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D3y

Diu, Du

K

Jj

Jo,j, ¥;

Jes

B(6,¢), B(6,0)
B(y), B(7)
By(6), By(0)
Bpy, By

Tn

AT T #T T
Bip. Bip, Biy

real numbers, positive integers, integers

positive real numbers, non-negative integers

for real numbers a, b, a A b := min{a, b} and a V b := max{a, b}
the indicator function of a set A, ie. xa(z) = 1 if z € A, and
xa(z)=0ifx ¢ A

the characteristic function of a set A, i.e. Y4 =
XA(z) =40 ifz ¢ A

= ﬁ Jo u(z)dz
the space of finite Radon measures on 2

0if z € A, and

space of (special) functions of bounded variation, cf. Section 2.1
(8)BV-functions with boundary values, cf. Section 2.1.1
distributional derivative of u € BV

absolutely continuous part of derivative

singular part of derivative

jump part and Cantor part of the derivative

interaction range

interaction potential of Lennard-Jones type

effective potentials, cf. (3.8) and (3.14)

Cauchy-Born energy density, cf. (3.17)

elastic boundary layer energies, cf. (3.50) and (3.64)

boundary layer energies at free surfaces, cf. (3.71) and (3.112)
boundary layer energies, cf. (3.70) and (3.111)
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set of representative atoms, cf. Section 4.1

representative atoms at the atomistic/continuum interface, cf. (4.26)
and (4.28)

boundary layer energies due to jumps at the atomistic/continuum
interface, cf. (4.35), (4.38) and (4.39)






Chapter 1

Introduction

A number of phenomena in continuum mechanics can be modelled in terms of minimisation
problems. A prominent example is the variational theory of nonlinear elasticity. Consider
a homogeneous solid body with a given reference configuration Q C R?, d € {1,2,3}. The
stored elastic energy of a deformation u : Q — u(Q) C R is given by

Iel(u)—/ﬂW(Vu(a?))da?, (1.1)

where W denotes the stored elastic energy density. In practice, W is mostly chosen
phenomenologically but it is desirable to obtain it from microscopic models; or as it is
asked in John Ball’s open problems [4]: Is it possible to derive elasticity theory from
atomistic models? Motivated by this, the analysis of microscopic models, in particular of
discrete lattice systems, and their relation to continuum mechanics is a growing subject
within the applied analysis, see e.g. [7] for an overview. A common approach is to apply
I’-convergence to discrete energy functionals which are parametrised by the number of
atoms (see e.g. [2, 12, 13, 14]). This ensures that minimisers and minima of the discrete
energy converge to minimisers and minima of the limiting continuum energy.

In the first part of this thesis, we analyse a one-dimensional atomistic model with finite
range Lennard-Jones type interactions. In particular, we refine a result by Braides and
Gelli [14] and give an explicit expression for the I-limit of the discrete functionals in this
case. Moreover, we provide an asymptotic expansion by I'-convergence, see [1, 20]. In
this way, we recover boundary layer energies due to lattice asymmetries at the boundary
and at cracks of the specimen. We derive a macroscopic model which allows for fracture
and inherits the atomic length scale. This generalises results of Braides and Cicalese [11]
and Scardia, Schlomerkemper and Zanini [50, 51| for Lennard-Jones systems with nearest
and next-to-nearest neighbour interactions to the case of general finite range interactions
which is a step towards the physical case of long range interactions.

In the second part, we study the validity of the so-called quasicontinuum method [59].
This is a computational multiscale method which couples atomistic and continuum de-

scriptions of crystalline solids and became very popular in the last two decades for studying
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phenomena, such as the behaviour of grain boundaries, dislocation nucleation and crack
growth etc., in which there exist isolated regions of interest where a very detailed model
is desirable (e.g. the crack tip) and regions where a continuum model is sufficient. We
construct a quasicontinuum approximation of the one-dimensional Lennard-Jones system
discussed before and compare this approximation and the original model in terms of their

I-limits.

Before we discuss the results of this thesis, let us briefly review some related contribu-
tions in the literature. Consider €Z% N Q with Q C R? and € > 0 as the reference lattice
and let u : eZ4NQ — R? be a deformation of the reference lattice. Then a typical discrete

energy is given by

€

AMEEY edJ<M>. (1.2)

i,jee24nQ
it
The prototypical example for the interaction potential J is given by the Lennard-Jones
potential [37], i.e.
J(z):%—%, z >0, (1.3)
with k1, ko > 0.

Blanc, Le Bris and Lions [6] derive the pointwise limit lim._,o E-(u) for sufficiently
smooth deformations u. They recover the structure of (1.1) and give an explicit expres-
sion for W. By further expansions with respect to the lattice parameter e, they derive
additional surface terms. In the core of this derivation lies the assumption that the mi-
croscopic deformation of the atoms follows the macroscopic deformation. This kind of
assumptions are often called Cauchy-Born hypotheses, cf. i.e. [28]. The validity of the
Cauchy-Born hypotheses is a delicate issue. Friesecke and Theil [32] proved for a square
lattice spring model that the global minimiser in a certain parameter regime satisfies the
Cauchy-Born hypotheses and showed that there exists a parameter regime where this is
not the case, see also [23]. In [27, 47], it is shown that there exist local minimisers of
atomistic models which satisfy the Cauchy-Born hypotheses in more general situations.

As mentioned previously, we consider the passage from discrete systems to continuum
models via I'-convergence. This is at present an active field of research. Alicandro and
Cicalese [2] proved a general integral representation result for the I'-limit of a class discrete
energies with pair interactions. The limiting functional has the form (1.1). In contrast
to the result given in [6], the energy density W of the I-limit is given rather implicitly
and it is assumed that the interaction potentials satisfies certain growth conditions from
below. This rules out interatomic potentials such as Lennard-Jones potentials. Further
results in this direction are given in [16, 19, 21, 35, 52].

Here, we are interested in models which allow for fracture. A first contribution in
the discrete-to-continuum derivation of fracture mechanics is due to Truskinovsky [60].

Truskinovsky considers a chain of atoms which interact through Lennard-Jones potentials.
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FI1GURE 1.1: A typical example of a Lennard-Jones potential.

From this, he derives, by minimising the discrete energy, a continuum model for fracture
which inherits the atomistic length scale. More precisely, he proposes an energy consisting
of a bulk term and a contribution which accounts for cracks and is scaled with the lattice
parameter.

To the best of our knowledge, Braides, Dal Maso and Garroni [12] provide the first
derivation of fracture mechanics from a discrete system using I'-convergence. They start
from a chain of atoms (or material points) linked by nearest neighbour interactions and
obtain a continuum limit which allows for fracture. Braides and Gelli [13, 14] give a
description of the I'-limit for discrete systems in one dimension with general interatomic
pair potentials, including Lennard-Jones interactions with finite range. It is shown that
the limiting functional involves, at least if one allows for interactions beyond next-to-
nearest neighbour interactions, a homogenisation process similar to the vector-valued
case [2], see (1.7).

In order to derive a discrete-to-continuum limit which captures a small scale variable,
Braides and Cicalese [11] and Scardia, Schldmerkemper and Zanini [50] used the notion of
a development by I'-convergence in the sense of Anzelotti and Baldo, see [1]. In both ar-
ticles the authors start with a chain of atoms with nearest and next-to-nearest neighbour
interactions of Lennard-Jones type and compute the I'-limit and the I'-limit of first order.
The I'-limit yields an integral functional which allows for positive jumps, i.e. of fracture,
which do not contribute to the energy. In the first-order I'-limit boundary layer energies
are recovered which penalise fracture. Later on Scardia, Schlomerkemper and Zanini in
[51] used the concept of equivalence by I'-convergence, due to Braides and Truskinovsky
[20], to step further towards a mathematical understanding of Truskinovsky’s original
idea. Especially the works [50, 51|, serve as a starting point for the analysis presented in
Chapter 3 of this thesis.

Let us now give some details of the obtained results. Let A\,Z N [0,1] with \, := 1

n
be the reference lattice. The deformation of the ith lattice point is denoted by u’ and
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we identify the deformation u : A\,Z N [0,1] — R with its piecewise affine interpolation.
The nearest K neighbours in the reference lattice A\,Z N [0, 1] interact via a potential Jj,
je{l,...,K} with K € N be fixed. The energy of the system under consideration is the

sum of all pair interactions up to range K with the canonical bulk scaling. It reads

K n-j Wit i

The mathematical assumptions on the potentials J;, j = 1,..., K, are phrased in Sec-
tion 3.1. As mentioned above, the main example that we have in mind are the Lennard-
Jones potentials, that is J;(z) = J(jz) if z > 0, and +oo if z < 0, where J is given
in (1.3). Therefore, we call the potentials which satisfy our assumptions potentials of
Lennard-Jones type. Furthermore, we impose boundary conditions on the deformation of

the first K and last K atoms. For given £ > 0 and u(()l),ugl) € Rffl, we set

w0 = 0, u"=¢0 u°— . )\nu(()g’ WIS _ns — )\nugg (15)

for s € {1,..., K — 1}, see (3.3). Note that for the piecewise affine interpolation u the
above conditions imply Dirichlet boundary conditions u(0) = 0 and u(1) = ¢ respectively,
and prescribe the derivative «’ in (0, (K — 1)\,) and (1 — (K — 1)\, 1) respectively. In
the case of nearest and next-to-nearest neighbour interactions (K = 2), the boundary
conditions considered here coincide with the boundary conditions studied in [50, 51]. We
denote by H’ the functional given by H’ (u) = H,(u) if u satisfies the boundary conditions
(1.5), and o0 else.

On Lennard-Jones type systems and their asymptotic analysis

Next, we outline the results on the asymptotic analysis of the sequence (HY), via I-

convergence which is the subject of Chapter 3.

1. Zero-order I'-limit. The I'-limit of discrete functionals of the form H,, was derived
under very general assumptions on the interatomic potentials in [14]. The T'-limit result
of [14, Theorem 3.2] phrased for Lennard-Jones type potentials asserts that the sequence
(H,) I'-converges to an integral functional H, which is defined on the space of functions

of bounded variations and has the form

1
u) = /0 ¢(u')dx if D%u > 01in (0,1),

400 otherwise,

H(u) :=T- lim Hy(

n—o0

(1.6)

where D®u denotes the singular part with respect to the Lebesgue measure of the distri-

butional derivative Du = «/£! + D%u. The energy density ¢ is given via an asymptotic
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homogenisation formula, see Theorem 3.4 below. For Lennard-Jones potentials this ho-

mogenisation formula reduces to

j itj i
Jj(uju>: u: Ny —= R,

ui:ziifie{o,...,K}u{N—K,...,N}}, (1.7)

see [15, Theorem 2.21]. It is desirable to have a more explicit expression for ¢. For

Lennard-Jones type potentials, we prove that

K
¢ =Jog, where Jop(z ZJJ
7j=1

and J&'5 is the lower semicontinuous and convex envelope of Jop, see Theorem 3.5. This
was previously known in the cases K € {1,2} only, see e.g. [11, 13].

Let us give some ideas of the proof, since they are crucial also for other parts of the
thesis: in the case of nearest and next-to-nearest neighbour interactions, there exists a
more explicit formula for ¢ given by ¢ = Ji*, where Jy is an effective potential given by
the following infimal convolution-type formula, which takes possible oscillations on the
lattice-level into account

1,
Jo(2) = Ja(2) + 3 inf{J1(21) + J1(22), 21 + 22 = 2z},

see e.g. [14, Remark 3.3]. For Lennard-Jones potentials and z such that Jy(z) = J3*(2),
it is not difficult to show that the infimum in the definition of Jy is attained if and only if
21 = zp = z and that ¢(z) = (J1 + J2)**(2) = J&5(2), see [50, Remark 4.1]. From this it
follows that, roughly speaking, no oscillations on the lattice-level occur in Lennard-Jones
systems with nearest and next-to-nearest neighbour interactions. In order to show this
also for Lennard-Jones systems beyond next-to-nearest neighbour interactions, it would
be beneficial to have a description of ¢ similar to in the case of nearest and next-to-nearest
neighbour interactions via a minimisation problem on a fixed ’cell’ (as in the definition
of Jy). However, up to our knowledge, there has not been a result in the literature
which asserts whether or how the formula for the effective potential Jy extends to a larger
interaction range.

To show ¢ = J'5, we use suitable generalisations of the function Jy. These are explicitly
tailored for potentials of Lennard-Jones type and make use of their convex-concave shape,
see Figure 1.1. To motivate the definition of the generalisations, we note that the terms

in the minimisation problem in (1.7) can be rewritten as

N—j

;fjiz{ <z+]—u> ”i:lj S s)}Hg(]lV) (1.8)

1=
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for any set of constants ca,...,cx > 0 that satisfy Z]KZQ c¢j = 1. Thus, in order to find a

lower bound on the terms in the curly brackets, it is useful to define

j
Jo,j(2) == J;( 1nf{ZJ1 Zs), Z } i=2,..,K,

cf. (3.8). These serve as extensions of the effective potential Jy. The crucial observation
is now that in the case of Lennard-Jones potentials it is possible to choose co, ..., ck, see

Proposition 3.2, such that

JCB(Z) if 2 < Y

=2 Jep(y) ifz>7,

where v > 0 is the (unique) minimiser of Jop and Jy ;(2) for j € {2,..., K}, see Proposi-
tion 3.2 and Remark 3.1. Jensen’s inequality, the constraints in the minimisation problem
n (1.7), and the definition of the potentials Jy; yield ¢(z) > J&5(2). We make this
precise and show the reverse inequality in Theorem 3.5 for the Lennard-Jones type po-
tentials. Furthermore, we provide in Theorem 3.7 a T-limit result for the sequence (HY)
without using the homogenisation formula ¢. For this, we use a similar decomposition as
in (1.8) of the energy H:

HE (u) = inj A, {Jj <Hj_u> szjl 7 < S) } FOM),  (L19)

§=2 i=0

see (3.7). The I'-limit H* of the sequence (HY) is given by the restriction of H to a
suitable set BV¢(0, 1), see Section 2.1.1, which inherits the boundary conditions u(0) = 0
and u(1) = £ in H.. We present this alternative proof because its arguments can be easily

adapted to the quasicontinuum model that we consider in Chapter 4.

From the modelling point of view the functional H is not rich enough. For example
it allows for (positive) jumps which do not cost any energy. Hence, a refined analysis is
needed, see e.g. [20]. For this, we follow the approach of Scardia, Schlomerkemper and
Zanini [50, 51]: we derive the first-order T-limit of the sequence (H!) and consider suitable
rescaled functionals for which the contribution of elastic deformations and surface contri-
butions due to jumps are on the same order of magnitude. Using a decomposition of the
energy as in (1.9), we can apply similar arguments as are used in [50, 51], which are based
on the more explicit characterisation of the I'-limit in the case K = 2 via the effective

potential Jy. We extend several results from [50, 51] to the case of finite range interactions:

2. First-order T'-limit. In Section 3.3, we derive in analogy to [11, 50] the first-order
[-limit of the sequence (H,,). That is we compute the -limit of the sequence (Hf ) given
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by
HY(u) — min, H (u)
An '

It turns out that the limiting functional is similar to in the case of nearest and next-to-

Hy ,(u) =

nearest neighbour interactions: we have to distinguish between the cases when 0 < £ < ~
and ¢ > ~ where ¢ denotes the deformation of the last atom in the chain (see (1.5))
and ~y the (unique) minimiser of Jop. In the case 0 < ¢ < v the limiting functional is
finite only for the elastic deformation u(x) = fx. As in [11, 50], the first-order T'-limit
recovers boundary layer energies at both ends of the specimen. This elastic boundary
layer energies depend on the additional boundary conditions which are described by uél)
and ugl), cf. Theorem 3.12 and Proposition 3.15.

In the case ¢ > v fracture occurs. Each crack yields additional boundary layer ener-
gies due to the new surfaces created by the crack. The limiting functional distinguishes
between fracture at the boundary and in the interior of the specimen. For ¢ > ~ and
uél), g ) ]RK ! we show that (Hf ) T-converges with respect to the L'(0, 1)-topology

to the functional HY, where

K
HY(u) :B(u(()l),fy) ul ,’y Z (Gj—1J
7j=2

+ B (U #(Su N {0}) + Br#(Su N (0,1)) + Bps (i) #(S, N {1})

if u € SBVY(0,1), 0 < #S, < 400, [u] > 0 in [0,1], and v’ = v a.e. in (0,1), and +oo
otherwise, where the jump energies Sg;(6), for 6 € Rf —1 and f;; are given by

n[vjw

K
Bps(0) = By(6 Z B(6,7), Br;=2B(y

cf. Theorem 3.19 and Proposition 3.21. The B terms denote certain boundary layer

energies, which are defined via asymptotic cell formulas, for instance B () is given by

B(y) = ynf min { > { i Jj <m> - JCB(V)} :

i>0 ©j=1 J

uw:Ng—= R, v’ =0, ui+1—uizfyifz’>N},

see (3.112). In Section 3.4, we study the minimisation problem given by H{ for £ >
~. In particular, we show that there exists no boundary condition which would imply

that fracture in the interior of the specimen is more favourable than fracture at the

(1) (1)

boundary. Moreover, we give examples for the choices of v’ and u;’ which ensure that

either fracture appears at the boundary of the specimen or fracture appears indifferently
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everywhere in the specimen, see Proposition 3.24. This extends the result [50, Theorem
5.1] to the case K > 2.

In Section 3.4.3, we study the minimal configurations of an asymptotic cell formula,
which is equivalent to E(v), in the case of nearest an next-to-nearest neighbour inter-
actions only (K = 2). We derive a relaxed minimisation problem which is defined on a
suitable sequence space and show exponential decay for minimisers of this relaxed min-
imisation problem, cf. Proposition 3.30. For this, we build on a related result by Hudson
[35] for discrete systems with convex nearest and concave next-to-nearest neighbour in-

teractions, which mimic Lennard-Jones interactions.

3. Rescaled energies and I'-equivalence. As it was already pointed out in [20, 51], in the
formal development by I'-convergence fracture happens at zero tension and the minimal
energies are not continuous in the boundary condition ¢ with the discontinuity at ¢ = ~
This is not physical and does not reflect the behaviour of minimisers for finite n. Therefore,

we perform a refined analysis of H{, with £ close to 7. We follow [51] and consider a

1n

sequence (¢,,) C R and replace ¢ in the boundary conditions (1.5) by £,. We assume that

£, >~ and £, — v such that J, := W — 6 > 0 as n — oo. This defines a new sequence

of functionals (H%). By introducing the change of variables, we have H? 1n(u) = E%(v),

wt—yi\

where v is the piecewise affine interpolation of v* = ~ for 1 =0,...,n, and

n

0-yy ( Hj_”i) ()
= J: - —nJon ).
’ 3V

7j=11=0

The scaling in the energy Efln, was investigated previously in one dimension (see [17, 18,
51]) and recently by Friedrich and Schmidt [30, 31] in higher dimensions. In Theorem 3.34,
we show that (E°") I'-converges with respect to the L'(0,1)-topology to the functional
E?° given by

K

1 ~
E(v) :a/ \v’|2da:+B(u((]l),'y) + B( ul ,'y Z (7 —1J
0 =2

+ B (ul)#(S, N {0}) + Brs#(S, N (07 1) + B (ui))#(S, N {1})

if v € SBV%(0,1), #S, < 400, and [v] > 0 in [0,1], and 4o0c otherwise, where a@ =
%JgB(’y) and the 3 terms are as above, cf. Theorem 3.34 and Corollary 3.35. We notice
that E° is a one-dimensional version of Griffith energy for fracture. This result is proven
in [51, Theorem 6.1] in the case of nearest and next-to-nearest neighbour interactions;
and we can follow arguments of [17, 51] to show Theorem 3.34 which is valid for general
finite range interactions of Lennard-Jones type. Note that in [17, Theorem 4] a similar
result for K interacting neighbours and periodic boundary conditions is shown. However,

that result is proven under assumptions on the interaction potentials which are not always
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applicable to pair potentials, e.g. Lennard-Jones potentials, if K > 2, see Remark 3.36,
and also [17, Remark 3], [18, Section 4].

In Section 3.6, we combine the formal development by I'-convergence, which is a good
approximation of the discrete model for ¢ # «y, and the result for the rescaled sequence
(E%%) which yields an approximation to HY in the vicinity of ¢ = 7. We define the
functional G¥ for functions u € SBV*(0,1) with positive jumps by

K
Gt (u / W (u")dz + N\ Brs#(S, N [0,1]) )‘"Z J —1)J;(min{¢,~}),
j=2

where W(z) = Jep(z) for 2 < v and W(2) = 3J¢p(v)(z — 7)? for z > v and By is
given as above. We show that for £ > 0 that the sequence (G%) has the same I'-limit
and first-order T-limit as the discrete energy HY for a particular choice of u(()l) and ugl),
see Proposition 3.39. This implies that (H%) and (GY%) are T-equivalent, in the sense of
Braides and Truskinovsky [20]. Notice that minima of G¥, are continuous in £ and fracture

occurs for finite tension, see Remark 3.41.

['-convergence analysis of a quasicontinuum method in one dimension

The quasicontinuum (QC) method was introduced by Tadmor, Ortiz and Phillips [59] as
a computational tool for atomistic simulations of crystalline solids at zero temperature.
The key idea is to split the computational domain into regions where a very detailed
(atomistic, nonlocal) description is needed and regions where a coarser (continuum, local)
description is sufficient. This allows for simulations of relatively large systems with a full
atomistic resolution at regions of interest. This idea has been successfully used to study
crystal defects such as dislocations, nanoindentations or cracks and their impact on the
overall behaviour of the material, see e.g. [42] for an overview of the method and the
references therein for several applications.

There are various types of QC-methods: some are formulated in an energy based frame-
work, some in a force based framework; further, different couplings between the atomistic
and continuum parts and different models in the continuum region are considered. A first
contribution to the mathematical analysis of those methods is given by Lin [40], where a
QC-approximation of a Lennard-Jones system without boundary conditions and external
forces is considered. By deriving explicit estimates for the minimisers of the full atomistic
system and the QQC-model Lin obtains an error estimate for the difference of the two min-
imisers. In the last decade, many articles related to the systematic error analysis of such
coupling methods were published, e.g. [38, 43, 45, 46, 48] for one-dimensional problems
and [26, 57] for higher dimensional problems. In particular, we refer to [41] for a recent
overview.

In Chapter 4, we consider a variant of the so-called quasinonlocal quasicontinuum (QNL)
method, first proposed by Shimokawa et al. [58]. QNL-methods are energy-based QC-

methods which are constructed to overcome asymmetries (so-called ghost-forces) at the
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atomistic/continuum interface which arise in the classical energy based QC-method. Here,
we focus on a generalization of the QNL-method given by Li and Luskin [38] which
allows for a treatment of general finite range interactions; see also [26, 57] for further
generalisations of QNL idea.

We are interested in an analytical approach to verify the QNL-method as an appropriate
mechanical model by means of a discrete-to-continuum limit via I'-convergence. To our
knowledge I'-convergence was used by Espaniol et al. [29] to study a QC-approximation for
the first time. In [29], the authors consider an atomistic model different from ours, namely
a harmonic and defect-free crystal in arbitrary dimensions. Under general conditions it
is shown that a quasicontinuum approximation based on summation rules has the same
continuum limit as the fully atomistic system.

We aim for a I'-convergence analysis of a QC-method in the presence of defects (i.e
fracture). To this end, we consider the discrete energy Hﬁ as the fully atomistic model
problem and construct an approximation based on the QNL-method. In particular, we
keep all interactions in the atomistic (nonlocal) region and approximate the interactions

beyond nearest neighbours in the continuum (local) region by appropriate nearest neigh-

it Lt s+l _ .8
Jj(“_ u)z_Z%(“ “)
Jn J = An

Furthermore, we reduce the degrees of freedom of the energy by fixing certain representa-

bour interactions:

tive atoms and let the deformation of all atoms depend only on the deformation of these
representative atoms. This yields a new sequence of functionals of which we derive a
development by I'-convergence similarly as for the fully atomistic model.

In Theorem 4.1, we show that the fully atomistic model and the quasicontinuum model
have the same zero-order I'-limit. If the boundary conditions are such that the specimen
behaves elastically (i.e. £ < ), we prove that the first-order I'-limits of both models
coincide, see Theorem 4.5.

If the boundary conditions are such that fracture occurs (i.e. £ > ), the quasicon-
tinuum approximation leads to a first-order I'-limit (Theorem 4.11) that is in general
different from the one obtained for the fully atomistic model (Theorem 3.19). To compare
the fully atomistic and the quasicontinuum models also in this regime, we further anal-
yse the first-order I'-limits in Section 4.4. For this, we focus on the case of nearest and
next-to-nearest neighbour interactions. It turns out that the choice of the representative
atoms has a considerable impact on the validity of the QC-method. In Theorem 4.19,
we provide sufficient conditions for the validity of the QC-method, in the sense that the
minimal energies of the first-order I'-limit coincide with the one for the fully atomistic
model. We show that the QC-method is valid if the representative atoms are chosen in
such a way that there is at least one non-representative atom between two neighbouring
representative atoms in the continuum region. With this choice, fracture occurs always
in the atomistic region, as desired. In Proposition 4.22, we provide examples in which the

mentioned sufficient conditions on the choice of the representative atoms are not satisfied
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and the minima of the first-order I'-limits of the fully atomistic model and the QC-model
do not coincide. In this case, the QC-method should not be considered an appropriate
approximation. This implies by means of analytical tools that in quasicontinuum simula-
tions of fracture one has to make sure to pick a sufficiently large mesh in the continuum
region and at the interface. In fact we show that in our particular model problem, with
nearest and next-to-nearest neighbour interactions, it is sufficient that the mesh size in
the continuum region is at least twice the size of the atomistic lattice distance.

Similar models as the one we consider here, were investigated previously in terms of
numerical analysis. We refer the reader especially to [25, 38, 43, 45, 48] where the QNL-
method is studied in one dimension. By proving notions of consistency and stability,
those authors perform an error analysis in terms of the lattice spacing. To our knowledge,
most of the results do not hold for “fractured” deformations. However, in [46] a Galerkin
approximation of a discrete system is considered and error bounds are proven also for
states with a single crack of which the position is prescribed. Recently, a different approach
based on bifurcation theory is used in [39] to study the QC-approximation in the context
of crack growth.

In [5], a different one-dimensional atomistic-continuum coupling method is investigated.
Similar as in the QC-method the domain is splitted in a discrete and a continuum region.
In the discrete part the energy is given by nearest neighbour Lennard-Jones interaction
and in the continuum part by an integral functional with Lennard-Jones energy density. It
is shown that fracture is more favourable in the continuum than in the discrete region. To
overcome this, the energy density of the continuum model is modified by introducing an
additional term which depends on the lattice distance in the discrete region. Furthermore,
in [7, p. 420] it is remarked that if the continuum model is replaced by a typical discretized
version, the fracture is favourable in the discrete region. As mentioned above, we here

treat a similar issue in the QNL-method, see in particular Theorem 4.19, Proposition 4.22.

Several results of this thesis are based on the works [55, 56] obtained by the author
jointly with Anja Schlémerkemper. In [56], a 1D Lennard-Jones type model with finite
range interactions and periodic boundary conditions is considered. In that setting The-
orem 3.5 and an analogous result to Theorem 3.34 for rescaled energies are proven (see
Theorem 3.37). Here, we consider different boundary conditions and give a more detailed
analysis for the discrete system including the first-order I'-limit which we study in more
detail. In [55], the analysis of the QC-method in the spirit of Chapter 4 is presented for the
case of nearest and next-to-nearest neighbour interactions (see also [53, 54] for abridged

versions). Here, we generalise those results to the case of finite range interactions.






Chapter 2

Mathematical background

2.1 Functions of bounded variations

In this section, we briefly recall some definitions and basic properties of (special) functions
of bounded variations. For further details and proofs, we refer to [3, §].

Let Q = (a,b) C R be a bounded interval. We denote by Cy(£2) the space of continuous
functions 2 — R vanishing at the boundary. Following [3, Definition 1.40], we denote by
M(Q) the space of finite Radon measures on Q. For p € M(Q2), we define for every Borel
set B € B(Q2) the total variation |u|(B) as

|u|(B) := sup {Z |n(E;)| - E; € B(Q2) pairwise disjoint, B = U E,} .
i€N i€N

Recall that by the Riesz representation Theorem the space M(£2) is isometrically iso-
morphic to the dual space of Cy(£2). This motivates the following definition

Definition 2.1. Let p, p, € M(Q2). We say that p, weakly™ converges to p in the sense

of measures (and write ji, — p) if

lim [ ¢du, = / ddu Vo € Co(2).
Q Q

n—oo

Proposition 2.2. Let (u,) C M() be such that sup,, |, |(2) < +o00. Then there exists

a subsequence converging weakly* to some pu € M(Q) in the sense of measures.
Next, we define the functions of bounded variations.

Definition 2.3. Let u € L'(Q); we say that u is a function of bounded variation in
if its distributional derivative is a finite Radon measure in ; i.e. there exists p € M(Q)
such that

/ngb’dx = /ngdu Vo € CHQ).

The measure p will be denoted by Du. The space of all functions of bounded variation
in  is denoted by BV ().

19
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The space BV (2) endowed with the norm

lull pv () := llullL1 @) + [Dul(Q)

is a Banach space. However, the norm topology is too strong and we will mostly use the

following weaker notion of convergence

Definition 2.4. We say that (u,) C BV (Q2) weakly* converges in BV (2) to some u €
BV (Q), if u, — u in L'(Q) and Du,, = Du in M(9Q).

The following proposition gives a useful criterion for weak* convergence, cf. i.e. [3,

Proposition 3.13].

Proposition 2.5. Let (u,) C BV(2). Then (uy) weakly" converges to u in BV () if
and only if (uy) is bounded in BV (Q) and u, — u in L*(Q).

Let us now state a compactness theorem for functions in BV, cf. i.e. [3, Proposition 3.23].

Theorem 2.6. Let (un,) C BV(Q) be such that sup,, [[un||py(q) < oo then there exists a

subsequence (uy, ) weakly* converging to some u € BV ().

We notice that a direct consequence of Theorem 2.6 is that equibounded sequences in
Wl converge, up to subsequences, in LY(Q) to some u € BV (Q).

Let u € BV (Q2) be given. By the Radon-Nikodyn Theorem, we can split Du into an
absolutely continuous part D%u with respect to the Lebesgue measure £!, and a singular
part D%u. Moreover, we can decompose the singular part D%u into a jump part D?u and
a Cantor part Du. To this end, we denote A = {x € Q: Du({z}) # 0} the set of atoms
of Du. Since Du is a finite Radon measure the set A is at most countable. Finally, we
set D/u = D3ul_ A and D = D*ul_(Q\ A). In this way we obtain

Du = D% + D*u = D%+ D’u + DCu. (2.1)

Notice that all the previous definitions and statements including the decomposition of the
derivative Du can be extended in a suitable sense to the case 2 C R™ and u : 2 — R™
with n,m € N.

Next, we use the fact that u depends only on one variable. We say that u € BV () is
a jump function if Du = D7u, and we say that u is a Cantor function if Du = D®. For
given u € BV (), there exist u® € W', a jump function u’, and a Cantor function u¢
such that u = u® + u? + u.

For a function v € BV (), the right-hand side and left-hand side limits

x+h x
u(z+) = lim u(s)ds, wu(z—)= lim u(s)ds

h—0+ J, h—=0+ Jo_p
exist at all € [a,b), and = € (a, ], respectively. We can define the jump set S, := {z €
Q: u(z+) # u(x—)}. We notice that S, coincides with the set of atoms of the measure

Du and thus is at most countable.
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For a given u € BV(Q), we denote by u/ € L'(Q) the density of D% and we set
[u](z) := u(z+) —u(z—) for all z € Q. Then the jump part D7u is given by Y~ ¢ [u](2)d,

and the decomposition in (2.1) reads

Du=u'L + Z [u](z)d0; + DCu.
CEES’U,

An important subspace of BV () is given by the special functions of bounded variations

Definition 2.7. We say that a function u € BV(Q) is a special function of bounded

variation if Dy = 0. We denote the space of special functions of bounded variations by
SBV ().

For a given u € SBV (£2), we can use the previous decomposition and find u® € W11(Q)
and a jump function v/ € SBV () such that u = u® + /. The space SBV () enjoys the

following useful closure and compactness properties, cf. i.e. [3, Theorem 4.7, Theorem 4.8].

Theorem 2.8. Let ¢ : [0, +00) — [0, +00] be a lower semicontinuous increasing function

and assume that

lim @ = 400
t—oo
Let (un,) C SBV(Q2) be such that
sup (/ @ (|up ) dz + #Su> < +o0. (2.2)
n \Ja

If (upn) weakly* converges in BV () to u, then u € SBV(Q), v/, — u' in L*(Q), Diu, =
Diu in M() and #5S, < liminf, oo #S,,, -

Theorem 2.9. Let ¢ be as in Theorem 2.8. Let (u,) C SBV(Q) be satisfying (2.2)
and assume that sup,, |[un||L ) < +00. Then there exists a subsequence (uy, ) weakly*

converging in BV () to u € SBV(Q).

2.1.1 Boundary values in BV

As mentioned in the introduction, we consider discrete minimisation problems for func-
tions defined on [0, 1] with fixed Dirichlet boundary data and derive a limiting minimi-
sation problem which is defined on the space of bounded variations. For this we have to
introduce appropriate function spaces which take jumps at the boundary into account.
To this end, we follow [11, 12, 50]: for given ¢ > 0, we say that u € BV*(0,1) if u is a
function of bounded variation on (0, 1) and we set u(0—) = 0 and u(14) = £. Then we de-
fine [u](z) := u(z+) — u(z—) for every z € [0,1] and the set SY = {x € [0,1] : [u](x) # 0}.
Moreover, we extend the measures Du and D*u to [0, 1] by

Du =L + Z [u](z)6z + D°u, Du= Z [u)(z)65 + Du.

zest zeSt
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We notice that, if v € BVjo.(R) is the extension of u defined by v(z) = 0 for x < 0 and
v(x) = £ for > 1, then Du and D*®u are the restrictions to [0, 1] of the distributional
derivative Dv and of its singular part D%v. Note also that for every u € BV*(0,1), we
have .
Du([0,1]) = / u'dz + Z [u](x)d, + Du(0,1) = ¢
0 z€SE

and that w is uniquely determined by the measure Du on [0,1]. We define the set
SBV*(0,1) correspondingly.

In the remainder of this thesis, we will omit the superscript ¢ in S% and set S, = S for
u € BVY0,1) (or u € SBVY(0,1)).

2.2 [T'—convergence

In this section, we give a brief introduction to the notion of I'-convergence. For a com-
prehensive introduction to I'-convergence we refer to [9, 24]. We follow here the overview

given in [8, Section 3.1].

Definition 2.10. Let (X, d) be a metric space. For any n € N, let F,, : X — [—00, +0].
The sequence (F),) I'-converges to F': X — [—00, +0o0] if for all u € X the following hold

true

(i) (liminf inequality) for every sequence (u,) converging to u

liminf F, (u,) > F(u);

n—o0

(ii) (limsup inequality) there exists a sequence (u,) converging to u such that

lim sup P (1) < F(u),
n—oo

or equivalently (by (i))
lim Fn(un) = F(u)

n—o0

The function F' is called the I'-limit of (F},) (with respect to d), and we write F =

I-limy, 00 Fy, or F =T(d)-lim,,—o to emphasize the metric d if this is needed.
The following result is one of the main reasons for introducing I'-convergence.

Theorem 2.11. Let (X,d) be a metric space, let F,, F : X — [—o00,+00] be such F =
I'-lim, F,,. If there exists a compact set K C X such that infx F,, = infg F,, for all n,
then

dmin F' = lim inf F,.
X n—oo X

Moreover, if (uy) is a converging sequence such that lim, oo Fy(uy,) = lim, o infx F,

then its limit is a minimum point for F.
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It is often useful to use the following pointwise definition of I'-convergence.

Definition 2.12. Let (X, d) be a metric space. For any n € N, let F}, : X — [—00, +00]
and let u € X. The I'-lower and T'-upper limits of (F},) at u, denoted by I'-liminf £}, (u)
and I-limsup F),(u), are defined by

I-liminf F,(u) =inf {lim inf Fy,(up) : up — u} ,

n—oo n—oo

I-limsup F),(u) =inf {lim sup Fy,(up) : upy — u} .
If T-liminf, F,,(u) = T'-limsup,, F,,(u) then the common value is called the I'-limit of
(F,) at u, and is denoted by I'-lim, F,(u). Note that this definition is in accord with
Definition 2.10, and that (F},) I'-converges to F' if and only if F'(u) = I'-lim,, F,,(u) at all
uecX.

Remark 2.13. Let F,, : X — [—00, +00] be a sequence of functionals on X.

(a) Let G : X — [—00, +00] be continuous with respect to d and (F),) I'-converges to F.
Then I'-lim, (F, + G) = F + G.

(b) Let F,, = Fy for all n € N. Then (F,) I'-converges to the lower semicontinuous

envelope F'y of Fy, i.e.
F1(u) = sup{G(u) : G is lower semicontinuous and G < F}}.

(c) The I'-lower and I'-upper limits are lower semicontinuous.

In this thesis, we consider T'-limit of higher (first) order. This is motivated by the
following result.

Theorem 2.14. Let F,, : X — (—00,+00] be a sequence of d-equi-coercive functions and

let F =T(d)-lim, s00 F,. Let my, = infx F,,, m* = min F and denote \, = % Suppose
that for a > 0 there exists the I'-limit

F — 0

Fo =D(d)- lim 2"

(0%

N—00 A ’

n

and that the sequence F = (F,, —mP%) /A is d'-equi-coercive for a metric d’ which is not

weaker than d. Define m® = min F'* and suppose that m® # +o00o; then we have that
mp = m° + X2m® 4 o(\Y)

and from all sequences (uy,) such that F,(up) — my = o(\,) there exists a subsequence

converging in (X, d') to a point u which minimises both F and F.
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2.3 Lower semicontinuity and relaxation

In this section, we give a relaxation result for integral functionals defined on W11(Q)

which is used at several occasions in the remainder of the thesis.

Proposition 2.15. Let f : R — RU {400} be convex, lower semicontinuous, monotone

decreasing with

lim —* =400 and lim f(z)=ceR. (2.3)

zZ——00 z| z——+00

f(2)
|
Let F : BV (a,b) = RU{+oc0} be defined as

b
Flu) = /a fdz if u e WH(0,1),
+o00 else.
Let the functional F : BV (a,b) — RU {400} be defined as

b
(u) — /a f(u )dl‘ ifue BV(a’b)} Dsu >0,

400 else.

]?

Let F denote the lower semicontinuous envelope of F with respect to the weak* convergence
in BV (a,b). Then it holds F = F.

The above Proposition can be deduced from [34, Theorem 1.62]. For the convenience
of the reader, we present a self contained proof here. We follow the arguments of [33,

Theorem 2.4], where a similar result is proven for functions f : (0,4+00) — R.

Proof. Let us first show F < F. By definition of F it holds F < F and it is left to show
that the functional F is lower semicontinuous with respect to the weak™ convergence in
BV (a,b). Indeed, from (2.3), we deduce for the recession function fo, of f that

_ i if p < 0,
foo(p) == lim f(po + tp) — f(po) _ o0 1 p
t—+o00 t 0 it >0,

with pp € dom f arbitrary, see [3, Definition 2.32]. For given u € BV (a,b), we have that

F(u) = H(Du) = /abf(Dau)dz: + Y feo(DIu({a}) + /ab S <DZ> d|D°ul.

TES,

Since u, — u in BV (a,b) implies Du, — Du in M(a,b), we have that lower semiconti-
nuity of H (with respect to weak* convergence in M(a,b)) implies lower semicontinuity
of F (with respect to weak* convergence in BV (a,b)). Since f is decreasing, we have
that f : R — [¢,+00]. In the case ¢ > 0 the lower semicontinuity of H follows by [3,

Proposition 5.1, Theorem 5.2]. If ¢ < 0 we apply the above cited lower semicontinuity
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results on the functional 7 which is defined as # but f is replaced by f : R — [0, +00]
with f (z) = f(2) — ¢. Since H and H share the same lower semicontinuity properties the
assertion follows.

Let us show that F' < F. To this end, we provide for every u € BV (0,1) a sequence
(uy) such that uy - u weakly* in BV (a,b) and

limsup F(uy) < F(u). (2.4)
N—o0
Without loss of generality, we can assume that D®u > 0 on (a,b), otherwise the above
inequality is trivial. Let (gn) C L'(a,b) be such that gy > 0 on (a,b) and gyL' = Du
weakly” in measure on (a,b). Let xg € (a,b) be a Lebesgue point of u. We define the
sequence (uy) C Whi(a,b) by

x
un(x) = u(xp) +/ u'(8) + gn(s)ds.
o
Since gy is equibounded in L'(a,b), we have that [[un||y11(qp) is equibounded and thus
there exists a subsequence, not relabelled, (uy) which weakly* converges in BV (a,b) to
some v € BV (a,b). From uy(zo) = u(xg) for all N € N and Duy = (v/+gn)L! converges
weakly® to Du in measure we deduce that v = w. Since v}y = v + gy and gy > 0 by

construction, we deduce from the monotonicity of f that

b b
Fluy) = / F(uly)dr < / f(uydz = F(u)

for every N € N. This yields inequality (2.4). O






Chapter 3

On Lennard-Jones type systems

and their asymptotic analysis

3.1 Setting of the problem

We consider a one-dimensional lattice given by A,Z N [0,1] with A, = 1 and interpret
this as a chain of n + 1 atoms. We denote by u : A,Z N [0,1] — R the deformation of the
atoms from the reference configuration and write u(i\,) = u’ as shorthand. We identify

such functions with their piecewise affine interpolations and define
An(0,1) :={u € C([0,1]) : wis affine on (i,7 + 1)A,, i € {0,...,n—1}}. (3.1)

For a given K € N, K > 2 the energy of a deformation u € A,(0,1) is defined by

K n—j witi i
Ho(u) =Y A () , (3.2)
— = JAn
7=111=0
where Ji,...,Jg are potentials of Lennard-Jones type which will be specified below.

In analogy to [50], we impose the following boundary conditions: for given ¢ > 0 and

up! = (DI ol = )G € R we set

(3.3)
w—uh = )\nugg, T T )\nu&) forse {1,...,K —1}.

Note that (3.3) yields 2K boundary conditions. This compensates the fact that the first
(last) K atoms in the chain have more interactions with atoms on the right-hand side (left-
hand side) than on the left-hand side (right-hand side); cf. e.g. [22] for a further discussion
of boundary conditions in discrete systems beyond nearest neighbour interactions. In [11]
the energy H, is studied in the case of nearest and next-to-nearest neighbour interactions
(K = 2). The authors consider two different boundary conditions: (i) Dirichlet boundary

conditions on the first and the last atom only, and (ii) periodic boundary conditions. In

27
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AZ N [0,1]

FIGURE 3.1: A chain of n + 1 atoms.

the case of fracture, it is shown that either the crack appears at the boundary (case (i)),
or fracture appears indifferently everywhere (case (ii)). On the contrary, the extra degree
of freedom in the boundary conditions (3.3) allow for both behaviours, see [50, Theorem
5.1] for the case K = 2 and Theorem 3.118 for the general case K > 2.

For given ¢ > 0 and ué ), (11) RE~! we consider the functional HY. : L'(0,1) —
(=00, +0o0] defined by

Hy(u) if u € A,(0,1) satisfies (3.3),
HE (u) = (u) (0,1) (3.3) (3.4)
400 else.

Before we state the assumptions on the interaction potentials J; let us rewrite the
energy H,, in a suitable way. For given j € {2,..., K} and u € A,(0, 1), we can rewrite

the nearest neighbour interactions in (3.2) by

S (452) -5 (5 8 (5

L5 s un—s+1 — yn—s
+ Z L2 () . (3.5)
= An
Indeed, this follows from the following calculation with a; = )\njl(“Hi:“i)
n]z—i—] 1 1n 7 j—1 1] 1 n+s—j
*Z doas =) > ams=5), ) a
=0 s=1 J 1=0 s=0 s=0 1i=s
1 Jj—1n-1 1 j=1 [ s-1 n—1
SO IWEE) NI STD St
s=0 i=0 s=0 1=0 i=n+s—j+1
n—1 i—1

=l
= Zai — Z J ; {ai—1+ an—i}. (3.6)
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Let ¢ = (cj)]K:2 € Rf_l be such that ZJKZQ ¢; = 1. Using (3.5), we can rewrite the energy
(3.2) as

K n—j Z+j —u i+j—1 u®
Hn(“«):Z )\n{Jj< ) >+Z)\J1< )}
K j—1 . . s _ .5—1 n—s+1 _ , n—s
+ ch J 7 S)xn {J1 <u )\u > +J1 (u}\u) } (3.7)

For given j € {2,..., K}, we define the following functions

J
Jo,j(2) = J;( 1nf {Z J1(zs), Zzs :jz} : (3.8)
s=1

Note that the definition of Jp ; yields a lower bound for the terms in the sum from i = 0

toi =mn—7in (3.7). In the case of nearest and next-to-nearest neighbour interactions,

i.e. K =2, we have co = cx = 1 and
1,
J()(Z) = J()?Q(Z) = JQ(Z) + 5 inf {Jl(zl) + Jl(zg), 21+ 290 = 22},

which is exactly the effective energy density Jy which show up in [11, 50].
Let us now state assumptions on the potentials J; for j € {1,..., K}:

(LJ1) The function J; : R = (—o0,4+0], j = 1,..., K be lower semicontinuous and in
Ch* 0 < a <1 on their domains, i.e. on dom J; = {z € R: Jj(z) < +oo}. It holds
dom J; = dom J; for j = 2,..., K and (0,+00) C domJ;. Moreover, we assume
that

ZETOOJ()—O,]:L...,K (3.9)

(LJ2) The potentials J;, j = 1,..., K are such that there exists a convex function W :

R — [0, +o00] and constants d, ds such that

lim (z)

2——00 ‘z|

= 400 (3.10)
and
di(¥(z) — 1) < Jj(2) < dgmax{¥(z),|z|} forallzeR j=1,...,K. (3.11)

Further, J; has a unique minimum point ¢; and it is strictly convex in (—o0,d;) on

its domain for j =1,..., K.

(LJ3) There exists ¢ = (cj)]K:2 € Rf_l such that 25{22 c; = 1, and Jy; defined in (3.8)
satisfies the assumptions (LJ4) and (LJ5) for j € {2,..., K}.
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(LJ4) There exists a unique v > 0, independent of j, such that
{7} = argmin Jy ;(2). (3.12)
z€R

Furthermore, there exists v¢ > 7 such that for z € (—o0,~¢] N dom J; it holds:

(z1,2)€ERT | 521 s=1

J J
{(#z,...,2)} = argmin {ZJl(zs) : Zzs—jz}. (3.13)
This implies Jy j(z) = ¢;(2) for z < ~¢, where ¢; : R — (—o00, +00] is defined by
¢J(Z) = JJ(Z) + Cle(Z). (3.14)

(LJ5) The convex and lower semicontinuous envelopes Jg% and ¢7* of Jo; and ¢; satisfy

Yi(z) if 2 <,

Joj(2) = ¥57(2) = _ (3.15)
biy) 2>,
Furthermore, 1; is strictly convex in (—o0,7) on its domain and it holds
lim inf Jo ;(2) > Jo;(7)- (3.16)

Remark 3.1. Let Ji,..., Jk satisfy the assumptions (LJ1)-(LJ5).

