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Abstract

Cell lines represent the everyday workhorses for in vitro research on multiple myeloma (MM) and are regularly employed in
all aspects of molecular and pharmacological investigations. Although loss-of-function studies using RNA interference in
MM cell lines depend on successful knockdown, no well-established and widely applied protocol for efficient transient
transfection has so far emerged. Here, we provide an appraisal of electroporation as a means to introduce either short-
hairpin RNA expression vectors or synthesised siRNAs into MM cells. We found that electroporation using siRNAs was much
more efficient than previously anticipated on the basis of transfection efficiencies deduced from EGFP-expression off
protein expression vectors. Such knowledge can even confidently be exploited in ‘‘hard-to-transfect’’ MM cell lines to
generate large numbers of transient knockdown phenotype MM cells. In addition, special attention was given to developing
a protocol that provides easy implementation, good reproducibility and manageable experimental costs.
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Introduction

Multiple myeloma (MM) is a cancer affecting terminally

differentiated plasma B cells [1]. MM accounts for about 15%

of newly diagnosed hematologic cancers [2,3] and the recent

development of novel treatment options has led to considerably

longer median survival [4]. While prolonged patient survival is

being reported after the application of novel therapy regimens

[5,6], MM is generally still considered incurable with particularly

unfavourable prognoses for certain genetically-defined patient

subgroups [7,8].

The profound advances in sequencing technologies now permit

the use of primary MM cells to characterise an ever larger range of

genetic traits throughout the course of a patient’s disease [9,10,11].

Nevertheless, human MM cell lines (HMCLs) are and will remain

indispensable as tools for functional in vitro analyses and

preclinical development of novel treatment approaches. Growing

in suspension and/or semi-adherently, HMCLs do not count as

particularly amenable to transient transfection with nucleic acids.

Few publications have specifically addressed this topic [12,13] and

although a roster of anecdotal evidence implies various transient

transfection methodologies for use with (specific) HMCLs

[14,15,16,17,18,19,20], no broadly-used method of choice has so

far emerged – not least, because transfection efficiency is usually

either perceived as low or not easily determined in the first place.

RNAi knockdown experiments in HMCLs can usefully comple-

ment pharmacologic inhibition studies and also offer a chance to

target undruggable proteins. We have over the past ten years

successfully used transient transfection of HMCLs with pSUPER

short hairpin RNA expression vectors via electroporation

[21,22,23,24,25]. To overcome the disadvantage of low transfec-

tion efficiencies we have applied a specific purification step, which

leads to very pure fractions of strongly transfected cells [21,23].

However, the necessity for purification adds to the amount of

work-time needed, potentially increases the stressfulness of the

whole methodology and also increases the overall cost of the

procedure. Although this method can in principle be scaled up at

will, it is in practice rather cumbersome to isolate high numbers

(i.e. ‘‘millions’’) of strongly transfected MM cells. We therefore

tested the efficiency of knockdown approaches using the same

electroporation conditions but employing siRNA or stealth siRNA

oligonucleotides instead of short-hairpin expression vectors.

This manuscript describes in detail the procedures for plasmid

versus oligonucleotide electroporation into HMCLs, compares the

respective transfection and knockdown efficiencies and discusses

the advantages and disadvantages of both experimental settings.

Our aim is to summarise our experience with electroporation of

MM cell lines that work well in our hands and to provide efficient

models for functional analyses. We therefore explicitly intend to

convey our personal take on all practical aspects connected to

these tasks in order to provide solid guidance on how to plan,

perform and interpret such experiments. Other points considered

are the potential for easy application of these protocols in other

laboratories, good feasibility of the procedures in the hands of

researchers and technicians, and strict cost effectivity in order to

serve as a workable standard procedure.
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Materials and Methods

Human Multiple Myeloma Cell Lines (HMCLs)
HMCLs (AMO-1, JJN-3, L-363, OPM-2, RPMI-8228) were

bought at the German Collection of Microorganisms and Cell

Cultures (DSMZ; Braunschweig, Germany). INA-6 cells were a

gift from Martin Gramatzki (University Medical Center Schleswig-

Holstein, Kiel, Germany) [26]. After acquisition the cells were

immediately expanded to create a stock bank of 50 vials stored in

liquid nitrogen. One of these vials was then used to generate a

working bank of between 30–50 vials. Every 3–4 months current

cell cultures were retired and reinstated from the respective

working banks (dead-end culture). Stock and working banks were

confirmed to be negative for mycoplasma [27] at the time of their

creation, and current cell cultures were also regularly tested. All

cells were cultured at 5% CO2, 37uC, in RPMI-1640 medium

supplemented with 10% FBS, 1 mM sodium pyruvate, 2 mM

glutamine, and 100 U/ml penicillin +100 mg/ml streptomycin.

INA-6 cells were supplied with 2 ng/ml recombinant human

interleukin-6.

