2)σ21σ22
− ln(γy −m2x)

)

(5.85)

and straightforward calculations show that the argument of the exp-term as a quadratic
function in ln(γy −m2x) is bounded from above by some constant times x−ρσ1/σ2 . Fur-
thermore, limx→0 x

−ρσ1/σ2fA2(x) = 0, i.e. x−ρσ1/σ2fA2(x) is integrable on (0, a1). Hence,
the integral

∫ a1
0 P (A1 ≤ γy −m2x |A2 = x) fA2(x) dx is differentiable with respect to

y > 0 by the Leibniz rule for the differentiation of parameter integrals. Similarly, let

g2(x, y) := P (A1 ≤ (y − x)/m1 |A2 = x) (5.86)

= 1{y>x} × Φ

(
1√

1− ρ2

(
ln((y − x)/m1)− µ1

σ1
− ρ ln(x)− µ2

σ2

))
, (5.87)

where x ∈ (0, a2) for some a2 > 0 and with y > 0. Then we have limy→xD2g2(x, y) = 0,
i.e. g2(x, ·) is continuously differentiable with respect to y > 0 and again, its derivative
is bounded by some constant times x−ρσ1/σ2 , with x−ρσ1/σ2fA2(x) being integrable on
(0, a2). Thus, the integral

∫ a2
0 P (A1 ≤ (y − x)/m1 |A2 = x) fA2(x) dx is differentiable

with respect to y > 0 by the Leibniz rule. Hence, by L’Hôpital’s rule, the Leibniz rule
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and the chain rule,

lim
y→0

1

Fm1A1+A2(y)

(∫ δy

0
P (A1 ≤ γy −m2x |A2 = x) fA2(x) dx

+

∫ y

δy
P (A1 ≤ (y − x)/m1 |A2 = x) fA2(x) dx

) (5.88)

= lim
y→0

1

fm1A1+A2(y)
×

(∫ δy

0

1√
1− ρ2σ1

ϕ

(
1√

1− ρ2

(
ln(γy −m2x)− µ1

σ1
− ρ ln(x)− µ2

σ2

))
γ fA2(x)

γy −m2x
dx

+Φ

(
1√

1− ρ2

(
ln(γy −m2δy)− µ1

σ1
− ρ ln(δy)− µ2

σ2

))
fA2(δy) δ

+

∫ y

δy

1√
1− ρ2σ1

ϕ

(
1√

1− ρ2

(
ln((y − x)/m1)− µ1

σ1
− ρ ln(x)− µ2

σ2

))
fA2(x)

y − x dx

− Φ

(
1√

1− ρ2

(
ln((y − δy)/m1)− µ1

σ1
− ρ ln(δy)− µ2

σ2

))
fA2(δy) δ

)

(5.89)

= lim
y→0

1

fm1A1+A2(y)
× 1√

1− ρ2σ1
×

(∫ δy

0
ϕ

(
1√

1− ρ2

(
ln(γy −m2x)− µ1

σ1
− ρ ln(x)− µ2

σ2

))
γ fA2(x)

γy −m2x
dx

+

∫ y

δy
ϕ

(
1√

1− ρ2

(
ln((y − x)/m1)− µ1

σ1
− ρ ln(x)− µ2

σ2

))
fA2(x)

y − x dx

)
(5.90)

= lim
y→0

1

fm1A1+A2(y)
× 1√

1− ρ2σ1
×

(∫ δ

0
ϕ

(
1√

1− ρ2

(
ln(γy −m2xy)− µ1

σ1
− ρ ln(xy)− µ2

σ2

))
γ fA2(xy)

γ −m2x
dx

+

∫ 1

δ
ϕ

(
1√

1− ρ2

(
ln((y − xy)/m1)− µ1

σ1
− ρ ln(xy)− µ2

σ2

))
fA2(xy)

1− x dx

)
,

(5.91)

where (5.90) follows from the fact that γy −m2δy = (y − δy)/m1 by the definition of
δ, i.e. the Φ-terms in (5.89) cancel. Furthermore, (5.91) follows from the substitution
x 7→ xy. Next, we want to pull the limit in (5.91) into the integrals. In order to be
able to apply the dominated convergence theorem, we need to see that both integrands
divided by fm1A1+A2(y) have an integrable majorant. Note that the term (γ −m2x)

−1

can be neglected as it is bounded by 0 < γ −m2δ < γ −m2x < γ. By Lemma A.10, for
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x > 0 and y → 0,

fA2(xy)

fm1A1+A2(y)
ϕ

(
1√

1− ρ2

(
ln(γy −m2xy)− µ1

σ1
− ρ ln(xy)− µ2

σ2

))
(5.92)

∼ const.×
√
− ln(y)

x
× exp

(
S ln(y)− 1

2(1− ρ2)σ21σ22

[
− (s1 + s2) ln(y)

2

+ 2 ln(y)
(
s1µ2 + s2(µ1 + ln(m1))

)
+ (1− ρ2)σ21

(
ln(x) + ln(y)− µ2

)2

+
(
(σ2 − ρσ1) ln(y) + σ2(ln(γ −m2x)− µ1)− ρσ1(ln(x)− µ2)

)2]
)

(5.93)

= const.×
√
− ln(y)

x
× exp

(
S ln(y)− 1

2(1− ρ2)σ21σ22
×

[
ln(y)2

(
− (s1 + s2) + (1− ρ2)σ21 + (σ2 − ρσ1)2

)

︸ ︷︷ ︸
=0

+ 2 ln(y)
{
s1µ2 + s2(µ1 + ln(m1)) + (1− ρ2)σ21(ln(x)− µ2)

+ (σ2 − ρσ1)
(
σ2(ln(γ −m2x)− µ1)− ρσ1(ln(x)− µ2)

)}

+ (1− ρ2)σ21(ln(x)− µ2)2 +
(
σ2(ln(γ −m2x)− µ1)− ρσ1(ln(x)− µ2)

)2]
)

(5.94)

= const.×
√
− ln(y)

x
× exp

(
S ln(y)− 1

2(1− ρ2)σ21σ22
×

[
2 ln(y)

{
s1 ln(x) + s2 ln(γ −m2x) + s2 ln(m1)

}

+ (1− ρ2)σ21(ln(x)− µ2)2 +
(
σ2(ln(γ −m2x)− µ1)− ρσ1(ln(x)− µ2)

)2]
)

(5.95)

≤ const.×
√
− ln(y)

x
× exp

(
−1

2(1− ρ2)σ21σ22
×

[
2 ln(y)

{
−s1 ln

(
s1

s1 + s2

)
− s2 ln

(
s2

s1 + s2

)
+ s1 ln (δ) + s2 ln (1− δ)

}

+ (1− ρ2)σ21(ln(x)− µ2)2 +
(
σ2(ln(γ −m2x)− µ1)− ρσ1(ln(x)− µ2)

)2]
)

(5.96)

→ 0, y → 0, (5.97)
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where (5.96) and (5.97) can be seen as follows. Straightforward calculations show that

the term in curly brackets in (5.95) is strictly increasing in x ∈ (0, s1×γ/m2

s1+s2
) and in

particular for x ∈ (0, δ) due to (5.75) and (5.79). Hence, the term in curly brackets
becomes maximal for x equal to the upper bound of integration δ, with corresponding

maximum value s1 ln (δ) + s2 ln
(

γ−m2

1/m1−m2

)
= s1 ln (δ) + s2 ln (1− δ) . This and (A91)

yield (5.96). Since the function s1 ln (z) + s2 ln (1− z), z ∈ (0, 1), takes its maximum
value for z = s1/(s1 + s2), but δ 6= s1/(s1 + s2) by (5.75) and (5.79), the term in curly
brackets in (5.96) is strictly negative, and (5.97) follows for any x ∈ (0, δ]. Let (xn, yn)n∈N
be a sequence in (0, δ]× (0, 1] with limit (0, y∗), y∗ ∈ [0, 1]. Then, if we denote the RHS
of (5.96) by g3(x, y), we have limn→∞ g3(xn, yn) = 0, since the expression

√
− ln(y)/x

is dominated by the exp-term. Altogether, it follows that g̃3 defined on [0, δ] × [0, 1]
with g̃3(x, y) = g3(x, y) if x, y 6= 0 and with g̃3(x, y) = 0 otherwise is continuous on
[0, δ]× [0, 1]. Hence, g̃3 has an absolute maximum on [0, δ]× [0, 1], i.e. the integrand of
the first integral of (5.91) divided by fm1A1+A2(y) is bounded by this maximum value
and therefore has an integrable majorant, if y ≤ 1. Thus, by the dominated convergence
theorem,

lim
y→0

∫ δ

0

ϕ

(
1√
1−ρ2

(
ln(γy−m2xy)−µ1

σ1
− ρ ln(xy)−µ2

σ2

))
γ fA2

(xy)

γ−m2x

fm1A1+A2(y)
dx

=

∫ δ

0
lim
y→0

ϕ

(
1√
1−ρ2

(
ln(γy−m2xy)−µ1

σ1
− ρ ln(xy)−µ2

σ2

))
γ fA2

(xy)

γ−m2x

fm1A1+A2(y)
dx (5.98)

=

∫ δ

0
0 dx = 0 (5.99)

since the limit of (5.92) is 0 for y → 0 by (5.93)–(5.97).

For the second integral of (5.91) we proceed analogously, and we obtain for x ∈ [δ, 1)

fA2(xy)

fm1A1+A2(y)
ϕ

(
1√

1− ρ2

(
ln((y − xy)/m1)− µ1

σ1
− ρ ln(xy)− µ2

σ2

))
1

1− x

∼ const.×
√
− ln(y)

x(1− x) × exp

(
−1

2(1− ρ2)σ21σ22
×

[
2 ln(y)

{
−s1 ln

(
s1

s1 + s2

)
− s2 ln

(
s2

s1 + s2

)
+ s1 ln(x) + s2 ln(1− x)

}

+ (1− ρ2)σ21(ln(x)− µ2)2 +
(
σ2(ln((1− x)/m1)− µ1)− ρσ1(ln(x)− µ2)

)2]
)

(5.100)

→ 0, y → 0, (5.101)

since the term in curly brackets is negative for all x ∈ [δ, 1), because s1/(s1 + s2) is
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smaller than the lower bound of integration δ by (5.75) and (5.79). Let (xn, yn)n∈N be
a sequence in [δ, 1)× (0, 1] with limit (1, y∗), y∗ ∈ [0, 1]. Then, if we denote the RHS of
(5.100) by g4(x, y), we have limn→∞ g4(xn, yn) = 0, i.e. together with (5.101) it follows
that g̃4 defined on [δ, 1] × [0, 1] with g̃4(x, y) = g4(x, y) if x 6= 1 and y 6= 0 and with
g̃4(x, y) = 0 otherwise is continuous on [δ, 1]× [0, 1]. Hence, g̃4 has an absolute maximum
on [δ, 1]× [0, 1], i.e. the integrand of the second integral of (5.91) divided by fm1A1+A2(y)
has an integrable majorant and thus, by the dominated convergence theorem,

lim
y→0

∫ 1

δ

ϕ

(
1√
1−ρ2

(
ln((y−xy)/m1)−µ1

σ1
− ρ ln(xy)−µ2

σ2

))
fA2

(xy)

1−x

fm1A1+A2(y)
dx

=

∫ 1

δ
lim
y→0

ϕ

(
1√
1−ρ2

(
ln((y−xy)/m1)−µ1

σ1
− ρ ln(xy)−µ2

σ2

))
fA2

(xy)

1−x

fm1A1+A2(y)
dx (5.102)

=

∫ 1

δ
0 dx = 0 (5.103)

by (5.100)–(5.101). Therefore, together with (5.98)–(5.99), we have (5.91)=0, i.e. the
limit of (5.78) is 0 for y → 0. Hence, by (5.73) and (5.76),

λdL = 0 for − 1 < ρ < σ1/σ2. (5.104)

5.4.1.2 Determination of λdL if σ1/σ2 < ρ < 1

For σ1/σ2 < ρ < 1, λdL can be determined as follows. If we read the inequalities in the
numerator of (5.73) as equalities, straightforward calculations show that these two linear
functions in A1 intersect for A1 equal to

ϑ(y)−m2

1−m1m2
× y =: κ(y)× y, (5.105)

with κ(y) ∈ (0, 1/m1) by Lemma A.9. Then, as becomes clear in Figure 5.1,

P (A1 +m2A2 ≤ ϑ(y) y, m1A1 +A2 ≤ y)
P (m1A1 +A2 ≤ y)

(5.106)

≥ 1− P (A1 > κ(y) y, m1A1 +A2 ≤ y)
P (m1A1 +A2 ≤ y)

(5.107)

≥ 1− P (κ(y) y < A1 ≤ y/m1)

P (m1A1 +A2 ≤ y)
(5.108)

= 1− P (A1 ≤ y/m1)

P (m1A1 +A2 ≤ y)
P (κ(y) y < A1 ≤ y/m1)

P (A1 ≤ y/m1)
(5.109)

= 1− P (A1 ≤ y/m1)

P (m1A1 +A2 ≤ y)

(
1− FA1(κ(y) y)

FA1 (y/m1)

)
, (5.110)
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A1

A2

κ(y)y ϑ(y)y y/m1

ϑ(y)y
m2

y

m1A1 +A2 = y

A1 +m2A2 = ϑ(y)y

Figure 5.1: Sketch of the probabilities in (5.106). Dotted area: numerator of (5.106),
red triangle: denominator of (5.106).

where the limit of the first ratio of (5.110) is 1 for y → 0 by L’Hôpital’s rule and
Lemma A.10. Furthermore, by L’Hôpital’s rule,

lim
y→0

FA1(κ(y) y)

FA1 (y/m1)
(5.111)

= lim
y→0

fA1(κ(y) y)× ∂
∂y (κ(y) y)

fA1(y/m1)/m1
(5.112)

= lim
y→0

∂
∂y (κ(y) y)

κ(y)
exp

(
− 1

2σ21

(
(ln(κ(y)) + ln(y)− µ1)2 − (ln(y)− ln(m1)− µ1)2

))

(5.113)

= lim
y→0

∂
∂y (κ(y) y)

κ(y)
exp

(
− 1

2σ21

(
2(ln(y)− µ1) ln(m1κ(y)) + ln(κ(y))2 − ln(m1)

2
))

(5.114)

= 1, (5.115)

since limy→0 κ(y) = limy→0
ϑ(y)−m2

1−m1m2
= 1

m1
by Lemma A.11, and due to Lemma 5.9.

Thus, the limits of (5.110) and (5.106) are 1 for y → 0, which means that

λdL = 1 for σ1/σ2 < ρ < 1. (5.116)
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Lemma 5.9. Let (A1, A2) follow a bivariate lognormal distribution as in Assumption 5.6
with σ1/σ2 < ρ < 1. Then for κ(y) as defined in (5.105),

lim
y→0

ln(y)× ln(m1κ(y)) = 0. (5.117)

Furthermore, limy→0
∂
∂y (κ(y) y) = 1/m1.

Proof. We have

lim
y→0

ln(y)× ln(m1κ(y)) = lim
y→0

ln(y)× ln(m1ϑ(y))×
ln(m1κ(y))

ln(m1ϑ(y))
. (5.118)

Since limy→0 κ(y) = limy→0 ϑ(y) = 1/m1 by Lemma A.11, L’Hôpital’s rule yields

lim
y→0

ln(m1κ(y))

ln(m1ϑ(y))
= lim

y→0

ϑ(y)

κ(y)
× κ′(y)
ϑ′(y)

= lim
y→0

ϑ(y)

ϑ(y)−m2
=

1

1−m1m2
. (5.119)

In order to determine the limit of ln(y)× ln(m1ϑ(y)), first note that by (5.72),

FA1+m2A2(ϑ(y) y)

FA1+m2A2(y/m1)
=

Fm1A1+A2(y)

FA1+m2A2(y/m1)
→ 1, y → 0, (5.120)

since by L’Hôpital’s rule and Lemma A.10,

lim
y→0

Fm1A1+A2(y)

FA1+m2A2(y/m1)
= lim

y→0

fm1A1+A2(y)

fA1+m2A2(y/m1)/m1
= lim

y→0

fA1(y/m1)

fA1(y/m1)
= 1. (5.121)

On the other hand, the limit in (5.120) can also be determined by using Theorem 1 of
Gulisashvili and Tankov [forthcoming], which yields4

lim
y→0

FA1+m2A2(ϑ(y) y)

FA1+m2A2(y/m1)
(5.122)

= lim
y→0

ln(y/m1)

ln(ϑ(y) y)

(ϑ(y) y)µ1/σ
2
1

(y/m1)µ1/σ
2
1

exp
(

−1
2σ2

1
ln(ϑ(y) y)2

)

exp
(

−1
2σ2

1
ln(y/m1)2

) 1 +O(− ln(ϑ(y) y)−1)

1 +O(− ln(y/m1)−1)
(5.123)

= lim
y→0

ln(y/m1)

ln(ϑ(y) y)
(m1ϑ(y))

µ1/σ2
1 exp

( −1
2σ21

((
ln(y) + ln(ϑ(y))

)2 −
(
ln(y)− ln(m1)

)2)
)

(5.124)

= lim
y→0

(m1ϑ(y))
µ1/σ2

1 exp

( −1
2σ21

(
2 ln(y) ln(m1ϑ(y)) + ln(ϑ(y))2 − ln(m1)

2
))

. (5.125)

4 With B = (Bij)1≤i,j≤n of Gulisashvili and Tankov [forthcoming] identical to our Σ of Assumption 5.6,
straightforward calculations yield w̄ = (1, 0) for ρ > σ1/σ2, and therefore n̄ = 1 and Ī = {1} =: {k̄(1)}
(cf. equations (6) and (8) of Gulisashvili and Tankov [forthcoming]). Then B̄ = B11 = σ2

1 and Ā1 =
B̄

−1 = 1/σ2
1 . Furthermore, their Assumption (A) is met for ρ > σ1/σ2, since we only need to consider

i = 2, and e2 = (0, 1)T , implying (ei − w̄)TBw̄ = ρσ1σ2 − σ2
1 6= 0. As we consider the distribution

function of A1 +m2A2, their µ̄1 equals our µ1.
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The last ratio in (5.123) converges to 1 for y → 0 because

lim sup
y→0

O(− ln(ϑ(y) y)−1)× (− ln(ϑ(y) y)) <∞ (5.126)

by (2.1), i.e. limy→0O(− ln(ϑ(y) y)−1) = 0. Similarly, limy→0O(− ln(y/m1)
−1) = 0.

Due to limy→0 ϑ(y) = 1/m1, (5.120) implies that the limit of the exp-term in (5.125) is
1, and therefore limy→0 ln(y) × ln(m1ϑ(y)) = 0. Then (5.117) follows from (5.118) and
(5.119). Moreover, by Lemma A.10,

∂

∂y
(ϑ(y) y) =

∂

∂y
F−1
A1+m2A2

(Fm1A1+A2(y)) (5.127)

=
fm1A1+A2(y)

fA1+m2A2 (ϑ(y) y)
(5.128)

∼ ϑ(y)
ϕ
(

1
σ1

(ln (y)− µ1 − ln(m1))
)

ϕ
(

1
σ1

(ln (ϑ(y) y)− µ1)
) (5.129)

= ϑ(y) exp

(
− 1

2σ21

((
ln (y)− µ1 − ln(m1)

)2
−
(
ln(y) + ln (ϑ(y))− µ1

)2))
(5.130)

= ϑ(y) exp

(
− 1

2σ21

(
− 2 (ln (y)− µ1) ln(m1ϑ(y)) + ln(m1)

2 − ln(ϑ(y))2
))

, (5.131)

i.e. limy→0
∂
∂y (ϑ(y) y) = 1/m1 by (5.117) and due to limy→0 ϑ(y) = 1/m1, and therefore

lim
y→0

∂

∂y
(κ(y) y) =

1

1−m1m2
lim
y→0

(
∂

∂y
(ϑ(y) y)−m2

)
=

1

m1
. (5.132)

5.4.1.3 The Case ρ = σ1/σ2

For the, as they call it, exceptional case ρ = σ1/σ2, Gulisashvili and Tankov [forthcoming]
remark that the left tail behaviour of the density of the sum of lognormals derived by
Gao et al. [2009] is qualitatively different from the cases where ρ 6= σ1/σ2. This might
explain the fact that to our knowledge, the asymptotic density provided by Gao et al.
[2009] (cf. Lemma A.10) is the only result on the left tail behaviour of the sum of
lognormals for ρ = σ1/σ2 in the literature (the asymptotic distribution function of the
sum of lognormals provided by Gulisashvili and Tankov [forthcoming] holds for ρ 6= σ1/σ2
only). Unfortunately, we could not prove the existence of the limit limy→0 ϑ(y) in this
situation, but if it exists, it can be shown that it is 1/m1. However, even if the existence
of this limit was known, the methods employed for ρ < σ1/σ2 and ρ > σ1/σ2 cannot

be used to determine the limit of P (A1+m2A2≤ϑ(y) y,m1A1+A2≤y)
P (m1A1+A2≤y) for y → 0 for ρ = σ1/σ2,

since there would neither be a γ ∈ R such that limy→0 ϑ(y) < γ < 1/m1 (cf. (5.75)), nor
could the limit of ln(y) × ln(m1κ(y)) (cf. Lemma 5.9) be determined. Hence, we need
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to skip the case ρ = σ1/σ2 in this work, but fortunately, this case is negligible from a
practical point of view.

5.4.2 λd
U

Under cross-ownership of debt only with bivariate lognormally distributed exogenous
asset values as in Assumption 5.6, the coefficient of upper tail dependence λdU between
firm values remains unchanged compared to the scenario of plain firms, i.e. λdU = 0,
independently of the value of ρ. This can be seen as follows.

λdU = lim
u→1

1− 2u+ CA1,A2(u, u)

1− u + lim
u→1

CV d
1 ,V

d
2
(u, u)− CA1,A2(u, u)

1− u (5.133)

= λU,G + lim
u→1

CV d
1 ,V

d
2
(u, u)− CA1,A2(u, u)

1− u (5.134)

= lim
u→1

CV d
1 ,V

d
2
(u, u)− CA1,A2(u, u)

1− u (5.135)

by (5.64) and (5.69), and Proposition 5.7 yields for u→ 1

|CV d
1 ,V

d
2
(u, u)− CA1,A2(u, u)|

1− u =
O(fA1(F

−1
A1

(u)) + fA2(F
−1
A2

(u)))

1− u (5.136)

=
O(fA1(F

−1
A1

(u)) + fA2(F
−1
A2

(u)))

fA1(F
−1
A1

(u)) + fA2(F
−1
A2

(u))
︸ ︷︷ ︸

≤ const. for u→1

fA1(F
−1
A1

(u)) + fA2(F
−1
A2

(u))

1− u → 0, (5.137)

since for the lognormal distribution by L’Hôpital’s rule,

lim
u→1

fAi
(F−1

Ai
(u))

1− u = lim
x→∞

fAi
(x)

1− FAi
(x)

= lim
x→∞

fAi
(x)
(
ln(x)−µi

σ2
i

+ 1
)

x× fAi
(x)

= 0, i = 1, 2.

(5.138)

5.4.3 Summary of Results under XOS of Debt only

Our results on tail dependence of firm values under cross-ownership of debt only are
summarized in the following proposition.

Proposition 5.10. Under cross-ownership of debt only with bivariate lognormally dis-
tributed exogenous asset values as in Assumption 5.6, the coefficient of lower tail depen-
dence λdL is given by

λdL =

{
0, −1 < ρ < σ1/σ2,

1, σ1/σ2 < ρ < 1,
(5.139)

and the coefficient of upper tail dependence λdU is 0.
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Proof. This follows from (5.104), (5.116) and Section 5.4.2.

Hence, if the correlation between the logarithmized exogenous asset values is smaller
than σ1/σ2, firm values remain lower tail independent also in the presence of cross-
ownership. If the correlation lies above this bound, however, the lower tail dependence
coefficient of firm values takes its maximum possible value of 1, i.e. there is perfect
lower tail dependence between the firm values under cross-ownership with bivariate log-
normally distributed exogenous asset values. Hence, for a portfolio made up of two
indices representing these two firms’ values, if the holder of this portfolio ignores the
presence of financial interconnections, he might not be aware of the fact that given a
relatively big loss in one index, the other index is likely to decline strongly in value as
well. However, he only needs to be conscious about the mere presence of cross-holdings,
but not the realized level of cross-ownership, as the lower tail dependence coefficient
does not depend on the exact values of the cross-ownership fractions. Even if they are
very close to 1, firm values remain tail lower independent if ρ < σ1/σ2. This condition
can be interpreted as follows. Due to (cf. Nalbach-Leniewska [1979], for example)

Corr(A1, A2) =
exp(ρσ1σ2)− 1√

(exp(σ21)− 1)(exp(σ22)− 1)
, (5.140)

the condition ρ < σ1/σ2 is equivalent to

Corr(A1, A2) <

√
exp(σ21)− 1

exp(σ22)− 1
=

CV(A1)

CV(A2)
, (5.141)

with CV(X) denoting the coefficient of variation of a random variable X. Hence, the
lower tail dependence coefficient of firm values under cross-ownership of debt only (which
coincides with the lower tail dependence coefficient of A1 +Md

1,2A2 and Md
2,1A1 +A2 by

Proposition 5.8 and (5.62)) is 0 resp. 1 if the correlation between A1 and A2 is smaller
resp. bigger than the ratio of the coefficients of variation of A1 and A2. In particular, the
lower tail dependence coefficient does not depend on the correlation between A1+M

d
1,2A2

and Md
2,1A1 +A2.

As for the case of two firms not linked by cross-ownership, firm values are upper tail
independent under cross-ownership of debt only, i.e. relatively big firm values occur
independently of each other.

5.5 Tail Dependence under XOS of Equity only

5.5.1 λe
L

Under cross-ownership of equity only with bivariate lognormally distributed exogenous
asset values as in Assumption 5.6, the coefficient of lower tail dependence λeL between
firm values remains unchanged compared to the scenario of plain firms, i.e. λeL = 0. This
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can be seen as follows. If ρ > 0, we obtain from (5.62), (5.69) and Proposition 5.7 that

λeL = lim
u→0

CV e
1 ,V

e
2
(u, u)

u
(5.142)

= lim
u→0

CA1,A2(u, u)

u
+ lim
u→0

CV e
1 ,V

e
2
(u, u)− CA1,A2(u, u)

u
(5.143)

= λL,G + 0 = 0. (5.144)

If ρ ≤ 0, let q1, q2 ∈ R be such that u = FV e
1
(q1) = FV e

2
(q2). Then by Theorem 5.3 and

(5.44) for u sufficiently small,

CV e
1 ,V

e
2
(u, u) = FA1,A2(q1, q2) =

∫ ln(q1)−µ1
σ1

−∞

∫ ln(q2)−µ2
σ2

−∞
ϕρ(x1, x2) dx1dx2 (5.145)

with

ϕρ(x1, x2) =
1

2π
√
1− ρ2

exp

( −1
2(1− ρ2)

(
x21 − 2ρx1x2 + x22

))
. (5.146)

Let now ρ < 0. Since we can assume x1, x2 < 0 as we are interested in the limit u→ 0,
it is straightforward to see that then ϕρ(x1, x2) ≤ ϕ−ρ(x1, x2). Hence, if we label every
copula with the underlying correlation ρ, we have

CρV e
1 ,V

e
2
(u, u) ≤ C−ρ

V e
1 ,V

e
2
(u, u) for ρ < 0, (5.147)

and thus

0 ≤ lim
u→0

CρV e
1 ,V

e
2
(u, u)

u
≤ lim

u→0

C−ρ
V e
1 ,V

e
2
(u, u)

u
= 0 (5.148)

by (5.144). For ρ = 0 and u sufficiently small we have CV e
1 ,V

e
2
(u, u) = FA1,A2(q1, q2) =

FA1(q1)FA2(q2) by (5.44) and Theorem 5.3. Furthermore, (5.35) yields

FA1(q1)

FV e
1
(q1)

=
1

1− p1(q1)
FA1

(q1)

≤ 1

FA2(d2)
(5.149)

since p1(q1) ≤ FA1(q1)× (1− FA2(d2)) by (5.38) for ρ = 0. Hence,

CV e
1 ,V

e
2
(u, u)

u
=
FA1(q1)FA2(q2)

FV e
1
(q1)

≤ 1

FA2(d2)
FA2

(
F−1
V e
2
(u)
)
, (5.150)

which implies limu→0
CV e

1 ,V e
2
(u,u)

u = 0 for ρ = 0. Altogether, λeL = 0 for all −1 < ρ < 1.
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Case σ1, σ2 µA1+m2A2 mA1+m2A2 µm1A1+A2 mm1A1+A2

1 σ1 < σ2 µ2 + ln(m2) 1 µ2 1
2 σ1 = σ2 µ1 = µ2 + ln(m2) 2 µ2 1
3 σ1 = σ2 µ1 1 µ1 + ln(m1) = µ2 2
4a σ1 = σ2 µ2 + ln(m2) 1 µ2 1
4b σ1 = σ2 µ1 1 µ1 + ln(m1) 1
4c σ1 = σ2 µ1 1 µ2 1

Table 5.1: Parameter values of the case differentiation in the proof of Lemma A.13 with
µA1+m2A2 , mA1+m2A2 , µm1A1+A2 and mm1A1+A2 as defined in (A123).

5.5.2 λe
U

By (5.63), (5.64), Proposition 5.8 and (5.11),

λeU = lim
u→1

1− 2u+ CV e
1 ,V

e
2
(u, u)

1− u = lim
u→1

1− 2u+ CA1+Me
1,2A2,Me

2,1A1+A2(u, u)

1− u (5.151)

= lim
u→1

C̄A1+Me
1,2A2,Me

2,1A1+A2(1− u, 1− u)
1− u (5.152)

= lim
u→1

P
(
A1 +M e

1,2A2 > F̄−1
A1+Me

1,2A2
(1− u), M e

2,1A1 +A2 > F̄−1
Me

2,1A1+A2
(1− u)

)

1− u
(5.153)

= lim
u→1

P
(
A1 +M e

1,2A2 > F−1
A1+Me

1,2A2
(u), M e

2,1A1 +A2 > F−1
Me

2,1A1+A2
(u)
)

1− u , (5.154)

provided the limit exists. For the evaluation of (5.154) we will use the insights of
Section A.4.2 by identifying M e

1,2 with m2 and M e
2,1 with m1, and as in Section 5.4.1

we proceed with the notation in terms of m1 and m2 for better readability and since
the following considerations hold beyond the context of cross-ownership. Hence, with
m1 =M e

2,1 and m2 =M e
1,2, y = F−1

m1A1+A2
(u) and ϑ(y) defined as in (5.72) we obtain

λeU = lim
y→∞

P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y)

P (m1A1 +A2 > y)
, (5.155)

provided the limit exists. For the evaluation of (5.155) the case differentiation of the
proof of Lemma A.13 will be helpful. For better readability, Table 5.1 contains the
corresponding parameter values.

First, note that by Theorem A.12 and Table 5.1,

P (m1A1 +A2 > y) ∼ mm1A1+A2P (A2 > y), y →∞, (5.156)

if we are not in Case 4b.

If we are in Case 1 or Case 4a, limy→∞ ϑ(y) = m2 by Lemma A.13. Then, since
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ϑ(y) > m2 for all y > 0 by Lemma A.9, and because of (5.156) and Theorem A.12,

1 ≥ P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y)

P (m1A1 +A2 > y)
(5.157)

≥
P
(
m1A1 +A2 >

ϑ(y) y
m2

)

P (m1A1 +A2 > y)
∼
P
(
A2 >

ϑ(y) y
m2

)

P (A2 > y)
(5.158)

∼
ln(y)− µ2

ln(y) + ln
(
ϑ(y)
m2

)
− µ2

exp

( −1
2σ22

((
ln(y) + ln

(
ϑ(y)
m2

)
− µ2

)2
− (ln(y)− µ2)2

))

(5.159)

∼ exp

( −1
2σ22

(
2(ln(y)− µ2) ln

(
ϑ(y)
m2

)
+ ln

(
ϑ(y)
m2

)2))
, y →∞, (5.160)

→ 1, y →∞, (5.161)

where (5.161) can be seen as follows. For X ∼ LN (µX , σ
2
X), let F̄µX ,σ2

X
denote the

survival function of X. In Case 1 and Case 4a Theorem A.12 then yields

F̄A1+m2A2(ϑ(y) y)

F̄A1+m2A2(m2y)
∼
F̄µA1+m2A2

,σ2
2
(ϑ(y) y)

F̄µA1+m2A2
,σ2

2
(m2y)

=
F̄µ2+ln(m2),σ2

2
(ϑ(y) y)

F̄µ2+ln(m2),σ2
2
(m2y)

(5.162)

∼
ln(y)− µ2

ln(y) + ln(ϑ(y))− µ2 − ln(m2)
×

exp

( −1
2σ22

((
ln(y) + ln(ϑ(y))− µ2 − ln(m2)

)2 − (ln(y)− µ2)2
)) (5.163)

∼ exp

( −1
2σ22

(
2(ln(y)− µ2) ln

(
ϑ(y)
m2

)
+ ln

(
ϑ(y)
m2

)2))
, y →∞. (5.164)

On the other hand, (5.72) and Theorem A.12 yield

F̄A1+m2A2(ϑ(y) y)

F̄A1+m2A2(m2y)
=

F̄m1A1+A2(y)

F̄A1+m2A2(m2y)
(5.165)

∼
mm1A1+A2F̄µ2,σ2

2
(y)

mA1+m2A2F̄µ2+ln(m2),σ2
2
(m2y)

=
mm1A1+A2

mA1+m2A2

= 1, y → 0, (5.166)

in Case 1 and Case 4a, and (5.161) follows. Hence, in Case 1 and Case 4a,

lim
y→∞

P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y)

P (m1A1 +A2 > y)
= 1. (5.167)

In Case 3 and Case 4b Theorem A.12 yields

P (m1A1 +A2 > z) ∼ mm1A1+A2F̄µ1+ln(m1),σ2
1
(z) = mm1A1+A2P (A1 > z/m1), z →∞.

(5.168)
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Hence, because of ϑ(y) < 1/m1 for all y > 0 by Lemma A.9,

1 ≥ P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y)

P (m1A1 +A2 > y)
≥ P (A1 > y/m1)

P (m1A1 +A2 > y)
(5.169)

∼
P (A1 > y/m1)

mm1A1+A2P (A1 > y/m1)
=

1

mm1A1+A2

, y →∞, (5.170)

and therefore

lim
y→∞

P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y)

P (m1A1 +A2 > y)
= 1, Case 4b, (5.171)

lim inf
y→∞

P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y)

P (m1A1 +A2 > y)
≥ 0.5, Case 3. (5.172)

Furthermore,

P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y)

P (m1A1 +A2 > y)

=
P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y, A2 ≤ y)

P (m1A1 +A2 > y)

+
P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y, A2 > y)

P (m1A1 +A2 > y)
,

(5.173)

and in the following, we will evaluate the limit of (5.173) for y →∞ for Case 3 and Case
4c. For the first ratio we have

P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y,A2 ≤ y)
P (m1A1 +A2 > y)

≤ P (m1A1 +A2 > y, A2 ≤ y)
P (m1A1 +A2 > y)

=
P (m1A1 +A2 > y)− P (A2 > y)

P (m1A1 +A2 > y)
(5.174)

= 1− P (A2 > y)

P (m1A1 +A2 > y)
→ 1− 1

mm1A1+A2

, y →∞, (5.175)

by (5.156). The evaluation of the limit of the second ratio in (5.173) is more elaborate.

lim
y→∞

P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y,A2 > y)

P (m1A1 +A2 > y)

= lim
y→∞

P (A1 +m2A2 > ϑ(y) y, A2 > y)

mm1A1+A2P (A2 > y)
(5.176)

= lim
y→∞

1

mm1A1+A2F̄A2(y)

∫ ∞

y
P (A1 > ϑ(y) y −m2x |A2 = x) fA2(x) dx (5.177)

= lim
y→∞

1

mm1A1+A2F̄A2(y)

∫ ϑ(y)y
m2

y
P (A1 > ϑ(y) y −m2x |A2 = x) fA2(x) dx, (5.178)
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provided the limits exist, since as in (5.158)–(5.160),

lim
y→∞

1

F̄A2(y)

∫ ∞

ϑ(y)y
m2

P (A1 > ϑ(y) y −m2x |A2 = x) fA2(x) dx

= lim
y→∞

1

F̄A2(y)

∫ ∞

ϑ(y)y
m2

fA2(x) dx = lim
y→∞

F̄A2

(
ϑ(y) y
m2

)

F̄A2(y)
(5.179)

= lim
y→∞

exp

( −1
2σ22

(
2(ln(y)− µ2) ln

(
ϑ(y)
m2

)
+ ln

(
ϑ(y)
m2

)2))
= 0, (5.180)

where the last equality follows from the fact that limy→∞ ln(ϑ(y)/m2) > 0 in Case 3 and
Case 4c by Lemma A.13. Then by Theorem A.12 and with the substitution x 7→ xy,

lim
y→∞

1

mm1A1+A2F̄A2(y)

∫ ϑ(y)y
m2

y
P (A1 > ϑ(y) y −m2x |A2 = x) fA2(x) dx

= const.× lim
y→∞

ln(y)− µ2
y × fA2(y)

∫ ϑ(y)y
m2

y
P (A1 > ϑ(y) y −m2x |A2 = x) fA2(x) dx (5.181)

= const.× lim
y→∞

ln(y)− µ2
fA2(y)

∫ ϑ(y)
m2

1
P (A1 > ϑ(y) y −m2xy |A2 = xy) fA2(xy) dx

(5.182)

= const.× lim
y→∞

∫ 2c

1
1{

x≤ϑ(y)
m2

}P (A1 > ϑ(y) y −m2xy |A2 = xy) fA2(xy)
ln(y)− µ2
fA2(y)

dx

(5.183)

with some c ∈ (max{1, 0.5ϑ̄/m2)}, ϑ̄/m2) and ϑ̄ := limy→∞ ϑ(y). Note that such a c
exists due to ϑ̄/m2 > 1 in Case 3 and Case 4c. In particular, we have c > 1. In order to be
able to swap the limit and the integral in (5.183), we show that the integrand is bounded
by some constant. If 1 < x ≤ c, there is an ǫ1 > 0 such that ϑ(y)−m2x ≥ ϑ(y)−m2c > ǫ1
for y sufficiently big. Furthermore, fA2(xy)/fA2(y) < 1 for y sufficiently big, i.e. for y
sufficiently big (recall that σ1 = σ2 in Case 3 and Case 4c),

P (A1 > ϑ(y) y −m2xy |A2 = xy) fA2(xy)
ln(y)− µ2
fA2(y)

(5.184)

≤ Φ

(
−1√

1− ρ2σ2

(
ln(y) + ln(ϑ(y)−m2x)− µ1 − ρ

(
ln(x) + ln(y)− µ2

))
)
(ln(y)− µ2)

(5.185)

≤ Φ

(
−1√

1− ρ2σ2

(
(1− ρ) ln(y) + ln(ǫ1)− µ1 − ǫ2

))
(ln(y)− µ2) (5.186)

with ǫ2 = sup1<x≤c |ρ(ln(x) − µ2)|. Furthermore, L’Hôpital’s rule yields for a > 0 and



5.5 Tail Dependence under XOS of Equity only 79

b ∈ R

lim
z→∞

Φ (−az + b)× z = lim
z→∞

Φ (−az + b)

1/z
= lim

z→∞
−aϕ (−az + b)

−1/z2 (5.187)

= lim
z→∞

a/
√
2π × exp(−(az + b)2/2 + 2 ln(z)) = 0. (5.188)

Hence,

lim
y→∞

Φ

(
−1√

1− ρ2σ2

(
(1− ρ) ln(y) + ln(ǫ1)− µ1 − ǫ2

))
(ln(y)− µ2) = 0, (5.189)

i.e. in Case 3 and Case 4c for y sufficiently big, (5.184) and therefore the integrand of
(5.183) is on (1, c] smaller than some constant which only depends on c. If x > c, the
integrand of (5.183) is bounded from above as follows.

