
Dennis Wiebusch

D
en

ni
s

W
ie

bu
sc

h
Re

us
ab

ili
ty

 fo
r I

nt
el

lig
en

t R
ea

lt
im

e
In

te
ra

ct
iv

e
S

ys
te

m
s

Reusability for Intelligent
Realtime Interactive Systems

 Würzburg University Press

ISBN 978-3-95826-040-5

With recent releases of affordable hardware devices the fields

of Virtual, Mixed, and Augmented Reality gained considerable

attention, wherefore the creation of corresponding software

becomes increasingly important. In the absence of a common

model for flexibly combining and reusing appropriate software

modules, such Realtime Interactive Systems are commonly

implemented from scratch. Borrowing from the fields of Soft-

ware Engineering and Knowledge Representation, this work

develops a model for the creation of reusable components from

existing software modules. With a Knowledge Representation

Layer at its core the model additionally enables the utilization

of methods from the field of Artificial Intelligence, thereby sup-

porting the creation of Intelligent Realtime Interactive Systems.

Dennis Wiebusch

Reusability for Intelligent Realtime Interactive Systems

Dennis Wiebusch

Reusability for Intelligent Realtime
Interactive Systems

Dissertation, Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik, 2015
Gutachter: Prof. Dr. Marc Erich Latoschik, Prof. Dr.-Ing. Samuel Kounev

Impressum

Julius-Maximilians-Universität Würzburg
Würzburg University Press
Universitätsbibliothek Würzburg
Am Hubland
D-97074 Würzburg
www.wup.uni-wuerzburg.de

© 2016 Würzburg University Press
Print on Demand

Coverdesign: Jakob Lö�er
Zeichnung: Francis Kaiser

ISBN 978-3-95826-040-5 (print)
ISBN 978-3-95826-041-2 (online)
URN urn:nbn:de:bvb:20-opus-121869

Except otherwise noted, this document—excluding the cover—is licensed under the
Creative Commons Attribution-ShareAlike 3.0 DE License (CC BY-SA 3.0 DE):
http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 3.0 DE License (CC BY-NC-ND 3.0 DE):
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

www.wup.uni-wuerzburg.de
http://creativecommons.org/licenses/by-sa/3.0/de/
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Acknowledgments
Finishing this thesis would not have been possible without many of the people who accompa-
nied me during the time of its creation. Some of them directly in�uenced my work, while
others accompanied me in life beyond. To each and everyone of them I owe the fact that I
was able to successfully make it through my PhD time.
First and foremost, I am very grateful to my supervisor, Prof. Dr. Marc Erich Latoschik,

for providing me with the opportunity to pursue my thesis. He always allowed me to follow
my own ideas, providing helpful discussions and advice whenever needed. Moreover, I am
thankful for being given the opportunity to support the establishment of his professorial chair
and for the trust he placed in me during the past years.
Undoubtedly, this thesis would not exist the way it does, if I had not been supported by my

friend and colleague Martin Fischbach, who was a constant companion all the time. Besides
co-development of the Simulator X framework and countless productive discussions, he
cared about my �tness (going to the gym and playing squash) as well as physical and mental
well-being (cooking and playing console games). I am sincerely grateful for his support and I
hope that I have been—and will be—as helpful to him on his way to his PhD.
Although she turned her back on academic life before my thesis was �nished, Anke Giebler-

Schubert is probably the secondmost important person to help memaking it throughmy PhD
time. For one, many aspects of the created so ware are the result of very fruitful discussions
with her. Much more importantly, she was always there for me to talk when I needed to have
a weep over life at and beyond work.
I am grateful to Henrik Tramberend and Stephan Rehfeld, who have in�uenced my work

from the start in their roles as colleagues and members of the SIRIS project, in the context of
which the foundation for this thesis was established. Moreover, I want to thank my colleague
Jean-Luc Lugrin for helping me with valuable comments during work on publications and
especially for his dry sense of humor. I also want to thank Benjamin Eckstein, who served
as a self-proclaimed beta tester for the late aspects of the Simulator X framework during his
master thesis (he thus had little choice, all the more I am thankful for his support).
My brother Nico has been a source of inspiration and always helped me to divert my

thoughts to other topics of scienti�c nature when I was stuck, needed some distraction, or
simply when he felt like it. Each time I needed a safe haven, my mother Marita and my sister
Ines provided me with a place to return to and to feel understood.
I would especially like to thank my dear friend Carl David Mildenberger and his wife Anna,

who took the burden to migrate to Scotland to provide me with a place to get away from it all.
Even more, they decided to get two children to entertain me in those days. Although I have
the feeling that I am not the only reason for this, I am glad that both of them are very likable
and it thus turned out to be a good decision, anyway. All jesting aside, I am deeply thankful
for our friendship, for the supportive conversations, and for all the good times we shared.

I feel lucky to have found a friend in Friederike Meyer. No matter where she was living,
she always was open to a visit by me. Over the time, she became my personal cultural and
nutritional adviser, a familiar, and someone I do not want to miss. I also wish to thank Claudia
Hänel, who supported me with encouraging words in the late phases of writing and kept me
believing in myself. I owe her large parts of the motivation to �nish this thesis and am very
glad to call her a friend.
I am much obliged to those who took the time to proofread this thesis, in whole or in part,

and provided me with suggestions and corrections: Sebastian Oberdörfer, Julia and Christian
Fröhlich, Regina Roßmann, and Magdalena Hartmann. Special thanks go to my friend of
many years, Francis Kaiser, for creating the cover image for this book.
And last, but most certainly not least, I want to mention those, who have been there when

I hit rock bottom and needed someone to talk to: Lara Luttmer who made me take a deep
breath and relax my mind every time I was close to stumble. Simon and Alexandra Claßen
who, no matter what, always were on hand with help and advice for me, and Maha Salem and
Melanie Hey who, knowing what I was going through, have supported me with empathy and
words of understanding.

Many thanks to all of you!

vi

Preface
At the time of this writing, the acquisition of Oculus by Facebook for an equivalent coun-
tervalue of approximately 2 billion dollars is 18 month old. A major player in the social web
industry buys itself into a start-up company for consumer head-mounted displays (HMDs).
HMDs are one vital periphery for an idea which gained momentum during the late 60th and
in various science �ction stories: Virtual Reality (VR). VR research underwent a staggering
process and in general, the expectations of many people were not met so far and hence many
thought of VR as being dead. In contrast to these prophecies, the idea of VR, while so far not
being successful commercially, has always been an active �eld of research and science. Once a
domain of specialized (and very expensive) hard- and so ware, researchers all over the world
worked at the necessary technology and its improvement constantly.
Today, the public view and expectation of VR (again) changed drastically. First, the neces-

sary high quality graphics systems became a�ordable (thanks to the gaming industry). Second,
consumer-grade tracking systems were developed (again, targeting entertainment). ¿ird,
a er the Facebook deal (thanks to the mobile industry for cheap high resolution displays),
there seems literally to be no big player in the industry, from game companies to simulation
and robotics etc. who does not revive at least some ideas of applying VR to their own products
or to built new complete VR products.
Dr. Wiebusch came to the �eld long before the new hype started and he thoroughly

analyzed the existing state-of-the-art of VR systems since then. VR researchers have produced
impressive results over the years despite the ups and downs of the �eld and the general public
recognition. Still, many of the sometimes very impressive demos and so ware systems built
over the years could today only be analyzed by the papers published or the videos produced.
¿ey could no longer be executed or tried out.
¿e general problem: VR system o en combine many di�erent hard- and so ware parts

and they o en tend to become very complex due to their manifold underlying functionality.
¿e well-known fact that “so ware ages” is stubbornly dominant for many VR systems.
Reusability, a very important so ware quality, is o en low for VR systems, a problem for which
Dr. Wiebusch developed an interesting and promising solution. He proposes a knowledge-
based model to describe the relevant aspects and so ware interfaces of highly interactive
and intelligent human-computer systems. So called real-time interactive systems (RISs)
combine complex functional requirements with very speci�c non-functional requirements:
Multimodal and multimedia input/output has to be realized given user-oriented psycho-
physical constraints in real-time. RIS systems comprise VR and many other related domains,
e.g., augmented reality (AR), mixed reality (MR), computer games, robotics, or telepresence.
¿e proposed solution of Dr. Wiebusch presents a promising approach to increase so ware

quality, speci�cally reusability, of RIS in general. In addition, his knowledge-based approach
establishes an implicit semantics layer not only bene�cial in terms of so ware quality. Many
interesting state-of-the-art human-computer interaction paradigms, e.g., multimodal (speech

and gesture etc.) interfaces, virtual agents, or social robotics, are based on algorithms which
require a representation of the semantics of the environment (the interaction domain) and
the communicative content. ¿e approach by Dr. Wiebusch ful�lls this central requirement as
an implicit feature of the system architecture and makes it continuously available throughout
the so ware development process. Given the current regained interest in VR in general, it
seems that Dr. Wiebusch presents his work just at the right time.

Marc Erich Latoschik
Chair IX – Human-Computer Interaction
Insitiute of Computer Science
University of Würzburg

viii

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Reusability for Intelligent Realtime Interactive Systems 4

1.2.1 So ware Reusability and So ware Reuse 4
1.2.2 Intelligent Realtime Interactive Systems 6

1.3 Problem Statement . 8
1.4 Objectives . 9
1.5 Structure . 10

2 RelatedWork 13
2.1 Overview . 13
2.2 So ware Reusability . 14

2.2.1 De�nitions . 14
2.2.2 Bene�ts and Inhibitors of So ware Reuse 17
2.2.3 Facets of So ware Reuse . 20
2.2.4 Reuse Techniques . 22
2.2.5 Measuring Reusability . 26
2.2.6 Intermediate Conclusion . 27

2.3 Intelligent Realtime Interactive Systems . 28
2.3.1 Aspects of VE Development . 30
2.3.2 VR Frameworks . 31
2.3.3 Game Engines . 36
2.3.4 IVE frameworks . 39

2.4 Knowledge Representation . 44
2.4.1 Forms of Knowledge Representation 45
2.4.2 Ontologies . 47
2.4.3 Action Representation . 49
2.4.4 Knowledge Representation Layers . 49

2.5 Summary . 51

3 A Knowledge RepresentationModel for IRISs 55
3.1 Semantics . 55
3.2 Semantics of IRIS Frameworks . 56

3.2.1 Bene�ts of Integrated Semantics . 56
3.2.2 Aspects and Requirements . 57
3.2.3 Level of Integration . 61
3.2.4 Representable Elements . 62
3.2.5 Summary . 69
3.2.6 Adopting the Web Ontology Language 69

I

3.3 A Reusable Knowledge Representation Model 73
3.3.1 Relation Descriptions . 73
3.3.2 Value Descriptions . 74
3.3.3 Aspects and Entity Descriptions . 77
3.3.4 Actions, Preconditions, and E�ects 79
3.3.5 Events . 81
3.3.6 Simulation Components . 81
3.3.7 Choosing an Adequate Representation 82
3.3.8 Summary . 85

3.4 Integration into an IRIS Framework . 86
3.4.1 A Layered Approach . 86
3.4.2 Integration into Program Code . 87
3.4.3 Cost-Bene�t Analysis . 92

3.5 Summary . 98

4 A Semantics-based Component Model for Reusable IRISs 99
4.1 Aspects of Reusability . 99
4.2 A Semantics-based Approach . 104

4.2.1 Ontological Grounding . 105
4.2.2 Semantic Values . 105
4.2.3 Semantic Traits . 106
4.2.4 Relations . 107
4.2.5 Methods . 109
4.2.6 Example of Application . 110
4.2.7 Annotations . 112
4.2.8 Bene�ts and Drawbacks . 113

4.3 A Uniform Access Model . 114
4.3.1 State Representation & State Transitions 115
4.3.2 Uniform Access to the Simulation State 115
4.3.3 Simulation Modules . 117
4.3.4 Bene�ts and Drawbacks . 117

4.4 Concurrency: Adoption of the Actor Model 119
4.4.1 Issues to be faced . 120
4.4.2 Integration . 122

4.5 A Component Model for IRIS Frameworks 126
4.5.1 Semantic Values, Events, and Automatic Type Conversion 127
4.5.2 Entity and Component Descriptions 129
4.5.3 Components . 133
4.5.4 Application Composition . 138

4.6 Summary . 139

II

5 Simulator X 143
5.1 Simulator X - A VR Research Platform . 143
5.2 Architecture . 144

5.2.1 Actors . 144
5.2.2 Scala . 145
5.2.3 Semantic Values . 148
5.2.4 Events . 149
5.2.5 State Variables . 150
5.2.6 Entity Model . 152
5.2.7 Relations . 157
5.2.8 Components . 158
5.2.9 Ontology . 162

5.3 Features . 165
5.3.1 Distributed Computing . 166
5.3.2 Automatic Type Conversion . 167
5.3.3 State History . 168

5.4 Project Structure . 170
5.4.1 Version Control and Project Structure 170
5.4.2 Dependency Management . 171

5.5 Implemented Components . 172
5.5.1 Adding new Sensors . 172
5.5.2 Reasoning . 173
5.5.3 Planning . 175
5.5.4 Example Component: Unity . 179

5.6 Summary . 182

6 Validation 185
6.1 Evaluating Reusability . 185
6.2 Case Study: Replacing a Rendering Component 185

6.2.1 Creating a new Component . 186
6.2.2 Exchanging Components . 188
6.2.3 Reuse in Simulator X . 191

6.3 Developed Applications . 193
6.3.1 Research Demonstrations . 193
6.3.2 Exhibitions . 196
6.3.3 Teaching-related Applications . 197

6.4 Opinions: Questionnaires . 197
6.4.1 Results: NASA TLX . 199
6.4.2 Results: QUESI . 202
6.4.3 User Comments . 204
6.4.4 Discussion . 205

6.5 Summary . 206

III

7 Conclusion 209
7.1 Summary . 209
7.2 Future Work . 212

Bibliography 215

A OWL De�nitions 231

B Interfaces 237

C Questionnaire Results 239

IV

Acronyms
3DUI 3D User Interface
ABox Assertional Box
AI Arti�cial Intelligence
AOP Aspect Oriented Programming
API Application Programming Interface
CBSE Component-Based So ware Engineering
COTS components-o�-the-shelf
CWA Closed World Assumption
DAML DARPA Agent Markup Language
DL Description Logic
DSL Domain Speci�c Language
ECS Entity-Component-System
FOL First-Order Logic
GUI Graphical User Interface
IDE Integrated Development Environment
IRI International Resource Identi�er
IRIS Intelligent Realtime Interactive System
IVA Intelligent Virtual Agent
IVE Intelligent Virtual Environment
KB Knowledge Base
KRL Knowledge Representation Layer
LOC Lines of Code
MR Mixed Reality
OOP Object-Oriented Programming
OWA Open World Assumption
OWL Web Ontology Language
PDDL Planning Domain De�nition Language
RDF Resource Description Framework
RIS Realtime Interactive System
SPARQL SPARQL Protocol And RDF Query Language
SVE Semantic Virtual Environment
UNA Unique Name Assumption
UML Uni�ed Modeling Language
UUID Universally Unique Identi�er
TBox Terminological Box
VE Virtual Environment
VR Virtual Reality
VRPN Virtual-Reality Peripheral Network
W3C World Wide Web Consortium

V

List of Figures
1.1 Addressed application area . 3

2.1 Unreal Level Blueprint example . 37
2.2 Conceptual overview of a SCIVE application 40

3.1 Seven basic KRL elements . 66
3.2 RIS Application Layers . 68
3.3 Exemplary semantic representation of a transformation property 75
3.4 Exemplary structure of the semantic representation of a virtual ball entity . 78
3.5 Representation of a ‘putOn’ action . 80
3.6 Import structure for OWL �les . 85
3.7 Layers of an application ontology . 87
3.8 UML diagram: ValueDescription and RelationDescription 89
3.9 UML diagram: EventDescriptions . 90
3.10 UML diagram: EntityDescriptions and Aspects 91
3.11 UML diagram: ActionDescription, Parameter, and ParameterRelation 91

4.1 Conceptual overview of the semantics-based approach 106
4.2 Overview of prede�ned semantic values . 108
4.3 Schematic overview of an application’s state representation 109
4.4 Exemplary use of the semantics-based approach 111
4.5 So ware interfaces proposed in the context of the uniform access model . . 116
4.6 ¿e state variable concept . 123
4.7 UML diagram: converter interface . 129
4.8 Entity description with four aspects . 131
4.9 Overview of the component creation process 132
4.10 UML diagram: simulation components . 134
4.11 UML diagram: ModuleAdapter . 135
4.12 ¿e entity creation process . 136
4.13 UML diagram: application overview . 138

5.1 Simulator X application architecture . 145
5.2 Exemplary entity description of a ball entity 153
5.3 ¿e entity creation process in Simulator X . 156
5.4 OWL �le structure in Simulator X . 163
5.5 Overview of the automatic type conversion process 167
5.6 Simulator X project structure . 171
5.7 AI module interconnection . 173
5.8 Collaboration of AI components . 177

VII

5.9 Unity component setup . 179
5.10 Example: rendering with jVR and Unity . 181

6.1 Relations between concepts involved in a ball entity description 189
6.2 SiXton’s curse research demonstration at the IEEE VR ’11 194
6.3 ¿e smARTbox being presented at the ICEC ’12 195
6.4 XRoads being presented at the Spiel ’14 . 196
6.5 Example images for the ‘can knockdown’ task 198
6.6 Results from NASA TLX questionnaires . 200
6.7 Comparison of NASA TLX short-term and long-term results 201
6.8 Results from QUESI questionnaires . 203
6.9 Comparison of QUESI short-term and long-term results 204

7.1 ¿ree layers of decoupling . 210

B.1 UML diagram: EventDispatch . 237
B.2 UML diagram: Registry . 237
B.3 UML diagram: IActionAccess . 237

VIII

List of Tables
1.1 So ware reusability related terms from ISO/IEC-9126 and ISO/IEC-25010 . 5
1.2 Publications including aspects that are presented in this work 11

2.1 De�nitions concepts related to reusability . 15
2.2 Comparison of existing Virtual Reality (VR) research frameworks 33
2.3 DL expressivity identi�ers . 46

3.1 Available characteristics for DL roles in OWL 72
3.2 Overview of DL roles and concepts that are added to the ontology 83
3.3 Overview of elements represented in the framework ontology 88

6.1 Lines of Code analysis for the prototypical Unity component 187
6.2 LOC comparisons for Simulator X components 191
6.3 Number of (invoked) statements of di�erent Simulator X components 192
6.4 Lines of code of Simulator X components . 193
6.5 QUESI Whitney-Mann U test results . 202

C.1 NASA TLX short-term results . 239
C.2 NASA TLX long-term results . 239
C.3 QUESI short-term results . 240
C.4 QUESI long-term results . 240

IX

Listings
2.1 Scala equivalent to Unreal Blueprint from �gure 2.1 38

3.1 OWL De�nition of the ValueDescription concept 76
3.2 Partial OWL de�nition of a putOn action . 80

4.2 Example usage of the uniform access model 118
4.3 Automatic type conversion example using Scala syntax 128
4.4 ¿e component interface from �gure 4.11 shown in Scala syntax 137

5.1 A DSL example in Scala . 147
5.2 Java version of the ‘And’ class from listing 5.1 148
5.3 Transformation type description example in Simulator X 149
5.4 Usage of events and event descriptions in Simulator X 149
5.5 Exemplary access to state variables in Simulator X 151
5.6 Comprehensible access to entity properties 152
5.7 Simpli�ed version of rigid body aspect in Simulator X 154
5.8 Exemplary description of a virtual ball . 155
5.9 Simulator X relations example . 158
5.10 Simulator X component interface . 159
5.11 Component creation in Simulator X . 161
5.12 Description ontology assertions for a ball entity description 163
5.13 Application ontology assertions for a ball entity description 164
5.14 Remote component example . 166
5.15 Simulator X converter example . 169
5.16 AttachAction speci�ed using the action DSL 174
5.17 Exemplary usage of action descriptions . 176
5.18 ¿e rotation converter used by the Unity connection 180

6.1 Exemplary code for adding, exchanging or removing a component 190

A.1 OWL De�nitions for Properties . 231
A.2 OWL De�nitions for Relations . 232
A.3 OWL De�nitions for Property Descriptions 232
A.4 OWL De�nitions for Entity Descriptions . 233
A.5 OWL De�nitions for Components . 233
A.6 Unity Component OWL Content . 234
A.7 OWL De�nitions for Action Representation 236

XI

Chapter 1

Introduction
¿e major cause [of the so ware crisis] is ... that the machines have become
several orders of magnitude more powerful! To put it quite bluntly: as long as
there were no machines, programming was no problem at all; when we had a few
weak computers, programming became a mild problem, and now we have gigantic
computers, programming has become an equally gigantic problem. In this sense the
electronic industry has not solved a single problem, it has only created them—it has
created the problem of using its products. To put it in another way: as the power of
available machines grew by a factor of more than a thousand, society’s ambition
to apply these machines grew in proportion, and it was the poor programmer who
found his job in this exploded �eld of tension between ends and means.

¿e Humble Programmer
Dijkstra (1972)

1.1 Motivation
As Edsger W. Dijkstra pointed out in his above-quoted 1972 ACM Turing Award lecture,
the complexity of computer programs as well as their development is strongly linked to the
technical capabilities created by technological advance. Although he probably will neither
have had the computational power, that is provided by modern devices, nor their currently
experienced availability in mind, his statement is still pertinent.
¿enumber and diversity of programmablemachines used in everyday life remains growing,

as does the complexity of implemented so ware. For example, � een years ago mobile
computing was mostly limited to the utilization of rather expensive laptop computers, whereas
nowadays smartphones and tablet computers, which easily outperform those earlier devices,
have become a�ordable for many people. As predicted by Dijkstra, such devices are employed
ever more and lately even used to facilitate daily life.
Accordingly, the complexity of the so ware running on such devices has increased im-

mensely. While in the 1990’s the use of computers mainly involved o�ce-based applications,
recent so ware ranges from dictionaries, encyclopedias, communication so ware, naviga-
tional so ware, and realistic computer games to VR and Mixed Reality (MR) applications.
To make things even worse, the hardware in use today is much more diverse than it was in
1972, and new generations of devices are released much more frequently. In this regard, when
analyzing the di�culties related to so ware engineering, Brooks (1987) stated that “[...] we
must observe that the anomaly is not that so ware progress is so slow but that computer
hardware progress is so fast.”

1

Chapter 1 Introduction

Getting back to Dijkstra’s statement, one reason for di�culties in the area of so ware
development is that created systems are used by more and more people in most di�erent
areas of application. Accordingly, expectations on so ware have increased: whereas earlier
computer programs weremeant to plainly organize and store data, nowadays they are expected
to support a user in his or her tasks in an understandable, intelligent, and convenient way.
In doing so, applications bene�t from additional information on the data being processed.

Hence, the integration of semantics, knowledge representations, and services depending
thereon plays a major role. In this context, new technologies and ideas, such as the Semantic
Web and theWeb Ontology Language (OWL), have been brought up. Such techniques allow
for automatized access to information and communication between applications. Recent
developments include the integration of semantic web services and natural language interfaces.
For instance, Apple’s Siri provides the user with a speech interface to query information, as
does Google’s Google Now. ¿e Hummingbird search algorithm, also developed by Google, is
a text based service, relying on semantic information, that provides so-called semantic search
and allows users to enter fully formulated questions instead of searching for keywords.
Virtual Environments (VEs), as one possible type of future human-computer interfaces,

have experienced similar developments. For example, interaction with supportive virtual
agents o en is based on speech and gesture interfaces. Similar to the examples mentioned
above, agents and gesture interfaces bene�t from the existence of semantic information. In
this context, the term Intelligent Virtual Environment (IVE) was introduced, describing
the “combination of intelligent techniques and tools, embodied in autonomous creatures
and agents, together with e�ective means for their graphical representation and interaction
of various kinds” (Luck & Aylett, 2000, p. 4). In this work, the more comprehensive term
Intelligent Realtime Interactive System (IRIS) is used, denoting a system that simulates a virtual
environment the elements of which support their utilization in intelligent ways. In this regard,
an element can be any part of the VE, including so ware modules that perform the necessary
simulations.
Such systems are increasingly becoming part of everyday life. For example, current computer

games largely include the visualization of some virtual environment, modern navigational
systems overlay the view of the street with the calculated route, and applications for interior
design allow to integrate virtual furniture into a customer’s home, using smartphones and
most recently even consumer-grade VR hardware.
Seen from a rather philosophical point of view every so ware in fact simulates some kind

of VE. While this is quite obvious for computer games and most mixed reality applications,
counting a word processor as a VR application seems rather odd. Nevertheless, such so ware
does simulate a virtual piece of paper, whichmay be seen as a very limited virtual environment.
In a sense, this admittedly uncommon perspective is reasonable: due to its nature, a computer
inevitably has to internally represent and simulate whatever it shall process. With this in mind,
the scope of this work is not limited to VEs but can be applied to many other types of so ware.
Yet, VR systems pose one of the most complex types of so ware (regarding both functional
and non-functional requirements) and thus provide a reasonable domain for this work.
In addition to the appropriateness of emerging examples and growing use in various areas

of daily life, a third incentive to focus on such systems is the fact that the games industry has
created a huge market that is addressed by this �eld. Simplifying work in this domain could
reduce development costs and increase pro�t in that area of industry.

2

1.1 Motivation

functional requirements

re
al

-ti
m

el
in

es
s

RISs

Scientific
Simulation &
Visualization

Embedded Systems

WIMP interfaces
Web 2.0

D
at

ab
as

es

Command Line
Interfaces

AI Reasoning /
Planning

 IRISs
IVEs

3D
Computer

Games

VR, MR

Robotics

Figure 1.1: Classi�cation of the addressed application area (visualized by the blue rectangle). Real-timeliness
relates to expected response times, whereas the functional requirements commonly manifest in the number of
input and output modalities as well as the variety of interacting software modules.

But, as desirable as such systems may seem as complex is their development, extension,
and maintenance, requiring high e�orts and o en generating huge expenses. One of the
reasons for this is the large number and variety of so ware modules that have to interact
in order to satisfy the expectations that are imposed on an up-to-date Realtime Interactive
System (RIS). As opposed to many other so ware systems, the aspects that are addressed by
such modules tend to overlap. For example, the position of a virtual object is concurrently
accessed by multiple modules. Such systems’ inherent request for interactivity imposes
realtime requirements, e.g., varying update rates of displays or haptic feedback devices, which
complicate an implementation even more. Figure 1.1 provides the context for application areas
that are impacted by this work (edged in blue).
Due to its inherent complexity, multiple developers and designers commonly collaborate

to create a RIS, each of them being an expert in one or multiple project-related areas. ¿ese
involve, for example, physical simulation, (stereoscopic) realtime 3D graphics rendering,
sound rendering, arti�cial intelligence (e.g., reasoning and planning), object and human body
tracking, sensor data processing, multimodal interaction, development of application logic,
3D user interfaces, 3D modeling, game design, and many more.
Besides well-known so ware engineering- and project management-related problems, the

development of RISs underlies additional requirements: they inevitably need to make full
use of the available hardware resources to guarantee maximum interactivity, involving both

3

Chapter 1 Introduction

performance and usability. As a result, an implementation o en is tailored to the capabilities of
the available hardware. However, the aforementioned speed of innovations results in frequent
hardware replacements and possibly in the need for new interaction methods, thus calling for
modularity.
In the absence of a proper middleware the combined modules are o en closely coupled and

their compilation is customized to ful�ll the speci�c use case of the application. Maintaining
such so ware requires a holistic understanding of the interrelationship of involved modules.
Accordingly, the initial development of an Intelligent Realtime Interactive System (IRIS) is
complicated by possible communication di�culties between the involved individuals, whereas
later maintenance and possible extensions necessitate preserving the holistic understanding
that was obtained by the initial development team.
¿is changes for the better by the utilization of current RIS middleware. Nonetheless, these

frameworks o en involve a �xed set of simulation modules and render the integration of
additional modules or exchange of existing ones di�cult, maybe even impossible. Moreover,
even in the presence of such middleware, the application logic itself o en exhibits high
internal coupling, wherefore reusing single elements of the implementation remains di�cult.
Reasons for this include the fact that provided so ware interfaces allow to decouple the
application from the utilized simulation modules, but little assistance is provided to cope with
application-related issues.
So far, these issues resulted in applications being reimplemented almost from scratch, over

and over again. Multiple frameworks have been developed to ease the creation of virtual
environments, but only few have put their focus on extensibility and maintainability of created
applications. Yet, especially in research environments, it is necessary to be able to reuse
so ware created before, since the structure of the development team changes frequently but
developed systems are required to stay up-to-date. ¿is work aims at providing methods that
facilitate the creation of reusable IRISs in order to overcome these problems.

1.2 Reusability for Intelligent Realtime Interactive
Systems

¿is work is closely related to the �eld of so ware engineering and the idea of so ware reuse.
Furthermore, it involves virtual environments and intelligent realtime interactive systems. ¿e
following sections give an overview of related concepts, whereas a more detailed discussion is
presented in chapter 2.

1.2.1 Software Reusability and Software Reuse
In general, the term reusability denotes the extent to which some asset is suited to be reused.
To reuse, in turn, means to use something that was used before. In this regard, the title of
this work is quite vague, since reusability itself does not specify in which way assets—in this
case parts of an eventual IRIS—are reused. ¿is ambiguity is intentional: neither does the
word reusability completely capture the intention of this work nor is the scope of reused parts
clearly de�ned.

4

1.2 Reusability for Intelligent Realtime Interactive Systems

A short explanation is required: a central goal of this work is to increase the extent to which
parts of an existing RIS can be reused. In this context, ‘parts’ can denote a subset of the system.
¿is would require the elements of which the so ware is composed to bemodular and loosely
coupled, allowing to easily extract a subset of a RIS and reuse it in a di�erent context (re-use
case 1). Note that so ware modules that are used to simulate the VE, which subsequently will
be called simulation modules, as well as the content of the simulation can be subject to reuse.
Alternatively, ‘parts’ could relate to the whole system, meaning that the existing system

itself is reused (re-use case 2). For example, new functionality or new content could be added.
In that case, the system is required to be extensible.

Norms and De�nitions ¿e ISO/IEC 9126 (2001) and ISO/IEC 25010 (2011) standards
de�ne the following characteristics,1 which are closely related to so ware reusability:

maintainability portability
modi�ability adaptability
reusability replaceability
modularity
functionality usability
suitability understandability
interoperability learnability

Table 1.1: Software reusability related terms de�ned in the ISO/IEC-9126 and ISO/IEC-25010 standards.

In fact, with regard to these standards, this work does rather address maintainability than
reusability: not only should a system be reusable, but also changeable (especially extensible)
andmaintainable. A second characteristic that is addressed by this work is portability: so ware
that was developed for one hardware setup has to easily work with di�erent systems. In
addition, the term replaceability is applicable to some extent: although the whole system is
not required to replace another system, this holds true for the modules it consists of. Finally,
usability is related to this work, since a lack of understandability o en leads to a decrease
in reusability. Hence, of the nine aspects of so ware reuse at least seven are addressed by
this work.
However, the principal idea remains to reuse single components and their functionality or

parts thereof in order to create maintainable so ware. On a related note, H. Mili, Mili, and
Mili found that “maintenance has been recognized by a number of researchers as a particular
form of reuse” (H. Mili et al., 1995, p. 556). All in all, even though none of the mentioned
concepts fully covers the intended scope of this work, reusability and the corresponding term
so ware reusability are believed to �t best.

Software Reusability First ideas concerning the systematic reuse of so ware were brought
up byMcIlroy (1968) in conjunction with the so-called so ware crisis. ¿e growing complexity
of so ware and diversity of hardware required to rethink the way so ware was created.
1 ¿e presented terms are a subset of the terms de�ned in the ISO/IEC 9126 (2001) standard. Reusability and
modularity were added in the superseding ISO/IEC 25010 (2011) standard.

5

Chapter 1 Introduction

¿e term so ware reusability originates from the �eld of so ware engineering and refers to
the reuse potential of a so waremodule. Althoughnot being the same, it is o en synonymously
used with the term so ware reuse or code reuse. For both so ware reusability and so ware
reuse multiple de�nitions exist, such as

• “¿e degree to which a so ware module or other work product can be used in more
than one computer program or so ware system” (p. 64 Radatz, Geraci, & Katki, 1990,
on reusability),

• “Reusability is a measure of the ease with which the resource can be reused in a new
situation” (Kim & Stohr, 1998, p. 116),

• “So ware reuse is the process of creating so ware systems from existing so ware rather
than building so ware systems from scratch” (Krueger, 1992, p. 131),

• “So ware reuse is generally de�ned as the use of previously developed so ware resources
from all phases of the so ware life cycle, in new applications by various users such as
programmers and systems analysts” (Kim & Stohr, 1998, p. 115), and

• “So ware reuse is about methods and techniques to enhance the reusability of so ware,
including the management of repositories of components” (Clements, 2001, p. 2).

In this work, the following de�nition, which is adapted to the development of RIS frame-
works, is used:

De�nition 1.1. Reusability denotes the degree to which a so ware system supports adding,
removing, or replacing assets without necessitating further changes to either the system or
the asset. Assets, in this context, are the so ware modules which the system consists of as
well as the objects that are processed by these modules.

1.2.2 Intelligent Realtime Interactive Systems

Given the de�nition of reusability, the aforementioned terms Realtime Interactive System and
Intelligent Realtime Interactive System remain to be clearly speci�ed. In this work, they will
be used to denote the following concepts:

De�nition 1.2. A Realtime Interactive System (RIS) is “an interactive system with multiple
timings partly subject to enhanced real-time timing conditions (stronger than so real-time)
due to high reactivity requirements” (Latoschik, 2015).

De�nition 1.3. An Intelligent Realtime Interactive System (IRIS) is a RIS that involves so ware
assets which facilitate their utilization in intelligent ways.

A further de�nition is required to specify the di�erent facets that are addressed by the
simulation modules that a RIS is composed of:

De�nition 1.4. A simulation aspect, or an aspect for short, is a subset of the simulation state
that is associated with a single facet of the simulation.

6

1.2 Reusability for Intelligent Realtime Interactive Systems

Such aspects can overlap. For example, the position of an object is part of both the visual
as well as the physical aspect of the simulation. Moreover, an aspect can concern a subset of
the simulation state, i.e. multiple properties of one object or of a group of such. Hence, it is
suitable to refer to, e.g., the physical nature of objects.
Regarding reusability, the �eld of IRISs and their development is particularly challenging

since multiple aspects complicate the reuse of such so ware:

1. ¿e diversity and complexity of utilized so ware modules requires to convene develop-
ers who are specialists in most di�erent areas. Due to the overlap of simulation aspects
addressed by di�erent developers, a combination (and therefore reuse) of developed
modules is rendered di�cult.

2. ¿e skills of these developers may be highly diverse, depending on their particular pro-
fession. ¿us, specialized concepts used by one group of developers may be completely
unknown to others.

3. ¿e real-time nature of a VE o en favors close coupling of involved so ware modules
regarding both data structures and execution schemes, which contradicts the concept
of reusability.

4. ¿e applied Arti�cial Intelligence (AI)methods, the update rates of which do commonly
not comply with realtime requirements, require access to a potentially all-encompassing
representation of the application state, and thus impede modularity.

Interactive 3D computer games are one popular example of RISs, in the context of which the
demand for graphically rich representation, physical simulation of the environment, animation
of virtual avatars, and many other features arises. Such applications su�er from the fact that
the utilized simulation components o en are developed for a particular hardware platform,
which complicates both keeping the application compatible to updated hardware resources
as well as making the most of that hardware. Hence, the following typical example for the
re-use case 1, which is concerned with partial reuse of a RIS, will recurrently be investigated
throughout this work:

Use Case 1.1. In an existing RIS application, a platform-dependent 3D graphics renderer is
assumed to be replaced with one that is more up to date and that allows the application in
question to be used on a di�erent hardware platform.

¿is use case is a�ected by at least three of the above-mentioned aspects: the highly opti-
mized nature of a 3D rendering module requires specialized data structures that have to be
connected to di�erent data structures, used by other modules that address the same aspects (1).
In the use case, the previous renderer conceivably uses an octree, whereas the new module
uses a scene graph data structure. An application developer may be unfamiliar with both,
wherefore the lack of a simple interface complicates the replacement process (2). Finally, the
execution scheme of the rendering module is most likely coupled to those of the modules that
update the simulation state (3).
Recently, new types of devices are becoming available to the public that previously were

reserved for research groups (e.g., theOculus Ri or Razer’sHydra and Stem). With these, new

7

Chapter 1 Introduction

ways of human-computer interaction are introduced, which are not supported by existing
applications. Similarly, mixed reality applications bene�t from the utilization of most up to
date sensors, which are required to correctly integrate real content into the virtual world (and
vice versa). A current example is given by the �eld of smart home applications, which need
to monitor the resident’s state and desires. ¿is area provides the second running example,
relating to the above-mentioned re-use case 2, in which existing systems need to be extended
by further modules:

Use Case 1.2. A heart-rate monitor module, the data of which shall be utilized to reinforce
the system’s knowledge about the user’s physical condition, is said to be integrated into an
existing IRIS application.

¿is use case is impeded by the complex data provided by the module (2) and the interfer-
ence with other modules’ data structures to integrate the obtained data (3). Moreover, other
modules have to become aware of the added data without being modi�ed themselves (4).
Some applications utilize online access to integrate information located on the Internet or

special servers. ¿e latter approach is o en adopted by IRIS applications that employ knowl-
edge bases from the Semantic Web. Examples for such applications are virtual environments
that are inhabited by Intelligent Virtual Agents (IVAs), which serve as tour guides, cooperative
partners in construction scenarios, etc. In such systems, interaction with agents tends to be
multimodal, mostly involving speech and gesture interfaces. Given a su�cient understanding
of the VE, these interfaces allow for natural interaction between users and agents. But even
in the absence of such embodied agents, elements could intelligently react to inputs, e.g., by
knowing which other elements they can be combined with. ¿is type of RISs serves as a third
example, which will be used throughout this work to address the utilization of integrated of
semantics:

Use Case 1.3. An AI rule engine, a semantic reasoner, and an action planning module are
assumed to cooperate in order to enable an IRIS to react to state updates in an intelligent way.

In this situation, especially the access to an all-encompassing representation of the simula-
tion state is required (4), since it is unpredictable which information is required by the AI
modules. Furthermore, the execution schemes of such modules have to be decoupled from
others, since lengthy calculation would block realtime features of the application (3). Finally,
the data that is accessed by the modules cannot be highly specialized but has to be processable
by AI methods (2).

1.3 Problem Statement
Whereas in the beginning of RIS and VR research it was justi�able to create custom-made
solutions for the set of specialized devices located in a single research lab, current and future
RIS so ware requires to be �exibly adjustable to the multitude of constantly emerging devices
and areas of application. ¿is way, non-RIS experts will be able utilize the new technology in
various settings, e.g., in smart homes, experiments in psychological research, or in the context
of computer games.
Although the set of possible RIS applications are highly diverse, most of them share subsets

of the specialized so ware modules they use. But, as discussed before, high performance

8

1.4 Objectives

requirements and use of specialized devices o en result in close coupling of these modules,
thereby hindering reuse. Furthermore, the recently increasing desire to create RISs and VEs
that intelligently react to user input requires information about the elements involved in
the interaction. All in all, the central problem is the existing lack of a uniform approach to
integrate simulation modules and AI methods into IRISs, eventually resulting in in�exible,
custom-made solutions.
¿us, simulation module developers as well as IRIS application developers face the problem

that reusing parts of existing IRISs is highly complicated. In consequence, despite common
functionality, applications o en are reimplemented when a module has to be added, removed,
or exchanged.

1.4 Objectives

¿is work will create a methodology that allows to provide reusable elements for intelligent
realtime interactive systems. ¿e presented approach is concerned with decoupling the
involved elements:

O1. Decoupling Simulation Modules: ¿e very �rst step towards reusable intelligent re-
altime interactive systems is to decouple the elements that the underlying so ware
is made of. Since there are no clearly de�ned boundaries to a simulation module, a
�exible representation is required.

O2. Decoupling Application Content: Given decoupled simulation modules, the content
of an eventual application has to be decoupled from those modules. In order to replace
a module the content must not depend on the speci�c implementation of a module but
(at most) on the simulation features that it provides.

O3. Decoupling Application Logic: Assuming that neither the simulation basis nor the
static content directly depend on their speci�c composition, the logic that de�nes a
speci�c application should not rely on both (and vice versa).

It is important to mention that the elements to be decoupled are not meant to be developed
from scratch. Especially the above-mentioned simulation modules are assumed to exist in
advance.
In this context, the terms so ware component and component model as de�ned by Councill

and Heineman (2001) are appropriate:

• “A so ware component is a so ware element that conforms to a component model and can
be independently deployed and composed without modi�cation according to a composition
standard.

• A component model de�nes speci�c interaction and composition standards. A component model
implementation is the dedicated set of executable so ware elements required to support the
execution of components that conform to the model.”

(Councill & Heineman, 2001, p. 7)

9

Chapter 1 Introduction

With regard to these terms, a subgoal of this work is to create a component model that
allows to turn preexisting simulation modules into simulation components that can easily be
reused. Obviously, this does not exclude the implementation of new modules either, but—
living up to the idea of reuse—decoupling and reusing existing elements is considered even
more desirable.
As mentioned before, an IRIS requires a �exible representation of the application state that

is accessible by AI methods. Since, depending on the purpose of the implemented system,
every element of the architecture as well as every element of the simulation could potentially
be relevant for AImodules, the approach builds upon an extensible Knowledge Representation
Layer (KRL). ¿e contents of this layer re�ect the above-mentioned decoupled simulation
modules, application content, and application logic. ¿ereby, a generic interface for symbolic
AI methods is created.
In this way, the developed methods address the detected lack of a uniform way to couple

simulation modules and AI methods. ¿e contribution of this work is twofold:

1. An approach to semantically augment the essential elements of an IRIS application is
proposed. It builds on a deeply integrated, extensible KRL that provides the foundation
for integrating symbolic AI methods. By means of the established set of symbolic
identi�ers a concise, human-readable interface, which facilitates access to di�erent sim-
ulation aspects, is created. ¿is interface constitutes the basis for decoupling simulation
modules and application content, thereby fostering extensibility, maintainability, and
understandability of an application.

2. A component model for intelligent realtime interactive systems is developed. It involves
an interface that builds on the above-mentioned KRL, providing uniform, semantic-
type based access to the simulation state. ¿e latter is represented in a centralized way,
whereby overlapping simulation aspects are addressed. Moreover, the adoption of a
message-based architecture allows to decouple simulation loops of applied modules
and thus to enable concurrent calculations and di�ering update rates (realtime-related
issues are not addressed in this work, though). ¿is way, simulation modules are turned
into black-box components, which can easily be added, removed, and replaced. By
combining multiple of such components, modular applications are created, which
can easily be extended, e.g., by input device handling, interaction modules, behavior
simulation, and many more.

In this way, a novel approach to the development of reusable IRIS applications is pursued. It
allows to face upcoming developments in RIS-related areas, like virtual, mixed, and augmented
reality, intelligent virtual environments, multimodal interaction, and many more.

1.5 Structure

¿emain part of this work is divided into six chapters: Chapter 2 enlarges upon related work in
the related areas of research. For this purpose, section 2.2 surveys related aspects in the area of
so ware engineering and especially so ware reuse. Section 2.3 reviews aspects of prominent
VR frameworks, putting special focus on Intelligent Virtual Environment (IVE) frameworks.

10

1.5 Structure

Content Publication
¿e world interface that is implemented in the Sim-
ulator X framework, acting as a central registry and
providing symbol-based access to the architecture
elements (cf. sections 4.3.3 and 5.2.8)

Wiebusch, Latoschik, and Tram-
berend (2010)

First ideas to decouple architecture elements of RIS
applications by incorporating an ontology, in�uenc-
ing sections on the reusable knowledge representa-
tion model (3.3), code generation (3.4.2), and entity
creation (4.5.2 and 5.2.6)

Wiebusch and Latoschik (2012)

Re�ections on the design decisions that were taken
in the development of the Simulator X framework
(cf. section 5.2)

Wiebusch, Fischbach, Latoschik,
and Tramberend (2012)

¿e foundations of the uniform access model that
is presented in section 4.3, also a�ecting the de�ni-
tions relating to state and events (cf. section 3.2.4)

Wiebusch and Latoschik (2014)

¿e concept of semantic traits as introduced in sec-
tion 4.2.3

Wiebusch and Latoschik (2015)

Applications that were built using the Simulator X
framework (cf. section 6.3)

Fischbach et al. (2011)
Fischbach, Wiebusch, Latoschik,
Bruder, and Steinicke (2012b, 2012a)

Table 1.2: Publications including aspects that are presented in this work.

A erwards, section 2.4 brie�y overviews relevant forms of knowledge representation. Finally,
a summary is given in section 2.5.
Extending on the observations regarding related work, chapter 3 will focus on the cre-

ation of a knowledge representation model for IRISs. In order to establish its foundations,
re�ections about semantics of IRIS frameworks are presented in section 3.2. Building on
these, the knowledge representation model is proposed in section 3.3. By means of this
model, information about architecture elements and the simulation state become accessible.
Finally, its integration into an IRIS framework is discussed in section 3.4 before the chapter is
summarized in section 3.5.
Chapter 4 presents di�erent methods to increase the reusability of IRIS simulation modules.

¿ese methods include the integration of the model from the previous chapter, in order to
create an KRL. ¿is semantics based approach is presented in section 4.2. To access the KRL
and the current simulation state, a uniform access model is proposed in section 4.3. In order
to achieve decoupling of simulation modules, the adoption of the actor model is discussed
in section 4.4. ¿e combination of these methods leads to the component model for IRIS
frameworks, which is presented in section 4.5 before the chapter is concluded in section 4.6.
Subsequently, chapter 5 presents the integration of the proposed model into the Simula-

tor X framework. For this purpose, section 5.2 overviews the architecture of the framework.
A erwards, noteworthy features that are facilitated by the proposed models are discussed in
section 5.3. Section 5.4 overviews the organization of a Simulator X application. ¿is structure

11

Chapter 1 Introduction

is unrelated to the proposed model, but yields aspects that facilitate reusability in an IRIS
project. Use cases 1.2 and 1.3, which were mentioned above, are covered by the discussion of
representative Simulator X simulation components in section 5.5.
Parts of the results presented chapters 4 and 5 have been presented on di�erent national

and international workshops and conferences (see table 1.2).
Chapter 6 discusses results that were achieved by applying the model. In section 6.2 a case

study that covers use case 1.1 is presented, pointing out the applicability and bene�ts of the
proposed approach. Moreover, section 6.3 lists the applications and contexts in which the
framework was used. Section 6.4 presents results from a prestudy that was conducted to
evaluate the usability of the Simulator X framework and therefore of the proposed model.
Chapter 7 concludes this thesis and provides an overview of directions for future work.

12

Chapter 2

RelatedWork
We are like dwarfs on the shoulders of giants, so that we can see more than they,
and things at a greater distance, not by virtue of any sharpness of sight on our part,
or any physical distinction, but because we are carried high and raised up by their
giant size.

attributed to Bernard of Chartres
inMetalogicon by John of Salisbury (1159)

2.1 Overview
Due to the large number of involved modules, creating IRISs is a highly complex and tedious
task. ¿e implementation of each of those modules requires expert knowledge in a �eld
that constitutes an area of research on its own. Building on the achievements in these areas,
di�erent frameworks, which are composed of multiple of these modules, have been created
to ease the process and reduce the amount of expert knowledge required by an application
developer.
¿e endeavor to develop methods that facilitate composition of highly specialized simula-

tion modules, and thus the creation of reusable so ware, in the context of IRIS development
and in particular of IVE development, addresses multiple areas of research:

• ¿e �eld of so ware engineering and therein especially contributions regarding so ware
reusability, maintainability, and extensibility are of high importance.

• Achievements in the area of development of Virtual Reality (VR) frameworks and
Realtime Interactive Systems (RISs) are crucial for this work. In this context, existing
frameworks for the creation of Intelligent Virtual Environments (IVEs) and related
applications are of particular importance, since they pose a representative example for
this kind of systems.

• Since the latter highly depend on the availability of knowledge about the simulated
environment, existing methods from the �eld of knowledge representation pose the
third aspect that is related to this work.

In order to put this work into the context of those �elds, the following sections will provide
an introduction to each of these. ¿is chapter is structured corresponding to the above-
mentioned three areas: so ware reusability, frameworks for intelligent virtual environments,
and methods for knowledge representation.

13

Chapter 2 Related Work

2.2 Software Reusability

Reuse is the default problem-solving strategy in most human activities (Prieto-Díaz, 1993).
For example, in the �elds of architecture and engineering reusing artifacts and knowledge is a
commonly observed approach.
Accordingly, so ware reusability has been an important topic in the area of so ware engi-

neering since the rise of the so-called so ware crisis, which was envisioned to be overcome by
means of so ware reuse. In this context, McIlroy (1968) proposed what has become termed
commercial o�-the-shelf or components-o�-the-shelf (COTS): industrially produced so ware
assets that can be reused by so ware developers.
Extensive overviews of the topic of so ware reuse were written in the past (Krueger, 1992;

H. Mili et al., 1995; Kim & Stohr, 1998), shedding some light on this many-faceted area of
research. ¿e next section presents an overview of de�nitions that have been used in the
literature and provides an introduction to related concepts.

2.2.1 De�nitions

According to the Systems and so ware engineering – Vocabulary (so ware) reusability is
de�ned as the “degree to which an asset can be used in more than one system, or in building
other assets” (ISO/IEC/IEEE 24765, 2010, p. 307). Similarly, Kim and Stohr de�ne so ware
reusability as “a measure of the ease with which the resource can be reused in a new situation”
(Kim & Stohr, 1998, p. 116). Clearly, the de�nition of so ware reusability depends on the
de�nition of so ware reuse.
¿e most obvious aspect of so ware reuse, which mainly focuses on the reuse of program

source code, is o en called code reuse. While all de�nitions of so ware reuse include this aspect,
some leave it that general (e.g., Krueger, 1992), whereas others are more speci�c. For example,
some authors stress that not only developed components but also the tools and resources
created during so ware development are associated with the concept of so ware reuse (Prieto-
Díaz, 1993; Kim & Stohr, 1998). Others explicitly attribute the acquired knowledge and
employed techniques to the term (Prieto-Díaz, 1989; Dusink & van Katwijk, 1995; Clements,
2001; Frakes & Kang, 2005). ¿e creation of so ware that is reusable by design is part of a
de�nition by H. Mili et al. (1995). Morisio, Ezran, and Tully (2002) emphasize that reuse is a
systematic practice and add the aspects of productivity, quality, and business performance.
¿e latter relates to the observation by Prieto-Díaz, who states that “the problem we face

in so ware engineering is not a lack of reuse, but a lack of widespread, systematic reuse”
(Prieto-Díaz, 1993, p. 61). ¿ereby the fact that so-called ad-hoc reuse (see section 2.2.3) is not
as fruitful as systematic reuse is addressed.

Related Concepts

Since 2011 the term reusability is part of the ISO/IEC 25010 (2011) standard on Systems and
so ware Quality Requirements and Evaluation. In replacing the ISO/IEC 9126 (2001) So ware
engineering - Product quality standard it was added—alongside of modularity—as a sub-
characteristic of maintainability. Both concepts, modularity as well as maintainability, are
closely related to this work, as discussed below. Regarding these and other below-mentioned

14

2.2 So ware Reusability

Term De�nition Page

asset an item that has been designed for use in multiple contexts 25

cohesion the manner and degree to which the tasks performed by a
single so ware module are related to one another

57

coupling themanner and degree of interdependence between so ware
modules

83

extendability the ease with which a system or component can be modi�ed
to increase its storage or functional capacity

136

�exibility the ease with which a system or component can be modi�ed
for use in applications or environments other than those for
which it was speci�cally designed

144

maintainability the ease with which a so ware system or component can be
modi�ed to correct faults, improve performance or other
attributes, or adapt to a changed environment

204

modularity 1. the degree to which a system or computer program is
composed of discrete components such that a change to one
component has minimal impact on other components,
2. so ware attributes that provide a structure of highly inde-
pendent components, and
3. the extent to which a routine or module is like a black-box

223

reusability the degree to which an asset can be used in more than one
system, or in building other assets

307

understandability the ease with which a system can be comprehended at both
the system-organizational and detailed-statement levels

385

Table 2.1: De�nitions of related concepts from the Systems and software engineering – Vocabulary standard
ISO/IEC/IEEE 24765 (2010).

concepts that are related to so ware reusability, this work utilizes the de�nitions from the
IEEE Systems and so ware engineering – Vocabulary, which are shown in table 2.1.
Maintainability rather is concerned with environmental changes and corrections of er-

rors, whereas the linked concepts of extendability and �exibility are related to adapting to
unforeseen environments. Both are relevant for IRISs: the ever-changing hardware setup
requires to maintain the functionality of previously implemented applications. For instance,
in the introductorily mentioned use case 1.1 on page 7, all parts of the adapted application
(except for the replaced rendering module) are desired to remain unchanged. Consequently,
maintainability is of high importance for the development of reusable RISs.

15

Chapter 2 Related Work

¿ede�ned goal of this work is to developmethodologies that facilitate reuse of parts of such
systems in order to create new ones (cf. section 1.4), emphasizing �exibility and extendability.
A common situation that exhibits the importance of these concepts is the extension of a RIS
by the integration of alternative sensor modules (cf. use case 1.2). Maintaining as well as
extending a complex so ware system require it to exhibit high understandability.
In the speci�c context of Virtual Reality (VR) applications, Allard, Lesage, and Ra�n (2010)

suggest the aforementioned concept of modularity to be a key idea to handle complexity.
Regarding the de�nitions of modularity that are shown in table 2.1, especially the aspect of a
module being of black-box nature is relevant in the context of this work: the replacement of
a rendering module in use case 1.1 becomes more di�cult, if internal modi�cations to such
module are required to reuse it.
Modularity has been seen as a means to overcome the complexity of large so ware systems

and is said to enable reusability (Hae�iger, Von Krogh, & Spaeth, 2008). It led to popular
so ware engineering approaches, like component-based so ware engineering and creation of
so ware frameworks, which are discussed in section 2.2.4. As the above-mentioned de�nition
suggests, modular program structure bene�ts understandability, �exibility, and reusability by
fostering low coupling and high cohesion.
While the bene�ts of low coupling are quite obvious, this is not necessarily true for high

cohesion. It is rather the absence of cohesion which exhibits the problem: if the program
code that is concerned with a speci�c task is distributed rather than locally speci�ed, it will be
di�cult to maintain the system or to reuse parts of it.
¿is is especially problematic in the situation of use case 1.3: if AI functionality is imple-

mented into each object, possible side-e�ects tend to be incomprehensible and later modi�ca-
tions become extremely complex.

Coupling and Cohesion

Other researchers observed that strong coupling can lead to non-reusability (Bachmann,
Kunde, Litz, & Schreiber, 2010) and that low coupling and high cohesion increases reusability
(Van Vliet, 1993). Moreover, in a study of 16 open source projects, Beck and Diehl (2011)
observed that the principle of low coupling and high cohesion indeed was one of the dominat-
ing principles used to modularize so ware systems. Colburn and Shute (2011) consider the
concept of decoupling as a fundamental value for computer science in general. ¿ey argue
that change is a fundamental feature of reality, wherefore close coupling is undesirable since it
prohibits adaption: in order to allow systems that model parts of reality to adapt to change,
their internals have to be decoupled as much as possible.
In the context of VR applications, early frameworks already emphasized decoupling (C.

Shaw, Liang, Green, & Sun, 1992; C. Shaw, Green, Liang, & Sun, 1993). Yet, more recent work
expresses concerns that too few attention is given to these two principles, since still special
purpose data structures, e.g., scene graphs, are o en utilized to capture out-of-context data
(Latoschik & Tramberend, 2010).
On a related note, Bachmann et al. (2010) report on experiences in the context of developing

a scienti�c simulationwork�ow system in theGermanAerospaceCenter (DLR).¿ey state that
no all-in-one solution existed for their needs, wherefore they had to integrate multiple, partly
incompatible tools. Hence, the concepts of reuse and decoupling were of high importance.

16

2.2 So ware Reusability

¿is is owed to the fact that their work environment required to connect existing so ware
libraries and visualization tools. In this context, they found the utilization of a common data
format to be bene�cial, an idea that was also proposed by M. Shaw (1995) and that will be
seized in later sections.

2.2.2 Bene�ts and Inhibitors of Software Reuse

So ware reuse has regularly beenmentioned as an important means to approach the problems
related to the aforementioned so ware crisis (for example, by Boehm, 1987; Krueger, 1992;
Sametinger, 1997; Ezran, Morisio, & Tully, 2002; Hae�iger et al., 2008; Manhas, Vashisht,
Sandhu, & Neeru, 2010). Mili et al. even state that “several decades of intensive research in
so ware engineering and arti�cial intelligence le few alternatives but so ware reuse as the
(only) realistic approach to bring about the gains of productivity and quality that the so ware
industry needs” (H. Mili et al., 1995, p. 528).

Bene�ts of Software Reuse

¿e high interest in the topic is owed to the many bene�ts of so ware reuse reported by
various researchers. For example, Sametinger (1997) mentions quality improvements and
e�ort reduction as the main bene�ts of so ware reuse. In addition, rapid prototyping support
and expertise sharing are named. Ezran et al. (2002) add business performance improvements
and, in turn, higher pro�tability, growth, greater competitiveness, increased market share,
and entry to new markets to this list.
Motivated by these incentives, so ware companies have carried out so ware reuse programs,

some of which have been successful while others failed. Studies have been conducted to
examine the extent of so ware reuse, e.g., by Bieman andZhao (1995),Morisio et al. (2002), and
Heinemann, Deissenboeck, Gleirscher, Hummel, and Irlbeck (2011). Amongst the successful
reuse programs, high improvements concerning all of the above-mentioned bene�cial aspects
have been reported. Some examples of such results (taken from Sametinger, 1997) are:

• NEC So ware Engineering Laboratory

– productivity: 6.7 times higher

– quality: 2.8 times higher

• Hewlett-Packard

– reduction in defect density: 24% to 76%

– increase in productivity: 40% to 57%

• Fujitsu

– projects on schedule: increased from 20% to 70%

Sametinger (1997), Ezran et al. (2002), Mohagheghi and Conradi (2007), as well as Leach
(2012) compile more results from di�erent studies.

17

Chapter 2 Related Work

While such �ndings suggest that so ware reuse is a bene�cial concept in general, the related
problems are of higher importance for its application in the context of IRISs development,
since they provide valuable insight into avoidable issues and improvable aspects.

Inhibitors of Software Reuse

Even though reuse programs and so ware reusability are considered highly e�ective in many
regards, various barriers were found that complicate conducting a successful reuse program
and achieving e�cient reuse. Huge e�orts have been made to identify inhibitors of so ware
reuse (cf. Griss, 1993; Fichman & Kemerer, 2001; Morisio et al., 2002; Sherif & Vinze, 2003)
and book chapters have been written on the topic (e.g., by Sametinger, 1997). ¿is section
provides a brief overview of di�erent aspects obstructing the path to reuse.
Inhibitors of reuse can be divided into three categories (for similar categorizations see

Sametinger (1997) or Sherif and Vinze (2003)):

• incentive-related inhibitors
– management related
– developers’ reluctance

• organizational inhibitors
– planning / structure
– misconceptions

• technical inhibitors
– con�icting methodology
– missing technical support
– incompatible assets

It is worth mentioning that the reasons for reuse programs to fail mostly involved disregard
of not only one but multiple of these aspects. ¿e next paragraphs describe these categories in
more detail.

Incentive Related Inhibitors Most studies have investigated inhibitors of reuse adoption
in the context of commercially developed so ware. It was found, that the most crucial factors
are incentive-related ones (Sherif & Vinze, 2003):
Multiple studies found that commitment of the management is essential for the success of a

reuse program (Tracz, 1988;Morisio et al., 2002; Sherif &Vinze, 2003). For this group especially
cost-bene�t related aspects are important factors. Researchers found that the establishment of
a reuse program can create high costs before coming to fruition, e.g., adding 30-50% (Tracz,
1995) and even up to 200% (Hae�iger et al., 2008) of the initial costs. Consequently, a reuse
program o en is seen as an investment with no signi�cant short-term returns (Sherif & Vinze,
2003).
So ware developers, on the other hand, sometimes struggle to participate in a reuse pro-

gram, too. Partly, this is due to the so-called Not Invented Here syndrome (Sametinger, 1997):

18

2.2 So ware Reusability

the externally developed components are o en thought to be less �tting for the current prob-
lem than custom-made solutions. In addition, reusing external assets requires trust in their
developers’ abilities, especially in the case of black-box reuse (Sherif & Vinze, 2003).
In the context of this work it is assumed that both developers and management have

committed themselves to the reuse program and, hence, inhibitors regarding management
issues and incentives are not investigated any further. For more detailed discussions of these
topics see, e.g., Sametinger (1997), Fichman and Kemerer (2001), Sherif and Vinze (2003), or
Hae�iger et al. (2008).

Organizational Inhibitors ¿e second major category of inhibitors is concerned with the
organization of a particular reuse program. For a reuse program to be successful, the scope in
which reuse shall be applied has to be carefully planned. On a related note, McCain states that
“the lack of planned accommodation of future needs and reuse in an initial so ware devel-
opment e�ort contributes immensely to high so ware costs and low so ware development
productivity” (McCain, 1985, p. 125). Especially the misconception that the application of
Object-Oriented Programming (OOP) or similar techniques in its own is su�cient to achieve
reusability was found to be related to eventual failures (see Sametinger, 1997; Morisio et al.,
2002; Sherif & Vinze, 2003).
¿ese aspects mostly escape the scope of this work, wherefore readers are directed to Sherif

and Vinze (2003) who list di�erent propositions addressing multiple aspects of this issue.
Nevertheless, the possibility to adapt the developed framework to unforeseen future needs
has to be taken into account during its design.
Even in a well-conceived setting further barriers to reuse may arise. For example, the

search for reusable assets already creates a considerable amount of costs. In this context,
Ravichandran and Rothenberger (2003) state that “search cost is inherent in reuse”. Similarly,
a lack of regulations on how to store and classify reusable assets was found to be an obstructive
factor (Sherif & Vinze, 2003).
Discussing the modi�cation of reusable assets H. Mili et al. (1995) claim that with poorly

planned or unanticipated changes of the reused assets the productivity and quality advantages
of reuse may be defeated. Also related to the modi�cation of reused assets, Sherif and Vinze
(2003) state that the absence of periodical updates to improve asset quality poses a barrier to
reuse adoption. More generally, the authors suggest that the lack of supportive technology,
e.g., a well-organized so ware repository, poses a barrier to reuse adoption.
¿ese aspects are addressed in this work by the well-considered utilization of version

control so ware (see section 5.6). ¿e proposed repository structure allows to store created
so ware modules and perform the mentioned periodical updates. At the same time, it allows
di�erent projects to link to an older version of a module, eliminating possibly negative
e�ects of unanticipated changes. Aside from that, the utilization of a central mechanism to
automatically resolve dependencies on (external) so ware libraries reduces the issues that
arise in the context of searching and retrieving reusable assets.

Technical Inhibitors For this work, the most relevant category of inhibitors is the one
concerning technical issues. According to Sherif and Vinze (2003), these revolve around
building assets, the assets themselves, and the support for utilizing and maintaining them.

19

Chapter 2 Related Work

Building reusable assets is connected to aforementioned misconceptions and found to
mainly be in con�ict with traditional development methodology, since systematic reuse rather
requires a mixture of traditional methodologies (Sherif & Vinze, 2003). To overcome this issue,
new approaches, such as domain engineering and component-based so ware engineering
(see section 2.2.4), have emerged.
Reusing assets �rst of all requires the developer to �nd a candidate asset. Hence, missing

technical support for searching and accessing reusable assets is another reason for aversion
to the adoption of reuse (Sametinger, 1997). ¿e search for an asset is closely related to
understanding the context in which it can be used. Availability of information on the usage
of an asset therefore is of huge importance, as is the possibility to announce recently added
assets (Sherif & Vinze, 2003). Another important fact is that the so ware that is found is
not necessarily designed to be reused, and hence reusing it may be more expensive than
reimplementing it from scratch (Sametinger, 1997).
All of these retrieval-related aspects assume that a so ware asset is searched for, retrieved,

and a erwards integrated into the application being developed. In contrast, this work aims at
semantically annotating assets, wherefore an alternative way of component retrieval can be
achieved: instead of manually retrieving an asset that �ts the respective situation, automatic
retrieval by specifying the desired characteristics or e�ects of the asset can be supported.
Regarding the third barrier—support for an asset’s use—Aoyama (1998) found that the

aspect of interoperability between assets is a major issue. Similarly, an obstructive lack of
support for the integration of assets was reported by developers (cf. Sherif & Vinze, 2003). On
a related note, Garlan, Allen, and Ockerbloom (1995) mention that nearly all the problems
they observed were related to assumptions about the structure of systems and the environment
in which they operated.
When analyzing “the rise and fall of CORBA,” Henning (2006) identi�es the complexity of

Application Programming Interfaces (APIs) to be the most obvious technical problem. Both
aspects, problems integrating modules and problems understanding modules, were found to
be amongst the most common ones encountered in reuse attempts (cf. Frakes & Fox, 1996).
¿e reported lack of interoperability between so ware assets is one of the major issues

addressed by this work, since interoperability has to be maximized in order to be able to
exchange so ware modules. Aside from interoperability, reducing the complexity of so ware
interfaces, and thus to increase understandability, is a further pursued objective.

2.2.3 Facets of Software Reuse

¿ere are two main forms of so ware reuse. ¿ese are termed ad hoc (or opportunistic) reuse
and planned reuse (Kim & Stohr, 1998) the latter of which is also called systematic reuse (cf.
Prieto-Díaz, 1993).
Ad hoc reuse denotes reuse in an incidental manner. It is o en performed by applying a

technique that is called code scavenging (Krueger, 1992), where a developer searches existing
program code for reusable elements. Although being said to be less fruitful, ad hoc reuse
is a very common form of so ware reuse. As opposed to this, systematic reuse relies on
well prepared processes and standards, which are applied during the development process.
According to these categories, this work aims for systematic reuse of black-box components.

20

2.2 So ware Reusability

Reuse Strategies

Irrespective of the form of reuse, the process of reusing assets is de�ned by the reuse strategy.
¿e terms used in the literature for such strategies are (Ezran et al., 2002):

• white-box reuse describes the situation in which the developer has to modify an asset in
order to reuse it.

• gray-box reuse is similar to white-box reuse, yet limiting modi�cations to parametriza-
tion only.

• glass-box reuse describes the situation where a developer is required to look at the
internals of a reused asset but does not modify it.

• black-box reuse denotes situations in which an asset can be reused without further
adoption.

Depending on the respective author, the de�nitions of these strategies slightly di�er. For
example, black-box reuse may explicitly exclude the option to inspect the asset’s code and
gray-box reuse can allow minor modi�cations instead of parametrization only (Sametinger,
1997).
While each strategy has its advantages and disadvantages, the amount of available informa-

tion on the reused resources o en restricts the choice of reuse strategies to be adopted. For
white-, gray-, and glass-box reuse access to the source code is required. If a piece of so ware is
available in binary form only, the developer is limited to black-box reuse. Hence, white-, gray-,
and glass-box reuse are commonly found in open source projects. Similarly, commercial
projects are more o en limited to black-box reuse.
With black-box reuse developers have no options to adapt reused program code to their

needs and the reused assets are le untouched. ¿erefore, their capability of being reused by
other projects is maintained. Modi�cation of such assets is thus reserved to its maintainers.
¿is corresponds to the bene�ts of so ware reuse, which include the enhanced quality of
so ware that was built using carefully maintained so ware libraries (Hae�iger et al., 2008).
On a related note Ravichandran and Rothenberger state that “code modi�cation is also a key
source of problems encountered during reuse” (Ravichandran & Rothenberger, 2003, p. 110).
Other researchers (e.g., H. Mili et al., 1995) report similar observations.
According to Fayad and Schmidt (1997), frameworks foster modularity, reusability, extensi-

bility, and inversion of control. ¿e latter, however, has to be treated with care in the context
of RISs, since it could introduce unexpected runtime-behavior. Nevertheless, they provide a
perfect �t for the intention of reusable so ware. ¿e authors moreover state that white-box
frameworks “tend to produce systems that are tightly coupled to the speci�c details of the
framework’s inheritance hierarchies” (Fayad & Schmidt, 1997, p. 35). As opposed to this,
black-box frameworks are said to be more di�cult to develop but easier to use and extend.
Consequently, this work is concerned with developing a framework that allows to create

black-box assets, which can easily be exchanged and reused. Nevertheless, access to and
modi�cation of source code is not discouraged, as long as the headline goal of decoupling is
pursued.

21

Chapter 2 Related Work

The Software Reuse Process

According toKim and Stohr (1998), the so ware reuse process can be divided into the following
categories:

• Producing reusable resources
– Identi�cation
– Classi�cation

• Consuming reusable resources
– Retrieval
– Understanding
– Modi�cation
– Integration

¿eauthors use these categories in an eight-stepmodel of reuse-based so ware development.
In that model, no di�erence is made between internally and externally developed assets.
¿e �rst two steps are concerned with the creation of a reuse repository: �rst, reusable

assets are (1) identi�ed and a erwards they are (2) classi�ed and inserted into the repository.
¿e subsequent steps are concerned with the utilization of the created repository. Initially,
the requirements for the new system have to be (3) speci�ed. A erwards, assets have to be
(4) retrieved and their functionality has to be (5) understood. In most cases, an asset will not
exactly �t the speci�c needs of the developer and hence has to be (6) modi�ed. If no suitable
assets could be retrieved new ones have to be (7) built. Finally, the assets are (8) integrated
into the target so ware system.
¿is model corresponds to the observation by Cheng and Jeng, who state that “the major

objectives of a reuse system are to classify the reusable components, to retrieve them from an
existing library, and to modify the retrieved components to satisfy the query speci�cation”
(Cheng & Jeng, 1997, p. 341).
However, in this work a further step is added before an asset is inserted into the repository:

the so ware resource has to be adapted to match the architecture of the proposed framework.
In this way, the e�orts that arise during the modi�cation step can be minimized. ¿is is a
reasonable approach, since an asset is usually inserted only once, but reused multiple times.

2.2.4 Reuse Techniques
¿ere are two general principles of reuse: composition of assets and generation of assets
(Biggersta� & Richter, 1989).
Composition-based techniques depend on repositories of reusable so ware modules, e.g.,

so ware libraries, that can be reused either with or without modi�cation. With compositional
reuse the form of the reused asset usually ranges from single lines of code that are copied to
arbitrarily sized so ware modules.
Generative techniques do not directly rely on the reuse of program code or binaries but

rather an abstraction thereof. Examples for generative techniques are application generators,
language-based generators, and transformation systems (Sametinger, 1997).

22

2.2 So ware Reusability

Composition Techniques

Composition-based techniques rely on repositories of reusable so ware modules. Since the
concept of composition is—by de�nition—related to the concept of modularity (see section
2.2.1), early approaches naturally relied on modular programming (Parnas, 1972) and function
libraries.

Language Level Aspects A key aspect of the modular programming paradigm is the
separation of concerns, a term introduced by Dijkstra (1982). A module should be dedicated
to a single concern of the program and have as few interconnections with other modules
as possible. In this sense, each module should be a logically independent part of a so ware
system. ¿is is especially di�cult in the context of RIS development due to overlapping
simulation aspects, as indicated in the �rst chapter of this work.
Extending the modular programming paradigm, Object-Oriented Programming (OOP)

adds the concept of information hiding bymeans of its encapsulation features, hence enforcing
modularity. Additional concepts like inheritance and polymorphism foster modularity of
created programs. Armstrong (2006) presents an overview of the fundamental concepts of
OOP.
However, OOP techniques are widely considered as an enabling technology for creating

interchangeable and reusable so ware components (Meyer, 1987; H. Mili et al., 1995; Sherif &
Vinze, 2003) and with the de�nition of design patterns (Gamma, Helm, Johnson, & Vlissides,
1994) a classi�cation of reusable object-oriented elements emerged.
Despite all positive aspects and its wide use, OOP techniques also have been criticized (e.g.,

by Cardelli, 1996). In an investigation of 19 commercial products Potok, Vouk, and Rindos
(1999) found no improvement of productivity in so ware development teams that were using
OOP techniques.
OOP languages encourage the developer tomake excessive use of the features of inheritance

and information hiding. While this strategy is bene�cial in some cases, it exhibits some
issues regarding RIS development: the enforced tree-like structures o en do not match the
many-faceted nature of the simulated objects. In order to allow to choose composition
over inheritance, the concepts of mixin-based inheritance (Bracha & Cook, 1990) and traits
(Ducasse, Nierstrasz, Schärli, Wuyts, & Black, 2006) were introduced.
Similarly, the imposed �xed type hierarchies do not account for the dynamic nature of

an IRIS. Considering use case 1.3 from page 8, the type of a represented entity may change
according to its composition, as may the actions that it can be involved in. For instance, a
previously inoperative object might be attached to a power source and thereby fundamentally
change its behavior.
Further negative aspects of OOP in terms of reusability for VR frameworks will be analyzed

in section 4.1.

Component-BasedSoftwareEngineering (CBSE) Building uponOOP techniques, CBSE
has become the most commonly applied development model in the context of so ware reuse.
¿e idea of CBSE has been proposed byMcIlroy (1968): “My thesis is that the so ware industry
is weakly founded, in part because of the absence of a so ware components subindustry.”

