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Notation

R, N, Z real numbers, positive integers, integers

R+, N0 positive real numbers, non-negative integers

a ∧ b, a ∨ b for real numbers a, b, a ∧ b := min{a, b} and a ∨ b := max{a, b}
χA the indicator function of a set A, i.e. χA(x) = 1 if x ∈ A, and

χA(x) = 0 if x /∈ A
χ̄A the characteristic function of a set A, i.e. χ̄A = 0 if x ∈ A, and

χ̄A(x) = +∞ if x /∈ A
−
∫

Ω u(x)dx := 1
|Ω|
∫

Ω u(x)dx

M(Ω) the space of finite Radon measures on Ω

(S)BV (Ω) space of (special) functions of bounded variation, cf. Section 2.1

(S)BV `(0, 1) (S)BV -functions with boundary values, cf. Section 2.1.1

Du distributional derivative of u ∈ BV
Dau absolutely continuous part of derivative

Dsu singular part of derivative

Dju, Dcu jump part and Cantor part of the derivative

K interaction range

Jj interaction potential of Lennard-Jones type

J0,j , ψj effective potentials, cf. (3.8) and (3.14)

JCB Cauchy-Born energy density, cf. (3.17)

B(θ, `), B̃(θ, `) elastic boundary layer energies, cf. (3.50) and (3.64)

B(γ), B̃(γ) boundary layer energies at free surfaces, cf. (3.71) and (3.112)

Bb(θ), B̃b(θ) boundary layer energies, cf. (3.70) and (3.111)

BBJ , BIJ jump energies, cf. (3.74) and (3.75)

Tn set of representative atoms, cf. Section 4.1

r̂Tn , l̂
T
n , r̂

T , l̂T representative atoms at the atomistic/continuum interface, cf. (4.26)

and (4.28)

B
(1)
IF , B

(2)
IF , B

(3)
IF boundary layer energies due to jumps at the atomistic/continuum

interface, cf. (4.35), (4.38) and (4.39)





Chapter 1

Introduction

A number of phenomena in continuum mechanics can be modelled in terms of minimisation

problems. A prominent example is the variational theory of nonlinear elasticity. Consider

a homogeneous solid body with a given reference configuration Ω ⊂ Rd, d ∈ {1, 2, 3}. The

stored elastic energy of a deformation u : Ω→ u(Ω) ⊂ Rd is given by

Iel(u) =

∫
Ω
W (∇u(x))dx, (1.1)

where W denotes the stored elastic energy density. In practice, W is mostly chosen

phenomenologically but it is desirable to obtain it from microscopic models; or as it is

asked in John Ball’s open problems [4]: Is it possible to derive elasticity theory from

atomistic models? Motivated by this, the analysis of microscopic models, in particular of

discrete lattice systems, and their relation to continuum mechanics is a growing subject

within the applied analysis, see e.g. [7] for an overview. A common approach is to apply

Γ-convergence to discrete energy functionals which are parametrised by the number of

atoms (see e.g. [2, 12, 13, 14]). This ensures that minimisers and minima of the discrete

energy converge to minimisers and minima of the limiting continuum energy.

In the first part of this thesis, we analyse a one-dimensional atomistic model with finite

range Lennard-Jones type interactions. In particular, we refine a result by Braides and

Gelli [14] and give an explicit expression for the Γ-limit of the discrete functionals in this

case. Moreover, we provide an asymptotic expansion by Γ-convergence, see [1, 20]. In

this way, we recover boundary layer energies due to lattice asymmetries at the boundary

and at cracks of the specimen. We derive a macroscopic model which allows for fracture

and inherits the atomic length scale. This generalises results of Braides and Cicalese [11]

and Scardia, Schlömerkemper and Zanini [50, 51] for Lennard-Jones systems with nearest

and next-to-nearest neighbour interactions to the case of general finite range interactions

which is a step towards the physical case of long range interactions.

In the second part, we study the validity of the so-called quasicontinuum method [59].

This is a computational multiscale method which couples atomistic and continuum de-

scriptions of crystalline solids and became very popular in the last two decades for studying

7



8 Chapter 1. Introduction

phenomena, such as the behaviour of grain boundaries, dislocation nucleation and crack

growth etc., in which there exist isolated regions of interest where a very detailed model

is desirable (e.g. the crack tip) and regions where a continuum model is sufficient. We

construct a quasicontinuum approximation of the one-dimensional Lennard-Jones system

discussed before and compare this approximation and the original model in terms of their

Γ-limits.

Before we discuss the results of this thesis, let us briefly review some related contribu-

tions in the literature. Consider εZd ∩ Ω with Ω ⊂ Rd and ε > 0 as the reference lattice

and let u : εZd∩Ω→ Rd be a deformation of the reference lattice. Then a typical discrete

energy is given by

Eε(u) =
∑

i,j∈εZd∩Ω
i6=j

εdJ

(
|u(i)− u(j)|

ε

)
. (1.2)

The prototypical example for the interaction potential J is given by the Lennard-Jones

potential [37], i.e.

J(z) =
k1

z12
− k2

z6
, z > 0, (1.3)

with k1, k2 > 0.

Blanc, Le Bris and Lions [6] derive the pointwise limit limε→0Eε(u) for sufficiently

smooth deformations u. They recover the structure of (1.1) and give an explicit expres-

sion for W . By further expansions with respect to the lattice parameter ε, they derive

additional surface terms. In the core of this derivation lies the assumption that the mi-

croscopic deformation of the atoms follows the macroscopic deformation. This kind of

assumptions are often called Cauchy-Born hypotheses, cf. i.e. [28]. The validity of the

Cauchy-Born hypotheses is a delicate issue. Friesecke and Theil [32] proved for a square

lattice spring model that the global minimiser in a certain parameter regime satisfies the

Cauchy-Born hypotheses and showed that there exists a parameter regime where this is

not the case, see also [23]. In [27, 47], it is shown that there exist local minimisers of

atomistic models which satisfy the Cauchy-Born hypotheses in more general situations.

As mentioned previously, we consider the passage from discrete systems to continuum

models via Γ-convergence. This is at present an active field of research. Alicandro and

Cicalese [2] proved a general integral representation result for the Γ-limit of a class discrete

energies with pair interactions. The limiting functional has the form (1.1). In contrast

to the result given in [6], the energy density W of the Γ-limit is given rather implicitly

and it is assumed that the interaction potentials satisfies certain growth conditions from

below. This rules out interatomic potentials such as Lennard-Jones potentials. Further

results in this direction are given in [16, 19, 21, 35, 52].

Here, we are interested in models which allow for fracture. A first contribution in

the discrete-to-continuum derivation of fracture mechanics is due to Truskinovsky [60].

Truskinovsky considers a chain of atoms which interact through Lennard-Jones potentials.
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Figure 1.1: A typical example of a Lennard-Jones potential.

From this, he derives, by minimising the discrete energy, a continuum model for fracture

which inherits the atomistic length scale. More precisely, he proposes an energy consisting

of a bulk term and a contribution which accounts for cracks and is scaled with the lattice

parameter.

To the best of our knowledge, Braides, Dal Maso and Garroni [12] provide the first

derivation of fracture mechanics from a discrete system using Γ-convergence. They start

from a chain of atoms (or material points) linked by nearest neighbour interactions and

obtain a continuum limit which allows for fracture. Braides and Gelli [13, 14] give a

description of the Γ-limit for discrete systems in one dimension with general interatomic

pair potentials, including Lennard-Jones interactions with finite range. It is shown that

the limiting functional involves, at least if one allows for interactions beyond next-to-

nearest neighbour interactions, a homogenisation process similar to the vector-valued

case [2], see (1.7).

In order to derive a discrete-to-continuum limit which captures a small scale variable,

Braides and Cicalese [11] and Scardia, Schlömerkemper and Zanini [50] used the notion of

a development by Γ-convergence in the sense of Anzelotti and Baldo, see [1]. In both ar-

ticles the authors start with a chain of atoms with nearest and next-to-nearest neighbour

interactions of Lennard-Jones type and compute the Γ-limit and the Γ-limit of first order.

The Γ-limit yields an integral functional which allows for positive jumps, i.e. of fracture,

which do not contribute to the energy. In the first-order Γ-limit boundary layer energies

are recovered which penalise fracture. Later on Scardia, Schlömerkemper and Zanini in

[51] used the concept of equivalence by Γ-convergence, due to Braides and Truskinovsky

[20], to step further towards a mathematical understanding of Truskinovsky’s original

idea. Especially the works [50, 51], serve as a starting point for the analysis presented in

Chapter 3 of this thesis.

Let us now give some details of the obtained results. Let λnZ ∩ [0, 1] with λn := 1
n

be the reference lattice. The deformation of the ith lattice point is denoted by ui and
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we identify the deformation u : λnZ ∩ [0, 1] → R with its piecewise affine interpolation.

The nearest K neighbours in the reference lattice λnZ ∩ [0, 1] interact via a potential Jj ,

j ∈ {1, . . . ,K} with K ∈ N be fixed. The energy of the system under consideration is the

sum of all pair interactions up to range K with the canonical bulk scaling. It reads

Hn(u) =
K∑
j=1

n−j∑
i=0

λnJj

(
ui+j − ui

jλn

)
. (1.4)

The mathematical assumptions on the potentials Jj , j = 1, . . . ,K, are phrased in Sec-

tion 3.1. As mentioned above, the main example that we have in mind are the Lennard-

Jones potentials, that is Jj(z) = J(jz) if z > 0, and +∞ if z ≤ 0, where J is given

in (1.3). Therefore, we call the potentials which satisfy our assumptions potentials of

Lennard-Jones type. Furthermore, we impose boundary conditions on the deformation of

the first K and last K atoms. For given ` > 0 and u
(1)
0 , u

(1)
1 ∈ RK−1

+ , we set

u0 = 0, un = `, us − us−1 = λnu
(1)
0,s, un+1−s − un−s = λnu

(1)
1,s (1.5)

for s ∈ {1, . . . ,K − 1}, see (3.3). Note that for the piecewise affine interpolation u the

above conditions imply Dirichlet boundary conditions u(0) = 0 and u(1) = ` respectively,

and prescribe the derivative u′ in (0, (K − 1)λn) and (1 − (K − 1)λn, 1) respectively. In

the case of nearest and next-to-nearest neighbour interactions (K = 2), the boundary

conditions considered here coincide with the boundary conditions studied in [50, 51]. We

denote by H`
n the functional given by H`

n(u) = Hn(u) if u satisfies the boundary conditions

(1.5), and +∞ else.

On Lennard-Jones type systems and their asymptotic analysis

Next, we outline the results on the asymptotic analysis of the sequence (H`
n)n via Γ-

convergence which is the subject of Chapter 3.

1. Zero-order Γ-limit. The Γ-limit of discrete functionals of the form Hn was derived

under very general assumptions on the interatomic potentials in [14]. The Γ-limit result

of [14, Theorem 3.2] phrased for Lennard-Jones type potentials asserts that the sequence

(Hn) Γ-converges to an integral functional H, which is defined on the space of functions

of bounded variations and has the form

H(u) := Γ- lim
n→∞

Hn(u) =


∫ 1

0
φ(u′)dx if Dsu ≥ 0 in (0, 1),

+∞ otherwise,

(1.6)

where Dsu denotes the singular part with respect to the Lebesgue measure of the distri-

butional derivative Du = u′L1 + Dsu. The energy density φ is given via an asymptotic
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homogenisation formula, see Theorem 3.4 below. For Lennard-Jones potentials this ho-

mogenisation formula reduces to

φ(z) = lim
N→∞

min

{
1

N

K∑
j=1

N−j∑
i=0

Jj

(
ui+j − ui

j

)
: u : N0 → R,

ui = zi if i ∈ {0, . . . ,K} ∪ {N −K, . . . , N}
}
, (1.7)

see [15, Theorem 2.21]. It is desirable to have a more explicit expression for φ. For

Lennard-Jones type potentials, we prove that

φ ≡ J∗∗CB, where JCB(z) :=
K∑
j=1

Jj(z)

and J∗∗CB is the lower semicontinuous and convex envelope of JCB, see Theorem 3.5. This

was previously known in the cases K ∈ {1, 2} only, see e.g. [11, 13].

Let us give some ideas of the proof, since they are crucial also for other parts of the

thesis: in the case of nearest and next-to-nearest neighbour interactions, there exists a

more explicit formula for φ given by φ ≡ J∗∗0 , where J0 is an effective potential given by

the following infimal convolution-type formula, which takes possible oscillations on the

lattice-level into account

J0(z) := J2(z) +
1

2
inf{J1(z1) + J1(z2), z1 + z2 = 2z},

see e.g. [14, Remark 3.3]. For Lennard-Jones potentials and z such that J0(z) = J∗∗0 (z),

it is not difficult to show that the infimum in the definition of J0 is attained if and only if

z1 = z2 = z and that φ(z) = (J1 + J2)∗∗(z) = J∗∗CB(z), see [50, Remark 4.1]. From this it

follows that, roughly speaking, no oscillations on the lattice-level occur in Lennard-Jones

systems with nearest and next-to-nearest neighbour interactions. In order to show this

also for Lennard-Jones systems beyond next-to-nearest neighbour interactions, it would

be beneficial to have a description of φ similar to in the case of nearest and next-to-nearest

neighbour interactions via a minimisation problem on a fixed ’cell’ (as in the definition

of J0). However, up to our knowledge, there has not been a result in the literature

which asserts whether or how the formula for the effective potential J0 extends to a larger

interaction range.

To show φ ≡ J∗∗CB, we use suitable generalisations of the function J0. These are explicitly

tailored for potentials of Lennard-Jones type and make use of their convex-concave shape,

see Figure 1.1. To motivate the definition of the generalisations, we note that the terms

in the minimisation problem in (1.7) can be rewritten as

1

N

K∑
j=2

N−j∑
i=0

{
Jj

(
ui+j − ui

j

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

)}
+O

(
1

N

)
(1.8)
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for any set of constants c2, . . . , cK > 0 that satisfy
∑K

j=2 cj = 1. Thus, in order to find a

lower bound on the terms in the curly brackets, it is useful to define

J0,j(z) := Jj(z) +
cj
j

inf

{
j∑
s=1

J1(zs),

j∑
s=1

zs = jz

}
, j = 2, . . . ,K,

cf. (3.8). These serve as extensions of the effective potential J0. The crucial observation

is now that in the case of Lennard-Jones potentials it is possible to choose c2, . . . , cK , see

Proposition 3.2, such that

J∗∗CB(z) =
K∑
j=2

J∗∗0,j(z) =

JCB(z) if z ≤ γ,

JCB(γ) if z ≥ γ,

where γ > 0 is the (unique) minimiser of JCB and J0,j(z) for j ∈ {2, . . . ,K}, see Proposi-

tion 3.2 and Remark 3.1. Jensen’s inequality, the constraints in the minimisation problem

in (1.7), and the definition of the potentials J0,j yield φ(z) ≥ J∗∗CB(z). We make this

precise and show the reverse inequality in Theorem 3.5 for the Lennard-Jones type po-

tentials. Furthermore, we provide in Theorem 3.7 a Γ-limit result for the sequence (H`
n)

without using the homogenisation formula φ. For this, we use a similar decomposition as

in (1.8) of the energy H`
n:

H`
n(u) =

K∑
j=2

n−j∑
i=0

λn

{
Jj

(
ui+j − ui

jλn

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

λn

)}
+O(λn), (1.9)

see (3.7). The Γ-limit H` of the sequence (H`
n) is given by the restriction of H to a

suitable set BV `(0, 1), see Section 2.1.1, which inherits the boundary conditions u(0) = 0

and u(1) = ` in H`
n. We present this alternative proof because its arguments can be easily

adapted to the quasicontinuum model that we consider in Chapter 4.

From the modelling point of view the functional H is not rich enough. For example

it allows for (positive) jumps which do not cost any energy. Hence, a refined analysis is

needed, see e.g. [20]. For this, we follow the approach of Scardia, Schlömerkemper and

Zanini [50, 51]: we derive the first-order Γ-limit of the sequence (H`
n) and consider suitable

rescaled functionals for which the contribution of elastic deformations and surface contri-

butions due to jumps are on the same order of magnitude. Using a decomposition of the

energy as in (1.9), we can apply similar arguments as are used in [50, 51], which are based

on the more explicit characterisation of the Γ-limit in the case K = 2 via the effective

potential J0. We extend several results from [50, 51] to the case of finite range interactions:

2. First-order Γ-limit. In Section 3.3, we derive in analogy to [11, 50] the first-order

Γ-limit of the sequence (H`
n). That is we compute the Γ-limit of the sequence (H`

1,n) given
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by

H`
1,n(u) =

H`
n(u)−minuH

`(u)

λn
.

It turns out that the limiting functional is similar to in the case of nearest and next-to-

nearest neighbour interactions: we have to distinguish between the cases when 0 < ` ≤ γ
and ` > γ where ` denotes the deformation of the last atom in the chain (see (1.5))

and γ the (unique) minimiser of JCB. In the case 0 < ` ≤ γ the limiting functional is

finite only for the elastic deformation u(x) = `x. As in [11, 50], the first-order Γ-limit

recovers boundary layer energies at both ends of the specimen. This elastic boundary

layer energies depend on the additional boundary conditions which are described by u
(1)
0

and u
(1)
1 , cf. Theorem 3.12 and Proposition 3.15.

In the case ` > γ fracture occurs. Each crack yields additional boundary layer ener-

gies due to the new surfaces created by the crack. The limiting functional distinguishes

between fracture at the boundary and in the interior of the specimen. For ` > γ and

u
(1)
0 , u

(1)
1 ∈ RK−1

+ , we show that (H`
1,n) Γ-converges with respect to the L1(0, 1)-topology

to the functional H`
1, where

H`
1(u) =B̃(u

(1)
0 , γ) + B̃(u

(1)
1 , γ)−

K∑
j=2

(j − 1)Jj(γ)

+ βBJ(u
(1)
0 )#(Su ∩ {0}) + βIJ#(Su ∩ (0, 1)) + βBJ(u

(1)
1 )#(Su ∩ {1})

if u ∈ SBV `(0, 1), 0 < #Su < +∞, [u] ≥ 0 in [0, 1], and u′ = γ a.e. in (0, 1), and +∞
otherwise, where the jump energies βBJ(θ), for θ ∈ RK−1

+ , and βIJ are given by

βBJ(θ) = B̃b(θ) + B̃(γ)−
K∑
j=1

jJj(γ)− B̃(θ, γ), βIJ = 2B̃(γ)−
K∑
j=1

jJj(γ),

cf. Theorem 3.19 and Proposition 3.21. The B̃ terms denote certain boundary layer

energies, which are defined via asymptotic cell formulas, for instance B̃(γ) is given by

B̃(γ) := inf
N∈N0

min

{∑
i≥0

{ K∑
j=1

Jj

(
ui+j − ui

j

)
− JCB(γ)

}
:

u : N0 → R, u0 = 0, ui+1 − ui = γ if i ≥ N

}
,

see (3.112). In Section 3.4, we study the minimisation problem given by H`
1 for ` >

γ. In particular, we show that there exists no boundary condition which would imply

that fracture in the interior of the specimen is more favourable than fracture at the

boundary. Moreover, we give examples for the choices of u
(1)
0 and u

(1)
1 which ensure that

either fracture appears at the boundary of the specimen or fracture appears indifferently
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everywhere in the specimen, see Proposition 3.24. This extends the result [50, Theorem

5.1] to the case K > 2.

In Section 3.4.3, we study the minimal configurations of an asymptotic cell formula,

which is equivalent to B̃(γ), in the case of nearest an next-to-nearest neighbour inter-

actions only (K = 2). We derive a relaxed minimisation problem which is defined on a

suitable sequence space and show exponential decay for minimisers of this relaxed min-

imisation problem, cf. Proposition 3.30. For this, we build on a related result by Hudson

[35] for discrete systems with convex nearest and concave next-to-nearest neighbour in-

teractions, which mimic Lennard-Jones interactions.

3. Rescaled energies and Γ-equivalence. As it was already pointed out in [20, 51], in the

formal development by Γ-convergence fracture happens at zero tension and the minimal

energies are not continuous in the boundary condition ` with the discontinuity at ` = γ.

This is not physical and does not reflect the behaviour of minimisers for finite n. Therefore,

we perform a refined analysis of H`
1,n with ` close to γ. We follow [51] and consider a

sequence (`n) ⊂ R and replace ` in the boundary conditions (1.5) by `n. We assume that

`n ≥ γ and `n → γ such that δn := `n−γ√
λn
→ δ ≥ 0 as n→∞. This defines a new sequence

of functionals (H`n
n ). By introducing the change of variables, we have H`n

1,n(u) = Eδnn (v),

where v is the piecewise affine interpolation of vi = ui−γiλn√
λn

for i = 0, . . . , n, and

Eδnn (v) =

K∑
j=1

n−j∑
i=0

Jj

(
γ +

vi+j − vi

j
√
λn

)
− nJCB(γ).

The scaling in the energy Eδnn , was investigated previously in one dimension (see [17, 18,

51]) and recently by Friedrich and Schmidt [30, 31] in higher dimensions. In Theorem 3.34,

we show that (Eδnn ) Γ-converges with respect to the L1(0, 1)-topology to the functional

Eδ given by

Eδ(v) =α

∫ 1

0
|v′|2dx+ B̃(u

(1)
0 , γ) + B̃(u

(1)
1 , γ)−

K∑
j=2

(j − 1)Jj(γ)

+ βBJ(u
(1)
0 )#(Sv ∩ {0}) + βIJ#(Sv ∩ (0, 1)) + βBJ(u

(1)
1 )#(Sv ∩ {1})

if v ∈ SBV δ(0, 1), #Sv < +∞, and [v] ≥ 0 in [0, 1], and +∞ otherwise, where α =
1
2J
′′
CB(γ) and the β terms are as above, cf. Theorem 3.34 and Corollary 3.35. We notice

that Eδ is a one-dimensional version of Griffith energy for fracture. This result is proven

in [51, Theorem 6.1] in the case of nearest and next-to-nearest neighbour interactions;

and we can follow arguments of [17, 51] to show Theorem 3.34 which is valid for general

finite range interactions of Lennard-Jones type. Note that in [17, Theorem 4] a similar

result for K interacting neighbours and periodic boundary conditions is shown. However,

that result is proven under assumptions on the interaction potentials which are not always
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applicable to pair potentials, e.g. Lennard-Jones potentials, if K > 2, see Remark 3.36,

and also [17, Remark 3], [18, Section 4].

In Section 3.6, we combine the formal development by Γ-convergence, which is a good

approximation of the discrete model for ` 6= γ, and the result for the rescaled sequence

(Eδnn ) which yields an approximation to H`
n in the vicinity of ` = γ. We define the

functional G`n for functions u ∈ SBV `(0, 1) with positive jumps by

G`n(u) =

∫ 1

0
W (u′)dx+ λnβIJ#(Su ∩ [0, 1])− λn

K∑
j=2

(j − 1)Jj(min{`, γ}),

where W (z) = JCB(z) for z ≤ γ and W (z) = 1
2J
′′
CB(γ)(z − γ)2 for z ≥ γ and βIJ is

given as above. We show that for ` > 0 that the sequence (G`n) has the same Γ-limit

and first-order Γ-limit as the discrete energy H`
n for a particular choice of u

(1)
0 and u

(1)
1 ,

see Proposition 3.39. This implies that (H`
n) and (G`n) are Γ-equivalent, in the sense of

Braides and Truskinovsky [20]. Notice that minima of G`n are continuous in ` and fracture

occurs for finite tension, see Remark 3.41.

Γ-convergence analysis of a quasicontinuum method in one dimension

The quasicontinuum (QC) method was introduced by Tadmor, Ortiz and Phillips [59] as

a computational tool for atomistic simulations of crystalline solids at zero temperature.

The key idea is to split the computational domain into regions where a very detailed

(atomistic, nonlocal) description is needed and regions where a coarser (continuum, local)

description is sufficient. This allows for simulations of relatively large systems with a full

atomistic resolution at regions of interest. This idea has been successfully used to study

crystal defects such as dislocations, nanoindentations or cracks and their impact on the

overall behaviour of the material, see e.g. [42] for an overview of the method and the

references therein for several applications.

There are various types of QC-methods: some are formulated in an energy based frame-

work, some in a force based framework; further, different couplings between the atomistic

and continuum parts and different models in the continuum region are considered. A first

contribution to the mathematical analysis of those methods is given by Lin [40], where a

QC-approximation of a Lennard-Jones system without boundary conditions and external

forces is considered. By deriving explicit estimates for the minimisers of the full atomistic

system and the QC-model Lin obtains an error estimate for the difference of the two min-

imisers. In the last decade, many articles related to the systematic error analysis of such

coupling methods were published, e.g. [38, 43, 45, 46, 48] for one-dimensional problems

and [26, 57] for higher dimensional problems. In particular, we refer to [41] for a recent

overview.

In Chapter 4, we consider a variant of the so-called quasinonlocal quasicontinuum (QNL)

method, first proposed by Shimokawa et al. [58]. QNL-methods are energy-based QC-

methods which are constructed to overcome asymmetries (so-called ghost-forces) at the
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atomistic/continuum interface which arise in the classical energy based QC-method. Here,

we focus on a generalization of the QNL-method given by Li and Luskin [38] which

allows for a treatment of general finite range interactions; see also [26, 57] for further

generalisations of QNL idea.

We are interested in an analytical approach to verify the QNL-method as an appropriate

mechanical model by means of a discrete-to-continuum limit via Γ-convergence. To our

knowledge Γ-convergence was used by Español et al. [29] to study a QC-approximation for

the first time. In [29], the authors consider an atomistic model different from ours, namely

a harmonic and defect-free crystal in arbitrary dimensions. Under general conditions it

is shown that a quasicontinuum approximation based on summation rules has the same

continuum limit as the fully atomistic system.

We aim for a Γ-convergence analysis of a QC-method in the presence of defects (i.e

fracture). To this end, we consider the discrete energy H`
n as the fully atomistic model

problem and construct an approximation based on the QNL-method. In particular, we

keep all interactions in the atomistic (nonlocal) region and approximate the interactions

beyond nearest neighbours in the continuum (local) region by appropriate nearest neigh-

bour interactions:

Jj

(
ui+j − ui

jλn

)
≈ 1

j

i+j−1∑
s=i

Jj

(
us+1 − us

λn

)
.

Furthermore, we reduce the degrees of freedom of the energy by fixing certain representa-

tive atoms and let the deformation of all atoms depend only on the deformation of these

representative atoms. This yields a new sequence of functionals of which we derive a

development by Γ-convergence similarly as for the fully atomistic model.

In Theorem 4.1, we show that the fully atomistic model and the quasicontinuum model

have the same zero-order Γ-limit. If the boundary conditions are such that the specimen

behaves elastically (i.e. ` ≤ γ), we prove that the first-order Γ-limits of both models

coincide, see Theorem 4.5.

If the boundary conditions are such that fracture occurs (i.e. ` > γ), the quasicon-

tinuum approximation leads to a first-order Γ-limit (Theorem 4.11) that is in general

different from the one obtained for the fully atomistic model (Theorem 3.19). To compare

the fully atomistic and the quasicontinuum models also in this regime, we further anal-

yse the first-order Γ-limits in Section 4.4. For this, we focus on the case of nearest and

next-to-nearest neighbour interactions. It turns out that the choice of the representative

atoms has a considerable impact on the validity of the QC-method. In Theorem 4.19,

we provide sufficient conditions for the validity of the QC-method, in the sense that the

minimal energies of the first-order Γ-limit coincide with the one for the fully atomistic

model. We show that the QC-method is valid if the representative atoms are chosen in

such a way that there is at least one non-representative atom between two neighbouring

representative atoms in the continuum region. With this choice, fracture occurs always

in the atomistic region, as desired. In Proposition 4.22, we provide examples in which the

mentioned sufficient conditions on the choice of the representative atoms are not satisfied
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and the minima of the first-order Γ-limits of the fully atomistic model and the QC-model

do not coincide. In this case, the QC-method should not be considered an appropriate

approximation. This implies by means of analytical tools that in quasicontinuum simula-

tions of fracture one has to make sure to pick a sufficiently large mesh in the continuum

region and at the interface. In fact we show that in our particular model problem, with

nearest and next-to-nearest neighbour interactions, it is sufficient that the mesh size in

the continuum region is at least twice the size of the atomistic lattice distance.

Similar models as the one we consider here, were investigated previously in terms of

numerical analysis. We refer the reader especially to [25, 38, 43, 45, 48] where the QNL-

method is studied in one dimension. By proving notions of consistency and stability,

those authors perform an error analysis in terms of the lattice spacing. To our knowledge,

most of the results do not hold for “fractured” deformations. However, in [46] a Galerkin

approximation of a discrete system is considered and error bounds are proven also for

states with a single crack of which the position is prescribed. Recently, a different approach

based on bifurcation theory is used in [39] to study the QC-approximation in the context

of crack growth.

In [5], a different one-dimensional atomistic-continuum coupling method is investigated.

Similar as in the QC-method the domain is splitted in a discrete and a continuum region.

In the discrete part the energy is given by nearest neighbour Lennard-Jones interaction

and in the continuum part by an integral functional with Lennard-Jones energy density. It

is shown that fracture is more favourable in the continuum than in the discrete region. To

overcome this, the energy density of the continuum model is modified by introducing an

additional term which depends on the lattice distance in the discrete region. Furthermore,

in [7, p. 420] it is remarked that if the continuum model is replaced by a typical discretized

version, the fracture is favourable in the discrete region. As mentioned above, we here

treat a similar issue in the QNL-method, see in particular Theorem 4.19, Proposition 4.22.

Several results of this thesis are based on the works [55, 56] obtained by the author

jointly with Anja Schlömerkemper. In [56], a 1D Lennard-Jones type model with finite

range interactions and periodic boundary conditions is considered. In that setting The-

orem 3.5 and an analogous result to Theorem 3.34 for rescaled energies are proven (see

Theorem 3.37). Here, we consider different boundary conditions and give a more detailed

analysis for the discrete system including the first-order Γ-limit which we study in more

detail. In [55], the analysis of the QC-method in the spirit of Chapter 4 is presented for the

case of nearest and next-to-nearest neighbour interactions (see also [53, 54] for abridged

versions). Here, we generalise those results to the case of finite range interactions.





Chapter 2

Mathematical background

2.1 Functions of bounded variations

In this section, we briefly recall some definitions and basic properties of (special) functions

of bounded variations. For further details and proofs, we refer to [3, 8].

Let Ω = (a, b) ⊂ R be a bounded interval. We denote by C0(Ω) the space of continuous

functions Ω→ R vanishing at the boundary. Following [3, Definition 1.40], we denote by

M(Ω) the space of finite Radon measures on Ω. For µ ∈M(Ω), we define for every Borel

set B ∈ B(Ω) the total variation |µ|(B) as

|µ|(B) := sup

{∑
i∈N
|µ(Ei)| : Ei ∈ B(Ω) pairwise disjoint, B =

⋃
i∈N

Ei

}
.

Recall that by the Riesz representation Theorem the space M(Ω) is isometrically iso-

morphic to the dual space of C0(Ω). This motivates the following definition

Definition 2.1. Let µ, µn ∈M(Ω). We say that µn weakly∗ converges to µ in the sense

of measures (and write µn
∗
⇀ µ) if

lim
n→∞

∫
Ω
φdµn =

∫
Ω
φdµ ∀φ ∈ C0(Ω).

Proposition 2.2. Let (µn) ⊂M(Ω) be such that supn |µn|(Ω) < +∞. Then there exists

a subsequence converging weakly∗ to some µ ∈M(Ω) in the sense of measures.

Next, we define the functions of bounded variations.

Definition 2.3. Let u ∈ L1(Ω); we say that u is a function of bounded variation in Ω

if its distributional derivative is a finite Radon measure in Ω; i.e. there exists µ ∈ M(Ω)

such that ∫
Ω
uφ′dx = −

∫
Ω
φdµ ∀φ ∈ C1

c (Ω).

The measure µ will be denoted by Du. The space of all functions of bounded variation

in Ω is denoted by BV (Ω).

19
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The space BV (Ω) endowed with the norm

‖u‖BV (Ω) := ‖u‖L1(Ω) + |Du|(Ω)

is a Banach space. However, the norm topology is too strong and we will mostly use the

following weaker notion of convergence

Definition 2.4. We say that (un) ⊂ BV (Ω) weakly∗ converges in BV (Ω) to some u ∈
BV (Ω), if un → u in L1(Ω) and Dun

∗
⇀ Du in M(Ω).

The following proposition gives a useful criterion for weak∗ convergence, cf. i.e. [3,

Proposition 3.13].

Proposition 2.5. Let (un) ⊂ BV (Ω). Then (un) weakly∗ converges to u in BV (Ω) if

and only if (un) is bounded in BV (Ω) and un → u in L1(Ω).

Let us now state a compactness theorem for functions inBV , cf. i.e. [3, Proposition 3.23].

Theorem 2.6. Let (un) ⊂ BV (Ω) be such that supn ‖un‖BV (Ω) < ∞ then there exists a

subsequence (unk) weakly∗ converging to some u ∈ BV (Ω).

We notice that a direct consequence of Theorem 2.6 is that equibounded sequences in

W 1,1 converge, up to subsequences, in L1(Ω) to some u ∈ BV (Ω).

Let u ∈ BV (Ω) be given. By the Radon-Nikodyn Theorem, we can split Du into an

absolutely continuous part Dau with respect to the Lebesgue measure L1, and a singular

part Dsu. Moreover, we can decompose the singular part Dsu into a jump part Dju and

a Cantor part Dcu. To this end, we denote A = {x ∈ Ω : Du({x}) 6= 0} the set of atoms

of Du. Since Du is a finite Radon measure the set A is at most countable. Finally, we

set Dju = Dsu A and Dcu = Dsu (Ω \A). In this way we obtain

Du = Dau+Dsu = Dau+Dju+Dcu. (2.1)

Notice that all the previous definitions and statements including the decomposition of the

derivative Du can be extended in a suitable sense to the case Ω ⊂ Rn and u : Ω → Rm

with n,m ∈ N.

Next, we use the fact that u depends only on one variable. We say that u ∈ BV (Ω) is

a jump function if Du = Dju, and we say that u is a Cantor function if Du = Dcu. For

given u ∈ BV (Ω), there exist ua ∈ W 1,1, a jump function uj , and a Cantor function uc

such that u = ua + uj + uc.

For a function u ∈ BV (Ω), the right-hand side and left-hand side limits

u(x+) = lim
h→0+

∫ x+h

x
u(s)ds, u(x−) = lim

h→0+

∫ x

x−h
u(s)ds

exist at all x ∈ [a, b), and x ∈ (a, b], respectively. We can define the jump set Su := {x ∈
Ω : u(x+) 6= u(x−)}. We notice that Su coincides with the set of atoms of the measure

Du and thus is at most countable.
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For a given u ∈ BV (Ω), we denote by u′ ∈ L1(Ω) the density of Dau and we set

[u](x) := u(x+)−u(x−) for all x ∈ Ω. Then the jump part Dju is given by
∑

x∈Su [u](x)δx

and the decomposition in (2.1) reads

Du = u′L1 +
∑
x∈Su

[u](x)δx +Dcu.

An important subspace of BV (Ω) is given by the special functions of bounded variations

Definition 2.7. We say that a function u ∈ BV (Ω) is a special function of bounded

variation if Dcu ≡ 0. We denote the space of special functions of bounded variations by

SBV (Ω).

For a given u ∈ SBV (Ω), we can use the previous decomposition and find ua ∈W 1,1(Ω)

and a jump function uj ∈ SBV (Ω) such that u = ua + uj . The space SBV (Ω) enjoys the

following useful closure and compactness properties, cf. i.e. [3, Theorem 4.7, Theorem 4.8].

Theorem 2.8. Let ϕ : [0,+∞)→ [0,+∞] be a lower semicontinuous increasing function

and assume that

lim
t→∞

ϕ(t)

t
= +∞.

Let (un) ⊂ SBV (Ω) be such that

sup
n

(∫
Ω
ϕ(|u′n|)dx+ #Su

)
< +∞. (2.2)

If (un) weakly∗ converges in BV (Ω) to u, then u ∈ SBV (Ω), u′n ⇀ u′ in L1(Ω), Djun
∗
⇀

Dju in M(Ω) and #Su ≤ lim infn→∞#Sun.

Theorem 2.9. Let ϕ be as in Theorem 2.8. Let (un) ⊂ SBV (Ω) be satisfying (2.2)

and assume that supn ‖un‖L∞(Ω) < +∞. Then there exists a subsequence (unk) weakly∗

converging in BV (Ω) to u ∈ SBV (Ω).

2.1.1 Boundary values in BV

As mentioned in the introduction, we consider discrete minimisation problems for func-

tions defined on [0, 1] with fixed Dirichlet boundary data and derive a limiting minimi-

sation problem which is defined on the space of bounded variations. For this we have to

introduce appropriate function spaces which take jumps at the boundary into account.

To this end, we follow [11, 12, 50]: for given ` > 0, we say that u ∈ BV `(0, 1) if u is a

function of bounded variation on (0, 1) and we set u(0−) = 0 and u(1+) = `. Then we de-

fine [u](x) := u(x+)−u(x−) for every x ∈ [0, 1] and the set S`u = {x ∈ [0, 1] : [u](x) 6= 0}.
Moreover, we extend the measures Du and Dsu to [0, 1] by

Du = u′L1 +
∑
x∈S`u

[u](x)δx +Dcu, Dsu =
∑
x∈S`u

[u](x)δx +Dcu.
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We notice that, if v ∈ BVloc(R) is the extension of u defined by v(x) = 0 for x ≤ 0 and

v(x) = ` for x ≥ 1, then Du and Dsu are the restrictions to [0, 1] of the distributional

derivative Dv and of its singular part Dsv. Note also that for every u ∈ BV `(0, 1), we

have

Du([0, 1]) =

∫ 1

0
u′dx+

∑
x∈S`u

[u](x)δx +Dcu(0, 1) = `

and that u is uniquely determined by the measure Du on [0, 1]. We define the set

SBV `(0, 1) correspondingly.

