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Notations

The following notations will be used throughout this thesis.

N is the set of all natural numbers: N = {1, 2, ...}.
N0 is the set of all natural numbers and zero: N0 = {0, 1, 2, ...}.
Z is the set of all integer numbers.
R is the set of all real numbers.
C is the set of all complex numbers.
<(s) is the real part of a complex number s ∈ C.
=(s) is the imaginary part of a complex number s ∈ C.
f(x) = O(g(x)) means | f(x) |≤ Cg(x) for x ≥ x0 and a certain C > 0.

Here f(x) is a complex function of the real variable x and g(x)
is positive function of x for x ≥ x0.

f(x)� g(x) means the same as f(x) = O(g(x)).
f(x) = o(g(x)) as x→ x0 means lim

x→x0
f(x)
g(x) = 0 with x0 possibly infinite.

Ress=s0 F (s) is the residue of F (s) at the point s = s0.
Γ(s) is the gamma-function defined by Γ(s) =

∫∞
0 ts−1e−tdt, <(s) > 0,

otherwise by analytic continuation.
γ is Euler’s constant, defined by γ = −

∫∞
0 e−x log xdx = 0.5772157... .

ρ = β + iγ denotes the non-trivial zeros of ζ(s); β = <(ρ), γ = =(ρ).
N(T ) denote the number of zeros ρ = β + iγ of ζ(s) in the critical strip

with 0 ≤ γ < T .
N0(T ) denote the number of non-trivial zeros which lie on the critical line

and have imaginary part γ ∈ (0, T ].
N(σ, T ) denote the number of non-trivial zeros with real part β > σ and

imaginary part γ ∈ (0, T ].
N∗(T ) denote the number of simple non-trivial zeros with imaginary

part γ ∈ (0, T ].
exp(z) = ez.
e(z) = e2πiz.
log x = Logex(= lnx).∑
n≤x

f(n) denote a sum taken over all natural numbers n not exceeding x;

the empty sum is defined to be zero.∑
n≤x

′
f(n) denote the same as above, only ′ denotes that when x is an integer

one should take the last term in the sum as f(x)
2 and not as f(x).∏

j
denote a product taken over all possible values of the index j;

the empty product is defined to be unity.∑
d|n

denote a sum taken over all positive divisors of n.

Λ(n) is the von Mangoldt function defined by Λ(n) = log p if n = pm and
zero otherwise.

µ(n) is the Möbius function, defined as µ(n) = (−1)k if n = p1 · · · pk
(pj ’s being different primes) and zero otherwise, and µ(1) = 1.

π(x) =
∑
p≤x

1, the number of primes not exceeding x.
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li(x) =
∫ x

0
dt

log t = lim
ε→0

(∫ 1−ε
0

dt
log t +

∫ x
1+ε

dt
log t

)
.

dk(n) is the number of ways n can be written as a product of k ≥ 2
fixed factors; d2(n) = d(n) is the number of divisors of n

Bk Bernoulli numbers
φ(n) is Euler’s function defined as φ(n) = n

∏
p|n

(
1− 1

p

)
,

where the product is over all prime divisors of n.
meas{A} is Lebesgue measure of the set A.
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Chapter 1

1 Introduction and statement of the main results

The Riemann zeta-function plays an important role in number theory by the relation between
its zeros and the number of prime numbers less than a given magnitude. The question about the
zeros of the Riemann zeta-function is one of the most famous open problems of mathematics.

Recently, the behaviour of the Riemann zeta-function has been studied in various directions,
for example, the location of non-trivial zero of the zeta-functions, the order of growth of
the zeta-function inside the critical strip, the mean-value behaviour of the zeta-functions,
universality properties of the zeta-function, etc. These directions have been studied by analytic
means. In this thesis, we shall study the zeta-function from a probabilistic point of view,
namely in contexts of a random walk and an ergodic transformation.

In Chapter 1, we introduce the Riemann zeta-function and other zeta-functions, which
shall appear in this thesis. Moreover, we provide the analytic tools for studying the behaviour
of these zeta-functions.

In Chapter 2, we study the asymptotic behaviour of zeta-functions on vertical lines σ+ it,
t ∈ R by modelling the imaginary part t with a Cauchy random walk. We briefly discuss
the technique of Lifshits and Weber [43] in the investigation of the almost sure asymptotic
behaviour for the Riemann zeta-function ζ(s). Furthermore, we emulate their technique for
the Hurwitz zeta-function ζ(s, a). Moreover, we use Atkinson’s formula [2] in place of the
technique of Lifshits and Weber in the case of Dirichlet L-functions L(s, χ) with a primitive
character χ.

In Chapter 3, we study the behaviour of zeta-functions on vertical lines σ+ it, t ∈ R, when
t is sampled by an ergodic transformation. Here the ergodic transformation T : R → R is
given by

T0 := 0, Tx :=
1

2
(x− 1

x
) for x 6= 0.

Its iterates Tnx are defined by T ◦Tn−1x, for n ≥ 1, and T 0x = x. We discuss the distribution
of values of the Riemann zeta-function ζ(s) on vertical lines s = σ + iR with respect to this
ergodic transformation T following a work of J. Steuding in [60]. Moreover, we study the
behaviour of the logarithmic derivative of zeta-functions on vertical lines σ+ it, t ∈ R, when t
is sampled by an ergodic transformation. Here, we shall provide an equivalent formulation for
the Riemann Hypothesis in terms of an ergodic transformation. We also study the behaviour
of other zeta-functions in this sense.

In Chapter 4, we investigate the phenomenon of universality with respect to certain stochas-
tic processes. Regarding the absolute value of an analytic function as analytic landscape over
the complex plane, we discuss the question: how often does a random walk observe the phe-
nomenon of universality? And: how soon does a random walk meet a given set?

1.1 The Riemann zeta-function

The Riemann zeta-function is a function of a complex variable s, for σ := <(s) > 1 given by

ζ(s) =

∞∑
n=1

n−s.(1.1)
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The Dirichlet series (1.1) is convergent for σ > 1, and uniformly in any finite region in which
σ ≥ 1 + δ, δ > 0. In addition, for σ > 1, ζ(s) can be written as an infinite product over the
prime numbers p:

(1.2) ζ(s) =
∏
p

(
1− p−s

)−1
.

The infinite product (1.2) is known as Euler’s product.
In most application of zeta-function theory information about ζ(s) for σ ≤ 1 is of interest.

B. Riemann [53] discovered that the function ζ(s) is regular for all values of s except a simple
pole at s = 1 with residue 1. The Laurent expansion of ζ(s) in a neighborhood of its pole
s = 1 is

(1.3) ζ(s) =
1

s− 1
+ γ0 + γ1(s− 1) + γ2(s− 1)2 + ...,

where the coefficients γk in (1.3) are given by

γk =
(−1)k

k!
lim
N→∞

∑
m≤N

1

m
logkm− logk+1N

k + 1

 ,

and, in particular,

γ = γ0 = lim
N→∞

(
1 +

1

2
+ ...+

1

N
− logN

)
= 0.5772157...

is Euler’s constant (see [27] p.4). B. Riemann also proved the functional equation for the
Riemann zeta-function, which states that, for all complex s,

(1.4) π
−s
2 Γ(

s

2
)ζ(s) = π

s−1
2 Γ(

1− s
2

)ζ(1− s).

The functional equation (1.4) shows ζ(−2n) = 0 for n = 1, 2, ..., since the gamma-function
has simple poles at the non-positive integers and for s = 0 the pole of ζ(1 − s) cancels the
pole of Γ( s2). The zeros s = −2n are called the “trivial zeros” of ζ(s). All other zeros lie
inside the strip 0 < σ < 1 are called “non-trivial zeros” of ζ(s). As already mentioned in the
beginning, the location of the non-trivial zeros of ζ(s) is topic of the most famous conjectures
of mathematics, namely the Riemann Hypothesis. This conjecture states that there are no
zeros of ζ(s) to the right of the critical line σ = 1

2 .
In Riemann’s nine pages memoir, he conjectured an asymptotic formula for the number

N(T ) of zeros ρ = β + iγ of ζ(s) in the critical strip with 0 ≤ γ < T , namely

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ),

which was proved by von Mangoldt in 1895/1905. For the ξ-function, defined by

ξ(s) :=
s

2
(s− 1)π−

s
2 Γ(

s

2
)ζ(s),

Riemann conjectured the product representation

ξ(s) = eA+Bs
∏
ρ

(1− s

ρ
)e

s
ρ ,
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where A, B are constants and the product is taken over all non-trivial zeros ρ of ζ(s). This
conjecture was proved by Hadarmard [22] in 1893. In 1896, de la Vallée Poussin [66] proved
that the zero-free region includes the vertical line <(s) = 1, i.e, ζ(1 + it) 6= 0 for all t ∈ R.
Vinogradov [67] and Korobov [37] proved independently that ζ(s) has no zeros in the region

<(s) ≥ 1− c(α)

(log | t | +1)α
,

for any α > 2
3 .

Hardy [23] showed that there are infinitely many zeros on the critical line. Selberg [54]
proved that a positive proportion of all non-trivial of ζ(s) lie on the critical line: let N0(T )
denote the number of non-trivial zeros which lie on the critical line and have imaginary part
γ ∈ (0, T ], then

U := lim inf
T→∞

N0(T )

N(T )
≥ C

with some constant C > 0. The lower bound U was improved by Levinson [42] who obtained
that U ≥ 0.3437. Conrey [19] obtained the better lower bound U ≥ 0.4088. The best and most
recent lower bound has been established by Bui, Conrey and Young [14], namely U ≥ 0.4105.

Selberg [55] attempted to bound the number of possible zeros off the critical line. Let
N(σ, t) denote the number of non-trivial zeros with real part β > σ and imaginary part
γ ∈ (0, T ]. Selberg showed that, for 1

2 ≤ σ ≤ 1,

N(σ, T )� T 1− 1
4

(σ− 1
2

) log T

uniformly in σ.
Moreover, there is a conjecture about the simplicity of the zeros of the Riemann zeta-

function. Let N∗(T ) denote the number of simple non-trivial zeros with imaginary part γ ∈
(0, T ]. Levinson [42] proved that

S := lim inf
T→∞

N∗(T )

N(T )
≥ 1

3
.

Unconditionally, Bui, Conrey and Young [14] proved that S ≥ 0.4058. Recently, under the
assumption of the Riemann Hypothesis, Bui and Heath-Brown [15] proved that S ≥ 19

27 .
Let (γn)n denote the sequence of all positive imaginary parts of non-trivial zeros in ascend-

ing order. Littlewood [44] proved that the gap between consecutive ordinates γn, γn+1 tends
to zero, as n→∞. Littlewood obtained that, as n→∞,

γn+1 − γn �
1

log log log γn
.

Montgomery [46] investigated the behaviour of the pair correlation of ordinates γ, γ′ of non-
trivial zeros. Montgomery conjectured that, for any fixed 0 < α < β,

lim
T→∞

1

N(T )
]{γ, γ′ ∈ (0, T ) : α ≤ (γ − γ′) log T

2π
≤ β} =

∫ β

α

(
1− (

sinπu

πu
)2

)
du.

This conjecture is called “Montgomery’s pair correlation conjecture”.
There is another famous conjecture, which is a consequence of the Riemann Hypothesis,

namely the Lindelöf Hypothesis. The Lindelöf Hypothesis asserts that ζ(1
2 + it) �| t |ε for

6



any ε > 0, as | t |→ ∞. Titchmarch [64] gave an equivalent form of the Lindelöf Hypothesis,
namely that, for every positive ε and every σ ≥ 1

2 ,

ζ(σ + it)� tε.

Titchmarch showed further that the truth of the Riemann Hypothesis implies the Lindelöf
Hypothesis and

ζ(
1

2
+ it) = O

(
exp

{
A

log t

log log t

})
,

where A is a constant. Recently, Huxley [26] showed the best unconditional result in that
direction, namely that, for every ε > 0,

ζ(
1

2
+ it)� t

32
205

+ε.

In view of this it is natural to consider the order of | ζ(s) | with respect to the Lindelöf
Hypothesis.

Lemma 1.1. For t ≥ t0 > 0, uniformly in σ,

ζ(σ + it)�


1 for σ ≥ 2

log t for 1 ≤ σ < 2

t(1−σ)/2 log t for 0 ≤ σ < 1

t1/2−σ log t for σ ≤ 0,

and if µ(σ) is defined by

µ(σ) = lim
t→∞

sup
log | ζ(σ + it) |

log t
,

then µ(σ) is continuous, non-increasing and for σ1 ≤ σ ≤ σ2,

µ(σ) ≤ µ(σ1)
σ2 − σ
σ2 − σ1

+ µ(σ2)
σ − σ1

σ2 − σ1

(see [27] Theorem 1.9 p.25).

In view of the function µ(σ), the Lindelöf Hypothesis is equivalent to µ(1
2) = 0, respectively

µ(σ) =

{
1
2 − σ for σ ≤ 1

2

0 otherwise.

Moreover, Titchmarch gave also various equivalent formulations of the Lindelöf Hypothesis in
terms of mean-values, namely

1

T

∫ T

1
| ζ(

1

2
+ it) |2k dt = O(T ε), k = 1, 2, ...(1.5)

lim
T→∞

1

T

∫ T

1
| ζ(σ + it) |2k dt =

∞∑
n=1

d2
k(n)

n2σ
, σ >

1

2
, k = 1, 2, ...

where dk(n) denotes the number of representations of integer n as a product of k factors. We
collect the so far achieved relevant mean-value results in the following
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Lemma 1.2. For fixed σ > 1 and a fixed integer k ≥ 1 we have∫ T

0
| ζ(σ + it) |2k dt = T

∞∑
n=1

d2
k(n)n−2σ +O(T 2−σ+ε) +O(1).

For 1
2 < σ < 1 fixed ∫ T

0
| ζ(σ + it) |2 dt = ζ(2σ)T +O(T 2−σ log T ),∫ T

0
| ζ(1 + it) |2 dt = ζ(2)T +O(log2 T ),∫ T

0
| ζ(

1

2
+ it) |2 dt = T log T +O(T log

1
2 T )

(see [24]).

In addition, Titchmarch proved that, for every positive integer k > 2,

lim
T→∞

1

T

∫ T

1
| ζ(σ + it) |2k dt =

∞∑
n=1

d2
k(n)

n2σ

if σ > 1− 1
k . In the study (1.5), Ingham (see [27] Theorem 5.1 p.129) estimated that∫ T

1
| ζ(

1

2
+ it) |4 dt =

1

2π2
T log4 T +O(T log3 T ).

For no integer k ≥ 3 up to now any mean-value estimate comparable to the equivalent formu-
lation of the Lindelöf Hypothesis (1.5) has been proven.

In addition, the Lindelöf Hypothesis has a connection with the function S(T ) = 1
π arg ζ(1

2 +
iT ). It is known that S(T ) = O(log T ), while the truth of the Lindelöf Hypothesis would imply
S(T ) = o(log T ) (see [64]). Studying the value-distribution of the zeta-function, Ghosh [21]
showed that

meas{T < t < T +H :| S(T ) |< σ
√

log log t} :=

(
1√
2π

∫ σ

−σ
e−x

2
dx+ o(1)

)
H,

is valid for Tα < H < T and any fixed α > 1
2 . Assuming the Riemann Hypothesis, Ghosh

proved that this result holds for any fixed α > 0.
The most simple, however sometimes useful, approximation for ζ(s) is given in the following

Lemma 1.3. For 0 < σ0 ≤ σ ≤ 2, x ≥ |t|π , s = σ + it,

ζ(s) =
∑
n≤x

n−s +
x1−s

s− 1
+O(x−σ),

where the O-constant depends only on σ0 (see [27] Theorem 1.8 p.21).

8



1.2 Other zeta-functions

In this thesis we shall also consider other zeta-functions.

The Dirichlet L-function is the most common zeta-function besides ζ(s); it is defined by

L(s, χ) =
∞∑
n=1

χ(n)n−s (σ > 1),

where χ is a Dirichlet character mod q, q ≥ 1. Since the coefficients are strongly multiplicative,
there exists an Euler product representation. For σ > 1, the Euler product of the Dirichlet
L-function is written as

L(s, χ) =
∏
p

(1− χ(p)p−s)−1,

and in the case of the principal character χ0 mod q we have

L(s, χ0) = ζ(s)
∏
p|q

(1− p−s).

Hence L(s, χ0) has a first-order pole at s = 1 like ζ(s), while L(s, χ) for χ 6= χ0 is regular for
σ > 0 (since |

∑
n≤x χ(n) |≤ q for any x). Moreover, L(s, χ) has an analytic continuation to

the whole complex plane and L(s, χ) 6= 0 for σ ≥ 1.
If χ is a primitive, non-principal character mod q, let α = 1 if χ(−1) = −1, and α = 0 if

χ(−1) = 1, as well as

G(χ, η) =
∑

r mod q

χ(r)ησ, η = e(
1

q
) = e

2πi
q ,

E(χ) =

{
G(χ, η)q

−1
2 if α = 0

iG(χ, η)q
−1
2 if α = 1.

Then the functional equation for the Dirichlet L-function is given by(
π

q

)−(α+s
2

)

Γ(
α+ s

2
)L(s, χ) = E(χ)

(
π

q

)−(α+1−s
2

)

Γ(
α+ 1− s

2
)L(1− s, χ̄).

From this it follows that the trivial zeros of L(s, χ) are given by s = 0,−2,−4, .. if χ(−1) = 1
and by s = −1,−3, ... if χ(−1) = −1.

The analytic behaviour of L(s, χ) is related to the distribution of primes in arithmetic
progressions. An important result is the Siegel-Walfisz theorem which states that, for (l, q) = 1,

π(x; q, l) =
∑
p≤x

p≡l mod q

1 =
lix
φ(q)

+O(x exp(−C
√

log x)),

(C > 0), uniformly for 3 ≤ q ≤ log x, l ≤ q, where A > 0 is any fixed constant and lix =∫ x
0

dt
log t .

9



The Hurwitz zeta-function is a generalization of the Riemann zeta-function, which is de-
fined by

ζ(s, x) =

∞∑
n=0

(n+ x)−s (σ > 1, 0 < x ≤ 1).

If χ is a character mod q, then for σ > 1,

L(s, χ) = q−s
q−1∑
a=1

χ(a)ζ(s,
a

q
).

Obviously ζ(s) = ζ(s, 1). The Hurwitz zeta-function has an analytic continuation to the whole
complex plane with a simple pole at s = 1 with residue 1. The Laurent series for the Hurwitz
zeta-function in the neighborhood of s = 1 is given by

ζ(s, x) =
1

s− 1
+

∞∑
n=0

γn(x)(s− 1)n (0 < x ≤ 1),

where the coefficients γn are given by

γn(x) =
(−1)n

n!
lim
N→∞

∑
m≤N

1

m+ x
logn(m+ x)− logn+1(N + x)

n+ 1

 .

Let 1 ≤ h ≤ k be integers. For complex s, the functional equation for the Hurwitz zeta-function
is given by

ζ(1− s, h
k

) =
2Γ(s)

(2πk)s

k∑
r=1

cos

(
πs

2
− 2πrh

k

)
ζ(s,

r

k
).

The behaviour of the Hurwitz zeta-function differs in some aspects from ζ(s), for example; it
does not have an Euler product except for x = 1, 1

2 .

The logarithmic derivative of the Riemann zeta-function is obtained by differentiating
the logarithm of ζ(s). Since for σ > 1 the Euler product of ζ(s) is absolutely convergent and
in view of

log(1− z)−1 =
∞∑
k=1

zk

k
,

valid for | z |< 1, we have

log ζ(s) =
∑
p

log(1− p−s)−1 =
∑
p

∞∑
k=1

k−1p−ks.

By differentiation, we have, for σ > 1,

ζ ′

ζ
(s) = −

∑
p

∞∑
k=1

(log p)p−ks.

The logarithmic derivative of the Riemann zeta-function is for σ > 1 written as

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)n−s,

where Λ(n) is the von Mangoldt Λ-function. The following lemmata provide useful properties:

10



Lemma 1.4. For s = σ + it, 0 < σ < 1,

ζ ′

ζ
(s) =

1

1− s
− 1

2

Γ′

Γ

(s
2

+ 1
)

+
∑
ρ

(
1

s− ρ
+

1

ρ

)
+ log 2π − γ

2
− 1

(see [27] p.17).

Lemma 1.5. For s = σ + it, −1 ≤ σ ≤ 2,

ζ ′

ζ
(s) =

∑
ρ,|t−γ|<1

1

s− ρ
+O(log t)

(see [27] p.26).

We note that, for −1 ≤ σ ≤ 2, ζ′

ζ (σ + it) � log2 t, t ≥ 2, since | γ − t |� 1
log t for all

ρ = β + iγ and the number of summands is here � log t.

1.3 The value-distribution of the Riemann zeta-function

The distribution of values of the Riemann zeta-function is an important topic. Selberg (un-
published, the published proof is due to Joyner [31]) proved that the values of the Riemann
zeta-function on the critical line are Gauss-normal distributed after a suitable normalization.
Namely, let R be an arbitrary fixed rectangle in the complex plane whose sides are parallel to
the real and the imaginary axes, then

lim
T→∞

1

T
meas

t ∈ (0, t] :
log ζ(1

2 + it)√
1
2 log log T

 =
1

2π

∫ ∫
R

exp

(
−1

2
(x2 + y2)

)
dxdy.

Bohr and his collaborators [9], [10], [12] and [13] studied the value-distribution of the Riemann
zeta-function to the right of the critical line. Bohr and Jessen [13] proved that for every σ > 1
the set {log ζ(σ + it) : t ∈ R} is dense in an area of the complex plane which is either simply
connected and bounded by a convex curve or which is ring-shaped and bounded by two convex
curve. For denseness results on the vertical line in 1

2 < σ ≤ 1, Bohr and Courant [9] proved
that, for every σ ∈ [1

2 , 1], every a ∈ C and every ε > 0,

lim inf
T→∞

1

T
meas{t ∈ [1,∞) :| ζ(σ + it)− a |< ε} > 0.

Laurinčikas [39] obtained probabilistic limit theorems for the values of the zeta-function on
vertical lines and showed that, for every σ > 1

2 , there exists a Borel probability measure µσ
such that, for every continuous and bounded function f : C→ C,

lim
T→∞

1

2T

∫ T

−T
f(log ζ(σ + it))dt =

∫
C
f(z)dµ(z).

If σ ∈ (1
2 , 1], then the support of µσ is the whole complex plane. Voronin [68] extended Bohr’s

denseness result to a multidimensional theorem, namely

{∆n{ζ(σ + it) : t ∈ [1,∞)}} = Cn+1,

11



for every σ ∈ (1
2 , 1] and every n ∈ N0, where

∆n{ζ(σ + it)} = {ζ(σ + it), ζ ′(σ + it), ..., ζ(n)(σ + it) : t ∈ [0,∞)}.

For denseness results on vertical lines in σ < 1, Garunkštis and Steuding [20] proved that for
σ ≤ 0,

{ζ(σ + it) : t ∈ [1,∞)} 6= C,

and the same for σ < 1
2 under assumption of the Riemann Hypothesis. It seems that proving

results about denseness or non-denseness on vertical lines is in general a difficult problem.
Among the various topics of studying the value-distribution of the zeta-function inside the

critical strip we shall focus on discrete moments in this thesis.

1.4 Motive

The main topics of this thesis are related to the following two papers;

1. “ Sampling the Lindelöf Hypothesis with the Cauchy random walk” of Lifshits and Weber
[43]

2. “ Sampling the Lindelöf Hypothesis with an ergodic transformation” of Steuding [60].

Both of them study certain discrete moments of the zeta-function associated with random
sequences and ergodic transformations, respectively.

Firstly, we discuss some results about discrete moments of the zeta-function. Kalpokas
and Steuding [34] investigated the intersection of the curve R 3 t 7→ ζ(1

2 + it) with the real
axis. They showed that if the Riemann Hypothesis is true, the mean-value of those real value
exists and it equals to 1. Namely, for any φ ∈ [0, π), as T →∞,∑

0<t<T
ζ( 1

2
+it)∈eiφR

ζ(
1

2
+ it) = 2eiφ cosφ

T

2π
log

T

2πe
+O(T

1
2

+ε);

note that the number of values 0 < t < T with 0 6= ζ(1
2 + it) ∈ eiφR is asymptotically equal to

T
2π log T . Moreover, Kalpokas and Steuding obtained also a new discrete mean-square result
for the zeta-function, namely, for any φ ∈ [0, π), as T →∞,

∑
0<t<T

ζ( 1
2

+it)∈eiφR

| ζ(
1

2
+ it) |2=

T

2π

(
log

T

2πe

)2

+ (2γ + 2 cos 2φ)
T

2π
log

T

2πe
+
T

2π
+O(T

1
2

+ε),

where γ is the Euler constant. Continuing this work, Kalpokas, Korolev and Steuding [35]
showed unconditionally that the zeta-function takes arbitrarily large positive and negative
values on the critical line. They established a lower bound of the expected order for the
discrete moment with arbitrary rational exponents and showed that, for any rational k ≥ 1
and any φ ∈ [0, π), as T →∞,∑

0<tn(φ)≤T

| ζ(
1

2
+ itn(φ)) |2k� T (log T )k

2+1,

12



where tn(φ) denotes the positive roots of the equation e2iφ = ∆(1
2 +it), for n ∈ N, in ascending

order (∆(s) = 2sπs−1Γ(1 − s) sin
(
πs
2

)
). Furthermore they derived an asymptotic formula for

the third discrete moment, namely, for any φ ∈ [0, π), as T →∞,∑
0<tn(φ)≤T

(ζ(
1

2
+ itn(φ)))3 = 2e3iφ cosφ

T

2π
P3

(
log

T

2π

)
+ 2e3iφ cos 3φ

T

2π
log

T

2πe
+O(T

1
2

+ε),

where P3 is a computable polynomial of degree three.
Steuding and Wegert [61] investigated the values of the zeta-function on certain arithmetic

progressions on vertical lines in the critical strip. They gave an interesting result about the
mean-value depending on the difference of the arithmetic progression in a rather irregular way.
Namely, for fixed s ∈ C \ {1} with 0 < σ = <(s) ≤ 1, t = =(s) > 0, let d = 2π

log l , where l ≥ 2
is an integer; then, for M → +∞,

1

M

∑
0≤m<M

ζ(s+ imd) =
1

1− l−s
+O(M−σ logM).

This shows that the zeta-function is small on average on such samples on vertical lines inside the
critical strip. We shall observe a similar phenomenon in the study about the discrete moments
of the zeta-function associated with random sequences or with an ergodic transformation.

For the discrete moment of the Riemann zeta-function associated with a random sequence
Lifshits and Weber [43] studied the behaviour of the Riemann zeta-function ζ(1

2 + it), when t
is sampled by a Cauchy random walk. The Cauchy random walk Sn is defined by

Sn = X1 +X2 + ...+Xn, n = 1, 2, ...,

where X1, X2, ... denotes an infinite sequence of independent Cauchy-distributed random vari-
ables (with characteristic function ϕ(t) = e−|t|). The work of Lifshits and Weber shows the
almost sure asymptotic behaviour of the system

ζ(
1

2
+ iSn), n = 1, 2, ....

For this purpose they developed a complete second-order theory for this system and showed,
by using an approximation formula of ζ(s), that it behaves almost surely like a system of
non-correlated variables. For almost sure convergence, they proved that, for any real b > 2,

n∑
k=1

ζ(
1

2
+ iSk)

(a.s.)
= n+O(n

1
2 (log n)b).

In view of the almost sure convergence theorem of Lifshits and Weber, it follows that the
expectation value of ζ(s) on a Cauchy random walk s = 1

2 + iSn is equal to one. This indicates
that the values of the zeta-function are small on average. It is natural to ask what happens if
we consider a Dirichlet L-function in place of the Riemann zeta-function? The answer of this
question is part of this thesis.