23

Chapter 2 Related Work

According to Aoyama (1998), CBSE fosters the avoidance of monolithic design. Linking
CBSE with “the dawn of a new age of so ware development”, he distinguishes between con-
ventional so ware reuse (so ware architecture, design patterns, and frameworks) and CBSE
as follows:

1. “Plug & Play: Component should be able to plug and play with other components and/or
frameworks so that component can be composed at run-time without compilation.

2. Interface-centric: Component should separate the interface from the implementation and hide
the implementation details so that they can be composed without knowing their implementation.

3. Architecture-centric: Components are designed on a pre-de�ned architecture so that they can
interoperate with other components and/or frameworks.

4. Standardization: Component interface should be standardized so that they can be manufactured
by multiple vendors and widely reused across the corporations.

5. Distribution through Market: Components can be acquired and improved through competition
market, and provide incentives to the vendors.”

Aoyama (1998, p. 2)

¿ese aspects provide guidelines for the so ware framework that is developed in the context
of this work. While the � h item (distribution through market) is not really applicable for
this thesis, the �rst four aspects de�nitely are.
Clements (2001) suggests to use precisely de�ned so ware interfaces in order to overcome

the problem of mislead assumptions regarding the intended way of compositing particular
components. Since this is di�cult to achieve for complex components, especially if these are
not built by one single so ware �rm, he proposes a layered architecture. He concludes his work
with a list of possible pitfalls that can arise with CBSE, mainly addressing the incompatibility
of di�erent o�-the-shelf components, causing problems when they have to be exchanged for
any reason.
¿ese �ndings are addressed by the framework that is developed in this work in that it

uses a layered architecture on multiple levels. ¿e e�ects of possible incompatibility between
components is addressed by decoupling them by means of an ontology as well as by message-
based interfaces.
When analyzing issues in the context of CBSE, Nierstrasz, Gibbs, and Tsichritzis (1992)

state that a mechanism that supports the organization of component retrieval is a mandatory
feature. Similarly, they observe that one of the issues with CBSE is that there is too few
emphasis on the actual composition of an application. Finally, they note that “the design
of reusable frameworks is an iterative, evolutionary process, so it is necessary to manage
so ware and so ware information in such a way that designs and implementations can evolve
gracefully” (Nierstrasz et al., 1992, p. 160).
As mentioned before, the careful design of a version controlled repository for so ware

modules is applied to address these issues. Furthermore, an ontology that contains knowledge
about resources supports the description and retrieval of assets is integrated.

24

2.2 So ware Reusability

Generative Techniques

As opposed to composition techniques, generative techniques do not use existing components
but rather build on encoded domain knowledge, which can be parametrized and used to
generate an application or parts of it (for a categorization of generative techniques see Krueger
(1992) and H. Mili et al. (1995)).
Frakes and Kang summarize the concept of generative methods as follows: “New systems

in the domain are created by writing speci�cations for them in a domain speci�c speci�cation
language. ¿e generator then translates the speci�cation into code for the new system in a
target language. ¿e generation process can be completely automated, or may require manual
intervention” (Frakes & Kang, 2005, p. 533).
In this regard, a plethora of systems has been developed and used. Some examples are the

interface de�nition language (IDL) of CORBA (Vinoski, 1997), the transformation from the
Uni�edModeling Language (UML) to programming languages (e.g., to Java, see Nickel, Niere,
& Zündorf, 2000), or generation of program code from Resource Description Framework
(RDF) knowledge bases (Völkel & Sure, 2005). In addition, the �eld of conceptualmodeling (cf.
Pellens, 2007) and the concept of visual programming can be counted among this category. In
the context of RISs and more speci�cally game engines the latter is, for example, implemented
by the Kismet system of the Unreal Engine 3, the Blueprint system of the Unreal Engine 4
(Epic Games, 2015), and the FlowGraph system of the CryEngine 2 and 3 (Crytek, 2015).
According to Krueger the utilization of a generative approach is appropriate when

• “many similar so ware systems are written,

• one so ware system is modi�ed or rewritten many times during its life-time, or

• many prototypes are necessary to converge on a usable product.”

Krueger (1992, p. 156)

Hence, implementing a generative approach is highly reasonable in the context of this
work: the created systems are frequently modi�ed during their life-time, which is one of the
reasons why they become unusable. Furthermore—since especially systems in the academic
area are addressed—development heavily depends on the implementation of many research
prototypes. ¿e �rst item, however, does only apply in part, as the created systems are not
similar but highly diverse. Nevertheless, the modules they comprise tend to be similar, as
indicated by use case 1.1. Whereas the underlying application may have arbitrary content,
almost all of the features of the rendering module that shall be exchanged are shared by other
3D rendering modules. Consequently, at least the interfaces between them are a subject to a
generative approach.

Domain Engineering

Instead of focusing on the implementation of single assets, domain engineering aims at
capturing the essentials of a whole application domain. ¿is way, so ware reuse is highly
facilitated, since the initial analysis of the domain allows for well-informed implementation
of reusable components. Rugaber (2000) provides an extensive overview of the use of domain
knowledge in program understanding.

25

Chapter 2 Related Work

¿e concept of domain engineering ismotivated by an observation by Sherif andVinze, who
state that “the creation of reusable assets is basically a question of �nding the commonalties
that exist between systems in a speci�c domain. ¿is depends on the availability of domain
knowledge (detailed information about the entities and relationships between them) and the
technical experience of sta� to analyze and design solutions for a window of applications
rather than just one” (Sherif & Vinze, 2003, p. 167). Furthermore, it accounts for the �nding
that most so ware is not completely new but instead a variant of a system that existed before
(Frakes & Kang, 2005).
Domain engineering consists of three main phases: domain analysis, domain design, and

domain implementation. ¿e �rst phase aims at the creation of a domain model that contains
vocabulary, concepts, as well as varying and consistent features of that domain. According to
H. Mili et al., “domain models should identify: 1) the entities and operations on those entities
that are common to the application domain, 2) relationships and constraints between the
entities, and 3) "retrieval cues", i.e. properties of objects that are likely to be used by developers
in the process of searching for reusable components” (H. Mili et al., 1995, p. 5). In order to
provide a well-founded basis, existing documents, knowledge, and systems are reviewed.
¿e thus created domain model is used in the subsequent domain design phase. In this

phase the gathered concepts are transformed into architectural patterns that can be used to
address problems that are common in the domain. Using these patterns facilitates the creation
of systems for the addressed domain. In the third phase, tools and the so ware that �nally
allows for the creation of a so ware in the speci�c domain are implemented.
For all of these aspects the integration of semantic annotations, as proposed in this work, is

highly bene�cial. ¿is way, the results of the domain engineering process become available
to the application at runtime. ¿is is addressed by the integration of a knowledge layer
that encourages developers to model the contents of the respective domain before an actual
application is developed (see chapter 3). In this way, developers of a specialized so ware
module can provide their knowledge about the domain together with the module to its users.
¿ereby, non-experts can bene�t from the knowledge of experts more easily.
Use case 1.3 provides an example for such advantages, in which a module that is capable of

interpreting data from di�erent sensors could include rules that prescribe the implications of
certain readings. For instance, the observation of an overly high heart rate in a situation that
was rated ‘frightening’ by a di�erent module can result in the conclusion that the user is in an
anxious state. An application developer might not be aware of the details and relationships
between these observations, but will still be capable to interpret the user’s state and make the
application react appropriately.

2.2.5 Measuring Reusability

In order to evaluate the reusability of a so ware framework and express results in a comparable
way a standardized approach has to be applied. Commonly, reusability of so ware is measured
by means of an appropriate metric that is applied to program code. Multiple metrics have
been proposed to measure maintainability and reusability of so ware components (Frakes &
Terry, 1996). Yet, these metrics are not directly applicable in the context of this work, since
their main intent is to measure the reusability of existing so ware modules, whereas this work
aims at providing a framework to combine such modules.

26

2.2 So ware Reusability

However, the measures that are applied can be used as guidelines for the conceptual design
of the framework. In this context, Cardino, Baruchelli, and Valerio (1997) provide a list of
criteria for framework reusability. Each of them is associated with one of the four high-level
factors presented in the context of the REBOOT approach (Sindre, Conradi, & Karlsson, 1995),
namely portability, adaptability, understandability, and con�dence, which a�ect the reusability
of a framework.
Also based on the REBOOT approach,Washizaki, Yamamoto, and Fukazawa (2003) provide

�ve metrics to measure existence of meta information, observability, customizability, and exter-
nal dependencies. ¿e metrics are implemented and tested to evaluate Java Beans components.
Moreover, a metric is provided that combines the results of the previous �ve. ¿ese metrics
are found to be able to e�ectively identify black-box components with high reusability.
More recently, Hristov, Hummel, Huq, and Janjic (2012) composed a list of eight core

elements of reusability, which contains availability, documentation, complexity, quality,main-
tainability, adaptability, reuse, and price. Moreover, they indicate qualitative and quantitative
(mostly Lines of Code-based) metrics for each of these elements. On a related note, but not
directly concerned with measuring reusability, Riaz, Mendes, and Tempero (2009) present a
survey on the literature of so ware maintainability prediction and metrics.
In conclusion, the commonly appliedmeasures to evaluate the reusability of so ware cannot

be applied to the approaches proposed in this work without modi�cation. Nevertheless, they
constitute guidelines for design decisions to be taken: A framework should foster low coupling
and high cohesion (Gui & Scott, 2006), facilitate customizability of components at a rational
level (Washizaki et al., 2003), as well as provide support for searching for components, reduce
the complexity of using them, and ease upgrading to newer versions (Hristov et al., 2012). It
furthermore should be portable (i.e. platform-independent), modular, well-documented, and
mature (Cardino et al., 1997). Di�erent consequences for the designed component model, as
well as the implementation and perception of the created framework will be discussed in later
chapters.

2.2.6 Intermediate Conclusion

Previous sections indicated that so ware reuse can be highly bene�cial, but achieving reusabil-
ity is all but an easy task. It is of high importance that components are originally designed to
be reused (McCain, 1985; Sametinger, 1997). In this context, the abstraction level of reusable
components is required to rise, to considerably improve productivity (Sametinger, 1997).
¿e stakeholders at some companies, surveyed by Sherif and Vinze (2003), believed that a

layered architecture that would be su�ciently transportable to be applied to di�erent situations
is a critical success factor. In such settings, “perfect retrieval and e�ortless adaption are only
possible if the relation between speci�cations and implementations has been completely
formalized” (H. Mili et al., 1995, p. 558).
Seeing the huge amounts of research and possible bene�ts related to so ware reuse, one

could think that most of the problems regarding so ware reuse have been solved. However, it
was observed that reuse in so ware development o en still is ad hoc, whereas inter-project
‘as-is’ reuse was found to be rare (Fichman & Kemerer, 2001). More recent publications state
that this still is true in the area of VE development (e.g., Wingrave and LaViola (2010) and
Latoschik and Tramberend (2010)).

27

Chapter 2 Related Work

All in all, the implications for this work can be summarized with the words of Sherif
and Vinze: “establishing a systematic reuse program requires an implementation strategy
that identi�es opportunities for reuse, analyzes domains, builds architectural structures, and
develops built for reuse assets” (Sherif & Vinze, 2003, p. 160).
Reviewing di�erent categories of inhibitors that have been found by other research, espe-

cially the observation that applying OOP techniques is not su�cient, a�ects this work. Instead
of implementing another object-oriented framework, an approach that chooses composition
over inheritance and extends beyond classical type hierarchies by the integration of semantics
is taken. Besides such low-level decisions, a component-based approach is adopted, since it
was reported to be bene�cial for systematic so ware reuse. Although this work is not explicitly
concerned with domain engineering, the means to integrate semantics enables users of a
developed framework to make use of this concept more easily. In addition to the adoption
of a component-based perspective, a generative approach is taken: encouraged by the men-
tioned appropriateness of such concept (cf. section 2.2.4), formalized knowledge about the
system, which is provided by both the developed framework and associated components, is
transformed into program code.
Regarding the creation, classi�cation, and retrieval of reusable components (cf. section 2.2.3)

a version controlled so ware repository is proposed. Although not fully implemented in
the context of this work, the above-mentioned formalized knowledge about the system can
be used support automatic component retrieval. According to the review of reusability
measures, modular structure, low coupling and high cohesion, as well as reducing complexity
of con�guring and using components are the major goals regarding framework design.

2.3 Intelligent Realtime Interactive Systems
Having investigated the topic of reusability, this section surveys related work in the area of RIS
and IRIS development. In doing so, special focus is put on VR and IVE frameworks, which
serve as representative examples for those �elds.
As stressed in the introduction of this work, the development of such systems is complicated

by multiple aspects. Besides realtime constraints, the demand for interactivity, and utilization
of most diverse hardware devices, IVEs additionally require the integration of AI-methods
and appropriate forms of knowledge representation.
¿e term Intelligent Virtual Environment (IVE) was introduced by Luck and Aylett to

denote the

“combination of intelligent techniques and tools, embodied in autonomous creatures and
agents, together with e�ective means for their graphical representation and interaction of
various kinds [...].”

Luck and Aylett (2000, p. 4)

In their publication, the authors put a special focus on issues that arise in the context of
the integration of autonomous virtual agents in IVEs. Nevertheless, they also address the
requirement of specifying knowledge about the virtual environment itself. In this context,
they mention that the development of IVEs requires the incorporation of explicit knowledge
representation facilities.

28

2.3 Intelligent Realtime Interactive Systems

Although the concept of intelligent virtual agents does build upon the representation of
their environment, most research has focused on the realistic simulation of the virtual agents’
behavior. Environmental knowledge has largely been hardcoded or been achieved by means of
annotating entities of the VE with semantic symbols. ¿is works for a single application, but
does not foster reusability. ¿us, there are still few approaches regarding the systematic—and
hence reusable—integration of knowledge facilities that re�ect the simulation state, today.
One year a er the introduction of the term IVE, Aylett and Cavazza (2001) provided an

overview of the state-of-the-art in the area. As indicated by the covered topics, research was
still mostly concerned with the simulation of virtual agent behavior.
Orkin (2004) discusses the symbolic representation of game world state for real-time

planning in games. In the publication he overviews the work�ow with designers, emphasizing
the bene�ts of decoupled actions and goals. He reports about the integration of symbolic
representations in the context of two games to enable action planning.
¿e lack of reusability regarding virtual objects is addressed byOtto (2005b), who introduces

the term Semantic Virtual Environment (SVE). He suggests an RDF2-based approach (cf.
section 2.4.2) to externalize knowledge and thus facilitate reuse of virtual entities. A similar
issue is addressed by Gutierrez, Vexo, and¿almann (2005). ¿ey state that semantics could
be used at every stage of VE implementation, starting with content modeling. Yet, they focus
on the representation of semantics at runtime, particularly regarding geometric information.
¿e Virtual Reality – With Intuitive Speci�cations Enabled (VR-WISE) approach (see, e.g.,

De Troyer, Kleinermann, Pellens, & Bille, 2007) puts special focus on semantic modeling of
virtual environments. It is especially concerned with the creation and design of semantically
annotated content of VEs as well as the speci�cation of possible behaviors. ¿e approach
includes an ontology (cf. section 2.4.2) to store semantic concepts and relations. In a three
step process the content of the ontology is speci�ed, mapped to implementation primitives,
and transformed into a VE application.
¿e bene�ts of semantics in games and simulations is also evaluated by Tutenel, Bidarra,

Smelik, and Kraker (2008). ¿e authors overview di�erent aspects of semantics in the design
phase as well as at runtime by surveying related work. In their conclusion, they call for a
generic semantic speci�cation layer:

“An important challenge here, however, is the development of a generic speci�cation layer
for sharing the appropriate semantic data with all its potential client modules (e.g., AI,
animation, rendering, physics, etc.). Among other problems, this will likely collide with
many current practices, including the use of own ad hoc data and hard-coded scripts
for expressing object behavior, features, and so on; however, as we noticed in Section 5,
several research examples have proven that the use of semantic information can de�nitely
bring about a considerable enrichment in many of these �elds.”

Tutenel et al. (2008, pp. 31–32)

¿e creation of such a layer is one of the main aspects that are addressed in this work. In
this way, the results from the VR-WISE modeling approach can be made available to all other
simulation modules, allowing for more e�ective utilization of the integrated semantics. In
chapter 3 the theoretical basis of this approach is established, while chapter 5 discusses the
details of the respective implementation.
2 Resource Description Framework, Manola and Miller (2004)

29

Chapter 2 Related Work

2.3.1 Aspects of VE Development

As observed by multiple researchers (e.g, Coninx, De Troyer, Raymaekers, & Kleinermann,
2006) the development of VE applications is a highly complex task. ¿is is owed to the fact that
multiple modules, which put high demands on the utilized hardware, interact with each other.
Wingrave and LaViola (2010) as well as Taylor et al. (2010) provide highly valuable insight
on the issues that exist with the design and implementation of virtual environments. More
particularly,Wingrave and LaViola (2010) identify a total of 67 issues related to the topic, which
they categorize into eleven themes. Among these are issues regarding reuse of assets, the need
for real-time operation, and the complexity of the overall topic. For example, they observe
that, “despite community e�orts to standardize and build better tools, it remains easier to
build than to reuse, and models are not widespread in use” (Wingrave & LaViola, 2010, p. 182).
Furthermore, they �nd that the set of tools used by one community of practitioners separates
it from other communities using other tools, due to incompatibilities and the impossibility of
sharing implementations.
As opposed to this approach, Taylor et al. (2010) report on the experiences gained in 20 years

of VE development and provide 13 so-called nuggets3 of related knowledge. Among others,
their experiences include that a framework has to be easily understandable and support its
user to achieve goals in di�erent spaces (e.g., di�erent coordinate systems). In this work, a
uniform access model as well as an automatic type conversionmechanism are proposed, which
allow for answering these desires. ¿e authors also state that more information regarding the
simulated objects than only geometry data may be desirable. ¿is is in line with this work’s
intention to add semantic information to arbitrary elements of a VE.

Closely Coupled SimulationModules

¿e above-mentioned �ndings o en lead to close coupling of simulation modules. ¿ere is no
single root cause for this, but rather a set of interdependent aspects, which largely address the
performance of the implemented application. Since a VE application aims at high immersion,
it is inherently required to be interactive. ¿e associated requirement for high responsiveness
necessitates highly optimized implementations (Wingrave & LaViola, 2010).
In order to make the most of current multi-core architectures, required computations

are performed concurrently. Although single threads of computation are usually decoupled
from each other, the access to shared data and the utilization of computed results requires
communicationwith other parts of an application. ¿is possibly results in an incomprehensible
control �ow, since synchronization mechanisms have to be applied to prohibit concurrent
modi�cations (Lee, 2006). ¿e opaque nature of dependencies between the di�erent applied
mechanisms complicates grasping a program’s internals—and thus hinders reusability.
Regarding a single simulation module, the required real-time operations result in the

implementation of highly optimized data structures. To retain the gained performance
advantages, data duplication is undesirable and should be avoided. ¿is, in turn, means that
one simulation module has to access data that is associated with another module. In order
to reduce this kind of coupling, VE frameworks o en provide a centralized shared memory

3 ¿e authors de�ne nuggets as “brief insights from current and past designers, describing features they found useful
or describing hazards to be avoided” (Taylor et al., 2010, p. 163).

30

2.3 Intelligent Realtime Interactive Systems

representation of the simulation state. Either way, a simulation module in such frameworks is
coupled to the content of another module or to global data structures.
In use case 1.1 this would complicate the replacement of a rendering module: since syn-

chronization mechanisms are required to prevent issues arising from concurrent access to
shared data, the newly inserted module has to be adapted to each point of shared access.
¿is is impeded even more, if the shared data structures do not match the module’s internal
representation, e.g., if one renderer employs a scene graph, whereas the other one conceivably
implements an octree.
One approach to overcome this issue is to apply the actormodel proposed byHewitt, Bishop,

and Steiger (1973). An implementation is presented by Fröhlich and Latoschik (2008), whose
work will be discussed in section 2.3.4.

Involved personnel

Despite the problem of closely coupled simulation modules, the groups of developers involved
in the process of creating a VE application as well as their knowledge and expertise are highly
diverse. ¿e developers can be broadly categorized into three groups (Ponder, 2004):

• Component Framework Developers, who develop the framework that provides the basis
for composing an application from several components.

• Component Developers (in the sense of simulation modules or components), who are
experts in the simulation module’s domain.

• Application developers, who eventually develop an application using the work of the
aforementioned groups. Members of this group o en are not VR-experts (cf. Kleiner-
mann et al., 2005).

In the context of IVE development, the group of knowledge engineers is joined to the
above-mentioned ones. ¿ese are specially concerned with the computational representation
of knowledge. More speci�cally, their task is to design and maintain the knowledge bases that
underly an eventual IVE application.
¿is categorization does by no means match the previously observed close coupling of

simulationmodules but rather represents the desirable situation. Ideally, the above-mentioned
categorization can be taken as a layered model in which the persons in one layer only access
results from the previous layer.
Consequently, a framework that aims for reusability has to account for this structure. In the

end this means that not only so ware assets, but also the work of persons who are concerned
with their implementation has to be decoupled.

2.3.2 VR Frameworks

As a matter of fact, there currently is no widely accepted standard for the integration of
simulation modules into VR applications. Consequently, multiple research frameworks were
implemented over the last decades (see table 2.2 for some prominent examples). Few of these
were (re-)used by others than the research group they were developed by. In the �eld of IRIS

31

Chapter 2 Related Work

research, this does apply even more: due to highly application speci�c content almost every
IVE application is custom-made. Of course, preexisting simulation modules are reused, but
a er their integration further modi�cation or replacement is not intended. Consequently,
results are based on custom-made solutions, wherefore their replication is virtually impossible.
¿is situation is partly owed to the fact that the �eld of intelligent virtual environments is

situated in between multiple others. For example, in most cases an IVE involves computer
graphics, which is a highly active �eld of research in its own. Similarly, other aspects that
are related to the simulation of virtual environments, e.g., physics simulation or 3D sound
rendering, require highly elaborate computations. All of these are unrelated to the �eld of
arti�cial intelligence, wherefore the links that are necessary to create the required knowledge
representation have to be established manually. As a result, intelligent behavior in IVEs is
mostly restricted to a single aspect, for example, the simulation of a virtual agent and its knowl-
edge, representation and utilization of knowledge about the content of the virtual environment,
or knowledge about physical processes that take place in the virtual environment. For use
case 1.3 this means that the combination of a reasoning mechanism that infers knowledge
regarding speci�c sensor information with a rule engine that processes rules that concern the
laws of physics is impeded by shortage of shared, semantically annotated information.
¿e hence existing lack of a common ground hinders the possibility of interoperability of

developed applications. In order to create such common ground, the next section surveys
architectures of prominent frameworks. In addition to the frameworks that were developed
in the academic area, two game engines that recently gained attention in the context of VR
development are reviewed.

Common Architectures

¿ere is no commonly accepted categorization of VR frameworks, which partly is due to the
fact that the implemented features cannot be clearly distinguished. In most cases a framework
mixes in multiple architecture concepts. For example, graph-based architectures o en are
combined with event systems, which allow for communication between simulation modules
without obeying the graph structure. ¿e examination of frameworks and reviews by others
revealed the categories of VE framework architecture concepts described below. Table 2.2
provides an overview of the properties of some prominent VR research frameworks.

Micro-kernel based: Micro-kernel based architectures, e.g., VR Juggler (Bierbaum et al.,
2001), provide a plugin system that enables the registration of simulation modules. ¿e kernel
orchestrates these modules, which have to implement certain interfaces. Accordingly, the
�xed execution schemes are imposed upon developers.
As opposed to other architecture types, no speci�c form of state representation is enforced

by micro-kernel architectures. While this leaves the developer the freedom to decide on the
best form of representation, it also potentially reduces reusability of such application, since
each application de�nes its own so ware interfaces.

Component-based: Component-based architectures, such as NPSNET-V (Kapolka, Mc-
Gregor, & Capps, 2002) and VHD++ (Ponder, Papagiannakis, Molet, Magnenat-¿almann,
&¿almann, 2003), depend on the features provided by the object-oriented programming

32

2.3 Intelligent Realtime Interactive Systems

N
am

e
M
K

D
G

M
B

C
B

ES
EM

IS
Pu
bl
ic
at
io
n

M
R
To
ol
ki
t

x
C
.S
ha
w
,G
re
en
,L
ia
ng
,a
nd

Su
n
(1
99
3)

D
IV
E

x
(x
)

x
x

C
ar
lss
on

an
d
H
ag
sa
nd

(1
99
3)
,F
ré
co
n
(2
00
4)

V
R
Ju
gg
le
r

x
Bi
er
ba
um

et
al
.(
20
01
),
A
lla
rd
,G
ou
ra
nt
on
,L
ec
oi
nt
re
,M

el
in
,a
nd

Ra
�
n
(2
00
2)

I4
D

x
x

x
G
ei
ge
r,
Pa
el
ke
,R
ei
m
an
n,
an
d
Ro
se
nb
ac
h
(2
00
0)

N
PS
N
ET
-V

x
x

x
K
ap
ol
ka
,M

cG
re
go
r,
an
d
C
ap
ps
(2
00
2)

V
H
D
++

x
x

x
Po
nd
er
,P
ap
ag
ia
nn
ak
is,
M
ol
et
,M

ag
ne
na
t-¿

al
m
an
n,
an
d
¿
al
m
an
n
(2
00
3)

Fl
ow

V
R

x
A
lla
rd
et
al
.(
20
04
)

SC
IV
E

x
x

x
x

x
La
to
sc
hi
k,
Fr
öh
lic
h,
an
d
W
en
dl
er
(2
00
6)
,F
rö
hl
ic
h
(2
01
4)

Av
an
go
N
G

x
Ku
ck
,W

in
d,
Ri
eg
e,
an
d
Bo
ge
n
(2
00
8)

in
st
an
tR
ea
lit
y

x
Be
hr
,B
oc
kh
ol
t,
an
d
Fe
lln
er
(2
01
1)

RE
V
E

x
x

x
x

A
na
st
as
sa
ki
sa
nd

Pa
na
yi
ot
op
ou
lo
s(
20
11
)

M
A
SC
A
RE

T
x

x
x

C
he
va
ill
ie
re
ta
l.
(2
01
2)

Ta
bl
e
2.
2:
Co

m
pa

ris
on

of
po

pu
la
re

xi
st
in
g
VR

re
se
ar
ch

fr
am

ew
or
ks

(M
K
=
M
ic
ro
-K
er
ne

lb
as
ed

,D
G
=
D
at
a
Fl
ow

G
ra
ph

-b
as
ed

,M
B
=
M
es
sa
ge

-b
as
ed

,C
B
=
Co

m
po

ne
nt
-

ba
se
d,
ES

=
Ev
en

tS
ys
te
m
,E
M

=
En

tit
y
M
od

el
,I
S
=
In
te
gr
at
ed

su
pp

or
tf
or

Se
m
an

tic
s)

33

Chapter 2 Related Work

paradigm. If designed thoughtfully, components are loosely coupled simulation modules that
can be exchanged if they conform to the interfaces de�ned by the framework. In this regard,
a component-based framework is very similar to the micro kernel-based architecture men-
tioned above. However, no prede�ned execution scheme is imposed upon the components
but they can run in parallel or use speci�c con�gurations.
¿e bene�ts of component-based architectures especially lie in their �exibility, since they

enable components to apply their own execution schemes. On the downside, such frame-
works tend to impose complex interfaces on the developer of a simulation module, reducing
understandability.

Graph-based: VR frameworks that adopt a graph-based architecture focus on modular-
ization by means of single nodes, which are connected via so-called routes. ¿e input- and
output-ports of such nodes are o en called �elds, the values of which are propagated along
the application graph. Application logic is implemented inside the nodes, which can instantly
react on new data that arrives on the input �eld or postpone calculations to the invocation of a
dedicated evaluatemethod. Some examples for systems that apply a graph-based architecture
are FlowVR (Allard et al., 2004; Limet, Robert, & Turki, 2009), Avango (Tramberend, 1999),
and its successor Avango NG (Kuck, Wind, Riege, & Bogen, 2008).
A graph-based architecture fosters modularity in the way that it requires parts of the

application logic to be coherently implemented in graph nodes. ¿e fact that nodes can be
rearranged and thus be reused in di�erent contexts exhibits the bene�cial nature of graph-
based architectures regarding decoupling. Furthermore, this kind of structure facilitates the
implementation of visual programming methods (even inside the virtual environment, cf.
Biermann and Wachsmuth (2003)). On the downside, application graphs tend to become
incomprehensible as more nodes are added.

Message-based: Similar to the graph-based approach, message-based architectures allow
to send data from one module to another. Accordingly, the propagation of �eld values can
be implemented in the form of messages that are exchanged between simulation modules.
However, as opposed to a graph-based architecture, the execution scheme of simulation
modules is not necessarily de�ned by the order in which messages are dispatched. Moreover,
simulation modules do not have to be coupled explicitly, since message broadcast and the
application of a publish/subscribe model can be supported.
Representatives of the message-based architecture are DIVE (Carlsson & Hagsand, 1993),

I4D (Geiger, Paelke, Reimann, & Rosenbach, 2000), and the MR Toolkit (C. Shaw et al.,
1993). ¿is kind of architecture is especially encountered in the area of distributed virtual
environments, since it inherently supports client/server architectures.
¿e bene�t of message-based communication between simulation modules lies in the

inherently low coupling of the approach. A problem that arises in this context is the missing
support for compile-time veri�cation of message support. More precisely, the capability of
a receiver to process a certain type of message cannot be ensured at compile-time. ¿is is
especially the case if messages are marshalled in the dispatching process. Moreover, additional
mechanisms are required to specify the underlying execution scheme, wherefore this approach
is o en combined with a component-based one.

34

2.3 Intelligent Realtime Interactive Systems

Event Systems: Steed (2008) observed that an event system is a highly bene�cial feature.
¿is is not exactly a type of architecture to be found in VR frameworks but rather an additional
concept that is added on top of the applied architecture.
An event can be regarded as a completely independent piece of information. Implemented

similar to a message-based architecture, an event system allows for communication between
simulation modules, ignoring execution schemes and thus rendering coupling between event
source and event destination unnecessary. ¿erefore, only changes to the message interface
result in the requirement for global changes to the application, whereas local changes remain
local. Consequently, the application of an event system fosters low coupling and high cohesion.
However, Wingrave and LaViola (2010) argue that the application of callbacks and events

lacks a mechanism to organize system complexity and thus negatively a�ects extensibility and
maintainability. Similarly, the drawbacks of message-based architectures apply.

Entity Model: A second aspect that was found bene�cial is the application of an entity
model (Mannuß, Hinkenjann, &Maiero, 2008; Taylor et al., 2010). As opposed to a scene graph
centered representation of the objects in the VE this approach regards them as individual
entities. ¿is is in line with the observation by Latoschik and Tramberend (2010), who
identi�ed scene graphs to have negative e�ects on coupling and cohesion.
A related approach, which is used in recent frameworks for virtual environments (e.g., Unity

3D), is the Entity-Component-System (ECS) pattern. Under its application simulated objects
are represented as entities that are composed of so-called components. Such a component
contains the data that is required for multiple aspects of the simulation. ¿is could, for
example, be the position and orientation of the entity or its representation as a rigid body.
¿ese components are accessed by systems, which simulate certain aspects of the virtual
environment. Examples for systems are physics engines and rendering modules.
¿e systems that operate on a particular entity are identi�ed depending on the compo-

nents it aggregates. ¿is facilitates decoupling, since each aspect of the simulation can be
treated individually. Furthermore, it enables the possibility to dynamically add and remove
components—and hence functionality—at runtime.
¿e idea behind the ECS pattern is to reduce the impact of the strict type hierarchy that

is imposed by the OOP paradigm. By composing entities by means of aggregation instead
of inheritance an entity’s nature is determined by its content instead of its position in the
type hierarchy. As a result, modi�cations to its character and thus the roles it assumes in the
environment are simpli�ed.
However, the approach has some drawbacks. First, the order in which systems modify data

is required to be �xed, to avoid unexpected behavior. Hence, the simulation modules are still
coupled, since components introduce the concept of shared memory.
Second, a component constitutes an interface that a related simulation module has to

comply with. ¿is hinders reusability, since an independently developed simulation module
still has to be adapted manually to match these interfaces. At this point, the �xed hierarchy
of components and associated systems creates a further restriction: there is no way to reuse
a certain component for a newly implemented system without involving the system it was
originally designed for (except if that system is disabled completely), because adding and
removing a certain component does implicitly associate an entity with a system. Consider
the following situation: if the aforementioned rigid body component shall be reused with an

35

Chapter 2 Related Work

optimized collision detection system, but an a�ected entity must not be simulated physically,
some e�ort has to bemade to create an adequate component without eliminating the possibility
of reusing both the physics system and the new collision detection. ¿is is owed to the fact
that, with OOP, it is hard to retrospectively insert elements into an existing class hierarchy.

Implications

All of the identi�ed architectures exhibit advantages and disadvantages. As already mentioned,
this o en results in the combination of multiple architectural concepts in a single framework.
With regard to coupling amessage-based architecture is bene�cial, especially since it inherently
supports the implementation of an event system. Furthermore, the noti�cation mechanism
that is indirectly introduced with graph-based architectures (i.e. the calculation of a new value
is propagated along the graph) as well as the associated mechanism to specify the execution
scheme is desirable. Consequently, an eventual architecture should support message-based
communication.
As opposed to this, a component-based architecture, which allows for replacement of

conceptually coherent functionality (e.g., a rendering module or a physics engine), is also
desirable. A common way to represent the simulation state in such systems is the utilization of
an entity model, which has been found to be superior to scene-graph data structures. It allows
to overcome possibly incomprehensible application graphs and creates an understandable
view on the contents of the simulation.
In order to address the identi�ed drawbacks of the ECS pattern, the approach proposed

in this work does require the programmer to explicitly specify so-called aspects of the sim-
ulation, which de�ne an entity’s association with a certain simulation module (cf. section
4.5). Furthermore, the problem of inserting new elements into an existing class hierarchy is
addressed by means of semantic traits (cf. section 4.2.3).

2.3.3 Game Engines

In the last decade game engines are being more and more used in the context of VE develop-
ment in order to create highly realistic VEs in di�erent application areas (Lewis & Jacobson,
2002; Juarez, Schonenberg, & Bartneck, 2010; Lugrin et al., 2012). ¿e two most popular
of these engines are the Unity platform (Unity Technologies, 2015) and the Unreal Engine
(Epic Games, 2015). Reacting to the request of developers in the academic area as well as
other non-commercial users, the licensing models of both engines have been changed to
monthly subscription and even free packages. ¿is way, the engines that previously only were
available to game development companies are now getting more and more popular in the area
of research.

Unity

Unity, currently in its � h version, provides the developer with the opportunity to integrate
C#, JavaScript, and Boo code. One of the major advantages of Unity’s architecture is the
implementation of the ECS pattern, which was discussed in section 2.3.2. As opposed to its
pure version, in Unity components do also contain functionality. At runtime, components

36

2.3 Intelligent Realtime Interactive Systems

Figure 2.1:An Unreal Level Blueprint that is invoked every frame. Scala code that provides the same functionality
is shown in listing 2.1.

can be added to entities, which essentially are subclasses of the GameObject class. In this way,
Unity’s architecture facilitates highly modular design.
Said architecture is bene�cial for the Unity editor, which allows the developer to design

a virtual world and inspect the current world state at runtime. New content can be easily
imported, either from local sources (via drag & drop) or the Unity Asset store. ¿e latter
also allows for reuse of program code that was implemented by other developers. Due to the
growing community, multiple add-ons to Unity exist, which facilitate its use in the context
of VR development. Furthermore, documentation is available in the form of tutorial videos,
code examples, and a well documented API.
However, some important features required for IVE development are missing. First of all, a

Knowledge Representation Layer (KRL, Cavazza & Palmer, 2000) has to be added manually.
Moreover, no uniform way of observing modi�cation to a component’s property is provided
by the engine. Many events can be reacted on by registering callback methods, but no means
to broadcast an event to a set of registered subscribers is provided. Instead, events have to be
passed down the scene graph when recipients are unknown to the sender. Since this leaves
the implementation to the users, it introduces a possible source for incompatibilities. Apart
from this, Unity imposes a �xed execution scheme that can only be intersected at prescribed
points using a respective callback.

Unreal Engine

¿e Unreal Engine, in the current fourth version, provides the developer with a powerful
editor that consists of multiple modules. Similar to Unity, (C++) program code can be added
by a developer to implement application logic. In addition, the Unreal Engine 4 introduces
Blueprint, a visual scripting tool that allows for graph-based modeling of application logic. An
exemplary visual script is shown in �gure 2.1. ¿e �ow of data can be inspected at runtime,

37

Chapter 2 Related Work

1 def EventTick(deltaSeconds : Float) = {
2 if (gameTime.toInt % 2 != LastValue){
3 LastValue = gameTime.toInt % 2
4 Counter = (Counter + 1) % 8
5 if (Counter > 4) println("Value is too high")
6 else println(Counter)
7 }
8 }

Listing 2.1: Scala equivalent to the Unreal Blueprint from �gure 2.1: A counter is increased each second and reset
to zero when it reaches the value eight. Depending on its value, di�erent output is printed.

which is a highly valuable feature that is not inherently supported by any of the other presented
frameworks. In contrast toUnity, theUnreal Engine does also provide the possibility to publish
events and subscribe to them.
Visual programming with Blueprint is not always more comprehensible than writing pro-

gram code, as the comparison between �gure 2.1 and listing 2.1 indicates. Especially computa-
tions involving plain numbers can be expressed in a much more concise way using program
code. ¿e Unreal Engine allows to implement functionality using C++ and to utilize the
implemented function in Blueprint. However, due to the high amount of macros that are used
in the C++ API of the Unreal Engine, this approach is much more complex to understand
and requires a lot more training than the visual programming.
Similar to Unity, content can easily be imported from local �les into the Unreal Engine

Editor and an asset store can be accessed to download additional content, like 3D models or
scripts. Also, video tutorials, code examples, and API documentation are available.
Unfortunately, the Unreal Engine does not provide integrated support for semantics or

elaborate AI methods. Furthermore, registering callbacks for value changes is not supported
and a �xed execution scheme is prescribed.

Bene�ts and Drawbacks

One of the major bene�ts of the utilization of a game engine are the features it provides to
generate believable virtual worlds. ¿e highly optimized visual rendering modules, which
are maintained by the engine’s manufacturer, implement state-of-the-art methods that can
impossibly be matched by custom-made solutions. Similarly, the editing facilities, which
provide designers with easy to use interfaces, are highly bene�cial for the creation of VEs.
On the downside, such engines prescribe �xed execution schemes and do not support the

developer in breaking out of these. With both Unity as well as the Unreal Engine it is possible
to start new threads of execution, but the developer has to manually sync the results with the
engine’s internal update loop. Furthermore, there is no support for the integration of semantic
annotations, reasoning modules, rule engines, or similar modules that are required for the
development of IVEs.

38

2.3 Intelligent Realtime Interactive Systems

Regarding reusability the asset stores provide ameans to access foreign content and program
code. However, the possibilities provided for searching the store content are limited to text
based search.
¿e application of the entity-component-system pattern in Unity provides a way to add and

remove modules from an application without having to modify other part of the application
than the entities. However, the data structures that are used are prescribed by the utilized
components. ¿erefore, exchanging a component for a similar one does still require manual
adaption of every a�ected application.
It is virtually impossible to achieve use case 1.1 with the presented game engines. ¿ey aim

for highly realistic visualizations of the VE, wherefore the rendering module is the centerpiece
of such an engine and, by no means, intended to be exchanged. ¿e only (moot) option would
be to add an additional rendering module while the initial one remains intact. Even though
theoretically possible, this would require tremendous e�orts.
Regarding use case 1.3 the situation is similarly desperate: due to a total lack of computa-

tionally accessible knowledge about the VE and relationships between entities therein, the
introduction of advancedAImethods, which go beyond common game-AI like path-planning,
requires high e�orts. It is not impossible to achieve though, as, for example, work by Lugrin
and Cavazza (2007) shows.
¿emost easy—but still complex—task to achieve is indicated by use case 1.2. Integrating an

additional sensor, which represents a self-contained system, can be achieved by implementing
an appropriate plugin to the engine. Utilizing the obtained data, however, o en requires the
utilizing module to be closely coupled to that plugin, since it constitutes a custom-made piece
of so ware that was not provided for in the �rst place.
In summary, although game engines provide highly e�cient and elaborate simulation

modules, their utilization in the context of IRISs is rather inappropriate.

2.3.4 IVE frameworks

¿e number of frameworks dedicated to the creation of intelligent virtual environments is
limited. Most research projects rather build on a VR framework and extend it by a Knowledge
Representation Layer (KRL) that is tailored for the speci�c use case. ¿e following paragraphs
overview four frameworks that focus on the representation of semantics in VEs and thus are
highly relevant for this work.

SCIVE

Latoschik, Fröhlich, and Wendler (2006) present the Simulation Core for Intelligent Virtual
Environments (SCIVE), which later was extended by Fröhlich (2014). SCIVE builds on a
central KRL, which is used to tie together the di�erent simulation modules in use. Due to
SCIVE’s modular architecture and the adoption of the actor model, these modules can be
executed concurrently.
An overview of this architecture is shown in �gure 2.2: ¿e central KRL is used to represent

the current world state, which is accessed by multiple simulation modules. ¿e latter are
decoupled by means of the so ware interfaces that are provided by the SCIVE framework.

39

Chapter 2 Related Work

Figure 2.2: Conceptual overview of a SCIVE application involving a user and a virtual agent (�gure from Latoschik
& Fröhlich, 2007b, ©2007 SCITEPRESS).

In SCIVE, the propagation and integration of computed values is organized in a data-
�ow graph. ¿e nodes of this graph are �lters, which can modify the values and eventually
integrate them into the KRL. Related to this, Heumer, Schilling, and Latoschik (2005) present a
mechanism for automatic data exchange and synchronization by means of which the exchange
of data between di�erent simulation modules is facilitated.

The Actor Model As mentioned above, concurrent execution of simulation modules is
facilitated by the adoption of the actormodel into the SCIVE framework (Fröhlich& Latoschik,
2008). In the actor model by Hewitt et al. (1973) an actor is an independent computational
entity that can solely communicate via messages.
More speci�cally, an actor can perform the following actions:

• send messages

• create further actors

• change its behavior according to received messages

Besides message-based communication, an actor is completely restricted to local computa-
tions. ¿us, the model inherently facilitates concurrent computations and avoids problems
that commonly arise in the context of concurrency control mechanisms. Furthermore, the
message-based communication allows for implementation of distributed systems, which is
highly bene�cial in the context of VR frameworks.

40

2.3 Intelligent Realtime Interactive Systems

Semantic Re�ection During the development of SCIVE the concept called Semantic Re�ec-
tion was introduced (Latoschik & Fröhlich, 2007b). With semantic re�ection, semantic-based
access to all levels of the application including its con�guration, simulation modules, and
simulated entities is enabled. ¿is is facilitated by the integration of a KRL as a central data
representation. Among the examined frameworks, SCIVE is the only one that incorporates a
semantic representation of architecture elements to this extent.
For example, objects in the scene graph can be tagged at runtime to change their dynamic

type (e.g., to is_agent_perceptable). ¿is way, using the possibly in�exible type system
of the underlying programming language can be avoided. Similarly, the con�guration of
simulation modules or the application can be changed at runtime.
Although the goals pursued by SCIVE are highly similar to those this work aims for, no

methodology for decoupling simulation modules is provided by its authors. More precisely,
the so ware interfaces that are mentioned to simplify replacement of simulation modules are
not published. For example, it is not clear in which way new simulated objects are instantiated.
Moreover, the structure of the employed semantic network remains unspeci�ed.
SCIVE’s KRL is implemented in the form of a semantic network (cf. section 2.4.1), which

is processed by semantic traversers. While semantic networks provide a comprehensible
form of representation, they lack formal semantics and thus o en depend on custom-made
implementations. Regarding reusability a more �exible representation is desirable. In this
context, recent IVE frameworks implement formats that were developed in the context of the
Semantic Web. One of these frameworks is ISReal, which is examined in the next section.

ISReal

¿e Intelligent Simulated Realities (ISReal) platform, which is more related to the �eld of
Intelligent Virtual Agents, is presented by Kapahnke, Liedtke, Nesbigall, Warwas, and Klusch
(2010) and Nesbigall et al. (2011). Its central building block is a semantic world model. ISReal
utilizes a semantically annotated scene graph and ontologies for both semantic properties and
services. Owed to its focus on IVAs, the ISReal platform emphasizes the semantic annotation
of services and virtual objects.
¿e semantic world model builds on a scene graph that is used to represent the objects that

exist in the virtual world. Each object is added high-level semantic annotations, which can
contain information about its physical properties, semantic descriptions, and services it can
be used with. ¿e platform utilizes ontologies that are represented using the Web Ontology
Language (OWL) (cf. section 2.4.2) to specify semantic content.
It furthermore uses so-called semantic objects, which contain URIs that refer to the as-

sociated semantic concepts, semantic services, and an OWL individual that represents its
high-level description. In addition, a semantic object encompasses information on its geome-
try, animations, and its physical properties.
Since ISReal focuses on the integration of virtual agents, no further information on the

integration of other modules that update the simulation state at high frequencies (e.g., a
physics engine) is given. However, the utilization of OWL based service descriptions enables
the creation of a distributed architecture. In this way, a centralized semantic representation
of the simulated environment can be maintained, which is accessed by remotely executed
services (e.g., graphics rendering).

41

Chapter 2 Related Work

As opposed to SCIVE, the ISReal platform does not support semantic representation of low-
level concepts but rather encapsulates knowledge in the form of semantic objects, which are
linked with high-level concepts. ¿e restriction to high-level concepts is bene�cial regarding
extensibility, since program code has to be adapted to newly speci�ed concepts. On the other
hand, information in the semantic world model has to be explicitly linked with runtime
information. ¿is possibly results in a lack of information on particular aspects that might be
required in an extended version of an application.

REVE

¿e REVE platform (Anastassakis & Panayiotopoulos, 2011) is one of the very few so ware
frameworks that were explicitly developed for the creation of reusable Intelligent Virtual
Environments. REVE is a set of so ware tools that allow for creation and simulation of IVEs
as well as the integration of virtual agents.
¿e representation of virtual objects in REVE is based on an entity model in which entities

are called items (Anastassakis & Panayiotopoulos, 2012). Such items consist of a set of item
aspects, which model speci�c aspects of the entity. ¿ese aspects are similar to components
in the ECS pattern mentioned in section 2.3.2. By default each item has a physical aspect,
a semantic aspect, as well as an access aspect. In addition, depending on the requirements
of a particular application, further aspects can be added. ¿e data that is required for the
simulation of the virtual objects is stored in a centralized virtual world store.
¿e framework was used to investigate the integration of a physics engine into existing

virtual environments by Anastassakis, Panayiotopoulos, and Raptis (2012). In this scenario a
physics aspect was added, which contained the elements that were required for physical simu-
lation of the respective entity (e.g., mass and velocity). An implementation dependent adapter
module was created, which connected the physics engine to be used with the aforementioned
virtual world store. Updates were propagated via the frame event noti�cation and response
infrastructure, which is provided by the integrated rendering module. ¿e authors emphasize
that the integration neither required the adoption of the REVE platform nor of the newly
integrated physics engine, which reveals the bene�cial aspects of the architecture regarding
extensibility and reuse.
Besides the di�erence of integrating a physics engine instead of a 3D rendering module,

this example is very similar to the frequently discussed use case 1.1, which hence is supported
by the architecture of the platform. However, REVE does hardcode semantic information in
the above-mentioned aspects, wherefore such information cannot be reused easily. Moreover,
the application of semantic reasoners or similar modules is hindered by this approach.

MASCARET

¿eonly IVE framework that is available to the public is theMultiAgent System forCollaborative,
Adaptive & Realistic Environments for Training (MASCARET), which has been presented by
Buche, Querrec, De Loor, and Chevaillier (2003). As its acronym suggests, it was designed to
support the creation of VEs that are inhabited by IVAs.
In MASCARET, semantic modeling builds on UML-based meta-models (Chevaillier et al.,

2012). ¿e authors justify their decision by stating that UML has the same abstraction level

42

2.3 Intelligent Realtime Interactive Systems

that a semantic modeling language for VR applications is required to have. In addition, they
state that UML does not cover all of the requirements that arise in this context and propose
corresponding extensions. ¿is approach bears resemblance to the intention to implement
MOF Support for Semantic Structures (Object Management Group, 2013).
Additional simulation modules can be added in the form of plugins, which are triggered

once per simulation step (i.e. once per frame). In this regard, the framework’s architecture
can be considered to have a micro-kernel based nature.
MASCARET implements a signal/slot mechanism that allows to observe value changes of

internal properties. Access to slots is achieved by means of their names, which are encoded in
the form of strings. Moreover, virtual objects are represented by means of an entity model.
Every entity in that model is assigned a set of slots, representing its attributes. In addition, an
entity is assigned a state machine, which can be speci�ed to react to certain events.
All of these concepts are bene�cial regarding decoupling of simulation modules. On the

downside, the framework does not employ a knowledge representation format that can be
read by external modules. In addition, although the proposed UML-basedmodeling approach
is built on a solid basis it does not involve logic-based semantics. ¿us, to provide support for
common AI modules, a connection between these meta-models, an appropriate formalism,
as well as the application state would have to be implemented manually.

Implications

As indicated before, there is no uniform architecture that underlies existing IVE frameworks.
Consequently, the employed forms of knowledge representation, so ware interfaces, and
modeling mechanisms di�er, thereby prohibiting reuse.
Encountered features include observability of arbitrary simulation aspects, externalized

forms of knowledge representation, independence from underlying types, and decoupled
simulation modules. ¿e used technologies involve signal/slot systems, distributed ontologies
using Semantic Web technologies, type conversion mechanisms, as well as the adoption of the
actor model and its underlying message-based architecture. None of the examined systems
provides all of these and implementation details o en are not published.
Such features, however, are of high importance for the mentioned use cases: In order

to create exchangeable modules it is necessary to observe and perform changes to relevant
simulation aspects. In the example of use case 1.1 information about position and orientation
updates could be su�cient to replace a rendering module.
However, depending on the rendering features that are used by the application, further

information might be required. Aiming for exchangeability of arbitrary modules, the number
of types to be observed can impossibly be foreseen. Especially the AI modules that are
employed in use case 1.3 depend on such feature: depending on the particular application,
any kind of information can become useful or even required for these modules.
Use case 1.2 (integrating a new sensor) requires a di�erent point of view: in order to inform

modules that were present in the application before the newly integrated module has to be able
to provide information to the former ones. ¿is can either be achieved by publish/subscribe
patterns or by accessing the present aspects that are observed by existing modules.
In this context, the above-mentioned feature of externalized forms of knowledge repre-

sentations are highly useful. Since a uniform naming scheme is required to ensure that two

43

Chapter 2 Related Work

modules access the same properties, symbol-based access that is facilitated by an external,
common vocabulary is extremely bene�cial. All use cases can draw advantages from such a
feature, since it allows to decouple inter-module communication. ¿e MASCARET frame-
work theoretically would support this by means of the string-based access to the signal/slot
mechanism, however, the lack of said vocabulary prohibits this feature.
Similar to uniform naming schemes, independence from underlying types is a required

feature for the replacement use case 1.1. In the example of rendering module replacement this
becomes apparent by the fact that di�erent renderingmodules apply di�erent coordinate repre-
sentations (le -handed vs. right-handed representation). ¿us, even in the most unlikely case
that two di�erent modules use the same data types, a conversion between before-mentioned
representations can be necessary. ¿e same situation applies for sensor modules (use case 1.2)
that provide spatial information.
Besides choosing an architecture (cf. section 2.3.2) for the IVE framework to be developed,

a formalism to represent knowledge about the framework and VEs has to be chosen. ¿e next
section provides a brief overview of possible options for this.

2.4 Knowledge Representation

In order to utilize knowledge about the VE and the system itself, some form of knowledge
representation is required. ¿is could be achieved by means of internal data structures that
contain knowledge about the current simulation state. A more appropriate approach, however,
is to use an external data format the contents of which are loaded and then represented
internally. In both cases an underlying model has to be selected.
¿e following sections will discuss some of the possible forms of representation and their

use in the context of so ware engineering and IVEs. Due to the desire to make represented
knowledge accessible at every stage of the IVE development process, the work focuses on
symbol-based representations, whereas other approaches, for example, neural networks and
support vector machines, are not considered directly.
Such methods would be integrated in the form of a simulation module, which performs

the required calculations internally. For example, a neural network that perceives its input
from observable simulation aspects (which, in turn, might be updated by the sensor modules
mentioned use case 1.2) would internally process such data and add results to the simulation
state. ¿e latter can either occur in the form of raw numbers, in which case further interpreta-
tion by other modules is required to translate those numbers into a symbolic representation,
or by directly publishing respective symbols.
It has to be noted that the list of discussed methods is far from being complete. For more

comprehensive lists regarding the �eld of so ware reuse the reader is referred to related surveys,
e.g., Frakes and Gandel (1990) or A. Mili, Mili, and Mittermeir (1998). In the more recent
�eld of IVEs no comprehensive survey regarding the used form of knowledge representation
exists. However, the majority of IVE applications is somewhat related to the �eld of intelligent
virtual agents, wherefore the respective literature (e.g., Wooldridge, 2009) can be consulted
to obtain an overview of applicable forms of representation. A more general introduction to
di�erent forms of knowledge representation can be obtained from the relevant literature, e.g.,
Russell and Norvig (2010).

44

2.4 Knowledge Representation

2.4.1 Forms of Knowledge Representation
¿e following sectionswill brie�y introduce two types of knowledge representations: structural
representations and logical ones. While the former provide a comprehensible format, the
latter provide a formal basis for the representation of knowledge.

Structural Representations

Di�erent approaches to structure information about entities and relations between them
exist. ¿ese include object centered representations, like frames, which essentially consist of a
collection of slots that can be �lled with values. Each such slot is assigned a symbol, which
provides the assigned value with meaning. Relations, in this model, are expressed by inserting
a reference to a frame into a slot of another one.
A similar approach, which allows for comprehensible visualization, is taken by semantic

networks. Instead of including all information about the described entity inside a single
object, a semantic network constitutes a graph. Its vertices represent concepts, while its edges
represent the relation between those concepts.
Semantic networks have, for example, been used to represent knowledge about so ware

components in the context of component retrieval (A. Mili et al., 1998). In the context of
Intelligent Virtual Environments semantic networks have been used, e.g., by Peters and Shrobe
(2003), Latoschik and Schilling (2003) as well as Lugrin and Cavazza (2007) to represent
knowledge about the application and its state.
While semantic networks can easily be visualized and hence are comprehensible for humans,

the absence of a widely accepted formalism to exchange their content complicates their
distribution and reuse. ¿e same holds true for other forms of structural representation,
like the above-mentioned concept of frames. Moreover, due to the lack of a formal basis,
specialized mechanisms are required to infer information from the represented knowledge.

Logical Representations

In order to avoid such a lack of a formal basis a logical representation can be applied. An
example for such a representation is the so-called propositional calculus, which allows for
the application of inference rules to infer new propositions from given ones. In this context,
commonly the example involving the implication ‘if it is raining, the street is wet’ and the
assertion ‘it is raining’, resulting in the inference ‘the street is wet’, is given.
¿e expressivity of propositional logic, however, is limited, because it does neither include

the use of quanti�ers (i.e. ‘for all’ (∀) and ‘there exists’ (∃)) nor the de�nition of predicates
that represent statements about propositions. ¿ese features are introduced with First-Order
Logic (FOL), which therefore allows to formulate more expressive statements. For example, a
statement like ‘everything gets wet when it rains’ can be expressed:

∀x(rainOn(x) → isWet(x))

. Second-order logic (as well as higher-order logics) does provide the possibility of quantifying
relations, or more generally, to use predicates to represent statements about other predicates.
High expressivity is a desirable feature, but a Knowledge Base (KB) expressed in FOL is

already undecidable (more speci�cally, semidecidable) when predicates with two or more

45

Chapter 2 Related Work

Symbol Description Logic Features
Basic Language

AL atomic negation, concept intersection, universal restrictions, and limited
existential quanti�cation

EL concept intersection, existential restrictions (of full existential quanti�cation)
S same asALC with transitive roles

Extensions
+ transitive roles
C complement of roles
E full existential quanti�cation
F functional roles
H role hierarchy
I inverse roles
O nominals
Q quali�ed number restrictions
R limited complex role inclusion axioms, re�exivity, irre�exivity, and

role disjointness

Table 2.3: List of Description Logic expressivity identi�ers (cf. Baader, Calvanese, McGuinness, Nardi, & Patel-
Schneider, 2004).

arguments are used. Consequently, formulas that cannot be proved to be correct within
�nite time may exist in such a KB. In order to avoid this problem, the �eld of Description
Logics investigates (mostly) decidable logics (most of which are fragments of FOL) that are
appropriate for knowledge representation.

Description Logics (DLs) (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider,
2004) provide a formal logic-based framework for semantic knowledge representations.
¿rough this framework the expressivity of a formalism can be classi�ed and its reasoning
complexity be categorized.
In description logics usually two parts of the represented knowledge are distinguished:

terminological knowledge (the Terminological Box (TBox)) and assertional knowledge (the
Assertional Box (ABox)). Furthermore, DLs are categorized according to their expressivity. A
particular DL is categorized depending on the concepts it provides to express certain facts. ¿e
performance of a reasoning module operating on a certain KB is not necessarily determined
by the expressivity of the underlying DL but rather by the set of its features that are actually
used. However, restricting the expressivity of a language is a common means to determine
lower and upper bounds for the computational properties (if known for the respective DL
family). For example, concept satis�ability for the DL ALCQO (with acyclic TBoxes) is
known to be decidable in PSpace (Baader, Miličić, Lutz, Sattler, & Wolter, 2005), whereas it
is ExpTime-hard for SHIF (Tobies, 2001), the DL that underlies OWL-Lite. ¿e symbols
that are commonly used to specify the features of a DL are explained in table 2.3.
Two further characteristics of DLs are the so-calledOpenWorld Assumption (OWA) as well

as the absence of the Unique Name Assumption (UNA). ¿e former leads to the circumstance

46

2.4 Knowledge Representation

that facts that are not explicitly asserted to be false will not be assumed to be so, whereas the
absence of the unique name assumption implies that two individuals with di�erent names
can be inferred to be equivalent. ¿e implications of these characteristics will be discussed in
section 3.2.6 in the next chapter.
In the area of so ware reuse, LaSSIE (Devanbu, Brachman, Selfridge, & Ballard, 1991) is

an early system that applied Description Logics to facilitate semantic retrieval of so ware
components. ¿e application of description logics in knowledge-based so ware engineering
is discussed by Devanbu and Jones (1997).
Although providing a basis for representing shareable knowledge about di�erent concepts,

DLs themselves were o en stored using proprietary formats. In the area ofmulti-agent systems
this observation led to the development of common formats to allow for interoperability
(Hendler, 2007). Based on the thus created DARPA Agent Markup Language (DAML) and its
successors large repositories of ontologies were created.

2.4.2 Ontologies

Although no single, commonly agreed upon de�nition exists, an o en cited de�nition by
Gruber states that “an ontology is an explicit speci�cation of a conceptualization” (Gruber,
1993, p. 199). More speci�cally, he states that “a speci�cation of a representational vocabulary
for a shared domain of discourse – de�nitions of classes, relations, functions, and other objects
– is called an ontology” (Gruber, 1993, p. 199).

In other words, an ontology provides the set of symbols that represent the concepts in a
certain domain and furthermore does specify relations between these concepts (in turn, using
the symbols that are speci�ed in the ontology). In this regard, an ontology can be considered
to be self-contained. ¿is way, the problem of symbol grounding (Harnad, 1990) is addressed,
which regards the issue that the meaning of a certain symbol is not encoded by the symbol
itself (the symbol rather is a representative for a certain concept).
Besides applications in other �elds, ontologies have been considered in the context of

so ware engineering. For example, Sugumaran and Storey address their advantages by stating
that “ontologies aim at capturing domain knowledge in a generic way to provide a commonly
agreed understanding of a domain that may be reused and shared across applications and
groups” (Sugumaran & Storey, 2003, p. 12). On a related note, Happel and Seedorf (2006)
provide an overview of applications of ontologies in the area of so ware engineering, and
Oberle et al. (2006) discuss the use of ontologies for modularization of large so ware systems.
Similarly, the application of ontologies and reasoning in enterprise service ecosystems is
addressed by Oberle (2014).
In the context of virtual environments, ontologies have o en been applied to represent

knowledge about the environment’s contents. For example, Coninx et al. (2006) utilize
ontologies for conceptual modeling. ¿eir VR-DeMo4 project aims at facilitating the process
of creating virtual environments by the use of domain ontologies. Similarly, Otto (2005a)
applies the Resource Description Framework (RDF, Manola & Miller, 2004) to describe the
contents of semantic virtual environments.

4 Virtual Reality: Conceptual Descriptions and Models for the Realization of Virtual Environments

47

Chapter 2 Related Work

Regarding virtual agents, Huhns and Singh (1997) suggest the application of ontologies
to allow for communication between agents that do share knowledge only in parts. In their
example they think of two virtual agents that communicate about a �ight on a certain type
of aircra . If both agents share the concept of an airplane but only the speaker knows about
the concept of the particular aircra , the airplane concept can be used to provide a common
ground for this communication.

WebOntology Language

¿e Web Ontology Language (OWL, W3C OWL Working Group, 2009) is the de facto
standard for speci�cations of ontologies in the context of the Semantic Web. It is based on
RDF, which can be used to express information about arbitrary resources. ¿e latter can be
any thinkable object, be it real, virtual, or possibly only a concept. In OWL resources are
identi�ed by International Resource Identi�ers (IRIs).
Owed to the language’s origins, OWL ontologies are highly modular and can be spread

over multiple �les. ¿is—and the fact that it is formally based on a description logic—makes
it a perfect candidate for knowledge representation in reusable IVEs.
Several publications address the utilization of OWL ontologies in multiple contexts. For ex-

ample, e�orts have been made to represent ontologies of services (Martin et al., 2004; Ferrario
et al., 2011), creating plans using such service descriptions (Ziaka, Vrakas, & Bassiliades, 2011),
and supporting natural language queries to �nd components in an integrated development
environment (Würsch, Ghezzi, Reif, & Gall, 2010). Happel, Korthaus, Seedorf, and Tomczyk
(2006) present a system that allows for querying background knowledge of so ware artifacts.
OWL ontologies also have been used in the context of VR applications: Metral, Falquet, and

Cutting-Decelle (2009) present an approach to enrich 3D city models. Similarly, Kalogerakis,
Christodoulakis, and Moumoutzis (2006) use OWL ontologies to represent information
about visual content. Moreover, the ISReal platform (cf. section 2.3.4) uses OWL to store
high-level information on semantic objects. Finally, approaches to bridge UML, as used by
the MASCARET framework (cf. section 2.3.4), with OWL exist (Frankel, Hayes, Kendall, &
McGuinness, 2004).

OWLpro�les In order to restrict the expressivity of the DL that underlies an ontology, three
languages pro�les have been speci�ed for OWL 2 (Motik et al., 2012). Each of the pro�les
puts di�erent restrictions on the designer of an eventual ontology. A detailed introduction
into these language pro�les is given by Krötzsch (2012).
It is important to mention that the choice of a certain pro�le does not have to be speci�ed

explicitly but results from the used language elements. In combination with the fact that
OWL allows for spreading a knowledge base over multiple �les this circumstance is highly
bene�cial: by interlinking �les that comply with a certain pro�le, the characteristics of the
pro�le are maintained. However, if higher expressivity is required for a particular application,
an additional �le that contains language elements that are disallowed by the pro�le can still
be added. ¿is way, the content of the original ontology can be (re-)used in the more complex
one without modi�cation and, hence, remains compatible to preexisting applications.

48

2.4 Knowledge Representation

2.4.3 Action Representation

Although this work is not primarily concerned with the integration of intelligent virtual
agents, the aspect of action planning is related. If an action is rather interpreted as a part
of executable program code than as an operation executed by a virtual agent, the initially
addressed issue of component retrieval in reusable so ware becomes applicable. ¿e means
that are provided by an IVE framework that applies a method similar to semantic re�ection
could also allow for querying semantically annotated so ware methods. In combination
with facilities known from the planning area automatic problem solving on a low level could
be achieved. Common approaches to the representation of actions are largely based on the
speci�cation of preconditions and (side) e�ects of such action (e.g., Fikes and Nilsson (1971)
or Badler et al. (2000)).
Regarding action planning in IVEs, Kallmann (2001) introduced the concept of smart

objects. Such an object is associated with a machinable description of the way it is intended to
be used. Abaci, Ciger, and¿almann (2005) build on these results by adding above mentioned
planning facilities. On a related note, Lugrin and Cavazza (2007) apply a KRL to represent
actions and common sense knowledge in order to simulate physical behavior of objects in
an IVE.
A common language to specify planning problems is the Planning Domain De�nition

Language (PDDL, McDermott et al., 1998). Since di�erent implementations of planning
modules do support problems speci�ed in the PDDL, the utilization of this representation is
desirable.
McDermott and Dou (2002) present Web-PDDL, an extension which allows to combine

RDF documents with PDDL and thus bridges the gap between ontology speci�cations and
plan descriptions. Similar to the intended approach of automatic combination of so ware
methods, Klusch, Gerber, and Schmidt (2005) present a combination of OWL-S (Martin
et al., 2004) with a service composition planner for planning in combination with Semantic
Web services. ¿is is very similar to the intended idea of planning with services (i.e. so ware
methods) that are described in an ontology and hence suggests its feasibility.
¿e bene�cial aspect of focusing on the representations of actions for reusability is also

addressed by Soto and Allongue (2002). ¿ey provide a way to create reusable virtual entities
by taking an alternative point of view: they regard an action as the main concept of virtual
worlds. By separating behaviors of entities and the virtual world from reactions to these
behaviors locality regarding an action is created. ¿is way, entities can be reused in di�erent
virtual environments with diverse characteristics (i.e. di�erent reactions on behaviors).

2.4.4 Knowledge Representation Layers

¿e term Knowledge Representation Layer (KRL, Cavazza & Palmer, 2000) denotes the knowl-
edge representation that is integrated into an IRIS application. A KRL commonly contains
high-level semantic descriptions of the concepts that are applicable in the application’s domain.
Its main purpose is to integrate AI methods and to allow for alternative forms of access to the
application state, e.g., natural language interfaces.

49

Chapter 2 Related Work

Aspects of KRLs

Obviously, a Knowledge Representation Layer, or more generally a Knowledge Base that is
utilized by arbitrary components of an IRIS framework, necessarily has to be synchronized
with the application’s state. ¿is synchronization can occur not only at di�erent levels of
abstraction but also at di�erent frequencies.
Another aspect that has to be taken into account is the interface that is provided to access the

KRL. ¿e respective implementation is highly dependent on the required level of abstraction,
since a low level of abstraction requires low level access to the architecture elements of
the framework. In the most invasive case, the Knowledge Representation Layer is directly
connected to the elements of the framework. ¿is implicates high coupling and, in addition,
the integration of such kind of layer requires access to the complete code of the framework.
¿e content of such a low-level KRL would include entities, attributes, relations, and concepts
(Latoschik, Biermann, &Wachsmuth, 2005).
For di�erent reasons, this low level access o en cannot be achieved. ¿e most obvious

limitation arises with the utilization of a closed source framework. In that case, the missing
access to program code that is required in order to introduce the necessary modi�cations
renders low level coupling impossible.
Yet, even if access to all program code and the possibility of introducing changes is given,

the internal structure of the framework might hinder respective access. If the KRL should
re�ect all aspects of the application state, it has to be integrated into the application’s update
loop. ¿is means that each update to the internal state has to be interceptable by the respective
implementation.
Alternatively, the KRL could be static, i.e. it could couple entities with concepts that are

not updated at all. ¿is allows to request information about the entities and their relations
among each other, but does not permit to react to changes other than insertion and deletion of
entities. ¿is approach can be extended by enabling updates of the Knowledge Representation
Layer through changes that are initiated by the application. While this allows a developer to
integrate the KRL at the desired abstraction level, it also involves the manual speci�cation of
both content and frequency of updates. Since the latter are speci�ed on the application level,
they do not require low level access to the framework’s internals. However, it requires a highly
application dependent coupling of the KRL, thereby reducing the opportunity to reuse.
Disregarding the particular situation, the frequency with which synchronization occurs is

relevant for performance considerations. While the integration of every single state update
into the KRLmay not be critical regarding performance itself, possibly triggered computations
might cause severe problems. For example, calculating the implications of a single position
update for the spatial relations that are possibly stored in a Knowledge Representation Layer
might be quite expensive. If such update occurs at the same rate that, e.g., a physics engine
updates its internal representation, a rule engine or reasoning module will most certainly
not keep up calculating all implications. However, low level information might be required
for certain inferences, wherefore a framework should at least be capable of providing such
information to the KRL.
¿e most common approach to the integration of a KRL is to create a layer that wraps a

complete existing framework. ¿is can, for example, be used to represent high-level infor-
mation about the content of the IVE at runtime (Cavazza, Hartley, Lugrin, & Le Bras, 2004;

50

2.5 Summary

Lugrin & Cavazza, 2007). Other applications of this approach include querying information
about the semantics of objects (Chevaillier et al., 2012; Kapahnke et al., 2010), implementation
of multimodal interfaces (Latoschik, 2005), or planning (Abaci et al., 2005). Kleinermann,
De Troyer, Creelle, and Pellens (2008) present an approach that even allows to add semantics
to existing VEs. Commonly, external formats are used to describe the contents of a virtual
environment, for example, in the context of conceptual (Coninx et al., 2006) or semantic
modeling (Chevaillier et al., 2012).

2.5 Summary
¿erequirement formore so ware reuse in the context of VR framework development recently
was reinforced in a panel discussion titled “why do we keep reinventing the wheel?” (Acevedo-
Feliz, 2014) at the IEEEVirtual Reality 2014 conference. To provide a basis tomeet this demand
this chapter provided an overview of related work, which is summarized in the next sections.

Software Reuse

¿e review of terms that are related to so ware reusability (cf. section 2.2.1) revealed mul-
tiple important aspects for the development of reusable IRIS applications: maintainability,
understandability, and modularity are non-functional requirements that have to be taken into
account. ¿e latter especially involves the concepts of low coupling and high cohesion, which
were emphasized by multiple researchers in both the area of so ware engineering and the
�eld of IRIS development.
Especially use case 1.1, which deals with the replacement of a rendering module from an

existing application, bene�ts from these aspects. If the system is developed in a way that
fosters low coupling, the number of interfacing points between the renderer and the system is
reduced and thus is the amount of work necessary to replace that module.
Publications in the area of so ware reuse reveal that reuse on the one hand promises ben-

e�ts like increased quality and productivity, but on the other hand multiple aspects inhibit
its achievement (cf. section 2.2.2). ¿ese are related to a lack of commitment by the project
management, misconceptions regarding requirements for a successful reuse program (e.g.,
using OOP is su�cient), a lack of careful planning of the whole reuse program, missing repos-
itories of reusable components to support both storage and retrieval, a lack of interoperability
between produced assets, and incomprehensible so ware interfaces. Consequently, a carefully
planned framework that counteracts these inhibitors is required to facilitate so ware reuse
for IRISs.
A survey of facets of so ware reuse (see section 2.2.3) indicated a black-box framework

to be a desirable architecture. In this context, the so ware reuse process, as described by
Kim and Stohr (1998), provides a structured categorization of steps that occur during the
utilization of an eventual IRIS framework.
¿e reuse techniques that were considered in section 2.2.4 revealed a Component-Based

So ware Engineering approach in combination with OOP techniques to be promising. Mis-
conceptions that involved the latter, however, were one of the reasons that resulted in reuse
programs to fail, wherefore their adoption will be carefully examined in later chapters. Besides
these composition based techniques, �ndings by Krueger (1992) suggest that the application of

51

Chapter 2 Related Work

generative techniques is appropriate as well. On a related note, the area of domain engineering
bears resemblance to the pursued goal of integrating a KRL into an eventual framework,
thereby allowing for utilization of domain knowledge at runtime.
Finally, it was observed that most of the methods to measure reusability of so ware require

the so ware to exist in advance (cf. section 2.2.5) and consequently cannot be applied to
a framework that is intended to support the development of such so ware. However, they
can serve as design guidelines, suggesting that such framework should foster low coupling
and high cohesion, facilitate customizability of components, provide support for searching
for components, reduce the complexity of using them, ease upgrading to newer versions, be
portable, modular, well-documented, and mature.