(a) We have that {y} = argmin, Jop(z), where v is given in (3.12) and Jep : R —
(—00, +00] is defined by

Jop(z) :

i
™
S
O

(3.17)

and is called Cauchy-Born energy density, see e.g. [59]. Indeed assume for contra-
diction that there exists 4 € arg min Jop such that 4 # . Using Z]KZQ cj = 1 and
(3.12), we obtain

Jj=2 Jj=2 Jj=2

which is a contradiction. Moreover, it holds

K )

Jep(z) ifz <y
Jen(z) = wi(z) = 3.18
el = v ) Jep(y) if 2> . (3.18)

From (3.9), Jo; < %; and (3.16), we deduce that

Yi(v) = Joj(v) <O0. (3.19)
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(b) From (LJ4), we deduce that {v} = argmin, ¢;(2) for all j € {2,..., K} and thus,
by (LJ1), that

0=1v;(v) = Jj(v) + ¢ Ji(y) Vie{2,...,K}. (3.20)

From equation (3.20) and ¢; > 0, we deduce that Ji(7) # 0 implies Ji(y) # 0 for
all 7 € {2,..., K}. In this case ¢ = (cj)JK:2 is uniquely determined by

(3.21)

Note that {7y} = argmin, Jop(z) implies Z]KZQ Ji(v) = =Ji(v) and thus ZJKZQ cj =
1 for ¢; as in (3.21).

(c) The assumptions (LJ1) and (LJ2) imply that either domJ; = R or there exists
. < 0 such that dom J; = (74, +00) or dom J; = [ry, +0o0) for all j € {1,...,K}.

Next, we show that the assumptions (LJ1)—(LJ5) are reasonable in the sense that they
are satisfied by the classical Lennard-Jones potentials.

Proposition 3.2. Forje {1,...,K} let J; : R = RU {400} be defined as

Ji(z) = J(jz) with J(z) = i

k
_2725’ for z>0 and J(z) = +o0o for z <0 (3.22)

and ki,ko > 0. Then the there exists a unique v > 0 such that the assumptions (LJ1)-
(LJ5) are satisfied with ¢ = (cj)]K:2 given as in (3.21). Moreover, it holds v < d1, where
61 is the unique minimiser of J, and ¥j(y) >0 for all j € {2,..., K}, see (3.14).

Proof. By the definition of J;, j € {1,..., K} it is clear that they satisfy (LJ1) and (LJ2).
Note that the unique minimiser ¢; of J; is given by

1
1 /2k\6 1
5] = - <1> = 7.517
7\ k2 J
and J is strictly convex on (0, z.) with z, = (%)%51 > 01. Let us show (LJ3)—(LJ5). The
function Jop is given by
K K K
. ky 1 ko 1
Jop(z) =) J(jz) = ﬁZp - ;Zj?)-
j j=1 j=1

Jj=1

12

Hence, Jop is also a Lennard-Jones potential with the constants ki = ky ZJK:1 77 and

ko = ko ZJK: 1778 The unique minimiser v of Jop is given by

~ L ZK 1 %
2kq o 2k j=1 512
— —_ = _— —_—— . -2
, <k> (%) ( -3, 529

2 =178

o=
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Since v < d; it holds J'(y) < 0. For given j € {2,..., K}, we have that
K

1
1 1
1 1 s Z ‘:lj—m 6
(5'§52:51<<) h<|Z=Z——] =1,
’ 2 ¢(6) S

where we denote by ((s) = >_,~;n ° the Riemann zeta function and we used ((6) =

9“7:35 ~ 1.017. Since J; is strictly increasing on {z € R: 2z > §;} this implies that Ji(v) =
T . Jj .
JJ'(4v) > 0 for j € {2,...,K}. Hence, we have ¢; := —Jigg >0for j€{2,...,K} and

it holds Z]KZQ cj =1 (see Remark 3.1 (b)).

Let z < 61, where d; denotes the unique minimum of J. We show (3.13) for j = 2,..., K.
Firstly, we note that the existence of a minimiser is clear since z; > 0 for s € {1,...,j}.
Let z < §; and (z1,...,%2;) € arg min{zgzl J1(zs) - g:l zs = jz} (see (3.13)). By the
optimality conditions, there exists A € R such that J'(z5) = A for s € {1,...,5}. From
22:1 2s = jz < jd1, we deduce that there exists j € {1,...,5} such that z; < d1. Since
J' >0 on (61, +00) and J' strictly increasing and < 0 on (0, 1), we deduce that z; = z;
forall s=1,...,5. Hence, z; = z for s =1,...,j. The case z = 41 is trivial.

Let us show that « is the unique minimiser of Jp ; for j = 2,..., K. From the definition
of Jo j and since J is increasing on (d1, +00), we deduce Jo ;(2) > J(jz)+¢;J(01) > Jo,;(61)
for z > §;. Thus it is enough to consider z < §; in order to find the minimum. Since

Jo,j(2) = Jj(2) + ¢;Ji(2) = ¢(z) for z < 67 it holds

Jo’j(z) = ﬂ)J(Z) = % <]12 + Cj> - % <‘716 + Cj>
for z < 4;. This is again a Lennard-Jones potential, thus it has only one critical point
which is a minimum. Since ¢; is defined such that Ji(y) + ¢;Ji () = 0, we deduce that y
is the unique minimiser of Jy; and ¢; for j € {2,..., K'}. Hence, we have shown (LJ4),
where we set v¢ = d; > ~. Since 9; is a Lennard-Jones potential with minimiser v, we
obtain that 17 >0 on (0, (%)%’y) Hence, ¢7/(y) > 0 for all j € {2,..., K}.

Let us show (LJ5). Since ¢; = J; + ¢;J; is a Lennard-Jones potential with minimiser
v, we have that ¢7*(z) = ¢;(2) if 2 < v and ¥j*(z) = ¢;(v) for = > 7. Combining
Joj(2) < 9j(2) and ¥;*(2) < Jo(z) for all z > 0 yields that Jg% = ¢7*. It is left
to show that liminf, , o Jo(2) > Joj(y) for j € {2,...,K}. Let (2,) be such that
lim,,—y o0 2, = +00 and

Ui o) = Jig, Josen)

By the definition of Jp; there exists for every n > 0 and n € N a tupel z; with s €
{1,...,7} such that
J

, j
Joj(2n) > Jj(zn) + %?Z Ti(z5) = with 25 =z

s=1 s=1
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From z, — oo, we deduce that, up to subsequences, there exists s € {1,...,5} such
that 2z — 400 as n — oco. Without loss of generality we assume that s = 1 and from

lim, o J(z) = 0, we deduce

j ,
: —1

liminf Jo j(z,) > % lim infz Ji(z,) —n > cjj 7 J1(61) — 1.

5=2

n—oo ] n—oo

Since J;j(01) < 0 for j =1,..., K the assertion follows by choosing n = —3.J;(6) and

) —1 j—1 1 C;
T I (81) = e () ~ 0 5 () + T

=J;(01) + ¢;J1(61) > ¥;(7),
and since 1;(v) = Jo ;(7), the assertion is proven. O

Remark 3.3. A further example of an interatomic interaction potential is the so-called
Morse potential[44], given by

ka(2—01) ) 2
Jj(z) = J(jz) with J(z) =k1 (1 — e 2 1)) —k forzeR (3.24)

and ki, k2,01 > 0. The definition of J implies ming J = —ky, argmin, J(z) = {01} and
the potential J has the same convex/concave shape as the Lennard-Jones potential. It is
straightforward to check that Ji,...,JJg given in (3.24) satisfy (LJ1) and (LJ2). Using
the convex/concave shape of J and similar arguments as in the proof of Proposition 3.2,
we can show that the crucial assumption (3.13) holds true for all z < §;. Moreover, in
the case K = 2 the potentials J; and .Js satisfy all assumptions (LJ1)-(LJ5).

Contrary to the Lennard-Jones potential the Morse potential does not satisfy the as-
sumptions (LJ3)—(LJ5) for all choices of parameters ki, k2,01 > 0 in the case K > 2.
To illustrate this, we set d; such that 1 € argmin, Jog(z), where Jop(z) = Zfil J(jz).
This implies

K K - _ik
y . ]_ . e JR2
0=J5p(1) =2kiky Y j (eﬂkz _ efzmekzal) o 5= o ( > =1 > |

K o—2jk
=1 > ek

Next, we derive a necessary condition for (LJ3)—(LJ5) to hold. Assume that Ji,..., Jx
given in (3.24) with 0; as above satisfy (LJ1)—(LJ5). Then it holds v = 1 < §; and thus
J'(1) < 0 (otherwise Jiz(1) > 0). Hence, ¢ = (¢;)i, is given by (3.21) and ¢z > 0
implies J5(y) = 2J'(2) > 0, i.e. §; < 2. This yields a nontrivial condition on ks. Indeed,

we have in the case K = 3:

1 < e k2 4 2e72h2 4 33k )

01 = ks In e—2k2 + 9e—4ka | 300k

—ko ) —2ko 3 —3ko
oty <e + 2e + 3e )

1+ 2e=2k2 4 3e—4k2
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Hence, 01 < 2 is equivalent to
e 4 3e73 « 14372 o 0<ett— e 13 3R o 0< (32 —3)(ef2 1)

which yields kg > ln3 as a necessary condition for (LJ3)—(LJ5) to hold in the case K = 3.
Note that the cond1t1on 01 < 2 is ensured by kg > ln( f) for all K > 2. Indeed,

K . _ik oo - —dk 00 .
1 Z‘:1]€ ]2> 1 (Z‘L?e iz 1 o N\J
R = e el e e R I D] ()
k’Q <Z§(zlje_2jk2 k? e 2k2 k?Q ;
<2+ — ln = 2.

For the last equality, we used Zj 1id = 1 )2 if |g| < 1 (variant of geometric series)
and that ¢ = 2= \f satisfies ——5 = 1.

(q)

3.2 [I'-limit of zeroth order

In this section, we give a description of the (zero-order) I'-limits of the sequences (H,)
and (HY), see (3.2) and (3.4). In [14], Braides and Gelli provide a T'-limit result for
functionals of the form (3.2) under very general assumptions on the interaction potentials
Jj. In Theorem 3.5, we refine their statement in the particular case of Lennard-Jones
type potentials, that is (LJ1)—(LJ5) holds true. In the spirit of [50, Theorem 3.1], the
result by Braides and Gelli can be extended to the sequence (Hf;) However, we give in
Theorem 3.7 a self contained proof of this result which makes use of the specific structure
of the interaction potentials.

3.2.1 TI'-limit of H,

The following result is a direct consequence of [14, Theorem 3.2].

Theorem 3.4. Let J; : R — (—o00, +00] be Borel functions bounded from below and satisfy
(3.9). Assume there exist a convex function ¥ : R — [0,+00] and constants d*,d*> > 0
such that (3.10) and (3.11) hold true. Then the I'-limit of the sequence (Hy,) with respect
to the L} (0,1)-topology is given by the functional H defined by

/ o(u'(x))dz  if u € BVipe(0,1), D3u >0 in (0,1),
else on L1(0,1),

where D%u denotes the singular part of the measure Du with respect to the Lebesgue
measure and the function ¢ is defined as ¢(z) = inf{p(21) + g(z2) : 21 + 22 = 2}, where



Chapter 3. On Lennard-Jones type systems and their asymptotic analysis 35

g(z) =0 for z >0 and g(z) = +oo for z <0, and ¢ = F—]\}im oN with
—00

1 K Z”Lj—u
on(2) mm{ Z J]( >: u: Ng — R,
j=1 =0
u' = zi z'fz'e{O,...,K}U{N—K,...,N}}. (3.25)

Next, we show that ¢ can be solved explicitly for potentials J; which satisfy the as-
sumptions (LJ1)—(LJ5), which includes in particular the Lennard-Jones potentials, cf.
Proposition 3.2.

Theorem 3.5. Let J;, j =1,..., K satisfy the assumptions (LJ1)-(LJ5). Then it holds

with ¢ and ¢ as in Theorem 3.4 and Jop as in (3.17).

Proof. Let us first show that ¢ = J&3. We begin with proving the lower bound of
the T'-limit, i.e., we show that for every sequence (zx) C R such that zy — z it holds
liminfy 00 ¢ (2n) > JE5(2). By a similar calculation as in (3.7), combined with the
definition of Jy j, (3.15) and setting C' = J;(61) Z] 5 ¢j(j — 1), we obtain

A
=
]~
=
d
—
S~
N
:&
+
o, =
|
:@.
N—
_|_
Ks
M
<
B
+
:flj
—
_|_
| Q

7=2 =0 s=1
K N—j :
1 oy (U — C
> 5o () +
7j=2 1=0
>§:N—J+1N_j 1 **(“H]_UI)JFC
_j:2 N z:oN_j+1 ’ J
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In the last inequality, we have used v’ =iz for i € {0,..., K} U{N — K,..., N} and

N—j N— jj*l j—1 N—j+s
Z +j witits uz‘—i—s Z Z W i
=0 =0 s
=1 [ s—1 N-1
=j ( i+1 uz) _ Z Z(uz-i-l _ uz) + Z (uz—H _ uz)
i=0 s=0 | i=0 i=N—j+s+1

for j € {2,...,K}. Hence, we have ¢n(z) > Z]KZQ(l - %)@D}‘*(z) + % Since the right-
hand side is convex and lower semicontinuous, we have ¢3(z) > ZJK o(1— ;1)1/1**( )+
The lower bound follows from the lower semicontinuity of ¢;* and Z =2 Y3 = Jip, see
(3.18).

Let us now show the upper bound. In the case z < «, we have by (3.18) that J&5(2) =
Jop(z). Hence, testing the minimum problem in the definition of ¢y, see (3.25), with
uy = (iz)Y, yields

N—j

K
ZJJ() Jep(z %Zj—l

3 7=2

M=

F(2) <on(2) < 1)
J

Il
=

1 K

=TE5(2) = D0 = (2.
=2

.

Since dom J; = dom J; for j € {2,..., K}, this implies the limsup inequality in this case.
If z > v, we can test the minimum problem in the definition of ¢ with uy satisfying
the boundary conditions in (3.25) and being such that uly = Kz + (i — K) for all
i=K,...,N — K — 1. This yields

1 K N-K—-1—j 1
ON (2) <on(2) < D Ji() + 5 f(2)
j=1 =K
1 K
=Jop() + > QK +)J;(0) | .
j=1

where f(z) is continuous on dom Jop. Hence, the upper bound follows also for z > v and
we have ¢ =

It is left to show ¢ = J&'5. Assume on the contrary that there exists z € R such that
¢(2) < JEhs(2). By the definition of ¢ and g this implies that there exists 21 < z such
that J&5(21) < JEp(2). Since JEz(x) > Jop(y) for all € R and J&5(x) = Jop(7y)
for x > v it must hold z < v and J&5(2) > Jog(y). Combining 23 < z < 7 and
JEB(y) < JEg(21) < JE(2) yields a contradiction to the convexity of J&5. O
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Remark 3.6. Let us consider the case of Lennard-Jones potentials given by (3.22). For
a given C'*°-diffeomorphism u defined on (0,1), the pointwise limit of (Hy,(u)),, in the
spirit of [6, Theorem 1], is given by

1
Hp(u):/0 Jop(u' (x))dz.

By standard relaxation arguments, it can be shown that the minimisation problems cor-

responding to H respectively H,, enjoy the same properties, see also [7, p. 413].

3.2.2 TI-limit of H!

Let us now study the T-limit of the sequence (H!) which takes the boundary conditions
(3.3) into account. As mentioned above, we could make use of the convergence result re-
garding (H,,), see [11, 50]. However, we present here an explicit proof of the corresponding

statement, which in particular make no use of the homogenisation formula given in (3.25).

Theorem 3.7. Suppose that the hypotheses (LJ1)-(LJ5) hold. Let £ > 0 and uél), ugl) €
Rffl. Then the T-limit of (HY) with respect to the L'(0,1)-topology is given by

1
/ JEs (W (x))dz  if u € BVY(0,1), D% >0 in [0,1] ,
0

H(u) = (3.26)
+o0 else on L1(0,1).
Moreover, the minimum values of H' and H* satisfy
lim inf H: (u) = min H (u) = J&5(0). (3.27)
n—,oo u u

Proof. Compactness. Let (u,) C L'(0,1) be such that sup,, H:(u,) < +oo. In partic-
ular this implies u, € A,(0,1). Let us show that |[(u;,)”[|11(0,1) is equibounded, where
(up,)” :== —(ul, A0). Since J; is bounded from below for j € {1,..., K}, we deduce from

n

the equiboundedness of the energy, (3.11) and Jensen’s inequality that
i+l i
c > Z Ao Ji <un)\un> > d, U </ u%dx) —dy,
iub <l " {ur, <0}

for some C' > 0 independent of n. By (3.10), we have that f{u, <0} |u! |dz < C' for some
constant C’ > 0 independent of n. Moreover, by using the boundary conditions u, (0) = 0

and u, (1) = ¢, we obtain

/ uﬁldxzé—/ upde < 0+ C'.
{ur, >0} {u, <0}

Since u,(0) = 0, we obtain by the Poincaré-inequality that [un||y1.1(0,1) is equibounded.

Thus, we can extract a subsequence, not relabelled, which weakly* converges in BV (0, 1)
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to some u € BV(0,1), see Theorem 2.6. Note that in particular this implies u, — u in
L'(0,1). It remains to verify that « € BV*(0,1). This can be done as in [50, Theorem
3.1]: since uy,(0) = 0 and u, (1) = £ for all n, we can define the function @, € W1>°(R) as

0 if 2 <0,
Un(z) =  uy(z) if z € (0,1), (3.28)
V4 if x> 1.

Then we have that u,, weakly* converges in BV (—1,3) to the extension @ of u and from
this we deduce that
u(0—) = tg%ﬂ u(t) =0 and wu(l+)= tLHﬂ u(t) = L.
Liminf inequality. Let u € L'(0,1) and (u,,) be a sequence such that u, — u in L(0,1).

We have to show
lim inf HY (u,) > H(u).

n—oo
Hence, it is not restrictive to assume that lim,, Hﬁ(un) exists in R. By the compactness
property, we have u € BV¢(0,1) and u,, — u weakly* in BV(0,1). By (3.7), the definition
of Jo ; (see (3.8)) and (3.15), we obtain

L ui+j — Ci i1 wstL — s
RIS 3 3i8 £ A B Sy A e
=2 i=0 JAn Y n
K nzj Ui+j —
>3 D i | T O
=2 i=0 n
j

K i—1 i+j i

where C' = Z;ig cj(j —1)J1(61) and
Ry (01 = {5 € 5+ 47, (iyi+ ) € [0,1]}. (3.50)

With a slight abuse of notation, we identify in the following u,, with the extension @, €
W1>°(R) defined in (3.28). For given j € {2,..., K} and s € {0,...,j — 1}, we define the
functions uy, ; € WL (R) as the affine interpolations of u, with respect to \,(s + jZ),

ie. .
x—(s+ji)\n

uy, ;(x) = uptt +

for x € A\p[s+ji,s +j(i+ 1)) with i € Z.

Fix j € {2,...,K} and s € {0,...,5 — 1}. Let us show that Uy, ; X u weakly* in
BV(0,1). Since u,, — w in L*(0, 1), it is sufficient to prove that sup,, g, ;' w10,y < +00
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and limy, o0 [|[un —uy, ;l/1(0,1) = 0, see Proposition 2.5. Fix i > 0. For n sufficiently large,
we have that

/ Wy
S . n
”“n,j ||L1(*?771+n) < Z JAn n
ie{s+jZ}; L (—2n,142n)
i+j—-1 s+1 s
u;Tt —u
< Z An Z n)\inn < ||U;LHL1(O,1)' (3.32)
S=1

ie{s+jZ}; 1 (—2n,1+2n)

Note that we used for the last inequality that u;"™! —uf =0 for i ¢ {0,...,n — 1}. From
the compactness proof, we deduce sup,, |[uy, 1101y < +00 and thus that the right-hand
side above is equibounded. Hence, we have sup,, |[u;, ;|| L1 (—y,144) < +00. From u,(z) =0
for # < 0 and the definition of u;, ;, we obtain that uy, ;(—%) = 0 for n sufficiently large.
Hence, the Poincaré-inequality yields that sup,, [lug, ;[lw11(—p 14 < +00. Let us now

estimate |[un, — u;, ;llL10,1)- By using un(idn) = uy, ;(iAn) for i € {s + jZ}, we obtain

1
/ |up, ; — un|dx
. :
<

(i+j)>\n
< 3 /

. . _ iAn
ie{s+iZ}Mn  (=n,14m)

u% +/ uf%j/(t)dt — (uﬁl +/ u;(t)dt> ’ de
iAn .

(i+)An | fo -
i {s iz (—m L) T n iXn

(i45)An (i45)An
< ( [ o)+ ru’nos)rdt) dr

i€{s+iZYNAn " (—n,1+n)

. G /
< S P /M s/ (8)] -+ [ul, () dt

ie{s+jZ}Y At (—n,14n)

dx

142n
< 2j/\n/ ! Jdz — 0 (3.33)
-n

as n — oo. Altogether, we have for j € {2,...,K} and s € {0,...,j — 1} that Uy, ; S
weakly* in BV (0,1).
Fix j € {2,...,K} and s € {0,...,j — 1}. By the definition of u; ; and max{i : i €

wa-([O, 1)} = L"fjsfjj, we have

n—s

i+ An|
> i (“n“n> 2/ T (ud ) (a) da

An
i€Rs_(0,1)) J
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Forevery > p > 0 there exists an N € N such that \ps < p<1—p <A, L

n > N. Since 7 is the unique minimiser of ¢; and v;(v) < 0, we have

2] for all

nlne I-p
Lo e sz [T ) dos 2000)
s p

An

Since 7™ satisfies the assumptions on f in Proposition 2.15 and uj, ; converges weakly®
to u in BV (p,1 — p), we obtain that

1+7 _u‘

. . . *ok Un iL . . 1=p *kk s /
l%ni}gf Z JAnY; TN > hnrggolf Vi (up, ;' () dx + 2p1; ()
ieR;, ;([0,1)) g

1-p
> /,, (! (2))dz + 200 (7)

and D*u > 0 in (p,1 — p). By taking the limit p — 0, we obtain that D*u > 0 in (0, 1)

and

H-J ul
liminf ) J/\nw( ) /w

i€R: ,([0,1])

Altogether, we obtain by (3.29) that

[y

.

lim inf HY (u,) >

n—oo

B

[|
N

1+] i
. . e | Un Uy,
lminf > A <M>

i€R;, ;(10,1])

S =

J

/1 (@) dx

13
1JK 1
:/ Z dx_/o T (! (2))da

and the constraint D®u > 0 in (0,1). It is left to show that D%u > 0 in [0,1]. For
this, we argue as in [12, Theorem 4.2]. We set I = (—1,2) and A,(I) = {u € C(I) :
w is affine on (2,7 + 1)A,, ¢ € {—n,...,2n — 1}}. Moreover, we define the functional
Hy(u,I) : LY(I) — (=00, +00] as

gM“ lM

2n—1

Hy(u, ) = ZJl( ) if u € An(I),

1=—n

+00 else.
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From [13, Theorem 3.7], we deduce that (Hy(-,I)), I'-converges to H(-,I) with respect
to the Li

1oc (I )-convergence, where

JF( (2))dz  if u € BVipe(0,1), Du > 0in I,
RPN § EaTE 0.1
400 otherwise.

For a sequence (u,) C L*(0,1) satisfying sup,, H. (u,) < +o0 and u, — u in L'(0,1), we

define the auxiliary functions

on(z) = up(z) for x €[0,1], o(z) = u(z) for x €[0,1],
U ) forz e R\ (0,1), e forzer)(0,1).

Using v, — v in L (R), J; > J;(8;) (see (LJ2)) and v}, = £ on (—1,0) U (1,2), we obtain

lirginf HE (uy,) + 2J1(0)

2n—1 UH_I i K n—j
> liminf Y AnJy (An> +hnrg1£fZZAnJ] )
J

i=—n j=2 i=0
K K
zlﬂgfﬂn(vn,I)JrZQJ((s ) > H(v,I) +ZJ]
J= Jj=

Since the left-hand side above is equibounded, we deduce that D*v > 0 in I = (—1,2).
Since D*u is the restriction of D®v to [0, 1] it follows that D*u > 0 in [0, 1]. This finishes
the proof of the liminf inequality.

Limsup inequality. Tt remains to show that for every u € BV*(0,1) with D%u > 0 there
exists a sequence (uy,) such that u, — u in L'(0,1) and limsup,,_,., H’(u,) < H(u).

Firstly, we do not take boundary conditions into account and show that

I-limsup Hy(u) < H(u). (3.34)

n—oo

where H,, is defined in (3.2) and the functional H : L*(0,1) — R U {400} is defined by

1
[ st @yt itue BV, Duzo,
H(U) = 0

400 else.

By Proposition 2.15 it is sufficient to show (3.34) for v € WH1(0,1).
Let u be such that u(x) = zx + w with z <. Then u € A,(0,1) for every n € N and
it holds

K n—j

'L+.] —Uu K
/\nJ]( ) S (= + DAndi(2) = Jes(z),
j=11i=0 J=1
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as n — 00. Let us now consider u such that u(x) = zx +w with z > 7. Since J&5(2) =
Jop(7) for all z > +, we have to construct a sequence u,, converging to u such that u], — v
in measure in (0,1). Let (/V,) C N be such that

lim N, = +o0 and lim A\,N, — 0. (3.35)

n—oo n—oo

Furthermore, we define the sequence (r,,) C N given by
rni=sup{r e N: rN, <n}.

Clearly, the definition of r,, and N, yields lim, oo A\nrn N, = 1. Set tiL = iN, for i €
{0,...,7, — 1} and tj» = n. Define u, € A,(0,1) such that u,(x) = u(x) for x €
Aptrn=1 1] and

Un () = u(Aptl) + y(x — Aot for x € [t8,t7+1 — 1]\, and i € {0,...,r, — 2}.

n»“n

By the definition of u,, and u, we have |[u, — u||Lec0,1) < AnlNp|z — 7| and thus u, — u
in L'(0,1). From the definition of wu,, (3.35) and lim, A\,7, N, = 1, we deduce

K n—j i+ K rp—2t0t

>3 (M )ZZZH 1o
j i j=1m=0 i=tm

K

—ZNn DA (7) +7(n)
=JoB<v> +r(n) +o(1),

where 7(n) is defined by

EE AR EE (5

j=2m=14i=t"—j th

It is left to show that r(n) tends to zero as n tends to infinity. By construction of u,, it
holds U"Hn n >~ for all i € {0,...,n — 1}. This implies, using v > 0 and (LJ1), that
sup,, >; Jj ( S ) < 400 for j € {1,...,K}. Hence, r(n) = O(Aprn) + O(AnIN,,) =
o(1). Indeed, thls follows by (3.35) and 0 < A\, < N, 'A\pn = N, L.
The above procedure can be applied, up to slight modifications, to any function u €
C([0,1]) which is piecewise affine. The statement for v € Wh1(0,1) follows by usual

density and relaxation arguments which we briefly outline in this case: let u € W1(0,1)

be such that H(u) < +oo. Let uy be the piecewise affine interpolation of u with respect
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to NZ with some N € N and set ¢; := ﬁ By Jensen’s inequality, we obtain that
1 t;
1) = [ gl =3 [ T @)

N t; 1
>y e (i [ @) = [ s = )
- pary N t; —ti_1 i1 0

Since uy — u weakly* in BV (0,1) as N — oo, the lower semicontinuity of the I'-lim sup
yields

1
I-limsup Hy (u )<hm1nf (F— limsupHn(uN)> < limsup/ s (W) dx
0

n—00 N—oo n—00 N—o00

1
< /0 JE (e = H(u).

Next, we show that there exists for every u € BV*(0, 1) a sequence (u,) such that u, — u
in L1(0,1) and limsup,, H: (u,) < H(u). We follow ideas from [12, Theorem 4.2] where
the case of nearest neighbour interactions is considered. Let u € BV*(0,1) be such that
H'(u) < 400, 0 < u(0+) and u(1—) < ¢. The above arguments provide a sequence (uy,)
such that u,, — v in L(0,1) and

. K u?—] — Uy ! *ok !
lim supz Mdj | —— | < / Jop (' (x))dx. (3.36)
- - 0

For every é > 0 there exists 0 < ¢ < € such that ¢, 1 —¢ & S, un(e) — u(e) and
Un(l—¢) = u(l—¢). Indeed, (3.36) is still true if we pass to a subsequence of (u,) which
converges pointwise almost everywhere in (0,1). For ¢ > 0 sufficiently small, we deduce
from 0 < u(0+4) and u(1—) < ¢, (3.10) and D%u > 0 that 2ey < u(e) and u(1—¢) < £—2e7.
We define sequences (h)), (h2) C N such that e € [h}, AL +1)\, and 1—¢ € (h2 —1, h2|\,..
Let us now define v, € A, (0, 1) by

,

0 ifi =0,
A Yy ) if1<i<K-—1,
M DI ul) + Anli = (K = 1)y if K—1<i<h,
un(€) = 3¢ if i = R,

U = 4 uh if hl < i< h2,
un(l —€) + 3¢ if § = h2,
=2 B ) (=K +1—i)y iR <i<n—K+1,
0= Y0 upl) ifn—K+1<i<n-—1,
¢ if i =n.
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We observe that vy, satisfies the boundary condition (3.3). Moreover, the sequence (vy,)
converges t0 U 1= UyX(0,c) T UX(e,1—e) T (Uy +€—=7)X(1-¢,1) In LY(0,1), where u,(z) = vya.
Let us show that limsup,, H.(v,) < +oco. Since u(() ),u(ll) € Rf_l, v >0, (0,400) C
dom J; and (3.36), it is sufficient to verify that

UZZ +s UZZ —1+s

lim
n—00 An

=400 forie{1,2} and s € {0,1}. (3.37)

We show (3.37) only for ¢ = 1. The case i = 2 can be done in a similar way. Using
un(e) = u(e) > 2ey as n — 0o, we obtain that

1 1
Z”ll — ol =, (e) — 3¢~ hixny +O(\n) > 267+ O(A\n) +0o(1)

v
. - h}+1 h}
as n — oo. Moreover, we have, using u,(g) = uln + Ef\”i"’\”(un"jL — up™), that
n

+0(1)

=1 ™

1
hl 1 B hl 1 hl g — )\nh 15
n

as n — oo. For the last inequality, we used (3.36) and the superhnear growth of J; at

h +1 B
— Unp

—o0. More precisely: assume there exists ¢ > 0 such that wuy, < —c for all n

sufficiently large. From (3.10) and (3.11), we deduce

hn"‘l uhn
AnJ1 ()\) > dyc 1<nf ﬁ\Il(nz) +O(A\n) = +00 asn — oo.

This is a contradiction to (3.36) and H*(u) < +oo. Altogether, we have shown (3.37) for
i = 1. Combining the fact that w,, satisfies (3.36) and the definition of v,, implies

l1—¢
lim sup H. (v,) < / T (i (2))dz + 26 Jon(7) = H (1),
n—o0 I3

We can apply the above arguments to a sequence () C (0,1) with e, — 0 as k — 4o0.
Then we obtain by the lower semicontinuity of the I'-limsup and u., — u in LY(0,1) as

k — oo:

I-lim sup HY (u) <liminf <F— lim sup HY (u., )>

n—oo k—o0 n—oo

<tme (| T el @))de + 220don()) = 1)

k—o0 €k

Let us now consider u € BV¥(0, 1) such that H*(u) < 400 and u(0+) = 0 or u(1—) = £.
Since ¢ > 0, there exists a sequence (uy) such that uy — u weakly* in BV(0,1) such
that

/J (uy(z dm%/ ))dz, 0 <un(0+), un(l—)<{, Dun >0,
0
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see [12, Theorem 4.1]. By the previous step, we have T-limsup,, . H:(uy) < H (uy)
for every N. Passing with N — oo, we obtain I'-limsup,, ., H’(u) < H'(u). Hence, the
limsup inequality is proven.

Convergence of minimum values. The convergence follows directly from the coercivity
of H! and the T'-convergence result. Combining J¢'g is decreasing, Jensen’s inequality
and D%u > 0 yield

1
min He (u) > J&s ( / u’dm) > 75 (Du((0,1])) = Jis (6)
0
The reverse inequality follows by testing with u(x) = fx if £ < 7 and u(0) = 0 and
u(x) =y +0—~if £ > ~. O
3.3 I-limit of first order

In this section, we provide the first-order I-limit of H.. That is, for given £ > 0, we derive
the I-limit of the sequence (H{ ), where H{ , is defined by

HY(u) — min H*
An ’

i, (u) = (3.38)
In the case of nearest and next-to-nearest neighbour interactions (K = 2) this was done
in [50, Theorem 4.1, Theorem 4.2] (see also [11]).

It will be useful to rearrange the terms in the energy (3.38) in a suitable way. For given
¢ >0 and ugl), ug ) Rffl let u € A,(0,1) be such that the boundary conditions (3.3)
are satisfied. Using min, H (u) = J&5(0) = Z]K:z Y7*(€) and (3.7), we can rewrite the
energy (3.38) by

K n—j i+j 7 o
un ? —ul JEs(0)
a0 =33 (M)
=1 i=0 J \n n
K n—j ’L+] i Z+] 1 S
u —Uu C *k
Sy () T (e )—wj 0
j=2 i=0 JA
K j—1 . K
]—Ss
F2o a2 (Al +AlD) =306 - 0. (339)
j=2 s=1 j=2

In the case ¢ > ~ the terms in the curly brackets in (3.39) are non-negative. Indeed
this follows by the definition of Jy j, see (3.8), (3.12) and (3.15). Fix j € {2,...,K}.
For v € A,(0,1) which satisfies the boundary conditions (3.3), we obtain by similar
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calculations as in (3.6) that

n—j n—yjj—1 —1n—j+s

Z (ui-i-j _ u’L) — (ui-i-s-i—l _ ui-i—s Z Z z—‘rl i
=0 i=0 s=0 s=0 1i=s
=1 [ n—1 A s—1 n—1
_ Z Z(uz—i-l o ’U,Z) - (uH—l uz) - Z ( i+1 ul)
s=0 | =0 =0 i=n—j+s+1
7j—1 s j—s—1 j—1
1 1 . . . 1 1
- (z =S ) - m&}) = jt = > G — 1) (ufl] +ull).
s=0 i=1 =1 =1

n—j oitj i J=
v out )\ NS (0,0 _
() = (uf+ o) + G- e

74:0 S=

— =

j

_ Nz 1 @

_ 2521: ; > (w) +ul) - 20). (3.40)
Let (u,) C L'(0,1) be such that u, € A,(0,1) and u,, satisfies the boundary conditions

(3.3). By adding and subtracting the term Z] LoD (w**) 0)(* Z]/\;% l) to HLn(un),

we obtain that

K n—j K 7j—1
7 J—S
HY () =D 00+ e 3 222 () + A () )
7=21=0 j=2 s=1 J
K j—1 j s K
Kk - 1 1 . *x
~ WY@ (- 2) = 306G -0 (341
j=2 s=1 =2

where for j € {2,...,K} and i € {0,...,n — j}, we define
ol (0) ==J; (“#; U?;> G 2%1 7 ( un” — )
— () (0) (W - E) (). (3.42)
By the definition of Jy ; (see (3.8)) and (3.15), we have
) 2 I, <M> - WY (]{ - f) Sz @)

Note that the last inequality follows from Jo;(z) > J3%(2) = 9;"(2) and the convexity
of ¢7*. Furthermore, we show in the following lemma that, under the hypotheses (LJ1)-
(LJ5), it holds o, (¢) = 0 if and only if u$*! —uf, = A, min{¢,~} for all s € {i,...,i+j—1}.

For d € N, we denote by | - |o the norm on R? given by |2|o = max;j<;<q |2, for z € R%.
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Lemma 3.8. Let ¢ > 0 and let Ji, ..., Jk satisfy (LJ1)-(LJ5). For given j € {2,...,K},
the function Ff :R7 — [0, +00] is defined for z = (21,...,2;) € RI by

J J J

Zs Cj *k s *ok

F(:) = (Z j) 93 ) - @0 (Z 2 e) SO NRCYT)
s=1 s=1 s=1

Then it holds Ff(z) = 0 if and only if zs = min{l,~} for s € {1,...,j}. Moreover, for

every € > 0 there exists n = n(e) > 0 such that

inf {Ff(z) . z € R such that |z — min{l,y}e|so > 8} >n>0 (3.45)

where e == (1,...,1) € RI

Proof. Fix j € {2,...,K}. For given z € R/, we have by the definition of Jy ;, see (3.8)
that

j j j
Fj(2) = Jo, (; ?) = @7)'(0) (;Z;—€> — () = f] (;;Zs> :

Firstly, we observe that ff(x) >0 for all z € R and ff(x) = 0 if and only if x = min{¢, v}.
If £ > « this follows from (47*)'(¢) = 0 and ¥7*(¢) = Jo;(7) where 7 is the unique
minimiser of Jy ;. Let us fix 0 < £ <. For z < the claim follows from Jy ;(2) = v¢;(2),
(3.15) and the strict convexity of 1; on (—oo,7]. For z > v, we use the same estimate
and Jo;(2) — ¥;(0)(z — ) > Jo,;(7) (note ¥}(¢) < 0). Hence, we have, using (LJ4), that
Ff(z) > 0 for all z € R/ and Ff(z) = 0 if and only if z; = min{¢, v}e.

Fix ¢ > 0. We want to show the existence of n = n(¢) > 0 such that (3.45) holds
true. Therefore, it is not restrictive to assume that ¢ < ¢ — ~, where 7€ is defined in
assumption (LJ4). For given z € R/, we set z(z) := % i:l zs. Let us now distinguish
between the cases when z(z) is close to £ := min{/,v} and when it is not. Firstly, we
assume that |2(z) — ¢| > 5. Combining Jo ;(2) = 1;(2) for z < v with (3.10) and (3.11)
yields limg o ff(m) = +o0. Since (¢7*)'(¢) < 0if £ <y and Jo ; is bounded from below
it holds limy— 4 ff(:z:) = +o00. In the case ¢ >+, the assumption (3.16) yields

liminf ff(z) > liminf Joj(2) — () > 0.
Hence, there exist 11 > 0 and R > 0 such that ff(x) > > 0 for |z| > R. By the lower

semicontinuity of J; there exists 2 such that
fi(x) = f{(2%) = m(e) > 0,

for all z € R such that [z — £| > £ and |z| < R. By the last estimates, we have that
Ff(z) > min{n,n2(e)} for all z € R fuch that |z — le|o > € and |z(2) — €] > §.
Let us now consider the case |Z(z) — £}| < §. We define the function G?E : R4 — [0, +00]
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by
Glo(2) == FJ(2) + xa:(2),

where A° := {z € RI : |z — le|o > € and \% g:1 zs — 0| < §}. Clearly Gﬁ)e is lower

semicontinuous and using the growth conditions (3.10) and (3.11) it admits a minimiser.
We denote by 2° € R’ this minimiser. Using the definition of Jo , ff(z) > 0 and (LJ4),

we obtain

Fj (%) 2 Joy (Z ?g) — (¥5)'(0) (sz —ﬁ) — 5 () + m3(e) = m3(e),

s=1 s=1

with n3(e) == Cj(% I (=) — (X Z]—g)) > 0. Note that we have used z(z°) <
7+ 5 <7 and by [2° — le|o > € there exists i € {1,...,j} such that [2§ — 2(z°)| > §,
thus (LJ4) yields n3(e) > 0.

Altogether, we have shown that for all z € R7 with |z — fe|o > ¢ it holds
F(z) = n(e)

with n(¢) = min{ny,n2(¢),n3(¢)} > 0. Taking the infimum over all those z € R? yields

the assertion. O

We are now in position to state a compactness result for sequences (u,) with equi-
bounded energy H fn(un). This extends a previous result obtained in [50, Proposition 4.1],
see also [11, Proposition 4.2], for nearest and next-to-nearest neighbour interactions, i.e.

K =2, to the case of finite range interactions of Lennard—Jones type.

Proposition 3.9. Let ¢ > 0, uél),ugl) € ]Rf_l and suppose that hypotheses (LJ1)—(LJ5)

hold. Let (uy) be a sequence of functions such that

sup an(un) < 400. (3.46)
n

(1) If ¢ < ~, then, up to subsequences, u, — u in L*°(0,1) with u(z) = lx, x € [0, 1].

(2) In the case { > ~y, up to subsequences, u, — u in L'(0,1), where u € SBV*(0,1) is
such that

(1) 0 < #S, < +o0,
(ii) [u] > 0 in [0,1],
(i1i) u' =+ a.e.
Remark 3.10. Recall that u € SBV(0,1) and condition (ii) imply u(0+) > 0 and u(1-) <

Z; see Section 2.1.1.

Proof of Proposition 3.9. Let (u,) C L'(0,1) satisfy (3.46). With the same arguments,
as in the proof of Theorem 3.7, we have the existence of v € BV*(0,1) such that, up to

subsequences, u, — u weakly* in BV(0,1).
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Let us now show u), — min{¢, v} in measure in (0,1). For € > 0, we define

Wit g

Un —Un min{f,’y}' > s} .

I =144 .oon—1}:
- {ZE{O, N } N

By the definition of G;:’n(f), see (3.42), and Lemma 3.8, we deduce the existence of n =
n(e) > 0 such that O‘;'-,n(f) >mnforie I and j € {2,...,K}. Moreover, we obtain from
(3.41), (3.46), a}vn(f) >0 for j € {2,...,K}, and J; is bounded from below that there

exists a constant C' > 0 such that

K
C>3 30, > ol ,(0) > #In.
=2 i=0 i=0

Hence, by using [{z : |u),(x) — min{l,y}| > e}| = M#I; < )\n% it follows that u), —
min{/,~} in measure. Moreover, we can use the above argument in the following way: we
define the set . .

+1

Qn = {ie{O,...,n—Q}:u"A">2fy}.

As above, Lemma 3.8 ensures 0272(5) > for i € @, and some 1 > 0. From (3.46), we
deduce the equiboundedness of #@),,. We define the sequence (v,) C SBV(0,1) as

() up(x), ifze (i,i4+ 1)\, i ¢ Qn,
vp(x) =
un(iNy), ifz € (i,i4+ 1)A\p, i € Q.

The sequence (vy) is constructed such that limy, ||u, — val|L10,1) = 0 and [Jvn || gy (0,1) <
[unllwi1(o,1)- Thus we can assume, by passing to a subsequence, that (v,) weakly™ con-
verges in BV (0, 1) to u. By definition of v,, we have #5S,, = #@Q,, and thus there exists
a constant C' > 0 such that sup,, #5,, < C. Using v/, (z) < 27 a.e., (3.10) and (3.11), and
(3.46), the sequence (v,) satisfies all assumptions of Theorem 2.8 and we conclude that
u € SBVY(0,1), v/, — u' weakly in L'(0,1), 400 > #5, and D7v,, = D7y weakly* in the
sense of measures. By the construction of (v,), we have [v,] > 0 on S,,, and we conclude,
by the weak* convergence of the jump part in (0, 1), that [u] > 0in (0,1). To prove (ii) it
is left to show 0 < u(0+) and u(1—) < £. For this, we can repeat the above argument for
the extensions @, Uy, 0p, € BVioe(R) of u, uy, vy, with @(x) = uy(z) = 0,(x) =0 for £ <0
and i(z) = up(z) = O,(x) = £ for 1 < x. From this, we deduce that D’ is a positive
measure in R. Since D7u is the restriction of D74 to [0, 1] the assertion (ii) follows.
Note that (vy,) is defined such that [{z : u] (z) # v](z)}| < #5S,,An, which implies
v!, — min{¢,~v} in measure in (0,1). Combining this with v/, — u’ in L(0,1), we show

v’ = min{¢,~v} a.e. in (0,1). Indeed, by the Dunford-Pettis theorem, we deduce from the

/
n

relative compactness of (v/,) C L'(0,1) in the weak L'(0,1)-topology that (v},) is equi-
integrable. By extracting a subsequence, we can assume that v/, — min{¢, v} pointwise

a.e. in (0,1) and by Vitali’s convergence theorem it follows v/, — min{¢,~} strongly in
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LY(0,1). Thus v/ = min{/,~} a.e. in (0,1). Thus the assertion for ¢ > ~ is proven. In the
case 0 < £ < v, we have, up to subsequences, u,, — u in L'(0,1) with « € SBV*(0,1),
u' =L ae. in (0,1) and [u] > 0 on S,. This implies u(z) = ¢z on [0, 1]. It is left to show:
up — uw in L*(0,1). Note that for the above defined sequence (vy,) it holds u], = v/, + wy,
a.e. on (0,1) with w, € L*(0,1) and wy,(z) > 0. Using v/, — £ in L'(0,1), we deduce

from . . .
1 :/ ul, (x)dx :/ v%(w)dw—i—/ wn (x)dx
0 0 0

that w, — 0in L'(0,1) (using w, > 0). Altogether, we have v/, = v/, +w,, — £ in L*(0,1)
and thus u, — u in W1(0,1) with u(x) = fx. Hence, the assertion follows from the

Sobolev inequality on intervals. O

To simplify the notation, we define for ¢ > ~ the set

SBVX(0,1) ={u e SBV*(0,1): conditions (i)-(iii) of Proposition 3.9 are satisfied },
(3.47)

as in [50].

Proposition 3.9 tells us that a sequence of deformations (u,) with equibounded energy
converges in L'(0, 1) to a deformation u which has a constant gradient almost everywhere.
In the following lemma, we prove a local convergence result for the discrete gradients of
sequences (uy) with equibounded energy. This turns out to be crucial in the proof of the
first-order I'-limit.

Lemma 3.11. Suppose that hypotheses (LJ1)-(LJ5) hold. Let ¢ > 0 and u(()l),u(ll)
Rf_l. Let (uy,) be a sequence of functions such that (3.46) is satisfied. Then there exists
for every x € [0,1] a sequence (hy,) C N with 0 < hy, <n— K and limy,_00 Aphy, = & such
that , up to subsequences,

uhn+s+1 _ uhn+s
lim —= “— =min{l,v} forse{0,..., K —1}.

n—00 An

Proof. Let us define the set I, as

I, = {ie{O,...,n—K}:ag7K(€)>\/15}.

By (3.46) there exists C' > 0 such that

n—

K
I
CZSUPZ U,n >supZanK supf/g.

<.

