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Abstract

Background and Purpose: In animal models, von Willebrand factor (VWF) is involved in thrombus formation and
propagation of ischemic stroke. However, the pathophysiological relevance of this molecule in humans, and its potential
use as a biomarker for the risk and severity of ischemic stroke remains unclear. This study had two aims: to identify
predictors of altered VWF levels and to examine whether VWF levels differ between acute cerebrovascular events and
chronic cerebrovascular disease (CCD).

Methods: A case–control study was undertaken between 2010 and 2013 at our University clinic. In total, 116 patients with
acute ischemic stroke (AIS) or transitory ischemic attack (TIA), 117 patients with CCD, and 104 healthy volunteers (HV) were
included. Blood was taken at days 0, 1, and 3 in patients with AIS or TIA, and once in CCD patients and HV. VWF serum levels
were measured and correlated with demographic and clinical parameters by multivariate linear regression and ANOVA.

Results: Patients with CCD (158646%) had significantly higher VWF levels than HV (113636%, P,0.001), but lower levels
than AIS/TIA patients (200695%, P,0.001). Age, sex, and stroke severity influenced VWF levels (P,0.05).

Conclusions: VWF levels differed across disease subtypes and patient characteristics. Our study confirms increased VWF
levels as a risk factor for cerebrovascular disease and, moreover, suggests that it may represent a potential biomarker for
stroke severity, warranting further investigation.
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Background

Plasmatic coagulation and platelets are critically involved in

lesion development after ischemic stroke (IS) [1,2]; however, their

specific roles and their interplay with endothelial cells or other

resident brain cells long remained elusive. Recently, the develop-

ment of transgenic mouse models and specific antibodies has

enabled the discovery of distinct pathways in pathological

thrombus formation in animal models of IS [2,3]. Von Willebrand

factor (VWF) plays a key pathophysiologic role in arterial

thrombus formation in the brain and heart [4,5]. VWF is a large,

multimeric glycoprotein that is exclusively synthesized in endo-

thelial cells and megakaryocytes and circulates as multimers of

varying size (up to 20 000 kDa). A disintegrin and metalloprotease

with thrombospondin Type 1 repeats 13 (ADAMTS13) digests

ultralarge VWF into smaller and less reactive molecules [4]. VWF

mediates loose adhesion of platelets to the vascular wall and

therefore, the earliest step of thrombus formation through binding

to glycoprotein (Gp)Ib expressed on platelets [2,6].

Research to date has shown that in vivo blockade of the GpIb–

VWF axis resulted in the elimination of arterial thrombus

formation in primates [7], restored vessel patency by dissolving

platelet aggregates [8], and led to significantly reduced infarct

volumes and better functional outcome in rodent stroke models

[4–6] and larger animals [9]. Furthermore, targeting GpIb and its

major ligand VWF has provided beneficial effects in IS models

without a concomitant increase in bleeding complications, which

led to the unique and intriguing concept of a potential ‘‘bleeding-

free’’ antithrombotic approach [2]. Thus, targeting VWF-mediat-

ed platelet adhesion and activation is now considered as a potential

target for stroke prevention and acute stroke treatment. However,
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a conservative view is warranted given that attempts to translate

the findings with this approach from animal stroke studies to

humans has yielded disappointing results [10].

Despite increasing evidence of a causal association between

VWF levels and acute stroke risk in humans [11,12] many

questions remain unanswered. For instance, the processes involved

in the regulation of VWF expression during ischemic stroke and

the specific contribution of VWF to the preceding pathophysio-

logic events await clarification. Also, the relationship of VWF

levels to other parameters, such as genetic polymorphisms [13]

and demographic features [14], is not well understood. Addition-

ally, only limited data exist on the regulation of VWF in patients

with chronic cerebrovascular disease (CCD) [15–17].

The aim of the study was to identify demographic and clinical

predictors of VWF serum levels and to evaluate whether VWF

levels differ between acute cerebrovascular events and chronic

cerebrovascular disease (CCD).

Methods

Data Collection
For addressing these objectives, a case-control study was

performed. As cases, patients with acute (acute ischemic stroke

Table 1. Baseline characteristics of acute ischemic stroke (AIS)/transitory ischemic attack (TIA) patients.