IRIS Frameworks

Publications in the �eld of VE development reveal that so ware reuse still is in its infancy in
this �eld: due to incompatibility, tools are not shared between di�erent groups of developers
and a lack of standardizations makes most programmers to choose building over reusing (cf.
section 2.3.1). ¿e introductorily mentioned realtime constraints make this situation even
more di�cult, since they encourage close coupling. In this regard, shared memory access and
the application of related synchronization mechanisms complicate the creation of reusable
black-box components.
In the context of RISs frameworks developers assume one or more of three main roles:

framework developers, simulation module developers, and application developers. A frame-
work that aims for decoupling modules has to accommodate this categorization, since it
prescribes a natural separation of concerns. More precisely, it has to facilitate the development
of a simulation module independently from other modules and eventual applications. ¿is
categorization is in line with the di�erent steps of the so ware reuse process, which involve the
creation of reusable resources (by modules developers) as well as consuming them (performed
by application developers).
For instance, the development of a reasoning module that shall be used in the context of use

case 1.3 could neglect the existence of possible further AImodules and instead be implemented
to retrieve information from a globally represented simulation state as well as to update that
state with results from its inference mechanisms. In that case, no other dependencies than the
existence of such global simulation state arise and modules inevitably reveal low coupling
among each other.
Reviewing architectures that are commonly adopted by VE frameworks (cf. section 2.3.2),

each was found to have advantages and disadvantages. In the end, an approach that subsumes
the presented ones and thus allows to rebuild the existing solutions is desirable. Especially
supporting both an entity model and an event system was found to be promising. At this point,
a message-based architecture is bene�cial, since it inherently supports the implementation of
event systems and facilitates decoupling.
Existing frameworks in the area of IVE development (cf. section 2.3.4) reveal further aspects

that are bene�cial for decoupling individual elements and thus for their reuse. For example,
the representation of application knowledge in external formats supports semantic modeling
(which is related to domain engineering in the �eld of so ware engineering). Furthermore, it
allows for reuse of existing so ware modules that have been developed in the area of AI.

52

2.5 Summary

Regarding the exchange of a module the structure of the REVE framework, which was
discussed in section 2.3.4, showed to be reasonable: its developers found that partitioning
simulated entities into so-called item aspects allowed to easily integrate further modules,
which is very similar to use case 1.2. In their case a physics engine was integrated into an
existing application.
¿e actor model, which was integrated into the SCIVE framework (cf. section 2.3.4) was

reported to foster decoupling and concurrency. Since this model restricts communication
between actors (e.g., simulation modules) to messages, it �ts the above-mentioned intention
to adopt a message-based architecture.

Knowledge Representation

Among the di�erent forms of computerized knowledge representation logic-based ones are
most adequate for the creation of reusable IRISs, due to their formal basis. Here, Description
Logics provide a means to choose computational complexity over expressivity. Since it is
rather complex to specify knowledge by means of a DL, a more comprehensive form of
representation, which ideally supports a developer with di�erent tools, is required to permit
non-experts to edit knowledge bases.
In this regard, the Web Ontology Language (OWL), which is based on such a DL, is a

reasonable choice. It inherently supports creation and sharing of ontological knowledge, since
it was developed in the context of the Semantic Web. Multiple tools for editing and processing
OWL ontologies, such as the protégé editor (Stanford Center for Biomedical Informatics
Research, 2015), exist. Choosing from the existing language pro�les, optimized so ware tools
can be utilized and thus e�cient reasoning be ensured. Consequently, OWL is bene�cial for
the creation of reusable knowledge bases and will be utilized in this work.
In the context of IRISs OWL ontologies provide a means to establish a KRL that can be

accessed by di�erent simulation modules. For instance, in the situation of use case 1.3, where
multiple AI modules are required to interact, the utilization of externally speci�ed OWL
ontologies allows to decouple such modules from the actual application (and from each other).
More speci�cally, the vocabulary that is established by an ontology provides di�erent AI
modules with a common ground for communication and knowledge exchange. Apparently,
the content of such ontologies has to be linked with the simulation state to integrate ontology
updates into the simulation state (and vice versa). ¿is issue is addressed by the concept of
semantic re�ection (cf. section 2.3.4), which thus is relevant for an eventual framework.

Implications for IRIS Framework Design

In summary, a framework has to provide understandable, well-conceived so ware interfaces,
which are used by both simulation module developers and application developers. Ideally, an
interface that is appropriate for all types of simulation modules has to be created.
Moreover, a framework should foster the creation and use of decoupled black-box compo-

nents, which can concurrently perform simulations. ¿is is facilitated by the adoption of the
actor model, which restricts the communication of concurrent threads of computation to the
use ofmessages. Furthermore, substituting direct inter-module communication to performing
and observing updates of a centralized simulation state fosters decoupling. Aiming for a single

53

Chapter 2 Related Work

interface, which can be used by common RIS modules and AI modules that rely on symbolic
representations, the adoption of semantic re�ection and the integration of a KRL on a core
level is desirable.
In order to connect such a KRL (that re�ects the internal state of an IRIS) with an external

OWL ontology, the next chapter will develop a knowledge representation model for IRIS
applications with arbitrary scope.

54

Chapter 3

A Knowledge RepresentationModel for
Intelligent Realtime Interactive
Systems

¿e goal of various metadata proposals is to make those mental connections explicit
by tagging the data with more signs. ¿ose metalevel signs themselves have further
interconnections, which can be tagged with metametalevel signs. But meaningless
data cannot acquire meaning by being tagged with meaningless metadata. ¿e
ultimate source of meaning is the physical world and the agents who use signs to
represent entities in the world and their intentions concerning them.

Ontology, Metadata, and Semiotics
John F. Sowa (2000)

3.1 Semantics
¿e integration of a semantic layer into a RIS framework o en is assumed to be su�ciently
covered by the annotation of architecture elements with meaningful symbols. In this context,
the above-quoted statement by John F. Sowa is highly relevant; although such signs (and
symbols) may carry meaning for a person who understands the language they originate from,
an application cannot draw meaning from such symbols, per se.
It is the entirety of entities, their properties, and relations between them, which inherently

bears meaning. ¿e notion of the concept that is represented by a certain symbol highly
depends on the person interpreting the symbol. More precisely, a person who does not know
a particular symbol at all can impossibly have a notion of the associated object. If, however,
that person is given more details regarding the denoted object, he or she can probably infer
the meaning of the given symbol. ¿is is facilitated by the person’s knowledge on related
concepts, their properties, and their relations to each other.
Extending on this basic knowledge and abilities, more complex elements, processes, and

actions become graspable. Obviously, a concept can be recognized as a composition of other
concepts. Moreover, a concept can be of use without being fully speci�ed. For example, a
car can be speci�ed as the composition of four wheels and a chassis. Concepts o en are
hierarchically structured; e.g., a cat is a mammal, wherefore it also is an animal. Furthermore,
concepts and relations are mutually dependent: a concept stays meaningless without relations
to other concepts, and a relation cannot exist without connecting two (or more) concepts.

55

Chapter 3 A Knowledge Representation Model for IRISs

In human conversations the placement of a concept in the hierarchies is assumed to be
known, wherefore use of the associated symbol in itself creates a level of abstraction (for those
who know the symbol’s meaning). ¿is allows to reference an object by a symbol that is used
for a more general concept, e.g., saying “Look at the animal!” when referencing a cat. In the
computing context, this is partially adopted by classes and their hierarchies in object-oriented
programming languages.
Similarly, objects can be identi�ed by stating some of the relations they are involved in. For

example, the cat from above could be referenced as “the thing with paws.” Obviously, if more
similar objects are around, a description has to be more speci�c in order to prevent ambiguous
references. ¿is concept is similar to the pattern matching technique that is commonly found
in functional programming languages.
While objects represent the static elements in the world, actions and processes add dynamics

to these elements. In this context, a process is a sequence of actions over a certain amount of
time. An action, in turn, modi�es the current state and thereby creates a subsequent state.
Finally, a state is de�ned by the contained objects and their relations. Building thereon, an
action can be de�ned by its preconditions (requirements concerning the current state) and
e�ects (di�erences between the current and the subsequent state).
Similar to the abstraction introduced by a symbol that denotes a certain concept, the symbol

associated with a certain process allows a person to identify the preconditions and e�ects of
the associated process. Moreover, a certain action can be inferred from its e�ects, even if they
only are speci�ed in part.

3.2 Semantics of IRIS Frameworks

¿e abilities mentioned in the previous section allow humans to adapt to unknown situations
and deal with unfamiliar objects. Some of those mechanisms, like concept hierarchies, are
integrated into programming languages, not least because they match the human view of
the world. However, more complex inference mechanisms are usually added on top of an
existing application. Unless features like re�ection are provided by the programming language
in use, these inference mechanisms do only have restricted access to the information that is
encoded in the program code. ¿is is especially problematic when parts of this information
are lost during the translation into machine code. For example, the semantics that a developer
encoded in variable names usually is not re�ected at runtime.

3.2.1 Bene�ts of Integrated Semantics

Concerning the reusability of an application, inference and abstraction mechanisms, like
those mentioned before, can be highly bene�cial in many regards.
For example, the rigid structure prescribed by the class hierarchy known from object-

oriented languages can be so ened. While such structures allow for static type-checking, the
recon�guration of objects at run-time is not supported. With integrated semantics, objects
that have certain properties could be attributed to a certain class according to their sets of
properties. Matching such objects against a class description instead of performing type-
checking would allow to dynamically determine its class a�liation. In this way, an object can

56

3.2 Semantics of IRIS Frameworks

be inferred to be an instance of a class that it is hierarchically independent of, if the object �ts
the requirements that are de�ned by the former class. It even would be possible to de�ne such
classes a er the instance was created, allowing for reuse of objects in customized contexts.
Additionally, a property-based classi�cation would allow to specify the parameters of

functions for objects without knowing their speci�c implementation. ¿is approach is not
restricted to data types but can involve more complex speci�cations. For example, a pa-
rameter could be required to bear certain relations to other objects (as opposed to having a
certain type). ¿e application of inference mechanisms during the parameter matching phase
would furthermore permit to pass parameters that are no immediately obvious match for the
requirements but can be inferred to be.
¿is approach bears resemblance to so-called duck typing. With that technique it is simply

assumed that a given object supports the desired operations (i.e. method invocations and
access to properties), otherwise an exception is thrown. A semantics-based approach is
situated in between duck typing and dynamic typing: it allows to break out from strict syntax
checks but retains the possibility to check for required semantic characteristics. Some of such
checks could even be implemented in the form of static typing, depending on the features
that are provided by the programming language in use (cf. section 4.2.2).
With this technique, existing applications can be extended more easily without knowing

the exact internals, as long as a common ground for symbols and concepts does exist. ¿us,
this approach signi�cantly extends the semantic re�ection paradigm (cf. section 2.3.4), where
central programming primitives are accessed by means of semantic descriptions that re�ect
dynamically changing aspects of these primitives. ¿e speci�cs of an implementation of this
approach will be discussed in chapter 4.
Concerning virtual environments, access on a semantic level can be achieved: users of an

application could request entities and actions by specifying desired properties and e�ects.
¿is would not only work for users but especially for programmers, since the features would
be available at development time. Hence, a rather description based access (as opposed to a
reference based one) can be implemented, allowing for more �exible interaction.
For modern intelligent user interfaces, which may involve voice commands and similar

interaction, the association of symbols with objects and functions allows to thin out the
layer that provides the required mapping. For example, assume the function create, which
visualizes an object, is accessible using the symbol create. Furthermore, if objects are
also accessible by means of symbols, the implementation of voice commands like “Create
a box!” would be rather easy. Of course, this does not directly a�ect the natural language
processing stage—although a feedback regarding available concepts could be bene�cial for
the improvement of its results—but utilizing the output of that stage would be simpli�ed a lot.

3.2.2 Aspects and Requirements

As stated initially, representing semantics and inferring new facts requires a KB that contains
relations between known individuals and concepts. ¿us, it is not su�cient to simply annotate
some of the simulated entities with symbols. In order to integrate the information that is
necessary to facilitate the above-mentioned features, a framework is required to support
annotating any instantiated entity and property. Similarly, the possibility of de�ning relations
between these elements is mandatory.

57

Chapter 3 A Knowledge Representation Model for IRISs

¿e following paragraphs survey the aspects that have to be addressed in this context.
A erwards, a list of arising requirements is created, which has to be considered for the
creation of an IRIS framework.

Form of Representation As mentioned in section 2.4.4, a knowledge representation is
commonly integrated into IRIS applications in the form of a dedicated layer or module that
can be accessed by the simulation modules that depend on it.
In this context, the way in which information will be used is highly relevant for choosing

an adequate form of representation: if later usage is restricted to annotating objects, a plain
text representation might be su�cient. If, however, more complex operations like inferring
new facts based on the existing knowledge are required—as it is the case with most IRISs—a
more structured representation is necessary. ¿us, the form of representation has to be chosen
carefully to not impose restrictions from the beginning.

Maintenance ¿e creation and maintenance of the vast amount of entries in the corre-
sponding knowledge base o en involves a great deal of work (Neches et al., 1991). In order
to facilitate this task, such knowledge bases o en contain domain speci�c knowledge only,
(partially) covering the particular application domain. ¿e creation is usually performed by
knowledge engineers and domain experts, who model the contents of the knowledge base
which underlies the respective application.
Since a knowledge engineer is not necessarily involved with application programming,

remodeling may be tedious and costly: the updates have to be coordinated between module
developers, carefully integrated, and the results have to be tested. Especially custom-made
solutions are prone to such issues, because there is little chance to be able to reuse results from
other projects.
In this context, an external form of representation, like OWL, is desirable. ¿e �les that con-

tain the formalized knowledge can serve as an interface and thus allow knowledge engineers
to perform their tasks independently from programmers and application developers.

Reuse ¿e amount of work that is required to systematically integrate the desired infor-
mation into a KRL is easily underestimated. ¿is is not only owed to the requirement of
consistency of the knowledge base, but also to the mere amount of information to be added.
In order to reduce e�orts, reuse is a desirable approach in the area of semantic modeling, too.
¿is way, a close connection to the topic of domain engineering (cf. section 2.2.4) arises.
Indisputably, the design and maintenance of a knowledge base is a complex and demanding

task. Nevertheless, its contents can be reused, if appropriate standards are set and maintained.
For example, in the context of the Semantic Web, ontologies are interlinked in order to avoid
the need for remodeling of content.
While the application of Semantic Web technologies is a reasonable starting point to create

reusable KRLs, the connection to the application, and especially its state, remains an open
question. ¿is is mainly due to the fact that there is no standard approach to incorporate
a knowledge base into an IRIS framework. As a result, the contents of the applied tailored
knowledge bases are not reusable.

58

3.2 Semantics of IRIS Frameworks

Standards As mentioned before, the interpretation of a particular symbol may vary, de-
pending on the person perceiving it. ¿e related lack of a standard for the structure of ontology
contents is a problem that is similarly known in the �eld of so ware engineering: regarding
so ware development, this can result in di�culties when variable and function identi�ers are
misinterpreted and possibly misused (Garlan et al., 1995).
In so ware companies this commonly leads to the introduction of coding conventions

to limit the variety of coding styles. Ambiguity of symbols may be negligible within a small
development team, but regarding reuse among most di�erent groups of developers it needs to
be possible to specify synonyms and translations for symbols.
¿e intent to create a standard KB for all kinds of applications is far beyond the scope of this

work and can impossibly be achieved by a single person (a related project, the Cyc ontology
(Lenat, Guha, Pittman, Pratt, & Shepherd, 1990; Matuszek, Cabral, Witbrock, & DeOliveira,
2006), which is addressing common sense knowledge, is being developed since 1984). In
contrast, this thesis aims at providing means to develop such a standard KB incrementally.

Expressivity Most of the time, the decidability of queries is more limited, the more ex-
pressive the representation becomes. Moreover, it is not desirable to simply choose the most
powerful representation, since this might prevent later usage due to performance requirements
that cannot be met. On the other hand, it might be desirable or even required to permit to
specify knowledge in a more expressive way, trading performance for simplicity. Di�erent
approaches to this issue do exist and it has to be carefully evaluated which one promises to be
the right choice.

Understandability ¿emore complex the chosen representation is, the higher is the prob-
ability that it is not accepted by users. ¿is issue is largely related to the inherent complexity
of the chosen format.
For example, a developer will probably prefer to write program code or even use natural

language instead of expressing information using a DL. In addition, the way it is presented to
the user plays an important role (think of reading plain HTML code as opposed to viewing
a rendered website). Consequently, the understandability of the used representation as well
as preexisting tools and support for the integration into an application are a major decision
criterion.

Nature of Integration ¿e integration of a KRL can be achieved in di�erent ways. One
possible solution is to add the knowledge representation on top of a so ware system’s func-
tionality (cf. Lugrin & Cavazza, 2007; Nesbigall et al., 2011). ¿is is less invasive, since it does
not require to modify the internals of possibly preexisting so ware. However, it requires
to establish and maintain an independent knowledge base, which contains more abstract
information and is fed from the application state. ¿is is problematic for di�erent reasons.
Most importantly, it has to be ensured that the knowledge representation always is synchro-

nized with the system state. ¿is entails some risks regarding reusability and maintainability.
For one thing, the represented knowledge is de�ned twice; explicitly in the KRL and implicitly
in the so ware itself. ¿is duplication of data possibly increases the incomprehensibility of
the so ware and complicates its maintenance.

59

Chapter 3 A Knowledge Representation Model for IRISs

¿is issue cannot be avoided completely due to the di�erent forms of representation, which
are used by di�erent modules (e.g., an AI module and a 3D renderer). Yet, it is desirable to
implement an update mechanism that is as transparent as possible.
Since the knowledge representation is added subsequently, it tends to constitute a loosely

coupled, monolithic component on its own. Consequently, knowledge that is related to a
certain simulation module is captured by this application speci�c component. ¿is way,
reusability of the whole, possibly modular system is decreased. In addition, any change to the
system would require an adaption of the KRL, which is a bad design regarding maintainability.
Finally, it can be troublesome to grant a subsequently added KRL access to certain aspects of
the system state.
As opposed to adding the knowledge representation on top of a system, the other extreme

on the scale of knowledge integration depth is to a priori represent all parts of the so ware,
starting with variables, functions, classes, et cetera. Related achievements are indicated by
Latoschik and Fröhlich (2007a) in the context of the SCIVE framework. ¿eir implementation
has never extended beyond a prototypical state, though. While this approach obviates the
need for data duplication and multiple forms of representation, it creates higher amounts of
work during the initial development process.
Moreover, such a deep integration requires custom-made tools and languages, which can

operate on this kind of internal KRL. ¿is complicates the utilization of external so ware
libraries, tools, and existing knowledge bases and thus impedes reuse. If this approach is
chosen, the possibility to interlink the internal representation with an external one, which
can be processed by external modules and tools, is necessary to allow for its reuse.
In addition, the contents of the KRL have to be speci�ed on the program code level. If only

a subset of the possibly available information should be inserted into in the KRL, a change
to KRL would require to adapt the internals of the simulation modules. Alternatively, all of
the available information could be inserted, which easily can result in a KB of enormous size.
Such a knowledge base can be useful for o�ine computations. For example, it could be used
to support developers when searching for reusable components. Run-time access to such
detailed information, however, might become too ine�cient and thus renders it useless for
IRIS applications.

Resulting Requirements

Based on the above-mentioned aspects, the following set of requirements for the KRL to be
integrated into a VRs framework is de�ned. It is desirable to develop an approach that

R1 facilitates and maintains modularity. In this context, it is desirable to facilitate semantic
augmentation of existing assets.

R2 is transparent in the way that extensions to an application do not necessitate manual
modi�cations to the knowledge representation.

R3 facilitates reuse and individual modi�cation of stored knowledge. In this context, the
adoption of an external storage format is desirable.

R4 is scalable, i.e. content and complexity of the knowledge base can easily be adapted to
an application’s needs.

60

3.2 Semantics of IRIS Frameworks

R5 avoids duplication of information.

R6 is comprehensible and thus minimizes additional work and required knowledge when
used. ¿is especially includes availability of tools for viewing and editing.

With these requirements in mind, the following sections systematically review the concep-
tual elements of IRISs and develop a universal model for the representation of architecture
elements as well as simulated content. Said review begins with the selection of an appropriate
level of integration into an IRIS framework.

3.2.3 Level of Integration
In order to meet the requirements speci�ed in the previous section, the following observa-
tions can be made: the approach has to couple information to single architecture elements,
since it shall maintain modularity (R1). In addition, it has to be integrated into the program-
ming environment, since information should be interlinked with program code. ¿is way, a
modi�cation to an existing application would inherently result in an update of the KRL (R2).
Furthermore, the approach has to have an add-in or wrapping nature, since it shall be usable

with preexisting so ware (R1). Ideally, each developer should be able to de�nemodule-speci�c
information independent from other parts of the application, wherefore a layered approach
is desirable (R3). ¿e negative e�ects on the application’s performance must be as low as
possible, especially when the represented knowledge is not accessed (R4 and R5). Moreover,
information should be available at compile-time as well as at run-time in order to facilitate
retrieval of assets and the integration of AI methods, the latter of which is a major goal of this
work. Finally, the approach also should involve as few additional concepts as possible (R6),
which has to be taken into account when the elements that shall be represented are de�ned
(cf. section 3.2.4).
Assuming that no restrictions regarding the integration exist, every type, variable, and

function could be semantically annotated. While this approach does grant the maximum
amount of information, its implementation would require enormous e�orts. It also would
require full access to program code, which usually is unfeasible in an environment of (black-
box) reuse. Moreover, it is contrary to the desire that a wrapper-based approach should be
applied. ¿us, it would require programmers to deal with the knowledge representation,
which rather is a knowledge engineer’s task. A large amount of the information that would
be added to the KRL in this way would be unused, since it involves elements that are hidden
behind so ware interfaces and not accessible by the IRIS application. Alternatively, only a
manually selected subset of these types and functions could be linked to the KRL, thereby
reducing the required amount of work.
¿e approach that is commonly applied to integrate a KRL into an application (besides

using callbacks where possible) involves synchronizing the KRL by accessing the simulation
state in a polling manner. As an alternative to this, all updates that are performed by each
simulation component could be intercepted in order to minimize the risk of missing valuable
information on occurring changes.
¿e approach proposed in this work involves creating a semantic layer around existing

so ware modules or, taking an alternative point of view, around the centralized application
state. In this context, a component model is created, which channels state updates through a

61

Chapter 3 A Knowledge Representation Model for IRISs

comprehensible so ware interface and thus allows to annotate them semantically. ¿ereby, the
ideas introduced by the SCIVE framework, which was discussed in section 2.3.4, are extended.
In order to capture all application state changes, communication between the application and
components as well as between di�erent components may occur only through this layer.
To specify the basic elements, di�erent aspects of an IRIS application have to be taken into

account. ¿ese do especially involve the represented content, participating modules, and the
application itself.

3.2.4 Representable Elements

¿e process of creating a KRL o en includes gathering domain speci�c knowledge and
storing it using an adequate form of representation. However, due to the range of possible
applications, there is no single domain which can be determined for an IRIS, per se. ¿erefore,
a more abstract approach is required. ¿e following elementary observations regarding VE
applications help to pinpoint the necessary basic elements.
Regardless of the eventual purpose of an application, each program run can be interpreted

as the transition from a start state into an end state. In between these two states, there is a
countably in�nite number of further states which can possibly be entered.
Transitions, in this context, are discrete events, one of which can occur at a time. A

single transition does modify exactly one aspect of the application state. Essentially, such a
modi�cation to the application state is represented by a single value update in the computer
memory. Two transitions are said to be dependent regarding a certain state, when the two
resulting states are in con�ict, i.e. when the simultaneous execution of the associated value
updates would create an invalid state.
It has to be stressed that the term application state does not necessarily denote the contents

of the computermemory and registers (although it could) but rather an abstract representation
of the application’s state.
¿e assumption that only one transition occurs at a time might be questionable in the

context of current multi-core or multi-processor setups. However, since the hardware in use
is assumed to run at a certain clock speed, a higher (virtual) clock which covers all real clocks
can be constructed. ¿en any two concurrent, independent transitions can be assumed to
occur in an arbitrary order between two of these virtual clocks. Assuming that two dependent
transitions never occur at a time, a serialization of transitions exists that meets the questioned
assertion.
In the case that two dependent transitions occur concurrently, the resulting state would be

invalid. ¿is issue is independent of the presented transition-based perspective but rather an
inherent aspect of concurrent programming. Consequently, it has to be prevented by so ware
developers with any means at hand and thus will not be discussed any further. A formalism
to represent the ordering of events, which can be applied to analyze concurrent processes and
possibly arising inconsistencies, is presented by Lamport (1978).
¿is considerations result in the observation that the utilization of states and events is

su�cient to describe an IRIS application. In order to �nd a uniform representation, the basic
elements of an IRIS application have to be examined. In this context, the introductorily men-
tioned classi�cation of objects into entities, properties, and relations among them constitutes
the basis for the semantic facet of the sought representation.

62

3.2 Semantics of IRIS Frameworks

Content Representation

As mentioned before, not only an IRIS but every application simulates some kind of virtual
environment. Since being simulated, each of those environments inevitably contains virtual
aspects. But, due to its interactive nature, at least the user of an application and the used input
devices introduce a real aspect. Consequently, each IRIS application always combines virtual
and real aspects.
Regarding objects residing in virtual environments, the adoption of an entity centered

model is a common approach (cf. section 2.3.2). Yet, it is less common to treat the user, input
devices, and especially simulation components in the same way. However, nothing prevents
from adopting this kind of representation, since all of those objects can be de�ned by means
of an associated state representation. For input devices, for example, this could be the state of
buttons or a tracking-target’s position, for simulation components it would be the respective
component’s con�guration.

State Values, Semantic Values and Relations In search of a common ground for all of
the represented objects, the concepts of semantic values and state values are proposed. ¿ey
provide the basis for a semantic, uniform interface between simulation modules and the
application state. As indicated, their de�nitions involve the introduced concepts of properties,
relations, and entities.

De�nition 3.1. ¿ecombination of a property with a link to the representation of its semantics
is called a semantic value. It comprises a value, the associated data type, and said link to its
semantics.

Such a semantic value can be considered as a unary relation. A relation, in this regard, is
de�ned as follows:

De�nition 3.2. A semantic value that contains an n-tuple of (references to) semantic values
is called a relation.

¿e only di�erence between semantic values and relations is the type of values they can
assume: while a semantic value can have a value of arbitrary data type, relations are limited
to hold tuples of semantic values. ¿is distinction ensures that no meaningless value can be
related to a semantic value or even exist in this representation.
¿e possibility to link a value to its semantics provides the basis for semantic augmentation

of any static element of a program. ¿is way, the goal to create a model that allows for
semantics-based representation of IVEs contents is supported by the concept of semantic
values.

De�nition3.3. Asemantic value that represents one particular characteristic of the simulation
state is called a state value. Characteristics, in this case, are atomic properties of entities as
well as relations between them.

Conceptually, a state value is immutable and has a �xed data type. However, an implemen-
tation will employ so called state variables that can assume such state values. For a description
concerning the implementation of this concept refer to section 5.2.5.

63

Chapter 3 A Knowledge Representation Model for IRISs

¿e range of data types, which may be accepted by state values that are not relations, is
only restricted in that it must not comprise container types (i.e. tuples, lists, sets, etc.). Each
semantic value that is related to a state value, by being part of the simulation state, is a state
value and thus underlies the same rules. ¿is restriction is made to prevent the insertion of
possibly meaningless values in such containers. Instead, the presented model introduces a
speci�c type to represent such containers, called entities, which provide a single interface to
the application state (cf. de�nition 3.4).
With the introduced abstractions each application state n is de�ned by the set of all present

state values:

Staten = ⋃
i∈In

StateValue i where StateValue i ∈ S (3.1)

¿e set In in equation 3.1 depicts the index set that contains the indices of all state values
belonging to a given state n. Every state value StateValue i is an element of the set S of all
possible state values.
To avoid misunderstandings it has to be clari�ed that only the aspects that are relevant to

the simulation state are addressed by state values. Internal variables of simulation modules,
temporary variables inside functions, or similar elements are not in the domain of state values.
¿is does neither mean that such variables are not related to the simulation state (they most
certainly are) nor that they may not be represented by semantic values. But they are not part
of the interface that simulation modules use to communicate with one another and thus not
represented by state values.

Entities Although the entire application state could be represented by state values only,
this representation would be far from being comprehensible. ¿e vast number of state values
would require enormous e�orts regarding structured storage and retrieval. Without any
prescribed way of accessing values, applications would end up incomprehensible and thus
unmaintainable. Hence, a layer of abstraction is created by the introduction of entities.

De�nition 3.4. An entity is the set of all state values that belong to the concept that is
represented by that entity.

Entitykn = ⋃
j∈Jkn

StateValue j where ⋃̇
l
J ln = In (3.2)

For example, the position and rotation as well as the graphical representation of a sphere-
shaped object could be stored in state values, which (partially) constitute the entity that
represents a virtual ball.
Equation 3.2 describes an entity k as part of the state n: It is the union of all state values that

belong to the subset Jkn of the index set In (which is de�ned in the same way as in equation 3.1).
Moreover, the disjoint union of all sets J ln constitutes the set In , whereby a further restriction
on state values is added: every state value must belong to exactly one entity, wherefore an
entity always is a container for state values.
¿e above-mentioned restriction implies that every object inside an application, which

shall be accessible by means of the sought-a er interface, must be represented by an entity,
since the entire state is represented by means of state values. It furthermore leads to the fact

64

3.2 Semantics of IRIS Frameworks

that every aspect of the application state can be accessed through the entity which the element
belongs to.
Note that an entity cannot be directly represented by a state value, since this would contradict

the rule that state values may not contain collections of further state values. ¿is is reasonable,
since the entity itself is a structuring element and therefore not an actual element of the
simulation state. However, entities can be represented by a state value that contains an
identifying reference. Consequently, the only way to link two entities is by representing them
as such references, creating two relations that provide a meaningful connection between
the associated state values and asserting one of them to each of the entities. For example, a
hasPart(entity2) relation could be asserted to the entity entity1 and a partOf(entity1)
relation to the entity entity2.
Similarly, the concept of composition of semantic values is represented by the utilization

of relations, using a dedicated hasProperty relation. ¿e assertion of each state value that
does not represent a relation will thus be interpreted as an instance of a relation between an
entity and that state value. A later implementation, however, will conveniently allow for direct
access to state values via the related entities. Observably, an entity is de�ned by the set of
relations it takes part in.
In summary, three elements are introduced to form the basis for further concepts: the entity

class, the set of relations, as well as the set of semantic values (which includes state values).
¿is structure is very similar to that of ontologies that are used in the �eld of AI, wherefore
each object could easily be linked to a concept in an ontology that speci�es relations between
those objects.

Events When representing the complete simulation state by means of state values, a way
to represent changes to the simulation state (i.e. state transitions) is required. A state transi-
tion conceptually speci�es a single modi�cation of the application state. More precisely, it
represents the addition, update, or removal of a state value.
Regarding the application state n, an event i can thus be represented as the two sets Add i

and Remove i of added and removed state values:

Event in = {Add i /⊂ In , Remove i ⊂ In} (3.3)

Since state values are immutable, value updates can conceptually be regarded as removing
and instantly (re-)adding a state value. Given a certain state n, the observation of an event
will result in the transition into a subsequent state n + 1:

Staten+1 = Staten ○ Event in = Staten ∖ Remove i ∪ Add i (3.4)

Because each event—as long as it is not ignored—eventually ends in the manipulation
of the world state, events are not limited to indicate state changes: it is also convenient to
represent other occurrences, like the application of a physical impulse to an object or the
collision of two objects, by means of events. For this purpose, events may carry additional
payload in the form of semantic values (cf. �gure 3.1). A collision event, for instance, may
incorporate the colliding entities.
Events can be emitted and received by any active element of the architecture and usually

represent a certain occurrence that was detected by a simulation module. Similar to concepts,

65

Chapter 3 A Knowledge Representation Model for IRISs

*1Entity

Relation

* 1 Action
subject : Entity
predicate : Relation
object : SemanticValue

Precondition *1
subject : Entity
predicate : Relation
object : SemanticValue

Effect

symbol : String
value : DataType

SemanticValue
DataType

symbol : String
payload : Set[SemanticValue]

Event

Figure 3.1: The seven basic elements of the approach. Static elements are represented by means of entities,
which are linked to state values by means of relations (left). Change is indicated by events (right) that can be
triggered by actions, which are described by means of preconditions and e�ects (bottom).

an event provides a link to the representation of its semantics. By the observation of all such
events (i.e. by observing all changes to the simulation state) a homogeneous interface is created.
¿is interface connects the application to the utilized simulation modules in the same way it
connects those modules among another.
In contrast to state values, events do represent incidents that do not have an associated

duration but occur at a certain point in time. For example, the update of a state value occurs
instantly, wherefore it is represented as an event. As opposed to this, the fact that an object
has a certain state (e.g., enabled) is represented by state values.
¿e utilization of state variables and events is redundant: If each simulation module (in-

cluding the application logic) would observe all events, no centralized representation of the
simulation state would be necessary. Yet, in this case each module would have to maintain its
own representation of the current state. If, in contrast, each simulation module would observe
all state variables, it could detect all e�ects of the state change events, update its internal
representation, and react accordingly.
¿e advantages of a purely state variable based approach include the fact a module does

not have to maintain a representation on its own. ¿is relieves the module of having to store
every aspect of the simulation in order to be able to access it later. Since such access may never
occur for certain simulation aspects, a lot of potential overhead is removed, if they are stored
globally. Moreover does this approach allow to store and load states, which would have to be
recreated by re-emitting and processing every event.
On the downside, inferring semantics from the occurring value updates is a complex task,

which is simpli�ed a lot by processing an event that semantically describes the indicated
occurrence. Furthermore, the utilization of event-callbacks does promise higher performance
than the observation of the simulation state, which requires manual reaction to inferred events.
In this regard, the simulation state would also have to be more comprehensive, since each
aspect that is indicated by a certain event would have to be re�ected by a state value.
However, the pure, unstructured handling of events would result in unmaintainable, incom-

prehensible applications. As a result, both interfaces have to be provided, allowing a developer
to choose the most appropriate one for each purpose individually.

66

3.2 Semantics of IRIS Frameworks

Actions In the same way that ontologies are useful to represent the semantics of static
elements of an application, methods from the �eld of automated planning are useful to
represent dynamic aspects (i.e. functions in the program code that modify the static content).
Common representations of actions take the preconditions and e�ects of these aspects into
account (see section 2.4.3). ¿is view can bemapped onto the concept of functions in program
code by regarding their parameters as preconditions. Similarly, a return value as well as a
function’s side-e�ects can be viewed as its e�ects.
Ontologies and action representation �t together well, as the latter is built upon the �rst

(cf. �gure 3.1). ¿is way, decoupling static scene content from the applied so ware functions
is facilitated. Given a repository of methods that are su�ciently described, an application
that implements this approach can reuse functions from the repository without necessitating
further adaption. In this context, a description-based approach facilitates automatic look-ups
from such repositories.
In summary, the basic elements to describe an IRIS application include: Semantic values

and relations, that are used to specify instances of the structuring element, which will be
called an entity. ¿ese three elements can further be used to de�ne preconditions and e�ects of
actions, which perform a modi�cation of the current application state. Such modi�cations are
represented by events.

SimulationModule Representation

¿e discussed seven basic elements can theoretically be used to describe an application and
its internals completely. However, in their plain form they are too unspeci�c and therefore
require further considerations to be of help in the so ware engineering context.
An additional layer that is found in IRIS applications has to be examined to address this

issue: each application is composed of multiple simulation modules, which according to their
intended nature will be called simulation components, or components for short. ¿ese terms
are based on the de�nitions of so ware components by Councill and Heineman (2001), which
were quoted in section 1.4. Commonly, each of these simulation components is responsible for
a certain simulation aspect. For example, a physics engine is concerned with the simulation
of all physics related processes, whereas a visual rendering component visualizes the current
application state.
Simulation modules usually perform highly speci�c computations, wherefore they require

purpose-built representations of the simulation state. ¿ese representations o en do not
include all of the information that is available for a certain simulated entity. For example,
a visual rendering engine most certainly does not require knowledge about the mass of an
object, whereas the physics engine will be highly dependent on this information. If, however,
the visual rendering component would for any reason have to request the mass of the object
this needs to be feasible, too.
Apparently, the required information depends on the modules in use and even might vary

between two components that are responsible for the same simulation aspect. In order to
avoid duplication of data at this point (requirement R5) the concept of aspects is introduced.
An aspect is similar to a view in database theory as it represents a partial set of properties of a
certain entity.

67

Chapter 3 A Knowledge Representation Model for IRISs

Entities

Relations Preconditions &
Effects

Actions

Content

Simulation
Modules

Application

Data TypesProgramming Functions

Layer Introduced Elements

Events

Entity Descriptions

Semantic
Values

Aspects

Figure3.2:The application layers, which re�ect the categorizationof developers fromsection 2.3.1, and associated
elements. The elements on higher layers provide access to those at lower layers.

As the term suggests, it is intended to subsume the state values that are required by a certain
simulation module to be able to simulate the corresponding aspect. ¿erefore, it matches
de�nition 1.4 (simulation aspect). It is worth mentioning that the properties of two aspects
do not have to be mutually exclusive. For example, the position of an object is most certainly
required by both a visual rendering and a physical simulation module.
In order tomaximize reusability of single parts of an application, simulationmodules should

be as independent from each other as possible. Using aspects to specify the properties of an
entity allows to completely reduce the coupling of simulation components to the agreement
on the access to the state variables of simulated entities and support for a speci�ed set of
events.
Since a simulation component can be viewed as an entity itself, the associated state variables

can be used to form its interface. ¿us, no further concepts have to be de�ned. Most of
the elements of the component-entity’s interface are speci�cally tailored for the respective
component. However, the component type, a component name, and the update frequency are
shared by each component.
In addition to the previously de�ned elements, the component level thus adds the concept

of aspects to the set of elements to be represented.

Application Level Representation

On the application level entities are instantiated and components are composed to form
a complete system. Building on the concepts that were introduced in the lower layers, an
entity description is composed by combining multiple aspects. Such a description speci�es the
properties of an entity as well as the relations in which it will take part.
Since a component is regarded as an entity, its instantiation is performed in the same way

as the instantiation of entities. Hence, no additional concepts regarding components are
required. Similarly, an application can be interpreted as a further component that creates
entities (and possibly modi�es them in a certain way).

68

3.2 Semantics of IRIS Frameworks

3.2.5 Summary

Figure 3.2 provides an overview of the discussed layers and the elements to be represented
in a knowledge representation. ¿is set of elements is su�cient to represent the state of an
application as well as updates to it. Every simulation module is added a wrapping layer, which
will be called amodule adapter. Its task is to update the simulation state which is represented
by the elements of the content layer. In the same way, a module’s internal representation can
be updated by observing value changes in the KRL. Brie�y speaking, a module adapter turns
a simulation module into a simulation component. Finally, an application can orchestrate the
creation and maintenance of elements from the lower layers.
With this approach the initially stated requirements are addressed as follows:

R1 ¿e structure of the development process of IRIS applications is taken into account.
In doing so, especially the di�erent roles of developers are considered. As a result,
preexisting simulation modules are provided with individual adapters, wherefore their
modularity is maintained.

R2 Following the proposed approach, the simulation state is inherently augmented with
semantic information that is attached to semantic values, relations, state values, and
events. If a way to inherently add semantic links to semantic values can be found,
extensions to an application do not necessitate manual modi�cations of the knowledge
representation but the KRL is updated automatically. ¿is issue will be addressed in
section 3.3.

R3 & R4¿e added semantic layer only consists of links to semantic representations, which
can be of arbitrary complexity. In simple cases the link is a symbol, in more complex
cases it can relate an architecture element to a highly elaborated ontology.

R5 ¿e approach does not duplicate information: depending on the particular implementa-
tion of semantic values, existing values can be wrapped and only the link to the semantic
representation is added.

R6 Only few concepts were introduced for the approach, wherefore it bears potential to be
easy to understand.

In order to facilitate the utilization of existing tools for editing the knowledge base, a formal
basis for the model has to be detected. While chapter 4 discusses the so ware implementa-
tion of this model, the following sections will be concerned with the choice of an adequate
knowledge representation and its interface to eventual applications.

3.2.6 Adopting theWeb Ontology Language

¿eWeb Ontology Language (OWL) is the de facto standard for speci�cations of ontologies
in the Semantic Web. Characteristics like the possibility of modular organization of ontology
�les and the existence of language pro�les that allow for e�cient reasoning make it a perfect
�t for the representation of ontologies in the IRIS context.

69

Chapter 3 A Knowledge Representation Model for IRISs

Large ontologies are available in the Semantic Web, which can be incorporated into appli-
cations in order to bene�t from previous knowledge engineering e�orts. Moreover, its wide
prevalence resulted in a huge amount of tools that are available for multiple purposes, e.g,
editors, reasoning so ware, data bases, etc. ¿is is in compliance with requirement R6.
An OWL ontology corresponds to a certain DL, depending on the fragment of OWL that

is used. Consequently, the restrictions that apply for the respective DL do also apply for the
OWL ontology. ¿e following section addresses the implications that arise in this context. ¿e
OWL examples that are presented in this chapter use OWL functional-style syntax. Essential
ontology contents that are used in this work are listed in appendix A.

Description Logics

DLs provide a formal logic-based framework for semantic knowledge representations. By
means of this framework the expressivity of a formalism can be classi�ed and its reasoning
complexity can be categorized. In the following sections, the terms concept, role, and individ-
ual from the �eld of description logics will be used to identify classes, relations, and objects,
respectively.
As mentioned in section 2.4.1, DLs adopt the Open World Assumption (OWA) but do not

make the Unique Name Assumption (UNA), wherefore some implications have to be taken
into account. In general, the OWA implies that a fact that is not explicitly asserted to be
false rather will be regarded to be unknown than to be false. As a consequence, checking
whether or not an individual is an instance of a concept that contains a negated role assertion
does require this fact to be provable with the contents of the knowledge base. For example,
suppose that the concept StaticObject is de�ned to be equivalent to the class of individuals
that are not instances of the concept MovableObject. ¿en an individual that is not an
instance of either concept is not inferred to be a StaticObject, because it still could be a
MovableObject. Accordingly, the classi�cation of individuals according to the absence of a
certain characteristic is not possible.
While this at �rst seems to be an issue, the adoption of its counterpart, the Closed World

Assumption (CWA), would create a di�erent problem: with the CWA an individual that is
not explicitly stated to have a certain property is assumed not to have it. In consequence,
extending a CWA knowledge base—which is highly desirable regarding reusability—can
lead to inconsistencies. For instance, suppose that the KB contains the statement that every
individual is either big or small. If later any individual would be added without specifying if it
was either big or small, the KB would become inconsistent. ¿is is because it is assumed to be
neither big nor small, which is in con�ict with the assertion that every individual must be one
of the two.
Similarly, the UNA could cause problems when knowledge bases are extended or combined.

With this assumption a certain object must be identi�ed by exactly one symbol. ¿is would
require each developer who wants to extend a knowledge base to exactly know about its
internals. In this context, the combination of two knowledge bases would most certainly
require re-engineering to ensure that the UNA is maintained.
Aiming for an extensible, layered approach, both the open world assumption and the

absence of the unique name assumption are hence a reasonable choice. A further aspect,
which is important in the context of reasoning performance, is the required expressivity.

70

3.2 Semantics of IRIS Frameworks

Depending on the combination of used features, the computational complexity regarding
reasoning processes increases according to the expressivity of the description logic in use.
In the same way, it a�ects the decidability of queries against the knowledge base. Using too
many language features to achieve higher expressivity thus could result in undecidability of
the KB (i.e. a reasoner cannot be guaranteed to infer all facts in a �nite amount of time).
Although the utilization of a certain set of language features does not necessarily imply

that a particular KB is undecidable, the mere possibility is undesirable and should be avoided.
Hence, the following section discusses the features that are required to represent the elements
that were determined before.

Description Logic Features

In the previous sections, nine elements were detected: semantic values, events, relations,
entities, aspects, actions, preconditions, e�ects, and entity descriptions. Out of these, semantic
values and events are the most easy to represent: the IRI of an ontology concept will be used
as a link for an associated semantic value. Instances of the semantic value are represented
by individuals of that concept. If required, the value of a semantic value is associated to the
respective individual by a hasValue role. Similarly, events are composed of a concept and
related to semantic values by a hasProperty role.

Role Characteristics Relations can be more complex to represent than plain properties.
A relation is represented by a role, which may have multiple of the characteristics listed in
table 3.1. ¿e values listed in the column ‘relevance’ re�ect the chance that the characteristic
is required for the design of an IVE. Transitivity and symmetry are regarded to have high
relevance, since they are required to model essential relations like partOf, hasPart, and
closeTo. Similarly, asymmetric roles and the possibility to specify inverse roles are commonly
used, e.g., in the context of comparisons (biggerThan, leftOf, etc.).
Disjoint roles, functional roles, and inverse functional roles are less o en required, since

the potentially inferred knowledge is rather bene�cial for consistency checks than for content
modeling. ¿e utilization of functional roles allows to emulate the UNA for individuals by
assigning distinct identi�ers to each of them, which is desirable in the context of cardinality
restrictions (see below). Inverse functional roles allow to specify equivalent individuals by
relating two of them to an identifying individual. Although their relevance is categorized as
medium, their utilization is still desirable.
¿e remaining characteristics, re�exivity and irre�exivity, make the respective role relate

every individual to itself. ¿is is valuable when assertions about individuals are queried, e.g.,
to retrieve all objects that are close to an object or not le of an object, which in both cases
should return at least the object itself.
As opposed to applying a reasoning module, every characteristic can be reproduced by

programmatically inserting the resulting assertions (cf. column programmatic solution in
table 3.1). Hence, if a chosenDL does not support some of the required characteristics, the IRIS
application can compensate for this. In this regard, transitivity is a problematic characteristic,
since it possibly requires to update all individuals that are related by the transitive role that
was altered. Consequently, at least transitivity should be supported by the chosen DL.

71

Chapter 3 A Knowledge Representation Model for IRISs

ch
ar
ac
te
ri
st
ic

ex
am

pl
e

re
le
va
nc
e

pr
og
ra
m
m
at
ic
so
lu
tio
n

no
te
s

tra
ns
iti
ve

pa
rt
O
f(
i 1,

i 2
)∧

pa
rt
O
f(
i 2
,i
3)

Ô
⇒

pa
rt
O
f(
i 1,

i 3
)

hi
gh

tr
av
er
se
pr
op
er
ty
ch
ai
n
an
d
up
da
te

a�
ec
te
d
in
di
vi
du
al
s

pr
og
ra
m
m
at
ic
so
lu
tio
n
po
ss
i-

bl
y
co
m
pl
ex

sy
m
m
et
ric

cl
os
eT

o(
i 1,

i 2
)

Ô
⇒

cl
os
eT

o(
i 2
,i
1)

hi
gh

as
se
rt
re
ve
rs
er
ol
e

as
ym

m
et
ric

le
ft
O
f(
i 1,

i 2
)

Ô
⇒

¬l
ef

tO
f(
i 2
,i
1)

hi
gh

as
se
rt
ne
ga
te
d
ro
le

in
ve
rs
er
ol
es

ha
sP
ar
t(
i 1,

i 2
)

Ô
⇒

pa
rt
O
f(
i 2
,i
1)

hi
gh

as
se
rt
in
ve
rs
er
ol
e

fu
nc
tio
na
l

is
At
(i
,l
oc

1)
∧
is
At
(i
,l
oc

2)
Ô
⇒

lo
c 1
=
lo
c 2

m
ed
iu
m

ch
ec
k
fo
r
sa
m
e
ro
le
s
an
d
as
se
rt

eq
ui
va
le
nc
eo
fv
al
ue
sa
cc
or
di
ng
ly

al
lo
w
st
o
em

ul
at
eU

N
A
us
in
g

de
di
ca
te
d
id
en
ti�
er
s

in
ve
rs
e

fu
nc
tio
na
l

ha
sI
D
(i
1,
id
)∧

ha
sI
D
(i
2,
id
)

Ô
⇒

i 1
=
i 2

m
ed
iu
m

ch
ec
k
fo
re
qu
iv
al
en
ti
ds
an
d
as
se
rt

eq
ui
va
le
nc
eo
fi
nd
iv
id
ua
ls
ac
co
rd
-

in
gl
y

al
lo
w
s
to
sp
ec
ify

eq
ui
va
le
nt

in
di
vi
du
al
s
us
in
g
de
di
ca
te
d

id
en
ti�
er
s

di
sjo
in
tr
ol
es

le
ft
O
f(
i 1,

i 2
)

Ô
⇒

¬r
iд
ht
O
f(
i 1,

i 2
)

m
ed
iu
m

as
se
rt
ne
ga
te
d
di
sjo
in
tr
ol
e

re
�e
xi
ve

∀i
∶c
lo
se
To
(i
,i
)

m
ed
iu
m

as
se
rt
ro
le
on

in
di
vi
du
al
cr
ea
tio
n

irr
e�
ex
iv
e

∀i
∶¬

le
ft
O
f(
i,
i)

m
ed
iu
m

as
se
rt
ro
le
on

in
di
vi
du
al
cr
ea
tio
n

Ta
bl
e
3.
1:
Av

ai
la
bl
e
ch

ar
ac
te
ris
tic

s
fo
rD

L
ro
le
s
in
O
W
L
in
cl
ud

in
g
ex
am

pl
es

th
at

sh
ow

th
ei
re

�e
ct
s.
Th

e
en

tr
ie
s
in

th
e
co
lu
m
n
‘re

le
va
nc
e’
pr
ov

id
e
an

es
tim

at
io
n
fo
rt
he

nu
m
be

ro
fs
itu

at
io
ns

in
w
hi
ch

th
e
re
sp
ec
tiv

e
ch

ar
ac
te
ris
tic

is
us
ef
ul
.T
he

co
lu
m
n
‘p
ro
gr
am

m
at
ic
so
lu
tio

n’
pr
ov

id
es

a
po

ss
ib
le
al
te
rn
at
iv
e
to

ac
hi
ev
e
th
e
re
su
lti
ng

ch
an

ge
s
to

th
e
KB

by
an

IR
IS
fr
am

ew
or
k.

72

3.3 A Reusable Knowledge Representation Model

De�nition of Concepts In order to describe a certain part of an entity, especially in the
context of aspects, further concepts have to be supported by the chosen description logic.
First of all, concept intersection is required in order to create more speci�c concepts from
existing ones. In this context, the feature of full existential quanti�cation is necessary in order
to specify a concept based on the roles it is involved in. For instance, it could be necessary to
state that the class of tables contains all elements that are a piece of furniture and that have
legs.
At run-time it may become desirable to use concept de�nitions that involve existential

quanti�cation to an individual or literal. ¿is way, for example, the class of all objects that are
red can be de�ned.
¿e remaining features are concerned with cardinality restrictions. ¿ese split up into the

two groups of unquali�ed and quali�ed cardinality restrictions. While the former specify
cardinality restrictions on roles only, the latter also restrict the types which the role may
involve. ¿is is required, for example, if a car shall be de�ned to be any object that has four
wheels (as opposed to having four arbitrary individuals). Since such de�nitions relate to entity
descriptions, this feature is possibly required in the application layer.

3.3 A Reusable Knowledge RepresentationModel

To enable sharing the representation among di�erent applications the previously mentioned
architecture elements have to be represented in a uniform way. Aiming for e�cient handling
of the knowledge base’s contents, the represented elements have to be carefully examined to
determine the required minimal expressivity of the underlying DL.
¿e following sections investigate restrictions regarding the DL for each of the previously

identi�ed architecture elements.

3.3.1 Relation Descriptions

In common RIS frameworks the concept of relations is not explicitly supported. For instance,
a part-of relation would be represented by aggregating entities, an is-at relation would be
stored in a dedicated variable, and a close-to relation might be realized by invoking a function
that performs a distance check. ¿is results in huge e�orts, and o en characteristics like
transitivity have to be implemented manually.
In contrast, relations are inherently supported by description logics. As discussed above,

transitive relations are required to specify relations like partOf. In the context of an integrated
knowledge layer, the direct support for further characteristics is optional, since these can be
maintained programmatically (see section 3.2.6). Consequently, the expressivity of the DL in
use varies between that of the DLs EL+ and ELRIF+ (cf. table 2.3 on page 46).
A problem commonly faced by a knowledge engineer who is using OWL is the fact that no

assertions about roles can be made. For example, it is not possible to state that a willWin
role has a probability of 50%. Whereas in RDF statements can be rei�ed to address this
issue, in OWL 2 the support for annotation properties was introduced. ¿ese allow to add
structured information to any element in the ontology, but are not handled by reasoning
modules, wherefore they have no e�ect on reasoning e�ciency.

73

Chapter 3 A Knowledge Representation Model for IRISs

¿e feature of annotations will be used especially in cases when no reasoning facilities
are required but more information is necessary to connect the ontology with an application.
In order to link a relation data type with the associated role in the ontology the following
approach can be adopted: for every role that shall be re�ected a concept is created, which is
linked to that role by means of a hasPredicate annotation. To use these relation concepts,
the associated individuals are linked to others via the roles hasSubject and hasObject. ¿e
concept is furthermore asserted to be a subconcept of the SemanticValue concept, which
will be introduced in the next section.

Required DL features

¿e expressivity of the underlying DL is highly dependent on the utilized characteristics of
roles. As discussed above, this results in an expressivity requirement of at least EL+ and at
most ELRIF+.

3.3.2 Value Descriptions

From the application developer’s point of view the most basic element is a single property. In
programming languages plain variables are commonly used to represent these, whereas in
the proposed approach semantic values are applied for this purpose. In both cases a value is
de�ned that is accessed by di�erent simulation modules to access an entity’s current state.
As mentioned before, a semantic value stores data that is represented by means of single a

data type. Regarding modular IRIS applications this is a rather problematic representation,
since di�erent simulation modules will most certainly use di�erent data types to store a partic-
ular property. ¿e discussion of implications related to required data conversion mechanisms
is deferred to chapter 4, whereas the fact that multiple representations may exist for the same
concept is addressed below.
¿ere are two aspects to this problem: on the one hand, multiple data types have to be

linked to a certain concept. On the other hand, a speci�c data type can solely be asserted
by the developers of the simulation component in question. In fact, the developers of a
simulation component should be the only ones who are concerned with its internal data
representation in order to maintain modularity (requirement R1). As a result, each component
has to be accompanied by at least one ontology �le that imports the ontology that establishes
a common ground for the de�nition of properties and concepts related to the simulation
module’s domain.
Figure 3.3 exempli�es the modular description of semantic values. All elements that are not

inside of a rectangle with a dashed outline are associated to the core ontology. ¿is ontology
contains only TBox content and de�nes the concepts and relations required to specify semantic
values. All core ontology concepts are visualized with a solid red outline. Since all relations
originate from the core ontology, no speci�c coloring is used for them.
If all components make use of the same data types, the use of the Basic Types ontology,

which is depicted in the center, is su�cient to de�ne the available semantic values. For
this purpose, a subconcept of the core ontology concept ValueDescription as well as an
associated individual is created for each semantic value type. ¿is individual is assigned the
respective data type and possibly further relations.

74

3.3 A Reusable Knowledge Representation Model

Core Ontology

Basic TypesGfxRenderer#1 Ontology PhysSim#1 Ontology

Physics OntologyRenderer Ontology

SemanticValue Transformation

ValueDescription TransformationDescription

describes
property

describes
property

isA

isA

Component

TransformationDesc#1

isAisA

GfxRenderer#1 PhysSim#1

isA isA

TransformationDesc#2

uses

uses

CoreTrafoDesc

isA

basedOn basedOn

isA isA

DataType
hasType

math.Mat4

hasType

gfx.Mat4 phys.Mat4

has
Dat

aTy
pe hasDataType

Aspect
provides

PhysicsComponentGraphicsComponent

asserted

inferred

Figure 3.3: An exemplary structure of the semantic representation of a transformation property across di�erent
ontologies. The ISA relation is used to depict both instance and subclass relations. Component ontologies
(dashed oranges outlines) use concepts from the basic types ontology (dashed red outline) and the core ontology
(outside dashed frames). Rectangles represent concepts, whereas ellipses represent individuals.

Adding Descriptions

As soon as further components that use di�erent data types are added to an application, their
ontologies are imported by the �nal application ontology. At this point, there are two possible
situations: either a concept is already de�ned in the basic types ontology and is reused by an
imported ontology or a completely new concept needs to be added.

Using existing concepts ¿e orange colored rectangles in �gure 3.3 exemplify the addi-
tional de�nition of descriptions for the Transformation property: GraphicsRenderer#1 is
asserted to be a graphics component that uses a di�erent data type for the Transformation
property TransformationDesc#1. Since this data type is speci�ed to be basedOn the core
transformation type, it can be inferred to be a value description for the transformation concept.
In the same way, a third data type can be associated with the transformation concept for a
possible physics engine (see right side of �gure 3.3). Note that the only links to external on-
tologies are created by the subclass de�nition for the components and the basedOn relations
for value descriptions.

Adding new concepts Although this approach does allow for highly modular property
speci�cations, it only is feasible as long as the described property is de�ned in the basic
types ontology. However, this cannot be assured, since a highly specialized component may
introduce new properties that have not been anticipated. ¿is does become a major issue, if

75

Chapter 3 A Knowledge Representation Model for IRISs

EquivalentClasses(
:ValueDescription
ObjectSomeValuesFrom(:describes :SemanticValue)

)

SubClassOf(
:ValidValueDescription :ValueDescription

)

SubClassOf(
ObjectSomeValuesFrom(:basedOn :ValueDescription)
:ValidValueDescription

)

Listing 3.1:De�nition of the ValueDescription concept. Invalid descriptions can be detected by investigating
the individuals that are ValueDescriptions but not ValidValueDescriptions.

two such components address the same concept and that concept is not represented in the
basic types ontology (but in each of the component ontologies). In this case, a link between
the two de�nitions of the concept has to be created in the ontology that imports the associated
components’ ontologies manually. Alternatively, the basic types ontology could be extended
by the new value description.

Detecting ill-de�ned Value Descriptions

¿e class of such problematic descriptions can be detected by listing all value descriptions that
are not based on another value description and do not originate from that basic types ontology.
Due to the OWA, this requires some e�orts: a class ValidValueDescription is de�ned,
which is a subclass of the ValueDescription class and subsumes all value descriptions
that are based on another description. Furthermore, the ValueDescription is speci�ed to
subsume all descriptions that participate in a describes role.
All individuals that are value descriptions but are not valid value descriptions have to be

manually adjusted by either basing them on another value description or adding them to the
class of valid descriptions. ¿is task has to be performed by the developer who combines the
respective component ontologies. ¿e manual adjustment should be stored in an additional
ontology �le, which can be imported into all applications using the same combination of
modules to facilitate reuse by other developers.

Required DL features

Regarding the features of the underlying description logic, the de�nition of value descriptions
requires concept intersection and full existential quanti�cation. Both is owed to the de�nition
of concept equivalences that use existential quanti�cation, as exempli�ed in listing 3.1. ¿is
could be avoided, if all class assertions are ensured to be speci�ed manually. Since this would
complicate the de�nition and maintenance of value descriptions, whereas no signi�cant

76

3.3 A Reusable Knowledge Representation Model

reduction in reasoning complexity is gained, these features are kept. Since no restrictions are
imposed on the used relations, theminimum expressivity of the DL used for value descriptions
is equivalent to that of an EL description logic.

3.3.3 Aspects and Entity Descriptions

In most RIS frameworks, entities are speci�ed by means of an OOP approach, i.e. in the form
of classes. ¿e entities then either form a hierarchy and inherit characteristics or are composed
of small building blocks that indirectly specify their properties (cf. section 2.3.2).
By building on the concepts of semantic values and relations it is possible to represent entity

descriptions and the aspects they are composed of. ¿e required concepts are introduced
using the example of a virtual ball entity. Figure 3.4 depicts the information required to
instantiate and simulate such an entity. In the given example a physics engine as well as a 3D
rendering module are said to be su�cient for the simulation.
First of all, the ball entity itself has to be represented, wherefore the concept Ball is created.

It can either be added to the Basic Types ontology or the application ontology, depending on
whether it shall be available to other applications or not. ¿e role describesProperty sets
up a relation to the BallDescription concept, which originates from the entity description
layer. A code transformation mechanism can then use the EntityDescription concept as
an entry point to transform entity descriptions into program code (cf. section 3.4.2).

Describing Entities

In order to represent the structure of the ball entity, two relations are required: hasAspect
and hasProperty. By means of these relations, entity descriptions and aspects can be
de�ned. In the given example, one aspect for each of the two involved components is de�ned.
Both share the sphere aspect, wherefore an eventual ball entity will contain a position and a
radius property. ¿is exempli�es the fact that multiply de�ned properties are merged into one
coherent description. ¿e PhysicalSphere aspect is derived from a general PhysicalAspect,
which adds the mass property. Similarly, the GraphicalSphere aspect adds a color property.
¿e depicted concepts are represented by means of terminological knowledge only. An

eventual component is meant to provide the associated individuals, for example, individuals
representing speci�c aspects. As visualized in �gure 3.4, entity descriptions can be de�ned
independently of such speci�c aspects and therefore are independent from the respective
component: it is su�cient to specify the concept that is associated with a certain aspect
individual, wherefore a component can be exchanged by a compatible other component, i.e. a
component that provides aspects that are compatible to those of the original one.
If it is su�cient to specify the presence of properties, the introduced ontology structure

is adequate to represent entities. In this case, the expressivity of the underlying DL remains
expressively equivalent to EL. In other cases, however, the structure has to be extended.
For example, the explicit assertion of a quali�ed number of properties to one entity can

be required. ¿is usually is the case for partOf relations, e.g., in the case that a car shall be
speci�ed to have four wheels. ¿is does add the requirement of cardinality restrictions, thus
the expressivity would be equivalent to that of an ELQ DL.

77

Chapter 3 A Knowledge Representation Model for IRISs

Entity
Descriptions

SemanticValue

BallDescription

Physical
Aspect

Graphical
Aspect

Position Radius ColorMass

Physical
Sphere

ha
sP

ro
pe

rty

hasProperty

Sphere

hasProperty

hasProperty

isA

Graphical
Sphere

isA isA

isA

isA

ha
sA

sp
ec

t hasAspect

isA

isA isA

EntityDescription

isA

Ball

isA isA

describes

Aspects

Properties

Figure 3.4: An exemplary structure of the semantic representation of a virtual ball entity. In addition to the red
(core ontologies) and orange (component ontologies) elements, yellow outlined concepts are asserted in the
application ontology.

Reasoning with Cardinality Restrictions

If a reasoner shall process such an ontology, two aspects have to be taken into account. ¿e
absence of the unique name assumption as well as the open world assumption requires that
individuals are explicitly speci�ed to be distinct. In the example of the car that is meant to
have four wheels, the wheel individuals can be explicitly speci�ed to be distinct. Alternatively,
a functional data property that is used to assign distinct IDs to the wheels can be used.
In addition, if other cardinality restrictions than minimum cardinality are to be used, the
eventual car instance has to be speci�ed to have no more than the assigned wheels. For this
purpose, universal restrictions are required. Consequently, functional data properties and/or
complex concept negation as well as nominals are required. ¿e resulting DL would have the
expressivity of an ELFQ (functional properties and minimum cardinality restrictions only)
or a SOQ DL, respectively.

78

3.3 A Reusable Knowledge Representation Model

Splitting the ontology Since reasoning for ontologies with this expressivity can become
intractable, it is advisable to create ontology �les that do only include the description of
the respective entity. ¿is allows for providing only relevant subsets of the ontology to a
reasoningmodule, whereby reasoning performance can be improved. If cardinality restrictions
are required for speci�cation but not for reasoning, the OWL 2 feature of annotations is
appropriate to specify a corresponding restriction.

Annotations

In other situations it may be desirable to distinguish between two properties of the same type
without specifying additional concepts. For example, suppose that the front le wheel of a
car shall be referenced explicitly. ¿is requirement is dealt with by utilization of the above-
mentioned annotations: an annotation property hasAnnotation is introduced, which allows
to assert an annotation to any value description. ¿e range of values of the hasAnnotation
property is restricted to concepts and individuals that are de�ned in the ontology. ¿is
restriction is required to ensure consistent values for annotations. Annotations do not change
the expressivity of the DL in use.

Required DL features

In consequence, if no cardinality restrictions are used, the expressivity of the DL remains
equivalent to an EL DL. Otherwise, an ELFQ DL is su�cient, if only restrictions for lower
cardinality bounds are required. In the remaining cases an SOQ DL is required.

3.3.4 Actions, Preconditions, and E�ects
Commonly, actions are speci�ed in the form of functions in the programming language.
In order to invoke them dynamically, mechanisms like re�ection have to be applied. In
this context, the preconditions and e�ects of a function are inaccessible at runtime, thus
complicating their selection and retrieval.
In order to overcome these limitations, the methods that are known from the planning

area are applicable (cf. section 2.4.3). In this regard, preconditions and e�ects are the most
complex elements to represent. ¿is is due to the fact that these elements necessitate the
representation of links between the parameters of an action and its preconditions and e�ects.
For example, the moved entity in a putOnAction can be used in the description of an action’s
preconditions as well as in the description of its e�ects. In order to achieve this, an e�ect (or
precondition, respectively) needs to address the same individuals that are parameters of the
described action. Since e�ects and preconditions are represented equally, the next paragraphs
will focus on the representation of e�ects. ¿ese considerations apply for preconditions in the
same way, though.
To avoid creating an individual for the same e�ect for every action that is de�ned, the fol-

lowing approach is proposed: the roles hasParameter, hasPrecondition, and hasEffect
are introduced to specify the respective element of an Action. Each action is represented by
an individual, which is associated with further individuals that represent its parameters. ¿e
action as well as its parameters are linked to further individuals which represent the action’s
preconditions and e�ects.

79

Chapter 3 A Knowledge Representation Model for IRISs

ObjectPropertyAssertion(:hasParameter :putOnAction :putOn−object)

ObjectPropertyAssertion(:subjectof−effect :putOn−object :isOn)

ObjectPropertyAssertion(
:objectof−precondition :putOn−object :isCarrying

)

SubObjectPropertyOf(
ObjectPropertyChain(:hasParameter :objectof−effect) :hasEffect

)

Listing 3.2: OWL code (functional syntax) showing the partial de�nition of an exemplary putOn action.
Parameters of actions, such as the putOn-object, are linked to the respective precondition or e�ect.

Every e�ect and precondition is represented as a relation, wherefore it has an associated
subject and an associated object. Since the e�ect individual is created only once, these
associations are speci�ed in the opposite direction: each parameter of the action is linked to
the relation via the objectOf-effect or the subjectOf-effect role.
An exemplary de�nition of a ‘putOn’ action’s parameter is shown in listing 3.2: the put-

OnAction action is asserted to have a parameter putOn-object. ¿is parameter is the
subject of the isOn e�ect as well as the object of the isCarrying precondition. If a reasoning
module is utilized, the hasEffect (and hasPrecondition) roles of an action can be inferred
by means of property chains, like the one shown on the bottom of listing 3.2: an action that
has a parameter that in turn is the object of a certain e�ect does have this exact e�ect.
¿e complete description of the putOnAction is visualized in �gure 3.5. In addition to the

e�ect speci�ed in listing 3.2, two parameters that are used to specify (1) that the putOn-object
has to be carried by a putOn-agent in advance and (2) the putOn-target (the location
where the object shall be put). ¿e depicted relations are speci�ed in the same way as shown
in the listing.

putOnAction

isCarrying
hasPreco

ndition

isOn

hasEffect

putOn-agent

ha
sP
ara
me
ter

subjectOf-

precondition ob
jec
tO
f-e
ffe
ct

putOn-object putOn-target

hasParam
eter

hasParameter

sub
ject

Of-e
ffec

tobjectOf-precondition

ha
sP
re
di
ca
te

carries on

hasPredicate

Figure 3.5: Representation of a putOn action. By centering the description around the action’s parameters, these
can be assigned to both preconditions and e�ects.

80

3.3 A Reusable Knowledge Representation Model

Linking Program Code

¿e link to program code is established using an additional implementedBy role, which
relates an action to a certain instance of program code. Since the approach is not restricted to
a certain programming language, the values of this role are not �xed. Because these values
are used by a code generation mechanism (see section 3.4.2), it is advised to provide the
ontology that speci�es the role and its instances with the respective code generator. In the
case of the Java programming language, for example, values of the role could re�ect the
package structure of the application in order to locate a particular implementation. Finally,
the hasReturnValue role is supported to link an action to the property it returns.

Required DL features

¿e presented approach does not require speci�c DL features, hence the DL for the represen-
tation of actions is equivalent to an EL DL.

3.3.5 Events

Events are very similar to entities, since they can be associated with semantic values (their
payload). Consequently, the hasProperty relation, which has been introduced in the context
of state value descriptions in section 3.3.2, can be used to specify their contents.
In order to allow for consistency checks regarding the provided and required events, the

two roles providesEvent and requiresEvent are introduced. Both relate an event to a
component: the �rst states that the component is able to emit the respective event type,
whereas the second speci�es that the associated component requires other components to
emit events of the given type. ¿e providedBy role states that a component does potentially
emit the speci�ed events, although it possibly never does. Nevertheless, in this way the highly
bene�cial possibility to detect incompatibilities before an application is developed is created.

Required DL features

Since no additional features are required, the underlying DL has to be as expressive as the one
used for value descriptions (EL).

3.3.6 Simulation Components

Simulation components have to specify the events they provide. Besides potential additional
events and value descriptions, a component also has to provide information about the sup-
ported aspects. For this purpose, a providesAspect role is applied. In addition, two further
roles are introduced: providesProperty and requiresProperty. ¿e former is used to
express that a component will provide all necessary information for the related aspect to
instantiate a state value for the related property. ¿e second states that this information has to
be provided by another component to allow the former one to perform its computations. In
order to allow to resolve con�icts, an overridesProvide annotation is introduced, which
can be used in a later application ontology to select among multiple providesProperty
speci�cations.

81

Chapter 3 A Knowledge Representation Model for IRISs

A component instance is identi�ed by its ComponentType and a ComponentName.
¿e former is used to address all instances that share this type. ¿is approach is useful for
decoupling since aspects can be speci�ed for a certain component type. In this way, the same
aspects can be used for di�erent instances of a particular type of component. ¿erefore, in
use case 1.1 it would not be necessary to modify used entity descriptions when the rendering
module is replaced.
¿e component’s name is used to address a particular instance at runtime. For example, if

multiple rendering components are present in an application, an aspect could be restricted to
a certain rendering component instead of being broadcasted to all of them. Since this name
has to be speci�ed at the time an application is developed, it is not stored in the ontology.

Required DL features

As with events, no further requirements are speci�ed, wherefore the underlying DL’s expres-
sivity remains equivalent to that of an EL DL.

3.3.7 Choosing an Adequate Representation
Having pointed out the potentially relevant DL features, this section aims at choosing the
�nal set to be used. According to the previous sections, the di�erent architecture elements
require at least the following expressivity:

• basic concepts, including descriptions for components, events, relations, and semantic
values: EL+ if only transitive roles are used, up to ELRIF+ if all role characteristics
are applied.

• actions, including preconditions and e�ects: EL

• entity descriptions:
– without cardinality restrictions: EL
– with only minimum cardinality restrictions and functional properties: ELFQ
– with arbitrary cardinality restrictions: SOQ

Since the �nal required expressivity cannot be determined, a �exibly adaptable formalism
to represent knowledge is required. In the context of this work, the widely usedWeb Ontology
Language was chosen for this purpose.

Adopting theWeb Ontology Language

¿e web ontology language (in its second version) has three language pro�les, which specify
subsets of the language (cf. Motik et al., 2012; Krötzsch, 2012). By choosing one of those
pro�les the e�ciency of reasoning is ensured to be higher than by using arbitrary language fea-
tures. Di�erent reasoning modules have been developed, which are optimized for processing
ontologies that are formulated using a respective language pro�le.
Building on the observations from the previous sections, the pro�le to be selected has to

support transitive roles. As the QL pro�le disallows this feature, it is ruled out from the start.

82

3.3 A Reusable Knowledge Representation Model

Concepts Roles
Semantic Values

SemanticValue,
ValueDescription

describesProperty, basedOn, hasAnnotation, has-
DataType

Aspects

Aspect providesProperty, requiresProperty,
overridesProvide

Entities

EnitityDescription hasAspect, hasProperty, hasPart
Relations

Relation hasSubject, hasPredicate, hasObject
Actions

Action, Parameter hasParameter, hasPrecondition, hasEffect,
subjectOf-precondition, objectOf-precondition,
subjectOf-effect, objectOf-effect, hasReturn-
Value, implementedBy

Components

Component supportsAspect, requiresAspect
Events

Event providesEvent, requiresEvent, hasProperty
Application

Application usesComponent

Table 3.2:Overview of roles and concepts that are added to the ontology to describe the elements introduced
in section 3.3. De�nitions are provided in appendix A.

¿eOWL2RL language pro�le does not allow existential quanti�cation to a class expression
(owl:ObjectSomeValuesFrom) in superclass expressions. ¿is is required, for example, to relate
a value description individual to a certain property (e.g., ‘describes some Color’). However,
this can be avoided by specifying the reverse direction using a describedBy property. In
this case, the concept that is related to a property has to be associated with the describing
individual (e.g., ‘describedBy colorDescription’). Since the RL pro�le allows to use all kinds of
roles except for re�exive ones, the above-mentioned restriction can be considered negligible.
In contrast to the RL pro�le, the EL pro�le provides the required expressivity regarding

the description of architecture elements. Apart from this, the missing features that might
be required at an IRIS’s runtime are inverse object properties, symmetric object properties
and cardinality restrictions. ¿e latter are supported by no OWL pro�le for values greater
than one, wherefore this does not a�ect the choice of pro�le. As shown in table 3.1, the role
characteristics that are not supported by the EL pro�le can be emulated. ¿e necessity to
do so can be signaled to an eventual IRIS application by adding an OWL annotation, which
speci�es the relation to have the desired characteristic.

