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Abstract

An efficient and accurate computational framework for solving control problems governed
by quantum spin systems is presented. Spin systems are extremely important in modern
quantum technologies such as nuclear magnetic resonance spectroscopy, quantum imaging
and quantum computing. In these applications, two classes of quantum control problems
arise: optimal control problems and exact-controllability problems, with a bilinear con-
trol structure. These models correspond to the Schrödinger-Pauli equation, describing the
time evolution of a spinor, and the Liouville-von Neumann master equation, describing
the time evolution of a spinor and a density operator. This thesis focuses on quantum
control problems governed by these models. An appropriate definition of the optimiza-
tion objectives and of the admissible set of control functions allows to construct controls
with specific properties. These properties are in general required by the physics and the
technologies involved in quantum control applications.

A main purpose of this work is to address non-differentiable quantum control problems.
For this reason, a computational framework is developed to address optimal-control prob-
lems, with possibly L1-penalization term in the cost-functional, and exact-controllability
problems. In both cases the set of admissible control functions is a subset of a Hilbert
space. The bilinear control structure of the quantum model, the L1-penalization term
and the control constraints generate high non-linearities that make difficult to solve and
analyse the corresponding control problems.

The first part of this thesis focuses on the physical description of the spin of particles
and of the magnetic resonance phenomenon. Afterwards, the controlled Schrödinger-
Pauli equation and the Liouville-von Neumann master equation are discussed. These
equations, like many other controlled quantum models, can be represented by dynamical
systems with a bilinear control structure.

In the second part of this thesis, theoretical investigations of optimal control problems,
with a possible L1-penalization term in the objective and control constraints, are consid-
ered. In particular, existence of solutions, optimality conditions, and regularity properties
of the optimal controls are discussed. In order to solve these optimal control problems,
semi-smooth Newton methods are developed and proved to be superlinear convergent.
The main difficulty in the implementation of a Newton method for optimal control prob-
lems comes from the dimension of the Jacobian operator. In a discrete form, the Jacobian
is a very large matrix, and this fact makes its construction infeasible from a practical point
of view. For this reason, the focus of this work is on inexact Krylov-Newton methods,
that combine the Newton method with Krylov iterative solvers for linear systems, and
allows to avoid the construction of the discrete Jacobian.

In the third part of this thesis, two methodologies for the exact-controllability of quan-
tum spin systems are presented. The first method consists of a continuation technique,
while the second method is based on a particular reformulation of the exact-control prob-
lem. Both these methodologies address minimum L2-norm exact-controllability problems.
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In the fourth part, the thesis focuses on the numerical analysis of quantum con-
trol problems. In particular, the modified Crank-Nicolson scheme as an adequate time
discretization of the Schrödinger equation is discussed, the first-discretize-then-optimize
strategy is used to obtain a discrete reduced gradient formula for the differentiable part
of the optimization objective, and implementation details and globalization strategies to
guarantee an adequate numerical behaviour of semi-smooth Newton methods are treated.

In the last part of this work, several numerical experiments are performed to vali-
date the theoretical results and demonstrate the ability of the proposed computational
framework to solve quantum spin control problems.
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Chapter 1

Introduction

The problem of steering a quantum dynamical system from an initial state to a tar-
get state is one of the main issues in many applications in nanotechnology. This class
of problems appears in several disciplines, such as nuclear magnetic resonance (NMR)
spectroscopy, magnetic resonance imaging (MRI), spin dynamics and quantum infor-
mation processing, where quantum systems are controlled by the action of magnetic
fields. These disciplines, motivated by medical and engineering applications, focus on
the control of the spin orientation of particles and the magnetization of given nuclei;
see, e.g., [9, 14, 20, 25, 46, 72, 73, 85, 125]. The issue of controlling the state of
a quantum system appears also in applications involving chemical reactions; see, e.g.,
[14, 16, 17, 116, 128, 129]. In these applications, the control function represents an electric
field, with the aim of steering the quantum system between eigenstates of its Hamiltonian;
see, e.g., [14, 16, 116, 128, 129]. A quantum control problem is mathematically regarded
as the control of a quantum model with a bilinear control structure. This means that, the
product between control functions and quantum states appears in the governing model
and generates highly non-linear dynamics.

The task of controlling a quantum system can be mathematically clarified as an op-
timal control problem, as an exact control problem and as a controllability problem. An
optimal control problem has the purpose of computing control functions that minimize an
appropriate cost functional, which contains a norm of the difference between the resulting
terminal state and a given target state; see, e.g., [14, 25, 31, 46, 108, 109, 111]. An exact
control problem aims at obtaining control functions that allow to reach exactly the given
target state. This class of problem is more involved, and the corresponding literature is
at its infancy [30, 31, 129, 130]. Further, a controllability problem aims at establishing
the reachability of a given target state; see, e.g., [1, 2, 3, 4, 5, 39, 40, 102]. Another
non-negligible aspect is related to the structure and the properties of the control func-
tions. In fact, many applications motivated by physical and experimental reasons, require
control functions with specific properties. These classes of quantum control problems
pose several challenges from the scientific computing point of view: design and analyse
quantum optimal control problems; develop numerical algorithms capable to solve quan-
tum optimization problems in a fast and accurate way; prove that a quantum system is
controllable and establish the conditions which are necessary and sufficient to guarantee
controllability. In the present thesis, we contribute to all of these issues.

The main focus of this work is the control of quantum spin systems considered in
NMR spectroscopy, MRI and other applications that involve the control of spin and
magnetization state of particles and nuclei by means of magnetic fields. Despite this
applicative purpose, most of the methodologies and the results presented in this thesis
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are valid also for a more general class of quantum bilinear control problems.
In the field of control of spin systems, it is suitable to have criteria that allow to

establish controllability of a given system. For this reason, controllability of quantum spin
systems is an important topic in applied mathematics. The time evolution of spin systems
can be regarded as the evolution of systems defined on Lie groups. General controllability
results for bilinear systems evolving on Lie groups are given in [67, 68]. For controllability
results regarding specifically spin systems, we refer to [2, 3, 4, 5, 39, 40, 42, 102]. Another
important aspect is to guarantee controllability at a given time. The literature regarding
these aspect is scarce, and pioneering works are given in, e.g., [1, 9, 39, 70, 72].

From the application point of view, the most important issue of quantum control
problems is to determine control functions for specific transitions. This reason is boost-
ing an intensive investigation in the optimal control theory for quantum systems, which
has the purpose of designing fast control mechanisms that cannot be constructed simply
based on perturbation theory [129]. This fact motivates the application of optimal control
methods and related computational techniques to quantum systems [15, 59, 73, 88]; see
[14] for a review. However, in most of the works on quantum optimal control problems,
the focus is on numerical optimization techniques that allow to compute the required
control functions. Pioneering results in the development of quantum optimal control al-
gorithms can be found in [76, 115, 133]. Further progress in the development of efficient
control schemes is documented in, e.g., [44, 59, 73, 88, 89, 91, 106]. In particular, ad-
vanced optimization methods are discussed in [15, 17, 18, 48, 62, 87, 128]. Investigation
and analyses of discretization schemes for quantum control problems can be found in,
e.g., [88, 129]. In these references, only first-order optimization methods were considered,
while, to the best of our knowledge, we are not aware of works on second-order Newton
methods for the control of quantum spin systems. On the other hand, a discussion of a
Krylov-Newton (or Newton-Krylov) scheme for solving optimal spin-less quantum con-
trol problems governed by an infinite-dimensional Schrödinger equation can be found in
[129, 130]. Moreover, in applications the need arises to constrain the control functions
pointwise in time; see, e.g., [75, 105]. This requirement results in a lack of differentiability
of the control problem so that a straightforward application of the Newton method is not
possible. To overcome this limitation, in the field of PDE-constraint optimization prob-
lems, a semi-smooth Newton (SSN) method was developed to solve control-constrained
problems; see, e.g., [56, 58, 78, 79, 80, 123]. The only works in the literature investigating
semi-smooth Newton methods for the control of bilinear quantum systems are [29, 31, 32],
that represent one of the main novelties of this research work.

In several applications, such as NMR and MRI, controls of practical interest are
pointwise-bounded piecewise-constant time-dependent functions that can be exactly im-
plemented in experiments [25, 37, 125]. Furthermore, in many applications in NMR
spectroscopy, it is suitable to have control functions with a so-called sparse structure; see,
e.g., [74, 85]. To obtain functions with this special structure, an L1-penalization of the
controls is considered in the cost functional. This penalization term increases the non-
linearity of the problem, and makes the theoretical analysis and the numerical solution
more involved. In the field of L1-optimal control of linear PDEs, pioneering works are
[7, 24, 35, 55, 110, 126, 127]. On the other hand, L1-optimal control of quantum systems
is a much less investigated subject, and we are aware only about the work [29], which
represents one of the main novelties of this thesis.

In some spin control applications, the control obtained with the optimal control for-
mulation does not satisfy the requirements of some physical experiments. Rather, it is
essential to compute exact-control functions, that are controls capable to steer exactly
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the trajectory of a quantum system to a given target state. However, research in the field
of quantum exact-controllability problems focuses in large part on theoretical issues and
much less is known concerning algorithms that allow to compute these functions and that
are supported by a rigorous theoretical framework. In this area, the only works addressing
computational schemes for exact-control problems with a rigorous theoretical background
are [28, 30, 31], which are part of this thesis.

The main focus of our work is to investigate quantum control problems where the
governing model has the following structure

ẋ =

[
A+

NC∑
n=1

unBn

]
x , (1.1)

where x is the state describing a quantum system, un are the control functions, and
the operators A and Bn are in general skew-symmetric matrices. This general bilinear
system can be a real representation of a Liouville-von Neumann equation, a (semi-discrete)
Schrödinger equation, a Pauli equation and other quantum operator equations; see, e.g.,
[6, 25, 31, 40, 109].

One of the most challenging optimal control problems considered in this thesis is the
following

min
x,u

J(x, u) :=
1

2
‖x(T )− xT‖2

2 +

NC∑
n=1

[ν
2
‖un‖2

L2 + β‖un‖L1

]
s.t. ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ]

x ∈ X , u ∈ Uad ,

(1.2)

where X is the state space, xT is a given target, Uad is the set of admissible controls,
and ν and β are non-negative parameters used to weight the L2- and the L1-norm of the
controls. The term 1

2
‖x(T ) − xT‖2

2 measures the distance between the terminal point of
the trajectory x(T ) and the given target xT . This term is referred to as tracking term.

The solutions to (1.2) can have different properties, depending on the values of ν and
β, and on the structure of the admissible set Uad. In particular, the coefficient ν weights
the squared L2-norm of the controls, that represents a regularization term; on the other
hand, it penalizes high values of the controls. The coefficient β weights the L1-norm of the
controls, that, in contrast, penalizes small values of the controls and generates solutions
that are said to be sparse; see, e.g., [29, 110, 126]. It is necessary to remark that, even if the
L1-norm increases the convexity of the problem, it cannot be regarded as a regularization
term. This is due to the fact that it makes the problem non-smooth. Another source of
non-smoothness and non-linearity is the control constraint set Uad. This set is in general
a closed and convex subset of a Hilbert space, and is used to guarantee particular features
of the desired controls; for instance, in NMR spectroscopy, it is often required that the
control functions are pointwise bounded. Both the L1-penalization and the constraint Uad
increase the non-linearity of the optimization problem, which is mainly due to the bilinear
structure of the quantum system (1.1). For these reasons, a theoretical characterization
and, in particular, a numerical solution to (1.2) could be hard to perform. This is one
of the main novelty of the thesis: we develop an efficient and robust SSN method, with
proved theoretical convergence, for the solution to (1.2), and, in order to obtain a very
fast and efficient scheme, we focus on a matrix-free implementation of the SSN method.

Exact and non-smooth control of quantum spin systems
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Furthermore, we provide a theoretical characterization of the optimal control solutions;
see [29, 31, 32].

The second novelty of the present thesis is the development of two computational
schemes, that are capable to address exact-controllability problems. In particular, both
the methods aim to solve the following minimum L2-norm problem [28, 29, 31]

min
x,u

Ju(x, u) :=
1

2

NC∑
n=1

‖un‖2
L2

s.t. ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ) , x(0) = x0 , x(T ) = xT .

(1.3)

The first method is based on a continuation technique that considers a sequence of positive
weight parameters νk and the corresponding optimal control problems (1.2) (with β = 0).
The corresponding sequence of optimal controls uk is proved to converge to a solution to
(1.3). This problem is addressed in [31], where a continuation method is developed for
unconstrained exact-control problems. In this thesis, we extend these results in the case
that the controls have to belong to a closed and convex set Uad. The second computational
method consists in a reformulation of the optimality system, that characterizes a solution
to (1.3), in a new optimization problem. One of the unknowns of this new problem is
the terminal condition of the adjoint equation, which is consequently referred as to a
shooting-variable. The main feature of this reformulation, is that the new problem is
proved to have, under reasonable conditions, regularity properties, that allow the use of
standard optimization techniques. This framework is developed in [30].

Another novelty of this work is the analysis of the modified Crank-Nicolson (MCN)
scheme as an appropriate discretization of (1.1), especially in the case that (1.1) is a
Schrödinger equation. In fact, the time evolution of a Schrödinger equation is character-
ized by algebraic and geometrical properties, like norm-preservation and symplecticity,
that are important in the optimization process. In the field of quantum control, the
majority of the literature regarding the time-discretization of Schrödinger equations and
quantum systems, focuses on schemes based on the use of exponential matrices; see, e.g.,
[37, 61, 73]. This allows to preserve the properties of the Schrödinger equation, but pays
the price of a high computational effort. The MCN scheme provides an answer to this
problem, since it combines the well-known computational efficiency of finite-differences
with the preservation of all the properties of a Schrödinger equation. We remark that,
this scheme was presented in [129] and derived by means of a Magnus expansion of the
Hamiltonian following similar arguments as in [61]. However, there is no rigorous analy-
sis regarding convergence and preservation of algebraic and geometrical properties. This
analysis is presented in this thesis, and in particular, the analysis of algebraic and geo-
metrical properties is performed with the help of the matrix Lie group theory.

Furthermore, since many scientific topics are involved in quantum control theory,
the different scientific communities formulate quantum control problems with different
formalisms that make a convenient transfer of knowledge difficult. For this reason, we
provide a unifying formulation of quantum spin control problems. In particular, within
this formulation, we discuss also existing theoretical results to provide a complete and
consistent picture of quantum spin control problems.

For the sake of clarity, we summarize the main contributions achieved in this thesis:

1. The development of a semi-smooth Krylov-Newton scheme for the solution to the
optimal control problem (1.2). This development consists of a theoretical investi-

Exact and non-smooth control of quantum spin systems
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gation, that provides the method with a theoretical proof of convergence, and in
an implementation analysis, that discusses several implementation details for an
adequate numerical behaviour.

2. The development of two computational methods for the exact control of (1.1). These
schemes address the minimum L2-norm problem (1.3).

3. The numerical, geometrical, and algebraic analysis of the modified Crank-Nicolson
scheme for the numerical time-integration of a general Schrödinger equation.

4. A unifying formulation of quantum spin control problems. This formulation starts
with a physical description of the main quantum spin models, and involves the-
oretical and numerical analysis, including results regarding controllability of spin
systems. Some known results are revisited in this formulation.

The thesis is organized as follows. Chapter 2 provides a detailed introduction regard-
ing the quantum systems addressed in this work. Starting with a physical description
of the spin of particles and of the magnetic resonance phenomenon in Section 2.1, the
Schrödinger-Pauli equation is discussed for spin systems controlled by means of magnetic
fields in Section 2.2. A particular spectral discretization of the Pauli equation allows to
obtain a finite-dimensional Schrödinger equation, that is used to derive the Liouville-von
Neumann master (LvNM) equation. The LvNM equation is described in details in Section
2.3. In Section 2.4, it is shown that the Schrödinger-Pauli and the LvNM equations can
be represented in the bilinear form (1.1).

Chapter 3 focuses on a theoretical investigation of problem (1.2). In particular, in
Section 3.1 properties of the bilinear system (1.1) and its linearization are investigated.
In Section 3.2, problem (1.2) with β = 0, ν ≥ 0 and different admissible sets Uad is
analysed. In particular, the existence of a minimizer is proved in Theorem 1 and first-
order necessary conditions are addressed in Theorems 2, 3 and 4. In Section 3.3, problem
(1.2) with β = 0 and piecewise-constant controls is studied. Section 3.4 focuses on the L1-
penalized problem (1.2) (β > 0). The existence of a minimizer and first-order necessary
conditions are proved in Theorem 6 and Theorem 7, respectively. Characterizing results
of the optimal controls are presented in Theorems 9, 10 and 11.

Chapter 4 aims to the development of Newton methods for the optimal control of
quantum systems. In Section 4.1, an introduction of Newton and semi-smooth Newton
methods is provided by discussing these methods for the solution of finite-dimensional
different problems. This introduction has the purpose to explain in a simple way the
main concepts of Newton and semi-smooth Newton methods, in the case of a minimization
of finite-dimension functions, and simplify the reading of the following sections 4.2 and
4.3. In particular, Section 4.2 focuses on the description of a matrix-free Krylov-Newton
method for the solution of (1.2) with β = 0 in the absence of control constraints. A
proof of the local quadratic convergence is provided in Theorem 16. In Section 4.3, a
semi-smooth Krylov-Newton method for the solution of the L1-penalized problem (1.2) is
presented, and proved to be locally superlinear convergent in Theorem 19.

In Chapter 5, the exact control of quantum systems is addressed. Section 5.1 provides
a survey of some important controllability results for quantum spin systems. The two
Sections 5.2 and 5.3 present two different computational methodologies, and correspond-
ing theoretical analyses, for the exact control of quantum systems by solving problem
(1.3). In particular, Section 5.2 focuses on a continuation procedure for the exact control
of quantum systems, valid also in the case of constrained controls. Convergence of the
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continuation method is proved in Theorems 25 and 27. Moreover, the rate of convergence
is addressed in Theorems 26 and 28. Section 5.3 presents a methodology for the exact con-
trol of (1.1) based on a reformulation of (1.3). Regularity properties of this reformulation
are proved in Theorems 29 and 30.

The focus of Chapter 6 is the numerical analysis of quantum control problems. Section
6.1 describes the modified Crank-Nicolson scheme as an adequate time discretization of the
Schrödinger equation. This section provides a theoretical investigation of the MCN scheme
regarding stability, convergence, and preservation of algebraic properties. These results
are proved in Theorems 31, 33 and 32. In Section 6.2, the first-discretize-then-optimize
strategy is used to obtain a discrete reduced gradient formula for the differentiable part
of the cost in (1.2). Section 6.3 discusses implementation details and globalization strate-
gies to guarantee an adequate numerical behaviour of Krylov-Newton and Krylov-SSN
methods. In Sections 6.4 and 6.5, numerical schemes for performing the continuation
procedure and the shooting-type method are discussed.

Chapter 7 presents numerical experiments that demonstrate the validity of the compu-
tational framework developed in this thesis. In particular, in Section 7.1 numerical exper-
iments of L1-penalized problems with possibly piecewise-constant controls are discussed.
The experiments consider finite-dimensional spin systems and infinite-dimensional quan-
tum systems and demonstrate the numerical convergence of the Krylov-Newton methods.
Section 7.2 focuses on numerical experiments of exact-control problems. In particular,
these experiments address the exact control of spin systems and the Pauli equation, and a
case of a bang-bang exact-control problem. The two methodologies developed in Chapter
5 are used and compared. Section 7.3 presents the control of distributed inhomogeneous
quantum spin systems.

Each chapter of this thesis is concluded with a “summary and remarks” section. In the
appendix, we collect auxiliary results and additional informations, that make this thesis
more self-contained.

We believe that the methodologies presented in this thesis will become the methods of
choice in the applied sciences and boost further research in the field of quantum control
problems.
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Chapter 2

The physics of a spin and quantum
control models

This chapter introduces the physics of a spin and the related mathematical models. In
particular, physical behaviour of spin particles and the so-called magnetic resonance phe-
nomenon are described. These are the main notions used in many applications in nan-
otechnology, like nuclear magnetic resonance (NMR) spectroscopy, magnetic resonance
imaging (MRI), quantum computing, etc., where controlling magnetic fields allows to
perform experiments with chemical, pharmaceutical, and medical purposes.

The main equation that models the spin dynamics is the famous Pauli equation. This
is a Schrödinger equation whose Hamiltonian contains an additional term, known as Stern-
Gerlach term, which expresses the interaction between the particle’s spin and an external
magnetic field. By means of a spectral discretization method and introducing the notion
of density matrix, the Pauli equation can be transformed into the famous Liouville-von
Neumann master (LvNM) equation, that is used to characterize the dynamics of nuclear
magnetic resonance phenomena. The Pauli equation, the Liouville-von Neumann equa-
tion and their relationship are discussed in the present chapter. Furthermore, particular
attention is posed in the description of the spin Hamiltonian, which is used in NMR and
MRI applications. Both Pauli and LvNM equation admit a real representation, in which
these assume the form of a dynamical system with bilinear control structure, that is usual
in quantum control theory and applications. These representations are described in the
last section of this chapter. Notice that the bilinear dynamical systems represent the
governing equations of optimal control problems addressed in this thesis.

The chapter is organized as follows. In Section 2.1, the concepts of spin of particles and
atomic nuclei is described, and its relationship with the magnetic resonance is discussed.
Section 2.2 considers the Pauli equation, that is approximated by means of a spectral
discretization method. Physical considerations show that for particular state transitions
the solution of the obtained discrete system coincide with the exact solution of the Pauli
equation. In Section 2.3, first we provide with a description of the density matrix, that
is used to characterize the quantum state of spin systems. Then the LvNM equation is
derived, and details regarding the control of spin systems involved in NMR are discussed.
In Section 2.4, a general dynamical system with a bilinear control structure is presented
as a real representation of quantum control systems.
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2.1 Spin of Fermions and magnetic resonance
In quantum mechanics, there exist two types of angular momentum possessed by ele-
mentary particles [51, 83, 118]. The first one is the orbital angular momentum, which
arises when a particle performs a motion in space, e.g., when an electron orbits a nucleus.
This momentum represents the quantized counterpart of the classical notion of angular
momentum. The second one is the spin or intrinsic angular momentum, that resembles
the classical notion of particles spinning around their own axis. More precisely, the spin
has no counterparts in classical mechanics and represents a quantum degree of freedom
[103] that plays an important role in certain physical phenomena regarding, for instance,
the interaction of elementary particles and atomic nuclei with magnetic fields; see, e.g.,
[20, 25, 46, 103]. Historically, the existence of the spin as a quantum degree of freedom
was inferred from experiments, like the famous Stern–Gerlach experiment, in which par-
ticles are observed to possess angular momentum that cannot be accounted for by orbital
angular momentum alone; see, e.g., [83, 103].

In this thesis, we focus on so-called Fermi particles, also called Fermions or spin-1
2

particles, which are particles with half-integer spin. To clarify this concept, consider
a particle (for example an electron) irradiated by a spatially uniform and stationary
magnetic field B0, whose direction coincides with the z axis of the Cartesian coordinates.
In this condition, the spin of the particle will be oriented in the same direction of the
magnetic field, and can be pointing only in the two directions +z and −z. These two
conditions are referred to as spin-up (spin +1

2
) and spin-down (spin −1

2
). In particular, the

spin-up and spin-down conditions correspond to two different energy levels, that are for
convention assumed to be the lower and the higher energy level, respectively; see Figure
2.1(a). Moreover, the energetic distance between the two spin states is proportional to
the amplitude of the magnetic field B0 [20, 25], as shown in Figure 2.1(b).

Figure 2.1: Spin states and energies: (a) The applied magnetic field B0 create the two spin
conditions corresponding to lower and higher energy states. (b) The energy of a spin state is
proportional to the amplitude of the magnetic field B0. In blue the energy difference between
the allowed nuclear spin states is depicted. Source: Organic Chemistry - Brown et al. [20].

The energy corresponding to a spin state of a particle immersed in B0 is given by the
following scalar quantity

E = γ~sB0 , (2.1)

where ~ is the reduced Planck constant, s is called spin quantum number, and γ is the
gyromagnetic ratio, that is a constant related to the specific particle (or nuclei) given by

γ =
gµB
~

, (2.2)
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where g is the so-called g-factor, which is a dimensionless quantity that characterizes
the magnetic moment of a particle, and µB is the nuclear magneton, that is a physical
constant of magnetic moment. The nuclear magneton is given by µB = e~

µc
, with e, µ

the charge and the mass of the particle, respectively, and c the speed of light. The spin
quantum number s is in general a half-integer and is used to identify the possible energy
levels generated by the action of B0. This phenomenon is known as Zeeman effect; see,
e.g., [25] and references therein.

In quantum mechanics, scalar quantities are in general replaced by Hamilton operators
[103, 83], and the Hamiltonian corresponding to the energy E in (2.1) is given by the
following

H = gµBIzB0 , (2.3)

where Iz is a spin operator corresponding to the quantum number s, and we replace the
gyromagnetic ratio with (2.2). Notice that the relationship between E and the corre-
sponding Hamiltonian H is expressed by the following eigenvalue problem

Hϕ = Eϕ , (2.4)

where ϕ is the wavefunction representing the quantum state of the system that corresponds
to the energy E. Equation (2.4) is known as stationary Schrödinger equation. Notice that,
in a more general situation, in which the particle (or the atomic nuclei) is irradiated by
a magnetic field ~B = (Bx, By, Bz), the spin Hamiltonian, also known as Stern-Gerlach
term, is given by the following

H = gµB~I · ~B , (2.5)

where ~I is the spin operator.
When immersed in a magnetic field B0, a particle performs a particular rotational

phenomenon, called precession, that is a rotation around the axis of the magnetic field B0.
This physical phenomenon is represented in the scheme shown in Figure 2.2. In particular,
the precession frequency, that is in general called Larmor frequency, is obtained as

νf = γB0 .

This quantity is used in the sequel of the present chapter for characterizing quantum spin
control models.

The concept of spin and its relationship with external magnetic fields is particularly
important in several nanotechnology applications, that are based on the so-called magnetic
resonance, e.g., nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance
imaging (MRI). The concept of magnetic resonance can be explained as follows [20].
Consider an atomic nucleus immersed in a magnetic field B0 and possessing a specific
Larmor frequency. If irradiated by an electromagnetic radiation having frequency equal
to the Larmor frequency, this nucleus absorbs energy and changes its spin state from the
lower energy level (aligned with B0) to the higher energy level (aligned against B0). This
phenomenon is shown in Figure 2.2. Resonance in this contest is the absorption of elec-
tromagnetic radiation by a precessing nucleus and its corresponding flip between energy
levels [20]. This absorption can be detected by specific laboratory machines and used for
applicative purposes, and the electromagnetic radiation is referred to as radiofrequency
pulse or control.
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Figure 2.2: Magnetic resonance: (a) Precession of a spinning nucleus in an applied magnetic field.
(b) Absorption of electromagnetic radiation occurs when the frequency of radiation is equal to
the frequency of precession. Source: Organic Chemistry - Brown et al. [20].

2.2 The Pauli equation
The quantum state of a spin-1

2
particle is mathematically described by a so-called spinor,

that is a vector-function ~ψ(t) ∈ L2(R3)⊗C2. Let ~q = (x, y, z) ∈ R3 be the vector of space
coordinates, a spinor is defined as follows; see, e.g., [83, 103, 118];

~ψ(t, ~q) =

(
ψ+(t, ~q)
ψ−(t, ~q)

)
, (2.6)

where ψ+ and ψ− are wavefunctions corresponding to the spin-up and the spin-down
conditions, respectively.

The time evolution of a spinor is governed by the Pauli equation. The Pauli equation,
also known as the Schrödinger–Pauli equation, is the formulation of the Schrödinger
equation for spin-1

2
particles, which takes into account the interaction of the particle’s

spin with an external, spatially uniform, and possibly time dependent magnetic field. This
equation was formulated by Wolfgang Pauli in 1927 [95], and is given by the following;
see, e.g., [83, 103, 118];

i~
∂ ~ψ

∂t
=

{[
− 1

2µ

(
~p− e

c
~A(~q, t)

)2

+ V (~q)

]
⊗ I2 + gµB ~B(t) · ~I

}
~ψ , (2.7)

where

• the physical constants ~, µ, e, c, g, µB represent the reduced Planck constant, the
mass and the charge of the particle, the speed of light, the g-factor, and, the nuclear
magneton, respectively;

• I2 is the 2× 2 identity matrix;

• V (~q) ∈ R is an external confining potential;

• ~B(t) ∈ R3 is an external and time dependent magnetic field; it is given by

~B(t) = Bx(t)êx +By(t)êy +Bz êz , (2.8)
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with (êx, êy, êz) the canonical Euclidean basis in R3; the component Bz is in general
assumed to be constant, while Bx and By are time-dependent and are considered
control functions;

• the operator ~A is the vector potential corresponding to the magnetic field ~B with
~B = ∇× ~A; it is given by

~A =
1

2
~B × ~q . (2.9)

The vector potential is then

~A =

∣∣∣∣∣∣
êx êy êz
Bx By Bz

x y z

∣∣∣∣∣∣ =
1

2
(zBy − yBz)êx +

1

2
(xBz − zBx)êy +

1

2
(yBx− xBy)êz (2.10)

• ~p is the momentum operator, that is

~p = −i~
(
êx∂x + êy∂y + êz∂z

)
(2.11)

• ~I is the spin operator given by the following

~I = Ixêx + Iyêy + Iz êz , (2.12)

where Ix, Iy, Iz are the three Pauli matrices, given explicitly by the following

Ix =
1

2

(
0 1
1 0

)
, Iy =

1

2

(
0 −i
i 0

)
, Iz =

1

2

(
1 0
0 −1

)
. (2.13)

Notice that the term in (2.7) that is contained in the square brackets, and given by

H =

[
1

2µ

(
~p− e

c
~A(~q, t)

)2

+ V (~q)

]
, (2.14)

represents the Hamiltonian of a Schrödinger equation describing the motion of a particle
immersed in a magnetic field. The first term in H can be written as follows(

~p− e

c
~A
)2

= |~p|2 +
e2

c2
|A|2 − e

c
~p · ~A− e

c
~A · ~p . (2.15)

By recalling that ~A · ~p− ~p · ~A = div( ~A) [83], and noting that div( ~A) = 0, we obtain that
~A ·~p commutes with ~p · ~A. For this reason and neglecting the term e2

c2
|A|2, the Hamiltonian

H becomes as follows; see, e.g., [83, 103];

H =

[
1

2µ
|~p|2 +

e

µc
~A(~q, t) · ~p+ V (~q)

]
. (2.16)

Consequently, the Pauli equation assumes the following form

i~
∂ ~ψ

∂t
=

{[
1

2µ
|~p|2 +

e

µc
~A(~q, t) · ~p+ V (~q)

]
⊗ I2 + gµB ~B(t) · ~I

}
~ψ . (2.17)

Notice that the three terms appearing in H in (2.16), that are |~p|2, ~A ·~p, and V , represent
the kinetic energy of the quantum system, the interaction between the momentum of the
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particle and the external magnetic field, and the potential energy of the quantum system,
respectively. The operator gµB ~B · ~I in (2.17) is the Stern-Gerlach term and, as described
in Section 2.1, represents the interaction between the external magnetic field and the
particle’s spin.

We remark that, the magnetic field ~B is used to control the quantum system. In
particular, the component Bz is assumed to be constant in order to create the desired
quantum states as described with B0 in Section 2.1. The two components Bx and By are
time dependent functions, and are used as controls with the purpose to steer the quantum
system from an initial state to a desired target state. They can represent, for instance,
the electromagnetic radiation discussed in Section 2.1 and shown in Figure 2.2.

2.2.1 The Pauli equation for a spin-1
2 particle in spherical coor-

dinates

In this section, we describe the Pauli equation in spherical coordinates; see, e.g., [118].
This representation is usually used in quantum mechanics, since it allows a spectral dis-
cretization, that results to be useful for the analysis of the physical behaviour of quantum
systems. Such a spectral discretization is discussed in the next section.

Let r be the radial distance, and θ, φ be the polar and azimuthal angles, respectively,
and denote by ~q = (r, θ, φ). The Pauli equation (2.17) becomes as follows

i~
∂ ~ψ

∂t
=

{[
− ~

2

2µ

1

r

∂2

∂r2
r +

1

2µr2
L2 − e

4µc
~B · ~L+ V (r)

]
I2 + gµB ~B · ~I

}
~ψ , (2.18)

where the spinor ~ψ is
~ψ(t, ~q) =

(
ψ+(t, ~q)
ψ−(t, ~q)

)
. (2.19)

The operator ~L is the following

~L = Lxêx + Lyêy + Lz êz , (2.20)

where

Lx = i~
(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)
(2.21)

Ly = i~
(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
(2.22)

Lz = −i~ ∂
∂φ

, (2.23)

and L2 is given by

L2 = L2
x + L2

y + L2
z = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
. (2.24)

Using (2.19), the Pauli equation (2.18) can be written explicitly as follows; see, e.g., [118];

i~
∂

∂t

(
ψ+

ψ−

)
=

(
H + gµBBz gµB(Bx − iBy)

gµB(Bx + iBy) H − gµBBz

)(
ψ+

ψ−

)
, (2.25)

Exact and non-smooth control of quantum spin systems
22



The physics of a spin and quantum control models

where the Hamiltonian H is given by

H = − ~
2

2µ

1

r

∂2

∂r2
r +

1

2µr2
L2 − e

4µc
~B · ~L+ V (r) . (2.26)

It is clear from (2.25), that the Pauli equation for a single particle is a system of two
Schrödinger equations in ψ+ and ψ−:

i~
∂

∂t
ψ+(t, r, θ, φ) =− ~

2

2µ

1

r

∂2

∂r2

(
rψ+(t, r, θ, φ)

)
+

1

2µr2
L2
(
ψ+(t, r, θ, φ)

)
− e

4µc
~B(t) · ~L

(
ψ+(t, r, θ, φ)

)
+ (V (r) + gµBBz(t))ψ+(t, r, θ, φ)

+ gµB(Bx(t)− iBy(t))ψ−(t, r, θ, φ) ,

(2.27)

and

i~
∂

∂t
ψ−(t, r, θ, φ) =− ~

2

2µ

1

r

∂2

∂r2

(
rψ−(t, r, θ, φ)

)
+

1

2µr2
L2
(
ψ−(t, r, θ, φ)

)
− e

4µc
~B(t) · ~L

(
ψ−(t, r, θ, φ)

)
+ (V (r)− gµBBz(t))ψ−(t, r, θ, φ)

+ gµB(Bx(t) + iBy(t))ψ+(t, r, θ, φ) .

(2.28)

Notice that these equations are coupled by means of the two components of the external
magnetic field Bx and By.

In the following section, we discuss a spectral discretization of the Pauli equation
(2.25)-(2.28).

2.2.2 Spectral discretization of the Pauli equation

This section focuses on a discrete approximation of the Pauli-Schrödinger equation (2.25)-
(2.28). For this purpose, we apply a spectral method and consider the following ansatz

ψ±(t, r, θ, φ) =
∞∑
n=0

∞∑
`=0

∑̀
m=−`

an,`,m± (t)Rn,`(r)Y
m
` (θ, φ) , (2.29)

where Y m
` (θ, φ) are spherical harmonics, Rn,`(r) are eigenfunctions of the radial part of

the Hamiltonian H, and the coefficients an,`,m+ (t) and an,`,m− (t) are complex-valued time-
dependent functions. Notice that the ansatz (2.29) is justified for specific choices of the
potential V (r), which guarantee that the radial functions Rn,`(r) are properly defined.

The spherical harmonics are eigenfunctions of the operator L2, that is Y m
` (θ, φ) solve

the following eigenvalue problem

L2Y m
` (θ, φ) = ~2`(`+ 1)Y m

` (θ, φ) . (2.30)

The eigenfunctions Y m
` (θ, φ) satisfy the following orthogonality condition; see, e.g., [118];

2π∫
0

π∫
0

Y m
` (θ, φ)Y m′

`′ (θ, φ) sin θ dθdφ = δ`,`′δm,m′ , (2.31)
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where δmm′ is the Kronecker delta. Further, the following relations hold

LzY
m
` (θ, φ) = ~mY m

` (θ, φ) (2.32)

L±Y
m
` (θ, φ) = ~

√
`(`+ 1)−m(m± 1)Y m±1

` (θ, φ) , (2.33)

where L± = Lx ± iLy, and we have the following

Lx =
1

2

(
L+ + L−

)
(2.34)

Ly =
1

2i

(
L+ − L−

)
. (2.35)

More details regarding the spherical harmonics are given in the Appendix.
The radial functions Rn,`(r) solve the following eigenvalue problem

O`(V )Rn,`(r) = λn,`Rn,`(r) , (2.36)

where
O`(V ) :=

{
− ~

2

2µ

1

r2

∂

∂r
r2 ∂

∂r
+
~2

2µ

`(`+ 1)

r2
+ V (r)

}
. (2.37)

The eigenfunctions Rn,`(r) satisfy the following orthogonality condition

∞∫
0

r2Rn,`(r)Rn′,`′(r)dr = δ`,`′δn,n′ . (2.38)

We remark that, since the operator O`(V ) depends on the potential V (r), the eigenfunc-
tions Rn,`(r) have to be computed separately for different cases of physical interest; see,
e.g., the Appendix and [49, 51, 63, 83, 92, 103].

In the sequel, the following notation is used. The dependence on t, r, θ, φ is omitted
for brevity, and we write (2.29) as follows

(
ψ+

ψ−

)
=


∑
n,`,m

an,`,m+ Rn,`Y
m
`∑

n,`,m

an,`,m− Rn,`Y
m
`

 . (2.39)

where
∑
n,`,m

=
∞∑
n=0

∞∑̀
=0

∑̀
m=−`

. Replacing (2.39) into (2.27), we get

∑
n,`,m

i~ȧn,`,m+ Rn,`Y
m
` =

∑
n,`,m

−an,`,m+ Y m
`

~2

2µ

1

r

∂2

∂r2

(
rRn,`

)
+ an,`,m+ Rn,`

1

2µr2
L2
(
Y m
`

)
− an,`,m+ Rn,`

e

4µc
~B · ~L

(
Y m
`

)
+ (V (r) + gµBBz)a

n,`,m
+ Rn,`Y

m
`

+ gµB(Bx − iBy)a
n,`,m
− Rn,`Y

m
` ,

(2.40)
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and inserting (2.30) in (2.40), we write the following∑
n,`,m

i~ȧn,`,m+ Rn,`Y
m
` =

∑
n,`,m

−an,`,m+ Y m
`

~2

2µ

1

r

∂2

∂r2

(
rRn,`

)
+ an,`,m+ Rn,`

~2`(`+ 1)

2µr2
Y m
`

− an,`,m+ Rn,`
e

4µc
~B · ~L

(
Y m
`

)
+ (V (r) + gµBBz)a

n,`,m
+ Rn,`Y

m
`

+ gµB(Bx − iBy)a
n,`,m
− Rn,`Y

m
`

=
∑
n,`,m

an,`,m+ Y m
`

{
− ~

2

2µ

1

r

∂2

∂r2

(
rRn,`

)
+ V (r)Rn,` +

~2`(`+ 1)

2µr2
Rn,`

}
− an,`,m+ Rn,`

e

4µc
~B · ~L

(
Y m
`

)
+ gµBBza

n,`,m
+ Rn,`Y

m
`

+ gµB(Bx − iBy)a
n,`,m
− Rn,`Y

m
` .

(2.41)

Recalling that
1

r

∂2

∂r2
r =

1

r2

∂

∂r

(
r2 ∂

∂r

)
, (2.42)

and using (2.36) in (2.41), it holds that∑
n,`,m

i~ȧn,`,m+ Rn,`Y
m
` =

∑
n,`,m

an,`,m+ Y m
` λn,`Rn,` − an,`,m+ Rn,`

e

4µc
~B · ~L

(
Y m
`

)
+ gµBBza

n,`,m
+ Rn,`Y

m
` + gµB(Bx − iBy)a

n,`,m
− Rn,`Y

m
` .

(2.43)

Next, consider the term ~B · ~L
(
Y m
`

)
in (2.43). By means of (2.32)-(2.35), we have the

following

~B · ~L
(
Y m
`

)
= BxLx

(
Y m
`

)
+ByLy

(
Y m
`

)
+BzLz

(
Y m
`

)
= Bx

1

2

(
~
√
`(`+ 1)−m(m+ 1)Y m+1

` + ~
√
`(`+ 1)−m(m− 1)Y m−1

`

)
+By

1

2i

(
~
√
`(`+ 1)−m(m+ 1)Y m+1

` − ~
√
`(`+ 1)−m(m− 1)Y m−1

`

)
+Bz~mY m

`

=
~
2

[
Bx

(
K+
`,mY

m+1
` +K−`,mY

m−1
`

)
− iBy

(
K+
`,mY

m+1
` −K−`,mY

m−1
`

)]
+Bz~mY m

`

=
~
2

[
K+
`,m(Bx − iBy)Y

m+1
` +K−`,m(Bx + iBy)Y

m−1
`

]
+Bz~mY m

` .

(2.44)

where K±`,m :=
√
`(`+ 1)−m(m± 1). Rearranging (2.43) and using (2.44), we obtain
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the following∑
n,`,m

i~ȧn,`,m+ Rn,`Y
m
` =

∑
n,`,m

an,`,m+ Y m
` Rn,`

[
λn,` + gµBBz

]
+ gµB(Bx − iBy)a

n,`,m
− Rn,`Y

m
`

− an,`,m+ Rn,`
e

4µc
~B · ~L

(
Y m
`

)
=
∑
n,`,m

an,`,m+ Y m
` Rn,`

[
λn,` + gµBBz

]
+ gµB(Bx − iBy)a

n,`,m
− Rn,`Y

m
`

− an,`,m+ Rn,`
e~
8µc

[
K+
`,m(Bx − iBy)Y

m+1
` +K−`,m(Bx + iBy)Y

m−1
`

]
+Bz~man,`,m+ Rn,`Y

m
`

=
∑
n,`,m

an,`,m+ Y m
` Rn,`

[
λn,` + (gµB + ~m)Bz

]
+ gµB(Bx − iBy)a

n,`,m
− Rn,`Y

m
`

− an,`,m+ Rn,`
e~
8µc

[
K+
`,m(Bx − iBy)Y

m+1
` +K−`,m(Bx + iBy)Y

m−1
`

]
.

(2.45)

By multiplying left- and right-hand sides of (2.45) with sin(θ)r2Rn′,`′Y
m′

`′ and integrating,
we get the following

∑
n,`,m

i~ȧn,`,m+

∞∫
0

(
r2Rn,`Rn′,`′

)
dr

2π∫
0

π∫
0

Y m
` Y

m′

`′ sin(θ)dθdφ

=
∑
n,`,m

an,`,m+

[
λn,` + (gµB + ~m)Bz

] ∞∫
0

(
r2Rn,`Rn′,`′

)
dr

2π∫
0

π∫
0

Y m
` Y

m′

`′ sin(θ)dθdφ

+ gµB(Bx − iBy)a
n,`,m
−

∞∫
0

(
r2Rn,`Rn′,`′

)
dr

2π∫
0

π∫
0

Y m
` Y

m′

`′ sin(θ)dθdφ

− an,`,m+

∞∫
0

(
r2Rn,`Rn′,`′

)
dr

e~
8µc

[
K+
`,m(Bx − iBy)

2π∫
0

π∫
0

Y m+1
` Y m′

`′ sin(θ)dθdφ

+K−`,m(Bx + iBy)

2π∫
0

π∫
0

Y m−1
` Y m′

`′ sin(θ)dθdφ
]
.

(2.46)

Because of the orthogonality conditions (2.31) and (2.38), it holds that∑
n,`,m

i~ȧn,`,m+ δ`,`′δn,n′δ`,`′δm,m′

=
∑
n,`,m

an,`,m+

[
λn,` + (gµB + ~m)Bz

]
δ`,`′δn,n′δ`,`′δm,m′ + gµB(Bx − iBy)a

n,`,m
− δ`,`′δn,n′δ`,`′δm,m′

− an,`,m+ δ`,`′δn,n′
e~
8µc

[
K+
`,m(Bx − iBy)δ`,`′δm+1,m′ +K−`,m(Bx + iBy)δ`,`′δm−1,m′

]
.

(2.47)
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Notice that δ`,`′δ`,`′ = δ`,`′ and that δm±1,m′ = δm,m′∓1. Therefore (2.47) becomes∑
n,`,m

i~ȧn,`,m+ δ`,`′δn,n′δm,m′

=
∑
n,`,m

an,`,m+

[
λn,` + (gµB + ~m)Bz

]
δ`,`′δn,n′δm,m′ + gµB(Bx − iBy)a

n,`,m
− δ`,`′δn,n′δm,m′

− an,`,m+ δ`,`′δn,n′
e~
8µc

[
K+
`,m(Bx − iBy)δm,m′−1 +K−`,m(Bx + iBy)δm,m′+1

]
.

(2.48)

By using the definition of the Kronecker-delta, and truncating the sums over n, `,m, we
obtain that

i~ȧn,`,m+ = an,`,m+

[
λn,` + (~m+ gµB)Bz

]
+ gµB(Bx − iBy)a

n,`,m
−

− an,`,m−1
+

e~
8µc

K+
`,m−1(Bx − iBy)− an,`,m+1

+

e~
8µc

K−`,m+1(Bx + iBy) ,
(2.49)

for n = 0, . . . , ñ− 1, ` = 0, . . . , ˜̀− 1 and m = −`, . . . , `.
We can proceed in the same way for (2.28) to obtain the following

i~ȧn,`,m− = an,`,m−

[
λn,` + (~m− gµB)Bz

]
+ gµB(Bx + iBy)a

n,`,m
+

− an,`,m−1
−

e~
8µc

K+
`,m−1(Bx − iBy)− an,`,m+1

−
e~
8µc

K−`,m+1(Bx + iBy) ,
(2.50)

for n = 0, . . . , ñ− 1, ` = 0, . . . , ˜̀− 1 and m = −`, . . . , `.

In order to write (2.49) and (2.50) in a compact form, we define the following

a± :=
(
a0,0,0
± , a0,1,−1

± , a0,1,0
± , a0,1,1

± , a0,2,−2
± , a0,2,−1

± , . . . , a0,˜̀−1,˜̀−1
± , a1,0,0

± , . . . , añ−1,˜̀−1,˜̀−1
±

)T
.

(2.51)
Notice that, the number of entries of a± due to ` and m is ˜̀2. Therefore, we have that
a±(t) ∈ Cñ˜̀2 . Consequently, (2.49) and (2.50) can be equivalently written as follows

i~ȧ+ =
[
Λ + Iñ ⊗

(
~M + gµBI˜̀2

)
Bz

]
a+ + (Bx − iBy)

[
gµBIñ˜̀2

]
a−

+ (Bx − iBy)
[
Iñ ⊗Klow

]
a+ + (Bx + iBy)

[
Iñ ⊗Kup

]
a+ ,

(2.52)

and

i~ȧ− =
[
Λ + Iñ ⊗

(
~M − gµBI˜̀2

)
Bz

]
a− + (Bx + iBy)

[
gµBIñ˜̀2

]
a+

+ (Bx − iBy)
[
Iñ ⊗Klow

]
a− + (Bx + iBy)

[
Iñ ⊗Kup

]
a− ,

(2.53)

where, for a given integer k ∈ N, Ik is the k × k identity. The matrix Λ is a ñ˜̀2 × ñ˜̀2

block-diagonal matrix. Every block is of the form λn,`I2`+1, and Λ is given by the following

Λ = blk-diag
(
λ0,0I1 , λ0,1I3 , λ0,2I5 , · · · , λ0,˜̀−1I2˜̀−1 , λ1,0I1 , · · · , λñ−1,˜̀−1I2˜̀−1

)
.

(2.54)
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The diagonal matrix M has dimension ˜̀2 × ˜̀2 and is given by

M = diag
(
0 , −1 , 0 , 1 , −2 , −1 , 0 , 1 , 2 , −3 , · · · , ˜̀− 1

)
. (2.55)

The matrices Klow and Kup have dimension ˜̀2 × ˜̀2 and are defined as

Klow =



0
K+

0,0 0
K+

1,−1 0
K+

1,0 0
K+

1,1 0
K+

2,−2 0
. . . . . .

K+
˜̀−1,˜̀−3

0

K+
˜̀−1,˜̀−2

0


, (2.56)

and

Kup =



0 K−1,−1

0 K−1,0
0 K−1,1

0 K−2,−2

0 K−2,−1
. . . . . .

0 K−˜̀−1,˜̀−1

0


, (2.57)

respectively.
Now, we define a(t) ∈ C2ñ˜̀2 as follows

a :=

(
a+

a−

)
, (2.58)

and consequently, the equations (2.52) and (2.53) can be written in the following equiva-
lent system

i~ȧ =
[
I2 ⊗ Λ +Bz

(
~I2ñ ⊗M + gµBIz ⊗ Iñ˜̀2

)]
a

+ gµB

[
(BxIx +ByIy)⊗ Iñ˜̀2

]
a

+
[
(Bx − iBy)

(
I2ñ ⊗Klow

)
+ (Bx + iBy)

(
I2ñ ⊗Kup

)]
a .

(2.59)

We write (2.59) in the following compact form

i~ȧ =
[
H0 +BxHx +ByHy

]
a , (2.60)

where
H0 =

[
I2 ⊗ Λ +Bz

(
~I2ñ ⊗M + gµBIz ⊗ Iñ˜̀2

)]
, (2.61)

Hx =
[
gµBIx ⊗ Iñ˜̀2 + I2ñ ⊗K+

]
, (2.62)
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and
Hy =

[
gµBIy ⊗ Iñ˜̀2 + I2ñ ⊗ iK−

]
, (2.63)

with K+ and K− defined as follows

K+ := Kup +Klow , K− := Kup −Klow . (2.64)

Notice that the Hamiltonian in (2.60) is written as the sum of a free Hamiltonian H0,
and a controlled Hamiltonian composed by the sum of BxHx and ByHy. The free Hamil-
tonian H0 depends on the stationary component of the magnetic field Bz and represents
the energy of the uncontrolled quantum system. The controlled Hamiltonian depends
on the time-dependent components of the magnetic field Bx and By, that are referred
to as control functions. The three matrices H0, Hx and Hy are Hermitian. In fact, H0

is a diagonal matrix with real entries. To see that Hx and Hy are Hermitian, first we
recognize that the Pauli matrices Ix and Iy are Hermitian. Then, we notice that K+ and
K− are symmetric and skew-symmetric with real entries, respectively. This is due to the
following properties of the coefficients K±`,m

K+
`,m−1 =

√
`(`+ 1)− (m− 1)((m− 1) + 1)

=
√
`(`+ 1)− (m− 1)m

= K−`,m ,

(2.65)

K+
`,` =

√
`(`+ 1)− `(`+ 1) = 0 , (2.66)

and

K−`,−` =
√
`(`+ 1)− (−`)(−`− 1)

=
√
`(`+ 1)− `(`+ 1) = 0 .

(2.67)

Consequently, by means of (2.65), (2.66) and (2.67) we have that K+ and K− are the
following

K+ =



0 0
0 0 K+

1,−1
K+

1,−1 0 K+
1,0

K+
1,0 0 0

0 0 K+
2,−2

K+
2,−2 0 K+

2,−1
. . . . . . . . .

K+
˜̀−1,˜̀−3 0 K+

˜̀−1,˜̀−2
K+

˜̀−1,˜̀−2 0


, (2.68)

and

K− =



0 0
0 0 K+

1,−1
−K+

1,−1 0 K+
1,0

−K+
1,0 0 0

0 0 K+
2,−2

−K+
2,−2 0 K+

2,−1
. . . . . . . . .

−K+
˜̀−1,˜̀−3 0 K+

˜̀−1,˜̀−2
−K+

˜̀−1,˜̀−2 0


.

(2.69)
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2.2.3 Quantum numbers

In Section 2.2.2, a spectral discretization of the Pauli equation is applied by means of the
ansatz (2.29), in which the three indexes n, `, andm appear. These integers have a specific
physical meaning in quantum mechanics. They are called quantum numbers, because
every quantum state of a particle immersed in a uniform magnetic field is identified with
a triple (n, `,m). Further, as introduced in Section 2.1, the quantum number s identifies
the spin of a particle. More specifically:

• n is the radial quantum number; it describes the radial behaviour of a quantum
state; n is used together with the azimuthal quantum number ` to determine the
principal quantum number np, that is given by

np = n+ `+ 1 .

The principal quantum number np identifies the energy levels of the quantum system;

• ` is the azimuthal quantum number; it is a parameter that quantizes the momentum
operator L2, and describes the shape of the orbital; it can assume only the values
0, 1, 2, . . . ;

• m is the magnetic quantum number; it determines the energy shift of an atomic
orbital due to an external magnetic field, hence the name magnetic quantum number
(Zeeman effect); m is an eigenvalue of the operator Lz and can assume only the
values −`,−`+ 1, . . . , `;

• s is the spin quantum number; it parametrizes the intrinsic angular momentum of
a given particle.

The quantum numbers are used in the following section to analyse the transitions that
can be performed by means of a spatially uniform and time dependent magnetic field.

2.2.4 The Pauli equation as a finite-dimensional Schrödinger equa-
tion

In this section, we discuss the possible transitions allowed by a spatial uniform magnetic
field ~B. By means of this analysis, we notice that controlling the infinite-dimensional
Pauli equation is equivalent to control a finite-dimensional Schrödinger-Pauli equation.

For this purpose, consider the system (2.60). It is composed of several subsystems
that are connected only because of the action of the controls Bx(t) and By(t). If the
corresponding quantum system is in a given eigenstate of the free Hamiltonian H0, that
is n′ and `′ are fixed, the coefficients an,`,m± vanish for any n 6= n′ and ` 6= `′. Due
to the particular block-structure of the Hamiltonian in (2.60), the action of the time-
dependent spatially uniform magnetic field cannot affect the quantum numbers n′ and `′.
Mathematically, this means that an,`,m± = 0, for any n 6= n′ and ` 6= `′, are equilibrium
points for the corresponding n, `-blocks of equations. Hence, Bx(t) and By(t) can only
affect the spin-orientation s and the transition between different quantum numbers m
and m′. The possible transitions due to the controls Bx and By are represented in the
following scheme

(n′, `′,m, s)
(Bx,By)−−−−−−−−−→
Pauli eq.

(n′, `′,m′, s′) ,

and we remark that, these transitions are not affected by the truncation of the sums in
the ansatz (2.29).
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The vectors of coefficients a± defined in (2.51) reduces to to the following

an
′,`′

± =
(
an
′,`′,−`′
± , an

′,`′,−`′+1
± , . . . , an

′,`′,`′−1
± , . . . , an

′,`′,`′

±

)T
, (2.70)

and we have that an
′,`′

± (t) ∈ C2`′+1. The vector a defined in (2.58) becomes as follows

an
′,`′ :=

(
an
′,`′

+

an
′,`′

−

)
, (2.71)

and we have that an′,`′(t) ∈ C4`′+2.
Next, consider the overall system (2.60). First, we notice that the matrices Λ and M ,

defined in (2.54) and (2.55), respectively, can be written as follows

Λ = blk-diagn=0,...,ñ−1

(
Λn

)
, (2.72)

and
M = blk-diagn=0,...,ñ−1

(
Mn

)
, (2.73)

respectively. We have that

Λn = blk-diag`=0,...,˜̀−1

(
Λn,`

)
, (2.74)

where Λn,` = λn,`I2`+1, and

Mn = blk-diag`=0,...,˜̀−1

(
Mn,`

)
, (2.75)

where Mn,` = diag(−`, . . . , `). Moreover, the matrices K+ and K− can be written as
follows

K+ = blk-diag`=0,...,˜̀−1

(
K`

+

)
K− = blk-diag`=0,...,˜̀−1

(
K`
−

) (2.76)

where

K`
+ :=



0 K+
`,−`

K+
`,−` 0 K+

`,−`+1

K+
`,−`+1 0 K+

`,−`+2
. . . . . . . . .

K+
`,`−2 0 K+

`,`−1

K+
`,`−1 0


, (2.77)

and

K`
− :=



0 K+
`,−`

−K+
`,−` 0 K+

`,−`+1

−K+
`,−`+1 0 K+

`,−`+2
. . . . . . . . .

−K+
`,`−2 0 K+

`,`−1

−K+
`,`−1 0


. (2.78)
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Notice that Λn,`,Mn,`, K
`
+, K

`
− ∈ R2`+1×2`+1. Consequently, for fixed n = n′ and ` = `′,

the Pauli equation (2.60) becomes as follows

i~ȧn′,`′ =
[
H0 +BxHx +ByHy

]
an
′,`′ , (2.79)

where
H0 =

[
I2 ⊗ Λn′,`′ +Bz

(
~I2 ⊗Mn′,`′ + gµBIz ⊗ I2`′+1

)]
, (2.80)

Hx =
[
gµBIx ⊗ I2`′+1 + I2 ⊗K`′

+

]
, (2.81)

and
Hy =

[
gµBIy ⊗ I2`′+1 + I2 ⊗ iK`′

−

]
. (2.82)

For the sake of clarity, we provide the following simple example of system (2.79).

Example. Consider n′ = 1 and `′ = 1. We have that 2`′ + 1 = 3 and m = −1, 0, 1 and
the finite-dimensional Pauli-Schrödinger equation (2.79) becomes as follows

a1,1
± =

(
a1,1,−1
± a1,1,0

± a1,1,1
±
)T

a1,1 =
(
a1,1,−1

+ a1,1,0
+ a1,1,1

+ a1,1,−1
− a1,1,0

− a1,1,1
−
)T

Λ1,1 =

λ1,1

λ1,1

λ1,1

 M1,1 =

−1
0

1


K1

+ =

 0 K+
1,−1 0

K+
1,−1 0 K+

1,0

0 K+
1,0 0

 K1
− =

 0 K+
1,−1 0

−K+
1,−1 0 K+

1,0

0 −K+
1,0 0


where K+

1,−1 =
√

2 and K+
1,0 =

√
2. 4

Next, consider equation (2.79) for n′ = 0 and `′ = 0. In this specific case, we have
that K0

+ = K0
− = 0, M0,0 = 0 and Λ0,0 = λ0,0. Hence, (2.79) reduces to the following

i~ȧ0,0 =
[
H0 +BxHx +ByHy

]
a0,0 , (2.83)

where H0 = λ0,0I2+gµBBzIz, Hx = gµBIx, and Hy = gµBIy. Moreover, since the addition
of a constant term to the Hamiltonian generates only a translation of its eigenvalues, the
term λ0,0I2 can be neglected, and the free Hamiltonian becomes as H0 = gµBBzIz. In our
case, the finite-dimensional Schrödinger-Pauli equation (2.83) governs the time evolution
of a spin-1

2
particle in magnetic field ~B. The particle is assumed to be in the lowest energy

level, that is (n, `) = (0, 0), and (2.83) describes only transitions between spin states, that
is

(0, 0, 0, s)
(Bx,By)−−−−−−−−−→
Pauli eq.

(0, 0, 0, s′) .

We remark that, (2.83) is largely used in nanotechnology applications as NMR and MRI,
where the purpose is to consider the time evolution of the spin and magnetic behaviour
of specific nuclei.

Equation (2.83) can be generalized for systems of interacting particles. This general-
ization is described in the next section.
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2.3 The Liouville-von Neumann master equation
In this section, a detailed discussion regarding the Liouville-von Neumann master (LvNM)
equation is given. This equation characterizes the time-evolution of density matrices. A
density matrix is a mathematical object used to characterize the quantum state of an
ensemble of spin-particles, that are physically equal, but in different quantum states.

The LvNM equation is largely used in NMR, MRI, quantum computing, etc., where
by means of specific magnetic fields, the aim is to control the dynamics of a quantum
state characterized by a density matrix. This concept is summarized in the following
Figure 2.3, where the tiny red arrows represent the spins, that form an ensemble (light
blue disc). The big red arrow represents a magnetic field that is pulsed on the ensemble
of spins with the purpose of performing specific spin-transitions.