Reagents
Annexin V was prepared according to the protocol detailed in

[28], coupled to PromoFluor 647 using its commercially available

N-hydroxysuccinimidyl ester (PromoCell, Heidelberg, Germany;

PK-PF647-1), and the final concentration adjusted such that 1 ml

produced a maximal signal shift in FACS measuremants of MM

cells. Stealth siRNA against enhanced green fluorescent protein

(cat. no. 12935-145) and custom-built stealth siRNA against

human ERK2 (59-GAGGAUUGAAGUAGAACAGGCUCUG-

39, equivalent to bases 900 to 924 of human ERK2) were obtained

from Life Technologies (Darmstadt, Germany). 6-carboxyfluor-

escein (6-FAM)-labelled siRNA against ERK2 (59-fluorescein-

AAGAGGAUUGAAGUAGAACAG-dTdT-39, a shorter version

of the sequence mentioned above) was from Qiagen (Hilden,

Germany). The pcDNA3.1-CD4D and the pSUPER-ERK2

vectors are described in [21].

Electroporation of MM Cells
MM cells from routine cultures (cell densities 36105276105/

ml) were pelleted at 3006g and resuspended in fresh RPMI-1640

medium (i.e. freshly opened medium or medium stored at such

conditions that preserve the pH of the unopened bottle [e.g. 15 ml

screwcap tubes filled to the brim]) without additives. Cell densities

in the final electroporation mix varied from between 26107/ml to

66107/ml, which for electroporations in 2 mm cuvettes (200 ml

volume) represents a range from 0.4610721.26107 cells per

electroporation, and for 4 mm cuvettes (500 ml volume) translates

to 16107236107 cells per shot. Plasmid and/or siRNA solutions

were dispensed into 1.5 ml Eppendorf tubes and mixed with the

cell suspension by gentle pipetting. The complete range of

electroporation mixes was prepared and electroporation carried

out with a Gene Pulser (Bio-Rad Laboratories, München,

Germany) at a capacity setting of 960 mF and with voltages

ranging from 150 V-350 V. A single exponential decay pulse was

applied and cell suspensions were immediately removed from the

cuvette and pipetted into another tube containing 500 ml fresh

medium without additives. Samples were left standing at room

temperature until all electroporations were finished. Cells were

then transferred to dishes with prewarmed full medium for further

culture at standard conditions.

Tip: Re-use of electroporation cuvettes is permissible, at least

when no use of electroporated cell material for PCR purposes is

intended. We routinely use one cuvette for sequential performance

of all electroporations within one experimental series, thoroughly

rinsing it with PBS (squirt bottle) and quickly draining the cuvette

(hitting it onto paper towels) in between electroporations.

Afterwards the cuvette is cleaned with PBS and with EtOH and

air-dried. This procedure can be repeated several times without

significant loss of electroporation efficiency. Monitoring transfec-

tion efficiency by adding some pEGFP-N3 vector will help to

establish a sensible routine.

Note: The use of really ‘‘fresh’’ medium in the cell suspension

intended for electroporation was the most (in fact the only) critical

factor for cell survival (at 280 V, a voltage that permitted the best

transfection efficiency as measured by EGFP expression from

pEGFP-N3) when we established this protocol for INA-6 cells (in

contrast to such parameters as temperature before or after

electroporation, recovery times, DNase-treatment after electropo-

ration, cell density in culture or in the electroporation mix,

presence of phenol red). This may reflect a particular sensitivity of

INA-6 cells to the pH conditions of the solution after electropo-

ration, and it need not necessarily be the same for other HMCLs.

Because it is not much extra work we have simply extended this

procedure to all HMCLs without further specific elaboration.

Purification of Electroporated MM Cells
For simple removal of debris and dead cells the cell cultures at

either day 1 or day 2 post-electroporation were pelleted and

resuspended in a mixture of OptiPrep (a 60% solution of

iodixanol; Progen Biotechnik, Heidelberg, Germany) with full

medium (2.5 ml medium + 0.75 ml OptiPrep). The cell suspen-

sions were overlayered with 200 ml PBS and centrifuged for 5 min

at 4,0006g. Live cells, assembled at the interface between

OptiPrep/medium and PBS, were once washed with full medium

and taken into culture for further use in experiments.

For the column purification procedure using MACSelect 4

MicroBeads (Miltenyi Biotech, Bergisch-Gladbach, Germany) the

cell cultures at either day 1 or day 2 post-electroporation were first

washed with PBS and then with cold column buffer (PBS with

0.5% FBS and 2.5 mM EDTA). After resuspension in 340 ml cold

column buffer 60 ml CD4 MicroBeads (Miltenyi Biotech, cat. no.

130-070-101) were added, and the mixture was incubated for 10–

20 min at 4uC with occasional flicking. Samples were run over

paramagnetic bead-filled columns (Large cell columns, Miltenyi

Biotech, cat. no. 130-042-202), these were washed with cold

column buffer, removed from the magnet and the retained cells

flushed out with 2 ml full medium. Because the column run also

retains significant numbers of dead cells it is necessary to

subsequently subject the eluate to the above-described OptiPrep

purification procedure.

Note: It is not useful to perform dead cell removal before the

column run, because the column procedure will re-concentrate the

small amount of debris that is still present and the end result is

much dirtier.