Characteristic Value (n=116)

Age, years 70612

Sex, n (%)

Male 62 (53)

Female 54 (47)

Modality, n (%)

AIS 67 (58)

TIA 49 (42)

TOAST criteria, n (%)

Cardioembolism 70 (60)

Large-artery atherosclerosis 4 (3)

Small-vessel occlusion 12 (10)

Other determined or undetermined etiology 30 (26)

Thrombolysis, n (%) 34 (29)

Comorbidities, n (%)

Hypertension 105 (92)

Diabetes mellitus 41 (35)

Hyperlipidemia 80 (69)

Renal failure 10 (9)

Atrial fibrillation 37 (32)

Persistent foramen ovale 28 (24)

Heart failure 5 (4)

Coronary artery disease 8 (7)

Family history of stroke 11 (10)

Smoking, n (%) 18 (16)

Platelet inhibitor before blood withdrawal, n (%) 87 (75)

Anticoagulation before blood withdrawal, n (%) 8 (7)

Lipid-lowering drug before blood withdrawal, n (%) 36 (31)

National Institutes of Health Stroke Scale at admission 4.866.0

Barthel Index at admission 74630

Body mass index, kg/m2 2765

HbA1c, mmol/mol hemoglobin 46613

Lipid profile, mmol/L

Total cholesterol 202652

Low-density lipoprotein 121645

High-density lipoprotein 51615

Triglycerides 1576153

Duration between symptom onset and blood withdrawal, h 1467

HbA1c, glycated hemoglobin; TOAST, Trial of Org 10172 in Acute Stroke Treatment.
doi:10.1371/journal.pone.0099851.t001
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[AIS], transitory ischemic attack [TIA]) and CCD were recruited.

As controls, healthy volunteers (HV) from the local population

were chosen. The participants were recruited at the Stroke Unit

(in-patients diagnosed with TIA or AIS), at the out-patient clinic

for CCD, or after a call for HV by means of posters at the

Neurology Department, University Hospital of Würzburg, Ger-

many, between September 2010 and January 2013. Inclusion

criteria included blood withdrawal within 24 h after symptom

onset in AIS (defined as acute ischemic lesion on brain imaging)

and TIA (no acute lesion) patients, presentation with extra- and/or

intracranial stenosis of the large cerebral arteries with (n = 66) or

without (n = 51) history of AIS or TIA for the CCD group and no

history of stroke, myocardial infarction, or peripheral arterial

disease for the HV group. Exclusion criteria were hemorrhagic

stroke, age,18 years, and known platelet dysfunction or plasmatic

coagulation disorders based on a detailed medical history and

collection of routine coagulation parameters. Overall, 116 patients

with AIS or TIA, 117 patients with CCD, and 104 HV fulfilled the

inclusion criteria and took part in the study.

In the patients with AIS or TIA, TOAST (Trial of Org 10172 in

Acute Stroke Treatment) criteria [18] were applied in an adapted

form: (1) cardioembolism; (2) large-artery atherosclerosis: (3) small-

vessel occlusion; or (4) other determined or undetermined etiology.

The National Institute of Health Stroke Scale (NIHSS) [19] and

Barthel Index score [20] were calculated at patient admission. The

latency between symptom onset and blood withdrawal, platelet

inhibitor pretreatment, and modality of acute stroke therapy

(thrombolysis vs. no thrombolysis) were registered.

Blood Collection and Measurements
Blood was collected on day 0, 1, and 3 in the patients with acute

cerebrovascular disease, and once in CCD patients and HV

between 08.00 and 12.00 hours from an antecubital vein using a

21-gauge butterfly needle. Pre-analytic preparations for blood

collection followed a specific standard operating procedure. Only

non-hemolyzed blood samples were analysed. VWF, differential

hematology parameters, and C-reactive protein (CRP) were

analysed at the Division of Laboratory Medicine of the University

Hospital Würzburg.

Statistical Analysis
Continuous variables are expressed as mean with standard

deviation or median with interquartile range, as appropriate.