Figure 2.3: Control of an ensemble of spins: a magnetic field (big red arrow) is pulsed on an
ensemble of spins (small red arrows in the light blue disc) in order to control the system and to
steer the spin orientation from an initial state to a desired target state.

In particular, first we describe the density matrix as an alternative representation of the
state of a quantum spin system. Second, we derive the LvNM equation that governs the
time evolution of a density matrix. Then, we discuss a multi-spin controlled Hamiltonian
corresponding to quantum spin systems especially considered in NMR.

2.3.1 The density matrix

A pure state of a quantum spin system can be represented by a normalized vector of
a complex finite-dimensional Hilbert space H endowed with a scalar product 〈·, ·〉H. In
this space, normalized vectors that differ only by a scalar phase factor are considered
equivalent. Here and henceforth, an arbitrary vector ofH is denoted by a and a∗ represents
the transpose complex-conjugate of a. We remark that, a can represent, for example, a
finite-dimensional wavefunction and the coefficients an,`,m± described in Section 2.2.2.

Alternatively, a pure state can be described by a rank-one-projector of the form a⊗a∗,
where ⊗ denote the Kronecker product. However, in many applications, e.g., in NMR
spectroscopy, the given quantum system can be regarded as a probabilistic mixture of
many non-interactive subsystems. Such quantum ensembles are described by density
matrices, that are Hermitian operators of the form

ρ =
∑
k

pk (ak ⊗ a∗k) , (2.84)
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where pk ≥ 0 with
∑

k pk = 1 can be interpreted as the fraction of subsystems being in
state ak. Notice that, since we assume that the vectors ak are normalized, that is ‖ak‖2 =
1, where ‖·‖2 is the Euclidean norm, it holds that trace(ak⊗a∗k) = 1. Moreover, in the case
that a1, a2, a3, . . . , constitute an orthonormal basis for H, the constants p1, p2, p3, · · · ≥ 0
are the eigenvalues of ρ. In addition, the trace condition yields

trace(ρ) =
∑
k

pk = 1 .

This means that the eigenvalues of the density operator define a probability distribution.
These concepts lead to the following definitions, where we assume H = CN ; see, e.g.,

[25, 118].

Definition 1 (Density operator). Let her(N) denote the set of all Hermitian N × N
matrices. Then ρ ∈ her(N) is called density operator if it satisfies the following properties

• semi-positivity: ρ ≥ 0,
• normalization: trace(ρ) = 1.

Moreover, if a density operator ρ is a rank-1-projector (i.e., if ρ satisfies ρ2 = ρ) then it
is called a pure state, otherwise, it is called a mixed state.

In particular, if we consider subsystems of Np coupled spin-1
2
particles, (common in

NMR), the state space of a single spin-1
2
particle is given by C2 and the state space of Np

coupled spin-1
2
particles is obtained by the tensor product C2 ⊗ · · · ⊗ C2 ∼= C2Np . Thus

the corresponding density operator belongs to the space her(N), with N = 2Np .

For the sake of clarity, we discuss the following example of a density matrix.

Example. Consider the system depicted in Figure 2.4. It is an ensemble of four sub-
systems of two coupled spins, hence Np = 2 and N = 2Np = 4.

Figure 2.4: Ensemble of four spin subsystems. Each subsystem is formed by two coupled spins
and its quantum state is represented by a vector ak ∈ C4.

Assume that the states of the four subsystems are represented by the following four
vectors

a1 =
(√

2/2
√

2/2 0 0
)T

a2 =
(√

2/2 −
√

2/2 0 0
)T

a3 =
(
0 0 1 0

)T
a4 =

(
0 0 0 1

)T
,

and notice that they form an orthonormal basis for H = C4. The corresponding pure
states are

a1 ⊗ a∗1 =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 0 0
0 0 0 0

 a2 ⊗ a∗2 =


1/2 −1/2 0 0
−1/2 1/2 0 0

0 0 0 0
0 0 0 0
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a3 ⊗ a∗3 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 a4 ⊗ a∗4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

Notice that ‖ak‖2 = 1, where ‖ · ‖2 is the Euclidean norm for C4. Consequently, it holds
that trace(ak ⊗ a∗k) = 1 for k = 1, 2, 3, 4. The density matrix is given by

ρ = 1/2


p1 + p2 p1 − p2 0 0
p1 − p2 p1 + p2 0 0

0 0 2p3 0
0 0 0 2p4

 ,

and it is clear that p1, p2, p3 and p4 are its eigenvalues. 4

2.3.2 From the Pauli equation to the LvNM equation

The time evolution of a density matrix is governed by the Liouville-von Neumann master
(LvNM) equation, that is [25, 70, 118]

ρ̇ = −i[H, ρ] , (2.85)

where H is the Hamiltonian and [·, ·] represents the commutator operator, that is [H, ρ] =
Hρ− ρH.

This equation can be obtained by manipulating a finite-dimensional Schrödinger equa-
tion, modelling the evolution of a wavefunction a, that is

iȧ = Ha , (2.86)

where the reduced Plank constant ~ is assumed equal to 1 for simplicity and all energies
are measured in frequency units. Here, at first H can be any Hermitian operator. Notice
that (2.86) corresponds exactly to the Pauli equation (2.83), in the case that H is given
by
[
H0 +BxHx +ByHy

]
, as shown in the previous section.

Next, differentiating the density operator ρ(t) =
∑

k pk
(
ak(t)⊗a∗k(t)

)
and multiplying

by i, we get the following; see, e.g., [25];

i
d

dt
ρ = i

d

dt

∑
k

pk
(
ak ⊗ a∗k

)
=
∑
k

i
(
pkȧk ⊗ a∗k + pkak ⊗ ȧ∗k

)
=
∑
k

H
(
pkak ⊗ a∗k

)
−
(
pkak ⊗ a∗k

)
H = Hρ− ρH = [H, ρ] ,

that is the LvNM equation (2.85).
The LvNM equation (2.85) describes the time evolution of closed quantum spin sys-

tems, that are quantum systems which do not interact with the external environment.
For the description of open systems, the LvNM equation (2.85) has to be modified by
adding a double-commutator term as follows; see, e.g., [6, 25, 74, 82, 111];

ρ̇ = −i[H, ρ]−
∑
j

[Ṽj, [Ṽj, ρ]] , (2.87)

where Ṽj are traceless matrices depending on the physics of the considered quantum
systems. Equation (2.87) is also known as the Lindblad-Kossakowski master equation.
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2.3.3 Controlled multi-spin Hamiltonian and rotating frame trans-
formation

In the following, we consider finite-dimensional quantum systems composed by a set of
non-interactive subsystems of Np coupled spin-1

2
particles, for which the dimension of the

corresponding density matrix is N = 2Np . We describe the Hamilton operator H for
spin systems considered in NMR spectroscopy and discuss the so-called rotating frame
transformation.

For these purposes, we construct a basis for the space her(N) as described in the
following. We consider the 2× 2 identity matrix I2 and the Pauli matrices Ix, Iy, Iz, given
by (2.13), and we construct the matrices Iα,k, for α = x, y, z, 2 and k = 1, . . . , Np, as
follows

Iα,k := I2 ⊗ I2 ⊗ · · · ⊗ I2 ⊗ Iα︸︷︷︸
k-th position

⊗I2 ⊗ · · · ⊗ I2 , (2.88)

that is, Iα,k is obtained as the Kronecker product of Np−1 identity matrices I2 and one of
the matrices Iα. Particularly, the identity matrix appears everywhere except at the k-th
position, which is occupied by Iα. By means of this construction, a basis for her(N) is
given by

B̂Np =
{
B̂(α1,...,αNp ) | αk ∈ {x, y, z, 2}

}
, (2.89)

where

B̂(α1,...,αNp ) = 2(q−1)

Np∏
k=1

Iαk,k , (2.90)

where q is the number of indexes αk different from 2; see, e.g., [70, 109]. Let us introduce
the following inner product on her(N)

〈A|B〉 = trace(A∗B) , for A,B ∈ her(N) . (2.91)

This scalar product induces the so-called Hilbert-Schmidt norm

‖A‖ =
√
〈A|A〉 =

√
trace(A∗A) , for A ∈ her(N) . (2.92)

Notice that B̂Np is orthogonal with respect to the inner product (2.91). However,

〈B̂∗k|B̂j〉 = δk,j2
Np−2 ,

where δk,j is the Kronecker delta, and the elements B̂s have norm equal to
√

2Np−2; see also
[109]. We can normalize B̂Np by multiplying all its elements by βNp := 1√

2Np−2
, obtaining

the following orthonormal basis

B̃Np =
{
B̃(α1,...,αNp ) := βNpB̂(α1,...,αNp ) | αk ∈ {x, y, z, 2}

}
. (2.93)

In the presence of external magnetic fields, a typical Hamiltonian has the following
form [25, 46, 125]. We have

H = H0 +Hrf , (2.94)

where H0 is the drift component related to a static magnetic field applied along the z-axis
and Hrf represents radiofrequency electromagnetic radiations applied along the x and y
axes and usually referred to as radiofrequency pulses. For a system of heteronuclear spins,
that are spins having well-separated Larmor frequencies νk, see, e.g., [70],

|νk − νj| � |Jk,j| , (2.95)

Exact and non-smooth control of quantum spin systems
36



The physics of a spin and quantum control models

in a fixed laboratory coordinate frame, H0 and Hrf take the following form [70, 125]

H0 =

Np∑
k=1

νkIz,k +
∑
k<j

Jk,jIz,kIz,j , (2.96)

and

Hrf =

Np∑
k=1

Vk(t)
(

cos(ωkt+ φk(t))Ix,k + sin(ωkt+ φk(t))Iy,k

)
, (2.97)

where Jk,j ≥ 0 is the coupling constant of the Ising model between the k-th and j-th spin.
Moreover, ωk, φk, and Vk, represent frequencies, phases, and amplitudes of the external
radiofrequency pulses, respectively. Notice that (2.97) is an approximation of the true
radiofrequency Hamiltonian, and it is obtained neglecting the components rotating with
frequencies 2ωk, which are far from the resonance spectrum; see, e.g., [12, 108, 125].

Next, we discuss the so-called rotating-frame transformation. In NMR spectroscopy,
because of the high values of frequencies of the static magnetic fields, it is convenient to
represent the LvNM model in a coordinate system that “rotates” with frequencies similar
or equal to the Larmor frequencies of the spin particles. In the literature, this rotating
coordinate system is referred to as rotating frame coordinates. This representation allows
a better description and understanding of the physical behaviour of the system. We also
remark that, the rotating frame transformation represents a fundamental step for the
numerical description and simulation of the NMR quantum spin systems: an adequate
numerical description of a system rotating with a very high frequency could require a very
fine mesh, and, consequently, a very high computational effort.

A general rotating frame transformation of the LvNM equation (2.85) is performed by
means of a time-dependent unitary operator Υ(t), as follows [25, 108]

ρ̃(t) = Υ(t)ρ(t)Υ∗(t) . (2.98)

Consequently, the LvNM equation assumes the following form

˙̃ρ = −i[H̃, ρ̃] , (2.99)

where H̃ is referred to as the effective Hamiltonian. The form of H̃ can be established as
follows. Differentiating (2.98), we get

d

dt
ρ̃ =

d

dt

(
ΥρΥ∗

)
= Υ

d

dt

(
ρ
)
Υ∗ +

d

dt

(
Υ
)
ρΥ∗ + Υρ

d

dt

(
Υ∗
)

= iΥ[ρ,H]Υ∗ +
d

dt

(
Υ)Υ∗ΥρΥ∗ + ΥρΥ∗Υ

d

dt

(
Υ∗
)

= iΥ[ρ,H]Υ∗ +
d

dt

(
Υ)Υ∗ρ̃+ ρ̃Υ

d

dt

(
Υ∗
)
.

(2.100)

Moreover, one has that

0 =
d

dt

(
ΥΥ∗

)
=
dΥ

dt
Υ∗ + Υ

dΥ∗

dt
, (2.101)

which implies the following
dΥ

dt
Υ∗ = −Υ

dΥ∗

dt
. (2.102)
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Furthermore, one easily shows that

Υ[ρ,H]Υ∗ = [ρ̃,ΥHΥ∗] . (2.103)

Replacing (2.102) and (2.103) into (2.100), we obtain

˙̃ρ = −iΥ[ρ,H]Υ∗ +
dΥ

dt
Υ∗ρ̃+ ρ̃Υ

dΥ∗

dt

= i[ρ̃,ΥHΥ∗]−Υ
dΥ∗

dt
ρ̃+ ρ̃Υ

dΥ∗

dt

= i[ρ̃,ΥHΥ∗] +

[
ρ̃,Υ

dΥ∗

dt

]

= i

[
ρ̃,ΥHΥ∗ − iΥdΥ∗

dt

]
.

(2.104)

Hence, the effective Hamiltonian H̃ is given by the following

H̃ = ΥHΥ∗ − iΥdΥ∗

dt
. (2.105)

In particular, if the transformation map is defined as Υ(t) :=
∏

k exp(−iω̃kIz,kt) [125], and
H is given by (2.94), (2.96), and (2.97), in the rotating frame coordinates, the Hamiltonian
becomes

H̃ = H̃0 + H̃rf . (2.106)

In this case, the drift Hamiltonian assumes the following form; see, e.g., [25, 46, 108];

H̃0 =

Np∑
k=1

(νk − ω̃k)Iz,k +
∑
k<j

Jk,jIz,kIz,j , (2.107)

since the Ising Hamiltonian H0 given by (2.96) commutes with Υ(t). Assuming that
ω̃k = ωk, then the control term can be put in the following form [25, 72, 125]

H̃rf =

Np∑
k=1

(ux,kIx,k + uy,kIy,k) , (2.108)

where ux,k : t 7→ ux,k(t) ∈ R and uy,k : t 7→ uy,k(t) ∈ R are regarded as control functions
acting in the x- and y-direction of the k-th spin, respectively. We remark that, since the
amplitudes Vk and the phases φk in (2.97) are time dependent and defined by the user [125],
the control functions ux,k and uy,k are related to Vk and φk, by ux,k(t) = Vk(t) cos(φk(t))
and uy,k(t) = Vk(t) sin(φk(t)).

For the sake of clarity, we provide the following two examples regarding systems of 1
and 2 spin−1

2
particles, respectively.

Example. Case 1: one spin−1
2
system

Consider the LvNM equation for one spin-1
2
given by ρ̇ = −i[H, ρ], where the Hamilton

operator is given by H = H0 +Hrf [6, 108, 111], with H0 = ν0Iz. Assuming that at high
frequency fields the components rotating with frequency 2ω have negligible effects on the
experiments [12, 108, 125], the control Hamiltonian is the following

Hrf = V (t)
[
cos(ωt+ φ(t))Ix + sin(ωt+ φ(t))Iy

]
,
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where ν0 is the Larmor frequency of the spin, ω, φ and V are frequency, phase, and
amplitude of the control radiofrequencies, respectively. We remark that the phase φ and
the amplitude V are time dependent and chosen by the user [125].

To apply the rotating frame transformation, we consider the following unitary operator

Υ = eiω̃tIz , (2.109)

whose action defines a rotating frame reference which rotates around the z-direction at ω̃
frequency. We first compute the transformed Pauli matrices as follows

ΥIzΥ
∗ = Iz ,

ΥIxΥ
∗ = cos(ω̃t)Ix − sin(ω̃t)Iy ,

ΥIyΥ
∗ = sin(ω̃t)Ix + cos(ω̃t)Iy .

(2.110)

We also have that
ΥΥ̇∗ = −iω̃Iz . (2.111)

The effective Hamiltonian is obtained as follows

H̃ = ΥHΥ∗ − iΥΥ̇∗

= ν0ΥIzΥ
∗ + V (t) cos(ωt+ φ(t))ΥIxΥ

∗ + V (t) sin(ωt+ φ(t))ΥIyΥ
∗ − ω̃Iz

= (ν0 − ω̃)Iz + V (t) cos(ωt+ φ(t))(cos(ω̃t)Ix − sin(ω̃t)Iy)

+ V (t) sin(ωt+ φ(t))(sin(ω̃t)Ix + cos(ω̃t)Iy)

= (ν0 − ω̃)Iz + V (t)
(
cos(ωt) cos(φ(t))− sin(ωt) sin(φ(t))

)(
cos(ω̃t)Ix − sin(ω̃t)Iy

)
+ V (t)

(
sin(ωt) cos(φ(t)) + cos(ωt) sin(φ(t))

)(
sin(ω̃t)Ix + cos(ω̃t)Iy

)
.

(2.112)

Choosing ω̃ = ω, the previous expression simplifies as follows

H̃ = (ν0 − ω)Iz + V (t)
[
cos(φ(t))Ix + sin(φ(t))Iy

]
. (2.113)

Now, define
u1(t) := V (t) cos(φ(t)) ,

and
u2(t) := V (t) sin(φ(t)) .

We obtain
H̃ = (ν0 − ω)Iz + u1(t)Ix + u2(t)Iy . (2.114)

Notice that in NMR experiments, in order to obtain the resonance of the substance in
analysis, ω is chosen equal to ν0 and consequently, the drift term disappears. However, in
practical situations, the nuclei in a molecule possess a range of chemical shifts. Because
a radiofrequency can be applied at only one frequency ν0, some nuclei will have resonant
frequencies that are close to ν0 while other nuclei will have resonant frequencies that are
different from ν0. Consequently, all nuclei cannot be expected to respond to the effect of
a radiofrequency in an ideal way, hence, because of these characteristics of inhomogeneity,
the drift sometimes does not vanish. 4
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Example. Case 2: 2 spin−1
2
systems

In this case, we consider a system of two heteronuclear spins, I and S, such that their
Larmor frequencies are well separated, that is |νI − νS| � |J | [70], where νI and νS are
the Larmor frequencies of the spin I and S, respectively, and J is the coupling constant.
The Hamilton operator, in the laboratory frames and under the same assumption as in
Case 1, has the following form

H = νI Îz + νSŜz + JÎzŜz

+ VI(t)
[
cos(ωIt+ φI(t))Îx + sin(ωIt+ φI(t))Îy

]
+ VS(t)

[
cos(ωSt+ φS(t))Ŝx + sin(ωSt+ φS(t))Ŝy

]
,

(2.115)

where Îα = I2 ⊗ Iα and Ŝα = Iα ⊗ I2, for α = x, y, z. To apply the rotating frame
transformation, we consider the following unitary operator

Υ = eiω̃I tÎzeiω̃StŜz , (2.116)

whose action defines two rotating frame references, one for each spin, rotating at frequen-
cies ω̃I and ω̃S, respectively. The following equalities hold

ΥÎzŜzΥ
∗ = ÎzŜz

ΥÎzΥ
∗ = Îz

ΥŜzΥ
∗ = Ŝz

ΥÎxΥ
∗ = cos(ω̃It)Îx − sin(ω̃It)Îy

ΥÎyΥ
∗ = sin(ω̃It)Îx + cos(ω̃It)Îy

ΥŜxΥ
∗ = cos(ω̃St)Ŝx − sin(ω̃St)Ŝy

ΥŜyΥ
∗ = sin(ω̃St)Ŝx + cos(ω̃St)Ŝy .

(2.117)

We also have that
ΥΥ̇∗ = −iω̃I Îz − iω̃SŜz . (2.118)

The effective Hamiltonian can be obtained as H̃ = ΥHΥ∗ − iΥΥ̇∗. Proceeding in the
same way as in the previous case, and setting ω̃I = ωI = νI and ω̃S = ωS = νS, we obtain
that

H̃ = JÎzŜz + u1(t)Îx + u2(t)Îy + u3(t)Ŝx + u4(t)Ŝy , (2.119)

where
u1(t) := VI(t) cos(φI(t)) ,

u2(t) := VI(t) sin(φI(t)) ,

u3(t) := VS(t) cos(φS(t)) ,

and
u4(t) := VS(t) sin(φS(t)) .

4
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2.3.4 Control of inhomogeneous spin systems

In several applications in NMR, the considered ensemble of spins cannot be assumed to be
physically homogeneous, in the sense that the radiofrequency pulses do not affect all the
parts of the ensemble in the same way. This inhomogeneity can be modelled by dividing
the ensemble in a finite number of groups, that are composed by the union of all the
subsystems affected in the same way by the radiofrequency pulses. An example is shown
in Figure 2.5, in which the ensemble of spins is divided into three groups (red, blue and
green).

Figure 2.5: Inhomogeneous ensemble of spin divided into three groups.

Each of these groups is characterized by a density matrix and by a Hamilton operator.
In particular, if we consider that the ensemble is divided into Ng number of groups, then
the density operator corresponding to the entire ensemble is given by ρ ∈ her(NgN) with

ρ = blk-diagl=1,...,Ng (ρl) . (2.120)

The inhomogeneities are taken into account in the Hamiltonian by means of scaling
parameters. The Hamiltonian corresponding to the l-th group is given as follows

H̃l = αlH̃0 + α̂lH̃rf , (2.121)

where αl and α̂l are real parameters, and H̃0 and H̃rf are defined in (2.107) and (2.108),
respectively. The scaling factors αl and α̂l are used to perform the different action of the
magnetic field on the ensemble. From the control point of view, this means that the same
control functions are used for controlling spin systems characterized by different precession
frequencies. Moreover, the control functions are scaled differently for each system.

2.4 Quantum systems with bilinear control structure
In quantum control theory, the controlled time evolution of a quantum system is in general
described by means of a dynamical system having a bilinear control structure, as follows

ẋ =

[
A+

NC∑
n=1

unBn

]
x , (2.122)

where x ∈ RNx is a real representation of the quantum state, un : [0, T ]→ R are the control
functions, NC is the number of controls, and A and Bn are skew-symmetric matrices in
RNx×Nx . Equation (2.122) can be a real representation of a LvNM equation, semi-discrete
Pauli and Schrödinger equations, quantum operator equation, etc.

In the next two sections, we show how to obtain (2.122) as a real representation of a
LvNM equation and a semidiscrete Pauli or Schrödinger equation.
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2.4.1 Real matrix representation of the LvNM equation

In this section, we discuss a real matrix representation of the LvNM equation (2.99), that
allows to transform density operators into vectors in RN2 with N = 2Np , that are called
generalized Bloch vectors, and to represent the operators of the right-hand side of (2.99)
by matrices in RN2×N2 .

To this purpose, we consider the LvNM equation in the following form

˙̃ρ = LH̃(ρ̃) , (2.123)

where LH̃(ρ̃) := −i[H̃, ρ̃], with

H̃ = H̃0 +

Np∑
j=1

ux,jH̃x,j + uy,jH̃y,j . (2.124)

Notice that (2.124) is a general form of the Hamiltonian given by (2.106)-(2.107)-(2.108).
We remark that (2.123) is in rotating-frame coordinates. To obtain the generalized

Bloch vector, by means of the orthonormal basis B̃Np , we fix an order of B̃Np , i.e. B̃Np =

{B̃1, . . . , B̃N2}, and define the linear map V : her(N)→ RN2 as follows

V(ρ̃) =
(
〈ρ̃|B̃1〉, 〈ρ̃|B̃2〉, . . . , 〈ρ̃|B̃N2〉

)T
, (2.125)

where 〈·|·〉 is the inner product defined in (2.91). By means of the above map, we get the
following generalized Bloch vector

(x1, x2, . . . , xN2)T = x := V(ρ̃) , (2.126)

and we remark that ρ̃ =
∑N2

j=1 xjB̃j.
Next, a matrix representation of LH̃ , that is given explicitly by

LH̃ = LH̃0
+

Np∑
j=1

(
ux,jLH̃x,j + uy,jLH̃y,j

)
,

with respect to B̃Np , is given by AH̃ ∈ RN
2×N2 written as follows

AH̃ = A+

Np∑
j=1

(
ux,jAx,j + uy,jAy,j

)
,

where A, Ax,j and Ay,j are the matrix representations of LH̃0
, LH̃x,j , and LH̃y,j , respec-

tively. Their entries are obtained by the following scalar products

〈B̃k|LH̃0
(B̃l)〉 , 〈B̃k|LH̃x,j(B̃l)〉 and 〈B̃k|LH̃y,j(B̃l)〉 . (2.127)

For instance, denote ak,l the k, l entry of the matrix A. We can construct A by solving
the following N2 linear equations

LH̃0
(B̃1) = a1,1B̃1 + a2,1B̃2 + a3,1B̃3 + · · ·+ aN2,1B̃N2

LH̃0
(B̃2) = a1,2B̃1 + a2,2B̃2 + a3,2B̃3 + · · ·+ aN2,2B̃N2

LH̃0
(B̃3) = a1,3B̃1 + a2,3B̃2 + a3,3B̃3 + · · ·+ aN2,3B̃N2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
LH̃0

(B̃N2) = a1,N2B̃1 + a2,N2B̃2 + a3,N2B̃3 + · · ·+ aN2,N2B̃N2 .
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The solution to the previous linear system is given by ak,l = 〈B̃k|LH̃0
(B̃l)〉.

This procedure results in a real matrix representation of the LvNM equation given
by the bilinear dynamical system (2.122) with NC = 2Np and Nx = N2 = 4Np , and Bn

and un are of the form Aα,j and uα,j, respectively, for some α = x, y and j = 1, . . . , Np.
In particular, we order the control vector fields as H1 := H̃x,1, H2 := H̃y,1, H3 := H̃x,2,
H4 := H̃y,2, . . . , HNC−1 := H̃x,Np , HNC := H̃y,Np . The drift A and the control terms Bn

are skew-symmetric.
Notice that, formulas (2.127) are computationally very expensive, since all the entries

of the matrices A and Bn are computed independently. For this reason, we describe the
following alternative procedure. First, we compute a complex matrix representation of
(2.99), defining the map VC : her(N)→ CN2 as follows

VC(ρ̃) := vec(ρ̃),

that is, VC(ρ̃) is a column vector containing sequentially the columns of ρ̃. Further, we
define the following operators

AC := IN ⊗H0 −HT
0 ⊗ IN , (2.128)

and
BC,n := IN ⊗Hn −HT

n ⊗ IN , (2.129)

where IN is the N×N identity matrix. Consequently, the LvNM equation (2.99) becomes
as follows

VC( ˙̃ρ) = VC(−i[H̃, ρ̃])

⇒ d

dt
vec(ρ̃) = vec(−i[H̃, ρ̃])

⇒ d

dt
vec(ρ̃) = −i vec(H̃ρ̃− ρ̃H̃)

⇒ d

dt
vec(ρ̃) = −i vec(H̃ρ̃IN − IN ρ̃H̃)

⇒ d

dt
vec(ρ̃) = −i

(
(IN ⊗ H̃)vec(ρ̃)− (H̃T ⊗ IN)vec(ρ̃)

)
⇒ d

dt
vec(ρ̃) = −i

(
AC +

NC∑
n=1

BC,n

)
vec(ρ̃) ,

(2.130)

where we used the fact that vec(DEF ) = (F T ⊗D)vec(E) for any three matrices D,E, F .
Second, we construct the linear transformation operator T as follows

T =
(
T1, . . . , TN2

)
, (2.131)

where Tj = vec(B̃j). Third, we get the real matrix representation as follows

V(ρ) = T−1VC(ρ)

A = T−1ACT

Bn = T−1BC,nT .

(2.132)

Notice that the latter procedure, that first compute a complex representation and then
transforms this into a real representation, is more efficient than the procedure given by
(2.127), that computes directly a real representation. This is due to the fact that by

Exact and non-smooth control of quantum spin systems
43



The physics of a spin and quantum control models

using (2.127) one has to compute the matrices A and Bn entry-by-entry, even if most
of the entries are equal zero. This problem is avoided by passing through the complex
representation, which allows a more compact computation, that can take into account the
sparse structure of the matrices.

In the following, we show two examples of real matrix representation for two specific
cases.

Example. Case 1: one spin−1
2
system

We want to obtain the real matrix representation of the following LvNM equation (in the
rotating frame coordinates) corresponding to one spin−1

2
system, that is ˙̃ρ = −i[H̃, ρ̃].

According to the formulas (2.90) and (2.93), we have that B̃1 =
√

2
2
I2, B̃2 =

√
2Ix,

B̃3 =
√

2Iy, B̃4 =
√

2Iz. By applying the procedure described in the previous section, we
obtain the following real-matrix representation

ẋ =
[
A+ u1B1 + u2B2

]
x ,

where

A =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , B1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 and B2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 .

4

Example. Case 2: 2 spin−1
2
system

We want to obtain the real matrix representation of the LvNM equation ˙̃ρ = −i[H̃, ρ̃]
corresponding to two spin−1

2
system. In the examples in Section 2.3.3, we obtain that

the effective Hamiltonian is given by

H̃ = JÎzŜz + u1Îx + u2Îy + u3Ŝx + u4Ŝy .

According to the formulas (2.90) and (2.93), we have B̃1 = 1
2
I2, B̃2 = Ix,2, B̃3 = Iy,2,

B̃4 = Iz,2, B̃5 = Ix,1, B̃6 = 2Ix,1Ix,2, B̃7 = 2Ix,1Iy,2, B̃7 = 2Ix,1Iz,2, B̃9 = Iy,1, B̃10 =
2Iy,1Ix,2, B̃11 = 2Iy,1Iy,2, B̃12 = 2Iy,1Iz,2, B̃13 = Iz,1, B̃14 = 2Iz,1Ix,2, B̃15 = 2Iz,1Iy,2,
B̃16 = 2Iz,1Iz,2. By applying the procedure previously described, we obtain the following
real matrix representation

ẋ =
[
A+ u1B1 + u2B2 + u3B3 + u4B4

]
x .

where the obtained skew-symmetric matrices A and Bn are in R16×16 and have the struc-
tures shown in the following figures, in which the small black dots denote the value 0,
whereas the red dots and the blue dots denote positive and negative values, respectively.
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Figure 2.6: Structure of the matrix B1.
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Figure 2.7: Structure of the matrix B2.
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Figure 2.8: Structure of the matrix B3.
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Figure 2.9: Structure of the matrix B4.
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Figure 2.10: Structure of the matrix A.
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2.4.2 Real representation of semidiscrete Pauli and Schrödinger
equations

Consider a semi-discrete Schrödinger equation, that is a Schrödinger equation where the
space operators are approximated by means of a discretization method, e.g., finite ele-
ments, spectral methods, etc. In a general form a semi-discrete Schrödinger equation can
be written as follows

iψ̇ =
(
H0 + u1H1 + iu2H2

)
ψ , (2.133)

where ψ(t) ∈ Ck is the discrete wavefunction, the integer k depends on the considered
approximation, H0 is a free Hamiltonian, u1H1 and u2H2 are control Hamiltonians with
control functions u1, u2 : [0, T ] → R. The matrices H0 and H1 are assumed to be sym-
metric and H2 is assumed skew-symmetric. Notice that, for instance, equation (2.133)
can represent

• the semi-discrete Pauli equation defined in (2.60), with ψ = a, H0, H1 = Hx, and
iH2 = Hy defined by (2.61), (2.62) and (2.63), respectively, and u1 = Bx and
u2 = By;

• the semi-discrete Schrödinger equations used for the dipole control of a charged
particle; see, e.g., [129, 130]. In this case H0 is the discrete Laplace operator,
H2 = 0, H1 is a diagonal matrix that represents the electric field, and u1 is the
control function, representing the time-dependent amplitude of the electric field.

By splitting real and imaginary parts of ψ, and defining x ∈ RNx , with Nx = 2k, and
x := (ψR, ψI)

T , equation (2.133) becomes as follows

ẋ =
(
A+ u1B1 + u2B2

)
x , (2.134)

where

A =

(
0 H0

−H0 0

)
, B1 =

(
0 H1

−H1 0

)
and B2 =

(
H2 0
0 H2

)
. (2.135)

Since H0 and H1 are symmetric, and H2 is skew-symmetric, A, B1, and B2 are skew-
symmetric. Hence, the semi-discrete form (2.133) of an infinite-dimensional Schrödinger
equation has a real representation with the same structure of (2.122).

2.5 Summary and remarks
The aim of this chapter was to describe the physics and the models that constitute the
background that motivates optimal control and exact-control problems discussed in the
thesis. The Pauli equation was discussed and used to introduce the Liouville-von Neu-
mann master equation. These equations represent the main models for the description of
the evolution of quantum spin systems. Both Pauli and LvNM equations admit real rep-
resentations that belong to the class of dynamical systems with bilinear control structure,
that are the focus of this thesis.
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Chapter 3

Theoretical results about quantum
optimal control problems

In this chapter, theoretical results concerning quantum optimal control problems are inves-
tigated. Existence and characterization properties of solutions and optimality conditions
are proved for the following class of optimal control problems

min
x,u

J(x, u) :=
1

2
‖x(T )− xT‖2

2 +

NC∑
n=1

[ν
2
‖un‖2

L2 + β‖un‖L1

]
s.t. ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ]

x ∈ X , u ∈ Uad ⊆ L2((0, T );RNC ) ,

(P)

where x is referred to as the state of the system, and belongs to the following set

X :=
{
y ∈ H1((0, T );RNx) : y(0) = x0

}
, (3.1)

x0 ∈ RNx is a given initial state, un : [0, T ]→ R represent the control functions belonging
to the admissible set Uad, and NC is the number of controls. The matrices A and Bn have
real entries and their structure depends on the considered quantum system; in general,
especially in NMR applications, Bn are skew-symmetric, and A is skew symmetric for
closed systems and can have non-zero diagonal terms for open systems [6, 25, 111]; see
also Section 2.4 and references therein. The vector xT ∈ RNx is a given target state, and
we assume that ‖xT‖2 = ‖x0‖2. This is a common situation in quantum control problem,
in which in general the goal is to steer the quantum system from one eigenstate to another,
and all the eigenstates are normalized.

In this work, we consider the following two admissible sets

Uad,1 :=
{
v = (v1, . . . , vNC ) ∈ L2((0, T );RNC ) : |vn(t)| ≤ b a.e. in (0, T ) for n = 1, . . . , NC

}
,

(3.2)
and

Uad,2 :=
{
v ∈ L2((0, T );RNC ) : ‖v(t)‖2 ≤ b a.e. in (0, T )

}
, (3.3)

where b is a positive constant. We remark that these sets are considered in several quantum
control applications, see, e.g., [9, 74, 75, 105]. In this chapter, we analyse the following
optimal control cases
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• Problem (P) with β = 0, and both Uad,1 and Uad,2; this is an L2-regularized optimal
control problem which is considered in several quantum control applications; it is
discussed in Section 3.2;

• Problem (P) with β = 0, and piecewise constant controls belonging to Uad,1; this
optimal control problem is considered when the need of an exact implementation of
the control functions in specific laboratory pulse shapers arises; see, e.g., [37]; this
problem is discussed in Section 3.3;

• Problem (P) with β 6= 0, and controls belonging to Uad,1; this optimal control
problem allows to generate control functions that are said to be “sparse”, and that
resembles the “pulsed shaped” controls often used in quantum control applications,
like NMR and MRI; it is discussed in Section 3.4.

In our notation, given k ∈ N, 〈·, ·〉 is the Euclidean scalar product in Rk and ‖ · ‖2 the
corresponding norm. We denote by 〈·, ·〉L2 the L2-inner product defined by

〈y, z〉L2 :=

∫ T

0

〈y(t), z(t)〉dt , for every y, z ∈ L2((0, T );Rk) .

The corresponding norm is denoted by ‖ · ‖L2 . We denote by ‖ · ‖Lq the following norm

‖v‖Lq :=

(∫ T

0

k∑
j=1

|vj(t)|qdt

) 1
q

, for every v ∈ Lq((0, T );Rk) ,

for 1 ≤ q <∞. Further, we denote by ‖ · ‖L : L → R the Hilbert-Schmidt norm, where L
is the space of all Rk×k matrices. Moreover, the notation

∑
n =

∑NC
n=1 is often used.

The chapter is organized as follows. In Section 3.1, main properties of the bilinear
control system and its linearization are investigated. In Section 3.2, existence of solutions
to L2-quantum optimal control problems is proved, and optimality conditions are derived.
Properties of the adjoint backward equation are also discussed. Section 3.3 investigates
an L2-quantum optimal control problem with piecewise-constant controls. In Section 3.4,
L1-quantum optimal control problems are investigated. Existence of and characterization
properties of the optimal control solutions and optimality conditions are discussed. A
summary section concludes this chapter.

3.1 Properties of bilinear quantum systems
In this section, we show some important properties of the following initial value problem

ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ] , x(0) = x0 , (3.4)

and of its linearization, that is

˙δx =

[
A+

NC∑
n=1

unBn

]
δx+

[
NC∑
n=1

δunBn

]
x , in (0, T ] , δx(0) = 0 . (3.5)

We discuss existence, uniqueness and regularity properties of solutions to (3.4) and (3.5),
and we show that the dynamics generated by (3.4) is norm preserving. In Proposition 1
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we show existence and uniqueness of solutions to (3.4) and (3.5). In Proposition 2, we
show that the dynamics of (3.4) is norm-preserving. Proposition 3 proves weak continuity
of the map u 7→ x(u). In Proposition 4 and Proposition 5, we prove relationships between
solutions to (3.4) and (3.5) evaluated pointwise in time and the L1-norm of the controls.
Proposition 6 shows a possible expansion of u 7→ x(u). In Proposition 7 we prove relation-
ships between solutions to (3.4) and (3.5) evaluated pointwise in time and the L2-norm
of the controls. In Proposition 8, we investigate regularity properties of (3.4) and (3.5)
written in operator forms.

First, we discuss existence and uniqueness of solutions to (3.4) and (3.5). Notice
that, since the control functions u have to belong to a subset Uad of the Lebesgue space
L2((0, T );RNC ), classical results, that requires that the right-hand side of the differential
equation is continuous, are not valid. For this reason we seek existence and uniqueness of
a weak-solution in the sense of Charathéodory, which requires the right-hand side to be
measurable; see, e.g., [107, 131]. We have the following result.

Proposition 1. Consider problems (3.4) and (3.5) with x, δx ∈ H1((0, T );RNx) and given
u, δu ∈ L2((0, T );RNC ). Then (3.4) and (3.5) admit unique solutions for any T > 0 and
any initial condition.

Proof. Let u be a given control function. Let us define f1 : RNx ×R→ RNx as f1(x, t) :=[
A +

∑
n unBn(t)

]
x. Since u ∈ L2((0, T );RNC ), then f1(x, t) is measurable for t ∈ [0, T ];

furthermore it is linear and continuous with respect to x. Now, take x, y ∈ RNx , we write
that

‖f1(x, t)− f1(y, t)‖2 =
∥∥∥[A+

∑
n
un(t)Bn

]
(x− y)

∥∥∥
2
≤
∥∥∥[A+

∑
n
un(t)Bn

]∥∥∥
L

∥∥x− y∥∥
2

≤
(∥∥A∥∥L +

∑
n
|un(t)|

∥∥Bn

∥∥
L

)∥∥x− y∥∥
2

= α(t)
∥∥x− y∥∥

2
,

where α(t) :=
∥∥A∥∥L +

∑NC
n=1 |un(t)|

∥∥Bn

∥∥
L is in L1((0, T );R). The previous inequality

means that f1 is Lipschitz in x. Moreover, for a given x ∈ RNx we have that

‖f1(x, t)‖2 =
∥∥∥[A+

∑
n
un(t)Bn

]
x
∥∥∥

2
≤
∥∥∥[A+

∑
n
un(t)Bn

]∥∥∥
L

∥∥x∥∥
2

= β(t)‖x‖2 , ∀t ∈ (0, T ] ,

where β(t) is equal to α(t). Hence, by [107] (Theorem 54), (3.4) admits a unique solution
for any T and any initial condition; see, also [131].

Existence and uniqueness of solutions to (3.5) can be proved in the same way by
considering f2(δx, t) :=

[
A+

∑
n un(t)Bn

]
δx+

[∑
n δun(t)Bn

]
x.

In the next proposition, we prove norm-preservation of the dynamical system (3.4),
that is

‖x(t)‖2 = ‖x(0)‖2 , (3.6)

for t ∈ [0, T ]. Notice that, to prove this property we need to assume that A and Bn are
skew-symmetric matrices. This assumption is always satisfied in quantum control applica-
tions involving closed systems; see, e.g., Section 2.4 and references therein. Furthermore,
the norm-preservation property is usual in quantum mechanics for closed systems, where
the square of a wavefunction has a probabilistic meaning, and its L2-norm is required to
be constant, see, e.g., [83].

Exact and non-smooth control of quantum spin systems
49



Theory of quantum optimal control problems

Proposition 2. Assume that A, Bn, n = 1, . . . , NC are skew-symmetric matrices. Then,
the dynamics generated by (3.4) is norm-preserving.

Proof. By multiplying the dynamical system in (3.4) from the left with x, we obtain that

〈x, ẋ〉 = 〈x,
[
A+

∑
n
unBn

]
x〉 .

Now, notice that 〈x, ẋ〉 = 1
2
d
dt
‖x‖2

2. Since A and Bn are assumed to be skew symmetric,
we have that

〈x,
[
A+

∑
n
unBn

]
x〉 = 0 ,

which implies that
1

2

d

dt
‖x‖2

2 = 0 .

This means that the dynamics generated by (3.4) is norm-preserving.

Next, the map u 7→ x(u) is analysed. Proposition 3 states the sequentially weak
continuity of the map u 7→ x(u). Notice that a similar result can be found in [114], which
is proved by means of the Ascoli-Arzelà theorem. Proposition 4 proves a relationship
between the control u and the pointwise solution to (3.4).

Proposition 3. Let {uk}∞k=1 be a sequence of controls such that

uk ⇀ û

in L2((0, T );RNC ). Then the corresponding solutions of (3.4) xk := x(uk) satisfy

xk → x̂ = x(û)

in C([0, T ];RNx).

Proof. Consider a sequence of controls {uk = (uk1, . . . , u
k
NC

)}k in L2((0, T );RNC ) such
that ukn ⇀ ûn in L2(0, T ) as k → ∞. The sequence {xk}k in H1((0, T );RNx), defined
as xk = x(uk), is bounded by Proposition 2. Hence, since H1(0, T ) is reflexive, we can
extract a weakly convergent subsequence, i.e. xkj ⇀ x̂ in H1((0, T );RNx) as j → ∞.
Notice that the embedding H1(0, T ) → C[0, T ] is compact, see, Theorem A 10 in the
appendix, hence xkj → x̂ in C([0, T ];RNx).

Now, consider the dynamical system corresponding to (ukj , xkj). By multiplying from
the right with a test function v ∈ H1((0, T );RNx) and integrating over the interval (0, T ),
we obtain ∫ T

0

〈ẋkj −
[
A+

∑
n
ukjn Bn

]
xkj , v〉dt = 0 .

Since ukn ⇀ ûn in L2(0, T ), xkj → x̂ in C([0, T ];RNx) and ẋkj ⇀ ˙̂x in L2((0, T );RNx)
we have that∫ T

0

〈ẋkj −
[
A+

∑
n
ukjn Bn

]
xkj , v〉dt→

∫ T

0

〈 ˙̂x−
[
A+

∑
n
ûnBn

]
x̂, v〉dt ,

for all v ∈ H1((0, T );RNx). Since the above limit is true for all subsequences, and the
limit x(û) is unique, we have that x(uk)→ x̂ = x(û) in C([0, T ];RNx).
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Proposition 4. Let v and w in L2((0, T );RNC ) be two control functions, and consider
the corresponding solutions to (3.4), y = x(v) and z = x(w). Assume that A and Bn are
skew-symmetric. Then there exists a positive constant c1 such that the following holds

‖y(t)− z(t)‖2
2 ≤ c1‖v − w‖L1 . (3.7)

Moreover, if v and w are in L∞((0, T );RNC ), then there exists a positive constant c̃1 such
that the following holds

‖y(t)− z(t)‖2 ≤ c̃1‖v − w‖L1 . (3.8)

Proof. We define ∆x(t) := y(t) − z(t) a.e. in (0,T), which satisfies the following initial-
value problem

d

dt
∆x = A∆x+

∑
n

(
vnBny − wnBnz

)
, ∆x(0) = 0 . (3.9)

Taking the inner product of (3.9) with ∆x, we obtain

〈∆x, d
dt

∆x〉 = 〈∆x,A∆x〉+ 〈∆x,
∑

n

(
vnBny − wnBnz

)
〉

=
∑

n
〈∆x, vnBny − wnBnz〉 =

∑
n
〈y − z, vnBny − wnBnz〉

=
∑

n

(
−〈y, vnBnz〉 − 〈z, vnBny〉

)
=
∑

n
(vn − wn)〈y,Bnz〉

≤
∑

n
|vn − wn|‖Bn‖L‖x(0)‖2

2 ,

(3.10)

where we used the skew-symmetry of A and Bn and the norm-preserving property of
(3.4). Equation (3.10) is understood pointwise in time. Recalling that 〈∆x(t), d

dt
∆x(t)〉 =

1
2
d
dt
‖∆x(t)‖2

2, integrating (3.10) over (0, t), and defining K0 = max
n
‖Bn‖L, we obtain the

following

‖y(t)− z(t)‖2
2 ≤ 2K0‖x(0)‖2

2

∑
n

∫ t

0

|vn(s)− wn(s)|ds

≤ 2K0‖x0‖2
2

∑
n
‖vn − wn‖L1 = 2K0‖x0‖2

2‖v − w‖L1 ,

(3.11)

which is (3.7) with c1 = 2K0‖x0‖2
2.

To prove estimate (3.8), we proceed in a similar way used in [100]. To this purpose,
notice that y = x(v) can be written as

y(t) = eAtx0 +

∫ t

0

∑
n
vn(s)eA(t−s)Bny(s)ds , (3.12)

and the same for z = x(w). Consequently, we write

y(t)− z(t) =
∑

n

∫ t

0

vn(s)eA(t−s)Bny(s)− wn(s)eA(t−s)Bnz(s)ds

=
∑

n

∫ t

0

eA(t−s)[vn(s)Bny(s)− wn(s)Bnz(s)
]
ds

=
∑

n

∫ t

0

eA(t−s)[vn(s)Bny(s)− wn(s)Bnz(s) + wn(s)Bny(s)− wn(s)Bny(s)
]
ds

=
∑

n

∫ t

0

eA(t−s)[(vn(s)− wn(s))Bny(s) + wn(s)Bn(y(s)− z(s))
]
ds .

(3.13)
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Equation (3.13) implies the following

‖y(t)− z(t)‖2 ≤ K1‖v − w‖L1 +K2

∫ t

0

‖y(s)− z(s)‖2ds , (3.14)

where K1 = ‖eA‖LK0‖x0‖2 and K2 = ‖eA‖LK0NCW , with W = maxn
(
ess sup |wn|

)
.

Notice thatW is bounded because w is in L∞((0, T );RNC ). Moreover, we use that ‖eA‖L =
‖eAs‖L for any s ∈ R, which holds because A is skew-symmetric and eAs are orthogonal
matrices, that are bounded [53]. Next, by applying to (3.14) the Gronwall’s inequality in
the integral form, we obtain

‖y(t)− z(t)‖2 ≤ K1 exp
(∫ t

0

K2ds
)
‖v − w‖L1

≤ K1 exp
(
K2T

)
‖v − w‖L1 ,

(3.15)

that is (3.8) with c̃1 = K1 exp
(
K2T

)
.

In Proposition 4, we assume that A and Bn are skew symmetric. According to Propo-
sition 2, this implies that the dynamics is norm preserving, that is, ‖x(t)‖2 = ‖x(0)‖2 for
all t in [0, T ]. This property holds for closed quantum systems. Regarding open quantum
systems, we have that in general Bn are skew-symmetric but A is not. However, open
systems can be characterized by the property ‖x(t)‖2 ≤ ‖x(0)‖2, which is due to the fact
that the drift matrix A is given by the sum of a skew-symmetric matrix and a negative
semi-definite matrix; see, e.g., [111]; this implies that 〈x,Ax〉 ≤ 0. Consequently, the
proof of Proposition 4 remains valid.

We remark that, by noticing that ‖v−w‖L1 ≤
√
NCT‖v−w‖L2 , it follows from (3.7)

and (3.8) that there exist two positive constants c2 and c̃2, such that

‖y(t)− z(t)‖2
2 ≤ c2‖v − w‖L2 , a.e. in (0, T ) for any v, w ∈ L2((0, T );RNC ) (3.16a)

‖y(t)− z(t)‖2 ≤ c̃2‖v − w‖L2 , a.e. in (0, T ) for any v, w ∈ L∞((0, T );RNC ) , (3.16b)

where y and z are as in Proposition 4. However, we can obtain better estimates than
(3.16a) and (3.16b), in the sense that we can prove (3.16b) for any v, w ∈ L2((0, T );RNC ).
This result is presented in Proposition 7, and to prove it we need the results given in the
two following propositions.

The next proposition shows a result similar to (3.16a) and (3.16b) for the linearized
problem (3.5). In particular, we remark that we can prove the estimate (3.18), that is
similar to (3.16b), without assuming pointwise-boundedness of u and δu.

Proposition 5. Let δu ∈ L2((0, T );RNC ) and let δx = δx(δu) be the corresponding unique
solution to (3.5). Assume that A and Bn are skew-symmetric. Then the following estimate
holds

‖δx‖L2 ≤ 2T
√
NCK00‖x0‖2‖δu‖L2 , (3.17)

where K00 :=
∑NC

n=1 ‖Bn‖L. Notice that inequality (3.17) means that the map δu 7→ δx(δu)
is Lipschitz continuous in δu = 0. Moreover, it holds that

‖δx(t)‖2 ≤ 2
√
TNCK00‖x0‖2‖δu‖L2 , (3.18)

a.e. in (0, T ).
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Proof. Consider the linearized problem (3.5). By multiplying (3.5) to the left with δx, we
obtain

〈δx, ˙δx〉 = 〈δx,
[
A+

∑
n
unBn

]
δx〉+ 〈δx,

[∑
n
δunBn

]
x〉 . (3.19)

Now, considering that 〈δx(t), ˙δx(t)〉 = 1
2
d
dt
‖δx(t)‖2

2 and recalling the skew-symmetry of A
and Bn, we get

1

2

d

dt
‖δx(t)‖2

2 = 〈δx,
[∑

n
δunBn

]
x〉 . (3.20)

Integrating (3.20) over (0, t), and using that δx(0) = 0, the dynamics of (3.4) is norm
preserving and the Cauchy-Schwarz inequality, we obtain

‖δx(t)‖2
2 = 2

∫ t

0

〈δx,
[∑

n
δunBn

]
x〉ds = 2

∑
n

∫ t

0

δun〈δx,Bnx〉ds

≤ 2
∑

n

∫ t

0

|δun||〈δx,Bnx〉|ds ≤ 2
∑

n

∫ T

0

|δun||〈δx,Bnx〉|ds

≤ 2
∑

n

∫ T

0

|δun|‖δx‖2‖Bnx‖2ds ≤ 2
∑

n

∫ T

0

|δun|‖δx‖2‖Bn‖L‖x(0)‖2ds

≤ 2‖x(0)‖2

∑
n
‖Bn‖L

∫ T

0

|δun|‖δx‖2ds

= 2‖x(0)‖2

∑
n
‖Bn‖L〈|δun|, ‖δx‖2〉L2

≤ 2‖x0‖2K00

∑
n
〈|δun|, ‖δx‖2〉L2

≤ 2‖x0‖2K00

∑
n

(∫ T

0

|δun|2ds
)1/2(∫ T

0

‖δx‖2
2ds

)1/2

≤ 2‖x0‖2K00

√
NC‖δu‖L2‖δx‖L2 ,

(3.21)

where K00 =
∑

n ‖Bn‖L. Now, integrating (3.21) over (0, T ), we obtain (3.17) as follows∫ T

0

‖δx(t)‖2
2dt ≤ 2

∫ T

0

‖x0‖2

√
NCK00‖δu‖L2‖δx‖L2dt

⇒ ‖δx‖2
L2 ≤ 2T‖x0‖2

√
NCK00‖δu‖L2‖δx‖L2

⇒ ‖δx‖L2 ≤ 2T‖x0‖2

√
NCK00‖δu‖L2 ,

(3.22)

that is (3.17). Next, by replacing (3.22) in (3.21), we obtain (3.18).

Proposition 6. Let u ∈ L2((0, T );RNC ) and h ∈ L2((0, T );RNC ). Consider the map
u 7→ x(u), where x(u) ∈ H1((0, T );RNx) is the unique solution to (3.4) corresponding to
u, and denote by δx(u, h) ∈ H1((0, T );RNx) the unique solution to (3.5) corresponding to
h and u. Assume that A and Bn are skew-symmetric. The following expansion holds

x(u+ h) = x(u) + δx(u, h) + ϑ(u, h) , (3.23)

where ϑ(u, h) ∈ H1((0, T );RNx) solves the following problem

ϑ̇ =

[
A+

NC∑
n=1

unBn

]
ϑ+

NC∑
n=1

hnBn

(
ϑ+ δx

)
in (0, T ] , and ϑ(0) = 0 . (3.24)
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Moreover, there exist positive constants cϑ and c̃ϑ such that

‖ϑ(t)‖2 ≤ cϑ‖h‖2
L2 , a.e. in (0, T ) (3.25a)

‖ϑ‖L2 ≤ c̃ϑ‖h‖2
L2 . (3.25b)

Proof. Denote by y = x(u) and z = x(u+ h) the solutions to

ẏ =
[
A+

∑
n
unBn

]
y y(0) = x0 (3.26a)

ż =
[
A+

∑
n
(un + hn)Bn

]
z z(0) = x0 , (3.26b)

respectively. Now, we define ϑ + δx := z − y. By subtracting term-by-term (3.26a) from
(3.26b), we notice that the sum ϑ+ δx solves the following problem

ϑ̇+ ˙δx =
[
A+

∑
n
unBn

](
ϑ+ δx

)
+
∑

n
hnBnz , (3.27)

with ϑ(0) = 0. Using that z = y + δx+ ϑ, and rearranging (3.27) we obtain[
ϑ̇−

[
A+

∑
n
unBn

]
ϑ−

∑
n
hnBn

(
ϑ+ δx

)]

+

[
˙δx−

[
A+

∑
n
unBn

]
δx−

∑
n
hnBny

]
= 0 .

(3.28)

Now, notice that (3.28) is satisfied if δx = δx(u, h) solves (3.5), and ϑ = ϑ(u, h) solves
(3.24). Hence, expansion (3.23) is satisfied.

The estimates (3.25a) and (3.25b) can be proved similarly to (3.17) and (3.18). In
fact, by multiplying (3.24) to the left with ϑ and recalling that A and Bn are assumed to
be skew-symmetric, we obtain

〈ϑ, ϑ̇〉 = 〈ϑ,
∑

n
hnBnδx〉 . (3.29)

Now, considering that 〈ϑ(t), ϑ̇(t)〉 = 1
2
d
dt
‖ϑ(t)‖2

2, we get

1

2

d

dt
‖ϑ(t)‖2

2 = 〈ϑ,
∑

n
hnBnδx〉 . (3.30)

Integrating (3.30) over (0, t), and using that ϑ(0) = 0, the dynamics of (3.4) is norm
preserving and using the Cauchy-Schwarz inequality, we obtain

‖ϑ(t)‖2
2 = 2

∫ t

0

〈ϑ,
∑

n
hnBnδx〉ds = 2

∑
n

∫ t

0

hn〈ϑ,Bnδx〉ds

≤ 2
∑

n

∫ T

0

|hn|‖ϑ‖2‖Bnδx‖2ds ≤ 2
∑

n

∫ T

0

|hn|‖ϑ‖2‖Bn‖L‖δx‖2ds

≤ 2
∑

n
‖Bn‖L

∫ T

0

|hn|‖ϑ‖2‖δx‖2ds

≤ 2K00

∑
n

∫ T

0

|hn|‖ϑ‖2‖δx‖2ds .

(3.31)
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where K00 =
∑

n ‖Bn‖L. Now, we use (3.18) to obtain the following

‖ϑ(t)‖2
2 ≤ 4

√
TNCK

2
00‖x0‖2‖h‖L2

∑
n

∫ T

0

|hn|‖ϑ‖2ds

≤ 4
√
TNCK

2
00‖x0‖2‖h‖L2

∑
n
‖hn‖L2‖ϑ‖L2

≤ 4
√
TNCK

2
00‖x0‖2‖h‖2

L2‖ϑ‖L2 .

(3.32)

Integrating (3.32) over (0, T ), we get

‖ϑ‖L2 ≤ 4
√
TTNCK

2
00‖x0‖2‖h‖2

L2 , (3.33)

that is (3.25b) with c̃ϑ = 4
√
TTNCK

2
00‖x0‖2. By replacing (3.33) into (3.32), we obtain

(3.25a) with cϑ = 4T 3/2K2
00‖x0‖2NC , and the claim follows.

The next proposition discusses relationships between the state x and the control u,
and in particular, local Lipschitz continuity of the map u 7→ x(u) is proved.

Proposition 7. Let v and w in L2((0, T );RNC ) be two control functions, and consider the
corresponding solutions to (3.4), y = x(v) and z = x(w). Assume that A and Bn are skew-
symmetric. Then there exist positive constants ĉ1 and ĉ2 such that for any ‖v−w‖L2 ≤ 1
the following holds

‖y(t)− z(t)‖2 ≤ ĉ1‖v − w‖L2 , a.e. in (0, T ) (3.34a)
‖y − z‖L2 ≤ ĉ2‖v − w‖L2 . (3.34b)

Proof. The claim follows from Proposition 6. In fact, consider v = u and w = u + h, by
means of (3.23) we have that

‖y(t)− z(t)‖2 = ‖δx(t)− ϑ(t)‖2 ≤ ‖δx(t)‖2 + ‖ϑ(t)‖2 . (3.35)

By using of (3.18) and (3.25a) for ‖h‖L2 ≤ 1 we have that

‖y(t)− z(t)‖2 ≤
(
2
√
TNCK00‖x0‖2 + cϑ

)
‖h‖L2 , (3.36)

which implies the following

‖y(t)− z(t)‖2 ≤ ĉ1‖v − w‖L2 , (3.37)

with ĉ1 =
(
2
√
TNCK00‖x0‖2 + cϑ

)
.

To obtain (3.34b), we take the square of left- and right-hand side of (3.37) and integrate
over (0, T ). Consequently, the following holds

‖y − z‖2
L2 ≤ ĉ2

1T‖v − w‖2
L2 , (3.38)

and the claim follows.

Next, consider the operator c(·, ·) : X × U → P defined as follows

c(x, u) :=
d

dt
x−

[
A+

NC∑
n=1

unBn

]
x , (3.39)
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withX =
{
x ∈ H1((0, T );RNx) | x(0) = x0

}
, U = L2((0, T );RNC ), and P = L2((0, T );RNx).

In this way, (3.4) and (3.5) can be equivalently written respectively as

c(x, u) = 0 and Dc(x, u)(δx, δu) = 0 , (3.40)

where (δx, δu) 7→ Dc(x, u)(δx, δu) is defined as

Dc(x, u)(δx, δu) :=
d

dt
δx−

[
A+

NC∑
n=1

unBn

]
δx−

[
NC∑
n=1

δunBn

]
x . (3.41)

The following proposition shows that c is invertible for a fixed u, and that it is Fréchet
differentiable with Fréchet derivative given by Dc(x, u). Moreover, surjectivity of the map
δx 7→ Dc(x, u)(δx, δu) is proved.

Proposition 8. The operator c is Fréchet differentiable, and invertible for fixed u. More-
over, its Fréchet derivative Dc(x, u) is also invertible for fixed δu and hence surjective.

Proof. We start proving Fréchet differentiability of (x, u) 7→ c(x, u). To this purpose,
notice that

c(x+ δx, u+ δu) = c(x, u) +M(δx, δu)−
NC∑
n=1

δunBnδx ,

where M(δx, δu) := ˙δx−
[
A+

∑
nBnun

]
δx−

[∑
nBnδun

]
x. Hence, we write that

‖c(x+ δx, u+ δu)− c(x, u)−M(δx, δu)‖L2 =
∥∥∥∑

n
δunBnδx

∥∥∥
L2

≤ K
(
‖δu‖L2 + ‖δx‖L2

)α
for some positive constants K and α > 1. Now, we obtain

lim
‖δu‖L2+‖δx‖L2→0

‖c(x+ δx, u+ δu)− c(x, u)−M(δx, δu)‖L2

‖δu‖L2 + ‖δx‖L2

≤ lim
‖δu‖L2+‖δx‖L2→0

K
(
‖δu‖L2 + ‖δx‖L2

)α
‖δu‖L2 + ‖δx‖L2

= 0 ,

which means that (x, u) 7→ c(x, u) is Fréchet differentiable and Dc(x, u) = M is the
Fréchet derivative of c.