83

Chapter 3 A Knowledge Representation Model for IRISs

Consequently, most of the mentioned elements can be used with both the OWL 2 EL and
the OWL 2 RL pro�le. Table 3.2 overviews the elements and their properties that are �nally
represented in the ontology (appendix A contains their exact speci�cations). ¿e RL pro�le is
preferable to the EL pro�le, since it requires less implementation e�orts and provides higher
support for consistency checks. However, if external ontologies are imported by an application,
a mixture of pro�les can lead to incompatibility with both. ¿erefore, the implementation of
the framework aspects should be compatible with both, thus allowing application developers
to choose the most appropriate pro�le.

Ontology Partitioning

¿e fact that cardinality restrictions are not supported by the any OWL 2 pro�le is owed to
their negative e�ect on computational complexity. Consequently, their use should be avoided
if possible. Unfortunately, the information that is speci�ed in this way o en is required at
runtime. For example, the possible assertion that the car entity from the previous examples
has to have exactly four wheels will most certainly be required to check if a particular entity
satis�es this requirement.
If this kind of instance checking shall be performed by a reasoning component, the utilized

ontology should contain as few concepts as possible to ensure the highest possible e�ciency.
¿us, the TBox content has to be partitioned into multiple �les, which contain only the
concepts that are required for a certain instance check. However, this would require the
reasoner to load or unload unnecessary concepts, which could reduce performance as well.
Alternatively, runtime instance checking that involves cardinality restrictions could be

performed by the framework itself. For example, the reasoning component could be used to
return a set of candidates fromwhich a specialized implementation subsequently chooses those
entities that meet the cardinality restrictions. Regardless of the chosen option, partitioning an
ontology is a desirable approach, since it facilitates reusability of the knowledge base. Concepts
that are contained in a certain ontology do not necessarily bene�t all applications, hence a
�ne-grained selection of imported concepts is desirable.
¿erefore, two heuristics for deciding on the form of partitioning are proposed:

1. Concepts that require di�erent levels of expressivity should be de�ned in distinct OWL
�les. ¿e content of these �les has to be speci�ed in such a way that �les that specify
concepts that require higher expressivity are based on those with lower expressivity.
¿en the former can import the contents of the latter. ¿is way, the expressivity of the
ontology can be decided on by removing the higher layers and maintaining the lower
ones.

2. ¿e partitioning should be performed in such away that concepts that are self-contained
reside in their own set of �les. Nevertheless, these �les can be based on other self-
contained �les. In the car example from above, wheels could be de�ned in an OWL �le
that imports basic concepts. Cars, in turn, would be de�ned in another �le that imports
the ontology speci�ed for wheels.

Figure 3.6 provides an overview of this idea: Each rectangle represents an ontology �le,
which provides the concepts that are indicated by the rectangle’s label. As shown, there are no
dependencies between simulation components, actions, and entity descriptions.

84

3.3 A Reusable Knowledge Representation Model

Core Concepts

Walk

Wheel

Vehicle

CarMotorcycle

Application

Component

Graphics
Engine

Physics
Engine

Actions

Drive

Movement Car with 4
Wheels

Concrete
Renderer

Concrete
Physics

Figure 3.6: Exemplary import structure for di�erent OWL �les. Simulation component ontologies (left) are
not dependent on speci�c de�nitions of actions (center) or entities (right). Associations, e.g., between a WALK

concept and its actual implementation, can be inferred by matching preconditions and e�ects.

3.3.8 Summary

In this section, the knowledge representation model that constitutes the basis for reusable
IRISs was presented. It provides a means to represent the basic elements from the previous
section. Consequently, it addresses the initially stated requirements as described below.

R1 As indicated by the proposed partitioning of ontology �les, the approach is highly
modular and can be adapted to preexisting structures.

R2 ¿e contents of an ontology are not a�ected by any changes to the application. Since
all elements in the application are automatically linked to ontology concepts (cf. sec-
tion 3.2.4), a developer does not even have to know about the underlying KRL.

R3 With OWL an external storage format was chosen that allows for modi�cation of the
stored knowledge without requiring changes to an underlying application.

R4 ¿e compliance with the OWL 2 EL and RL language pro�les ensures computational
e�ciency. In this context, an application is not limited to these pro�les but can make
use of the full expressivity of OWL 2 (at the cost of computational e�ciency).

R5 Building on the concept of state values no data is duplicated but a link to the associated
element in the ontology is added. In this way, no computational overhead (except for
the creation of the link) is introduced by the approach.

R6 ¿e utilization of human-readable identi�ers allows for comprehensible speci�cations.
In addition, multiple tools are available for editing OWL ontologies.

85

Chapter 3 A Knowledge Representation Model for IRISs

Considerations for an implementation In order to keep computational complexity un-
der control, the ontology should be partitioned according to the expressivity that is required
by the contained concepts as well as according to conceptual coherence. Moreover, each
component has to provide its own ontology �les to maintain modularity.
Although the eventual expressivity of the DL that underlies the applications ontology

depends on the application itself, the minimum expressivity is equivalent to that of a EL+
DL. Essentially, the proposed descriptions conform to restrictions de�ned by both the OWL
2 EL and the OWL 2 RL language pro�le.
¿e EL pro�le facilitates the creation of an ontology that is more general and, thus, allows

to infer more concepts, which would have to be speci�ed manually using the RL pro�le. In
contrast, the RL pro�le allows for the utilization of nearly any of the role characteristics that
are available in OWL. For most aspects the computational complexities of both pro�les are
identical.5 Possible restrictions regarding the used pro�le can arise due to imported ontologies
or used reasoning modules. In the end it is up to the application developer to decide which
pro�le should be used.

3.4 Integration into an IRIS Framework

Having de�ned the elements that have to be represented as well as the formalism to do so, the
remaining task is to integrate the represented knowledge into an IRIS framework.
Besides the partitioning of ontology �les described in the previous section, the question

how the modular architecture of a component based IRIS framework can be re�ected by the
ontology �le structure arises. ¿e next section will address this issue by proposing a layered
approach.

3.4.1 A Layered Approach

As a result from the proposed model, the ontology is divided into multiple �les according to
the expressivity of the underlying DL as well as to conceptual cohesion. In addition to this
partitioning, concepts that are only relevant for a certain set of simulation modules exist. For
example, the concept of gravity could be irrelevant for an application that does not include a
physics engine.
¿us, the following subdivision of ontology �les is applied: each component is meant to

provide its own ontology �les, which are based on a core ontology. ¿is core ontology speci�es
the concepts that were de�ned in the previous sections. ¿e contents of the component
ontologies add component-speci�c knowledge, for example, information about aspects that
are supported by the component. An application then includes all the ontology �les that are
provided by the components in use and can thus access the included concepts. Figure 3.7
visualizes the four main layers of the proposed ontology structure.
Building upon the core and component layer, two further layers are de�ned. ¿e �rst one

speci�es the con�guration of the application in use. It contains initial values, parameters for
the components, and similar content.

5 Complexities for OWL pro�les are provided at http://www.w3.org/TR/owl2-profiles/.

86

http://www.w3.org/TR/owl2-profiles/#Computational_Properties

3.4 Integration into an IRIS Framework

Core OWL

Component Dependent OWL
Component Dependent OWL

Component Dependent OWL

Application Config

<uses>

<uses>

World Knowledge
(possibly split into

mutliple files)

<uses>

<uses>

<uses>

World State

<uses>

- State Values
- Create Parameters
- A-Box Contents

- Basic System Knowledge
- Basic Concepts
- Value Descriptions

- Value Descriptions
- Aspects
- Component Knowledge

- Entity Descriptions
- Entity Configuration
- Component Configurations

Figure 3.7: The layers of an application ontology. Content of multiple component ontologies is imported and
thus becomes available to the application. The world state is not necessarily stored in OWL �les.

¿e �nal layer represents the runtime information of the application. It contains the current
application state, possibly including all information that is available to the running program.
¿is layer is not necessarily stored in OWL �les but could be maintained by a reasoning
component at runtime. However, given a framework that allows for loading an application
from such data, this layer could be used for hibernating an application or to implement similar
functionality.
As indicated on the right side of �gure 3.7, the �rst three layers may also include further

common sense knowledge, possibly originating from external sources. At this point, the fact
that OWL was especially designed for the Semantic Web is advantageous, since knowledge
that is available on the Semantic Web can be (re-)used.

3.4.2 Integration into Program Code

Since OWL �les are not inherently usable within program code, a transformation process has
to be performed. ¿is brings up the question which parts should be converted to program
code. Obviously, all elements that describe static information can be transformed, especially
including the set of symbols that will be used by an application. A list of the ontology content
and associated program code elements is given by table 3.3.

87

Chapter 3 A Knowledge Representation Model for IRISs

OWL Individual Transformed Element
General Elements

<role> RelationDescription
<subClassOf BaseConcept> GroundedSymbol
Semantic Values

ValueDescription class name of ValueDescription subclass
basedOn base parameter of ValueDescription
describesProperty semantics parameter of ValueDescription
hasDataType type parameter of ValueDescription
Relations

Relation class name of RelationDescription subclass
hasPredicate name of the relation
hasSubject
hasObject reference to le and right parameter of relation

Aspects

Aspect aspectType and class name of Aspect subclass
providesProperty added to providings set of the Aspect subclass
requiresProperty added to requirings set of the Aspect subclass
hasAnnotation annotation parameter for ValueDescription
Entities

EnitityDescription class name of EntityDescription subclass
hasAspect added to aspect list of EntityDescription subclass
hasProperty none (implicitly contained in the set of aspects)
Actions

hasParameter named Parameter of the action template
hasPrecondition reference to a ParameterRelation
hasEffect reference to a ParameterRelation
hasReturnValue return value of the actions executemethod
Components

providesAspect none
Events

Event class name of EventDescription subclass
hasProperty named property of the event

Table 3.3:Overview of elements represented in the ontology that is associated with a framework that follows
the presented approach.

88

3.4 Integration into an IRIS Framework

semantics : GroundedSymbol
value : Type

SemanticValue
Type

subject : S
semantics : GroundedSymbol
object : O

Relation
S : SemanticValue,
O : SemanticValue

apply(subject : S, object : O) : Relation<S, O>

semantics : GroundedSymbol
characteristics : Characteristic [*]

RelationDescription
S : SemanticValue,
O : SemanticValue

apply(value : Type) : SemanticValue<Type>

base : Base
semantics : GroundedSymbol

ValueDescription
Type,
Base : ValueDescription

«instantiate»

«instantiate»

�bind»
 <Type -> Tuple<S, O> >

�bind»
 <Type -> Tuple<S, O>,
 Base -> Relation<S, O> >

Figure 3.8: The ValueDescription and RelationDescription classes constitute factories for
SemanticValues and Relations, respectively. For this purpose, the applymethod has to be invoked with an
appropriate value.

Code Generation

In order to avoid con�icts with imported �les that contain additional knowledge, all trans-
formed concepts have to be subconcepts of a designated concept or instances of these. Said
concept constitutes the entry point for the transformation mechanism that generates program
code. ¿is allows to ignore knowledge that is imported from external ontologies. If this
mechanism shall be disabled, the OWL Thing concept can be de�ned to be that entry point.
Every subclass of the entry point is transformed into a GroundedSymbol, which basically

is a data structure that provides a reference to concepts in the ontology. Due to the utilization
of OWL ontologies, this reference is represented by an IRI.
¿e thus established link to an object’s semantics is essential for the seamless integration

between a KB and program code: the link is inherently available, but does neither a�ect
computational complexity nor contain any further information itself, wherefore it facilitates
modularity (R1) and transparency (R2), allows for reusing external ontologies (R3) and their
adaption to an applications needs (R4), and avoids duplication of information (R5).
Other elements are mapped to classes and objects in the program code. For each architec-

ture element (semantic values, relations, aspects, actions, entities, and events) an associated
description class is speci�ed in program code. ¿e concepts that are speci�ed in the ontology
are transformed into a respective subclass of these description classes.
¿e following paragraphs detail the connection between architecture elements of an eventual

IRISs framework and the ontology contents. Besides the described aspects, each element is
added the IRI of its representative in the ontology in order to provide a link between both
and enable the use of the ontological knowledge at runtime.

ValueDescriptions ¿e ValueDescription class, which is shown in �gure 3.8, has three
parameters: the represented data type T, a grounded symbol representing its semantics, and
a further value description that represents its base. ¿e semantics parameter connects the
value description to the semantic representation of described value, being extracted from the
describesProperty relation. ¿e data type is read from the hasDataType role, whereas the
basedOn role speci�es the base parameter.

89

Chapter 3 A Knowledge Representation Model for IRISs

semantics : GroundedSymbol
properties : SemanticValue[*]

Event«instantiate»

emit(properties : SemanticValue[*])
semantics : GroundedSymbol

EventDescription

Figure 3.9: EventDescriptions act as factories for Events, which facilitate inter-module communication.

While the �rst two relations are mandatory, the basedOn relation does not necessarily
have to be speci�ed. In that case a special base type is used for the base parameter, which
is provided by the framework. ¿is way, a type hierarchy that is independent from the one
prescribed by the programming language in use is de�ned.
In addition to the bene�cial aspects of semantic links, the utilization of value descriptions

fosters decoupling and thus is bene�cial for modularity (R1): the instantiated meaningful
semantic values can be passed to other modules without loosing information about their
semantics. Furthermore, transparency of the KRL is facilitated (R2), since a link to semantics
is automatically injected into each instantiated semantic value. ¿is way, a developer does not
have to be aware of the underlying ontology (R6).

Relation Descriptions RelationDescriptions can be implemented as a special case
of value descriptions (cf. �gure 3.8). ¿eir de�ning parameters are the type of the relation’s
subject, the type of its object, as well as the relation’s name, which encodes its semantics.
¿ese are generated from the hasSubject role, the hasObject role, and the hasPredicate
annotation, respectively. Since only functional and re�exive roles are supported in OWL 2 EL,
a fourth parameter that speci�es such further characteristicsmay be added.
Due to their relationship to ValueDescriptions, RelationDescriptions inherit their

bene�cial aspects regarding the initially state requirements (R1, R2, and R6).

Event Descriptions ¿e EventDescription, visualized in �gure 3.9, is identi�ed by its
semantics. In order to create and send an associated Event, the emitmethod is passed a
set of properties, which consists of entities and semantic values that accompany the event.
EventDescriptions are the most important element for uniform inter-module commu-

nication. ¿ey foster decoupling by hiding the underlying dispatch mechanism. ¿is way,
modularity (R1) is facilitated. Since an event carries payload in the form of semantic values,
the related bene�cial aspects do also apply.

Aspects Figure 3.10 shows the Aspect class. Aspects are used to specify the state values
that an entity will contain a er it has been instantiated. Each aspect is associated with a certain
type of component. ¿e set of components that are involved in the creation and simulation of
the entity can be restricted by means of a list, containing the names of included components.
In the same way, each aspect can be de�ned to either provide the initial value for an entity or
to be dependent on a di�erent component to specify that value.
¿e Aspect class is de�ned by six parameters: the aspectType, a componentType

that identi�es the components it is associated to, a list of componentNames, the sets of
requiredProperties and providedProperties, as well as as list of parameters. ¿e
latter provide information that is required by a simulation component to instantiate the aspect.

90

3.4 Integration into an IRIS Framework

properties : StateValue[*]
description : EntityDescription

Entity

realize() : Entity
aspects : Aspect[*]

EntityDescription

aspectType : GroundedSymbol
componentName : String[*]
componentType : GroundedSymbol
providedProperties : ValueDescription[*]
requiredProperties : ValueDescription[*]
parameters : SemanticValue[*]

Aspect * 1

«instantiate»

Figure 3.10: EntityDescriptions are composed of Aspects, which specify the state values that every Entity
that is instantiated from the description will contain. In this regard, an EntityDescription acts as a factory for
entities.

¿e mentioned mapping between concepts from the ontology and program code is in-
dicated in table 3.3, with the following exceptions: in order to allow for di�erent instantia-
tions, the parameters have to be passed to the Aspect class’ constructor. Moreover, the
componentNames are speci�ed at runtime, wherefore they are not generated from the ontol-
ogy but also passed as constructor parameters. ¿e componentType is not directly taken
from the ontology but the components that related to the aspect by a supportsAspect role are
examined and for each distinct type of component an aspect class is generated. A particular
implementation of aspects is discussed in section 5.2.6.
¿e utilization of aspects is highly bene�cial for modularity (R1) regarding simulation

components, as it allows to decouple the simulation aspect to which the component is related
from others. Furthermore, it inherits the bene�cial aspects of the incorporated elements.

Entity Descriptions EntityDescriptions, as visualized in �gure 3.10, are entirely de-
�ned by means of the associated aspects, which are determined by the hasAspect relation.
Hence, the parameters of the used Aspect classes have to be provided by the constructor
of the EntityDescription class. By combining the simulation aspects of the respective
simulation modules, entity descriptions inherit the bene�cial aspects of these elements.

Action Descriptions As shown in �gure 3.11, an ActionDescription contains a list of
parameters as well as two sets that specify its preconditions and effects. In order to
allow for a mapping between parameters and preconditions as well as between parameters and

execute(parameters : SemanticValue[*]{ordered})

parameters : Parameter[*] {ordered}
preconditions : ParameterRelation[*]
effects : ParameterRelation[*]

ActionDescription
subject : Parameter<S>
predicate : RelationDescription
object : Parameter<O>

ParameterRelation
S, O

parameterID : Int
valueDescription : ValueDescription<T>

Parameter
T

*1

2

1

*

1

Figure 3.11:An ActionDescription contains preconditions and e�ects (including eventual return values). Both
are speci�ed in the form of ParameterRelations.

91

Chapter 3 A Knowledge Representation Model for IRISs

e�ects, a ParameterRelation as well as a Parameter class are introduced. Instances of the
Parameter class combine a ValueDescription, which is speci�ed by the hasParameter
role, with an identi�er. ¿e ParameterRelation class is then used to relate these parameters
to the sets that are identi�ed by the hasPreconditon and hasEffect roles in the ontology.
Actions and their descriptions enable uniform access to dynamic aspects that are more

speci�c than the general usage of a simulation module. By providing an appropriate retrieval
mechanism this allows to decouple application code from themodule that provides a respective
action, whereby modularity is fostered (R1).

Components and Application In order to reduce the amount of concepts in use, the
application and the simulation components are represented by entities (see section 4.3 for
a more detailed explanation). ¿e state variables of the respective entity allow to modify its
con�guration, e.g., the global gravity could be changed by modifying the physics component’s
gravity property. ¿us, the description of an application or a component is similar to those of
aspects and entity descriptions, and the same aspects regarding the initially stated requirements
apply.

3.4.3 Cost-Bene�t Analysis of the Approach

¿e concepts and the ontology described in the previous sections facilitate the creation of a
deeply integrated KRL, which can be used at compile-time as well as at runtime. ¿e following
section will �rst discuss bene�ts and costs that relate to compile-time aspects. A erwards,
similar considerations are made with regard to runtime related bene�ts and issues.

Compile-Time Bene�ts

¿e compile-time bene�ts of the proposed approach are �vefold:

CB1 ¿e communication between di�erent modules is based on the concepts that are speci-
�ed in the external ontology. ¿erefore, no interdependencies arise on the programming
language level.

CB2 No programming skills are required to specify architecture elements. In this context,
graphical user interfaces can reduce the amount of concepts to be learned by a developer.

CB3 ¿e approach is independent from an eventual implementation.

CB4 ¿e validity of the composition of components can (partly) be checked by examining
the ontology contents.

CB5 Missing de�nitions in the ontology can partially be inferred. ¿is reduces the amount
of work that is required to specify new concepts.

¿e next paragraphs will discuss these aspects in greater detail.

92

3.4 Integration into an IRIS Framework

CB1: Decoupled Assets Since all elements that are related to the communication between
simulation components are speci�ed externally, the possibility of dependencies at the code
level is eliminated. In this context, the ontology provides a means for symbol grounding (cf.
section 2.4.2). ¿ereby, the utilization of the same symbols by each involved component is
ensured.
Exchanging a single aspect thus is transparent to the rest of an application. For example,

if the physical aspect of an entity is removed or changed, this does only a�ect the related
simulation component, whereas other components can operate without noticing the change.
Similarly, adding further aspects as in use case 1.2 or replacing a component in use case 1.1
does not require adjustments except for those involving the respective aspects. ¿is holds
true on all levels of an application: completely removing a simulation component does only
a�ect the entities that used the aspects provided by the component.
Decoupling of aspects is especially bene�cial in use case 1.3: AI modules that process data

in the KRL will automatically be informed about new data. Information that is provided by
a new sensor (or AI) module is directly available without requiring changes to either of the
modules.

CB2: Independence from the used Programming Language Since the approach mod-
els the architecture elements on a conceptual level and uses human readable symbols, a
knowledge engineer or a designer does not have to know about the speci�cs of the program-
ming language in use. ¿is also implies that the programming language can be chosen by the
developers, thus allowing for selecting the language that meets their requirements and skills
best.
Furthermore, di�erent simulation modules can be implemented using di�erent program-

ming languages, as long as a means to allow for communication among them is provided. A
possible—but presumably not very performant—approach would be to represent the proper-
ties of entities in a database that is accessed by the simulation components in use. Chapter 5.5.4
details the variant that was chosen in the context of this work.

CB3: Independence from the Implementation Since communication between compo-
nents only occurs by means of either the simulation state or events, di�erent implementations
can be combined with one another, if they use the same ontology (or the ontologies are
merged). ¿is most certainly requires the conversion of data types, which will be discussed in
section 4.1.
In this way, IRIS frameworks that adopt the proposed approach can reuse components from

each other by creating a thin communication layer between them. In that case the rendering
module from use case 1.1 could easily be exchanged by another one, if the latter has already
been integrated into a similar framework before. For instance, the case study from chapter 6
would have required even less e�orts, if the external rendering component had already been
used in such a framework.

CB4: Validating the Application Con�guration Due to the description-based approach
it is possible to check if an application con�guration is valid. ¿is begins at the level of entity
descriptions: if an entity description only consists of aspects that require a certain property

93

Chapter 3 A Knowledge Representation Model for IRISs

but no aspect does provide it, the entity description can be detected to be invalid. Similarly, if
a simulation module is speci�ed to require a certain event but there is no component that
emits this kind of event, the application most certainly will not work as expected.
Both is very valuable to a developer, since the use of unknown simulation components

might result in con�guration errors that can hardly be detected by developers who do not
have a holistic knowledge about all used components.

CB5: Inferring unspeci�ed concepts Inferable assertions can be added to the knowledge
base by applying a reasoning module prior to generating program code from the ontology.
For example, it is not necessary to assert each individual that represents a value description
to be an instance of the value description concept. In this way, the amount of work required
to create an application, which is already reduced by transforming ontology content into
program code, is lessened even more.
Similarly, the results of the reasoning process can be used to detect incorrect assertions. For

example, if a value description is inferred to be an entity description even though it should
not, the designer can inspect the particular description and correct possible errors.

Compile-Time Costs

Although e�orts were made to reduce the disadvantageous aspects of the approach, the
integration of a KRL comes at some cost. Since the utilization of the KRL is optional, these
aspects especially involve compile-time issues:

CC1 ¿e ontology introduces an additional concept that has to be grasped by developers.
Without appropriate tools for editing its contents this can lead to problems during the
development process.

CC2 ¿e combination of simulation modules possibly requires merging the associated on-
tologies. ¿is problem does also arise in the context of incompatible so ware interfaces,
but with the proposed approach ontology contents need to be modi�ed, too. Since this
is an uncommon task for so ware developers, supporting tools are required.

CC3 ¿e volatile nature of entities prohibits the utilization of static so ware interfaces, which
possibly reduces the understandability of program code.

Runtime Bene�ts

Although the mentioned compile-time bene�ts are advantageous to decouple simulation
modules as well as tasks of developers, the bene�ts that are achieved at runtime are equally
important. ¿e representation of the application state and available means to apply modi�ca-
tions to it usually have to be carefully planned by the application developer. More speci�cally,
the semantics of entities, their con�guration, and possible changes to it have to be speci�ed
at compile-time. ¿is forces a developer to decide on the applied methods in advance and
prevents dynamic reaction on certain con�gurations.

94

3.4 Integration into an IRIS Framework

By combining the proposed approach with methods from the �eld of arti�cial intelligence,
e.g., reasoning and planning, the reaction to a certain situation can be chosen at runtime. ¿e
bene�ts that are applicable at compile-time can be summarized as follows:

RB1 ¿e additionally available semantic information allows for dynamic type inference
based on semantics.

RB2 ¿e utilization of action descriptions allows to dynamically select modi�cations to the
simulation state at runtime.

RB3 In addition to semantic types, queries that involve the semantics of the application state
are facilitated.

RB4 Synchronizing the ontology with runtime information on the application state enables
external access to the application.

As before, these aspects are discussed in greater detail below.

RB1: Dynamic semantics-based type inference ¿e �rst di�erence compared to the
common approaches is the possibility to check for an entity’s meaning at runtime. ¿is is
facilitated by the application of a reasoning module. Whereas normally the semantics of an
entity’s nature has to be speci�ed by asserting variables that encode it, the reasoning module
can be used to infer it.
For instance, if a particular composition of multiple entities yields a certain meaning,

this could be detected at runtime. In the before-mentioned example of a car, a reasoning
component can detect the composition of a chassis and four wheels to be an instance of a car.
A rule engine could trigger a certain action (e.g., playing a sound) on each observation of a
car being constructed. In this example, which is closely related to use case 1.3, the car entity
does not have to be speci�ed anywhere in the application code but only in the ontology. ¿e
application developer, who speci�es rules for the rule engine, does not even have to know
about the components that a car consists of but only has to use the concept of a car.
¿is way, objects that were constructed by other developers can be reused depending on

their speci�c con�guration, instead of their a�liation to a certain class of objects. More
importantly, this allows for �exible use of natural language based access to the application at
runtime. Instead of checking for a hard coded string that represents an object’s identi�er, it
can be checked against the concept that is identi�ed by an utterance of a user.

RB2: Dynamic invocation of state modi�cations In the same way, the representation
of actions and functions in the KRL allows to specify the modi�cation of an entity at runtime.
¿is is usually only possible using scripting interfaces, which require the user to be �uent in
the respective scripting language. ¿e preconditions and e�ects of an action allow to check its
applicability, or to identify the functions that can be invoked in order to obtain a desired state.
At this point, the possibility to utilize an AI planning module comes into play. If a certain

action has preconditions that are notmet at the time it shall be executed, a planning component
can evaluate the possibility of creating a sequence of actions that creates a situation in which
the action can be executed. ¿is is bene�cial for natural language interfaces, but it also allows

95

Chapter 3 A Knowledge Representation Model for IRISs

for �exible ways of implementation: instead of invoking the functions that lead to a certain
state, a developer can specify that state and let the planning module detect a valid action or
sequence of actions to achieve it.
For example, instead of invoking the function resize(entity, desiredSize) the de-

sired state entity has(types.Size(desiredSize)) could be speci�ed. Of course, this
comes at the cost of the certainty that the actions are available or that the carried out plan is
equal to the functions the developer would have invoked. On the other hand, the developer
does not have to know about the particular name and signature of the resizemethod. ¿is
is bene�cial regarding reuse, since there is no need for searching for the respective method,
reducing the temptation to implement it again. Alternatively, the ontology could be queried
for available actions by specifying preconditions and e�ects, allowing the developer to choose
between them. Di�erent systems that adopt the latter approach have been developed in the
area of so ware engineering (cf. Devanbu et al., 1991; Rich & Feldman, 1992; Sugumaran &
Storey, 2003; Yao & Etzkorn, 2004)).

RB3: Querying the application state In order to be able to query the current state of the
simulation by using the concepts introduced in this chapter, a link between the state and the
KRL has to be established. As mentioned in section 3.4.2, the basis for this is provided by
a link to the associated ontology concepts via their IRI. However, the ontology does only
contain the knowledge about concepts and their relations among each other, and possibly the
assertions that were made to initialize the application. Consequently, a way to add knowledge
as well as to access the (inferred) knowledge at runtime has to be created.
Essentially, there are two options to achieve this: either the internal representation of the

application state is extended by a means to allow such queries and updates, or the ontology
is loaded by a speci�c component which updates its contents. While the �rst approach
probably ismore e�cient regarding computational performance, it would require a customized
implementation. ¿us, in order to be able to reuse achievements in the �eld of AI, the second
option is adopted in the context of this work. Reasons for this decision include the fact that
the approach of implementing a dedicated component, which is responsible for maintaining
a semantic view to the application state, can be added and removed without modifying
other parts of the application. To avoid proprietary communication with this component,
queries can be formulated using SPARQL (see next paragraph). A discussion of a possible
implementation is provided in section 5.5.2.

RB4: External access to the application state Due to the adoption of an OWL-based
ontology, the SPARQL Protocol And RDF Query Language (W3C SPARQLWorking Group,
2013) can be used to access and modify its content. SPARQL is a query language developed
by the World Wide Web Consortium (W3C), which allows to retrieve and manipulate data in
an RDF database.
If the component that is responsible for synchronizing the runtime ontology with the

application state is capable of answering SPARQL queries, semantic access to the simulation
state can be performed in a uniform way: since changes to the ontology are applied to the
simulation state by said component, no further e�orts are required to connect the SPARQL
interface to the rest of the application.

96

3.4 Integration into an IRIS Framework

Although it would be possible to establish SPARQL and the underlying ontology as the
central interface between components, the overhead that is introduced by parsing the queries
speaks against this. ¿is is mainly because the realtime requirements by IRISs applications do
require e�cient state value updates. However, applications with less restrictive requirements
could adopt this approach.
Even though this was not implemented in the context of this work, the runtime ontology

could be stored in a RDF triple store that is accessible via network. In that case, SPARQL
queries could be directed to the triple store, thereby allowing for modi�cations of the applica-
tion state by another application.

Runtime Costs

¿e runtime costs of the approach can be summarized as follows:

RC1 Storing a link to the ontology causes overhead regarding the instantiation of semantic
values. Although this is limited to the representation of a single IRI, it may be of concern
when many values have to be instantiated in a very short time.

RC2 ¿edescription-based approaches lead to symbolic access to values (e.g., when retrieved
from an entity), which is less e�cient than direct access to variables.

RC3 ¿e utilization of semantic information to dynamically evaluate the type of an entity
causes considerably more costs than the utilization of the native type hierarchy of the
programming language in use. In this context, high expressivity is likely to result in high
computational complexity, wherefore only the DL features that are inevitably required
should be used.

Conclusion

¿e integrated KRL provides many bene�ts regarding decoupling of simulation components
and fosters reusability. Furthermore, it provides a basis to decouple the work of di�erent
groups of developers. At runtime the approach fosters the utilization of AI methods to draw
more bene�ts regarding decoupling, dynamic access, and semantic queries.
¿e costs at compile time largely involve a lack of tools that support developers in editing

ontology �les. In addition, the lack of so ware interfaces is an issue that requires consideration.
Runtime issues that arise without the utilization of the KRL are relatively small. Its uti-

lization by means of reasoning and planning components, however, can result in lengthy
calculations. ¿e introduced ontology structures can be applied to lessen such e�ects. Never-
theless, sophisticated KRL access has to be avoided in time-critical situations.
In conclusion, the approach provides a solid basis for the integration of an KRL into an

IRIS application. However, its integration and use has to performed with care: the type system
of the programming language in use should be exploited wherever possible to avoid overly
complex calculations.

97

Chapter 3 A Knowledge Representation Model for IRISs

3.5 Summary
In the beginning of this chapter, the aspects of semantic simulation state representations were
discussed. As a result, six requirements for KRLs were detected, which provided the basis for
further examinations.
In order to �nd a model that can serve as a general basis for KRLs and that does comply

with the six requirements, the required contents were investigated from an abstract point of
view. A set of nine elements that are su�cient to represent the simulation state of an IRISs
and changes to it was identi�ed. Building on these �ndings, the requirements regarding
an underlying description logic were analyzed and a knowledge representation model was
developed. ¿e model complies with both the OWL 2 RL and OWL 2 EL language pro�le,
wherefore the underlying DL allows for e�cient inference processes.
Subsequently, the integration of the developed model into an IRISs framework was dis-

cussed. In this context, a modular ontology structure was proposed in order to maximize
modularity and thereby reusability of the represented knowledge. In order to reduce the
amount of errors that may arise in the process of manual implementation, a concept for the
transformation of ontology contents into program code was presented. In doing so, so ware
interfaces for the respective data types were suggested, which constitute a basic model of
factories.
Finally, the costs and bene�ts that can arise from the utilization of the proposed approach

were discussed. ¿ese split up into aspects that facilitate the development process and those
that are advantageous at runtime. Compile-time bene�ts revolve around decoupling, indepen-
dence of languages, independence of a speci�c implementation, validity checks, and inference
of knowledge (which will eventually be transformed into program code).
Runtime bene�ts include the possibility to dynamically perform semantic instance checks,

which allow for highly �exible applications. Moreover, the opportunity to let a planning
module select a sequence of actions to obtain a certain simulation state instead of having to
hard-code it in advance was mentioned.
Costs involve a lack of supportive tools, slight overhead during value access, and possi-

bly length calculations when the KRL is used excessively. ¿ese few negative aspects are
compensated by the many positive aspects of the approach.
¿e next chapter will discuss the utilization of the developed model in the context of

reusable IRISs. In this context, especially the indicated model of program code elements will
be developed further.

98

Chapter 4

A Semantics-based Component Model
for Reusable Intelligent Realtime
Interactive Systems

¿e reason it’s about messages and not about objects so much is that the messages
are the abstractions. We spend far too much time in our �eld worrying about what
the objects are.

ACM Turing Award Lecture
Alan C. Kay (2003)

4.1 Aspects of Reusability
¿is chapter illustrates a methodology that allows to turn so ware modules into reusable
components. ¿e latter is commonly addressed by the development of elaborate so ware
interfaces, component models, and similar techniques. In this context, the above-quoted
statement by Alan C. Kay suggests to reconsider if the commonly used techniques are the
most suited ones for the given task.
¿is chapter will �rst contemplate on aspects of reusability in the context of IRIS devel-

opment to get a clear idea of the approached task. Moreover, possible drawbacks of the
commonly used OOP approach are investigated. A erwards, di�erent methods that facilitate
reusability regarding IRISs are presented.
Applying these methods, existing simulation modules can be turned into so ware com-

ponents that can be �exibly integrated into the proposed component model. While the task
of conducting a systematic reuse program still remains to the entities that eventually imple-
ment applications, this work provides the tools that support this intention, for component
developers as well as for application developers.
Accordingly, it is concernedwith producing reusable resources, more preciselywith so ware

development of components for reuse. As opposed to this, the process of so ware development
with reusable components is le to the users of the created framework.

Requirements for Reusability

With regard to the reusability-related concepts that were reviewed in section 2.2.1, the below-
stated set of general requirements for IRIS frameworks is established. ¿ese requirements as

99

Chapter 4 A Semantics-based Component Model for Reusable IRISs

well as the aspects that were mentioned in relation to component-based so ware engineering
(cf. section 2.2.4) have to be kept in mind for the design of an IRIS framework.

R1 In order for simulation modules to be reusable, they should have few dependencies on
other modules and reveal low coupling and high cohesion. A framework hence has to
support the developer in creating and using decoupled components.

R2 In order to facilitate �exibility, a component has to be implemented in a general way,
such that it can be used in di�erent scenarios. Similarly, the framework has to foster
modularity: it has to be possible to split a component that has multiple purposes into
multiple, reusable modules.

R3 In order to facilitate extendability, seamless integration of simulation modules with
most diverse execution schemes has to be possible. Hence, a framework has to foster
concurrency, thereby also taking current multi-core and multi-processor architectures
into account. In this context, support for cluster architectures and distributed computing
is desirable, too.

R4 ¿e interface between components and the framework should be easy to understand,
in order to ensure low complexity and a steep learning curve (understandability). ¿us,
the number of concepts that are required to use the framework should be limited in
their number. In this context, the utilization of human-readable identi�ers is desirable,
too.

R5 Moreover, in order to overcome the opacity of externally produced so ware, known as
the invisibility problem (Brooks, 1987), a mechanism to retrieve information about the
program code is desirable.

Aspects of Reusability in IRISs

Achieving a high degree of reuse in IRIS applications is complicated by multiple aspects. So -
ware reuse o en has been accomplished with systems that are modular but have a monolithic
design in terms of being developed as a single program. More precisely, multiple largely
independent modules are used, which are created for a single application. A erwards, these
modules are reused in similar applications.
As opposed to this, RIS development involves the utilization of multiple externally de-

veloped components. ¿ese components usually do exist in advance and hence have to be
adapted to �t the system’s requirements. Although each IRIS application utilizes mostly the
same simulation modules, they are used in various combinations. ¿erefore, no subsets of
components that have to be compatible with one another can be de�ned, but each module
has to be compatible to every other one.
Since not only reusability but also maintainability, extensibility, and exchangeability are

aspects that are desirable for such systems, the mechanisms that are used to adapt external
modules have to be reusable themselves. When a module shall be exchanged, the replacement
module, more speci�cally its wrapper, has to match the interface of the old module. Since it
cannot be known in advance what module will be used with the system, a uniform interface
at the system’s core is required. Consequently, the majority of presented approaches in this
chapter is related to the creation of such an interface.

100

4.1 Aspects of Reusability

Data Type Conversion ¿emost obvious restriction that arises in this context is the use
of di�erent data types. Due to the requirement of interactivity, simulation modules that are
applied in IRIS applications o en utilize highly specialized data structures (impeding R2
and R4). Consequently, the interconnection of these highly specialized structures poses a
major challenge for the development of IRIS applications. Moreover, this o en results in close
coupling of the simulation modules in use (impeding R1). ¿ere are two aspects to this issue:

1. ¿e data types that are used to represent a certain concept themselvesmay di�er between
the simulation modules in question. For instance, position, rotation, and scale can be
represented by using one value for each property or by applying a single matrix.

2. Even if two components use the same data type, the representation in one module may
be di�erent from that in another one. For example, a matrix may be stored using arrays
of �oat values, but one module could use a column-major order while the other one
applies a row-major order to storage of data.

Access to the Simulation State Given a mechanism for data type conversion that over-
comes the above-mentioned issues, a generic way to access the simulation state is required.
¿is is problematic, since neither the way in which the state is stored by the simulation mod-
ules nor the kinds of simulation modules that will require access to it can be known at the
time the framework is designed.
A common way to address this issue is to create a centralized registry, which allows for

lookup and registration of simulation objects. In this context, the representation of objects that
constitute the simulation state is required to comply with a uniform interface. ¿e composition
of the objects, in the same way as the composition of simulation modules, highly depends
on the application to be developed and, hence, cannot be known in advance. Consequently,
the asked for interface usually is individually developed for every application or framework,
wherefore it o en is too speci�c to allow its utilization with subsequently added simulation
modules (impeding R1 and R2).

Abstraction of Execution Schemes Besides coupling of data types and state representa-
tion, eachmodule that is added to a frameworkmay have its own execution scheme (impeding
R1 and R2). In this regard, the calculations performed by one module o en depend on the
results that are provided by another one (impeding R3). For example, a visual rendering
module has to wait for other simulation modules to create a consistent world state before
it can display its visual representation. However, the plain serialization of calculations is
undesirable, since it neither re�ects the multi-core architectures of current processors and
concurrent execution schemes nor does it allow di�erent modules to run at di�erent update
rates. ¿is is a problem, since especially modules from the area of AI o en require lengthy
calculations that by far exceed the update rates that are required for a system to be interactive.

Development Environments IRIS development till recently (mainly due to its novelty)
mostly took place in the academic area. Consequently, the developed applications are custom
built solutions, which are tailored for the speci�c use case of the respective research group
(impeding R1 and R2). Due to limited resources, the overhead that arises to create reusable

101

Chapter 4 A Semantics-based Component Model for Reusable IRISs

components (cf. section 2.2.2) renders the development of such components highly unattrac-
tive. Similar to �ndings in the �eld of end-user so ware engineering (cf. Ko et al., 2011) this
o en results in code that is developed with a “throw away” attitude.
Similar strategies can be observed in the computer games industry: a er a successful

product has ended its life-cycle, the game engine in use is reimplemented in order to keep
up with the customers’ growing expectations on subsequent games. ¿is attitude basically
impedes R1–R5. In the case of a successful project this is an understandable approach. Instead
of investing in reusable so ware, the pro�t from a previous game can easily compensate for
the expenses that are necessary to create a new game engine. However, this strategy is highly
problematic if a project does not pay o� and the engine has to be reused to compensate for
the previous failure.
So ware that is developed in the research area is highly speci�c and complex by nature.

As a result of this, the interfaces that are developed to connect di�erent modules are highly
sophisticated and di�cult to understand (impeding R4).

AwarenessofExistingFunctionality Nomatter whether so waremodules are developed
by developers in the same team or by an external group, complex modules o en contain
functionality that a developer either is not aware of or does not understand. Even if su�cient
documentation is available, it has to be searched manually for desired functionality. While
more prominent functions are detectable with lower e�ort, speci�c ones are di�cult to
recognize (impeding R5). In either case reuse is hardly possible and, as a result, code is
reimplemented multiple times.

Comparison to other Sciences

Reusability is closely connected to concepts of decoupling and modularity (see section 2.2.1).
Approaches like object-oriented programming, component-based so ware engineering, and
so ware frameworks have been studied in great depth for years, but—asAlanC. Kay frequently
states—the long-desired computer revolution has not happened, yet.
O en comparisons between so ware engineering and the computer hardware industry or

other engineering sciences, like architecture, are drawn. In those �elds building upon (i.e.
reusing) previous achievements is common: hardware components can easily be plugged
together to create bigger systems and knowledge from centuries of construction allows for
the creation of stunning architecture.
¿is raises the question what the di�erence between so ware engineering and other engi-

neering sciences would be. ¿e �rst thing to be observed is the fact that the products that
emerge from so ware development are for the most part virtual and thus invisible (Brooks,
1987). In addition, the foundation of so ware is largely man-made and thus does not underly
the laws of nature. ¿is observation implicates that a so ware developer cannot be sure that
the environment stays the same between two projects. An architect, on the other hand, can
rely on the fact that his buildings will almost certainly end up in an environment that complies
with immutable laws. In such an environment the ordinary run of things will quickly reveal
design �aws and their causes. In contrast, the arti�cial environment in which a so ware
engineer deploys created products might even be �awed itself.

102

4.1 Aspects of Reusability

As indicated by this example, most of the interfaces used in other sciences are based on
non-arti�cial environments, which renders them highly stable. ¿e so ware engineer, on the
other hand, has to build on interfaces that are provided by other engineers, be it from the
so ware or hardware �eld. Since there is no law of nature forbidding to do so, these interfaces
may be changed at will.
¿e building blocks, which were invented in the �eld of so ware engineering to create its

own, less mutable environments have been discussed in section 2.2.4. With those tools at
hand, the question why reuse in so ware engineering is put into practice much less o en than
in other �elds remains.
In composition-based scenarios o en multiple levels of abstraction exist. A computer is

composed of di�erent components, which themselves are composed of integrated circuits.
¿ese, in turn, consist of electronic circuits, ful�lling special purposes. ¿e electronic circuits
consist (among other things) of logic gates, and so on. All of this is based on �ndings from
the science of physics and electricity (and thus the laws of nature).
Such building blocks can be combined with each other, because their intrinsic functionality

allows to do so. Obviously, this aspect is neither a�ected by asserted names nor by the
classi�cation the building blocks �t into. Yet, due to so ware’s invisible nature, programming
languages apply these very mechanisms to determine if two assets are compatible.
Two essential observations are of importance here:

1. ¿e interfaces that are used in other sciences are much more stable than those applied
in so ware engineering. ¿is o en is owed to the fact that they depend on the laws of
nature.

2. ¿e building blocks are characterized rather by their inherent functionality than by
their names or classi�cation.

¿ese �ndings are far from being new and addressed by the OOP approach; classes and
object are used to create building blocks and their functionality is covered by adding func-
tions. ¿e di�erence, however, lies in the way in which characteristics and functionality are
represented and accessed.

Drawbacks of OOP-Based Design In OOP, as in other programming paradigms, an
element’s characteristic as well as its functions are addressed using references, which in most
cases are stored in human readable symbols. Hence, not knowing a reference or its name
is equivalent to not knowing the respective element. Since the name is decided on by the
developer who implements a program, a uniform naming scheme (and hence a uniform
access) is virtually impossible. ¿e only way to realize such schemes would require an agreed
on vocabulary that is strictly adhered to.
However, even if a uniform way of naming all variables and functions was present and

adopted by every developer, the classi�cation, storing, and retrieval of objects has to be
performed manually. Classi�cation is supported by OOP mechanisms like encapsulation
and class hierarchies. Yet, these features can be characterized as being one-way: while it is
possible to derive the set of characteristics and functions of an object by investigating its class
a�liation, there usually is no way to derive its class a�liation by identifying its characteristics.

103

Chapter 4 A Semantics-based Component Model for Reusable IRISs

Although this seems to be a negligible feature at �rst, looking into the implications regarding
reusability reveals its importance: similar to the way in which naming issues complicate the
access to class members, classi�cation issues complicate the utilization of objects. ¿is is due
to the fact that the class of an object is represented by its name rather than by the contained
characteristics and functionality.
Another aspect that hinders reusability is the rigid nature of commonly used OOP class

hierarchies. ¿ese present a means to structure programs, thereby fostering comprehensibility,
and facilitate compile-time type checking, which enhances runtime-reliability of the so ware.
Yet, the representation of virtual entities as OOP objects in tree-like type hierarchies o en
is insu�cient to represent the multifaceted and mutable nature of such entities. Unforeseen
changes to the type hierarchy o en result in redesign and possible partial reimplementation
of a RIS, since the implementation is closely coupled to the so ware interfaces in use.
Recently, the adoption of the ECS pattern (cf. section 2.3.2) eased some of the related

problems by favoring a composition-based approach over the inheritance-based one. Never-
theless, the so ware interfaces in use still result in close coupling of so ware modules with
the contents of the simulation and the requirement of adopting the applied naming schemes
hinders reusability. A similar discussion was published earlier (Wiebusch & Latoschik, 2015).
To shed some light on the severity of these issues, consider the following example: In the

context of a VR application, all objects that represent vehicles are supposed to be modi�ed
(e.g., moved to a certain place). Living up to the concept of so ware reuse, the application
utilizes two so ware libraries: one that facilitates the representation of trucks and one for
the representation of passenger cars. Although the classes representing the respective type of
vehicle will most certainly not share the same class hierarchy, they probably share multiple
characteristics. In this case, a developer will have a hard time implementing the otherwise
rather simple operation, even if the above-mentioned uniform naming scheme is applied.
From the perspective of the two rendering modules to be exchanged in use case 1.1, the

implementations of which for now are assumed to follow an ECS-based approach, this is
problematic, too. Each rendering module uses its own so ware interfaces, meaning that the
position of the vehicles from above is inaccessible to at least one of the modules. ¿erefore,
even if the developer manages to update these positions, changes are not recognizable by
di�erent modules.
Creating a solution to this issue would be a lot easier if the applied programming paradigm

would allow to infer a common super class and allow for uniform access to its properties.

4.2 A Semantics-based Approach

In this work, the low level concerns that were discussed in the previous section are addressed
by the integration of a KRL on a core level. A general model for knowledge representation
in IVE applications was presented in chapter 3, which provides the basis for the approach
that is introduced in the following sections. A large part of the contents of this section has
been presented at the workshop on So ware Engineering and Architectures for Realtime
Interactive Systems (SEARIS) (Wiebusch & Latoschik, 2015).
¿e main idea behind the proposed approach is to relax the object-oriented view of repre-

senting the simulation state by applying an approach that can be described as semantic duck

104

4.2 A Semantics-based Approach

typing with compile-time aspects. As mentioned before, object-oriented design has multiple
bene�ts on the object level and complies with the human notion of things. To keep these
bene�cial aspects, a semantic layer is added on top of the object-oriented implementation, as
described below.

4.2.1 Ontological Grounding

¿emost basic addition on top of the object-oriented approach is the integration of a central
repository of symbols. Obviously, the stored symbols cannot be expected to be used throughout
all program code: the constant requirement to identify available symbols would restrict
programmers and reduce their e�ciency immensely. ¿e use of such symbols is hence meant
to be limited to those parts of program code that are part of an interface to other components,
i.e. for semantic values and events.
¿e compilation of such a dictionary is a complex and laborious task. Especially the

agreement on the symbol used for a speci�c concept is di�cult, since di�erent programmers
tend to use di�erent terminology for the same object. At best, an ontology for all concepts and
their relations can be found, which is used by every programmer working with the developed
framework. Since they originate from the ontology, the symbols identifying those concepts
will be called grounded symbols (cf. section 3.4.2).
While some concepts share a terminology among di�erent groups of developers, others

do not. A practicable way to approach this issue is to partition the ontology into common
and domain speci�c parts. ¿e �rst will then be used by every user of an eventual framework,
whereas the latter can be selected to one’s needs. Previously discussed features of OWL (cf.
section 3.2.6) are highly bene�cial for the creation of an ontology as well as for the intent of
partitioning it.
Although OWL �les are well suited, their content cannot be directly used during program-

ming tasks, wherefore the code transformation process indicated in section 3.4.2 is desirable.
Multiple aspects are addressed by this: for one, the approach becomes independent of the
utilized programming language. In addition, features of code editors, like autocomplete or
suggestions, can be used by accumulating the generated symbols inside a dedicated namespace.
Moreover, the number of errors due tomisspelling of symbols is reduced, because the compiler
will take over the task of a spell checker.

4.2.2 Semantic Values

By describing basic features and combining these descriptions with type de�nitions from
the used programming language, previously meaningless values are assigned a meaning.
In compliance with the terms introduced in the previous chapter, the semantic values that
represent the application state will be called state values, whereas the semantically enriched
descriptions of those values will be referenced as value descriptions. By combining a value with
an appropriate value description a semantic value is created. In addition to these concepts,
semantic types are introduced. A semantic type is the semantic representation of a value
description and thus can also be used to instantiate semantic values. Figure 4.1 provides an
overview of the introduced concepts and their relations, each of which will be discussed in
the following paragraphs.

105

Chapter 4 A Semantics-based Component Model for Reusable IRISs

Relation

Value

Semantic Type Semantic Trait

Semantic Value

Entity

GroundedSymbol

+

Data Type

1..n 0..n

describes

Entity

ValueDescription

0..n 0..n

Figure 4.1: Conceptual overview of the semantics-based approach. The top row shows the common way of
data representation in an object-oriented design. The bottom row shows the elements added by the presented
approach. Each of the shown elements is discussed in section 4.2.

To some extent, a value description represents an OWL data or object property: it speci�es
an attribute that is associated with an object. However, OWL properties are quite restricted
when it comes to additional information, e.g., they are not integrated into a class hierarchy.
¿e following example is helpful to get an idea of the application of these concepts: a

�oating point value that represents the radius of a round object (e.g., a sphere) can now be
assigned the value description Radius. ¿is certainly does not add valuable information for
the computer or compiler (see the discussion of semantics in section 3.1), but a programmer
is able to distinguish between the meanings of Radius and Diameter.
Of course, this can also be achieved by choosing appropriate variable identi�ers, but these

usually have a limited scope: it cannot be ensured that the same identi�er will still be used
a er the value was passed to a method. Using semantic values, the identi�ers of used variables
loose importance, since the value itself does carry its meaning.
A compiler, to some extent, can perform semantic checks by integrating this concept into

the programming language’s type system: a method parameter, for example, can have the type
SemanticType[Radius], allowing only semantic values with this exact value description to
be passed. In this example, the value description Radius is used as a type parameter of the
SemanticType.
Listing 4.1 shows the bene�ts of such de�nitions: an variable someVariableName, the

name of which does not re�ect its content, does contain a �oat value which was intended
to re�ect the diameter of an object. Passing this value to the function setRadius, which is
meant to update the radius of an entity, can now be detected to be erroneous by the compiler.
In this context, the transformation process of ontology content into program code relieves
the developer of manually specifying SemanticTypes.

4.2.3 Semantic Traits

While semantic values can help to integrate semantics into a programming language, the
concept itself is quite limited. Besides associating grounded symbols to values, no further
bene�ts can be drawn from it. A desirable feature would be to allow the creation of more
complex descriptions from existing ones; an idea that is similar to composition and inheritance
in object-oriented programming languages.

106

4.2 A Semantics-based Approach

9 def setRadius(e : SemanticEntity, value : SemanticType[Radius]){
10 e set value
11 }
12

13 val someVariableName = Diameter(1f)
14 // assume more code here
15 setRadius(someEntity, someVariableName) // --> compiler error

Listing 4.1: Detection of a mistakenly passed diameter value to a setRadius function (Scala syntax).

A central concept that is exploited in combining the OOP approach with the semantic one
is the idea of traits (Ducasse et al., 2006). Developed as a means to increase reusability by
facilitating multiple inheritance, traits allow for a more �nely granulated modularization of a
class’s functionality.
Semantic traits allow to combine multiple value descriptions to create a new one. However,

the values described by semantic traits are di�erent from those described by value descriptions.
While a value description is meant to entirely describe an associated value, a semantic trait
does rather specify a set of requirements to the described value. Compared to OWL ontologies,
semantic traits are equivalent to class descriptions (and intersections thereof).
An essential feature of semantic traits is the fact that they do not inherit value descriptions

but aggregate them, thus choosing composition over inheritance. ¿us, strict type hierarchies
are escaped and a modular structure that better re�ects the multifacetedness of IRIS appli-
cations can be achieved. It is worth mentioning that at this conceptual level all values are
assumed to be represented uniformly throughout a whole application. A later implementation,
however, will require a way to convert between di�erent representations (cf. section 4.5.1).
¿e idea of semantic traits aims at decomposing objects into their (semantic) properties.

For example, a virtual object could be decomposed into a color trait and a shape trait. It is
important to mention that this does not include part-of (or other) relations directly; a wheel
entity is not a semantic trait of a car entity.

4.2.4 Relations

In order to represent such and other associations, the concept of a relation, which was in-
troduced in section 3.2.4, is applied. Relations are used to link a semantic trait or semantic
value to another semantic value. In the car-wheel example from above the two semantic
values wheel and car would be connected by a partOf relation. Semantic traits that involve
relations can be interpreted as partial descriptions of entities, wherefore they can be used to
retrieve matching entities.
As shown in �gure 4.2, a relation is a semantic value itself. ¿is is a reasonable representation,

since all interface elements are meant to be represented by semantic values, and a relation
might belong to the described entity’s interface to the application. Accordingly, the grounded
symbol that is associated with a respective RelationDescription is the relation’s name
from the ontology.

107

Chapter 4 A Semantics-based Component Model for Reusable IRISs

va
lu

eD
es

cr
ip

tio
n

: V
D

va
lu

e
: T

Se
m
an
tic
Va
lu
e

T,
 V

D
re

la
tio

nD
es

cr
ip

tio
n

: V
D

su
bj

ec
t :

 S
V<

T>
ob

je
ct

 :
SV

<U
>

R
el
at
io
n

SV
<T

>,
 S

V<
U

>,
 V

D

va
lu

eD
es

cr
ip

tio
n

: V
D

Se
m
an
tic
Ty
pe

T,
 V

D

s
: G

ro
un

de
dS

ym
bo

l
Va
lu
eD
es
cr
ip
tio
n

G
ro

un
de

dS
ym

bo
l

re
la

tio
nD

es
cr

ip
tio

n
: V

D
R
el
at
io
nD
es
cr
ip
tio
n

T,
 U

, V
D

"E
nt

ity
"En

tit
y

«b
in

d»
<T

 ->
 E

nt
ity

,
 V

D
 ->

 E
nt

ity
D

es
cr

ip
tio

n>

«b
in

d»
<T

 ->
 T

up
le

<T
, U

>
>

«b
in

d»
<T

 ->
 T

up
le

<S
V[

T]
, S

V[
U

]>
 >

«i
ns

ta
nt

ia
te
»

«i
ns

ta
nt

ia
te
»

Fi
gu

re
4.
2:
O
ve
rv
ie
w
of

th
e
pr
ed

e�
ne

d
se
m
an

tic
va
lu
es
.R

el
at
io
ns

ar
e
se
m
an

tic
va
lu
es
,a
s
ar
e
en

tit
ie
s.
In

ad
di
tio

n,
ea
ch

va
lu
e
de

sc
rip

tio
n
ha

s
an

as
so
ci
at
ed

se
m
an

tic
ty
pe

.B
ot
h
re
la
tio

ns
an

d
se
m
an

tic
ty
pe

in
st
an

ce
sa

re
cr
ea
te
d
by

m
ea
ns

of
as
so
ci
at
ed

de
sc
rip

tio
ns
.T
he

us
ed

ab
br
ev
ia
tio

ns
fo
rt
yp

e
pa

ra
m
et
er
sa

re
:V
D
=
Va

lu
eD

es
cr
ip
tio

n,
ST

=
Se

m
an

tic
Ty
pe

,S
V
=
Se

m
an

tic
Va

lu
e.
T
an

d
U
re
pr
es
en

ta
rb
itr
ar
y
da

ta
ty
pe

s.

108

4.2 A Semantics-based Approach

Values

Value Descriptions

Relation
Descriptions

Grounded
SymbolsSemantic Values

SemanticTraits SemanticTypes
Entities

State
Values Relations

Figure 4.3: A schematic overview of an application’s state representation: the ellipses represent the intersecting
sets of di�erent types of values.

In addition to relations, �gure 4.2 shows two further prede�ned classes: Entity and
ValueDescription. ¿e Entity class, being a semantic value itself, is the programmatic
representation of the entity concept introduced in section 3.2.4. As opposed to the object-
oriented approach, entities of di�erent types do not necessarily create a class hierarchy in
program code. ¿eir interconnections and the assertions of attributes are achieved by the use
of relations. Since the data type of an entity is arbitrary, a preexisting entity data type can be
wrapped and reused.
A ValueDescription is basically de�ned in the same way it was in section 3.4.2, except

that it does not necessarily have to contain the associated data type. ¿e latter is instead
re�ected by the SemanticType, which is a semantic value that encapsulates a ValueDescrip-
tion. It might at �rst seem a little counterintuitive to let the SemanticType class derive
from the SemanticValue class, because the former is conceptually used to describe the latter.
However, creating a hierarchy like this does enable very �exible de�nitions, like expressing
the fact that an entity has a certain property without asserting its value.
Although it would not be very e�cient, this approach also allows to build data structures

by using semantic values and relations only: an in relation could connect any semantic value
with a set entity. Retrieving values from that set then would require to detect all entities with
that exact relation.
Figure 4.3 visualizes the intersections of the discussed concepts. ¿e outside box represents

all values that currently exist in the context of the application, whereas the presented, more
speci�c concepts are visualized in the form of ellipses.

4.2.5 Methods

So far, the semantics-based approach only allows for the description of entities, their attributes,
and relations between them. However, a program also consists of methods that (especially in
the object-oriented case) are o en tailored for speci�c objects.
With regard to entities, relations and semantic traits can be used to specify both precondi-

tions and e�ects of a method. Since a semantic trait captures a (possibly partial) view on an

109

Chapter 4 A Semantics-based Component Model for Reusable IRISs

entity but also allows to describe single values, all parameters of a method can be speci�ed in
the form of such traits. ¿is way of describing parameters also captures the need to specify
preconditions that have to be met before executing a certain method.
Similarly, e�ects of a function can be described using semantic traits. While the description

of preconditions is for the most part achieved by means of the method’s parameters, e�ects
have to be stored externally. In the end, two sets are created for each method, one containing
the semantic traits representing its preconditions and the other representing its e�ects on the
entities in the parameter list.
¿e implementation of a particular method, which in OOP-based design would be part

of a class, is linked to a semantic trait. ¿e semantic trait then represents the view on the
entity that supports the speci�c method. For instance, the semantic trait movable will be
accompanied by a method moveTo(destination). It has to be ensured that every entity
that matches that trait is compatible to the method. ¿en the movable trait allows to reuse
the moveTomethod with every compatible entity.
Similar to the retrieval of entities, semantic traits that describe preconditions and e�ects of

a method can be used to retrieve it. On a small scale, this could even enable the automatic
combination of methods into a more speci�c one, given an elaborated description of entities
and methods.

4.2.6 Example of Application

Entities are not required to be structured in a class hierarchy. ¿e reason for this is the fact
that not the entity itself carries its description but the semantic values it comprises do. Hence,
the class a�liation of an entity can be detected by checking it against a semantic trait.
¿is implies that an object that was not designed to be an instance of a speci�c class in

the �rst place can become such an instance by being added the missing semantic values and
relations. On the other hand, a subsequently implemented semantic trait can describe existing
entities, when the contained semantic values and relations are matched.
Returning to the example from previous section, the trucks and passenger cars that do not

share a common class hierarchy can now be represented as follows: the truck and passenger car
instances are represented by entities. ¿ey possibly still do not share the same class hierarchy,
but they could either share the same base ontology (e.g., for vehicle parts) or a developer could
specify a new ontology that merges the existing ones. ¿is can be achieved by importing the
ontologies used by the two libraries and detecting as well as marking equivalent classes. By
means of such a shared ontology, a semantic trait that describes both trucks and passenger
cars can be de�ned.
Figure 4.4 provides an overview of this example: in the passenger cars library and the

associated ontology the car is speci�ed as a movable thing that has a position as well as wheels.
Of course an actual implementation would be more detailed, but for the given example this
representation is su�cient. ¿e second library uses the term vehicle to describe a truck entity,
which is speci�ed to have coordinates and wheels. Each library provides a method to modify
the position (or coordinates) of the respective entity.
For the sake of the example coordinates and position are assumed to have exactly the same

representation. ¿e transformation of data types and forms of representation will be discussed
in section 4.1. For the same reason the utilization of a common base ontology, which provides

110

4.2 A Semantics-based Approach

Truck Ontology

TruckCoordinates

Vehicle

has

DriveTo

supports
Action

ha
sE

ffe
ct

Entity

TargetCoords

isA

ha
sP

ar
am

et
er

hasParameter

has

Wheel has

has
Passenger Cars Ontology

Car Pos

Movable
Thing

has

MoveTo

supports
Action

ha
sE

ffe
ct

Entity

TargetPosition

isA

hasParameter

ha
sP

ar
am

et
er

has

Wheelhas

has

Application Ontology

equals

SetPosition

Position
hasEffect

hasParam
eter

hasParam
eter

Entity

FinalPosition

has

isA

VehicleTrait

equals

has

has

has

Figure 4.4: Exemplary use of the semantics-based approach. Two libraries with unrelated class hierarchies
are connected by means of an application ontology. Despite di�erent naming schemes uniform access to the
entities’ position value is enabled.

the used relations, is assumed. If di�erent relation identi�ers were used, the application
ontology would have to de�ne equalities for these, too.
In order to use both libraries, a developer has to create an application ontology, which is

shown in the center of �gure 4.4. ¿erein at least the equality of the wheel concepts of both
libraries as well as of the position and coordinate concept have to be speci�ed. In the �gure
an additional SetPosition function is de�ned by the application developer.
With this information at hand, multiple opportunities of combining the libraries arise. First,

both passenger cars and trucks match the (extremely underspeci�ed) VehicleTrait, which
is shown in the lower center of �gure 4.4. It is de�ned to describe entities that have wheels and
a position. ¿e latter can be modi�ed manually, wherefore the desired functionality (moving
trucks and passenger cars) can be implemented.
Furthermore, the SetPositionmethod that was implemented by the application devel-

oper can be applied to cars and trucks. Due to the speci�ed equalities it can be detected to
implement the above-mentioned functionality. All three, the MoveTo, the SetPosition, and
the DriveTo method, can be inferred to be equivalent according to their parameters (i.e.
preconditions) and e�ects. Moreover, all three of them can be applied to both trucks and cars.
In the presence of multiple methods that could be applied to obtain a desired e�ect a

heuristic is required to select the most appropriate one. Besides the obvious possibility to
select the �rst detected one, a distance measure can be applied: the closer the speci�cation

111

Chapter 4 A Semantics-based Component Model for Reusable IRISs

of a method is to the entity it shall be applied to, the more appropriate it is. Distance (or
proximity) in this context is expressed by

1. being directly related (e.g., by a supportsAction relation),

2. the number of e�ects that are part of the target state,

3. the extent to which the parameter types of the methods preconditions are matched (i.e.
the total sum of classes that separate the parameter types and the actual parameters in
the class hierarchy), and

4. being de�ned in the same ontology.

Regarding the speci�cation of semantic traits, it is desirable to describe the minimal set
of requirements that have to be met to allow for the respective functionality. In the given
example this could, e.g., be the fact that the respective entity has wheels, a position, and can
be steered. Subsequently, a function that allows to move the described entity to the desired
position would be implemented (or retrieved), which works for all entities matching the
semantic trait. Later, e.g., a motorcycle could be moved using the exact same method, since it
will (probably) match the same trait.
Each semantic trait can be interpreted as a partial entity description. Using this description

all instances of matching entities can be wrapped and then used uniformly. Compared to an
OOP-based design, such entity descriptions relate to classes. Yet, in contrast to OOP classes,
the proposed concept allows for dynamically changing objects and their properties, and thus
their position in the class hierarchy.

4.2.7 Annotations
¿e above-mentioned building blocks are su�cient to overcome some of the issues that were
found with OOP-based designs. However, a programmer will feel restricted when it comes
to expressiveness and �exibility of the proposed approach. Especially the possibility to hide
information is a valuable feature, which will be missed by programmers who are used to OOP
languages. ¿e restriction to use a limited set of symbols, which should not be extended as
rashly as new variables are de�ned and additionally requires the extension of the underlying
ontology, will also be perceived as rather hindering.
To allow more speci�c descriptions of objects without creating speci�c symbols for every

possible case, the concept of annotations is introduced. It enables to specify more precise
semantic descriptions and, in combination with relations, to specify scope.
An annotation basically is a semantic value that is assigned to another semantic value. For

example, a value can be added a timestamp by annotating it with a respective semantic value.
¿e link between a value and its annotations is established by means of a hasAnnotation
relation.
Regarding the speci�cation of scope, a special semantic value scope can be de�ned. A

semantic value can be annotated with an arbitrary number of such scope values. ¿is can be
done either manually by the programmer or implicitly by the framework in use. If this feature
is supported by the framework, the retrieval mechanism of said framework can �lter results
by means of the de�ned scope in which the retrieval took place.

112

4.2 A Semantics-based Approach

4.2.8 Bene�ts and Drawbacks

¿e presented approach opens up new possibilities. Due to its �exibility a developer can easily
access di�erent aspects of the simulation. Such access, of course, has to be handled with care
to avoid unexpected side e�ects. ¿e next sections will discuss such bene�ts and possible
drawbacks in more detail.

Bene�ts

Applying the techniques presented above a programmer can break out of the restrictions
enforced by strict class hierarchies: an object can be declared as an instance of multiple classes,
which are represented by semantic traits. It also can exist without being an instance of a
speci�c class and become the instance of a class, retrospectively. ¿is is highly bene�cial if
previously de�ned objects shall be reused in di�erent contexts (R2).
¿e use of a coherent vocabulary will foster reusability of developed programs. Not only will

the understandability of program code increase (R4), but also will the support for retrieving
classes and functions. In addition, it allows for the integration of symbol-based AI methods,
e.g., from the �elds of reasoning and planning.
Furthermore, if the used framework provides adequate storage and retrieval mechanisms, a

programmer can focus on implementing application logic instead of planning how to store the
used objects. ¿e use of semantic traits for method retrieval purposes allows to specify what
shall happen instead of how it should happen, which is bene�cial for requirement R5. ¿is
approach requires additional e�orts to de�ne method descriptions, but an elaborated retrieval
mechanism for methods, which may be applied for an object that is only de�ned by the
description of its attributes, will allow for more easy reuse of previously de�ned functionality.

Drawbacks

¿e loosened restrictions also do pose a drawback: enabling the programmer to leverage
scope restrictions, like those known from object-oriented approaches, allows to modify values
without understanding eventual side e�ects.
With respect to performance, the proposed technique is in an inferior position compared

to other paradigms. While most elements can be wrapped by appropriate classes (or other
�rst-order objects of the applied programming language), at least the retrieval mechanism
will need to compare semantic traits, which is more costly, e.g., than the comparison of keys
in map-like data structures.

Integration of the Proposed Approach ¿e above mentioned drawbacks may lead to
the desire to create a new programming language that provides features that mitigate if not
even compensate the raised issues. However, this is contrary to the aim of this work, which is
to foster reuse.
Multiple reasons against creating a new programming language can be named: �rst, creating

another programming language would require to re-implement many features that exist in
libraries, or at least create a mechanism to use features implemented in other languages (e.g.,
using shared libraries, etc.). Moreover, the creation of (another) programming language will

113

Chapter 4 A Semantics-based Component Model for Reusable IRISs

require eventual developers to learn this language, wherefore it rather does require additional
e�orts than lighten their workload.
Especially in the �eld of complex so ware components, like physics simulation and 3D

rendering engines, it is much more convenient to create an approach which can be

• applied to a wide range of programming languages to enable easy use of existing com-
ponents, and

• used to wrap existing so ware components and reuse previously implemented func-
tionality.

In order to provide guidance to how the approach can be integrated in the �eld of virtual
environments and therein ful�ll the two above mentioned requirements, the following section
introduces a uniform access model. ¿is model especially addresses the needs of interactive
systems and focuses on its application for the creation of virtual environments.

4.3 A Uniform Access Model
¿e semantics-based approach presented in the previous section provides the basis for a
methodology that can foster the reusability of so ware programs. However, its sole existence
does not guarantee the creation of reusable so ware, wherefore a way to direct an eventual
developer to its e�cient use is required.
For this purpose a uniform access model is presented, which aims at reducing the number

of concepts to be learned by a developer. ¿e underlying idea is that reusing and maintaining
so ware is fostered by its understandability. Accordingly, overly complex so ware interfaces
that prohibit comprehensibility are counted as an inhibitor of reusability. ¿is is supported by
the �ndings presented in section 2.2.2. In consequence, the goal of the uniform access model
is to provide a single, uniform, easy to understand interface that can be used throughout a
whole application.
¿e intention to create such an interface introduces further requirements, since multiple

actors will be utilizing the interface: apparently so ware developers, more speci�cally ap-
plication developers, will be its most frequent users. However, the aspect that the interface
essentially connects so ware modules that are being (re-)used in an application also has to be
taken into account. Since this work focuses on IRISs, other actors, such as virtual agents, also
belong to it users.
Implications of these observations include the requirement that the interface must allow

to access the complete simulation state. Optimally, the simulation state itself constitutes
this interface. Further requirements include human-readability to allow for its utilization by
developers and high �exibility to enable its usage for most diverse applications. In addition,
the integration of a KRL is highly desirable to cope with the integration of AI methods and
virtual agents. ¿erefore, the model presented in chapter 3 provides its basis.
Since the research environment this work was conducted in dealt with the development

of VEs, the examples used in the subsequent sections will mostly originate from that area.
However, it has to be pointed out that the accessmodel as well as the semantics-based approach
presented in the previous section could also be utilized for other kinds of applications. Parts
of this section have been presented in Wiebusch and Latoschik (2014).

114

4.3 A Uniform Access Model

4.3.1 State Representation & State Transitions

¿e conceptual elements that are used to represent a VE have been discussed in section 3.2.4.
As indicated, each application run can be viewed as the composition of events, which transfer
a start state into subsequent states. Each of these states is exhaustively represented by a set of
state values. State transitions, on the other hand, are represented by events, which specify a
set of modi�cations to the current state.

Events To relieve a developer of handling events, their processing can be hidden. Using a
uniform so ware interface, callback methods can be registered for the handling of events of
any kind. Since value updates are represented by events, this interface has to be implemented
by both state variable and event representations. ¿is way, event handling code can be attached
directly to a respective event source’s representation (e.g., an updated state variable).
It may not always be completely clear if a certain aspect should be represented as an event

or a state value. For example, a collision could be thought of as a state (being in collision) or
an event (detection of the collision). ¿e reason for this duality is the fact that two di�erent
things are being represented: the event that initiates a certain state as well as the state itself.
Hence, both has to be represented, the state value which represents the collision state as well
as the events adding and removing it. Allowing for the observation of both, state values and
events, an eventual developer can choose the representation of interest.

Entities In order to create a more comprehensible representation of the simulation state,
entities were introduced as a structuring element. Each entity consists of the state values
that belong to the concept it represents. Besides plain properties, the contained state values
can also represent relations, thereby allowing for interconnection of entities and other state
variables.
In this context, the uniform access model makes use of relations introduced in section 4.2.4.

As opposed to the earlier de�nition, which allows to specify higher-order relations (i.e. re-
lations that reference other relations), this is not permitted in the context of the proposed
uniform access model. In consequence, relations can only be used to link entities with state
values (which, in turn, may represent entities). ¿e model does not explicitly state how these
relations are to be represented. Depending on the type of relation, aspects like symmetry
and transitivity have to be taken into account. One possible way of implementing relations is
presented in section 5.2.7.
Due to the fact that the complete simulation state is meant to be accessible by means of

entities, not only virtual and real objects but also simulation modules are represented by
entities. In this regard, a module itself is related to an entity that contains its con�guration
parameters. Consequently, changing the state values of the entity will result in a modi�ed
behavior of the simulation module.

4.3.2 Uniform Access to the Simulation State

Given the concepts introduced in previous sections, the interface that is used to access and
modify the current simulation state can be reduced to have very low complexity. Since all
architecture elements as well as the objects that reside in the simulated environment are

115

Chapter 4 A Semantics-based Component Model for Reusable IRISs

«interface»
ISemanticAccess

get(handler : Handler<T>)
set(newValue : T)
remove()

T

StateVariable
T

emit(data : SemanticValue[*])

EventDescriptionRelation
T, U

«interface»
IObservable

observe(handler : Handler<T>)

T

«bind»
< T -> Tuple<T, U> >

«bind»
< T -> Event >

Entity

«bind»
< T -> Entity >

Figure 4.5: The software interfaces that are proposed in the context of the uniform access model. The shown
functions are su�cient to access and modify all parts of an application.

represented by entities, the Entity class is the main element of concern. ¿e operations that
have to be supported are threefold:

1. set properties (i.e. state values): ¿is includes adding new properties and updating
values of existing properties. ¿e information required to perform this task consists of
the entity to be updated, a reference to the property, and the new value to be set.