Categorical variables are expressed as percentages. The associa-

tion between VWF concentrations and a range of demographic

and clinical characteristics was explored: age, sex, neurological

scales, disease modality (TIA or AIS), TOAST criteria, duration

between symptom onset and blood withdrawal, NIHSS, Barthel

Index, treatment modality (intravenous thrombolysis or not), and

intake of platelet inhibitors in the days before blood withdrawal. P

values for comparisons across groups of clinical and demographic

characteristics were derived from analysis of variance (ANOVA),

and the chi-square test, as appropriate. In order to identify

potential predictors of VWF levels, a linear regression model was

used that included all variables without co-linearity in a

multivariate model adjusting for age and sex. Using this model,

coefficients and the corresponding 95% confidence intervals (CIs)

were estimated. VWF biomarker levels were compared between

the different patients groups (AIS/TIA in-patients, CCD out-

patients, or HV). Distribution was analyzed using the Kolmo-

gorov–Smirnov test. Levels of VWF were assumed to take a

normal distribution and were compared using ANOVA with a

Bonferroni post-hoc test and additionally adjusted for age and sex.

All reported P values are two-sided and a P value,0.05 was

considered statistically significant. Analyses were performed using

SPSS Version 21 and SAS software version 9.1 (SAS Institute Inc.,

Cary, NC).

Ethics
Informed written consent was obtained from all participants.

The study protocol was approved by the ethics committee of the

medical faculty of the University of Würzburg, Germany

(reference number 65/2010). Study participation had no influence

on treatment and patient care.

Results

Descriptive Analysis of the Patients with an Acute
Cerebrovascular Event

A total of 116 patients with AIS/TIA were included in this

study. The mean age of these patients was 70612 years; 53% of

whom were male. The baseline clinical severity measured with

NIHSS and Barthel Index was 4.866.0 and 74630, respectively.

More than half of the patients had an AIS (58%). A detailed

descriptive analysis of the characteristics of the patients with acute

cerebrovascular event is given in Table 1.

Comparison of VWF Levels in AIS/TIA Patients, CCD
Patients, and HV

VWF levels by patient subtype with acute cerebrovascular

events (AIS or TIA), or chronic cerebrovascular disorders (CCD),

were compared with the levels of HV. VWF levels showed

significant differences between the three groups (AIS/TIA:

200695%; CCD: 158646%; HV: 113636%) (Figure 1). Both

patient subtypes had significantly higher levels than HV, AIS and

TIA patients even higher than CCD patients (all P,0.001). After

adjustment for age and sex, highly significant results remained (P,

0.001) (data not shown).

Figure 1. von Willebrand factor (VWF) levels in acute ischemic
stroke (AIS)/transitory ischemic attack (TIA), chronic cerebro-
vascular disease (CCD), and healthy volunteers (HV). The VWF
levels are depicted in box-and-whisker plots indicating the first and
third quartiles as well as the 1.5 interquartile range (IQR, Tukey plot).
Outliers outside 1.5 IQR are visualized by single dots. VWF levels
showed significant differences between the three groups. Analysis of
variance with Bonferroni post hoc test, ***P,0.001. d0 = day 0.
doi:10.1371/journal.pone.0099851.g001
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Relationship between VWF Levels and Key Demographic
and Clinical Parameters in Patients with an Acute
Cerebrovascular Event

The potential relationship between VWF levels and standard

laboratory parameters such as CRP or blood count was evaluated.

VWF levels were significantly correlated with CRP (r = 0.30,

P= 0.001) and different leukocyte subsets (leukocyte count:

r = 0.29, P= 0.002; neutrophil count: r = 0.36, P,0.001; lympho-

cyte count: r =20.28, P= 0.002; monocyte count: r = 0.20,

P= 0.03) (data not shown).

The association between VWF levels and key demographic and

clinical characteristics was assessed in a univariate analysis

(Table 2). Age (P= 0.001), disease modality (TIA vs. AIS)

(P= 0.01), and clinical severity (NIHSS: P= 0.001; Barthel Index:

P,0.001) showed a significant association with serum VWF levels.

VWF levels increased with patient age and clinical severity, while

AIS patients had higher VWF levels than TIA patients.