To prove that c is invertible for fixed u, we recall that (3.4) admits a unique solution
and the same holds for c(x, u) = b for any b ∈ P . Hence, c is invertible. Using the same
argument, we obtain that Dc(x, u) is invertible for fixed x, u, and δu, hence surjective.

3.2 L2-regularized optimal control problems
In this section, we consider the following optimal control problem

min
x,u

J(x, u) :=
1

2
‖x(T )− xT‖2

2 +

NC∑
n=1

ν

2
‖un‖2

L2

s.t. ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ]

x ∈ X , u ∈ Uad ⊆ L2((0, T );RNC ) ,

(3.42)
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where X is defined in (3.1), and the admissible set Uad is considered to be equal first to
Uad,1, and then to Uad,2, defined in (3.2) and (3.3), respectively.

This section is organized as follows. In Lemma 1, we show that Uad,1 and Uad,2 are
bounded, convex and closed. This result is used in Theorem 1 to prove existence of an
optimal control solution to (3.42). In Lemma 2, we derive the gradient of (3.42), and
in Theorem 2, the first-order optimality system for (3.42) with Uad = L2((0, T );RNC )
is obtained. In Theorem 3, we discuss the first-order optimality system for (3.42) with
Uad = Uad,1. In Theorem 4 and Corollary 1, we derive the first-order optimality system
for (3.42) with Uad = Uad,2. At the end of the section, we discuss some properties of
the adjoint equations, that is the equation which characterizes the Lagrange multiplier
corresponding to the bilinear constraint.

Lemma 1. The admissible sets Uad,1 and Uad,2 as subsets of L2((0, T );RNC ) are bounded,
convex and closed, and hence weakly sequentially compact.

Proof. Weak compactness of Uad,1 is proved in [96]; see, also, [119]. Next, we consider
Uad,2. Let u ∈ Uad,2, then

‖u‖2
L2 =

∫ T

0

‖u‖2
2dt ≤

∫ T

0

|b|2dt = b2T .

Thus Uad,2 ⊂ L2((0, T );RNC ) is bounded. Next, let v, w ∈ Uad,2 and α ∈ [0, 1], we have

‖αv(t) + (1− α)w(t)‖2 ≤ α‖v(t)‖2 + (1− α)‖w(t)‖2 ≤ αb+ (1− α)b = b .

Hence Uad,2 is convex. Next, we prove that Uad,2 is closed. Take a sequence {uk}k in Uad,2,
such that uk → û in L2((0, T );RNC ), that is

lim
k→∞
‖uk − û‖L2 = 0 , (3.43)

and seeking a contradiction we assume that û /∈ Uad,2, that is there exists a positive ε and
a measurable set I with measure µ(I) > 0 such that ‖û(t)‖2 > b+ ε for t ∈ I. Hence, we
write that

‖û(t)− uk(t)‖2 ≥
∣∣∣‖û(t)‖2 − ‖uk(t)‖2

∣∣∣ ≥ ‖û(t)‖2 − ‖uk(t)‖2 > b+ ε− b = ε , (3.44)

for t ∈ I. Next, we write that

‖û− uk‖2
L2 =

∫ T

0

‖û(t)− uk(t)‖2
2dt ≥

∫
I

‖û(t)− uk(t)‖2
2dt >

∫
I

ε2dt = µ(I)ε2 > 0 ,

which contradicts (3.43). Hence Uad,2 is closed.
Finally, since Uad,2 is closed, convex and bounded, it follows from Theorem A 6, given

in the Appendix, that it is weakly sequentially compact.

Theorem 1. Assume that one of the following condition holds

(a) ν > 0, and Uad ⊆ L2((0, T );RNC );

(b) ν = 0, and Uad = Uad,1  L2((0, T );RNC );

(c) ν = 0, and Uad = Uad,2  L2((0, T );RNC );

then Problem (3.42) admits a solution.
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Proof. First, we prove (a). The cost functional (x, u) 7→ J(x, u) is continuous and convex,
hence weakly lower semicontinuous; see Theorem A 8 in the appendix. Furthermore, it is
weakly coercive with respect to u, that is lim‖u‖L2→∞ J(x, u) =∞. Now, take a minimizing
sequence {uk}k in L2((0, T );RNC ), which implies the (minimizing) sequence {(uk, xk)}k.
Since J is weakly coercive with respect to u, then uk is bounded and by reflexivity of
L2 we can extract a weak converging subsequence ukj ⇀ u in L2((0, T );RNC ); see, e.g.,
Theorem A 5 in the appendix. By Proposition 3, we also have that xkj(T )→ x(T ). Lower
semicontinuity of J allows us to write the following

J(x, u) =
1

2
‖x(T )− xT‖2

2 +
ν

2

NC∑
n=1

‖un‖2
L2

≤ lim
j→∞

1

2
‖xkj(T )− xT‖2

2 + lim inf
j→∞

ν

2

NC∑
n=1

‖ukjn ‖2
L2

= lim inf
j→∞

J(xkj , ukj) = inf J(x, u) ,

which proves (a).
The proofs of (b) and (c) are similar to (a), but since ν = 0 it is not proved the

coercivity of J , and the fact that Uad,1 and Uad,2 are weakly sequentially compact, proved
in Lemma 1, has to be used to obtain the existence of a weak convergent subsequence.

Using the operator defined in (3.40), problem (3.42) can be equivalently written in the
following compact form

min
x,u

J(x, u)

s.t. c(x, u) = 0 , x ∈ X , u ∈ Uad ,
(3.45)

where c(x, u) is defined in (3.40). Since by Proposition 1, the state x is uniquely deter-
mined by the starting condition and the controls, the mapping u 7→ x = x(u) is well
defined, and the problem (3.45) can be written in the following equivalent reduced form

min
u∈Uad

Jr(u) := J(x(u), u) . (3.46)

A solution to (3.42) satisfies first-order necessary optimality conditions. Next, we fist
derive the optimality system in the case Uad = L2((0, T );RNC ). Then we consider the
cases Uad = Uad,1 and Uad = Uad,2.

Since by Proposition 8 the linearized constraint is surjective and recalling (3.40), then
standard results guarantee the existence of a Lagrange multiplier p ∈ L2((0, T );RNx); see,
e.g., Theorem A 14 given in the Appendix and the corresponding references. A way to
obtain the first-order optimality system is to consider the Lagrange function given by

L(x, u, p) = J(x, u) +
〈
ẋ−

[
A+

NC∑
n=1

unBn

]
x, p
〉
L2
, (3.47)

and to consider its Fréchet derivatives; see, e.g., [16, 119]. Performing a formal compu-
tation of these derivatives, including integration-by-parts, yields equation (3.49). This
suggest that p must belong to a function space more regular than L2((0, T );RNx). There-
fore, for a rigorous proof one has to assume (3.49) and prove the optimality conditions
[119]. This is expressed in the following results.
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Lemma 2. The gradient of the reduced problem (3.46) is given by
∇unJr(u) = νun − 〈Bnx, p〉 , n = 1, . . . , NC , (3.48)

where x = x(u) is the unique solution to c(x, u) = 0 and p ∈ H1((0, T );RNx) is the unique
solution to the following problem

−ṗ =

[
A+

NC∑
n=1

unBn

]∗
p , p(T ) = −(x(T )− xT ) . (3.49)

Proof. Notice that (3.49) is of the same form as c(x, u) = 0. Hence, existence and unique-
ness of solution to (3.49) can be proved as in Proposition 1.

Consider that x = x(u) is the unique solution to c(x, u) = 0. Let p be the unique
solution of (3.49), hence p ∈ H1((0, T );RNx).

Now, consider the cost functional (x, u) 7→ J(x, u) and δx satisfying the linearized
constraint (3.5). The equivalence of (3.45) and (3.46) allows to compute ∇unJr(u) as
follows 〈

∇uJr(u), δu
〉
L2

=
〈∂J(x, u)

∂x
, δx
〉
L2

+
〈∂J(x, u)

∂u
, δu
〉
L2

=
〈
x(T )− xT , δx(T )

〉
+
〈
νu, δu

〉
L2

=
〈
−p(T ), δx(T )

〉
+
〈
νu, δu

〉
L2
,

(3.50)

where we used that p satisfies (3.49). Now, by means of the integration-by-parts rule, we
have the following〈
−p(T ), δx(T )

〉
=
〈
p(0), δx(0)

〉
+
〈
−ṗ, δx

〉
L2 −

〈
p, ˙δx

〉
L2

=
〈[
A+

∑
n
unBn

]∗
p, δx

〉
L2
−
〈
p,
[
A+

∑
n
unBn

]
δx+

[∑
n
δunBn

]
x
〉
L2

=
〈
p,
[
A+

∑
n
unBn

]
δx
〉
L2
−
〈
p,
[
A+

∑
n
unBn

]
δx+

[∑
n
δunBn

]
x
〉
L2

=
〈
p,−

[∑
n
δunBn

]
x
〉
L2

=
∑

n

〈
〈−Bnx, p〉, δun

〉
L2
.

(3.51)

Hence, replacing (3.51) in (3.50), we obtain that〈
∇uJr(u), δu

〉
L2

=
∑

n

〈
∇unJr(u), δun

〉
L2

=
∑

n

〈
νun − 〈Bnx, p〉, δun

〉
L2
,

(3.52)

showing that ∇unJr(u) = νun − 〈Bnx, p〉 for n = 1, . . . , NC .

Theorem 2. Assume that the pair (x, u) ∈ H1((0, T );RN2
)× L2((0, T );RNC ) is a mini-

mizer for Problem (3.42) with Uad = L2((0, T );RNC ). Then there exists a unique Lagrange
multiplier p ∈ H1((0, T );RNx), such that the triple (x, u, p) solves the following system

ẋ =

[
A+

NC∑
n=1

unBn

]
x , x(0) = x0 (3.53a)

− ṗ =

[
A+

NC∑
n=1

unBn

]∗
p , p(T ) = −(x(T )− xT ) (3.53b)

νun − 〈Bnx, p〉 = 0 n = 1, . . . , NC . (3.53c)

The system (3.53) is called the first-order optimality system for Problem (3.42).
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Proof. By applying Theorem A 17, given in the appendix, the optimality condition for
(3.42) can be written as a variational inequality as follows〈∂J(x, u)

∂x
, δx
〉
L2

+
〈∂J(x, u)

∂u
, δu
〉
L2
≥ 0 , (3.54)

for all δu ∈ L2((0, T );RNC ) and δx satisfying the linearized constraint (3.5). Since Uad is
assumed to be the entire space L2((0, T );RNC ), condition (3.54) is equivalent to〈

∇uJr(u), δu
〉
L2

= 0 , ∀δu ∈ L2((0, T );RNC ) . (3.55)

Finally, Lemma 2 and (3.55) imply (3.53c).

Notice that the optimality system (3.53) is in agreement with Theorem A 15 in the
appendix.

Next, we derive the optimality condition for (3.42) with Uad = Uad,1. Notice that the
control constraint u ∈ Uad, can be written in the following form h(u) ∈ Ucone, where Ucone
is the non-negative cone in L2((0, T );RNC ) [119], that is

Ucone =
{
v(·) ∈ L2((0, T );RNC ) | v(t) ≥ 0 a.e. t ∈ (0, T )

}
.

In our case both Uad,1 and Ucone have empty interior with respect to L2. For this reason,
we cannot guarantee existence of Lagrange multipliers by using standard results, see [119]
(Chapter 6). We then proceed as follows.

Theorem 3. Assume that the pair (x, u) ∈ H1((0, T );RNx) × L2((0, T );RNC ) is a min-
imizer for (3.42) with Uad = Uad,1. Then there exist a unique p ∈ H1((0, T );RNx) and
λ+ ∈ L2((0, T );RNC ) and λ− ∈ L2((0, T );RNC ) such that (x, u, p, λ+, λ−) satisfy the fol-
lowing first-order optimality system

νun − 〈Bnx, p〉+ λ+,n − λ−,n = 0 , n = 1, . . . , NC (3.56a)
λ+,n ≥ 0 , b− un ≥ 0 , λ+,n(b− un) = 0 (3.56b)
λ−,n ≥ 0 , un + b ≥ 0 , λ−,n(un + b) = 0 , (3.56c)

where x and p are solutions to (3.53a) and (3.53b), respectively.

Proof. Let u ∈ Uad,1 be an optimal control and x = x(u) denotes the corresponding
optimal state, and p = p(u, x) be the unique solution to the adjoint equation. Existence
and uniqueness of p are obtained as in Theorem 2. Consider the optimality condition in
the following variational inequality form〈

∇uJr(u), v − u
〉
L2 ≥ 0 , ∀v ∈ Uad,1 . (3.57)

This inequality is equivalent to the following condition

un = PUad,1
(
un − θ∇unJr(u)

)
, n = 1, . . . , NC , (3.58)

where PUad,1 is the projection operator from L2((0, T );RNC ) to Uad,1 and θ is an arbitrary
positive constant. Assuming θ = 1

ν
, recalling the gradient ∇uJr(u) given in Lemma 2,

and writing the projection operator in the pointwise form, we obtain the following

un(t) = PUad,1
(
un(t)− 1

ν

(
νun(t)− 〈Bnx(t), p(t)〉

))
= PUad,1

(1

ν
〈Bnx(t), p(t)〉

)
, (3.59)
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By using the projection PUad,1(v) = v−max(0, v− b)−min(0, v+ b), we get the following

νun(t)− 〈Bnx(t), p(t)〉+ max
(
0, 〈Bnx(t), p(t)〉 − νb

)
+ min

(
0, 〈Bnx(t), p(t)〉+ νb

)
= 0 ,
(3.60)

where we multiplied by ν. Now, we define λ+,n and λ−,n as follows

λ+,n(t) := max
(
0, 〈Bnx(t), p(t)〉 − νb

)
, (3.61a)

λ−,n(t) := −min
(
0, 〈Bnx(t), p(t)〉+ νb

)
. (3.61b)

Notice that λ+,n ≥ 0 and λ−,n ≥ 0. Furthermore, for un(t) > 0 it holds that

b− un(t) > 0 ⇒ νun(t) = 〈Bnx(t), p(t)〉 ⇒ λ+,n = max
(
0, νun(t)− νb

)
= 0 , (3.62)

and similarly, for un(t) < 0 we have

un(t) + b > 0 ⇒ νun(t) = 〈Bnx(t), p(t)〉 ⇒ λ−,n = −min
(
0, νun(t) + νb

)
= 0 . (3.63)

Consequently, the complementarity conditions (3.56b) and (3.56c) hold and the claim
follows.

Next, we derive the optimality condition for (3.42) with Uad = Uad,2.

Theorem 4. Assume that the pair (x, u) ∈ H1((0, T );RNx)× L2((0, T );RNC ) is a mini-
mizer for (3.42) with Uad = Uad,2. Then there exist a unique p ∈ H1((0, T );RNx) and a
λ ∈ L2((0, T );RNC ) such that (x, u, p, λ) satisfy the following first-order optimality system

νun − 〈Bnx, p〉+ λn = 0 , n = 1, . . . , NC (3.64a)

λn(t) = 〈Bnx(t), p(t)〉 − ν〈Bnx(t), p(t)〉
max

(
ν, 1

b
‖g(t)‖2

) (3.64b)

with g(t) :=
(
〈B1x(t), p(t)〉, . . . , 〈BNCx(t), p(t)〉

)T
, (3.64c)

where x(t) and p(t) are solutions to (3.53a) and (3.53b), respectively.

Proof. Similarly as in Theorem 3, we have the optimality condition in the following vari-
ational inequality form 〈

∇uJr(u), v − u
〉
L2 ≥ 0 , ∀v ∈ Uad,2 . (3.65)

This inequality is equivalent to the following condition

un = PUad,2
(
un − θ∇unJr(u)

)
, n = 1, . . . , NC , (3.66)

where PUad,2 is the projection operator from L2((0, T );RNC ) to Uad,2 and θ is an arbitrary
positive constant. Assuming θ = 1

ν
, recalling the gradient ∇uJr(u) given in Lemma 2,

and writing the projection operator in the pointwise form, we obtain the following

un(t) = PUad,2
(
un(t)− 1

ν

(
νun(t)− 〈Bnx(t), p(t)〉

))
= PUad,2

(1

ν
〈Bnx(t), p(t)〉

)
. (3.67)
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By using the projection PUad,2(v) = v

max
(

1, 1
b
‖v‖2
) , and considering g : (0, T ) → RNC as in

(3.64c), we obtain the following

νun(t)− ν〈Bnx(t), p(t)〉
max

(
ν, 1

b
‖g(t)‖2

) = 0 . (3.68)

Now, we define λn as follows

λn := 〈Bnx(t), p(t)〉 − ν〈Bnx(t), p(t)〉
max

(
ν, 1

b
‖g(t)‖2

) . (3.69)

Consequently, from condition (3.68) the claim follows.

The following corollary consists in a reformulation of the complementarity conditions
(3.64). This reformulation allows to write the complementarity conditions (3.64) in a
classical KKT-system form.

Corollary 1. Consider the pointwise constraint h(t) ≤ 0, where h : (0, T )→ R is defined
as h(t) := ‖u(t)‖2 − b, a.e. in (0, T ). Then, there exists a function λc ∈ L∞(0, T ) such
that the optimality system (3.64) can be equivalently written as follows

νun(t)− 〈Bnx(t), p(t)〉+
un(t)

‖u(t)‖2

λc(t) = 0 a.e. in (0, T ) , n = 1, . . . , NC

λc(t) ≥ 0 , h(t) ≤ 0 , h(t)λc(t) = 0 a.e. in (0, T ) ,

(3.70)

where x(t) and p(t) are solutions to (3.53a) and (3.53b), respectively.

Proof. Notice that the optimality condition (3.68) implies the following equivalence∥∥∥1

ν
g(t)

∥∥∥
2
< b⇔ ‖u(t)‖2 < b . (3.71)

We want to construct λc such that the following equation is satisfied

λn(t) =
un(t)

‖u(t)‖2

λc(t) , a.e. in (0, T ) . (3.72)

Now, from Theorem 4, we have that

λn(t) :=

{
if 1

b
‖g(t)‖2 < ν , 0

if 1
b
‖g(t)‖2 ≥ ν , 〈Bnx(t), p(t)〉

(
1− νb

‖g(t)‖2

) . (3.73)

Considering (3.71), we write the following

λn(t) =

{
if ‖u(t)‖2 < b , 0

if ‖u(t)‖2 ≥ b , 〈Bnx(t), p(t)〉
(

1− νb
‖g(t)‖2

) . (3.74)

From (3.68), we obtain that

gn(t) = un(t) max
(
ν,

1

b
‖g(t)‖2

)
(3.75)

Exact and non-smooth control of quantum spin systems
62



Theory of quantum optimal control problems

Replacing (3.75) in (3.74), we get the following expression

λn(t) =

{
if ‖u(t)‖2 < b , 0

if ‖u(t)‖2 ≥ b , un(t)‖g(t)‖2
b

(
1− νb

‖g(t)‖2

) , (3.76)

and equivalently

λn(t) =

{
if ‖u(t)‖2 < b , 0

if ‖u(t)‖2 ≥ b , un(t)
‖u(t)‖2‖u(t)‖2

‖g(t)‖2
b

(
1− νb

‖g(t)‖2

) , (3.77)

which suggests to define λc as follows

λc(t) :=

{
if ‖u(t)‖2 < b , 0

if ‖u(t)‖2 ≥ b , ‖u(t)‖2
‖g(t)‖2

b

(
1− νb

‖g(t)‖2

) . (3.78)

Notice that λc satisfies (3.72) and the complementary conditions λc(t) ≥ 0 and λc(t)h(t) =
0, a.e. in (0, T ).

Now, we show that λc ∈ L∞(0, T ). Since ‖u(t)‖2 ≤ b, we have that

λc(t) ≤ ‖g(t)‖2

(
1− νb

‖g(t)‖2

)
= ‖g(t)‖2 − νb ≤ ‖g(t)‖2

=

(
NC∑
n=1

|〈Bnx(t), p(t)〉|2
)1/2

≤

(
NC∑
n=1

‖Bnx(t)‖2
2‖p(t)‖2

2

)1/2

.

(3.79)

By Proposition 2, we know that the dynamics is norm-preserving, hence we obtain the
following

λc(t) ≤

(
NC∑
n=1

‖Bnx(t)‖2
2‖p(t)‖2

2

)1/2

≤

(
NC∑
n=1

‖Bn‖2
L‖x(0)‖2

2‖x(T )− xT‖2
2

)1/2

≤ C̃‖x(0)‖2‖x(T )− xT‖2 ≤ C̃‖x(0)‖2

(
‖x(0)‖2 + ‖xT‖2

)
,

(3.80)

where C̃ is a positive constant depending on Bn and we used the Cauchy-Schwarz and
triangular inequalities. The previous shows that λc ∈ L∞(0, T ).

We remark that the Filippov’s Theorem and the Pontryagin Maximum Principle [13,
26, 84], could be applied to study existence of solutions and optimality conditions for
problem (3.42). However, some of the hypotheses of these standard results could fail in
the case of possibly non-smooth parts in the cost functional, whereas the framework that
we considered can be applied with simple changes. Moreover, we prefer to proceed as
above in order to obtain optimality systems in a form that is suitable for the application
of Newton and semi-smooth Newton methods, as described in Chapter 4.2.

Properties of the adjoint equation and its linearization

Next, we discuss some properties of the solution to the adjoint equation (3.53b) and its
linearization.

The following lemma states a similar result as in Proposition 4 for the backward
equation (3.53b).
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Proposition 9. Let v and w in L2((0, T );RNC ) be two control functions, and consider
the corresponding solutions to (3.53b), q = p(v, y) and r = p(w, z), with y = x(v) and
z = x(w) solutions to (3.53a). Assume that ‖xT‖2 = ‖x0‖2 and that A and Bn are
skew-symmetric. Then there exists a positive constant c3 such that the following holds

‖q(t)− r(t)‖2
2 ≤ c3‖v − w‖L1 , a.e. in (0, T ) . (3.81)

Moreover, if v and w are in L∞((0, T );RNC ), then there exists a positive constant c̃3 such
that the following holds

‖q(t)− r(t)‖2 ≤ c̃3‖v − w‖L1 , a.e. in (0, T ) . (3.82)

Proof. Similarly to the proof of Proposition 4, we obtain

‖q(t)− r(t)‖2
2 ≤ ‖q(T )− r(T )‖2

2 + 2
∑

n

∫ T

t

|vn(s)− wn(s)||〈q(s), B∗nr(s)〉|ds

≤ ‖(y(T )− xT )− (z(T )− xT )‖2
2

+ 2
∑

n

∫ T

t

|vn(s)− wn(s)|‖Bn‖L‖q(T )‖2‖r(T )‖2ds

≤ ‖y(T )− z(T )‖2
2 + 2K0‖y(T )− xT‖2‖z(T )− xT‖2

∑
n

∫ T

0

|vn(s)− wn(s)|ds

≤ c1‖v − w‖L1 + 2K0

(
‖y(T )‖2 + ‖xT‖2

)(
‖z(T )‖2 + ‖xT‖2

)
‖v − w‖L1

=
(
c1 + 8‖x0‖2

2K0

)
‖v − w‖L1 ,

(3.83)

which is (3.81) with c3 = c1 + 8‖x0‖2
2K0, with K0 = max

n
‖Bn‖L.

The estimate (3.82) can be proved similarly as in Proposition 4.

The following proposition states boundedness of the solution to the linearized adjoint
equation. For next usage, this result is derived for general terminal conditions for adjoint
and linearized adjoint equations. However, in Proposition 11, we specify this result for the
particular terminal condition p(T ) = −(x(T ) − xT ) appearing in the optimality system
(3.53).

Proposition 10. Consider the following adjoint equation

−ṗ =

[
A+

NC∑
n=1

unBn

]∗
p ,with p(T ) = pT , (3.84)

with ‖pT‖2 6= 0, and and let δp be the unique solution to the corresponding linearized
problem, that is

−δ̇p =

[
A+

NC∑
n=1

unBn

]∗
δp+

[
NC∑
n=1

Bnδun

]∗
p ,with δp(T ) = δpT . (3.85)

Then the following estimate holds

‖δp‖L2 ≤ 2T
√
NCK00‖pT‖2‖δu‖L2 +

√
T‖δpT‖2 . (3.86)

where K00 =
∑NC

n=1 ‖Bn‖L as in Proposition 5.
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Proof. By multiplying the differential equation in (3.85) from the left with δp and using
the same arguments as in Proposition 5 for δx, we have

‖δp(t)‖2
2 = ‖δp(T )‖2

2 − 2

∫ T

t

〈δp,
[∑

n
δunBn

]
p〉dt

≤ ‖δpT‖2
2 + 2

∑
n

∫ T

0

|δun||〈δp, Bnp〉|dt

≤ ‖δpT‖2
2 + 2

∑
n

∫ T

0

|δun|‖δp‖2‖Bn‖L‖pT‖2dt

≤ ‖δpT‖2
2 + 2‖pT‖2

∑
n
‖Bn‖L

∫ T

0

|δun|‖δp‖2dt

≤ ‖δpT‖2
2 + 2‖pT‖2

√
NCK00‖δu‖L2‖δp‖L2 .

(3.87)

Now, integrating over (0, T ), we obtain∫ T

0

‖δp(t)‖2
2dt ≤ T‖δpT‖2

2 + 2

∫ T

0

‖pT‖2

√
NCK00‖δu‖L2‖δp‖L2dt

⇒ ‖δp‖2
L2 ≤ T‖δpT‖2

2 + 2T‖pT‖2

√
NCK00‖δu‖L2‖δp‖L2

⇒ ‖δp‖2
L2 − 2T‖pT‖2

√
NCK00‖δu‖L2‖δp‖L2 − T‖δpT‖2

2 ≤ 0 .

(3.88)

The discriminant of the previous quadratic inequality is

∆ = 4T 2NCK
2
00‖pT‖2

2‖δu‖2
L2 + 4T‖δpT‖2

2 > 0 ∀(δu, δpT ) 6= (0, 0) , (3.89)

and we recall that ‖pT‖2 6= 0. Consequently, inequality (3.88) is satisfied for

‖δp‖L2 ≤ T
√
NCK00‖pT‖2‖δu‖L2 +

√
T 2NCK2

00‖pT‖2
2‖δu‖2

L2 + T‖δpT‖2
2 . (3.90)

The previous inequality (3.90) allows us to write that

‖δp‖L2 ≤ T
√
NCK00‖pT‖2‖δu‖L2

+

√
T 2NCK2

00‖pT‖2
2‖δu‖2

L2 + T‖δpT‖2
2 + 2(T

√
NCK00‖pT‖2‖δu‖L2)

√
T‖δpT‖2

≤ 2T
√
NCK00‖pT‖2‖δu‖L2 +

√
T‖δpT‖2 ,

(3.91)

which concludes the proof.

The following result specifies Proposition 10 when the adjoint and its linearization
depend on the solutions to the constraint and linearized constraint equations.

Proposition 11. Under the assumptions of Proposition 5 and Proposition 10, if p(T ) =
−(x(T )− xT ) and δp(T ) = −δx(T ), then the following holds

‖δp‖L2 ≤ 6T
√
NCK00‖x0‖2‖δu‖L2 . (3.92)

Proof. The claim follows from (3.86) by means of (3.18).
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Proposition 12. Let u ∈ L2((0, T );RNC ) and h ∈ L2((0, T );RNC ). Consider the map
u 7→ p(u), where p(u) ∈ H1((0, T );RNx) is the unique solution to the adjoint equation
(3.53b) corresponding to u, and denote by δp(u, h) ∈ H1((0, T );RNx) the unique solution
to (3.85) corresponding to h, u and δp(T ) = −δx(T ), where δx solves (3.5). Assume that
A and Bn are skew-symmetric. The following expansion holds

p(u+ h) = p(u) + δp(u, h) + ϑp(u, h) , (3.93)

where ϑp(u, h) ∈ H1((0, T );RNx) solves the following problem

−ϑ̇p =

[
A+

NC∑
n=1

unBn

]∗
ϑp+

NC∑
n=1

hnB
∗
n

(
ϑp+δp

)
in [0, T ) , and ϑp(T ) = −ϑ(T ) , (3.94)

where ϑ solves (3.24). Moreover, there exist positive constants cϑp and c̃ϑp such that the
following estimates hold

‖ϑp(t)‖2 ≤ cϑp‖h‖2
L2 , a.e. in (0, T ) (3.95a)

‖ϑp‖L2 ≤ c̃ϑp‖h‖2
L2 . (3.95b)

Furthermore, for every v, w ∈ L2((0, T );RNC ) there exists a positive constant ĉϑp such
that

‖q(t)− r(t)‖2 ≤ ĉϑp‖v − w‖L2 , (3.96)

where q = p(v) and r = p(w) are solutions to (3.53b) corresponding to v and w, respec-
tively.

Proof. The proof of (3.23) is the same as in Proposition 6. Estimates (3.95a) and (3.95b)
are obtained similarly as in Proposition 10 and using Proposition 6 and Proposition 11.
Estimate (3.96) can be proved similarly as is Proposition 7. We omit these proofs for
brevity.

3.3 Piecewise-constant L2-regularized optimal control
problems

In this section, a piecewise constant optimal control problem is discussed. This problems
is considered when the need of an exact implementation of the control functions in specific
laboratory pulse shapers arises; see, e.g., [37]. We consider problem (P) with β = 0 and
the admissible control space as a subset of a parametrized piecewise-constant vector space.
In particular, we consider the following piecewise-constant optimal control problem, where
Uad resembles the set Uad,1 defined in (3.2). We have

min
x,u

J(x, u) :=
1

2
‖x(T )− xT‖2

2 +

NC∑
n=1

ν

2
‖un‖2

L2

s.t. ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ] , x ∈ X

u ∈ Uad :=
{
v ∈ PC((0, T );M ;RNC ) : |vn(t)| ≤ b

a.e. in (0, T ) for n = 1, . . . , NC , b > 0
}
,

(3.97)
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where PC((0, T );M ;RNC ) is defined as follows. We decompose the time domain (0, T ] in
M sub-intervals ∆j := (tj−1, tj], such that

(0, T ] =
M⋃
j=1

∆j , (3.98)

with 0 = t0 < t1 < · · · < tM−1 < tM = T . Now, PC((0, T );M ;RNC ) is the set of all
piecewise-constant functions in the following sense

PC((0, T );M ;RNC ) :=
{
v ∈ L2((0, T );RNC ) : v(t) = cj for t ∈ ∆j , j = 1, . . . ,M

}
,

(3.99)
where cj ∈ RNC , j = 1, . . . ,M . In particular, recall that un(t) = cnj with cnj ∈ R for
t ∈ ∆j = (tj−1, tj], we consider parameters cnj given by the following equality

cnj =
1√
∆̃j

un,j , (3.100)

for t ∈ ∆j and j = 1, . . . ,M , where ∆̃j = tj − tj−1 is the measure of the interval ∆j.
We denote by ũn =

(
un,1, . . . , un,M

)
∈ RM the parametrized control corresponding to un.

This choice yields the equality between the L2-norm of the control un(t) and the Euclidean
norm of its parametrization ũn, as follows

‖un‖2
L2 =

∫ T

0

|un(t)|2dt =
M∑
j=1

∫
∆j

1

∆̃j

|un,j|2dt =
M∑
j=1

|un,j|2 = ‖ũn‖2
2 . (3.101)

Notice that, in this framework we have that PC((0, T );M ;R) and RM are isometrically
isomorphic.

The existence of a solution to the optimization problem (3.97) is stated in the following
theorem.

Theorem 5. Assume that β = 0, ν ≥ 0, then problem (3.97) admits a solution.

Proof. Notice that the admissible set Uad ⊂ PC((0, T );M ;RNC ) is convex, bounded, and
closed. To see it, we recall that PC((0, T );M ;R) ⊂ L2(0, T ) is isometrically isomorphic
to RM . Since in finite-dimensional spaces all the norms are equivalent, we have that Uad
is a closed ball of radius b, and hence convex, closed and bounded.

With this argument, the proof of the existence of a solution to (3.97) is the same as
in Theorem 1.

Next, we discuss the first-order optimality system for (3.97). First, we derive the
reduced gradient of (3.97). For this purpose, consider the following Lagrange function

L(x, u, p) = J(x, u) + 〈p, ẋ−
[
A+

NC∑
n=1

unBn

]
x〉L2

=
1

2
‖x(T )− xT‖2

2 +

NC∑
n=1

ν

2

∫ T

0

|un|2dt+

∫ T

0

〈p, ẋ−
[
A+

NC∑
n=1

unBn

]
x〉dt

=
1

2
‖x(T )− xT‖2

2 +

∫ T

0

〈p, ẋ− Ax〉dt+

NC∑
n=1

M∑
j=1

1

∆̃j

∫
∆j

ν

2
u2
n,j − un,j〈p,Bnx〉dt .

(3.102)
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Now, the gradient component ∇un,jL(x, u, p) is obtained as the directional derivative of
L(x, u, p) with respect to un,j, and we write it in the following compact form

∇un,jL(x, ũ, p) = νun,j − Ej(〈p,Bnx〉) , (3.103)

where Ej : L2((0, T );R)→ PC((0, T );M ;R) is defined as follows

Ej(v)(t) :=
1

∆̃j

∫
∆j

v(s)ds , ∀t ∈ ∆j , (3.104)

for j = 1, . . . ,M . Notice that Ej plays the role of a projector from L2 onto PC. This
projector is needed since x and p are in H1((0, T );RN), and it is not guaranteed that
〈Bnx, p〉 is a piecewise-constant function. In general, we have 〈Bnx, p〉 ∈ H1((0, T );R).
On the other hand, piecewise-constant functions are not in the Sobolev space H1; see,
e.g., [47]. Consequently, to guarantee that the gradient belongs to the space of piecewise-
constant functions, the projection of 〈Bnx, p〉 in PC((0, T );M ;R) is necessary.

Now, similarly as in Theorem 3, the first-order necessary optimality system for (3.97)
is given by

νun,j − Ej(〈p,Bnx〉) + λ+,n,j − λ−,n,j = 0 (3.105a)
λ+,n,j ≥ 0 , b− un,j ≥ 0 , λ+,n,j(b− un,j) = 0 (3.105b)
λ−,n,j ≥ 0 , un,j + b ≥ 0 , λ−,n,j(un,j + b) = 0 , (3.105c)

where x and p are solutions to (3.53a) and (3.53b), respectively, and λ+,n,j and λ−,n,j
are the Lagrange multipliers corresponding to the control constraint. Furthermore, the
complementarity conditions (3.105) can be written in the following projection form

Cn,j(ũ, µ̃) := −θµ̃n,j + max
(
0, un,j − b+ θµ̃n,j

)
+ min

(
0, un,j + b+ θµ̃n,j

)
= 0 (3.106a)

µ̃n,j = Ej(〈Bnx, p〉)− νun,j , n = 1, . . . , NC , j = 1, . . . ,M , (3.106b)

where µ̃n,j = −∇un,jL(x, ũ, p) and θ is an arbitrary positive constant.

3.4 L1-penalized optimal control problems
In this section, we investigate problem (P) with β > 0, that is

min
x,u

J(x, u) :=
1

2
‖x(T )− xT‖2

2 +

NC∑
n=1

[ν
2
‖un‖2

L2 + β‖un‖L1

]
s.t. ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ]

x ∈ X , u ∈ Uad,1 ,

(3.107)

where X and Uad,1 are defined in (3.1) and (3.2), respectively. This optimal control prob-
lem allows to generate control functions that are said to be “sparse”, and that resembles
the “pulsed shaped” controls often used in quantum control applications, like NMR and
MRI.

This section aims at a theoretical characterization of the optimal control solutions to
(3.107). In Theorem 6 we discuss existence of solutions to (3.107). In Theorem 7 we
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derive first-order necessary optimality conditions. Lemma 3 contains preliminary results
that are used in the sequel of the present thesis. Theorems 8, 9, 10 and 11 investigate the
sparsity property of optimal controls and consider relationships between them and the
weight parameters β and ν.

The existence of solutions to (3.107) is stated in the following theorem.

Theorem 6. Assume that β > 0, ν ≥ 0, then problem (3.107) admits a solution.

Proof. For ν ≥ 0 and β > 0 the map (x, u) 7→ J(x, u) is convex and continuous, hence
weakly lower-semicontinuos, see Theorem A 8 in the appendix. Therefore the existence
of a solution to the optimal control (3.107) can be proved by using Proposition 3 and
Lemma 1 and following the same arguments as in Theorem 1. See also [33, 66, 119, 129]
for more detailed discussions.

Next, we study first-order necessary conditions. To this purpose, we notice that, in
the space of solutions to the governing differential equation in (3.107), the reduced cost
functional Ĵ(u) := J(x(u), u) can be written as follows

Ĵ(u) = ϕ(u) + φ(u) , (3.108)

where u 7→ ϕ(u) := 1
2
‖x(T ) − xT‖2

2 + ν
2
‖u‖2

L2 is Gâteaux differentiable, with derivative
given by (ϕ′(u))n = νun − 〈Bnx, p〉 (Lemma 2) where x and p solve

ẋ =

[
A+

NC∑
n=1

unBn

]
x , x(0) = x0 , (3.109)

and

−ṗ =

[
A+

NC∑
n=1

unBn

]∗
p , p(T ) = −(x(T )− xT ) , (3.110)

respectively (see, e.g., [31]). The map u 7→ φ(u) := β‖u‖L1 is non-differentiable in the
classical sense, however it is convex and continuous and hence its subdifferential ∂φ(u) is
non-empty, and it is given by the following; see, e.g., [34, 45];

∂φ(u) =
{
λ̂ ∈ L2((0, T );RNC ) : φ(v)− φ(u) ≥ 〈λ̂, v − u〉L2 , ∀v ∈ L2((0, T );RNC )

}
.

(3.111)
Consequently, problem (3.107) in the reduced form reads as follows

min
u∈Uad,1

Ĵ(u) . (3.112)

In the next theorem, we derive first-order necessary conditions for (3.107), and we de-
rive a first-order optimality system. Notice that, similar optimality systems are discussed
in [110] and in [126]. In particular, in [110] optimality conditions are discussed for linear
systems by following non-smooth analysis, whereas in [126] the optimality system is ob-
tained by means of minimizing a Hamiltonian function. In the next result, we follow the
same arguments as in [110], and we prove a first-order necessary condition for the bilinear
optimal control problem (3.107) by using Theorem A 18 [45], given in the appendix.

Theorem 7. Assume that the pair (x, u) ∈ H1((0, T );RN) × L2((0, T );RNC ) is a min-
imizer for (3.107). Then there exist a unique p ∈ H1((0, T );RN), which solves (3.110),
and a λ̂ ∈ ∂φ(u) such that the following inequality condition is satisfied

〈ϕ′(u) + λ̂, v − u〉L2 ≥ 0 ∀v ∈ Uad,1 , (3.113)
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where ϕ(v), ϕ′(v) and φ(v) are defined in (3.108). Moreover, there exist λ+ ∈ L2((0, T );RNC )
and λ− ∈ L2((0, T );RNC ) such that (3.113) is equivalent to the following system

νun − 〈Bnx, p〉+ λ+,n − λ−,n + λ̂n = 0 , n = 1, ..., NC (3.114a)
λ+,n ≥ 0 , b− un ≥ 0 , λ+,n(b− un) = 0 (3.114b)
λ−,n ≥ 0 , un + b ≥ 0 , λ−,n(un + b) = 0 (3.114c)

λ̂n = β , a.e. in {t ∈ (0, T ) : un(t) > 0} (3.114d)

|λ̂n| ≤ β , a.e. in {t ∈ (0, T ) : un(t) = 0} (3.114e)

λ̂n = −β , a.e. in {t ∈ (0, T ) : un(t) < 0} , (3.114f)

where λ̂n ∈ Λad :=
{
g ∈ L2(0, T ) : |g| ≤ β a.e. on (0, T )

}
and x and p are the unique

solutions to (3.109) and (3.110), respectively.

Proof. Consider problem (3.112). Recalling that Uad,1 is closed and convex, according to
Proposition 2.2 in Chapter II of [45], a necessary condition for u ∈ Uad,1 to be a minimizer
for (3.112) is

〈ϕ′(u), v − u〉L2 + φ(v)− φ(u) ≥ 0 ∀v ∈ Uad,1 . (3.115)

Notice that (3.111) implies that

〈ϕ′(u), v − u〉L2 + φ(v)− φ(u) ≥ 〈ϕ′(u), v − u〉L2 + 〈λ̂, v − u〉L2 , (3.116)

for any λ̂ ∈ ∂φ(u). Hence, a sufficient condition for (3.115) is given by the following
variational inequality

〈ϕ′(u) + λ̂, v − u〉L2 ≥ 0 ∀v ∈ Uad,1 . (3.117)

It follows from (3.115) that

〈ϕ′(u), v〉L2 + φ(v) ≥ 〈ϕ′(u), u〉L2 + φ(u) ∀v ∈ Uad,1 ,

which means that
u ∈ arg min

v∈Uad,1

{
〈ϕ′(u), v〉L2 + φ(v)

}
. (3.118)

Now, we consider the map f : v 7→ f(v) = 〈ϕ′(u), v〉L2 and introduce the indicator
function IUad,1 defined as follows

IUad,1(v) :=

{
0 if v ∈ Uad,1
∞ otherwise

.

Then (3.118) is equivalent to

u ∈ arg min
v

{
f(v) + φ(v) + IUad,1(v)

}
, (3.119)

and hence a minimizer u must satisfy the following necessary condition

0 ∈ ∂
(
f + φ+ IUad,1

)
(u) . (3.120)

Next, by using calculus for subdifferentials, we write

∂
(
f + φ+ IUad,1

)
(u) = ∂f(u) + ∂φ(u) + ∂IUad,1(u)

= ϕ′(u) + ∂φ(u) +NUad,1(u) ,
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where we used the fact that the subdifferential of the indicator function IUad,1 is equal to
the normal cone NUad,1 defined as

NUad,1(u) :=
{
z ∈ L2((0, T );RNC ) : 〈z, v − u〉L2 ≤ 0

}
.

Consequently, from (3.120) we have

−ϕ′(u) ∈ ∂φ(u) +NUad,1(u) , (3.121)

which means that there exists a λ̂ ∈ ∂φ(u) and a z ∈ NUad,1(u) such that

−ϕ′(u)− λ̂ = z ∈ NUad,1(u) .

This equality together with the definition of NUad(u) imply that

〈−ϕ′(u)− λ̂, v − u〉L2 ≤ 0 ,

that is (3.113).
We remark that a similar proof of (3.113) can be found in [120] and further arguments

regarding the equivalence between (3.115) and (3.113) can be found in [45, 64].
Next, we show the last statement of the Theorem. The previous variational inequality

(3.117) can be equivalently written in a projection form; see, e.g., [119]. By recalling
that (ϕ′(u))n = νun−〈Bnx, p〉 (Lemma 2), and following the proof of Theorem 3, (3.117)
becomes as follows(

νun(t)− 〈Bnx(t), p(t)〉+ λ̂n
)

+ max
(
0, 〈Bnx(t), p(t)〉+ λ̂n − νb

)
+ min

(
0, 〈Bnx(t), p(t)〉+ λ̂n + νb

)
= 0 .

(3.122)

Now, the proof is the same as in Theorem 3 by defining

λ+,n := max
(
0, 〈Bnx(t), p(t)〉+ λ̂n − νb

)
(3.123)

and
λ−,n := −min

(
0, 〈Bnx(t), p(t)〉+ λ̂n + νb

)
, (3.124)

and the claim follows by noticing that λ̂n ∈ Λad together with (3.114d)-(3.114f) is an
equivalent expression for λ̂ ∈ ∂φ(u).

Next, we prove continuity of the map u 7→ 〈Bnx(u), p(u)〉 ∈ Lq(0, T ), with x(u) and
p(u) solutions to (3.109) and (3.110), respectively. Notice that, the Euclidean scalar
product 〈·, ·〉 is understood pointwise in time.

Lemma 3. Consider the map u 7→ Θn(u) := 〈Bnx(u), p(u)〉. Under the assumptions of
Proposition 4 and Proposition 9, we have

(a) for every u ∈ L2((0, T );RNC ) it holds that Θn(u) ∈ L∞(0, T ) and in particular, we
have that Θn(u)(t) is pointwise in time bounded as follows

|Θn(u)(t)| ≤ 2‖Bn‖L‖x0‖2
2 ; (3.125)

(b) the map Θn : L2((0, T );RNC ) → Lq(0, T ), with 1 ≤ q < ∞, is locally Lipschitz
continuous, in the sense that there exists a constant K > 0 such that

‖Θn(v)−Θn(w)‖Lq ≤ K‖v − w‖L2 ,

for any v, w ∈ L2((0, T );RNC ) such that ‖v − w‖L2 ≤ 1;
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(c) the map Θn : L2((0, T );RNC )→ L2(0, T ) is Fréchet differentiable. In particular, by
denoting with Ãn(u, h) the Fréchet derivative, it holds that

‖Θn(u+ h)−Θn(u)− Ãn(u, h)‖L2 = O(‖h‖2
L2) , (3.126)

as h→ 0.

Proof. (a) Recalling Proposition 2 and that ‖xT‖2 = ‖x0‖2, we write that

|Θn(u)(t)| = |〈Bnx(t), p(t)〉|
≤ ‖Bn‖L‖x0‖2‖x(T )− xT‖2

≤ ‖Bn‖L‖x0‖2(‖x0‖2 + ‖xT‖2)

= 2‖Bn‖L‖x0‖2
2 ,

which implies the claim.
(b) Let y = x(v), z = x(w), q = p(v, y), r = p(w, z). We have the following pointwise

in time estimate

|Θn(v)−Θn(w)| = |〈Bny, q〉 − 〈Bnz, r〉|
= |〈Bny, q〉 − 〈Bnz, r〉+ 〈Bnz, q〉 − 〈Bnz, q〉|
= |〈Bn(y − z), q〉+ 〈Bnz, (q − r)〉|
≤ ‖Bn‖L‖q‖2‖y − z‖2 + ‖Bn‖L‖z‖2‖q − r‖2

≤ ‖Bn‖L‖y(T )− xT‖2‖y − z‖2 + ‖Bn‖L‖x(0)‖2‖q − r‖2

≤ ‖Bn‖L2‖x0‖2‖y − z‖2 + ‖Bn‖L‖x0‖2‖q − r‖2

≤ ‖Bn‖L‖x0‖2

(
2ĉ1 + ĉϑp

)
‖v − w‖L2 ,

where ĉ1 and ĉϑp are given in Proposition 7 and Proposition 12. This implies that

‖Θn(v)−Θn(w)‖Lq ≤ T
1
q ‖Bn‖L‖x0‖2

(
2ĉ1 + ĉϑp

)
‖v − w‖L2 ,

which is the claim with K = T
1
q ‖Bn‖L‖x0‖2

(
2ĉ1 + ĉϑp

)
.

(c) First, let h ∈ L2((0, T );RNC ) and denote by δx(h) and δp(h) the corresponding
solutions to the linearized forward equation

˙δx =

[
A+

NC∑
n=1

unBn

]
δx+

NC∑
n=1

hnBnx , δx(0) = 0 , (3.127)

and to the linearized backward equation

−δ̇p =

[
A+

NC∑
n=1

unBn

]∗
δp+

NC∑
n=1

hnB
∗
np , δp(T ) = −δx(T ) , (3.128)

respectively. According to Proposition 5 and Proposition 11 there exist positive constants
K3 and K4 such that for any h ∈ L2((0, T );RNC ) it holds that

‖δx(h)(t)‖2 ≤ K3‖h‖L2

‖δp(h)(t)‖2 ≤ K4‖h‖L2 ,
(3.129)
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a.e. in (0, T ). Next, we define the operator Ãn(u, ·) : L2((0, T );RNC ) → L2(0, T ) as
follows

Ãn(u, h) := 〈Bnδx(u, h), p(u)〉+ 〈Bnx(u), δp(u, h)〉 , (3.130)

where δx(u, h) and δp(u, h) are solutions to (3.127) and (3.128), respectively.
Now, we consider the following expansions with h ∈ L2((0, T );RNC ) as in Proposition

6 and Proposition 12

x(u+ h) = x(u) + δx(u, h) +O(h2) (3.131a)
p(u+ h) = p(u) + δp(u, h) +O(h2) , (3.131b)

where we denote by O(h2) the components in the expansions that are O(‖h‖2
L2).

Now, by means of (3.130) and (3.131), we have

Θn(u+ h)−Θn(u)− Ãn(u, h) = 〈Bnx(u+ h), p(u+ h)〉 − 〈Bnx(u), p(u)〉
− 〈Bnδx(u, h), p(u)〉 − 〈Bnx(u), δp(u, h)〉

= 〈Bn

(
x(u) + δx(u, h)

)
, p(u) + δp(u, h)〉

+O(h2)− 〈Bnx(u), p(u)〉
− 〈Bnδx(u, h), p(u)〉 − 〈Bnx(u), δp(u, h)〉

= 〈Bnδx(u, h), δp(u, h)〉+O(h2) .

(3.132)

By using (3.129), we obtain

‖Θn(u+ h)−Θn(u)− Ãn(u, h)‖L2 = ‖〈Bnδx(u, h), δp(u, h)〉+O(h2)‖L2

≤ ‖Bn‖L
(∫ T

0

‖δx(u, h)(t)‖2
2‖δp(u, h)(t)‖2

2dt

)1/2

+O(‖h‖2
L2)

≤ ‖Bn‖L
(∫ T

0

K2
3‖h‖2

L2K2
4‖h‖2

L2dt

)1/2

+O(‖h‖2
L2)

≤
√
T‖Bn‖LK3K4‖h‖2

L2 +O(‖h‖2
L2) .

(3.133)

This means that there exists a positive constant K̃ such that

‖Θn(u+ h)−Θn(u)− Ãn(u, h)‖L2 ≤ K̃‖h‖2
L2 . (3.134)

Consequently, the claim follows.

Notice that the hypothesis ‖xT‖2 = ‖x0‖2 that is used to prove Lemma 3, is in general
satisfied for quantum control problems. Consequently, the inequality (3.125) in general
holds.

Next, we investigate the behaviour of solutions to (3.107) with β > 0. Because of the
L1-norm in the cost functional J , the resulting solution u possesses a sparsity structure
which is significantly different from a control given by a classical L2-optimization as
discussed in Theorem 3.1 in [126]. We state here this result for the sake of clarity.

Theorem 8. If un(tj)un(tk) < 0 holds for two points tj < tk in [0, T ], then there exist t̃j
and t̃k in [0, T ] with tj < t̃j < t̃k < tk, such that un = 0 holds on [t̃j, t̃k].

Proof. This theorem is proved in [126] for an optimal control problem with ν = 0. How-
ever, the proof holds also for our class of quantum control problems with ν > 0.
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This result can be interpreted as follows. If the optimal control un has different signs
at two points, then there exists a non-empty open interval in-between where un vanishes.
Moreover, in the particular case of bang-bang structure, un cannot jump directly between
the lower and upper bound.

Next, we analyze the dependence of the optimal control solution u on the parameter
β. In the following theorem, we show that there exists a β̂ such that u = 0 solves (3.107)
for all β ≥ β̂.

Theorem 9. Assume that ‖xT‖2 = ‖x0‖2 and A and Bn are skew-symmetric. There
exists a β̂ > 0 such that problem (3.107) is solved by u = 0 for all β ≥ β̂. In particular,
an upper bound of β̂ is given by

ˆ̂
β = 2c̃1‖x0‖2 , (3.135)

where c̃1 is given in Proposition 4.

Proof. By denoting with x0(t) the evolution of the uncontrolled system (u = 0), we have

J(x, u)− J(x0, 0) =
ν

2
‖u‖2

L2 + β‖u‖L1 +
1

2
‖x(T )− xT‖2

2 −
1

2
‖x0(T )− xT‖2

2 . (3.136)

We also have the following

‖x(T )− xT‖2
2 − ‖x0(T )− xT‖2

2 = ‖x(T )− x0(T ) + x0(T )− xT‖2
2 − ‖x0(T )− xT‖2

2

= ‖x(T )− x0(T )‖2
2 + ‖x0(T )− xT‖2

2 + 2〈x(T )− x0(T ), x0(T )− xT 〉 − ‖x0(T )− xT‖2
2

= ‖x(T )− x0(T )‖2
2 + 2〈x(T )− x0(T ), x0(T )− xT 〉

≥ 2〈x(T )− x0(T ), x0(T )− xT 〉
≥ −2‖x0(T )− xT‖2‖x(T )− x0(T )‖2

≥ −2
(
‖x0(T )‖2 + ‖xT‖2

)
‖x(T )− x0(T )‖2

≥ −4‖x0‖2‖x(T )− x0(T )‖2 .

(3.137)

Combining (3.136) with (3.137), we obtain

J(x, u)− J(x0, 0) ≥ ν

2
‖u‖2

L2 + β‖u‖L1 − 2‖x0‖2‖x(T )− x0(T )‖2 . (3.138)

By means of (3.8) in Proposition 4, the inequality (3.138) becomes

J(x, u)− J(x0, 0) ≥ ν

2
‖u‖2

L2 + β‖u‖L1 − 2c̃1‖x0‖2‖u‖L1 . (3.139)

Hence, if β ≥ 2c̃1‖x0‖2, then it holds that J(x, u) − J(x0, 0) ≥ 0 for any admissible pair
(u, x(u)).

We remark that, Theorem 9 holds independently on the choice of the admissible set
Uad, that can be even the entire L2 space. Next, a relationship between the L1-norm of
the optimal control and the weight parameters ν and β is investigated. For this reason,
the following result is proved.

Theorem 10. Assume that ‖xT‖2 = ‖x0‖2 and A and Bn are skew-symmetric. Then:
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(a) let x0 be an equilibrium point, a necessary condition for u = 0 being a stationary
point (and hence a minimum) is

β ≥ max
n

(
〈Bnx0, xT 〉

)
; (3.140)

(b) let u 6= 0 be a solution to (1.2) corresponding to ν > 0 and β such that β̂ > β > 0.
Then the following holds

‖u‖L1 ≤
2NCT

( ˆ̂
β − β

)
ν

, (3.141)

where ˆ̂
β and β̂ are as in Theorem 9.

Proof. (a) Assume that u = 0 is a stationary point. Then recalling that x0 is an equi-
librium point, (3.109) and (3.110) imply that x(t) = x0 and p(T ) = −(x0 − xT ). Hence,
condition (3.114a) implies that for all n we have

−〈Bnx0, p(t)〉+ λ̂n(t) = 0 , (3.142)

for every t ∈ [0, T ]. For t = T we have

−〈Bnx0,−x0 + xT 〉+ λ̂n(T ) = 0 ⇒ λ̂n(T ) = 〈Bnx0, xT 〉 ⇒ β ≥ 〈Bnx0, xT 〉 , (3.143)

where we used the skew-symmetry of Bn and the conditions (3.114d)-(3.114f). The claim
follows from (3.143).

(b) From the proof of Theorem 9, we have (3.139), that is,

J(x, u)− J(x0, 0) ≥ ν

2
‖u‖2

L2 + β‖u‖L1 − 2‖x0‖2c̃1‖u‖L1 . (3.144)

Using that ‖u‖L1 ≤
√
TNC‖u‖L2 and recalling that ˆ̂

β = 2‖x0‖2c̃1, for any stationary point
(u, x(u)) we obtain that

J(x, u)− J(x0, 0) ≥ ν

2TNC

‖u‖2
L1 + β‖u‖L1 − ˆ̂

β‖u‖L1

=
( ν

2TNC

‖u‖L1 + β − ˆ̂
β
)
‖u‖L1 .

(3.145)

Assume that u 6= 0 be a solution to (1.2) corresponding to β < β̂ and ν > 0, we write
that

0 ≥ J(x, u)− J(x0, 0) ≥
( ν

2TNC

‖u‖L1 + β − ˆ̂
β
)
‖u‖L1 ,

which implies that

‖u‖L1 ≤
2NCT

( ˆ̂
β − β

)
ν

.

The interpretation of this result is the following. In the case that the estimate (3.8)
does not hold, one can use the simple expression (3.140) in point (a) to check if u = 0
can be a minimum or not. Point (b) means that all the possible minimizers belong to a

ball Bỹ(0) ⊂ L1((0, T );RNC ) centered in u = 0 and radius ỹ =
2NCT

(
ˆ̂
β−β
)

ν
. The estimate
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(3.141) gives a relationship between the L1-norm of the optimal control and the two
parameters ν and β. According to (3.141) it is clear that ‖uβ‖L1 → 0 linearly as β → ˆ̂

β.
Moreover, this implies that the measure of the region of the domain (0, T ) in which the
control is non-zero converges to zero as β → ˆ̂

β; this result is similar to a result obtained
in [120] for an optimal control problem with linear control structure.

Now, we continue our analysis of the dependence of the optimal control u on the value
of β, and we focus on the map Φ : (0, β̃) → Uad,1 ⊂ L2((0, T );RNC ), with β̃ > 0, defined
as follows

β 7→ Φ(β) := uβ , (3.146)

where uβ solves (3.107) corresponding to β. Notice that, because of the bilinearity of
the constraint (3.109), problem (3.107) is not, in general, uniquely solvable, and it can
happen that for a given β there are many solutions to (3.107). Consequently, in order to
have that Φ is well-defined, we need to assume that (3.107) is uniquely solvable, that is,
there exists a unique uβ ∈ Uad,1 ⊂ L2((0, T );RNC ) which solves (3.107) corresponding to
β. We have the following result.

Theorem 11. Assume that ‖xT‖2 = ‖x0‖2 and A and Bn are skew-symmetric. Consider
β̃ > 0, and assume that (3.107) with β ∈ (0, β̃) is uniquely solvable by uβ ∈ Uad. Then the
map Φ : (0, β̃)→ Uad,1 defined as β 7→ Φ(β) := uβ is continuous. Moreover, if the weight
parameter ν is large enough, then Φ : (0, β̃)→ Uad,1 is locally Lipschitz continuous.

Proof. Consider a sequence of positive parameters {βk}∞k=1 in (0, β̃) such that βk → β̂ ∈
(0, β̃). Consider the corresponding sequence of optimal control functions {uk}∞k=1 solution
to (3.107). Since uk ∈ Uad,1, with Uad,1 closed, convex and bounded, then we can extract
a weakly convergent subsequence ukj ⇀ û in L2, with û ∈ Uad,1. Denote by Jβj and Jβ̂ the
reduced cost functional corresponding to the elements of the sequence βj and the limit
of the sequence β̂, respectively. Notice that Jβkj (u

kj) ≤ Jβkj (u) for all u ∈ Uad,1. By
recalling Proposition 3, and using lower-semicontinuity of Jβkj , we obtain the following

Jβ̂(û) ≤ lim inf
j→∞

Jβkj (u
kj) ≤ lim inf

j→∞
Jβkj (u) , ∀u ∈ Uad,1

⇒ Jβ̂(û) ≤ Jβ̂(u) , ∀u ∈ L2((0, T );RNC ) .

