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Abstract
Current theoretical studies of electronic correlations in transition metal oxides
typically only account for the local repulsion between d-electrons even if oxygen
ligand p-states are an explicit part of the effective Hamiltonian. Interatomic
interactions such as Upd between d- and (ligand) p-electrons, as well as the local

interaction between p-electrons, are neglected. Often, the relative d–p orbital
splitting has to be adjusted ‘ad hoc’ on the basis of the experimental evidence.
By applying the merger of local density approximation and dynamical mean
field theory to the prototypical case of the three-band Emery dp model for the
cuprates, we demonstrate that, without any ‘ad hoc’ adjustment of the orbital
splitting, the charge transfer insulating state is stabilized by the interatomic
interaction Upd. Our study hence shows how to improve realistic material cal-

culations that explicitly include the p-orbitals.
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1. Introduction

A primary effect of electronic correlations is to turn materials, which according to band-theory
would be metallic, into insulators classified as Mott–Hubbard and charge transfer insulators [1].
Experimentally, various transition metal oxides were intensively investigated [2]. The huge
interest in this subject goes back to the unexpected discovery [3] of high-temperature
superconductivity, by doping the charge transfer insulating cuprates. On the theoretical side,
great efforts to solve the Hubbard model [4] have been made since this model captures, in a
fundamental way, the competition between electronic mobility and localization, generated by a
purely local interaction.

No exact solution of the Hubbard model in two or three dimensions is known hitherto, but
a breakthrough was achieved by dynamical mean field theory (DMFT) [5–7]. DMFT extends
the concept of a mean field theory to quantum mechanics and takes into account, non-
perturbatively, a major part of the electronic correlations, i.e. the local electronic correlations in
time. A further, and significant, advantage of DMFT is the possibility to combine it with
ab initio density functional calculations, e.g. with the local density approximation (LDA) in the
so-called LDA+DMFT [8] approach, which has already evolved to a considerable maturity. By
means of LDA+DMFT, realistic calculations of correlated materials with a high degree of
accuracy became possible, as is exemplified well by the successful treatment of the
Mott–Hubbard transition in VO2 3 [9].

The high-temperature superconducting cuprates obviously represent a much more
challenging case for DMFT-based methods. In fact, the extremely anisotropic (quasi two
dimensional) layered structure of these compounds enhances the importance of non-local
spatial correlations. Hence, if aiming at the low-temperature physics of cuprates, non-local
correlations need to be taken into account, which could be achieved by cluster [10] or
diagrammatic extensions [11] of DMFT. Here, we are not focusing on if, or to what extent, the
Hubbard model describes the unconventional superconductivity of the cuprates—a question on
which no consensus has been reached yet. Instead, we will focus on the analysis of the high-
temperature regime of the undoped cuprates. Since the effect of non-local correlations will be
gradually mitigated by temperature [12–14], employing LDA+DMFT is more justified. LDA
+DMFT was already successfully applied to the cuprates for analyzing the anomalies in the
restricted optical sum rules [15–18] and the fingerprints of the Zhang–Rice physics in
photoemission spectra [22, 23]. Here, we will employ LDA+DMFT4 to investigate the
fundamental nature of the high-temperature insulating state in the undoped compounds. This
insulating state, classified as a charge transfer insulator [2], is in fact common for many
transition metal oxides. A crucial step in the LDA+DMFT method is the derivation of the low-
energy Hamiltonian from ab initio calculations by renormalization (downfolding [24]) to
certain basis states around the Fermi energy. The decision on the basis, in fact, is crucial. For
the cuprates this question basically boils down to include oxygen p2 ligand-states explicitly or
implicitly. The simplest possible Hamiltonian with both Cu d3 and oxygen p2 states is the

Emery model which includes, besides the Cu −x y2 2 band, the strongest hybridizing p
x
and p

y
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4 Specifically, for all the DMFT and DMFT+Hartree calculations presented in this work the Würzburg–Wien
‘w2dynamics’ code [19], exploiting the hybridization-expansion implementation [20] of the continuous-time
quantum Monte Carlo method [21], has been used.



states in the xy plane (an extensive discussion on the downfolding procedure for cuprates can be
found in [32]).