In the remainder of this thesis, we will omit the superscript ` in S`u and set Su = S`u for

u ∈ BV `(0, 1) (or u ∈ SBV `(0, 1)).

2.2 Γ–convergence

In this section, we give a brief introduction to the notion of Γ-convergence. For a com-

prehensive introduction to Γ-convergence we refer to [9, 24]. We follow here the overview

given in [8, Section 3.1].

Definition 2.10. Let (X, d) be a metric space. For any n ∈ N, let Fn : X → [−∞,+∞].

The sequence (Fn) Γ-converges to F : X → [−∞,+∞] if for all u ∈ X the following hold

true

(i) (liminf inequality) for every sequence (un) converging to u

lim inf
n→∞

Fn(un) ≥ F (u);

(ii) (limsup inequality) there exists a sequence (un) converging to u such that

lim sup
n→∞

Fn(un) ≤ F (u),

or equivalently (by (i))

lim
n→∞

Fn(un) = F (u).

The function F is called the Γ-limit of (Fn) (with respect to d), and we write F =

Γ- limn→∞ Fn or F = Γ(d)- limn→∞ to emphasize the metric d if this is needed.

The following result is one of the main reasons for introducing Γ-convergence.

Theorem 2.11. Let (X, d) be a metric space, let Fn, F : X → [−∞,+∞] be such F =

Γ- limn Fn. If there exists a compact set K ⊂ X such that infX Fn = infK Fn for all n,

then

∃min
X

F = lim
n→∞

inf
X
Fn.

Moreover, if (un) is a converging sequence such that limn→∞ Fn(un) = limn→∞ infX Fn

then its limit is a minimum point for F .
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It is often useful to use the following pointwise definition of Γ-convergence.

Definition 2.12. Let (X, d) be a metric space. For any n ∈ N, let Fn : X → [−∞,+∞]

and let u ∈ X. The Γ-lower and Γ-upper limits of (Fn) at u, denoted by Γ-lim inf Fn(u)

and Γ-lim supFn(u), are defined by

Γ- lim inf
n→∞

Fn(u) = inf
{

lim inf
n→∞

Fn(un) : un → u
}
,

Γ- lim sup
n→∞

Fn(u) = inf

{
lim sup
n→∞

Fn(un) : un → u

}
.

If Γ- lim infn Fn(u) = Γ- lim supn Fn(u) then the common value is called the Γ-limit of

(Fn) at u, and is denoted by Γ- limn Fn(u). Note that this definition is in accord with

Definition 2.10, and that (Fn) Γ-converges to F if and only if F (u) = Γ- limn Fn(u) at all

u ∈ X.

Remark 2.13. Let Fn : X → [−∞,+∞] be a sequence of functionals on X.

(a) Let G : X → [−∞,+∞] be continuous with respect to d and (Fn) Γ-converges to F .

Then Γ- limn(Fn +G) = F +G.

(b) Let Fn = F1 for all n ∈ N. Then (Fn) Γ-converges to the lower semicontinuous

envelope F 1 of F1, i.e.

F 1(u) = sup{G(u) : G is lower semicontinuous and G ≤ F1}.

(c) The Γ-lower and Γ-upper limits are lower semicontinuous.

In this thesis, we consider Γ-limit of higher (first) order. This is motivated by the

following result.

Theorem 2.14. Let Fn : X → (−∞,+∞] be a sequence of d-equi-coercive functions and

let F = Γ(d)- limn→∞ Fn. Let mn = infX Fn, m0 = minF and denote λn = 1
n . Suppose

that for α > 0 there exists the Γ-limit

Fα = Γ(d′)- lim
n→∞

Fn −m0

λαn
,

and that the sequence Fαn = (Fn −m0)/λαn is d′-equi-coercive for a metric d′ which is not

weaker than d. Define mα = minFα and suppose that mα 6= +∞; then we have that

mn = m0 + λαnm
α + o(λαn)

and from all sequences (un) such that Fn(un) − mn = o(λn) there exists a subsequence

converging in (X, d′) to a point u which minimises both F and Fα.
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2.3 Lower semicontinuity and relaxation

In this section, we give a relaxation result for integral functionals defined on W 1,1(Ω)

which is used at several occasions in the remainder of the thesis.

Proposition 2.15. Let f : R → R ∪ {+∞} be convex, lower semicontinuous, monotone

decreasing with

lim
z→−∞

f(z)

|z|
= +∞ and lim

z→+∞
f(z) = c ∈ R. (2.3)

Let F : BV (a, b)→ R ∪ {+∞} be defined as

F (u) :=


∫ b

a
f(u′)dx if u ∈W 1,1(0, 1),

+∞ else.

Let the functional F : BV (a, b)→ R ∪ {+∞} be defined as

F(u) :=


∫ b

a
f(u′)dx if u ∈ BV (a, b), Dsu ≥ 0,

+∞ else.

Let F denote the lower semicontinuous envelope of F with respect to the weak∗ convergence

in BV (a, b). Then it holds F ≡ F .

The above Proposition can be deduced from [34, Theorem 1.62]. For the convenience

of the reader, we present a self contained proof here. We follow the arguments of [33,

Theorem 2.4], where a similar result is proven for functions f : (0,+∞)→ R.

Proof. Let us first show F ≤ F . By definition of F it holds F ≤ F and it is left to show

that the functional F is lower semicontinuous with respect to the weak∗ convergence in

BV (a, b). Indeed, from (2.3), we deduce for the recession function f∞ of f that

f∞(p) := lim
t→+∞

f(p0 + tp)− f(p0)

t
=

+∞ if p < 0,

0 if p ≥ 0,

with p0 ∈ dom f arbitrary, see [3, Definition 2.32]. For given u ∈ BV (a, b), we have that

F(u) = H(Du) :=

∫ b

a
f(Dau)dx+

∑
x∈Su

f∞(Dju({x})) +

∫ b

a
f∞

(
Dcu

|Dcu|

)
d|Dcu|.

Since un
∗
⇀ u in BV (a, b) implies Dun

∗
⇀ Du in M(a, b), we have that lower semiconti-

nuity of H (with respect to weak∗ convergence in M(a, b)) implies lower semicontinuity

of F (with respect to weak∗ convergence in BV (a, b)). Since f is decreasing, we have

that f : R → [c,+∞]. In the case c ≥ 0 the lower semicontinuity of H follows by [3,

Proposition 5.1, Theorem 5.2]. If c < 0 we apply the above cited lower semicontinuity
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results on the functional H̃ which is defined as H but f is replaced by f̃ : R → [0,+∞]

with f̃(z) = f(z)− c. Since H̃ and H share the same lower semicontinuity properties the

assertion follows.

Let us show that F ≤ F . To this end, we provide for every u ∈ BV (0, 1) a sequence

(uN ) such that uN
∗
⇀ u weakly∗ in BV (a, b) and

lim sup
N→∞

F (uN ) ≤ F(u). (2.4)

Without loss of generality, we can assume that Dsu ≥ 0 on (a, b), otherwise the above

inequality is trivial. Let (gN ) ⊂ L1(a, b) be such that gN ≥ 0 on (a, b) and gNL1 ∗
⇀ Dsu

weakly∗ in measure on (a, b). Let x0 ∈ (a, b) be a Lebesgue point of u. We define the

sequence (uN ) ⊂W 1,1(a, b) by

uN (x) := u(x0) +

∫ x

x0

u′(s) + gN (s)ds.

Since gN is equibounded in L1(a, b), we have that ‖uN‖W 1,1(a,b) is equibounded and thus

there exists a subsequence, not relabelled, (uN ) which weakly∗ converges in BV (a, b) to

some v ∈ BV (a, b). From uN (x0) = u(x0) for all N ∈ N and DuN = (u′+gN )L1 converges

weakly∗ to Du in measure we deduce that v ≡ u. Since u′N = u′ + gN and gN ≥ 0 by

construction, we deduce from the monotonicity of f that

F (uN ) =

∫ b

a
f(u′N )dx ≤

∫ b

a
f(u′)dx = F(u)

for every N ∈ N. This yields inequality (2.4).





Chapter 3

On Lennard-Jones type systems

and their asymptotic analysis

3.1 Setting of the problem

We consider a one-dimensional lattice given by λnZ ∩ [0, 1] with λn = 1
n and interpret

this as a chain of n+ 1 atoms. We denote by u : λnZ ∩ [0, 1]→ R the deformation of the

atoms from the reference configuration and write u(iλn) = ui as shorthand. We identify

such functions with their piecewise affine interpolations and define

An(0, 1) := {u ∈ C([0, 1]) : u is affine on (i, i+ 1)λn, i ∈ {0, . . . , n− 1}} . (3.1)

For a given K ∈ N, K ≥ 2 the energy of a deformation u ∈ An(0, 1) is defined by

Hn(u) =

K∑
j=1

n−j∑
i=0

λnJj

(
ui+j − ui

jλn

)
, (3.2)

where J1, . . . , JK are potentials of Lennard-Jones type which will be specified below.

In analogy to [50], we impose the following boundary conditions: for given ` > 0 and

u
(1)
0 = (u

(1)
0,s)

K−1
s=1 , u

(1)
1 = (u

(1)
1,s)

K−1
s=1 ∈ RK−1

+ we set

u0 = 0, un = `,

us − us−1 = λnu
(1)
0,s, u

n+1−s − un−s = λnu
(1)
1,s for s ∈ {1, . . . ,K − 1}.

(3.3)

Note that (3.3) yields 2K boundary conditions. This compensates the fact that the first

(last) K atoms in the chain have more interactions with atoms on the right-hand side (left-

hand side) than on the left-hand side (right-hand side); cf. e.g. [22] for a further discussion

of boundary conditions in discrete systems beyond nearest neighbour interactions. In [11]

the energy Hn is studied in the case of nearest and next-to-nearest neighbour interactions

(K = 2). The authors consider two different boundary conditions: (i) Dirichlet boundary

conditions on the first and the last atom only, and (ii) periodic boundary conditions. In

27
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0 nn-11
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1
JJJ
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Figure 3.1: A chain of n+ 1 atoms.

the case of fracture, it is shown that either the crack appears at the boundary (case (i)),

or fracture appears indifferently everywhere (case (ii)). On the contrary, the extra degree

of freedom in the boundary conditions (3.3) allow for both behaviours, see [50, Theorem

5.1] for the case K = 2 and Theorem 3.118 for the general case K ≥ 2.

For given ` > 0 and u
(1)
0 , u

(1)
1 ∈ RK−1

+ , we consider the functional H`
n : L1(0, 1) →

(−∞,+∞] defined by

H`
n(u) =

Hn(u) if u ∈ An(0, 1) satisfies (3.3),

+∞ else.
(3.4)

Before we state the assumptions on the interaction potentials Jj let us rewrite the

energy Hn in a suitable way. For given j ∈ {2, . . . ,K} and u ∈ An(0, 1), we can rewrite

the nearest neighbour interactions in (3.2) by

n−1∑
i=0

λnJ1

(
ui+1 − ui

λn

)
=

j−1∑
s=1

j − s
j

λnJ1

(
us − us−1

λn

)
+

n−j∑
i=0

1

j

i+j−1∑
s=i

λnJ1

(
us+1 − us

λn

)

+

j−1∑
s=1

j − s
j

λnJ1

(
un−s+1 − un−s

λn

)
. (3.5)

Indeed, this follows from the following calculation with ai = λnJ1(u
i+1−ui
λn

)

1

j

n−j∑
i=0

i+j−1∑
s=i

as =
1

j

n−j∑
i=0

j−1∑
s=0

ai+s =
1

j

j−1∑
s=0

n+s−j∑
i=s

ai

=
1

j

j−1∑
s=0

n−1∑
i=0

ai −
1

j

j−1∑
s=0


s−1∑
i=0

ai +
n−1∑

i=n+s−j+1

ai


=
n−1∑
i=0

ai −
j−1∑
i=1

j − i
j
{ai−1 + an−i} . (3.6)
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Let c = (cj)
K
j=2 ∈ RK−1

+ be such that
∑K

j=2 cj = 1. Using (3.5), we can rewrite the energy

(3.2) as

Hn(u) =
K∑
j=2

n−j∑
i=0

λn

{
Jj

(
ui+j − ui

jλn

)
+
cj
j

i+j−1∑
s=i

λnJ1

(
us+1 − us

λn

)}

+

K∑
j=2

cj

j−1∑
s=1

j − s
j

λn

{
J1

(
us − us−1

λn

)
+ J1

(
un−s+1 − un−s

λn

)}
. (3.7)

For given j ∈ {2, . . . ,K}, we define the following functions

J0,j(z) := Jj(z) +
cj
j

inf

{
j∑
s=1

J1(zs),

j∑
s=1

zs = jz

}
. (3.8)

Note that the definition of J0,j yields a lower bound for the terms in the sum from i = 0

to i = n − j in (3.7). In the case of nearest and next-to-nearest neighbour interactions,

i.e. K = 2, we have c2 = cK = 1 and

J0(z) := J0,2(z) = J2(z) +
1

2
inf {J1(z1) + J1(z2), z1 + z2 = 2z} ,

which is exactly the effective energy density J0 which show up in [11, 50].

Let us now state assumptions on the potentials Jj for j ∈ {1, . . . ,K}:

(LJ1) The function Jj : R → (−∞,+∞], j = 1, . . . ,K be lower semicontinuous and in

C1,α, 0 < α ≤ 1 on their domains, i.e. on dom Jj = {z ∈ R : Jj(z) < +∞}. It holds

dom J1 = domJj for j = 2, . . . ,K and (0,+∞) ⊂ dom J1. Moreover, we assume

that

lim
z→+∞

Jj(z) = 0, j = 1, . . . ,K (3.9)

(LJ2) The potentials Jj , j = 1, . . . ,K are such that there exists a convex function Ψ :

R→ [0,+∞] and constants d1, d2 such that

lim
z→−∞

Ψ(z)

|z|
= +∞ (3.10)

and

d1(Ψ(z)− 1) ≤ Jj(z) ≤ d2 max{Ψ(z), |z|} for all z ∈ R j = 1, . . . ,K. (3.11)

Further, Jj has a unique minimum point δj and it is strictly convex in (−∞, δj) on

its domain for j = 1, . . . ,K.

(LJ3) There exists c = (cj)
K
j=2 ∈ RK−1

+ such that
∑K

j=2 cj = 1, and J0,j defined in (3.8)

satisfies the assumptions (LJ4) and (LJ5) for j ∈ {2, . . . ,K}.
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(LJ4) There exists a unique γ > 0, independent of j, such that

{γ} = arg min
z∈R

J0,j(z). (3.12)

Furthermore, there exists γc > γ such that for z ∈ (−∞, γc] ∩ dom J1 it holds:

{(z, . . . , z)} = arg min
(z1,...,zj)∈Rj

{
j∑
s=1

J1(zs) :

j∑
s=1

zs = jz

}
. (3.13)

This implies J0,j(z) = ψj(z) for z ≤ γc, where ψj : R→ (−∞,+∞] is defined by

ψj(z) := Jj(z) + cjJ1(z). (3.14)

(LJ5) The convex and lower semicontinuous envelopes J∗∗0,j and ψ∗∗j of J0,j and ψj satisfy

J∗∗0,j(z) = ψ∗∗j (z) =

ψj(z) if z ≤ γ,

ψj(γ) if z > γ.
(3.15)

Furthermore, ψj is strictly convex in (−∞, γ) on its domain and it holds

lim inf
z→+∞

J0,j(z) > J0,j(γ). (3.16)

Remark 3.1. Let J1, . . . , JK satisfy the assumptions (LJ1)–(LJ5).

(a) We have that {γ} = arg minz JCB(z), where γ is given in (3.12) and JCB : R →
(−∞,+∞] is defined by

JCB(z) :=

K∑
j=1

Jj(z), (3.17)

and is called Cauchy-Born energy density, see e.g. [59]. Indeed assume for contra-

diction that there exists γ̂ ∈ arg minJCB such that γ̂ 6= γ. Using
∑K

j=2 cj = 1 and

(3.12), we obtain

JCB(γ) ≥ JCB(γ̂) =
K∑
j=2

(Jj(γ̂) + cjJ1(γ̂)) ≥
K∑
j=2

J0,j(γ̂) >
K∑
j=2

J0,j(γ) = JCB(γ),

which is a contradiction. Moreover, it holds

J∗∗CB(z) =
K∑
j=2

ψ∗∗j (z) =

JCB(z) if z ≤ γ

JCB(γ) if z ≥ γ.
(3.18)

From (3.9), J0,j ≤ ψj and (3.16), we deduce that

ψj(γ) = J0,j(γ) < 0. (3.19)
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(b) From (LJ4), we deduce that {γ} = arg minz ψj(z) for all j ∈ {2, . . . ,K} and thus,

by (LJ1), that

0 = ψ′j(γ) = J ′j(γ) + cjJ
′
1(γ) ∀j ∈ {2, . . . ,K}. (3.20)

From equation (3.20) and cj > 0, we deduce that J ′1(γ) 6= 0 implies J ′j(γ) 6= 0 for

all j ∈ {2, . . . ,K}. In this case c = (cj)
K
j=2 is uniquely determined by

cj = −
J ′j(γ)

J ′1(γ)
. (3.21)

Note that {γ} = arg minz JCB(z) implies
∑K

j=2 J
′
j(γ) = −J ′1(γ) and thus

∑K
j=2 cj =

1 for cj as in (3.21).

(c) The assumptions (LJ1) and (LJ2) imply that either dom Jj = R or there exists

r∗ ≤ 0 such that dom Jj = (r∗,+∞) or domJj = [r∗,+∞) for all j ∈ {1, . . . ,K}.

Next, we show that the assumptions (LJ1)–(LJ5) are reasonable in the sense that they

are satisfied by the classical Lennard-Jones potentials.

Proposition 3.2. For j ∈ {1, . . . ,K} let Jj : R→ R ∪ {+∞} be defined as

Jj(z) = J(jz) with J(z) =
k1

z12
− k2

z6
, for z > 0 and J(z) = +∞ for z ≤ 0 (3.22)

and k1, k2 > 0. Then the there exists a unique γ > 0 such that the assumptions (LJ1)–

(LJ5) are satisfied with c = (cj)
K
j=2 given as in (3.21). Moreover, it holds γ < δ1, where

δ1 is the unique minimiser of J , and ψ′′j (γ) > 0 for all j ∈ {2, . . . ,K}, see (3.14).

Proof. By the definition of Jj , j ∈ {1, . . . ,K} it is clear that they satisfy (LJ1) and (LJ2).

Note that the unique minimiser δj of Jj is given by

δj =
1

j

(
2k1

k2

) 1
6

=
1

j
δ1,

and J is strictly convex on (0, zc) with zc = (13
7 )

1
6 δ1 > δ1. Let us show (LJ3)–(LJ5). The

function JCB is given by

JCB(z) =
K∑
j=1

J(jz) =
k1

z12

K∑
j=1

1

j12
− k2

z6

K∑
j=1

1

j6
.

Hence, JCB is also a Lennard-Jones potential with the constants k̃1 = k1
∑K

j=1 j
−12 and

k̃2 = k2
∑K

j=1 j
−6. The unique minimiser γ of JCB is given by

γ =

(
2k̃1

k̃2

) 1
6

=

(
2k1

k2

) 1
6

(∑K
j=1

1
j12∑K

j=1
1
j6

) 1
6

< δ1. (3.23)
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Since γ < δ1 it holds J ′(γ) < 0. For given j ∈ {2, . . . ,K}, we have that

δj ≤ δ2 =
1

2
δ1 <

(
1

ζ(6)

) 1
6

δ1 <

(∑K
j=1 j

−12∑K
j=1 j

−6

) 1
6

δ1 = γ,

where we denote by ζ(s) =
∑

n≥1 n
−s the Riemann zeta function and we used ζ(6) =

π6

945 ≈ 1.017. Since Jj is strictly increasing on {z ∈ R : z > δj} this implies that J ′j(γ) =

jJ ′(jγ) > 0 for j ∈ {2, . . . ,K}. Hence, we have cj := −Jj(γ)
J1(γ) > 0 for j ∈ {2, . . . ,K} and

it holds
∑K

j=2 cj = 1 (see Remark 3.1 (b)).

Let z ≤ δ1, where δ1 denotes the unique minimum of J . We show (3.13) for j = 2, . . . ,K.

Firstly, we note that the existence of a minimiser is clear since zs > 0 for s ∈ {1, . . . , j}.
Let z < δ1 and (z1, . . . , zj) ∈ arg min{

∑j
s=1 J1(zs) :

∑j
s=1 zs = jz} (see (3.13)). By the

optimality conditions, there exists λ ∈ R such that J ′(zs) = λ for s ∈ {1, . . . , j}. From∑j
s=1 zs = jz < jδ1, we deduce that there exists j̄ ∈ {1, . . . , j} such that zj̄ < δ1. Since

J ′ > 0 on (δ1,+∞) and J ′ strictly increasing and ≤ 0 on (0, δ1), we deduce that zs = zj̄
for all s = 1, . . . , j. Hence, zs = z for s = 1, . . . , j. The case z = δ1 is trivial.

Let us show that γ is the unique minimiser of J0,j for j = 2, . . . ,K. From the definition

of J0,j and since J is increasing on (δ1,+∞), we deduce J0,j(z) ≥ J(jz)+cjJ(δ1) ≥ J0,j(δ1)

for z ≥ δ1. Thus it is enough to consider z ≤ δ1 in order to find the minimum. Since

J0,j(z) = Jj(z) + cjJ1(z) = ψj(z) for z ≤ δ1 it holds

J0,j(z) = ψj(z) =
k1

z12

(
1

j12
+ cj

)
− k2

z6

(
1

j6
+ cj

)
for z ≤ δ1. This is again a Lennard-Jones potential, thus it has only one critical point

which is a minimum. Since cj is defined such that J ′j(γ) + cjJ
′
1(γ) = 0, we deduce that γ

is the unique minimiser of J0,j and ψj for j ∈ {2, . . . ,K}. Hence, we have shown (LJ4),

where we set γc = δ1 > γ. Since ψj is a Lennard-Jones potential with minimiser γ, we

obtain that ψ′′j > 0 on (0, (13
7 )

1
6γ). Hence, ψ′′j (γ) > 0 for all j ∈ {2, . . . ,K}.

Let us show (LJ5). Since ψj = Jj + cjJ1 is a Lennard-Jones potential with minimiser

γ, we have that ψ∗∗j (z) = ψj(z) if z ≤ γ and ψ∗∗j (z) = ψj(γ) for z > γ. Combining

J0,j(z) ≤ ψj(z) and ψ∗∗j (z) ≤ J0,j(z) for all z > 0 yields that J∗∗0,j ≡ ψ∗∗j . It is left

to show that lim infz→+∞ J0,j(z) > J0,j(γ) for j ∈ {2, . . . ,K}. Let (zn) be such that

limn→∞ zn = +∞ and

lim inf
z→+∞

J0,j(z) = lim
n→∞

J0,j(zn).

By the definition of J0,j there exists for every η > 0 and n ∈ N a tupel zsn with s ∈
{1, . . . , j} such that

J0,j(zn) ≥ Jj(zn) +
cj
j

j∑
s=1

J1(zsn)− η with

j∑
s=1

zsn = jzn.
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From zn → ∞, we deduce that, up to subsequences, there exists s ∈ {1, . . . , j} such

that zsn → +∞ as n → ∞. Without loss of generality we assume that s = 1 and from

limz→∞ J(z) = 0, we deduce

lim inf
n→∞

J0,j(zn) ≥ cj
j

lim inf
n→∞

j∑
s=2

J1(zsn)− η ≥ cj
j − 1

j
J1(δ1)− η.

Since Jj(δ1) < 0 for j = 1, . . . ,K the assertion follows by choosing η = −1
2Jj(δ1) and

cj
j − 1

j
J1(δ1)− η >cj

j − 1

j
J1(δ1)− η +

1

2
Jj(δ1) +

cj
j
J1(δ1)

=Jj(δ1) + cjJ1(δ1) > ψj(γ),

and since ψj(γ) = J0,j(γ), the assertion is proven.

Remark 3.3. A further example of an interatomic interaction potential is the so-called

Morse potential[44], given by

Jj(z) = J(jz) with J(z) = k1

(
1− e−k2(z−δ1)

)2
− k1 for z ∈ R (3.24)

and k1, k2, δ1 > 0. The definition of J implies minR J = −k1, arg minz J(z) = {δ1} and

the potential J has the same convex/concave shape as the Lennard-Jones potential. It is

straightforward to check that J1, . . . , JK given in (3.24) satisfy (LJ1) and (LJ2). Using

the convex/concave shape of J and similar arguments as in the proof of Proposition 3.2,

we can show that the crucial assumption (3.13) holds true for all z ≤ δ1. Moreover, in

the case K = 2 the potentials J1 and J2 satisfy all assumptions (LJ1)–(LJ5).

Contrary to the Lennard-Jones potential the Morse potential does not satisfy the as-

sumptions (LJ3)–(LJ5) for all choices of parameters k1, k2, δ1 > 0 in the case K > 2.

To illustrate this, we set δ1 such that 1 ∈ arg minz JCB(z), where JCB(z) =
∑K

j=1 J(jz).

This implies

0 = J ′CB(1) = 2k1k2

K∑
j=1

j
(
e−jk2 − e−2jk2ek2δ1

)
⇔ δ1 =

1

k2
ln

( ∑K
j=1 je

−jk2∑K
j=1 je

−2jk2

)
.

Next, we derive a necessary condition for (LJ3)–(LJ5) to hold. Assume that J1, . . . , JK

given in (3.24) with δ1 as above satisfy (LJ1)–(LJ5). Then it holds γ = 1 < δ1 and thus

J ′(1) < 0 (otherwise J ′CB(1) > 0). Hence, c = (cj)
K
j=2 is given by (3.21) and c2 > 0

implies J ′2(γ) = 2J ′(2) > 0, i.e. δ1 < 2. This yields a nontrivial condition on k2. Indeed,

we have in the case K = 3:

δ1 =
1

k2
ln

(
e−k2 + 2e−2k2 + 3e−3k2

e−2k2 + 2e−4k2 + 3e−6k2

)
= 2 +

1

k2
ln

(
e−k2 + 2e−2k2 + 3e−3k2

1 + 2e−2k2 + 3e−4k2

)
.
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Hence, δ1 < 2 is equivalent to

e−k2 + 3e−3k2 < 1 + 3e−4k2 ⇔ 0 < e4k2 − e3k2 + 3− 3ek2 ⇔ 0 < (e3k2 − 3)(ek2 − 1)

which yields k2 >
ln 3
3 as a necessary condition for (LJ3)–(LJ5) to hold in the case K = 3.

Note that the condition δ1 < 2 is ensured by k2 > ln( 2
3−
√

5
) for all K ≥ 2. Indeed,

δ1 =
1

k2
ln

( ∑K
j=1 je

−jk2∑K
j=1 je

−2jk2

)
≤ 1

k2
ln

(∑∞
j=1 je

−jk2

e−2k2

)
= 2 +

1

k2
ln

∞∑
j=1

j
(
e−k2

)j
<2 +

1

k2
ln

∞∑
j=1

j

(
3−
√

5

2

)j
= 2.

For the last equality, we used
∑∞

j=1 jq
j = q

(1−q)2 if |q| < 1 (variant of geometric series)

and that q = 3−
√

5
2 satisfies q

(1−q)2 = 1.

3.2 Γ-limit of zeroth order

In this section, we give a description of the (zero-order) Γ-limits of the sequences (Hn)

and (H`
n), see (3.2) and (3.4). In [14], Braides and Gelli provide a Γ-limit result for

functionals of the form (3.2) under very general assumptions on the interaction potentials

Jj . In Theorem 3.5, we refine their statement in the particular case of Lennard-Jones

type potentials, that is (LJ1)–(LJ5) holds true. In the spirit of [50, Theorem 3.1], the

result by Braides and Gelli can be extended to the sequence (H`
n). However, we give in

Theorem 3.7 a self contained proof of this result which makes use of the specific structure

of the interaction potentials.

3.2.1 Γ-limit of Hn

The following result is a direct consequence of [14, Theorem 3.2].

Theorem 3.4. Let Jj : R→ (−∞,+∞] be Borel functions bounded from below and satisfy

(3.9). Assume there exist a convex function Ψ : R → [0,+∞] and constants d1, d2 > 0

such that (3.10) and (3.11) hold true. Then the Γ-limit of the sequence (Hn) with respect

to the L1
loc(0, 1)-topology is given by the functional H defined by

H(u) =


∫ 1

0
φ(u′(x))dx if u ∈ BVloc(0, 1), Dsu ≥ 0 in (0, 1),

+∞ else on L1(0, 1),

where Dsu denotes the singular part of the measure Du with respect to the Lebesgue

measure and the function φ is defined as φ(z) = inf{φ(z1) + g(z2) : z1 + z2 = z}, where
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g(z) = 0 for z ≥ 0 and g(z) = +∞ for z < 0, and φ = Γ- lim
N→∞

φ∗∗N with

φN (z) = min

{
1

N

K∑
j=1

N−j∑
i=0

Jj

(
ui+j − ui

j

)
: u : N0 → R,

ui = zi if i ∈ {0, . . . ,K} ∪ {N −K, . . . , N}
}
. (3.25)

Next, we show that φ can be solved explicitly for potentials Jj which satisfy the as-

sumptions (LJ1)–(LJ5), which includes in particular the Lennard-Jones potentials, cf.

Proposition 3.2.

Theorem 3.5. Let Jj, j = 1, . . . ,K satisfy the assumptions (LJ1)–(LJ5). Then it holds

φ ≡ φ ≡ J∗∗CB

with φ and φ as in Theorem 3.4 and JCB as in (3.17).

Proof. Let us first show that φ ≡ J∗∗CB. We begin with proving the lower bound of

the Γ-limit, i.e., we show that for every sequence (zN ) ⊂ R such that zN → z it holds

lim infN→∞ φ
∗∗
N (zN ) ≥ J∗∗CB(z). By a similar calculation as in (3.7), combined with the

definition of J0,j , (3.15) and setting C = J1(δ1)
∑K

j=2 cj(j − 1), we obtain

1

N

K∑
j=1

N−j∑
i=0

Jj

(
ui+j − ui

j

)

≥ 1

N

K∑
j=2

N−j∑
i=0

{
Jj

(
ui+j − ui

j

)
+
cj
j

i+j−1∑
s=i

J1(us+1 − us)

}
+
C

N

≥ 1

N

K∑
j=2

N−j∑
i=0

J∗∗0,j

(
ui+j − ui

j

)
+
C

N

≥
K∑
j=2

N − j + 1

N

N−j∑
i=0

1

N − j + 1
ψ∗∗j

(
ui+j − ui

j

)
+
C

N

≥
K∑
j=2

N − j + 1

N
ψ∗∗j

(
N−j∑
i=0

ui+j − ui

j(N − j + 1)

)
+
C

N

≥
K∑
j=2

(
1− j − 1

N

)
ψ∗∗j (z) +

C

N
.
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In the last inequality, we have used ui = iz for i ∈ {0, . . . ,K} ∪ {N −K, . . . , N} and

N−j∑
i=0

(ui+j − ui) =

N−j∑
i=0

j−1∑
s=0

(ui+1+s − ui+s) =

j−1∑
s=0

N−j+s∑
i=s

(ui+1 − ui)

=j
N−1∑
i=0

(ui+1 − ui)−
j−1∑
s=0


s−1∑
i=0

(ui+1 − ui) +
N−1∑

i=N−j+s+1

(ui+1 − ui)


=j(N − (j − 1))z,

for j ∈ {2, . . . ,K}. Hence, we have φN (z) ≥
∑K

j=2(1− j−1
N )ψ∗∗j (z) + C

N . Since the right-

hand side is convex and lower semicontinuous, we have φ∗∗N (z) ≥
∑K

j=2(1− j−1
N )ψ∗∗j (z)+ C

N .

The lower bound follows from the lower semicontinuity of ψ∗∗j and
∑K

j=2 ψ
∗∗
j ≡ J∗∗CB, see

(3.18).

Let us now show the upper bound. In the case z ≤ γ, we have by (3.18) that J∗∗CB(z) =

JCB(z). Hence, testing the minimum problem in the definition of φN , see (3.25), with

uN = (iz)Ni=0 yields

φ∗∗N (z) ≤φN (z) ≤ 1

N

K∑
j=1

N−j∑
i=0

Jj (z) = JCB(z)− 1

N

K∑
j=2

(j − 1)Jj(z)

=J∗∗CB(z)− 1

N

K∑
j=2

(j − 1)Jj(z).

Since dom Jj = dom J1 for j ∈ {2, . . . ,K}, this implies the limsup inequality in this case.

If z > γ, we can test the minimum problem in the definition of φN with uN satisfying

the boundary conditions in (3.25) and being such that uiN = Kz + γ(i − K) for all

i = K, . . . , N −K − 1. This yields

φ∗∗N (z) ≤φN (z) ≤ 1

N

K∑
j=1

N−K−1−j∑
i=K

Jj(γ) +
1

N
f(z)

=JCB(γ) +
1

N

f(z)−
K∑
j=1

(2K + j)Jj(γ)

 ,

where f(z) is continuous on domJCB. Hence, the upper bound follows also for z > γ and

we have φ ≡ J∗∗CB.

It is left to show φ ≡ J∗∗CB. Assume on the contrary that there exists z ∈ R such that

φ(z) < J∗∗CB(z). By the definition of φ and g this implies that there exists z1 < z such

that J∗∗CB(z1) < J∗∗CB(z). Since J∗∗CB(x) ≥ JCB(γ) for all x ∈ R and J∗∗CB(x) = JCB(γ)

for x ≥ γ it must hold z < γ and J∗∗CB(z) > JCB(γ). Combining z1 < z < γ and

J∗∗CB(γ) ≤ J∗∗CB(z1) < J∗∗CB(z) yields a contradiction to the convexity of J∗∗CB.



Chapter 3. On Lennard-Jones type systems and their asymptotic analysis 37

Remark 3.6. Let us consider the case of Lennard-Jones potentials given by (3.22). For

a given C∞-diffeomorphism u defined on (0, 1), the pointwise limit of (Hn(u))n, in the

spirit of [6, Theorem 1], is given by

Hp(u) =

∫ 1

0
JCB(u′(x))dx.

By standard relaxation arguments, it can be shown that the minimisation problems cor-

responding to H respectively Hp enjoy the same properties, see also [7, p. 413].

3.2.2 Γ-limit of H`
n

Let us now study the Γ-limit of the sequence (H`
n) which takes the boundary conditions

(3.3) into account. As mentioned above, we could make use of the convergence result re-

garding (Hn), see [11, 50]. However, we present here an explicit proof of the corresponding

statement, which in particular make no use of the homogenisation formula given in (3.25).

Theorem 3.7. Suppose that the hypotheses (LJ1)–(LJ5) hold. Let ` > 0 and u
(1)
0 , u

(1)
1 ∈

RK−1
+ . Then the Γ-limit of (H`

n) with respect to the L1(0, 1)-topology is given by

H`(u) =


∫ 1

0
J∗∗CB(u′(x))dx if u ∈ BV `(0, 1), Dsu ≥ 0 in [0, 1] ,

+∞ else on L1(0, 1).

(3.26)

Moreover, the minimum values of H`
n and H` satisfy

lim
n→∞

inf
u
H`
n(u) = min

u
H`(u) = J∗∗CB(`). (3.27)

Proof. Compactness. Let (un) ⊂ L1(0, 1) be such that supnH
`
n(un) < +∞. In partic-

ular this implies un ∈ An(0, 1). Let us show that ‖(u′n)−‖L1(0,1) is equibounded, where

(u′n)− := −(u′n ∧ 0). Since Jj is bounded from below for j ∈ {1, . . . ,K}, we deduce from

the equiboundedness of the energy, (3.11) and Jensen’s inequality that

C ≥
∑

i:ui+1
n <uin

λnJ1

(
ui+1
n − uin
λn

)
≥ d1Ψ

(∫
{u′n<0}

u′ndx

)
− d1,

for some C > 0 independent of n. By (3.10), we have that
∫
{u′n<0} |u

′
n|dx ≤ C ′ for some

constant C ′ > 0 independent of n. Moreover, by using the boundary conditions un(0) = 0

and un(1) = `, we obtain∫
{u′n≥0}

u′ndx = `−
∫
{u′n<0}

u′ndx ≤ `+ C ′.

Since un(0) = 0, we obtain by the Poincaré-inequality that ‖un‖W 1,1(0,1) is equibounded.

Thus, we can extract a subsequence, not relabelled, which weakly∗ converges in BV (0, 1)
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to some u ∈ BV (0, 1), see Theorem 2.6. Note that in particular this implies un → u in

L1(0, 1). It remains to verify that u ∈ BV `(0, 1). This can be done as in [50, Theorem

3.1]: since un(0) = 0 and un(1) = ` for all n, we can define the function ũn ∈W 1,∞(R) as

ũn(x) =


0 if x ≤ 0,

un(x) if x ∈ (0, 1),

` if x ≥ 1.

(3.28)

Then we have that ũn weakly∗ converges in BV (−1, 3) to the extension ũ of u and from

this we deduce that

u(0−) = lim
t→0−

ũ(t) = 0 and u(1+) = lim
t→1+

ũ(t) = `.

Liminf inequality. Let u ∈ L1(0, 1) and (un) be a sequence such that un → u in L1(0, 1).

We have to show

lim inf
n→∞

H`
n(un) ≥ H`(u).