Shirai [56] extended their work to a subclass of Lévy processes, and obtained the following
almost sure convergence: let Sk be a symmetric α-stable process with 1 ≤ α ≤ 2. Then,

n∑
k=1

ζ(
1

2
+ iSk)

(a.s.)
= n+O(n1− 1

2α (log n)b),

13



for any b > 3
2 if 1 < α ≤ 2; the same result holds for any b > 2 if α = 1.

We note that the class of symmetric α-stable processes includes the Cauchy random walk
in case of α = 1 and the Brownian motion in case of α = 2. By applying an extension of
Rademacher-Menchoff type, Shirai showed that the expectation of

1

n

n∑
k=1

ζ(
1

2
+ iSk)

equals one, is independent of α, and the only impact of α is visible in the remainder term.
Moreover, Shirai listed some problems related to his topic; for example, he asked what can be
said if Dirichlet L-function are considered in place of the Riemann zeta-function.

Sihun Jo and Minsuk Yang [30] investigated the second moment of the random sampling
ζ(1

2 + iXt) of the Riemann zeta-function on the critical line, where Xt is a gamma process.
They proved that if Xt is an increasing random sampling with gamma distribution, then for
all sufficiently large t,

E
∣∣∣∣ζ(

1

2
+ iXt)

∣∣∣∣2 = log t+O(
√

log t log log t).

They remarked that their probabilistic result is similar to the famous result obtained by Hardy
and Littlewood [24] that, as T →∞,

1

T

∫ T

0

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣2 dt = log T +O(1).

In fact, we can find this similarity in the work of Lifshits and Weber [43]. In case of the Cauchy
random walk Sn, Lifshits and Weber proved that, for n ≥ 2,

E
∣∣∣∣ζ(

1

2
+ iSn)

∣∣∣∣2 = log n+ γ − 1 + +2

∫ 1

0
φ(α)dα+ 2

∫ ∞
1

(
φ(α)− 1

2α

)
dα,

where γ is the Euler constant and φ(α) is defined by

φ(α) =
αeα − 2eα + α+ 2

2α2(eα − 1)
.

In addition, the work of Sihun Jo and Minsuk Yang is interesting with respect to their method
of proof. They begin by analytically extending the zeta-function to a suitable form and then
investigate the moment of the sampling ζ(1

2 + iXt). In order to find the asymptotic formula
for E

∣∣ζ(1
2 + iXt)

∣∣2, they apply Fourier transformation and use the van der Corput method.

Another motive of this thesis follows from Steuding’s article [60] “The distribution of the Rie-
mann zeta-function ζ(s) on vertical lines s = σ+iR with respect to the ergodic transformation”
(given by Tx := 1

2

(
x− 1

x

)
for x 6= 0). Steuding showed that, for <(s) > −1

2 , the mean-value of
ζ(s+ iTnx) exists for almost all values x ∈ R, as n→∞, and is independent of x. Moreover,
he determined also the exact value of the mean-value of ζ(s+ iTnx); for example,

lim
N→∞

1

N

∑
0≤n<N

ζ(2 + iTnx) = ζ(3) = 1.20205...,

14



for almost all x ∈ R. Moreover, the zeta-function is small on average on vertical lines inside
the critical strip, since Steuding also obtained similarly that, for almost all x ∈ R

lim
N→∞

1

N

∑
0≤n<N

ζ(
1

2
+ iTnx) = ζ(

3

2
)− 8

3
= −0.05429... .

Interestingly, in the situation of Lifshits and Weber [43], the expectation of ζ(1
2 + iX) equals

also ζ(3
2) − 8

3 = −0.05429... , for X being a Cauchy distributed random variable. Moreover,
Steuding applied the analyticity of 1

π

∫
R ζ(s+ iτ) dτ

1+τ2
to show that

1

π

∫
R

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2
=

∫
R ζ
′(s+ iτ) dτ

1+τ2∫
R ζ(s+ iτ) dτ

1+τ2

valid for <(s) > 1. It is a motive of this thesis to study the distributation of values of the
logarithmic derivative of the Riemann zeta-function ζ′

ζ (s) on vertical lines with respect to the

ergodic transformation. In the study of the behaviour of the function ζ′

ζ (s) via this approach,
we shall prove an equivalent formulation of the Riemann Hypothesis in terms of the ergodic
transformation. In addition, Steuding gave a similar equivalent formulation of the Riemann
Hypothesis in terms of the ergodic transformation, i.e., for almost all x ∈ R,

lim
N→∞

1

N

∑
0≤n<N

log

∣∣∣∣ζ(
1

2
+
iTnx

2
)

∣∣∣∣ =
∑
<(ρ)> 1

2

log

∣∣∣∣ ρ

1− ρ

∣∣∣∣ ;
in particular, the Riemann hypothesis is true if, and only if, one and thus either side vanishes,
the left-hand side for almost all real x. The vanishing aspect follows from a result [6] of
Balazard, Saias and Yor, namely

1

2π

∫
<s= 1

2

log | ζ(s) |
| s |2

| ds |=
∑
<(ρ)> 1

2

log

∣∣∣∣ ρ

1− ρ

∣∣∣∣ .
In this thesis, we shall consider this theme with log ζ(s) in place of the function log | ζ(s) |
inside the critical strip. In his work Steuding stated an equivalent formulation of the Lindelöf
Hypothesis too, namely, the Lindelöf hypothesis is true if, and only if, for any k ∈ N and
almost all x ∈ R, the limit

lim
N→∞

1

N

∑
0≤n<N

∣∣∣∣ζ(
1

2
+ iTnx)

∣∣∣∣2k
exists, which is also equivalent to the existence of the integrals∫

R

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣2k dt

1 + t2
.

Steuding gave the beautiful proof but did not provide an explicit formula for the latter integral.
In this thesis some explicit formulas related to this and similar integrals are considered in case
of k = 1. Finally, Steuding investigated also the behaviour of other functions than ζ(s) under
the ergodic transformation, namely the Lerch zeta-function L(λ, α, s) with real parameters
λ, α > 0 and the Hurwitz zeta-function, for which an ergodic transformation of the circle
group T = R/Z has been considered.
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Another topic of this thesis deals with some connections between universality theory and
ergodic theory. The ergodic theorem plays a central role in probabilistic proofs of universality
properties of ζ(s) due to Bagchi [3]; for details we refer to Steuding [59] and Laurinčikas
[39]. Steuding [63] proved a new type of universality theorem for the Riemann zeta-function
and other L-function by investigating the phenomenon of universality on orbits of certain
ergodic transformations. Firstly, he introduced some notion to abbreviate the formulation of
his results. Namely, for a domain D, a family of analytic functions L1, ...,Lm is called a jointly
universal family with respect to D if, for any collection of compact subsets K1, ...,Km of D with
connected complements, any family of continuous functions fj defined on K which is analytic
and non-vanishing in the interior of K, any ergodic dynamical system (R,F ,P, T ), almost all
real numbers x, and any poitive ε, there exists a positive integer n such that

max
1≤j≤m

max
s∈Kj

| Lj(s+ iTnx)− fj(s) |< ε

holds. Here, the notion “for almost all” is an abbreviation for “all real numbers except a set of
P-measure zero”. A family of analytic functions L1, ...,Lm is called a jointly universal family
with respect to D if the assumption on the non-vanishing of the target functions fj can be
dropped. Then, he proved that, for (R,F ,P, T ) an ergodic system where P is a probability
measure with a positive density function, a family of L-functions is jointly (strongly) universal
with respect to some domain D if, and only if, it is jointly (strongly) ergodic universal with
respect to D; in this case,

lim inf
N→∞

1

N
]

{
n ∈ N ∩ [1, N ] : max

1≤j≤m
max
s∈Kj

| Lj(s+ iTnx)− fj(s) |< ε

}
> 0.

This investigation of Steuding shows that universality is a kind of ergodic phenomenon. In
order to understand universality properties of zeta-functions from the viewpoint of dynamical
systems, we shall investigate the phenomenon of universality with respect to certain stochastic
processes in this thesis.

1.5 Statement of the main results

This thesis is devided into three parts. In the first part, we study the asymptotic behaviour of
zeta-functions on vertical lines σ+ it, t ∈ R by modelling the imaginary part t with a Cauchy
random walk (see [58]). We emulate the technique of Lifshits and Weber [43] for the Hurwitz
zeta-function ζ(s, a) and arrive at an analogous result in this case: for any real b > 2 and
0 < a ≤ 1 ,

lim
n→∞

∑n
k=1 a

1
2

+iSkζ(1
2 + iSk, a)− n

n
1
2 log(1 + n)b

a.s.−→ 0,

and

‖ sup
n≥1

|
∑n

k=1 a
1
2

+iSkζ(1
2 + iSk, a)− n|

n
1
2 log(1 + n)b

‖2 <∞.

Moreover, we use Atkinson’s formula [2] instead of the technique of Lifshits and Weber in
case of Dirichlet L-functions L(s, χ) associated with a primitive character χ. To consider only
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primitive characters is sufficient in order to understand all Dirichlet L-functions. Here we
obtain, for any real b > 2, σ ≥ 1

2 ,

lim
n→∞

∑n
k=1 L(σ + iSk, χ)− n
n

1
2 log(1 + n)b

a.s.−→ 0,

and

‖ sup
n≥1

|
∑n

k=1 L(σ + iSk, χ)− n|
n

1
2 log(1 + n)b

‖2 <∞.

Both results indicate that, by the almost sure convergence theorem of Lifshits and Weber, the
expectation value of ζ(s, a), 0 < a ≤ 1 and L(s, χ) with a primitive character χ on the Cauchy
random walk also is to equal is to one. Heuristically, its always expectation one because of
the constant term in the Dirichlet series expansion. This also shows that the values of these
zeta-function are small on average.

In the second part, we study the behaviour of the logarithmic derivative zeta-functions on
vertical lines σ + it, t ∈ R, when values ζ′

ζ (σ + it) are sampled with t varying according to
an ergodic transformation. Similar as in the work of Steuding we obtain: let s be given with
<(s) > −1

2 , then

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(s+ iTnx) =

1

π

∫
R

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2
for almost all x ∈ R.

For −1
2 < <(s) < 1, <(s) 6= 0,

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(s+ iTnx) =

ζ ′

ζ
(s+ 1) +

2

s(2− s)
−

∑
ρ

<(ρ)=<(s)

1

1− (s− ρ)2

−
∑
ρ

<(ρ)><(s)

2

1− (s− ρ)2
,

where ρ denotes the non-trivial zeros of ζ.
For <(s) > 1,

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(s+ iTnx) =

ζ ′

ζ
(s+ 1).

For the special case s = 0

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(iTnx) =

∑
ρ

(
1

ρ
− 1

ρ+ 1
) + log 2π − 1

2

(
Γ′

Γ
(
3

2
) + γ + 1

)
.

For some real t,

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(1 + i(t+ Tnx)) =

ζ ′

ζ
(2 + it) +

1

1 + t2
.
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Here, we find an equivalent formulation for the Riemann Hypothesis in terms of an ergodic
transformation: the Riemann Hypothesis is true if, and only if, for almost all x ∈ R

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(
1

2
+ iTnx) =

ζ ′

ζ
(
3

2
) +

8

3
−
∑
ρ

1

1− (ρ− 1
2)2

,

where the ρ denotes the non-trivial zeros of ζ. We also study the behaviour of the logarithmic
of zeta-functions in this sense by using a lemma of Kai-Man Tsang [65] and obtain: for
1
2 ≤ <(s) ≤ 2,

lim
N→∞

1

N

∑
0≤n<N

log ζ(s+ iTnx) =
1

π

∫ ∞
−∞

log ζ(2 + i(=(s) + u))

1 + (i(<(s)− 2) + u)2
du

+ 2
∑
ρ

<(ρ)><(s)

∫ <(ρ)−<(s)

0

dα

1 + (=(ρ− s)− iα)2
− 2

∫ 1−<(s)

min(1−<(s),0)

dα

1 + (=(s) + iα)2
,

for almost all x ∈ R. We also give an equivalent formulation for the Riemann Hypothesis in
terms of ergodic transformation. The Riemann Hypothesis is true if, and only if, for almost
all x ∈ R

lim
N→∞

1

N

∑
0≤n<N

log ζ(
1

2
+ iTnx) = log ζ(

3

2
)− log 3 = −0.138352....

In the third part of this thesis, we investigate the phenomenon of universality with respect
to certain stochastic processes (see [57]). We shall prove: assume that Λ is a lattice given by
(4.1) and (sn)n is a random walk on this lattice, defined by (4.2). Further suppose that K is a
compact set with connected complement satisfying (4.6), and g is a non-vanishing continuous
function on K which is analytic in the interior of K. Then, for any ε > 0, almost surely

lim inf
N→∞

1

N
]

{
n ≤ N : max

s∈K
| ζ(s+ sn)− g(s) |< ε

}
> 0.
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Chapter 2

2 Sampling the Lindelöf Hypothesis with the Cauchy random
walk

In this chapter, we study the asymptotic behaviour of zeta-functions on vertical lines σ + it,
t ∈ R, by modelling the imaginary part t with a Cauchy random walk. Let X1, X2, ... denote
an infinite sequence of independent Cauchy-distributed random variables (with characteristic
function ϕ(t) = e−|t|); then the imaginary part t is modelled by the sequence of partial sum
Sn = X1 + ... + Xn. This idea is due to Lifshits and Weber [43] in the investigation of the
almost sure asymptotic behaviour of the system

ζ(
1

2
+ iSn), n = 1, 2, ....

They proved that almost surely

1

N

∑
1≤n≤N

ζ(
1

2
+ iSn) = 1 + o(N−

1
2 (logN)b)(2.1)

for any b > 2. Hence, Lifshits and Weber showed that the expectation value of ζ(s) on the
Cauchy random walk s = 1

2 + iSn equals one, which implies that the values of the Riemann
zeta-function are small on average.

In Section 2.1, we briefly discuss the technique of Lifshits and Weber in the investigation
of the asymptotic behaviour for the Riemann zeta-function ζ(s).

In Section 2.2, we emulate the technique of Lifshits andWeber for the Hurwitz zeta-function
ζ(s, a).

In Section 2.3, we use Atkinson’s formula [2] and not the technique of Lifshits and Weber
in order to derive corresponding results for Dirichlet L-functions L(s, χ) with a primitive
character χ.

2.1 Sampling the Lindelöf Hypothesis for the Riemann zeta-function ζ(s)

In this section, we discuss the technique of Lifshits and Weber.
The result (2.1) is based on a Proposition of Weber [69], namely

Proposition 2.1. (Weber, 2006). Let {ml, l ≥ 1} be a sequence of positive reals with partial
sums Mn =

∑n
l=1ml tending to infinity with n. Assume that

log
Mn

mn
∼ logMn.

Let Φ : R+ → R+ be a concave non-decreasing function. Then any sequence {ξl, l ≥ 1} of
random variables satisfying the increment condition

E

∣∣∣∣∣
j∑
l=i

ξl

∣∣∣∣∣
2

≤ Φ

(
j∑
l=1

ml

)(
j∑
l=i

ml

)

(i ≤ j) also satisfies for any τ > 3
2
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∑n
l=1 ξl

Φ(Mn)
1
2 logτ (1 +Mn)M

1
2
n

a.s.−→ 0

and

‖ sup
n≥1

|
∑n

l=1 ξl|

Φ(Mn)
1
2 logτ (1 +Mn)M

1
2
n

‖2 <∞.

In order to investigate the almost-sure asymptotic behaviour of the system ζ(1
2 + iSn),

n = 1, 2, ..., the increment condition in Proposition 2.1 is necessary. Lifshits and Weber
replaced the sequence {ξn, n ≥ 1} by {Wn = ζ(1

2 + iSn)− Eζ(1
2 + iSn), n ≥ 1} and developed

a complete second-order theory of the system {Wn}. They obtained the following

Theorem 2.2. (Lifshits and Weber, 2009). There exist a constant C,C0 such that

E|Wn|2 = log n+ C + o(1), n→∞,

and for m > n+ 1

|EWnWm| ≤ C0 max

(
1

2m−n
,

1

n

)
.

The explicit value of C is

C = γ − 1 + 2

∫ 1

0
φ(α)dα+ 2

∫ ∞
1

(
φ(α)− 1

2α

)
dα,

where γ is the Euler constant and φ(α) is defined by

φ(α) =
αeα − 2eα + α+ 2

2α2(eα − 1)
.

They applied this result to Proposition 2.1 with the choice ml ≡ 1 and Φ(x) = log(x+ 1) and
obtained

Theorem 2.3. (Lifshits and Weber, 2009). For any real b > 2

lim
n→∞

∑n
k=1 ζ(1

2 + iSk)− n
n

1
2 logb n

a.s.−→ 0,

and

‖ sup
n≥1

|
∑n

k=1 ζ(1
2 + iSk)− n|

n
1
2 logb n

‖2 <∞.
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2.1.1 Sketch of the proof of Theorem 2.2

In order to estimate the covariance of the system {Wn = ζ(1
2 + iSn) − Eζ(1

2 + iSn), n ≥ 1},
Lifshits and Weber approximate ζ(1

2 + iSn) from the main terms of the approximation of ζ(s),
(see Lemma 1.3). Therefore, the second-order theory of the system (Wn) follows from a study
of the same kind concerning the auxiliary system

Zn =
∑
k≤x

k−(σ+iSn) − x1−σ−iSn

1− σ − iSn
, n = 1, 2, ..., x >

1

2
.

Using the fourth moments estimate for ζ (see [27] Theorem 5.1 p.129),∫ T

−T
| ζ(

1

2
+ iu) |4 du = O(T log4 T ),

it follows that Zn(x) approximates the zeta-function well enough, that is for each positive
integer n,

lim
x→∞

E | Zn(x)− ζ(
1

2
+ iSn) |2= 0.

From this follow that

Eζ(
1

2
+ iSn) = lim

x→∞
EZn(x)

and for any positive integer m > n+ 1

Eζ(
1

2
+ iSn)ζ(

1

2
+ iSm) = lim

x→∞
EZn(x)Zm(x).

In order to calculate the first and second order moments of Zn, and the correlation
EZn(x)Zm(x) , Lifshits and Weber defined Zn(x) = Zn = Zn1 − Zn2 with

Zn1 = Zn1(x) =
∑
k≤x

e−i(log k)Snk−σ,

Zn2 = Zn2(x) =
x1−σ

(1− σ − iSn)
e−i(log x)Sn .

Concerning the first moments, they obtained

Lemma 2.4. For x→∞ we have

EZn → ζ(n+ σ, a)− 2n

n2 − (1− σ)2
,

for any integer n and σ > 0.

Hence, for σ = 1
2 ,

Eζ(
1

2
+ iSn) = lim

x→∞
EZn(x) = ζ(n+

1

2
)− 8n

4n2 − 1
.(2.2)

For the second order moments Lifshits and Weber put

E|Zn|2 = E|Zn1|2 + E|Zn2|2 − 2<EZn1Z̄n2,(2.3)

EZnZ̄m = EZn1Z̄m1 − EZn1Z̄m2 − EZn2Z̄m1 + EZn2Z̄m2,(2.4)

and calculated explicit asymptotic formulas for these terms. They obtained the following

21



• Exact formulae related to Zn2

Lemma 2.5. For m = n and for m > n+ 1 we have

EZn2Z̄m2 = A+Bx−n+1−σ + Cx−(m−n)+2(1−σ),

where

A =
4n(m− n)

((m− n)2 − 4(1− σ)2)(n2 − (1− σ)2)
,

B =
2(m− n)

(2n−m+ (1− σ))(m+ 1− σ))(n− (1− σ))
,

C =
3n−m+ 2(1− σ)

(2(1− σ)−m+ n)(2n−m+ 1− σ))(n+ (1− σ))
.

If m = n,

EZn2Zn2 =
x2(1−σ)

(1− σ)(n+ 1− σ)
.(2.5)

For all m ≥ n+ 1 we have

EZn1Zm2 =
∑
k≤x

{
−2(m− n)k−n−σ

(m+ 1− σ)(2n−m+ 1− σ)
+

2nkn−m+1−2σ

(m− 1 + σ)(2n−m+ 1− σ)

}

−
∑
k≤x

{
kn−σx−m+1−σ

(m− 1 + σ)

}
,

and

EZm1Zn2 =
∑
k≤x

{
2nkn−m+1−2σ

n2 − (1− σ)2
− k2n−m−σx−n+1−σ

(n− 1 + σ)

}
.

The behaviour of these expressions as x→∞ has been investigated by Lifshits and Weber
only for σ = 1

2 .

• Asymptotic formulae related to Zn2

Lemma 2.6. Assume σ = 1
2 . For m > n+ 1

EZn2Zm2 =
4n(m− n)

((m− n)2 − 1)(n2 − 1
4)

+ o(1), x→∞,(2.6)

while

EZn2Zn2 =
2x

n+ 1
2

.(2.7)

For m > n+ 1 we obtain

EZn1Zm2 =
−2(m− n)ζ(n+ 1

2)

(m+ 1
2)(2n−m+ 1

2)
+

2nζ(m− n)

(m− 1
2)(2n−m+ 1

2)
+ o(1), x→∞,(2.8)

EZn1Zn2 =
2x

n+ 1
2

− 1

2n− 1
+ o(1), x→∞,(2.9)

EZm1Zn2 =
2nζ(m− n)

n2 − 1
4

+ o(1), x→∞.(2.10)
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For the double sum, Lifshits and Weber obtained

• Asymptotic formulae related to Zn1

Lemma 2.7. Let σ = 1
2 . For m > n+ 1

EZn1Zm1 = ζ(m− n+ 1) + θ

(
1

m− 1
2

+
1

n− 1
2

)
ζ(m− n) + o(1), x→∞,(2.11)

with θ = θ(n,m) ∈ [0, 1].

EZn1Zn1 =
2x

n+ 1
2

+Kn + o(1), x→∞(2.12)

with

Kn = log n+ C + o(1), n→∞

and

C = γ − 1 + 2

{∫ 1

0
φ(α)dα+

∫ ∞
1

(
φ(α)− eα − 1

2α(eα − 1)

)
dα

}
.(2.13)

In view of (2.2)

EWnWm = Eζnζm − EζnEζm

= lim
x→∞

EZn(x)Zm(x)−
(
ζ(n+

1

2
)− 8n

4n2 − 1

)(
ζ(m+

1

2
)− 8m

4m2 − 1

)
.

The first claim of Theorem 2.2 follows from (2.12), (2.7), (2.9) and (2.3),

E|Zn(x)|2 =
2x

n+ 1
2

+Kn +
2x

n+ 1
2

− 4x

n+ 1
2

+
2

2n− 1
+ o(1)

= Kn +
2

2n− 1
+ o(1), x→∞.

Hence,

E|Wn|2 = Kn +
2

2n− 1
−
(
ζ(n+

1

2
)− 8n

4n2 − 1

)2

.

The last claim of Theorem 2.2 follows from (2.4), (2.11), (2.8), (2.10) and (2.6) with a suitable
approximation argument.

2.2 Sampling the Lindelöf Hypothesis for the Hurwitz zeta-function ζ(s, a)

In the previous section we have considered the behaviour of ζ(s) with respect to a Cauchy
random walk on critical line. In order to emulate the technique of Lifshits and Weber for the
Hurwitz zeta-function ζ(s, a), where 0 < a ≤ 1, we consider

Wn(a) := ζ(
1

2
+ iSn, a)− Eζ(

1

2
+ iSn, a), n ≥ 1.

We can state an analogous results for the Hurwitz zeta-function.
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Theorem 2.8. For 0 < a ≤ 1 there exist a constant C,C0 such that

E|Wn(a)|2 = log(n+ a) + C + o(1), n→∞,

and for m > n+ 1

|EWn(a)Wm(a)| ≤ C0 max

(
1

(1 + a)m−n
,

1

n

)
.

The explicit value of C is

C = γ(a)− 1

a
+ 2

∫ 1

0
φ(α)dα+ 2

∫ ∞
1

(
φ(α)− 1

2α

)
dα,

where γ(a) is the generalized Euler constant defined by

γ(a) = lim
N→∞

(
N∑
m=0

1

m+ a
− log(N + a)

)
.

Applying Proposition 2.1 we obtain

Theorem 2.9. For any real b > 2 and 0 < a ≤ 1 ,

lim
n→∞

∑n
k=1 a

1
2

+iSkζ(1
2 + iSk, a)− n

n
1
2 log(1 + n)b

a.s.−→ 0,

and

‖ sup
n≥1

|
∑n

k=1 a
1
2

+iSkζ(1
2 + iSk, a)− n|

n
1
2 log(1 + n)b

‖2 <∞.

Building on the technique of Lifshits and Weber, we need an approximation of the Hurwitz
zeta-function to estimate the covariance of the system (Wn(a)). For this purpose we use

ζ(s, a) =
∑
m≤x

(m+ a)−s +
(x+ a)1−s

s− 1
+O(x−σ),

which holds uniformly for σ ≥ σ0 > 0, 2π ≤ |t| ≤ πx (see [40] Theorem 1.3, p.34). Then, the
second-order theory of the system (Wn(a)) follows from a study of the same kind concerning
the auxiliary system

Zn(x, a) =
∑

0≤k≤x
(k + a)−(σ+iSn) − (x+ a)1−σ−iSn

(1− σ − iSn)
, n = 1, 2, ..., x >

1

2
.

Before we prove Theorem 2.8 and 2.9, we shall investigate the second-order theory of (Zn(x, a))
in the next subsection and then we shall show that (Zn(x, a)) approximates the Hurwitz zeta-
function sufficiently well.
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2.2.1 Second order theory of (Zn(x, a))

We write Zn(x, a) = Zn1(x, a)− Zn2(x, a) with

Zn1(x, a) =
∑

0≤k≤x
e−i(log(k+a))Sn(k + a)−σ,

and

Zn2(x, a) =
(x+ a)1−σ

(1− σ − iSn)
e−i(log(x+a))Sn .

In order to calculate the expectation, the following integral representation will be used repeat-
edly:

(2.14)
1

1− s
=

∫ 1

0
u−sdu, <s < 1.

Concerning the first moments, we have for x ≥ 1,

EZn2(x, a) = E

{
(x+ a)1−σ

(1− σ − iSn)
e−i(log(x+a))Sn

}

= (x+ a)1−σE
{
e−i(log(x+a))Sn

∫ 1

0
e−(log u)(σ+iSn)du

}
= (x+ a)1−σ

∫ 1

0
u−σE

{
e−i(log u(x+a))Sndu

}
= (x+ a)1−σ

∫ 1

0
u−σ

{
e−| log u(x+a)|ndu

}
= (x+ a)1−σ

(∫ 1
x+a

0

(u(x+ a))n

uσ
du+

∫ 1

1
x+a

(u(x+ a))−n

uσ
du

)

=

(
2n

n2 − (1− σ)2
− (x+ a)1−σ−n

n+ σ − 1

)
,

and

EZn1(x, a) = E

 ∑
0≤k≤x

(k + a)−(σ+iSn)

 =
∑

0≤k≤x
E
{

(k + a)−(σ+iSn)
}

=
∑

0≤k≤x
(k + a)−σE

{
e−i(log(k+a))Sn

}
=
∑

0≤k≤x
(k + a)−σ−n.

Therefore, for x→∞ we have

EZn(x, a) = EZn1(x, a)− EZn2(x, a)(2.15)

=
∑

0≤k≤x
(k + a)−σ−n −

(
2n

n2 − (1− σ)2
− (x+ a)1−σ−n

n+ σ − 1

)
→ ζ(n+ σ, a)− 2n

n2 − (1− σ)2
,

for any integer n and σ > 0.
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Next, we shall find asymptotic formulas for E|Zn(x, a)|2 and EZn(x, a)Zm(x, a), where
m > n+ 1.