In the renormalization sense, physical observables of different effective Hamiltonians
should coincide at low energies, albeit the larger effective Hamiltonians might be more accurate
than those defined on narrower energy windows. By extending the basis-set, one (i) enlarges the
energy range and the physical processes explicitly included in the downfolding procedure, and
(ii) obtains a better localization of the more correlated d-orbitals. Such a general statement is
however premature if the extension exclusively relies on the one-particle (kinetic) part of the
Hamiltonian. One should not forget that the Coulomb interaction needs to be renormalized as
well.

The material best studied in LDA+DMFT within different basis-sets is arguably LaNiO3,
and heterostructures thereof. Here, including the p-states in a dp-model [26] leads to
qualitatively different results compared to the d-only model [27]. As pointed out in [28], the
physics is very different in both cases: in the dp-model the d-occupancy is larger with a
tendency of two d-electrons to form a spin-1 due to Hundʼs exchange. On the contrary, the
d-only model is built with a (fixed) d1 configuration. In such a situation, it is pretty unclear
whether the dp-model does actually provide a more accurate description of the physics, as one
might naively expect due to the larger number of degrees of freedom explicitly taken into
account within the larger basis-set of the downfolded model [29].

Hitherto, the additional oxygen p-orbitals in the extended basis-sets have been considered
as not interacting in state-of-the-art LDA+DMFT calculations, i.e. only a local d–d interaction
has been taken into account. While the oxygen p-orbitals are, due to their nodeless radial wave
function also quite localized, their typical filling in transition metal oxides renders the onsite p-
interaction to be non-crucial. Yet, at the same time, our numerical results show that the effect of
the interatomic p2 – d3 interaction, in the following coined asUpd, does have a large effect.Upd is

an essential parameter that controlls the metal-to-insulator transition, as well as the size of the
charge transfer gap.

The paper is organized as follows: in section 2 the construction of the Emery model is
described starting from the full LDA bandstructures. Section 3 and the appendix are dedicated
to the DMFT and Hartree treatment of the various Coulomb interactions. Section 4 presents the
results obtained, in particular the opening of the charge transfer gap and the importance ofUpd to

this end. Finally, section 5 summarizes the paper.

2. The Emery model revisited

A popular tight-binding Hamiltonian for the high TC cuprates, including oxygen p-states, is a
three-band model suggested by Emery [30] in 1987. The Emery model consists of one planar
Cu −x y2 2 band, two oxygen p

x
and p

y
bands and takes into account a d–p hopping, see table 1.

It is thus the minimal model in order to describe the charge transfer insulating state and,
moreover, the physics of a Zhang–Rice singlet [31]. These features are obviously beyond a
description of the cuprates within an effective single band model. However, Andersen et al [32]
concluded from downfolding the ab initio LDA bandstructure that the original model as
described in [30] should be extended. These extensions originate basically from the inclusion of
an axial degree of freedom (including mostly Cu 4 s-states and apical oxygen states) which was
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seen to describe the material dependence of the electronic structure in the cuprates [33]. The
derivation starts from eight bands which are separated into a ×4 4 σ-bonding block of Cu

−d3 x y2 2, O1 p2
x
, O2 p2

y
, as well as Cu s4 (with some Cu −d3 z r3 2 2 character), and another 4 × 4 π-

bonding block of Cu- d3 xz, Cu d3 yz, O1 p2
z
, and O2 p2

z
. The generic Hamiltonian for the CuO2

planes is the 4 × 4 σ-block, since it contains the conduction band. Due to symmetry reasons, the
σ- and the π-block do not hybridize in the limit of flat planes [32].

