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True, This! -
Beneath the rule of men entirely great
The pen is mightier than the sword. Behold
The arch-enchanters wand! - itself is nothing! -
But taking sorcery from the master-hand
To paralyse the Caesars, and to strike
The loud earth breathless! - Take away the sword -
States can be saved without it!

Richelieu; Or the Conspiracy, Act II, Scene II.
Edward Bulwer-Lytton, 1839
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1. Introduction

The basic interest of physics is to understand nature. This means not only to
describe processes and substances, but also to be able to predict the outcome
of possible experiments. In the field of condensed matter physics there exist ve-
ry many different materials with an incredible variety of magnetic and electric
properties. To be able to describe and predict the behaviour of these solids, stan-
dardized experiments can be carried out and the materials can be attributed to
different categories. An example is the measurement of the electrical conductivi-
ty. By applying a voltage to a slab of a given material and probing the resulting
current flow, the conductance can be determined. However, this physical quantity
scales with the cross section and the length of the slab. Only when taking into
account the geometrical dimensions, the conductivity as a material specific pa-
rameter is obtained. Utilizing this number, one easily identifies good conductors
(metals) and poor conductors (insulators).
It turned out early that a third class of material exists, when M. Faraday disco-
vered the conductivity of silver sulfide to strongly depend on temperature in 1833
(see Ref. [FT22], p.44). In detail he reports an increase of conductivity, when
heating the specimen in his hand or with a lamp, in contrast to the temperature
dependence known for metals. This temperature dependence of the conductivity is
a feature of a third material class called semiconductors. For this class the number
of charge carriers and with it the conductivity changes not only with temperature,
but also with the purity of the specimen. Nowadays the impurity concentration in
semiconductor materials can be controlled very precisely, such that intentional do-
ping is well-established. In electronic devices semiconductors are inevitable, since
transistors, the basic elements to perform logical operations, can be constructed
in an integrated way from these materials.
To explain the electric properties of solids, the band structure, a description of
all possible electron energies, is of fundamental importance. Especially the relati-
on between energy gaps and the Fermi energy determines the attribution to one
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1. Introduction

of the material classes metal, insulator and semiconductor. This thesis deals with
another material class named TIs that has been discovered recently. It is investiga-
ted, how the compound material HgTe can be identified as a representative of this
class by the means of transport experiments. In this special material the large ato-
mic weight of the mercury atoms leads to an irregular arrangement of bands. The
reason are relativistic corrections to the electron energies some of which get large
for high proton number (Z = 80 for Hg). Furthermore, due to its band structure,
HgTe exactly represents the border between metals and semiconductors. Thus,
an experimentally controlled crossover between three different material classes is
possible, which makes HgTe interesting for a variety of experiments. The band
structure of HgTe and the influence of strain is discussed in Ch. 2 of this thesis.
Soon after the discovery of the QSHE, that confirmed HgTe quantum wells to be
the first experimental realization of a TI [KWB+07], attention was devoted to the
extension of the concept to three dimensions. Evidence for the existence of topolo-
gical states at the surface of a bulk crystal was found in an ARPES experiment on
Bi0.9Sb0.1 by the authors of Ref. [HQW+08]. In the data the graphene-like linear
dispersion of the surface states is confirmed. Indeed, comparing the surface of a TI
to a monolayer of graphene, the band structure (for small momentum k) is similar.
However, the Dirac cone of a TI surface state shows no degeneracy and the spin
is oriented perpendicular to the momentum (see [HXW+09]). Naturally, this rises
the question, if the signatures of Dirac fermions can also be identified in transport
through TI surface states. The most considerable observation in graphene is that
the ambipolar QHE plateau sequence is shifted by 1/2. Interestingly, the QHE
from the surface of strained HgTe could be shown in 2011 [BLN+11a]. However,
the influence of Dirac physics could not be demonstrated unambiguously, since
the reported device was not equipped with a gate electrode. In this thesis the
influence of gates on the properties of TI devices is investigated in detail.
In the condensed matter community manifold experiments are proposed to utilize
the unique TI band structure and spin peculiarities. A famous example is related
to the formation of Majorana fermions at the edge of TI-superconductor juncti-
ons. Controlling the superconductor phases in a trijunction device, these exotic
quasi-particles could be confined in the center of the device [FK08]. The Majorana
bound states are expected to show statistics different from fermions and bosons,
i. e. an interchange of two identical particles would create a global phase factor
6= ±1. A quantum computer with high fault tolerance on the base of these Majo-
rana bound states is proposed in [Kit03]. Other ideas want to make direct use of
the spin momentum locking in Dirac surface states. To make HgTe available for
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these kinds of applications, a substantial basic knowledge is required. This thesis
contributes to the understanding of fundamental properties of HgTe as a 3D TI.
Strained HgTe has a small band gap of the order of 20 meV. Therefore, one has to
ask for the role of this gap in transport experiments. Since the features observed
in HgTe transport devices are not yet understood to all detail, the present thesis
tries to cover different possible explanations for a variety of observed features.
In this sense the influence of top and back gate electrodes to low temperature
transport is investigated. Magnetic fields up to B = 30 T are applied in different
orientations to probe the properties of HgTe devices. The effect of protective cap-
ping layers covering the HgTe interfaces is utilized to enable the demonstration of
QHE features, that could not be observed for TI devices before.
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2. Properties of HgTe

This chapter deals with the inverted band structure of HgTe and the ways to form
a TI out of it. Two concepts of forming a TI were given in the past years. One
regards the 2D TI with QSH edge states [BHZ06], while the second predicts a 3D
TI [FK07]. Both concepts have in common, that a symmetry of the system has to
be broken to open an energy gap and thereby provide the insulating properties of
the bulk for a TI. Forming a quantum well, the translational symmetry is broken
in growth direction and quantum mechanical confinement leads to reorganisation
of the energy spectrum. In the proposal for 3D TIs the crystal symmetry is reduced
to open a gap in the energy band scheme.
A milestone in the TI research field was the detection of the proposed QSH effect
in HgTe quantum wells [KWB+07]. In carefully designed samples it could be
demonstrated that the conduction is suppressed in the bulk of the 2D structure,
while a pair of channels at the sample edge remains conducting. This was the first
experimental realization of a (2D) TI. The concept of topology in semiconductor
physics can also be used to explain the integer quantum Hall effect, discovered in
1980 [KDP80]. Thouless et al. derived a topological invariant, the Chern number,
that explains the quantized Hall conductance for a Fermi energy between two
Landau levels [TKNdN82]. In the case of QSH insulators a similar calculation can
be done to classify them and to distinguish them from trivial insulators. The term
”topological insulator” refers to the latter classification concept.
Also the 3D manifestation of the TI state could be realized experimentally by the
authors of Ref. [BLN+11a]. Pronounced quantum Hall plateaus were identified as
the transport response of the surfaces of strained HgTe. Since the present thesis
concentrates on HgTe as a 3D TI, the formation of the TI state by imposing strain
on the HgTe is presented here. The unique features are depicted, that are expected
for 3D TI surface states.
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2. Properties of HgTe

2.1. Band structure

HgTe is a semimetal, i.e. conduction band and valence band are touching each
other and there is no band gap between them. Due to the use in semiconduc-
tor physics one still wants to define a band gap as the energy difference ∆E =
EΓ6 − EΓ8 at the Γ point (k = 0), which describes the fundamental gap for con-
ventional direct semiconductors like GaAs. How these bands disperse for HgTe,
can be seen in Fig. 2.1, where the detailed band structure is displayed, which was
investigated by [CWC+72]. One notices that the bands with Γ8-symmetry form
the conductance and valence band in HgTe. Fig. 2.1 also reveals that ∆E for this
material yields a negative number. If we ask the question if a given material is a

Fig. 2.1.: The inverted band structure of HgTe: The Γ6 band lies lower in ener-
gy than the Γ8 bands. At the position of the Fermi energy (0 eV) the
Γ8 bands touch, which makes HgTe a semimetal. Picture taken from
[CWC+72].
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2.1. Band structure

TI, this inversion of two bands with respect to trivial materials is one prerequi-
site. In addition, there must be a gap in the band structure [FK07]. The latter
can be achieved by applying strain to the HgTe as described in [BP74], where
a gap opening between the degenerate Γ8-bands is demonstrated. The effect of
strain on Γ8 and Γ7 bands is schematically shown in Fig. 2.2. In the experiment,
uniaxial strain is hard to achieve, but a gap opening is possible via growing the
layer by MBE fully strained onto CdTe [BLN+11a], which has a lattice constant
of aCdTe = 0.6482 nm. According to its lattice constant aHgTe = 0.6462 nm (both
lattice constants taken from [MDF11]) a lattice mismatch of ε = 0.3% is created
in the HgTe layer. In the zinc blende type HgTe grown on (001)-oriented CdTe the
strain parameters will then be εxx = εyy = ε and in growth direction the strain εzz
can be calculated using stiffness constants C11 and C12. Because shear components
of the strain tensor are zero and we are considering a cubic system, Hooke’s law
in the Voigt notation can be rearranged to the form ([Nye57]):

σ = C · ε =


C11 C12 C12

C12 C11 C12

C12 C12 C11

 ·

εxx

εyy

εzz

 . (2.1)

Because there is no stress in growth direction, for the third component of σ one
finds

σ3 = C12εxx + C12εyy + C11εzz = 0, (2.2)

which using εxx = εyy = ε leads to

εzz = −2εC12

C11
. (2.3)

Fig. 2.2.: Schematics describing the change of the bands originating from p-
orbitals at the Γ-point for (a) unstrained and (b) uniaxially strained
HgTe. Taken from [FK07] and edited.
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2. Properties of HgTe

Knowing all non-zero strain components, one can estimate the gap opening bet-
ween the Γ8-bands by the formula [BP74]:

δEl,h = El − Eh = 2 |b (εzz − εxx) | = 2 |b ε
(

2C12

C11
+ 1

)
| (2.4)

with the uniaxial deformation potential b and the energies of the light- and heavy-
hole Γ8-band edges El/h at the Γ-point. The numerical values are b = 1.5V
[TOT79], C11 = 59.7 GPa and C12 = 41.5 GPa (values extrapolated to 0 K, see
[CS75]). Using these values and equation 2.4 one estimates a strain induced band
gap of δEl,h = 22 meV at the Γ-point (agreeing with [BLN+11a]). This gap is con-
ceptually sufficiently large to position the Fermi energy in the gap and to achieve
transport through the surface states of the TI only. However, with the calculation
regarding only the gap at the Γ-point, it cannot be excluded that the system forms
an indirect gap which is considerably smaller than the δEl,h calculated above. The
question, in which energy range pure surface transport can be achieved, will be
discussed in this thesis on the basis of gate dependent magneto-transport measu-
rements.

2.2. Topological surface states

As shown above, the band structure of HgTe is special in the way, that the energy
gap ∆E = EΓ6 − EΓ8 < 0 for k = 0. The reason is the large mass of the Hg
atoms which leads to strong relativistic corrections in the energy spectrum. For
many other materials including conventional semiconductors such as CdTe and
Hg1−xCdxTe with x = 0.68 and also for vacuum the band order is different and
one finds ∆E > 0. Naturally, if an interface of two materials with ∆E1 · ∆E2 <

0 is established, there is a continuous connection of each band and a crossing
takes place at the interface. This circumstance was recognized first by Chang
et al. [CSB+85] and later O. A. Pankratov stated: "[...] the basic feature of a
band-inverted heterojunction [...] is the presence of spin-non-degenerate electron
interface states with a linear dispersion law"[Pan90].

For the example of a HgTe/CdTe layer sequence the band behaviour is sketched
in Fig. 2.3. With the displayed Fermi energy the HgTe is insulating due to the
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2.2. Topological surface states

HgTe CdTe

Γ6
Γ8 EF

z

E

Fig. 2.3.: Sketch of the band behaviour at a HgTe/CdTe interface. The Fermi
energy EF can be placed inside the strain induced gap in the HgTe
region and necessarily cuts bands at the interface leading to conducting
surface states.

band gap δEl,h whereas at the interface one obtains a conducting state. A more
accurate substantiation of the existence of surface states in strong TIs is given for
example in [HK10]. The Hamiltonian describing the surface state is:

Hsurface = −i~vF
−→σ ·
−→
5, (2.5)

with the Fermi velocity vF and spin matrix −→σ . The energy spectrum obtained
from this Hamiltonian is the so called Dirac cone with the energy of the surface
state Es ∝ |k‖|. Here, the momentum k‖ lies in the plane of the interface between
the TI and the trivial insulator.

To discuss the energy spectrum in a magnetic field, a HgTe slab is considered, of
which two surfaces are penetrated by the magnetic field−→B = B·êz, that defines the
z-direction. The Hamiltonian and its solution are given in Ref. [BLN+11b]. In the
basis |β, σ〉, where β = 1, 2 describes the two relevant surface states (perpendicular
to the magnetic field) and σ =↑, ↓ represents the spin, the Hamiltonian can be
described as

17



2. Properties of HgTe

H2D = ~vF

kx σy − ky σx 0
0 −(kx σy − ky σx)

 . (2.6)

The eigen-energies of this basic problem are found to be

EN
β = ±

√
2e~v2

FBN , (2.7)

with the Landau level index N = 1, 2, 3... and E0
β = 0. The result is independent

of β and thus valid also for a single Dirac cone. In the two Dirac cone model the
levels are doubly degenerate as long as no energy difference between the surface
states is introduced.
We now additionally want to consider the Zeeman effect for the given model.
The Hamiltonian for a magnetic field in z-direction according to Ref. [BLN+11b]
reads

HZ =
g∗µBBσz 0

0 g∗µBBσz

 , (2.8)

with an effective g-factor g∗ and the Bohr magneton µB. The eigen-energies of
the combined Hamiltonian H = H2D + HZ, calculated by the authors of Ref.
[BLN+11b], are

EN
β = ±

√
2e~v2

FBN + (g∗µBB)2 , (2.9)

valid for |N | > 0. For N = 0 the result is E0
β = −g∗µBB. The spectrum including

the Zeeman energy is thus still independent of β indicating, that the top and
bottom energy states are degenerate. To lift this degeneracy of the β = 1, 2 states,
an energy difference δ = EN

1 (B = 0) − EN
2 (B = 0) between top and bottom

state is needed. Such a difference is expected in the experiment due to different
electrostatic environments of the two surfaces. The result is shown in Fig. 2.4,
where the energy of the Landau levels with −2 < N < 2 is plotted vs. the magnetic
field. The parameters for the plot are vF = 5 · 105 m/s and g∗ = 20. Furthermore
the energy shift has been chosen to be δ = 12.5 meV. It is reasonable, that this
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2.2. Topological surface states

0 2 4 6 8 1 0
- 8 0
- 6 0
- 4 0
- 2 0

2 0
4 0
6 0
8 0

N = 0

N = 0

 

 

E [
me

V]

B  [ T ]

�

Fig. 2.4.: Landau level dispersion for two Dirac cones in a magnetic field. Only
the levels with −2 < N < 2 are plotted. A constant energy shift of
δ = 12.5 meV accounting for the different electrostatic environments of
the surfaces lifts the degeneracy.

energy shift can be manipulated by gate electrodes close to the surfaces. However,
for constant potentials in the system one finds that δ is constant in magnetic
field, and the zero levels of top and bottom surface both exhibit identical slope
∂E0

β/∂B < 0. In the energy region between the two zero levels, that are marked
by their Landau level index N = 0 in Fig. 2.4, an n-type edge channel on one
surface coexists with a p-type channel on the second. These considerations are
utilized in Ch. 4 to discuss the observed Landau level behaviour for low quantum
Hall indices. Further, the Zeeman contribution is the key ingredient to describe
the shift of the spectrum due to an in-plane magnetic field in Ch. 6.
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3. Manipulating the density in
topological surface states

To confirm the Dirac nature of the 3D TI surface states in strained HgTe, a sample
of HgTe grown on CdTe has been shaped into a Hall bar and equipped with a top
gate. Using a dilution refrigerator the transport depending on the gate voltage
was studied in a magnetic field. In this chapter the magneto-resistance data is
presented and analysed. The focus is set on the n-conducting part of the Dirac
cones of the surfaces, where well-pronounced QHE and especially a Dirac-like se-
quence of Hall quantization can be found.
In the presented measurements the QHE results from two subsystems, which can
be substantiated by a plot of the positions of all observed Landau levels in gate
voltage and magnetic field. In general, the charge carrier densities of the two sub-
systems are different, so that special attention has to be paid to the nomenclature
of indices that define the quantum Hall state. The quantum Hall index i is used
to describe the observed Hall quantization, if the entire system exhibits a plateau
with Hall resistance Rxy = h/(i e2), while the quantum state of the subsystems
can be specified by their individual filling factor ν, which relates the charge carrier
density to the number of states available per Landau level. Furthermore, the inte-
ger Landau level index N numbers these levels in one subsystem and it is useful
to also define an index j that numbers the energy gaps between the Landau levels
belonging to minima in SdH sequences. All these terms have to be distinguished
carefully in order to clarify the situation of QHE in Dirac systems of a 3D TI.
Concerning the quality of Hall quantization and Berry phase of the given data,
the two Dirac cone interpretation is sufficient to explain many of the observed
features and therefore is used to describe the sample. An indication of parallel
bulk conduction is not found from this dataset. Thus a model consisting of two
Dirac-like 2DEGs only is presented, which allows for the computation of a DOS
pattern that follows the SdH sequences.
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3. Manipulating the density in topological surface states

3.1. Odd integer QHE

The investigation of the Dirac surface states in a transport experiment is carried
out first on the MBE grown material Q2424. The simple layer stack is given in
Fig. 3.1. It consists of the substrate, the active HgTe layer, and is completed by a
multilayer insulator consisting of alternating SiO2 and Si3N4 layers and a top gate
fabricated of gold. Here the thickness of the HgTe layer, dHgTe = 70 nm, is large
enough to ensure 3D behaviour of the HgTe layer. An upper limit for the thickness
is given by the relaxation of HgTe which is estimated to start at dHgTe,max ≈ 200 nm
[BLN+11a]. A Hall bar of length L = 600µm and width W = 200µm is produced
by optical lithography. Fig. 3.2 presents a micrograph of the Hall bar. The way
the Hall bar is contacted is of importance here, since it is not self-evident that a
given contact is connected to both upper and lower surface state. In the present
case a droplet of indium is melt into the bonding pad and therefore in this area
diffuses to the bottom of the HgTe layer. In this sense, both surfaces are connected
at every bonding pad.
In the cryostat a magnetic field is applied perpendicular to the HgTe layer, i.e. in
growth direction. Thus, of the six surface normals of the HgTe slab the two belon-
ging to the largest areas are oriented parallel to the magnetic field. It should be
mentioned that the four remaining side surfaces conceptually are conducting like-
wise. The Hall and longitudinal resistance data is shown in Fig. 3.3. Remarkably
the data shows very pronounced quantum Hall plateaus accompanied by minima
in the SdH sequence. This fact proves the existence of at least one 2D subsystem

 
 

CdTe 001 Substrate 

 

HgTe 70nm 

 

SiO2/Si3N4 multilayer as gate insulator 110nm 

 

Au gate 100 nm 

Layer structure of gated samples 

B 

Hallbar: 200 µm x 600 µm  

Fig. 3.1.: Layer stack of the sample Q2424. The HgTe layer is fully strained to the
lattice constant of CdTe.
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3.1. Odd integer QHE
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Fig. 3.2.: Optical micrograph of the Hall bar fabricated of the material Q2424.
The bonding wires are glued to the bonding pads by indium which also
is used to obtain ohmic contacts to the HgTe layer. It diffuses through
the HgTe, why both upper and lower surface state are contacted.

in the structure. As in the reference [BLN+11a] this subsystem is interpreted to
result from the topological nature of the device and to be located at the surface of
the HgTe structure. This hypothesis will be examined on the basis of the transport
data below. Fig. 3.3 a) shows that lowering the gate voltage increases the overall
slope of the Hall trace, making Hall plateaus with smaller quantum Hall index i
visible. For the gate voltage Vg = −1 V an odd integer plateau sequence can be
observed. The Hall and SdH data of this gate voltage is plotted together in Fig. 3.4
where the dashed lines give the theoretical fractions of the von Klitzing constant
RK = h/e2 [KDP80] expected for an odd integer quantum Hall sequence. The red
trace shows Hall plateaus for i = 1 and i = 3, while for the higher indices only
indications of plateaus are visible. However, it is a clear observation, that all odd
integer indices are much more pronounced than the even ones. The observed odd
sequence can be understood in analogy to the extraordinary QHE in single layer
graphene, where on the plateaus one finds a quantized Hall conductivity of

σxy = m(j + 1
2)e

2

h
; j = 0,±1,±2... . (3.1)

Here, the minimum index j is used, because it is integer for plateaus in Rxy (corre-
sponding to minima in Rxx). For graphene a degeneracy of m = 4 can be observed
[NGM+05]. The anomalous sequence shifted by 1/2 with respect to conventional
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3. Manipulating the density in topological surface states
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Fig. 3.3.: Magneto-resistance data for the Hall bar sample Q2424 for different gate
voltages at a nominal temperature of 20 mK. a) Hall resistance of the
n-region and b) corresponding longitudinal resistance. Numbers in a)
denote the quantum Hall plateaus with index i. At Vg = −1V an odd
integer quantum Hall sequence can be observed.
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3.1. Odd integer QHE
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Fig. 3.4.: Hall (red) and longitudinal (blue) resistance of Q2424 for the gate volta-
ge Vg = −1 V. Numbers denote the quantum Hall index i assigned to the
dashed lines. An odd integer quantum Hall sequence can be observed in
the data.

quantum Hall systems can de derived from the Dirac Hamiltonian (Eq. 2.5) when
using minimal coupling to the magnetic field [CPNG09]. The outcome is a Land-
au level at zero energy which has the same degeneracy as other Landau levels
but counts half to the n- and p-conducting sequence, respectively. It also shall be
mentioned here, that the integer j belonging to minima in Rxx does not equal the
integer Landau level index N which is assigned to maxima in Rxx and is numbe-
ring the Landau levels. On a single surface of a TI degeneracies of valley and spin,
found for graphene, are not present. However, having two surfaces perpendicular
to the magnetic field one expects m = 2 in Eq. 3.1, if the charge carrier densities
on both surfaces are equal. Assuming, that the influence of the gate electrode
on top and bottom surface is different, there must be exactly one gate voltage
V e

g for that the two densities are equal and thus an odd integer sequence of Hall
plateaus develops. The Hall trace in Fig. 3.4 thus gives rise to suppose, that the
corresponding gate voltage Vg = −1 V is close to V e

g . However, taking into account
the considerable broadening of the SdH trace, V e

g may well be shifted a bit with
respect to Vg = −1 V.
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3. Manipulating the density in topological surface states

3.2. Subsets of Landau levels and gate influence

To obtain a rough estimate of the sample properties, one can use the Hall slope
to calculate a total 2D charge carrier density ntot. Together with the longitudinal
resistance Rxx(0 T) one is able to find a mean mobility µ for the system. However,
an observation from Fig. 3.4 is the clearly non-linear Hall trace for low magnetic
fields (see close up in Fig. 3.5). In a system with more than one carrier type, this
can occur, if the mobilities of the carriers are different. This can be motivated
in a simple Drude-Sommerfeld picture, where the resistivity matrices ρi of the
individual carrier types with charge carrier density ni (the sign of the charge is
included) and mobility µi are given by (see for example [BvH91])

ρi =
ρixx ρixy

ρiyx ρiyy

 =
 1/σi RiB

−RiB 1/σi

 , (3.2)
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Fig. 3.5.: Close up of the Hall resistance of Q2424 for the gate voltage Vg = −1 V
together with a linear fit (dashed line). The non-linearity of the Hall trace
is ascribed to more than one carrier types with different mobilities.
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3.2. Subsets of Landau levels and gate influence

with the Hall coefficient Ri = 1/(nie), the longitudinal conductivity σi = |nieµi|
and the magnetic field B. The total resistivity matrix is then given by

ρtot =
(∑

i

ρ−1
i

)−1

. (3.3)

If one is interested in the total Hall resistance Rxy = ρtot
xy for a two carrier system,

one finds from Eqns. 3.3 and 3.2

Rxy = µ2
1 n1 + µ2

2 n2 + µ2
1 µ

2
2 (n1 + n2)B2

e((µ1|n1|+ µ2|n2|)2 + µ2
1 µ

2
2 (n1 + n2)2B2) ·B. (3.4)

Omitting the quadratic terms in B in the nominator and denominator of the
fraction in this expression reproduces a standard formula for the study of se-
miconductors [Zim60]. However, to explain the non-linear behaviour, one has to
consider the quadratic terms. Furthermore, for two n-type carrier species with
µ1 = µ2 Eq. 3.4 yields Rxy = B/(en1 + en2), which also is linear in B and does
not explain the data. One therefore can conclude, that two carrier species with
different mobilities must exist for the gate voltage Vg = −1 V. This means, that
a description by total density and mean mobility is useful only for rough com-
parisons of sample quality, but misleading for the understanding of the detailed
physical properties of the 3D TI HgTe. In consequence, these quantities will be
avoided as much as possible below.