Exact formulae related to Zn2(x, a)
Using again (2.14), we obtain

E

{
ei(log(x+a))(Sm−Sn)

(1− σ + iSm)(1− σ − iSn)

}

=

∫ 1

0

∫ 1

0
(uv)−σE

{
ei(log(x+a)+log v)(Sm−Sn)+i(log v−log u)Sn

}
dudv

=

∫ 1

0

∫ 1

0
(uv)−σe−| log(x+a)+log v|(m−n)−| log v−log u|ndudv.

Next, we split the square [0, 1]2 into four domains.
For the first domain, u ≤ v, 1

x+a ≤ v, we have∫ 1

1
x+a

∫ v

0
(uv)−σe−| log(x+a)+log v|(m−n)−| log v−log u|ndudv

=

∫ 1

1
x+a

∫ v

0
(uv)−σ(x+ a)−(m−n)v−(m−n)

(u
v

)n
dudv

=
(x+ a)−2(1−σ) − (x+ a)−(m−n)

((m− n)− 2(1− σ))(n+ (1− σ))
.

Thus, for the first domain,

(x+ a)2(1−σ)

∫ 1

1
x+a

∫ v

0
(uv)−σe−| log(x+a)+log v|(m−n)−| log v−log u|ndudv

=
1− (x+ a)−(m−n)+2(1−σ)

((m− n)− 2(1− σ))(n+ (1− σ))
.

For the second domain, u ≤ v ≤ 1
x+a , we have

∫ 1
x+a

0

∫ v

0
(uv)−σe−| log(x+a)+log v|(m−n)−| log v−log u|ndudv

=

∫ 1
x+a

0

∫ v

0
(uv)−σ(x+ a)m−nvm−n

(u
v

)n
dudv

=
(x+ a)−2(1−σ)

(m− n+ 2(1− σ))(n+ (1− σ))
.

Thus, for the second domain,

(x+ a)2(1−σ)

∫ 1
x+a

0

∫ v

0
(uv)−σe−| log(x+a)+log v|(m−n)−| log v−log u|ndudv

=
1

(m− n+ 2(1− σ))(n+ 1− σ)
.
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For the third domain, u ≥ v ≥ 1
x+a , we have∫ 1

1
x+a

∫ 1

v
(uv)−σe−| log(x+a)+log v|(m−n)−| log v−log u|ndudv

=

∫ 1

1
x+a

∫ 1

v
(uv)−σ(x+ a)−(m−n)v−(m−n)

(v
u

)n
dudv

=
(x+ a)−(m−n)

n− (1− σ)

(
(x+ a)(m−n)−2(1−σ)

(m− n)− 2(1− σ)
+

(x+ a)−(2n−m+1−σ)

2n−m+ 1− σ

)

− (x+ a)−(m−n)

n− (1− σ)

(
1

m− n− 2(1− σ)
− 1

2n−m+ 1− σ

)
.

Thus, for the third domain,

(x+ a)2(1−σ)

∫ 1

1
x+a

∫ 1

v
(uv)−σe−| log(x+a)+log v|(m−n)−| log v−log u|ndudv

=
1

((m− n)− 2(1− σ))(n− (1− σ))
− (x+ a)−n+1−σ

(2n−m+ 1− σ)(n− (1− σ))

+
(x+ a)−(m−n)+2(1−σ)

(2n−m− n+ 1− σ)(m− n− 2(1− σ))
.

For the fourth domain, u ≥ v, v ≤ 1
x+a , we have∫ 1

x+a

0

∫ 1

v
(uv)−σe−| log(x+a)+log v|(m−n)−| log v−log u|ndudv

=

∫ 1
x+a

0

∫ 1

v
(uv)−σ(x+ a)m−nvm−n

(v
u

)n
dudv

=
(x+ a)m−n

n− (1− σ)

(
(x+ a)−(m−n)−2(1−σ)

(m− n) + 2(1− σ)
− (x+ a)−m−(1−σ)

m+ 1− σ

)
.

Thus, for the fourth domain,

(x+ a)2(1−σ)

∫ 1
x+a

0

∫ 1

v
(uv)−σe−| log(x+a)+log v|(m−n)−| log v−log u|ndudv

=
1

(m− n+ 2(1− σ))(n− 1− σ)
− (x+ a)−n+1−σ

(m+ 1− σ)(n− 1− σ)
.

By summing up the four domains, we arrive at,

Proposition 2.10. For m = n and for m > n+ 1 we have

EZn2(x, a)Zm2(x, a) = A+B(x+ a)−n+1−σ + C(x+ a)−(m−n)+2(1−σ),(2.16)

where

A =
4n(m− n)

((m− n)2 − 4(1− σ)2)(n2 − (1− σ)2)
,

B =
2(m− n)

(2n−m+ (1− σ))(m+ 1− σ))(n− (1− σ))
,

C =
3n−m+ 2(1− σ)

(2(1− σ)−m+ n)(2n−m+ 1− σ))(n+ (1− σ))
.
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If m = n, we have

EZn2(x, a)Zn2(x, a) =
(x+ a)2(1−σ)

(1− σ)(n+ 1− σ)
.(2.17)

Now we want to derive an exact formula for EZn1Zm2, for all m ≥ n. By definition,

EZn1Zm2 = E

 ∑
0≤k≤x

e−i(log(k+a))Sn(k + a)−σ
(x+ a)1−σei(log(x+a))Sm

(1− σ + iSm)


= (x+ a)1−σ

∑
0≤k≤x

(k + a)−σ
∫ 1

0
v−σE

{
e−i(log(k+a))Sn+i(log(x+a)+log v)Sm

}
dv

= (x+ a)1−σ
∑

0≤k≤x
(k + a)−σ

∫ 1

0
v−σe−| log v(x+a)|(m−n)−| log

v(x+a)
k+a

|ndv.

Here, we split the interval [0, 1] into three intervals. Firstly,∫ 1
x+a

0
v−σe−| log v(x+a)|(m−n)−| log

v(x+a)
k+a

|ndv =
(x+ a)σ−1

(m+ 1− σ)(k + a)n
.

Secondly,∫ k+a
x+a

1
x+a

v−σe−| log v(x+a)|(m−n)−| log
v(x+a)
k+a

|ndv =
(x+ a)σ−1((k + a)n−m+1−σ − (k + a)−n)

(2n−m+ 1− σ)
.

Thirdly,∫ 1

k+a
x+a

v−σe−| log v(x+a)|(m−n)−| log
v(x+a)
k+a

|ndv =
(k + a)−m+n+1−σ

(x+ a)1−σ(m− 1 + σ)
− (k + a)n

(x+ a)m(m− 1 + σ)
.

By summing up the three results, multiplying each one by (k + a)−σ, adding up over k, and
multiplying each by (x+ a)1−σ, we get

EZn1(x, a)Zm2(x, a) =
∑
k≤x

{
−2(m− n)(k + a)−n−σ

(m+ 1− σ)(2n−m+ 1− σ)
+

2n(k + a)n−m+1−2σ

(m− 1 + σ)(2n−m+ 1− σ)

}

−
∑
k≤x

{
(k + a)n−σ(x+ a)−m+1−σ

(m− 1 + σ)

}
.

The calculation for EZm1(x, a)Zn2(x, a) is very similar. We have,

EZm1(x, a)Zn2(x, a) = E

 ∑
0≤k≤x

e−i(log(k+a))Sm(k + a)−σ
(x+ a)1−σei(log(x+a))Sn

1− σ + iSn


= (x+ a)1−σ

∑
0≤k≤x

(k + a)n−m−σ
∫ 1

0
v−σe−| log

v(x+a)
k+a

|ndv.

We calculate this integral by splitting [0, 1] in two intervals. Firstly,∫ k+a
x+a

0
v−σe−| log

v(x+a)
k+a

|ndv =
(k + a)1−σ

(n+ 1− σ)(x+ a)1−σ .
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Secondly, ∫ 1

k+a
x+a

v−σe−| log
v(x+a)
k+a

|ndv =
(k + a)1−σ

(n− 1 + σ)(x+ a)1−σ −
(k + a)n

(x+ a)n(n− 1 + σ)
.

By summing up the two results, multiplying by (k+a)n−m−σ, adding up over k, and multiplying
by (x+ a)1−σ, we get

EZm1(x, a)Zn2(x, a) =
∑
k≤x

{
2n(k + a)n−m+1−2σ

n2 − (1− σ)2
− (k + a)2n−m−σ(x+ a)−n+1−σ

(n− 1 + σ)

}
.

We formulate again

Proposition 2.11. For all m ≥ n+ 1 we have

EZn1(x, a)Zm2(x, a) =
∑
k≤x

{
−2(m− n)(k + a)−n−σ

(m+ 1− σ)(2n−m+ 1− σ)
+

2n(k + a)n−m+1−2σ

(m− 1 + σ)(2n−m+ 1− σ)

}(2.18)

−
∑
k≤x

{
(k + a)n−σ(x+ a)−m+1−σ

(m− 1 + σ)

}
,

and

EZm1(x, a)Zn2(x, a) =
∑
k≤x

{
2n(k + a)n−m+1−2σ

n2 − (1− σ)2
− (k + a)2n−m−σ(x+ a)−n+1−σ

(n− 1 + σ)

}
.(2.19)

Asymptotic formulae related to Zn2(x, a)
Here we only consider the case σ = 1

2 . In order to obtain asymptotic formulae related to
Zn2(x, a), we take x to infinity in the results obtained in the previous step. We immediately
deduce from (2.16)

EZn2(x, a)Zm2(x, a) =
4n(m− n)

((m− n)2 − 1)(n2 − 1
4)

+ o(1), x→∞,

and from (2.17) we derive

EZn2(x, a)Zn2(x, a) =
2(x+ a)

n+ 1
2

.

Next, (2.18) implies that

EZn1(x, a)Zm2(x, a) =
−2(m− n)ζ(n+ 1

2 , a)

(m+ 1
2)(2n−m+ 1

2)
+

2n

(m− 1
2)(2n−m+ 1

2)

∑
k≤x

(k + a)n−m

− (x+ a)−m+ 1
2

(m− 1
2)

∑
k≤x

(k + a)n−
1
2 + o(1).

Note that for m > n+ 1 the second term converges and the third term is negligible, since

(x+ a)−m+ 1
2

∑
k≤x

(k + a)n−
1
2 ≤ (x+ a)−m+ 1

2 (x)(x+ a)n−
1
2

= x(x+ a)n−m ≤ (x+ a)n−m+1 = o(1).
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Hence, for m > n+ 1 we obtain

EZn1(x, a)Zm2(x, a) =
−2(m− n)ζ(n+ 1

2 , a)

(m+ 1
2)(2n−m+ 1

2)
+

2nζ(m− n, a)

(m− 1
2)(2n−m+ 1

2)
+ o(1).

When m = n > 2, we have, by the second-order Euler-Maclaurin formula,∑
k≤x

(k + a)n−
1
2 =

(x+ a)n+ 1
2

n+ 1
2

+
(x+ a)n−

1
2

2
+ o((x+ a)n−

1
2 )

and obtain, for x→∞

EZn1(x, a)Zn2(x, a) =
2nx

n2 − 1
4

− x+ a

n2 − 1
4

− 1

2n− 1
+ o(1)

=
2x

n+ 1
2

− 1

2n− 1
− a

(n2 − 1
4)

+ o(1).

Now we consider the last expectation (2.19), that is

EZm1(x, a)Zn2(x, a) =
2n

n2 − 1
4

∑
k≤x

(k + a)n−m − (x+ a)−n+ 1
2

(n− 1
2)

∑
k≤x

(k + a)2n−m− 1
2 .

When m > n+ 1, the first term converges and the second term vanish, since with x→∞

(x+ a)−n+ 1
2

∑
k≤x

(k + a)2n−m− 1
2 ≤ (x+ a)−n+ 1

2 (x+ a)(x+ a)2n−m− 1
2

= (x+ a)n−m+1 = o(1).

Thus we get, for x→∞,

EZm1(x, a)Zn2(x, a) =
2nζ(m− n, a)

n2 − 1
4

+ o(1).

Proposition 2.12. For all m ≥ n+ 1 and x→∞ we have

EZn2(x, a)Zm2(x, a) =
4n(m− n)

((m− n)2 − 1)(n2 − 1
4)

+ o(1),(2.20)

EZm1(x, a)Zn2(x, a) =
2nζ(m− n, a)

n2 − 1
4

+ o(1),(2.21)

EZn1(x, a)Zm2(x, a) =
−2(m− n)ζ(n+ 1

2 , a)

(m+ 1
2)(2n−m+ 1

2)
+

2nζ(m− n, a)

(m− 1
2)(2n−m+ 1

2)
+ o(1).(2.22)

For n ≥ 1 and x→∞ we have

EZn2(x, a)Zn2(x, a) =
2(x+ a)

n+ 1
2

,(2.23)

EZn1(x, a)Zn2(x, a) =
2x

n+ 1
2

− 1

2n− 1
− a

(n2 − 1
4)

+ o(1).(2.24)
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Asymptotic formulae related to Zn1(x, a)
Let us fix σ ∈ [1

2 , 1] and m,n such that m > n+ 1. We have

EZn1(x, a)Zm1(x, a) = E
∑

0≤k,l≤x
(k + a)−(σ+iSn)(l + a)−(σ−iSm)

=
∑

0≤k,l≤x
((k + a)(l + a))−σEe−i(log(k+a))Snei(log(l+a))Sm

=
∑

0≤k,l≤x
((k + a)(l + a))−σEei(log(l+a)−log(k+a))Sn+i(log(l+a))(Sm−Sn).

We note that

Eei(log(l+a)−log(k+a))Sn =

{
( l+ak+a)−n if l > k,

( l+ak+a)n if l < k.

Thus we get

EZn1(x, a)Zm1(x, a) =
∑

0≤k,l≤x
((k + a)(l + a))−σ

(
min(k + a, l + a)

max(k + a, l + a)

)n
(l + a)−m+n

= S1 + S2 + S0,

where

S1 =
∑

0≤k≤x
(k + a)n−σ

∑
k+1≤l≤x

(l + a)−m−σ,

S2 =
∑

0≤l≤x
(l + a)2n−m−σ

∑
l+1≤k≤x

(k + a)−n−σ

=
∑

0≤k≤x
(k + a)2n−m−σ

∑
k+1≤l≤x

(l + a)−n−σ,

S0 =
∑
k≤x

(k + a)n−m−2σ.

For m > n+ 1 and σ = 1
2 , we obviously have

S0 = ζ(m− n+ 1, a) + o(1), x→∞.

Next,

S1 =
∞∑
k=0

(k + a)n−
1
2

∞∑
l=k+1

(l + a)−m−
1
2 + o(1), x→∞.

In what follows and elsewhere θk,m denote constants in [0, 1], not necessarily the same at each
appearance. Moreover, for m > n+ 1,

∞∑
k=0

(k + a)n−
1
2

∞∑
l=k+1

(l + a)−m−
1
2 =

∞∑
k=0

(k + a)n−
1
2 θk,m

∫ ∞
k

(u+ a)−m−
1
2du

=
∞∑
k=0

(k + a)n−
1
2 θk,m

[
(u+ a)−m+ 1

2

−m+ 1
2

]∞
k

=
θn,m

m− 1
2

∞∑
k=0

(k + a)n−m

=
θn,m

m− 1
2

ζ(m− n, a).

31



Exactly in the same way we obtain

S2 =
∞∑
k=0

(k + a)2n−m− 1
2

∞∑
l=k+1

(l + a)−n−
1
2 + o(1), x→∞,

and
∞∑
k=0

(k + a)2n−m− 1
2

∞∑
l=k+1

(l + a)−n−
1
2 =

θ́m,n

n− 1
2

ζ(m− n, a).

Thus, finally, we have

Proposition 2.13. For m > n+ 1

EZn1(x, a)Zm1(x, a) = ζ(m− n+ 1, a) + θ

(
1

m− 1
2

+
1

n− 1
2

)
ζ(m− n, a) + o(1), x→∞,

(2.25)

with θ = θ(n,m) ∈ [0, 1].

Now we shall calculate EZn1(x, a)Zn1(x, a). The main term of Theorem 2.2 follows form
results of this part. We already known that, for σ = 1

2

EZn1(x, a)Zn1(x, a) =
∑

0≤k,l≤x
((k + a)(l + a))−

1
2

(
min(k + a, l + a)

max(k + a, l + a)

)n
= 2

∑
0≤l≤x

(l + a)−
1
2
−n

∑
0≤k≤l

(k + a)−
1
2

+n −
∑

0≤l≤x

1

l + a
.

Applying the Euler-Maclaurin formula of the first order to the inner sum, we find

2
∑

0≤l≤x
(l + a)−

1
2
−n

∑
0≤k≤l

(k + a)−
1
2

+n

= 2
∑

0≤l≤x
(l + a)−

1
2
−n

an− 1
2 + (l + a)n−

1
2

2
+

(l + a)n+ 1
2 − an+ 1

2

n+ 1
2

+
∑
k≤l−1

Ak


=

2(x+ 1)

n+ 1
2

+
∑

0≤l≤x

1

l + a
+ 2

(
an−

1
2

2
− an+ 1

2

n+ 1
2

) ∑
0≤l≤x

(l + a)−
1
2
−n

+ 2
∑

0≤l≤x
(l + a)−

1
2
−n

∑
k≤l−1

Ak,

where

Ak = (n− 1

2
)

∫ 1

0
(t− 1

2
)(t+ k + a)n−

3
2dt.

For x→∞ we get

EZn1(x, a)Zn1(x, a) =
2(x+ 1)

n+ 1
2

+
(2n− 4a− 1)an−

1
2

2n− 1
ζ(n+

1

2
, a) + 2

∞∑
k=0

Ak

∞∑
l=k+1

(l + a)−
1
2
−n + o(1).
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Now, it remains to analyse the behaviour of the double sum. Here we shall use the same
technique as Lifshits and Weber. We let

S =

∞∑
k=1

Ak

∞∑
l=k+1

(l + a)−
1
2
−n,

as n→∞. We denote

Bk = Bk(n) =

∫ 1

0
(t− 1

2
)(t+ k + a)n−

3
2dt,

Dk = Dk(n) =

∞∑
l=k+1

(l + a)−
1
2
−n, D′k = D′k(n) =

∞∑
l=k+2

(l + a)−
1
2
−n.

Then we have

S = (n− 1

2
)
∞∑
k=1

BkDk

= (n− 1

2
)

( ∞∑
k=n

BkDk +
n−1∑
k=1

Bk

(
D′k + (k + a+ 1)−n−

1
2

))

We also aim to show that

lim
n→∞

(n− 1

2
)

∞∑
k=n

BkDk =

∫ 1

0
φ(α)dα,(2.26)

lim
n→∞

(n− 1

2
)
n−1∑
k=1

BkD
′
k =

∫ ∞
1

φ1(α)dα,(2.27)

lim
n→∞

(
(n− 1

2
)
n−1∑
k=1

Bk(k + 1 + a)−n−
1
2 −

n−1∑
k=1

1

2(k + 1 + a)

)
=

∫ ∞
1

φ2(α)dα.(2.28)

For (2.26), we have to show that

lim inf
n→∞

n

∞∑
k=n

BkDk ≥
∫ 1

0
φ(α)dα ≤ lim sup

n→∞
n

∞∑
k=n

BkDk.(2.29)

Now we substitute t = 1− (k+a+1)v
n in Bk and get

Bk =
(k + a+ 1)n−

1
2

n

∫ βk

0
(
1

2
− v

βk
)(1− v

n
)n−

3
2dv,

where βk = n
k+a+1 . In view of

lim
n→∞

(1− v

n
)n−

3
2 = e−v,
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we have

Bk ∼
(k + a+ 1)n−

1
2

n

∫ βk

0
e−v(

1

2
− v

βk
)dv.

By using the explicit formula∫ β

0
e−v(

1

2
− v

β
)dv =

e−β + 1

2
+
e−β − 1

β
,

we obtain

nBk(k + a+ 1)−n+ 1
2 ∼ 1

2
(1 + e−βk) +

e−βk − 1

βk
.

Now we deal with Dk. We have

Dk (k + a+ 1)n+ 1
2 =

∞∑
h=1

(
k + h+ a

k + 1 + a

)−n− 1
2

=
∞∑
h=0

(
1 +

h

k + 1 + a

)−n− 1
2

∼ exp

(
−(

h

k + a+ 1
)(n+

1

2
)

)
∼

(
1− exp

(
−

n+ 1
2

k + a+ 1

))−1

∼
(

1− exp

(
− n

k + a+ 1

))−1

∼ (1− exp (−βk))−1 .

Thus we have, for βk = n
k+a+1 ∈ (0, 1]

BkDk ∼ φ(βk)
1

(k + a+ 1)2
.

Since φ is uniformly continuous, we find∫ n
k+a

n
k+a+1

φ(α)dα ∼ φ(
n

k + a+ 1
)

(
n

k + a
− n

k + a+ 1

)
∼ φ(βk)

n

(k + a+ 1)2
.

For this, we obtain that

nBkDk ∼
∫ n

k+a

n
k+a+1

φ(α)dα.

It remains to show (2.29). Exchanging k to k + a makes no difference in our situation. For
this aim, we find that for any (large) fixed M > 1, uniformly in k ∈ [n,Mn],

lim inf
n→∞

n
∞∑
k=n

BkDk ≥ lim
n→∞

Mn∑
k=n

∫ n
k+a

n
k+a+1

φ(α)dα =

∫ 1

1
M

φ(α)dα.

If M tend to infinity, we arrive at

lim inf
n→∞

n

∞∑
k=n

BkDk ≥ lim
n→∞

∫ 1

0
φ(α)dα.

34



Similarly, we see that for any M > 1

lim sup
n→∞

n
Mn∑
k=n

BkDk ≤ lim
n→∞

∫ 1

1
M

φ(α)dα ≤ lim
n→∞

∫ 1

0
φ(α)dα.

Thus we only need to show that

lim
M→∞

lim sup
n→∞

n
∑
k>Mn

BkDk = 0.(2.30)

We have alreadly seen that

Bk =
(k + a+ 1)n−

1
2

n

∫ βk

0
(
1

2
− v

βk
)(1− v

n
)n−

3
2dv.

In view of
∫ β

0
1
2 −

v
βdv = 0 and |12 −

v
β | ≤ 1, where 0 ≤ v ≤ β, we have

|
∫ β

0
(
1

2
− v

β
)(1− v

n
)n−

3
2dv| ≤

∫ β

0
|(1− v

n
)n−

3
2 − 1|dv.

Since

|(1− v

n
)n−

3
2 − 1| =

(
n− 3

2

)∫ 1

1− v
n

yn−
5
2dy ≤

(
n− 3

2

)
v

n
≤ v,

we have

Bk ≤
(k + a+ 1)n−

1
2

n
β2
k.

To approximate Dk we split the sum in two parts

Dk (k + a+ 1)n+ 1
2 =

∞∑
h=0

(
1 +

h

k + a+ 1

)−n− 1
2

=
k+1∑
h=0

(
1 +

h

k + a+ 1

)−n− 1
2

+
∑

h>k+1

(
1 +

h

k + a+ 1

)−n− 1
2

.

By using 1 + s ≥ es log 2, 0 ≤ s ≤ 1, we have
k+1∑
h=0

(
1 +

h

k + a+ 1

)−n− 1
2

≤
∞∑
h=0

exp

(
−
(
n+

1

2

)
h

k + a+ 1
log 2

)

=

(
1− exp

(
−
(
n+

1

2

)
1

k + a+ 1
log 2

))−1

≤ (1− exp (−4βk))
−1 ≤ C(βk)

−1,

for all 0 ≤ βk ≤ 1.
Secondly, ∑

h>k+1

(
1 +

h

k + a+ 1

)−n− 1
2 k + a+ 1

k + a+ 1
≤ (k + a+ 1)

∫ ∞
1

(1 + x)−n−
1
2dx

=
k + a+ 1

n− 1
2

2−n−
1
2

≤ 2
3
2
k + a+ 1

n
≤ Cβ−1

k ,
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Thus, we obtain that

Dk(k + a+ 1)n+ 1
2 ≤ Cβ−1

k .

It follows that

nBkDk ≤ (k + a+ 1)n−
1
2β2

k(k + a+ 1)−n−
1
2Cβ−1

k = C(k + a+ 1)−1βk

= C
n

(k + a+ 1)2
,

whence

n
∑
k>Mn

BkDk ≤ Cn
∑
k>Mn

1

(k + a+ 1)2
≤ Cn

Mn
≤ C

M
,

and (2.30) follows. The proof of (2.26) is complete.
By the same method of proof we also obtain (2.27). The only different point is that for

any (large) fixed M > 1, uniformly in k ∈ [ nM , n], we have

nBkD
′
k ∼

∫ n
k+a

n
k+a+1

φ1(α)dα.

By continuity of φ1, we have∫ n
k+a

n
k+a+1

φ1(α)dα ∼ φ1(
n

k + a+ 1
)

(
n

k + a
− n

k + a+ 1

)
∼ φ1(βk)

(
n

k + a+ 1

)2

,

where βk = n
k+a+1 ∈ [1,M ].

Finally, we shall prove (2.28). We have to investigate the limiting behaviour of the sum

n−1∑
k=1

(k + 1 + a)−n−
1
2Bk =

n−1∑
k=1

(k + 1 + a)−n−
1
2

∫ 1

0
(t− 1

2
)(t+ k + a)n−

3
2dt

=
n−1∑
k=1

∫ 1

0

(t+ k + a)n−
3
2 (t− 1

2)

(k + 1 + a)n−
3
2 (k + a+ 1)2

dt.

Changing again the variable t = 1− k+a+1
n v, we have

n−1∑
k=1

∫ 0

n
k+a+1

(1− k+a+1
n v + k + a)n−

3
2 (1− k+a+1

n v − 1
2)

(k + 1 + a)n−
3
2 (k + a+ 1)2

d(1− k + a+ 1

n
v)(2.31)

=
n−1∑
k=1

k + a+ 1

n

∫ n
k+a+1

0

(
1− v

n

)n− 3
2

(
1
2 −

(k+a+1)v
n

)
(k + a+ 1)2

dv

=
n−1∑
k=1

1

2n(k + a+ 1)

∫ n
k+a+1

0

(
1− v

n

)n− 3
2
dv −

n−1∑
k=1

1

n2

∫ n
k+a+1

0

(
1− v

n

)n− 3
2
vdv.

We write the last sum of (2.31) as one integral:

1

n

n−1∑
k=1

∫ n
k+a+1

0

(
1− v

n

)n− 3
2
vdv =

1

n

∫ ∞
0

(
1− v

n

)n− 3
2
]
{
k : k + a+ 1 ≤ n, k + a+ 1 ≤ n

v

}
vdv.
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next we split the integral over the domains [0, 1] and (1,∞), and obtain∫ 1

0

(
1− v

n

)n− 3
2 ] {k : k + a+ 1 ≤ n}

n
vdv +

∫ ∞
1

(
1− v

n

)n− 3
2 ]
{
k : k + a+ 1 ≤ n

v

}
n

vdv.

In view of the theorem of dominated convergence, the first integral converges to
∫ 1

0 e
−vvdv

and the second to
∫∞

1 e−vdv. Thus, we have

lim
n→∞

n− 1
2

n2

n−1∑
k=1

∫ n
k+a+1

0

(
1− v

n

)n− 3
2
vdv =

∫ 1

0
e−vvdv +

∫ ∞
1

e−vdv = 1− e−1.

Now we consider the first term of (2.31). After we multiply by n− 1
2 we get

(n− 1

2
)
n−1∑
k=1

1

2n(k + a+ 1)

∫ n
k+a+1

0

(
1− v

n

)n− 3
2
dv

=
n− 1

2

n

(
n−1∑
k=1

Xk

2(k + a+ 1)
−
n−1∑
k=1

Yk
2(k + a+ 1)

+
n−1∑
k=1

Zk
2(k + a+ 1)

)
,

where

Xk =

∫ ∞
0

e−vdv = 1, Yk =

∫ ∞
n

k+a+1

e−vdv = e
−n

k+a+1 , Zk =

∫ n
k+a+1

0

(
(1− v

n
)n−

3
2 − e−v

)
dv.