Tip: The paramagnetic bead columns can be re-used. For

regeneration we flush them 3–4 times with hot tap water, then

once with distilled water (to remove salts) and finally with 96%

ethanol (to remove most of the water). Columns are then quickly

dried in an incubator at up to 65uC (reasonably quick drying is

necessary because otherwise the columns turn rusty and should be

discarded). To re-use these columns, 100 ml 80% ethanol is

applied in order to ensure good wetting of the beads and complete

air removal from the column before the new sample is loaded.

Tip: In order to restrict the flow rate through the Large cell

columns the company provides flow resistors (i.e. 23 gauge

hypodermic needles) with each box of columns. In our experience

and for reasons entirely unclear the use of 23 gauge needles from
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Terumo (Neolus, NN-2332R) results in considerably more

consistent sample flow and less occasions of complete flow

blockage.

Western Blotting and Antibodies
Frozen cell pellets were dissolved in Laemmlie-buffer (60 mM

Tris-HCl, 10% glycerol, 2% SDS, 10% b-mercaptoethanol,

0.01% bromophenol blue; pH 6.8) (10 ml buffer per 100,000 cells)

and subjected to sonication (3–5 s on ice with a UP50H sonicator

equipped with an MS1 sonotrode) (Hielscher, Teltow, Germany).

Samples were then heated to 89uC for 3 min, spun for 5 min at

room temperature and the supernatants used for standard SDS-

PAGE with 12% gels. Wet blotting was carried out in Mini Trans-

Blot modules (Bio-Rad Laboratories) using nitrocellulose mem-

branes and blotting buffer (20% v/v methanol, 25 mM Tris-HCl,

192 mM glycine, pH 8.6). The following antibodies were used for

target detection: anti-ERK1/2 (Cell Signaling Technology,

Frankfurt am Main, Germany; no. 9102), anti-ERK1/2 (Santa

Cruz Biotechnology, Heidelberg, Germany; sc-94), anti-phospho-

ERK1/2 (Cell Signaling Technology; no. 9101), anti-tubulin

(Biozol, Eching, Germany; BZL03568). The secondary antibodies

were from Jackson ImmunoResearch Laboratories (Newmarket,

UK): anti-rat-HRP (112-036-062), anti-rabbit HRP (111-036-045).

A freshly made solution of luminol (2.5 mM), p-coumaric acid

(0.2 mM) and H2O2 (0.01%) in 100 mM Tris-HCl (pH 8.8) was

used for chemiluminescent detection [29].

Flow Cytometry
Cells were washed with PBS, pelleted and resuspended in

200 ml of cold annexin V binding buffer (10 mM HEPES/NaOH,

140 mM NaCl, 2.5 mM CaCl2; pH 7.4) containing 1 ml of

annexin V-PromoFluor 647 solution (see Reagents) and 1 mg/ml

propidium iodide. Flow cytometry was performed using a

FACSCalibur (BD Biosciences, Heidelberg, Germany). Datafiles

were analysed with FlowJo version 8.8.7 (Tree Star, Inc., Ashland,

U.S.A.).

Statistical Analysis
Calculation of the ‘‘range overlap’’ in FACS-based measure-

ments for a given time-point: Measured events were gated for the

live cell population according to the forward/sideward scatter

pattern. The signal range containing the central 98% of events for

the control sample measurement (i.e. all events between the first

and the 99th percentile) was then determined. Finally, it was

calculated what percentage of the total events measured for the

targeted sample fell into this range.

Results and Discussion

Electroporation of HMCLs with Expression Plasmids
Followed by Cell Separation Yields Pure Fractions of
Strongly Transfected Cells

In order to obtain homogeneous fractions of transiently

transfected MM cells we have established a protocol that combines

electroporation with subsequent isolation of the most strongly

affected cells (Fig. 1). This methodology allows very good

knockdown efficiencies with pSUPER-based short-hairpin RNA

expression vectors (applied, for example, in [21,23,24,25]).

Transfection efficiency is judged by introduction of an expression

plasmid for EGFP (Fig. 1a), and – dependent on the HMCL –

transfection efficiencies of up to 40% can be achieved with

standard gear electroporations (Table 1). However, the large

fraction of EGFP-negative cells represents an undesired back-

ground which we have sought to eliminate. Either cell sorting for

EGFP-positive cells (not shown), or co-electroporation of an

expression plasmid for CD4D [21] and subsequent microbead

selection of CD4-positive cells (exemplarily shown in Fig. 1b–e)

can be employed to obtain highly enriched fractions of strongly

transfected cells (Fig. 1d, see Methods section for an exact

description of the purification steps). These cells can then be used

in experiments involving their actual payloads, for example co-

transfected shRNA expression vectors [21,23,24,25], and they are

suitable for transient knockdown studies in applications such as

apoptosis induction, drug testing, proliferation assessments or

Western blotting. Furthermore, the transfection procedure itself is

very cheap and permits easy scaling-up, because once effective

shRNA-expression plasmids have been generated they can be

produced at will and at very low cost. On the downside, FACS-

based cell isolation necessitates access to such a service, potentially

incurring fees and compelling researchers to abide by the

operator’s schedule. The microbead purification approach has

the advantage that it is fast and that all steps can easily be

performed in the laboratory. However, this protocol relies on an

expensive reagent (CD4 microbeads), and because the microbead

columns also retain dead MM cells (Fig. 1c) a density gradient

centrifugation step that removes this debris is required (Fig. 1d).