Hence, it is not restrictive to assume that limn→∞H
`
n(un) exists in R. By the compactness

property, we have u ∈ BV `(0, 1) and un
∗
⇀ u weakly∗ in BV (0, 1). By (3.7), the definition

of J0,j (see (3.8)) and (3.15), we obtain

H`
n(un) ≥

K∑
j=2

n−j∑
i=0

λn

{
Jj

(
ui+jn − uin
jλn

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1
n − usn
λn

)}
+ Cλn

≥
K∑
j=2

n−j∑
i=0

λnJ
∗∗
0,j

(
ui+jn − uin
jλn

)
+ Cλn

=
K∑
j=2

1

j

j−1∑
s=0

∑
i∈Rsn,j([0,1])

jλnψ
∗∗
j

(
ui+jn − uin
jλn

)
+ Cλn (3.29)

where C =
∑K

j=2 cj(j − 1)J1(δ1) and

Rsn,j([0, 1]) = {i ∈ s+ jZ, (i, i+ j)λn ⊂ [0, 1]} . (3.30)

With a slight abuse of notation, we identify in the following un with the extension ũn ∈
W 1,∞(R) defined in (3.28). For given j ∈ {2, . . . ,K} and s ∈ {0, . . . , j− 1}, we define the

functions usn,j ∈ W 1,∞(R) as the affine interpolations of un with respect to λn(s + jZ),

i.e.

usn,j(x) = us+jin +
x− (s+ ji)λn

jλn
(us+j(i+1)
n − us+jin ), (3.31)

for x ∈ λn[s+ ji, s+ j(i+ 1)) with i ∈ Z.

Fix j ∈ {2, . . . ,K} and s ∈ {0, . . . , j − 1}. Let us show that usn,j
∗
⇀ u weakly∗ in

BV (0, 1). Since un → u in L1(0, 1), it is sufficient to prove that supn ‖usn,j ′‖W 1,1(0,1) < +∞
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and limn→∞ ‖un−usn,j‖L1(0,1) = 0, see Proposition 2.5. Fix η > 0. For n sufficiently large,

we have that

‖usn,j
′‖L1(−η,1+η) ≤

∑
i∈{s+jZ}∩λ−1

n (−2η,1+2η)

jλn

∣∣∣∣∣ui+jn − uin
jλn

∣∣∣∣∣
≤

∑
i∈{s+jZ}∩λ−1

n (−2η,1+2η)

λn

i+j−1∑
s=i

∣∣∣∣us+1
n − usn
λn

∣∣∣∣ ≤ ‖u′n‖L1(0,1). (3.32)

Note that we used for the last inequality that ui+1
n − uin = 0 for i /∈ {0, . . . , n− 1}. From

the compactness proof, we deduce supn ‖u′n‖L1(0,1) < +∞ and thus that the right-hand

side above is equibounded. Hence, we have supn ‖usn,j ′‖L1(−η,1+η) < +∞. From un(x) = 0

for x ≤ 0 and the definition of usn,j , we obtain that usn,j(−
η
2 ) = 0 for n sufficiently large.

Hence, the Poincaré-inequality yields that supn ‖usn,j‖W 1,1(−η,1+η) < +∞. Let us now

estimate ‖un − usn,j‖L1(0,1). By using un(iλn) = usn,j(iλn) for i ∈ {s+ jZ}, we obtain

∫ 1

0
|usn,j − un|dx

≤
∑

i∈{s+jZ}∩λ−1
n (−η,1+η)

∫ (i+j)λn

iλn

∣∣∣∣uin +

∫ x

iλn

usn,j
′(t)dt−

(
uin +

∫ x

iλn

u′n(t)dt

)∣∣∣∣ dx
≤

∑
i∈{s+jZ}∩λ−1

n (−η,1+η)

∫ (i+j)λn

iλn

∣∣∣∣∫ x

iλn

usn,j
′(t)dt−

∫ x

iλn

u′n(t)dt

∣∣∣∣ dx
≤

∑
i∈{s+jZ}∩λ−1

n (−η,1+η)

∫ (i+j)λn

iλn

(∫ (i+j)λn

iλn

∣∣usn,j ′(t)∣∣+ |u′n(t)|dt

)
dx

≤
∑

i∈{s+jZ}∩λ−1
n (−η,1+η)

jλn

(∫ (i+j)λn

iλn

∣∣usn,j ′(t)∣∣+ |u′n(t)|dt

)

≤ 2jλn

∫ 1+2η

−η
|u′n|dx→ 0 (3.33)

as n → ∞. Altogether, we have for j ∈ {2, . . . ,K} and s ∈ {0, . . . , j − 1} that usn,j
∗
⇀ u

weakly∗ in BV (0, 1).

Fix j ∈ {2, . . . ,K} and s ∈ {0, . . . , j − 1}. By the definition of usn,j and max{i : i ∈
Rsn,j([0, 1])} = bn−s−jj c, we have

∑
i∈Rsn,j([0,1])

jλnψ
∗∗
j

(
ui+jn − uin
jλn

)
≥
∫ λnbn−sj c

s
ψ∗∗j

(
usn,j

′(x)
)
dx.



40 Chapter 3. On Lennard-Jones type systems and their asymptotic analysis

For every 1
2 > ρ > 0 there exists an N ∈ N such that λns < ρ < 1− ρ < λnbn−sj c for all

n ≥ N . Since γ is the unique minimiser of ψj and ψj(γ) < 0, we have

∫ λnbn−sj c

sλn

ψ∗∗j
(
usn,j

′(x)
)
dx ≥

∫ 1−ρ

ρ
ψ∗∗j

(
usn,j

′(x)
)
dx+ 2ρψj(γ).

Since ψ∗∗j satisfies the assumptions on f in Proposition 2.15 and usn,j converges weakly∗

to u in BV (ρ, 1− ρ), we obtain that

lim inf
n→∞

∑
i∈Rsn,j([0,1])

jλnψ
∗∗
j

(
ui+jn − uin
jλn

)
≥ lim inf

n→∞

∫ 1−ρ

ρ
ψ∗∗j (usn,j

′(x))dx+ 2ρψj(γ)

≥
∫ 1−ρ

ρ
ψ∗∗j (u′(x))dx+ 2ρψj(γ)

and Dsu ≥ 0 in (ρ, 1 − ρ). By taking the limit ρ → 0, we obtain that Dsu ≥ 0 in (0, 1)

and

lim inf
n→∞

∑
i∈Rsn,j([0,1])

jλnψ
∗∗
j

(
ui+jn − uin
jλn

)
≥
∫ 1

0
ψ∗∗j (u′(x))dx.

Altogether, we obtain by (3.29) that

lim inf
n→∞

H`
n(un) ≥

K∑
j=2

1

j

j−1∑
s=0

lim inf
n→∞

∑
i∈Rsn,j([0,1])

jλnψ
∗∗
j

(
ui+jn − uin
jλn

)

≥
K∑
j=2

1

j

j−1∑
s=0

∫ 1

0
ψ∗∗j (u′(x))dx

=

∫ 1

0

K∑
j=2

ψ∗∗j (u′(x))dx =

∫ 1

0
J∗∗CB(u′(x))dx

and the constraint Dsu ≥ 0 in (0, 1). It is left to show that Dsu ≥ 0 in [0, 1]. For

this, we argue as in [12, Theorem 4.2]. We set I = (−1, 2) and An(I) = {u ∈ C(I) :

u is affine on (i, i + 1)λn, i ∈ {−n, . . . , 2n − 1}}. Moreover, we define the functional

Hn(u, I) : L1(I)→ (−∞,+∞] as

Hn(u, I) =


2n−1∑
i=−n

J1

(
ui+1 − ui

λn

)
if u ∈ An(I),

+∞ else.
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From [13, Theorem 3.7], we deduce that (Hn(·, I))n Γ-converges to H(·, I) with respect

to the L1
loc(I)-convergence, where

H(u, I) :=


∫
I
J∗∗1 (u′(x))dx if u ∈ BVloc(0, 1), Dsu ≥ 0 in I,

+∞ otherwise.

For a sequence (un) ⊂ L1(0, 1) satisfying supnH
`
n(un) < +∞ and un → u in L1(0, 1), we

define the auxiliary functions

vn(x) =

un(x) for x ∈ [0, 1],

`x for x ∈ R \ (0, 1),
v(x) =

u(x) for x ∈ [0, 1],

`x for x ∈ R \ (0, 1).

Using vn → v in L1
loc(R), Jj ≥ Jj(δj) (see (LJ2)) and v′n = ` on (−1, 0)∪ (1, 2), we obtain

lim inf
n→∞

H`
n(un) + 2J1(`)

≥ lim inf
n→∞

2n−1∑
i=−n

λnJ1

(
vi+1
n − vin
λn

)
+ lim inf

n→∞

K∑
j=2

n−j∑
i=0

λnJj(δj)

≥ lim inf
n→∞

Hn(vn, I) +
K∑
j=2

Jj(δj) ≥ H(v, I) +
K∑
j=2

Jj(δj).

Since the left-hand side above is equibounded, we deduce that Dsv ≥ 0 in I = (−1, 2).

Since Dsu is the restriction of Dsv to [0, 1] it follows that Dsu ≥ 0 in [0, 1]. This finishes

the proof of the liminf inequality.

Limsup inequality. It remains to show that for every u ∈ BV `(0, 1) with Dsu ≥ 0 there

exists a sequence (un) such that un → u in L1(0, 1) and lim supn→∞H
`
n(un) ≤ H`(u).

Firstly, we do not take boundary conditions into account and show that

Γ- lim sup
n→∞

Hn(u) ≤ H(u). (3.34)

where Hn is defined in (3.2) and the functional H : L1(0, 1)→ R ∪ {+∞} is defined by

H(u) :=


∫ 1

0
J∗∗CB(u′(x))dx if u ∈ BV (0, 1), Dsu ≥ 0,

+∞ else.

By Proposition 2.15 it is sufficient to show (3.34) for u ∈W 1,1(0, 1).

Let u be such that u(x) = zx+ w with z ≤ γ. Then u ∈ An(0, 1) for every n ∈ N and

it holds

Hn(u) =
K∑
j=1

n−j∑
i=0

λnJj

(
ui+j − ui

jλn

)
=

K∑
j=1

(n− j + 1)λnJj(z)→ JCB(z),
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as n → ∞. Let us now consider u such that u(x) = zx + w with z > γ. Since J∗∗CB(z) =

JCB(γ) for all z > γ, we have to construct a sequence un converging to u such that u′n → γ

in measure in (0, 1). Let (Nn) ⊂ N be such that

lim
n→∞

Nn = +∞ and lim
n→∞

λnNn → 0. (3.35)

Furthermore, we define the sequence (rn) ⊂ N given by

rn := sup{r ∈ N : rNn ≤ n}.

Clearly, the definition of rn and Nn yields limn→∞ λnrnNn = 1. Set tin = iNn for i ∈
{0, . . . , rn − 1} and trnn = n. Define un ∈ An(0, 1) such that un(x) = u(x) for x ∈
[λnt

rn−1
n , 1] and

un(x) = u(λnt
i
n) + γ(x− λntin) for x ∈ [tin, t

i+1
n − 1]λn and i ∈ {0, . . . , rn − 2}.

By the definition of un and u, we have ‖un − u‖L∞(0,1) ≤ λnNn|z − γ| and thus un → u

in L1(0, 1). From the definition of un, (3.35) and limn λnrnNn = 1, we deduce

K∑
j=1

n−j∑
i=0

λnJj

(
ui+jn − uin
jλn

)
=

K∑
j=1

rn−2∑
m=0

tm+1
n −1∑
i=tmn

λnJj(γ) + r(n)

=
K∑
j=1

Nn(rn − 1)λnJj(γ) + r(n)

=JCB(γ) + r(n) + o(1),

where r(n) is defined by

r(n) =
K∑
j=2

rn∑
m=1

tmn −1∑
i=tmn −j

λn

(
Jj

(
ui+jn − uin
jλn

)
− Jj(γ)

)
+

K∑
j=2

n−j∑
i=trnn

λnJj

(
ui+jn − uin
jλn

)
.

It is left to show that r(n) tends to zero as n tends to infinity. By construction of un it

holds ui+1
n −uin
λn

≥ γ for all i ∈ {0, . . . , n − 1}. This implies, using γ > 0 and (LJ1), that

supn
∑

i Jj

(
ui+jn −uin
jλn

)
< +∞ for j ∈ {1, . . . ,K}. Hence, r(n) = O(λnrn) + O(λnNn) =

o(1). Indeed, this follows by (3.35) and 0 ≤ λnrn ≤ N−1
n λnn = N−1

n .

The above procedure can be applied, up to slight modifications, to any function u ∈
C([0, 1]) which is piecewise affine. The statement for u ∈ W 1,1(0, 1) follows by usual

density and relaxation arguments which we briefly outline in this case: let u ∈W 1,1(0, 1)

be such that H(u) < +∞. Let uN be the piecewise affine interpolation of u with respect
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to 1
NZ with some N ∈ N and set ti := i

N . By Jensen’s inequality, we obtain that

H(u) =

∫ 1

0
J∗∗CB(u′(x))dx =

N∑
i=1

∫ ti

ti−1

J∗∗CB(u′(x))dx

≥
N∑
i=1

1

N
J∗∗CB

(
1

ti − ti−1

∫ ti

ti−1

u′(x)

)
=

∫ 1

0
J∗∗CB(u′N )dx = H(uN ).

Since uN
∗
⇀ u weakly∗ in BV (0, 1) as N →∞, the lower semicontinuity of the Γ- lim sup

yields

Γ- lim sup
n→∞

Hn(u) ≤ lim inf
N→∞

(
Γ- lim sup

n→∞
Hn(uN )

)
≤ lim sup

N→∞

∫ 1

0
J∗∗CB(u′N )dx

≤
∫ 1

0
J∗∗CB(u′)dx = H(u).

Next, we show that there exists for every u ∈ BV `(0, 1) a sequence (un) such that un → u

in L1(0, 1) and lim supnH
`
n(un) ≤ H`(u). We follow ideas from [12, Theorem 4.2] where

the case of nearest neighbour interactions is considered. Let u ∈ BV `(0, 1) be such that

H`(u) < +∞, 0 < u(0+) and u(1−) < `. The above arguments provide a sequence (un)

such that un → u in L1(0, 1) and

lim sup
n→∞

K∑
j=1

n−j∑
i=0

λnJj

(
ui+jn − uin
jλn

)
≤
∫ 1

0
J∗∗CB(u′(x))dx. (3.36)

For every ε̂ > 0 there exists 0 < ε < ε̂ such that ε, 1 − ε 6∈ Su, un(ε) → u(ε) and

un(1− ε)→ u(1− ε). Indeed, (3.36) is still true if we pass to a subsequence of (un) which

converges pointwise almost everywhere in (0, 1). For ε̂ > 0 sufficiently small, we deduce

from 0 < u(0+) and u(1−) < `, (3.10) and Dsu ≥ 0 that 2εγ < u(ε) and u(1−ε) < `−2εγ.

We define sequences (h1
n), (h2

n) ⊂ N such that ε ∈ [h1
n, h

1
n+1)λn and 1−ε ∈ (h2

n−1, h2
n]λn.

Let us now define vn ∈ An(0, 1) by

vin =



0 if i = 0,

λn
∑i

s=1 u
(1)
0,s if 1 ≤ i ≤ K − 1,

λn
∑K−1

s=1 u
(1)
0,s + λn(i− (K − 1))γ if K − 1 ≤ i < h1

n,

un(ε)− 1
2ε if i = h1

n,

uin if h1
n < i < h2

n,

un(1− ε) + 1
2ε if i = h2

n,

`− λn
∑K−1

s=1 u
(1)
1,s − λn(n−K + 1− i)γ if h2

n < i ≤ n−K + 1,

`− λn
∑n−i

s=1 u
(1)
1,s if n−K + 1 ≤ i ≤ n− 1,

` if i = n.
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We observe that vn satisfies the boundary condition (3.3). Moreover, the sequence (vn)

converges to uε := uγχ(0,ε) +uχ(ε,1−ε) +(uγ + `−γ)χ(1−ε,1) in L1(0, 1), where uγ(x) = γx.

Let us show that lim supnH
`
n(vn) < +∞. Since u

(1)
0 , u

(1)
1 ∈ RK−1

+ , γ > 0, (0,+∞) ⊂
dom Jj and (3.36), it is sufficient to verify that

lim
n→∞

v
hin+s
n − vh

i
n−1+s
n

λn
= +∞ for i ∈ {1, 2} and s ∈ {0, 1}. (3.37)

We show (3.37) only for i = 1. The case i = 2 can be done in a similar way. Using

un(ε)→ u(ε) ≥ 2εγ as n→∞, we obtain that

vh
1
n
n − vhn−1

n = un(ε)− 1

2
ε− h1

nλnγ +O(λn) ≥ 1

2
εγ +O(λn) + o(1)

as n→∞. Moreover, we have, using un(ε) = uhnn + ε−hnλn
λn

(u
h1
n+1
n − uh

1
n
n ), that

vh
1
n+1
n − vhnn =(uh

1
n+1
n − uh1

n
n )

(
1− ε− λnh1

n

λn

)
+
ε

4
≥ ε

4
+ o(1)

as n → ∞. For the last inequality, we used (3.36) and the superlinear growth of J1 at

−∞. More precisely: assume there exists c > 0 such that u
h1
n+1
n − uhnn ≤ −c for all n

sufficiently large. From (3.10) and (3.11), we deduce

λnJ1

(
uhn+1
n − uhnn

λn

)
≥ d1c inf

z≤−c

1

n|z|
Ψ(nz) +O(λn)→ +∞ as n→∞.

This is a contradiction to (3.36) and H`(u) < +∞. Altogether, we have shown (3.37) for

i = 1. Combining the fact that un satisfies (3.36) and the definition of vn implies

lim sup
n→∞

H`
n(vn) ≤

∫ 1−ε

ε
J∗∗CB(u′(x))dx+ 2εJCB(γ) = H`(uε).

We can apply the above arguments to a sequence (εk) ⊂ (0, 1) with εk → 0 as k → +∞.

Then we obtain by the lower semicontinuity of the Γ- lim sup and uεk → u in L1(0, 1) as

k →∞:

Γ- lim sup
n→∞

H`
n(u) ≤ lim inf

k→∞

(
Γ- lim sup

n→∞
H`
n(uεk)

)
≤ lim sup

k→∞

(∫ 1−εk

εk

J∗∗CB(u′(x))dx+ 2εkJCB(γ)

)
= H`(u).

Let us now consider u ∈ BV `(0, 1) such that H`(u) < +∞ and u(0+) = 0 or u(1−) = `.

Since ` > 0, there exists a sequence (uN ) such that uN → u weakly∗ in BV (0, 1) such

that∫ 1

0
J∗∗CB(u′N (x))dx→

∫ 1

0
J∗∗CB(u′(x))dx, 0 < uN (0+), uN (1−) < `, DsuN ≥ 0,
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see [12, Theorem 4.1]. By the previous step, we have Γ- lim supn→∞H
`
n(uN ) ≤ H`(uN )

for every N . Passing with N →∞, we obtain Γ- lim supn→∞H
`
n(u) ≤ H`(u). Hence, the

limsup inequality is proven.

Convergence of minimum values. The convergence follows directly from the coercivity

of H`
n and the Γ-convergence result. Combining J∗∗CB is decreasing, Jensen’s inequality

and Dsu ≥ 0 yield

minH`(u) ≥ J∗∗CB
(∫ 1

0
u′dx

)
≥ J∗∗CB (Du([0, 1])) = J∗∗CB (`) .

The reverse inequality follows by testing with u(x) = `x if ` ≤ γ and u(0) = 0 and

u(x) = γx+ `− γ if ` > γ.

3.3 Γ-limit of first order

In this section, we provide the first-order Γ-limit of H`
n. That is, for given ` > 0, we derive

the Γ-limit of the sequence (H`
1,n), where H`

1,n is defined by

H`
1,n(u) :=

H`
n(u)−minH`

λn
. (3.38)

In the case of nearest and next-to-nearest neighbour interactions (K = 2) this was done

in [50, Theorem 4.1, Theorem 4.2] (see also [11]).

It will be useful to rearrange the terms in the energy (3.38) in a suitable way. For given

` > 0 and u
(1)
0 , u

(1)
1 ∈ RK−1

+ let u ∈ An(0, 1) be such that the boundary conditions (3.3)

are satisfied. Using minuH
`(u) = J∗∗CB(`) =

∑K
j=2 ψ

∗∗
j (`) and (3.7), we can rewrite the

energy (3.38) by

H`
1,n(u) =

K∑
j=1

n−j∑
i=0

Jj

(
ui+jn − uin
jλn

)
−
J∗∗CB(`)

λn

=

K∑
j=2

n−j∑
i=0

{
Jj

(
ui+j − ui

jλn

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

λn

)
− ψ∗∗j (`)

}

+
K∑
j=2

cj

j−1∑
s=1

j − s
j

(
J1(u

(1)
0,s) + J1(u

(1)
1,s)
)
−

K∑
j=2

(j − 1)ψ∗∗j (`). (3.39)

In the case ` ≥ γ the terms in the curly brackets in (3.39) are non-negative. Indeed

this follows by the definition of J0,j , see (3.8), (3.12) and (3.15). Fix j ∈ {2, . . . ,K}.
For u ∈ An(0, 1) which satisfies the boundary conditions (3.3), we obtain by similar
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calculations as in (3.6) that

n−j∑
i=0

(
ui+j − ui

)
=

n−j∑
i=0

j−1∑
s=0

(
ui+s+1 − ui+s

)
=

j−1∑
s=0

n−j+s∑
i=s

(
ui+1 − ui

)
=

j−1∑
s=0


n−1∑
i=0

(ui+1 − ui)−
s−1∑
i=0

(ui+1 − ui)−
n−1∑

i=n−j+s+1

(ui+1 − ui)


=

j−1∑
s=0

(
`−

s∑
i=1

λnu
(1)
0,i −

j−s−1∑
i=1

λnu
(1)
1,i

)
= j`− λn

j−1∑
i=1

(j − i)
(
u

(1)
0,i + u

(1)
1,i

)
.

Hence, we have

n−j∑
i=0

(
ui+j − ui

jλn
− `
)

=−
j−1∑
s=1

j − s
j

(
u

(1)
0,s + u

(1)
1,s

)
+ (j − 1)`

=−
j−1∑
s=1

j − s
j

(
u

(1)
0,s + u

(1)
1,s − 2`

)
. (3.40)

Let (un) ⊂ L1(0, 1) be such that un ∈ An(0, 1) and un satisfies the boundary conditions

(3.3). By adding and subtracting the term
∑K

j=2

∑n−j
i=0 (ψ∗∗j )′(`)(u

i+j
n −uin
jλn

− `) to H`
1,n(un),

we obtain that

H`
1,n(un) =

K∑
j=2

n−j∑
i=0

σij,n(`) +
K∑
j=2

cj

j−1∑
s=1

j − s
j

(
J1(u

(1)
0,s) + J1(u

(1)
1,s)
)

−
K∑
j=2

(ψ∗∗j )′(`)

j−1∑
s=1

j − s
j

(
u

(1)
0,s + u

(1)
1,s − 2`

)
−

K∑
j=2

(j − 1)ψ∗∗j (`) (3.41)

where for j ∈ {2, . . . ,K} and i ∈ {0, . . . , n− j}, we define

σij,n(`) :=Jj

(
ui+jn − uin
jλn

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1
n − usn
λn

)

− (ψ∗∗j )′(`)

(
ui+jn − uin
jλn

− `

)
− ψ∗∗j (`). (3.42)

By the definition of J0,j (see (3.8)) and (3.15), we have

σij,n(`) ≥ J0,j

(
ui+jn − uin
jλn

)
− (ψ∗∗j )′(`)

(
ui+jn − uin
jλn

− `

)
− ψ∗∗j (`) ≥ 0. (3.43)

Note that the last inequality follows from J0,j(z) ≥ J∗∗0,j(z) = ψ∗∗j (z) and the convexity

of ψ∗∗j . Furthermore, we show in the following lemma that, under the hypotheses (LJ1)–

(LJ5), it holds σij,n(`) = 0 if and only if us+1
n −usn = λn min{`, γ} for all s ∈ {i, . . . , i+j−1}.

For d ∈ N, we denote by | · |∞ the norm on Rd given by |z|∞ = max1≤i≤d |zi|, for z ∈ Rd.
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Lemma 3.8. Let ` > 0 and let J1, . . . , JK satisfy (LJ1)–(LJ5). For given j ∈ {2, . . . ,K},
the function F `j : Rj → [0,+∞] is defined for z = (z1, . . . , zj) ∈ Rj by

F `j (z) := Jj

(
j∑
s=1

zs
j

)
+
cj
j

j∑
s=1

J1(zs)− (ψ∗∗j )′(`)

(
j∑
s=1

zs
j
− `

)
− ψ∗∗j (`). (3.44)

Then it holds F `j (z) = 0 if and only if zs = min{`, γ} for s ∈ {1, . . . , j}. Moreover, for

every ε > 0 there exists η = η(ε) > 0 such that

inf
{
F `j (z) : z ∈ Rj such that |z −min{`, γ}e|∞ ≥ ε

}
≥ η > 0 (3.45)

where e := (1, . . . , 1) ∈ Rj

Proof. Fix j ∈ {2, . . . ,K}. For given z ∈ Rj , we have by the definition of J0,j , see (3.8)

that

F `j (z) ≥ J0,j

(
j∑
s=1

zs
j

)
− (ψ∗∗j )′(`)

(
j∑
s=1

zs
j
− `

)
− ψ∗∗j (`) =: f `j

(
1

j

j∑
s=1

zs

)
.

Firstly, we observe that f `j (x) ≥ 0 for all x ∈ R and f `j (x) = 0 if and only if x = min{`, γ}.
If ` ≥ γ this follows from (ψ∗∗j )′(`) = 0 and ψ∗∗j (`) = J0,j(γ) where γ is the unique

minimiser of J0,j . Let us fix 0 < ` < γ. For z ≤ γ the claim follows from J0,j(z) = ψj(z),

(3.15) and the strict convexity of ψj on (−∞, γ]. For z > γ, we use the same estimate

and J0,j(z)− ψ′j(`)(z − γ) > J0,j(γ) (note ψ′j(`) < 0). Hence, we have, using (LJ4), that

F `j (z) ≥ 0 for all z ∈ Rj and F `j (z) = 0 if and only if zs = min{`, γ}e.
Fix ε > 0. We want to show the existence of η = η(ε) > 0 such that (3.45) holds

true. Therefore, it is not restrictive to assume that ε < γc − γ, where γc is defined in

assumption (LJ4). For given z ∈ Rj , we set z̄(z) := 1
j

∑j
s=1 zs. Let us now distinguish

between the cases when z̄(z) is close to ¯̀ := min{`, γ} and when it is not. Firstly, we

assume that |z̄(z) − ¯̀| ≥ ε
2 . Combining J0,j(z) = ψj(z) for z ≤ γ with (3.10) and (3.11)

yields limx→−∞ f
`
j (x) = +∞. Since (ψ∗∗j )′(`) < 0 if ` < γ and J0,j is bounded from below

it holds limx→+∞ f
`
j (x) = +∞. In the case ` ≥ γ, the assumption (3.16) yields

lim inf
x→∞

f `j (x) ≥ lim inf
x→∞

J0,j(x)− ψj(γ) > 0.

Hence, there exist η1 > 0 and R > 0 such that f `j (x) ≥ η1 > 0 for |x| ≥ R. By the lower

semicontinuity of Jj there exists xε such that

f `j (x) ≥ f `j (xε) =: η2(ε) > 0,

for all x ∈ R such that |x − ¯̀| ≥ ε
2 and |x| ≤ R. By the last estimates, we have that

F `j (z) ≥ min{η1, η2(ε)} for all z ∈ Rj such that |z − ¯̀e|∞ ≥ ε and |z̄(z)− ¯̀| ≥ ε
2 .

Let us now consider the case |z̄(z)− ¯̀}| ≤ ε
2 . We define the function G`j,ε : Rd → [0,+∞]



48 Chapter 3. On Lennard-Jones type systems and their asymptotic analysis

by

G`j,ε(z) := F `j (z) + χ̄Aε(z),

where Aε := {z ∈ Rj : |z − ¯̀e|∞ ≥ ε and |1j
∑j

s=1 zs − ¯̀| ≤ ε
2}. Clearly G`j,ε is lower

semicontinuous and using the growth conditions (3.10) and (3.11) it admits a minimiser.

We denote by zε ∈ Rj this minimiser. Using the definition of J0,j , f
`
j (z) ≥ 0 and (LJ4),

we obtain

F `j (zε) ≥ J0,j

(
j∑
s=1

zεs
j

)
− (ψ∗∗j )′(`)

(
j∑
s=1

zεs
j
− `

)
− ψ∗∗j (`) + η3(ε) ≥ η3(ε),

with η3(ε) := cj(
1
j

∑j
s=1 J1(zεs) − J1(

∑j
s=1

zεs
j )) > 0. Note that we have used z̄(zε) ≤

γ + ε
2 < γc and by |zε − ¯̀e|∞ ≥ ε there exists i ∈ {1, . . . , j} such that |zεi − z̄(zε)| ≥ ε

2 ,

thus (LJ4) yields η3(ε) > 0.

Altogether, we have shown that for all z ∈ Rj with |z − ¯̀e|∞ ≥ ε it holds

F (z) ≥ η(ε)

with η(ε) = min{η1, η2(ε), η3(ε)} > 0. Taking the infimum over all those z ∈ Rj yields

the assertion.

We are now in position to state a compactness result for sequences (un) with equi-

bounded energy H`
1,n(un). This extends a previous result obtained in [50, Proposition 4.1],

see also [11, Proposition 4.2], for nearest and next-to-nearest neighbour interactions, i.e.

K = 2, to the case of finite range interactions of Lennard–Jones type.

Proposition 3.9. Let ` > 0, u
(1)
0 , u

(1)
1 ∈ RK−1

+ and suppose that hypotheses (LJ1)–(LJ5)

hold. Let (un) be a sequence of functions such that

sup
n
H`

1,n(un) < +∞. (3.46)

(1) If ` ≤ γ, then, up to subsequences, un → u in L∞(0, 1) with u(x) = `x, x ∈ [0, 1].

(2) In the case ` > γ, up to subsequences, un → u in L1(0, 1), where u ∈ SBV `(0, 1) is

such that

(i) 0 < #Su < +∞,

(ii) [u] ≥ 0 in [0, 1],

(iii) u′ = γ a.e.

Remark 3.10. Recall that u ∈ SBV `(0, 1) and condition (ii) imply u(0+) ≥ 0 and u(1−) ≤
`; see Section 2.1.1.

Proof of Proposition 3.9. Let (un) ⊂ L1(0, 1) satisfy (3.46). With the same arguments,

as in the proof of Theorem 3.7, we have the existence of u ∈ BV `(0, 1) such that, up to

subsequences, un
∗
⇀ u weakly∗ in BV (0, 1).
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Let us now show u′n → min{`, γ} in measure in (0, 1). For ε > 0, we define

Iεn :=

{
i ∈ {0, . . . , n− 1} :

∣∣∣∣ui+1
n − uin
λn

−min{`, γ}
∣∣∣∣ > ε

}
.

By the definition of σij,n(`), see (3.42), and Lemma 3.8, we deduce the existence of η =

η(ε) > 0 such that σij,n(`) ≥ η for i ∈ Iεn and j ∈ {2, . . . ,K}. Moreover, we obtain from

(3.41), (3.46), σij,n(`) ≥ 0 for j ∈ {2, . . . ,K}, and Jj is bounded from below that there

exists a constant C > 0 such that

C ≥
K∑
j=2

n−j∑
i=0

σij,n ≥
n−2∑
i=0

σin,2(`) ≥ #Iεnη.

Hence, by using |{x : |u′n(x) − min{`, γ}| > ε}| = λn#Iεn ≤ λn
C
η it follows that u′n →

min{`, γ} in measure. Moreover, we can use the above argument in the following way: we

define the set

Qn :=

{
i ∈ {0, . . . , n− 2} :

ui+1
n − uin
λn

> 2γ

}
.

As above, Lemma 3.8 ensures σin,2(`) ≥ η for i ∈ Qn and some η > 0. From (3.46), we

deduce the equiboundedness of #Qn. We define the sequence (vn) ⊂ SBV (0, 1) as

vn(x) =

un(x), if x ∈ (i, i+ 1)λn, i /∈ Qn,

un(iλn), if x ∈ (i, i+ 1)λn, i ∈ Qn.

The sequence (vn) is constructed such that limn ‖un − vn‖L1(0,1) = 0 and ‖vn‖BV (0,1) ≤
‖un‖W 1,1(0,1). Thus we can assume, by passing to a subsequence, that (vn) weakly∗ con-

verges in BV (0, 1) to u. By definition of vn, we have #Svn = #Qn and thus there exists

a constant C > 0 such that supn #Svn ≤ C. Using v′n(x) ≤ 2γ a.e., (3.10) and (3.11), and

(3.46), the sequence (vn) satisfies all assumptions of Theorem 2.8 and we conclude that

u ∈ SBV `(0, 1), v′n ⇀ u′ weakly in L1(0, 1), +∞ > #Su and Djvn
∗
⇀ Dju weakly∗ in the

sense of measures. By the construction of (vn), we have [vn] > 0 on Svn and we conclude,

by the weak∗ convergence of the jump part in (0, 1), that [u] ≥ 0 in (0, 1). To prove (ii) it

is left to show 0 ≤ u(0+) and u(1−) ≤ `. For this, we can repeat the above argument for

the extensions ũ, ũn, ṽn ∈ BVloc(R) of u, un, vn with ũ(x) = un(x) = ṽn(x) = 0 for x ≤ 0

and ũ(x) = un(x) = ṽn(x) = ` for 1 ≤ x. From this, we deduce that Dj ũ is a positive

measure in R. Since Dju is the restriction of Dj ũ to [0, 1] the assertion (ii) follows.

Note that (vn) is defined such that |{x : u′n(x) 6= v′n(x)}| ≤ #Svnλn, which implies

v′n → min{`, γ} in measure in (0, 1). Combining this with v′n ⇀ u′ in L1(0, 1), we show

u′ = min{`, γ} a.e. in (0, 1). Indeed, by the Dunford-Pettis theorem, we deduce from the

relative compactness of (v′n) ⊂ L1(0, 1) in the weak L1(0, 1)-topology that (v′n) is equi-

integrable. By extracting a subsequence, we can assume that v′n → min{`, γ} pointwise

a.e. in (0, 1) and by Vitali’s convergence theorem it follows v′n → min{`, γ} strongly in
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L1(0, 1). Thus u′ = min{`, γ} a.e. in (0, 1). Thus the assertion for ` > γ is proven. In the

case 0 < ` ≤ γ, we have, up to subsequences, un → u in L1(0, 1) with u ∈ SBV `(0, 1),

u′ = ` a.e. in (0, 1) and [u] > 0 on Su. This implies u(x) = `x on [0, 1]. It is left to show:

un → u in L∞(0, 1). Note that for the above defined sequence (vn) it holds u′n = v′n +wn

a.e. on (0, 1) with wn ∈ L1(0, 1) and wn(x) ≥ 0. Using v′n → ` in L1(0, 1), we deduce

from

` =

∫ 1

0
u′n(x)dx =

∫ 1

0
v′n(x)dx+

∫ 1

0
wn(x)dx

that wn → 0 in L1(0, 1) (using wn ≥ 0). Altogether, we have u′n = v′n+wn → ` in L1(0, 1)

and thus un → u in W 1,1(0, 1) with u(x) = `x. Hence, the assertion follows from the

Sobolev inequality on intervals.

To simplify the notation, we define for ` > γ the set

SBV `
c (0, 1) :=

{
u ∈ SBV `(0, 1): conditions (i)-(iii) of Proposition 3.9 are satisfied

}
,

(3.47)

as in [50].

Proposition 3.9 tells us that a sequence of deformations (un) with equibounded energy

converges in L1(0, 1) to a deformation u which has a constant gradient almost everywhere.

In the following lemma, we prove a local convergence result for the discrete gradients of

sequences (un) with equibounded energy. This turns out to be crucial in the proof of the

first-order Γ-limit.

Lemma 3.11. Suppose that hypotheses (LJ1)–(LJ5) hold. Let ` > 0 and u
(1)
0 , u

(1)
1 ∈

RK−1
+ . Let (un) be a sequence of functions such that (3.46) is satisfied. Then there exists

for every x ∈ [0, 1] a sequence (hn) ⊂ N with 0 ≤ hn ≤ n−K and limn→∞ λnhn = x such

that , up to subsequences,

lim
n→∞

uhn+s+1
n − uhn+s

n

λn
= min{`, γ} for s ∈ {0, . . . ,K − 1}.

Proof. Let us define the set In as

In :=

{
i ∈ {0, . . . , n−K} : σin,K(`) >

1√
n

}
.

By (3.46) there exists C > 0 such that

C ≥ sup
n

K∑
j=2

n−j∑
i=0

σij,n(`) ≥ sup
n

n−K∑
i=0

σin,K(`) = sup
n

#In√
n
.

This yields #In = O(
√
n).
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Now let i /∈ In. By using the definition of J0,K and J0,K(z) ≥ ψ∗∗K (z) ≥ (ψ∗∗K )′(`)(z −
`) + ψ∗∗K (`), we deduce from 0 ≤ σin,K(`) ≤ 1√

n
that

0 ≤JK
(
ui+Kn − uin
Kλn

)
+
cK
K

i+K−1∑
s=i

J1

(
us+1
n − usn
λn

)
− J0,K

(
ui+Kn − uin
Kλn

)
≤ 1√

n
, (3.48)

0 ≤J0,K

(
ui+Kn − uin
Kλn

)
− ψ∗∗K (`)− (ψ∗∗K )′(`)

(
ui+Kn − uin
Kλn

− `
)
≤ 1√

n
. (3.49)

Fix x ∈ [0, 1]. From #In = O(
√
n), we deduce the existence of a sequence (hn) ⊂ N

such that hn ∈ {0, . . . , n − K}, hn /∈ In and limn→∞ λnhn = x. By using the fact that

J0,K(z) = ψ∗∗K (`) + (ψ∗∗K )′(`)(z − `) if and only if z = min{`, γ}, we conclude from (3.49)

that
uhn+K
n − uhnn
Kλn

→ min{`, γ} as n→∞.

Combining this with (3.48) and assumption (LJ4), we deduce

lim
n→∞

uhn+s+1
n − uhn+s

n

λn
= min{`, γ} for s ∈ {0, . . . ,K − 1},

which proves the assertion.