We find that the first sum is
n−1∑
k=1

1

2(k + a+ 1)
+O

(
log(n+ a)

n

)
=

n−1∑
k=1

1

2(k + a+ 1)
+ o(1).

For the second term, we have to show that

lim
n→∞

n−1∑
k=1

Yk
2(k + a+ 1)

=
1

2

∫ ∞
1

e−α
1

α
dα.

For this purpose, we consider the following subdivision t1 = n
2+a , ..., tk = n

k+1+a , ..., tn−1 =
n

n+a ≤ 1. We have

tk−1 − tk =
n

k + a
− n

k + a+ 1
=

n

(k + a+ 1)(k + a)
.

We fix a large integer M and write

1

2

∫ tM

1
e−α

1

α
dα ≤

n−1∑
k=M+1

∫ tk−1

tk

e−α
1

2α
dα ≤

n−1∑
k=M+1

e−tk
1

2tk
(tk − tk−1)

=

n−1∑
k=M+1

e−tk
1

2tk

n

(k + a+ 1)(k + a)

=

n−1∑
k=M+1

e
−n

k+a+1
k + a+ 1

n

n

2(k + a+ 1)2

k + a+ 1

k + a

≤ M + a+ 1

M + a

n−1∑
k=M+1

e
−n

k+a+1
k + a+ 1

n

n

2(k + a+ 1)2
.
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Since tM = n
M+a+1 →∞, as n tends to infinity, M fixed, we see that

lim inf
n→∞

n−1∑
k=1

Yk
2(k + a+ 1)

≥ 1

2

M + a

M + a+ 1

∫ ∞
1

e−α
1

α
dα.

With M tending to infinity, we establish that

lim inf
n→∞

n−1∑
k=1

Yk
2(k + a+ 1)

≥ 1

2

∫ ∞
1

e−α
1

α
dα.

The upper bound is obtained similary and thus we arrive at

n−1∑
k=1

Yk
2(k + a+ 1)

→ 1

2

∫ ∞
1

e−α
1

α
dα,

as n→∞. Now we want to show that

n−1∑
k=1

Zk
(k + a+ 1)

=
n−1∑
k=1

1

(k + a+ 1)

∫ n
k+a+1

0

(
(1− v

n
)n−

3
2 − e−v

)
dv −→ 0,

as n→∞. We have

|
n−1∑
k=1

1

(k + a+ 1)

∫ n
k+a+1

0

(
(1− v

n
)n−

3
2 − e−v

)
dv|

≤
∫ n

k+a+1

0
|(1− v

n
)n−

3
2 − e−v|dv

(
n−1∑
k=1

1

(k + a+ 1)

)

≤ (log(n+ a))

∫ n
2

0
|(1− v

n
)n−

3
2 − e−v|dv.

In the proof of Lifshits and Weber, the latter integral is close to zero when n tends to infinity.
We split the integration domain [0, n2 ] in [0, n

1
4 ] and (n

1
4 , n2 ], n ≥ 3. For the second domain,

we use the elementary estimate

(1− v

n
)n−

3
2 ≤ exp(−

v(n− 3
2)

n
) ≤ e

−v
2 , n ≥ 3.

We thus get the estimate

(log n)(
n

2
)e
−n

1
4

2 .

For the first domain, we have

|e−v − (1− v

n
)n−

3
2 | = |e−v − (1− v

n
)n(1− v

n
)−

3
2 | = |e−v − (1− v

n
)nh|,

while

max
{
e−v − (1− v

n
)nh, (1− v

n
)nh− e−v

}
≤ max

{
e−v − (1− v

n
)n, (h− 1)e−v

}
≤ e−v − (1− v

n
)n + (h− 1)e−v.
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We use the following estimate

e−v − (1− v

n
)n ≤ (v)2

2n
, v ≤ n,

and also

h = (1− v

n
)
−3
2 ≤ (1− n

1
4

2
)
−3
2 .

It follows that

|
n−1∑
k=1

1

(k + a+ 1)

∫ n
k+a+1

0

(
(1− v

n
)n−

3
2 − e−v

)
dv| ≤ (log n)

(
n

2
e
−n

1
4

2 +
n

3
4

6n
+ (1− n

1
4

2
)
−3
2 − 1

)
.

Now letting n tends to infinity, we obtain our aim. By collecting the three terms we have

(n− 1

2
)

[
n−1∑
k=1

(k + a+ 1)−n−
1
2Bk −

n−1∑
k=1

1

2(k + a+ 1)

]
−→ e−1 − 1− 1

2

∫ ∞
1

e−α
1

α
dα,

as n→∞. Summing up we obtain the following

Proposition 2.14.

EZn1Zn1 =
2(x+ 1)

n+ 1
2

+Kn + o(1), x→∞(2.32)

with

Kn = log(n+ a) + C + o(1), n→∞

and

C = γ(a)− 1

a
+ 2

{∫ 1

0
φ(α)dα+

∫ ∞
1

(
φ(α)− eα − 1

2α(eα − 1)

)
dα

}
.

2.2.2 Good approximation of ζ(1
2 + iSn, a)

In this subsection, we shall show that Zn(x, a) provides a sufficiently good approximation to
ζ(1

2 + iSn, a) in the following sense.

Proposition 2.15. For each positive integer n,

(2.33) lim
x→∞

E|Zn(x, a)− ζ(
1

2
+ iSn, a)|2 = 0.

Consequently,

Eζ(
1

2
+ iSn, a)ζ(

1

2
+ iSm, a) = lim

x→∞
EZn(x, a)Zm(x, a)(2.34)

and

Eζ(
1

2
+ iSn, a) = lim

x→∞
EZn(x, a).(2.35)

Now let pn(u) = n
π(n2+u2)

denote the distribution density of Sn.
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Lemma 2.16. (Lifshits and Weber [43], 2009) Let α ∈ R and x ≥ 1. Then,∣∣∣∣∣
∫
|u|≥x

eiαupn(u)du

∣∣∣∣∣ ≤ C(n)

|α|x2
,

where the constant C(n) depends on n only.

Lemma 2.17. For any fixed n, we have

lim
x→∞

∫
|u|≥x

∣∣∣∣∣∣
∑
m≤x

(m+ a)−( 1
2

+iu)

∣∣∣∣∣∣
2

pn(u)du = 0.

We prove Lemma 2.17 in the same way as Lifshits and Weber [43].
Proof. We have∫

|u|≥x

∣∣∣∣∣∣
∑
m≤x

(m+ a)−( 1
2

+iu)

∣∣∣∣∣∣
2

pn(u)du

=
∑
m1≤x

∑
m2≤x

1

(m1 + a)
1
2 (m2 + a)

1
2

∫
|u|≥x

e
iu log

(
m2+a
m1+a

)
pn(u)du.

We consider two cases: let β = 1
2 .

The first case: if |m2 −m1| < (m1 + a)β . Then∣∣∣∣∣
∫
|u|≥x

e
iu log

(
m2+a
m1+a

)
pn(u)du

∣∣∣∣∣ ≤
∫
|u|≥x

pn(u)du ≤
∫
|u|≥x

C(n)

u2
du ≤ C(n)

x
.

Therefore,

∑
m1,m2≤x

|m2−m1|<(m1+a)β

1

(m1 + a)
1
2 (m2 + a)

1
2

∣∣∣∣∣
∫
|u|≥x

e
iu log

(
m2+a
m1+a

)
pn(u)du

∣∣∣∣∣
≤ C(n)

x

∑
m1≤x

∑
m2≤x

|m2−m1|<(m1+a)β

1

(m1 + a)
1
2 (m2 + a)

1
2

≤ C(n)

x

∑
m1≤x

2(m1 + a)β

m
1
2
1 (m1 − (m1 + a)β)

1
2

≤ CC(n)

x

∑
m1≤x

(m1 + a)β−1 ≤ CC(n)

x
(x+ a)β.

Thus

lim
x→∞

∑
m1,m2≤x

|m2−m1|<(m1+a)β

1

(m1 + a)
1
2 (m2 + a)

1
2

∣∣∣∣∣
∫
|u|≥x

e
iu log

(
m2+a
m1+a

)
pn(u)du

∣∣∣∣∣ = 0.

For the second case, we assume |m2 −m1| ≥ (m1 + a)β . If m2 −m1 ≥ (m1 + a)β , then by
assigning ψ := log(m2+a

m1+a) we get

|ψ| ≥ log

(
m1 + a+ (m1 + a)β

m1 + a

)
= log

(
1 + (m1 + a)β−1

)
≥ C(m1 + a)β−1;
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if m1 −m2 ≥ (m1 + a)β , then

m1 −m2 ≥ (m1 + a)(m1 + a)β−1 ≥ (m2 + a)(m1 + a)β−1.

And consequently

|ψ| = log

(
m1 + a

m2 + a

)
≥ log

(
1 + (m1 + a)β−1

)
≥ C(m1 + a)β−1.

In view of Lemma 2.16, we have∣∣∣∣∣
∫
|u|≥x

e
iu log

(
m2+a
m1+a

)
pn(u)du

∣∣∣∣∣ =

∣∣∣∣∣
∫
|u|≥x

eiuψpn(u)du

∣∣∣∣∣
≤ C(n)

|ψ|x2
≤ C(n)

(m1 + a)β−1
1 x2

=
C(n)

x2
(m1 + a)1−β

1 ,

and ∑
m1,m2≤x

|m2−m1|≥(m1+a)β

1

(m1 + a)
1
2 (m2 + a)

1
2

∣∣∣∣∣
∫
|u|≥x

e
iu log

(
m2+a
m1+a

)
pn(u)du

∣∣∣∣∣
≤ C(n)

x2

∑
m1,m2≤x

(m1 + a)1−β
1

(m1 + a)
1
2 (m2 + a)

1
2

≤ C(n)

x2

∑
m1,m2≤x

(m1 + a)−β+ 1
2 (m2 + a)−

1
2

≤ C(n)

x2

∑
m1≤x

(m1 + a)−β+ 1
2

∑
m2≤x

(m2 + a)−
1
2


≤ C(n)

x2
x−β+ 3

2x
1
2 = C(n)x−β.

Thus

lim
x→∞

∑
m1,m2≤x

|m2−m1|≥(m1+a)β

1

(m1 + a)
1
2 (m2 + a)

1
2

∣∣∣∣∣
∫
|u|≥x

e
iu log

(
m2+a
m1+a

)
pn(u)du

∣∣∣∣∣ = 0.

Lemma 2.18. For any fixed n, we have

lim
x→∞

∫
|u|≥x

∣∣∣∣∣(x+ a)
1
2
−iu

1
2 − iu

∣∣∣∣∣
2

pn(u)du = 0.

Proof.∫
|u|≥x

∣∣∣∣∣(x+ a)
1
2
−iu

1
2 − iu

∣∣∣∣∣
2

pn(u)du ≤ (x+ a)

∫
|u|≥x

1

|u|2
pn(u)du ≤ C(n)(x+ a)

∫
|u|≥x

1

|u|4
du

≤ C(n)x−2.
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Thus, this integral tends to zero, as x tends to infinity.

Now we shall prove Proposition 2.15 in the same way as Lifshits and Weber. The only differ-
ences are to replace the Riemann zeta-function by the Hurwitz zeta-function and the use of
the fourth moment estimate for the Hurwitz zeta-function.

Proof of Proposition 2.15 Let

Zu(x, a) =
∑

0≤k≤x
e−i(log(k+a))u(k + a)−

1
2 − (x+ a)

1
2

(1
2 − iu)

e−i(log(x+a))u

We have

E|Zn(x, a)− ζ(
1

2
+ iSn, a)|2 =

∫ ∞
−∞
|Zu(x, a)− ζ(

1

2
+ iu, a)|2pn(u)du

≤
∫
|u|≤x

|Zu(x, a)− ζ(
1

2
+ iu, a)|2pn(u)du+ 2

∫
|u|>x

|Zu(x, a)|2pn(u)du

+ 2

∫
|u|>x

|ζ(
1

2
+ iu, a)|2pn(u)du.

For the first integral, we have by the approximation of the Hurwitz zeta-function,∫
|u|≤x

|Zn(x, a)− ζ(
1

2
+ iSn)|2pn(u)du ≤ max

|u|≤x
|Zu(x, a)− ζ(

1

2
+ iu)|2 ≤ C

|x|
.

Thus,

lim
x→∞

∫
|u|≤x

|Zu(x, a)− ζ(
1

2
+ iu)|2pn(u)du = 0.

The second integral, we observe∫
|u|>x

|Zu(x, a)|2pn(u)du

≤ 2

∫
|u|>x

∣∣∣∣∣ 1

(k + a)
1
2

+iu

∣∣∣∣∣
2

pn(u)du+ 2

∫
|u|>x

∣∣∣∣∣(x+ a)1−( 1
2

+iu)

1− (1
2 + iu)

∣∣∣∣∣
2

pn(u)du,

and this tends to zero, as a consequence of Lemmas 2.17 and 2.18. For the third integral, we
use that (see in [32]) ∫

|u|≤T
|ζ(

1

2
+ iu, a)|2du ≤ CT (log

T

2π
)4.
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We have∫
|u|>x

|ζ(
1

2
+ iu, a)|2pn(u)du ≤

∑
m:2m≥x

∫
|u|∈[2m−1,2m]

|ζ(
1

2
+ iu, a)|2pn(u)du

≤
∑

m:2m≥x

(
max
|u|≥2m−1

pn(u)

)∫
|u|∈[2m−1,2m]

|ζ(
1

2
+ iu, a)|2du

≤
∑

m:2m≥x

C(n)

22m

(∫
|u|≤2m

|ζ(
1

2
+ iu, a)|4du

) 1
2

2
m
2

≤
∑

m≥ log x
log 2

C(n)

22m

(
2m[m log 2]4

) 1
2 2

m
2

≤ C · C(n)
∑

m≥ log x
log 2

m2

2m
.

Thus,

lim
x→∞

∫
|u|>x

|ζ(
1

2
+ iu, a)|2pn(u)du ≤ C · C(n) lim

x→∞

∑
m≥ log x

log 2

m2

2m
= 0,

and the proof is complete.

2.2.3 Proof of Theorem 2.8

In view of (2.32), (2.23) and (2.24), we have

E|Zn(x, a)|2 = E|Zn1(x, a)|2 + E|Zn2(x, a)|2 − 2<EZn1Zn2(x, a)

=
2(x+ 1)

n+ 1
2

+Kn +
2(x+ a)

n+ 1
2

− 2

{
2x

n+ 1
2

− 1

2n− 1
− a

n2 − 1
4

}
+ o(1)

= Kn +
8an+ 8a+ 12n− 2

4n2 − 1
+ o(1).

Hence,

E|ζn|2 = lim
x→∞

E|Zn(x, a)|2 = Kn +
8an+ 8a+ 12n− 2

4n2 − 1
<∞.

Since

EWn(a)Wm(a) = Eζ(
1

2
+ iSn, a)ζ(

1

2
+ iSm, a)− Eζ(

1

2
+ iSn, a)Eζ(

1

2
+ iSm, a),

and by Proposition 2.15 and (2.15), we obtain

EWn(a)Wm(a) = lim
x→∞

EZn(x, a)Zm(x, a)−
(
ζ(n+

1

2
, a)− 8n

4n2 − 1

)(
ζ(m+

1

2
, a)− 8m

4m2 − 1

)
.

In particular

E|Wn(a)|2 =

(
Kn +

8an+ 8a+ 12n− 2

4n2 − 1

)
−
(
ζ(n+

1

2
, a)− 8n

4n2 − 1

)2
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and the first claim of Theorem 2.8 follows. For the second assertion, we apply

EZnZm = EZn1Zm1 − EZn1Zm2 − EZn2Zm1 + EZn2Zm2

with (2.25), (2.22), (2.21) and (2.20). Thus we have

EZn(x, a)Zm(x, a)− EZn(x, a)EZm(x, a)

≤
∣∣∣∣ζ(m− n+ 1, a)−

(
ζ(n+

1

2
, a)− 8n

4n2 − 1

)(
ζ(m+

1

2
, a)− 8m

4m2 − 1

)∣∣∣∣
+

(
1

m− 1
2

+
1

n− 1
2

)
ζ(m− n, a) +

∣∣∣∣∣ 2(m− n)ζ(n+ 1
2 , a)

(m+ 1
2)(2n−m+ 1

2)
− 2nζ(m− n, a)

(m− 1
2)(2n−m+ 1

2)

∣∣∣∣∣
+

∣∣∣∣∣2nζ(m− n, aq )

n2 − 1
4

− 4n(m− n)

((m− n)2 − 1)(n2 − 1
4)

∣∣∣∣∣+ o(1).

In view of Proposition 2.15, we obtain for any fixed pair of integers n,m with m > n+ 1 that

|EWn(a)Wm(a)|

≤
∣∣∣∣ζ(m− n+ 1, a)−

(
ζ(n+

1

2
, a)− 8n

4n2 − 1

)(
ζ(m+

1

2
, a)− 8m

4m2 − 1

)∣∣∣∣
+

(
1

m− 1
2

+
1

n− 1
2

)
ζ(m− n, a)

+

∣∣∣∣∣ 2(m− n)ζ(n+ 1
2 , a)

(m+ 1
2)(2n−m+ 1

2)
− 2nζ(m− n, a)

(m− 1
2)(2n−m+ 1

2)

∣∣∣∣∣
+

∣∣∣∣∣2nζ(m− n, a)

n2 − 1
4

− 4n(m− n)

((m− n)2 − 1)(n2 − 1
4)

∣∣∣∣∣ .
However,

ζ(m− n+ 1, a)−
(
ζ(n+

1

2
, a)− 8n

4n2 − 1

)(
ζ(m+

1

2
, a)− 8m

4m2 − 1

)
= ζ(m− n+ 1, a)−

(
ζ(n+

1

2
, a)

)(
ζ(m+

1

2
, a)

)
+

(
8m

4m2 − 1

)
ζ(n+

1

2
, a) +

(
8n

4n2 − 1

)
ζ(m+

1

2
, a)− 64mn

(4n2 − 1)(4m2 − 1)
.

Now

ζ(m− n+ 1, a)− ζ(n+
1

2
, a)ζ(m+

1

2
, a)

=
∞∑
k=0

1

(k + a)m−n+1
−
∞∑
k=0

∞∑
l=0

1

(k + a)
1
2

+n(l + a)
1
2

+m

=

∞∑
k=1

1

(k + a)m−n+1
− 1

a
1
2

+m

∞∑
k=1

1

(k + a)
1
2

+n
+

1

a
1
2

+n

∞∑
l=1

1

(l + a)
1
2

+m

+

∞∑
k=1

∞∑
l=1

1

(k + a)
1
2

+n(l + a)
1
2

+m
.
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It follows that ∣∣∣∣ζ(m− n+ 1, a)−
(
ζ(n+

1

2
, a)

)(
ζ(m+

1

2
, a)

)∣∣∣∣
≤ C max

(
1

(1 + a)m−n+1
,

1

(1 + a)n+ 1
2

,
1

(1 + a)m+ 1
2

)

≤ C max

(
1

(1 + a)m−n
,

1

(1 + a)n

)
.

Furthermore

sup
m>n+1

m

4m2 − 1
= O(

1

n
),

n

4n2 − 1
= O(

1

n
),

so that

sup
m>n+1

∣∣∣∣∣8mζ(n+ 1
2 , a)

4m2 − 1
+

8nζ(m+ 1
2 , a)

4n2 − 1
− 64mn

(4n2 − 1)(4m2 − 1)

∣∣∣∣∣ = O(
1

n
).

For the other terms, we have, uniformly in m with m > n+ 1,(
1

m− 1
2

+
1

n− 1
2

)
ζ(m− n, a) = O(

1

n
)

2nζ(m− n, a)

n2 − 1
4

= O(
1

n
)

4n(m− n)

((m− n)2 − 1)(n2 − 1
4)

= O(
1

n
).

The last term can be treated as in the proof of Lifshits and Weber, namely by∣∣∣∣∣ 2(m− n)

(n+ 1
2)(2n−m+ 1

2)
(ζ(m− n, a)− ζ(n+

1

2
, a))

∣∣∣∣∣ ≤ C max

(
1

(1 + a)m−n
,

1

(1 + a)n

)
.

Therefore, for m > n+ 1

|EWn(a)Wm(a)| ≤ C max

(
1

(1 + a)m−n
,

1

n

)
,

as claimed in Theorem 2.8.

2.2.4 The proof of Theorem 2.9

In this subsection, we shall prove Theorem 2.9. As we have seen in Section 2.1 the increment
condition in Proposition 2.1 is necessary. Here we shall consider the increments

E

∣∣∣∣∣∣∣
∑
i≤n≤j
n even

Wn(a)

∣∣∣∣∣∣∣
2

, E

∣∣∣∣∣∣∣
∑
i≤n≤j
n odd

Wn(a)

∣∣∣∣∣∣∣
2

.
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Using Theorem 2.8, we have

E

∣∣∣∣∣∣∣
∑
i≤n≤j
n even

Wn

∣∣∣∣∣∣∣
2

=
∑
i≤n≤j
n even

E |Wn|2 +
∑
i≤n≤j
n even

∑
i≤m≤j
m even

|EWnWm|

≤ C
∑
i≤n≤j
n even

log(n+ a) + C
∑

i≤n<m≤j
n,m even

max

(
1

(1 + a)m−n
,

1

n

)
.

However,

∑
i≤n≤j
n even

∑
i≤m≤j
m even

1

n
≤

∑
n≤j

1

n

 ∑
i≤m≤j

1

 ≤ C(log j)(j − i)

and

∑
i≤n≤j
n even

∑
i≤m≤j
m even

1

(1 + a)m−n
≤

 ∑
i≤n≤j

1

(∑
m>n

1

(1 + a)m−n

)

≤ (j − i)

∑
h≥1

(1 + a)−h

 ≤ C(j − i).

Therefore

E

∣∣∣∣∣∣∣
∑
i≤n≤j
n even

Wn(a)

∣∣∣∣∣∣∣
2

≤ C(log(j + a))(j − i).

Similarly as for the odd part, we find that there exists a constant c such that, for any j > i,

E

∣∣∣∣∣∣
∑
i≤n≤j

Wn(a)

∣∣∣∣∣∣
2

≤ C(log(j + a))(j − i).

Applying this result to Wn(a) with the choice ml ≡ 1 and Φ(x) = log(n + 1), we obtain the
assertion of Theorem 2.9.

2.3 Sampling the Lindelöf Hypothesis for Dirichlet L-functions

In this chapter, we investigate the almost-sure asymptotic behaviour of the system

Ln(σ, χ) := L(σ + iSn, χ), n = 1, 2, ....

for σ ≥ 1
2 , where χ is a primitive character modulo q. For any positive integer n, let

WLn(σ, χ) := L(σ + iSn, χ)− EL(σ + iSn, χ) = Ln(σ, χ)− ELn(σ, χ).

In our situation, we obtain
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Theorem 2.19. For any real b > 2, σ ≥ 1
2 ,

lim
n→∞

∑n
k=1 L(σ + iSk, χ)− n
n

1
2 log(1 + n)b

a.s.−→ 0,

and

‖ sup
n≥1

|
∑n

k=1 L(σ + iSk, χ)− n|
n

1
2 log(1 + n)b

‖2 <∞.

We notice that this is pretty similar to Theorem 2.3 and Theorem 2.9 from the previous
subsection. However, here we shall use an alternative proof in the case of Dirichlet L-functions
associated with a primitive character χ. Instead of working with an approximation by a finite
sum we shall incorporate the Dirichlet L-function directly by using Atkinson’s formula. In our
situation we need to show that, for σ > 0 and a primitive character χ modulo q,

E

{ ∞∑
k=1

χ(k)k−(σ+iSn)

}
=
∞∑
k=1

E
{
χ(k)k−(σ+iSn)

}
(2.36)

and

E
{
Ln(σ, χ)Lm(σ, χ)

}
=
∞∑
k=1

∞∑
l=1

E
{
χ(k)χ(l)k−σ−iSn l−σ+iSm

}
.(2.37)

Notice that interchanging summation and expectation as in (2.36) and (2.37) is not possible for
the Riemann zeta-function when 0 < σ < 1 (the case considered by Lifshits and Weber). We
shall show the proof of (2.36) and (2.37) as part of the proof of Lemma 2.20 in the next section.
Here, Atkinson’s formula is used to calculate the correlation EL(σ + iSn, χ)L(σ + iSm, χ)
whenever m > n+1. The idea of Atkinson’s formula is to consider the product ζ(s1)ζ(s2) and
divide it according to

ζ(s1)ζ(s2) = ζ(s1 + s2) + ζ2(s1, s2) + ζ2(s2, s1),

where

ζ2(s1, s2) =

∞∑
m1=1

∞∑
m2=1

m−s11 (m1 +m2)−s2 .

Hence we can avoid the lengthy proof using an approximation of the Dirichlet L-function as
in Section 2 of [43].

2.3.1 The proof of Theorem 2.19

In this section, we prove Theorem 2.19. We develop a complete second-order theory of the
system {WLn(σ, χ), n ≥ 1}. For this aim we first show

Lemma 2.20. For σ > 1
2 , there exists a constant C1 such that

E
∑
χ

|WLn(σ, χ)|2 =
2φ2(q)

q2σ
ζ(2σ − 1)Γ(2σ − 1)

Γ(n+ 1− σ)

Γ(n+ σ)

+ φ(q)L(2σ, χ0) + C1 + o(1),
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where

C1 = lim
n→∞

4φ(q)

q2σ−1

∑
e|q

µ(e)

e

∞∑
h=1

h1−2σ
∞∑
u=1

∫ ∞
0

yn−σ

(1 + y)n+σ
cos(

2πhuqy

e
)dy

 .

For σ = 1
2 , there exists a constant C2 such that

E
∑
χ

|WLn(
1

2
, χ)|2 =

φ2(q)

q
log(n+

1

2
) + C2 + o(1),

where

C2 = lim
n→∞

4φ(q)
∑
e|q

µ(e)

e

∞∑
v=1

d(v)

∫ ∞
0

yn−
1
2

(1 + y)n+ 1
2

cos(
2πqyv

e
)dy


+ γ + γq − log 2π + log q,

with Euler’s constant γ and γq = γ+
∑

p|q
log p
p−1 , where the summation is over all prime divisors

p of q.
For m > n+ 1, σ ∈ [1

2 , 1), there exists a constant C3 (dependending on q) such that

|E
∑
χ

WLn(σ, χ)WLm(σ, χ)| ≤ C3 max

{
1

2m−n
,

1

n

}
.

Proof of Lemma 2.20 In order to investigate the covariance structure, we study the
behavior of the moments of first and second order of Ln(σ, χ), and the correlation
E
∑

χ Ln(σ, χ)Lm(σ, χ), from which the second order distances E
∑

χ |Ln(σ, χ) − Lm(σ, χ)|2,
m > n, can be derived easily. The first moments are given by

ELn(σ, χ) = EL(σ + iSn, χ) =
n

π

∫
R
L(σ + iτ, χ)

dτ

n2 + τ2
.

The integrand on the right-hand side is a regular function of τ except at τ = ±ni in the τ -
plane, since for primitive χ the Dirichlet L-function is a regular function for σ > 0. In order to
calculate the expectation of L(σ + iSn, χ) we apply the calculus of residues. For a sufficiently
large parameter R > 1 + σ, we denote the counterclockwise oriented semicircle of radius R
centered at the origin located in the lower half of the τ -plane by ΓR. Then∫ R

−R
L(σ + iτ, χ)

dτ

n2 + τ2
=

∫
ΓR

L(σ + iτ, χ)
dτ

n2 + τ2
− 2πiResτ=−ni

L(σ + iτ, χ)

n2 + τ2
.