@
Il
=)

Jj=21

This yields #1I,, = O(y/n).
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Now let i ¢ I,. By using the definition of Jy x and Jo x(2) > ¢35 (2) > (Vi) (0)(z —
0) + 3E(l), we deduce from 0 < U;K(f) < L that

< 7m
WK gt CK AR wstl — s Ty 1
< ) K Jy (YT Un) _ g Un __ 7Un ) o~ = (348
O_JK< n, )—i— % ; 1( , ) o,K( K, ) S = ( )
UK _ i UK i 1
< n n _ k% _ kk\/ n n _ < R 3‘49
0 <o (M) — i - iRy (Tt o) < (3.49)

Fix z € [0,1]. From #I, = O(y/n), we deduce the existence of a sequence (h,) C N
such that h, € {0,...,n — K}, hy, ¢ I, and lim,_,o \ph, = x. By using the fact that
Jo,ix (2) = V3E(0) + (¢32)'(0) (2 — £) if and only if z = min{¢, v}, we conclude from (3.49)
that

— unn .
— min{/, as n — oo.
n {£,~}

Combining this with (3.48) and assumption (LJ4), we deduce

’LLZ"+K h

uhn+s+l _ uhn—i-s
lim = *— =min{l,y} forse{0,...,K —1},

n—o00 An

which proves the assertion. O

3.3.1 The case ( <~

As in [50], we distinguish between the cases ¢ < v and ¢ > -, where ¢ denotes the boundary
condition on the last atom in the chain and ~ is given in (3.12). In the case of £ < v no
fracture occurs by Proposition 3.9. For any 0 < ¢ < v and 6§ = (Qs)f:_ll € Rf‘l, we define
the boundary layer energy B(6, () as

Ko g1 j—s K Vitd
B(6,¢) = 1'1\{11?N min{ch — Jp (v —vs_l) —}—ZZ{Jj <)
NZI€(—1 7j=2 s=1 J 7=2 >0 J

i+j-1

Cj s+1 s / vt — ot
+?ZJ1(U —v®) = i(0) T_E — () b v:Ng =R,
00 =0, vS—vs—l_esiflgng—Lvi“—v"_eifz'zN}. (3.50)

In what follows we often refer to B(6,¢) as the elastic boundary layer energy. The term
B(6,¢) show up in the I'-limit below with § = u(()l) and 0 = u(ll), so the constraint
v — 0¥l =0, if 1 < s < K —11in (3.50) is due to the boundary conditions imposed
on the first and on the last K atoms of the chain, respectively. The terms in the infinite
sum have the same structure as U;'.,n(ﬁ) defined in (3.42) and are always non-negative, see
also Lemma 3.8. Moreover, we note that the infinite sum in (3.50) is actually a finite
sum from ¢ = 1 to i = N — 1. Indeed, for i > N the terms in the infinite sum reads

Ji(0) + ¢ Ji(€) —j(£) =0, see (3.14).
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Let us remark that in the case of nearest and next-to-nearest neighbour interactions,
i.e. K =2, the definition of B(#,¢) matches exactly the definition of the elastic boundary
layer energy given in [50, eq. (4.13)].

Theorem 3.12. Suppose that Ji,...,Jx satisfy the assumptions (LJ1)-(LJ5). Let 0 <
¢ < v and u(() ),ug) € RE7Y. Then (an) [-converges with respect to the L'(0,1)-
convergence and the L>°(0, 1)-convergence to the functional Hf defined by

K
B(u((]l),f)—l-B u(l) 0) — Z]—l ;(€)
7j=2
Hi(u) := I Y 3.51
=Y S0 I () 2) =, O
7j=2 s=1 J
+00 else,
on W1(0,1).

Proof. We adapt the proof of [50, Theorem 4.1] where the case of nearest and next-to-
nearest neighbour interactions is considered.

Liminf inequality. Let (u,) C L*(0,1) be a sequence satisfying sup,, an(un) < 400
and u, — u in L'(0,1). From Proposition 3.9, we deduce that u, — u in L>(0,1)
and u(x) = flx for x € [0,1]. Moreover, Lemma 3.11 ensures that we find sequences
(T9), (T}) C N such that lim,, 0o AT = 0, limy, 00 AT = 1 and

uT;'L+s+1 _ uT:'L+s
lim — " =/ foric{0,1}and0<s< K —1. (3.52)

n— 00 An

From (3.41) and o*;-’n(f) > 0, we deduce

K 9 j—1 . j—1 .
THINES 31 D SUNURES SELLIAT NS SENURES DL
s=1

j=2 =0 s=1 =T}
= = - J— 1 1

= DG = (0 = 20 307 (uf) + ) —2). (3.53)
j=2 j=2 s=1

Let us define the sequence v, : Ny — R as

. if0<i<T®+K,

Up = 9+ K (3.54)
C(i— (I} +K))+* ifi>T)+ K.
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Fix j € {2,...,K}. In terms of v, we have that

o . itj—1
v%ﬂ vt

Z% :i{‘]]( j—n) JZJ o)

where

TY+K—-1 Vit _ i s
s = 3 fo (FE) 495 A -

1=T9+1

i+j i
— U5(0) u—ﬁ —;(0) p =0 asn— oo.
J j j

Indeed, by the definition of v, in (3.54), we have vt — vl = ¢ for i > T° + K. Thus,
for i > TY + K the terms in the infinite sum are given by Jj(ﬁ) +¢;Ji(0) —1pj(£) =0, see
(3.14). Moreover, we have by (3.52) for 1 < s < K — 1 that

TO+1+s uT3+s

. 0 0 . Un — Un
lim (vIn TSt — pInts) = lim =/
n—o0 n—o0 An

Combining this with vit! — vl = ¢ for i > T? + K and the definition of 1;, see (3.14),
0

yields lim,, oo wj(n) = 0. Since u,, satisfies (3.3), we have v) = K—Z =0, v5 —vl =

= (u, —uy ) —ué) for s € {1,. — 1} and vit! —vf = ¢ for i > T? + K. Hence, v,

is a competitor for the minimum problem defining B (u((]l), ?), see (3.50). Therefore

K ]—1 .

=2 s=1

IR SRt

<
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Let us define w,, : Ng — R as

" ifo<m<n-—TL.,
w) = " 1 (3.56)
E(m—(n—Tﬁ))—{—g_#" if n—T!<m.

For fixed j € {2,..., K}, we have that

n—j ' n—T,—j UM Mg m+] 1 u—s—1
2 s =2 {‘]j< . ) 2 <>

i=T1 m=0

n—m _ ,n—m—j
—45(0) (“ j;;” f) - W)}
w ™t — ¢ "t
:Z Jj| ————* + 2 Z Jl(wffl—wfl)
m>0 J J s=m
m+] m
— ¥5(0) <wn]wn - 5) - T/Jj(f)} —w;(n),

where @;j(n) — 0 for n — oo and j € {2,..., K}. Indeed, by (3.56) and (3.14) the terms

in the infinite sum vanish for m > n — T'}. Hence, &;(n) is given by

n—T}-1 merj m+] 1
(Z}](n) = Z {Jj (]) Z Ji( s+1 w?)

m=n—T}—j+1

Wt ym
— ¢5(0) ("J” - f) - %(5)}-

By the definition of w,,, see (3.56), and (3.52) it holds for s € {1,..., K — 1} that

T+ K—s T+ K—s—1
u'n - Un

=/.

. _Tl_ _7l_ .
lim (U)Z T,—K+s+1 _ wz T, K+s> = lim
n—00 n—00 An

Combining this with wi — wi = ¢ for i > n — T} and the definition of v;(¢), we

obtain lim,_,. @;j(n) = 0. Since u,, satisfies (3.3), we have w) = 0 and w — wi ! =
i(u;‘_s“‘l —up) = ugg for s € {1,..., K — 1}. Hence, w, is a competitor for the

infimum problem defining B (ugl),f) and we obtain as in (3.55) that

K j—1 . n—j K

J - i N
IRTDD + D Tal0) 2B 0 =3 asn) (3.57)
Jj=2 s=1 i=T}1+1 j=2

Combining (3.53) with (3.55), (3.57) and w;(n),w;(n) = 0asn — oo for j € {2,..., K}
proves the liminf inequality.
Limsup inequality. Since H{(u) is finite if and only if u(z) = ¢z for all z € [0,1] it is
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sufficient to consider this case only. We construct a sequence (u,) such that u, — u in
L>(0,1) (and thus also in L') and

K
limsup HY ,(un) <B(u”, 0) + Bui", 0) = 3" — 1)w;(0)

n—oo

j=2
K j—1 - ’
_ Z%(ﬁ) Z J 7 i (uélg + uglz — 2€>
Jj=2 s=1

The following construction of (u,) is similar to the recovery sequence in [50, Theorem 4.2]
for the case K = 2. Fixn > 0. By the definition of B(0, £), see (3.50), there exist a function
v:Nyg = R and an N7 € N such that v° = 0, v* —v~! = u(()%s) for s € {1,..., K — 1},
Vit — oyt = ¢ for ¢ > N; and

Kool K ot _ i
ch ; Jl(vs—vs_1)+ZZ{Jj <>

j=2 s=1 j=21>0 J
i+j—1 i+j i
Cj vt —w
+ 2 J ( s+1 Us) qp; (0) ( : —f) - wj(é)}
j = j
< B, 0) +1. (3.58)
From v't! — v® = ¢ for i > Ny, we deduce that the sum over i > 0 can replaced by a

sum over 0 < ¢ < N; without changing the estimate. Furthermore, there exist a function
w: Ny = R and an Ny € N with w® = 0, w® — w*™! = uglg for s € {1,..., K — 1},
wtt — w = ¢ for i > Ny and

K g1 j— K witi — i
ZC]Z J1 w —w’ 1)+Z {Jj ()
j=2 s=1 ‘7 7=212>0 J
Cj & s+1 s ! wiJrj — wi
—i—? J1( w)—wj(ﬁ) f—ﬁ — 1 (0)
< B(u; s )75) +1. (3.59)

(1)

As in the estimate corresponding to B(ug ', ¢), we can replace the infinite sum by the sum

over 0 < i < Ny. We construct a recovery sequence (u,) for u by means of v and w:
L if0<i< N + K,
i L=Ap (w2 TE o N1+EY . .
Upy = 4 AN g 2l B DT Ny~ K) i Ni+ K <i<n—Np— K,

0 — Nywn ™t ifn— Ny — K <i<n.
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By the definition of u,, v, and w, we have u® = 0 and u? = ¢. Moreover, it holds

- 1
ul™ —uf = A (v° — 0T = )\nu(()’g,

(1)

n+l—s n—s __
Up - - _)\n( 1,57

Uy Wt —w) = \u
fori € {1,..., K —1}. Hence, we have that u,, satisfies the boundary conditions (3.3). Let

us show that limsup,,_, . an(un) < H{(u) + 2n. From (3.58), (3.59) and the definition
of u,, we deduce:

K j*l ] _ s ’U,S _ ’U,Sjl K N1
3oy o J1< L )+Z§ja;,n<e>
s " =2 i=0
J s J

K j-1 i—s K N Vit _ i
B ) Py R {]< , >

j=2 s=1 J j=2 i=0 J

i+j—1 ot _ o "
+ 2 Rt =) = () <j —e> —¢j(f)} < B(uy’,0) +n. (3.60)

7j=2 s=1 j=21i=n—Na2—K
K j-=1 . K Not+K—j i+ i
=3 ¢ ‘],Sjl(wsfws IS {Jj<w w>
= =1 j=2 =0 J
0. THT1 witi _ i
+ 2 Z Jy(wsT — w®) Y5(0) < ; —€> —%(6)} < B(u§ ),5) +n. (3.61)

Thus it remains to show that

K n—Ny—
lim § j § o—? = 0.
n—o0 Jom

J=2 i=N1+1

For Ny + K <i<n— Ny — K —1, we have

ultl — il = N\ (W K
A Aa(n—Ni— Ny —2K)
(N — Ny — 2K) — (wVetK NitK dp,
(Vo = Ny = 28) = (W2 + o T7) _, efdn (g
—/\n(N1+N2+2K) n

=0+ N,

with some constant ¢ independent of n and a sequence (d,,) such that lim,, . d, = 0
(notice: 4y — % = b‘ib)). Fixje{2,...,K}. For N+ K <i<n—Ny— K —j, we

n n(n




Chapter 3. On Lennard-Jones type systems and their asymptotic analysis 57

have

i c+dy c+d, c+d,
Uj,n(g) =J; <€+ " ) +cjq (é—i- n ) — ¢j(€) —wé(g)

n
+dn / +dn
=0y (04 S0 — gyt - w0
c+dy,
n

=(15(&n) — ¥5(0))

with &, € [(,0+ %} By combining the above estimates with the Holder continuity of
Jj, see (LJ1), we deduce that there exist ¢ > 0 and a € (0, 1) such that

K n—Na— K n—Na—
i i
> Z Lot )<, Z \Uj,n@)!
=2 i=N1+K j=2 i= N1+K
n—No— .
c 1
<K Z 17:(’) — | - 0asn — oco.
nlta ne
i=N1+K

Thus, it is left to estimate the terms o, (¢) with j € {2,..., K} andi € {N1+1,..., N1+

K-1}u{n—Ny—K—j+1,...,n— Ny — K — 1}. By the definition of v and w, we
have that uit! — vl = A\l fori € {Ny,..., Ny + K —1}U{n— Ny —K,...,n— No — 1}.
Combining this with (3.62) and (3.14), we obtain that U;‘,n — 0 asn — oo for i €
{Mi+1,..., N+ K—-1}U{Noa — K —j+1,...,n — N; — K — 1}. This proves the
convergence of the energy. It is left to show that w, — w in L*°(0,1). Using (3.62) and
the definition of u,, we obtain that u/, — ¢ in L(0,1). Since u,(0) = 0 for all n this

yields u, — u in L*>°(0,1) and the assertion is proven. O

Remark 3.13. For given 0 € Rf_l, we have

K .
— S
BO.7) 23 e ) T——h(b,)
j 1

Note that we used here that the terms in the infinite sum of the definition of B(0, /), see
(3.50), are non-negative. In the special case 0 < £ < v and 0¢ = (#9)5! with 6¢ = ¢ for
1 < s < K, the above lower bound for B(#*,¢) is attained by u’ = ¢i for i > 0. Hence,

(j — 1)e;. (3.63)

e
K
=
I
iy
<o
|
V>
M=

j=2
The following corollary is a direct consequence of Theorem 3.12 and (3.63).

Corollary 3.14. Suppose that hypotheses (LJ1)-(LJ5) are satisﬁed Let 0 < £ < v and
let u(() ),ugl) € Ri{_l be such that u(()g = ugs =/ for all s € {1,. — 1}. Then the
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D-limit HY, see (3.51), of (an) is given by

on Whee(0,1).

Proof. From (3.14), (3.51) and (3.63), we obtain for uél),ug ) € R~ such that u(()lz =
uglg—ﬁforl < s < K that

K K K
0 G —=Dej =Y (G = D0 + ¢ 1i(0) = =D (G — 1)J;(0)
Jj=2 Jj=2 Jj=2
if u(x) = fx, and +oo otherwise. This finishes the proof. O
Next, we show that the energy H f given in Theorem 3.12 is independent of ¢ = (cj)fzg.

Proposition 3.15. Let Ji,...,Jx satisfy (LJ1)-(LJ5). Let 0 < £ < ~ and u(() ), gl) €
Rf_l. Then the functional HY, given in (3.51), reads

K
o B0+ B 0 = 3G =150 if u@) =t
Hi(u) = j=2
400 otherwise,

where for 0 < € <~ and 0 € ]Rf_l the boundary layer energy E(G, ?) is given by

B(6,0):= inf mln{ZZ{ (Z+j_“>—Jj(z)—J;(e) (“i‘“-e)}

N>K 1 >0 j=1
K j—1 s
SO LR ) (0 - 0w Ng R, u® =0,
j=2 s=1 J
w—utT =0, if1<s<K-1, ui+1—ui=£z‘fizN}. (3.64)

Proof. For given 0 < £ <~ and 0 € Ri{ ~1. we prove that

K j-1

K
B(®, e)—le Zj—1 ZZJ )0, — 0) = B(6,0), (3.65)

J

]: s=1

where B(6,¢) is given in (3.50). The combination of (3.65), v;(¢) = J;(£) + ¢jJ1(£), see
(3.14), and the definition of HY (see (3.51)) implies the assertion.
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Fix0< /¢ <~vyand@ € Rf‘l. Let us show (3.65). To simplify the notation, we define
for j € {1,..., K} the functions <I>§ R — RU{+o0} by

B(2) == J;(2) — J;(0) — TLO) (2 — b). (3.66)

Let u : Ng — R be a candidate for the minimum problems defining B(6,¢) and B(6, (),
ie u’ =0, u®—u"!=0,if s € {l,...,K — 1} and there exists an N € N such that
w ™t —yt = ¢ for i > N. We show that

7 >0 '7
K Jflj_s 1 K Kj—lj_s
+) ey > i (93)—§J1(€)Z(j—1)cj -3 ; W) (05 — 0)
j=2 s=1 j=2 j=2 s=1
K o (U — K jflj—s
=> > o <> - = J5(0)(05 — ©). (3.67)
i>0 j=1 J j=2 s=1 J

This finishes the proof of the proposition. Indeed, by the definition of B(6, ¢), B (0,0) and
(I>§, see (3.50), (3.64) and (3.66), and the arbitrariness of the test function u, the equality
(3.67) implies (3.65) and thus the assertion is proven.

By the definition of <I> , see (3.66), it holds <I>§ (¢) = 0. Hence, using (3.14), u'™! —u? = ¢
for i > N and “ﬂ —u’ —E =1 ZH] Yustt — s — ¢) for j € {2,..., K}, we can rewrite

the infinite sum on the left- hand side in (3.67) in terms of @f as follows

£ (20 o2 E oo (1))

=2 i J

SE ()5 e o)
2

<.

7j=2 =0 s=i
N-1 K U J—U K N—-1i+j—1

= Zq>§< > ZFJZ Z of (ut —uf). (3.68)
=0 j=2

The nearest neighbour terms on the right-hand side above can be rewritten as

K o N—-1i+j-1 K o j—1 N+s—1
§ :7] § : ‘I):[i (us—l-l us) — E :7] @{ (UH-I uz)
j=2 J =0 s=1 j=2 J s=0 1i=s
K e j—1 (N—-1 s—1 N+s—1
= E el E o (u”l uz) - oY (u’Jrl ul) + E Pt ( 1 ul)
j=2 J s=0 \ i=0 i=0 i=N
K N-1 K c j—1s—1
_ £ (i1 i J £ (, i+l i
—E C; @1(u u)—E I <I>1(u u)
j=2 1=0 j=2 5=0 =0
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Note that we used u'™! —u? = ¢ and thus ®{(u'*! —u?) = 0 for i > N. Since v’ —u'~! =6,
for i € {1,..., K — 1}, we obtain that

K, j=1s-l K . 72 J L
Z - (I)ﬁ i+l ul) :Z J Z Z (pli (uz+l N 'LLZ) — ch . (I){ (01) .
=2 J =i = 7 0 =i = =Y

K Wt Kool
Z@f (.)—ch’ L2 ((6:) — i () = TL(0)(6: — 0)) .

J=2i s=i
K j-1 i—s 1 K K j—1 s
DGy T 0) = 50 Y (= Ve = DY (08— )
j=2 s=1 J j=2 j=2s=1 J
N-1 K Wit _ K j—lj_s
= Z(I)g < ] > +ZC]' ] (J1(€)+J{(€)(05 —5))
=0 j=1 j=2 s=1
1 K K j-1 i
=50 G =De; = D> (Ji(O) +¢J1(0) (65 = )
j=2 =21 J
N-1 K , (Uit — i K j—1 i—s
!
= Zq>]< ; >—Z ; Ji(0)(0s — )
=0 j=1 j=2s=1
K ' wi i — ui K j-1 ] S
!
= Zcp]( 3 >—Z ; Jj(0) (05 — ¢),
>0 j=1 j=2s=1
which proves (3.67). O

Remark 3.16. Note that in the special case ¢ = 7, the terms involving J]’-(f) in the
definition of B(6, /) cancel out. Thus for given 6 € RE~!, we have

K it i
= : . vt —w
B(0,v) = 11vrg1;r mln{Z{ZJj( ; >_JCB('7)}3 v:Nyg = R,
N>K-1 i>0 ©j=1 J
v’ =0, US—US_I:01'if1§s<K,vi+1—vi:71fi2N}. (3.69)

By the definition Jop = ZJK: 1 Jj, we only have to show that the terms involving J}(¢)
in the definition (3.64) vanish if £ = v. Indeed, let u be a test function for the infimum
problem in the definition of 5(9,7), ie.ud=0,u*—u"1=6,if 1 <s < K—1 and there
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exists an N € N such that u*! —u? = for 4 > N. Then we have

T3 (U ) S T e T e )
i>0 j=1 J j=1 i=0 J =0
K 4 j—1 N—1+s
== S 2L W= =)
=17 s=0 =
j i=s
K N-1 K 4 j—1s—1
== T D> (@ —u =)+ > =%50) S (Wt -t =)
Jj=1 1=0 j=1 s=0 i=0
K j—1 i
==/
where we used u’ —u'~! = 0; for 1 <i < K—1 and Z] 1 J5(v) = Jop(v) = 0. Combining

the above calculation with the definition of B(6,~) in (3.64), we obtain that B(f,~) is
given as in (3.69).

3.3.2 The case / >~

In analogy to [11, 50], we have fracture in the case £ > =, cf. Proposition 3.9. The presence
of fracture yields additional boundary layer energies. These energies are generalisations
of the boundary layer energies provided in [50] for the case of nearest and next-to-nearest

neighbour interactions. For given 6 € Rf ~1 we define

i1 j— K k—j viti _ o
By(0) = i%g min { Zc] 7 J1 (v® —0* 1) + Z {Jj <])
k>K—1 j=2 s=1 j=21=0
o, 71
+ 7] Z J1 (vs+1 —v°) 1/13(7)} - v:Ng = R, 0% =0,
PTIE _pkTs — g if s € {1,...,K—1}}. (3.70)

Remark 3.17. The boundary layer energy By(6) can be interpreted as follows: if fracture
occurs at the boundary on a macroscopic scale then By(6) yields the optimal distance
from the boundary on a microscopic scale. By (3.8) and since 7 denotes the unique
minimum point of Jy; with Jy j(7) = 9;(7y), we have that the terms in the sum from
i =0 to ¢ =k — j are non-negative. In the case of nearest and next-to-nearest neighbour
interactions, the definition of By(6) coincides with the boundary layer energy given in [50,
eq. (4.27)].



62 Chapter 3. On Lennard-Jones type systems and their asymptotic analysis

Next, we introduce the boundary layer energy of a free boundary B(7), defined by

i=1 witi
. . Jj— —u
B(v) .—]\;ggomm{j:2c] 7 J1 (v —u*h) + E E { ( )

s=1 7=21>0

itj—1

s
—i—?,] Z Ji (u5+1—us)—wj(’y)}: u:No — R,
u0:0,ui+1—ui:71fi2N}. (3.71)

Remark 3.18. The same arguments as above yield that the terms in the infinite sum over
1 > 0 are non-negative. In the case of nearest and next-to-nearest neighbour interactions
the definition of B(7) coincides with the boundary layer energies, also denoted by B(7)
n [11, 50].

Before we state the I'-convergence result for Hl n» we note that the definition of the

elastic boundary layer energy B(6,) in (3.50) reads

K j_lj_s K piti i
COSIETAETE 5 S SV ST NS 9) 98 /1 Gty
N>K-—1 i —

i+j—1

+7ZJ v =) - ¢j(7)>}iviNo—>R,v0:0,

s s—1 __ : i+1 i e
- — Vi P - ) - - - ) .
v¥ = 0; if s € {1 K—-1} v v 'y1fz>N} (3.72)

for § € RE !, where we have used Y;(v) = 0.

Theorem 3.19. Suppose that hypotheses (LJ1)—(LJ5) hold. Let ¢ > ~ and u(() ),ug ) e
Rf_l. Then (an) I'-converges with respect to the L'(0,1)-topology to the functional Hf
defined by

B(uf”,7)(1 — #(Su N {0})) + Bps(ul))#(S, N {0})
+ Bry#(Su N (0,1)) + By (ul”)#(S, 0 {1})

Hf(u) = (1) K . ) y
+ B(uy 7)1 = #(Su N {1})) = 225500 — Dbi(y)  ifu e SBV(0,1),
400 else
(3.73)
on LY(0,1), where, for 6 € Rf_l,
Koozl
Bps(0) =3 ¢; > 22 01(0,) + By(0) Zﬂz)j (3.74)
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1s the boundary layer energy due to a jump at the boundary and

By =2B(y Zm (3.75)

is the boundary layer energy due to a jump at an internal point of (0,1).

Remark 3.20. Note that in the case K = 2, the limiting functional HY{ coincides with the
one which is derived in [50, Theorem 4.2].

Proof. Liminf inequality. As in the proof of [50, Theorem 4.2] for the case K = 2, we
assume, without loss of generality, that there exists only one jump point. By symmetry
it is sufficient to distinguish between a jump in 0 or (0, 1).

Jump at 0. Let u and (u,) be such that S, = {0} and w, — wu in L'(0,1) with
sup,, an(un) < oo. By Proposition 3.9, we have

0 if =0,
u(x) = 3.76
) yr+ (L —~) ifxe(0,1]. (3.76)

We prove that

K
hmlanln Up) ZZC]

n—oo j

K
B(u",~) Z 2j — D (y (3.77)

Mw

K K .
L) =32 ot () + D¢ > 7= () + A(wdl))) = 306 - sl

(3.78)
By Lemma 3.11 there exist (72), (T}}) C N such that ILm AT =0, le AT! =1 and

uT,i+1+s _ quL-I—s
lim — "=, forice{0,1}and0<s< K — 1. (3.79)

n—o00 An

Let us first show the estimate regarding the elastic boundary layer energy at 1. This can

be done exactly as in proof of Theorem 3.12. We define w,, as

{—up” ™ . 1

m A 1f0§m§n—Tn,
— 1

n

TTL
’y(m—(n—Tﬁ))%—e}Ln" if m>n—T}
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In the same way as (3.57), we prove that

K j—1 . n—j

.. J—S 1 i 1

lim inf 2: c]}l: S+ Y o) 2 B ). (3.80)
1= S=

i=T1+1
By (3.78), (7}7”(’7) > 0, and the definition of BBJ(u[()l)), it is left to show that

K T9

hnrr_l)gfzz v) > By(u Z]’(/)J

7=21=0

As in the proof of [50, Theorem 4.2], we deduce from wu,, — u that there exists (h,) C N

with A,h, — 0 such that
whntl e
lim +—" = 4o0. (3.81)

n—o0 An

Indeed, since u, converges to u almost everywhere, there exists for every g > 0 an

€ (0,e0) such that u,(e) — u(e) = ey + £ — 7, see (3.76). Let us define the sequence
(gn) C N such that € € Ay [gn, ¢n +1). Using u,(0) = 0 for all n € N and v > 0, we obtain
for n sufficiently large

S qn—1 7,+1 i u%n+1 _ u%’n
I
f—vé/ Uy (x E +(5—Qn>\n)7>\ :
0 1=0 n n

Qn+1 qn+1

With a slight abuse of notation we set uy := max{u uf™}. The above estimate

and € — qgu A\, < Ay, imply that there exists 0 < ¢, < @, such that
uintl — qin S 1 & uitl — )l {—~ L—~

> > > .
An gn +1 =0 An An (Qn + 1) 2¢e9

By ¢ —~ > 0 and the arbitrariness of ¢y > 0, we deduce the existence of (h,) C N such
that A,h, — 0 and (3.81) is satisfied.

From sup,, an(un) < 400 and lim,,_« Jj(2) = +oo, J;(z) > J;(0;) € R for j €
{1,..., K}, see (LJ2), we deduce the existence of C' € R with inf, “ﬁ;\;uil > C. Thus,
(3.81) implies

hnt-j+s hn+ts hn1 h ;
U — Up" U™ T — U, -1
= . e - +‘7, C — 400 asn— oo,
JAn J

JAn
for j € {2,...,K} and s € {0,...,j — 1}. Hence, (3.9) yields lim,_,~ r1(n) = 0, where
r1(n) is defined by

K hn+J+s _ qhnts
>y ().

J=ls=—j+1
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It is useful to rewrite the terms which involve u/n*! — uf» as follows:

K

>3

§=2 i=hp—j+1

K hnp z+] 1

DY () e [ )

S#hn

K i—1 . _ _
B '7 j—s uﬁﬁl s _ uzn s uzn+s+1 _ u2n+s
= ¢j . Ji + J1

An n

k=2 s=1 J A
K
= () +r(n) (3.82)
j=2

Note that the second equality follows from:

hn 1+7—1 0 i+j—1 0 —1 i+j—1
Y Yy {zahn+s+ > } _y {zahn_s+ 3 }

i=hp—j+1 s;:hin i=1—j i=1—j (s=1 s=1
j—1 —s 0 Jj—1
= E E Qp,—s + g Ahp+s (= E (J = $)(@n,—s + anpts)
s=1 | i=1—j 1=s5—7+1 s=1

with as = Jl(%;u%) Hence, we have by (3.82) that

K T2 K chnj Jj—1 j—s uﬁn—s—&—l _ uiﬁn—s
7 .
EZQZO Z{ Y i)+ Szl N ( - )

=2 \ =0 A
Lo I —s  fumtstl _yhnts
+ Y o)+ ; J1< " >} Zﬂ/’] +ri(n). (3.83)
i=hn+1 s=1 n

It remains to show the following inequalities:

K (hn—j j—1 j—s ulhntl=s _ yhn—s M
Z Z U;',n(’Y) + ¢; Z ; J1 ( z \ L ) >By(ug '), (3.84)
s=1 n

j=2 U i=0

Ty

K izl hnts+l _ o hnts

i ] — S Uy, — Uy,
Z Z ain(Y) ¢ Z ; Ji < h\ ) >B(y) —w(n), (3.85)
j s=1 n

with lim;,, o w(n) = 0. Let us first prove inequality (3.84). We define for 0 < m < h,,

].
~m h
w,n — —ru o

n
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We can now rewrite the sum involving the U;n(y) terms on the left-hand side of (3.84) in
terms of W and obtain that

K hp—j

2.2 ol

7=2 =0

K hn—j he —m hn—m—j m+J 1 h —s h —s—1

i=2 mE: {Jj ( JAn ) Z n < An ) _wj(’Y)}
K h Am—&—] _ m+] 1
S () S et e -]
j=2 m=0 J

Hence, we have for the left-hand side of (3.84)

K hn—j g1 . hn+1—s hn—s
i ‘ J— S Up," —U,"
S5 e ()

[e=]

<.

e

j=2 1=0
K j—l . hn_] Am+j ~m
- S N ns— w —w
S (X )+ 5 (o ()
j=2 s=1 J m=0 J
m—+j—1
LSS (-0 - wi) ) |
S=m
Furthermore, it holds @/ = %u =0 and w15 —@fin Tt = S (u

s —uy ) = uf)) for
se{l,..., K —1}. Hence, w, is an admissible test function for B (u(()l)) and thus (3.84)
holds true. Let us prove (3.85). Define for i > 0:

hp+1+i_ hn+1 . .
. Yn__—tn if0<i<T—h,+K-—1,
TO4K  hptl

v (i — (T — hn +K—1))+T’l ifi >T) —hy+K—1.

=g
3
Il

We can now rewrite the left-hand side of (3.85) in terms of @%:

K J-l hn+s+1 _ ) hots
; ' j—s uy —ul
> 2 ffj,n<v>+cyszl ; Jl( . )
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~1

K j_lj—s ot _ g
S ()
j=2 s=1

i>0

1+j-1

+2 3 @ - ) - 50} = w0 (3.36)

with

K TO—hp+K—2 ~itj ~i i+j—1
:Z Z {J] (u" j_ n> CJ Z J s+1 ~s) ¢]( )}
=2 =T h,

Indeed, by the definition of 4, and J;(y) + ¢;Ji(y) = (7)) the terms in the infinite sum
over i > 0 in (3.86) vanish identically for i > T — h,, + K — 1. Moreover, we deduce from
(3.79) and the definition of a,, that

TO+1+s T9+5
un++ —un"+

lim (@Znhnts — gLa—hnts=1y = Jip
n—oo. n n—00 An

=7

for s € {1,..., K —1}. Combining this with 4! — ! =~ for i > T9 — h,, + K — 1 and the
definition of v; implies lim, o w(n) = 0. Thus inequality (3.85) is proven. Altogether,
we deduce from (3.78), (3.80), (3.83)—(3.85) the assertion (3.77).

Internal jump. Assume that S, = {t} with ¢ € (0,1). Let (u,) be a sequence converging
to u in L'(0,1) such that sup,, an(un) < 400. Then Proposition 3.9 implies

x if0<z<t,
uty =47 = (3.87)
yr+L—~ ift<az <1

We prove that

K
lim inf H{ ,(un) > B(uf,7) + Bu{”,7) +2B(y) = > (2 = vy (v (3.88)
7j=2
From Lemma 3.11, we deduce the existence of sequences (T0),(T)}) C N such that
hm A0 = 0, li_)m MY = 1 satisfying (3.79). As in the elastic case, see (3.55) and
(3 57) we obtain:

K j—1 T2
. J—S 1 i 1
I%Iri)gf ¢j Z Jl(u((),s) + Za]n(y) > B(u((] ),'y) (3.89)
=2 s=1 i=0
= -5 .. « 1
liminf " | ¢ > ——h(i) + > oj() | 2B (3.90)
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Furthermore, as in the case of a jump in 0 there exists a sequence (h,) C N such that
limy,—o0 Aphn, =t and

uln L b

lim = 4o00. (3.91)

n—o00 An
Indeed, we can apply a similar argument as for a jump in 0. We only give a sketch of the
reasoning here. Fix ¢ > 0. Since u,, — u almost everywhere there exist ¢1,ts with ¢; €
(t—e,t) and ty € (t,t+¢) such that u,(t1) = u(t1) = vt1 and uy,(t2) — u(ts) = yta+£—7,
see (3.87). Thus, we have for n sufficiently large that u,(t1) < vt and w,(t2) > vt +£— 1.

Hence, we have
to

0= < up(te) —un(ty) = / u, (z)dx.

t1
Now we can rewrite the above inequality in terms of the discrete derivatives of u,, and
obtain that there exists i,, with A\,i, € (t — &,t + €) such that

0 — o < u;'ln—i-l _ u;ln
4e An

The claim follows from ¢ —« > 0 and the arbitrariness of € > 0.
From (3.91) and similar calculations as in (3.82) and (3.83), we obtain that

K ) ' K hn—j ‘ j—1 . s uhn_5+1 B uhn—s
>3 =3 { X aamre T ()
s=1 n

J=24=TJ+1 J=2 ~i=T9+1
T il . hn+s+1 _ o hnts K
. ] — S u n J— u n .
+ Z oin(7) +CjZ —J1 ( & By & ) } - Zjlbj(’y) +7r(n), (3.92)
hn41 =1 J n =2
where . .
hn+]+5 _ hn—|—s
T(”):Z Z Jj<un = fn >—>0 as n — 00.
— = JAn
j=1s=—j+1

Thus, it remains to prove that

n—s+1 _ uhn—s

f{hf a;i,mnéj P () e m . ey

J=2 ~i=T9+1

Tl
n uh7z+5+1 _ uﬁn‘f's

i{ ) a;,n<v>+cj§jfjl(" ) f2 R . 6o

j=2 N i=hn+1

with r1(n),r2(n) — 0 as n — oo. Since inequality (3.94) can be proven exactly as (3.85),

we only show (3.93). Note that also this estimate follows by very similar arguments as
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we have used to show (3.85). We define for i > 0

! if0<i<h,—-T"—1,
= An 0,1 - (3.95)

n

Tn
(i — by + T+ 1) + W58 iG> by, —TO — 1,

Now we rewrite the left-hand side in (3.93) in terms of w,

K hn—j -1 hpn—s+1 hp—s
i ' j—s Uy — Uy
S{ 5 a5 () )

J=2 N i=T90+1
K j-1 s K hn—j—T0-1 yhn—i _ o m—i=i
=> ¢ — (g, —as )+ &«" A" )
= = =2 =0 JAn
i+j—1 hn—s hpn—s—1
C u,," — U™
POy (S 500
S=1
K j—l ] — s K ,L"'L'L“F] ,al
=>¢> GRS E Y {% L
S =2 >0 J
i+j—1
£ 93T A )~ v ) - o)
S=1

where

: i\ e S
n=3 % ()5 - )

5=2 i=hp—j—T9 J

Indeed, by definition of @, and (3.14) the terms in the infinite sum over ¢ with i >
h, — TO — 1 vanish identically. Furthermore, by the choice of T, see (3.79), we have for
s €{0,..., K — 2} that
TO+K—s TH+K—s—1

—up

. ~h, —TO_ ~h., —TO_ U
Lim (uzn T, K+s+1_uzn T, K+5) — n

= ’Y.
N—00 N—00 An

Hence, we have r1(n) — 0 as n — oo. Combining (3.89), (3.90) and (3.92)—(3.94) proves
the assertion (3.88).

Limsup inequality. As for the lower bound, we distinguish between a jump at 0 and a
jump in (0, 1).
Jump in 0. Let u € SBVY(0,1) be given as in (3.76). We have to show that there exists
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a sequence (u,,) with u, — u in L*(0,1) and

K =1 .
hmsulen Up) SZCJ I Ji(u é}g)—%Bb(u(()l))—i—B('y)
n—00 o — J
K
+ BV, ) =) (25 - 1)(v) (3.96)
7j=2

Let us fix n > 0. By the definition of B(y), we can find a function @ : Ny — R and an
N e N such that @° =0, @' — @' =~ if i > N and

K -1, K it
ch J .SJl(as_a$_1)+ZZ{Jg <u u)
= = j=2 i>0 J
o THIT
+ 93T A (@7 - )| < BO)+ (3.97)

Analogously, by the definition of B,(#) given in (3.70), there exist w : Ny — R and a
12:0 €N, ];30 > K — 1 such that w0 = 0, @kot1=s — pho—s = u[()lg fors=1,...,K —1 and

K j 1]._8 K ko—j Wt — g
> e ; Jl(wS—w5—1)+ZZ{Jj (j >

Jj=2  s=1 j=2 i=0

itj—1
¢ . . 1
£ 93T R (@ = 0%) b)) < Bl 4 (3.98)
s=1
Moreover, we find a function w : Ny — R and an Ny € N with w® = 0, w® — w1 = uglg
for s € {1,..., K — 1}, w*! —w’ =« for i > Ny such that
K j—=1 . ’H—] —w
So St w3y ()
j=2 s=1 ‘7 7=21>0
c i+j5—1
j 1
£9ST @ =) i) ) < Bt )+ (3.99)
s=1
Let (T!) be a sequence of integers such that
T! — (kg + K) > N and T + K < n — Ny for all n € N large enough. (3.100)
We construct a recovery sequence (u,) by means of the functions @, w and w:
ko if 0 << ko,
uly = {0 A (@i (ko) — qyn= (L)) _ gTat1=(ho+D)) if kg 41 < i < T 41,

0 — \yw™t ifT,%-l—lSiSn.



Chapter 3. On Lennard-Jones type systems and their asymptotic analysis 71

The definition of u,, @, and w implies that u? = 0 and u” = £. Moreover, we have that

-1 _ ~ko—s+1 _ ~ko—s) _ (1)
n= Uy = A (0TI — 0T = Aqug g

n+l—s n—s __ s s—1y __ (1)
Uy — Uy * = Ag(w' =) = Ay g,

u

for s € {1,..., K — 1}. Thus, u, satisfies the boundary conditions (3.3). Furthermore, it
holds ui! — ul, = A,y for N + ko +1 <4 <n —1— Ny by definition. Let us show:

lim (uFot! — ko) = ¢ — 4, (3.101)

n—o0
For this, we use that @1 — @' =~ for i > N and wt! — w! = ~ if i > Ny:

7. L. - (71 ~71 (L N
ukotl — ko —p 4\, (@0 — wn Tt — gTati=(hotl) g0

=0+ Ay (w™? — = TatD) 4 g _ gTa—ho _yNo gV 4 0)

Hence, we have u,, — u in L'(0, 1). Indeed, the above calculations imply lim, s quLOH =
¢—~ and we deduce from the definition of u,, that ufo+N+1_yko+tl = X 4N 5 0asn — oco.
Since u,, is equibounded in L>°(0,1) and u't' —u’ = A,y fori € {N+ko+1,...,n—1—Ny},

we have

1
/ |up, — ul|dx
0

An(n—N2) . - ~ B
- /A o T 9l N 1) (=)l o)
n O+ +
An(n—N2) R - N B
:/A o b+ o\ (o + N +1) = (£ = )|dz + o(1) = 0
n O+ +

as n — o0o. By the definition of u, and (3.101) it holds for j € {1,...,K} and s €
{0,...,j — 1} that

N !
An W

ko+j—
un0+J ER

+O(1) - +o00  as n — oo.

Hence, we obtain similarly to (3.82) that

K T% K ’;'()_j 71 . i Cstl oo

. . ]—S uro — uko s
Zzaﬁ-,nm:E:{ DEMORTD I J1< ot )
Jj=21=0 j=2 * i=0 s=1 n

Lo iy j—s wkots+1 _  ko+s K
T ol (V) ey ; S e W } =Y () +r(n)  (3.102)
s=1 n ]:2

i=ko+1
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with

K 0 U§O+j+s _ uiﬂo-}—s
r(n) :Z Z J; By L —0 asn— oo. (3.103)

j=2 =0 s=1
K ko—j B itj—1
=> {j( 3 >+ 2N (! wS)—w}
7j=2 =0 s=1
K j—1 .
+3 63 2@t — ) < By(u) + . (3.104)

Furthermore, we have

Ta+1—j

K -t fio+s+1 _ , kots
i ‘ j—s Uy — u,
S o 3 ()

<
[|
[N
<
I
I
S
F
—

K T&*kO*j ’117'+J _ ’l]l c i+j—1
3 3 (P 9 S e - v
j=2 =0 J A
K Jj—1 . s R R
+3 43 ! — (as - as—l) < B(y) +1. (3.105)
j=2  s=1

Note that we used that @+ — @ = ~ for i > N and T — (kg + K — 1) > N for n large
enough (see (3.100)).

From the assumption on @ and w it follows for n sufficiently large such that (3.100)
holds uift — wi, = Ny for i = T} +2 — K,..., T} + K. Hence, a;im('y) =0 for i =
T!+2—K,...,T'. In the same way as in the elastic case, we obtain

n—j K Jj—1 .

K
DD BEACED DD ! ; ")) < BiM,y) + 7 (3.106)

J=2i=T}+1 j=2 s=1
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Combining (3.102) with (3.104)-(3.106), and o, (v) = 0 fori € {T} +2 - K,..., T, }, we

have for n sufficiently large that

K -1 i
- 1
H y(un) =D c; Y 2= (ufl))
= =1
K I;O_j Jj—1 . ko—s—+1 ko—s
7 J—S Uy, — Uy
+ Z oin(7) + ¢ Z —J1 < \ )
j=2 | i=0 = 7 n
K (Th+1-j j-1 . fo+s+1 _  ko+s
i J—S uﬁ) —-Uﬁ
+ Z { oin(7) ¢ Z ; J1 ( 3 )
7=2 \i=ko+1 s=1 "
K n—j j—1 is K
- 1
+3 oL () ¢ D T Al b r(n) =3 (25— ()
j=2 z:T%+1 s=1 j=2
i = J—S 1 1 1
<D 3T Ad) + By(ul”) + B + Blut, )

with r(n) as in (3.103). By the arbitrariness of 77 > 0 this proves the assertion (3.96).
Internal jump. Consider u € SBVY(0,1) with S, = {t}, t € (0,1). We prove the

existence of a sequence (u,,) converging to u in L'(0,1), such that

n—oo

K
limsup HY , (un) < B(ul”, ) + Bu{”, ) + 2B(v) = 3 (2j — Dy (3.107)
7j=2

Fix n > 0. As in the elastic case, we find v : Ny — R and N; € N such that v = 0,
v¥ — 5Tl = u(()lz for s € {1,..., K — 1} and v**! — v® = ~ for i > Ny such that it holds

S St S (o (1)

j=2 s=1 J
TN 1
T2 AT =) - %(v)} < B(uy,7) + 1. (3.108)

Analogously, there exist a function w : Ny — R and an N2 € N such that (3.99) holds.
Finally, by definition of B(v), we can find as in the previous case @ : Ny — R and N € N
such that (3.97) holds. Let T7°, T}, h,, be sequences of integers such that lim, .o hpA, = t

and

TO>N +K, T'4+K<n-Ny N+K<min{h,—T°—-1,T} —h,—1} (3.109)
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for n large enough. We construct the recovery sequence by means of v, w and u:

Ap 0’ if 0 <4< TP,
. A (070 — @hn =i 4 ghn=T2) if 7O < i < hy,
o €+ A (=t ) — gTa—hn =Tty if py 41 < i < TL+1,
0= \yw™t if TM+1<i<n.

By the definition of v and w, we observe that w,, satisfies the boundary conditions (3.3).
Moreover, we have utt—u!, = N,y fori € {Ny,...,hy—=N—1}U{h,+N+1,...,n—Ny—1}.
Next, we show

lim (ufn ™t —uhn)y =0 — 4. (3.110)

n—oo

+1

Therefore, we use that w'*! —w? =~ for i > Ny, vt —v? = 4 fori > Ny and @'t — i’ = v

for ¢ > N:
~ ~l_ (71 0 ~ - _70
ulntl gt —p 3 (680 — GTR R @A) TRy g0 ghe=TR)
(T} 1 N 0
={ + )\n<wN2 — " Tt (gTa—he _ gy — (pT0 — M)
~ (ahn~ T9 @y~ 9V _le)

:£—7—|—>\n<7(1+N2+N1+2N)—wN2—QQN—UNI).

Similarly as in the previous case, we can deduce that wu, — w in L'(0,1). As in the case

of a jump in 0 we have that

K T} . K ,hp—j j— s uhnt1l=s _ 4 hn—s
S5 et = {3 i oy 350 ()
j=2i=T0 j=2 ~ i=T0 "
j—1 ,] —s uhn—i—s—i-l _ uhn-l-s Ty . K
T J1< S )+ S i) b= S i) + r(n)
=1 J n i=hp+1 =2

with r(n) — 0 as n — oo. In order to estimate the energy an(un) it is useful to rewrite

it as follows:

K j—1 . T9-1 hn—j
y ) )
Hl,n(un = Z {C] j + Z U},n('}/) + Z U;',n(f)/)

j=2 s=1 1=0 i:TT(L)
. T,
—i—cjz J1 (@ — ') + Z — @)
i=hp+1
K
+ Z } D (25 = D)by(y) + r(n),
i=T141 j=2
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Using (3.108), (3.99) and (3.97), we obtain

Mw

hmsulen(un) < B(ué ),’y) + B( “0 ,’y

n—oo

(25 — D)abj(y) +2B(v) + 4n,
7j=2

which proves, by the arbitrariness of n > 0, the assertion (3.107). O

In analogy to Proposition 3.15, we reformulate the functional HY without the explicit
dependence on ¢ = (cj)jK:2 in the case ¢ > 7. To this end, we introduce the following

boundary layer energies

_ K k=j viti i
Bb(e) = Eellg min Z {Jj <> - Jj(’}/)} :
k>K—1 j=1 =0 J
v:iNg > RoF =0, ofFF175 —pF 5 =0, if 1 <s< K — 1}, (3.111)

B(v) :Zjviglgomin{z:{i!fg < ut —u ) - JCB(’Y)} :

i>0

uw:Ng—= R, u’ =0, ui“—ui:fyifizzv}. (3.112)

Proposition 3.21. Suppose that hypotheses (LJ1)—-(LJ5) hold. Let ¢ > ~ and uél),ugl) €
Rffl. Let B(0,7), By(0) and B(v) are as (3.64), (3.111) and (3.112), respectively. Then
the functional an, giwen in (3.73), reads

B(u",y) + BV, y) + Bps(ul)#(S, N {0})
)
H (u) = + 512#(& N (0,1)) + Bpy(uy )#(Su N {1}) 5113
=2 = 1J5() if u € SBV(0,1)

400 else

K-1
on LY(0,1), where, for 6 € R,

JI5(). (3.114)

M=

K
BB (0) = By(0 Z B(0,y), Brs:=2B(y) -

<
Il
—
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Proof. By (3.73) and (3.14), it is sufficient to prove that By; = (s and that for any
0 e Rf ~1 the following equalities hold true:

(j —Dej = B(6,7),

Mw

B0 - 370)

<.
I|
¥

(j — )e; = Bps(0) + B(6,7).