P (A1 > ϑ(y) y −m2xy |A2 = xy) fA2(xy)
ln(y)− µ2
fA2(y)

≤ fA2(xy)
ln(y)− µ2
fA2(y)

(5.190)

=
1

x
exp

( −1
2σ22

(
(ln(x) + ln(y)− µ2)2 − (ln(y)− µ2)2

)
+ ln(ln(y)− µ2)

)
(5.191)

=
1

x
exp

( −1
2σ22

(
2 ln(x)(ln(y)− µ2) + ln(x)2

)
+ ln(ln(y)− µ2)

)
, (5.192)

and straightforward calculations show that the last expression as a function in ln(y)−µ2
becomes maximal for ln(y)− µ2 = σ22/ ln(x), i.e. for x > c > 1,

P (A1 > ϑ(y) y −m2xy |A2 = xy) fA2(xy)
ln(y)− µ2
fA2(y)

≤ 1

x
exp

( −1
2σ22

(
2σ22 + ln(x)2

)
+ ln

(
σ22/ ln(x)

))
(5.193)

≤ σ22/ ln(x) ≤ σ22/ ln(c). (5.194)

Altogether, we have shown that the integrand of (5.183) is smaller than some constant
for all x ∈ (1, 2c), and the dominated convergence theorem yields

lim
y→∞

∫ 2c

1
1{

x≤ϑ(y)
m2

}P (A1 > ϑ(y) y −m2xy |A2 = xy) fA2(xy)
ln(y)− µ2
fA2(y)

dx

=

∫ 2c

1
lim
y→∞

1{
x≤ϑ(y)

m2

}P (A1 > ϑ(y) y −m2xy |A2 = xy) fA2(xy)
ln(y)− µ2
fA2(y)

dx (5.195)

=

∫ 2c

1
0 dx = 0, (5.196)
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where (5.196) follows from (5.185)–(5.186), (5.189)–(5.192) and since limy→∞ (5.192) = 0
due to x > 1. Hence, the limit of the second ratio of (5.173) is 0 for y → ∞ in Case 3
and Case 4c. Together with (5.175) this implies (cf. Table 5.1)

lim
y→∞

P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y)

P (m1A1 +A2 > y)
= 0, Case 4c, (5.197)

lim sup
y→∞

P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y)

P (m1A1 +A2 > y)
≤ 0.5, Case 3. (5.198)

Hence, by (5.172),

lim
y→∞

P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y)

P (m1A1 +A2 > y)
= 0.5 (5.199)

in Case 3. Due to

lim
y→∞

P (A1 +m2A2 > ϑ(y) y, m1A1 +A2 > y)

P (m1A1 +A2 > y)

= lim
u→1

P (A1 +m2A2 > F−1
A1+m2A2

(u), m1A1 +A2 > F−1
m1A1+A2

(u))

1− u ,

(5.200)

which is perfectly symmetric between A1 +m2A2 and m1A1 + A2 (recall that σ1 = σ2
in Case 2 and Case 3), the final result for Case 3 also holds for Case 2. Altogether, by
(5.155), (5.167), (5.171), (5.197), (5.199) and (5.200),

λeU =





1, Case 1, Case 4a and Case 4b,

0.5, Case 2 and Case 3,

0, Case 4c.

(5.201)

5.5.3 Summary of Results under XOS of Equity only

Our results on tail dependence of firm values under cross-ownership of equity only are
summarized in the following proposition. For the sake of clarity, we put brackets in the
corresponding case differentiation.

Proposition 5.11. Under cross-ownership of equity only with bivariate lognormally
distributed exogenous asset values as in Assumption 5.6, the coefficient of lower tail
dependence λeL is 0 and the coefficient of upper tail dependence λeU is given by

λeU =





1, σ1 < σ2 or (σ1 = σ2 and (µ1 < µ2 + ln(M e
1,2) or µ2 < µ1 + ln(M e

2,1))),

0.5, σ1 = σ2 and (µ1 = µ2 + ln(M e
1,2) or µ2 = µ1 + ln(M e

2,1)),

0, σ1 = σ2 and µ1 > µ2 + ln(M e
1,2) and µ2 > µ1 + ln(M e

2,1).

(5.202)

Proof. This follows from Section 5.5.1, (5.201) and Table 5.1.
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By Proposition 5.11 the presence of cross-ownership of equity only can lead to both,
upper tail independence and perfect upper tail dependence, depending on the exact levels
of cross-ownership. If both cross-ownership fractions lie below certain bounds, upper tail
independence is preserved, but if one of them exceeds the corresponding threshold, firm
values are perfectly upper tail dependent under cross-ownership of equity only. This
is in stark contrast to Proposition 5.10 for cross-ownership of debt only, where not the
cross-ownership fractions, but the correlation between the logarithmized exogenous asset
values was crucial. The content of Proposition 5.11 can be explained as follows.

Due to

P (V e
1 ≤ v1) = P (A1 +M e

1,2A2 ≤ (1−M e
1,2M

e
2,1)v1 +M e

1,2M
e
2,1d1 +M e

1,2d2), (5.203)

P (V e
2 ≤ v2) = P (M e

2,1A1 +A2 ≤ (1−M e
1,2M

e
2,1)v2 +M e

1,2M
e
2,1d2 +M e

2,1d1) (5.204)

for vi sufficiently big by Lemma 3.7 and Remark 3.6, the right tail of the distribution
of a firm’s value is determined by the right tail of the distribution of the sum of the
firm’s own exogenous asset value and the value of the fraction it holds of the other firm’s
exogenous asset. If for example σ1 = σ2, µ1 > µ2 + ln(M e

1,2) and µ2 > µ1 + ln(M e
2,1),

Theorem A.12 yields

P (A1 +M e
1,2A2 > x) ∼ P (A1 > x), (5.205)

P (M e
2,1A1 +A2 > x) ∼ P (A2 > x), x→∞, (5.206)

and therefore, by (5.203)–(5.204), P (V e
i ≥ vi) ∼ P (Ai ≥ (1−M e

1,2M
e
2,1)vi+M

e
1,2M

e
2,1di+

M e
ijdj) for vi → ∞ (i, j ∈ {1, 2}, i 6= j). This means that for each firm, its firm value

is almost completely determined by its own exogenous asset value, if the firm value is
sufficiently big. Since exogenous asset values are upper tail independent by (5.69) under
Assumption 5.6, it is plausible that firm values are upper tail independent as well, if
σ1 = σ2, µ1 > µ2 + ln(M e

1,2) and µ2 > µ1 + ln(M e
2,1). If σ1 < σ2, or if σ1 = σ2 and

µ1 < µ2 + ln(M e
1,2), or if σ1 = σ2 and µ2 < µ1 + ln(M e

2,1), Theorem A.12 and (5.203)–
(5.204) yield that the right tail of the distribution of, say, firm i’s value is determined by
the right tail of the distribution of its own exogenous asset value, whereas the right tail
of the distribution of firm j’s value (i 6= j) is determined by the value of the fraction it
holds of firm i’s exogenous asset value. Hence, for both firms, the right tail behaviour of
their firm values is determined by the right tail behaviour of Ai, which illustrates the fact
that firm values are perfectly upper tail dependent in these cases by Proposition 5.11.

In contrast to that, firm values are always lower tail independent under cross-ownership
of equity only, irrespectively of the underlying parameter values of the lognormal distri-
bution of exogenous asset values and the realized levels of cross-ownership.

The considerations of Section 5.4.1 and Section 5.5.2 not only yield the lower tail de-
pendence coefficient under cross-ownership of debt only and the upper tail dependence
coefficient under cross-ownership of equity only (provided that exogenous asset values
follow a bivariate lognormal distribution with ρ 6= σ1/σ2), they also allow a more gen-
eral interpretation in terms of two portfolios made up of the same lognormal assets.
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Imagine two portfolios built from securities A1 and A2 with bivariate lognormal distri-
bution as in Assumption 5.6 in that one portfolio contains A1 and A2 at the ratio of
1 : m2 and the other portfolio at the ratio m1 : 1 (m1,m2 ∈ (0, 1)). Then the results of
Section 5.4.1 and Section 5.5.2 show that these portfolios might be lower and/or upper
tail independent, despite the fact that they are made up of the same securities. De-
pending on the underlying parameter constellation, various scenarios may occur: if for
example σ1 = σ2, we have ρ < σ1/σ2, i.e. the two portfolios are lower tail independent,
but the upper tail dependence coefficient can be 0, 0.5 or 1. In the more realistic case
that σ1 < σ2, the portfolios are perfectly upper tail dependent, whereas the lower tails
can be both, independent and perfectly dependent. If each of the two portfolios is di-
versified in the sense that A1 and A2 are negatively correlated (which is equivalent to
ρ < 0 by (5.140)), this ensures lower tail independence of the two portfolios. Lower tail
dependence is also preserved if the coefficients of variations of the two securities roughly
coincide (cf. (5.141)), as this implies σ1/σ2 ≈ 1 and therefore ρ < σ1/σ2 for most values
of ρ. However, if σ1 and σ2 differ strongly, the portfolios may be lower tail dependent
even for weakly positively correlated A1 and A2. These considerations show that in a
sound management of the overall risk arising from holding both portfolios, a thorough
estimation of the underlying parameters is necessary.



6 Sensitivities of Firm Values

As we have seen in Lemma 3.4, the solution (r, s) of the system (3.13)–(3.14) for the
no-arbitrage prices of debt and equity under cross-ownership is continuous in the model
parameters a, d, Md and Me. In this section we consider derivatives and the monoton-
icity behaviour of r and s with respect to these input parameters. From Proposition 2
of Gouriéroux et al. [2012] we know that ri and si are non-decreasing functions of the
exogenous asset value aj (i, j ∈ {1, . . . n}) for any given level of nominal liabilities d

and any cross-ownership structure. Furthermore, Liu and Staum [2010] provide exact
formulae for the related derivatives under cross-ownership of debt only. In the remainder
of this section we extend the existing literature by analyzing sensitivities of r and s with
respect to the model parameters a, d, Md and Me for an arbitrary scenario of cross-
ownership. We start with the cross-ownership fractions.

6.1 Influence of the Cross-Ownership Fractions

6.1.1 Monotonicity of r, s and v in the Cross-Ownership Fractions

Monotonicity of r and s as solutions of (3.13)–(3.14) in the cross-ownership fractions is
rather straightforward to see from (3.17). This yields the following proposition.

Proposition 6.1. For n firms linked by cross-ownership of possibly both, debt and equity,
let

r = min{d, a+Mdr+Mes}, (6.1)

s = (a+Mdr+Mes− d)+. (6.2)

Then ri and si are non-decreasing in Md
kj and M e

kj for all i, j, k ∈ {1, . . . , n} (k 6= j).

Proof. Let Φ1 and Φ2 be defined as Φ in (3.17) with Φ1 and Φ2 exhibiting identical
values of a and d, but with cross-ownership matrices Md and Me such that exactly one
of their 2n(n − 1) entries (recall that Md and Me have zeros on the diagonals) differs
between Φ1 and Φ2. We assume that the matrix with the smaller entry belongs to Φ1.
Then

0 ≤ Φ1

(
r

s

)
≤ Φ2

(
r

s

)
for all r, s ≥ 0. (6.3)

83



84 6 Sensitivities of Firm Values

Furthermore, for i = 1, 2,

Φi

(
r1
s1

)
≤ Φi

(
r2
s2

)
for all r1 ≤ r2 and s1 ≤ s2. (6.4)

Let ((r∗1)
T , (s∗1)

T )T and ((r∗2)
T , (s∗2)

T )T denote the fixed points of Φ1 and Φ2. The Picard
Iteration for the fixed points of Φ1 and Φ2 (cf. Suzuki [2002] and Fischer [2014]), (6.3)
and (6.4) then yield for arbitrary r, s ≥ 0

(
r∗1
s∗1

)
= lim

m→∞
Φ1 ◦ . . . ◦Φ1︸ ︷︷ ︸

m

(
r

s

)
≤ lim

m→∞
Φ2 ◦ . . . ◦Φ2︸ ︷︷ ︸

m

(
r

s

)
=

(
r∗2
s∗2

)
, (6.5)

and the assertion follows.

Corollary 6.2. In the situation of Proposition 6.1, vi is non-decreasing in Md
kj and

M e
kj for all i, j, k ∈ {1, . . . , n} (k 6= j), i.e. the value of any firm in the system will not

decrease if any cross-ownership fraction in the system increases.

Proof. This directly follows from vi = ri + si (cf. (3.16)) and Proposition 6.1.

In the following section we will examine in more detail under what circumstances and
to what extent the entries of r and s react to chances in the cross-ownership matrices.
For that, we will consider derivatives within a Suzuki area.

6.1.2 Derivatives with Respect to the Cross-Ownership Fractions

6.1.2.1 The Implicit Function Theorem

Let F : R2n2 → R2n be defined as

F(r, s,Md,Me) :=

(
min{d, a+Mdr+Mes} − r

(a+Mdr+Mes− d)+ − s

)
. (6.6)

Of course, F also depends on a and d, but as we will assume them to be constant in this
section, we suppress them in the notation. In the following we will refer to r and s as the
variables of F, and to the entries of the cross-ownership matrices Md and Me as the par-
ameters of F. Thus, there are 2n variables and 2n(n− 1) parameters. Since the ith and
(n+i)th component of F refer to ri and si, respectively, and thus to the same firm, we will
sometimes denote the components of F as (F1, . . . , Fi, . . . , Fn, Fn+1, . . . , Fn+i, . . . , F2n).

Clearly, (3.13)–(3.14) is equivalent to F(r, s,Md,Me) = 0, and since the solution (r∗, s∗)
of F(r, s,Md,Me) = 0 depends on Md and Me, one is tempted to write (r∗, s∗) =
(r∗(Md,Me), s∗(Md,Me)). For a strictly mathematical derivation of the existence of
such a functional relationship and its properties, a version of the Implicit Function
Theorem will prove useful. In contrast to the “classical” version of the Implicit Function
Theorem (see for example Theorem 9.28 of Rudin [1974]), the version of Halkin [1974]
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does not require that F is globally continuously differentiable. We adopt its notation
and prerequisites to our set-up.

Theorem 6.3. Let X ⊂ Rk, P ⊂ Rm, and let G : X × P → Rk, (x,p) 7→ G(x,p), be
continuous. For (x∗,p∗) ∈ X × P, suppose that the derivative DG ∈ Rk×(k+m) of G
with respect to (x,p) exists at (x∗,p∗). For DG|(x,p)=(x∗,p∗) = (A,B) with A ∈ Rk×k

and B ∈ Rk×m, let A be invertible. Then there exists a neighbourhood U ⊂ P of p∗ and
a function ψ : U→ X such that

1. ψ(p∗) = x∗,

2. G(ψ(p),p) = G(x∗,p∗) for all p ∈ U, and

3. ψ is continuously differentiable at p∗ with

Dψ(p∗) = −A−1B. (6.7)

The notation of Theorem 6.3 can be transferred to our set-up as follows. First, we can
identify k with the number of variables 2n, m with the number of parameters 2n(n− 1),
and G with F as defined in (6.6). Furthermore, we can choose X = R2n and P as the
set of all possible pairs of cross-ownership matrices (Md,Me), which can be interpreted
as a subset of R2n(n−1), and we can identify x with (r, s) and p with a vector containing
the off-diagonal elements of Md and Me.

Of course, F is continuous in all its variables and parameters. In order to be able to use
Theorem 6.3, we need to see under what conditions F (i.e. each of the 2n components of
F) is continuously partially differentiable with respect to the components of r and s and
the entries of Md and Me. As becomes immediately clear from (6.6), F is continuously
partially differentiable with respect to each variable and parameter, if and only if

di 6= ai +
n∑

j=1

Md
ijrj +

n∑

j=1

M e
ijsj for all i ∈ {1, . . . , n}. (6.8)

For a given (Md,Me), let (r∗, s∗) be such that F(r∗, s∗,Md,Me) = 0, i.e. (r∗, s∗) is a
solution to (3.13)–(3.14). In the following, we always assume (Md,Me) to be such that
a lies in the inner of some Suzuki area Az for some z ∈ {s, d}n. Then r∗i + s∗i = v∗i 6= di
for all i ∈ {1, . . . , n} (cf. (3.18)), and thus by (3.16),

di 6= ai +

n∑

j=1

Md
ijr

∗
j +

n∑

j=1

M e
ijs

∗
j for all i ∈ {1, . . . , n}, (6.9)

which means that F is continuously partially differentiable in all variables and parameters
at (r∗, s∗,Md,Me). The Jacobian matrix of F with respect to r and s can be derived
from the following lemma.
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Lemma 6.4. For F as defined in (6.6), let di 6= ai +
∑n

j=1M
d
ijrj +

∑n
j=1M

e
ijsj for all

i ∈ {1, . . . , n}. Then, for i, j ∈ {1, . . . , n},

∂Fi
∂rj

(r, s,Md,Me) =





−1, i = j,

0, i 6= j and di < ai +
∑n

j=1M
d
ijrj +

∑n
j=1M

e
ijsj ,

Md
ij , i 6= j and di > ai +

∑n
j=1M

d
ijrj +

∑n
j=1M

e
ijsj ,

(6.10)

∂Fi
∂sj

(r, s,Md,Me) =





0, i = j,

0, i 6= j and di < ai +
∑n

j=1M
d
ijrj +

∑n
j=1M

e
ijsj ,

M e
ij , i 6= j and di > ai +

∑n
j=1M

d
ijrj +

∑n
j=1M

e
ijsj ,

(6.11)

∂Fn+i
∂rj

(r, s,Md,Me) =





0, i = j,

Md
ij , i 6= j and di < ai +

∑n
j=1M

d
ijrj +

∑n
j=1M

e
ijsj ,

0, i 6= j and di > ai +
∑n

j=1M
d
ijrj +

∑n
j=1M

e
ijsj ,

(6.12)

∂Fn+i
∂sj

(r, s,Md,Me) =





−1, i = j,

M e
ij , i 6= j and di < ai +

∑n
j=1M

d
ijrj +

∑n
j=1M

e
ijsj ,

0, i 6= j and di > ai +
∑n

j=1M
d
ijrj +

∑n
j=1M

e
ijsj .

(6.13)

Proof. This follows from straightforward calculations and the assumption that Md
ii =

M e
ii = 0 for all i = 1, . . . , n.

Let us now assume that for a cross-ownership scenario given by a, d, Md and Me, q of
the n firms are solvent (q ∈ {0, 1, . . . , n}), w.l.o.g. we assume these firms to be the firms
1, . . . , q. Under the assumption that (6.9) holds, we have

di < ai +
n∑

j=1

Md
ijr

∗
j +

n∑

j=1

M e
ijs

∗
j ⇔ i ≤ q. (6.14)

By Lemma 6.4, the Jacobian matrix of F with respect to (r, s) evaluated at (r∗, s∗,Md,Me)
is then given as

J =




∂F1
∂r1

. . . ∂F1
∂rn

∂F1
∂s1

. . . ∂F1
∂sn

...
...

...
...

∂Fn

∂r1
. . . ∂Fn

∂rn
∂Fn

∂s1
. . . ∂Fn

∂sn

∂Fn+1

∂r1
. . . ∂Fn+1

∂rn

∂Fn+1

∂s1
. . . ∂Fn+1

∂sn
...

...
...

...
∂F2n
∂r1

. . . ∂F2n
∂rn

∂F2n
∂s1

. . . ∂F2n
∂sn




(r∗, s∗,Md,Me) (6.15)
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=




−1
0

0

. . . 0 0 0
−1

−1
Md 0

M e

Md

Md
. . . M e

M e
. . .

−1 0

0
Md −1

M e

Md
. . . Md

M e
. . . M e

0 −1
−1

0
0 0 0

0

. . .

−1







q




n− q




q




n− q

︸ ︷︷ ︸
q

︸ ︷︷ ︸
n−q

︸ ︷︷ ︸
q

︸ ︷︷ ︸
n−q

(6.16)

=:




M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44


− I2n =: M− I2n, (6.17)

where in both, rows and columns of (6.16) and (6.17), the dashed lines separate the q
solvent firms from the n− q firms in default, and with

(
M31 M32

M21 M22

)
= Md,

(
M33 M34

M23 M24

)
= Me. (6.18)

This also clarifies how the entries Md and M e of (6.16) should be understood.

The matrices Mkl (1 ≤ k, l ≤ 4) defined in (6.17) have non-negative entries, and from
(6.16) and (6.18) it becomes clear that the column sums ofM defined in (6.17) are strictly
smaller than 1, since Md and Me are strictly left sub-stochastic. Then Lemma A.1 of
Gouriéroux et al. [2012] implies that

det(J) = det(M− I2n) = (−1)2n det(I2n −M) > 0. (6.19)

In particular, J is invertible (see also Elsinger [2009] and Fischer [2014]). This is neces-
sary for the applicability of Theorem 6.3 as J corresponds to A of Theorem 6.3. Laplace
expansion (cf. equation (0.3.1.1) of Horn and Johnson [2013], for example) of J along
the first q rows and the last n− q rows yields

0 < det(J) = (−1)n det
((

M22 M23

M32 M33

)
− In

)
= det

(
In −

(
M22 M23

M32 M33

))
. (6.20)

Hence, the determinant of J depends on half of all cross-ownership fractions only.
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We now consider the partial derivatives of F with respect to the entries of the cross-
ownership matrices Md and Me.

Lemma 6.5. For F as defined in (6.6), let di 6= ai +
∑n

j=1M
d
ijrj +

∑n
j=1M

e
ijsj for all

i ∈ {1, . . . , n}. Then, for i 6= j (i, j ∈ {1, . . . , n}),

∂Fi

∂Md
ij

(r, s,Md,Me) =

{
0, i 6= j and di < ai +

∑n
j=1M

d
ijrj +

∑n
j=1M

e
ijsj ,

rj , i 6= j and di > ai +
∑n

j=1M
d
ijrj +

∑n
j=1M

e
ijsj ,

(6.21)

∂Fi
∂M e

ij

(r, s,Md,Me) =

{
0, i 6= j and di < ai +

∑n
j=1M

d
ijrj +

∑n
j=1M

e
ijsj ,

sj , i 6= j and di > ai +
∑n

j=1M
d
ijrj +

∑n
j=1M

e
ijsj ,

(6.22)

∂Fn+i

∂Md
ij

(r, s,Md,Me) =

{
rj , i 6= j and di < ai +

∑n
j=1M

d
ijrj +

∑n
j=1M

e
ijsj ,

0, i 6= j and di > ai +
∑n

j=1M
d
ijrj +

∑n
j=1M

e
ijsj ,

(6.23)

∂Fn+i
∂M e

ij

(r, s,Md,Me) =

{
sj , i 6= j and di < ai +

∑n
j=1M

d
ijrj +

∑n
j=1M

e
ijsj ,

0, i 6= j and di > ai +
∑n

j=1M
d
ijrj +

∑n
j=1M

e
ijsj .

(6.24)

For i 6= k and k 6= j (i, j, k ∈ {1, . . . , n}),

∂Fi

∂Md
kj

(r, s,Md,Me) =
∂Fi
∂M e

kj

(r, s,Md,Me) = 0, (6.25)

∂Fn+i

∂Md
kj

(r, s,Md,Me) =
∂Fn+i
∂M e

kj

(r, s,Md,Me) = 0. (6.26)

Proof. This follows from straightforward calculations.

We do not consider derivatives of F with respect to Md
kk and M e

kk, k = 1, . . . , n, since
these cross-ownership fractions are constant 0 in our model.

Corollary 6.6. Under the assumption that (6.9) holds, for k 6= j (j, k ∈ {1, . . . , n}),

(
∂Fl

∂Md
kj

(r∗, s∗,Md,Me)

)

1≤l≤2n

=





(0, . . . , 0︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
k−1

, r∗j , 0, . . . , 0︸ ︷︷ ︸
n−k

), firm k solvent,

(0, . . . , 0︸ ︷︷ ︸
k−1

, r∗j , 0, . . . , 0︸ ︷︷ ︸
n−k

, 0, . . . , 0︸ ︷︷ ︸
n

), firm k in def.,

(6.27)

(
∂Fl
∂M e

kj

(r∗, s∗,Md,Me)

)

1≤l≤2n

=





(0, . . . , 0︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
k−1

, s∗j , 0, . . . , 0︸ ︷︷ ︸
n−k

), firm k solvent,

(0, . . . , 0︸ ︷︷ ︸
k−1

, s∗j , 0, . . . , 0︸ ︷︷ ︸
n−k

, 0, . . . , 0︸ ︷︷ ︸
n

), firm k in def.

(6.28)
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In particular, for l ∈ {1, . . . , q} ∪ {n+ q + 1, . . . , 2n},

∂Fl

∂Md
kj

(r∗, s∗,Md,Me) =
∂Fl
∂M e

kj

(r∗, s∗,Md,Me) = 0. (6.29)

Proof. This is an immediate consequence of Lemma 6.5 and the fact that if (6.9) holds,
firm k is in default if and only if k > q.

Hence, under the assumption that (6.9) holds, the Jacobian matrix of F with respect
to all variables and parameters exists. As we can identify our (invertible) J with A of
Theorem 6.3, we can apply Theorem 6.3 to our problem and we obtain a neighbourhood
U ⊆ P of (Md,Me) and a function ψ : U→ R2n such that F(ψ(M̃d, M̃e), M̃d, M̃e) = 0

for all (M̃d, M̃e) ∈ U, i.e. for a given pair (M̃d, M̃e) of cross-ownership fractions in the
neighbourhood of (Md,Me), ψ yields the corresponding solution (r̃, s̃) to the problem
F(r, s, M̃d, M̃e) = 0, which exists and is unique by Theorem 3.8 of Fischer [2014]. Hence,

ψ(M̃d, M̃e) = (r̃T , s̃T )T , (6.30)

which is why we will identify ψ1, . . . , ψn with r1, . . . , rn and ψn+1, . . . , ψ2n with s1, . . . , sn.
Furthermore, ψ is differentiable at (Md,Me), i.e. we can examine how slight changes
in the entries of (Md,Me) affect r∗ and s∗. This will be done in the following section.
Note that since we assume Md and Me to be such that a lies in the inner of some Suzuki
area and since v is continuous in Md and Me by Lemma 3.4, slight changes in Md and
Me do not alter the financial status of any firm in the system.

6.1.2.2 The Jacobian Matrix of ψ

By Theorem 6.3, the Jacobian matrix of ψ in (Md,Me) with respect to the entries of
the cross-ownership matrices, in symbols Jψ, is given as

Jψ = −J−1K ∈ R2n×2n(n−1), (6.31)

where K ∈ R2n×2n(n−1) stands for the Jacobian matrix of F with respect to the 2n(n−
1) entries of the cross-ownership matrices evaluated at (r∗, s∗,Md,Me). K exists by
Corollary 6.6. However, (6.31) can only be applied if the inverse of J is known. Instead
of calculating J−1 explicitly, we determine the entries of Jψ by use of Cramer’s rule (see
Theorem 4.7D of Thrall and Tornheim [1957], for example), stating that the solution of
a linear system of equations Ax = b with A ∈ Rm×m and x,b ∈ Rm can be calculated
as

xi =
det(Ai)

det(A)
, 1 ≤ i ≤ m, (6.32)

where the matrix Ai is obtained from A by replacing the ith column of A with b.

For some k, j ∈ {1, . . . , n}, k 6= j, let us consider the column of Jψ containing the
derivatives of ψ with respect to Mkj , where Mkj stands for Md

kj or M e
kj . Then (6.31)
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yields

J×
(
∂ψ1

∂Mkj
, . . . ,

∂ψ2n

∂Mkj

)T
= −

(
∂F1

∂Mkj
, . . . ,

∂F2n

∂Mkj

)T
, (6.33)

where all derivatives are evaluated at (r∗, s∗) resp. (r∗, s∗,Md,Me). By Cramer’s rule,
the entries of

( ∂ψ1

∂Mkj
, . . . , ∂ψ2n

∂Mkj

)
(r∗, s∗) can be determined as

0 ≤ ∂ψl
∂Mkj

(r∗, s∗) = −det(Jl)

det(J)
, 1 ≤ l ≤ 2n, (6.34)

where Jl is obtained from J by replacing the lth column of J with
(
∂F1
∂Mkj

, . . . , ∂F2n
∂Mkj

)T

evaluated at (r∗, s∗,Md,Me). Note that the inequality in (6.34) follows from Proposi-
tion 6.1.

In the following, we will further analyze det(Jl). By Corollary 6.6, the inserted column(
∂Fl

∂Mkj
(r∗, s∗,Md,Me)

)
1≤l≤2n

of Jl has at most one non-zero element, denoted by

mj :=

{
r∗j , Mkj =Md

kj ,

s∗j , Mkj =M e
kj .

(6.35)

Of course, mj might be 0, but as it is the only element of
(
∂Fl

∂Mkj
(r∗, s∗,Md,Me)

)
1≤l≤2n

that can be different from 0, we will refer to mj as the non-zero element of(
∂Fl

∂Mkj
(r∗, s∗,Md,Me)

)
1≤l≤2n

. Furthermore, let

Jl =:




J1,l

J21,l J22,l J23,l

J3,l


 ∈ R2n×2n, (6.36)

where the dashed lines exactly correspond to the dashed lines in (6.16), i.e. J1,l ∈ Rq×2n,
J21,l ∈ Rn×q, J22,l ∈ Rn×n, J23,l ∈ Rn×(n−q) and J3,l ∈ R(n−q)×2n.

By Corollary 6.6 the non-zero element mj of the lth column of Jl cannot stand in the
first q rows or the last n − q rows of Jl. Let us now assume mj stands in J21,l or J23,l,
i.e. l ∈ {1, . . . , q} ∪ {n+ q+ 1, . . . , 2n}. Apart from mj , the lth column of Jl consists of
zeros only. Then it can be seen from (6.16) that the lth row of Jl is a zero row. Hence,

∂ψl
∂Mkj

(r∗, s∗) = −det(Jl)

det(J)
= 0, l ∈ {1, . . . , q} ∪ {n+ q + 1, . . . , 2n}. (6.37)

If we assume that mj stands in J22,l, i.e. l ∈ {q + 1, . . . , n + q}, successive Laplace
expansion along the first q rows and last n− q rows of Jl yields

det(Jl) = (−1)n det(J22,l). (6.38)

Hence, we have the following proposition.
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Proposition 6.7. For n firms linked by cross-ownership of possibly both, debt and equity,
let d, Md and Me be such that a lies in the inner of some Suzuki area Az, and let (r, s)
be the such that

r = min{d, a+Mdr+Mes}, (6.39)

s = (a+Mdr+Mes− d)+. (6.40)

Then, for i, j, k ∈ {1, . . . , n} (k 6= j),

∂ri
∂Mkj

(Md,Me) =

{
0, firm i solvent,
(−1)n+1 det(J22,i)

det(J) ≥ 0, firm i in default,
(6.41)

∂si
∂Mkj

(Md,Me) =

{
(−1)n+1 det(J22,n+i)

det(J) ≥ 0, firm i solvent,

0, firm i in default,
(6.42)

with J, J22,i and J22,n+i defined in (6.16) and (6.36).

Proof. The derivatives follow from (6.34), (6.37), (6.38) and the definition of ψ. Propo-
sition 6.1 yields that the derivatives are non-negative.

If firm i is solvent, we have ri = di, and it is clear that within a Suzuki area (where the
financial status of any firm in the system is unchanged, and in particular, firm i stays
solvent), this recovery value of debt is invariant under changes in any cross-ownership
fraction. Within a Suzuki area, the firm’s equity value si is non-decreasing in any cross-
ownership fraction. From (6.20), the definition of J22,n+i and the following Remark 6.8
it becomes clear that the corresponding derivative only depends on mj (cf. (6.35)), the
fractions of debt of the bankrupt firms held within the system and the fractions of the
equity of the solvent firms held within the system.

Similarly, if firm i is in default, we have si = 0, i.e. the value of firm i’s equity remains
0 also if any cross-ownership fraction in the model changes, as long as such changes do
not alter the financial status of any firm in the system (in particular firm i remains in
default) and as above, the derivative of firm i’s recovery value of debt with respect to
any cross-ownership fraction only depends on mj , the fractions of debt of the bankrupt
firms held within the system and the fractions of the equity of the solvent firms held
within the system.

Remark 6.8. The fact that the corresponding derivatives of Proposition 6.7 are non-
negative, can also be shown by considering the sign of det(J22,l) for l ∈ {q+1, . . . , n+q}.
Recall that det(J) > 0 by (6.19). By (6.16) and (6.36), apart from the inserted column
with one non-zero entry mj only, the diagonal elements of J22,l ∈ Rn×n equal −1 and
the off-diagonal elements are entries of Md and/or Me (that depends on q, the number
of solvent firms).

If mj stands on the diagonal of J22,l, we can expand J22,l along the column containing
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mj to obtain

det(J22,l) = mj det(J
′
22,l), (6.43)

where J′
22,l is the (n−1)×(n−1)−submatrix of J22,l where the row and column containing

mj have been deleted. Of course, the diagonal entries of J′
22,l equal −1, and by (6.18)

and (6.36), the sum of the remaining entries is strictly smaller than 1 in each column.
Hence, setting J′′

22,l := J′
22,l + In−1 we can write

(−1)n+1 det(J22,l) = (−1)n+1mj det(J
′′
22,l − In−1) = (−1)2nmj det(In−1 − J′′

22,l) ≥ 0,
(6.44)

since the last determinant is positive by Lemma A.1 of Gouriéroux et al. [2012].

If mj stands in the kth row and pth column of J22,l (k 6= p), it is straightforward to see
that J22,l meets the assumptions of Lemma A.15, and Laplace expansion of J22,l along
the pth column yields (recall that mj ≥ 0 is the only non-zero element in this column)

(−1)n+1 det(J22,l) = (−1)n+1(−1)k+pmj det(J
′′′
22,l) ≥ 0, (6.45)

with J′′′
22,l denoting the (n− 1)× (n− 1)−submatrix of J22,l, where the kth row and pth

column have been deleted.

6.2 Influence of the Nominal Level of Liabilities d

6.2.1 Derivatives with Respect to d

6.2.1.1 Arbitrary Cross-Ownership Structure

Having analyzed the influence of the cross-ownership fractions on (r, s) as solutions of
(3.13)–(3.14) in the previous sections, we now examine how ri and si change with dj ,
1 ≤ i, j ≤ n, for a given value of a and fixed cross-ownership fractions Md and Me.
In contrast to the analysis with respect to the cross-ownership fractions (cf. Proposi-
tion 6.1), sensitivities of r and s with respect to d cannot be directly obtained from the
definition of Φ in (3.17). Instead, we will first calculate derivatives within the Suzuki
areas and infer global monotonicity properties from them. These derivatives will not be
deduced by the Implicit Function Theorem as in Section 6.1.2, because in analogy to
(6.34) this would yield a matrix J̄l containing derivatives of F with respect to some dj ,
among others, but we would not be able to derive the sign of det(J̄l) and thus not of
∂Fl

∂dj
for a certain scenario, whereas this sign can be determined with the approach of this

section.

In the following, r and s are always solutions of (3.13)–(3.14), and we will always assume
that slight changes in an entry of d do not alter the financial status (solvency or default)
of any firm in the system, i.e. we stay within a certain Suzuki area. However, this
implies that within a certain Suzuki area there might be values of dj for which only
one-sided derivatives of ri and si with respect to dj exist. Henceforth, if the two-sided
derivative does not exist for a particular value of dj , we mean the value of the one-sided
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derivative. One-sided derivatives always exist because within a certain Suzuki area, the
system (3.13)–(3.14) is linear.

Again, we will assume w.l.o.g. that the firms 1, . . . , q are solvent and that the firms
q + 1, . . . , n are in default (q ∈ {0, 1, . . . , n}). Then

ri = di for 1 ≤ i ≤ q, si = 0 for q < i ≤ n, (6.46)

and obviously, for j ∈ {1, . . . , n},

∂ri
∂dj

=

{
1, i = j,

0, i 6= j,
for 1 ≤ i ≤ q, (6.47)

∂si
∂dj

= 0 for q < i ≤ n. (6.48)

The values of si (1 ≤ i ≤ q) and ri (q < i ≤ n) can be calculated by setting the (q+1)th
to (n+ q)th component of F to 0 (cf. (6.6)) and making use of (6.46). Rearranging the
order of the equations in F = 0 we obtain the following system of equations (see also
Hain and Fischer [2015]).


ai +

q∑

j=1

Md
ijdj +

n∑

j=q+1

Md
ijrj +

q∑

j=1

M e
ijsj − di − si




1≤i≤q

= 0q


ai +

q∑

j=1

Md
ijdj +

n∑

j=q+1

Md
ijrj +

q∑

j=1

M e
ijsj − ri



q<i≤n

= 0n−q.

(6.49)

Equivalently,




q∑

j=1

M e
ijsj +

n∑

j=q+1

Md
ijrj − si




1≤i≤q

= −


ai +

q∑

j=1

Md
ijdj − di




1≤i≤q


q∑

j=1

M e
ijsj +

n∑

j=q+1

Md
ijrj − ri



q<i≤n

= −


ai +

q∑

j=1

Md
ijdj



q<i≤n

,

(6.50)

which can be written as

Ax = −b (6.51)

with

A =

(
(
M e
ij

)
1≤i≤n
1≤j≤q

,
(
Md
ij

)
1≤i≤n
q<j≤n

)
− In ∈ Rn×n, (6.52)

x = (xi)1≤i≤n = (s1, . . . , sq, rq+1, . . . , rn)
T ∈ Rn, (6.53)
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b = (bi)1≤i≤n =


ai +

q∑

j=1

Md
ijdj




1≤i≤n

− (d1, . . . , dq, 0, . . . , 0︸ ︷︷ ︸
n−q

)T ∈ Rn. (6.54)

Of course, x depends on a, d, Md and Me, but we will suppress them in our notation
for better readability.

As dq+1, . . . , dn do not occur in (6.51), we have for a firm j in default,

∂xi
∂dj

= 0 for all i ∈ {1, . . . , n}, (6.55)

which means that the equity value of a solvent firm and the recovery value of debt of
a firm in default are independent of the nominal level of liabilities of any firm of the
system being in default, provided that slight changes in these nominal level of liabilities
do not alter the financial status of any firm in the system.

Let us now consider ∂xi
∂dj

(i ∈ {1, . . . , n}) for a solvent firm j (i.e. j ≤ q), which is the

derivative whose sign we could not have determined by the Implicit Function Theorem.
Since xi is linear in dj , this derivative exists. By Cramer’s rule, xi = −det(Ai)

det(A) , where

Ai is obtained from A by replacing the ith column of A with b. Note that det(A) 6= 0
by Lemma A.1 of Fischer [2014]. Laplace expansion of Ai along the ith column yields

det(Ai) =

n∑

k=1

(−1)i+k bk det(Aki), (6.56)

where Aki ∈ R(n−1)×(n−1) denotes the submatrix of A where the kth row and ith column
have been deleted. Since d does not occur in A and Aki,

∂xi
∂dj

=
−1

det(A)

∂ det(Ai)

∂dj
=

−1
det(A)

(
n∑

k=1

(−1)i+k ∂bk
∂dj

det(Aki)

)
, (6.57)

with, for j ≤ q and due to Mkk = 0,

∂bk
∂dj

=

{
−1, k = j,

Md
kj , k 6= j.

(6.58)

Let now i = j (i.e. i ≤ q), meaning we consider ∂si
∂di

for a solvent firm i. Then (6.57) and
(6.58) yield

∂si
∂di

=
−1

det(A)




n∑

k=1
k 6=i

(−1)i+kMd
ki det(Aki) + (−1)2i(−1) det(Aii)


 (6.59)

=
−1

det(A)
det(Ãi), (6.60)
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where Ãi equals A, except that the off-diagonal elements M e
ki (1 ≤ k ≤ n, i 6= k) of the

ith column of A have been replaced with Md
ki (1 ≤ k ≤ n, i 6= k). Then it follows from

Lemma A.1 of Gouriéroux et al. [2012] that

∂si
∂di

= −(−1)n(> 0)

(−1)n(> 0)
< 0, 1 ≤ i ≤ q, (6.61)

where (> 0) stands for a strictly positive factor, which may be different in the numerator
and denominator of (6.61). Hence, as it was to be expected, ceteris paribus the equity
value of a solvent firm increases if the nominal value of liabilities of this firm decreases.