By the functional equation for the Dirichlet L-function and Stirling’s formula, we have, for
1
2 ≤ α ≤

3
4 ,

L(1− α+ it, χ)�q |L(α+ it, χ)|(1 + |t|)α−
1
2

(see [52]). From this, we deduce∫
ΓR

L(σ + iτ, χ)
dτ

n2 + τ2
�q

R

n2 +R2
max
τ∈ΓR

|L(σ + iτ, χ)| �q R
− 1

2 .
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The integral tends to zero as R→∞. Next we compute the residue

Resτ=−ni
L(σ + iτ, χ)

n2 + τ2
= lim

τ→−ni
(τ + ni)

L(σ + iτ, χ)

n2 + τ2
=
L(n+ σ, χ)

−2ni
.

Therefore, we have

EL(σ + iSn, χ) = L(n+ σ, χ)(2.38)

for any integer n and σ ≥ 1
2 . Moreover, (2.38) follows from

∞∑
k=1

E
{
χ(k)k−(σ+iSn)

}
=
∞∑
k=1

χ(k)k−σE {exp (−i(log k)Sn)} =
∞∑
k=1

χ(k)k−σ−n

= L(n+ σ, χ) = E

{ ∞∑
k=1

χ(k)k−(σ+iSn)

}
.

The follwoing calculations yield an asymptotic formula for E
∑

χ Ln(σ, χ)Lm(σ, χ) whenever
m > n+ 1. Let us fix σ ∈ [1

2 , 1) and m > n+ 1. Here, since we aim at proving (2.37) by use of
the method of Lifshits and Weber, we need an approximation of the Dirichlet L-function (see
[52]). For 0 < σ < 1 and t > 0, let x > C qt

2π , where C is a positive constant; then

L(s, χ) =
∑
n≤x

χ(n)n−s +O(q
1
2x−σ(log(q + 2))).

We can consider the second-order theory of the system WLn(σ, χ) from a study of the same
kind concerning the system

Zn(σ, χ) =
∑
n≤x

χ(n)n−σ−iSn , n = 1, 2, .., x > 0.

Since, for σ > 0, E|Zn(σ, χ) − L(σ + iSn, χ)|2 = O(qx−2σ(log2(q + 2))) → 0, when x → ∞,
we can easily show that Zn(σ, χ) approximates the Dirichlet L-function sufficiently well. It
follows that

ELn(σ, χ)Lm(σ, χ) = lim
x→∞

EZn(σ, χ)Zm(σ, χ)

= lim
x→∞

E
∑
k≤x

χ(k)k−σ−iSn
∑
l≤x

χ(l)l−σ+iSm

= lim
x→∞

∑
k≤x

∑
l≤x

Eχ(k)χ(l)k−σ−iSn l−σ+iSm

=
∞∑
k=1

∞∑
l=1

Eχ(k)χ(l)k−σ−iSn l−σ+iSm .
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Thus, we deduce

E
∑

χ mod q

Ln(σ, χ)Lm(σ, χ) = E

 ∑
χ mod q

∞∑
k,l=1

χ(k)k−(σ+iSn)χ(l)l−(σ−iSm)


=

∑
χ mod q

∞∑
k,l=1

χ(k)χ(l)(kl)−σE {exp(−i(log k)Sn) exp(i(log l)Sm)}

=
∑

χ mod q

∞∑
k,l=1

χ(k)χ(l)(kl)−σE {exp(i(log l − log k)Sn + i(log l)(Sm − Sn))} .

In order to evaluate this expression further we consider the value of E exp (i(log l − log k)Sn).
If l > k, then E exp (i(log l − log k)Sn) = ( lk )−n.
If l < k, then E exp (i(log l − log k)Sn) = ( lk )n.
Thus we get

E
∑

χ mod q

Ln(σ, χ)Lm(σ, χ) =
∑

χ mod q

∞∑
k,l=1

χ(k)χ(l)(kl)−σ
(

min(k, l)

max(k, l)

)n
l−m+n.

As in [45], the double series is studied according to whether k = l, k > l or k < l. Besides we
shall also use the orthogonality of the Dirichlet characters involved. Hence, this sum is

φ(q)

L(m− n+ 2σ, χ0) +
∞∑
r=1

(r,q)=1

∞∑
h=1

rn−σ

(r + qh)m+σ
+

∞∑
r=1

(r,q)=1

∞∑
h=1

r2n−m−σ

(r + qh)n+σ

+ o(1),(2.39)

where χ0 is the principal character modulo q. For σ ≥ 1
2 , m > n+ 1, (2.39) holds by analytic

continuation. In view of the convergence of the double series, for σ ≥ 1
2 , m > n+ 1, we have

∞∑
r=1

(r,q)=1

∞∑
h=1

rn−σ

(r + qh)m+σ
=
∑
e|q

µ(e)

∞∑
h=1

∞∑
r=1

(er)n−σ

(er + qh)m+σ
.

By Poisson’s summation formula,
∞∑
r=1

(er)n−σ

(er + qh)m+σ

=

∫ ∞
0

(ex)n−σ

(ex+ qh)m+σ
dx+ 2

∞∑
u=1

∫ ∞
0

(ex)n−σ

(ex+ qh)m+σ
cos(2πux)dx

=
(qh)1−2σ+n−m

e

(∫ ∞
0

yn−σ

(1 + y)m+σ
dy + 2

∞∑
u=1

∫ ∞
0

yn−σ

(1 + y)m+σ
cos(

2πuqsy

t
)dy

)
.

Now we sum with respect to h and e and use the identities∫ ∞
0

yn−σ

(1 + y)m+σ
dy = Γ(m− n+ 2σ − 1)

Γ(n− σ + 1)

Γ(m+ σ)
,

∑
e|q

µ(e)e−1 = φ(q)q−1.
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This gives
∞∑
r=1

(r,q)=1

∞∑
h=1

rn−σ

(r + qh)m+σ
=

φ(q)

qm−n+2σ
ζ(m− n+ 2σ − 1)Γ(m− n+ 2σ − 1)

Γ(n+ 1− σ)

Γ(m+ σ)

+ gq(m,n),

where

gq(m,n) =
2

qm−n+2σ−1

∑
e|q

µ(e)

e

∞∑
h=1

h−m+n−2σ+1
∞∑
u=1

∫ ∞
0

yn−σ

(1 + y)m+σ
cos(

2πhuqy

e
)dy.(2.40)

Exactly in the same way we obtain for the last sum in (2.39)
∞∑
r=1

(r,q)=1

∞∑
h=1

r2n−m−σ

(r + qh)n+σ

=
φ(q)

qm−n+2σ
ζ(m− n+ 2σ − 1)Γ(m− n+ 2σ − 1)

Γ(−m+ 2n− σ + 1)

Γ(n+ σ)
+ fq(m,n),

where

fq(m,n) =
2

qm−n+2σ−1

∑
e|q

µ(e)

e

∞∑
h=1

h−m+n−2σ+1
∞∑
u=1

∫ ∞
0

y2n−m−σ

(1 + y)n+σ
cos(

2πhuqy

e
)dy.

Thus,

E
∑

χ mod q

Ln(σ, χ)Lm(σ, χ)

(2.41)

=
φ2(q)

qm−n+2σ
ζ(m− n+ 2σ − 1)Γ(m− n+ 2σ − 1)

(
Γ(n− σ + 1)

Γ(m+ σ)
+

Γ(−m+ 2n− σ + 1)

Γ(n+ σ)

)
+ φ(q)L(m− n+ 2σ, χ0) + φ(q)(gq(m,n) + fq(m,n)).

Now we return to (2.40) and consider the convergence of its right-hand side. We have, for
σ ≥ 1

2 and k ≥ 1,

2

∫ ∞
0

yn−σ

(1 + y)m+σ
cos(2πky)dy

= kσ−n−1

∫ ∞
0

yn−σ

(1 + y
k )m+σ

(
e2πiy + e−2πiy

)
dy

= kσ−n−1

∫ i∞

0

yn−σ

(1 + y
k )m+σ

e2πiydy + kσ−n−1

∫ −i∞
0

yn−σ

(1 + y
k )m+σ

e−2πiydy

�
∣∣∣∣ kσ−n−1

σ − n− 1

∣∣∣∣
uniformly for m > n + 1. It follows that the double series (2.40) is absolutely convergent for
σ ≥ 1

2 and m > n+ 1, by comparison with
∞∑
h=1

|h−m−σ|
∞∑
u=1

|uσ−n−1| = o(1) as m,n→∞.
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Next we shall find an asymptotic formula for E
∑

χ |Ln(σ, χ)|2. For this purpose we put m = n

in equation (2.41); then we have, for σ ∈ (1
2 , 1),

E
∑

χ mod q

|Ln(σ, χ)|2 =
2φ2(q)

q2σ
ζ(2σ − 1)Γ(2σ − 1)

Γ(n+ 1− σ)

Γ(n+ σ)

+ φ(q)L(2σ, χ0) + gq(n, n),

where

gq(n, n) =
4φ(q)

q2σ−1

∑
e|q

µ(e)

e

∞∑
h=1

h1−2σ
∞∑
u=1

∫ ∞
0

yn−σ

(1 + y)n+σ
cos(

2πhuqy

e
)dy.

In view of (2.41), the case σ = 1
2 is exceptional. Here we use the fact that gq(n, n) and fq(n, n)

are continuous in n and write 2σ − 1 = δ, |δ| < 1
2 , with the aim of letting δ → 0. Then the

first two terms on the right-hand side give us

2φ2(q)

q1+δ
ζ(δ)Γ(δ)

Γ(1− σ + n)

Γ(1− σ + n+ δ)
+ φ(q)L(1 + δ, χ0).

Using Taylor’s formula for the gamma-function terms, the functional equation for ζ(s) and the
Laurent expansion of ζ(s) at the pole at s = 1

ζ(s) = (s− 1) + γ +O(|s− 1)|,

and writing

γq = γ +
∑
p|q

log p

p− 1
,

where γ is Euler’s constant, we obtain

φ(q)L(1 + δ, χ0) +
φ2(q)

q
ζ(1− δ)

( q

2π

)−δ
sec(

πδ

2
)

Γ(1− σ + n)

Γ(1− σ + n+ δ)

=
φ2(q)

q

{
1

δ
+ γq −

(
1

δ
− γ
)(

1− δ log
q

2π

)(
1− δΓ′

Γ
(1− σ + n)

)}
+O(|δ|)

=
φ2(q)

q

{
Γ′

Γ
(1− σ + n) + γ + γq + log

q

2π

}
+O(|δ|).

Hence, making δ → 0 and setting σ = 1
2 , we have

E
∑

χ mod q

|Ln(
1

2
, χ)|2 =

φ2(q)

q

{
Γ′

Γ
(n+

1

2
) + γ + γq + log

q

2π

}
+Gq(n) + o(1)(2.42)

=
φ2(q)

q

{
log(n+

1

2
)− 1

2n− 1
+ γ + γq + log

q

2π

}
+Gq(n) + o(

1

n2
),

where

Gq(n) = 4φ(q)
∑
e|q

µ(e)

e

∞∑
v=1

d(v)

∫ ∞
0

yn−
1
2

(1 + y)n+ 1
2

cos(
2πqyv

e
)dy.
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In the next step, we estimate the covariance of the system {WLn(σ, χ), n ≥ 1}. Recall that

WLn(σ, χ) : = L(σ + iSn, χ)− EL(σ + iSn, χ).

Since

E
∑
χ

WLn(σ, χ)WL(σ, χ)m = E
∑
χ

Ln(σ, χ)Lm(σ, χ)−
∑
χ

ELn(σ, χ)ELm(σ, χ),

we obtain from (2.41) and (2.39), for σ ∈ [1
2 , 1),

E
∑
χ

WLn(σ, χ)WL(σ, χ)m

(2.43)

=
φ2(q)

qm−n+2σ
ζ(m− n+ 2σ − 1)Γ(m− n+ 2σ − 1)

(
Γ(n− σ + 1)

Γ(m+ σ)
+

Γ(−m+ 2n− σ + 1)

Γ(n+ σ)

)
+ φ(q)L(m− n+ 2σ, χ0) + φ(q)(gq(m,n) + fq(m,n))−

∑
χ

(
L(n+ σ, χ)L(m+ σ, χ)

)
.

In view of (2.43), for σ ∈ (1
2 , 1),

E
∑
χ

|WLn(σ, χ)|2 =
2φ2(q)

q2σ
ζ(2σ − 1)Γ(2σ − 1)

Γ(n+ 1− σ)

Γ(n+ σ)

+ φ(q)L(2σ, χ0) + gq(n, n)−
∑
χ

|L(n+ σ, χ)|2 .

For σ = 1
2 , we get similarly

E
∑
χ

|WLn(
1

2
, χ)|2 =

φ2(q)

q

{
log(n+

1

2
)− 1

2n− 1
+ γ + γq + log

q

2π

}
(2.44)

+Gq(n)−
∑
χ

∣∣∣∣L(n+
1

2
, χ)

∣∣∣∣2 .

Now we estimate (2.43) for σ ≥ 1
2 , m > n+ 1, by

|E
∑
χ

WLn(σ, χ)WL(σ, χ)m|

≤ φ2(q)

qm−n+2σ
ζ(m− n+ 2σ − 1)Γ(m− n+ 2σ − 1)

(
Γ(m− σ + 1)

Γ(m+ σ)
+

Γ(−m+ 2n− σ + 1)

Γ(n+ σ)

)
+ |φ(q)L(m− n+ 2σ, χ0)−

∑
χ

(
L(n+ σ, χ)L(m+ σ, χ)

)
|+ |φ(q)(gq(m,n) + fq(m,n))|.
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We observe

φ(q)L(m− n+ 2σ, χ0)−
∑
χ

(
L(n+ σ, χ)L(m+ σ, χ)

)
= φ(q)

∞∑
k=1

χ0(k)k−m+n−2σ − φ(q)
∞∑
k=1

χ0(k)k−m−σ − φ(q)
∞∑
l=1

χ0(l)l−n−σ

−
∑
χ

∞∑
k=2

χ(k)k−m−σ
∞∑
l=2

χ(l)l−n−σ.

It follows that

|φ(q)L(m− n+ 2σ, χ0)−
∑
χ

(
L(n+ σ, χ)L(m+ σ, χ)

)
| ≤ Cq

(
1

2m−n
,

1

2n

)
.

Regarding the other terms we find in view of the absolutely convergence of the double series
(2.40), for m > n+ 1,

|φ(q)(gq(m,n) + fq(m,n))| = O(
1

qm−n
).

Finally considering the last term, we have

Γ(m− n+ 2σ − 1)Γ(n+ 1− σ)

Γ(m+ σ)
= O(

1

n
),

hence

φ2(q)ζ(m− n+ 2σ − 1)

qm−n+2σ−1

Γ(m− n+ 2σ − 1)Γ(n+ 1− σ)

Γ(m+ σ)
= Oq(

1

n
).

Thus, for q ≥ 2, there exists a constant C (depending only on q) such that

|E
∑
χ

WLn(σ, χ)WLm(σ, χ)| ≤ C max(
1

2m−n
,

1

n
).

Here and in the sequel C denotes a positive constant, not necessarily the same at each appear-
ance.

Proof Theorem 2.19 Now we consider the asymptotic behaviour along the Cauchy random
walk. The essential step consists of controlling the increments

E
∑
χ

∣∣∣∣∣∣∣
∑
i≤n≤j
n even

WLn(σ, χ)

∣∣∣∣∣∣∣
2

, E
∑
χ

∣∣∣∣∣∣∣
∑
i≤n≤j
n odd

WLn(σ, χ)

∣∣∣∣∣∣∣
2

.

Since the two increments can be treated in exactly the same way, we consider only the first
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one. We use Lemma 2.20. For σ ≥ 1
2 , we have

E
∑
χ

∣∣∣∣∣∣∣
∑
i≤n≤j
n even

WLn(σ, χ)

∣∣∣∣∣∣∣
2

=
∑
i≤n≤j
n even

E
∑
χ

|WLn(σ, χ)|2

+
∑
i≤n≤j
n even

∑
i≤m≤j
m even

|E
∑
χ

WLn(σ, χ)WLm(σ, χ)|

≤ Cq
∑
i≤n≤j
n even

log n+ Cq
∑

i≤n<m≤j
n,m even

1

2m−n
.

However,

∑
i≤n≤j
n even

∑
i≤m≤j
m even

1

2m−n
≤

 ∑
i≤n≤j

1

(∑
m>n

1

2m−n

)

≤ (j − i)

∑
h≥1

2−h

 ≤ C(j − i),

with some positive constant C. Therefore,

E
∑
χ

∣∣∣∣∣∣∣
∑
i≤n≤j
n even

WLn(σ, χ)

∣∣∣∣∣∣∣
2

≤ C(log j)(j − i).

And similarly for the odd part, we find that there exists a constant C such that, for any j > i,

E
∑
χ

∣∣∣∣∣∣
∑
i≤n≤j

WLn(σ, χ)

∣∣∣∣∣∣
2

≤ C(log j)(j − i).

Now the conclusion of Theorem 2.19 is easily obtained from Proposition 2.1. We apply this
result to WLn(σ, χ) with the choice ml ≡ 1 and Φ(x) = log(n+ 1) and obtain the assertion of
Theorem 2.19.

Remark 1. If we put q = 1 in Lemma 2.20, for σ = 1
2 some of our results are contained in

Theorem 2.2, however, our constants take another form.

Remark 2. For σ ∈ [1
2 , 1), we can deduce

q∑
a=1

(a,q)=1

E|ζ(σ + iSn,
a

q
)|2 =

q2σ

φ(q)

∑
χ mod q

E|L(σ + iSn, χ)|2.

Thus,
q∑

a=1
(a,q)=1

E|ζ(σ + iSn,
a

q
)− Eζ(σ + iSn,

a

q
)|2 ≤ 1

q
log(n+ 1− σ), n→∞.
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Chapter 3

3 Sampling the Riemann Hypothesis with an ergodic transfor-
mation

In this chapter, we study the behaviour of the logarithmic derivative of the Riemann zeta-
function on vertical lines σ+ it, t ∈ R, where the values ζ′

ζ (σ+ it) are sampled with t varying
according to an ergodic transformation. Here, our ergodic transformation T : R→ R is given
by

Tx :=

{
1
2(x− 1

x) for x 6= 0

0 for x = 0.
(3.1)

Its iterates Tnx are defined by T ◦ Tn−1, for n ≥ 1 and T 0x = x.
In Section 3.1, we discuss the distribution of value of the Riemann zeta-function ζ(s) on

vertical lines s = σ + iR with respect to the ergodic transformation T following a work of
Steuding in [60].

In Section 3.2, we study the behaviour of the logarithmic derivative of zeta-functions on
vertical lines σ+it, t ∈ R , with respect to the ergodic transformation T . Here, we shall also give
an equivalent formulation for the Riemann Hypothesis in terms of our ergodic transformation.

In Section 3.3, we also study the behaviour of the logarithm of the Riemann zeta-function in
this sense by using a lemma of Kai-Man Tsang [65]. Here, we shall also give another equivalent
formulation for the Riemann Hypothesis in terms of ergodic transformation.

In Section 3.4, we study the behaviour of an arithmetical function α(s+iR)xiR with respect
to our ergodic transformation.

In Section 3.5, we study the behaviour of the moments of zeta-function. In particular, we
deal with a problem concerning the explicit evaluation of the integral in Theorem 3.2.

Throughout this chapter, ρ denote non-trivial zeros of ζ.

3.1 Sampling the Lindelöf Hypothesis with an ergodic transformation

In this section, we discuss the investigation the distribution of value of the Riemann zeta-
function ζ(s) on vertical lines s = σ + iR with respect to the ergodic transformation T from
above due to a work of Steuding in [60].

Recently, Steuding showed that, for <(s) > 1
2 , the mean value of ζ(s + iTnx) exists for

almost all values x ∈ R, as n→∞, and is independent of x. Moreover Steuding also determined
its values.

Theorem 3.1. (Steuding, 2012) Let s be given with <(s) > −1
2 . Then

lim
N→∞

1

N

∑
0≤n<N

ζ(s+ iTnx) =
1

π

∫
R
ζ(s+ iτ)

dτ

1 + τ2
for almost all x ∈ R.

For <(s) < 1, <(s) 6= 0

lim
N→∞

1

N

∑
0≤n<N

ζ(s+ iTnx) = ζ(s+ 1)− 2

s(2− s)
.
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For <(s) > 1,

lim
N→∞

1

N

∑
0≤n<N

ζ(s+ iTnx) = ζ(s+ 1).

For the special case s = 0,

lim
N→∞

1

N

∑
0≤n<N

ζ(iTnx) = γ − 1

2
,

where γ denote the Euler constant and for some real t,

lim
N→∞

1

N

∑
0≤n<N

ζ(1 + i(t+ Tnx)) = ζ(2 + it)− 1

1 + t2
.

From Theorem 3.1, the mean 1
N

∑
0≤n<N ζ(s + iTnx) provide ergodic samples for testing

the Lindelöf Hypothesis and their almost sure convergence indicates that most of values of the
zeta function are not too big. The most interesting case is s = 1

2 ,for which, for almost all x,

lim
N→∞

1

N

∑
0≤n<N

ζ(
1

2
+ iTnx) = ζ(

3

2
)− 8

3
= −0.05429....(3.2)

For illustration, Steuding gave numerical results for

ck =
1

10k

∑
0≤n<10k

ζ(
1

2
+ iTn42);

he computed

c4 = −0.04092...+ i0.00288...,

c5 = −0.05357...+ i0.00022...,

c6 = −0.05362...− i0.00043....

Moreover, Steuding showed an equivalent formulation of the Lindelöf Hypothesis in terms of
the ergodic transformation T .

Theorem 3.2. (Steuding, 2012)
The Lindelöf Hypothesis is true if, and only if, for any k ∈ N and almost all x ∈ R, the limit

lim
N→∞

1

N

∑
0≤n<N

|ζ(
1

2
+ iTnx)|2k(3.3)

exist, which is also equivalent to the existence of the integrals∫
R
|ζ(

1

2
+ it)|2k dt

1 + t2
.(3.4)

However, the investigation concerning the Cesàro means (3.3) and the explicit evaluation
of (3.4) are an interesting object.

By elementary means on the approximation of ζ(s), Lifshits and Weber [43] showed that
the result (2.2) E(1

2 + iS1) = ζ(3
2)− 8

3 , which yield a result of Steuding in (3.2).
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3.1.1 Sketch of the proof of Theorem 3.1

The proof of Theorem 3.1 consists of two parts. In the first part, the pointwise ergodic theorem
of Birkhoff is applied in order to show that for <(s) > −1

2 , the mean value of ζ(s + iTnx)
exists for almost all values x ∈ R, as n→∞, and is independent of x. In the second part, the
residue theorem is applied to determine the explicit evaluation of the integrals.

• Applying the pointwise ergodic theorem of Birkhoff [8]

We call again the pointwise ergodic theorem of Birkhoff. Given a measure preserving transfor-
mation T on a measurable space (X,µ) and an integrable function f , the limit of the Cesàro
means

1

N

∑
0≤n<N

f(Tnx)

exists as N →∞ for almost all x ∈ X; if the measure space is finite and T ergodic, then

lim
N→∞

1

N

∑
0≤n<N

f(Tnx) =
1

µ(X)

∫
X
fdµ.(3.5)

We have alreadly known that our transformation T is ergodic, which satisfies this theorem.
Hence, we have to only show that the function τ → ζ(s+iτ)

1+τ2
is Lebesque integrable on R for

fixed <(s) > −1
2 . For this we can check by Lemma 1.1 and the functional equation for ζ.

• Applying the residue theorem

In order to apply residue theorem, we first consider the three poles of the function τ → ζ(s+iτ)
1+τ2

at τ = ±i and τ = i(s − 1). Now we use the residue theorem inside the semicircle of radius
R centered at the origin located in the lower half of the τ -plane, where R > 1 + |s|. Thus we
have

1

2πi

∫
R
ζ(s+ iτ)

dτ

1 + τ2
=

1

2πi

∫
IR

ζ(s+ iτ)
dτ

1 + τ2
−
∑

(s),(3.6)

where
∑

(s) is the sum of residue inside [−R,R] and IR is the counterclockwise oriented
semicircle. We use Lemma1.1 once more to show that the integral on the left-hand side of
(3.6) tends to zero, when R → ∞. Finally, we distinguish several cases according to be the
location of the poles and conclude with the calculation of their residues.

Remark 1. Montgomery and Vaughan proposed the following claim as an exercise (see [47]
p.338). Suppose throughout that 0 < δ ≤ 1

2 . Let α(s) =
∑∞

n=1 ann
−s be a Dirichlet series

with abscissa of convergence σc. If σ0 > max(δ, σc) , then∑
n≤x

an((
x

n
)δ − (

n

x
)δ) =

δ

iπ

∫ σ0+i∞

σ0−i∞
α(w)

xw

w2 − δ2
dw.(3.7)

By taking α(w) = ζ(1
2 + it+ w), we have

ζ(
1

2
+ it+ δ) = x−δ

∑
n≤x

n
−1
2
−it((

x

n
)δ − (

n

x
)δ) +

δx−δ

π

∫ ∞
−∞

ζ(
1

2
+ it+ iu)xiu

du

u2 + δ2
(3.8)

− 2δx
1
2
−δ−it

(1
2 − it)2 − δ2

.

58



We replace x = 1 and δ = 1 in (3.8), which is allowed in this case, we obtain Theorem 3.1 in
the case s = 1

2 + it.

Remark 2. If we set δ = 1
2 , then we have

∑
n≤x

an
x2 − n2

√
nx

=
1

iπ

∫ 2σ0+i∞

2σ0−i∞
α(w/2)

xw/2

w2 − 1
dw.

Considering the residue arising from the pole of α(w2 ) and at w = 1, the integral

x
−1
2

π

∫ ∞
−∞

α(iτ/2)
xiτ/2

τ2 + 1
dτ

appears. Applying the pointwise ergodic theorem, we may be obtain that∑
n≤x

an
x2 − n2

√
nx

= lim
N→∞

1

N

∑
0≤n<N

α(
iTny

2
)x

iTny
2 + Term of residues,

for almost all y ∈ R. We will give more details in Section 3.4.

3.2 Sampling the Riemann Hypothesis for the logarithmic derivative of the
Riemann zeta-function with an ergodic transformation

In order to study the Riemann Hypothesis, we shall study the distribution of values of the
logarithmic derivative of the Riemann zeta-function ζ′

ζ (s) on vertical lines with respect to the
ergodic transformation T as in the work of Steuding. We obtain the following

Theorem 3.3. Let s be given with <(s) > −1
2 . Then

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(s+ iTnx) =

1

π

∫
R

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2
for almost all x ∈ R.(3.9)

For −1
2 < <(s) < 1, <(s) 6= 0,

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(s+ iTnx) =

ζ ′

ζ
(s+ 1) +

2

s(2− s)
−

∑
ρ

<(ρ)=<(s)

1

1− (s− ρ)2
(3.10)

−
∑
ρ

<(ρ)><(s)

2

1− (s− ρ)2
.

For <(s) > 1,

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(s+ iTnx) =

ζ ′

ζ
(s+ 1).(3.11)

For the special case s = 0

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(iTnx) =

∑
ρ

(
1

ρ
− 1

ρ+ 1
) + log 2π − 1

2

(
Γ′

Γ
(
3

2
) + γ + 1

)
.(3.12)
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For some real t,

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(1 + i(t+ Tnx)) =

ζ ′

ζ
(2 + it) +

1

1 + t2
.(3.13)

Remark 1. We can see that our results are also independent on x. Now we check (3.10) for
some s ∈ (−1

2 , 1). We test the left hand side of (3.10) by setting

Ls(k) =
1

10k

∑
0≤n<10k

ζ ′

ζ
(s+ iTnx) and l(s) =

ζ ′

ζ
(s+ 1) +

2

s(2− s)
.