To further investigate the top and bottom states, the other gate voltages are
regarded. Naturally, for any voltage Vg 6= V e

g the densities are different and Eq.
3.1 becomes invalid for the combined system. As the Hall conductivity σxy is
additive for parallel existing subsystems, one can number the minima jt and jb

according to the carrier densities nt and nb in the top and bottom subsystems
and finds for the plateaus of the combined system

σxy = (jt + 1
2 + jb + 1

2)e
2

h
; jt, jb = 0,±1,±2... . (3.5)

This equation yields a quantum Hall sequence in magnetic field, where steps of
2e2/h in σxy can be generated if two Landau level positions are very close or equal
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3. Manipulating the density in topological surface states

and thus jt and jb exhibit steps at the same B-field, but in general steps of e2/h

are expected due to transitions of only jt or jb.

This behaviour is observed if the gate voltage is changed to Vg = −0.5 V as
displayed in Fig. 3.6. Here the positions of the maxima in the SdH sequence of
the dashed line at Vg = −1 V and the measurement at Vg = −0.5 V (blue) can be
compared. While for Vg = −1 V at B = 6.1 T the two peaks lie on top of each other
due to nt = nb, they have moved to larger B-values for Vg = −0.5 V according to
a higher n-type carrier density. However, the two peaks have moved by different
amounts in accordance with the assumption that ∂nt/∂Vg > ∂nb/∂Vg, because
the top surface is closer to the gate (see Fig. 3.1). Furthermore one observes in
Fig. 3.6 for the blue trace that the broadening of the maximum at B = 9.4 T is
stronger than the broadening of the one at B = 7.5 T. This is in agreement with
the disparity of the carrier mobilities discussed above referring to Fig. 3.5. Also,
stronger broadening of the peaks is correlated to a worse interface quality of the
surface. Therefore one expects the maximum at B = 9.4 T to belong to the top
surface that after MBE growth is exposed to oxygen and chemicals, whereas the
bottom interface is protected by the HgTe layer. So both observations mentioned
above consistently connect this maximum to a Landau level originating from the
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Fig. 3.6.: Hall (red) and longitudinal (blue) resistance of Q2424 for the gate vol-
tage Vg = −0.5 V. Numbers denote quantum Hall indices, the dashed
line is the longitudinal resistance at Vg = −1 V for comparison.
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3.2. Subsets of Landau levels and gate influence

top surface state of the HgTe Hall bar. As expected from Eq. 3.5 also the even
plateau value i = 2 starts to become visible again in Fig. 3.6. Following the
Rxy-traces in Fig. 3.3 a) when detuning the surface densities nt and nb, i.e. for
increasing gate voltage, this behaviour can also be found for the i = 4 plateau
which starts to appear at Vg = 0.5 V. To further analyse the properties of Landau
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]
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Fig. 3.7.: Open circles represent positions of Landau levels obtained by finding the
maxima in ∂Rxy/∂B. The blue and red lines correspond to two subsets
of Landau levels as expected from the two surfaces perpendicular to the
magnetic field. Numbers between two lines denote Hall plateaus of index
i in that region.

levels in the system, the derivative ∂Rxy/∂B is calculated for all Rxy(B) traces
shown in Fig. 3.3 a). Transitions between Hall plateaus in Rxy result in maxima
of the derivative ∂Rxy/∂B and therefore one can mark the positions of Landau
levels in magnetic field and gate voltage. A plot of the Landau level positions
(open circles) is shown in Fig. 3.7. These positions can be understood within a
two Dirac cone model, which results from two sets of Landau levels (blue and
red lines) that have different origins. The numbers give the plateau index i of
Hall resistance that is found between two levels. Consequently, the dashed line at
Vg = −1 V recovers the odd integer sequence.
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3. Manipulating the density in topological surface states

From the level spacings estimates about the gate voltage dependence of the sub-
systems can be made. For a constant magnetic field B we obtain a fixed degeneracy
for each Landau level and the charge per level is nLL = eB/h. Therefore the filling
factor

ν = n

nLL
= nh

eB
(3.6)

grows proportional to the charge carrier density n. For a single gated 2DEG one
expects to find n ∝ Vg, based on a simple plate capacitor model. This will result
in an equal spacing of the gate voltage between adjacent Landau levels.

Landau level index N 1 2 3 4 5 6

Vg for red sequence / V -1.64 -0.93 -0.10 0.68 1.35 2.26

Vg for blue sequence / V -1.41 -0.84 -0.40 0.25 0.76 -

Tabelle 3.1.: Gate voltages of the Landau levels read from red and blue lines of
Fig. 3.7 at a fixed magnetic field of B = 4 T.

To compare to a plate capacitor model, the gate voltage positions of the red
and blue levels in Fig. 3.7 were determined at a fixed field of B = 4 T. The
results are given in Tab. 3.1. Additionally, they are plotted in Fig. 3.8 against
the Landau level index N together with a linear fit. A different gate influence
on the two series of levels can be observed from the slopes of the straight lines.
The slopes give the gate voltage ∆Vg needed to move the Fermi energy by one
Landau level, which means that a charge nLL is added to n. Using Eq. 3.6 one can
calculate the change in charge carrier density ∆n and thus finds the gate efficiency
∆n/∆Vg at the specific magnetic field of B = 4 T. The red sequence of levels is
associated with the top surface state (closer to the gate) because the level spacing
is smaller, so one obtains the same ∆n with less voltage applied. A density change
∆nt/∆Vg = 1.78 × 1011 V−1cm−2 is computed from the slope of the red line in
Fig. 3.8, while for the blue line representing the bottom surface an efficiency of
∆nb/∆Vg = 1.24× 1011 V−1cm−2 is found.

These numbers are now compared with the results of a simple plate capacitor
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3.2. Subsets of Landau levels and gate influence
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Fig. 3.8.: Gate voltage positions of Landau levels taken from Fig. 3.7 plotted

against Landau level index N . The different slopes of the linear fits
reflect different gate influence on the two surfaces.

model. In this model we only want to calculate the gate effect on the upper
surface. The insulator consists of 11 alternating layers of SiO2 and Si3N4 each
of thickness d0 = 10 nm starting with SiO2. For the total gate capacitance Ctot

therefore one can use

1
Ctot

= 6
CSiO

+ 5
CSiN

= d0

Aε0

( 6
εSiO

+ 5
εSiN

)
, (3.7)

with the capacitances of a single insulator layer CSiO and CSiN and the correspon-
ding permittivities εSiO = 3.9 and εSiN = 7.5 (values taken from Ref. [KS05]).
Using the capacitance Ctot the applied gate voltage can be translated to

Vg = Q

Ctot
= Qd0

Aε0
(

6
εSiO

+ 5
εSiN

) = entd0

ε0
(

6
εSiO

+ 5
εSiN

) , (3.8)

where the charge Q imposed by the gate concentrates in the top surface. One
finds a change in density ∆nt/∆Vg|theo. = 2.51×1011 V−1cm−2, which exceeds the
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3. Manipulating the density in topological surface states

experimentally determined value. One possible explanation is a redistribution of
charges between the two surfaces, which are topologically connected and might
act as a single state. This could also explain the relatively large gate influence
onto the lower surface. However, the dielectric constant of the insulator layer
can vary depending on the layer quality and the deposition conditions. The total
density change of ∆ntot/∆Vg = 3.02× 1011 V−1cm−2 gained from the experiment
is slightly higher than the value estimated for the top surface only within the
capacitor model, indicating that a small direct gate effect on the lower surface is
existing.

Although the data can consistently be described by the two Dirac cone interpre-
tation, it is a legitimate question, if there additionally are conducting bulk states
present. Having in mind, that the size of the direct gap is ≈ 22 meV, one could
ask for the gate voltage range, in which the bulk carriers are not yet activated. To
find answers to these questions, the quality of Hall quantization is investigated in
the following section.

3.3. Hall quantization

One clear observation from Hall data is the non-perfect quantization of Hall pla-
teaus. As a trend, most of the plateaus in Hall resistance lie below the theoretical
value, while a few also exceed the expected value. In Fig. 3.9 the resistance values of
the plateaus are plotted against Vg for the n-conducting regime. The i = 1 plateau
is excluded in Fig. 3.9, because it is observable only for the voltages Vg = −1 V
and Vg = −0.5 V. Thus, the focus is set here on the stability of quantization espe-
cially at high voltages Vg. Analysing the quantization in Fig. 3.9, one finds, that
the deviation of Hall quantization is of the order of 3% for all gate voltages (this
is also valid for the i = −1 plateaus, see Figs. 3.4 and 3.6) and extremely stable
up to the highest gate voltages investigated in the dataset.

A deviation to lower plateau values can be explained by any parallel conducting
channel. If such a channel is active, a part of the current is bypassed and does
not flow through the top and bottom surfaces. However, for the calculation of Rxy

the total flow and therefore a too large current is used. With Rxy = Uxy/Itot one
finally obtains underestimated values of Rxy. As conduction channels parallel to
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3.3. Hall quantization
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Fig. 3.9.: Plateau values of quantized Hall resistance. The lines give the theoretical
values according to [KDP80], symbols represent measurement data. The
deviations are mostly negative and do not increase with gate voltage,
which implies a zero or constant bulk contribution to transport.

the top and bottom surfaces the conducting side surfaces of the 3D TI as well
as bulk states might be considered. From Fig. 3.9 the presence of occupied bulk
states can not be excluded. What can be excluded is an increasing influence of the
additional channel with increasing Vg, because the deviations are stable. Increasing
influence though is expected for bulk states if a higher Fermi energy can enhance
the occupation of the conduction band. Thus, it is discussed, if the Hall signal
can be explained by a current flowing in the side surfaces. Therefore it must be
clarified, that the side surfaces can carry enough current.

In order to estimate a lower limit for the resistance of the side surfaces, the lowest
accessible resistivity of the system is chosen. It is reasonable to assume, that
the HgTe side surfaces exhibit a resistivity lower than the top and bottom layer,
because they are exposed to indirect argon bombardment during the fabrication
process. It is known, that argon ion milling of Hg0.8Cd0.2Te dopes the sample n-
type (see for example Ref. [BF89] or Ref. [BHG+94]). This means, that one should
as well consider a possible doping effect by ion milling of pure HgTe. Therefore
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3. Manipulating the density in topological surface states

the four-terminal resistivity at Vg = 5 V of the complete system is determined
from Fig. 3.3 and taken as the lowest estimate of the side surface resistivity. One
finds ρ(5 V) = 147 Ω, leading to a resistance Rside = ρ · L/W = 1.26 MΩ, where
L = 600µm and W = 70 nm are used. If now the two-terminal sample resistance
at non-zero magnetic field is approximated by the resistance of a 2DEG in the
quantum Hall regime with a single conducting channel, one finds R2DEG = RK

(see Ref. [FS83]). RK is thus a good estimate for the case of few edge channels.
The current flowing in a single side surface is now related to the current in one
surface 2DEG by the simple equation

Iside

I2DEG
= R2DEG

Rside
= 2.0%. (3.9)

This value represents the upper limit of current flowing in the side surfaces and
indeed is comparable with the observed deviations. One could argue now, that
the resistance R2DEG will drop, if the number of edge channels is increased by a
change of gate voltage or magnetic field. Thus, the fraction of current in the side
surface would decrease for growing i. However, also the side surfaces are affected
by the gate and in a parallel magnetic field (as applied in this work) they should
exhibit a quadratic magneto-resistance. Therefore the conducting side surfaces are
the reason for the deviations more likely than bulk states.

Another evidence for this is the observation, that even for high gate voltages the
Hall plateaus are still well quantized. To emphasise this, in Fig. 3.10 the magneto-
resistance data for Vg = 5 V is presented. From an additional Hall contribution
stemming from bulk carriers with similar mobility one would expect a significant
slope on the Hall plateaus. Such a tilt of the plateaus in addition to a deviation
of the theoretical value is not observed. In contrast to bulk states the side surfa-
ces should not tilt, but only lower the Hall plateaus and therefore are the more
appropriate candidate for the additional channel. The longitudinal resistance for
the observed SdH-minima in Figs. 3.4, 3.6 and 3.10 does not vanish completely.
This as well might indicate a parallel conducting channel, although a non-zero
minimum resistance can also result from strong broadening of the maxima.

Surprisingly, to the question when bulk conduction would become important in
the sample, the above arguments and analysis of the data lead to the answer, that
there is no clear evidence for bulk conduction. One possible conclusion is that
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Fig. 3.10.: Hall (red) and longitudinal (blue) resistance of Q2424 for the gate vol-
tage Vg = 5 V. The Hall plateaus exhibit no slope as expected for an
additional Hall contribution from bulk conduction.

bulk and surface states are strongly decoupled. If bulk states are occupied, they
do not significantly contribute to transport and do not influence the character of
the surface states. Following this hypothesis the bulk occupation is allowed to be
changed by means of gate voltage, but one can not observe it.
Another way of explaining the measurements is that the Fermi level in the bulk can
barely be changed. Possible mechanisms are screening of the bulk by the metallic
surfaces around or a pinning of the Fermi energy due to preferential filling of
surface states. If the Fermi energy is located in the bulk band gap for Vg = 0 V,
it remains there for all applied voltages according to this scenario.
A complete understanding consistent with theoretical models can not be presented
yet and is a task for future research.

35



3. Manipulating the density in topological surface states

3.4. Berry phase

The aim of this section is to analyse the absolute position of the extrema in
Rxx shown in Fig. 3.3 b) and to deduce the phase of the SdH-oscillations. This
phase can be related to the Berry phase which is different for normal and Dirac-
like charge carriers. A Berry phase of 1/2, that most prominently was shown in
graphene [NGM+05], is also expected for surface states of three-dimensional TIs
[FKM07] and is in agreement with the shift of the Landau levels as described by
Eq. 3.1. If one is interested in the phase only, one can describe the oscillatory
behaviour of the longitudinal resistance by

∆ρxx ∝ cos
(

2π
[
F

B
+ 1

2 − γ
])

, (3.10)

as shown in [TA11]. Here F is the frequency of the oscillating sequence in 1/B and
γ is the Berry phase. It was shown above (see Fig. 3.7), that both Landau level
sequences are influenced by the gate voltage and the distance between adjacent
levels and thereby the period ∆

(
1
B

)
is changed by means of gate voltage. Using

Eq. 3.6 one can calculate the frequency F for any pair of neighbouring minima in
a single SdH sequence from

∆ν = 1 = nh

e
∆
( 1
B

)
, (3.11)

which leads to

F = 1
∆
(

1
B

) = nh

e
. (3.12)

Thus, this equation allows for a determination of the carrier density, that corre-
sponds to the oscillations. To obtain a more accurate value, one should plot ν vs
1/B and extract n from the slope ∆ν/∆

(
1
B

)
, as evident from Eq. 3.11. However,

the filling factor ν, defined as a continuous quantity, can only be determined for
certain values of the magnetic field, i.e. for minima (ν = 0.5, 1.5, 2.5... for n-type
Dirac systems) or maxima (ν = 1, 2, 3... respectively) of an SdH sequence. If there-
fore integer numbers with arbitrary starting point are plotted against 1/B values
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3.4. Berry phase

belonging to minima positions, the slope of a linear fit according to Eq. 3.11 yields
nh/e and n can be extracted. It should be emphasised, that the described method
can be applied to a single series of oscillations only. If, like in the case discussed
above, two subsets of oscillations exist, one can still use Eq. 3.12 if nt = nb, be-
cause the extrema of both sequences lie on top of each other. From the QHE data
one finds this case close to Vg = −1 V. Furthermore, the two densities are treated
to be equal for low magnetic fields, where steps of 2 in the plateau index i (odd
sequence) can be observed.

To obtain the phase γ from Eq. 3.10, one has to work out the condition for
minima:

cos
(

2π
[
F

Bmin
+ 1

2 − γ
])

!= −1 (3.13)

⇔ 2π
[
F

Bj
min

+ 1
2 − γ

]
= π(2j + 1) , (3.14)

with integers j = 0, 1, 2... . This can be reduced to the form

j = F

Bj
min
− γ . (3.15)

For a Dirac system the term F/Bmin = nh/(eBmin) at the minima positions yields
half integers, because the zero level has only half the number of states available.
One directly finds, that γ also has to be half integer, meaning γ = 1/2, to obtain
an integer j. However, if the phase γ of an observed oscillation is unknown and
shall be taken as an indicator of a Dirac-like sequence, it is possible to plot the
integers j, which number the minima, against 1/Bj

min and to extract the phase
from the y-intercept [TA11] as seen from Eq. 3.15.

In Fig. 3.11 a plot of the integers j vs. 1/Bj
min is depicted for several gate volta-

ges. This is done only for the region of the magnetic field, where an odd integer
quantized Hall resistance is observed, which predominantly is the region of small
magnetic fields. The j-value has been found assuming that the jth minimum in this
field region belongs to a quantum Hall plateau of resistance Rxy = h/ [e2(2j + 1)]
for a degeneracy of m = 2 (c.f. Eq. 3.1). For Vg = −1 V the position 1/Bj=0

min

associated with a Hall resistance of Rxy = h/e2 was taken as the intersect of the
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Fig. 3.11.: Plot of integers j numbering the minima of Rxx vs. the 1/B positions

of the corresponding minima. For each gate voltage only the B-region
was analysed, in which steps of ∆i = 2 in the Hall plateau sequence
(odd integers) can be observed. The negative of the y-intercept equals
the Berry phase γ.

Hall plateau with a straight line corresponding to the slope of the low field Hall
trace, that hits the middles of visible plateaus of lower index i. This is necessary,
because the plateau is expected to be widely prolonged in B and therefore the
center position of the plateau and the minimum in Rxx, respectively, can not be
extracted. The Berry phase γ in Fig. 3.11 is clearly non-zero for all gate voltages
within the indicated errors. However, γ = 1/2 is a possible result with the given
uncertainty. This strengthens the interpretation given above, that the observed
QHE originates from two Dirac-like surface states.

3.5. Modelling the DOS of a two Dirac cone system

A simple model to fit experimental data can be obtained from a computation of the
DOS, that can be compared to the SdH sequence. Both traces will exhibit extrema
at the same positions in magnetic field. If the interactions between Landau levels
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3.5. Modelling the DOS of a two Dirac cone system

of the separated surfaces are neglected and a constant charge carrier density nt

(and nb respectively) is assigned to a surface, it is possible to calculate the DOS
separately and to identify maxima and minima of each sequence. Therefore the
Fermi energy EF depending on B is computed from the charge carrier density nt

exemplarily. Assuming n-type transport in a single Dirac cone, one can use Eq.
2.7 for the positive branch of the energy spectrum as

EN
+ =

√
2e~v2

FBN , N = 0, 1, 2... . (3.16)

For simplicity, the Zeeman contribution was omitted. However, it can be included
easily by changing the spectrum according to Eq. 2.9. With the charge per Landau
level nLL = eB/h for N > 0 and nLL,N=0 = eB/(2h) one finds the charge located
on one surface to be depending on the Fermi energy as

nt(EF, B) = −eB
h

(
−1

2 +
∞∑
N=0

f(EN
+ , EF)

)
(3.17)

⇔ nt(EF, B) = −eB
h

−1
2 +

∞∑
N=0

(
1 + exp

[
EN

+ − EF

kT

])−1
 , (3.18)

where the sum counts the occupation of all Landau levels and the extra −1/2
compensates for a completely filled zero-level (as treated in the sum). The contri-
bution to the charge carrier density of all Landau levels is weighted by the Fermi
function f(EN

+ , EF). To obtain the Fermi energy, an experimentally determined
density nt

exp. is set equal to nt(EF, B) from Eq. 3.18 and the value of EF(B), which
is thereby uniquely defined, is calculated numerically [Nov10] for discrete values
of B. The shape of the DOS for high magnetic fields can be modelled by Gaussian
peaks (see for instance [Ger76]) at the crossings of EF(B) with EN

+ :

D(B) = 1
π G(B)

∞∑
N=0

exp

−
(
EN

+ − EF(B)
)2

G2(B)

 , (3.19)

where G(B) = G0 ·
√
B is a field dependent broadening parameter. The Mathe-

matica code used for these calculations is given in the Appendix B.1.
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Fig. 3.12.: Longitudinal resistance Rxx (black) and calculated DOS for the measu-
rement at Vg = 0 V. The green and blue traces show the DOS for single
Dirac surfaces at charge carrier densities given by the legend, the red
trace is the sum.