Last, not every HMCL seems able to implement extracellular

presentation of CD4D (most notably cell line AMO-1; TStü,

personal observation), rendering such cell lines unsuitable for

microbead purification protocols.

Electroporation of HMCLs with siRNA Oligonucleotides
Results in Homogeneous Transfection of the Whole
Viable Cell Population

Using commercial siRNA oligonucleotides instead of shRNA

expression plasmids in electroporations is considerably more

expensive. However, a much larger number of functional

siRNA-oligonucleotide sequences have been published, and

siRNA-oligonucleotide pools provide the fastest way to assess

molecular and biological effects of target knockdown when only

trial experiments or a limited set of electroporations are required.

We therefore decided to rigorously test if our protocol could be

adapted to perform (cost-) effective siRNA oligonucleotide-

mediated knockdown studies in MM cells. The central question

was whether the essentially EGFP-negative cell fraction (for

example, the 55.1% of cells logged in the lower left quadrant in the

JJN-3 electroporation shown in Fig. 1f) might nevertheless be

accessible to the much smaller RNA oligonucleotides, and whether

any such effects are strong enough to result in substantial and

reliable target depletion.

We first employed an siRNA against human extracellular signal-

regulated kinase 2 (ERK2) coupled to the fluorescent dye 6-

carboxyfluorescein (6-FAM) to monitor transfection and knock-

down efficiency in MM cell lines AMO-1 and RPMI-8226 (Fig. 2

and Fig. S1). ERK2 was chosen as a target because specific protein

depletion in relation to its homolog, ERK1, is readily detectable by

Western blotting with a single antibody, and because single ERK

isoform knockdown has no adverse effect on the survival or

proliferation of MM cells (TSts, personal observations). The

siRNA sequence was based on the same sequence that had been

found effective when used within an shRNA-expression vector

[21]. Shortly after electroporation with siERK2-6-FAM the whole

viable MM cell population showed a strong shift in fluorescence

(for example: a 43-fold shift of the median in the exemplary

experiment shown for AMO-1 cells in Fig. 2; a 25-fold shift of the

median in the exemplary experiment shown for RPMI-8226 in

Fig. S1), which within 24 h quickly declined to lower, although still

Multiple Myeloma Cell Electroporation
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clearly and universally detectable, levels. This was followed by a

slower decline in fluorescence intensity, until at days 6–7 the signal

was no longer detectable (Fig. 2). The range overlap (see Statistical

analysis) for 6-FAM-labelled siRNA transfected cells with control

siRNA transfected cells was just 1.3%60.35% (n = 3) for AMO-1

cells at the 0 h timepoint, indicating that initially virtually the

whole cell population had acquired the labelled siRNA. Although

Western blotting of cells harvested at days 3, 5 and 7 post-

electroporation confirmed reduced ERK2 levels at early time-

points in the siERK2-6-FAM treated fraction (Fig. 2; Fig. S1),

significant quantities of the protein still remained. These

experiments were therefore inconclusive: the universal shift in

fluorescence and its subsequent fast decline could represent a

genuine effect showing efficient introduction of the labelled siRNA

into MM cells with subsequent fast processing in the RNA-induced

silencing complex. However, the mediocre knockdown efficiency

would then have to be explained by poor siRNA performance,

possibly due to the presence of the fluorescent label. Alternatively,

if the initial strong shift in fluorescence intensity was mainly

artefactual, caused, for example, by labelled siRNA sticking to the

cell surface after electroporation, then the moderate ERK2

knockdown might have been the result of inefficient or random

introduction of the siRNA into the MM cell population.

We addressed these problems using a ‘‘reverse’’ approach. MM

cell line INA-6 was chosen for selection of clones with stable and

bright expression of EGFP, which were then electroporated with a

stealth siRNA against EGFP in order to characterise the decline of

green fluorescence (Fig. 3). Additionally, an expression plasmid for

CD4D was also added to the electroporation mixture, and half of

the transfected culture was subsequently purified by the CD4

microbead column procedure (i.e. yielding a relatively small

number of strongly transfected cells) whereas the other half was

only subjected to debris removal via OptiPrep gradient (i.e.

yielding viable cells without any selection for ‘‘strong transfec-

tion’’). FACS analysis of these cells showed that essentially the

whole culture underwent a strong decline in EGFP intensity,

which reached its nadir of less than 10% compared to mock-

transfected control cells at about 4 days post-electroporation

(Fig. 3). Notably, the extent of EGFP knockdown as well as its

duration were virtually identical between both purification

procedures, indicating that the siRNA had effectively and

indiscriminately been introduced into the large majority of cells

(Fig. 3). Conversely, electroporation of INA-6 cells with the EGFP-

N3 plasmid usually results in no more than 30% efficiency

(Table 1). The EGFP-range overlap between the siRNA-treated

and the mock transfected cells at day three post-electroporation

was 4.5%62.8% (n = 3) and these events always formed a neat

small peak right beneath the signal for the unaffected control cells

(Fig. 3). The true nature of this ‘‘untransfected background’’