2. get values/observe value changes of properties: accessing the value of a certain prop-
erty of a single entity can be interpreted as the polling implementation of observing
value changes. ¿e latter does, in addition to the entity of interest and a reference to
the property, require a callback function that is executed each time a value update is
observed.

3. remove properties: Although the removal of a single property from an entity is per-
formed rather rarely, it is necessary in some cases. For example, if the inferred type of
an entity depends on the existence or non-existence of a certain property, changing
its type a�liation may require to remove the property. Similar to the get/observe
operations, the required information contains the a�ected entity as well as a reference
to the property to be removed.

¿e set as well as the observe method can also be used to handle events: setting (or
rather emitting) an event requires to send the event and the values that represent its payload.
Observing an event is very similar to observing a value update. Hence, it requires a description
of the event to be observed and a callback function that is invoked each time the event occurs.
In comparison to entities, two di�erences exist for events. First, the setmethod should

conveniently be named emit. Second, as an event does not share the persistent nature
of an entity, a surrogate has to be de�ned. For this purpose, events are associated with
event descriptions. ¿e above-mentioned interface is then implemented by such descriptions,
allowing to emit and observe matching events. Using such descriptions, the actual event is
just a carrier for the payload, all other interactions are performed by means of the associated
description. A er all, referring to the event description as an ‘event’ obviates this way of
looking at things. ¿e resulting so ware interfaces of the uniform access model are shown in
�gure 4.5.

116

4.3 A Uniform Access Model

4.3.3 SimulationModules

¿e simulated environment comes to life by means of the utilized simulation modules. In the
case of an IRIS, this could, for example, be a graphical rendering module, a physics engine, a
sound rendering module, an AI module, or input-/output-modules.
As mentioned before, these modules are meant to be as independent from each other as

possible. However, many such modules require to work on a consistent simulation state.
For example, in use case 1.1 all position updates that a physics engine computes have to be
integrated into the (internal) representation of the graphical renderer before a consistent
image can be created.
Hence, an execution scheme for all modules has to be speci�ed. Common approaches

include serialization of the module’s simulation loops, utilization of data-�ow graphs, or more
complex de�nitions in con�guration �les (see section 2.3.2).
¿e entities that are associated with simulation modules provide access to the modules’

internal con�guration, e.g., rendering rate of a 3D-renderer or simulation sub-steps of the
physics engine. In order to allow for the speci�cation of an execution scheme for modules, the
addition of successor state values to this entity is suggested. By means of this value a module
can signal the therein speci�ed successors to start calculations as soon as it has �nished its own.
In addition, this allows for �exible adaption of the execution scheme at runtime. Although this
feature is rarely required, it allows for dynamic adaption to the available hardware resources.

Central Registry

¿e proposed model relies on the existence of a central registry for architecture elements. One
of its tasks is to instantiate the utilized modules. Besides this, it serves as the sole counterpart
that modules can contact at runtime. ¿is is bene�cial, e.g., for handshaking-processes, like
the announcement of events and registering for their observation.
Furthermore, it is a valuable element for registering entities that are infrequently required.

For example, access to entities like a keyboard or other input devices can be decoupled from
the module providing them (which in most cases will be the rendering module). A detailed
description of the central registry implemented in the context of this work is provided in
section 5.2.8.

4.3.4 Bene�ts and Drawbacks

With the presented techniques, the interface to the application is reduced to �ve methods,
namely get, set, emit, observe, and remove, thus answering requirement R4. Exemplary
usage of these methods is shown in listing 4.2. While this is a rather simple example, more
detailed usage is shown in the examples of the next chapter.
In combination with the semantics-based approach from section 4.2 the uniform access

model is highly valuable for all presented use cases: each component now can be loosely
coupled (R1) by utilizing only the presented �ve methods, wherefore modi�cations to the
simulation state become interceptable.
Regarding use case 1.1 this enables the seamless replacement of the rendering module. ¿is

is because the symbols that are used to access certain properties of an entity are speci�ed in

117

Chapter 4 A Semantics-based Component Model for Reusable IRISs

1 CollisionEvent.observe{
2 coll => println("observed collision event " + coll)
3 }
4

5 entity1.observe(types.Mass){
6 newVal => println("observed value change: " + newVal)
7 }
8

9 CollisionEvent.emit(Set(types.Entity(entity1), types.Entity(entity2)))
10

11 entity1.get(types.Mass){
12 oldMass =>
13 entity1.set(Mass(oldMass + 1f))
14 entity1.remove(types.Mass)
15 }

Listing 4.2: Example usage of the uniform access model. Registering for events and state variable updates is
performed using the observemethod (line 1–7). Updating state variables and emitting events is achieved by
means of the set and emitmethods (line 9 and 13), access to state variables requires invoking the getmethod,
which redirects the value handler to the accessed state variable (line 11). Removal of state values is achieved by
means of the remove function (line 14)

an external ontology and thus can be adapted if necessary. Moreover, the uniform interface
allows to perform necessary data type conversions automatically.
Similarly, newly addedmodules (use case 1.2) can easily access and provide new information

about the simulation state by means of the developed interface. In the example of a heart rate
sensor the user entity can be retrieved and a value for the hear rate be added and updated.
Other modules can then observe this state value and bene�t from the newly added data. In
this context, it is advantageous to allow to observe non-existent state variables (resulting in the
registered callback not being invoked). ¿is way, sensors can be added at runtime, resulting
in the subsequent invocation of callbacks. For the same reason an entity is observable for
changes to its composition.
Finally, the AI modules that cooperate in use case 1.3 can adopt a behavior similar to

the blackboard model (Nii, 1986): when one of the modules adds new knowledge to the
state, others are informed about that fact and can incorporate this information into their
calculations. For instance, if heart-rate sensor data arrives and the rule engine detects the user
to be in an anxious state, a reasoning module can (possibly) infer reasons for this situation.
¿is way, general purpose AI modules can be utilized in di�erent applications (R2).
Compared to, e.g., SPARQL, the expressiveness of the uniform access model is rather

restricted. ¿e model is intended to provide access to single properties and relations, whereas
query languages allow to formulate arbitrarily complex requests.
However, an extension that allows to utilize semantic traits to perform more complex

queries is conceivable: a semantic trait could possibly be transformed into a SPARQL query,
which is answered by a reasoning module in the form of an appropriate data type (e.g., a
special kind of entity).

118

4.4 Concurrency: Adoption of the Actor Model

Besides all these bene�cial aspects, some drawbacks exist: the symbol-based access to state
variables and the invocation of the observe callbacks, which commonly update the internal
representation of a module, introduce an overhead. However, since most of the time only
small parts of the simulation state are subject to change, this overhead is kept in reasonable
limits. Using hash table-like data structures the time complexity for required lookups remains
constant and manageable.
Moreover, the callback nature of the proposed model is not exactly conforming to the OOP

style that most programmers are used to. ¿is may lead to developers being reluctant to adopt
the new mechanism, wherefore it is desirable to wrap it into further, more adequate interfaces,
making the transition process as smooth as possible.
¿is issue is picked up on in the next sections in which the adoption of the actor model is

proposed. Since this model restricts interaction between so called actors to message-based
communication, similar issues arise.

4.4 Concurrency: Adoption of the Actor Model

Both approaches presented in the previous sections do not rely on a certain programming
language, paradigm, concurrency mechanisms, or similar. Although the OOP approach
facilitates the concept of entities, it can be implemented using other paradigms as well.
¿e same holds true for any concurrency mechanisms to be implemented. Commonly, a

closely coupled approach that relies on sharedmemory is applied to avoid overhead concerning
bothmemory consumption and access times. In this scenario multiple threads of computation
access the shared simulation state, wherefore the application of synchronization mechanisms,
such as mutual exclusion locks or semaphores, becomes necessary. While this approach
is bene�cial regarding mentioned overheads, it comes at the cost of maintainability and
comprehensibility (cf. Lee, 2006).
Due to the fact that this work is addressing the reusability—and, hence, maintainability

and comprehensibility—of so ware, this approach is inadequate. A possible way to address
this is to serialize the execution of simulation components. However, recent developments
on the hardware sector, which more and more encourage the exploitation of multi-core and
multi-processor systems, prohibit this approach.
An alternative way, which is inevitably applied in the context of distributed systems, is the

application ofmessage passingmechanisms. ¿is is performed on a large scale in clustering (i.e.
networked) scenarios. For example, di�erent message oriented middleware and frameworks
that allow to execute procedures and services on remote servers, e.g., CORBA (Vinoski, 1997),
and in the Semantic Web (cf. section 2.4.3) have been developed. However, message passing
also is a common approach in non-distributed applications, as indicated by the overview of
VR frameworks in section 2.3.2.
In the �eld of VR, besides applications running on a computer cluster, especially event

systems are implemented using message passing approaches. Moreover, the graphs of graph-
based architectures, like FlowVR (Allard et al., 2004) and Avango (Tramberend, 1999), can be
interpreted as message-based systems by viewing the outputs of a graph node as messages
that are sent to the connected nodes.

119

Chapter 4 A Semantics-based Component Model for Reusable IRISs

In this context, the actor model, which introduced by Hewitt et al. (1973), is applicable. It
is, e.g., used by the SCIVE framework (cf. section 2.3.4). ¿e model does not only adopt the
message passing paradigm but also addresses decoupled elements of computation, which are
called actors. Such an actor can be thought of as a single thread of computation, which can
exclusively communicate with other actors by sending messages. Besides creating new actors,
an actor can react to received messages and send messages to other actors that it is aware of.
It has to be mentioned that, although it is safe to think of each actor as an independent

thread of execution, it does not necessarily have to run in its own thread or process. Similarly,
the idea of message-passing does not necessarily involve an elaborate message serialization
mechanism and the involved overhead but may be implemented by a queue-like data structure
that is added a reference to a sent/received message.
Having a close look on the concept of actors it becomes evident that this model is highly

desirable for decoupling simulation modules. By representing a module (e.g., the sensor
module from use case 1.2) as an actor it can be informed about the current world state via
messages, thus being maximally decoupled from the simulated environment. Data �ow in
the opposite direction can be realized by sending update messages to other modules. ¿is
approach is a perfect match for the event-based state updates discussed in section 3.2.4. ¿e
remaining task is to manage message addressing, as actors do not know each other in advance
(except if one actor instantiated the other). Due to the low coupling adding, removing, or
replacing (cf. use cases 1.1 and 1.2) a simulation module would not even be noticed by other
elements of the application (except for the absence or occurrence of events the module emits).
Besides facilitated removal and/or replacement of simulation modules, the application

of the actor model also eases the implementation of such decoupled modules. With the
application of synchronization mechanisms it o en is necessary to acquire mutex locks on
di�erent elements of the simulation state. ¿us, developers need to have an understanding
of the internals of other modules to implement the locking mechanisms. Furthermore, the
understandability of program code decreases, since the synchronization code complicates the
initially intended application logic.
¿e actor model obviates suchmechanisms. ¿e only elements that have to be synchronized

are the actors’ mailboxes, which is usually hidden in the utilized actor library. Using immutable
data types in all messages that are sent from one actor to another no possible points of
concurrent access remain. ¿ereby, the model facilitates decoupling: component developers
do not have to be aware of the processes executed by other actors (i.e. simulation modules).
In consequence, the adoption of the actor model is bene�cial with regard to requirements

R1 (low coupling) and R3 (extendability and concurrent execution of simulation modules).

4.4.1 Issues to be faced

Although these bene�ts sound very tempting, di�erent issues have to be faced when the actor
model is applied. ¿ese will be discussed in the following paragraphs.

Unfamiliarity ¿e probably most problematic aspect that arises with the adoption of the ac-
tormodel is the fact that programmers are not used to its usage and peculiarities. Consequently,
existing program code is understood less easily compared tomore common approaches, where-
fore programmers tend to be reluctant to adopt the model.

120

4.4 Concurrency: Adoption of the Actor Model

For example, in most OOP-based languages the program �ow can be inferred by reading
line by line and possibly following method calls. As opposed to this, the message-based
paradigm that comes with the actor model requires to handle messages at unknown points
in time. ¿e fact that a message sometimes is not processed instantly, but enqueued �rst
and processed later, complicates to backtrace the origin of the message. ¿e callback-based
way of handling messages rather matches the functional than the imperative programming
paradigm; return values are ignored and the use of global variables (and, hence, shared state)
is prohibited. Callbacks are, of course, also common in OOP, but the actor model requires
to use them much more excessively. ¿erefore, it requires a certain time of familiarization
before developers adapt to the new paradigm.
Since this issue inherently arises with the model’s application, there is no uniform solution

to it. Nevertheless, some implementation speci�c ideas will be provided in chapter 5.

Message Ordering ¿e order in which messages will be processed is not transparent to
the programmer. ¿e actor model itself does not make guarantees regarding the ordering of
messages, which makes grasping the ongoing processes even harder.
¿e possible unreliability of message ordering is evident in the context of multiple senders,

since each actor (theoretically) runs its own thread of execution. Regarding two messages
originating from the same actor, on the other hand, the possible absence of order is not as
obvious. A networked scenario is a reasonable example for a situation in which the order of
messages may be disturbed: a network packet containing a message may take a di�erent route
than a subsequent one, wherefore the two packages might arrive in reverse order.
In the context of a VE framework one minor assumption concerning the ordering of

messages has to be made: two messages that were sent from one speci�c actor to a single
other actor have to be processed in the order they were sent (i.e. the mailbox of each actor
is implemented as a �rst-in-�rst-out data structure with respect to the order of outgoing
messages of a single sender). ¿is issue will be addressed in the subsequent sections.

SupportedMessages An actor does not inherently implement a certain so ware interface
that can be inspected to look up supported methods or, in this case, supported messages.
¿e use of such an interface, in terms of direct method calls, is not desirable a er all, since
it would cancel out many of the bene�ts regarding decoupling. In the absence of a so ware
interface a programmer has to know about the internals of the receiving actor, which is highly
undesirable, too. One possible solution to this issue is the externalization of the message-
handling procedures, which will be detailed below.

Immutability of Messages Since the payload of a message leaves the scope of one actor
and enters the scope of another one, it must not be changed by the receiver as long as the
sender holds a reference to it and vice versa. Consequently, the complete message payload as
well as themessage itself has to be immutable in order to avoid the necessity of synchronization
mechanisms.
¿is can be achieved by simplemechanisms provided by the applied programming language,

e.g., immutable data types, copy-on-write, or similar techniques. However, this requirement
has to be kept in mind when implementing the actor model. During the development of the

121

Chapter 4 A Semantics-based Component Model for Reusable IRISs

Simulator X framework (see chapter 5) it was found that especially developers who are new
to a framework adopting this model have to explicitly be introduced to this fact, since it has
been a major source of errors.
In cases in which the transferred data is small in terms of memory consumption the

requirement of using immutable data types usually does not create an issue. If, however, large
amounts of data that are modi�ed by the sender as well as the receiver have to be transfered,
performance optimizations have to be considered.

Debugging Related to the problem of deferred message processing, which was mentioned
in combination with the problem of unfamiliarity, problems concerning debugging the created
so ware arise. ¿is is mainly due to the fact that stack traces are not inherently supported,
since message processing is decoupled by means of the mailbox of an actor. One possible
solution to this is to store the origin (in terms of the related stack trace) with each message.
However, this would cerate a high amount of processing overhead and, hence, is undesirable.
Although this problem is related to the usability of the proposed approach, it does not

directly a�ect the reusability of implemented so ware. ¿erefore, it will not be discussed any
further in this work.

4.4.2 Integration with Previously Mentioned Approaches

¿e semantics based representation as well as the uniform access model do not assume a
speci�c way of implementation. However, the discussed bene�ts of the actor model led to its
adoption for the implementation of the Simulator X framework (see chapter 5).

Message Ordering and Consistency

Among the enumerated issues that arise with the utilization of the actor model, the ordering
of messages is an important one. Although it addresses a lower layer of the implementation, it
does a�ect the work of developers of later layers (i.e. simulation modules and applications).
In order to enable the possibility of a consistent application state, the assumption that two

messages that are sent by one actor to one other actor are processed in the same order they
were sent has to be made. If this is not the case, value updates of a state variable might occur
in reverse order. As a result, faulty message ordering would result in an incorrect view of the
simulation state.
Consequently, the mailbox of an actor has to be implemented as a �rst-in-�rst-out data

structure (e.g., a queue). ¿is is the case for most actor so ware libraries, since a last-in-�rst-
out structure would result in counter-intuitive behavior: messages would be processed in
reverse order and if too many messages are received old messages might never be processed.
Furthermore, in networked scenarios the order of packets has to be maintained. ¿is could
either be ensured on the network protocol level (e.g., using TCP instead of UDP) or within
the actor library (e.g., by numbering messages consecutively).
Simulation module and application programmers can then—keeping the asynchronous

nature of the actor model in mind—treat a dispatched message like an asynchronous function
call. As a result, by using the state variable layer application development becomes similar to
non-actor based programming.

122

4.4 Concurrency: Adoption of the Actor Model

actor#2

actor#1

actor#3

state variable
concept

value storage
(owner)

identifying
references

Figure 4.6: The State Variable concept based on Latoschik and Tramberend (2011), ©2011 IEEE. The state variable’s
owner (actor#1) stores its value and guards access to it. Using messages and an identifying reference other
actors can request value updates, the current value, and update noti�cations.

¿e internals of the state variable implementation, however, have to be built carefully: even
if the order of messages is ensured for two communicating actors, unexpected e�ects may
occur as soon as a third actor comes into play. For example, if one message is forwarded by a
third actor and a subsequent message is directly sent to the same �nal receiver, the order may
be disturbed, even though there was only one sender and one (�nal) receiver. ¿erefore, it is
desirable to send messages directly instead of forwarding them. One implication of this is
the fact that event handling requires a handshaking process, which is mediated by a central
component.

Virtual Shared State

Given such sender-related message ordering, the concept of state values, as introduced in
section 3.2.4, can be extended to create a virtual shared state. Since an actormust not access the
internals of another actor, it has tomaintain its own representation. To keep this representation
synchronized with the global state each change to that state has to be signaled by means of a
message.
In this context, the responsibility for such noti�cations has to be asserted to one actor. A

valid approach is to create one designated actor that informs every actor in the system about
state changes. Alternatively, each state variable could be assigned a dedicated actor that takes
over that task for the speci�c variable.
In scenarios in which many state variable updates are preformed the �rst approach might

create a bottleneck, since all actors have to wait for the notifying actor to dispatch updates. ¿e
second approach, on the other hand, requires a lot of context switches, if many state variables
are maintained. Since both scenarios cannot be ruled out, a compromise has to be found.
A reasonable way to handle this issue is to assign an owner to each state variable, which

is responsible for dispatching updates to its observers (see �gure 4.6). ¿is owner initially
is the actor in whose context the variable was created, thus no additional actors have to be
instantiated for the creation of new variables. Since the owner holds the state variable’s value,
message tra�c is highly reduced, if each variable is created by the actor that is concerned with
most of the variable’s value updates (however, the owner could—for whatever reason—be
changed at runtime).

123

Chapter 4 A Semantics-based Component Model for Reusable IRISs

An identifying reference to the state variable is then used by each actor to register with its
owner for updates or to request a value update. If the owner of the state variable is stored
within the reference, most of the required handshaking processes can be hidden behind the
so ware interfaces that are implemented by the state variable class. Since the whole (shared)
simulation state is represented by means of state variables, a virtual shared state is created,
which can be accessed by every actor in the system.
A major bene�t of this implementation is the fact that registered callbacks may not block

the execution of other modules of the program. Callbacks allow for inversion of control,
which is a bene�cial feature in non RIS applications. However, when a thread of execution’s
continuation is required to retain interactivity, e.g., to render the next frame, the execution of
an arbitrary callback in that thread can break this requirement.
With the proposed model, the callback is executed in the context of the actor that registered

it and not in that of the actor that triggers the callback. ¿is way, inversion of control can be
achieved with minimal e�ect on realtime-related processes, whereby requirement R3 is taken
into account.

Event System Support

¿e integration of an event system into an actor-based framework is straightforward, since
the message-based architecture inherently supports the noti�cation about events. However,
the event-emitting actors have to be informed about the actors that are interested in their
particular type of event.
At this point, two afore-mentioned aspects prove advantageous. First, the central module

registry (cf. section 4.3.3) can be used to support handshaking mechanisms. Second, the
approach of using event descriptions (see section 4.3.2) allows to announce certain kinds of
events without actually instantiating them.
¿e functionality of sending an announcement message to the central registry, which is

the only actor that has to be a priori known to every other actor in the system, can be hidden
behind the so ware interface of the event description. Similarly, every actor that is interested
in a certain event can send a request to the central registry using the same description. ¿e
central registry can store all such announcements and requests, and inform the matching
emitter/receiver pairs about their existence. Further messages may subsequently be directly
sent between those two actors.
In a way, the central registry for events takes on the role that state variable references

have for state updates. Both using the central registry as well as state variables yields the
situation that no actor has to know any other actor in advance, thus maximizing decoupling
of functional components.

Missing Interfaces

¿e fact that the communication of actors is restricted to sending messages creates another
issue: a missing so ware interface creates the problem of invisibility, i.e. the functionality of
an actor is not obvious to a programmer who wants to invoke functions of that actor.
As stated before, the solution to introduce a common so ware interface is not feasible. ¿is

is owed to the fact that such an interface would require the implementing module to be known

124

4.4 Concurrency: Adoption of the Actor Model

in advance (i.e. at compile time). However, this is not always possible as exempli�ed by the
following situation: during the course of an application a physical impulse shall be applied to
a virtual object. If the common approach to call a method from a module’s interface is applied,
the programmer needs to know which module is responsible for the application of impulses,
access that module, and invoke the correct method.
Regarding reusability this is problematic in two di�erent ways. First, during development

the programmer of the application in question might not be aware of the components that will
�nally be used. Even if the components are known, it is not necessarily clear which module is
responsible for a certain functionality.
Second, if a module should be exchanged a erwards, both modules have to implement the

exact same interface, even if some functionality might not be needed. ¿is especially is an
issue if a module shall be replaced by two components that split the same functionality (cf.
requirement R2). For example, a physics engine could be replaced by a dedicated collision
detection module and a module that computes the other aspects of the physical simulation.
Regarding the simulation state the previously introduced virtual shared state is su�cient

to obviate such an interface. ¿e responsible module can update the respective parts of the
simulation state without other components even being aware of its existence.

Method Registry

In terms of dynamic aspects, such as function calls and behavior simulation, a solution to the
problem of the missing interface is required, too. As indicated above, it is desirable to render
knowledge about other components’ responsibilities unnecessary. ¿is way, the developers’
understanding of parts of the application that were developed by others is obviated and
simulation components can be decoupled.
One possible solution is to decouple function calls using a similar approach as introduced

with the registration of event providers and event handlers. ¿e new system can be used to
register functions instead of events (or rather their descriptions). Using semantic traits (cf.
section 4.2.3) to specify preconditions and e�ects of a registered function a developer can
request a certain functionality by specifying the desired e�ects. When a matching method has
been selected from the registry, a message is sent to the associated actor which then invokes
the function.
Similarly, each method can be associated with a trait that has to be mixed in by the function

registry. ¿us, a programmer can bypass the lookup functionality and directly invoke the
desired function, eventually resulting in a dispatch of the same message that would have been
sent using the lookup method. Obviously this approach does not depend on the actor model:
direct function calls instead of message based invocation would work in the same way.
For traceability reasons it is desirable to make sure that only one function is registered for a

certain functionality. Although multiple registered functions would not break the system, a
possibly random choice has to be made among the matching functions, which could result
in unexpected performance issues or other negative e�ects. Unique functionality among
registeredmethods can be veri�ed using the semantic traits that are used for its registration. If a
second function has the same preconditions and e�ects, the registry can either be implemented
to replace the existing function or to ignore the new one.

125

Chapter 4 A Semantics-based Component Model for Reusable IRISs

Given a su�ciently large repository of functions and associated components, issues related
to retrieval of appropriate functionality can bemitigated. A noteworthy aspect of this approach
is the fact that AI components, like an automated planner, can access the registered functions
in the same way a programmer does. ¿is opens up new possibilities for implementing, e.g.,
virtual agents, which can modify the virtual world by invoking the registered functions. ¿is
way, complex and redundant implementation of agent behavior can be simpli�ed.
As indicated before, the feasibility of the presented approaches has been tested in the course

of the implementation of the Simulator X framework. Details concerning its implementation
and characteristic features are presented in chapter 5.

4.5 A Component Model for IRIS Frameworks
So far, the elements presented in this and the previous chapter each address a rather isolated
aspect of an IRIS application:

• ¿e knowledge representation model, which was presented in section 3.3, provides the
basis for semantics-based representation of the application state.

• ¿e semantics-based approach, which has been introduced in section 4.2, utilizes a
�xed set of symbols to enable semantic type checks.

• ¿e uniform access model from section 4.3 provides a means to access and modify the
application state in a uniform way.

• ¿e adoption of the actor model, which was discussed in section 4.4, allows for the
creation of highly decoupled, concurrent simulation modules.

Clearly, a possibility to interconnect these single aspects is required. Di�erent possibilities
exist for this purpose: the least desirable approach is to manually design every element from
scratch; the link to the KRL, semantic traits that are supported, as well as uniform access to
both. ¿is would require huge e�orts and cause redundant work, since a developer would
have to implement every aspect over and over again.
Alternatively, so ware interfaces can be applied to create a basis on which components

and entities are built. In that way, features like encapsulation facilitate reuse and allow to
easily exchange components that are implemented using the same interface. However, such
interfaces are meant to be immutable a er their implementation and complicate exchanging
components if these do not exactly match the interface. To some extent, these interfaces
constitute the atoms an eventual application is build of: indivisible elements which can be
aggregated to create more complex parts.
¿e ECS pattern addresses this issue by assuming a di�erent perspective. All aspects of

an entity, which are addressed by a certain simulation module, are determined by the set of
components the entity consists of. ¿is way, the simulation modules (called ‘systems’ in the
ECS pattern) are decoupled from the particular instance of an entity and bound to components
only. While this turned out to be a step into the right direction, it shi s the problem from the
implementation of the entity class to that of the component classes. Still, the implementation
depends on used data types and requires simulation modules to be compatible with interfaces

126

4.5 A Component Model for IRIS Frameworks

they do not provide themselves. Obviously, this can not be fully avoided, since a common
ground has to be created to allow inter-module communication.
As motivated before, this communication should be performed using the entity data struc-

ture. In the context of the ECS pattern this means that a shared area in memory is created by
means of utilized components, which the (ECS) systems can operate on. In order to gain most
�exibility, these elements should be as versatile as possible. Consequently, they also should be
as atomic as possible.
¿e techniques proposed in this work provide a means to overcome these issues: a common

ground for inter-module communication is created by the KRL from chapter 3. It provides a
well-conceived foundation that re�ects the nature of RIS applications. ¿erefore, it allows for
speci�cation and semantic augmentation of atomic architecture elements.
¿e generation of program code from ontology contents ensures consistent interfaces,

which act as factory methods (cf. Gamma et al., 1994) for further architecture elements. ¿is
way, mistyped identi�ers can be avoided, required programming skills can be reduced, and
incompatibilities can be detected early. Instead of applying rigid, inheritance-based OOP
interfaces, semantic traits and a uniform access model were introduced to overcome the
in�exibility of common approaches.
¿e next sections discuss the generated factories and their characteristics, whereas their

usage and the created elements are discussed in section 5.2.6.

4.5.1 Semantic Values, Events, and Automatic Type Conversion

¿emost basic elements that are provided by the proposed approach are semantic values and
events. In order to bene�t from the symbols that are grounded in the application’s ontology,
each is associated with such a symbol. ¿is way, the utilization of a common set of identi�ers
can be assured.

SemanticValues Besides the grounded symbol, value descriptions do contain a description
of the data type which the instantiated semantic value will have. ¿ey furthermore contain
a reference to another value description which they are based on. ¿is is essential for the
provisioning of a data type conversion mechanism: every simulation module that introduces
new data types has to provide a set of type converters. Such a converter has to be able to convert
the data type that is contained in the newly introduced value description to the uppermost
data type in the hierarchy, which is created via the base parameters of the value descriptions.
For example, assume that a physics engine introduces an additional value description

Transformation, which has the data type physics.Matrix and is based on another Trans-
formation value description with data type core.Matrix. ¿en a converter has to be
speci�ed that can transform those two data types into one another. Due to the utilization of
value descriptions it is possible to automatically select a matching converter, assuming that it
was registered at the application startup.
¿is way, each simulation module can use its own data types without having to know about

the data types that are used throughout the rest of the application. ¿e basic idea of this
technique was alreadymentioned byM. Shaw (1995). By the introduction of value descriptions
its automatic application is facilitated.

127

Chapter 4 A Semantics-based Component Model for Reusable IRISs

1 class ConvertedVariable[L, G](vd : ValueDescription[L, G],
2 wrapped : StateVariable[G]){
3 // detect converter once
4 private val converter = Converters.findConverter(vd, vd.base)
5

6 def set(newVal : SemanticValue[L]){
7 // convert to global type using already detected converter
8 val globalTyped : G = converter.convert(newVal.value)
9 // set global type to state variable
10 wrapped.set(globalTyped)
11 }
12 def observe(vd : ValueDescription[L, _], handleValue : L => Unit){
13 // redirect observe call to variable with global type
14 wrapped.observe {
15 globalTyped : G =>
16 // convert global type to local type each time it is updated
17 val localTyped : L = converter.revert(globalTyped)
18 // call handler with local type
19 handleValue (localTyped)
20 }
21 }
22 }

Listing 4.3: An example of the automatic type conversion process in Scala syntax: a converter is retrieved
according to a given value description and used to perform conversions in order to encapsulate a state variable.

¿e application of the uniform access model from section 4.3 enables to completely hide
the conversion process from the developer. Since each semantic value is instantiated by means
of the associated description, it can be provided with the proposed access methods. Using the
above-mentioned automatic lookup procedure for converters, the get and observemethods
can convert data into the local format on access. An example for this approach is given in
listing 4.3.
If, for instance, the Transformation value of an entity in the above example is accessed,

the related program code could look like this: entity.get(Transformation). ¿e infor-
mation stored in the Transformation value description allows to select the appropriate
converter and to perform the conversion. Similarly, the setmethod allows to convert the
data type in the opposite direction.
As shown in listing 4.3, in case of the set and observe methods the search for an

appropriate converter has to be performed only once, since it can be stored and directly
used a erwards. Similarly, the use of the same data types for a certain semantic value
throughout the application will reduce the overhead to a minimum, since in that case
no conversion is necessary at all. In the same way that converters can be used for state
variables they are applicable for semantic values: by implementing the dedicated function
as[T, B](vd : ValueDescription[T, B]) : SemanticValue[T] each value can be
automatically converted to the desired type.

128

4.5 A Component Model for IRIS Frameworks

canConvert(from : ValueDescription<F>, to : ValueDescription<T>) : Boolean
convert(value : F) : T
revert(value : T) : F

«interface»
Converter

F, T

Figure 4.7: Converter Interface: the canConvertmethod is used during converter lookup, afterwards only the
convert and revertmethods are invoked.

Relations As mentioned before, relations are speci�c versions of semantic values and vice
versa. However, a relation does not necessitate a conversion mechanism, since it is uniquely
identi�ed by the associated grounded symbol.

Events Descriptions for events are much simpler than those of semantic values, since each
event type can be identi�ed by the associated symbol. Events can carry payload in the form of
semantic values, e.g., the entities a�ected by the event. If desired, the event description can
include a set of value descriptions, which describe the semantic values the event is ensured to
be accompanied by.
Events do also bene�t from the type conversion process that was described above. Assume

that a simulation module that uses di�erent data types emits an event that is received by the
physics engine from the previous examples. If the event contains a transformation (think of a
collision event whichmight contain the location of the collision), retrieving the transformation
from the event will invoke the same procedures as mentioned above.
¿e description based approach also is bene�cial for the registration in a publisher/sub-

scriber system: a simulation module can register for a certain kind of events by utilizing the
associated description. In the same way, the description can be used to inform the system
about the fact that a simulation module does publish a certain kind of event. ¿ereby, an
eventual handshaking process is enabled.

Converter Interface ¿e interface for converter classes, which is shown in �gure 4.7, is
concise: a canConvertmethod enables to check if the converter is capable of performing the
conversion between two value descriptions, which are speci�ed by the from and to parameter.
¿e converter allows conversion from the source type to the target type as well as the opposite
direction by invoking the convert and revertmethod, respectively.
¿e conversion is not applied to semantic values but operates on their data types to allow

for higher performance in possible subsequent calculations. However, the caller of the method
can use a value description to create a semantic value a er the conversion process.

4.5.2 Entity and Component Descriptions

Since entities essentially are a collection of relations and state values, an entity description
consists of a set of value descriptions and relation descriptions. ¿e plain combination of such
descriptions, however, would be incomprehensible and their construction would require a
great deal of work. In order to ease the speci�cation of entity descriptions, the intermediate
layer of aspects is used.

129

Chapter 4 A Semantics-based Component Model for Reusable IRISs

Aspects

Adhering to the concept of reusability, a simulation module has to be as independent from
other modules as possible (R1). ¿erefore, a uniform speci�cation mechanism that is inde-
pendent of the respective module and its implementation is required.
¿is is complex for di�erent reasons: While the instantiation of entities and state values

should be decoupled, it is entirely possible that one module requires values that are provided
by another one in order to be able to instantiate the entity. For example, the position of a virtual
object might be stored in a �le that is loaded by the rendering module. At the same time, the
physics engine does require an initial value for the position of the object to create its internal
representation, as well. While this example is easily solvable, more complex dependencies
that necessitate alternating provision of values between modules can arise.
Furthermore, a simulation module might not be involved in the simulation of an entity

from the start, but integrated at runtime. Similarly, certain aspects of the simulation may have
to be turned o� and be re-enabled later on. ¿us, the mechanism to integrate an entity into
the simulation loop of a module has to be independent from the actual state of the application.
Apart from that, the initial values for an entity, more precisely for the state variables it

contains, have to be speci�ed. In some cases this does require more information than plain
values, e.g., con�guration ormodel �les that have to be parsed. Since these are usually speci�ed
by the application developer, a description-based mechanism is a reasonable approach.
In accordance with the event-based approach, the instantiation of an entity is triggered by

a designated event that contains the mentioned initial values. Depending on this information,
the responsible authority has to be detected. For the creation of new modules this is a central
element of the respective RIS framework, e.g., the proposed central component registry. For
any other entity the involved simulation modules have to be requested to instantiate their
local representation of the entity.
¿e essential observation is that the only information that is required to instantiate a new

entity—be it a simulation module, an input device, or any other object—is the set of initial
values as well as information on the involved modules. ¿erefore, all entities can be created
using the same mechanism.
¿e application developer has to specify which modules will be concerned with the creation

and simulation of the entity as well as initial values that are used by these modules. For this
purpose, the Aspect class, which has been introduced in section 3.4.2, is used.
Each such aspect is related to a single component type and does specify the state values

and relations of the entity that are used by the component. In addition to the associated set
of value and relation descriptions an aspect contains a grounded symbol, which identi�es
its semantics. For example, a PhysicalSphere aspect could be de�ned to tell the physics
component that the associated entity should be simulated as a sphere-like rigid body by using
a sphere symbol.
Since the state values and relations that are described by an aspect can overlap, the simulation

module that is responsible for providing the initial values for a particular state value has to be
speci�ed. For this purpose an aspect contains two sets of descriptions: the ones for which the
associated module will provide initial values and the ones that are required by the module but
for which the module cannot provide initial values itself. Figure 4.8 exempli�es this concept
by visualizing an entity description that consists of four aspects.

130

4.5 A Component Model for IRIS Frameworks

EntityDescription
Aspect

graphics
gfx1

Aspect
physics

Aspect
audio

PositionColor Sound
pr

ov
id

es

pr
ov

id
es

re
qu

ire
srequires

provides

Component 1:
type: graphics
name: gfx1

Component 2:
type: graphics
name: gfx2

Component 3:
type: physics
name: phys

Component 4:
type: audio
name: sound

Aspect
graphics

gfx2

req
uir

es

requires

Figure 4.8: An entity description that consists of four aspects, each of which is associated with one of the four
components. The association is created via their names. For each aspect a set of required and provided initial
values is speci�ed.

Moreover, four components are depicted: two graphics modules, a physics engine, and
an audio renderer. ¿e four aspects are each associated with one component by matching
the given component types and, if provided, names. Furthermore, each aspect is speci�ed to
provide or require certain initial values.
When the described entity is instantiated, the associated components of each aspect will be

requested to specify dependencies on initial values. Based on this information a build order is
calculated, resulting in further dispatch of events to resolve all initial values and eventually in
the instantiation of the entity. ¿is way, simulation modules can instantiate the entity without
being aware of one another. A more detailed discussion of the entity creation process is given
in section 4.5.3 and a possible implementation is addressed in section 5.2.6.

Analogieswith Aspect Oriented Programming ¿e created approach can be compared
to the ideas introduced by the Aspect Oriented Programming (AOP) paradigm (Kiczales et al.,
2003). With aspect oriented programming, the concepts of aspects, join points, advices and
pointcuts are introduced. In order to separate orthogonal parts of the so ware, new code that
is speci�ed by an aspect can be woven into the program. By means of pointcuts it is decided at
which location (join point) in the program the code (advice) of an aspect shall be applied. ¿is
is, for example, bene�cial if a logging mechanism shall be introduced, since aspect oriented
programming allows to insert code before and a er calls to a method. In this way, an aspect
can de�ne points in the program code where logging should happen without changing the
main program code.
In general, this concept is bene�cial for developing reusable RISs. System-level concerns,

such as physical simulation or graphics rendering, can be implemented generically by compo-
nent developers, whereas an eventual application developer can de�ne the objects that shall
be a�ected by the respective module.

131

Chapter 4 A Semantics-based Component Model for Reusable IRISs

:Component

GlobalRegistry

Create Component

Application

«create»

Register Component

ref entity_creation

Created Component

Figure 4.9: Creation process for components: except for the initial instantiation of the component, which is
performed by the global registry, the process is identical to the entity creation process depicted in �gure 4.12 on
page 136.

¿is can be achieved in a similar way by utilizing the aspects de�ned in this work. Further-
more, the observemethod provides an opportunity to weave in code into the simulation
without changing other program parts. Although this approach is not as powerful as the aspect
oriented programming one, it allows for easy integration of simulation aspects without refer-
encing the corresponding component itself or even changing its program code. Consequently,
one might say that the developed approach introduces AOP on a higher level, restricting its
application to the simulation loop.
As with AOP, the more o en such methods are applied, the harder it gets to understand

the program code. ¿us, the features should be used with care and, even though it is possible
to use them throughout the whole program, an eventual developer is advised to do so in a
localized way to maintain understandability. In other words, the application logic concerning
one speci�c entity should not be distributed over the whole program code but ideally be
contained in a single source �le.

Component Description

Besides the so ware interface between a simulation component and the framework, the former
is represented as an entity at runtime, whereby an interface to its con�guration is provided.
¿is implies that a component is described by means of an associated entity description and
the respective component aspect.
¿e following example is helpful to shed some light on this concept. An application is said

to feature a physics engine and a rendering component. ¿e screen con�guration is provided
to the rendering module in the form of a specialized con�guration class, whereas the physics
engine does only require an initial value for the Gravity property. In order to realize this
setup, an application developer does utilize the component aspects that are provided with
each component, respectively. ¿e above-mentioned parameters are passed to these aspects
and the usual entity creation mechanism is performed to instantiate both components.
Figure 4.9 provides an overview of the component creation process: inside the application

an entity description that at least contains the respective component aspect is utilized. Since
the global registry component possibly is the only existing module at that time, it creates the

132

4.5 A Component Model for IRIS Frameworks

new component. A erwards, it starts the entity creation process as described in following
sections. On the completion of the process, the application is informed about the newly
created component by being passed the associated entity.
¿e above-mentioned mechanism provides a single interface for the instantiation of every

desired entity, including simulation components. As with the creation of entities, the speci�cs
of a possible implementation are discussed in section 5.2.6.

4.5.3 Components

One goal of this work is to create a mechanism to decouple simulation modules. Up to this
point, mechanisms to allow for uniform access to the simulation state, to provide a set of
grounded symbols, as well as to enable semantics based access have been discussed. Building
on the observation that all modi�cations to the application state can be represented as events,
the actor model was suggested as a possible means to allow to decouple communication by
adoption of a message-based approach.
¿e following section will complete this proposition by providing the �nal component

model, which is facilitated by the previously introduced techniques. At �rst, a more abstract
way of communication between components is introduced, in order to allow for more a
comprehensive description of the proposed interfaces.

Inter-Component Communication

¿ere are multiple possibilities to look at the proposed communication architecture:

• Message-Passing: every event is a message and the receivers are known to the sender.
¿is is in line with the perspective that is assumed by the actor model and used in the
Simulator X framework. ¿e possibility to directly address the receiver of an event
potentially allows for e�cient implementations. However, due to communication
in a peer-to-peer manner, this view tends to be confusing when an overview of an
application is required.

• Blackboard: simulation modules can publish information (including requests), which
is added to the simulation state. Other modules subsequently process the information
and update the simulation state accordingly. While this is a highly understandable
model regarding state representation, representing events that are not directly related
to state changes is not inherently supported.

• Event Bus: all communication is managed via one bus to which all modules subscribe.
¿is does not fully re�ect the approach’s potential for concurrent programming, but
the fact that the bus represents a single interface that is concerned with the dispatch of
event noti�cations allows for a comprehensible representation.

In the following sections the communication by means of an event bus is assumed in order
to allow for more concise representation of data �ow. More precisely, every event description,
state variable, or other source of events is assumed to publish the event to a logical event bus
that can be subscribed by any element of the application. Every time an event is published

133

Chapter 4 A Semantics-based Component Model for Reusable IRISs

«subsystem»
SimulationComponent

«component»
ModuleAdapter

ExecutionStepControl

EntityControl

EntityCreation

Simulation
Module

Representation
Mapping

ApplicationState

InternalState
update

1

1

EventHandler

Registry

EventDispatch

Component
Identification

«component»
ComponentEventFilter

EventHandler

Figure 4.10: UML component diagram for simulation components. It is the component developer’s task to
implement the ModuleAdapter, which synchronizes the internal state of the simulation module with the
representation of the framework.

all subscribers to the bus are informed and may decide to react and possibly emit further
events themselves. As discussed before, this bus can be assumed to be managed at a clock
that subsumes all real clocks in order to simulate concurrency (cf. section 3.2.4). Aiming for
approximation of the more e�cient message-passing design, the act of ignoring a message
is assumed to cause no computational e�ort at all. An actual implementation, however, is
suggested to adopt the actor model and its inherent message-passing architecture, as discussed
in section 4.4.

Component Interface

By the adoption of the event bus perspective all communication is viewed as the occurrence
of events. Since it is common practice to provide so ware developers with interfaces that
prescribe the methods they have to implement, a mechanism that turns the observation of a
speci�c event into a method call of such an interface is created.
Figure 4.10 visualizes the internals of a simulation component: a framework has to provide

a ComponentEventFilter, which translates speci�c events to method invocations of the
di�erent interfaces that are implemented by the component (see �gure 4.11). Similar event
�lters are provided for state variable updates and event descriptions, resulting in the invocation
of the callbacks that were registered using the observemethod. By concatenating these �lters
all occurrences of framework dependent events are turned into respective method invocations.
Events that are not handled by any �lter are passed through to the ModuleAdapter. ¿e

latter has to be implemented by component developers. Its task is to create a layer that
connects the simulation module’s internal representation with the application state that is
maintained by the framework. For this purpose, the observe methods of state variables
and event descriptions are highly useful: callbacks that update the module’s internal state
can be registered, regardless of which element of the application caused the variable’s change
or emitted the event. Similarly, updates that originate from the simulation module can be
redirected to other modules using the set and emitmethods. In order to gain knowledge
about existing entities a component can either rely on entities in the creation process of which
it was involved or query the global registry.

134

4.5 A Component Model for IRIS Frameworks

getDependencies(aspect : Aspect) : Dependency[*]
getAdditionalValues(aspect : Aspect) : ValueDescription[*]
requestInitialValues(entity : Entity, aspect : Aspect, toProvide : ValueDescription[*])
enableAspect(entity : Entity, aspect : Aspect)

«interface»
EntityCreation

enableAspect(entity : Entity, aspect : Aspect)
disableAspect(entity : Entity, aspect : Aspect)
removeEntity(entity : Entity)

«interface»
EntityControl

performSimulationStep()

«interface»
ExecutionStepControl

getComponentName() : String
getComponentType() : GroundedSymbol

«interface»
ComponentIdentification

handleEvent(event : Event)

«interface»
EventHandlerModuleAdapter

provideInitialValues(entity : Entity, values : SemanticValue[*])
ValueProvision

simulationStepComplete()
SimulationStepSupport

Figure 4.11: UML diagram showing the interfaces to be implemented by a ModuleAdapter. The cre-
ation of responses to asynchronous events is facilitated by inheritance from the ValueProvision and the
SimulationStepSupport class.

Figure 4.11 shows the interfaces that have to be implemented by a ModuleAdapter: First,
a simulation component needs to specify its component type as well as its component name.
¿e former is required to facilitate assigning a component to respective aspects, whereas the
latter is used to distinguish components of the same type.
Moreover, a component is involved in the entity creation process. Figure 4.12 shows this

process, using the example of an entity creation process that involves a graphics module and a
physics engine. Subsequent to the call to the createEntitymethod, which optionally can
provide a callback function that is invoked a er the process was completed, communication
can be performed in a message- or event-based manner.
Events that are related to the creation of entities are treated by the EntityCreation

interface. In the initial step the getDependenciesmethod is invoked, which has to return
combinations of value descriptions that specify which values the component requires before
it can provide further values. For example, if a component would require an entity’s size
before it can provide an initial value for its mass, the dependency would specify that mass is
dependent on size. Furthermore, the getAdditionalValuesmethodwill be called, allowing
the component to announce additional initial values that it will provide even though they
where not speci�ed by the aspect.
¿e second step in the creation process is concerned with providing initial values for the

state variables of the created entity. Since the process of obtaining these values, e.g., by loading
a �le, may be performed asynchronously, the requestInitialValues function does not
return values directly. Instead the provideInitialValues method has to be called to
specify the respective set of values. Depending on the build order that was calculated based

135

Chapter 4 A Semantics-based Component Model for Reusable IRISs

sd entity_creation

GlobalRegistry

provide components

request dependencies
request dependencies

provide dependencies
provide dependencies

request initial values
request initial values

request initial values
provide initial values

enable aspect

PhysicsComponent GraphicsComponent

enable aspect

aspect enabled

aspect enabled

:Component

«callback»

createEntity()

lookup components

Figure 4.12: The entity creation process. In this example, a physics and a graphics module are involved in the
creation of an entity. Prior to the actual creation process, these components are retrieved from a central registry.

on the announced dependencies, the invocation of the requestInitialValues function
may occur multiple times. For that reason, a set of values that has to be provided during a
certain invocation is passed to the function.
A er an entity has been created, all components that are involved in the creation process

are noti�ed and their enableAspectmethods are invoked. At this time each component has
to include the entity into its simulation loop.
During its lifetime an entity can bemodi�ed inmultiple ways. Obviously, it can be destroyed,

which is signaled by the invocation of the removeEntity method. Furthermore, a single
component can be noti�ed to enable or disable the simulation of a certain aspect of a single
entity. For this purpose, the respective method from the EntityControl interface will be
invoked.
Observably, theenableAspectmethod is shared by theEntityCreation and theEntity-

Control interface. ¿is is due to the fact that—from a simulation component’s point of
view—no di�erence exists between the initial creation of an entity and enabling an aspect.
Consequently, adding an aspect to an existing entity is possible, too. For this purpose, all
required initial values either have to be contained in state variables or be provided by the
aspect that is passed to the enableAspectmethod.

136

4.5 A Component Model for IRIS Frameworks

1 abstract class ModuleAdapter
2 {
3 // Identification
4 def getComponentType() : GroundedSymbol
5 def getComponentName() : String
6

7 // Entity Creation
8 def getDependencies(aspect : Aspect) : Set[Dependency]
9 def getAdditionalValues(aspect : Aspect) : Set[ValueDescription[_, _]]
10 def requestInitialValues(toProvide : Set[ValueDescription[_, _]],
11 entity : Entity, aspect : Aspect)
12

13 // Entity Control
14 def enableAspect(entity : Entity, aspect : Aspect)
15 def disableAspect(entity : Entity, aspect : Aspect)
16 def removeEntity(entity : Entity)
17

18 // Event Handling
19 def handleEvent(event : Event)
20

21 // Simulation
22 def performSimulationStep()
23 }

Listing 4.4: The component interface from �gure 4.11 shown in Scala syntax.

Virtually all events are redirected to invocations of event handlers that are part of architec-
ture elements, for example, callbacks registered via the observemethods of state variables
and event descriptions or methods of the component interface. Nevertheless, in some situa-
tions it might be required to forward incoming events to a dedicated event handling interface
or to observe all incoming events (e.g., for logging). For this purpose, all observed events for
which no particular event handler is registered are processed by the handleEventmethod
of a ModuleAdapter.
¿e �nal method that has to be implemented is called performSimulationStep. As its

name indicates, each invocation of this method has to result in a single simulation step of
the wrapped simulation module, including respective updates of the simulation state. For
example, a visual rendering module has to render a single frame or a physics engine has to
compute a single time step (nevertheless it may calculate substeps internally). Similar to
the provideInitialValuesmethod no return value is provided but an invocation of the
simulationStepCompletemethod is necessary to signal the �nalization of the simulations.
¿is is because calculations may be performed asynchronously but the simulation component
has to remain reactive to handle further incoming events. Listing 4.4 provides an overview of
the proposed interface using Scala syntax.

137

Chapter 4 A Semantics-based Component Model for Reusable IRISs

«component»
EventBus

EventDispatch
Event
Handler

EntityCreation

EntityControl

ExecutionStep
Control

«component»
EntityDescription

Registry

EntityCreationIEntityCreation

«subsystem»
GlobalRegistry

Registry

EventHandler EventDispatch

«subsystem»
Application

ExecutionStep
Control

«component»
Component

EntityDescription

EntityCreationRegistry

«component»
Entity

EventHandler
StateVariable

*
1

EventDispatch

ISemanticAccess

EntityControlIEntityControl

StateVariable
Container

«subsystem»
Simulation
Component

Event
Handler

Event
Dispatch

Registry

Component
Identification

«component»
EventDescription

EventHandler EventDispatch

IEventAccess

«component»
ActionDescription

Event
Dispatch

RegistryEventHandler

IActionAccess

Figure 4.13:AUML component diagramdepicting the integration of a simulation component into an application:
the application uses ComponentEntityDescriptions to instantiate SimulationComponents. Conceptually,
all communication is mediated by the EventBus.

4.5.4 Application Composition

Having de�ned the way in which elements can be described and instantiated, the instantia-
tion of the application itself remains to be discussed. Adhering to ‘everything-is-an-entity’
concept, the application is represented by an entity, too. In the previous section it was not
clearly speci�ed to which entity description the component aspects were added to. With the
application entity a container is present to which all simulation components are connected by
means of a hasPart relation.
¿is rather odd way of representing the simulationmodules as entities inside the application

opens up interesting ways of re�ection: for example, the entity that is associated to the
physics engine could be added a visual aspect that allows to render its current state inside the
application. Furthermore, its properties could be modi�ed inside the virtual environment:
for example, a virtual on/o� switch could enable or disable the physical simulation. All of this
is possible without any further e�orts, because it is su�cient to add the required aspects to
the respective entity description.
¿e overall interaction of elements in an application is visualized in �gure 4.13: in the top le -

hand corner, the entity class is shown. It provides the ISemanticAccess interface, enabling

138

4.6 Summary

access to state variables (cf. section 4.3.2). Moreover, the IEntityControl interface enables
the functionality of the EntityControl interface for one particular entity (cf. �gure 4.11).
State update events are dispatched from and to the contained state variables via the event bus.
¿e task of the EventBus is to translate method invocations into events and publish them.

Observers of these events subsequently use appropriate event �lters to turn the observation
back into (callback) method invocations. In the �gure such �lters are not visualized for
the sake of brevity. An example was given in the form of the ComponentEventFilter in
�gure 4.10 on page 134.
Event descriptions provide the EventHandler interface to de�ne callbacks that are regis-

tered for the described events. ¿e created events are published to the event bus, wherefore
the EventDispatch interface is required. In order to enable a developer to observe and
emit events, the IEventAccess interface is implemented (which prescribes the observe
and emitmethods that were introduced in section 4.3.2).
¿e global registry component implements the Registry interface and thus provides

facilities for registration and lookup for architecture elements. Similar to all other elements, it
requires a connection to the event bus in order to announce registrations. Depending on the
eventual implementation, the event bus (i.e. the lookup mechanisms for message dispatch)
and the global registry can be realized as a single component.
Entity descriptions as well as component entity descriptions, the latter of which are used

inside the application component, are visualized in the bottom le -hand corner of �gure 4.13.
Both require the EntityCreation and Registry interfaces to trigger the entity creation pro-
cess and register created entities. ¿e application component provides the ExecutionStep-
Control interface, allowing to trigger the execution of simulation components externally.
An ActionDescription requires access to the global registry to obtain information about

the simulation state. Since it needs to emit events to announce results of the performed action
as well as to receive events to be triggered externally, the EventDispatch interface is required
and the EventHandler interface provided. Finally, the IActionAccess interface allows to
invoke the action manually. ¿e EventDispatch interface, the Registry interface, as well
as the IActionAccess interface are provided in appendix B.
Due to the communication via the event bus new simulation components can easily be

integrated. As shown on the right-hand side of �gure 4.13 this does only necessitate the
connection to the event bus and the global registry, which is facilitated by the provided
interfaces. Entities, entity descriptions, action descriptions, and event descriptions provide
the means to access the respective concept and encapsulate the underlying event mechanisms.
In this way, a component developer can utilize these elements to create a wrapper around a
preexisting simulation module to create reusable simulation components.

4.6 Summary

In this chapter, the knowledge representation model that was introduced in the previous
chapter was extended into a component model for reusable IRIS applications. In the course of
its development, the analysis of VE development aspects led to the proposition of a semantics-
based approach. As a part of this approach the concept of semantic types and semantic traits
was introduced. Both address restrictions that are commonly observed in the context of

139

Chapter 4 A Semantics-based Component Model for Reusable IRISs

IRIS development. ¿ey especially extend the type system of the underlying language by the
integration of semantic type checks. Furthermore, the possibility to detect the type of an
entity at runtime by checking it against a description from an underlying ontology is added.
In this way, the semantic re�ection paradigm (cf. section 2.3.4) is extended: the proposed

approach provides a set of grounded symbols, the consistency of which is fostered by means
of an ontology. Using these symbols, semantic access to central programming primitives as
known from the semantic re�ection paradigm can be achieved. Moreover, a description of
so ware interfaces is provided, which ease the implementation of such an approach.
¿e second contribution of this chapter is the uniform access model. It addresses the obser-

vation that overly complex so ware interfaces hinder reuse (cf. section 2.2.2). Expanding on
the state value- and event-based representation that was developed in the previous chapter, a
comprehensible interface to access and modify the simulation state is provided. ¿e introduc-
tion of event descriptions creates a mechanism to observe events, which is nearly identical to
the access to the simulation state.
¿e inherent requirement for exploiting all available hardware resources that are provided

by up-to-date multi-core architectures as well as the development of potentially networked
applications was then addressed by the proposition to adopt the actor model. A er a short
review of the issues that have to be faced in this context, the integration of the approaches that
were mentioned in the preceding sections were discussed and hints for an implementation
were given.
Finally, a component model that allows for the integration of all presented approaches was

introduced. ¿e model guides the developer in creating a reusable simulation component
from a preexisting simulation module. In this context, the automatic conversion of data types
as well as the instantiation of entities in a decoupled IRIS application were discussed.
¿e �ve requirements for frameworks for reusable IRISs, which were established in the

beginning of this chapter, are answered by the proposed component model as described below:

R1 Support for creating decoupled simulation modules: ¿e combination of the uniform
access model (cf. section 4.3) and the actor model (cf. section 4.4) enables the creation
of a module wrapper, which allows to turn preexisting simulation modules into de-
coupled components. In this regard, the uniform access model provides a means to
apply the automated type conversion process, which was introduced in section 4.5.1.
While this addresses the static aspect of decoupling, the message-based interface that is
introduced by the actor model provides an approach to treat the dynamic aspects. ¿e
proposed component model (cf. section 4.5) provides the so ware interfaces that guide
a component developer in the process of creating the decoupled component.

R2 Support for the creation of generalized components: Combining the concepts of semantic
types and semantic traits (cf. section 4.2) with the uniform access model allows to
decouple simulation modules from the speci�cs of the application content. ¿is way,
a simulation module can be �exibly used in most di�erent situations. Applying the
description-based approach, which was discussed in the context of the component
model (cf. section 4.5.2), allows to decouple the creation of entities from the involved
components. In this regard, simulation components can be split into multiple reusable
modules, which address separate concerns by creating associated aspects.

140

4.6 Summary

R3 Support for concurrent execution of simulation modules: ¿e adoption of the actor
model and its inherent support for message-based architectures is highly bene�cial
for decoupling the execution schemes of simulation modules. A component that is
represented as an actor can run in a completely independent thread of execution. In
this way, addition and removal of components is facilitated with minimal e�ects on
other parts of an IRIS.

R4 Support for human-readable identi�ers and high understandability: Both the uniform
access model and the semantics-based approach foster understandability of an IRIS
application. ¿e former introduces semantic type checks, which is bene�cial for viewing
a certain facet of an entity, whereas the latter provides a concise interface to access
the simulation state. ¿is interface can be used by developers as well as AI modules
and virtual agents, since it provides uniform access to the complete simulation state.
¿e component model fosters an ‘everything-is-an-entity’ view, whereby the uniform
interface is extended to every element of an application. ¿us, simulation modules as
well as virtual (and real) entities can be accessed using a concise interface.

R5 Support for retrieval of information about program code: Although the proposed ap-
proaches do not directly permit to retrieve information about the program code, the
description of actions that was introduced in the previous chapter provides a similar
feature. It provides the opportunity to lookup functionality by specifying desired e�ects,
thus reducing the e�orts that are necessary to search for implemented functionality. By
implementing respective tools this information becomes accessible at compile-time as
well as at runtime. Similarly, the underlying ontology can allow to search for available
semantic traits and entity descriptions.

Each of the techniques that were introduced in this chapter can be considered separately
from the others. Nevertheless, the biggest advantages can be taken by their combination
in the form of the component model. ¿e following chapter will overview the Simulator X
framework, which represents an exemplary implementation of this model.

141

Chapter 5

Simulator X
I remember seeing an elaborate and complicated automated washing machine for
automobiles that did a beautiful job of washing them. But it could do only that,
and everything else that got into its clutches was treated as if it were an automobile
to be washed. I suppose it is tempting, if the only tool you have is a hammer, to treat
everything as if it were a nail.

¿e Psychology of Science: A Reconnaissance
Abraham H. Maslow (2004)

5.1 Simulator X - A VR Research Platform

Simulator X (Latoschik&Tramberend, 2011) is a VR research platform that has been developed
in the context of the project entitled Semantic Re�ection for Intelligent Realtime Interactive Sys-
tems (SIRIS).¿e framework’s main purpose is to facilitate research in the areas of multimodal
interaction, intelligent graphics, and RIS development. In addition, it is being used to develop
methods for the analysis of distributed systems (cf. Rehfeld, Tramberend, & Latoschik, 2013).
In the beginning of its development the project members felt that the frameworks at hand

were not suited for their respective research needs. So ware that had been developed in
previous projects had become unmaintainable over the years and eventually disappeared
completely. Although the knowledge that was gained in these projects was preserved in the
form of publications and �lms, the huge e�orts that had been made to implement applications
were in vain. ¿ese experiences urged the project members to re�ect on the development
tools in use.
It was observed that existing approaches did not allow for access and modi�cation of

low level architecture elements. Reasons for this bear resemblance with the above-quoted
commentary by Abraham H. Maslow: game engines and virtual reality frameworks are highly
optimized for speci�c kinds of simulation, e.g., visual rendering, physics simulation, and
animation, rendering them inappropriate for other cases of application. As a result, they force
developers to wrap extending concepts around the internal data structures, o en leading
to closely coupled solutions that provide access to only parts of the simulation state. ¿ese
�ndings as well as other hindering aspects that were mentioned in previous chapters led to
the idea to create the Simulator X framework.

143

Chapter 5 Simulator X

The SIRIS Project

¿e SIRIS project was conducted by the Beuth Hochschule für Technik Berlin and the Intelligent
Graphics Group at the University of Bayreuth, which later moved to the University of Würzburg
and became the Human-Computer Interaction group.
¿e project’s de�ned goal was to develop alternative and novel approaches to so ware

techniques and architectures for Intelligent Realtime Interactive Systems (IRISs). A central
idea of the approach was to build on the concept of Semantic Re�ection (see section 2.3.4),
which accounts for the �rst letter of the project’s acronym. Accordingly, it provided a perfect
environment for implementing the ideas developed in this thesis. ¿e main contribution
to the project is the design and conceptual development as well as the implementation of
the core features of the Simulator X framework, especially focusing on the computational
utilization of knowledge about the application state.
¿e next sections will provide an overview of the design decisions taken as well as the

resulting architecture of the Simulator X framework.

5.2 Architecture
Simulator X was designed as a test bed for alternative IRIS architectures. Consequently, the
core ideas, concepts, and techniques developed in this thesis have been implemented in its
current version. ¿ey now provide the central features of ongoing (I)RIS architecture research
as well as a solid basis for many applications built on top of it.
Adopting the introduced componentmodel, active elements are restricted tomessage-based

communication, thereby decoupling both data representations and control �ow. Since the
actor model (Hewitt et al., 1973) basically follows the same intention, it has been chosen as
the basis for the current version of the Simulator X framework.

5.2.1 Actors

¿emodel de�nes an actor as an entity of autonomous computation, which can communicate
with other actors bymeans of messages only (cf. section 2.3.4). In fact, it promotes the idea that
everything is an actor. ¿is implies that no communication between two independent units of
computation can happen other than by exchanging messages. Since message-based communi-
cation constitutes the lowest level of coupling, it inherently fosters the design principles of
low coupling and high cohesion.
Consequently, each Simulator X application is constituted of a set of actors. In fact, the

application’s main class is an actor that can receive messages and react to them. ¿is way, a
distributed structure is facilitated, allowing to use the nodes of a computer cluster to perform
single computations or distribute simulation modules among them (some details regarding
the feature of distributed applications are given in section 5.3.1).
¿e application actor instantiates further actors, which represent the simulation modules

utilized by the application. ¿ese comprise common elements, like a 3D rendering module,
a physics engine, or application logic. Each of the simulation modules, in turn, can create
further actors that concurrently ful�ll speci�c tasks. For example, a stereoscopic 3D rendering
module can spawn one actor for each of the computed views. Since an actor is only aware of

144

5.2 Architecture

Application

World Interface

Component 1 Component N

actor actor actor actor

Component 2 ...

actoractor

Figure 5.1: The Simulator X architecture: actors (indicated by gear wheels) are aware of other actors on neigh-
boring layers and can exchange messages. Further reaching communication requires requesting the respective
actor’s address from adjacent actors.

its creator and its children, the knowledge about other actors has to be acquired by querying
these actors. A typically created hierarchical application model is shown in �gure 5.1.

5.2.2 Scala

Initially, four programming language candidateswere considered for the implementation: C++,
Java, Haskell, and Scala. Before the �nal decision was made, exploratory implementations in
C++, Haskell, and Scala were carried out. Java, due to its resemblance to C++, was excluded
from these implementations.
¿e advantage of C++ over the other languages was its assumed higher performance

and wide distribution. Moreover, all project members had been in programming in C++
before. However, aspects like low level memory management, pointer arithmetics, and similar
concepts were considered to have negative impact on the development process and quality of
the �nal so ware.
Java was considered a good candidate, since all of the project members were experienced

Java programmers and its platform independence was considered a desirable feature. On the
downside, doubts were raised as to performance limitations of Java.
¿e idea of choosing Haskell was brought up due to its support for the functional program-

ming paradigm. It eventually got rejected because of the long learning curve and complexity
of program code that was anticipated by some project members.
In the end Scala (Odersky et al., 2006) was chosen, especially because its syntax promised

concise programs. ¿is was a reasonable aspect: since the development was to take place in
an academic context, fast prototype development was one of the main tasks to be carried out.
Moreover, the fewer amount of required program code promised to result in higher quality of
the developed so ware, since the chance to create erroneous code usually decreases with the
lines of written code. Aside from that, Scala’s integrated implementation of the actor model,
support for the functional as well as the object-oriented paradigm, and compatibility with the
Java Virtual Machine constituted further positive aspects.

145

Chapter 5 Simulator X

Especially the following of the features of the Scala programming language turned out to
be highly advantageous (Wiebusch, Fischbach, Latoschik, & Tramberend, 2012):

• support for both the OOP as well as the functional programming paradigm

• inherent support for creation of Domain Speci�c Languages (DSLs)

• concise program structure

¿ese aspects are dicussed in more detail in the following paragraphs.

Multi-ParadigmSupport Today, most programmers are used towrite programs that adopt
the object-oriented paradigm. Consequently, a programming language that forces them to
comply to a di�erent paradigm is likely to evoke reluctance to utilize it. Nevertheless, a single
paradigm is usually designed for a speci�c purpose and impedes the realization of other
aspects. For example, the creation of callback functions o en is accomplished by complex
constructs in pure OOP languages.
However, the very feature of callbacks is highly relevant in the context of VR frameworks.

Arrival of new sensor data, reaction to certain events, handling user input, etc. are o en
accomplished by registering callback functions for the respective event. It becomes even more
important in the context of message-based architectures, such as the actor model, in which
nearly every action is a reaction to the receipt of a message. Especially the opportunity to
de�ne anonymous functions in place fosters locality. ¿e code examples that are presented
throughout this chapter provide examples for this feature.
Since the Scala language supports both the object-oriented as well as the functional pro-

gramming paradigm, programmers that are familiar with one of them can slowly accustom
themselves with the other.

Support for DSLs An important factor for reusability of so ware is its understandability.
Domain speci�c languages support this requirement by allowing for the creation of easily
readable program code. ¿is is achieved by hiding complex syntactical properties as well as
by using more understandable expressions for otherwise incomprehensible operators and
identi�ers.
Whereas other languages o en require external tools to utilize DSL features, Scala facili-

tates their creation and utilization inside program code. ¿is is mainly achieved by Scala’s
opportunity to omit the dot operator as well as leaving out parentheses for functions that take
at most one parameter.
Listing 5.1 provides a simple example of a DSL that allows to perform basic calculations

using easily understandable program code (cf. lines 17–19). ¿e DSL de�nitions in lines 2–14
use multiple features of the Scala language, including the in-place de�nitions of functions
mentioned in the previous paragraph. Since similar concepts will be used in subsequent
examples, a detailed explanation is given below. A very basic understanding of the Scala
syntax by the reader is assumed, though.
¿e And class (line 2) serves as a provider for the and keyword, with the help of which the

result of an addition or subtraction can be computed. ¿e public constructor parameter and
serves as a reference to the function that eventually performs the calculation.

146

5.2 Architecture

1 // begin DSL definitions
2 class And(val and : Int => Int)
3

4 object Sum {
5 def of(i : Int) = new And(j => i + j)
6 }
7

8 object Difference {
9 val between = (i : Int) => new And(j => math.abs(i - j))
10 }
11

12 object Compute{
13 def the[T](calculation : T) = calculation
14 }
15 // end DSL definitions
16

17 val three = Sum of 1 and 2
18 val two = Sum of 1 and 1
19 val one = Compute the Difference between two and three

Listing 5.1:ADSL example in Scala. The de�nitions in lines 2–14 allow for the easily understandable speci�cations
in lines 17–19.

¿e two objects Sum and Difference (lines 4–10) provide the static methods of and
between. Each of these returns an anonymous function, which takes an integer value as a
parameter and returns an instance of the And class. ¿e constructor parameter of the And
class is the function that �nally computes the result of the given expression. In the given
example this constructor parameter will be an addition or subtraction function, respectively.
¿e instance of the And class that is returned by the of method in line 5 is passed an

anonymous function. ¿is function takes the of function’s parameter i and adds its own
parameter j to it. As mentioned above, this anonymous function could be passed to methods
that register callbacks in the same way that it is passed to the constructor of the And class.
¿e de�nition of the between value of the Difference object essentially works the same.

It represents a function that takes a parameter i and creates an instance of the And class by
passing another method that calculates the di�erence between i and its own parameter j.
As opposed to the of method, between is a constant that holds a reference to a function.
E�ectively, of and between are used in the same way. ¿e Compute object (cf. line 12-14)
simply provides a function named the, which returns the parameter it was passed. Its type
parameter T is required to preserve the type of the passed parameter.
With these speci�cations the easily understandable expressions ‘Sum of 1 and 2’ and

‘Compute the Difference between two and three’ are supported. Admittedly, the
expression ‘val three = 1 + 2’ is shorter and equally understandable, but an expression
like ‘val one = math.abs(2 - 3)’ is already a little harder to grasp. As indicated by the
example, complex concepts can be made easier to understand by means of DSLs.

147

Chapter 5 Simulator X

1 import java.util.function.Function;
2

3 public class And{
4 final public Function<Integer, Integer> and;
5

6 public And(Function<Integer, Integer> and){
7 this.and = and;
8 }
9 }

Listing 5.2: Java version of the And class from listing 5.1.

Conciseness ¿e de�nitions in listing 5.1 also exemplify the way in which Scala program
code is concise. For example, the Java version of the And class will look similar to the im-
plementation shown in listing 5.2. In C++, the implementation could possibly involve an
additional header �le. Similar to the concise de�nition of classes, other language constructs
also tend to require less program code compared to other programming languages. Especially
the utilization of aspects introduced by the functional programming paradigm are conductive
to conciseness.
¿e bene�ts of such concise program code include

• less implementation e�ort and hence more time to focus on the initial problem,

• higher locality of code, due to compactness, and

• higher understandability, since less code has to be read.6

5.2.3 Semantic Values

¿e intention to introduce semantics on a core level is addressed by the concept of semantic
values. A semantic value, as introduced in section 3.2.4, essentially is a plain value that is
associated with a value description.
In Simulator X a value description is abbreviated SValDescription. It serves as a factory

for semantic values, provides a link to the ontology, and connects the represented value
with the data type hierarchy that is speci�ed therein. ¿is way, the feature of automatic
type conversion is rendered possible, since the value descriptions can be utilized to look up
respective converters.
Listing 5.3 shows the de�nition of a SValDescription (line 1) for semantic values that

represent (a�ne) transformations. It is based on the Matrix description (line 3) and inherits
the associated data type ConstMat4. Moreover, it is associated with the grounded symbol
transformation. ¿e set of available grounded symbols is established by transforming the
concepts that are de�ned in the application ontology into plain Scala objects. Similarly, the
value descriptions are automatically generated from ontology contents (cf. section 3.4.2).

6 However, this can change to the contrary when code gets too dense.

148

5.2 Architecture

1 object Transformation extends SValDescription(Matrix as
Symbols.transformation definedAt Example.link("Transformation"))

2

3 object Matrix extends SValDescription(NullType as Symbols.matrix withType
classOf[ConstMat4] definedAt Example.link("Matrix"))

4

5 object Example{
6 def link(in : String) = "http://www.hci.uni-wuerzburg.de/ontologies/" +

"simx/concepts/BasicTypes.owl#" + in
7

8 val semanticValue = Transformation(Mat4.Identity)
9 }

Listing 5.3: Example for a transformation type description in Simulator X. A new semantic value instance is
created using the description’s apply function. The result is automatically linked with the description.

Altogether, the data type (here: ConstMat4) is decoupled from the semantics (represented
by the transformation symbol). As shown in line 8, the value description does serve as a
factory for semantic value instances, which are automatically linked with it.

5.2.4 Events

Besides the representation of a value that belongs to the application state, Simulator X supports
the concept of events. An event denotes one certain incident that has no lifespan but rather
happens at a certain point in time. Examples for this are collisions, the start or end of a process,
and other application logic related occurrences.
Every Simulator X event is associated a symbol, which identi�es its semantics. Furthermore,

a (possibly empty) set of a�ected entities is part of the Event class. As shown in listing 5.4,
events are created by means of event descriptions (line 1) using their emitmethod (line 7–9).
Moreover, every EventDescription can also be used to register callbacks that are called on
each occurrence of the event (cf. line 3-5).

1 object Collision extends EventDescription(Symbols.collision)
2

3 Collision.observe{
4 cEvent => println("observed collision between " + cEvent.affectedEntities)
5 }
6

7 def publishCollision(e1 : Entity, e2 : Entity) : Unit =
8 Collision.emit(Set(e1, e2), Force(10f))

Listing 5.4: Usage of events and event descriptions in Simulator X. Similar to semantic values (cf. listing 5.3),
events are instantiated via the associated description class. Line 8 exempli�es this concept by emitting a collision
event, which references the two entities in collision and speci�es the collision force.