In order to verify the method, a gate voltage is chosen for that the two densities
are different. Together with the longitudinal resistance (black line) at the gate
voltage Vg = 0 V the calculated D(B) is plotted in Fig. 3.12 for the two densi-
ties n1 = 4.1 · 1011 cm−2 (blue dashed line) and n2 = 2.8 · 1011 cm−2 (green dashed
line). The red trace is generated by adding up the two independent dashed li-
nes. One notices, that for high magnetic fields > 4 T the extrema of the red and
black trace roughly coincide, whereas for lower fields a strong damping seems to
be present for the experimental data, that is not covered by the Gaussian peak
form of the calculated DOS. However, the strong maximum at B = 5.7 T, that
corresponds to a transition from i = 3 to i = 5 in Rxy, is correctly reproduced, as
both dashed lines develop a maximum at that magnetic field.
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4. p-type transport in 3D HgTe

The focus in this chapter lies on the behaviour of 3D HgTe for negative gate
voltages, where the Hall effect exhibits negative sign. By comparing measurements
in the conversion region to simple transport equations, a basic understanding of the
gated system is achieved. A change is introduced in the layer stack, that improves
the surface state quality. As a result it is possible to observe clear pronounced
QHE from the surfaces also for the lower half of the Dirac cones. This feature
is presented for the first time for a 3D TI. Furthermore the band structure of
HgTe with its surface states for devices gated to negative voltages is discussed.
The Dirac nature of the p-type carriers is confirmed by an analysis of longitudinal
and transverse resistance. A Landau level fan chart, obtained from the derivative
of the Hall conductivity with respect to the gate voltage, gives insight to the
interplay of the individual surface fillings. In addition, the Hall and longitudinal
resistance are investigated in the low magnetic field range, where transport data
of high quality samples reveal a rapidly oscillating component, that shows no
gate voltage dependence. The measurements are fitted by a model taking into
account 3 types of carriers and cosine shaped magneto-oscillations. While this
confirms the existence of a third carrier species with high mobility in the system,
the explanation of it’s origin is not obvious. Different interpretations are applied
and evaluated.

4.1. Transiting the CNP

Samples with the so far described layer structure CdTe/HgTe/insulator show for
Vg = 0 V total charge carrier densities (obtained from Hall slope at low B) in
the range of 3 · 1011 cm−2 to 4 · 1012 cm−2. Therefore, it was not possible for most
of them, to deplete this amount of carriers and to achieve p-conductance by a
topgate. In this section the reaction to the top gate of two prominent examples
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4. p-type transport in 3D HgTe

are presented. The sample Q2424 is used as an example for low total carrier density
at Vg = 0 V. For this sample it was possible to change the carrier type by applying
a negative gate voltage. In Fig. 4.1 the longitudinal resistance is plotted vs. Vg
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Fig. 4.1.: Zero B-field resistance Rxx for the sample Q2424. By means of gate

voltage the resistance can be increased to ≈ 9 kΩ at Vg = −3.23 V,
marked by the dashed line. For lower voltages the resistance starts to
decrease again.

over the entire investigated range. It can be seen, that there is a maximum in the
resistance trace at Vg ≈ −3.23 V. Because we assume the two surface dispersions
to be shifted against each other in energy, we expect, that a two carrier behaviour
will be observed in the gate voltage region of this maximum. Using Eqs. 3.2 and 3.3
we can calculate the longitudinal resistivity ρxx = W/LRxx for such a system,

ρxx = µ1 |n1|+ µ2 |n2|+ µ1 µ2 (|n1|µ2 + |n2|µ1)B2

e((µ1|n1|+ µ2|n2|)2 + µ2
1 µ

2
2 (n1 + n2)2B2) , (4.1)

which for B = 0, as given for Fig. 4.1, reduces to

ρxx = µ1 |n1|+ µ2 |n2|
e((µ1|n1|+ µ2|n2|)2) = 1

e(µ1|n1|+ µ2|n2|)
. (4.2)
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4.1. Transiting the CNP

This result is understandable in a simple parallel conductance picture with the
total conductivity σxx = σ1 + σ2. If the resistance in Fig. 4.1 follows Eq. 4.2, it
is reasonable, that close to the gate voltage, where the top and bottom carriers
convert into hole conductance, a maximum in resistance is found due to small
values for |n1| and |n2| in the denominator. The details of the trace then still are
affected by the mobilities µ1 and µ2 and their dependence on carrier densities.

- 1 0 - 8 - 6 - 4 - 2 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0

 

 

R xx
 [W

]

V g  [ V ]

0 2 4 60
1
2
3
4  V g  =  - 1 0  V

 V g  =  0  V
R xy

 [k
W]

B  [ T ]

Fig. 4.2.: Zero B-field resistance Rxx for the sample Q2451_2 measured back and
forth at T = 1.8 K. In the range of 0 V < Vg < −10 V the resistance
maximum is not reached. Remarkably, no hysteretic effect can be obser-
ved in this range. The inset shows the B-field dependence of Rxy for the
outermost gate voltages of the given range.

Turning now to samples with notably higher charge carrier density, the sample
Q2451_2 is considered. In Fig. 4.2 a gate voltage dependent measurement is de-
picted. The growth characteristics of this sample differ from Q2424 only by the
thickness of the HgTe, which is dHgTe = 128 nm. As indicated by the arrows, the
sweep direction of the black and red trace are different. From the low field Hall
behaviour (the Hall trace is shown in the inset of Fig. 4.2) a total n-type charge
carrier density of 3.9 · 1012 cm−2 at Vg = 0 V was determined. The investigation
of the conversion of carrier type would thus require significantly lower voltages,
than applied in Fig. 4.2, which would imply the risk of a possibly destructive
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4. p-type transport in 3D HgTe

gate breakthrough. Therefore, the only property of the sample that shall be high-
lighted here is the non-hysteretic behaviour of the bidirectional measurement.
Following Ref. [HBS+06], trap states at the interface of HgCdTe compounds with
the SiO2/Si3N4 insulator are expected to screen the gate influence on underlying
structures for gate voltages over a certain threshold |Vg| & 2.5 V. Thus, a hystere-
tic gate action is observed in Ref. [HBS+06], if the threshold voltage is exceeded
and instead of the desired manipulation of carrier density, additional trap states
are charged. From the starting point at Vg = 0 V, the charge carrier density can be
increased and decreased only by ∆n ' ±6 · 1011 cm−2. This is not the case for the
presented sample Q2451_2 and other samples built of CdTe/HgTe/insulator. On-
ly an insulator breakthrough of the gate is limiting the accessible density range for
these samples. The total density change of Q2451_2 in the voltage range displayed
in Fig. 4.2 with n(Vg = −10 V) = 1.1 · 1012 cm−2 was |∆n| = 2.8 · 1012 cm−2.
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Fig. 4.3.: Longitudinal (blue) and Hall resistance (red) of the sample Q2424 at
Vg = −2 V. After an increase to positive values, a breakdown to lower
Hall resistance can be observed. For B > 13.82 T the negative Hall
resistance indicates a dominating p-type charge carrier density.

For the sample Q2424 an indication of the transition of one type of carriers to
p-type can first be observed for Vg = −2 V for large magnetic fields (B > 9T),
as shown in Fig. 4.3. The Hall signal can not be explained by a gradual decrease
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4.1. Transiting the CNP

of the current to zero (freeze-out of contacts), because this should push the Hall
resistance to infinity. However, here the signal goes to zero and changes sign,
while staying finite. With Rxx in addition dropping for the regarded B-field region,
insulating behaviour can be excluded. The conversion of Rxy is therefore attributed
to p-type carriers with a considerably smaller mobility, that in the high field limit
gain bigger influence onto the combined Hall signal. This can be motivated by
the classical description of the two carrier Hall resistance, expressed by Eq. 3.4.
It should be mentioned, that this classical equation is basically not valid for high
magnetic fields, where the formation of Landau levels defines transport (in Fig.
4.3 we find indications of Hall plateaus for B = 3 T). The following formulas still
help, to qualitatively describe the data. The Hall resistance of a two carrier system
in a slightly rewritten form with respect to Eq. 3.4 is given by

Rxy = µ2
1 n1B + µ2

2 n2B + µ2
1 µ

2
2 (n1 + n2)B3

e((µ1|n1|+ µ2|n2|)2 + µ2
1 µ

2
2 (n1 + n2)2B2) , (4.3)

which first is approximated for low magnetic fields and µ2 << µ1, where we
model carriers of p-type with density n2 < 0 and mobility µ2. To do so, Bk shall
be treated to be 0 for k > 1 and terms of order µ2

2 shall be neglected against µ2
1.

The result is

Rxy = µ2
1 n1B

e(µ1|n1|+ µ2|n2|)2 = n1B

e(|n1|+ µ2/µ1|n2|)2 '
B

en1
. (4.4)

The last equality only holds, if also µ2/µ1 is neglected against one. In the end we
find, that the Hall behaviour for small magnetic fields can roughly be approxima-
ted to go linear with the Hall coefficient of only the charge carrier species with
density n1.

If for high magnetic fields one treats Bk = 0 for k ≤ 1 in Eq. 4.3, one finds, that
the Hall resistance

Rxy = µ2
1 µ

2
2 (n1 + n2)B3

e µ2
1 µ

2
2 (n1 + n2)2B2 = B

e (n1 + n2) (4.5)

indeed can yield negative numbers irrespective of the mobility ratio µ2/µ1, if

45



4. p-type transport in 3D HgTe

for the carrier densities |n1| < |n2| is true (n2 < 0). Although the presented
approximations are oversimplifications of Eq. 3.4, the Hall resistance in Fig. 4.3
can be understood to result from n-type carriers with density n1 and high mobility
µ1, that dominate transport for low magnetic fields and p-type carriers, which
become significant in the high field limit.
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Fig. 4.4.: Hall- and longitudinal resistance of the sample Q2424 for Vg = −4 V

and Vg = −5 V. Indications of Hall plateaus can be seen in the traces.

Fig. 4.4 presents measurements at the even lower gate voltages Vg = −4 V and
Vg = −5 V of the sample Q2424. In the Rxy traces the multi carrier behaviour
remains visible and indications of Hall plateaus can be found. One can conclude,
that at least one surface state must have been changed to p-type by the gate
voltage. This is not self evident, because ARPES investigations on the energe-
tic position of surface bands locate the inversion point of the Dirac cone at or
even below the valence band edge [BLN+11b],[COB+13]. Thus it could also be
possible, that instead of the conversion of surface carriers one would obtain an in-
creased bulk conductance for negative gate voltages. The negative voltage regime
is investigated in more detail in the following sections.
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4.2. Improved layer structure: buffer and cap

4.2. Improved layer structure: buffer and cap

In Chap. 3 evidence was found from magneto-resistance measurements, that the
top surface state exhibits a lower mobility than the bottom one. Naturally, one
could ask if a protecting CdTe layer on top of the HgTe enhanced the symmetry of
the device. However, from the growth side it is not possible, to achieve a crystalline

Introducing buffer and cap 

SiO2/Si3N4 multilayer 110nm 

 

 

CdTe 001 Substrate 

HgTe 90nm 

Au gate 100 nm 

HgCdTe cap 10nm 

HgCdTe buffer 50nm 

Sample 

Q2584 

Fig. 4.5.: Layer stack of sample Q2761 as an example for a structure including a
Hg1−xCdxTe buffer and cap layer, where x = 0.7.

CdTe layer with reasonable quality on top of HgTe. Therefore topologically trivial
Hg1−xCdxTe with x = 0.7 can be chosen as a cap material to protect the upper
surface. That does not mean, that the idea of symmetrizing the structure has to
be dropped, since the Hg1−xCdxTe can also be used as a buffer layer underneath
the HgTe. For better readability, ’HgCdTe’ hereafter will be used as a synonym for
Hg1−xCdxTe with x = 0.7. In Fig. 4.5 an example for the layer structure is inclu-
ding a buffer and a cap. The stacking order belongs to the sample Q2761. While
the buffer thickness is only restricted by the onset of relaxation, we find, that the
presence of a HgCdTe cap with thickness dcap > 10 nm starts to activate the above
mentioned hysteresis effect. This can be seen in Fig. 4.6, where a gate sweep from
Vg = 10 V to Vg = −10 V and vice versa for the HgTe bulk sample Q2763 with a
cap of dcap = 13 nm is displayed. A hysteretic shift of ∆V = 1.25 V between the
two traces is found. This means a total density difference of ∆n ≈ 3 · 1011 cm−2

between the two traces with δVg < 0 (black) and δVg > 0 (red) at a certain gate
voltage point. To avoid this hysteresis effect, that leads to non-unique mapping
of Vg to n, many of the produced structures have a cap of dcap = 5− 10 nm. The
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4. p-type transport in 3D HgTe
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Fig. 4.6.: Longitudinal resistance Rxx for a bidirectional gate sweep of the sample

Q2763 with dcap = 13 nm. A hysteretic shift of the trace is observed due
to screening of the gate effect by charged impurities.

conclusion is applicable also for HgTe quantum wells with HgCdTe barriers, if
absent hysteresis is more important than a high mobility in the HgTe layer.

In order to demonstrate the consequences of the additional buffer and cap layers
(see layer stack in Fig. 4.5), a standard Hall bar of the sample Q2761 for an applied
top gate voltage of Vg = 2 V is investigated. The results are plotted in Fig. 4.7.
A total n-type density of n = 6.4 · 1011 cm−2 is obtained by fitting the Hall slope
for small B-fields, comparable to the value of the above discussed sample Q2424
at 0V. The total sheet resistance ρQ2761(0 T, 2 V) = 44 Ω is nearly an order of
magnitude smaller than the one of the reference Q2424 without additional HgCdTe
layers, that shows ρQ2424(0 T, 0 V) = 307 Ω. According to Eq. 4.2 this can for equal
carrier concentrations only result from a massively increased mobility in at least
one of the surface states at the HgTe interfaces. Accordingly, the broadening of
the SdH peaks in Fig. 4.7 is much smaller compared to the ones of Q2424 at the
same carrier concentration (the trace is shown in Fig. 3.3). The small broadening
moreover is similar for all the peaks including neighbouring ones, which indicates,
that the mobilities of the two surfaces are close to each other. Thus, the attempt to
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Fig. 4.7.: n-type Hall (red) and longitudinal (blue) resistance of Q2761 with Hg-
CdTe buffer (50 nm) and cap (10 nm) at Vg = 2 V. The broadening of
neighbouring SdH peaks is similar and a low total sheet resistance can
be observed.

increase the symmetry regarding the environment of the upper and lower surface
state was successful.
What nicely can be seen for the presented SdH sequence are the zero resistance
minima, that are present, if the Fermi energy resides in an energy region, where
both Landau level sequences are gapped. This confirms the in Chap. 3 given
interpretation, that bulk conduction plays a negligible role in the devices.

4.3. Ambipolar QHE

The higher mobilities and lower mean carrier concentrations for samples with the
modified layer structure described above enable more detailed investigations of the
transport properties of p-type carriers in HgTe 3D TI samples. For this purpose,
the sample Q2584Nij with a layer structure of HgCdTe/HgTe/HgCdTe of thickness
100 nm/60 nm/5 nm from the bottom was measured to high magnetic fields at the
HFML in Nijmegen in the Netherlands. All measurements of samples labelled with
the addend Nij were taken at a temperature of T = 300 mK in a 3He cryostat. The
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Fig. 4.8.: Hall (red) and longitudinal (blue) resistance for the sample Q2584Nij

measured at the HFML in Nijmegen. The applied gate voltage is indi-
cated in the figures. By indices i the quantum Hall plateaus for n-type
[a)] and p-type [b),c)] transport are labeled.
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4.3. Ambipolar QHE

most striking results are given in Fig. 4.8, where magnetic field dependent mea-
surements of the Hall bar sample for different gate voltages are depicted. While
Fig. 4.8 a) shows n-type surface transport with the properties already discussed in
Chap. 3, one also finds remarkably well developed quantum Hall plateaus for nega-
tive voltages [Fig. 4.8 b) and c)]. The corresponding SdH minima are going to zero
for large enough Landau level spacing (see for example B > 25 T). In Fig. 4.8 b) an
odd integer sequence of quantum Hall indices can be observed, indicating, that the
gate voltage position V e

g of equal carrier densities for top and bottom surface for
this sample is realized in the p-regime. For other voltages even plateaus are found
again. The p-type QHE with zero resistance minima is interesting, because the
gate behaviour of the surface states expected from self-consistent band structure
considerations does not match the experimental observation. The position of the
apex of the Dirac cone (in analogy to graphene here also referred to as CNP) in
HgTe is estimated to be close to the valence band edge. Fig. 4.9 shows an ARPES
measurement of an undoped, ungated sample including a sketch of the energetic 2

Γ
8hh

Γ
6

b)
−0.10.0 0.1

ky (Å−1)

−0.1

0.0

0.1

k x
(Å

−
1 )

−0.10.0 0.1
ky (Å−1)

−0.1

0.0

0.1

−
0.

08
eV

−0.1

0.0

0.1

k x
(Å

−
1 )

−0.1

0.0

0.1

−
0.

16
eV

−0.1

0.0

0.1

k x
(Å

−
1 )

−0.1

0.0

0.1

−
0.

24
eV

−0.10.0 0.1
ky (Å−1)

−0.1

0.0

0.1

k x
(Å

−
1 )

−0.10.0 0.1
ky (Å−1)

−0.1

0.0

0.1

−
0.

32
eV

c)

FIG. 1: High resolution ARPES spectra for a maximally strained [100] HgTe/vacuum interface in the vicinity of the -point
measured at room temperature. a) Energy-momentum intensity spectrum after background substraction. b) The second
derivative of the intensity data which band positions are less faithful enhances the contrast. c) Intensity spectrum at different
energies. Raw data on the left and its second derivative on the right. The cone structure has a circular section up to ≈ 0.4 eV.

un-doped reference samples, in order to raise the bulk
chemical potential.

The samples surfaces were cleaned in a dedicated Ul-
tra High Vacuum preparation chamber by a low-energy
Ar-ion sputtering at grazing angles to remove the sur-
face oxide. The sharp dots observed in the in-situ LEED
spectra showed that the surface was clean enough for the
ARPES experiments[15]. The samples were subsequently
transferred to the ARPES chamber in Ultra-High Vac-
uum. The position of the Fermi level was determined
with a reference gold sample placed on the same sample
holder.

We first present the high-resolution spectra in the
vicinity of the -point for an un-doped sample. On the
panel a) of Fig. 1, the intensity of the ARPES spec-
trum is shown for a incident photon energy hν = 20 eV.
We retrieve the surface projection of the two volume va-
lence bands 8,HH and 6 (deep blue) and, with more
intensity, a linear cone structure, which broadens as one
moves away from its apex. The second derivative spec-
trum shown on panel b) enhances the contrast in the
ARPES intensity. Within the experimental accuracy the
cone apex coincide with the top of the 8,HH band and
lies 0.1 eV below the Fermi level. On the raw ARPES
spectrum shown in panel a) the cone structure extends
in the gap with a decreasing intensity, as those states are
populated mostly through the room-temperature thermal
activation. The cone section for different binding ener-

gies shown on the panel c) are circular up to energies 0.4
eV below the Dirac point. From the experimental slope
of the cone structure, the surface state band velocity is
found to be vF ≈ 5 × 105m.s−1. This value agrees with
the lowest order expansion for the energy close to the
Dirac point in the Kane model (~vF ≈ α P√

6
), where the

parameter α ≈ 0.9 for HgTe (the Kane parameters are
defined in the supplementary material). The same sam-
ple was also probed at different incident photon energies
hν. Varying the incident photon energy, shifts the bind-
ing energy of bulk bands according to their kz dispersion.
Here, the cone position is unaffected, emphasizing that
this cone structure comes from a surface state with no kz
dispersion (see supplementary material, Fig. 1S). This is
a powerful check which discriminates between 2D and 3D
states. Surface state spectra were also collected over the
entire Brillouin zone. In the -K direction, the surface
state spectrum becomes diffuse at energies of 0.8 eV be-
low the Fermi level. On the other hand, in the -X direc-
tion, the surface state spectra remain linear all the way
the the X point (Supplementary material Fig. 2S), where
its energy is 3.4 eV below the Dirac point, i.e. well below
the 6 band: in this direction, the surface state robust-
ness goes well beyond the usual topological protection ar-
guments. The ARPES spectra of doped samples are quite
similar to the one presented in Fig. 1, i.e. the electro-
chemical potential at the top surface appears to be little

Fig. 4.9.: ARPES measurement of strained HgTe oriented in [001] direction. The
surface states are indicated by a dashed line. The blue line highlights the
valence band edge. The Fermi energy is located at 0 eV. Picture taken
from Ref. [COB+13].
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4. p-type transport in 3D HgTe

positions of bulk and surface bands, given by the authors of Ref. [COB+13]. The
CNP according to the sketched lines lies 100 meV below the Fermi energy (0 meV)
and around the valence band edge (blue line). However, the position has an uncer-
tainty of at least 50 meV. This position in relation to the valence band edge can
depend on the surface chemistry of the sample. Thus, in theoretical models there
is also some freedom of choice for the position of the CNP. In Ref. [COB+13] the
experiment is supported by a theoretical calculation of the band structure using
an 8 band Kane model. The model yields a CNP slightly below the valence band
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Fig. 4.10.: Band structure obtained by an 8 band k · p calculation with hybridisa-
tion terms between Γ8 heavy holes and surface states set to zero. The
linear dispersing surface states are populated by nearly equal numbers
of n-type carriers.

edge, and can be considered consistent with the CNP position of Fig. 4.9. Also
this model basically agrees with other models regarding the energetic position of
the CNP, described in Refs. [DHQ+08],[BLN+11b] and [CSLS11]. For the valence
band structure all the self-consistent calculations utilizing the Kane model yield
closely spaced bulk sub bands, that should pin the Fermi energy before p-type
surface transport would be achieved. In this picture, a high p-type carrier density
on the surface and thus a low Fermi energy is accompanied by a significant bulk
state occupation.
However, if the p-type QHE stems from the surface states, strongly populated
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bulk states are not consistent with the observation of nicely flat quantum Hall
plateaus and zero Rxx for Vg = −9 V (n = −1.8 · 1012 cm−2) in Fig. 4.8. An inte-
resting feature of Fig. 4.9, emphasised in Ref. [COB+13], is the weak hybridisation
between surface states and Γ8 bands, evident from the impressively large range of
linear dispersion of the Dirac state. This could be a key observation to explain,
why p-type transport is measurable at all. If the surface states do not couple to
the nearby Γ8 bands different mobilities would be expected for the bulk and the
surface states. As a result, conduction through the surface states is possible wi-
thout strong bulk contributions. To test this hypothesis with a toy model, in the
k ·p Hamiltonian the coupling terms between surface state and heavy hole Γ8 band
can be artificially suppressed.
An example for the band structure resulting from a calculation as described is
given in Fig. 4.10. Here the surface states are dispersing perfectly linear, as there
is no interaction with the bulk valence band levels. The gate range of pure surface
occupation is bigger in this model, however, for large positive or negative gate
voltages also bulk states would be occupied. It should be emphasised that the
switch-off of hybridisation terms cannot be motivated by a physical understan-
ding and the result may suggest that the self-consistent 8 band Kane model is
not an appropriate model to describe the combined system of coexisting surface
states and bulk bands.