The value of ∂si∂di
is in general not −1, which might have been expected from an intuitive

point of view. Since Laplace expansion of Ãi and A along the ith column yields (cf.
(6.59))

det(Ãi)− det(A) =
n∑

k=1
k 6=i

(−1)i+k
(
Md
ki −M e

ki

)
det(Aki), (6.62)

a sufficient condition for ∂si
∂di

= −1 is Md
ki = M e

ki for all 1 ≤ k ≤ n. Let us now examine
under what circumstances firm i’s equity value is prone to stronger or weaker changes
in the firm’s nominal level of liabilities. By Lemma A.15, for k 6= i,

(−1)i+k det(Aki)

{
≥ 0, n odd,

≤ 0, n even.
(6.63)

Let n be even. Then both, det(A) and det(Ãi) are strictly positive by Lemma A.1 of
Gouriéroux et al. [2012], and hence by (6.60),

∂si
∂di
≤ −1 ⇔ det(Ãi)− det(A) ≥ 0. (6.64)

Because of (−1)i+k det(Aki) ≤ 0 for k 6= i and n even by (6.63), a sufficient condition
for det(Ãi) − det(A) ≥ 0 is Md

ki ≤ M e
ki for all k 6= i. Similarly, det(Ãi) − det(A) ≤ 0,

i.e. ∂si
∂di
≥ −1, if Md

ki ≥ M e
ki for all k 6= i. For n odd, both det(A) and det(Ãi)

are strictly negative and hence by (6.60), ∂si
∂di
≤ −1 ⇔ det(Ãi) − det(A) ≤ 0. Since

(−1)i+k det(Aki) ≥ 0 for k 6= i and n odd by (6.63), a sufficient condition for det(Ãi)−
det(A) ≤ 0 is Md

ki ≤ M e
ki for all k 6= i. Similarly, det(Ãi) − det(A) ≥ 0, i.e. ∂si

∂di
≥ −1,

if Md
ki ≥M e

ki for all k 6= i. Altogether, by (6.61),

∂si
∂di
∈
{
(−∞,−1], Md

ki ≤M e
ki for all k 6= i,

[−1, 0), Md
ki ≥M e

ki for all k 6= i.
(6.65)

Hence, if a solvent firm i is cross-held primarily via equity (i.e. if each of the other
firms in the system holds at least as much of firm i’s equity as of its debt, expressed
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in terms of the corresponding cross-ownership fractions), an increase in firm i’s nominal
level of liabilities affects firm i’s equity value at least as strong (and probably stronger)
as without cross-ownership, since in this case, we have Msi = ai − di, i.e. ∂Msi

∂di
= −1,

where the index M stands for Merton (cf. Section 3.1.1). On the other hand, if firm i
is mainly cross-held via debt, cross-ownership is likely to mitigate the dependency of
firm i’s equity value on the firm’s nominal level of liabilities.

In particular, for firm i solvent, (6.65) implies

∂si
∂di
∈
{
(−∞,−1], XOS of equity only,

[−1, 0), XOS of debt only.
(6.66)

In general, whether ∂si
∂di

is bigger or smaller than −1, depends on the entries of A and
Ai and thus in general on the financial statuses of the other firms in the system, which
is illustrated in the following example.

Example 6.9. For three firms linked by cross-ownership, let

Md :=



0 0 0
0 0 0.2
0 0 0


 , Me :=




0 0 0.3
0.4 0 0.1
0 0.3 0


 (6.67)

and a := (1, 3, 11)T , d := (4, 1, d3)
T with d3 ≥ 0. We will show that for firm 2 and firm 3

solvent, ∂s3∂d3
< −1 if firm 1 is solvent and ∂s3

∂d3
> −1 if firm 1 is in default. First,

r1 = min{4, 1 + 0.3s3}, s1 = (−3 + 0.3s3)
+, (6.68)

r2 = min{1, 3 + 0.2r3 + 0.4s1 + 0.1s3} = 1, s2 = 2 + 0.2r3 + 0.4s1 + 0.1s3, (6.69)

r3 = min{d3, 11 + 0.3s2}, s3 = (11 + 0.3s2 − d3)+, (6.70)

and it is straightforward to see that all the three firms are solvent with si > 0 (i = 1, 2, 3)
for d3 = 0. For d3 slightly bigger than 0, all firms remain solvent for reasons of continuity
and (3.14) yields

s = (I3 −Me)−1(a+ (Md − I3)d) (6.71)

= 1
0.934(0.57− 0.282d3, 3.22− 0.02d3, 11.24− 0.94d3)

T . (6.72)

Hence, if all the three firms are solvent, ∂s3
∂d3

= −0.94/0.934 < −1. With d3 increasing,

(6.72) shows that firm 1 is the first firm to be in default, this is the case for d3 = 2 1
47 .

For d3 slightly bigger than 2 1
47 , firm 1 is in default and firm 2 and firm 3 are solvent

with

r2 = 1, s2 = 2 + 0.2d3 + 0.1s3, (6.73)

r3 = d3, s3 = 11 + 0.3s2 − d3, (6.74)
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which implies

s3 = 11 + 0.3(2 + 0.2d3 + 0.1s3)− d3 = 1
0.97(11.6− 0.94d3), (6.75)

s2 = 2 + 0.2d3 + 0.1
(

1
0.97(11.6− 0.94d3)

)
= 1

0.97(3.1 + 0.1d3), (6.76)

i.e. ∂s3
∂d3

= −0.94/0.97 > −1 for d3 ∈ (2 1
47 , 12

16
47) (for d3 = 1216

47 , s3 would become 0, i.e.
we would leave the Suzuki area Adss). Hence, for firm 2 and firm 3 solvent, the size of
∂s3
∂d3

compared to −1 depends on the financial status of firm 1.

Having analyzed ∂xi
∂dj

for i = j ≤ q (recall that the case j > q is trivial by (6.55)), we

now consider ∂xi
∂dj

for i 6= j (1 ≤ i ≤ n, j ≤ q). By (6.57) and (6.58), these derivatives
are given as

∂xi
∂dj

=
−1

det(A)




n∑

k=1
k 6=j

(−1)i+kMd
kj det(Aki)− (−1)i+j det(Aji)


 , (6.77)

which can be both, positive and negative, depending on the entries of the cross-ownership
matrices and the financial status of other firms in the system. This becomes clear from
Example 6.9, where

∂s2
∂d3

=

{
−0.02
0.934 , d3 < 2 1

47 ,
0.1
0.97 , d3 ∈ (2 1

47 , 12
16
47),

(6.78)

i.e. the sign of ∂s2
∂d3

depends on whether firm 1 is solvent, or not. Analogously, there are

examples where the sign of ∂ri
∂dj

for firm i in default and firm j solvent depends on the

financial status of a third firm in the system.

Our findings are summarized in the following proposition.

Proposition 6.10. For n firms linked by cross-ownership of possibly both, debt and
equity, let a, Md and Me be such that the financial status (solvency or default) of firm i
remains unchanged for slight changes of di and dj, and let (r, s) be the such that

r = min{d, a+Mdr+Mes}, (6.79)

s = (a+Mdr+Mes− d)+. (6.80)

Then, for firm j in default,

∂ri
∂dj

=
∂si
∂dj

= 0, i ∈ {1, . . . , n}. (6.81)
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If firm j is solvent,

∂ri
∂dj

=





1, i = j,

0, i 6= j and firm i solvent,

depends, i 6= j and firm i in default,

(6.82)

∂si
∂dj

=





const. < 0, i = j,

depends, i 6= j and firm i solvent,

0, i 6= j and firm i in default,

(6.83)

where “depends” means that the derivative can be 0, or a positive or negative constant,
contingent upon the realized cross-ownership structure and the financial status of the
other firms in the system. Also the exact value of ∂si

∂di
depends on the financial status of

the other firms in the system.

Proof. This follows from (6.47), (6.48), (6.55), (6.61) and (6.78).

For the special cases of cross-ownership of debt only and cross-ownership of equity only,
the indeterminate signs in Proposition 6.10 can be further specified. This will be done
in the next section.

Note that the approach used in this section, namely determining some of the ri and si via
(6.46) and by solving the reduced system of equations (6.50) with the help of Cramer’s
rule and then calculating the derivative of the solution with respect to d, would not be
expedient in order to determine the derivatives of ri and si with respect to the cross-
ownership fractions, since in this case, also the determinant of A would depend on the
half of all cross-ownership fractions, which would make the calculation of ∂xi

∂Mkj
as in

(6.57) difficult. So we prefer for that our approach using the Implicit Function Theorem
(cf. Section 6.1.2).

Remark 6.11. The analysis of this section also yields derivatives of r, s and v with
respect to ai within a certain Suzuki area for any constellation of cross-ownership. This
complements the results of Liu and Staum [2010] valid under cross-ownership of debt
only. By (6.46),

∂ri
∂aj

= 0 for firm i solvent, (6.84)

∂si
∂aj

= 0 for firm i in default. (6.85)

Furthermore, due to

∂bk
∂aj

=

{
1, k = j,

0, k 6= j,
(6.86)
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by (6.54), we have in analogy to (6.57)

∂xi
∂aj

=
−1

det(A)

∂ det(Ai)

∂aj
=

−1
det(A)

(
n∑

k=1

(−1)i+k ∂bk
∂aj

det(Aki)

)
(6.87)

=
−(−1)i+j det(Aji)

det(A)
=
−(−1)i+j det(Aji)

(−1)n(> 0)
≥ 0, (6.88)

where the inequality follows from Proposition 2 of Gouriéroux et al. [2012]. For i = j,
the inequality is strict by Lemma A.1 of Gouriéroux et al. [2012]. Hence, the recovery
value of debt of a firm in default and the equity value of a solvent firm are strictly
increasing in the firm’s own exogenous asset value.

6.2.1.2 XOS of Debt only and XOS of Equity only

In this section we consider the sign of ∂ri
∂dj

for firm i in default and firm j solvent, and
∂si
∂dj

for firm i and firm j solvent (i 6= j), which are not uniquely determined under a

general scenario of cross-ownership (cf. Proposition 6.10), for the special cases of cross-
ownership of debt only and cross-ownership of equity only. In particular, we always have
j ≤ q. Furthermore, we again assume that slight changes in dj do not alter the financial
status of any firm in the system.

Under cross-ownership of debt only the system (6.51) is given as




−1
0

0

. . . Md

−1
−1

Md

0
Md

. . .

−1







s1
...
sq
rq+1
...
rn




= −b, (6.89)

with Md standing for entries of Md (cf. (6.52)), which is equivalent to solving

((
Md
kl

)
q<k≤n
q<l≤n

− In−q

)

︸ ︷︷ ︸
=:An−q




rq+1
...
rn


 = −

(
ak +

q∑

l=1

Md
kldl

)

q<k≤n
(6.90)

and calculating (s1, . . . , sq) as




s1
...
sq


 =

(
ak +

q∑

l=1

Md
kldl − dk

)

1≤k≤q
+
(
Md
kl

)
1≤k≤q
q<l≤n




rq+1
...
rn


 . (6.91)
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By Cramer’s rule, ri = −det(An−q
i−q )

det(An−q)
(i > q), where A

n−q
i−q is obtained from An−q by

replacing the (i− q)th column of An−q with
(
ak +

∑q
l=1M

d
kldl
)
q<k≤n. Expanding A

n−q
i−q

along the (i− q)th column and deriving ri with respect to dj yields

∂ri
∂dj

=
−1

det(An−q)
∂

∂dj




n∑

k=q+1

(−1)(i−q)+(k−q)
(
ak +

q∑

l=1

Md
kldl

)
det
(
A
n−q
k−q,i−q

)



(6.92)

=
−1

det(An−q)

n∑

k=q+1

(−1)i+kMd
kj det

(
A
n−q
k−q,i−q

)
(6.93)

=
n∑

k=q+1

Md
kj

(−1)i+k det
(
A
n−q
k−q,i−q

)

(−1)n−q+1(> 0)
≥ 0, (6.94)

where A
n−q
k−q,i−q is obtained from An−q by deleting the (k − q)th row and (i − q)th

column. The equality in (6.94) follows from Lemma A.1 of Gouriéroux et al. [2012], and
the inequality in (6.94) from Lemma A.15 applied to An−q for k 6= i and Lemma A.1 of
Gouriéroux et al. [2012] for k = i. Thus, we obtain from (6.91) for a solvent firm i,

∂si
∂dj

=Md
ij +

n∑

l=q+1

Md
il

∂rl
∂dj︸︷︷︸

≥0 by (6.94)

≥ 0. (6.95)

These results can be explained as follows. If the nominal level of liabilities of a solvent
firm j increases, this firm’s recovery value of debt strictly increases by Proposition 6.10,
since rj = dj in this case. Hence, the equity value of solvent firms and the recovery value
of debt of firms in default might increase by direct holding of rj or indirectly by holding
a part of another defaulted firm’s recovery value of debt possibly affected by the change
in dj .

Under cross-ownership of equity only, (6.77) yields for i 6= j (j ≤ q)

∂xi
∂dj

=
(−1)i+j det(Aji)

det(A)
=

(−1)i+j det(Aji)

(−1)n(> 0)
, (6.96)

where the denominator of (6.96) follows from Lemma A.1 of Gouriéroux et al. [2012].
Hence, by Lemma A.15,

∂xi
∂dj
≤ 0 for i 6= j and firm j solvent. (6.97)

This can be interpreted as follows. If the nominal level of liabilities of a solvent firm j
increases, its equity value sj strictly decreases by Proposition 6.10. For a solvent firm i
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(i.e. xi = si), firm i’s equity value could decrease as well, either via direct cross-holding
of sj , or via cross-holding of other firms’ equity affected by a decrease in sj . Similarly,
for a firm i in default (i.e. xi = ri), firm i’s recovery value of debt could decrease, since
firm i’s endogenous asset value might have declined directly or indirectly by the drop in
sj .

Altogether, we have the following proposition clarifying the derivatives declared as “de-
pends” in Proposition 6.10.

Proposition 6.12. In the situation of Proposition 6.10, let firm j be solvent. If the n
firms are linked by cross-ownership of debt only,

∂ri
∂dj
≥ 0 for firm i in default, (6.98)

∂si
∂dj
≥ 0 for firm i solvent (i 6= j). (6.99)

Under cross-ownership of equity only,

∂ri
∂dj
≤ 0 for firm i in default, (6.100)

∂si
∂dj
≤ 0 for firm i solvent (i 6= j). (6.101)

Since under cross-ownership of debt only and cross-ownership of equity only, a change
in dj has opposite effects on the considered ri and si (i 6= j), it plausible that these
derivatives can be positive and negative under cross-ownership of both, debt and equity,
and hence they are indeterminate in Proposition 6.10.

6.2.2 Monotonicity of r, s and v in d

So far, our analysis was confined to derivatives within a certain Suzuki area. In this
section we put these results together to obtain global monotonicity properties of ri,
si and vi with respect to dj (i, j ∈ {1, . . . , n}), where possible. For that, we need to
distinguish between i = j and i 6= j.

6.2.2.1 Case i = j

Let us first examine how the financial status of firm i evolves with di increasing. For
that, we need the following definition, which is partly taken from Liu and Staum [2010].

Definition 6.13. For a certain setting of cross-ownership, let firm i (i ∈ {1, . . . , n}) be
solvent, i.e. ri = di. Firm i is strictly solvent if si > 0, and a borderline firm if si = 0,
i.e. firm i is a borderline firm if and only if vi = di.
For a single varying model parameter, a non-degenerate interval of values of this param-
eter is called a borderline interval of firm i, if firm i is a borderline firm for all parameter
values in this interval.
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As the following lemma shows, firm i has no borderline interval with respect to di.

Lemma 6.14. For a system of n firms linked by cross-ownership and all other param-
eters held fixed, there is exactly one d′i > 0 such that firm i is a borderline firm for
di = d′i. Firm i is strictly solvent for all di < d′i and in default for all di > d′i.

Proof. By Lemma 3.4 and Proposition 6.10 and with all other parameters held fixed, si
as a part of the solution of (3.13)–(3.14) is continuous and piecewise linear in di. With
di increasing, a might lie in several Suzuki areas (recall that the Suzuki areas depend on
di), and the “pieces” of si as a function of di exactly correspond to these Suzuki areas,
since within a Suzuki area, the derivative of si with respect to di is constant. In all
Suzuki areas, we have ∂si

∂di
≤ 0 by Proposition 6.10. Hence, si is non-increasing in di. Let

si(di) denote the equity value of firm i in dependence of di. Since si(0) > 0 (otherwise,
all entries of firm i’s balance sheet would be zero), firm i is strictly solvent for di = 0, i.e.
for di = 0 we are in one of the 2n−1 Suzuki areas where firm i is solvent. Let m denote
the maximum of the corresponding 2n−1 values of ∂si

∂di
. Of course, m < 0 by (6.61), i.e.

m is the least negative of these derivatives. Since si is continuous and piecewise linear
in di, it follows that, with di increasing and as long as firm i is solvent,

0 ≤ si(di) ≤ si(0) +m× di, (6.102)

and therefore, firm i becomes a borderline firm for some d′i > 0. Because of ∂si
∂di
≤ 0 for

all di ≥ 0 and due to si ≥ 0 for all di ≥ 0, we have si = 0 for all di ≥ d′i, i.e. ∂si
∂di

= 0 for
all di > d′i. By (6.61), this implies that firm i is in default for all di > d′i.

Corollary 6.15. With d′i as defined in Lemma 6.14,

∂ri
∂di

=

{
1, di < d′i,

0, di > d′i,
(6.103)

∂si
∂di

=

{
< 0, di < d′i,

0, di > d′i,
(6.104)

where, for di < d′i,
∂si
∂di

is piecewise constant, depending on the financial status (solvency
and default) of the other firms in the system. In particular, ri is non-decreasing and si
is non-increasing in di.

Proof. This immediately follows from Proposition 6.10 and Lemma 6.14.

Let d′i be defined as in Lemma 6.14. As we have seen in Example 6.9, the exact value
of ∂si

∂di
for di < d′i can be bigger or smaller than −1, i.e. it is impossible to make a

general statement with respect to the monotonicity of vi = ri + si with respect to di
under a cross-ownership of both, debt and equity. For the special cases cross-ownership
of debt only and cross-ownership of equity only, (6.66) yields the following corollary to
Corollary 6.15.
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Corollary 6.16. For a system of n firms, vi is non-decreasing in di under cross-
ownership of debt only and non-increasing in di under cross-ownership of equity only.
Under cross-ownership of both, debt and equity, vi is in general not monotone in di.

In the one firm Merton model, the firm value is invariant with respect to the debt level,
and therefore also with respect to (partial) debt cancellation. Corollary 6.16 shows
that under cross-ownership of debt only, a firm’s value might increase (and will never
decrease) with its nominal debt level. Hence, if for example all creditors of a firm (inside
and outside the system of n firms) simultaneously cancel a part of the debt of this firm
(leaving the financial status of all firms unchanged), this cancellation of debt might lower
the firm value since the increase in the equity can be less than the loss in the debt in
such a case (compare this with the comment after (6.65)). In contrast to that, such a
debt cancellation under cross-ownership of equity only might increase the firm value,
and will never decrease it.

6.2.2.2 Case i 6= j

In contrast to the case i = j, there might be a borderline interval of firm i with respect
to dj (i 6= j), since we cannot exclude the possibility that ∂si

∂dj
= 0 for values of dj where

firm i is solvent. This becomes clear from (6.57), where Md
kj and/or det(Aki) might be

0, or the following simple example. For two firms linked by cross-ownership of debt only,
let firm 1 be a borderline firm and firm 2 in default, i.e. r1 = d1, r2 = a2 +Md

21d1 < d2
and s1 = s2 = 0. Hence, with d2 increasing, firm 2 will remain in default, i.e. the value
of endogenous assets of firm 1 remains unchanged as well, and firm 1 is still a borderline
firm.
Furthermore, in contrast to the case i = j, where we have seen in Lemma 6.14 that with
di increasing, firm i cannot leave the status of default and become solvent again, there is
no predefined “direction” for the development of firm i with dj increasing (i 6= j). This
can be seen from the following rather simple example.

Example 6.17. For three firms linked by cross-ownership, let

Md :=




0 0 0
0.6 0 0.1
0 0 0


 , Me :=




0 0 0.4
0.2 0 0
0 0 0


 (6.105)

and a := (3, 7.2, 19)T , d := (6, 11.8, d3)
T with d3 ≥ 0. We will show that with d3

increasing, firm 2 is first in default, then solvent and finally in default again. First,

r1 = min{6, 3 + 0.4s3}, s1 = (−3 + 0.4s3)
+, (6.106)

r2 = min{11.8, 7.2 + 0.6r1 + 0.1r3 + 0.2s1}, s2 = (−4.6 + 0.6r1 + 0.1r3 + 0.2s1)
+,

(6.107)

r3 = min{d3, 19}, s3 = (19− d3)+. (6.108)

It is straightforward to see that firm 3 is solvent if and only if d3 ≤ 19 and that firm 1
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j solvent j in default

∂ri
∂dj

i in default depends∗/≥ 0∗∗/≤ 0∗∗∗ 0
i solvent 0 0

∂si
∂dj

i in default 0 0
i solvent depends∗/≥ 0∗∗/≤ 0∗∗∗ 0

Table 6.1: Derivatives of ri and si with respect to dj (i 6= j); ∗general case, ∗∗XOS of
debt only, ∗∗∗XOS of equity only.

is solvent if and only if d3 ≤ 11.5. For d3 ≤ 11.5,

r2 = min{11.8, 7.2 + 0.6× 6 + 0.1d3 + 0.2(−3 + 0.4(19− d3))} (6.109)

= min{11.8, 11.72 + 0.02d3}, (6.110)

i.e. for d3 < 4, firm 2 is in default, and for d3 ∈ [4, 11.5], firm 2 is solvent. Furthermore,
for d3 ∈ (11.5, 19], r2 = min{11.8, 7.2+0.6(3+0.4(19−d3))+0.1d3} = min{11.8, 13.56−
0.14d3}, i.e. for d3 ∈ (11.5, 124

7 ], firm 2 is solvent, and for d3 ∈ (124
7 , 19], firm 2 is in

default. Finally, for d3 > 19, r2 = min{11.8, 7.2 + 0.6× 3 + 0.1× 19} = 10.9, i.e. all the
three firms are in default. Altogether,

a ∈





Asds, d3 < 4,

Asss, 4 ≤ d3 ≤ 11.5,

Adss, 11.5 < d3 ≤ 124
7 ,

Adds, 124
7 < d3 ≤ 19,

Addd, d3 > 19,

(6.111)

with the Suzuki areas A... as defined in (3.18). In particular, with d3 increasing, firm 2
is first in default, then solvent and finally in default again, whereas the financial status
of firm 1 declines from solvency to default. Hence, there is no “monotonicity” of the
financial status of firm i under changes in dj (i 6= j), i.e. firm i may both, profit and
suffer from changes in the nominal level of liabilities of another firm j.

As became clear in (6.78) and Example 6.17, si and ri are in general not monotone in in
another firm’s nominal level of liabilities, and neither is vi. However, such a monotonicity
holds for the special cases of one type of cross-ownership only.

Proposition 6.18. For a system of n firms and i 6= j, ri, si and vi are non-decreasing in
dj under cross-ownership of debt only and non-increasing in dj under cross-ownership of
equity only. Under cross-ownership of both, debt and equity, ri, si and vi are in general
not monotone in dj.

Proof. This immediately follows from Table 6.1 and the fact that vi = ri+ si. Table 6.1
is a direct consequence of Proposition 6.10 and Proposition 6.12.

Hence, if the nominal level of debt of a firm decreases, the remaining firms in the system
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cannot profit from this reduction under cross-ownership of debt only, and they cannot
suffer from this reduction under cross-ownership of equity only.

Compared to a scenario without cross-ownership, where vi = ai by Definition 3.1 and
consequently ∂vi

∂dj
= 0 for all 1 ≤ i, j ≤ n, changes in other firms’ nominal level of liabil-

ities may affect the considered firm’s value both, positively and negatively, depending
on the realized level of cross-ownership and the financial status of the other firms in the
system.

6.3 Risk-Neutral Firm Values before Maturity

In the previous sections we analyzed how the recovery values of debt r and the equity
values s react on changes in cross-ownership fractions and the face values of liabilities
in a deterministic set-up (i.e. for a given value of exogenous assets at maturity T ). In
contrast to that, we now consider exogenous asset prices that follow a stochastic process.
Then we can determine the firms’ prices in t < T by employing the risk-neutral valuation
formula (cf. Theorem 6.2.3 of Bingham and Kiesel [2004]). As we will see, the results
of Section 6.1 and Section 6.2 on the monotonicity of v (evaluated at maturity) transfer
to risk-neutral firm prices before maturity.

We assume random exogenous asset values to follow a multivariate geometric Brownian
motion A = (Ai)1≤i≤n (cf. equation (3.23) of Benth [2004]), i.e.

dAi(t) = Ai(t)


µidt+

n∑

j=1

σijdWj(t)


 , 0 ≤ t ≤ T, 1 ≤ i ≤ n, (6.112)

with a standard Brownian motion W = (Wj)1≤j≤n (cf. Bingham and Kiesel [2004],
p. 160) on some probability space (Ω,F ,P,F) with a filtration F = (Ft) such that
F0 = {∅,Ω} and FT = F . Note that we set the dimension of the Brownian motion W to
n as well. Furthermore, µ = (µi)1≤i≤n ∈ Rn, and we assume σ = (σij)1≤i,j≤n ∈ Rn×n to
be invertible. Then Theorem 6.2.2 of Bingham and Kiesel [2004] implies the existence of
a unique equivalent martingale measure Q (cf. Definition 6.1.4 of Bingham and Kiesel
[2004]) for the discounted asset value process Ã(t) := exp(−rt)A(t), with r denoting the
constant force of interest. Then by the product rule,

dÃi(t) = exp(−rt)Ai(t)


µidt+

n∑

j=1

σijdWj(t)


− rAi(t) exp(−rt)dt (6.113)

= Ãi(t)


(µi − r)dt+

n∑

j=1

σijdWj(t)


 . (6.114)

By Girsanov’s Theorem (cf. Theorem 5.7.1 of Bingham and Kiesel [2004]), dWj(t) =
dW̃j(t)−γj(t)dt for all 1 ≤ j ≤ n, where W̃ is an n-dimensional Brownian motion under



106 6 Sensitivities of Firm Values

Q, and with γ : R→ Rn. γ will be explicitly determined later. Hence,

dÃi(t) = Ãi(t)


(µi − r)dt+

n∑

j=1

σij

(
dW̃j(t)− γj(t)dt

)

 (6.115)

= Ãi(t)




µi − r −

n∑

j=1

σijγj(t)


 dt+

n∑

j=1

σijdW̃j(t)


 . (6.116)

Since Q is an equivalent martingale measure for Ã, Ã is a Q−local martingale by Def-
inition 6.1.4 of Bingham and Kiesel [2004], it follows that

µi − r −
n∑

j=1

σijγj(t) = 0, 0 ≤ t ≤ T a.s., 1 ≤ i ≤ n, (6.117)

The equation in (6.117) can be written as σγ(t) = µ − r1n, 0 ≤ t ≤ T a.s., where 1n
denotes an n-dimensional vector with all entries equal to 1. Since we assume σ to be
invertible, γ(t) is uniquely defined and the function γ is constant for almost all t ∈ [0, T ],
so we write γ instead of γ(t). By Girsanov’s Theorem, Q can be obtained from P via
∂Q
∂P = exp(−γW (T )− 1

2γγ
TT ) (with γT denoting γ transposed).

Since the firm value is a derivative of exogenous asset values, we can calculate the price
of a firm i in t < T , in symbols vi,t, as the discounted expected value of its firm value Vi
at maturity T , where the expectation is taken with respect to the risk-neutral pricing
measure Q derived above, i.e.

vi,t := exp(−r(T − t))EQ(Vi | Ft). (6.118)

Let us now consider two identical systems of n firms each, where identical shall mean
that both, the parameters of the firms themselves and their cross-ownership structure
are identical between the two networks, with the only exception that in system 2, a
parameterMkj exceeds the corresponding parameter of system 1 by an amount of ǫ > 0,
provided that the corresponding cross-ownership matrix is still strictly left substochastic.
For a parameter p, let lp stand for p obtained from system l, l = 1, 2.
Because of 2Vi ≥ 1Vi by Proposition 6.1, we also have EQ(2Vi | Ft) ≥ EQ(1Vi | Ft) and
thus 2vi,t ≥ 1vi,t for all 1 ≤ i ≤ n and all 0 ≤ t ≤ T , i.e. the monotonicity of firm
values in the cross-ownership fractions transfers to risk-neutral prices of these firms for
any time t ∈ [0, T ].
We have a similar result for all vj,t, 1 ≤ j ≤ n, 0 ≤ t ≤ T , if the two systems differ by the
value of a di only (i ∈ {1, . . . , n}). If 1di < 2di, Corollary 6.16 and Proposition 6.18 imply

1vj,t ≤ 2vj,t under cross-ownership of debt only and 1vj,t ≥ 2vj,t under cross-ownership of
equity only. In particular, the “direction” of the effect is the same for all firms 1, . . . , n.
However, for cross-ownership of possibly both, debt and equity, such a monotonicity of
firm values is not given.



7 Contagion

By use of Remark 6.11 it can be evaluated how a firm’s value reacts to marginal changes
in an arbitrary firm’s exogenous asset value immediately before maturity, but it does
not become apparent whether the firm is driven into default, or not. In this section
we extend this analysis in that we consider how firm values and probabilities of default
react to multiple and possibly correlated changes in exogenous asset values and how the
realized cross-ownership structure propagates or mitigates such changes throughout the
system of firms.

In the wide-spread literature on financial networks, for example the interbank market,
where banks cross-hold their liabilities, correlated asset values and cross-holdings are
considered to be the two main sources of systemic risk (cf. Furfine [2003], Boss et al.
[2006], Elsinger et al. [2006a], Degryse and Nguyen [2007], Frisell et al. [2007], Mart́ınez-
Jaramillo et al. [2010] and Eboli [2013], among others), where “[e]xplicitly or implicitly,
systemic risk is usually understood as the failure or risk of failure of a significant part of
the financial system” [Cifuentes, 2004, p. 367], or as Kaufman [2000] writes, “[s]ystemic
risk refers to the risk or probability of breakdowns (losses) in an entire system as opposed
to breakdowns in individual parts or components” [Kaufman, 2000, p. 92]. In addition
to correlated asset values and bilateral exposures, Nier et al. [2007] list “feedback effects
from endogenous fire-sale[s] of assets by distressed institutions” and “informational con-
tagion” [Nier et al., 2007, p. 2034] as further sources of systemic risk. However, they do
not incorporate these additional issues in their study, and also the exposure of banks to
common risk factors is considered at the margin only. Of course, these considerations
analogously hold for networks of more general financial firms, rather than just banks,
with cross-ownership of equity as a possible additional channel of shock transmission.
According to Staum [2013], these two main sources of systemic risk (correlated asset
values and contagion due to cross-holdings) could be easily separated within structural
models, to which Suzuki’s model belongs, but in a realistic set-up, “it is necessary to
study correlated shocks to appreciate the true impact of contagion ... and to understand
the true effect of network structure on systemic risk” [Staum, 2013, p. 525], i.e. both
aspects should be considered simultaneously. Nevertheless, a great part of the theoreti-
cal and simulation literature deals with idiosyncratic shocks hitting a single firm only.
In the remainder of this section, we will first propose a measure for contagion resulting
from simultaneous shocks on a system of n firms linked by cross-ownership of possibly
both, debt and equity, and study its properties for the two firms case. Although they
employ a different operationalization of the effect of contagion, the work of Gouriéroux
et al. [2012] is closest to our approach. Extending the results of Glasserman and Young
[2015] we will see how firms can protect themselves against spillover effects leading to
a default. Complementing the broad spectrum of theoretical considerations (see Eboli
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[2013] and Acemoglu et al. [2015], among others) and simulation studies for both, ex-
isting banking systems and hypothetical networks (for an overview, see Upper [2011],
Chinazzi and Fagiolo [2013], Cont et al. [2013] and Staum [2013]), Section 7.2 contains
the results of our simulation study on how negative shocks are propagated through a
system of n firms linked by cross-ownership of possibly both, debt and equity, leading
to defaults and losses in firm values.

In the remainder of this section, variables equipped with a tilde stand for values after
the shock.

7.1 Theoretical Considerations on Contagion

7.1.1 Contagion and the Change in Endogenous Asset Values

In this section we first consider a general network of n firms linked by cross-ownership
of debt and/or equity, and then confine ourselves to the case of two firms only in order
to be able to employ Suzuki’s formulae provided in Lemma 3.5.

Following Gouriéroux et al. [2012] we assume that very close to maturity, the exogenous
asset values a are subject to a shock such that the new values of the exogenous assets
are given by

ã := a+ δ, δ ≥ −a, (7.1)

i.e. we assume that the shock δ = (δi)1≤i≤n is constrained in the sense that exogenous
asset values after the shock, ã, are still non-negative, which means that the shock can
wipe out all the exogenous assets of a firm, but it cannot transform assets into liabilities.
Note that in our context, the word “shock” does not necessarily imply a decline of asset
values, it just stands for an immediate change in any direction. Furthermore, we as-
sume fixed cross-ownership matrices, and as Gouriéroux et al. [2012] remark, “[f]rom an
economic point of view, this might be interpreted as the effect of an immediate not an-
ticipated shock” [Gouriéroux et al., 2012, p. 1287], since the established cross-ownership
structure cannot be changed instantaneously. The same assumption is made by Gai and
Kapadia [2010] and May and Arinaminpathy [2010], among others.

By Definition 3.3, firm i’s value (i ∈ {1, . . . , n}) before the shock equals

vi = ai +
n∑

j=1

Md
ij rj +

n∑

j=1

M e
ij sj , (7.2)

with r and s being solutions of (3.13)–(3.14). In the remainder, we will sometimes write
r(a), s(a) and v(a), where necessary. Hence, it is clear that the effect of the shock on
the firm value vi consists of two parts: first, a direct effect on vi, caused by a change
in value of the firm’s exogenous asset, and an indirect effect stemming from a change
in endogenous asset values. As we will see in the following, this indirect effect on firm
values exists under Suzuki’s model, but not under Merton’s model.

Recall that under Merton’s model (cf. Section 3.1.1) all assets of a firm are considered to
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be exogenous, i.e. instead of distinguishing between exogenous and endogenous assets as
in (7.2), we could imagine the total assets of firm i to consist of two classes of exogenous
assets with total value ai + āi = Mvi, where the index M stands for Merton and where
āi equals the value of endogenous assets before the shock, i.e.

āi =
n∑

j=1

Md
ijrj(a) +

n∑

j=1

M e
ijsj(a). (7.3)

After the shock δ affecting a only, the firm value of firm i equals Mṽi = ai + δi + āi.
Hence, if we apply Merton’s approach, as it was to be expected, the effect of the shock,
measured as the difference of firm i’s value before and after the shock, amounts to

Mṽi − Mvi = δi. (7.4)

Note that this approach is equivalent to the approach of Gouriéroux et al. [2012] and of
Glasserman and Young [2015], who assume that immediately before the shock the two
firms cash their stocks and bonds that they are holding of each other. Then the sum
of asset values, i.e. the exogenous asset value and cash from unwinding cross-holdings,
equals Mvi and we can identify āi with the value of the cash held. After that, the two
firms are not linked by cross-ownership any more, and Merton’s model can be applied.
Hence, δi can be seen as the direct effect of the shock on firm i, where contagion effects
due to cross-ownership have been eliminated.

Under Suzuki’s model the value of firm i after the shock is given by

ṽi = ai + δi +
n∑

j=1

Md
ijrj(a+ δ) +

n∑

j=1

M e
ijsj(a+ δ). (7.5)

The difference of firm i’s value before and after the shock thus equals

ṽi − vi = δi +
n∑

j=1

Md
ijrj(a+ δ) +

n∑

j=1

M e
ijsj(a+ δ)−

n∑

j=1

Md
ijrj(a)−

n∑

j=1

M e
ijsj(a). (7.6)

In the following we will mainly be concerned with the effect of the shock on the firms’
endogenous asset values, since (7.4) and (7.6) show that the existence of this impact
under Suzuki’s model constitutes the main difference to Merton’s approach. Hence, let
ci denote the change in firm i’s endogenous asset value due to the shock δ, i.e.

ci :=
n∑

j=1

(
Md
ijrj(a+ δ) +M e

ijsj(a+ δ)
)
−

n∑

j=1

(
Md
ijrj(a) +M e

ijsj(a)
)

(7.7)

= ṽi − (ai + δi)− (vi − ai) (7.8)

= ṽi − vi︸ ︷︷ ︸
total effect of the shock

=effect of the shock under Suzuki’s model

− δi,︸︷︷︸
direct effect of the shock

=effect of the shock under Merton’s approach

(7.9)
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where (7.8) follows from (7.2) and (7.5). In the following, the effect of contagion on
firm i will be identified with ci.

In the remainder of this section we will analyze for the case of two firms how the effect
of contagion depends on the parameters a, d, Md

1,2, M
d
2,1, M

e
1,2, M

e
2,1 and δ. However,

we will only consider c1 for reasons of symmetry. We assume that both firms are solvent
before the shock, i.e. a ∈ Ass. By Lemma A.16,

c1 =



Me
1,2(M

e
2,1δ1+δ2)

1−Me
1,2M

e
2,1

, ã ∈ Ass,

Md
1,2(M

e
2,1δ1+δ2)

1−Md
1,2M

e
2,1

+ (Md
1,2 −M e

1,2)
Me

2,1a1+a2+(Md
2,1−Me

2,1)d1−(1−Md
1,2M

e
2,1)d2

(1−Md
1,2M

e
2,1)(1−Me

1,2M
e
2,1)

, ã ∈ Asd,

Me
1,2(M

d
2,1δ1+δ2)

1−Me
1,2M

d
2,1

+M e
1,2(M

d
2,1 −M e

2,1)
a1+Me

1,2a2−(1−Me
1,2M

d
2,1)d1+(Md

1,2−Me
1,2)d2

(1−Me
1,2M

d
2,1)(1−Me

1,2M
e
2,1)

, ã ∈ Ads,

Md
1,2(M

d
2,1δ1+δ2)

1−Md
1,2M

d
2,1

+
(Md

1,2M
d
2,1−Me

1,2M
e
2,1)a1+(Md

1,2−Me
1,2+M

d
1,2M

e
1,2(M

d
2,1−Me

2,1))a2

(1−Md
1,2M

d
2,1)(1−Me

1,2M
e
2,1)

− Me
1,2(1−Md

1,2M
d
2,1)(M

d
2,1−Me

2,1)d1+(1−Md
1,2M

d
2,1)(M

d
1,2−Me

1,2)d2

(1−Md
1,2M

d
2,1)(1−Me

1,2M
e
2,1)

, ã ∈ Add.

(7.10)

Note that δ = 0 implies ã ∈ Ass and c1 = 0. Except for ã ∈ Ass, c1 in general consists
of two components. The first summand is directly influenced by the shock δ, with the
impact of δ depending on the realized cross-ownership fractions, which might be zero.
The second component is not affected by the shock itself, but it depends on the realized
cross-ownership situation before the shock, namely the value of exogenous assets before
the shock, the level of liabilities and the cross-ownership structure. This second term
can be both, positive and negative in all the three relevant areas. Similarly, the former
asset values a can both, increase and decrease the change in the endogenous asset value
of a firm due to contagion, depending on the relative sizes of Md

1,2 and M e
1,2 (ã ∈ Asd),

Md
2,1 and M e

2,1 (ã ∈ Ads), and Md
1,2M

d
2,1 and M e

1,2M
e
2,1 (ã ∈ Add). The nominal level

of debt d can as well lead to both, higher or lower values of c1. Hence, depending on
the realized cross-ownership structure, a high value of the own exogenous asset and a
low level of liabilities, indicating financial health before the shock, can amplify both,
positive and negative effects of contagion. Maybe somewhat unexpected, we cannot
generally say that higher levels of cross-ownership result in larger absolute values of c1.
Only if the shock is small, in the sense that ã ∈ Ass, and of the same direction for both
firms, we can conclude that the higher the realized level of cross-ownership of equity, the
larger the absolute change in endogenous asset values resulting from this shock. As we
will see later, more detailed results can be derived for cross-ownership of debt only and
cross-ownership of equity only.

A special situation occurs for a symmetrical cross-ownership structure, where symmet-
rical means symmetry with respect to cross-holdings of debt and equity for each firm,
i.e. a firm holds the same fraction of the other firm’s debt and equity such that

M1,2 :=Md
1,2 =M e

1,2, M2,1 :=Md
2,1 =M e

2,1. (7.11)
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Then (7.10) reduces to

c1 =
M1,2(M2,1δ1 + δ2)

1−M1,2M2,1
for all ã ≥ 0, (7.12)

i.e. under a symmetrical cross-ownership structure as described above and a given shock
δ, the change in the endogenous asset value of a firm is independent of the former asset
value a, the level of nominal liabilities d and the financial status (solvency or default)
of either firm after the shock, it only depends on the realized cross-ownership structure.
A symmetrical cross-ownership structure enhances both, entirely positive and entirely
negative shocks (i.e. shocks with δ1, δ2 > 0 or δ1, δ2 < 0), in the sense that the in-
direct effect goes into the same direction as the direct effect of δ, i.e. a symmetrical
cross-ownership structure amplifies shocks of the described type. The tighter the cross-
ownership structure, the stronger this effect.