remains unclear, however. Although somewhat lower, this peak

was also clearly visible in column-purified cell samples (Fig. 3), and

we consider it very unlikely that any cells would have been

Figure 1. Electroporation of MM cell lines and subsequent
purification of transfected cells. Shown is a representative example
of the procedure using the well-transfectable MM cell line JJN-3. This
standard column purification has now been performed hundreds of
times in our laboratory and is also easily applicable for MM cell lines
INA-6, KMS-11, L-363, MM.1S and U-266 (Table 1). a) Cell culture one day
after electroporation with expression plasmids for enhanced green
fluorescent protein (EGFP) and CD4D, showing about a quarter of cells
strongly positive for EGFP. b)-e) Enrichment of strongly transfected cells
by selection for CD4 surface expression (CD4 MicroBead column
selection). b) Column runthrough of cell culture shown in a). Of note is
the similar look with a), but with depletion of the strongest transfected

cells in b). c) Column eluate of the cell culture shown in a).
Untransfected cells (EGFP- and CD4D-negative) have effectively been
removed, but the column procedure tends to retain significant amounts
of dead cells (EGFP-negative, PI-positive). d) Floating fraction of the
column eluate as shown in c) after ‘‘density gradient’’ (more properly:
density step) treatment using OptiPrep, consisting mostly of viable and
strongly transfected cells. e) Pelleted fraction of the column eluate as
shown in c) after ‘‘density gradient’’ treatment using OptiPrep,
consisting mostly of debris. f) Removal of debris by OptiPrep treatment
from the cell culture as shown in a) without prior column separation,
leaving two main fractions which are either EGFP-negative, or distinctly
EGFP-positive. See Methods section for further details.
doi:10.1371/journal.pone.0097443.g001
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transfected with the CD4D expression plasmid but not with the

siRNA. These events might therefore rather represent dysfunc-

tional cells or cell remnants which were not damaged badly

enough to be excluded through forward/sideward scatter-based

gating (and the preceding debris removal via OptiPrep), but

without the structural integrity to perform siRNA-mediated

degradation of EGFP. Taken together, these experiments clearly

demonstrated that the electroporation of siRNAs into HMCLs can

be nearly 100% effective at conditions when only a fraction of the

cells are successfully transfected by expression plasmids (to be

precise: by the EGFP and CD4D protein expression plasmids).

This result potentially permits transient knockdown experiments in

HMCLs on a considerably larger scale, so that more and/or

different experiments (such as nuclear preparations) can be

performed. For example, a typical electroporation using 36107

JJN-3 cells might yield a final tally of about 16106 cells via the

column purification procedure, but should yield about 1.56107

cells if only debris removal is required. We therefore aimed to

characterise this methodology in further detail.

Short Hairpin RNA- versus Stealth siRNA-mediated ERK2
Knockdown in HMCLs

We electroporated different HMCLs (AMO-1, JJN-3, L-363)

using either a pSUPER-based shRNA expression plasmid against

ERK2 (pSU-ERK2; [21]) or a 25 bp stealth siRNA (stERK2,

based on the same core sequence as the shRNA, see Methods).

pSUPER empty vector-transfected cells served as respective

controls. At day 1 post-electroporation one half of each sample

was subjected to the CD4 microbead column purification

procedure (or to EGFP-based cell sorting for AMO-1 cells) and

the other half simply to debris removal via OptiPrep density

gradient. Cells were harvested for Western blotting and ERK1/2

staining up to day 5 post-electroporation (Fig. 4). Column

purification or cell sorting yielded excellent knockdown results

regardless of whether the shRNA expression plasmid or the stealth

siRNA were used (Fig. 4). Conversely, differences between these

reagents appeared if the cells were simply taken through the

OptiPrep density gradient routine. Knockdown efficiencies for the

stERK2 siRNA equalled those of the more complex purification

procedures, but higher levels of ERK2 (or of its intrinsically

activated form, phospho-ERK2) were observed for pSU-ERK2

transfections (Fig. 4). These experiments confirmed that electro-

poration using siRNA oligonucleotides represents a powerful and

easy way to target the whole HMCL population. Somewhat

surprisingly, the pSU-ERK2-mediated ERK2 knockdown in MM

cells purified just via OptiPrep gradient was often still quite

pronounced and certainly better than the presence of EGFP-

negative cells (usually upwards of 50%) would have suggested. This

effect was especially pronounced in AMO-1 cells, but was also

noticeable in JJN-3 (Fig. 4), suggesting that in terms of

electroporation efficiency the pSUPER plasmid (a 3.1 kb large

derivative of the cloning vector pBluescript) might often rank

closer to the much smaller siRNAs than to the EGFP protein

expression vector (4.7 kb).

