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Abstract

In this thesis, we investigate aspects of the physics of heavy-fermion systems and correlated
topological insulators. We numerically solve the interacting Hamiltonians that model the
physical systems using quantum Monte Carlo algorithms to access both ground-state and
finite-temperature observables. Initially, we focus on the metamagnetic transition in the
Kondo lattice model for heavy fermions. On the basis of the dynamical mean-field theory and
the dynamical cluster approximation, our calculations point towards a continuous transition,
where the signatures of metamagnetism are linked to a Lifshitz transition of heavy-fermion
bands.

In the second part of the thesis, we study various aspects of magnetic m fluxes in the
Kane-Mele-Hubbard model of a correlated topological insulator. We describe a numerical
measurement of the topological index, based on the localized mid-gap states that are provided
by 7 flux insertions. Furthermore, we take advantage of the intrinsic spin degree of freedom
of a 7 flux to devise instances of interacting quantum spin systems.

In the third part of the thesis, we introduce and characterize the Kane-Mele-Hubbard
model on the 7 flux honeycomb lattice. We place particular emphasis on the correlations
effects along the one-dimensional boundary of the lattice and compare results from a bosoniza-
tion study with finite-size quantum Monte Carlo simulations.

Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Untersuchung von Aspekten der Physik schwe-
rer Fermionen und korrelierter topologischer Isolatoren. Wir losen den wechselwirkenden
Hamiltonoperator, der das jeweilige System modelliert, mithilfe von Quanten-Monte-Carlo-
Algorithmen, um Erwartungswerte sowohl im Grundzustand als auch im thermisch angeregten
Zustand zu erhalten. Zunéchst richten wir das Augenmerk auf den metamagnetischen Uber-
gang im Kondo-Gitter-Model fiir schwere Fermionen. Unsere Rechnungen basieren auf der
dynamischen Mean-Field-Theorie und der dynamischen Cluster-Néherung. Sie weisen auf
einen kontinuierlichen Ubergang hin, der die metamagnetischen Merkmale mit einem Lifshitz-
ﬁbergang in der Bandstruktur der schweren Fermionen verbindet.

Im zweiten Teil der Arbeit untersuchen wir verschiedene Facetten von magnetischen -
Flissen im Kane-Mele-Hubbard-Modell des korrelierten topologischen Isolators. Wir be-
schreiben eine numerische Messung der topologischen Invariante. Diese Messung beruht
auf der Tatsache, dass das Einfiigen von m-Fliissen lokalisierte Zustdnde in der Mitte der
Bandliicke des Isolators erzeugt. Dariiberhinaus verwenden wir den intrinsischen Spinfrei-
heitsgrad eines m-Flusses, um wechselwirkende Spinmodelle zu realisieren.

Im dritten Teil der Arbeit stellen wir das Kane-Mele-Modell auf dem hexagonalen -
Fluss-Gitter vor und charakterisieren es. Wir legen besonderen Schwerpunkt auf Wechsel-
wirkungseffekte entlang des eindimensionalen Randes des Gitters und vergleichen die Ergeb-
nisse einer Bosonisierungsstudie mit Quanten-Monte-Carlo-Simulationen auf endlichen Git-
tern.
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Introduction

In this thesis, we consider instances of correlation induced phenomena in condensed mat-
ter physics. The notion of correlations describes the effect of the interactions between the
constituent particles of a many-body system. Solving an interacting model is in general a
formidable task. Since analytical solutions are often only known in well-defined limits, numer-
ical methods come into play. To simulate the electron-electron interactions, we use quantum
Monte Carlo methods. In the following, we introduce the two main subjects of this thesis,
namely heavy-fermion systems and topological insulators.

1.1 Heavy-fermion systems

The physics of local moments is a prime example of correlation induced behavior in condensed
matter. A key insight in this field has been the understanding of the anomalous temperature
dependence of many physical observables when magnetic impurities are dispersed in metals
[1; 2]. Both the experimental observation and its theoretical modelling in terms of coupled
spin and fermionic degrees of freedom are summarized under the term Kondo effect [3].

The lattice analog to the Kondo effect can be observed in metallic crystals containing
selected elements that provide the additional spin and in general also charge degrees of
freedom. Whereas at high temperature the spin of the ions and the itinerant electrons of the
metal are nearly independent, they strongly interact at low temperatures, eventually resulting
in a system of fermionic quasiparticles with masses that are orders of magnitude larger than
the bare electron mass. Consequently, these compounds are called heavy-fermion systems [4].

The ground-state of heavy-fermion systems and therefore the low-temperature, macro-
scopic properties are a result of the strong hybridization between local spin moments and
Bloch fermion states. The presence of various competing phases makes heavy-fermion sys-
tems susceptible to external tuning parameters, like electromagnetic field, pressure or chem-
ical doping [5; [6; [7]. One focus of this work are heavy-fermion metamagnets (Ch. [3). Theses
are paramagnetic Kondo lattice systems that show an unexpected nonlinear behavior of the
magnetization at a sharply defined value of an external magnetic field.

Materials that exhibit heavy-fermion phases are usually intermetallic compounds where
ions from rare-earth elements (for example, cerium or ytterbium) or from actinide elements
contribute the localized spin degrees of freedom. These ions have electrons in the atomic
4f orbitals. Considering the ionic configurations only, we may discriminate two different
situations [4]. In the mixed valence regime, there are ionic configurations that are close in



1. Introduction

energy and consequently the kinetic energy of the f-electrons is enhanced. On the other
hand, one may find the Kondo regime where there is a single ionic configuration which is
well separated from configurations at higher energies. In the Kondo regime, the charge
fluctuations of the f-electrons are suppressed and the occupancy of the f-level is close to unity
and therefore fulfills the prerequisite for heavy-fermion physics.

Among the canonical heavy-fermion compounds are those that contain trivalent cerium
or ytterbium ions. The Ce*T (Yb®T) ion has the configuration [Xe]4f' ([Xe]4f'?), i.e. one
remaining electron (hole) in the 4f shell. To obtain the ground-state of the ion, one has to
consider its multiplet structure characterized by the quantum numbers |, s, j,m;) (denoting
angular momentum, spin, total angular momentum and its magnetic quantum number). In
the 4f systems, the multiplet structure essentially results from the competition between a
spin-orbit coupling term Hg, and a term H.f describing the action of the crystal field, where
Hso > Her [8]. The crystal field is the effective static electric field from the surrounding charge
distribution. The multiplet structure of Ce3* yields a ground-state doublet with mj = +5/2
(Fig. . It is important to note that the remaining two-fold degeneracy of the ground-state

Ce*™: s=1/2,1=3

| =T7/2
>
80
) ~ 30 meV
=
o
j=5/2 / 1~ 10 meV
T m; = £5/2
spin-orbit crystal field
coupling interaction

Figure 1.1: Multiplet structure of Ce3 and typical energy scales, for the case of Hgo > Het.
Since the 4f shell is less than half-filled, the application of Hund’s rule yield a degenerate spin-
orbit ground-state with j = 5/2. The crystal field interaction partially lifts this degeneracy,
resulting in a [l = 3,s = 1/2,j = 5/2,m; = £5/2) ground-state doublet. (The figure has
been reproduced from Ref. []].)

is a consequence of the Kramers theorem for half-integer (effective) spins and it cannot be
lifted unless time-reversal symmetry is broken [8]. A comprehensive experimental review of
heavy-fermion materials is presented in [9].
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1.1. Heavy-fermion systems

1.1.1 The Kondo lattice model

The minimal model for heavy-fermions has to include both a conduction (c) band and disper-
sionless, localized (f) orbitals. This is accomplished by the periodic Anderson model (PAM)
[35 [4]:

H=—t > (e, +He)+ed al +VY (el fi, +He)+UY alal . (11)
<i7j>»U:T7~l/ i0 1,0 7

Here, (,7) denotes hopping between nearest neighbors, o is the spin projection, €; is a
chemical potential, V' is the matrix element describing the overlap between the c- and f-
orbitals and U denotes the Coulomb interaction. The density is ﬁ{g = f:o fio. The PAM has
an SU(2) spin symmetry and, similar to the Hubbard model, an additional SU(2) charge
symmetry for U > 0 and under the particle-hole symmetry condition e; = —U/2 [4].

At low-energies, the PAM is the parent model of the Kondo lattice model. It describes
the Kondo regime where the f-orbitals are represented by spin degrees of freedom and it is
formally obtained by integrating out the valence fluctuations of the f-orbitals in the PAM

[10]. The Kondo lattice model (KLM) is given by

H=—t Y (e, +He)+T> S5 8. (1.2)

i0 jo
<i7j> 7U

The local spin-operators S’{ in the Heisenberg term are expressed using auxiliary lattice
fermions, ,SA'lf =(1/2) >0 5 fzaa'agfi,g, where o is the vector of Pauli matrices and one has
to impose the constraint of single occupancy, fj 4 fz 4t fj " fz =1

The KLM has the same spin and charge symmetries as the PAM, but is also has additional,
local U(1) charge symmetries,

fia - eieifia ) (1.3)
that correspond to the absence of charge fluctuations at the f-orbitals [4]. The exchange
interaction of the Heisenberg term can be written as J = 8V?2/U (for ey = —U/2) and

therefore the limit of strong Coulomb interaction in the PAM maps to a small exchange
interaction in the KLM [3].

In the case of half-filling (one conduction electron per lattice site), it has been rigorously
shown that both the PAM and the KLM have a unique, spin-singlet ground-state [4; [I1].
This statement has been proven to hold in any spatial dimension for bipartite lattices and,
for the KLM, both for antiferromagnetic (J > 0) and ferromagnetic (J < 0) coupling. The
KLM away from half-filling is obtained by adding a chemical potential term of the form
— Zi,a ng, to the Hamiltonian . It has been shown that the weakly doped KLM ex-
hibits a Fermi-liquid ground-state [12].

Phenomenologically, the single-impurity Kondo problem introduces an energy scale Txk.
The Kondo temperature Tk is the scale for the formation of a local singlet between the f-
orbital spin and the spin polarization of the surrounding conduction electrons. Looking at
the Kondo system for decreasing temperature, the local spin moment gets quenched below

3



1. Introduction

Figure 1.2: Sketch of the Kondo lattice model on the square lattice, where the basis vectors
are a; = (1,0) and a2 = (0,1).

Tk when the screening of the local moment by the conduction electrons occurs. In the Kondo
lattice, a similar crossover from the local moment phase to the Kondo phase happens. The
natural energy scale on the lattice is the coherence temperature T.o,. It determines the
formation of coherent quasiparticles, consisting of f-spins and c-fermions, that constitute the
low-temperature Fermi liquid state. In a very simplified picture, the heavy-fermion phase
can be thought of a coherent superposition of individual Kondo screening clouds. More
accurately, the heavy-fermion phase is characterized by a large length scale over which a
conduction electron spin is coherent with a local moment.

On the lattice, the formation of a many-body Kondo singlet state generally is in com-
petition with mechanisms that favor magnetic ordering. One important mechanism is given
by the Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction [4]. It describes an effective
f-spin — f-spin interaction which is mediated by the polarization of the conduction electrons.
The RKKY scale is set by Thxky X J2xc(q,w = 0) where x.(q,w) is the conduction electron
spin susceptibility [13].

Guidelines for the scales Tk and T¢o, are given by SU(N) mean-field calculations [14]
which however neglect spatial fluctuations and therefore the effect of the RKKY interaction.
At low conduction electron density, which marks the so-called exhaustion limit, the ratio
Teon/Tx < 1 and therefore two separate energy scales are present. In the weak-coupling
limit however, characterized by J/W < 1 (W is the bandwidth), and at small deviations
from half-filling, 1 — n. < 1, this approach gives the same scaling for both temperatures,

TK coh X WeV/[Jpler)] ’ (1.4)

where p(ep) is the conduction electron density of states. Importantly, quantum Monte Carlo
simulations of the two-dimensional, half-filled KLM capturing the RKKY interaction have
been shown to be consistent with the relation (1.4) [I5].

Whereas the ground-state phase diagram of the one-dimensional KLLM is well understood
[], the study of the KLM in two dimensions (Fig. is an active area of research [12} [16; [17].
In Ref. [I7], we report the results of a large scale dynamical cluster approximation
(DCA+HF-QMC) study aimed at the investigation of the KLM ground-state. The details of

4



1.1. Heavy-fermion systems

the numerical method are given in Sec. [2.3] The obtained phase diagram, as a function of
exchange coupling J and conduction electron density n. is shown in Fig.

2 —
15 |-
=
~ 1+
A - -
T e
0-5 1= LY
0
0.8

Figure 1.3: Ground-state magnetic phase diagram of the Kondo lattice model, as a function
of the coupling J/t and the conduction electron occupancy, obtained from DCA+HF-QMC
simulations [I7]. When J/t is small, the RKKY scale Trkky dominates over the Kondo scale
Tk, leading to a continuous order-disorder transition. The color-coding indicates the value of
the staggered magnetization mJ = (1/2N,) sz{T - ﬁ£> exp(—iQ1), where Q = (m,7) and
1 points to the f-orbitals of a cluster of N, magnetic unit cells that contains two original unit
cells. The results are obtained for a weak value of next-nearest neighbor hopping, ¢/t = —0.3,
to suppress the magnetic order which stems from the nesting of the conduction electron Fermi
surface. The results have been obtained at finite temperatures 1/8 (up to St = 100) and
have been checked to stay invariant at lower temperatures. The right panel shows the Fermi
surface topologies of the paramagnetic (1, triangles) and the antiferromagnetic [2 (squares)
and 3 (circles)] phase.

The particle-hole symmetric KLM at half-filling shows a magnetic order-disorder transi-
tion from an antiferromagnetic insulator to the paramagnetic Kondo insulator and numerical
exact QMC simulations give a critical coupling of J./t = 1.45 [I8; [19]. Hole-doping drives
the system away from half-filing and the antiferromagnetic order gradually decreases. Away
from half-filling, the RKKY scale Trxky dominates over the Kondo scale Tk and therefore
stabilizes the magnetic order.

The evolution of the Fermi surface topology from the disordered to the ordered phase has
been obtained by computing the single-particle spectral function [I7]. In the paramagnetic
phase, the Fermi surface consists of closed loops that enclose empty states (hole pockets)
around k = (7, +7) in the Brillouin zone (Fig. [[.3]1). This corresponds to a large Fermi
surface which accounts both for the conduction electrons and the impurity spins (see the
discussion of the Luttinger sum rule in Sec. . In the antiferromagnetic phase, the Fermi
surface corresponds to a backfolding of the paramagnetic Fermi surface, similar to a spin-
density wave transition. Accordingly, the Fermi surface has an additional shadow feature at
k = (0,0) (Fig. 2). Deep in the antiferromagnetically ordered phase, the Fermi surface

5



1. Introduction

topology changes and is given by hole pockets centered around k = (£7/2,+7/2) in the
Brillouin zone (Fig. [I.3}3). This topology can be adiabatically linked to a Fermi surface
where the f-spins are frozen and Kondo screening is absent [20]. In this sense, it is a small
Fermi surface.

Importantly, besides the three different Fermi surface topologies, our results for the hole-
doped KLM show evidence of the absence of the breakdown of Kondo screening, even deep
in the antiferromagnetic phase. In this context, it is interesting to consider scenarios where
the Kondo breakdown can be deliberately induced. One possibility is to include a Heisenberg
interaction term in the Hamiltonian , which couples neighboring f-spins. When this
term becomes dominant, the f-spin can decouple from the conduction electrons and form
valence-bond solid or spin-liquid phases [7].

1.2 Topological insulators

The classification of insulating states of matter has been refined recently in terms of generic
quantum mechanical symmetries that protect certain classes of insulating states [2I]. The
theoretical [22; 23} 24] and experimental [25] discovery of topological insulators has trig-
gered the renewed interest in classifying non-interacting insulators. A key insight has been
the characterization of two-dimensional insulators by an integer, two-valued (Z3) invariant
when time-reversal symmetry is preserved [22]. Accordingly, the insulator can be either a
topologically trivial band insulator or a topologically nontrivial, so-called quantum spin Hall
insulator. The first material in which the topologically nontrivial state was measured has been
a 2d semiconductor structure consisting of a mercury telluride quantum well sandwiched be-
tween cadmium telluride barriers [25]. The theoretical description of this material rests on
spin-orbit coupled electronic orbitals [24].

The Z5 topological index may be regarded as the time-reversal symmetric counterpart of
the integer Chern number. The Chern number characterizes the integer quantum Hall effect
occurring in two-dimensional systems at strong external magnetic fields. The Zs topological
insulator in two-dimensions is one instance in the exhaustive classification of all topological
insulators (and topological superconductors) in d-dimensional systems. This classification has
been achieved by investigating the Anderson localization problem at the d — 1-dimensional
boundary of the system [21].

Phenomenologically, the two-dimensional topological insulator has robust one-dimensional
edge states when it shares a boundary with the topologically trivial vacuum state. The edge
states consist of an odd number of Kramers doublets, i.e. pairs of fermionic modes that are
connected by time-reversal. The Z5 index is equal to the number of these edge state pairs
modulo two, i.e. the parity of this number [23]. In case one additionally has a spin-rotation
symmetry, the edge states can be labelled by the spin projection and electrons with opposite
spin propagate on the edge in opposite directions, i.e. the edge states are helical.

Importantly, the robustness of the edge state with respect to random potential disorder
is due to time-reversal symmetry which prohibits elastic single-particle backscattering, as
shown below. Similar to Ref. [26], we consider the anti-unitary time-reversal operator 6 and
the overlap (¢r|H|¢r), where H is the time-reversal invariant Hamiltonian which induces

6



1.2. Topological insulators

scattering on the one-dimensional edge, [H,0] = 0, and |¢p,g)) refers to a set of chiral
modes consisting of n left (right) movers. These states are connected by time-reversal, i.e.
|pr) = 0|¢r). The time-reversal operator fulfills

where j is the angular momentum, using the convention of Ref. [27]. The case of j being
half-integer (integer) represents a system with an odd (even) number n of fermions of the
same chirality and we then have §2 = —1 (§? = +1). Elastic single-particle backscattering is
described by the matrix elements

(PLIH|oR) = (Oor|H|¢R) = (IHORIPOR) = (—1)"(0HPR|¢R) = (—1)"(SL|H|PR) . (1.6)

To obtain the third expression, we used that («|5) = (0f|0a) holds for anti-unitary transfor-
mations 6. Therefore, the overlap (¢ |H|or) is zero for an odd number n of Kramers
pairs on the edge.

The effect of electronic interactions on the stability of the quantum spin Hall effect can
be analyzed using the low-energy theory of the edge states [20; 28]. Time-reversal invariant
interactions that do not lead to a spontaneous symmetry breaking of the ground state leave
the edge state intact, at least when they are weak [26].

A central problem in the context of topological insulators is the question of how to detect
the topologically nontrivial state, i.e. how to determine the topological index for a given
system. In very general terms, the topological index is a label for the topological properties
of the electronic ground state wave function.

For non-interacting systems, there are a number of ways to represent the topological Z5
index. Naturally, one could just determine the parity of the Kramers pairs on the edge which
however requires to abandon periodic boundary conditions. In case of translation symmetry
and a U(1) spin symmetry, one may calculate the spin-resolved first Chern number, also
known as TKKN (Thouless, Kohmoto, Nightingale, den Nijs) invariant [29; [30] as an integral
over momentum space and define a spin Chern number [23]. The first Chern number can be
directly obtained from the zero-frequency limit of the transverse quantum Hall conductivity
(see Sec. . In case of translation symmetry and inversion symmetry, one can use the
method of Fu and Kane [3I] which expresses the Z5 invariant as the product of the parity
eigenvalues at the time-reversal invariant momenta in the Brillouin zone. Recently, a mani-
festly gauge-invariant formulation of the Zs invariant has been proposed [32] which only relies
on time-reversal symmetry (see Sec. .

For interacting systems, the identification of a topological state is in general much more
difficult. One can define a generalized Chern number for interacting systems in terms of
an integral over single-particle Green functions in the space of momentum and frequency
which makes it however often impractical to implement in numerical algorithms [33]. In the
presence of inversion symmetry, one can use a generalization of the method of Fu and Kane
in terms of the parity eigenvalues of the interacting single-particle Green function [34]. An
overview on the computation of topological invariants can be found in Refs. [35] and [36].
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We have studied an alternative way to determine the topological invariant in two dimen-
sions, by measuring the response to a topological defect in form of a magnetic 7 flux (Ch. .
A 7 flux on a two-dimensional lattice results from a magnetic vector potential which leads
to the well-known Aharonov-Bohm effect, i.e. electrons that encircle the origin pick up a
phase (of 7). The idea of inserting a 7 flux into a quantum spin Hall insulator to define a
measurement for the Zs index has been first discussed in Refs. [37] and [38]. In general, topo-
logical defects like 7 fluxes [37} B8} 89], dislocations [39] or lattice disclinations [40] lead to a
unique spectral response when inserted in a topological insulator. In Ch. 4] we discuss the
topological signatures of m fluxes and their application for studying interacting topological
insulators in combination with quantum Monte Carlo methods.

Apart from detecting topologically nontrivial states, the degrees of freedom that are pro-
vided by 7 fluxes in topological insulators can be exploited to construct interacting quantum
spin models. On a two-dimensional lattice, m fluxes can be arranged in almost arbitrary
geometries and they experience an effective interaction which is mediated by the magnetic
excitations of the topological insulator. In Ch. we present a detailed study of various
quantum spin models based on 7 flux insertions.

The classification of topological insulators in terms of the most generic quantum mechan-
ical symmetries, time-reversal symmetry and charge conjugation symmetry [21], as outlined
above, has been further refined by the theoretical prediction [41}[42} [43] and the experimental
realization [44} [45} [46] of topological crystalline insulators in three dimensions. In this case, in
addition to time-reversal symmetry, the two-dimensional surface has crystal symmetries that
protect the topological state against perturbations. Naturally, this definition of topological
crystalline insulators requires a three-dimensional bulk and a two-dimensional surface, since
crystal symmetries (point group symmetries) are not defined in one dimension.

In Ch. [6, we introduce a two-dimensional counterpart to the topological crystalline in-
sulator. In addition to time-reversal symmetry, the model we consider preserves translation
symmetry along the one-dimensional edge. Despite a topologically trivial Zs invariant, this
leads to protection of the edge states at the single-particle level. Our model is based on the
Kane-Mele model [22] [see Eq. (1.13))] for quantum spin Hall insulators on the honeycomb
lattice. We obtain a new model, the m Kane-Mele model, by threading each honeycomb
plaquette with a magnetic flux of +7. Already for the non-interacting case, the m Kane-
Mele model shows rich physics which we characterize in Secs. [6.2] and [6.4 We address the
effect of correlations in the bulk as well as on the edge, using a combination of mean-field
approximation, bosonization and quantum Monte Carlo methods (Secs. .

1.2.1 The Kane-Mele-Hubbard model

The non-interacting Kane-Mele model for the Z5 topological insulator [22] originates from the
earlier Haldane model [47] for a quantum Hall insulator. The Haldane model is characterized
by a nonzero, quantized Hall conductance, without an external magnetic field. The Haldane
model is formulated on the two-dimensional honeycomb lattice. The energy spectrum of

8



1.2. Topological insulators

R

Figure 1.4: Hexagonal unit cell of the Haldane and the Kane-Mele model. The the unit vectors
are a12 = (3/2,F+v3/2) and the reciprocal lattice vectors are kj o = 2m(1/3,F1/v/3). The
right panel shows the sign convention we use to define the Haldane and Kane-Mele model.
The second-neighbor hopping process which includes a right turn (blue) for the electron is
toexp(+i¢) in the Haldane model and io A in the Kane-Mele model.

a tight-binding Hamiltonian on the honeycomb lattice, which is realized in the material
graphene, shows a linear dispersion relation at the corners of the Brillouin zone. Therefore,
its low-energy behavior is similar to that of relativistic fermions which are described by the
massless Dirac equation (see Ref. [48] for a review on graphene).

The Haldane model involves spinless electrons and therefore does not contain spin-orbit
coupling. It includes two real hopping parameters ¢; and t3, describing nearest-neighbor and
second-neighbor hopping processes. Furthermore, a local vector potential is assumed which
respects the full symmetry of the lattice and has the property of creating zero total flux
through the unit cell. This leads to a constant Peierls phase factor for the second-neighbor
hopping process [47], i.e. teexp(+i¢), which breaks time-reversal invariance. The Haldane
model is given by

Ho= 0 b0+ e +12 Y [al e + B et + He
,8 2,t

= Z (l;;rcvd;fc) H(ty,t2, ) < zk ) ) (1.7)

k k
where s = {0, —a9,a; — as} and t = {aq2, —a;,a; — as}. The Hamilton matrix is
H(ty,ta, @) = 2ty cos(¢)a(k)l + h(ty, ta, @) - o, (1.8)
where o is the vector of Pauli matrices and
a(k) = cos(kaz)+ cos(kay) + cos[k(az — a1)],
f(k) = sin(kaq) — sin(kay) — sink(az — a1)],
h(t1,t2,¢) = <t1 Z cos(ks), Z sin(ks), 2ty sin(d))ﬁ(k:)) . (1.9)
s s

In the following, we focus on the case of ¢ = /2, introduce a spin index o = £1 and relabel
ty, = —t and t3 = A. We then obtain a spinful version of the Haldane model:
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HT = =t 3 (B g4, + Hee| + oA |l g, () + Bl by () + Hc
1,8 i,t

-y (320,&2(,) H(—t,aA,iw/Z)( ko ) , (1.10)
k ko

where H(—t,o\,£7/2) = h(—t,o\,£7/2) - 0. The Kane-Mele (KM) model is essentially
obtained by summing Eq. (1.10) over the spins. The KM model is usually written as

H=—t Y che +in Y ol vije,, . (1.11)
(id).0 (6000

In this notation, ¢;, = {?)ig, dis }, and the index 7 is a combined lattice site and orbital index.
The sum labelled (¢, j) includes all nearest-neighbor bonds while the sum labelled ((z, 7))
includes all next-nearest-neighbor bonds.

The phase factor v;; = £1 defines the phase, the electron gets in the hopping process from
J to 4. From the condition vj; = —v;; it follows that left- and right-turning hopping processes
have the opposite sign. By comparing the Hamiltonians and , we observe that
¢ = +m/2(—m/2) corresponds to v;; = —1(+1) for a left turn. In the following, we choose
the convention that a left turn gets a phase of minus one, i.e. [L;[Jran/ijdi = —dl+a2&i. The
KM model restores the broken time-reversal symmetry since it combines two copies
of the (spinful) Haldane model (1.10). The A-term takes the role of an intrinsic spin-orbit
coupling [23].

To allow mixing between the two spin projections, we consider a Rashba term:

A
Hr = 17R Z CI lez(o x dij)] c;
(i.3)

[b}; (dyoy — dzoy) akeikf(d) — H.C.:| . (1.12)

We have defined CiT = (ézT,éL) and the sum extends over d = {d"),d®,d®}. We have

d1? = (1/2,+v/3/2), d® = (-1,0), f(d1) = 0, f(d2) = a1 — ay and f(d3) = —ay. The
complete non-interacting KM model is then given by

A
Ho = —tz clcj — “ZC;[QL + A Z CIV,'jO’ij + i?R Z ci le.(o x d;j)] ¢
(i.9) i ((5.9)) (4.3)
H(—t,+)) — pul R

:Z\PL< ( ;T) ' H(—t,—\ 1>\I'k

k (_ s T )_:UJ
= Y UMk, (1.13)

k

10
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using the basis \IJJ,rc = (ELT, &LT’ IA)LV &Li) and the matrix
0 S e*F R (id, — d,)
d

= S e R F k) (—id, + d,) 0
d

(1.14)

An example of the eigenvalue spectrum of the Kane-Mele model is shown in Fig. [I.5

w/t

Figure 1.5: Eigenvalue spectrum of the Kane-Mele model on a ribbon geometry with zigzag
edges [open (periodic) boundary conditions in the a; (a2)-direction], showing the bulk in-
sulating gap and the two degenerate Kramers pairs corresponding to counter-propagating
states on the top and on the bottom of the ribbon. Here, A/t = 0.2 and Ag/t = 0.5.

The anti-unitary time-reversal operator is given by § = UK, where K denotes complex
conjugation. For the Kane-Mele model ([1.13)) in the given basis we may represent the unitary
operator by U = (ioy @ 1ax2) The condition of symmetry with respect to 6 reads

OM (k)0 =UM(kK)YU-! = M(—k) , (1.15)

which is fulfilled by Kane-Mele Hamilton matrix M (k).

The intrinsic spin-orbit coupling breaks the SU(2) spin symmetry to a U(1) spin symme-
try, corresponding to conservation of the z-component of spin. The Rashba term Hg further
reduces the symmetry to a Zy spin symmetry. Naturally, we also have a U(1) charge sym-
metry, corresponding to the conservation of charge, and a particle-hole symmetry.

The Kane-Mele-Hubbard (KMH) model is obtained by adding a Hubbard term H,
H=Ho+Hy, (1.16)

which inherits the symmetries of the non-interacting Hamiltonian. Written explicitly in aa
SU(2) invariant form, the Hubbard interaction is

. 1 . 1 U . ) U
HU:UZ<niT_2> <ni¢—2>:22( iT—FniT—l)Q—l—Z. (1.17)

For the KMH model, the case of half-filled bands corresponds to g = 0. The bulk phase

11
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8
xy-AFMI
6 4 xyz-AFMI -
=, \U(1) 3D Xy
= ™~ SU(2) Gross-Neveu
SHI
2 4 SM Q 3
QSHI
0 \
0.0 0.1 0.2
At

Figure 1.6: The bulk phase diagram of the KMH model (for A\g = 0), adapted from Refs. [49]
and [50]. At A = 0, the model reduces to the Hubbard model on the honeycomb lattice. the
semi-metallic phase (SM) is separated from an isotropic antiferromagnetic Mott insulating
phase (xyz-AFMI) by a continuous phase transition which falls into the SU(2) Gross-Neveu
universality class. At A # 0, the quantum spin Hall insulating phase (QSHI) at U = 0 is
a topological band insulator which adiabatically connects to the interacting quantum spin
Hall insulator. This phase is separated from an easy-plane antiferromagnetic Mott insulator
(xy-AFMI) by a continuous phase transition of the U(1) 3D XY universality class.

diagram of the KMH model (Fig. without the Rasbha term) can be calculated using nu-
merically exact QMC simulations, since its symmetries guarantee the absence of the negative
sign problem [49]. The phase boundaries and the critical exponents have been obtained using
finite-size scaling analysis of the QMC data (see Refs. [49; 50]). Analytical field-theoretical
calculations of the phase diagram have been performed in Refs. [51] and [17].
In the following, we concentrate on the case A/t # 0. The topological band insulator at
U = 0 is characterized by a non-trivial Z5 index [22]. Since its protecting symmetry, the
time-reversal symmetry, is not spontaneously broken at U > 0 and since the system stays
an insulator (the single-particle gap does not close immediately at U > 0, see Fig. , the
phase at non-zero values of the Hubbard interaction is adiabatically connected to the non-
interacting phase, i.e. it is an interacting QSHI. At large values of the Hubbard interaction, a
magnetic phase with transverse antiferromagnetic order is realized. This is in contrast to the
isotropic antiferromagnetic order which occurs at A = 0. The transverse antiferromagnetic
order can be deduced from the behavior of the spin-orbit term in the strong-coupling limit,
U/t — oo. Using second-order perturbation theory, it has been shown that in this limit an
effective spin-model holds, which consists of the following terms [52],
4)‘2 S«xsvaz S«ySry Gz &z
7(— 75y S j+s,-5j) : (1.18)
where ¢, 7 indicate neighboring sites on the same sublattice only. This model favors second-
neighbor ferromagnetic order in the XY plane and second-neighbor antiferromagnetic order
in the longitudinal (z) direction. However, at A\ = 0, the Hubbard model maps to an isotropic

12



1.2. Topological insulators

Heisenberg model of the form (4t%/U )S’z . S'j, where %, j indicate neighboring sites on differ-
ent sublattices, leading to isotropic next-neighbor antiferromagnetic order. By taking both
models together, the longitudinal direction becomes frustrated whereas XY next-neighbor
antiferromagnetic order is stabilized in the strong-coupling limit.