3.3.1 The case ` ≤ γ

As in [50], we distinguish between the cases ` ≤ γ and ` > γ, where ` denotes the boundary

condition on the last atom in the chain and γ is given in (3.12). In the case of ` ≤ γ no

fracture occurs by Proposition 3.9. For any 0 < ` ≤ γ and θ = (θs)
K−1
s=1 ∈ RK−1

+ , we define

the boundary layer energy B(θ, `) as

B(θ, `) = inf
N∈N

N≥K−1

min

{ K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
vs − vs−1

)
+

K∑
j=2

∑
i≥0

{
Jj

(
vi+j − vi

j

)

+
cj
j

i+j−1∑
s=i

J1

(
vs+1 − vs

)
− ψ′j(`)

(
vi+j − vi

j
− `
)
− ψj(`)

}
: v : N0 → R,

v0 = 0, vs − vs−1 = θs if 1 ≤ s ≤ K − 1, vi+1 − vi = ` if i ≥ N
}
. (3.50)

In what follows we often refer to B(θ, `) as the elastic boundary layer energy. The term

B(θ, `) show up in the Γ-limit below with θ = u
(1)
0 and θ = u

(1)
1 , so the constraint

vs − vs−1 = θs if 1 ≤ s ≤ K − 1 in (3.50) is due to the boundary conditions imposed

on the first and on the last K atoms of the chain, respectively. The terms in the infinite

sum have the same structure as σij,n(`) defined in (3.42) and are always non-negative, see

also Lemma 3.8. Moreover, we note that the infinite sum in (3.50) is actually a finite

sum from i = 1 to i = N − 1. Indeed, for i ≥ N the terms in the infinite sum reads

Jj(`) + cjJ1(`)− ψj(`) = 0, see (3.14).
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Let us remark that in the case of nearest and next-to-nearest neighbour interactions,

i.e. K = 2, the definition of B(θ, `) matches exactly the definition of the elastic boundary

layer energy given in [50, eq. (4.13)].

Theorem 3.12. Suppose that J1, . . . , JK satisfy the assumptions (LJ1)–(LJ5). Let 0 <

` ≤ γ and u
(1)
0 , u

(1)
1 ∈ RK−1

+ . Then (H`
1,n) Γ-converges with respect to the L1(0, 1)-

convergence and the L∞(0, 1)-convergence to the functional H`
1 defined by

H`
1(u) :=



B(u
(1)
0 , `) +B(u

(1)
1 , `)−

K∑
j=2

(j − 1)ψj(`)

−
K∑
j=2

ψ′j(`)

j−1∑
s=1

j − s
j

(
u

(1)
0,s + u

(1)
1,s − 2`

)
if u(x) = `x,

+∞ else,

(3.51)

on W 1,∞(0, 1).

Proof. We adapt the proof of [50, Theorem 4.1] where the case of nearest and next-to-

nearest neighbour interactions is considered.

Liminf inequality. Let (un) ⊂ L1(0, 1) be a sequence satisfying supnH
`
1,n(un) < +∞

and un → u in L1(0, 1). From Proposition 3.9, we deduce that un → u in L∞(0, 1)

and u(x) = `x for x ∈ [0, 1]. Moreover, Lemma 3.11 ensures that we find sequences

(T 0
n), (T 1

n) ⊂ N such that limn→∞ λnT
0
n = 0, limn→∞ λnT

1
n = 1 and

lim
n→∞

u
T in+s+1
n − uT

i
n+s
n

λn
= ` for i ∈ {0, 1} and 0 ≤ s ≤ K − 1. (3.52)

From (3.41) and σij,n(`) ≥ 0, we deduce

H`
1,n(un) ≥

K∑
j=2

{ T 0
n∑

i=0

σij,n(`) + cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

n−j∑
i=T 1

n

σij,n(`) + cj

j−1∑
s=1

j − s
j

J1(u
(1)
1,s)

}

−
K∑
j=2

(j − 1)ψj(`)−
K∑
j=2

ψ′j(`)

j−1∑
s=1

j − s
j

(
u

(1)
0,s + u

(1)
1,s − 2`

)
. (3.53)

Let us define the sequence vn : N0 → R as

vin =


uin
λn

if 0 ≤ i ≤ T 0
n +K,

`
(
i− (T 0

n +K)
)

+ u
T0
n+K
n
λn

if i ≥ T 0
n +K.

(3.54)
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Fix j ∈ {2, . . . ,K}. In terms of vn, we have that

T 0
n∑

i=0

σij,n(`) =

T 0
n∑

i=0

{
Jj

(
vi+jn − vin

j

)
+
cj
j

i+j−1∑
s=i

J1

(
vs+1
n − vsn

)
− ψ′j(`)

(
vi+jn − vin

j
− `

)
− ψj(`)

}

=
∑
i≥0

{
Jj

(
vi+jn − vin

j

)
+
cj
j

i+j−1∑
s=i

J1

(
vs+1
n − vsn

)
− ψ′j(`)

(
vi+jn − vin

j
− `

)
− ψj(`)

}
− ωj(n),

where

ωj(n) =

T 0
n+K−1∑
i=T 0

n+1

{
Jj

(
vi+jn − vin

j

)
+
cj
j

i+j−1∑
s=i

J1

(
vs+1
n − vsn

)
− ψ′j(`)

(
vi+jn − vin

j
− `

)
− ψj(`)

}
→ 0 as n→∞.

Indeed, by the definition of vn in (3.54), we have vi+1
n − vin = ` for i ≥ T 0

n + K. Thus,

for i ≥ T 0
n +K the terms in the infinite sum are given by Jj(`) + cjJ1(`)− ψj(`) = 0, see

(3.14). Moreover, we have by (3.52) for 1 ≤ s ≤ K − 1 that

lim
n→∞

(vT
0
n+s+1
n − vT 0

n+s
n ) = lim

n→∞

u
T 0
n+1+s
n − uT

0
n+s
n

λn
= `.

Combining this with vi+1
n − vin = ` for i ≥ T 0

n + K and the definition of ψj , see (3.14),

yields limn→∞ ωj(n) = 0. Since un satisfies (3.3), we have v0
n = u0

n
λn

= 0, vsn − vs−1
n =

1
λn

(usn − us−1
n ) = u

(1)
0,s for s ∈ {1, . . . ,K − 1} and vi+1

n − vin = ` for i ≥ T 0
n +K. Hence, vn

is a competitor for the minimum problem defining B(u
(1)
0 , `), see (3.50). Therefore

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

T 0
n∑

i=0

σij,n(`)


=

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

∑
i≥0

{
Jj

(
vi+jn − vin

j

)
+
cj
j

i+j−1∑
s=i

J1

(
vs+1
n − vsn

)
− ψ′j(`)

(
vi+jn − vin

j
− `

)
− ψj(`)

}
− ωj(n)

}
≥ B(u

(1)
0 , `)−

K∑
j=2

ωj(n). (3.55)
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Let us define wn : N0 → R as

wmn =


`−un−mn

λn
if 0 ≤ m ≤ n− T 1

n ,

`
(
m− (n− T 1

n)
)

+ `−uT
1
n
n

λn
if n− T 1

n ≤ m.
(3.56)

For fixed j ∈ {2, . . . ,K}, we have that

n−j∑
i=T 1

n

σij,n(`) =

n−T 1
n−j∑

m=0

{
Jj

(
un−mn − un−m−jn

jλn

)
+
cj
j

m+j−1∑
s=m

J1

(
un−sn − un−s−1

n

λn

)

− ψ′j(`)

(
un−mn − un−m−jn

jλn
− `

)
− ψj(`)

}

=
∑
m≥0

{
Jj

(
wm+j
n − wmn

j

)
+
cj
j

m+j−1∑
s=m

J1(ws+1
n − wsn)

− ψ′j(`)

(
wm+j
n − wmn

j
− `

)
− ψj(`)

}
− ω̂j(n),

where ω̂j(n)→ 0 for n→∞ and j ∈ {2, . . . ,K}. Indeed, by (3.56) and (3.14) the terms

in the infinite sum vanish for m ≥ n− T 1
n . Hence, ω̂j(n) is given by

ω̂j(n) =

n−T 1
n−1∑

m=n−T 1
n−j+1

{
Jj

(
wm+j
n − wmn

j

)
+
cj
j

m+j−1∑
s=m

J1(ws+1
n − wsn)

− ψ′j(`)

(
wm+j
n − wmn

j
− `

)
− ψj(`)

}
.

By the definition of wn, see (3.56), and (3.52) it holds for s ∈ {1, . . . ,K − 1} that

lim
n→∞

(wn−T
1
n−K+s+1

n − wn−T 1
n−K+s

n ) = lim
n→∞

u
T 1
n+K−s
n − uT

1
n+K−s−1
n

λn
= `.

Combining this with wi+1
n − win = ` for i ≥ n − T 1

n and the definition of ψj(`), we

obtain limn→∞ ω̂j(n) = 0. Since un satisfies (3.3), we have w0
n = 0 and wsn − ws−1

n =
1
λn

(un−s+1
n − un−sn ) = u

(1)
1,s for s ∈ {1, . . . ,K − 1}. Hence, wn is a competitor for the

infimum problem defining B(u
(1)
1 , `) and we obtain as in (3.55) that

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
1,s) +

n−j∑
i=T 1

n+1

σij,n(`)

 ≥B(u
(1)
1 , `)−

K∑
j=2

ω̂j(n). (3.57)

Combining (3.53) with (3.55), (3.57) and ωj(n), ω̂j(n) → 0 as n → ∞ for j ∈ {2, . . . ,K}
proves the liminf inequality.

Limsup inequality. Since H`
1(u) is finite if and only if u(x) = `x for all x ∈ [0, 1] it is
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sufficient to consider this case only. We construct a sequence (un) such that un → u in

L∞(0, 1) (and thus also in L1) and

lim sup
n→∞

H`
1,n(un) ≤B(u

(1)
0 , `) +B(u

(1)
1 , `)−

K∑
j=2

(j − 1)ψj(`)

−
K∑
j=2

ψ′j(`)

j−1∑
s=1

j − s
j

(
u

(1)
0,s + u

(1)
1,s − 2`

)
.

The following construction of (un) is similar to the recovery sequence in [50, Theorem 4.2]

for the caseK = 2. Fix η > 0. By the definition of B(θ, `), see (3.50), there exist a function

v : N0 → R and an N1 ∈ N such that v0 = 0, vs − vs−1 = u
(1)
0,s for s ∈ {1, . . . ,K − 1},

vi+1 − vi = ` for i ≥ N1 and

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
vs − vs−1

)
+

K∑
j=2

∑
i≥0

{
Jj

(
vi+j − vi

j

)

+
cj
j

i+j−1∑
s=i

J1

(
vs+1 − vs

)
− ψ′j(`)

(
vi+j − vi

j
− `
)
− ψj(`)

}
≤ B(u

(1)
0 , `) + η. (3.58)

From vi+1 − vi = ` for i ≥ N1, we deduce that the sum over i ≥ 0 can replaced by a

sum over 0 ≤ i ≤ N1 without changing the estimate. Furthermore, there exist a function

w : N0 → R and an N2 ∈ N with w0 = 0, ws − ws−1 = u
(1)
1,s for s ∈ {1, . . . ,K − 1},

wi+1 − wi = ` for i ≥ N2 and

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
ws − ws−1

)
+

K∑
j=2

∑
i≥0

{
Jj

(
wi+j − wi

j

)

+
cj
j

i+j−1∑
s=i

J1

(
ws+1 − ws

)
− ψ′j(`)

(
wi+j − wi

j
− `
)
− ψj(`)

}
≤ B(u

(1)
1 , `) + η. (3.59)

As in the estimate corresponding to B(u
(1)
0 , `), we can replace the infinite sum by the sum

over 0 ≤ i ≤ N2. We construct a recovery sequence (un) for u by means of v and w:

uin =


λnv

i if 0 ≤ i ≤ N1 +K,

λnv
N1+K + `−λn(wN2+K+vN1+K)

n−N1−N2−2K (i−N1 −K) if N1 +K ≤ i ≤ n−N2 −K,

`− λnwn−i if n−N2 −K ≤ i ≤ n.
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By the definition of un, v, and w, we have u0
n = 0 and unn = `. Moreover, it holds

us+1
n − usn = λn(vs − vs−1) = λnu

(1)
0,s,

un+1−s
n − un−sn = −λn(ws−1 − ws) = λnu

(1)
1,s,

for i ∈ {1, . . . ,K−1}. Hence, we have that un satisfies the boundary conditions (3.3). Let

us show that lim supn→∞H
`
1,n(un) ≤ H`

1(u) + 2η. From (3.58), (3.59) and the definition

of un we deduce:

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
usn − us−1

n

λn

)
+

K∑
j=2

N1∑
i=0

σij,n(`)

=

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
vs − vs−1

)
+

K∑
j=2

N1∑
i=0

{
Jj

(
vi+j − vi

j

)

+
cj
j

i+j−1∑
s=i

J1(vs+1 − vs)− ψ′j(`)
(
vi+j − vi

j
− `
)
− ψj(`)

}
≤ B(u

(1)
0 , `) + η. (3.60)

Similarly, we obtain

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
un+1−s
n − un−sn

λn

)
+

K∑
j=2

n−j∑
i=n−N2−K

σij,n(`)

=
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
ws − ws−1

)
+

K∑
j=2

N2+K−j∑
i=0

{
Jj

(
wi+j − wi

j

)

+
cj
j

i+j−1∑
s=i

J1(ws+1 − ws)− ψ′j(`)
(
wi+j − wi

j
− `
)
− ψj(`)

}
≤ B(u

(1)
1 , `) + η. (3.61)

Thus it remains to show that

lim
n→∞

K∑
j=2

n−N2−K−1∑
i=N1+1

σij,n = 0.

For N1 +K ≤ i ≤ n−N2 −K − 1, we have

ui+1
n − uin
λn

=
`− λn(wN2+K + vN1+K)

λn(n−N1 −N2 − 2K)

=`+ λn
`(N1 −N2 − 2K)− (wN2+K + vN1+K)

1− λn(N1 +N2 + 2K)
= `+

c+ dn
n

, (3.62)

with some constant c independent of n and a sequence (dn) such that limn→∞ dn = 0

(notice: a
n−b −

a
n = ba

n(n−b)). Fix j ∈ {2, . . . ,K}. For N1 + K ≤ i ≤ n −N2 −K − j, we
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have

σij,n(`) =Jj

(
`+

c+ dn
n

)
+ cjJ1

(
`+

c+ dn
n

)
− ψj(`)− ψ′j(`)

c+ dn
n

=ψj

(
`+

c+ dn
n

)
− ψj(`)− ψ′j(`)

c+ dn
n

=(ψ′j(ξj,n)− ψ′j(`))
c+ dn
n

with ξj,n ∈ [`, `+ c+dn
n ]. By combining the above estimates with the Hölder continuity of

Jj , see (LJ1), we deduce that there exist c̃ > 0 and α ∈ (0, 1) such that

K∑
j=2

n−N2−K−j∑
i=N1+K

σij,n(`) ≤
K∑
j=2

n−N2−K−j∑
i=N1+K

|σij,n(`)|

≤K
n−N2−K−j∑
i=N1+K

c̃

n1+α
= O

(
1

nα

)
→ 0 as n→∞.

Thus, it is left to estimate the terms σij,n(`) with j ∈ {2, . . . ,K} and i ∈ {N1 +1, . . . , N1 +

K − 1} ∪ {n − N2 −K − j + 1, . . . , n − N2 −K − 1}. By the definition of v and w, we

have that ui+1
n − uin = λn` for i ∈ {N1, . . . , N1 +K − 1} ∪ {n−N2 −K, . . . , n−N2 − 1}.

Combining this with (3.62) and (3.14), we obtain that σij,n → 0 as n → ∞ for i ∈
{N1 + 1, . . . , N1 + K − 1} ∪ {N2 − K − j + 1, . . . , n − N2 − K − 1}. This proves the

convergence of the energy. It is left to show that un → u in L∞(0, 1). Using (3.62) and

the definition of un, we obtain that u′n → ` in L1(0, 1). Since un(0) = 0 for all n this

yields un → u in L∞(0, 1) and the assertion is proven.

Remark 3.13. For given θ ∈ RK−1
+ , we have

B(θ, γ) ≥
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(θs).

Note that we used here that the terms in the infinite sum of the definition of B(θ, `), see

(3.50), are non-negative. In the special case 0 < ` ≤ γ and θ` = (θ`s)
K−1
s=1 with θ`s = ` for

1 ≤ s < K, the above lower bound for B(θ`, `) is attained by ui = `i for i ≥ 0. Hence,

B(θ`, `) =

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(`) =
1

2
J1(`)

K∑
j=2

(j − 1)cj . (3.63)

The following corollary is a direct consequence of Theorem 3.12 and (3.63).

Corollary 3.14. Suppose that hypotheses (LJ1)–(LJ5) are satisfied. Let 0 < ` ≤ γ and

let u
(1)
0 , u

(1)
1 ∈ RK−1

+ be such that u
(1)
0,s = u

(1)
1,s = ` for all s ∈ {1, . . . ,K − 1}. Then the
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Γ-limit H`
1, see (3.51), of (H`

1,n) is given by

H`
1(u) =

−
∑K

j=2(j − 1)Jj(`) if u(x) = `x,

+∞ else

on W 1,∞(0, 1).

Proof. From (3.14), (3.51) and (3.63), we obtain for u
(1)
0 , u

(1)
1 ∈ RK−1

+ such that u
(1)
0,s =

u
(1)
1,s = ` for 1 ≤ s < K that

H`
1(u) = J1(`)

K∑
j=2

(j − 1)cj −
K∑
j=2

(j − 1)(Jj(`) + cjJ1(`)) = −
K∑
j=2

(j − 1)Jj(`),

if u(x) = `x, and +∞ otherwise. This finishes the proof.

Next, we show that the energy H`
1 given in Theorem 3.12 is independent of c = (cj)

K
j=2.

Proposition 3.15. Let J1, . . . , JK satisfy (LJ1)–(LJ5). Let 0 < ` ≤ γ and u
(1)
0 , u

(1)
1 ∈

RK−1
+ . Then the functional H`

1, given in (3.51), reads

H`
1(u) =


B̃(u

(1)
0 , `) + B̃(u

(1)
1 , `)−

K∑
j=2

(j − 1)Jj(`) if u(x) = `x,

+∞ otherwise,

where for 0 < ` ≤ γ and θ ∈ RK−1
+ the boundary layer energy B̃(θ, `) is given by

B̃(θ, `) := inf
N∈N

N≥K−1

min

{∑
i≥0

K∑
j=1

{
Jj

(
ui+j − ui

j

)
− Jj(`)− J ′j(`)

(
ui+j − ui

j
− `
)}

−
K∑
j=2

j−1∑
s=1

j − s
j

J ′j(`) (θs − `) : u : N0 → R, u0 = 0,

us − us−1 = θs if 1 ≤ s ≤ K − 1, ui+1 − ui = ` if i ≥ N

}
. (3.64)

Proof. For given 0 < ` ≤ γ and θ ∈ RK−1
+ , we prove that

B(θ, `)− 1

2
J1(`)

K∑
j=2

(j − 1)cj −
K∑
j=2

j−1∑
s=1

j − s
j

ψ′j(`)(θs − `) = B̃(θ, `), (3.65)

where B(θ, `) is given in (3.50). The combination of (3.65), ψj(`) = Jj(`) + cjJ1(`), see

(3.14), and the definition of H`
1 (see (3.51)) implies the assertion.
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Fix 0 < ` ≤ γ and θ ∈ RK−1
+ . Let us show (3.65). To simplify the notation, we define

for j ∈ {1, . . . ,K} the functions Φ`
j : R→ R ∪ {+∞} by

Φ`
j(z) := Jj(z)− Jj(`)− J ′j(`)(z − `). (3.66)

Let u : N0 → R be a candidate for the minimum problems defining B(θ, `) and B̃(θ, `),

i.e. u0 = 0, us − us−1 = θs if s ∈ {1, . . . ,K − 1} and there exists an N ∈ N such that

ui+1 − ui = ` for i ≥ N . We show that

K∑
j=2

∑
i≥0

{
Jj

(
ui+j − ui

j

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

)
− ψj(`)− ψ′j(`)

(
ui+j − ui

j
− `
)}

+

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1 (θs)−
1

2
J1(`)

K∑
j=2

(j − 1)cj −
K∑
j=2

j−1∑
s=1

j − s
j

ψ′j(`)(θs − `)

=
∑
i≥0

K∑
j=1

Φ`
j

(
ui+j − ui

j

)
−

K∑
j=2

j−1∑
s=1

j − s
j

J ′j(`)(θs − `). (3.67)

This finishes the proof of the proposition. Indeed, by the definition of B(θ, `), B̃(θ, `) and

Φ`
j , see (3.50), (3.64) and (3.66), and the arbitrariness of the test function u, the equality

(3.67) implies (3.65) and thus the assertion is proven.

By the definition of Φ`
j , see (3.66), it holds Φ`

j(`) = 0. Hence, using (3.14), ui+1−ui = `

for i ≥ N and ui+j−ui
j − ` = 1

j

∑i+j−1
s=i (us+1 − us − `) for j ∈ {2, . . . ,K}, we can rewrite

the infinite sum on the left-hand side in (3.67) in terms of Φ`
j as follows

K∑
j=2

∑
i≥0

{
Jj

(
ui+j − ui

j

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

)
− ψj(`)− ψ′j(`)

(
ui+j − ui

j
− `
)}

=

K∑
j=2

N−1∑
i=0

{
Φ`
j

(
ui+j − ui

j

)
+
cj
j

i+j−1∑
s=i

Φ`
1

(
us+1 − us

)}

=
N−1∑
i=0

K∑
j=2

Φ`
j

(
ui+j − ui

j

)
+

K∑
j=2

cj
j

N−1∑
i=0

i+j−1∑
s=i

Φ`
1

(
us+1 − us

)
. (3.68)

The nearest neighbour terms on the right-hand side above can be rewritten as

K∑
j=2

cj
j

N−1∑
i=0

i+j−1∑
s=i

Φ`
1

(
us+1 − us

)
=

K∑
j=2

cj
j

j−1∑
s=0

N+s−1∑
i=s

Φ`
1

(
ui+1 − ui

)
=

K∑
j=2

cj
j

j−1∑
s=0

{
N−1∑
i=0

Φ`
1

(
ui+1 − ui

)
−

s−1∑
i=0

Φ`
1

(
ui+1 − ui

)
+

N+s−1∑
i=N

Φ`
1

(
ui+1 − ui

)}

=

K∑
j=2

cj

N−1∑
i=0

Φ`
1

(
ui+1 − ui

)
−

K∑
j=2

cj
j

j−1∑
s=0

s−1∑
i=0

Φ`
1

(
ui+1 − ui

)
.
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Note that we used ui+1−ui = ` and thus Φ`
1(ui+1−ui) = 0 for i ≥ N . Since ui−ui−1 = θi

for i ∈ {1, . . . ,K − 1}, we obtain that

K∑
j=2

cj
j

j−1∑
s=0

s−1∑
i=0

Φ`
1

(
ui+1 − ui

)
=

K∑
j=2

cj
j

j−2∑
i=0

j∑
s=i+1

Φ`
1

(
ui+1 − ui

)
=

K∑
j=2

cj

j−1∑
i=1

j − i
j

Φ`
1 (θi) .

Hence, using
∑K

j=2 cj = 1 and the definition of Φ`
1, the right-hand side of (3.68) reads

N−1∑
i=0

K∑
j=1

Φ`
j

(
ui+j − ui

j

)
−

K∑
j=2

cj

j−1∑
i=1

j − i
j

(
J1(θi)− J1(`)− J ′1(`)(θi − `)

)
.

Altogether, we have

K∑
j=2

∑
i≥0

{
Jj

(
ui+j − ui

j

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

)
− ψj(`)− ψ′j(`)

(
ui+j − ui

j
− `
)}

+
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1 (θs)−
1

2
J1(`)

K∑
j=2

(j − 1)cj −
K∑
j=2

j−1∑
s=1

j − s
j

ψ′j(`)(θs − `)

=
N−1∑
i=0

K∑
j=1

Φ`
j

(
ui+j − ui

j

)
+

K∑
j=2

cj

j−1∑
s=1

j − s
j

(
J1(`) + J ′1(`)(θs − `)

)
− 1

2
J1(`)

K∑
j=2

(j − 1)cj −
K∑
j=2

j−1∑
s=1

j − s
j

(
J ′j(`) + cjJ

′
1(`)

)
(θs − `)

=

N−1∑
i=0

K∑
j=1

Φ`
j

(
ui+j − ui

j

)
−

K∑
j=2

j−1∑
s=1

j − s
j

J ′j(`)(θs − `)

=
∑
i≥0

K∑
j=1

Φ`
j

(
ui+j − ui

j

)
−

K∑
j=2

j−1∑
s=1

j − s
j

J ′j(`)(θs − `),

which proves (3.67).

Remark 3.16. Note that in the special case ` = γ, the terms involving J ′j(`) in the

definition of B̃(θ, `) cancel out. Thus for given θ ∈ RK−1
+ , we have

B̃(θ, γ) = inf
N∈N

N≥K−1

min

{∑
i≥0

{ K∑
j=1

Jj

(
vi+j − vi

j

)
− JCB(γ)

}
: v : N0 → R,

v0 = 0, vs − vs−1 = θi if 1 ≤ s < K, vi+1 − vi = γ if i ≥ N
}
. (3.69)

By the definition JCB ≡
∑K

j=1 Jj , we only have to show that the terms involving J ′j(`)

in the definition (3.64) vanish if ` = γ. Indeed, let u be a test function for the infimum

problem in the definition of B̃(θ, γ), i.e. u0 = 0, us−us−1 = θs if 1 ≤ s ≤ K−1 and there
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exists an N ∈ N such that ui+1 − ui = γ for i ≥ N . Then we have

−
∑
i≥0

K∑
j=1

J ′j(γ)

(
ui+j − ui

j
− γ
)

= −
K∑
j=1

N−1∑
i=0

J ′j(γ)
1

j

j−1∑
s=0

(
us+i+1 − us+i − γ

)
= −

K∑
j=1

1

j
J ′j(γ)

j−1∑
s=0

N−1+s∑
i=s

(ui+1 − ui − γ)

= −
K∑
j=1

J ′j(γ)
N−1∑
i=0

(ui+1 − ui − γ) +
K∑
j=1

1

j
J ′j(γ)

j−1∑
s=0

s−1∑
i=0

(ui+1 − ui − γ)

=
K∑
j=2

j−1∑
i=1

j − i
j

J ′j(γ)(θi − γ),

where we used ui−ui−1 = θi for 1 ≤ i ≤ K−1 and
∑K

j=1 J
′
j(γ) = J ′CB(γ) = 0. Combining

the above calculation with the definition of B̃(θ, γ) in (3.64), we obtain that B̃(θ, γ) is

given as in (3.69).

3.3.2 The case ` > γ

In analogy to [11, 50], we have fracture in the case ` > γ, cf. Proposition 3.9. The presence

of fracture yields additional boundary layer energies. These energies are generalisations

of the boundary layer energies provided in [50] for the case of nearest and next-to-nearest

neighbour interactions. For given θ ∈ RK−1
+ , we define

Bb(θ) := inf
k∈N

k≥K−1

min

{ K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
vs − vs−1

)
+

K∑
j=2

k−j∑
i=0

{
Jj

(
vi+j − vi

j

)

+
cj
j

i+j−1∑
s=i

J1

(
vs+1 − vs

)
− ψj(γ)

}
: v : N0 → R, vk = 0,

vk+1−s − vk−s = θs if s ∈ {1, . . . ,K − 1}
}
. (3.70)

Remark 3.17. The boundary layer energy Bb(θ) can be interpreted as follows: if fracture

occurs at the boundary on a macroscopic scale then Bb(θ) yields the optimal distance

from the boundary on a microscopic scale. By (3.8) and since γ denotes the unique

minimum point of J0,j with J0,j(γ) = ψj(γ), we have that the terms in the sum from

i = 0 to i = k − j are non-negative. In the case of nearest and next-to-nearest neighbour

interactions, the definition of Bb(θ) coincides with the boundary layer energy given in [50,

eq. (4.27)].
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Next, we introduce the boundary layer energy of a free boundary B(γ), defined by

B(γ) := inf
N∈N0

min

{ K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
us − us−1

)
+

K∑
j=2

∑
i≥0

{
Jj

(
ui+j − ui

j

)

+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

)
− ψj(γ)

}
: u : N0 → R,

u0 = 0, ui+1 − ui = γ if i ≥ N
}
. (3.71)

Remark 3.18. The same arguments as above yield that the terms in the infinite sum over

i ≥ 0 are non-negative. In the case of nearest and next-to-nearest neighbour interactions

the definition of B(γ) coincides with the boundary layer energies, also denoted by B(γ)

in [11, 50].

Before we state the Γ-convergence result for H`
1,n, we note that the definition of the

elastic boundary layer energy B(θ, γ) in (3.50) reads

B(θ, γ) = inf
N∈N

N≥K−1

min

{ K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
vs − vs−1

)
+

K∑
j=2

∑
i≥0

{
Jj

(
vi+j − vi

j

)

+
cj
j

i+j−1∑
s=i

J1

(
vs+1 − vs

)
− ψj(γ)

)}
: v : N0 → R, v0 = 0,

vs − vs−1 = θi if s ∈ {1, . . . ,K − 1}, vi+1 − vi = γ if i ≥ N
}
, (3.72)

for θ ∈ RK−1
+ , where we have used ψ′j(γ) = 0.

Theorem 3.19. Suppose that hypotheses (LJ1)–(LJ5) hold. Let ` > γ and u
(1)
0 , u

(1)
1 ∈

RK−1
+ . Then (H`

1,n) Γ-converges with respect to the L1(0, 1)-topology to the functional H`
1

defined by

H`
1(u) =



B(u
(1)
0 , γ)(1−#(Su ∩ {0})) +BBJ(u

(1)
0 )#(Su ∩ {0})

+BIJ#(Su ∩ (0, 1)) +BBJ(u
(1)
1 )#(Su ∩ {1})

+B(u
(1)
1 , γ)(1−#(Su ∩ {1}))−

∑K
j=2(j − 1)ψj(γ) if u ∈ SBV `

c (0, 1),

+∞ else

(3.73)

on L1(0, 1), where, for θ ∈ RK−1
+ ,

BBJ(θ) =
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(θs) +Bb(θ) +B(γ)−
K∑
j=2

jψj(γ) (3.74)
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is the boundary layer energy due to a jump at the boundary and

BIJ = 2B(γ)−
K∑
j=2

jψj(γ) (3.75)

is the boundary layer energy due to a jump at an internal point of (0, 1).

Remark 3.20. Note that in the case K = 2, the limiting functional H`
1 coincides with the

one which is derived in [50, Theorem 4.2].

Proof. Liminf inequality. As in the proof of [50, Theorem 4.2] for the case K = 2, we

assume, without loss of generality, that there exists only one jump point. By symmetry

it is sufficient to distinguish between a jump in 0 or (0, 1).

Jump at 0. Let u and (un) be such that Su = {0} and un → u in L1(0, 1) with

supnH
`
1,n(un) <∞. By Proposition 3.9, we have

u(x) =

0 if x = 0,

γx+ (`− γ) if x ∈ (0, 1].
(3.76)

We prove that

lim inf
n→∞

H`
1,n(un) ≥

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +Bb(u

(1)
0 ) +B(γ)

+B(u
(1)
1 , γ)−

K∑
j=2

(2j − 1)ψj(γ). (3.77)

From (3.41), ψ∗∗j (`) = ψj(γ) and ψ′j(`) = 0 for ` ≥ γ, we deduce that

H`
1,n(un) =

K∑
j=2

n−j∑
i=0

σij,n(γ) +

K∑
j=2

cj

j−1∑
s=1

j − s
j

(
J1(u

(1)
0,s) + J1(u

(1)
1,s)
)
−

K∑
j=2

(j − 1)ψj(γ).

(3.78)

By Lemma 3.11 there exist (T 0
n), (T 1

n) ⊂ N such that lim
n→∞

λnT
0
n = 0, lim

n→∞
λnT

1
n = 1 and

lim
n→∞

u
T in+1+s
n − uT

i
n+s
n

λn
= γ, for i ∈ {0, 1} and 0 ≤ s ≤ K − 1. (3.79)

Let us first show the estimate regarding the elastic boundary layer energy at 1. This can

be done exactly as in proof of Theorem 3.12. We define wn as

wmn =


`−un−mn

λn
if 0 ≤ m ≤ n− T 1

n ,

γ
(
m− (n− T 1

n)
)

+ `−uT
1
n
n

λn
if m ≥ n− T 1

n .
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In the same way as (3.57), we prove that

lim inf
n→∞

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
1,s) +

n−j∑
i=T 1

n+1

σij,n(γ)

 ≥ B(u
(1)
1 , γ). (3.80)

By (3.78), σij,n(γ) ≥ 0, and the definition of BBJ(u
(1)
0 ), it is left to show that

lim inf
n→∞

K∑
j=2

T 0
n∑

i=0

σij,n(γ) ≥ Bb(u
(1)
0 ) +B(γ)−

K∑
j=2

jψj(γ).

As in the proof of [50, Theorem 4.2], we deduce from un → u that there exists (hn) ⊂ N
with λnhn → 0 such that

lim
n→∞

uhn+1
n − uhnn

λn
= +∞. (3.81)

Indeed, since un converges to u almost everywhere, there exists for every ε0 > 0 an

ε ∈ (0, ε0) such that un(ε) → u(ε) = εγ + ` − γ, see (3.76). Let us define the sequence

(qn) ⊂ N such that ε ∈ λn[qn, qn + 1). Using un(0) = 0 for all n ∈ N and γ > 0, we obtain

for n sufficiently large

`− γ ≤
∫ ε

0
u′n(x)dx =

qn−1∑
i=0

λn
ui+1
n − uin
λn

+ (ε− qnλn)
uqn+1
n − uqnn

λn
.

With a slight abuse of notation we set uqn+1
n := max{uqn+1

n , uqnn }. The above estimate

and ε− qnλn ≤ λn imply that there exists 0 ≤ in ≤ qn such that

uin+1
n − uinn

λn
≥ 1

qn + 1

qn∑
i=0

ui+1
n − uin
λn

≥ `− γ
λn(qn + 1)

≥ `− γ
2ε0

.

By ` − γ > 0 and the arbitrariness of ε0 > 0, we deduce the existence of (hn) ⊂ N such

that λnhn → 0 and (3.81) is satisfied.

From supnH
`
1,n(un) < +∞ and limz→−∞ Jj(z) = +∞, Jj(z) ≥ Jj(δj) ∈ R for j ∈

{1, . . . ,K}, see (LJ2), we deduce the existence of C ∈ R with infn
ui+1
n −uin
λn

≥ C. Thus,

(3.81) implies

uhn+j+s
n − uhn+s

n

jλn
≥ uhn+1

n − uhnn
jλn

+
j − 1

j
C → +∞ as n→∞,

for j ∈ {2, . . . ,K} and s ∈ {0, . . . , j − 1}. Hence, (3.9) yields limn→∞ r1(n) = 0, where

r1(n) is defined by

r1(n) =
K∑
j=1

0∑
s=−j+1

Jj

(
uhn+j+s
n − uhn+s

n

jλn

)
.
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It is useful to rewrite the terms which involve uhn+1
n − uhnn as follows:

K∑
j=2

hn∑
i=hn−j+1

σij,n(γ)

=
K∑
j=2

hn∑
i=hn−j+1

cjj
i+j−1∑
s=i
s 6=hn

J1

(
us+1
n − usn
λn

)
− ψj(γ)

+ r1(n)

=
K∑
k=2

cj

j−1∑
s=1

j − s
j

{
J1

(
uhn+1−s
n − uhn−sn

λn

)
+ J1

(
uhn+s+1
n − uhn+s

n

λn

)}

−
K∑
j=2

jψj(γ) + r1(n) (3.82)

Note that the second equality follows from:

hn∑
i=hn−j+1

i+j−1∑
s=i
s 6=hn

as =
0∑

i=1−j

{ −1∑
s=i

ahn+s +

i+j−1∑
s=1

ahn+s

}
=

0∑
i=1−j

{ −i∑
s=1

ahn−s +

i+j−1∑
s=1

ahn+s

}

=

j−1∑
s=1


−s∑

i=1−j
ahn−s +

0∑
i=s−j+1

ahn+s

 =

j−1∑
s=1

(j − s)(ahn−s + ahn+s)

with as = J1(u
s+1
n −usn
λn

). Hence, we have by (3.82) that

K∑
j=2

T 0
n∑

i=0

σij,n(γ) =
K∑
j=2

{ hn−j∑
i=0

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uhn−s+1
n − uhn−sn

λn

)

+

T 0
n∑

i=hn+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uhn+s+1
n − uhn+s

n

λn

)}
−

K∑
j=2

jψj(γ) + r1(n). (3.83)

It remains to show the following inequalities:

K∑
j=2

{
hn−j∑
i=0

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uhn+1−s
n − uhn−sn

λn

)}
≥Bb(u

(1)
0 ), (3.84)

K∑
j=2


T 0
n∑

i=hn+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uhn+s+1
n − uhn+s

n

λn

) ≥B(γ)− ω(n), (3.85)

with limn→∞ ω(n) = 0. Let us first prove inequality (3.84). We define for 0 ≤ m ≤ hn

ŵmn = − 1

λn
uhn−mn .