A more physical approach to explain the surprisingly robust QHE is to incorporate
the screening of bulk states by the surfaces. For positive gate voltages one can show
that a gate induced potential, strongly confined to the surface of the HgTe, changes
the position of the Dirac cone relative to the Fermi energy, but does not affect the
bulk properties. An example for such a potential is given in Fig. 4.11 a) where we
assumed symmetrically charged surfaces for Vg = −1 V. When a k ·p calculation is
run with this (non-self-consistent) potential, one obtains indeed states which are
well confined to the surface. The probability density is shown in Fig. 4.11 b) where
the red traces describe the bottom surface, and the top surface is represented in
blue. Most importantly, the band structure result of the calculation yields a Fermi
level that is located in the bulk band gap for a large range of gate voltages. This
can be seen in Fig. 4.12 b) for a reasonably large voltage Vg = 5 V. The case of
degenerate surfaces is depicted in Fig. 4.12 a), respectively. We want to note, that
the presented model does not give an explanation, why the potential is confined
so distinctly to the HgTe surfaces. To explain the shape of the potential a first
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Fig. 4.11.: a) gives the effective potential constructed to populate the surfaces
of the device only. For Vg = −1 V the bands are flat with a nearly
vanishing potential. An increased gate voltage (Vg = 5 V) is modelled
by a steep potential at the surface. In b) the corresponding evolution of
the probability density of the top (blue) and the bottom (red) surface
state at the Fermi level EF is shown.

approach could be a study of the dielectric properties of bulk and topological
surfaces in the material. A difference in the dielectric constant ε for bulk and
surface would directly influence the interplay of the potential Φ and the charge
density ρ via the Poisson equation of the electric field (see e.g. Ref. [Jac75]):

4 Φ = −ρ
ε
. (4.6)

There is no obvious reason why the presented model utilizing a steep potential at
the surfaces should not be applicable also for negative voltages. Thus, the stability
of the p-type QHE could be motivated in the same framework of screening of
the bulk by the topological surface states. This would imply, that the relative
position of the Dirac cone can be freely adjusted by the gate voltage, while the
bulk occupation stays zero or constant.

To unambiguously proof the observed QHE features to originate from the TI
surface states, the Hall conductivity for Q2584Nij at different gate voltages is
presented. It can be calculated in the following way:
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Fig. 4.12.: a) Band structure for the potential shown in Fig. 4.11 at Vg = −1 V
(a) and Vg = 5 V (b). The top (TSS) and bottom (BSS) surface state
are coloured in blue and red, respectively. Black lines represent bulk
states.
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Fig. 4.13.: Hall conductivity σxy for a wide gate voltage range for the sample
Q2584Nij. The n-type and p-type traces show decent quantization in
values of e2/h.

σxy = Rxy

R2
xy + ρ2

xx

, (4.7)

with the longitudinal resistivity ρxx = W/L ·Rxx in a 2D system (see for example
Ref. [BvH91]). In Fig. 4.13 the Hall conductivity is plotted for the sample Q2584Nij

for the whole investigated gate voltage range. The traces decently quantize to
the expected multiples of e2/h, however, as discussed in Chap. 3, deviations are
observable. It should be emphasised, that these deviations do not differ for n-
type and p-type transport. Following the lines of constant Hall conductivity at
σxy = −2e2/h and σxy = −4e2/h, one finds plateaus evolving with decreasing
gate voltage, meaning, that difference between the top and bottom surface carrier
concentration is steadily increased.
For a more accurate study, the carrier densities of top (nt) and bottom surface
(nb) are determined from the SdH frequencies of the measurements at different
gate voltages using Eq. 3.12. The result is plotted in Fig. 4.14 together with
the density nHall obtained from the low field Hall data. Both surface densities
show a linear dependence on the gate voltage and approximately add up to the
total density nHall. One further can analyse the phase of the SdH oscillations for
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Fig. 4.14.: Gate voltage dependence of different surface densities nt and nb obtai-
ned from the analysis of frequencies in the SdH patterns. The sum of
the two is matching the total density nHall in the system, calculated
from the Hall slope.

the case of degenerate sets of Landau levels utilizing Eq. 3.15. In Fig. 4.15 the
longitudinal resistance for Vg = −4 V is plotted vs. 1/B. The minimum values
and the corresponding uncertainty are indicated in the plot. The position of the
minimum for j = 0 was taken as the intersection of the extrapolated low field Hall
trace with the plateau at i = −1. All minima are numbered by indices j and in
the inset of Fig. 4.15 it is depicted how this minimum index j goes with the 1/B
coordinate. By a linear fit (dashed blue line) the expected non-zero Berry phase
of γ = −0.5 is sustained. From the analysis above there is plausible experimental
evidence that the QHE traces shown in Fig. 4.8 for p-type transport are arising
from the Dirac-like dispersing surface states. The linear gate dependence of both
states including the conversion to n-conducting behaviour confirms that these
states not only dominate the magneto-transport for the whole accessible range of
gate voltage, but also are not affected by Fermi level pinning at the edge of the
valence band or perturbed significantly by its closely spaced sub bands.

Another method to gain insight to the Landau level structure was already intro-
duced in Chap. 3. A Landau fan diagram can be created from gate and B-field
dependent resistance data. For this purpose an additional Hall bar of Q2584 was

57



4. p-type transport in 3D HgTe

0 . 0 0 . 1 0 . 2 0 . 3 0 . 40
2
4
6
8

1 0
1 2
1 4
1 6

321

 

 

R xx
 [k

W]

1 / B  [ 1 / T ]

j = 0

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0- 1

0

1

2

3

 # 
of 

mi
nim

um
 j

1 / B  [ 1 / T ]

Fig. 4.15.: Longitudinal resistance Rxx of Q2584Nij at Vg = −4 V plotted vs. the
inverse magnetic field 1/B. The minima positions and indices j are
marked. Inset: index j assigned to minima of the trace are extrapolated
to 1/B → 0 (dashed blue line is a linear fit to the data) yielding the
non-zero berry phase γ ≈ −0.5.

fabricated with the aim to measure this device in all detail at the base tempera-
ture of a dilution refrigerator. For high resolution datasets it is possible to plot
the derivative of the Hall conductivity ∂σxy/∂Vg, which exhibits a high value for
transitions between plateaus in σxy, corresponding to Landau level positions, and
zero between the levels (corresponding to plateaus in σxy). Thus, it is possible to
visualize Landau level traces. In Fig. 4.16 a) the derivative ∂σxy/∂Vg is plotted
in blue for low values and in red for high values of the derivative, respectively.
The numbers denote the quantum Hall index i, which is found from σxy, and
confirm that the observed red areas (high values in ∂σxy/∂Vg) indeed belong to
non-degenerate Landau levels resulting in a change of ∆σxy = e2/h, if crossed by
the Fermi energy.
By the white dashed and straight lines the Landau levels for higher indices N
of the individual sequences are approximated. These converge to two gate volta-
ge positions for B = 0, that can be interpreted as the CNPs of the individual
surface states. Analysing the intersections of dashed lines with straight ones, the
i = −4 -plateau on the p-conducting side is most striking. In Fig. 4.16 b), c) and
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Fig. 4.16.: a) Landau level chart of the sample Q2584: The derivative ∂σxy/∂Vg
yields high values (red) at the positions of Landau levels in B and Vg.
Numbers denote quantum Hall indices i, white lines indicate the two
fans originating from two surfaces for higher fillings. b) - d) Line cuts
of σxy (black) and ρxx (red) at the magnetic fields indicated in a) by
dashed black lines. The reappearance of i = 4 (emphasised by the blue
boxes) is taken as a proof that two independent sequences exist (see
main text). By blue lines the zero in Hall conductivity is marked.
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4. p-type transport in 3D HgTe

d) line cuts of σxy (black) and ρxx (red) are shown along the black dashed lines
of Fig. 4.16 a) at B = 4 T, B = 7 T and B = 12 T, respectively. The plateau
of σxy = −4 e2/h is weakly marked in Fig. 4.16 b) and vanishes completely at
B = 7 T in Fig. 4.16 c), highlighted by the blue boxes. For a higher magne-
tic field, the plateau is well-pronounced, even though not perfectly quantized to
−4 e2/h [see Fig. 4.16 d)]. Thus, it can be concluded that indeed a crossing of
Landau levels is observed, as indicated by the white lines in Fig. 4.16 a). On the
n-side the same phenomenon is visible e. g. for i = 6. Together with the fact that
the Landau fans have p-type and n-type Landau levels, the crossings give strong
evidence that two independent zero gap systems are probed. Thus, the Landau
level behaviour in Fig. 4.16 is another confirmation of the two Dirac cone inter-
pretation given above, that explains the B-field dependence.
However, for lower fillings on the surfaces the levels seem to deviate from the origin
of the dashed and straight lines. This might be due to changed screening proper-
ties of the topological surfaces if only one or two quantum Hall edge channels are
present. Also the voltage V e

g at that top and bottom carrier density are equal is
changed in comparison to Q2584Nij, as can be concluded from the non-vanishing
plateau exhibiting i = −2 in Fig. 4.16 a).

In Fig. 4.16 b), c) and d) additionally the longitudinal resistivities ρxx (red traces)
are plotted for the displayed values of the magnetic field. An interesting feature
is the presence of a distinct resistivity maximum, generating a region of vanis-
hing Hall conductivity. By a blue line, the zero of Hall conductivity is marked in
Fig. 4.16 b), c) and d). The region of quantum Hall index i = 0, corresponding
to the plateaus at σxy = 0, is also labelled in Fig. 4.16 a). The observed index in
the gate voltage range 2 V < Vg < 3 V is interpreted to result from the individual
fillings of νt = −1/2 and νb = 1/2, that add up to a total Hall conductivity of
σxy = 0. However, the red areas limiting the region with i = 0 in Fig. 4.16 a)
can not be interpreted as direct representation of the zero levels of the two Dirac
systems. This can be understood from Fig. 4.16 b)-d) and Eq. 4.7. A high longi-
tudinal resistivity gives rise to a plateau of σxy = 0 due to σxy ∝ 1/ρ2

xx. A low
σxy thus is already observed, before the maximum of the peak and therefore the
energetic LL position is reached. In the derivative ∂σxy/∂Vg, however, the first
decrease of σxy arising from the flank of the peak in ρxx is highlighted. One can
conclude that the zero levels must lie slightly inside the region labelled by σxy = 0
in Fig. 4.16 a).
Turning to the resistance peaks in Fig. 4.16 b), c) and d) one notes, that for
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4.3. Ambipolar QHE

B = 4 T the resistivity nearly reaches ρxx = 100 kΩ, while it decreases with in-
creasing B, where the plateau of i = 0 gets wider in Vg [see Fig. 4.16 a)]. This,
however, is an unexpected result. The observation of an increasing plateau with
i = 0 requires that the zero levels of the two cones move differently in gate voltage
and thus in energy. The dispersion E(B) given by Eq. 2.9 is plotted in Fig. 2.4 for
two Dirac cones. This plot, however, can not be compared directly to the measu-
red Landau level chart in Fig. 4.16 a), because the y-axis denotes gate voltage for
the experimental plot while in the calculation energy is taken as the dependent
variable. For the top surface, the applied gate voltage is proportional to the char-
ge carrier density if a simple capacitor model is used. This leads to a linear trace
of the Landau levels in gate voltage (proportional to the carrier concentration)
and magnetic field because a constant filling factor according to Eq. 3.6 yields
n ∝ B. The linearity is lost if the relation n(Vg) is changed. One might expect
this for the lower surface state, where nb could besides the gate voltage depend
on the screening properties of the top surface. At least for high magnetic fields,
the dispersion of the Landau levels in Fig. 4.16 a) contradicts this idea, because
the linear proportionality of carrier concentration and B-field holds for all levels.
Thus, one can expect, that a constant energy distance between the two zero levels
is mapped to a constant distance in gate voltage. This means, that the energy
dispersion E0

α of the Landau levels for N = 0 observed in Fig. 4.16 is not correctly
described by Eq. 2.9.
Further one would expect the maximum resistance ρxx,max to increase with the
magnetic field if a real energy gap was present and the levels limiting the gap
diverged as observed in Fig. 4.16 a). However, due to the Dirac states, there is
conceptually no energy gap in the band structure, that completely suppresses
transport in a magnetic field. In any energy region between Landau levels there
should be quantum Hall edge states present on both topological surfaces. This
in principle should also be the case between the two zero levels of the top and
bottom surface i.e. for Vg ≈ 2.5 V in Fig. 4.16 b)-d). If though the zero levels lie
close to each other, the region of low resistivity in between might not be visible.
An indication on this is the decrease of maximum resistance for growing magnetic
field, when the peak in ρxx gets broader. The peak is interpreted as the sum of two
maxima producing a high value of ρxx when close to each other and a lower but
broader peak for bigger separation of the maxima. For even higher magnetic field
and thus energy distance between the zero levels a double peak structure is ex-
pected to form. Furthermore, the peak height should saturate as soon as the zero
levels are well separated. To check if this is the case the resistivity at B = 16T in
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Fig. 4.17.: Longitudinal resistivity ρxx of sample Q2584 for different constant ma-
gnetic fields.

Fig. 4.17 is compared to the ρxx traces already given in Fig. 4.16 b)-d). The trend
of a reduced peak height and increased broadening is continued up to B = 16 T.
A double peak, however, can not be observed. What can be found is an asymme-
try of the peak that could originate from different mobilities in top and bottom
surface state yielding unequally broadened zero Landau levels. Nevertheless, the
fact that the resistivity does exhibit high values between the zero levels shall be
discussed.
A high sample resistivity can occur in quantum Hall systems, if edge channels
are allowed to backscatter. This is the case on the individual surfaces, if the Fer-
mi energy hits a Landau level. Further one can imagine backscattering due to the
existence of states on the second surface. In this context, a possible understanding
of the large longitudinal resistivity between the zero levels observable in Fig. 4.17
is presented: In the discussed energy region there are n- and p-type edge channels
coexisting in the device [see Fig. 4.18 a)]. The red (electron) and blue (hole) chan-
nel have different chirality, however, electrons in both surfaces flow in the same
direction. Therefore it is not obvious, how a possible coupling between upper and
lower surface could lead to backscattering of carriers. A mechanism that can be
considered to hinder transport is the recombination of electrons and holes from
the two surfaces. It is plausible, that the conducting side surfaces enable the car-
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riers to change between the TI surfaces. In the single channel QHE regime, the n-

k

E

a) b)B

Fig. 4.18.: a) Sketch of the edge channels on the surfaces of a 3DTI, if both surfaces
are in the single channel quantum Hall regime with different carrier
type. The red line stands for left-moving electrons on one surface of
the TI, while the blue one describes right-moving holes hosted by the
other surface. At the position of the indicated recombination process,
b) gives the dispersion in the quantum Hall edge channels. If carrier
exchange between the surfaces is allowed, a recombination of electrons
and holes is possible due to matched momentum and spin conditions.

and p-type carriers in the top and bottom surface have energies of E± ≈ ±~ω/2.
A left-moving electron (red branch) has the same k-value as a right-moving hole
(blue branch) in a 1D quantum Hall channel, sketched in Fig. 4.18 b) by the filled
and open circle. The dispersion of the 1D quantum Hall edge channels is drawn
in analogy to the depiction given in Ref. [QZ11]. In this picture the electrons can
lower their energy by ∆E ≈ ~ω, if they recombine with a hole. Effectively, the
mechanism hinders transport in the device, because it tends to change the system
from one n- and one p-type surface to two charge-neutral ones. The resistivity
between the zero levels according to this idea depends on the recombination rate
in the edge channel system. One can imagine, that it decreases with the thickness
of the HgTe layer. A reduction of the recombination rate could also be reached
when the Hall bar dimensions are scaled down, because thereby one reduces the
total overlap area of opposite edge channels. Finally, one expects a decreasing
edge channel width with the magnetic field as derived in Ref. [LG94]. This could
lead to a change in resistivity between the zero levels with the magnetic field.
These parameters can be varied as a check of the recombination idea. In Fig. 4.17
the overall peak height decreases in magnetic field, however, one can not clearly
distinguish between the resistivity on and between the zero levels.
It was shown in this section, that the behaviour of strained bulk HgTe can be ex-
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4. p-type transport in 3D HgTe

plained by a model, that uses two Dirac cones. The transition to p-type QHE by
applying an external gate voltage was demonstrated. There were two possible ex-
planations presented for the observation of clean surface transport from the lower
branch of the Dirac cone. Some of the observations still need further investigation,
however, a basic understanding of the system could be achieved. Now the focus is
set on lower magnetic fields B < 2 T , where additional features can be found.

4.4. Three carrier behaviour

The interplay of n- and p-type carriers in the energy region between the two
neutrality points of the Dirac cones has been investigated above. For lower gate
voltages one would expect that the p-type QHE of two independent surfaces with
the CNP above the Fermi energy yields a total Hall trace with negative slope only.
This situation should for example be found for Vg = 1 V in Fig. 4.16 a), where the
two surface states can be identified to have p-type character from the high field
behaviour. As evident from the discussion of Eq. 4.3 the Hall trace depends on the
ratio of the two surface mobilities. The sign of its slope, however, is only influenced
by the charge type of the carriers. In Fig. 4.19 a measurement of Q2584 at Vg = 1 V
up to B = 14 T is plotted. For low magnetic field a deviation from a perfectly linear
Hall behaviour is found. Emphasised by the black circle, a small kink to positive
Hall resistance can be observed, while the rest of the trace is in agreement with the
two Dirac cone interpretation. It can therefore be supposed, that in addition to
the p-conducting surface states, a third component of n-type carriers is active in
transport. To further investigate this feature, measurements with higher resolution
have to be analysed. A close up in the range of −0.25 T < B < 0.45 T is plotted
in Fig. 4.20, where the traces were measured with a resolution of ∆B = 0.2 mT.
Since small magnetic field values of several 10 mT will be analysed, the zero field
position was corrected taking into account the hysteresis of the magnet. In the
plot one finds, that the Hall resistance rises to Rxy ≈ 100 Ω, before it starts to
decrease. The red dashed lines at Rxy = 0 and B = 0 emphasise the antisymmetry
of the Hall trace. Moreover, both Hall and longitudinal resistance exhibit clear
oscillations in the displayed field range. The oscillations are periodic in 1/B and
one can analyse their period by plotting the minimum index j (minima in Rxx)
vs. 1/B.
This is done in Fig. 4.21 for a minimum index reaching from j = 6 (B = 0.4223 T)
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Fig. 4.19.: Hall (red) and longitudinal (blue) resistance of the sample Q2584 at
Vg = 1 V. The Hall trace exhibits the QHE of two p-type surface states
for high magnetic fields. At very low magnetic fields one finds non-linear
Hall behaviour. This region is highlighted in the plot by the black circle.

to j = 43 (B = 0.0582 T). The red line is a linear fit with the equation

jfit = 2.49T · 1
B

+ 0.240 . (4.8)

Using a modified version of Eq. 3.11 the corresponding charge carrier density is
determined:

∆ν
∆ 1
B

= nh

eg
. (4.9)

Here the degeneracy factor g is added, because it is a priori not known, from which
kind of subsystem the oscillation sequence stems. The most probable values for
this degeneracy are g = 2 for a spin-degenerate subsystem and g = 1 for lifted
degeneracy. Because there is no clear splitting of the peaks in magnetic field, g = 1
is used and a charge carrier density of n = 0.602 ·1011 cm−2 is extracted. For g = 2
the carrier density would result in twice the given value. Turning to the phase of
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Fig. 4.20.: Close up of Hall and longitudinal resistance with respect to Fig. 4.19.
The observable non-linear Hall trace of Q2584 at Vg = 1 V is accom-
panied by clear oscillations on both resistance signals. The dashed red
lines mark Rxy = 0 and B = 0, respectively.