Starting from the four band σ-Hamiltonian one can arrive either at (i) a two-band
Hamiltonian with planar (‘dressed’ Cu −x y2 2) and axial (‘dressed’ Cu s4 ) degrees of
freedom5, or at (ii) the three-band Emery model. The latter is obtained by folding the axial
degrees of freedom down to the oxygen bands, resulting in an additional (material dependent)
p–p hopping tpp and renormalization of the onsite p-energy.

Quantitative Hamiltonians can be obtained by means of Nth order muffin tin orbitals
(NMTO) [24] based on a Löwdin downfolding scheme with subsequent ‘N-ization’ (N = 0:
linearization). This technique has been already established and used in several LDA+DMFT
calculations [25]. In our paper, we will consider two different low-energy Hamiltonians
[34, 35]: the first one consists of N = 0 muffin tin orbitals which have been linearized around the
Fermi energy. The 0MTO basis gives correct LDA wave functions at the Fermi level and, by
virtue of the variational principle, the correct LDA Fermi surface and Fermi velocities. The
1MTO basis gives, in addition to this, the correct LDA wave functions at an energy E1 chosen
at the bottom of the pd-bonding band, and hence, the correct =E k E( ) 1 surface and velocities.
The resulting Hamiltonian can be written analytically as in table 1 with hopping parameters
given in table 2.

In figure 1 we show these NMTO downfolded bands for La CuO2 4 from Kent et al [35] for
N = 0 (linearization around the Fermi energy—left-hand side) and N = 1 (with E1 chosen to be at
the bottom of the pd-bonding band at π π( , )—right-hand side). The corresponding hopping
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Table 1. Extended Emery model [35] including p–p hopping mediated by the material
dependent axial degree of freedom.
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5 In this case the σ-oxygen states fold into the planar −x y2 2 conduction band.



parameters can be found in table 2. The difference of the N = 0 and N = 1 models is the energy
range in which they reproduce the cuprate LDA bandstructure (light blue lines): while the N = 0
model only has one fixed energy, namely the Fermi energy EF, the N = 1 model was fixed to εF

and to the energy of the bottom of the bonding pd-bands at around −8 eV. By having to span a
wider energy range, the N = 1 orbitals are somewhat less localized, and consequently have
longer-ranged hoppings than the N = 0 orbitals. A thorough discussion on the relations and
trends of the hopping parameters can be found in [35] and [34]. In our study we will consider
first the N = 0 and then the N = 1 model in order to address the following issue of central
interest: the most problematic step in recent studies [37, 38] was the value of the d–p splitting
ε ε Δ− =d p dp. While the NMTO downfolding [35] yields a value of Δ = 0.45dp eV (N = 0) or

Δ = 0.96dp eV (N = 1), it turns out that the many-body treatments, which include correlation

effects fail to reproduce the insulating behavior of the undoped LSCO. In order to fix this
problem Δdp was increased ‘by hand’ to values of the order of Δ ≈ 3dp eV [35, 38] or it was

chosen as a variable parameter [37]. Further, Kent et al [35] pointed out that previous
justifications of such enhancement of Δdp by means of constrained LDA calculations for

La CuO2 4 are problematic due to a misleading assumption of the electron count. Our analysis in
the subsequent sections will clarify, how these problems are actually related to the assumption
of negligible Coulomb interactions between d and p-electrons in the many-body calculations.

3. Methods: dp-models in DMFTþHartree

We supplement the one-particle extended Emery model from table 1 by the following two-
particle interactions
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Figure 1. Bandstructure and single particle density of states for the 0MTO and 1MTO
downfolded model [34, 35]. The color codes the orbital character: 3d −x y2 2 is black,
whereas the p-states are summarized and plotted in red (gray)-color mixing corresponds
to a mixed orbital state. The LDA bands are shown as thin (blue) lines.

Table 2. Hopping integrals for the Emery model table 1 as obtained by 0MTO and
1MTO in [34, 35].