66 Chapter 3. On Lennard-Jones type systems and their asymptotic analysis

We can now rewrite the sum involving the σij,n(γ) terms on the left-hand side of (3.84) in

terms of ŵmn and obtain that

K∑
j=2

hn−j∑
i=0

σij,n(γ)

=
K∑
j=2

hn−j∑
m=0

{
Jj

(
uhn−mn − uhn−m−jn

jλn

)
+
cj
j

m+j−1∑
s=m

J1

(
uhn−sn − uhn−s−1

n

λn

)
− ψj(γ)

}

=
K∑
j=2

hn−j∑
m=0

{
Jj

(
ŵm+j − ŵmn

j

)
+
cj
j

m+j−1∑
s=m

J1

(
ŵs+1
n − ŵsn

)
− ψj(γ)

}

Hence, we have for the left-hand side of (3.84)

K∑
j=2

{
hn−j∑
i=0

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uhn+1−s
n − uhn−sn

λn

)}

=

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1

(
ŵsn − ŵs−1

n

)
+

hn−j∑
m=0

(
Jj

(
ŵm+j − ŵmn

j

)

+
cj
j

m+j−1∑
s=m

J1

(
ŵs+1
n − ŵsn

)
− ψj(γ)

)}
.

Furthermore, it holds ŵhnn = 1
λn
u0
n = 0 and ŵhn+1−s

n − ŵhn−sn = 1
λn

(usn − us−1
n ) = u

(1)
0,s for

s ∈ {1, . . . ,K − 1}. Hence, ŵn is an admissible test function for Bb(u
(1)
0 ) and thus (3.84)

holds true. Let us prove (3.85). Define for i ≥ 0:

ũin =


uhn+1+i
n −uhn+1

n
λn

if 0 ≤ i ≤ T 0
n − hn +K − 1,

γ
(
i− (T 0

n − hn +K − 1)
)

+ u
T0
n+K
n −uhn+1

n
λn

if i ≥ T 0
n − hn +K − 1.

We can now rewrite the left-hand side of (3.85) in terms of ũin:

K∑
j=2


T 0
n∑

i=hn+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uhn+s+1
n − uhn+s

n

λn

)
=

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1

(
ũsn − ũs−1

n

)
+

T 0
n−hn−1∑
i=0

{
Jj

(
ũi+jn − ũin

j

)

+
cj
j

i+j−1∑
s=i

J1

(
ũs+1
n − ũsn

)
− ψj(γ)

}



Chapter 3. On Lennard-Jones type systems and their asymptotic analysis 67

=

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1

(
ũsn − ũs−1

n

)
+
∑
i≥0

{
Jj

(
ũi+jn − ũin

j

)

+
cj
j

i+j−1∑
s=i

J1

(
ũs+1
n − ũsn

)
− ψj(γ)

}}
− ω(n) (3.86)

with

ω(n) =
K∑
j=2

T 0
n−hn+K−2∑
i=T 0

n−hn

{
Jj

(
ũi+jn − ũin

j

)
+
cj
j

i+j−1∑
s=i

J1

(
ũs+1
n − ũsn

)
− ψj(γ)

}
.

Indeed, by the definition of ũn and Jj(γ) + cjJ1(γ) = ψj(γ) the terms in the infinite sum

over i ≥ 0 in (3.86) vanish identically for i ≥ T 0
n −hn +K − 1. Moreover, we deduce from

(3.79) and the definition of ũn that

lim
n→∞

(ũT
0
n−hn+s
n − ũT 0

n−hn+s−1
n ) = lim

n→∞

u
T 0
n+1+s
n − uT

0
n+s
n

λn
= γ

for s ∈ {1, . . . ,K−1}. Combining this with ũi+1
n − ũin = γ for i ≥ T 0

n−hn+K−1 and the

definition of ψj implies limn→∞ ω(n) = 0. Thus inequality (3.85) is proven. Altogether,

we deduce from (3.78), (3.80), (3.83)–(3.85) the assertion (3.77).

Internal jump. Assume that Su = {t̄} with t̄ ∈ (0, 1). Let (un) be a sequence converging

to u in L1(0, 1) such that supnH
`
1,n(un) < +∞. Then Proposition 3.9 implies

u(t) =

γx if 0 ≤ x < t̄,

γx+ `− γ if t̄ < x ≤ 1.
(3.87)

We prove that

lim inf
n→∞

H`
1,n(un) ≥ B(u

(1)
0 , γ) +B(u

(1)
1 , γ) + 2B(γ)−

K∑
j=2

(2j − 1)ψj(γ). (3.88)

From Lemma 3.11, we deduce the existence of sequences (T 0
n), (T 1

n) ⊂ N such that

lim
n→∞

λnT
0
n = 0, lim

n→∞
λnT

1
n = 1 satisfying (3.79). As in the elastic case, see (3.55) and

(3.57), we obtain:

lim inf
n→∞

K∑
j=2

cj j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

T 0
n∑

i=0

σij,n(γ)

 ≥ B(u
(1)
0 , γ), (3.89)

lim inf
n→∞

K∑
j=2

cj j∑
s=1

j − s
j

J1(u
(1)
1,s) +

n−j∑
i=T 1

n+1

σij,n(γ)

 ≥ B(u
(1)
1 , γ). (3.90)
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Furthermore, as in the case of a jump in 0 there exists a sequence (hn) ⊂ N such that

limn→∞ λnhn = t̄ and

lim
n→∞

uhn+1
n − uhnn

λn
= +∞. (3.91)

Indeed, we can apply a similar argument as for a jump in 0. We only give a sketch of the

reasoning here. Fix ε > 0. Since un → u almost everywhere there exist t1, t2 with t1 ∈
(t̄−ε, t̄) and t2 ∈ (t̄, t̄+ε) such that un(t1)→ u(t1) = γt1 and un(t2)→ u(t2) = γt2 +`−γ,

see (3.87). Thus, we have for n sufficiently large that un(t1) ≤ γt̄ and un(t2) ≥ γt̄+ `− γ.

Hence, we have

`− γ ≤ un(t2)− un(t1) =

∫ t2

t1

u′n(x)dx.

Now we can rewrite the above inequality in terms of the discrete derivatives of un and

obtain that there exists in with λnin ∈ (t− ε, t+ ε) such that

`− γ
4ε
≤ uin+1

n − uinn
λn

.

The claim follows from `− γ > 0 and the arbitrariness of ε > 0.

From (3.91) and similar calculations as in (3.82) and (3.83), we obtain that

K∑
j=2

T 1
n∑

i=T 0
n+1

σij,n(γ) =

K∑
j=2

{ hn−j∑
i=T 0

n+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uhn−s+1
n − uhn−sn

λn

)

+

T 1
n∑

hn+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uhn+s+1
n − uhn+s

n

λn

)}
−

K∑
j=2

jψj(γ) + r(n), (3.92)

where

r(n) =

K∑
j=1

0∑
s=−j+1

Jj

(
uhn+j+s
n − uhn+s

n

jλn

)
→ 0 as n→∞.

Thus, it remains to prove that

K∑
j=2

{ hn−j∑
i=T 0

n+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uhn−s+1
n − uhn−sn

λn

)}
≥ B(γ)− r1(n), (3.93)

K∑
j=2

{ T 1
n∑

i=hn+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uhn+s+1
n − uhn+s

n

λn

)}
≥ B(γ)− r2(n), (3.94)

with r1(n), r2(n)→ 0 as n→∞. Since inequality (3.94) can be proven exactly as (3.85),

we only show (3.93). Note that also this estimate follows by very similar arguments as
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we have used to show (3.85). We define for i ≥ 0

ũin =


uhnn −uhn−ih

λn
if 0 ≤ i ≤ hn − T 0

n − 1,

γ(i− hn + T 0
n + 1) + uhnn −u

T0
n+1
n

λn
if i ≥ hn − T 0

n − 1.
(3.95)

Now we rewrite the left-hand side in (3.93) in terms of ũn

K∑
j=2

{ hn−j∑
i=T 0

n+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uhn−s+1
n − uhn−sn

λn

)}

=

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(ũsn − ũs−1
n ) +

K∑
j=2

hn−j−T 0
n−1∑

i=0

{
Jj

(
uhn−in − uhn−i−jn

jλn

)

+
cj
j

i+j−1∑
s=i

J1

(
uhn−sn − uhn−s−1

n

λn

)
− ψj(γ)

}

=
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(ũsn − ũs−1
n ) +

K∑
j=2

∑
i≥0

{
Jj

(
ũi+jn − ũin

j

)

+
cj
j

i+j−1∑
s=i

J1(ũs+1
n − usn)− ψj(γ)

}
− r1(n),

where

r1(n) =

K∑
j=2

hn−T 0
n−2∑

i=hn−j−T 0
n

{
Jj

(
ũi+jn − ũin

j

)
+
cj
j

i+j−1∑
s=i

J1(ũs+1
n − usn)− ψj(γ)

}
.

Indeed, by definition of ũn and (3.14) the terms in the infinite sum over i with i ≥
hn − T 0

n − 1 vanish identically. Furthermore, by the choice of T 0
n , see (3.79), we have for

s ∈ {0, . . . ,K − 2} that

lim
n→∞

(ũhn−T
0
n−K+s+1

n − ũhn−T 0
n−K+s

n ) = lim
n→∞

u
T 0
n+K−s
n − uT

0
n+K−s−1
n

λn
= γ.

Hence, we have r1(n)→ 0 as n→∞. Combining (3.89), (3.90) and (3.92)–(3.94) proves

the assertion (3.88).

Limsup inequality. As for the lower bound, we distinguish between a jump at 0 and a

jump in (0, 1).

Jump in 0. Let u ∈ SBV `
c (0, 1) be given as in (3.76). We have to show that there exists
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a sequence (un) with un → u in L1(0, 1) and

lim sup
n→∞

H`
1,n(un) ≤

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +Bb(u

(1)
0 ) +B(γ)

+B(u
(1)
1 , γ)−

K∑
j=2

(2j − 1)ψj(γ). (3.96)

Let us fix η > 0. By the definition of B(γ), we can find a function ũ : N0 → R and an

Ñ ∈ N such that ũ0 = 0, ũi+1 − ũi = γ if i ≥ Ñ and

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
ũs − ũs−1

)
+

K∑
j=2

∑
i≥0

{
Jj

(
ũi+j − ũi

j

)

+
cj
j

i+j−1∑
s=i

J1

(
ũs+1 − ũs

)
− ψj(γ)

}
≤ B(γ) + η. (3.97)

Analogously, by the definition of Bb(θ) given in (3.70), there exist ŵ : N0 → R and a

k̂0 ∈ N, k̂0 ≥ K − 1 such that ŵk̂0 = 0, ŵk̂0+1−s − ŵk̂0−s = u
(1)
0,s for s = 1, . . . ,K − 1 and

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
ŵs − ŵs−1

)
+

K∑
j=2

k̂0−j∑
i=0

{
Jj

(
ŵi+j − ŵi

j

)

+
cj
j

i+j−1∑
s=i

J1

(
ŵs+1 − ŵs

)
− ψj(γ)

}
≤ Bb(u

(1)
0 ) + η. (3.98)

Moreover, we find a function w : N0 → R and an N2 ∈ N with w0 = 0, ws − ws−1 = u
(1)
1,s

for s ∈ {1, . . . ,K − 1}, wi+1 − wi = γ for i ≥ N2 such that

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
ws − ws−1

)
+

K∑
j=2

∑
i≥0

{
Jj

(
wi+j − wi

j

)

+
cj
j

i+j−1∑
s=i

J1

(
ws+1 − ws

)
− ψj(γ)

}
≤ B(u

(1)
1 , γ) + η. (3.99)

Let (T 1
n) be a sequence of integers such that

T 1
n − (k̂0 +K) ≥ Ñ and T 1

n +K ≤ n−N2 for all n ∈ N large enough. (3.100)

We construct a recovery sequence (un) by means of the functions ũ, w and ŵ:

uin =


−λnŵk̂0−i if 0 ≤ i ≤ k̂0,

`+ λn(ũi−(k̂0+1) − wn−(T 1
n+1) − ũT 1

n+1−(k̂0+1)) if k̂0 + 1 ≤ i ≤ T 1
n + 1,

`− λnwn−i if T 1
n + 1 ≤ i ≤ n.
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The definition of un, ŵ, and w implies that u0
n = 0 and unn = `. Moreover, we have that

usn − us−1
n = λn(ŵk0−s+1 − ŵk0−s) = λnu

(1)
0,s,

un+1−s
n − un−sn = λn(ws − ws−1) = λnu

(1)
1,s,

for s ∈ {1, . . . ,K − 1}. Thus, un satisfies the boundary conditions (3.3). Furthermore, it

holds ui+1
n − uin = λnγ for Ñ + k̂0 + 1 ≤ i ≤ n− 1−N2 by definition. Let us show:

lim
n→∞

(uk̂0+1
n − uk̂0

n ) = `− γ. (3.101)

For this, we use that ũi+1 − ũi = γ for i ≥ Ñ and wi+1 − wi = γ if i ≥ N2:

uk̂0+1
n − uk̂0

n =`+ λn(ũ0 − wn−(T 1
n+1) − ũT 1

n+1−(k̂0+1) + ŵ0)

=`+ λn(wN2 − wn−(T 1
n+1) + ũÑ − ũT 1

n−k̂0 − wN2 − ũÑ + ŵ0)

=`+ λn(γ(N2 − n+ T 1
n + 1 + Ñ − T 1

n + k̂0)− wN2 − ũÑ + ŵ0)

=`− γ + λn(γ(N2 + Ñ + k̂0 + 1)− wN2 − ũÑ + ŵ0) → `− γ as n→∞.

Hence, we have un → u in L1(0, 1). Indeed, the above calculations imply limn→∞ u
k̂0+1
n =

`−γ and we deduce from the definition of un that uk̂0+Ñ+1
n −uk̂0+1

n = λnũ
Ñ → 0 as n→∞.

Since un is equibounded in L∞(0, 1) and ui+1−ui = λnγ for i ∈ {Ñ+k̂0+1, . . . , n−1−N2},
we have∫ 1

0
|un − u|dx

=

∫ λn(n−N2)

λn(k̂0+Ñ+1)
|uk̂0+1+Ñ
n + γ(x− λn(k̂0 + Ñ + 1))− (`− γ + γx)|dx+ o(1)

=

∫ λn(n−N2)

λn(k̂0+Ñ+1)
|uk̂0+1+Ñ
n − γλn(k̂0 + Ñ + 1)− (`− γ)|dx+ o(1)→ 0

as n → ∞. By the definition of un and (3.101) it holds for j ∈ {1, . . . ,K} and s ∈
{0, . . . , j − 1} that

uk̂0+j−s
n − uk̂0−s

n

λn
=
`− γ
λn

+O(1)→ +∞ as n→∞.

Hence, we obtain similarly to (3.82) that

K∑
j=2

T 1
n∑

i=0

σij,n(γ) =
K∑
j=2

{ k̂0−j∑
i=0

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uk̂0−s+1
n − uk̂0−s

n

λn

)

+

T 1
n∑

i=k̂0+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uk̂0+s+1
n − uk̂0+s

n

λn

)}
−

K∑
j=2

jψj(γ) + r(n) (3.102)
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with

r(n) =
K∑
j=1

0∑
s=−j+1

Jj

(
uk̂0+j+s
n − uk̂0+s

n

jλn

)
→ 0 as n→∞. (3.103)

By the definition of un and ŵ, we have

K∑
j=2


k̂0−j∑
i=0

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uk̂0−s+1
n − uk̂0−s

n

λn

)
=

K∑
j=2

k̂0−j∑
i=0

{
Jj

(
ŵi+j − ŵi

j

)
+
cj
j

i+j−1∑
s=i

J1(ŵs+1 − ŵs)− ψj(γ)

}

+
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(ŵs − ŵs−1) ≤ Bb(u
(1)
0 ) + η. (3.104)

Furthermore, we have

K∑
j=2


T 1
n+1−j∑
i=k̂0+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uk̂0+s+1
n − uk̂0+s

n

λn

)
=

K∑
j=2

T 1
n−k̂0−j∑
i=0

{
Jj

(
ũi+j − ũi

j

)
+
cj
j

i+j−1∑
s=i

J1(ũs+1 − ûs)− ψj(γ)

}

+

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
ũŝ − ũŝ−1

)
≤ B(γ) + η. (3.105)

Note that we used that ũi+1 − ũi = γ for i ≥ Ñ and T 1
n − (k̂0 + K − 1) ≥ Ñ for n large

enough (see (3.100)).

From the assumption on ũ and w it follows for n sufficiently large such that (3.100)

holds ui+1
n − uin = λnγ for i = T 1

n + 2 − K, . . . , T 1
n + K. Hence, σij,n(γ) = 0 for i =

T 1
n + 2−K, . . . , T 1

n . In the same way as in the elastic case, we obtain

K∑
j=2

n−j∑
i=T 1

n+1

σin(γ) +
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(u
(1)
1,s) ≤ B(u

(1)
1 , γ) + η (3.106)
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Combining (3.102) with (3.104)-(3.106), and σij,n(γ) = 0 for i ∈ {T 1
n + 2−K, . . . , T 1

n}, we

have for n sufficiently large that

H`
1,n(un) =

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s)

+

K∑
j=2


k̂0−j∑
i=0

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uk̂0−s+1
n − uk̂0−s

n

λn

)
+

K∑
j=2


T 1
n+1−j∑
i=k̂0+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
uk̂0+s+1
n − uk̂0+s

n

λn

)
+

K∑
j=2


n−j∑

i=T 1
n+1

σin(γ) + cj

j−1∑
s=1

j − s
j

J1(u
(1)
1,s)

+ r(n)−
K∑
j=2

(2j − 1)ψj(γ)

≤
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +Bb(u

(1)
0 ) +B(γ) +B(u

(1)
1 , γ)

−
K∑
j=2

(2j − 1)ψj(γ) + 3η + r(n),

with r(n) as in (3.103). By the arbitrariness of η > 0 this proves the assertion (3.96).

Internal jump. Consider u ∈ SBV `
c (0, 1) with Su = {t}, t ∈ (0, 1). We prove the

existence of a sequence (un) converging to u in L1(0, 1), such that

lim sup
n→∞

H`
1,n(un) ≤ B(u

(1)
0 , γ) +B(u

(1)
1 , γ) + 2B(γ)−

K∑
j=2

(2j − 1)ψj(γ). (3.107)

Fix η > 0. As in the elastic case, we find v : N0 → R and N1 ∈ N such that v0 = 0,

vs − vs−1 = u
(1)
0,s for s ∈ {1, . . . ,K − 1} and vi+1 − vi = γ for i ≥ N1 such that it holds

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
vs − vs−1

)
+

K∑
j=2

∑
i≥0

{
Jj

(
vi+j − vi

j

)

+
cj
j

i+j−1∑
s=i

J1

(
vs+1 − vs

)
− ψj(γ)

}
≤ B(u

(1)
0 , γ) + η. (3.108)

Analogously, there exist a function w : N0 → R and an N2 ∈ N such that (3.99) holds.

Finally, by definition of B(γ), we can find as in the previous case ũ : N0 → R and Ñ ∈ N
such that (3.97) holds. Let T 0

n , T
1
n , hn be sequences of integers such that limn→∞ hnλn = t

and

T 0
n ≥ N1 +K, T 1

n +K ≤ n−N2, Ñ +K ≤ min{hn − T 0
n − 1, T 1

n − hn − 1} (3.109)
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for n large enough. We construct the recovery sequence by means of v, w and ũ:

uin =



λnv
i if 0 ≤ i ≤ T 0

n ,

λn(vT
0
n − ũhn−i + ũhn−T

0
n) if T 0

n ≤ i ≤ hn,

`+ λn(ũi−(hn+1) − ũT 1
n−hn − wn−(T 1

n+1)) if hn + 1 ≤ i ≤ T 1
n + 1,

`− λnwn−i if T 1
n + 1 ≤ i ≤ n.

By the definition of v and w, we observe that un satisfies the boundary conditions (3.3).

Moreover, we have ui+1
n −uin = λnγ for i ∈ {N1, . . . , hn−Ñ−1}∪{hn+Ñ+1, . . . , n−N2−1}.

Next, we show

lim
n→∞

(uhn+1
n − uhnn ) = `− γ. (3.110)

Therefore, we use that wi+1−wi = γ for i ≥ N2, vi+1−vi = γ for i ≥ N1 and ũi+1−ũi = γ

for i ≥ Ñ :

uhn+1
n − uhnn =`+ λn(ũ0 − ũT 1

n−hn − wn−(T 1
n+1) − vT 0

n + ũ0 − ũhn−T 0
n)

=`+ λn

(
wN2 − wn−(T 1

n+1) − (ũT
1
n−hn − ũÑ )− (vT

0
n − vN1)

− (ũhn−T
0
n − ũÑ )− wN2 − 2ũÑ − vN1

)
=`− γ + λn

(
γ(1 +N2 +N1 + 2Ñ)− wN2 − 2ũÑ − vN1

)
.

Similarly as in the previous case, we can deduce that un → u in L1(0, 1). As in the case

of a jump in 0 we have that

K∑
j=2

T 1
n∑

i=T 0
n

σij,n(γ) =
K∑
j=2

{ hn−j∑
i=T 0

n

σij,n(γ) + cj

j∑
s=1

j − s
j

J1

(
uhn+1−s
n − uhn−sn

λn

)

+ cj

j−1∑
s=1

j − s
j

J1

(
uhn+s+1
n − uhn+s

n

λn

)
+

T 1
n∑

i=hn+1

σij,n(γ)

}
−

K∑
j=2

jψj(γ) + r(n)

with r(n)→ 0 as n→∞. In order to estimate the energy H`
1,n(un) it is useful to rewrite

it as follows:

H`
1,n(un) =

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

T 0
n−1∑
i=0

σij,n(γ) +

hn−j∑
i=T 0

n

σij,n(γ)

+ cj

j−1∑
s=1

j − s
j

J1

(
ũs − ũs−1

)
+

T 1
n∑

i=hn+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1

(
ũsn − ũs−1

)
+

n−j∑
i=T 1

n+1

σij,n(γ) + cj

j−1∑
s=1

j − s
j

J1(u
(1)
1,s)

}
−

K∑
j=2

(2j − 1)ψj(γ) + r(n).
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Using (3.108), (3.99) and (3.97), we obtain

lim sup
n→∞

H`
1,n(un) ≤ B(u

(1)
0 , γ) +B(u

(1)
0 , γ)−

K∑
j=2

(2j − 1)ψj(γ) + 2B(γ) + 4η,

which proves, by the arbitrariness of η > 0, the assertion (3.107).

In analogy to Proposition 3.15, we reformulate the functional H`
1 without the explicit

dependence on c = (cj)
K
j=2 in the case ` > γ. To this end, we introduce the following

boundary layer energies

B̃b(θ) := inf
k∈N

k≥K−1

min

{
K∑
j=1

k−j∑
i=0

{
Jj

(
vi+j − vi

j

)
− Jj(γ)

}
:

v : N0 → R, vk = 0, vk+1−s − vk−s = θs if 1 ≤ s ≤ K − 1

}
, (3.111)

B̃(γ) := inf
N∈N0

min

{∑
i≥0

{ K∑
j=1

Jj

(
ui+j − ui

j

)
− JCB(γ)

}
:

u : N0 → R, u0 = 0, ui+1 − ui = γ if i ≥ N

}
. (3.112)

Proposition 3.21. Suppose that hypotheses (LJ1)–(LJ5) hold. Let ` > γ and u
(1)
0 , u

(1)
1 ∈

RK−1
+ . Let B̃(θ, γ), B̃b(θ) and B̃(γ) are as (3.64), (3.111) and (3.112), respectively. Then

the functional H`
1,n, given in (3.73), reads

H`
1(u) =



B̃(u
(1)
0 , γ) + B̃(u

(1)
1 , γ) + βBJ(u

(1)
0 )#(Su ∩ {0})

+ βIJ#(Su ∩ (0, 1)) + βBJ(u
(1)
1 )#(Su ∩ {1})

−
∑K

j=2(j − 1)Jj(γ) if u ∈ SBV `
c (0, 1)

+∞ else

(3.113)

on L1(0, 1), where, for θ ∈ RK−1
+ ,

βBJ(θ) := B̃b(θ) + B̃(γ)−
K∑
j=1

jJj(γ)− B̃(θ, γ), βIJ := 2B̃(γ)−
K∑
j=1

jJj(γ). (3.114)
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Proof. By (3.73) and (3.14), it is sufficient to prove that BIJ = βIJ and that for any

θ ∈ RK−1
+ the following equalities hold true:

B(θ, γ)− 1

2
J1(γ)

K∑
j=2

(j − 1)cj = B̃(θ, γ),

BBJ(θ)− 1

2
J1(γ)

K∑
j=2

(j − 1)cj = βBJ(θ) + B̃(θ, γ).

The equality regarding the elastic boundary layer energies B(θ, γ) and B̃(θ, γ) follows

from (3.65) and ψ′j(γ) = 0. Next, we show that

B(γ)− 1

2
J1(γ)

K∑
j=2

(j − 1)cj = B̃(γ), (3.115)

where B(γ) is given in (3.71). This equality implies BIJ = βIJ . Indeed, we have by

(3.75), (3.14) and
∑K

j=2 cj = 1 that

BIJ =2B(γ)−
K∑
j=2

j(Jj(γ) + cjJ1(γ)) = 2B(γ)−
K∑
j=2

(j − 1)cjJ1(γ)−
K∑
j=1

jJj(γ)

=2B̃(γ)−
K∑
j=1

jJj(γ) = βIJ .

Let u : N0 → R be a candidate for the minimum problems defining B(γ) and B̃(γ),

i.e. u0 = 0 and ui+1 − ui = γ for i ≥ N for some N ∈ N0. Then it holds for the infinite

sum in the definition of B(γ) that

K∑
j=2

∑
i≥0

{
Jj

(
ui+j − ui

j

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

)
− ψj(γ)

}

=
N−1∑
i=0

{ K∑
j=2

Jj

(
ui+j − ui

j

)
−

K∑
j=2

ψj(γ)

}
+

K∑
j=2

cj
j

N−1∑
i=0

i+j−1∑
s=i

J1

(
us+1 − us

)
.

The nearest neighbour terms on the right-hand side above can be rewritten as

K∑
j=2

cj
j

N−1∑
i=0

i+j−1∑
s=i

J1

(
us+1 − us

)
=

K∑
j=2

cj
j

j−1∑
s=0

N+s−1∑
i=s

J1

(
ui+1 − ui

)
=

K∑
j=2

cj

N−1∑
i=0

J1

(
ui+1 − ui

)
−

K∑
j=2

cj
j

j−1∑
s=0

{
s−1∑
i=0

J1

(
ui+1 − ui

)
−
N+s−1∑
i=N

J1

(
ui+1 − ui

)}
.
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Using ui+1 − ui = γ for i ≥ N , we obtain

K∑
j=2

cj
j

j−1∑
s=0

s−1∑
i=0

J1

(
ui+1 − ui

)
=

K∑
j=2

cj

j−1∑
i=1

j − i
j

J1

(
ui − ui−1

)
,

K∑
j=2

cj
j

j−1∑
s=0

N+s−1∑
i=N

J1

(
ui+1 − ui

)
=

1

2

K∑
j=2

cj(j − 1)J1(γ).

Altogether, we showed that

K∑
j=2

∑
i≥0

{
Jj

(
ui+j − ui

j

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

)
− ψj(γ)

}

+

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
us − us−1

)
− 1

2

K∑
j=2

(j − 1)cjJ1(γ)

=
N−1∑
i=0

{ K∑
j=2

Jj

(
ui+j − ui

j

)
−

K∑
j=2

ψj(γ)

}
+

N−1∑
i=0

J1

(
ui+1 − ui

)
=
∑
i≥0

{ K∑
j=1

Jj

(
ui+j − ui

j

)
− JCB(γ)

}
,

where we applied again
∑K

j=2 cj = 1 and ui+1 − ui = γ for i ≥ N . By the arbitrariness of

u : N0 → R and N ∈ N0 with u0 = 0 and ui+1 − ui = γ for i ≥ N and the definition of

B(γ) and B̃(γ), see (3.71) and (3.112), the equality (3.115) is proven.

It is left to show that for any θ ∈ RK−1
+ it holds

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(θs) +Bb(θ)− J1(γ)
K∑
j=2

(j − 1)cj = B̃b(θ), (3.116)

where Bb(θ) is defined in (3.70). Note that (3.115) and (3.116) imply that BBJ(θ) −
1
2J1(γ)

∑K
j=2(j − 1)cj = βBJ(θ) + B̃(θ, γ). Indeed, we have, using (3.14), (3.74), (3.114)–

(3.116) and
∑K

j=2 cj = 1, that

BBJ(θ)− 1

2
J1(γ)

K∑
j=2

(j − 1)cj

=
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(θs) +Bb(θ) +B(γ)−
K∑
j=1

jJj(γ)− 3

2
J1(γ)

K∑
j=2

(j − 1)cj

= B̃b(θ) + B̃(γ)−
K∑
j=1

jJj(γ) = βBJ(θ) + B̃(θ, γ).

To show (3.116), we follow the same line of arguments as we used to prove (3.65) and

(3.115). Let θ ∈ RK−1
+ be fixed. Let v : N0 → R be a candidate for the minimum problems
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defining Bb(θ) and B̃b(θ), i.e. v0 = 0 and vk+1−s − vk−s = θs if 1 ≤ s ≤ K − 1 for some

k ≥ K − 1. Then we have that

K∑
j=2

k−j∑
i=0

{
Jj

(
vi+j − vi

j

)
+
cj
j

i+j−1∑
s=i

J1

(
vs+1 − vs

)
− ψj(γ)

}

=
K∑
j=2

k−j∑
i=0

{
Jj

(
vi+j − vi

j

)
− Jj(γ)− cjJ1(γ)

}
+

K∑
j=2

cj
j

k−j∑
i=0

i+j−1∑
s=i

J1

(
vs+1 − vs

)
.

By similar calculations as before, we can rewrite the nearest neighbour terms on the

right-hand side above as

K∑
j=2

cj
j

k−j∑
i=0

i+j−1∑
s=i

J1

(
vs+1 − vs

)
=

K∑
j=2

cj
j

j−1∑
s=0

k+s−j∑
i=s

J1

(
vi+1 − vi

)
=

k−1∑
i=0

J1

(
vi+1 − vi

)
−

K∑
j=2

cj

j−1∑
i=1

j − i
j

{
J1

(
vi − vi−1

)
+ J1(vk+1−i − vk−i)

}
.

Since vk+1−s − vk−s = θs for 1 ≤ s ≤ K − 1, we have that

K∑
j=2

k−j∑
i=0

{
Jj

(
vi+j − vi

j

)
+
cj
j

i+j−1∑
s=i

J1

(
vs+1 − vs

)
− ψj(γ)

}

+

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
vs − vs−1

)
+

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(θs)−
K∑
j=2

(j − 1)cjJ1(γ)

=
K∑
j=2

k−j∑
i=0

{
Jj

(
vi+j − vi

j

)
− Jj(γ)

}
+
k−1∑
i=0

J1

(
vi+1 − vi

)
−

K∑
j=2

cjkJ1(γ)

=
K∑
j=1

k−j∑
i=0

{
Jj

(
vi+j − vi

j

)
− Jj(γ)

}
.

By the arbitrariness of v : N0 → R and k ≥ K − 1 with v0 = 0 and vk+1−s − vk−s = θs

for s ∈ {1, . . . ,K − 1} and the definition of Bb(θ) and B̃b(θ), see (3.70) and (3.111), the

equality (3.116) is proven.

3.4 Properties of the boundary layer energies

In this section, we study the different boundary layer energies which we have derived in

Section 3.3 in more detail. In particular we look for the location of fracture. This is

similar to the analysis presented in [50, Section 5] for the case K = 2.
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3.4.1 Boundary layer energies and location of fracture

Let us prove some relations between the different boundary layer energies which show

up in the last section; that is the elastic boundary layer energy B(θ, γ), see (3.72), B(γ)

defined in (3.71), and Bb(θ) which is defined in (3.70). These relations are proven in [50,

Lemma 5.1] in the case K = 2.

Lemma 3.22. Suppose that the hypotheses (LJ1)–(LJ5) hold true. Set e = (1, . . . , 1) ∈
RK−1. Then

(1) 1
2J1(δ1)

∑K
j=2(j − 1)cj ≤ B(γ) ≤ 1

2J1(γ)
∑K

j=2(j − 1)cj;

(2) B(γ) = Bb(γe);

(3) B(γe, γ) = 1
2J1(γ)

∑K
j=2(j − 1)cj;

(4) For every θ ∈ RK−1
+ it holds 1

2J1(δ1)
∑K

j=2(j − 1)cj ≤ Bb(θ) and

Bb(θ) ≤
K−1∑
j=1

K−j∑
i=1

Jj

(
1

j

i+j−1∑
s=i

θs

)
−

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(θs)−
K∑
j=2

(K − j)ψj(γ).

Moreover, it holds

B(θ, γ) ≥
K−1∑
j=1

K−j∑
i=1

Jj

(
1

j

i+j−1∑
s=i

θs

)
−

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(θK−s)−
K∑
j=2

(K − j)ψj(γ),

and the inequality is strict if θ 6= γe.

(5) For all α > 0 it holds that Bb(αe) ≤ B(αe, γ).

Proof. (1) Since all the terms in the infinite sum in the definition of B(γ) in (3.71) are

non-negative and δ1 is the unique minimiser of J1 (see (LJ2)), we have that

B(γ) ≥
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(δ1) =
1

2
J1(δ1)

K∑
j=2

(j − 1)cj .

The upper bound of B(γ) follows by testing the infimum problem in the definition of B(γ)

with u : N0 → R such that ui = γi for i ≥ 0:

B(γ) ≤
K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(γ) +
∑
i≥0

(Jj(γ) + cjJ1(γ)− ψj(γ))

 =
1

2
J1(γ)

K∑
j=2

(j − 1)cj .

Note that we used ψj(γ) = Jj(γ) + cjJ1(γ), see (3.14).

(2) Follows directly from the definition Bb(θ) and B(γ), see (3.70) and (3.71).

(3) See Remark 3.13.

(4) The lower bound on Bb(θ) follows from (3.70) in the same way as the lower bound
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for B(γ) in (1). Next, we show the upper bound for Bb(θ). Let v : N0 → R be such

that vK−1 = 0, vK−i − vK−i−1 = θi for i ∈ {1, . . . ,K − 1}. Clearly, the function v is a

competitor for the infimum problem in the definition of B̃b(θ), see (3.111). Hence,

B̃b(θ) ≤
K∑
j=1

K−1−j∑
i=0

{
Jj

(
vi+j − vi

j

)
− Jj(γ)

}

=

K−1∑
j=1

K−j∑
i=1

{
Jj

(
vK−i − vK−i−j

j

)
− Jj(γ)

}

=
K−1∑
j=1

K−j∑
i=1

Jj

(
i+j−1∑
s=i

θs
j

)
−
K−1∑
j=2

(K − j)ψj(γ)− J1(γ)
K∑
j=2

(j − 1)cj ,

where we used (3.14) and
∑K

j=2 cj = 1 in the last line. The assertion for Bb(θ) follows

directly by (3.116).

Next, we show the lower bound for B(θ, γ). Let v : N0 → R be test function for

(3.50). Since the terms in the infinite sum in the definition of B(θ, γ) are non-negative

and vs − vs−1 = θs for s ∈ {1, . . . ,K − 1}, we have

B(θ, γ) ≥
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(θs) +
K∑
j=2

∑
i≥0

{
Jj

(
vi+j − vi

j

)

+
cj
j

i+j−1∑
s=i

J1

(
vs+1 − vs

)
− ψj(γ)

}

≥
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(θs) +
K−1∑
j=2

K−j∑
i=1

{
Jj

(
1

j

i+j−1∑
s=i

θs

)
+
cj
j

i+j−1∑
s=i

J1(θs)− ψj(γ)

}
.

Moreover, we have that

K−1∑
j=2

cj
j

K−j∑
i=1

i+j−1∑
s=i

J1(θs) =
K−1∑
j=2

cj
j

j−1∑
s=0

K−j+s∑
i=1+s

J1(θi)

=

K−1∑
j=2

cj

K−1∑
i=1

J1(θi)−
K−1∑
j=2

cj
j

j−1∑
s=0


s∑
i=1

J1(θi) +

K−1∑
i=K−j+s+1

J1(θi)


=

K∑
j=2

cj

K−1∑
i=1

J1(θi)−
K∑
j=2

cj
j


j−1∑
i=1

(j − i)J1(θi) +

K−1∑
i=K−j+1

(j + i−K)J1(θi)


=

K−1∑
i=1

J1(θi)−
K∑
j=2

cj

j−1∑
i=1

j − i
j
{J1(θi) + J1(θK−i)} .
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Note that we added and subtracted cK
∑K−1

i=1 J1(θi) in the third line above. Thus,

B(θ, γ) ≥
K−1∑
j=2

K−j∑
i=1

Jj

(
1

j

i+j−1∑
s=i

θs

)
−

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(θK−s)−
K−1∑
j=2

(K − j)ψj(γ).

By taking the infimum over v, we prove the lower bound for B(θ, γ). If θ 6= γe the term

corresponding to j = K and i = 0 in the infinite sum in (3.72) is, using Lemma 3.8,

bounded from below by a constant c = c(θ) > 0 if θ 6= γe. Thus the inequality is strict in

this case.

(5) Follows directly from the upper bound on Bb(θ) and the lower bound on B(θ, γ) in

(4).

Now we present further estimates for the boundary layer energies in H`
1, see (3.73).

Lemma 3.23. Let (LJ1)–(LJ5) be satisfied. Then

B(θ, γ) ≤ BBJ(θ) ≤ B(θ, γ) +BIJ ∀θ ∈ RK−1
+ , (3.117)

and BIJ > 0, where B(θ, γ), BBJ(θ), and BIJ are defined as in (3.72), (3.74), and (3.75).

Proof. Let ` > γ and u
(1)
0 = u

(1)
1 = θ ∈ RK−1

+ . The assertion follows from the lower

semicontinuity of H`
1. Indeed, by the properties of the Γ-limit, we deduce that H`

1 is lower

semicontinuous with respect to the strong L1(0, 1)-topology, see e.g. [9, Proposition 1.28].