Voltage Dependence of siRNA Electroporation in AMO-1
Cells

In practice (i.e. for a defined and fixed set of electroporation

parameters, such as electrode distance, volume, capacity, expo-

nential decay-type pulse), voltage is perhaps the most important

factor for transfection efficiency in electroporation [30]. Optimal

conditions for any specific cell line are a trade-off between the

number and signal intensity of affected cells on the one hand, and

the ratio of living to dead cells on the other. Based on EGFP-

expression from the pEGFP-N3 vector we found conditions of

270–310 V (at 960 mF with 4 mm cuvettes) most suitable to

achieve acceptable rates of transfection and survival for those MM

cell lines that are at all amenable to any such treatment (see

Table 1). However, given that the use of siRNAs in such

conditions resulted in virtually 100% transfection of the surviving

cells, we tested if siRNA-mediated knockdown efficiency was also

maintained at lower voltages, i.e. in conditions that exert lower

Table 1. Parameters for MM cell line electroporation.

HMCL

Optimal voltage range
with 4 mm cuvette,
max. 56107 cells/ml

Optimal voltage range
with 2 mm cuvette,
max. 2.56107 cells/ml Range of transfected cells using pEGFP-N3

AMO-1 270–300 V 170–180 V 20–30%

INA-6 270–280 V 170–180 V 20–30%

JJN-3 270–300 V 170–180 V 20–30%

KMS-11 270–300 V 180–200 V 20–30%

KMS-12-BM 270–300 V 180–200 V 20–30%

L-363 270–300 V 170–180 V 20–30%

MM.1S 300–320 V 180–200 V 20–30%

MOLP-8 260–270 V none 10–20%

NCI-H929 240–250 V none ,10%

OPM-2 240–250 V 170–200 V ,10%

RPMI-8226 270–300 V 160–180 V ,10%

U-266 270–300 V 220–240 V 10–20%

Rule-of-thumb voltage settings for different HMCLs as deduced from electroporation with an expression plasmid for enhanced green fluorescent protein (pEGFP-N3). All
transfections were carried out with a Gene Pulser (Bio-Rad) with a capacity setting of 960 mF. The whole unpurified cell culture was measured (FACS) at day one post-
electroporation. The percentage ranges given are to be considered as guidelines for standard results based on between 10 (cell lines not regularly used in our
experiments) and hundreds of electroporations (the regularly used ‘‘well-transfectable’’ MM lines). The best electroporations achieved have yielded up to 40% EGFP-
positive cells, but suboptimal conditions - for example due to overly high cell densities in the preceding cell culture - may result in lower efficiencies than indicated.
doi:10.1371/journal.pone.0097443.t001
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experimental stress. AMO-1 cells were electroporated across a

range of voltages with a mixture of the pEGFP-N3 vector (to

determine transfection efficiency by EGFP expression) and the

stERK2 siRNA (to determine transfection efficiency by ERK2

Figure 2. Electroporation of AMO-1 cells with a 6-FAM-labelled
siRNA oligonucleotide. Left column: Fluorescence of AMO-1 cells
electroporated with the siERK2-6-FAM oligonucleotide (green curve) in
relation to mock transfected cells (blue curve) at different time points
post-electroporation. Right: Western analysis for ERK2 knockdown at
days 3, 5, 7 post-electroporation. One representative experiment from a
total of three is shown. Anti-ERK1/2 antibody: CST.
doi:10.1371/journal.pone.0097443.g002

Figure 3. Electroporation of INA-6 cells stably expressing
enhanced green fluorescent protein with an siRNA oligonucle-
otide against EGFP. INA-6-EGFP cells were electroporated with a
solution containing a stealth siRNA targeting EGFP as well as an
expression plasmid for CD4D. One day post-electroporation one half of
the cell culture was purified according to the column procedure (red
curves, also see Fig. 1b)–e)), whereas the other half only underwent
debris removal with OptiPrep (blue curves, also see Fig. 1f)). Purified
cells were further cultured and FACS-analysed for EGFP expression at
the times indicated. Only the live cell fraction (as demarcated in the
forward/sideward scatter) was analysed and plotted against similarly
treated INA-6-EGFP cells (green curves) transfected with a non-EGFP
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knockdown). One day post-electroporation all samples were

cleaned of debris by OptiPrep treatment and then kept in culture

for another 4 days, with samples for Western blotting taken at days

3 and 5 post-electroporation. At low voltages (here: 120 V)

virtually no cell death ensued, but neither were any EGFP-positive

cells visible. At the high end (here: 320 V) the transfection

efficiency was about 20%, but a large number of cells did not

survive the procedure (Fig. 5, top panel – upper row). After debris

removal the increase in EGFP expression within the live cell

fraction with rising voltages was clearly visible (Fig. 5, top panel –

lower row), although this came at the expense of lower absolute

numbers of live cells (not shown). Staining for ERK2 showed that

about the same level of depletion was achieved for voltages of 200

and higher (Fig. 5, lower panel). 200 V corresponded to the setting

at which EGFP-positive cells began to appear in substantial

quantities (11.4% in the exemplary experiment shown in Fig. 5

(upper panel)). No differences in ERK2 knockdown efficiency were

observed between cells harvested at days 3 and 5 post-electropo-

ration, although it remains possible that the effect might fade faster

for lower voltage settings if still longer-term cultures were

evaluated. These experiments show that in siRNA electroporations

of MM cells milder voltage settings are permissible, and that an

‘‘imperfect’’ indicator – such as the EGFP-N3 plasmid used here –

can be used to demarcate a suitable lower limit. Such consider-

ations are important because – as with any other transfection

technique – confounding aspects of the effects of electroporation-

based methods on the cellular assays performed must always be

accounted for [31]. Of note, annexin V/PI-staining of the cultured

AMO-1 cells at day 5 post-electroporation (i.e. day 4 post-

OptiPrep purification) showed no substantial differences in

apoptosis between the different voltage settings, showing that

viable cells isolated at day 1 post-electroporation recovered well

targeting siRNA. Knockdown efficiency was essentially identical in
strength and over time between both purification approaches. One
representative experiment from a total of three is shown.
doi:10.1371/journal.pone.0097443.g003