the oscillations, the y-intercept is expected to vanish for a conventional 2DEG. For
a Dirac band structure, it should yield y0 = −γ = −0.5. The result obtained from
Fig. 4.21 is inconsistent with either of the two values, making an identification of
the charge carriers causing the oscillations difficult.
Therefore, in the inset of Fig. 4.21 the quality of the linear fit is analysed. From
the residua j − jfit it is evident, that the present fit to all data points results in a
systematic error for 1/B < 7.1 T−1. By the dashed line, the data is separated into
two regions. For 1/B < 7.1 T−1 a linear trend in the deviation j − jfit is found,
indicating, that for this region the slope of the linear fit jfit should be increased.
In the second region one more likely requires a smaller slope for the fit. Assuming
a constant absolute error ∆B in the data one has to put more trust in data points
with large B (small 1/B), because their absolute error in 1/B is smaller. Thus,
the fit is repeated for the data points left of the dashed line in the inset of Fig.
4.21, i.e. for 1/B < 7.1 T−1 or B > 0.14 T. For these one finds

j∗fit = 2.54T · 1
B

+ 0.011 , (4.10)
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Fig. 4.21.: Minimum index vs. inverse magnetic field for the oscillations resolved
in Fig. 4.20. The red line is a linear fit to the data. In the inset the
residua of j are given, indicating, that for 1/B < 7.1 T−1 (left of the
dashed line) a systematic error is made in the fit.

yielding a corrected charge carrier density of n = 0.614 · 1011 cm−2. The value for
the Berry phase within the uncertainty is consistent with γ = 0. The deviation
from this result for the data at B < 0.14 T (right of the dashed line in the inset
of Fig. 4.21) can have several reasons. First, as already described, the absolute
error ∆1/B is increasing with 1/B. Additionally the Rxx trace (see Fig. 4.20)
exhibits a bigger slope for low magnetic field. This can lead to systematic errors in
determining the 1/B position of the minima. Finally a possible remaining offset in
the magnetic field after the zero-field correction will result in a bigger relative error
for the minima positions at small magnetic field. Regarding all these arguments,
the slope and y-intercept (= −γ) of the second fit j∗fit will be taken as best fit
to the data. However, the first fit demonstrates the amount of uncertainty of
the extracted values. Therefore the results are n = (0.61± 0.02) · 1011 cm−2 and
γ = −0.01± 0.23.
It should be emphasised, that this γ-value extracted from j∗fit was obtained for a
degeneracy of g = 1. To discuss the change in γ for a different degeneracy number,
a simple consideration can be made. For a degeneracy of g 6= 1 the 1/B positions
remain unchanged, but all assigned j-values have to be taken g times as big and
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4. p-type transport in 3D HgTe

therefore have an increment of ∆j′ = g∆j∗ = g. The data is fitted by the rescaled
linear function

j′fit = m′ · 1
B
− γ′, (4.11)

where j′fit = g j∗fit. For the slope one has to take

m′ = ∆j′
∆1/B = g∆j∗

∆1/B = g m , (4.12)

where m stands for the slope obtained for g = 1. For γ′ one finds from Eq. 4.11

γ′ = m′ · 1
B
− j′fit = g (m · 1

B
− j∗fit) = g γ, (4.13)

yielding γ′ = −0.02± 0.46 for g = 2. So for both discussed degeneracies the Berry
phase γ is negative, whereas for a Dirac type 2DEG one would expect γ = +0.5.
However, concerning the large uncertainty in the linear fit (resulting from the
analysis of the residua), one can not exclude that the dispersion of the discussed
carriers is linear or has additional linear terms. In this sense the analysis shows
that a distinction of Dirac and non-Dirac electron systems is a delicate issue. It
can nevertheless be concluded that in addition to the topological surface states
there is a third charge carrier type active in transport.

The presence of oscillations in the Hall resistance shall now be qualitatively ex-
plained. In Chap. 3 the resistivity matrix of one carrier type in a multi carrier
system was given by Eq. 3.2. To find the total resistivity, the single carrier resisti-
vity matrices have to be inverted, added and re-inverted (see Eq. 3.3). Therefore
the inverted resistivity matrix ρ−1

i is calculated:

ρ−1
i = 1

(RiB)2 + (1/σi)2

1/σi −RiB

RiB 1/σi

 . (4.14)

One directly finds, that oscillations in σi are influencing every component of ρ−1
i

via the prefactor of the matrix, which results from the determinant of the original
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4.4. Three carrier behaviour

resistivity matrix ρi. Thus, the Hall component of the total resistivity matrix
ρtot;1,2 is as well affected by the oscillating σi.

Interestingly, the mentioned third carrier type can be observed similarly in all
bulk HgTe samples, independent of the thickness dHgTe and of the barrier ma-
terial enclosing the HgTe layer. As an example, the small field behaviour of the
sample Q2451 (dHgTe = 128 nm, see Appendix A) is presented in Fig. 4.22. For
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Fig. 4.22.: Oscillations of the longitudinal resistance of Q2451 (dHgTe = 128 nm)
plotted against inverse magnetic field in the low field region. The zero-
field resistance Rxx(0 T) is subtracted for each gate voltage.

a better comparability of the measurements at different gate voltages, the zero
field resistance is subtracted. The change in resistance ∆Rxx = Rxx(B)− Rxx(0)
is plotted vs. 1/B in the figure. The sample Q2451 has more than twice the thick-
ness of Q2584 and with CdTe/HgTe/SiO2(multi layer insulator) it has a different
layer structure. However, the oscillation period and the associated carrier density
(n = 0.66 · 1011 cm−2 for Q2451) are very similar for both samples. From this
one can conclude that the observed low field features go back to a fundamental
property of the HgTe system. While the origin of these oscillations is not clear
yet, one can speculate about possible reasons.
A simple explanation would be a 2DEG forming at one of the semiconductor-
semiconductor interfaces due to a triangular potential well just like in heterostruc-
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tures of GaAs/AlGaAs [SDC+79]. A state like this is referred to as band bending
2DEG here. The density in such a 2DEG would be expected to be gate volta-
ge dependent if it was located between the HgTe layer and the gate electrode.
Surprisingly, the oscillation frequency in Fig. 4.22 is barely affected by the gate
voltage and yields a constant carrier density of n = 0.66 · 1011 cm−2, while the
overall shape of the traces clearly changes. This number can within error margins
be treated to be equal for all three investigated gate voltages in Fig. 4.22. Thus, if
a band bending 2DEG was the origin of the oscillations, it had to exist below the
HgTe layer. Possible semiconductor-semiconductor interfaces are HgCdTe/CdTe
and HgTe/HgCdTe for Q2584 as well as HgTe/CdTe for Q2451. The first of the
three can explicitly be excluded considering Fig. 4.22: a band bending 2DEG at
the HgCdTe/CdTe interface can not be the origin, otherwise Q2451 should not
show the oscillations. Furthermore, a band bending 2DEG at interfaces of this
kind should be found as well in all samples containing HgTe quantum wells, for
which CdTe is used as the substrate and HgCdTe as the material of the lower
barrier. So far, oscillations similar to the features in Figs. 4.20 and 4.22 could not
be observed in quantum well samples.
Turning to the remaining interfaces, one recognizes that the 2DEG had to exist at
HgTe/HgCdTe and HgTe/CdTe interfaces, respectively to explain the oscillations
in samples with and without HgCdTe capping layers. From symmetry considera-
tions one in this case would expect a band bending 2DEG at each HgTe interface
for samples with HgCdTe barriers on top and bottom (e. g. Q2584). However, the
upper of these should show a strong gate dependence which is not observed in the
oscillation sequence. Furthermore, a spin splitting should be observed for all con-
ventional band bending 2DEGs which by the measurements could not be substan-
tiated so far. Therefore a bend bending 2DEG at a semiconductor-semiconductor
interface does not provide a sufficient explanation of the oscillating feature.

The weak dependence on gate voltage is even more impressive for Q2584. For very
low gate voltages leading to high p-type carrier densities in the surface states,
one still observes the n-conducting sequence in transport. In Fig. 4.23 a) the
Hall and longitudinal resistance is given for Q2584 at Vg = −8 V exhibiting a
clear multi carrier behaviour around B = 0 T in the Hall trace. In the deriva-
tives dRxx/dB (blue) and dRxy/dB (red) plotted in Fig. 4.23 b) the oscillating
signature can be identified. An analysis of the oscillation period yields a value
of n = (0.60± 0.02) · 1011 cm−2 for the carrier density. The calculation is the sa-
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me as for Vg = 1 V and the uncertainty in the carrier density is estimated to be
the same as above. Remarkably, within error margins the two density values are
identical. The same value results for all measurements in the gate voltage interval
−9 V < Vg < 4 V. Thus, the carriers must exist in a region of the sample, where
they are very effectively screened from the electric field of the top gate.

Interestingly, a similar effect has been reported for unstrained bulk Hg0.845Cd0.155Te
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Fig. 4.23.: Hall (red) and longitudinal (blue) resistance of Q2584 at low ma-
gnetic field and Vg = −8 V (a). To emphasise the oscillating parts
of the signals, the derivatives dRxx/dB (blue) and dRxy/dB (red)
are displayed in (b). From the oscillation period a carrier density of
n = 0.60 · 1011 cm−2 can be calculated.
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that has been adjusted to be a zero-gap material in Ref. [KOWV76]. The authors
used a mixing (CdTe and HgTe) and annealing technique to synthesize the crystal
and observed quantum oscillations down to several 10 mT. However, it is hard to
judge the crystal quality and to exclude the existence of HgTe islands, that form
a TI state. As the origin of the oscillations the authors propose the interaction of
conduction electrons with narrow acceptor states at the conduction band edge.
This raises the question if the additional carriers are located in the bulk of the
material, possibly screened from the gate by the metallic surface states. If a 3D
bulk state was the origin of the observed signal, the oscillations should depend
on the absolute magnetic field. Thus, by applying the magnetic field under an
angle α with respect to the surface normal of the top and bottom surface state,
where α = 0◦ means out-of-plane magnetic field and α = 90◦ denotes the parallel
configuration, one can distinguish between states extended in 2 and 3 dimensions.
While 2D states should respond to the effective out-of-plane field B⊥ only, states
with 3D extent should react to the total field B. The effective field can easily be
calculated from geometrical considerations:

B⊥ = B · cos (α) . (4.15)

A measurement of the sample Q2584 with the angle 0◦ ≤ α ≤ 80◦ is shown in
Fig. 4.24. Due to the need of a sample holder with a rotatable sample the lowest
temperature available for this measurement was T ≈ 1.8 K. For all measured
angles the effective field was calculated according to Eq. 4.15 and used as x-
coordinate in Fig. 4.24. One finds that for all angles the minima positions in Rxx

are nearly constant in the effective field. Note, that for α = 80◦ the trace stops
at B⊥ = 1.22 T according to a maximum total field B = 7 T. Regarding the
minimum around B⊥ = 0.91 T it seems, that some deviations in its position are
present, which for high angles become stronger. It is estimated now, if this can
result from the uncertainty in the rotation angle α.
One finds, that the uncertainty in B⊥ scales with the angle α. Here, the assumption
is made, that the uncertainty in the magnetic field can be neglected versus the
one in the angle which is not exceeding ∆α = 2◦. With only one uncertain entity
one finds the relative error

∆B⊥(α)
B⊥

= dB⊥/dα∆α
B⊥

= −B · sin (α) ∆α
B · cos (α) = −tan (α) ∆α, (4.16)
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Fig. 4.24.: Oscillations of the longitudinal resistance of Q2584 at low magnetic field
and T ≈ 1.8 K. The color scale indicates the increase of α, the abscissa
is the effective magnetic field B⊥. All traces are successively offset for
better visibility. By the horizontal dashed line the error margin of the
α = 80◦ trace at B = 0.91 T (minimum position, see vertical dashed
line) is given.

where the linear expansion in the second term is a good approximation if ∆α can
be treated as small error, which is the case here. For α = 80◦ and ∆α = 2◦ one
finds a relative error of ∆B⊥/B⊥ ≈ 20%. Thus for α = 80◦, a shift of minima
or maxima by ∆B⊥ = 0.2 T around B⊥ = 1 T within the uncertainty still is
consistent with constant minima positions in B⊥. This is indicated in Fig. 4.24 by
the horizontal dashed line giving the uncertainty of the minimum at B = 0.91 T
(see vertical dashed line). One can conclude, that the oscillations at low magnetic
field originate from a 2DEG somewhere in the sample, which at first sight seems
to speak against bulk carriers. However, the 2D character does not necessarily
mean, that a bulk state can not be responsible, since due to a layer thickness of
dHgTe < 200 nm the bulk bands might still be split far enough by the quantum
mechanical confinement to allow for the occupation of a single sub band that has
2D character. This depends on the position of the Fermi energy with respect to the
bulk band structure, which could not be accessed in the demonstrated transport
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4. p-type transport in 3D HgTe

experiments.

To understand the properties of the system, the data can be fitted by a three carrier
conductivity model. It was described already in Eqs. 3.2 and 3.3, how the total
resistivity tensor ρtot of a system with multiple carriers can be constructed from
the individual components σi andRi. In the low field region, there is predominantly
one frequency of oscillation observable, why a model containing three types of
carriers (i = 1, 2, 3) is used, of which only σ3 is modulated by cosine shaped
oscillations. These are incorporated along the lines of Ref. [BBB+14], that uses
the results of Ref. [AFS82]. For low magnetic fields one finds

σ3 = F0

[
1− F1

2π2kBTm
∗

~eB
sinh−1

(
2π2kBTm

∗

~eB

)
cos

(
πn3h

eB

)]
, (4.17)

where m∗ is the effective mass of the carriers and kB the Boltzmann constant. The
factors F0 and F1 are given by

F0 = en3µ3

1 + (µ3B)2 (4.18)

and

F1 = 2 (µ∗3B)2

1 + (µ∗3B)2 exp [−π/ (µ∗3B)] . (4.19)

In the term F1, that gives the amplitude and the exponential damping of the
oscillation, the mobility is rescaled to µ∗3 = τc/τ µ3 to take into account the possible
difference between the relaxation time τc related to the broadening of Landau
levels and the regular transport relaxation time τ (see for example Ref. [FSW88]).
However, for practical reasons, in all following fits µ∗3 = µ3 is used. Now the
influence of temperature and effective mass in Eq. 4.17 shall be discussed. These
quantities enter the equation via a prefactor F T = x/sinh(x) to the cosine, where
x ∝ m∗T . This makes clear, that the amplitude of the oscillations depends on the
product of effective mass and temperature. An estimate for the conduction band
edge effective mass of HgCdTe with different Hg contents is given in Ref. [BK11],
where a formula based on Ref. [Wei81] is used. The result for HgTe ism∗ = 0.03me,
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4.4. Three carrier behaviour

with the electron mass me. This result can be used as a first guess for the n-type
carriers. More appropriate to the problem, the effective mass is obtained from the
temperature dependent decay of the oscillations in conductivity. For the sample
Q2584 this is done in Ref. [Wie13]. The author finds m∗ = 0.02me. However, the
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Fig. 4.25.: Temperature dependent part F T = x/sinh(x) (x ∝ m∗T/B) in Eq.
4.17 for m∗ = 0.02me and T = 0.1 K as a function of magnetic field.
The term quickly saturates to 1 below B = 0.2 T.

exact number seems to be of minor importance for the quality of the fit. This
can be understood, when plotting the temperature dependent term F T (B) for
m∗ = 0.02me and T = 0.1 K, which is used as an estimate for the electronic
base temperature of the dilution refrigerator. The dependence on magnetic field is
shown in Fig. 4.25. One finds, that the influence of temperature and effective mass
to the amplitude of the oscillations quickly saturates to 1 and for B > 0.1 T it can
already be neglected. All experimental traces fitted in this section are measured
at the base temperature of T = 0.1 K, that is why there is no need to put more
effort in a precise determination of m∗ and T . For fitting purposes it is reasonable
to use m∗ = 0.02me and T = 0.1 K as constant parameters. Furthermore, the
amplitude of the oscillations is affected by the mobility µ∗3 of the carriers, that
influences the amplitude through the term F1.

In Fig. 4.26 the longitudinal (blue) and Hall (red) resistance are depicted for
several gate voltages below B = 1 T. A fit to the data is plotted in black. Hereby
the fitting equations have in principle six free parameters, namely the charge
carrier densities n1, n2, n3 and the mobilities µ1, µ2, µ3 of the three components.
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4. p-type transport in 3D HgTe

From the frequency of the oscillations at small magnetic fields a value of n3 was
extracted for the gate voltages Vg = 1 V and Vg = −8 V above, which can be done
for all gate voltages and eliminates one free parameter. Furthermore, it is assumed
that the mobilities of µ1 and µ2 are similar. Thus, the sum n1 + n2 of the gate
dependent carrier species can be inferred from the slope of the Hall trace for large
magnetic fields, removing another degree of freedom from the fit equations.

Utilizing the known longitudinal resistance at B = 0 T, one can relate the mobility
µ3 to the others when taking into account the total conductivity as the sum
σtot = σ1 + σ2 + σ3:

µ3 = σ3

n3e
= σtot − σ1 − σ2

n3e
= 1/ρxx(B = 0)− n1eµ1 − n2eµ2

n3e
, (4.20)
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Fig. 4.26.: Longitudinal resistance (left, blue) and Hall resistance (right, red) data
for sample Q2584. The black traces are fits to the data obtained by
a classical three carrier model, where one component is described by
cosine shaped oscillations (see Eq. 4.17).
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leaving three free parameters available. Finally it should be mentioned, that the
set of three parameters for a given gate voltage is used to fit the Hall and lon-
gitudinal resistance, respectively. In Fig. 4.26 it is shown, that the three carrier
model can qualitatively be taken as an explanation for the measurement data in
the complete gate voltage range. The oscillations in both signals are present also
in the fit traces and match in amplitude and phase at low fields B < 0.5 T. For
higher fields, there seems to be a disagreement in the phase relation. This can
be a result of the non-classical limit, where the Landau energy gaps (EL = ~ωc)
between the levels open far enough to let the description by a cosine function fail.
An indication, that the oscillation is not very well described by a cosine function
for B ≥ 0.5 T can be found in Fig. 4.20, where the peak shape is deformed signi-
ficantly already for magnetic fields below B = 0.5 T.
Another observation is that the Hall signal of the p-type carriers is over-estimated
by the fit function. In the region of strong p-type influence (high B) measurement
and fit trace run parallel. A good agreement is also given for very low magnetic
fields, where the signal is dominated by the n-type component. However, in the in-
termediate region, a discrepancy between the experiment and theoretical descripti-
on is found. One can exclude an n-type density different from n3 = 0.61·1011 cm−2,
since the value was obtained from the frequency of the oscillating part in the data.
The disagreement in Hall traces could point to a degeneracy of the n-type carriers.
This would lead to the same oscillation frequency, but give more weight to the
positive Hall contribution. However, fitting attempts with a degeneracy of g = 2
did not give a better quantitative result. It turned out, that including a fourth
type of carriers of n4 = 0.61 · 1011 cm−2 and a mobility µ4 6= µ3 indeed increased
the quality of the Hall fit. Doing so could be motivated by the symmetry of the de-
vice in z-direction. If the third carrier species existed on a surface, this symmetry
would require a mirror state on the other side (top/bottom) and therefore an even
number of carrier species. However, a better fit in the case of assuming a fourth
carrier type is not surprising because additional degrees of freedom are provided
introducing the additional parameters n4, µ4. Therefore, we do not further follow
this idea here.

The parameters, that were used in the three carrier model are listed in Tab. 4.1.
The robustness of the third carrier type again is visible from the nearly constant
value of n3, that only deviates for the highest gate voltage Vg = 4 V. For this
voltage, however, there are other n-type components with very high mobilities
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Fit parameter Vg= 4 V Vg= 1 V Vg= -2 V Vg= -4 V Vg= -8 V

n1 / 1011 cm−2 2.2 -1.3 -5.5 -8.0 -12.0

µ1 / 1000 cm2/Vs 220 7.0 8.0 9.0 7.0

n2 / 1011 cm−2 0.8 -2.8 -6.0 -8.0 -11.0

µ2 / 1000 cm2/Vs 500 40 27 37 32

n3 / 1011 cm−2 0.79 0.61 0.61 0.61 0.61

µ3 / 1000 cm2/Vs 88 440 210 460 520

Tabelle 4.1.: Parameters used for the fit in Fig. 4.26. A positive sign of the charge
density corresponds to n-type carriers.

present in addition. The model assumes that for low magnetic fields only n3 leads
to oscillations in the resistance signals because it has the highest mobility. This
assumption can not be hold for Vg = 4 V considering the parameters given in
Tab. 4.1, that indicate a massive increase in the mobilities µ1 and µ2. Therefore,
the numbers for this gate voltage can not be taken as very reliable and a modified
model would be needed to correctly describe the data. It can not even be excluded
that the assignment of carrier species for this gate voltage is erroneous.
For the gate voltages Vg < 4 V we can identify two contributions n1 and n2 with
slightly different gate influence and approximately constant mobilities. A mobility
ratio of about µ2/µ1 ≈ 4 can be determined. From the behaviour at high magnetic
fields we expect contributions of two Dirac surface states, for which the density
and mobility parameters (n1, n2, µ1, µ2) of Tab. 4.1 are reasonable. The evolution
of the two densities with the gate voltage is plotted in Fig. 4.27. Hereby the gate
influence onto the carrier density n1 is stronger. Therefore, this density has to
be associated with the upper TI surface. This is consistent with the mobility µ1

being the lower one of (µ1,µ2). Due to the assumption τc = τ we made above, the
given mobility values have a huge uncertainty and should only be considered a
qualitative evidence, that the presented understanding of the physics is correct.
One can conclude that qualitatively the multi carrier physics in the sample is
confirmed by the model. The occurrence of pronounced oscillations in the Hall
and longitudinal resistance down to very low magnetic fields of several 10 mT
can be related to an additional n-type carrier species with low carrier density
n3 = 0.61 · 1011 cm−2 and high mobility µ3 ≈ 450 · 103 cm2/(Vs).