NMTO ε ε−d p tdd tpd ′tpd tpp ′tpp ″tpp ″′tpp

N = 0 0.43 -0.10 0.96 -0.10 0.15 -0.24 0.02 0.11
N=1 0.95 0.15 1.48 0.08 0.91 0.03 0.15 0.03



∑ ∑ ∑= + +
σσ

σ σ↑ ↓ ↑ ↓
〈 〉 ′

′H U n n U n n U n n . (1)U dd
i

id id pp
j

jp jp pd
ij

id jp
j j j

Here i and j sum over all Cu and O sites, respectively; ∈p p p{ , }
j x y

denotes the particular p-

orbital we include on a given O site j in the Emery model; 〈 〉ij denotes the restriction to nearest

neighbors, i.e. a Cu site i and its four surrounding O sites j; and =σ σ σ
†n c cil il il . This way the most

important (largest) interaction parameters are included: the local Coulomb interactions on the
Cu (Udd) and O sites (Upp) and the nearest neighbor Cu–O interaction Upd.

Since part of HU is contained in the NMTO one-particle energies, we need a so-called
double counting corrections (DC). For the dp-models, the DC effect is much more important
than for d-only models where it often corresponds to a simple energy shift that can be
‘absorbed’ by the chemical potential. We employ the Anisimov DC formula [39] (also coined as
fully localized limit) and extend it straightforwardly to the dp-basis:

Δε = − + ×
⎡
⎣⎢

⎤
⎦⎥U n U n

1
2

4(2) . (2)d p
dd pp d p pd p dDC

( )
( ) ( ) ( )

Here, nd p( ) are the LDA density for the d(p)-orbitals (Cu (O) sites have four O (Cu) neighbors).

So the DC corresponds to a relative shift between the d and p-states, which would be reversed
by a simple mean field treatment of Udd Upd, and Upd.

Let us emphasize that, in contrast to standard LDA+DMFT implementations [28], we treat
all density–density interactions within the dp basis in DMFT+Hartree. Specifically, Udd is
treated in DMFT (CTQMC) where we define a local Anderson impurity model from the local
Cu d Green function and self-energy. The interactions Upp and Upd are treated on the Hartree

level, i.e. a self-energy contribution for each d- and p-site is calculated as Upp(Upd) times the

density of the other orbitals involved. Please note that if nd p( ) remained at its LDA value the DC

term would cancel the effect of Upd in DMFT+Hartree exactly. However, due to the electronic

correlations, in particular due to the splitting of the d-orbitals, nd is reduced and np enhanced. In

a fully charge self-consistent LDA+DMFT calculation, part of thisUpd effect is transferred to the

LDA part. Coming closer to our treatment would be a charge self-consistent LDA+U+DMFT
scheme, where ‘+U’ (Hartree) is taken into account for Upd and in particular Upp and ‘+DMFT’

for Udd.
Let us note that for Upd the Hartree treatment is exact in the DMFT limit since non-local

interactions reduce to their Hartree contribution, see [40]. In the case of Upp, a DMFT solution

for the O sites would be in principle required, exactly as for the Cu site. However, since the p-
orbitals are almost completely filled, electronic correlations are actually weak and the simpler
Hartree treatment well reproduces the DMFT solution, as we explicitly show in appendix. Our
approach incorporates therefore the advantages of the DMFT and explicitly keeps the p-degrees
of freedom also in the interaction part of the many-body Hamiltonian. The extended basis-
set allows us not only to capture Mott–Hubbard physics, but also that of charge transfer
insulators and the concomitant d–p interplay. The latter is, in fact, the relevant one for the
physics of undoped/underdoped cuprates.

Before turning to the results let us mention that the analytic continuation of the numerical
LDA+DMFT results is more complicated for the extended dp basis-set. This issue is discussed
in the appendix as well.
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4. Results

Our DMFT+Hartree results for both 0MTO and 1MTO basis-sets can be summarized in two
conclusions:

1. The d–p interactionUpd, which leads to a self-consistently determined level shift, drives the

system insulating within DMFT+Hartree and opens the charge transfer gap.

2. The critical interactions for this metal-to-insulator transition in 0MTO agree with estimates
of the interaction strength; for 1NMTO they are at the upper borderline or somewhat larger
than what can be expected.