Under cross-ownership of debt only firm 1 does not suffer or profit from contagion at all,
if firm 2 is still solvent after the shock, i.e.

c1 = 0, ã ∈ Ass ∪Ads, (7.13)

independently of the exact cross-ownership structure. In this case, the value of the debt
of firm 2 remains d2 also after the shock, so the value of endogenous assets of firm 1 is
left unchanged by the shock. If firm 2 is in default after the shock, we have

0 > c1 =




Md

1,2(a2 + δ2 +Md
2,1d1 − d2), ã ∈ Asd,

Md
1,2

1−Md
1,2M

d
2,1

(Md
2,1(a1 + δ1) + a2 + δ2 − (1−Md

1,2M
d
2,1)d2), ã ∈ Add,

(7.14)

where the inequality follows from (3.26) and (3.28). Altogether, c1 ≤ 0, i.e. positive
shocks on exogenous assets do not increase the value of endogenous assets, but negative
shocks can reduce both, exogenous and endogenous asset values. For ã ∈ Asd ∪ Add, c1
is strictly increasing in Md

2,1 since straightforward calculations yield ∂c1
∂Md

2,1
> 0 in the

inner of both Suzuki areas and since c1 is continuous in Md
2,1 by Lemma 3.4 and (7.9).

Hence, ceteris paribus, the more firm 2 possesses of firm 1’s debt, the less negative is the
effect of contagion, i.e. for firm 1, the risk of losing a great part of its endogenous assets
due to the default of firm 2 is less severe. In contrast to that, increasing Md

1,2 (with all
other parameters fixed) can have diverse effects on firm 1’s loss in endogenous assets,
depending on whether firm 1 is itself in default after the shock and the exact parameter
constellation.

If the two firms have established cross-ownership of equity only, it is straightforward to
see from (7.10) that

c1 = −M e
1,2

M e
2,1a1 + a2 −M e

2,1d1 − d2
1−M e

1,2M
e
2,1

≤ 0, ã ∈ Asd ∪Add, (7.15)
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where the inequality follows from the fact that a ∈ Ass (cf. (3.25)). Hence, the change
in firm 1’s endogenous asset value caused by contagion is independent of the actual size
and direction of the shock δ, if this shock forces firm 2 to declare default. This can be
explained as follows. In the described scenario, the equity value of firm 2 becomes 0,
and hence the endogenous asset value of firm 1 declines to 0, and clearly, the size of this
decline, which exactly equals −c1 with c1 given in (7.15), is independent of the size of
the shock δ, provided that the shock ruins firm 2. Furthermore,

c1 =M e
1,2δ2 −M e

1,2M
e
2,1

a1 +M e
1,2a2 − d1 −M e

1,2d2

1−M e
1,2M

e
2,1

, ã ∈ Ads, (7.16)

where the numerator is non-negative because of the assumption a ∈ Ass. If we now
assume δ2 > 0, it follows that δ1 < 0 because otherwise, ã 6∈ Ads (cf. Figure 7.1(d)).
It is straightforward to see that for suitably chosen parameters, we can obtain c1 < 0,
i.e. under cross-ownership of equity only, the negative shock on firm 1’s exogenous asset
can affect the firm twofold, namely by the direct and indirect effect, even though firm 2,
whose equity is cross-held by firm 1, experiences a positive shock. On the other hand,
there are parameter constellations such that ã ∈ Ads, δ1 < 0 and c1 > 0, i.e. in this case,
the effect of contagion cushions the direct effect of the shock on firm 1. For ã ∈ Ass, c1
is given as in (7.12) with M1,2 =M e

1,2 and M2,1 =M e
2,1, and we can argue similarly that

cross-ownership of equity then amplifies both, entirely positive and entirely negative
shocks, i.e. the firms profit resp. suffer twofold from such shocks. Altogether, for a
firm linked to another firm by cross-ownership of equity only, the direction and the
size of the effect of contagion c1 strongly depend on the underlying parameters, and the
indirect effect can both, reduce and amplify the total effect of the shock. Furthermore, an
analysis of the corresponding derivatives shows that c1 is non-decreasing in the realized
cross-ownership fractions, i.e. in a closely linked system of two firms holding each other’s
equity, the change in the endogenous asset value of a firm caused by a given shock δ is
at least as big as in a less closely linked system.

Summary

In general, and in particular under cross-ownership of equity only, the change in firm i’s
(i = 1, 2) endogenous asset value due to a shock on the exogenous assets of a system
of firms, can be positive and negative, i.e. it can both, mitigate and exacerbate the
total effect of the shock. It is even possible that financial soundness (i.e. ai ≫ di)
increases negative effects of contagion. Furthermore, we cannot generally say that a
tighter cross-ownership structure leads to bigger absolute changes in endogenous asset
values. If the network structure is symmetrical, i.e. if each of the two firms holds an
identical fraction of the other firm’s debt and equity, this presence of cross-ownership
serves as a multiplicator in the sense that entirely positive or entirely negative shocks
are amplified, i.e. there are gains or losses in both, exogenous and endogenous asset
values. For two firms linked by cross-ownership of debt only the effect of contagion is
always non-positive, i.e. such firms cannot profit from positive shocks beyond the direct
effect, but they can suffer from negative shocks further amplified by cross-ownership.
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7.1.2 Transfer of Negative Shocks

Cross-ownership of any type and intensity can lead to scenarios where an initially solvent
firm goes bankrupt just because another firm in the system was subject to a negative
shock, although the firm itself experienced a non-negative shock. Under which circum-
stances such a default might occur will be analyzed in the following. We start with the
case of two firms.
As we are interested in situations where the effect of the negative shock hitting firm 2
on firm 1 is strong enough to drive firm 1 into default, although firm 1 experienced a
non-negative shock itself, we assume δ1 ≥ 0, δ2 < 0 and ã ∈ Ads ∪ Add. In order to see
which parameter constellations allow such a serious transmission of the shock and how
firm 2 bears the shock, we consider a series of figures, which are based on Figure 3.1,
modified for the different types of cross-ownership and levels of liabilities. In all the four
subfigures of Figure 7.1, the four (or three) Suzuki areas are defined by the black lines
and the bold red lines, with the bold red lines separating the areas where firm 1 is in
default, or not. On the bold red line itself, firm 1 is not in default. Since we assume
both firms to be solvent before the shock, we have a ∈ Ass. Let us now consider the
situation of firm 1 after a shock of the described type. In Figure 7.1(a), (b) and (d), the
subarea of Ass marked with the red solid lines is exactly the part of Ass where a shift
downwards or in down-right direction (indicated by the arrows) can lead to exogenous
asset values left of the bold red line, i.e. exogenous asset values after the shock, where
firm 1 is in default. Such possible exogenous asset values after the shock are indicated
by the subarea with the red dashed lines. Note that the dotted lines at the boundaries
of the dashed areas do not belong to the dashed areas.

We first consider the special case of cross-ownership of debt only, and we assume that
d1 > Md

1,2d2 and d2 > Md
2,1d1. This leads to Suzuki areas as in Figure 7.1(a), and it

becomes clear that the subarea with possible exogenous asset values after a shock of
the described type completely lies in Add, i.e. if this shock is strong enough to ruin
firm 1, firm 2 is ruined as well. This means that under cross-ownership of debt only,
if firm 1 has experienced a positive shock, firm 2 cannot pass on a negative shock to
firm 1 and remain solvent itself. Furthermore, Figure 7.1(a) shows that if firm 1’s initial
exogenous asset value is at least d1(1 −Md

1,2M
d
2,1), it cannot be ruined just because of

a negative shock on firm 2’s asset, while its own asset might have gained in value by
the shock. Somewhat surprisingly, this threshold decreases with the cross-ownership
structure getting tighter, i.e. more the two firms hold of each other’s debt, the smaller
own exogenous asset values are sufficient to be protected against a default merely caused
by a negative shock on the other firm’s asset. If d1 ≤Md

1,2d2, the situation is qualitatively

the same (cf. Figure 7.1(b)). If d2 ≤Md
2,1d1, firm 1 cannot go bankrupt through a shock

of the considered type at all (cf. Figure 7.1(c)).
The fact that under cross-ownership of debt only, a firm cannot pass its negative shock
to another firm (having experienced a non-negative shock) and remain solvent itself also
holds for systems of n ≥ 2 firms. Let firm i be the only firm in the system subject to
a negative shock. If firm i remained solvent, its recovery value of debt ri would still be
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Figure 7.1: Effects of a shock with δ1 ≥ 0 and δ2 < 0 on exogenous asset values of
two initially healthy firms; areas with red solid lines: exogenous asset values
before the shock for which firm 1 might be in default after such a shock;
areas with red dashed lines: possible exogenous asset values after such a
shock with firm 1 in default; (a) XOS of debt only with d1 > Md

1,2d2 and

d2 > Md
2,1d1; (b) XOS of debt only with d1 < Md

1,2d2; (c) XOS of debt only

with d2 < Md
2,1d1; (d) XOS of equity only.
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equal to di, i.e. the endogenous asset values of the other firms in the systems would be
unaffected by the shock, and they would remain solvent as well. Expressed differently,
if other firms in the system go bankrupt due to the shock on firm i, firm i must be in
default as well.

For two firms linked by cross-ownership of equity only it is indeed possible that the neg-
ative shock on firm 2’s exogenous asset does not ruin firm 2, but firm 1 instead, although
the shock affected firm 1’s exogenous asset in a non-negative way. Figure 7.1(d) shows
that among all shocks with δ1 ≥ 0, δ2 < 0 and ã ∈ Ads ∪ Add, firm 2 is still solvent
after the shock, if the negative shock on its exogenous asset has been mild in the sense
that ã2 ≥ d2, whereas firm 1 is in default. Under cross-ownership of equity only, an
exogenous asset value of at least d1 is sufficient for firm 1 to be protected against default
caused by the spillover of negative shocks, which is more than under cross-ownership of
debt only and which cannot be modified by changing the level of equity cross-held.
Of course, defaults caused by such spillover effects can also happen in the presence of
further firms in the system. The same holds for cross-ownership of both, debt and equity.

Having seen that a negative shock on a firm can lead to the default of other firms in the
system, especially if we do not require that the firm directly hit by the shock remains
solvent, we will now consider in a system of n ≥ 2 firms linked by cross-ownership of debt
and/or equity, for which shocks such a transfer can actually occur. Again, we assume
that all firms are solvent before the shock and that a subset ∅ 6= S ( {1, . . . , n} of firms is
subject to a non-positive shock, whereas firms in a subset ∅ 6= D ( {1, . . . , n} (D∩S = ∅)
receive a non-negative shock. The exogenous assets of the remaining firms (if any) do
not experience any shock. In the following, we will analyze under what conditions on
δ the firms in D will be simultaneously in default after the shock. In doing so, we will
not pose any restrictions on the financial status of the firms in S after the shock. Our
approach can be seen as a generalization of Proposition 1 of Glasserman and Young
[2015], who consider in a model identical to our model for cross-ownership of debt only
a system of n firms, where exactly one firm gets a negative shock ruining all firms in a
given set D, which do not experience shocks themselves. Then Glasserman and Young
[2015] derive a lower bound for the size of a shock triggering such a chain reaction. As
already mentioned, under cross-ownership of debt only, the shock on a single firm i can
affect other firms in the system only if firm i is in default after the shock itself, because
otherwise the recovery value of debt of firm i, which is cross-held by other firms, would
remain unchanged equal to di. However, if the firms are linked by cross-ownership of
equity as well, it is not necessary to assume that firm i or the firms in S are in default
after the shock.

Consistent with the above considerations and in contrast to the definition of δ in (7.1),
let the shock δ′ = (δi)1≤i≤n ∈ Rn be given as

δ′i





∈ [−ai, 0], i ∈ S,
≥ 0, i ∈ D,
= 0, i /∈ S ∪D.

(7.17)
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Again we assume that negative shocks cannot turn exogenous assets into liabilities. For
a given shock δ′ as in (7.17), let all the firms in D be in default after the shock. In the
following, we will derive a condition on δ′ necessary for such a scenario. For this, the
following lemma, valid for any shock δ as in (7.1), will be useful.

Lemma 7.1. After a shock δ ≥ −a, where all firms are assumed to be solvent before
the shock, the difference of the recovery values of debt before and after the shock and the
difference of the equity values before and after the shock are given as

d− r̃ =
(
−δ − s+Md(d− r̃) +Me(s− s̃)

)+
, (7.18)

s− s̃ = min
{
s, −δ +Md(d− r̃) +Me(s− s̃)

}
. (7.19)

Proof. By (3.13),

d− r̃ = d−min
{
d, a+ δ +Mdr̃+Mes̃

}
(7.20)

= d−min
{
d, a+Mdd+Mes+ δ −Md(d− r̃)−Me(s− s̃)

}
(7.21)

= d−min
{
d, d+ s+ δ −Md(d− r̃)−Me(s− s̃)

}
(7.22)

=
(
−δ − s+Md(d− r̃) +Me(s− s̃)

)+
, (7.23)

where (7.22) follows from the fact that a+Mdd+Mes = v = d+ s, which holds since
we assume all firms to be solvent before the shock. Similarly, by (3.14),

s− s̃ = s−
(
a+ δ +Mdr̃+Mes̃− d

)+
(7.24)

= s−
(
a+Mdd+Mes+ δ −Md(d− r̃)−Me(s− s̃)− d

)+
(7.25)

= s−
(
d+ s+ δ −Md(d− r̃)−Me(s− s̃)− d

)+
(7.26)

= min
{
s, −δ +Md(d− r̃) +Me(s− s̃)

}
. (7.27)

For a vector x ∈ Rn and a set ∅ 6= M ⊆ {1, . . . , n}, let xM stand for the subvector
of x obtained by removing all entries of x whose index is not in M , i.e. xM ∈ R|M |.
For an n × n-matrix A, the |M1| × |M2|-submatrix AM1,M2 is obtained by deleting
the rows and columns with the corresponding index not in ∅ 6= M1 ⊆ {1, . . . , n} and
∅ 6= M2 ⊆ {1, . . . , n}, respectively. If |M1| = n or |M2| = n, we write A.,M2 and AM1,.,
respectively.

The following proposition clarifies which shocks might lead to the default of all firms in
D. More specifically, a necessary condition for the shock to cause such an event is given.
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Proposition 7.2. Let a system of n firms linked by cross-ownership be subject to a shock
δ′ as defined in (7.17). All firms are assumed to be solvent before the shock. If all the
firms in D 6= ∅ with D ∩ S = ∅ are in default after the shock, then δ′ is such that

−
n∑

i=1

δ′i ≥
∑

j∈D
(1− βej )sj , (7.28)

with βek :=
∑n

i=1M
e
ik, k ∈ {1, . . . , n}, i.e. the negative sum of all shock components

exceeds or equals the sum of the equity values of the firms in D that are held outside the
system of the n firms.

Proof. Let D̄ denote the subset of firms that are in default after the shock δ′, i.e.
D̄ ⊇ D 6= ∅ with s̃D̄ = 0 and r̃D̄ ≪ dD̄. Let S̄ := {1, . . . , n}\D̄ denote the set of firms
that remain solvent.
Let us first assume k := |S̄| > 0. Since the firms in S̄ are solvent after the shock, we
have r̃S̄ = dS̄ , and Lemma 7.1 implies

sS̄ − s̃S̄ = −δ′S̄ +Md
S̄,D̄(dD̄ − r̃D̄) +Me

S̄,S̄(sS̄ − s̃S̄) +Me
S̄,D̄sD̄ (7.29)

=
(
Ik −Me

S̄,S̄

)−1

︸ ︷︷ ︸
=:M̃

(
−δ′S̄ +Md

S̄,D̄(dD̄ − r̃D̄) +Me
S̄,D̄sD̄

)
, (7.30)

0≪ dD̄ − r̃D̄ = −δ′D̄ − sD̄ +Md
D̄,D̄(dD̄ − r̃D̄) +Me

D̄,D̄sD̄ +Me
D̄,S̄(sS̄ − s̃S̄). (7.31)

Plugging (7.30) into (7.31) yields, with l := |D̄| > 0,

dD̄ − r̃D̄ = −δ′D̄ − sD̄ +Md
D̄,D̄(dD̄ − r̃D̄) +Me

D̄,D̄sD̄

+Me
D̄,S̄ M̃

(
−δ′S̄ +Md

S̄,D̄(dD̄ − r̃D̄) +Me
S̄,D̄sD̄

) (7.32)

and therefore

−δ′D̄ −Me
D̄,S̄ M̃ δ′S̄ =

(
Il −Md

D̄,D̄ −Me
D̄,S̄ M̃Md

S̄,D̄

)
(dD̄ − r̃D̄)

+
(
Il −Me

D̄,D̄ −Me
D̄,S̄ M̃Me

S̄,D̄

)
sD̄.

(7.33)

Setting S̄ := {i1, i2, . . . , ik} and D̄ := {j1, j2, . . . , jl}, the sum of the l lines of the LHS
of (7.33) equals

−
∑

j∈D̄
δ′j −

l∑

s=1

k∑

t=1

k∑

v=1

M e
jsitM̃tvδ

′
iv = −

∑

j∈D̄
δ′j −

k∑

v=1

(
l∑

s=1

k∑

t=1

M e
jsitM̃tv

)

︸ ︷︷ ︸
≤1 by Corollary A.18

δ′iv︸︷︷︸
≤0

(7.34)

≤ −
n∑

j=1

δ′j , (7.35)
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where δ′iv ≤ 0 because of iv ∈ S̄ and S̄ ∪ D = ∅. Twofold application of Lemma A.17
shows that the sum over the l lines of the RHS of (7.33) is greater than or equal to

∑

j∈D̄
(1− βdj )(dj − r̃j︸ ︷︷ ︸

>0

) +
∑

j∈D̄
(1− βej )sj ≥

∑

j∈D
(1− βej )sj , (7.36)

with

βdk :=
n∑

i=1

Md
ik < 1, βek :=

n∑

i=1

M e
ik < 1, k ∈ {1, . . . , n}. (7.37)

Combining (7.35) and (7.36) according to (7.33), we obtain

−
n∑

j=1

δ′j ≥
∑

j∈D
(1− βej )sj , (7.38)

i.e. the assertion is shown for S̄ 6= ∅. If S̄ = ∅, we have D̄ = {1, . . . , n} and s̃ = 0. Then
Lemma 7.1 implies 0≪ d− r̃ = −δ′ − s+Md(d− r̃) +Mes, i.e.

−δ′ = (In −Md)(d− r̃) + (In −Me) s. (7.39)

Summing up the n lines of (7.39) we obtain

−
n∑

j=1

δ′j =
n∑

j=1

(1− βdj )(dj − r̃j︸ ︷︷ ︸
>0

) +
n∑

j=1

(1− βej )sj ≥
∑

j∈D
(1− βej )sj , (7.40)

and the assertion follows.

Note that the bound provided in Proposition 7.2 holds independently of the realized
cross-ownership structure of debt, the exact holdings of a firm’s equity by other firms,
the nominal levels of liabilities d and the exogenous asset values a.

Let us now consider a random shock ∆′ : (Ω,A, P ) → (Rn,Bn, λn), with Bn and λn
denoting the n−dimensional Borel-σ-algebra and Lebesgue-measure, respectively. The
following corollary to Proposition 7.2 does not depend on the exact multivariate distri-
bution of ∆′, and thus it does not depend on the correlations between its components,
either.

Corollary 7.3. Let a system of n firms linked by cross-ownership be subject to a random
shock ∆′ := (∆′

i)1≤i≤n : (Ω,A, P )→ (Rn,Bn, λn) defined in analogy to δ′ in (7.17). All
firms are assumed to be solvent before the shock. Then the probability that all the firms
in D with D ∩ S = ∅ are in default after the shock is at most

P


−

n∑

i=1

∆′
i ≥

∑

j∈D
(1− βej )sj


 . (7.41)
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Simultaneous default of all firms in D caused by ∆′ is impossible if

∑

i∈S
ai <

∑

j∈D
(1− βej )sj . (7.42)

Proof. For all the firms in D to be in default after the shock ∆′, Lemma 7.2 shows that
it is necessary that −∑n

i=1∆
′
i ≥

∑
j∈D(1− βej )sj , i.e. the set {ω ∈ Ω : −∑n

i=1∆
′
i(ω) ≥∑

j∈D(1− βej )sj} is a superset of the set {ω ∈ Ω : all the firms in D are in default after
the shock ∆′(ω)}. This proves (7.41). Since we assume −∆′

i ≤ ai for all i ∈ S and
∆i ≥ 0 for all i ∈ D, we have −∑n

i=1∆
′
i ≤

∑
j∈S aj and (7.42) follows.

As it was to be expected, positive shocks on the firms in D mitigate the impact of nega-
tive shocks on firms in S in that they decrease the shock sum and thus the related upper
boundary of the probability of joint default of the firms in D. By (7.41), this upper
boundary of the probability of a spillover of negative shocks on firms in S ruining all
firms in D can be influenced by the share of equity of the firms in D held within the
system of the n firms. From a practical point of view, however, it is questionable to what
extent firm j can control βej . All other parameters of the system held fixed, we know

from Proposition 6.1 that sj is non-decreasing in Md
kl and M

e
kl for all k, l ∈ {1, . . . , n}

(k 6= l). This means that low values of M e
kj , leading to a low value of βej , not necessarily

decrease the probability in (7.41), as they tend to be associated with a low value of sj .
However, it is unclear which effect dominates. If we assume fixed share prices s, the
upper boundary of the probability of a spillover is the smaller the more of the equity of
the firms in D is held outside the system. Moreover, high values of Md

jk, M
e
jk and Md

kj

may in general reduce this maximum probability as well. As we are considering an upper
bound, though, this does not imply that the actual probability of such a serious spillover
decreases as well. Nevertheless, by (7.42), a suitably chosen cross-ownership structure
might protect against a simultaneous default of all firms in D caused by shocks of the
type ∆′. Of course, since we assume the firms in D to receive non-negative shocks, a
firm i in the set D cannot default due to the negative shocks on the firms in S if di ≤ ai,
because its exogenous asset will be sufficient to repay all of its liabilities after the shock
as well.

Corollary 7.3 extends Proposition 1 of Glasserman and Young [2015] in three ways,
namely we consider cross-ownership of both, debt and equity instead of cross-ownership
of debt only, we allow that more than one firm receives a negative shock, and we allow the
firms inD to receive a positive shock. In the following, we will compare our Corollary 7.3,
imposed with the restrictions S = {i} and ∆′

j = 0 for all j ∈ D for better comparability,
to Proposition 1 of Glasserman and Young [2015] in order to see how the additional
possibility of equity cross-holdings changes the bounds on δ′ and ∆′. For that, we
consider a shock δ′′ ≥ −a such that δ′′i < 0 and δ′′j = 0 for all j 6= i. Under these
assumptions, (7.28) reduces to

− δ′′i ≥
∑

j∈D
(1− βej )sj , (7.43)
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which is strictly smaller than the bound provided by Glasserman and Young [2015],
given as

− δ′′i ≥ si +
1

βdi

∑

j∈D
sj . (7.44)

As already mentioned, Glasserman and Young [2015] have to assume that the single
triggering firm i is in default after the shock itself, since otherwise, there would be no
implications for the remaining firms. If we adopt this for better comparability, yielding
S = {i} ⊂ D̄, (7.33), (7.35) and (7.36) imply

−δ′′i ≥
∑

j∈D̄
(1− βdj )(dj − r̃j) +

∑

j∈D̄
(1− βej )sj (7.45)

≥ (1− βdi )(di − r̃i) + (1− βei )si +
∑

j∈D
(1− βej )sj . (7.46)

By Lemma 7.1, di − r̃i ≥ −δ′′i − si, because s − s̃ ≥ 0 by Proposition 2 of Gouriéroux
et al. [2012], since we consider non-positive shocks. Hence,

− δ′′i ≥
βdi − βei
βdi

si +
1

βdi

∑

j∈D
(1− βej )sj . (7.47)

Comparing (7.44) and (7.47), we see that the presence of cross-ownership of equity
decreases the lower bound on −δ′′i , i.e. there are potentially more values of δ′′ leading
to a spillover of the negative shock on firm i to the firms in D. However, this does not
necessarily mean that the additional presence of cross-holdings of equity increases the
exact probability of such spillover effects. Without cross-ownership of equity, (7.44) and
(7.47) coincide.

7.1.3 Fundamental and Contagious Defaults

In the previous section we analyzed situations where firms default just because spillover
effects originating from negative shocks on other firms reduce the value of these firms’
endogenous assets, whereas these firms would have stayed solvent if they had experi-
enced the non-negative shock on their exogenous asset only. Hence, analogously to the
decomposition of the impact of the shock into a direct and indirect effect (cf. (7.9)), we
can identify two types of defaults, driven by changes of the exogenous and endogenous
asset value of a firm, respectively. The probability of default of a firm can be decom-
posed in two parts as well. Our approach for firms linked by cross-ownership of possibly
both, debt and equity, can be seen as an extension of a similar distinction for banks
on the interbank market with cross-ownership of debt only. For such systems of banks,
Elsinger et al. [2006a] define fundamental defaults and contagious defaults, where the
former occur under the assumption that all other banks in the system are still healthy
and with the latter resulting from spillover effects only. A similar distinction is made
by Cont et al. [2013]. Angelini et al. [1996], who consider the Italian interbank clearing
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system, mention defaults triggered by external events and defaults caused by the default
of another bank in the system, which corresponds to the contagious default of Cont
et al. [2013]. Under cross-ownership of debt only, the value of a firm’s endogenous assets
is affected by the shock if and only if one or more of the cross-held firms is bankrupt
after the shock. Hence, fundamental defaults as described by Elsinger et al. [2006a]
for example are based on the idea that a firm defaults due to the loss in its exogenous
asset value, while the value of its endogenous assets remains unchanged. In contrast to
that, contagious defaults occur under the assumption that a firm could have borne the
shock on its own exogenous asset, i.e. it is not in a fundamental default, but default
occurs since other firms in the system cannot meet their liabilities, which means that
the considered firm’s endogenous asset value has decreased. With cross-ownership of
equity being present, however, it is clear that endogenous asset values will in general
react to any shocks on the system, no matter whether the firms directly hit by the shock
default, or not. This leads us to the following definition of fundamental and contagious
defaults under cross-ownership of possibly both, debt and equity, valid for any shock δ
as in (7.1).

Definition 7.4. For a system of n firms linked by cross-ownership of possibly both, debt
and equity, firm i (1 ≤ i ≤ n) is in a fundamental default, if

ãi+
n∑

j=1

Md
ijrj(a)+

n∑

j=1

M e
ijsj(a) < di and ãi+

n∑

j=1

Md
ijrj(ã)+

n∑

j=1

M e
ijsj(ã) < di, (7.48)

where the second condition indicates that firm i is indeed in default after the shock.
Firm i is in a contagious default, if

ãi+

n∑

j=1

Md
ijrj(a)+

n∑

j=1

M e
ijsj(a) ≥ di and ãi+

n∑

j=1

Md
ijrj(ã)+

n∑

j=1

M e
ijsj(ã) < di, (7.49)

where again the second condition indicates that firm i is indeed in default after the shock.

Fundamental defaults are driven by what we called the direct effect in Section 7.1.1,
since the firm would be in default also under the assumption of a fixed endogenous asset
value, whereas contagious defaults are caused by changes of the endogenous asset values
due to the shock, i.e. for a frozen endogenous asset value, the firm could have borne
the shock on its exogenous asset. In particular, all firms in a fundamental default are
directly hit by the shock. In the wide-spread literature on networks with cross-holdings
of debt only under an idiosyncratic shock, the term contagious default mostly stands for
the default of firms not directly hit by the shock5. For the described set-up, this defin-
ition of a contagious default coincides with our Definition 7.4, but in general, contagious
defaults as in Definition 7.4 can also occur for firms directly affected by the shock.
Note that in the situation of Proposition 7.2, the firms in D are in a contagious default,

5Eboli [2013] calls such defaults secondary defaults, whereas a firm is in a primary default if and only if
it has been directly hit by the shock.
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since the first inequality of (7.49) is met because all firms are assumed to be solvent
before the shock and ãi ≥ ai (i ∈ D), and the second inequality in (7.49) is met because
the firms in D are supposed to be in default after the shock.

We now consider random shocks ∆ = (∆i)1≤i≤n : (Ω,A, P ) → (Rn,Bn, λn) and the
probability that a firm is in default after the shock. Similarly to (7.1) we assume∆ ≥ −a
P−a.s.. Let Ã = (Ãi)1≤i≤n := a + ∆ ≥ 0 P−a.s. denote the random value of the
exogenous assets immediately after the shock.

By (7.48) and (7.49), any default of a firm in a system of n firms linked by cross-ownership
due to a shock is either a fundamental or a contagious default. Hence, the probability
that firm i is in default after the shock is the sum of the probability that firm i is in a
fundamental default after the shock and the probability that firm i is in a contagious
default after the shock. This means that we can quantify to what extent the probability
of default of a firm in a system of n firms originates from the effect of contagion. An
obvious measure is

ki :=
probability of a contagious default of firm i

probability of default of firm i
, i = 1, . . . , n. (7.50)

With the random firm value of firm i after the shock given as

Ṽi = Ãi +
n∑

j=1

Md
ijrj(Ã) +

n∑

j=1

M e
ijsj(Ã), (7.51)

(7.3) and (7.49) yield

ki =
P (Ãi + āi ≥ di, Ṽi < di)

P (Ṽi < di)
= P (Ãi + āi ≥ di | Ṽi < di). (7.52)

By Definition 7.4, firms in a contagious default could have borne a possible shock on their
exogenous assets, provided that the value of their endogenous assets had left unchanged.
Hence, without due consideration of the realized network structure and treating en-
dogenous asset values as fixed instead, such firms might have thought to be rather save
from default due to shocks impending with a given probability and size on the system,
as they could have withstood the direct effect on their exogenous asset values. This
makes clear that contagious defaults could be interpreted as defaults not anticipated,
and in this sense, ki stands for the proportion of defaults not foreseeable if the network
structure is not taken into account appropriately.

A resembling approach to catch the effects of shock transmission on the probability of
default is proposed by Gouriéroux et al. [2012]. They compare the probability of default
of a firm, i.e. the probability of default under Suzuki’s model, with the probability of
default of this firm without contagion, i.e. after having cashed possible cross-holdings, so
that endogenous assets are converted into exogenous assets. This exactly corresponds to
the above “mistake” of treating endogenous asset values as fixed instead of considering
their dependence on the shock. In our notation, the latter probability can be written
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as P (Ãi + āi < di) (cf. (7.3)), and as a measure of the impact of contagion on firm i,
Gouriéroux et al. [2012] then define

Ki :=
probability of default of firm i

probability of default of firm i without contagion
(7.53)

=
P (Ṽi < di)

P (Ãi + āi < di)
. (7.54)

Comparing ki and Ki, we see that ki is more appropriate, if we want to further analyze
the components constituting the probability of default under Suzuki’s model, whereas
Ki relates the probability of default under Suzuki’s model to the probability of default
without contagion obtained from treating endogenous asset values as fixed. Hence, Ki

can be interpreted as a correction factor that this “erroneous” probability of default
needs to be multiplied with to obtain the actual probability of default.

If we consider non-positive shocks only, ki and Ki are related as follows. Under non-
positive shocks, a firm i with ãi + āi = ãi + vi − ai < di is automatically in default, i.e.
ṽi < di. If we had ṽi ≥ di, it would follow that ṽi− ãi− (vi− ai) > 0. However, by (7.2)
and (7.51), ṽi − ãi − (vi − ai) =

∑n
j=1M

d
ij(r̃j − dj) +

∑n
j=1M

e
ij(s̃j − sj) ≤ 0, where the

inequality follows from Proposition 2 of Gouriéroux et al. [2012], if we restrict ourselves
to non-positive shocks. Hence, if ãi + āi < di, firm i is automatically in a fundamental
default, and therefore P (Ãi + āi < di) ≤ P (Ãi + āi < di, Ṽi < di). Of course, we also
have P (Ãi + āi < di) ≥ P (Ãi + āi < di, Ṽi < di). This yields

Ki =
P (Ṽi < di)

P (Ãi + āi < di)
=

P (Ṽi < di)

P (Ãi + āi < di, Ṽi < di)
(7.55)

=
1

P (Ãi + āi < di | Ṽi < di)
=

1

1− ki
. (7.56)

Thus, under non-positive shocks, it is sufficient to consider either ki or Ki. Furthermore,
Ki ≥ 1 under such shocks by (7.56), i.e. the above-mentioned “erroneous” probability
of default underestimates the actual probability of default.

Simulated values of Ki, i = 1, . . . , 5, for a system of five French banks, which are at
least in part connected by cross-holdings of both, debt and equity, can be derived from
Table 4 of Gouriéroux et al. [2012], where it is assumed that ln(Ã) ∼ ln(a) + u with
u ∼ N (0, σ2I5) for some σ2 > 0, i.e. the random exogenous asset values after the shock
follow a lognormal distribution. Hence, positive shocks are possible as well, leading to
simulated values of Ki between 0 and 1.04.

Recall that in Section 3.2.2.1 we considered a ratio of probabilities roughly resembling the
reciprocal of (7.54), namely the ratio of the probability of default of (w.l.o.g) firm 1 under
Suzuki’s model (“pS”) and the lognormal model (“pL”), which we called the relative risk
RR, i.e. for firm 1,

RR =
pL
pS

=
P (W1 < d1)

P (V1 < d1)
, (7.57)
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provided that pS > 0, with W1 following a lognormal distribution with parameters de-
termined such that the first two moments of the firm values V1 and W1 obtained from
Suzuki’s model and the lognormal model coincided. Furthermore, we assumed exogenous
asset values to follow a multivariate geometric Brownian motion, resulting in lognormally
distributed exogenous asset values A at maturity.
In contrast to that, we now start from given exogenous asset values a at or infinitesimally
close to maturity and impose an immediate shock on them, leading to random exogenous
asset values Ã at maturity. All probabilities considered in this section relate to the size
of the shock, whereas all probabilities in Section 3.2.2.1 refer to the value of exogenous
assets at maturity evolving from the underlying geometric Brownian motion. Hence,
neither these probabilities nor any ratios related to them cannot be directly compared.

In the next section we will see by means of our simulation study how the occurrence of
fundamental and contagious defaults and the values of ki and Ki depend on the realized
type and intensity of cross-ownership and the frequency and size of shocks impending
on the system.

7.2 Simulation Study on Contagion

7.2.1 Existing Literature

In the last 15 years, many simulation studies on the resilience of real-world systems of
banks linked by cross-holdings of debt have been conducted. Comprehensive overviews
are provided by Upper [2011] and Cont et al. [2013], for example. As Upper [2011] re-
ports, most of the papers he considered use the sequential default algorithm developed
by Furfine [2003], which is described by Upper [2011] as follows. First, some bank i fails
by assumption. Any bank j fails if the nominal value of debt of bank i owed to bank j,
multiplied by an exogenously given loss rate θ, exceeds the nominal equity value of bank
j. If there is a bank k (k /∈ {i, j}) such that the loss, given as θ times the nominal sizes
of bank k’s loans granted to bank i and bank j, exceeds bank k’s equity, bank k is in
default as well. Further rounds of defaults are possible. The algorithm stops if no further
defaults occur. As Upper [2011] remarks, “this algorithm does not solve the simultane-
ity problem since it does not recognise that higher order defaults increase losses at the
banks that have failed previously, which in turn raises the θi’s in their liabilities” [Upper,
2011, p. 115], i.e. there are no feedback loops of losses. In contrast to sequential default
algorithms used in cascade models (cf. Section 1 and Staum [2013]), in the fictitious
default algorithm of Eisenberg and Noe [2001] and its successors employed in clearing
models, “a market clearing equilibrium is defined through a clearing payment vector with
proportional sharing of losses among counterparties in case of default”, which “leads to
an endogenous recovery rate which corresponds to a hypothetical situation where all
bank portfolios are simultaneously liquidated” [Cont et al., 2013, p. 331]. However, also
Glasserman and Young [2015] note that the application of the Eisenberg-Noe model does
not necessarily mean that actual payments are made at the end of the period, so they
prefer to call it a valuation model rather than a clearing model. In contrast to Upper
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[2011], Cont et al. [2013] arrive at the conclusion that in most studies, the model of
Eisenberg and Noe [2001] is used as a theoretical background6.
A common finding of a great part of such studies can be subsumed as “[c]ontagion is a
low probability high impact event” [Elsinger et al., 2006a, p. 1302], see also the results
of Degryse and Nguyen [2007], Gai and Kapadia [2010], Cont et al. [2013], the survey
paper of Upper [2011] and references in there. However, Upper [2011] and Cont et al.
[2013] also bring up shortcoming of such studies, for example that they often consider
a shock on a single firm only, and that complete data on the cross-ownership structure
needed for simulation studies for existing banking systems are often unavailable, but are
estimated by the method of entropy maximization (cf. Blien and Graef [1998], for ex-
ample), which is based on the idea that banks or firms seek to spread their engagements
as wide as possible. However, Upper [2011] warns that entropy maximization “will not
be able to reproduce a number of stylized facts on interbank markets”, for example the
circumstance that most banks are linked to only a few other banks in the system and
the presence of tiering, “where lower tier banks do not lend to each other but transact
only with top tier banks, which tend to be tightly linked” [Upper, 2011, p. 117]. For
empirical evidence see the references provided in Nier et al. [2007] and Upper [2011]. In
our simulation study we will take these findings into account by analyzing an incomplete
network where not all possible links are present, as it is also done by Nier et al. [2007],
Gai and Kapadia [2010] and Elliott et al. [2014]. Furthermore, we consider a so-called
core-periphery network as proposed by Nier et al. [2007] and Elliott et al. [2014], for
example. According to Gouriéroux et al. [2012], missing data on cross-holdings might be
available soon, due to new regulations for the financial sector (‘Basel III’), which would
make the use of estimation methods such as entropy maximization obsolete, at least in
the context of banks.
Furthermore, although Nier et al. [2007] acknowledge that “[t]his line of research [i.e.
simulation studies on existing banking systems] is valuable in providing insights on the
empirical importance of interbank contagion for real world networks”, they critically
remark that “the results are invariably driven by the particulars of the banking system
under study and cannot therefore provide easily generalizable insights into the drivers
of systemic risk” [Nier et al., 2007, p. 2037]. In their own simulation study they ex-
amine the influence of several parameters related to the size and structure of a random
network of banks on the number of defaults under cross-ownership of debt only. The un-
derlying model consists of a random graph with nodes and directed and weighted edges
representing firms and financial linkages (measured as the nominal capital outstanding),
respectively. From that, balance sheets of all firms and the cross-ownership matrix Md

can be derived, and it can be shown that by construction of these balance sheets, all firms
are solvent in the framework of Fischer [2014] as well. As such, the model is structural,
but after a shock on the exogenous asset of a single firm, defaults are determined using
a sequential default algorithm instead of the model of Eisenberg and Noe [2001], i.e. it

6This discrepancy might be explained by the fact that the last revision of Upper’s paper took place in
2009, and afterwards, as he remarks, more than 15 simulation studies on contagion in the interbank
market have been published.