Now the rise of the longitudinal resistance shall be commented, visible in Fig. 4.26
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Fig. 4.27.: Carrier densities of the surface states of Q2584, which result from a fit
of the magneto-resistance with a three carrier model (values in Tab.
4.1). The black and red line are linear fits.

e.g. for Vg = −4 V. In the range of 0.2 T < B < 1 T the magneto-resistance seems
to be linearly depending on the magnetic field. A linear magneto-resistance for
instance in Ref. [ZYF+11] is related to the properties of topological insulators.
However, it is possible to reproduce the linear behaviour quite closely by a clas-
sical multi carrier fit. One can show, that the linear expansion coefficient of the
calculated Rxx(B) for the used parameters (see Tab. 4.1) indeed exceeds the hig-
her order coefficients for an expansion around B0 6= 0. Nevertheless, if one plots
the calculated longitudinal resistance for a larger range, a saturation of the trace
is observed. In Fig. 4.28 the fit function and the measurement data for Vg = −4 V
are compared up to a magnetic field of B = 5 T. Here the linear behaviour in
the range of 0.2 T < B < 1 T is visible in both traces. For higher magnetic field
the fit function seems to saturate a bit earlier and lower than the measured data.
This can be an effect of the breakdown of the classical description used for the
fit. One finds the breakdown confirmed by the onset of SdH oscillations from the
surface states, clearly visible for B > 4 T. It also has to be mentioned that the
fit parameters were not adapted to optimize the fit for B > 2 T. Nevertheless the
comparison in Fig. 4.28 gives rise to understand the linear part of the trace as
to result from the interplay of multiple carrier types, nicely described by classi-
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Fig. 4.28.: Longitudinal resistance (blue) and fit function (black) for sample Q2584

at the gate voltage Vg = −4 V. A region of magneto-resistance domina-
ted by linear behaviour is observable in the range of 0.2 T < B < 1 T,
followed by saturation of both traces.

cal transport equations. The extent of the linear region obviously depends on the
density and mobility parameters of the involved carriers. Therefore, one can have
serious concerns about any correlation between linear magneto-resistance features
and the topological nature of the host material.

In this section it was phenomenologically explained, how the presence of a third
carrier species can lead to the observed longitudinal and transverse resistance
signals and mobility and density parameters were found to fit the experimental
traces. However, the origin of the additional carriers is not clear. With the evalua-
tion of the experiments presented above one can imagine two possibilities, both
not in perfect agreement with the picture constructed so far.
First, the oscillations corresponding to n3 can result from a bulk state. The stabili-
ty against top gate voltage is explainable via screening of the bulk by the metallic
surface states. This is also substantiated by the nearly unperturbed QHE physics
observable in n- and p-type transport. The reduced dimensionality of the state
must result from the confinement by the finite layer thickness dHgTe. Problematic
in this interpretation is the strong dependence of the lower surface state on the ga-
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te voltage. If a strong screening of the top gate was present, the lower surface state
should not be affected as well. Additionally, a clear spin splitting of the oscillating
signal is not observed in the data. This, however, is expected for any trivial bulk
state. For the very high mobility µ3 and the high g-factor of HgTe (values range
between 15 and 55 for HgTe 2DEGs, see Refs. [WCC95],[ZOPJ+04],[BLT+10]) a
spin-degenerate band should split in the investigated range of magnetic field due
to the Zeeman effect. Furthermore, the two samples shown above have thicknesses
of dHgTe = 60 nm and dHgTe = 128 nm, respectively. A change in dHgTe by a factor
of 2 changes the confinement energy drastically and one would expect a depen-
dence of the signature of the bulk state on dHgTe. However, the observed feature
is very similar for these two samples.
The alternative explanation of the origin of the high mobility component connects
it to the bottom topological surface state. In this model the screening by the top
surface is responsible for the independence on gate voltage. A spin splitting should
not be observable for a Dirac surface state and the state is 2D naturally. It is also
reasonable, that a high mobility is possible close to the clean, protected, lower
HgCdTe/HgTe interface. Finally, the weak dependence of the associated density
on the thickness of the HgTe layer supports this hypothesis. However, the odd
integer sequence in QHE data and the Landau level fan charts are interpreted
to originate from two independent Dirac type surfaces with carrier concentrations
controllable by the gate voltage. Therefore, the alternative explanation contradicts
these ideas and one would have to find a different description of the high field data,
to make the association of the oscillating feature with the lower surface state stick.

A fundamental difference between the two hypotheses is the response of the oscil-
lation frequency to a back gate voltage. While in the first case, the frequency was
constant, it would be changeable by back gate voltage in the latter. Therefore, in
the next chapter we want to focus on back gating attempts.
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In this thesis the well-pronounced Landau levels observed in HgTe devices are
interpreted to originate from the topological surface states. A large fraction of
the presented measurements are nicely described by this hypothesis. However, the
gating behaviour and the observation of a third, gate voltage independent carrier
species legitimate the request for an unambiguous association of Landau levels to
the corresponding surface. Therefore, devices equipped with top and back gate
electrode are focussed on in this chapter. The intention is to study the effect of
each gate on the two sets of Landau levels and on the oscillation of the resistance
signals in low magnetic fields (see Ch. 4).
To realize back gate electrodes in transport devices a simple approach is the use
of an oxidized silicon substrate on that the investigated material is deposited.
Applying voltage to the silicon substrate enabled control over the charge carrier
density e.g. for graphene devices [NGM+04]. For strained HgTe, the commercially
available, insulating CdTe substrates are rather thick (around 800µm), such that
the deposition onto a gateable substrate yields very low gate efficiencies. Although,
in principle, the CdTe substrate could be thinned down from the back side to solve
this problem, another approach seems more promising: It is known that with some
effort the growth of HgTe is possible starting with a GaAs substrate. This can be
doped and used as a back gate electrode. Due to the huge lattice mismatch between
GaAs and HgTe, intermediate layers are required. The goal is to continue growing
strained HgTe on top of (001)-oriented CdTe. To do so, first a thin layer of ZnTe
(relaxed after several nanometres, see Ref. [ESSP+93]) is deposited. The lattice
constant of ZnTe lies between the ones of CdTe and GaAs (aZnTe = 0.6103 nm, see
Ref. [SHDN96]). On top of the ZnTe one can grow (001)-oriented CdTe in decent
quality, relaxed to its lattice constant aCdTe. Thus, all structures grown on CdTe
substrates can be build as well starting with a GaAs wafer (for details see Ref.
[Ame15]). The doping to high n-type carrier densities in the GaAs substrate is
achieved by the implementation of Si. The insulating layer between GaAs substrate
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Fig. 5.1.: Longitudinal resistance of the sample Q2780 for a variation of top (red)
and back gate voltage (black). Measurements are taken at 1.8 K each
with the remaining gate grounded. The zero positions of both gate vol-
tage axes coincide in the plot.

and HgTe layer is provided by the ZnTe/CdTe barrier. However, the band gap in
these materials is Eg < 2.3 eV (see Ref. [Ada11]). Thus, a finite voltage depending
on the exact barrier configuration is expected to lead to a leakage through the
ZnTe/CdTe barrier. This can be investigated by an analysis of the current flowing
between back gate electrode and HgTe layer while applying a back gate voltage. As
a proof of principle, Fig. 5.1 shows a measurement of the longitudinal resistance
of Q2780 under variation of the back gate voltage Vback (black) and the top gate
voltage Vtop (red) at B = 0 T. The back gate leak current was confirmed to be
< 1nA in the range −25 V < Vback < 11.6 V, determining the cut-off on the
positive voltage side in Fig. 5.1. The two traces were measured each with the
complementary gate grounded. One finds, that the resistance traces besides the
point at zero gate voltage do not match. Also by rescaling the back gate axis to
correct for the difference in top and bottom gate efficiency the two measurements
cannot be aligned. This is obvious from the different slope at Vtop = Vback =
0 V as well as the unequal resistance values of the maxima. For a completely
symmetric structure one can expect a similar influence of top and bottom gates
to the resistance traces. Here, the unequal mobilities and densities of the surface
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5.1. Top gate - back gate map

states break the spacial inversion symmetry. However, one can conclude from Fig.
5.1 that both gates affect the transport properties of the device.

5.1. Top gate - back gate map
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Fig. 5.2.: Top gate vs. back gate map: Derivative of the Hall conductivity with
respect to the top gate voltage for Q2780 at B = 6 T. Blue/green areas
mark the position of Landau levels, red areas correspond to plateaus in
the Hall conductivity. Numbers denote the quantum Hall index i.

To get a more detailed understanding of the gating behaviour, in the following
the response of the sample is investigated at different constant magnetic fields and
dilution refrigerator temperatures, where Landau levels are well resolved. In Fig.
5.2 a map of Landau levels is shown for varied top and back gate voltage. The
positions of the Landau levels (blue/green areas) are accompanied by high values
of the derivative ∂σxy/∂Vtop. Between the Landau levels one finds plateaus in the
Hall conductivity, with quantum Hall indices i, as indicated in Fig. 5.2. Plateaus in
σxy yield a zero derivative in the map (red/orange areas). As a general trend, the
Landau levels are much narrower in the n-conducting region, where the plateaus
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5. Back gate measurements

are labelled by positive integers. In the p-conducting region there are only a few
plateaus, for which the quantum Hall index can be clearly assigned.
Interestingly, one finds different slopes ∂Vback/∂Vtop for different Landau levels
in Fig. 5.2. Since the magnetic field is fixed, the slopes of the levels only reflect
the gating situation in the device. Levels that run parallel to a gate axis are
independent of the corresponding gate voltage. To illustrate this, the expected
behaviour for perfectly separated gate influence on top and bottom Landau levels
(100% screening) is sketched in Fig. 5.3 a). There, the levels form a pattern of
perpendicular lines, because a change of carrier density and thus a transition
between Landau levels of the top surface state (red levels) is only caused by the
top gate and vice versa. Assuming an identical gate influence of both gates on each
surface (no screening), one obtains a behaviour as demonstrated in Fig. 5.3 b).
Here, both surfaces are affected in the same way by the gates, making Landau
levels of top and bottom surface run parallel in the plot.
However, none of the two extreme cases displayed in Fig. 5.3 seems to apply to
the measurements presented in Fig. 5.2. To discuss the Landau level traces it
makes sense to focus on the n-conducting part of the measurement, since the
levels are much better resolved in this region. In Fig. 5.4 sets of black and red
lines were drawn as a guide to the eye into the map. In each set all lines are
parallel to each other. To first order, the data can be described by the two groups
of lines. The slopes of the lines imply that the top gate influences the black and

Vbacka) b)

VtopVtop

Vback

Fig. 5.3.: Sketch of the expected behaviour for 100% screening (a) and zero scree-
ning (b) in a double gated 3D TI at finite magnetic field. Red lines
represent LLs of the top surface state, blue stand for the bottom sur-
face. The voltages Vtop and Vback denote the top and back gate voltage,
respectively.
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5.1. Top gate - back gate map
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Fig. 5.4.: Top gate vs. back gate map: n-region of Fig. 5.2 at B = 6 T. Red and
black sets of parallel lines are guides to the eye.

red set of Landau levels, while the back gate only affects the black series. A
possible explanation is a difference in the screening properties of top and bottom
surface states. It is plausible, that different mobilities in top and bottom surface
influence the screening behaviour. Further, it has been demonstrated above that
the bottom surface state compared to the top one by tendency exhibits a higher
mobility. As a result, the larger screening by the bottom surface inhibits the back
gate influence onto the top layer. This is consistent with the experiment, where
the red series of Landau levels is mostly unaffected by the back gate. The finite top
gate influence onto the bottom 2DEG (black lines) thus is an indication for non-
perfect screening by the top surface state. An alternative explanation might be the
top gate profile, which deviates from the shape of a perfect plate capacitor. The
profile is sketched in Fig. 5.5. For simplicity, cap and buffer layers were omitted
in the sketch. The top gate profile results from the evaporation process. From
the sketch it can be seen that the top gate influences the lower surface state due
to stray fields at the mesa edge. However, comparing the width of the Hall bar
W = 200µm to the mesa height, that including the insulator does not exceed
h = 300 nm, it is questionable, if this effect is strong enough to be detectable in
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5. Back gate measurements

HgTe

CdTe

back gate

top gate

Fig. 5.5.: Sketch of the top and back gate profile. Surface states are represented
by red dashed lines. The insulator of the top gate electrode is depicted
as brown layer. By black arrows a possible influence of the top gate to
the lower surface state is indicated.

transport experiments. Nevertheless, it might be interesting to investigate the top
gate influence on the lower surface state in a test sample, where the structure is
planarized before the gate is deposited.
In Fig. 5.4 a clear deviation from the first order description given above is visible
for the quantum Hall index i = 1. Here, the expected crossing of a black and a
red level at the coordinates (Vtop = 1.4 V,Vback = −7.2 V) is not observed in the
dataset. In contrast, the levels seem to anti-cross and run parallel in a finite region.
This, according to Fig. 5.3 b), points to a reduced screening. It can be concluded,
that the screening properties of the surface states change with the carrier density.
Especially for low occupation (around the zero levels) the screening brakes down.
Also the higher levels do not perfectly follow the black and red lines drawn as
a guide to the eye in Fig. 5.4. Therefore, the screening properties are likely to
change depending on the position of the Fermi energy with respect to the last
occupied Landau level. This idea can be motivated by the results obtained in Ref.
[WGG88], where the screening properties of a 2DEG are investigated depending
on the DOS and the magnetic field.
A further observation concerns the period of the black level sequence. Here, a
deviation of the expected behaviour is found. The distance between the levels is
decreased for higher quantum numbers. Especially the levels going through the
points (Vtop = 4 V,Vback = −4.5 V) and (Vtop = 4 V,Vback = −16 V) seem to be too
close to each other. Considering the changes in the screening properties, one can
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5.2. Higher magnetic fields

imagine, that the broken periodicity results from a non-linear dependence of the
carrier density of the black sequence on the applied gate voltages.
Since the map in Fig. 5.4 was measured at a constant magnetic field of B = 6 T
the degeneracy is constant in each occupied Landau level. Counting the Landau
levels that cross the Fermi energy in a certain gate voltage interval a gate efficiency
can be calculated for the top and back gate. One obtains

∆n
∆Vtop

= 11 · eB/h
6 V = 2.7 · 1011 cm−2/V (5.1)

and

∆n
∆Vback

= 3.5 · eB/h
35 V = 1.5 · 1010 cm−2/V. (5.2)

Here, Landau levels from both sets were taken into account, to estimate the total
density change caused by each gate. As a result, there is roughly a factor of 20
between the gate efficiencies of top and back gate, confirmed by measurements on
HgTe quantum wells with identical gate arrangement. Comparing the influence
of the top gate on the red and black levels, one makes a peculiar observation:
The number of black levels crossing the Fermi energy along a line of constant
Vback in Fig. 5.4 (i.e. during a top gate sweep) is larger than the number of red
levels. At constant magnetic field this means that the top gate influence on the
lower surface state is even larger than the influence on the top surface. This re-
sult is confusing, since for metallic systems such a behaviour is electrostatically
unintuitive. In further measurements the top and back gate influence should be
studied in detail. Unfortunately, the investigation of back and top gate dependent
transport of Q2780 could not contribute to a clarification of the association of the
two Landau level sequences to top and bottom surface state. In contrast, it rises
further questions about the interplay of these 2D electron gases, which must be
non-trivial, if the discussed association is correct.
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5. Back gate measurements

5.2. Higher magnetic fields

So far the discussion was concentrated on the map at the magnetic field value
B = 6 T. However, also measurements at higher constant magnetic field are availa-
ble. In Fig. 5.6 the Landau levels in the gate voltage range investigated in Fig.
5.4 are depicted for higher magnetic fields. The values are B = 8 T in Fig. 5.6 a)
and B = 11 T in Fig. 5.6 b). Besides the expected increase of level spacing with
the magnetic field due to an increased degeneracy, another interesting observation
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Fig. 5.6.: Top gate vs. back gate map: Evolution of Landau level behaviour for

increasing magnetic field. Displayed are B = 8 T in a) and B = 11 T in
b). The gate voltage range is identical to the one in Fig. 5.4.
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5.2. Higher magnetic fields

can be made. Several Landau level crossings observed in Fig. 5.4 are turned into
anti-crossings. This can be substantiated in Fig. 5.6 a) by continuous orange are-
as representing regions of Landau level indices i = 1 (marked in the graph) and
i = 2. At 11 T areas of equal quantum Hall index are connected in the complete
gate range investigated. Thus, for higher fields one finds enhanced anti-crossings
of Landau levels for all indices. One can assume that the screening has become
poorer with increasing field, moving the Landau levels of different sets closer to a
parallel configuration similar to the sketch in Fig. 5.3 b).

Another possible reason for an influence of both top and bottom gate onto the
black series of Landau levels in Fig. 5.4 must be discussed. If the sequence of
Landau levels stemmed from a bulk state, it could easily be explained, that the
influence of top and bottom gate is equal (if rescaled to equal efficiency). Following
the data one had to assume that a single sub band is occupied for the investigated
gate voltages. Irregularities in the periodicity of the black series of levels in Fig. 5.4
could then result from a spin splitting, expected for bulk sub bands. However, some
questions can not be answered within this hypothesis. One can ask why the lower
surface state shows no transport signature at all. Although only a limited back gate
range could be accessed in the experiment, the influence on the lower surface state
should be bigger than on the bulk state. Therefore one would expect at least one
of the Landau levels of the lower surface to be resolved in Fig. 5.4. Furthermore, a
larger top gate influence onto a bulk state (black) than onto the top surface state
(red) is also not reasonable. Therefore, explaining the two independent series of
Landau levels by the presence of the topological surface states yields a better
agreement with the data even with some problems unresolved.

Now the behaviour is investigated for small magnetic field. The idea was to find
a top gate voltage that allows for an unambiguous observation of the oscillati-
ons described in Ch. 4 and to test the influence of the back gate voltage. In
Fig. 5.7 the longitudinal resistance of Q2780 is plotted for different top gate vol-
tages. Unfortunately, oscillations in the signal are only present for magnetic fields
B > 1 T and top gate voltages Vtop > 1 V. These can not be clearly identified
to result from the third carrier species (see Ch. 4), since for high positive gate
voltages a mixing between oscillations of different origin is setting in. An obser-
vation of oscillations at very low magnetic field has turned out to be complicated,
presumably due to a higher roughness of samples with GaAs substrate (see Ref.
[Ame15]). Therefore, an answer to the question if the back gate can change the
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5. Back gate measurements
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Fig. 5.7.: Longitudinal resistance of Q2780 for low magnetic field and different top

gate voltages.

frequency of the low field oscillations remains wanting until a sample is available
which is equipped with a back gate and where the low field oscillations are well
resolved.
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6. Surface Landau level spectrum
and in-plane magnetic field

In the previous chapters the transport in strained HgTe Hall bar structures has
been investigated for n-type as well as for p-type Dirac carriers. The influence of
top and back gate electrode on the properties of the system has been demonstra-
ted. Information has been gathered by interpreting the Landau levels that form in
a finite magnetic field perpendicular to the largest two surface areas. In addition
to probing the system one can ask, if the dispersion of these levels can be mani-
pulated in an experiment. In this chapter the in-plane magnetic field is utilized as
an additional parameter to influence the system. To generate these in-plane field
components, a basic experimental technique, namely the rotation of the sample in
a magnetic field, will be utilized to change the Landau level dispersion of the top
and bottom surface states. A simple model qualitatively reproduces the observed
features resulting from the in-plane field.

6.1. Hall resistance for rotated sample

A sample stick with the ability to rotate the sample in a magnetic field was already
utilized in Ch. 4 for measurements in small magnetic fields. However, also for high
field values the samples can be investigated in a magnetic field applied under
different angles. Here, the notation that was introduced to describe Eq. 4.15 is
retained, where αmeasures the angle between the surface normal and the magnetic
field. For the 2D surface states one expects the Hall resistance to depend on
the perpendicular component of the magnetic field only. At the high magnetic
field laboratory in Nijmegen the sample Q2451Nij was cooled to a temperature
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Fig. 6.1.: Hall resistance of Q2451Nij for different angles α between surface normal
and magnetic field. As the abscissa the effective magnetic field perpen-
dicular to the sample surface is calculated. The quantum Hall index i
is indicated for the plateaus. Inset: Hall conductivity of the trace at
α = 19◦ and α = 41◦, respectively.

of T ≈ 300 mK and measured at successively increased angle α. In Fig. 6.1 the
resulting Hall traces are plotted against the effective magnetic field (see Eq. 4.15).
One recognizes that indeed for low magnetic field the Hall traces have identical
slopes. Also for higher magnetic field the traces coincide. However, the plateau
sequence of traces measured at different angles α is different in the interval 7 T <

B⊥ < 20 T. Irregularities in the steps of the quantum Hall index for different
top and bottom surface carrier densities have already been described above. If
two Landau levels are energetically degenerate, by a change of the perpendicular
magnetic field an increase of ∆i = 2 might be found for neighbouring Hall plateaus
(see Ch. 3). This is e.g. the case for the transition from the plateau at i = 7 to the
plateau at i = 5 in the red trace (α = 19◦) in Fig. 6.1. For the blue trace the angle
and, therefore, the in-plane field is different. At α = 41◦ one observes a strong
plateau at i = 6, directly followed by i = 4 if the magnetic field is enhanced.
To compare these two measurements in detail, a plot of σxy is presented in the
inset of Fig. 6.1. Clearly the relative energetic position of at least some of the
Landau levels is modified by a change of α, since the step sequence is altered. The
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6.2. Isotropic Zeeman contribution

difference between the two measurements is the bigger in-plane component of the
magnetic field at higher angle (at a given perpendicular magnetic field B⊥). It
is accompanied by an increased total magnetic field B, which can be understood
from basic vector addition considerations. Thus, one can assume that the equation
describing the Landau level spectrum for all angles contains a term proportional
to either the total or the in-plane magnetic field.