0MTO model. For the interaction parameters of the 0MTO calculation we choose
=U 10dd eV, =U 5pp eV, and take different values of Upd ranging from =U 0pd eV to

=U 3.5pd eV. The choice of Udd value is motivated from constraint random phase (cRPA)

calculations, which gives ≈U 9.0dd
cRPA eV [44]. Such cRPA values are typically smaller than

constraint LDA values, which in some cases yields better results in LDA+DMFT calculations.
The reason for this is the frequency dependence of theUdd

cRPA which can be actually translated to
a Bose factor renormalization of the bandwidth [45]. To the best of our knowledge, forUpd and

Upp no reliable estimates are yet available in the literature, but it is certainly a reasonable

assumption that these interactions need to be smaller than Udd. The obtained spectral functions
are shown in figure 2. As in the bandstructure plots, the color of the spectral function codes the
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Figure 2. DMFT spectra for the 0MTO basis with interaction parameters =U 10dd eV,
=U 5pp eV, and varying Upd . The line at ω = 0 denotes the Fermi level.



orbital character. Let us start from the spectrum for =U 0pd eV which is plotted in the top left

panel. Although the parameters =U 10dd eV and =U 5pp eV are by no means small compared to

the bandwidth, we observe a rather uncorrelated spectral function which resembles the non-
interacting DOS (figure 1) except for the LHB located below −10 eV. The main reason for this
is that, due to the d–p hybridization, the filling of each band and, in particular of the d-band, is
far from an integer value. Upon increasing the value forUpd this hybridization decreases, as can

be seen in the spectra, since the charge transfer from d-states to p-states is now connected with a
potential shift of the respective states of the order of Upd. Eventually, with increasing values of

Upd, we observe a metal-to-insulator transition. From =U 1.5pd eV to =U 2pd eV most of the

spectral weight of the central quasiparticle peak at the Fermi level (ω = 0) is lost. There still
remains a residual spectral weight in the gap which eventually goes away from =U 2pd eV to

2.5 eV.
The low-energy gap in figure 2 is between between d-states, i.e. an ‘upper Hubbard

band’ with some p-hybridization above the Fermi energy εF, and a mixed d–p peak around
−2 eV (for =U 2pd eV) or −3 eV (for =U 2.5pd eV). The ‘lower Hubbard band’ is quite broad

and located below ∼−10 eV, whereas most of the p-spectral weight is located in a large peak
around −4 eV ( =U 2pd eV) and −5 eV ( =U 2.5pd eV). For =U 3.5pd eV, the p-bands are

shifted to such low energies that they approach the lower Hubbard bands and start
hybridizing with them. Let us emphasize that the formation of the narrow peak at EF and the
transfer of spectral weight to the lower and upper Hubbard bands occurring between 2 and
2.5 eV is a dynamical effect beyond static mean field, as witnessed by the strong ω-
dependence of Σ (see figure 5). In summary, DMFT+Hartree yields an insulating state for the
original 0MTO parameters without the artificial enhancement of the d–p splitting hitherto
employed in the literature. Instead, we assumed a finite value of Upd which, in a self-

consistent way, leads to a suppression of d–p hybridization driving the metal-to-insulator
transition. Yet, we should remark two issues: since 0MTO was designed to reproduce the
cuprate bands only around the Fermi energy [35], it is questionable if the 0MTO really yields
a good basis for a study of excitations on an energy scale of some eV above and below the
Fermi energy such as the d–p interplay. We hence present DMFT+Hartree results of the
1MTO model in the following.

1MTO model. As mentioned above, the N = 1 orbitals are less localized, and consequently
have somewhat longer-ranged hoppings than the N = 0 orbitals in order to reproduce the band
structure on a larger energy range. Hence, also the corresponding 1MTO values of the localUdd

and Upp interaction parameters should be reduced. Concurrently, we find that the 1MTO yields

much more metallic solutions. The system remains metallic even for the same interaction
parameters as we used for the N = 0 model in figure 2; to obtain an insulating ground state one
needs a larger Udd or Upd.