126 7 Contagion

belongs to the class of cascade models. If a bank’s nominal equity value is not sufficient
to absorb the shock on its exogenous asset, the bank is in default and the residual loss
(calculated as shock size minus equity value) is transferred to the creditors of this bank.
This may trigger further rounds of defaults. In extreme cases where the residual loss
exceeds a bank’s nominal interbank liabilities, the remaining amount is transferred to
external depositors, i.e. in contrast to the model of Eisenberg and Noe [2001] and its
successors, external debt is senior to interbank liabilities.
In a similar framework as Nier et al. [2007], but with a slightly different rationale of
constructing balance sheets and with zero recovery values of debt, Gai and Kapadia
[2010] examine how the probability of occurrence and the size of a cascade, measured
as the percentage of firms in default after the shock, depends on the chosen network
parameters. A detailed comparison of the models and a theoretical confirmation of the
results of Nier et al. [2007] and Gai and Kapadia [2010] can be found in May and Ari-
naminpathy [2010].
Closer to the set-up of Eisenberg and Noe [2001], Elliott et al. [2014] consider a network
of firms cross-holding their firm values. In contrast to our model, Elliott et al. [2014]
analyze market values of firms, which are calculated as the proportion of the firm value
held outside the system of n firms. However, as they remark, this does not qualita-
tively alter the results. A firm i defaults as soon as its market value falls below a certain
threshold vi, calculated as a fixed proportion of its initial market value. If default occurs,
this firm experiences an additional loss in its market value due to failure costs, i.e. firm
values and thus also market values are discontinuous in exogenous asset values. This
discontinuity may lead to multiple equilibria, and Elliott et al. [2014] always consider
the solution with the minimum number of defaults, as these defaults are unavoidable.
Defaults are determined by an algorithm similar to the fictitious default algorithm of
Eisenberg and Noe [2001]. Then Elliott et al. [2014] analyze in a simulation study with
random networks how the number of defaults caused by an idiosyncratic shock depends
on the realized network structure.
The studies of Nier et al. [2007], Gai and Kapadia [2010] and Elliott et al. [2014] will be
the main references to our study.

To our knowledge, a comprehensive simulation study based on Eisenberg and Noe [2001]
or, as an extension with cross-holdings of equity also, based on Suzuki [2002], Elsinger
[2009] and Fischer [2014], that examines the influence of the network size and structure,
determined by cross-holdings of possibly both, debt and equity, the frequency and mag-
nitude of multiple shocks and the ratio of nominal liabilities to exogenous asset values on
the effect of contagion and the resulting number of defaults, has not been published yet.
Hence, our simulation study designed to analyze these effects will offer further insights
complementing the existing literature. Its detailed set-up und the obtained results are
presented in the following.
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7.2.2 Set-Up and Parameter Values

7.2.2.1 Input Parameters and Algorithm

The main input parameters concern the structure of the system and the nature of the
shocks. As in the previous sections and in line with the literature, we will only consider
systems with all firms being solvent before the shock.

Remark 7.5. Under cross-ownership of equity only, if all firms are solvent before the
shock, this implies

∑n
i=1 ai ≥

∑n
i=1 di. This can be seen as follows. First, if all firms are

solvent before the shock, s = a +Mes − d, i.e. (In −Me)s = a − d. Adding up the n
rows shows that then

n∑

i=1

(1− βei )si
︸ ︷︷ ︸

≥0

=
n∑

i=1

ai −
n∑

i=1

di, (7.58)

with βei as defined in (7.37).

Network Structure

In our simulations we analyze three types of networks, namely the incomplete network,
the core-periphery network, and the ring network. As in Nier et al. [2007], Gai and
Kapadia [2010] and Elliott et al. [2014], we interpret the system of n firms as a random
graph with the firms as nodes and their cross-holdings representing the directed edges,
which means that mutual liabilities are not netted. However, as we allow cross-ownership
of both, debt and equity, we actually need to consider two networks with identical nodes,
but different path structures, one for each type of cross-ownership. In both networks,
each directed link from firm i to firm j stands for a holding of firm i in firm j’s debt
or equity. In the incomplete network and the core-periphery network, all these links are
present or absent independently of each other. Furthermore, in the incomplete network,
each link has an identical probability of occurrence, which is often called the Erdös-Rényi
probability, as Erdös and Rényi [1959] were among the first to study the properties of
such random graphs [Nier et al., 2007]. Hence, incomplete networks exhibit symmetry
between the n firms with respect to the expected numbers of ingoing and outgoing links.
Following Elliott et al. [2014], a cross-ownership matrix M = (Mij)1≤i,j≤n (standing
for Md or Me) of the incomplete network was created as follows. First, we generated a
random graph with Erdös-Rényi probability pθ, denoted in terms of a so-called adjacency
matrix G ∈ {0, 1}n×n [Elliott et al., 2014] with i.i.d. entries Gij ∼ Ber(pθ) for i 6= j and
Gii = 0, 1 ≤ i, j ≤ n. Then we set

Mij :=
β ×Gij∑n
i=1Gij

, 1 ≤ i, j ≤ n, (7.59)

i.e. the strictly positive entries within a column of M have identical values and their
respective sum always equals β. Thus, β stands for the fraction of any firm’s debt
or equity held within the system of the n firms, see also (7.37). As in Elliott et al.
[2014], we will refer to β as the integration of the system with cross-ownership matrix
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M. Furthermore,

E

(
n∑

i=1

Gij

)
= (n− 1) pθ =: θ (7.60)

denotes the expected number of strictly positive entries within each column of M, i.e. θ
equals the expected number of debtholders or shareholders of a firm. Based on Elliott
et al. [2014] we will refer to θ as the diversification of the system, whereas in Nier et al.
[2007] and Gai and Kapadia [2010], pθ resp. θ are called the connectivity of the system.
In our simulations, we considered every combination of

β ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}, (7.61)

pθ ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, (7.62)

where, within a given scenario under cross-ownership of both, debt and equity, Md and
Me exhibited identical values of β and pθ for the sake of simplicity, but their entries do
not coincide in general. In the following, we will refer to this set-up as the incomplete
network. Note that for pθ = 1, we obtain a complete network with all possible links being
present. Such networks will be theoretically analyzed in Section 7.2.5.3 and Section A.8,
see also Eboli [2013] and Acemoglu et al. [2015].
As already mentioned, real-world interbank networks with cross-holdings of debt exhibit
asymmetry in the sense that so-called core firms have a higher probability of being
connected to other firms in the system than peripheral firms (cf. Nier et al. [2007] and
references therein), i.e. core firms tend to have more outgoing links than peripheral firms,
which means that core firms tend to hold a part of more firms than peripheral firms. In
our second network structure, called core-periphery network as in Elliott et al. [2014]7,
we take this finding into account by dividing the set of n firms into two disjoint and non-
empty subsets C = {1, . . . , nC} and P = {nC + 1, . . . , n} of core firms and peripheral
firms, respectively. Note that under cross-ownership of both, debt and equity, a firm
belongs to the same subset for both types of cross-holdings. In our simulations, we had
10% core firms and 90% peripheral firms, i.e. nC/n = 0.1. This is in line with Elliott
et al. [2014] and moreover a compromise between the empirical findings of Craig and
von Peter [2014] and Fricke and Lux [2012], who estimated this fraction with about
2.5% for the German banking system and with about 23%-28% for the Italian overnight
interbank market e-MID, respectively. Then core firms have a higher probability pθ,C of
holding a part of some other firm in the system than peripheral firms with corresponding
probability pθ,P . Following Nier et al. [2007], for a better comparability, pθ,C and pθ,P
were chosen such that the expected number of directed links is the same as for the
incomplete network with Erdös-Rényi probability pθ. In the core-periphery network,
the expected number of links amounts to pθ,C nC (n − 1) + pθ,P (n − nC) (n − 1) =
(n − 1) (pθ,C nC + pθ,P (n − nC)), for the incomplete network the expected number of

7Nevertheless, our core-periphery network is more oriented towards the tiered network of Nier et al. [2007]
than the core-periphery network of Elliott et al. [2014], which consists of 10 completely connected core
firms and 90 peripheral firms linked to exactly one (core) firm such that the core firm holds a part of
the peripheral firm.



7.2 Simulation Study on Contagion 129

links equals pθ n (n− 1). Equating these two expressions yields8

pθ,P =
pθ n− pθ,C nC

n− nC
. (7.63)

Following Nier et al. [2007], the calculation of pθ,P was based on9 pθ = 0.2, and we let

pθ,C ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, (7.64)

implying

pθ,P ∈
{
17
90 ,

16
90 ,

15
90 ,

14
90 ,

13
90 ,

12
90 ,

11
90 ,

10
90

}
. (7.65)

This implies that diversification in the core-periphery network is constant 0.2× (n− 1)
for all considered scenarios, even if pθ,C is varied. For given values of pθ,C and pθ,P
we then generated the adjacency matrix G such that independently Gij ∼ Ber(pθ,C)
for 1 ≤ i ≤ nC , i 6= j, and Gij ∼ Ber(pθ,P ) for nC + 1 ≤ i ≤ n, i 6= j, and Gjj = 0
(1 ≤ j ≤ n). ThenM was created fromG as for the incomplete network, with integration
β taking the same values as in the incomplete network. Again, within a scenario under
cross-ownership of both, debt and equity, Md and Me were built from the same values
of pθ,C and β, but they were generally not identical. In contrast to Elliott et al. [2014],
who equip core firms and peripheral firms with initial exogenous asset values of 8 and
1, respectively, we refrained from mixing up the two criteria “coreness” and initial size.
Instead, in all our simulations on the three network structures, exogenous assets values
did not differ between the n firms before the shock.
Apart from random graphs with independently created links, we also considered ring
networks as described by Eboli [2013] and Acemoglu et al. [2015] for example, where for
both, debt and equity, each firm partially owns exactly one firm and is partially owned
by exactly one other firm, so that a chain of cross-holdings comprising all the n firms
emerges. Hence, the resulting matrices Md and Me have exactly one positive entry in
each row and column, but Md and Me do not need to coincide. In a ring network, we
always have θ = 1 and thus a fixed level of diversification. Integration β was varied in
analogy to the incomplete network, where again, within a scenario, Md and Me had the
same level of integration.

Remark 7.6. Besides pθ and instead of integration β, Nier et al. [2007] use bank capi-

talization10 γ :=
∑n

i=1 si
∑n

i=1 vi
and the size of interbank exposures ζ :=

∑n
i=1(vi−ai)
∑n

i=1 vi
as input

parameters for the construction of the network, and they analyze how these parameters
influence the number of defaults caused by a shock. However, in our set-up (i.e. our

8Although the underlying rationale is the same, this formula differs from the formula used by Nier et al.
[2007], which might not be correct as it does not yield the correct result if pθ = pθ,C = pθ,P .

9As we will see on page 132, this corresponds to the benchmark value of pθ in the incomplete network.
10In the model of Nier et al. [2007], the n banks exhibit the same level of capitalization (expressed as the
ratio of equity value to total bank value), but as this cannot be guaranteed in our model, we identify bank

capitalization of Nier et al. [2007] with
∑n

i=1
si∑

n
i=1

vi
, since in their model,

sj
vj

=
∑n

i=1
si∑

n
i=1

vi
for all j ∈ {1, . . . , n}.
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method of network construction), γ and ζ are both endogenously determined and mono-
tone transformations of β: since all firms are assumed to be solvent before the shock
and therefore vi = di + si, it follows that

n∑

i=1

vi =
n∑

i=1

ai +
n∑

i=1

βdi di +
n∑

i=1

βei si (7.66)

=





∑n
i=1 ai + β

∑n
i=1 di, XOS of debt only,

∑n
i=1 ai + β

∑n
i=1(vi − di) =

∑n
i=1 ai−β

∑n
i=1 di

1−β , XOS of equity only,
∑n

i=1 ai + β
∑n

i=1(di + si) =
∑n

i=1 ai
1−β , XOS of both, debt and equity,

(7.67)

with βdi and βei as defined in (7.37). Since all the three expressions
(
and thus also

γ =
∑n

i=1(vi−di)
∑n

i=1 vi
= 1−

∑n
i=1 di

∑n
i=1 vi

and ζ = 1−
∑n

i=1 ai
∑n

i=1 vi

)
are monotone in β for given values of∑n

i=1 ai and
∑n

i=1 di, we will display all results in terms of β only. Note that γ and ζ are
non-decreasing in β. For cross-ownership of equity only this follows from Remark 7.5.
Furthermore, (7.67) reveals that in our set-up, for any type of cross-ownership and any
realization of any network type,

∑n
i=1 vi only depends on the integration β,

∑n
i=1 ai and∑n

i=1 di, i.e. even for random networks,
∑n

i=1 vi and thus also
∑n

i=1 si, γ and ζ are
deterministic. This will prove useful for some theoretical considerations on our output
parameters in Section 7.2.3. However, individual firm values vi do depend on the realized
network structure.

Shocks

The literature on contagious effects of shocks on a system of n firms or banks linked by
cross-ownership mainly employs one of the two following types of events or shocks. The
majority of them (among many others, Angelini et al. [1996], Furfine [2003], Degryse and
Nguyen [2007], Nier et al. [2007], and Gai and Kapadia [2010]) considers scenarios where
the default of a single firm, mostly caused by a shock on the exogenous asset of this
firms (often reducing its value to 0) might trigger a chain reaction leading to the default
of other firms in the system. In the opinion of Upper [2011], this is a clear shortcoming
limiting the usefulness of such models. Instead, he recommends to allow simultaneous
shocks on some or all the n firms, as it is done for example by Boss et al. [2006], Elsinger
et al. [2006a], Elsinger et al. [2006b], Frisell et al. [2007], Mart́ınez-Jaramillo et al. [2010],
and Gouriéroux et al. [2012]. In simulation studies on existing banking systems, such
shocks follow either a theoretical multivariate distribution, sometimes with parameters
calibrated to real data, or a multivariate empirical distribution completely estimated
from existing data. This seems plausible, as it is the aim of such studies to gain a
realistic impression of the impending danger of contagious defaults. In contrast to that,
our study targets at identifying potential influence factors on the occurrence of defaults
in a systematic way. Hence, based on a rationale provided in the online appendix11 of

11cf. https://www.aeaweb.org/aer/app/10410/20130115_app.pdf.

https://www.aeaweb.org/aer/app/10410/20130115_app.pdf
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Elliott et al. [2014], in our simulations shocks are such that each firm receives a negative
shock with probability pπ, wiping out π100% of its exogenous asset. Thus, the random
exogenous value after the shock equals

Ã = (In − π diag(B1, . . . , Bn))a, (7.68)

with i.i.d. Bernoulli distributed random variables Bi with parameter pπ. Within a
scenario, pπ and π were identical for all the n firms, and we considered every combination
of

pπ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, (7.69)

π ∈ {0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, (7.70)

where π = 1 corresponds to a total loss in a firm’s exogenous asset value.

Further Input Parameters

All the n firms were endowed with exogenous assets of value ai = a = 1 before the
shock. The nominal level of liabilities d, likewise identical for all the n firms, was set to
0.95 or 1.1. For d > a, it is impossible to generate scenarios with all firms being solvent
before the shock under cross-ownership of equity only by Remark 7.5. Hence, we skipped
scenarios with d = 1.1 under cross-ownership of equity only. For d < a, only firms that
actually receive a strictly negative shock can be in default after the shock. This is another
reason why we consider multiple shocks instead of idiosyncratic shocks, since otherwise,
at most one firm would be in default after the shock, if d < a. Under multiple shocks,
defaults can be both, fundamental and contagious, even if d < a. Note that Nier et al.
[2007] consider a higher level of total nominal debt to total exogenous asset values in

their benchmark scenario, which can be calculated as d
a =

∑n
i=1 di

∑n
i=1 ai

= 1−γ
1−ζ = 0.95

0.8 = 1.1875

by Remark 7.6. We chose smaller values of d/a in order to facilitate the generation of
systems with all firms being solvent before the shock. Furthermore, as in Gai et al.
[2011], our system consisted of n = 250 firms.

Generation of Scenarios, Benchmark Values and Clearing Algorithm

To each of the three types of cross-ownership (cf. Definition 3.2), we independently
applied the following procedure for the generation of scenarios.
In a first attempt, we considered every combination of the above input parameters.
However, this led to a huge number of scenarios, with results difficult to display clearly.
Hence, we decided to follow the approach of Nier et al. [2007], i.e. we defined a benchmark
scenario with fixed parameter values and based on that, we simultaneously varied two
parameters out of three or four (shock probability pπ, shock size π, integration β and, for
the incomplete network, Erdös-Rényi probability pθ, and, for the core-periphery network,
pθ,C). This was done for all possible pairs of these parameters. Hence, all results obtained
for this set-up would need to be confirmed by simulations with additional combinations
of parameter values. The benchmark values of the respective fixed parameters, indicated
with superscript b, were chosen as follows. By Remark 7.6 for cross-ownership of debt
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only, ζ = 1−
∑n

i=1 ai
∑n

i=1 ai+β
∑n

i=1 di
, which implies β ≈ 0.21 if we plug in the above-mentioned

benchmark values of Nier et al. [2007], given as ζ = 0.2 and
∑n

i=1 di
∑n

i=1 ai
= 1.1875. Hence,

we set βb = 0.2. Furthermore, we adopted pbθ = 0.2, yielding θb = 49.8. In the
core-periphery network we set pbθ,C = 0.5, implying pbθ,P = 1/6. Since Nier et al. [2007]
consider idiosyncratic shocks completely wiping out a firm’s exogenous asset, benchmark
values for pπ and π could not be derived from their work, and Elliott et al. [2014] do
not work with benchmark values. Due to the lack of further sources in the literature
and since our main goal is not to estimate real-world probabilities of default, but to gain
an impression of the influence of our input parameters on this probability, we just set
pbπ = 0.2 and πb = 0.4.

For a fixed network type (incomplete, core-periphery, ring), a given type of cross-
ownership and a given pair of parameters to be varied, we first simulated m = 1,000 real-
izations of Ã for all combinations of the corresponding parameter values of pπ and π ac-
cording to (7.68), and, depending on the considered type of cross-ownership, m1 = 2,000
realizations ofMd and/or Me for all combinations of the corresponding parameter values
of β and pθ, or β and pθ,C , if applicable.

Next, we fixed the value of d. Then, together with a = 1, we calculated values of r and
s before the shock for the simulated cross-ownership matrix/matrices. For d = 0.95, all
the 250 firms were automatically solvent before the shock due to d < a. If, for d = 1.1,
it turned out that for some pair of matrices not all of the n firms were solvent before the
shock, this realization of the cross-ownership matrix/matrices was skipped. This is why
we simulated 2,000 realizations of Md and/or Me instead of 1,000 only. The procedure
ended as soon as we had 1,000 solvent networks or all the 2,000 realizations had been
tested. Hence, it was possible that for some scenarios, fewer than or even none of the
intended 1,000 repetitions were at hand. For details, see Section 7.2.3.1.
In order to get the values r̃ and s̃ after the shock for the obtained m2 (m2 ≤ m) valid
networks (in the sense that all the firms are solvent before the shock for the given value
of d), we combined the kth valid realization of the cross-ownership matrix/matrices with
the kth realization of Ã (k = 1, . . . ,m2) and from that, we determined r̃ and s̃.

The values r and s, as well as r̃ and s̃, were calculated as fixed points of Φa,d,Md,Me of

Fischer [2014] (cf. (3.17)) with tolerance ǫ = 1 × 10−6 and starting vector (rT0 , s
T
0 )
T :=

rsmall := (min{d, a}T , ((a−d)+)T )T taken from Hain and Fischer [2015]. Recall that in
contrast to our approach based on simultaneous clearing, Nier et al. [2007] and Gai and
Kapadia [2010] employ sequential default procedures (cf. Section 7.2.1).

7.2.2.2 Output Parameters

Based on r, s, r̃ and s̃, the following output parameters were calculated for each of the
m2 repetitions of a given combination of parameter values, quantifying the impact of
the shock in several ways.

The most natural measure is the total number of defaults, which is also employed by
Nier et al. [2007], Mart́ınez-Jaramillo et al. [2010], Gai and Kapadia [2010], Eboli [2013],
Elliott et al. [2014] and Acemoglu et al. [2015], among others. Additionally and similarly
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to Elsinger et al. [2006a] and Elsinger et al. [2006b], we distinguished between funda-
mental defaults and contagious defaults as in Definition 7.4. If at least one firm was
in default, we calculated the proportion of contagious defaults to total defaults among
the 250 firms, in symbols k̂, as an estimate of ki defined in (7.52)12. As we consider
non-positive shocks only, we did not estimate Ki due to (7.55)–(7.56).
In order to get an impression of the losses caused by the shock, we calculated the relative
change in the sum of firm values

η :=

∑n
i=1(ṽi − vi)∑n

i=1 vi
(7.72)

and the relative change in the value of endogenous assets

ξ :=

∑n
i=1 ci∑n
i=1 vi

(7.73)

with ci as defined in (7.7).
Next, we summarized the total number of defaults, k̂, η and ξ over them2 repetitions of a
certain scenario by calculating their respective mean and standard deviation. Following
the recommendation of Mart́ınez-Jaramillo et al. [2010], we also estimated the (1 −
α)100%-VaR and the expected (1 − α)100% shortfall of the relative change in the sum
of firm values. For the former, we calculated the negative empirical α-quantile (α ∈
(0, 1)) of

∑n
i=1(ṽik−vik)
∑n

i=1 vik
, k = 1, . . . ,m2, where vik and ṽik denote the firm values of firm i

before and after the shock, respectively, obtained from the kth repetition of a certain
combination of parameter values. As in Section 3.2.3, empirical quantiles were calculated
with the default method of the function ’quantile’ implemented in R.
For an integrable random variable X with CDF FX , the expected (1−α)100% shortfall
ES1−α(X) is defined as (cf. Acerbi and Tasche [2002a])

ES1−α(X) := − 1

α

(
E
(
X1{X≤−VaR1−α(X)}

)
+VaR1−α(X) [P (X ≤ −VaR1−α(X))− α]

)
,

(7.74)
which can be written as ES1−α(X) = − 1

α

∫ α
0 F−1

X (p)dp [Acerbi and Tasche, 2002a]. As
they remark, this last expression illustrates that the expected (1 − α)100% shortfall

12Since except for the core-periphery network, our scenarios exhibit symmetry between the n firms with
respect to expected values of all network and shock parameters, we initially tried to estimate the prob-
abilities in the numerator and denominator of ki by calculating the proportion of the m2 repetitions
where firm 1 met the related criterion (i.e. i = 1). Hence, if the denominator was strictly positive,

k̂1 :=
#{j ∈ {1, . . . ,m2} : ã1j + ā1j ≥ d, ṽ1j < d}

#{j ∈ {1, . . . ,m2} : ṽ1j < d}
(7.71)

with ã1j , ā1j and ṽ1j denoting the realized exogenous asset value after the shock, the realized endogenous
asset value before the shock and the realized firm value after the shock, respectively, for firm 1 in the jth
repetition. Otherwise, k̂1 was set to NA. However, with this approach, k̂1 would not have been available
for about 40% of all existing combinations of parameter values, since firm 1 was solvent for all the m2

repetitions. Hence, we used k̂ instead, which reduced the fraction of combinations of parameter values
with missing estimate of ki to about 24%.
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can be interpreted as the negative expected value (one could say, the expected loss) of
the α100% worst case scenarios of X (i.e. scenarios with small values of X), whereas
the (1 − α)100%-VaR refers to the minimum loss associated with the α100% worst
case scenarios of X. For a random sample X1, X2, . . . , Xm of i.i.d. copies of X, let
X(1) ≤ X(2) ≤ . . . ≤ X(m) denote the corresponding order statistics. Then, according to
Acerbi and Tasche [2002a], a natural estimator of ES1−α(X) is given by

ES1−α,m(X) = −
∑w

k=1X(k)

w
(7.75)

with w := ⌊mα⌋. As Acerbi and Tasche [2002b] show, limm→∞ ES1−α,m(X) = ES1−α(X).

In our set-up, we had X =
∑n

i=1(Ṽi−vi)
∑n

i=1 vi
(recall that by Remark 7.6, the sum of firm values

before the shock is deterministic by construction, even if we consider random networks).

As in Section 3.2.3 we always set α = 0.01. Because of m2 ≤ m = 1,000, we had w ≤ 10
for all scenarios. Thus, in order to get stable estimates of VaR1−α and ES1−α, these
estimates were calculated for scenarios with m2 = m = 1,000 only.

All output parameters were analyzed univariately or bivariately where necessary (i.e.
with all parameters held fixed except of one or two, respectively). For the univariate
analysis in terms of a certain parameter, we merged all data obtained from the bivariate
simulations where this parameter had been varied and with the remaining parameters
equal to their benchmark values.

7.2.3 Results

7.2.3.1 Missing Scenarios and Focus of Subsequent Analysis

As already mentioned, for d = 0.95, all firms were always solvent before the shock, and
thus always m2 = 1000. For d = 1.1, there were no valid scenarios under cross-ownership
of equity only (cf. Remark 7.5). For the other two types of cross-ownership, for 10.3% of
all combinations of parameter values no valid scenarios could be generated (i.e. m2 = 0),
86.3% of all combinations of parameter values had m2 = 1,000 and for the remaining
3.4% combinations of parameter values, we had m2 = 285.8 on average (SD=295.0).

For both, cross-ownership of debt only and cross-ownership of both, debt and equity, a
graphical comparison showed that the relationship between the input parameters and
the output parameters was qualitatively the same for d = 0.95 and d = 1.1, with only
few exceptions that will be mentioned explicitly. Hence, unless stated otherwise, we will
consider d = 0.95 in the remainder, since in this case, we also have results for cross-
ownership of equity only. However, the absolute number of defaults and the absolute
value of the proportion of contagious defaults were not necessarily comparable between
d = 0.95 and d = 1.1, since for d = 0.95, only firms that actually experience a negative
shock can be in default after the shock (this default can be fundamental or contagious),
whereas for d = 1.1, also firms without a shock can be in default after the shock. Hence,
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the related results primarily refer to the shape of the curves, but not to the obtained
absolute values of the output parameters.

For η and the estimated values of VaR0.99 and ES0.99, a univariate analysis of the influ-
ence of the four resp. three input parameters is sufficient, since for all network types and
all types of cross-ownership, the shape of the curve with respect a certain parameter did
not depend on the other parameter varied. Furthermore, we saw that the results for the
estimated values of VaR0.99 and ES0.99 were qualitatively highly similar to the results
for η (recall that these estimates are calculated from η) within each network type and
for each type of cross-ownership, so we will only consider η in the following. In contrast
to η, the total number of defaults, the proportion of contagious defaults k̂, and ξ will be
analyzed in due consideration of both parameters varied.

7.2.3.2 Analysis of Defaults

For π = 0.05, there are no defaults for d = 0.95, because in this case, ãi = 0.95a = 0.95 =
di for all firms i hit by the shock, i.e. all firms’ exogenous assets are sufficient to repay
their corresponding debt. Hence π = 0.05 is omitted in all subfigures of Figure 7.2–
Figure 7.6 related to π.

Mean Number of Defaults

A graphical analysis of the mean numbers of defaults for d = 0.95 revealed that there are
no substantial differences between the three network types, neither with respect to the
mean total number of defaults (for a more detailed analysis, see Section 7.2.4) nor with
respect to the influence of the input parameter on this mean total number of defaults.
Hence, the corresponding results will be described for the incomplete network only.

If the 250 firms are linked by cross-ownership of debt only, Figure 7.2(e) shows that,
for the shock probability pπ fixed to its benchmark value 0.2 and a given value of the
shock size π, a suitably high level of integration β can totally avert defaults caused by
negative shocks, as long as π is not too large. For π = 0.4 (the benchmark value of π),
β ≥ 0.5 is sufficient, for example, see also Figure 7.2(c) and (f) where π = 0.4. Similarly,
in Figure 7.2(a) with β = 0.2, defaults only occur for π ≥ 0.15. Hence, for a given level
of integration, only shock sizes above a certain threshold seem to lead to defaults in
the system. The mean number of defaults then very much depends on the value of pπ
(cf. Figure 7.2(a)–(c)). As it was to be expected, a higher probability of being hit by
a negative shock raises the mean total number of defaults in the system. As becomes
apparent in Figure 7.2(b), (d) and (f), diversification θ is irrelevant to the mean number
of defaults. Altogether, our simulations suggest that firms linked by cross-ownership of
debt only are – ceteris paribus – better protected against defaults under a high level of
integration. It does not matter whether this is achieved by many small links or few links
with a high weight.

As becomes clear in Figure 7.3, the mean number of defaults under cross-ownership of
equity only is virtually entirely determined by pπ, whereas π, pθ and β do not seem
to have much influence, with the only exception that high levels of integration β can
mitigate the effects of small shocks π, at least for pπ = 0.2. For d < a, the number
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Figure 7.2: Mean number of defaults (taken over the m2 = 1,000 repetitions) in de-
pendence of input parameters under cross-ownership debt only (without
π = 0.05); incomplete network, d/a = 0.95, respective non-varied param-
eters equal to their benchmark values.
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Figure 7.3: Mean number of defaults (taken over the m2 = 1,000 repetitions) in de-
pendence of input parameters under cross-ownership equity only (without
π = 0.05); incomplete network, d/a = 0.95, respective non-varied parame-
ters equal to their benchmark values.
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of defaults is bounded from above by the number of firms hit by a shock, which has
an expected value of pπ × 250 in our set-up. In Figure 7.3, the actual mean numbers
of defaults are quite in line with this expectation (except of Figure 7.3(e); recall that
pπ = 0.2 in Figure 7.3(d)–(f)), i.e. nearly all the firms hit by a shock are in default
after the shock. This means that firms linked by cross-ownership of equity only seem to
have barely any option to reduce the mean number of default by a deliberately chosen
cross-ownership structure that might absorb negative shocks (under the restriction that
the same fraction of each firm’s equity is held within the system). Only if the shocks
are relatively small, a high level of integration seems to reduce the number of defaults
in the system. However, further simulations are needed to examine this relationship for
other values of pπ. Again, diversification θ does not seem to influence the occurrence of
defaults (cf. Figure 7.3(b), (d) and (f)).
Figure 7.2 and Figure 7.3 give rise to the assumption that defaults are easier to prevent
under cross-ownership of debt only than under cross-ownership of equity only. A possible
explanation will be provided in Section 7.2.4.
For a system of firms linked by cross-ownership of both, debt and equity, the figures were
qualitatively the same as for cross-ownership of debt only, hence the above insights under
cross-ownership of debt only can be directly transferred to the case of cross-ownership
of both, debt and equity. As to the relationship between the model parameters and the
number of defaults, this might serve as a justification to ignore the additional presence
of cross-ownership of equity (as it is done in most studies on banking systems), if for
example reliable data on equity cross-holdings are not available. However, as we will see
in Section 7.2.4, the mean numbers of default tend to be smaller under cross-ownership
of both, debt and equity. Furthermore, recall that in our model, the matrices Md and
Me are simulated with identical underlying parameters, i.e. other results might occur if
this restriction is skipped.

As already mentioned, for d = 0.95, all conclusions derived for the incomplete network
analogously hold for the core-periphery network and the ring network. Under cross-
ownership of equity only they also hold if we analyze core firms and peripheral firms
separately. However, we observe the following differences between these two subsystems
for cross-ownership of debt only and cross-ownership of both, debt and equity. Generally,
core firms are more resilient in the sense that ceteris paribus a lower level of integration is
needed to avoid any default and higher shocks can be absorbed. The shape of the corre-
sponding graphs is qualitatively the same as in Figure 7.2(a), (c) and (e). Furthermore,
core firms can neutralize a high shock probability by holding a part of a sufficiently high
number of other firms in the system (i.e. high level of pθ,C), whereas the mean number
of defaults among peripheral firms does not vary with the number of links established by
themselves (cf. Figure 7.4(a) and (d)), which admittedly run through a rather limited
range (expected values of 27.67–47.03) in our simulations (recall that in our model, the
higher the probability of a core firm having a directed link to another firm, the lower
the corresponding probability of a peripheral firm, cf. (7.64) and (7.65)). The higher
the possible shock itself, the more connections to (i.e. investments in) other firms are
required for core firms to avoid default (cf. Figure 7.4(b)). Thus, for core firms, many
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Figure 7.4: Mean number of defaults (taken over the m2 = 1,000 repetitions) in de-
pendence of pθ,C under cross-ownership debt only (without π = 0.05); core-
periphery network, d/a = 0.95, respective non-varied parameters equal to
their benchmark values; (a)–(c) core firms; (d)–(f) peripheral firms.
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links to other firms are generally advisable, whereas, depending on the shock parameters
π and pπ, peripheral firms tend to suffer from high values of pθ,C (cf. Figure 7.4(e) and
(f)). Altogether, as to the mean number of defaults in relation to the size of the cor-
responding subgroup of firms, core firms are better off than peripheral firms. For both
subsets of firms, a high level of integration is desirable under any type of cross-ownership.

For d = 1.1, the shapes of all figures were roughly comparable, but the mean numbers
of defaults tended to be higher than pπ × 250 (which means that probably also firms
without a shock were in default after the shock) for large shocks of high probability in
the incomplete and the core-periphery network. In the incomplete network, this was
also the case for very low levels of diversification. In the ring network mean numbers of
default bigger than pπ×250 occurred for very low levels of integration and/or big shocks.
We will gain further insights into the occurrence of contagious defaults in dependence of
π and β in Section 7.2.5.3.

Mean Proportion of Contagious Defaults

The mean proportion of contagious defaults, estimated by the mean of k̂, strongly de-
pends on the underlying network type and the type of cross-ownership, hence we will
consider each of them separately. However, we skip the core-periphery network, since
the results aggregated over all firms in the system often reflected its dichotomous struc-
ture, which makes a general description difficult. On the other hand, we refrained from
conducting separate analyses of core firms and peripheral firms, since for core firms with
their few defaults (if pπ is set to its benchmark value 0.2, together with the fact that we
had 10% core firms, in such scenarios at most 0.2×0.1×250 = 5 firms are in default), it
was questionable whether we would obtain reliable results with respect to the occurrence
of contagious defaults.

We begin with the incomplete network and d = 0.95. Under cross-ownership of debt
only, contagious defaults occur with a maximal mean proportion of 7.0% of all defaults.
Comparing Figure 7.5(a)–(c) and Figure 7.6(a)–(c) to Figure 7.2(c), (e) and (f), it be-
comes clear that contagious defaults especially occur in the transition area between the
maximum possible number of defaults given as pπ×250 and no defaults. The same holds
for cross-ownership of both, debt and equity. In the presence of cross-holdings of equity,
our simulations suggest that contagious defaults are far more common with a maximal
mean proportion of 100% of all defaults. As Figure 7.5(d)–(i) reveals, defaults under a
certain combination of parameter values are mostly either solely fundamental defaults
or solely contagious defaults. For β = 0.2 the mean proportions of contagious defaults
were close to 0 under cross-ownership of either debt or equity with d/a = 0.95 (cf. Fig-
ure 7.6(a)–(f)) for any combination of parameters varied. Comparing Figure 7.7(a) and
(b) to Figure 7.6(a) and (g) it becomes clear that for d = 1.1, contagious defaults ad-
ditionally occur in scenarios with large shocks of high probability. Recall that for these
parameter constellations the number of defaults was higher than the expected number
of defaults of pπ × 250. Altogether, we could conclude for the incomplete network that
the occurrence of contagious defaults is not restricted to a certain level of integration
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and that under cross-ownership of debt only, contagious defaults are relatively rare.

Under the ring network for d = 0.95, there were no contagious defaults under cross-
ownership of debt only. For the other two types of cross-ownership, for any combination
of parameter values we either had k̂ = 0 or k̂ = 1. However, it is not possible to derive
a general rule as to whether contagious defaults occur or not. We can only state that
in our set-up, contagious defaults only occurred for β ≥ 0.6. In particular, there were
no contagious defaults if β was set to its benchmark value 0.2. For pπ or π set to its
benchmark value and the corresponding remaining parameters varied, the shape of the
graphs were comparable to those of the incomplete network (cf. Figure 7.5(d), (e), (g)
and (h)), except that only the values 0 and 1 were taken. For d = 1.1, k̂ also took values
between 0 and 1, and as it was to be expected, contagious defaults especially occurred
for such parameter constellations where more than the expected number of firms were
in default. As already mentioned, this was the case for very low levels of integration
and/or big shocks.

7.2.3.3 Analysis of η

Since we consider non-positive shocks, we have ṽi ≤ vi for all i ∈ {1, . . . , n} by Propo-
sition 2 of Gouriéroux et al. [2012] for any repetition within any network realization.

Hence, within a repetition, η =
∑n

i=1 ṽi−
∑n

i=1 vi
∑n

i=1 vi
≤ 0, with η = 0 indicating no losses

in firm values. We start with some theoretical considerations on the random variable
H :=

∑n
i=1 Ṽi−

∑n
i=1 vi

∑n
i=1 vi

(recall that in our set-up,
∑n

i=1 vi is deterministic by Remark 7.6)

generating the values η. Note that randomness in Ṽi is induced by both, the random
network as well as the random shock. Similarly to (7.67) we obtain

n∑

i=1

Ṽi =
n∑

i=1

Ãi +
n∑

i=1

βdi R̃i +
n∑

i=1

βei S̃i (7.76)

=





∑n
i=1 Ãi + β

∑n
i=1 R̃i, XOS of debt only,

∑n
i=1 Ãi + β

∑n
i=1(Ṽi − R̃i) =

∑n
i=1 Ãi−β

∑n
i=1 R̃i

1−β , XOS of equity only,
∑n

i=1 Ãi + β
∑n

i=1(R̃i + S̃i) =
∑n

i=1 Ãi

1−β , XOS of both, debt and equity,

(7.77)

with R̃i and S̃i denoting the random recovery value of debt and the random equity
value of firm i after the shock, where again randomness is induced by both, the random
network, as well as the random shock. Combining (7.67) and (7.77) it follows that

H =





∑n
i=1(Ãi−ai)−β

∑n
i=1(di−R̃i)

∑n
i=1 ai+β

∑n
i=1 di

, XOS of debt only,
∑n

i=1(Ãi−ai)+β
∑n

i=1(di−R̃i)
∑n

i=1 ai−β
∑n

i=1 di
, XOS of equity only,

∑n
i=1(Ãi−ai)
∑n

i=1 ai
, XOS of both, debt and equity,

(7.78)
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Figure 7.5: Mean of k̂ (taken over the repetitions with at least one firm in default)
in dependence of β (without π = 0.05); incomplete network, d/a = 0.95,
respective non-varied parameters equal to their benchmark values; (a)–(c)
XOS of debt only; (d)–(f) XOS of equity only; (g)–(i) XOS of both, debt and
equity.
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Figure 7.6: Mean of k̂ (taken over the repetitions with at least one firm in default) in
dependence of pπ, π (without π = 0.05) and pθ; incomplete network, d/a =
0.95, respective non-varied parameters equal to their benchmark values; (a)–
(c) XOS of debt only; (d)–(f) XOS of equity only; (g)–(i) XOS of both, debt
and equity.
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Figure 7.7: Mean of k̂ (taken over the repetitions with at least one firm in default) in
dependence of pπ and π; incomplete network, d/a = 1.1, respective non-
varied parameters equal to their benchmark values; (a) XOS of debt only;
(b) XOS of both, debt and equity.

i.e. under cross-ownership of both, debt and equity, the relative total loss in firm values
equals the relative total loss in exogenous asset values, provided that all column sums
of Md and Me coincide. Due to

E(Ãi) = (1− π E(Bi))ai = (1− π pπ)ai (7.79)

by (7.68), we obtain

E(H) =





−π pπ
∑n

i=1 ai−β
∑n

i=1(di−E(R̃i))
∑n

i=1 ai+β
∑n

i=1 di
, XOS of debt only,

−π pπ
∑n

i=1 ai+β
∑n

i=1(di−E(R̃i))
∑n

i=1 ai−β
∑n

i=1 di
, XOS of equity only,

−π pπ, XOS of both, debt and equity.

(7.80)

Hence, under cross-ownership of both, debt and equity, for any network type and any
level of liabilities, the expected relative total loss in firm values equals the expected
percentage loss of an individual firm’s exogenous asset value, and it is strictly increasing
in the shock size π and the shock probability pπ. In particular, the expected relative
total loss in firm values does not depend on the levels of integration and diversifica-
tion. By Proposition 2 of Gouriéroux et al. [2012] E(R̃i) is non-increasing in π and pπ,
which implies that the expected relative total loss in firm values is non-increasing in π
and pπ under cross-ownership of debt only as well. However, all these considerations
strongly rely on the fact that all column sums of the corresponding cross-ownership
matrix/matrices coincide. Further relationships become apparent in our simulations.