A multivariate analysis of all variables was performed using a

linear regression model (Table 3). Three parameters: NIHSS.15

points, intake of platelet inhibitors before blood withdrawal, and

CRP at admission, were identified as independent predictors of

VWF levels. The time point of blood withdrawal (days 0, 1 and 3)

did not influence VWF levels (P= 0.99) (data not shown).

Table 2. Predictors of von Willebrand factor (VWF) levels in acute ischemic stroke (AIS)/transitory ischemic attack (TIA) patients by
univariate analysis.

VWF (%) P value

Sex, n

Male 189687

Female 2126103 0.30

Age, years

,55 157644

55–64 2076117

65–74 188676

75–84 207672

.84 2536154 0.001

Disease modality

AIS 2196101

TIA 173680 0.01

Modified TOAST criteria

Cardioembolism 200687

Large-artery atherosclerosis 2756131

Small-vessel occlusion 170679

Other determined or undetermined etiology 2016111 0.30

Duration between symptom onset and blood withdrawal, h

,5 2336134

5–12 184689

12–24 1906215 0.11

National Institutes of Health Stroke Scale

0–4 179671

5–9 2126102

10–15 220655

.15 2996182 0.001

Barthel Index

0–30 2866146

35–70 182661

.70 166652 ,0.001

Thrombolysis

Yes 2236101

No 190691 0.09

Platelet inhibitor before blood withdrawal

Yes 189683

No 2186111 0.11

TOAST = Trial of Org 10172 in Acute Stroke Treatment.
doi:10.1371/journal.pone.0099851.t002
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Discussion

This study shows that VWF serum levels are significantly

increased in both acute and chronic cerebrovascular disorders

compared with healthy persons. Furthermore, we identified

important demographic and clinical predictors of VWF levels in

patients with acute IS or transitory ischemic attack.

It is known that VWF is a risk factor for coronary heart disease

[21]. Despite a few studies that could not find an association

between VWF levels and stroke risk or increased coagulability

[22,23], the vast majority of prospective studies point towards high

VWF levels as risk factor also for AIS [12,24–28]. Our findings

support this hypothesis by showing that VWF levels are higher in

patients with an acute cerebrovascular event or CCD than in

healthy individuals. Importantly, stroke severity (NIHSS.15

points), CRP levels at admission, and the intake of platelet

inhibitors in the days before blood withdrawal each independently

predicted VWF levels.

Previous case–control studies demonstrated increased VWF

levels in patients with IS [11,29–31]. While Hanson and co-

workers described that VWF levels differed between etiologic

subtypes of IS, we found no such association [29]. Our finding of

an association of CRP and VWF levels in the acute phase after IS

highlights the role of VWF as an acute-phase reactant associated

with inflammation [32] and, in particular, with thrombo-

inflammation in IS [4,33,34]. The term ‘‘thrombo-inflammation’’

describes the interaction of thrombotic (e.g. coagulation factors,

platelets) and inflammatory (e.g. immune cells) circuits operating

at the ischemic neurovascular unit and has recently been identified

as key mechanism of stroke occurrence and propagation at least in

rodents [33,34].

Elevated levels of VWF in patients with chronic cerebrovascular

disease compared with healthy controls presented herein is similar

to the findings of a previous study, which showed that subjects with

carotid plaques have elevated VWF levels [35]. In addition, a

recent report shows that atherosclerotic geometries exacerbate

pathological thrombus formation post-stenosis in a VWF-depen-

dent manner [36]. However, findings from another investigation

suggest that the additional explanatory power of VWF (on top of

the traditional risk factors, such as hypertension and diabetes) is

comparatively low in patients with carotid atherosclerosis [37].

Growing evidence indicates that demographic and clinical

parameters as well as therapeutic interventions can influence VWF

levels [16,17], but the relevance of these variables on VWF

regulation in different disease settings is unclear. Our findings, and

those of other researchers, underline the complexity of associations

with VWF levels. On the one hand, a high VWF level at admission

is indicated as a marker of severe IS; on the other hand, VWF level

is influenced by a variety of other variables (e.g. ABO blood group

[38–41], existence and composition of carotid plaques [15,16])

which complicates its interpretation. Only recently, it has been

shown that extracellular sodium levels within the high physiolog-

ical range can raise VWF levels thereby increasing the risk of

pathological thrombosis [42].