Phenomenologically, the transition from the interacting QSHI to the xyAFMI is induced
by the condensation of magnetic excitons that are the lowest-energy magnetic excitations of
the correlated QSHI [53]. At the transition, the spin gap vanishes (Fig. and the magnetic
excitations are the massless Goldstone modes of the antiferromagnet since the continuous spin
symmetry has been broken.

2.0
Z, Topological Antiferromagnetic
insulator Mott insulator

= 151 .
~ 1
< 1.0

Ve
t% § ® o qo° °
<05 [A, .

Agp o Y .
0.0 : : —
3 4 5 6 7 8
U/t

Figure 1.7: The QSHI-xyAFMI phase transition in the Kane-Mele-Hubbard model. The
figure shows the spin gap As(k = 0) and the single particle gap Ag,(k = K) as a function
of the Hubbard interaction. The single-particle gap is measured at the Dirac point K =
2m(1/3,41/(3v/3)) and we have A/t = 0.2 and A\g = 0. From a finite size scaling analysis
one obtains the critical value U./t = 5.70(3) [49].
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Numerical Methods

This chapter begins with a review of the the auxiliary field (or determinantal) quantum
Monte Carlo algorithms for the study of the many-electron problems presented in this thesis.
The method is based on the path integral representation of the partition function and maps
the d-dimensional quantum system to a d + 1-dimensional classical system by introducing
Euclidean (imaginary) time. The formulation of the auxiliary field QMC method we use
relies on discretizing imaginary time. The auxiliary field QMC method, in its zero and finite
temperature formulation, has been used to perform the finite size simulations of the Kane-
Mele-Hubbard model, discussed in Chs. and [6]

Additionally, we briefly discuss the continuous-time quantum Monte Carlo (CT-INT)
algorithm for fermions which rests on a perturbation expansion of the partition function. We
have used this algorithm to study the edge states of the Kane-Mele-Hubbard model on the
7 flux honeycomb lattice (Ch. [6]).

We also review the dynamical mean field theory (DMFT) and its momentum-space clus-
ter extension, the dynamical cluster approximation (DCA), in combination with a finite
temperature auxiliary field QMC cluster solver. We have applied this approach, which is an
approximation on spatial correlations while treating temporal correlations exactly, to simulate
the Kondo lattice model, see Ch.

Finally, we discuss the analytic continuation of the (imaginary time dependent) QMC
data to real frequencies and the calculation of dynamic correlation functions.

2.1 Auxiliary field QMC methods

The most straightforward way to solve a correlated model is to exactly diagonalize the in-
teracting many-body Hamiltonian. Naturally, due to the exponential growth of the Hilbert
space with system size this method is very limited. Currently, the best implementations of
exact diagonalization are able to simulate the Heisenberg model on a square lattice of 40
spins or the half-filled Hubbard model on a 20 sites square lattice [54].

In order to solve larger systems numerically exact and without prior knowledge, one has
to resort to statistical methods. Quantum Monte Carlo methods are designed to numerically
solve the correlated model by sampling the most important parts of the Hilbert space. We
consider the model to be solved when we have access to all possible observables and correlation
functions. The QMC method can only be used efficiently in cases where the QMC sign
problem does not occur, i.e. when the probability weight of a statistical configuration is
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2. Numerical Methods

strictly positive. In the auxiliary field QMC method, the absence of the sign problem can be
analytically proven in a few cases using the symmetries of the Hamiltonian. The Kane-Mele-
Hubbard model has no sign-problem, provided that particle-hole symmetry, time-reversal
symmetry and U(1) spin symmetry are present [49].

When the sign problem is too severe for a direct lattice simulation, one can turn to
approximative calculations, like the DMFT for the many-electron problem at finite spatial
dimensions. In the framework of DMFT and its cluster extensions, only a small number of
interacting sites has to be simulated exactly which is feasible in case of a mild sign problem.

Before going into the details of the QMC algorithms, we briefly review the basic idea
behind Monte Carlo sampling [55], the estimation of statistical errors, and the notion of the
Green function which is the fundamental quantity in the algorithm.

2.1.1 Monte Carlo method

The task one would like to solve with Monte Carlo methods is to compute a sum over a
high-dimensional configuration space §2:

<A> = Z PsAs (2’1)
Q

where Py = wg/Z is a discrete probability distribution, i.e. ) o Ps=1and Ps >0V s € Q.
Let us assume that we have a set of N, independent configurations {s} distributed according
the probability distribution Ps. The Monte Carlo estimator of the sum ([2.1)) is then given by

- > A (2.2)

According to the central limit theorem, the distribution function of the estimator A converges
in the limit of a large number Ny, to a Gaussian distribution centered at (A) and with a
width o = \/var A/Npeas, where var A = (A?) — (A)2, which decays algebraically with the
number of samples.

In practice, we do not have access to the normalized probability distribution Ps. Instead,
only the unnormalized probability weight ws is known. However, this information is enough
to devise a transition probability from one configuration to another. In order to achieve
the desired set of configurations {s} to compute the Monte Carlo estimator , one may
implement a stochastic process with importance sampling. The stochastic process is a Markov
chain which depends on Monte Carlo time ¢ and connects states in the configuration space.
The transition probability connecting two subsequent states has to satisfy ergodicity and
stationarity [55]. There are many possible ways to model the move from a state s; to a
state so, for example the Metropolis algorithm or the heat bath algorithm. In the Metropolis
algorithm [56], the acceptance probability as 1 of a transition from s; to sg is

T, P,
az1 = min (1 12 32) (2.3)

> 0
T2,1PS1
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2.1. Auxiliary field QMC methods

where Tfj is the probability of proposing the move from s; to s;.

In a practical implementation of the Markov process, one will always be faced with the
issue of autocorrelations, i.e. measurements of As based on consecutive configurations are
not truly independent. The autocorrelation function is defined as

_ Z/ AsJAs,i-i—t - (ZI As,i)2

Z/Ag’i _ (Z/ As,i)Q ) (24)

CA(t)

where Y = (1/Ny,) ZZN ** is the normalized sum over a sequence of measurements. One
usually has c4(t) ~ exp(—t/74). The scale 74 is a measure of the autocorrelation time and
therefore of the number of Monte Carlo steps that should lie between individual measure-
ments. A similar scale is the equilibration time 7.q which has to pass at the beginning of the

simulation before the system is close to the given distribution.

2.1.2 Data analysis

The quality of the data in terms of autocorrelations can be tested by a re-binning analysis
[57]. One iteratively creates a binned series of data by averaging over consecutive entries.
For example, one has

() _ [ 40=1) (-1

As,i - (As,2i71 + As,2i ) /2 ’ (25)
where 7 = 1,2~-Nmeas/2l and Agoz) are the entries of the original, unbinned data series.
Naturally, this leaves the mean value invariant but reduces the correlation between consecu-
tive entries. Given that we have a means to calculate an estimate of the root mean square
error AAW for each series, the errors will converge to the correct estimate of the error AA

for an uncorrelated data set: AA = llim AAWY . Furthermore, an estimate of the integrated
o

=
autocorrelation time, 74 int = Zt:l,oo cA(t), is given by
Taim = |(AA/AAOY2 — 1] /2, (2.6)

see Ref. [57].
Once we have generated sets of Nyeas independent and identically distributed measure-
ments of the observables A, B,C,---, we would like to consider a generic function 8 =
0((A), (B),(C),---) of their expectation values and obtain an estimate § for its mean and an
estimate ¢ = v/var 0 for the standard deviation of its mean. In principle, this is a difficult
task, since one has to take care of error-propagation and correlations among the observables.
There are non-parametric ways to obtain reliable estimates for the error and bias corrections
for the mean, called re-sampling methods, notably the bootstrap and the jackknife method
[58]. In the following, we concentrate on the jackknife analysis. The idea is to generate Nyeas

new sets of data samples {As}(i), by leaving out the i-th measurement:
{As}iy = Asys - Asi 1, A

A (2.7)

Sit1s SNmeas *
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2. Numerical Methods

The respective sample averages are fls(i) = (1/Nmeas — 1) > j+iAs;, and we define
0y = 0 (As(iy, Bs(iy, Cs(iy -+ ) - (2.8)
Using the notation 6.y = (1/Nmeas) > _; 0(;), we obtain the estimate for the mean,
0= 9(.) , (2.9)

where bias corrections to the mean are neglected (see Ref. [58]). The jackknife estimate for
the error of  is given by

N 1 Nmeas 1/2
AD = [}r{; > (B —9(->)2]

1 Nmeas
_ 2 2
- Nmeas -1 [(N Z 9(7,)) - 9()

Note that for the limiting case of plain sample averages, 6 = (A), we have 0, = A and
0(i) = (NmeasA — As;)/(Nmeas — 1), and Eq. (2.10) reduces to

(2.10)

(42) - W] " (2.11)

AA =
|: Nmeas -1

which is the standard (bias corrected) estimate of the error. An extension to the outlined
jackknife method is the delete-k jackknife, where (Nr;‘j”‘s) samples are generated by deleting
k values in the original data set.

2.1.3 Green functions

We can define a dynamic measurement as the result of a retarded correlation function
CR(t,t') which express the (linear) response of a quantum system at a time ¢ to a pertur-
bation at an earlier time ¢’. The Fourier transform of CR(t,#') gives us information about
the excitation spectrum. In the theory of many-particle systems, the most important corre-
lation functions are Green functions. For technical reasons it is convenient to define a Green
functions C(7,7’) in imaginary time, 7 = it, and its discrete Fourier transform C(iw,), in
Matsubara frequencies wy,. One can proof, for example using the Lehmann representation
in the grand-canonical ensemble, that the retarded correlation function C®(w) is obtained
by analytical continuation: C®(w) = C(iw, — w + in). This is discussed in the standard
textbooks on many-particle theory, see for example Refs. [59; [60].

The central quantity is the finite-temperature single-particle Green function in imaginary
time:

G(rvismovs) = —(Té, (11)e), (7))
= —H(r — m)(¢,, (11)él, (1)) = CH(2 — 71)(e], (12)é,, (1)) ,  (2.12)
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2.1. Auxiliary field QMC methods

where T denotes time-ordering, H(7, 7) is the Heaviside step function and —3 < 7 — 1o < f.
Due to translation symmetry in imaginary time, G(mv1;7ov2) = G(11 — T2, v1;v2). We have
¢ = — (¢ =+ ) for fermions (bosons). The brackets denote the finite-temperature expectation
value.

The n-particle Green function is defined as

Glrvr, s Tt Ta) = (1T, () &, (el (7h) &l () (213)

We proceed by stating Wick’s theorem for non-interacting particles (again, for a proof, see
e.g. Refs. [59; 60]). It says that the n-particle Green function can be factorized in sums of
products of single-particle Green functions:

g(’rlylv' o 77_71”71;7—{]/17 e 77—7/7,V711) = ’M‘C ) (214)

where the matrix M has elements M;; = G(rv;; 7jv}). |M|- is a determinant (fermions) and
|M|+ a permanent (bosons).

To simplify the notation in the following sections on QMC methods (Secs. and,
we introduce a single-particle Green function matrix G(71, 72), with elements

G(r1,m2)i; = —G(Tivi; 1ov;) (2.15)

The various Green functions in the section on the DMFT/DCA method (Sec. are also
denoted by a capital G, but they are defined as the proper thermal Green functions (2.12)).

2.1.4 Projector QMC

We consider an interacting fermionic model, described by H = H; + Huy, where H; denotes
the non-interacting part of the Hamiltonian and Hy = U ) _;(ny — 1/2)(ns, — 1/2) is the
Hubbard interaction. At T' = 0, a very efficient method to solve the interacting model is to
filter out the ground state |Uq) by repeatedly projecting the many-body Hamiltonian on a
trial wave function |¥r) [61} 62],

W6) o lim [exp(~ArH)|™ [r) | (2.16)

where A7 > 0 and (¥g|Pt) # 0. The ground state is assumed to be non-degenerate. The
canonical expectation value of the observable A is then given by

(WG|A|WG)  (Up|e=O/2H A= O/H | y.1)

Walic) — (rle[Tg) (2.17)

where § = mA7. The trial wave function is |Ur) = |Vt 4) ® [P ) and it is typically written
as the product wave function of the non-interacting model Hy, i.e. as a Slater determinant. In
many cases it is however favorable to choose the Slater determinant to be the ground state of
a trial single-particle Hamiltonian, for example to maximize the overlap with the interacting
ground state. A discussion of symmetry-projected trial wave functions in projector QMC
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methods can be found in Ref. [63]. The trial wave function can always be written in the
following form

Np
o) =TT (cbr) 10). (2.18)
i=1 !
where c}; = (éig,égo, e ,é}tvsa). P, is a Ny X Npe matrix, with Ny, < Ng. Ny denotes the

number of single-particle states of the trial Hamiltonian and NNp, the number of occupied
single particle-orbitals of spin ¢. The matrix P contains the column eigenvectors of the trial
Hamiltonian. P is referred to as a Slater determinant, although a proper determinant is only
obtained in a specific representation, for example in the position representation:

o(ri, - ,7N,) = (P, vy, |Ur) = det(RTP) (2.19)

where R; j = xi(rj). Here, we already used the first of two important properties of Slater
determinants: (i) the overlap of two Slater determinants is given by the determinant of the
matrix product, and (ii) the evolution of a Slater determinant with a single-particle evolution
operator described by a Hermitian (or anti-Hermitian) matrix is again a Slater determinant.
A proof of both properties can be found in Ref. [62].

In order to obtain |¥g) starting from a single Slater determinant |¥r), we have to find a
way to express the evolution operator exp(—A7H) containing the quartic Hubbard interac-
tion in terms of single-particle operators. This is essentially accomplished by the Hubbard-
Stratonovich (HS) transformation [64]. It transforms the interacting evolution operator in a
field-dependent single-particle evolution operator which is integrated over the configuration
space of the (bosonic) field.

Prior to applying the HS transformation, we separate the non-interacting part H; from
the interacting part Hy via the Trotter decomposition:
—O0H

e = lim

Jim (e—AT’HU e—ATHt ) m

m A
= (e ArHueATHY) +§X(Ht,HU)+0(A72). (2.20)

The operator X (H¢, Hy) can be shown [62] to be an anti-Hermitian operator, X = —XT.
Then, and under the condition that A, Hy and Hy are simultaneously representable by real
numbers, it follows that the term linear in A7 vanishes in the expectation value for the Her-
mitian observable A [in terms of the ground state expectation value, Eq. , or the trace
over Fock space, Eq. ] However, the Trotter decomposition is not unique, and in some
cases a symmetric decomposition or expansion to higher-order can be favorable. A discussion
of systematic higher-order approximations of exp(—6#) can be found in Ref. [65].

The HS decomposition for evolution operators with four fermionic operators, like the
Hubbard term, is an operator identity which originates from the Gaussian integral [64]. A
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2.1. Auxiliary field QMC methods

general, discrete form of the transformation [66] can be written as

e ATE 07 = C’Z Hp(si) eZi0i | (2.21)
s 1

O; and O; are single-particle operators, p(s;) is a normalized probability distribution, obey-
ing > .. p(si) =1 and C is a constant. The sum runs over all configurations of the auxiliary
field s; on the lattice, which is denoted by the vector notation s = (s3,---,8;,) . This
transformation therefore converts the interacting evolution operator on the lattice to many
non-interacting evolution operators that live in a fluctuating external field. The implementa-
tion of continuous Hubbard-Stratonovich decompositions in the PQMC method is discussed
in Ref. [60].

For the Hubbard interaction, two widely used possibilities [62; [67] involve single-particle
operators O; which are proportional to the charge density (magnetization) nit + (—)ngy. In
the latter case, the auxiliary field couples to the S, component thereby breaking the SU(2)
spin symmetry for a given field configuration. We then have

e~ATHU — AN Z e 2 si(nit—niy) (2.22)

S

where s; = £1, v = exp(—A7U/4)/2 and cosh(a) = exp(A7U/2). Alternatively, one obtains
an approximation to the evolution operator by the following series expansion [62]

o—ATO? _ Z ~v(s)eVATE0: L O(ArYY (2.23)
s==+1,+2

with

V(£ = (1+V6/3)/4, v(£2) = (1 - V6/3)/4,

n(£1) = £1/2(3 = V6) , n(£2) = £1/2(3 + V6) . (2.24)

Eq. can be easily proven by expanding its right hand side to eighth order in O;. The
transformation introduces therefore two Ising field per lattice site ¢, taking the values +1 and
+2. Note that the A7 error of Eq. propagates to an error of order A73 in the evolution
operator exp(—0H) (2.20), which is however dominated by the Trotter error of order A72.
For example, in case of the Hubbard interaction, the interaction on each site is decoupled
with O; = \/U/2(nis +nip — 1), and Eq. becomes

e~ AT(0i+041)? _ ZH [H’V(Sz)] ez‘mzi 1(53)Oi0 7 (2.25)
E] o 7

where we defined O;, = /U/2(n;, — 1/2).
We now have all the ingredients to evaluate the expectation value (2.17)) by rewriting the
evolution operator (2.20) in single-particle notation. Following Ref. [62], we write the hopping
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part of the Hamiltonian in matrix form, as Hy = }_, éLTxyéx = c!Tc where z = (i,0)
indexes both lattice site and spin projection. In the same manner, we write the single-
particle operator in Eq. as O; = c'V(s)c where the matrix V(s) depends on the vector
of the local fields s. The HS transformation accordingly becomes

Hp sz] clV(sle (2.26)

We proceed by defining the imaginary time propagators,

—ATZ,LOS _ CZ

n2 n2
Us(TQ, 7_1) _ H 6chV(sn)ce—ATchTc ’ Bs(Tg, 7_1) _ H €V(sn)€—A‘rT 7 (2_27)
n=ni+1 n=ni+1

where n;AT = 7; and 79 > 7. Bg(72,71) is the matrix representation of Ug(me, 1) and
Us(t1,7) = 1. The auxiliary field configuration is indexed by the N x m matrix S =
81, ,8m). We can finally write

ey [H T[vlse

n=1 1

Us(6,0) 4+ [AT-terms]| , (2.28)

where the sum ) g = >, --- >, was defined. As explained above, from the Ar-terms only
the quadratic term will survive in observables, given the Trotter decomposition in exp(—6H)
(2.20)). The partition function is now given by a sum of overlaps of two Slater determinants:

zz<WﬂeﬁﬂwTy=cm§:[fi[}mﬂglmmpﬂBda0ﬂ>+ch#). (2.29)
S

n=1 1¢
The expectation value ([2.17) can accordingly be written as

<‘1,T‘6 (0/2)H A~ 6’/2H|\I/T ZP
(Urle=0H] W) st

Vs + O(AT?) (2.30)

using Ps = wg/Z,
m
we = [H Hp[sm]] det [PTBS(Q,O)P] , (2.31)
n=1 1
and the non-interacting expectation value (A)g with respect to a pair of Slater determinants,

<\IIT‘US(97 0/2> A US(0/27 0)|\IIT>
(Ur|Us(8,0)|¥r) '

(A)s = (2.32)
Formally, Eq. (2.30) brings us back to Eq. (2.1). However, the distribution Pg is not neces-
sarily positive definite (see Sec. [2.1.7)).

For the Hubbard model, the phase space is the space of O(mN) Ising spins and, since
direct summation is not feasible, has to be sampled by Monte Carlo methods.
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2.1. Auxiliary field QMC methods

2.1.4.1 Calculation of Green functions

In the following, we briefly review the calculation of observables [62]. According to Eq. (2.15)),
the fermionic single-particle imaginary-time Green function is given by

Eam)s iz (2.33)
—(Ey(m2)¢s(11)) s if 1 <m

where (e)g is a ground state expectation value (or a thermal expectation value, at finite
temperatures). In the PQMC algorithm, we measure symmetrically around the central time
slice at nA7 = 0/2. We therefore let

7’1’2—>9/2:|:(7'1—7'2)/2 (2.34)

Note that we evaluate the Green function of a non-interacting model which defined by the
hopping term and the auxiliary field configuration S. Importantly, we know that Wick’s the-
orem holds, both for equal-time and time displaced multi-point correlation functions.
The equal-time ground state Green function can be obtained from a generating functional of
the form

Fn) = <‘1’T|Us((9,’7')€nCTAC Us(7,0)|¥r), (2.35)

where A; j = 0;,0; . One obtains [62]:

)
— e (et _so_9
Gs(rmey = (EE(r)s = ey~ 5 W Fh|
1
- {1 — Bs(r,0)P [PTBS(Q,O)P} PTBS(Q,T)} . (2.36)
z,Y
Furthermore, since

GS(TaT)GS(TaT) = GS(T7 T) ) (237)

which follows directly from Eq. (2.36), Gs(7,7)s,y is a projector [68]. The imaginary time
displaced Green functions ([2.33|) are

n>mn  (Y1|Us(0,71) & Us(mi, 1) & Ug(72,0)|¥r)
(Ur|Us(6,0)|[¥r)
= [B.S’(TlaTZ)GS(TQﬂ—Q)]x,y )

Cs(T1,72)ay =" —[(1—Gs(ﬁ,ﬁ))Bgl(Tz,ﬁ)}L

GS (7—17 TZ)z,y
. (2.38)

Note that in a measurement, we will use the rule (2.34)) for the values 7j 2 can take. Impor-
tantly, we have the composition identity (assuming 71 > 70 > 7)

Gs(m1,73) = Bs(m1,73)Gs(73,73) = Bs(11,73)Gs(73,73)Bg' (11, 72) Bg(71,72)G5(73,73)
= Gs(n,m2)Gs(m2,73), (2.39)
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which is readily obtained using Eq. (2.36)) and ([2.38]). The identity (2.39)) allows us to rewrite
the time displaced Green function (2.38) as

Nr—1
Gs(m,m2) = H Gs o+ (n+ 1)1, 72 +n71| , (2.40)

n=0

where the interval 71 — 79 is broken up in to N, = (71 — 72)/7 smaller intervals. For each
Gs(m2 + (n+ 1)1, 72 + n7), stretching over a distance of 7, Eq. is applied. The direct
application of Eq. is numerically instable when the distance 7 — 75 is large. In this
case, Gg(71,72) can be calculated in a numerically stable manner using Eq. (2.40).

Prior to discussing the Monte Carlo updates, we repeat the steps leading to the partition
function and the Green functions for the finite-temperature case.

2.1.5 Finite-temperature QMC methods

Two finite-temperature formulations of a QMC algorithm to solve field theories with fermionic
degrees of freedom on a lattice have been introduced by Blankenbecler, Scalapino and Sugar
(BSS) [69; [70] and by Hirsch and Fye (HF) [71]. Both methods, the BSS-QMC and the
HF-QMC method, rely on the same path-integral formulation of the partition function.

Each algorithm, however, makes use of a different subset of the set of equations that
describe the many-body problem: the BSS-QMC algorithm is formulated with matrices whose
dimension depends on the lattice size N (“space formulation”) and the HF-QMC algorithm
is formulated with matrices whose dimension depends on the number of interacting sites IV,
where N, < N, and the inverse temperature 3 (“space-time formulation”).

Consequently, the computing time scales differently: we have a scaling of O[3N?3] (BSS-
QMC), and a scaling with O[(8N,)3] (HF-QMC).

The HF-QMC method can access the thermodynamic limit, in the sense that the lattice
size N drops out of the scaling. This property makes it explicitly useful for impurity problems
with a small number N, of interacting impurities.

In the end, we would like to numerically calculate the thermal expectation value of an
observable A in the grand-canonical ensemble as a trace over Fock space,

Tr [e—ﬁ(H—uN)A]
(4) =
Tr [e_B(H_“N)]

(2.41)

We can profit from the above obtained results, Eq. and and directly state the

partition function

Tr [Us(83,0)] + O(AT?) . (2.42)

Z=Ccmy [ﬁ [ olsin]

S Ln=1 3

Since the operator Ug([3,0) is a product of single-particle operators, the fermionic trace can
can be carried out explicitly:

Tr [Us(8,0)] = det [1 + Bg(8,0)] . (2.43)

24



2.1. Auxiliary field QMC methods

Eq. (2.43) is proven using the functional integral formalism and expressing the trace with
Fermion coherent states [60]. Alternative proofs are presented in Ref. [69] and Ref. [62].
Finally, one obtains
Tr[ B(H=uN)]

=Y PsAs+O(AT?), (2.44)
S

using Ps = wg/Z,
= [H Hp[sin]] det [1 + Bg(B,0)] , (2.45)
n=1 1

and

Tr [Us(B,0)]
In order to introduce the concepts of the BSS-QMC and the HF-QMC method in parallel,

it is convenient to factorize the partition function (2.42)) in spin components. In doing that,
we assume that the many-body Hamiltonian has a U(1) spin symmetry. We define the sum

> = sz [H Hpsm] : (2.47)

S n=1 1

Ag =

and the spin-dependent evolution matrix BZ(/3,0),

B%(8,0) H eVolen)g=ArTs — H B7 . (2.48)

The partition function then is, omitting the A7-correction,

Z = [H [T plsinl | T [Ua(5,0)]
n=1 1
= Z/Tr HH Co'Vo' Sn)Co —ATCLTgcg]
n=1 o

= Z [ det 1+ Bg(3,0)] . (2.49)
S o

The matrices in the last line of Eq. (2.49) are of size N x N. We have the following determinant
identity:

det [1 + Bg(3,0)] = det OF , (2.50)
where Og is a very sparse Nm X N'm matrix and its components are the 2m spatial matrices,
(Og)ab = (5(171, + Bga (2(5(171 - 1)5(1,1,4_1 . (2.51)

The identity (2.50) can be shown for example by transforming OZ to a triangular matrix
using Gaussian elimination. The determinant is then given by the product of the diagonal

entries, which is the left side of Eq. (2.50)).
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2.1.5.1 Calculation of Green functions

In the following, we show how the equal-time and imaginary-time displaced Green functions
are calculated in the finite-temperature algorithms. The equal-time Green function is derived
in a similar manner as the ground state Green function, using the generating functional F'[n]
(2.35)) with respect to a fermionic trace instead of (¥r| e |¥r). This leads to

. . 0
Cs(r ey = (e (r)s = ey~ 5 WFI|
= [1+ Bs(r,0)Bs(8,7)],, - (2.52)
There are two ways to obtain the time displaced Green function (2.33)), where now (e)g is a
thermal expectation value. On the one hand, Gg(71,72) is given by

Tr [Us(ﬁ,ﬁ) éo Us(r1,72) &) Us(m,o)}
Tr [Us(6,0)]
= [Bs(r1,m)Gs(12,72)],,

Gs(1,70)ay =7 —[(1—Gs(Tl,Tl))Bgl(Tz,Tl)]x’

T1>T2

Gs (Tl s TQ):v,y

) (2.53)

similar to zero-temperature expressions in Eq. (2.38]). Additionally, we have the identity
> _
Gs(r,m) =" Bs(r1,72)Gs(m2,72)Bg' (11,72) , (2.54)

see Ref. [62].

The n-particle Green functions can be also derived along the lines of Eq. and
, but using a generating functional F[n,--- ,n,] which contains n source terms. The
final result is a sum of products of single-particle Green functions which proves the validity
of Wick’s theorem for each field configuration S. Since the calculation is quite lengthy, we
refer the reader to Ref. [62] and Ref. [72] for the proof.

On the other hand, the space-time matrix G'g of the imaginary time displaced Green
functions is given by [71} [73]

(05" =G5, (2.55)

where the entries are again the N x N matrices
(Gg)mm = GG(ni AT, neAT) = Gg(11,72) , (2.56)
see Eq. .
The potential which describes the electronic interaction is diagonal in imaginary time,
Vo(S) = diag [Vo(s1), Vo (s2), -, Vo(sm)] (2.57)

We consider two configurations, labelled S and S’. The associated Green function matrices
are related by the following Dyson equation [74]
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Gy = [ 0% 4 S)0g - e—va<5')og,}‘1e—va<5>
where A7 = ¢"7(5)¢=Vo(5) _ 1. This is equivalent to

G% =GL1+A%(1-G%) . (2.59)

One finds a similar Dyson equation for the equal-time Green functions, G%(7,7). To obtain
this result, we assume that the configurations S and S’ differ only at one point 7 = nA7 in
imaginary time. Then,

A7 = dlag (O) 707Ag,0,"' 70) ’ (260)

where A7 = eVo(8n)e=Vo(sn) _ 1. Using Eq. l) we can write

G%(r,7) = [1+4 Bg/(r, O)BS’(ﬁyT)]_l
= [1+(1+AZ)Bs(r,0)Bs(8,7)]"
= G%(r,m)[1+A5(1-Gg(r,m)] " . (2.61)

This identity is easily recovered by going backwards and substituting 1 = 1+ G%(r,7) —
G%(7,7) in the last line as well as using the matrix identity (A+B)™t = A~'—~ A1 B(A+B)~L.

At this point, it is important to note one essential feature of the HF-QMC method, when
the number of interacting sites NN, is smaller than the total number of lattice sites N. We
denote the set of impurities by M, such that there are N, elements r, € M. In contrary to
the assumption above, we now consider two arbitrary configurations S and S’. We use the
index x = (7, 4;) and 2! = (7, 7;) for the impurity entries only. Since

(Aa)xzy = (Aa)x,m 6172167:1,7‘1 ’ (2.62)

we can pull out the impurity contribution in the Dyson equation (2.58) and effectively use
the Dyson equation only for the impurity Green function,

(gg>$1,y1 = (G%)"my 67:177‘16iy,'!‘y 9 (263)

which is a N.m x N.m matrix. We obtain

9 = 9% +9HA7(1—g3),
~1
g [1+AM(1-g3)] (2.64)

9
with (A1) , = (A”)

z,y 5iz,7‘z 57:y,7‘y'
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2.1.6 Monte Carlo sampling

In this section, we discus the Monte Carlo sampling which is typically accomplished by a
single spin-flip algorithm in the auxiliary field QMC methods. The acceptance probability,
for example in the Metropolis algorithm ([2.3)), is based on the ratio

P/ /
pols _ws

= = 2.65
== (2.65)

where R =[], R?, see the expectation values (2.30)) and (2.44)). In the following, we consider
two configurations S and S’, that differ only at a single space-time point (4,7 = nA7. The

ratio is entirely based on the element G%G(nAT,nAT); ; of the equal-time Green function. At
finite temperatures, we have

det [1+ BZ,(53,0)] ~ detO%  detGg

det [1 4+ BZ(B,0)] detOZ  detGg,

= det[l+A%(1 - Gg]

det [1 + A7 (1 — Gg(nAT,nAT)]

= 1+A7;[1-G5(nAT,nAT); 4] . (2.66)

R =

In going from the second line to the third line, we used the fact that the resulting matrix
is so sparse in time that it can brought to triangular form with one row transformation.
The same logic applies for the spatial components in lines three and four. A?. is the local
potential difference of the configurations. An identical result for R? holds for the PQMC, if
the finite-temperature Green function is replaced by its zero-temperature analog.