For both, cross-ownership of debt only and cross-ownership of equity only, the results
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Figure 7.8: η in dependence of pπ, π and β; incomplete network, d/a = 0.95, respective
non-varied parameters equal to their benchmark values; × indicate mean
values; (a)–(c) XOS of debt only; (d) XOS of equity only.
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on η did not differ much between d/a = 0.95 and d/a = 1.1, if applicable. As it was
to be expected, η was strictly decreasing in pπ and π for all the three network types
under cross-ownership of debt only (cf. Figure 7.8(a) and (b) for the incomplete net-
work). We observed the same relationship under cross-ownership of equity only for any
network type. Furthermore, neither pθ in the incomplete network nor pθ,C in the core-
periphery network seem to affect η. For any network type, the influence of integration
β depends on the considered type of cross-ownership as follows. If the n firms are linked
by cross-ownership of debt only (cf. Figure 7.8(c) for the incomplete network), η was
the bigger (i.e. the smaller the relative total loss) the higher the level of integration.
Hence, firms can protect themselves against high relative losses due to negative shocks
on the system by establishing a system where the majority of each firm’s debt is held
within the system. Under cross-ownership of equity only, we had the opposite effect,
cf. Figure 7.8(d) for the incomplete network, i.e. high levels of integration foster high
relative losses. However, we could not find a theoretical or an intuitive explanation for
this difference between the two types of cross-ownership. In the core-periphery network
the above insights hold likewise if we analyze core firms and peripheral firms separately.

As already mentioned, the results for η transfer to the estimated values of VaR0.99 and
ES0.99. Since both, VaR0.99 and ES0.99 refer to losses in firm values, whereas η refers
to gains in firm values, all relationships between the input parameters and η must be
reversed to obtain the influence on the estimates of VaR0.99 and ES0.99, but they lead
to the same conclusions.

7.2.3.4 Analysis of ξ

Let Ξ :=
∑n

i=1 Ci
∑n

i=1 vi
with Ci := Ṽi − Vi − (Ãi − ai) (cf. (7.7)–(7.9)) denote the random

variable generating the values ξ defined in (7.73). Then Ξ = H −
∑n

i=1(Ãi−ai)
∑n

i=1 vi
and thus,

by (7.67), (7.79) and (7.80),

E(Ξ) =





E(H) + π pπ
∑n

i=1 ai
∑n

i=1 ai+β
∑n

i=1 di
, XOS of debt only,

E(H) + (1− β)π pπ
∑n

i=1 ai
∑n

i=1 ai−β
∑n

i=1 di
, XOS of equity only,

−β π pπ, XOS of both, debt and equity,

(7.81)

under the assumption that all n or 2n columns of the corresponding cross-ownership
matrices exhibit the same column sum. Thus, under cross-ownership of both, debt and
equity and for any network type and any level of liabilities, the expected relative total
change in endogenous asset values becomes smaller (i.e. more negative), if the level of
integration and/or the size of the shocks and/or the probability of a firm being hit by
the shock increases, but it is invariant under changes in pθ or pθ,C .

For cross-ownership of debt only and cross-ownership of equity only under any network
type, our simulations revealed that again pθ and pθ,C do not affect the mean value
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Figure 7.9: Mean of ξ (taken over the m2 = 1,000 repetitions) in dependence of pπ, π
and β; incomplete network, d/a = 0.95, respective non-varied parameters
equal to their benchmark values; (a)–(c) XOS of debt only; (d)–(f) XOS of
equity only.
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of ξ. This was to be expected from (7.81) and the simulation results on η. Under
cross-ownership of debt only, the second summand of (7.81) is strictly decreasing in β,
whereas E(H) seems to be increasing in β (cf. Figure 7.8(c)). This might explain the
u-shaped course with respect to β in Figure 7.9(b) and (c). Hence, for any level of
pπ and π, relatively low and relatively high levels of integration β could mitigate the
negative effects of pπ and π, whereas the biggest mean relative loss in endogenous asset
values occurs for medium levels of integration. If d < a, straightforward calculations
show that under cross-ownership of equity only the derivative of the second summand
of (7.81) with respect to integration β is non-positive. Hence, together with the fact
that η seems to decrease in β, we have explained the shape of Figure 7.9(e) and (f) with
respect to β. Similarly to η, a higher level of integration results in larger mean relative
losses in endogenous asset values. Somewhat surprisingly, compared to β, pπ and π are
of very limited influence only (cf. Figure 7.9(e) and (f)). For d/a = 1.1, the graphs were
comparable to those for d/a = 0.95 given in Figure 7.9.

These insights gained for the incomplete network likewise hold for the ring network and
the core-periphery network. In the latter, if we additionally distinguish between core
and peripheral firms, the results were qualitatively the same, although the theoretical
considerations on E(H) and

∑n
i=1 Vi (cf. Remark 7.6) do not hold for subsystems of

firms. Discrepancies to the above insights only occurred with respect to the influence
of pθ,C , the probability of a core firm being linked to some other firm in the system.
If pθ,C was varied, for most parameter combinations the mean relative total loss in
endogenous asset values was non-increasing in pθ,C for core firms and non-decreasing in
pθ,C (i.e. non-increasing in pθ,P ) for peripheral firms. Hence, with respect to ξ, roughly
speaking, both, core firms and peripheral firms should seek not to interlink with too
many other firms in the system, provided that the total level of diversification and all
other parameters remain fixed. Furthermore, with pπ or π increasing, core firms face
a higher mean relative total loss in endogenous asset values than peripheral firms. Of
course, core firms tend to have higher endogenous assets values than peripheral firms,
but on the other hand, they also have a higher firm value, so the result is not trivial.

7.2.4 Summary and Conclusions

Based on the results of our simulation study described in the previous section, we will
summarize our findings with respect to the different output parameters and derive rec-
ommendations as to the network architecture that should be aspired, comprising the
network type, the levels of integration and diversification, and as to the most favourable
type of cross-ownership. Recall that all our results rely on the assumption that the
column sums of the corresponding cross-ownership matrix/matrices are identical.

Within a certain type of cross-ownership, there are nearly no differences with respect to
the mean values of the considered output parameters between the three network types
(cf. Table 7.1) for d = 0.95, especially if we take the relatively large standard deviations
into account. Note that in Table 7.1, we excluded all scenarios where pθ 6= 0.2 in the
incomplete network, as this parameter is constant in the ring network and core-periphery
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XOS of XOS of XOS of both,
parameter network type debt only equity only debt and equity

defaults
incomplete 44.9± 66.5 78.7± 66.5 40.5± 63.7
core-periphery 48.5± 69.6 73.9± 73.2 43.3± 70.2
ring 43.1± 64.0 79.6± 67.8 39.6± 63.6

k̂

incomplete 0.005± 0.019 0.096± 0.288 0.123± 0.292
core-periphery 0.008± 0.021 0.074± 0.193 0.091± 0.230
ring 0± 0 0.109± 0.311 0.133± 0.339

η
incomplete -0.125± 0.141 -0.187± 0.169 -0.149± 0.148
core-periphery -0.117± 0.149 -0.168± 0.172 -0.136± 0.157
ring -0.127± 0.145 -0.191± 0.173 -0.152± 0.152

ξ
incomplete -0.010± 0.021 -0.048± 0.100 -0.054± 0.062
core-periphery -0.010± 0.021 -0.040± 0.080 -0.045± 0.060
ring -0.011± 0.021 -0.050± 0.101 -0.056± 0.064

Table 7.1: Mean values and standard deviations of the number of defaults, k̂, η and ξ
for all network types and all types of cross-ownership; d/a = 0.95, incomplete
network with scenarios with pθ = 0.2 only.

network (1/249 resp. 0.2). Altogether, we cannot conclude for our parameter values that
some network type is preferable with respect to either the number and type of defaults
or the impact of the shock on mean relative losses in firm values and endogenous assets
values13. Furthermore, ceteris paribus also the influence of the input parameters on the
output parameters was roughly the same between the three network types, except of the
proportion of contagious defaults.
Comparing the types of cross-ownership, it becomes clear from Table 7.1, Figure 7.2 and
Figure 7.3 that under cross-ownership of equity only, firms are more prone to defaults
(i.e. shocks are less well absorbed) than under the other two types of cross-ownership.
In order to derive a possible explanation, we assume that Md = Me =: M and that all
firms are solvent before the shock, i.e. by Remark 7.5, we assume

∑n
i=1 ai ≥

∑n
i=1 di,

which reduces to a ≥ d in our set-up. Straightforward calculations based on (7.67) show
that before the shock, the sum of firm values under cross-ownership of equity only is
smaller than the sum of firm values under cross-ownership of debt only, if and only if

β < 2−
∑n

i=1 ai∑n
i=1 di

. (7.82)

Hence, in our set-up with d = 0.95a, the latter inequality holds for all β < 2− 1/0.95 ≈
0.947, i.e. for all considered values of β except of β = 0.95. For β ≤ 0.9, cross-ownership
of debt only yields a higher sum of firm values before the shock. Since the construction
of the incomplete network (however, not the related realizations) exhibits symmetry

13However, such a comparison has to be interpreted with caution, as only systems that can be transformed
into each other in a self-financing way can actually be directly compared.
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Figure 7.10: Mean numbers of fundamental and contagious defaults (taken over them2 =
1,000 repetitions) in dependence of π and β; incomplete network, d/a =
0.95, respective non-varied parameters equal to their benchmark values;
(a)–(b) XOS of debt only; (c)–(d) XOS of equity only.

between the n firms, this gives rise to the supposition that also individual firm values
vi tend to be higher under cross-ownership of debt only than under cross-ownership of
equity only, if integration β meets (7.82). In this case, as fundamental defaults occur
if and only if vi − ai + Ãi < di (this holds because we consider non-positive shocks,
cf. the derivation of (7.55)–(7.56)), ceteris paribus fundamental defaults are more likely
under cross-ownership of equity only than under cross-ownership of debt only. This
is confirmed by Figure 7.10(a) and (c), showing fundamental defaults in dependence
of π and β under both types of cross-ownership. This gap is further increased by the
occurrence of contagious defaults as follows. Under cross-ownership of equity only, since
a decline of the exogenous asset values of initially healthy firms directly reduces the
equity values of these firms (no matter whether they default, or not), other firms holding
a part of these equity values experience a drop in their total asset values and thus in
their equity values. Depending on the entries of Me, this in turn might reduce the
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equity values of the triggering firms even more, i.e. under cross-ownership of equity
only, this indirect effect can finally drive the affected firms into default, even if they
could have borne the initial shock. This is exactly what we defined as a contagious
default in Definition 7.4. In contrast to that, under cross-ownership of debt only, firms
that remain solvent despite a shock on their exogenous assets do not cause a loss in other
firms’ endogenous asset values, which suggests that contagious defaults are rarer under
cross-ownership of debt only (cf. Figure 7.10(b) and (d)). Altogether, this might explain
the fact that we observed fewer defaults under cross-ownership of debt only. In addition,
under cross-ownership of debt only also the mean proportion of contagious defaults to
total defaults was much smaller (max. 7.0%) than under cross-ownership of equity only
(up to 100%).
Since the presence of cross-ownership of both, debt and equity, leads to higher firm values
than cross-ownership of one type only, it is clear that under the former, we observe fewer
defaults than under the latter. This is also confirmed by the mean number of defaults
in Table 7.1. However, cross-ownership of both, debt and equity, provides two possible
channels of contagion, leading to the biggest mean relative loss in endogenous asset values
and the biggest proportion of contagious defaults (cf. Table 7.1). In contrast to that, the
biggest relative total losses in firm values occurred for cross-ownership of equity only, i.e.
compared to the two other types of cross-ownership, firm values under cross-ownership
of equity only tend to be smallest also after the shock, which corresponds to the fact
that we observed the highest mean number of defaults under this type of cross-ownership.

Under cross-ownership of debt only, as we have seen in Figure 7.2(c), (e) and (f), Fig-
ure 7.4(c) and (f), Figure 7.8(c) and Figure 7.9(b) and (c), a high level of integration β is
generally advisable, with the minimum suitable value of β depending on the shock size π
(cf. Figure 7.2(e)), and in the core-periphery network, on pθ,C (cf. Figure 7.4(f)). As we
have seen above, it does not matter which network type is realized, and diversification is
irrelevant in the incomplete network (recall that diversification is constant in the other
network types). In contrast to that, a low level of integration is recommended under
cross-ownership of equity only in order to mitigate the financial losses in firm values
and endogenous asset values due to the shock (cf. Figure 7.8(d) and Figure 7.9(e) and
(f)). Hence, as to a suitable level integration, cross-ownership of debt only and cross-
ownership of equity only once more have opposite effects. However, as it was the case
under cross-ownership of debt only, defaults under cross-ownership of equity only are
most likely avoided for high levels of integration (cf. Figure 7.3(e)), if at all, although
high levels of integration lead to the biggest relative losses in firm values. This can be
explained by Remark 7.6, where we saw that under cross-ownership of equity only, firm
values before the shock are strictly increasing in β, i.e. for high levels of β, firm values
before the shock are relatively big and thus the firms might withstand a relatively large
percentual loss in firm values due to the shock.

Let us now imagine an investor having to decide in which of several systems of firms to
invest a certain amount of money in form of a combined index of debt and equity of the
firms within a system (we identify the value of this index with

∑n
i=1 vi). We assume that
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we are very close to maturity and that some immediate negative shock on the exogenous
assets might hit each system of firms. Then our simulations suggest that a system of
firms linked by cross-ownership of debt only is preferable in that negative shocks lead to
a moderate number of defaults and in particular to very few (unanticipated) contagious
defaults (cf. Section 7.1.3) and the smallest mean relative financial losses. Furthermore,
the system should exhibit a high level of integration.

7.2.5 Comparison to the Literature

7.2.5.1 Influence of the Network Parameters

Since Nier et al. [2007] and Gai and Kapadia [2010] consider banks linked by cross-
ownership of debt only, we will only refer to this type of cross-ownership in the following
comparison.
By Remark 7.6, in our model the parameters bank capitalization γ and interbank expo-
sures ζ are strictly monotone transformations of β, i.e. in our model, γ and ζ cannot
be varied one at a time, as it is done by Nier et al. [2007]. There (cf. Figure 1 and
Figure 2 therein), γ and ζ have a different impact on the number of defaults in that
high values of γ lead to fewer defaults than low values, whereas high values of ζ in-
crease the number of defaults. Our results on the influence of β under cross-ownership
of debt only resemble their findings on γ (cf. Figure 7.2(c), (e) and (f)) in that high
levels of integration and thus high ratios of equity values to firm values before the shock
can prevent any default in the system. In contrast to Nier et al. [2007], we can hardly
detect any relationship between diversification θ, or equivalently pθ, and the number of
defaults in the incomplete network. According to Figure 3 of Nier et al. [2007], in their
model the strength of this relationship depends on the realized level of γ, and as our
levels of γ (0.09–0.5) were considerably higher than theirs (0–0.1), we conducted a short
additional simulation under cross-ownership of debt only with the following parameter
values. With γ of Nier et al. [2007] varying between 0.01 and 0.07, as it is done in their
Figure 3, our β and d/a change only slightly (cf. Section 7.2.2.1), so we set β = 0.2 and
d/a = 1.2 and varied pθ between 0.05 and 1. In order to get valid scenarios for small
values of pθ, we set m = 1,000 and m1 = 5, 000 (cf. Section 7.2.2.1). Nevertheless, we
obtained no valid scenarios for pθ ≤ 0.3 and only two valid scenarios for pθ = 0.35, which
is why we skipped pθ = 0.35 in Figure 7.11(a)14. For better comparability we applied an
idiosyncratic shock randomly hitting one of n = 25 firms with shock size π = 1. As be-
comes clear in Figure 7.11(a), the obtained numbers of default depend on diversification
θ, but since we could not generate valid scenarios for smaller levels of diversification, we
can only partly confirm the roughly inverted u-shaped relationship found by Nier et al.
[2007]. Recall that in their method of network construction (cf. Section 7.2.1), all firms
are automatically solvent before the shock.
Also Gai and Kapadia [2010] report an inverted u-shaped relationship between pθ and
the probability of a cascade of defaults comprising more than 5% of all banks after

14For pθ equal to 0.4, 0.45 and 0.5, the obtained number of valid scenarios were 16, 99 and 413, respectively.
For pθ ≥ 0.55, 1,000 valid scenarios were available.
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Figure 7.11: Occurrence of defaults in dependence of pθ under cross-ownership debt only
with idiosyncratic shocks; incomplete network, π = 1, β = 0.2, d/a =
1.2, n = 25; (a) number of defaults; (b) red: proportion of scenarios with
contagious defaults, boxplots: proportion of firms in default in scenarios
with contagious defaults.

an idiosyncratic shock on a single firm. As already mentioned the model of Gai and
Kapadia [2010] is rather similar to the model of Nier et al. [2007], so we compare the
results of the above additional simulations to the results of Gai and Kapadia [2010] as
well. As becomes clear from the red line in Figure 7.11(b), the probability of occurrence
of at least one contagious default decreases with pθ increasing. Note that due to n =
25 in the simulations underlying Figure 7.11, more than 5% defaults is equivalent to
more than one default, which in turn is equivalent to the existence of at least one
contagious default as we consider an idiosyncratic shock and cross-ownership of debt
only. Since we did not obtain valid scenarios for smaller values of pθ, we can only
partly confirm the results of Gai and Kapadia [2010] with respect to the occurrence
of a cascade of defaults. Furthermore, in our simulations at most 8 of the 25 firms in
the system were in default in case a cascade occurred, whereas Gai and Kapadia [2010]
report that with pθ increasing, up to 100% of all firms are in default. This might be
explained by the fact that in their model (and in contrast to ours and to the model
of Nier et al. [2007]), the recovery value of debt of any defaulting bank is set to zero,
which makes a far-spreading cascade of defaults more likely. Altogether, the results
of our additional simulations on the incomplete network under idiosyncratic shocks do
not support the “robust-yet-fragile tendency” of financial systems found by Gai and
Kapadia [2010], as the occurrence of contagious defaults does not necessarily imply
that all firms are simultaneously in default. However, this changes if we (theoretically)
analyze complete instead of incomplete networks, provided that integration β is small
enough (cf. Section 7.2.5.3).

In the simulations of Elliott et al. [2014] for an incomplete network exposed to an idiosyn-
cratic shock, a cascade of defaults most likely occurs for medium levels of integration
in conjunction with medium levels of diversification. Again, we tried to come closer to
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their set-up by implementing a further short simulation for the incomplete network un-
der cross-ownership of both, debt and equity with identical cross-ownership matrices of
debt and equity, since in the work of Elliott et al. [2014], banks are connected by holding
a part of the other banks’ values (recall that v = r + s). Furthermore, we set n = 100
and d = 1.2, and considered an idiosyncratic shock completely wiping out the exogenous
asset of a firm. Nevertheless, this did not alter our findings that under cross-ownership
of both, debt and equity, the mean numbers of default seem to decrease with integration
β increasing and that diversification θ has minor influence only. However, it should be
noted that it was impossible to generate solvent networks for low levels of integration in
conjunction with low levels of diversification, whereas this can be easily achieved in the
model of Elliott et al. [2014] by choosing the failure threshold on firm values sufficiently
small. Hence, as in the comparison with the results of Nier et al. [2007], we have possibly
seen the falling part of the inverted u-shaped relationship between integration and the
numbers of default claimed by Elliott et al. [2014]. Furthermore, as Elliott et al. [2014]
incorporate failure costs that reduce a firm’s value to 0 in case of default, in their model
a cascade of defaults is generally more likely to occur than in ours.

7.2.5.2 Fundamental and Contagious Defaults

Although the set-up of Elsinger et al. [2006a] differs from our approach as they consider
a given network of cross-holdings of debt (determined by the structure of the Austrian
interbank market) and a different mechanism generating exogenous shocks15, our results
under cross-ownership of debt only coincide with their long run results (zero bankruptcy
costs) in that in scenarios with a higher number of fundamental defaults, contagious
defaults occur with a higher probability than in scenarios with a low number of funda-
mental defaults, cf. Figure 7.12(a) with the sizes of the categories in Table 4 of Elsinger
et al. [2006a] adapted to our network size. Under non-positive shocks, firm i is in a
fundamental default if and only if Ãi + āi < di (cf. the derivation of (7.55)–(7.56)), i.e.
if a firm has discerned a high danger of a fundamental default by considering endoge-
nous asset values as fixed, it should be aware that especially for higher ratios of debt to
exogenous asset values (empty squares in Figure 7.12(a)), the probability of at least one
contagious default in the system might not be negligible under cross-ownership of debt
only, which implies that the actual probability of default of a firm might be substan-
tially higher than expected. However, this relationship is reverse under cross-ownership
of equity only (cf. Figure 7.12(b)). As the probability of at least one contagious default
is highest for scenarios with few fundamental defaults, it is especially important to be
aware of the possibility of contagious defaults in such scenarios, since otherwise, firms
might arrive at the conclusion not to be threatened by the impact of negative shocks at
all. Altogether, we can “confirm the intuition that contagion is relatively more likely in
scenarios where many banks face fundamental default simultaneously” [Elsinger et al.,

15Elsinger et al. [2006a] simulate shocks following a multivariate distribution derived from historical data
on both, market risk and credit risk. In particular, the underlying parameters remain fixed for the whole
simulation study. Although it is not explicitly mentioned, their Figure 4 gives rise to the assumption
that shocks can be positive and negative.
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Figure 7.12: Proportion of scenarios with contagious defaults grouped by fundamental
defaults; black: incomplete network, blue: core-periphery network, red:
ring network; solid squares: d/a = 0.95, empty squares: d/a = 1.1; (a)
XOS of debt only; (b) XOS of equity only.

2006a, p. 1310] only for cross-ownership of debt only.

7.2.5.3 Comparison of the Complete and the Ring Network

In their seminal paper, Allen and Gale [2000] examine a network consisting of four iden-
tical banks where each bank makes deposits in t = 0 in other banks to protect itself
against liquidity shocks in t = 1. Then there are parameter constellations where all
firms are simultaneously bankrupt (i.e. even the premature liquidation of long-term as-
sets does not provide enough liquidity in the system) in the ring network, whereas the
same parameter constellation in the complete network renders the firms not directly hit
by the liquidity shocks insolvent (here, in departure from footnote 1, the term insolvency
means that a partial premature liquidation of the long-term asset yields enough liquid-
ity), but not bankrupt. In this sense, the complete network of Allen and Gale [2000] is
more robust with respect to liquidity shocks on a single bank than the ring network. In
the following we will compare the resilience of the two network types to an idiosyncratic
shock in our model. For this, we examine the occurrence of fundamental defaults and
contagious defaults in dependence of the shock size π and the level of integration β (as
in our simulations, we assume that all column sums of Md are equal to β) under cross-
ownership of debt only and under the assumption that the network exhibits symmetry
between the n firms in terms of a and d, i.e. ai = a and di = d for all i ∈ {1, . . . , n} as
our simulations. After that, we will see from our simulations whether the results might
be transferred to multiple shocks.
In our theoretical analysis we suppose w.l.o.g. that firm 1 is hit by the shock. Further-
more, we assume n > 2 since for n = 2, the ring network and the complete network
coincide. In the complete network, Md

ij = β
n−1 for all i 6= j ∈ {1, . . . , n}, and in the

ring network, the non-zero elements of Md equal β. Let all the firms be strictly solvent
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before the shock. Then d = ri = min{di, ai+
∑n

j=1M
d
ijdj} = min{d, a+(n−1) β

n−1d} =
min{d, a + βd} in the complete network, and d = ri = min{d, a + βd} also in the ring
network, i.e. this assumption is equivalent to a > (1− β)d16.
Let ã1 denote the value of firm 1’s exogenous asset after the shock, i.e. ã1 = (1 − π)a.
If ã1 = (1 − β)d, the other firms are still strictly solvent, and for reasons of continuity,
also for ã1 slightly smaller than this value, i.e. firm 1 is the first firm to default in both
network types. As long as firm 1 is the only firm in default, its recovery value of debt
equals r̃1 = ã1 + βd in both network types.
In the complete network the recovery values of debt of the remaining firms are identical
for reasons of symmetry, and as long as firm 1 is the only firm in default they equal

d = r̃j = min

{
d, a+ (n− 2)

β

n− 1
d+

β

n− 1
r̃1

}
(7.83)

= min

{
d, a+ (n− 2)

β

n− 1
d+

β

n− 1
(ã1 + βd)

}
(7.84)

= min

{
d, a+

β

n− 1
ã1 + β

n− 2 + β

n− 1
d

}
, j ∈ {2, . . . , n}. (7.85)

Hence, in the complete network, firm j (j ∈ {2, . . . , n}) stays solvent as long as

ã1 ≥
(1− β)(n− 1 + β)

β
d− n− 1

β
a. (7.86)

Otherwise, all the n firms are simultaneously in default. Note that the RHS of (7.86)
is strictly smaller than (1 − β)d, since we assume a > (1 − β)d. Thus, in the complete
network with a given shock size π,





all firms are solvent, if ã1 ≥ (1− β)d,
only firm 1 is in default, if ã1 ∈

[
(1−β)(n−1+β)

β d− n−1
β a, (1− β)d

)
,

all firms are in default, if ã1 <
(1−β)(n−1+β)

β d− n−1
β a.

(7.87)

Since in our set-up the default of firm 1 is always fundamental, this means that if
contagious defaults occur, they pertain to the whole system. Note that the bound on
ã1 given in (7.86) might be negative (a sufficient condition is d < a, since in this case,
firms not hit by the shock will always stay solvent), i.e. in this case, it is impossible that
a second firm and thus the complete system goes bankrupt due to a shock on a single
firm.
In the ring network we assume w.l.o.g. that firm k + 1 holds a part of firm k’s debt
(k ∈ {1, . . . , n − 1}) and that firm 1 hold a part of firm n’s debt. Since the recovery
value of debt of firm 1 equals r̃1 = ã1 + βd as long as firm 1 is the only firm in default,
the recovery value of debt of firm 2 then equals d = r̃2 = min{d, a + β(ã1 + βd)} since

16If all firms are borderline firms before the shock, i.e. a = (1− β)d, any value of ã1 < (1− β)d will drive
all firms in the system into default, since the value of endogenous assets of any firm will decrease, no
matter whether we consider the complete or the ring network.
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due to n ≥ 3, firm 1 does not hold firm 2’s debt. Hence, in the ring network, firm 2
remains solvent as long as

ã1 ≥
(1− β2)d− a

β
. (7.88)

The RHS of (7.88) is strictly smaller than (1 − β)d since we assume a > (1 − β)d, and
it can be both, positive and negative. If ã1 falls below this bound, we have at least one
contagious default. Again, d < a is sufficient to prevent any contagious default. If we
assume d > a, straightforward calculations show that the RHS of (7.86) and of (7.88) are
strictly decreasing in β, i.e. the higher the level of integration, the smaller the bounds
on ã1 and thus the fewer contagious defaults occur in both networks. For β sufficiently
big, any contagious defaults can be prevented. A high level of β also exacerbates the
occurrence of a default of the firm hit by the shock.

As we have seen, the bound on ã1 for the first default (which is fundamental) is identical
between the two network types and equals (1− β)d. In contrast to that, comparing the
bounds on ã1 for the first contagious default given in (7.86) and (7.88) leads to

(1− β)(n− 1 + β)

β
d− n− 1

β
a <

(1− β2)d− a
β

(7.89)

⇔ (1− β)d < a, (7.90)

where the last inequality holds because we assume all firms to be strictly solvent before
the shock, i.e. in the ring network, the first contagious default already occurs for bigger
values of ã1 than in the complete network (if at all), if we assume symmetry between
the n firms with respect to a and d. Hence, in line with Allen and Gale [2000], the ring
network is more susceptible to contagious defaults than the complete network in the
sense that smaller shocks are sufficient to cause contagious defaults. A similar result is
provided in Corollary 2 of Eboli [2013], whose analysis is based on flow networks instead
of a clearing algorithm.

In the complete network, each of the remaining firms in the system carries a part (a
fraction of size β/(n − 1)) of the decline in the recovery value of debt of the firm hit
by the shock, and if the shock is small, the firms not hit by the shock can withstand
this relatively small loss in their endogenous asset value and remain solvent. In contrast
to that, in the ring network the loss in firm 1’s recovery value of debt is completely
transferred to a single other firm, which of course bears a higher risk that this receiving
firm will also default, than in the complete network. If this firm defaults as well, the
corresponding loss is again transferred to a single firm, which might also default. Hence,
similarly to the results of Eboli [2013], we have a sequence of defaults in the ring network,
i.e. with ã1 decreasing, the firms default one by one (if at all), but it is also possible that
this chain ends before all firms are in default, whereas in the complete network, all the
remaining firms default simultaneously as soon as ã1 falls below the bound given in (7.86).
In the literature, this property that in complete networks shocks either lead to a default
of the shocked firm(s) only or to a default of all firms in the system is often described as
“robust yet fragile” (cf. Gai and Kapadia [2010], Eboli [2013], Acemoglu et al. [2015],
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and Staum [2013] and references therein, for example). Or, to put it in the words of
Haldane [2009], picked up by Eboli [2013], interconnected networks “exhibit a knife-
edge or tipping point property”, in the sense that “within a certain range, connections
serve as shock-absorbers [and] connectivity engenders robustness” [Haldane, 2009, p. 5].
However, as Acemoglu et al. [2015] remark, “beyond that range, interconnections start
to serve as a mechanism for the propagation of shocks” [Acemoglu et al., 2015, p. 566].
Which network type leads to more expected defaults in total depends on the distribution
of Ã1. For multiple shocks with Ã as in (7.68), our simulation results will provide further
insight.

Remark 7.7. The complete and the ring network are special cases of what we will call a
balanced incomplete network, i.e. an incomplete network where every firm has exactly
θ cross-holders and holds a part of θ other firms itself, θ ∈ {1, . . . , n − 1}17. Hence,
every non-zero entry of Md equals β/θ. Then, for firm 1 hit by a small shock leaving the
remaining firms solvent, r̃1 = min{d, ã1+θ β/θ d} = min{d, ã1+βd} as for the complete
and for the ring network, i.e. again, firm 1 is in default as soon as ã1 < (1−β)d. W.l.o.g.
let firm 2, 3, . . . , θ+1 hold a part of firm 1’s debt. For ã1 slightly smaller than (1− β)d,
all firms except of firm 1 are still solvent. In particular, we have for firm 2, 3, . . . , θ + 1,

d = r̃j = min

{
d, a+

β

θ
r̃1 + (θ − 1)

β

θ
d

}
(7.91)

= min

{
d, a+

β

θ
(ã1 + βd) + (θ − 1)

β

θ
d

}
, j ∈ {2, . . . , θ + 1}. (7.92)

Of course, firms holding a part of firm 1 will default earlier (i.e. already for smaller
shocks) than firms not holding a part of firm 1, since under cross-ownership of debt only,
a decline in a firm’s endogenous asset value influences the financial health of other firms
only if this firm is actually in default. Hence, firms 2, 3, . . . , θ − 1 are simultaneously in
default as soon as

ã1 <
(1− β)(θ + β)

β
d− θ

β
a, (7.93)

and it becomes clear that (7.86) and (7.88) are special cases of (7.93) with θ = n−1 and
θ = 1, respectively. Again, contagious defaults are impossible if d < a. The derivative
of the RHS of (7.93) with respect to θ is given as ((1− β)d− a)/β < 0, i.e. the bound
on ã1 is strictly decreasing in θ. Hence, the more diversification, the bigger idiosyncratic
shocks can be withstood in the sense that no contagious defaults occur, provided that
the incomplete network is balanced in the above sense. Furthermore, the derivative of
the RHS of (7.93) with respect to β equals θ(a− d)/β2 − d, which is negative if d > a,
i.e. in this case, a higher level of integration exacerbates the occurrence of contagious
defaults. Furthermore, for β sufficiently big, any contagious default can be prevented.

17A similar approach is employed by May and Arinaminpathy [2010] to evaluate the simulation results of
Nier et al. [2007] and Gai and Kapadia [2010].
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For the complete network under cross-ownership of debt only with symmetry between
the n firms in terms of a and d, the above results remain valid if we consider multiple
identical shocks instead of idiosyncratic shocks (except that (7.86) is replaced by a
different formula), i.e. if the shock size is small, no firm is in default, for medium shocks
only the shocked firms are in default and if the shock size exceeds a certain threshold,
all firms are simultaneously in default. A similar result is derived in Theorem 5 of Eboli
[2013]. In contrast to that, in the ring network and in a balanced incomplete network the
occurrence of defaults under multiple shocks depends on the exact “chain” or structure
of cross-holdings, so we do not derive a general formula. Instead, recall that for pθ = 1
our incomplete network is actually complete, so we use our simulation results on the
complete network and the ring network to compare these network types with respect to
the mean number of defaults and the occurrence of fundamental defaults and contagious
defaults under multiple shocks in dependence of π and β18. Since for d < a only the
shocked firms might default, we analyze the results for d = 1.1. As becomes clear in
Table 7.2, the ring network is slightly more susceptible to defaults than the complete
network. This coincides with the theoretical results of Acemoglu et al. [2015], who show
for a system of banks linked by cross-ownership of debt only in an economy lasting for
three dates that the complete network is more stable with respect to the mean number
of defaults than the ring network, provided that the shock is small. This holds for both,
idiosyncratic and multiple shocks.
In line with our theoretical results on π and β for idiosyncratic shocks, the thresholds as
to the occurrence of fundamental defaults under multiple shocks coincide between the
two network types for both, π and β (cf. Table 7.2). Furthermore, as for idiosyncratic
shocks, with π increasing, the ring network is more prone to contagious defaults than the
complete network, in the sense that in the former, contagious defaults already occur for
smaller values of π. However, in line with our theoretical results, if contagious defaults
occurred in the complete network in our simulations, all firms were simultaneously in
default. Already a relatively small level of integration prevented any contagious default in
either network type. Hence, our simulations suggest the assumption that our theoretical
results on idiosyncratic shocks can be directly transferred to multiple shocks.
Altogether, in accordance to the literature, our theoretical analysis on idiosyncratic
shocks and our simulations on multiple shocks under cross-ownership of debt only show
that, depending on the shock size, a different network structure is preferable with respect
to the occurrence of defaults.

For a similar analysis under cross-ownership of equity only we need to assume d ≤ a
in order to have a solvent system before the shock (cf. Remark 7.5). However, in this
case only the firm hit by the shock might default, i.e. a cascade through the whole
system is impossible under an idiosyncratic shock, i.e. the only interesting question is
for which network type this default occurs earlier (i.e. for smaller shocks). For the

18For that, since in our set-up the restriction pθ = 1 in the complete network and variation of π or β means
that pπ always equals its benchmark value 0.2 (cf. Section 7.2.2.1), we confine ourselves to scenarios of
the ring network with pπ = 0.2 for better comparability.
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parameter network number fundamental contagious
varied type of defaults defaults defaults

π
complete 41.72± 19.54 iff π ≥ 0.15 –
ring 52.34± 29.47 iff π ≥ 0.15 iff π ≥ 0.7

β
complete 20.24± 26.41 iff β ≤ 0.4 if β ≤ 0.1
ring 23.95± 31.67 iff β ≤ 0.4 iff β ≤ 0.1

Table 7.2: Mean values and standard deviations of the number of defaults and values of π
and β leading to fundamental and contagious defaults under multiple shocks;
pπ = 0.2, the respective non-varied parameter β or π equals its benchmark
value; d/a = 1.1; “iff” stands for “if and only if”.

sake of completeness the corresponding analysis can be found in Section A.8. There, we
see that in contrast to systems of firms linked by cross-ownership of debt only, under
cross-ownership of equity only the two networks types differ in that a default of the
shocked firm already occurs for smaller shocks in the ring network than in the complete
network. Hence, under cross-ownership of equity only and a symmetrical firm structure,
the complete network is more resilient to idiosyncratic shocks than the ring network,
independently of the realized level of integration β. Under multiple shocks however,
our simulations reveal that the two network types do not differ in the mean numbers
of default (complete: 45.93 ± 15.11, ring: 45.77 ± 15.06), and for both network types,
defaults occurred if and only if π ≥ 0.1. These numbers were calculated in complete
analogy to Table 7.2, except that d = 0.95.



8 Final Remarks

For systems of n ≥ 2 firms linked by mutual cross-holdings of debt and/or equity,
our simulations as well as our theoretical analysis show that it is crucial to take the
cross-ownership structure between firms correctly into account when it comes to firm
valuation, instead of applying Merton’s model to each firm separately. Otherwise, as
we have seen in Section 3.2.2 and Section 4.1 for the two firms case, the probability of
default of a firm might be grossly misestimated, with the direction of the effect depending
on the realized type of cross-ownership. Roughly speaking, the lognormal model tends
to overestimate resp. underestimate the actual probabilities of default under cross-
ownership of debt only resp. cross-ownership of equity only, provided that the cross-
ownership structure is sufficiently tight. This holds for both, univariate and bivariate
probabilities of default. Under cross-ownership of both, debt and equity, either effect
may be dominant, depending on the detailed structure of cross-holdings.

As becomes clear in Proposition 5.10 and Proposition 5.11, financial interconnectedness
can alter tail dependence of firm values from tail independence to perfect tail dependence,
at least under the assumption of bivariate lognormally distributed exogenous assets
values. Again, cross-ownership of debt only and cross-ownership of equity only have
opposed effects in a certain sense. Under cross-ownership of debt only, firm values
remain upper tail independent, whereas they become perfectly lower tail dependent if the
correlation between exogenous asset values exceeds a certain positive threshold, which
does not depend on the exact level of cross-ownership. Under cross-ownership of equity
only, the situation is reverse in that firm values always remain lower tail independent, but
upper tail independence is preserved if and only if the right tail behaviour of both firms’
values is determined by the right tail behaviour of the firms’ own exogenous asset value
instead of the respective other firm’s exogenous asset value. Hence, it is crucial that the
cross-ownership structure and the parameter values of the distribution of exogenous asset
values are carefully analyzed, because otherwise the presence of perfect tail dependence
of firm values might be overlooked, which might have serious consequences in terms of
risk management. Consider for example a portfolio consisting of two indices representing
the values of two firms linked by cross-ownership of debt only, where extreme losses in
one firm’s value might go hand in hand with extreme losses of the other firm’s value.
As a by-product valid beyond the context of cross-ownership, our analysis yields the
lower and upper tail dependence coefficient of two portfolios built from the same two
lognormally distributed securities (cf. Section 5.5.3).

A firm linked to other firms by cross-ownership is not only threatened by sudden changes
in its own exogenous asset values, but may suffer from losses in its endogenous asset value
caused by shocks on the other firms’ exogenous assets. As our analysis shows, this effect
of contagion can be positive as well as negative, i.e. it can both, mitigate and exacerbate
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the loss in the firm’s value. Both, the recovery value of debt and the equity value of
any firm in the system are non-decreasing in any cross-ownership fraction in the model
by Proposition 6.1, but we cannot generally say that a tighter cross-ownership structure
leads to bigger absolute contagion effects.
In our simulation study on contagion, simultaneous shocks on the system caused the
smallest number of defaults under cross-ownership of debt only in conjunction with a
high level of integration, whereas the level of diversification and the realized network
type were irrelevant to the number of defaults. However, a system of firms where each
firm holds a fraction of every other firm’s debt is “robust yet fragile” [Gai and Kapadia,
2010, p. 2403], meaning that as soon as the size of an idiosyncratic shock exceeds a cer-
tain threshold, the whole system tips from being completely solvent to being completely
in default. Cross-ownership of debt only also leads to the lowest proportion of contagious
defaults among all defaults. Contagious defaults can be interpreted as defaults that are
not foreseeable if the cross-ownership structure is not properly taken into account in
the valuation process (cf. Section 7.1.3), i.e. in this respect one could arrive at the
conclusion that the neglect of financial interconnectedness in the valuation procedure is
less severe under cross-ownership of debt only than under other types of cross-ownership.

As cross-ownership is actually present in the world’s financial markets, our findings sug-
gest that this phenomenon should not be ignored by both, academics and practitioners,
even though our considerations are based on a relatively simple model of financial in-
terconnectedness, imposed with the assumption of lognormally distributed exogenous
asset values in a great part of the analysis. Sometimes (cf. Section 3.2, Section 4.1 and
Section 5) we had to limit ourselves to the two firms case in order to be able to derive
theoretical results. This raises the question if similar results hold for the n firms case
and/or under weaker distributional assumptions. Apart from that, future research could
aim at extending the analysis to systems of firms with multiple levels of seniorities, as
they are considered by Elsinger [2009] and Fischer [2014]. Furthermore, one could allow
debt of differing seniority. To this end, the algorithm provided by Pokutta et al. [2011]
could serve as a starting point. However, both approaches strongly increase the number
of parameters related to the network of cross-holdings, which impede the derivation of
both, theoretical and simulation results.



Appendix

A.1 Bivariate Distribution of Firm Values under

Cross-Ownership

The following two lemmas deal with the bivariate distribution of firm values under
cross-ownership of debt only and cross-ownership of equity only. We do not assume that
(A1, A2) follows a particular distribution.