149

Chapter 5 Simulator X

Events can be emitted by every EventProvider, the latter being a Scala trait that can be
mixed into any actor class. As shown in the example, the required handshaking processes
are completely hidden from the developer. As a result, events can be used at any point in an
application.
Since handling every value update in the form of an event would result in an uncommon

and incomprehensible program structure, a mechanism to represent state is introduced. ¿e
next section introduces a mutable variant of semantic values that encapsulates update events
and thus provides a more convenient way to access the simulation state.

5.2.5 State Variables

Building on the actor model and the concept of semantic values, state variables (abbreviated
SVars) are introduced in Simulator X. State variables (besides events) provide the basis for
the implementation of the uniform access model that was introduced in section 4.3. Hence,
they implement the three methods observe, get, and set. In addition, each state variable
is assigned a Universally Unique Identi�er (UUID) for identi�cation purposes as well as an
ignoremethod to unsubscribe from further update noti�cations regarding that state variable.
Moreover, each state variable is assigned a dedicated actor, its owner, which is responsible

for controlling value updates, sends out noti�cations about such updates, and handles value
read requests. In Simulator X each actor has an associated map data structure, linking the
owned state variables’ data with their UUIDs.
Except for the local owner’s representation, only immutable references to a state variable

are used. Each such reference contains the state variable’s UUID as well as its initial owner.
In this way, requests to update or access its value can be communicated to the owner. If the
owner has changed (which, in theory, is possible to allow for load balancing), the previous
owner will inform the requesting actor about this circumstance. ¿e requesting actor stores
this information internally and directs subsequent requests to the new owner.
¿e immutable reference also acts as a proxy, by providing a so ware interface that en-

capsulates the underlying message-based communication. Additionally, it allows to access
the values in a callback-like manner. Listing 5.5 exempli�es the access to state variables in
Simulator X, which is in line with the uniform access model from section 4.3.
At this point, the bene�t of anonymous functions in Scala becomes evident. ¿e possibility

to specify the operations that are performed with a retrieved value at the same line of code in
which the access occurs (cf. lines 4 and 14–16) allows for muchmore understandable programs
than the use of externally speci�ed functions would.
To some extent this work adopts the idea of a blackboard model (Nii, 1986) to represent

global state and access to it. Such amodel facilitates decoupling of knowledge sources bymeans
of a centralized data base (the blackboard). All knowledge sources exclusively communicate
via this blackboard and opportunistically react to changes. ¿e simulation modules in an IRIS
application can be interpreted as such knowledge sources, which communicate by reading
and updating the simulation state. However, as opposed to a blackboard model, simulation
modules do not necessarily have to act opportunistically. Furthermore, Simulator X’s event
system provides an alternative way of communication, enabling components to bypass the
communication via the blackboard.

150

5.2 Architecture

1 def incrementValue(sVar : SVar[Integer]) = {
2 // using callbacks
3 sVar.get {
4 value => sVar.set(value + 1)
5 }
6 // using continuations
7 val value = sVar.read
8 sVar.set(value + 1)
9

10 // observing values
11 val sVarValues = mutable.Map[SVar, Integer]()
12 sVar.observe{
13 updatedValue =>
14 println("change: " + (updatedValue - sVarValues.getOrElse(sVar, 0)))
15 sVarValues.update(sVar, updatedValue)
16 }
17 }

Listing 5.5: Exemplary access to state variables in Simulator X.

¿e Scala language supports continuations by means of a compiler plugin. Using continua-
tions essentially permits to stop the execution of a method, capture its context, and store it for
later execution. ¿e readmethod that is applied in line 7 of listing 5.5 makes use of this fea-
ture. Although it allows for an even more conventional way of programming, the underlying
mechanisms remain the same. Moreover, since Scala provides delimited continuations, the
scope of a continuation needs to be speci�ed. For this reason, continuations can be used in
each top-level message handler that is attached to a Simulator X actor, since it automatically
delimits the scope of the continuation.
Some aspects should be kept in mind when state variables are used:

• ¿e underlying message-based access leads to the introduction of a delay between the
request of a value or its update and the eventual execution of the speci�ed callback. In
the context of the incrementValuemethod in listing 5.5 this implies that a di�erent
actor canmodify the state variable a er its value is sent to the actor that invoked the get
method. ¿e increment operation is hence executed using an outdated value, which
most certainly will lead to an unexpected result.

• Creating a local representation of the required state variables by means of the observe
method should always be preferred to the use of the get method. Lines 11–16 in
listing 5.5 exemplify this procedure. ¿e bene�cial aspects are the instant access to the
most recent value as well as the more common way of value access.

¿e set of all state variables allows to observe all changes to the application state. As
motivated before, the utilization of plain state variables would, however, result in an incom-
prehensible application design. Hence, a state variable is always associated to an entity. ¿e
next section will provide the details of the entity model that is applied by Simulator X.

151

Chapter 5 Simulator X

1 def handleTransformationOf(entity : Entity){
2 // accessing values
3 entity.observe(Transformation) foreach {
4 newTransformation =>
5 println(
6 "Entity " + entity + " got new transformation " +

newTransformation
7)
8 }
9

10 // adding / updating values
11 entity set Transformation(Mat4.Identity)
12 }

Listing 5.6: An entity does allow to create comprehensible access to its properties by pass-through of the access
methods of the state variables.

5.2.6 Entity Model

Entities are the central building block of SimulatorX applications: while the actormodel, which
is utilized to handle functional elements in Simulator X, promotes the view that ‘everything
is an actor’, static elements are represented assuming the perspective that ‘everything is an
entity’.

Entities

Regarding stored data, an entity is nothing more then a set of state variables that represent its
properties. To identify state variables inside the entity the associated value description is used.
¿e approach of assigning a value description to each state variable inside an entity accounts
for the fact that a state variable is meaningless as long as it is not associated with an entity.
In order to allow for multiple state variables with the same value description, the concept

of annotations is added. Each annotation is basically an arbitrary semantic value (e.g., a
timestamp) that is used to particularize the semantics of a value description.
Listing 5.6 exempli�es the way in which the properties (i.e. the state variables) of an entity

are accessed: read access is accomplished by means of the entity’s observe method (the
get method is handled analogously). Since multiple state variables can match the value
description Transformation, a set of state variables is returned. ¿e foreach method
invokes the observemethod on all of these state variables, applying the anonymous function
that was passed to the foreachmethod.
Updating a state variable is performed by means of a state value, as shown in line 11: the

entity is passed a state value which automatically is inserted into the matching state variable.
If no such variable exists, a new one will be created and the currently active actor will become
its owner. In order to add a second state variable, the respective value description has to be
added an annotation, since otherwise the already present state variable would be overwritten.

152

5.2 Architecture

ball-entity

radius

position

mass

Radius

Position

Mass

color Colorgraphical
aspect

physical
aspect

Figure 5.2: Exemplary entity description of a ball entity, which is speci�ed to consist of a physical aspect as well
as a graphical aspect (adapted fromWiebusch & Latoschik, 2012).

Aspects

Persisting with the description-based approach, entities are instantiated bymeans of associated
descriptions. For this purpose, the concept of aspects that was introduced in section 2.2.3 is
applied. A Simulator X aspect identi�es the properties that an entity has to have to enable a
particular simulation aspect. For example, entities that are created by means of a description
which contains the PhysicalSphere aspect (cf. listing 5.8) will be treated as sphere-shaped
rigid bodies by the utilized physics engine. In order to enable this kind of simulation, at least
a radius and a mass property are required and will thus be inserted into the respective entity.
Figure 5.2 exempli�es the concept of aspects in the context of an entity description: the

ball entity description consists of a graphical as well as a physical aspect. While the color and
mass property are only used by either the graphical or physical aspect, the radius and position
properties are shared by both. Note that each of the state variables is assigned an identifying
concept that carries its semantics.
Besides the question which of both components (graphics or physics) will become the

owner of the shared variables, the initial values for all properties have to be speci�ed. Since
the simulation modules are meant to be easily exchangeable, they must not directly depend
on one another. As indicated in section 4.5.2, such interdependencies cannot be avoided in
every case, e.g., if a simulation module loads information that another module depends on
from an external �le. In that case, a build order has to be established to ensure that every
module is provided the information it needs to instantiate the entity.
To support this process, aspects specify the values a component will provide as well as the

values it does require. For this purpose, two sets have to be speci�ed by each aspect, as shown
in line 6–10 of listing 5.7:

• the set of provided values, which consists of state value descriptions for which initial
values will be provided by the respective component. In the given example, this set
contains the mass and the position of the entity.

• the set of features, which contains value descriptions that are required by the respective
component to enable treating the entity in the desired way. In listing 5.7 this includes
the values provided by the component as well as the entity’s radius.

¿e set of required values can be calculated as the set of features that are not provided by the
component.

153

Chapter 5 Simulator X

1 case class PhysicalSphere(position : ConstVec3f, forComponents :
List[Symbol]) extends EntityAspect(Symbols.physics, Symbols.sphere,
forComponents)

2 {
3 def getCreateParams =
4 Set(Position(position))
5

6 def getProvidedValues =
7 Set(Mass, Position)
8

9 def getFeatures =
10 getProvidings + Radius
11 }

Listing 5.7: The (simpli�ed) version of an aspect for physical rigid body spheres used in Simulator X.

Furthermore, a set of parameters, which are required for instantiating the entity, is speci�ed
in lines 3 and 4. ¿is set does not necessarily match the set of provided values. For example, if
the physics engine estimates the mass of an object by its size, or if the value is obtained from a
model �le, no value needs to be provided initially.
In addition, aspects contain two symbols in order to identify the related component type

and the semantics of the aspect, respectively. In listing 5.7 these are Symbols.physics and
Symbols.sphere, which are linked to the grounded symbols physics and sphere in the
ontology. By means of these symbols the aspect is decoupled from the component that will
�nally receive. Ideally, all physics components support a common set of aspects, whereby they
would become easily exchangeable.
Finally, a list of symbols can be speci�ed, which contains the names of the components that

should receive the aspect when the entity is created. If this list is empty, all components of the
given type will be involved in the entity creation process. Otherwise, only the components
that have the correct type and name will receive the aspect.
Since only the developer of a simulation component has su�cient knowledge to specify the

aspects it supports, these aspects are to be supplied with the component. ¿e �nal composition
of the provided aspects is subsequently accomplished by the application developer.

Entity Descriptions

Listing 5.8 shows the description of a ball entity in Simulator X. It consists of the Physical-
Sphere aspect, which was introduced in listing 5.7, as well as a ShapeFromFile aspect. ¿e
latter is expected to cause the rendering engine to load a 3D model from a COLLADA �le
and render it at the same position where the physics engine assumes the entity to be. Due to
the physics engine’s dependency on the radius property, which was expressed in the aspect,
the size of the simulated sphere is the same for both modules.
At this point some important observations have to be made: �rst, the entity description

does not implicitly mention any of the simulation modules that are involved in its simulation.
Hence, simulation components with the same component type that do support the used

154

5.2 Architecture

1 case class Ball(name : String, position : ConstVec3)
2 extends EntityDescription (name,
3 ShapeFromFile(// visual aspect
4 file = "assets/vis/ball.dae"
5),
6 PhysicalSphere(// physical aspect
7 position = position
8)
9)
10

11 // instantiation of the described entity at position (0, 1, 0)
12 Ball(position = Vec3(0, 1, 0), name = "ball#1").realize{
13 ballEntity =>
14 println("instantiated " + ballEntity)
15 }

Listing 5.8: An exemplary description of a virtual ball, which uses the PhysicalSphere aspect introduced in
listing 5.7. The utilization of named parameters is a feature supported by the Scala language.

aspects, e.g., two physics engines, can be exchanged without adapting the entity descriptions.
In this context, supporting an aspect means to support the required and provided values as
well as to recognize the aspect type. ¿is way, the de�nition of an application’s content is
decoupled from the simulation modules accessing it.
Secondly, the constructor parameters of used aspects are either �lled with default values or

passed from the entity description’s constructor. ¿is structure facilitates the generation of
complete entity descriptions from external formats.
Finally, the utilization of named parameters (a feature of the Scala programming language)

e�ectively increases the readability and usability of program code. For example, note that
the order of parameters in line 12 of listing 5.8 does not match that of the Ball class in line 1.
However, due to the speci�cation of parameter names, the correct assignment is possible.
¿us, the exact order of parameters does not have to be known in the �rst place, and later
programmers can easily distinguish between parameters without inspecting the invoked
function. Using parameter names that match the grounded symbols from the ontology
improves understandability even more.

Entity Creation

In Simulator X the instantiation of an entity from its description requires multiple steps. ¿e
entire process is visualized in �gure 5.3. At �rst, messages that contain the respective aspect
are sent to all simulation modules that are related to the entity. Each module answers this
query with the list of dependencies that will arise when the module loads or computes the
initial values for the entity. Furthermore, it can declare to provide further properties (which is
not the case in the given example). In �gure 5.3 the physics engine announces that it requires
a value for the radius parameter before it is able to provide a value for the mass property.

155

Chapter 5 Simulator X

ball-entity description

RendererGraphics

Graphical
Aspect

GraphicsPhysical
Aspect

Physics

Physics
Engine Physics

Provided
Attributes
Radius

Required
Attributes
Position

Initial Values
GfxFile

= "ball.dae"

Required
Attributes

Provided
Attributes

Position
Mass

Initial Values

Dependencies Dependencies
Radius Mass

sanity
check

Provided Initial Values

Radius = 1.0f

Provided Initial Values

Mass = 1.0f

FileSphere

Build Order

Mass

Radius

Position

ball-entity

1.0f

Vec3f(0,1,0)

1.0f

Radius

Position

Mass

(1.0, 0.0, 0.0) Colorgraphical
aspect

physical
aspect

Radius

Color = (1.0f, 0.0f, 0.0f)

Color

Position = Vec3f(0,1,0)

Position
= Vec3f(0,1,0) Color

Figure 5.3: The entity creation process in Simulator X. By means of the de�nitions of the utilized aspects (see
5.2.6) a build order is created. In the shown example, a physics engine and a renderer are queried for the initial
values they can provide. The renderer loads information from a �le that is speci�ed by the aspect, whereas the
physics engine uses the position from its aspect and noti�es about a dependency of the mass property on the
radius property (i.e. it guesses the balls mass from its radius). The resulting build order is shown in the center,
which eventually results in the instantiation of the ball entity visualized at the bottom. Figure adapted from
Wiebusch and Latoschik (2012).

156

5.2 Architecture

A er a response was received from each component, a sanity check is performed. To
pass this check, the set of values that are provided by all components has to match the set of
required values. It furthermore is ensured that only one initial value will be provided for each
property.
If the sanity check is passed, a build order is created from the lists of required values,

provided values, and additional dependencies. In the example from �gure 5.3 this leads to the
order shown in the center: the physics engine �rst provides the position, then the renderer
provides color and radius, and �nally the physics engine provides the mass property. ¿is
eventually results in instantiation of the ball entity shown at the bottom.
In the given example there is more than one sorting that yields a valid build order. For

example, the renderer could also �rst provide the radius and the color property. However, it
would not be able to create its internal representation, because it depends on the position
property and, thus, would have to be noti�ed about that value, as a last point.
¿e heuristics of the algorithm that calculates the build order is to minimize the amount of

messages to be sent. In the example four messages are required: one to the physics engine (1),
which will notify the renderer (2) about the position value. ¿e renderer in turn loads the
COLLADA �le, creates its internal representation of the entity, and provides the radius and
color properties to the physics engine (3). ¿e latter now creates its internal representation of
the entity, since it is informed about all values that it needs for this purpose, and eventually
noti�es the actor that initiated the creation process (4) about its completion.
As a �nal step, all related modules are concurrently noti�ed about the completion of the

entity. At this point it is integrated into each component’s simulation loop.

5.2.7 Relations

As discussed in section 3.2.4 and 4.2.4, relations are implemented as a special variant of
semantic values, which are stored in state variables. A relation consists of a symbol, which
identi�es the relation’s type, and the two values it connects. Due to their resemblance to
semantic values, relations are accessed in the same way, using the get, set, and observe
methods.
In order to specify a relation, the DSL-like convenience functions that are shown in list-

ing 5.9 are used. Although it would be possible to instantiate relations without associating
them with an entity, this is not intended in Simulator X. Hence, a relation either connects an
entity with another entity or creates a special relation between an entity and a state value.
In line 2 and 9 of listing 5.9 the ‘?’ object is used to represent the participant of a relation

that shall be identi�ed. ¿e �rst example indicates how to register for noti�cations about
new occurrences of the HasArm relation. ¿e ? object does implement the interface that is
prescribed by the uni�ed access model and serves as a proxy object to formulate requests for
the le -hand side of a relation.
Instantiating a relation is performed using the setmethod, similar to creating common

state variables. ¿eonly di�erence is the utilization of the-> operator instead of the parenthesis
operator, which is a convenience function supported by the relation description class.
Finally, in line 9 the ? class is used to specify a query for the right-hand side of the HasArm

relation. From this example the resemblance of relations to state values becomes evident.

157

Chapter 5 Simulator X

1 def relationExample(user : Entity, arm : Entity){
2 ?.observe(HasArm -> arm) foreach {
3 retrievedUser =>
4 println(retrievedUser + "has arm")
5 }
6

7 user.set(HasArm -> arm)
8

9 user.get(HasArm -> ?) foreach {
10 retrievedArm =>
11 println("user has arm " + retrievedArm)
12 }
13 }

Listing 5.9: Simulator X relations example: relations are used in the same way as state variables are. The
introduction of a DSL allows to handle themmore easily.

5.2.8 Components

¿e previous sections have introduced the architecture elements of Simulator X that are used
to represent the application state as well as changes to it. In order to allow for dynamic changes,
components (cf. section 4.5) are implemented. Simulator X components are objects that are
o en called engines (e.g., physics engine) in the game context, or (sub-) systems in the context
of the Entity-Component-System pattern.
In order to facilitate encapsulation every component is implemented as an actor. ¿is

implies that the component can perform all of its computations asynchronously and is not
coupled with the control �ow of other components, per se. Moreover, the component is free
to start an arbitrary amount of actors that perform calculations to support the component’s
task.
Essentially, every module of computation that accesses and/or modi�es one or multiple

aspects of the simulation state is realized as a component. ¿is includes common simulation
modules, like a 3D renderer or a physics engine, but also includes arbitrary other aspects, for
example, game logic, input/output handling, or character movement.
It is possible to create two simulation components that wrap a single simulation module.

For instance, a complete game engine that provides both rendering and physical simulation
capabilities could be represented by a physics and a rendering component. ¿e functionality
can be separated by creating two module adapters, each of which synchronizes the associated
simulation aspect. ¿is way, is is possible to decide on using either one or both features, thus
facilitating reusability.
Regarding the question of adding aspects to an existing component, as opposed to creating

a new component, a component should be extended by an aspect if it already provides similar
aspects, otherwise a new component should be created. For example, if an existing physics
component does support force-based simulation of sphere-shaped rigid bodies and the same
feature should be added for box-shaped rigid bodies, it is reasonable to extend the physics
component by a respective aspect. If a behavior simulation for certain entities should be added,

158

5.2 Architecture

1 abstract class Component(
2 val componentName : Symbol,
3 val componentType : GroundedSymbol)
4 {
5 // component configuration related
6 def configure(params: SValSet): Unit
7 def requestInitialConfigValues(toProvide: Set[ConvertibleTrait[_]],
8 aspect: EntityAspect, e: Entity): SValSet
9 def finalizeConfiguration(e: Entity): Unit
10

11 // entity related methods
12 def requestInitialValues(toProvide: Set[ConvertibleTrait[_]],
13 aspect: EntityAspect, e: Entity, given: SValSet): Unit
14 def entityConfigComplete(e: Entity, aspect: EntityAspect): Unit
15 def removeFromLocalRep(e: Entity): Unit
16

17 // externally triggered simulation loop
18 def performSimulationStep(): Unit
19 }

Listing 5.10: The interface to be implemented by every Simulator X component. The super classes as well as the
protected keywords are omitted for brevity.

a new component should be created, which can modify the acceleration state variable of the
entities in order to a�ect their position. In some situations this decision is not as obvious.
For example, if the above-mentioned physics component—which can only apply forces to
sphere-shaped rigid bodies—is used and a collision detection mechanism is required, this
would, according to the given heuristics, require to implement a new component.
Of course, physics engines do usually include collision detection as well as force simulations

and are capable of handling a variety of di�erent object shapes. Nevertheless, the mentioned
separation into multiple simulation components allows for using single aspects.

The Component Interface

Each Simulator X component has to implement the so ware interface that is shown in list-
ing 5.10. It is mainly guided by the methods that were proposed in the component model
in section 4.5.3. Some of these are pre-implemented with empty method bodies in order to
ease the process of implementing a new component. Besides the performSimulationStep
and configuremethods, the remaining method de�nitions are concerned with the entity
creation process.
¿e configuremethod is passed a set of semantic values (SValSet), which are used to set

a new or update an old con�guration of the component. It is invoked each time the properties
of the component entity change.
As discussed in section 4.5.2, a component is created in the same way that entities are. ¿us,

the methods requestInitialConfigValues and finalizeConfiguration as well as

159

Chapter 5 Simulator X

requestInitialValues and entityConfigComplete essentially have the same seman-
tics. ¿e former are concerned with the creation of the component entity and the latter with
the creation of any other entity.7
¿e methods that are concerned with performing the entity creation process are imple-

mented as suggested in section 4.5.3, with the exception that the enableAspectmethod in
the EntityCreation interface is called entityConfigComplete (for historical reasons).
In the requestInitialValues method each component has to create its representation
of the entity, as soon as su�cient information is available to do so. ¿is is important, since
the invocation of the entityConfigCompletemethod is performed at the same time by all
components and no delays must occur at that point. Otherwise, the entity would be included
in the simulation loop of some components earlier than in that of others.
¿e performSimulationStepmethod is triggered externally every time the component

is meant to provide an updated state of its simulations. ¿is does not necessarily mean that all
computations have to be performed when the method is called. Instead, precomputed values
could be published by means of either events or state variables. However, it is important that
these values are valid at the time they are published: e.g., a physics engine must not publish a
state that was up to date 100 milliseconds ago.
Since an actor can process only one message at a time, callbacks that have been registered by

means of an observemethod are invoked outside the performSimulationStepmethod.
¿is implies, that computationally expensive calculations should not be performed in such
callbacks, because it could delay the beginning of the simulation step.

Component Creation

Pursuing the ‘everything is an entity’ metaphor, components are instantiable and accessible
like entities. More precisely, every component is described by a component-entity description
and its properties are accessed by means of the state variables of that entity. For example, the
gravity setting of a physics engine is changed in the same way that the gravity value of any
other entity is.
Since usually all components are instantiated during an application’s startup, a convenience

function is added that takes a set of component aspects as a parameter and collectively starts
the associated components. Listing 5.11 shows a component aspect as well as its usage in a
Simulator X application.
As shown in the example, a component aspect is structured much in the same way as other

entity aspects are. In addition to common entity descriptions, it has a type parameter that
speci�es the component’s main class (i.e. the one that implements the Component interface
from listing 5.10). Another di�erence is the circumstance that a component description cannot
specify provided and required values but only the set of value descriptions, which specify the
properties that will be contained in the associated entity. Finally, if the component requires
any values passed to its constructor, these can be passed to the ComponentAspect class in
the form of a sequence (cf. end of line 3 of listing 5.11).

7 ¿is distinction was made due to a request of the framework’s users, who preferred a clear separation between
entity and component creation.

160

5.2 Architecture

1 // provided by component
2 case class JBulletComponentAspect(name : Symbol, gravity: ConstVec3)
3 extends ComponentAspect[JBulletComponent](Symbols.physics, name, Seq())
4 {
5 def getComponentFeatures = Set(Gravity, SimulationSpeed)
6 def getCreateParams = Set(Gravity(gravity))
7 }
8

9 // inside application main class
10 val displayCfg = BasicDisplayConfiguration(1280, 800, fullscreen = false)
11

12 def applicationConfiguration = ApplicationConfig withComponent
13 JVRComponentAspect(Symbol("renderer"), displayCfg) and
14 JBulletComponentAspect(Symbol("physics"), ConstVec3(0, -9.81f, 0))

Listing 5.11: Component creation in Simulator X. The shown JBulletComponentAspect is a simpli�ed version
of that used in Simulator X in the way that less parameters are speci�ed.

¿e component aspect for the JBullet8 physics component (lines 2–7) is used in line 14
to specify the con�guration of an application that utilizes two components. In this context,
the ApplicationConfig object conveniently allows to combine multiple component as-
pects using the and keyword. ¿at con�guration is speci�ed to be the return value of the
applicationConfigurationmethod (lines 12–14), which is part of every Simulator X ap-
plication. ¿is way, both components are automatically created on the application’s startup,
using the provided parameters.

World Interface

One essential observation that was made during the development of the Simulator X frame-
work is that there needs to be a central authority that

1. manages the instantiation of components,

2. allows for registration of architecture elements, such as components, actors, event
publishers, event subscribers, and entities, and

3. manages hand-shaking procedures (e.g., in the context of the event system).

¿e main reason for this requirement is the fact that no architecture element should need
to be aware of others, to achieve minimal coupling. In Simulator X this component is the
so-calledWorld Interface (Wiebusch, Latoschik, & Tramberend, 2010). It does exist only once
per process and is automatically started with the application.

8 JBullet is available via http://jbullet.advel.cz.

161

http://jbullet.advel.cz

Chapter 5 Simulator X

All instantiated components are automatically registered with the world interface. ¿is
way, it can be queried for components that match a certain aspect, each time an entity is
instantiated. In this context, component aspects are processed by the world interface, which
is responsible for the instantiation of components.
¿e registry functionality is also required for hand-shaking processes in the context of the

event system: every actor that emits an event is automatically registered in the world interface
as an EventProvider for the particular event type. In the same way, actors that call the
observemethod of an entity description are registered as EventHandlers for the described
type of events. Each time the set of registered EventHandlers or EventProviders changes,
the world interface initiates a handshake between new matching pairs. A erwards, events are
directly sent between these pairs in a peer-to-peer manner.
A further situation in which the world interface is applied is the access to existing and

newly instantiated entities. ¿is is especially relevant in the context of handling entities that
represent real world objects. For example, the component that is performing the visualization
of the virtual environment o en is also providing mouse and keyboard input. Since these
entities9 do exist only once, there is no sense in instantiating them multiple times. Using the
world interface, the graphics component can instantiate entities on its own and register them
using symbols from the ontology. ¿ese entities can subsequently be accessed at any point
in an application, without knowing about their origin. In the same way, any other entity can
be registered and accessed, thus allowing for queries to the world state from any point in the
application.

5.2.9 Ontology

As motivated in section 3.2.1, the integration of semantics into a VR framework has multiple
bene�ts. In Simulator X this integration is achieved by means of value descriptions that are
linked to an ontology. ¿is way, the knowledge that is encoded in the ontology is linked with
the simulation state without the need for data duplication.
A second bene�cial aspect of the integrated ontology is the possibility to utilize grounded

symbols. ¿ese ensure that a consistent set of identi�ers is used throughout an entire appli-
cation. Since every simulation module is wrapped into a component, a layer that translates
between the module’s internal representation and the globally used one is created.

Structure and Composition

As shown in �gure 5.4, the structure of the ontology used in Simulator X is guided by themodel
presented in section 3.4.1. ¿e core ontology contains all concepts that describe architecture
elements. It is imported by the basic types ontology, which contains common concepts that are
shared among components but do neither belong to the core framework nor are speci�cally
designed for a certain component. In a way, this �le establishes common sense knowledge
about concepts in the context of VR frameworks. Ideally, it is continually extended by the
community, thus creating an ontology of common sense VR knowledge.
Building on these �les an additional ontology �le is created for each component type. In

�gure 5.4 this are the graphical concepts as well as the physical concepts ontologies. ¿ese
9 Since everything is an entity, so are the mouse and the keyboard.

162

5.2 Architecture

Application

BasicTypes

EntityDescriptions

PhysicalConceptsGraphicalConcepts JBulletComponentJVRComponent

BasicTypeDescriptions

CoreOntology

Figure 5.4: Structure of OWL �les: The inner �les (green) contain general concepts. The outer �les contain
knowledge that is related to a certain implementation of the core framework (bottom) and the components
(sides). Each arrow indicates an import relation between the connected ontology �les.

�les include component-speci�c knowledge and assertions. For example, the physics concepts
ontology contains the speci�cation of physical aspects on an abstract level. In the example
of a sphere-shaped rigid body (cf. section 5.2.6), the set of features that is provided by a
PhysicalSphere aspect is described in this �le.
Using these �les, which contain abstract concepts, the entity description in listing 5.8 can be

speci�ed. For this purpose, the concept of a ball has to be contained in an entity descriptions
ontology. Multiple of these ontologies can be created to, e.g., create di�erent sets of entity
descriptions. Each of them would import the required concepts, which in this case are the
graphical and physical concepts ontologies. Using the imported assertions about aspects, the
intersection of the PhysicalSphere concept and the ShapeFromFile concept—both being
subconcepts of the aspect concept—could be declared as a subclass of the ball concept, as
shown in listing 5.12.

SubClassOf(
ObjectIntersectionOf(

physicalConcepts:PhysicalSphere
graphicalConcepts:ShapeFromFile

)
entityDescriptions:Ball

)

Listing 5.12:OWL contents for the ball entity description from listing 5.8, asserted in the entity descriptions �le
(cf. �gure 5.4).

163

Chapter 5 Simulator X

Declaration(NamedIndividual(application:BallEntityDescription))

ClassAssertion(
ObjectSomeValuesFrom(

basicDescriptions:describesProperty
entityDescriptions:Ball

)
application:BallEntityDescription

)

ObjectPropertyAssertion(
Annotation(core:overridesProvide basicTypes:Position)
simxCoreOntology:hasAspect

application:BallEntityDescription
jvrComponent:SimXJVR_ShapeFromFileAspect

)

Listing 5.13: OWL contents for the ball entity description from listing 5.8, asserted in the application �le (cf.
�gure 5.4).

In order to create more concrete information that can be used to generate program code,
the basic type descriptions ontology is speci�ed. ¿is ontology imports the basic types ontology
and asserts axioms concerning the value descriptions in use. For example, the fact that a value
description should be created for the transformation type, involving a particular matrix data
type, is speci�ed in this �le.
Each component provides at least one additional component speci�c OWL �le, which

includes information about the aspects that are implemented by the component. ¿e infor-
mation in these �les is based on the concepts that are de�ned for the respective component
type (cf. �gure 5.4). For example, the exact implementation of the PhysicalSphere aspect,
which is used in previous examples, is speci�ed in this �le. ¿e properties that are required by
the aspect are speci�ed in shared concept �les (cf. listing 5.7 on page 154). ¿ese are extended
by the component speci�c �les, which contain additional information about the provided and
required initial values.
Finally, each application provides another OWL �le, which imports the �les provided by the

components in use as well as the entity descriptions ontology. In the example in section 5.2.8
the JVRComponent and the JBulletComponent are used, wherefore their associated ontolo-
gies are imported. Based on the accumulated concepts, the application developer can specify
a set of entity descriptions in the application OWL �le.
Listing 5.13 exempli�es the required assertions to specify the description of the ball entity.

First, an individual that represents the entity description has to be speci�ed. ¿is individual is
subsequently asserted to belong to the class of individuals that describes a ball entity. Finally,
the entity description is speci�ed to involve the SimXJVR_ShapeFromFileAspect.
In situations where only one single individual is speci�ed for a certain aspect type, e.g.,

if the SimXJVR_ShapeFromFileAspect is the only ShapeFromFile aspect, the general

164

5.3 Features

assertion from listing 5.12 is su�cient due to unambiguity. Consequently, the last assertion
from listing 5.13 is only required in two situations:

1. if multiple ShapeFromFile aspects are speci�ed, or

2. if con�icting provide/require schemes arise by the combination of aspects.

In the �rst case, it is su�cient to assert the hasAspect object property. In the second case,
however, a way to resolve the arising con�icts has to be speci�ed. ¿is can either be done by
modi�cation of the SimXJVR_ShapeFromFileAspect or in the way it is shown in listing 5.13.
In that case, the overridesProvide annotation is used to annotate the hasAspect property
assertion, indicating that the speci�ed aspect should be the one that is used to specify the
entity’s initial position. ¿e alternative approach is to annotate the aspect in question, in which
case it would be always the one by which an entity’s initial position is speci�ed. Depending
on the combination of components and aspects in use, the one or the other approach might
be more adequate.

Code Generation

¿e intention to decouple components is facilitated by the generation ofmost of the description
classesmentioned in the previous sections. Startingwith grounded symbols, value descriptions,
aspects, entity descriptions, and even functions can be generated from the contents of the
ontology. In this context, the description based approach that was proposed in section 4.5
is highly bene�cial, since it provides a clearly de�ned interface between the ontology and
program code.
¿e modular structure of ontologies, which was introduced in section 3.6 and detailed in

the previous paragraphs, simpli�es the process of exchanging a component by a similar one:
when the ontology �le of the previous component is exchanged by the new one, the value
descriptions and aspects therein are automatically generated into program code. Furthermore,
the entity descriptions automatically use the speci�c aspects of the component, as long as there
were no explicit overrides regarding provided values. ¿e tasks that have to be performed to
replace a component in Simulator X are detailed in section 6.2.2.
Consequently, the generation of program code is part of the compilation process of a Simu-

lator X application. Since the core ontology as well as ontologies of implemented components
do rarely change, they are loaded from a web server. In order to allow for o�ine compilation,
the code generation application caches the used ontology �les and uses the stored version if
no connection to the Internet is available.

5.3 Features

Since Simulator X is meant to facilitate the decoupling and usage of simulation components,
most of the speci�c features are implemented in the form of components that can be attached
to an application. Some of these components will be discussed in section 5.5.
Nevertheless, there are three noteworthy features that are integrated into every Simulator X

application, which will be discussed in the following sections.

165

Chapter 5 Simulator X

1 // local machine
2 val displayCfg = BasicDisplayConfiguration(1280, 800, fullscreen = false)
3

4 override protected def applicationConfiguration = ApplicationConfig
withComponent

5 JVRComponentAspect(gfxName, displayCfg) and
6 JBulletComponentAspect(name = physicsName,
7 gravity = ConstVec3(0, -9.81f, 0)) on "physicsNode"
8

9 // remote machine
10 class SimxRemoteApplication(args : Array[String])
11 extends SimXApplication with RemoteCreation
12 {
13 protected def configureComponents(){
14 registerComponentCreationSupport[JBulletComponent]("physicsNode")
15 registerComponentCreationSupport[JVRConnector]("renderNode")
16 }

Listing 5.14: Remote component example: only the speci�cation on "physicsNode" is added to the local
application con�guration, resulting in it being executed by the remote application shown in lines 10–16.

5.3.1 Distributed Computing

Due to the underlying actor model all state synchronization in a Simulator X application is
achieved by means of messages. ¿us, each application is inherently capable of being deployed
in a networked setup. While this is indeed a desirable feature in the context of VR frameworks,
it also is bene�cial regarding reusability. If, for example, a particular component relies on
certain outdated hardware, this component can be run on an external node while other parts
of the application are executed on an up-to-date system.
Listing 5.14 shows the speci�cation that is required to run components on a remotemachine.

¿e upper half of the de�nition speci�es the application con�guration on the machine that
runs the application initialization. In comparison to listing 5.11, the only di�erence is the
addition on "physicsNode" which is attached to the physics component aspect.
On the remote machine(s) only the code that is shown in the bottom of listing 5.14 has

to be executed. In line 14 and 15 the remote machine announces to be capable of creating a
JBulletComponent as well as a JVRConnector and that these services are accessible using
the identi�ers “physicsNode” and “renderNode” respectively.
In the example only the JBulletComponent service is used. If the rendering should also

take place on the remote machine, an on "renderNode" speci�cation has to be added to
the JVRComponentAspect. Since Simulator X actors communicate with each other directly,
no messages besides initialization speci�c ones would be sent via network in that case.
Although this might suggest that complex mechanisms are underlying this feature, this

is not the case. In fact, no modi�cation to a simulation component is necessary to enable
its usage on remote machines. Yet, it has to be kept in mind that the data that is dispatched

166

5.3 Features

Converter A

type A => global

Component A Component B

Entity
Converter B

global => type B

Package A Package BApplication

State Variable
(local data type) ref State Variable

(local data type)ref

State Variable
(global data type) ref

Ontology

refref

ref

ref

Figure 5.5: Overview of the automatic type conversion process. Figure taken from Wiebusch and Latoschik
(2012), ©2012 IEEE.

between actors during network-based communication obviously has to be serializable. Due
to the message-based architecture of Simulator X, only two modi�cations are required:

1. ¿e utilization of the JmDNS library (van Ho�, 2015), which allows for service registra-
tion and discovery in local area networks. In this way, the services can be registered
using simple strings, instead of supplying detailed information (e.g., a computer’s IP
address).

2. An adaption of the world interface (see section 5.2.8) to register as an mDNS service
and synchronize with other world interfaces. ¿e latter basically requires forwarding
all messages regarding the registration of architecture elements to the remote world
interface instances.

¿e dispatching of messages to (remote) actors is conveniently handled by the akka actor
library (Typesafe Inc., 2015). ¿is is feasible, since Simulator X does only use serializable refer-
ences to actors. Currently the Simulator X framework relies on the serialization mechanisms
that are provided by Scala and the Java Virtual Machine. However, the akka library does allow
to replace this implementation with a more e�cient one without modi�cations to the rest of
the Simulator X framework.

5.3.2 Automatic Type Conversion
¿e second feature of Simulator X to be discussed in detail is its capability to automatically
convert types between di�erent representations. In this context automatically means that
the conversion is performed without a developer having to explicitly invoke the respective
functions. ¿e basics for this feature have been introduced in section 4.5.1. ¿e actual
conversion functions have to be implemented by a component developer or application
developer. Although the action descriptions, which are provided by means of the ontology,
could be used to automatize the process even further, this feature is not implemented in the
current version of the Simulator X framework.

167

Chapter 5 Simulator X

As shown in the center of �gure 5.5 on page 167, a Simulator X application speci�es a format
that is used as a common ground for data types and variable identi�ers. ¿ese identi�ers
and data types are speci�ed in the basic types and basic type descriptions ontologies that
were introduced in section 5.2.9. As mentioned before, each component provides its own
implementation speci�c ontology, which is based on the basic type descriptions and contains
further component speci�c type de�nitions.
In the example of �gure 5.5, each of the two components A and B is assumed to provide its

own internal data types. Since the value descriptions, which are used in the context of state
variables, constitute an internal type hierarchy (cf. section 4.5.1), related types can be identi�ed.
If component A updates a state variable of an entity by using its setmethod, the component’s
converter is automatically applied to transform the value into the global data format. When
the second component B accesses the state variable (using the get or observemethod), its
converter does convert the global data type into the one that is used by the component.
Listing 5.15 shows an example implementation of a converter which converts data between

the internal format and the global format. By using the value descriptions LocalTrafo and
Transformation the converter can automatically be retrieved when semantic values are
applied. ¿e convert function shown in lines 7–8 transforms a locally represented value into
the global format, whereas the revert function, which is shown in lines 10–11, reverses the
transformation.
Each converter is registered at the time it is instantiated and subsequent lookup processes

are performed automatically. Note that, in the case of the observemethod, this lookup does
only have to be executed once, since the revert function is automatically wrapped around the
provided callback function and executed on each value update. Due to the fact that most state
variable access is performed in this way, the introduced overhead is minimized. Furthermore,
if no conversion process is necessary, there is no overhead at all, since the value is passed as is.
Lines 16–17 and 20–21 of listing 5.15 show the access to the same variable, using the global

value description and the local value description, respectively. In the �rst case, no conversion
is applied, whereas in the second case the revertmethod, which is de�ned in lines 10–11, is
applied.
It is important to note that the conversion process is not limited to data type conversion: if,

for example, a component applies a le -handed representation, whereas the global representa-
tion is assumed to be right handed, the converter can be applied even if the type of data is the
same for both representations.
¿e automatic type conversion process does facilitate exchanging components in the way

that it provides a means to decouple the globally applied data types from the ones that are
used internally. For that reason, exchanging a component by another one is independent with
regard to applied data types.

5.3.3 State History

A feature that is highly desirable in the context of applications that involve multimodal
interaction, and more speci�cally multimodal fusion, is the possibility to access an earlier
version of the simulation state. If, for example, a pointing gesture as well as the utterance
of the word ‘that’ is detected in the context of a user who wants to select a moving entity,
the detection of both speech and gesture will probably be completed a er the entity moved

168

5.3 Features

1 // local type definition
2 object LocalTrafo
3 extends SValDescription(Transformation withType classOf[ConstVec3f])
4

5 // converter definition
6 val localConverter = new Converter(LocalTrafo)(Transformation){
7 def convert(i: LocalTrafo.dataType) : Transformation.dataType =
8 ConstMat4f(Mat4x3f.translate(i))
9

10 def revert(i: Transformation.dataType) : LocalTrafo.dataType =
11 ConstVec3f(i.m30, i.m31, i.m32)
12 }
13

14 // examplary access
15 def accessValue(entity : Entity){
16 entity.get(Transformation).foreach{ // no conversion
17 globalType => println(globalType)
18 }
19

20 entity.get(LocalTrafo).foreach{ // localConverter is used
21 localType => println(localType)
22 }
23 }

Listing 5.15: Converter example: the speci�ed converter is automatically invoked if necessary (line 20).
Alternatively, the value can be passed through without alterations (line 16).

further. In that case, the direction detected from the pointing gesture at the time at which the
utterance occurred has to be computed. ¿e result has to be applied to the simulation state
that was valid at the time of the utterance. Obviously, this feature is also bene�cial for other
aspects, such as AI methods and IVAs.
Implementing a state history is a highly complex task with almost any existing VR frame-

work. On the one hand, it is virtually impossible to store the last states that occurred in a given
timespan. ¿is is due to the fact that every aspect of the simulation state would have to be
accessible to the respective simulation module. In other words: every variable that is part of
the simulation state has to be known and accessible. Depending on the required information,
this can be limited to the position of an object but could also include environmental lighting,
coloring, and any other features.
On the other hand, the span of time that needs to be storedmay vary not only per application

but also per property type (and possibly even per property). One solution to this is to store
every information as long as the maximum desired timespan requires. ¿is would, however,
result in huge amounts of data to be stored and thus can easily cause performance issues.
Alternatively, a highly elaborated mechanism to select, store, and retrieve the state history
could be applied. As a result of these issues, existing approaches are o en tailored a the speci�c
use case.

169

Chapter 5 Simulator X

¿e architecture of Simulator X, and especially the concept of state variables, allows to
achieve the desired behavior much more easily. Building on the uni�ed access model, which
ensures that access to the simulation state is performed by means of a �xed interface, a simple
implementation is rendered possible.
Two aspects were adjusted to enable the described functionality:

1. ¿e data structure that is used by the owner of a state variable (cf. section 5.2.5) was
changed to store a collection of timestamp-value tuples instead of a single value. ¿e
maximum size of the collection is set at the time of the state variable’s creation and
can be dynamically adjusted at runtime. If no size is speci�ed, the collection is set to
contain exactly one element, resulting in the same behavior that is observed with the
state variables introduced in the previous sections.

2. ¿emethods that are provided in the context of the uni�ed access model were extended
by two parameters. ¿e �rst is used to specify the time at which the retrieved value
should have been valid, whereas the second allows to specify a mechanism how values
should be interpolated, if necessary. Both parameters are optional; the default behavior
remains to access the latest known value.

Using this modi�ed variant of state variables a developer can decide on a per variable basis
which property should be stored for which amount of time. ¿is enables �exible use of the
Simulator X framework for applications in scenarios that involve multimodal interaction.

5.4 Project Structure
As mentioned in section 2.2.2, multiple organizational aspects were found to inhibit so ware
reuse. Among these, a lack of regulations regarding the storage and classi�cation of reusable
assets as well as changes (or their absence) are especially relevant for modular VR frameworks.
In Simulator X these issues are addressed in the form of used so ware repositories and the
project structure.

5.4.1 Version Control and Project Structure

Each Simulator X project consists of multiple git repositories.10 ¿emain repository contains
the application speci�c �les as well as con�gurations that combine the utilized components,
whereas each component is located in a sub-repository (see �gure 5.6).
¿is structure has shown to be bene�cial for multiple reasons. Since each sub-repository is

a stand-alone repository, each component can be integrated into any Simulator X application
independently. Furthermore, the application repository always links to a speci�c version of the
component repositories. ¿us, even if the application is incompatible with an updated version
of a component, it still can be deployed on di�erent machines. ¿is allows the application
developer to postpone adaption to updated components. In this context, the structure does also
bene�t modularity, since a component must only depend on the Simulator X core component,
which is guaranteed to be available in every application.
10git is available at https://git-scm.com.

170

https://git-scm.com

5.4 Project Structure

Application
Repository

Component 1
Repository

Component 2
Repository

Component N
Repository

Core Component
Repository

...

Scala Component 2
DependenciesComponent 1

Dependencies Component N
Dependencies

Scala

git submodule git submodule git submodule git submodule

maven repository external libraries external libraries external libraries

Figure 5.6: Simulator X project structure: each component is located in its own git repository, which is added as
a git submodule to the main application repository. External dependencies are managed by each component
repository, ideally using dependency management tools like Apache Maven.

Besides from being stored in a stand-alone repository, a component also has to provide its
own settings for compilation (e.g., make�les, dependency management, etc.). Since Simula-
tor X is implemented using the Scala programming language, every application is compiled
using sbt.11 ¿erefore, each project repository contains a build con�guration that includes
the build settings in every component. Nevertheless, the addition of other build systems is
possible, too: the main project repository simply has to be added the necessary con�guration
�les.

5.4.2 DependencyManagement

Developers o en voice their misgivings regarding the dependence on external so ware li-
braries. On the one hand, this is understandable, since external assets may change and become
incompatible, be no longer supported, or even become completely unavailable. On the other
hand, so ware reuse obviously cannot work without reusing so ware, wherefore dependencies
are inherently inevitable.
Besides so ware libraries that are included in the repositories, Simulator X applications

make heavy use of the Apache Maven dependency management, especially relying on¿e
Central Repository by Sonatype, Inc.12 Maven’s built-in dependency management allows to
link external so ware libraries to a component without requiring developers to deal with
their retrieval. Since old versions are kept in Maven repositories, the risk of them becoming
unavailable is reduced. Obviously, new versions of a library can be incompatible, but since
the retrieval mechanism allows to specify a speci�c version of the library, the release of a new
version does not a�ect the component as long as the dependency is not updated. ¿is way, the
management and retrieval of dependencies is le to the developer of a component, thereby
facilitating the separation of developers’ tasks.

11 sbt is available at http://www.scala-sbt.org.
12http://search.maven.org

171

http://www.scala-sbt.org
http://search.maven.org

Chapter 5 Simulator X

5.5 Implemented Components

¿eapproaches that have been introduced in the previous chapters and have been implemented
in the Simulator X framework were used to create diverse applications, some of which will be
presented in chapter 6. In order to build these applications, multiple simulation components
were implemented. ¿ese include a VRPN (Virtual-Reality Peripheral Network, Taylor et al.,
2001) component, an OpenAL (Hiebert, 2005) sound component, a rendering component
(Roßbach, 2010), and many more.
Except for the components that deal with speci�c application logic, each of these compo-

nents was created by wrapping a pre-existing library. In some cases, Java bindings had to be
created, in others such binding already existed or the library was written in Java or Scala in
the �rst place.
¿e next sections will �rst discuss the task of adding a sensor to an existing application

and then present three implemented components that are of special interest; either due to the
added value or due to their exemplariness. With these considerations the three use cases that
were mentioned in the introduction of this thesis are covered.

5.5.1 Adding new Sensors

Adding a new sensor that provides new data is the least spectacular, but one of the most useful
aspects. ¿e setting is speci�ed by use case 1.2: an existing application is said to be added an
arbitrary sensor, to enhance the applications capabilities of reacting to the current situation.
¿e most common sensors for VR applications are position tracking systems, which inform
the system about an object’s or the user’s position.
¿e acquired data o en has to be transformed into the correct coordinate system, in order

to match the representation that is employed throughout the application. In the Simulator X
framework this is an easy task: the component that provides the sensor data will specify a
converter and subsequently use its local representation, while the framework takes over the
conversion processes. Hence, adding this type of sensors (e.g., a Microso Kinect sensor, a
Razer Hydra, or more expensive motion capturing systems) to the system simply requires to
implement a respective component and to add the associated aspect to an entity. Since most
components are in some way using spatial information about objects, the added information
can instantly be used.
A much more interesting case is the integration of less common sensor data, like the heart

rate sensor from use case 1.3. ¿e initial step (creating the associated component) is identical
to the above-mentioned situation. However, the data from such a sensor most probably is not
of any use for other modules, if it is not preprocessed. ¿ere are two options to do this: either
the sensor component processes the data itself or it emits events on the arrival of new data. In
the latter case, a second component can observe this type of event and eventually process the
incoming data, possibly utilizing information from other sensor modules.
¿e important observation here is that the coupling is realized via the type of the emitted

event. ¿erefore, the second component could have been in the system before and now would
simply be processing further data. ¿us, in the optimal case data is processed automatically
without further changes to the system.

172

5.5 Implemented Components

OntologyReasoning
Module update

Simulation
State

state variables
grounded symbols
value descriptions

Rule Engine

update

Figure 5.7:Overview of the connection between the application, a rule engine, a reasoning module, and the
ontology.

5.5.2 Reasoning

Due to the deeply integrated ontology, themost obvious addition to the Simulator X framework
is a reasoning component. As motivated in chapter 3, usually the most problematic issue with
regard to the addition and use of a KRL is the fact that it is added retrospectively, wherefore
the synchronization with the application state is complicated.
¿e architecture of the Simulator X framework facilitates this synchronization in the way

that it allows for observing updates of semantically annotated values. ¿is is not limited to
a �xed subset of the application state but can be performed for each of the properties that
constitute that state. ¿e most important di�erence to other approaches, however, is the fact
that the access to the application state is two-way. ¿us, newly inferred knowledge about the
state can easily be integrated and used by any component that is part of the application. In
this regard, added reasoning components can also be considered as sensors that add new
information to the simulation state (cf. use case 1.2).

Rule Engine

¿e rule engine is a very simple, but also very e�ective component, which makes use of the
semantic information that is attached to properties. It observes all value changes that occur at
runtime and applies the rules it was provided. In this context, a rule is verymuch like an action,
since it has preconditions and e�ects. For example, a rule that identi�es two entities that are
close to each other can be checked each time the transformation of an entity is changed. If
the preconditions of the rule are matched, its e�ects are applied. In this case, the fact that they
are close to each other is asserted by means of an adequate relation.
In addition, a more elaborate rule engine was implemented in the context of a master thesis

(Eckstein, 2014). ¿at component especially focuses on the domain of physics, allowing for
common sense reasoning in the context of physical simulations. Both rule engines are capable
of introducing important changes to the application state. However, their ability to infer more
complex facts is quite limited. For this purpose, a reasoning component was added, which
makes use of the application ontology to infer new knowledge about the application state.

173

Chapter 5 Simulator X

Reasoning Component

¿e implemented reasoning component utilizes the OWL API (Horridge & Bechhofer, 2009)
to access the contents of the application ontology. ¿is so ware library allows to attach
di�erent reasoning modules to an application. Out of the available modules, Pellet (Sirin,
Parsia, Grau, Kalyanpur, & Katz, 2007) and HermiT (Shearer, Motik, & Horrocks, 2008) have
been used in Simulator X.
Similar to the rule engine, the reasoning components observe the properties of every

entity that is instantiated. Since these properties are linked to the ontology concepts via
their value descriptions, synchronizing the ontology is straightforward: for each entity and
every state variable an individual is added, which is identi�ed by the UUID that is associated
to it in Simulator X. ¿ese connections are visualized in �gure 5.7: the ontology provides
grounded symbols and value description for the application, which utilizes them to represent
the simulation state. AI modules, such as a reasoning module, then can easily synchronize
this state with the concepts in the ontology.
¿e amount of information that is added to the reasoner’s knowledge base can be speci�ed

by the con�guration of the component. In this context, there are three choices:

1. Only relations between entities are added.

2. Relations between entities as well as properties with OWL compatible data types are
added.

3. All properties and relations are added.

In the latter two cases properties have to be serialized in order to be added. In this context,
data types that are not supported by OWL are converted to strings.

1 object AttachAction{
2 import Symbols.{attach, actionObject}
3

4 def definedFor(target : simx.core.entity.Entity) =
5 new ActionDescription(
6 identifier = attach,
7 preconditions = List(
8 Entity asParameter actionObject is compatibleWith the target,
9 Entity asParameter actionObject is CloseTo the target
10),
11 positiveEffects = List(
12 Entity asParameter actionObject is PartOf the target
13),
14 negativeEffects = List()
15)
16 }

Listing 5.16: An AttachAction speci�ed using the action DSL.

174

5.5 Implemented Components

¿emost reasonable choice depends on the respective application. Representing relations
between entities is probably su�cient when a rule engine is used, since value related inference
can be performed by that engine. In a di�erent scenario, the ontology itself could contain
further rules, requiring to store the required properties. If SPARQL queries that include
speci�c values of properties shall be answered by the reasoning component, all properties
have to be serialized and added to the knowledge base.
In either case the reasoning component periodically infers new knowledge and updates the

simulation state. Similarly, the reasoning process is initiated each time a SPARQLquery arrives.
At this point, the uniform accessmodel is highly bene�cial, because all updates can be achieved
by means of the setmethod. Since entities and state variables are identi�ed by UUIDs in the
knowledge base as well as in the application, the matching process is straightforward.

5.5.3 Planning

In order to allow to use the action de�nitions from the ontology more e�ectively, the plan-
ning4J library (Cerny, 2012) was used to implement a planning component. Planning4J
provides an abstraction layer between Java and PDDL enabled planners, by creating PDDL
�les and passing them to the planner in use. In this way, the latter can easily be exchanged,
thereby providing the developer with an opportunity to use the most e�cient planner at hand.

Planning DSL

In addition to the planning4J library, a domain speci�c language was implemented to allow
for higher understandability of action de�nitions as well as preconditions and e�ects. It is
based on the value descriptions used in the Simulator X framework, wherefore no additional
mechanisms to establish links between the ontology contents and program code are necessary.
Every action description in the DSL contains an identi�er, a list of preconditions, a list of

positive e�ects, and a list of negative e�ects. Each list consists of Predicates, which are
the representatives of relations in the DSL. A predicate is de�ned by means of the language
keywords asParameter, is, has, and the as well as semantic values and value descriptions.
Listing 5.16 exempli�es the application of this DSL using the example of an attach action.

¿e action is assumed to have the e�ect that a second object is part of the target entity. In line 8,
9 and 12 the second entity is speci�ed by means of the asParameter keyword. ¿e parameter
name actionObject is subsequently used to identify the same entity. ¿e precondition that
requires the action object to be compatible with and being close to the target entity is speci�ed
using the is keyword. Internally, these speci�cations are mapped to the respective planning4J
concepts.
In the same way, the e�ect of the described action is speci�ed in lines 11–14: the action

only does have positive e�ects (i.e. no NOT operator is used). Since e�ects are represented by
predicates, too, the same DSL from above is applied: in line 12, the PartOf value description
is used to specify the results of the action.
Action descriptions are registered with the planning component: its interface allows to

register tuples of action descriptions and functions, linking the description to the function to
be invoked. Listing 5.17 shows the usage of the planning component.

175

Chapter 5 Simulator X

1 def testAttachAction(clock : Entity, battery : Entity){
2 def attach(target : Entity)(params : Map[Parameter[_], SVal[_]]) = {
3 val part = params(Entity asParameter actionObject))
4 part.set(partOf -> target)
5 Continue calling NextAction
6 }
7

8 registerAction(AttachAction definedFor clock, attach(clock))
9

10 Planning4jComponent.createPlan(battery is PartOf the clock){
11 case Some(plan) => plan.execute()
12 }
13 }

Listing 5.17: Exemplary usage of action descriptions: in line 8 the attach function from lines 2–6 is registered
using the action description from listing 5.16. The planning component then is utilized to create a plan that
results in the battery entity being part of the clock entity (lines 10–12).

Combining AI components

Figure 5.8 sketches a scenario in which multiple AI components collaborate to create an IVE,
whereby use case 1.3 is covered. ¿e overall goal is to activate a clock by attaching a battery to
it. For this purpose, the ontology is assumed to contain the concepts Clock and Battery.
Moreover, a PoweredClock is a member of the class of OperativeObjects, which in turn
is a subclass of the class of objects that are operative. Finally, a PoweredClock is de�ned
as a Clock that contains a Battery. With these concepts at hand, the reasoning component
observes the simulation state and updates it when new facts are inferred.
¿e planning component is given the goal that was shown in listing 5.17: the battery shall

become a part of the clock. Assuming that it is not asserted to be close to the clock, the
planning component generates the plan to move it there before it is attached. By triggering
the MoveAction, which has to be de�ned similar to the AttachAction shown in listing 5.16,
the animation component is requested to move the battery to the position of the clock.
In the meantime, the rule engine constantly observes the application state, checking for

objects that have moved and applying the IsCloseTo rule. It checks if the distance between
an entity that has moved and any other entity has dropped below a given threshold. If this is
the case, a CloseTo relation is asserted. Depending on the application, rules can be restricted
to observe only particular entities, in order to maintain reactivity.
If the position of the clock was changed while the animation component moved the battery,

the closeTo relation will not be asserted. In that case, the planning component will re-plan the
action sequence, resulting in the execution of the same plan (with an updated target position).
Otherwise, the AttachAction is triggered. In this context, the animation component might
play an animation and will eventually set the desired PartOf relation.
At this point the reasoning component comes into play: it will infer that the clock now has a

part that is a battery, since the hasPart role is the inverse of the partOf role. Accordingly, the

176

5.5 Implemented Components

Rule Engine

Simulation State

Reasoning
Component

IsCloseTo Rule

distance
< threshold

set
CloseTo
relation

[true]

[false] remove
CloseTo
relation

IsOperative Rule

isOperative

play
Animation

[true]

[false]
stop Animation

isO
pe

ra
tiv

e

Planning
Component

Plan:
MoveAction
AttachAction

isCloseTo

Plan:
AttachAction

Goal:
partOf

[true]

[false]

OperativeObject

PoweredClock

isA

ClockisA

Battery
hasPart

operativeis

update

update

AnimationComponent

MoveAction

update Position

AnimationAction

play Animation

AttachAction

set partOf

play Animation

update update
observe

observe

Figure 5.8: Collaboration of the AI components: the planning component creates a plan that results in invoking
actions provided by the animation component. The rule engine and the reasoning component observe the
world state and add inferred knowledge.

clock is inferred to be a PoweredClock and thus operative. ¿ese facts are subsequently
added to the entities in the simulation state.
Finally, the new state is recognized by the rule engine, applying the IsOperative rule.

¿is will eventually trigger the playAnimation action in the animation component, which
could animate the hands of the clock.
In order to fully cover use case 1.3 and integrate actions of the user, consider the following

alteration of the example: instead of moving the battery automatically by the animation
component, the user is asked to but the battery in place. ¿is means, instead of triggering the
MoveAction, the planning component informs the user about the task and then switches into
a waiting state. It then regularly checks if the preconditions of the next action in the calculated
plan are met, before it continues its execution. ¿e rest of the application remains exactly the
same. Assuming that the users motions are tracked, an appropriate input metaphor can be
applied to allow for moving the battery. As soon as it is close to the clock, the application will
react as described before.

177

Chapter 5 Simulator X

As shown by this example, di�erent AI components can be connectedwithout even knowing
about one another. Since the execution of actions is triggered using events, every component
is easily replaceable. Moreover, manually attaching the battery to the clock has the same e�ect
as triggering it via actions. Consequently, the virtual environment reacts to user interactions
in the same way it does to execution of plans (e.g., by a virtual agent).

Reusability through Planning

¿e example that is described above exempli�es the possibility to achieve so ware reuse
through the utilization of action descriptions. Instead of specifying the actions to be invoked,
the desired state can be de�ned and a planning module evaluates if this state can be obtained
with the registered methods. ¿is opportunity has bene�ts and drawbacks, as discussed below.

Bene�ts of a Planning-based Approach Besides a reduced amount of work regarding
reimplementation and integration, further bene�ts of the chosen approach exist:

• ¿e amount of work related to retrieval of reusable code is reduced, since a developer
is allowed to describe what should be achieved instead of specifying how to achieve it.

• For the same reason, the amount of work related to understanding existing program
code, which is necessary to reuse it, is reduced.

• Intelligent entities in the virtual environment can apply functions based on the current
world state and thus become reactive.

In a general sense, method descriptions and automatic invocation of methods constitute a
more abstract way of programming and thus accounts for the �nding by Kim and Stohr who
state that “while most reuse has been concerned with concrete resources, many researchers
contend that larger savings can be obtained by the reuse of more abstract resources” (Kim &
Stohr, 1998, p. 6).

Drawbacks of a Planning-based Approach Although automatic method invocation is
a tempting approach, there are at least two aspects which prohibit its frequent application:

• One of the bene�ts of the approach at the same time is a drawback: since the developer
surrenders control over the way in which code is composed to accomplish a certain task,
this also reduces his in�uence on this composition. Especially in complex systems with
a large amount of registered actions the risk of unexpected program behavior increases.

• Automatic planning requires high computational e�orts and thus is only applicable for
non time-critical situations.

Consequently, automatic method invocation has to be used with care and further work
is necessary to evaluate to what extent it can be used to facilitate reusability of Simulator X
applications.

178

5.5 Implemented Components

Socket

Sim
ulator X

Socket
JSON

Physics
Sound

Ph
ys

ics
Re

nd
er

in
g Un

ity

Unity
Asset

Unity
ExisitingNode

Entity
Update

Collision
Event

JSON

Figure 5.9:Overview of the used components in the Unity setup. Either physics engine can be utilized; in the
shown setup the Unity physics engine remains unused.

5.5.4 Example Component: Unity
Multiple components were implemented for the Simulator X framework, many of which have
a specialized feature set, such as providing sensor data, rigid-body physics simulation, or
stereoscopic 3D rendering. In order to demonstrate the applicability of the approach one of
these will be discussed in further detail: the Unity engine (cf. section 2.3.3) was prototypically
linked to Simulator X. Besides the opportunity of using the physical simulation and 3D
rendering features of Unity, this also allows to use the Unity content editor for the creation of
VEs. ¿e following section describes the steps taken to implement the connection, thereby
exemplifying the methods that have to be applied to create a reusable Simulator X component.
¿is example will be continued in the next chapter, and eventually it will fully cover use
case 1.1.

Connection to Unity Initially, a means to connect to the Unity engine has to be chosen.
Besides the implementation of a Unity plugin, the possibility of a connection via network
exists. While the �rst promises higher performance, the second allows to run the Unity
so ware on a di�erent machine, which is a desirable feature in some setups. Furthermore,
the networking layer that is created on the Simulator X side can be reused to connect other
engines by applying the same approach.
Eventually, the decision to choose the networked solution was made. Since the standard

serialization format that is provided by Java is not usable in this context, JSON (Ecma Interna-
tional, 2013) was chosen for serialization. ¿is is especially reasonable since JSON-LD (Sporny,
Longley, Kellogg, Lanthaler, & Lindström, 2013), which is based on JSON, can possibly be
used in later implementations to facilitate the utilization of semantics.

Serializable Elements Besides the format that is used for serialization, the elements to be
serialized have to be identi�ed. In order to utilize the rendering capabilities of Unity, a way to
access existing assets in the scene as well as to instantiate new assets was created. For rendering
aspects only the position, rotation, and scale are updated, whereas physical simulation involves
the mass of an entity. Moreover, collision events are exchanged between both applications. In

179

Chapter 5 Simulator X

1 val rotationConverter = new Converter(local.Rotation)(global.Transformation)
2 {
3 def convert(i: ConstQuat4): ConstMat4f =
4 ConstMat4f(rotationMat(Quat4(i.d, -i.a, -i.b, i.c)))
5

6 def revert(i: ConstMat4f): ConstQuat4 = {
7 val tmp = quaternion(Mat3(i))
8 ConstQuat4(tmp.d, -tmp.a, -tmp.b, tmp.c)
9 }
10 }

Listing 5.18: The rotation converter used by the Unity connection.

the ideal case, a C# counterpart to Simulator X would exist, which can handle the internal
messages. Due to the prototypical nature of the connection, the intermediate step of wrapping
Simulator X messages and serializing them into JSON strings is adopted.
Figure 5.9 exempli�es the connection between Simulator X and Unity. Besides the shown

physics and sound component, any other component can be attached to Simulator X and,
thus, to Unity.

Type Conversion

¿e type conversion mechanism is highly bene�cial for the connection between Simulator X
and Unity, since Simulator X does use matrices to represent object transformations, whereas
Unity utilizes quaternions and vectors. Furthermore, Unity does apply a le -handed co-
ordinate system, whereas the core representation of Simulator X assumes a right-handed
coordinate system.
Listing 5.18 exempli�es the converter that is used by the Unity component. Although the

conversion process is rather simple, changing the coordinate system is a common source of
errors. With the centralization by means of converters this source is eliminated.

Asset / Aspect Connection

As mentioned above, two aspects are used for the connection to Unity: one for existing assets
and one for those which shall be created at runtime.
¿e existing objects in the Unity scene are connected using the UnityExistingNode

aspect. A C# script, which instantiates the Unity network server to which a Simulator X
application connects, sends information about every game object in the Unity scene. ¿e
name of game objects also has to be provided in the UnityExistingNode aspect, wherefore
it can be utilized to create a link between the Unity Game Object and the Simulator X entity.
In order to do so, the Unity object ID and Simulator X UUID are sent to the Unity application
which stores this information. Every EntityUpdatemessage that is sent a erwards will be
applied to the game object that is linked in this way.
New objects are instantiated by utilization of the UnityAsset aspect. ¿is aspect is used

to instantiate an asset that is available in the loaded Unity scene, using the provided position,

180

5.5 Implemented Components

Figure 5.10: Running example with both Unity (top) and jVR renderer (bottom). Only the table and the jumping
balls are synchronized, other objects in the Unity scene, e.g., the tree, the camera position, and the lights, are
ignored by the Simulator X application.

orientation, and scale values. Similar to the UnityExistingNode aspect, the name of the
asset and a pair of IDs are used to identify the entity at instantiation-time and at runtime,
respectively.

State Updates

State updates are executed each time a value change occurs on either side of the connection.
For Simualtor X, this is recognized by observing state variables and sending an EntityUpdate
message for every value update. In Unity the process is more complex, since no noti�cation
mechanism for arbitrary values is provided. Currently, thehasChanged�ag of thetransform
of every game object that is known to Simulator X is checked on a per-frame basis to determine
if an EntityUpdatemessage has to be sent.

181

Chapter 5 Simulator X

Besides property updates, both sides are noti�ed about the removal of entities. When the
connection is closed by the Simulator X application the Unity script resets the scene and waits
for a new connection. In this way, the Unity application is used as a render server to which
Simulator X applications can connect.

Events

¿eprototypical connection does only support collision events, which are instantly distributed
to the opposite peer. A generic SimXEvent class has been implemented from which every
new event class can derive. A erwards, only event speci�c methods as well as serialization
related functionality have to be implemented for the new event class, and its Executemethod
has to be called on each observation of the event.

Results

Figure 5.10 shows the running application. Adding the two above-mentions aspects is the
only change that has to be made to make the Simulator X application (which is shown in
the bottom �gure) to use the Unity engine for rendering. A more detailed overview of these
changes is presented in the context of a case study in the next chapter. ¿e resulting scene is
shown in the upper part of the �gure.
In fact, both screenshots were taken simultaneously, wherefore both the ShapeFromFile

aspects and the Unity aspects were added to the entity descriptions. Physics was simulated
by the JBullet component in the Simulator X framework. Since neither the position of the
camera nor the light in the two scenes were synchronized, shadows and distance to the objects
slightly di�er.
As shown by this example, Simulator X allows to create reusable simulation components

from existing so ware. ¿is does not only apply for single so ware libraries but also for
complete engines, like Unity, and is achieved bymeans of the techniques proposed in this work.

5.6 Summary
In this chapter, the integration of the proposed techniques into the Simulator X framework
was presented. Prior to that, the design decisions that have been taken at the beginning
of its development were discussed. Out of these the adoption of the actor model and the
integration of an ontology have already been reviewed before. In addition, the Simulator X
framework is built using the Scala programming language. Especially its multi-paradigm
support, integrated DSL support, as well as the conciseness of created code were found to be
highly bene�cial for reusable RIS applications.
Subsequently, the architecture elements of Simulator X that correspond to the elements of

the component model presented in the previous chapter were discussed. Code examples from
the Simulator X framework were provided to show its utilization in the context of a simple
example. ¿ese indicated the readability, locality, and simplicity of application code.
¿e overview furthermore gave a hint of the low amount of work that is required to integrate

a simulationmodule and the related aspects into an application: only one line has to be changed
to integrate a simulation component and, depending on the formating, one or few more lines

182

5.6 Summary

have to be changed for each entity description. ¿is and related aspects will be reviewed in
further detail in the next chapter.
A erwards, in describing the framework’s architecture elements, its facilities to support

distributed computing, automatic type conversion, and state history were emphasized. Re-
garding the �rst aspect, the adoption of the actor model and its message-based architecture
showed to be highly advantageous: no changes have to be made to a simulation component in
order to execute it on a di�erent computer in a networked application structure.
¿edescribed type conversion process is almost unnoticeable by component and application

developers (a er the respective converters have been de�ned), as was indicated by a further
example. ¿is is facilitated by the uniform access model that was presented in the previous
chapter.
In combination with the uniform representation of the application state in the form of

state variables the same model allowed to create a state history. ¿is is highly bene�cial for
simulation modules that require information about states of the application that have been
overwritten by more recent versions. Whereas the implementation of such a feature with a
game engine or similar frameworks would require tremendous e�orts, the implementation in
Simulator X required only two aspects to be adjusted. Again, no changes had to be made to
any simulation component.
Besides these functional features, the general structure of a Simulator X project was de-

scribed and bene�cial aspects for reusability discussed. ¿e git version control so ware is
used to maintain a determinate structure of component repositories. Such (sub-)repositories
can be �exibly combined, allowing for reuse and frequent updates at the same time. ¿e
reluctance of developers to introduce dependencies into their programs is answered with
the utilization of maven repositories, which allow to automatically resolve dependencies and
obtain the required �les.
Finally, components that regard the integration of additional sensors, interaction of decou-

pled AI modules, as well as preexisting, complex engines were exempli�ed. In all of these
examples it could be observed that the coupling of simulation modules was reduced to a
minimum: new sensor data can easily be used by modules that were part of an application
before, AI modules can work together to achieve a common goal without being even aware
of one another, and the prototypical creation of a simulation component that enables the
utilization of a high-end game development framework has shown to be feasible.
¿us, use cases 1.2 and 1.3 where fully covered. Use case 1.1 has been accomplished in

parts: the replacement of a rendering component from an existing application is yet to be
shown. ¿e following chapter will hence present a case study that continues the investigation
of this use case. It furthermore presents di�erent aspects that have been considered to further
validate the applicability of the presented approach.

183

Chapter 6

Validation
Before so ware can be reusable it �rst has to be usable.

Ralph Johnson

6.1 Evaluating Reusability
As indicated in section 2.2.5, measuring the reusability of an IRIS framework is a compli-
cated task, usually rather the reusability of (existing) so ware modules is evaluated. Yet, the
developed methodology aims at supporting the process of creating such reusable components.
Due to the diversity of so ware modules that are applied in the �eld of RIS, evaluating the

reusability of a single implemented component would yield unrepresentative results. Instead,
the tasks that have to be performed to create and replace a component provide a much more
meaningful impression of the results of this work. As indicated by the quotation from Ralph
Johnson, a framework that is meant to foster reusability has to be usable in the �rst place.
¿erefore, the experiences of a framework’s users as well as the projects that are achieved with
it provide further indications for its utility.
Consequently, the following sections will take di�erent views on the proposed methods as

well as their implementation in the context of the Simulator X framework:

• A case study that expands on the integration of the Unity Engine, which was introduced
in the previous chapter, is discussed to indicate the amount of work that arises with the
creation, integration, and exchange of a simulation component.

• Di�erent projects that utilize the Simulator X framework are presented to illustrate its
usefulness in di�erent �elds of application.

• In the winter term 2014 a �rst usability study was conducted in a RIS course at the
University of Würzburg, the results of which are discussed at the end of this chapter.

6.2 Case Study: Replacing a Rendering Component
One of the goals of this work is to enable the replacement of simulation components without
a�ecting other parts of the application. Hence, this section evaluates the process of exchanging
a component in the context of the Simulator X framework. To provide an example the jVR
rendering component, which is provided with the framework, is meant to be exchanged by
the Unity component that was introduced in section 5.5.4.

185

Chapter 6 Validation

6.2.1 Creating a new Component

An outline of the component that establishes the connection to the Unity framework was
already given in section 5.5.4. In the next paragraphs, di�erent aspects to the implementation
of this component are discussed.
¿e creation and integration of a Simulator X component, which can either wrap an existing

simulation module or contain the desired functionality itself, is a 4 step process:

1. Create a component ontology.

2. Create aspects for the component.

3. Create a class that inherits from the abstract Simulator X Component class and imple-
ments the methods that are prescribed by the interfaces from section 4.5.3.