Hence, û is a solution to (3.107) corresponding to β̂, that is û = Φ(β̂). Since (3.107)
corresponding to β̂ is uniquely solvable, the limit of the sequence is unique and we obtain
weakly sequentially continuity of Φ. By using Proposition 3, we obtain strong convergence
of the sequences xk := x(uk) and pk := p(uk), that is xk → x̂ = x(û) and pk → p̂ = p(û).
Consequently, it follows that

〈Bnx
k, pk〉 → 〈Bnx̂, p̂〉 in C[0, T ] , (3.147)

as βk → β̂.
Now, let β1 and β2 be arbitrary positive parameters in (0, β̃). Let v := Φ(β1) and

w := Φ(β2) be the corresponding solutions to (3.107), with y = x(v), z = x(w), q = p(v, y)
and r = p(w, z). By means of condition (3.64c), we write that

νvn − 〈Bny, q〉+ µ̂n = 0 , (3.148)

and
νwn − 〈Bnz, r〉+ µ̃n = 0 , (3.149)
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where µ̂n := λ+,n(vn) − λ−,n(vn) + λ̂n(vn), and µ̃n := λ+,n(wn) − λ−,n(wn) + λ̂n(wn).
Subtracting term-by-term (3.149) from (3.148) and taking the inner product with vn−wn,
we obtain

〈ν(vn − wn)− (〈Bny, q〉 − 〈Bnz, r〉) + (µ̂n − µ̃n), vn − wn〉L2 = 0 , (3.150)

which implies

ν‖vn − wn‖2
L2 = 〈(〈Bny, q〉 − 〈Bnz, r〉), vn − wn〉L2 − 〈µ̂n − µ̃n, vn − wn〉L2 . (3.151)

From [110], we know that

〈µ̂n − µ̃n, vn − wn〉L2 ≤
√
T |β1 − β2|‖vn − wn‖L2 . (3.152)

By using (3.152), we can write the following

ν‖vn−wn‖2
L2 ≤ ‖〈Bny, q〉 − 〈Bnz, r〉‖L2‖vn−wn‖L2 +

√
T |β1− β2|‖vn−wn‖L2 , (3.153)

which implies the following

ν‖vn − wn‖L2 ≤ ‖〈Bny, q〉 − 〈Bnz, r〉‖L2 +
√
T |β1 − β2| . (3.154)

Continuity follows from (3.154) and (3.147).
To prove Lipschitz continuity, consider the following

‖〈Bny, q〉 − 〈Bnz, r〉‖L2 = ‖〈Bn(y − z), q〉 − 〈Bnz, (r − q)〉‖L2

≤ ‖〈Bn(y − z), q〉‖L2 + ‖〈Bnz, (r − q)〉‖L2

≤ (2ĉ1 + ĉϑp)
√
T‖x0‖2‖Bn‖L‖v − w‖L2 ,

(3.155)

where we used Proposition 7 and Proposition 12. By using (3.153) and (3.154), we write
that

ν‖v − w‖2
L2 ≤

∑
n
‖〈Bny, q〉 − 〈Bnz, r〉‖L2‖vn − wn‖L2 +

√
TNC |β1 − β2|‖vn − wn‖L2

≤ (2ĉ1 + ĉϑp)
√
T‖x0‖2‖v − w‖L2

∑
n
‖Bn‖L‖vn − wn‖L2

+
√
TNC |β1 − β2|‖vn − wn‖L2

≤ (2ĉ1 + ĉϑp)
√
TNCK0‖x0‖2‖v − w‖2

L2 +
√
TNC |β1 − β2|‖vn − wn‖L2 ,

(3.156)

where K0 = maxn ‖Bn‖L. Equation (3.156) implies that

‖v − w‖L2 ≤
√
TNC

ν − (2ĉ1 + ĉϑp)
√
TNCK0‖x0‖2

|β1 − β2| , (3.157)

that express the searched locally Lipschitz continuity for ν big enough, that is ν > (2ĉ1 +
ĉϑp)
√
TNCK0‖x0‖2. This completes our proof.

For convenience, we conclude this section summarizing the properties of solutions to
(3.107) discussed in this section. Moreover, we compare our results, which are derived for
the optimal control of bilinear systems, with the ones presented by Stadler in [110], that
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are proved for the optimal control of linear elliptic differential equations. Notice that in
(3.107) there are three sources of non-linearity, that are, the bilinear control structure, the
control constraints, and the L1-penalization. We see that, the L1-penalization in the cost
does not increase significantly the non-linearity of the problem, that is mostly due to the
other terms. This fact makes our problem significantly different from the linear problem
considered in [110], where the only non-linearity arises from the L1-control cost. Moreover,
an additional difference between our problem and the one in [110] is due to the different
cost functionals. In our case, the tracking term corresponds to terminal observation while
in [110], a tracking of configuration is involved. This fact makes analysis and solution of
our problem more difficult, because the map u 7→ x(u) is injective, but the end-point map
u 7→ x(u)(T ) is not.

• Theorem 8 states a sparsity property of the optimal control, that is, if the optimal
control has a different sign at two points, then there exists a non-empty open interval
in-between where the control is zero.

• In Theorem 9, we prove that for sufficiently large β, problem (3.107) has the trivial
solution u = 0. This result is similar to Lemma 3.1 in [110].

• Theorem 10 shows that all the possible solutions to (3.107) are bounded according
to (3.141) and contained in a ball centered in u = 0 with radius depending on ν and
β.

• In Theorem 11, we prove that the map Φ : β 7→ uβ is Lipschitz continuous. This
result is weaker than Lemma 3.2 in [110]. In fact, because of the bilinearity, in order
to guarantee that Φ is well-defined, we need to assume uniqueness of the solution
and study the map β 7→ uβ. Moreover, we need a strong regularity assumption on
ν. Notice that, this assumption is used also in the sequel for obtaining coercivity of
reduced Hessian operator in Lemma 4 and the reduced generalized Jacobian operator
in Lemma 6.

3.5 Summary and remarks
In this chapter, optimal control problems governed by quantum spin dynamical systems
were considered. These optimization problems were characterized by a possibly non-
smooth cost functional and sets of admissible controls with different features, like point-
wise bounded and piecewise-constant functions. In particular, the chapter focused on
different aspects of quantum optimal control problems, as follows. First, several charac-
terization properties of quantum spin dynamical systems were proved. These were used in
this chapter as well as in the sequel of the thesis, and are important for proving some if the
main results presented in this work. Second, existence and characterization properties of
quantum optimal control solutions were discussed, especially in the case of L1-penalized
cost functional. Third, first-order optimality conditions were derived.

The novelties that characterize this chapter are:

• A characterization of optimal control solutions in the case of L1-penalized cost
functional. In the literature of L1-optimization, optimal control problems governed
by linear and semi-linear state constraints are investigated. On the other hand,
much less is known in the case of bilinear control-state constraints. Moreover, the
L1-optimization approach is an absolute novelty in the field of quantum optimal
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control. In fact, the corresponding mathematical literature considers usually more
regular optimization problems.

• A rigorous mathematical description and characterization of quantum optimal con-
trol problems. This rigorous mathematical approach is not considered in the litera-
ture of quantum control problems, where physical purposes are dominant.
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Chapter 4

Newton methods for the optimal
control of quantum systems

Optimal control theory for quantum systems has the purpose to design fast control mech-
anisms that cannot be constructed simply based on perturbation theory [129]. This fact
motivates the application of optimal control methods and related computational tech-
niques to quantum systems [15, 59, 73, 88]; see [14] for a review. However, in most of
the works on quantum optimal control problems, the focus is on numerical optimization
techniques, that allow to compute the required control functions. Pioneering results in
the development of quantum optimal control algorithms can be found in [76, 115, 133].
Further progress in the development of efficient control schemes is documented in, e.g.,
[17, 18, 44, 59, 73, 88, 89, 91, 106]. In these references, only first-order optimization meth-
ods were considered, while we are not aware of works on second-order Newton methods for
the control of quantum spin systems. On the other hand, a discussion of a Krylov-Newton
scheme for solving optimal spin-less quantum control problems governed by the infinite-
dimensional Schrödinger equation can be found in [129, 130]. Moreover, in applications the
need arises to constrain the control functions pointwise in time; see, e.g., [75, 105]. This
requirement results in a lack of differentiability of the control problem so that a straight-
forward application of the Newton method is not possible. To overcome this limitation, in
the field of PDE-constraint optimization problems, a semi-smooth Newton (SSN) method
was developed to solve control-constrained problems; see, e.g., [56, 58, 78, 79, 80, 123].

In this chapter, we discuss Krylov-Newton methods for the solutions of possibly non-
smooth optimal quantum control problems. The chapter is organized as follows. In
Section 4.1 we provide a general introduction to Newton method and semi-smooth Newton
method. This introductory discussion has the purpose to describe the main features of
the Newton and SSN method in the case of finite-dimensional problems. These features
are then addressed for infinite-dimensional problems in the other sections. In Section 4.2,
first we describe Krylov-Newton methods for the solution to optimal control problems.
Then, we show how to address our quantum optimal control problems by means of Krylov-
Newton methods, and we prove convergence in Section 4.2.1. In Section 4.3, semi-smooth
Krylov-Newton method is discussed in order to solve our non-smooth quantum optimal
control problem characterized by a L1-penalized cost functional and control constraint
given by Uad,1. Convergence of the SSN method for the solution to quantum control
problem is proved in Section 4.3.1. In Section 4.3.2, we show how to use a SSN method
in the case that the admissible set of controls is Uad,2. A summary section concludes the
chapter.
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4.1 An introduction to Newton and semi-smooth New-
ton methods

The Newton method is an iterative procedure aimed at finding roots or minima of a given
function. The peculiarity of this procedure is that it generates a sequence that can be
proved to be quadratically convergent to the sought solution. For this reason, the use of
the Newton method is suitable to solve root and optimization problems faster and more
accurately than first-order methods, like the steepest-descent method, and other fixed
point methods. On the other hand, particular conditions have to be satisfied to guarantee
the fast convergence of the Newton method, and in many applications its implementation
has to be carefully addressed for obtaining practical realizations.

In order to explain the basic ideas behind the Newton method and its convergence,
consider the problem to find a root η∗ ∈ RN such that

F(η∗) = 0 , (4.1)

where F : RN → RN is continuously differentiable, that is F ∈ C1(RN). Denote by J (η)
the Jacobian of F at η. The Newton method generates a sequence {ηk}∞k=1 by means of
the following two steps; see, e.g., [94, 112];

S1 : δηk = −(J (ηk))−1F(ηk)

S2 : ηk+1 = ηk + δηk .
(4.2)

Notice that the element ηk+1 of the Newton sequence is well-defined if the Jacobian J (ηk)
is invertible and the step S1 is feasible. This condition is strict, and in practice, due to
the non-linearity of F , it can be difficult to show that J (η) is invertible for any η ∈ RN .
More reasonable are the following assumptions [94, 112]: the Jacobian matrix is invertible
in a neighbourhood N of the solution η∗, and there exists a positive constant K such that
for any η ∈ N it holds that ‖(J (η))−1‖L ≤ K. Because of these assumptions, ηk+1 is well
defined if ηk ∈ N and we write the following

‖ηk+1 − η∗‖2 = ‖ηk − (J (ηk))−1F(ηk)− η∗‖2

= ‖(J (ηk))−1
(
J (ηk)(ηk − η∗)−F(ηk)

)
‖2

= ‖(J (ηk))−1
(
J (ηk)(ηk − η∗) + F(η∗)−F(ηk)

)
‖2

≤ K‖F(η∗)−F(ηk)− J (ηk)(η∗ − ηk)‖2 ,

(4.3)

where we used that F(η∗) = 0. Since it holds that

F(η∗)−F(ηk) =

∫ 1

0

J (η∗ + t(ηk − η∗))(η∗ − ηk)dt , (4.4)

we have the following

‖ηk+1 − η∗‖2 ≤ K
∥∥∥∫ 1

0

J (η∗ + t(ηk − η∗))(η∗ − ηk)dt− J (ηk)(η∗ − ηk)
∥∥∥

2

=
∥∥∥∫ 1

0

[
J (η∗ + t(ηk − η∗))− J (ηk)

]
(η∗ − ηk)dt

∥∥∥
2

≤
∫ 1

0

‖J (η∗ + t(ηk − η∗))− J (ηk)‖L‖η∗ − ηk‖2dt .

(4.5)
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Now, by assuming that the Jacobian is Lipschitz continuous in N , that is

‖J (η̂)− J (η)‖L ≤ L‖η̂ − η‖2 , ∀η̂, η ∈ N (4.6)

with L > 0, we obtain that

‖ηk+1 − η∗‖2 ≤ KL‖ηk − η∗‖2
2 . (4.7)

Using this inequality inductively, we deduce that, if the starting point η1 is sufficiently
near η∗, the sequence {ηk}∞k=1 generated by the Newton method converges quadratically
to η∗. We remark that, one can consider the following assumption

‖F(η + δη)−F(η)− J (η)(δη)‖2 = O(‖δη‖2
2) as δη → 0 , (4.8)

that, together with (4.3), still guarantees quadratic convergence of the Newton sequence.
Furthermore, in the case that

‖F(η + δη)−F(η)− J (η)(δη)‖2 = o(‖δη‖2) as δη → 0 , (4.9)

the Newton sequence converges superlinearly. Notice that (4.9) represents the Fréchet
differentiability condition for F at η. We remark that, in finite-dimensional spaces it
coincides with the classical concept of differentiability. Hence, Fréchet differentiability
guarantees superlinear convergence of the Newton sequence. Notice that the convergence
discussed in this chapter is known as Q-convergence; see, e.g., [57, 94, 123].

The Newton method is used also to solve minimization problems. Consider the fol-
lowing problem

min
η∈RN

f(η) , (4.10)

where f : RN → R is twice differentiable, and denote by η∗ a stationary point, that is
∇f(η∗) = 0. The Newton method described above can be applied to (4.10) by setting
F(η) := ∇f(η), which means that we aim to find a root η∗ of the gradient of f . Obviously
we have that J (η) = ∇2f(η), that is the Jacobian of F coincides with the Hessian of f .
In this optimization framework, the following theorem [94] can be proved with the same
arguments as in the above discussion.

Theorem 12. Suppose that f is twice differentiable. Assume that in a neighbourhood
N of a stationary point η∗ for (4.10) the Hessian ∇2f(η) is Lipschitz continuous and
invertible with bounded inverse. Consider the Newton sequence {ηk}∞k=1. Then

1. if the staring point η1 is sufficiently close to η∗, the Newton sequence converges to
η∗;

2. the rate of convergence of {ηk}∞k=1 is quadratic;

3. the sequence of gradient norms {‖∇f(ηk)‖2}∞k=1 converges quadratically to zero.

Next, we focus on the semi-smooth Newton method. In many applications, the hy-
pothesis of differentiability of the map η 7→ F(η) fails. Consequently, the Jacobian does
not exist in a classical sense, and the Newton method described above cannot be applied.
For this reason, the notion of differentiability has been generalized. The main assumption
for this generalization is the Lipschitz continuity of the map η 7→ F(η), which allows to
use the Rademacher’s theorem stated in the following; see, e.g., [34, 56, 57, 123].
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Theorem 13 (Rademacher’s Theorem). If U is an open subset of RN and F : U → RM
is Lipschitz continuous. Then F is almost everywhere (in the sense of Lebesgue measure)
differentiable in U , that is the set Und ⊂ U of all points at which F fails to be differentiable
is a Lebesgue null set.

Using this result, the notion of differentiability can be extended and generalized Ja-
cobians can be constructed. We have the following definition [34, 57, 66, 123].

Definition 2. Let F be locally Lipschitz. We define the following generalized Jacobians
of F at η:

(a) the Bouligand subdifferential:

∂BF(η) :=
{
S ∈ RN×M : ∃{ηk}∞k=1 ⊂ RN \ Und : ηk → η , J (ηk)→ S

}
,

where Und is defined in Theorem 13 and J (η) denotes the Jacobian of F at η;

(b) the Clarke’s subdifferential is the convex hull of ∂BF(η):

∂F(η) := co ∂BF(η) .

(c) Qi’s C-subdifferential: ∂CF(η) := ∂F1(η)× · · · × ∂FM(η) .

By means of these notions of differentiability, the Newton method given in (4.2) can
be generalized as follows [97, 123]

S0 : choose a generalized Jacobian Jg(ηk) ∈ ∂F(ηk)

S1 : δηk = −(Jg(ηk))−1F(ηk)

S2 : ηk+1 = ηk + δηk ,

(4.11)

where we denote by Jg a generalized Jacobian. Now, we are interested in studying the
convergence of the Newton sequence {ηk}∞k=1 generated by (4.11). To this purpose, based
on the Clarke’s subdifferential, the following notion of semi-smoothness is introduced; see
[97, 123].

Definition 3. A function F : RN → RM is said to be semi-smooth at η if and only if all
the following conditions hold

• F is locally Lipschitz continuous;
• F is directionally differentiable at η;
• F satisfies the following condition

max
S∈∂F(η+δη)

‖F(η + δη)−F(η)− S(δη)‖2 = o(‖δη‖2) as δη → 0 . (4.12)

Notice that condition (4.12) resembles equation (4.9), and semi-smoothness is used to
guarantee convergence of the sequence {ηk}∞k=1 given by (4.11). In particular, following
arguments similar to the ones used for proving convergence of (4.2), the following result
can be obtained [97, 98, 123].

Theorem 14. Let η∗ be a solution to F(η) = 0. Assume that F is semi-smooth at
η∗ and every S ∈ ∂F(η∗) is invertible with ‖S−1‖L ≤ K for K > 0. Let the initial
point η1 be sufficiently close to η∗, then (4.11) generates a sequence {ηk}∞k=1that converges
superlinearly to η∗.
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This result guarantees convergence of the semi-smooth Newton method, that can be
successfully applied to solve nonlinear root and minimization problems in the case that
the function F (the gradient ∇f) is non-differentiable in the classical sense. Moreover, we
remark that, in the case that F ∈ C1 at η, then F is Lipschitz at η and ∂F(η) = {J (η)}
[34], and the semi-smooth Newton method coincide with the classical Newton method.

The discussion presented in this section concerns Newton and semi-smooth Newton
methods for solving root and optimization problems defined in finite-dimensional vector
spaces. This provides a general guideline that can be applied also to problems defined
in infinite-dimensional spaces. However, in these cases other mathematical and computa-
tional problems arise. These problems are addressed in the following sections, where we
discuss Newton and semi-smooth Newton methods for the optimal control of quantum
spin systems.

4.2 Newton methods for quantum optimal control prob-
lems

In this section, we discuss the Newton method for the solution of quantum optimal control
problems. The main difficulty in the implementation of the Newton method for optimal
control problems comes from the dimension of the Hessian operator. In a discrete form
the Hessian is a very large matrix, and this fact makes its construction infeasible from a
practical point of view. This problem is avoided by using inexact Krylov-Newton methods,
that combine the Newton method with Krylov iterative solvers for linear systems. These
methods are also known in the literature as Newton-Krylov methods; see, e.g., [21, 43].
In this way, on one hand, the solution of the Newton linear system is not computed
exactly, because the iteration procedure is truncated when a given tolerance is reached.
On the other hand, Krylov iterative solvers allow to avoid the construction of the discrete
Hessian by supplying a routine that returns as output a vector representing the action
of the Hessian operator. In a continuous picture, this means that the optimal control
problem is tackled in the space of solutions to constraint and adjoint equations, and
corresponding linearized systems.

In the sequel, first we provide a general description of Krylov-Newton methods for
general optimal control problems. Then we apply explicitly this class of Newton methods
to the quantum control problem (3.42) with Uad = L2((0, T );RNC ). Furthermore, in
Section 4.2.1, we study convergence of Krylov-Newton methods for the solution to the
quantum optimal control problem (3.42).

Consider the following general optimal control problem

min
x,u

J(x, u)

s.t. c(x, u) = 0

x ∈ X , u ∈ U ,

(4.13)

where X and U are assumed to be Hilbert spaces, x and u are referred to as state and
control, and c(x, u) = 0 represents the state constraint, that is in general a differential
equation. The cost functional J : X × U 7→ R is assumed to be bounded from below,
weakly lower semicontinuous and coercive with respect to u. In our discussion, the maps
(x, u) 7→ J(x, u) and (x, u) 7→ c(x, u) are twice Fréchet differentiable. Moreover, we con-
sider that the state constraint c(x, u) = 0 is uniquely solvable, and satisfies regularity
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conditions in order to guarantee the existence of a Lagrange multiplier p in an appropri-
ate Hilbert space P . From these assumptions it follows that (4.13) is solvable. In this
framework, we consider the following Lagrange function

L(x, u, p) = J(x, u) + 〈p, c(x, u)〉P , (4.14)

where 〈·, ·〉P denotes the inner product for P . A solution to (4.13), is characterized by
the following first-order necessary optimality system

∇xL(x, u, p) = 0

∇uL(x, u, p) = 0

c(x, u) = 0 ,

(4.15)

where ∇xL and ∇uL are the Fréchet derivatives of L with respect to x and u, respectively.
We remark that (4.15) coincides with the result given in Theorem A 15 in the appendix.
The first equation in (4.15), ∇xL(x, u, p) = 0, is the adjoint equation, that is assumed to
be uniquely solvable for given x and u.

We aim to solve system (4.15) by means of the Newton method, by rewriting it as a
root problem. To this purpose, let η := (x, u, p) and define the following map [16, 90, 14]

F(η) =

∇xL(x, u, p)
∇uL(x, u, p)
c(x, u)

 . (4.16)

Notice that a root η∗ = (x∗, u∗, p∗) of F corresponds to a stationary point of (4.13). The
Newton procedure is applied to the equation F(η) = 0. Hence, similarly to (4.2), starting
with some initial value η1, we construct the Newton sequence {ηk}∞k=1 as follows

S1 : J (ηk)(δη) = −F(ηk)

S2 : ηk+1 = ηk + δη .
(4.17)

The Jacobian operator J (η) is given explicitly by

J =

∇xxL ∇xuL
(
∇xc

)∗
∇uxL ∇uuL

(
∇uc

)∗
∇xc ∇uc 0

 ,

where we omit the dependence on η = (x, u, p) for brevity. Notice that the Jacobian
operator J is obtained by means of the second-Fréchet derivatives of L, and consequently
coincides with the Hessian operator of the Lagrange function corresponding to (4.13).
Moreover, since J and c are assumed to be twice Fréchet differentiable, the Lagrange
function (4.14) is also twice Fréchet differentiable, and consequently, its Hessian has to
be symmetric [23].

Next, we discuss Krylov-Newton methods. For this purpose, recall that first and third
equations of (4.15) are uniquely solvable for a given control u. This means also, that the
state and the adjoint equations are uniquely solvable for a given control u, that is x = x(u)
and p = (u, x(u)). For this reason, it is possible to introduce the so-called reduced cost
functional, given by the following; see, e.g., [16, 119, 129];

Jr(u) := J(x(u), u) ,
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and the corresponding reduced problem is given by

min
u

Jr(u)

s.t. u ∈ U .
(4.18)

Notice that (4.18) is, in contrast to (4.13), an unconstrained optimization problem. If u∗
is a solution to (4.18), then the pair (x(u∗), u∗) solves (4.13), see, e.g., [16, 119, 129]. The
reduced gradient is defined as

Fr(u) := ∇uL
(
x(u), u, p(u, x(u))

)
.

To obtain the reduced Hessian operator, we assume that the linearized constraint
equation is solvable, that is, the operator

(
∇xc

)
is invertible. Hence, the following holds(

∇xc
)
(δx) +

(
∇uc

)
(δu) = 0⇒ δx = −

(
∇xc

)−1
((
∇uc

)
(δu)

)
, (4.19)

and the Hessian operator in the reduced form is given by the following; see, e.g., [14];

Jr(u) =

(
−
(
∇xc

)−1(∇uc
)

I

)∗(∇xxL ∇xuL
∇uxL ∇uuL

)(
−
(
∇xc

)−1(∇uc
)

I

)
. (4.20)

The action of Jr(u) on a function δu corresponds to solving the linearized constraint
equation as in (4.19), then solving the linearized adjoint, that is(

∇xxL
)
(δx) +

(
∇xuL

)
(δu) +

(
∇xc

)∗
(δp) = 0 , (4.21)

and considering the following definition

Jr(u)(δu) :=
(
∇uxL

)
(δx) +

(
∇uuL

)
(δu) +

(
∇uc

)∗
(δp) . (4.22)

To clarify formulas (4.20) and (4.22), let δη = (δx, δu, δp)T and consider the Newton
linear system in (4.17), that is∇xxL ∇xuL

(
∇xc

)∗
∇uxL ∇uuL

(
∇uc

)∗
∇xc ∇uc 0

δxδu
δp

 = −

∇xL
∇uL
c

 . (4.23)

In the space of solutions to constraint (c(x, u) = 0) and adjoint equation (∇xL(x, u, p) =
0), the Newton linear system (4.23) becomes as follows∇xxL ∇xuL

(
∇xc

)∗
∇uxL ∇uuL

(
∇uc

)∗
∇xc ∇uc 0

δxδu
δp

 = −

 0
Fr
0

 , (4.24)

and we notice that solving the third equation corresponds to solve the linearized constraint
equation as in (4.19). Then solving the first equation corresponds to solve the linearized
adjoint equation (4.21). Now, in the space of linearized constraint and adjoint equations,
it remains to solve the second equation, that is

(∇uxL)(δx) + (∇uuL)(δu) + (∇uc
)∗

(δp) = −Fr , (4.25)
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and we recognize that the left-hand side of (4.25) is Jr(u)(δu), in agreement with (4.22).
Consequently, the Newton method in a reduced form is given by

Jr(uk)(δuk) = −Fr(uk)
uk+1 = uk + δuk ,

(4.26)

and the solution of the Newton linear system is obtained by means of a Krylov linear
solver supplied with a routine that uses equations (4.19)-(4.21)-(4.22) for assembling the
action of the reduced Hessian on a given function.

Next, we discuss explicitly the Krylov-Newton method for the solution of the quantum
optimal control problem (3.42) with Uad = L2((0, T );RNC ). The function F(η) is given
by the following

F(η) :=

 c̃(x, u, p)
∇uL(x, u, p)
c(x, u)

 , (4.27)

where c(x, u) = 0 is the state constraint, that is

ẋ =

[
A+

NC∑
n=1

unBn

]
x , x(0) = x0 , (4.28)

and c̃(x, u, p) = 0 is the following corresponding adjoint equation

−ṗ =

[
A+

NC∑
n=1

unBn

]∗
p , p(T ) = −(x(T )− xT ) . (4.29)

The reduced form Fr(u) is obtained as follows. First, we solve the constraint equation
c(x, u) = 0 and the adjoint equation c̃(x, u, p) = 0. Then, in the space of solutions to
(4.28) and (4.29), we have that ∇uL(x, u, p) = ∇uJr(u), where the reduced gradient,
derived in Lemma 2, is ∇unJr(u) = νun − 〈Bnx, p〉. Consequently, we write that(

Fr(u)
)
n

= νun − 〈Bnx, p〉 . (4.30)

The Hessian operator is obtained as follows. Differentiating the optimality system
(3.53), or equivalently differentiating two times the Lagrange function (3.47), we obtain
the following Hessian operator of problem (3.45) as follows

J (x, u, p) =


0 −B∗1p · · · · · · −B∗NCp c(·, u)∗

(−B∗1p)∗ νI 0 · · · 0 (−B1x)∗

· · · · · · · · · · · · · · · · · ·
(−B∗NCp)

∗ 0 · · · 0 νI (−BNCx)∗

c(·, u) −B1x · · · · · · −BNCx 0

 , (4.31)

where I is the identity operator. From J (x, u, p) we construct the reduced Hessian op-
erator and its action on a vector function δu. For this purpose, let δx = δx(δu) and
δp = δp(δu) be the unique solutions to linearized constraint and adjoint equations, that
are given by

˙δx =

[
A+

NC∑
n=1

unBn

]
δx+

NC∑
n=1

(δunBn)x , δx(0) = 0 (4.32)
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and

−δ̇p =

[
A+

NC∑
n=1

unBn

]∗
δp+

NC∑
n=1

(δunBn)∗p , δp(T ) = −δx(T ) . (4.33)

The action of Jr(u) on δu can be defined as follows

(Jr(u)(δu))n := νδun − 〈Bnx, δp(δu)〉 − 〈B∗np, δx(δu)〉 , n = 1, ..., NC . (4.34)

The Krylov-Newton linear system, that is Jr(u)(δu) = −Fr(u), is explicitly given by the
following

νδun − 〈Bnx, δp(δu)〉 − 〈B∗np, δx(δu)〉 = −
(
νun − 〈Bnx, p〉

)
, (4.35)

with n = 1, ..., NC . This linear system is solved by using a Krylov iterative solver, and a
crucial advantage is the possibility to code this algorithm in a matrix-free way. This is
essential to solve multiple spin systems with large Np. The discrete Hessian operator is
not stored and the overall algorithm is supplied by a procedure computing directly the
action of the Hessian operator on a vector function [16]. This action corresponds to the
solution to the linearized optimality system. Notice that the proposed procedure needs to
be globalized by means of a line-search strategy. This and other implementation details
are discussed in Section 6.

4.2.1 Convergence of the Krylov-Newton method for quantum
optimal control

In this section, we discuss a convergence result of the Newton sequence in infinite-
dimensional spaces, and study convergence of the Krylov-Newton method for solving
the quantum control problem (3.42) with Uad = L2((0, T );RNC ).

The discussion presented in Section 4.1 can be extended to problems defined on general
Banach spaces, and the following convergence result holds; see, e.g., [58, 90].

Theorem 15. Consider the map Fr : U → Y , where U and Y are Banach spaces and let
u∗ ∈ U such that Fr(u∗) = 0. Assume that

• Fr is continuously Fréchet differentiable, that is

‖Fr(u+ δu)−Fr(u)− Jr(u)(δu)‖Y = o(‖δu‖U) as δu→ 0 , (4.36)

with δu 7→ Jr(u)(δu) continuous;

• Jr(u) is invertible in a neighbourhood of u∗, and the inverse is bounded in an ap-
propriate operator norm.

Consider the Newton sequence {uk}∞k=1 generated by (4.26), that is

Jr(uk)(δuk) = −Fr(uk)
uk+1 = uk + δuk .

If u1 is sufficiently close to the solution u∗, then the Newton sequence {uk}∞k=1 converges
locally superlinearly to u∗. Moreover, if in addition it holds that Jr(u) is α-Hölder con-
tinuous near u∗, or

‖Fr(u+ δu)−Fr(u)− Jr(u)(δu)‖Y = O(‖δu‖1+α
U ) as δu→ 0 , (4.37)

then the order of convergence is 1 + α.
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Next, we study convergence of the Newton method for the solution to the quantum
spin control problem (3.42) with Uad = L2((0, T );RNC ). In particular, in order to apply
Theorem 15, we set U = Y = L2((0, T );RNC ), and we study regularity of the Jacobian
Jr. Due to the bilinearity of the quantum control problem (3.42), it is difficult to ad-
dress directly invertibility of the Jacobian. For this reason, in Lemma 4, we investigate
coercivity of Jr and derive a sufficient condition that guarantees this property. We have

Lemma 4. The reduced Jacobian Jr is coercive if the weight parameter ν is large enough
and the tracking term ‖x(T )− xT‖2 is small enough. In particular, if

α :=
[
ν − 4K2

00TNC‖x0‖2‖x(T )− xT‖2

]
> 0 , (4.38)

with K00 as in Proposition 5, then Jr is coercive and it holds that

〈Jr(u)(h), h〉L2 ≥ ‖δx(T ;h)‖2
2 + α‖h‖2

L2 for any h ∈ L2((0, T );RNC ) , (4.39)

where δx is the solution to (4.32) corresponding to h.

Proof. Let h ∈ L2((0, T );RNC ), and denote by δx = δx(h) and δp = δp(h) the corre-
sponding solutions to linearized constraint (4.32) and adjoint (4.33). Recalling the action
of the reduced Jacobian as in (4.34), we write the following

〈Jr(u)(h), h〉L2 =
∑

n
〈νhn − 〈Bnx, δp〉 − 〈Bnδx, p〉, hn〉L2

= ν‖h‖2
L2 −

∑
n

∫ T

0

hn
(
〈Bnx, δp〉+ 〈Bnδx, p〉

)
dt

= ν‖h‖2
L2 −

∑
n

∫ T

0

(
〈hnBnx, δp〉+ 〈hnBnδx, p〉

)
dt

= ν‖h‖2
L2 −

∫ T

0

(
〈
∑

n
hnBnx, δp〉+ 〈

∑
n
hnBnδx, p〉

)
dt .

(4.40)

Now, according to (4.32) it holds that
∑

n hnBnx = ˙δx−
[
A+

∑
n unBn

]
δx, and we write

the following∫ T

0

〈
∑

n
hnBnx, δp〉dt =

∫ T

0

〈 ˙δx−
[
A+

∑
n
unBn

]
δx, δp〉dt

=

∫ T

0

〈 ˙δx, δp〉dt+

∫ T

0

〈−
[
A+

∑
n
unBn

]
δx, δp〉dt

= 〈δx(T ), δp(T )〉 − 〈δx(0), δp(0)〉

+

∫ T

0

〈δx,−δ̇p〉dt+

∫ T

0

〈δx,−
[
A+

∑
n
unBn

]∗
δp〉dt

= 〈δx(T ), δp(T )〉+

∫ T

0

〈δx,−δ̇p−
[
A+

∑
n
unBn

]∗
δp〉dt

= 〈δx(T ), δp(T )〉+

∫ T

0

〈δx,
∑

n
hnB

∗
np〉dt

= −‖δx(T )‖2
2 +

∫ T

0

〈
∑

n
hnBnδx, p〉dt ,

(4.41)
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where we used the integration-by-parts rule, δx(0) = 0, δp(T ) = −δx(T ), and
∑

n hnB
∗
np =

−δ̇p−
[
A+

∑
n unBn

]∗
δp. By replacing (4.41) into (4.40), we get

〈Jr(u)(h), h〉L2 = ν‖h‖2
L2 + ‖δx(T )‖2

2 − 2
∑

n

∫ T

0

〈hnBnδx, p〉dt

≥ ν‖h‖2
L2 + ‖δx(T )‖2

2 − 2
∑

n

∫ T

0

|hn|‖Bn‖L‖δx‖2‖p‖2dt

≥ ν‖h‖2
L2 + ‖δx(T )‖2

2 − 2K00

∑
n

∫ T

0

|hn|‖δx‖2‖x(T )− xT‖2dt

= ν‖h‖2
L2 + ‖δx(T )‖2

2 − 2K00‖x(T )− xT‖2

∑
n

∫ T

0

|hn|‖δx‖2dt

≥ ν‖h‖2
L2 + ‖δx(T )‖2

2 − 2K00‖x(T )− xT‖2

∑
n
‖hn‖L2‖δx‖L2

≥ ν‖h‖2
L2 + ‖δx(T )‖2

2 − 2K00‖x(T )− xT‖2

√
NC‖h‖L2‖δx‖L2 ,

(4.42)

where we used the Cauchy-Schwarz inequality and K00 as in Proposition 5. By applying
Proposition 5, it holds that

〈Jr(u)(h), h〉L2 ≥ ‖δx(T )‖2
2 +

[
ν − 4K2

00TNC‖x0‖2‖x(T )− xT‖2

]
‖h‖2

L2 , (4.43)

and the claim follows.

Since (4.38) is a sufficient condition for the coercivity of the reduced Hessian of (3.42),
then it is also a sufficient optimality condition. Notice that, because of x(T ), α depends
on the control u. We remark that, (4.38) can be a strict condition that is not always
satisfied. On the other hand, this provides useful informations regarding regularity of
problem (3.42). In particular:

• it is evident the benefit due to the regularization parameter ν;

• regularity increases as ‖x(T )− xT‖2 decreases, and in the special case that u is an
exact-controllability function, this term even vanishes;

• the same holds for the time T : the shorter is the time horizon, the more regular is
the problem;

• the term ‖δx(T )‖2 in (4.39) provides a regularization effect, independently on con-
dition (4.38).

It remains to discuss Fréchet differentiability required in Theorem 15. We recall that,
the map Fr : L2((0, T );RNC ) → L2((0, T );RNC ) is given by u 7→ (Fr(u))n = νun −
〈Bnx, p〉. Hence, Fréchet differentiability of Fr follows from Lemma 3, and in particular
condition (4.37) is satisfied.

Consequently, all conditions in Theorem 15 are satisfied and we summarize our con-
vergence result in the following theorem.

Theorem 16. Under the assumptions of Lemma 3 and Lemma 4, the sequence {uk}∞k=1

generated by the Krylov-Newton scheme (4.26)-(4.35) for the optimal quantum control
problem (3.42) with Uad = L2((0, T );RNC ), is locally superlinear convergent with order
1 + α = 2.
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4.3 Semi-smooth Newton method
In this section, Krylov-Newton methods are discussed for the solution to quantum opti-
mal control problems characterized by control constraints and possibly non-smooth cost
functionals. The resulting procedure is known as the semi-smooth Newton (SSN) method.
Similarly to the previous section, first we provide a general description of the SSN method
for general optimal control problems. Then, we discuss a Krylov-SSN method for the so-
lution to (3.42), and present convergence results in Section 4.3.1.

In the same framework assumed for (4.13), consider the following optimal control
problem

min
x,u

J(x, u) := J1(x, u) + J2(u)

s.t. c(x, u) = 0

x ∈ X , u ∈ Uad ⊂ U ,

(4.44)

where the set of admissible controls Uad is assumed to be convex and closed in U . In
particular, the cost functional J is obtained as the sum of J1 and J2. The map (x, u) 7→
J1(x, u) is assumed to be twice Fréchet differentiable, convex and lower semicontinuous,
and u 7→ J2(u) is considered convex, continuous and possibly non-smooth. Notice that,
since J2 is convex and continuous, the corresponding subdifferential ∂J2 at a given u is

∂J2(u) =
{
g ∈ U : J2(v)− J2(u) ≥ 〈g, u− v〉U

}
, (4.45)

and is non-empty according to Theorem A 11; see, also [45, 66]. We remark that, a
subdifferential of a convex function defined over a Banach space U , is rigorously defined
as a subset of the dual space U∗, and in (4.45) the inner product is replaced by the duality-
product 〈·, ·〉U∗,U . However, for the purposes of our discussion, U is a Hilbert space, and
we can invoke the Riesz representation theorem. This allows to work with scalar product
and avoid cumbersome notations that are not needed in our discussion.

Next, we discuss first-order optimality conditions for (4.44). To this end, we de-
note by p the Lagrange multiplier corresponding to the state constraint c(x, u) = 0, and
c̃(x, u, p) = 0 the corresponding adjoint equation. By assuming that c(x, u) = 0 and
c̃(x, u, p) = 0 are uniquely solvable for a given u, the maps u 7→ x(u) and u 7→ p(u) are
well defined, and problem (4.44) can be studied in a reduced form, similarly to (4.18). A
minimizer u for (4.44) is characterized by the following variational inequality condition;
see Theorem A 18 in the appendix and, e.g., [45];〈

∇uJr(u), v − u
〉
U

+ J2(v)− J2(u) ≥ 0 , ∀v ∈ Uad , (4.46)

where ∇uJr(u) denotes the derivative of J1 in the reduced form (see, e.g. Lemma 2 and
Theorem 7). By using (4.45), a sufficient condition for u to satisfy (4.46) is the following;
see, e.g., [110] and references therein;〈

∇uJr(u) + λ̂, v − u
〉
U
≥ 0 , ∀v ∈ Uad , (4.47)

for any λ̂ ∈ ∂J2(u). Notice that equivalence between (4.46) and (4.47) is proved in
Theorem 7; see also [45, 110, 120].

In order to apply a Newton method, the variational inequality (4.47) has to be re-
formulated as an equality condition, see, e.g., [110, 119, 123]. For example, in the case
that J2 = 0, because of convexity and closedness of Uad, the variational inequality can be
equivalently written in the following projection form; see, e.g., [33, 58, 80, 119, 123];

u = PUad
(
u− θ∇uJr(u)

)
, (4.48)
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where θ is an arbitrary positive constant, PUad is the projection operator from U to
Uad. In the case that J2 6= 0, λ̂ in (4.46) is undetermined, and one has to reformulate
the variational inequality in a different form in order to address the problem; see, e.g.,
[110]. Furthermore, we remark that the variational inequality (4.47) can be equivalently
reformulated as a system of nonlinear complementarity conditions. To solve these non-
linear complementarity problems so-called NCP-functions have been studied; see, e.g.,
[27, 38, 69] for finite-dimensional problems, and [50, 123] for infinite-dimensional prob-
lems.

In general, a reformulation of a variational inequality condition in an equality form
is obtained by means of non-smooth functions. For our purposes, we assume that there
exists a map Φ : U → Lr((0, T );R), with 1 ≤ r < ∞, such that (4.47) is equivalently
reformulated as follows

Φ(u) = 0 . (4.49)

For optimal control problems, this map is usually obtained as the composition Φ = ψ ◦F
given by

Φ(u)(t) = ψ(F (u)(t)) , for t ∈ (0, T ) , (4.50)

where ψ : Rm → R is a non-smooth and Lipschitz continuous function and F : U →
Lr
′
((0, T );Rm), with 1 ≤ r ≤ r′ < ∞ [123]. Consequently, similarly to Section 4.2, we

aim to solve
Fr(u) := Φ(u) = 0 . (4.51)

The use of the Newton method for the solution to (4.51) would require the evaluation of
the Jacobian operator Jr, that does not exist because of the non-smoothness of Fr due to
ψ. For the development of a SSN, we have to choose an appropriate subdifferential for Φ.
We refer to the generalized differential ∂◦Φ defined in [123], whose definition is motivated
by a formal pointwise application of the chain rule. In fact, suppose for the moment that
the map

F : u ∈ U 7→ F (u) ∈ C([0, T ];Rm) (4.52)

is strictly differentiable, where C([0, T ];Rm) denotes the space of continuous function
equipped with the max-norm. Then the function f : U → Rm given, for a fixed t ∈ (0, T ),
by

f : u ∈ U 7→ F (u)(t) , (4.53)

is strictly differentiable with derivative f ′(u) ∈ L(U,Rm), that is a linear operator obtained
as

f ′(u) : h 7→ (F ′(u)(h))(t) , (4.54)

where F ′(u) denotes the derivative of F at u. If we assume that ψ possesses a subdif-
ferential ∂ψ, then the chain rule for subdifferentials [34, 123] applied to the real-valued
mapping u 7→ Φ(u)(t) = ψ(f(u)) yields

∂
(
Φ(u)(t)

)
⊂ ∂ψ(f(u)

)
◦ f ′(u) =

{
g ∈ U

∣∣∣∣∣ 〈g, h〉U =
∑m

j=1 dj(t)
(
F ′j(u)(h)

)
(t),

d(t) ∈ ∂ψ(F (u)(t)
) }

.

(4.55)
Furthermore, we can replace ‘⊂’ with ‘=’ if ψ is convex or if the operator f ′(u) is onto,
see [34, 123]. Following the above motivation, the subdifferential ∂◦Φ is defined. To this
purpose the following assumptions are required; see [123] Assumption 3.1;

Assumption 1. There are 1 ≤ r ≤ r′ < q ≤ ∞, such that
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(a) the operator F : U → Lr
′
((0, T );Rm) is continuously Fréchet differentiable;

(b) the mapping u ∈ U 7→ F (u) ∈ Lq((0, T );Rm) is locally Lipschitz continuous, that
is for all u ∈ U there exists an open neighbourhood N = N (u) and a constant
LF = LF (N ) such that

m∑
j=1

‖Fj(u)− Fj(v)‖Lq ≤ LF‖u− v‖U ∀u, v ∈ U ;

(c) the function ψ : Rm → R is Lipschitz, that is there exists Lψ such that

|ψ(y)− ψ(z)| ≤ Lψ‖y − z‖1 ∀y, z ∈ Rm ;

(d) ψ is semi-smooth (in the sense of Definition 3).

Notice that in Assumption 1 the only difference between the maps in (a) and (b) is
the range space. Now, we can state the definition of ∂◦Φ as in [123].

Definition 4. Let Assumption 1 hold. For Φ : U → Lr((0, T );R) as in (4.50) the
subdifferential ∂◦Φ at u ∈ U is defined as follows

∂◦Φ(u) :=

{
S ∈ L

(
U,Lr((0, T );R)

) ∣∣∣∣∣ S : h 7→
∑m

j=1 dj(·)
(
F ′j(u)(h)

)
(·),

d measurable selection of ∂ψ(F (u))

}
, (4.56)

where L
(
U,Lr((0, T );R)

)
is the space of all linear operators mapping from U to Lr((0, T );R).

We remark that the superscript ◦ is chosen in [123] to indicate that ∂◦Ψ is designed
for superposition operators. By means of this subdifferential we can state the following
definition of semi-smoothness.

Definition 5. The operator Φ is semi-smooth at u ∈ U if

sup
S∈∂◦Φ(u+h)

‖Φ(u+ h)− Φ(u)− S(h)‖Lr = o(‖h‖U) as h→ 0 in U . (4.57)

The following result motivates the choice of ∂◦Φ for constructing a semi-smooth New-
ton method; in fact, Theorem 17 states that ∂◦Φ is non-empty and Φ is semi-smooth; see
[123] Proposition 4.8 and Theorem 5.2.

Theorem 17. Under the Assumption 1, we have that

(a) for all u ∈ U the subdifferential ∂◦Φ(u) is non-empty and bounded in L
(
U,Lr((0, T );R)

)
;

(b) the operator Φ is semi-smooth (in the sense of Definition 5).

Now, recalling that we aim to solve Fr(u) = 0, with Fr := Φ, we consider the Newton
sequence {uk}∞k=1 ⊂ U generated by the following three semi-smooth Newton steps

S0 : choose a generalized Jacobian Jg(uk) ∈ ∂◦Fr(uk)
S1 : δuk = −(Jg(uk))−1Fr(uk)
S2 : uk+1 = uk + δuk .

(4.58)

We remark that in [123] the semi-smooth Newton procedure (4.58) presents an additional
“smoothing” step, which is used in the case of a norm-discrepancy. This discrepancy
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appears when U = Lp with p > r and, consequently, the Lp-norm is stronger than the
Lr-norm. This framework arises, for instance, in the case that the complementarity con-
dition is expressed by means of the Fischer-Burmeister functional; see [56, 123]. However,
this situation does not appears in our problems, and for the sake of brevity, we omit a
discussion regarding this discrepancy problem.

Convergence of the Newton sequence {uk}∞k=1 is discussed in the next theorem [123].

Theorem 18. Let Assumption 1 hold, and assume that the generalized Jacobian Jg(uk) ∈
∂◦Fr(uk) ⊂ L

(
U,Lr((0, T );R)

)
defined between appropriate spaces is invertible with a

bounded inverse with respect to an appropriate norm. If u1 sufficiently close to a solution
u∗ to Fr(u) = 0, then the sequence {uk}∞k=1 ⊂ U generated by the semi-smooth Newton
procedure (4.58) is locally superlinear convergent.

We remark that, in Theorem 18 we used the term “appropriate spaces” to take into
account the possible norm-discrepancy between U and Lr. However, this discrepancy
disappear in the obvious situation that U = Lp with p = r, which will be the case of our
quantum control problems.

Next, we discuss explicitly the SSN method for the solution of the quantum control
problem (3.107) with Uad = Uad,1. To this purpose, we reformulate the optimality system
(3.114) for (3.107) following the approach presented in [110] for the optimal control of
linear elliptic differential equations. In particular, conditions (3.114b)-(3.114f) can be
equivalently written as follows

Cn(u, µ) := un −max
(
0, un + θ(µn − β)

)
−min

(
0, un + θ(µn + β)

)
+ max

(
0, un − b+ θ(µn − β)

)
+ min

(
0, un + b+ θ(µn + β)

)
= 0 ,

(4.59)

where θ is an arbitrary positive constant, the min- and max-functions are understood
pointwise, n = 1, ..., NC , and µn is given by

µn := λ+,n − λ−,n + λ̂n . (4.60)

Hence, the optimality system (3.114) for (3.107) becomes as follows

ẋ =

[
A+

NC∑
n=1

unBn

]
x , x(0) = x0 (4.61a)

− ṗ =

[
A+

NC∑
n=1

unBn

]∗
p , p(T ) = −(x(T )− xT ) (4.61b)

Cn(u, µ) = 0 (4.61c)
µn = 〈Bnx, p〉 − νun , n = 1, ..., NC . (4.61d)

Now, we define the variable η := (x, u, p) and write the problem of solving (4.61) as
the following root problem. Find η such that

F(η) = 0 , (4.62)
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where F(η) :=
(
F1(η),F2(η),F3(η)

)T
and

F1(η) := −ṗ−

[
A+

NC∑
n=1

unBn

]∗
p (4.63a)

F2,n(η) := Cn(x, u, p) , n = 1, ..., NC (4.63b)

F3(η) := ẋ−

[
A+

NC∑
n=1

unBn

]
x . (4.63c)

Notice that we replace in (4.61c) the function µ =
(
µ1, ..., µNC

)
obtained from (4.61d),

and hence we write Cn(u, µ) = Cn(x, u, p).
It is clear from (4.59) and because of the min- and max-functions, that the function

C(η) is not differentiable in the classical sense. This fact prevents the use of a standard
Newton method to solve (4.62). However, we can use non-smooth theory and the calcu-
lus for generalized gradients, see, e.g., [34], and apply the semi-smooth Newton scheme
(4.58) for solving (4.62) with a guaranteed local superlinear convergence. Notice that
convergence of the SSN method for the solution to (3.107) is discussed in Section 4.3.1.

To this purpose, we construct an adequate generalized Jacobian of F , in the sense that
we want to ensure semi-smoothness of C. First, using the calculus rules of sub-differentials
[34, 123], we can obtain sub-gradients for Cn(u, µ). In order to guarantee that Cn is semi-
smooth, we need to consider subgradients of Cn that are in the subdifferential ∂◦Cn(u)
defined in Definition 4. Semi-smoothness of C will be proved in Section 4.3.1. We consider
particular choices of subgradients of the maps y 7→ max(0, y) and y 7→ min(0, y), given
by the following characteristic functions [56, 110, 123]

χmax(v)(t) =

{
1 if v(t) ≥ 0

0 if v(t) < 0
(4.64)

and

χmin(v)(t) =

{
1 if v(t) ≤ 0

0 if v(t) > 0
, (4.65)

respectively. With this choice, subgradients of Cn are given by the following operators

∇xCn(x, u, p) = Ψn(x, u, p)〈B∗np, ·〉
∇uCn(x, u, p) = I + (1− νθ)Ψn(x, u, p)I

∇pCn(x, u, p) = Ψn(x, u, p)〈Bnx, ·〉 ,
(4.66)

where I is the identity operator and Ψn(x, u, p) is defined as follows

Ψn(x, u, p) :=
[
− χmax

(
un + θ(µn(x, u, p)− β)

)
− χmin

(
un + θ(µn(x, u, p) + β)

)
+ χmax

(
un − b+ θµn(x, u, p)

)
+ χmin

(
un + b+ θµn(x, u, p)

)]
.

(4.67)

Hence, the generalized Jacobian reads as follows

Jg(η) =

∇xF1(η) ∇uF1(η) ∇pF1(η)
∇xF2(η) ∇uF2(η) ∇pF2(η)
∇xF3(η) ∇uF3(η) ∇pF3(η)

 =

∇xF1(η) ∇uF1(η) ∇pF1(η)
∇xC(η) ∇uC(η) ∇pC(η)
∇xF3(η) ∇uF3(η) 0

 ,

(4.68)
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where
∇uF1(η) =

(
(∇uF1(η))1 · · · (∇uF1(η))NC

)
, (4.69)

and
∇uF3(η) =

(
(∇uF3(η))1 · · · (∇uF3(η))NC

)
, (4.70)

with
(∇uF1(η))n = −B∗np and (∇uF3(η))n = −Bnx . (4.71)

We also have

∇xF3(η) =
d

dt
−

[
A+

NC∑
n=1

unBn

]
, (4.72)

and
∇pF1(η) = ∇xF3(η)∗ . (4.73)

Having obtained the generalized Jacobian Jg, we construct the semi-smooth Newton
sequence

{
ηk
}∞
k=1

by using procedure (4.58). However, we remark that this procedure
could be computationally infeasible because of the high dimension of the discrete gener-
alized Jacobian. Consequently, similarly to Section 4.2, we want to construct a Krylov-
SSN procedure. The SSN method requires at each iteration to solve the linear problem
Jg(η)(δη) = −F(η). This is given explicitly by the following∇xF1(x, u, p) ∇uF1(x, u, p) ∇pF1(x, u, p)

∇xC(x, u, p) ∇uC(x, u, p) ∇pC(x, u, p)
∇xF3(x, u, p) ∇uF3(x, u, p) 0

δxδu
δp

 = −

F1(x, u, p)
F2(x, u, p)
F3(x, u, p)

 . (4.74)

Now, since the state x and the adjoint p are uniquely determined by the control u,
that is x = x(u) and p = p(u), we have F3(x, u, p) = 0 and F1(x, u, p) = 0, respectively.
Therefore, the system (4.74) becomes as follows∇xF1(u) ∇uF1(u) ∇pF1(u)

∇xC(u) ∇uC(u) ∇pC(u)
∇xF3(u) ∇uF3(u) 0

δxδu
δp

 = −

 0
F2(u)

0

 . (4.75)

The action of the third row on the vector of unknowns gives the following differential
equation

˙δx =

[
A+

NC∑
n=1

unBn

]
δx+

[
NC∑
n=1

δunBn

]
x , δx(0) = 0 , (4.76)

that is, the linearization of the forward equation (3.53a). In the same fashion, the action
of the first row gives the following

−δ̇p =

[
A+

NC∑
n=1

unBn

]∗
δp+

[
NC∑
n=1

δunBn

]∗
p , δp(T ) = −δx(T ) , (4.77)

that is, the linearization of the backward equation (3.53b). Equations (4.76) and (4.77)
are uniquely solvable for a given δu, and their solutions are δx = δx(δu) and δp = δp(δu),
respectively. Therefore, the linear system (4.75) becomes as follows

∇xC(u)
(
δp(δu)

)
+∇uC(u)

(
δu
)

+∇pC(u)
(
δx(δu)

)
= −F2(u) , (4.78)
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where the only unknown is δu. Notice that the left hand side of (4.78) the action of the
reduced generalized Jacobian Jg,r(u) on δu, and is given by(
Jg,r(u)(δu)

)
n

:=
(
∇xC(u)

(
δp(δu)

)
+∇uC(u)

(
δu
)

+∇pC(u)
(
δx(δu)

))
n

=
[
1 + (1− νθ)Ψn(u)

]
δun + Ψn(u)

[
〈B∗np, δx(δu)〉+ 〈Bnx, δp(δu)〉

]
,

(4.79)

for n = 1, ..., NC and where Ψn(u) is defined in (4.67). Hence, the Krylov-Newton linear
system is given by[

1 + (1− νθ)Ψn(u)
]
δun + Ψn(u)

[
〈B∗np, δx(δu)〉+ 〈Bnx, δp(δu)〉

]
= un −max

(
0, un + θ(µn − β)

)
−min

(
0, un + θ(µn + β)

)
+ max

(
0, un − b+ θ(µn − β)

)
+ min

(
0, un + b+ θ(µn + β)

)
.

(4.80)

In the next section, we discuss convergence of the presented SSN method for the
solution to the quantum optimal control problem (3.107).

4.3.1 Convergence of the SSN method for quantum optimal con-
trol

In this section, the convergence of the SSN method presented in the previous section is
discussed. In particular, we prove a convergence result of the SSN method, for the solution
to the quantum optimal control problem (3.107), by means of Theorem 18.

It is well-known that the finite-dimensional maps y 7→ max(0, y) and y 7→ min(0, y)
possess non-empty subdifferentials and are semi-smooth [56, 123]. Further, it is proved
that for 1 ≤ r < q ≤ ∞ the infinite-dimensional maps max,min : Lq(0, T ) → Lr(0, T )
are semi-smooth [56, 123]. Recalling that x = x(u) and p = p(x(u), u), we notice that
the function u 7→ C(x(u), u, p(u)) is obtained as the sum of compositions of max- and
min-functions and the map µ : u 7→ µ(x(u), u, p(u)). Consequently, to investigate semi-
smoothness of C, we define the subdifferential ∂◦C(u) as the following product space

∂◦C(u) := ∂◦C1(u)× ∂◦C2(u)× · · · × ∂◦CNC (u) , (4.81)

where each of ∂◦Cn(u) is defined as in Definition 4 [123]. We remark that ∂◦C(u) resembles
the Qi’s subdifferential given in Definition 2. Then, we can prove semi-smoothness of C
as follows.

Lemma 5. Under the assumptions of Lemma 3, the map

C : L2((0, T ),RNC )→ L2((0, T ),RNC ) , (4.82)

defined according to (4.59) and (4.60) as u 7→ C(x(u), u, p(u)), is semi-smooth in the
sense of Definition 5 with ∂◦C(u).

Proof. In this theorem, in order to avoid confusions, we use a notation that is slightly
different to the one defined at the beginning of Chapter 3. In particular, we denote by
‖ · ‖L2

m
the following L2-norm

‖v‖L2
m

:=

(∫ T

0

m∑
n=1

|vn|2dt

)1/2

,
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for v ∈ L2((0, T );Rm).
We prove the claim by means of Theorem 17 [123]. For this purpose, we show that

Assumption 1 holds in our case. According to the notation used in Assumption 1, we have
thatm = 2 such that ψ : R2 → R and Φn := ψ◦(0, µn) for n = 1, . . . , NC . Notice that ψ is
given by the sum of max and min functions (as in (4.59)), and we recall that max and min
functions are semi-smooth and the sum of semi-smooth functions is still semi-smooth; see,
e.g., [97] and references therein. Further, we have that U = Lp((0, T );RNC ) with p = 2,
and r = r′ = 2.

In this setting, we need that the map µn : L2((0, T ),RNC )→ Lq((0, T ),R) with q > 2
is locally Lipschitz continuous and that µn : L2((0, T ),RNC ) → L2((0, T ),R) is Fréchet
differentiable. For this purpose, we notice that the map µn is obtained as the sum of
the identity with the map Θn defined in Lemma 3. Hence, by Lemma 3 and by the
calculus rules for Lipschitz continuous and Fréchet differentiable maps, we obtain the
desired properties of the map µn. Consequently, we can apply Theorem 17 to obtain
semi-smoothness of Cn = Φn with respect to ∂◦Cn, that is

sup
Sn∈∂◦Cn(u+h)

‖Cn(u+ h)− Cn(u)− Sn(h)‖L2
1

= o(‖h‖L2
NC

) as h→ 0 . (4.83)

To prove semi-smoothness of C, we notice that

‖C(u+ h)− C(u)− S(h)‖L2
NC
≤
∑

n
‖Cn(u+ h)− Cn(u)− Sn(h)‖L2

1
. (4.84)

Then we write that

sup
S∈∂◦C(u+h)

‖C(u+ h)− C(u)− S(h)‖L2
NC

≤ sup
S∈∂◦C(u+h)

∑
n
‖Cn(u+ h)− Cn(u)− Sn(h)‖L2

1

≤
∑

n
sup

Sn∈∂◦Cn(u+h)

‖Cn(u+ h)− Cn(u)− Sn(h)‖L2
1
.

(4.85)

Recalling (4.83), we obtain the following

sup
S∈∂◦C(u+h)

‖C(u+ h)− C(u)− S(h)‖L2
NC

= o(‖h‖L2
NC

) as h→ 0 , (4.86)

that is the required property.

In the next lemma we provide sufficient conditions for regularity of the reduced gen-
eralized Jacobian. We remark that Lemma 6 provides results similar as in Lemma 4.
Consequently, all the remarks provided for Lemma 4 hold also for Lemma 6.

Lemma 6. The reduced generalized Jacobian Jg,r is coercive if the parameters ν and θ
are large enough and the tracking term ‖x(T ) − xT‖2 is small enough. In particular, if
νθ ≤ 1 and

α :=
[
θν − 4K2

00TNC‖x0‖2‖x(T )− xT‖2

]
> 0 , (4.87)

with K00 as in Proposition 5, then Jg,r is coercive and it holds that

〈Jg,r(u)(h), h〉L2 ≥ ‖δ̃x(T ;h)‖2
2 + α‖h‖2

L2 for any h ∈ L2((0, T );RNC ) , (4.88)

where δ̃x is the solution to (4.76) corresponding to δun = −Ψn(u)hn.
Moreover, the reduced generalized Jacobian Jg,r(u) is coercive if it holds that

8TNC‖x0‖2
2K

2
00 < νθ ≤ 1 . (4.89)
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Proof. We proceed similarly to Lemma 4. Let h ∈ L2((0, T );RNC ), and denote by δx =
δx(h) and δp = δp(h) the corresponding solutions to linearized constraint (4.76) and
adjoint (4.77). Consider the inner product 〈Jg,r(u)(h), h〉L2 with h ∈ L2((0, T );RNC ). We
have the following

〈Jg,r(u)(h), h〉L2 = ‖h‖2
L2 + (1− νθ)

∫ T

0

∑
n

Ψn(u)h2
ndt

+

∫ T

0

∑
n
hnΨn(u)

[
〈B∗np, δx〉+ 〈Bnx, δp〉

]
dt .