Figure 4. Knockdown efficiency in MM cells. Knockdown of ERK2 in different MM cell lines after transfection with either a short-hairpin
expression vector (pSU-ERK2) or the ‘‘corresponding’’ target sequence synthesised as 25 bp stealth siRNA (stERK2; see Methods and [21]). At day 1
post-electroporation half of the transfected culture was subjected to the column purification method (also see Fig. 1b)–e)) (resp. cell sorting for AMO-
1 cells) and the other half to debris removal only (also see Fig. 1f)). Cells were harvested for Western blotting at the times indicated. Empty pSUPER
vector (pSU) transfected cells served as controls. The blots show that the ERK2 knockdown efficiency for stealth siRNA is virtually identical between
cells that only underwent debris removal and those that were subjected to the column purification procedure. ERK2 knockdown using the short-
hairpin expression vector was less efficient in debris-removal-only samples compared with their cognate column purification complements (see JJN-3,
L-363). Representative experiments (JJN-3: n = 3; L-363: n = 2, AMO-1: n = 2) are shown. Anti-ERK1/2 antibody: CST.
doi:10.1371/journal.pone.0097443.g004
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even for the highest voltages applied (Fig. 5, middle panel – lower

row).
General Applicability of Electroporation Procedures for
MM Cells

Based on EGFP expression we distinguish the MM cell lines

available in our laboratory as either easy to electroporate (i.e.

generally yielding transfection rates .10%, e.g. AMO-1, INA-6,

Figure 5. Voltage dependence of electroporation and knockdown efficiency in AMO-1 cells. Transfection of AMO-1 cells across a range of
voltages using an expression vector for EGFP (pEGFP-N3) and a stealth siRNA against ERK2 (stERK2) in the electroporation mixture. Top panel:
increases of the fractions of EGFP-expressing as well as of dead cells with higher voltages (top row). Cells taken in culture after OptiPrep-mediated
debris removal reflect only the increase in transfection efficiency for the EGFP expression plasmid (bottom row). Middle panel: purified AMO-1 cells
(those shown in the upper panel, bottom row) after culture for another 4 days. Top row: EGFP expression. Bottom row: annexin V-PromoFluor 647/PI
staining. Even for the highest voltage used (320 V) the purified live cell fraction did not fare worse in subsequent culture than cells electroporated
under milder conditions. Bottom panel: Western analysis of ERK2 knockdown at days 3 and 5 post-electroporation from the same cultures from which
the FACS panels were derived. Efficient siRNA-mediated ERK2 knockdown was achieved at voltages significantly lower than required for the best
levels of plasmid electroporation. However, a lower limit for successful knockdown was reached between the settings for 160 and 200 V. Shown is a
representative experiment of two complete sets (Western blotting included). Anti-ERK1/2 antibody: CST.
doi:10.1371/journal.pone.0097443.g005
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JJN-3, L-363, MM.1S, MOLP-8, U-266), or as hard to

electroporate (NCI-H929, OPM-2, RPMI-8226; Table 1). We

therefore tested if siRNA-mediated ERK2 knockdown was also

productive in the latter cell lines, which we consider unsuitable for

our plasmid-based knockdown protocols. MM cells were electro-

porated with either the ERK2 stealth siRNA or an unspecific

control stealth siRNA as well as with the pEGFP-N3 marker

plasmid, and dead cells were removed via OptiPrep gradient at

day one post-electroporation (Fig. 6, left panel). ERK2 knockdown

and reduction of intrinsic phospho-ERK2 levels were subsequently

determined by Western blotting. The extent of ERK2 knockdown

in OPM-2 and RPMI-8226 cells was roughly on a par with levels

achieved in AMO-1 and JJN-3 cells (Fig. 6, right panel), showing

that MM cell lines that only display low EGFP expression plasmid

penetrance can still successfully be used in siRNA electroporation

experiments. Similar to the dependence on voltage discussed

above, a modicum of EGFP expression suffices to indicate

conditions suitable for successful electroporation with siRNAs.