Let u ∈ SBV `
c (0, 1) (see (3.47)) be such that Su = {0}. Furthermore, let (un), (vn) ⊂

SBV `
c (0, 1) be such that Sun =

{
1
n

}
and Svn ⊂ {0, 1} with [vn](1) = `−γ

n . Note that the

functions u, un and vn are uniquely defined for n ≥ 1. Since, (un) and (vn) converge

strongly in L1(0, 1) to u, we deduce from the lower semicontinuity of H`
1:

H`
1(u) ≤ lim inf

n→∞
H`

1(un) ≤ 2B(θ, γ) +BIJ −
K∑
j=2

(j − 1)ψj(γ),

H`
1(u) ≤ lim inf

n→∞
H`

1(vn) ≤ 2BBJ(θ)−
K∑
j=2

(j − 1)ψj(γ).

The combination of the above inequalities with

H`
1(u) = B(θ, γ) +BBJ(θ)−

K∑
j=2

(j − 1)ψj(γ)

proves the inequality (3.117).

Let us show BIJ > 0. Consider u with u(x) = `x and ` > γ. For given N ∈ N,

we set ti := i
N and define wN ∈ SBV `

c (0, 1) such that SwN = {ti, i ∈ {0, . . . , N}} and

wN (ti+) = `ti for i ∈ {0, . . . , N}. Clearly, we have that wN → u in L1(0, 1). If we assume

that BIJ ≤ 0, we have supN H
`
1(wN ) ≤ C but H`

1(u) = +∞ since u /∈ SBV `
c (0, 1) for

` > γ, which is a contradiction to the lower semicontinuity of H`
1. Thus BIJ > 0.



82 Chapter 3. On Lennard-Jones type systems and their asymptotic analysis

As a direct consequence of Lemma 3.23, we have the following result about the minimis-

ers and minimal energies of H`
1, which extends in some sense the results of [50, Theorem

5.1]. We prove that there exists no choice for u
(1)
0 , u

(1)
1 > 0 such that an internal jump

has strictly less energy than a jump at the boundary. However, we note that for special

values of u
(1)
0 , u

(1)
1 > 0 the energies can be the same.

Proposition 3.24. Suppose that hypotheses (LJ1)–(LJ5) hold. Let ` > γ. For any

u
(1)
0 , u

(1)
1 ∈ RK−1

+ it holds

min
u
H`

1(u) = min
{
BBJ(u

(1)
0 ) +B(u

(1)
1 , γ), BBJ(u

(1)
1 ) +B(u

(1)
0 , γ)

}
−

K∑
j=2

(j − 1)ψj(γ). (3.118)

Furthermore, it holds BBJ(θ) = B(θ, γ) + BIJ for θ = γe and BBJ(θ) < B(θ, γ) + BIJ

for θ = δ1e, where e = (1, . . . , 1) ∈ RK−1. Hence, for u
(1)
0 = u

(1)
1 = γe fracture can appear

indifferently in [0, 1]. If instead u
(1)
0 = δ1e or u

(1)
1 = δ1e and δ1 6= γ a jump in {0, 1} is

energetically favourable.

Proof. From BBJ(θ) ≤ B(θ, γ) +BIJ for all θ ∈ RK−1
+ , see Lemma 3.23 and the formula

for H`
1 in (3.73), it follows that no internal jump can has strictly less energy than a jump

at the boundary. Hence,

min
{
H`

1(u) : u ∈ SBV `
c (0, 1)

}
= min

{
H`

1(u) : u ∈ SBV `
c (0, 1), Su ⊂ {0, 1}

}
,

which proves, using B(θ, γ) ≤ BBJ(θ) (see (3.117)), the assertion (3.118), cf. (3.73).

Let us now show that BBJ(γe) = B(γe, γ) + BIJ . By the definition of BBJ and

Lemma 3.22 (2) and (3), we have that

BBJ(γe)−B(γe, γ) =
1

2
J1(γ)

K∑
j=2

(j − 1)cj +Bb(γe) +B(γ)−
K∑
j=2

jψj(γ)−B(γe, γ)

=2B(γ)−
K∑
j=2

jψj(γ) = BIJ . (3.119)

Let us now show BBJ(δ1e) < BIJ +B(δ1e, γ). From Lemma 3.22 (1) and (5), we deduce

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(δ1) +Bb(δ1e) <
1

2
J1(δ1)

K∑
j=2

(j − 1)cj +B(δ1e, γ)

<B(γ) +B(δ1e, γ),

which proves by the definition of BBJ(δ1e) and BIJ the assertion.

Remark 3.25. Let us consider the special case ` > γ and u
(1)
0 , u

(1)
1 ∈ RK−1 such that

u
(1)
0,s = u

(1)
1,s = γ for 1 ≤ s < K. From Lemma 3.22 (3), we deduce 2B(γ, γ) −

∑K
j=2(j −
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1)ψj(γ) = −
∑K

j=2(j − 1)Jj(γ). Hence, using (3.119), the first-order Γ-limit H`
1 given in

Theorem 3.19 reads:

H`
1(u) =

BIJ#(Su ∩ [0, 1])−
∑K

j=2(j − 1)Jj(γ) if u ∈ SBV `
c (0, 1),

+∞ otherwise.
(3.120)

3.4.2 Non-accuracy of the Γ-expansion

In this section, we point out a non-accuracy of the development by Γ-convergence which

we have presented in Section 3.2 and 3.3. This issue was already discussed in [20, 51] for

the cases K = 1, 2; we follow their arguments here.

For given ` > 0, we consider u
(1)
0 , u

(1)
1 ∈ RK−1

+ such that u
(1)
0,s = u

(1)
1,s = min{`, γ} for

1 ≤ s < K. We recall that m(0)(`) := minH` = J∗∗CB(`), see (3.27). For the minimum

m(1)(`) of the first-order Γ-limit H`
1, given in the Theorems 3.12 and 3.19, we deduce that

m(1)(`) :=

−
∑K

j=2(j − 1)Jj(`) if ` ≤ γ,

−
∑K

j=2(j − 1)Jj(γ) +BIJ if ` > γ,
(3.121)

see Corollary 3.14 and Remark 3.25. In the case ` ≤ γ, the (unique) minimiser of the

first-order Γ-limit is given by the continuous function u`(x) = `x, x ∈ [0, 1]. For ` > γ

the minimisers of H`
1 are functions in SBV `

c with only one jump point. Indeed, this is a

consequence of (3.120) and BIJ > 0, see Lemma 3.23.

The Γ-expansion yields the following approximation of the minimum values mn(`) :=

minuH
`
n(u) of the discrete energy:

mn(`) ≈ m(0)(`) + λnm
(1)(`).

Direct computations of the exact values of mn(`) yield that the function ` 7→ mn(`) is

continuous (see e.g. [60]). In the case ` = γ and u
(1)
0,s = u

(1)
1,s = γ, for 1 ≤ s < K, we

can calculate the minima mn(γ) explicitly. Indeed, we obtain from (3.7), the definition of

J0,j , (3.12) and J0,j(γ) = Jj(γ) + cjJ1(γ) (see (LJ4)) that

Hγ
n(u) ≥

K∑
j=2

n−j∑
i=0

λnJ0,j(γ) + 2

K∑
j=2

cj

j−1∑
s=1

j − s
j

λnJ1(γ)

=
K∑
j=2

J0,j(γ)− λn
K∑
j=2

(j − 1)J0,j(γ) + λnJ1(γ)
K∑
j=2

(j − 1)cj

=JCB(γ)− λn
K∑
j=2

(j − 1)Jj(γ).

By taking the infimum over u, we obtain mn(γ) ≥ JCB(γ)− λn(j − 1)Jj(γ). The reverse

inequality follows since Hγ
n(uγ) = JCB(γ)− λn(j − 1)Jj(γ), where uγ(x) = γx, x ∈ [0, 1].



84 Chapter 3. On Lennard-Jones type systems and their asymptotic analysis

Thus mn(γ) = JCB(γ)− λn
∑K

j=2(j − 1)Jj(γ). Formally, we have

lim
`→γ+

(
m(0)(`) + λnm

(1)(`)−mn(`)
)

= λnBIJ ,

from which one can deduce that the Γ-expansion is not accurate close to the point ` = γ.

As it is pointed out in [20, 51], the physical reason for this is the crack nucleation at

` = γ. This breaks the separation of scales and thus we have to consider a simultaneous

limit `→ γ and n→∞ to obtain a more accurate approximation of mn(`) for ` close to

γ. This is the subject of Section 3.5 and Section 3.6.

3.4.3 Exponential decay of B(γ) for second neighbour interactions

Next, we investigate the boundary layer energy B(γ), see (3.71), in more detail. Therefore,

we restrict ourselves to the case of nearest and next-to-nearest neighbour interaction, i.e.

the case K = 2. Recall that in this case, we have

J0(z) := J0,2(z) = J2(z) +
1

2
inf{J1(z1) + J1(z2) : z1 + z2 = 2z}

and ψ2(z) ≡ JCB ≡ J1 + J2. Throughout this subsection, we assume that J1 and J2

satisfy the assumptions (LJ1)–(LJ5) (for K = 2). We make the following additionally

assumptions on J1 and J2:

(1) The functions J1 and J2 are of class C2 in their domain.

(2) There exist constants z1
c and z2

c with z1
c > δ1 > γ > z2

c > δ2 such that J1 is strictly

convex on (−∞, z1
c )∩ dom J1 and J2 is strictly concave on (z2

c ,+∞), where δ1, δ2, γ

denote the unique minimisers of J1, J2, J0, see (LJ2), (LJ4).

(3) There exist constants α, β, z3
c > 0 with z1

c ≥ z3
c > γ such that J ′′CB(z) ≥ α, J ′′1 (z) ≥ β

for z ∈ (−∞, z3
c ) ∩ dom J1.

(4) The function Ji is decreasing on (−∞, δi) and increasing on (δi,+∞) for i = 1, 2.

(5) It holds: J ′1(z2
c ) + supz J

′
2(z) < 0

Remark 3.26. Our main example, the Lennard-Jones potentials, satisfy the above assump-

tions. Assumption (1) and (4) are clear. Let us briefly discuss the remaining assumptions.

Recall that J1(z) = k1z
−12 − k2z

−6 for z > 0, J1(z) = +∞ for z ≤ 0 and J2(z) = J1(2z).

From the calculations of Proposition 3.2, we have

δj =
1

j

(
2k1

k2

) 1
6

for j = 1, 2 and γ =

(
1 + 2−12

1 + 2−6

) 1
6

δ1 < δ1.

The function J1 has exactly one inflection point z1
c , given by

z1
c =

(
26k1

7k2

) 1
6

=

(
13

7

) 1
6

δ1 > δ1.
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It holds that J1 is convex on (0, z1
c ) and concave on (z1

c ,+∞). The same hold true for

J2 and z2
c := 1

2z
1
c . Note that δ2 = 1

2δ1 < z2
c = 1

2z
1
c < γ. Hence, (2) is satisfied. The

assumption (3) is satisfied with z3
c = δ1. Indeed, JCB is given by JCB(z) = k1(1 +

2−12) 1
z12 − k2(1 + 2−6) 1

z6 for z > 0 and JCB = +∞ for z ≤ 0. Hence, it is also a Lennard-

Jones potential. The inflection point of JCB is given by z =
(

13
7

) 1
6 γ = (13

7 )
1
6 (1+2−12

1+2−6 )
1
6 δ1 >

δ1. Note that we used that γ is the minimiser of JCB. It is left to show (5). Note that

supz J
′
2(z) = J ′2(z2

c ), where z2
c is the inflection point of J2. Hence,

J ′1
(
z2
c

)
+ J ′2

(
z2
c

)
= J ′CB(z2

c ) < 0,

which shows that (5) is satisfied. Note that we used 0 < z2
c < γ and JCB is strictly

decreasing on (0, γ).

A similar reasoning can be applied to Morse potentials, see (3.24), in a certain parameter

regime. Let us choose δ1 such that γ = 1, i.e.

δ1 =
1

k2
ln

(
e−k2 + 2e−2k2

e−2k2 + 2e−4k2

)
.

By a direct calculation, we obtain that k2 > 1 +
√

3 ensures z2
c < 1 = γ, see also [36,

p. 112]. With this restriction on k2, we can show the assumptions (1)–(5) in a similar

manner as in the case of Lennard-Jones potentials (we can choose z3
c = δ1 to show (3)).

We prove under these assumptions an exponential decay of the boundary layer B(γ) in

the sense of Proposition 3.30. Therefore, we rely on a similar result by Hudson in [35].

In [35], the author considers a one-dimensional discrete system with nearest and next-

to-nearest neighbour interaction. The interaction potential J1 for the nearest neighbour

interaction is assumed to be convex with quadratic growth at +∞, and the interaction

potential for the next-to-nearest neighbour interaction J2 is assumed to be concave. Under

certain additional assumptions decay estimates are proven for similar boundary layer

energies as our B(γ). In order to use the techniques provided in [35], we have to show

that functions v : N0 → R which almost minimises the functional in the definition of B(γ)

are such that the nearest neighbours are in the ’convex region’ of J1 and the next-to-

nearest neighbours are in the ’concave region’ of J2.

First, we recall the definition of B(γ), see (3.71), in the case of only nearest and next-

to-nearest neighbour interactions

B(γ) = inf
N∈N0

min

{
1

2
J1

(
u1 − u0

)
+
∑
i≥0

{
J2

(
ui+2 − ui

2

)
+

1

2

i+1∑
s=i

J1

(
us+1 − us

)
− JCB(γ)

}
: u : N0 → R, u0 = 0, ui+1 − ui = γ if i ≥ N

}
.
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Next, we rewrite B(γ) in a suitable variational framework. Let us define the function

F : R2 → R ∪ {+∞} by

F (a, b) := J2

(
γ +

a+ b

2

)
+

1

2
J1(γ + a) +

1

2
J1(γ + b)− JCB(γ).

Since J1 and J2 satisfy (LJ1)–(LJ5), we have F ≥ 0 and F (a, b) = 0 if and only if

a = b = 0. Note that F (a, b) = F γ2 (γ+a, γ+ b), where F γ2 is as in (3.44) with K = 2. For

(ri)∞i=1 ∈ `∞(N), we define the functional Bγ : `∞(N)→ R ∪ {+∞} by

Bγ(r) =
1

2
J1

(
γ + r1

)
+
∞∑
i=1

F
(
ri, ri+1

)
. (3.122)

By setting γ + ri = ui − ui−1, we can rewrite B(γ) as

B(γ) = inf
N∈N

min{Bγ(r) : r ∈ c0(N)},

where, we denote by c0(N) the space of sequences (ai)i∈N ⊂ R such that ai = 0 for i ≥ N .

Lemma 3.27. It holds

B(γ) = inf{Bγ(r) : r ∈ c0(N)}, (3.123)

where c0(N) denotes the space of sequences converging to 0.

Proof. Let us denote the right-hand side of (3.123) by B̃γ . The inequality B̃γ ≤ B(γ) is

obvious since every r ∈ c0(N) for some N ∈ N satisfies r ∈ c0(N). Let us show the reverse

inequality. For every η > 0 there exists r ∈ c0(N) such that

B̃γ ≥ Bγ(r)− η. (3.124)

By the continuity of J1 and J2 there exists ε > 0 such that

ω(ε) = max
j∈{1,2}

sup {|Jj(z1)− Jj(z2)| : |γ − zi| < ε for i ∈ {1, 2}} < η.

Since r ∈ c0(N) there exists an N ∈ N such that |ri| < ε for i ≥ N . Let us define r̃ ∈ c0(N)

by

r̃i :=

ri for i ≤ N ,

0 for i ≥ N + 1.
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Clearly r̃ ∈ c0(N + 1). By the definition of r, r̃ and since F ≥ 0 and F (0, 0) = 0, we have

Bγ(r)−Bγ(r̃) =F (rN , rN+1)− F (rN , 0) +
∑

i≥N+1

F (ri, ri+1)

≥J2

(
γ +

rN + rN+1

2

)
− J2

(
γ +

rN

2

)
+

1

2

(
J1(γ + rN+1)− J1(γ)

)
≥− 3

2
η. (3.125)

Combining (3.124) and (3.125) with the fact that r̃ is a competitor for the infimum

problem in the definition of B(γ) yields

B̃γ ≥ Bγ(r)− η ≥ Bγ(r̃)− 5

2
η ≥ B(γ)− 5

2
η,

and the claim follows by the arbitrariness of η > 0.

Let us now show that the infimum in (3.123) is attained.

Lemma 3.28. There exists a minimiser r̄ ∈ `2(N) of (3.123). Moreover, if r ∈ `2(N) is

a minimiser of (3.123) then r satisfies the following equilibrium equations

0 =J ′1(γ + r1) +
1

2
J ′2

(
γ +

r1 + r2

2

)
, (3.126)

0 =
1

2
J ′2

(
γ +

ri−1 + ri

2

)
+ J ′1(γ + ri) +

1

2
J ′2

(
γ +

ri + ri+1

2

)
for all i ≥ 2. (3.127)

Proof. By Lemma 3.22, we have the following bounds for B(γ):

1

2
J1(δ1) ≤ B(γ) ≤ 1

2
J1(γ).

Let (rn) ⊂ c0(N) be a sequence such that limn→∞Bγ(rn) = infr Bγ(r). We show that

‖rn‖`2(N) is equibounded. Therefore, we first prove the equiboundedness of (rn) in `∞(N).

Since limz→−∞ J1(z) = +∞ and F ≥ 0, there exists Clow > 0 such that infn∈N infi∈N r
i
n >

−Clow. Let us assume that rin > 2δ1 + 2δ2 + Clow for some i ∈ N. Then, we can always

decrease Bγ(rn) by reducing rin. Indeed, this follows from the monotonicity of Ji on

(δi,+∞), the fact that δ1, δ2, γ > 0, and that γ + rin > δ1 and γ + 1
2(ri−1

n + rin), γ +
1
2(ri+1

n + rin) > δ2. Since (rn) is a minimising sequence, we can assume that there exists

N ∈ N such that supi r
i
n ≤ 2δ1 + 2δ2 +Clow for n ≥ N . Hence, ‖rn‖`∞(N) is equibounded.

Let us now show the equiboundedness in `2(N). Let ε > 0 be such that (γ − ε, γ + ε) ⊂
(z2
c , z

3
c ), cf. assumptions (2), (3). We define the set In = {i ∈ N : |rin| > ε}. From

Lemma 3.8, we deduce that there exists η = η(ε) > 0 such that F (ri, ri+1) > η for i ∈ In.

This implies Bγ(rn) ≥ 1
2J1(δ1) + η#In. Thus there exists a constant M ∈ N such that

supn #In ≤M .
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For i ∈ N such that i, i+ 1 /∈ In, we deduce from the concavity of J2 on (z2
c ,+∞) that

J2

(
γ +

rin + ri+1
n

2

)
≥ 1

2

(
J2(γ + rin) + J2(γ + ri+1

n )
)
.

A combination of the above inequality with J ′CB(γ) = 0 and (3) yields

C ≥
∑

i∈N:i,i+1/∈In

{
J2

(
γ +

ri+1
n + rin

2

)
+

1

2
J1(γ + rin) +

1

2
J1(γ + ri+1

n )− JCB(γ)

}
≥

∑
i∈N:i,i+1/∈In

1

2

{
JCB(γ + rin) + JCB(γ + ri+1

n )− 2JCB(γ)
}

≥
∑

i∈N:i,i+1/∈In

1

4
α
(
(rin)2 + (ri+1

n )2
)
.

Combining this with sup #In ≤M and supn ‖rn‖`∞(N) < +∞, we deduce supn ‖rn‖`2(N) <

+∞. Hence, there exist a subsequence (rnk) and r̄ ∈ `2(N) such that rnk ⇀ r̄ in `2(N).

To apply the direct method of the calculus of variations it is left to show that Bγ is lower

semicontinuous with respect to the weak convergence of `2(N). Let r ∈ `2(N) be such that

Bγ(r) is finite. Since F (ri, ri+1) ≥ 0 for all i ∈ N there exists for every ε > 0 a constant

N ∈ N such that

Bγ(r) ≤ 1

2
J1

(
r1
)

+
N∑
i=1

F
(
ri, ri+1

)
+ ε.

Let (rn) ⊂ `2(N) be such that rn ⇀ r in `2(N). From rn ⇀ r in `2(N), we deduce that

rin → ri for every i ∈ N. Hence, by the continuity of J1, J2 and F ≥ 0, we obtain that

lim inf
n→∞

Bγ(rn) = lim inf
n→∞

1

2
J1

(
r1
n

)
+

N∑
i=1

Fγ
(
rin, r

i+1
n

)
+
∑

i≥N+1

Fγ
(
rin, r

i+1
n

)
≥1

2
J1

(
r1
)

+

N∑
i=1

F
(
ri, ri+1

)
≥ Bγ(r)− ε.

This proves the lower semicontinuity since ε > 0 can be arbitrarily small. Hence, we have

the existence of a minimiser r ∈ `2(N) of Bγ .

We obtain the equilibrium equations, see (3.126), (3.127), for minimisers r ∈ `2(N) of Bγ

in the same way as it was done in [35, Proposition 6]. We just repeat the argument here.

Let ei ∈ `2(N) be defined by

eji =

1 if j = i,

0 else.
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Let r be the minimiser of Bγ . For i ≥ 2 and t > 0 sufficiently small, it holds

0 ≤Bγ(r + tei)−Bγ(r)

t

=

∫ 1

0

1

2
J ′2

(
γ +

ri−1 + ri + st

2

)
+ J ′1(γ + ri + st) +

1

2
J ′2

(
γ +

ri + ri+1 + st

2

)
ds.

The dominated convergence theorem for t→ 0+ and the same argument for t < 0 yield

1

2
J ′2

(
γ +

ri−1 + ri

2

)
+ J ′1(γ + ri) +

1

2
J ′2

(
γ +

ri + ri+1

2

)
= 0,

which matches (3.127). The same argument applied to i = 1 yields (3.126).

Next, we prove that every minimiser r of Bγ satisfy that γ+ ri is in the ’convex region’

of J1 and the ’concave region’ of J2 for all i ∈ N.

Lemma 3.29. Suppose r ∈ `2(N) is a minimiser of Bγ. Then it holds ri ≥ ri+1 ≥ 0 and

γ + ri ∈ (z2
c , z

3
c ) for all i ∈ N.

Proof. Let r ∈ `2(N) be a minimiser of Bγ . We show that γ + ri ∈ (z2
c , z

3
c ) for all i ∈ N.

From Bγ(r) = B(γ) ≤ 1
2J1(γ) and γ < δ1, we deduce r1 ≥ 0, see (3.122). Note that we

used (4) and F ≥ 0. Assume on the contrary that γ + ri ≤ z2
c for some i ≥ 2. By (4) and

z2
c < δ1 this yields J ′1(γ + ri) ≤ J ′1(z2

c ). Using assumption (5), we have that

1

2
J ′2

(
γ +

ri−1 + ri

2

)
+ J ′1(γ + ri) +

1

2
J ′2

(
γ +

ri + ri+1

2

)
≤ J ′1(z2

c ) + sup
z
J ′2(z) < 0.

Hence, r does not solve (3.127) and cannot be a minimiser of (3.123). Thus we have that

γ + ri ≥ z2
c > δ2 for all i ∈ N. This and (4) imply that J ′2(γ + ri+ri+1

2 ) ≥ 0 for all i ∈ N.

Hence, (3.127) implies that J ′1(γ + ri) ≤ 0 for all i ≥ 2. This implies γ + ri ≤ δ1 < z3
c for

every i ∈ N. Altogether, we have shown that a minimiser r ∈ `2(N) of (3.123) satisfies

r1 ≥ 0 and γ + ri ∈ (z2
c , z

3
c ) for every i ∈ N.

To conclude the proof, we next follow the proof of [35, Corollary 1]: Consider i ≥ 2 such

that ri is a local maximum, i.e. ri = max{ri−1, ri, ri+1}. The concavity of J2 on (z2
c ,+∞),

(3.127) and (3) implies

0 =
1

2
J ′2

(
γ +

ri−1 + ri

2

)
+ J ′1(γ + ri) +

1

2
J ′2

(
γ +

ri + ri+1

2

)
≥J ′1(γ + ri) + J ′2(γ + ri) = J ′CB(γ + ri)− J ′CB(γ) ≥ αri

and thus ri ≤ 0. Next, we consider ri = min{ri−1, ri, ri+1}. Then, (3.127) and the

concavity of J2 on (z2
c ,+∞) yields

0 ≤ J ′CB(γ + ri) = J ′′CB(ξ)ri
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for some ξ ∈ [γ, γ + ri]. Since γ + ri < z3
c , we have J ′′CB(ξ) ≥ α > 0 and thus ri ≥ 0.

Let us on the contrary assume that there exists M ∈ N such that rM < 0 and rM =

max{rM−1, rM , rM+1}. Then, it follows rM+1 ≤ rM < 0. Hence, rM+1 cannot be a local

minimiser and thus rM+2 ≤ rM+1. By induction, we obtain rj ≤ rM < 0 for all j ≥ i,

which contradicts r ∈ `2(N). By the same argument there does not exist an m ≥ 2 such

that rm > 0 and rm = min{rm−1, rm, rm+1}.
Consider M > 0 such that rM = 0 and rM = max{rM−1, rM , rM+1}. If rM+1 < 0 or

rM+1 > 0 the previous arguments lead to a contradiction. Thus rM+1 = 0. Then rM+1

is either a local minimum or a local maximum. Using again the previous arguments yield

a contradiction if rM+2 6= 0.

Altogether, we have shown that a minimiser of (3.123) does not contain an internal local

extremum ri unless rj = 0 for j ≥ i. This implies that ri is monotone and from r1 ≥ 0

and limi→∞ r
i = 0 the claim follows.

Now we are in position to prove the exponential decay of minimisers of (3.123).

Proposition 3.30. Let C > 0 be such that for all t ∈ (0, r1),

0 ≥ J ′′2 (γ + t) ≥ −C.

Define λ := C
α+C with C as above and α > 0 as in assumption (3). Then, we have

λ ∈ (0, 1) and

0 ≤ ri ≤ λi−1r1.

Proof. Let r be a minimiser of Bγ . Since we have already shown that γ + ri ∈ (z2
c , z

3
c ) we

can use the same proof as [35, Proposition 15]. The equation (3.127) can be rewritten,

using J ′CB(γ) = 0, as

0 =
1

2
J ′2

(
γ +

ri−1 + ri

2

)
+

1

2
J ′2

(
γ +

ri + ri+1

2

)
+ J ′CB(γ + ri)− J ′2(γ + ri)

=

∫ ri−1

ri
J ′′2

(
γ +

ri + t

2

)
dt+

∫ ri+1

ri
J ′′2

(
γ +

ri + t

2

)
dt+

∫ ri

0
J ′′CB(γ + t)dt.

By Lemma 3.29, we have ri−1 ≥ ri ≥ ri+1 ≥ 0. The definition of C, α, see (3), and the

fact that J ′′2 ≤ 0 on [γ,+∞) imply that

0 =

∫ ri−1

ri
J ′′2

(
γ +

ri + t

2

)
dt−

∫ ri

ri+1

J ′′2

(
γ +

ri + t

2

)
dt+

∫ ri

0
J ′′CB(γ + t)dt

≥− C(ri−1 − ri) + αri.

Hence, it follows

ri ≤ C

C + α
ri−1

for every i ≥ 2. The claim follows by α,C > 0.
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Notice that in [36, Section 2.3] exponential decay for a similar boundary layer is proven

for a linearised Morse potential model. In Proposition 3.30, we provide the corresponding

result for the nonlinear model.

3.5 Analysis of rescaled functionals

As we have outlined in Section 3.4.2, the formal development by Γ-convergence may not

yield a good approximation for the minima of H`
n for ` close to γ. Hence, we present a

refined analysis in this section. For this, we consider the behaviour of the sequence of

functionals (H`n
n ) for some sequence (`n) ⊂ R instead of (H`

n) with fixed ` > 0. More

precisely, we consider sequences (`n) ⊂ R satisfying `n ≥ γ for all n ∈ N and `n → γ such

that

δn :=
`n − γ√
λn
→ δ ≥ 0 as n→∞. (3.128)

For fixed u
(1)
0 , u

(1)
1 ∈ RK−1

+ , we consider the analogous boundary conditions to (3.3) where

` is replaced by `n:

u0 = 0, us − us−1 = λnu
(1)
0,s,

un = `n, u
n+1−s − un−s = λnu

(1)
1,s for 1 ≤ s ≤ K − 1.

(3.129)

For u ∈ An(0, 1) satisfying (3.129), we define v := 1√
λn

(u−uγ) ∈ An(0, 1), where uγ(x) =

γx for x ∈ [0, 1]. The definition of v implies that vi = 1√
λn

(ui − λnγi) for i ∈ {0, . . . , n},
and

v0 = 0, vs − vs−1 =
√
λn(u

(1)
0,s − γ),

vn = δn, v
n+1−s − vn−s =

√
λn(u

(1)
1,s − γ), for 1 ≤ s ≤ K − 1.

(3.130)

We can rewrite H`n
1,n(u) in terms of the displacement v instead of the deformation u by

Eδnn (v) = H`n
1,n(u), with Eδnn (v) := H`n

1,n(uγ +
√
λnv).

The functional Eδnn : L1(0, 1)→ (−∞,+∞] is given by

Eδnn (v) :=

En(v) if v ∈ An(0, 1) satisfies (3.130),

+∞ else,
(3.131)

where En is defined by

En(v) :=
K∑
j=1

n−j∑
i=0

Jj

(
γ +

vi+j − vi

j
√
λn

)
− nJCB(γ). (3.132)

Note that we have used that J∗∗CB(`n) = JCB(γ) since `n ≥ γ by assumption.
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The remainder of this section is devoted to a Γ-convergence analysis of the sequence of

functionals (Eδnn ) as n tends to infinity. In addition to the assumptions (LJ1)–(LJ5), we

state further assumptions on the potentials Jj with j ∈ {1, . . . ,K}:

(LJ6) The functions J1, . . . , JK are C2 on their domain.

(LJ7) For given j ∈ {2, . . . ,K} there exist η > 0 and C > 0 such that

1

j

j∑
s=1

J1(zs) ≥ J1(z) + C

j∑
s=1

(zs − z)2 (3.133)

whenever
∑j

s=1 zs = jz and
∑j

s=1 |zs − z| + |z − γ| ≤ η. Moreover, it holds that

ψ′′j (γ) > 0, were γ and ψj are given in (3.12) and (3.14).

Remark 3.31. The additional assumptions (LJ6) and (LJ7) are satisfied by our main

example of the Lennard-Jones potentials given in (3.22). Indeed, the regularity is clear by

the definition. Moreover, we have shown in Proposition 3.2 that γ < δ1 and ψ′′j (γ) > 0 for

j ∈ {2, . . . ,K}. We only have to show that there exist η, C > 0 such that (3.133) holds

true. Fix j ∈ {2, . . . ,K}. For z and zs such that jz =
∑j

s=1 zs, we make the following

expansion:

j∑
s=1

J1(zs) = jJ1(z) + J ′1(z)

j∑
s=1

(zs − z) +
1

2

j∑
s=1

J ′′1 (z + ξs)(zs − z)2

with |ξs| ≤ |zs− z|. The second term on the right-hand side vanishes since
∑j

s=1 zs = jz.

For η > 0 sufficiently small, e.g. η < 1
2 |γ − δ1|, we have for z with |z − γ| < η that

J ′′1 (z + ξs) ≥ inf
0<z≤δ1

J ′′1 (z) > 0, which proves the assertion.

As in the analysis of the first-order Γ-limit in Section 3.3 it is useful to rewrite the

energy En, as H`
1,n in (3.41), in a suitable way:

En(v) =

K∑
j=1

n−j∑
i=0

Jj

(
γ +

vi+j − vi

j
√
λn

)
− nJCB(γ)

=
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
γ +

vs − vs−1

√
λn

)
+

K∑
j=2

n−j∑
i=0

{
Jj

(
γ +

vi+j − vi

j
√
λn

)

+
cj
j

i+j−1∑
s=i

J1

(
γ +

vs+1 − vs√
λn

)
− ψj(γ)

}

+

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
γ +

vn+1−s − vn−s√
λn

)
−

K∑
j=2

(j − 1)ψj(γ)
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Note that, we used here JCB(γ) =
∑K

j=2 ψj(γ). For a sequence of functions (vn) satisfying

vn ∈ An(0, 1) and (3.130) the energy Eδnn (vn) reads

Eδnn (vn) =
K∑
j=2

{
n−j∑
i=0

ζij,n + cj

j−1∑
s=1

j − s
j

(
J1(u

(1)
0,s) + J1(u

(1)
1,s)
)
− (j − 1)ψj(γ)

}
(3.134)

where ζij,n is defined as

ζij,n := Jj

(
γ +

vi+jn − vin
j
√
λn

)
+
cj
j

i+j−1∑
s=i

J1

(
γ +

vs+1
n − vsn√

λn

)
− ψj(γ), (3.135)

for j ∈ {2, . . . ,K} and i ∈ {0, . . . , n − j}. By the definition of J0,j , see (3.8), γ and ψj

(see (LJ4)), we have that ζij,n ≥ J0,j(γ + vi+jn −vin
j
√
λn

) − ψj(γ) ≥ 0. The following lemma is

similar to [17, Remark 4] and will give us a finer estimate of terms of the form as ζij,n.

Lemma 3.32. Let J1, . . . , JK satisfy the assumptions (LJ1)–(LJ7). For η1 > 0 suffi-

ciently small there exists C1 > 0 such that

Jj

(
j∑
s=1

zs
j

)
+
cj
j

j∑
s=1

J1(zs)− ψj(γ) ≥ C1

j∑
s=1

(zs − γ)2 (3.136)

if
∑j

s=1 |zs − γ| ≤ η1.

Proof. Fix j ∈ {2, . . . ,K}. If
∑j

s=1 zs = jγ the claim follows from assumption (LJ7). Let

η denotes the same constant as in assumption (LJ7). Since ψj ∈ C2(0,+∞) (see (LJ1)

and (LJ6)), γ > 0 and ψ′′j (γ) > 0 there exists η1 > 0 such that
∑j

s=1 |zs− γ| ≤ η1 implies∑j
s=1 |zs− z|+ |z− γ| ≤ η for

∑j
s=1 zs = jz and that there exists δ > 0 such that ψ′′j ≥ δ

on [γ − η1, γ + η1].

Assume by contradiction that there exist ẑs, s = 1, . . . , j and ẑ =
∑j

s=1
ẑs
j such that∑j

s=1 |ẑs − γ| < η1 and for all N > 2 it holds

Jj(ẑ) +
cj
j

j∑
s=1

J1(ẑs)− ψj(γ) ≤ C

N

j∑
s=1

(ẑs − γ)2,

where C is the same constant as in (3.133). By the choice of η1, we have
∑j

s=1 |ẑs − ẑ|+
|ẑ − γ| ≤ η and thus by (3.133) it holds

Jj(ẑ) +
cj
j

j∑
s=1

J1(ẑs)− ψj(γ) ≤C
N

j∑
s=1

(ẑs − γ)2 ≤ 2C

N

j∑
s=1

(ẑs − ẑ)2 +
2Cj

N
(ẑ − γ)2

≤ 2

N

(
Jj(ẑ) +

cj
j

j∑
s=1

J1(ẑs)− ψj(ẑ)

)
+

2Cj

N
(ẑ − γ)2.
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In the last inequality, we used (3.133) and the definition of ψj , see (3.14). For η1 > 0

sufficiently small, such that ẑ < γc (see (LJ4)), we have by the definition of J0,j and

J0,j(ẑ) = ψj(ẑ) that

ψj(ẑ)− ψj(γ) ≤ Jj(ẑ) +
cj
j

j∑
s=1

J1(ẑs)− ψj(γ) ≤ 2jC

N − 2
(ẑ − γ)2.

Clearly, this is, for N sufficiently large, a contradiction to

ψj(ẑ)− ψj(γ) =
1

2

∫ ẑ

γ
ψ′′j (s)(s− γ)ds ≥ 1

4
δ(ẑ − γ)2,

where we used ψ′j(γ) = 0.

Next, we state a compactness result for functions with equibounded energy Eδnn .

Lemma 3.33. Assume that J1, . . . , JK satisfy the assumptions (LJ1)–(LJ7). Let u
(1)
0 ,

u
(1)
1 ∈ RK−1

+ and δn → δ such that (3.128) is satisfied. Let (vn) be a sequence of functions

such that

sup
n
Eδnn (vn) < +∞. (3.137)

Then there exist a subsequence (vnk) and v ∈ SBV δ(0, 1) such that vnk → v in L1(0, 1).

The function v satisfies

v′ ∈ L2(0, 1), #Sv < +∞, [v] ≥ 0 in [0, 1]. (3.138)

Moreover, there exists a finite set S ⊂ [0, 1] such that vnk ⇀ v locally weakly in H1((0, 1)\
S).

Proof. Let (vn) be such that (3.137) is satisfied. By {γ} = arg minz J0,j(z) and by

Lemma 3.32, there exist constants K1,K2 > 0 such that for all i ∈ {0, . . . , n − j} it

holds

ζin,j ≥

{
K1

i+j−1∑
s=i

(
vs+1
n − vsn√

λn

)2
}
∧K2. (3.139)

Hence, we deduce from (3.134) that

Eδnn (vn) ≥
K∑
j=2

n−j∑
i=0

{
λnK1

i+j−1∑
s=i

(
vs+1
n − vsn
λn

)2
}
∧K2 +K3

≥
n−1∑
i=0

{
λnK1

(
vi+1
n − vin
λn

)2

∧K2

}
+K3, (3.140)
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with

K3 :=

K∑
j=2

cj

j−1∑
s=1

j − s
j

(
J1(u

(1)
0,s) + J1(u

(1)
1,s)
)
−

K∑
j=2

(j − 1)ψj(γ). (3.141)

Next, we show that supn ‖vn‖W 1,1(0,1) < +∞. Therefore, we define the sets I−n and I−−n
by

I−n :=
{
i ∈ {0, . . . , n− 1} : vi+1

n < vin
}
,

I−−n :=

{
i ∈ I−n : K1λn

(
vi+1
n − vin
λn

)2

≥ K2

}
.