The BSS and the HF algorithms differ in the set of equations from Sec. they use.
The HF method uses Gg/ to calculate and update the space-time Green function Gg
2.55).

The BSS and the PQMC method are based on calculating and updating the equal-time
Green function, using Gg(7,7) and Gg (7, 7) (2.61). Having updated one time-slice 7,
the equal-time Green function on the adjacent time-slice 7 + 1 is calculated with Eq. (2.54)).

Updating the Green functions requires a matrix inversion, see Eq. and Eq. (2.61).
Since the associated Ngim X Ngim matrix is the identity plus a rank-1 correction, the matrix
inversion is efficiently done using the Sherman-Morrison-Woodbury formula (see Ref. [62] and
Ref. [75]), which only requires O[(Ngim)?] instead of the O[(Ngim)?®] operations if the inverse
is computed from scratch. Taking Ngi, = mN, in the HF-QMC, we therefore have O[(8N,)?]
operation per update and O[(3N.)3] operations for the entire sweep through the space-time
lattice. In the BSS-QMC and the PQMC, Ngi,, = N, and we have O(N?) operation per
update, O(N?3) operations per time-slice and O(BN?3) operations for one sweep through all
time-slices.

The performance of the updating scheme can be enhanced by a cache optimization strat-
egy known as delayed updates [76]. Multiple rank-1 updates may be delayed by k steps and
be replaced by a rank-k£ update which can be performed efficiently by calling the general
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2.1. Auxiliary field QMC methods

matrix multiplication subroutine DGEMM from the BLAS library.

Some comments are in order regarding the numerical stability of the algorithms. In
general, the stability of an algorithm can be quantified by its condition number. The condition
number is essentially the susceptibility of the algorithm to small variations of the input data,
i.e. round-off errors in our case. The condition number x of a matrix can be estimated by
the ratio of the maximum to the minimum eigenvalue: £ = |max;(\;)/min;(\;)[. A well-
conditioned matrix has k = O(1) whereas for kK — oo the matrix is ill-conditioned.

In particular, let us focus on the calculation of the equal-time Green function Gg(7,7),
see Eq. for the PQMC and Eq. for the spatial formulation of the FTQMC.
Both equations rely on the time-evolution matrix Bg which is the result of multiple matrix-
matrix multiplications. For large projection parameters or for large inverse temperatures, the
resulting matrix Bg has eigenvalues that are exponentially large and and at the same time
eigenvalues that are of order one [62} [73]. Therefore, Bg becomes ill-conditioned and highly
singular, i.e. non-invertible.

In the PQMC, the numerical stabilization is done by applying a singular-value decom-
position on the matrices Bg(7,0)P and P'Bg(f, 7). One can show that the scales, i.e. the
multiset of eigenvalues, then drops out of the calculation of the Green function A de-
tailed discussion of stabilization schemes for the spatial formulation of the finite-temperature
QMC is given in Ref. [62]. Note that at finite-temperatures, the Green function matrix
(s can be calculated without stabilization. Due to the different eigenvalue structure of the
matrix Og compared to Bg, its condition number grows only linearly with N at low temper-
atures [73].

Due to its discrete nature in imaginary time, one has a systematic error in the auxiliary
field QMC method. The A7—discretization corresponds to a high-energy cutoff which can be
controlled by extrapolating to A7 = 0. The simulation presented in this thesis are based on
the discretizations A7t = 0.1 —0.25 and for each project, we have checked that smaller values
of AT leave the results invariant within the error bars.

2.1.7 The sign problem

The efficiency of a quantum Monte Carlo simulations for fermions rests on the assumption that
the computing time scales only polynomially although the space of fermionic configurations
grows exponentially with the particle number. This advantage is lost when the computing
time also scales exponentially with increasing particle number. It is the case when the weights
wg in the sum over configurations acquire negative values and therefore cannot be
interpreted as a probability. In the language of complexity theory, the negative sign problem
has been shown to be nondeterministic polynomial (NP) hard [77]. The classification of
a problem as NP means that no polynomial time algorithm which runs on a deterministic
classical computer is known to solve the problem, whereas problems in P can be solved in
polynomial time. The subset of NP hard problems has the additional property that they are
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linked with polynomial complexity to any other problem in NP. Since the sign problem is NP
hard and in case the conjecture NP # P hold, the sign problem has no generic solution [77].

When negative weights ws occur, one usually samples the configuration space according
to the distribution |wg| and assigns the sign sgn(wg) to the quantity being sampled [55} [77]:

> |ws|sgn(ws)As %: lws|sgn(ws)

(sgn(ws)As)|wg|
(4) =) PsAg == = . (2.67)
2 > ws| > fws| (58n(05) g,
S S
The Monte Carlo estimator therefore is
chas
> sgn(ws;)As;
e i=1
(A) = N . (2.68)
> sen(ws;)
i=1

The mean value of the sign, (sgn(wg)), becomes exponentially small with increasing system
size and inverse temperature, whereas the relative error A[sgn(wg)] increases exponentially
[77]. We have

> ws

sgn(w -5 = ¢ BNAS .
(sgn(ws)) %\ws! : (2.69)

where Af is the difference of the corresponding free energy densities, and

Alsga(ug)| — VST — Ganlws))? N1
SRS vV Nineas (sgn(ws)) VNocas

The (exponential) decay of the average sign means that in a simulation most contribu-
tions from the Monte Carlo sampling cancel, i.e. the signal-to-noise-ratio decays exponentially
with N and 3 [7§]. An approximate way to get rid of the sign decay is the constrained path
Monte Carlo, which has positive weights by construction but comes at the price of introducing
a bias in terms of a trial wave function at zero temperature and a constraint on the fermionic
determinant at finite temperatures [78; [79].

(2.70)

2.2 Interaction expansion continuous-time QMC

In the following, we give a very brief outline of the continuous-time QMC algorithm (CT-
INT) which is a diagrammatic determinantal grand-canonical scheme based on a stochastic
series expansion of the partition function in the interaction representation [80]. Since the
method scales with O[(BN,)?] it is particular useful when the number N, of correlated sites
can be kept small (see Sec. [6.6)). Recent overviews of the method can be found in Ref. [81]
and Ref. [82].
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2.2. Interaction expansion continuous-time QMC

We consider the partition function of the Hubbard model,

B
— [dTHy ()
Z=Tr [e*ﬂ%*%)} 1y [t 1T (2.71)

where the operator T' denotes the time-ordering and we use an explicitly particle-hole sym-
metric formulation of the Hubbard interaction,

3D ) | (L

i s=* o
= U> (7 Y (= 1) “ous (2.72)
- - T 2 il 2 ’ .

with ays = 1/2+0sd. Similar to the auxiliary field determinantal QMC method, the presence
of particle-hole symmetry can be used to avoid the sign problem entirely, however only if the
constant d is chosen properly [83]. The evolution operator can be written as a series expansion,

Te—OdeHU(T)
B k
_1\k
= TZ( kl') /dTHU(T)
k 0
A 0
= 1325 (%) |fon T [an S| T Fart - o)
k=0 0 21,51 0 1k,Sk k o
oo U k B B
= S () | fan X [t S [T Bl - oo
k=0 0 11,51 The1 1k,Sk k o
_U\*
= Z<2> TTTTI iseo () — o] - (2.73)
Ck k o

In the fourth line the time-ordering 71 < 79 < --- < 73 has been applied and in the fifth
line, the sum ch denotes the combination of all sums and integrals. A configuration Cj, is
defined by & Hubbard vertices and the Ising spins s,, i.e. Cy = {[#1,71,51], ", [¢k, Tk, Sk] }-
The partition function then is, using Zy = Trlexp(—SHo)],

7 - Z <_2U>kTr {e‘ﬂHOTl;IIZI Mo (Th) — aos;J}

C

= > <_2U>k <T1;[1;[ (24,0 (Th) — %sk]> Zo

Ck 0

k
— Z(f) det M (Cy) Zy . (2.74)

C
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Here, the Wick theorem [similar to Eq. (2.14])] has been employed to evaluate the expectation
value (---)o of 4k fermionic operators. The matrix of free Green functions is defined here as

At . At .
Gga . (Tay 75) = <Tf%aT( a)fiﬁ(Tb))O <T?iaT(7—a)fib¢(7—b)>0 ’ (2.75)
’ (T¢;, | (1a)é; 1 ()0 (T¢;, (Ta)é;, (7))o
with a,b =1, --k. Then, the 2k x 2k matrix M (C%) has the following form
GS1 ,t1 (Tl’ Tl) S S Ggl,ik (7—1’ Tk?)
M(Cy) = . (2.76)
GY o () e GY (T ) — g,

We have introduced the matrix o, = diag(oys,,®s,). In case that the model Hamiltonian
has a U(1) spin symmetry, the matrix M (C}) can be brought to block diagonal form and we
have det M (C}) = det My (Cj)det M| (Cy). In summary, the partition function (2.74) can be
rewritten as

- —U\*
Z=27/Z=) (2> det M(Cy) =Y w(Cy), (2.77)

Ck Ck

and the configurations Cj can now be sampled according to the weight w(Cy). Observables
(A(T)) are computed as follows, using Eq. (2.74)

(A(r)) = STr [6*5(H0+HU)A(T)}

> { ﬂHOTHH nzko' Tk aask]A( )}
> <THH o (Th) — Qs ) A(T )>

<T1;1 I 400 (1) — 0 A(T>>
det M(Ck)

Nl= N~

Q

k

NH
Q
“\q “"

k 0

>

k

0

(
72
(-

M‘Q

) det M Ck)

NP

( ) det M(CO)((AD))c, - (2.78)

Ny =

Ck

where the Monte Carlo estimator is given by
(T T o) - acu] A()
(T o) — 0]

o det M(Cy)

= 30y (2.79)

({A(m))e, =

0
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2.3. Dynamical mean field theory and dynamical cluster approximation

In particular, one obtains the following estimate for the single-particle Green function
(Tel, ()5 (T M) (2.80)

k k
= [Ggﬂ (T’ T,)] oo’ Z Z Z Z [Gg7ia (T7 Ta)] 0,0q [M(Ck)il] aoq,boy, [G’?bhf (Tb’ T/)] op,0’
a o0a b oy

using elementary matrix and determinant identities [81]. Since for every configuration Cj
of vertices and Ising spins the Wick theorem holds, an estimate for any observable can be
calculated on the basis of the single particle Green functions (2.80). How observable are
calculated efficiently in the CT-INT is discussed in Ref. [81].

The Monte Carlo sampling essentially consists of the addition and removal of Hubbard
vertices [tq, T4, Sq]. The acceptance ratio for a given move can be calculated with the Metropo-
lis algorithm . For the complete description of the Monte Carlo sampling, we refer the
reader to the original work [80] and to Ref. [83].

2.3 Dynamical mean field theory and dynamical cluster ap-
proximation

The DMFT is a theoretical concept which yields the exact solution of the Hubbard model for
d — oo [84} 85} [86; [87]. The DMFT can be motivated using the Baym-Kadanoff formalism as
a thermodynamically consistent approximation to the Luttinger-Ward functional [88]. The
corresponding algorithm is centered around the solution of a single-impurity model embedded
in a lattice model of conduction electrons. The solution of this problem is obtained in a self-
consistent manner, essentially by demanding that the Green function of the impurity model
equals the local Green function of the lattice model. The DMFT has been especially successful
in describing the Mott transition in strongly correlated electron systems [87].

Naturally, this procedure neglects dynamic long-wavelength fluctuations. Consequently,
the DMFT can produce an ordered state at low-dimensions, thereby violating the Mermin-
Wagner theorem which can be proven under very general assumptions [89]. Additionally, the
method fails in the vicinity of critical points where long-wavelength fluctuations are dominant.

Although it is perfectly reasonable to question its applicability when the spatial dimension
is as low as d = 2, there are parameter regimes where it can provide valuable insight when one
keeps in mind the limitations of the method. An example is the paramagnetic phase of the
Kondo lattice model (see Sec.[1.1.1)). This phase is dominated by dynamic local correlations
that build the correlated Kondo singlet state at low temperatures. The DMFT is expected
to describe this phase correctly. However, it is always a good idea to check the quality of the
results by re-introducing non-local spatial correlations on small length scales. This can be
achieved by generalizing the DMFT from a single-impurity theory to a many-impurity, i.e.
cluster, theory. For a review of cluster extension of the DMFT, see Ref. [88].

Apart from perturbative methods to solve the cluster (e.g. the non-crossing approxima-
tion), there are non-perturbative methods like the QMC method, the numerical renormaliza-
tion group (NRG) or the method of exact diagonalization (ED) [88]. The advantage of an
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action-based QMC solver is that all information about the bath degrees of freedom are con-
tained in the bath Green function G°, without the need to explicitly know the corresponding
bath Hamiltonian. The bath is therefore implicit. In contrast, using other solvers (ED, NRG)
requires to explicitly construct a bath Hamiltonian. The method we apply is the dynamical
cluster approximations (DCA) [90] in combination with a QMC cluster solver [91; [92].

In real space, a cluster approximation means to divide the d-dimensional lattice in clusters
of linear dimension L. containing N sites each, where N, = (Lc)d. The DMFT corresponds
to the limit N, = 1. Using scaling relations, it can be shown [8§] that the exact self-energy
is approximated by the DCA self-energy as

Sk, iwn) = BP9 (K, iw,) + O(1/L?) . (2.81)

Naturally, in the limit of infinite cluster size, the cluster method yields the exact solution
of the model. However, in contrast to the finite-size lattice simulation, the cluster method
is already non-trivial in the limit of N, = 1 (DMFT) due to the inclusion of quantum
fluctuations.

In the following, we briefly review the DCA which we apply to the two-dimensional Kondo
lattice model (see Ch. . The DCA in constructed in momentum space and it introduces
three different reciprocal lattices: (i) The reciprocal space of the non-interacting Hamiltonian,
with IV k-points, (ii) The reciprocal space consisting of N, k-points, obtained by evenly tiling
the Brillouin zone in N, patches. (iii) The reciprocal space which corresponds to the real-
space lattice of N, interacting sites with periodic boundary conditions. The momenta in (i)
are labelled by k and the momenta in (ii) and in (iii) are labelled by K. These three reciprocal
spaces are connected by the same self-consistency cycle as in the DMFT (see below). The
DCA self-consistent scheme is therefore also centered around the single-particle self-energy.
The cluster solver for the impurity problem is essentially needed to calculate the cluster
self-energy YDCA (K iw,).

The essential approximation of the DCA is to equate the irreducible quantities of the
cluster, i.e. the self-energy or the irreducible vertices, with the irreducible quantities of the
lattice. On the single particle level, we therefore have:

YPCA (K iw,) = 0O (K iw,) . (2.82)

lattice cluster

The end of the self-consistency cycle is defined by the step where Yiattice (K, iwy,) is converged
t0 Betuster (K, iwy) within a given accuracy. Then, we make use of Eq. to compute the
lattice reducible quantities that we are interested in, i.e. the lattice Green function [see
Eq. (2-85))].

The reciprocal space (ii) is obtained from (i) by a coarse-graining procedure. From the
perspective of a diagrammatic derivation of the DCA, this procedure amounts to a violation
of momentum conservation at internal vertices of Green function legs in the diagrams that
constitute the Baym-Kadanoff generating functional ® (see Ref. [8§] and references therein).
We define a function M (k) which performs a unique mapping from a momentum k to the
nearest coarse-grained momentum K:

M:k— K (2.83)
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2.3. Dynamical mean field theory and dynamical cluster approximation

Momentum is only conserved between different M (k). Obviously, full momentum conserva-
tion is restored when each momentum patch contains only one k-point. On the other hand,
the DMFT corresponds to having only one momentum patch, i.e. the conservation of mo-
mentum at internal vertices is fully neglected. The lattice Green function Glagtice (K, iwy,) is
replaced by its coarse-grained counterpart:

thcé‘iAce, av. (K an - Z Gggﬁe K +k, iwn) ) (2'84)
where .
GG, (ke iton) = {w ~e(k) + u— SDCA (M (k). z‘wn]} . (2.85)

In Eq. l) ZE denotes a sum over all momenta k in the patch labelled by K, and in
Eq. (2.85), e(k) — u are the non-interacting energies. The coarse-graining has to be applied

also to the generally k-dependent interaction. However, the Hubbard interaction is local and
therefore not affected by the coarse-graining.

To make contact with the interacting cluster problem, defined in the reciprocal space
(iii), we set up an appropriate "non-interacting” cluster Green function G9 .., (K, iwy,) which
however effectively inherits interaction effects due to the self-consistency cycle. Since we use
a QMC cluster solver which in a diagrammatic picture sums all diagrams to all orders, the

correct cluster-excluded Green function is

. -1 A . -1 A .
[gcluster(K7 an)] = [Gg‘gcice, av. (K’ zwn)] + Eg‘?tice(K’ an) : (286)
Using G2, o (K, iwy) as input, the cluster solver computes GY st er(I{ ,iwn). We then calcu-
late .
CA . MC -
Eguster(KJw) = [gcluster(K zw'ﬂ)] |:G(?luster(K Zw):| . (287)

This brings us back to the definition of the lattice self-energy Egactﬁce(K yiwy) [Eq. (2.82)]

and completes the self-consistency cycle. To summarize, the self consistency cycle is:

yhoA (K iwn) = Yrart (K, iwp)

cluster
£ Gggﬁe av. ! gcluster K an)
T G -J SPEAL(K i)
= GEﬁﬁe,av.(K,iwn)-“ (2.88)

The end of the self-consistency loop is reached, when Gggﬁe, av. (K wyn) = Ggﬂggr(K ,iw)
and, accordingly, when the self-energy is converged.

One important issue in the theory of cluster extensions of the DMFT is causality. In
a causal theory, the imaginary part of the retarded single-particle Green function G®(k,w)
and the imaginary part of the single-particle self energy ¥ (k,w) are negative definite. This
makes it for example possible to define a spectral function as A(k,w) = (—1/7)ImGR(k,w)
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2. Numerical Methods

which fulfills a sum rule. That every step in the DCA self-consistency cycle preserves
causality has been shown in Refs. [93} [88].

By choosing an enlarged unit cell, the DCA can be used to study symmetry breaking
phases. In this case, the coarse-graining procedure has to be done based on the reduced
Brillouin zone (see Ref. [17]).

The implementation of the HF-QMC in the self-consistency loop of the DMFT makes it
necessary to Fourier transform the Green function twice per cycle, since the self-consistency
equations are formulated in Matsubara frequencies whereas the QMC algorithms operates
with the imaginary-time dependent Green function.

In computing G(7) (suppressing the lattice momentum in the notation), we avoid the
truncation of the frequency sum using the following trick [92], although we naturally have
only a finite number (2N, 4+ 1) of Matsubara frequencies,

+oo
Glr) = ; S e [Glitn) — fliwn) + 1 (i) (2.89)
o
= B Z e iwnT (G (iwy,) — f(iwy)] Z e Z“)"Tf (twn)
n 5[ Z Z ] ~EnT [Giwn) — f(iwn)]
n=-—o0o n=N,+1
1 +N, A 1 +oo )
= LS TGl — Sl e ) + Ol 1)
n=—Ny n=—oo

where the function f(iw,) is defined by the high-frequency behavior of G(iwy,),

8
G(iwy) = /dTeWnTG(z'wn) = i + (zwbn)2 + Ol(wn) 7] = fliwn) + Of(wn) "], (2.90)
0

which is obtained after partial integration. Using the fermionic anti commutation relations,
the coefficients are a = G(1 =07) ~G(r =0") =l and b= —LG(r =07) + G(T =07).
Having evaluated the Matsubara sums (assuming 7 > 0), the Green functlon 9) finally
reads

+N _or
Z e [ (i) — & — 5| -5 - CAlL +Ol(wn,+1) 7] - (2.91)

iwn  (lwy) 2 4

After the QMC step, we need to compute G(iw,) = foﬂ dr exp(iw,7)G(7) which can be
accomplished by using the maximum entropy method as a fitting routine (see Sec. .
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2.4. Analytic continuation of imaginary-time data

2.4 Analytic continuation of imaginary-time data

Using the implementation of the QMC methods discussed in Sec.[2.1]and Sec. we compute
the thermal imaginary-time displaced Green function G(7):

G(r) = —(TA(T)AT(0)) , (2.92)

where A denotes a fermionic or bosonic operator and we take 7 € [0,8). It fulfills G(r +
B) = FG(7) for fermions/bosons. To simplify the expressions, we have omitted quantum
numbers like spin or momentum. However, G(7) is not a physical (accessible in an experiment)
quantity. The method of analytic continuation [94] makes contact with the the retarded Green
functions G#(t) and G®(w), that directly enter experimentally measurable quantities like the
spectral function. We have the following Fourier transforms

B
1 —Wn T W w _ Teiwnﬂ- T
G(r) = BZ Glwn) , Gwn) 0/ dreng(r) (2.93)

where w, = (2n + 1)7/f8 (w, = 2n7/B ) for fermions (bosons) and n € Z. The correlation
functions defined in real and imaginary time 7 = it can be expressed in terms of their Fourier
components G¥(w) and G(w,). Both Fourier components can be obtained from the same
complex valued function C(z):

Cz):C—C, (2.94)

which has the asymptotic form C(z) = (1/2)[1+O(1)/Imz] [95]. Importantly, C(z) is analytic
in the complex plane, except on the real axis. One obtains C(iw,) = G(wy,) and C(w+i0T) =
Gf(w). C(2) can be expressed as a Stieltjes transform of a density function p(w)/2m:

+oo
Clz)== / dwpiw_)/zﬂ- . (2.95)

Since p(w)/2m is continuous, we can revert the transform and write
plw) = +i[C(w +i07) — C(w —i0T)] = F2 ImGF(w) , (2.96)

where the second equation follows from [C(w+407)]* = C(w —140") which can be seen directly
from its Lehmann representation [59]. Using Eq. at the argument z = w,,, one can apply
the Fourier transform and, after the calculating the sum over Matsubara frequencies,
one obtains [94} K9]

+oo

G(r) = / dwK (1, w)A(w) , (2.97)

—00

where the kernel function is K(r,w) = ¢ “7/(e7? £ 1) and the general spectral function is
A(w) = p(w)/27. Equation (2.97) defines the problem of analytic continuation: we would like
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2. Numerical Methods

to extract the spectral function A(w) given the input G(7), which is obtained, with statistical
errors, from a QMC simulation. Therefore, a direct functional inversion of Eq. is
numerically ill-defined. However, it is possible to perform the analytic continuation using
a stochastic maximum entropy method [94]. This method maps the problem of analytic
continuation to a system of interacting classical fields at a fictitious temperature 1/a which
can be simulated by Monte Carlo methods. We refer the reader to the original work [94] for
a complete description of the method.

2.5 Observables

In this section, we give a brief overview of the calculation of correlation functions in many-
particle systems at finite temperature. For notational clarity, all quantum numbers different
from position or momentum are suppressed. The quantity of interest for the study of spin
(charge) excitations are the spin-spin (charge-charge) correlation function, defined as

iy (t—t') = C{SF(1)S5 (1) | (2.98)

(C7 denotes a constant reflecting different normalizations) and, in particular, its spectral
representation, the dynamical spin (charge) structure factor

+o0
s7e(gw) = Ciy Y9 [ are(sp0350)
ij e
+o00o
_ o / dte (32 (1)5° . (0))

—00

= 0127” D e PE(n]5*(q)|m)[*(w + En — Eny) - (2.99)

n,m
The charge and spin operators are labelled by a = 0, z,y, 2. We have

N 1 R N
S =75 ; & 0% (2.100)

where 0¥ = diag(2,2) and the remaining ¢® are the Pauli matrices. In this notation, the
charge operator is 5’? = n;. The expectation values are evaluated with respect to a Hamil-
tonian H, with H|n) = E,|n). The dynamical spin (charge) structure factor quantifies the
fluctuations at a given frequency w and is experimentally accessible through scattering exper-
iments, for example neutron scattering. In the following, we review how S*%(q,w) is related
to the quantities we measure in the QMC method, namely imaginary-time dependent Green
functions G(71) and, after analytic continuation, spectral functions A(w) (2.97)).

The retarded spin-spin (charge-charge) correlation function is a response function (or a
susceptibility) and it reads

Cft (e —t') = —i(t — t1)([S5 (1), S5 (¢)]) - (2.101)
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2.5. Observables

When a many-particle system experiences a perturbation which couples to S;", the first order
(linear) term of its response is a time-integral with ij (t —t') being the kernel of the integral
[59]. Its Fourier transform is

1 Y N by
Cf(q,w) = —iNZe*“H)q / dte™!([Sg(t), 55(0) / dte™H([Sa(t), S 4(0)]) .
.5 0 0

(2.102)
Additionally, we know that there exists a complex valued function C(q, z) (see [2.94] - which
has the property C(q, z — w+1i0%) = C¥(q,w). Using the Lehmann representatlon of C(q, 2)
[59], one obtains

Im C*(q,w) = ImC(q,z— w+i0")
— (eB 1)% S~ e B (n] 5% (q)|m)20(w + By — Ey) . (2.103)

Therefore, Im CF(q,w) is related to the quantity of interest, the dynamic spin structure

factor S“*(q,w) (2.99) as follows:

2 1
Sa,a(q7 CL)) —

- - R
Cr P - 1Im C%(q,w) . (2.104)

In order to finally see the connection to the numerically determined imaginary-time dependent
Green function G(1) = (Sg(7)5%,(0)) we make use of Eq. 1D (for bosons) and Eq. 1'
We have

- 1
A(q,w) = =Im C"(q,w) (2.105)
T
and
1 +oo —wT
Qo Ga _ € R
(551(r)8%,(0)) = © / QoS Tn O(q,w) (2.106)

To summarize, given G(7), we invert the expression (2.106)) using the method of stochastic
maximum entropy [94] to obtain Im C®(q,w). Via Eq. (2.104), we therefore can calculate
the dynamic spin (charge) structure factor S“*(q,w) 9). Note that Im C¥(q,w) does
not satisfy a sum rule, since Im C®(q, —w) = —Im C®(q,w). Since the maximum entropy
method needs a sum rule in order to define a probability distribution, the spectral function
and the kernel of Eq. have to be modified for bosonic Green functions [94].

In the case of fermionic particles, we mainly consider the electron-electron correlation
function in a translation invariant many-particle system

Afk,t —t') = Gy (et (#)) + (e ()en(0)) (2.107)

corresponding to the propagation of a particle and a hole, respectively (C2 again denotes a
normalization constant). Its spectral representation is the single-particle spectral function,
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2. Numerical Methods

similar to Eq. (2.99))
+oo
Alk,w) = / dte™t A(k, t)

—Oo0

_ 27T ~ 2 —BEn _BEm
= G Xlnlaadm) (7750 + ™5 ) 3w + By — Ey) . (2108)

The corresponding response function is the retarded single-particle Green function
Gkt — ') = —i0(t — t'){{e(1), EL(1)}) (2.109)

and its Fourier components are obtained from GF(k,w) = C(k,z — w + i07) (see [2.94).
Using the Lehmann representation of C(k, z) [59], we have

Im GR(k,w) = ImC(k,z = w+i0T)
- _7” 3 l{nféxm)? (e*ﬁEn + e*ﬁEm) S(w+ En— Ep) . (2.110)
Comparing with Eq. (2.108)), we therefore obtain the spectral function
1
A(k,w) = —2Cy Im GF(k,w) = —=Im G¥(k,w) , (2.111)
s

using Co = 1/(27). The prefactor Cy can be obtained from the sum rule for Eq. (2.108]),

400
1= / dwA(k,w) = 27Cy({é, &L }) = 27C . (2.112)

—00
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Metamagnetism and Lifshitz
Transitions in Models for Heavy
Fermions

In this project, we have investigated metamagnetic transitions in the two-dimensional, doped
Kondo lattice model which is the effective low-energy model of heavy-fermion systems. We
show the existence of universal magnetization curves for different temperatures and Kondo
coupling and take into account different Landé factors of the localized moments and the
conduction electron spins. We show evidence for the interpretation of heavy-fermion meta-
magnetism in terms of a Lifshitz transition. By tracking the single-particle residue across
the metamagnetic transition as a function of the external Zeeman field, we can rule out the
breakdown of Kondo screening, even at magnetic fields that are comparable and larger than
the heavy-fermion coherence scale. Numerically, we map the Kondo lattice model to a clus-
ter approximation using the DMFT and the DCA (Sec. . This chapter is an extended
reproduction of the associated publication [96].

3.1 The metamagnetic transition in heavy fermions

On general grounds, the metamagnetic transition corresponds to a non-linear increase of the
magnetization at a well-defined value of the external magnetic field in certain fermion systems.
Equally, distinct anomalies of thermodynamic quantities and in transport measurements have
been observed at the same magnetic field [97; 98]. At the critical field, the heavy electron
Fermi surface changes its topology [99; 07; 100; I01]. Metamagnetism has been known to
occur in CeRugSiy [102] and, amongst other fermionic systems, a pressure-tuned first order
metamagnetic transition has been observed in bilayer ruthenates [103]. Recent experiments
show a pronounced, first order metamagnetic transition in the heavy-fermion paramagnet
CeTiGe [104]. Furthermore, the thermodynamic signatures of heavy-fermion compounds
have been related to a metamagnetic quantum critical endpoint of the Ising universality class
[105} 106].

The metamagnetic transition in heavy-fermion systems has been addressed previously by
static mean-field approximations [I07; [I08]. By including temporal fluctuations, the DMFT
results of Ref. [I09] have shown the close relation of the magnetization profile to the quasipar-
ticle coherence scale. In this project, we have extended the study in Ref. [I09] by increasing
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3. Metamagnetism and Lifshitz Transitions in Models for Heavy Fermions

the temperature range of the simulations, allowing for different Landé factors and by including
non-local spatial fluctuations.

A Lifshitz transition is a quantum phase transition which occurs when the Fermi sur-
face topology is deformed continuously [T10; 111; 112]. It ows its name to I. M. Lifshitz
who first classified the changes of the Fermi surface for the non-interacting electron gas and
attributed anomalies of several several thermodynamic and kinetic observables to this transi-
tion [I10]. Importantly, it is a topological transition which does not break a symmetry of the
lattice. Lifshitz transitions play an important role in the study of the Fermi liquid phase of
heavy-fermion systems, often as an alternative scenario to the breakdown of Kondo screening
[113; 17 114]. Zeeman-driven Lifshitz transitions were shown to explain many anomalies in
thermodynamic and transport measurements of certain heavy-fermion metals [I15].

This project is motivated by the interplay of two competing energy scales, the lattice
coherence scale and the magnetic Zeeman scale. By varying the magnitude of the Landé
factors we are able to show that the metamagnetic transition occurs when both scales are
comparable. In principle, both the Kondo breakdown and the Lifshitz transitions are there-
fore valid scenarios. We measure the single-particle residue as a function of magnetic field
throughout the metamagnetic transition and show that it is consistent with the picture of a
coherent band dropping below the Fermi energy at the transition. Our results clearly point
towards Lifshitz physics as the key player in the metamagnetic transition in models of heavy
fermions.