Mw

Br(0) - 51(1)

Il
)

J

The equality regarding the elastic boundary layer energies B(f,7) and B(6,~) follows
from (3.65) and ¢;(v) = 0. Next, we show that

K
()~ 57 D26~ ey = B, (3.115)
=2

where B(7v) is given in (3.71). This equality implies Bry = fr;. Indeed, we have by
(3.75), (3.14) and 3/, c; = 1 that

K K K
By =2B(y Z Y+ ¢ i(y) =2B(Y) = Y (5 — DejJily Z
=2 =2 j=1
P J
=2B(y Z =B

Let u : Ny — R be a candidate for the minimum problems defining B(y) and E(fy),
ie. u’ = 0 and u't! — ! = 5 for i > N for some N € Ny. Then it holds for the infinite
sum in the definition of B(~) that

K wi — z+j 1
S ()4 E e a-so)
j=2 i>0 J

—1itj—1

S {2 ()Gl S e

The nearest neighbour terms on the right-hand side above can be rewritten as

J 0 =
K K . j—1 (s—1 N+s—1
— Z ¢ Ji (uz’—i-l . u’L) _ Z 7] { Jp (ui—l-l . uz) . Z Ji (ui—H . uz)} '

=0 =N
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Using u't! — u® = ~ for i > N, we obtain

K . j=ls-1 Koozl
ZJ ZJl( il uz):ZcJZ] - Jl(ul—uz_l),
7j=2 J s=0 7=0 7j=2 =1 J
- Cj Nt i+1 i 1 &
>~ I (=) = 53 e - DAM)
j=2 J 20 =~ Jj=2
Altogether, we showed that
K i) _ i NG
ZZ{ (u . u) +CJ Z Jl ('LLS+1—'LLS) —’lb](’y)}
j=2 1> J J s=1
a — J—S s s—1 1 =
+> ¢ —J (=) = 5D (= 1o i)
s R — j=2
N-1, K iti i K N-1
u U
= Z%( : >—Z%(7)}+ Ji ()
1=0 {j_2 J 7j=2 i=0
K i+g _ a0
_ {Z j<“ . “)—Jcm)},
>0 ~ j=1 J

where we applied again ZJK:2 cj =1 and u!tt —ul =~ for i > N. By the arbitrariness of
u:Nyg = Rand N € Ny with «® = 0 and u*t! — v’ = ~ for i > N and the definition of
B(v) and B(7), see (3.71) and (3.112), the equality (3.115) is proven.

It is left to show that for any 6 € ]Rf ~1 it holds

K 7j—1 K
ZCJZJ 5+ Bo(8) — 1) Y (7 — 1)ej = By(6), (3.116)
71=2 s=1 ] 7j=2

where By(0) is defined in (3.70). Note that (3.115) and (3.116) imply that Bp;(0) —
1NN YL = )ej = Bps(0) + B(6,7). Indeed, we have, using (3.14), (3.74), (3.114)~
(3.116) and ZJK:2 ¢; = 1, that

j=2
K j—1 j—s K K
=D 2 N0+ By(6) + B(y) = ) _jJ S Y= 1)
j=2 s=1 j=1 =2

K
= By(0) + B(7) = > iJi(v) = Bpa(9) + B(9,7).

To show (3.116), we follow the same line of arguments as we used to prove (3.65) and
(3.115). Let 6 € RX~! be fixed. Let v : Ng — R be a candidate for the minimum problems
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defining By(#) and By(0), ie. v° = 0 and v — k=5 = g, if 1 < s < K — 1 for some
k > K — 1. Then we have that

By similar calculations as before, we can rewrite the nearest neighbour terms on the
right-hand side above as

K e k—ji+j—1 K cr j—1k+s—j
Z 2 Ji (v —0®) = Z 2 Z Ji (v — o)
j=2 J i=0 s=1 j=2 J s=0 i=s
k—1 K j—1 i
_ Ji (’UZ—H UZ) _ ch J ‘ {Jl (Uz _ ,Uz—l) + Jl(vk’-l-l—z Uk:—z)}
=0 j=2 =1 J

Since vFt175 — k=5 =@, for 1 < s < K — 1, we have that

K k—j T . i+j—1
3 {Jj <> +2 " g (0T =) - ¢j(’>’)}
j=2 i=0 J N
K 7j—1 j—s K j—1 j—s K
+3 ¢ P AR S ; J1(0s) =) (G — Ve Ji(v)
j=2 s=1 j=2 s=1 j=2
_ S vt — ot = i+l _ i =
=331 : —Ji(V) Y i (v o) =) ek Ji(y)
Jj=21i=0 J i=0 j=2
k—j

By the arbitrariness of v : Ng — R and k& > K — 1 with v = 0 and phtl=s ks = g,
for s € {1,...,K — 1} and the definition of By(#) and By(f), see (3.70) and (3.111), the
equality (3.116) is proven.

[

3.4 Properties of the boundary layer energies

In this section, we study the different boundary layer energies which we have derived in
Section 3.3 in more detail. In particular we look for the location of fracture. This is
similar to the analysis presented in [50, Section 5] for the case K = 2.
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3.4.1 Boundary layer energies and location of fracture

Let us prove some relations between the different boundary layer energies which show
up in the last section; that is the elastic boundary layer energy B(6,7), see (3.72), B(7)
defined in (3.71), and By(#) which is defined in (3.70). These relations are proven in [50,
Lemma 5.1] in the case K = 2.

Lemma 3.22. Suppose that the hypotheses (LJ1)-(LJ5) hold true. Sete = (1,...,1) €
RE=1. Then

(1) $11(61) SR 50 — 1ej < B(7) < 351(7) K, — Deys
(2) B(v) = By(ve);
(3) B(ye,y) = 21 (v) S0, — ey

(4) For every 6 € RK L it holds 2J1((51) Z] 5(j —1)ej < By(0) and

and the inequality is strict if 0 # ~ye.
(5) For all a > 0 it holds that By(ce) < B(ae, ).

Proof. (1) Since all the terms in the infinite sum in the definition of B(~) in (3.71) are

non-negative and d; is the unique minimiser of J; (see (LJ2)), we have that

Mx

K .
B('y) 2 ch J = J1(51 *Jl 51 ] — 1

Jj=2

The upper bound of B(v) follows by testing the infimum problem in the definition of B(vy)
with u : Ng — R such that u’ = ~i for i > 0:

K j-1 . K
<336 X IR0 + U0 + o) — () p = 5A0) 30 - e
j=2 s=1 i>0 j=2
Note that we used 9;(y) = J;(v) + ¢;J1(7), see (3.14).
(2) Follows directly from the definition By (#) and B(7), see (3.70) and (3.71).
(3) See Remark 3.13.
(4) The lower bound on By(#) follows from (3.70) in the same way as the lower bound
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for B(vy) in (1). Next, we show the upper bound for By(f). Let v : Ny — R be such
that v5—1 = 0, o5~ —o&=i=1 = ¢, for i € {1,..., K — 1}. Clearly, the function v is a
competitor for the infimum problem in the definition of By(6), see (3.111). Hence,

ZZ{ (5) 0]
K—1K—j

Il
S~

1 1 s=1 j= ]:2

<.
Il
<.
Il

where we used (3.14) and Z]KZQ ¢; = 1 in the last line. The assertion for By(#) follows
directly by (3.116).

Next, we show the lower bound for B(#,v). Let v : Ny — R be test function for
(3.50). Since the terms in the infinite sum in the definition of B(#,7) are non-negative
and v® —v¥1 =6, for s € {1,..., K — 1}, we have

UNES 3 3= IARS 3 Cey

j=2 s=1 ‘7 j=21>0
c i+7—1
F9S @ =) - i)
S§=1
K j—1 j—s K-1K—j 1 i+j—1 i+j—1
>3 ¢ = Jy(6.) + {J] ( > 08> + > Jl(es)—wg(v)}
j=2 s=1 J j=2 i=1 J s=1 s=1
Moreover, we have that
K-1 i K—jitj—1 K-1 ‘ j—1 K—j+s
ZNTY Ry =) J1(6:)
j=2 J i=1 s=i j=2 J 5=0 i=1+s
K-1 K-1 K—lc‘jfl s K-1
= cj J1(0;) — - J1(0;) + J1(0;)
j=2 =1 j=2 J s=0 | i=1 i=K—j+s+1
K K-1 K .. j—1 K-1
=D ey S0 =Y FD G- )A0) + (J +i = K)J1(6:)
j=2 i=1 j=2 J =1 1=K—j+1
K-1 j—1
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Note that we added and subtracted cg Z ' J1(6;) in the third line above. Thus,

K-1K—j i+j—1 K j—1 K-1
B(6,7) > ZJj< Ze> > g 175 g (Bke) — Z — i (7)-
j=2 i=1 j=2 s=1 J j=
By taking the infimum over v, we prove the lower bound for B(f,~). If 6 # ~e the term
corresponding to j = K and ¢ = 0 in the infinite sum in (3.72) is, using Lemma 3.8,
bounded from below by a constant ¢ = ¢(6) > 0 if § # ye. Thus the inequality is strict in
this case.
(5) Follows directly from the upper bound on By(#) and the lower bound on B(#,7) in
(4). O

Now we present further estimates for the boundary layer energies in HY{, see (3.73).

Lemma 3.23. Let (LJ1)-(LJ5) be satisfied. Then
B(G,'y) < BBJ(O) < B(Ovv) + Biy Vo € Rf_la (3117)

and Bry > 0, where B(0,v), Bpy(0), and Bry are defined as in (3.72), (3.74), and (3.75).

Proof. Let ¢ > ~ and u(()l) = ugl) =40 € Ri(_l. The assertion follows from the lower
semicontinuity of H f . Indeed, by the properties of the I'-limit, we deduce that H f is lower
semicontinuous with respect to the strong L'(0, 1)-topology, see e.g. [9, Proposition 1.28].
Let u € SBVY(0,1) (see (3.47)) be such that S, = {0}. Furthermore, let (uy), (v,) C
SBV/(0,1) be such that S,, = {1} and S,, C {0,1} with [v,](1) = Z_TW. Note that the
functions u, u, and v, are uniquely defined for n > 1. Since, (uy) and (v,) converge

strongly in L'(0,1) to u, we deduce from the lower semicontinuity of H{:

K
HY(u) <liminf H(u,) < 2B(6.7) + Bry — (5 — 1)y (7),
K -
Hy(u) <liminf Hi(v,) < 2Bp;(0) — X;(J — D).
j=
The combination of the above inequalities with
K
Hf(u) = B(0,7) + Bps(0) =Y _(j — D(7)

<
||
N

proves the inequality (3.117).

Let us show Bj; > 0. Consider v with u(x) = fx and ¢ > ~. For given N € N,
we set ¢; := % and define wy € SBV(0,1) such that Sy, = {t;,i € {0,...,N}} and
wy (ti+) = £t; for i € {0,..., N}. Clearly, we have that wy — u in L'(0,1). If we assume
that Br; < 0, we have supy H{(wy) < C but Hf(u) = +oo since u ¢ SBV(0,1) for
£ > ~, which is a contradiction to the lower semicontinuity of H f. Thus Bry > 0. ]
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As a direct consequence of Lemma 3.23, we have the following result about the minimis-
ers and minimal energies of H{, which extends in some sense the results of [50, Theorem
5.1]. We prove that there exists no choice for ué ), (M~ 0 such that an internal j jump
has strictly less energy than a jump at the boundary. However, we note that for special

(1 (1)

values of ugy ', u; ’ > 0 the energies can be the same.

Proposition 3.24. Suppose that hypotheses (LJ1)-(LJ5) hold. Let ¢ > ~. For any
ugl), g) RK L it holds

min H{(u) =win { Bg, (u’) + B, 1), Bps (i) + Bug’,7)}

’MN

||
N

(7 =D (7)- (3.118)
J

Furthermore, it holds Bpj(0) = B(0,~) 4+ By for 8 = ve and Bpj(0) < B(6,v) + By

for 6 = 61e, where e = (1,...,1) € RE=1. Hence, for u(() ) = ugl) = ~ve fracture can appear

indifferently in [0,1]. If mstead u( ) = §1e or ugl) = 01e and 61 # v a jump in {0,1} is

energetically favourable.

Proof. From Bp;(0) < B(#,7) + Byy for all § € Rffl, see Lemma 3.23 and the formula

for H f in (3.73), it follows that no internal jump can has strictly less energy than a jump

at the boundary. Hence,
min {Hf(u) .u € SBV(0, 1)} — min {Hf(u) cu e SBVH0,1), S, c {0, 1}} ,

which proves, using B(6,~v) < Bps(f) (see (3.117)), the assertion (3.118), cf. (3.73).
Let us now show that Bpj(ve) = B(ye,v) + Brj. By the definition of Bp; and
Lemma 3.22 (2) and (3), we have that

K
Bgj(ve) — B(ye,7) le )> (= 1)cj + By(ye) + B(y Z]% B(ye,”)
=2
K
=2B(y) = > _ jv;i(7) = Bu. (3.119)
=2

Let us now show Bpj(di1e) < Brj+ B(d1e,7). From Lemma 3.22 (1) and (5), we deduce

-1

K K
ZC] j] J1 51 +Bb((51€ <= J1 (51 Zj_ch+B (516 7)

.

j=2  s=1
<B(v) + 3(5167 )
which proves by the definition of Bp;(d1e) and By the assertion. O

Remark 3.25. Let us consider the special case ¢ > v and u[()l),ugl) € RE-1 such that
uéls) = uglz v for 1 <s < K. From Lemma 3.22 (3), we deduce 2B(y,7) — Z]K:Q(j —
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Di(y) = — ZJKZQ(]' — 1)J;(v). Hence, using (3.119), the first-order I'-limit H} given in
Theorem 3.19 reads:

Br#(SuN[0,1]) = X7, = 1)J;(7)  if u € SBV/(0,1),

400 otherwise.

Hi(u) = (3.120)

3.4.2 Non-accuracy of the I'-expansion

In this section, we point out a non-accuracy of the development by I'-convergence which
we have presented in Section 3.2 and 3.3. This issue was already discussed in [20, 51] for
the cases K = 1, 2; we follow their arguments here.

For given ¢ > 0, we consider uél),ugl) € Rffl such that uélz, = ugls) = min{¢,~} for
1 < s < K. We recall that m(®(¢) := min H* = J%5(¢), see (3.27). For the minimum
m () of the first-order T-limit H{, given in the Theorems 3.12 and 3.19, we deduce that

— LG - 1)J(0) if £ <,

m(l)(ﬁ) = o
=2 = DJi(y) + Bry i l>1,

(3.121)

see Corollary 3.14 and Remark 3.25. In the case ¢ < ~, the (unique) minimiser of the
first-order I'-limit is given by the continuous function u(x) = lx, x € [0,1]. For £ > ~
the minimisers of H f are functions in S BVf with only one jump point. Indeed, this is a
consequence of (3.120) and By > 0, see Lemma 3.23.

The T'-expansion yields the following approximation of the minimum values m,,(¢) :=

min, H:(u) of the discrete energy:
mn (0) = m© (0) + XymM (0).

Direct computations of the exact values of my(¢) yield that the function ¢ +— m,(¢) is
continuous (see e.g. [60]). In the case ¢ = 7 and u(()lg = uglz =, for1 <s < K, we
can calculate the minima m,, () explicitly. Indeed, we obtain from (3.7), the definition of

Joj, (3.12) and Jo ;(v) = Jj(7) + ¢jJi(7) (see (LJ4)) that

K n—j K 7j—1
— S
H)w) =3 Mdoy)+23 ¢ S 220 00)
j=21=0 7j=2 s=1
K K K
= J0i(0) = A D> (G = DJoi(7) + Mdi(1) D (G = e
j=2 =2 =2

By taking the infimum over u, we obtain my,(y) > Jop(v) — An(j — 1)Jj(7). The reverse
- A

inequality follows since Hy (uy) = Jop(y) — An(j — 1)J;(7), where u,(z) = vz, z € [0, 1].
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Thus my(y) = Jop(y) — An ZJKZQ(]' —1)J;j(7y). Formally, we have

lim <m<0> () + Aam D (£) — mn(e)) — A\ By,

L=+

from which one can deduce that the I'-expansion is not accurate close to the point £ = ~.
As it is pointed out in [20, 51], the physical reason for this is the crack nucleation at

¢ = ~. This breaks the separation of scales and thus we have to consider a simultaneous

limit £ — ~ and n — oo to obtain a more accurate approximation of m,,(¢) for ¢ close to

~. This is the subject of Section 3.5 and Section 3.6.

3.4.3 Exponential decay of B(v) for second neighbour interactions

Next, we investigate the boundary layer energy B(+), see (3.71), in more detail. Therefore,
we restrict ourselves to the case of nearest and next-to-nearest neighbour interaction, i.e.

the case K = 2. Recall that in this case, we have
1,
Jo(z) = Jo2(2) = Ja(2) + 3 inf{J1(z1) + J1(22) : 21 + 20 = 22}

and Y2(z) = Jop = J1 + Jo. Throughout this subsection, we assume that J; and J,
satisfy the assumptions (LJ1)—(LJ5) (for K = 2). We make the following additionally

assumptions on Ji and Js:
(1) The functions J; and J are of class C? in their domain.
(2) There exist constants z} and 22 with z} > 01 > v > 22 > &9 such that J is strictly

convex on (—o0, z) Ndom J; and Jj is strictly concave on (22, +00), where d1, da,

denote the unique minimisers of Ji, Ja, Jy, see (LJ2), (LJ4).

(3) There exist constants «, 3, 23 > 0 with z! > 22 > v such that J/.5(2) > «, J](2) >
for z € (—o0, 23) N dom J;.

(4) The function J; is decreasing on (—o0,d;) and increasing on (9;, +o00) for i = 1, 2.
(5) Tt holds: Jj(22) + sup, J5(2) <0

Remark 3.26. Our main example, the Lennard-Jones potentials, satisfy the above assump-
tions. Assumption (1) and (4) are clear. Let us briefly discuss the remaining assumptions.
Recall that Ji(z) = k12712 — ko276 for z > 0, J1(2) = +o0 for 2 < 0 and Jo(z) = J1(22).

From the calculations of Proposition 3.2, we have

1 1
2k1\ © 14+2712\¢
< 1) forj=1,2 and ~= <+) 01 < 4.

1
0 =7 kg 1426

o

The function .J; has exactly one inflection point z!, given by

1 1
26k \ 6 13\ 8

1_ 71 = —_

ZC_<7I<:2> (7> 61 > 01.
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It holds that .J; is convex on (0, z!) and concave on (z},4+00). The same hold true for
Jo and 22 := 3zl. Note that 6, = 16 < 22 = 1zl < . Hence, (2) is satisfied. The
assumption (3) is satisfied with 22 = §;. Indeed, Jop is given by Jop(z) = ki(1 +
2_12)Z% —ko(1+4 2_6)2% for z > 0 and Jop = 400 for z < 0. Hence, it is also a Lennard-

1 _
Jones potential. The inflection point of Jop is given by z = (1—73) 6y = (%)% ( 11122_162 )%(51 >

d1. Note that we used that « is the minimiser of Jop. It is left to show (5). Note that

sup, J5(z) = J}(22), where 2?2 is the inflection point of J. Hence,

T () + 3 () = Tep(22) <0,

which shows that (5) is satisfied. Note that we used 0 < 22 < v and Jop is strictly
decreasing on (0, 7).
A similar reasoning can be applied to Morse potentials, see (3.24), in a certain parameter

regime. Let us choose d; such that v =1, i.e.

1 e k2 4 2 2k2
o=—In|——"7----—1.
ko e—2k2 4 2e—4k2

By a direct calculation, we obtain that ks > 1 + /3 ensures 22 < 1 = 7, see also [36,
p. 112]. With this restriction on k2, we can show the assumptions (1)—(5) in a similar

manner as in the case of Lennard-Jones potentials (we can choose z2 = §; to show (3)).

We prove under these assumptions an exponential decay of the boundary layer B(v) in
the sense of Proposition 3.30. Therefore, we rely on a similar result by Hudson in [35].
In [35], the author considers a one-dimensional discrete system with nearest and next-
to-nearest neighbour interaction. The interaction potential J; for the nearest neighbour
interaction is assumed to be convex with quadratic growth at 400, and the interaction
potential for the next-to-nearest neighbour interaction J, is assumed to be concave. Under
certain additional assumptions decay estimates are proven for similar boundary layer
energies as our B(7y). In order to use the techniques provided in [35], we have to show
that functions v : Ny — R which almost minimises the functional in the definition of B(~)
are such that the nearest neighbours are in the 'convex region’ of J; and the next-to-
nearest neighbours are in the ’concave region’ of Js.

First, we recall the definition of B(7), see (3.71), in the case of only nearest and next-

to-nearest neighbour interactions

. . 1 1 0 u't? — 1 e s+1 s
B('y):]\}glglomln{le(u —u)+iz>;{<]2 <2)+2;J1(u —u)

—JCB(V)} :UINO—>R,u0=0,ui+1—ui=’yifi>N}.
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Next, we rewrite B(7y) in a suitable variational framework. Let us define the function
F:R? - RU{+c0} by

+b 1 1
F(a,b) = Js (’Y + QQ) + §J1(’Y +a)+ §J1(’Y +b) = Jos(7).

Since J; and Jy satisfy (LJ1)—(LJ5), we have FF > 0 and F(a,b) = 0 if and only if
a =b=0. Note that F(a,b) = F) (y+a,v+b), where F is as in (3.44) with K = 2. For
(r')22, € £°°(N), we define the functional B, : £>°(N) — R U {+oo} by

1 e . .
Byr) = L0 () + YO () (3122
=1

1

By setting v + r’ = v’ — u'~!, we can rewrite B(7) as

B(y) = ]\i}é%min{Bv(T) s reco(N)},

where, we denote by co(N) the space of sequences (a*);eny C R such that a’ = 0 for i > N.

Lemma 3.27. It holds
B(vy) =inf{B,(r) : r € co(N)}, (3.123)

where co(N) denotes the space of sequences converging to 0.

Proof. Let us denote the right-hand side of (3.123) by BW. The inequality BW < B(y) is
obvious since every r € ¢o(IV) for some N € N satisfies r € ¢p(N). Let us show the reverse

inequality. For every n > 0 there exists r € ¢o(N) such that
B, > B,(r) —n. (3.124)
By the continuity of J; and Js there exists € > 0 such that

w(e) = 'm{?);}supﬂ,]j(zl) — Jj(z2)| : |y — 2| <eforie{1,2}} <n.
]e b

Since 7 € co(N) there exists an N € N such that |rf| < e for i > N. Let us define 7 € ¢o(N)
by

r* fori <N,

0 fori>N+1.
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Clearly 7 € co(IN + 1). By the definition of r,7 and since F' > 0 and F'(0,0) = 0, we have

B,(r) = By(7) =F (™, r¥ ) = FrY,00+ 3 Pt
i>N-+1

PN 4 N+ r 1
>Js <’Y + 2) —J2 <’7 + 2> +t3 (Lily + YY) = ()

P (3.125)

Combining (3.124) and (3.125) with the fact that 7 is a competitor for the infimum
problem in the definition of B(v) yields

~ - 5 5
By > By(r) —n > By(F) — 5 > B(y) — 5

and the claim follows by the arbitrariness of n > 0. O
Let us now show that the infimum in (3.123) is attained.

Lemma 3.28. There exists a minimiser 7 € (*(N) of (3.123). Moreover, if r € £*(N) is

a minimiser of (3.123) then r satisfies the following equilibrium equations

0=J{(y+r")+ §Jé (’r+ i 5 d ) ; (3.126)

i—1 7

1 T
0=2J4 rrr
2 2(7+ 2

1 i il
) Ay )+ (7 + T+2r> foralli>2. (3.127)

Proof. By Lemma 3.22, we have the following bounds for B(~):

SN(1) < BO) < 5h0).

Let (ry,) C co(N) be a sequence such that lim, .o By(ry) = inf, B,(r). We show that
[7nl¢2(rvy is equibounded. Therefore, we first prove the equiboundedness of (r;,) in £°°(N).
Since lim,_,_~ Ji(z) = 400 and F' > 0, there exists Cj,,, > 0 such that inf,,cy inf;en rl, >
—Clow- Let us assume that 78 > 281 + 265 + Cjoy, for some i € N. Then, we can always
decrease B,(r,) by reducing i . Indeed, this follows from the monotonicity of .J; on
(8;, +00), the fact that d1,82,7 > 0, and that v + ri > &; and v + %(rfl_l + i),y +
%(rﬁfl +7%) > do. Since (r,,) is a minimising sequence, we can assume that there exists
N e N such that sup; r;, < 261 + 202 + Cloy for n > N. Hence, || ||geo () is equibounded.
Let us now show the equiboundedness in £2(N). Let ¢ > 0 be such that (y —e,7 +¢) C
(22,23), cf. assumptions (2), (3). We define the set I,, = {i € N : |[ri| > ¢}. From
Lemma 3.8, we deduce that there exists n = 7(g) > 0 such that F(r%,r"*1) > n for i € I,,.
This implies B, (rp) > %Jl(dl) + n#1I,. Thus there exists a constant M € N such that
sup,, #I, < M.
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For i € N such that i,i + 1 ¢ I,,, we deduce from the concavity of Jo on (22, 400) that
i pitl 1 . ,
Js (v - ’“”+2T"> > 5 (Ba(y+ 1) + By + 7).
A combination of the above inequality with Jj5(v) = 0 and (3) yields

c> ) J +fg:ﬁi +1J(+i)+1J(+»”U—J ()
= Z 2\ 2 2 1y rr, 2 YT 7, cB\Y
1€N:i,i+1¢ 1,

1 ) )
>y 3 {Jep(y+r,) + Jop(y + i) = 2Je() }
i€N: it 11,

> Y (i ).

i€N:,i+1¢ 1,

Combining this with sup #1,, < M and sup,, ||7n [ ) < +00, we deduce sup,, ||7al[z2m) <
+00. Hence, there exist a subsequence (r,,, ) and 7 € £2(N) such that r,, — 7 in ¢*(N).

To apply the direct method of the calculus of variations it is left to show that B, is lower
semicontinuous with respect to the weak convergence of £2(N). Let r € £2(N) be such that
B, (r) is finite. Since F(r*,r"*1) > 0 for all i € N there exists for every € > 0 a constant

N € N such that
N

Ji (7"1) + ZF (ri,r”l) + .

i=1
Let (r,) C £?(N) be such that r, — r in ?(N). From 7, — r in £*(N), we deduce that
ri — r¢ for every i € N. Hence, by the continuity of Ji, J> and F > 0, we obtain that

B,(r) <

N | =

N

iint B, () ~limint { 10 () + S8, (ri) + Y0 B (rhurt)
i=1 i>N-+1
1 al .
2§J1 (rl) + ZF (r’,r“rl) > By(r) —¢
i=1

This proves the lower semicontinuity since € > 0 can be arbitrarily small. Hence, we have
the existence of a minimiser r € £2(N) of B,.

We obtain the equilibrium equations, see (3.126), (3.127), for minimisers r € ¢?(N) of B,
in the same way as it was done in [35, Proposition 6]. We just repeat the argument here.
Let e; € £2(N) be defined by

1 ifj =1,

0 else.
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Let r be the minimiser of B,. For i > 2 and ¢t > 0 sufficiently small, it holds
0<

X o N
1 3 7 t . 1 7 ¥ t
:/ S <7+7"+27“+S> P )+ LS (,Y+7“+7“2+8> ds.
0

By (r +te;) — B (r)
t

The dominated convergence theorem for ¢ — 0+ and the same argument for ¢t < 0 yield

1 Pl oyt , 1 ri 4ttt
§J§ <’y + 2) + Ji(y+7) + §J§ <'y+ 2) =0,
which matches (3.127). The same argument applied to i = 1 yields (3.126). O

Next, we prove that every minimiser r of B, satisfy that v+ r? is in the ’convex region’

of Ji and the ’concave region’ of Js for all ¢ € N.

Lemma 3.29. Suppose r € (*(N) is a minimiser of By. Then it holds r* > r"*1 >0 and
v 41t € (22,22) for alli € N.

Proof. Let r € (*(N) be a minimiser of B,. We show that v + 1’ € (22, 23) for all i € N.
From B, (r) = B(y) < $Ji(v) and 7 < &, we deduce r! > 0, see (3.122). Note that we
used (4) and F' > 0. Assume on the contrary that v+ r’ < 22 for some i > 2. By (4) and
22 < & this yields J|(y +r?) < J{(z2). Using assumption (5), we have that

7“7'_1

1 + 7 ) 1 Z+ i+1
5% <fy+2r>+J{(7+rl)+2J§ (7+M>

< Jj(2%) + sup Jy(z) < 0.

Hence, r does not solve (3.127) and cannot be a minimiser of (3.123). Thus we have that
v 471> 22> 6, for all i € N. This and (4) imply that J3(y + “#22) > 0 for all i € N.
Hence, (3.127) implies that Jj (v + 7%) < 0 for all 4 > 2. This implies v + ¢ < §; < 2 for
every i € N. Altogether, we have shown that a minimiser r € ¢?(N) of (3.123) satisfies
r! >0 and v+ 7 € (22,22) for every i € N.

To conclude the proof, we next follow the proof of [35, Corollary 1]: Consider ¢ > 2 such
that r? is a local maximum, i.e. 7 = max{ri=! 7% ri*1} The concavity of Jo on (22, +00),
(3.127) and (3) implies

T,zfl

1 : N1
0:§J§ <7+2 : > +J{(7+rz)+§J§ <7+

>Ji(y + 1)+ Jh(y + ') = Jep(v + r') — Jep(y) > ar’

Ti + Ti+1)

and thus r* < 0. Next, we consider ' = min{ri=1,r¢ r*1}. Then, (3.127) and the

concavity of Jo on (22, +00) yields

0<Jeply+ Ti) = JgB(f)Ti
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for some & € [y,v + 7). Since v+ r < 23, we have J\5(£) > o > 0 and thus r* > 0.

Let us on the contrary assume that there exists M € N such that ™ < 0 and M =
max{rM=1 pM pM+11 Then, it follows rM+1 <M < 0. Hence, M *! cannot be a local
minimiser and thus rM+2 < ¢»M+1 By induction, we obtain 7/ < ™ < 0 for all j > i,
which contradicts r € £2(N). By the same argument there does not exist an m > 2 such
that 7™ > 0 and r™ = min{r™ "1 rm rmi},

Consider M > 0 such that ™ = 0 and r™ = max{rM-1 pM pM+11 If oM+ < or
rM+1 > 0 the previous arguments lead to a contradiction. Thus #™*+1 = 0. Then rM+!
is either a local minimum or a local maximum. Using again the previous arguments yield
a contradiction if rM+2 £ 0,

Altogether, we have shown that a minimiser of (3.123) does not contain an internal local
extremum 7 unless 7/ = 0 for j > i. This implies that r* is monotone and from 7! > 0

and lim;_,o 7* = 0 the claim follows. O
Now we are in position to prove the exponential decay of minimisers of (3.123).

Proposition 3.30. Let C > 0 be such that for all t € (0,71),
0> J)(y+1t)>—C.

Define A := M% with C' as above and o > 0 as in assumption (3). Then, we have
A€ (0,1) and
0< r < A1l

Proof. Let r be a minimiser of B,. Since we have already shown that v+ rie (22,23

() c) we

can use the same proof as [35, Proposition 15]. The equation (3.127) can be rewritten,

using Jig(7) =0, as

1 rh 4oyt 1 ré 4 it , ,
0=38 (v+ 5T 2 (14 T )+
i—1 T'i+1

r i t ) t rt
:/1- J§’<7+r;>dt+/i Jé’(ry+T;>dt+/0 Thp(y + t)dt.

By Lemma 3.29, we have =1 > 7 > ¢+l > 0. The definition of C, a, see (3), and the
fact that JJ <0 on [y, +00) imply that

i—1 . % ; i
T 7 t T 2 t T

0:/ J§’<7+T; >dt—/ J§’<7+T; >dt+/ Thp(y +t)dt
ri ritl 0

> — C’(Tiil — ri) + ar'.

Hence, it follows
¢ Fi1
CH+a
for every i > 2. The claim follows by a, C > 0. O

rig
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Notice that in [36, Section 2.3] exponential decay for a similar boundary layer is proven
for a linearised Morse potential model. In Proposition 3.30, we provide the corresponding

result for the nonlinear model.

3.5 Analysis of rescaled functionals

As we have outlined in Section 3.4.2, the formal development by I'-convergence may not
yield a good approximation for the minima of HY for ¢ close to y. Hence, we present a
refined analysis in this section. For this, we consider the behaviour of the sequence of
functionals (H‘) for some sequence (£,) C R instead of (H.) with fixed £ > 0. More
precisely, we consider sequences (¢,) C R satisfying ¢, >~ for all n € N and ¢,, — v such
that

b= Y 550 asn— oo (3.128)

Vn

For fixed uél),ugl) € Rf ~! we consider the analogous boundary conditions to (3.3) where

¢ is replaced by £,:
(1)

W =0, v —ut = Anlg 4

. ! " (3.129)
u =4, u" S—u”S:)\nuLs for1<s<K-—1.

For u € A, (0, 1) satisfying (3.129), we define v := —A(u—u,) € A,(0,1), where u,(z) =

vz for z € [0,1]. The definition of v implies that v = \/%(ul — Apyi) for i € {0,...,n},

7

and

0 = 0, v°— 8 = \/)\n(u&g -v),

n __ n+l—s n—s __ (1) (3130)
V"= 0p, v - —\/)\n(uLs—v), for1 <s< K -—1.

We can rewrite H f”n(u) in terms of the displacement v instead of the deformation u by

Er(v) = H{"(u), with EJ*(v) = H{" (uy + v/ Agv).

n n

The functional E* : L'(0,1) — (—o0, +0o0] is given by

B () = E,(v) ifve A,(0,1) satisfies (3.130), (3.131)
400 else,

where FE,, is defined by

K n—j Viti — i
Buo)i= o 3005 (v + )~ nion(o). (3.132)

j=1 i=0

Note that we have used that J&(¢,) = Jop(7y) since £, >« by assumption.
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The remainder of this section is devoted to a I'-convergence analysis of the sequence of
functionals (F%") as n tends to infinity. In addition to the assumptions (LJ1)—(LJ5), we
state further assumptions on the potentials J; with j € {1,..., K}:

(LJ6) The functions .J1, ..., Jg are C? on their domain.
(LJ7) For given j € {2,..., K} there exist n > 0 and C' > 0 such that

J J
;}:Jﬂ%ﬁzhw)+c§:@s—@2 (3.133)
s=1

s=1

whenever SY_, 2z, = jz and YY_ |2, — 2| 4+ |z — 4| < 1. Moreover, it holds that
P75 () > 0, were v and 1); are given in (3.12) and (3.14).

Remark 3.31. The additional assumptions (LJ6) and (LJ7) are satisfied by our main
example of the Lennard-Jones potentials given in (3.22). Indeed, the regularity is clear by
the definition. Moreover, we have shown in Proposition 3.2 that v < &, and 7 (v) > 0 for
j€{2,...,K}. We only have to show that there exist n,C' > 0 such that (3.133) holds
true. Fix j € {2,...,K}. For z and z4 such that jz = Zgzl zs, we make the following

expansion:

j
ZJl zs) = jJ1(2) + Ji (2 Z —2) ZJ (2 + &) (25 — 2)°

s=1

with |¢s| < |zs — z|. The second term on the right-hand side vanishes since Zgzl Zs = jz.
For n > 0 sufficiently small, e.g. 7 < 3|y — 61|, we have for 2z with |z — 7| < n that
J(z+ &) > . in<f6 J{'(z) > 0, which proves the assertion.

<z<01

As in the analysis of the first-order I'-limit in Section 3.3 it is useful to rewrite the

energy F,, as an in (3.41), in a suitable way:

7=111=0
LS s vs — vt L v — ot
g I (w ) n {J (w )
Z; ’ Z_; j Vn Z; — | JVAn
j=2  s= j=2 i=
i+j—1 s+1 s
8Tt —wo
+ -7 h(w— 5 %m}
K Jj—1 j—s ,Un+1fs — s K
+3 ¢ Ji (7+ — > > G = De()
j=2 s=1 J An j=2
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Note that, we used here Jop(vy) = Z]KZQ (7). For a sequence of functions (vy,) satisfying
vn € Ap(0,1) and (3.130) the energy E2»(v,) reads

By Z{chwcjzj > (N >>+J1(”>)—(j—1>wj(~y>} (3.134)

Jj=2

where (3, is defined as

; ,UH‘] U ]H‘] 1 S+1 v
G (1 ) ¢ S (e ) e e

for j€{2,...,K}and i € {0,...,n — j}. By the definition of Jy j, see (3.8), v and t;
(see (LJ4)), we have that C;,n > Jo,] (v + = o ) 1j(y) > 0. The following lemma is

similar to [17, Remark 4] and will give us a ﬁner estimate of terms of the form as C;n

Lemma 3.32. Let Jy,...,Jx satisfy the assumptions (LJ1)-(LJ7). For m > 0 suffi-
ciently small there exists C1 > 0 such that

Jj <Z ZS) + 9 Z J1(zs) (7) = C1> (2 —7)? (3.136)
s=1

s=1

Proof. Fix j €{2,...,K}. If Zs 1 #s = j7 the claim follows from assumption (LJ7). Let
n denotes the same constant as in assumption (LJ7). Since 1; € C?(0,+00) (see (LJ1)
and (LJ6)), v > 0 and ¢ (v) > 0 there exists 71 > 0 such that ES 1 lzs =] < m1 implies
ES 1lzs — 2|+ ]z —~| < nfor ZS 1 2s = jz and that there exists § > 0 such that 7 >0
on [y —ni,y +ml. o

Assume by contradiction that there exist 25, s = 1,...,7 and 2 = 7, % such that
S 1125 — | <m and for all N > 2 it holds

IN

Cj J C J
ORE-DBUICIELVOES W Cy
s=1 s=1

where C' is the same constant as in (3.133). By the choice of n;, we have Zgzl |2s — 2| +
|2 — | <n and thus by (3.133) it holds

Jj(z) + %Z‘h(és) - %Zij(v) S%Z(25 — 7)2 < % Z(;;js _ 2)2 + %(2 _ ,7)2
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In the last inequality, we used (3.133) and the definition of 1, see (3.14). For n; > 0
sufficiently small, such that 2 < ¢ (see (LJ4)), we have by the definition of .Jy; and

Joj(2) = ;(2) that

J .
R R Cj R 2;C .
bi(2) — i (7) < J;(3) + 7] D) i) < 5
s=1
Clearly, this is, for N sufficiently large, a contradiction to

5) 1 2

¥;(2) — ¢ v)ds 2 76(2 = 7)7,
where we used () = 0. O

Next, we state a compactness result for functions with equibounded energy E%».

Lemma 3.33. Assume that Ji,...,Jx satisfy the assumptions (LJ1)-(LJ7). Let u(l)
(1) € RK Y and 6, — 6 such that (3 128) is satisfied. Let (vy,) be a sequence of functions
such that
sup Eo (vy,) < +00. (3.137)
n

Then there exist a subsequence (vy,) and v € SBV®(0,1) such that vy, — v in L'(0,1).

The function v satisfies
v’ € L*(0,1), #8S, < +oo, [v] >0 n[0,1]. (3.138)

Moreover, there exists a finite set S C [0,1] such that v, — v locally weakly in H'((0,1)\
S).

Proof. Let (v,) be such that (3.137) is satisfied. By {7y} = argmin, Jy;(2) and by
Lemma 3.32, there exist constants Kj, Ko > 0 such that for all i« € {0,...,n — j} it
holds

) itj—1 osTL 8 2
= {K1 Z <m> }/\Kg. (3.139)

S=1

Hence, we deduce from (3.134) that

n— UH—I — v 2
> A K1 <H> NKs p + Kg, (3.140)
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with
j—l

K K
K=Y e 7= (Awhd) + ) = D26 = Des(). (3.141)

j=2  s=1 j=2

Next, we show that sup,, |[val[y1,1(0,1) < +00. Therefore, we define the sets I, and I,
by

L ={ie{0,....n—1} 0t < i},

Vit i 2
IT:_ = /LGITL_ :Kl)\n (n)\n) ZKQ .
n

A S 2
Egn(vn) > Z Ay <n h\ n) NKo | + K3

il
it i\ 2
n n ——
=D ¢ (An> + Ko#t I, ~ + K.
i€y \In ~
Thus, we obtain from sup,, Eo"(v,) < +oc and Ky > 0 that I~~ := sup,, #1I, ~ < +oo.

Moreover, we deduce from the equiboundedness of the energy, lim J;(z) = +o0, Cé ;=0
z2——00 ’

and the fact that J; is bounded from below for j € {1,..., K}, that there exists a constant

M > 0 such that

v,ijl —viL > M = vi{*‘l —v,il > _M—i—’y’
VAn An VAn

for all n and i € {0,...,n — 1}. Hence, using Holder’s inequality and #I,, < n, we have

for (v],)” := —(v], A 0) that

n

v+ (3.142)

'L+1 i
1(vp) " llLo,1) < Z)\
i€l
z+1 i
< D> M| VOHL, TIM 4
i€l \In ™
1 1
i+1 _ i 2\ ° ?
<{ > s wannl Bl B ST | VAL TIM 4]
el \I, ~ el \I, ~

IN

1 3
( E2n () — K3> +1+ 177 |M ++|.
K,
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Thus there exists C' > 0 such that [[(v;,)~[[1(01) < C. Using the boundary conditions
v (0) = 0 and vy, (1) = 0y, we obtain that

/ vl (x)dx = 6, — / vl (z)dx < 5, + C.

{v, >0} {v!, <0}

Thus, v/, is equibounded in L'(0,1). The Poincaré-inequality and v, (0) = 0 for all n € N

yield that sup,, [[vnl[w11(0,1) < +00. By the equiboundedness of the Whlnorm, there

exists v € BV (0, 1) such that, up to subsequences, (vy,) weakly* converges in BV (0, 1) to

v. A similar argument as in the compactness proof in Theorem 3.7 yields v € BV‘s(O7 1).
Next, we show that v € SBV?(0,1) and v satisfies (3.138). Let us define the set

it i\ 2
I, = iE{O,...,n—1}2K1)\n<n/\n> > Ky .
n

Moreover, we define the sequence (9,,) C SBV(0,1) by 9,,(1) = d,, and

5 (1) vp(x) Hxeli,i+1),i¢ I,
Upl(x) :=
Up(iAg) i x € Nfiyi+ 1), i€ I,.

The construction of ¥, implies limy,e0 [|[On — vallr101) = 0, |0nllBv0,1) < lvnllwiio,)
and thus 9, — v in BV(0,1). Moreover, it holds #S5, = #I,, and

i+l i
vt =

n—1 2
+oo > EJn(vs) = ) Ky (A”> + Ko#tl, + K3
i=0 n

i¢ln

1
0

Hence, we obtain by the closure theorem for SBV functions that v € SBV(0,1), v/, —
v in LY(0,1), 400 > lmgf#Svn > #8, and Do, — DJv weakly* in the sense of
measures, see Theorem 2.8. Moreover, we deduce that @/, — v’ € L?(0,1) in L?(0, 1) from
sup,, |05l 22(0,1) < +oo (see (3.143)).

Let us now show that there exists a finite set S C [0, 1] such that v,, — v locally weakly
in H1((0,1) \ S). Here, we use similar arguments as in [10, Lemma 2.4]. The estimate
(3.143), yields the existence of z7,..., 2], € [0,1], with m independent of n, such that

Si, CHzi s 1e{1,...,m}}.

Up to subsequences, we have that z]' — x; € [0,1] for i € {1,...,m}. We set § =
{z1,...,zn}. Fix n > 0 and define S, := J"(xi — n,2; + n). Then there exists
a constant N € N such that v, = 0, on (0,1) \ S, for n > N and by (3.143) that
sup,>n [V 220,10\ s,) < +00. We already have shown that v, is equibounded in LY(0,1).
Thus, we can apply the Poincaré inequality on every connected subset of (0,1) \ S, and
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obtain that the L?-norm of v, is equibounded in (0,1) \ S,. Indeed, we have for every
connected subset Q of (0,1) \ S, that

2
/ vide < /(vn —][ Vpdt)? + 2%(][ vndt)dz < Cllvy || 12(q) + —anHil(O -
Q Q Q Q |€2] ’

Hence, v, — v in H'((0,1) \ S,). By the arbitrariness of > 0, we have that v,, — v
locally weakly in H((0,1)\ S).
It is left to show that [v] > 0in [0, 1], i.e. [v](x) > 0 on S,. Recall that we set v(0—) =0
and v(1+) = § for v € SBV?(0,1). The assumptions (LJ2) and (LJ5) imply
liglinf J(]J(Z) > J(],j(’}/) = 1%’(7), ligjnf JQj(Z) = +o00. (3.144)

Hence, we infer as in [17] that there exist constants C1,Cy, Cs > 0 such that

Ci(z =2 ANCy if 2> 7,
Jo2(2) = v2(v) 2 ¥(z —7) == 1e=)"A G (3.145)
Ci(z —7)2NC5 if z <.

From (3.144), we deduce that
sup {C3 : (3.145) holds for some C} and Cy} = +o0. (3.146)

We find, using C;:,n >0, (3.8), (3.134) and (3.145), the following lower bound for E%"(v,,):

K n—j n—2 n—2 i+2 i
7 ) Up = — Up
B (o) =Ko 2 Y3 Gz i 2 3 {ha (14 ) — vl
j=2 i=0 i=0 i=0 n
n—2 i+2 i n-2 i+2 i
Ve — viTE —
> U(-2——" > U(-2—" 3.147
=3 (t) = v () @147

where K3 is given in (3.141).
In order to capture the boundary behaviour of v, we introduce, as in Theorem 3.7, the

following auxiliary functions

0 for x <0, 0 for x <0,
w(z) = v(z) for 0 <z <1, wn(x) ==  v,(z) for 0 <z <1, (3.148)
1) for 1 <z, On for 1 < z.