6.2. Isotropic Zeeman contribution

In a first order explanation one can assume that the Zeeman contribution in
Eq. 2.9 isotropically depends on the (total) magnetic field B, while the other term
in the 2D Dirac spectrum only reacts to the effective field B⊥ (α) = B · cos (α).
Implementing these dependencies and following Ref. [BLN+11b] one finds

EN = ±
√

2e~v2
FB⊥ (α)N + (g∗µBB)2 , N = 1, 2, 3... . (6.1)

In this equation a constant effective field but changing total field will directly
influence the energetic positions of the spectrum of a single Dirac cone. Note
that the zero levels are excluded from the considerations, since they only see the
Zeeman contribution (as described in the explanation of Eq. 2.9 for N = 0). In
detail the levels are forced apart by the Zeeman contribution, since it increases
the absolute value of the energy EN for all levels with N > 0. However, the shift
of the energetic positions of levels resulting from a single cone is not sufficient to
explain the differing σxy traces in the inset of Fig. 6.1. Instead, the interplay of two
sets of Landau levels is needed to explain the appearance of suppressed plateaus
under addition of an in-plane field. The origin (i.e. the CNP) of these sets must
lie at different energy values, which means that the corresponding 2DEGs need
to have unequal carrier densities. If the two densities were equal, the degeneracy
could not be lifted by the external field. In contrast to this, the crossing point of
two levels with different individual Landau level indices will shift towards higher
magnetic fields, if a Zeeman term is switched on for both levels.
To reproduce this, a minimalistic model is set up, that assumes T = 0 K and a
digital filling of Landau levels as soon as the condition EF > EN is fulfilled for
a given level with index N . For each level that is filled, the Hall conductivity
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Fig. 6.2.: Hall conductivity of sample Q2451Nij. The magnetic field is applied under
an angle α as indicated by the legend.

is increased by ∆σxy = e2/h starting from σxy = 2e2/2h for the combined Hall
conductivity of the two zero levels. Therefore, the outcome of the model is σxy(B)
for different angles, which can be compared to the experimental data. From the
dataset the Hall conductivity for all angles is calculated and shown in Fig. 6.2.
Here, the Hall conductivity is plotted against the total magnetic field B, because
changes for plateaus at quantum Hall indices i > 6 can be demonstrated more
clearly. For nearly all values of σxy the appearance or disappearance of a plateau
can be observed along the line of constant σxy. In the model we assume the charge
carrier densities to be n1 = 13.1 · 1011 cm−2 and n2 = 6.9 · 1011 cm−2, that add up
to the total carrier density ntot = 20 · 1011 cm−2, consistent with the slope of the
Hall trace at low magnetic field.
For each Dirac system the energetic distance of the Fermi energy to the CNP
individually is determined by the equation

EF − Eβ = ~vF kF = ~vF
√

4πnβ, (6.2)

where β = 1, 2 describes the different Dirac systems and vF = 5 · 105 m/s (value
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6.2. Isotropic Zeeman contribution

motivated by Ref. [BLN+11b]) is assumed. Without loss of generality one can set
EF = 0, since it is assumed to be constant. Therefore, the energetic dispersion for
the two sets of n-type Landau levels can be written as

EN
β =

√
2e~v2

FB⊥ (α)N + (g∗µBB)2 − Eβ , N = 1, 2, 3... , (6.3)

where Eqs. 6.2 (for EF = 0) and 6.1 are combined. Motivated by the values
found in Refs. [WCC95], [ZOPJ+04] and [BLT+10] and to obtain a strong effect
in the qualitative model the effective g-factor is set to g∗ = 40 in Eq. 6.3. From
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Fig. 6.3.: Modelled combined Hall conductivity of two topological surface states
with charge carrier densities n1 6= n2. The magnetic field is applied under
an angle α which is increased in steps of ∆α = 9◦. By the dashed line
σxy = 6 e2/h is highlighted.

Eq. 6.2 and the carrier densities n1 and n2 the energy shift between the two
CNPs of the surfaces can be determined to be E1 − E2 = 37 meV. The combined
Hall conductivity σxy is found as the number of all levels with EN

β < 0, since
EF = 0. This condition can be applied for all values of the magnetic field, such
that σxy(B) traces are found for different angles α. The Mathematica code is
given in Appendix B.2. The resulting σxy traces are plotted in Fig. 6.3 in steps
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6. Surface Landau level spectrum and in-plane magnetic field

of ∆α = 9◦. It is clearly reproduced, that plateaus in σxy are missing for small
angles and reappear for finite angle. An example is the plateau at i = 6 (see
dashed line in Fig. 6.3) that becomes very strong at B = 30 T. Also consistent
with the experiment is the behaviour of the neighbour plateau i = 7, that vanishes
in the region, where i = 6 is most pronounced. Thus, the model is qualitatively
describing the observed plateau changes well. A deviation from the data is evident
from the minimal plateau value in σxy at maximum field. While the experiment
yields i = 3 as the lowest plateau value, the simulation predicts i = 2. One
reason might be a considerable error in ntot, since the total carrier density can
only be calculated reliably from the combined Hall response of two surface states
for perfectly matched carrier mobilities, which we do not expect for this system.
However, for B = 10 T the experimental and theoretical trace both reach the
i = 7-plateau for α = 0. It can be deduced from this that especially for high
magnetic fields deviations occur. One has to keep in mind that the simulated σxy
is the result of an oversimplified model. For example does the value assumed for
the g-factor influence the lowest plateau index. The model assumes T = 0 and a
constant Fermi energy, while in the experiment the gate voltage and therefore the
carrier density in the device is held constant. When adding a Zeeman contribution,
the degeneracy of the Landau levels is unaffected. In case of a constant Fermi
energy, at high magnetic fields Landau levels can be depleted by the Zeeman term
due to an increased energy (reducing the lowest plateau value). In contrast, in the
experiment a constant carrier density and Landau level degeneracy lead to a lowest
plateau value that does not depend on the g-factor. It also has to be considered,
that the model parameters are not measured, but assumed in a plausible way.
Nevertheless, the model is able to demonstrate the observed change in the plateau
sequence to possibly result from the isotropic Zeeman contribution with a high
g-factor.
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Summary

In the present thesis the transport properties of strained bulk HgTe devices are
investigated. Strained HgTe forms a 3D TI and is of special interest for studying
topological surface states, since it can be grown by MBE in high crystal quality.
The low defect density leads to considerable mobility values, well above the mobi-
lities of other TI materials. However, strained HgTe has a small band gap of ca. 20
meV. With respect to possible applications the question is important, under which
conditions the surface transport occurs. To answer this question, the HgTe devi-
ces are investigated at dilution refrigerator temperatures in high magnetic fields
of different orientation. The influence of top and back gate electrodes as well as
surface protecting layers is discussed. On the basis of an analysis of the quantum
Hall behaviour it is shown that transport is dominated by the topological surface
states in a surprisingly large parameter range. A dependence on the applied top
gate voltage is presented for the topological surface states. It enables the first
demonstration of an odd integer QHE sequence from the surfaces perpendicular
to the magnetic field. Furthermore, the p-type QHE from the surface states is ob-
served for the first time in any 3D TI. This is achieved in samples of high surface
quality. It is concluded from the gate response that the screening behaviour in 3D
TI devices is non-trivial. The transport data are qualitatively analysed by means
of intuitive theoretical models.
In intrinsically semi-metallic HgTe bulk crystals applied strain opens a gap in
the bulk band structure. Combined with the inverted band structure of HgTe the
requirements for a TI are fulfilled. The band structure details and the expected
Landau level energy spectrum are covered in Ch. 2. After the discovery of the QHE
from the surface states of strained HgTe [BLN+11a], the next generations of Hall
bar devices, presented in this thesis, are designed with top or back gate electrodes
as well as surface-protecting capping layers. These capping layers give rise to hig-
her mean carrier mobilities and enhance the symmetry of the device. The use of
a top gate electrode enables the control of the density mismatch between top and
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bottom topological surface states, since the gate efficiency is different for these.
Therefore, an odd integer sequence of quantum Hall plateaus can be presented
in Ch. 3. This sequence is expected for a two-fold degenerate Dirac system with
equal surface densities. The Dirac nature of carriers is sustained by an analysis of
the Berry phase, that clearly yields a non-zero value. From the full gate dependent
dataset two subsets of Landau levels can be identified, that confirm the existence
of top and bottom surface state. Further, the unaltered quality of the Hall quan-
tization even for high surface carrier densities represents the low bulk influence in
transport. Therefore, a model of separated surfaces is used to fit the longitudinal
resistance data, taking into account only transport through the topological states.
Benefiting from improved surface mobilities due to HgCdTe capping layers it is
demonstrated in Ch. 4 that the observed QHE has ambipolar nature. The gate
dependent transition from quantum Hall plateaus of positive quantum Hall index
to negative indices has not been reported before for any 3D TI. However, this is
an expected feature for pure Dirac systems like the TI surface states, reflecting
the gapless band structure. An analysis of the Berry phase and the presence of
crossings in a Landau level fan chart confirm that the p-type QHE originates from
the topological surface states. It is discussed how the p-type QHE can occur for
large hole densities (n ≈ −1012 cm−2 for an individual surface). Considering the
small energy gap, the bulk valence band states for high p-type densities could be
expected to pin the Fermi energy and to keep the density in the surface states
constant. Since this is not observed, a simple model with artificially chosen po-
tential is discussed. Within this model the surface states are shifted with respect
to the bulk states, enabling the Fermi energy to reside in the bulk band gap, whi-
le the surface carrier densities are increased to high values. The band structure
calculated in a k · p approach correctly describes the pronounced p-type QHE for
large hole densities. However, since the potential is not computed self-consistently
the description of the gating behaviour is not sufficient yet.
An interesting observation is the finite longitudinal resistance in the gate voltage
region, where n- and p-type Landau levels coexist on top and bottom surface,
respectively. It is suggested, that a recombination mechanism can take place via
the conducting side surfaces, suppressing net current flow through the device.
An analysis of the low field (B < 1 T) behaviour especially for low surface car-
rier densities unveils further transport signatures. For the longitudinal and Hall-
resistance an oscillating feature with top gate independent frequency is found. It
can be attributed to a third carrier species with low density and high mobility.
Since it is observed for many samples of different thickness and barrier material,
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Summary

this n-type carrier species must be related to fundamental properties of strained
HgTe. An angle-dependent measurement yields a 2D character for the additional
carriers. Since the oscillating feature does not depend on the top gate voltage,
this rises the question if the corresponding 2DEG is located at the lower HgTe
interface. Therefore, it is interesting to study the influence of a back gate electrode
onto the system. This is possible by the use of doped GaAs substrates, as pre-
sented in Ch. 5. At constant magnetic fields a pattern of two different species of
Landau levels can be identified for a sample exposed to top and back gate electric
fields. The screening properties of topological surface states are found to depend
on the magnetic field and the quantum Hall index.
However, the low field oscillations can not be observed clearly in the investigated
sample, such that the dependence on back gate voltage can not be determined.
This issue can be addressed by future projects, if samples on GaAs substrates
showing this feature become available. This would allow to test the hypothesis
that the oscillations originate from the lower topological surface state or other
2D states below the HgTe. Another way of accessing the lower surface state ex-
clusively could be an intentional degradation of the top surface by e.g. argon ion
bombardment. Finally, tunnel contacts could enable contact to the top surface
only. Combining the outcome of these suggested experiments, further insight to
the different components of the multi carrier system could be achieved.
After analysing the Landau level spectrum in magnetic fields perpendicular to
the top and bottom topological surface, it is shown that the effect of an additio-
nal in-plane magnetic field can be modelled by an isotropic Zeeman contribution.
This contribution shifts the energetic position of all Landau levels and therefore
can change the observed quantum Hall plateau sequence from the surface states.
Therefore, the in-plane magnetic field is identified as a parameter to externally
manipulate the spectrum of Dirac surface states.
In this thesis it is shown that strained bulk HgTe is a TI in which the trans-
port is dominated by the surface states. The Dirac nature of the surface states
is demonstrated and the p-type QHE is analysed for the first time in a 3D TI.
The investigations of the HgTe properties enable further interesting experiments
involving superconducting and magnetic proximity effects. However, some obser-
vations presented in this thesis require an explanation beyond the model of two
non-interacting surface states. For the ongoing study of strained HgTe as a multi
carrier system there are experiments suggested in this thesis that might clarify
the open issues.
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Zusammenfassung

In der vorliegenden Dissertation werden die Transporteigenschaften von verspann-
ten HgTe-Volumenkristallen untersucht. Verspanntes HgTe stellt einen dreidimen-
sionalen topologischen Isolator dar und ist zur Erkundung von topologischen Ober-
flächenzuständen von speziellem Interesse, da es mit Hilfe von Molekularstrahle-
pitaxie in hoher Kristallqualität gewachsen werden kann. Die niedrige Defektdich-
te führt zu beachtlichen Ladungsträgerbeweglichkeiten, die deutlich über denen
anderer topologischer Isolatoren liegen. Verspanntes HgTe hat jedoch eine klei-
ne Energielücke von ca. 20 meV. Deshalb ist es für eine mögliche Verwendung
des Materials ein wichtiger Aspekt, in welchem Parameterbereich Oberflächen-
transport stattfindet. Um dieser Frage nachzugehen, werden die HgTe-Proben bei
tiefen Temperaturen (T < 100 mK) und unter dem Einfluss hoher Magnetfelder
in verschiedenen Orientierungen untersucht. Der Einfluss von Gate-Elektroden
ober- und unterhalb der Struktur sowie von Deckschichten, die die Oberflächen
schützen, wird diskutiert. Basierend auf einer Analyse des Quanten-Hall-Effekts
wird gezeigt, dass der Transport in diesem Material von topologischen Oberflä-
chenzuständen dominiert ist. Die Abhängigkeit der topologischen Oberflächenzu-
stände von der Gate-Spannung wird dargestellt. Durch diese Abhängigkeit ist es
zum ersten Mal möglich, eine ungerade ganzzahlige Quanten-Hall-Plateau Sequenz
nachzuweisen, die von den Oberflächen senkrecht zum Magnetfeld stammt. Des
Weiteren wird im Rahmen dieser Arbeit in Proben hoher Oberflächenqualität zum
ersten Mal für einen 3D TI der p-Typ QHE der Oberflächenzustände beobachtet.
Aus der Gate-Abhängigkeit der Messungen wird geschlossen, dass das Abschirm-
verhalten in 3D TIs nicht trivial ist. Die Transportdaten werden mit Hilfe von
intuitiven theoretischen Modellen auf qualitative Weise analysiert.
In HgTe Volumenkristallen, welche ohne zusätzliche externe Einflussnahme halb-
metallischen Charakter zeigen, öffnet eine Verspannung des Kristalls eine Band-
lücke in der Volumen-Bandstruktur. Zusammen mit der invertierten Bandstruktur
des HgTe werden damit die Voraussetzungen für einen topologischen Isolator er-
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füllt. Eine detaillierte Darstellung der Bandstruktur sowie der erwartete Verlauf
des Landau-Level-Spektrums werden in Kapitel 2 dargestellt. Nach der Entde-
ckung des QHE in den Oberflächenzuständen von verspanntem HgTe [BLN+11a]
sind die weiterentwickelten Hallbar-Proben, die in dieser Arbeit diskutiert wer-
den, um Gate-Elektroden (oberhalb und unterhalb der aktiven HgTe Schicht) so-
wie zusätzliche Deckschichten und damit einer erhöhten Symmetrie bezüglich der
Barrieren ausgestattet. Durch eine Elektrode oberhalb der HgTe-Schicht kann der
Unterschied in den Ladungsträgerdichten des oberen und unteren Oberflächen-
zustandes variiert werden, da diese unterschiedliche Gate-Effizienzen aufweisen.
Damit ist es in Kapitel 3 möglich, die ungerade ganzzahlige Sequenz der Quanten-
Hall-Plateaus nachzuweisen, die für ein zweifach entartetes Dirac-System (mit
identischen Dichten auf beiden Oberflächen) erwartet wird. Das Dirac-artige Ver-
halten der Ladungsträger wird durch eine Analyse der Berry-Phase bestätigt, die
deutlich von Null verschieden ist. In dem vollständigen Datensatz Gate-abhängiger
Messungen können zwei Teilsysteme von Landau-Niveaus identifiziert werden, die
die Existenz von oberem und unterem Oberflächenzustand verifizieren. Außerdem
weist die auch für hohe Ladungsträgerdichten auf den Oberflächen unveränderte
Qualität der Hall-Quantisierung auf einen geringen Anteil an Transport durch den
Volumenkristall hin. Deshalb wird zur Beschreibung der Längswiderstandsdaten
ein Modell zweier unabhängiger Oberflächen genutzt, das nur den Transport durch
die topologischen Zustände berücksichtigt.
Durch gesteigerte Beweglichkeitswerte, die auf HgCdTe Deckschichten zurückzu-
führen sind, kann in Kapitel 4 gezeigt werden, dass der beobachtete QHE ein am-
bipolares Verhalten aufweist. Der Gate-abhängige Übergang von Quanten-Hall-
Plateaus mit positivem Quanten-Hall-Index zu negativen Indices konnte bisher
für keinen 3D TI nachgewiesen werden. Dies wird jedoch für reine Dirac-Systeme
wie die Oberflächenzustände eines TIs erwartet und spiegelt die verschwindende
Bandlücke wider. Eine Analyse der Berry-Phase und das Auftreten von Kreuzun-
gen in einem Landau-Level-Diagramm bestätigen, dass der p-Typ QHE von den
topologischen Oberflächenzuständen stammt. Es wird diskutiert, wie der p-Typ
QHE für hohe Loch-Dichten (n ≈ −1012 cm−2 für eine einzelne Oberfläche) auftre-
ten kann. Zieht man die kleine Energielücke in Betracht, so könnte man erwarten,
dass die Valenzbandzustände des Volumenkristalls die Fermi-Energie für große
p-Typ Ladungsträgerdichten konstant halten und somit Änderungen der Oberflä-
chenladungsträgerdichten verhindert werden. Da dies nicht beobachtet wird, wird
ein einfaches Modell diskutiert, in dem das Potential in der Probe von Hand an-
gepasst wird. Im Rahmen dieses Modells werden die Oberflächenzustände gegen
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Zusammenfassung

die Volumenbandstruktur verschoben, sodass die Fermi-Energie in der Volumen-
Bandlücke verbleiben kann und zugleich die Oberflächen-Ladungsträgerdichten
erhöht werden. Durch die Bandstrukturrechnung nach dem k · p-Ansatz kann der
ausgeprägte p-Typ QHE erklärt werden. Da das Potential allerdings nicht selbst-
konsistent berechnet wird, ist diese Beschreibung des Gate-Verhaltens noch nicht
ausreichend.
Eine interessante Beobachtung ist der endliche Längswiderstand in dem Bereich
der Gatespannung, in dem ein n-Typ Landau-Niveau auf der oberen und ein p-
Typ Landau-Niveau auf der unteren Oberfläche zugleich existieren. Als Erklärung
wird vorgeschlagen, dass in diesem Fall Rekombination entlang der leitenden Sei-
tenflächen stattfinden kann, die den Stromfluss durch die Probe unterdrückt.
Durch eine Analyse des Niedrig-Feld-Verhaltens (B < 1 T) speziell für niedrige
Oberflächen-Ladungsdichten werden weitere Transport-Eigenschaften der HgTe-
Proben aufgezeigt. Für den Längs- und Hallwiderstand findet man einen oszillie-
renden Anteil, dessen Frequenz von der oberen Gate-Elektrode unabhängig ist.
Dieser kann qualitativ auf eine dritte Ladungsträger-Spezies mit niedriger La-
dungsdichte und hoher Beweglichkeit zurückgeführt werden. Da die Oszillation
für viele Proben mit unterschiedlichen Dicken und Barrieren-Materialien beobach-
tet wird, muss die n-Typ Ladungsträgerspezies mit fundamentalen Eigenschaften
von verspanntem HgTe verknüpft sein. Eine winkelabhängige Messung zeigt, dass
die zusätzlichen Ladungsträger wie ein 2DEG reagieren. Da die Oszillation nicht
von der Spannung der oberen Gate-Elektrode abhängt, muss man sich fragen,
ob das zugehörige 2DEG an der unteren HgTe Grenzschicht existiert. Deshalb
ist es interessant, den Einfluss einer Gate-Elektrode zu untersuchen, die unter-
halb des HgTe-Systems angebracht ist. Dies ist möglich, indem man ein dotiertes
GaAs-Substrat nutzt, wie es in Kapitel 5 beschrieben ist. In einer Messung, in
der die Probe dem elektrischen Feld zweier Elektroden ober- und unterhalb aus-
gesetzt ist, kann bei konstantem Magnetfeld ein Muster von zwei verschiedenen
Arten von Landau-Niveaus identifiziert werden. Es wird außerdem gezeigt, dass
die Abschirm-Eigenschaften der topologischen Oberflächenzustände vom Magnet-
feld sowie dem Quanten-Hall-Index abhängen. Die Oszillationen für niedrige Ma-
gnetfelder können jedoch in dieser Probe nicht eindeutig beobachtet werden, so-
dass eine Abhängigkeit von der unteren Gate-Elektrode nicht untersucht werden
kann. Diese Fragestellung kann von zukünftigen Projekten aufgegriffen werden,
wenn Proben mit GaAs-Substrat verfügbar werden, die die Oszillationen deut-
lich aufweisen. So könnte die Hypothese überprüft werden, dass diese vom unte-
ren topologischen Oberflächenzustand oder einem anderen 2DEG unterhalb der

105



HgTe-Schicht stammen. Eine andere Möglichkeit, den unteren Oberflächenzustand
separat zu vermessen, könnte die gezielte Verschlechterung der Oberflächeneigen-
schaften des oberen Zustands sein, z.B. durch Argon-Ionen-Beschuss. Außerdem
könnten möglicherweise Tunnelkontakte genutzt werden, um die obere Oberflä-
che des TI separat zu kontaktieren. Aus dem kombinierten Wissensgewinn durch
diese vorgeschlagenen Experimente könnte ein weiterreichendes Verständnis des
Systems mit mehreren Ladungsträgerarten gewonnen werden.
Nach der Analyse des Spektrums der Landau-Niveaus von oberem und unte-
rem Oberflächenzustand im senkrechten magnetischen Feld wird gezeigt, dass der
Einfluss eines zusätzlichen parallelen Magnetfelds durch einen isotropen Zeeman-
Beitrag beschrieben werden kann. Dieser Beitrag verschiebt die energetische Posi-
tion aller Landau-Niveaus und kann deshalb die beobachtete Sequenz der Quanten-
Hall-Plateaus von den Oberflächenzuständen verändern. Demnach kann das par-
allele Magnetfeld als ein Parameter bestätigt werden, durch den das Spektrum
der Dirac-Oberflächenzustände zusätzlich manipuliert werden kann.
In dieser Arbeit wird gezeigt, dass ein verspannter HgTe einen topologischen Iso-
lator darstellt, in dem der Transport durch die Oberflächenzustände dominiert
wird. Die Dirac-Physik der Oberflächenzustände wird gezeigt und es wird zum
ersten Mal der p-Typ Quanten-Hall-Effekt in einem dreidimensionalen topologi-
schen Isolator analysiert. Die Untersuchung der Eigenschaften von HgTe ermög-
lichen nachfolgende interessante Experimente, die supraleitende und magnetische
Proximity-Effekte behandeln. Für einige Beobachtungen, die im Rahmen dieser
Arbeit präsentiert werden, müssen jedoch auch Erklärungen gefunden werden, die
über ein Modell von zwei nicht wechselwirkenden Oberflächen hinausgehen. Für
weitere Untersuchungen von verspanntem HgTe als System mehrerer Ladungsträ-
ger werden in dieser Arbeit Experimente vorgeschlagen, die die zur Klärung der
offenen Fragen beitragen können.
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A. Sample overview

A list of all used samples with their relevant parameters is given here. Note that
two different substrate types are used: The commercially available (001)-oriented
CdTe substrates (called ’Nikko CdTe’) and a highly n-doped GaAs substrate. In
the latter the active HgTe structure is also strained to aCdTe, since a thick layer
of (001)-oriented CdTe that is relaxed is grown underneath. These samples allow
for back gating if the GaAs substrate is contacted.
All samples are 600µm × 200µm Hall bars. The addend Nij is denoting samples,
that had to be rebuilt and connected differently for measurement at the HFML
in Nijmegen.
HgCdTe as part of the layer structure stands for Hg1−xCdxTe with x = 0.7, which
is a direct semiconductor with an energy gap of ∆E ≈ 1 eV [BK11].