3.2 Implementation of the Kondo lattice model

Our study of heavy-fermion metamagnetism is based on the solution of the following Kondo

lattice model (see Eq. ,

Mot 3 (e, o) — ety — B Y080 4 0rS0) +0 30858151
1,0 3 i

(4.3).0

where a Zeeman magnetic field terms have been inclueded that couple to the ¢- and f-spins
in the form of spin-dependent chemical potentials. The indices ¢, 7 indicate sites on the two-
dimensional square lattice. Throughout this chapter, we will adjust the chemical potential
in order to realize a conduction electron band occupation of n. = 0.9. Looking at the phase
diagram (Fig. of the KLM, the system is in the paramagnetic phase, as long as J/t 2 1.

Evidently, the KLM has some limitations. For example, spin-orbit coupling is ne-
glected which would cause the Landé g-factors to be tensor quantities. A realistic modeling
of heavy-fermion materials would require more sophisticated approaches capturing these ma-
terial specific features. Instead, the KLM serves the purpose of describing the generic
interplay between the magnetic Zeeman scale and the coherence scale of the Kondo system
which can lead either to the Kondo breakdown or the Lifshitz transition scenario.
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3.3. Methods

Following Ref. [I8], the Heisenberg term can be rewritten as

e 11 /s s s
JZ S; - S,Lf = JZ [an — ann{ 1 (C;afi,aflgci,ﬂ + HC):|
i

J . . o R A R
+— Z (nf + n{ — nfnf) — (Cl,afi,aczﬂfi,ﬁ + Hc)} . (3.2)
i
We used the identities
OaB " Oy5 = 250«55,87 — 50155«/6 , (3.3)

and
Op s o it e N (st B N (A YAl ae
& fiaflstiot e = (& fuo+ flotio) = (d,fia) = (o) =il 405, (34)

in the first and in the second line, respectively. One immediately sees in the decomposition
of the Heisenberg term [Eq. ] that the third line contains only constant terms and pair
hopping terms. The former correspond to a uniform shift in the chemical potential and the
latter have zero contribution in the subspace of single occupancy [I§] of the f-orbital.

We therefore define the following auxiliary Hamiltonian,

H=Hoy— % Z (é;rofw + f;ryoéi,(;)Q +Hu, (3.5)

(3

and use it for the numerical implementation of the Kondo lattice model [109; [I8]. The
Hubbard term reads Hy, = % > [Zg anU - 1] 2; Since single occupancy of the f-orbitals is
guaranteed for Uy — oo, it is in this limit, that H becomes equivalent to the original model

B-1).

3.3 Methods

The hallmark of Kondo physics is the crossover from weak to strong coupling of the ground
state as the temperature is lowered. This has been first studied by K. Wilson with the
numerical renormalization theory [2]. The crossover to the Kondo regime is mediated by
temporal correlations, spatial correlations being secondary. Deep in the low temperature
phase, even the static mean-field perspective can provide valuable insights [116].

We use the HF-QMC algorithm (see Sec. to solve the KLM on small clusters,
that contain one c- and one f-orbital (DMFT limit) and tow c- and two f-orbital orbitals,
respectively. Cluster approximation schemes are particularly well designed to capture the
Kondo physics since temporal correlations can be treated exactly. The approximation is on
spatial correlations that are short ranged in the present situation. The DCA is a fully causal,
non-perturbative method which is systematically improved by increasing the cluster sizes
[93; O1]. The method is reviewed in Sec. In the following, we outline the static mean
field approach and the QMC-implementation for the KL.M.
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3. Metamagnetism and Lifshitz Transitions in Models for Heavy Fermions

Mean-field theory

The static mean-field approximation is the approximation of the action of the model by its
saddle-point. However, one can artificially increase the number of electron ”flavors”, from
N = 2 [Eq. (3.1)] to an arbitrary integer N [I17; 1I8]. In the absence of magnetic fields,
this generalized Kondo lattice model has a SU (V) symmetry, i.e. the Hamiltonian commutes
with the N2 —1 operators, which generate the corresponding su(N) Lie algebra. For N — oo,
the saddle-point solution is the ezact solution of the SU(N) model. Therefore, instead of
approximating the solution by throwing away fluctuations beyond first order in the SU(2)
model Hamiltonian (standard mean-field theory), we may approximate the Hamiltonian by its
SU(N) symmetric counterpart, which we can solve exactly. On the other hand, the magnetic
field reduces the SU(2) symmetry to a U(1) symmetry [Eq. (3.1)], and therefore it cannot be
readily included in the derivation of the saddle-point solution. Additionally, it is well-known
that the saddle-point solution leads to an unphysical phase transition instead of the Kondo
crossover. Interestingly, the magnetic matrix elements that couple the impurity f-orbitals to
the external magnetic field can be chosen in such a way, that the magnetic field does not lift
the degeneracy of the electron flavors completely. Then, one can recover the smooth Kondo
crossover even in the large-N limit and in the presence of external magnetic fields [119].
The many-body partition function is

Z="Tr[e ] = Zar + O(AT)], (3.6)

where we introduced the imaginary time discretization 5 = M AT on the interval [0, 3]. We
have
M

Ins = TrH{exp[AT’Ho] /D[)\] exp [ iATzi:)\li(za:n{U 1)]

=1

» /D[qﬁ] exp [— ATJZi: <¢122 - d)lig:(cz,afi,a + Hc))]}

= /D[)\,qb] exp| — Serr[A, ¢]] - (3.7)

In Eq. , the two successive Hubbard-Stratonovich (HS) transformation reduce the quartic
fermion terms to quadratic terms, introducing the fields A\;; and ¢;;. In this notation, the
integration measures D[\, ¢] denote integration over spatial and time indices of the fields and
contain normalization factors.

The saddle-point of the above defined action fulfills 0Seg/0¢y; = OSe/ON;; = 0. Static
mean-field theory is obtained by dropping the 7-dependence in the HS fields, and one can
furthermore request the homogeneous solution: ¢; = ¢g , \j; = Ag- The saddle-point equa-

tions,
1
¢0=ﬁ<2 wfw+HC mr, 1=— ZHMMF, (3-8)
e
are then solved self-consistently. The respective mean field results for total magnetization
and quasiparticle residues are discussed in Sec. A detailed discussion of the hybridization
mean-field calculation can be found in Ref. [109].
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3.4. Field dependent magnetization curves

Sampling of the field configurations with HF-QMC

In order to go beyond the mean field saddle point, one may look at the Gaussian fluctuations
around the saddle point. Furthermore, a systematic 1/N expansion around the mean field
solution can be performed [120]. Instead, we integrate over all the field configurations through
application of the HF-QMC algorithm which has been derived in Sec. By carrying out
the trace in Eq. , the partion function reads

Zar = /D[/\,qﬁ] [T det[G, '], (3.9)

where G, is the space-time dependent Green function. For the QMC implementation, the
integral is replaced by a discrete sum which is sampled stochastically [see Eq. ] The
Heisenberg term and the Hubbard term of the Hamiltonian are implemented using the
discrete HS transforms Eq. and Eq. (2-22)), respectively [I8]. During the simulation of
Eq. , double occupancy of the f-orbitals can be suppressed to the desired accuracy.
The cluster approximation amounts to considering the interaction terms of the Hamilto-
nian only on sites R € M where M is a subset of N, elements (sites) of the lattice. This
subset naturally defines the extent to which spatial correlations are captured. We therefore
solve the model
H=Ho+J > Sq Sk, (3.10)
ReM

by using the auxiliary Hamiltonian 1’ Here, H, denotes the bath which has to be deter-
mined self-consistently. The DMFT/DCA method is reviewed in Sec.

3.4 Field dependent magnetization curves

The magnetic field tunes the interacting Kondo model [Eq. ] from the strong coupling
regime (i.e., small field) to the weak coupling regime (i.e., large field). The latter regime
is defined as B > To,. This limit is adiabatically connected to a phase, that is described
by two copies of non-interacting c-electrons, which are spin split by the Zeeman energy, and
fully polarized f-moments. On the other side of the transition, as long as the magnetic field
is small, B < T¢on, the hybridized bands can be expected to shift in a rigid manner. At
an intermediate energy scale, which we define as B ~ Ty, we can think of two different
scenarios: (i), the Kondo effect itself breaks down at the relevant energy scale or, (ii), a
continuous transition occurs, which preserves the quasiparticles.

In scenario (i), the quasiparticle itself is destroyed by the external magnetic field. The
spin resolved single-particle residue, labelled Z,, quantifies the overlap of the interacting
wave function with the wave function of a bare conduction electron. It is an appropriate
quantity to test this scenario, since the loss of quasiparticle coherence has to manifest itself
as a sudden drop in the residue for both both spin projections.

In scenario (ii), the quasiparticles remain intact at the Fermi level. The spin dependent
Fermi surfaces are then expected to undergo Lifshitz transitions which modify their topology.
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By carefully tracking the single-particle residue and single-particle spectral function across
the metamagnetic transition we collected evidence in favor of scenario (ii).

Below the coherence temperature, the Kondo lattice model is believed to form a heavy
Fermi liquid which is characterized by Kondo screening of the local moments [11]. A fun-
damental result for Fermi liquids is the Luttinger theorem [I21]. It states that the volume
which is enclosed by the Fermi surface is invariant with respect to interactions and is essen-
tially given by the total density of electrons. In the heavy Fermi liquid phase, the conduction
electrons and the delocalized spins contribute both to the Fermi volume, which is therefore
called “large”. For the two-dimensional Kondo lattice, the Luttinger theorem is [122]

K K
Vi, = > (Ntot mod 2) = 5 [(nc +n') mod 2} , (3.11)

where K = (2m)?/V (V is the unit cell volume) and ny = 1. The factor of 1/2 accounts for
the spin degeneracy and the modulo operation is used to count only partially filled bands.

Following Ref. [1I09], we note that the magnetization profile (see Fig. of a heavy-
fermion model system can serve directly as a measure of coherence. For intermediate fields,
the occupation number difference, m = ) a(nf, + nf;), reaches a plateau. In this phase,
one band (the up-spin conduction band) is completely filled whereas the other band (the
down-spin conduction band) is partially empty. In the case of half-filling, one can formally
write nioy = 2 = Ngotp +Not), With Nyt » = 1. Therefore, the up-spin conduction band has the
density niotp = n$ + n{ = 1. Since the combined electronic density is niot = n¢+ 1, which is
true even in the presence of interaction, following the Luttinger theorem, the partially empty
down-spin conduction band has the density nio = nj + n{ = n°. For the intermediate field
values, we then have a magnetization plateau with the height

mzn%—i—n{—(ni%—nf):l—nc. (3.12)

This result is a consequence of coherence and Luttinger’s theorem. Within the hybridization
mean field theory, it has been shown that the corrections to the magnetization plateau are
exponentially small [109].

The physical magnetization on the other hand, as derived from the free energy F of the
system,

M(B)=——==Y o(gmns+gmi) (3.13)
does not generally display a plateau when the orbital couplings are unequal, g. # gy.

3.4.1 Data collapse M(gs/ge;T/Teon; B/Tecon)

For temperatures below the coherence scale T}, quasiparticle bands are formed via coherent
superposition of the screening clouds of the local spins. To verify that the coherence scale
is the unique underlying scale, a data collapse of DMFT and DCA data is carried out by
scaling the magnetization with T,,,. Because the plateau width of the occupation number
is a measure of the hybridization gap, a good estimate of Ty}, is obtained from the position
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3.4. Field dependent magnetization curves
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Figure 3.1: Temperature and magnetic field dependence of the magnetization m. [(a),(b)]
and my [(c),(d)]. As the temperature is lowered, the Kondo insulator is formed and in the
Kondo regime, the width of the magnetization plateau is a measure for the single-particle
band gap. Here, J/t = 1.3 (left) and J/t = 1.6 (right).
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3. Metamagnetism and Lifshitz Transitions in Models for Heavy Fermions

of the second kink at B = Brs, determined by the intersections of linear fits to the data on
both sides of the transition at 5t = 100 and gf/g. = 1. The scaling then becomes:

M(gf/gc,T,B7 J) — M(gf/gC,T/TCOh,B/TCOh) . (3.14)

Effectively, the Kondo coupling J/t has disappeared as a parameter in the scaled magne-
tization. The data collapse, as shown in Fig. is evident.  For all values of g¢/g. the
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Figure 3.2: Magnetization M (gf/ge, T/Tcon, B/Tcon), scaled with the coherence temperature
Teon(J). The data collapse is observed for all ratios of Landé factors g¢/g., indicating that
the coherence temperature is the unique energy scale for all measurements in this phase.
Here, the results have been obtained from two-orbital DMFT calculations.

magnetization shows two pronounced kinks at B = Br; and B = Brs. The driving mech-
anism that shapes the magnetization roots in the competition of two energy scales: the
dominant magnetic energy scale gyupB and the Kondo scale T¢.,. At the second kink both
scales become comparable, such that Brs g_l. The position of the second kink in depen-
dence of the coupling ratio is shown in Fig. and the data are in good agreement with the
above argument. Increased Zeeman coupling to the local spins provokes the intermediate,
plateau-like region to decrease and renders the increase at B = Bro much steeper (Fig. [3.2)).

The mean-field solution, motivated by the paramagnetic saddle-point of the SU(N) KLM,

can be seen as the best approximation to the fully correlated model in terms of quadratic
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3.5. Single-particle quantities

J/t
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DMFT
DCA

0.044 0.057 0.094
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0.18

Table 3.1: Estimated values of the coherence temperatures Tcon/t, measured at B = Brs.
Here, gf/gc = 1.
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Figure 3.3: Dependence of the second Lifshitz transition, Bre, on the ratio of Landé factors,
gf/ge. We observe good agreement of the data with with Bra(gf/g.) o (gf/gc)_l.

fermion contributions. Therefore, in the case that DMFT/DCA calculations support the
notion of quasiparticles, the mean field perspective is legitimate. The mean field results are
intended to complete the above described scenario of Lifshitz transitions. Static mean field
calculations succeeds in reproducing the qualitative shape of M (Fig. . In the mean field
picture, the two kinks in the magnetization correspond to two Lifshitz transitions.

At this point, the data collapse of the magnetization can be compared to a scaling ap-
proach of the resistivity in a recent cluster DMFT (CDMFT) study of the Anderson lattice
model. Close to half-filling of the conduction band, this work equally reveals the lattice
coherence temperature as the single underlying energy scale [123].

Our calculated metamagnetic curves, as shown in Fig. bear notable similarity with
recent experimental data of the paramagnetic heavy-fermion system CeTiGe [104]. This is
discussed in Sec. B.7

3.5 Single-particle quantities
The analysis of the single-particle quantities is based on the observation, that the KLM has
a Fermi liquid ground state for the chosen value of conduction band filling, n. = 0.9 [12], and

for zero external magnetic field. The calculations were performed for J/t = 1.3, g¢/g. = 4,
Bt = 100 and St = 200. For these parameters, we identify two Lifshitz transitions that occur
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3. Metamagnetism and Lifshitz Transitions in Models for Heavy Fermions

at upBr1/t ~ 0.002 and at upBra/t ~ 0.01075. The latter corresponds to the metamagnetic
transition.

A Fermi liquid signature is the analyticity of the retarded self energy (k,w) around the
Fermi energy such that X (k,w) allows for a polynomial expansion. We can characterize the
Fermi liquid by the single-particle residue Z, and the effective quasiparticle mass m}/m,.
When the self energy is momentum independent, 3, (k,w) = ¥, (w), we have [60]

OReXy(w)] "
Z, = lim {1 — aw} : (3.15)
and .
Z, e 1 (3.16)

g

Alternatively, the single-particle residue may also be expressed with the Matsubara self-energy
SDMET (0,

-1 I ZDMFT jwWn,
[ZEMFT} — lim [1 i )] . (3.17)
T—0 Wn, wn=rT
In the following, we show that Eq. (3.15)) and (3.17)) are identical, i.e.
~1 DMFT
lim [1 - aReE“(w)} — lim [1 _ Im¥g (Z“’”)} : (3.18)
w—0 ow T—0 wn, J—
In general, the self-energy (w) can be decomposed as
Y(w) =Xo+ E1(w) , (3.19)

where ¥y is a constant term. Following Ref. [124], we make use of the Kramers-Kronig
relations which are applicable in case the self-energy decays at least like |w|™!,

ie. lim [¥(w)w| < 1. We then have
|w|—0

w—-w

Im; (
ReX (w) = P~ /d I, () (3.20)

On the other hand, one may write the self-energy ¥ (z), where z € C, as a Stieltjes transform
[60]:

+oo
1 Tmy
El(z):/dwml(w), (3.21)
T w—Zz

where —Im3; (w) /7 is the spectral density. Evaluating 1 (z) at the points z = iw,,, we have

+o00
Im>4 (2w, 1 Im¥ (o' x
i | TZ0n) | [ g ImE) ) ORI ) g0
wn—0 Wn, wn—0 | T w’2+w% w—0 ow
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3.5. Single-particle quantities
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Figure 3.4: Single-particle spectral function A,(k,w), measured across the metamagnetic
transition at upB/t ~ 0.01. Here, St = 200. Note that the values of the magnetic field
corresponds to the arrows in Fig. The dashed line indicates the Fermi level. The narrow
distribution of (quasiparticle) spectral weight close to the Fermi energy indicates that the
Kondo coherence remains across the metamagnetic Lifshitz transition.

The last equation is obtained from Eq. . With the help of Eq. , we see that
Eq. is fulfilled.

The quantity Im=PMFT (jw,,) across the metamagnetic transition at B = Brs is displayed
in Fig. [3.6] Evidently, the imaginary part of the Matsubara self energy is free of divergences
for both spin projections at low frequencies w, . We take this as evidence for the continuous
transition scenario.

The spectral function,

1
AO’(k7w) = _% ImGiatt(k7w) ) (323)

measures the single-particle excitations (Fig. [3.4). Here, G7 .. (k,w) is the retarded lattice
Green function (see Sec. . The analytic continuation from imaginary time dependent
QMC data has been performed with the stochastic maximum entropy method, outlined in
Sec. 24

The single-particle residues Z, [Eq. ] at 8t = 100 and St = 200 across the metam-
agnetic transition are shown in Fig. [3.5(b). Z| essentially follows the magnetization M (B)
(Fig. |3.5(a)). Ay(k,w) displays well defined quasiparticle weight across the metamagnetic
transition (Fig. and hence accounts for a metallic state. Z; vanishes for an intermediate
magnetic field range, close to Br1 < B < Byo. In this locked phase, no up-spin Fermi surface
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Figure 3.5: Low-temperature DMFT results for the magnetization M (B) (a) and the single-
particle residue Z,(B) (b), traced across the metamagnetic transition at ug B/t ~ 0.01. The
arrows in (a) refer to the single-particle spectra of Fig. Inset: static mean field results
for M(B) and Z,(B).

is present. At B = Bis, a topological change of the Fermi surface occurs since one up-spin
band crosses the Fermi level at the gamma point, (k.,k,) = (0,0). A4(k,w) shows a sharply
defined quasiparticle band just below and at B = Brs, see Fig. The fact that the residue
Z4y does not vanish exactly at B = By can be related to the finite temperature. Also, we
note that the single-particle residue is not fully converged in the intermediate field range,
even at the lowest temperatures.

In the static mean field scenario, the two Lifshitz transitions are naturally present. As
shown in the inset to Fig. the single-particle residue Z4, calculated from the mean field
coherence factors at the Fermi energy, displays the expected step-like behavior.

Furthermore, the up-spin Fermi surface forms a closed loop centered at k = (7, 7) enclos-
ing unoccupied states, i.e. the up-spin Fermi surface is hole-like. Above By, the down-spin
Fermi surface is centered at k = (0,0) and encloses occupied states, i.e. it is electron-like

(see Fig. [3.4).

The Lifshitz transition at B = Brs equally marks the transition from heavy to light
fermions which is reflected in the steep increase of Z, as the magnetic field is ramped up
further, see Fig. [3.5(b). This is in accordance with the notion of adiabatic continuity to
free fermions which is expected in the limit of high magnetic fields, i.e. weak coupling [125].
Based on the 5t = 200 DMFT results, we conclude that a continuous transition from low to
high magnetic fields occurs, at least at and above this temperature.
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Figure 3.6: The imaginary part of the DMFT Matsubara self energies Im¥, (iw, ), across
the Lifshitz transition at Bro ~ 0.01. It is important to note that the data are compatible

with a linear behavior, limOImEU (iwp) X wy, and hence with a Fermi liquid.
Wn—>

3.6 First steps beyond DMFT

As it has been derived in Sec. the DCA calculates the k-dependent self-energy
YDCA (G, K). This leads to the estimate for the residue

(224 (k)] = 2 [1 _ ImZPO (ieon, M(ky)) |

Wn wp=nT

The map function M : ky — K maps the Fermi momentum to the matching reciprocal patch.

The 4-orbital DCA measurements agree with the 2-orbital DMFT results in the limits
of strong coupling (small magnetic field) and weak coupling (large magnetic fields), see
Fig. 3.8(a). In the intermediate regime, around B = Brg, deviations are detected in the
magnetization as well as in the single-particle residues. The inclusion of spatial fluctuations
softens the transition considerably. This can be understood from the notion of an effective
Landé-factor gy which becomes lower when spatial fluctuations are present, since, on the
two-site cluster, the local moment can be quenched not only dynamically but also via local
singlet formation. The single-particle residue in the down-spin projection displays no sign of
vanishing across the metamagnetic transition (Fig. |3.8(b)).

3.7 Discussion and connection to experimental data

Lifshitz transitions are continuous quantum phase transition which do not change a symme-
try of the ground state but the Fermi surface topology. [110]. Strictly speaking, they are
defined for free fermion systems at zero temperature. Due to the unambiguous presence of
quasiparticles, the notion of Lifshitz transition can be carried over to the KLM, also at finite
temperatures. Driven by the external magnetic field, two consecutive Lifshitz transitions take
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Figure 3.7: Magnetization M (gf/ge, T/Tcon, B/Tcon), scaled with the coherence temperature
Teon(J). Similar to the DMFT results (Fig. , the data follow an universal curve. Here,
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Figure 3.8: Comparison of the two-orbital DMFT to the four-orbital DCA calculations.

Here, the k-vectors K; = (0,0) and Ky = (m, ) denote the relevant patches in reciprocal
space in the DCA calculation.
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3.7. Discussion and connection to experimental data

place, at B = Br,1 2, and the second one is identified with the metamagnetic transition. This
scenario is maintained when the f-moments are allowed to couple more strongly to the field
by altering the ratio g¢/gc.

Collective effects challenging the quasiparticle coherence seem to be of minor importance
during the metamagnetic transition, even when B ~ T,,,. Naturally, our calculation scheme
is limited to the dominantly paramagnetic regime of the KLM. The choice of parameters,
n. = 0.9 and J/t > 1.3 place our results unambiguously in the paramagnetic phase [16} 12;[17].
First steps (Fig. in a systematic DCA study of larger clusters that can take into account
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between local moments leave the
Lifshitz scenario at the metamagnetic transition invariant. This is consistent with the fact
that temporal fluctuations that generate the Kondo effect dominate the physics at the meta-
magnetic transition. Close to a critical point where the range of spatial fluctuations becomes
large our approximation will fail and another modeling will be required.

Transport signatures of the Lifshitz transition can be calculated with the Boltzmann
transport approximation. Topological changes of the bands that cross the Fermi energy can
strongly influence transport measurements, in particular when these bands are shallow. This
offers an explanation for the anomalies observed in Zeeman driven heavy-fermion systems
[115].

Compared to our results for the magnetic field dependent single-particle spectrum (see
Fig. , similar results have been obtained for the ferromagnetic phase of the Kondo lattice
model without external field terms [126]. There, the spin-dependent shift of the quasiparticle
weight is generated dynamically and leads to the notion of a spin-selective Kondo insulating
phase.

Our results are applicable to heavy-fermion compounds that have a magnetic field-driven
Lifshitz transition at the coherence scale.

The materials CeTiGe [104] and CeRugSip [97; [127] have a metamagnetic transition at
magnetic energy scales that are consistent with their estimated coherence temperatures. In
our model, the critical metamagnetic field corresponds to the second Lifshitz transition at
Brs. In this mechanism of competing energy scales we expect that the details of the band
structure are of secondary importance. This is in contrast to Lifshitz transitions at magnetic
fields much below the coherence scale where the details of the band structure are essential
[115].

The metamagnetic signatures of our model (Fig. are similar to recent experimental
data of the paramagnetic 4f-based compound CeTiGe which exhibits a pronounced first-order
metamagnetic transition [104]. In order to estimate the g-factor, we consider

Teoh = gruBB . (3.24)

The anticipated coherence scale, T.on =~ 55 K, is of the same order as the critical magnetic
field of poBr2 = 12.5 T, assuming in our model a g-factor gy ~ 7.

Equally, at lower fields, the magnetization is found to slightly change its slope, which
might correspond to a first Lifshitz transition which in our model happens at Bp;. The
experimentally observed distinct drop of the effective quasiparticle mass is in accordance with
our findings for the KLM (see Sec. . Importantly, we find the metamagnetic transition to
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3. Metamagnetism and Lifshitz Transitions in Models for Heavy Fermions

be continuous both in the two-orbital DMFT and in the four-orbital DCA calculations and
on the temperature scales we can access.

CeRugSis exhibits a continuous metamagnetic transition and simultaneously a Zeeman-
driven topology change of the Fermi surface [97; 98]. The magnetization increases seemingly
linear as the magnetic field is increased towards the metamagnetic field [I127]. The critical
field poBra = 7.8 T matches the coherence temperature of T, =~ 20 K [97; [127] when the
g-factor in our model is assumed to be gy ~ 4. A Lifshitz transition at the coherence scale is
therefore a plausible scenario for the metamagnetic transition in CeRusSis.

3.8 Conclusions

We have explored the Zeeman driven metamagnetic transition in the Kondo lattice model
which is considered to be the paradigmatic low energy model for heavy-fermion systems.
Results for the paramagnetic metallic phase of the KLM are obtained in the framework of
DMFT/DCA which can exactly account for the Kondo effect.

Upon scaling the relevant energy scales with the lattice coherence scale the collapse of the
magnetization data to a universal curve is observed, independent of the Kondo interaction (see
Sec. This data collapse has been confirmed for a range of Kondo couplings, temperatures
and ratios of Landé factors. The pseudo spin nature of the f-orbitals, resulting from a Kramers
doublet, can be taken in account with an effective Landé factor g; and the competition of
magnetic scale and coherence scale is invariant on the choice of gy.

Using the DMFT (Sec. and the DCA (Sec. , we have traced the single-particle
residue from low to high magnetic fields and we report that it is continuous at the lowest
temperatures our simulations can access. Two consecutive Lifshitz transitions occur as the
field is ramped up and cause the change in topology of the spin-projected Fermi surfaces.
This lead us to the finding that the metamagnetic transition in the KLM is coincident with
a continuous Lifshitz transition. The absence of a singularity in the single-particle residue at
the metamagnetic transition excludes the Kondo breakdown scenario.

At the temperature scale we can access, the sharp increase of magnetization at the meta-
magnetic transition can well be explained as a consequence of a continuous Lifshitz transition
in heavy-fermion model systems where the Landé factor of the local spins is larger than the
one for the itinerant electrons. In the course of this transition the excitations change their
character from heavy fermions to light fermions.

The recently observed first order nature [I04] of the metamagnetic phase transition at a
temperature T' < T.on remains an open issue. Of particular importance is understanding if
the KLM itself can account for the low temperature first order nature of the transition or
if other competing energy scales such as coupling to the lattice [I28] have to be taken into
consideration.
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m Hluxes in correlated topological
insulators

This chapter begins with a review of the concept of magnetic fluxes which are inserted
into a quantum spin Hall insulator, followed by results for the Kane-Mele-Hubbard model
on the honeycomb lattice augmented by two magnetic m fluxes. The quantum Hall state
leaves a distinct fingerprint on a 7 flux, in the sense that a separation of spin and charge
degrees of freedom occurs. This observation allows us to define a numerical measurement
for the interacting many-electron system, which counts the number of (static) 7 fluxes in
the system. Thereby, we obtain a topological observable which can diagnose the topological
Z5 index, even in a correlated system and without resorting to the boundary of the system
[37; 138].

4.1 7« flux insertion on a lattice

A flux ¢ which originates from an arbitrary external magnetic field B(r) is defined as ¢ =
Js B(r)dS and can be implemented in the lattice Hamiltonian in terms of a non-uniform
vector potential. The vector potential occurs in the Peierls phase factors 7; ; that multiply

the hopping amplitudes t; j, i.e. t;; =t 7;; = t exp[—i27/¢g fij A(l)dl], where ¢ = % A
7 flux is defined as ¢ = ¢9/2 = 7 in units of h = e = ¢ = 1. Inserting an external flux of
7 in a given unit cell amounts to distributing the phase factors 7; ; in such a way that their

product along every closed contour around the plaquette is
TijTik  Ts=—1. (4.1)

In general, choosing a gauge to represent a given magnetic field on a lattice geometry and
determining the Peierls phase factors is not an easy task. However, for a localized m flux we
may always choose a gauge where the Peierls phase factors are just 7; ; = £1. In a periodic
system, fluxes can only be inserted in pairs (Fig. . Fach hopping process from 2 to j that
crosses the connecting line of a flux pair acquires a phase 7; ; = —1, which fixes the position of
both fluxes according to Eq. . In general, there is no one-to-one correspondence between
the flux positions and the set of 7; ;, i.e., one eventually has to make a gauge choice.

One realizes that the configuration {7; ;} forms one state of the Hilbert space of a Z
lattice gauge theory [129]. If one considers only the 7; ; variables defined on the links of the
lattice, the loop defines the Zs flux F; through the loop which encloses the plaquette
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4. w fluxes in correlated topological insulators

Figure 4.1: Definition of a 7 flux on a lattice. On a periodic lattice, 7w fluxes necessarily come
in pairs. The location of the fluxes are determined by the ends of a string (blue line). The
string (branch cut) is defined by demanding that each hopping process crossing it acquires a
phase €™, i.e. reverses its sign. The overlap between these states is exponentially suppressed
when they are inserted at the maximal distance of L/2 on a tours geometry.

¢ and can take the values +1. The fluxes F; are not independent, and on a torus geometry,
one has the constraint
[[Fi=1. (4.2)
i

Therefore, non-trivial Z fluxes have to come in even numbers, i.e. in pairs [I129]. The
Hamiltonian for the Zs lattice gauge theory describes the dynamics of link variables, whereas
we focus on a static configuration {7; j} which defines the number and the position of the 7
flux insertions.

Alternatively, a m flux can be thought of as originating from an external, time-reversal
symmetry preserving magnetic field of the form

Byi(r)=md(r —r;) (e, . (4.3)

r; denotes the center of the lattice unit cell, for example a honeycomb plaquette. The flux is

then given by

Pt = /OB:E(’I')dS =+ = :I:% , (4.4)

where the last equality holds in units of A = e = ¢ = 1. When the flux takes the value ¢ = n,
where n € Z, and when the flux is constrained to a single honeycomb plaquette it leaves the
system time reversal invariant. The first condition follows from time reversal invariance which
demands that the Aharonov-Bohm phase e~*® experienced by electrons encircling the flux
insertion satisfies e~ = 1. The constraint of localized fluxes furthermore guarantees that
every possible path on the lattice leads to a Aharonov-Bohm phase of e™""™ = +1.