Let us fix constants ¢ < 0 and 1 < b. We observe that w, — w in BV (a,b). As in
Theorem 3.7, we denote by 1)272 the piecewise affine interpolation of w, with respect to
2Z, see (3.31). To shorten the notation, we drop the superscript 0’ and set vy, 2 := 0272.
Similar calculations as in (3.32) and (3.33) yield v, — w in BV (a,b).
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In analogy to [9, Theorem 8.8], we define the sets

If = {ie{0,....n—2}N2Z: 052 >} and Cy (v — v})? > 40N, ),
I, = {ief0,....,n—2}N2Z: vit? <ol and C1(vit? —vi)? > 4C5\, } .

Note that sup,, #(I7 UI;) < 400 by (3.137), (3.145) and (3.147). By (3.146) it is not
restrictive to choose C1,Cs,C3 > 0 such that C3 > C1(M + )2, where M > 0 is such
that (3.142) holds true for all n and i € {0,...,n — 1}. We claim that I, = () for this
choice. Assume by contradiction that there exists ¢ € 1:,; . Let us additionally assume that
Vil <of and vit? < it By (3.142), we obtain
C1 (v —v8)? <201 (0572 — oi )2 4 (uiT! — 1)) <401 (M 4 7))\, < 403\,

which is a contradiction to i € I,;. The same argument works also without the additional
assumption since (vit2? —vf)? < (viF2 —ith2 if vl > ¢t and (vEF2 —0f)? < (Vit! —ol)?
if v'+2 > o1 Hence, C3 > C1 (M + 7)? yields I, = 0.

For C1,C5,C3 > 0 such that (3.145) and I:{ = () hold true, we define the sequence
(On,2) C SBV(a,b) by

. vno(r)  ifx € \,[i,i+2),i€2Z\ I},
Up2(z) == ~
vn2(iNg) ifx € Ny[i,i+2), i€ L},
The definition of (9,2) and sup, #I,7 < +oo yield that lim,, e [|Tn.2 — Un2llziap) =0
and [|Tn2][Bv(ap) < llvn2llwii(ap)- Thus, T2 X w weakly* in BV (a,b). Moreover, 0,9
has only positive jumps, i.e. Djﬁn,g > 0 in (a,b), by definition. By (3.145) and the choice
of C1,C5,C3 > 0, we obtain in analogy to [9, Theorem 8.8] that

n—2 i+2 i n—2 i+2 i\ 2

v, — (Y —
§ : gln —m) E : O\ [Z—"n) A(C
— ( 2v > o "( 22 > 2

2n|[1/2]
G 3, o(2)[2dz + Co#t S, ,
0
b
C
/ww@Wm+@#%w—l

i =% (3.149)

-2
e
5 ,
For the last inequality, we used that @y, , = 0 a.e. on (a,b) \ (0,1) for n even and @y, , = 0
a.e. on (a,b) \ (0,1 + \,) for n odd and v, , = wn(H/\n%;,:Un(liAn) = Qh(uﬁ — 1) on
(I—=Xp, 14+ A,) in this case. Note that we used wy,(z) = d, for z > 1 and wy, (1) — w, (1 —
Ap) =0 —o" L = \/)\n(uﬂ — ) (see (3.130)).

Since the left-hand side in (3.149) is equibounded and @, — w in BV (a,b), we have
Dit, 9 = Diw in M(a,b), cf. Theorem 2.8, and since DI%,5 > 0 in (a,b) we have
D’w >0 in (a,b). The measure D’v is the restriction of D/w to [0,1] and thus D/v >0
in [0,1]. This yields the assertion [v] > 0 in [0, 1] and finishes the proof. O
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We define the set
SBV(0,1) := {u € SBV®(0,1) : v satisfies (3.138)} . (3.150)

We are now in position to prove a I'-convergence result for the sequence of functionals
(Epr).

Theorem 3.34. Assume that Ji, ..., Ji satisfy the assumptions (LJ1)-(LJ7). Let u(()l),
(1) € RK Y and 6, — 0 such that (3 128) is satisfied. Let o := 1J0i5(v), and B(6,7),

BBJ(H) and Bry as in (3.72), (3.74) and (3.75), respectively. Then the sequence (E2")

I'-converges with respect to the L'(0,1)-topology to the functional E° defined by

1
a /0 W/ Pde + Bl )(1 - (5, 1 {0}))
+ By (ul)#(S, N {0}) + Brs#(S, 1 (0,1))
E(v) = (1) (1)
+ By (u{)#(8, 0 {13) + B, 7) (1 — #(S, N {1}))
— Y EL,6 - Vv () if v e SBVS(0,1),

400 else

(3.151)

on L'(0,1). Moreover, if § > 0 it holds

K
h_}m inf B2 (v) = min{ad?, Bmin} + B(u(() ),fy) + B( ul ,fy Z J—Dvi(v), (3.152)
j=2
with

/Bmln = min {BBJ( (1 )) B(uél),’y) BBJ( (1 )) B(Ugl)ﬂ)} .
Before we proceed with the proof of Theorem 3.34, let us recall that by the same

calculations as in Proposition 3.21 we can rewrite E° above independent of ¢ = (cj)K_zz

Corollary 3.35. Assume that Jq,...,Jk, u(()l),ug ),(5n, 6 and o are as in Theorem 3.3/.
Let B(0,7), Bps and Bry as in (3.64) and (3.114), respectively. Then the functional E°,
given in (3.151), reads

1
a / WPz + B ) + Bu, )
0
B(0) = 3 +Bes(uf)#(S, 0 {0}) + Brs# (S, 1(0,1) (3.153)
+ Bps(u) (S, N {13) = K, (5~ 1)J5(v) ifve SBVI(0,1),
+00 else
on L'(0,1).

Proof of Theorem 3.34. Liminf inequality. Let v € L'(0,1) and let (v,) be a sequence
of functions such that sup,, E%"(v,) < +oo and v, — v in L'(0,1). By Lemma 3.33,
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we have that v € SBV/(0,1). Moreover, we can assume that there exists a finite set
S = {x1,...,xN} such that v, — v locally weakly in H'((0,1)\ S). We have to show
that

lim inf E2" (v,,) >a/ 4 dm+B(ué),’y)(1— #(S,N{0})) + Bps(u ())#(Suﬂ{O})

n—o0

+BIJ#(Sum(O7 1))+BBJ( )#(S ﬁ{l})

K
+B(uy”,7) (1= #(Sa N {1}) = 30 = Dess(7) (3.154)
7j=2

The plan of the proof is as follows: first we estimate the terms which contribute to the
elastic integral term. Next, we consider the terms which contribute to the boundary layer
energies at 0 and 1. Here we have to distinguish between the case z ¢ S, and the case
x € S, with z € {0,1}. Finally, we estimate possible boundary layer energies due to
jumps in the interior (0,1).

Step 1. Let us estimate the elastic part. Let p > 0 be such that |z; — x| > 4p for all
x;, T € 5,1 # j. We define the set S, = Uz 1(zi — p,x; + p) and the set Q,(p) as

Qu(p) i={i€{0,....n—1}: (i,i+K)Ay C (p,1—p)\ S,}. (3.155)

We show that

2
llnrr_lgoréfz Z Cjn_ / [V |*d. (3.156)

J 2 ZEQn(p) (2P71—2P)\S2p

Therefore, we use a Taylor expansion of Jy ; at v:
Joi(v+2) = Joj(7) + a2 + nj(2)

with o = %J(')”j('y) = %w;l(’y) (see (LJ4), (LJ6)) and n;(2)/|z|* — 0 as |z| — 0. Note

that we have

j—1

K
> Y G-y G

J=24€Qn(p) 7=2 s=0i€Qn(p)N{s+jZ}
For given j € {2,...,K} and s € {0,...,j — 1}, we define the set

+j ’U%

Un " = Un
JAn

>)\;‘1*}.

ko= fre o)
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Fix j' € {2,...,K}. From the equiboundedness of Ej"(vy), ¢}, > 0 and (3.140), we

deduce that there exists C' > 0 such that for n sufficiently large it holds

K n—j
C=Y3"Cnz Y G = #pVNKL
j=2 i=0 i€l?

Hence, #I5 ; = O(VA, ') and thus [{z € (0,1) : x5 ,(z) # 1}| < jA#Is, — 0 as
n — oo, where yxj, ; is defined by

1 ifw €[i,i+j)A and i € {s+jZ}\ I,
(@) = [i,i + 7) {s+JZ}\ I} ; (3.157)
0 ifxeli,it+j)\, and i € I, ;.

Thus x;, ; — 1 bounded in measure in (0, 1).

In the following, we identify v, with the function w, € W1*°(R) given in (3.148). As in
the proof of Theorem 3.7, we denote by vy, ; the plecewise affine interpolation of v, with
respect to s 4 jZ, see (3.31). From sup,, E9"(v,) < 400, we deduce by Lemma 3.33 that
supy, [[vnllw1.1(0,1) and thus, as in the proof of Theorem 3.7, that v, ; — v in L'(0,1) for
all j € {2,...,K} and s € {0,...,j — 1}. Furthermore, we define w;(t) := supy,j<, n;(2)|
and x,; = X5,,(1An). A Taylor expansion of Jo; at 7 yields:

; vh — vt
Z Gn = Z {Jo,j (’Y + W) - T/’j(’Y)}

i€Qn(p)N{s+5Z} i€Qn (p)N{s+jZ}
i+j i
; vn =0
> Z X5 {Jo,j (7 + n\/)\—n> - @Z)j(V)}
i€Qn (p)N{s+4Z} JVAn
i+j i i+] i
; vn — 0 vn ) — 0
sl ()
= 2J J . J .
i€Qn(p){s+iZ} VA VA
Vit vl Vit vl

2 Xs,i
n’j
_ Wi
A Y (

Xn.jn.' de—/( Cons Xoi A wj (\/Elvfm’y) dr  (3.158)
pyl=p

P

1 . :

Ly e
I ieQuip)nis+izy
o

=T J2pa—-2p)\Ssp

JAn

for n sufficiently large. Let us show that the second term in the last line above vanishes
as n tends to infinity. From v, — v locally weakly in H'((0,1) \ S), we deduce that
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vs =" in L?((p,1 — p) \ S,). Indeed, we have for n sufficiently large that

n?]

L 12
/ . U:z—w — vy,
loni 12 ((p1-pn\s,) < Yo M B
i€Qn (L)N{s+jZ} "
i+j—1 ’US+1 s 2
ot
< > Ao Y % SJII%IIL2((§,1—§)\S§)-
n

i€Qn(5)N{s+5Z} s=i

Since (v,) converges locally weakly in H'((0,1) \ S), we have sup,, vaHLz((%,l_%)\SE) <
2

+o00. From vy ; — v in LY(0,1) and sup,, vs, i 22 ((p1=p)\s,) < +00, we deduce that
vs =" in L2((p,1 — p) \ S,). Furthermore, it holds Vv, /'l < ALt X;,; is nonzero

n?j

and thus

o35/ s (VI3 1) /Ol 1)

is the product of a sequence equibounded in L'((p,1—p)\ S,) and a sequence converging
to zero in L>°((p,1 — p) \ S,). Note that we have used n;(2)/|z|> — 0 as z — 0 by
definition. Hence, using x;, ;v;, S =" in L2 ((p,1 — p) \ S,) it follows

n7]

n—oo

it S Gz e P
1€Qn (p)N{s+jZ} JJ(2p,1-2p)\S2,

o]

>
JJ(2p,1-2p)\Sa,

|v/|2dx

for j€{2,...,K} and s € {0,...,5 — 1}. Hence,

7j—1

1

K
Y ¥ G,

PRTIED SRH

J=24€Qn(p) Jj=25=0 1€Qn (p)N{s+5Z}
K j-1
>y / /|2 da
j=2 s=0 JJ(2p,1-2p)\S2,

s

— &

a; / ' |2dx
j (2p,1-2p)\S2,

=« ' |2de,
(20,1-2p)\S2,
and assertion (3.156) is proven. Note, that we used
1 1 (& 1 a
a= i) =5 [ DT+l () | =)= a
j=2 =2

which follows from ZJKZ2 ¢; = 1 and the definition of 1}, see (3.14).

Step 2. Let us now estimate the boundary layer energies in 0 and 1. By the assumptions
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on p > 0 it holds #((0,p) NS,) < 1 and #((1 — p,1) NS,) < 1. Hence, there exist
intervals J; C (0,p) and J, C (1 — p,1) with |Ji| = [Jo] = § and J1 NS, = JoN S, = 0.
Without loss of generality, we can assume that J; = (2, p) and Jp = (1 —p,1 —£).
This yields the existence of sequences (T)0), (T) C N with § < X\ (79 + s) < p and
1—p<A(Th +5)<1—8forallse{l,...,K} such that

UT;‘L+5+1 _ UT;;+5

n n

nh_{go N =0, forie{0,1} andse{l,...,K}. (3.159)

Let us show the existence of (7)) C N with the above properties, the existence of (7)!) can

be proven similarly. To this end, we assume by contradiction that there exists ¢ > 0 such
that for all i € Nwith § < A\, (i+s) < pwiths € {1,..., K} thereexistsan 5 € {1,..., K}
such that ]”#ST;””\ > c. Let ip,ji C N be such such that § € (if, — 1,ip]\, and
p € (jh, jh + 1]\n. We have by sup,, Eo"(v,) < 400 and (3.140) that there exists C' > 0

such that

h—K h—K
C> > Gr> Y KiNKy > (K1 NKy) (jf —if, — K) — +oo
i=ih+1 i=if+1

as m — 0o, which is a contradiction to sup,, E2"(v,) < +oo. Note that we have used
jho—ih > 2/\ — 2 for n sufficiently large. From 0 < A\, (T0 +1) < pand 1 —p <
A (T} +1) < 1, we deduce that

({0,...., T U{TE +1,....n—=1}) N Qu(p) =0

We have to show that

K 7—1
hmmfz cjziJ u(()lg —}—chn
n—00 = |
>B(uf,7) + (BBJwé ) = Blug ’,w) #(Syn{0}), (3.160)
K Jj—1 .
hmlnfz C]Z )+ Z C;n
n—oo = et i T1+1
>Bul) 4) + (BBJw%”) = B(ul", 7)) #(S, 0 {1}). (3.161)

We prove only (3.160). The estimate (3.161) can be proven in a similar way.
Let us first consider the case S, N {0} = 0. We define the sequence 9y, : Ng — R as

o4y if0<i<TO+K,
= V¥ ! (3.162)

— iy if i >7T9+ K.
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Using the fact that vy, satisﬁ§s (3.130), we have 00 = 0, ©° 1= U’i%\: +9= u(()lg
for s € {1,...,K — 1} and 9! — ¢’ = for i > T? + K. Hence, Op, 18 a competitor for

the minimum problem defining B (u(()l),’y), see (3.72). Thus we obtain that

K j—1 . 79 K j-1 i—s
1 _
Z u(() 2 + Z C] n( = Z Cj j
j=2 s=1 = j=2 s=1
i _ ¢ itj—1 o
e () 9 e )
7=21>0 5=t
> B(ug,7) = ra(n), (3.163)

with

K TO+K—1 G+ _ g . it+j—1
ra(n) =Y Y {Jj(]) = ZJ U A)—wjm}ao

J=2 i=T9+1

as n — oo. Indeed, from 0, — % =« for i > T) + K and the definition of 1; we deduce
that the terms in the infinite sum in (3.163) vanish identically for i > T + K. By (3.159)

it holds

. . UT,9+1+3 _ UT,?+s
lim (on 14 — I ts) = lim 4y =7,
n—00 n—00 vV An

for s € {1,..., K}, and thus we obtain lim,_,~ r2(n) = 0. From (3.163), we deduce the
assertion (3.160) in the case S, N {0} = 0.

Let us now consider the case 0 € S,. From v, — v in L'(0,1) and 0 € S,, we deduce,
in analogy to [17, eq. (117)], that there exists (h,) C N with A,h, — 0 such that

phntl _ yhn

lim 20— = 400.

n—00 vV An

Indeed, otherwise v/, would be equibounded in L? in a neighbourhood of 0. For given
je{2,...,K} and s € {0,...,5 — 1}, we deduce from (3.9) that some terms in C?Z_j
vanish as n tends to infinity. We collect them in the function 71 (n) defined by

Z Z J<'7+ \/)\78>—>0 as n — oo.

Jj=1 s=hp—j+1
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As in the proof of Theorem 3.19, see (3.82), it is useful to rewrite the terms which involve
vl phnas follows:

K
J=21i=h

hn K ] ,Uhn—s—i-l _ ,Uhn—s
M .
~ J5m Z JZ Vn

vhn+s+1

n+s
+J1(7+ n \/E )} Z]% ) +71(n).

n

Hence, we have

K Tq K hn—j - phn—st1 _ 77
T T e A o

+Cj]ij —s; (7+ yhntstl _Ugn+s) } ZWJ +ri(n). (3.164)
s=1 J v An

Thus, it remains to prove that

i { hij Gn € Z ( Zn_skvgn_j } > By(ul), (3.165)

j=2

i{ TZO Z phntstl _ hnts : . |
¢+ < Un n )}237)—r(n, 3.166

7j=2 zh—&-lj ! \/E ’

with r2(n) — 0 as n — oo. The inequality (3.165) can be proven in a similar way as
inequality (3.84) in the proof of Theorem 3.19. We define for m € {0,..., h,}

Q]hnfm
w, = ——"1 — (hyp — m)y.

Vo

Now we rewrite the left-hand side in (3.165) in terms of )"

K ,hn—j . Zn—s—kl _ vgn—s
21 { 2 G ( )

] Z
K j—l K hn_] AZ+] 3
s %
=S > Iy —ag )+ Y {L( — ”)
j=2 s=1 J 7=2 =0 J
c i+j—1
eSS J1<wz“—wz>—wm>}
s=1

Since v, satisfies the boundary conditions (3.130), we have w/" = 0, whnt1=5 —pfin=s =
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u((]lg Thus ), is an admissible test for Bb(uél)) with h, playing the role of k, cf. (3.70).
Thus (3.165) holds true.

The proof of (3.166) is similar to the proof of inequality (3.85) in Theorem 3.19. We
define for 7 > 0:

hn i hn
VH% if0<i<T®—h,+K-—1,

n IR el
Vit ite >1; —h,+ K —1.

8
I

We can now rewrite the left-hand side of (3.166) in terms of

K T j—1 . hnts+l _  hnts
L) + ¢ ]_.SJ< T A )
j; izg—H Cn,](f)/) ]Szl ] 1\ m
K j—1 K T9—hp—1 it~
= cj ]_,SJ1 (uf;—u‘; 1)-1—2 {Jj (un —un>
j=2 s=1 J j=2 =0 J
itj—1
£ n @) - )
S=1
K j—1 K ~i+j ~
=S Y T @ - a) + Y {JJ <“” — U )
=2 s=1 =2 i>0 J
i+i—1
£ 93T R (@ 1)~ v) | - o)
S=1

where
K T9—hp+K—2 ﬁ”j _ g o i+j—1
ra(n) =) {Jj (”") + Y (@t -a) —%(7)}-
J=2 i=TO—h, J i

Indeed, by definition of i, we have @™ — 4! =+ for i > T? — h,, + K — 1 and thus the
terms in the infinite sum over ¢ with ¢ > T, T? — hy, + K — 1 vanish identically. Furthermore,
we have by the definition of @, and (3.159):

UTg+1+s _ /UZ;T?+S

: ~TO —hp+s  ~TO—hp—1+4s — : n —
35 tn =t T g
for s € {1,...,K}. Hence, we have r3(n) — 0 as n — oco. Note that 40 = 0 and

aitl — @t =~ for i > T — h, + K — 1. Thus 4, is an admissible test function in the
definition of B(7), see (3.71), and we obtain (3.166). Combining (3.164)—(3.166) yields
(3.160) in the case 0 € S,

Step 3. Let us now consider the boundary layer energy due to a jump in (0,1). Assume
there exists ¢ € (0,1) such that ¢t € S,. By the choice of p > 0, we have that SN (¢t —

p,t+ p) = {t}. Similar arguments as in the case of a jump in 0 provide us the existence
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of sequences (kn'), (hy), (k2') € N with

t—p < Aa(kbt+5) <t—

(NS

for s € {1,..., K} and A\,hy, — t such that

hntl _ phn PR ks
In. " Un n Wﬂ —0forie{l,2} and se {1,...,K} (3.167)
n

as n — oo. The choice of the sequences (ky'), (k2') and the definition of Q,(p), see
(3.155), yield that {ky* +1,..., k2" N Qn(p) = 0. We have to show that

k2t
hgggng Y . =2B() Zﬁp] (3.168)
J=2 ;= kl ity

As in the case of a jump in 0 (see (3.164)), we have that

K k%’t K hn—j . hnfs+1 Q} th
> ) <;,n=z{2<;n+cjz v, el R DY
3=2 =t 11 j=2 klt " i=hp+1
,Uhn+5+1 _ ,Uhn+s
Jl('7+ = W 5 )} Z]% +ri(n),
n
with

IS Z (e Y s b)) (3169)
Gt e J1<v+ & >}ZB’y—r2 3.169
I=2 =kt ’ Js—l Van

k2t hn+8+1 o ,Uthrs
Z{ Z CJZH < o Now & > } > B(y) —rs(n) (3.170)

7j=2 “Ni=hp+1

with nlggo ri(n) = 0 for i € {2,3}. The inequality (3.170) can be proven in exactly the
same way as (3.166). Moreover, a straightforward adaption of the proof of inequality
(3.94) to the rescaled situation yields (3.169). Hence, it holds (3.168). Clearly the above
arguments can be applied to every ¢t € S, N (0,1).
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Hence, combining (3.134), the estimates (3.53), (3.160), (3.161) and (3.168) yields

lim inf £7" (vn) > / [ [2dz + B(u§,5) + B(uf? )
e (20,1-2p)\S2,
+ (Beasul) = B’ 7)) #(5, 0{0}) + Brs#(S, 1 (0,1))
K

+ (Bes(l?) = B, ) (5, 0 {11) = DG = D),

Jj=2

By taking p — 0 and using the fact that v' € L?(0,1), we obtain (3.154). This proves the
liminf inequality.

Limsup inequality. To complete the I'-convergence proof it is left to show that for
every v € SBV?2(0,1) there exists a sequence (v,) such that v, — v in L'(0,1) and
lim sup,, B9 (v,) < E(v). As in the proof of Theorem 3.19, we consider the case #S, = 1
and distinguish between having a jump at the boundary or in the interior. Similarly, as in
[17] and [51], it is enough to consider functions v which are sufficiently smooth and locally
constant on both sides of S,,. The claim follows by density and relaxation arguments.

Jump in 0. Let v € SBV2(0,1) with S, = {0} be such that v € C?(0,1), v(0) = 0 and
v(1) = §. Moreover, let v = v(0+) on (0, p) and v = 6 on (1 —p, 1) for some (small) p > 0.
Since E?(v) = 400 if [v](t) < 0 for some ¢ € S, we can assume that v(0+) > 0.

Let us recall some sequences which were introduced in the proof of Theorem 3.19. Fix
n > 0. By the definition of B(y), we can find a function @ : Ny — R and an N € N
such that @° = 0, @' — @' = 4 if i > N and (3.97) is satisfied. Analogously, by the
definition of By(#) given in (3.70), there exist w : Ng — R and ko € N, kg > K — 1 such
that @k = 0, @hot1=s —@ho—s = ") for s = 1,..., K — 1 and it holds (3.98). Finally the
definition of B(6,~) yields the existence of a function w : Ny — R and natural number
Ny € N with w® = 0, w® — w®™! :uglz for s € {1,..., K — 1}, w'! —w’ = for i > Ny
such that (3.99) is satisfied.

Let (T7), (T,) C N be such that § € A\, [Ty, T} +1) and 1 — § € A\, [T}, T;L +1). For n

sufficiently large it holds

. - 1—
k0+N+K+1§T£§)\£—K—1 and Ap+Knggn—N2—K. (3.171)
n n

Indeed, since p > 0 the statement regarding T follows by ko+N+K+1< ﬁ —-1<71°<
ﬁ < ﬁ — K — 1 for n large enough. The inequalities regarding 7} follow analogously.
For n sufficiently large such that (3.171) holds, we define a recovery sequence (v,) for v



Chapter 3. On Lennard-Jones type systems and their asymptotic analysis 109

by means of the functions v, 4, w and w by

VA (R0 4 ) if 0 <i< ko,
0(0+) + 8 — 6 + V/An (@ Ro—1 — GV — gyNat1)

vh = —Apy(i — kg — 2 — N — Ny) ifko+1<i<TV+41,
v(iAn) + 6 — 6 — VAn (w2 — y(Ng + 1)) ifT0+1<i<T!+1,
[0 — VAR (W™ = y(n — 7)) if T +1<i<n.

By the definition of vy, @ and w, we have v,(0) = v) = 0, v, (1) = v" = §,, and

vh = vyl = V(@R o ) = () ),
o = A T =) = V() =),

for s € {1,...,K}. Thus v, satisfies the boundary conditions (3.130). Let us show
that v, is uniquely defined for i € {T0 + 1,7} + 1}. The definition of T yields 0 <
M TY < & and thus v(\, (T + 1)) = v(0+). By @*! — @' = for ¢ > N, it holds for
ie{ko+N+2,...,TO+1} #0 (by (3.171)) that

i—ko—1 N (i —kg—2— N — Ny) = Ny + 1. (3.172)

Hence, v}, is well defined for i = T} + 1. Similarly, A, (T +1) > 1 — & implies v( A, (T)r +
1)) =6 and n — T} > Ny + K implies w™ Dot — n(n — T — 1) = w2+l — (N, + 1).
Thus v}, is uniquely defined for i = T} + 1.

Next, we show that v, — v in L'(0,1). Let us denote by @, the piecewise affine
interpolation of v with respect to A, N, i.e. #, € A,(0,1) and %% = v(i\,). The sequence
(D) converges to v strongly in L'. Hence, it is sufficient to show that (v, — @,) — 0 in
L'(0,1). We prove the L' convergence only on the interval (0, ), since similar arguments
yield the convergence on the intervals (4,1 — &) and (1 — £,1). Note that @, and v, are
equibounded in L>°(0, §) for n sufficiently large. Indeed, ||1~)n\|Loo(07§) < v(0+) by the
definition @, and v. Using v, € Ay, (3.172) and § < A, (T? + 1), we obtain

lvallegy < sup  Jopl < max /A |@"T 4 yi] + [0(0+) + 6, — d]
i€{0,...,TO+1} 1€{0,....ko }

+  max \/)\n(ﬂi*ko’l —yi+c1))l,
iE{k0+1,..A,kQ+N+2}

with ¢y = 7(];:0+2+N+N2)—11N—wN2+1. Moreover, we have for i € {ko+N+2,...,T9+1}
that
[0S, — 0] < |6n — 6] + VA (0N — 4 (Ny + 1) =: 7(n).
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Note that §, — ¢ yields r(n) — 0 as n — oo. Hence, we deduce from the previous
calculations, 5 < A\, (T) 4+ 1) and vy, ¥, € An(0,1) that

1+1))\n

lon = Gallr0.g) <Z/ vn — G|

2
(2

T (i+1)An
(ko + N +2)|[vn — Bnllpecoey + / | — B |dx
i=ko+N+2° 7"

(Z+1)>\n .1'—7/)\
<O(\, 2
<O0) + Z N )+ 2 ()

= ko+N+2
<O(A\n) + 2(7;9 + DA\r(n) < O(\,) + 2pr(n),

which converges to 0 as n — co.
Let us now show that v,, is indeed a recovery sequence for v. To this end, we split the

sum over (; , as follows
bl

K n—j K ,T9+1-K T9 T!+1-K T}
S =N T der S Ger X Gt X G
j=2 i=0 j=2 =0 i:T,?—i—Q—K i=T9+1 i=T}42—K
n—j
+ > g;'.’n}. (3.173)
=T +1

We show that vt —v! = 0fori € {T9+2—K, ..., TO+K—-1}U{T}+2-K, ..., T'+K—1}.
This implies ¢}, = 0 fori € {Tp+2-K,..., T)}U{T, +2—K,..., T} and j € {2,..., K}.
Since TV + 1 — K — kg > N it holds vit! — o} = \/)\7(”'_’%0 — ko1 v) = 0 for
i€ {T?+2—K,...,TV}. Moreover, we deduce from \,(T0 + K) < p and v = v(0T)
on (0,p) that vit! — ol = v((i + 1)A\,) —v(i\,) = 0 for i € {TO +1,...,T° + K — 1}.
Similar calculations combined with v = 6 on (1 — p,1), A\ (T} — K +1) > 1 — p and
n—T!> Ny + K yields vt —vf, =0 forie {T} +2—-K,..., T} + K — 1}. Hence, we
have

K T T,
ORI DRI RS DI S (3.174)
J=2 i=T0+2-K i=Ti+2—K

Let us now estimate the sum from i = 0 to i = T + 1 — K of (3.173). This contributes
to the jump energy Bp J(u(()l)). The definition of v,, and §, — § imply that

pRoHITs _ UELO_S ~ v(0+) + 0, =6

Van - Van

+0O(1) - +o00  as n — +o0,
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for je{l,...,K} and s € {0,...,5 — 1}. Hence, we obtain similarly to (3.164) that

K T2 ' K ko—j . l%o—s—&-l_vfeo—s Ty )
3 B A S >+Z%

=2 i=0 j=2 \ i=0 i=ko+1

Jj—1 ,7 g ,Ul;:0+5+1 ko+s
+ep > > S } ij r(n), (3.175)
s=1 n

with

K ( kotits _  kots

Un
S Y (v _H7z)ﬁo%nﬁm
j=1s=—j+1 IV An

By the definition of v, and w, we obtain

j=2 =0 s=1
K ko—j B b Z+J 1 1)
-y {@(Ly) T ORIGS ﬂ«mﬁsmwwn
j=2 =0

(3.176)

Note that this is essentially the same calculation as in (3.104). Moreover, we obtain from
the definition of v, @ and (3.105) that

K (T3+1-K . l%ofs+1_vk0 s
>y X c;an et S B BaTY)
Jj=2 = k‘()—‘rl "

The estimate for the elastic boundary layer energy at 1 can be treated as in the first-order
I'-limit result. By the definition of v, w and (3.106) it holds

n—j

K .
R <]n+c]Z‘7 W)Y < B, ) + 1. (3.178)

Jj=2 \i=T}+1

Next, we show that the term
K T}H1-K

Y. D G

J=2 i=T0+1

n (3.173) yields the elastic integral term in the limit as n tends to infinity. By the
definition of (T)?) and (7}!) it holds A, T > & and A, (T + K) < 1 — & for n sufficiently
large. Thus, we deduce from v € C?(0,1) that

-V

0((i 4 1)An) — v(idn)
oW

v((i+ 1)A,) — v(EA
An

< Vaalvllezei—ey  (3.179)
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for i € {T2,..., Tt + K —1}. Clearly, the right-hand side in (3.179) tends to zero as n
tend to infinity. A Taylor expansion of J; at v yields:

T+ 2) = S0 + Tz + ST + ()

with 7172("2) — 0as z — 0 for j € {1,...,K}. Hence, using the definition of 9;(z) =
Jj(2) + ¢jJi(z), ¥j(v) = 0 and o; = %w;’('y), we have for z = % I 25 and w(z) =
supyy|<. 1 ()| + j supjy <. [m(t)| that

J

Ji(y+2) + j—] PIPACEEAEEDIC)

s=1

1 " 1 g /i 1 d 2
B Ji () (sz5> +CJJ1(7);ZZS +w(1@§%\zs‘

<
s=1 s=1
s < ) 1 Jj=1 g
D IEEE-EIO) DD DNCEERN RS AR
s=1 s=1m=s+1 -
where we used the following identity in the last step:
j 2 -1 ‘ -1
(Zas> =D ai+2) Y aam=j) ai-3 ) (as—an)’
s=1 s=1 s=1m=s+1 s=1 s=1m=s+1

Hence, for i € {T0,..., T} + 1 — j} and n sufficiently large such that (3.171) holds, we

have the following estimate:

i+j—1

, i _ i
Gn =7 (w\f”” )+Zh(v+f” ) ¥;(7)
o i+7—1 'UZ—H . Ufl 2 i+j—2 i+j—1 _ Ufl _ (UTT—H . 'UZI) 2
=An {JJ Z < An ) Z Z < An )

s=1 s=1 m=s+1

1
Y <i<s1??+}§'1 Vo
2

aj itj—1 Us—i—l — s
A Y U U 1
vy ( N ) To(1)

s=1

as n — oo. Indeed, from the definition of v, and v € C2(0,1) we deduce for i €
{1V, ..., T} +1—j} and s,m € Nwithi < s<m <i+j— 1 that:
vt — ot — (p — o) u((s 4 D) —v((m A+ DAn) — (u(sAn) — v(mAn))
An B An
=" ((m + 1)) — V' (mAn))(s —m) +o(1) = 0
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as n — oco. Hence, the second term in the brackets on the right-hand side of the estimate

for C} ,, is of order o(1). It remains to estimate the third term. If max st —v3| =0
s 1<s<i+j—
nothing is to be shown since w(0) = 0. Let us consider the case that max st —v| >
1<s8<i+7—
0. Then we have for i € {TY,..., T} +1 — j} that
vitl — v v((i + 1A,) — v(iX
- max _n__n _ max (( ) n) ( TL) < ||U||CQ((071))~
i<s<itj-1 Mg TO<i<T} An

Let us fixi € {T,..., T} +1— K}. By the definition of w and by 7;(2)/2% — 0 as |z| — 0,
vitt — 3

and (3.179), we have that
)
max | —'n

7 w
vfl+1vfl> <i<s<i+j—1 Van

max 5
i<s<it+j—1 An (vfflfvfl)
max
i<s<itj—1 VAn

1
—w

max
An i<s<i+j—1

s+1

)

as n — oo. Hence, we have for n large enough such that (3.171) holds that

K TI+1-K K o Tr41-K (itj—1 o5+l s 2
( J n_— Yn
2 2 Ges2 g 2 {Z (55) “(”}
J=2 i=T0+1 j=2 i=T9+1 5=1
K Tr+1-K ) ) 2
DA,) — n
=3 ajh ’Z (“((” ))\)\2 w(iA )) +o(1)
j=2 1=T9+1
K T +1-K
=D aidn D, v(iAa)’ +o(])
Jj=2 1=T9+1

fj /]U]dx—i—o —a/ W2z +o(1).  (3.180)

Note that we used v = v(07) on A\, [T0, TV + K], and v = § on A\, [T} — K, T}] for n
sufficiently large. The left Riemann sum converges to the integral since v’ is continuous.
Altogether, we obtain from (3.174),(3.176)-(3.178) and (3.180) that

7j—1

63 1 ; )+ By(ul) + B(v)
1

Mw

lim sup ES" (vy,) <a/ W' [2dx +

n—0o0

[|
I\

s=

J

+ Bu), ) = (25 = () + 3n

'MN

[|
N

J

and the assertion follows by the arbitrariness of n > 0.
Internal jump. Let us now consider the case S, = {t} with ¢ € (0,1). As in the case
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of a jump in 0 it is not restrictive to assume that v € C?([0,1] \ {t}), v = 0 on [0, p),
v=v(t—)on (t—p,t), v =v(t+) on (¢t,t + p) and v = ¢ on (1 — p, 1] for some p > 0 with
p < 2min{t,1 —t}. Since E°(v) = 400 if v(t+) < v(t—), we can assume v(t+) > v(t—).
Fix n > 0. By the definition of the boundary layer energy B(u(()l), ), we can find v : Ny —
R and N; € N such that 90 = 0, 9° — 0°~' = o) for s € {1,...,K — 1}, 6" — o' =
if ¢ > Nj and it holds (3.108) (with v replaced by v). Moreover, let 4 : Ng — R and
N e N be such that @° = 0, @' — @' if ¢ > N and (3.97) holds. By the definition of
B(ugl),v), we find a sequence @ : Ng — R and a natural number Ny € N with w® = 0,
w® —w Tl = uglg fori e {1,..., K — 1}, w™' —w’ = ~ for i > Nj such that (3.99) be
satisfied.

Let the sequences (179), (k}), (hyn), (k2), (T;) C N be such that § € A\, [Ty, T + 1),
t—5 e Mk k1), t € Ap[hn, hn+1), t4+5 € Ap[k2, k2 +1), and 1 -5 € A\, [T, Ty 4 1).

Thus, for n sufficiently large it hold

p I—p
=~ - K
A D

<kp<h,—K, hy+1+K+N<kl<

N +K<T’< <Tr<n—Ny— K,

t—p
An

t+p
An

K. (3.181)

For n sufficiently large such that (3.181) holds, we define a recovery sequence (v,) by

means of the functions v, 7, n and w as

/

VA (08 = 7i) if 0<i<TY,
v(iAn) + VA (0N — yNy) if TO <4 < kL,
v(t=) — VA (@hn—i — GV — M
- +9(i — hy + N + Np)) if k! <i < hy,
e V(t4) 4 6 — 6 + V/Ap (@ Pt — gV — PN+l
—(i — hp —2— N — Ny)) if hyy +1<i<k2+1,
v(idn) + 0 — 6 — VAn (W2 — y(Ng + 1)) ifk24+1<i<T}+1,
8n — VA (W — y(n — 1)) if T +1<i<n.

By the definition of ¥, w and v the boundary conditions (3.130) are satisfied. The as-
sumptions on v and (3.181) yield v(T9\,) = 0, v(k:\,) = v(t—), v((k2 + 1)\,) = v(t+)
and v((T} + 1)\,) = 6. Thus, v} is by the definition of 9, % and w uniquely defined for
i€ {T% kL k2 +1,T} +1}. The definition of v, yields v, — v in L'(0, 1), which can be
proven in a similar way as for the case of a jump in 0.

Moreover, the definition of v, v(t+) > v(t—) and lim,_,~ d, = J yield

phn =St yhn—s _v(t) —v(t—) + 0, — 0

Vo - Vn

+0O(1) - +o00  as n — oo,
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for j€{l,...,K} and s € {0,...,j — 1}. Let us now show that v, is a recovery for v.
Firstly, we decompose the sum over the C;n terms in (3.134) as

K n—j K ,T9-K 791 EL—1 k2+1-K
>3 S T X s PORTRIN SHFIRES St
j=21i=0 j=2 =0 i=T9—K+1 i=T9 i=kl—K+1 i=k}
T +1-K T} n—j
D S S R SRR SN
i=k2+2—K i=k2+1 i=T}+2—-K i=T+1

The definition of 0, %, w and v,, combined with similar calculations as for the case of a

jump in 0 and for a jump in (0, 1) in the proof of Theorem 3.19 yield that

M) =

Cjzi‘] (1) Z C], <B u(() )7’7)—’_777

j=2
k2+1-K
Z > ¢, <2B(y) Zm ) + 2+ 7(n),
Jj=2 =k}
K n—j
1 ; 1
> B+ ST ¢, b < B )+,
=2 i=T14+1
where r(n) — 0 as n — oo. For given j € {2,..., K}, the definition of v, v,, 0,4, w and

(3.181) imply that

Cin=0 for ie{T) —K+1,....T) —1}U{k, —K+1,... k, —1}
and ie{k:+2-K,. .. Kyu{T!+2-K,. .. T

rTn

We show that (;n =0forie {T0—K+1,...,T? — 1} the other cases can be proven in a
similar way. It is sufficient to show that vi! —vf =0fori € {T°—K+1,..., T+ K —1}.
By the properties of & and Ny < T? — K it holds vit! — v = /A, (y —7) = 0 for i €
{T?—K+1,...,T°—1}. Since A\, (T,,+K) < pit holds (i\,) = 0 fori € {T9,..., T+ K}
and thus vt — vl =0 fori € {T0,...,TO + K — 1}.

Moreover, we obtain in a similar fashion as in the case of a jump in 0 that

T +1-K

S, <a/ \U\QdH/ |2 dz.

Jj=2 | =T9 i=k2+1

K (kL-K
lim sup Z Z CJZ’

n—oo
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Altogether, we deduce from the above estimates and (3.134) that

1
iimsup B (un) <o [ vPds + B 7) + Ba)
0

n—o0

K
+2B(7) + (2 — eos(7) + 4n,
=2

which proves the assertion since > 0 can be chosen arbitrarily small.

No jump. It remains to provide a recovery sequence for functions v € SBV?(0,1) with
Sy = 0. As before it is sufficient to consider v € C?(0,1) and v =0 on [0, p) and v = § on
(1—p, 1]. For fixed n > 0 the functions 0, w : Ny — R and the natural numbers Nj, N € N
are defined as in the previous case. Moreover, let the sequences (77), (T}!) C N be such
that £ € [T0, 70 + 1) and 1 — § € A, [T, T,y +1). Let us define the sequence (vy,) by

n)—-—n n)—-—n

VA (08 — i) if0<i<T?,
i o) + VAR (6N — yNy)
Uy, = _\/E(@M _le-{-wNi_yNQ)—én—i-é (Z . TO) if To <i< Tl
TI-T9 n n —=°""="n>
S — VA (W — y(n — 1)) if T} <i<n.

By the definition of v and w, the function v,, satisfies the boundary condition (3.130).
The function v!, is uniquely defined for i € {7, T'}. Let us denote the additional affine

n» n

term in the definition of v¢, by z¢, i.e.

S VAn(ﬁNl_7N1+7~UN2_’7N2)_6H+6(Z'_T0)
n Tl_TO n/
n n

for i € {T2,...,T}}. From 6, — §, we deduce that lim,, sup, |25| = 0. Thus, we have as
in the previous cases that v, — v in L'(0,1). The definition of % and w yields

K j—1 . T9-K
. J— S 1 i 1
Jm 304 A + 3 G o < B+
= | = =0
K 7j—1 ] s n—j
: - 1 ; 1
Tm Y Qe Y TN + Y G g < Bt y) 40 (3.182)
j=2 =1 J =T
For i € {T2,..., T} — 1}, we have
+1 _ i ~N1 _ N No N. 5 _ 5
Zn Zn < ”U YiV1 + w Y 2’ ’ nl ‘ - —. U)(n) (3183)
An V(T = T7) (T = T7)
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Since A\, (T} —T9) > 1— p—2)\, and lim,, 6, = J, the right-hand side above tends to 0 as
n — oo. Thus, we have that

vt — vl (i 1)A) — v(idg)

An An

Sup <r(n) =0 asn— oc.

Ze{ mno” 7T1_1}

Hence, we can use similar arguments as in the case of a jump in 0 to prove the convergence

of the elastic part, i.e. that

; i _ 712
nh_)rglOE:Q ‘ZTO Gjn =« ; |v'|“dx. (3.184)
J=4 1=1}

Using Ay (T9+K) < £, M, T —K+1 > 1-£ and (3.183), = (vir—vip) =0
forall(in)CNWithzn ce{T’-K+1,.... T4+ K -1}u{T} - K+1,..., T} + K —1}.

Hence

K T9-1 T -1
. i i _
nh_}ngo E E int E in ¢ =0. (3.185)
j=2 | i=T0—K+1 i=T—K+1

Combining (3.182), (3.184) and (3.185) yields the assertion in the case of no jump.

Convergence of minimisation problems. The convergence of minima follows from the
coerciveness of Ef,ﬁ and the I'-convergence result. To verify (3.152), we can argue precisely
as in [51, Theorem 6.1]. Fix 6 > 0 and consider min, E°(v). We distinguish between
S, =0 and S, # (). Let v be such that E°(v) < 400 and S, = (. That is, v € W1(0,1)
satisfying v(0) = 0 and v(1) = ¢. Hence,

K

1
E(v) = a / ' 2dz + B(ul” ) + Bl 7) — S (G — D (7)
0
j=2

and the minimiser is given by v(x) = dz. Using a > 0 and Proposition 3.24, we have that

K
min, B°(v) > min { By (u”) + Bl 7), Bos () + Blug”.7) } = 3G - Vsl
v:Sy 7j=2

which finishes the proof. O

Remark 3.36. For the limiting analysis of (F%"), we used several times results from [17],
where a similar result is proven for periodic boundary conditions and multibody potentials
with finite range, see [17, Theorem 4]. Let us now briefly discuss that this result is

not directly applicable for Lennard-Jones systems with K > 2. In [17], a lower-bound
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comparison potential is defined, which is in our notation given by

K K—j+1 12+]1
= inf Z 2 K ]+1]<_Z ) ZZS— )

cf. [17, eq. (8)]. It is assumed that ®_ has a unique minimiser zi, and the infimum in
the definition of ®_(zyy) is attained for zs = zpyin for s = 1,..., K. This is in general
not satisfied by Lennard-Jones potentials (3.22) for K > 2. For simplicity, we consider

K = 3. In this case the term in the infimum problem in the definition of ®_(zyy) reads

. {Jl(zl) i (z2) + Jiz)} 4 = {JQ (Zl ; ZQ) s (Zl —; ZQ)} + 73 (Zmin) »

where z1 + 29 + 23 = 3zmin. Assume by contradiction that the infimum is attained for
Z1 = 29 = 23 = Zmin- 1he optimality conditions yield that there exists A € R such that
%J{(zmin) + %Jé(zmin) = A (condition for 213 = 23 = zyin) and %J{(zmin) + %Jé(zmin) = A
(condition for zo = zpin). Hence, J)(zmin) = 0 and thus zpyin = 02, where dy denotes the
unique minimiser of Jo. In Proposition 3.2, we showed that v > Jo, where + is the unique
minimiser of Jop. By the definition of ®_, it holds ®_(z) < Jop(z), and by assumption
we have inf,cg ®_(2) = ®_(d2) = Jop(d2). Hence,

O_(7) < Jop(v) < Jop(d2) = @-(62) = inf &_(2) < d_(7),

which is a contradiction. Hence, the Lennard-Jones potentials do not satisfy the assump-

tions on ®_ in the case K = 3. This argument can be adapted for all K > 2.

To end this section, we give a similar result as Theorem 3.34 for the case of periodic
boundary conditions. This was obtained in [56]. Here, we present the theorem without a

proof. We set
An(R) :={u € C(R) : u is affine on (i,i+ 1)\, for all i € Z}.

Let us define the functional i : A,(R) — [0, +00] by

K n-—1 Z-‘rj o

Z J; (’y + — > —ndop(y) ifve A#’é((), 1) and v(0) = 0,
E#ﬁ(v) — ) j=11i=0 )\

+00 otherwise,

where A#’J(O, 1) ={v € A,(R) : 2 — v(x) — dx is 1-periodic}. Note that v € A#’J(O, 1)
implies that v(1) = ¢. Adapting the arguments of Lemma 3.33 and Theorem 3.34, it
is possible to show the following T'-convergence result for the sequence (E2); see [56,

Theorem 4.2] for a complete proof.
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Theorem 3.37. Let the hypotheses (LJ1)-(LJ7) be satisfied. Let 6 > 0. Then the
sequence (E#’a) I'-converges with respect to LY -topology to the functional E#° defined

loc

on piecewise-H' functions satisfying v — dx is 1-periodic, v(0+) > 0 and v(1-) < 6, by

1
E#9(v) — 0‘/0 |v/|2dx + Brj#(S, N [0,1)) if [v] >0 on S,

400 otherwise,

where o = $J\ () and By is defined as in (3.75).