Lemma A.1. Let V d
1 and V d

2 be defined as in (3.33) and Remark 3.6. If we assume
(A1, A2)≫ 0 P−a.s. with continuous bivariate distribution, then

P (V d
1 ≤ v1, V d

2 ≤ v2)
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d
2,1d2 −Md

2,1A1}), v1 > d1, v2 > d2.

(A1)

Furthermore, if v1 > d1 and v2 > d2,

P (V d
1 ≤ v1, V d

2 ≤ v2) = P (A1 ≤ v1 −Md
1,2d2, A2 ≤ v2 −Md

2,1d1)

+ P (v1 −Md
1,2d2 < A1 ≤ v1 −Md

1,2M
d
2,1d1 −Md

1,2A2)

+ P (v2 −Md
2,1d1 < A2 ≤ v2 −Md

1,2M
d
2,1d2 −Md

2,1A1).

(A2)

Proof. By (3.33) and Remark 3.6,

P (V d
1 ≤ v1, V d

2 ≤ v2)
= P (V d

1 ≤ v1, V d
2 ≤ v2, Ass) + P (V d

1 ≤ v1, V d
2 ≤ v2, Asd)

+ P (V d
1 ≤ v1, V d

2 ≤ v2, Ads) + P (V d
1 ≤ v1, V d

2 ≤ v2, Add)
(A3)
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= P (A1 ≤ v1 −Md
1,2d2, A1 ≥ d1 −Md

1,2d2,

A2 ≤ v2 −Md
2,1d1, A2 ≥ d2 −Md

2,1d1)
(A4)

+ P (A1 ≤ v1 −Md
1,2M

d
2,1d1 −Md

1,2A2, A1 ≥ (1−Md
1,2M

d
2,1)d1 −Md

1,2A2,

A2 ≤ v2 −Md
2,1d1, A2 < d2 −Md

2,1d1)
(A5)

+ P (A1 ≤ v1 −Md
1,2d2, A1 < d1 −Md

1,2d2,

A2 ≤ v2 −Md
1,2M

d
2,1d2 −Md

2,1A1, A2 ≥ (1−Md
1,2M

d
2,1)d2 −Md

2,1A1)
(A6)

+ P (A1 ≤ (1−Md
1,2M

d
2,1)v1 −Md

1,2A2, A1 < (1−Md
1,2M

d
2,1)d1 −Md

1,2A2,

A2 ≤ (1−Md
1,2M

d
2,1)v2 −Md

2,1A1, A2 < (1−Md
1,2M

d
2,1)d2 −Md

2,1A1).
(A7)

Let v1 ≤ d1 and v2 ≤ d2. Then the probabilities in (A4)–(A6) vanish since we assume
the distribution of (A1, A2) to be continuous, and the probability in (A7) reduces to
P (A1 ≤ (1−Md

1,2M
d
2,1)v1−Md

1,2A2, A2 ≤ (1−Md
1,2M

d
2,1)v2−Md

2,1A1), which shows the
assertion for v1 ≤ d1 and v2 ≤ d2. If v1 ≤ d1 and v2 > d2, the probabilities in (A4) and
(A5) vanish and we obtain (cf. Figure A.1(b))

P (V d
1 ≤ v1, V d

2 ≤ v2)
= P (A1 ≤ v1 −Md

1,2d2,

A2 ≤ v2 −Md
1,2M

d
2,1d2 −Md

2,1A1, A2 ≥ (1−Md
1,2M

d
2,1)d2 −Md

2,1A1)

+ P (A1 ≤ (1−Md
1,2M

d
2,1)v1 −Md

1,2A2, A2 < (1−Md
1,2M

d
2,1)d2 −Md

2,1A1)

(A8)

= P (A1 ≤ max{v1 −Md
1,2d2, (1−Md

1,2M
d
2,1)v1 −Md

1,2A2},
A2 ≤ v2 −Md

1,2M
d
2,1d2 −Md

2,1A1).
(A9)

Similarly, one can show the assertions for v1 > d1 and v2 ≤ d2 (cf. Figure A.1(c)), and
for v1 > d1 and v2 > d2 (cf. Figure A.1(d)). Also (A2) follows from Figure A.1(d).

Note that if Md
2,1d1 ≥ d2 or Md

1,2d2 ≥ d1, the probabilities in (A5) resp. (A6) are always
0 (cf. Figure 7.1(b) and (c) for the related Suzuki areas). Hence, also the second resp.
third probability in (A2) is zero.

Lemma A.2. Let V e
1 and V e

2 be defined as in (3.34) and Remark 3.6. If we assume
(A1, A2)≫ 0 P−a.s. with continuous bivariate distribution, then

P (V e
1 ≤ v1, V e

2 ≤ v2)

=





P (A1 ≤ v1, A2 ≤ v2), v1 ≤ d1, v2 ≤ d2,
P (A1 ≤ min{v1, v1 +M e

1,2(d2 −A2)}, A2 ≤ v2), v1 ≤ d1, v2 > d2,

P (A1 ≤ v1, A2 ≤ min{v2, v2 +M e
2,1(d1 −A1)}), v1 > d1, v2 ≤ d2,

P (A1 ≤ min{v1, v1 +M e
1,2M

e
2,1(d1 − v1) +M e

1,2(d2 −A2)},
A2 ≤ min{v2, v2 +M e

1,2M
e
2,1(d2 − v2) +M e

2,1(d1 −A1)}), v1 > d1, v2 > d2.

(A10)
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Figure A.1: Probability P (V d
1 ≤ v1, V

d
2 ≤ v2) decomposed according to (A4)–(A7) for

Md
2,1d1 < d2 and Md

1,2d2 < d1, m :=Md
1,2M

d
2,1, the black solid lines separate

the four Suzuki areas (cf. Figure 7.1(a)) and they cross in (d1−Md
1,2d2, d2−

Md
2,1d1); (a) v1 ≤ d1, v2 ≤ d2; (b) v1 ≤ d1, v2 > d2; (c) v1 > d1, v2 ≤ d2; (d)

v1 > d1, v2 > d2.
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Proof. By (3.34) and Remark 3.6,

P (V e
1 ≤ v1, V e

2 ≤ v2)
= P (V e

1 ≤ v1, V e
2 ≤ v2, Ass) + P (V e

1 ≤ v1, V e
2 ≤ v2, Asd)

+ P (V e
1 ≤ v1, V e

2 ≤ v2, Ads) + P (V e
1 ≤ v1, V e

2 ≤ v2, Add)
(A11)

= P (A1 ≤ v1 +M e
1,2M

e
2,1(d1 − v1) +M e

1,2(d2 −A2), A1 ≥ d1 +M e
1,2(d2 −A2),

A2 ≤ v2 +M e
1,2M

e
2,1(d2 − v2) +M e

2,1(d1 −A1), A2 ≥ d2 +M e
2,1(d1 −A1))

(A12)

+ P (A1 ≤ v1, A1 ≥ d1, A2 ≤ v2 +M e
2,1(d1 −A1), A2 < d2 +M e

2,1(d1 −A1)) (A13)

+ P (A1 ≤ v1 +M e
1,2(d2 −A2), A1 < d1 +M e

1,2(d2 −A2), A2 ≤ v2, A2 ≥ d2) (A14)

+ P (A1 ≤ v1, A1 < d1, A2 ≤ v2, A2 < d2). (A15)

Let v1 ≤ d1 and v2 ≤ d2. Then the probabilities in (A12)–(A14) vanish since we assume
the bivariate distribution of (A1, A2) to be continuous, and the assertion follows. For
v1 ≤ d1 and v2 > d2, the probabilities in (A12) and (A13) vanish, and we obtain (cf.
Figure A.2(b))

P (V e
1 ≤ v1, V e

2 ≤ v2)
= P (A1 ≤ v1 +M e

1,2(d2 −A2), d2 ≤ A2 ≤ v2) + P (A1 ≤ v1, A2 < d2) (A16)

= P (A1 ≤ min{v1, v1 +M e
1,2(d2 −A2)}, A2 ≤ v2). (A17)

Similarly, one can show the assertion for v1 > d1 and v2 ≤ d2 (cf. Figure A.2(c)), and
v1 > d1 and v2 > d2 (cf. Figure A.2(d)).

A.2 The Fenton–Wilkinson Method

A.2.1 Original Rationale and Adaption to our Set-Up

According to Marlow [1967], the general idea was first proposed, but not published, by
Wilkinson in 1934. In 1960, Fenton took up Wilkinson’s idea [Dufresne, 2008] of fitting
a lognormal distribution to a sum of lognormals by matching the corresponding first and
second central moments.
Let Yi (i = 1, . . . , k) be independent and (not necessarily identically) lognormally dis-
tributed random variables. Then the sum

∑k
i=1 Yi is approximated with a lognormally

distributed random variable Y such that

E(Y ) = E

(
k∑

i=1

Yi

)
, Var(Y ) = Var

(
k∑

i=1

Yi

)
. (A18)

In our set-up of Section 3.2.2, firm values V1 (cf. (3.23)) are section-wise defined on
the four Suzuki areas, and on each area, V1 is a sum of lognormally distributed random
variables plus some constant. Hence, we are not exactly in the framework considered by
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Figure A.2: Probability P (V e
1 ≤ v1, V

e
2 ≤ v2) decomposed according to (A12)–(A15),

the black solid lines separate the four Suzuki areas (cf. Figure 7.1(d)) and
they cross in (d1; d2); (a) v1 ≤ d1, v2 ≤ d2; (b) v1 ≤ d1, v2 > d2; (c) v1 > d1,
v2 ≤ d2; (d) v1 > d1, v2 > d2.
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Fenton [1960], but the rationale can be applied analogously. Note that by applying the
Fenton–Wilkinson method to the empirical distribution function F̂V1 , we use empirical
moments of V1 instead of theoretical moments, as the latter cannot be calculated exactly
in general, if exogenous asset values follow a lognormal distribution.

A.2.2 The Fenton–Wilkinson Method applied to (A1 +m2A2)/(1−m1m2)

Under certain special cases (cf. Section 3.2.2.2 and Section 3.2.2.3) the firm value V1
equals or can be approximated with A := (A1 +m2A2)/(1−m1m2) for some m1,m2 ∈
[0, 1). In the following, we will analyze in a short simulation study how well the Fenton-
Wilkinson method works for different values of m1, m2 and σ2 when applied to A. For
that, let A1, A2 be independent random variables with

Ai ∼ LN (−0.5σ2, σ2), (A19)

i.e. E(Ai) = 1 and Var(Ai) = exp(σ2)− 1, i = 1, 2, as in Section 3.2.2 and Section 3.2.3.
Hence, the logarithms of the two summands of A are normally distributed with differ-
ent means, identical variances and correlation 0. We consider σ2 ∈ {0.00995, 0.22314,
0.44629, 0.69315, 1, 1.17865, 1.60944, 1.98100, 2.30259, 3.25810, 4.04743, 4.61512, 10, 20,
30, 40} and (m1,m2) ∈ {0.1, 0.2, . . . , 0.9}2. Within each scenario, we simulated 100,000
values of (A1, A2) and from that, we calculated the resulting empirical mean and em-
pirical variance of A. These moments were taken as the moments of a fitted lognormal
distribution (cf. Section A.2.1). Finally, we calculated the Kolmogorov–Smirnov statis-
tic (cf. (3.46)) between the empirical distribution function of A and the approximated
lognormal distribution function. This yielded the following results.

As becomes clear in Figure A.3, the bigger σ2, the higher the level of the Kolmogorov–
Smirnov values, i.e. the bigger the discrepancy between the distribution of (A1 +
m2A2)/(1 − m1m2) and the lognormal distribution. For very small values of σ2, we
observed nearly no difference between the two distributions. For m1 = m2 = 0 one
would expect the Kolmogorov–Smirnov values to be close to 0 for any value of σ2 as
A = A1 in this case. As some additional simulations revealed, the estimation of the pa-
rameters of the lognormal distribution underlying A = A1 deteriorates with σ

2 increasing
and thus the fit between the actual lognormal CDF of A1 and the fitted lognormal CDF
gets worse. This makes the influence of σ2 in Figure A.3 plausible. For all considered
values of σ2, the parameters m1 and m2 do not seem to influence to what extent the
distribution of (A1 +m2A2)/(1−m1m2) differs from the lognormal distribution.

A.3 Auxiliary Results for the Limiting Probabilities of Default

Lemma A.3. Let d1, d2 > 0 and let Ass, Asd, Ads and Add be given by (3.25)–(3.28).
Under cross-ownership of debt only, the pointwise limits of their indicator functions 1Ass ,
1Asd

, 1Ads
and 1Add

exist for Md
1,2,M

d
2,1 → 1.
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Figure A.3: Kolmogorov–Smirnov statistics in dependence of m1, m2 and σ2; (a) σ2 =
0.00995; (b) σ2 = 3.2581 ; (c) σ2 = 20; (d) σ2 = 40.
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Proof. Under cross-ownership of debt only we have

Ass = {(a1, a2) ≥ 0 : a1 ≥ d1 −Md
1,2d2, a2 ≥ d2 −Md

2,1d1}, (A20)

Asd = {(a1, a2) ≥ 0 : a1 +Md
1,2a2 ≥ (1−Md

1,2M
d
2,1)d1, a2 < d2 −Md

2,1d1}, (A21)

Ads = {(a1, a2) ≥ 0 : a1 < d1 −Md
1,2d2, M

d
2,1a1 + a2 ≥ (1−Md

1,2M
d
2,1)d2}, (A22)

Add = {(a1, a2) ≥ 0 : a1 +Md
1,2a2 < (1−Md

1,2M
d
2,1)d1,

Md
2,1a1 + a2 < (1−Md

1,2M
d
2,1)d2}.

(A23)

Let (Md
1,2,n1

)n1∈N and (Md
2,1,n2

)n2∈N be arbitrary, but strictly increasing sequences in
(0, 1) with limit 1, and let Ass,n1,n2 , Asd,n1,n2 , Ads,n1,n2 and Add,n1,n2 stand for the Suzuki
areas associated with the n1th and n2th element the above sequences.
First, it is easy to see from (A20) that Ass,n1,n2 is strictly increasing in both, n1 and n2.
Hence, also the sequence of indicator functions 1Ass,n1,n2

is pointwise strictly increasing
in n1 and n2, i.e. limn1,n2→∞ 1Ass,n1,n2

exists. Next,

Asd,n1,n2 = {a1 +Md
1,2,n1

a2 ≥ (1−Md
1,2,n1

Md
2,1,n2

)d1}︸ ︷︷ ︸
:=1Asd,n1,n2

∩{a2 < d2 −Md
2,1,n2

d1}︸ ︷︷ ︸
:=2Asd,n2

, (A24)

where 1Asd,n1,n2 increases in both, n1 and n2 and 2Asd,n2 decreases in n2. Hence, the
limits of the associated (separate) indicator functions exist, and because of 1Asd,n1,n2

=
11Asd,n1,n2

× 12Asd,n2
for all n1, n2 ∈ N by (A24), the limit of 1Asd,n1,n2

exists as well.
Analogously we can write

Ads,n1,n2 = {a1 < d1 −Md
1,2,n1

d2}︸ ︷︷ ︸
:=1Ads,n1

∩{Md
2,1,n2

a1 + a2 ≥ (1−Md
1,2,n1

Md
2,1,n2

)d2}︸ ︷︷ ︸
:=2Ads,n1,n2

, (A25)

with 1Ads,n1 decreasing in n1 and 2Ads,n1,n2 increasing in both, n1 and n2. Hence, the
limits of the related indicator functions exist, and thus also the limit of 1Ads,n1,n2

, if
n1, n2 converge to infinity. Furthermore, Add,n1,n2 is strictly decreasing in both, n1 and
n2, i.e. the limit of the associated indicator function for n1, n2 →∞ exists.

Lemma A.4. Let d1, d2 > 0. With A∗
ss, A

∗
sd, A

∗
ds and A

∗
dd as defined in (4.4), we have

A∗
dd = {(0, 0)}, (A26)

A∗
sd = ∅ ⇔ d2 < d1, (A27)

A∗
ds = ∅ ⇔ d1 < d2. (A28)

If d1 = d2, A
∗
sd and A∗

ds equal the strictly positive a1-axis and a2-axis, respectively.

Proof. Let (Md
1,2,n1

)n1∈N, (M
d
2,1,n2

)n2∈N, Ass,n1,n2 , Asd,n1,n2 , Ads,n1,n2 and Add,n1,n2 be
defined as in the proof of Lemma A.3.
Since (0, 0) ∈ Add,n1,n2 for all n1, n2 ∈ N, i.e. 1Add,n1,n2

(0, 0) = 1 for all n1, n2 ∈ N, we
have limn1,n2→∞ 1Add,n1,n2

(0, 0) = 1, i.e. (0, 0) ∈ A∗
dd. Let us now assume (a∗1, a

∗
2) ∈ A∗

dd



A.3 Auxiliary Results for the Limiting Probabilities of Default 171

with a∗1, a
∗
2 ≥ 0 and a∗1+ a∗2 > 0, w.l.o.g. let a∗1 > 0. Since Add,n1,n2 is strictly decreasing

in n1 and n2 (cf. (A23)), we have for all n1, n2 ∈ N,

0 < a∗1 +Md
1,2,n1

a∗2 < (1−Md
1,2,n1

Md
2,1,n2

)d1, (A29)

and as the RHS of (A29) converges to 0 if n1 and n2 go to infinity, (A26) follows. Let
us now assume d2 < d1 and (a∗1, a

∗
2) ∈ A∗

sd. Then, by (A24),

a∗2 < d2 −Md
2,1,n2

d1 for all n2 ∈ N. (A30)

Since the limit of the RHS of (A30) for n2 → ∞ is negative, such an (a∗1, a
∗
2) ≥ 0

does not exist. If d2 ≥ d1, it is straightforward to see that A∗
sd = {(a1, a2) ≥ 0 :

a1 + a2 > 0, a2 ≤ d2 − d1}, and (A27) follows. In particular, we have for d1 = d2 that
A∗

sd = {(a1, a2) ≥ 0 : a1 > 0, a2 = 0}. Analogously, one can show (A28) with the help of
(A25), and we obtain for d1 ≥ d2 that A∗

ds = {(a1, a2) ≥ 0 : a1 + a2 > 0, a1 ≤ d1 − d2},
and A∗

ds = {(a1, a2) ≥ 0 : a1 = 0, a2 > 0} if d1 = d2.

Lemma A.5. Let µ, µ̃ ∈ R, σ, σ̃, d2 ∈ R+, σ > σ̃, be such that

exp(µ̃+ 0.5σ̃2) = exp(µ+ 0.5σ2) + d2, (A31)

(exp(σ̃2)− 1) exp(2µ̃+ σ̃2) = (exp(σ2)− 1) exp(2µ+ σ2), (A32)

which exactly corresponds to the definition of µ̃ and σ̃ in (4.7). Then

exp(σ̃µ− σµ̃) <

(
σ̃

σ−σ̃d2
)σ̃

(
σ

σ−σ̃d2
)σ . (A33)

Proof. First, (A32) implies exp(µ̃+ 0.5σ̃2) =
√

exp(σ2)−1
exp(σ̃2)−1

exp(µ+ 0.5σ2), i.e.

µ̃ = µ+ 0.5σ2 − 0.5σ̃2 + ln

(√
exp(σ2)− 1

exp(σ̃2)− 1

)
, (A34)

ln(d2) = µ+ 0.5σ2 + ln

(√
exp(σ2)− 1

exp(σ̃2)− 1
− 1

)
. (A35)

Hence,

(A33)⇔ 0 > σ̃µ− µ̃σ + (σ − σ̃) ln(d2)− (σ − σ̃) ln(σ − σ̃)− σ̃ ln(σ̃) + σ ln(σ) (A36)

⇔ 0 >− σ ln
(√

exp(σ2)− 1

exp(σ̃2)− 1

)
+ 0.5σ̃2σ − 0.5σ̃σ2 − σ̃ ln(σ̃) + σ ln(σ)

+ (σ − σ̃) ln
(√

exp(σ2)− 1

exp(σ̃2)− 1
− 1

)
− (σ − σ̃) ln(σ − σ̃)

(A37)
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⇔ 0 > (σ − σ̃)
(
ln

(√
exp(σ2)− 1

exp(σ̃2)− 1
− 1

)
− ln(σ − σ̃)− 0.5σσ̃

)

− σ̃ ln(σ̃) + σ ln

(
σ

√
exp(σ̃2)− 1

exp(σ2)− 1

)
.

(A38)

Due to σ > σ̃, it is sufficient for (A33) to show that

(σ − σ̃)
(
ln

(√
exp(σ2)− 1

exp(σ̃2)− 1
− 1

)
− ln(σ − σ̃)

)
− σ̃ ln(σ̃) + σ ln

(
σ

√
exp(σ̃2)− 1

exp(σ2)− 1

)

(A39)

is smaller than 0, or equivalently

(σ − σ̃) ln
(√

exp(σ2)− 1−
√
exp(σ̃2)− 1

σ − σ̃

)
− σ ln

(√
exp(σ2)− 1

σ

)

< −σ̃ ln
(√

exp(σ̃2)− 1

σ̃

)
.

(A40)

For that, we consider the derivative of the LHS of (A40) with respect to σ:

∂

∂σ

[
(σ − σ̃) ln

(√
exp(σ2)− 1−

√
exp(σ̃2)− 1

σ − σ̃

)
− σ ln

(√
exp(σ2)− 1

σ

)]

= ln

(√
exp(σ2)− 1−

√
exp(σ̃2)− 1

σ − σ̃

)

+

(σ − σ̃)2
(

exp(σ2)σ√
exp(σ2)−1

(σ − σ̃)−
(√

exp(σ2)− 1−
√
exp(σ̃2)− 1

))

(√
exp(σ2)− 1−

√
exp(σ̃2)− 1

)
(σ − σ̃)2

− ln

(√
exp(σ2)− 1

σ

)
−
σ2
(

exp(σ2)σ√
exp(σ2)−1

−
√
exp(σ2)− 1

)

√
exp(σ2)− 1σ2

(A41)

= ln

(
σ√

exp(σ2)− 1

)
− ln

(
σ − σ̃√

exp(σ2)− 1−
√
exp(σ̃2)− 1

)

+
exp(σ2)σ√
exp(σ2)− 1

(
σ − σ̃√

exp(σ2)− 1−
√
exp(σ̃2)− 1

− σ√
exp(σ2)− 1

)
.

(A42)

Because of σ−σ̃√
exp(σ2)−1−

√
exp(σ̃2)−1

− σ√
exp(σ2)−1

< 0, this derivative is negative if and
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only if

ln

(
σ√

exp(σ2)−1

)
− ln

(
σ−σ̃√

exp(σ2)−1−
√

exp(σ̃2)−1

)

σ√
exp(σ2)−1

− σ−σ̃√
exp(σ2)−1−

√
exp(σ̃2)−1

<
exp(σ2)σ√
exp(σ2)− 1

. (A43)

Since the LHS of (A43) can be interpreted as the difference quotient of the concave
logarithmic function in x0 = σ√

exp(σ2)−1
and x = σ−σ̃√

exp(σ2)−1−
√

exp(σ̃2)−1
, the LHS of

(A43) is strictly decreasing in x and thus strictly increasing in σ̃. From

lim
σ̃րσ

σ − σ̃√
exp(σ2)− 1−

√
exp(σ̃2)− 1

=

(
lim
σ̃րσ

√
exp(σ2)− 1−

√
exp(σ̃2)− 1

σ − σ̃

)−1

(A44)

=

(
∂

∂σ

√
exp(σ2)− 1

)−1

=

√
exp(σ2)− 1

exp(σ2)σ
(A45)

it follows that the LHS of (A43) is smaller than

ln

(
σ√

exp(σ2)−1

)
− ln

(√
exp(σ2)−1

exp(σ2)σ

)

σ√
exp(σ2)−1

−
√

exp(σ2)−1

exp(σ2)σ

<
exp(σ2)σ√
exp(σ2)− 1

, (A46)

where the last inequality follows from straightforward calculations and the fact that
ln(x) < x − 1 for all x > 0. Thus, (A43) is met for all σ̃ < σ, i.e. the LHS of (A40)
is strictly decreasing in σ for all σ̃ > 0. Hence, for (A40) it only remains to show that
(A40) holds in the limit of σ ց σ̃. Because of

∣∣∣∣∣ limσցσ̃

√
exp(σ2)− 1−

√
exp(σ̃2)− 1

σ − σ̃

∣∣∣∣∣ =
∣∣∣∣
∂

∂σ̃

√
exp(σ̃2)− 1

∣∣∣∣ (A47)

=

∣∣∣∣∣
exp(σ̃2)σ̃√
exp(σ̃2)− 1

∣∣∣∣∣ <∞, (A48)

we have

lim
σցσ̃

[
(σ − σ̃) ln

(√
exp(σ2)− 1−

√
exp(σ̃2)− 1

σ − σ̃

)
− σ ln

(√
exp(σ2)− 1

σ

)]

= −σ̃ ln
(√

exp(σ̃2)− 1

σ̃

)
, (A49)

i.e. (A40) and (A33) follow.
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Lemma A.6. Let (A1, A2) follow a bivariate lognormal distribution as in (4.1) and let
µ̃ and σ̃ be defined as in (4.36) and (4.37), respectively. Then

lim
Me

1,2,M
e
2,1→1

σ̃ <∞ and µ̃→∞ for M e
1,2,M

e
2,1 → 1. (A50)

Proof. From V e
1

∣∣
Ass

= (A1 +M e
1,2A2 −M e

1,2(M
e
2,1d1 + d2))/(1−M e

1,2M
e
2,1) by (3.34) we

obtain

E(V e
1 × 1Ass) =

1
1−Me

1,2M
e
2,1
E([A1 +M e

1,2A2 −M e
1,2(M

e
2,1d1 + d2)]× 1Ass), (A51)

Var(V e
1 × 1Ass)

=
(

1
1−Me

1,2M
e
2,1

)2
Var([A1 +M e

1,2A2]× 1Ass) (A52)

=
(

1
1−Me

1,2M
e
2,1

)2 (
E([A1 +M e

1,2A2]
2 × 1Ass)− E([A1 +M e

1,2A2]× 1Ass)
2
)
. (A53)

Let 1A∗
ss
denote the limit of 1Ass if M

e
1,2,M

e
2,1 → 1. For its existence, see Lemma A.7. In

particular, 1A∗
ss
≥ 1Ass for all M

e
1,2,M

e
2,1 ∈ (0, 1). Because of

[A1 +M e
1,2A2 −M e

1,2(M
e
2,1d1 + d2)]× 1Ass ≤ [A1 +A2]× 1Ass ≤ [A1 +A2]× 1A∗

ss
,

(A54)

[A1 +M e
1,2A2]

2 × 1Ass ≤ (A1 +A2)
2 × 1A∗

ss
(A55)

for all M e
1,2,M

e
2,1 ∈ (0, 1), where the RHS of both, (A54) and (A55) are integrable, the

dominated convergence theorem yields for M e
1,2,M

e
2,1 → 1

E([A1 +M e
1,2A2 −M e

1,2(M
e
2,1d1 + d2)]× 1Ass)→ E([A1 +A2 − d1 − d2]× 1A∗

ss
) <∞,

(A56)

E([A1 +M e
1,2A2]× 1Ass)→ E([A1 +A2]× 1A∗

ss
) <∞, (A57)

E([A1 +M e
1,2A2]

2 × 1Ass)→ E([A1 +A2]
2 × 1A∗

ss
) <∞, (A58)

i.e. Var([A1 +M e
1,2A2] × 1Ass) → Var([A1 + A2] × 1A∗

ss
) for M e

1,2,M
e
2,1 → 1. Note that

both, E([A1+A2−d1−d2]×1A∗
ss
) and Var([A1+A2]×1A∗

ss
), are strictly positive due to

the lognormal distribution of (A1, A2) which yields P (A∗
ss) > 0 (cf. Lemma A.7). Hence,

(A51)–(A58) imply

E(V e
1 × 1Ass)→∞, (A59)

Var(V e
1 × 1Ass)→∞, (A60)

Var(V e
1 × 1Ass)

E(V e
1 × 1Ass)

=
Var([A1 +M e

1,2A2]× 1Ass)

(1−M e
1,2M

e
2,1)E([A1 +M e

1,2A2 −M e
1,2(M

e
2,1d1 + d2)]× 1Ass)

→∞,

(A61)

Var(V e
1 × 1Ass)

E(V e
1 × 1Ass)

2
→ Var([A1 +A2]× 1A∗

ss
)

E([A1 +A2 − d1 − d2]× 1A∗
ss
)2
<∞, M e

1,2,M
e
2,1 → 1. (A62)
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Then

E(V e
1 ) = E(V e

1 × 1Ass) + E(V e
1 × 1Ac

ss
)→∞ for M e

1,2,M
e
2,1 → 1, (A63)

Var(V e
1 ) = Var(V e

1 × 1Ass) + Var(V e
1 × 1Ac

ss
)− 2E(V e

1 × 1Ass)× E(V e
1 × 1Ac

ss
), (A64)

where

lim
Me

1,2,M
e
2,1→1

E(V e
1 × 1Ac

ss
) <∞, lim

Me
1,2,M

e
2,1→1

Var(V e
1 × 1Ac

ss
) <∞, (A65)

since straightforward calculations show that V e
1 × 1Ac

ss
< d1 + d2/M

e
2,1. By (A61),

Var(V e
1 × 1Ass) diverges faster than E(V e

1 × 1Ass), and therefore Var(V e
1 ) → ∞ for

M e
1,2,M

e
2,1 → 1. Furthermore,

Var(V e
1 )

E(V e
1 )

2
∼

Var(V e
1 × 1Ass)

E(V e
1 × 1Ass)

2
, M e

1,2,M
e
2,1 → 1, (A66)

because all the other terms in (A63) and (A64) are dominated by the expressions on the
RHS of (A66), which go to infinity. Hence, by (A62),

Var(V e
1 )

E(V e
1 )

2
→ Var([A1 +A2]× 1A∗

ss
)

E([A1 +A2 − d1 − d2]× 1A∗
ss
)2
<∞, M e

1,2,M
e
2,1 → 1. (A67)

Altogether, by (A63) and (A67),

lim
Me

1,2,M
e
2,1→1

σ̃ = ln

(
lim

Me
1,2,M

e
2,1→1

Var(V e
1 )

E(V e
1 )

2
+ 1

)0.5

<∞ (A68)

and

µ̃ = −1

2
ln



Var(V e

1 )

E(V e
1 )

4
+

1

E(V e
1 )

2

︸ ︷︷ ︸
→0


→∞ for M e

1,2,M
e
2,1 → 1. (A69)

Lemma A.7. Let Ass be defined as in (3.25). Under cross-ownership of equity only, the
pointwise limit of 1Ass for M e

1,2,M
e
2,1 → 1 exists and is given by 1A∗

ss
with

A∗
ss := {(a1, a2) ≥ 0 : a1 + a2 ≥ d1 + d2}. (A70)

Proof. Under cross-ownership of equity only, the formula of Ass reduces to

{(a1, a2) ≥ 0 : a1 +M e
1,2a2 ≥ d1 +M e

1,2d2, M
e
2,1a1 + a2 ≥M e

2,1d1 + d2}. (A71)
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Let (M e
1,2,n1

)n1∈N and (M e
2,1,n2

)n2∈N be arbitrary, but strictly increasing sequences in
(0, 1) with limit 1, and let Ass,n1,n2 stand for Ass associated with the n1th and n2th
element the above sequences. Then it is easy to see from (A71) that Ass,n1,n2 is strictly
increasing in both, n1 and n2. Hence, the indicator function of Ass,n1,n2 is pointwise
strictly increasing in n1 and n2, and its pointwise limit exists and is a function with
values in {0, 1} only. As such, this limit is of the form 1A for some set A ⊆ R+

0 × R+
0 .

In order to show A = A∗
ss, we first assume 1A(a

∗
1, a

∗
2) = 1, i.e. there is an N1 ∈ N such

that (a∗1, a
∗
2) ∈ Ass,n1,n2 for all n1, n2 ≥ N1, i.e.

a∗1 +M e
1,2,n1

a∗2 ≥ d1 +M e
1,2,n1

d2 for all n1 ≥ N1, (A72)

M e
2,1,n2

a∗1 + a∗2 ≥M e
2,1,n2

d1 + d2 for all n2 ≥ N1. (A73)

In the limit of n1, n2 → ∞, this means that a∗1 + a∗2 ≥ d1 + d2, i.e. A ⊆ A∗
ss. Let now

1A(a
∗
1, a

∗
2) = 0, i.e. there is an N2 ∈ N such that

a∗1 +M e
1,2,n1

a∗2 < d1 +M e
1,2,n1

d2 for all n1, n2 ≥ N2, (A74)

M e
2,1,n2

a∗1 + a∗2 < M e
2,1,n2

d1 + d2 for all n1, n2 ≥ N2. (A75)

In the limit of n1, n2 → ∞, we obtain from (A74) and (A75) that a∗1 + a∗2 ≤ d1 + d2.
If we had a∗1 + a∗2 = d1 + d2, (A74) and (A75) would imply a∗2 > d2 and a∗1 > d1, in
contradiction to a∗1 + a∗2 = d1 + d2. Hence, a∗1 + a∗2 < d1 + d2, i.e. (a

∗
1, a

∗
2) 6∈ A∗

ss, and the
assertion follows.

Lemma A.8. Let x, y ≥ 0. Then

exp(
√
xy)− 1 ≤

√
(exp(x)− 1)(exp(y)− 1). (A76)

Proof. W.l.o.g. let x ≤ y. The assertion is clear for x = y. For x < y, we show

∂

∂y

(√
(exp(x)− 1)(exp(y)− 1)− exp(

√
xy) + 1

)
(A77)

=

√
exp(x)− 1

exp(y)− 1
exp(y)−

√
x

y
exp(
√
xy)

︸ ︷︷ ︸
=:f(x,y)

≥ 0 (A78)

for all x < y, which proves the assertion. The absolute minimum of f(·, y) (y > 0)
is taken either for x ∈ (0, y) or for x = 0 or x = y, and in the latter two cases, it is
straightforward to see that (A78) holds. If the minimum is taken in (0, y), say in x = x̃,
the derivative of f(·, y) with respect to x must be 0 in x = x̃, which is equivalent to

exp(x̃) exp(y)√
(exp(x̃)− 1)(exp(y)− 1)

= exp(
√
x̃y)

(
1 +

1√
x̃y

)
. (A79)
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Replacing exp(
√
xy) in f(x, y) by use of (A79), we obtain

f(x, y) ≥ 0 ⇔
√

exp(x̃)− 1

exp(y)− 1
exp(y)−

√
x̃

y

exp(x̃) exp(y)√
(exp(x̃)− 1)(exp(y)− 1)

1(
1 + 1√

x̃y

) ≥ 0

(A80)

⇔ exp(x̃)− 1 ≥ exp(x̃)
x̃

1 +
√
x̃y
, (A81)

which is true for all values of y > x̃, since the RHS of (A81) is strictly decreasing in y
and for y = x̃, (A81) is equivalent to exp(x̃) ≥ 1 + x̃, which holds because of the power
series representation of exp(x̃). Hence, we have shown that (A78) even holds if f(·, y)
takes its minimum value with respect to x, and the assertion follows.

A.4 Limiting Behaviour of ϑ(y)

Let ϑ(y) be defined as in (5.72), i.e.

ϑ(y) =
F−1
A1+m2A2

(Fm1A1+A2(y))

y
. (A82)

Lemma A.9. Let A1, A2 be positive random variables with strictly increasing continuous
distribution functions, and let m1,m2 ∈ (0, 1). Then

ϑ(y) ∈
(
m2,

1

m1

)
for all y > 0. (A83)

Proof. Obviously, since we assume the distribution functions of A1 and A2 to be strictly
increasing, the distribution functions and inverse distribution functions of A1 + m2A2

and m1A1 +A2 are strictly increasing. Then

m2 <
F−1
A1+m2A2

(Fm1A1+A2(y))

y

⇔ FA1+m2A2(m2y) < Fm1A1+A2(y) (A84)

⇔ P (A1/m2 +A2 ≤ y) < P (m1A1 +A2 ≤ y) , (A85)

where the last inequality holds because of m1,m2 ∈ (0, 1) and due to A1 > 0. Similarly,

F−1
A1+m2A2

(Fm1A1+A2(y))

y
<

1

m1

⇔ Fm1A1+A2(y) < FA1+m2A2 (y/m1) (A86)

⇔ P (m1A1 +A2 ≤ y) < P (m1A1 +m1m2A2 ≤ y) , (A87)

where the last inequality holds because of m1,m2 ∈ (0, 1) and due to A2 > 0.
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A.4.1 Limit of ϑ(y) for y → 0

Under Assumption 5.6 we do not have closed formulae for the densities of A1 +m2A2

and m1A1 + A2, but the work of Gao et al. [2009] provides expressions asymptotically
equivalent to fln(A1+m2A2) and fln(m1A1+A2), leading to the following lemma.

Lemma A.10. Let (A1, A2) be distributed as in Assumption 5.6 and let m1,m2 ∈ (0, 1).
Then

fA1+m2A2(x) ∼
fGao(ln(x), 1,m2)

x
, x→ 0+, (A88)

fm1A1+A2(x) ∼
fGao(ln(x),m1, 1)

x
, x→ 0+, (A89)

with

fGao(z, q1, q2) =





c(q1, q2)× 1√
−z exp(−S × z −G1(z, q1, q2)), ρ < σ1

σ2
,

1√
ln(−z)

ϕµ1+ln(q1),σ2
1
(z)G2(z, q1, q2), ρ = σ1

σ2
,

ϕµ1+ln(q1),σ2
1
(z), ρ > σ1

σ2
,

(A90)

and

S :=
1

(1− ρ2)σ21σ22

(
s1 ln

(
s1

s1 + s2

)
+ s2 ln

(
s2

s1 + s2

))
, (A91)

s1 := σ21 − ρσ1σ2, (A92)

s2 := σ22 − ρσ1σ2, (A93)

G1(z, q1, q2) :=
z2(s1 + s2)− 2z

(
s1(µ2 + ln(q2)) + s2(µ1 + ln(q1))

)

2(1− ρ2)σ21σ22
, (A94)

G2(z, q1, q2) := exp

(
1

2(σ22 − σ21)
(
−
(
ln((1− ρ−2)z)− ln(ln((1− ρ−2)z))

+ µ2 + ln(q2)− µ1 − ln(q1)
)2 − 2 ln((1− ρ−2)z)

))
,

(A95)

and some positive constant c(q1, q2) depending on q1 and q2.

Proof. By Theorem 2.3 of Gao et al. [2009], the density of ln(A1 +m2A2) as a function
in z is asymptotically equivalent to fGao(z, 1,m2) for z → −∞, and the density of
ln(m1A1+A2) is asymptotically equivalent to fGao(z,m1, 1) for z → −∞. Furthermore,

fln(A1+m2A2)(z) =
∂

∂z
P (ln(A1 +m2A2) ≤ z) =

∂

∂z
P (A1 +m2A2 ≤ exp(z)) (A96)

= fA1+m2A2(exp(z))× exp(z), (A97)

i.e. fA1+m2A2(z) = fln(A1+m2A2)(ln(z))/z ∼ fGao(ln(z), 1,m2)/z, z → 0+. (A89) can be
shown similarly.
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Lemma A.11. Let (A1, A2) be distributed as in Assumption 5.6 and let m1,m2 ∈ (0, 1).
Then

lim
y→0

ϑ(y) =




m
s1/(s1+s2)
2

(
1
m1

)s2/(s1+s2)
, ρ < σ1

σ2
,

1
m1
, ρ > σ1

σ2
,

(A98)

with s1, s2 defined as in Lemma A.10.

Proof. Let ρ 6= σ1/σ2. Setting u = Fm1A1+A2(y) we have

lim
y→0

ϑ(y) = lim
y→0

F−1
A1+m2A2

(Fm1A1+A2(y))

y
= lim

u→0

F−1
A1+m2A2

(u)

F−1
m1A1+A2

(u)
. (A99)

For x < 1 let FGao(x, q1, q2) :=
∫ ln(x)
−∞ fGao(z, q1, q2) dz (cf. (A90)), i.e.