4.1.1 Low-energy theory of 7 flux states

Once we have created a setup with two 7 fluxes as in Fig. [4.1] we have actually perturbed the
lattice by two defects that occur at the endpoints of the string. The line itself is invisible in
the eigenvalue spectrum since every closed contour on the lattice which excludes the endpoints
intersects the defining line an even number of times. If we now consider a Hamiltonian of
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4.1. 7 flux insertion on a lattice

free electrons possessing a band structure with a non-trivial topological quantum number, for
example the Kane-Mele model [22; 23] or the BHZ model [24] these defects will locally change
the hopping integrals, according to Fig. and they will become visible in the band gap of
the insulator as Jackiw-Rebbi solitons [130;[37]. A point-defect in two spatial dimensions can
be represented as a Jackiw-Rebbi soliton.

A very intuitive picture for the appearance of these in-gap modes has been given in
Ref. [131] by considering the edge states on a boundary which is reconnected with a twist.
Thereby, one can establish a connection between 7 flux insertions and topological defects.
For the purpose of clarity, let us deform the string which defines the phase shift of 7 of the
participating bonds in Fig. to a rectilinear string. On a periodic lattice, we can interpret
the string as being one segment of an imaginary line which cuts the lattice along one of its
dimensions. Having this cut is equivalent to starting from the model on a cylinder geometry
and reconnecting the two edge with bonds that have a phase shift along the string. The
low-energy theory for the "edge” as defined above is given by a Dirac Hamiltonian with a
mass term:

,Hedge = /dx‘I’T(x)Hedge(_iam)\I’(x) ’ (4'5)
where WT(z) = (R(x), LT(x)) is the spinor of right and left moving chiral fields and
Heqge(—10,) = —iv0;0, + m(x)oy . (4.6)

Importantly, the mass m(x) has acquired a spatial dependence and changes at the endpoints
of the string, i.e. at the topological defects. This is in contrast to a situation where the edge
is reconnected with uniform bonds, leading to a constant mass term in Eq. as for bulk
fermions. According to Refs. [131; 130} [132], each soliton contributes one localized, electronic
zero mode per spin to the eigenvalue spectrum of the Hamiltonian. The occupation of one
mode leads to an excess or a deficit of half a charge, and therefore the four possibilities to
occupy both levels have the quantum numbers given in Fig.

It is important to note, that these in-gap modes are fermionic and not Majorana fermion
modes [37]. Their appearance at zero energy is a consequence of the particle-hole symmetry
of the lattice Hamiltonian. In the Kane-Mele model (Sec. , the in-gap modes move
to higher energies when a Rashba spin-orbit coupling is present. This term simultaneously
breaks the particle-hole symmetry and the U(1) spin symmetry.

4.1.2 Quantum numbers and spin-charge separation

The two in-gap modes that are induced by one 7 flux in a spinful model can either be singly
or doubly occupied. In the former case, the two in-gap modes constitute a soliton with spin
quantum number S* = +1/2 but no charge whereas in the latter case, the soliton has a
fermion number of ¢ = +e but no spin (Fig. . The soliton state therefore is a realization
of spin-charge separation in two spatial dimension. The concept of spin-charge separation
as a fingerprint of the quantum spin Hall state on a 7 flux has been introduced in 2008, by
Y. Ran, A. Vishwanath and D.-H. Lee [37] and by X.-L. Qi and S.-C. Zhang [38].
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4. w fluxes in correlated topological insulators

spin fluxons (E = E™)  charge fluxons (E*, E7)
1) ) H P
@

VvV VvV
A A A A

q=0, S*=+1 ¢=0, 5*=-1 g=+e, S*=0 gq=—e, S*=0

energy F

Figure 4.2: In a quantum spin Hall insulator, each flux represents a soliton leading to two
localized modes (one per spin) in the band gap of the spectrum. The two modes can be
occupied in four different ways which are labelled by the quantum numbers ¢ and S?. Two
of the states form a Kramers pair of spin fluxons | 1) and | }) with degenerate energies E'+.
The other two states are a doublet of charge fluxons |+) and |—) with energies ET and E~.

Figure 4.3: Sketch of a flux threading a hexagon. During the adiabatic increase of the flux
¢ (t), charge or spin is pumped towards the hexagonal ring. Charge is pumped for ¢4(t) =
—¢(t) whereas spin is pumped for ¢4(t) = ¢,(t). Naturally, this leads to a corresponding
deficit of charge or spin which is either compensated by a second flux (periodic boundary
conditions) or the lattice boundary (open boundary conditions).

The following gedankenexperiment [133}38] of adiabatically switching on a time-dependent
flux ¢4 (t) is closely related to the Laughlin argument for the transfer of charge from one edge
of an integer quantum Hall sample to the other edge as a function of an external flux [134;[135].

Let us consider a time-reversal symmetric quantum spin Hall insulator which additionally
has a U(1) spin symmetry. Then, the conductivity tensor can be labelled by a spin index o:

o o 2
o_ (0% 0%y ) _ 0 ove®/h
g < ogr Oy ) < —ove?/h 0 ’ (4.7)

where v € Z. A magnetic field B,(x,t) = B,(t)0(x — xg) generates a magnetic flux ¢, (t)
piercing the plane (Fig. [4.3)). Faraday’s law induces a tangential electric field E,(x,t), via
V X Es(x,t) = —1/c 0By (x,t)/0t. The electric field is proportional to a radial current in a
quantum Hall system, since the longitudinal components vanish in Eq. :

Jo(x,t) = 07, (Es(x,t) X 2) . (4.8)
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4.2. Kane-Mele-Hubbard model with w flux insertions

The radial current j,(x,t) accumulates per spin sector a charge @Q,(x,t) in the center. We

have
d 3 0 3 : A
&QU(:c,t) = /d ccatpo(w,t)——/d ZIZV'jg({IZ,t)_—/dS s - Jo (1)
ov
=~ fatiedo @00 = ~%, § Balo.t)-do = 2 000) . (19)
- TLC .70' T b - ny g w7 T = c dt o . .

c

Integration fol dt on both sides gives

bo(1)
o

AQy = Qu(1) = Qol0) = 72X [65(1) = 65 (0)] = ove (4.10)
where we assumed that ¢,(0) = 0.

In the following, we assume that both fluxes ¢, (1) will take the values +, independently
of each other, i.e. ¢1(1) = £¢0/2 (¢ (1) = £¢0/2). The accumulated charge is then AQy =
+v§ (AQ, = Fv§). The charge quantum number AQ and the spin quantum number AS*
of the soliton, which is the composite object of the up- and the down-spin mode, are defined
as

AQ = AQ;+AQ, =+ve,0,

1 1
AS* = o (AQr—AQy) =0,%v; . (4.11)

The flux pumping process therefore leads to four different final states, labelled by their
quantum numbers : the chargeon (4) and the holon (—) states, {AQ = +ve, AS* = 0},
and the spinon states, {AQ = 0, AS* = +v1/2}. This line of reasoning still holds in the
presence of interactions and disorder but relies on Ug(1) symmetry. When this symmetry is
not present, one can classify the final states by Kramers theorem for time-reversal invariant
systems. One has a pair of generalized charge fluxons, that carry an odd number of electric
charge, are even under time reversal and form a Kramers singlet. The generalized spin fluxons
carry no charge and are odd under time reversal. They form a Kramers doublet. Accordingly,
the authors of Ref. [38] defined the topological Z5 index by the integer number of charges N
pumped towards the flux insertion in the adiabatic process, where an even (odd) number Np
signifies a (non-) trivial state. We refer the reader to the discussion in Ref. [3§].

4.2 Kane-Mele-Hubbard model with 7 flux insertions

The KM model describes electrons on the honeycomb lattice with nearest-neighbor
hopping and spin-orbit coupling [22] (see Sec. . Here we focus on the U(1) spin sym-
metric case, i.e. set the Rashba term to zero. As discussed in the previous section, the 7 flux
insertion amounts to impose a certain, gauge-dependent sign structure {Ti’j} on the hopping
processes of the Hamiltonian. The flux-augmented KM model is given by

Ho=— > tlig)cie; +i Y AGg)civijouc; (4.12)
(4.3) ((.9))
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4. w fluxes in correlated topological insulators

where ¢(2, 5) = t7; j and A(¢,7) = A7 4. Accordingly, the KMH model with flux insertions is
H="Ho+Hu, (4.13)

using the definition (1.17) of the Hubbard term.

4.2.1 Observables

We proceed by considering the uniform (g = 0) and static (w = 0) spin and charge suscepti-
bilities. The imaginary-time susceptibility can be defined as the correlation function

2
) = Y [(S5(1)85(0) — (5085 (4.14)
a,b=1

where a@ = {0, 2} and in this notation, the total charge operator is Sga = N4iq. The sum
is over the orbital indices a,b = {1,2} and 7 indicates the unit cells. We have gfa =

(1/2) 3, 08! éio and frjq = 3, & ¢i45. Note that in Eq. (4.14),
S2) = 0, (4.15)
D (SIS = 4aN?, (4.16)

due to the spin rotational symmetry and due to (fi;,) = 1 at half-filling. N = L? is the
number of unit cells. The Fourier transform is

B
1 e
cha(iwn) _ /dTezwnTN Ze—l(z—J)qX%Q(T) , (4.17)
0 7:7.7
where w,, = 2mn/f are the bosonic Matsubara frequencies. To monitor the charge and spin

degrees of freedom, induced by the 7 flux insertions, we use the unnormalized uniform static
charge and magnetic susceptibilities defined as

Xe = N xxolo(iw, =0)
B
= /dTZX%(-)( /dT|:Z Z 0)) — 4N?
i, 44 ap=1
= {Z Z S5 5%) 4N2], (4.18)
%, a,b=1
Xs = AN xxgZ O(uun:())
= ANBY. Z 55255 - (4.19)
1,7 a,b=1
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4.3. Thermodynamic signature of m fluxes

The factor of 4 in x; is a convention. To obtain the final result, we used [#,Y"; 9] = 0 and
(H,> S’f] = 0. Therefore, the evaluation of the susceptibilities amounts to calculating the

equal-time correlation functions, Eq. (4.18]) and Eq. (4.19).
In the non-interacting case, we can readily evaluate the correlation functions. We have,

for Ag # 0O:

B
o= / ar S (83(r)83(0))
0

2 eﬂ(En_Em) _ 1

B L= I(E)] (420

o Uh wUsn

n,m ' x=(1,0)

where f(E,) is the Fermi function and the unitary matrix U diagonalizes the Hamilton matrix
H of Eq. , ie. H=UEU' and E = diag(Ey,--- , E,) is the matrix of eigenvalues. In
the absence of Rashba coupling, the model is diagonal in the spin indices ¢ and one
obtains the simplified expression

X* = gz [1+ cosh(BE, )] " . (4.21)

4.3 Thermodynamic signature of m fluxes

The low-energy Hilbert space of the KM model (w < Ag,) augmented by a pair of 7 fluxes
contains the four states | 1), | 1), |[+), |—) which are doubly degenerate (to exponential
accuracy). Furthermore, they are exponentially localized and the localization length is set
by the bulk energy gap Ag,. At least, this statement holds for the here considered values of
A/t. For a detailed discussion of the localization length of = fluxes in the Kane-Mele model,
we refer the reader to Ref. [136]. The effective low-energy Hamiltonian of a single 7w flux
insertion is

H= > Eln)n|. (4.22)

n:+7_7T7~L
For this model, the spin (xs) and charge (x.) susceptibility,
xo =48 (5% = (52?] , xe = B[(W)%) — ()] , (4.23)
are
Xs = Xe = B/2, (4.24)

where 5 = 1/kgT. In the absence of Rashba coupling, the Curie law for x, directly follows
from the quantized Hall conductivity which leads to the definition of the spin quantum
numbers , with v = 1 for the KM model. Repulsive electronic interactions are expected
to gap out the charge states |+), thereby reducing the low-energy Hilbert space. At U/t > 0,
we therefore expect, for a single 7 flux insertion:

Xs =10 (4.25)
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4. w fluxes in correlated topological insulators

The spin susceptibility counts the number N of spin 7 fluxes in the lattice. This is similar
to the prediction of a Curie law in polyacetylene which counts the number of topological
excitations [I132]. Figure shows the non-interacting spin susceptibility, for the case of
increased values of the flux density and for the case of additional Rashba coupling. In
the latter case, S* is non conserved but for small and intermediate values of the Rashba
coupling (Ag ~ M), the Curie law is approximately reproduced at low temperatures. The

10000 1000
1000 N
100 | O
+ +~
%100 3
= =
0, Mr=0—— !
Mft =0l —— ¥
10 Ap/t=02 —— N
Ar/t = 0.4 N
1/kgT —— - N
1 1 I I ol
0.001 0.01 0.1 1 10 0.001  0.01 0.1 1 10
kpT/t KT/t

(a) (b)

Figure 4.4: Non-interacting spin susceptibility measurements. (a) Spin susceptibilities the
Kane-Mele model on a lattice of Ny = 1152 honeycomb plaquettes, augmented with N,
evenly spaced 7 fluxes. At low temperatures the susceptibility follows a Curie law f(T) =
Nz (1/2kpT) (dashed lines) in a given temperature range, except for the case of a dense fluxon
lattice (N; = 2 x 576) where N = Ny.. The downward turn at lower temperatures defines
the energy scale of the overlap integral between neighboring flux states. (b) Dependence of
the spin susceptibility on the value of Rashba coupling on an 18 x 18 lattice, augmented with
a pair of 7 fluxes at the maximal distance. Up to Ag/t ~ 0.2, the Curie law is reproduced
to a good approximation. Note that the chemical potential has been adjusted to retain a
half-filled band at finite values of Ag. Here, A/t = 0.2.

spin and charge susceptibilities, measured in the KMH model , are shown in Fig. [4.5
At U/t = 4, the low-temperature spin susceptibility follows a Curie law xs; = 2/, whereas
the charge susceptibility vanishes exponentially. This is in accordance with the gapping
out of the charge fluxons at low temperatures [see Eq. ] The lowest temperature we
have simulated is T' = 0.0125¢. When T — 0, we expect the spin susceptibility to vanish
exponentially due to the formation of a singlet state between the spin 7 fluxes.
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4.4. Use of m fluxes as a topological observable in a correlated QSHI

100 |

10

Xs.e/t

0.01 0.1 1

Figure 4.5: Spin and charge susceptibilities of the interacting Kane-Mele-Hubbard model,
augmented with two maximally separated 7 fluxes. For the temperatures shown in the figure
and below the temperature scale of 7'/t ~ 0.1, the two spin fluxons act as non-interacting,
localized spin 1/2 moments. The charge susceptibility vanishes exponentially. Here, L x L =
12 x 12 and A/t = 0.2 (Ag = 0).

4.4 Use of m fluxes as a topological observable in a correlated
QSHI

We now turn to the Kane-Mele Hubbard model , augmented with a pair of 7 fluxes, to
consider the effect of electronic interactions. Its phase diagram and the magnetic transition
from a paramagnetic to an antiferromagnetic phase with transverse (XY) order is discussed in
Sec. As discussed earlier, the interacting phase is assumed to be adiabatically connected
to the non-interacting QSHI phase, as long as time reversal symmetry is preserved. We use
this model and its phase transition as a test case for the use of 7 fluxes to probe the topological
non-trivial state. We expect that the spin susceptibility measured for increasing values of the
Hubbard interaction reflects the phase transitions to the magnetic phase. The model
is solved using the PQMC method for 7' = 0 quantities (see Sec. and the FTQMC
method for measurements at finite temperatures (see Sec. 2.1.5).

We consider the dynamical spin structure factor for each lattice site. Analog to the finite
temperature result of Sec. we readily obtain the expression at T' = 0:

§%(4,w) = 21 > [(n|SF10) 8w — Ay) (4.26)

where F, and |n) are the eigenenergies and the eigenstates of the KMH model . To
simplify the notation, ¢ is used here as a combined index which included the orbitals of the
unit cell. The energy A,, = F, — Fy measures the energy above the ground state energy.
This quantity measures the spectrum of spin excitations at site ¢. To obtain a real-space map
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4. w fluxes in correlated topological insulators

Topological insulator (U/t = 4) So(i) [t-1]
Q

'10_1

Antiferromagnet (U/t = 6)

Figure 4.6: The zero-temperature energy-integrated dynamical spin structure factor Sq(%)
of the Kane-Mele-Hubbard model, augmented with a pair of 7 fluxes on a 9 x 9 lattice. At
U/t = 4, the presence of spin fluxons leads to the accumulation of spectral weight which is
sharply localized on the flux-threaded plaquette. At U/t = 6, the flat distribution of spectral
weight is consistent with the absence of spin fluxon states.

of the spin excitations, one may use the integrated quantity S& (i), where

Q

S (i) = / dwS™ (i, w) , (4.27)
0

and 0 < Q < Ag. Naturally, the cutoff €2 is ill-defined, but as long as it takes a value smaller
than the spin gap Ay, we observed that S&(¢) showed only small quantitative differences for
different values of Q2. We calculated this quantity within the correlated QSHI phase (U/t = 4)
and well within the magnetic phase (U/t = 6) , see Fig. In the former case, the integrated
low-energy spectral weight at the flux-threaded hexagons is approximately three orders of
magnitude larger than its average values on the sites that are further away from the fluxes.
In the latter case, the very concept of flux states breaks down since time reversal symmetry
is spontaneously broken and consequently we observe a rather flat distribution of spectral
weight across the lattice.

The spin susceptibility detects the presence of flux insertions at U/t > 0 in form of a
low-temperature Curie law. As explained in Sec. each flux insertion now contributes a
factor of 1/kpT to the susceptibility. Figure shows the spin susceptibilities for increasing
values of U/t and for lattice sizes of linear length L = 9 and L = 12. At U/t = 4, the low-
temperature behavior of x(7") follows a Curie law for both lattice sizes [Fig. [4.7(a)]. The
Curie law sets in at kpT/t ~ 0.2Ag, i.e. at a scale set by the spin gap. Charge excitations
are exponentially suppressed on approximately the same scale [see x.(T) in Fig. [£.7(a)]. On
the other hand, at U/t = 6, the low-energy excitations of the plain KMH model are spin
waves. We interpret the almost temperature independent behavior of the low-temperature
spin susceptibility of the flux-augmented model [Fig. (d)] to measure essentially the density
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4.5. Interaction between spin fluxons
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Figure 4.7: Spin (xs) and charge (x.) susceptibility of the Kane-Mele-Hubbard model, aug-
mented with a pair of m fluxes placed at the maximal distance on L x L lattices. Within the
QSHI phase (U/t = 4,5,5.5), we can identify an energy scale (indicated by arrows) below
which the spin susceptibility follows a Curie law. This energy scale is set by the spin gap and
we estimate it to be around 0.2A;. On the largest lattices (L = 15,18) a Curie law of the
form xs = 2/(kpT) is clearly present in the QSHI phase. In the AFMI phase (U/t = 6), the
low-temperature behavior of the spin susceptibility is only weakly temperature dependent
and its extrapolated value to T' = 0 reflects the density of spin-wave excitations.

of these magnetic excitations, since spin fluxons are no longer defined in the magnetic phase.
As the Hubbard interaction approaches the phase boundary, marked deviations of the Curie
law occur in the form of a downward turn at low temperatures [Fig. 4.7(b),(c)]. This is an
effect of the spin fluxon—spin fluxon interaction which is discussed in the following section.

4.5 Interaction between spin fluxons

Interaction effects between spin fluxons lead to deviations from the non-interacting low-
temperature form of the spin susceptibility [see Fig. [1.7(b),(c) and Fig. [£.8]. The onset of
the deviation from the Curie law determines the energy scale of the interaction. This energy
scale gets larger with increasing U/t when the system is close to the magnetic phase transition
[Fig. [4.8]. Therefore, the Hubbard interaction tunes the interaction strength between spin
fluxons. Furthermore, this interaction has a finite range which also increases when the phase
boundary is approached. The effect of the increasing interaction range is shown in Fig.
(b),(c). The phase transition in the KMH model is a condensation of magnetic excitons
which are collective spin excitations. The magnetic excitons are initially gapped and lie in
the transverse (XY) plane. They evolve into the gapless Goldstone modes of the magnetic
state. We propose that, for Hubbard interactions below U, /t, the spin fluxon-spin fluxon
interaction is mediated by the exchange of magnetic excitons. We make a phenomenological
ansatz and write down the part S;_, of the effective action which describes this interaction:

B B

Srm = —g° Z /dT/dT’ (SE(r, 1) D°(r — 7,7 —7)S; (', 7') + Hel] | (4.28)
TE 0 0
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Figure 4.8: Spin susceptibility of the Kane-Mele-Hubbard model, augmented with a pair
of 7 fluxes place at a distance of two lattice spacings (inset). An increase of the Hubbard
interaction U/t leads to an increase in the spin fluxon—spin fluxon interaction. This is visible
in the low-temperature deviations of the spin susceptibility from the Curie law which is based
on non-interacting spin fluxons. Here, A/t = 0.2, Ag = 0 and L = 9. The inset shows the
local energy-integrated spin-structure factor Sq(i) at U/t = 4.

where the exciton propagator is approximated by its non-interacting form, the free bosonic
Green function D°(r — v/, 7 — 7). ST are spin-flip operators that act on the spin fluxons.

In the following, we derive the low-energy limit of D°(r — ', 7 — 7’). The bosonic Mat-
subara Green function for free bosons is

D(q,7) = —(T'Aq(r)AL(0)) , (4.29)
where the expectation value is defined with respect to the bosonic Hamiltonian

Ho=> wgblby (4.30)
q

which describes the collective spin mode. The dispersion relation wq is

o= VTl QP A= A (14 5sla - QF) +0a-QFY) . (43)

where v, is the spin velocity and @ is the wave vector of magnetic order. Therefore, the min-
imal exciton energy is given by the spin gap, wg = As. The bosonic operator A4 annihilates
a bosonic mode at g either by the action of bq or by the action of biq:

Ag=bg+ b1, (4.32)
Using the imaginary time dependence, A4(1) = e™0 Age~""0 and <3£1T)B(_TZZ> = 0 one obtains
D%q,T) 20 _emwaT _ 2ngcosh(wqT)
e—waT ewaT

= T T (4.33)
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where ng = (e’¥a — 1)~ We consider ﬁlim D°(q,7) = —e~waT We define the real-space
—00

propagator D%(r, 1),

Drr) = [dqeTne.n

Booo /d2q L
2

2
Vs 12
-LHQ _igr / d*q’ e"q"’efT(Ashgsq )

— —r ie’iQ'l"efTAse_Tﬂ gfig 7 (4.34)
VsT

where the last line follows after completing the square and evaluating the Gaussian integrals.
In Eq. , the term e’@" determines the sign of the interaction. The spin gap A, de-
termines the decay at large imaginary times. The absolute value of D%(r,7) increases as
A4 decreases and at the same time, the interaction range of D°(r,7) increases. Since Ay is
a monotonic decreasing function of U/t, the Hubbard interaction effectively tunes strength
and range of the spin fluxon — spin fluxon interaction. At U = U,, the spin gap is zero and
the interaction range diverges. Using this phenomenological model, we can explain the spin
susceptibility data [Fig. [4.7(b),(c) and Fig. [4.8]. when U/t approaches the critical value. The
temperature where the data start to deviate from the Curie law is a tunable correlation-
induced energy scale. The spin fluxon—spin fluxon interaction below this energy scale is
mediated by the exchange of the collective spin excitations of the host systems, i.e. by the
gapful magnetic excitations of the Kane-Mele-Hubbard model in the paramagnetic phase.

4.6 Conclusions

In quantum spin Hall insulators, 7 flux insertions represent topological defects (see Sec. .
In this chapter, we have shown that they can be used as a universal probe for the topological
Z5 index in the presence of electronic correlations, following a proposal in Ref. [37]. The
response to a m flux insertion is read out by a bulk measurement (Sec. . Therefore, this
method does not suffer from severe finite size effects as it is the case for edge states of quantum
spin Hall insulators. Furthermore, the method does not rely on adiabatic connection to a
non-interacting QSHI. We observe a Curie behavior of the low-temperature spin-susceptibility
which signals the presence of spin fluxon states in the bulk gap (Sec. The presence of
spin fluxons can in turn be uniquely attributed to a non-trivial topological bulk. In the
Us(1) symmetric case, the observed Curie law directly follows from the quantized (spin) Hall
conductivity oz, of the non-interacting model.

Additionally, in Sec. we have presented results for the interaction between neighboring
spin fluxons which one can understand, on a phenomenological level, as an exchange of
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4. w fluxes in correlated topological insulators

magnetic excitons that are present in the host system. Interaction effects play a crucial role
in the study of interacting spin fluxon system (see Ch. .

It is important to note that the m flux-augmented Kane-Mele-Hubbard model can be
solved with quantum Monte Carlo methods without additional cost. The 7w flux insertions
leave the relevant symmetries of the model invariant. For Monte Carlo calculations it is
noteworthy that 7 flux insertions do not create a sign problem. In principle, 7 flux insertions
can be used in any model for a QSHI.

Apart from its application as a numerical tool, m fluxes may also be experimentally
realized. A strongly correlated topological insulator on the honeycomb lattice may emerge
from NasIrOs [I37] or with molecular graphene [I38]. According to the proposal in Ref. [3§],
7 fluxes can potentially be created in a QSHI by means of an adjacent superconductor and a
magnetic field. This realization obviously breaks time reversal symmetry and it is therefore
crucial to keep the flux states localized, in order to exponentially suppress the induced level
splitting. Naturally, the fact that the diameter of the flux-threaded area is typically larger
than the lattice constant, is an obstacle to the experimental realization. One can generalize
this idea to arrays of fluxes using Abrikosov lattices. Alternatively, m fluxes may be realized
using SQUIDSs.

Recent proposals that are relevant for the experimental realization of 7 fluxes as a probe of
the topological index include artificial semiconductor honeycomb structures [I139], cold atoms
in optical lattices [I40] and cold atoms on chips [I41]. Furthermore, dislocations [142} B9] or
wedge disclinations [40] in crystals can also give rise to m flux states.

Finally, the concept of 7 flux insertions in a two-dimensional lattice carries over to three-
dimensional topological insulators [37; [143].
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7 Hux based quantum spin models

The local moments which arise from 7 fluxes and the freedom to arrange them in arbitrary
geometries which are only limited by the underlying lattice provide us with the possibility to
build quantum spin-1/2 models. Furthermore, the magnetic excitations of the host quantum
spin Hall insulator can be used to change the range of the spin fluxon—spin fluxon interactions.
In this chapter, several realizations of spin models are discussed. The main focus is on the
one-dimensional chain of spin fluxons which can be directly compared to the one-dimensional
Heisenberg XXZ model.

5.1 Cluster of three spins

An interesting extension of the insertion of two m fluxes (Sec. is the cluster of four m
fluxes. Three of them are placed on the corners of an equidistant triangle and the fourth
is placed at a larger distance away from the cluster (see inset in Fig. . Thereby, we
have introduced two characteristic length scales in the systems. Since the range of the spin
fluxon—spin fluxon interaction depends on temperature, we expect the spin susceptibility to
reflect both length scales once the temperature is below the energy scale of the bulk system.
Figure shows the spin susceptibility [Eq. which follows two Curie laws. The "high”
temperature Curie law x5 = 4/kpT is the response to the four non-interacting spin fluxons of
the cluster. The "low” temperature Curie law x; = 2/kgT is generated by the far separated
spin fluxon and by an effective spin-1/2 from the remaining triangle of three spin fluxons.

In the following, we explain the low temperature susceptibility results by deriving the
ground state of a cluster of three spins. We make an ansatz in form of an anisotropic
Heisenberg model:

3 3
M= 30885+ 50> (5755, + 5785, (5.1)
i=1

i=1
This ansatz is motivated by the effective interaction between spin fluxons which we assume
to be anisotropic and to be predominantly in the zy-plane [see Eq. (4.28))], i.e. J; > J,. The
combined Hilbert space of the system is given by the tensor product of the three spin-1/2
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Figure 5.1: Spin susceptibility of the Kane-Mele Hubbard model, augmented with four = flux
insertions. The parameters are U/t = 4 and A/t = 0.2. At low temperature, the susceptibility
follows a Curie law x5 = 4/kpT, corresponding to the four independent spin fluxons localized
at the flux insertions. At even lower temperatures, the susceptibility follows a Curie law
Xs = 2/kpT corresponding to two effective spin-1/2 degrees of freedom. The inset shows the
integrated local dynamic spin structure factor S&*(¢) for L = 15.

representations of SU(2). Applying the rule for fusing two representations of spin operators,

|s1+s2]
(51) ® (s2) = Z (s) (5.2)
s=|s1—s2]|
we have
(1/2) ® (1/2) ® (1/2) = [(0) & (1)] ® (1/2) = (1/2) & (1/2) & (3/2) . (5.3)

The spin systems can therefore be decomposed into two linear independent spin 1/2 repre-
sentations and one spin 3/2 representation. The eight states are six s = +1/2 states and two
s = +3/2 states. We proceed by setting up the Hamiltonian H’ which describes the spin 1/2
subspace of the combined Hilbert space. The six states are

i) = fibit1hit2t)

where i = 1,2, 3 and periodic boundary conditions are assumed. Applying Hamiltonian (5.1
to the states (b.4)), one obtains

3 3
p_ 1 L\ 1 i » .
H = 4Jz ZEI lit) (i £ | + 2JJ_ ;1 []z:t><z+1:|:|+\z+1:t><zj:| . (5.5)
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By introducing the Fourier decomposition |i+) = (1/v/3) Y, ei**|k+) with k = 27n/L =
0,+27/3, one has

1Y — Z |ka) (kal [ — % + Jy cos(ka)| , (5.6)
k,a=+
and we set the lattice spacing a = 1 in the following. For J, = 0, the ground state of Eq. (5.6))
is:

J1 <0 : |gs) =|k=0x),with Egs = —|J |,
2 J
JL>0 ¢ |gs) = |k = i%ﬁ ,with Eg, = _f . (5.7)
The uniform ground state |k = 04) is two-fold degenerate and |k = +2T+) defines a chiral
ground state which is four-fold degenerate. In principle, the ground state degeneracy can be
obtained by measuring the entropy S(7') of the flux-augmented Kane-Mele-Hubbard model.
Using Eq. one can then deduce the sign of the exchange coupling constant J, . However,
this is a demanding task in numerical simulations since it requires to measure extensive
quantities, i.e. the temperature-dependent energy, to a high accuracy.

5.2 The one-dimensional m flux chain

The overlap of the well-localized wave functions attributed to the 7w fluxes can be quantified
in terms of a hopping integral. Then, we expect a lattice arrangement of fluxes to have
the eigenvalue spectrum of a tight-binding Hamiltonian, with dominant nearest-neighbor
hopping terms. Naturally, one has to suppose that bulk lattice and flux lattice single-particle
excitations are well separated in energy, or in other words, the bandwidth of the flux lattice
has to fit in the band gap of the quantum spin Hall insulator.

We first test this idea by considering the Kane-Mele model on a periodic lattice with
Ly x Ly = Ly x 1 unit cells, i.e. on a torus that is thin in the y (azimuthal)-direction. Each
unit cell consists of N, x N, = 4 x N, honeycomb plaquettes. We observed that choosing
Ny > 12 is sufficient to eliminate finite size effects. The lattice is augmented by the insertion
of two 7 fluxes per unit cell (Fig. , leading to four eigenvalues in the band gap per k
point.