Our findings raise important considerations for clinical practice.

It may be hypothesized that VWF level could represent a potential

biomarker of stroke risk and stroke severity. Yet, the proactive

screening of VWF levels on a regular basis to assess the risk of

thromboembolic disease in individual patients has still not been

recommended by medical societies [4]. This may be due to the

lack of standardized test systems [4], or the confounding of

measurements by the current lack of understanding of factors that

influence VWF levels [13,14] – which would impede the

interpretation of findings and the prediction of the corresponding

cerebrovascular risk.

In addition, VWF levels could perhaps provide a means to

screen patients for specific treatment approaches. In various stroke

models, blocking VWF by monoclonal antibodies has been shown

Table 3. Predictors of von Willebrand factor levels in acute ischemic stroke (AIS)/transitory ischemic attack (TIA) patientsby
multivariate analysis.

Coefficient 95% confidence interval P value

Sex

Male Reference

Female Age, years 4.12615.75 227.13 to 35.37 0.79

,55 Reference

55–64 37.28627.04 216.35 to 90.92 0.17

65–74 24.43625.22 225.62 to 74.47 0.34

75–84 39.70626.68 213.23 to 92.64 0.14

.84 37.83633.84 229.30 to 104.97 0.27

Disease modality 22.09617.47 212.58 to 56.76 0.21

National Institutes of Health Stroke Scale

0–4 Reference

5–9 11.20623.52 235.47 to 57.86 0.64

10–15 36.75627.77 218.35 to 91.86 0.19

.15 71.13632.47 6.72 to 135.55 0.03

Thrombolysis 20.68620.35 241.06 to 39.69 0.97

Platelet inhibitor before blood taking 241.09616.66 274.13 to 28.05 0.02

C-reactive protein at admission, mg/dl 8.9162.25 4.44 to 13.37 ,0.001

Neutrophils at admission, n*1000/ml 1.0363.85 26.61 to 8.67 0.79

doi:10.1371/journal.pone.0099851.t003
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to provide an impressive protective effect [5,9]. Assuming that

patients with high VWF levels would benefit most from such a

potential future pharmacological anti-VWF therapy, it could be

important to identify those patients. Based on our results, patients

with severe IS without previous intake of platelet inhibitors show

the highest levels of VWF and could possibly be the patient

subgroup most suited to a targeted anti-VWF therapy. Of course,

pharmacological targeting of VWF presents many challenges, and

might be less reliable than blocking other more ‘‘inert’’ molecules

of thrombus formation.

Our study has several limitations. Because of the case–control

study design, blood withdrawal took place post-cerebrovascular

event, which might lead to a reverse causation. However, the

increase in VWF levels in patients with AIS persisted over 3 days.

This suggests that elevated VWF levels were not due to early and

transient activation of the cerebral endothelium. Rather, a pre-

existing rise in VWF levels, i.e. before the occurrence of the

ischemic event, might be postulated. Nevertheless, it should be

emphasized that this study describes the degree and significance of

associations between VWF levels and demographic/clinical

parameters, but does not assign causality. To overcome this

limitation, prospective clinical trials should follow this case–control

study. Furthermore, for ethical reasons, we could not recruit

patients who were unable to give informed consent. Thus, patients

with very large strokes and/or aphasia might be under-represented

in our study. Further limitations include the relatively high

proportion of TIA patients (42%) for which a non-vascular origin

of symptoms cannot be entirely excluded, and treatment with

anticoagulants in 7% of AIS/TIA patients which might interfere

with the regulation of VWF levels.

Conclusion

In summary, we have demonstrated in this pilot study that an

important potential biomarker and promising target for future

therapeutic approaches, VWF, is differentially regulated in

patients with acute and chronic cerebrovascular diseases. The

ability to distinguish patient subtypes, or those at risk of an event,

on the basis of VWF levels is a tempting approach that may enable

better diagnosis or more targeted therapy in the future. In

addition, this study adds to our knowledge of the factors that can

influence VWF levels in a given patient. Nevertheless, prospective

clinical trials are necessary to reproduce these results and to

overcome the limitations that accompany retrospective study

designs.
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