With the initial value x = 1.16 we find

Ls(3) Ls(4) Ls(5) l(s) l(s)−<(Ls(5))

s = 0.30 1.0793 + i 0.0054 1.0230 - i 0.0050 1.0191 - i 0.0010 1.11347 0.09442
s = 0.40 1.1055 + i 0.0132 1.0466 - i 0.0054 1.0407 - i 0.0009 1.13463 0.09389
s = 0.45 1.1237 + i 0.0206 1.0629 - i 0.0059 1.0545 - i 0.0003 1.14727 0.09276
s = 0.50 1.1518 + i 0.0271 1.1211 + i 0.0424 1.1182 - i 0.0356 1.16143 0.04323
s = 0.55 1.1813 + i 0.0221 1.1658 - i 0.0059 1.1742 - i 0.0003 1.17725 0.00305
s = 0.60 1.2042 + i 0.0164 1.1873 - i 0.0055 1.1930 - i 0.0010 1.19489 0.00189
s = 0.70 1.2483 + i 0.0132 1.2324 - i 0.0059 1.2354 - i 0.0010 1.23632 0.00092

Now we consider (3.10) in case of s = 0.55; we have, for almost all x ∈ R,

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(0.55 + iTnx) = 1.17725−

∑
ρ

<(ρ)=0.55

1

1− (0.55− ρ)2
−

∑
ρ

<(ρ)>0.55

2

1− (0.55− ρ)2
.

(3.14)

From the above table, we find that L0.55(k) tends to l(0.55), as k → ∞. This indicates that
the sums on the right-hand side of (3.14) which taken all non-trivial zero of ζ are zero. Thus,
there should be no non-trivial zero ρ of ζ with <(ρ) ≥ 0.55.

In case of s = 0.45, we have, for almost all x ∈ R,

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(0.45 + iTnx) = 1.14727−

∑
ρ

<(ρ)=0.45

1

1− (0.45− ρ)2
−

∑
ρ

<(ρ)>0.45

2

1− (0.45− ρ)2
.

(3.15)

From the table, we find that the value of l(0.45)− L0.45(k) does not tend to zero, as k →∞.
This indicates that the sums on the right-hand side of (3.15) do not vanish. Thus, the real
part of the non-trivial zero of ζ should be ≥ 0.45, resp. that the real part of all non-trivial
zeros are in [0.45, 0.55).

Now we consider (3.10) in a special case s = 1
2 , we have, for almost all x ∈ R

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(
1

2
+ iTnx) =

ζ ′

ζ
(
3

2
) +

8

3
−

∑
ρ

<(ρ)= 1
2

1

1− (1
2 − ρ)2

−
∑
ρ

<(ρ)> 1
2

2

1− (1
2 − ρ)2

(3.16)

= 1.16143...−
∑
ρ

<(ρ)= 1
2

1

1− (1
2 − ρ)2

−
∑
ρ

<(ρ)> 1
2

2

1− (1
2 − ρ)2

.
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We consider the value of l(s) − <(Ls(5)) in the above table. We find that, for s = 0.30,
0.40 and 0.45, these values are nearly 2(l(1

2)−<(L 1
2
(5))). This indicates that the last sum of

(3.16) should vanish. That means there should be no non-trivial zero of ζ with real part > 1
2 .

Moreover, the values of l(s)−<(Ls(5)) in case of s = 0.30, 0.40 and 0.45, tell us that the sum
which taken over ρ with <(ρ) = <(s) should be also zero, since these value are not different
from each other. Therefore, it should be true that the real part of all non-trivial zeros of ζ is
1
2 . There is an interesting link to a recent result of Büthe, Franke, Jost & Kleinjung [16]

Lemma 3.4. (J.Büthe, Franke, Jost & Kleinjung, 2013) We have∑
ρ

1

1− (ρ− 1
2)2
≤ 0.05,(3.17)

where the sums are taken over all zeros of ζ in the critical strip, counted according to their
multiplicity.

We note that the value of l(1
2)−<(L 1

2
(5)) in the above table satisfies (3.17). This also indi-

cates that there should be no non-trivial zero of ζ with real part > 1
2 . Moreover, Montgomery

and Vaughan [47] gave a result about the summation in (3.17), namely

Lemma 3.5. (see. [47] p. 434) For s = σ + it, σ > 1,

∑
ρ

σ − 1
2

(σ − 1
2)2 + (t−=(ρ))2

= <(
ζ ′

ζ
(s)) +

1

2
<(

Γ′

Γ
(
s

2
+ 1))− 1

2
log π +

σ − 1

(σ − 1)2 + t2
.(3.18)

Here, we put s = 3
2 in (3.18), then we have

∑
ρ

1

1 + (=(ρ))2
=
ζ ′

ζ
(
3

2
) +

1

2

Γ′

Γ
(
7

4
)− 1

2
log π + 2 = 0.0461388....(3.19)

We note that this sum in (3.19) is nearly the value of l(1
2)−<(L 1

2
(5)) in the above table.

As a consequence of (3.16) we find an equivalent formulation of the Riemann Hypothesis.

Theorem 3.6. The Riemann Hypothesis is true if, and only if, for almost all x ∈ R

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(
1

2
+ iTnx) =

ζ ′

ζ
(
3

2
) +

8

3
−
∑
ρ

1

1− (ρ− 1
2)2

,(3.20)

where ρ denotes the non-trivial zeros of ζ.

3.2.1 Proof of Theorem 3.3

In order to apply the pointwise ergodic theorem we have to check that the function τ → ζ′

ζ (s+

iτ) 1
1+τ2

is Lebesgue integrable on R for fixed <(s) > −1
2 . For this, we need an approximation

of the logarithmic derivative of the Riemann zeta-function. In view of Lemma 1.5, we have
ζ′

ζ (s + iτ) � log2 τ , hence the function τ → ζ′

ζ (s + iτ) 1
1+τ2

is also Lebesque integrable on R.
Moreover, if ζ(s) has a zero of multiplicity m at 1 + it1, then ζ′

ζ (s) ∼ m
s−(1+it1) , when s is
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near 1 + it1. Therefore, for s near 1 + it1, the function τ → ζ′

ζ (s + iτ) 1
1+τ2

is also Lebesgue
integrable on R. Since, for s near 1 + it1,∫

R

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2
� 1 +m

∫ t1+ε

t1−ε

dτ

(τ − t1)(1 + τ2)
<∞.

Now it remains to calculate the integral by the residue theorem. In view of an approximation
of the logarithmic derivative of the Riemann zeta-function ζ′

ζ (s), we have, for almost all x ∈ R,

lim
N→∞

∑
0≤n<N

ζ ′

ζ
(s+ iTnx) =

1

π

∫
R

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2
for <(s) > −1

2
.

Here we apply calculus of residues. This integrand is a regular function of τ apart from the
pole at τ = ±i, τ = i(s − 1), the simple pole τ = i(s + 2m), m = 1, 2, ... and τ = i(s − ρ),
where ρ denotes a non-trivial zero of ζ. We shall distinguish several cases according to the
location of i(s− 1).

In the first case i(s−1) lies in the lower half of the τ -plane, that means −1
2 < <(s) < 1, s 6=

0. Moreover, we suppose that i(s− 1) 6= −i, resp. <(s) 6= 0. Then the integrand has following
distinct simple poles; τ = −i, τ = i(s− 1), and τ = i(s− ρ), where ρ is a non-trivial zero of ζ
such that <(ρ) > <(s). Moreover, there are simple poles τ = i(s− ρ), where ρ is a non-trivial
zero of ζ such that <(ρ) = <(s), which are on the real axis of the τ -plane. For a sufficiently
large parameter R > 1 + |s| denote by IR the counterclockwise oriented semicircle of radius
R centered at τ = −=(s) and located in the lower half of the τ -plane. For <(ρ) = <(s), we
denote Iε the counterclockwise oriented semicircles of radius ε centered at τ = =(ρ) − =(s)
and located in the lower half of the τ -plane. Then∫

R

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2
=

∫
IR

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2
−

∑
ρ

<(ρ)=<(s)

∫
Iε

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2
− 2πi

∑
(s),

where
∑

(s) is the sum of residue inside ([−R − =(s), R − =(s)] \ Iε) and IR is the counter-
clockwise oriented semicircle.

Now we compute the residues.

Resτ=−i

ζ′

ζ (s+ iτ)

1 + τ2
= lim

τ→−i
(τ + i)

ζ′

ζ (s+ iτ)

1 + τ2
=
i

2

ζ ′

ζ
(s+ 1).

In view of Lemma 1.4,

ζ ′

ζ
(s) =

1

1− s
− 1

2

Γ′

Γ
(
s

2
+ 1) +

∑
ρ

(
1

s− ρ
+

1

ρ
) + log 2π − γ

2
− 1,(3.21)

we have

Resτ=i(s−1)

ζ′

ζ (s+ iτ)

1 + τ2

=
1

1 + (i(s− 1))2
lim
τ→i

(τ − i(s− 1))(
1

1− (s+ iτ)
− 1

2

Γ′

Γ

(
s+ iτ

2
+ 1

)
+
∑
ρ

(
1

(s+ iτ)− ρ
+

1

ρ
) + log 2π − γ

2
− 1)

=
i

s(2− s)
.
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Similary, for a non-trivial zero ρ of ζ, with <(ρ) > <(s), we have

Resτ=i(s−ρ)

ζ′

ζ (s+ iτ)

1 + τ2
=

−i
1− (s− ρ)2

.

In order to evaluate the integral over Iε, we set =(s) = t, for some real t and use the parame-
terization τ = ε exp(iϕ)− t+ =(ρ1) and (3.21) again, and find∫
Iε

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2

=

∫ 2π

π

ζ ′

ζ
(ρ1 + iε exp(iϕ))

iε exp(iϕ)dϕ

1 + (ε exp(iϕ)− t+ i=(ρ1))2

=

∫ 2π

π

{
1

1− ρ1 − iε exp(iϕ)
− 1

2

Γ′

Γ
(1 +

ρ1 + iε exp(iϕ)

2
) +

∑
ρ

(
1

ρ1 − ρ+ iε exp(iϕ)
+

1

ρ
) +O(1)

}
×

× iε exp(iϕ)dϕ

1 + (t−=(ρ1))2 +O(ε)

Hence,

lim
ε→0+

∫
Iε

ζ ′

ζ
(
1

2
+ i(t+ τ))

dτ

1 + τ2

=

∫ 2π

π
lim
ε→0+

{
dϕ

1 + (t−=(ρ1))2 +O(ε)
+O(ε)

}
=

π

1 + (t−=(ρ1))2

=
π

1− (s− ρ1)2
.

Now only the computation of the integral term on IR remains. In view of Lemma 1.5, we have∫
IR

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2
� R

1 +R2
max
τ∈IR

|ζ
′

ζ
(s+ iτ)| � R

1 +R2
log2R.

As R→∞, this integral tends to zero. Then, for −1
2 < <(s) < 1, <(s) 6= 0

1

π

∫
R

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2
=
ζ ′

ζ
(s+ 1) +

2

s(2− s)
−

∑
ρ

<(ρ)=<(s)

1

1− (s− ρ)2
(3.22)

−
∑
ρ

<(ρ)><(s)

2

1− (s− ρ)2
.

In view of (3.22), for almost all x ∈ R, we obtain (3.10).
Now we suppose that i(s − 1) lies in the upper half of the τ -plane, that means <(s) > 1.

Then the integrand has only one pole in the lower half of the plane because 0 < <(ρ) < 1;
resp. <(s) − <(ρ) > 0 and <(s) + 2m is always positive. With the same reasoning as above
we have, for <(s) > 1,

1

π

∫
R

ζ ′

ζ
(s+ iτ)

dτ

1 + τ2
=
ζ ′

ζ
(s+ 1).(3.23)

In view of (3.23), for almost all x ∈ R, we obtain (3.11).

63



Now we assume that the integrand has a double pole in the lower half plane, that is
−i = i(s− 1), resp. s = 0 and also simple poles at τ = −iρ, where ρ are the non-trivial zeros
of ζ. In order to compute the residue we use again (3.21) and also the Laurent expantion of

1
τ−i near this pole. This gives, as τ → −i,

ζ ′

ζ
(iτ)

1

1 + τ2

= (
i

τ + i
− 1

2

Γ′

Γ
(
iτ

2
+ 1) +

∑
ρ

(
1

iτ − ρ
+

1

ρ
) + log 2π − γ

2
− 1)(

i

2(τ + i)
+

1

4
+O(|τ + i|)).

Hence,

Resτ=−i

ζ′

ζ (iτ)

1 + τ2
= − i

4

Γ′

Γ
(
3

2
) +

i

2

∑
ρ

(
1

1− ρ
+

1

ρ
) +

i

2
log 2π − iγ

4
− i

4
.

For the simple pole at τ = −iρ, we have

Resτ=−iρ

ζ′

ζ (iτ)

1 + τ2
=

i

1− ρ2
.

Then, for s = 0,

1

π

∫
R

ζ ′

ζ
(iτ)

dτ

1 + τ2
=
∑
ρ

(
1

ρ
− 1

ρ+ 1
) + log 2π − 1

2

(
Γ′

Γ
(
3

2
) + γ + 1

)
.(3.24)

In view of (3.24), for almost all x ∈ R, we obtain (3.12).
The last case is that i(s− 1) lies on the real axis; that is s = 1 + it for some real number

t. Here we denote by γε and γR the counterclockwise oriented semicircles of radius ε and R,
respectively, both centered at τ = −t and located in the lower half of the τ -plane. Then, for
sufficiently large R,(∫ −t−ε

−t−R
+

∫ −t+R
−t+ε

)
ζ ′

ζ
(1 + i(t+ τ))

dτ

1 + τ2

=

(∫
γR

−
∫
γε

)
ζ ′

ζ
(1 + i(t+ τ))

dτ

1 + τ2
− 2πiResτ=−i

ζ ′

ζ
(1 + i(t+ τ))

1

1 + τ2
.

In view of Lemma 1.5, we see that

lim
R→∞

∫
γR

ζ ′

ζ
(1 + i(t+ τ))

dτ

1 + τ2
= 0.

In order to evalute the integral over γε we use the parameterization τ = ε exp(iϕ) − t and
(3.21) again, and find∫
γε

ζ ′

ζ
(1 + i(t+ τ))

dτ

1 + τ2

=

∫ 2π

π

ζ ′

ζ
(1 + iε exp(iϕ))

iε exp(iϕ)dϕ

1 + (ε exp(iϕ)− t)2

=

∫ 2π

π

{
−1

iε exp(iϕ)
− 1

2

Γ′

Γ
(
iε exp(iϕ) + 3

2
) +

∑
ρ

(
1

1 + iε exp(iϕ)− ρ
+

1

ρ
) + log 2π − γ

2
− 1

}

× iε exp(iϕ)dϕ

1 + t2 +O(ε)
.
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Hence,

lim
ε→0+

∫
γε

ζ ′

ζ
(1 + i(t+ τ))

dτ

1 + τ2

=

∫ 2π

π
lim
ε→0+

{
−dϕ

1 + t2 +O(ε)
+O(ε)

}
= − π

1 + t2
.

Inserting this and

Resτ=−i
ζ ′

ζ
(1 + i(t+ τ))

1

1 + τ2
=
i

2

ζ ′

ζ
(2 + it),

we have, for some real t,

1

π

∫
R

ζ ′

ζ
(1 + i(t+ τ))

dτ

1 + τ2
=
ζ ′

ζ
(2 + it) +

1

1 + t2
.(3.25)

In view of (3.25), for almost all x ∈ R, we obtain (3.13). The proof of the theorem is complete.

3.2.2 Proof of Theorem 3.6

Assume the Riemann Hypothesis, then it is clearly that the last term in (3.16) vanishes. Now
we assume the equality (3.20) holds for almost all real x ∈ R. If the Riemann Hypothesis is
not true, then there is a non-trivial zero of ζ(s), ρ = β + iγ with β > 1

2 and also its conjugate
is a non-trivial zero. Now we consider, for z ∈ C \ {±1},

1

1− z̄2
+

1

1− z2
=

1−<(z)

1− 2<(z)+ | z |2
+

1 + <(z)

1 + 2<(z)+ | z |2
.

We put z = 1
2 − β − iγ, we have 0 < <(z) < 1

2 , then 1 ± <(z) > 0 and 1 ± 2<(z)+ | z |2> 0.
Thus

1

1− (1
2 − β − iγ)2

+
1

1− (1
2 − β + iγ)2

> 0,

This leads to the last term in (3.16) is positive and contradiction for almost all real x ∈ R.
This proves the theorem.

Remark 2. We could determine the appearing integral by the explicit formula of the Riemann
zeta-function which connects a sum over the zero of ζ(s) with a sum over prime numbers (see
in [28] Theorem 5.12 p.109).

Lemma 3.7. Let g ∈ C∞c (R) and let

h(r) =

∫ ∞
−∞

g(u)eiurdu.

Put ΓR(s) = π−s/2Γ( s2), the local factor at the infinite place for the Euler product of ζ(s).
Then ∑

ρ

h(=(ρ)) = h(
i

2
) + h(

−i
2

) +
1

2π

∫ ∞
−∞

h(r)

{
Γ′R
ΓR

(
1

2
+ ir) +

Γ′R
ΓR

(
1

2
− ir)

}
dr(3.26)

−
∞∑
n=1

Λ(n)√
n

(g(log n) + g(− log n)).
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In view of

−ζ
′

ζ
(s)− ζ ′

ζ
(1− s) =

Γ′R
ΓR

(s) +
Γ′R
ΓR

(1− s).

and we apply Lemma 3.6 with h(r) = 1
1+r2

then we have∑
ρ

1

1 + (=(ρ))2
=

8

3
− 1

2π

∫ ∞
−∞

{
ζ ′

ζ
(
1

2
+ ir) +

ζ ′

ζ
(
1

2
− ir)

}
dr

1 + r2
+
ζ ′

ζ
(
3

2
).(3.27)

This give us (3.20).

Remark 3. In view of Remark 2, we can extend our problem to the logarithmic derivative of
an Dirichlet L-function. In oder to calculate the exactly value of the appearing integral, we
can apply the corresponding explicit formula that can be found in [28]. Hughes and Rudnick
[25] provide an explicit formula for L(s, χ), namely∑

ρ

h(=(ρχ)) =
1

2π

∫ ∞
−∞

h(r) {log q +Gχ(r)} dr −
∞∑
n=1

Λ(n)√
n
g(log n)(χ(n) + χ(n)),(3.28)

where

Gχ(r) =
Γ′

Γ
(
1

2
+ ir + a(χ)) +

Γ′

Γ
(
1

2
− ir + a(χ))− 1

2
log π,

a(χ) = 0 if χ is even and a(χ) = 1 if χ is odd. We could also apply (3.28) with h(r) = 1
1+r2

.

3.3 Sampling Riemann Hypothesis for the logarithm of zeta-functions

In this section, we study the behaviour of other zeta-functions related to the function ζ′

ζ (s) in
the previous section. Here, we consider the function log ζ(s) and apply a lemma of Kai-Man
Tsang [65]:

Lemma 3.8. ( Kai-Man Tsang, 1986) Suppose <(s) ∈ [1
2 , 2]. Let V (x + iy) be an analytic

function in the horizontal strip: <(s)− 2 ≤ y ≤ 0 satisfying the growth condition

sup
σ−2≤y≤0

| V (x+ iy) |� 1

| x | log2 | x |
.(3.29)

We have∫ ∞
−∞

log ζ(s+ iu)V (u)du =

∫ ∞
−∞

log ζ(2 + i(=(s) + u))V (i(<(s)− 2) + u)du(3.30)

+ 2π
∑
ρ

<(ρ)><(s)

∫ <(ρ)−<(s)

0
V (=(ρ− s)− iα)dα− 2π

∫ 1−<(s)

min(1−<(s),0)
V (−=(s)− iα)dα.

Here, we take V (x + iy) = 1
1+(x+iy)2

. Clearly, the function V (x + iy) satisfies the growth
condition (3.29). In view of (3.30), we have∫ ∞

−∞
log ζ(s+ iu)

du

1 + u2
=

∫ ∞
−∞

log ζ(2 + i(=(s) + u))

1 + (i(<(s)− 2) + u)2
du

+ 2π
∑
ρ

<(ρ)><(s)

∫ <(ρ)−<(s)

0

dα

1 + (=(ρ− s)− iα)2
− 2π

∫ 1−<(s)

min(1−<(s),0)

dα

1 + (=(s) + iα)2
.
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We apply the pointwise ergodic theorem and obtain

Theorem 3.9. For 1
2 ≤ <(s) ≤ 2,

lim
N→∞

1

N

∑
0≤n<N

log ζ(s+ iTnx) =
1

π

∫ ∞
−∞

log ζ(2 + i(=(s) + u))

1 + (i(<(s)− 2) + u)2
du(3.31)

+ 2
∑
ρ

<(ρ)><(s)

∫ <(ρ)−<(s)

0

dα

1 + (=(ρ− s)− iα)2
− 2

∫ 1−<(s)

min(1−<(s),0)

dα

1 + (=(s) + iα)2
,

for almost all x ∈ R.

Now we discuss Theorem 3.9 and Theorem 3.3 for different values of s.

• <(s) > 1

In this case, the last two terms vanish. Thus we have

lim
N→∞

1

N

∑
0≤n<N

log ζ(s+ iTnx) =
1

π

∫ ∞
−∞

log ζ(2 + i(t+ u))
du

1 + (i(σ − 2) + u)2
.

By Cauchy’s theorem, we have

lim
N→∞

1

N

∑
0≤n<N

log ζ(s+ iTnx) = log ζ(s+ 1), for almost all x ∈ R.(3.32)

If we differentiate the logarithm of both sides on <(s), we obtain (3.11) again.

• 1
2 < <(s) < 1

By Cauchy’s theorem again, we have

lim
N→∞

1

N

∑
0≤n<N

log ζ(s+ iTnx) = log(s+ 1) + 2
∑
ρ

<(ρ)><(s)

∫ <(ρ)−<(s)

0

dα

1 + (=(ρ− s)− iα)2

(3.33)

− 2

∫ 1−<(s)

0

dα

1 + (=(s) + iα)2
,

for almost all x ∈ R. If we differentiate the functions on both sides on <(s), we obtain (3.10).

• The special case s = 1
2

In this case, we find that

lim
N→∞

1

N

∑
0≤n<N

log ζ(
1

2
+ iTnx) = log ζ(

3

2
)− log 3 + 2

∑
ρ

<(ρ)> 1
2

∫ <(ρ)− 1
2

0

dα

1 + (=(ρ)− iα)2

(3.34)

= −0.138352...+ 2
∑
ρ

<(ρ)> 1
2

∫ <(ρ)− 1
2

0

dα

1 + (=(ρ)− iα)2
.
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We let

Js(k) =
1

10k

∑
0≤n<10k

log ζ(s+ iTnx), j(s) = log
ζ(s+ 1)<(s)

2−<(s)
.

With the initial value x = 1.18 we find

Js(4) Js(5) j(s) | j(s)−<(Js(5)) |
s = 0.30 -0.349 + i 0.006 -0.347 + i 0.001 -0.3655 0.0186
s = 0.40 -0.246 + i 0.008 -0.244 + i 0.001 -0.2531 0.0093
s = 0.45 -0.194 + i 0.008 -0.191 + i 0.001 -0.1961 0.0047
s = 0.488888 -0.153 + i 0.008 -0.150 + i 0.001 -0.1512 0.001
s = 0.50 -0.140 + i 0.008 -0.138 + i 0.001 -0.1384 4.06×10−5

s = 0.55 -0.082 + i 0.008 -0.080 + i 0.001 -0.0798925 2.11×10−6

s = 0.60 -0.023 + i 0.007 -0.021 + i 0.001 -0.0205968 5.13×10−5

s = 0.70 0.099 + i 0.007 0.101 + i 0.001 0.10089 1.5×10−5

The results of the above table indicate that the second sum in (3.31) should vanish for <(s) ≥ 2.
Therefore, it should be true that there are no non-trivial zeros ρ of ζ with <(ρ) > 1

2 .

Theorem 3.10. The Riemann Hypothesis is true if, and only if, for almost all x ∈ R

lim
N→∞

1

N

∑
0≤n<N

log ζ(
1

2
+ iTnx) = log ζ(

3

2
)− log 3 = −0.138352....(3.35)

Proof. Assume the Riemann Hypothesis, then the last sum in (3.34) vanishes. Now we assume
the equality (3.35) holds for almost all real x ∈ R. If the Riemann Hypothesis is not true,
then there is a non-trivial zero of ζ(s), ρ = β + iγ with <(ρ) > 1

2 and also its conjugate is a
non-trivial zero. Thus we consider, for α ∈ (0,<(ρ)− 1

2),

1

1 + (γ + iα)2
+

1

1 + (γ − iα)2
=

2 + 2γ2 − 2α2

1 + 2γ2 − 2α2 + (α2 + γ2)2
> 0.

This leads to the last term in (3.34) is positive and contradiction for almost all real x ∈ R.
This proves the theorem.

Remark 1. There is an interesting link to a recent result of Lahoucine and Zine El Abidine
[38]. Namely, let σ0 be any fixed number in R and a > 0 then the integral

a

π

∫ ∞
−∞

log | ζ(σ0 + it) |
a2 + t2

dt

exists and

a

π

∫ ∞
−∞

log | ζ(σ0 + it) |
a2 + t2

dt = log

∣∣∣∣ a+ σ0 − 1

a+ | 1− σ0 |
ζ(a+ σ0)

∣∣∣∣+
∑
<(ρ)>σ0

log

∣∣∣∣a− σ0 + ρ

a+ σ0 − ρ

∣∣∣∣ .
Remark 2. Steuding [60] gave an equivalent formulation of the Riemann Hypothesis in terms
of the ergodic transformation under investigation.
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Theorem 3.11. (Steuding, 2012) For almost all x ∈ R

lim
N→∞

1

N

∑
0≤n<N

log | ζ(
1

2
+

1

2
iTnx) |=

∑
<(ρ)> 1

2

log | ρ

1− ρ
| .

In particular, the Riemann Hypothesis is true if, and only if, one and thus either side vanishes,
the left-hand side for almost all real x.

Theorem 3.10 follows with the help of a result in [6] of Balazard, Saias and Yor, that is

1

2π

∫
<s= 1

2

log | ζ(s) |
| s |2

| ds |=
∑
<(ρ)> 1

2

log | ρ

1− ρ
| .

Notice that log|ζ(s)|
|s|2 is integrable on s = 1

2 + iR.

Remark 3. In [7], Balazard and Saias asked the following yet unsolved questions.

• Assume the Riemann Hypothesis. Is it true that

lim
n→∞

inf
(a1,...,an)∈Cn

∫
<s= 1

2

| 1− ζ(s)
n∑
k=1

akk
−s |2 | ds |

| s |2
= 0 ?

• Is it true that

lim
n→∞

∫
<s= 1

2

| 1− ζ(s)
n∑
k=1

µ(k)k−s |2 | ds |
| s |2

= 0 ?

• Assume the Riemann Hypothesis. Is it true that

lim
n→∞

∫
<s= 1

2

| 1− ζ(s)

n∑
k=1

µ(k)(1− log k

log n
)k−s |2 | ds |

| s |2
= 0 ?

We shall study these questions by the pointwise ergodic theorem in a similar way as in Theorem
3.10.

3.4 Sampling Riemann Hypothesis on the arithmetical function

In this section, we study some details with respect to Remark 2 in Section 3.1. In fact, we
shall study the behaviour of an arithmetical function α(s+ iR)xiR with respect to our ergodic
transformation. However, we start with an illustration by computing

T (k) =
1

10k

∑
0≤n<10k

2iT
nyζ(

1

2
+ iTny).

We obtain
k 4 5 6
y=0.0007 -0.0471557 + 0.0028i -0.0477072 - 0.00104i -0.0465638 - 0.000235i
y=3.8 -0.0465345 - 0.00289i -0.0455023 - 0.0005598i -0.0463815 - 0.0005666i

If we set x = 2 in (3.8), we have

1

π

∫ ∞
−∞

2iuζ(1
2 + iu)

u2 + 1
du = 2ζ(

3

2
)− 3

2
− 8
√

2

3
= −0.0464855....