We make the following ansatz for the non-interacting low-energy Hamiltonian:

~ ~ ~ ~ ~ ~ T
H=3" [tal, by + oLyt | +Hee. = D7 (al b aly B, ) 1@ R(R)] (ans bers s bry )
1,0 k

(5.8)
where t12 € C, a is the width of the unit cell, and
. 0 t1 + 15_2671"%
h(k) - |: El _|_t2eika 0 :| . (59)

The spin index o labels the Kramers doublet of spin fluxons. However, one has to keep in
mind that the concept of spin fluxons vs. charge fluxons is only well-defined at finite repulsive
electron-electron interactions.
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w/a

t a 1
J—~ T k

Figure 5.2: The one-dimensional 7 flux chain. (a) The unit cell carries two 7w fluxes and
has a width of four honeycomb plaquettes. (b) Effective lattice and hopping parameters ¢;
and t2. (c) Non-interacting eigenvalue spectrum of the respective flux augmented Kane-Mele
model. The line corresponds to the spectrum €} (k) of the effective 7 flux Hamiltonian. Here,
At =0.2.

The hopping coefficients t1 o are determined by the symmetry of the Hamiltonian
under time reversal and by exploiting that choosing a particular unit cell corresponds to
choosing a particular gauge. The anti-unitary time reversal operator is given by § = UK,
where K denotes complex conjugation and, here, U = io, ® 1. Time-reversal symmetry

demands 0 [1 ® h(k)] 0~ =U[1® h(k)]U-! = [1® h(—k)], so

t + tgeika =t + fgeika . (5.10)

On the other hand, we can define U(1) gauge fields x (i) and x(i + a/2) that live on the
orbitals a; and b;, respectively. The X (7) shall be translation invariant and spin independent.
Then, new operators a;, and b;, can be defined as

~ —ix(i) A
i = e XDay,,

bie = e XFai2yp, (5.11)
In this gauge, the Hamiltonian ([5.8) becomes

ﬁ = Z [tld;ragia + t2girodi+a0'] + H.c.

= Z [tl&ZTUgwei[x(i)—x(Ha/?)] + 2gQi)ZTUgLiJﬂwe—i[><(i)—x(”i+a/2)] +He. . (5.12)

The chain with two orbitals gives us two possibilities to choose the unit cell, simply by
shifting the unit cell by half its width a. This is accomplished by the action of a transla-
tion operator T o, where Tg/édiTa/g = b; and T;;biTa/Q = Gj1q. We equate the gauged
Hamiltonian H 1) with the Hamiltonian H |D shifted by a/2:

H =T A HT 0y = [0, 4 + tadly by, | + Hc. (5.13)

1010
1,0
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One obtains
ty = tlei[x(i)—x(i+a/2)] =t . (5.14)

To progress, we assume that £; € R. Then the condition of time-reversal is €' = ¢~
and therefore ¢ € {0, 7}. It immediately follows from Eq. and that the eigenvalue
spectrum is €, (k) = £2t; cos[(¢ + ka)/2]. The observed low-energy spectrum of the 7 flux
chain corresponds to the choice ¢ = 7 [Fig. [5.2|c)] and a least-square fit to the low-energy
dispersion gives t; = 0.126t.

We observed that a finite Rashba interaction up to A ~ A does not change the low-
energy spectrum qualitatively and the twofold degeneracy of the low-energy bands is retained.
Increasing the distance between neighboring fluxes leads to the same spectrum but with a
smaller band width.

5.2.1 Interaction effects

We now turn to the effect of interactions on the one-dimensional 7w flux chain, by considering
the Kane-Mele-Hubbard model (see Sec. . This model has electronic interactions which
can mediate an interaction between the spin fluxons by the exchange of collective magnetic
excitations. As it has been demonstrated in Sec. the interaction strength and range is
inversely proportional to the spin gap. Therefore, we expect interaction effects on the one-
dimensional 7 flux chain to be most prominent for values of the Hubbard interaction U/t
close to the magnetic phase transition where the spin gap vanishes.

We consider the normalized uniform and static charge and magnetic susceptibilities, sim-

ilar to Eq. (4.18) and Eq. (4.19)),

Xe = XgO:O(iwn =0), (5.15)
Xs = 4xxgloliwn=0), (5.16)

and the zero-temperature dynamic spin structure factor (see Sec.
R 2
ST (gw) =7 [0S )] ow - A, (5.17)
n

where A,, = E,, — Ej is the energy above the ground state energy. In the following, we show
that the XXZ Heisenberg model is the effective spin model for the spin fluxon chain. By
measuring the magnetic susceptibility ys and the dynamic spin structure factor S*~(q,w) as
a function of the Hubbard interaction, we can trace the crossover from the interacting spin
chain to the magnetic phase of the bulk.

5.2.1.1 Effective spin model at U/t =4

The ground state of the one-dimensional Hubbard chain does not show a Mott transition
in the sense of a transition at a finite value of the electron-electron interaction [144], but
a (U = 0)—transition. Consequently, we expect the same to be true for the half-filled one-
dimensional 7 flux chain, i.e. a nonzero charge gap and gapless spin excitation for any
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Figure 5.3: Uniform (site averaged) longitudinal spin susceptibility xs(7") (a) and uniform
charge susceptibility x.(7") (b) of the flux augmented Kane-Mele Hubbard model at U/t = 4.
Inset in (b): charge susceptibility as a function of inverse temperature on a logarithmic scale.
Here, A/t = 0.2.

U/t > 0. The spin and charge susceptibilities of the Kane-Mele-Hubbard model, augmented
with the one-dimensional flux chain, are shown in Fig. Calculations are done for a lattice
geometry of N,L, x N,L, honeycomb plaquettes. Due to the flux insertions, we consider
a ribbon geometry with periodic boundary conditions and take L, = 1 and N, = 12. We
have N, = 4 orbitals in the x-direction and L, = 3,4, 5 which corresponds to 6,8 and 10 flux
insertions [see Fig.[5.2] (a)]. We use the notation L = N L,. Our results are for U/t = 4. The
spin susceptibility takes finite values at temperatures below T/t ~ 0.2 [Fig. [5.3|a)] suggesting
that low-energy spin-fluxon excitations remain in the presence of the Hubbard interaction.
On the other hand, the charge susceptibility is exponentially suppressed at low temperatures
[Fig. [5.3(b)], i.e. xc~ e 2/,

The remaining low-energy degrees of freedom at U/t > 0 are expected to be spin degrees
of freedom, namely the Kramers doublets of well localized spin fluxon states. Due to the
vicinity of the zy—ordered antiferromagnetic phase, the magnetic excitations of the bulk
system, which mediate interactions between spin fluxons, are predominantly in the zy—plane.
To obtain an effective spin model for the spin fluxon chain, we therefore make an ansatz in
terms of an anisotropic Heisenberg Hamiltonian with nearest-neighbor interactions:

Hep=J ) [ASfoH + % (S’jﬁ;l + S;Sijl)] : (5.18)
(2
This is the one-dimensional XXZ Heisenberg model. Note that the notation differs slightly
from the notation in Ref. [I45]. The anisotropy parameter A is expected to be |A| < 1. In
Fig.[5.4] we compare the spin susceptibility of the flux augmented Kane-Mele-Hubbard model
with the susceptibility of the XXZ model at low temperatures. At elevated temperatures,
T/t 2 0.1, bulk states of the quantum spin Hall insulator become visible. The results for
the XXZ chain have been calculated with the stochastic-series-expansion (SSE) method with
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Figure 5.4: Comparison of the low-temperature spin susceptibility of the flux augmented
Kane-Mele-Hubbard model (symbols) and of the one-dimensional XXZ Heisenberg model
(lines). Here, the parameter L refers to the number of honeycomb plaquettes in the z-
direction. Results for six 7 fluxes (L = 12) and for 10 7 fluxes (L = 20) are shown.

operator-loop updates [146], using the implementation in the ALPS 1.3 libraries [147]. The
anisotropy parameter A has been used as a fit parameter. The value A = —0.05 (J**/|J*| =
—0.1 in the notation of Ref. [145]) reproduces well the results for a chain of six fluxes and of
ten fluxes. The energy scale is set by J and, at this point, the sign of J is irrelevant. For
—1 < A < 1, the XXZ Heisenberg model is in the XY phase, which has a gapless excitation
continuum and is symmetric about rotations in the XY plane [148]. Therefore, one expects
the spin susceptibility xs(7" = 0) to be finite and the vanishing of xs(7") as T — 0 [Fig. (a)]
may then be attributed to the finite size of the chains.

5.2.1.2 Crossover from the spin chain to the bulk magnetic phase

In Sec. we have seen that the range and strength of the spin fluxon—spin fluxon interaction
is tied to the magnitude of the Hubbard U/t. The important energy scale is the spin gap
A, which vanishes at the critical U./t. As A; — 0, the correlation length of transverse
correlations diverges. The location of the critical point U./t can be estimated from the
scaling behavior of the real-space spin-spin correlation functions at large distances [49; [145],
and we have U./t = 5.7 at A/t = 0.2. Naturally, we assume here that the (intensive) number
of inserted 7 fluxes does not perturb the magnetic phase boundary significantly. The charge
degrees of freedom are suppressed below temperatures of 7'/t = 0.05 — 0.1, depending on
the values of the Hubbard U/t [Fig. |5.5(b)]. Below this temperature and for U/t < 5,
the magnetic susceptibility xs(7") is that of a spin chain. The magnitude of the exchange
constant J can be estimated by the temperature Ty, of the low-temperature maximum of
Xs(T) [(arrows in Fig. [5.5(a)]. The scaling plot of xs7'(T'/J) shows a satisfying data collapse
at low temperatures [Fig. [5.5(c)]. We are therefore confident that up to U/t < 5, the spin
chain can be described by the one dimensional XXZ Heisenberg model derived in the previous
section.
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Figure 5.5: Uniform magnetic ys (a) and charge x. (b) susceptibilities of the Kane-Mele-
Hubbard model, augmented with a 7 flux chain. The arrows in (a) indicate the temperature
Tax- Scaling of the spin susceptibility xs, using the estimate J = Tiax (¢). Here, A/t = 0.2
and L, = 20, N, = 12.

Above U,, the (longitudinal) magnetic susceptibility ys measures the spin wave excitations
of the bulk magnetic phase. The spin waves are fluctuations transverse to the magnetic
ordering vector. Since the magnetic order in the antiferromagnetic phase of the Kane-Mele-
Hubbard model is predominantly in the XY-plane, the S7-8% correlations pick up the spin
wave signal. The transition to the bulk magnetic phase is shown in Fig. [5.6

In order to understand the crossover from the spin chain to the magnetic phase, we look
at the same susceptibility data, but now as a function of the Hubbard interaction U/t, see
Fig. In the plain lattice without external 7 fluxes, low-energy spin or charge degrees are
absent. The magnetic order above U, is reflected in an increase of ys which sharpens with
temperature [Fig.[5.7(a),(b)]. The charge susceptibility x. of the flux-augmented Kane-Mele-
Hubbard model reflects the shift in energy of the charge fluxon states from zero energy at
U = 0 to higher (lower) energies for U/t > 0 [Fig. 5.7(d)]. The spin susceptibility xs has a
minimum around U/t & 5.25 signifying the crossover from the spin chain to the bulk magnetic
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Figure 5.6: Comparison of the spin susceptibilities of the flux-augmented Kane-Mele-Hubbard
model to the plain Kane-Mele-Hubbard model.

phase as the interaction range increases. The initial decrease of x5 can be attributed to the
increase of the effective coupling strength with increasing U/t (see Sec. .

The dynamic excitations of the spin fluxon chain are tracked by the dynamic spin structure
factor. Since the effective XY spin model is symmetric about rotation in the XY-plane, we
consider the transverse structure factor S*~ (q,w) . The results for the flux-augmented
Kane-Mele-Hubbard model on a ribbon with periodic boundary conditions are shown in
Fig. The key observations are (i) the presence of an excitation gap which decreases with
increasing Hubbard interaction and (ii) spectral weight at low energies within the excitation
gap. The excitation gap is the equivalent to the spin gap of the Kane-Mele-Hubbard model
without flux insertions. The spectral weight in the spin gap stems from the spin fluxon chain.
It is tempting to identify this spectral weight with the the spinon excitation continuum of
a spin chain. The spinon excitation continuum is gapless at ¢ = 0 and ¢ = 7. Due to
the unit cell which carries two spin fluxons [Fig. |5.2{(a)], we have to compare the excitation
spectrum [Fig. to a back-folded spinon excitation spectrum, which vanishes only at ¢ = 0,
like the observed spectrum. However, the present lattice sizes do not allow for an unbiased
identification of the low-energy weight with the spinon excitation continuum.

5.3 Other 7 flux chain geometries

In the remainder of this chapter, we consider two other geometries of m flux insertions: the
2-leg 7 flux ladder and the 7 flux zigzag chain. F igure shows the single-particle gap A, as
a function of the number n of legs of a 7 flux ladder system, inserted in the (non-interacting)
Kane-Mele model. A n leg ladder is an array of n parallel chains. The gap is zero for an odd
number of legs and exponentially decaying with the number of legs for an even number of
legs. For n even, the formation of pairs of bonding and anti-bonding orbitals lead to the finite
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Figure 5.7: Uniform magnetic and charge susceptibilities, measured across the phase transi-
tion at U./t = 5.7. The results are for the Kane-Mele-Hubbard model, both without 7 fluxes
[(a),(b)] and augmented with a 7 flux chain [(c), (d)]. Here, A/t = 0.2 and L, = 20, N, = 12.

single-particle gap. For n odd, the excitations of the ladder system are essentially determined
by the remaining chain, and can therefore be expected to be similar to the gapless m flux
chain (n = 1). The behavior of the single-particle gap Ay, is reminiscent of the behavior of
the spin gap in the crossover from the single antiferromagnetic Heisenberg spin-1/2 chain to
the two-dimensional antiferromagnetic spin-1/2 square lattice. Ladders with an even number
of legs have a finite spin gap and short range spin correlations while ladders with an odd
number of legs have no spin gap and power-law spin correlations [149]. Naturally, in the =
flux setup, a spin model is only obtained when the charge fluxons are gapped out by the
Hubbard interaction. However, from the perspective of a mean-field theory, we can still
expect that the even-odd effect observed for the 7 flux ladder in the non-interacting model
persists when the 7 flux insertions are replaced by the spin-1/2 spin fluxons.

80



5.3. Other 7 flux chain geometries

(a) Ut = 4 (b) U/t = 4.5
2 1
T 1 107!
0 1072
—r/a 0 T/a
c)U/t=5 d) U/t =5.25
2
§ | @: &:
_ﬂ/a —7r/a

Figure 5.8: Zero-temperature transverse dynamic spin structure factor S™~(q,w) at A/t =
0.2, for L, =6 (U/t =4) and L, =12 (U/t = 4.5,5,5.25).
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Figure 5.9: Single-particle gap Ay, of the Kane-Mele model, augmented by a n-leg 7 flux
ladder. The inset shows the single-particle gap for even n on a logarithmic scale.

The 2-leg © flux ladder

We use the following ansatz for the Hamiltonian of the non-interacting 2-leg ladder:

H = Z [tade B + tibbgjadi-i-aa + tbci;'r Cig T théT J + t/cddjaéi-i-aa + tdad}adi—kaa +He | +

10710 1010 1010
1,0
Z [tacd;rcréia + tfzcdgoéifacr + tbdl;zodio + t;;di)gaczifacr + HC] (519)
1,0

We assume the hopping parameters to be spin-independent. They are determined in the same
manner as in Sec. 5.2l We obtain the Hamilton matrix

0 ti(1—e ) t3(1+ et toe~ka
- tl(l — eik:a) 0 —t9 —tg(l + e—ika)
ho(k) = t3(1 + e'va) —ty 0 ti(—1+ e kay | - (5.20)
tgeika —t3(1 + eikza) tl(—l + ez’ka) 0

The eigenvalues are

1/2
eEE (k) = £t {2 + 15 + 2t5 + 2(t5 — 1) cos(ka) = 4t3 cos(ka/2) [2 + t5 — 2 cos(ka)] 12

(5.21)

A least square fit of the low-energy orbitals of the flux-augmented Kane-Mele model at

At = 0.6 to e*(k) gives t; = 0.234, to = 0.781 and t3 = 0.047, see Fig. We observe

that the quality of the fit increases for increasing values of the spin-orbit coupling .

Interaction effects

The dependence of x, . on temperature and Hubbard interaction is shown in Fig. We
estimate the critical value U, of the Kane-Mele-Hubbard model without fluxes to be U/t ~ 7
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Figure 5.10: The 2-leg 7 flux ladder. (a) The unit cell carries four 7 fluxes and has a
width of four honeycomb plaquettes. (b) Effective lattice and hopping parameters ¢;, to and
ts, where t; > 0. (c) Non-interacting eigenvalue spectrum of the respective flux augmented
Kane-Mele model. The lines correspond to the spectrum eX* (k) of the effective 7 flux
Hamiltonian. Here, \/t = 0.6.

at A/t = 0.4 [49]. In contrast to Fig. the susceptibility goes to zero in the limit of
low-temperatures in the QSHI phase below U, [Fig. |5.11| (¢)]. This can be explained by the
formation of singlet states between the spin fluxon along the rungs of the ladder. In this
picture, the lowest excitation is the singlet-triplet excitation which leads to an exponential
decreasing magnetic susceptibility as T' — 0. This interpretation is consistent with the
temperature dependence of x, [Fig. |[5.11] (a)].

The 7 flux zigzag chain

A 7 flux zig zag chain is shown in Fig. It is equivalent to the linear w flux chain, but
with additional next-nearest neighbor hopping terms t¢,, and t;,. We again make an ansatz
in terms of a simple tight-binding model, where the orbitals a and b denote the two 7 fluxes
in the unit cell:

Ho= 3 [taottlyiy g + thoblybigan + tatol iy + thaotily by, | + Hee.

i07i0 0 i—ao
1,0

h+(k 0 ~ 2 . 3 \T
= Zk: (amv Lmakwa ) [ T(g ) hy (k) } (a’“T’b’“T’a“’b’f¢> ’ (5.22)

where

(5.23)

tageika 4 Eaae'—ika tabq 4 {b(zge—ik'a
tape + tbaoezka tbaelka + tbae_Zka

ho (k) = [

Time-reversal symmetry demands that 0H (k)§~! = H(—k) which leads to, using the same
representation of # as in Sec.

Viék) m?k)]:{m%_ § m<0—k:>]‘ o2
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Figure 5.11: Uniform magnetic and charge susceptibilities of the Kane-Mele-Hubbard model,
augmented with a 2-leg 7 flux ladder Here, A/t = 0.4 and L, = 20, N, = 12.
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Figure 5.12: The 7 flux zigzag chain. (a) The unit cell carries two 7 fluxes and has a width
of two honeycomb plaquettes. (b) Effective lattice and hopping parameters ¢; and t32. Each
unit cell of the effective model carries a flux of 7. (¢) Non-interacting eigenvalue spectrum
of the respective flux augmented Kane-Mele model. The line corresponds to the spectrum
eX (k) (5.30) of the effective 7 flux Hamiltonian. Here, A/t = 0.4.
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We obtain the following conditions on the hopping parameters from time-reversal symmetry,

Ret,, = Ret, .,
Imt,, = -Imt, .,
tyo = ly—o, (5.25)

where z = a,b and y = ab, ba.

Along the lines of Sec. we find further restrictions on the hopping parameters by
introducing a U(1) gauge field, leading to new operators a;, and bio [Eq. ] In this
gauge, the Hamiltonian is

H =3 [taotilytissar + tooblobisan + Laro €l biy + thaoe ™Dl 0| + Hc . (5.26)

10 i+ao
1,0

Similar to Eq. (5.13]), we consider H = T;/_QIHT;/Q. However, we define the operator T™ to

combine the translation by half of a unit cell with a spin flip: where T;/;ldiaT;/Q = I;i_a and

T;/_zlgiff ;/2 = Qjtq—0o- We have
tae = tb—o,
tar = € Pl (5.27)

We proceed by combining the conditions from time-reversal and gauge symmetry, Eq.
and Eq. . We assume that the nearest neighbor hopping parameters ¢,p, tp, are spin-
independent. It immediately follows that tp,ts, € R and therefore ¢ = 0, 7. We set t = t4.
Furthermore, we assume that the next-nearest neighbor hopping parameters t,., tp, are purely
imaginary. The reason is that according to Eq. , their real part is spin-independent,
which we set to zero at this point. Defining Im t,, = 7.,, we have t,, = i, and

Tac = To—oc = —Tbo - (528)

The resulting Hamilton matrix (5.23) then reads

[ —207sin(ka) t(e 4 e719)
ho (k) = [ t(e* 4 e'?) 207 sin(ka) (5.29)
Its eigenvalues are
ke — 1/2
e (k) = +2 {7'2 sin?(ka) + t* cos® <a2¢>} . (5.30)

We find that, choosing ¢ = 7, a least-square fit to the low-energy bands of the flux augmented
Kane-Mele model gives 7 = 0.152 and ¢ = 0.170 for A/t = 0.4 [see Fig. c)l.
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Interaction effects

To study interaction effects, we have simulated the Kane-Mele-Hubbard model with the
flux zigzag chain. The spin and charge susceptibility data (Fig. strongly resemble the
corresponding measurements for the spin fluxon chain (Fig. [5.7)). However, charge degrees of
freedom are less easily suppressed as a function of increasing U/t and decreasing temperature,
in comparison to the chain [Fig. [5.13| (f)]. xs shows a minimum [Fig. |5.13| (e)], similar to
the spin fluxon chain. The minimum occurs however at U/t ~ 4.5 which is far below the
critical interaction. Therefore, besides the the crossover from the spin chain to the magnetic
bulk phase, this can possibly point to a phase transition within the zigzag spin fluxon chain.
To investigate this issue, one would have to consider considerably large lattice sizes and to
measure static as well as dynamic quantities.

5.4 Conclusions

In this chapter, we have presented various realizations of spin models that are built by = flux
insertions in a QSHI. We have measured the crossover from a four spin fluxon system to an
effective two spin fluxon system (Sec. . Using a Heisenberg spin model, we have been
able to confirm that, apart from the distant spin fluxon, the cluster of three interacting spin
fluxons delivers an effective spin 1/2 moment at low temperatures, thereby explaining the
QMC spin susceptibility data.

We have explored aspects of the one-dimensional spin fluxon chain, see Sec. Based
on the favorable comparison of the spin susceptibilities, simulated with spin fluxons and
calculated numerically using the SSE algorithm [147], we have established a connection to
the one-dimensional XXZ Heisenberg model. One may speculate whether the interacting spin
chains experience a phase transition before the spin gap A; closes and bulk magnetic order
sets in. However, observing this putative transition requires system sizes much larger than
the ones we have studied.

In Sec. we have looked at other chain geometries, built with spin fluxons. The
corresponding susceptibility data of the 2-leg spin fluxon chain can be interpreted in terms
of singlet states that form along the rungs of the ladder, in agreement with the well-known
spin-1/2 ladder. The 7 flux zigzag chain represents a complex, and possibly frustrated, spin
geometry with additional next-nearest neighbor interactions. The overall behavior of the
susceptibilities seems to be similar to the one-dimensional 7 flux chain.

In summary, our results demonstrate a first step towards using the quantum spin Hall
insulator, augmented with 7 fluxes, as a quantum simulator for spin systems. A lot of
intriguing issues remain to be studied, especially the question of frustrated interactions,
long-range spin interactions and possible interaction-driven phase transitions in the effective
spin systems.
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Figure 5.13: Uniform magnetic and charge susceptibilities, measured in the vicinity of the
magnetic phase transition (at U./t ~ 7.0). The results are for the Kane-Mele-Hubbard
model, augmented with a 7 flux zigzag chain [(a),(b) and (e),(f)] and for the plain Kane-
Mele-Hubbard model [(c),(d)] Here, A/t = 0.4 and L, = 20, N, = 12.
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The Kane Mele model on the
7 Hux honeycomb lattice

The preceeding chapter have been centered around the physics of the quantum spin Hall
insulator perturbed by an intensive number of external 7 fluxes. In this chapter, we consider
an externsive number of external 7w fluxes by augmenting the Kane-Mele model with one 7
flux per honeycomb plaquette. The physics of the resulting model the m-Kane-Mele model,
is surprisingly reach. We begin the discussion with a detailed analysis of its non-interating
properties which define the topological nature of the model. Similar to the Kane-Mele-
Hubbard model, the onsite Coulomb repulsion can be modelled with a Hubbard term. We
focus on the correlation along the edge of the model on a ribbon geometry and adress the
effects of interactions by a bosonization analysis and by a quantum Monte Carlo study of the
edge. This chapter partly reproduces results that have been published in Ref. [150].

6.1 7 Kane-Mele-Hubbard model

Based on the KM model , we can construct a new model, referred to as the m Kane-Mele
model (m KM model) by inserting a magnetic flux +7 into each hexagon of the underlying
honeycomb lattice. As illustrated in Fig. such an arrangement of fluxes of size +x (in
units of A =c¢ = e = 1) leads to a model with a unit cell consisting of two hexagons.

For each spin projection ¢, the Hamiltonian takes the form of a modified Haldane model

([L.10),
MO == [t6.5) — pdijl el 65, +io D A G)vigel e, - (6.1)
(4.3) ((2,9))
Here, t(2,j) = tr;; and \(4,j) = A7;; are the nearest-neighbor and next-nearest-neighbor
hopping parameters, respectively; ¢, 7 index both lattice and orbital sites and p is the chemical
potential. The phase factor v; ; has been defined in Sec.

As discussed in Sec. the additional, nonuniform hopping phase factors 7; ; = +1
account for the presence of the m fluxes. Due to the geometry of the four-orbital unit cell
(Fig. , two gauges exist, i.e. distribution of phase factors, which have unitarily equivalent
Hamiltonians. On a torus geometry, Hamiltonian becomes

HO = b JH (), , . (6.2)
k
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6. The Kane Mele model on the w flux honeycomb lattice

Figure 6.1: The unit cell of the 7w flux honeycomb lattice has four orbitals and is defined by
the lattice vectors a; = (3, —v/3) and ay = (3/2,v/3/2). Each honeycomb plaquette carries
a magnetic flux 7. The flux positions are fixed by requiring that hopping terms crossing
the dashed blue line (which is a gauge choice) acquire a phase of —1.

di(k) = —tcos(kas) 75 (k) = tsin(kaz)
d3(k) = —&[sin(kaz) — sin(k(a; — a2))] d7s(k) = —20Asin(ka; /2) cos(kai/2)
di(k) = =5 | cos(k(a — a2)) — cos(kas)] 7,.(k) = —20\sin?(kay/2)
dos(k) =t d7s(k) = 20 Asin(kas)

94(k) = tcos(kai/2) cos(k(a1/2 — az)) 94(k) = L]sin(k(a1 — az)) + sin(kas)]
d3s(k) = 20X cos(kay/2) cos(k(ai/2 —az)) dis(k) =20Xcos(k(a1/2 — a3))sin(kai/2)

Table 6.1: Nonzero coefficients d, (k) and dJ, (k) of Eq. (6.3).

where Cho = (él,k,a?é&k,a? 62’,%0, 64’,670)71 is the basis in which the nearest-neighbor () term
is block off-diagonal. The Hamilton matrix H?(k) can be expressed in terms of Dirac T’
matrices [22], T(12349) = (5, ® 1,0, ® 1,04 ® 04,0, ® 0,0y @ 0) and their commutators
et = [, 1%/ (20):

5 5
HO(k) = pl+ > do(R)T* + Y doy (k)T (6.3)
a=1

a<b=1

The non-vanishing coefficients d, (k) and d?, (k) are given in Table As for the KM model,
a spinful and time-reversal invariant Hamiltonian results by combining H' and #H*; A then
plays the role of an intrinsic spin-orbit coupling. Including the U(1) spin symmetry breaking
Rashba term , the 7KM model is

Ho = — Z t(z,g)cicj—FchZci—H Z A(z,g)ciyijazcj+§ Z )\R('L,J)CI lez(o x dij)]c;
7

(4.9 ({3,3)) (4.9)
(6.4)
where CI = (6%, éh) and Ar(%,J) = Ar7i;. Similarly to Eq. 1) the Hamiltonian of the 7
Kane-Mele-Hubbard (m KMH ) model is
H="Ho+Hy . (6.5)
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6.2. Bulk properties of the m KM model

6.2 Bulk properties of the TKM model

In this section, we discuss the band structure and the topological phases of the noninteracting
model (6.2)), corresponding to one spin sector of the 7KM model. Subsequently, we show that
the spinful 7KM model (6.4)) is Z5 trivial at half filling.

6.2.1 Band structure

A=0
4 T T T T T T T 4
3t 1 3¢t
2t {1 2t
IS 1 1t
0t {1 ot
1t {1t H
2 -2 0
05005115225335-05005115225335
k, k,

Figure 6.2: Contour plot of the lowest positive eigenvalue Fs3(k) in the Brillouin zone, which
is spanned by the reciprocal vectors k1 = 27(1/6,—1/(2v/3)) and ke = 27(1/3,1/+/3). For
A =0, E3(k) is zero at the Dirac points at k = K 2 34, whereas for A/t = 0.5, E3(k) is zero
at the quadratic band touching points, k = I'1 . Here, Ag = 0.

The band structure is established by the eigenvalues of Eq. (6.2)) which are, for p = 0,
given by

1/2
(k) = +{32 + 632 - 2021 (k) & 1,/2[3(12 + 832) + (2= 1632) f(k)] } . (6.6)
where f(k) = cos(kai) + cos(2kas) — cos[k(2a2 — ay)]. At A =0, H? has four distinct Dirac
points K; with linear dispersion at zero energy,
3
E(K; +k)= \/;t (ky + ky) + O(K?) | (6.7)

where Ko = (7/3)(1,42/V3), K5 = (7/3)(2,5/V3) and K4 = (7/3)(2,1/V3). At A/t =
1/2, the spectral gap closes quadratically at two points I';,

ET;+k) = ?’ft (k2 + k) + O(k") (6.8)
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Figure 6.3: Single-particle gap Ag(A) for different values of the Rashba interaction Ag.

where Ty = (7/3)(1,0) and Ty = (7/3)(2,+/3) (Fig.[6.2). For the spinful model (6.4) with
nonzero Rashba coupling, the point of quadratic band crossing is replaced by a finite region
with zero band gap (Fig. [6.3]).

6.2.2 Quantized Hall conductivity

In the following, we consider the Chern insulator which is defined by H?(k), see Eq. .
The response of the insulator to an external electromagnetic field will reveal the topological
properties of its band structure. This response is the optical conductivity tensor. Here
we state the result of the linear response calculation which is derived in Appendix [A] In
linear response to an external vector potential, we obtain the optical conductivity tensor of
a general, n-band system which is described by the non-interacting Hamilton matrix H?(k),

85(0) = e () — A7) (6:9)
where
(K3) = Zf 7 (R)|TX[ K (k) Py ()]
AZplw) = Z Ao (R, ) Te I (k) P () TG (k) Py, ()]
X () kmfﬁE&(k)] — J1E3 (k)] (6.10)

w+1i0t + Eg (k) — ES(k)

n

The following matrix quantities have been introduced: the current Jg(k) = 0H?(k)/0ka,
the kinetic energy KJ(k) = —0?>H?(k)/0k? and the projector on the n-th band P? (k). The
Fermi function is f[EZ(k)].
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A=0 AJt=0.5

3 4

ky
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Figure 6.4: The eigenvalue spectrum E,, (k) of H? [Eq. (6.1)] has four Dirac cones at A = 0,
and two points of quadratic band crossing at A/t = 0.5.