3.6 Equivalence by I'-convergence

In the last section, we have shown that the sequence (E2*) defined in (3.131) I'-converges
to a one-dimensional version of Griffith’s model for fracture. In this section, we come back
to our original discrete energy HY and link it to a nonlinear model for fracture. To this
end, we use the notion of equivalence by I'-convergence due to Braides and Truskinovsky,
see [20]. Scardia, Schlomerkemper and Zanini [51] consider a sequence of functionals
which allow for homogeneous elastic deformations or fractured deformations only, i.e.
u(z) = £z for all z € [0,1] or u € SBVY(0,1) (see (3.47)), and show that this sequence
is uniformly T-equivalent at first order to the discrete model HY in the case K = 2 (see
Remark 3.41 (b)). Here, we study functionals which are more flexible with respect to
the allowed deformations and have the same I'-development up to the first order as the
discrete energy for a particular choice of u((]l), ugl) in the boundary conditions (3.3). Next,

we recall the definition of I'-equivalence as it is stated in [11].

Definition 3.38. [11, Definition 6.1] Let £ be a set of parameters. For £ € £ let (F¥)
and (G%) be sequences of functionals. We say that (F%), and (GY), are I'-equivalent up
to the first order if

(i) forallle L T- lim Ff=T- lim GL = F!,
F! — min Ff Gt — min F¢
(i) forallle L TI- lim —* min Fy (u) —T- ljp MR 0(“).

Let J, ..., Jk satisfy the hypotheses (LJ1)~(LJ7). We define G¥, : L'(0,1) — RU{+oc0}
by

1
o) /0 WG+ 20 Brs (S, 00,1 +r(0) Hue A0,

400 otherwise,



120 Chapter 3. On Lennard-Jones type systems and their asymptotic analysis

where the elastic energy density W is given by

W(z) = Jon() fz<, (3.187)

Jes(y) + 3JEp(N(z =7)? if 227,

the jump energy By is given in (3.75), the set of admissible functions A*(0,1) is defined
by

AL0,1) := {u e SBV!(0,1): «/ >0in (0,1), [u] > 0in [0,1], #S, < +oc}, (3.188)

and the term r(¢) denotes

K
Z J — 1)J;(min{¢,~v}). (3.189)
Jj=2

We prove the following equivalence result.

Proposition 3.39. Let Jy,...,Jx satisfy the hypotheses (LJ1)-(LJ7) and

Zl_1>%1+J (2) =400 and Jj(z) =400 if 2 <0, (3.190)
forallje{l,...,K}. Let{ > 0 and letu(l) WV e RK L given by u( ) uY) = min l,

1 Uy s v

for 1 < s < K. The sequences (H.) and (GY), defined in (3. ) and (3.186) are I'-

equivalent up to the first order with respect to L'(0,1)-convergence.

Proof. Zero-order equivalence. By Theorem 3.7, we have to show that (GY) I'-converges
with respect to the L!(0,1)-topology to the functional H* (see (3.26)), that is

1
JHs(u)dx  if w e BV4(0,1), Du > 0in [0, 1],
G!(w) =T~ lim Gp,(u) = H'(u) = /0 o) (0,1) >0 in [0,1]

+o0 else on L1(0,1).

Let (u,) C L'(0,1) be such that sup, G%(u,) < +oo. From the monotonicity of wu,
and u, € SBV*(0,1), we deduce that |Duy,|([0,1]) = Du,([0,1]) = € and [Jun||fe(0,1) <
up(1+) = £. Hence, |lun|/py(o,1) < 2¢. This yields the existence of a subsequence (up, )
which weakly* converges in BV (0,1) to some u € BV (0,1). Moreover, we obtain that
u € BV*(0,1), see Theorem 3.7.

Let u, — u in L'(0,1) with sup,, G% (u,) < +oc0. Since Br; > 0 and 7(£) € R indepen-
dent of n, we have that

lim inf G¥ (uy,) > liminf H(u,) > H(u).

n—o0 n—oo

Indeed, we have used for the first inequality that W > JX5, u, € SBV*(0,1) and Du,, >
0 in [0, 1]. The second inequality follows by the lower semicontinuity of HY.
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Let us now show the limsup inequality. Fix « € L'(0,1). The pointwise limit of G% (u)

is given by

’ ' / W (z))dz  if u € A0, 1),
Gp(u) == lim G, (
n—oo
else.

Note that we used here #S,, < +oc. Hence, I'-limsup,, G% (u) < @(u), where Gif, denotes
the lower semicontinuous envelope of Gf; with respect to the L'(0,1)-topology. Indeed,
the I'-lim sup is always smaller than the pointwise limit, see [24, Proposition 5.1}, and is
lower semicontinuous. Hence, it is left to show that Gif, < H*.

Fix u € A%(0,1) such that H(u) < +oo. We can decompose u as u = v + w, where

v € WH(0,1) and w is a jump function. For given N € N, we set t; = ﬁ We define vy

such that vy (t;) = v(t;) and
tit1
V() = (][ v’(t)dt) A
t;

for x € (t;,t;+1). Clearly, we have vy — v in L'(0,1). Let us define (uy) C L(0,1) by
upy = vy +w. Then we have uy € AZ(O, 1) forall N € Nand uy — v+w = u in L'(0,1).
By the convexity of J&, J&(2) = W(z) for 2 < v and J&5(2) = W(y) for z > v, we

have that
))da = Z/ ))da: > Z <][ u’(t)dt)

iw (]{ u/(t)dt/\qx) :/0 Wy (2))dz = G (un).

N

The limit N — oo yields ag(u) < I%n inf Gf;(uN) < H*(u) and thus that ?ﬁ(u) < H(u)
— 00

for all u € A?(0,1). Let us now consider a general u € BV*(0,1) satisfying H*(u) < +o0.

We decompose the distributional derivative Du as Du = «'£' + D%u. As above, we set

t; = % for given N € N. We define a jump function wy € L'(0,1) as

0 ifx e [O,tl)
wy(r) = ¢ D3u([0,t;—1) if x € [t;_1,t;) fori € {1,...,N},
D

*u([0,1]) if x =1.
We set uy = v + wy, with v(z) = [;u/(t)dt. The definition of uy yields u)y = o/,
#Suy < N and [uy] > 0 (using D%u > 0). Hence, uy € A%(0,1). Moreover, it holds
that w := u — v satisfies w € BV(0,1) and v’ = 0. Since, wy is the piecewise constant

interpolation of (a representative of) w, we have that wy — w in L'(0,1) and thus
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uy — u in L*(0,1). Furthermore, it holds

1 1 _
1w = [ g = [ I > Glux).
By letting N — oo, we obtain GT{,(U) < liminfy_ 00 @(UN) < H*(u). Altogether, we have
aﬁ(u) < H%(u) for all u € L'(0,1), which proves the limsup inequality.
First-order equivalence. We define the functional G‘i’n : L10,1) = RU {40} as

An
1
[ Wt - e + B0 0D 40 itue A0,
+00

else,
(3.191)
where 7(¢) is defined in (3.189). For given 0 < ¢ < 7, we have to show that
r(0) if u(x) =L,
G4 (u) :==T- nhﬁr{.lo G?n(u) = H{(u) = © () (3.192)

400 else,

see Corollary 3.14 and (3.189). For ¢ > v, we have to prove that

Suﬂ 0,1 if u e SB ZO,17

G(u) :=T- lim G%, (u) = H{(u) = Bry#( [0,1]) +r(y) ifu VE4(0,1)
n—00 ’

00 else,

(3.193)
where the set SBV(0,1) is defined in (3.47), see Theorem 3.19 and Remark 3.25.
Compactness. Let (u,) C L(0,1) be such that sup,, an(un) < +00. As in the proof of
the zero-order equivalence, we deduce from the boundary conditions and the monotonicity
of u, that there exist u € BV (0,1) and a subsequence, not relabelled, such that u, X
in BV (0,1). Moreover, we have

G alim) =5 [ WO (0) = JE6) = () (0, ~ O + Br(Sur [0,1) + (0
+ Aln /Ol(Jg’“B)’(e)(u;(x) —{)dx. (3.194)
Next, we show that both integral terms in (3.194) are non-negative. Set
Wi(2) :=W(2) = JEB(0) — (JEB) (O (2 = 0). (3.195)
Note that W, > 0 and Wy(z) = 0 if and only if z = min{¢,v}. Indeed, if ¢ > ~ this

follows by (J&)'(¢) = 0, {7} = argmin, W(z) and W(y) = Jep(7), see (3.187). Let
us consider 0 < £ < . From W(z) = J&5(2) = Jop(z) for z < v, we deduce that
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Wi(z) = W(z) = W) — W(£)(z — ¢) and the claim follows by the strict convexity of
W. Hence, the first integral in (3.194) is non-negative. Let us show that also the second
integral is non-negative. For ¢ > ~ this follows by (J&%) (¢) = 0. Consider 0 < £ < .
Since u,, € A%(0,1), it holds

¢ = Du,([0,1]) = /01 u,dz + D*u,([0,1]) and D%u,([0,1]) > 0.

Thus, using (J&5) (¢) < 0 yields

1

1
;n /0 (JE) () () = O)da = == (JEp) (O D*un ([0, 1]) > 0. (3.196)

n

From (3.194), Bry > 0 and (3.196), we obtain that

1 1
+00 > sup an(un) > G{yn(un) > o / W(ul,(x))dx + r(£).
n n JO

Since Wy > 0 and Wy(z) = 0 if and only if z = min{¢, v}, we deduce that u], — min{¢,~}
in measure in (0, 1). Moreover, we deduce from (3.194), Bry > 0, and sup,, an (un) < 400
that there exists a constant C' > 0 such that

1t ,
C Z)m/o Wil )dz + #(Su N [0, 1]). (3.197)

The definition of W yields lim, 4 |2|"!W;(2) = +o00. Hence, we deduce from u,, Ay
in BV(0,1), (3.197) and Theorem 2.8 that u € SBV*(0,1). Moreover, it holds u/, — u’ in
LY(0,1), DIu, X DIy weakly* in the sense of measures and +oco > lim inf,, #Su, > #Su.
As in Proposition 3.9, we deduce v/ = min{¢,~v} a.e., u/, — v’ in L'(0,1) and [u] > 0.
Altogether, we have in the case 0 < ¢ < y that u(x) = ¢z a.e. in (0,1) and for £ > ~ that
u € SBVY(0,1), see (3.47).

Liminf inequality. Fix 0 < £ < 7. Let (u,) be a sequence of functions such that
sup,, G‘Ln(un) < +00 and u, — u in L'(0,1). The above compactness considerations
yield that u(z) = fx a.e. in (0,1). By using the convexity of W and Bj; > 0, we obtain
that

n

L (un) zAi <W (/01 ug(x)dx> - JCB(e)) Fr(0) > r(0) = H(u).

For the last inequality, we used that Jop = W on (0,7] and W decreasing on (0,~],
see (3.187). Furthermore, we used ¢ = fol uldx + DIuy,([0,1]) and Diu,([0,1]) > 0. By
passing with n to 400, we obtain the liminf inequality in this case.

Let £ > ~. Let u € L'(0,1) and (u,) C SBV*(0,1) be such that sup,, G‘Ln(un) <
400 and u, — u in L'(0,1). By the compactness result it holds u € SBV/(0,1) and
Diu,, = DIy weakly* in the sense of measures. Set S, = {s',...,s*} € [0,1]. The weak*

convergence of DJu, to DJu yields that there exists for every s a sequence (sf) with
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st €8, and s', — s'. From W (z) > Jog(y) for all z € R, Br; > 0 and the continuity of
r(z), we deduce that

lim inf G n(un) > r(l) + lin_1>inf Brj#(Su, N[0,1]) > r(v) + Brs#(S. N[0, 1)),

n—0o0

which proves the assertion.

Limsup inequality. This follows for 0 < ¢ by taking u, = u for all n € N. O

Let us now show that the continuum energy Gfl captures the behaviour of the discrete
energy HY also in the vicinity of £ = . For this, we consider the behaviour of (G%) for
some sequence (¢,,) C R with £, — v as n — oo. More precisely, we assume that £,, > v
for all n € N and that the following limit exists

5n::£n_7—>520 as n — 0o. (3.198)

Vo

For u € A% (0,1), we define v :=

\ﬁ , where u () := vz for all x € [0, 1]. The definition

of the function v implies that v(0—) = 0, v(14) = Z\"ﬁ = 0p, Sy = Sy and [v] > 0 in
[0,1]. Hence, v € A%(0,1), where for § € R the set A%(0,1) is defined by

A2(0,1) :={v e SBV?(0,1) : [v] > 01in [0, 1], #S, < +oo}. (3.199)

As in the discrete model, we can express the energy G{"n(u) (see (3.191)) with u =
Uy + v/ Anv in terms of the displacement v by Fir(v) = Gf’fn(u), where the functional
Fdn: L1(0,1) = (—o00, +00] is given by

Fn(v ifvefi‘s"(),l,
Fon(v) == (@) .1 (3.200)
400 else,

where F), is defined by

Fuv) = — / (v + Vour') = Jep()dz + Bry# (S, 010, 1)) +7(7).

Note that we used that ¢, > ~+ by assumption, which yields J55(¢,) = Jeop(y) and
r(€y) = r(7), see (3.18) and (3.189).

Proposition 3.40. Let Ji,...,J; and u(() ), ug ) Rffl satisfy the same assumptions as

in Proposition 8.39. Let 8, — & be such that (3.198) is satisfied. Then the sequences (E")
and (F2), defined in (3.131) and (3.200) are T-equivalent with respect to the L'(0,1)-

CoOnvergence.
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Proof. Thanks to Theorem 3.34 and the same considerations as in Remark 3.25, we have
to show that

1
af [v'Pde+ Br#(S, 0 [0,1]) + if v € SBVI(0,1
I lim Fi"(v) = E°(v) = /O‘”‘ 1# (S N[0, 1]) +7(y) i 2(0,1)
o +o0 else,

(3.201)

where SBV?(0,1) is defined in (3.150) and a := 1 J/5(7).
Compactness. Let (v,) C L'(0,1) be such that sup,, F2" (v,,) < +00. From the definition
of W, see (3.187), we obtain min W = W(y) = Jep(y), W (y) = 0 and W”(v) > 0. Using
(3.190), we deduce that there exists a constant ¢ > 0 such that W (y+ z) — Jog(y) > cz2.

Hence, we have

1
R =5 [ W+ VA = Jes()de + Br(5,0[0.1]) +1(2)

1
>e [ unfPde + Brsg(S, 00,1 +r(3). (3.202)
0
From v, € A% (0,1), we deduce
. . 1
0 < [D?vn[([0,1]) = D?vn([0,1]) = bn —/ vp(@)dz < 0n + [Vl 21.0,1)-
0

From §,, — § and (3.202), we obtain that the right-hand side is bounded independently
of n. Hence, sup,, |Dv,|([0,1]) < +oco0 and by the boundary conditions, we obtain that
sup,, ||vnl oo 0,1y < +00. Altogether, we have using ¢, By > 0 that there exists C' > 0
such that

1
c> / o2 + #S0, + |oa]l = (0.0

for all n € N. From this, we deduce, as in the discrete setting (see Lemma 3.33), that
there exist a subsequence (vy,) and v € SBV?2(0,1) (see (3.150)) such that v,, — v in
LY(0,1), vj,, =" in L?*(0,1) and Divy, X DIy weakly* in the sense of measures.
Liminf inequality. Let v, C SBV(0,1), v € L*(0,1) such that v, — v in L*(0,1) and
sup,, F%"(v,) < 400. By the above compactness result, we have v € SBV? and we can
assume that v/, — v’ in L?(0,1) and D7v, — D7v weakly* in the sense of measures.
The estimate for the jumps can be done exactly as in the proof of Proposition 3.39. We
only estimate the elastic part of the energy. This can be done in a similar fashion as

for the discrete energy E°', see Theorem 3.34. A Taylor expansion of W at v yields

n o

W(y+ 2) — Jop(y) = az? + n(z) with lir% YZ(‘ZQ) = 0. Defining w(t) := supy,<; [1(2)], we
Z—> =
have

W (v 4+ VAnz) — Jop(y) > Mnaz? — w(|v/Anz]). (3.203)

We define 'good’ sets:

=

I, = {a: €(0,1): |op(z)] < A
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Since [lvy[[12(0,1) is equibounded, we have that the indicator functions x, := xi, satisfy
Xn — 1 strongly in L2(0,1). Hence, x,v,, — v’ in L?*(0,1). Moreover, we can Taylor
expand W on the 'good’ sets:

Veel,: LQWH¢me—hwm4mm%QyWM%mw

Hence, we obtain

1 1
lim inf an (vp) >lim inf <)\/ Xn(W (v + vV Av),) — JCB(W))dx> + Brj#Sy +r(v)
0

1 o/
Zlirr_l)inf/ Xn <avm2 — W) dx + Brj#Sy +7(7)
n—oo 0 n

1
Za/ |0/ |?dz + Bry#S, + r(v) = E°(v),
0

which completes the proof of the lim inf inequality. Note that we used in the last inequality
1
that x,v,, — v" in L?(0,1) and that v/A,|v},| < A4 if x5, is non-zero and thus

n An !
Ca(VAalinl) = ) o 25l o Lo,

Indeed, the above quantify is a product of sequence which is equibounded in L'(0, 1) and

a sequence which converges to zero in L>°(0,1) (using llg(l) wz(gz) =0 and A, |v),(z)] < )\;%L
i () 7 0).

Limsup inequality. To show the upper bound it is by density enough to consider func-
tions v € SBV2(0,1) such that v € C?((0,1)\ S,). Moreover, it is not restrictive to
assume that there exists p > 0 such that v" =0 on [0, p) U (1 — p,1]. We decompose v as
v =0+ w where ¥ € C?(0,1) and w is a jump function, i.e. ¥ = v’ and w’ = 0.

Let (v,) C L'(0,1) be such that v, = v + 2,, where z,(z) = (6, — §)x for all z € R.
From v € SBV?, we deduce that v,(1+) = v(14) 4+ 6, — d = 8, and v, € A%. By the
definitions of v, we have v,, = ¥ + 2, +w where ¢ and w are as above. From ¢ € C? (0,1)
and v' =0 on [0,p) U (1 — p, 1], we deduce zrél[%}i] |0'(2)| = ¢ € R. Taylor expansion yields

1 M
lim sup /\/ Wy + VA wvy,) — Jop(y)de
n J0

n—oo

1 M
= lim sup )\/0 w (7 + )xn(f/ +op — 5)) — Jop(v)dx

n—oo n

1
< lim sup / X (V + 6, — 0)* +w <\\/ A (0 + 6, — 5)|> dx
0

n—oo n

1 1
< a/ ' (2)2dz + lim sup {|5n - 5|a/ @217 + |6, — 8|)dz + 2
0 0

(VAn(c + |0 —5I))}
= a/olf/(x)zdx,

An
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where w(z) is defined as in the proof of the liminf inequality. Note that we used for the
last equality that 6, — & and lim, .o |z|"2w(z) = 0. Using S,, = S, for all n € N and

' =1/, we obtain

1
lim sup F2" (v,) < a / ¥ (w)2dz + Bry#(S, 0 [0,1]) +r() = E*(v),
0

n—oo

see (3.201). This finishes the proof. O

Remark 3.41. We conclude this section with some general remarks on (GY) and possible
generalisations.

(a) The map £ ~ min, G¥ (u) is continuous in ¢. For this, we show that

o, JoB(0) + A 305 (5 — 1) J5(0) if0 <<,
min G, (u) = K
“ JoB(7) + A Xm0 — DJj(y) + min{a(f — 7)* A By} if £> 7,

where a = %ch/*B(W’)- It is straightforward to see that this implies the continuity of
¢ — min, G% (u).
Consider u € A%(0,1) such that S, = (). By the convexity of W and fol u'dx = £ (since
u € SBV(0,1)), we have
GL(u) = W(0) + Ar(0),

and this lower bound is attained by u(xz) = ¢z for 2 € [0,1]. For u € A%(0,1) such that
Sy # 0, we have that

GY (u) > Wl — DPu([0,1]) + A Bry + Aur(0),

where we used the convexity of W, fol u'de + DI([0,1]) = £ and By; > 0. In the case
0 < £ < v, we obtain, using D’u is a positive measure and W is decreasing on (0, 7], that
min, G4 (u) = W(£) + \,r(€) which shows the assertion in this case. Since W > W (),
we have the following lower bound for functions u € A*(0,1) such that S, # 0:

G (u) > W(Y) 4+ MBry + Anr(£),

and this lower bound is attained by «(0) = 0 and u(x) = yr + ¢ — for z € (0,1] if £ > ~.
By the definition of W and r, this yields the assertion in the case £ > ~.

(b) In [20], Braides and Truskinovsky introduced the notion of uniform I'-equivalence,
see [20, Definition 6.3): Two sequences (H?) and (GY%) are uniformly I'-equivalent at order
M at £y > 0 if there exist translations mfl such that for all £, — £y as n — oo the following
equation holds upon extraction of a subsequence

Hn —mbn Gl —mfn

n—0o0 A\ n—00 A5
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and these I'-limit are non-trivial, see also [51]. Two sequences are uniformly equivalent at
order M} if they are uniformly I'-equivalent at order A} at ¢ for all £ > 0. The uniform

equivalence of (H') and (GY)) implies, under certain coercivity assumptions, that

sup |inf G¥ (u) — inf H' (u)| = o(\2),

>0 U w
see [20, Theorem 6.4]. A topic of future research is the question whether or not Proposi-
tion 3.39 can be generalised to uniform equivalence at order A}, for ¢ € {0,1}

(c) The r(¢)-term in the energy G?, is rather ad hoc and arises from the boundary layer
energies B(0,¢) and Bps(0) for the specific choice of u(()l) and ugl) that we consider here.
It is desirable to construct an equivalent continuum model with flexible boundary layer
energies which depend on «' in a suitable sense; see [11, Theorem 6.2] for an example in
an elastic setting. In particular this will be crucial if one includes external forces to the

energy, see [35, Theorem 4.1].



Chapter 4

Analysis of a quasicontinuum

method in one dimension

In this chapter, we present an analysis of a quasicontinuum method via I'-convergence.
We consider the discrete energy HY, see (3.4), as the fully atomistic model problem.
From this, we derive a QC-approximation and perform a development by I'-convergence.
We study requirements on the QC-approximation which ensure that the minima and the
minimiser of the first-order I'-limits of the fully atomistic energy and the corresponding

QC-approximation coincide.

4.1 Discrete model

Let us recall basic definitions and notations for the fully atomistic energy H’. For given
K € N, the discrete energy H,, : A,(0,1) = R U {+o0}, see (3.2), is defined by

K n-j Wit — i
=35 (1),

where Jj, j = 1,..., K are potentials of Lennard-Jones type and A,(0,1) is defined in

(3.1). Moreover, we impose boundary conditions: for given ¢ > 0 and u[()l), ugl) € ]R{f -1

we set

_ 1 _ 1
W =0, u" =10, u¥—u’ 1:/\nu[()3, ynties gz

)

—u" = \u

for 1 < s < K, see (3.3). The functional H. : L'(0,1) — (—o0, +00] is defined by

H,(u) ifue A,(0,1) satisfies (3.3),
. 0 (0,1 satisfes (3.3)
400 else.

The goal is to solve the minimisation problem

min  H’ (u ,
€A, (0,1) n(t)

129
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which we consider as our fully atomistic problem.
The idea of energy based quasicontinuum approximations is to replace the above min-
imisation problem by a simpler one of which minimisers and minimal energies are good

approximations of the ones for H’. Typically this new problem is obtained in two steps:

(a) Define an energy where interactions beyond nearest neighbour interactions (’'long

range’) are replaced by certain nearest neighbour interactions in some regions.
(b) Reduce the degree of freedom by choosing a smaller set of admissible functions.

To obtain (a), we follow Lin and Luskin [38, eq. (4.2)] and replace the jth (j > 2) nearest

neighbour interactions by

A 1 i+j—1 W — z+j 1 u
Jj( Py >:Jj<jz ZJ( )

S=1

While this approximation turns out to be appropriate in the bulk, this is not the case close
to surfaces, where boundary layers occur. This motivates us to construct a quasicontinuum
model accordingly: for given n € N let kL k2 € N with 0 < k! < k2 < n —j. For

n»'n

kn = (kL k%), we define the energy ffﬁ” by using the above approximation of the jth
interaction for k! < i < k2 — j, (cf. Figure 4.1), and keeping the atomistic descriptions
elsewhere,

kl-1

Z)\ Jl( >+i _0 A (ﬂn“>

7j=2 1
K k2 j i+j—1 —u Uit —
I zJ( )ZZH( ).
J=2 i=k} J=2i=k24+1-j

Analogously to HY, we define the functional HEM : LY0,1) = (—o0, +09]

- k:n . .
b () = Hpn(u) if u e A,(0,1) satisfies (3.3),
+00 else.

For the following analysis it is useful to rewrite the energy ﬁ,”f” in various ways. For given
je{l,..., K}, we define the sets

The energy H*» (u) reads
i+j—1

Hﬁn(u):ixn 3 U (“W_“>+ > % J( ) . (4.2)

JA i€C(j) s=t
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I(2)

FIGURE 4.1: Tlustration of the quasicontinuum approximation for K = 2. Here z denotes
the scaled distance between the corresponding atoms in the deformed configuration and
the two dotted lines stand for %Jg(z). Moreover, the black balls symbolise the repatoms.

For j € {2,..., K}, we can rewrite the terms in the sum over i € C(j) as follows:
2 —jitj—1 k2—j Wit
IS () L Y
i=kl s=i i=kl+j—1

L kL 44 El4i—1 k2 —i+1 k2 —i

/) utn Tt — u'n —u'n
g - J; J: .
+i:1j{]< An >+J< An >}

Thus, we can rewrite the energy H " (u) as

k2—K uH
D S )+zzu< )
i=kl4+K—1 J=14i€A())
K K-1 kl4s kl4s—1 k2 —s+1 k2 —s
A . ,
+]Z;sl ( ){J]< An >+JJ< An >}’

where Jop = Zszl J; is defined as in (3.17).

To obtain (b) we consider, instead of the deformation of all atoms, just the deformation
of a possibly much smaller set of so-called representative atoms (repatoms). We denote
the set of repatoms by T, = {t2,...,t} C {0,...,n} with 0 =10 <tl < ... <t™m =n
and define

n’n

A7, (0,1) := {u:[0,1] = R : u is affine on (¢, 5"\, for t},, titl e T, } . (4.4)

Since we are interested in the energy HS* (u) for deformations u € A7, (0,1), we define
HE T L10,1) = RU {+00} by

e,k .
. Hy " (u) if uwe Ay, (0,1),
e Ty 1= ) 7.(0.1) (4.5)

+oo else on L1(0,1).
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3 £7kn77;b

In the following sections, we study Hj as n tends to infinity. Therefore, we will
assume that k, = (kL,k2) is such that

(i) lim Kl = lim n — k2 = 400, and (i) lim Aokl = lim Ay (n — k2)=0. (4.6)
Hence, in particular lim, . Apk2 = 1. The above assumption corresponds to the case
that the size of the atomistic region becomes unbounded on a microscopic scale (i), but
shrinks to a point on a macroscopic scale (ii). While assumption (i) is crucial (see
also Remark 4.6), the assumption (ii) can be easily replaced by lim, oo Akl = &1,
lim, o0 An(n —k2) =1 — & and 0 < & < & < 1. In this case the analysis is essen-
tially the same, but in the case of fracture, see Theorem 4.11, one has to distinguish more
cases. We assume (4.6) (ii) here because it is the canonical case from a conceptual point
of view. Otherwise the atomistic region and continuum region would be on the same

macroscopic scale.

4.2 T'-limit of zeroth order

In this section, we derive the I'-limit of the sequence (ﬁﬁ’k"’%) defined in (4.5). We show
that (ﬁf;k"T") I'-converges to the same functional H* as the fully atomistic energy (HY),

see Theorem 3.7.

Theorem 4.1. Suppose that (LJ1)-(LJ5) are satisfied. Let £ > 0 and u(()l), ugl) € Rf‘l.
Let ky, = (k}, k2) satisfy (4.6) and let Ty, = {t2, ...t} with0 =) <tl < ... <t/n=n

ny''n

and {0,..., K —1}U{n—K +1,...,n} C T, be such that
A(pn) C N such that li_>m AP = 0 and sup{titt — ¢t i1 4 e T.1 < p,. (4.7)

Then (f]ﬁk"ﬁ‘) defined in (4.5) T-converges with respect to the L'(0,1)-topology to the
functional H® defined in (3.26) by

1
; / JEs()dx  if w € BVY(0,1), D%u >0 in [0,1],
H(u) =4 Jo

+o0 else on L1(0,1).

7;”(un) < 4o00. The same

Proof. Let (u,) be a sequence of functions such that sup,, HfFm
arguments as in the compactness part of the proof of Theorem 3.7 yield the existence of
a subsequence (u,,) and u € BV*(0,1) such that u,, — u weakly* in BV (0,1).

Liminf inequality. Similar arguments as in the proof of Theorem 3.7 yield that it is
sufficient to consider sequences of function (u,) such that u, — u weakly* in BV (0,1)

for some function u € BV*(0,1) in order to prove the liminf inequality.
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The definition of A(j), see (4.1), and assumption (4.6) imply that

lim A\ #A(G) = lim M\ (kL +n—k2) =
n—oo n—oo

Hence, we obtain from (4.3) and J; > J;(6;) that

k2—-K

N i+1 _ K-1
H T () > Y Ao <“ >+Z>\ J;( {#A +Zz< Al)}
i=kl4+K -1 s=1
k2-K ) )
n +1 _
= Y Jes <un)\un> +o(1),
i=kl4+K -1 "

asn — oo. For every p > 0 there exists an N € N such that (p, 1—p) C A\, (kL + K, k2 —K)
if n > N. Since J35 > Jop(y) and Jop(y) < 0 it holds

K2-K

T S

hmlan s /n > lim inf A din | —2D

nf A ) 2 it D Ay (2
i=kL+K

1-p
> lim inf/ JEg(un)de + 2pJep (7).
p

n—oo

From (u,) € WH*(0,1), u, — u in BV (p,1 — p) and Proposition 2.15, we deduce

n—o0

1-p
lim inf F4%n T (1) > / T () dz + 2pJ0B(7),
p

if D*u > 0in (p,1 — p), and +oo else. The required lower bound follows by taking p — 0
and using the same arguments as in Theorem 3.7 to obtain D*u > 0 in [0, 1].

Limsup inequality. The limsup inequality can be proven in a similar way as for the
fully atomistic energy Hf;, see Theorem 3.7. We define the functional ]:I,]i"’% : LY0,1) —
R U {+0c0} by
H(u) if u e A7, (0,1),

+00 else.

flﬁn’% (u) :==

We claim that for every v € BV(0,1) with D*u > 0 in (0,1), there exists a sequence
(un) € LY(0,1) such that u, — w in L'(0,1) and

n—0o0

1
lim sup 75T (1) < / T (o) dz. (4.8)
0

We show this only for linear functions. This can be adapted to piecewise affine functions
and the claim follows by density and relaxation arguments, see Theorem 3.7.
Let us first consider linear functions u such that u(x) = zx with z < . Since Jop(2) =

JEB(2) for z < « it follows that the constant sequence u, = u satisfies (4.8). Indeed,
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u € A7,(0,1) and (4.2) yields

K K
Him () =Y Jj(z )\nz (G —1)J;(2) = J&E(2) + O(Mn)
J=1 J=

as n — oo. Note that we used #(A(j) UC(j)) =n — j + 1. Let us now consider linear
functions u such that u(x) = zz with z > . For every (py) satisfying (4.7), we find a

sequence (g,,) of natural numbers such that

Pn

lim A\pq, =0, lim — =0,
n—oo n—oo qTL
0
e.g. qn = |/npn). We define for every n € N a set 7, = {tﬁ",... } C Tn, where

0=nhY <hl <. <hln =r, such that there exists C7,Cy > 0 which satlsfy

Cign <t — M%< Chqy for all k € {0, ..., N, — 1},

_ N Na—1 Rkt Ay _
Fromn =) ;" (thm —tp"), we deduce that C1 Ny, < n < CaNyqp, and thus Nyg, =

O(n). Let us now define u,, € A7,(0,1) such that u,(1) = z and
up(z) = z)\ntzﬁ +y(x — )\ntfﬁ) for x € [tn" thn n — 1]\, and k € {0,..., N, — 1}.
. nk hE—1 .
By using t," —t," < py forall k € {1,...,N,} and |u(x) — u,(x)| < 2z, we obtain
Na=1 pxnihn’'=

/ lu(z) — up(z)|dx = Z / zx - z)\ntzﬁ - (x - )\ntzﬁ) ‘dw
Ant

Antn i
+ Z//\ nk 1 lu(z) — un(z)|dx

tn"

Ny —1 \ hk+1 1

gZ/ N LG — Anth)da + 22N, Appn
k=0 /Antn
ey | k41 K 2

= 30 S (T =)+ 22N A
k=0
1

<5 (2 =N NaCEGAT + 222npn N

and thus u, — u in L'(0,1). Indeed, by A\yNpgn = O(1), Angn — 0 and O(\ppnNy) =
@) <§—Z>, the terms in the last line above tend to zero as n — co. Let us now show that

(un) indeed satisfies (4.8). By definition, we have uit! —uf = A,y for 0 <i <n —1 and
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hk—1  nk

. N, . Ny, 1,hE—1 ,hE
i¢ (N NU" [t tn")) and by using # (N NU" [t ,tn")> < Nppn, we have

k+1
hy
Np—1tin 1o

e T (y Z Z )\nJ( )+ OAnpnNn) = Jep(v) + O(AnpnNn).

—t

Since A\pppN,, — 0 as n — oo, we deduce (4.8) in this case.

For every u € BV* such that H'(u) < +00, we can combine the above results with the
same procedure as in Theorem 3.7 to construct sequence (u,) such that u, € Ar, (0,1)
satisfies (3.3) and

lim sup H5Fn T (u,) < HE (u),

n—oo

which proves the lim sup inequality. O

Remark 4.2. To underline that the zero-order I'-limit is too coarse to measure the qual-
ity of the quasicontinuum method, we remark that one can show that the sequence of

functionals defined as
W g . _
HECB () = Z)\HJCB ()\n> if u € A7, (0,1) satisfies (3.3),

400 else,

I'-converges to H' with respect to the L' (0, 1)-convergence under the same assumptions
on (7,) as in Theorem 4.1. Note that the functional HEYP can be understood as a

continuum approximation of Hf;.

4.3 I'-limit of first order

In this section, we derive the first-order I'-limit of (I:If;k"T")

of functionals (H HE k"’T") defined by

,i.e. the I'-limit of the sequence

HEFn T (u) — min, H*(v)
An '

7l kn, Tn

It will be useful to rearrange the terms in the expression of the energy H’fﬁ"% Let

u € A7, (0,1) be such that the boundary conditions (3.3) are satisfied. For j € {2,..., K},

we can rewrite the nearest neighbour interactions as

ZJ1 ( ) Z +ZJ ( ) +ij = (A0 +n))
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see (3.5). Hence, using A(j)UC(j) ={0,...,n—j}, A(j)NC(j) =0 forallj € {1,...,K},
>, =1, and min H = J&5(0) = z] 2¢**( ), see (3.14) and (3.18), we obtain that

’I’L

K it — itj—1 us
s {JJ( )+ > n (o )—w;**w)}
=2 i€ A()) I
K itj—1 s+1 _ s s+1 _ .5
23y () ren () )

ﬁf;ﬁ"%)i{ A Zﬂ‘“) POy +ZJ ( )} — g0

Recall that for j € {2,..., K} it holds

n—j ut I — j— 1) (1) y
Z 7j)\n Z < tug g — ) .

1=0

see (3.40). Adding and subtracting Z] D (w**) (0)(= T L
(3.14) yield

b T K witi ot ¢ il R .
Hl:nm ”(u) :Z {Jj (])\ ) + 7 Z Ji ( \ ) _¢j (ﬁ)
J=2 i€ A(j) " s=i "

— (WY () <ul+j)\nul - 6) } + f: > jlfl {wj <@V9+;nus>

j=2ieC(j)’ s=i

(0 = (07 (0 (“A“ -} S G- 16

— /) to ﬁfﬁ”n (u) and

SO I (D) ) — 20). (4.10)
J , )

Let (up) be such that u, € A,(0,1). For given j € {2,..., K}, we recall that J;-’n(ﬁ) is
defined by

oty = 0, (* Z‘“>++ZJ( ) e (o - ) -
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see (3.42). Recall that a;'m(() >0, see (3.43). Moreover, we set

s+1

15 0 (€) =1 <us+i\n_us> — () (0) <uAn_us - £> — (). (4.11)

By using ¢; > ;(v) = ¥;"(7), we have ,u;n(é) > 0. In terms of 0;-7”(@ and ,u,zn(é) the
equation (4.10) reads

R K ‘ H-J 1 K
Hyp ™ (u) —Z; ;{)azﬂx Z() Z (. —z;u—w 7 ()
J= 1€A(g eC J=
K j—1 s
36 T (el + )
Jj= s=1
= c j— S (1
_ Z(¢** Z ; ( U 4 +uls) 25) . (4.12)
j=2

Applying similar arguments as in the proof of Proposition 3.9 for the fully atomistic

energy an to H fﬁ"T” given as in (4.12) we obtain the following compactness result.

Proposition 4.3. Let ¢ > 0, u[()l), ugl) € ]Rf_l and suppose that assumptions (LJ1)-(LJ5)
are satisfied. Let (kp) = (kL,k2) satisfy (4.6) and let (u,) be a sequence of functions such
that

SUp HZ k”’T"( n) < 4o0. (4.13)

(1) If £ <+, then, up to subsequences, u, — u in L>°(0,1) with u(z) = Lz, x € [0, 1].
(2) In the case £ >, then, up to subsequences, u, — u in L'(0,1) where u € SBVY(0,1);
see (3.47).

Proof. We can essentially copy the proof of Proposition 3.9. Let us only show how to
adapt the argument for u/, — min{/, v} in measure in (0,1). For given £ > 0, we define
the set I} as

ui+1

Un —Un min{ﬁ,y}' > 6} .

I :=%ie{0,....n—1}:
pm {0y

By the definition of Jém(ﬁ), ,uém(ﬁ) (see (3.42), (4.11)) and Lemma 3.8, we deduce the
existence of n = n(e) > 0 such that aém(ﬁ),ué’n > for i € I5. From (4.4), (4.12), (4.13),
J;»’n(ﬁ), u;n(ﬁ) > 0 and J; is bounded from below, we deduce that there exists a constant
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C > 0 such that

K i+j—1
i 1 i
C2) ¢ > a0+ > 7 Y Hinl0)
J=2 | i€A(j) i€C(j) s=i
kl—1 k2 -2 n—2
>3 b O+ D w0+ > 0,0 > #In.
i=0 i=kl+1 i=k2 -1

From this, we deduce exactly as in Proposition 3.9 that u/, — min{¢,~} in measure in
(0,1). We can now apply similar arguments as in the proof of Proposition 3.9 to show
the assertions. ]

Proposition 4.3 tells us that a sequence of deformations (u,) with equibounded energy
converges in L'(0, 1) to a deformation u which has a constant gradient almost everywhere.
In the following lemma, we prove that (u,) yields a sequence of discrete gradients in the
atomistic region converging to the same constant. This turns out to be crucial in the
proofs of the first-order I'-limits.

Lemma 4.4. Let ¢ > 0, uél),u(ll) € Rf‘l and suppose that J;, j € {1,..., K} satisfy
(LJ1)-(LJ5). Let (ky) = (kL,k2) satisfy (4.6) and let (uy,) be a sequence of functions such

n»’'n

that (4.13) is satisfied. Then there exist sequences (T}), (T?) C N with T} € {0,...,k} —
K —1} and T2 € {k2,...,n — K} such that, up to subsequences,

. ugfﬂrsﬂ B ugfﬁ-s
lim
n—o00 An

= min{/,~}, forse{0,..., K -1} andi=1,2. (4.14)

Proof. The proof is an adaption of the proof of Lemma 3.11. Let us define (k,) ¢ N by
kn = min{k},n — k2} and

I, = {z’e{0,...,k;—(K+1)}u{k3,....,n—K}:a}(,n(ﬁ)> ! }

By (4.13), there exists C' > 0 such that
kl-K—1

n—K
. , 1 #1n
C > sup E O (l) + E oK n(f) | =sup E — = sup ———.
n i=0 " i=k2 " n ien, Vkn n Vky

Hence, we have #1I,, = O(V/ky,).
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Now let ¢ ¢ I,,. By using the definition of Jy g and Jo x(2) > ¥ (2) > (¥3)'(0)(2 —
0) + 3k (¢), we deduce from 0 < g}(’n(g) < —L_ that

Vn

WK i+K—1 cx s WK 1
0<Jr | 2>rir—"2 —J | 1) - J n n) < , (4.15
o (M)« 2 G () e () < g e
wiHE —

0 <dore (U= o) — iy o) (M ) < ] (4.16)
>JO,K K>\n K K)\n S \/E .

Let (h,) C N be such that h, € {0,...,k} — K —1}U{k2,...,n— K} and h, ¢ I,,. By
using the fact that Jo x(z) = ¢35 (0) + (¥3F) (0)(z — ¢) if and only if z = min{¢, v}, we
conclude from (4.6) and (4.16) that

—u.sn

uhn-‘rK h
n n .
—_— — INIn E as n — Q.
K\, {6

Combining this with (4.15) and assumption (LJ4) (see (3.13)), we deduce

hn+s+1 hn+s
upn —upn

lim
n—00 An

=min{l,v} forse{0,...,K —1}.

Hence, for sequences (hl),(h2) C N with Al € {0,..., k! — K — 1} = K} and h2 €
{k2,...,n— K} =: K2 and h! ¢ I, for n big enough and i = 1,2, we deduce

o B
nes A,

= min{/, v}.

It is left to prove existence of such sequences. Since #I,, = O(V/ I%n), we conclude by the
assumption (4.6) that K7\ (I, N K},) # 0 for n sufficiently large and ¢ = 1,2 which shows
the existence. O

4.3.1 The case 0 < /(¢ <~

As for the fully atomistic model studied in Chapter 3, we distinguish between the cases
0 < ¢ < ~and/{ >+, where ¢ denotes the boundary condition on the last atom in the chain
and y denotes the unique minimum point of Jy ; for j € {2,..., K}. In the case 0 < ¢ <~
no fracture occurs by Proposition 4.3. In this section, we show that the first-order I'-limit
of (]:Iﬁ’k"’%) coincides with the first-order T-limit H{ of the fully atomistic model (HY),
cf. Theorem 3.19.

Theorem 4.5. Let 0 < ¢ < v and u(()l),ugl) € Rf‘l. Let kL k2 satisfy (4.6) and let
Tn € {0,1,...,n} be such that

(0, By UK, ... on} CTn= {0, ...t} (4.17)
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Then the sequence (f]g’k"’T") defined in (4.9) I'-converges with respect to the L*°(0,1)-

1n

topology to the functional H{ defined in (3.51).

Proof. Liminf inequality. Let (u,) C L'(0,1) and u € L'(0,1) with u, — w in L'(0,1)
and liminf,,_ e ﬁfﬁ"% (up) < +oo. By Proposition 4.3, we deduce that u(x) = lz a.e.
in (0,1) and w, — u in L*°(0,1). We have to show that

K
hmlanZ kn, T (un) >B(u(() ),5) + B(Ug )75) - Z(J — Dy (0)

n—oo
K 7 ] s
- 1 1
- Z%(f) Z — (uég + u§§ — 26) , (4.18)
see (3.51). By Lemma 4.4, there exist sequences (T}}), (77?) C N such that T} < k! —

T2 > k2 and

ug:;+5+1 _ uf“s

li_>m 3 =/{¢ forie{l,2} andse {l,...,K —1}. (4.19)
Using U§7n(€),u§’n(€) > 0, we obtain from (4.1), T} < kL, T? > k2 and (4.12) that

T1 n—j

K
Mn% Z Z%n +

Gjn +Cjzj;8 (Jl( , )) —|—J1(U§3))
s=1

7—1
J=8 (W 0
(0 Z ; ( ul) - 25) . (4.20)

Jj= Jj=2

We can now use the same estimates as in the fully atomistic case, see Theorem 3.12. By
using (4.19) and the estimates (3.55) and (3.57), we obtain

K Jj—1 .
. J— 1
hnrggf Zz c; Zl 7 )+ Z >B u(() ),E), (4.21)
j= 5=
K j—1 . s n—j 4
lim inf 'y Y ! ; J)+ Y ol 0 =B, ). (4.22)
j=2 s=1 i=T2+1

The estimates (4.20)—(4.22) yield (4.18).

Limsup inequality. Since H{(u) (see (3.51)) is finite if and only if u(x) = fx it is sufficient
to construct a recovery sequence for u(z) = fx. As for the liminf inequality, we can follow
the proof for the fully atomistic system. In fact, we can even use the same recovery
sequence. Fix n > 0. By the definition of B(6,¢), see (3.50), we can find v : Ny — R
and N; € N with oY =0, v® —v*~ ! = uélg for s € {1,..., K — 1} and v'*! — o' =/ for
i > Nj satisfying (3.58). Furthermore, there exists w : Ng — R and Ny € N with w® = 0,
w® —w' Tl = uglg for s=1,..., K —1 and w'™ —w’ = £ for i > Ny satisfying (3.59). B
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means of the functions v and w we can construct a recovery sequence (u,,) for u,

n( ]\1;]12+]I\<[2Jr_1}2]\r[1(+K)(2—N1_K) lle—i_KSZSn—NQ—K’

0 — Ayw™ ™t ifn—Ny— K <i<n.

ub = )\UNlJrK—i-é An

As we mentioned above this is exactly the same recovery sequence that we have used in
Theorem 3.12. We have shown that u, — uin L*°(0, 1) and that u,, satisfies the boundary
conditions (3.3) for n large enough. Moreover, since k! — 400 and n — k2 — +00, we can
assume Ni + K < k:}L and n — Ny — K > k:fl for n sufficiently large. Thus u,, is affine on
An (KL, k2) which implies u,, € A7, (0, 1) for arbitrary 7T, satisfying {0, ..., kL u{k2,.n} C

T»- Using (3.58) and (3.59), we obtain

Jj=2 s=1
K j_lj n—j
1 7 1
S>> a0 <B@, 040
j=2 s=1 i=n—No—K

By (3.51) and (4.12), it remains to show that

K kL—1 k2—j z+g 1 n—No—K—1
_ 7 i
=D 1 2 il Z PONTHOE D DR MO
Jj=2 | i=N1+1 = kl s=1 z:k%—j—l—l

is infinitesimal as n — oo. This follows directly from the proof of Theorem 3.12. Indeed,
in Theorem 3.12 we have shown that for wu,, it holds that

K n—Nx—K-1

nl;rgoz Z ol (0) = 0.

j=2 i=Ni+1

By using the fact that w,, is affine on A, (IVy, ..., n— N3), we have that 0§7n(£) = M;n(ﬁ) for
je{2,...,K}andi € {N1+K,...,n— Ny — K — 1}, and thus the statement follows. []

Remark 4.6. In the proof of Theorem 3.12, the assumption (4.6) (i) is crucial. If one
drops this assumption, for example to let k. and n — k2 be independent of n, the first-
order I'-limits of Hﬁ’k"’T" and I—ifﬁ do not coincide in general. In this case the boundary
layer energies B(6,¢) would be replaced by some “truncated” boundary layer energies
Br(0,4) in the first-order I'-limit of HY* T To quantify the difference between B(0,7)
and Brp(6,¢) one has to perform a deeper analysis, as in the spirit of Section 3.4.3, on the
decay of the boundary layers.
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4.3.2 The case ( > v

According to Proposition 4.3, the case ¢ > v leads to fracture. In the fully atomistic
model, an, each crack costs a certain amount of fracture energy, see Theorem 3.19.
Moreover, the fracture energy depends on whether the crack is located in (0, 1) or {0, 1}.
In this section, we aim for an analogous result for the quasicontinuum model H fﬁ”T"
Here the specific structure of 7 = (7,) turns out to be important. We will show that every
jump corresponds to the debonding of a pair of representative atoms and this induces the
debonding of all atoms in between. Thus the distance between two neighbouring repatoms
quantifies the jump energy.