In figure 3 we show the DMFT+Hartree spectral functions for the N = 1 model at
=U 13dd eV, =U 7pp eV, and varyingUpd. IncreasingUpd beyond 3 eV opens a gap in the spectral

function However, =U 13dd eV is at the upper edge or larger than the physically reasonable
parameter range.

Nature of the mixed d–p peak. As shown in figures 2, 3 a peak of mixed d- and p-orbital

character develops in the ⃗k -integrated spectral functions around −3 eV (for 0MTO at
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=U 2.5pd eV and 1MTO at =U 3.5pd eV). This peak can be interpreted6 as a Zhang–Rice state

in agreement with previous LDA+DMFT studies [46–48].
In order to see whether or not this spectral weight is also associated to a coherent excitation

we calculate ω⃗A k( , ) just before and after the metal–insulator transition, i.e. =U 2pd –2.5 eV for

0MTO and =U 3pd –3.5 eV for 1MTO. The results are shown in figure 4, and the corresponding

local d-self-energies are shown in figure 5. Interestingly, the coherence of the spectral feature
around −3 eV changes dramatically across the metal–insulator transition for both 0MTO (the
two lower panels of figure 4) and 1MTO (the two upper panels). In the two left panels of
figure 4, i.e. before the metal–insulator transition, the dispersive band between−3 eV and−1 eV
is very incoherent whereas in the two right panels, i.e. just after the metal-insulating transition, a
very well defined quasiparticle excitation emerges. The double-occupancies of the d-orbital and
the spectral weight at the Fermi level as a function ofUpd shows the following: the values ofUpd

for which the double-occupancies (not-shown) get suppressed are those for which most of the
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Figure 3. DMFT spectra for the 1MTO basis with interaction parameters =U 13dd eV,
=U 5pp eV, and varying Upd; the line at ω = 0 denotes the Fermi level. We have not

broadened the δ-peaks with an additional Lorentzian broadening. The only broadening
is due to the intrinsic finite lifetime from ΣIm . Please note that there is spectral weight
down to −20 eV in the lower two panels which we cut off.

6 Note that DMFT allows for the description of a singlet state between the d-site and the bath electrons of the
associated Anderson impurity model. In the specific case considered, as it is typically done, the dynamical Weiss
field of DMFT effectively includes also the p-degrees of freedom, which are therefore not explicitly separated. The
strong mixing among d- and p-orbitals observed at−3 eV, however, supports the intepretation of the corresponding
spectral feature as Zhang–Rice state.



spectral weight gets shifted away from the Fermi level. In this strongly-correlated metallic
solution an additional peak of mixed dp character is formed when a residual finite fraction of
itinerant electrons is still present. This spectral feature, which can be interpreted as the emergent
Zhang–Rice excitation, becomes more coherent only when the spectral weight at the Fermi
level is completely depleted. This depletion, i.e. the opening of the gap, occurs in a similar way
as in the Mott–Hubbard transition of the Hubbard model: a pole in the real part of the self-
energy develops, see the blue (dashed) lines in figure 5 at ω ∼ −1.5 eV. At the same time, the
imaginary part of the self-energy develops a peak. This pole respectively peak separates the
Zhang–Rice from the upper Hubbard band. There is a second pole in the real part and peak in
the imaginary part of the self-energy of figure 5 which splits off the lower Hubbard band and
which is located at ∼−7 eV(0MTO, =U 2pd eV) to ∼−11 eV (1MTO, =U 3.5pd eV), i.e.

between Zhang–Rice singlet and lower Hubbard band. This two pole (peak) structure due to the
Zhang–Rice singlet is different from the usual Mott–Hubbard insulator which only has a single
pole (peak).7 Let us emphasize that in our case, the low-energy gap is between d-states above
and p-states below the Fermi level; we have a charge transfer insulator [1] with a Zhang–Rice
singlet.