We note that these computations show a slow tendency towards -0.0464855....
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3.4.1 Summation formulae and the ergodic transformations

Now we shall derive the summation formula for certain arithmetical functions in terms of our
ergodic transformation. Let

α(s) =
∞∑
n=1

ann
−s

be a Dirichlet series with abscissa of convergence σc. The idea follows from the proof of
Perron’s formula with a weight function. For our purpose we take a weight function w(x), and
define the related summatory weight function

Aw(x) =
∞∑
n=1

anw(
n

x
).

Let K(s) denote the Mellin transform of w(x),

K(s) =

∫ ∞
0

w(x)xs−1dx.

Then we expect that

α(s)K(s) =

∫ ∞
0

Aw(x)x−s−1dx

holds for σ > σc and

Aw(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
α(s)K(s)xsds,

for σ0 > max(0, σc).
Now we apply this setting to our situation. We start with a kernel K(s) = 1

s2−1
. Its inverse

Mellin transform is for <(s) > 1 given by

w(x) =

{
1
2( 1
x − x) if 0 < x ≤ 1

0 if 1 < x <∞.

Thus, we obtain

Lemma 3.12. Let α(s) =
∑∞

n=1 ann
−s be a Dirichlet series with abscissa of convergence σc.

For σ0 > 1, we have ∑
n≤x

an(
x

n
− n

x
) =

1

iπ

∫ σ0+i∞

σ0−i∞
α(s)

xs

s2 − 1
ds.(3.36)

Example 1. Now we return to the question from Remark 2 in Section 3.1. We consider
α(s) = ζ(u+ s). For 0 < <(u) < 1, we obtain

Theorem 3.13. For almost all y ∈ R, 0 < <(u) < 1,

lim
N→∞

1

N

∑
0≤n<N

ζ(u+ iTny)xiT
ny = xζ(u+ 1)−

∑
m≤x

1

mu

( x
m
− m

x

)
− 2

u(2− u)
x1−u.
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Proof. We study the behaviour of function ζ(u+ iR)xiR with respect to our ergodic transfor-
mation, that is

lim
N→∞

1

N

∑
0≤n<N

ζ(u+ iTny)xiT
ny.

For 0 < <(u) < 1, the function ζ(u+ iτ) xiτ

1+τ2
is Lebesgue integrable. Moreover, by the ergodic

pointwise theorem, we have , for almost all y ∈ R,

lim
N→∞

1

N

∑
0≤n<N

ζ(u+ iTny)xiT
ny =

1

π

∫ ∞
−∞

ζ(u+ iτ)
xiτ

1 + τ2
dτ.(3.37)

Now we apply Lemma 3.12 in order to calculate the explicit value of the integral in (3.37).
We take α(s) = ζ(u+ s), and consider the residue arising from the poles at s = 1− u and at
s = 1. Thus, the proof is complete.

Example 2. (The divisor function) We consider α(s) = ζ2(s + u), for 0 < <(u) < 1. We
obtain

Theorem 3.14. For almost all y ∈ R, for 0 < <(u) < 1,

lim
N→∞

1

N

∑
0≤n<N

ζ2(u+ iTny)xiT
ny = ζ2(u+ 1)x−

∑
m≤x

d(m)

mu

( x
m
− m

x

)
− 2x1−u log x

u(2− u)

− 4(1− u)x1−u

(u(2− u))2
− 4γx1−u

u(2− u)
.

Proof. As in the proof of Theorem 3.13, by the ergodic pointwise theorem, we have, for almost
all y ∈ R,

lim
N→∞

1

N

∑
0≤n<N

ζ2(u+ iTny)xiT
ny =

1

π

∫ ∞
−∞

ζ2(u+ iτ)
xiτ

1 + τ2
dτ.(3.38)

Again, for 0 < <(u) < 1, the function ζ2(u + iτ) xiτ

1+τ2
is Lebesgue integrable. Now, we apply

Lemma 3.12 with α(s) = ζ2(u+ s), then we have, for σ0 > 1,

∑
m≤x

d(m)

mu

( x
m
− m

x

)
=

1

iπ

∫ σ0+i∞

σ0−i∞
ζ2(u+ s)

xs

s2 − 1
ds.(3.39)

By Cauchy’s theorem, we can shift the path of integration such that

1

iπ

∫ σ0+i∞

σ0−i∞
ζ2(s+ u)

xs

s2 − 1
ds = − 1

π

∫ ∞
−∞

ζ2(u+ iτ)
xiτ

τ2 + 1
dτ + 2δΣ(s),(3.40)
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where Σ(s) denotes the sum of residues from the function ζ2(u + s) xs

s2−1
. It has one simple

pole at s = 1 with residue

Ress=1ζ
2(u+ s)

xs

s2 − 1
= ζ2(u+ 1)

x

2
,(3.41)

and a double pole at s = 1− u with residue

Ress=1−uζ
2(u+ s)

xs

s2 − 1
= −x

1−u log x

u(2− u)
− 2(1− u)x1−u

u2(2− u)2
− 2γx1−u

u(2− u)
.(3.42)

We insert (3.40)-(3.42) in (3.39), thus, for 0 < <(u) < 1,

1

π

∫ ∞
−∞

ζ2(u+ iτ)
xiτ

τ2 + 1
dτ = ζ2(u+ 1)x−

∑
m≤x

d(m)

mu

( x
m
− m

x

)
(3.43)

− 2x1−u log x

u(2− s)
− 4(1− u)x1−u

u2(2− u)2
− 4γx1−u

u(2− u)
.

In view of (3.38) this finishes the proof of theorem.

We illustrate the results with another computation. Letting

A(k) =
1

10k

∑
0≤n<10k

2iT
nyζ2(

1

2
+ iTny),

then we obtain

k 4 5 6
y=0.31 0.203747 - 0.0249392i 0.222069 + 0.0036938i 0.216707 - 0.001151i
y=29.765 0.196296 + 0.0029673i 0.222079 + 0.0037476i 0.217298 + 0.00089883i

If we set x = 2 in Theorem 3.14, then we have

1

π

∫ ∞
−∞

2iτζ2(1
2 + iτ)

τ2 + 1
dτ = 2ζ2(

3

2
)− 3

2
− 8
√

2 log 2

3
− 32

√
2

9
− 16γ

√
2

3

= 0.214966....

For a special case u = 1
2 , we have

Corollary 3.15. For almost all y ∈ R, there is a constant C such that∑
m≤x

d(m)√
m

( x
m
− m

x

)
= ζ2(

3

2
)x− 8

3

√
x log x− 32

9

√
x− 16γ

3

√
x+ C,

where C = limN→∞
1
N

∑
0≤n<N ζ

2(1
2 + iTny)xiT

ny.

Remark 1. The square of the Riemann zeta-function ζ2(s) plays an important role in deter-
mining the asymptotic behaviour of the sum D(x) =

∑
n≤x d(n) as x→∞. The link relies on

the following formula:

D(x) =
1

2πi

∫ c+i∞

c−i∞

ζ2(τ)xτ

τ
dτ, c > 1.(3.44)
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In view of (3.44) for c = 1 + ε, ε > 0 we have

D(x) = x log x+ (2γ − 1)x+ ∆(x).(3.45)

By partial summation we have, for <(s) > 1,

ζ2(s) =
∑
n≤x

d(n)n−s +
(log x+ 2γ)x1−s

s− 1
+

x1−s

(s− 1)2
+O(xε+

1
3
−σ) + s

∫ ∞
x

τ−s−1∆(τ)dτ.

(3.46)

This integral is absolutely convergent for <(s) > 1
3 . We may be connect Corollary 3.15 to

study more details about ∆(x).

Example 3. (The two-dimensional divisor function) The two-dimensional divisor problems
may be considered in just the same way. For 1 ≤ a ≤ b ∈ N, we denote by d(a, b; k) the
number of representations of k as k = na1n

b
2, where n1, n2 are natural numbers. The Dirichlet

series of the arithmetical function d(a, b;n) is for <(s) > 1
a represented by

F (s) =

∞∑
n=1

d(a, b;n)n−s = ζ(as)ζ(bs).(3.47)

Let

D(a, b;x) =
∑

1≤k≤x
d(a, b; k) = ζ(

b

a
)x

1
a + ζ(

a

b
)x

1
b + ∆(a, b;x).(3.48)

Applying Lemma 3.12 again and the pointwise ergodic theorem, we obtain

Theorem 3.16. For almost all y ∈ R, for 0 ≤ <(s) < 1
b ,

lim
N→∞

1

N

∑
0≤n<N

ζ(a(s+ iTny))ζ(b(s+ iTny))xiT
ny

(3.49)

= ζ(as+ a)ζ(bs+ b)x+
2

a

ζ(b/a)x
1
a
−s

( 1
a − s)2 − 1

+
2

b

ζ(a/b)x
1
b
−s

(1
b − s)2 − 1

−
∑
m≤x

d(a, b;m)

ms

( x
m
− m

x

)
.

We shall an illustrative computation by defining

B(k) =
1

10k

∑
0≤n<10k

2iT
nyζ(

1

4
+ iTny)ζ(

3

4
+ 3iTny).

Then

k 4 5 6
y= 0.0891 0.0881092 - 0.000673i 0.0802388 - 0.002664i 0.0771856 - 0.00113381i
y=-5.765 0.0947122 - 0.00576725i 0.0843676 - 0.000260385i 0.0771863 + 0.00028565i

In view of (3.49), for x = 2, a = 1, b = 3, and s = 1
4 , we have
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lim
N→∞

1

N

∑
0≤n<N

ζ(
1

4
+ iTny)ζ(

3

4
+ 3iTny)2iT

ny = 2ζ(
5

4
)ζ(

15

4
)− 32

7
ζ(3)2

3
4 − 288

429
ζ(

1

3
)2

1
12 − 3

2

= 0.0763561....

There is a connection with the error term in the divisor problem for ∆(a, b;x). If we set s = 0
in (3.49) we have

lim
N→∞

1

N

∑
0≤n<N

ζ(aiTny)ζ(biTny)xiT
ny = ζ(a)ζ(b)x+

1

1− a
ζ(
b

a
)x

1
a +

1

1− b
ζ(
a

b
)x

1
b(3.50)

− 1

1 + a
ζ(
b

a
)x

1
a − 1

1 + b
ζ(
a

b
)x

1
b −

∑
m≤x

d(a, b;m)
( x
m
− m

x

)
for almost all y ∈ R.

The following result is due to Ivić

Lemma 3.17. (see [27] Lemma 14.1 p.399) Let 1 ≤ a < b < 1. We have∑
m≤x

d(a, b;m)
x

m
=

1

1− a
ζ(
b

a
)x

1
a +

1

1− b
ζ(
a

b
)x

1
b + ζ(a)ζ(b)x+ ∆(a, b;x) +O(1).(3.51)

In view of Lemma 3.17, we obtain, for almost all y ∈ R,

lim
N→∞

1

N

∑
0≤n<N

ζ(aiTny)ζ(biTny)xiT
ny =

∑
m≤x

d(a, b;m)
m

x
− 1

1 + a
ζ(
b

a
)x

1
a − 1

1 + b
ζ(
a

b
)x

1
b

(3.52)

−∆(a, b;x) +O(1).

Example 4. (The pair correlation function) Montgomery [46] introduced the pair correlation
function

F (x, T ) =
∑

0<γ,γ′≤T
xi(γ−γ

′)w(γ − γ′)

for any real x and T ≥ 2, where w(u) is a suitable weight function. The sum is a double sum
over the imaginary parts of the non-trivial zeros of ζ(s). Montgomery proved an asymptotic
formula for F (x, T ) as T →∞.

Theorem 3.18 (Montgomery). For 1 ≤ x ≤ T and T ≥ 2

F (x, T ) ∼ T

2π
log x+

T

2πx2
log2 T.

In proving Theorem 3.18, Montgomery defined a function L(x, t) which is a special sum
over the zeros of ζ(s) localized near t, namely

L(x, t) = 2
∑
γ

xiγ

1 + (t− γ)2
.(3.53)

Here, by using Lemma 3.12, we study (3.53) in terms of our ergodic transformation. We apply
Lemma 3.12 , with α(s) = ζ′

ζ (1
2 + it+ s). As the proof of Theorem 3.3, we obtain
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Theorem 3.19. For almost all y ∈ R,

lim
N→∞

1

N

∑
0≤n<N

ζ ′

ζ
(
1

2
+ it+ iTny)xiT

ny =
ζ ′

ζ
(
3

2
+ it)x+

2x
1
2
−it

(1
2 + it)(3

2 − it)
(3.54)

−
∑
ρ

<(ρ)= 1
2

xi(=(ρ)−t)

1 + (t−=(ρ))2
−

∑
ρ

<(ρ)> 1
2

2xi(=(ρ)−t)

1 + (t−=(ρ))2
−
∑
m≤x

Λ(m)m
−1
2
−it(

x

m
− m

x
).

There is a related result due to T.H. Chan [17], namely

Lemma 3.20. (T. H. Chan, 2004) For 1 ≤ x ≤ T and T ≥ 2

2
∑
γ

xi(γ−t)

1 + (t− γ)2
= −1

x

∑
n≤x

Λ(n)n
1
2
−it − x

∑
n≤x

Λ(n)n−
3
2
−it +

2x
1
2
−it

(1
2 + it)(3

2 − it)

+
log T

x
+

1

x

(
ζ ′

ζ
(
3

2
− it)− log 2π

)
+O(

1

xT
).

3.5 Sampling Lindelöf Hypothesis for moments of the zeta-function

In this section we shall deal with a problem concerning the explicit evaluation of the integral
in Theorem 3.2.

3.5.1 Sampling Lindelöf Hypothesis for an approximation of the Riemann zeta-
function

We shall use the approximation of the Riemann zeta-function to calculate the explicit value
of the integral in Theorem 3.2. This idea follows from the method of Lifshits and Weber [43]
in Section 2.1. In view of this we consider

lim
N→∞

1

N

∑
0≤n<N

|
∑
k≤x

1

k
1
2

+iTny
− x

1
2
−iTny

1
2 − iTny

|2.(3.55)

Firstly, we set

an(x) = an =
∑
k≤x

1

k
1
2

+iTny
, bn(x) = bn =

x
1
2
−iTny

1
2 − iTny

.

In view of

|
∑
k≤x

1

k
1
2

+iTny
− x

1
2
−iTny

1
2 − iTny

|2 = |an|2 + |bn|2 − 2<(anb̄n),

we write (3.55) as A1 +A2 − 2<(A3), where

A1 = lim
N→∞

1

N

∑
0≤n<N

|an|2,

A2 = lim
N→∞

1

N

∑
0≤n<N

|bn|2,

A3 = lim
N→∞

1

N

∑
0≤n<N

anb̄n.
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Using the pointwise ergodic theorem, for almost all y ∈ R, we have

A1 =
1

π

∫
R
|
∑
k≤x

1

k
1
2

+iτ
|2 dτ

1 + τ2
,

A2 =
1

π

∫
R
| x

1
2
−iτ

1
2 − iτ

|2 dτ

1 + τ2
,

A3 =
1

π

∫
R

∑
k≤x

1

k
1
2

+iτ

x
1
2

+iτ

1
2 + iτ

dτ

1 + τ2
.

We have

A1 =
1

π

∫
R
|
∑
k≤x

1

k
1
2

+iτ
|2 dτ

1 + τ2
=

1

π

∫
R

∑
k,l≤x

1

k
1
2

+iτ l
1
2
−iτ

dτ

1 + τ2

=
∑
k,l≤x

(kl)
−1
2

1

π

∫ ∞
−∞

ei(log l−log k)τ dτ

1 + τ2
=
∑
k,l≤x

(kl)
−1
2

min(k, l)

max(k, l)

= 2
∑
l≤x

l
−3
2

∑
k≤l

k
1
2 −

∑
l≤x

1

l
.

Euler’s summation formula gives

l∑
k=1

√
k =

2

3
l
3
2 +

1

2
l
1
2 − 1

6
+

m∑
k=1

B2k

2k

( 1
2

2k − 1

)
(l

3
2
−2k − 1)(3.56)

+ θ(m)
B2m+2

2m+ 2

( 1
2

2m− 1

)
(l

1
2
−2m − 1),

where θ(m) ∈ [0, 1]. Summing up we arrive at

A1 =
4x

3
− 1

3

∑
l≤x

l
−3
2 +

m∑
k=1

B2k

k

( 1
2

2k − 1

)∑
l≤x

l−2k −
∑
l≤x

l
−3
2


+ θ(m)

B2m+2

m+ 1

( 1
2

2m− 1

)∑
l≤x

l−2k−1 −
∑
l≤x

l
−3
2


=

4x

3
+

m∑
k=1

B2k

k

( 1
2

2k − 1

)∑
l≤x

l−2k + θ(m)
B2m+2

m+ 1

( 1
2

2m− 1

)∑
l≤x

l−2k−1

−

(
1

3
+

m∑
k=1

B2k

k

( 1
2

2k − 1

)
+ θ(m)

B2m+2

m+ 1

( 1
2

2m− 1

))∑
l≤x

l
−3
2 .

Next, we compute A2 by

A2 =
1

π

∫
R
| x

1
2
−iτ

1
2 − iτ

|2 dτ

1 + τ2
=

1

π

∫ ∞
−∞

x
1
2
−iτ

1
2 − iτ

x
1
2

+iτ

1
2 + iτ

dτ

1 + τ2

=
x

π

∫ ∞
−∞

dτ

(1
4 + τ2)(1 + τ2)

=
4x

3
.
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Finally, we compute A3 as

A3 =
1

π

∫
R

∑
k≤x

1

k
1
2

+iτ

x
1
2

+iτ

1
2 + iτ

dτ

1 + τ2

=
∑
k≤x

(
8

3
− 2

x
1
2

k
1
2

)
In view of (3.56) we have

A3 =
8x

3
− 2

x
1
2

(
2

3
x

3
2 +

1

2
x

1
2 − 1

6
+

m∑
k=1

B2k

2k

( 1
2

2k − 1

)
(x

3
2
−2k − 1)

)

− θ(m)
B2m+2

m+ 1

( 1
2

2m− 1

)
(x−2m − x

−1
2 )

=
4x

3
− 1 +

1

3x
1
2

−
m∑
k=1

B2k

k

( 1
2

2k − 1

)
(x1−2k − x

−1
2 )

− θ(m)
B2m+2

m+ 1

( 1
2

2m− 1

)
(x−2m − x

−1
2 ).

Thus,

lim
N→∞

1

N

∑
0≤n<N

|
∑
k≤x

1

k
1
2

+iTny
− x

1
2
−iTny

1
2 − iTny

|2(3.57)

=

m∑
k=1

B2k

k

( 1
2

2k − 1

)∑
l≤x

l−2k + θ(m)
B2m+2

m+ 1

( 1
2

2m− 1

)∑
l≤x

l−2k−1

−

(
1

3
+

m∑
k=1

B2k

k

( 1
2

2k − 1

)
+ θ(m)

B2m+2

m+ 1

( 1
2

2m− 1

))∑
l≤x

l
−3
2 + 2− 2

3x
1
2

+ 2

m∑
k=1

B2k

k

( 1
2

2k − 1

)
(x1−2k − x

−1
2 ) + 2θ(m)

B2m+2

m+ 1

( 1
2

2m− 1

)
(x−2m − x

−1
2 ).

In view of (3.2) in [43] in the case m = n = 1, we have∫ ∞
−∞
|ζ(

1

2
+ iτ)|2 dτ

1 + τ2
= lim

x→∞

∫ ∞
−∞
|
∑
k≤x

1

k
1
2

+iτ
− x

1
2
−iτ

1
2 − iτ

|2 dτ

1 + τ2
.(3.58)

From (3.57), (3.58) and the pointwise ergodic theorem, we obtain

Theorem 3.21. For almost all y ∈ R

lim
N→∞

1

N

∑
0≤n<N

|ζ(
1

2
+ iTny)|2

=
m∑
k=1

B2k

k

( 1
2

2k − 1

)
ζ(2k) + θ(m)

B2m+2

m+ 1

( 1
2

2m− 1

)
ζ(2k + 1)

−

(
1

3
+

m∑
k=1

B2k

k

( 1
2

2k − 1

)
+ θ(m)

B2m+2

m+ 1

( 1
2

2m− 1

))
ζ(

3

2
) + 2,

where θ(m) ∈ (0, 1).
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Remark 1. We shall provide computations of our result.
For m = 1, we have

lim
N→∞

1

N

∑
0≤n<N

|ζ(
1

2
+ iTny)|2

= 2− 1

3
ζ(

3

2
)−B2

1

2

(
ζ(

3

2
)− ζ(2)

)
− θ(1)

B4

2

1

2

(
ζ(

3

2
)− ζ(3)

)
= 2− 0.870792− 0.0806201 + θ(1)

1.41032

120
.

Thus, for m = 1, we have

1.04859 < lim
N→∞

1

N

∑
0≤n<N

|ζ(
1

2
+ iTny)|2 < 1.06034

For m = 2, we have

lim
N→∞

1

N

∑
0≤n<N

|ζ(
1

2
+ iTny)|2

= 2− 1

3
ζ(

3

2
)− 1

12

(
ζ(

3

2
)− ζ(2)

)
+

1

960

(
ζ(

3

2
)− ζ(4)

)
− θ(2)

1

2016

(
ζ(

3

2
)− ζ(5)

)
= 2− 0.870792− 0.0806201 + 0.0015938− θ(2)

1.57545

2016
.

Thus, for m = 2, we have

1.0494 < lim
N→∞

1

N

∑
0≤n<N

|ζ(
1

2
+ iTny)|2 < 1.05018.

For m = 3, we have

lim
N→∞

1

N

∑
0≤n<N

|ζ(
1

2
+ iTny)|2

= 2− 1

3
ζ(

3

2
)− 1

12

(
ζ(

3

2
)− ζ(2)

)
+

1

960

(
ζ(

3

2
)− ζ(4)

)
− 1

4608

(
ζ(

3

2
)− ζ(6)

)
+ θ(3)

7

30720

(
ζ(

3

2
)− ζ(7)

)
= 1.05018− 0.000346144 + θ(3)

7

30720

(
ζ(

3

2
)− ζ(7)

)
.

Thus, for m = 3, we have

1.04983 < lim
N→∞

1

N

∑
0≤n<N

|ζ(
1

2
+ iTny)|2 < 1.0502.

We put again

T (k) =
1

10k

∑
0≤n<10k

∣∣∣ζ(
1

2
+ iTny)

∣∣∣2,
k 1 2 3 4 5 6
y=1.1 0.982324 1.03874 1.01059 1.02478 1.04848 1.05059
y=100.98 0.84383 0.910918 1.0323 1.03455 1.04655 1.05023
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3.5.2 Sampling Lindelöf Hypothesis for moments of the Riemann zeta-function
by spectral decomposition

Here, we give an explicit expression for the integral in Theorem 3.2. This method is based on
Motohashi’s exact formula [48]. It state that

Lemma 3.22. Let a function g(r) be real-valued for r ∈ R and that there exists a large constant
A > 0 such that g(r) is regular and g(r)� (| r | +1)−A, for | =(r) |≤ A. Then, we have∫ ∞

−∞
| ζ(

1

2
+ it) |2 g(t)dt =

∫ ∞
−∞

(<(
Γ′

Γ
(
1

2
+ it) + 2γ − log(2π)))g(t)dt+ 2π<(g(

i

2
))

+ 4
∞∑
n=1

d(n)

∫ ∞
0

(y2 + y)
−1
2 gc(log(1 +

1

y
)) cos(2πny)dy,

where

gc(x) =

∫ ∞
−∞

g(t) cos(xt)dt.

We apply Lemma 3.22 with g(t) = 1/(1 + t2) and obtain

1

π

∫ ∞
−∞
| ζ(

1

2
+ it) |2 dt

1 + t2
=

Γ′

Γ
(
3

2
) + 2γ − log(2π) +

8

3
+ 4

∞∑
n=1

d(n)

∫ ∞
0

y
1
2

(y + 1)
3
2

cos(2πny)dy.

We note that Γ′

Γ (3
2) + 2γ − log(2π) + 8

3 = 2.01971.... This coincides almost with our results in
section 3.5.1. Thus, we can rewrite Theorem 3.21

Theorem 3.23. For almost all y ∈ R

lim
N→∞

1

N

∑
0≤n<N

|ζ(
1

2
+ iTny)|2 =

Γ′

Γ
(
3

2
) + 2γ − log(2π) +

8

3
(3.59)

+ 4

∞∑
n=1

d(n)

∫ ∞
0

y
1
2

(y + 1)
3
2

cos(2πny)dy.

Moreover, Motohashi considered the general case of s = σ + it.

Lemma 3.24. For any 0 < σ < 1,∫ ∞
−∞
| ζ(σ + it) |2 g(t)dt

= ζ(2σ)g∗(0) + 2ζ(2σ − 1)<(g̃(2σ − 1, σ))− 4πζ(2σ − 1)<(g((σ − 1)i))

+ 4(2π)2σ−2=

( ∞∑
n=1

d2σ−1(n)

∫ 2+i∞

2−i∞
(2πn)−w sin

(
(2σ − w)π

2

)
Γ(w + 1− 2σ)g̃(w, σ)dw

)
,

where g∗ is the Fourier transform g∗(u) =
∫∞
−∞ g(t)eiutdt , g̃(s, λ) is the Mellin transform

g̃(s, λ) =
∫∞

0 ys−1(1 + y)−λg∗(log(1 + y))dy and d2σ−1(n) =
∑

d|n d
2σ−1.
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For our situation, we put

g(t) =
1

1 + t2
with g∗(u) = πe−|u|,

and

g̃(α, β) =
Γ(α)Γ(β + 1− α)

Γ(β + 1)
π.

From this and the pointwise ergodic transformation we deduce

Theorem 3.25. For almost all y ∈ R and 0 < σ < 1, σ 6= 1
2

lim
N→∞

1

N

∑
0≤n<N

|ζ(σ + iTny)|2 = ζ(2σ) + 2ζ(2σ − 1)
Γ(2σ − 1)Γ(2− σ)

Γ(σ + 1)
− 4ζ(2σ − 1)

σ(2− σ)

(3.60)

+ 4(2π)2σ−2=

( ∞∑
n=1

d2σ−1(n)

∫ 2+i∞

2−i∞
(2πn)−w sin

(
(2σ − w)π

2

)
Γ(w + 1− 2σ)

Γ(w)Γ(σ − w + 1)

Γ(σ + 1)
dw

)
.

Remark 1. We can extend this idea to other zeta-functins; for example, the investigation of
the values of the Dirichlet L- function, namely

lim
N→∞

1

N

∑
0≤n<N

|L(
1

2
+ iTnx, χ)|2, for almost x ∈ R,(3.61)

where χ is supposed to be a primitive Dirichlet character mod q. In [48], Motohashi investigated
the square mean of Dirichlet L-function:

Q(u, v;χ) =
1

φ(q)

∑
χ mod q

L(u, χ)L(v, χ̄).(3.62)

We could approach our problem from the investigation (3.62) of Motohashi. One point of view,
we can also investigate further is the behaviour of the Hurwitz zeta-function.

Remark 2. The interesting term <(Γ′

Γ (1
2 + it)) in Lemma 3.22 appears in many place of

analytic number theory. Katsurada and Matsumoto [33] showed that∫ 2

1
| ζ(

1

2
+ it, α) |2 dα = γ − log 2π + <(

Γ′

Γ
(
1

2
+ it))− 2<(

∞∑
n=0

ζ(1
2 + n+ it)

1
2 + n+ it

).(3.63)

Steuding studied also a behaviour of this by an ergodic transformation of the circle group
T = R/Z. Given a real number θ, the circle rotation Rθ is defined by Rθ : T→ T, Rθx = x+θ
mod 1.