General Considerations on the Use of Electroporation-
based Knockdown Protocols with MM Cell Lines

RNA interference experiments are powerful means to conduct

loss-of-function analyses, be they in order to complement

experiments with pharmacological inhibitors or to analyse targets

for which suitable inhibitors have not yet been developed. Because

MM cell lines generally grow in suspension or at best semi-

adherently, they belong among the harder-to-manipulate cell types

by transient transfection methodologies. Even though a number of

papers either deal with this issue or report MM cell transfection in

their methods chapter [14,15,16,17,18,19,20], a robustly workable

and widely-used protocol has not yet emerged. Our analyses of

MM cell electroporability with siRNAs were therefore not only

intended to address the purely functional aspects, but also to judge

whether such a protocol could i) easily be performed and

replicated by other researchers in their laboratories, ii) prove

cost-effective, and iii) could be applied to generate sufficient

numbers of transfected cells to conduct experiments that require

substantial amounts of material, such as, for example, nuclear

preparations (i.e. cell numbers in the range of several millions

rather than hundreds of thousands). Regarding ease-of-perfor-

mance electroporation certainly fits the bill, since all that is

required is an electroporation device in addition to standard cell

culture laboratory equipment. A very basic instrument, capable of

providing an exponential decay-type current is sufficient. It has

been described for other cell lines that electroporation protocols

employing more than one electric pulse [32] or continuous square

pulsing at two different field strengths [30] can result in superior

rates of transfection, as determined by EGFP expression. Although

we have occasionally tested square pulse-type current deliveries we

have not found this to consistently achieve (much) better rates in

EGFP-expressing MM cells than a single standard exponential

decay-type pulse. Regarding electroporation of siRNAs such

differences become moot anyway, as we have shown here that

the whole surviving MM cell fraction is successfully being

transfected. In terms of cost effectiveness, the main expense is

the need to buy siRNAs. Because different sequences and different

targets may yield different knockdown results (depending, amongst

other factors, on protein expression levels and the rate of protein

turnover) we would recommend to titrate the effects of a new

siRNA employed in electroporation. Based on hands-on experi-

ence with about 15 different siRNAs and targets a concentration of

between 1–3 mM in the electroporation mix is usually required.

80 nM of a custom-built siRNA will currently (2014) cost about

450 J and provides enough reagent for 50 electroporations at

3 mM concentration and 500 ml of cell suspension (the standard

volume we use in 4 mm electroporation cuvettes). Using 2 mm

cuvettes it is sufficient for 125 electroporations à 3 mM/200 ml.

These numbers are certainly no worse than, for example, expenses

incurred for many antibodies used in a world-wide standard

procedure such as Western blotting. Finally, an especially

appealing aspect of the protocol is the ease with which it can be

scaled up. Densities of up to 56107 MM cells/ml are entirely

permissible, which for an electroporation in 200 ml volume

translates into 16107 cells of which about 3–56106 should be

recoverable alive after OptiPrep cleaning at day 1 post-electropo-

ration. This is sufficient for multiple parallel measurements, such

Figure 6. Electroporation and knockdown efficiencies in ‘‘easy-to-transfect’’ vs. ‘‘hard-to-transfect’’ MM cell lines. Left-hand panel:
MM cell lines were electroporated with an expression vector for EGFP (pEGFP-N3; 10 mg/ml) and stealth siRNAs against either ERK2 (stERK2; 3 mM) or
against no specific target (control; 3 mM). The FACS-measurements represent the cell cultures at day 1 post-electroporation after debris removal with
OptiPrep. Right-hand panel: Knockdown of ERK2 and intrinsic levels of phospho-ERK2 (cells from the cultures represented on the left were harvested
at day 3 post-electroporation for Western blotting). Good knockdown of ERK2 and lowered levels of phospho-ERK2 were found for all four MM cell
lines tested. Shown is a representative experiment of two complete sets (Western blotting included). Anti-ERK1/2 antibody: Santa Cruz
Biotechnology.
doi:10.1371/journal.pone.0097443.g006
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as cell death determinations, proliferation assays, Western analyses

etc. at various time-points, and obviously more electroporations

can effortlessly be performed if still higher cell numbers are

needed. Taken together, we believe that the siRNA electropora-

tion procedure detailed here can confidently be employed in any

laboratory devoted to MM cell research.

Supporting Information

Figure S1 Electroporation of RPMI-8226 cells with a 6-
FAM-labelled siRNA oligonucleotide. Top: Fluorescence of

RPMI-8226 cells electroporated with the siERK2-6-FAM oligo-

nucleotide (green curve) in relation to mock transfected cells (blue

curve) at different time points post-electroporation (p.e.). Bottom:

Western analysis for ERK2 knockdown at days 3 and 5 post-

electroporation.

(TIF)
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(2008) Combined functional and molecular analysis of tumor cell signaling

defines 2 distinct myeloma subgroups: Akt-dependent and Akt-independent

multiple myeloma. Blood 112: 3403–3411.

26. Burger R, Guenther A, Bakker F, Schmalzing M, Bernand S, et al. (2001)

Gp130 and ras mediated signaling in human plasma cell line INA-6: a cytokine-

regulated tumor model for plasmacytoma. Hematol J 2: 42–53.

27. Uphoff CC, Drexler HG (2004) Detecting Mycoplasma contamination in cell

cultures by polymerase chain reaction. Methods Mol Med 88: 319–326.

28. Logue SE, Elgendy M, Martin SJ (2009) Expression, purification and use of

recombinant annexin V for the detection of apoptotic cells. Nat Protoc 4: 1383–

1395.

29. Haan C, Behrmann I (2007) A cost effective non-commercial ECL-solution for

Western blot detections yielding strong signals and low background. J Immunol

Methods 318: 11–19.
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