(4.90)

Now, notice that |Ψn(u)(t)| ≤ 1 a.e. in (0, T ) and recall that νθ ≤ 1, from (4.90) we get

〈Jg,r(u)(h), h〉L2 ≥ ‖h‖2
L2 − (1− νθ)‖h‖2

L2

−
∫ T

0

∑
n
(−Ψn(u)hn)

[
〈B∗np, δx〉+ 〈Bnx, δp〉

]
dt .

(4.91)

Using (4.91) and proceeding similarly to (4.40), we obtain that

〈Jr(u)(h), h〉L2 ≥ θν‖h‖2
L2

−
∫ T

0

(
〈
∑

n
(−Ψn(u)hn)Bnx, δp〉+ 〈

∑
n
(−Ψn(u)hn)Bnδx, p〉

)
dt .

(4.92)

Now, we define h̃n := −Ψn(u)hn, and we denote by δ̃x = δx(h̃) the solution to the
linearized constraint (4.76) corresponding to δu = h̃, and according to (4.76) it holds that∑

n h̃nBnx = ˙̃δx−
[
A+

∑
n unBn

]
δ̃x. Similarly to (4.41), we write∫ T

0

〈
∑

n
h̃nBnx, δp〉dt =

∫ T

0

〈 ˙̃δx−
[
A+

∑
n
unBn

]
δ̃x, δp〉dt

= −‖δ̃x(T )‖2
2 +

∫ T

0

〈
∑

n
hnBnδ̃x, p〉dt .

(4.93)

By replacing (4.93) into (4.92), and similarly to (4.42), we get

〈Jr(u)(h), h〉L2 = θν‖h‖2
L2 + ‖δ̃x(T )‖2

2 −
∑

n

∫ T

0

〈hnBn

(
δx+ δ̃x

)
, p〉dt

≥ θν‖h‖2
L2 + ‖δ̃x(T )‖2

2 −K00‖x(T )− xT‖2

∑
n

∫ T

0

|hn|
(
‖δx‖2 + ‖δ̃x‖2

)
dt

≥ θν‖h‖2
L2 + ‖δ̃x(T )‖2

2

− ‖x(T )− xT‖22
√
TNCK

2
00‖x0‖2

(
‖h‖L2 + ‖h̃‖L2

)
‖h‖L1 ,

(4.94)

where we used the Cauchy-Schwarz inequality, the estimate (3.18) and K00 as in Propo-
sition 5. Next, by noticing that |Ψn(u)(t)| ≤ 1, the following holds ‖h̃‖L2 = ‖Ψ(u)h‖L2 ≤
‖h‖L2 , and by recalling that ‖h‖L1 ≤

√
TNC‖h‖L2 , we obtain

〈Jr(u)(h), h〉L2 ≥ ‖δ̃x(T )‖2
2 +

[
θν − 4K2

00TNC‖x0‖2‖x(T )− xT‖2

]
‖h‖2

L2 , (4.95)
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and coercivity of Jr follows.

To conclude the proof, notice that

θν − 4K2
00TNC‖x0‖2‖x(T )− xT‖2 ≥ θν − 4K2

00TNC‖x0‖2

(
‖x(T )‖2 + ‖xT‖2

)
≥ θν − 4K2

00TNC‖x0‖2

(
‖x0‖2 + ‖x0‖2

)
≥ θν − 8K2

00TNC‖x0‖2
2 .

(4.96)

Hence condition (4.89) implies (4.87) and the claim follows.

With the next Theorem 19, we discuss the locally superlinear convergence of the
presented semi-smooth Newton scheme.

Theorem 19. Under the assumptions of Lemma 5 and Lemma 6, the semi-smooth Newton
method (4.58), for the solution to the quantum optimal control problem (3.107), is locally
superlinear convergent.

Proof. Notice that, Lemma 5 guarantees the semi-smoothness of the map C defined in
(4.59) (and (3.106a)). Furthermore, Lemma 6 guarantees that the generalized Jacobian
is invertible with bounded inverse. Consequently, the claim follows from Theorem 18.

We remark that, to obtain local convergence of the semi-smooth Newton method,
we need semi-smoothness of the map C and boundedness of the inverse of its gener-
alized Jacobian. Regarding semi-smoothness, we remark that, since C is defined as
C : L2((0, T );RNC )→ L2((0, T );RNC ) there is no norm-discrepancies in the Newton pro-
cedure and the “smoothing” step discussed in [123] is not necessary in our case. Regarding
invertibility of the generalized Jacobian, we provide in Lemma 6 sufficient conditions, that
are given by (4.87) and (4.89), for the coercivity of the generalized Jacobian, and hence
for the boundedness of its inverse. These conditions can be strict to be satisfied. However,
as already discussed for Lemma 4, they provide useful informations regarding regularity
of Jg,r. In particular, similarly to Lemma 4:

• the benefit due to the product νθ is evident; however, due to the non-smoothness
we need to assume that νθ ≤ 1 to obtain a result similar to Lemma 4;

• regularity increases as ‖x(T )− xT‖2 decreases;

• the same holds for the time T : the shorter is the time horizon, the more regular is
the problem;

• the term ‖δ̃x(T )‖2 in (4.88) provides a regularization effect, independently on con-
ditions (4.87) and (4.89).

4.3.2 SSN method in the case Uad = Uad,2

In this section, we show how to apply the SSN method to the spin optimization problem
(3.42) with the admissible control set Uad = Uad,2, with

Uad,2 :=
{
v ∈ L2((0, T );RNC ) : ‖v(t)‖2 ≤ b , a.e. in (0, T ) , b ∈ R+

}
. (4.97)

The control set Uad,2 is often used in NMR applications with the purpose of bounding the
amplitudes of control radio-frequencies used in the experiments; see, e.g., [75, 105]. This
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restriction of the control space is usually due to the type of the considered spectrometer,
or to specific experimental applications.

The first-order necessary optimality condition for u to be a minimizer for (3.42) is
given by 〈

∇uJr(u), v − u
〉
L2 ≥ 0 ∀v ∈ Uad,2 , (4.98)

where the gradient ∇uJr(u) is given by (3.48) in Lemma 2. Since by Lemma 1 the set
Uad,2 is closed and convex, the variational inequality (4.98) can be equivalently written as
follows; see, e.g., [58, 80];

u = PUad,2
(
u− θ∇uJr(u)

)
, (4.99)

where θ is an arbitrary positive constant and PUad is the projection operator from
L2((0, T );RNC ) to Uad,2. By virtue of the definition of the projection operator, it is
possible to put (4.48) into the pointwise projection form [58, 80], as follows

u(t) = PUad,2
(
u(t)− θ∇uJr(u)(t)

)
, a.e. in (0, T ) . (4.100)

Consequently, similarly to (4.27), the optimality system is the following

c̃(x, u, p) = 0

u(t) = PUad
(
u(t)− θ∇uJr(u)(t)

)
, a.e. in (0, T )

c(x, u) = 0 .

(4.101)

Now, consider explicitly the projector operator as follows [80]

PUad(v) =
v

max(1, 1
b
‖v‖2)

. (4.102)

From (4.100) we get the following

u(t) =
u(t)− θ∇uJr(u)(t)

max(1, 1
b
‖u(t)− θ∇uJr(u)(t)‖2)

, (4.103)

and by multiplying with max(1, 1
b
‖u(t)− θ∇uJr(u)(t)‖2), it holds that

u(t) max
(

1,
1

b
‖u(t)− θ∇uJr(u)(t)‖2

)
−
(
u(t)− θ∇uJr(u)(t)

)
= 0 . (4.104)

By choosing θ = 1
ν
and using ∇unJr(u) = νun − 〈Bnx, p〉, the following holds

max
(
ν,

1

b
‖g(x, p)(t)‖2

)
un(t)− gn(x, p)(t) = 0 , (4.105)

where gn(x, p) := 〈Bnx, p〉 for n = 1, . . . , NC . Consider η := (x, u, p) and define the map
F(η) =

(
F1(η),F2(η),F3(η)

)T as followsF1(η)
F2(η)
F3(η)

 :=

 c̃(x, u, p)

max
(
ν, 1

b
‖g(x, p)‖2

)
u− g(x, p)

c(x, u)

 , (4.106)
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and notice that a root of F corresponds to a stationary point solving (4.101). By working
in the space of solutions to c(x, u) = 0 and c̃(x, u, p) = 0, we write the function F in a
reduced form:

Fr(u) := F2

(
x(u), u, p(u)

)
= max

(
ν,

1

b
‖g(x(u), p(u))‖2

)
u− g(x(u), p(u)) . (4.107)

In order to construct the Newton procedure for solving Fr(u) = 0, we need the Ja-
cobian of Fr. However, Fr is not differentiable with respect to u, because of the max
function, and we need to construct a generalized Jacobian [56, 123]. For this purpose, we
define the following set

S :=
{
t ∈ (0, T ) | 1

b
‖g(x, p)(t)‖2 > ν

}
, (4.108)

and the following characteristic function

χS(t) :=

{
1 if t ∈ S
0 otherwise

. (4.109)

In this setting, the action of the reduced generalized Jacobian on δu ∈ L2((0, T );RNC ) is
given by the following(
Jg,r(u)(δu)

)
n

:= max
(
ν,

1

b
‖g(x(u), p(u))‖2

)
δun

+ un
1

b
χS

∑NC
n=1

(
〈Bnδx(δu), p(u)〉+ 〈Bnx(u), δp(δu)〉

)
〈Bnx(u), p(u)〉

‖g(x, p)‖2

− 〈Bnδx(δu), p(u)〉 − 〈Bnx(u), δp(δu)〉 , n = 1, ..., NC ,

(4.110)

that has to be understood pointwise in (0, T ), and where δx(δu) and δp(δu) are the
solutions to (4.32) and (4.33) corresponding to δu, respectively. Hence, the Newton linear
system Jg,r(u)(δu) = −Fr(u) is given by

max
(
ν,

1

b
‖g(x(u), p(u))‖2

)
δun

+ un
1

b
χS

∑NC
n=1

(
〈Bnδx(δu), p(u)〉+ 〈Bnx(u), δp(δu)〉

)
〈Bnx(u), p(u)〉

‖g(x, p)‖2

− 〈Bnδx(δu), p(u)〉 − 〈Bnx(u), δp(δu)〉

= −
[
max

(
ν,

1

b
‖g(x(u), p(u))‖2

)
un − gn(x(u), p(u))

]
,

(4.111)

for n = 1, . . . , NC .
Notice that convergence of the SSN method presented in this section can be discussed

similarly as in Section 4.3.1. In particular, we remark that, since the Euclidean norm ‖·‖2

is not differentiable in the origin, it could be thought to miss the Fréchet differentiability
required for the convergence of the SSN method. However, this singular behaviour can
be neglected because ‖ · ‖2 is in composition with max(ν, ·). Moreover, convergence can
be also discussed by means of a pointwise evaluation of the non-differentiable map and
its subdifferential as in [50].
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4.4 Summary and remarks
In this chapter, Newton and semi-smooth Newton methods were described for the solution
of possibly non-smooth optimal quantum control problems. Since the construction of
Hessian/Jacobian operator would be infeasible for numerical implementations, we focused
on the Krylov-Newton approach. This strategy allows to avoid the construction of the
Hessian/Jacobian operator, making possible the use of Newton type methods for the
solution of infinite dimensional problems. Further, we investigated convergence of the
developed Newton methods.

The novelties of this chapter are:

• Development of Krylov-Newton and SSN methods for problems governed by bilin-
ear systems, and analysis of their convergence. We remark that, in the literature
quantum spin optimal control only first-order methods are considered, and we are
not aware on scientific works involving SSN methods for the solution of general
quantum optimal control problems. Consequently, investigations on Newton type
methods represent an important novelty in this field.

• Development of SSN method for L1-optimal control problems governed by bilinear
systems and analysis of its convergence. In the literature of L1-optimization, SSN
methods are studied for the solution to optimal control problems governed by linear
and semi-linear state constraints. On the other hand, much less in known in the
case of bilinear control-state constraints. Furthermore, the use of this method is an
absolute novelty in the field of quantum control, where “sparse” controls are usually
constructed “by hand” following the intuition of experimentalists.
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Chapter 5

Two methods for the exact-control of
quantum spin systems

In this chapter, we present two computational methods to solve the following exact-control
problem

ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ) , x(0) = x0 , x(T ) = xT , (5.1)

that is we seek a control u such that the trajectory of (5.1) starting from the initial state
x0 reaches at time T the desired target state xT . This problem is hard to solve, and
we are not aware on methods, provided with a rigorous theoretical framework, that are
capable to address it. To guarantee existence of an exact-control u for (5.1), one has to
invoke controllability results. In particular, since our purpose is to address quantum spin
systems, in Section 5.1, we discuss controllability results for quantum spin systems.

In the sequel of this section, we present two different approaches for solving (5.1). The
first approach is based on a continuation technique, which allows to generate a sequence
of optimal control functions that converges to a solution to (5.1). This framework is
discussed in Section 5.2. The second approach consists in a reformulation of (5.1) as
an optimization problem, that possesses suitable local regularity properties, and that
can be numerically addressed by optimal control techniques. This second framework is
discussed in Section 5.3. We remark that, even if the focus of the present work is to tackle
spin systems, the presented computational methods remain valid for general exact-control
problems governed by bilinear systems.

5.1 Controllability of quantum spin systems
In this section, we recall some fundamental controllability results of closed quantum spin
systems governed by the LvNM equation

˙̃ρ = −i
[
H̃, ρ̃

]
, (5.2)

as well as the bilinear control system

ẋ =

[
A+

NC∑
n=1

unBn

]
x . (5.3)

In particular, we focus on Ising spin systems. From Section 2.3.3 we recall that N = 2Np

and Nx = N2, with Np the number of spins. Further, the Hamiltonian H̃ is given by
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H̃ = H̃0 + H̃u, where

H̃0 =

Np∑
k=1

(νk − ω̃k)Iz,k +
∑
k<j

Jk,jIz,kIz,j (5.4)

is the free Hamiltonian, and

H̃u =

Np∑
j=1

ux,jH̃x,j + uy,jH̃y,j (5.5)

is the control Hamiltonian. Moreover, from Section 2.4.1 we recall that (5.3) is a real
matrix-representation of (5.2) with respect to the coordinate map V : her(N) → RNx
defined in (2.125)-(2.126).

Systems (5.2) and (5.3) admit a lift to the special unitary group SU(N) and to the
special orthogonal group SO(Nx), respectively. In particular, the lifted equations of (5.2)
and (5.3) are given by

Υ̇(t) = −iH̃(t)Υ(t) , Υ(0) = IN , (5.6)

and

Θ̇(t) =

[
A+

NC∑
n=1

un(t)Bn

]
Θ(t) , Θ(0) = INx , (5.7)

respectively. That is, solutions Υ(t) and Θ(t) of the lifted systems give rise to solutions
of the original system via the group actions

(Υ, ρ0) 7→ Υρ0Υ∗ and (Θ, x0) 7→ Θx0 , (5.8)

of SU(N) and SO(Nx), respectively, and all solutions of the original systems can be
represented in the form

ρ̃(t) = Υ(t)ρ0Υ(t)∗ and x(t) = Θ(t)x0 . (5.9)

Therefore, controllability properties of the lifted systems are closely related to controlla-
bility properties of the original systems [40, 67].

For the lifted control systems, we denote by RT (Υ0) and RT (Θ0) the sets of all points
reachable at time T from Υ0 ∈ SU(N) and Θ0 ∈ SO(Nx), respectively. Then, the entire
reachable sets R(Υ0) and R(Θ0) are defined as

R(Υ0) :=
⋃
T≥0

RT (Υ0) and R(Θ0) :=
⋃
T≥0

RT (Θ0) , (5.10)

respectively. In a similar way one defines the reachable sets R(ρ0) of (5.2) and R(x0) of
(5.3). Notice that the right invariance of the corresponding vector fields of (5.6) and (5.7)
implies that R(Υ0) = R(IN)Υ0 and R(Θ0) = R(INx)Θ0, where R(IN) and R(INx) are
the reachable sets of the corresponding identity matrix.

With these preliminaries, we first discuss controllability of (5.2) and its lifted equation
(5.6). Notice that due to (5.9) any solution of (5.2) is confined to the unitary orbit
O(ρ0) := {Υρ0Υ∗ | Υ ∈ SU(N)} of its initial value ρ̃(0) = ρ0. This observation leads to
several different notions of controllability in the literature [2, 40, 101].

Definition 6. A closed spin system is called:
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• density operator controllable, if the reachable set R(ρ0) of any initial density operator
ρ0 coincides with its entire unitary orbit O(ρ0), i.e. if system (5.2) is controllable
on O(ρ0) for all starting points ρ0;

• operator controllable, if the reachable set R(I) coincides with the entire unitary
group SU(N), that is, if the system (5.6) is controllable.

The following result shows that these two apparently different concepts of controllability
coincide [2, 40, 101].

Theorem 20. A closed spin system is operator controllable if and only if it is density
operator controllable.

The main result to establish operator controllability is the following theorem [67, 68],
which provides a necessary and sufficient condition for controllability, that is based on
the evaluation of the Lie algebra generated by the drift and control vector fields. For
instance, for (5.6), the generated Lie algebra is the Lie algebra containing

−iH̃0,−iH̃x,1,−iH̃y,1, . . .

and iterated commutators

[−iH̃0,−iH̃x,1], [−iH̃0,−iH̃y,1], [−iH̃x,1,−iH̃y,1], [[−iH̃0,−iH̃x,1],−iH̃x,1], . . . ;

see, e.g., [40, 93].

Theorem 21. A bilinear control system, evolving on a connected compact Lie group is
controllable if and only if the Lie algebra generated by the drift and control vector fields
coincides with the algebra of the Lie group.

Notice that SU(N) is a connected compact Lie group [53] and hence one can establish
controllability by a direct evaluation of the generated Lie algebra. However, the compu-
tation of the generated Lie algebra can be cumbersome when the dimension N becomes
large. To obtain a simple criterion for checking whether the Lie algebra generated by the
drift and control terms of (5.6) coincides with the Lie algebra of SU(N), that is the set
su(N) of all traceless skew-hermitian N×N -matrices, we assign to any Ising Hamiltonian
of the form (5.4) a so-called spin-spin interaction graph, defined as follows

Definition 7. Consider the free component of the Ising Hamiltonian H̃0 defined as in
(5.4). The spin-spin interaction graph is defined as an undirected graph with vertex set
{1, 2, ..., Np}, representing the number of spin-1

2
particles, and edges drawn between vertex

k and j if and only if the coupling constant Jk,j in (5.4) does not vanish.

We can associate to the coupling constants a matrix C by setting

Ck,j =

{
Jk,j if k < j

Jk,j if j < k
.

Notice that, since the spin-spin interaction graph is undirected, the matrix C is symmetric
with zero entries on the diagonal. For the sake of clarity, we provide the following example
of spin-spin interaction graph.
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Example. Consider a system of 5 coupled spins that corresponds to the following matrix
of coupling constants

C =


0 ∗ 0 ∗ ∗
∗ 0 ∗ 0 0
0 ∗ 0 0 0
∗ 0 0 0 ∗
∗ 0 0 ∗ 0

 ,

where we denote by ∗ the non-zero entries. The spin-spin interaction graph corresponding
to (Jk,j) is the shown in Figure 5.1.

Figure 5.1: Connected spin-spin interaction graph.

4

The following theorem provides a sufficient condition for controllability by using the
notion of spin-spin interaction graph [19, 102].

Theorem 22. If the spin-spin interaction graph of the drift term (5.4) is connected, then
(5.6) is (density) operator controllable.

Notice that, according to Definition 6, controllability implies that, for every element g
in SU(N), there exists a control such that the trajectory governed by (5.6) can be steered
from IN to g. However, Theorem 21 and Theorem 22 do not provide any information
regarding the time T necessary to reach g. On the other hand, in many applications T
has to be fixed a priori, and, consequently, informations on this aspects are required. To
this purpose, we can use the semisimplicity property of a Lie group. A matrix Lie group
is said to be semisimple if its corresponding Lie algebra is isomorphic to a direct sum of
simple Lie algebras containing only trivial ideals. For a rigorous definition of a semisimple
Lie group, see Appendix and [53]. This property is used to prove Theorem 7.2 in [68],
that controllability at a given time T . This theorem is the following.

Theorem 23. Consider a controllable right invariant control system evolving on a com-
pact semisimple Lie group G. Then there exists T > 0 such that, for every g, g′ ∈ G, there
is a control that steers g into g′ in exactly T units of time.

Notice that SU(N) is a semisimple matrix Lie group; see, e.g., [53]. Once controlla-
bility is established, by means of the semisimplicity of SU(N) we can prove the following
corollary to Theorem 23, which provides a strong controllability result for (5.6).

Corollary 2. If (5.6) is (density) operator controllable then there exists a constant T∗ ≥ 0
such that for any T ≥ T∗ one has RT (IN) = SU(N), i.e. for any sufficiently large T ≥ 0
exact-time controllability of (5.6) holds.

Proof. Assume that (5.6) is density operator controllable, then by Theorem 20, we have
that R(I) = SU(N). Since SU(N) is a compact and semisimple matrix Lie group, see,
e.g., [53], then Theorem 23 [68] holds, hence there exists a constant time T∗ ≥ 0 such
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that for every g and g′ ∈ SU(N) there is a control that steers g into g′ in exactly T∗
units of time. Now, let T ≥ T∗ and let g′′ ∈ SU(N) be defined as g′′ := e−H̃0(T−T∗)g.
Consequently, the system will evolve from g into g′′ in a time T̃ = T − T∗ ≥ 0. Now,
according to Theorem 23 [68], there exists a control that steers g′′ into g′ in exactly T∗
units of time. Consequently, the evolution of the system from g to g′ via g′′ will be in
T = T̃ + T∗ ≥ T∗ > 0 units of time, which completes our proof.

The result of Corollary 2 has one major drawback: it guarantees only the existence
of T∗ ≥ 0, but it does not provide any estimate for T∗ ≥ 0. The literature regarding
estimates of a minimum (infimum) controllability time is at its infancy, and in particular,
there are only few works that establish an optimal time for specific spin transitions, see,
[9, 39, 70, 72].

The previous controllability result on (5.6) can be carried over to (5.3) and (5.7),
respectively. We have the following theorem.

Theorem 24.

(a) System (5.7) is never controllable on the special orthogonal group SO(Nx);

(b) If (5.6) is controllable, then the reachable set R(I) of (5.7) coincides with a closed
subgroup of SO(Nx) which is locally isomorphic to SU(N);

(c) System (5.3) with N > 2 is neither controllable on RNx nor on SNx−1.

(d) If (5.6) is controllable, then the reachable set of (5.6) coincides with the image of
O(ρ0) under the map V defined in (2.125).

Proof. (a): Recall that Nx = N2. A simple argument concerning the dimensions of
SU(N) and SO(N2) shows that (5.7) is not controllable on SO(N2). In fact, for N > 1
we have that

dim(SU(N)) = N2 − 1 < N2(N2 − 1)/2 = dim(SO(N2)) .

(b): To see that the reachable set R(I) of (5.7) coincides with a closed subgroup of
SO(N2), consider ρ(t) = Υ(t)ρ0Υ(t)∗. Now, similarly as in Section 2.4.1 we write that
x = T−1vec(ρ). Hence, it follows

x(t) = T−1vec(Υ(t)ρ0Υ(t)∗)

⇒ Θ(t)x0 = T−1
(
(Υ(t)∗)T ⊗Υ(t)

)
vec(ρ0)

⇒ Θ(t)x0 = T−1
(
(Υ(t)∗)T ⊗Υ(t)

)
Tx0

⇒ Θ(t) = T−1
(
(Υ(t)∗)T ⊗Υ(t)

)
T .

Notice that SG := {Υ⊗Υ : Υ ∈ SU(N)} is a closed subgroup of SU(N2) and the same
holds for T−1SGT . Moreover, since T is defined as in Section 2.4.1 and T ∗T = I, we
notice that each entry of Θ(t) is obtained as

Θk,j(t) = T ∗k
(
(Υ(t)∗)T ⊗Υ(t)

)
Tj

= vec(B̃k)
∗((Υ(t)∗)T ⊗Υ(t)

)
vec(B̃j)

= 〈B̃k|
(
(Υ(t)∗)T B̃jΥ(t)

)
〉 ,

where 〈·|·〉 is defined in (2.91), and consequently Θk,j(t) is real. It follows that T−1SGT
is a closed subgroup of SO(N2).
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Furthermore, we have that

SO(Nx) ⊃ R(I) = T−1SGT w SG w SU(N) ,

where the isomorphisms are understood locally, which means that the corresponding Lie
algebras are isomorphic.

(c): System (5.3) is not controllable on RN2 due to the fact that (5.3) is norm pre-
serving. Further, arguments regarding the dimension of SN2−1, the unit sphere of RN2 ,
and the dimension of the orbit O(ρ0) [54], show that even controllability on SN2−1 fails.
In particular, recalling that the dimension of the orbit O(ρ0) is given by

dim(O(ρ0)) = dim(SU(N))− dim(Stab(ρ0)) ,

where Stab(ρ0) = {Υ ∈ SU(N) : Υρ0Υ∗ = ρ0} is the stabilizer subgroup [39, 54], and
following arguments as in [8], we have that

dim(O(ρ0)) ≤ dim(SU(N))− (N − 1) = N2 −N ,

which means that dim(O(ρ0)) < dim(SN
2−1) for N > 2.

(d): Just apply the map V defined in (2.125) to the orbit O(ρ0) := {Υρ0Υ∗ | Υ ∈
SU(N)}.

Notice that in our discussion about controllability, we do not pay attention on the
space of admissible controls U . This is due to the fact that, Theorem 21 and Theorem 23,
proved in [68], hold for the class of piecewise-constant control functions. Consequently, if
one enlarge this space to U = L2, then the controllability property is preserved.

Next, we provide two examples of controllable spin systems.

Example. (one spin−1
2
system)

We consider the following LvNM equation in rotating frame coordinates

˙̃ρ = −i[H̃, ρ̃] ,

where the effective Hamiltonian is given by

H̃ = (ν0 − ω)Iz + u1Ix + u2Iy .

This systems admits the following lifted system evolving on SU(N)

Υ̇ = −iH̃Υ .

Since {iIx, iIy, iIz} is a basis for su(2), then the Lie algebra generated by the drift and
the input vector fields coincides with su(2). Now, we notice that SU(2) is a compact and
connected matrix Lie group, see, e.g., [53]. Consequently, Theorem 21 holds and the lifted
system is operator controllable, and Theorem 20 implies density operator controllability.

4
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Example. (2 spin−1
2
system)

We consider the following LvNM equation in rotating frame coordinates

˙̃ρ = −i[H̃, ρ̃] ,

where the effective Hamiltonian is given by

H̃ = JÎzŜz + u1Îx + u2Îy + u3Ŝx + u4Ŝy .

Notice that the spin-spin interaction graph of the drift term is connected, hence the
(density) operator controllability of this system is obtained by means of Theorem 22.

We remark that, in principle, it would be possible to apply Theorem 21 directly. How-
ever, the computation of all the iterated commutators makes the application cumbersome,
whereas Theorem 22 yields controllability straightforwardly.

4

5.2 A continuation method for the exact-control of quan-
tum systems

In this section, we present a continuation method for computing control functions that
solve the exact-control problem (5.1). In order to explain the continuation method, con-
sider the following two optimization problems

min
x,u

J̃(x, u) :=
1

2
‖x(T )− xT‖2

2

s.t. ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ] , x(0) = x0 ,

(P̃ )

and

min
x,u

Jν(x, u) :=
1

2
‖x(T )− xT‖2

2 +
ν

2

NC∑
n=1

‖un‖2
L2

s.t. ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ] , x(0) = x0 ,

(Pν)

and we recall that, we consider closed quantum systems without relaxation phenomena.
The continuation strategy can be heuristically described as follows. Consider a se-

quence of weight parameters νk → 0, and denote by {Jνk}∞k=1 the corresponding sequence
of cost functionals of (Pν). This sequence converges to J0 = 1

2
‖x(T ) − xT‖2

2, that is the
cost functional of (P̃ ), and a control ũ such that J0 = 0 is an exact-control, that is ũ
solve (5.1). The sequence {Jνk}∞k=1 generates a sequence of optimal control problems,
and {uk}∞k=1 is the corresponding sequence of optimal controls solutions, that is uk solves
(Pν) with ν = νk. Hence, the continuation procedure aims to reduce progressively the
L2-regularization term in (Pν), in order to obtain at each iteration a better approximation
to the solution to (P̃ ). Notice that each element uk of the sequence {uk}∞k=1 is numeri-
cally generated by solving (Pν) corresponding to ν = νk, and using as initial guess for the
iterative optimal control solver the previous element uk−1 of the control sequence.
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Next, we put the above heuristic procedure in a rigorous framework. In Theorem 25,
we prove convergence of the continuation procedure. In particular, we prove that one can
extract from the sequence {uk}∞k=1 a subsequence converging strongly in L2 to a solution
to (P̃ ). In Theorem 26, we prove a convergence ratio of the continuation method. Notice
that, to prove Theorem 26 we need the intermediate results given in Lemma 7 and Lemma
8. These convergence results are proved in the case that the entire L2((0, T );RNC ) repre-
sents the admissible control space Uad. In Theorem 27, we extend the convergence results
also for the case that Uad is a closed, convex and bounded subset of L2((0, T );RNC ). The-
orem 28 proves a more general convergence result, that is useful to analyze the numerical
experiments discussed in Section 7.

First, some remarks regarding the existence of solutions to (Pν) and (P̃ ), are necessary
for our purposes. Notice that the existence of solutions to problem (Pν) is proved in
Theorem 1. Regarding problem (P̃ ), if the target xT belongs to the reachable set for the
given starting point x0, then the solution to (P̃ ) corresponds to J̃ = 0. For this reason,
to guarantee the existence of a solution to (P̃ ) we make the following assumption.

Assumption 2. The LvNM equation (5.3) is controllable. Moreover, the target point xT
belongs to the set of the points reachable from x0 in time T , such that a solution to (P̃ )
corresponds to J̃ = 0.

Theorem 25. Consider problems (P̃ ) and (Pν). Let {νk}∞k=1 be a positive sequence such
that νk → 0 as k → ∞. denote by ũ a solution to (P̃ ) and uk a solution to (Pν)
corresponding to νk. Then there exists a convergent subsequence, that is ukj → u0 in
L2((0, T );RNC ) as j →∞, and u0 is a minimum-norm solution to (P̃ ), as follows

‖u0‖L2 ≤ ‖ũ‖L2 ,

for all solutions ũ of (P̃ ).

Proof. Using the monotonicity of J̃ and Jνk , we have

J̃(ũ) ≤ J̃(uk) = Jνk(u
k)− νk

2
‖uk‖2

L2 ≤ Jνk(ũ)− νk
2
‖uk‖2

L2

= J̃(ũ) +
νk
2
‖ũ‖2

L2 −
νk
2
‖uk‖2

L2 .

This implies that
νk
2
‖ũ‖2

L2 −
νk
2
‖uk‖2

L2 ≥ 0⇒ ‖ũ‖L2 ≥ ‖uk‖L2 , (5.11)

which means that uk is bounded. Hence, by reflexivity of L2, we can extract a weakly
convergent subsequence, that is, ukj ⇀ u0 in L2((0, T );RNC ) as j → ∞. By Proposition
3, we have that xkj(T )→ x0(T ) and consequently, we have the following

Jνkj (u
kj) =

1

2
‖xkj(T )︸ ︷︷ ︸
→x0(T )

−xT‖2
2 +

νkj
2
‖ukj‖2

L2︸ ︷︷ ︸
→0

.

Notice that Jνk(uk) ≤ Jνk(u) for all u ∈ L2((0, T );RNC ). Hence, by lower-semicontinuity
of Jνk , we obtain the following

J̃(u0) =
1

2
‖x0(T )− xT‖2

2 ≤ lim inf
j→∞

Jνkj (u
kj) ≤ lim inf

j→∞
Jνkj (u) , ∀u ∈ L2((0, T );RNC )

⇒ J̃(u0) ≤ J̃(u) , ∀u ∈ L2((0, T );RNC ) .
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Hence, u0 is a solution to (P̃ ).
Now, by (5.11) and lower-semicontinuity of the norm, we obtain the following

‖u0‖L2 ≤ lim inf
j→∞

‖ukj‖L2 ≤ ‖ũ‖L2 ⇒ ‖u0‖L2 ≤ ‖ũ‖L2 ,

for all solutions ũ to (P̃ ). Hence, u0 is a minimum norm solution to (P̃ ).
Next, recall that (5.11) holds for all the solutions ũ. Therefore, we have that ‖u0‖L2 ≥

‖ukj‖L2 . Therefore, we obtain

‖u0‖L2 ≤ lim inf
j→∞

‖ukj‖L2 ≤ ‖u0‖L2 .

Recalling that ukj ⇀ u0, we obtain the strong convergence ukj → u0.

In the sequel, we study the dependence of ‖uν − ũ‖L2 on ν and prove how fast this
norm decays as ν → 0. We recall that the optimality system of problem (Pν) is given in
Theorem 2.

Lemma 7. Let (x̃, ũ) be a solution to (P̃ ) and (xν , uν) be a solution to (Pν). Assume that
there exists a ρ > 0 and γ > 0 such that for all u ∈ L2((0, T );RNC ), with ‖ũ− u‖L2 < ρ,
the following holds

J̃(x, u) ≥ γ‖δx(T )‖2
2 , (5.12)

and δx solves

˙δx =

[
A+

NC∑
n=1

ũnBn

]
δx+

NC∑
n=1

(ũn − un)Bnx̃ , in (0, T ] , δx(0) = 0 . (5.13)

Then it holds that
ν

2
‖uν − ũ‖2

L2 + γ‖δx(T )‖2
2 ≤ ν

〈
ũ, ũ− uν

〉
L2 .

Proof. For ν small enough, we have the following

J̃(xν , uν) ≥ γ‖δxν(T )‖2
2 ,

where δxν denotes the solution to (5.13) corresponding to (ũ− uν). Since J̃(x̃, ũ) = 0, we
have

γ‖δxν(T )‖2
2 ≤ J̃(xν , uν)− J̃(x̃, ũ)

= Jν(xν , uν)− Jν(x̃, ũ)− ν
(1

2
‖uν‖2

L2 −
1

2
‖ũ‖2

L2

)
≤ −ν

(1

2
‖uν‖2

L2 −
1

2
‖ũ‖2

L2

)
,

where we used the fact that Jν(xν , uν)− Jν(x̃, ũ) ≤ 0. Now, since the following holds

1

2
‖uν‖2

L2 −
1

2
‖ũ‖2

L2 =
1

2
‖uν‖2

L2 +
1

2
‖ũ‖2

L2 −
〈
ũ, ũ
〉
L2

=
1

2
‖uν‖2

L2 +
1

2
‖ũ‖2

L2 −
〈
ũ, uν

〉
L2 −

〈
ũ, ũ− uν

〉
L2

=
1

2
‖uν − ũ‖2

L2 −
〈
ũ, ũ− uν

〉
L2 ,

we conclude that

γ‖δxν(T )‖2
2 ≤ −

ν

2
‖uν − ũ‖2

L2 + ν
〈
ũ, ũ− uν

〉
L2 .
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We remark that, in Lemma 7 it is assumed (5.12), that is a local convexity assumption
of problem (P̃ ). We are not able to prove (5.12), however in Section 7 we demonstrate by
numerical experiments that this estimate holds in practice. Moreover, according to (3.23)
and (3.25a) in Proposition 6, it holds that

‖δx(T )− (x(T )− xT )‖2 ≤ cϑ‖u− ũ‖2
L2 ,

and by using the reverse triangular inequality we get

‖δx(T )‖2 ≤ ‖x(T )− xT‖2 + cϑ‖u− ũ‖2
L2 ,

which resembles (5.12) (recalling that J̃(x, u) = 1
2
‖x(T ) − xT‖2

2), and shows that the
difference between ‖δx(T )‖2 and ‖x(T )−xT‖2 decays, as u→ ũ, with an order of ‖u−ũ‖2

L2 .
Now, consider the following problem

min
x,u

Ju(x, u) :=
1

2

NC∑
n=1

‖un‖2
L2

s.t. ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ) , x(0) = x0 , x(T ) = xT .

(Pu)

Since we assume controllability of the quantum system given by the LvNM equation (5.3)
and Assumption 2, then (Pu) admits a solution. Notice also that a solution to (Pu) is also
a solution to (P̃ ).

In the following result, we assume existence of a Lagrange multiplier q corresponding to
the constraint of problem (Pu). The existence of such a Lagrange multiplier is not a trivial
issue. In principle, in order to use standard existence result, one could prove controllability
of the linearization of the end-point map constraint. Unfortunately, according to our
experience, this controllability problem is not simple to solve, hence we make this existence
assumption which is necessary for the purpose of our theoretical discussion.

Lemma 8. Assume that there is a qT such that ũ satisfies

ũn = 〈Bnx̃, q〉 , n = 1, ..., NC ,

where q is a Lagrange multiplier corresponding to the constraint of (Pu) and solves

−q̇ =

[
A+

NC∑
n=1

ũnBn

]∗
q , q(T ) = qT . (5.14)

Then the following holds 〈
ũ, ũ− uν

〉
L2 = 〈qT , δxν(T )〉 , (5.15)

with δxν given by Lemma 7.

Proof. We have the following〈
ũ, ũ− uν

〉
L2 =

∑
n

〈
〈Bnx̃, q〉, ũn − uν,n

〉
L2

=
〈
q,
∑

n
(ũn − uν,n)Bnx̃

〉
L2 =

〈
q, ˙δxν −

(
A+

∑
n
ũnBn

)
δxν
〉
L2

= −
〈
q̇ +

(
A+

∑
n
ũnBn

)∗
q, δxν

〉
L2 + 〈qT , δxν〉

∣∣T
0

= 〈qT , δxν(T )〉 ,

(5.16)

where q̇ +
(
A+

∑NC
n=1 ũnBn

)∗
q = 0 holds from (5.14).
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In the following theorem, we prove an estimate which express the behaviour of ‖ũ −
uν‖L2 as ν → 0.

Theorem 26. Let (x̃, ũ) be a solution to (Pu) and let (xν , uν) be a solution to (Pν). With
the assumptions of Lemma 7 and Lemma 8, the following estimate holds

‖ũ− uν‖L2 = O(
√
ν) for ν → 0 . (5.17)

Proof. From Lemma 7, we have the following

ν

2
‖uν − ũ‖2

L2 + γ‖δxν(T )‖2
2 ≤ ν

〈
ũ, ũ− uν

〉
L2 .

From Lemma 8, we write that

ν
〈
ũ, ũ− uν

〉
L2 = ν〈qT , δxν(T )〉 .

Using Cauchy and Cauchy-Schwarz inequalities, we obtain

ν〈qT , δxν(T )〉 = 〈 ν√
2γ
qT ,
√

2γδxν(T )〉 ≤ ν2

4γ
‖qT‖2

2 + γ‖δxν(T )‖2
2 .

Therefore we get the following inequalities

ν

2
‖uν − ũ‖2

L2 + γ‖δxν(T )‖2
2 ≤ ν〈qT , δxν(T )〉 ≤ γ‖δxν(T )‖2

2 +
ν2

4γ
‖qT‖2

2 ,

which implies the following

‖uν − ũ‖L2 ≤
√
ν
(
‖qT‖2

1√
2γ

)
.

Notice that, the convergence results proved in Theorem 25 and Theorem 26 are
valid in the case that the set of admissible controls Uad coincides with the entire space
L2((0, T );RNC ). A natural extension of these results is to consider that Uad is only a
subset of L2((0, T );RNC ). For this constrained case, we can prove the same convergence
results in the following theorem.

Theorem 27. Consider problems (P̃ ), (Pν) and (Pu) with the additional constraint u ∈
Uad, where Uad is a closed, convex and bounded subset of L2((0, T );RNC ). Let {νk}∞k=1 be
a positive sequence such that νk → 0 as k → ∞. denote by ũ a solution to (P̃ ) and uk
a solution to (Pν) corresponding to νk. Then there exists a convergent subsequence, that
is ukj → u0 in L2((0, T );RNC ) as j → ∞, and u0 ∈ Uad is a minimum-norm solution to
(P̃ ), that is

‖u0‖L2 ≤ ‖ũ‖L2 ,

for all solutions ũ of (P̃ ). Hence, u0 is a solution to (Pu). Moreover, assume that

• there exists a ρ > 0 and γ > 0 such, that for all u with ‖ũ− u‖L2 < ρ, the estimate
(5.12) holds;
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• there exists a qT such that ũ satisfies

NC∑
n=1

〈ũn − 〈Bnx̃, q〉, vn − ũn〉L2 ≥ 0 , ∀v ∈ Uad , (5.18)

where q is a Lagrange multiplier corresponding to the state-constraint of (Pu) and
solves (5.14).

Then the following estimate holds

‖ũ− uν‖L2 = O(
√
ν) for ν → 0 . (5.19)

Proof. The proof follows exactly the same arguments used in Theorem 25, Lemma 7,
Lemma 8 and Theorem 26 with few small changes:

• in Theorem 25: the subsequence ukj converges weakly to u0 in L2((0, T );RNC ), and
u0 ∈ Uad because Uad is closed, convex and bounded, hence weakly sequentially
compact;

• in Lemma 8: from (5.18), by fixing v = uν we have

〈ũ, uν − ũ〉L2 ≥
∑

n
〈〈Bnx̃, q〉, uν,n − ũn〉L2 , (5.20)

which implies that

〈ũ, ũ− uν〉L2 ≤
∑

n
〈〈Bnx̃, q〉, ũn − uν,n〉L2 . (5.21)

Now, similarly as in (5.16), we obtain that∑
n

〈
〈Bnx̃, q〉, ũn − uν,n

〉
L2 = 〈qT , δxν(T )〉 . (5.22)

From (5.21) and (5.22) we get

〈ũ, ũ− uν〉L2 ≤ 〈qT , δxν(T )〉 . (5.23)

• in Theorem 26: use (5.20)-(5.23) instead of (5.15).

We remark that, the estimate (5.17) is not sharp, in the sense that numerical evidence
shows in some cases a faster rate of convergence. This fact will be clear from the numerical
experiments discussed in Section 7. In order to provide this numerical evidence with a
theoretical explanation, we consider the following theorem.

Theorem 28. Let (x̃, ũ) be a solution to (P̃ ) and (xν , uν) be a solution to (Pν). Assume
that there exists a ρ > 0 and γ > 0 such that for all u, with ‖ũ− u‖L2 < ρ, the following
holds

J̃(x, u) ≥ γ‖ũ− u‖αL2 , (5.24)

with α ≥ 2. Then it holds that

‖ũ− uν‖L2 = O(ν1/(α−1)) for ν → 0 . (5.25)
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Proof. For ν small enough, as in Lemma 7, we obtain that

γ‖ũ− uν‖αL2 ≤ −
ν

2
‖uν − ũ‖2

L2 + ν
〈
ũ, ũ− uν

〉
L2

≤ ν‖ũ‖L2‖ũ− uν‖L2 ,

which implies that

‖ũ− uν‖L2 ≤ ν1/(α−1)
(1

γ
‖ũ‖L2

)1/(α−1)

.

Notice that in Theorem 28, we consider a relaxed version of the hypothesis (5.12).
In particular, the exponent α is assumed to be greater or equal than 2. This choice is
motivated by the fact that, recalling J̃(x, u) = 1

2
‖x(T ) − xT‖2

2 and by using Proposition
7, it holds that

γ‖u− ũ‖αL2 ≤
1

2
‖x(T )− xT‖2

2 ≤
ĉ2

1

2
‖u− ũ‖2

L2 ,

where it is clear that α has to be greater or equal than 2. The estimate (5.24) is realistic.
For instance, can be interpreted for α = 2 as coercivity of the reduced Hessian operator:
let ũ be a solution with J̃r(ũ) = 0, then we can write the following

J̃r(u) ≈ J̃r(ũ) + 〈∇uJ̃r(ũ), u− ũ〉L2 + 〈Jr(ũ)(u− ũ), u− ũ〉L2

= 〈Jr(ũ)(u− ũ), u− ũ〉L2

≥ γ̃‖u− ũ‖2
L2 ,

where γ̃ is a positive constant.
The following result is a direct consequence of the above theorems.

Corollary 3. Let (x̃, ũ) be a solution to (Pu) and consequently of (P̃ ). Consider the
weight parameters sequence {νk}∞k=1 defined by the formula νk+1 = γ̂νk, where γ̂ ∈ (0, 1).
Then it holds that ‖uνk − uνk+1

‖L2 = O(ναk ).

Proof. By Theorem 26 and using the triangular inequality, we have that

‖uνk − uνk+1
‖L2 ≤ ‖uνk − ũ‖L2 + ‖uνk+1

− ũ‖L2 ,

and consequently
‖uνk − uνk+1

‖L2 = O(ναk ) +O(ναk+1) .

Now, since νk+1 = γ̂νk we get that ναk+1 = γαναk = γαναk = O(ναk ), and hence ‖uνk −
uνk+1

‖L2 = O(ναk ).

5.3 A shooting-type method for the exact-control of
quantum systems

In this section, we present a computational method to solve (5.1) with the additional
requirement that the control functions have minimal norm. For this purpose, we consider
the following steps.

(A) Embed (5.1) in a minimum-norm exact-controllability problem, that is (5.26).

(B) Consider the first-order optimality system of (5.26) given by (5.28).
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(C) Embed (5.28) in the optimization problem (5.30).

(D) Derive the first-order optimality system of (5.30) in Proposition 2.

(E) Consider problem (5.30) in the reduced form, that is (5.36), having optimality sys-
tem given by Proposition 16.

(F) Solve (5.36) by means of optimal control techniques. Notice that regularity proper-
ties of (5.36) are investigated in Section 5.3.1.

Notice that in the formulation of the optimality system (5.28) in step (B) it results that
a boundary condition is undetermined, and hence has to be considered an unknown. The
fact that a boundary condition has to be treated as an unknown motivates the fact that
our computational scheme is addressed as a shooting-type method.

We start by discussing the step (A). Notice that, since (5.1) is a time-boundary-value
problem, it is possible to solve it using the class shooting methods [112], although these
methods have been less investigated in the case of bilinear control. However, problem
(5.1) may admit many solutions, and it becomes necessary to complement the problem
with a constraint on u.

A suitable way to constraint the controls is to consider (5.1) embedded in an opti-
mization problem. For this reason, we focus on the following

min
x,u

J(x, u) :=
1

2

NC∑
n=1

‖un‖2
L2

s.t. ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ) , x(0) = x0 , x(T ) = xT

x ∈ H1((0, T );RNx) and u ∈ L2((0, T );RNC ) .

(5.26)

Notice that (5.26) admits a solution if the target xT belongs to the set of all points reach-
able at time T from a given starting point x0. Moreover, problems (5.1) and (5.26) are
not equivalent. A solution of (5.26) is a minimum L2-norm solution and solves also (5.1).
On the other hand, a solution of (5.1) is not necessarily a solution to (5.26). We remark
that, problem (5.26) is already considered in Section 5.2 to prove Lemma 8, and in this
section we maintain Assumption 2.

Next, step (B) is addressed, and we discuss first-order optimality conditions for (5.26).
To this purpose, the following assumption regarding the existence of Lagrange multipliers
is necessary.

Assumption 3. There exist Lagrange multipliers pT ∈ RNx and p ∈ H1((0, T );RNx)
corresponding to the constraint equation of the optimization problem (5.26). Moreover, p
satisfies the following adjoint equation

−ṗ =

[
A+

NC∑
n=1

unBn

]∗
p , in [0, T ) , p(T ) = pT . (5.27)

In Assumption 3, we consider that there exists a vector pT such that the corresponding
solution p is the Lagrange multiplier associated with the state x. Notice that pT is
unknown and p is uniquely determined by pT and the control u. Further, notice that,
once the existence of p ∈ H1((0, T );RNx) is assumed, then (5.27) can be obtained by
means of the standard Lagrange function approach.
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A solution to (5.26) is characterized by the following first-order optimality system,

ẋ =

[
A+

NC∑
n=1

unBn

]
x , x(0) = x0 , x(T ) = xT (5.28a)

− ṗ =

[
A+

NC∑
n=1

unBn

]∗
p , p(T ) = pT (5.28b)

un − 〈Bnx, p〉 = 0 , n = 1, ..., NC , (5.28c)

where 〈·, ·〉 represents the Euclidean scalar product.
Because of (5.28a), there is no clear approach of how to solve (5.28). For this reason,

in the next step, we reformulate (5.28) in such a way that it can be solved by using ap-
propriate optimization techniques.

Now, we address step (C). In order to solve (5.28), we consider the map

G : H1((0, T );RNx)× L2((0, T );RNC )×H1((0, T );RNx)→ L2((0, T );RNC )× RNx ,

defined as follows

G(x, u, p) :=


u1 − 〈B1x, p〉

...
uNC − 〈BNCx, p〉

x(T )− xT

 . (5.29)

Since this map is obtained by using the gradient component (5.28c) and the terminal
condition of (5.28a), a triple (x, u, p) is a solution of (5.28), and a stationary point for
(Pu), if and only if it is a root of G with x and p solutions to (5.28a) and (5.28b),
respectively.

We remark that, it could be possible to compute a root for G using a Newton method,
however, according to our experience, the corresponding Jacobian operator is not suffi-
ciently regular to be used successfully in computational algorithms. For this reason, in
order to compute a root (x, u, p) of G, we define our main optimization problem as follows

min
x,u,p

G(x, u, p) :=
1

2
|||G(x, u, p)|||2 =

1

2

NC∑
n=1

‖un − 〈Bnx, p〉‖2
L2 +

1

2
‖x(T )− xT‖2

2

s.t. ẋ =

[
A+

NC∑
n=1

unBn

]
x , in (0, T ] , x(0) = x0

− ṗ =

[
A+

NC∑
n=1

unBn

]∗
p , in [0, T ) , p(T ) = pT

x, p ∈ H1((0, T );RNx) and u ∈ L2((0, T );RNC ) .

(5.30)

In (5.30), the following notation is used. Consider any pair a, b ∈ L2((0, T );RNC ) ×
RNx given by a = (a1, a2) and b = (b1, b2), we define the inner product (·, ·)G and the
corresponding induced norm ||| · ||| is as follows

(a, b)G :=

NC∑
n=1

〈a1,n, b1,n〉L2 + 〈a2, b2〉 , |||a||| :=
√

(a, a)G .
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We remark that a solution (x̂, û, p̂) of (5.30) with G(x̂, û, p̂) = 0 is a root of G, and
hence a solution of the optimality system (5.28).

We address the forward equation in x and the backward equation in p as constraint
equations in the minimization problem (5.30).

Existence and uniqueness of solutions x, p ∈ H1((0, T );RNx) of the constraint equa-
tions of (5.30) for any T > 0 and any initial and terminal condition, corresponding to
a given u ∈ L2((0, T );RNC ), can be proved as in Proposition 1. Hence, the solutions x
and p are uniquely determined by the controls and the initial and terminal conditions,
respectively. We have that x = x(u, x0) and p = p(u, pT ). Consequently, we remark that
the unknowns of (5.28) are the control u ∈ L2((0, T );RNC ) and the terminal condition for
the adjoint equation pT ∈ RNx .

In the following proposition, we state the existence of a solution of (5.30). Moreover,
we analyze the relationship between the problems (5.26) and (5.30). In particular, the
condition G = 0 is required to guarantee that a solution to (5.30) is a stationary point
for (5.26).

Proposition 13. A triple
(
x, u, p

)
∈ H1((0, T );RNx)×L2((0, T );RNC )×H1((0, T );RNx),

with x = x(u, x0) and p = p(u, pT ), is a solution of (5.30) with G(x, u, p) = 0 if and only
if it is a stationary point of (5.26).

Proof. According to Assumptions 2 and 3, the control system (5.1) is solvable, hence
problem (5.26) admits a solution that is a stationary point. Assume that

(
x, u, p

)
is

a stationary point for (5.26), then it solves the optimality system (5.28). Hence, the
constraint equations of (5.30) are satisfied, the norm of the gradient component is zero,
that is

∑
n ‖un−〈Bnx, p〉‖2

L2 = 0, and the target point is reached. Consequently,
(
x, u, p

)
is a solution of (5.30) with G = 0.

On the other hand, assume that
(
x, u, p

)
solves (5.30) withG = 0. Then, the constraint

and adjoint equations (as IVP) of (5.28) are satisfied. The fact that G = 0 implies that∑
n ‖un−〈Bnx, p〉‖2

L2 = 0 and ‖x(T )−xT‖2
2 = 0, which means that the gradient component

of (5.28) is zero and the terminal condition x(T ) = xT holds. Consequently, the triple(
x, u, p

)
satisfies (5.28), hence it is a stationary point for (5.26).

We remark that a solution of (5.30) with G = 0 is only a stationary point for (5.26),
hence it is not guaranteed that it is a minimum norm solution of (5.26).

Next, step (D) is discussed, and the optimality conditions used to characterize a
solution to (5.30) are considered. To obtain the first-order optimality system, we follow
the Lagrange multipliers approach. To this purpose, we denote by y, q ∈ H1((0, T );RNx)
the Lagrange multipliers corresponding to x and p, respectively, and consider the Lagrange
function corresponding to (5.30), that is given by

L(x, u, p, y, q) = G(x, u, p) +
〈
ẋ−

[
A+

NC∑
n=1

unBn

]
x, y
〉
L2

+
〈
−ṗ−

[
A+

NC∑
n=1

unBn

]∗
p, q
〉
L2
.

(5.31)

By means of (3.47), the optimality system for (5.30) is obtained in the following propo-
sition.
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Proposition 14. The optimality system corresponding to (5.30) is given by

ẋ =

[
A+

NC∑
n=1

unBn

]
x , x(0) = x0 , (5.32a)

− ṗ =

[
A+

NC∑
n=1

unBn

]∗
p , p(T ) = pT , (5.32b)

− ẏ =

[
A+

NC∑
n=1

unBn

]∗
y +

NC∑
n=1

[
(un − 〈Bnx, p〉)B∗np

]
, y(T ) = −(x(T )− xT ) ,

(5.32c)

q̇ =

[
A+

NC∑
n=1

unBn

]
q +

NC∑
n=1

[
(un − 〈Bnx, p〉)Bnx

]
, q(0) = 0 , (5.32d)

un − 〈Bnx, p〉 − 〈Bnx, y〉 − 〈B∗np, q〉 = 0 , n = 1, ..., NC , (5.32e)

where (5.32a) and (5.32b) are the constraint equations, (5.32c) and (5.32d) are the cor-
responding adjoint equations, and (5.32e) gives the components of the gradient.

Proof. Since L(x, u, p, y, q) is linear with respect to the adjoint variables y and q, we
obtain the constraint equations (5.32a) and (5.32b) as follows〈

∇yL(x, u, p, y, q), δy
〉
L2

=
〈
ẋ−

[
A+

∑
n
unBn

]
x, δy

〉
L2
,

and 〈
∇qL(x, u, p, y, q), δq

〉
L2

=
〈
−ṗ−

[
A+

∑
n
unBn

]∗
p, δq

〉
L2
.

For optimality, the two inner products
〈
∇yL(x, u, p, y, q), δy

〉
L2

and
〈
∇qL(x, u, p, y, q), δq

〉
L2

have to be equal to zero for all δy ∈ L2((0, T );RNx) and δq ∈ L2((0, T );RNx), respectively,
thus (5.32a) and (5.32b) follow.

To obtain the adjoint equations (5.32c) and (5.32d), we consider the derivative with
respect to x and p along the two directions δx and δp, respectively. We obtain (5.32c) as
follows〈

∇xL(x, u, p, y, q), δx
〉
L2

= 〈δx(T ), x(T )− xT 〉

+

∫ T

0

〈 ˙δx−
[
A+

∑
n
unBn

]
δx, y〉dt−

∫ T

0

〈
∑

n
(un − 〈Bnx, p〉)Bnδx, p〉dt

= 〈δx(T ), x(T )− xT 〉+
[
〈δx, y〉

]T
0

+

∫ T

0

〈−ẏ −
[
A+

∑
n
unBn

]∗
y −

∑
n
(un − 〈Bnx, p〉)B∗np, δx〉dt

= 〈δx(T ), x(T )− xT 〉+
[
〈δx, y〉

]T
0

+
〈
−ẏ −

[
A+

∑
n
unBn

]∗
y −

∑
n
(un − 〈Bnx, p〉)B∗np, δx

〉
L2
.

Since the product
〈
∇xL(x, u, p, y, q), δx

〉
L2

has to be equal to zero for all δx ∈ L2((0, T );RNx),
and we have that δx(0) = 0, we obtain the terminal condition y(T ) = −(x(T )− xT ) and
the adjoint equation (5.32c).
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To obtain the adjoint problem (5.32d), we proceed as follows〈
∇pL(x, u, p, y, q), δp

〉
L2

=

∫ T

0

〈−δ̇p−
[
A+

∑
n
unBn

]∗
δp, q〉dt−

∫ T

0

〈
∑

n
(un − 〈Bnx, p〉)Bnx, δp〉dt

= −
[
〈δp, q〉

]T
0

+

∫ T

0

〈q̇ −
[
A+

∑
n
unBn

]∗
q −

∑
n
(un − 〈Bnx, p〉)Bnx, δp〉dt

= −
[
〈δp, q〉

]T
0

+
〈
q̇ −

[
A+

∑
n
unBn

]
q −

∑
n
(un − 〈Bnx, p〉)Bnx, δp

〉
L2
.

The product
〈
∇pL(x, u, p, y, q), δp

〉
L2

has to be equal to zero for all δp ∈ L2((0, T );RNx)
with δp(T ) = 0. As a consequence, we have that q(0) = 0 and we obtain the adjoint
equation (5.32d).

We derive the n-component of the gradient (5.32e) by means of the variation of the
Lagrangian with respect to the control un as follows〈
∇unL(x, u, p, y, q), δun

〉
L2

=

∫ T

0

(un − 〈Bnx, p〉)δun − 〈Bnx, y〉δun − 〈B∗np, q〉δundt

=
〈
un − 〈Bnx, p〉 − 〈Bnx, y〉 − 〈B∗np, q〉, δun

〉
L2 .

Since this product has to be equal to zero for all δun ∈ L2(0, T ), we obtain the optimality
condition (5.32e).

In the following proposition, we discuss existence and uniqueness of solutions to the
adjoint problems (5.32c) and (5.32d).

Proposition 15. Given yT and q0, consider the following problems

−ẏ =

[
A+

NC∑
n=1

unBn

]∗
y +

NC∑
n=1

[
(un − 〈Bnx, p〉)B∗np

]
, y(T ) = yT , (5.33)

and

q̇ =

[
A+

NC∑
n=1

unBn

]
q +

NC∑
n=1

[
(un − 〈Bnx, p〉)Bnx

]
, q(0) = q0 , (5.34)

with y, q, x, p ∈ H1((0, T );RNx) and u ∈ L2((0, T );RNC ). Then (5.33) and (5.34) admit
unique solutions for any T > 0 and any yT and q0, respectively.

Moreover, assume that
(
x(u, x0), u, p(u, pT )

)
is a stationary point for (5.26), then the

problems (5.32c), which corresponds to problem (5.33) with yT = 0, and (5.32d), which
corresponds to (5.34) with q0 = 0, admit the unique solutions y(t) = 0 and q(t) = 0, for
all t ∈ [0, T ].

Proof. Existence and uniqueness of solution of (5.33) and (5.34) can be proved by means
of known results; see, e.g., [107] and Proposition 1.