∂

∂x
FGao(x, q1, q2) =

fGao(ln(x), q1, q2)

x
, (A100)

and for x > 1, let

h1(x) :=
1

FGao

(
1
x ,m1, 1

) , h2(x) :=
1

P
(
m1A1 +A2 ≤ 1

x

) . (A101)

Then L’Hôpital’s rule, (A100) and Lemma A.10 yield for λ ∈ (0, 1) and ρ > σ1/σ2

lim
x→∞

h1(λx)

h1(x)
= lim

x→∞
fGao

(
ln
(
1
x

)
,m1, 1

)

fGao

(
ln
(

1
λx

)
,m1, 1

) (A102)

= lim
x→∞

exp

( −1
2σ21

((
− ln(x)− µ1 − ln(m1)

)2 −
(
− ln(x)− ln(λ)− µ1 − ln(m1)

)2)
)

(A103)

= lim
x→∞

exp

(
1

2σ21

(
2 ln(λ)(ln(x) + µ1 + ln(m1)) + ln(λ)2

))
= 0. (A104)

Similarly, for ρ < σ1/σ2,

lim
x→∞

h1(λx)

h1(x)
= lim

x→∞
fGao

(
ln
(
1
x

)
,m1, 1

)

fGao

(
ln
(

1
λx

)
,m1, 1

) (A105)

= lim
x→∞

√
ln (λx)

ln (x)
exp

(
− S (− ln (x) + ln (λx))

− 1

2(1− ρ2)σ21σ22

[
(s1 + s2)

(
ln (x)2 − ln (λx)2

)

− 2
(
− ln (x) + ln (λx)

)(
s1µ2 + s2(µ1 + ln(m1))

)])
(A106)
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= lim
x→∞

exp

(
− S ln(λ)− 1

2(1− ρ2)σ21σ22

[
(s1 + s2)

(
−2 ln(λ) ln(x)− ln(λ)2

)

− 2 ln(λ)
(
s1µ2 + s2(µ1 + ln(m1))

)]) (A107)

= 0, (A108)

since s1+ s2 > 0. Hence, h1 is weakly pseudo-monotone of positive variation (WPMPV)
(cf. Definition 2.2 of Buldygin et al. [2005a]). Due to limx→∞ h1(x)/h2(x) = 1 by
L’Hôpital’s rule and Lemma A.10, and since h1 and h2 are strictly increasing in x,
Theorem 9.1 of Buldygin et al. [2005b] can be applied, yielding that the inverses of h1
and h2 are asymptotically equivalent, i.e.

1 = lim
x→∞

h−1
1 (x)

h−1
2 (x)

= lim
x→∞

F−1
m1A1+A2

(1/x)

F−1
Gao(1/x,m1, 1)

= lim
u→0

F−1
m1A1+A2

(u)

F−1
Gao(u,m1, 1)

. (A109)

Analogously, one can show that the inverses of FGao(·, 1,m2) and FA1+m2A2 are asymp-
totically equivalent, i.e.

lim
u→0

F−1
A1+m2A2

(u)

F−1
Gao(u, 1,m2)

= 1. (A110)

If ρ > σ1/σ2, we have FGao(x,m1, 1) = FA1(x/m1) and FGao(x, 1,m2) = FA1(x), and
therefore F−1

Gao(u,m1, 1) = m1F
−1
A1

(u) and F−1
Gao(u, 1,m2) = F−1

A1
(u). Hence, by (A109)

and (A110),

lim
u→0

F−1
A1+m2A2

(u)

F−1
m1A1+A2

(u)
=

1

m1
(A111)

if ρ > σ1/σ2. If ρ < σ1/σ2, we need some further reasoning. As we can write

F−1
A1+m2A2

(u)

F−1
m1A1+A2

(u)
=

F−1
A1+m2A2

(u)

F−1
Gao(u, 1,m2)

× F−1
Gao(u,m1, 1)

F−1
m1A1+A2

(u)
× F−1

Gao(u, 1,m2)

F−1
Gao(u,m1, 1)

, (A112)

it remains to calculate the limit of
F−1
Gao(u,1,m2)

F−1
Gao(u,m1,1)

, u→ 0. For that, we set

τ := (m2)
s1/(s1+s2)

(
1

m1

)s2/(s1+s2)
, (A113)

and by L’Hôpital’s rule and Lemma A.10,

lim
y→0

FGao(τy, 1,m2)

FGao(y,m1, 1)
= lim

y→0

fGao(ln(τy), 1,m2)

fGao(ln(y),m1, 1)
(A114)
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=
c(1,m2)

c(m1, 1)
lim
y→0

√
ln(y)

ln(τy)
exp

(
− S

(
ln(τy)− ln(y)

)

− 1

2(1− ρ2)σ21σ22

[
(s1 + s2)

(
ln(τy)2 − ln(y)2

)

− 2 ln(τy)
(
s1(µ2 + ln(m2)) + s2µ1

)
+ 2 ln(y)

(
s1µ2 + s2(µ1 + ln(m1))

)])

(A115)

=
c(1,m2)

c(m1, 1)
lim
y→0

exp

(
− S ln(τ)− 1

2(1− ρ2)σ21σ22

[
(s1 + s2)

(
2 ln(τ) ln(y) + ln(τ)2

)

− 2 ln(y)
(
s1 ln(m2)− s2 ln(m1)

)
− 2 ln(τ)

(
s1(µ2 + ln(m2)) + s2µ1

)])

(A116)

=
c(1,m2)

c(m1, 1)
lim
y→0

exp

(
const.− 1

2(1− ρ2)σ21σ22
×

[
2 ln(y)

(
ln(τ)(s1 + s2)− s1 ln(m2) + s2 ln(m1)

)
︸ ︷︷ ︸

=0 by (A113)

])

(A117)

=: ι > 0, (A118)

i.e. with h3(x) := 1/FGao(τ/x, 1,m2) and h4(x) := h1(x)/ι it follows that

1 = lim
y→0

FGao(τy, 1,m2)

ι× FGao(y,m1, 1)
= lim

x→∞
h4(x)

h3(x)
. (A119)

By (A105)–(A108) h4 is WPMPV and by Theorem 9.1 of Buldygin et al. [2005b],

1 = lim
x→∞

h−1
4 (x)

h−1
3 (x)

= lim
x→∞

F−1
Gao(1/x, 1,m2)

τ × F−1
Gao(1/(ιx),m1, 1)

= lim
u→0

F−1
Gao(u, 1,m2)

τ × F−1
Gao(u/ι,m1, 1)

, (A120)

i.e.

lim
u→0

F−1
Gao(u, 1,m2)

F−1
Gao(u/ι,m1, 1)

= τ. (A121)

Furthermore, (A105)–(A108) show that limx→∞ h1(λx)/h1(x) = 0 for all λ ∈ (0, 1)
and limx→∞ h1(λx)/h1(x) = ∞ for all λ > 1 , i.e. h1 is rapidly varying. Due to
limx→∞ h1(x) = ∞ and since h1 is strictly increasing in x for x sufficiently big, we can
apply part b) of the remark on p. 1400 of Djurčić and Torgašev [2007], implying that
h−1
1 is slowly varying, i.e. limx→∞ h−1

1 (λx)/h−1
1 (x) = 1 for all λ > 0. Hence, for λ = ι,

1 = lim
x→∞

F−1
Gao(1/x,m1, 1)

F−1
Gao(1/(ιx),m1, 1)

= lim
u→0

F−1
Gao(u,m1, 1)

F−1
Gao(u/ι,m1, 1)

. (A122)
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Then the assertion for ρ < σ1/σ2 follows from (A109), (A110), (A112), (A121) and
(A122).

A.4.2 Limit of ϑ(y) for y →∞
Theorem A.12. Let (X1, X2) be distributed as in Assumption 5.6, and let

µX1+X2 := max
k:σk=σ2

µk, mX1+X2 := #{k : σk = σ2, µk = µX1+X2} ∈ {1, 2}. (A123)

Then
P (X1 +X2 > x) ∼ mX1+X2 × P (Z > x), x→∞, (A124)

where Z ∼ LN (µX1+X2 , σ
2
2) and

F̄µX1+X2
,σ2

2
(z) := P (Z > x) ∼

σ2√
2π(ln(x)− µX1+X2)

exp

( −1
2σ22

(
ln(x)− µX1+X2

)2)

(A125)
for x→∞. Furthermore,

fX1+X2(x) ∼ mX1+X2 × fZ(x), x→∞. (A126)

Proof. Cf. Theorem 1 and Remark 1 of Asmussen and Rojas-Nandayapa [2008] and
Theorem 2.4 of Gao et al. [2009].

Using Theorem A.12, we can show the following lemma.

Lemma A.13. Let (A1, A2) be distributed as in Assumption 5.6 and let m1,m2 ∈ (0, 1).
Then

lim
y→∞

ϑ(y) =





m2, σ1 < σ2, or σ1 = σ2 and µ1 ≤ µ2 + ln(m2),
1
m1
, σ1 = σ2 and µ2 ≤ µ1 + ln(m1),

exp(µ1 − µ2) ∈
(
m2,

1
m1

)
, σ1 = σ2 and µ1 > µ2 + ln(m2)

and µ2 > µ1 + ln(m1).

(A127)

Proof. First, with u = Fm1A1+A2(y),

lim
y→∞

ϑ(y) = lim
u→1

F−1
A1+m2A2

(u)

F−1
m1A1+A2

(u)
= lim

u→1

F̄−1
A1+m2A2

(1− u)
F̄−1
m1A1+A2

(1− u)
= lim

u→0

F̄−1
A1+m2A2

(u)

F̄−1
m1A1+A2

(u)
. (A128)

By Theorem A.12,

lim
x→∞

F̄m1A1+A2(x)

mm1A1+A2F̄µm1A1+A2
,σ2

2
(x)

= 1. (A129)

In order to see whether the corresponding inverses are asymptotically equivalent as well,
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we will again make use of Theorem 9.1 of Buldygin et al. [2005b]. For that, let

h1(x) :=
1

mm1A1+A2F̄µm1A1+A2
,σ2

2
(x)

, h2(x) :=
1

F̄m1A1+A2(x)
, (A130)

i.e. limx→∞
h1(x)
h2(x)

= 1. Furthermore, for λ ∈ (0, 1), (A125) implies

lim
x→∞

h1(λx)

h1(x)
= lim

x→∞

F̄µm1A1+A2
,σ2

2
(x)

F̄µm1A1+A2
,σ2

2
(λx)

(A131)

= lim
x→∞

ln(x) + ln(λ)− µm1A1+A2

ln(x)− µm1A1+A2

×

exp

( −1
2σ22

((
ln(x)− µm1A1+A2

)2 −
(
ln(x) + ln(λ)− µm1A1+A2

)2)
) (A132)

= lim
x→∞

exp

( −1
2σ22

(
− 2 ln(λ)(ln(x)− µm1A1+A2)− ln(λ)2

))
= 0, (A133)

i.e. h1 is WPMPV. Since h1 and h2 are strictly increasing in x, Theorem 9.1 of Buldygin
et al. [2005b] can be applied, yielding

1 = lim
x→∞

h−1
1 (x)

h−1
2 (x)

= lim
x→∞

F̄−1
µm1A1+A2

,σ2
2

(
1

mm1A1+A2
x

)

F̄−1
m1A1+A2

(
1
x

)

= lim
u→0

F̄−1
µm1A1+A2

,σ2
2
(u/mm1A1+A2)

F̄−1
m1A1+A2

(u)
.

(A134)

Similarly, limu→0
F̄−1
A1+m2A2

(u)

F̄−1

µA1+m2A2
,σ2

2
(u/mA1+m2A2)

= 1, i.e.

lim
u→0

F̄−1
A1+m2A2

(u)

F̄−1
m1A1+A2

(u)
= lim

u→0

F̄−1
µA1+m2A2

,σ2
2
(u/mA1+m2A2)

F̄−1
µm1A1+A2

,σ2
2
(u/mm1A1+A2)

(A135)

= lim
u→0

exp
(
σ2
(
Φ−1 (u/mm1A1+A2)− Φ−1 (u/mA1+m2A2)

)
+ µA1+m2A2 − µm1A1+A2

)
,

(A136)

provided the limit exists. In order to determine this limit, we need to distinguish between
several cases.

Case 1: σ1 < σ2. Then (cf. (A123)) µA1+m2A2 = µ2 + ln(m2), mA1+m2A2 = 1,
µm1A1+A2 = µ2 and mm1A1+A2 = 1, and the assertion follows.
Case 2: σ1 = σ2 and µ1 = µ2 + ln(m2). Then µ1 + ln(m1) < µ2, i.e. µA1+m2A2 =
µ2 + ln(m2), mA1+m2A2 = 2, µm1A1+A2 = µ2 and mm1A1+A2 = 1. Thus, the exp-term in
(A136) equals exp

(
σ2
(
Φ−1(u)− Φ−1(u/2)

)
+ ln(m2)

)
, which has a limes superior of at
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most 1/m1 by Lemma A.9, (A128) and (A135)–(A136), and therefore

1 ≤ lim inf
u→0

exp
(
σ2
(
Φ−1(u)− Φ−1(u/2)

))
(A137)

≤ lim sup
u→0

exp
(
σ2
(
Φ−1(u)− Φ−1(u/2)

))
≤ 1

m1m2
for all m1,m2 ∈ (0, 1). (A138)

Hence, since the term within the limes superior does not depend on m1 or m2, we have

lim
u→0

exp
(
σ2
(
Φ−1(u)− Φ−1(u/2)

))
= 1, (A139)

implying that the limit in (A136) exists and equals m2.
Case 3: σ1 = σ2 and µ2 = µ1 + ln(m1). Then µ2 + ln(m2) < µ1, i.e. µA1+m2A2 = µ1,
mA1+m2A2 = 1, µm1A1+A2 = µ1 + ln(m1) and mm1A1+A2 = 2. Thus, the exp-term in
(A136) equals exp

(
σ2
(
Φ−1(u/2)−Φ−1(u)

)
− ln(m1)

)
, i.e. by (A139) the limit in (A136)

exists and equals 1/m1.
Case 4: σ1 = σ2 and µ1 6= µ2 + ln(m2) and µ2 6= µ1 + ln(m1). Then mA1+m2A2 =
mm1A1+A2 = 1 and the exp-term in (A136) reduces to exp(µA1+m2A2 − µm1A1+A2). We
distinguish between the following three subcases:
Case 4a: µ1 < µ2 + ln(m2). Then µA1+m2A2 = µ2 + ln(m2) and µm1A1+A2 = µ2, i.e. the
limit in (A136) is m2.
Case 4b: µ2 < µ1 + ln(m1). Then µA1+m2A2 = µ1 and µm1A1+A2 = µ1 + ln(m1), i.e. the
limit in (A136) is 1/m1.
Case 4c: µ1 > µ2+ln(m2) and µ2 > µ1+ln(m1). Then µA1+m2A2 = µ1 and µm1A1+A2 =
µ2, i.e. the limit in (A136) is exp(µ1 − µ2) ∈ (m2, 1/m1).

A.5 Some Useful Determinants

Lemma A.14. Let A = (aij)1≤i,j≤m ∈ Rm×m, m ≥ 2, be such that aii = −1 for all
i ≥ 2. Furthermore, let the remaining entries of A be non-negative and let

m∑

i=2,i6=j
aij < 1 for all j ≥ 2. (A140)

Then

det(A)

{
≥ 0, m odd,

≤ 0, m even.
(A141)

Proof. By induction. For m = 2,

det(A) = −a11 − a12a21 ≤ 0. (A142)

Let now (A141) hold for some m > 2. We show that (A141) then also holds for an
(m + 1) × (m + 1)−matrix B of the described type. For that, we expand B along the
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first row, yielding det(B) =
∑m+1

j=1 (−1)1+jb1j det(B1j), where B1j ∈ Rm×m denotes the
reduced matrix corresponding to the expansion by b1j .

For j = 1, the diagonal elements of B11 are all equal to −1, and the sum of the remain-
ing elements is strictly smaller than 1 in each column by (A140). Writing det(B11) =
det(B′

11 − Im) = (−1)m det(Im − B′
11), the last determinant is strictly positive by

Lemma A.1 of Gouriéroux et al. [2012], i.e. the sign of det(B11) depends on m only.

Let now j > 1. Deleting the first row of B shifts all entries one row upwards, in addition
the elements right of column j are also shifted one column to the left. Hence, the entries
equal to −1 to the lower right of b1j remain on the diagonal, whereas the entries equal to
−1 to the upper left of b1j are shifted to the superdiagonal. Since there are j− 2 entries
equal to −1 to the upper left of b1j , j−2 row swaps are needed to shift them back to the
diagonal. The resulting m×m−matrix B′

1j then has m− 1 entries equal to −1, which
can all be found on the diagonal. Furthermore, by one row swap and one column swap,
an entry equal to −1 can be moved within the diagonal, so these operations do not alter
the determinant of B′

1j , and we can assume w.l.o.g. that the first diagonal element is
not −1. Furthermore, this entry is non-negative, i.e. we are exactly in the situation of
the induction assumption, and it follows that det(B′

1j) is non-negative if m is odd and
non-positive if m is even. Altogether,

det(B) =

m+1∑

j=1

(−1)1+j b1j det(B1j) (A143)

= (−1)m+2 b11 det(Im −B′
11) +

m+1∑

j=2

(−1)1+j(−1)j−2 b1j det(B
′
1j) (A144)

= (−1)m b11︸︷︷︸
≥0

det(Im −B′
11)︸ ︷︷ ︸

>0

−
m+1∑

j=2

b1j︸︷︷︸
≥0

det(B′
1j)︸ ︷︷ ︸

≥ 0 if m odd,
≤ 0 if m even

(A145)

{
≤ 0, m odd, i.e. m+ 1 even,

≥ 0, m even, i.e. m+ 1 odd.
(A146)

Lemma A.15. Let k, p ∈ {1, . . . , n} (n ≥ 2, k 6= p) and let A = (aij)1≤i,j≤n ∈ Rn×n be
such that aii = −1 for all i /∈ {k, p}. Furthermore, let the non-diagonal entries of A be
non-negative with

n∑

i=1,i6=j
aij < 1 for all j ∈ {1, . . . , n}. (A147)

If Akp denotes the submatrix of A where the kth row and pth column of A have been
deleted,

(−1)k+p det(Akp)

{
≥ 0, n odd,

≤ 0, n even.
(A148)
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Proof. For the purpose of illustration, let us first consider the following segment of A
before and after deleting the kth row and pth column:




−1
−1

−1
← −1

akp
−1
տ −1




→




−1
−1

·
−1 ·

−1 ·
−1

−1




Hence, elements equal to −1 to the upper left of akp or lower right of akp remain on
the diagonal. If akp stands below the diagonal as in our example, elements to the upper
right of akp are shifted to the left by one column, i.e. the elements equal to −1 are
shifted from the diagonal to the subdiagonal. This is also indicated by the arrows in
the non-reduced matrix. If akp stands above the diagonal, elements equal to −1 to the
lower left of akp are shifted from the diagonal to the superdiagonal. The reduced matrix
Akp ∈ R(n−1)×(n−1) contains n− 2 entries equal to −1, and the number of entries equal
to −1 not on the diagonal depends on the “distance” of akp to the diagonal of A. It is
straightforward to see that |k−p|−1 entries equal to −1 are shifted to the subdiagonal or
superdiagonal. Hence, |k−p|−1 row swaps or column swaps are necessary to move them
to the diagonal of the reduced matrix. We denote the matrix resulting from these swaps
with A′

kp, i.e. all n− 2 entries of A′
kp ∈ R(n−1)×(n−1) equal to −1 stand on the diagonal,

and we can assume w.l.o.g. that the first diagonal entry is not −1, since one row swap
and one column swap (i.e. an even number of swaps) is necessary to move an entry by
one place within the diagonal. Hence, A′

kp meets the assumptions of Lemma A.14 with
m = n− 1, and we obtain

(−1)k+p det(Akp) = (−1)k+p(−1)|k−p|−1

︸ ︷︷ ︸
=−1

det(A′
kp)

{
≥ 0, n odd,

≤ 0, n even.
(A149)

A.6 Derivation of the Effect of Contagion c1

The following lemma contains the effect of contagion under Suzuki’s model for the two
firms case.
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Lemma A.16. In the set-up of Section 7.1.1, c1 defined in (7.7) with a ∈ Ass equals

c1 =



Me
1,2(M

e
2,1δ1+δ2)

1−Me
1,2M

e
2,1

, ã ∈ Ass,

Md
1,2(M

e
2,1δ1+δ2)

1−Md
1,2M

e
2,1

+ (Md
1,2 −M e

1,2)
Me

2,1a1+a2+(Md
2,1−Me

2,1)d1−(1−Md
1,2M

e
2,1)d2

(1−Md
1,2M

e
2,1)(1−Me

1,2M
e
2,1)

, ã ∈ Asd,

Me
1,2(M

d
2,1δ1+δ2)

1−Me
1,2M

d
2,1

+M e
1,2(M

d
2,1 −M e

2,1)
a1+Me

1,2a2−(1−Me
1,2M

d
2,1)d1+(Md

1,2−Me
1,2)d2

(1−Me
1,2M

d
2,1)(1−Me

1,2M
e
2,1)

, ã ∈ Ads,

Md
1,2(M

d
2,1δ1+δ2)

1−Md
1,2M

d
2,1

+
(Md

1,2M
d
2,1−Me

1,2M
e
2,1)a1+(Md

1,2−Me
1,2+M

d
1,2M

e
1,2(M

d
2,1−Me

2,1))a2

(1−Md
1,2M

d
2,1)(1−Me

1,2M
e
2,1)

− Me
1,2(1−Md

1,2M
d
2,1)(M

d
2,1−Me

2,1)d1+(1−Md
1,2M

d
2,1)(M

d
1,2−Me

1,2)d2

(1−Md
1,2M

d
2,1)(1−Me

1,2M
e
2,1)

, ã ∈ Add.

(A150)

Proof. For ã ∈ Ass, (3.23) and (7.9) imply

c1 =
1

1−M e
1,2M

e
2,1

(
a1 + δ1 +M e

1,2(a2 + δ2) +M e
1,2(M

d
2,1 −M e

2,1)d1 + (Md
1,2 −M e

1,2)d2

−
(
a1 +M e

1,2a2 +M e
1,2(M

d
2,1 −M e

2,1)d1 + (Md
1,2 −M e

1,2)d2

))
− δ1
(A151)

=
M e

1,2(M
e
2,1δ1 + δ2)

1−M e
1,2M

e
2,1

. (A152)

If ã ∈ Asd,

c1 =
1

1−Md
1,2M

e
2,1

(
a1 + δ1 +Md

1,2(a2 + δ2) +Md
1,2(M

d
2,1 −M e

2,1)d1

)

− 1

1−M e
1,2M

e
2,1

(
a1 +M e

1,2a2 +M e
1,2(M

d
2,1 −M e

2,1)d1 + (Md
1,2 −M e

1,2)d2

)
− δ1

(A153)

=
Md

1,2(M
e
2,1δ1 + δ2)

1−Md
1,2M

e
2,1

+
M e

2,1(M
d
1,2 −M e

1,2)a1

(1−Md
1,2M

e
2,1)(1−M e

1,2M
e
2,1)

+
(Md

1,2(1−M e
1,2M

e
2,1)−M e

1,2(1−Md
1,2M

e
2,1))a2 − (1−Md

1,2M
e
2,1)(M

d
1,2 −M e

1,2)d2

(1−Md
1,2M

e
2,1)(1−M e

1,2M
e
2,1)

+
(Md

2,1 −M e
2,1)(M

d
1,2(1−M e

1,2M
e
2,1)−M e

1,2(1−Md
1,2M

e
2,1))d1

(1−Md
1,2M

e
2,1)(1−M e

1,2M
e
2,1)

(A154)

=
Md

1,2(M
e
2,1δ1 + δ2)

1−Md
1,2M

e
2,1

+ (Md
1,2 −M e

1,2)
M e

2,1a1 + a2 + (Md
2,1 −M e

2,1)d1 − (1−Md
1,2M

e
2,1)d2

(1−Md
1,2M

e
2,1)(1−M e

1,2M
e
2,1)

.

(A155)
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If ã ∈ Ads,

c1 =
1

1−M e
1,2M

d
2,1

(
a1 + δ1 +M e

1,2(a2 + δ2) + (Md
1,2 −M e

1,2)d2

)

− 1

1−M e
1,2M

e
2,1

(
a1 +M e

1,2a2 +M e
1,2(M

d
2,1 −M e

2,1)d1 + (Md
1,2 −M e

1,2)d2

)
− δ1
(A156)

=
M e

1,2(M
d
2,1δ1 + δ2)

1−M e
1,2M

d
2,1

+
M e

1,2(M
d
2,1 −M e

2,1)a1 + (M e
1,2)

2(Md
2,1 −M e

2,1)a2
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1,2M

d
2,1)(1−M e

1,2M
e
2,1)

+
−M e

1,2(1−M e
1,2M

d
2,1)(M

d
2,1 −M e

2,1)d1 +M e
1,2(M

d
1,2 −M e

1,2)(M
d
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2,1)d2
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1,2M
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=
M e

1,2(M
d
2,1δ1 + δ2)

1−M e
1,2M

d
2,1

+M e
1,2(M

d
2,1 −M e

2,1)
a1 +M e

1,2a2 − (1−M e
1,2M

d
2,1)d1 + (Md

1,2 −M e
1,2)d2

(1−M e
1,2M

d
2,1)(1−M e

1,2M
e
2,1)
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If ã ∈ Add,

c1 =
1

1−Md
1,2M

d
2,1

(
a1 + δ1 +Md

1,2(a2 + δ2)
)

− 1

1−M e
1,2M

e
2,1

(
a1 +M e

1,2a2 +M e
1,2(M

d
2,1 −M e

2,1)d1 + (Md
1,2 −M e

1,2)d2

)
− δ1
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=
Md

1,2(M
d
2,1δ1 + δ2)

1−Md
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d
2,1

+
(Md

1,2M
d
2,1 −M e

1,2M
e
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1,2 +Md

1,2M
e
1,2(M

d
2,1 −M e
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(1−Md
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d
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1,2M
e
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−
M e

1,2(1−Md
1,2M

d
2,1)(M

d
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2,1)d1 + (1−Md
1,2M

d
2,1)(M

d
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1,2)d2

(1−Md
1,2M

d
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1,2M
e
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A.7 Column Sums of the Schur Complement of Strictly

Column Diagonally Dominant Matrices

For a matrix A ∈ Cn×n and non-empty sets M1,M2 ⊆ N := {1, . . . , n}, n ∈ N, let
AM1,M2 denote the |M1| × |M2|-submatrix of A where only the rows with index in M1

and the columns with index in M2 have been retained. If M1 = N or M2 = N , we write
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A.,M2 and AM1,., respectively.
Let N be divided into two disjoint and non-empty subsets N1 and N2 and let AN1,N1 be
invertible. Then the Schur complement (cf. Puntanen and Styan [2005], for example) of
A with respect to AN1,N1 is defined as

A′ := A/AN1,N1 := AN2,N2 −AN2,N1A
−1
N1,N1

AN1,N2 ∈ C|N2|×|N2|. (A161)

The Schur complement is for example useful for the calculation of the determinant of

the block matrix A =
(

AN1,N1
AN1,N2

AN2,N1
AN2,N2

)
, given as det(A) = det(AN1,N1) det(A/AN1,N1).

Furthermore, an arbitrary complex matrix B = (bij)1≤i,j≤n ∈ Cn×n is called strictly row
diagonally dominant (cf. Liu and Zhang [2005], for example), if

|bii| −
n∑

j=1
j 6=i

|bij | > 0 for all i ∈ {1, . . . , n}. (A162)

Similarly, B is called strictly column diagonally dominant if

|bii| −
n∑

j=1
j 6=i

|bji| > 0 for all i ∈ {1, . . . , n}. (A163)

The comparison matrix C̃ = (c̃ij)1≤i,j≤n ∈ Rn×n of a complex matrix C = (cij)1≤i,j≤n ∈
Cn×n, as defined by for example Varga [2000], is given as

c̃ii := |cii|, c̃ij := −|cij | for i 6= j, 1 ≤ i, j ≤ n. (A164)

The following considerations are mainly based on the work of Liu and Zhang [2005], but
in contrast to them, we will denote all results for strictly column diagonally dominant
matrices instead of rows. Moreover, we will employ the notation of Lemma 7.2, since we
will apply the results of the present section only in the proof of Lemma 7.2. Hence, D̄
and S̄ stand for the subsets of firms that are in default and solvent after the shock δ′

(cf. (7.17)), respectively. Note that due to D ⊆ D̄, D̄ is non-empty. Furthermore, we
assume S̄ 6= ∅ since Lemma A.17 is needed for this case only.

Lemma A.17. Let k := |S̄| > 0 and l := |D̄| > 0. Then the jth column sum of

Il −M
y
D̄,D̄
−Mx

D̄,S̄

(
Ik −Mx

S̄,S̄

)−1
M

y
S̄,D̄

, j ∈ 1, . . . , l, is greater than or equal to 1 minus

the jth column sum of My
.,D̄

, with Mx,My ∈ {Md,Me}.
Furthermore, the diagonal elements of Il−My

D̄,D̄
−Mx

D̄,S̄

(
Ik−Mx

S̄,S̄

)−1
M

y
S̄,D̄

are strictly
positive.

Proof. With n = k + l, let

A := (aij)1≤i,j≤n :=

(
Ik−Mx

S̄,S̄
−M

y

S̄,D̄

−Mx
D̄,S̄

Il−M
y

D̄,D̄

)
. (A165)
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Obviously, A′ = (a′ij)1≤i,j≤l := Il −M
y
D̄,D̄
−Mx

D̄,S̄

(
Ik −Mx

S̄,S̄

)−1
M

y
S̄,D̄

is the Schur

complement of A with respect to Ik −Mx
S̄,S̄

. By Lemma A.1 of Fischer [2014],
(
Ik −

Mx
S̄,S̄

)−1 ≥ 0, and therefore a′ij ≤ 0 for 1 ≤ i, j ≤ l, i 6= j. It is straightforward to

see that A is strictly column diagonally dominant and that the comparison matrix Ã

of A coincides with A. Following the proof of Theorem 1 of Liu and Zhang [2005],
we will now show that the jth column sum of A′ (j ∈ {1, . . . , l}) is greater than or
equal to the (k + j)th column sum of A, i.e.

∑l
s=1 a

′
sj ≥

∑n
s=1 as,k+j . For that, we set

M̃ :=
(
Ik −Mx

S̄,S̄

)−1
and

wt := min
1≤v≤k

∑n
u=1 auv
avv

k∑

u=1

|aut| = min
1≤v≤k

n∑

u=1

auv ×
k∑

u=1

|aut|, t ∈ {k+ 1, . . . , n}. (A166)

Note that this definition of wt exactly corresponds to (3.1) of Liu and Zhang [2005],
except that we take column sums instead of row sums. Since

∑n
u=1 auv > 0 for all v

because A is strictly column diagonally dominant, we have wt ≥ 0. Then

l∑

s=1

a′sj =
l∑

s=1

(
ak+s,k+j − (ak+s,1, ak+s,2 . . . , ak+s,k) M̃ (a1,k+j , a2,k+j , . . . , ak,k+j)

T
)

(A167)

=
n∑

s=1

as,k+j + wk+j −
k∑

s=1

as,k+j − wk+j

−
(

l∑

s=1

ak+s,1,
l∑

s=1

ak+s,2 . . . ,
l∑

s=1

ak+s,k

)
M̃ (a1,k+j , a2,k+j , . . . , ak,k+j)

T

(A168)

=
n∑

s=1

as,k+j + wk+j +
1

det(M̃−1)
det(B) (A169)

with

B :=




−∑k
s=1 as,k+j−wk+j

∑l
s=1 ak+s,1

∑l
s=1 ak+s,2 ...

∑l
s=1 ak+s,k

a1,k+j
a2,k+j

M̃−1...
ak,k+j


 , (A170)

since the determinant of the quadratic block matrix B =
(

B1 B2

B3 M̃−1

)
can be calculated

as det(B) = det(M̃−1) det(B1 − B2M̃B3). Because of wk+j ≥ 0 and det(M̃−1) =
det
(
Ik −Mx

S̄,S̄

)
> 0 by Lemma A.1 of Gouriéroux et al. [2012], it remains to show that

det(B) ≥ 0. Since the matrix M̃−1 = Ik −Mx
S̄,S̄

coincides with its comparison matrix,

we can apply Lemma 4 of Liu and Zhang [2005] (adopted for column sums instead of
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row sums, i.e. the matrices of Liu and Zhang [2005] must be transposed) to

B =




−∑k
s=1 as,k+j−wk+j −∑l

s=1 |ak+s,1| −∑l
s=1 |ak+s,2| ... −∑l

s=1 |ak+s,k|
−|a1,k+j |
−|a2,k+j |

M̃−1...
−|ak,k+j |


 . (A171)

It follows that det(B) ≥ 0 since

−
k∑

s=1

as,k+j − wk+j =
k∑

s=1

|as,k+j |
(
1− min

1≤v≤k

n∑

u=1

auv

)
=

k∑

s=1

|as,k+j | max
1≤v≤k

n∑

u=1
u6=v

(−auv)

(A172)

=
k∑

s=1

|as,k+j | max
1≤v≤k

n∑

u=1
u6=v

|auv|, (A173)

where the last line exactly corresponds to the RHS of the inequality (2.3) of Liu and
Zhang [2005]. Hence,

l∑

s=1

a′sj ≥
n∑

s=1

as,k+j > 0, (A174)

since A is strictly column diagonally dominant. Due to a′sj ≤ 0 for s 6= j, this implies
a′jj > 0 for all j ∈ {1, . . . , l}.

Corollary A.18. In the situation of Lemma A.17, let S̄ = {i1, i2, . . . , ik},
D̄ = {j1, j2, . . . , jl} and M̃ = (M̃tv)1≤t,v≤k. Then

l∑

s=1

k∑

t=1

Mx
jsitM̃tv ≤ 1 for all v ∈ {1, . . . , k}. (A175)

Proof. Let A and A′ be defined as in the proof of Lemma A.17. Straightforward calcu-
lations and Lemma A.17 with x=y yield for w ∈ {1, . . . , l}

1−
l∑

s=1

Mx
jsjw −

k∑

u=1

Mx
iujw =

n∑

s=1

as,k+w ≤
l∑

s=1

a′sw (A176)

= 1−
l∑

s=1

Mx
jsjw −

l∑

s=1

k∑

t=1

k∑

u=1

Mx
jsitM̃tuM

x
iujw (A177)

= 1−
l∑

s=1

Mx
jsjw −

k∑

u=1

(
l∑

s=1

k∑

t=1

Mx
jsitM̃tu

)
Mx
iujw (A178)
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and thus

k∑

u=1

(
1−

l∑

s=1

k∑

t=1

Mx
jsitM̃tu

)
Mx
iujw ≥ 0. (A179)

Since (A179) holds for any cross-ownership matrix Mx and since the entries Mx
iujw

,
u ∈ {1, . . . , k}, do not occur in the term in brackets, we obtain

(
1−

l∑

s=1

k∑

t=1

Mx
jsitM̃tv

)
Mx
ivjw ≥ 0 for v ∈ {1, . . . , k}. (A180)

This proves the assertion.

A.8 Network Comparison under Cross-Ownership of Equity

only

This section extends the analysis of Section 7.2.5.3 to cross-ownership of equity only.
In detail, we will compare the occurrence of defaults in the complete network and the
ring network for a system consisting of n ≥ 3 initially identical firms with d < a (cf.
Remark 7.5; for d = a all firms would be borderline firms and firm 1 would default
for any negative shock on its exogenous asset) under an idiosyncratic shock on firm 1
leading to an exogenous asset value of firm 1 after the shock of size ã1. Since for d < a
only the shocked firm might default, we will only consider for which network type the
first default occurs earlier (i.e. for bigger values of ã1). As in Section 7.2.5.3 we assume
that the column sums of all matrices are equal to β.

We start with the complete network. Let us first assume that the shock is small so that
all firms remain solvent after the shock. Such a shock exists for reasons of continuity
and since all firms are strictly solvent before the shock. Clearly, firm 2, firm 3,..., and
firm n exhibit identical equity values s̃ after the shock, which implies

s̃1 = ã1 +
n∑

j=2

β

n− 1
s̃j − d = ã1 + (n− 1)

β

n− 1
s̃− d = ã1 + βs̃− d. (A181)

s̃ = a+ (n− 2)
β

n− 1
s̃+

β

n− 1
s̃1 − d. (A182)

Straightforward calculations yield s̃1 = (n−1)(1−β)+β
(n−1+β)(1−β) ã1 +

β(n−1)
(n−1+β)(1−β)a − 1

1−βd, i.e. in
the complete network, default of firm 1 occurs as soon as

ã1 <
(n− 1 + β)d− β(n− 1)a

(n− 1)(1− β) + β
. (A183)

In the ring network, we again assume that firm k + 1 holds a part of firm k’s equity,
k ∈ {1, . . . , n− 1}, and that firm 1 hold a part of firm n’s equity, i.e. after a small shock
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leaving all firms solvent,

s̃1 = ã1 +
β

n− 1
s̃n − d

s̃2 = a+
β

n− 1
s̃1 − d

...

s̃n = a+
β

n− 1
s̃n−1 − d,

(A184)

or equivalently,

s̃ =




1 − β
n−1

− β
n−1 1

− β
n−1 1

. . .
. . .
. . .

. . .

− β
n−1 1




−1

︸ ︷︷ ︸
=:(In− β

n−1
Cn)

−1







ã1
a
...
a


−




d
d
...
d





 (A185)

with n-dimensional cyclic permutation matrix Cn (cf. equation (0.9.6.2) of Horn and
Johnson [2013], for example). For b := β

n−1 , let

B =
1

1− bn




1 bn−1 bn−2 . . . b2 b

b 1 bn−1
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 bn−1

bn−1 . . . . . . . . . b 1




, (A186)

and by equation (0.9.6.3) of Horn and Johnson [2013], B = 1
1−bn

∑n−1
k=0 b

kCk
n. Then

B × (In − bCn) = B − 1
1−bn

∑n
k=1 b

kCk
n = B − (B − 1

1−bn (In − bnIn)) = In due to
Cn
n = In, as the n-fold application of a cyclic permutation of length n is the identity

permutation. Hence, (In − β
n−1Cn)

−1 = B and thus

s̃1 =
1

1− bn


ã1 − d+

n−1∑

j=1

bj(a− d)


 (A187)



194 Appendix

=
1

1− bn
(
ã1 − d+

(
1− bn
1− b − 1

)
(a− d)

)
(A188)

=
ã1 − a
1− bn +

a− d
1− b , (A189)

i.e. in the ring network, default of firm 1 occurs as soon as

ã1 < a− 1− bn
1− b (a− d) =

−β
(
1−

(
β
n−1

)n−1
)

n− 1− β a+
(n− 1)

(
1−

(
β
n−1

)n)

n− 1− β d. (A190)

We will now show that the RHS of (A183) is smaller than the RHS of (A190) for all
possible values of d < a, β and n. First, note that for d = a, the RHS of (A183) and
(A190) coincide. The assertion follows if we can prove that the derivative of the RHS

of (A183) with respect to a, given as −β(n−1)
(n−1)(1−β)+β , is smaller than the derivative of the

RHS of (A190) with respect to a, given as −β
n−1−β

(
1−

( β
n−1

)n−1)
, for all a > d. Due to

−β(n− 1)

(n− 1)(1− β) + β
<

−β
n− 1− β

(
1−

(
β

n− 1

)n−1
)

(A191)

⇔ n− 1

(n− 1)(1− β) + β
>

1−
(

β
n−1

)n−1

n− 1− β (A192)

⇔ (n− 1)(n− 1− β) >
(
1−

(
β

n− 1

)n−1
)

︸ ︷︷ ︸
∈(0;1)

((n− 1)(1− β) + β), (A193)

it is sufficient to show that (n− 1)(n− 1− β) > (n− 1)(1− β) + β, which is equivalent
to (n − 1)(n − 2) > β. Since we assume n ≥ 3 and due to β < 1, the assertion follows.
Thus, the RHS of (A190) is greater than the RHS of (A183) for d < a, which means that
in the ring network, firm 1 is in default already for bigger values of ã1 and thus smaller
shocks than in the complete network. Hence, under cross-ownership of equity only, a
complete network of n identical firms with d < a is more resilient to idiosyncratic shocks
than the ring network in the sense that the default of firm 1 occurs for smaller values
of ã1. Straightforward calculations show that for both network types, the critical bound
on ã1 is strictly decreasing in β, i.e. a high level of integration can delay the default of
the firm hit by the shock, but in contrast to systems linked by cross-ownership of debt
only, there are parameter constellations where it cannot be completely prevented under
cross-ownership of equity only, since even for β = 1, the RHS of (A183) and (A190) can
be positive.
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