From (3.140), we deduce that

Eδnn (vn) ≥
∑
i∈I−n

(
λnK1

(
vi+1
n − vin
λn

)2

∧K2

)
+K3

≥
∑

i∈I−n \I−−n

λnK1

(
vi+1
n − vin
λn

)2

+K2#I−−n +K3.

Thus, we obtain from supnE
δn
n (vn) < +∞ and K2 > 0 that I−− := supn #I−−n < +∞.

Moreover, we deduce from the equiboundedness of the energy, lim
z→−∞

Jj(z) = +∞, ζin,j ≥ 0,

and the fact that Jj is bounded from below for j ∈ {1, . . . ,K}, that there exists a constant

M ≥ 0 such that

γ +
vi+1
n − vin√

λn
≥ −M ⇒ vi+1

n − vin
λn

≥ −M + γ√
λn

, (3.142)

for all n and i ∈ {0, . . . , n− 1}. Hence, using Hölder’s inequality and #I−n ≤ n, we have

for (v′n)− := −(v′n ∧ 0) that

‖(v′n)−‖L1(0,1) ≤
∑
i∈I−n

λn

∣∣∣∣vi+1
n − vin
λn

∣∣∣∣
≤

∑
i∈I−n \I−−n

λn

∣∣∣∣vi+1
n − vin
λn

∣∣∣∣+
√
λn#I−−n |M + γ|

≤

 ∑
i∈I−n \I−−n

λn

∣∣∣∣vi+1
n − vin
λn

∣∣∣∣2
 1

2

+

 ∑
i∈I−n \I−−n

λn

 1
2

+
√
λn#I−−n |M + γ|

≤
(

1

K1
Eδnn (vn)−K3

) 1
2

+ 1 + I−−|M + γ|.
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Thus there exists C > 0 such that ‖(v′n)−‖L1(0,1) < C. Using the boundary conditions

vn(0) = 0 and vn(1) = δn, we obtain that∫
{v′n≥0}

v′n(x)dx = δn −
∫
{v′n<0}

v′n(x)dx ≤ δn + C.

Thus, v′n is equibounded in L1(0, 1). The Poincaré-inequality and vn(0) = 0 for all n ∈ N
yield that supn ‖vn‖W 1,1(0,1) < +∞. By the equiboundedness of the W 1,1-norm, there

exists v ∈ BV (0, 1) such that, up to subsequences, (vn) weakly∗ converges in BV (0, 1) to

v. A similar argument as in the compactness proof in Theorem 3.7 yields v ∈ BV δ(0, 1).

Next, we show that v ∈ SBV δ(0, 1) and v satisfies (3.138). Let us define the set

In :=

{
i ∈ {0, . . . , n− 1} : K1λn

(
vi+1
n − vin
λn

)2

≥ K2

}
.

Moreover, we define the sequence (ṽn) ⊂ SBV (0, 1) by ṽn(1) = δn and

ṽn(x) :=

vn(x) if x ∈ λn[i, i+ 1), i /∈ In,

vn(iλn) if x ∈ λn[i, i+ 1), i ∈ In.

The construction of ṽn implies limn→∞ ‖ṽn − vn‖L1(0,1) = 0, ‖ṽn‖BV (0,1) ≤ ‖vn‖W 1,1(0,1)

and thus ṽn
∗
⇀ v in BV (0, 1). Moreover, it holds #Sṽn = #In and

+∞ > Eδnn (vn) ≥
n−1∑
i=0
i/∈In

K1λn

(
vi+1
n − vin
λn

)2

+K2#In +K3

≥min{K1,K2}
(∫ 1

0
|ṽ′n(x)|2dx+ #Sṽn

)
+K3. (3.143)

Hence, we obtain by the closure theorem for SBV functions that v ∈ SBV (0, 1), ṽ′n ⇀

v′ in L1(0, 1), +∞ > lim inf
n→∞

#Svn ≥ #Sv and Dj ṽn
∗
⇀ Djv weakly∗ in the sense of

measures, see Theorem 2.8. Moreover, we deduce that ṽ′n ⇀ v′ ∈ L2(0, 1) in L2(0, 1) from

supn ‖ṽ′n‖L2(0,1) < +∞ (see (3.143)).

Let us now show that there exists a finite set S ⊂ [0, 1] such that vn ⇀ v locally weakly

in H1((0, 1) \ S). Here, we use similar arguments as in [10, Lemma 2.4]. The estimate

(3.143), yields the existence of xn1 , . . . , x
n
m ∈ [0, 1], with m independent of n, such that

Sṽn ⊂ {xni : i ∈ {1, . . . ,m}}.

Up to subsequences, we have that xni → xi ∈ [0, 1] for i ∈ {1, . . . ,m}. We set S =

{x1, . . . , xm}. Fix η > 0 and define Sη :=
⋃m
i=1(xi − η, xi + η). Then there exists

a constant N ∈ N such that vn ≡ ṽn on (0, 1) \ Sη for n ≥ N and by (3.143) that

supn≥N ‖v′n‖L2((0,1)\Sη) < +∞. We already have shown that vn is equibounded in L1(0, 1).

Thus, we can apply the Poincaré inequality on every connected subset of (0, 1) \ Sη and
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obtain that the L2-norm of vn is equibounded in (0, 1) \ Sη. Indeed, we have for every

connected subset Ω of (0, 1) \ Sη that∫
Ω
v2
ndx ≤

∫
Ω

(vn −−
∫

Ω
vndt)

2 + 2vn(−
∫

Ω
vndt)dx ≤ C‖v′n‖L2(Ω) +

2

|Ω|
‖vn‖2L1(0,1).

Hence, vn ⇀ v in H1((0, 1) \ Sη). By the arbitrariness of η > 0, we have that vn ⇀ v

locally weakly in H1((0, 1) \ S).

It is left to show that [v] ≥ 0 in [0, 1], i.e. [v](x) > 0 on Sv. Recall that we set v(0−) = 0

and v(1+) = δ for v ∈ SBV δ(0, 1). The assumptions (LJ2) and (LJ5) imply

lim inf
z→+∞

J0,j(z) > J0,j(γ) = ψj(γ), lim inf
z→−∞

J0,j(z) = +∞. (3.144)

Hence, we infer as in [17] that there exist constants C1, C2, C3 > 0 such that

J0,2(z)− ψ2(γ) ≥ Ψ(z − γ) :=

C1(z − γ)2 ∧ C2 if z ≥ γ,

C1(z − γ)2 ∧ C3 if z ≤ γ.
(3.145)

From (3.144), we deduce that

sup {C3 : (3.145) holds for some C1 and C2} = +∞. (3.146)

We find, using ζij,n ≥ 0, (3.8), (3.134) and (3.145), the following lower bound for Eδnn (vn):

Eδnn (vn)−K3 ≥
K∑
j=2

n−j∑
i=0

ζij,n ≥
n−2∑
i=0

ζi2,n ≥
n−2∑
i=0

{
J0,2

(
γ +

vi+2
n − vin
2
√
λn

)
− ψ2(γ)

}

≥
n−2∑
i=0

Ψ

(
vi+2
n − vin
2
√
λn

)
≥

n−2∑
i=0
i even

Ψ

(
vi+2
n − vin
2
√
λn

)
, (3.147)

where K3 is given in (3.141).

In order to capture the boundary behaviour of v, we introduce, as in Theorem 3.7, the

following auxiliary functions

w(x) :=


0 for x ≤ 0,

v(x) for 0 < x < 1,

δ for 1 ≤ x,

wn(x) :=


0 for x ≤ 0,

vn(x) for 0 < x < 1,

δn for 1 ≤ x.

(3.148)

Let us fix constants a < 0 and 1 < b. We observe that wn
∗
⇀ w in BV (a, b). As in

Theorem 3.7, we denote by v0
n,2 the piecewise affine interpolation of wn with respect to

2Z, see (3.31). To shorten the notation, we drop the superscript ’0’ and set vn,2 := v0
n,2.

Similar calculations as in (3.32) and (3.33) yield vn,2
∗
⇀ w in BV (a, b).
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In analogy to [9, Theorem 8.8], we define the sets

Ĩ+
n :=

{
i ∈ {0, . . . , n− 2} ∩ 2Z : vi+2

n > vin and C1(vi+2
n − vin)2 ≥ 4C2λn

}
,

Ĩ−n :=
{
i ∈ {0, . . . , n− 2} ∩ 2Z : vi+2

n < vin and C1(vi+2
n − vin)2 ≥ 4C3λn

}
.

Note that supn #(Ĩ+
n ∪ Ĩ−n ) < +∞ by (3.137), (3.145) and (3.147). By (3.146) it is not

restrictive to choose C1, C2, C3 > 0 such that C3 > C1(M + γ)2, where M ≥ 0 is such

that (3.142) holds true for all n and i ∈ {0, . . . , n − 1}. We claim that Ĩ−n = ∅ for this

choice. Assume by contradiction that there exists i ∈ Ĩ−n . Let us additionally assume that

vi+1
n ≤ vin and vi+2

n ≤ vi+1
n . By (3.142), we obtain

C1(vi+2
n − vin)2 ≤ 2C1((vi+2

n − vi+1
n )2 + (vi+1

n − vin)2) ≤ 4C1(M + γ)2λn < 4C3λn,

which is a contradiction to i ∈ Ĩ−n . The same argument works also without the additional

assumption since (vi+2
n −vin)2 ≤ (vi+2

n −vi+1
n )2 if vi+1 ≥ vi and (vi+2

n −vin)2 ≤ (vi+1
n −vin)2

if vi+2 ≥ vi+1. Hence, C3 > C1(M + γ)2 yields Ĩ−n = ∅.
For C1, C2, C3 > 0 such that (3.145) and Ĩ−n = ∅ hold true, we define the sequence

(ṽn,2) ⊂ SBV (a, b) by

ṽn,2(x) :=

vn,2(x) if x ∈ λn[i, i+ 2), i ∈ 2Z \ Ĩ+
n ,

vn,2(iλn) if x ∈ λn[i, i+ 2), i ∈ Ĩ+
n .

The definition of (ṽn,2) and supn #Ĩ+
n < +∞ yield that limn→∞ ‖ṽn,2 − vn,2‖L1(a,b) = 0

and ‖ṽn,2‖BV (a,b) ≤ ‖vn,2‖W 1,1(a,b). Thus, ṽn,2
∗
⇀ w weakly∗ in BV (a, b). Moreover, ṽn,2

has only positive jumps, i.e. Dj ṽn,2 ≥ 0 in (a, b), by definition. By (3.145) and the choice

of C1, C2, C3 > 0, we obtain in analogy to [9, Theorem 8.8] that

n−2∑
i=0
i even

Ψ

(
vi+2
n − vin
2
√
λn

)
=

n−2∑
i=0
i even

C1λn

(
vi+2
n − vin

2λn

)2

∧ C2

≥C1

2

∫ 2λnbn/2c

0
|ṽ′n,2(x)|2dx+ C2#Sṽn,2

≥C1

2

∫ b

a
|ṽ′n,2(x)|2dx+ C2#Sṽn,2 −

C1

4
(u

(1)
1,1 − γ)2. (3.149)

For the last inequality, we used that ṽ′n,2 = 0 a.e. on (a, b) \ (0, 1) for n even and ṽ′n,2 = 0

a.e. on (a, b) \ (0, 1 + λn) for n odd and ṽ′n,2 = wn(1+λn)−wn(1−λn)
2λn

= 1
2
√
λn

(u
(1)
1,1 − γ) on

(1−λn, 1 +λn) in this case. Note that we used wn(x) = δn for x ≥ 1 and wn(1)−wn(1−
λn) = vn − vn−1 =

√
λn(u

(1)
1,1 − γ) (see (3.130)).

Since the left-hand side in (3.149) is equibounded and ṽn,2
∗
⇀ w in BV (a, b), we have

Dj ṽn,2
∗
⇀ Djw in M(a, b), cf. Theorem 2.8, and since Dj ṽn,2 ≥ 0 in (a, b) we have

Djw ≥ 0 in (a, b). The measure Djv is the restriction of Djw to [0, 1] and thus Djv ≥ 0

in [0, 1]. This yields the assertion [v] ≥ 0 in [0, 1] and finishes the proof.
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We define the set

SBV δ
e (0, 1) :=

{
v ∈ SBV δ(0, 1) : v satisfies (3.138)

}
. (3.150)

We are now in position to prove a Γ-convergence result for the sequence of functionals

(Eδnn ).

Theorem 3.34. Assume that J1, . . . , JK satisfy the assumptions (LJ1)–(LJ7). Let u
(1)
0 ,

u
(1)
1 ∈ RK−1

+ and δn → δ such that (3.128) is satisfied. Let α := 1
2J
′′
CB(γ), and B(θ, γ),

BBJ(θ) and BIJ as in (3.72), (3.74) and (3.75), respectively. Then the sequence (Eδnn )

Γ-converges with respect to the L1(0, 1)-topology to the functional Eδ defined by

Eδ(v) =



α

∫ 1

0
|v′|2dx+B(u

(1)
0 , γ)(1−#(Sv ∩ {0}))

+BBJ(u
(1)
0 )#(Sv ∩ {0}) +BIJ#(Sv ∩ (0, 1))

+BBJ(u
(1)
1 )#(Sv ∩ {1}) +B(u

(1)
1 , γ) (1−#(Sv ∩ {1}))

−
∑K

j=2(j − 1)ψj(γ) if v ∈ SBV δ
e (0, 1),

+∞ else

(3.151)

on L1(0, 1). Moreover, if δ > 0 it holds

lim
n→∞

inf
v
Eδnn (v) = min{αδ2, βmin}+B(u

(1)
0 , γ) +B(u

(1)
1 , γ)−

K∑
j=2

(j − 1)ψj(γ), (3.152)

with

βmin := min
{
BBJ(u

(1)
0 )−B(u

(1)
0 , γ), BBJ(u

(1)
1 )−B(u

(1)
1 , γ)

}
.

Before we proceed with the proof of Theorem 3.34, let us recall that by the same

calculations as in Proposition 3.21 we can rewrite Eδ above independent of c = (cj)
K
j=2:

Corollary 3.35. Assume that J1, . . . , JK , u
(1)
0 , u

(1)
1 , δn, δ and α are as in Theorem 3.34.

Let B̃(θ, γ), βBJ and βIJ as in (3.64) and (3.114), respectively. Then the functional Eδ,

given in (3.151), reads

Eδ(v) =



α

∫ 1

0
|v′|2dx+ B̃(u

(1)
0 , γ) + B̃(u

(1)
1 , γ)

+ βBJ(u
(1)
0 )#(Sv ∩ {0}) + βIJ#(Sv ∩ (0, 1))

+ βBJ(u
(1)
1 )#(Sv ∩ {1})−

∑K
j=2(j − 1)Jj(γ) if v ∈ SBV δ

e (0, 1),

+∞ else

(3.153)

on L1(0, 1).

Proof of Theorem 3.34. Liminf inequality. Let v ∈ L1(0, 1) and let (vn) be a sequence

of functions such that supnE
δn
n (vn) < +∞ and vn → v in L1(0, 1). By Lemma 3.33,
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we have that v ∈ SBV `
e (0, 1). Moreover, we can assume that there exists a finite set

S = {x1, . . . , xN} such that vn ⇀ v locally weakly in H1((0, 1) \ S). We have to show

that

lim inf
n→∞

Eδnn (vn) ≥α
∫ 1

0
|v′|2dx+B(u

(1)
0 , γ)(1−#(Su ∩ {0})) +BBJ(u

(1)
0 )#(Su ∩ {0})

+BIJ#(Su ∩ (0, 1)) +BBJ(u
(1)
1 )#(Su ∩ {1})

+B(u
(1)
1 , γ) (1−#(Su ∩ {1}))−

K∑
j=2

(j − 1)ψj(γ). (3.154)

The plan of the proof is as follows: first we estimate the terms which contribute to the

elastic integral term. Next, we consider the terms which contribute to the boundary layer

energies at 0 and 1. Here we have to distinguish between the case x /∈ Sv and the case

x ∈ Sv with x ∈ {0, 1}. Finally, we estimate possible boundary layer energies due to

jumps in the interior (0, 1).

Step 1. Let us estimate the elastic part. Let ρ > 0 be such that |xi − xj | > 4ρ for all

xi, xj ∈ S, i 6= j. We define the set Sρ =
⋃N
i=1(xi − ρ, xi + ρ) and the set Qn(ρ) as

Qn(ρ) := {i ∈ {0, . . . , n− 1} : (i, i+K)λn ⊂ (ρ, 1− ρ) \ Sρ} . (3.155)

We show that

lim inf
n→∞

K∑
j=2

∑
i∈Qn(ρ)

ζij,n ≥ α
∫

(2ρ,1−2ρ)\S2ρ

|v′|2dx. (3.156)

Therefore, we use a Taylor expansion of J0,j at γ:

J0,j(γ + z) = J0,j(γ) + αjz
2 + ηj(z)

with αj := 1
2J
′′
0,j(γ) = 1

2ψ
′′
j (γ) (see (LJ4), (LJ6)) and ηj(z)/|z|2 → 0 as |z| → 0. Note

that we have

K∑
j=2

∑
i∈Qn(ρ)

ζij,n =
K∑
j=2

j−1∑
s=0

∑
i∈Qn(ρ)∩{s+jZ}

ζij,n.

For given j ∈ {2, . . . ,K} and s ∈ {0, . . . , j − 1}, we define the set

Isn,j =

{
i ∈ {0, . . . , n− j} ∩ {s+ jZ} :

∣∣∣∣∣vi+jn − vin
jλn

∣∣∣∣∣ > λ
− 1

4
n

}
.
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Fix j′ ∈ {2, . . . ,K}. From the equiboundedness of Eδnn (vn), ζij,n ≥ 0 and (3.140), we

deduce that there exists C > 0 such that for n sufficiently large it holds

C ≥
K∑
j=2

n−j∑
i=0

ζij,n ≥
∑
i∈Is

n,j′

ζij′,n ≥ #Isn,j′
√
λnK1.

Hence, #Isn,j = O(
√
λn
−1

) and thus |{x ∈ (0, 1) : χsn,j(x) 6= 1}| ≤ jλn#Isn,j → 0 as

n→∞, where χsn,j is defined by

χsn,j(x) :=

1 if x ∈ [i, i+ j)λn and i ∈ {s+ jZ} \ Isn,j ,

0 if x ∈ [i, i+ j)λn and i ∈ Isn,j .
(3.157)

Thus χsn,j → 1 bounded in measure in (0, 1).

In the following, we identify vn with the function wn ∈W 1,∞(R) given in (3.148). As in

the proof of Theorem 3.7, we denote by vsn,j the piecewise affine interpolation of vn with

respect to s+ jZ, see (3.31). From supnE
δn
n (vn) < +∞, we deduce by Lemma 3.33 that

supn ‖vn‖W 1,1(0,1) and thus, as in the proof of Theorem 3.7, that vsn,j → v in L1(0, 1) for

all j ∈ {2, . . . ,K} and s ∈ {0, . . . , j − 1}. Furthermore, we define ωj(t) := sup|z|≤t |ηj(z)|
and χs,in,j = χsj,n(iλn). A Taylor expansion of J0,j at γ yields:

∑
i∈Qn(ρ)∩{s+jZ}

ζij,n ≥
∑

i∈Qn(ρ)∩{s+jZ}

{
J0,j

(
γ +

vi+jn − vin
j
√
λn

)
− ψj(γ)

}

≥
∑

i∈Qn(ρ)∩{s+jZ}

χs,in,j

{
J0,j

(
γ +

vi+jn − vin
j
√
λn

)
− ψj(γ)

}

≥
∑

i∈Qn(ρ)∩{s+jZ}

χs,in,j

αj
∣∣∣∣∣vi+jn − vin
j
√
λn

∣∣∣∣∣
2

− ωj

(∣∣∣∣∣vi+jn − vin
j
√
λn

∣∣∣∣∣
)

=
1

j

∑
i∈Qn(ρ)∩{s+jZ}

jλn

αjχs,in,j
∣∣∣∣∣vi+jn − vin

jλn

∣∣∣∣∣
2

−
χs,in,j
λn

ωj

(∣∣∣∣∣vi+jn − vin
j
√
λn

∣∣∣∣∣
)

≥ αj
j

∫
(2ρ,1−2ρ)\S2ρ

|χsn,jvsn,j
′|2dx−

∫
(ρ,1−ρ)\Sρ

χsn,jλ
−1
n ωj

(√
λn|vsn,j

′|
)
dx (3.158)

for n sufficiently large. Let us show that the second term in the last line above vanishes

as n tends to infinity. From vn ⇀ v locally weakly in H1((0, 1) \ S), we deduce that
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vsn,j
′ ⇀ v′ in L2((ρ, 1− ρ) \ Sρ). Indeed, we have for n sufficiently large that

‖vsn,j
′‖L2((ρ,1−ρ)\Sρ) ≤

∑
i∈Qn( ρ

2
)∩{s+jZ}

jλn

∣∣∣∣∣vi+jn − vin
jλn

∣∣∣∣∣
2

≤
∑

i∈Qn( ρ
2

)∩{s+jZ}

λn

i+j−1∑
s=i

∣∣∣∣vs+1
n − vsn
λn

∣∣∣∣2 ≤ j‖v′n‖L2(( ρ
2
,1− ρ

2
)\S ρ

2
).

Since (vn) converges locally weakly in H1((0, 1) \ S), we have supn ‖v′n‖L2(( ρ
2
,1− ρ

2
)\S ρ

2
) <

+∞. From vsn,j → v in L1(0, 1) and supn ‖vsn,j ′‖L2((ρ,1−ρ)\Sρ) < +∞, we deduce that

vsn,j
′ ⇀ v′ in L2((ρ, 1− ρ) \ Sρ). Furthermore, it holds

√
λn|vsn,j ′| ≤ λ

1/4
n if χsn,j is nonzero

and thus

|vsn,j
′|2 · χsn,jωj

(√
λn|vsn,j

′|
)
/(λn|vsn,j

′|2)

is the product of a sequence equibounded in L1((ρ, 1− ρ) \Sρ) and a sequence converging

to zero in L∞((ρ, 1 − ρ) \ Sρ). Note that we have used ηj(z)/|z|2 → 0 as z → 0 by

definition. Hence, using χsn,jv
s
n,j
′ ⇀ v′ in L2((ρ, 1− ρ) \ Sρ) it follows

lim inf
n→∞

∑
i∈Qn(ρ)∩{s+jZ}

ζij,n ≥ lim inf
n→∞

αj
j

∫
(2ρ,1−2ρ)\S2ρ

|χsn,jvsn,j
′|2dx

≥αj
j

∫
(2ρ,1−2ρ)\S2ρ

|v′|2dx

for j ∈ {2, . . . ,K} and s ∈ {0, . . . , j − 1}. Hence,

lim inf
n→∞

K∑
j=2

∑
i∈Qn(ρ)

ζij,n ≥
K∑
j=2

j−1∑
s=0

lim inf
n→∞

∑
i∈Qn(ρ)∩{s+jZ}

ζij,n

≥
K∑
j=2

j−1∑
s=0

αj
j

∫
(2ρ,1−2ρ)\S2ρ

|v′|2dx

=
K∑
j=2

αj

∫
(2ρ,1−2ρ)\S2ρ

|v′|2dx

=α

∫
(2ρ,1−2ρ)\S2ρ

|v′|2dx,

and assertion (3.156) is proven. Note, that we used

α =
1

2
J ′′CB(γ) =

1

2

 K∑
j=2

J ′′j (γ) + cjJ
′′
1 (γ)

 =
1

2
ψ′′j (γ) =

K∑
j=2

αj

which follows from
∑K

j=2 cj = 1 and the definition of ψj , see (3.14).

Step 2. Let us now estimate the boundary layer energies in 0 and 1. By the assumptions
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on ρ > 0 it holds #((0, ρ) ∩ Sv) ≤ 1 and #((1 − ρ, 1) ∩ Sv) ≤ 1. Hence, there exist

intervals J1 ⊂ (0, ρ) and J2 ⊂ (1 − ρ, 1) with |J1| = |J2| = ρ
2 and J1 ∩ Sv = J2 ∩ Sv = ∅.

Without loss of generality, we can assume that J1 = (ρ2 , ρ) and J2 = (1 − ρ, 1 − ρ
2).

This yields the existence of sequences (T 0
n), (T 1

n) ⊂ N with ρ
2 ≤ λn(T 0

n + s) ≤ ρ and

1− ρ ≤ λn(T 1
n + s) ≤ 1− ρ

2 for all s ∈ {1, . . . ,K} such that

lim
n→∞

v
T in+s+1
n − vT

i
n+s
n√

λn
= 0, for i ∈ {0, 1} and s ∈ {1, . . . ,K}. (3.159)

Let us show the existence of (T 0
n) ⊂ N with the above properties, the existence of (T 1

n) can

be proven similarly. To this end, we assume by contradiction that there exists c > 0 such

that for all i ∈ N with ρ
2 ≤ λn(i+s) ≤ ρ with s ∈ {1, . . . ,K} there exists an ŝ ∈ {1, . . . ,K}

such that |v
i+ŝ+1
n −vi+ŝn√

λn
| ≥ c. Let iρn, j

ρ
n ⊂ N be such such that ρ

2 ∈ (iρn − 1, iρn]λn and

ρ ∈ (jρn, j
ρ
n + 1]λn. We have by supnE

δn
n (vn) < +∞ and (3.140) that there exists C > 0

such that

C ≥
jρn−K∑
i=iρn+1

ζin,K ≥
jρn−K∑
i=iρn+1

K1c
2 ∧K2 ≥

(
K1c

2 ∧K2

)
(jρn − iρn −K)→ +∞

as n → ∞, which is a contradiction to supnE
δn
n (vn) < +∞. Note that we have used

jρn − iρn ≥ ρ
2λn
− 2 for n sufficiently large. From 0 ≤ λn(T 0

n + 1) < ρ and 1 − ρ ≤
λn(T 1

n + 1) < 1, we deduce that(
{0, . . . , T 0

n} ∪ {T 1
n + 1, . . . , n− 1}

)
∩Qn(ρ) = ∅.

We have to show that

lim inf
n→∞

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

T 0
n∑

i=0

ζij,n


≥B(u

(1)
0 , γ) +

(
BBJ(u

(1)
0 )−B(u

(1)
0 , γ)

)
#(Sv ∩ {0}), (3.160)

lim inf
n→∞

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
1,s) +

n−j∑
i=T 1

n+1

ζij,n


≥B(u

(1)
1 , γ) +

(
BBJ(u

(1)
1 )−B(u

(1)
1 , γ)

)
#(Sv ∩ {1}). (3.161)

We prove only (3.160). The estimate (3.161) can be proven in a similar way.

Let us first consider the case Sv ∩ {0} = ∅. We define the sequence v̂n : N0 → R as

v̂in :=


vin√
λn

+ iγ if 0 ≤ i ≤ T 0
n +K,

v
T0
n+K
n√
λn

+ iγ if i ≥ T 0
n +K.

(3.162)
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Using the fact that vn satisfies (3.130), we have v̂0
n = 0, v̂s − v̂s−1 = vsn−v

s−1
n√
λn

+ γ = u
(1)
0,s

for s ∈ {1, . . . ,K − 1} and v̂i+1 − v̂i = γ for i ≥ T 0
n + K. Hence, v̂n is a competitor for

the minimum problem defining B(u
(1)
0 , γ), see (3.72). Thus we obtain that

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

T 0
n∑

i=0

ζij,n

 =

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s)

+
K∑
j=2

∑
i≥0

{
Jj

(
v̂i+j − v̂i

j

)
+
cj
j

i+j−1∑
s=i

J1(v̂s+1 − v̂s)− ψj(γ)

}
− r2(n)

≥ B(u
(1)
0 , γ)− r2(n), (3.163)

with

r2(n) =

K∑
j=2

T 0
n+K−1∑
i=T 0

n+1

{
Jj

(
v̂i+j − v̂i

j

)
+
cj
j

i+j−1∑
s=i

J1(v̂s+1 − v̂s)− ψj(γ)

}
→ 0

as n→∞. Indeed, from v̂i+1
n − v̂in = γ for i ≥ T 0

n +K and the definition of ψj we deduce

that the terms in the infinite sum in (3.163) vanish identically for i ≥ T 0
n +K. By (3.159)

it holds

lim
n→∞

(v̂T
0
n+1+s
n − v̂T 0

n+s
n ) = lim

n→∞

v
T 0
n+1+s
n − vT

0
n+s
n√

λn
+ γ = γ,

for s ∈ {1, . . . ,K}, and thus we obtain limn→∞ r2(n) = 0. From (3.163), we deduce the

assertion (3.160) in the case Sv ∩ {0} = ∅.
Let us now consider the case 0 ∈ Sv. From vn → v in L1(0, 1) and 0 ∈ Sv, we deduce,

in analogy to [17, eq. (117)], that there exists (hn) ⊂ N with λnhn → 0 such that

lim
n→∞

vhn+1
n − vhnn√

λn
= +∞.

Indeed, otherwise v′n would be equibounded in L2 in a neighbourhood of 0. For given

j ∈ {2, . . . ,K} and s ∈ {0, . . . , j − 1}, we deduce from (3.9) that some terms in ζhn−jj,n

vanish as n tends to infinity. We collect them in the function r1(n) defined by

r1(n) =

K∑
j=1

hn∑
s=hn−j+1

Jj

(
γ +

vs+jn − vsn
j
√
λn

)
→ 0 as n→∞.
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As in the proof of Theorem 3.19, see (3.82), it is useful to rewrite the terms which involve

vhn+1
n − vhnn as follows:

K∑
j=2

hn∑
i=hn−j+1

ζij,n =
K∑
j=2

cj

j−1∑
s=1

j − s
j

{
J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)

+ J1

(
γ +

vhn+s+1
n − vhn+s

n√
λn

)}
−

K∑
j=2

jψj(γ) + r1(n).

Hence, we have

K∑
j=2

T 0
n∑

i=0

ζij,n =

K∑
j=2

{ hn−j∑
i=0

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)
+

T 0
n∑

i=hn+1

ζij,n

+ cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn+s+1
n − vhn+s

n√
λn

)}
−

K∑
j=2

jψj(γ) + r1(n). (3.164)

Thus, it remains to prove that

K∑
j=2

{ hn−j∑
i=0

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)}
≥ Bb(u

(1)
0 ), (3.165)

K∑
j=2

{ T 0
n∑

i=hn+1

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn+s+1
n − vhn+s

n√
λn

)}
≥ B(γ)− r2(n), (3.166)

with r2(n) → 0 as n → ∞. The inequality (3.165) can be proven in a similar way as

inequality (3.84) in the proof of Theorem 3.19. We define for m ∈ {0, . . . , hn}

ŵmn = −v
hn−m
n√
λn
− (hn −m)γ.

Now we rewrite the left-hand side in (3.165) in terms of ŵmn :

K∑
j=2

{ hn−j∑
i=0

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)}

=

K∑
j=2

{ hn−j∑
i=0

ζhn−j−ij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)}

=

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(ŵsn − ŵs−1
n ) +

K∑
j=2

hn−j∑
i=0

{
Jj

(
ŵi+jn − ŵin

j

)

+
cj
j

i+j−1∑
s=i

J1(ŵs+1
n − ŵsn)− ψj(γ)

}
.

Since vn satisfies the boundary conditions (3.130), we have ŵhnn = 0, ŵhn+1−s
n − ŵhn−sn =
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u
(1)
0,s. Thus ŵn is an admissible test for Bb(u

(1)
0 ) with hn playing the role of k, cf. (3.70).

Thus (3.165) holds true.

The proof of (3.166) is similar to the proof of inequality (3.85) in Theorem 3.19. We

define for i ≥ 0:

ũin =

γi+ vhn+1+i
n −vhn+1

n√
λn

if 0 ≤ i ≤ T 0
n − hn +K − 1,

γi+ v
T0
n+K
n −vhn+1

n√
λn

if i ≥ T 0
n − hn +K − 1.

We can now rewrite the left-hand side of (3.166) in terms of ũin:

K∑
j=2


T 0
n∑

i=hn+1

ζin,j(γ) + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn+s+1
n − vhn+s

n√
λn

)
=

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
ũsn − ũs−1

n

)
+

K∑
j=2

T 0
n−hn−1∑
i=0

{
Jj

(
ũi+jn − ũin

j

)

+
cj
j

i+j−1∑
s=i

J1

(
ũsn − ũs−1

n

)
− ψj(γ)

}

=
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
ũsn − ũs−1

n

)
+

K∑
j=2

∑
i≥0

{
Jj

(
ũi+jn − ũin

j

)

+
cj
j

i+j−1∑
s=i

J1

(
ũs+1
n − ũsn

)
− ψj(γ)

}
− r2(n),

where

r2(n) =
K∑
j=2

T 0
n−hn+K−2∑
i=T 0

n−hn

{
Jj

(
ũi+jn − ũin

j

)
+
cj
j

i+j−1∑
s=i

J1

(
ũs+1
n − ũsn

)
− ψj(γ)

}
.

Indeed, by definition of ũn, we have ũi+1
n − ũin = γ for i ≥ T 0

n − hn +K − 1 and thus the

terms in the infinite sum over i with i ≥ T 0
n −hn+K−1 vanish identically. Furthermore,

we have by the definition of ũn and (3.159):

lim
n→∞

(ũT
0
n−hn+s
n − ũT 0

n−hn−1+s
n ) = γ + lim

n→∞

v
T 0
n+1+s
n − vT

0
n+s
n√

λn
= γ

for s ∈ {1, . . . ,K}. Hence, we have r2(n) → 0 as n → ∞. Note that ũ0
n = 0 and

ũi+1
n − ũin = γ for i ≥ T 0

n − hn + K − 1. Thus ũn is an admissible test function in the

definition of B(γ), see (3.71), and we obtain (3.166). Combining (3.164)–(3.166) yields

(3.160) in the case 0 ∈ Sv.
Step 3. Let us now consider the boundary layer energy due to a jump in (0, 1). Assume

there exists t ∈ (0, 1) such that t ∈ Sv. By the choice of ρ > 0, we have that S ∩ (t −
ρ, t+ ρ) = {t}. Similar arguments as in the case of a jump in 0 provide us the existence
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of sequences (k1,t
n ), (hn), (k2,t

n ) ⊂ N with

t− ρ ≤ λn(k1,t
n + s) ≤ t− ρ

2
, t+

ρ

2
≤ λn(k2,t

n + s) ≤ t+ ρ

for s ∈ {1, . . . ,K} and λnhn → t such that

vhn+1
n − vhnn√

λn
→ +∞, vk

i,t
n +s+1
n − vk

i,t
n +s
n√

λn
→ 0 for i ∈ {1, 2} and s ∈ {1, . . . ,K} (3.167)

as n → ∞. The choice of the sequences (k1,t
n ), (k2,t

n ) and the definition of Qn(ρ), see

(3.155), yield that {k1,t
n + 1, . . . , k2,t

n } ∩Qn(ρ) = ∅. We have to show that

lim inf
n→∞

K∑
j=2

k2,t
n∑

i=k1,t
n +1

ζij,n ≥ 2B(γ)−
K∑
j=1

jψj(γ). (3.168)

As in the case of a jump in 0 (see (3.164)), we have that

K∑
j=2

k2,t
n∑

i=k1,t
n +1

ζij,n =

K∑
j=2

{ hn−j∑
i=k1,t

n

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)
+

k2,t
n∑

i=hn+1

ζij,n

+ cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn+s+1
n − vhn+s

n√
λn

)}
−

K∑
j=2

jψj(γ) + r1(n),

with

r1(n) =
K∑
j=1

j−1∑
s=0

Jj

(
γ +

vhn+j−s
n − vhn−sn

j
√
λn

)
→ 0 as n→∞.

Thus it remains to prove that

K∑
j=2

{ hn−j∑
i=k1,t

n +1

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn−s+1
n − vhn−sn√

λn

)}
≥ B(γ)− r2(n) (3.169)

K∑
j=2

{ k2,t
n∑

i=hn+1

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vhn+s+1
n − vhn+s

n√
λn

)}
≥ B(γ)− r3(n) (3.170)

with lim
n→∞

ri(n) = 0 for i ∈ {2, 3}. The inequality (3.170) can be proven in exactly the

same way as (3.166). Moreover, a straightforward adaption of the proof of inequality

(3.94) to the rescaled situation yields (3.169). Hence, it holds (3.168). Clearly the above

arguments can be applied to every t ∈ Sv ∩ (0, 1).
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Hence, combining (3.134), the estimates (3.53), (3.160), (3.161) and (3.168) yields

lim inf
n→∞

Eδnn (vn) ≥α
∫

(2ρ,1−2ρ)\S2ρ

|v′|2dx+B(u
(1)
0 , γ) +B(u

(1)
1 , γ)

+
(
BBJ(u

(1)
0 )−B(u

(1)
0 , γ)

)
#(Sv ∩ {0}) +BIJ#(Sv ∩ (0, 1))

+
(
BBJ(u

(1)
1 )−B(u

(1)
1 , γ)

)
#(Sv ∩ {1})−

K∑
j=2

(j − 1)ψj(γ).

By taking ρ→ 0 and using the fact that v′ ∈ L2(0, 1), we obtain (3.154). This proves the

liminf inequality.

Limsup inequality. To complete the Γ-convergence proof it is left to show that for

every v ∈ SBV δ
e (0, 1) there exists a sequence (vn) such that vn → v in L1(0, 1) and

lim supnE
δn
n (vn) ≤ Eδ(v). As in the proof of Theorem 3.19, we consider the case #Sv = 1

and distinguish between having a jump at the boundary or in the interior. Similarly, as in

[17] and [51], it is enough to consider functions v which are sufficiently smooth and locally

constant on both sides of Sv. The claim follows by density and relaxation arguments.

Jump in 0. Let v ∈ SBV δ
e (0, 1) with Sv = {0} be such that v ∈ C2(0, 1), v(0) = 0 and

v(1) = δ. Moreover, let v ≡ v(0+) on (0, ρ) and v ≡ δ on (1−ρ, 1) for some (small) ρ > 0.