Next, consider problem (5.32d). Since
(
x(u, x0), u, p(u, pT )

)
is a stationary point for

(5.26), we have that un − 〈Bnx, p〉 = 0, for n = 1, ..., NC ; hence, the forcing terms in the
differential equations in (5.32c) and (5.32d) are zero. Consequently, since A and Bn are
skew-symmetric, the dynamics are norm preserving, we have that (5.33) with yT = 0 and
(5.34) with q0 = 0 admit the unique solutions y = 0 and q = 0.
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Next, we address step (E), and discuss the reduced form of problem (5.30), which is
suitable to be solved by means of appropriate numerical optimization methods. As men-
tioned above, the solutions of the constraint equations (5.32a) and (5.32b) are uniquely
determined by the initial and terminal conditions, that are x(0) = x0 and p(T ) = pT ,
respectively, and by the control vector function u. We have

x = x(u) and p = p(u, pT ) , (5.35)

where the dependence of x from x0 is omitted because it is an input of the problem.
Consequently, problem (5.30) can be equivalently expressed in the following reduced form

min
u,pT

Gr(u, pT ) := G(x(u), u, p(u, pT ))

s.t. (x(u), p(u, pT )) ∈ Sad :=
{

(x, p)
∣∣ x solves (3.53a) and p solves (3.53b)

}
.

(5.36)

We characterize a solution of (5.36) with the first-order optimality conditions given in
the following result, which follows directly from Proposition 14.

Proposition 16. The optimality system corresponding to problem (5.36) is given by

∇unGr(u, pT ) := un − 〈Bnx, p〉 − 〈Bnx, y〉 − 〈B∗np, q〉 = 0 , n = 1, ..., NC , (5.37a)
∇pTGr(u, pT ) := −q(T ) = 0 , (5.37b)

where x, p, y and q solve the following problems

ẋ =

[
A+

NC∑
n=1

unBn

]
x , x(0) = x0 , (5.37c)

− ṗ =

[
A+

NC∑
n=1

unBn

]∗
p , p(T ) = pT , (5.37d)

− ẏ =

[
A+

NC∑
n=1

unBn

]∗
y +

NC∑
n=1

[
(un − 〈Bnx, p〉)B∗np

]
, y(T ) = −(x(T )− xT ) ,

(5.37e)

q̇ =

[
A+

NC∑
n=1

unBn

]
q +

NC∑
n=1

[
(un − 〈Bnx, p〉)Bnx

]
, q(0) = 0 . (5.37f)

Proof. Consider Proposition 14 and its proof. We remark that, the gradient component
of the reduced problem with respect to pT is obtained from the fact that

〈∇pTGr(u, pT ), δq(T )〉 = 〈−q(T ), δq(T )〉 = 0 , (5.38)

for all δq(T ). Notice that, unlike in (5.30), in (5.36) pT is not fixed, hence δq(T ) is not
fixed to 0.

Notice that in step (E), we write problem (5.30) in the reduced form, that is (5.36), and
derive its first-order optimality system in Proposition 16. In this settings, it is possible
to perform step (F) and address problem (5.30) by using optimal control techniques; see,
e.g., [16].

In the next section, we discuss regularity properties of (5.30). These are necessary
to guarantee a correct behaviour of optimal control solvers. In particular, we discuss
regularity of the Hessian operator corresponding to (5.30), that allows us to obtain second
order necessary and sufficient optimality conditions and to characterize the corresponding
optimal control solutions.
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5.3.1 Regularity properties

In this section, we investigate the reduced Hessian operator corresponding to (5.36) and
its regularity properties. For this purpose, we first discuss the Hessian of problem (5.30),
then we consider its reduced form corresponding to (5.36). In particular, we focus on its
action on a given vector function. This aspect will be crucial in the development of a
Krylov-Newton method as discussed in the next section.

By computing the second directional derivative of the Lagrange function (5.31), we
write that 〈

H(x, u, p)


δx
δu
δp
δy
δq

 ,


δx
δu
δp
δy
δq


〉
L2

=

〈
Hx

Hu

Hp

Hy

Hq

 ,


δx
δu
δp
δy
δq


〉
L2

, (5.39)

where Hx, Hu, Hp, Hy and Hq denote the following

Hx =− δ̇y −

[
A+

NC∑
n=1

unBn

]∗
δy −

[
NC∑
n=1

δunBn

]∗
y −

NC∑
n=1

(un − 〈Bnx, p〉)B∗nδp

−
NC∑
n=1

(δun − 〈Bnδx, p〉 − 〈Bnx, δp〉)B∗np , with δy(T ) = −δx(T ) ,

(5.40)

Hun = δun − 〈Bnδx, p〉 − 〈Bnx, δp〉 − 〈Bnδx, y〉
− 〈Bnx, δy〉 − 〈B∗nδp, q〉 − 〈B∗np, δq〉 ,

(5.41)

Hp = δ̇q −

[
A+

NC∑
n=1

unBn

]
δq −

[
NC∑
n=1

δunBn

]
q −

NC∑
n=1

(un − 〈Bnx, p〉)Bnδx

−
NC∑
n=1

(δun − 〈Bnδx, p〉 − 〈Bnx, δp〉)Bnx , with δq(0) = 0 ,

(5.42)

Hy = ˙δx−

[
A+

NC∑
n=1

unBn

]
δx−

[
NC∑
n=1

δunBn

]
x , with δx(0) = 0 , (5.43)

and

Hq = −δ̇p−

[
A+

NC∑
n=1

unBn

]∗
δp−

[
NC∑
n=1

δunBn

]∗
p , with δp(T ) = δpT . (5.44)

Notice that Hx, Hu, Hp, Hy and Hq represent the residuals of the linearized optimality
system.

Now, we consider the reduced problem (5.36) and we denote by ∇2Gr(u, pT ) the cor-
responding reduced Hessian operator. We recall that the unknowns are the control u
and the terminal condition pT . Consequently, the action of ∇2Gr(u, pT ) on a vector
(δu, δpT )T ∈ L2((0, T );RNC )× RN is given by the following

∇2Gr(u, pT )


δu1
...

δuNC
δpT

 =


Hu1(x, u, p)

...
HuNC

(x, u, p)

HpT (x, u, p)

 , (5.45)
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where δx, δp, δy and δq are solutions obtained by cancelling (5.43), (5.44), (5.40) and
(5.42), respectively, and HpT (x, u, p) = −δq(T ). Hence, the action of the reduced Hessian
operator can be obtained by solving the linearized equations (5.40) and (5.42)-(5.44) and
the assembling (5.45).

With the following theorem, we prove regularity of the reduced Hessian operator.

Theorem 29. Let (u, pT ) be a solution of (5.36) with Gr(u, pT ) = 0, then the reduced
Hessian operator ∇2Gr(u, pT ) is positive semi-definite, and in particular we have that〈
∇2Gr(u, pT )

(
δu
δpT

)
,

(
δu
δpT

)〉
L2

= ‖δx(T )‖2
2 +

NC∑
n=1

‖δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉‖2
L2 .

(5.46)

Proof. We denote by x = x(u) and p = p(u, pT ) the unique solutions of the constraint
equations (5.37c) and (5.37d), respectively, and with y = y(x, u, p) and q = q(x, u, p), the
unique solutions of the adjoint equations (5.37e) and (5.37f), respectively. We prove the
claim in two steps.

Step 1: since (u, pT ) is a solution of (5.36) with Gr(u, pT ) = 0, then we have that
un − 〈Bnx, p〉 = 0 for n = 1, ..., NC . Moreover, by Proposition 15, we know that y = 0
and q = 0. Consequently, the linearized adjoint equations Hx = 0 and Hp = 0 become as
follows

−δ̇y =
[
A+

∑
n
unBn

]∗
δy +

∑
n

(
δun − 〈Bnδx, p〉 − 〈Bnx, δp〉

)
B∗np , (5.47)

with δy(T ) = −δx(T ), and

δ̇q =
[
A+

∑
n
unBn

]
δq +

∑
n

(
δun − 〈Bnδx, p〉 − 〈Bnx, δp〉

)
Bnx , (5.48)

with δq(0) = 0. Now, similarly as in (3.39), we define O(u) : H1((0, T );RNx) →
L2((0, T );RNx)

O(u) :=
d

dt
−
[
A+

∑
n
unBn

]
, (5.49)

whose adjoint (up to some boundary condition) is given by

O(u)∗ = − d

dt
−
[
A+

∑
n
unBn

]∗
. (5.50)

Notice that, by solving the equations Hy = 0 and Hp = 0, we have

O(u)(δx+ δq) = ˙δx+ δ̇q −
[
A+

∑
n
unBn

](
δx+ δq

)
=
∑

n
δunBnx+

NC∑
n=1

(
δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉

)
Bnx

=
∑

n

(
2δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉

)
Bnx ,

(5.51)

and analogously, solving Hx = 0 and Hq = 0, we have

O(u)∗(δp+ δy) = −δ̇p− δ̇y −
[
A+

∑
n
unBn

]∗(
δp+ δy

)
=
∑

n

(
2δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉

)
B∗np .

(5.52)
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Step 2: using (5.45) and (5.41) and the fact that y = 0 and q = 0, we have〈
∇2Gr(u, pT )

(
δu
δpT

)
,

(
δu
δpT

)〉
L2

=

=

〈
δu1 − 〈B1δx, p〉 − 〈B1x, δp〉 − 〈B1x, δy〉 − 〈B∗1p, δq〉

...
δuNC − 〈BNCδx, p〉 − 〈BNCx, δp〉 − 〈BNCx, δy〉 − 〈B∗NCp, δq〉

−δq(T )

 ,


δu1
...

δuNC
δpT


〉
L2

=

〈
δu1 − 〈B1x, δp+ δy〉 − 〈B∗1p, δx+ δq〉

...
δuNC − 〈BNCx, δp+ δy〉 − 〈B∗NCp, δx+ δq〉

−δq(T )

 ,


δu1
...

δuNC
δpT


〉
L2

= −〈δq(T ), δpT 〉+
∑

n

∫ T

0

δu2
ndt−

∑
n

∫ T

0

(
〈Bnx, δp+ δy〉+ 〈B∗np, δx+ δq〉

)
δundt

= −〈δq(T ), δpT 〉+
∑

n

∫ T

0

δu2
ndt−

∫ T

0

(
〈
∑

n
δunBnx, δp+ δy〉+ 〈

∑
n
δunB

∗
np, δx+ δq〉

)
dt

= −〈δq(T ), δpT 〉+
∑

n

∫ T

0

δu2
ndt−

∫ T

0

(
〈O(u)(δx), δp+ δy〉+ 〈O(u)∗(δp), δx+ δq〉

)
dt ,

(5.53)

the latter equation follows from solving Hy = 0, Hq = 0 and (5.49) and (5.50). Now,
integrating by parts, we obtain〈
∇2Gr(u, pT )

(
δu
δpT

)
,

(
δu
δpT

)〉
L2

=

= −〈δq(T ), δpT 〉+
∑

n

∫ T

0

δu2
ndt−

[
〈δx, δp+ δy〉

]T
0
−
∫ T

0

〈δx,O(u)∗(δp+ δy)〉dt

+
[
〈δp, δx+ δq〉

]T
0
−
∫ T

0

〈δp,O(u)(δx+ δq)〉dt

= −〈δq(T ), δpT 〉+
∑

n

∫ T

0

δu2
ndt− 〈δx(T ), δpT + δy(T )〉 −

∫ T

0

〈δx,O(u)∗(δp+ δy)〉dt

+ 〈δpT , δx(T ) + δq(T )〉 −
∫ T

0

〈δp,O(u)(δx+ δq)〉dt

= −〈δx(T ), δy(T )〉+
∑

n

∫ T

0

δu2
ndt−

∫ T

0

〈δx,O(u)∗(δp+ δy)〉dt−
∫ T

0

〈δp,O(u)(δx+ δq)〉dt

= ‖δx(T )‖2
2 +

∑
n

∫ T

0

δu2
ndt−

∫ T

0

〈δx,
∑

n

(
2δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉

)
B∗np〉dt

−
∫ T

0

〈δp,
∑

n

(
2δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉

)
Bnx〉dt

(5.54)
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where we use (5.51) and (5.52) and the fact that δy(T ) = −δx(T ). We have the following〈
∇2Gr(u, pT )

(
δu
δpT

)
,

(
δu
δpT

)〉
L2

=

= ‖δx(T )‖2
2 +

∑
n

∫ T

0

[
δu2

n − 2δun〈δx,B∗np〉+
(
〈δx,B∗np〉+ 〈x,B∗nδp〉

)
〈δx,B∗np〉

− 2δun〈δp,Bnx〉+
(
〈δx,B∗np〉+ 〈x,B∗nδp〉

)
〈δp,Bnx〉

]
dt

= ‖δx(T )‖2
2 +

∑
n

∫ T

0

(
δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉

)2

dt ,

(5.55)

which implies that〈
∇2Gr(u, pT )

(
δu
δpT

)
,

(
δu
δpT

)〉
L2

= ‖δx(T )‖2
2 +

∑
n
‖δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉‖2

L2 .

(5.56)
Consequently, we have〈

∇2Gr(u, pT )

(
δu
δpT

)
,

(
δu
δpT

)〉
L2

≥ 0 , ∀(δu, δpT ) . (5.57)

Next, coercivity of the reduced Hessian operator (5.45) is discussed. According to
Theorem 29, the Hessian in (5.45) is positive-semidefinite for all the pair (δu, δpT ). To
improve this result, we characterize in Corollary 4 the set of all points in which (5.45) is
indefinite and we discuss the relationship between (5.45) and the end-point map δu 7→
δx(T ; δu). Next, we provide sufficient conditions for the coercivity of the reduced Hessian
operator (5.45), see Theorem 30 and Corollary 5. Moreover, the coercivity of the reduced
Hessian operator (5.45) allows us to characterize solutions to the minimum norm exact-
control problem (5.26) as isolated points. This property is shown in Corollary 7.

Corollary 4. Consider the assumptions of Theorem 29. Then, we have that〈
∇2Gr(u, pT )

(
δu
δpT

)
,

(
δu
δpT

)〉
L2

= 0 , (5.58)

for all (δu, δpT ) belonging to a convex neighbourhood of (0, 0). Moreover, if the map
δu 7→ δx(T ; δu) is injective in a neighbourhood N of δu = 0, then ∇2Gr(u, pT ) is positive
definite in N .

Proof. To prove the first claim, we recall (5.46) and consider the following optimization
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problem

min
δu,δpT

F (δu, δpT ) := ‖δx(T )‖2
2 +

NC∑
n=1

‖δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉‖2
L2

s.t. ˙δx =

[
A+

NC∑
n=1

unBn

]
δx+

[
NC∑
n=1

δunBn

]
x , δx(0) = 0

− δ̇p =

[
A+

NC∑
n=1

unBn

]∗
δp+

[
NC∑
n=1

δunBn

]∗
p , δp(T ) = δpT

(δu, δpT ) ∈ S ⊂ L2((0, T );RNx)× RNC ,

(5.59)

where (x(u), u, p(u, pT )) is a solution of (5.36) with Gr(u, pT ) = 0 and S is closed, convex
and bounded subset of L2((0, T );RNx)×RNC . The existence of a solution of (5.59) follows
from the fact that F (δu, δpT ) ≥ 0 and F (0, 0) = 0. Hence (δu, δpT ) = (0, 0) is a global
minimum of (5.59).

Now, notice that the constraint differential equations in (5.59) are linear, and the
maps (δx, δun, δp) 7→ δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉 and δu 7→ δx(T ; δu) preserve convex
combinations. Hence the convexity of the norms implies that F is convex. Since, S is
a convex set and F a convex function, then the set of global minima of F is convex.
Consequently, we obtain that F (δu, δpT ) = 0 for all (δu, δpT ) belonging to a convex
neighbourhood of (0, 0) included in S; see, e.g., [66] (Theorem 2.14).

To prove the second argument, we consider the following. If δu 7→ δx(T ; δu) is in-
jective in a neighbourhood N of δu = 0, then in N we have that δu = 0 if and only if
‖δx(T ; δu)‖2 = 0. Consequently, the positive definiteness of (5.45) follows.

Before to state and prove our main result regarding coercivity of the reduce Hessian
operator, we need to consider the two following lemmas.

Lemma 9. Let (ũ, p̃T ) be a solution of (5.36) with Gr(ũ, p̃T ) = 0. If p̃T = 0, then ũ = 0,
that is (ũ, p̃T ) is a trivial solution of (5.36).

Proof. Assuming that p̃T = 0 and recalling that (3.53b) is norm preserving, we get that
p̃(t; p̃T ) = 0 a.e. on (0, T ). Since (ũ, p̃T ) be a solution of (5.36) with Gr(ũ, p̃T ) = 0, we
have that ũn = 〈Bnx, p̃〉 for n = 1, ..., NC . Consequently, we obtain that ũ = 0.

Lemma 10. Let (u, pT ) be a solution of (5.36) with Gr(u, pT ) = 0. Let δx and δp be the
unique solutions of Hy = 0 and Hq = 0, respectively. Then the following estimates hold

‖δx‖L2 ≤ 2T
√
NCK00‖x0‖2‖δu‖L2 , (5.60)

and
‖δp‖L2 ≤ 2T

√
NCK00‖pT‖2‖δu‖L2 +

√
T‖δpT‖2 . (5.61)

where K00 =
∑NC

n=1 ‖Bn‖L.

Proof. The claim follows straightforwardly from Proposition 5 and Proposition 10. Notice
that we use Lemma 9 to ensure that ‖pT‖2 6= 0 in Proposition 10.

Theorem 30. Let (u, pT ) be a solution of (5.36) with Gr(u, pT ) = 0. Let K00 =∑NC
n=1 ‖Bn‖L and

K̃n := ‖Bn‖L‖x0‖2

√
T , (5.62)
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and
Kn := 1− 4

√
NCK00T‖Bn‖L‖pT‖2‖x0‖2 , (5.63)

and assume that T is large enough, in the sense that there exists a positive constant ε of
O(1/T 2m) with m > 2 such that the following holds

‖δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉‖L2 ≥
√
ε
∣∣Kn‖δu‖L2 − K̃n‖δpT‖2

∣∣ . (5.64)

Assume also that

C1,n := 1+K̃n

(
16TNCK

2
00‖pT‖2

2K̃n−8
√
TNCK00‖pT‖2−1+4

√
TNCK00‖pT‖2K̃n

)
> 0 ,

(5.65)
and

C2,n := K̃n + 4
√
TNCK00K̃n‖pT‖2 − 1 > 0 , (5.66)

for n = 1, ..., NC. Then, the reduced Hessian operator ∇2Gr(u, pT ) is coercive as follows〈
∇2Gr(u, pT )

(
δu
δpT

)
,

(
δu
δpT

)〉
L2

≥ ‖δx(T )‖2
2 + εα

(
‖δu‖2

L2 +‖δpT‖2
2

)
, ∀(δu, δpT ) 6= 0 ,

(5.67)
where α > 0 is given by

α := min
n

{
(K2

n −KnK̃n) , (K̃2
n −KnK̃n)

}
. (5.68)

Moreover, ∇2Gr(u, pT ) is invertible in a neighbourhood of (u, pT ).

Proof. Consider the norm ‖δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉‖L2 which appears in (5.56). We
have that

‖δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉‖L2 ≥ ‖δun‖L2 − ‖〈δx,B∗np〉‖L2 − ‖〈Bnx, δp〉‖L2 . (5.69)

Now, recalling that (5.37c) and (5.37d) are norm preserving and using the estimates (5.60)
and (5.61), we obtain

‖〈δx,B∗np〉‖L2 ≤ ‖Bn‖L‖pT‖22T
√
NCK00‖x0‖2‖δu‖L2 , (5.70)

and

‖〈Bnx, δp〉‖L2 ≤ ‖Bn‖L‖pT‖22T
√
NCK00‖x0‖2‖δu‖L2 + ‖Bn‖L

√
T‖x0‖2‖δpT‖2 . (5.71)

Replacing (5.70) and (5.71) in (5.69), we have

‖δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉‖L2 ≥ Kn‖δu‖L2 − K̃n‖δpT‖2 . (5.72)

Moreover, for some positive ε of O(1/T 2m) with m > 2 it holds that

‖δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉‖L2 ≥
√
ε
∣∣Kn‖δu‖L2 − K̃n‖δpT‖2

∣∣ . (5.73)

Taking the square and using the Cauchy inequality, we obtain

‖δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉‖2
L2 ≥ ε

(
K2
n‖δu‖2

L2 + K̃2
n‖δpT‖2

2 − 2KnK̃n‖δu‖L2‖δpT‖2

)
≥ ε
(
K2
n‖δu‖2

L2 + K̃2
n‖δpT‖2

2 −KnK̃n

(
‖δu‖2

L2 + ‖δpT‖2
2

))
.

(5.74)
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Now, we take the sum over n and we look for a positive α such that the following holds∑
n
‖δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉‖2

L2

≥
∑

n
ε
[
K2
n‖δu‖2

L2 + K̃2
n‖δpT‖2

2 −KnK̃n

(
‖δu‖2

L2 + ‖δpT‖2
2

)]
= ε
[∑

n

(
K2
n −KnK̃n

)]
‖δu‖2

L2 +
[∑

n

(
K̃2
n −KnK̃n

)]
‖δpT‖2

2

≥ εα
(
‖δu‖2

L2 + ‖δpT‖2
2

)
.

(5.75)

We consider α defined in (5.68) and we notice that Kn, defined in (5.63), can be written
as follows

Kn = 1− 4T
√
NCK00‖Bn‖L‖x0‖2‖pT‖2 = 1− 4

√
TNCK00K̃n‖pT‖2 . (5.76)

To guarantee the positivity of α, we have to require that (K2
n −KnK̃n) > 0 and (K̃2

n −
KnK̃n) > 0. From these requirements, we derive the conditions (5.65) and (5.66) as
follows

K2
n −KnK̃n =

(
1− 4

√
TNCK00K̃n‖pT‖2

)2−
(
1− 4

√
TNCK00K̃n‖pT‖2

)
K̃n

= 1 + 16TNCK
2
00‖pT‖2

2K̃
2
n − 8

√
TNCK00‖pT‖2K̃n

− K̃n + 4
√
TNCK00‖pT‖2K̃

2
n > 0 ,

(5.77)

and we obtain that

1 + K̃n

(
16TNCK

2
00‖pT‖2

2K̃n − 8
√
T
√
NCK00‖pT‖2

− 1 + 4
√
T
√
NCK00‖pT‖2K̃n

)
> 0 ,

(5.78)

that is (5.65), and

K̃2
n −KnK̃n > 0⇒ K̃n

(
K̃n −Kn

)
> 0⇒

(
K̃n −Kn

)
> 0 , (5.79)

which implies that
K̃n + 4

√
TNCK00K̃n‖pT‖2 − 1 > 0 , (5.80)

that is (5.66). Finally, (5.56) and (5.75) imply that〈
∇2Gr(u, pT )

(
δu
δpT

)
,

(
δu
δpT

)〉
L2

≥ ‖δx(T )‖2
2 +

∑
n
‖δun − 〈δx,B∗np〉 − 〈x,B∗nδp〉‖2

L2

≥ ‖δx(T )‖2
2 + εα

(
‖δu‖2

L2 + ‖δpT‖2
2

)
, ∀(δu, δpT ) 6= 0 ,

(5.81)

which implies that ∇2Gr is invertible in (u, pT ). Continuity of the map (u, pT ) 7→
∇2Gr(u, pT ) enables to conclude that∇2Gr is invertible in a neighbourhood of (u, pT ).

In the next corollary, we give a sufficient condition for the two assumptions (5.65) and
(5.66) in Theorem 29 to hold.

Corollary 5. Let (u, pT ) be a solution of (5.36) with Gr(u, pT ) = 0. Let K00, Kn and
K̃n be defined as in Theorem 29. Assume that

C12,n := 4
√
TNCK00K̃n‖pT‖2 − 1 > 0 (5.82)

for n = 1, ..., NC. Then the conditions (5.65) and (5.66) are satisfied, hence the reduced
Hessian operator ∇2Gr(u, pT ) is coercive with α given by (5.68).
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Proof. Condition (5.66) follows immediately from (5.82) and the positivity of K̃n.
Next, we show that (5.82) implies also (5.65). For this purpose, we write (5.65) as

follows

16TM2K̃2
n‖pT‖2

2 +
(
4
√
TNCK00K̃

2
n − 6

√
TNCK00K̃n

)
‖pT‖2 + (1− K̃n) > 0 . (5.83)

The discriminant of the previous quadratic inequality is

∆ =
(
4
√
T
√
NCK00K̃

2
n − 8

√
T
√
NCK00K̃n

)2

− 64TNCK
2
00K̃

2
n(1− K̃n) = 16TNCK

2
00K̃

4
n > 0 .

(5.84)

Consequently, (5.83) is fulfilled if the following holds

‖pT‖2 >
1

2
√
TNCK00K̃n

, (5.85)

which is equivalent to (5.82).

We remark that, condition (5.82) is in agreement with Theorem 23 and Corollary 2:
replacing K̃n in C12,n we obtain that

C12,n = 4T
√
NCK00‖Bn‖L‖x0‖2‖pT‖2 − 1 ,

from which is clear that a “sufficiently large” T contributes to the fulfillment of (5.82).
The next corollary, which follows directly from Theorem 30, provides a relaxation on

the conditions (5.65) and (5.66). The proof is similar to the one of Theorem 30, hence we
omit it for brevity.

Corollary 6. Let the assumptions of Theorem 29 hold, and assume the following

C3 :=

NC∑
n=1

(
K2
n −KnK̃n

)
> 0 and C4 :=

NC∑
n=1

(
K̃2
n −KnK̃n

)
> 0 . (5.86)

Then the reduced Hessian operator ∇2Gr(u, pT ) is coercive with

α := min

{
NC∑
n=1

(
K2
n −KnK̃n

)
,

NC∑
n=1

(
K̃2
n −KnK̃n

)}
.

We remark that, if Theorem 30, Corollary 5 and Corollary 6 hold, then (u, pT ) such
that Gr(u, pT ) = 0 is an isolated global minimum in a ball of finite radius centered in
(u, pT ). This fact is expressed by the following corollary.

Corollary 7. Let (u, pT ) be a solution of (5.36) with Gr(u, pT ) = 0. Let the assumptions
of Theorem 30 hold, and assume that Gr is twice Fréchet differentiable in (u, pT ). Then,
there exists a positive constant γ > 0 such that

Gr(û, p̂T ) ≥ Gr(u, pT ) + γ
(
‖û− u‖2

L2 + ‖p̂T − pT‖2
2

)
, (5.87)

for all (û, p̂T ) belonging to a ball centered in (u, pT ). In particular, inequality (5.87) ensure
that global minima of (5.36) are isolated points.

Exact and non-smooth control of quantum spin systems
131



Two methods for the exact-control of quantum spin systems

Proof. By using that G is twice Fréchet differentiable, we have the following

Gr(û, p̂T )−Gr(u, pT ) =
(
∇Gr(u, pT ), (δu, δpT )

)
G

+
1

2

(
∇2Gr(u, pT )(δu, δpT ), (δu, δpT )

)
G

+ r(δu, δpT ) ,
(5.88)

where |r(δu, δpT )| = o(|||(δu, δpT )|||2). Next, we notice that in a solution (u, pT ) it holds
that ∇Gr(u, pT ) = 0, and we write

Gr(û, p̂T )−Gr(u, pT ) ≥ 1

2

(
∇2Gr(u, pT )(δu, δpT ), (δu, δpT )

)
G
− |r(δu, δpT )| . (5.89)

Now, there exists a constant ρ > 0 such that |r(δu, δpT )| ≤ α
4
for all (δu, δpT ) such that

|||(δu, δpT )||| ≤ ρ. This implies the following

Gr(û, p̂T )−Gr(u, pT ) ≥ α

4
|||(δu, δpT )|||2 . (5.90)

Now, inequality (5.87) follows with γ = α
4
by setting (δu, δpT ) = (û− u, p̂T − pT ).

Finally, we observe that (5.87) guarantees thatGr is strictly convex in a neighbourhood
of a global minimum (u, pT ). This implies that global minima of (5.36) are isolated
points.

Corollary 7 has the important purpose of characterizing minimum points of (Pu).
In fact, its meaning is the following. By Proposition 13 we know that global minima of
(5.36) are stationary points of the minimum-norm problem (5.26). Under the assumptions
of Corollary 7, global minima of (5.36) are isolated points, which implies that stationary
points of (5.26) are isolated points, which means that minima of (5.26) are isolated points.

5.4 Summary and remarks
The main topic of the present chapter was the exact-control of bilinear systems. In
Section 5.1, some controllability results for quantum spin systems were discussed. In
Section 5.2 and Section 5.3, we presented two different methodologies for the solution of
exact-control problems governed by bilinear systems. These are the main novelties of the
present chapter. In fact, we are not aware of previous works in the literature that study
methods for the exact-control of bilinear systems provided with a rigorous theoretical
framework.
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Chapter 6

Numerical and implementation aspects
of quantum control problems

The aim of this chapter is to address numerical aspects of quantum control problems.
The first problem that is discussed, is the discretization of the optimality system. This
issue plays a fundamental role in the numerical solution of quantum optimal control prob-
lems. In particular, in Section 6.1, we focus on the modified Crank-Nicolson scheme as
an adequate discretization method of dynamical quantum systems with a bilinear con-
trol structure. We show that this scheme is stable, convergent and preserves algebraical
properties that are involved in the evolution of a wavefunction governed by a Schrödinger
equation. In Section 6.2, the first-discretize-than-optimize strategy is discussed and ap-
plied in order to derive discrete optimality conditions, that are suitable for numerical
implementations. The second part of this chapter focuses on implementation details of
optimization methods for solving optimal control and exact-control problems presented in
Chapter 3, Chapter 4 and Chapter 5. In particular, in Section 6.3.1, numerical and imple-
mentation details of globalized Krylov-Newton and Krylov-SSN methods are discussed. In
Section 6.4, we present a scheme for the implementation of the continuation method, that
is theoretically discussed in Section 5.2. Section 6.5 presents implementation details of a
cascadic-NCG method and Krylov-Newton method for the solution to the exact-control
problem introduced in Section 5.

6.1 The modified Crank-Nicolson method
The aim of this section is to discuss the so-called modified Crank-Nicolson (MCN) scheme
for the discretization of the following bilinear system

ẋ =

[
A+

NC∑
n=1

unBn

]
x . (6.1)

The MCN scheme was introduced by von Winckel et al. [129] as an appropriate time
discretization of the Schrödinger equation. In particular, with the aim to obtain an un-
conditionally stable and L2-norm preserving scheme, they considered a modification of
the Crank-Nicolson method by combining numerical integrators based on the Magnus ex-
pansion, trapezoidal rule for the approximation of integrals, and the usual Crank-Nicolson
scheme. The MCN scheme can be obtained as follows. Consider the following problem

ψ̇(t) = H(t)ψ(t) , t ∈ (tk, tk + 1] , and ψ(tk) = ψ0 , (6.2)
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where tk+1 = tk+h. Numerical integrators based on the Magnus expansion aim at writing
the solution as follows; see, e.g., [61];

ψ(t) = exp(Ω(t))ψ0 , (6.3)

for a suitable matrix Ω(t). In particular, it is shown in [61], that Ω(t) is given by the
Magnus expansion:

Ω(t) =

∫ t

tk
H(s)ds− 1

2

∫ t

tk

[∫ s

tk
H(τ)dτ,H(s)

]
ds+ · · · , (6.4)

where [·, ·] denotes the commutator. The ansatz (6.3) allows to obtain the following
approximation

ψ̃(tj+1) = exp(Ω̃)ψ̃(tj) , (6.5)

where Ω̃ is a suitable approximation of Ω(t) in (tj, tj+1). By truncating the Magnus
expansion (6.4) at the first term, and approximating the following integral∫ tj+1

tj
H(s)ds (6.6)

by means of the trapezoidal rule, we obtain

Ω̃ =
h

2

[
H(tj+1) +H(tj)

]
. (6.7)

Denoting by Ĥ = 1
2

[
H(tj+1) +H(tj)

]
and replacing (6.7) into (6.5), we obtain

ψ̃(tj+1) = exp(hĤ)ψ̃(tj) , (6.8)

which is the solution to the following linear system

˙̃ψ(t) = Ĥψ̃(t) in (tj, tj+1] . (6.9)

By applying a Crank-Nicolson scheme to approximate (6.9), we write

ψj+1 − ψj =
h

4

[
H(tj+1) +H(tj)

][
ψj+1 + ψj

]
, (6.10)

where we used (6.7). The discretization scheme (6.10) is the MCN scheme introduced in
[129], for the approximation of (6.2).

Now, we apply the MCN scheme for the approximation of (6.1). Consider the time
interval [0, T ], and approximate it with a uniform mesh of size h and Nt points, such
that 0 = t1 < · · · < tNt = T , the MCN discretization of the bilinear system (6.1) is the
following

xj+1 − xj =
h

4

[
2A+

NC∑
n=1

(uj+1
n + ujn)Bn

](
xj+1 + xj

)
, (6.11)

where j = 1, ..., Nt − 1 , h = T
Nt−1

and the starting point x1 = x(0) is given.
Convergence analysis for the approximation scheme (6.8) is given in [61], and we re-

mark that, since the Magnus expansion (6.4) allows to construct approximations of Ω(t)
with the same properties of H(t), the approximation scheme (6.8) preserves the same alge-
braic properties of the original system. On the other hand, the MCN scheme (6.10)-(6.11)
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is obtained from (6.8) by applying a Crank-Nicolson method, and even if it is expected
that (6.10)-(6.11) maintains the same properties of the Magnus discretization (6.8), there
is no rigorous analysis that ensures convergence and preservation of algebraic properties.
For this reason, in the following we consider the MCN method for the discretization of
(6.1) and we present analysis of convergence and stability of the scheme in Section 6.1.1.
Moreover, in Section 6.1.2, we prove that the MCN scheme preserves all the algebraic
properties required for a correct integration of a Schrödinger equation.

6.1.1 Stability and accuracy of the MCN scheme

In this section, we focus on the analysis of the MCN scheme (6.11) by assuming that the
matrices A and Bn are skew-symmetric. This situation is common for bilinear systems
related to NMR spectroscopy. In particular, in Proposition 17 we study stability and
convergence of the MCN scheme, and show that it preserves the Euclidean norm.

Proposition 17. Assume that A and Bn are skew-symmetric. Then, the MCN scheme
(6.11) is norm-preserving (independently on h). Moreover, consider u ∈ C2([0, T ];RNC )
and the corresponding solution to the bilinear system (5.3) x ∈ C3([0, T ];RNx). Then the
MCN scheme (6.11) is unconditionally stable, consistent and second-order accurate.

Proof. We denote by x(tj), u(tj) the values of x and u on the j-grid point. Moreover, xj
represents the discrete approximation of x at the point j.

We start discussing the norm-preservation of the MCN scheme. By multiplying equa-
tion (6.11) from the left by

[
xj+1 + xj

]
, we obtain what follows

〈xj+1 + xj, xj+1 − xj〉 = 〈xj+1 + xj,
h

4

[
2A+

∑
n
(uj+1

n + ujn)Bn

](
xj+1 + xj

)
〉 .

Since A and Bn are skew-symmetric the right hand side of the previous equation is zero.
Consequently, we get the following

0 = 〈xj+1 + xj, xj+1 − xj〉 = 〈xj+1, xj+1〉 − 〈xj, xj〉 ,

which implies that ‖xj+1‖2
2 = ‖xj‖2

2 for any mesh size h. Notice that the norm-preservation
implies the unconditional stability of the MCN scheme.

To show consistency of (6.11), we proceed similarly to [113] as follows. The truncation
error is given by

Rj =
x(tj+1)− x(tj)

h
− 1

4

[
2A+

∑
n

(
un(tj+1) + un(tj)

)
Bn

](
x(tj+1) + x(tj)

)
, (6.12)

where tj+1 = tj + h. We have also that

ẋ(tj) =

(
A+

∑
n
un(tj)Bn

)
x(tj) . (6.13)

Now, consider the following Taylor expansions.

x(tj+1) = x(tj) + hẋ(tj) +
h2

2
ẍ(tj) +

h3

6

...
x (tj) +O(h4) , (6.14)
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By expanding ẋ(tj+1) on the right-hand side, we have(
A+

∑
n
un(tj+1)Bn

)
x(tj+1) = ẋ(tj+1)

= ẋ(tj) + hẍ(tj) +
h2

2

...
x (tj) +O(h3) .

(6.15)

Next, we consider the Taylor expansion of un(tj+1) and use (6.13) to obtain the following(
A+

∑
n
un(tj+1)Bn

)
x(tj) = ẋ(tj) + h

(∑
n
u̇n(tj)Bn

)
x(tj)

+
h2

2

(∑
n
ün(tj)Bn

)
x(tj) +O(h3) .

(6.16)

By expanding x(tj+1) and using (6.13), we get(
A+

∑
n
un(tj)Bn

)
x(tj+1) = ẋ(tj) + h

(
A+

∑
n
un(tj)Bn

)
ẋ(tj)

+
h2

2

(
A+

∑
n
un(tj)Bn

)
ẍ(tj) +O(h3) .

(6.17)

Replacing (6.14)-(6.17) in (6.12), we obtain

Rj =
h2

24

...
x (tj) +

h

4
ẍ(tj)− 1

4

{
h

([
A+

∑
n
un(tj)Bn

]
ẋ(tj) +

[∑
n
u̇n(tj)Bn

]
x(tj)

)

+
h2

2

([
A+

∑
n
un(tj)Bn

]
ẍ(tj) +

[∑
n
ün(tj)Bn

]
x(tj)

)}
+O(h3) .

Now, we can use the following expression

ẍ =
d

dt

([
A+

∑
n
unBn

]
x

)
=
[
A+

∑
n
unBn

]
ẋ+

[∑
n
u̇nBn

]
x ,

to obtain that

Rj = h2

[
1

24

...
x (tj)− 1

8

([
A+

∑
n
un(tj)Bn

]
ẍ(tj) +

[∑
n
ün(tj)Bn

]
x(tj)

)]
+O(h3) .

Next, we define the following constant

K := max
tj

∥∥∥∥ 1

24

...
x (tj)− 1

8

([
A+

∑
n
un(tj)Bn

]
ẍ(tj) +

[∑
n
ün(tj)Bn

]
x(tj)

)∥∥∥∥
2

,

and obtain that
‖Rj‖2 ≤ Kh2 +O(h3) .

Hence, there exists a positive constant K̃ such that

R := max
j
‖Rj‖2 ≤ K̃h2 , (6.18)

which means that the MCN scheme is consistent.
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We analyze convergence of the MCN scheme. We first rewrite (6.11) and (6.12) in the
following forms

x(tj+1) = x(tj) + hCj
(
x(tj+1) + x(tj)

)
+ hRj , (6.19)

and
xj+1 = xj + hCj

(
xj+1 + xj

)
. (6.20)

Subtracting term-by-term (6.20) from (6.19) and defining the global error ej := x(tj)−xj,
we obtain the following

ej+1 = ej + hCj
(
ej+1 + ej) + hRj . (6.21)

Denoting by LC = maxj ‖Cj‖L, we write that

‖ej+1‖2 = ‖ej + hCj
(
ej+1 + ej

)
+ hRj‖2

≤ ‖ej‖2 + hLC‖ej+1 + ej‖2 + h‖Rj‖2

≤ ‖ej‖2 + hLC‖ej+1‖2 + hLC‖ej‖2 + hR ,

(6.22)

Assuming that h < 1/LC , the previous (6.22) implies the following

‖ej+1‖2 ≤
1 + hLC
1− hLC

‖ej‖2 +
h

1− hLC
R . (6.23)

It follows by induction that

‖ej‖2 ≤
(

1 + hLC
1− hLC

)j
‖e1‖2 +

[(
1 + hLC
1− hLC

)j
− 1

]
R

2LC
. (6.24)

Now, notice that ‖e1‖2 = ‖x1 − x(0)‖2 = 0 and
(

1+hLC
1−hLC

)
≤ exp

(
2hLC

1−hLC

)
, and recalling

(6.18), we obtain what follows

‖ej‖2 ≤
1

2LC

{
exp

[
j

(
2hLC

1− hLC

)]
− 1

}
K̃h2

≤ 1

2LC

{
exp

(
2(tj − t1)LC

1− hLC

)
− 1

}
K̃h2

≤ 1

2LC

{
exp

(
2TLC

1− hLC

)
− 1

}
K̃h2 ,

(6.25)

which shows that the scheme (6.11) is convergent and second-order accurate.
Notice that the condition h < 1/LC is not required for stability. However, it is a

standard condition to guarantee accuracy of a one-step second order scheme [113].

6.1.2 An algebraic analysis of the MCN scheme

Consider a Schrödinger equation in the following form

iψ̇(t) = H(t)ψ(t) , t ∈ (0, T ] , ψ(0) = ψ0 . (6.26)

where ψ(t) ∈ CN . The Hamiltonian H(t) is Hermitian and is assumed to have the
following structure

H(t) = HA(t) + iHB(t) , (6.27)

where i is the imaginary unit, HA(t) ∈ RN×N is a symmetric matrix and HB(t) ∈ RN×N
is a skew-symmetric matrix. We remark that, (6.26)-(6.27) can represent the following
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• a finite-dimensional Schrödinger equation, see, e.g., [15, 116, 122]; in this case,
HA(t) = H0 + u(t)H1; H0 is a diagonal matrix, with real entries, containing the
values of energy corresponding to the considered quantum levels; H1 is a symmetric
matrix, with real entries, containing the possible transitions between the considered
quantum energy levels and HB = 0;

• the (space) discretization of an infinite-dimensional Schrödinger equation, see, e.g.,
[129]; in this case, HA(t) = H0 +u(t)H1; H0 is a symmetric matrix, with real entries;
for instance, it could represent the discrete Laplace operator; H1 is a symmetric
matrix, with real entries; it could be, for instance, a diagonal matrix representing a
potential energy, and HB = 0;

• the (space) discretization of an infinite dimensional Schrödinger equation involving
the action of magnetic fields and the effect of the spin of the particle; in this case,
HA(t) = H0 + u1(t)H1, where H0 and H1 are symmetric matrices with real entries,
and HB(t) = u2(t)H2, with HB a skew-symmetric matrix.

The main idea of our analysis, arises from the postulate of quantum mechanics which
states that the time-evolution of a wave function ψ(t), satisfying the Schrödinger equation
(6.26), can be regarded as the time evolution of a unitary operator Υ(t), whose evolution
is given by

Υ̇(t) = −iH(t)Υ(t) , t ∈ (0, T ] , Υ(0) = IN , (6.28)

where IN represents the identity matrix. Henceforth, we have that

ψ(t) = Υ(t)ψ(0) , t ∈ [0, T ] ; (6.29)

see, e.g., [132]. We remark that, the (6.28) is referred to as the lifted-equation of (6.26).
Since H(t) is an Hermitian matrix, iH(t) is skew-Hermitian. Consequently, it belongs to
the matrix Lie algebra u(N ;C), and this implies that the operator Υ(t) belongs to the
matrix Lie group U(N ;C) of unitary matrices; see, e.g., [53]. It is clear from equation
(6.29), that the time evolution of the Schrödinger equation (6.26) is governed by a unitary
propagator. Consequently, for an adequate numerical integration of (6.26), it is suitable
to consider a numerical scheme that is capable to preserve the algebraic properties of a
unitary propagator. The MCN scheme applied to (6.28) reads as follows

Υk+1 −Υk = H̃k

[
Υk+1 + Υk

]
, (6.30)

with
H̃k = −ih

4

[
H(tk+1) +H(tk)

]
. (6.31)

In what follows, we show that the MCN scheme (6.10) preserves the unitary properties.

Theorem 31. The MCN scheme (6.30)-(6.31) preserves unitary propagation, that is

Υk ∈ U(N ;C)⇒ Υk+1 ∈ U(N ;C) .

Proof. Assume that Υk ∈ U(N ;C), which is equivalent to Υ∗kΥk = ΥkΥ
∗
k = IN . Multiply

(6.30) from the left with Υ∗k to get the following

Υ∗kΥk+1 −Υ∗kΥk = Υ∗kH̃kΥk+1 + Υ∗kH̃kΥk ,
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which implies that
Υ∗kΥk+1 − IN = Υ∗kH̃kΥk+1 + Υ∗kH̃kΥk .

By taking the adjoint and using the fact that H̃k is skew-hermitian, we have the following

Υ∗k+1Υk − IN = −Υ∗k+1H̃kΥk −Υ∗kH̃kΥk . (6.32)

Next, by multiplying (6.30) from the left with Υ∗k+1, we obtain

Υ∗k+1Υk+1 −Υ∗k+1Υk = Υ∗k+1H̃kΥk+1 + Υ∗k+1H̃kΥk . (6.33)

Adding term-by-term (6.32) and (6.33), we obtain the following

Υ∗k+1Υk+1 − IN = Υ∗k+1H̃kΥk+1 −Υ∗kH̃kΥk . (6.34)

By taking the adjoint of (6.34), we write

Υ∗k+1Υk+1 − IN = −
(

Υ∗k+1H̃kΥk+1 −Υ∗kH̃kΥk

)
. (6.35)

Equations (6.34) and (6.35) imply that Υk+1 is a unitary matrix.

An important geometric and algebraic property that characterizes a Schrödinger equa-
tion is the so-called symplecticity. In order to analyze this property, we consider the
following. It is known that U(N ;C) ∼= U(2N ;R), where U(2N ;R) represents the group
of all 2N × 2N unitary matrices with real entries. Moreover, the following equality holds
[67]

U(2N ;R) = Sp(2N ;R) ∩O(2N ;R) , (6.36)

where [53]

• Sp(2N ;R) is the Lie group of the symplectic matrices; a matrix M belongs to
Sp(2N ;R) if and only if

MTJM = J , (6.37)

where
J =

(
0 IN
−IN 0

)
; (6.38)

the corresponding Lie algebra is sp(2N ;R), that is the algebra generated by all the
matrices C such that

CTJ + JC = 0 . (6.39)

A matrix C ∈ sp(2N ;R) has the following block structure

C =

(
C1 C2

C3 −CT
1

)
, (6.40)

where C2 and C3 are N ×N symmetric matrices;

• O(2N ;R) is the Lie group of all 2N × 2N orthogonal matrices; a matrix M belongs
to O(2N ;R) if and only if

MMT = MTM = I2N , (6.41)

where I2N is the 2N × 2N identity; the corresponding Lie algebra is o(2N ;R), that
is the algebra of all skew-symmetric matrices.
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To see the validity of the intersection (6.36) for the Schrödinger equation (6.26), we
proceed as is Section 2.4.2: we split ψ in real and imaginary parts

ψ = ψ< + iψ= , (6.42)

and rewrite (6.26) as follows

d

dt

(
ψ<
ψ=

)
=

(
HB HA

−HA HB

)(
ψ<
ψ=

)
. (6.43)

Equation (6.43), in a more compact form, reads as follows

Ψ̇ = H(t)Ψ , (6.44)

where
Ψ :=

(
ψ<
ψ=

)
, (6.45)

and
H(t) :=

(
HB(t) HA(t)
−HA(t) HB(t)

)
. (6.46)

We notice that, since HB is skew-symmetric, H is a traceless skew-symmetric matrix
having also the block-structure (6.40). This means that

H(t) ∈ sp(2N ;R) ∩ o(2N ;R) . (6.47)

Consequently, equation (6.44) admits the following lifted equation

Ṁ(t) = H(t)M(t) , t ∈ (0, T ] , M(0) = I2N , (6.48)

The time evolution of Ψ is obtained by the following linear action

Ψ(t) = M(t)Ψ(0) , t ∈ [0, T ] . (6.49)

The condition (6.47) and equation (6.48) imply that

M ∈ U(2N ;R) = Sp(2N ;R) ∩O(2N ;R) , (6.50)

which means that the evolution of the Schrödinger equation (6.26) is characterized by
the algebraic properties characterizing Sp(2N ;R) and O(2N ;R). For this reason, in the
sequel we show that the MCN method preserves these algebraic properties.

The MCN scheme applied on (6.48) reads as follows

Mk+1 −Mk =
h

4

[
H(tk+1) +H(tk)

][
Mk+1 +Mk

]
. (6.51)

Recalling equations (6.46) and (6.27), we define the following

Ĥk :=
h

4

[
H(tk+1) +H(tk)

]
=

(
Bk,k+1 Ak,k+1

−Ak,k+1 Bk,k+1

)
. (6.52)

where Ak,k+1 := HA(tk+1) +HA(tk) and Bk,k+1 := HB(tk+1) +HB(tk).
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We remark that Ak,k+1 and Bk,k+1 are symmetric and skew-symmetric, respectively.
Consequently Ĥk ∈ sp(2N ;R) ∩ o(2N ;R). By means of (6.52), equation (6.51) becomes

Mk+1 −Mk = Ĥk

[
Mk+1 +Mk

]
. (6.53)

We remark that equation (6.49) holds at any time. Therefore, by multiplying (6.53)
to the right with Ψ(0), we have

Ψk = MkΨ(0) . (6.54)

Hence, we obtain
Ψk+1 −Ψk = Ĥk

[
Ψk+1 + Ψk

]
, (6.55)

that is the MCN discretization of (6.44). This means that, the discrete approximated so-
lution to (6.26) can be obtained by the discrete approximated solution to (6.53) combined
with the linear action (6.54).

The following results show the algebraic properties of the MCN scheme. In particular,
in Theorem 32 we prove that the MCN scheme (6.53) preserves symplecticity. Theorem
33 shows that the MCN scheme (6.53) preserves orthogonality. Corollaries 8 and 9 discuss
norm-preserving properties of the scheme (6.53).

Theorem 32. The MCN scheme (6.53) preserves symplecticity, in the following sense

Mk ∈ Sp(2N ;R)⇒Mk+1 ∈ Sp(2N ;R).

Proof. We assume that Mk ∈ Sp(2N ;R), which is equivalent to MT
k JMk = J , with J

defined in (6.38).
Notice that S := JĤk is a symmetric matrix. We multiply (6.53) from the left with

MT
k J , and we get the following

MT
k JMk+1 −MT

k JMk = MT
k JĤkMk+1 +MT

k JĤkMk ,

that implies the following

MT
k JMk+1 − J = MT

k SMk+1 +MT
k SMk .

By taking the transpose and using the symmetry of S and the skew-symmetry of J , we
obtain

−MT
k+1JMk + J = MT

k+1SMk +MT
k SMk . (6.56)

Now, we multiply (6.53) from the left with MT
k+1J , and write that

MT
k+1JMk+1 −MT

k+1JMk = MT
k+1SMk+1 +MT

k+1SMk . (6.57)

Subtracting term-by-term the last equation of (6.56) from (6.57), we obtain the fol-
lowing

MT
k+1JMk+1 − J = MT

k+1SMk+1 −MT
k SMk . (6.58)

Taking the transpose of (6.58), we get

−(MT
k+1JMk+1 − J) = MT

k+1SMk+1 −MT
k SMk . (6.59)

Equations (6.58) and (6.59) imply that MT
k+1JMk+1 − J = 0, which is our claim.
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Theorem 33. The MCN scheme (6.53) preserves orthogonality, in the following sense

Mk ∈ O(2N ;R)⇒Mk+1 ∈ O(2N ;R).

Proof. We assume that Mk ∈ O(2N ;R), which is equivalent to MT
k Mk = MkM

T
k = I2N .

By multiplying (6.53) from the left with MT
k , we get the following

MT
k Mk+1 −MT

k Mk = MT
k ĤkMk+1 +MT

k ĤkMk .

that implies the following

MT
k Mk+1 − I2N = MT

k ĤkMk+1 +MT
k ĤkMk .

By taking the transpose and using the skew-symmetry of Ĥk, we obtain

MT
k+1Mk − I2N = −MT

k+1ĤkMk −MT
k ĤkMk . (6.60)

By multiplying (6.53) from the left with MT
k+1, we obtain that

MT
k+1Mk+1 −MT

k+1Mk = MT
k+1ĤkMk+1 +MT

k+1ĤkMk . (6.61)

Adding term-by-term the last equation of (6.60) and (6.61), we obtain the following

MT
k+1Mk+1 − I2N = MT

k+1ĤkMk+1 −MT
k ĤkMk . (6.62)

Taking the transpose of (6.62), we obtain

MT
k+1Mk+1 − I2N = −(MT

k+1ĤkMk+1 −MT
k ĤkMk) . (6.63)

Equations (6.62) and (6.63) imply that MT
k+1Mk+1 − I2N = 0, which is our claim.

Next, we discuss the norm-preservation of the MCN scheme. For this purpose, we
recall the inner product 〈·|·〉 : R2N×2N × R2N×2N → R defined in Section 2.3.3 as follows

〈Mj|Mk〉 = trace(MT
j Mk) , (6.64)

which induces the Hilbert-Schmidt norm ‖ · ‖L :=
√
〈·|·〉. Hence the Lie group U(2N ;R)

endowed with (6.64) form a real normed Hilbert vector space. The norm-preserving
property can be seen as a specific case of the property proved in the following result.
Corollary 8. The MCN scheme (6.53) preserves the norm, that is

‖Mk‖L = c ⇒ ‖Mk+1‖L = c ,

for any constant c.
Proof. The norm-preserving property is induced by the orthogonality-preserving property.
Recalling Theorem 33, we write that

‖Mk‖L =
√

trace(MT
k Mk) =

√
trace(I2N) =

√
trace(MT

k+1Mk+1) = ‖Mk+1‖L ,

and the claim follows.

Another consequence of the orthogonality-preserving properties of (6.53) is given in
the following corollary. This shows that the orthogonality-preserving property of the
scheme (6.53) induces the norm-preservation of the MCN scheme (6.55).
Corollary 9. Assume that the MCN scheme (6.53) preserves orthogonality, then the
MCN scheme (6.55) is norm-preserving.
Proof. Recall Equation (6.54), that is Ψk = MkΨ(0). Using Theorem 33, we write the
following

〈Ψk,Ψk〉 = 〈MkΨ(0),MkΨ(0)〉 = 〈Ψ(0),MT
k MkΨ(0)〉 = 〈Ψ(0),Ψ(0)〉 , (6.65)

that is our claim.
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6.2 First-discretize-then-optimize strategy and discrete
optimality conditions

An important aspect in the numerics of optimal control problems is the discretization of
the reduced gradient. In fact, if the discrete gradient is not appropriately chosen, non-
negligible inconsistencies could arise during the numerical solution of the optimal control
problem. These inconsistencies can give rise to two main problems. On one hand, there
is the possible emergence of spurious stationary point and minima, see, e.g., [22]. On
the other hand, a gradient that is not consistent with the discrete cost functional can
disturb the numerical optimization process, that can show a convergence rate slower than
the theoretical expectation, or that can be even not converging in the worst situations.
Moreover, another drawback of an inadequate discretization is that the discrete Hessian
may not be symmetric, see, e.g., [129]. This is an important aspect in the application of
second-order optimization methods.

For these reasons, in order to derive an adequate discrete reduced gradient, we consider
the so-called first-discretize-then-optimize strategy; see, e.g., [16, 22, 129]. According to
this discretization strategy, one has to proceed as follows. First, discretize the optimal con-
trol problem, which means to discretize the cost functional and the constraints. Second,
construct the corresponding discrete Lagrangian function. Third, derive the first-order
discrete optimality system and the corresponding linearized equations. With this proce-
dure, a sufficiently fine mesh size is only required to obtain solutions to the differential
equations that are sufficiently accurate to approximate differential models.

To apply the first-discretize-then-optimize strategy, we approximate the time interval
[0, T ] with a uniform mesh of size h and Nt points, such that 0 = t1 < · · · < tNt = T , and
consider the following discrete L2((0, T );Rm)-scalar product

〈a, b〉L2
h

:= h
Nt∑
j=2

〈aj, bj〉 , (6.66)

where a and b are the discretizations of any two functions belonging to the L2((0, T );Rm)
space, and m is equal to N2 for the state and to NC for the control. We denote by ‖ · ‖L2

h

the norm induced by (6.66). Next, the discretization of problem (3.42) is the following

min
x,u

Jh(x, u) :=
1

2
〈xNt − xT , xNt − xT 〉+

ν

2
h

NC∑
n=1

Nt∑
j=2

(ujn)2

s.t.
1

h

(
xj − xj−1

)
=

1

4

[
2A+

NC∑
n=1

(ujn + uj−1
n )Bn

][
xj + xj−1

]
for j = 2, . . . , Nt and with x1 = x(0) .

(6.67)

Now, we define the constraint function c(x, u) as follows

ch(x, u)j :=
1

h

(
xj − xj−1

)
− 1

4

[
2A+

NC∑
n=1

(ujn + uj−1
n )Bn

][
xj + xj−1

]
, (6.68)

for j = 2, . . . , Nt. The corresponding discrete Lagrangian function is given by

Lh(x, u, p) :=
1

2
〈xNt − xT , xNt − xT 〉+

ν

2
h

NC∑
n=1

Nt∑
j=2

(ujn)2 + h
Nt∑
j=2

〈pj, ch(x, u)j〉 . (6.69)

Exact and non-smooth control of quantum spin systems
143



Numerical aspects of quantum control problems

The derivatives of the discrete Lagrangian with respect to pj allow to obtain the following
primal equation

xj − xj−1 =
h

4

[
2A+

NC∑
n=1

(ujn + uj−1
n )Bn

][
xj + xj−1

]
, (6.70)

for j = 2, ..., Nt with x1 = x(0). The derivatives of Lh with respect to xj yields the
following adjoint dual equation

pj − pj+1 =
h

4

[
2A+

NC∑
n=1

(ujn + uj−1
n )Bn

]∗
pj +

h

4

[
2A+

NC∑
n=1

(uj+1
n + ujn)Bn

]∗
pj+1 , (6.71)

for j = Nt − 1, . . . , 2, and with

(xNt − xT ) + h

(
1

h
I − 1

4

[
2A+

NC∑
n=1

(uNtn + uNt−1
n )Bn

]∗)
pNt = 0 . (6.72)

By assuming that u1 = 0 and deriving the discrete Lagrangian with respect to uj, we
obtain the discrete gradient, that is(

∇uJh
)j
n

= νujn −
1

4
〈Bn

(
xj+1 + xj

)
, pj+1〉 − 1

4
〈Bn

(
xj + xj−1

)
, pj〉 , (6.73)

for j = 2, . . . , Nt − 1, and(
∇uJh

)Nt
n

= νuNtn −
1

4
〈Bn

(
xNt + xNt−1

)
, pNt〉 , (6.74)

for n = 1, . . . , NC . Notice that, in the case of an unconstrained problem (Uad = L2), the
optimality condition is

(
∇uJh

)j
n

= 0 for any j and any n. In a similar way, we can derive
the linearized equations. In particular, the linearized constraint equation is given by

δxj − δxj−1 =
h

4

[
2A+

NC∑
n=1

(ujn + uj−1
n )Bn

][
δxj + δxj−1

]

+
h

4

[
NC∑
n=1

(δujn + δuj−1
n )Bn

][
xj + xj−1

]
,

(6.75)

for j = 2, . . . , Nt with δx1 = 0. The linearized adjoint equation is

δpj − δpj+1 =
h

4

[
2A+

NC∑
n=1

(ujn + uj−1
n )Bn

]∗
δpj +

h

4

[
2A+

NC∑
n=1

(uj+1
n + ujn)Bn

]∗
δpj+1

+
h

4

[
NC∑
n=1

(δujn + δuj−1
n )Bn

]∗
pj +

h

4

[
NC∑
n=1

(δuj+1
n + δujn)Bn

]∗
pj+1 ,

(6.76)

for j = Nt − 1, . . . , 2, and

δxNt +h

(
1

h
I− 1

4

[
2A+

NC∑
n=1

(uNtn +uNt−1
n )Bn

]∗)
δpNt− h

4

[
NC∑
n=1

(δuNtn +δuNt−1
n )Bn

]∗
pNt = 0 .