The Hall conductivity is then computed by taking the zero-frequency limit of the optical

conductivity,
NOCC

> O
n=1

It directly measures the (first) Chern number C? of the gap, which is the sum of the Chern
numbers C7 of the Noc. occupied bands. Figure|6.5|shows the Chern number as a function of
the chemical potential p and the ratio ¢o/t;. Transitions between different Chern insulators
are topological phase transitions and necessarily involve an intermediate metallic state where
the Chern number can in principle take any value. Of particular interest for the understanding
of correlation-induced instabilities is the transition at = 0 as a function of to/t; between
the states with C7 = £2. At to/t; = 1/2, we find a a quadratic band crossing point with a
nonzero density of states.

For the spinful model with U = 0 and a U(1) spin symmetry (Ag = 0), one can
define a quantized spin Hall conductivity o3, in terms of the Hall conductivity o7, of H?
(6.2). At u =0, 07, and o3, take the values

lim Re [0, (w)] = 0f, = (6.11)

w—0

¢
o

L Y (i g (6.12)
Oqy = Fo20, 0gy =5 (Oay =05y ) = F25 - .

The sign change occurs at the quadratic band crossing point at A/t = \g = 1/2.

6.2.3 Topological 7, invariant

In the general case where the U(1) spin symmetry is broken, for example by the presence of a
Rashba term, the topological properties of a system with time-reversal symmetry are deter-
mined by the Zs topological invariant [23]. However, the actual computation of the invariant
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a 2 b ¢ 2
< ) Uﬂ)]}/(/T ( ) ( > U;I:]//(}/i
3 - . t=0. 3 .
3 ~20] / | 3
9 | = 1 1-1 |—-1 2]
0 AM
1 1
08L At=05 |
g 0 3 1 0 1 g 0
= = =
1 0 1
N L X/t =08 o]
3 1.0+ g
31 ‘ ‘ : Y 1 =3 3 -1 3] ‘ ‘ ‘
0 0.25 0.5 0.75 1 0 . 0 0.25 0.5 0.75 1
)\/IL 4 -2 0 2 4 )\/t
w/t

Figure 6.5: (a) Total Chern number C¥ = 3" Cy; of the occupied bands of H* [Eq. ],
as obtained from the Hall conductivity a%y in the insulating phases which are separated by
metallic regions (white). (b) Density of states p(w) = (1/4N) >, 6(w — Eyn(k)) and Chern
numbers Cy, of the individual bands. (c¢) Same calculation as in (a); but for the model without
external fluxes, i.e. the plain Kane-Mele model.

is a difficult task, already at the level of a tight-binding Hamiltonian. This difficulty can
be traced back to the Bloch functions in the Brillouin zone which are only defined up to a
k-dependent phase. Time-reversal symmetry guarantees that a globally smooth gauge of the
Bloch functions exist but there is no general recipe to find this gauge. A finite Chern number
is an obstruction to the existence of a globally smooth gauge but, due to time-reversal invari-
ance, the Chern number is zero [3I]. An comprehensive overview over the various methods
is given in Ref [32]. Recently, it has been shown that the Z3 index can be calculated in
two and three dimensions with a manifestly gauge-independent method that only relies on
time-reversal symmetry [32; [I51]. In this section, we provide a brief review of the method.

We start with a general gapful, time-reversal symmetric Hamiltonian # =, ¢! H(k)c,
OH (k)9 = H(—k), (6.13)

where 0 is the time-reversal operator. For the implementation of the method it is necessary
to set up the Hamiltonian matrix H (k) on a rectangular unit cell, i.e. k; = 27/a;é; with
i = x,y. The projector Py on the occupied eigenstates |u;(k)) of the Hamiltonian is

Py = Z lui (k) (ui(k)| (6.14)

which is a gauge invariant quantity.

The method relies on examining the full non-abelian adiabatic transport along time-
reversal invariant lines in the Brillouin zone. The idea is to consider the adiabatic change of
one component of the reciprocal lattice vector, say k,, along high-symmetry paths k, € (k, k')
in a rectangular Brillouin zone, while keeping the other component (k;) fixed. This process
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6.2. Bulk properties of the m KM model

is determined by the unitary evolution operator (the monodromy) Uy ;s and its differential
equation

.d .
Z@Uk,k/ =1 [Pk, 8kPk] Uk,k’ . (6.15)
The initial condition is Uy jy = Pyr. Equation (6.15) is integrated by evenly discretizing the
path (k, k'),

N

Ukt = A}gnoo l_IIP ppneL - (6.16)
n=

We define two paths in the Brillouin zone. On path (1), k, € [0, 7], whereas on path (2),
k, € [-m,7]. k, takes the values k; = 0,7. Since we vary the k, component while keeping
k. fixed, we write

Ukl‘7k s ke k! = Uk,k' ) (617)
and define the matrices v(V) (k) and v (k) by

v (ke) = (wilke, ™) Uy s ko015 (R, 0))

J
2
v (ke) = {wilha, DUt s ) (6.18)
Furthermore, we define the unitary matrix w(k),
wij(k) = (ui(=k)|0lu;(k) - (6.19)

Importantly, w(k) is antisymmetric [31] at the four time-reversal invariant momenta T';.
Therefore, one can define a Pfaffian at these momenta, which satisfies Pf[w(I';)]? = det[w(I;)].

The main conclusion of Prodan’s derivation (see Ref. [32]) is the one-dimensional pseudo-
invariant

Pflw(k,,0)] det[v) (k)]
Pflw(kz, )] \/det[v® (k)]
where k, = 0,7. The sign depends on the branch of \/det[v(@(k,)]. However, once we

have made a choice, the sign of Eq. (6.20]) cannot change under smooth perturbations of the
Hamiltonian. The topological invariant Zop is then given as the product of both pseudo-

=41, (6.20)

invariants:

o Pflw(k,,0)] det[v™ (k)]
Eop = 41 = kH,W Pl ™| yaeo @] (6.21)

The invariant is computed numerically [I52], by discretizing the paths with ~ 1000 steps.
The complex function f[z(k;)] = \/2(ky) is multivalued for a given value of the argument
2(k;) € C. In our case, z(k,) = det[v(® (k,)]. To resolve this ambiguity, we evaluate f[z(ks)]
always on the top Riemann sheet and compute z(k;) along the (discretized) path k, = [0, 7]
to determine the number Ncyoss which counts the number of crossing of z(k,) with the branch
cut at (—oo,0]. The invariant is then given by

Zop = Eap x (—1)Neross . (6.22)
v/ 2(kz) on top Riemann sheet
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6. The Kane Mele model on the w flux honeycomb lattice

For the mKM model at half filling (1 = 0) we obtain, as expected, a trivial insulator
(Z2p = +1). In contrast, if the chemical potential lies in the lower (upper) band gap, i.e., at
quarter (three-quarter) filling, we obtain a quantum spin Hall insulator (Eop = —1).

It is interesting to consider how other bulk probes for the Z5 index lead to the conclusion
of a trivial insulating state at half filling. For example, the Zs index can be probed by
looking at the response to a magnetic 7 flux [38} [37; [145]. In the quantum spin Hall state,
threading a Jd-function 7 flux through the lattice amounts to generating a Kramers pair of
states located at the middle of the gap. Provided that the particle number is kept constant
during the adiabatic pumping of the m flux, these mid-gap states give rise to a Curie law
in the uniform spin susceptibility. This signature of the quantum spin Hall state has been
detected in Ref. [145] in the presence of correlations. For the half-filled 7KM model, the
insertion of a 7w flux leads to a pair of Kramers degenerate states which form bonding and
anti-bonding combinations and thereby cut off the Curie law at energy scales below the
bonding-anti-bonding gap.

6.3 Bulk correlation effects

We begin our analysis of the effect of electron-electron interactions by considering the tKMH
model on a torus geometry. In order to compare our mean-field predictions to quantum
Monte Carlo results, we set the Rashba spin-orbit coupling and the chemical potential to
zero. The 7KMH model then is at the particle-hole symmetric point and takes the form

H="Ho+ U (Rgr —1/2)(hsy — 1/2) . (6.23)

K2

The KMH model without additional 7 fluxes is known to exhibit long-range, transverse
antiferromagnetic order at large values of U/t [52; [153; [154; [155].
We therefore decouple the Hubbard term in Eq. (6.23)) in the spin sector, allowing for an
explicit breaking of time-reversal symmetry. The mean-field Hamiltonian reads
2U - UN

Hut = Ho — —- Z (25;(Ss) — (Si)?) + 5

. (6.24)

i

where Hg is given by Eq. |D with Ag = 0, and S; = (S’f, gf, S’f ). Assuming antiferromag-
netic order, we make the ansatz <§Z) = Smfs and

railf,i = vim, Sg{zzzo,
11 _ @ 1, .
Sralflf,’i = 25 ZT\I' |:€ 5Hmf{smf"’:}C;SU:EC,le] 5 (625)
S,8

where v; = +1 (v; = —1) if ¢ indexes the orbitals 1,3 (2,4). Equation is solved self-
consistently, resulting in the phase diagram shown in Fig. a). We find a magnetic phase
with transverse antiferromagnetic order above a critical value of U/t which depends on A/t.
In particular, at the quadratic band crossing point (A9 = 0.5), the magnetic transition occurs
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Figure 6.6: (a) Phase diagram of the mean-field Hamiltonian , showing the existence
of a magnetically order phase with xy magnetic order above a critical value U, that depends
on the spin-orbit coupling A. For A/t = 0.5, where the model has a quadratic band crossing
point, magnetic order exists for any nonzero value of U.. The dashed line denotes the magnetic
phase boundary for the plain KMH model. (b) Transverse magnetic structure factor Si%, of
the model for different values U/t, as obtained from quantum Monte Carlo simulations
of the 7TKMH model on a 6 x 6 lattice with periodic boundary conditions and at inverse

temperature 5t = 40.
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6. The Kane Mele model on the w flux honeycomb lattice

at infinitesimal values of U/t as a result of the Stoner instability associated with the non-
vanishing density of states at the Fermi level. By tuning the system away from the quadratic
band crossing point, the critical interaction increases.

The 7KMH lattice model can be studied efficiently using the auxiliary-field determi-
nant quantum Monte Carlo method (see Sec. , since simulations are free of a sign problem
given particle-hole, time-reversal and U(1) spin symmetry [I53; [I54; 49]. This requirement
excludes the U(1) spin symmetry breaking Rashba term.

To study the magnetic phase diagram of the 7TKMH model , we apply an implemen-
tation of the BSS-QMC discussed in Sec. The Trotter discretization has been chosen as
A7t = 0.1. An inverse temperature St = 40 has been sufficient to obtain converged results.

The observable we are interested in is the transverse antiferromagnetic structure factor,

T 1 vitvi ) o+ Q— G—
St = 73 D (-1HI(SES; + 57 5) (6.26)
%)

calculated as a function of the interaction U and the spin-orbit coupling A. Simulations were
done on a 6 x 6 m-flux honeycomb lattice (equivalent to 72 honeycomb plaquettes).

As shown in Fig (b), for small U/t, the structure factor has a clear maximum close to
Ao, where the weak-coupling magnetic instability is observed in mean-field theory. At larger
values of U/t, the maximum becomes less pronounced, and the enhancement of Sy}, for
all values of \/t is compatible with the existence of a magnetic phase for all A/t at large
U/t. These numerical results seem to confirm the overall features of the mean-field phase
diagram. The numerical determination of the exact phase boundaries from a systematic
finite-size scaling is left for future work.

6.4 Edge states of the TKM model

We now consider the edge states of the noninteracting 7KM model on a zigzag rib-
bon with open (periodic) boundary conditions in the a; (a2) direction [Fig. [6.7(a)], and
with momentum k = k - a2 along the edge. Since the model is Z, trivial, we expect an
even number of edge modes to traverse the bulk gap. Furthermore, given the spin Chern
number o3, /(e/27) = 2 [see Eq. ], we expect two helical edge modes at half filling.
Figure (b) shows the eigenvalue spectrum with degenerate Kramers doublets at the time-
reversal invariant momenta k = 0 and & = w. For A\g < A/t < A, where Ay = \/5/2, the
eigenvalue spectrum of Eq. has two additional cones at k = m + §. They are unstable
in the sense that their existence relies on the U(1) spin symmetry.

The edge modes at k = 0 (k = m) and o =7, | can be further characterized by their Fermi
velocity vy (v;) and—in the case of a U(1) spin symmetry—Dby their chirality (the sign of the
velocity). The chirality changes at A\g and ;. For A/t < Ay, the edge modes have the same
chirality, so that the (0,0) modes propagates in the same direction as the (7,0) modes. In
contrast, for A\g < A/t < A, they have opposite chirality since the direction of propagation
of the (0,0) modes is reversed after going through the point of quadratic band crossing. At
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6.4. Edge states of the mKM model

Figure 6.7: (a) Ribbon geometry of the 7 flux honeycomb lattice. In the spinful case, the
edge states consist of two Kramers doublets with Fermi velocities vy and v. (b) Eigenvalue
spectrum E,, (k) of Eq. (6.4]) for \/t = 0.3 and A\g/t = 0.1 on a zigzag ribbon.

A/t = Ar, the additional cones at k = 7 £+ § merge with the (7, o) modes. Consequently, the
direction of propagation of the (mw,0) modes is reversed and for A/t > A\; both edge modes
have the same chirality again. In the limit A/t — oo, vy and v, become equal. Furthermore,
the velocities have equal magnitude but opposite sign at A/t = \; ~ 0.665.

To study the edge states, we consider the local single-particle spectral function

1
Af“;w):——}hn(ﬁxk¢u+%0+), (6.27)

where the local noninteracting Green function is

G (kyw +i07) = [w+i0T — H(k)] ;ﬂ-a . (6.28)
The edge corresponds to the orbital index i = 2 [Fig. [6.4]a)] and for brevity we will omit the
index 4 in the following. A discussion of the charge and the spin structure factor along the
edge is included in the Appendix

The Fermi velocities vy and v, and the local spectral function are shown in Fig. [6.§|[] A
similar phase with two helical edge modes at k = 0, 7 has been found in the KM model with
additional third-neighbor hopping terms [156].

In the remainder of this section, we concentrate on the low-energy properties of the
7KM model . Furthermore, we focus on the edge modes at the time-reversal invariant
momenta k = 0,7, and neglect the two additional, unstable modes at £ = m + § occurring
for A\g < A/t < A; which are gapped out by any finite Rashba coupling. Then, the effective
Hamiltonian can be written in terms of right (left) moving fields Ry (z) [L1(z)] at the Fermi

wave vector l-clg) = 0 and right (left) moving fields Ra(z) [La(z)] at kg) =m:

Hz/@@%ﬂ@ﬁ%@ﬁ@% (6.29)

!The color schemes are based on gnuplot-colorbrewer; 10.5281/zenodo.10282.
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Vo, Un
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At
(b) A/t =0.35 (¢) A/t =0.65

Figure 6.8: (a) The Fermi velocity vy (vy) changes sign at A\g (Ar) so that for \g < A < Ar,
the (0,0) and (7, 0) edge modes have opposite chirality. s defines a symmetric point where
vg = —v, holds. (b)-(d) Single-particle spectral function AT(k,w) along the edge. (e)-
(g) Spin-averaged single-particle spectral function A(k,w) = > A%(k,w)/2 along the edge.
Here, Ag = 0 in (a)—(d), and A\g/t = 0.3 in (e)—(g).
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where ¥i(z) = (RJ{(x),LJ{(x),Rg(a:),Lg(x)) The chiral fields have the anti-commutation
relations

{Ri(2), Lj(a")} = {Li(x), Rj(=")} =0 (6.30)
In the U(1) spin symmetric case, we have
Hedge(—10,) = —i0, diag(v1,v2) ® 0 . (6.31)

Hamiltonian (6.29) will be the starting point for the bosonization analysis in Sec.

6.4.1 Effective low-energy model

The edge of a two-dimensional bulk has two time-reversal invariant momenta, k¥ = 0 and
k = m, and therefore several possibilities exist to have two pairs of helical edge states: (i)
both Kramers doublets cross at k = 0 (or k = 7), (ii) one Kramers doublet crosses at k = 0
while the other crosses at k = m, and (iii) each Kramers doublet has one branch at —k (or
m — k) and its time-reversed branch at +k (or m + k). In cases (i) and (iii), degenerate
states which are not Kramers partners exist at the same momentum and can be mixed by
single-particle backscattering. The edge states (i) and (iii) are therefore unstable at the
single-particle level. In contrast, the edge states (ii) are stable at the single-particle level if
translation symmetry is preserved at the edge, thereby forbidding scattering between states
at k=0 and k = 7.

The metallic edge modes of Eq. are an instance of case (ii). Given time-reversal
symmetry and no interactions, the edge states remain gapless even in the generic case without
U(1) spin symmetry as long as translation symmetry and hence the momentum k& along the
edge is preserved. On the other hand, the states acquire a gap when time-reversal symmetry
is broken. This is the case in the presence of, for example, a Zeeman term that also breaks
the U(1) spin symmetry.

To illustrate this point, we consider the most general time-reversal symmetric formulation
of the model in momentum space. Let R;r (p) [LZT (p)] create an electron with velocity v;
[—v;] (where v1 = vy and vy = v;) and momentum k = p + (i — 1)7. Then, Eq. reads

H="> U(p)Heage(p)¥(p) , (6.32)

where Of(p) = (R{(p), L} (p), R (p), L} (p)) and

Heqge(p) = Hso(p) + Hs , (6.33)

where Hgo(p) is a general spin-orbit term and Hg a single-particle scattering term. Time-
reversal symmetry is preserved when @Hedge(p)@*l = Heqge(—p), where © = I'3T°K. Here,
K denotes complex conjugation and the I' matrices were defined in Sec.
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6. The Kane Mele model on the w flux honeycomb lattice

The spin-orbit coupling

. V10 - €] 0 .
o =p( "% e, ) = H®) + () (6.310)

can be split into a U(1) spin-symmetric term, Hy(1)(p), and a Rashba term, Hg(p). The (not
necessarily equal) spin quantization axes are labeled by real unit vectors e;. Choosing e; to
point along the z-axis one may write the U(1) spin symmetric part as

o) =p( "G ) ) =p (e, (6.35)
0 Vy0,€5
where vy = (v;e? £ v,€3)/2. Note that the generator of the U(1) spin symmetry is I'3* =
1®o0,.
One way to break the U(1) spin symmetry is to include the Rashba term Hg(p) by
setting e; # eg. This can be accomplished by choosing, for example, e; = (0,0, e‘f)T and
es = (e%,¢e5,¢e3)T, leading to

_ 0 0 _PY2 a5 p13v.e (35 pldy Ly
Hg(p) = pvo < 0 Uxe§+ay€g > =5 [(F e — (' 4+ T )62] ) (6.36)
Hg breaks the translation symmetry of the bulk model in the sense that it allows single-
particle scattering between the ¢ = 1 and ¢ = 2 branches of the low-energy model. Its
general, time-reversal symmetric form is

Hg = ( f% }BS > = oI + a3l + auI™ + as1° = Hg (1) + Hy (6.37)
where hg denotes the corresponding complex 2 X 2 matrix and «; € R. Note that Hg generally
breaks the U(1) spin symmetry since [Hs, [**] = 2i(ayT'3 — a3T'*). Therefore, we write it as
the sum of a symmetry-preserving term, Hg (1) = a1’ 4+ asI'®, and a symmetry-breaking
term, Hy = azl3 4 a4l

We consider the following three cases: (a) unbroken translation symmetry and unbroken
U(1) spin symmetry, (b) broken translation symmetry but unbroken spin symmetry, and (c)
broken translation symmetry and broken spin symmetry.

In case (a), we have Hg = 0, and U(1) spin symmetry amounts to e; = e3. This implies
Hg(p) =0, so that

H) (p) = Hyo () (6.38)
The spectrum of H ég;e(p) is gapless, as shown in Fig. (a).
In case (b), we have
b
Héd)ge(P) = Hyu)(p) + Hs vy 5 (6.39)

and the spectrum, shown in Fig. [6.9|(b), has two cones centered at
po = :I:\/(a% + a2)/(v2 — v2), with the linearized dispersion

2

'U2 v
Ei(p) = i%(? +po) +O(p°) . (6.40)
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Figure 6.9: Spectrum FE.(p) of the effective model , with v = 1, vo = 0.5, and
e1 = ez = e,. (a) Both translation symmetry and U(1) spin symmetry are preserved (a; = 0).
(b) Translation symmetry is broken, but U(1) spin symmetry is preserved (a3 = 0.2, a5 = 0.1,
ag = ayq = 0). (c) Both translation symmetry and U(1) spin symmetry are broken (a; = 0.2,
as = 0.1, ag = 0.1, oy = 0.05).

This illustrates that, as long as spin is conserved, the breaking of translation symmetry does
not gap out the edge states.

Finally, case (¢) can be realized by adding the Rashba term to Eq. or,
alternatively, by considering

H) (p) = Hy(y(p) + Hs | (6.41)

where a; # 0. The resulting spectrum is gapped, see Fig. (c)

6.4.2 Spin polarization carried by the edge states

Returning to the original 7KM model , we expect the combination of disorder (which
breaks translation symmetry) and Rashba spin-orbit coupling to open a gap in the edge
states. We introduce on-site random disorder of strength Aw and with a box distribution
—1 < w; < 1, leading to the additional term Awy Zi,o‘ wié;ié i in the Hamiltonian .
We consider a cylindric geometry of the lattice, with open boundary conditions in the a;-
direction and twisted boundary conditions in the as-direction. The twisted boundary con-
ditions are generated by a (spin-independent) boundary phase 6, with 0 > 62 < 27. This
setup corresponds to a cylinder threaded by a flux ® = 65/27 and is similar to the Laugh-
lin gedankenexperiment [I57; [134; [135]. By deforming the cylinder to a disk, we see that
this setup is conceptually the same as the flux pumping gedankenexperiment considered in
Sec. The only difference is that the flux is time-dependent in the latter setup whereas
now the flux depends on the twist phase. In a quantum spin Hall insulator, spin is pumped
in processes where ®; = ®4 [38]. The absence of charge pumping, i.e. the absence of net
transverse electric charge transport, becomes evident by computing the evolution of the edge
states with increasing flux. As it is discussed in Ref. [I57] for the plain Kane-Mele model,
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Figure 6.10: Spin polarization P?, of each single-particle eigenstate |m) as a function of
the eigenenergy E,,. Aw is the strength of the on-site disorder term. Here, A/t = 0.35,
Ar/t = 0.3, L1 =121 and Ly = 30, 60.

upon completing a full cycle ® = 0 — 1, two states evolve out of the Fermi sea. However, they
correspond to states that move in opposite, transverse direction in real space and therefore
do not lead to charge pumping.

The spin polarization on the lattice of N sites is defined as

P; = g<m|5T (02 ® Inxn) € m) (6.42)
where |m) denotes a single-particle eigenstate of the 7KM model plus the disorder term and
¢ = (éT,l’ . "éT,N’é¢,1vé¢,N)T' When 6y = 0, all eigenstates have a partner with the same
energy (Kramers degeneracy). Because of time-reversal symmetry, the spin per Kramers pair
is zero. A finite twist phase 0 < €y < 2 lifts the Kramers degeneracies by breaking time
reversal symmetry. In the 7KM model, similar to the KM model [157], the spin polarization
then becomes non-zero (see Fig. at 02/2m = 0.01).

The spin polarization, in dependence of the eigenenergies FE,,, is finite only within the
spectral gaps of the Hamiltonian that are traversed by edge states. In the 7KM model, there
are three spectral gaps which have edge states. The two pairs of helical edge states corre-
sponds to states in the central energy gap and a single pair of helical edge states corresponds
to states each in the upper and the lower energy gap. On a lattice of finite dimensions,
the spin polarization consequently has three contributions (Fig. . In general, a pair of
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Figure 6.11: Absolute value of the spin polarization contributed by the two pairs of helical
edge states which have energies —0.25 < F,,, /t < 0.15, as a function of disorder strength Aywy.
(At =0.35, A/t = 0.3).

Figure 6.12: The (0,0) and (m,0) edge modes at (a) A/t = A where vo;, = —vr s, (b)
A/t = oo where vy o = Ur 0.

Kramers doublets is not protected from localization by disorder [28]. The observation of finite
values of the part of the spin polarization which is contributed by the two pair of edge states,
up to sizable disorder strengths of Ay < t (Fig. [6.11]) can therefore only be attributed to

strong finite size effects. The question of edge state destruction by disorder deserves further
investigation.

6.4.3 Low-energy spin symmetries at A/t = A, and for \/t — oo

In the following, we focus on two values of the intrinsic spin-orbit coupling, A/t = As and
A/t — oo, where the velocities of the (0,0) and the (m,0) modes obey vg, = —vr, and
V0,0 = Ur,qs, respectively (see Fig. [6.12). The corresponding low-energy Hamiltonians are

H:dge(_iax) = _iaxv < 7z 0 > = _iaxvrl'é s (643)

0 —o,
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6. The Kane Mele model on the w flux honeycomb lattice

where Wi(z) = (R (x), LI (z), L}(2), R}(z)), and

S ge(—i0y) = —i(?ﬂ)( (g" f ) =~ (6.44)
z
where \Illo(as) = (RI (a:),LI (x), R;(az),L;(a:)) While the SU(2) spin symmetry is obviously
broken, we show in the following that a chiral SU(2) symmetry exists for A/t = As.
The electron annihilation operator ¢, (x) can be written in terms of the fields R;(z) and
Li(z) [158],

r(w) = [Rl(x)e—iké%+Y2(g;)e—iké”fc} V2,
é(x) = [Ll(:(:)e_ik;l)x+Yg(m)e_ik§~‘2>x} V2, (6.45)

where k:g) =0, k:(FQ) = 7. For A/t = A;, the i = 1 and i = 2 modes have opposite helicity, so

Ya(r) = Lo(z) and Ya(z) = Ra(x). For A/t — oo, we have Ya(z) = Ra(x) and Ya(x) = Lo(x).
The fermionic anti-commutation relations follow from Eq. ((6.30). The spin operators can be
expressed for both cases as

. 1 1
§%(x) = > él ()08 e () = i > Ul (2)sl T, (z) (6.46)

with the constraint of single occupancy, éi(a:)éT(:U) + éI(:c)éi(ac) = 1. The matrices s* are
given by

T = 1® or + (Um ® Ua:) eiﬂ':v — 1—\45 _ 1—w23ei7rz7
sy = 1 ® oy + (U:t ® O'y) eiﬂ'(E _ 7F35 . F246i7m,
5 = 1®0, + (0, ®0,) ™ =T3" -T2 (6.47)

They have the commutation relation [s?/4, s°/4] = i€%¢(s¢/4).

Apart from the spin operators, Eq. (6.46)), there are three additional operators which have
the commutation relations of the su(2) Lie algebra. These operators are represented by the
matrices

Y, =02 3,=1%, 5, =1%", (6.48)

which appear in Eq. and satisfy [2,/2, /2] = i€®¢(2./2). They are related to the
additional chiral degree of freedom which is introduced by the edge mode ‘orbitals’ taking
the values ¢ = 1,2. For A/t = A, all three generators ¥, are symmetries of the low-energy
Hamiltonian (6.43)), i.e., [Hgdge,Ea] = 0, whereas for A/t — oo, this is only true for 3,.
Therefore, and apart from the spin symmetry, a chiral SU(2) symmetry is present for A/t = Aq
which turns into a chiral U(1) symmetry for A/t — oo.

We define a rotation by 7/2, described by

U, = exp [—i(m/)%,] = (1 — %) /V2 . (6.49)
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6.5. Bosonization for the edge states

Then, U:{Sb(x)Ua = My, is the rotation by 7/2 of the spin component $®(z) around the e,
axis, where
Sfx (.1‘) eiﬂ'a:sz (ZU) _eiﬂ’:ﬁéy(m)
M= —em™5%(z)  S¥(z)  €m™S(z) | . (6.50)
—5Y(x) §% () §%(x)
In particular, we obtain the relations

UlLS*(2)U, = —e™SY(x) , UJS'Z(x)Uy =™ 8% (x) , UISY(x)U, = §%(x) . (6.51)

We now consider the static spin structure factor
1 . ~ ~
S q) = —= e T (Sx)S(0)) , 6.52
@ = /5 L @80 (6:52)

where the expectation value is defined with respect to the effective Hamiltonian (6.29)). Using
the symmetry relations (6.51]) we get

S*(q) = S%(q+m) forA/t= A\,
S%(q) = SY%4q) for \/t = Asand A/t — oo . (6.53)

Equation (6.53) relates the longitudinal and transverse components of the spin-spin correla-
tion functions. In Sec. we numerically show that this low-energy symmetry is preserved in
the presence of interactions. It is therefore an emergent symmetry of the interacting TKMH

model (6.5). However, because the chiral spins [Eq. (6.48])] do not commute with the Rashba
term [e.g., Eq. (6.36))], this symmetry hinges on U(1) spin symmetry.

6.5 Bosonization for the edge states

At low energies, the edge states of the TKMH model can be described in terms of a
two-component [159; [160; 161} 162] Tomonaga-Luttinger liquid [163; 158]. The Tomonaga-
Luttinger liquid is the stable low-energy fixed point of gapless interacting systems in one
dimension [164].

We consider the free Hamiltonian with two left and two right movers that are labelled
by the index ¢ = 1 and ¢ = 2. As interaction terms, we consider intra-forward scattering of
strength gj(f) within the ¢ = 1 and ¢ = 2 branches, and inter-forward scattering of strength
g} between the branches ¢ = 1 and ¢ = 2. Note that we focus on the case of two pairs of
edge modes crossing at £k = 0 and k£ = m, respectively, since only those are protected by
time-reversal symmetry (see Sec. .

In the following, we show that at half filling, umklapp scattering between the edge modes
is a relevant perturbation in the sense of the renormalization group (RG). In the framework
of RG, a perturbation is relevant if it changes the low-energy behavior of the model and
irrelevant if it does not. In our case, umklapp scattering can drive the model away from
the Luttinger liquid fixed point and open gaps in the low-energy spectrum. The effect of
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6. The Kane Mele model on the w flux honeycomb lattice

a perturbation is best understood by considering the scaling behavior of the action which
describes the Luttinger liquid fixed point, Sy, and a perturbative term, following Ref. [158]:

S =5+ g/dtdmA(:B,t) —  S=5+ gAQ_A/dtd$A(m,t) , (6.54)

AT, A

where A(Az, M) = A"2A(x,t) is assumed. For A < 2 (A > 2) the perturbation is relevant
(irrelevant) and for A = 2 it is marginal [I58} [144]. From the scaling behavior of the action,

/(2=4A)

. 1 . .
one can derive the mass gap m: m ~ g, , where gg is a measure for the bare coupling

[158].

We begin our analysis by considering the following kinetic and interaction terms,
2
Ho= > [u / do (Ll(2)(i02) L, (@) + R} (2) (~i0,) R, (2))

=1

+9f) [ dapt@)] + g [dep(@ipata) (6.55)

where L;(z) [R;(x)] are the left (right) moving fields, and p;(z) = Rj(m)Rz(x) + LI(x)L,(a:)
is the electronic density.