New J. Phys. 16 (2014) 033009 P Hansmann et al

10

Figure 4. ⃗k -resolved spectral function of 0MTO in the lower and the 1MTO in the
upper row. The two left panels are before the charge transfer metal-insulator transition
(i.e. for =U 10 eVdd , =U 5 eVpp , =U 2pd eV and =U 13 eVdd , =U 7 eVpp , =U 3pd eV
in the lower and upper row, respectively). The two right columns are after the metal-
insulator transition (obtained by increasing Upd-parameter by 0.5 eV; keeping the other
parameters fixed). For both models the mixed pd-state becomes suddenly coherent as
soon as we enter the insulating state.

7 While the two peaks dominate the imaginary part of the self-energy, there is still some imaginary part of the self-
energy (scattering) e.g. in the upper Hubbard bands, which gets suppressed with increasing correlations (Upd).



5. Conclusions

Presently, within the state-of-the art LDA+DMFT calculations, the splitting between the d- and
p-states in cuprates [35] and other transition metal oxides is adjusted for obtaining agreement
with experiment, see e.g. [49], or new DC are introduced, see [50]. This is quite unsatisfactory
since it basically destroys the often claimed ab initio character of the calculation. The aim of our
work was hence (i) to understand the physical origin behind such adjustments, and (ii) to
perform calculations based on the original parameters from NMTO downfolding without
artificially changing them. In particular, if the orbital overlap is large, the non-local
oxygen–copper interaction Upd can be strong. We have shown that the inclusion of this

interatomic interaction is indeed extremely important, because it allows for the description of a
self-consistently determined d–p level splitting. This mechanism can explain why previous LDA
+DMFT calculations that only included the d–d interaction yielded—in some cases—poorer
results than corresponding studies in smaller d-only basis-set. The artificial p–d shifts that were
employed in the literature actually mimic the effect of Upd. The DMFT+Hartree approach with

the explicit inclusion of Upd, adoped in this work, is much more satisfactory from both a

practical and a conceptual point of view. The DMFT+Hartree treatment can be based entirely on
interaction parameters determined ab initio for the downfolded basis-set chosen, e.g. by means
of cRPA [51] or its recently developed locally unscreened version [52]. Since the Hartree
contribution ofUpd is its leading contribution in the limit of many neighbors and since it yields,

as we have seen, an important p–d level shift it should be included in future LDA+DMFT
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Figure 5. The imaginary (upper panels) and real part (lower panels) of the local DMFT
d-self-energy on the real axis for the four cases plotted in figure 4.



calculations that include the oxygen p levels. Beyond that also screening effects ofUpd might be

relevant. These could be more easily included in GW+DMFT.
For the specific case of undoped cuprates, the two downfolded models considered, 0MTO

and 1MTO, qualitatively yield the same physics, see figures 2–4. Quantitatively, the results for
the 1MTO model require somewhat larger interaction parameters than 0MTO to open an
insulating gap. For 0MTO we have a charge transfer insulator for plausible interaction
parameters, whereas for 1MTO these are at the borderline or even somewhat larger than
expected [44]. Let us note in this respect that non-local interactions, beyond the realm of our
DMFT+Hartree treatment, also play an important role for cuprates and will further stabilize the
insulating solution. Also in the paramagnetic phase these non-local correlations will reduce the
critical interactions for the metal-to-insulator transition [17, 53].

Let us emphasize that the impact of our analysis goes well beyond the particular, though
significant case of the insulating phase in undoped cuprates. In fact, for other transition metal
oxides with a more three dimensional crystal and electronic structure, non-local correlations
beyond DMFT are less important, except for low temperatures [13, 14]. Hence, one can expect
a DMFT+Hartree calculation including ab initio theUpd interaction to be sufficient for capturing

the physics of downfolded d–p models which are nowadays fixed by hand [49]. In practice,
similarly as for the Emery model, the Upd interactions will turn the physics of the dp-model

towards that of the d-only model, because the number of d-electrons is reduced towards an
integer value, entailing stronger electronic correlations. Our paper hence paves the way for
better treatment of oxygen p-orbitals in LDA+DMFT calculations.
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Appendix