(6.77)
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The action of the discrete reduced Hessian ∇2
uJh on a discrete function δu is given by the

following(
∇2
uJhδu

)j
n

= νδujn −
1

4
〈Bn

(
xj+1 + xj

)
, δpj+1〉 − 1

4
〈Bn

(
δxj+1 + δxj

)
, pj+1〉

− 1

4
〈Bn

(
xj + xj−1

)
, δpj〉 − 1

4
〈Bn

(
δxj + δxj−1

)
, pj〉 ,

(6.78)

for n = 1, . . . , NC , j = 2, . . . , Nt − 1, and(
∇2
uJhδu

)Nt
n

= νδuNtn −
1

4
〈Bn

(
δxNt + δxNt−1

)
, pNt〉 − 1

4
〈Bn

(
xNt + xNt−1

)
, δpNt〉 , (6.79)

for n = 1, . . . , NC .
Finally, we remark that, once the discrete reduced gradient is obtained, it is possible to

use it to obtain discrete optimality conditions for optimal control problems with controls
constraints, like the problems discussed in Section 3 and Section 4. The same arguments
hold also for the construction of the discrete reduced Jacobian, in the case of a SSN
method.

6.3 Globalized Newton and SSN algorithms
In this section, we present a globalized Krylov-Newton and semi-smooth Krylov Newton
matrix-free procedures, and discuss implementation details. With matrix-free, we mean
that the generalized Jacobian is never built during the iterations, and only its action on a
given vector-function is computed in the Krylov-iterations for the solution of the Newton
linear system. In particular, in Section 6.3.1 we discuss a globalized Krylov-Newton
algorithm. In Section 6.3.2, we present a globalized Krylov-SSN algorithm.

6.3.1 A globalized Krylov-Newton scheme

In this section, a numerical scheme corresponding to the Krylov-Newton method is dis-
cussed. In particular, we describe the algorithm used to perform the procedure (4.17),
that in a reduce form is given by

S1 : Jr(uk)(δu) = −F(uk)

S2 : uk+1 = uk + δu ,

which generates the Newton sequence {uk}∞k=1. The numerical computation of this se-
quence has two main drawbacks that have to be addressed. First, the dimension of the
discrete Hessian can be very large and consequently the computational effort for its con-
struction and inversion becomes too expensive. For this reason, the numerical procedure
is based on the reduced formulation of the optimal control problem, and the Newton se-
quence {uk}∞k=1 is constructed in the space of solutions to constraint and adjoint equations.
Second, the bilinearity of the quantum equation governing the optimal control problem
makes, in general, the reduced cost functional non-convex. Consequently, a globalization
strategy, specifically a line-search method, is required in the numerical procedure. We
remark that it could be necessary in quantum control problems to initialize the Krylov-
Newton procedure by using continuation techniques; see, e.g., [129, 130].

The Krylov-Newton procedure is given in the following algorithms 1-6. The following
Algorithm 1 is the Krylov-Newton scheme, where one recognizes that in the while-loop the
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Algorithm 2 is called to compute the reduced gradient for a given control u, the Algorithm
3 is called to solve the Newton linear system and compute the updating direction δu, and
a line-search algorithm is called to globalize the procedure by computing a step-length α.

Algorithm 1 (Krylov-Newton scheme)
Input u, k = 0, kmax, tol;
Call Algorithm 2 to compute ∇uJr(u);
while k < kmax do
• call Algorithm 3 to compute the search direction δu;

• perform a line-search to compute a step-length α;

• update: u← u+ α δu;

• call Algorithm 2 to compute ∇uJr(u);

• if ‖∇uJr(u)‖L2 ≤ tol, break;
• update: k ← k + 1;

end while

The reduced gradient is computed by means of Algorithm 2. This scheme consists in
solving forward the bilinear constraint to obtain the state x, solving backward the adjoint
problem to obtain the Lagrange multiplier p, and assembling the reduced gradient. It is
clear from this routine that the iterative procedure given in Algorithm 1 is defined in the
space of solutions to constraint and adjoint equations.

Algorithm 2 (Evaluation of the reduced gradient ∇uJr(u))
Input u;
• solve the forward problem (4.28) and get x;

• solve the backward problem (4.29) and get p;

• assemble ∇uJr(u) using (4.30);

The Newton linear system Jr(u)(δu) = −∇uJr(u) is solved by means of Algorithm
3, which consists in the application of a Krylov iterative solver. This aspect is crucial in
the Krylov-Newton procedure, because a Krylov solver allows to avoid the construction
of the discrete Hessian operator J (and its reduced form Jr) by supplying a routine
that computes the action of the reduced Hessian on a given vector function δu. This
computation is performed by means of Algorithm 4. We remark that, depending on the
eigenvalues of the Hessian and the specific Krylov solver, the computed direction δu can
be an ascent direction, see, e.g., [16]. To address this situation, in the case where δu is
an ascent direction, −δu is used.

Algorithm 3 (Solve the Newton equation)
Input u, an initial guess for δu;
• compute δu by solving Jr(u)(δu) = −∇uJr(u) (use a linear system solver, e.g., GMRES

or CG calling Algorithm 4 to apply Jr(u));

• if 〈Jr(u), δu〉L2 > 0, set δu← −δu;

Algorithm 4 compute the action of the reduced Hessian Jr(u) on a given function
δu. This computation is performed by solving the linearized constraint problem to obtain
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δx, solving the linearized adjoint equation to obtain δp, and assembling the action of the
reduced Hessian as described in Section 4.2 by means of (4.34).

Algorithm 4 (Apply the reduced Hessian to a vector δu)
Input x, p, u, δu;
• integrate the linearized forward problem (4.32) and get δx;

• integrate the linearized backward problem (4.33) and get δp;

• assemble Jr(u)(δu) by means of (4.34);

Since the constraint equation is bilinear, the objective is in general non-convex and
therefore a line-search is required to globalize the Newton method. Once an updating
direction δu is computed, then the line-search strategy is applied to compute a step-
length α satisfying the strong Wolfe conditions (SWC), representing a sufficient reduction
of the cost functional, as follows (Armijo’s condition)

Jr(u+ αδu) ≤ Jr(u) + c1α〈δu,∇Jr(u)〉L2 , (6.80)

such that a so called curvature condition

|〈δu,∇Jr(u+ αδu)〉L2| ≤ c2|〈δu,∇Jr(u)〉L2 | (6.81)

is satisfied to avoid unacceptably small steps in the next iterations; see, e.g., [16, 52, 128,
129, 130]. The coefficients c1 and c2 are chosen such that 0 < c1 � 1 and c1 < c2 < 1.
With a Newton-type method, it is recommended to begin with α = 1 [94, 129, 130].
This is a reasonable choice when the cost functional is locally quadratic. However, in our
non-convex optimization problem the desired step-length can be different and sometimes
orders of magnitude smaller. In [16] and [130], an upper bound on the maximum feasible
step-length is estimated using a quadratic approximation of the cost functional, that is
Jr(u + αδu) ≥ m2α

2 + m1α + m0, where the coefficients are m0 = ν
2
〈u, u〉L2 − Jr(u),

m1 = ν〈u, δu〉L2 and m2 = ν
2
〈δu, δu〉L2 . Consequently, the upper bound on a feasible

step-length is evaluated as follows

αmax =

√
m2

1 − 4m0m2 −m1

2m2

. (6.82)

We remark that, in [130] is proved that for c1 small enough there exists an α ∈ (0, αmax]
that satisfies the SWC condition. Starting with the approximation αmax, a line-search
method is developed in [130]. This scheme is based on a combination of two strategies:
a cubic polynomial approximation and a bisection method. This line-search method is
based on the following criteria which ensure that a twice differentiable function α 7→ f(α)
must have at least one minimizer in a given interval (αr, αl). We have the two following
propositions give the guideline for the formulation of Algorithm 6 and Algorithm 5 [130].

Proposition 18. Suppose that f is continuously differentiable. If f ′(αl) < 0 and f ′(αr) >
0, then there must be at least one point α ∈ (αr, αl) such that α is a local minimum.

Proposition 19. Suppose that f is continuously differentiable. If f ′(αl) < 0 and f(αr) >
f(αl)

(
f ′(αl) > 0, f(αr) < f(αl)

)
, then there must be at least one point α ∈ (αr, αl) such

that α is a local minimum.
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Notice that if the coefficient m2 is very small, then the quadratic model could be not
valid. This situation can occur if

• the norm of search direction δu is very small, which means that the optimization
process reached a small neighbourhood of a stationary point;

• the regularization parameter ν is very small. This can happen when the goal is to
maximize the tracking term of J .

Moreover, according to our experience, because of the bilinear structure of our problem,
near a stationary point it can be difficult for the algorithm to satisfy the Wolfe’s conditions.
Motivated by these heuristics, we slightly modify the line-search strategy defined in [130],
by adding another criterion based on the coefficient m2 for the following choice:

• if m2 is large enough, a “strong strategy” is chosen. To have a robust and efficient
scheme we combine cubic approximations of the cost functional with a bisection
method, as proposed in [16] and [130] and shown in Algorithms 6 and 5;

• if m2 is small, then a “weak strategy” is chosen: the algorithm compute α such that
it satisfies only the Armijo’s condition.

The described line-search procedure is given in detail in the two following algorithms.
In particular, Algorithm 5 is the bisection method based on Proposition 18 and Proposi-
tion 19. Algorithm 6 is the entire line-search strategy that is based on the quadratic/cubic
models and makes use of Algorithm 5.

Algorithm 5 (Bisection scheme)
Input tol, αl and αr which bracket a minimum point;
Input two functions f(α) = Jr(u+ α δu) and f ′(α) = 〈δu,∇Jr(u+ α δu)〉L2 ;
Compute fl = f(αl), fr = f(αr), dl = f ′(αl), dr = f ′(αr) and L = αr − αl;
while L > tol do

Compute the midpoint αm = 1
2 (αr + αl) and evaluate fa = f(αm) and da = f ′(αm);

if (α = αm satisfies SWC) then
α← αm
return

end if
if (dl < 0 and [ dr > 0 or fr > fl ] ) then
αr ← αm and fr ← fa and dr ← da;

else
if (dl > 0 and [ dr < 0 or fr < fl ] ) then
αr ← αm and fr ← fa and dr ← da;

else
αl ← αm and fl ← fa and dl ← da;

end if
end if
L← (αr − αl);

end while
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Algorithm 6 (Line-search scheme based on SWC and quadratic/cubic model)
Input Jr(u), ∇Jr(u), du, u, ε� 1, f(α) = Jr(u+ α δu) and f ′(α) = 〈δu,∇Jr(u+ α δu)〉L2 ;
if (ν2‖du‖

2
U > ε) then

Compute αmax with Equation (6.82);
if (αmax > 2) then

Evaluate f(1) and f ′(1);
if (α = 1 satisfies SWC) then
α← 1;

else
Construct cubic model on [0, 1], compute its minimum αm, and evaluate f(αm) and f ′(αm);
if (α = αm satisfies SWC) then
α← αm;

else
if ([0, αm] brackets a minimum) then
αr ← αm;

else
if ([0, 1] brackets a minimum) then
αr ← 1;

else
αr ← αmax;

end if
end if
α← bisection on (0, αr);

end if
end if

else
α← bisection on (0, αmax);

end if
else
α← 1;
Perform backtracking until the Armijo’s condition (6.80) is satisfied;

end if

6.3.2 A globalized Krylov-SSN scheme

The numerical implementation of the theoretical SSN procedure (4.58), that is

S0 : choose a generalized Jacobian Jg(uk) ∈ ∂◦Fr(uk)
S1 : δuk = −(Jg,r(uk))−1Fr(uk)
S2 : uk+1 = uk + δuk ,

is more involved than the Newton method described in the Section 6.3.1. This is due to
the non-smoothness induced by the control-constraint Uad and the L1-norm in the cost in
the case that β > 0:

• the first-order optimality system is addressed as a root problem in such a way
that can generate a loss of informations regarding the reduced gradient; this is
particularly evident in the case that β > 0, in which the reduced (generalized)
gradient is undetermined;

• since the optimality condition is not ∇uJr(u) = 0 in the case of an active control-
constraint, an adequate stop-criterion has to be considered, and possibly it must
take into account also the active set A, that is the subset of the domain [0, T ] in
which the control-constraint is active;
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• because of the control-constraint and the loss of differentiability due to the L1-norm
in the cost, a standard line-search strategy could be not applicable; moreover, due to
the active set, it could be convenient to have a globalization scheme that adapts the
line-search criterion to the current situation during the iterative Newton procedure;

• the (generalized) Jacobian appearing in the Newton linear system does not coincide
with the Hessian of the Lagrange function and could be not symmetric; this fact
restricts the choice of the Krylov solver.

Because of these reasons, even if the global structure of the Krylov-SSN scheme is similar
to the Krylov-Newton scheme described in Section 6.3.1, many implementation details
have to be treated differently. We remark that it could be necessary to initialize the SSN
method by using continuation techniques; see, e.g., [129, 130]. In the sequel, we describe
the Krylov-SSN scheme for the case Uad = Uad,1 and β > 0. This scheme results to be the
same also in the case Uad = Uad,2 and β = 0.

The Krylov-SSN procedure, corresponding to (4.58), is given in the following algo-
rithms 7-12.

Algorithm 7 (Semi-smooth Krylov-Newton scheme)
Input u, k = 0, kmax, tol;
Call Algorithm 8 to compute Fr(u) and A;
Set Aold ← A;
while k < kmax do
• call Algorithm 9 to compute the search direction δu;

• depending on A, compute α choosing an appropriate line-search;

• update: u← u+ α δu;

• call Algorithm 8 to compute Fr(u) and A;
• if a stop criterion (depending on A, Aold and tol) is satisfied, break;

• update: k ← k + 1 and Aold ← A;
end while

It is proved in [65] that an adequate stopping criteria for a semi-smooth Newton
method for the solution of optimal control problems governed by linear elliptic equations
is related to the active set. For this purpose, define the following

A := A1 × · · · × ANC with An :=
{
t ∈ (0, T ) | |un(t)| ≥ b

}
, (6.83)

where A 6= ∅ and Aold represent the active sets corresponding to the current and the
previous iteration, respectively. If it holds that A = Aold, then a solution is found, and
the semi-smooth Newton iterative procedure can be stopped.

This result is proved for optimal control problems where the control appears linearly
in the constraint. Moreover, in [65] it is observed that the numerical iterations terminate
after few steps with two consecutive active sets being equal. For these reasons, it is not
guaranteed that this stopping criterion is always valid for our bilinear control problem.
Consequently, recalling that we want to obtain a root u of Fr(u), we implement a stopping
criterion that combines the residual of the L2-norm of Fr(u) with the active-set criterion.
In particular, we have the following criterion

• if ( A = Aold & ‖Fr(u)‖L2 < tol ) then break.
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Notice that in the case A = Aold = ∅ with β = 0, this stop-criterion coincides with
∇uJr(u) = 0.

The following Algorithm 8 solves the forward and backward problems and assembles
Fr(u) and A.

Algorithm 8 (Evaluation of Fr(u) and A)
Input u;
• solve the forward problem (4.61a) and get x;

• solve the backward problem (4.61b) and get p;

• assemble Fr(u) using (4.63b);

• construct A using (6.83);

The following Algorithm 9 is used to solve the linear Newton system. This is obtained
by means of a Krylov-iterative solver, e.g., GMRES and CG.

Algorithm 9 (Solve the Newton equation)
Input u, an initial guess for δu;
• compute δu by solving Jg(u)(δu) = −Fr(u) (use a linear system solver, e.g., GMRES

or CG calling Algorithm 10 to apply Jr(u));

• if A = ∅, β = 0 and 〈Jg,r(u), δu〉L2 > 0, set δu← −δu;

The following Algorithm 10 applies the reduced generalized Jacobian Jg,r(u) on the
vector function δu.

Algorithm 10 (Apply the reduced generalized Jacobian to a vector δu)
Input x, p, u, δu;
• integrate the linearized forward problem (4.76) and get δx;

• integrate the linearized backward problem (4.77) and get δp;

• assemble Jg,r(u)(δu) by means of (4.79);

An important issue for the successful application of our Newton scheme, is the use
of a robust line-search method for globalization purposes. If β = 0 and A = ∅, the
classical Armijo-Wolfe and Goldstein conditions can be used; see, e.g., [16, 52, 128, 129].
Otherwise, if β 6= 0 and/or A = ∅, we do not have differentiability (in the classical sense)
of the minimizing function and an alternative approach must be followed. In particular,
one can apply a line-search procedure to the function ϑ : L2((0, T );RNC )→ R defined as
follows

ϑ(u) :=
1

2
‖Fr(u)‖2

L2 .

For a detailed discussion on ϑ, see, e.g., [38, 98].
For this reasons, and according to our experience, an efficient globalization method is

achieved with the following algorithm.
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Algorithm 11 (Globalization: compute the step-length α along δu)
Input β, Aold, δu;
• if β = 0 and Aold = ∅ apply an Armijo-Wolfe based line-search to minimize J along δu

(e.g., Algorithm 6) and break;

• if β > 0 and Aold = ∅ apply the line-search Algorithm 12 to minimize J along δu and
break;

• if Aold 6= ∅ apply the line-search Algorithm 12 to minimize ϑ along δu and break;

Notice that, whenever classical differentiability is not guaranteed, we use the derivative-
free line-search procedure given in Algorithm 12 [52], where the choice of the minimizing
function f is performed by Algorithm 11. Furthermore, since Algorithm 12 does not make
use of information about the derivative of f , it is not possible to establish a priori if δu is
a descent direction [52]. Hence, it could be useful to use line-search criteria that consider
also negative values of α. This explains Step 2. in Algorithm 12.

Algorithm 12 (Derivative-free line-search scheme)
Input δu, γ > 0, ρ ∈ (0, 1) αmin > 0;
• compute f(u);

• set α← 1;
while α > αmin do

1. if f(u+ αδu) ≤ f(u)− γα2‖δu‖2L2 , break;

2. if f(u− αδu) ≤ f(u)− γα2‖δu‖2L2 , set α← −α and break;

3. set α← ρα;
end while

6.4 Continuation scheme for the exact-control of quan-
tum spin systems

In this section, we implement our continuation method presented in Section 5.2 to compute
exact-control functions.

Consider a weight parameter sequence given by νk+1 = γνk, with given ν1 and γ ∈
(0, 1). As proved above, corresponding to this sequence, a sequence of optimal solutions
{(xk, uk)}k to (Pν) is obtained that converges to the solution of (P̃ ).

A feature of the continuation method is that the solution at the step k is computed
considering as a starting guess the solution obtained at the step k − 1. The detailed
continuation scheme is described by the following algorithm.

Algorithm 13 (Continuation scheme)
Input u0, k = 1, kmax, γ ∈ (0, 1), an initial value of ν;
while k < kmax do
• call Algorithm 1 (or Algorithm 7) to compute uk(ν) (using uk−1 as starting condition);

• set ν ← γν;

• set k ← k + 1;

• if a stop criterion is satisfied, break;
end while
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6.5 Optimization schemes for the shooting-type method
In this section, we present a numerical scheme which is specific for the formulation (5.36),
that is

min
u,pT

Gr(u, pT ) := G(x(u), u, p(u, pT ))

s.t. (x(u), p(u, pT )) ∈
{

(x, p)
∣∣ x solves (3.53a) and p solves (3.53b)

}
.

The numerical scheme makes use of a cascadic NCG method [16, 60] as an initialization
procedure for a Krylov-Newton method. For completeness, we give all details regarding
these procedures. See [15, 73, 116] for previous works on the use of NCG schemes to
solve quantum control problems. We refer to [15, 36, 60] and references therein for details
about the convergence of this method.

The iterative NCG procedure to solve (5.36) is given by the following algorithm.

Algorithm 14 (NCG scheme)
Require: u0, p0

T , k = 0, kmax, tol;
Call Algorithm 2 to compute ∇Gr(u0, p0

T );
Set d0 = −∇Gr(u0, p0

T );
while k < kmax and |||∇Gr(uk, pkT )||| > tol do
• call Algorithm 16 to compute α along the direction dk;

• set (uk+1, pk+1
T ) = (uk, pkT ) + α dk;

• call Algorithm 15 to compute ∇Gr(uk+1, pk+1
T );

• compute yk = ∇Gr(uk+1, pk+1
T )−∇Gr(uk, pkT );

• compute σk+1 = yk − 2dk (yk,yk)G
(dk,yk)G

;

• compute βk+1 =
(∇Gr(uk+1,pk+1

T ),σk+1)G
(dk,yk)G

;

• set dk+1 = −∇Gr(uk+1, pk+1
T ) + βk+1dk;

• set k ← k + 1;
end while

In Algorithm 14, given (u, pT ), the gradient ∇Gr is obtained using the following algo-
rithm.

Algorithm 15 (Evaluation of the gradient)
Require: u,pT ;

• integrate the constraint (5.37c) forward;

• integrate the constraint (5.37d) backward;

• integrate the adjoint (5.37e) backward;

• integrate the adjoint (5.37f) forward;

• assemble ∇uGr(u, pT ) using (5.37a);

• assemble ∇pTGr(u, pT ) using (5.37b);

We implement a line-search strategy based on the Armijo’s condition, see, e.g., [94,
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52, 130], that is we use a step-length α that satisfies

Gr((u, pT ) + αd) ≤ Gr(u, pT ) + c1α(d,∇Gr(u, pT ))G . (6.84)

More precisely, we implement a backtracking strategy, as shown in the next algorithm.

Algorithm 16 (Backtracking line-search scheme with Armijo’s condition)
Input Gr(u, pT ), ∇Gr(u, pT ), d, u, k = 0, kmax, γ ∈ (0, 1), c1 ∈ (0, 1);
Set α = 1;
while k < kmax and Gr((u, pT ) + αd) > Gr(u, pT ) + c1α(d,∇Gr(u, pT ))G do
• evaluate Gr((u, pT ) + αd);

• if (6.84) is satisfied, then break;

• set α← γα;

• set k ← k + 1;
end while

According to our experience, Algorithm 14 shows a slow convergence in solving problem
(5.36). In order to accelerate it, we embed it in the cascadic scheme. For a detailed
discussion about this method see, e.g., [15, 16]. The NCG-cascadic procedure is given in
the following algorithm.

Algorithm 17 (Cascadic scheme)
Require: u0, p0

T , k = 1, kmax;
Require: Coarse space discretization grid;

Call Algorithm 14 to solve the problem and obtain u1 and p1
T ;

while k < kmax do
• refine the discretization grid;

• obtain a guess solution uk+1, by interpolating uk on the new grid;

• call Algorithm 14 to solve the problem and obtain uk+1 and pk+1
T ;

• set k ← k + 1;
end while

We use the NCG-cascadic scheme to perform an adequate initialization for a Krylov-
Newton method. In order to define a matrix-free procedure, we consider the reduced
problem (5.36) with x = x(u) and p = p(u, pT ). Consequently, the Newton procedure
consists, at a given step k, in solving

∇2Gr(u
k, pkT )(dk) = −∇Gr(u

k, pkT )

(uk+1, pk+1
T ) = (uk, pkT ) + dk .

(6.85)

A globalized implementation of this procedure is given by the following algorithm.
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Algorithm 18 (Krylov-Newton scheme)
Require: u0, p0

T , k = 0, kmax, tol;
while k < kmax and |||∇Gr(uk, pkT )||| > tol do
• call Algorithm 2 to compute ∇Gr(uk+1, pk+1

T );

• call Algorithm 19 to solve ∇2Gr(u
k, pkT )(dk) = −∇Gr(uk, pkT );

• call Algorithm 16 to compute α along the direction dk;

• set (uk+1, pk+1
T ) = (uk, pkT ) + α dk;

• set k ← k + 1;
end while

The following algorithm is used to solve the Newton linear system.

Algorithm 19 (Solve the Newton linear system)
Input u, pT , ∇Gr(u, pT );
• Guess an initial value of d;

• Compute d by solving∇2Gr(u, pT )(d) = −∇Gr(u, pT ): use a Krylov-based linear system
solver, e.g., GMRES or CG, calling Algorithm 20 to apply the reduced Hessian;

• If d is an ascending direction, then set d← −d;

The action of the reduced Hessian can be evaluated by the following algorithm.

Algorithm 20 (Action of the reduced Hessian)
Require: d = (δu, δpT );

• integrate the linearized constraint (5.43) forward;

• integrate the linearized constraint (5.44) backward;

• integrate the linearized adjoint (5.40) backward;

• integrate the linearized adjoint (5.42) forward;

• assemble ∇2Gr(u, pT )(d) by using (5.41);

6.6 Summary and remarks
This chapter provided Chapter 3, Chapter 4 and Chapter 5 with a numerical frame-
work. Specifically, it focused on numerical and implementation details regarding opti-
mal control and exact-control of bilinear quantum systems. In particular, the modified
Crank-Nicolson scheme was analysed in several numerical and algebraic aspects, and the
first-discretize-than-optimize strategy is used to obtain adequate discrete optimality con-
ditions. Furthermore, implementation details, regarding the algorithms used to perform
numerically the methodologies presented in Chapter 3, Chapter 4 and Chapter 5, were
discussed. The main novelties of this chapter are:

• an algebraic analysis, based on the matrix Lie group theory, of the modified Crank-
Nicolson scheme;

• implementation details of the semi-smooth Newton method for the optimal control
of bilinear quantum system with an L1-penalization in the cost functional.
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Chapter 7

Numerical experiments

This chapter aims to present numerical experiments that demonstrate the validity of
the computational framework developed in this thesis. In Section 7.1, L1-penalized and
piecewise-constant control problems are considered. These are used to show the abil-
ity of the computational methods developed in Chapter 3, Chapter 4 and Chapter 6.
In particular, we solve L1- and piecewise-constant optimal control problems governed
by the LvNM equation and dipole-control problems, where the governing model is an
infinite-dimensional Schrödinger equation. Convergence results of the SSN method are
also discussed in this section. In Section 7.2, we consider experiments that perform the
exact-control of the LvNM and Pauli equations. Several test cases are considered, and the
two computational schemes developed in Chapter 5 are used and compared. In Section
7.3, the continuation procedure is used to solve control problems of inhomogeneous spin
systems.

We remark that, for all the experiments, the quantum bilinear dynamical system is
discretized by means of the modified Crank-Nicholson method, and the discrete approxi-
mation of the overall optimality system is obtained from the first-discretize-than-optimize
strategy, which allows to obtain the discrete approximation of the corresponding back-
ward adjoint equation and the gradient of the differentiable part of the cost functional J .
The time interval [0, T ] is discretized with a uniform mesh of size h = T

Nt−1
and Nt points,

such that 0 = t1 < · · · < tNt = T .

7.1 L1-penalized problems and piecewise-constant con-
trols

In this section, we present results of numerical experiments that demonstrate the efficiency
of the methods developed in Chapter 5. For this purpose, we consider the following three
test-cases:

• Case 1: Control of a system of two uncoupled spin-1
2
particles.

• Case 2: Control of a system of two coupled spin-1
2
particles.

• Case 3: Dipole quantum control of a charged particle.

In the analysis of these test cases, we make use of the following variables. First, we
consider the so-called fidelity given by the following

C :=
〈x(T ), xT 〉
‖x(T )‖2‖xT‖2

. (7.1)
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This quantity measures the projection of the terminal state x(T ) on the target state
xT , that is largely used in physics. Notice that C = 1 means that x(T ) = xT , that is,
the trajectory reaches exactly the target. Second, in order to validate numerically the
estimate (3.141) in Theorem 10, we define

K̂(β, ν) :=
2NCT (β̂ − β)

ν
.

Consequently, (3.141) reads as follows

‖u‖L1 ≤ K̂(β, ν) .

The three test-cases are discussed in the following sections.

7.1.1 Case 1: Control of two uncoupled spin-1
2 particles

Consider a system of two uncoupled spin-1
2
particles. The Hamiltonian operator of each

particle is given by
H = ν̂Iz + uIx ,

where ν̂ is the Larmor-frequency, u is the control and Ix and Iz are the Pauli matrices;
see, e.g., Chapter 2.1 and [25] and references therein. The state of such a spin-system
is represented by a density operator and the corresponding dynamics is governed by the
Liouville-von Neumann master equation, that can be expressed, as in Section 2.3.4, in the
following real matrix representation

ẋ = 2π
(
Ã+ uB̃

)
x , (7.2)

where

Ã = c

(
A 0
0 −A

)
with A =

0 −1 0
1 0 0
0 0 0

 ,

with c = 483, and

B̃ =

(
B 0
0 B

)
with B =

0 0 0
0 0 −1
0 1 0

 .

We seek a control u : [0, T ]→ R, in Uad,1, such that |u(t)| ≤ 60, that is capable to perform
a transition from an initial state where both the spins are pointing in the z-direction, to a
target state where both the spins are pointing in the y-direction. Consequently, starting
and target vectors are

x0 =
(
0 0 1 0 0 1

)
,

and
xT =

(
0 1 0 0 1 0

)
.

For more details regarding spin-systems see [6, 25, 111] and references therein. We consider
T = 0.008, which makes the system similar to the one considered in [9].

Within these settings, we solve (3.107) with different values of the parameters ν and
β. In particular, we consider ν = 2−k with k = 0, ..., 9 and β ∈ {0.1, 1, 2, 3, 4, 5, 6, 7} and
apply the semi-smooth Newton method described in Chapter 4. Moreover, the obtained
solutions are compared with the piecewise constant optimal control solutions to (3.97),
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corresponding to the same weight parameters ν and to different numbers of subintervals
M ∈ {25, 50, 100}. We remark that, even if the number of subintervals varies, the overall
time interval [0, T ] is discretized with the same number of mesh-points Nt = 1001.

Regarding the convergence criteria of our algorithms, we consider the following. The
tolerances for the convergence of the semi-smooth Newton and of the Krylov linear solver
are 10−7 and 10−8, respectively. Moreover, we allow a maximum number of iterations
equal to 100 for the semi-smooth Newton procedure and equal to NNC for the Krylov
solver. We remark that, in general, the desired tolerances are reached in a number of
iterations that is lower than the allowed one.

In the following Figure 7.1, we show the value of the fidelity C resulting from the
optimization procedure. It is evident that, the fidelity C increase as ν decreases. In
particular, the solutions to (3.97) results in almost the same values of C, independently
on the number constant stepsM , and we are able to obtain very high values of the fidelity
for ν ≤ 2−7. On the other hand, we show the values of C resulting from the solutions
to (3.107), and we observe the following. The fidelities corresponding to β = 0.1 are
comparable to the ones obtained with piecewise constant solutions. Notice also that, C
decreases when β increases, and its decay becomes faster for β > 4. Furthermore, we
remark that the values of C corresponding to β = 7 are all zeros. This fact validates
numerically the statement of Theorem 9.
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Figure 7.1: Values of the fidelity C obtained by solving problems (3.107) and (3.97) and corre-
sponding to different values of penalization parameters ν and β.

Next, we want to demonstrate numerically the validity of Theorem 10. First, notice
that for the considered system it holds that max

n
〈Bnx0, xT 〉 = 0, which means that u = 0

is a candidate to be a stationary point of (3.107). By means of the Tables 7.1 and 7.2,
we demonstrate the validity of the estimate (3.141). In particular, we show the values of
the bound K̂(β, ν) and the L1-norm of the optimal control corresponding to β = 0.1 and
β = 3. These results validate the estimate (3.141). We obtain similar results for the other
considered values of β, and we omit them for brevity.
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ν ‖u‖L1 K̂(β, ν)

20 0.0304 0.1104
2−1 0.0589 0.2208
2−2 0.1061 0.4416
2−3 0.1660 0.8832
2−4 0.2204 1.7664
2−5 0.2581 3.5328
2−6 0.2790 7.0656
2−7 0.2878 14.1312
2−8 0.2901 28.2624
2−9 0.2896 56.5248

Table 7.1: Values of the constant K̂(β, ν) and
of the L1-norm of the optimal controls corre-
sponding to β = 0.1.

ν ‖u‖L1 K̂(β, ν)

20 0.0113 0.0640
2−1 0.0224 0.1280
2−2 0.0425 0.2560
2−3 0.0729 0.5120
2−4 0.1060 1.0240
2−5 0.1317 2.0480
2−6 0.1479 4.0960
2−7 0.1557 8.1920
2−8 0.1595 16.3840
2−9 0.1615 32.7680

Table 7.2: Values of the constant K̂(β, ν) and
of the L1-norm of the optimal controls corre-
sponding to β = 3.

Next, we demonstrate that the semi-smooth Newton methods presented in Chapter 4 and
Chapter 6 are locally superlinear convergent. For this purpose, we show in the next tables
the decay of the residual norm ‖Fr(u)‖L2 with respect to the number of the iterations.
Moreover, we show also the number of active points and the value of the step-length α
computed at each iteration.

In Table 7.3, we show the convergence of the semi-smooth Newton method for solving
problem (3.107) with β = 3 and ν = 2−5. It is evident that in the first 10 iterations
the line-search algorithm performs a globalization process and generates values of α lower
than 1. Then, the step-length α = 1 satisfies line-search conditions and the method
converges quadratically to the solution. We remark that, between iterations 5 and 11 the
number of active points does not change, but the current approximation of the control is
still far from the desired solution.

In Tables 7.4 and 7.5, we present convergence results of the semi-smooth Newton
method for the solution to (3.97) with ν = 2−5 and with ν = 2−8, respectively. Cor-
responding to ν = 2−5, the active set A defined in (6.83) remains empty during the
iterations, and the algorithm converges quadratically to the solution. On the other hand,
corresponding to ν = 2−8 the active set A is non-empty, the line-search algorithm per-
forms a globalization, and after that the rate of convergence is quadratic. We obtain
similar results for the other considered values of penalization parameters, and we omit
them for brevity.

Exact and non-smooth control of quantum spin systems
160



Numerical experiments

iter. N◦ active p. ‖Fr(u)‖L2 α

1 0 5.20·10−2 0.250
2 0 6.46·10−2 0.500
3 4 1.60·10−1 0.250
4 96 6.21·10−2 1.000
5 107 3.45·10−2 1.000
6 107 7.24·10−3 0.125
7 107 3.51·10−2 0.500
8 107 2.71·10−3 0.250
9 107 2.15·10−3 0.250
10 107 2.14·10−3 0.063
11 107 3.83·10−5 1.000
12 106 7.65·10−11 1.000
13 106 4.72·10−16 1.000

Table 7.3: Convergence of the semi-smooth
Newton for the solution of (3.107) with β = 3
and ν = 2−5.

iter. N◦ active p. ‖Fr(u)‖L2 α

1 0 3.26·10−3 1.000
2 0 2.64·10−6 1.000
3 0 1.47·10−10 1.000

Table 7.4: Convergence of the semi-smooth
Newton for the solution of (3.97) with ν =
2−5 and A = ∅.

iter. N◦ active p. ‖Fr(u)‖L2 α

1 80 7.65·10−3 0.500
2 90 4.78·10−3 0.500
3 100 7.18·10−7 1.000
4 100 1.13·10−11 1.000

Table 7.5: Convergence of the semi-smooth
Newton for the solution of (3.97) with ν =
2−8 and A 6= ∅.

Next, we show some of the obtained optimal controls. In Figure 7.2, the optimal control
solutions to (3.107) corresponding to β = 0.1, 3, 6 and different values of ν are depicted.
We notice that, the amplitude of the optimal controls increases as ν decreases and the
control constraint (b = 60) is active for ν ≤ 2−7. From the shapes of the control, the
behaviour described in Theorem 8 is evident. In particular, the sparsity of the control
functions increases as ν decreases and the L1-component of the cost starts to be domi-
nating. Figure 7.3 shows the optimal controls obtained solving (3.107) with ν = 2−9 and
different values of β. We observe that when β increases, the controls are more sparse,
and the solution u vanishes for β = 7, in accordance with Theorem 9. Furthermore, the
shape of the obtained controls varies (locally) continuously with β, demonstrating the
validity of Theorem 11. In Figure 7.4, we present the piecewise constant optimal controls
obtained solving (3.97). The amplitude of the controls increases as ν decreases and the
control-constraint is active for ν ≤ 2−7.
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Figure 7.2: Optimal control solutions to (3.107) corresponding to different values of β and
ν = 2−k with k = 0, 1, ..., 9.
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Figure 7.3: Optimal control solutions to (3.107) corresponding to ν = 2−9 and different values
of β.

Figure 7.4: Optimal control solutions to (3.97) with piecewise constant controls corresponding
to M = 25 and ν = 2−k with k = 0, 1, ..., 9.
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7.1.2 Case 2: Control of two coupled spin-1
2 particles

Consider a system of two coupled spin-1
2
particles. As described in Section 2.3.3, the

Hamiltonian of this system is given by

H = ν̂1Îz + ν̂2Ŝz + JcÎzŜz + u1Îx + u2Îy + u3Ŝx + u4Ŝy ,

where un with n = 1, . . . , 4 are the controls, Îα = I2 ⊗ Iα, Ŝα = Iα ⊗ I2, α = x, y, z,
Iα are the Pauli matrices, ν̂1 and ν̂2 are the Larmor-frequencies of the two particles, and
Jc is the coupling constant. For details regarding this spin-model and its real matrix
representation see [6, 25, 111] and references therein.

The state of this spin-system is represented by a density operator and the correspond-
ing dynamics is governed by the Liouville-von Neumann master equation, that can be
expressed in the following real matrix representation

ẋ =

[
A+

4∑
n=1

unBn

]
x ,

where A and B are skew-symmetric matrices in R16×16. The starting and target vectors
are given by

x(0) =
(

0 0 0 1√
2

0 0 0 0 0 0 0 0 1√
2

0 0 0
)T

xT =
(

0 1√
2

0 0 1√
2

0 0 0 0 0 0 0 0 0 0 0
)T

,

which physically correspond to a transition of the spin orientation of both the particles
from the z direction to the x direction. We assume that Jc = 1, ν̂1 = 1.2 and ν̂2 = 0.8.
Moreover, we consider T = 2 and a bound on the controls b = 2.

We consider the same settings as in the Case 1 for discretization and tolerances,
and we perform several optimizations corresponding to different values of penalization
parameters. The obtained results are shown in the next figure and tables and they lead
to the same considerations as in Case 1.
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Figure 7.5: Values of the fidelity C obtained by solving problems (3.107) and (3.97) and corre-
sponding to different values of penalization parameters ν and β.
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ν ‖u‖L1 K̂(β, ν)

20 1.6806 7.9984
2−1 2.4279 15.9968
2−2 3.0223 31.9936
2−3 3.4011 63.9872
2−4 3.7877 127.9744
2−5 4.1773 255.9488
2−6 4.4715 511.8976
2−7 5.1609 1023.7952

Table 7.6: Values of the constant K̂(β, ν) and
of the L1-norm of the optimal controls corre-
sponding to β = 1e−4.

ν ‖u‖L1 K̂(β, ν)

20 1.1584 6.4000
2−1 1.7193 12.8000
2−2 2.1646 25.6000
2−3 2.4469 51.2000
2−4 2.6000 102.4000
2−5 2.6801 204.8000
2−6 2.7361 409.6000
2−7 2.7698 819.2000

Table 7.7: Values of the constant K̂(β, ν) and
of the L1-norm of the optimal controls corre-
sponding to β = 1e−1.

7.1.3 Case 3: Dipole quantum control

In this section, we consider the case of dipole-control of a charged particle in an infinite-
potential well [129, 130]. This is an infinite-dimensional quantum control problem. How-
ever, as explained in Section 2.4.2, it is natural to apply our methodology to the discretized
infinite-dimensional problem.

We consider the following optimal control problem

min
x,u

J(ψ, u) :=
1

2
‖ψ(·, T )− ψT‖2

L2(Ω;C) +
ν

2
‖u‖2

L2 + β‖u‖L1

s.t. i
∂ψ

∂t
=
[
−∆ + uX

]
ψ in Ω = (0, L) for t ∈ (0, T ]

ψ = 0 on ∂Ω , ψ(·, 0) = ψ0

u ∈ Uad

We consider L = 2, T = 1 and seek a control u in the admissible set Uad = Uad,1, defined
in (3.2) with NC = 1, such that transitions from the ground-state (first eigenstate of the
free Hamiltonian) to the second (eigen-)state is performed; see [129].

In the Tables 7.8 and 7.9, in order to validate Theorem 10, we show the values of the
bound K̂(β, ν) and the L1-norm of the optimal control corresponding to β = 0.05 and
β = 0.10. Figure 7.6 shows the sparse-structure of the computed optimal controls. Notice
that, the sparsity increases as β increases. In Figure 7.7, we show the piecewise-constant
optimal control corresponding to β = 0 and M = 25, M = 50 and M = 100 subintervals.
Figure 7.8 shows the fidelity corresponding to different values of the parameters ν and β.
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ν ‖u‖L1 K̂(β, ν)

20 0.2093 0.9000
2−1 0.3226 1.8000
2−2 0.6315 3.6000
2−3 1.1751 7.2000
2−4 1.9605 14.4000
2−5 2.8934 28.8000
2−6 3.6427 57.6000
2−7 4.0521 115.2000
2−8 4.2543 230.4000
2−9 4.3676 460.8000

Table 7.8: Values of the constant K̂(β, ν) and
of the L1-norm of the optimal controls corre-
sponding to β = 0.05.

ν ‖u‖L1 K̂(β, ν)

20 0.2093 0.8000
2−1 0.2407 1.6000
2−2 0.4732 3.2000
2−3 0.8911 6.4000
2−4 1.5106 12.8000
2−5 2.1848 25.6000
2−6 2.8959 51.2000
2−7 3.2774 102.4000
2−8 3.4483 204.8000
2−9 3.5455 409.6000

Table 7.9: Values of the constant K̂(β, ν) and
of the L1-norm of the optimal controls corre-
sponding to β = 0.10.

Figure 7.6: Optimal solutions to the dipole quantum control problem corresponding to different
values of β and ν = 2−k with k = 1, ..., 9.
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Figure 7.7: Piecewise constant optimal controls obtained for ν = 2−9 (β = 0) and different
numbers of subintervals M .
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Figure 7.8: Values of the fidelity C obtained by solving problems (3.107) and (3.97) and corre-
sponding to different values of penalization parameters ν and β.
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Next, we consider two experiments where we look for piecewise-constant and sparse
controls for the state transition from the ground state to the second eigenstate and the
fourth eigenstate, respectively. We consider in both cases a number of subintervals M =
100. The obtained results are shown in the following figures. Figure 7.9 shows the optimal
control for the transition from the first to the second eigenstate and corresponding to
β = 0.0120 and ν = 0.0020. The pointwise in time bound for the control is b = 10.
From this picture, it is evident the sparse and piecewise-constant structure of the control
function, which is also capable to obtain a value of the fidelity equal to C = 0.9228.
Figure 7.10 shows the corresponding evolution of the absolute value of the wavefunction
ψ.
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Figure 7.9: Sparse and piecewise-constant optimal control function obtained in the case that ψ0

is the ground state and ψT is the second eigenstate. The corresponding weight parameters are
β = 0.0120 and ν = 0.0020, and the obtained fidelity is C = 0.9228.

Figure 7.10: This figure shows the evolution of the absolute value of the wavefunction |ψ(x, t)|
generated by the control function depicted in Figure 7.9.
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The following two pictures show the results obtained in the case that the searched
transition is from the ground state to the fourth eigenstate of the free-Hamiltonian. Figure
7.11 shows the optimal control solution corresponding to β = 0.0120 and ν = 0.0004. This
control function allows to obtain a fidelity equal to C = 0.9646. The pointwise in time
bound for the control is b = 30. Also in this case, the optimal control has a sparse
and piecewise-constant structure. Figure 7.12 shows the corresponding evolution of the
absolute value of the wavefunction ψ.
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Figure 7.11: Sparse and piecewise-constant optimal control function obtained in the case that
ψ0 is the ground state and ψT is the fourth eigenstate. The corresponding weight parameters
are β = 0.0120 and ν = 0.0004, and the obtained fidelity is C = 0.9646.

Figure 7.12: This figure shows the evolution of the absolute value of the wavefunction |ψ(x, t)|
generated by the control function depicted in Figure 7.11.
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7.2 Exact-control problems
In this section, numerical experiments for the exact-control of spin systems are considered.
These numerical experiments are performed by means of the computational methods
developed in Chapter 5. In particular, in Section 7.2.1 the two computational methods are
used to control exactly systems of spins coupled in a chain structure. The control functions
are considered in Uad = L2((0, T );RNC ). A comparison between the two computational
methods is also considered. In Section 7.2.2, we solve an exact-control problem of a system
of two uncoupled spins having different Larmor frequencies. The control is pointwise in
time bounded, that is Uad = Uad,1, and the resulting exact-control function shows a bang-
bang structure. Section 7.2.3 concerns the exact-control of the Pauli equation (2.79)-
(2.82), in the case of a zero-potential, that is V (r) = 0. In particular, these experiments
aim to control the spin and the magnetic state of an electron.

7.2.1 Exact-control of systems of spin chains

We consider numerical experiments for the exact control of spin chains, that are systems
of spins coupled in a chain structure. This model is important in several NMR and
MRI applications. An example of a chain of spins is given in the following figure, which
represents a chain of Np spins coupled by constants Jk,j > 0.

Figure 7.13: Chain of Np spins.

As described in Section 2.3.3, the Hamiltonian corresponding to these systems is given by

H̃ = H̃0 + H̃rf ,

where the free Hamiltonian is given by the following; see, e.g., [25, 46, 108];

H̃0 =

Np∑
k=1

ω̄kIz,k +
∑
k<j

Jk,jIz,kIz,j .

In the case of a chain of spins, the matrix of coupling constants is a symmetric tridiagonal
matrix with zeros diagonal entries. Notice that, because of the chain structure, these
spin systems are controllable according to Theorem 22. The control Hamiltonian has the
following form; see, e.g., [25, 72, 125];

H̃rf =

Np∑
k=1

(
ux,kIx,k + uy,kIy,k

)
.

As explained in Section 2.3, the dynamics of a closed spin systems is governed by the
Liouville-von Neumann equation, and its real representation corresponding to spin chains
is given by the following dynamical system with bilinear control structure

ẋ =

[
A+

2Np∑
n=1

unBn

]
x , (7.3)
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that is characterized as in Section 2.4.1. The aim of our experiments is to perform tran-
sition from an initial condition characterized by all the spins pointing in the z-direction,
to a target state where all the spins are pointing in the x-direction. These two states are
represented by the following vectors

x0 = V(Iz,k) and xT = V(Ix,k) ,

where the map V is defined in (2.125). We assume that, the admissible set of the controls
is Uad = L2((0, T );R2Np).

To solve this exact-control problem we use the two methods presented in Chapter 5.
In particular, we consider this experiment corresponding to different numbers of spins
belonging to the chain and different time intervals. Moreover, in order to analyze the
results in a way which is of interest for NMR experiments, we compute the fidelity C
defined in (7.1).

In the following paragraphs, we first perform numerical experiments by applying the
continuation procedure developed in Section 5.2. Then, we consider the same experiments
by applying the shooting-type computational scheme developed in Section 5.3. In the last
paragraph, we compare the results obtained by means of the two computational methods.

Exact-control by means of the continuation method

In the following, we perform numerical experiments to demonstrate the efficiency of the
continuation method developed in Section 5.2 and the validity the corresponding conver-
gence results.

First, we consider two numerical experiments as test cases to analyze numerically the
developed convergence results. These test cases are

• Case 1: control of system of one spin: Np = 1, ω̄1 = 1;

• Case 2: control of system of two coupled spins: Np = 2, ω̄k = 0, Jk,j = 1;

In particular, we verify numerically the assumption (5.12) and analyze the results given
by (5.17). The experiments are performed by means of Algorithm 13 with γ = 0.9,
kmax = 300 and starting with ν = 1. The desired tolerances for the Newton method
and for the Krylov-CG method are assumed equal to 10−14 and 10−12, respectively. We
remark that, since an analytical exact control solution ũ is not available, we approximate
it with a control umax, which is the solution of the last step of the continuation method
corresponding to a regularization parameter ν ≈ 10−15. Furthermore, experiments with
different numbers of discretization points are considered.

Consider Case 1. In the following Figure 7.14, we verify the assumption (5.12) of
Theorem 7. For this purpose, we define ∆x(t) := xν(t)− xmax(t), where xν = x(uν) and
xmax = x(umax) are the solutions to (3.53a) corresponding to the controls uν and umax,
respectively. Notice that ‖∆x(T )‖2

2 and J̃ are equal up to a constant. We consider δx(t)
as solution to (5.13), that is δx = δx(uν− ũ). With these settings, we compare 4‖∆x(T )‖2

and ‖δx(T )‖2 with a function f(ν) = 10ν. This comparison shows that the two norms
decrease linearly with an order of ν.
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Figure 7.14: Case 1: ‖∆x(T )‖2 and ‖δx(T )‖2 with respect to ν in logarithmic scale with a mesh
of Nt = 201 points (on the left) and Nt = 2001 points (on the right).

Figure 7.15 shows that the estimate (5.17) holds. Particularly, the obtained ‖ũ−uν‖L2

is compared with a function f(ν) = ν: the comparison shows that the norm decreases
linearly with ν.
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Figure 7.15: Case 1: ‖ũ− uν‖L2 with respect to ν in logarithmic scale with a mesh of Nt = 201
points (on the left) and Nt = 2001 points (on the right).

The results of numerical experiments shown in Figure 7.15 demonstrate that the es-
timate (5.17) is not optimal, in the sense that numerical evidence shows a linear rate
of convergence, that is, ‖ũ − uν‖L2 = O(ν). Therefore, our estimate provides an upper
bound on the convergence rate. Moreover, the linear rate of convergence is explained by
Theorem 28. In fact, from a comparison between Figure 7.14 and Figure 7.15, it results
that ‖∆x(T )‖2 and ‖ũ − uν‖L2 decay with the same order. Consequently, the exponent
α in Theorem 28 is equal to 2 and the linear convergence follows.

Consider Case 2. Similarly as for Case 1, with the help of Figure 7.16 we verify the
assumption (5.12) and 4‖∆x(T )‖2 and ‖δx(T )‖2 are compared with a function f(ν) = 10ν.
This comparison shows that the two norms decrease linearly with ν. Figure 7.17 shows
that the estimate (5.17) holds. In this figure, the obtained ‖ũ − uν‖L2 shows a linear
decreasing behaviour with an order of ν. In this experiment, when ν becomes very small,
the effect of numerical errors due to discretization is evident. However, increasing the
number of mesh points, with the help of Figure 7.17 we observe a decay of the numerical
error.
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Figure 7.17: Case 2: ‖ũ−uν‖L2 with respect to ν in logarithmic scale with a mesh of Nt = 2001
points (on the left) and Nt = 5001 points (on the right).

Next, we are interested in studying the robustness of our computational scheme. For
this purpose, we perform several experiments corresponding to different systems of coupled
spins and different time intervals. The following settings are considered

• number of spins Np ∈ {1, 2, 3};
• Larmor frequencies ω̄k = 1 for Np = 1 and ω̄k = 0 for Np = 2 and Np = 3;

• coupling constants Jk,j = 1;

• extremum of the time interval equal to T ∈ {1, 2, 5, 8, 10, 20};
• number of discretization points of the interval [0, T ] equal to Nt = 401. We remark

that in some cases we use a finer mesh; this situations are specified in the following
tables;

• tolerance of the norm of the gradient for the Krylov-Newton method equal to 10−12;

• the sequence of weight parameter is generated by νk+1 = γνk with γ = 0.5;

• starting value of the weight parameter ν1 = 1;

• maximum number of iterations for the continuation method equal to 20;

• the stop-criterion used is in the continuation procedure is related to the computed
fidelity: if C > 1− 10−7 then the continuation procedure is stopped.

The results obtained by applying our computational method are shown in the following
tables, that contain: ν the weight parameter corresponding to the last iteration of the
continuation method; the number of performed iteration of the continuation method “cont
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it”; the corresponding value of the cost functional J and the norm of the reduced gradient
‖∇uJr‖L2 ; the obtained fidelity C and norm of the controls ‖u‖L2 .

Tables 7.10, 7.11 and 7.12 demonstrate that our continuation procedure is capable to
compute exact-control function for almost all the considered cases.

T ν J cont it ‖∇uJr‖L2 C ‖u‖L2

1 2.44·10−4 3.01·10−4 13 3.75·10−12 0.999999 1.57
2 4.88·10−4 3.01·10−4 12 5.32·10−12 0.999999 1.11
5 9.76·10−4 2.41·10−4 11 1.60·10−12 0.999999 0.70
8 1.95·10−3 3.01·10−4 10 3.93·10−12 0.999999 0.55
10 1.95·10−3 2.41·10−4 10 2.27·10−12 0.999999 0.49
20 3.90·10−3 2.41·10−4 9 3.28·10−12 0.999999 0.35

Table 7.10: Results of the optimizations performed for Np = 1. The obtained values of J , ν
and ‖u‖L2 and the computed fidelity C show that for all values of T we are able to compute
exact-control functions.

T ν J cont it ‖∇uJr‖L2 C ‖u‖L2

1 1.90·10−6 1.90·10−4 20 2.11·10−10 0.999967 11.47
2 1.90·10−6 1.94·10−4 20 3.03·10−14 0.999965 11.49
5 1.90·10−6 2.10·10−4 20 2.53·10−12 0.999959 11.67
8 9.76·10−4 5.54·10−4 11 2.97·10−11 0.999999 1.06
10 9.76·10−4 5.34·10−4 11 5.82·10−11 0.999999 1.04
20 1.95·10−3 4.65·10−4 10 1.29·10−12 0.999999 0.69

Table 7.11: Results of the optimizations performed for Np = 2. The obtained values of J , ν
and ‖u‖L2 and the computed fidelity C show that for almost all values of T we are able to
compute exact-control functions. In the case that T = 1, T = 2 and T = 5 the numerical
procedure is stopped because the number of allowed iterations is reached. However, the values
of the corresponding fidelities C are very close to 1, and the results of the optimizations are
physically relevant.

T ν J cont it ‖∇uJr‖L2 C ‖u‖L2

1 1.90·10−6 6.34·10−5 20 2.00·10−11 0.999996 7.53
2 1.90·10−6 3.56·10−5 20 1.75·10−12 0.999999 6.10
5 3.05·10−5 2.11·10−4 16 3.94·10−13 0.999999 3.72
8 1.22·10−4 1.39·10−4 14 7.53·10−15 0.999999 1.51
10 9.76·10−4 9.31·10−4 11 1.59·10−10 0.999999 1.38
20 3.81·10−6 1.88·10−6 19 1.66·10−9 0.999999 0.91

Table 7.12: Results of the optimizations performed for Np = 3. The obtained values of J , ν and
‖u‖L2 and the computed fidelity C show that for almost all values of T we are able to compute
exact-control functions. In the case that T = 1 and T = 2 the numerical procedure is stopped
because the number of allowed iterations is reached. However, the values of the corresponding
fidelities C are very close to 1, and the results of the optimizations are physically relevant.
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Next, we consider other experiments similar to the ones previously discussed, but more
difficult to solve. In particular, in order to break the physical symmetry of the considered
spin systems, we consider non-zero values of the frequencies (ω̄k − ω̃k):

• Np = 2: ω̄1 = 1.2 and ω̄2 = 0.9;

• Np = 3: ω̄1 = 1.1, ω̄2 = 1.0 and ω̄3 = 0.9.

The results obtained from these numerical experiments are shown in the following tables.
In particular, tables 7.13 and 7.14 demonstrate the ability of the continuation procedure
in computing exact-controls in almost all the considered cases.

T ν J cont it ‖∇uJr‖L2 C ‖u‖L2

1 1.90·10−6 1.90·10−4 20 4.33·10−12 0.999967 11.47
2 1.90·10−6 1.94·10−4 20 2.10·10−12 0.999965 11.49
5 1.90·10−6 1.88·10−4 20 4.17·10−14 0.999967 11.35
8 9.76·10−4 5.54·10−4 11 2.97·10−11 0.999999 1.06
10 9.76·10−4 5.34·10−4 11 5.84·10−11 0.999999 1.04
20 1.95·10−3 4.64·10−4 10 1.23·10−12 0.999999 0.68

Table 7.13: Results of the optimizations performed for Np = 2 and ω̄1 = 1.2 and ω̄2 = 0.9.
The obtained values of J , ν and ‖u‖L2 and the computed fidelity C show that for almost all
values of T we are able to compute exact-control functions. In the case that T = 1, T = 2 and
T = 5 the numerical procedure is stopped because the number of allowed iterations is reached.
However, the values of the corresponding fidelities C are very close to 1, and the results of the
optimizations are physically relevant. The optimizations for T = 5 and T = 20 are performed
with a number of discretization points Nt = 1601.

T ν J cont it ‖∇uJr‖L2 C ‖u‖L2

1 1.90·10−6 6.34·10−5 20 1.46·10−10 0.999996 7.53
2 1.90·10−6 3.56·10−5 20 7.17·10−11 0.999999 6.10
5 3.05·10−5 2.11·10−4 16 5.60·10−13 0.999999 3.72
8 1.22·10−4 1.39·10−4 14 9.26·10−15 0.999999 1.51
10 4.88·10−4 4.66·10−4 12 1.89·10−10 0.999999 1.38
20 1.95·10−3 8.04·10−4 10 1.02·10−14 0.999999 0.90

Table 7.14: Results of the optimizations performed for Np = 3 and ω̄1 = 1.1, ω̄2 = 1.0 and
ω̄3 = 0.9. The obtained values of J , ν and ‖u‖L2 and the computed fidelity C show that for
almost all values of T we are able to compute exact-control functions. In the case that T = 1 and
T = 2 the numerical procedure is stopped because the number of allowed iterations is reached.
However, the values of the corresponding fidelities C are very close to 1, and the results of the
optimizations are physically relevant. The optimizations for T = 8 and T = 20 are performed
with a number of discretization points Nt = 801 and Nt = 3201, respectively.
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Exact-control by means of the shooting-type method

We present numerical experiments in order to investigate efficiency and robustness of
our shooting-type computational framework developed in Section 5.3. Problem (5.36) is
solved by using Algorithm 17 to initialize the optimization procedure, and applying the
Krylov-Newton Algorithm 18 to solve the problem. For this purpose, we consider the
same problems as in the previous subsection and the following settings

• number of spins Np ∈ {1, 2, 3};
• Larmor frequencies ω̄k = 1 for Np = 1 and ω̄k = 0 for Np = 2 and Np = 3;

• coupling constants Jk,j = 1;

• extremum of the time interval equal to T ∈ {1, 2, 5, 8, 10, 20};
• number of mesh-refinements in the cascadic procedure equal to 3;

• initial number of discretization points of the interval [0, T ] equal to Nt = 51 (or
greater if necessary);

• tolerance of the norm of the gradient for the NCG method equal to 10−3;

• maximum number of iteration for the NCG method equal to 100;

• tolerance of the norm of the gradient for the Krylov-Newton method equal to 10−8;

• maximum number of iteration for the Krylov-Newton method equal to 100;

• starting guess for the unknown u = 0 and pT = 0.

In order to discuss the numerical behaviour of the computational method, we consider
the following tables where G is the value of the cost functional of (5.36) evaluated in
the computed solution; Ginit is the value of the cost functional after the cascadic-NCG
initialization; “Newton it” represents the number of iteration performed by the Krylov-
Newton method; ‖∇Gr‖L2 is the norm of the gradient of the reduced problem; C is the
fidelity; ‖u‖L2 is the norm of the control solution; ‖pT‖2 is the norm of the shooting
variable, that is the terminal condition of the adjoint equation of the minimum L2-norm
problem; the constants C1,n, C2,n, C3 and C4 are defined in Theorem 30 and Corollary 6.

In particular, tables 7.15, 7.17 and 7.19 show the results of the optimizations per-
formed on the spin systems corresponding to Np = 1, Np = 2 and Np = 3, respectively.
The number of performed iterations by the Krylov-Newton method and the obtained
values of the cost functional G show that the computational method is capable to solve
efficiently almost all the considered exact-control problems. Moreover, the obtained val-
ues of Ginit show that the NCG-cascadic approach is, in general, capable to provide an
efficient initialization to the Newton solver. We remark that, even in the cases in which
the convergence is not exactly obtained, the algorithm is still capable to provide high
values of the fidelity C.