Sample Substrate Layer structure Layer thicknesses [nm]

Q2424 Nikko CdTe CdTe/HgTe/insulator substrate/70/110

Q2451_2 Nikko CdTe CdTe/HgTe/insulator substrate/128/110

Q2761 Nikko CdTe HgCdTe/HgTe/HgCdTe 50/90/10

Q2763 Nikko CdTe HgCdTe/HgTe/HgCdTe 50/111/13

Q2584Nij Nikko CdTe HgCdTe/HgTe/HgCdTe 100/60/5

Q2584 Nikko CdTe HgCdTe/HgTe/HgCdTe 100/60/5

Q2451 Nikko CdTe CdTe/HgTe/insulator substrate/128/110

Q2780 GaAs:Si HgCdTe/HgTe/HgCdTe 45/75/4

Q2451Nij Nikko CdTe CdTe/HgTe/insulator substrate/128/110

Tabelle A.1.: List of all samples described in this thesis. Layers denoted by sub-
strate are thicker than 500 µm. Insulator layers are SiO2/Si3N4 mul-
tilayer stacks.
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B. Mathematica code

B.1. DOS calculation

This code (see [Nov10]) calculates the DOS pattern for a Dirac 2DEG. It is written
in unusual units to avoid very small numerical values and to enable the convergence
of FindRoot. All length scales are given in nm, energies in meV. The variable Kb
stands for the Boltzmann constant in these units, while lb =

√
~/e.

A = 280;A = 280;A = 280;

n2DEG = −3.7 10−3;n2DEG = −3.7 10−3;n2DEG = −3.7 10−3;

T = 1;T = 1;T = 1;

Kb = 0.086173343323;Kb = 0.086173343323;Kb = 0.086173343323;

lb = 25.6557461261;lb = 25.6557461261;lb = 25.6557461261;

nmax = 50;nmax = 50;nmax = 50;

G0 = 1.0;G0 = 1.0;G0 = 1.0;

nB = 600; Bi[i_]:=1 + i/40;nB = 600; Bi[i_]:=1 + i/40;nB = 600; Bi[i_]:=1 + i/40;

G[Bi_]:=G0
√
Bi;G[Bi_]:=G0
√
Bi;G[Bi_]:=G0
√
Bi;

Ec[n_,Bi_]:=A
√

0.00304Bin;Ec[n_,Bi_]:=A
√

0.00304Bin;Ec[n_,Bi_]:=A
√

0.00304Bin;

Ev[n_,Bi_]:=− A
√

0.00304Bin;Ev[n_,Bi_]:=− A
√

0.00304Bin;Ev[n_,Bi_]:=− A
√

0.00304Bin;

fermi[En_,Ef_]:=fermi[En_,Ef_]:=fermi[En_,Ef_]:=

Module
[
{x}, x = Which

[
En−Ef
KbT > 300, 300, En−Ef

KbT < −300,−300,True, En−Ef
KbT

]
;Module

[
{x}, x = Which

[
En−Ef
KbT > 300, 300, En−Ef

KbT < −300,−300,True, En−Ef
KbT

]
;Module

[
{x}, x = Which

[
En−Ef
KbT > 300, 300, En−Ef

KbT < −300,−300,True, En−Ef
KbT

]
;
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1
1+Exp[x]

]
;1

1+Exp[x]

]
;1

1+Exp[x]

]
;

filfac[Bi_]:=Floor
[
2πlb2Abs[n2DEG]/Bi

]
;filfac[Bi_]:=Floor

[
2πlb2Abs[n2DEG]/Bi

]
;filfac[Bi_]:=Floor

[
2πlb2Abs[n2DEG]/Bi

]
;

Gauss[En_,Ef_,Bi_]:= 1√
πG[Bi]Exp

[
−
(

En−Ef
G[Bi]

)2
]

;Gauss[En_,Ef_,Bi_]:= 1√
πG[Bi]Exp

[
−
(

En−Ef
G[Bi]

)2
]

;Gauss[En_,Ef_,Bi_]:= 1√
πG[Bi]Exp

[
−
(

En−Ef
G[Bi]

)2
]

;

GaussFermi[En_,Ef_,Bi_]:=GaussFermi[En_,Ef_,Bi_]:=GaussFermi[En_,Ef_,Bi_]:=
1√

πG[Bi]
∫ En+6G[Bi]

En−6G[Bi] Exp
[
−
(

Ei−En
G[Bi]

)2
]
fermi[Ei,Ef]dEi;1√

πG[Bi]
∫ En+6G[Bi]

En−6G[Bi] Exp
[
−
(

Ei−En
G[Bi]

)2
]
fermi[Ei,Ef]dEi;1√

πG[Bi]
∫ En+6G[Bi]

En−6G[Bi] Exp
[
−
(

Ei−En
G[Bi]

)2
]
fermi[Ei,Ef]dEi;

GaussFermiS[En_,Ef_,Bi_]:=GaussFermiS[En_,Ef_,Bi_]:=GaussFermiS[En_,Ef_,Bi_]:=
12/180√

π

∑180
i=0 Exp

[
−
(

1
G[Bi]((En− 6G[Bi] + i12G[Bi]/180)− En)

)2
]

12/180√
π

∑180
i=0 Exp

[
−
(

1
G[Bi]((En− 6G[Bi] + i12G[Bi]/180)− En)

)2
]

12/180√
π

∑180
i=0 Exp

[
−
(

1
G[Bi]((En− 6G[Bi] + i12G[Bi]/180)− En)

)2
]

fermi[(En− 6G[Bi] + i12G[Bi]/180),Ef];fermi[(En− 6G[Bi] + i12G[Bi]/180),Ef];fermi[(En− 6G[Bi] + i12G[Bi]/180),Ef];

density[Ef_,Bi_]:=density[Ef_,Bi_]:=density[Ef_,Bi_]:=
Bi

2πlb2

(
− (2fermi[Ec[0,Bi],Ef]−1)

2 −∑nmax
n=1 fermi[Ec[n,Bi],Ef]

)
;Bi

2πlb2

(
− (2fermi[Ec[0,Bi],Ef]−1)

2 −∑nmax
n=1 fermi[Ec[n,Bi],Ef]

)
;Bi

2πlb2

(
− (2fermi[Ec[0,Bi],Ef]−1)

2 −∑nmax
n=1 fermi[Ec[n,Bi],Ef]

)
;

Efermi = Table[i, {i, 1, nB}];Efermi = Table[i, {i, 1, nB}];Efermi = Table[i, {i, 1, nB}];

Do[Do[Do[

Efermi[[i]] =Efermi[[i]] =Efermi[[i]] =

Ef/.FindRoot[(n2DEG− density[Ef,Bi[i]]) == 0,Ef/.FindRoot[(n2DEG− density[Ef,Bi[i]]) == 0,Ef/.FindRoot[(n2DEG− density[Ef,Bi[i]]) == 0,{
Ef, 0,

(
A
√

0.00304 2πlb2Abs[n2DEG]
)}]

, {i, 1, nB}
]

; Efermi[[1]]//N
{
Ef, 0,

(
A
√

0.00304 2πlb2Abs[n2DEG]
)}]

, {i, 1, nB}
]

; Efermi[[1]]//N
{
Ef, 0,

(
A
√

0.00304 2πlb2Abs[n2DEG]
)}]

, {i, 1, nB}
]

; Efermi[[1]]//N

densityG[Ef_,Bi_]:=densityG[Ef_,Bi_]:=densityG[Ef_,Bi_]:=
Bi

2πlb2

(
−1

2(2GaussFermiS[Ec[0,Bi],Ef,Bi]− 1)−Bi
2πlb2

(
−1

2(2GaussFermiS[Ec[0,Bi],Ef,Bi]− 1)−Bi
2πlb2

(
−1

2(2GaussFermiS[Ec[0,Bi],Ef,Bi]− 1)−∑nmax
n=1 GaussFermiS[Ec[n,Bi],Ef,Bi]) ;∑nmax
n=1 GaussFermiS[Ec[n,Bi],Ef,Bi]) ;∑nmax
n=1 GaussFermiS[Ec[n,Bi],Ef,Bi]) ;

EfermiG = Table[i, {i, 1, nB}];EfermiG = Table[i, {i, 1, nB}];EfermiG = Table[i, {i, 1, nB}];

Do[Do[Do[

EfermiG[[i]] =EfermiG[[i]] =EfermiG[[i]] =

Ef/.FindRoot[(n2DEG− densityG[Ef,Bi[i]]) == 0,Ef/.FindRoot[(n2DEG− densityG[Ef,Bi[i]]) == 0,Ef/.FindRoot[(n2DEG− densityG[Ef,Bi[i]]) == 0,

{Ef,Efermi[[i]]− 5,Efermi[[i]] + 5}], {i, 1, nB}];{Ef,Efermi[[i]]− 5,Efermi[[i]] + 5}], {i, 1, nB}];{Ef,Efermi[[i]]− 5,Efermi[[i]] + 5}], {i, 1, nB}];
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B.1. DOS calculation

DOS[Ef_,Bi_]:= Bi
2πlb2 (∑nmax

n=0 Gauss[Ec[n,Bi],Ef,Bi]) ;DOS[Ef_,Bi_]:= Bi
2πlb2 (∑nmax

n=0 Gauss[Ec[n,Bi],Ef,Bi]) ;DOS[Ef_,Bi_]:= Bi
2πlb2 (∑nmax

n=0 Gauss[Ec[n,Bi],Ef,Bi]) ;

ListLinePlot[Table[Table[{Bi[i], f}, {i, 1, nB, 1}],ListLinePlot[Table[Table[{Bi[i], f}, {i, 1, nB, 1}],ListLinePlot[Table[Table[{Bi[i], f}, {i, 1, nB, 1}],

{f, {Efermi[[i]],EfermiG[[i]],{f, {Efermi[[i]],EfermiG[[i]],{f, {Efermi[[i]],EfermiG[[i]],

Ec[0,Bi[i]], Ec[1,Bi[i]], Ec[2,Bi[i]], Ec[3,Bi[i]],Ec[0,Bi[i]], Ec[1,Bi[i]], Ec[2,Bi[i]], Ec[3,Bi[i]],Ec[0,Bi[i]], Ec[1,Bi[i]], Ec[2,Bi[i]], Ec[3,Bi[i]],

Ec[4,Bi[i]], Ec[5,Bi[i]], Ec[6,Bi[i]], Ec[7,Bi[i]],Ec[4,Bi[i]], Ec[5,Bi[i]], Ec[6,Bi[i]], Ec[7,Bi[i]],Ec[4,Bi[i]], Ec[5,Bi[i]], Ec[6,Bi[i]], Ec[7,Bi[i]],

Ec[8,Bi[i]], Ec[9,Bi[i]],Ec[8,Bi[i]], Ec[9,Bi[i]],Ec[8,Bi[i]], Ec[9,Bi[i]],

Ec[10,Bi[i]],Ec[11,Bi[i]],Ec[12,Bi[i]],Ec[13,Bi[i]],Ec[10,Bi[i]],Ec[11,Bi[i]],Ec[12,Bi[i]],Ec[13,Bi[i]],Ec[10,Bi[i]],Ec[11,Bi[i]],Ec[12,Bi[i]],Ec[13,Bi[i]],

Ec[14,Bi[i]],Ec[15,Bi[i]],Ec[16,Bi[i]],Ec[17,Bi[i]],Ec[14,Bi[i]],Ec[15,Bi[i]],Ec[16,Bi[i]],Ec[17,Bi[i]],Ec[14,Bi[i]],Ec[15,Bi[i]],Ec[16,Bi[i]],Ec[17,Bi[i]],

Ec[18,Bi[i]],Ec[19,Bi[i]],Ec[18,Bi[i]],Ec[19,Bi[i]],Ec[18,Bi[i]],Ec[19,Bi[i]],

Ec[20,Bi[i]],Ec[100,Bi[i]]} }],Ec[20,Bi[i]],Ec[100,Bi[i]]} }],Ec[20,Bi[i]],Ec[100,Bi[i]]} }],

PlotRange→ {−5, 100},Frame→ True,Axes→ False,PlotRange→ {−5, 100},Frame→ True,Axes→ False,PlotRange→ {−5, 100},Frame→ True,Axes→ False,

FrameLabel→ {B, “E (meV)”}]FrameLabel→ {B, “E (meV)”}]FrameLabel→ {B, “E (meV)”}]

ListLinePlot[Table[{Bi[i], filfac[Bi[i]]}, {i, 1, nB}],PlotRange→ {0, 20},ListLinePlot[Table[{Bi[i], filfac[Bi[i]]}, {i, 1, nB}],PlotRange→ {0, 20},ListLinePlot[Table[{Bi[i], filfac[Bi[i]]}, {i, 1, nB}],PlotRange→ {0, 20},

Frame→ True,Axes→ False,FrameLabel→ {B, “filling factor”}]Frame→ True,Axes→ False,FrameLabel→ {B, “filling factor”}]Frame→ True,Axes→ False,FrameLabel→ {B, “filling factor”}]

ListLinePlot[Table[{Bi[i],DOS[EfermiG[[i]],Bi[i]]}, {i, 1, nB}],ListLinePlot[Table[{Bi[i],DOS[EfermiG[[i]],Bi[i]]}, {i, 1, nB}],ListLinePlot[Table[{Bi[i],DOS[EfermiG[[i]],Bi[i]]}, {i, 1, nB}],

Frame→ True,Axes→ False,FrameLabel→ {B, “DOS”}]Frame→ True,Axes→ False,FrameLabel→ {B, “DOS”}]Frame→ True,Axes→ False,FrameLabel→ {B, “DOS”}]

Export[“out.dat”,Table[{N [Bi[i]],DOS[EfermiG[[i]],Bi[i]]}, {i, 1, nB}]] ;Export[“out.dat”,Table[{N [Bi[i]],DOS[EfermiG[[i]],Bi[i]]}, {i, 1, nB}]] ;Export[“out.dat”,Table[{N [Bi[i]],DOS[EfermiG[[i]],Bi[i]]}, {i, 1, nB}]] ;
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B.2. Hall conductivity in rotated magnetic field

The small Mathematica code presented here is based on the code by A. Novik and
is a simplified version, that uses SI units. It outputs the Hall conductivity of two
TI surfaces for several angles of the magnetic field and T = 0.

ClearAll[“Global̀*”]ClearAll[“Global̀*”]ClearAll[“Global̀*”]

(*Constants*)(*Constants*)(*Constants*)

n2DEG = 13.1 ∗ 10∧15;n2DEG = 13.1 ∗ 10∧15;n2DEG = 13.1 ∗ 10∧15;

nDC1 = 6.9 ∗ 10∧15;nDC1 = 6.9 ∗ 10∧15;nDC1 = 6.9 ∗ 10∧15;

nDC2 = n2DEG− nDC1;nDC2 = n2DEG− nDC1;nDC2 = n2DEG− nDC1;

g = 40;g = 40;g = 40;

el = ElectronCharge[[1]];el = ElectronCharge[[1]];el = ElectronCharge[[1]];

vF = 5 ∗ 10∧5;vF = 5 ∗ 10∧5;vF = 5 ∗ 10∧5;

hbar = PlanckConstantReduced[[1]];hbar = PlanckConstantReduced[[1]];hbar = PlanckConstantReduced[[1]];

µ = −ElectronMagneticMoment[[1]];µ = −ElectronMagneticMoment[[1]];µ = −ElectronMagneticMoment[[1]];

(*Fermi wave vektor*)(*Fermi wave vektor*)(*Fermi wave vektor*)

kF [n2D_] =
√

4πn2D;kF [n2D_] =
√

4πn2D;kF [n2D_] =
√

4πn2D;

(*Fermi energy*)(*Fermi energy*)(*Fermi energy*)

EF [n2D_] = hbar ∗ vF ∗ kF [n2D];EF [n2D_] = hbar ∗ vF ∗ kF [n2D];EF [n2D_] = hbar ∗ vF ∗ kF [n2D];

(*Distance of the Dirac cones to the Fermi energy*)(*Distance of the Dirac cones to the Fermi energy*)(*Distance of the Dirac cones to the Fermi energy*)

(*Assumption : linear dispersion→ E = A× k*)(*Assumption : linear dispersion→ E = A× k*)(*Assumption : linear dispersion→ E = A× k*)

E01 = EF [nDC1];E01 = EF [nDC1];E01 = EF [nDC1];

E02 = EF [nDC2];E02 = EF [nDC2];E02 = EF [nDC2];
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B.2. Hall conductivity in rotated magnetic field

(*Landau levels of Dirac cone including Zeeman contribution*)(*Landau levels of Dirac cone including Zeeman contribution*)(*Landau levels of Dirac cone including Zeeman contribution*)

EL[B_, α_, n_,Es_]:=If[n == 0,−gµB − Es,EL[B_, α_, n_,Es_]:=If[n == 0,−gµB − Es,EL[B_, α_, n_,Es_]:=If[n == 0,−gµB − Es,√
2 ∗ el ∗ hbar ∗ vF∧2 ∗B ∗ Cos[α] ∗ n+ (gµB)∧2− Es];

√
2 ∗ el ∗ hbar ∗ vF∧2 ∗B ∗ Cos[α] ∗ n+ (gµB)∧2− Es];

√
2 ∗ el ∗ hbar ∗ vF∧2 ∗B ∗ Cos[α] ∗ n+ (gµB)∧2− Es];

(*discretizeB − field*)(*discretizeB − field*)(*discretizeB − field*)

Bi[u_] = 1 + u/40;Bi[u_] = 1 + u/40;Bi[u_] = 1 + u/40;

sigmaxy = Array[sig, 10];sigmaxy = Array[sig, 10];sigmaxy = Array[sig, 10];

For[l = 1, l < 11, l++,For[l = 1, l < 11, l++,For[l = 1, l < 11, l++,

fillfac1 = Array[f, 1199];fillfac1 = Array[f, 1199];fillfac1 = Array[f, 1199];

fillfac2 = Array[h, 1199];fillfac2 = Array[h, 1199];fillfac2 = Array[h, 1199];

For[i = 0, i < 1200, i++,For[i = 0, i < 1200, i++,For[i = 0, i < 1200, i++,

k = 0; f [i] = k − 1/2;While[EL[Bi[i], 90◦ − l ∗ 9◦, k,E01] < 0, k++; f [i] = k − 1/2]];k = 0; f [i] = k − 1/2;While[EL[Bi[i], 90◦ − l ∗ 9◦, k,E01] < 0, k++; f [i] = k − 1/2]];k = 0; f [i] = k − 1/2;While[EL[Bi[i], 90◦ − l ∗ 9◦, k,E01] < 0, k++; f [i] = k − 1/2]];

For[i = 0, i < 1200, i++,For[i = 0, i < 1200, i++,For[i = 0, i < 1200, i++,

k = 0;h[i] = k − 1/2;While[EL[Bi[i], 90◦ − l ∗ 9◦, k,E02] < 0, k++;h[i] = k − 1/2]];k = 0;h[i] = k − 1/2;While[EL[Bi[i], 90◦ − l ∗ 9◦, k,E02] < 0, k++;h[i] = k − 1/2]];k = 0;h[i] = k − 1/2;While[EL[Bi[i], 90◦ − l ∗ 9◦, k,E02] < 0, k++;h[i] = k − 1/2]];

sig[l] = Table[{Bi[i], f [i] + h[i]}, {i, 0, 1199}]; ]sig[l] = Table[{Bi[i], f [i] + h[i]}, {i, 0, 1199}]; ]sig[l] = Table[{Bi[i], f [i] + h[i]}, {i, 0, 1199}]; ]

Export[angle_all.dat, N [Flatten/@Transpose[sigmaxy]]];Export[angle_all.dat, N [Flatten/@Transpose[sigmaxy]]];Export[angle_all.dat, N [Flatten/@Transpose[sigmaxy]]];

ListLinePlot [sigmaxy,PlotRange → {{5,30},{0,12}},Frame → True,ListLinePlot [sigmaxy,PlotRange → {{5,30},{0,12}},Frame → True,ListLinePlot [sigmaxy,PlotRange → {{5,30},{0,12}},Frame → True,

FrameLabel → { “B / T”,“σxy / e/h” },FrameLabel → { “B / T”,“σxy / e/h” },FrameLabel → { “B / T”,“σxy / e/h” },

PlotStyle -> {Magenta,Pink,Cyan,Gray,Purple,Red,Green,Blue,Black, Navy}]PlotStyle -> {Magenta,Pink,Cyan,Gray,Purple,Red,Green,Blue,Black, Navy}]PlotStyle -> {Magenta,Pink,Cyan,Gray,Purple,Red,Green,Blue,Black, Navy}]
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