Let (uy) be a sequence such that u, € A7, (0,1) and u,, satisfies (3.3). Then, we deduce

from (4.12) that

K j—lj s kL—1 5 k2 —j
=3 (o DI el S et T S
=2 = ] i=k}+j—1
n—j
1 .
+Z AR DN R - G- D)

i=k2 —j+1

(4.23)

with 0;'-7 : ajn( ) and ,u;n = u;n(y), see (3.42) and (4.11). Note that we used 7" =
() on [y, +00). Let us now introduce some notations and state assumptions on the set
of representative atoms 7 = (7,,) under which the I'-limit of (ﬁfﬁ"n) will be derived.
In particular the repatoms at the interface between the local and nonlocal region have to

be treated with extra care.
(T1) The set of representative atoms 7 = (7,,) satisfy (4.7) and (4.17).

(T2) The following limits exist in NU {400}

A(T) = lim (r(7,) — k), with 7(75) :==min{r € T, : k; + K — 1 <7},
A nTree (4.24)
I(T) = lim (kX —U(T»)), with I(T,) :=max{l € T, : k2 — K + 1 >}

n—00

(T3) There exist M € N and k/ k] € {1,..., K} such that the sets Z"(7,,) and Z'(Ty,)
defined by

= {1 1 L
?) ={i € Tn,1 € {ky,...,7(Ta)} }, (4.25)

)= {i € Tnyi € {l(Tn),.... k2 }},

7'(
T
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satisfy #(Z"(T,)) = k] and #(Z(T,)) = k] for all n > M. For n > M, we define

A,

AT = (f{n,...,f,jh) and [T = (z[n,...,z[ﬁn) as
f{n =k} f‘;rn :=min{r € 7, : f’Z—,Ln <r<r(Ty)} forse{2,....k'}, (4.26)
l?:n = k2, lzn =max{l €T, : lNST_Ln >1>1(T,)} forse{2,....k}. '
Moreover, we assume that the following limits exist in Ng:
#l = lim (7], — kL) forie{l,....,k] —1},
e (4.27)

i7 = lim (k2 i[n> for i€ {1,..., k] —1}.

¢ n—oo \'M
We define #7 € (Ng U {—I—oo})krT and [T € (NoU {+OO})le as

Pl = (F i), 7 = (z”{,...,f[f), with 7/ := #(T) and [[7 == I(T). (4.28)

(T4) For given x € [0, 1], the following limit exists in NU {400}

b(z,T) = li_)m min {qz — gt (@), () N, (Th) < ¢l <@ <UT),
o (4.29)
g, g2 € Tn, lim Aygh = lim A,q2 =z}
n—00 n—00

Remark 4.7. (a) Assume that 7 = (7,) satisfies (T1)—(T4). By (4.26) and (4.27) it holds
#T =1] = 0. For given k € {2,..., K}, we define the set Z(k) C (No U {400})* as

Z(k) :={(r1,...,m) € NoU{+oo})f :0=ri <rp <+ <1 < K —1 <1} (4.30)

Clearly, we have that #7 € Z(k]) and {7 € Z(k]). Since 77,17, € N, it follows from
(4.27) that there exists M € N such that

TA’Z’:TA’Z’n—k}L fOfiG{lw--akz—_l}a

4.31
T =k2-1], forie{l,....k] —1}, (4.31)
for n > M. Moreover, if #(T) < +oc (or I(T) < +00) it is not restrictive to assume that
M(T) =r(Ta) =k} (or I(T) = k2 — I(Ty)) for n > M,

(b) In the case of nearest and next-to-nearest neighbour interactions only, we deduce from

the definitions of r(7,) and I(7,), see (4.24), and (T3) that
i = (ot (T)), Iy = (3,0(Tn)) and 77 = (0,/(T)), I = (0,(T)).  (432)

Let us now introduce boundary layer energies which correspond to a jump close respec-
tively at the interface between the atomistic and continuum region. Firstly, we introduce

further abbreviations. For a given function v : Ng - R, an i € Ny and a j € {2,..., K},
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we define o7 (v) and p}(v) by

~ vt — o ) g 1
oo = () 4 £ > A =) i) (433)
() = (0 —0') — (7). (4.34)
For a given r = (ry,..., 1) € Z(k), we define the following minimum problem

K J—1 . q—1
Bg;)(r) :—inlgmin{Z{CjZ‘] 7 SJ1(US—US_1)+Z ZS el

qe j=2 s=1 =0 —
q+ri—1

+ Z ,uz-(v)} 0Ny — R, 00 = 0, p0+i+1 _ i — gatrstl _ jatrs
i=q+j—1

if1§s<kandr5§i<rs+1}. (4.35)

The boundary layer energy Bg;)(r) yields the optimal position of a fracture that occurs

in the atomistic region but close to the atomistic/continuum interface. Note that the
reduced degree of freedom in the quasicontinuum energy yields an additional constraint

compared to the previous defined boundary layer energies.

Remark 4.8. Let Jy,. .., Jy satisfy (LJ1)—(LJ5).
(i) Let r € Z(k) be such that 7, = +00. In this case the constraints in (4.35) imply that
vt oyt = @ttt for § > g41j,_1. Moreover, the last sum from i = g+ j — 1

to ¢+ rp — 1 reads

[e’s) q+rg_1—1 0o
Soowiwy= > i)+ Y (W0t T ) ()
i=q+j—1 i=q+j—1 1=q+Tr_1

Since v is the unique minimiser of ¢;, the above quantity is finite only if p@tre—tl
v4*t7-1 = 5. Hence, for r € Z(k) with r;, = +00 the boundary layer energy B( )( ) reads

K i1 g—1
(1) . . ' ] —Ss s—1 ;
Byp(r) —;glgmm{ E {cj g ; Ji(v¥ =0T + g o3 (v)
j=2 s=1 =0
qt+ri—1—1

1 ) )
+ Z <Q+/\1>u( )}ZU:N0—>R,’UO_O, v — ot =
i=q J
if 4> q+rp_q, 00T e = patrstl _atrs ] < g < k — 2 and

rs <1 < rerl}- (436)

(ii) Consider the special case k = 2. Note that if we consider nearest and next-to-

nearest neighbour interactions only this is the sole case of interest. Indeed this follows by
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2 <k < K, see Remark 4.7. Fix r € Z(2). Then r = (r1,72) = (0,72), see (4.30), and the

constraint on v in (4.35) reads v* = 0 and vI+tH! —dtt = 4L 99 for i € {0,...,r9—1}.

Q+z( )

This yields p 11§ (v) for 0 < i < ry. Hence, we have

K Jj—1 . q—1
(1) =] 1 . J—S s s—1 3
Bip((ri,m2)) —;ggmm{;{%z i Ji(v¥ —v )-I—Zaj(v)

s=1 =0

1
+ (7"2— 5(3 - 1)) ,u;]-(v)} cv:Ng = R, 0% =0,

I ga = a0 0 < i <y — 1} =: Brp(ra). (4.37)

Let ro = +00. As above, we have the constraint v**! — ! = 5 for ¢ > ¢ in (4.37). This
implies ug(v) = 0 and we obtain that Brp(oco) = B(7), see (3.71).

Next, we introduce two further boundary layer energies corresponding to a jump exactly
at the interface between the atomistic and continuum region. Before we state the precise
definitions let us first give some heuristic explanations. Consider the debonding of two
atoms labelled by i and i 4 1 with k! <1 < (7). Then there exists m € {1,...,k] —1}
such that rT <i<i+1l<7l 41+ This causes two boundary layers. One of them

(2)

‘starts’ at rmm and 'moves into’ the atomistic region, B}, and the other one ’starts’ at

. . . : 3
r% +1,, and ‘moves into’ the continuum region, B§ F)

For a given r = (r1,...,7rx) € Z(k) and m € {1,...,k — 1}, we define

@ s AV tY)
B (r,m, ) ::]%/Iémem Z cjz Ji(v® ="
j=24rm  s=1

K ' K rm—1 R '
+Z Z U;(v)—i—ZZ(mj /\l)ug(v):v:Ng—)R,

5=2 0> (rm+1—4)V0 j=2 i=0

UO :0’ UiJrl _,Ui :’}/lfl ZN7 vi+1 _,vi:,urmfrs+1 _'mTTs
if2§s§mandrmrs§i<rm7“51} (4.38)
Furthermore, we define for r = (ry,...,7;) € Z(k) and m € {1,...,k}
K J—rm—1 S
B}3)(rm —mm{ Z c; Z A — 1(115—1)5_1)
Jj=24rm
K Tk—Tm Z+T
Ty < nm) (o) v Ng = R0 =0,
j=2 =1

Lyt = gTs AL s Trm iy < s < k — 1 and

Te —Tm <1< Ts+1 — Tm}- (439)
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Remark 4.9. Fix k € {2,..., K} and let r € Z(k). Using 1 = 0, we deduce from (4.38)
that

K j-1. K
B L) = juf min{ 306 3 TS A - + Y el
© Jj=2 s=1 J j=21i>0
v:Ng = R, =0, Ui+1—Ui:’71fi2N}:B(’y), (4.40)

see (3.71). Moreover, using rp > K — 1, we obtain from (4.39) that B}? (r,k)=0.
Assume that Ji, ..., Ji satisfy the assumptions (LJ1)-(LJ5). Let r € Z(k) be such that
rr = +00. In the same way as in Remark 4.8, we obtain

K J—rm—1
B%)(r,m) :mln{ Z cj Z J = Tm 8J1(US — v
Jj=2+rm s=1 J
K Tk—1—Tm Z + r
+Z < jm/\1>u;1(v):v:No—>R,vozo,
j=2 =1
VIt ot =y i > g — g, 0T — =TT s TTm
ifmgsgk—2andrs—rm§i<rs+1—rm}. (4.41)
Lemma 4.10. Let Jy,...,Jx satisfy (LJ1)-(LJ5). Let T, = {tO tL ... t"} with 0 =
0 <t < ... <t =n for alln € N. Let (u,) be a sequence of functions sat-

isfying (4.13).  Furthermore, let (hy,) C N be such that kL < thn < thn+1 < k2 gnd

lim inf,, o0 (tﬁ"Jrl — t}ﬁ") = 4o0. Then, we have

utﬁn +1
lim 2> ™
n—o00 An

Proof. From sup,, ﬁf:ﬁ"’% (un) < 400, 0§7n,u§-7n > 0 and (4.23), we deduce the existence

of a constant C' > 0 such that

g 1
j hp41 hpy, the
CZsupE E Mé,nzfsu (tn+ — 1y )M; )
n

. hp 2 n
1=ty

where we used that u/,(z) = A, (thn*+1 — 152")_1(@;}5n+1 — u%ﬁn) for all € A, (thn that1),

This implies pf ™ = O((th»+! — th»)=1) and thus pf™ — 0 as n — co. Similar steps as in
Lemma 4.4 yield

thnyq  4hn
lim Un' 7 Un"
n—o00 An

:’7.
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Next, we will state the main theorem of this section concerning the I'-limit of the
ThknTn for ¢ > ~. The I'-limit is different to the one obtained for the fully

functionals Hy’,
atomistic energy H fn, see Theorem 3.19. We will come back to this in Section 4.4.

Theorem 4.11. Suppose that hypotheses (LJ1)—(LJ5) hold. Let ¢ > ~ and uél),ugl) €
RE-Y. Let (k). (k2) satisfy (4.6) and let T = (T,) satisfy (T1)-(T4). Then (Hyrw )
I'-converges with respect to the L'(0,1)-topology to the functional fIf’T defined by

AT (u) =B(uf”, 7)1 — #(S. N {0})) + B(uf”,7)(1 — #(S. N {1}))
+ Brey (P00, Tl ) # (Sun {0 = Y b@ T)Jes(y)

z:x€S,N(0,1)
K

+ Brey (1760 T),uf”) # (S {1 = D= Dy () (442)
=2
if u € SBVY(0,1), and +oo else on L'(0,1), where Brpy(r,s,0) is defined for r =
(ri,...,7x) € Z(k), s € NU{+oo} and 0 € Rffl as

B[FJ(T, S, 0) =min { min {BA[F(T'), BB]F(T), —SJCB(’)/)} + B(@, ’)/), BBJ(G)} (4.43)

with P
Barp(r) = Bip(r) + B(y) = Y ji; (), (4.44)
=2
and
K
Bpir(r) :=min {Bg,)(r, m, ) + B%)(?”,m +1) - Z Vi(V) (G —1m —1)
j=2+1rm
K Tm+1 s ’
2 (,/\1>1/Jj(’y): me{l,...,k—l}}, (4.45)
j=2 s=r;m+1 J

where Bpy, B}?, Bﬁz and B}‘? are given in (3.74), (4.35), (4.38) and (4.39), respectively.

Remark 4.12. The definition of the jump energies for a jump at the interface are somewhat
cumbersome. Note that in the case of nearest and next-to-nearest neighbour interactions
(K = 2) the situation is much simpler. We have already noted that in this case #7 and
[T are completely described by the scalars #(7),I(T) € NU {oo}. In particular, we have
that the minimisation over m in (4.45) is trivial since 1 < m < k—1 < 1. Hence, we have
by Remark 4.9 that Bgrp(r) = B(y) — (r + 3) Jes(y). See Proposition 4.14 below for

the precise statement in this case.

Proof. Liminf inequality. Without loss of generality, we can assume that there is only one

jump point. By symmetry, we only need to distinguish between a jump in 0 and in (0, 1).
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Jump in 0. Let (uy) be a sequence of functions converging to u with S, = {0} such
that sup,, HZ FnTn (14,,) < +00. Then Proposition 4.3 implies that w,, — w in L!(0,1) with

0 if z =0,
u(z) = (4.46)
(=) +yz if0<az<I.

By Lemma 4.4 there exist sequences (7)), (T?) Cc Nwith 0 < T} <k} — K < k2 +1<
T? < n — K such that

Ti+1 T:
ubr +1l+s un”+s

lim =, forie{l,2}and0<s<K —1. (4.47)
n—00 n
We can write the energy in (4.23) as
) kl—1 .
Frlkn, Tn J— 8 kpts—1
e ) =3 {42 z S a5
j=2 & =1 i=T141
kZ—j T; n—j
+ > %ﬁz ST DS dhat Y g
i= k1+j 1 i=k2 -1 T2+1
—j—s 1 .
by ST ) - G- )} (1.48)
s=1

The estimate for the elastic boundary layer energy at 1 is exactly the same as in the case

¢ <, see (4.22), and is given by

K .
o ] 1 1
hnrglorolf E g an +cj E 1s) | = B(ug ),'y). (4.49)

Jj=2 \i=T2+1

To estimate the remaining terms, we note that there exists (hy,) C N with A\,h,, — 0 such
that hp+1 h
lim n "y, (4.50)

n—oo An

We have to consider the following cases:

(1) hn <TY, 2T+ K <hy, <kl 3)kL<h,<r(T), @) r(T,) <h, (451)

Indeed, by extracting a subsequence, we can assume that liminf, ..o ﬁfﬁ"n (up) =

limy, o0 Hy %" (u,). Note that by (4.47), we deduce hy, ¢ {T},...,T} + K — 1} for
n sufficiently large. Let (h,) be such that it oscillates between at least two of the cases
(1)—(4), then we can extract a further subsequence which satisfies only one of the cases,
which does not change the limit.

The first two cases correspond to a jump in the atomistic region. In the first case,
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the jump is sufficiently far from the atomistic/continuum interface and leads to the same
jump energy as a jump in 0 in the fully atomistic model. The jump in the second case
is closer to the continuum region and leads to a jump energy of the form Basp(#7), see
(4.44). In the third case, the jump is exactly at the interface between the atomistic region
and the continuum region. This yields a jump energy of the form Bprpr(#7), see (4.45).
The last case corresponds to a jump within the continuum region.

Case (1). Consider (uy) as above with (h,,) satisfying (4.50) and (4.51, (1)). We show

K
3 3 s kanyﬂz
lim inf Ay 7 (un) = By (uf) + B(ui”, ) 2; =Dy (4.52)
]:
With the same arguments as in Theorem 3.19, we obtain
K T,
- ; (1
lim inf Z; Zg ot > Byluf!) Zm (4.53)
j=2 4=

Combining (3.74), (4.48), (4.49), (4.53) and a]n,,ujn > 0 implies (4.52).
Case (2). Assume that (u,) satisfies (4.50) with (h,) such that (4.51, (2)) holds true.

We show that

K
Lk, Tn (1) (1) (1) i)
> _
lim inf A% () > Bluf,7)+ B(ul”,7)+ B(3) IOICERONIES
‘]:
where 77 = (77, ... ,fZ;T) is given in (4.28). First, we estimate the elastic boundary layer
energy at 0. This can be done in a similar way as in the case ¢ < 7, see (4.21), and we
obtain
K j-1 . 0
lim inf ) + Zajn > Blug’, 7). (4.55)
j=2 s=1
We will now estimate
K kL1 ) r(Tn)—1
S kl4s—1 ;
- Z Z JJ nt Z Himn T Z N;,n . (4.56)
i=2 | i=T1+1 ‘7 i=k+j—1

As in the proof of Theorem 3.19, we deduce from (4.50) that

K hn ‘ K j—s yhn=st1 _ yhn—s uhntstl _ yhncts
> U;WZZCJZ {J1< N = >+J1< N, oo >}

=2 hp—j+1 j=2  s=1

- me +r(n) (457)
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where

uzn‘i‘j"‘s uhn+s
; n —0 asn— oo.

Thus it remains to prove that for n sufficiently large it holds

K hn—j j—s hn s+l _ g hn—s
Z{ 2 %an J1< J— )}ZBm—wl(n) (4.58)
J=2 N i=Tl41 "
K Jj—1 . Bnts+1 honts kL—1 7(Tn)—1
J—S 2 —Uu k1+ -1 ;
S {o Tt (M) S e S S )
Jj=2 =1 7 " i=hn+1 ‘7 i=kL+j—1
1)/ A
> BW(T) — wa(n), (4.59)

where wj(n), wa(n) — 0 as n — co. The estimate (4.58) can be proven in the same way
as inequality (3.93) and thus we show (4.59) only.
Let us first assume that 7#(7) < 400, where 7#(7) is defined in (4.24). Since we are

interested in the behaviour as n — oo, it is not restrictive to assume that

Pl — kL =#T forallse{1,...,k]}, (4.60)

sn

see Remark 4.7. We define for 0 < ¢ < r(7,) — h, — 1,

i+hp+1 hn+1
) Uy " — Up"
n

An

=

The definition of 4, and a}(fan), see (4.33), imply that

i+] i itj—1 5+1 us
i—hn—1/ Un U,
Uj 4 1(“’“) = Jj () J Z ‘] < > w]( ) ]n?

JA

for hp, +1 <4 < kL — 1. Moreover, we have that /ﬂ hn=1(g) = ,ujn for kl <i<r(T,) -1,
see (4.34). Let us set g, = k: — h,, — 1 and let us recall that #7 = (#7,..., ZT) is such
that f’kTTT = 7(T), see assumption (T3). The left-hand side of (4.59) reads in terms of i,
as

K j—L . k’}L_l Jj— 7‘(7'71)_1
i=s, uhntstl g fints 5 kl—l+s i

Z Cj ] 1 \ + U Z Mjn + Z Mj,n
=2 s=1 n i=hp+1 = i=kL+j—1

K j—1 ] s qn—1 j—1 s

— ~ ~s5—1 (5 n—1+ ~

N ) RELIATIRTI RS SSES SN

j=2 =1 i=0 =17

H(T)+gn—1

bOY ) |2 BT,
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Note that we used r(7,,) = kL +7(T), see (4.60). The last inequality follows from the fact
that 4, is a competitor for the infimum problem in the definition of B( )( 7, see (4.35),
for n sufficiently large Clearly, we have 40 = 0 for all n € N. Consider s € {1,...,k/ —1}

and i € {#],...,#],; — 1}. The assumptions (T3), (4.60) and u, € A7, (0,1) imply that
ul, is constant on A, (ki + 77,k +#7, ). Hence, we have for @, and ¢, = k} — h,, — 1 that

kL+itl k;ﬂ' kL+7l4+1 k}LwZ
+itl _ gt _ U Un_ _ Un Un

~dn -
ak U

Hence, 1, is an admissible test function for B}g (#T), with ¢ = kL — h,, — 1, and (4.59)
holds true in the case #(T) < +o0.
Let us now consider 7#(7) = oo. By (4.27), it is not restrictive to assume that

Pl — kL =#T forallse{l,...,k] —1}. (4.61)

sn

Moreover, we deduce from Lemma 4.10 and (r(7,) — fZ—T—l ,) — 0o that

AT . T .
urkz-fl,n+1+1 —u kT 1, n+’L
lim — = =7, (4.62)
Nn—00 An

for 0 <i < K — 1. We define the function v, : Ng — R by

uij‘hn‘f'l 7u2n+1

. . AT
. - : fo<i< TRT—1n — hp — 1,
Un = ] T ur’“;r—l’”,uhn*‘l )
(i — TRT—1n T hn +1) + 2 —2— i 7 rkT I —h, — 1<

We show that the definition of v, implies that v, is a competitor for the infimum problem
in the definition of BY(#T) with g, = k. — hy — 1, see (4.36). Clearly, it holds v0 = 0.
Consider s € {1,...,k] —2} and i € {f],..., 7], —1}. As in the case #(T) < 400, we
deduce from u,, € A7, (0,1), (4.61) and ¢, = k} — h,, — 1 that

Gntitl _ o anti _ o qn+fT 1 _  qntP]
vt vt =or vt e

1

Moreover, the definition of v, yields vit!t — v =~ for i > g, + 7/, Hence, v, is a test

kT —1°
function for B%(fT), see (4.36). Note that the definition of v, and (4.62) imply that

i

S

—Un i—hon, i—hp—1 Do AT
" =uv, " — oy for hy +1<i< PRT—1n — 1,
I - N . . (4.63)
: n n _ . _ .i—hn i—hnp— A . N _
nh_)rglo N v =, vy, for TkT—1n <1< TiT—1in T K -1
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As in the case 7(7) < +o00, we deduce that

o, =05 v,) for hy +1<i < I o
. . ’ 4.64
15 0 :M;._h"_l(vn) for k! <i < rkT 1 L
From (4.64), 7 kT In AZ—T |+ kb <r(Tn) and uén > 0, we obtain that
K — s r(Tn)—1
+k: -1 ;
>1 b o S S )
Jj=2 =hn+1 i=kl4j—1
. 7 — .
=3 SRS SR (; s
j=2 i=hn+1 i:fkT;rilyn—j—i-l i=kj,
AT 1
k‘l 7hn72 T T +kn—hn—2
Kot ; A i— kL 4+ b, +2 . )
>30T )+ > . AL (o) p —a(n),
Jj=2 i=0 i=kl—hp—1 J
where
K EL—1
=Y > |0 — 0" (wn)] = 0 as n— oo (4.65)

=2 il 4 AT ;
J 22—kn+rkz-7173+1

Indeed, (4.65) follows from (4.63) and the continuity of Ji, ..., Jx on its domain. Alto-

gether, using the previous calculations and ¢, = k\ — h,, — 1, we can rewrite the left-hand
side of (4.59) as

K ooodzl - o ki1 "(T) -
Z{Cjzj j S (un +8+; +8> . an+z Iuk ~ls Z i }
. — n

t=hn+1 i=kl4+j—1
K il gn—1 Py Fan—l P
> Z {cj = Ji (vy — vfl_l) + Z oi(vn) + Z (n A 1> M;(Un)}
j=2 s=1 J =0 1=qn J
—&(n) — &(n) > BY(T) — &(n) — &(n)
= brp
where

T S S e )

=2 j—1 15T
J 22—kn+rkz-

Ji <+1An u;> - J1(7)',

and ©(n) — 0 as n — oo, see (4.63). The last inequality follows by the fact that v, is an
admissible test function for the infimum problem in the definition of Bﬁz (#7). Combining

this with (4.65) proves the inequality (4.59) in the remaining case 7(7) = +o0.

—1
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By using (4.48), (4.49), (4.55), (4.57)—(4.59) and the fact that aé«
(4.54).

Case (3). Let (uy,) satisfy (4.50) with (h,) such that ((4.51), (3)) holds true. We show
that

7n,u§.7n > 0, we obtain

Mx

timint 7175 (un) 2 By, ) + Bl ) + Boir () = 3= w500 (4.66)
7j=2
It is not restrictive to assume that
PTon < o <PL s (4.67)

for some 1 < m < k/ — 1. Indeed, since k. = an < hp <1r(Ty) = fZ—Tn we obtain by
passing to a subsequence (4.67) for some m € {1,..., k] —1}. Assuming (4.67), we show
that

K

liminf Q, > BT, m,y) + BRGT m+1) = > (=i —1) %5(7)
j=2+47T
—Z Z( ) (), (4.68)

J=2i=pT 4+1

m

where €, is defined in (4.56). Combining (4.68) with the definition of Bg;r(#7), see
(4.45), and (4.48), (4.49), (4.55), we obtain (4.66).

If m = kJ — 1, we can assume that #(7) < 4+o0. Otherwise, we have by the definition of
+oo and Lemma 4.10 combined with wu,, € A7, (0,1) yields

T o (AT STy
7/ that lim (7 —r =
n—>oo( m—+1,n m,n)

o T
I S O u:lm,n+1 _ b
lim *——" = lim =,

which contradicts (4.50). Let us assume that n is sufficiently large such that it holds
il —kl=¢T forse{l,.... k] —1}. (4.69)

From (4.50), (4.67) and u,, € Ar,(0,1), we deduce that

stk +1 ugjrk}l whntl — yhn

. Un, T n Up" AT AT .
nh_}ngo " = nh—>Holo S W +o0, for s € {#),,...,7), 1 —1}. (4.70)




154 Chapter 4. Analysis of a quasicontinuum method in one dimension

For n sufficiently large, such that (4.69) holds, the term €, see (4.56), reads

(k=1 =) r(Ta) =k

K s
=30 S e (San)u e 3 (G uh

Jj=2 i=Ti+1 s=1 s=r) 1 +1

s i; s ZJ1<S+1 Ik S G-1- )

g=24¢7 7 i=f] ,—j+1 s=i j=2+#T

K Cs kn_l Z+] 1 m+1
DI SR S R DD il (PN PTG
j:2+fz;+1 i=P], —i+1s= Tm+1n J=2 s=pT +1
+r(n), (4.71)

where 7(n) is defined by

K k,ll—l uif m41 quJrk quJrk,llfl
£E ()£ ()

J=2+4F) i=r), —j+1 J=1 s=fT +1

From (4.70) and lim, 4 Jj(2) = 0 for j € {1,..., K}, we deduce that r(n) — 0 as
n — oco. To prove (4.68), it remains to show the following inequalities

K kl—l Tmn

S8 T R ()

j=2+7T i= rT n—Jj+l s=t
(k’}Li ) (Tm,nfj)

K
+z; 2 ”"+Z< > bt b > BRGT m,y) —ri(n) (472)

i—T1+1
K ¢ i+j—1 K r(Ta)—kL s )
. El4s—1
SIS Son(UE)en X (a)ui
j= 2+rm+1 1= rT n—J+t1ls= rm_Hn J=2 5= +1
> BYGT m +1) = ra(n), (4.73)

where 71(n),r2(n) — 0 as n — oo. In order to prove (4.72), we define suitable test
functions for the boundary layer energy Bﬁz (+7,m, ). Let us define for i > 0

T -
nm,ni n’m,n . AT 1
G " . ito<i<r,,—1T,—1, (4.74)
n _ T711+ :
(i — 77, 4+ Th+1) o 1fz>r%7n—T7}L—1

(2)

We claim that 4, is a competitor for the infimum problem defining B, (+T,m,7), see
(4.38), if n is sufficiently large. The above construction implies @9 = 0 and @5 — @i = v
fori > ¢l —Tl—1. Fixse{2,...,m}andic {#] —+#], ..., #7 —#T ; —1}. From

m
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u, € At,(0,1) and (4.69), we deduce that u/, is constant on A, (kL +#7 | kL +#7). Hence,

uz,lﬂrffnfi _ uﬁ}ﬂr?’,z;fifl uicl}ﬁf] _ uﬁ}gﬂ{fl

Ty - — _,ar RS
An An "

This matches the constraint in (4. 38) Let us rewrite the left-hand side of (4.72) in terms

of tp. By the definition of @ and o7}, we have

ufz,;n—z uf;,n—z‘—j N i+j—1 uf],;n—s uﬂTn!n—s—l
oj(a) =J; | = ———" +2 Y A —
ATTn n—J]—1
=0
for i € {0,..., ,7,;,1 —j—T! —1}. Hence, we obtain, using (4.69), that

K (kl*l)/\(Am nfj) K f'rTn,nfjfTrlbfl K T%n j Tl 1

Z P D D Z 2. o)
=T} +1 =2 i=(}, ,—j—(k}—1))VO0 =24=(],+1—5)V0

:Z > ol(in) —ri(n) (4.75)

=24>(FT +1—3)VO0

with
Tl 2 al+ ~' i+j—1
S () o ) o
J=2 =], ,—i—T}
as n — o0o. Indeed, the definition of @, implies @4t — @, = ~ for i > fﬁ%m T -1
Hence, in»(ﬂn) = J;j(y) +¢j () — () =0 for i > 7] — T1 1. Furthermore, by the

choice of T}, see (4.47), we have

Th+K—s+1 Tg—K—s
n

. A =T —K4s AT Tl K4s—1 . UR”
lim (a,™ — Up™ )= lim =
n—00 n—00 )\n
for s € {1,..., K — 1}. Hence, r1(n) — 0 as n — oo. Moreover, we can rewrite the terms
involving ,u;n in (4.72) by
K 7, K #h T
s+k - T — S+ 1 P Ak —s
S (Sar)ut =0y (T )
j=2 s=1 j=2 s=1
AT_l
L 7%2 - S S(~
=> r A1) (i) (4.76)
j=2 s=0

for i € {0,...,#7 —1}. Tt is left to rewrite
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the terms involving only J; on the left-hand side in (4.72) in terms of @,. For given
je{2++7,...,K} and n sufficiently large such that (4.69) holds true, we have that

f'T k‘lfl 7gmn 7:'77;71_5 A%n s—1
—up Up " U
DO STy T S SR [t
=P, i+l s=i i=r], ,—j+1 =0 "
k,}b—l AT,n_i_l ] Tm_2] 1—2
— ~5+1 ~s\ _ ~s+1 ~5
S0 YD SREA TR R SR SR AT
i=f) ,—j+1 s=0 i=0  s=0
j—2 j—2—sViT j—1
_ Ssbl s\ ~ T “s _ ~s—1
= Z Z J(aptt —al) = Z(] — sV (P + 1)1 (G —ap ). (4.77)
s=0 =0 s=1

Since w, is a competitor for the infimum problem in the definition of Bﬁz (G
deduce from (4.75)—(4.77) that the estimate (4.72) holds true.

Let us now show (4.73). Firstly, we consider the case #(7T) < +oo. As in case (2) it is

m,7y), we

not restrictive to assume (4.60). We define o}, for i > 0 by

AT ; AT
Tm+1,n+l r'm+1,n
~i Un — Un
An

Let us check that o, is a competitor for the infimum problem of Bﬁz (#T,m+1), see (4.39).

Clearly, ?0 = 0. Fix s € {m+1,....k] =1} andi € {#] —#7 ... .#T — 7T  —1}.
From u, € A7, (0,1) and (4.60), we obtain that
P titl Pl i Rl k]
i}i_}-l o Uy, +1, — Uy +1, T nn T B T—T’AZL+1+1 B i}fz_f”ZJrl
n :

7
/UTL = = :’Un

An An

Hence, 0, satisfies the constraints in the definition of Bﬁ) (7T, m + 1), see (4.39). Let us
now rewrite the left-hand side of (4.73) in terms of 0,,. Firstly, we consider the terms
involving only J;. For given j € {2 + fz,; +1:---, K} and n sufficiently large such that
(4.60) holds true, we have that

k1 itj—1 s — KLo1 i,
2 Z "1( >: 2. Y. A@m-wh)
i= ran'H n—Jtls= Tm+1 n Z':7Q17Tau+1,n—j-i-l s=1
J_7"m+1_2 i+1 j_f"rTn+1_1j_1;7Tn+1_2
= > Sa@-wh= > > a@E-u
1=0 s=1 s=1 i—s—1
j— -1

= i (G —Fhy — 8) 0 (85 — o571 (4.79)
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Moreover, we have for the terms involving only uin, using (4.60), that

ST _aT
7(Tn)—k} T "

m—+1
n AT "
s kl4s—1 S+ T kL4+7T +s—1
> ()= Y () -
s:le+1+1 s=1
,\T ~
rkarm_H T
" s+ B
= Y (AL ps (o) (4.80)
s=1 J

Combining (4.79), (4.80) and the fact that vy, is a competitor for the infimum problem in
the definition of Bﬁz (7, m + 1) yields (4.73) in the case #(7) < 4oc.

It is left to consider the case 7#(7T) = +o00. Clearly, we have r(7,) — fZ}_l , — +oo as
n — 0o. Lemma 4.10 and the definition of 0, see (4.78), yields
uz;+f;+1+1+s B ui};ﬁ-ﬁaﬂ—&-s »
: R T ~$ ~s\ __
nlLHgO " = nangO (gt —0) =1, (4.81)
forsE{rkT L= P K =T — 2}, We define 4, : Ng — R, by
. K if i € {0,...,7T +1},
o, = : AT iT k 1w (4.82)
. ~ kj—1 m p - ~ A
(i — Z} 1+7"m+1)+vn 1f127‘Z;T_177“%+1.

The definition of 7,, and the previous considerations about ¥ imply that ¢ is a competitor
for the infimum problem in the definition of B}:}) (#T,m 4 1) with 7 rkT = 400, see (4.41).

Hence, we obtain

Koo k-1 itj—1 st s K r(Ta)—k} < o
. —1
o9 XY (M) X (Gan)uie
JE2ARN L T =R it =), J=2s=r] 11+ ’
K Clj_rr77;+l_1
> Y SN Gl - (0 - oY)
F=24RT s=1
K rkzd_l_rlJrl S+f7—
1
T (SR ) e - i
Jj=2 s=1
> BT, m+1) = ra(n)
Z Drp ) 2
with
K . J TAZr—H—l 1
pm=3% 3 G- () - A - 5).
J=2 7 =T —#T L+

By (4.81), we obtain that lim,_,~, r2(n) = 0 and thus (4.73) is proven.
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Case (4). Finally, let (u,) satisfy (4.50) with (h,) such that ((4.51), (4)) holds. We

show
A K
lim inf Ay 7 (un) > Blul”,7) + Bl 5) = b(0, T)Jep(r) = DG — Diy(y). (4.83)
J=2

With a similar argument as in case (3), we deduce from Lemma 4.10 that b(0,7) has to
be finite. Let us define sequences (hl), (h2) C N by

hl:=max{q € Tn, ¢ < hy}, h2:=min{q€ Ty, ¢> hn}.

From u, € A7,(0,1), we have ,ujn = ,uh" for bl < i < h2 — 1. The assumption ((4 51),

(4)) and the definition of AL, imply k! + K —1 < r(7,) < hl. Hence, using a] no u] n >0,
we obtain
K kL—1 s ST hL—1 h2-1 k2—j
. 7 kl4i—1 . . .
DY 2 Tt g D Mt D it D s
Jj=2 \i=T}+1 =1 J i=kl4+j—1 i=hl i=h2
K
1 hn
ha) D e
j=2

By the definition of k), h2 and (4.7), we obtain from li_>m Anhyn = 0 that li_)m Anhl =
n—oo n—oo

li_>m Ah?2 = 0. Hence, there exists a constant N € N such that (h2 — hl) > b(0,7T) for

n—oo

all n > N. From ,LLZ% >0 and nh_)mgO ,u;.l,n = —1;(77), we deduce

n—o0

K
lim inf(h h1 Z,uh" > —b(0,7) Z?ﬁ (v) = =b(0,T)JcB(7),
7j=2

where we used Zf ij( ) = Jep(y). Combining the above considerations with (4.48),

(4.49), (4.55) and ojn,ujn

In summary, for the jump in 0, we have the estimate

> 0, we obtain inequality (4.83).

lim inf A ’Z"’T" (up)

n—00
K

> B(u,7) = Y (6 - ()

=2

+min{min{BAIFw(T)),BBzF(m,—b<o,T>JCB<v>} + B(ué”,w,BBJ<ué”>},

which meets (4.42) for a jump in 0.

Jump in (0,1). Assume that S, = {t}, with¢ € (0, 1). Let (uy) be a sequence converging
to u such that sup, ﬁfffﬁ'(un) < 00. Then Proposition 4.3 implies that u, — u in



Chapter 4. Analysis of a quasicontinuum method in one dimension 159

LY(0,1) with

if 0 <z <t,
u(@) =4 " e (4.84)
(L=~ +yz ift<z<l

Combining (4.55), (4.49) and the arguments of case (4) above, we can prove
K
el T 1 1
liminf Ay 7" (u) = Blug” ) + Bt 7) = b, T)Jes(y 2; = 1)w(7), (4.85)
J:

which is the asserted estimate.

Limsup inequality. As for the lower bound it is sufficient to consider a single jump either
in 0 or in (0, 1).
Jump in 0. Corresponding to the cases (1)—(4), see (4.51), we construct sequences (uﬁf))

with ugf) —wu for i =1,...,4, where u is given by (4.46) such that

K
hmsupH“"’T”( (1) <B(u§ ),’y) + Bpy( “0 Z Jj— Dy (4.86)

n—o0

K
limsup A5 (u®) <B(u§”,y) + Bul",7) + Barr(iT) - DG =), (487)

n—00

K
limsup {5 () <B(uf? 7) + B 7) + Barr(tT) = Y (G — (7). (4.88)

n—00 j=2
K
lim sup Ay (uf) <B(ug’,7) + B(ui, ) =2 00T +5= D7) (489)

To show these inequalities, we recall some definitions of sequences from Chapter 3. Let
n > 0. By the definition of B(6,~), see (3.72), we find a function v : Ny — R and an
N; € N such that v° = 0, v¥ — 05! = u(()};, for 1 < s < K and v'*! —o' =y if i > Ny,
satisfying

i1 .

K
> g - +ZZO‘ ) < B, y) +n. (4.90)

=2 s=1 ‘7 71=21i>0

<.

Moreover, we find w : Ny — R and an Ny € N with w® = 0, w* —w*™! = u
1 <s< K and w't! —w® =« if i > Ny, such that

j—1

K ,
ch - —i—ZZU ugl),'y) + 1. (4.91)

j=2 s=1 ‘7 7j=21i>0

.
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By the definition of B(y), see (3.71), we find a function @ : Ng — R and an N € N such
that @° = 0, @'t — @' =~ if i > N and

J—1 . K

K
YooY LT n@ -+ Y)Y oi@) < B() + . (4.92)

1 J §=2 i>0

7j=2 s

Let us recall that the infinite sums in (4.90)—(4.92) can be replaced by the sum from i = 0
to i = Ny — 1 respectively No — 1, N — 1.

Case (1). We construct a sequence (u,) converging to u in L'(0,1), given in (4.46),
satisfying (4.86). For this, we can use the same recovery sequence which was constructed
for a jump in 0 in Theorem 3.19. Let n > 0. By the definition of By(6) given in (3.70),
there exist @ : Ng — R and kg € N, kg > K — 1 such that wko = 0, @kot1=s _pko—s — u(()lg
fors=1,..., K — 1 and (3.98) is satisfied. The recovery sequence (uy) is defined means

of the sequences %, w and w, as

o if 0 <i < ko,
wly = {04 Ay (@i (RotD) — ghi+l=(kot1) _gun=(k3+D) if kg 41 < i < k2 41,
0 — Nyw™ Tt ifk:%+1§z'§n.

By the definition of @ and w the function w, satisfies the boundary conditions (3.3).
Moreover, since k}“ k:2 are such that lim,_, k: = limy, o0 (n — k2) 400 we have for n

large enough that
k! —(ko+ K)>N and k2+Ny+ K <n.

This implies that u®t! — ul = X,y for i € {kl ... k2} for n sufficiently large and thus
up, € A7,(0,1). In a similar way as in the proof of Theorem 3.19, we can show that
limy, 00 Uy, = u in L1(0,1) and, by using the above inequalities and (3.74), that

K
lim sup f[f:ﬁ”’n(un) < B(u{",7) + Bps(u Z 3= )i (y) + 3n.

n—oo ]:2

The assertion follows from the arbitrariness of n > 0.

Case (2). Next, we construct a sequence (u,) which converges in L'(0,1) to u, given
n (4.46), and satisfies (4.87).

Let us first assume that #(7) < +oo. Fix n > 0. By the definition of Bﬁz (r), see
(4.35), we find a function z : Ny — R and a ¢ € N such that 20 = 0 and 27+ — 20+ =
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2t el ip g e {1, kT —1} and i € {77, ..., 71,1 — 1}, satisfying
K j—1 . qg—1 7“(7')—1
T SEELERN NS WD I TSR ST'E
j=2 s=1 =0 i=q+j—1
< Bie(T) . (1.99)

Set h, := kL — q — 1; then we have A\,h, — 0. Set k¥ = |\/kL]. Clearly, we have
lim,, \,kY = 0 and lim,, (k} — k%) = +o0. For n sufficiently large, we can assume that the

following relations hold true:

>N +K, N<h,—k—K, n—k3—-K>N,

(4.94)
fzn—k}llZAST for se{l,...,kl}.

We are now able to construct a recovery sequence (u,) by means of the functions z, v, w

and u:
Y (vkg _ i 4 ahwk;z) if k) < i < hy,
i = | (4.95)
O A (2=t = () mhn=l _yn=r(T)) i hy, 41 < i < r(Ty),
0= Auni if r(Tp) <i<n

By definition of v and w the functions u,, satisfy the boundary conditions (3.3). Let us
now check that w, € At (0,1) for n sufficiently large. The definition of w and (4.94)
yields u”l — uf% = Ay for 7(7,) < i < k2. Thus it is left to show that for given
se{l,... — 1} and n sufficiently large 1t holds u/, is constant on A, (77, o As+1 ,)- Fix
5 € {1,..., T —1} and let i € {#7,... }. By the definition of wu,, z, (4.94) and
hn = k. — q — 1, we obtain that

’ s—i—l

kL 4it1 kL+i kp 4Pl +1 k}b—i-fz—
Un —Un =0l _ et e+ z‘”’qz = Un" Un
An An
C FL 1 T .
This implies that uj, = A\ (un™™" — un™™) on Ag(77,, sT+1 ). Hence, u, € At (0,1).

Next, we show that
lim (uﬁ”“ - uzn) ={— 7. (4.96)

n—0o0
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Since we have h,, = k} —q—1, r(T,) — kL = #(T) and k2 > r(T,) for n sufficiently large,

we obtain

uZ"H — uﬁ" =0+ N\, (zo — (M) =hn=1 _pyn=r(Tn) _ yhkn 4 50 &h"_k9l>
— g _|_ )\n (wNQ - w?’L—T’('Tn) o wNQ - Zq—‘rf(T) o ,ng _|_ UNl - ’UNl o ﬂhn—k% +
=+ X (Y (N2 +7(Tp) =1 — kS 4 Ny — hyy + B2 + N) — ™2 — 2947 M1 gy

= L=+ Mg+ 1+ #(T) + No+ Ny + N) — w2 — 2087 M _gNy (4,97

Since the terms which are multiplied by A, are independent of n, we have (4.96) and

similar arguments as in the proof of Theorem 3.19 yield u,, — u in L'(0,1). From (4.96),
hn+l  hn
we deduce u”t\igu’l — +00 as n — 0o. Thus, for fixed j € {2,..., K} it holds

hn, ' Jj—1 j—s uhntl=s _ g hn—s yhntstl _ g hnts
O'Z —c; Jl n n +J1 n n
‘ Z e Z J An An
i=hp—j+1 s=1

= J¥i(y) +7i(n)

j—1 .
=i ) ’ ; D@ - (2 - 2Y) = ju(9) +ri(n), (4.98)
s=1

where 7j(n) — 0 as n — oo. By the definition of v, w, @ and w, and (4.94), we obtain

that ultt —ul, =y for i € {Ny,...,hy — N =1} U {r(T5),...,n — Na — 1}. Hence

n

K (hn—N-1-K kn—d izl 2 n—Na—1-K
)SLAED SECIRED SITIED SLCENEN ST S T
=2 i=N; i=r(Tn) s=17 i=k2—1

Moreover, we observer by the definition of wu,, the function v and w and (3.108), (3.99)
that

K Ni—1 K K 7—1 j s
) 7 1 —
DD =22 o) S Bl ) =D Y T Aug) + 0
7=2 =0 7=21>0 Jj=2 s=1 ‘7 (4100)
n—j K 7j—1
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Combining the definition of w,, the functions @ and z with (4.92), (4.93), (4.98) and
(4.99), we get

K k-1 )
s k -1
2 Jn+Z Tt Z Hin
7=2 i=h,—~N—-K i=kj,+j—1
K hn—3j -1 . s k-1
S I R e IR S
7=2 \i=ph,—N-K s=1 J 1=hn+1
izl r(Tn)—1
ki—1+
Y s T Y, — ity )+7"j(n)}
s:l‘7 i=kl4j—1
K (N+K-j S -1
:Z{ % “ﬂZj (i@ — @) + S (2* = 2h)) + > oli(2)
=2\ i=0 i=0
izl A(T)-1
-1 ; .
Y ST+ Y M}(Z)-J%(V)WLTJ'(”)}
=17 i*q—l-l-j
1) /A
<B(y) + BT ng +2n+zrj (4.101)

Altogether, we have by (4.23) and (4.99)—(4.101) that

K
limsup Ay 57 (un) <B(uf”,7) + Bu{? ) + B(y) + BYRET) = (27 — Dy(7) + 4.
n—+00 j=2
The assertion (4.87) in the cases 7(7) < 4oo follows by the arbitrariness of > 0 and
the definition of BAIF(fT), see (4.44).