In tables 7.16, 7.18 and 7.20, we consider an a-posteriori analysis of the performed
optimizations, and concerning the sufficient second-order optimality conditions given in
Theorem 30 and Corollary 6. In particular, we computed C1,n and C2,n given by (5.65)
and (5.66), respectively, and C3 and C4 given by (5.86). Notice that, all these coefficients
are positive, hence, according to Theorem 30 and Corollary 5, the computed stationary
points for the three cases are (global) minima of (5.36).
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T G Ginit Newton it ‖∇G‖L2 C ‖u‖L2

1 2.16·10−22 6.15·10−7 3 1.22·10−11 0.999999 1.57
2 2.95·10−24 1.36·10−7 3 2.34·10−12 0.999999 1.11
5 1.42·10−24 1.48·10−7 3 2.29·10−12 0.999999 7.03
8 2.01·10−24 2.36·10−7 3 3.20·10−12 0.999999 5.56
10 2.21·10−24 2.03·10−8 3 3.50·10−12 0.999999 0.49
20 3.50·10−26 5.67·10−8 3 3.92·10−13 0.999999 0.35

Table 7.15: Results of the optimizations performed for Np = 1. The obtained values of G and the
computed fidelity C show that for all values of T we are able to compute exact-control functions.

T C ‖pT ‖2 minnC1,n minnC2,n C3 C4

1 0.999999 1.72·100 3.60·10+2 1.13·10+1 7.21·10+2 3.89·10+1

2 0.999999 8.40·10−1 3.49·10+2 2.30·10+1 6.99·10+2 5.49·10+1

5 0.999999 3.38·10−1 3.69·10+2 5.78·10+1 7.38·10+2 9.10·10+1

8 0.999999 2.11·10−1 3.81·10+2 9.23·10+1 7.63·10+2 1.18·10+2

10 0.999999 1.80·10−1 4.36·10+2 1.15·10+2 8.72·10+2 1.42·10+2

20 0.999999 8.75·10−2 4.37·10+2 2.29·10+2 8.75·10+2 2.08·10+2

Table 7.16: In this table, conditions of Theorem 30 and Corollary 5 regarding the positivity of
C1,n, C2,n, C3 and C4 corresponding to the optimizations with Np = 1. In particular, the norms
of the terminal conditions pT , the time T , the coefficients C1,n, C2,n, C3 and C4 are shown.
According to Theorem 30 and Corollary 5, the positivity of C1,n, C2,n, C3 and C4 guarantees
that the computed stationary points of (5.36) in the different cases are isolated global minima.

T G Ginit Newton it ‖∇G‖L2 C ‖u‖L2

1 4.06·10−3 3.94·10−2 100 2.96·10−4 0.997976 4.25
2 2.42·10−14 3.37·10−2 44 1.28·10−11 0.999999 4.02
5 1.26·10−16 6.85·10−2 24 1.63·10−9 0.999999 2.66
8 8.89·10−21 3.64·10−7 3 1.08·10−10 0.999999 1.06
10 7.71·10−24 8.42·10−8 3 5.16·10−12 0.999999 1.04
20 5.62·10−26 1.08·10−7 3 3.58·10−13 0.999999 0.69

Table 7.17: Results of the optimizations performed for Np = 2. The obtained values of G and the
computed fidelity C show that for almost all values of T we are able to compute exact-control
functions. In the case that T = 1, the numerical procedure is stopped because the number of
allowed iterations is reached. However, the value of the corresponding fidelity C is very close to
1, and the result of the optimization is physically relevant.

T C ‖pT ‖2 minnC1,n minnC2,n C3 C4

1 0.997976 3.16·10+2 2.04·10+8 4.56·10+1 8.18·10+8 8.09·10+4

2 0.999999 2.46·10+1 4.97·10+6 9.15·10+1 1.99·10+7 1.78·10+4

5 0.999999 1.03·10+1 5.52·10+6 2.28·10+2 2.21·10+7 2.97·10+4

8 0.999999 5.41·10−1 3.88·10+4 3.65·10+2 1.55·10+5 3.18·10+3

10 0.999999 5.33·10−1 5.88·10+4 4.56·10+2 2.35·10+5 4.38·10+3

20 0.999999 2.54·10−1 5.40·10+4 9.10·10+2 2.16·10+5 5.96·10+3

Table 7.18: In this table, conditions of Theorem 30 and Corollary 5 regarding the positivity of
C1,n, C2,n, C3 and C4 corresponding to the optimizations with Np = 2. In particular, the norms
of the terminal conditions pT , the time T , the coefficients C1,n, C2,n, C3 and C4 are shown.
According to Theorem 30 and Corollary 5, the positivity of C1,n, C2,n, C3 and C4 guarantees
that the computed stationary points of (5.36) in the different cases are isolated global minima.

Exact and non-smooth control of quantum spin systems
177



Numerical experiments

T G Ginit Newton it ‖∇G‖L2 C ‖u‖L2

1 1.88·10−2 8.04·10−2 100 2.17·10−4 0.993720 4.85
2 4.18·10−3 7.21·10−2 100 1.37·10−4 0.998607 4.36
5 2.16·10−3 2.39·10−2 96 7.99·10−5 0.999281 3.40
8 1.49·10−6 1.75·10−3 38 4.10·10−6 0.999999 1.51
10 3.58·10−9 8.69·10−6 5 7.32·10−11 0.999999 1.38
20 3.53·10−7 1.13·10−6 3 2.53·10−9 0.999999 0.91

Table 7.19: Results of the optimizations performed for Np = 3. The obtained values of G and the
computed fidelity C show that for almost all values of T we are able to compute exact-control
functions. In the cases that T = 1 and T = 2, the numerical procedure is stopped because the
number of allowed iterations is reached, while for T = 5 and T = 8, the iterative procedure is
stopped because the linear Krylov solver was stagnant. However, the values of the corresponding
fidelities C are very close to 1, and the results of the optimizations are physically relevant.

T C ‖pT ‖2 minnC1,n minnC2,n C3 C4

1 0.993720 1.62·10+3 2.74·10+10 1.02·10+2 1.64·10+11 1.72·10+6

2 0.998607 7.79·10+2 2.51·10+10 2.05·10+2 1.51·10+11 2.33·10+6

5 0.999281 2.76·10+2 1.97·10+10 5.11·10+2 1.18·10+11 3.26·10+6

8 0.999999 2.14·10+1 3.06·10+8 8.18·10+2 1.83·10+9 5.14·10+5

10 0.999999 3.19·100 1.05·10+7 1.02·10+3 6.34·10+7 1.06·10+5

20 0.999999 3.80·10−1 6.05·10+5 2.04·10+3 3.63·10+6 3.63·10+4

Table 7.20: In this table, conditions of Theorem 30 and Corollary 5 regarding the positivity of
C1,n, C2,n, C3 and C4 corresponding to the optimizations with Np = 3. In particular, the norms
of the terminal conditions pT , the time T , the coefficients C1,n, C2,n, C3 and C4 are shown.
According to Theorem 30 and Corollary 5, the positivity of C1,n, C2,n, C3 and C4 guarantees
that the computed stationary points of (5.36) in the different cases are isolated global minima.

Next, similarly as in the previous subsection, we consider other experiments similar in
which the physical symmetry of the considered spin systems is broken:

• Np = 2: ω̄1 = 1.2 and ω̄2 = 0.9;
• Np = 3: ω̄1 = 1.1, ω̄2 = 1.0 and ω̄3 = 0.9.

The results obtained from these numerical experiments are shown in the following tables.
T G Ginit Newton it ‖∇G‖L2 C ‖u‖L2

1 3.29·10−3 4.32·10−2 100 1.88·100 0.998402 4.51
2 4.88·10−11 3.34·10−2 55 2.99·10−9 0.999999 3.84
5 5.08·10−12 7.36·10−2 38 3.12·10−11 0.999999 2.65
8 7.15·10−9 6.84·10−7 4 2.00·10−10 0.999999 1.06
10 1.77·10−8 7.49·10−8 3 2.04·10−11 0.999999 1.04
20 4.15·10−9 6.98·10−8 3 4.73·10−11 0.999999 0.68

Table 7.21: Results of the optimizations performed for Np = 2 and ω̄1 = 1.2 and ω̄2 = 0.9.
The obtained values of G and the computed fidelity C show that for almost all values of T we
are able to compute exact-control functions. In the case that T = 1, the numerical procedure
is stopped because the number of allowed iterations is reached, while for T = 5, the iterative
procedure is stopped because the linear Krylov solver was stagnant. However, the values of the
corresponding fidelities C are very close to 1, and the results of the optimizations are physically
relevant. The optimizations for T = 5 and T = 20 are performed with a number of discretization
points Nt = 1601.
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T C ‖pT ‖2 minnC1,n minnC2,n C3 C4

1 0.998402 6.81·10+2 9.52·10+8 4.56·10+1 3.80·10+9 1.74·10+5

2 0.999999 1.98·10+1 3.22·10+6 9.15·10+1 1.28·10+7 1.43·10+4

5 0.999999 1.05·10+1 5.70·10+6 2.28·10+2 2.28·10+7 3.02·10+4

8 0.999999 6.06·10−1 4.86·10+4 3.65·10+2 1.94·10+5 3.56·10+3

10 0.999999 5.31·10−1 5.85·10+4 4.56·10+2 2.34·10+5 4.36·10+3

20 0.999999 2.55·10−1 5.45·10+4 9.10·10+2 2.18·10+5 5.98·10+3

Table 7.22: In this table, conditions of Theorem 30 and Corollary 5 regarding the positivity
of C1,n, C2,n, C3 and C4 corresponding to the optimizations with Np = 2 and ω̄1 = 1.2 and
ω̄2 = 0.9. In particular, the norms of the terminal conditions pT , the time T , the coefficients
C1,n, C2,n, C3 and C4 are shown. According to Theorem 30 and Corollary 5, the positivity of
C1,n, C2,n, C3 and C4 guarantees that the computed stationary points of (5.36) in the different
cases are isolated global minima.

T G Ginit Newton it ‖∇G‖L2 C ‖u‖L2

1 2.01·10−2 8.26·10−2 100 2.49·10−3 0.993274 5.41
2 1.43·10−3 3.48·10−2 100 1.27·10−1 0.999521 4.68
5 2.99·10−3 3.20·10−2 100 2.96·10−1 0.999017 3.29
8 4.17·10−6 1.72·10−3 55 8.29·10−6 0.999998 1.51
10 9.13·10−8 2.23·10−5 10 2.57·10−9 0.999999 1.38
20 1.05·10−9 1.07·10−5 6 5.78·10−9 0.999999 0.90

Table 7.23: Results of the optimizations performed for Np = 3 and ω̄1 = 1.1, ω̄2 = 1.0 and
ω̄3 = 0.9. The obtained values of G and the computed fidelity C show that for all values of
T allows to compute good control functions. In the cases that T = 1, T = 2 and T = 5,
the numerical procedure is stopped because the number of allowed iterations is reached, while
for T = 8, the iterative procedure is stopped because the linear Krylov solver was stagnant.
However, the values of the corresponding fidelities C are very close to 1, and the results of the
optimizations are physically relevant. The optimizations for T = 8 and T = 20 are performed
with a number of discretization points Nt = 801 and Nt = 3201, respectively.

T C ‖pT ‖2 minnC1,n minnC2,n C3 C4

1 0.993274 2.95·10+2 9.03·10+8 1.02·10+2 5.42·10+9 3.12·10+5

2 0.999521 3.72·10+2 5.74·10+9 2.05·10+2 3.44·10+10 1.11·10+6

5 0.999017 1.16·10+2 3.51·10+9 5.11·10+2 2.10·10+10 1.37·10+6

8 0.999998 2.20·10+1 3.22·10+8 8.18·10+2 1.93·10+9 5.27·10+5

10 0.999999 4.24·100 1.86·10+7 1.02·10+3 1.12·10+8 1.42·10+5

20 0.999999 1.37·100 7.86·10+6 2.04·10+3 4.72·10+7 1.30·10+5

Table 7.24: In this table, conditions of Theorem 30 and Corollary 5 regarding the positivity of
C1,n, C2,n, C3 and C4 corresponding to the optimizations with Np = 3 and ω̄1 = 1.1, ω̄2 = 1.0
and ω̄3 = 0.9. In particular, the norms of the terminal conditions pT , the time T , the coefficients
C1,n, C2,n, C3 and C4 are shown. According to Theorem 30 and Corollary 5, the positivity of
C1,n, C2,n, C3 and C4 guarantees that the computed stationary points of (5.36) in the different
cases are isolated global minima.
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Comparison of the results

In this section, the results presented in the two previous subsections which are obtained
by means of the two methods presented in Chapter 5, are compared. In particular, in the
following tables, we show the values of fidelities obtained from the continuation method
Ccont and the shooting-type method Cshoot, and the corresponding norms of the optimal
controls ‖ucont‖L2 , ‖ushoot‖L2 and ‖ucont − ushoot‖L2 . These results demonstrate that, for
large values of T the two computational methods allow to obtain the same exact-control
functions. This is demonstrated also by means of the plots of the obtained exact-controls
corresponding to T = 10.

The following table shows the results obtained in the case Np = 1. The Table 7.25
compare results presented in tables 7.10 and 7.20. In particular, a comparison of the
fidelities and the norms of the optimal controls demonstrate that for all the vales of T
the two computational methods result in the same exact-control function. This is also
validated by Figure 7.18, which shows the control functions obtained in the case that
T = 10.

T Ccont Cshoot ‖ucont‖L2 ‖ushoot‖L2 ‖ucont − ushoot‖L2

1 0.999999 0.999999 1.57 1.57 5.11·10−4

2 0.999999 0.999999 1.11 1.11 2.69·10−4

5 0.999999 0.999999 0.70 0.70 2.07·10−4

8 0.999999 0.999999 0.55 0.55 1.48·10−4

10 0.999999 0.999999 0.49 0.49 1.54·10−4

20 0.999999 0.999999 0.35 0.35 1.07·10−4

Table 7.25: Comparison of the results obtained for Np = 1. The values of the fidelities Ccont
and Cshoot show that for all the values T the two computational methods are capable to obtain
exact controls. Furthermore, the values ‖ucont‖L2 , ‖ushoot‖L2 and ‖ucont − ushoot‖L2 show that
the two frameworks allow to compute the same control functions.
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Figure 7.18: Control functions obtained by means of the continuation method (left) and the
shooting-type method (right) in the case Np = 1 and T = 10. A comparison between the two
pictures shows that the two frameworks allow to compute the same control functions.
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Next, we consider the results obtained in the case Np = 2. In this case, the Table
7.26 compare results presented in tables 7.11 and 7.21. A comparison of the fidelities
and the norms of the optimal controls demonstrate that for almost all the vales of T the
two computational methods result in the same exact-control function. This fact is also
validated by Figure 7.19, which shows the control functions corresponding to T = 10.

T Ccont Cshoot ‖ucont‖L2 ‖ushoot‖L2 ‖ucont − ushoot‖L2

1 0.999967 0.997976 11.47 4.25 -
2 0.999965 0.999999 11.49 1.11 -
5 0.999959 0.999999 11.67 0.70 -
8 0.999999 0.999999 1.06 1.06 7.92·10−4

10 0.999999 0.999999 1.04 1.04 9.10·10−4

20 0.999999 0.999999 0.69 0.69 5.02·10−4

Table 7.26: Comparison of the results obtained for Np = 2. The values of the fidelities Ccont
and Cshoot show that for almost all the values T the two computational methods are capable to
obtain exact controls. Furthermore, the values ‖ucont‖L2 , ‖ushoot‖L2 and ‖ucont−ushoot‖L2 show
that the two frameworks allow to compute the same control functions for T = 8, T = 10 and
T = 20.
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Figure 7.19: Control functions obtained by means of the continuation method (left) and the
shooting-type method (right) in the case Np = 2 and T = 10. A comparison between the two
pictures shows that the two frameworks allow to compute the same control functions.
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The following table shows the results obtained in the case Np = 3. The Table 7.27
compare results presented in tables 7.12 and 7.22. In particular, a comparison of the
fidelities and the norms of the optimal controls demonstrate that for almost all the vales
of T the two methods result in the same exact-control function. This is also validated by
Figure 7.20, which shows the control functions obtained in the case that T = 10.

T Ccont Cshoot ‖ucont‖L2 ‖ushoot‖L2 ‖ucont − ushoot‖L2

1 0.999996 0.993720 7.53 4.85 -
2 0.999999 0.998627 6.10 4.36 -
5 0.999999 0.999281 3.72 3.40 -
8 0.999999 0.999999 1.51 1.51 7.50·10−3

10 0.999999 0.999999 1.38 1.38 8.93·10−4

20 0.999999 0.999999 0.91 0.91 1.02·10−2

Table 7.27: Comparison of the results obtained for Np = 3. The values of the fidelities Ccont
and Cshoot show that for almost all the values T the two computational schemes are capable to
obtain exact controls. Furthermore, the values ‖ucont‖L2 , ‖ushoot‖L2 and ‖ucont−ushoot‖L2 show
that the two frameworks allow to compute the same control functions for T = 8, T = 10 and
T = 20.
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Figure 7.20: Control functions obtained by means of the continuation method (left) and the
shooting-type method (right) in the case Np = 3 and T = 10. A comparison between the two
pictures shows that the two frameworks allow to compute the same control functions.
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The following table shows the results obtained in the case Np = 2 with ω̄1 = 1.2 and
ω̄2 = 0.9. The Table 7.28 compare results presented in tables 7.13 and 7.23. In particular,
a comparison of the fidelities and the norms of the optimal controls demonstrate that for
almost all the vales of T the two methods result in the same exact-control function. This
is also validated by Figure 7.21, which shows the control functions obtained in the case
that T = 10.

T Ccont Cshoot ‖ucont‖L2 ‖ushoot‖L2 ‖ucont − ushoot‖L2

1 0.999967 0.998402 11.47 4.51 -
2 0.999965 0.999999 11.49 3.84 -
5 0.999967 0.999999 11.35 2.65 -
8 0.999999 0.999999 1.06 1.06 6.54·10−4

10 0.999999 0.999999 1.04 1.04 6.62·10−4

20 0.999999 0.999999 0.68 0.68 3.92·10−5

Table 7.28: Comparison of the results obtained for Np = 2 with ω̄1 = 1.2 and ω̄2 = 0.9. The
values of the fidelities Ccont and Cshoot show that for almost all the values T the two computational
methods are capable to obtain exact controls. Furthermore, the values ‖ucont‖L2 , ‖ushoot‖L2 and
‖ucont − ushoot‖L2 show that the two frameworks allow to compute the same control functions
for T = 8, T = 10 and T = 20.
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Figure 7.21: Control functions obtained by means of the continuation method (left) and the
shooting-type method (right) in the case Np = 2, with ω̄1 = 1.2 and ω̄2 = 0.9, and T = 10. A
comparison between the two pictures shows that the two frameworks allow to compute the same
control functions.
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Next, we consider the results obtained in the case Np = 3 with ω̄1 = 1.1, ω̄2 = 1.0 and
ω̄2 = 0.9. In this case, the Table 7.29 compare results presented in tables 7.14 and 7.24.
A comparison of the fidelities and the norms of the optimal controls demonstrate that for
almost all the vales of T the two computational schemes result in the same exact-control
function. This fact is also validated by Figure 7.22, which shows the control functions
corresponding to T = 10.

T Ccont Cshoot ‖ucont‖L2 ‖ushoot‖L2 ‖ucont − ushoot‖L2

1 0.999996 0.993274 7.53 5.41 -
2 0.999999 0.999521 6.10 4.68 -
5 0.999999 0.999017 3.72 3.29 -
8 0.999999 0.999998 1.51 1.51 3.43·10−2

10 0.999999 0.999999 1.38 1.38 7.49·10−4

20 0.999999 0.999999 0.90 0.90 8.25·10−5

Table 7.29: Comparison of the results obtained for Np = 3 with ω̄1 = 1.1, ω̄2 = 1.0 and
ω̄2 = 0.9. The values of the fidelities Ccont and Cshoot show that for almost all the values T
the two computational methods are capable to obtain exact controls. Furthermore, the values
‖ucont‖L2 , ‖ushoot‖L2 and ‖ucont−ushoot‖L2 show that the two frameworks allow to compute the
same control functions for T = 8, T = 10 and T = 20.
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Figure 7.22: Control functions obtained by means of the continuation method (left) and the
shooting-type method (right) in the case Np = 2, with ω̄1 = 1.1, ω̄2 = 1.0 and ω̄2 = 0.9, and
T = 10. A comparison between the two pictures shows that the two frameworks allow to compute
the same control functions.
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7.2.2 A case of bang-bang exact-control of two uncoupled spins

In this section, we consider an exact-control problem in the case that the control is
pointwise in time bounded, that is u ∈ Uad,1. We remark that, the literature regarding
controllability results in the case of bounded controls is at its infancy. For this reason,
we refer to the work done by Assémat et al. in [9], where the exact-control of a system
of two uncoupled spins is considered. In particular, similarly as in Section 2.3.4, we have
the following system

ẋ = 2π
(
Ã+ uB̃

)
x ,

where

Ã = c

(
A 0
0 −A

)
with A =

0 −1 0
1 0 0
0 0 0

 ,

with c = 483, and

B̃ =

(
B 0
0 B

)
with B =

0 0 0
0 0 −1
0 1 0

 .

We seek a control u : [0, T ] → R, such that |u(t)| ≤ 120.77, that is capable to perform a
transition from an initial state where both the spins are pointing in the z-direction, to a
target state where both the spins are pointing in the −z-direction. Consequently, starting
and target vectors are

x0 =
(
0 0 1 0 0 1

)
,

and
xT =

(
0 0 −1 0 0 −1

)
.

In [9] is proved that the optimal time to perform such a transition is T = 0.006409, which
is the value that we assume.

In order to solve this exact-control problem, we apply our continuation method. The
time interval is discretized with Nt = 20001 points and corresponds to a value of the
regularization parameter of the order of 10−8. The corresponding fidelity C = 〈x(T ),xT 〉

‖x(T )‖2‖xT ‖2
is equal to 0.999999. The obtained exact-control is shown in the Figure 7.23. This is an
exact-control with a bang-bang structure, and is exactly the same as presented in [9].
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Figure 7.23: Bang-bang control function computed for the inversion of a system of two uncoupled
spins having different Larmor frequency.
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In order to demonstrate the validity Theorem 27 and estimate (5.19), we show results
corresponding to different number of discretization points. In particular, similarly as in
Figure 7.4 and Figure 7.17, the two pictures in Figure 7.24 describe the decay of the norm
‖uν − umax‖L2 with respect to the regularization parameter ν. We compare this decay
with the two functions f(ν) = C1ν and f(ν) = C2ν

1/2. In particular, in the left picture,
we show the decay of ‖uν − umax‖L2 for different number of discretization points. It is
clear that, as the number of discretization point increases, the discretization error induces
effects for smaller values of ν. Furthermore, in order to demonstrate the numerical validity
of (5.19), we perform a curve-fitting, in order to compute two parameters α and β such
that the curve ανβ fits the black curve corresponding to Nt = 20001. In particular, we
exclude from this analysis the points corresponding to large values of ν and the points
corresponding to the part of the curve affected by numerical errors. The considered part
of the fitting analysis is shown in Figure 7.23 (right). The computed parameters are
α = 666.758 and β = 0.528, which show that the decay ‖uν − umax‖L2 is slightly faster
than the estimated O(

√
ν).
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Figure 7.24: The picture on the left shows the decay of ‖uν − umax‖L2 with respect to ν for
different number of discretization points. The picture on the right shows the part of the black
curve used in the fitting analysis that demonstrate the validity of the estimate (5.19).

7.2.3 Exact-control of the Pauli equation

In this section, we consider numerical experiments that demonstrates the validity of the
presented computational methods for the exact-control of the Pauli equation (2.79)-(2.82)
for V (r) = 0 and with Uad = L2((0, T );RNC ). In particular, we initialize the numerical
solution by means of the continuation method described in Section 5.2, and then we
address problem (5.36) by means of a Krylov-Newton method, where the terminal state
of the adjoint pT is used as a shooting-variable. This strategy is summarized in the
following algorithm.

Algorithm 21 (Exact control method)
• call Algorithm 13 to obtain an initialization uinit;
while C < tol do
• Call a Krylov-Newton solver (Algorithm 18) to solve (5.36) and minimize Gr;

• Refine the discretization mesh and interpolate the current solution to the new mesh;
end while
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We consider numerical experiments in which we want to perform in time T = 1 a spin
inversion and a transition from m0 = −` to md = `, with ` = 1, 2, 4, 6, 8 and 10.

Some of the controls obtained by the presented Algorithm 21 are shown in the next
Figure 7.25. In particular, the left and the right picture show the controls obtained for
` = 1 and ` = 10, respectively. Notice that the obtained control solutions are capable
to obtain values of G and C vary close to 0 and 1, respectively, that correspond to
the exact control. This is expressed in the next Table 7.30, in which the value of the
fidelity C, the functional G, the norm of the reduced gradient of G, and the number
of discretization points for the time interval [0, T ] are shown. Moreover, in order to
show that the continuation procedure is capable to provide an adequate initialization, the
values Cinit is considered. This correspond to the fidelity obtained by the initialization,
performed by means of the continuation procedure (Algorithm 13).

` Cinit C G ‖∇Gr‖L2 Nt

1 0.9997635 0.9999999 2.38·10−11 1.98·10−11 1601
2 0.9999518 0.9999999 7.15·10−11 8.22·10−11 1601
4 0.9998752 0.9999999 1.45·10−9 9.44·10−12 1601
6 0.9999286 0.9999999 5.13·10−10 6.48·10−11 3201
8 0.9997721 0.9999999 3.47·10−10 2.91·10−9 4801
10 0.9998180 0.9999999 8.63·10−10 2.47·10−9 4801

Table 7.30: Results obtained from the numerical experiments. In particular, Cinit is the fidelity
corresponding to the control obtained by the initialization procedure (continuation method in
Algorithm 13); C is the fidelity corresponding to the control solution obtained by Algorithm 21;
Gr is the value of the cost functional of the problem (5.36) evaluated in the computed controls;
‖∇Gr‖L2 is the norm of the reduced gradient of (5.36); Nt is the number of the points used for
the discretization of the time interval [0, T ].

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

t

 

 

u
1
(t)

u
2
(t)

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

t

 

 

u
1
(t)

u
2
(t)

Figure 7.25: Exact control functions obtained by means of the presented computational scheme
in the cases ` = 1 and ` = 10. In particular, the controls in the left picture correspond to ` = 1,
and the controls in the right picture correspond to ` = 10. These control functions perform the
spin inversion and the transition from m = −` to m = `.
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7.3 Problems of controlling distributed spin systems
In this section, we present numerical results obtained for the control of distributed spin
systems. As discussed in Section 2.3.4, these systems are characterized by a density
operator ρ ∈ her(NgN) with having the following block-diagonal form

ρ = blk-diagl=1,...,Ng (ρl) .

The evolution of such an operator is governed by the LvNM equation

ρ̇ = −i[H, ρ] .

The Hamiltonian H is the following block-diagonal matrix

H =


H̃1

. . .
H̃l

. . .
H̃g


where the l-th block is given by

H̃l = αlH̃0 + α̂lH̃rf ,

with αl and α̂l are real parameters, and H̃0 and H̃rf are defined in (2.107) and (2.108),
respectively. We refer to αl as detuning parameters and to α̂l as inhomogeneity parame-
ters. The parameters αl and α̂l represents inhomogeneities of the stationary magnetic-field
along the z-axis and of the control magnetic fields, respectively.

Consider inhomogeneous spin systems with N = 2 that are controlled by means of two
control functions. A real matrix representation is obtained similarly as in Section 2.4.1,
and the LvNM equation becomes as follows

ẋ = 2π
(
Ã+ u1B̃1 + u2B̃2

)
x , (7.4)

where

Ã =

α1A
. . .

αgA

 with A =

0 −1 0
1 0 0
0 0 0

 ,

B̃1 =

α̂1B1

. . .
α̂gB1

 with B1 =

 0 0 1
0 0 0
−1 0 0

 .

and

B̃2 =

α̂1B2

. . .
α̂gB2

 with B2 =

0 0 0
0 0 −1
0 1 0

 .

We consider three numerical experiments that are of interest in NMR spectroscopy [75,
105]. In these experiments, we want to perform specific spin transitions by means of
control functions u ∈ Uad,2, with Uad,2 defined in (3.3). The characteristics of these
experiments are given in the following Table 7.31. In this table, we have
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• “Detuning”: it represents the interval of detuning parameters; in particular, the
detuning parameters αl are obtained by discretizing the detuning interval with a
uniform mesh, and the number of discretization points is given by “Det. points”;

• “Inhomog.”: it represents the interval of inhomogeneity parameters; in particular,
the inhomogeneity parameters αl are obtained by discretizing the inhomogeneity
interval with a uniform mesh, and the number of discretization points is given by
“Inh. points”;

• T : time of the experiment;

• b: value of the bound on the controls; it is used to define Uad,2 in (3.3);

• “transition“: it represents the desired spin transition; in particular, z → y means
that we aim to change the spin orientation from the z direction to the y direction,
and z → −z means that we aim to change the spin orientation from the z direction
to the −z direction (spin inversion).

Case Detuning Det. points Inhomog. Inh. points T b transition
1 [-15·103,15·103] 201 - - 82.5·10−6 104 z → y
2 [-10·103,10·103] 201 - - 92.5·10−6 104 z → −z
3 [-10·103,10·103] 201 [0.8,1.20] 5 192.5·10−6 104 z → y

Table 7.31: Characteristics of the considered experiments.

To solve these spin control problems, we use the continuation method discussed in
Chapter 5 and 6. We remark that, it is not proved that the considered inhomogeneous
spin systems are controllable. Hence, we do not expect exact-control results, however, the
experiments aim to obtain values of the fidelity C, defined in (7.1), as close as possible to
1. The results of the optimizations are given in the following. In particular, Table 7.32
summarizes the obtained results, and shows the number of discretization point Nt of the
time interval [0, T ], the reached value of weight parameter ν and the obtained fidelity C.
The corresponding control functions are depicted in Figure 7.26, Figure 7.27 and Figure
7.28, respectively. Notice that, even if the considered inhomogeneous spin systems are not
proved to be controllable, our computational scheme allows to obtain high values of the
fidelity. Moreover, we remark that, reducing the value of ν does not significantly increase
the obtained fidelities.

Case Nt ν C
1 101 10−3 · 0.510 0.916918
2 101 10−3 · 0.510 0.791679
3 101 10−3 · 0.510 0.974128

Table 7.32: Characteristics of the considered experiments.
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Figure 7.26: Case 1: Optimal controls functions.
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Figure 7.27: Case 2: Optimal controls functions.
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Figure 7.28: Case 3: Optimal controls functions.
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Next, we repeat the same experiments in the case of piecewise-constant controls. The
considered number of piecewise-constant subintervals is M = 10 (see Section 3.3). The
obtained results are shown in the following Table 7.33 and figures 7.29, 7.30 and 7.31.
We remark that, the piecewise-constant optimal control are capable to obtain almost the
same values of fidelities shown in Table 7.32.

Case Nt ν C
1 101 10−3 · 0.510 0.908541
2 101 10−3 · 0.510 0.780048
3 101 10−3 · 0.510 0.970660

Table 7.33: Characteristics of the considered experiments.
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Figure 7.29: Case 1: Piecewise-constant optimal controls functions.
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Figure 7.30: Case 2: Piecewise-constant optimal controls functions.
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Figure 7.31: Case 3: Piecewise-constant optimal controls functions.

7.4 Summary and remarks
In this section, numerical experiments regarding the control of quantum systems were
shown. The experiments, involving the control of spin systems that are of interest in NMR
spectroscopy, were used to demonstrate the validity of the computational framework de-
veloped in this thesis. We showed that, the developed semi-smooth Newton method can
be successfully used to address quantum optimal control problems with L1-penalization
term in the cost functional and with piecewise-constant control functions. An infinite-
dimensional dipole-control problem was also considered, and the SSN method was capable
to obtain sparse and piecewise-constant controls. Moreover, several exact-control prob-
lems governed by the LvNM equation and by the Pauli equation were addressed by means
of the two methodologies developed in Chapter 5. Finally, we considered the control of
inhomogeneous spin systems, which are in general considered in NMR experiments. Also
in these last cases, the methodologies presented in this thesis were able to address suc-
cessfully the considered quantum spin control problems.
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Appendix

A.1 The angular equations and the spherical harmonics
functions

The spherical harmonics, denoted with Y m
` (θ, φ), are eigen-functions of the operator

L2 = L2
x + L2

y + L2
z ,

i.e., Y m
` (θ, φ) solve the following eigen-problem

L2Y m
` (θ, φ) = ~2`(`+ 1)Y m

` (θ, φ) . (A.1)

Since L2 is an Hermitian operator, its eigen-functions Y m
` (θ, φ) satisfy the following or-

thogonality condition

2π∫
0

π∫
0

Y m
` (θ, φ)Y m′

`′ (θ, φ) sin θ dθdφ = δ`,`′δm,m′ ,

where δmm′ is the Kronecker delta, and have the following parity property

Y m
` (π − θ, φ+ π) = (−1)`Y m

` (θ, φ) .

Further, we have the following relations

LzY
m
` (θ, φ) = ~mY m

` (θ, φ)

L±Y
m
` (θ, φ) = ~

√
`(`+ 1)−m(m± 1)Y m±1

` (θ, φ) ,

where L± = Lx ± iLy.
Spherical harmonics are computed as a product of associated Legendre functions and

complex exponentials
Y m
` (θ, φ) = c`,mP

m
` (cos θ)eimφ , (A.2)

where the normalization constant is

c`,m = (−1)m

√
(2`+ 1)(`− |m|)!

4π(`+ |m|)!
.

The separation of variable which allows to write Y m
` (θ, φ) in the form (A.2) is explained

in the next subsection.
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A.1.1 The polar and azimuthal angular equations

We consider the angular equation given by (A.1) and (2.24). It is explicitly given by the
following

− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
Y (θ, φ)− 1

sin2 θ

∂2

∂φ2
Y (θ, φ) = `(`+ 1)Y (θ, φ) , (A.3)

and we analyze its solutions. To begin with, we divide (A.3) by Y (θ, φ) and we get

− 1

Y (θ, φ) sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
Y (θ, φ)− 1

Y (θ, φ) sin2 θ

∂2

∂φ2
Y (θ, φ) = `(`+ 1) . (A.4)

Using spherical harmonics, we write Y (θ, φ) = Y1(θ)Y2(φ) and replacing it into (A.4) we
obtain

− 1

Y1(θ) sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
Y1(θ)− 1

Y2(φ) sin2 θ

∂2

∂φ2
Y2(φ) = `(`+ 1) . (A.5)

Multiplying (A.5) with sin2 θ, we have

sin θ

Y1(θ)

∂

∂θ

(
sin θ

∂

∂θ

)
Y1(θ) + `(`+ 1) sin2 θ = − 1

Y2(φ)

∂2

∂φ2
Y2(φ) . (A.6)

The only non-trivial solution of (A.6) has to satisfy the following polar equation

sin θ

Y1(θ)

∂

∂θ

(
sin θ

∂

∂θ

)
Y1(θ) + `(`+ 1) sin2 θ = m2 , (A.7)

and azimuthal equation

− 1

Y2(φ)

∂2

∂φ2
Y2(φ) = m2 , (A.8)

where we consider m2 as the separation constant. The solution to the azimuthal equation
(A.8) is given by

Y2,m(φ) = eimφ ,

where the subscript m means that the solution depends on the constant m.
Now, we consider the polar equation (A.7) and we rearrange it as follows

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
Y1(θ) + `(`+ 1) sin2 θ Y1(θ)−m2Y1(θ) = 0 , (A.9)

The first term can be written as

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
Y1(θ) = sin θ

(
cos θ

∂

∂θ
+ sin θ

∂2

∂θ2

)
Y1(θ)

=

(
sin θ cos θ

∂

∂θ
+ sin2 θ

∂2

∂θ2

)
Y1(θ) .

(A.10)

Consequently, (A.9) becomes(
sin θ cos θ

∂

∂θ
+ sin2 θ

∂2

∂θ2

)
Y1(θ) + `(`+ 1) sin2 θ Y1(θ)−m2Y1(θ) = 0 . (A.11)

Exact and non-smooth control of quantum spin systems
194



Appendix

Now, we apply a change of variable using x(θ) = cos θ. We have that

d Y1(x(θ))

dθ
=
d Y1(x)

dx

d x(θ)

dθ
= − sin θ

d Y1(x)

dx
, (A.12)

and
d2 Y1(x(θ))

dθ2
= − cos θ

d Y1(x)

dx
+ sin2 θ

d2 Y1(x)

dx2
. (A.13)

Substituting the above equations in (A.11) we obtain(
− sin2 θ cos θ

∂

∂x
+ sin2 θ

(
− cos θ

∂

∂x
+ sin2 θ

∂2

∂x2

))
Y1(x)

+ `(`+ 1) sin2 θ Y1(x)−m2Y1(x) = 0 .

(A.14)

Dividing (A.14) by sin2 θ we get(
−2 cos θ

∂

∂x
+ sin2 θ

∂2

∂x2

)
Y1(x) + `(`+ 1) Y1(x)− m2

sin2 θ
Y1(x) = 0 . (A.15)

Now, using the fact that cos θ = x, and sin2 θ = 1− cos2 θ = 1− x2 we obtain(
−2x

∂

∂x
+ (1− x)2 ∂

2

∂x2

)
Y1(x) + `(`+ 1) Y1(x)− m2

(1− x)2
Y1(x) = 0 . (A.16)

This equation is the associated Legendre equation, whose solutions are the associated
Legendre polynomials which are defined in terms of derivatives of ordinary Legendre
polynomials

Pm
` (x) = (−1)m(1− x2)m/2

dm

dxm
P`(x) , (A.17)

where P`(x) are the Legendre polynomials. The associated Legendre polynomials are
described in the following subsection.

A.1.2 Associated Legendre polynomials

The associated Legendre polynomials solves equation (A.16) and are given by

Pm
` (x) = (−1)m(1− x2)m/2

dm

dxm
P`(x) , (A.18)

where P`(x) is the `-th Legendre polynomial, which is conveniently defined by the following
Rodrigues formula

P`(x) =
1

2``!

d`

dx`

[
(x2 − 1)`

]
. (A.19)

It can be shown that Pm
` (x) can be computed recursively by the following formulas

Pm
m (x) = amm(1− x2)|m|/2 (A.20)
Pm
m+1(x) = amm+1xP

m
m (x) (A.21)

Pm
` (x) = am` xP

m
`−1(x) + bm` P

m
`−2(x) , (A.22)
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with

amm =

√√√√ 1

4π

|m|∏
k=1

2k + 1

2k
(A.23)

am` =

√
4`2 − 1

`2 −m2
(A.24)

bm` = −
√

2`+ 1

2`− 3

(`− 1)2 −m2

`2 −m2
. (A.25)

A.2 The radial equation and its wavefunctions
Consider the following operator

O`(V ) :=

{
− ~

2

2µ

1

r2

∂

∂r
r2 ∂

∂r
+
~2

2µ

`(`+ 1)

r2
+ V (r)

}
(A.26)

then, the radial equation is defined as the following eigen-problem

O`(V )Rn,`(r) = λn,`Rn,`(r) . (A.27)

The eigenfunctions Rn,`(r) satisfy the following orthogonality condition

∞∫
0

r2Rn,`(r)Rn′,`′(r)dr = δ`,`′δn,n′ .

Since the operator O`(V ) depends on the potential V (r) its eigen-functions Rn,`(r)
have to be computed in different cases of physical interest. In particular, we recall here
the solutions to (2.36) in the following main cases

• V (r) := − e2

r
, which is the Coulomb potential, used for describing the behaviour of

an Hydrogen atom;

• V (r) := 1
2
µωr2, which is used for defining the three dimensional harmonic oscillator;

• V (r) :=

{
∞ if r > a

0 if r ≤ a
, with a > 0 which is the so-called infinite spherical well.

We remark that in the literature it is possible to find solutions to (A.27) for other poten-
tials of physical interest, see, e.g., [63].

A.2.1 The Coulomb potential

We consider the Coulomb potential, which is used to describe an Hydrogen atom. It is
given by the following

V (r) := −e
2

r
(A.28)
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The radial equation becomes as follows{
− ~

2

2µ

1

r2

∂

∂r
r2 ∂

∂r
+
~2

2µ

`(`+ 1)

r2
− e2

r

}
Rn,`(r) = λn,`Rn,`(r) . (A.29)

Its solutions are given by the following

Rn,`(r) = cn,`e
− r
na0

(
2r

na0

)`
L2`+1
n−`−1

(
2r

na0

)
, (A.30)

where
a0 =

~2

µe2
, (A.31)

is the so-called Bohr radius. The coefficients cn,` are given by the following

cn,` =

√√√√( 2

na0

(n− `− 1)!

2n[(n+ `)!]3

)3

. (A.32)

The functions Lαn(x) are the generalized Laguerre polynomials, which are given by the
following

Lαn(x) =
x−αex

n!

dn

dxn
(
e−xxn+α

)
, (A.33)

and they can be computed by means of the following recursive formulas

Lα0 (x) = 1 (A.34)
Lα1 (x) = 1 + α− x (A.35)

Lαn+1(x) =
(2n+ 1 + α− x)Lαn(x)− (n+ α)Lαn−1(x)

n+ 1
. (A.36)

The corresponding energies are given by the following

λn,` = − ~2

2µa2
0n

2
. (A.37)

A.2.2 The harmonic oscillator

We consider the harmonic oscillator, which is obtained by means of the following potential

V (r) :=
1

2
µω2r2 . (A.38)

Hence, the radial equation becomes as follows{
− ~

2

2µ

1

r2

∂

∂r
r2 ∂

∂r
+
~2

2µ

`(`+ 1)

r2
+

1

2
µω2r2

}
Rn,`(r) = λn,`Rn,`(r) . (A.39)

Its solutions are given by the following

Rn,`(r) = r`e−
β2r2

2

∞∑
q=0

cqr
q , (A.40)
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where

β =

√
µω

~
. (A.41)

The coefficients cq are given by the following formulas

c0 6= 0 (A.42)
c1 = 0 (A.43)

cq+2 =

[
(2q + 2`+ 3)β2 − εn,`

]
(q + 2)(q + 2`+ 3)

cq , (A.44)

where
εn,` =

(
2n+ 2`+ 3

)
β2 . (A.45)

Notice that according to (A.42)-(A.44) the coefficients aq with q odd are zero.
The corresponding energies are given by the following

λn,` = ~ω
(
n+ `+

3

2

)
. (A.46)

A.2.3 The infinite spherical well

We consider the infinite spherical well potential, which is defined as follows

V (r) :=

{
∞ if r > a

0 if r ≤ a
. (A.47)

with a > 0. Outside the well the wave function is zero. Inside the well, the radial equation
(2.36) become as follows{

− ~
2

2µ

1

r2

∂

∂r
r2 ∂

∂r
+
~2

2µ

`(`+ 1)

r2

}
Rn,`(r) = λn,`Rn,`(r) . (A.48)

Its solutions are given by the following

Rn,`(r) =

√
2

a
j`

(βn,`
a
r
)
, (A.49)

where j`(x) are the spherical Bessel functions that are given by

j`(x) = (−x)`
(1

x

d

dx

)` sinx
x

, (A.50)

and βn,` is the n-th zero of the `-th spherical Bessel function. The corresponding energies
are given by

λn,` =
~

2µa2
β2
n,` . (A.51)

The Bessel functions are oscillatory and each one has an infinite number of zeros. They
have to be computed numerically [51].

Exact and non-smooth control of quantum spin systems
198



Appendix

A.3 Lie algebra and Lie groups
In this section, we state some main definitions and results regarding matrix Lie groups
and Lie algebras. Our main references are [53, 67, 93].

A matrix Lie group is defined as follows.

Definition A 1. Let GL(n;C) denote the general linear group of all n× n matrices with
complex entries. A matrix Lie group is any subgroup G of GL(n;C) with the following
property: if {Am}∞m=1 is any sequence of matrices in G, and Am → A, then either A ∈ G,
or A is not invertible.

Two important properties of a matrix Lie group are compactness and connectedness.
They are defined in the following.

Definition A 2. A matrix Lie group G is said to be compact if the following two conditions
are satisfied:
• if {Am}∞m=1 is any sequence of matrices in G, and Am converges to a matrix A, then
A is in G;
• there exists a constant C such that for all A ∈ G, |Aj,k| ≤ C for all 1 ≤ j, k ≤ n.

Notice that, this definition says that G is compact if it is a closed and bounded subset
of Cn2 .

Definition A 3. A matrix Lie group G is said to be (path-)connected if given two matrices
A and B in G, there exists a continuous path A(t), a ≤ t ≤ b, lying in G with A(a) = A
and A(b) = B.

A Lie algebra corresponding to a matrix Lie group is defined as follows.

Definition A 4. Let G be a matrix Lie group. The Lie algebra of G, denoted by g, is the
set of all matrices X such that exp(tX) is in G for all t ∈ R.

A Lie algebra can be defined in a general way (independently on a matrix Lie group) as
a vector space endowed with a particular bilinear operation. This is done in the following
definition.

Definition A 5. A finite-dimensional real (complex) Lie algebra is a finite-dimensional
real (complex) vector space g, together with a map [·, ·] : g × g → g, with the following
properties:
• [·, ·] is bilinear;
• [X, Y ] = −[X, Y ] for all X, Y ∈ g;
• [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈ g.

The following theorem states that a Lie algebra corresponding to a matrix Lie group
(Definition 4) is a real vector space and a Lie algebra in the sense of Definition 5.

Theorem A 1. Let G be a matrix Lie group, g its Lie algebra, and X and Y elements
of g. Then it holds that

• sX ∈ g for all real numbers s;
• X + Y ∈ g;
• XY − Y X ∈ g.
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Moreover, the Lie algebra g of G is a real Lie algebra (according to Definition A 5).

An important property of a matrix Lie group is the so-called semisimplicity. In par-
ticular, a matrix Lie group G is said to be semisimple if the corresponding Lie algebra g
is semisimple. In order to define semisimplicity of a Lie algebra g, we need to introduce
the definitions of ideal and simple Lie algebra, as follows.

Definition A 6. Let g be a (complex) Lie algebra, then an ideal in g is a complex
subalgebra h of g with the property that for all X in g and H in h, we have that [X,H] ∈ h.

Definition A 7. A (complex) Lie algebra g is said to be simple if the only ideals in g are
g and {0} and dim g ≥ 2.

A semisimple Lie algebra is defined as follows.

Definition A 8. A (complex) Lie algebra g is said to be semisimple if it is isomorphic
to a direct sum of simple Lie algebras.

We remark that, it could be difficult to establish semisimplicity of a Lie algebra by
using Definition 8. In order to obtain a simpler and more practical condition to establish
semisimplicity, consider the so-called Killing form on g, that is a bilinear form K : g×g→
K, where K stays for R or C, defined as follows; see, e.g., [40, 53, 67];

K : (A,B) 7→ trace(adA ◦ adB) , for any A,B ∈ g ,

where the linear operator adA : g → g is defined as adA(·) := [A, ·]. The Killing form
allows to characterize a semisimple Lie group by means of the following theorem; see, e.g.,
[40, 53, 67].

Theorem A 2. A matrix Lie group is called semisimple if its corresponding Lie algebra
g is semisimple, that is the so-called Killing form is nondegenerate on g:

trace(adA ◦ adB) = 0 ∀A ∈ g ⇒ B = 0 ,

and
trace(adA ◦ adB) = 0 ∀B ∈ g ⇒ A = 0 .

A.4 Results of functional analysis
In this section we recall some important concept and results of functional analysis that are
used in the present thesis. Our main references are [33, 47, 66, 96, 119]. In particular, we
recall definition and results regarding weak convergence, semicontinuity and embeddings.

Definition A 9. Let X be a normed vector space and let X∗ denote its dual. A sequence
{xn}∞n=1 of elements xn ∈ X is said to converge weakly in X if there exists x ∈ X such
that

for each x∗ ∈ X∗ , x∗(xn)→ x∗(x) as n→∞ ,

and such an x is called the weak limit of the sequence {xn}∞n=1. Weak convergence is
usually denoted by xn ⇀ x.

Theorem A 3. Let X and Y be normed vector spaces over the same field K. It holds:
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• let A ∈ L(X, Y ), then

xn ⇀ x in X implies Axn ⇀ Ax in Y ;

• let B ∈ L(X × Y,K), then

xn ⇀ x in X and yn → y in Y implies B(xn, yn)→ B(x, y) in K .

Theorem A 4 (Banach-Saks-Mazur). Let X be a real normed vector space. Let C be a
non-empty, convex, and closed subset of X, and let {xk}∞k=1 be a sequence of points xk ∈ C
that weakly converges to x ∈ X as k →∞. Then the weak limit x belongs to C.

Theorem A 5 (Banach-Eberlein-Šmulian).

(a) Any bounded sequence in a reflexive Banach space contains a weakly convergent
subsequence.

(b) Conversely, a Banach space in which every bounded sequence contains a weakly
convergent subsequence is reflexive.

A direct consequence of the previous theorems is the following important result.

Theorem A 6. Let X be a reflexive Banach space. Let C be a non-empty, convex, closed
and bounded subset of X. Then C is weakly sequentially compact, that is every sequence
contains a subsequence that weakly converges to some x ∈ C.

Theorem A 7. The following Banach spaces are reflexive:

(a) Any finite-dimensional normed vector space;

(b) Any Hilbert space;

(c) Any closed subspace of reflexive Banach space;

(d) The dual space of any reflexive Banach space;

(e) The spaces `p, 1 < p <∞, and the Lebesgue spaces Lp(Ω), 1 < p <∞, with Ω any
subset of RN .

Definition A 10. Let X be a normed vector space and let X∗ denote its dual. A function
J : X → R ∪ {∞} is said sequentially lower semicontinuous if

lim
k→∞

xk = x in X implies J(x) ≤ lim inf
k→∞

J(xk) .

Furthermore, let U ⊂ X be non-empty, then J : U → R∪{∞} is said sequentially weakly
lower semicontinuous if

xk ∈ U ⇀ x ∈ U as k →∞ implies J(x) ≤ lim inf
k→∞

J(xk) .

Theorem A 8. Let X be a normed space. Then a convex and continuous function
J : X → R ∪ {∞} is sequentially weakly lower semicontinuous on X.

Definition A 11. Let X and Y be two normed vector spaces. The space X is said
continuously embedded in Y , X ↪→ Y , if X ⊂ Y and there exists a constant c such that
‖x‖Y ≤ c‖x‖X for all x ∈ X. Furthermore, X is said compactly embedded in Y , X ⊂⊂ Y ,
if X ↪→ Y and every bounded sequence {xk}∞k=1 in X contains a subsequence converging
in Y .
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Theorem A 9 (Sobolev imbedding theorems). Let Ω be a domain in RN , let m ≥ 1 be
an integer, and let 1 ≤ p <∞. Then the following continuous embeddings hold:

(a) Wm,p(Ω) ↪→ Lp
∗
(Ω) with 1

p∗
= 1

p
− m

N
if m < N

p
,

(b) Wm,p(Ω) ↪→ Lq(Ω) for all q with 1 ≤ q <∞ if m = N
p
,

(c) Wm,p(Ω) ↪→ C0,m−N/p(Ω̄) if N
p
< m < N

p
+ 1 ,

(d) Wm,p(Ω) ↪→ C0,λ(Ω̄) for all λ with 0 < λ < 1 if m = N
p

+ 1 ,

(e) Wm,p(Ω) ↪→ C0,1(Ω̄) if m > N
p

+ 1 .

Theorem A 10 (Rellich-Kondrachov compact imbedding theorems). Let Ω be a domain
in RN , let m ≥ 1 be an integer, and let 1 ≤ p < ∞. Then the following compact
embeddings hold:

(a) Wm,p(Ω) ⊂⊂ Lq(Ω) for all q with 1 ≤ q < p∗ if m < N
p
,

(b) Wm,p(Ω) ⊂⊂ Lq(Ω) for all q with 1 ≤ q <∞ if m = N
p
,

(c) Wm,p(Ω) ⊂⊂ C(Ω̄) if m > N
p
.

A.5 Non-smooth calculus
In this section, we recall some main results of non-smooth calculus. Our main references
are [34, 45, 66].

Definition A 12. Let X be a locally convex topological vector space, and denote by X∗
its dual space. Let F : X → R ∪ {∞} a convex function. The function F is said
subdifferentiable at x ∈ X if F (x) is finite and there exists g ∈ X∗ such that

F (y)− F (x) ≥ g(y − x) ∀y ∈ X .

The element g is called subgradient of F at x. The set of all these linear functionals is
called subdifferential:

∂F (x) :=
{
g ∈ X∗ : F (y)− F (x) ≥ g(y − x) ∀y ∈ X

}
.

Theorem A 11. Let X be a locally convex vector space, and F : X → R∪{∞} be convex,
finite and continuous at x. Then ∂F (x) 6= ∅.

Theorem A 12. Let X be a locally convex vector space, and F1, F2 : X → R ∪ {∞} be
proper and continuous functions. Let x ∈ domF1 ∩ domF2, such that F1 is continuous at
x. Then it holds that

∂(F1 + F2)(x) = ∂F1(x) + ∂F2(x) ,

for all x ∈ X.

Theorem A 13. Let X, Y be two Banach spaces. Let F : Y → X and G : X → R.
Suppose that F is strictly differentiable at y and that G is Lipschitz near F (y). Then
f = G ◦ F is Lipschitz near y and it holds that

∂f(y) ⊂ ∂G ◦ F ′(y) ,

where F ′ is the derivative of F .
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A.6 Standard results in optimization and optimal con-
trol theory

In this section, we briefly summarize well known results regarding necessary optimality
conditions for the following general optimal control problem

min
x,u

J(x, u)

s.t. c(x, u) = 0

x ∈ X , u ∈ U ,

(POC)

where c(x, u) = 0 denotes the differential constraint. The associated Lagrangian function
is defined as

L(x, u, p) := J(x, u) +
(
c(x, u), p

)
P,P ∗

,

where P is the space of the residuals of the constraint equation, P ∗ is its dual space and
(·, ·)P,P ∗ represents the duality product between c(x, u) and the corresponding Lagrange
multiplier p ∈ P ∗. To guarantee the existence of Lagrange multipliers in P ∗ it is possible
to consider the following result, see, e.g., [66, 119, 134, 135].

Theorem A 14. Let Y and P be Banach spaces, C a closed and convex subset of Y and
K a closed convex cone in P . Let J : Y → R and c : Y → P be Fréchet differentiable at
ỹ ∈ Y solution to

min J(y) s.t. y ∈ C and c(y) ∈ K .

Assume that one of the following conditions is satisfied

• the Zowe-Kurcyusz constraint qualification (ZKCQ) holds, i.e.

P = c′(ỹ)ZC(ỹ)− ZK(c(ỹ)) ,

where ZC(ỹ) and ZK(c(ỹ)) are the cones of feasible directions of C at ỹ and of K
at c(ỹ), respectively.

• the slater condition holds, that is

∃y ∈ C s.t. c(ỹ) + c′(ỹ)(y − ỹ) ∈ intK ;

• c′(ỹ) is surjective.

Then there exists a Lagrange multiplier p ∈ P ∗.

The first-order necessary optimality condition of (POC) is given by the following result
see, e.g., [16, 86, 119].

Theorem A 15. Assume that at (x̃, ũ) ∈ X × U it holds that

• J and c are Fréchet differentiable maps;

• c(x̃, ũ) = 0 admits a solution;

• c satisfies some regularity conditions, e.g. (ZKCQ), to guarantee the existence of
the associated Lagrange multiplier p̃ ∈ P ∗.
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If the pair (x̃, ũ) ∈ (X,U) is a local minimizer for the optimal control problem (POC).
Then, the triple (x̃, ũ, p̃) is a KKT point and satisfies the following system

∇xJ(x, u) +
(
∇xc(x, u)

)∗
p = 0

∇uJ(x, u) +
(
∇uc(x, u)

)∗
p = 0

c(x, u) = 0 .

The first equation is termed as the adjoint equation, the second is the gradient compo-
nent of the optimality conditions and the last is the constraint of the problem, sometimes
termed as primal equation.

Notice that the structure of the considered optimal control problem allows to consider
the state as a function of the control, i.e. x = x(u). For this reason, it is possible to
introduce the so-called reduced cost functional, given by the following; see, e.g., [16, 119,
129];

Jr(u) := J(x(u), u) ,

and the corresponding reduced problem is given by

min
u

Jr(u)

s.t. u ∈ U .
(POCr)

Notice that (POCr) is, in contrast to (POC), an unconstrained optimization problem. If ũ
is a solution to (POCr), then the pair (x(ũ), ũ) solves (POC), see, e.g., [16, 119, 129]. The
reduced gradient is defined as

∇uJr(u) := ∇uJ(x, u) +
(
∇uc(x, u)

)∗
p .

Now, assume that the cost functional J and the constraint c are twice Fréchet dif-
ferentiable. To obtain the reduced Hessian operator, we first consider the Hessian of the
Lagrangian function, that is

H(L(x, u, p)) =

∇xxL ∇xuL
(
∇xc

)∗
∇uxL ∇uuL

(
∇uc

)∗
∇xc ∇uc 0

 .

This operator act on a vector (δx, δu, δp)T where δx , δu and δp are any variations of x,
u and p in the space of the solutions of constraint and adjoint equations. Then, assuming
that the linearized constraint equation is solvable, i.e. the operator

(
∇xc

)
is invertible,

we write that (
∇xc

)
δx+

(
∇uc

)
δu = 0⇒ δx = −

(
∇xc

)−1(∇uc
)
δu .

We obtain the Hessian operator in the reduced form, that is

Hr(x, u) =

(
−
(
∇xc

)−1(∇uc
)

I

)∗(∇xxL ∇xuL
∇uxL ∇uuL

)(
−
(
∇xc

)−1(∇uc
)

I

)
.

Furthermore, the action of Hr on δu can be obtained solving the linearized constraint
equation, then solving the linearized adjoint, that is(

∇xxL
)
δx+

(
∇xuL

)
δu+

(
∇xc

)∗
δp = 0 ,
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and assembling as follows

Hrδu :=
(
∇uxL

)
δx+

(
∇uuL

)
δu+

(
∇uc

)∗
δp .

A second-order necessary condition for a local minimum of the problem (POCr) is given
by the following theorem; see, e.g., [16, 66, 119].

Theorem A 16. Under the assumption of Theorem 15, consider that J(x, u) and c(x, u)
are twice Fréchet differentiable maps, and that the linearized constraint equation is solv-
able. If the triple (x̃, ũ, p̃) is an optimal solution to the problem (POCr), then the reduced
Hessian operator Hr(x̃, ũ) is positive semidefinite on the kernel of the linearized con-
straints, in the sense that((

∇xxL ∇xuL
∇uxL ∇uuL

)
(x̃,ũ,p̃)

(
δx
δu

)
,

(
δx
δu

))
≥ 0 ,

for all (δx, δu) ∈ X × U satisfying the linearized constraint equation(
∇xc

)
δx+

(
∇uc

)
δu = 0 .

Next, we consider a general optimal control problem with inequality constraints on
the controls, that is

min
x,u

J(x, u)

s.t. c(x, u) = 0

x ∈ X , u ∈ Uad ⊂ U .

(POC2)

A necessary optimality condition to this problem is the following; see, e.g., [16, 66, 119].

Theorem A 17. If Uad ⊂ U is a convex and closed subset of the Hilbert space U and
Jr : Uad → R is differentiable, then the solution ũ of the optimization problem (POC2)
satisfies the variational inequality

〈∇uJr(ũ), u− ũ〉U ≥ 0 , ∀u ∈ Uad .

Another useful result that establish optimality conditions is given by the following
theorem [45].

Theorem A 18. Let X be a reflexive Banach space. Consider a map F : U → R, where
U ⊆ X. Consider the following problem

inf
u∈U

F (u) . (A.52)

It holds that

(a) if U = X and ũ is a solution to (A.52), then it holds that 0 ∈ ∂F (ũ), where ∂F (ũ)
is a subdifferential of F at ũ;

(b) if U ⊂ X is a non-empty, closed and convex, and F = F1 +F2, with F1 and F2 being
lower semicontinuous functions of U into R, F1 being Gâteaux differentiable with
derivative F ′1, F2 being convex, then a necessary condition for ũ to be a minimizer
for (A.52) is the following

〈F ′1(ũ), v − ũ〉+ F2(v)− F2(ũ) ≥ 0 , ∀v ∈ U . (A.53)

If in addition F1 is convex, then the previous condition is also sufficient.
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