To bosonize the above Hamiltonian (6.55), we introduce the bosonic fields ¢;(z) and
I1;(z). We have

Oxgi(x) = mpi(x) (6.56)
i(z) = Ri(z)'Ri(z)— Li(2)Li(x), (6.57)

and
[¢i(2), Ly (2] = i6;,90(x — 2) . (6.58)

In the following, we implicitly assume the dependency of the fields on the position z. Using
the bosonic fields, the Hamiltonian (6.55)) is

_ 1 I e K2 (9002 /
Ho= o dx;[vl(wﬂl) + 0K (qubz)}—l—WQ A By b1 Db

~

— % dz [W2HTMH+(8Q;¢)TN8$¢}, (6.59)

where K; = (1 + 2g§f) Jmv;)~1/? is a dimensionless parameter. In the last line, we defined
II= (Hlu HZ)Ta Qb = (¢17 QSZ)T) and

1) /
M:(”1 0),N:1 oLt 29y I, (6.60)
0w ™ g} TVU9 + 2g§c )
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using the notation of Orignac et al. [165; [160]. The off-diagonal elements in M are zero, since
there is no single-particle scattering from the i = 1 to the ¢ = 2 cone. Hamiltonian (6.59)) is

decoupled by rescaling the fields:

H = % dz [HH’THUF(am’)TMl/?NMl/?aw’}

_ 1 21T 17! mT 1
= o [ do [P0+ (0,") A0, |

_ /dwiAl/Q { 012 + (am@)Q] ,

where
= MYVI,
o = M,
H// — S—ll—[/ 7
¢// — S—1¢/
ﬁ _ A_1/4HH ’
5 _ A1/4d)// _

A is a diagonal matrix and S a rotation, defined via
A= STIMYANMY2S
Therefore, the linear transformation to the new bosonic fields II and & is

I = M 'Y2SAY*I =PI,
¢ = MPZESA VG =Q6s.

The canonical commutation relations (6.58) are preserved, since

[@ ] N Qi (P [on(e). My (2')] = b 8(x — ') .

k,k

We have

Q=M"2sA~1 = Snvi/zA 1/;‘ S12v yzA—i/i
5210 / A1_1/ Sogv /A_/

1/2
N N. Ny — v9Noo \ 2
Ay = U1IVIL T U2 lv22 ;UQ 2 + [(vl 1 5 b2 22) + U1UQN122] )

and, for g} # 0,

sgn(g}) sgn(g})
S — V1+s1 V1+s9
- Sgn(A117’U1N11) Sgn(Azgfleu) )

Vits?t Vidsy?

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

(6.68)

109



6. The Kane Mele model on the w flux honeycomb lattice

(a) gu and g (®) gun (¢) guz

Figure 6.13: The edge modes cross at k = 0 and k¥ = 7 with in general nonequivalent
Fermi velocities v; and vo. We consider the intra-umklapp scattering process (a), and the
inter-umklapp scattering processes (b) and (c).

where s; = (Ay; — N11v1)?/v1v2NZ,. Note that for g} =0,5=1.
We consider the following interactions as perturbations to Eq. (6.61):
H' = hy + Ry + Ty o - (6.69)

The intra-umklapp scattering of strength gl(j) [Fig. | is

2 .
hy =y g0 / de Li(2)Li(z + a)R, (2)R, (¢ + a)e™ * 4 Hee. | (6.70)
1=1

the inter-umklapp scattering of strength 91/;,1 [Fig. is
1= G / de Lf(2) Ly(2)R, () Ry(z) ¢ 57 4 He., (6.71)
and the inter-umklapp scattering of strength g;, 5 [Fig.|6.13(c)| is
Wy =gl / dz LI (2)R}(2)Ly(2)R, (z) 20 K 4 He. | (6.72)

The fermionic operators are
R; = exp(—i¢ri)/V2m , Li = exp(idrq)/V2m (6.73)
omitting the Klein factors, and we have ¢; = (¢r,; + ¢r1.:)/2. Furthermore, we assume
160z =2k + Ea = 206 — kD)2 = 27, (6.74)

corresponding to half-filled bands. Then,

/

5 [ 4o 0.
(6.75)

2 (i) !

U Yu
H = E gﬂ/dm cos (4¢;) + 27T;/d33 cos [2 (g1 + ¢2)] +
i=1

110



6.5. Bosonization for the edge states

6.5.1 Scaling analysis

Obviously, the interaction terms occurring in H’ (6.75]) can not be treated exactly by bosoniza-
tion as the forward interaction terms in H, see Eq. (6.55) and (6.61]). If the interaction is
weak, the cosine-terms in Eq. may be replaced by their series expansion, for example.
Instead, we study the impact of the cosine-terms using RG scaling arguments in the following.
For a review of bosonization and the RG method, we refer the reader to Refs. [158] and [144].
The scaling dimension A of an operator A(z, z), using z = 7+ ix and z = 7 — iz, is formally
the sum of its right and left conformal dimensions, h and h: A = h 4 h. It determines the
asymptotic behavior (up to a constant factor) of the correlation function

(A(z,2)AT(0,0)) ~ 22z 2 (6.76)

where (o) denotes a thermal expectation value. In the present case, A stands for the cosine-
terms in Eq. (6.75). The calculation of their scaling dimension boils down to the calculation
of expectation values of vertex operators of the form exp(if¢(z, z)). A very useful relation is

. B . /32 [32
(e #=2)i2000)) 5 2 8g, g0 (6.77)
see [72] and [163].
For the intra-umklapp terms in Eq. (6.75)) we consider

Z(cos [4¢i(z, Z)] cos [4¢;(0,0)]) = iZ(ei4¢i(z’2)e*i4¢j(0’o)> + similar terms . (6.78)

i,J 2
For the calculation, it is sufficient to consider the first term in Eq. (6.78). We proceed by
transforming to new fields, ¢;(z,2) = >, Qindr(2, 2) [Eq. . Then, the first term on the
right side of Eq. is

1 Z(ei4¢i(z,5)6_i4¢j(0,0)> = 1 Z<ei4Qi,151(z,Z)e—i4Qj,1$1 (070)> <€i4Qi,2d~’2(275)e_i4Qj’252(0’0)>
4 £ S
Z,] Z?]
1 —4Qi,1Q5,1 5-4Qi,1Q;
_ ZZZ 4Ql,1QJ,1z 4Q”1QJ’15Q1',1+QJ',1’0
17]
X274Qz‘,2QJ\2274Q"’2Qj’25Q¢,2+QJ’7270
) }Z ‘Zrés(Q?,ﬁQ?z) _ EZ ‘Z’—2Afj> (6.79)
12 4 &~ . |
- (2

In the first line, we assume that the fields 51 and 52 do not interact. The last line defines

the scaling dimensions AP In the same manner, we obtain the scaling dimension A/, and

Al , of the vertex operators exp[i2(¢1 + ¢2)] and exp[i2(¢1 — ¢2)]. To summarize, we have :

Ag) =4 (Q%l + Q%z) )
Ag) =4 (Q% + Q%z) )
o= Qi1+ Q1)+ (Qi2 + Q)7
e = (Qu— Q)"+ (Qu2— Q)" . (6.80)
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(a) V] = Uy (b) v = 0.1v9
0.3 0.3
0.2} AL, <2 0.2} AL, <2
= ! S /
0.1+¢ o= 0.1} w > 2
0 0
0 02 04 06 08 1 0 02 04 06 08 1
/ /
gy 9s

Figure 6.14: Phase diagram of the inter-umklapp process g;, , in the (g},9¢) plane for (a)
equivalent and (b) nonequivalent velocities of the edge modes. The scattering process is
relevant (irrelevant) in the region where A/, <2 (Al, > 2).

The scaling dimension A determines whether the respective scattering process in H' [Eq. (6.75))]
is a relevant (A < 2) or irrelevant (A > 2) perturbation to the free bosonic Hamiltonian H

[Eq. (6.61))].

Let us start with g} = 0. Then, we have two separate Dirac cones and the scaling
dimension for intra-umklapp scattering is

A = 40, AL = 4K, (6.81)
see Eq. (6.59). In other words, intra-umklapp scattering (g}i)) becomes relevant when K; <

1/2. As expected, this result reproduces the known scaling dimension of this process for the
one-component helical liquid [28; 26].

In the case of weak coupling (gjlc’2 < 1 and g} < 1), we come to the following conclusions:

i) Intra-umklapp scattering is RG-irrelevant, with AS}’Z) > 2. This is similar to the case of
PP g

the one-component helical liquid [28; 26]. (ii) Inter-umklapp scattering g;, ; is RG-relevant,
with Aj; < 2. (iii) The relevance of the inter-umklapp scattering g, 5 is determined by the
phase diagram shown in Fig. |6.14

If the U(1) spin symmetry is preserved, only one of the two inter-umklapp scattering
processes g, 1 or g, o is allowed by symmetry, depending on the chirality of the (0, o) and (7, o)
modes which is determined by the intrinsic spin-orbit coupling A. As shown in Fig. (a),
for A/t < Ao and A/t > Ar, both edge movers have the same chirality so that inter-umklapp
scattering corresponds to the g;’Q term. In contrast, for \g < A/t < A\, the edge movers have
opposite chirality and inter-umklapp scattering is given by the gq’iyl term.

The above distinction no longer holds when the U(1) spin symmetry is broken. In this
case, gihl is always RG-relevant, whereas the relevance of 9;12 depends on the forward scat-
tering strengths gy and g} and on the edge velocities, see Fig. [6.14
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6.6. Quantum Monte Carlo results for edge correlation effects
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Figure 6.15: Sketch of the ribbon geometry where the on-site Hubbard interaction is only
retained on the orbitals of a single zigzag edge.

For A/t = Ay (A\/t — o), our low-energy theory is similar to the fusion of two anti-
parallel (parallel) helical edge modes [159], see also Fig. However, in the latter setup,
the spatial overlap of the two edge wave functions can be neglected, whereas it is included in
the interaction term of Eq. .

6.6 Quantum Monte Carlo results for edge correlation effects

Interaction effects on the helical edge states can be studied numerically by taking advantage
of the exponential localization of the edge states and of the insulating nature of the bulk
which has no low-energy excitations. Accordingly, the low-energy physics is captured by
considering the Hubbard term only for the edge sites at the top edge of a zigzag ribbon. The
bulk therefore is considered noninteracting and establishes the topological band structure; it
plays the role of a fermionic bath (Fig. [6.15).

We arrive at this effective model by partitioning the tTKMH Hamiltonian formally in
one part containing operators on the top edge and another part containing the bulk (including
the opposite edge),

Ho=HEM 4 1 L H P 4ol gl (6.82)
where H((]hyb) describes the hopping processes between the top edge and the bulk. If we set
Hgaulk) =0, the corresponding action S = S(Pulk+hyb) | gledee) j5 quadratic in the bulk fields,
thus they can be integrated out leading to an effective action for the top edge:

B B

S(edge’ W= / ar / dT, Z Z C;[,U(T)go_o‘la’(i - ja T = T/>cj0’ (T/) + H(Uedge) ’ (683)

0o 0 ho g0’

where Gy is the free Green function of the 7TKM model Hy and 7, j index edge sites.

The effective model can be efficiently simulated using the CT-INT QMC method,
presented in Sec. . Compared to the KMH model, where the same approach has previ-
ously been used to study edge correlation effects [I53; [166], the additional Rashba term leads
to a moderate sign problem.
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6. The Kane Mele model on the 7 flux honeycomb lattice

(a) U/t =2, \/t = 0.65
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(b) U/t =5, \/t =0.65 (c) U/t =5, A\t =0.35

Figure 6.16: QMC results for the spin-averaged single-particle spectral function A(k,w)
[Eq. (6.84)]. (a) Weak coupling U/t = 2, (b),(c) strong coupling U/t = 5. Here, A/t = 0.3.

We focus on two values of the spin-orbit coupling A/t and set the Rashba coupling to
Ar/t = 0.3. For \/t = 0.35, the edge modes at £ = 0 and k& = 7 have different velocities
(vo < vr), whereas at A/t = 0.65, we have vy ~ v;. As in the KMH model [166], we
observe that the velocities of the edge states remain almost unchanged with respect to the
noninteracting case.

We have done simulations for a zigzag ribbon of dimensions L; = 25 (open boundary
condition) and Ly = 16 (periodic boundary condition), see also Fig. [6.7(a). For Ag = 0,
1 = 0 corresponds to half filling. Although the band filling in general changes as a function
of Ar (the Rashba term breaks the particle-hole symmetry), the Kramers degenerate edge
states at k = 0, 7 are pinned to w = u. The choice p = 0 then again corresponds to half-filled
Dirac cones, and allows for umklapp scattering processes. The inverse temperature has been
set to St = 60 for all simulations.
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6.6. Quantum Monte Carlo results for edge correlation effects

6.6.1 Single-particle spectral function

Using the CT-INT QMC method in combination with the stochastic maximum entropy
method (see Sec. , we calculate the spin-averaged spectral function (Sec. at the
edge,

Alk,w) = %ZA”(k,w), (6.84)
A% (k,w) = —%ImG”(k,w),

where G7(k,w) is the interacting single-particle Green function, and k is the momentum
along the edge.

As shown in Fig. [6.16(a), for U/t = 2, the numerical results suggest the existence of
gapless edge states. In contrast, for a stronger interaction U/t = 5, a gap is clearly visible
both at £k = 0 and k = w. While the bosonization analysis in Sec. predicts a gap as a
result of relevant umklapp scattering for any U > 0, the size of the gap depends exponentially
on U/t. The apparent absence of a gap in Fig. |6.16{a) can therefore be attributed to the
small system size used (Ly = 16).

Figure [6.16]c) shows the spectral function for A/t = 0.35, where vy < v;. Com-
pared to the case of A/t = 0.65 [Fig. |6.16{b)] where vy ~ v, the gap in the edge states is
much smaller. We expect this dependence on the Fermi velocities to also emerge from the
bosonization in the form of a velocity-dependent prefactor that determines the energy scale
of the gap [144].

6.6.2 Charge and spin structure factors

We consider the charge structure factor
1 —1qx [/ ~ ~ ~
N(q) = Wi Xx: e~ " [{A(z)n(0)) — (A(x))(R(0))] (6.85)

where x is the position along the edge. Figure (b) shows results for different values of
U/t, A/t = 0.65, and Ar/t = 0.3. For a weak interaction, U/t = 1, N(q) exhibits cusps
at ¢ = 0 and ¢ = 7 that indicate a power-law decay of the real-space charge correlations.
Upon increasing U/t, the cusps becomes less pronounced, which suggests a suppression of
charge correlations by the interaction. This is in accordance with the existence of a gap in
the single-particle spectral function [Fig. |6.16(b)]. A suppression of charge correlations is
also observed for A = 0.35, see Fig. [6.17|(a).
The spin structure factors (a = x, z)

5%(q) = \/1N Y e (S (@) 5(0)) (6.86)

are shown in Fig. [6.18] For A/t = 0.65 and U/t = 2, S*(q) has cusps at ¢ = 0 and ¢ =
7 [Fig. c)], and varies almost linearly in between. With increasing U/t [U/t = 5 in
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6. The Kane Mele model on the w flux honeycomb lattice
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Figure 6.17: QMC results for the charge structure factor N(q) [Eq. (6.85)], for (a) A/t = 0.35
and (b) A/t = 0.65. Here, A\g/t = 0.3.

Fig.|6.18(d)], correlations with ¢ = 0 become much stronger. Whereas ¢ = 0 spin correlations
dominate the  component of spin, the structure factor S*(¢) in Fig.|6.18(d) indicates equally
strong correlations with ¢ = 7 for the z component. The resulting spin order resembles that
of a canted anti-ferromagnet. Qualitatively similar results, although with a less pronounced
increase of spin correlations between U/t = 2 and U/t = 5, are also observed for A/t = 0.35,
as shown in Figs. a),(b).

Despite a small but nonzero Rashba coupling, the results in Figs. (c) and (d) reveal
the expected symmetry relation S?(q) = S*(q+ ) which roots in the chiral SU(2) symmetry
of the corresponding low-energy Hamiltonian (see Sec. . Our quantum Monte Carlo
results show that this symmetry survives even in the presence of strong correlations. The
results in Fig. are almost identical to the case with A\g = 0 (not shown), suggesting that
the Rashba term breaks the chiral symmetry only weakly. On the other hand, the symmetry
is clearly absent for A/t = 0.35 [Figs. [6.18(a),(b)].

6.6.3 Effective spin model for \/t = )

For strong interactions U/t, there exist no low-energy charge fluctuations at the edge, allowing
for a description in terms of a spin model. We consider the case of (nearly) equal velocities,
A/t = 0.65, and make an ansatz in the form of a Heisenberg model with nearest-neighbor
interactions,

Hopin - = ZX%$$M+%$$H+@$;M
= T (SPSHa+ S!Sty — 575h) - (6.87)

In the second line, the coupling constants .J, have been fixed by imposing the invariance under
the rotations given in Eq. (6.49)), [Hsspin, U,] = 0, and using the relations Ulgb(:n)Ua = My,
[cf. Eq. ] Hamiltonian (6.87)) corresponds to the XXZ Heisenberg model, tuned to
the ferromagnetic isotropic point that separates the Ising phase from the Luttinger liquid
phase via a first order transition. In both cases, one expects strong spin correlations [167],

as observed in Fig. 6.18(d).
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6.6. Quantum Monte Carlo results for edge correlation effects

Figure 6.18:
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QMC results for the spin structure factors S%(q) and S*(q) [Eq. (6.86))], for
A/t =0.35 [(a),(b)] and A/t = 0.65 [(c),(d)]. Here, Ag/t = 0.3.
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6. The Kane Mele model on the w flux honeycomb lattice

6.7 Conclusions

In this section, the 7KM model has been introduced, corresponding to the Kane-Mele model
on a honeycomb lattice with a magnetic flux of &7 through each hexagon. The flux inser-
tion doubles the size of the unit cell, and leads to a four-band model for each spin sector.
For one spin direction, the band structure has four Dirac points which acquire a gap for
nonzero spin-orbit coupling A (see Sec. . At half filling, the spinless model has a Chern
insulating ground state with Chern number 2 or —2, depending on the spin-orbit coupling
(6.2.2). The transition between these states occurs via a phase transition at \/t = 1/2,
and the band structure features a quadratic crossing at the critical point. The spinful 7TKM
model is trivial in the Zy classification, with an even number of Kramers doublets .
If translation symmetry at the edge is unbroken, the helical edge states are stable at the
single-particle level even in the presence of a Rashba coupling that breaks the U(1) spin
symmetry (Sec. The U(1) spin symmetric low-energy model of the edge states has a
chiral symmetry when the edge state velocities have equal magnitude and either the same or
opposite sign (Sec. . Interestingly, this chiral symmetry has been shown to survive even
in the presence of interactions, see Sec. [6.6.2]

Regarding the effect of electronic correlations in the bulk, the combination of mean-
field calculations and quantum Monte Carlo simulations (Sec. suggest the existence of a
quantum phase transition to a state with long-range, antiferromagnetic order, similar to the
Kane-Mele-Hubbard model. The critical value of the interaction depends on the spin-orbit
coupling. At A/t = 1/2, where the quadratic band crossing occurs, a weak-coupling Stoner
instability exists.

In Secs. and we have presented a detailed study of correlation effects on the
edge states in the paramagnetic bulk phase, using bosonization and quantum Monte Carlo
simulations. At half filling, the bosonization analysis predicts the opening of a gap in the edge
states as a result of umklapp scattering for any nonzero interaction . For strong coupling,
we are able to confirm this prediction with QMC simulations. Umklapp processes are only
effective at commensurate filling and therefore can be eliminated by doping away from half
filling. In this case, we expect the interacting model to have stable edge modes, provided
translation symmetry is not broken. At large U/t, the emergent chiral symmetry can be used
to derive an effective spin model of the XXZ Heisenberg type (see Sec. .

Our model may be regarded as a two-dimensional counterpart of TCIs. Whereas the
gapless edge states of the latter are protected by crystal symmetries of the two-dimensional
surface, the edge states in the 7TKM model are protected (at the single-particle level, or away
from half filling) by translation symmetry. TCIs have an even number of surface Dirac cones
which are related by a crystal symmetry. The cones can be displaced in momentum space
without breaking time-reversal symmetry by applying inhomogeneous strain [168]. This is
in contrast to topological insulators with an odd number of Dirac points where at least
one Kramers doublet is pinned at a time-reversal invariant momentum. In TClIs, umklapp
scattering processes can be avoided either by doping away from half filling or by moving the
Dirac points. In our model, the edge modes have in general unequal velocities and cannot
be mapped onto each other by symmetry. The Dirac points are pinned at the time-reversal
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6.7. Conclusions

invariant momenta, and subject to umklapp scattering at half filling.

Similarly to the recent experimental realization of the topological Haldane model using
ultracold fermions [169], the 7KM model may be experimentally realizable in ultracold atomic
gases, where optical flux lattices can be used to create periodic magnetic flux densities [14T}
170 1715 [172).
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Summary

At this point, we would like to summarize the individual projects and to highlight the common
thread of the thesis. We have investigated correlations effects in many-electron systems
using quantum Monte Carlo methods to simulate the interactions. In particular, we have
studied heavy-fermion metamagnetism and interacting local moments resulting from 7 fluxes
in correlated topological insulators.

The physics of heavy fermions roots in the Kondo effect which is a genuine example of
correlation induced phenomena in condensed matter physics. The notion of metamagnetism
describes the non-linear magnetic reponse of certain heavy-fermion compounds to an external
magnetic field. We have considered the Kondo lattice model, being an appropriate low-energy
model of heavy-fermion systems, and investigated the competition of the magnetic energy
scale with the intrinsic scale of the model, namely the lattice coherence temperature. Our
main finding is that a metamagnetic transition occurs when the magnetic field is comparable
to the lattice coherence temperature. Interestingly, the Kondo effect does not break down
and the simulations rather show a gradual crossover from heavy to light fermions as the field
further increases. Therefore, we come to the conclusion that the metamagnetic transition in
heavy-fermion systems can be understood as a Lifshitz transition of well-defined quasiparticle
bands, even in the presence of sizeable magnetic fields.

In contrast to heavy fermions, that owe their sheer existence to electronic interactions,
the notion of topological insulators has been first of all developped from a non-interacting
perspective. A common and natural assumption is that weak electronic interactions generate
a state of matter which is adiabatically connected to the non-interacting phase. Our focus
has been primarly on interaction induced features of correlated topological insulators. We
have studied the response of a correlated topological insulator to a perturbation in the form
of external magnetic w fluxes. By measuring the magnetic susceptibility, one can determine
the topological Z5 index and thereby classify the topological nature of the insulating phase.

Besides measuring the topological index, we have shown how to exploit the properties of
7 fluxes in correlated topological insulators in a different way. Each 7 flux is accompanied
by a spin degree of freedom and multiple 7 fluxes can be inserted almost arbitrarily on the
lattice. We have studied the resulting quantum spin models in various geometries.

We have proposed the m Kane-Mele model and investigated its topological and magnetic
phase diagram. The new model is obtained from the Kane-Mele model by inserting a 7 flux
in each unit cell of the underlying hexagonal lattice. For spinless electrons, the model is
a Chern insulator with two topologically distinct phases. We have focussed on the spinful
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7. Summary

case and studied the effect of correlations in the bulk and on the edge of the insulator.
The model has two Kramers pairs when put on a ribbon geometry and therefore is a Zs
trivial insulator. However, as long as translation symmetry is preserved, the edge states are
protected from scattering processes on the single-particle level. We have studied the possible
scattering mechanisms in the effective interacting low-energy model and have been able to
partly confirm the predictions from the bosonization analysis using quantum Monte Carlo
simulations. Since the m Kane-Mele model is protected by translation symmetry, it can be
considered as a two-dimensional instance of a topological crystalline insulator.
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Calculation of the optical
conductivity

To derive the expression for the optical conductivity, we consider the Chern insulator
on a torus geometry. It is defined as [Eq. (6.2))]:

Z f o Li-jc zU—ZcL,UH” )k = ZE Cka T (k) o (A1)
k

where U (k)H? (k)U°T (k) = diag[E{ (k),--- , E(k)] and [P?(k)]; ij = UY (k)UgTJ(k) is the
projector on the n-th band. For the simplicity of the notation, we drop the spm index and only
reintroduce it in the final result . In the case of a Chern insulator, the electromagnetic
response of the Hamiltonian reveals the topological properties of the band structure. In the
following, we derive the optical conductivity by calculating the current (3(¢)) to first order
in time-dependent perturbation theory via the Kubo formula [59]. We couple the four-band
Hamiltonian to an electric field via a vector potential A(t). The vector potential is
assumed to be homogeneous on the scale of |¢ — j|; therefore its spatial dependence can be
dropped. We have

oo d
2ri [ A(t)dl
H = ZCITi—jCje 05

- Z Ty e, + % TN T ey - ) A() + O[A(1)

%,J ]

= Ho+0(t —to)Hi(t) + O[A(t)Y] . (A.2)

The Kubo formula expresses the time-evolution of an observable only in terms of expectation
values in equilibrium. For the current j(t,o), it is

o0

(G(t.to)) = <3<t>>o—ﬁ / Aot — ') ([57 (), HI(t)])oe 0 =)
= G+ / ds O], (t,¢ = 5)e™0"° (A3)

0
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A. Calculation of the optical conductivity

where C;:{Hl (t,t—s) = —(i/h)@(s)([ﬁl(t),’;'-[{(t — 5)])o is a retarded Green function. The su-
perscript T denotes the interaction picture for (possibly explicitly time-dependent) operators
X(t),i.e. XI(t) = exp (iHot/h) X (t) exp (—iHot/h). The factor exp[—0*(t—t')] is included to
enforce the response term to vanish for ¢ > t’. In the second line, we shifted the integration
variable and took ty = —oo. In the following, we write (5(t)) = (j(t, —00)).

To define the appropriate current on the lattice, one has to temporarily reintroduce the
spatial dependence in the vector potential A(r,t). The current density j (r,t) can then be
defined as the functional derivative j(r,t) = —cdH /6 A(r,t). Accordingly, the total current

7(t) is

i =y Sirn =y ¥ i

= jY+590) +0[A®)Y, (A.4)

V\Zhere the r-dependence of the vector potential is dropped again in the second line. 3 1)
1P (1)] is the paramagnetic (diamagnetic) part of the current. Using Eq. and Hi(t) =
(—¢/N)"13(MA(t), Eq. becomes

—c -1 i n
o) = GO0+ (F) [ ds sttt = 9ase— o)
0

1 —e\7' T . |
= ¢7;]\?<K5>0A5( )5a,6 + <]VC> /dS HR (t t— S)els(w+10+)A6(W)e—zwt
0
47T20 is(w+i0T) C —iwt
= | g Halodas + ds TIR (0, —s)e = By(w)e
= (Ja(w))e ™" . (A.5)

=(1)

In the first line, we set (ja ' (£))o = 0 due to the absence of paramagnetic currents in the free
model and we defined the current-current correlation function

IR o (t,t — s) = —(i/mO(s) (GO (2), 557 (¢ — 5)])o - (A.6)

To obtain the second line, we assume that the system is perturbed by a single frequency only,
ie. Ay(t) = An(w) exp(—iwt). We define the kinetic energy term

K, _Z o —ia)2elTije; = cfKa(k)ey, | (A7)

k

where K, (k) = —0>H(k)/0k2. In the third line, we chose a gauge where
Ey(t) = (—1/c)0tAu(t), i.e. Eq(w) = (iw/c)Aq(w), and we used Hgﬁ(t,tf s) = Hgﬁ(O, —s).
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We obtain, using Eq. (A.5)

(Ja(w)) = 0(w)a,sEs(w) , (A.8)
where
_ Ar? KaVad d ﬁR 0 is(w+i0T) A9
J(w)aaﬁ_ m < ﬂ>0 a,f T S a,,B( 7*5)6 ) ( . )
0

with the definitions
MR 50,—s) = —(i/mOG)GD, 59 (—s)]h . (A.10)
39 = > lia—ja)eTije; = chJu(k)ey, , (A.11)

i,j k

where J,, (k) = 0H (k)/0k,. Finally, we can evaluate the current-current correlation function
by going to the diagonal basis and compute the integral in Eq. (A.9). We obtain the the
optical conductivity tensor

1 e/h)?
0% g(w) = N'((/)

i(w —+i0T) [<Kg>5a,ﬁ - Z,,B(W)] ) (A.12)

where

(Kq) = ZfE" NTe[KG (k) By (R)]

aplw) = Z Ao (K, W) Tr[Jg (k) Py (k) JG (k) Py, ()]
k,m,n
PR 1 AL il L) s

w+i0T + B9, (k) — B2 (k)

n

and f[EJ (k)] is the Fermi function. Note that we added an infinitesimal imaginary part to
w compared to Eq. (A.9)). Furthermore, we reintroduced the spin indices.
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Charge and spin excitations of the
TKM model

The analysis of the excitations along the edge of the 7KM model on a cylinder geometry (see
Sec. is supplemented by the charge and spin excitations. We consider the local, spin-
averaged single-particle spectral function A(k,w) [see Eq. and Eq. ], together
with the local charge and spin structure factors, N(q,w) and S**(q,w) (see Eq. . Here
k = k - ag is the momentum along the edge of the ribbon.

As already discussed in Sec. due to the broken U(1) spin symmetry, the only single-
particle excitations on the edge are the modes that cross at the time-reversal invariant mo-
menta k = 0 and k = 7, respectively [see Fig. [B.1[a), (e), (i), (m)].

The dynamical structure factors are governed by the support of the J-functions in Eq.
Accordingly, the dynamical charge structure factor N(¢,w) generally has two linear (¢ = 0)-
modes corresponding to the two edge excitations with the Fermi velocities vy and v, [see
Fig. [B.1(b), (f), (j), (n)].

The dependency of the Fermi velocities vg » on the spin-orbit coupling A has been shown
in Fig. While the Fermi velocities are different in general (A\/t = 0.35 and A/t = 0.8 in
Fig.[B.1), they are equal in magnitude at As [As & 0.65, see Fig.[B.1] (e)-(h)] and for A/t — oo
[represented by A/t = 2, see Fig. (m)-(p)], as discussed in Sec.|6.4.3

In Sec. a symmetry which relates the spin-spin correlation functions S*(q) and
S#(w) for A/t = As has been derived [Eq. (6.53)], based on an effective low-energy model
. While this derivation has been shown to hold only in the absence of Rashba spin-
orbit coupling, the dynamic spin structure factors of the 7KM model still show signs of this
symmetry at moderate values of the Rashba coupling (here Ag/t = 0.3).

By comparing S**(q,w) [Fig. [B.1[g)] with S**(¢,w) [Fig. [B.1fh)], one observes that
S*(q,w) ~ S*(q + m,w). This symmetry is clearly absent for the other values of the
spin-orbit coupling \/t.

The spin scattering processes within each Dirac cone (intra-orbital scattering) contribute
to the dynamical spin structure factors at zero momentum transfer (¢ = 0) whereas the
spin scattering processes between the Dirac cones (inter-orbital scattering) contribute at a
momentum transfer ¢ = m. At \/t = 0.65 [Fig. [B.1 (g)], the approximately linear mode of
S (m,w) at low energies relates to a spin-flip scattering process which becomes particular
effective since the edge modes have opposite chirality. This feature is absent at A/t = 2
[Fig. (0)]. For this value of spin-orbit coupling, linear low-energy modes at both S**(0,w)
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B. Charge and spin excitations of the m KM model

At =0.35 At = 0.65 At=08 At =2
(a) A(k,w) (e) A(k,w) ‘ (i) A(k,w) (m) A(k,w)

Figure B.1: Edge excitations at Ag/t = 0.3, including the spectral function A;(k,w) and the
dynamical charge and spin structure factors N(g,w) and Srr(zz) (¢,w). The Fermi velocities
vo and v, are indicated by solid and dotted lines, respectively.
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and S**(m,w) are observed in agreement with the equal chiralities of the edge modes which
makes possible low-energy scattering processes that (approximatively) preserve the spin.
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