Let us now consider the case #(7) = +oo. In this case we have to change the definition
of z in the recovery sequence. By the definition of Bﬁz (#7), see also (4.36), there exist a
function 2 : Ng — R and a ¢ € N such that 20 = 0, 20+i+1 — za+i = ga+il+1 _ sq+il

se{l,....k] —2}and i€ {#],...,7], — 1} satisfying 297+! — 29+ =  for § > flzszl
and
K Jj—1 . q—
3 YIRS SRS 3 TR ER S
j=2 =1 7 i=0 i>g+j—1
< Brr(#T) +1. (4.102)

Note that ,u;( Z)=0fori>q+ 'rkT 1 Define u,, as in (4.95) with z replaced by 2. Then
the sequence (u,) is a recovery sequence for u. Note that w, satisfies (3.3). Moreover,
similar arguments as for the case #(7) < 400 combined with 21 —2¢ = ~ for i > q—i—f]Z;T_l
yields u,, € At (0,1) for n sufﬁciently large. Let us show (4.96). For n sufficiently large

such that it holds fkT = kL + 7 we deduce from the calculations in (4.97) and

1n kT —1°
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il 21—~ for i > q+rkT | that
T
uln Tt — =0 — oy + X (y(r(T: — grtr(T)—kn 4 2 S _ éqMWT—l) +O(\n)
R AT
=l — 5+ X (v(r(T; —(q+7(Tp) — kL) — rkT ) = 2T + O(Ay,)

=l —~v+ O(\n),

which yields (4.96). Similar arguments as in the case 7#(7) < +oo yields (4.87), which
finishes the proof in this case.

Case (3). We have to prove that there exists a sequence (u,,) converging in L'(0,1) to
u, given in (4.46), satisfying (4.88).

Let us first assume that #(7) < 4o00. Let m € {1,...,k] — 1} be such that

K
Bprr (iT) =Bip (¢, m,7) + BRGT m+1) — Y (=% — 1) w(7)
J=2+7T
_Z Z ( > (7). (4.103)

J=2i=fT +1

Fix n > 0. By the definition of Bﬁz (r,m,7), see (4.38), there exist a function @ : Ng — R
and an N € N such that @° = 0, @i+ —ai = ~ fori > N and @i+! —ai = @'m—"7 1 _gim—"1

if s €{2,...,m}and #] — 7] <i<#] —#] |, such that the following inequality holds

Z cjzj_ +1))J1(ﬂs— +Z Z o;?(a)

j=2+77  s=1 i> (P +1—5)V0
K fp=1 .1
+ZZ< >u3(> BT, m, ) +n.
7j=2 =0

Furthermore, by the definition of B(#7,m+1), see (4.39), there exists a function o : Ny —

. _ i i AT _ 2T 2T _ 2T .
R with o° = 0 and 977! — ' = o™ Tt G TTmirif s € {m+1,...,k] — 1} and
7T — rm+1 <i< rT 777;+1 such that
K j*f;rnﬂ*lj s 7@7*
L R |
Sy
J=2477 s=1

P(T)—7
X A7) i+ 7T i—1 (3)
‘|‘Z Z f/\l pi o (0) < Brp(FT,m+1) 4.
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Set kO := |\/ki]. Clearly, we have lim, A\ k) = 0 and lim, (k. — k) = +oo. For n

sufficiently large, we can assume that the following relations hold true:

KO>N+1, N<kl-k2-2 n—k2-1>N,,

(4.104)
il —kp =71 for se{l,....k]}.

We construct a sequence (u,) by means of the functions v, w,u and v:

A0t if 0 <i <KD,

~T . AT (0] . . ~

An(vER — @ man =t 4 g =hn ) it R <i <77,
) T T T

wh = Q™ e if 77, <i <Al = (4.105)

m+1 n m,n

£ A (0Tt — " =P — g rT0)) g 47 < < (T,
0 — Nw"t if r(Tp) <i<n.

Note that u:;’z‘" = A\p(vFn + ﬂ%vn_kg) and uy, Pt =/ - )\n(UT(T”H%Hm + wn ()
in the definition of u,. By definition of the function v and w the sequence wu,, satisfies
the boundary conditions (3.3). Moreover, we have that u’t —ul, = A,y for N; < i <

—~N—1and 7(T,) <i < n—Ns—1 for n large enough. Let us show that u/, is constant
on /\ G ASH ) for s € {1,... kT —1} and n sufficiently large. Fix s € {2,...,m} and
Zln < <#],—1. Note that this implies 77, — 7] <#7 — (i —k}) — 1 <#] —+#]_, for

n such that (4.104) holds. By the definition of w,, @ and (4.104), we obtain
i k47T kL+7T—1
» u'n - Un

— U —u'm s
An An

AT T
This implies that u/, = A-1(up" — upS™ 1) on A (77 for s E {2,...,m}. Let

Te_ l'm sn)

us now show that w/, is constant on A, (77, Pons L—l ) for s € {m,... k] — 1}. The case
s = m follows directly from the definition of u,. Fix s € {m + 1,...,k/ — 1} and
rl, <i<rl,,—1 From (4.104) and the definition of u, and v, we Obtaln
i+1 i ki+iT4+1 St
Up — —Up :ﬁi*fgﬂ,n*l _ @i*’;jnﬂ,n — @f;r*f;ﬁl*l _ @f;r*fZLH — Un Un
An An

sn+1 T‘T T
Hence, v/, = A\ (up, —uy™") on Ap (77, S—I—l o) fors e {m+1,... k —1}. Altogether,

we have that u, € A7, (0,1). Let us show

n—oo

#T #T
lim (unm+1 ™ — unm’"> ={—7. (4.106)
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We have
uZTT"H‘" b = + Ay (U — " M)~ — = (Ta) ki 4 g0 — gn k:%)
:€—|—)\ (wN2 — T oy Ne (M) =g N1k N
+ a — o' P ~kn uN)

=0+ My (’y(Ng—n—i-T(T)—l-Nl — k) + N —#T 4 kD) —w™? — o™
—aN - 7"(7;1) Ky, m+1)

—0— v+ (Y (N2 + Ny + N +1(Tp) — kL — #7) — o7 Tkl
— w2 — M fuN) (4.107)

Since r(7,) — kL = #(T) < +oo0, the terms which are multiplied by )\, are independent
of n. This yields (4.106). Similar arguments as in the proof of Theorem 3.19 imply that
up, — win L*(0,1). For s € {#],...,#7 ., — 1}, we deduce from the definition of u,, and
(4.106) that

1 1 T T
ufbn'i‘s'f‘l o u"’f;n"l‘s U:Lm+1,n o u;'m,n
= T S 00 asn — 00, (4.108)
)\n A7"b(rm+1 - Tm)
Let us assume that n is sufficiently large such that fZ:n =k} + 7] for s € {1,...,m}.

Then similar calculations as for the liminf inequality (e.g. (4.77), (4.79)) yield

kL1

> Y 4

j=2+7T i= rT n—J+1

K B T S A ustl K
-> 2 ¥ % J1< e D DGR ARt
j=24+7T =] =i+l J=2+77,
K o ka1 i+j—1 wstl — 8
DY DD A C S e R

j=24+7 7 = =gl s=fT

K rT n—t—1 K
c:
-y 9 z Y@t —w) - Y (-1
j=2+i] 7 i=r] L —j+1 =0 j=2+7]

. . AT
kylL_l Z+]_Trn+1,n

+ Z 9 > Y n (@ =) +r(n)

J:2+"'m+1 i:rA'rE,n_j"'l s=1

K Jj—1 K
Cj . ~ —S —S5— 1 P
= Y IS G- svEL A A @ —w ) - S (G- 1= ()
G=247T s=1 J=2477,
K ‘ J=rra—1

+ > > G — 9N (0 =0 +i(n) (4.109)
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with
K kL1 i+j i (1;7Tn+17n/\(i+j))—1 s+1 s
Up? —u C; wt —u
i=24i], (=il =i+l o T . "
as n — oo, which follows from (4.108). Moreover, we have
m+1 n_ . 1 m+1
1—k, + 1
S (v A1) s = Bl (Sa1)we+nat, (10
=2 a=r] J J=2 s=f] +1

with

m+1 ’F'rTn—O—l,n ’F'rTn,n
Z Z ( 1) ) Au; _f;n — 0 asn— oo.
( - rm,n))‘n

j=2 g= TT+1 m+1n

Hence, using (4.109) and (4.110), we obtain

K [ki-1 j—ls ) r(Tn)
, I A

Dy Tt DT D
i=2 | i=kg g i=kl+j-1

K j—1 . T K kLT —i—kO

—(sVvr )
I S R IS DD SN O

joiT 42 =1 J I=2 i=(7 T —4+1)V0

K -1 AT . K J*Tan-H*l . AT

T — 1 i J T4l TS o s s

DD (A m@t Y g Yy (-

7=2 =0 J j;g.:,.f%_‘_l s=1 J

K 7;77;+1 s KT(Tn) m+1n i+ 7
D SN YR IPHRD b ol G SR PR

J=2 s=pT +1 J j=2 i=1

K

— > G 1= () +r(n)

j=2+7T

K
2) /A 3) /A
<B§£<ﬂ,m,v>+B§£<ﬂ,m+1>+2n— DN EEATIC)
=T 42
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with r(n) :=ri(n) + r2(n). Now similar calculations as before lead, by using (3.108) and
(3.99), to

limsup B (u,) <B(u” ) + Bl ) + BT, m,y) + BYA(FT m + 1)

e Y G- -3 ;Z (3r1)wt)

j=rT +2 J=2 s=f] +1

K

Jj=2

which proves (4.88) by the arbitrariness of > 0 and the definition of m.
Let us now consider #(7) = +oo. By the definition of Bg}), there exists a function
b : Ng = R with ©° = 0 and 97+ — ¢¢ = ™0 metl — o7 T for 7T — §7 | < i <

— T+l

'F;Crl —fTTnH with s € {m +1,..., k7 —2} and 'T! — &' = ~ for i > fZ—Z’—l _f’777;+1 such
that

K j_f;gﬂ_l . AT

—5—7
I I e
j=2+rﬂ+1 s=1 J
i+ 7 .
P33 (F ) < BT 1
7j=2i>1

Note that ,ué»(A) =0 for ¢ > rkT 1 — 77 1. Define u,, as in (4.105) with v replaced by .
Similar calculations as above yield that (uy) is a recovery sequence for u. We only show
that (u,) satisfies (4.106). By (4.107) and ¢! — ¢ =~ for i > f’ZT
that there exists C' € R independent of n such that

1= r%H, we obtain

w = =t =4 A (1(0(T) — ) = 7R 4 )
AT T

—6—7—1—)\”(’}/?;}1 B -1 m+1+C’>—>€—’y as n — oo.
We can now use similar arguments as in the case 7(7) < 400 to prove (4.88).

Case (4): Here, we prove that there exists a sequence (u,) converging in L'(0,1) to u,
given by (4.46), which satisfies (4.89).

Without loss of generality we can assume b(0,7) < +o0c. By the definition of b(0,7T),
we can find a sequence (h,) C N with tin thetl ¢ T, r(T,) < thn < thetl and

1imy, 00 Ant?" = limy, 00 Ay t?2 1 = 0 such that

lim (8 — Py = b(0,T).

n—o0
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We construct now the sequence (u,) by means of the functions v and w:

A" it0<q<trm,
. hn+1 . h . h hn+1
i ty T —1 nr i—tp" —tn" if 1h ; hn+1
Up = § e A0+ ot (0= A ) i < i < gt
tn —tn tn —tn
£ — X" if thetl < § <n.

This sequence satisfies the boundary conditions (3.3) and u”l i = Ay for Ny <i < tﬁ”
and for t/»+1 < <n — Ny and we have

th‘Fl
n

hn‘l’li th"
n __ v n )

hn _f—i—)\ (

phnt1_ _ _ hn
={ + Ap(w'" n V2 g2 ytn +UN1—UN1)

=0+ Ny (Yt — il Ny + N w2 — ™M) 5 -y

as n — oo. Thus, u, — u in L'(0,1). Furthermore, we obtain for ti» < i < ¢hn+l 1,

t2n+1 . uth

M;,n = ¢] ()\:?tﬁn—i_l tn")> %( ) — —%(’Y)

as n — oo. This implies

K thntl K
S k= -b0.T) i) = —b(0, T)Jes(v)
J=2 j=thn j=2

and together with (3.108) and (3.99) the desired inequality (4.89) follows.

Jump in (0,1) We have to prove that there exists a sequence (u,) converging in L'(0, 1)
to u, given in (4.84), satisfying

Mx

lim APk (un) < Blug”,7) + Bi?,5) = b, T)en(y) = 36— Dy

Jj=2

This can be shown analogously to case (4) for a jump in 0, by using sequence (h,) C N
with tf= the*1 ¢ T, for all n € N such that lim,, \,t"* = lim,, A,t""*! = 2 and

lim (Pt — i) = b(z, T).

n—oo

4.4 Minimum Problems

According to Theorem 3.19 and Theorem 4.11, the sequences (an) and (H’f:ﬁ”’n) do
not have the same I'-limit for ¢ > ~, while they coincide in the case 0 < £ < . In order
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to analyse the validity of the QC-approximation also for £ > v, we study the minimum of
H f’T in dependence of the choice of the representative atoms described by 7 = (7).

Here, we consider the case of nearest and next-to-nearest neighbour interactions only;
for a short comment on the general case, see Remark 4.24 at the end of this section.
We give sufficient conditions on 7~ such that min, H¢(u) = min, H f’T(u). Moreover, we
provide examples in which the minimal energies and minimisers of H f and H f’T do not
coincide. To this end, certain relations between different boundary layer and jump energies
are needed, which we provide in several lemmas in this section. Some of these relations
are proven under additional assumptions on the potentials J; and J. In Proposition 3.2,
we show that all these assumptions are satisfied for the classical Lennard-Jones potentials
and Morse-potentials; see (3.22) and (3.24). The following results are contained in [55,
Section 5.

Throughout this section, we assume that J; and J; satisfy the assumptions (LJ1)—(LJ5)
(for K = 2). Recall that in this case, we have

Jo(2) = Joa(2) = Ja(2) + %inf{Jl(zl) b () oz = 22}

and 19(z) = Jop(z) = Ji(2) + Jo(2) for all z € R. Let us recast the boundary layer
energies derived in Section 3.3 for the case K = 2. For a function v : Ng — R and ¢ € Ny

we define o?(v) as

ol(v) = Jo <UH22_U1> + % (J1 (V2 — o) 4 (' — U’)) — Jo()- (4.111)

The boundary layer energies B(6,7), By(0), defined in (3.72), (3.70) for 0 € ]Rff_l and
B() defined in (3.71) reads in the case K =2 and 6 > 0 as

_ o o i
B(6,v) —]%[Ié%mln{le(v v )+ZZ>;U (v) :

U:NO—>R,U0:O,UI:9,vi+1—vi:7fori2N}, (4.112)

[\

1 —
By (0) :;g\’]min {QJl(vl —%) + Z o' (v) :
=0

v:Ng = R,0?=0,0""1= —9}, (4.113)

. 1o o T
B(fy)—]\}glgomln{zjl(v v )—l—%a(v).

U:Ng—>R,v0:O,vi+1—vi:’yforizN}. (4.114)

Next, we restate Theorem 3.19 in the case K = 2. Note that in this case the result was

already proven in [50, Theorem 4.2].
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Proposition 4.13. Let K = 2 and suppose that J1 and Jy satisfy the assumptions (LJ1)—
(LJ5). Let ¢ >~ and uél),ugl) > 0. Then (an) I'-converges with respect to the L*(0,1)-
topology to the functional Hf defined by

H{(u) =B(u§”,7)(1 — #(Su N {0})) + By (uf)#(Su N {0}) + Brs#(S. N (0,1))
+ B, 7)1 = #(Sun {11) + Bps () #(Sun {1}) = Jo(r)  (4.115)

if u € SBVY(0,1), and +oc0 else on L'(0,1), where, for 6 > 0,

1
Bp(0) = 5J1(6) + By(6) + B(v) = 2Jo(7) (4.116)
1s the boundary layer energy due to a jump at the boundary and
By = 2B() — 2Jo(7) (4.117)

is the boundary layer energy due to a jump at an internal point of (0,1), where B(6,~),
By(0) and B(v) are defined in (4.112)—(4.114).

Let us now rewrite the results for Hf’i”’n in the case of nearest and next-to-nearest

neighbour interactions. In this case, the definitions of the boundary layer energies for a
jump at the interface between the atomistic and continuum region simplifies significantly.
Let (7)), #(T),1(T;) and I(T) be defined as in (4.24). In the case K = 2, we have
T = (0,#(T)) € Z(2) and IT = (0,I(T)) € Z(2), see (4.28). Moreover, the boundary
layer energy Brp(n) for n € N, defined in (4.37), reads

Bjr(n) := inf min {Jl(vl — %)+ §ai(v) + (n — 1) pi(v): v:Nyg = R0 = 0},

qeN =0 2
(4.118)
where pf(v) is defined for functions v : Ny — R and i € Ny as
p'(v) = Jop (v —0') — Jop(7). (4.119)

Note that the additional constraint v97T1 — 4+ = 4+ — 49 for 0 < i <n —1 in (4.37),
vanishes in (4.118). This follows from the fact that, for given ¢ € N, the minimum problem
in the definition of (4.118) is independent of v**! — v¢ for i > ¢ + 1, see (4.111). The
following result follows directly from Theorem 4.11; see also [55, Theorem 4.8] for a direct

proof.

Proposition 4.14. Let K = 2 and suppose that Jy and Jo satisfy the assumptions (LJ1)-
(LJ5). Let £ >+, and u(()l),u(ll) > 0. Let (kl), (k%) satisfy (4.6), and let T = (Ty,) satisfies
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the assumptions of Theorem 4.11. Then fIf’T, given in (4.42), reads

AT (u) =B(uf) 7)1 — #(S. N {0}) + B(ul", 7)(1 — #(Su N {1}))
+ Brrey (F(T),60,T)ug”) #(Sun 0D = >0 b(@, TJen()

z:w€S,N(0,1)

+ Brry (Z(T), b(1,7), u§1>) # (5. N {1}) = Jo(v) (4.120)

if u € SBVY(0,1), and +oo else on L'(0,1), where b(z,T) is defined in (4.29) and
Birj(n,k,0) is defined for n,k € NU{+oc0}, 8 >0 as

B[FJ(n, k, 0) =min { min {BA[F(TL), BB[F(n), —kJCB(’)’)} + B(H, 'y), BBJ(Q)} (4.121)
with
Barr(n) == Brr(n) + B(v) — 2Jo(7), (4.122)

and
Bprr(n) :=B() - (; n n) (), (4.123)

where Bpj(0) and Brp(n) are given in (4.116) and (4.118).

Proof. We only have to show that for all r = (r1,72) € Z(2) (see (4.30)) it holds Bprp(r) =
Bprr(ra), see (4.45), (4.123). Fix r € Z(2). Using B2 (r,1,7) = B(v) and BY2(r,2) =0
(see Remark 4.9) and ¥s(y) = Jog(7), we obtain from (4.45) that

T2

Bpir(r) =Brr(r,1,7) + Bi(r,2) — Jop(y) = 3 (g A1) Jop()

s=1

=B(v) — Jes(7) <T2 + ;) = Bprr(r2).

We used that the constraint in (4.45) reads m = 1 and that r; = 0. O
Let us now give some estimates for the boundary layer energies in the case K = 2.
Lemma 4.15. Let (LJ1)-(LJ5) for K =2 be satisfied. Then
(1) 5J1(61) < B(7) < 31(7);
(2) B(0,vy) > %Jl(e) for all 8 > 0O;
(3) LJ1(61) < By(0) < 1J1(0) for all 6 > 0;
(4) By(61) = 3J1(01);

(5) J1(61) < Brp(m) < $J1(7) for every m € NU {+00}.
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Proof. (1)—(3) follows directly from Lemma 3.22 and (3) implies (4); see also [50, Lemma
5.1] for direct proves. Let us show (5). Since 7y is the minimum point of Jy and Jop the
terms involving ¢*(v) and p!(v) in the definition of Byr(m), see (4.118), are non-negative.

Hence, we have
1

1
Brr(m) > min §J1(z) = §J1(51).

To show the upper bound, we can use the function u : Ny — R with v’ = iy as a
competitor for Byp(m) for every m € N and deduce the upper bound. ]

To compare min, H{(u) and min, Hf’T(u), we need to estimate Brpj(n,k,6), defined
in (4.121). This will be done, under additional assumptions on Ji, Jo, in the following

lemmas.

Lemma 4.16. Let Jq, Jy be such that (LJ1)-(LJ5) are satisfied and J1 (), J2(7), J2(01) <
0. Define the quantity

Biry(n, k) :=min{Barr(n), Bpir(n), —kJo(7)}, (4.124)
where Barp and Bprp are defined in (4.122) and (4.123). Then
(i) Brry(n,1) = —Jo(7) for all n € NU {+o0}, n > 1,
(ii) B]FJ(]., k) = BB[F(l) = B(’y) - %J()(’y) for all k S NU {+OO}, k Z 2,

(iii) Brry(n,k) = Barr(n) for all n,k € NU {+oo} withn > 2,k > 2.

Proof. (i) From J2(d1) < 0, we deduce Jo(v) < Jo(d1) < J1(01) + J2(d1) < J1(1). Hence,
we obtain by B(y), Brr(n) > 3.J1(61), see Lemma 4.15 (1) and (5), and the definitions of
Barr(n) and Bprp(n), see (4.122) and (4.123), that

Barr(n) >2J1(61) — 2Jo(7v) > —Jo(7),

Brir(n) 2B6) = S40(1) 2 31(0) = S4o(1) > — ().

(ii) From B[F(m) > %Jl(él), 0> J1(51) > J(](’)/) and B(’y) < %Jl(’)/) < 0, Jo(’)/) < Jl("}/),

we deduce

Barp(1) 2351(51) + B() = 240(7) > BO) = 34o(x) = Bpre(),

k(1) 2 = 200() > 351 () = 5Jol) = Bx) = 5Jo() = Bgr(1).

(iif) Again by Brr(m), B(v) < $J1(v) < 0 and Jo(y) < 0, we conclude

Barp(n) S51(1) + B() — 240(7) < BO) = 2 o(3) < Brrr(n)

Barrp(n) <Ji(y) = 2Jo(v) < —kJo(7),

for n, k > 2, which proves the statement. ]
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In order to compute the value of Brps(n,k,6), see (4.121), we provide an estimate for
Byrr(n).

Lemma 4.17. Let Jy, Jy satisfy assumptions (LJ1)-(LJ5) and additionally

R(t) = T, (7;”) L)+ B(0) — Do) — S Uoslt) - h() <0 (4125)

for all t € domJy. Then Brp(m) = B(y) for any m > 2 and Barrp(n) = By for
n > 2, where Brp(m), B(vy), Barr(n) and Bry are defined in (4.118), (4.113), (4.122)
and (4.117).

Proof. Let us first show that Brp(m) < B(7) for all m € N. For every n > 0 there exists,
by the definition of B(y), in (4.114), a function % : N — R and an N € N such that
a0 =0, @t — @t =y if i > N, satisfying (4.92) in the case K = 2, i.e.

leu —a° —i—Za v) + 1.

The function @ is also a competitor for the minimum problem for Byp(m), see (4.118).
For ¢ > N + 1, we have that p9(@) = 0, o’(@) = 0 for i > ¢ and thus

q—1
Brr(m) Sy i) + Y o (@) + (m - 5 ) @) < B) 41
1=0

and the assertion follows by the arbitrariness of n > 0.

Let us now show Brp(m) > B(v) for m > 2. The definition of Brp(m), see (4.118),
implies Brp(m) > Brp(2) for all m > 2. Let n > 0. By the definition of B;r(2) in (4.118)
there exist a function u : Ng — R and a ¢ € N such that «° = 0 and

(ut —u® —i—Za (u) < Brr(2) + .

Next, we define the function % : Ng — R by @’ = «’ if i < ¢+ 1 and @'t — @' = v if
i > ¢+ 1. The function @ is a competitor for B(7), see (4.114). Thus

B(y) S%Jl(al —a%)+ S oi(a)

>0

7+uq+1_uq 1 q+1 q
,Jlu - +ZO‘ +J2<2 +§J1(u —u9)

+ §J1('y) — Jo(y) < Brr(2) + n+ R(u?™ —u9).

By assumption (4.125), we have R(u?*! —u4) < 0. Hence, by the arbitrariness of n > 0,
we have Brp(m) > Brp(2) > B(v) for all m > 2.
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Altogether, we have Brp(m) = B(v) for m > 2. Hence, we have by the definition of
BA[F(TL) and By, see (4.122) and (4.117), that BA[F(n) = By for n > 2. L]

Before we state our main result of this section, we recall some estimates for the boundary
layer energies in HY{ given in Lemma 3.23 and Proposition 3.24, and refine them under

additional assumptions on J; and Js.

Lemma 4.18. Let Ji, Jy satisfy (LJ1)-(LJ5). Then

B(0,7) <Bps(0) < B(0,7)+Br; V0 >0, (4.126)
min H{(u) =min {BB s + B, 4), Bgs V) + B, 7)} —Jo(y).  (4.127)

and Bry > 0, where B(0,7), Bpj(0) and Bry are defined in (4.112), (4.116) and (4.117).
If, for 0 > 0, there exists a constant ng > 0 such that +J1(v) + Ja (H%) <0 forallteR
with J1(t) < J1(0) + 2ng, it holds that B(6,~v) < Bps(0).

Proof. The inequalities (4.126), Bry > 0 and (4.127) follow from Lemma 3.23 and Propo-
sition 3.24, where the case of arbitrary K > 2 is considered.

We prove B(6,7v) < Bpy(f) under the additional assumption. Let > 0 be such that
n < ng and %BU —n > 0. We show Bp;(0) — (%BU —n) > B(#,7), which clearly
proves B(6,v) < Bps(#). By the definition of By(0), see (4.113), there exist ¢ € N and
v : Ng = R such that v? = 0 and v?~! = —6 with

q—2
By(0) +1 zéjl (@' =)+ Y o'(v)

=0
By the upper bound By (#) < 1J1(0) (see Lemma 4.15 (3)) and the fact that the terms in
the above sum are non-negative, we deduce Ji(v! —v%) < J;(0) + 2n. Let us define the
function v : Ng — R by u’ = —v9~% for i € {0,...,q} and u't! — v’ = 7 for i > q. Note
that u! — 1% = v9 — 09! = # and thus that u is a competitor for the minimum problem
which defines B(6,7), see (4.112). Hence,

B6,7) < 51w —u’) + o' (w)

120
1 2 v4+vl =0 1 1
— ) 1 0
= 2J1(9)+;0' (v) + J2 <2> +§J1(U —v )+§J1(’}/)—J0(’}/)
1

< 51(0) + By(0) +1 = Jo(v) = Bps(9) +n — (B(Y) = Jo(7))
= Bps(0) — <;BIJ - 7)> ;

where we used 1.J1(v) + J2 (ﬂ) <0. O
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Combining the previous results, we are able to give sufficient conditions on the repre-
sentative atoms 7 = (7,) in order to ensure min, H{(u) = min,, fIfT(u) In plain terms,
it is enough to make sure that the representative atoms 7, are such that k. +1,k2—1 ¢ T,
and for all 4,5 € {kL +2,....,k2 =2} N7, it holds |i — j| > 2.

Theorem 4.19. Let u(()l),ugl) > 0 and ¢ > ~y. Let Jy,Jo satisfy (LJ1)-(LJ5), Ji(7),
Jo(7y), J2(61) < 0 and (4.125). If T = (Ty) satisfies (4.17) and I(T), #(T), b(z,T) > 2,
for all x € (0,1), see (4.24), (4.29). Then I:If’T defined in (4.120) reads

AP () = Hi(w) — 3" (b(z,T)Jo(7) + B1s) (4.128)
z:x€S,N(0,1)

for uw € SBVX(0,1), and +oo else on L'(0,1). Moreover, for given uél), ugl) >0

min ﬁf’T(u) = min H{(u). (4.129)
u u

For u € argmin flf’T, the jump set satisfies S, C {0,1}. If furthermore J1 and Jo satisfy
all assumptions of Lemma 4.18, it holds #S, = 1.

Proof. Let us first prove (4.128). By the definition of H{ and ﬁf’T (see (4.115), (4.120)),
we have to show By (#(T),b(0,7),u") = Bps(u{") and Brp,(I(T),b(1, T),ul") =
BBJ('U,gl)). By Lemma 4.17, we have Barrp(n) = By, for n > 2. Hence, we have for
Brrj(n,k,0), defined in (4.121), with n,k > 2 and # > 0 by Lemma 4.16 (iii) and

inequality (4.126) that
B[FJ(n, k‘, (9) = min {BA[F(n) + B(977)7 BBJ(G)} = BBJ(O).

Hence, by b(x, T),[(T),#(T) > 2, for all 2 € (0,1) the assertion (4.128) is proven.
From Jy(y) < 0, Lemma 4.16 (iii), Lemma 4.17 and Lemma 4.18, we deduce that

—b(x, T)Jo(y) = —2Jp(7y) > B]FJ(Q,Q) = Barr(2) =Br;>0 (4.130)

for all x € (0,1). Combining (4.130) with (4.126), we obtain that Bps(0) < B(6,v) —
2Jo(y) for all & > 0. Hence, the jump set .S,, of minimisers u of I:If’T satisfies S, C {0,1}
and by (4.126)(4.128)

min 477 (u) =min { Bp, () + Bl 7), Bos ) + B’ 7) } = Jo(7)

u

= min H{ (u).

If J; and J are such that B(6,v) < Bps(0) for all § > 0, see Lemma 4.18, we obtain

from the above equation that every minimiser u of H f’T satisfies #S5,, = 1. O
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In the next theorem which is based on the previous I'-convergence statements, we deduce
a convergence result for the difference between the minimal energies of the fully atomistic

model and the quasicontinuum model.

Theorem 4.20. Let u(()l), ugl) >0, >0 and let k}, k2 satisfy (4.6). Let J1, Jo and (Ty,)
satisfy the assumptions of Theorem 4.5 and, if £ > v, also the additional assumptions of

Theorem 4.11 and Theorem 4.19 such that (4.129) is valid. Then it holds

inf HE (u) — inf HoEnTn(4) = o(Ay), (4.131)

u

as n — o0.

Proof. Let us first note that the functionals HY, HE T are equi-coercive in LY0,1),
which follows by the compactness argument in the proofs of Theorem 3.7 and Theorem 4.1.
Moreover, by Proposition 3.9 and Proposition 4.3 the functionals H fn, H fﬁ"Tn are equi-
coercive. In the case 0 < £ < «y, Theorem 3.12 and Theorem 4.5 ensure that H! and
HE™ T are D-equivalent at order A, see [20, Definition 4.2], and (4.131) follows from

[20, Theorem 4.4]. Similarly, if v < ¢, we deduce from Theorem 4.1 and Theorem 4.11
inf HEEn T () = min H(u) + A min HET (u) + o(A\n),
see [9, Theorem 1.47]. Further, by (4.129), we obtain
inf HEkn T (4y) = inf Hu) + A inf Hi(u) +o(\,) = inf HE(u) + o(An).

O

Remark 4.21. In the case 0 < £ < ~, the estimate (4.131) holds under the assumptions
of Theorem 4.5 for arbitrary K > 2. Indeed, Theorem 3.12 and Theorem 4.5 ensure that
Hf; and Iilﬁ’k”’% are I'-equivalent at order A, for all K > 2. Hence, the QNL-method is

valid for general finite range interactions of Lennard-Jones type in an elastic regime.

In the next proposition, we show that the sufficient conditions of Theorem 4.19 are
sharp in the case ¢ > ~. To this end, we show for a particular choice of u(()l),ugl) > 0 that
if the representative atoms are not chosen as in the above theorem, neither the minima
nor the minimisers of H f and H f’T coincide.

Proposition 4.22. Let { > ~, uél) = 01 and ugl) = . Let Jy,Jo satisfy (LJ1)-(LJ5).
Then it holds for HY

min H{(u) = Bps(81) + B(r.7) — Jo("). (4.132)

and the unique minimiser u satisfies S, = {0}. Let Jyi,Jo satisfy the assumptions of
Theorem 4.19 and Jo(7y) > 2Jo (51;7). Then the following assertions hold true:
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(a) Let T' = (T,}) be such that there evists z € [0,1] with b(z,T') = 1. Then

A f,Tl
1

min,, H = B(01,7) + B(v,7) — 2Jo(y) < min, H{ and the jump appears in-
S

differently in z € [0,1] with b(z, T*) = 1.

(b) Let T2 = (T2) be such that [(T?) = 1 and #(T?2),b(z,T2) > 2 for all z € [0,1].
Then min, A7 = B(61,7) + B(y,7) + B(y) — 3Jo(v) < min, H{ and the jump

appears in 1.

Proof. Let us first prove the part regarding the energy H f . Proposition 3.24 yields that
Bpj(61) < B(61,7)+ Bry and Bpj(vy) = B(7v,v) + By (see also [50, Theorem 5.1]). This

implies
Bpj(01) + B(v,v) < B(d1,7) + B(v,7) + Bry = B(d1,7) + Bpy(7),

which proves (4.132) and that the unique minimiser u of H{ satisfies S, = {0}. Let us
now show the assertions concerning the minimal energies of H f’T. We test the minimum
problem for B(81,7), see (4.112), with v : Ny — R such that v'*! — v® =« for all i > 1.
By using Jo(vy) > 2J2 (@) and Jo(y) = Ji1(y) + J2(7), we obtain

01+
2

1 1
B((;l,’}/) < J1(51) + §J1('7) + JQ ( ) - Jo(’}/) < J1(51) - iJo(’y). (4.133)
From (4.43) and Lemma 4.16, we deduce Brpj(n,k,0) > min{—Jy(y)+ B(6,7), Bgs(0)}.
(a) Combining the above considerations with (4.120) it is enough to show that B(d1,7y)—
Jo(y) < Bpy(d1). This follows by using (4.133), Lemma 4.15 (1), (4) and Jo(vy) =

JC’B(’Y) < J1(51):
B(51,7) — o) < J1(81) = 50(2) < 5 71(8) + Bulr) + B() — 2Jo() = Bs(6y).

(b) From (4.120), Theorem 4.19 and #(72),b(z,7?) > 2 for all z € [0,1], we deduce
fIf’TQ (u) > min H{ for u € SBV*(0,1) with S, N[0,1) # . Let us compute the energy
for a jump at 1: For k > 2, we have by Lemma 4.16 (i) that Bps(1,k) = B(y) — 3 Jo().
As in Lemma 4.16 (ii), we have, by using B(y) > 3J1(61) > 3Jo(7) if Ja2(y) < 0, that
Brj > B(y) — %Jo(v). Hence, by applying Bpj(y) = B(,7) + Brs and the definition of
Brrj(n,k,0), see (4.43), we deduce

Brrs (1. kv) =min { BO) = S000), B | + B(0,2) = BO) = S5000) + B,7)
Thus, we deduce from [(72) =1 and b(1, T?) = 2 that Brrs(I(T2),b(1,T?),7) = B(v) —

%Jo('y) + B(7,7). Hence, by the definition of ﬁf’T, see (4.120), and by (4.132) it remains
to show that B(d1,7) + B(y) — 3Jo(v) < Bpy(61), which follows by using (4.133) and
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Lemma 4.15 (1), (4)

B(61,7) + B() = 5Jo(7) <(81) + B(r) — 2o()
:%Jl((;l) + Bb(51) + B("}/) — 2J0(’y) = BBJ((Sl).

O

Next, we show that all additional assumptions on Ji, Js in this chapter are satisfied by
the classical Lennard-Jones potentials and Morse potentials, defined in (3.22) and (3.24)
respectively.

Proposition 4.23. Let Ji,.Jo be as in (3.22) or (3.24) respectively. Then Ji and Ja
satisfy J1(y), J2(7),J2(d1) < 0, Jo(y) > 2J2 ((51%) and inequality (4.125) holds on
dom Ji. Furthermore, there exists for all 8 > 0 a constant ng > 0 such that Jo (HTW) <0
fort € dom Jy such that Jy(t) < J1(0) + 2ng.

Proof. Let Jy, Jo satisfy (3.22), i.e., there exist ki, ky > 0 such that J;(z) = Z]% — ];% and
Jo(z) = J1(22). Straightforward calculations lead to

2]{51 1/6 1 +2_12 1/6 kl 1/6 1 1/6
oh=|-— = — ) == == ) 4.134
1 <k2 > 7 1126 1, <0 ke 5 1 ( )
where d; is the unique minimiser of Jq, v the unique minimiser of Jy (and Jop) and 2o
is the unique zero of J; with J; < 0 on (zp, +00). Note that zp < v < §;. Moreover, we

have that J; is strictly decreasing on (0, 1) and strictly increasing on (d1, +00). A simple

1/6
calculation yield Ji(z) < 0 for z > (%) := zp. From v > zp, we deduce Ji(y) < 0

and thus Jo (5%) = Ji(y+1¢) <0on {t:t >0} = dom J;. Since y < 2y < 241, we have
J2(7y), J2(61) < 0. Moreover, by §1/2 < v < §; and the definition of Js, it is sufficient to
show Ja(7v) > 2J2(01) to obtain Ja(y) > 2.J5 (61%):

1) — 270(61) ki ((1+2—‘5)2 2) k2<1+2—6 2)

T2 \(T+ 27122 7)) T 2656 \1 42712
2 1 2—6 2 1 2—6
= ky (1+ ) —2 -9 1te 2 > 0.
45,212 \ (1 + 2-12)2 1+2°12

Let us now show inequality (4.125). Since Jo(v) = Jep(y) = Ji(y) + J2(v) and Ji(v) =
Jtp(v) = 0 one directly has R(y) = 0 and R/'(y) = 0. Consider the function J; + 2.J5
given by

kq ko kq ko k1(1+2_11) k2(1+2_5)

Ji(2) +212(2) = 5~ Gt o T 55,8 — 12 - 6

This is again a Lennard-Jones potential and there exists a constant z, > 0 such that
J{(z) + 2J5(z) > 0 for all z € (0,z.). To compute z. we set the second derivative of
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J1 4+ 2J3 equal to zero:

156k1(1+27)  42ko(1 +279)
14 B 8
(& (&

0=

1314 2-11\ /6
7 1+2—5>

, 2.>0 & 202(51<

From an analogous calculation we obtain that J/\5(z) > 0 for z € (0, z,) with

1/6
Ze = 01 (? 11?2—162) > z.. Now we estimate R on [z.,4+00). Since z. > 61 > 7, we have
%Jl — %JCB = —%JQ — Jop is decreasing on (2., +00). Since Jo (t+7) Ji(t+v) <0 for
t > 0, we have

1 1 kQ
R(t) < =5 Ja(ze) = Jop(ze) + 5 (J1(7) + Jo(7)) & =0.0469:2 <0,

1
for t > 2z.. We now show that R'(t) > 0 for ¢t < v and R'(¢t) < 0 for v < t < 2., which

proves the statement. For 0 < t < v < 2. < 24, we have

R(1) = &(ﬁ”)ﬁﬂ() S Jenlt) = Z(Jz(t;”) 30)) = st

1[5 g 1
:/ Jé’(z)dz—i—/ Jép / tp(2)dz > 0.
2 J ; 2

Analogously we get for v <t < z.

1 t t 1 t
() = — / T (2)dx — / Tp(e)dz <~ / )+ Tz < 0
2 v Tz
Hence, Lennard-Jones potentials satisfy all the properties asserted.

Let now J; and Jy be Morse potentials as in (3.24), i.e., there exist k1, k2,1 > 0 such
that Ji(2) = k1 (1 — e_’”(z_‘sl))z — k1 and Ja(z) = Ji(2z). In this case, we do not have
such an explicit expression for v as in the Lennard-Jones case and therefore derive bounds
on . Since Jj(z) < 0 if and only if z < §; and J{(z) > 0 if and only if z > §;, we deduce
from 0 = Jig(v) = Ji(7) + 2J1(27) that 61/2 < v < 61. A straightforward calculation
yields Ji(z) < 0 if and only if z > M
Jtp(20) < 0, which implies 2z < 7. Indeed, we have

: z0. In order to prove Ji(vy) < 0, we show

Jlp(z0) = —4kikay(16e72R201 — 4e=k201 1) = — 4k Ky ((1 — e k201)2 4 12e*2’“251) <0.

As in the Lennard-Jones case, we deduce from Ji(v) < 0, v < d; and the definition of
Jo that Jo(7), J2(d1) < 0 and Jo (WTH) < 0 for all t > 0. Define for § > 0 the constant
ng 1= 5(J1(0)—J1(6)) > 0, then we deduce .J (HTV) <Oforte{t: Ji(t) < Ji(0)+2m} C

{t:t>0}.
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Let us show Ja(7y) — 2J5 (‘h%) = J1(27) — 2J1(61 +7) > 0. From {7} = argmin Jop,
we deduce

0= J,C’B('V) = — kiko (—2€k251 (e_kﬂ + 26_%27) + 62k251 (26—%27 + 46—41627))
:2k1]€26k261674k2’y (63k2’y 4 262162’*{ _ ek251 (2 + 62k27)>
=2k1kags, 4" (45 + 205 — 05, (2 + )

_ 2

with ¢, := ef27 > 1 and qs, ‘= €291 > 1. This yields qs, = and allows us to show

JQ(’y) — 9, (61 + '7) _ kl (_26—k2(27—61) + 6—2192(27—51) + 46—k27 _ 26—2k2'y>
2
— k16—4k2’y (_2ek25162k2’y + €2k261 + 4e3k2’y _ 262k2’y)

= k1g;* (463 — 2(1 + 45,3 + 3,
a2(q3 +2)?

k1 3 5 2 2
S S— 2¢, — 2= ) +12¢%(qy — 1) + 16¢, —
T B@ 2P (q” (\qu wé) +124;(0y = 1) + 16, =8 ) > 0

(245 — 53 + 1643 — 12¢° + 16¢, — 8)

since ¢, > 1.

It is left to show that R = R(t) < 0 for all ¢ € R. We prove the inequality in a different
way than in the Lennard-Jones case. We have lim;_, 1o R(t) = %Jl('y) + %Jo(’y) < 0 and
by using Ji(t + ) < J1(2t) for t < 0 we obtain that

lim R()< lim (—Jl(t) - %Jg(t) + %Jl(y) + ;J0(7)> - .

t——00 t——o0

Moreover, by the definition of R = R(¢) and ~, we have that R(v) = R'(y) = 0. To show
that R(t) < 0 it is sufficient to show that R has no critical point except . Indeed, if
R(t) > 0 for some t € R, then in order to satisfy the conditions at infinity there has to
exist a maximum point ¢ with R(f) > 0 and R'(f) = 0. By the definition of J;, Jy and
R = R(t), we have

R'(t) =Ji(t +7) = Ji(t) — 3J1(2¢)
—2k; koeh201 (e—k2(t+7)(1 _ e—k2(t+7—51)) _ e_]”t(l _ e—k2(t—51))
o 3672k2t(1 o ek2(2t51))>
:2k1k26k2516—4k2t ((e—kz’y o 1)63k2t 4 (6k251 (1 o 6—2]62’\/) o 3)62k2t 4 3616251)

=2k koek201474 ((e‘kﬂ — 1)@} + (21 (1 — e 227) — 3)¢? + 3ek251>

=2k1k2e"% g, f(q1)
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with ¢ = e*2!. From R/(y) = 0 it follows f(g,) = 0. Let us show that ¢y is the unique
zero of f. We have f(0) = 3¢*2% > 0 and from ks,v > 0, we deduce e ¥27 — 1 < 0 and
thus lim,—,~ f(¢) = —oo. This implies that if f has a second zero, it would have a local

minimum and a local maximum in (0, +00). But

1'(@) = (3(e™7 = 1)+ 2™ (1 — e727) - 3))

and thus f has at most one local extremum in (0,+400). Hence, ¢, is the unique zero of
f and v the unique zero of R'(t). O

Remark 4.24. In Theorem 4.19 and Proposition 4.22, we provide necessary and sufficient
conditions on the repatoms 7 = (7,) to ensure min, H{(u) = min, ﬁf’T(u) for £ > ~
and nearest and next-to-nearest neighbour interactions. An extension of these results
to general finite range Lennard-Jones type interactions requires refined estimates on the
different boundary layer energies for K > 2 which we will not present here. Let us
illustrate that in general a sufficiently coarse mesh at the interface and in the continuum
region ensure min,, H{(u) = min, ﬁfT(u)

Let us assume that the hypotheses (LJ1)-(LJ5) hold true. Let ¢ > ~ and uél),ugl) €
Rf‘l. From (3.73), (3.117), (3.118) and (4.42), we deduce that it is sufficient to ensure
that

Bps(ul") = Bres @S, #7060, 7)), Bes(l?) = Bres(u?, 7, b(1, 7))
By V) < B, y) — bz, T)Jep(y) for all z € [0,1] and i € {0,1}

i

(4.135)

to obtain min, H{(u) = min, ﬁfT(u) The relations (4.135) can be achieved by choosing
the repatoms 7 = (7,,) such that it holds
T =17 = (0,400) € (NgU {+o0})? and b(z,T) = +oo forall z €[0,1], (4.136)

where 77,17 and b(z,T) are defined in (4.28) and (4.29). Indeed, since Pi(y) < 0
(see (3.19)) for j € {2,...,K}, we have that Bpp((0,4+00)) = 400 (see (4.45)) and
—b(z, T)Jop(y) = oo for all € [0,1]. Thus, the definition of Br; and Brr; (see (3.75),
(4.43)), the equality B%((O, +00)) = B(7) (see Remark 4.8 (ii)) and (3.117) imply that

B[FJ((O, —I-OO), +00, 9) = min {BA[F((O, +OO)) + B(@, 'y), BBJ(Q)}
K
=min { B{R((0,+00)) + B(y) — > j(v) + B(0.7), Bps(6)
j=2
=min {B[J + B(H,”y), BBJ(Q)} = BBJ(H),

for all § € Rffl. Hence, we have that lﬁlfT(u) = Hi(u) if S, C {0,1}, and +o0
otherwise. Note that (4.136) is satisfied for 7 = (7,) such that the assumptions of
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Theorem 4.11 hold true and that there exists (g,) C N such that lim,_, g, = +00 and
min{s —t: kL <t<s<k2ts€Ty}t>qn.

We close this remark by showing that for Lennard-Jones potentials, see (3.22), and
arbitrary K > 2 it is sufficient to ensure b(z,7) > 2 to obtain Bps(0) < B(0,7) —
b(x,T)Jcp(7y). Therefore, we define the function f : (0,400) — R by

K K j—2 K j—2
Fz)=0(2) =Y (G =2T(z) =k 1= = | 2 P =k [1-D> | 2"
7j=3 j=3 J Jj=3 J

It is easy to see that f has a unique root zy > 0 given by

. 1
L () (LT
07 kg 1K 2]

7=3 j6

ol M

and that f(z) <0 for z > z. Using (3.23), we obtain

1
kNG [ 1 \®  [ki\o [ 2 \®  [2k\° [ i\°
““\w) ) W) \®) ) \E %) ="
2 - C( ) 2 C( ) 2 Zj=1 J
where ((n) =>_ i>1 n~J denotes the Riemann Zeta function. Hence, f(v) < 0. Using the

definition of Bry (see (3.75)), (3.117), Lemma 3.22 (1) and 2512 ¢j = 1, we obtain for
b(z,T) > 2 that

Bpj(0) — (B(0,v) — bz, T)Jcs (7)) < Bry +2Jep(7)

K K
< Ji(0) Y (= Dej = Y () +2Jos ()
j=2

Jj=1 Jj=1

This shows Bgj(0) < B(0,v)—b(x,T)Jcp(y) if b(x, T) > 2 for Lennard-Jones interactions
of finite range.
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