Analytic continuation. To obtain high quality spectra with as little ambiguity as possible we
employ the continuation of the self-energy scheme as described in [41]. Compared to the more
often used continuation of the Green function, the continuation of the self-energy has the
advantage of leading to guaranteed physical self-energies, since the condition of positivity of
the imaginary part of the self-energy is incorporated in the maximum entropy method (maxent).
Furthermore, compared to the maxent for the Green functions, this scheme has the advantage of
avoiding an unnecessary maxent-step for the p-bands, whose self-energy is known and constant.
This way maxent is applied only to the part beyond Hartree of the correlated orbitals, whereas
all other quantities, e.g. ⃗Hk and the Hartree self-energy ΣH can be treated exactly on the real
axis. In the practical implementation, we measure the Green’s function from a converged run
directly in Matsubara frequencies ωi n to avoid binning errors as would be the case when
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measuring the Green’s function in imaginary time τ. Then we calculate the self-energy Σ ωi( )n

using the Dyson equation Σ ω ω ω= −− −i i G i( ) ( ) ( )n n n0
1 1 , assuming that the bath Green’s

function −0
1 does not contain statistical errors. To calculate the error for the self-energy we

employ the bootstrap method on 300 independent Green’s function measurements. The self-
energy has a different asymptotic behavior from that of the Green’s function. The latter is
however needed for maxent-like methods. Therefore a manipulation of the input is needed. To
this end one performs a high-frequency expansion of the CTQMC self-energy which for the
single band Hubbard model reads:

Σ ω

ω ω

= 〈 〉

+ 〈 〉 − 〈 〉 +
σ σ

σ σ

−

− −
− − ( )

i U n

U n n i i

( )

(1 )( ) ( ) . (3)

n dd

dd n n
2 1 2

Following the argument above and with the knowledge that the Green’s function has a ωi1/( )n

asymptotic behavior, we subtract the Hartree term for the d-band, 〈 〉σ−U ndd and divide the

remaining part of the self-energy by the prefactor of the ωi1/( )n term. This new object, Σ ω∼
i( )n ,

can then be analytically continued to the real axis by means of the stochastic maxent method
[42, 43].

In this respect, by inspecting the correlation matrix of the self-energy we checked that
different Matsubara frequencies are uncorrelated, otherwise a transformation to a non-correlated
basis would have been necessary. We finally calculated the spectral function, ωA k( , ), from

Σ ω∼
( ) and all other terms, namely the DC correction, the ⃗k -dependent Hamiltonian ⃗Hk , the

chemical potential μ and the Hartree self-energy of ΣH:

ω
π

ω μ Σ

Σ ω

⃗ = − + − − −

− 〈 〉 − 〈 〉∼
σ

σ σ

⃗

− −

−⎤⎦

[A k DC H

U n n

( , )
1

Im

( ) (1 ) . (4)

k

dd

H

2
1

To test the validity of our approach we also compared data of an ED-calculation with data
obtained by our CTQMC implementation, which resulted in very good agreement.
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Figure 6. Local DMFT self-energy of the p-orbitals compared to the corresponding
Hartree calculation for the 0MTO Emery model with =U 1.5(3.5)pd eV, =U 5pp eV,

=U 10dd eV in the left (right) panel. For both cases the Hartree self-energy of the p-
orbitals is almost identical to the one which was calculated with the CTQMC.



DMFT(CTQMC) for the p-electrons. Here, we validate that a Hartree treatment of Upp is

sufficient. To this end we performed for some test calculations where bothUdd andUpd are treated

in DMFT, andUpd in Hartree, which actually is the correct (full) DMFT treatment of the Emery

model. Figure 6 shows the obtained DMFT self-energy, which is basically the same as the
Hartree self-energy. For =U 1.5pd eV, very minor deviations are discernible at low frequencies,

but the Hartree self-energy is still an accurate approximation of the DMFT self-energy.
Therefore, we conclude that a Hartree treament of Upp is absolutely sufficient.
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