Theorem 3.26. (Steuding, 2012) Let θ be irrational. For almost all x ∈ [0, 1)

lim
N→∞

1

N

∑
0≤n<N

|ζ1(
1

2
+ it, Rnθx)|2 =

∫ 2

1
| ζ(

1

2
+ it, α) |2 dα,(3.64)

where ζ1(s, α) = ζ(s, α)− α−s.
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If we divide both sides of (3.61) by (1 + t2)π and integrate with respect to the variable t
in R, then

1

π

∫ ∞
−∞

∫ 2

1
| ζ(

1

2
+ it, α) |2 dα dt

1 + t2
= γ − log 2π +

1

π

∫ ∞
−∞
<(

Γ′

Γ
(
1

2
+ it))

dt

1 + t2

− 2

π

∫ ∞
−∞
<(
∞∑
n=0

ζ(1
2 + n+ it)

1
2 + n+ it

)
dt

1 + t2

= γ − log 2π +
Γ′

Γ
(
3

2
) +

16

3
− 4

∞∑
n=0

ζ(3
2 + n)

2n+ 3
.

We now introduce our ergodic transformation and the pointwise ergodic theorem. We obtain,
for almost x, y ∈ R,

lim
N,M→∞

1

MN

∑
0≤m<M

∑
0≤n<N

|ζ1(
1

2
+ iTmy,Rnθx)|2 = γ − log 2π +

Γ′

Γ
(
3

2
) +

16

3
− 4

∞∑
n=0

ζ(3
2 + n)

2n+ 3
.

In view of Theorem 3.23, we have

Theorem 3.27. Let θ be irrational. For almost (x, y) ∈ [0, 1)× R

lim
N,M→∞

1

MN

∑
0≤m<M

∑
0≤n<N

|ζ1(
1

2
+ iTmy,Rnθx)|2 − lim

N→∞

1

N

∑
0≤n<N

|ζ(
1

2
+ iTny)|2

=
8

3
− γ − 4

∞∑
n=1

d(n)

∫ ∞
0

u
1
2

(u+ 1)
3
2

cos(2πnu)du− 4

∞∑
n=0

ζ(3
2 + n)

2n+ 3
.

Remark 3. In order to investigate the distribution of values of the Riemann zeta-function
with respect to the real part of s with an ergodic transformation on [0, 1), we may also think
about the Gauss transformation given by

T0 := 0, Tx :=
1

x
mod 1, for 0 < x < 1.

The invariant probability density of T is then given by

µ[a, b] =
1

log 2

∫ b

a

dx

1 + x
.

In view of the pointwise ergodic theorem we note

Theorem 3.28. For almost all x ∈ [0, 1),

lim
N→∞

1

N

∑
0≤n<N

ζ(Tnx+ it) =
1

log 2

∫ 1

0
ζ(τ + it)

dτ

1 + τ
.

Remark 4. In [48], Motohashi give a useful result of the k-th moment of the Riemann
zeta-function by

Mk(ζ; g) =

∫ ∞
−∞
| ζ(

1

2
+ it) |k g(t)dt,

where k is an arbitrary fixed number, and the weight function g is assumed to be even, entire,
real on R, and of fast decay in any fixed horizontal strip.
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Chapter 4

4 Does a random walker meet universality ?

In this chapter, we investigate the phenomenon of universality with respect to certain stochastic
processes.

In Section 4.1, we explain the notion of universality. Roughly speaking, Voronin’s uni-
versality theorem implies that any finite analytic landscape can be found-up to an arbitrarily
small error in the analytic landscape of the Riemann zeta-function.

In Section 4.2, we interpret the absolute value of an analytic function as analytic landscape
over the complex plane, extend our results to other random walks and consider how soon a
random walk will meet a given set?

4.1 Voronin’s universality theorem

The universality property asserts that any analytic function can be approximated uniformly
on compact subsets by translations of ζ(s). Voronin’s universality theorem was refined by
Reich [51] and Bagchi [3]. The strongest version of Voronin’s theorem has the form:

Theorem 4.1. (Voronin’s universality theorem) Suppose that K is a compact subset of the strip
1
2 < <(s) < 1 with connected complement, and let g be a non-vanishing continuous function
on K which is analytic in the interior of K. Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
| ζ(s+ iτ)− g(s) |< ε

}
> 0.

Bagchi considered the Riemann Hypothesis in terms of universality. In sense of Voronin’s
universality theorem, the Riemann zeta-function can approximate itself, if and only if the
Riemann hypothesis is true. That is, the Riemann hypothesis is true, if and only if, for any
compact subset K of 1

2 < σ < 1 with connected complement and any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

s∈K
| ζ(s+ iτ)− ζ(s) |< ε

}
> 0.

Antanas Laurinčikas’probabilistic approach to universality and his monograph [39] in par-
ticular have pushed research in this field strongly forward; a probabilistic proof of the uni-
versality property for the Riemann zeta-function or some of its relatives heavily depends on
properties of weakly convergent probability measures in appropriate function spaces in combi-
nation with non-trivial results from arithmetic.

Universality is a phenomenon which is restricted to the right open half D of the critical
strip, i.e., D := {s ∈ C : 1

2 < <(s) < 1}. As mentioned in the introduction, Garunkštis and
Steuding [20] showed that the set of vectors {ζ(σ + it) : t ∈ [1,∞)} 6= C for σ ≤ 0. Moreover,
Andersson [1] proved that universality cannot take place on the line 1 + iR. Neither in the
half-plane of absolute convergence <(s) > 1 of the Dirichlet series expansion of ζ(s) nor to the
left of the critical line universality is possible due to growth estimates.

A discrete version of Voronin’s universality theorem was proved by Reich [51]:

Theorem 4.2. Suppose that K is a compact subset of the strip 1
2 < <(s) < 1 with connected

complement, and let G be a non-vanishing continuous function on K which is analytic in the
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interior of K. Then, for any positive real numbers ∆ and ε > 0,

lim inf
M→∞

1

M
]

{
m ≤M : max

s∈K
| ζ(s+ i∆m)−G(s) |< ε

}
> 0.

4.2 A random walk

As in Section 2.1, we let {Xk}∞k=1 be a sequence of independent, identically distributed discrete
random variables. For each positive integer n, we call

sn = X1 +X2 + ...+Xn

a random walk. In order to investigate the phenomenon of universality with respect to certain
stochastic processes, we need a notion of a random walk in the complex plane.

4.2.1 A random walk in the complex plane

Denoting by s0 ∈ C the starting position of our random walk, it moves on the affine lattice

Λ := s0 + λZ[i],(4.1)

where λ > 0 is real, i =
√
−1 is the imaginary unit in the upper half-plane, and Z[i] is the

ring of Gaussian integers a+ bi with a, b ∈ Z. We assume that at each time unit the random
walker steps one space unit further with equal probability 1

4 to either possible direction on Λ,
and we denote its random position by the sequence of sn defined by

sn = sn−1 + λδn with δn ∈ {±1,±i}, n ∈ N,(4.2)

and probability P(+1)=P(−1)=P(+i)=P(−i) = 1
4 . Hence, (sn)n∈N0 is a random walk on the

affine lattice Λ. We shall answer the interesting question: for any given ε > 0, does there exist
n such that

max
s∈K
| ζ(s+ sn)− g(s) |< ε?,(4.3)

where K is a compact set with connected complement, and g is an arbitrary continuous
function on K which is analytic in the interior of K. In order to tackle this problem, we may
think about applying Voronin’s universality theorem. Of course, the best we can expect is a
positive answer almost surely. The assumption in Theorem 4.1 that the target function g is
non-vanishing follows from a simple application of Rouché’s theorem. Hence, in view of the
location of zeta zeros, as predicted by the Riemann Hypothesis, we shall suppose that g has
no zero inside K.

The obvious approach towards answering the question concerning (4.3) is to find an instance
of the random walk in the associated set of universality

U :=

{
z ∈ C : max

s∈K
| ζ(s+ z)− g(s) |< ε

}
,(4.4)

and

K + U ⊂ D.(4.5)
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HereK+U is the union of points s+z with s ∈ K and z ∈ U . In particular, the latter condition
implies that the horizontal expansion of K has to be less than 1

2 as necessary condition for K.
The set of shifts sn under consideration is discrete. Accordingly we need a discrete version of

Voronin’s universality theorem in the form of Theorem 4.2, that is Reich’s discrete universality
theorem [51].

We aim to find some n ∈ N0 for which sn = z ∈ U . In view of Reich’s Theorem 4.2 we
may hope to find sn = i∆m with some appropriate m. However, this is only possible if, and
only if, Λ = s0 + iλZ[i] has a non-empty intersection with i∆Z; notice that this intersection
may consist only of a few points which might lead to have no instances of universality at
all. Nevertheless, if λ is sufficiently small, we may apply Reich’s theorem with ∆ = λ and
K := K + κ := {s + κ : s ∈ K} where κ is any of those lattice points in Λ for which the
translate K + κ lies to the right of the critical line. In view of (4.5), we thus need

K + κ ⊂ D.(4.6)

If (4.5) is satisfied, then (4.6) is possible for sufficiently small λ depending on K. Under this
assumption, setting G(s+ κ) = g(s) for s ∈ K, we have

max
s∈K
| ζ(s+ i∆m)−G(s) |= max

s∈K
| ζ(s+ κ+ iλm)−G(s+ κ) |= max

s∈K
| ζ(s+ sn)− g(s) |

provided sn = iλm+κ for some m. In view of Theorem 4.2 this quantity can be made smaller
than ε if the random walk sn will intersect with the set iλM+ κ ⊂ Λ, where

M :=

{
m ∈ N : max

s∈K
| ζ(s+ iλm)−G(s) |< ε

}
is non-empty. It was Pólya [49], [50] who showed that a symmetric random walk in one or in
two dimensions is recurrent, i.e., with probability one our one-dimensional random walk with
starting point at s0 will return to s0; here the attribute symmetric refers to equidistribution of
the probability measure (which holds true in our case). We may also express this recurrence
by

lim inf
n→∞

| sn − s0 |= 0 almost surely.

Moreover, by translation, given any lattice point z = iλm+ κ ∈ Λ with m ∈M, almost every
realization of (sn)n will reach z an infinity of times. Hence, it follows from Theorem 4.2 that
(4.3) holds almost surely infinitely often. We shall show that this even happens in a rather
regular way. For this purpose denote by η1 the minimum of all positive integers n for which
sn will hit some point z1 = iλm + κ ∈ Λ such that m ∈ M. We may interpret this quantity
η1 as the first hitting time of the random walk under consideration to an admissible lattice
point, and η1 is indeed a stopping time in the sense of stochastic processes. We may consider
the symmetric random walk (sn)n>η1 starting at sη1 = z1 and define subsequent hitting times
ηl as the minima of those n with n > ηl−1 such that sn will hit some point zl = iλm+ κ ∈ Λ
with m ∈ M. Clearly, the subsequent hitting times ηl exist almost surely and all the visits
to such points zl lead to realizations of (4.3). It is well-known that the hitting times ηl
are integer valued, independent and identically distributed random variables with finite first
moment E | η1 | and, in our case, positive mean µ = Eη1 > 0 (see [36]). Hence, it follows from
the strong law of large numbers that

lim
L→∞

1

L

∑
l≤L

ηl = µ.
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In view of the divergence of the ηl to infinity, for any N , there exists almost surely some M
for which ηM ≤ N ≤ ηM+1 and

]

{
n ≤ N : max

s∈K
| ζ(s+ sn)− g(s) |< ε

}
= M ∼M + 1 ∼ 1

µ

∑
l≤M+1

ηl >
1

µ
ηM+1.

This implies

1

N
]

{
n ≤ N : max

s∈K
| ζ(s+ sn)− g(s) |< ε

}
>

(
1

µ
− ε
)
ηM+1

N
>

1

µ
− ε

for some small ε which trends to zero as N →. Thus we have proved

Theorem 4.3. Assume that Λ is a lattice given by (4.1) and (sn)n is a random walk on this
lattice, defined by (4.2). Further suppose that K is a compact set with connected complement
satisfying (4.6), and g is a non-vanishing continuous function on K which is analytic in the
interior of K. Then, for any ε > 0, almost surely

lim inf
N→∞

1

N
]

{
n ≤ N : max

s∈K
| ζ(s+ sn)− g(s) |< ε

}
> 0.

Notice that for the proof of the almost sure frequency of (4.3) we have not made use of the
positive lower density estimate in Reich’s Theorem 4.2. Applying Theorem 4.3 with g = ζ, we
immediately obtain that if ζ(s) 6= 0 for s ∈ K, then, for any ε > 0, almost surely

lim inf
N→∞

1

N
]

{
n ≤ N : max

s∈K
| ζ(s+ sn)− ζ(s) |< ε

}
> 0,

which actually is stronger than (4.3). On the contrary, if ζ(s′) = 0 for some s′ ∈ K, then (4.3)
is satisfied if sn = 0, respectively, if 0 ∈ Λ. Hence, we may not expect an equivalent of the
Riemann Hypothesis in terms of self-approximation with respect to random walks.

Remark 1. We have mentioned the recurrence of a symmetric random walk in one or in
two dimensions. We could interpret the phenomenon of universality with respect to a simple
random walk in one dimension. In general, a simple random walk sn in dimension d ∈ N is
defined by s0 = x ∈ Zd and for n ∈ N, by sn = x + X1 + X2 + ... + Xn, where {Xk}∞k=1

is a sequence of independent, identically distributed discrete random variables defined on a
probability space (Ω,F ,P) satisfying

P(Xk = ±ei) =
1

2d
,

i = 1, ..., d and {ei}i∈{1,...,d} is the standard orthonormal basis of Rd.
In order to consider the same question as (4.3), we think of our simple random walk in one

dimension moving on the vertical L := iR (up or down). As in the proof of Theorem 4.3 and
by use of Pólya’s result on recurrence we find

Theorem 4.4. Assume that (sn)n is a simple random walk on the vertical line L := iλZ,
where λ > 0. Further suppose that K is a compact set with connected complement satisfying
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L + K ⊂ D, and g is a non-vanishing continuous function on K which is analytic in the
interior of K. Then, for any ε > 0, almost surely

lim inf
N→∞

1

N
]

{
n ≤ N : max

s∈K
| ζ(s+ sn)− g(s) |< ε

}
> 0.

Sketch of the proof. Our aim is to find an instance of the random walk in the associated set
of universality U in (4.4) and the condition (4.5). Then we have to find some n ∈ N0 for which
sn = z ∈ U . In view of Theorem 4.2, we may hope that sn = i∆m with some appropriate m
if and only if L ∩ i∆Z 6= ∅. For λ is sufficiently small, we apply Theorem 4.2 with ∆ = λ and
K := K + ι := {s + ι : s ∈ K} where ι is any of those lattice points in L, where λ for which
the translation K+ ι lies to the right of the critical line. With the same reasoning as for (4.5),
we need to make sure that

K + ι ⊂ D.(4.7)

If K + U ⊂ D is satisfied, then K + ι ⊂ D is possible for sufficiently small λ depending on K.
Under this assumption, if we set G(s+ ι) = g(s) for s ∈ K, then we have

max
s∈K
| ζ(s+ sn)− g(s) |< ε

provided sn = iλm + ι for some m. In view of the recurrence property proved by Pólya, we
can show that this quantity can be made smaller than ε.

Remark 2. The related question how soon a random walk (sn)n will meet the set iλM+κ such
that (4.3) holds is linked to the problem of hitting times for domains in the set of reachablility
of a stochastic process. Firstly, we discuss this question in the one-dimensional case and refer
to a result about the expression for the probability P (sn = x) that the simple random walk
sn started at the origin is at a given location x ∈ Z at time n ∈ Z. In fact, Lawler and Limic
gave a result about P (sn = x) in [41]:

Theorem 4.5. ( Lawler and Limic, 2010) For a simple random walk in Z, if n ∈ N and x ∈ Z
with | x |≤ n and x+ n even,

P (sn = x) =

√
2

nπ
e−x

2/2n exp

(
O(

1

n
+
x4

n3
)

)
.

In particular, if | x |≤ n
3
4 , then

P (sn = x) =

√
2

nπ
e−x

2/2n exp

(
O(1 +

1

n
+
x4

n3
)

)
.
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Appendix

The analytic tools

Here we list some analytic tools for the study of the behaviour of zeta-functions. The reader
is referred to the monograph by Ivić [27].

Summation techniques

A simple summation technique is the partial summation.
The partial summation Suppose {an}∞n=1 is a sequence of complex numbers and f(t) is

a continuously differentiable functin on [1, x]. Set

A(t) =
∑
n≤t

an.

Then ∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1
A(t)f ′(t)dt.

In addition, there are several useful techniques.
The Euler-Maclaurin summation formula Let k be a nonnegative integer and f be

(k + 1) times differentiable on [a, b] with a, b ∈ Z. Then

∑
a<n≤b

f(n) =

∫ b

a
f(t)dt+

k∑
r=0

(−1)r+1

(r + 1)!

(
f (r)(b)− f (r)(a)

)
Br+1 +

(−1)k

(k + 1)!

∫ b

a
Bk+1(t)fk+1(t)dt,

where Br(x) is the r-th Bernoulli function.
The Poisson summation formula Let f(x) be a function of a real variable with bounded

first derivative on [a, b] with a, b ∈ Z. Then

∑́
a≤n≤b

f(n) =

∫ b

a
f(t)dt+ 2

∞∑
n=1

∫ b

a
(t)f(x) cos 2πnxdx.

Here
∑́

means that 1
2f(a) and 1

2f(b) are to be taken instead of f(a) and f(b) respectively.

Atkinson’s formula

Usually, Atkinson’s formula is used to study the mean-square of the zeta-function. In this
thesis, we apply an idea from the proof of Atkinson’s formula to derive a product representation
of the zeta-function, that is Atkinson’s dissection. For <(u), <(v) > 1, we have

ζ(u)ζ(v) =
∞∑
m=1

∞∑
n=1

m−un−v = ζ(u+ v) + f(u, v) + f(v, u),

where

f(u, v) =
∞∑
r=1

∞∑
s=1

r−u(r + s)−v.
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Using the Poisson summation formula, we have, for 0 < <(u) < 1, 0 < <(v) < 1, u+ v 6= 1,

ζ(u)ζ(v) = ζ(u+ v) + ζ(u+ v − 1)Γ(u+ v − 1)

(
Γ(1− u)

Γ(v)
− Γ(1− v)

Γ(u)

)
+ g(u, v) + g(v, u),

where

g(u, v) = 2
∞∑
n=1

σ1−u−v(n)

∫ ∞
0

y−u(1− y)−v cos(2πny)dy;

here, σk =
∑

d|n d
k is the sum of the k-th powers of divisors of n. Furthermore, for studying

the behaviour of zeta-function on the critical line we notice, for 0 < <(u) < 1,

ζ(u)ζ(1− u) =
1

2

(
Γ′

Γ
(1− u)− Γ′

Γ
(u)

)
+ 2γ − log 2π + g(u, 1− u) + g(1− u, u).

The residue theorem

Let C1(D) be the set of differentiable functions f : D → C. There is a useful criterion of being
analytic, which is known as the Cauchy-Riemann equation. Namely, if f is an analytic
function in D, then ∂f

∂z̄ = 0 for all z ∈ D. Let Cw(D) be the set of function in C1(D) which
satisfy the Cauchy-Riemann equation for all z ∈ D.

The residue theorem
Let f ∈ Cw(D/{zi}ni=1) be a function, D be an open set containing {zi}ni=1 with the bound-

ary ∂D = γ,

1

2πi

∫
γ
f(z)dz =

n∑
i=1

Res(f, zi).

Probability Theory

Here, we provide some concepts of probability Theory. We refer to the book of Jacod and
Protter [29].

As the usual probabilistic notion, let Ω be an abstract space. Let 2Ω denote all subsets of
Ω and let A be a subset of 2Ω .
A is an algebra if it satisfies the following properties:

1. ∅ ∈ A and Ω ∈ A;

2. If A ∈ A then Ac ∈ A, where Ac is the complement of A;

3. A is closed under finite unions and finite intersections.

A is a σ-algebra if it satisfies the properties (1),(2) and A is closed under under countable
unions and finite intersections.

If C ⊂ 2Ω, the σ-algebra generated by C , and wriiten σ(C), is the smallest σ-algebra
containing C.

A probability measure defined on a σ-algebra A of Ω is a function P : A → [0, 1]
that satisfies:
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1. P(∅) = 0 and P(Ω) = 1

2. For every countable sequence (An)n≥1 of elements of A, pairwise disjoint, one has

P(∪∞n=1An) =

∞∑
n=1

P(An).

Assume that Ω = R and A be the borel σ-algebra of R
The distribution function induced by a probability P on (R,A) is the function

F (x) = P((−∞, x]),

for x ∈ R.
If f is positive and

∫∞
−∞ f(x)dx = 1, the function F (x) =

∫ x
−∞ f(y)dy is a distribution function

of a probability on R and the function f is called the density function. There are the
important distribution function, for example,

1. The Gamma distribution with parameters α, β is defined by

f(x) =

{
βα

Γ(α)x
α−1e−βx if x ≥ 0,

0 if x < 0,

for 0 < α <∞ and 0 < β <∞.

2. The Normal distribution with parameters (µ, σ2) is defined by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

if −∞ < x <∞. It is also known as the Gaussian distribution.

3. The Cauchy distribution with parameters α, β is defined by, for 0 < α <∞ and
0 < β <∞,

f(x) =
1

βx

1

1 + (x− α)2/β2
,

if −∞ < x <∞.

Let (E, E) and (F,F) be two measurable spaces. A functionX : E → F is a calledmeasurable
if X−1(Λ) ∈ E , for all Λ ∈ F . When (E, E) = (Ω,A), a measurable function X is called a
random variable. Let (Ω,A,P) be a probability space. A random variableX is called simple
if it takes on only a finite number of values and hence can be written in the from

X =

n∑
i=1

ai1Ai ,

where ai ∈ R, Ai ∈ A, 1 ≤ i ≤ n and the function 1A(x) is the indicator function, which is
defined by

1A(x) =

{
1 if x ∈ A,
0 if x /∈ A.
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The expectation of a simple random variable is defined by

E{X} =
n∑
i=1

aiP(Ai).

(It is also written E{X} =
∫
X(ω)P(dω)). Let L1 denote the set of all integrable ( finite

expectation) random variables. There are the important properties of the expectation in
following:

1. If X = Y almost surely (a.s), then E{X} = E{Y },
(The statement “X = Y almost surely” means P({ω : X(ω) = Y (ω)}) = 1).

2. (Monotone convergence theorem): If the sequence of random variables Xn are positive
and increasing a.s. to X, then limn→∞ E{Xn} = E{X}.

3. (Fatou’s lemma): If the sequence of random variables Xn satisfy Xn ≥ Y a.s. (Y ∈ L1),
all n, we have E{lim infn→∞Xn} ≤ lim infn→∞ E{Xn}.

4. (Lebesque’s dominated convergence theorem): If the sequence of random variables Xn

converge a.s. to X and if | Xn |≤ Y a.s. ∈ L1, all n, then Xn ∈ L1, X ∈ L1, and
E{Xn} → E{X}.

5. If the sequence of random variables Xn are all positive, then

E

{ ∞∑
n=1

Xn

}
=
∞∑
n=1

E{Xn}.

6. If
∑∞

n=1 E{| Xn |} < ∞, then
∑∞

n=1Xn converges a.s. and the sum of this series is
integrable and moreover the interchange of the expectationand summation also holds.

The Variance of X, written σ2(X), is

Var(X) = σ2(X) ≡ E{(X − E{X})2}.

Let X be Cauchy random variable with identity function

f(x) =
1

π

1

1 + x2
.

Note that the mean of a Cauchy random variable X does not exist. Since,

1

π

∫ ∞
−∞

x

1 + x2
dx =

1

π

{∫ 0

−∞

x

1 + x2
dx+

∫ ∞
0

x

1 + x2
dx

}
.

Note that, x
1+x2

≥ 0 for all x ≥ 0 and x
1+x2

≥ 1
2x for all x > 1, then we have∫ ∞

0

x

1 + x2
dx ≥

∫ 1

0
0dx+

∫ ∞
1

1

2x
dx =∞.

And also
∫ 0
−∞

x
1+x2

dx = −∞, because x
1+x2

is an odd function. Thus, the improper integral
over (−∞,∞) cannot be defined.
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Convergence of random variables
A sequence of random variables (Xn)n≥1 converges almost surely to a random variable X
if

P{ω : lim
n→∞

Xn(ω) 6= X(ω)} = 0.

Usually, we abbreviate almost sure convergence by

lim
n→∞

Xn
(a.s.)
= X.

A sequence of random variables (Xn)n≥1 converges in Lp to X (1 ≤ p <∞) if | Xn |, | X |
are in Lp and:

lim
n→∞

E{| Xn −X |p} = 0,

and we write
Xn

Lp→ X.

A sequence of random variables (Xn)n≥1 converges in probability to X if for any ε > 0
we have

lim
n→∞

P(| Xn −X |> ε) = 0,

and we write
Xn

P→ X.

There are some useful properties in following: Let f be a continuous function.

1. If limn→∞Xn
(a.s.)
= X, then limn→∞ f(Xn)

(a.s.)
= f(X).

2. If Xn
P→ X, then f(Xn)

P
= f(X).

Weak convergence
Let µn and µ be probability measures on R. The sequence µn converges weakly to µ
if
∫
f(x)µn(dx) converges to

∫
f(x)µ(dx) for each f which is real-valued, continuous and

bounded on R.
Let (Xn)n≥1, X be R-valued random variables. We say Xn converges in distribution to X
if the distribution measures PXn converge weakly to PX and write Xn

D→ X.
There is an useful property in following: Let (Xn)n≥1, X be R-valued random variables. Then
Xn

D→ X if and only if
lim
n→∞

E{f(Xn)} = E{f(X)},

for all continuous, bounded function f on R.

The basic ergodic theory

We refer to the monograph of Geon Ho Choe [18] and Steuding [62].
The measure preserving transformation

Let (X1, µ1) and (X2, µ2) be measure spaces. A mapping T : X1 → X2 is measurable if
T−1(E) is measurable for every measurable subset E ⊂ X2. The mapping T is measure
preserving if µ1(T−1E) = µ2(E) for every measurable subset E ⊂ X2. The mapping T is a
transformation if X1 = X2 anf µ1 = µ2. The measure µ is T -invariant (or invariant under
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T ) if a measurable transformation T : X → X preserves the measure µ. The transformation
T is an invertible measure preserving transformation if T is invertible and if both T
and T−1 are measurable and measure preserving. Let (X,A, µ) be a measure space. The
µ-invariant T is ergodic if E ∈ A satisfies T−1E = E if, and only if, µ(E) = 0 or 1. Let
(X,A, µ) be a measure space. A transformation T : X → X preserves µ if, and only if, for
any Lebesque integrable function f we have∫

X
f(x)dµ =

∫
X
f(T (x))dµ

.
We give the information about our transformation. Let T : R→ R be defined by

Tx =

{
1
2

(
x− 1

x

)
for x 6= 0,

0 for x = 0.

Note that, the inverse image of an interval (α, β), written T−1(α, β) is

(α−
√
α2 + 1, β −

√
β2 + 1) ∪ (α+

√
α2 + 1, β +

√
β2 + 1),

hence, T is measurable. Using the substitution τ = Tx, we have dτ = 1
2(1 + 1

x2
) and∫ ∞

−∞
f(Tx)

dx

1 + x2
=

∫ ∞
−∞

f(τ)
dτ

1 + τ2
.

Thus, the transformation T is measure preserving and has a finite invariant density function

ρ(x) =
1

1 + x2
.

The Birkhoff Ergodic Theorem
Let (X,µ) be a probability space. If T is µ-invariant and f is integrable, then

lim
n→∞

1

n

n−1∑
k=0

f(T kx) = f∗(x)

for some Lebesque integrable function f∗ with f∗(Tx) = f∗(x) for almost every x. Furthermore,
if T is ergodic, then f∗ is constant and

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =

∫
X
fdµ

for almost every x.
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