4. Integrate the component into an application.

Ontology File Every Simulator X component has to provide an OWL �le that imports
ontologies de�ning required concepts and component speci�c information (cf. section 3.4.1).
¿e imported ontologies usually are limited to the basic descriptions ontology or to some
other ontology, which imports that ontology.
Component speci�c knowledge especially comprises information on semantic types that

are used by the component as well as by the aspects it provides. In the context of the Unity
component this are the UnityAsset, UnityExistingNode, as well as types for translation,
rotation, and scale. ¿e OWL de�nitions for the Unity component are shown in listing A.6 in
appendix A.

Aspects & Event Descriptions For Simulator X the two mentioned aspects as well as
the required event descriptions are automatically generated from the ontology �le. In the
Unity module, which is implemented in form of a C# script included in a respective Unity
application, these elements have to be implemented manually. ¿is task is straightforward,
since it only requires to map the associated messages to the creation of the represented objects
and events. Nevertheless, it requires a considerable amount of work, which is indicated by the
449 lines of code that were written for this feature (cf. table 6.1).

Component Class In order to wrap a simulation module into a Simulator X component
the interfaces that were presented in section 4.5.3 have to be implemented. ¿e main aspects
include setting up the module, synchronizing its internal state representation with the entity
model of Simulator X, and forwarding events. ¿is is facilitated by the concise interface that
is provided by entities, state variables, and event descriptions.
¿e Lines of Code (LOC) that constitute the connection between Simulator X and Unity

are shown in table 6.1. In the example of the Unity component the position, scale, and
orientation of the rendered entities have to be synchronized with the simulation state, which
is maintained by the Simulator X framework. ¿is is achieved by implementing the methods
from the EntityCreation and EntityControl interfaces, which manage the creation and
maintenance of entities. On each creation of an entity the required information is sent to

186

6.2 Case Study: Replacing a Rendering Component

Aspect LOC Simulator X (Scala) LOC Unity (C#)
Unity Component 265 129
(De)Serialization 209 183
Networking 102 267
Type Conversion 28 *
Aspects & Events (115) 449
Total 719 1028

Table 6.1: Lines of Code analysis for the prototypical Unity component. Type conversion is performed in combi-
nation with the (de)serialization process in C# by directly creating the desired JSON strings.

the Unity module using said interfaces. Moreover, changes to the relevant state variables
are observed by adding callbacks and sending update messages via the network connection.
¿e event descriptions of the synchronized events are used to add further callbacks that also
result in the emission of a respective message. ¿e former is conducted in the enableAspect
method, whereas latter is performed in the component’s constructor.
In order to establish the reverse direction, messages that are received from the Unitymodule

are propagated to the simulation state by means of the set and emitmethods of the a�ected
state variables and event descriptions. ¿e same has to be achieved in the Unity script that is
attached to the Unity application. ¿e associated amount of code is listed in the row titled
‘Unity Connection’ in table 6.1.
Due to the adoption of a network-based approach further implementations regarding

(de)serialization and networking code have to be performed. ¿e amount of necessary
program code is shown in the ‘(De)Serialization’ and ‘Networking’ rows of table 6.1.
As discussed in section 5.5.4, the representation in Unity is di�erent to the one adopted in

Simulator X. At this point, the utilization of Simulator X’s type conversion feature is highly
bene�cial, since program code that is used for conversion can be implemented in a centralized
way. ¿is relieves a later developer from coping with related issues. As shown in the ‘Type
Conversion’ row of table 6.1, only 28 lines of code are necessary to achieve the conversion
between both representations. In the implemented Unity script no conversion has to be
performed, since the respective data types can easily be created from the serialized values,
which are converted by Simulator X.

Integration into an Application ¿e integration of a new component into an application
is simpli�ed by the structure of the Simulator X framework: since a component is entirely
decoupled via messages, which are encapsulated in the so ware interfaces that were presented
in section 4.5, only aspects have to be added. On the one hand, the component aspect has to be
attached to the applicationConfiguration. On the other hand, each entity description
that is used to instantiate an entity that shall be included in the component’s simulation loop
has to be added a respective aspect.
Consequently, one line of code is required for each entity description as well as for the in-

stantiation of the component. Since the process of integrating a component into an application
is also relevant for exchanging a component, more details are given in section 6.2.2.

187

Chapter 6 Validation

Discussion

¿e implemented Unity component has a rather prototypical status, since only the creation
of assets as well as the synchronization of a single event type have been implemented. As
table 6.1 indicates, this was not achieved without e�ort. It is worth noting that nearly half of
the lines of code are related to serialization and networking code, whereas only the other half
is related to the creation of a reusable component, which was the essential aspect of this case
study. Still, program code that is related to serialization can be reused when other modules
are to be connected.
Utilizing the feature of code generation also shows its bene�ts: while the manual imple-

mentation of aspects and events resulted in 449 lines of code to be written on the Unity side,
all of the 115 lines for Simulator X were generated from the ontology. Taking into account the
fact that Scala code tends to be more concise than C# code, the bene�ts can be considered
even higher than the plain numbers suggest.
¿e most important observation, however, is the fact that the utilization of the created

component requires only one line of code per aspect that is utilized in an entity description.
Since entity descriptions are largely generated from the ontology, the remaining e�orts are
vanishingly low: once a simulation component has been created, it can easily be reused in
multiple applications.
In conclusion, these �ndings are in line with the observations of other researchers (cf.

section 2.2.2). ¿e creation of reusable so ware components requires huge amounts of work,
whereas considerable advantages can subsequently be drawn from these e�orts.
As shown in the next section, this is especially the case when a Simulator X component has

to be exchanged by another one.

6.2.2 Exchanging Components

In the situation of an existing application, exchanging a simulation component involves the
integration of a new component into the application logic. ¿is commonly is achieved in a
closely coupled manner, wherefore the application code has to be modi�ed in many places.
In this work a component model and associated so ware interfaces have been de�ned that

constrain the number of ways in which a component and an application can be interconnected.
More precisely, three points of intersection exist:

1. entities that are retrieved by means of the world interface,

2. entities that have an aspect which belongs to the component, and

3. events that can be published and received.

Consequently, exchanging a component requires to consider updating the related aspects.
¿e utilization of the world interface, however, is completely internal to a component, where-
fore the application developer does not have to perform any modi�cations. ¿erefore, besides
adding the component aspect to the list of used components, only the latter two items need to
be considered for the integration of a component.

188

6.2 Case Study: Replacing a Rendering Component

Ball
Entity Description

Shape

SphereShape

Radius

hasProperty

Physical SphereMass Physical Aspect

Aspect

hasProperty

hasAspect

Graphical Aspect Graphical Sphere

hasAspect

Mesh hasProperty

Unity Sphere JVR Sphere Transformation

hasProperty

ball-
description

isA

Figure 6.1: Simpli�ed relations between concepts that are involved in the description of a virtual ball entity. It
is su�cient to specify the ball-description to be an instance of the Ball Entity Description concept if either the
Unity Sphere or the jVR aspect is present. Otherwise a HASASPECT relation has to be added in order to resolve
the ambiguity.

Updating Entity Descriptions

As mentioned in section 5.2.6, each component provides a set of aspects that can be used in
entity descriptions in order to include the component in the entity creation process. Since these
aspects are described in the component’s ontology �le, this �le initially has to be imported by
the application’s ontology �le. ¿is can be achieved by adding an Import statement, either
manually or by using a graphical user interface (e.g., the protégé OWL editor created by the
Stanford Center for Biomedical Informatics Research (2015)).
If the component is the only one that provides that aspect type, no further steps regarding

the ontology have to be taken. ¿is is owed to the fact that the aspects that match the entity
description can automatically be determined by the code generation mechanism. If, on the
other hand, multiple components of the same type are used in the application, the entity
descriptions in the ontology have to be updated (cf. section 3.4.2). More speci�cally, the
aspects that are associated to the descriptions have to be speci�ed using the hasAspect role.
¿ese concepts are visualized in �gure 6.1.
¿e changes that have to be made to an existing program are exempli�ed in listing 6.1.

¿e program is assumed to have utilized the jVR rendering component before, wherefore
its component aspect (line 5) is part of the application con�guration. Similarly, each entity
description contains an aspect of the component (exempli�ed by the ShapeFromFile aspect
in line 15). ¿e application con�guration and entity descriptions have to be adjusted to replace
the jVR component by theUnity component. In the example this is achieved by replacing line 5
with line 7 and line 15 with line 17, respectively. It is also possible to utilize both components
at the same time, in which case the whole content of listing 6.1 has to be used.
If an existing component is exchanged for one that provides the same functionality, chances

are that the constructor parameters are compatible for the old and new aspects. However,
o en the parameter values have to be adapted, for example, if di�erent assets are used and the
paths to the associated �les change. In this case, the entity descriptions have to be adjusted to
maintain the applications operability. A er the respective adjustments have been made, the
replaced component will include the entities in its simulation loop as the previous one did.

189

Chapter 6 Validation

1 protected def applicationConfiguration = ApplicationConfig withComponent
2 // physics component
3 JBulletComponentAspect(physicsName, gravity) and
4 // JVR renderer
5 JVRComponentAspect(gfxName) and
6 // Unity renderer
7 UnityComponentAspect(unityName, "localhost", 8000)
8

9 // exemplary entity description
10 case class BallDescription(name : String, radius : Float, position : Vec3)
11 extends EntityDescription (name,
12 // physical aspect
13 PhysSphere(mass = 1f, transform = position, radius = radius),
14 // JVR aspect
15 ShapeFromFile(file = "ball.dae", scale = Vec3(radius*2f)),
16 // Unity aspect
17 UnityAsset(path = "ball", scale = Vec3(radius * 2f))
18)

Listing 6.1: Exemplary code for adding, exchanging or removing a component. In the shown con�guration the
jVR renderer as well as Unity are used. Removing the lines associated with a component (i.e. lines 5 and 15 for jVR
and lines 7 and 17 for Unity) results in the component’s removal from the application.

Updating Events

Events are semantically linked to the occurrences they represent, wherefore possible incompat-
ibilities mostly involve the symbols that identify the events. Due to being generated from the
ontology, the events that a component emits and receives are inherently compatible to those
used inside the application. A requirement for this is the assumption that all components share
the same base ontology. However, it is possible that two components were developed based
on di�erent ontologies and thus symbols might di�er. Consequently, equivalence assertions
between concepts with di�erent names but the same semantics have to be speci�ed when
such a component ontology is added to the application ontology.
In OWL this is possible by de�ning equivalent classes and individuals, wherefore a further

ontology �le that establishes a link between the ontology of the added component and the
application ontology may have to be created. ¿is task has to be carefully executed, since
unexpected results can be obtained if incorrect assertions aremade. Commonly, the ontologies
that are provided by a component are limited in size, since they build onmore general, common
sense knowledge, which is contained in other ontology �les. Moreover, the created connecting
ontology can subsequently be reused each time the component is integrated into an application
using the same application ontology. ¿erefore, the e�orts put into its creation are worthwhile.
A problematic case, which cannot be solved without contributions of the component

developers, is the situation in which the application depends on an event’s payload that is not
provided by the new component. In this case, either the application logic or the component
has to be adapted. Assuming that the latter situation does not arise, compatibility of events
either is a priori given or can be achieved by applying the above-mentioned steps.

190

6.2 Case Study: Replacing a Rendering Component

Simulator X Component LOCModule LOC Component Ratio
jVR Renderer 40294 2550 6.33%
JBullet Physics 29839 726 2.43%
LWJGL Sound 1955 429 21.94%

Table 6.2:Comparison between lines of code of Simulator X components and the associated simulationmodules.
For the LWJGL sound module only the code that is related to the OpenAL library was investigated.

6.2.3 Reuse in Simulator X

Applications that are createdwith the Simulator X framework usemultiple simulationmodules,
which are wrapped into reusable simulation components. In this context, a module itself
is reused ‘as-is’, wherefore the advantages of the approach can be evaluated by contrasting
the lines of code that a module comprises with those that are used to integrate it into an
application. Table 6.2 shows the results of this comparison for three prominent Simulator X
components and the associated modules.
As mentioned in section 6.2.1, each entity description requires one additional line of code

in which it is associated with the component by adding the respective aspect. ¿e amount of
code that is required for this depends on the number of di�erent entities that are used in an
application. Yet, it is rather small when compared to the size of the simulation component
and especially to the wrapped module.
As indicated by the numbers in table 6.2, the integration of a simulation module into an

application requires a lot less e�ort than its recreation. Yet, this does not re�ect the actual
gained bene�ts, since this view supposes that the whole module would have to be rewritten.
¿is is only the case, if it is deeply integrated into a system and cannot be extracted (i.e. when
it does not have the nature of a module at all). In contrast, it is rather the code that is used to
integrate the module into a certain application which has to be reimplemented. As discussed
in section 6.2.2, this task is simpli�ed by the presented methods.
From a di�erent point of view, the application code has to be adapted to the simulation

modules that shall be integrated. ¿is requires the creation of code for both the application
logic and the connection to the simulationmodules. ¿e former is dependent on the particular
application and hence hardly subject to reuse, whereas the latter clearly is.

Code coverage In order to evaluate the bene�ts of the proposed model, the amount of
component code that is (re-)used by di�erent applications can be measured. Table 6.3 shows
the result of suchmeasurements for two SimulatorX applications:13 a basic example application
which features multiple balls bouncing on a rotating table, as well as the far more complex
SiXton’s Curse demonstration (Fischbach et al., 2011), which will be presented in section 6.3.1.
A screenshot of the former was shown in the context of introducing the Unity component in
section 5.5.4 on page 181. Table 6.3 contains the number of covered statements. ¿is provides
a more appropriate measure than the commonly used LOC metric, since a single line may
contain multiple statements of arbitrary length or a statement might be spread over multiple
lines of code.

13¿e contents of table 6.3 were created using the scoverage tool, available for download at http://scoverage.org.

191

http://scoverage.org

Chapter 6 Validation

Total
Stmts

Shared
Invocations

Invocations
Basic Example

Invocations
SiXton’s Curse

% # %T %S # %T %S
Core Component 10124 3383 33.42 3555 35.11 95.61 4155 41.04 81.42
jVR Renderer 3891 1357 34.88 1357 34.88 100.0 2278 58.55 59.57
JBullet Physics 1179 496 42.07 503 42.66 98.61 867 73.54 57.21
LWJGL Sound 707 326 46.11 352 49.79 92.61 471 66.62 69.21

Table 6.3: Number of statements of di�erent Simulator X components (total number and number of those
invoked in the context of the basic example as well as the SiXton’s Curse application). %T and %S indicate the
percentages regarding total statements and shared invocations. Measurements were performed by applying
the scoverage tool during a typical run of each application.

¿e ‘Total’ column shows the overall number of statements that are present in the respective
module, whereas the ‘Shared Invocations’ column lists the number (#) of statements that were
invoked by both applications and the related percentage (%) regarding the total available
statements . ¿e remaining two columns show the number (#) of statements invoked by
the respective application and the percentage to which these relate to the number of total
statements (%T) as well as to the number of shared invocations (%S).
Since Simulator X is a research framework, the components are not optimized and hence

o en contain dead code. ¿erefore, the comparison of the reused total statements rather
provides an indication of the reused percentage of a component than reliable data. For
this reason, table 6.3 also relates the number of invoked statements to the number of shared
invocations. ¿ese show the actual reuse rates between the two applications: the basic example
application uses more than 90% of code of components that was also used by the SiXton’s
Curse application. Seen from the opposite direction, more than 57% of the code that is used
by the simple example application was reused by the much more complex SiXton’s Curse
application.

Integration e�orts Regarding the integration of components, SiXton’s Curse utilizes 35
entity descriptions involving 693 lines of code (21,35% of 3246 lines of application code),
whereas the basic example uses �ve entity descriptions involving 116 lines of code (41,28% of
281 lines of application code). ¿ese numbers are higher than the expected values, which are
calculated by multiplying the number of entity descriptions with the number of components.
¿is would result in 140 lines of code (except for 693 lines) for SiXton’s Curse as well as 20
lines (instead of 115 lines) for the example application. ¿e reason for this is that the entity
descriptions are split into multiple lines (one per parameter of an aspect) to allow for higher
readability.
Finally, table 6.4 shows the lines of code that were invoked in the context of both applications.

¿ese values were measured using the Coverage plugin of the IntelliJ IDEA IDE.14 Except for
the percentage of the JBullet component’s code that was used by the SiXton’s Curse application,
they are in line with themeasurements from table 6.3. ¿e reason for this exception is assumed
to be related to the ratio of statements per line in the part of code that is exclusively used by
the SiXton’s Curse application.

14 IntelliJ IDEA is available via https://www.jetbrains.com/idea/.

192

https://www.jetbrains.com/idea/

6.3 Developed Applications

Total
LOC

Invocations
Basic Example

Invocations
SiXton’s Curse

Core Module 7578 2939 38.78% 3228 42.60%
jVR Renderer 2550 946 37.10% 1466 57.49%
JBullet Physics 726 298 41.05% 436 60.06%
LWJGL Sound 429 244 56.88% 283 65.98%

Table 6.4: Lines of code of Simulator X components and their usage in the basic example as well as the SiXton’s
Curse application.

6.3 Developed Applications
¿e Simulator X framework has been the basis for multiple applications in diverse areas.
Among these are multiple research demonstrations, exhibitions, and student projects. In the
following sections the most prominent applications that have been created are presented.

6.3.1 Research Demonstrations

¿e Simulator X framework is designed to be used in various VR and MR setups. ¿us,
applications range from simple 2D touch interfaces to fully immersive 3D VEs.

SiXton’s Curse

¿e frameworkwas initially presented at the IEEEVirtual Reality conference in 2011 (Latoschik
& Tramberend, 2011). At the same conference a research demonstration (Fischbach et al.,
2011) was given to present the features of the prototype. ¿e shown application involves the
medieval city ‘SiXton’, which is being haunted by ghosts. A user, or rather a player, slips into
the role of a magician, whose task is to keep the ghosts from achieving their goal of marooning
the citizens. To achieve this goal, the ghosts gather powder kegs, which are distributed over
the city, at the bridge that constitutes the only entrance to the town. Moreover, if a ghost is
not carrying a barrel, it attacks the magician if he is in sight. When enough kegs are located
at the bridge, they explode, destroy the bridge, and the game is lost. ¿e magician can use
three di�erent spells to stop the ghosts. In order to cast a spell the user has to utter the correct
phrase and perform the associated gesture.
As shown in �gure 6.2, the application features 3D stereoscopic rendering. ¿e user

is tracked using an optical tracking system to allow for gesture recognition and correct
perspective rendering. In addition, voice commands are recoded using a wireless microphone,
and a Nintendo WiiRemote is used in order to navigate inside the virtual environment.
In the context of this application a component for simulating the behavior of the virtual

ghosts was implemented. It includes a state machine, a path planning algorithm, and amodule
that controls the hovering-behavior of the ghosts.
¿e state machine manages the states of the ghosts and evokes certain behavior. If a ghost

has no particular task, the world interface is queried for all barrel entities. If the state machine
has no record about a barrel being involved in another ghost’s behavior, the barrel becomes
the idle ghost’s target. For this purpose, its position state variable is observed. If the position
is updated, e.g., because the magician pushed the barrel, a new path is planned and the

193

Chapter 6 Validation

Figure 6.2: SiXton’s Curse research demonstration at the IEEE VR ’11 in Singapore.

ghosts behavior is updated. According to the newly planned path, the hovering-behavior
module moves the virtual ghosts by applying impulses to the physically simulated ghost
entities, eventually resulting in the desired movement. ¿e noti�cation is achieved by means
of ApplyImpulse events, which are subscribed by the physics component.
Although the behavior component potentially can be split into the above-indicated three

independent components, this was not the case when the application was implemented.
Nevertheless, it is completely decoupled from other components: removing the associated
aspect from the ghost entity description results in the ghost resting on the ground.
¿e inherently complex structure of the implemented application revealed the applicability

of the taken design decisions. At the time of the publication these included symbol based
access, the Scala programming language, and the utilization of the actor model.

The smARTbox

Whereas SiXton’s Curse requires a complex hardware setup, the smARTbox (Fischbach,
Latoschik, Bruder, & Steinicke, 2012) provides a portable setup (cf. �gure 6.3). It consists of
the smARTbox itself, which is a wooden box that features a back-projected multi-touch sur-
face. Inside the box a stereoscopic 3D projector and the required sensors for the multi-touch
functionality are located. Furthermore, it involves user-tracking by means of a Microso
Kinect sensor.

194

6.3 Developed Applications

Figure 6.3: The smARTbox being presented at the ICEC ’12.

Figure 6.3 shows the smARTbox running a virtual �shtank demonstration on the 11th
International Conference on Entertainment Computing (ICEC 2012, Fischbach, Wiebusch,
Latoschik, Bruder, and Steinicke (2012a)). ¿e behavior of the �sh is simulated using a swarm
simulation component as well as a custom-made underwater physics component. Further
components include the VRPN component and the jVR rendering component that are also
used in the SiXton’s Curse setup.
As indicated in section 6.2.2, exchanging the physics engine only required the instantiation

of the engine as well as adjusting entity aspects. Since other components are not directly
coupled to the physics engine, no further steps had to be taken.
In addition to the simulated �sh, the touch-surface was used to detect interactions with the

virtual water surface. ¿e smARTbox served as a platform for di�erent research demonstra-
tions (Fischbach et al. (2012a) and Fischbach, Wiebusch, Latoschik, Bruder, and Steinicke
(2012b)). As a part of this, the �shtank application was extended by the utilization of �ducial
markers to allow for feeding the �sh as well as by virtual re�ections on the water surface
utilizing the Kinect sensor.

XRoads

¿emost recent development that is based on the Simulator X framework is the Cross-Reality
On A Digital Surface (XRoads) project (Giebler-Schubert, Zimmerer, Wedler, Fischbach, &
Latoschik, 2013). It involves porting a board game to a multi-touch table and is performed in
cooperation with the German games publisher Pegasus Spiele. XRoads is shown in �gure 6.4.

195

Chapter 6 Validation

Figure 6.4: XRoads being presented at the Spiel ’14.

In the context of the project, new interaction techniques for virtual table tops are evaluated,
wherefore di�erent sensors (e.g., the leap motion controller) are attached to the digital surface.
Furthermore, voice commands and the utilization of hand-held devices (i.e. smartphones
and tablet-PCs) are supported by the XRoads application. ¿e modular architecture of the
Simulator X framework is highly bene�cial for this intention, since it provides an abstract
layer on which the sensor data can be applied. XRoads reuses the rendering component that
was already used in the SiXton’s Curse and the smARTbox demonstrations, even though only
2D graphics are rendered. An additional Graphical User Interface (GUI) component was
implemented, which now is also used in the context of the SiXton’s Curse application. ¿e
results of the XRoads project have been published in the form of research demonstrations by
Fischbach, Zimmerer, Giebler-Schubert, and Latoschik (2014) and Zimmerer, Fischbach, and
Latoschik (2014).

6.3.2 Exhibitions

Besides the research demonstrations mentioned in the section above, the XRoads project also
was shown on the Internationale Spieltage SPIEL 2013 and 2014 in Essen as well as on the Role
Play Convention 2013, 2014, and 2015 in Cologne. Each of these exhibitions lasted multiple
days with visitors trying the applications all day long. In this way, the applications—and
thus the concepts implemented in the Simulator X framework—were tested in a realistic
scenario. ¿e fact that Pegasus Spiele requested the demonstration for �ve times indicates
that Simulator X -based applications are interesting not only in the research context but also
for commercial projects.

196

6.4 Opinions: Questionnaires

In addition, both the smARTbox and the XRoads demonstration were successfully shown
at theMainfranken-Messe 2013 in Würzburg. ¿is is especially noteworthy, since none of the
developers who could have helped in case of any problems with the application was present at
the fair.

6.3.3 Teaching-related Applications

As stated by the introductorily cited quote, usability is a requirement for reusable so ware.
Especially in the context of the development of highly complex so ware, like VR applications,
this is an ambitious goal. ¿is is complicated further if developers do only have limited
experience in the �eld of VR and programming in general. ¿us, by the application of a VR
research framework in the teaching context its usability was put to the acid test.

Courses

¿e Simulator X framework has been applied in multiple bachelor and master courses at
the University of Würzburg. In this context, exercises ranged from the implementation of
an AI-enhanced version of the Pac-Man game to a reimplementation of the Put-that-there
application by Bolt (1980).
¿is approach has been practiced for multiple years, indicating the understandability and

usability of the framework. ¿e fact that some students do even dig deeper into the framework
to extend its functionality supports this hypothesis.

Student Projects and Theses

In addition to public demonstrations of applications that were developed using the Simulator X
framework, student projects and theses that utilized the framework were carried out. ¿ese
include the development of new components (e.g., Eckstein, 2014) and applications. Some of
these works were so successful that results could be published at peer-reviewed conferences
(Fischbach, Tre�s, et al. (2012), Fischbach, Ne�, Pelzer, Lugrin, and Latoschik (2013) and
Lugrin, Wiebusch, Latoschik, and Strehler (2013)).

6.4 Opinions: Questionnaires
As mentioned above, usability of a so ware framework is of high importance. In order to
evaluate this aspect of the Simulator X framework, it was compared to three other frameworks
from the �elds of VR applications and computer games in a usability study. It has to be stressed
that the performed study was not designed to reveal statistically signi�cant results but rather
is considered a prestudy, giving a �rst idea of the di�erences regarding the usability of the
tested systems.
¿e most problematic issue in this context is to recruit a large number of participants

who are willing to occupy themselves with the utilization of multiple RIS frameworks over a
long time. On the one hand, this is due to a certain amount of expertise that a participant
is required to have in the �eld of (RIS) application development and programming, which
immensely reduces the amount of potential candidates. On the other hand, experts in this

197

Chapter 6 Validation

Figure 6.5: Example images shown to participants to indicate the goal of their task.

�eld usually are rare and o en cannot a�ord the time that is necessary to participate in this
kind of study. Both of this complicates the selection of a randomized set of participants a lot.
¿us—sacri�cing the opportunity of generating statistically signi�cant results—the partici-

pants of the Realtime Interactive Systems as well as the 3D User Interfaces lectures, held in the
winter term 2014 at the University of Würzburg, were given the opportunity to take part in the
study. ¿ey were successively introduced to instantreality (Behr, Bockholt, & Fellner, 2011),
Unity 4, Simulator X, as well as the Unreal Engine 4 and a erwards presented a questionnaire
to evaluate each system.
¿e systems were discussed in the abovementioned order, spending four hours per week for

three weeks on each of the frameworks. In this context, an introduction to basic functionality,
user input, physics simulation, and the means to create an application that utilizes these
features were covered. For all systems, except for instantreality, the topic of integrating audio
feedback was covered additionally. At the end of each such introduction, the students were
asked to implement a ‘can knockdown’ game, which had to feature a stack of six physically
simulated boxes as well as a virtual ball that should be accelerated towards the boxes when a
button is pressed.
In order to visualize the goal of their task, the participants were shown the two images from

�gure 6.5. A er completing the task the participants were given as much time as they needed
to complete the questionnaire.
A er three months of introduction to the frameworks, the students had to choose one of the

systems with the help of which they had to solve the task described by the IEEE Symposium
on 3D User Interface (3DUI) contest 2011.15 ¿e goal was to create a 3D user interface with
the help of which a virtual version of a cube puzzle could be solved. Students formed teams of
three to �ve persons to complete this task. Starting with the announcement of the task, the
students had 42 days to work on it.
A er handing in their results, the participants were once more asked to �ll out the ques-

tionnaire to evaluate the system they had chosen. ¿e questionnaire is a composition of the
NASA task load index (NASA TLX)16, the questionnaire for the subjective consequences of

15¿e description of the 3DUI contest is available at http://conferences.computer.org/3dui/3dui2011/cfp-contest.html.
16¿e Paper and Pencil version of the NASA TLX questionnaire is available at http://humansystems.arc.nasa.gov/
groups/tlx/downloads/TLXScale.pdf.

198

http://conferences.computer.org/3dui/3dui2011/cfp-contest.html
http://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf
http://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf

6.4 Opinions: Questionnaires

intuitive use (QUESI, Naumann & Hurtienne, 2010), as well as a free text �eld into which
general comments could be inserted. Besides this opportunity to leave comments, the QUESI
questions were also added text �elds where comments could be added. ¿e questionnaire was
presented online.
Students were free to opt out of �lling out the questionnaires. Furthermore, neither partici-

pating in the lectures nor in the exercises was mandatory, wherefore the number of completed
questionnaires varies between the di�erent systems.
¿e group of participants from the RIS lecture consisted of 21 students (3 females, 18 males),

ten of which were between 21 and 23, eight between 24 and 26, and three between 27 and
30 years old. All of the participants were enrolled in the courses of study of either Human-
Computer Interaction or Computer Science. Eight participants had not used a RIS framework
before, whereas eleven had done so for 1.84 years on average (SD = 0.99) and two students
stated to have used RIS frameworks for 13 and 15 years, respectively (which, due to their age,
is assumed to be a misinterpretation of the question).
¿e group of 3DUI participants, which where evaluated anonymously to avoid in�uences

from the grading process of the lecture, consisted of 19 students (2 females, 17 males). Nine
of these were between 21 and 23, eight between 24 and 26, one between 27 and 30, and one
between 31 and 40 years old. One group consisting of three participants used Simulator X,
one group of �ve used the Unreal Engine 4, and the remaining eleven used Unity 4 for their
project. Due to anonymity of responses, it is not possible to determine the sizes of the Unity 4
teams, since not all of the participants completed the questionnaires.
¿e users of the Simulator X framework had between one and four years experience in

using the system for projects related to their studies before. ¿ey used it for 83.3 hours on
average (SD = 23.57) to complete the 3DUI task. One of the �ve students who chose to use the
Unreal Engine 4 stated to have had one year of experience using the Unreal engine, whereas
others from that group were new to the system. Yet, one of the latter had been using a similar
system for two years before. ¿ey spent 54 hours on average (SD = 12.47) to complete their
3DUI project. Only one of the Users of Unity 4 had used the system before (for two months).
From those who were new to the system, six stated that they had been using similar systems
for 3.17 years on average (SD = 2.27) before. Unity 4 was used for 96.8 hours on average
(SD = 54.70) by students to complete their project.
In the following considerations, instantreality and the Unreal Engine 4 will not be con-

sidered for statistical evaluation. ¿e former is the �rst system that was used to introduce
the students to the type of applications and the can knockdown task, wherefore it includes
the students’ e�orts to grasp the basics of the task instead of solely measuring the system’s
usability. ¿e Unreal Engine 4 was evaluated by three and �ve participants according to their
experiences in the can knockdown game and the 3DUI task, respectively, wherefore valid
statistical results are not possible.

6.4.1 Results: NASA TLX

¿e results from the NASA TLX questionnaires that were used to evaluate the systems a er
their introduction are shown in �gure 6.6a (except for the physical demand, which was
considered inappropriate in this context). Due to the limited number of completed forms,
especially for the unreal engine, the con�dence intervals are rather extensive.

199

Chapter 6 Validation

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Mental	
 Demand	
 Temporal	
 Demand	
 Performance	
 Effort	
 FrustraAon	

Simulator	
 X	

short-­‐term,	
 N=10	

Unreal	
 Engine	
 4	

short-­‐term,	
 N=3	

Unity	
 	

short-­‐term,	
 N=15	

instantReality	
 	

short-­‐term,	
 N=15	

(a) Results after three introductory weeks for each framework. The number of participants for each framework is
indicated by the values of N.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Mental	
 Demand	
 Temporal	
 Demand	
 Performance	
 Effort	
 FrustraAon	

Simulator	
 X	
 	

long-­‐term,	
 N=3	

Unreal	
 Engine	
 4	

long-­‐term,	
 N=5	

Unity	
 	

long-­‐term,	
 N=11	

(b) Long-term results after completing the 3DUI project.

Figure 6.6: Results from the NASA TLX questionnaires, lower values indicate better results. The visualized
whiskers indicate 95% con�dence intervals. The visualized mean values as well as associated values for standard
deviation are printed in appendix C.

200

6.4 Opinions: Questionnaires

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Mental	
 Demand	
 Temporal	
 Demand	
 Performance	
 Effort	
 FrustraAon	

Simulator	
 X	

short-­‐term,	
 N=10	

Simulator	
 X	
 	

long-­‐term,	
 N=3	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Mental	
 Demand	
 Temporal	
 Demand	
 Performance	
 Effort	
 FrustraAon	

Unity	
 	

short-­‐term,	
 N=15	

Unity	
 	

long-­‐term,	
 N=11	

Figure 6.7: Comparison of short-term and long-term results from the NASA TLX questionnaire for Simulator X
(top) and Unity (bottom). Whiskers indicate 95% con�dence intervals.

According to a Shapiro-Wilk test the data retrieved for both Unity and Simulator X are
normally distributed (p = .05), except for the frustration results for Unity. By the application
of a Mann-WhitneyU test signi�cant di�erences to the disfavor of Simulator X in comparison
to Unity were found regarding mental demand (U = 28.5, p = .01078) and frustration (U =
31.5, p = .01684). In contrast, participants estimated their performance to be considerably
higher using Simulator X as compared to using instantreality.
¿e results of the NASA TLX questionnaires a er completing the 3DUI contest task are

shown in �gure 6.6b. Due to the limited number of participants who used the Simulator X
framework and the Unreal Engine 4 these results cannot be used for statistical analysis but
rather provide an indication of long-term results. Again, a Shapiro-Wilk test shows the results
for Unity to be distributed normally (p = .05).

Discussion Although these results are to the disfavor of Simulator X, some positive obser-
vations can be made. Whereas the �rst impression of the Simulator X framework on users, as
compared to Unity 4, suggests to be more mentally demanding and to require higher e�orts
to achieve goals, this observation seems to vanish a er a longer period of use.

201

Chapter 6 Validation

Moreover, comparing the values of the initial NASA TLX results with those a er the
implementation of the 3DUI project puts the initial �ndings into perspective: as shown in
�gure 6.7, the negative results for the Simulator X framework did not change for the worse,
whereas the positive �ndings for Unity declined. In fact, the application of the Mann-Whitney
U test reveals signi�cant changes for the categories of temporal demand (U = 35.5, p = .01596)
and e�ort spent (U = 39.5, p = .0271).
¿e mean values and associated standard deviations that were obtained from the question-

naires are given in appendix C. All of the presented results have to be treated with caution
due to the low number of completed questionnaires.

6.4.2 Results: QUESI

¿e QUESI is most o en used to evaluate devices and graphical user interfaces, such as
smartphones, operating systems, and websites. Yet, the measured features include elements
such as ‘subjective mental workload’ (W), ‘perceived achievement of goals’ (G), ‘perceived
e�ort of learning’ (L), ‘familiarity’ (F), and ‘perceived error rate’ (E), which are interesting for
RIS frameworks, too. Although it was not initially designed to evaluate a so ware framework,
the QUESI was applied to get an idea of its usability as perceived by the users.
Keeping in mind that the results only suggest a tendency, �gure 6.8a presents the results

from the questionnaires that were presented a er the three-week introductions to the systems.
A Shapiro-Wilk test indicated the results obtained for Simulator X and Unity to be normally
distributed (p = .5). Similar to the results from the NASA TLX, Simulator X is observed to
perform worse than Unity. In this regard, signi�cant di�erences were found for all categories
(see table 6.5).
Simulator Xwas also found to be in an inferior position compared to instantreality regarding

perceived subjective workload, perceived e�ort of learning, and the QUESI total score.
Similar to the observations that weremade with the NASATLX results, these di�erences are

mitigated when the systems are used over a longer period of time. Figure 6.8b contains the data
that was obtained from the QUESI questionnaires that were �lled out a er the participants
had �nished the 3DUI contest task: no signi�cant di�erences could be observed for any of
the conditions between Simulator X and Unity.

Discussion ¿e results found with the QUESI are largely in line with those obtained from
the NASA TLX: Simulator X was observed to be in an inferior position to Unity, whereas no
signi�cant di�erences to the Unreal Engine 4 and instantreality could be detected. Similar to
the NASA TLX results, long-term use of the systems was observed to mitigate di�erences in
QUESI results.

W G L F E Total
U 18 24 10 31 27.5 12
p .002 .005 .0003 .016 .009 .0005

Table 6.5:Whitney-Mann U test results for QUESI short-term result comparison between Simulator X and Unity.

202

6.4 Opinions: Questionnaires

0	

0,5	

1	

1,5	

2	

2,5	

3	

3,5	

4	

4,5	

5	

Subjec/ve	
 Mental	

Workload	

Perceived	
 Achievement	

of	
 Goals	

Perceived	
 Effort	

of	
 Learning	

Familiarity	
 Perceived	
 Error	

Rate	

QUESI	
 Total	

Score	

Simulator	
 X	

short-­‐term,	
 N=10	

Unreal	
 Engine	
 4	

short-­‐term,	
 N=3	

Unity	

short-­‐term,	
 N=15	

instantreality	

short-­‐term,	
 N=15	

(a) Results after three introductory weeks for each framework. The number of participants for each framework is
indicated by the values of N.

0	

0,5	

1	

1,5	

2	

2,5	

3	

3,5	

4	

4,5	

5	

Subjec/ve	
 Mental	

Workload	

Perceived	
 Achievement	

of	
 Goals	

Perceived	
 Effort	

of	
 Learning	

Familiarity	
 Perceived	
 Error	

Rate	

QUESI	
 Total	

Score	

Simulator	
 X	

long-­‐term,	
 N=3	

Unreal	
 Engine	
 4	
 	

long-­‐term,	
 N=5	

Unity	

long-­‐term,	
 N=11	

(b) Long-term results after completing the 3DUI project.

Figure 6.8:QUESI results, higher values indicate better results, whiskers indicate the 95% con�dence intervals.
The visualized mean values as well as associated values for standard deviation are printed in appendix C.

203

Chapter 6 Validation

0	

0,5	

1	

1,5	

2	

2,5	

3	

3,5	

4	

4,5	

5	

Subjec/ve	
 Mental	

Workload	

Perceived	
 Achievement	

of	
 Goals	

Perceived	
 Effort	

of	
 Learning	

Familiarity	
 Perceived	
 Error	

Rate	

QUESI	
 Total	

Score	

Simulator	
 X	

short-­‐term,	
 N=10	

Simulator	
 X	

long-­‐term,	
 N=3	

0	

0,5	

1	

1,5	

2	

2,5	

3	

3,5	

4	

4,5	

5	

Subjec/ve	
 Mental	

Workload	

Perceived	
 Achievement	

of	
 Goals	

Perceived	
 Effort	

of	
 Learning	

Familiarity	
 Perceived	
 Error	

Rate	

QUESI	
 Total	

Score	

Unity	
 	

short-­‐term,	
 N=15	

Unity	

long-­‐term,	
 N=11	

Figure 6.9:QUESI Simulator X (top) and Unity (bottom) short-term vs. long-term results. Whiskers indicate the
95% con�dence intervals.

Moreover, the observations for the change of values regarding long-term use are similar
to the ones made before. For both Simulator X and Unity the change in perceived usability
is indicated by �gure 6.9. In the same way as it was observed by the results of the NASA
TLX, Simulator X compensates for the found di�erences from its initial evaluation by the
QUESI questionnaire. Due to the very few users of the Simulator X framework, no statements
according statistical signi�cance can be made. Nonetheless, the results for the conditions ‘sub-
jective mental workload’ and ‘perceived learning e�ort’ indicate mentionable improvements.
Although a decrease of values for all QUESI conditions was observed for Unity, none of these
were statistically signi�cant.

6.4.3 User Comments

In order to gain insight into the reasons for the found di�erences for Simulator X, especially
in comparison to Unity, the students’ comments on the systems are reviewed. ¿e collected
statements are summarized in the next two paragraphs, whereas the next section will discuss
them in combination with the previously mentioned �ndings.

204

6.4 Opinions: Questionnaires

Simulator X

Six participants provided comments on their experiences using Simulator X. One student
mentioned that it is easy to integrate further hardware into an application and that Scala is
easy to use. Furthermore, it was stated that Simulator X can easily be adjusted to �t di�erent
requirements and that the framework was stable. Finally, the fact that Simulator X is open
source was welcomed, since this allowedmodi�cations and adding custom-made components.
On the downside, especially the lack of documentation and a graphical editor was criticized.

¿e complexity of the structure of a Simulator X project (cf. section 5.4) was felt to be very high.
Using the callback-based way of accessing values was found to be di�cult to use. Moreover,
the request to bu�er state values locally and thus allow for direct access was made by one
student. Only indirectly related to Simulator X, the jVR component was mentioned to be
inferior to those of other engines. Finally, participants faulted the amount of time that had to
be spent compiling Simulator X applications as well as a lack of performance.

Unity 4

Four students provided comments on the Unity engine, which are summarized below. As
opposed to Simulator X, the availability of documentation as well as the graphical editor of
Unity was highly appreciated by the users. ¿e opportunity to integrate program code into
a self-contained C# �le without being concerned about other aspects of the application was
positively mentioned. ¿e easy interaction with public member variables from created C#
code, which can be modi�ed in the editor at runtime, was stated to be favorable. Unity was
furthermore described to “seem to be very intuitive.” Finally, the facility to enable and disable
single components through the editor was perceived to be bene�cial.
As opposed to these positive observations, the free version of Unity was said to make the

integration of additional plugins (especially to integrate sensors) di�cult or even impossible.
¿e fact that an external IntegratedDevelopment Environment (IDE) has to be used towork on
program code was mentioned to be unfavorable, however, being able to close the Unity editor
and continue programming, thereby decreasing performance requirements, was mentioned
to be bene�cial. One student stated that the navigation inside a scene using the Unity editor
was inconvenient.

6.4.4 Discussion

¿e results that were obtained from the questionnaires show that Simulator X initially is more
complicated to use than the other frameworks that were considered: signi�cant di�erences
regarding both, workload and perceived usability, were found. ¿is was to be expected, since
the commercial engines (Unity and the Unreal Engine 4) provide graphical editors, with the
help of which the virtual environment can be modeled more easily.
As opposed to this, Simulator X can currently only be used by hardcoding initial values and

does not provide a visual scene editor. Although the Scala programming language (used by
Simulator X) bears some resemblance to Java and supports the OOP paradigm, C# (used by
Unity) and C++ (used in the Unreal Engine 4) are even closer to languages students were used
to (mostly Java). Furthermore, the high-end visual rendering capabilities of those engines

205

Chapter 6 Validation

make the created scenes much more appealing than the open source jVR renderer, which was
developed in the context of a master thesis (Roßbach, 2010).
¿is was re�ected by the opinions that participants expressed in the questionnaires: in

general, Simulator X was observed to lack prototyping methods that allow to quickly create
and test a virtual scene. Moreover, the de�nite lack of documentation was detrimental to the
appraisal of Simulator X.
However, long-term use of Simulator X and Unity reduced the di�erences between the

questionnaire results: while the values for Unity changed for the worse, the values for Simula-
tor X changed for the better, in the end leaving no signi�cant di�erences except for the level
of frustration. ¿e latter is supported by the comments that were le by participants: long
compilation times, few documentation, and uncommon programming styles slowed down
the use of the Simulator X framework.
On the other hand, the advantageous aspects of the commercial engines, especially involving

the graphical editor, seem to become less bene�cial when the task to be performed gets more
complex. Especially the fact that the 3DUI task was rather concerned with the creation of
application logic than with the creation of appealing VEs contributes to this.
It has to be stressed that the results only provide a biased comparison of the frameworks’

usability, since too many factors (e.g., programming language, availability of graphical editors,
di�erently experienced participants, etc.) a�ect the results. Moreover, the rather small set of
participants prohibits statistically relevant assertions. Even though this is the case, the results
provide a good indication that Simulator X can keep up with popular frameworks regarding
the implementation of more complex applications.
¿e results obtained from the questionnaires are better than expected, considering the

fact that Simulator X was compared with high-end game engines as well as the longstanding,
highly-optimized so ware instantreality. Building on the comments that were given by the
participants, the Simulator X framework can be improved to accomplish higher usability in
the future.

6.5 Summary

¿is chapter was begun with the presentation of a case study, which explained the process
of creating a component for the Simulator X framework. ¿e approaches presented in the
previous chapters allow to perform the creation in a simple four-step process, which was
detailed in section 5.2.8. A lines-of-code analysis indicated the amount of work that arose
during the creation of the prototypically implemented Unity component, which allows to use
Unity’s rendering and physical simulation capabilities in Simulator X applications.
Subsequently, the required steps to replace a component from an existing application were

detailed. For this purpose an example was discussed, in which the jVR rendering component,
which is commonly used in Simulator X applications, was exchanged for the above-mentioned
Unity component. It was shown that simple adjustments to the application ontology as well as
themodi�cation of aspects in the entity descriptions that are used by the respective application
is su�cient for the replacement process.
¿e case study was concluded with an analysis of reuse in the Simulator X framework. ¿is

analysis was performed by investigating the covered lines of code and statements that were

206

6.5 Summary

invoked by two di�erent applications. For the three examined simulation components as well
as the Simulator X core component reuse rates between 34.88% and 73.54% regarding the
components’ statements as well as between 37.10% and 65.98% regarding the components’
lines of code were observed. Comparing the statements of the components that were shared
by the two applications, rates between 57.21% and 81.42% or between 92.61% and 100.0%
(depending on the application the perspective of which was taken) were found.
Subsequently, an overview of the applications that have been developed with the Simula-

tor X framework and presented on conferences and exhibitions was given. ¿e diversity of
application areas as well as used input and output devices indicated the framework’s �exibility,
and thus the applicability of the proposed approaches.
¿e chapter was concluded with the presentation of results from task load and usability ques-

tionnaires, which were �lled in by students who worked with three prominent game engines
and VR frameworks as well as with Simulator X. Although the low number of participants
does not allow to draw statistically relevant conclusions, �ndings indicate that Simulator X is
usable in a similar way that the other frameworks are. However, there are many opportunities
for improvements, especially regarding support for users to get started using Simulator X. In
this context, the comments that were given by the participants and discussed in section 6.4.3
provide a good starting point for future work.
¿is will be discussed in the following chapter, which at the same time presents the conclu-

sion of this work.

207

Chapter 7

Conclusion
Of all the monsters that �ll the nightmares of our folklore, none terrify more than
werewolves, because they transform unexpectedly from the familiar into horrors.
For these, one seeks bullets of silver that can magically lay them to rest.

No Silver Bullet
Frederick P. Brooks (1987)

7.1 Summary

Intelligent Realtime Interactive Systems (IRISs) and the highly specialized hardware devices
they depend on are becoming evermore available. Consequently, their area of applications is
growing and has already started to become a part of everyday life.
¿is results in a problem that researchers in the �eld of RIS and especially VR development

have been experiencing formany years: specialized hardware devices, a huge number of closely
interacting simulation modules, realtime requirements, highly speci�c use cases, and many
more similarly challenging aspects result in the implemented so ware being specially tailored
to particular needs. Like the werewolves from the above quoted metaphor by Frederick P.
Brooks, these custom-made solutions can easily turn into unmanageable entities.
Due to its high complexity, such so ware becomes increasingly unmaintainable the older

it gets and the more (unanticipated) adjustments are made. Similar problems have been
known in the �eld of so ware engineering for a long time. ¿ere, di�erent approaches, such
as code-generators, Object-Oriented Programming, Component-Based So ware Engineering,
domain-engineering, and many more have been developed to address related issues.
In this work, a methodology that allows for the integration of a Knowledge Representation

Layer (KRL) that augments architecture elements with ontologically grounded semantics was
proposed. In order to be utilizable in program code, to reduce errors that could occur during
manual translation, and to simply spare developers work, the KRL is generated from an OWL
ontology.
Based on this KRL, a component model for reusable IRISs has been presented, which

introduces semantic typing to the �eld of RISs. It furthermore provides a uniform access
model that facilitates decoupling of simulation modules. By combining these techniques with
the actor model the coupling between simulation modules is reduced to a minimum.

209

Chapter 7 Conclusion

Simulation
Module Aspect

Entity Application
Logic

Simulation
Module

Aspect

Entity

Entity

AspectAspect

AspectAspect

Simulation
State ApplicationSimulation

Components

Simulation
Module

Modules of
same type

Modules of
same type

Aspects 321

Semantics-based Access
using the KRL

Events Eve
nts

1 3

Figure 7.1: Three layers of decoupling: (1) decoupling simulation modules according to their functionality via
aspects, (2) decoupling application content using aspects to describe entities, and (3) decoupling application
logic by uniform access to entities. All communication is based on concepts and associated symbols that are
grounded in the integrated KRL.

In this way, the proposedmodel allows to turn preexisting as well as new simulationmodules
into simulation components that can be loosely coupled, whereas they would otherwise have
been closely coupled to create one of the above-mentioned custom-made so ware solutions.
As a result, created simulation components can easily be added, removed, and replaced from
a IRIS application and therefore are easy to reuse.
¿e proposed model and the underlying KRL provide a means for simulation components

to access a shared simulation state. In doing so, components can act in a manner that is similar
to the one known from blackboard model in the �eld of AI: new information is added to the
blackboard (the simulation state) and then processed by other modules, which then make
their own contributions. In this way, the simulation state becomes the interface between all
participating actors.
It is apparent that this concept is especially bene�cial for the integration of (symbolic)

AI modules, which bene�t from the added data, infer additional facts, and provide these to
other modules via the shared state. In contrast to common approaches the model provides
uniform access to meaningful information about the simulation state, no matter what source
it originates from.

210

7.1 Summary

In the context of this work, the proposed methods were implemented in the Simulator X
research framework, which is available to the public as an open source project.17 Simulator X
has been used in multiple research demonstrations, ranging from touch-table interaction to
fully immersive VR setups. It furthermore provides the basis for the ‘Quest – XRoads’ game,
which has been presented multiple times on di�erent games fairs.
A case study was presented, which indicates the steps that are required for the previously

mentioned tasks of adding, removing, and replacing simulation modules. It involved the
prototypical creation of a module adapter for the Unity engine, a high-end development
platform for computer games. By means of the implemented adapter, a reusable simulation
component was created, whichmakes the high-quality rendering capabilities of Unity available
for Simulator X applications. In the case study, the jVR rendering component, which is
commonly used in Simulator X applications, was replaced by the Unity component, thereby
demonstrating the applicability of the approach.
In general this answers the introductorily stated objectives (cf. section 1.4):

O1: Simulation modules are decoupled from one another and thus can be �exibly combined.
As shown by layer 1 in �gure 7.1, this is achieved by the concept of aspects, which allows
each simulation component to maintain its own view on every entity, and the restriction
of communication between components to the utilization of events.

O2: Aspects are closely related to the objective of decoupling application content from the
simulation modules. Layer 2 in �gure 7.1 indicates the composition of aspects to form
entities, whereby simulation modules become replaceable without modi�cations to the
application content.

O3: Finally, restricting communication between simulation components to messages (partly
mediated by the shared simulation state, layer 3 in �gure 7.1), application logic becomes
loosely coupled to both simulationmodules and the particular set of instantiated entities.
In fact, the application logic can be regarded as a further simulation module, wherefore
the three initial objectives are actually reduced to the �rst two.

All three layers and the event-based communication rely on concepts and symbols that are
grounded in the KRL, which is stored in the form of an OWL ontology.
While the presented prototypical Unity adapter comprises more than 1700 lines of code, its

utilization is much easier to achieve. For each type of entity that shall be a�ected by the Unity
engine (i.e. that shall be rendered by Unity) one line of code has to be added, removed, or
exchanged. Similarly, adding, removing, or replacing the Unity adapter requires to modify
only one line of code. ¿is matches previous observations from the �eld of so ware reuse:
creating reusable so ware requires considerable e�orts, whereas later bene�ts do more than
compensate these initial e�orts.
Making the assumption that a manual integration of the Unity engine into an existing

project involving 10 types of entities would have required 400 lines of code (which is a highly
optimistic estimation), the � h application that is created in this setup would bene�t from
the proposed approach already. Considering the fact that so ware can be shared among and
reused by multiple developers, these bene�ts become quite obvious.
17Simulator X is available at https://github.com/simulator-x

211

https://github.com/simulator-x

Chapter 7 Conclusion

In order to get an idea of aspects regarding the usability of the model, Simulator X was
additionally evaluated in a prestudy. Since long-term users of such frameworks are usually
experts who cannot spare the time to participate in a long study, students were given this
opportunity. Most of them were novices in creating RISs and had to gain expertise during the
prestudy.
First results indicate that Simulator X is as easy (or as complex) to use as other high end

frameworks and game engines, like Unity 4, the Unreal Engine 4, and instantreality. Moreover,
results for short-term usage suggest that novice users are initially deterred by missing features,
like a 3D editor or visual programming facilities. Yet, a er a longer time of using a framework
these features seem to become less important: compared to its short-term users, long-term
users reported higher perceived workload for the Unity engine. In contrast, the corresponding
values decreased a er a longer use of Simulator X.
Although the proposed techniques have been developed in the context of IRISs, they can

also be applied in the context of less complex systems: especially the enhanced capabilities of
semantic re�ection, e.g., in the form of semantic types and semantic traits, can be bene�cial
in any programming environment. ¿is way, modularity and reusability can be facilitated in
many other types of so ware.

7.2 FutureWork

Despite the bene�cial aspects that arise with the application of the presented component
model and the underlying KRL, it a er all is no silver bullet by means of which all problems
of IRIS development can be laid to rest. ¿is said, the approach bears potential to increase the
silver content of IRIS frameworks.
In order to draw advantages from the proposed model, repositories of both reusable simu-

lation components as well as ontologies are required, which provide functionality for di�erent
use cases. Besides complete components, this includes descriptions of semantic types, actions,
entities, and events. Essentially, the more combinations of components are used and uploaded
into publicly accessible repositories, the more bene�ts can be drawn.
Consequently, there is a variety of aspects that provide grounds for future work:

• Ontology-related aspects:

– For each application area multiple components should be created. ¿is way, an
agreed upon ontology for each component type can be consolidated.

– In the same way, pre-built ontologies for the combination of di�erent components
can be created. ¿e positive aspect here is that such ontologies would not have to
be created for others but would grow naturally with the adaption of a simulation
module.

– ¿e creation of multiple OWL ontologies inevitably leads to ambiguous naming,
use of di�erent symbols for the same concept, and similar issues. ¿is problem
is not solely connected to the approaches developed in this work, nevertheless a
solution or at least a means to reduce the related negative e�ects has to be found
to reduce the amount of required manual adjustments.

212

7.2 Future Work

• Usability-related aspects:

– Although tools are available for editing ontologies, these usually are designed
as general purpose applications. In contrast, the concepts that were presented
in this work are limited in numbers, wherefore a specialized application that
supports a developer in editing the ontology is conceivable. ¿is way, the required
amount of knowledge about the underlying concepts, especially regarding the
OWL constructs, and thus the number of sources of errors can be reduced.

– As observed in the conducted prestudy, the current lack of a graphical editor for
VEs is perceived as rather deterring. While the implementation of such a tool
would probably not exceed the features that are provided by the highly specialized
tools in this area, the exploitation of the KRL can provide newways of editing such
content. For example, the semantic augmentation could allow for the utilization
of multimodal interfaces in the context of the editor. Furthermore, searching
for assets and utilizing information that is inferred from the currently de�ned
properties can be supported.

– Similar to a graphical editor for VE content, enhanced debugging features that
involve semantic information about the entities can be implemented. For instance,
di�erent conditions for breakpoints could be speci�ed more easily and semantic
traits could be used to inspect the current application state.

– Besides graphical editors, the identi�cation of so ware development methods
that increase the e�ciency of developers using a system that adopts the proposed
model would be highly useful. In this regard, especially the introduced aspect of
semantic typing does constitute an interesting area of research. Moreover, it has
to be evaluated which opportunities arise by further combination of the uniform
access model and semantic traits regarding more sophisticated interfaces. In this
way, a new of RIS programming might be achieved.

– ¿e conducted prestudy has only provided a �rst insight into the usability of
the Simulator X framework as compared to other systems. However, the group
of participants consisted of students with few or none experience in the area
of RIS development. Future work has to involve the creation of an appropriate
study design, selection or creation of reasonable questionnaires that are especially
designed for the evaluation of such systems, and convoking experts from the �eld
of RIS development in order to get more meaningful results.

• Performance-related aspects:

– Simulator X has been used in di�erent VR and MR applications that have been
presented on multiple occasions (cf. section 6.3), indicating the general applicabil-
ity of the proposed model. However, only few benchmarks have been performed
(cf. Rehfeld, Tramberend, & Latoschik, 2014) and, due to the fact that Simulator X
is a research platform, the implementation has not been optimized for high per-
formance. Future work has to involve measurements of di�erent implementation
variants of the model, preferably using di�erent programming languages and
actor libraries.

213

Chapter 7 Conclusion

– In RIS systems synchronization of the states between di�erent modules is con-
sidered crucial. During the development of Simulator X, this requirement has
shown to be not as critical as expected: o en it was su�cient to run an application
without any synchronization. Nevertheless, simple mechanisms to synchronize
modules have been implemented, allowing for component synchronization on
a per-frame basis. Further, yet unpublished e�orts have been made to achieve
synchronization on lower layers, for instance to allow the update of two state vari-
ables as an atomic operation (as viewed by the observing actors). ¿is work has to
be continued in the future to provide more advanced models of synchronization
in actor-based RISs.

– Since the proposed methods build on the actor-model and its message-based
communication, it is inherently capable of being used in distributed environments.
Few work has been performed evaluating these capabilities (Rehfeld et al., 2013).
Especially the e�ects of distribution on the underlying KRL need to be investigated
in the future to ensure its utility in such areas of application.

• Validation-related aspects:
– Up to now, the implemented applications either involved only few AI modules or
were restricted in their complexity. For further validation of the approach more
mature applications that highly depend on the utilization of multiple interacting
AImodules have to be implemented. Especially (intelligent)multimodal interfaces
(Latoschik & Fischbach, 2014) provide an interesting area of applications, which
promises to be highly relevant regarding future user interfaces.

– Most of the available reusability metrics are only suitable to a limited extend for
the evaluation of RIS frameworks. New measures need to be developed, which
provide framework developers with a means to evaluate frameworks before they
are put to use.

¿is extensive list reveals the high potential for further research in the area of this work.
Reasons for this include the few e�orts that have been made to evaluate deeply integrated
KRLs in RISs as well as the fact that related systems, like game engines, are largely developed in
the commercial area, wherefore only few publications that extend over description of technical
aspects exist.
As stated in the beginning of this work, the proposed methods are not limited to IRIS

applications but can be used in many other �elds of so ware engineering. Choosing from the
presented techniques according to their needs, developers of applications in other areas can
draw advantages of the presented results. Hence, in whatever direction future user interfaces,
so ware, and hardwaremay develop, the odds are that the presented techniques can contribute
to ease the humble programmer’s task of satisfying ever-rising expectations.

214

Bibliography
Abaci, T., Ciger, J., & ¿almann, D. (2005). Planning with Smart Objects. In ¿e 13-th

International Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision (WSCG) ’2005 (pp. 25–28).

Acevedo-Feliz, D. (2014). VR Toolkits: Why do we keep reinventing the wheel? In 2014 IEEE
Virtual Reality (VR) (pp. 1–3). doi:10.1109/VR.2014.6802114

Allard, J., Gouranton, V., Lecointre, L., Limet, S., Melin, E., Ra�n, B., & Robert, S. (2004).
FlowVR: AMiddleware for Large Scale Virtual Reality Applications. InM.Danelutto,M.
Vanneschi, & D. Laforenza (Eds.), Euro-Par 2004 Parallel Processing: 10th International
Euro-Par Conference 2004. Proceedings (pp. 497–505). Springer. doi:10.1007/978-3-540-
27866-5_65

Allard, J., Gouranton, V., Lecointre, L., Melin, E., & Ra�n, B. (2002). Net Juggler: running VR
Juggler with multiple displays on a commodity component cluster. In Virtual Reality,
2002. Proceedings (pp. 273–273). IEEE. doi:10.1109/VR.2002.996534

Allard, J., Lesage, J.-D., & Ra�n, B. (2010). Modularity for Large Virtual Reality Applications.
Presence: Teleoperators andVirtual Environments, 19(2), 142–161. doi:10.1162/pres.19.2.142

Anastassakis, G. & Panayiotopoulos, T. (2011). Intelligent Virtual Environment Development
with the REVE Platform: An Overview. In H. H. Vilhjálmsson, S. Kopp, S. Marsella, &
K. R. ¿órisson (Eds.), Intelligent Virtual Agents: 10th International Conference, IVA
2011, Reykjavik, Iceland, September 15-17, 2011. Proceedings (pp. 431–432). Springer.
doi:10.1007/978-3-642-23974-8_48

Anastassakis, G. & Panayiotopoulos, T. (2012). AUni�edModel for Representing Objects with
Physical Properties, Semantics and Functionality in Virtual Environments. Intelligent
Decision Technologies, 6(2), 123–137. doi:10.3233/IDT-2012-0129

Anastassakis, G., Panayiotopoulos, T., & Raptis, G. (2012). Towards a Methodology for
Integrating Physics Engines with Virtual Environments: A Case Study Using the REVE
Platform and the Vesper3D Physics Engine. In Informatics (PCI), 2012 16th Panhellenic
Conference on (pp. 86–92). IEEE. doi:10.1109/PCi.2012.63

Aoyama, M. (1998). New Age of So ware Development: How Component-Based So ware En-
gineering Changes the Way of So ware Development? In 1998 International Workshop
on CBSE (pp. 1–5).

Armstrong, D. J. (2006). ¿e Quarks of Object-oriented Development. Communications of
the ACM, 49(2), 123–128. doi:10.1145/1113034.1113040

Aylett, R. & Cavazza, M. (2001). Intelligent Virtual Environments - A State-of-the-art Report.
In Eurographics 2001 - STARs. Eurographics Association. doi:10.2312/egst.20011046

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. (Eds.). (2004). ¿e
Description Logic Handbook: ¿eory, Implementation, and Applications. Cambridge
University Press. doi:10.2277/0521781760

215

https://dx.doi.org/10.1109/VR.2014.6802114
https://dx.doi.org/10.1007/978-3-540-27866-5_65
https://dx.doi.org/10.1007/978-3-540-27866-5_65
https://dx.doi.org/10.1109/VR.2002.996534
https://dx.doi.org/10.1162/pres.19.2.142
https://dx.doi.org/10.1007/978-3-642-23974-8_48
https://dx.doi.org/10.3233/IDT-2012-0129
https://dx.doi.org/10.1109/PCi.2012.63
https://dx.doi.org/10.1145/1113034.1113040
https://dx.doi.org/10.2312/egst.20011046
https://dx.doi.org/10.2277/0521781760

Bibliography

Baader, F., Miličić, M., Lutz, C., Sattler, U., & Wolter, F. (2005). Integrating Description
Logics and Action Formalisms for Reasoning about Web Services (LTCS-Report No. 05-
02). Chair for Automata ¿eory, Institute for ¿eoretical Computer Science, Dresden
University of Technology.

Bachmann, A., Kunde, M., Litz, M., & Schreiber, A. (2010). Advances in Generalization and
Decoupling of So ware Parts in a Scienti�c Simulation Work�ow System. In ADV-
COMP 2010, ¿e Fourth International Conference on Advanced Engineering Computing
and Applications in Sciences (pp. 34–38). IARIA.

Badler, N. I., Bindiganavale, R., Bourne, J. C., Palmer, M. S., Shi, J., & Schuler, W. (2000).
A Parameterized Action Representation for Virtual Human Agents. In J. Cassell, J.
Sullivan, S. Prevost, & E. F. Churchill (Eds.), Embodied Conversational Agents (pp. 256–
284). MIT press.

Beck, F. & Diehl, S. (2011). On the Congruence of Modularity and Code Coupling. In
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of So ware Engineering (pp. 354–364). ESEC/FSE ’11. ACM. doi:10.1145/
2025113.2025162

Behr, J., Bockholt, U., & Fellner, D. (2011). Instantreality — A Framework for Industrial
Augmented and Virtual Reality Applications. In D. Ma, X. Fan, J. Gausemeier, & M.
Grafe (Eds.), Virtual Reality & Augmented Reality in Industry (pp. 91–99). Springer.
doi:10.1007/978-3-642-17376-9_5

Bieman, J. M. & Zhao, J. X. (1995). Reuse ¿rough Inheritance: A Quantitative Study of C++
So ware. ACM SIGSOFT So ware Engineering Notes, 20(SI), 47–52. doi:10.1145/223427.
211794

Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., & Cruz-Neira, C. (2001). VR Juggler:
A Framework for Virtual Reality Development. In Virtual Reality, 2001. Proceedings.
IEEE (pp. 89–96). doi:10.1109/VR.2001.913774

Biermann, P. & Wachsmuth, I. (2003). An Implemented Approach for a Visual Programming
Environment in VR. In Proceedings Fi h Virtual Reality International Conference (VRIC
2003) (pp. 229–234). Laval, France.

Biggersta�, T. J. & Richter, C. (1989). Reusability Framework, Assessment, and Directions. In
So ware reusability: vol. 1, concepts and models (pp. 1–17). ACM. doi:10.1145/73103.73104

Boehm, B. W. (1987). Improving So ware Productivity. Computer, 20(7), 43–57. doi:10.1109/
MC.1987.1663694

Bolt, R. A. (1980). “Put-that-there”: Voice andGesture at the Graphics Interface. In Proceedings
of the 7th annual conference on computer graphics and interactive techniques (pp. 262–
270). SIGGRAPH ’80. ACM. doi:10.1145/800250.807503

Bracha, G. & Cook, W. (1990). Mixin-based inheritance. In Proceedings of the European
Conference on Object-oriented Programming on Object-oriented Programming Systems,
Languages, and Applications (pp. 303–311). OOPSLA/ECOOP ’90. ACM. doi:10.1145/
97945.97982

Brooks, F. P. (1987). No Silver Bullet Essence andAccidents of So ware Engineering. Computer,
20(4), 10–19. doi:10.1109/MC.1987.1663532

Buche, C., Querrec, R., De Loor, P., & Chevaillier, P. (2003). MASCARET: A PedagogicalMulti-
Agent System for Virtual Environments for Training. In Cyberworlds, 2003. proceedings.
2003 international conference on (pp. 423–430). doi:10.1109/CYBER.2003.1253485

216

https://dx.doi.org/10.1145/2025113.2025162
https://dx.doi.org/10.1145/2025113.2025162
https://dx.doi.org/10.1007/978-3-642-17376-9_5
https://dx.doi.org/10.1145/223427.211794
https://dx.doi.org/10.1145/223427.211794
https://dx.doi.org/10.1109/VR.2001.913774
https://dx.doi.org/10.1145/73103.73104
https://dx.doi.org/10.1109/MC.1987.1663694
https://dx.doi.org/10.1109/MC.1987.1663694
https://dx.doi.org/10.1145/800250.807503
https://dx.doi.org/10.1145/97945.97982
https://dx.doi.org/10.1145/97945.97982
https://dx.doi.org/10.1109/MC.1987.1663532
https://dx.doi.org/10.1109/CYBER.2003.1253485

Bibliography

Cardelli, L. (1996). Bad Engineering Properties of Object-oriented Languages. ACM Comput-
ing Surveys, 28(4es). doi:10.1145/242224.242415

Cardino, G., Baruchelli, F., & Valerio, A. (1997, September). ¿e Evaluation of Framework
Reusability. ACM SIGAPP Applied Computing Review, 5(2), 21–27. doi:10.1145/297075.
297085

Carlsson, C. &Hagsand, O. (1993). DIVEAmulti-user virtual reality system. InVirtual Reality
Annual International Symposium (pp. 394–400). IEEE. doi:10.1109/VRAIS.1993.380753

Cavazza, M., Hartley, S., Lugrin, J.-L., & Le Bras, M. (2004). Qualitative Physics in Virtual
Environments. In Proceedings of the 9th International Conference on Intelligent User
Interfaces (pp. 54–61). IUI ’04. ACM. doi:10.1145/964442.964454

Cavazza, M. & Palmer, I. (2000). High-level interpretation in virtual environments. Applied
Arti�cial Intelligence, 14(1), 125–144. doi:10.1080/088395100117188

Cerny, M. (2012). Planning4J - Java API for AI planning. Retrieved April 7, 2015, from
http://code.google.com/p/planning4j

Cheng, B. H. & Jeng, J.-J. (1997). Reusing analogous components. IEEE Transactions on
Knowledge and Data Engineering, 9(2), 341–349. doi:http://doi.ieeecomputersociety.
org/10.1109/69.591458

Chevaillier, P., Trinh, T.-H., Barange, M., De Loor, P., Devillers, F., Soler, J., & Querrec, R.
(2012). Semantic Modeling of Virtual Environments using MASCARET. InWorkshop
on So ware Engineering and Architectures for Realtime Interactive Systems (pp. 1–8).
IEEE. doi:10.1109/SEARIS.2012.6231174

Clements, P. C. (2001). From subroutines to subsystems: Component-based so ware de-
velopment. In G. T. Heineman &W. T. Councill (Eds.), Component-Based So ware
Engineering (Chap. 11, pp. 189–198). Addison-Wesley.

Colburn, T. & Shute, G. (2011). Decoupling as a Fundamental Value of Computer Science.
Minds and Machines, 21(2), 241–259. doi:10.1007/s11023-011-9233-3

Coninx, K., De Troyer, O., Raymaekers, C., & Kleinermann, F. (2006). VR-DeMo: a tool-
supported approach facilitating �exible development of virtual environments using
conceptual modelling. Proceedings of Virtual Concept 2006.

Councill, B. & Heineman, G. T. (2001). De�nition of a So ware Component and Its Elements.
In G. T. Heineman &W. T. Councill (Eds.), (Chap. De�nition of a So ware Component
and Its Elements, pp. 5–19). Addison-Wesley Longman Publishing Co., Inc.

Crytek. (2015). Cryengine. Retrieved February 15, 2015, from http://www.cryengine.com
De Troyer, O., Kleinermann, F., Pellens, B., & Bille, W. (2007). Conceptual Modeling for

Virtual Reality. In Tutorials, Posters, Panels and Industrial Contributions at the 26th
International Conference on Conceptual Modeling (Vol. 83, pp. 3–18). ER ’07.

Devanbu, P., Brachman, R., Selfridge, P. G., & Ballard, B. W. (1991). LaSSIE: A Knowledge-
based So ware Information System. Communications of the ACM, 34(5), 34–49.
doi:10.1145/103167.103172

Devanbu, P. & Jones, M. A. (1997). ¿e Use of Description Logics in KBSE Systems. ACM
Transactions on So ware Engineering and Methodology (TOSEM), 6(2), 141–172. doi:10.
1145/248233.248253

Dijkstra, E. W. (1972, October). ¿e Humble Programmer. Communications of the ACM,
15(10), 859–866. doi:10.1145/355604.361591

217

https://dx.doi.org/10.1145/242224.242415
https://dx.doi.org/10.1145/297075.297085
https://dx.doi.org/10.1145/297075.297085
https://dx.doi.org/10.1109/VRAIS.1993.380753
https://dx.doi.org/10.1145/964442.964454
https://dx.doi.org/10.1080/088395100117188
http://code.google.com/p/planning4j
https://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/69.591458
https://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/69.591458
https://dx.doi.org/10.1109/SEARIS.2012.6231174
https://dx.doi.org/10.1007/s11023-011-9233-3
http://www.cryengine.com
https://dx.doi.org/10.1145/103167.103172
https://dx.doi.org/10.1145/248233.248253
https://dx.doi.org/10.1145/248233.248253
https://dx.doi.org/10.1145/355604.361591

Bibliography

Dijkstra, E. W. (1982). On the Role of Scienti�c¿ought. In SelectedWritings on Computing: A
Personal Perspective (pp. 60–66). Springer New York. doi:10.1007/978-1-4612-5695-3_12

Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., & Black, A. P. (2006). Traits: A Mechanism
for Fine-grained Reuse. ACM Transactions on Programming Languages and Systems
(TOPLAS), 28(2), 331–388. doi:10.1145/1119479.1119483

Dusink, L. & van Katwijk, J. (1995). Reuse Dimensions. ACM SIGSOFT So ware Engineering
Notes, 20(SI), 137–149. doi:10.1145/223427.211828

Eckstein, B. (2014). A Semantic Representation of Physical Objects and Processes in VR (Master’s
thesis, Universität Würzburg).

Ecma International. (2013). ¿e JSON Data Interchange Format. ECMA-404 (ECMA). 2013.
Retrieved April 20, 2015, from http://www.ecma-international.org/publications/�les/
ECMA-ST/ECMA-404.pdf

Epic Games. (2015). Unreal Engine 4. Retrieved February 15, 2015, from https://www.
unrealengine.com/

Ezran, M., Morisio, M., & Tully, C. (2002). Practical So ware Reuse. Springer. doi:10.1007/978-
1-4471-0141-3

Fayad,M.& Schmidt, D. C. (1997). Object-orientedApplication Frameworks. Communications
of the ACM, 40(10), 32–38. doi:10.1145/262793.262798

Ferrario, R., Guarino, N., Janiesch, C., Kiemes, T., Oberle, D., & Probst, F. (2011). To-
wards an Ontological Foundation of Services Science: ¿e General Service Model.
InWirtscha sinformatik proceedings.

Fichman, R. G. & Kemerer, C. F. (2001). Incentive compatibility and systematic so ware
reuse. Journal of Systems and So ware, 57(1), 45–60. doi:10.1016/S0164-1212(00)00116-3

Fikes, R. E. & Nilsson, N. J. (1971). STRIPS: A New Approach to the Application of ¿eorem
Proving to Problem Solving. In Proceedings of the 2nd International Joint Conference on
Arti�cial Intelligence (pp. 608–620). IJCAI’71. doi:10.1016/0004-3702(71)90010-5

Fischbach,M., Latoschik,M. E., Bruder, G., & Steinicke, F. (2012). smARTbox: Out-of-the-Box
Technologies for InteractiveArt and Exhibition. InProceedings of the 2012Virtual Reality
International Conference (19, 19:1–19:7). VRIC ’12. ACM. doi:10.1145/2331714.2331737

Fischbach, M., Ne�, M., Pelzer, I., Lugrin, J.-L., & Latoschik, M. E. (2013). Input Device
Adequacy for Multimodal and Bimanual Object Manipulation in Virtual Environments.
In F. S. Marc Erich Latoschik Oliver Staadt (Ed.), Virtuelle und Erweiterte Realität, 10.
Workshop der GI-Fachgruppe VR/AR (pp. 145–156). Informatik. Shaker Verlag.

Fischbach, M., Tre�s, C., Cyborra, D., Strehler, A., Wedler, T., Bruder, G., . . . Steinicke, F.
(2012). A Mixed Reality Space for Tangible User Interaction. In T. V. Christian Geiger
Jens Herder (Ed.), Virtuelle und Erweiterte Realität - 9. Workshop der GI-Fachgruppe
VR/AR (pp. 25–36). Shaker Verlag.

Fischbach, M., Wiebusch, D., Giebler-Schubert, A., Latoschik, M. E., Rehfeld, S., & Tram-
berend, H. (2011). SiXton’s curse - Simulator X demonstration. In 2011 IEEE Virtual
Reality Conference (pp. 255–256). doi:10.1109/VR.2011.5759495

Fischbach, M., Wiebusch, D., Latoschik, M. E., Bruder, G., & Steinicke, F. (2012a). Blending
Real and Virtual Worlds Using Self-re�ection and Fiducials. In M. Herrlich, R. Malaka,
& M. Masuch (Eds.), Entertainment Computing - ICEC 2012: 11th International Confer-
ence, ICEC 2012, Bremen, Germany, September 26-29, 2012. Proceedings (pp. 465–468).
Springer. doi:10.1007/978-3-642-33542-6_54

218

https://dx.doi.org/10.1007/978-1-4612-5695-3_12
https://dx.doi.org/10.1145/1119479.1119483
https://dx.doi.org/10.1145/223427.211828
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.unrealengine.com/
https://www.unrealengine.com/
https://dx.doi.org/10.1007/978-1-4471-0141-3
https://dx.doi.org/10.1007/978-1-4471-0141-3
https://dx.doi.org/10.1145/262793.262798
https://dx.doi.org/10.1016/S0164-1212(00)00116-3
https://dx.doi.org/10.1016/0004-3702(71)90010-5
https://dx.doi.org/10.1145/2331714.2331737
https://dx.doi.org/10.1109/VR.2011.5759495
https://dx.doi.org/10.1007/978-3-642-33542-6_54

Bibliography

Fischbach, M., Wiebusch, D., Latoschik, M. E., Bruder, G., & Steinicke, F. (2012b). smARTbox
A Portable Setup for Intelligent Interactive Applications. In O. D. Harald Reiterer (Ed.),
Mensch & Computer (pp. 521–524). Oldenbourg Verlag.

Fischbach, M., Zimmerer, C., Giebler-Schubert, A., & Latoschik, M. E. (2014). [DEMO]
Exploring multimodal interaction techniques for a mixed reality digital surface. In
IEEE International Symposium on Mixed and Augmented Reality ISMAR (pp. 335–336).
doi:10.1109/ISMAR.2014.6948476

Frakes, W. B. & Fox, C. J. (1996). Quality improvement using a so ware reuse failure modes
model. IEEE Transactions on So ware Engineering, 22(4), 274–279. doi:10.1109/32.
491652

Frakes,W. B. & Gandel, P. B. (1990). Representing reusable so ware. Information and So ware
Technology, 32(10), 653–664. doi:10.1016/0950-5849(90)90098-C

Frakes, W. B. & Kang, K. (2005). So ware reuse research: status and future. IEEE transactions
on So ware Engineering, 31(7), 529–536. doi:10.1109/TSE.2005.85

Frakes, W. B. & Terry, C. (1996). So ware Reuse: Metrics and Models. ACM Computing
Surveys (CSUR), 28(2), 415–435. doi:10.1145/234528.234531

Frankel, D., Hayes, P., Kendall, E., & McGuinness, D. (2004). The model driven semantic
web. In 1st International Workshop on the Model-Driven Semantic Web (MDSW2004).

Frécon, E. (2004). DIVE on the Internet (Doctoral dissertation, University of Göteborg).
Fröhlich, C. (2014). SemantischeModellierung virtueller Umgebungen auf Basis einermodularen

Simulationsarchitektur (Doctoral dissertation, Bielefeld University).
Fröhlich, C. & Latoschik, M. E. (2008). Incorporating the Actor Model into SCIVE on an Ab-

stract Semantic Level. In IEEE VR Workshop on So ware Engineering and Architectures
for Realtime Interactive Systems (pp. 61–64).

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable
Object-Oriented So ware. Addison-Wesley.

Garlan, D., Allen, R., & Ockerbloom, J. (1995). Architectural Mismatch or Why It’s Hard to
Build Systems out of Existing Parts. In Proceedings of the 17th International Conference
on So ware Engineering (pp. 179–185). ICSE ’95. doi:10.1145/225014.225031

Geiger, C., Paelke, V., Reimann, C., & Rosenbach, W. (2000). A Framework for the Structured
Design of VR/AR Content. In Proceedings of the ACM Symposium on Virtual Reality
So ware and Technology (pp. 75–82). VRST ’00. ACM. doi:10.1145/502390.502405

Giebler-Schubert, A., Zimmerer, C., Wedler, T., Fischbach, M., & Latoschik, M. E. (2013). Ein
digitales Tabletop-Rollenspiel für Mixed-Reality-Interaktionstechniken. In F. S. Marc
Erich Latoschik Oliver Staadt (Ed.), Virtuelle und Erweiterte Realität, 10. Workshop der
GI-Fachgruppe VR/AR (pp. 181–184). Shaker Verlag.

Griss, M. L. (1993). So ware Reuse: From Library to Factory. IBM Systems Journal, 32(4),
548–566. doi:10.1147/sj.324.0548

Gruber, T. R. (1993). A translation approach to portable ontology speci�cations. Knowledge
Acquisition, 5(2), 199–220. doi:http://dx.doi.org/10.1006/knac.1993.1008

Gui, G. & Scott, P. D. (2006). Coupling and Cohesion Measures for Evaluation of Component
Reusability. In Proceedings of the 2006 International Workshop on Mining So ware
Repositories (pp. 18–21). MSR ’06. ACM. doi:10.1145/1137983.1137989

219

https://dx.doi.org/10.1109/ISMAR.2014.6948476
https://dx.doi.org/10.1109/32.491652
https://dx.doi.org/10.1109/32.491652
https://dx.doi.org/10.1016/0950-5849(90)90098-C
https://dx.doi.org/10.1109/TSE.2005.85
https://dx.doi.org/10.1145/234528.234531
https://dx.doi.org/10.1145/225014.225031
https://dx.doi.org/10.1145/502390.502405
https://dx.doi.org/10.1147/sj.324.0548
https://dx.doi.org/http://dx.doi.org/10.1006/knac.1993.1008
https://dx.doi.org/10.1145/1137983.1137989

Bibliography

Gutierrez, M., Vexo, F., &¿almann, D. (2005). Semantics-based representation of virtual
environments. International Journal of Computer Applications in Technology, 23(2-4),
229–238. doi:10.1504/IJCAT.2005.006484

Hae�iger, S., Von Krogh, G., & Spaeth, S. (2008). Code Reuse in Open Source So ware.
Management Science, 54(1), 180–193. doi:10.1287/mnsc.1070.0748

Happel, H.-J., Korthaus, A., Seedorf, S., & Tomczyk, P. (2006). KOntoR: An Ontology-enabled
Approach to So ware Reuse. In Proceedings of the 18th International Conference on
So ware Engineering And Knowledge Engineering (pp. 349–354).

Happel, H.-J. & Seedorf, S. (2006). Applications of Ontologies in So ware Engineering. In
Proceedings of the Workshop on Sematic Web Enabled So ware Engineering on the ISWC
(pp. 5–9).

Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1),
335–346. doi:10.1016/0167-2789(90)90087-6

Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B., & Irlbeck, M. (2011). On the
Extent and Nature of So ware Reuse in Open Source Java Projects. In K. Schmid (Ed.),
Top Productivity through So ware Reuse: 12th International Conference on So ware
Reuse, ICSR 2011, Pohang, South Korea, June 13-17, 2011. Proceedings (pp. 207–222).
Springer. doi:10.1007/978-3-642-21347-2_16

Hendler, J. (2007). Where Are All the Intelligent Agents? IEEE Intelligent Systems, 22(3), 2–3.
doi:10.1109/MIS.2007.62

Henning, M. (2006). ¿e Rise and Fall of CORBA. Queue, 4(5), 28–34. doi:10.1145/1142031.
1142044

Heumer, G., Schilling, M., & Latoschik, M. E. (2005). Automatic data exchange and syn-
chronization for knowledge-based intelligent virtual environments. In Virtual Reality
Conference (pp. 43–50). IEEE. doi:10.1109/VR.2005.1492752

Hewitt, C., Bishop, P., & Steiger, R. (1973). A Universal Modular ACTOR Formalism for Arti-
�cial Intelligence. In Proceedings of the 3rd International Joint Conference on Arti�cial
Intelligence (pp. 235–245).

Hiebert, G. (2005). OpenAL 1.1 Speci�cation and Reference. Retrieved April 30, 2015, from
http://www.openal.org/documentation/openal-1.1-speci�cation.pdf

Horridge, M. & Bechhofer, S. (2009). ¿e OWL API: A Java API for Working with OWL 2
Ontologies. In Proceedings of the 6th International Conference on OWL: Experiences
and Directions - Volume 529 (pp. 49–58). OWLED’09. CEUR-WS.org.

Hristov, D., Hummel, O., Huq, M., & Janjic, W. (2012). Structuring So ware Reusability
Metrics for Component-Based So ware Development. In ICSEA 2012, ¿e Seventh
International Conference on So ware Engineering Advances (pp. 421–429).

Huhns, M. N. & Singh, M. P. (1997). Ontologies for agents. IEEE Internet Computing, 1(6),
81–83. doi:10.1109/4236.643942

ISO/IEC 25010. (2011). Systems and So ware Engineering – Systems and So ware Quality
Requirements and Evaluation (SQuaRE) – System and So ware Quality models. ISO/IEC
25010:2011 (ISO). 2011.

ISO/IEC 9126. (2001). So ware Engineering – Product Quality. ISO/IEC 9126-1:2001 (ISO).
2001.

ISO/IEC/IEEE 24765. (2010). Systems and So ware Engineering – Vocabulary. ISO/IEC/IEEE
24765:2010 (ISO). 2010.

220

https://dx.doi.org/10.1504/IJCAT.2005.006484
https://dx.doi.org/10.1287/mnsc.1070.0748
https://dx.doi.org/10.1016/0167-2789(90)90087-6
https://dx.doi.org/10.1007/978-3-642-21347-2_16
https://dx.doi.org/10.1109/MIS.2007.62
https://dx.doi.org/10.1145/1142031.1142044
https://dx.doi.org/10.1145/1142031.1142044
https://dx.doi.org/10.1109/VR.2005.1492752
http://www.openal.org/documentation/openal-1.1-specification.pdf
https://dx.doi.org/10.1109/4236.643942

Bibliography

Juarez, A., Schonenberg, W., & Bartneck, C. (2010). Implementing a low-cost CAVE system
using the CryEngine2. Entertainment Computing, 1(3), 157–164. doi:10.1016/j.entcom.
2010.10.001

Kallmann, M. (2001). Object Interaction in Real-Time Virtual Environments (Doctoral
dissertation, École Polytechnique Fédérale de Lausanne).

Kalogerakis, E., Christodoulakis, S., & Moumoutzis, N. (2006). Coupling Ontologies with
Graphics Content for Knowledge Driven Visualization. In IEEE Virtual Reality Confer-
ence (pp. 43–50). VR 2006. IEEE. doi:10.1109/VR.2006.41

Kapahnke, P., Liedtke, P., Nesbigall, S., Warwas, S., & Klusch, M. (2010). ISReal: An Open
Platform for Semantic-Based 3D Simulations in the 3D Internet. In P. F. Patel-Schneider,
Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z. Pan, . . .B. Glimm (Eds.), ¿e Semantic
Web – ISWC 2010: 9th International Semantic Web Conference, ISWC 2010, Shanghai,
China, November 7-11, 2010, Revised Selected Papers, Part II (pp. 161–176). Springer.
doi:10.1007/978-3-642-17749-1_11

Kapolka, A., McGregor, D., & Capps, M. (2002). A Uni�ed Component Framework for
Dynamically Extensible Virtual Environments. In Proceedings of the 4th International
Conference on Collaborative Virtual Environments (pp. 64–71). CVE ’02. doi:10.1145/
571878.571889

Kay, A. (2003, October). Turing Award Lecture. In ACM Turing award lectures. ACM.
doi:10.1145/1283920.1961918

Kiczales, G., Hugunin, J., Hilsdale, E., Kersten, M., Palm, J., Lopes, C., . . . Isberg, W. (2003).
Aspect Oriented Programming. Palo Alto Research Center.

Kim, Y. & Stohr, E. A. (1998). So ware Reuse: Survey and Research Directions. Journal of
Management Information Systems, 14(4), 113–147. doi:10.1080/07421222.1998.11518188

Kleinermann, F., De Troyer, O., Creelle, C., & Pellens, B. (2008). Adding Semantic Annotations,
Navigation Paths and Tour Guides to Existing Virtual Environments. In T. G. Wyeld,
S. Kenderdine, & M. Docherty (Eds.), Virtual Systems and Multimedia (pp. 100–111).
Springer. doi:10.1007/978-3-540-78566-8_9

Kleinermann, F., De Troyer, O., Mansouri, H., Romero, R., Pellens, B., & Bille, W. (2005).
Designing Semantic Virtual Reality Applications. In Proceedings of the 2nd INTUITION
International Workshop (pp. 5–10).

Klusch, M., Gerber, A., & Schmidt, M. (2005). Semantic Web Service Composition Planning
with OWLS-Xplan. In AAAI Fall Symposium on Semantic Web and Agents.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., . . . Wiedenbeck, S.
(2011). ¿e State of the Art in End-user So ware Engineering. ACMComputing Surveys
(CSUR), 43(3), 21:1–21:44. doi:10.1145/1922649.1922658

Krötzsch, M. (2012). OWL 2 Pro�les: An Introduction to Lightweight Ontology Languages. In
T. Eiter & T. Krennwallner (Eds.), Reasoning Web. Semantic Technologies for Advanced
Query Answering: 8th International Summer School 2012, Vienna, Austria, September
3-8, 2012. Proceedings (pp. 112–183). Springer. doi:10.1007/978-3-642-33158-9_4

Krueger, C. W. (1992). So ware reuse. ACM Computing Surveys (CSUR), 24(2), 131–183.
doi:10.1145/130844.130856

Kuck, R., Wind, J., Riege, K., & Bogen, M. (2008). Improving the Avango VR/AR Framework:
Lessons Learned. In Virtuelle und Erweiterte Realität: 5. Workshop der GI-Fachgruppe
VR/AR (pp. 209–220). Shaker Verlag.

221

https://dx.doi.org/10.1016/j.entcom.2010.10.001
https://dx.doi.org/10.1016/j.entcom.2010.10.001
https://dx.doi.org/10.1109/VR.2006.41
https://dx.doi.org/10.1007/978-3-642-17749-1_11
https://dx.doi.org/10.1145/571878.571889
https://dx.doi.org/10.1145/571878.571889
https://dx.doi.org/10.1145/1283920.1961918
https://dx.doi.org/10.1080/07421222.1998.11518188
https://dx.doi.org/10.1007/978-3-540-78566-8_9
https://dx.doi.org/10.1145/1922649.1922658
https://dx.doi.org/10.1007/978-3-642-33158-9_4
https://dx.doi.org/10.1145/130844.130856

Bibliography

Lamport, L. (1978, July). Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7), 558–565. doi:10.1145/359545.359563

Latoschik, M. E. (2005). A User Interface Framework for Multimodal VR Interactions. In
Proceedings of the 7th international conference on Multimodal interfaces (pp. 76–83).
ICMI ’05. ACM. doi:10.1145/1088463.1088479

Latoschik, M. E. (2015). engineering Real-Time Interactive Systems. Tutorial on IEEE VR 2015
conference. Retrieved April 16, 2015, from https://www.hci.uni-wuerzburg.de/eris/01-
real-time-interactive-systems-150325-handout.pdf

Latoschik, M. E., Biermann, P., & Wachsmuth, I. (2005). Knowledge in the Loop: Semantics
Representation for Multimodal Simulative Environments. In A. Butz, B. Fisher, A.
Krüger, & P. Olivier (Eds.), Smart Graphics: 5th International Symposium, SG 2005,
Frauenwörth Cloister, Germany, August 22-24, 2005. Proceedings (pp. 25–39). Springer.
doi:10.1007/11536482_3

Latoschik, M. E. & Fischbach, M. (2014). Engineering Variance: So ware Techniques for
Scalable, Customizable, and Reusable Multimodal Processing. In M. Kurosu (Ed.),
Human-Computer Interaction. ¿eories, Methods, and Tools: 16th International Confer-
ence, HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014, Proceedings,
Part I (pp. 308–319). Springer. doi:10.1007/978-3-319-07233-3_29

Latoschik, M. E. & Fröhlich, C. (2007a). Semantic Re�ection for Intelligent Virtual Environ-
ments. In 2007 IEEE Virtual Reality Conference (pp. 305–306). doi:10.1109/VR.2007.
352514

Latoschik, M. E. & Fröhlich, C. (2007b). Towards Intelligent VR: Multi-Layered Semantic
Re�ection for Intelligent Virtual Environments. In Proceedings of the International
Conference on Computer Graphics ¿eory and Applications (pp. 249–259). doi:10.5220/
0002081302490259

Latoschik, M. E., Fröhlich, C., &Wendler, A. (2006). Scene Synchronization in Close Coupled
World Representations Using SCIVE. International Journal of Virtual Reality, 5(3),
47–52.

Latoschik, M. E. & Schilling, M. (2003). Incorporating VR databases into AI knowledge
representations: A framework for intelligent graphics applications. In Proceedings of the
Sixth IASTED International Conference on Computer Graphics and Imaging (pp. 79–84).

Latoschik, M. E. & Tramberend, H. (2010). Engineering Realtime Interactive Systems: Cou-
pling & Cohesion of Architecture Mechanisms. In Proceedings of the 16th Eurographics
Conference on Virtual Environments & Second Joint Virtual Reality (pp. 25–28).
EGVE - JVRC’10. Eurographics Association. doi:10.2312/EGVE/JVRC10/025-028

Latoschik, M. E. & Tramberend, H. (2011). Simulator X: A Scalable and Concurrent Architec-
ture for Intelligent Realtime Interactive Systems. In 2011 IEEE Virtual Reality Conference
(pp. 171–174). doi:10.1109/VR.2011.5759457

Leach, R. J. (2012). So ware Reuse: Methods, Models, Costs. A erMath.
Lee, E. A. (2006).¿eProblemwith¿reads. Computer, 39(5), 33–42. doi:10.1109/MC.2006.180
Lenat, D. B., Guha, R. V., Pittman, K., Pratt, D., & Shepherd, M. (1990). Cyc: Toward Programs

with Common Sense. Communications of the ACM, 33(8), 30–49. doi:10.1145/79173.
79176

Lewis, M. & Jacobson, J. (2002). Game Engines in Scienti�c Research. Communications of the
ACM, 45(1), 27–31. doi:10.1145/502269.502288

222

https://dx.doi.org/10.1145/359545.359563
https://dx.doi.org/10.1145/1088463.1088479
https://www.hci.uni-wuerzburg.de/eris/01-real-time-interactive-systems-150325-handout.pdf
https://www.hci.uni-wuerzburg.de/eris/01-real-time-interactive-systems-150325-handout.pdf
https://dx.doi.org/10.1007/11536482_3
https://dx.doi.org/10.1007/978-3-319-07233-3_29
https://dx.doi.org/10.1109/VR.2007.352514
https://dx.doi.org/10.1109/VR.2007.352514
https://dx.doi.org/10.5220/0002081302490259
https://dx.doi.org/10.5220/0002081302490259
https://dx.doi.org/10.2312/EGVE/JVRC10/025-028
https://dx.doi.org/10.1109/VR.2011.5759457
https://dx.doi.org/10.1109/MC.2006.180
https://dx.doi.org/10.1145/79173.79176
https://dx.doi.org/10.1145/79173.79176
https://dx.doi.org/10.1145/502269.502288

Bibliography

Limet, S., Robert, S., & Turki, A. (2009). FlowVR-SciViz: A Component-Based Framework for
Interactive Scienti�c Visualization. In Proceedings of the 2009 Workshop on Component-
Based High Performance Computing (17, 17:1–17:9). CBHPC ’09. ACM. doi:10.1145/
1687774.1687791

Luck, M. & Aylett, R. (2000). Applying Arti�cial Intelligence to Virtual Reality: Intelli-
gent Virtual Environments. Applied Arti�cial Intelligence, 14(1), 3–32. doi:10.1080/
088395100117142

Lugrin, J.-L. & Cavazza,M. (2007). Making Sense of Virtual Environments: Action Representa-
tion, Grounding and Common Sense. In Proceedings of the 12th International Conference
on Intelligent User Interfaces (pp. 225–234). IUI ’07. ACM. doi:10.1145/1216295.1216336

Lugrin, J.-L., Charles, F., Cavazza, M., Le Renard, M., Freeman, J., & Lessiter, J. (2012).
CaveUDK: A VR Game Engine Middleware. In Proceedings of the 18th ACM symposium
on Virtual Reality So ware and Technology (pp. 137–144). VRST ’12. ACM. doi:10.1145/
2407336.2407363

Lugrin, J.-L., Wiebusch, D., Latoschik, M. E., & Strehler, A. (2013). Usability Benchmarks for
Motion Tracking Systems. In Proceedings of the 19th ACM Symposium on Virtual Reality
So ware and Technology (pp. 49–58). VRST ’13. ACM. doi:10.1145/2503713.2503730

Manhas, S., Vashisht, R., Sandhu, P. S., & Neeru, N. (2010). Reusability Evaluation Model for
Procedure Based So ware Systems. International Journal of Computer and Electrical
Engineering, 2(6), 1107–1111.

Mannuß, F., Hinkenjann, A., & Maiero, J. (2008). From Scene Graph Centered to Entity
Centered Virtual Environments. In M. E. Latoschik, D. Reiners, R. Blach, P. Figueroa, &
R. Dachselt (Eds.), IEEE VR 2008 Workshop on So ware Engineering and Architectures
for Realtime Interactive Systems (pp. 37–40). Shaker Verlag.

Manola, F. & Miller, E. (2004). RDF primer. World Wide Web Consortium. Retrieved
December 15, 2014, from http://www.w3.org/TR/rdf-primer/

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., . . . Payne, T.
(2004). OWL-S: Semantic markup for web services. W3C member submission. Re-
trieved April 30, 2015, from http://www.w3.org/Submission/OWL-S/

Maslow, A. H. (2004). ¿e Psychology of Science: A Reconnaissance. (p. 15). Maurice Bassett.
Matuszek, C., Cabral, J., Witbrock, M. J., & DeOliveira, J. (2006). An Introduction to the

Syntax and Content of Cyc. In AAAI Spring Symposium: Formalizing and Compiling
Background Knowledge and Its Applications to Knowledge Representation and Question
Answering (Technical Report SS-06-05, pp. 44–49).

McCain, R. (1985). Reusable So ware Component Construction: A Product-Oriented
Paradigm. In 5th computers in aerospace conference (pp. 125–135). American Institute
of Aeronautics and Astronautics. doi:10.2514/6.1985-5068

McDermott, D. & Dou, D. (2002). Representing Disjunction and Quanti�ers in RDF. In
I. Horrocks & J. Hendler (Eds.), ¿e Semantic Web — ISWC 2002: First International
Semantic Web Conference Sardinia, Italy, June 9–12, 2002 Proceedings (pp. 250–263).
Springer. doi:10.1007/3-540-48005-6_20

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., . . . Wilkins, D.
(1998). PDDL—¿e Planning Domain De�nition Language (tech. rep. No. CVC TR-98-
003/DCS TR-1165). Yale Center for Computational Vision and Control.

223

https://dx.doi.org/10.1145/1687774.1687791
https://dx.doi.org/10.1145/1687774.1687791
https://dx.doi.org/10.1080/088395100117142
https://dx.doi.org/10.1080/088395100117142
https://dx.doi.org/10.1145/1216295.1216336
https://dx.doi.org/10.1145/2407336.2407363
https://dx.doi.org/10.1145/2407336.2407363
https://dx.doi.org/10.1145/2503713.2503730
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/Submission/OWL-S/
https://dx.doi.org/10.2514/6.1985-5068
https://dx.doi.org/10.1007/3-540-48005-6_20

Bibliography

McIlroy, M. D. (1968). Mass-Produced So ware Components. In P. Naur & B. Randell (Eds.),
So ware Engineering: Report on a Conference sponsored by the NATO Science Committee,
Garmisch, Germany, 7th to 11th October 1968 (pp. 79–85). Scienti�c A�airs Division,
NATO.

Metral, C., Falquet, G., & Cutting-Decelle, A. F. (2009). Towards Semantically Enriched
3D City Models: An Ontology-based Approach. Academic Track of GeoWeb 2009
- Cityscapes, International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences (ISPRS), XXXVIII-3-4/C3).

Meyer, B. (1987). Reusability: ¿e Case for Object-Oriented Design. IEEE So ware, 4(2),
50–64. doi:10.1109/MS.1987.230097

Mili, A., Mili, R., & Mittermeir, R. T. (1998). A Survey of So ware Reuse Libraries. Annals of
So ware Engineering, 5(1), 349–414.

Mili, H., Mili, F., & Mili, A. (1995). Reusing So ware: Issues and Research Directions. IEEE
Transactions on So ware Engineering, 21(6), 528–562. doi:10.1109/32.391379

Mohagheghi, P. & Conradi, R. (2007). Quality, Productivity and Economic Bene�ts of
So ware Reuse: A Review of Industrial Studies. Empirical So ware Engineering, 12(5),
471–516. doi:10.1007/s10664-007-9040-x

Morisio, M., Ezran, M., & Tully, C. (2002). Success and failure factors in so ware reuse. IEEE
Transactions on So ware Engineering, 28(4), 340–357. doi:10.1109/TSE.2002.995420

Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., & Lutz, C. (2012). OWL 2 Web
Ontology Language: Pro�les (W3C Recommendation No. REC-owl2-pro�les-20121211).
W3C. Retrieved April 30, 2015, from http://www.w3.org/TR/owl2-pro�les/

Naumann, A. & Hurtienne, J. (2010). Benchmarks for Intuitive Interaction with Mobile
Devices. In Proceedings of the 12th International Conference on Human Computer
Interaction with Mobile Devices and Services (pp. 401–402). MobileHCI ’10. ACM.
doi:10.1145/1851600.1851685

Neches, R., Fikes, R. E., Finin, T., Gruber, T., Patil, R., Senator, T., & Swartout, W. R. (1991).
Enabling technology for knowledge sharing. AI magazine, 12(3), 36–56. doi:10.1609/
aimag.v12i3.902

Nesbigall, S., Warwas, S., Kapahnke, P., Schubotz, R., Klusch, M., Fischer, K., & Slusallek,
P. (2011). ISReal: a platform for intelligent simulated realities. In J. Filipe, A. Fred,
& B. Sharp (Eds.), Agents and Arti�cial Intelligence: Second International Conference,
ICAART 2010, Valencia, Spain, January 22-24, 2010. Revised Selected Papers (pp. 201–
213). Springer. doi:10.1007/978-3-642-19890-8_15

Nickel, U., Niere, J., & Zündorf, A. (2000). ¿e FUJABA Environment. In Proceedings of the
22nd international conference on So ware engineering (pp. 742–745). ICSE ’00. ACM.
doi:10.1145/337180.337620

Nierstrasz, O., Gibbs, S., & Tsichritzis, D. (1992). Component-oriented So ware Development.
Communications of the ACM, 35(9), 160–165. doi:10.1145/130994.131005

Nii, H. (1986). ¿e Blackboard Model of Problem Solving and the Evolution of Blackboard
Architectures. AI Magazine, 7(2), 38–53. doi:10.1609/aimag.v7i2.537

Oberle, D. (2014). Ontologies and Reasoning in Enterprise Service Ecosystems. Informatik-
Spektrum, 37(4), 318–328. doi:10.1007/s00287-014-0785-5

224

https://dx.doi.org/10.1109/MS.1987.230097
https://dx.doi.org/10.1109/32.391379
https://dx.doi.org/10.1007/s10664-007-9040-x
https://dx.doi.org/10.1109/TSE.2002.995420
http://www.w3.org/TR/owl2-profiles/
https://dx.doi.org/10.1145/1851600.1851685
https://dx.doi.org/10.1609/aimag.v12i3.902
https://dx.doi.org/10.1609/aimag.v12i3.902
https://dx.doi.org/10.1007/978-3-642-19890-8_15
https://dx.doi.org/10.1145/337180.337620
https://dx.doi.org/10.1145/130994.131005
https://dx.doi.org/10.1609/aimag.v7i2.537
https://dx.doi.org/10.1007/s00287-014-0785-5

Bibliography

Oberle, D., Lamparter, S., Grimm, S., Vrandečić, D., Staab, S., & Gangemi, A. (2006). Towards
Ontologies for Formalizing Modularization and Communication in Large So ware
Systems. Applied Ontology, 1(2), 163–202.

Object Management Group. (2013). MOF Support for Semantic Structures. formal/2013-04-02
(OMG). 2013. Retrieved April 20, 2015, from http://www.omg.org/spec/SMOF/1.0/

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., . . . Zenger, M. (2006).
An Overview of the Scala Programming Language (LAMP-REPORT No. 2006-001).
École Polytechnique Fédérale de Lausanne (EPFL).

Orkin, J. (2004). Symbolic Representation of Game World State: Toward Real-Time Planning
in Games. In Proceedings of the AAAI Workshop on Challenges in Game Arti�cial
Intelligence (Vol. 5).

Otto, K. A. (2005a). Semantic Virtual Environments. In Special Interest Tracks and Posters
of the 14th International Conference on World Wide Web (pp. 1036–1037). WWW ’05.
ACM. doi:10.1145/1062745.1062856

Otto, K. A. (2005b). Towards Semantic Virtual Environments. InWorkshop Towards Semantic
Virtual Environments (SVE’05) (pp. 47–56).

Parnas, D. L. (1972). On the Criteria to Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12), 1053–1058. doi:10.1145/361598.361623

Pellens, B. (2007). A Conceptual Modelling Approach for Behaviour in Virtual Environments
Using a Graphical Notation and Generative Design Patterns (Doctoral dissertation, Vrije
Universiteit Brussel, Brussels, Belgium).

Peters, S. & Shrobe, H. E. (2003). Using Semantic Networks for Knowledge Representation in
an Intelligent Environment. In Proceedings of the First IEEE International Conference
on Pervasive Computing and Communications (pp. 323–329). PerCom ’03. doi:10.1109/
PERCOM.2003.1192756

Ponder, M. (2004). Component-Based Methodology and Development Framework for Virtual
and Augmented Reality Systems (Doctoral dissertation, EPFL, Lausanne). doi:10.5075/
ep�-thesis-3046

Ponder, M., Papagiannakis, G., Molet, T., Magnenat-¿almann, N., &¿almann, D. (2003).
VHD++ Development Framework: Towards extendible, component based VR/AR
simulation engine featuring advanced virtual character technologies. In Computer
Graphics International (pp. 96–104). doi:10.1109/CGI.2003.1214453

Potok, T. E., Vouk, M., & Rindos, A. (1999). Productivity analysis of object-oriented so ware
developed in a commercial environment. So ware: Practice and Experience, 29(10),
833–848. doi:10.1002/(SICI)1097-024X(199908)29:10<833::AID-SPE258>3.0.CO;2-P

Prieto-Díaz, R. (1989). So ware Reusability: Vol. 1, Concepts and Models. In T. J. Biggersta�
& A. J. Perlis (Eds.), (Chap. Classi�cation of Reusable Modules, pp. 99–123). ACM.
doi:10.1145/73103.73107

Prieto-Díaz, R. (1993). Status Report: So ware Reusability. IEEE So ware, 10(3), 61–66.
doi:10.1109/52.210605

Radatz, J., Geraci, A., & Katki, F. (1990). IEEE standard glossary of so ware engineering
terminology. IEEE Std, 610121990, 121990.

Ravichandran, T. & Rothenberger, M. A. (2003). So ware Reuse Strategies and Component
Markets. Communications of the ACM, 46(8), 109–114. doi:10.1145/859670.859678

225

http://www.omg.org/spec/SMOF/1.0/
https://dx.doi.org/10.1145/1062745.1062856
https://dx.doi.org/10.1145/361598.361623
https://dx.doi.org/10.1109/PERCOM.2003.1192756
https://dx.doi.org/10.1109/PERCOM.2003.1192756
https://dx.doi.org/10.5075/epfl-thesis-3046
https://dx.doi.org/10.5075/epfl-thesis-3046
https://dx.doi.org/10.1109/CGI.2003.1214453
https://dx.doi.org/10.1002/(SICI)1097-024X(199908)29:10<833::AID-SPE258>3.0.CO;2-P
https://dx.doi.org/10.1145/73103.73107
https://dx.doi.org/10.1109/52.210605
https://dx.doi.org/10.1145/859670.859678

Bibliography

Rehfeld, S., Tramberend, H., & Latoschik, M. E. (2013). An actor-based distribution model
for Realtime Interactive Systems. In 2013 6th Workshop on So ware Engineering and
Architectures for Realtime Interactive Systems (SEARIS) (pp. 9–16). doi:10.1109/SEARIS.
2013.6798103

Rehfeld, S., Tramberend, H., & Latoschik, M. E. (2014). Pro�ling and Benchmarking Event-
andMessage-passing-based Asynchronous Realtime Interactive Systems. In Proceedings
of the 20th ACM Symposium on Virtual Reality So ware and Technology (pp. 151–159).
VRST ’14. ACM. doi:10.1145/2671015.2671031

Riaz, M., Mendes, E., & Tempero, E. (2009). A Systematic Review of So ware Maintainability
Prediction and Metrics. In Proceedings of the 2009 3rd International Symposium on
Empirical So ware Engineering and Measurement (pp. 367–377). ESEM ’09. IEEE
Computer Society. doi:10.1109/ESEM.2009.5314233

Rich, C. & Feldman, Y. A. (1992, June). Seven Layers of Knowledge Representation and Rea-
soning in Support of So ware Development. IEEE Transactions on So ware Engineering,
18(6), 451–469. doi:10.1109/32.142869

Roßbach, M. (2010). Die jVR Graphics Engine (Master’s thesis, Beuth Hochschule für Technik
Berlin).

Rugaber, S. (2000). The use of domain knowledge in program understanding. Annals of
So ware Engineering, 9(1-2), 143–192. doi:10.1023/A:1018976708691

Russell, S. & Norvig, P. (2010). Arti�cial Intelligence: A Modern Approach. Prentice Hall Series
in Arti�cial Intelligence. Prentice Hall.

Salisbury, J. o. (1159). The metalogicon.
Sametinger, J. (1997). So ware Engineering with Reusable Components. Springer Berlin

Heidelberg. doi:10.1007/978-3-662-03345-6
Shaw, C., Green, M., Liang, J., & Sun, Y. (1993). Decoupled Simulation in Virtual Reality

with the MR Toolkit. ACM Transactions on Information Systems (TOIS), 11(3), 287–317.
doi:10.1145/159161.173948

Shaw, C., Liang, J., Green, M., & Sun, Y. (1992). ¿e Decoupled Simulation Model for
Virtual Reality Systems. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (pp. 321–328). CHI ’92. ACM. doi:10.1145/142750.142824

Shaw, M. (1995). Architectural Issues in So ware Reuse: It’s Not Just the Functionality, It’s
the Packaging. In Proceedings of the 1995 Symposium on So ware Reusability (pp. 3–6).
SSR ’95. ACM. doi:10.1145/211782.211783

Shearer, R., Motik, B., & Horrocks, I. (2008). HermiT: A Highly-E�cient OWL Reasoner.
In A. Ruttenberg, U. Sattler, & C. Dolbear (Eds.), Proceedings of the 5th International
Workshop on OWL: Experiences and Directions (OWLED 2008 EU).

Sherif, K. & Vinze, A. (2003). Barriers to Adoption of So ware Reuse: A Qualitative Study.
Information & Management, 41(2), 159–175. doi:10.1016/S0378-7206(03)00045-4

Sindre, G., Conradi, R., & Karlsson, E.-A. (1995). ¿e REBOOT Approach To So ware Reuse.
Journal of Systems and So ware, 30(3), 201–212. doi:10.1016/0164-1212(94)00134-9

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A Practical OWL-DL
Reasoner. Web Semantics: science, services and agents on the World Wide Web, 5(2),
51–53. doi:10.1016/j.websem.2007.03.004

226

https://dx.doi.org/10.1109/SEARIS.2013.6798103
https://dx.doi.org/10.1109/SEARIS.2013.6798103
https://dx.doi.org/10.1145/2671015.2671031
https://dx.doi.org/10.1109/ESEM.2009.5314233
https://dx.doi.org/10.1109/32.142869
https://dx.doi.org/10.1023/A:1018976708691
https://dx.doi.org/10.1007/978-3-662-03345-6
https://dx.doi.org/10.1145/159161.173948
https://dx.doi.org/10.1145/142750.142824
https://dx.doi.org/10.1145/211782.211783
https://dx.doi.org/10.1016/S0378-7206(03)00045-4
https://dx.doi.org/10.1016/0164-1212(94)00134-9
https://dx.doi.org/10.1016/j.websem.2007.03.004

Bibliography

Soto, M. & Allongue, S. (2002). Modeling Methods for Reusable and Interoperable Virtual
Entities inMultimedia VirtualWorlds.Multimedia Tools and Applications, 16(1), 161–177.
doi:10.1023/A:1013249920338

Sowa, J. F. (2000). Ontology, metadata, and semiotics. In B. Ganter & G. W. Mineau (Eds.),
Conceptual Structures: Logical, Linguistic, and Computational Issues: 8th International
Conference on Conceptual Structures, ICCS 2000, Darmstadt, Germany, August 14-18,
2000. Proceedings (pp. 55–81). Springer. doi:10.1007/10722280_5

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., & Lindström, N. (2013). JSON-LD 1.0
- A JSON-based Serialization for Linked Data. W3C. Retrieved April 30, 2015, from
http://www.w3.org/TR/json-ld/

Stanford Center for Biomedical Informatics Research. (2015). Protégé. Retrieved March 25,
2015, from http://protege.stanford.edu

Steed, A. (2008). Some Useful Abstractions for Re-Usable Virtual Environment Platforms.
In M. E. Latoschik, D. Reiners, R. Blach, P. Figueroa, & R. Dachselt (Eds.), IEEE VR
Workshop on So ware Engineering and Architectures for Realtime Interactive Systems
(pp. 33–36). Shaker Verlag.

Sugumaran, V. & Storey, V. C. (2003). A Semantic-based Approach to Component Retrieval.
SIGMIS Database, 34(3), 8–24. doi:10.1145/937742.937745

Taylor, R. M., Hudson, T. C., Seeger, A., Weber, H., Juliano, J., & Helser, A. T. (2001). VRPN:
A Device-independent, Network-transparent VR Peripheral System. In Proceedings of
the ACM Symposium on Virtual Reality So ware and Technology (pp. 55–61). VRST ’01.
ACM. doi:10.1145/505008.505019

Taylor, R. M., Jerald, J., VanderKny�, C., Wendt, J., Borland, D., Marshburn, D., . . . Whitton,
M. C. (2010). Lessons about Virtual Environment So ware Systems from 20 Years
of VE Building. Presence: Teleoperators and Virtual Environments, 19(2), 162–178.
doi:10.1162/pres.19.2.162

Tobies, S. (2001). Complexity results and practical algorithms for logics in knowledge represen-
tation (Doctoral dissertation, RWTH Aachen).

Tracz, W. (1988). So ware Reuse Myths. SIGSOFT So ware Engineering Notes, 13(1), 17–21.
doi:10.1145/43857.43859

Tracz, W. (1995). Confessions of a Used-program Salesman: Lessons Learned. In Proceedings
of the 1995 Symposium on So ware Reusability (pp. 11–13). SSR ’95. ACM. doi:10.1145/
211782.211785

Tramberend, H. (1999). Avocado: A Distributed Virtual Reality Framework. InVirtual Reality,
1999. Proceedings., IEEE (pp. 14–21). doi:10.1109/VR.1999.756918

Tutenel, T., Bidarra, R., Smelik, R. M., & Kraker, K. J. D. (2008, December). The role of
semantics in games and simulations. Comput. Entertain. 6(4), 57:1–57:35. doi:10.1145/
1461999.1462009

Typesafe Inc. (2015). Akka for Scala. Retrieved April 30, 2015, from http://akka.io
Unity Technologies. (2015). Unity. Retrieved March 15, 2015, from http://www.unity3d.com
Van Vliet, H. (1993). So ware Engineering: Principles and Practice. John Wiley & Sons, Ltd.
van Ho�, A. (2015). JmDNS. Retrieved April 30, 2015, from http://jmdns.sourceforge.net/
Vinoski, S. (1997). CORBA: Integrating Diverse Applications within Distributed Heteroge-

neous Environments. IEEE Communications Magazine, 35(2), 46–55. doi:10.1109/35.
565655

227

https://dx.doi.org/10.1023/A:1013249920338
https://dx.doi.org/10.1007/10722280_5
http://www.w3.org/TR/json-ld/
http://protege.stanford.edu
https://dx.doi.org/10.1145/937742.937745
https://dx.doi.org/10.1145/505008.505019
https://dx.doi.org/10.1162/pres.19.2.162
https://dx.doi.org/10.1145/43857.43859
https://dx.doi.org/10.1145/211782.211785
https://dx.doi.org/10.1145/211782.211785
https://dx.doi.org/10.1109/VR.1999.756918
https://dx.doi.org/10.1145/1461999.1462009
https://dx.doi.org/10.1145/1461999.1462009
http://akka.io
http://www.unity3d.com
http://jmdns.sourceforge.net/
https://dx.doi.org/10.1109/35.565655
https://dx.doi.org/10.1109/35.565655

Bibliography

Völkel, M. & Sure, Y. (2005). RDFReactor-From Ontologies to Programmatic Data Access.
In Poster proceedings of the 4th international semantic web conference (p. 55).

W3C OWLWorking Group. (2009). OWL 2Web Ontology Language Document Overview
(W3C Recommendation No. REC-owl2-overview-20091027). W3C. Retrieved April
30, 2015, from http://www.w3.org/TR/owl2-overview/

W3C SPARQLWorking Group. (2013, March). SPARQL 1.1 Overview (W3C Recommendation
No. REC-sparql11-overview-20130321). W3C. Retrieved April 30, 2015, from http:
//www.w3.org/TR/sparql11-overview/

Washizaki, H., Yamamoto, H., & Fukazawa, Y. (2003). Ametrics suite formeasuring reusability
of so ware components. In Ninth International So ware Metrics Symposium, 2003.
Proceedings (pp. 211–223). IEEE. doi:10.1109/METRIC.2003.1232469

Wiebusch, D., Fischbach, M., Latoschik, M. E., & Tramberend, H. (2012). Evaluating Scala,
Actors, & Ontologies for Intelligent Realtime Interactive Systems. In Proceedings of the
18th ACM symposium on Virtual Reality So ware and Technology (pp. 153–160). VRST
’12. ACM. doi:10.1145/2407336.2407365

Wiebusch, D. & Latoschik, M. E. (2012). Enhanced Decoupling of Components in Intelligent
Realtime Interactive Systems using Ontologies. In 2012 5th Workshop on So ware
Engineering and Architectures for Realtime Interactive Systems (SEARIS) (pp. 43–51).
IEEE. doi:10.1109/SEARIS.2012.6231168

Wiebusch, D. & Latoschik, M. E. (2014). A Uniform Semantic-based Access Model for
Realtime Interactive Systems. In 2014 IEEE 7th Workshop on So ware Engineering and
Architectures for Realtime Interactive Systems (SEARIS) (pp. 51–58). IEEE. doi:10.1109/
SEARIS.2014.7152801

Wiebusch, D. & Latoschik, M. E. (2015). Decoupling the Entity-Component-System Pattern
using Semantic Traits for Reusable Realtime Interactive Systems. In 2015 IEEE 8th
Workshop on So ware Engineering and Architectures for Realtime Interactive Systems
(SEARIS). IEEE.

Wiebusch, D., Latoschik, M. E., & Tramberend, H. (2010). Ein Kon�gurierbares World-
Interface zur Kopplung von KI-Methoden an Interaktive Echtzeitsysteme. In Virtuelle
und Erweiterte Realität: 7. Workshop der GI-Fachgruppe VR/AR (pp. 47–58). Shaker
Verlag.

Wingrave, C. A. & LaViola, J. J. (2010). Re�ecting on the Design and Implementation Issues of
Virtual Environments. Presence: Teleoperators and Virtual Environments, 19(2), 179–195.
doi:10.1162/pres.19.2.179

Wooldridge, M. (2009). An Introduction to MultiAgent Systems. John Wiley & Sons Ltd.
Würsch, M., Ghezzi, G., Reif, G., & Gall, H. C. (2010). Supporting Developers with Natural

Language Queries. In Proceedings of the 32nd ACM/IEEE International Conference on
So ware Engineering - Volume 1 (pp. 165–174). ICSE ’10. ACM. doi:10.1145/1806799.
1806827

Yao, H. & Etzkorn, L. (2004). Towards a Semantic-based Approach for So ware Reusable
Component Classi�cation and Retrieval. In Proceedings of the 42nd Annual Southeast
Regional Conference (pp. 110–115). ACM-SE 42. ACM. doi:10.1145/986537.986564

Ziaka, E., Vrakas, D., & Bassiliades, N. (2011). Translating Web Services Composition Plans to
OWL-S Descriptions. In ICAART 2011 - Proceedings of the 3rd International Conference
on Agents and Arti�cial Intelligence, Volume 1 - Arti�cial Intelligence (pp. 167–176).

228

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/sparql11-overview/
https://dx.doi.org/10.1109/METRIC.2003.1232469
https://dx.doi.org/10.1145/2407336.2407365
https://dx.doi.org/10.1109/SEARIS.2012.6231168
https://dx.doi.org/10.1109/SEARIS.2014.7152801
https://dx.doi.org/10.1109/SEARIS.2014.7152801
https://dx.doi.org/10.1162/pres.19.2.179
https://dx.doi.org/10.1145/1806799.1806827
https://dx.doi.org/10.1145/1806799.1806827
https://dx.doi.org/10.1145/986537.986564

Bibliography

Zimmerer, C., Fischbach, M., & Latoschik, M. E. (2014). Fusion of Mixed-Reality Tabletop
and Location-Based Applications for Pervasive Games. In Proceedings of the Ninth
ACM International Conference on Interactive Tabletops and Surfaces (pp. 427–430). ITS
’14. ACM. doi:10.1145/2669485.2669527

229

https://dx.doi.org/10.1145/2669485.2669527

Appendix A

OWL De�nitions
Common Elements

Property Representation

Declaration(Class(core:DataType))
Declaration(Class(core:SemanticValue))

SubClassOf(core:Entity core:SemanticValue)

Declaration(ObjectProperty(core:hasDataType))
ObjectPropertyDomain(core:hasDataType core:SemanticValue)
ObjectPropertyRange(core:hasDataType core:DataType)

Declaration(DataProperty(core:hasId))
FunctionalDataProperty(core:hasId)

Declaration(DataProperty(core:hasValue))
DataPropertyDomain(core:hasValue core:SemanticValue)
DataPropertyRange(core:hasValue xsd:string)

Declaration(DataProperty(types:hasTypeString))
DataPropertyDomain(core:hasTypeString core:DataType)
DataPropertyRange(core:hasTypeString xsd:string)

Declaration(AnnotationProperty(core:hasAnnotation))

Listing A.1:OWL De�nitions for Properties

231

Appendix A OWL De�nitions

Declaration(Class(core:HasPart))
Declaration(Class(core:Relation))

Declaration(ObjectProperty(core:hasPart))

SubClassOf(core:HasPart core:Relation)
SubClassOf(core:Relation core:SemanticValue)

Declaration(ObjectProperty(core:hasObject))
ObjectPropertyDomain(core:hasObject core:Relation)
ObjectPropertyRange(core:hasObject core:SemanticValue)

Declaration(ObjectProperty(core:hasSubject))
ObjectPropertyDomain(core:hasSubject core:Relation)
ObjectPropertyRange(core:hasSubject core:SemanticValue)

Declaration(AnnotationProperty(core:hasPredicate))

AnnotationAssertion(core:hasPredicate core:HasPart core:hasPart)

Listing A.2:OWL De�nitions for Relations

Declaration(Class(core:ValueDescription))

Declaration(ObjectProperty(core:basedOn))
ObjectPropertyDomain(core:basedOn core:ValueDescription)
ObjectPropertyRange(core:basedOn core:ValueDescription)

Declaration(ObjectProperty(core:hasProperty))
ObjectPropertyRange(core:hasProperty core:SemanticValue)

Declaration(ObjectProperty(basicDescriptions:describesProperty))
ObjectPropertyDomain(basicDescriptions:describesProperty

core:ValueDescription)
ObjectPropertyRange(basicDescriptions:describesProperty core:SemanticValue)

Declaration(ObjectProperty(core:providesProperty))
ObjectPropertyDomain(core:providesProperty core:Aspect)
ObjectPropertyRange(core:providesProperty core:ValueDescription)

Declaration(ObjectProperty(core:requiresProperty))
ObjectPropertyDomain(core:requiresProperty core:Aspect)
ObjectPropertyRange(core:requiresProperty core:ValueDescription)

SubObjectPropertyOf(ObjectPropertyChain(core:providesProperty
basicDescriptions:describesProperty) core:hasProperty)

SubObjectPropertyOf(ObjectPropertyChain(core:requiresProperty
basicDescriptions:describesProperty) core:hasProperty)

Listing A.3:OWL De�nitions for Property Descriptions

232

Entity Representation

Declaration(Class(core:Aspect))
Declaration(Class(core:Entity))
Declaration(Class(basicDescriptions:EntityDescription))

SubClassOf(core:Entity core:SemanticValue)

Declaration(AnnotationProperty(core:overridesProvide))

Declaration(ObjectProperty(core:hasAspect))
ObjectPropertyRange(core:hasAspect core:Aspect)

Listing A.4:OWL De�nitions for Entity Descriptions

Declaration(Class(core:Application))
Declaration(Class(core:Component))
Declaration(Class(core:Event))

Declaration(ObjectProperty(core:usesComponent))

Declaration(ObjectProperty(core:providesEvent))
ObjectPropertyDomain(core:providesEvent core:Component)
ObjectPropertyRange(core:providesEvent core:Event)

Declaration(ObjectProperty(core:requiresAspect))
ObjectPropertyDomain(core:requiresAspect core:Component)
ObjectPropertyRange(core:requiresAspect core:Aspect)

Declaration(ObjectProperty(core:requiresEvent))
ObjectPropertyDomain(core:requiresEvent core:Component)
ObjectPropertyRange(core:requiresEvent core:Event)

Declaration(ObjectProperty(core:supportsAspect))
ObjectPropertyRange(core:supportsAspect core:Aspect)

Declaration(ObjectProperty(core:usesComponent))
ObjectPropertyDomain(core:usesComponent core:Application)
ObjectPropertyRange(core:usesComponent core:Component)

SubObjectPropertyOf(ObjectPropertyChain(core:usesComponent
core:supportsAspect) core:supportsAspect)

SubObjectPropertyOf(ObjectPropertyChain(core:usesComponent
core:requiresAspect) core:requiresAspect)

Listing A.5:OWL De�nitions for Components

233

Appendix A OWL De�nitions
U
ni
ty

Co
m
po

ne
nt

P
r
e
f
i
x
(
c
o
r
e
:
=
<
h
t
t
p
:
/
/
w
w
w
.
h
c
i
.
u
n
i
−
w
u
e
r
z
b
u
r
g
.
d
e
/
o
n
t
o
l
o
g
i
e
s
/
s
i
m
x
/
S
i
m
x
C
o
r
e
O
n
t
o
l
o
g
y
.
o
w
l
#
>
)

P
r
e
f
i
x
(
d
e
s
c
:
=
<
h
t
t
p
:
/
/
w
w
w
.
h
c
i
.
u
n
i
−
w
u
e
r
z
b
u
r
g
.
d
e
/
o
n
t
o
l
o
g
i
e
s
/
s
i
m
x
/
c
o
n
c
e
p
t
s
/
B
a
s
i
c
D
e
s
c
r
i
p
t
i
o
n
s
.
o
w
l
#
>
)

P
r
e
f
i
x
(
t
y
p
e
s
:
=
<
h
t
t
p
:
/
/
w
w
w
.
h
c
i
.
u
n
i
−
w
u
e
r
z
b
u
r
g
.
d
e
/
o
n
t
o
l
o
g
i
e
s
/
s
i
m
x
/
c
o
n
c
e
p
t
s
/
B
a
s
i
c
T
y
p
e
s
.
o
w
l
#
>
)

P
r
e
f
i
x
(
u
n
i
t
y
:
=
<
h
t
t
p
:
/
/
w
w
w
.
h
c
i
.
u
n
i
−
w
u
e
r
z
b
u
r
g
.
d
e
/
o
n
t
o
l
o
g
i
e
s
/
s
i
m
x
/

c
o
m
p
o
n
e
n
t
s
/
r
e
n
d
e
r
e
r
/
U
n
i
t
y
/
U
n
i
t
y
.
o
w
l
#
>
)

O
n
t
o
l
o
g
y
(
<
h
t
t
p
:
/
/
w
w
w
.
h
c
i
.
u
n
i
−
w
u
e
r
z
b
u
r
g
.
d
e
/
o
n
t
o
l
o
g
i
e
s
/
s
i
m
x
/
c
o
m
p
o
n
e
n
t
s
/
r
e
n
d
e
r
e
r
/
U
n
i
t
y
/
U
n
i
t
y
.
o
w
l
>

I
m
p
o
r
t
(
<
h
t
t
p
:
/
/
w
w
w
.
h
c
i
.
u
n
i
−
w
u
e
r
z
b
u
r
g
.
d
e
/
o
n
t
o
l
o
g
i
e
s
/
s
i
m
x
/
c
o
m
p
o
n
e
n
t
s
/
r
e
n
d
e
r
e
r
/
S
i
m
x
R
e
n
d
e
r
e
r
.
o
w
l
>
)

D
e
c
l
a
r
a
t
i
o
n
(
C
l
a
s
s
(
u
n
i
t
y
:
U
n
i
t
y
)
)

S
u
b
C
l
a
s
s
O
f
(
u
n
i
t
y
:
U
n
i
t
y

t
y
p
e
s
:
G
r
a
p
h
i
c
s
C
o
m
p
o
n
e
n
t
)

D
e
c
l
a
r
a
t
i
o
n
(
N
a
m
e
d
I
n
d
i
v
i
d
u
a
l
(
u
n
i
t
y
:
U
n
i
t
y
C
o
m
p
o
n
e
n
t
)
)

C
l
a
s
s
A
s
s
e
r
t
i
o
n
(
u
n
i
t
y
:
U
n
i
t
y

u
n
i
t
y
:
U
n
i
t
y
C
o
m
p
o
n
e
n
t
)

D
a
t
a
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
i
n
P
a
c
k
a
g
e

u
n
i
t
y
:
U
n
i
t
y
C
o
m
p
o
n
e
n
t

"
s
i
m
x
.
c
o
m
p
o
n
e
n
t
s
.
r
e
n
d
e
r
e
r
.
u
n
i
t
y
"
)

D
e
c
l
a
r
a
t
i
o
n
(
N
a
m
e
d
I
n
d
i
v
i
d
u
a
l
(
u
n
i
t
y
:
U
n
i
t
y
_
R
o
t
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n
)
)

C
l
a
s
s
A
s
s
e
r
t
i
o
n
(
O
b
j
e
c
t
S
o
m
e
V
a
l
u
e
s
F
r
o
m
(
d
e
s
c
:
d
e
s
c
r
i
b
e
s
P
r
o
p
e
r
t
y

t
y
p
e
s
:
R
o
t
a
t
i
o
n
)

u
n
i
t
y
:
U
n
i
t
y
_
R
o
t
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
f
o
r
C
o
m
p
o
n
e
n
t

u
n
i
t
y
:
U
n
i
t
y
_
R
o
t
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n

u
n
i
t
y
:
U
n
i
t
y
C
o
m
p
o
n
e
n
t
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
h
a
s
D
a
t
a
T
y
p
e

u
n
i
t
y
:
U
n
i
t
y
_
R
o
t
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n

t
y
p
e
s
:
s
i
m
p
l
e
x
3
d
.
m
a
t
h
.
f
l
o
a
t
x
.
C
o
n
s
t
Q
u
a
t
4
f
)

D
e
c
l
a
r
a
t
i
o
n
(
N
a
m
e
d
I
n
d
i
v
i
d
u
a
l
(
u
n
i
t
y
:
U
n
i
t
y
_
S
c
a
l
e
D
e
s
c
r
i
p
t
i
o
n
)
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
b
a
s
e
d
O
n

u
n
i
t
y
:
U
n
i
t
y
_
S
c
a
l
e
D
e
s
c
r
i
p
t
i
o
n

d
e
s
c
:
S
i
r
i
s
C
o
r
e
_
S
c
a
l
e
D
e
s
c
r
i
p
t
i
o
n
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
f
o
r
C
o
m
p
o
n
e
n
t

u
n
i
t
y
:
U
n
i
t
y
_
S
c
a
l
e
D
e
s
c
r
i
p
t
i
o
n

u
n
i
t
y
:
U
n
i
t
y
C
o
m
p
o
n
e
n
t
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
h
a
s
D
a
t
a
T
y
p
e

u
n
i
t
y
:
U
n
i
t
y
_
S
c
a
l
e
D
e
s
c
r
i
p
t
i
o
n

t
y
p
e
s
:
s
i
m
p
l
e
x
3
d
.
m
a
t
h
.
f
l
o
a
t
x
.
C
o
n
s
t
V
e
c
3
f
)

D
e
c
l
a
r
a
t
i
o
n
(
N
a
m
e
d
I
n
d
i
v
i
d
u
a
l
(
u
n
i
t
y
:
U
n
i
t
y
_
T
r
a
n
s
f
o
r
m
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n
)
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
b
a
s
e
d
O
n

u
n
i
t
y
:
U
n
i
t
y
_
T
r
a
n
s
f
o
r
m
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n

d
e
s
c
:
S
i
r
i
s
C
o
r
e
_
T
r
a
n
s
f
o
r
m
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
f
o
r
C
o
m
p
o
n
e
n
t

u
n
i
t
y
:
U
n
i
t
y
_
T
r
a
n
s
f
o
r
m
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n

u
n
i
t
y
:
U
n
i
t
y
C
o
m
p
o
n
e
n
t
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
h
a
s
D
a
t
a
T
y
p
e

u
n
i
t
y
:
U
n
i
t
y
_
T
r
a
n
s
f
o
r
m
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n

t
y
p
e
s
:
s
i
m
p
l
e
x
3
d
.
m
a
t
h
.
f
l
o
a
t
x
.
C
o
n
s
t
V
e
c
3
f
)

D
e
c
l
a
r
a
t
i
o
n
(
N
a
m
e
d
I
n
d
i
v
i
d
u
a
l
(
u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
A
s
s
e
t
)
)

C
l
a
s
s
A
s
s
e
r
t
i
o
n
(
t
y
p
e
s
:
S
h
a
p
e
F
r
o
m
F
i
l
e

u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
A
s
s
e
t
)

234

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
f
o
r
C
o
m
p
o
n
e
n
t

u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
A
s
s
e
t

u
n
i
t
y
:
U
n
i
t
y
C
o
m
p
o
n
e
n
t
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
r
e
q
u
i
r
e
s
P
r
o
p
e
r
t
y

u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
A
s
s
e
t

d
e
s
c
:
S
i
r
i
s
C
o
r
e
_
T
r
a
n
s
f
o
r
m
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
d
e
s
c
:
h
a
s
C
r
e
a
t
e
P
a
r
a
m
e
t
e
r

u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
A
s
s
e
t

d
e
s
c
:
S
i
r
i
s
C
o
r
e
_
S
c
a
l
e
D
e
s
c
r
i
p
t
i
o
n
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
A
n
n
o
t
a
t
i
o
n
(
c
o
r
e
:
h
a
s
A
n
n
o
t
a
t
i
o
n

t
y
p
e
s
:
F
i
l
e
)

d
e
s
c
:
h
a
s
C
r
e
a
t
e
P
a
r
a
m
e
t
e
r

u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
A
s
s
e
t

d
e
s
c
:
S
i
r
i
s
C
o
r
e
_
S
t
r
i
n
g
D
e
s
c
r
i
p
t
i
o
n
)

D
e
c
l
a
r
a
t
i
o
n
(
N
a
m
e
d
I
n
d
i
v
i
d
u
a
l
(
u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
E
x
i
s
t
i
n
g
N
o
d
e
)
)

C
l
a
s
s
A
s
s
e
r
t
i
o
n
(
r
e
n
d
e
r
e
r
:
E
x
i
s
t
i
n
g
N
o
d
e

u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
E
x
i
s
t
i
n
g
N
o
d
e
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
f
o
r
C
o
m
p
o
n
e
n
t

u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
E
x
i
s
t
i
n
g
N
o
d
e

u
n
i
t
y
:
U
n
i
t
y
C
o
m
p
o
n
e
n
t
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
c
o
r
e
:
r
e
q
u
i
r
e
s
P
r
o
p
e
r
t
y

u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
E
x
i
s
t
i
n
g
N
o
d
e

d
e
s
c
:
S
i
r
i
s
C
o
r
e
_
T
r
a
n
s
f
o
r
m
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
A
n
n
o
t
a
t
i
o
n
(
c
o
r
e
:
h
a
s
A
n
n
o
t
a
t
i
o
n

t
y
p
e
s
:
O
f
f
s
e
t
)

d
e
s
c
:
h
a
s
C
r
e
a
t
e
P
a
r
a
m
e
t
e
r

u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
E
x
i
s
t
i
n
g
N
o
d
e

d
e
s
c
:
S
i
r
i
s
C
o
r
e
_
T
r
a
n
s
f
o
r
m
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n
)

O
b
j
e
c
t
P
r
o
p
e
r
t
y
A
s
s
e
r
t
i
o
n
(
d
e
s
c
:
h
a
s
C
r
e
a
t
e
P
a
r
a
m
e
t
e
r

u
n
i
t
y
:
U
n
i
t
y
_
U
n
i
t
y
E
x
i
s
t
i
n
g
N
o
d
e

d
e
s
c
:
S
i
r
i
s
C
o
r
e
_
N
a
m
e
D
e
s
c
r
i
p
t
i
o
n
)
)

Li
st
in
g
A
.6
:U

ni
ty

Co
m
po

ne
nt

O
W
L
Co

nt
en

t

235

Appendix A OWL De�nitions

Action Representation

Declaration(Class(actions:Action))
Declaration(Class(actions:Parameter))

Declaration(ObjectProperty(actions:hasEffect))
ObjectPropertyDomain(actions:hasEffect actions:Action)
ObjectPropertyRange(actions:hasEffect core:Relation)

Declaration(ObjectProperty(actions:hasParameter))
ObjectPropertyDomain(actions:hasParameter actions:Action)
ObjectPropertyRange(actions:hasParameter actions:Parameter)

Declaration(ObjectProperty(actions:hasPrecondition))
ObjectPropertyDomain(actions:hasPrecondition actions:Action)
ObjectPropertyRange(actions:hasPrecondition core:Relation)

Declaration(ObjectProperty(actions:hasReturnValue))
ObjectPropertyDomain(actions:hasReturnValue actions:Action)
ObjectPropertyRange(actions:hasReturnValue core:Property)

Declaration(ObjectProperty(actions:implementedBy))
ObjectPropertyDomain(actions:implementedBy actions:Action)

Declaration(ObjectProperty(actions:objectof−effect))
ObjectPropertyDomain(actions:objectof−effect actions:Parameter)
ObjectPropertyRange(actions:objectof−effect core:Relation)

Declaration(ObjectProperty(actions:objectof−precondition))
ObjectPropertyDomain(actions:objectof−precondition actions:Parameter)
ObjectPropertyRange(actions:objectof−precondition core:Relation)

Declaration(ObjectProperty(actions:subjectof−effect))
ObjectPropertyDomain(actions:subjectof−effect actions:Parameter)
ObjectPropertyRange(actions:subjectof−effect core:Relation)

Declaration(ObjectProperty(actions:subjectof−precondition))
ObjectPropertyDomain(actions:subjectof−precondition actions:Parameter)
ObjectPropertyRange(actions:subjectof−precondition core:Relation)

Declaration(AnnotationProperty(actions:hasPredicate))

SubObjectPropertyOf(ObjectPropertyChain(actions:hasParameter
actions:objectof−effect) actions:hasEffect)

SubObjectPropertyOf(ObjectPropertyChain(actions:hasParameter
actions:objectof−precondition) actions:hasPrecondition)

SubObjectPropertyOf(ObjectPropertyChain(actions:hasParameter
actions:subjectof−precondition) actions:hasPrecondition)

SubClassOf(ObjectIntersectionOf(ObjectSomeValuesFrom(actions:hasPrecondition
core:Relation) ObjectSomeValuesFrom(actions:hasEffect core:Relation))
actions:Action)

SubObjectPropertyOf(ObjectPropertyChain(actions:hasParameter
actions:subjectof−effect) actions:hasEffect)

Listing A.7:OWL De�nitions for Action Representation

236

Appendix B

Interfaces
Dispatch

publish(event : Event, receiver : EventHandler)
publish(event : Event)

«interface»
EventDispatch

Figure B.1: The EventDispactch interface used in the component model.

Registry

+ getComponent(name : String) : SimulationComponent
+ getComponent(name : String, type : GroundedSymbol) : SimulationComponent
+ getComponents(type : GroundedSymbol) : SimulationComponent[*]
+ registerComponent(component : SimulationComponent)
+ getEntities(annotations : GroundedSymbol[*]) : Entity[*]
+ registerEntity(annotations : GroundedSymbol[*], entity : Entity)
+ provideEvent(eventDescription : EventDescription, publisher : EventPublisher)
+ requestEvent(eventDescription : EventDescription, subscriber : EventHandler)

«interface»
Registry

Figure B.2: The Registry interface used in the component model.

IActionAccess

+ execute(parameters : SemanticValue[*]{ordered})

«interface»
IActionAccess

Figure B.3: The IActionAccess interface used in the component model.

237

Appendix C

Questionnaire Results
NASA TLX

IR (15) SimX (10) UE 4 (3) Unity 4 (15)
Mean SD Mean SD Mean SD Mean SD

Mental Demand 49.73 21.10 62.60 16.53 58.67 13.20 38.00 22.26
Temporal Demand 39.13 16.74 43.90 23.73 49.00 21.40 36.93 22.33
Performance 24.47 20.24 45.30 19.60 41.33 15.33 33.20 25.34
E�ort 45.33 22.91 60.50 17.81 51.00 14.31 41.53 19.70
Frustration 59.07 21.17 51.90 20.57 52.67 19.77 24.13 23.92

Table C.1: NASA TLX short-term results. IR = instantreality, SimX = Simulator X, UE 4 = Unreal Engine 4

SimX (3) UE 4 (5) Unity 4 (11)
Mean SD Mean SD Mean SD

Mental Demand 61.33 2.05 64.60 8.69 54.64 20.11
Temporal Demand 33.33 17.13 58.80 22.19 61.64 17.25
Performance 24.67 15.84 7.40 6.80 32.00 22.10
E�ort 61.33 11.15 81.00 11.58 60.73 18.45
Frustration 64.33 3.30 42.20 19.36 41.55 15.17

Table C.2: NASA TLX long-term results.SimX = Simulator X, UE 4 = Unreal Engine 4

239

Appendix C Questionnaire Results

QUESI

IR SimX UE 4 Unity 4
Mean SD Mean SD Mean SD Mean SD

subjective mental
workload

2.87 0.59 2.17 0.65 2.33 0.31 3.49 0.44

perceived achievement
of goals

3.20 0.78 3.00 0.65 3.33 0.53 4.00 0.36

perceived e�ort of
learning

3.24 0.79 2.13 0.54 1.89 0.18 3.71 0.46

familiarity 2.89 0.80 2.53 0.67 2.22 0.47 3.51 0.46

perceived error rate 2.53 1.02 2.35 0.50 2.67 0.27 3.47 0.51

QUESI total score 2.95 0.52 2.44 0.41 2.49 0.25 3.64 0.41

Table C.3:QUESI short-term results. IR = instantreality, SimX = Simulator X, UE 4 = Unreal Engine 4

SimX (3) UE 4 (5) Unity 4 (11)
Mean SD Mean SD Mean SD

subjective mental
workload

3.11 0.31 3.07 1.02 3.27 0.72

perceived achievement
of goals

3.89 0.42 4.53 0.50 3.76 0.47

perceived e�ort of
learning

3.00 0.27 3.60 0.83 3.03 0.50

familiarity 2.78 0.69 3.73 0.57 3.27 0.47

perceived error rate 2.67 0.47 2.40 0.86 2.86 0.68

QUESI total score 3.09 0.33 3.47 0.61 3.29 0.47

Table C.4:QUESI long-term results. SimX = Simulator X, UE 4 = Unreal Engine 4

240

Dennis Wiebusch

D
en

ni
s

W
ie

bu
sc

h
Re

us
ab

ili
ty

 fo
r I

nt
el

lig
en

t R
ea

lt
im

e
In

te
ra

ct
iv

e
S

ys
te

m
s

Reusability for Intelligent
Realtime Interactive Systems

 Würzburg University Press

ISBN 978-3-95826-040-5

With recent releases of affordable hardware devices the fields

of Virtual, Mixed, and Augmented Reality gained considerable

attention, wherefore the creation of corresponding software

becomes increasingly important. In the absence of a common

model for flexibly combining and reusing appropriate software

modules, such Realtime Interactive Systems are commonly

implemented from scratch. Borrowing from the fields of Soft-

ware Engineering and Knowledge Representation, this work

develops a model for the creation of reusable components from

existing software modules. With a Knowledge Representation

Layer at its core the model additionally enables the utilization

of methods from the field of Artificial Intelligence, thereby sup-

porting the creation of Intelligent Realtime Interactive Systems.

	Introduction
	Motivation
	Reusability for Intelligent Realtime Interactive Systems
	Software Reusability and Software Reuse
	Intelligent Realtime Interactive Systems

	Problem Statement
	Objectives
	Structure

	Related Work
	Overview
	Software Reusability
	Definitions
	Benefits and Inhibitors of Software Reuse
	Facets of Software Reuse
	Reuse Techniques
	Measuring Reusability
	Intermediate Conclusion

	Intelligent Realtime Interactive Systems
	Aspects of VE Development
	VR Frameworks
	Game Engines
	IVE frameworks

	Knowledge Representation
	Forms of Knowledge Representation
	Ontologies
	Action Representation
	Knowledge Representation Layers

	Summary

	A Knowledge Representation Model for IRISs
	Semantics
	Semantics of IRIS Frameworks
	Benefits of Integrated Semantics
	Aspects and Requirements
	Level of Integration
	Representable Elements
	Summary
	Adopting the Web Ontology Language

	A Reusable Knowledge Representation Model
	Relation Descriptions
	Value Descriptions
	Aspects and Entity Descriptions
	Actions, Preconditions, and Effects
	Events
	Simulation Components
	Choosing an Adequate Representation
	Summary

	Integration into an IRIS Framework
	A Layered Approach
	Integration into Program Code
	Cost-Benefit Analysis

	Summary

	A Semantics-based Component Model for Reusable IRISs
	Aspects of Reusability
	A Semantics-based Approach
	Ontological Grounding
	Semantic Values
	Semantic Traits
	Relations
	Methods
	Example of Application
	Annotations
	Benefits and Drawbacks

	A Uniform Access Model
	State Representation & State Transitions
	Uniform Access to the Simulation State
	Simulation Modules
	Benefits and Drawbacks

	Concurrency: Adoption of the Actor Model
	Issues to be faced
	Integration

	A Component Model for IRIS Frameworks
	Semantic Values, Events, and Automatic Type Conversion
	Entity and Component Descriptions
	Components
	Application Composition

	Summary

	Simulator X
	Simulator X - A VR Research Platform
	Architecture
	Actors
	Scala
	Semantic Values
	Events
	State Variables
	Entity Model
	Relations
	Components
	Ontology

	Features
	Distributed Computing
	Automatic Type Conversion
	State History

	Project Structure
	Version Control and Project Structure
	Dependency Management

	Implemented Components
	Adding new Sensors
	Reasoning
	Planning
	Example Component: Unity

	Summary

	Validation
	Evaluating Reusability
	Case Study: Replacing a Rendering Component
	Creating a new Component
	Exchanging Components
	Reuse in Simulator X

	Developed Applications
	Research Demonstrations
	Exhibitions
	Teaching-related Applications

	Opinions: Questionnaires
	Results: NASA TLX
	Results: QUESI
	User Comments
	Discussion

	Summary

	Conclusion
	Summary
	Future Work

	Bibliography
	OWL Definitions
	Interfaces
	Questionnaire Results