Since Eδ(v) = +∞ if [v](t) < 0 for some t ∈ Sv, we can assume that v(0+) > 0.

Let us recall some sequences which were introduced in the proof of Theorem 3.19. Fix

η > 0. By the definition of B(γ), we can find a function ũ : N0 → R and an Ñ ∈ N
such that ũ0 = 0, ũi+1 − ũi = γ if i ≥ Ñ and (3.97) is satisfied. Analogously, by the

definition of Bb(θ) given in (3.70), there exist ŵ : N0 → R and k̂0 ∈ N, k̂0 ≥ K − 1 such

that ŵk0 = 0, ŵk0+1−s− ŵk0−s = u
(1)
0,s for s = 1, . . . ,K−1 and it holds (3.98). Finally the

definition of B(θ, γ) yields the existence of a function w : N0 → R and natural number

N2 ∈ N with w0 = 0, ws − ws−1 = u
(1)
1,s for s ∈ {1, . . . ,K − 1}, wi+1 − wi = γ for i ≥ N2

such that (3.99) is satisfied.

Let (T 0
n), (T 1

n) ⊂ N be such that ρ
2 ∈ λn[T 0

n , T
0
n + 1) and 1− ρ

2 ∈ λn[T 1
n , T

1
n + 1). For n

sufficiently large it holds

k̂0 + Ñ +K + 1 ≤ T 0
n ≤

ρ

λn
−K − 1 and

1− ρ
λn

+K ≤ T 1
n ≤ n−N2 −K. (3.171)

Indeed, since ρ > 0 the statement regarding T 0
n follows by k̂0+Ñ+K+1 ≤ ρ

2λn
−1 ≤ T 0

n ≤
ρ

2λn
≤ ρ

λn
−K − 1 for n large enough. The inequalities regarding T 1

n follow analogously.

For n sufficiently large such that (3.171) holds, we define a recovery sequence (vn) for v
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by means of the functions v, ũ, w and ŵ by

vin =



−
√
λn(ŵk̂0−i + γi) if 0 ≤ i ≤ k̂0,

v(0+) + δn − δ +
√
λn(ũi−k̂0−1 − ũÑ − wN2+1)

−
√
λnγ(i− k̂0 − 2− Ñ −N2) if k̂0 + 1 ≤ i ≤ T 0

n + 1,

v(iλn) + δn − δ −
√
λn(wN2+1 − γ(N2 + 1)) if T 0

n + 1 ≤ i ≤ T 1
n + 1,

δn −
√
λn(wn−i − γ(n− i)) if T 1

n + 1 ≤ i ≤ n.

By the definition of vn, ŵ and w, we have vn(0) = v0
n = 0, vn(1) = vn = δn, and

vsn − vs−1
n =

√
λn(ŵk̂0+1−s − ŵk̂0−s − γ) =

√
λn(u

(1)
0,s − γ),

vn+1−s
n − vn−sn =

√
λn(ws − ws−1 − γ) =

√
λn(u

(1)
1,s − γ),

for s ∈ {1, . . . ,K}. Thus vn satisfies the boundary conditions (3.130). Let us show

that vn is uniquely defined for i ∈ {T 0
n + 1, T 1

n + 1}. The definition of T 0
n yields 0 <

λnT
0
n ≤

ρ
2 and thus v(λn(T 0

n + 1)) = v(0+). By ũi+1 − ũi = γ for i ≥ Ñ , it holds for

i ∈ {k̂0 + Ñ + 2, . . . , T 0
n + 1} 6= ∅ (by (3.171)) that

ũi−k̂0−1
n − ũÑ − γ(i− k̂0 − 2− Ñ −N2) = N2 + 1. (3.172)

Hence, vin is well defined for i = T 0
n + 1. Similarly, λn(T 1

n + 1) ≥ 1− ρ
2 implies v(λn(T 1

n +

1)) = δ and n − T 1
n ≥ N2 + K implies wn−T

1
n−1 − γ(n − T 1

n − 1) = wN2+1 − γ(N2 + 1).

Thus vin is uniquely defined for i = T 1
n + 1.

Next, we show that vn → v in L1(0, 1). Let us denote by ṽn the piecewise affine

interpolation of v with respect to λnN, i.e. ṽn ∈ An(0, 1) and ṽin = v(iλn). The sequence

(ṽn) converges to v strongly in L1. Hence, it is sufficient to show that (vn − ṽn) → 0 in

L1(0, 1). We prove the L1 convergence only on the interval (0, ρ2), since similar arguments

yield the convergence on the intervals (ρ2 , 1−
ρ
2) and (1− ρ

2 , 1). Note that ṽn and vn are

equibounded in L∞(0, ρ2) for n sufficiently large. Indeed, ‖ṽn‖L∞(0, ρ
2

) ≤ v(0+) by the

definition ṽn and v. Using vn ∈ An, (3.172) and ρ
2 ≤ λn(T 0

n + 1), we obtain

‖vn‖L∞(0, ρ
2

) ≤ sup
i∈{0,...,T 0

n+1}
|vin| ≤ max

i∈{0,...,k̂0}

√
λn|ŵk̂0−i + γi|+ |v(0+) + δn − δ|

+ max
i∈{k̂0+1,...,k̂0+Ñ+2}

√
λn(ũi−k̂0−1 − γi+ c1))|,

with c1 = γ(k̂0+2+Ñ+N2)−ũÑ−wN2+1. Moreover, we have for i ∈ {k̂0+Ñ+2, . . . , T 0
n+1}

that

|vin − ṽin| ≤ |δn − δ|+
√
λn|(wN2+1 − γ(N2 + 1)| =: r(n).
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Note that δn → δ yields r(n) → 0 as n → ∞. Hence, we deduce from the previous

calculations, ρ
2 ≤ λn(T 0

n + 1) and vn, ṽn ∈ An(0, 1) that

‖vn − ṽn‖L1(0, ρ
2

) ≤
T 0
n∑

i=0

∫ (i+1)λn

iλn

|vn − ṽn|dx

≤λn(k̂0 + Ñ + 2)‖vn − ṽn‖L∞(0, ρ
2

) +

T 0
n∑

i=k̂0+Ñ+2

∫ (i+1)λn

iλn

|vn − ṽn|dx

≤O(λn) +

T 0
n∑

i=k̂0+Ñ+2

∫ (i+1)λn

iλn

r(n) + 2r(n)
x− iλn
λn

dx

≤O(λn) + 2(T 0
n + 1)λnr(n) ≤ O(λn) + 2ρr(n),

which converges to 0 as n→∞.

Let us now show that vn is indeed a recovery sequence for v. To this end, we split the

sum over ζij,n as follows

K∑
j=2

n−j∑
i=0

ζij,n =

K∑
j=2

{ T 0
n+1−K∑
i=0

ζij,n +

T 0
n∑

i=T 0
n+2−K

ζij,n +

T 1
n+1−K∑
i=T 0

n+1

ζij,n +

T 1
n∑

i=T 1
n+2−K

ζij,n

+

n−j∑
i=T 1

n+1

ζij,n

}
. (3.173)

We show that vi+1
n −vin = 0 for i ∈ {T 0

n+2−K, . . . , T 0
n+K−1}∪{T 1

n+2−K, . . . , T 1
n+K−1}.

This implies ζij,n = 0 for i ∈ {T 0
n+2−K, . . . , T 0

n}∪{T 1
n+2−K, . . . , T 1

n} and j ∈ {2, . . . ,K}.
Since T 0

n + 1 − K − k0 ≥ Ñ it holds vi+1
n − vin =

√
λn(ũi−k̂0 − ũi−k̂0−1 − γ) = 0 for

i ∈ {T 0
n + 2 − K, . . . , T 0

n}. Moreover, we deduce from λn(T 0
n + K) < ρ and v ≡ v(0+)

on (0, ρ) that vi+1
n − vin = v((i + 1)λn) − v(iλn) = 0 for i ∈ {T 0

n + 1, . . . , T 0
n + K − 1}.

Similar calculations combined with v ≡ δ on (1 − ρ, 1), λn(T 1
n − K + 1) > 1 − ρ and

n− T 1
n ≥ N2 +K yields vi+1

n − vin = 0 for i ∈ {T 1
n + 2−K, . . . , T 1

n +K − 1}. Hence, we

have
K∑
j=2


T 0
n∑

i=T 0
n+2−K

ζij,n +

T 1
n∑

i=T 1
n+2−K

ζij,n

 = 0. (3.174)

Let us now estimate the sum from i = 0 to i = T 0
n + 1 −K of (3.173). This contributes

to the jump energy BBJ(u
(1)
0 ). The definition of vn and δn → δ imply that

vk̂0+j−s
n − vk̂0−s

n√
λn

=
v(0+) + δn − δ√

λn
+O(1)→ +∞ as n→ +∞,
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for j ∈ {1, . . . ,K} and s ∈ {0, . . . , j − 1}. Hence, we obtain similarly to (3.164) that

K∑
j=2

T 0
n∑

i=0

ζij,n =
K∑
j=2

{ k̂0−j∑
i=0

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vk̂0−s+1
n − vk̂0−s

n√
λn

)
+

T 0
n∑

i=k̂0+1

ζin,j

+ cj

j−1∑
s=1

j − s
j

J1

(
vk̂0+s+1
n − vk̂0+s

n

λn

)}
−

K∑
j=2

jψj(γ) + r(n), (3.175)

with

r(n) =
K∑
j=1

0∑
s=−j+1

Jj

(
γ +

vk̂0+j+s
n − vk̂0+s

n

j
√
λn

)
→ 0 as n→∞.

By the definition of vn and ŵ, we obtain

K∑
j=2


k̂0−j∑
i=0

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vk̂0−s+1
n − vk̂0−s

n√
λn

)
=

K∑
j=2

k̂0−j∑
i=0

{
Jj

(
ŵi+j − ŵi

j

)
+
cj
j

i+j−1∑
s=i

J1(ŵs+1 − ŵs)− ψj(γ)

}
≤ Bb(u

(1)
0 ) + η.

(3.176)

Note that this is essentially the same calculation as in (3.104). Moreover, we obtain from

the definition of vn, ũ and (3.105) that

K∑
j=2


T 0
n+1−K∑
i=k̂0+1

ζij,n + cj

j−1∑
s=1

j − s
j

J1

(
γ +

vk̂0−s+1
n − vk̂0−s

n√
λn

) ≤ B(γ) + η. (3.177)

The estimate for the elastic boundary layer energy at 1 can be treated as in the first-order

Γ-limit result. By the definition of vn, w and (3.106) it holds

K∑
j=2


n−j∑

i=T 1
n+1

ζij,n + cj

j−1∑
s=1

j − s
j

J1(u
(1)
1,s)

 ≤ B(u
(1)
1 , γ) + η. (3.178)

Next, we show that the term
K∑
j=2

T 1
n+1−K∑
i=T 0

n+1

ζij,n

in (3.173) yields the elastic integral term in the limit as n tends to infinity. By the

definition of (T 0
n) and (T 1

n) it holds λnT
0
n >

ρ
4 and λn(T 1

n +K) < 1− ρ
4 for n sufficiently

large. Thus, we deduce from v ∈ C2(0, 1) that∣∣∣∣v((i+ 1)λn)− v(iλn)√
λn

∣∣∣∣ =
√
λn

∣∣∣∣v((i+ 1)λn)− v(iλn)

λn

∣∣∣∣ ≤√λn‖v‖C2([ ρ
4
,1− ρ

4
]) (3.179)
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for i ∈ {T 0
n , . . . , T

1
n + K − 1}. Clearly, the right-hand side in (3.179) tends to zero as n

tend to infinity. A Taylor expansion of Jj at γ yields:

Jj(γ + z) = Jj(γ) + J ′j(γ)z +
1

2
J ′′j (γ)z2 + ηj(z)

with
ηj(z)
|z|2 → 0 as z → 0 for j ∈ {1, . . . ,K}. Hence, using the definition of ψj(z) =

Jj(z) + cjJ1(z), ψ′j(γ) = 0 and αj = 1
2ψ
′′
j (γ), we have for z = 1

j

∑j
s=1 zs and ω(z) :=

sup|t|≤z |ηj(t)|+ j sup|t|≤z |η1(t)| that

Jj(γ + z) +
cj
j

j∑
s=1

J1(γ + zs)− ψj(γ)

≤ 1

2

J ′′j (γ)

(
1

j

j∑
s=1

zs

)2

+ cjJ
′′
1 (γ)

1

j

j∑
s=1

z2
s

+ ω( max
1≤s≤j

|zs|)

=
αj
j

j∑
s=1

z2
s −

1

2j2
J ′′j (γ)

j−1∑
s=1

j∑
m=s+1

(zs − zm)2 + ω( max
1≤s≤j

|zs|)

where we used the following identity in the last step:(
j∑
s=1

as

)2

=

j∑
s=1

a2
s + 2

j−1∑
s=1

j∑
m=s+1

asam = j

j∑
s=1

a2
s −

j−1∑
s=1

j∑
m=s+1

(as − am)2.

Hence, for i ∈ {T 0
n , . . . , T

1
n + 1 − j} and n sufficiently large such that (3.171) holds, we

have the following estimate:

ζij,n =Jj

(
γ +

√
λn
vi+jn − vin
jλn

)
+

i+j−1∑
s=i

J1

(
γ +

√
λn
vs+1
n − vsn
λn

)
− ψj(γ)

≤λn
{
αj
j

i+j−1∑
s=i

(
vs+1
n − vsn
λn

)2

− 1

2j2
J ′′j (γ)

i+j−2∑
s=i

i+j−1∑
m=s+1

(
vs+1
n − vsn − (vm+1

n − vmn )

λn

)2

+
1

λn
ω

(
max

i≤s≤i+j−1

∣∣∣∣vs+1
n − vsn√

λn

∣∣∣∣)}
=λn

{
αj
j

i+j−1∑
s=i

(
vs+1
n − vsn
λn

)2

+ o(1)

}

as n → ∞. Indeed, from the definition of vn and v ∈ C2(0, 1) we deduce for i ∈
{T 0

n , . . . , T
1
n + 1− j} and s,m ∈ N with i ≤ s < m ≤ i+ j − 1 that:

vs+1
n − vm+1

n − (vsn − vmn )

λn
=
v((s+ 1)λn)− v((m+ 1)λn)− (v(sλn)− v(mλn))

λn

=(v′((m+ 1)λn)− v′(mλn))(s−m) + o(1)→ 0
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as n→∞. Hence, the second term in the brackets on the right-hand side of the estimate

for ζij,n is of order o(1). It remains to estimate the third term. If max
i≤s≤i+j−1

|vs+1
n − vsn| = 0

nothing is to be shown since ω(0) = 0. Let us consider the case that max
i≤s≤i+j−1

|vs+1
n −vsn| >

0. Then we have for i ∈ {T 0
n , . . . , T

1
n + 1− j} that

max
i≤s≤i+j−1

vs+1
n − vsn
λn

= max
T 0
n≤i≤T 1

n

v((i+ 1)λn)− v(iλn)

λn
≤ ‖v‖C2((0,1)).

Let us fix i ∈ {T 0
n , . . . , T

1
n +1−K}. By the definition of ω and by ηj(z)/z

2 → 0 as |z| → 0,

and (3.179), we have that

1

λn
ω

(
max

i≤s≤i+j−1

∣∣∣∣vs+1
n − vsn√

λn

∣∣∣∣)

= max
i≤s≤i+j−1

(
vs+1
n − vsn
λn

)2

·
ω

(
max

i≤s≤i+j−1

∣∣∣vs+1
n −vsn√

λn

∣∣∣)
max

i≤s≤i+j−1

(
vs+1
n −vsn√

λn

)2 → 0

as n→∞. Hence, we have for n large enough such that (3.171) holds that

K∑
j=2

T 1
n+1−K∑
i=T 0

n+1

ζij,n ≤
K∑
j=2

αj
j
λn

T 1
n+1−K∑
i=T 0

n+1

{
i+j−1∑
s=i

(
vs+1
n − vsn
λn

)2

+ o(1)

}

=

K∑
j=2

αjλn

T 1
n+1−K∑
i=T 0

n+1

(
v((i+ 1)λn)− v(iλn)

λn

)2

+ o(1)

=
K∑
j=2

αjλn

T 1
n+1−K∑
i=T 0

n+1

v′(iλn)2 + o(1)

=

K∑
j=2

αj

∫ 1

0
|v′|2dx+ o(1) = α

∫ 1

0
|v′|2dx+ o(1). (3.180)

Note that we used v ≡ v(0+) on λn[T 0
n , T

0
n + K], and v ≡ δ on λn[T 1

n − K,T 1
n ] for n

sufficiently large. The left Riemann sum converges to the integral since v′ is continuous.

Altogether, we obtain from (3.174),(3.176)-(3.178) and (3.180) that

lim sup
n→∞

Eδnn (vn) ≤α
∫ 1

0
|v′|2dx+

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +Bb(u

(1)
0 ) +B(γ)

+B(u
(1)
1 , γ)−

K∑
j=2

(2j − 1)ψj(γ) + 3η

and the assertion follows by the arbitrariness of η > 0.

Internal jump. Let us now consider the case Sv = {t} with t ∈ (0, 1). As in the case
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of a jump in 0 it is not restrictive to assume that v ∈ C2([0, 1] \ {t}), v ≡ 0 on [0, ρ),

v ≡ v(t−) on (t− ρ, t), v ≡ v(t+) on (t, t+ ρ) and v ≡ δ on (1− ρ, 1] for some ρ > 0 with

ρ < 1
2 min{t, 1− t}. Since Eδ(v) = +∞ if v(t+) < v(t−), we can assume v(t+) > v(t−).

Fix η > 0. By the definition of the boundary layer energy B(u
(1)
0 , γ), we can find v̂ : N0 →

R and N1 ∈ N such that v̂0 = 0, v̂s − v̂s−1 = u
(1)
0,s for s ∈ {1, . . . ,K − 1}, v̂i+1 − v̂i = γ

if i ≥ N1 and it holds (3.108) (with v replaced by v̂). Moreover, let ũ : N0 → R and

Ñ ∈ N be such that ũ0 = 0, ũi+1 − ũi if i ≥ Ñ and (3.97) holds. By the definition of

B(u
(1)
1 , γ), we find a sequence ŵ : N0 → R and a natural number N2 ∈ N with w0 = 0,

ws − ws−1 = u
(1)
1,s for i ∈ {1, . . . ,K − 1}, wi+1 − wi = γ for i ≥ N2 such that (3.99) be

satisfied.

Let the sequences (T 0
n), (k1

n), (hn), (k2
n), (T 1

n) ⊂ N be such that ρ
2 ∈ λn[T 0

n , T
0
n + 1),

t− ρ
2 ∈ λn[k1

n, k
1
n+1), t ∈ λn[hn, hn+1), t+ ρ

2 ∈ λn[k2
n, k

2
n+1), and 1− ρ

2 ∈ λn[T 1
n , T

1
n +1).

Thus, for n sufficiently large it hold

N1 +K ≤ T 0
n ≤

ρ

λn
−K, 1− ρ

λn
≤ T 1

n ≤ n−N2 −K,

t− ρ
λn

< k1
n ≤ hn −K, hn + 1 +K + Ñ ≤ k2

n ≤
t+ ρ

λn
−K. (3.181)

For n sufficiently large such that (3.181) holds, we define a recovery sequence (vn) by

means of the functions v, v̂, ũ and w as

vin =



√
λn(v̂i − γi) if 0 ≤ i ≤ T 0

n ,

v(iλn) +
√
λn(v̂N1 − γN1) if T 0

n ≤ i ≤ k1
n,

v(t−)−
√
λn(ũhn−i − ũÑ − v̂N1

+γ(i− hn + Ñ +N1)) if k1
n ≤ i ≤ hn,

v(t+) + δn − δ +
√
λn(ũi−(hn+1) − ũÑ − wN2+1

−γ(i− hn − 2− Ñ −N2)) if hn + 1 ≤ i ≤ k2
n + 1,

v(iλn) + δn − δ −
√
λn(wN2+1 − γ(N2 + 1)) if k2

n + 1 ≤ i ≤ T 1
n + 1,

δn −
√
λn(wn−i − γ(n− i)) if T 1

n + 1 ≤ i ≤ n.

By the definition of v̂, w and v the boundary conditions (3.130) are satisfied. The as-

sumptions on v and (3.181) yield v(T 0
nλn) = 0, v(k1

nλn) = v(t−), v((k2
n + 1)λn) = v(t+)

and v((T 1
n + 1)λn) = δ. Thus, vin is by the definition of v̂, ũ and w uniquely defined for

i ∈ {T 0
n , k

1
n, k

2
n + 1, T 1

n + 1}. The definition of vn yields vn → v in L1(0, 1), which can be

proven in a similar way as for the case of a jump in 0.

Moreover, the definition of vn, v(t+) > v(t−) and limn→∞ δn = δ yield

vhn−s+jn − vhn−sn√
λn

=
v(t+)− v(t−) + δn − δ√

λn
+O(1)→ +∞ as n→∞,
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for j ∈ {1, . . . ,K} and s ∈ {0, . . . , j − 1}. Let us now show that vn is a recovery for v.

Firstly, we decompose the sum over the ζij,n terms in (3.134) as

K∑
j=2

n−j∑
i=0

=
K∑
j=2

{ T 0
n−K∑
i=0

ζij,n +

T 0
n−1∑

i=T 0
n−K+1

ζij,n +

k1
n−K∑
i=T 0

n

ζij,n +

k1
n−1∑

i=k1
n−K+1

ζij,n +

k2
n+1−K∑
i=k1

n

ζij,n

+

k2
n∑

i=k2
n+2−K

ζij,n +

T 1
n+1−K∑
i=k2

n+1

ζij,n +

T 1
n∑

i=T 1
n+2−K

ζij,n +

n−j∑
i=T 1

n+1

ζij,n

}
.

The definition of v̂, ũ, w and vn, combined with similar calculations as for the case of a

jump in 0 and for a jump in (0, 1) in the proof of Theorem 3.19 yield that

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

T 0
n−K∑
i=0

ζij,n

 ≤ B(u
(1)
0 , γ) + η,

K∑
j=2

k2
n+1−K∑
i=k1

n

ζij,n ≤ 2B(γ)−
K∑
j=2

jψj(γ) + 2η + r(n),

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
1,s) +

n−j∑
i=T 1

n+1

ζij,n

 ≤ B(u
(1)
1 , γ) + η,

where r(n)→ 0 as n→∞. For given j ∈ {2, . . . ,K}, the definition of v, vn, v̂, ũ, w and

(3.181) imply that

ζij,n = 0 for i ∈ {T 0
n −K + 1, . . . , T 0

n − 1} ∪ {k1
n −K + 1, . . . , k1

n − 1}

and i ∈ {k2
n + 2−K, . . . , k2

n} ∪ {T 1
n + 2−K, . . . , T 1

n}.

We show that ζij,n = 0 for i ∈ {T 0
n −K + 1, . . . , T 0

n − 1} the other cases can be proven in a

similar way. It is sufficient to show that vi+1
n −vin = 0 for i ∈ {T 0

n−K+1, . . . , T 0
n +K−1}.

By the properties of v̂ and N1 ≤ T 0
n − K it holds vi+1

n − vin =
√
λn(γ − γ) = 0 for i ∈

{T 0
n−K+1, . . . , T 0

n−1}. Since λn(Tn+K) < ρ it holds ṽ(iλn) = 0 for i ∈ {T 0
n , . . . , T

0
n+K}

and thus vi+1
n − vin = 0 for i ∈ {T 0

n , . . . , T
0
n +K − 1}.

Moreover, we obtain in a similar fashion as in the case of a jump in 0 that

lim sup
n→∞

K∑
j=2


k1
n−K∑
i=T 0

n

ζij,n +

T 1
n+1−K∑
i=k2

n+1

ζij,n

 ≤ α
∫ t

0
|v′|2dx+

∫ 1

t
|v′|2dx.
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Altogether, we deduce from the above estimates and (3.134) that

lim sup
n→∞

Eδnn (vn) ≤α
∫ 1

0
|v′|2dx+B(u

(1)
0 , γ) +B(u

(1)
1 , γ)

+ 2B(γ) +

K∑
j=2

(2j − 1)ψj(γ) + 4η,

which proves the assertion since η > 0 can be chosen arbitrarily small.

No jump. It remains to provide a recovery sequence for functions v ∈ SBV δ
e (0, 1) with

Sv = ∅. As before it is sufficient to consider v ∈ C2(0, 1) and v ≡ 0 on [0, ρ) and v ≡ δ on

(1−ρ, 1]. For fixed η > 0 the functions v̂, w : N0 → R and the natural numbers N1, N2 ∈ N
are defined as in the previous case. Moreover, let the sequences (T 0

n), (T 1
n) ⊂ N be such

that ρ
2 ∈ [T 0

n , T
0
n + 1) and 1− ρ

2 ∈ λn[T 1
n , T

1
n + 1). Let us define the sequence (vn) by

vin =



√
λn(v̂i − γi) if 0 ≤ i ≤ T 0

n ,

v(iλn) +
√
λn(v̂N1 − γN1)

−
√
λn(v̂N1−γN1+wN2−γN2)−δn+δ

T 1
n−T 0

n
(i− T 0

n) if T 0
n ≤ i ≤ T 1

n ,

δn −
√
λn(wn−i − γ(n− i)) if T 1

n ≤ i ≤ n.

By the definition of v̂ and w, the function vn satisfies the boundary condition (3.130).

The function vin is uniquely defined for i ∈ {T 0
n , T

1
n}. Let us denote the additional affine

term in the definition of vin by zin, i.e.

zin :=

√
λn(v̂N1 − γN1 + wN2 − γN2)− δn + δ

T 1
n − T 0

n

(i− T 0
n),

for i ∈ {T 0
n , . . . , T

1
n}. From δn → δ, we deduce that limn supi |zin| = 0. Thus, we have as

in the previous cases that vn → v in L1(0, 1). The definition of v̂ and w yields

lim
n→∞

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

T 0
n−K∑
i=0

ζij,n

 ≤ B(u
(1)
0 , γ) + η,

lim
n→∞

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
1,s) +

n−j∑
i=T 1

n

ζij,n

 ≤ B(u
(1)
1 , γ) + η. (3.182)

For i ∈ {T 0
n , . . . , T

1
n − 1}, we have∣∣∣∣zi+1

n − zin
λn

∣∣∣∣ ≤ |v̂N1 − γN1 + wN2 − γN2|√
λn(T 1

n − T 0
n)

+
|δn − δ|

λn(T 1
n − T 0

n)
=: ω(n). (3.183)
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Since λn(T 1
n − T 0

n) ≥ 1− ρ− 2λn and limn δn = δ, the right-hand side above tends to 0 as

n→∞. Thus, we have that

sup
i∈{T 0

n ,...,T
1
n−1}

∣∣∣∣vi+1
n − vin
λn

− v((i+ 1)λn)− v(iλn)

λn

∣∣∣∣ ≤ r(n)→ 0 as n→∞.

Hence, we can use similar arguments as in the case of a jump in 0 to prove the convergence

of the elastic part, i.e. that

lim
n→∞

K∑
j=2

T 1
n−K∑
i=T 0

n

ζij,n = α

∫ 1

0
|v′|2dx. (3.184)

Using λn(T 0
n+K) ≤ ρ

2 , λnT
1
n−K+1 ≥ 1− ρ

2 and (3.183), we obtain that 1√
λn

(vinn −vinn )→ 0

for all (in) ⊂ N with in ∈ {T 0
n −K + 1, . . . , T 0

n +K − 1} ∪ {T 1
n −K + 1, . . . , T 1

n +K − 1}.
Hence

lim
n→∞

K∑
j=2


T 0
n−1∑

i=T 0
n−K+1

ζij,n +

T 1
n−1∑

i=T 1
n−K+1

ζij,n

 = 0. (3.185)

Combining (3.182), (3.184) and (3.185) yields the assertion in the case of no jump.

Convergence of minimisation problems. The convergence of minima follows from the

coerciveness of Eδnn and the Γ-convergence result. To verify (3.152), we can argue precisely

as in [51, Theorem 6.1]. Fix δ > 0 and consider minv E
δ(v). We distinguish between

Sv = ∅ and Sv 6= ∅. Let v be such that Eδ(v) < +∞ and Sv = ∅. That is, v ∈ W 1,1(0, 1)

satisfying v(0) = 0 and v(1) = δ. Hence,

Eδ(v) = α

∫ 1

0
|v′|2dx+B(u

(1)
0 , γ) +B(u

(1)
1 , γ)−

K∑
j=2

(j − 1)ψj(γ)

and the minimiser is given by v(x) = δx. Using α > 0 and Proposition 3.24, we have that

min
v:Sv 6=∅

Eδ(v) ≥ min
{
BBJ(u

(1)
0 ) +B(u

(1)
1 , γ), BBJ(u

(1)
1 ) +B(u

(1)
0 , γ)

}
−

K∑
j=2

(j − 1)ψj(γ),

which finishes the proof.

Remark 3.36. For the limiting analysis of (Eδnn ), we used several times results from [17],

where a similar result is proven for periodic boundary conditions and multibody potentials

with finite range, see [17, Theorem 4]. Let us now briefly discuss that this result is

not directly applicable for Lennard-Jones systems with K > 2. In [17], a lower-bound
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comparison potential is defined, which is in our notation given by

Φ−(z) = inf


K∑
j=1

K−j+1∑
i=1

1

K − j + 1
Jj

(
1

j

i+j−1∑
s=i

zs

)
:
K∑
s=1

zs = Kz

 ,

cf. [17, eq. (8)]. It is assumed that Φ− has a unique minimiser zmin and the infimum in

the definition of Φ−(zmin) is attained for zs = zmin for s = 1, . . . ,K. This is in general

not satisfied by Lennard-Jones potentials (3.22) for K > 2. For simplicity, we consider

K = 3. In this case the term in the infimum problem in the definition of Φ−(zmin) reads

1

3
{J1(z1) + J1(z2) + J1(z3)}+

1

2

{
J2

(
z1 + z2

2

)
+ J2

(
z1 + z2

2

)}
+ J3 (zmin) ,

where z1 + z2 + z3 = 3zmin. Assume by contradiction that the infimum is attained for

z1 = z2 = z3 = zmin. The optimality conditions yield that there exists λ ∈ R such that
1
3J
′
1(zmin) + 1

4J
′
2(zmin) = λ (condition for z1 = z3 = zmin) and 1

3J
′
1(zmin) + 1

2J
′
2(zmin) = λ

(condition for z2 = zmin). Hence, J ′2(zmin) = 0 and thus zmin = δ2, where δ2 denotes the

unique minimiser of J2. In Proposition 3.2, we showed that γ > δ2, where γ is the unique

minimiser of JCB. By the definition of Φ−, it holds Φ−(z) ≤ JCB(z), and by assumption

we have infz∈R Φ−(z) = Φ−(δ2) = JCB(δ2). Hence,

Φ−(γ) ≤ JCB(γ) < JCB(δ2) = Φ−(δ2) = inf
z∈R

Φ−(z) ≤ Φ−(γ),

which is a contradiction. Hence, the Lennard-Jones potentials do not satisfy the assump-

tions on Φ− in the case K = 3. This argument can be adapted for all K > 2.

To end this section, we give a similar result as Theorem 3.34 for the case of periodic

boundary conditions. This was obtained in [56]. Here, we present the theorem without a

proof. We set

An(R) :=
{
u ∈ C(R) : u is affine on (i, i+ 1)λn for all i ∈ Z

}
.

Let us define the functional E#,δ
n : An(R)→ [0,+∞] by

E#,δ
n (v) =


K∑
j=1

n−1∑
i=0

Jj

(
γ +

vi+j − vi

j
√
λn

)
− nJCB(γ) if v ∈ A#,δ

n (0, 1) and v(0) = 0,

+∞ otherwise,

where A#,δ
n (0, 1) = {v ∈ An(R) : x 7→ v(x) − δx is 1-periodic}. Note that v ∈ A#,δ

n (0, 1)

implies that v(1) = δ. Adapting the arguments of Lemma 3.33 and Theorem 3.34, it

is possible to show the following Γ-convergence result for the sequence (Eδn); see [56,

Theorem 4.2] for a complete proof.
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Theorem 3.37. Let the hypotheses (LJ1)–(LJ7) be satisfied. Let δ > 0. Then the

sequence (E#,δ
n ) Γ-converges with respect to L1

loc-topology to the functional E#,δ defined

on piecewise-H1 functions satisfying v − δx is 1-periodic, v(0+) ≥ 0 and v(1−) ≤ δ, by

E#,δ(v) =

α
∫ 1

0
|v′|2dx+BIJ#(Sv ∩ [0, 1)) if [v] > 0 on Sv,

+∞ otherwise,

where α = 1
2J
′′
CB(γ) and BIJ is defined as in (3.75).

3.6 Equivalence by Γ-convergence

In the last section, we have shown that the sequence (Eδnn ) defined in (3.131) Γ-converges

to a one-dimensional version of Griffith’s model for fracture. In this section, we come back

to our original discrete energy H`
n and link it to a nonlinear model for fracture. To this

end, we use the notion of equivalence by Γ-convergence due to Braides and Truskinovsky,

see [20]. Scardia, Schlömerkemper and Zanini [51] consider a sequence of functionals

which allow for homogeneous elastic deformations or fractured deformations only, i.e.

u(x) = `x for all x ∈ [0, 1] or u ∈ SBV `
c (0, 1) (see (3.47)), and show that this sequence

is uniformly Γ-equivalent at first order to the discrete model H`
n in the case K = 2 (see

Remark 3.41 (b)). Here, we study functionals which are more flexible with respect to

the allowed deformations and have the same Γ-development up to the first order as the

discrete energy for a particular choice of u
(1)
0 , u

(1)
1 in the boundary conditions (3.3). Next,

we recall the definition of Γ-equivalence as it is stated in [11].

Definition 3.38. [11, Definition 6.1] Let L be a set of parameters. For ` ∈ L let (F `n)

and (G`n) be sequences of functionals. We say that (F `n)n and (G`n)n are Γ-equivalent up

to the first order if

(i) for all ` ∈ L Γ- lim
n→∞

F `n = Γ- lim
n→∞

G`n =: F `0 ,

(ii) for all ` ∈ L Γ- lim
n→∞

F `n −minF `0(u)

λn
= Γ- lim

n→∞

G`n −minF `0(u)

λn
.

Let J1, . . . , JK satisfy the hypotheses (LJ1)–(LJ7). We define G`n : L1(0, 1)→ R∪{+∞}
by

G`n(u) :=


∫ 1

0
W (u′)dx+ λn (BIJ#(Su ∩ [0, 1]) + r(`)) if u ∈ A`(0, 1),

+∞ otherwise,

(3.186)
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where the elastic energy density W is given by

W (z) :=

JCB(z) if z ≤ γ,

JCB(γ) + 1
2J
′′
CB(γ)(z − γ)2 if z ≥ γ,

(3.187)

the jump energy BIJ is given in (3.75), the set of admissible functions A`(0, 1) is defined

by

A`(0, 1) := {u ∈ SBV `(0, 1) : u′ > 0 in (0, 1), [u] ≥ 0 in [0, 1], #Su < +∞}, (3.188)

and the term r(`) denotes

r(`) := −
K∑
j=2

(j − 1)Jj(min{`, γ}). (3.189)

We prove the following equivalence result.

Proposition 3.39. Let J1, . . . , JK satisfy the hypotheses (LJ1)–(LJ7) and

lim
z→0+

Jj(z) = +∞ and Jj(z) = +∞ if z ≤ 0, (3.190)

for all j ∈ {1, . . . ,K}. Let ` > 0 and let u
(1)
0 , u

(1)
1 ∈ RK−1

+ given by u
(1)
0,s = u

(1)
1,s = min{`, γ}

for 1 ≤ s < K. The sequences (H`
n) and (G`n), defined in (3.4) and (3.186) are Γ-

equivalent up to the first order with respect to L1(0, 1)-convergence.

Proof. Zero-order equivalence. By Theorem 3.7, we have to show that (G`n) Γ-converges

with respect to the L1(0, 1)-topology to the functional H` (see (3.26)), that is

G`(u) := Γ- lim
n→∞

G`n(u) = H`(u) =


∫ 1

0
J∗∗CB(u′)dx if u ∈ BV `(0, 1), Dsu ≥ 0 in [0, 1],

+∞ else on L1(0, 1).

Let (un) ⊂ L1(0, 1) be such that supnG
`
n(un) < +∞. From the monotonicity of un

and un ∈ SBV `(0, 1), we deduce that |Dun|([0, 1]) = Dun([0, 1]) = ` and ‖un‖L∞(0,1) ≤
un(1+) = `. Hence, ‖un‖BV (0,1) ≤ 2`. This yields the existence of a subsequence (unk)k

which weakly∗ converges in BV (0, 1) to some u ∈ BV (0, 1). Moreover, we obtain that

u ∈ BV `(0, 1), see Theorem 3.7.

Let un → u in L1(0, 1) with supnG
`
n(un) < +∞. Since BIJ > 0 and r(`) ∈ R indepen-

dent of n, we have that

lim inf
n→∞

G`n(un) ≥ lim inf
n→∞

H`(un) ≥ H`(u).

Indeed, we have used for the first inequality that W ≥ J∗∗CB, un ∈ SBV `(0, 1) and Dsun ≥
0 in [0, 1]. The second inequality follows by the lower semicontinuity of H`.
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Let us now show the limsup inequality. Fix u ∈ L1(0, 1). The pointwise limit of G`n(u)

is given by

G`p(u) := lim
n→∞

G`n(u) =


∫ 1

0
W (u′(x))dx if u ∈ A`(0, 1),

+∞ else.

Note that we used here #Su < +∞. Hence, Γ- lim supnG
`
n(u) ≤ G`p(u), where G`p denotes

the lower semicontinuous envelope of G`p with respect to the L1(0, 1)-topology. Indeed,

the Γ- lim sup is always smaller than the pointwise limit, see [24, Proposition 5.1], and is

lower semicontinuous. Hence, it is left to show that G`p ≤ H`.

Fix u ∈ A`(0, 1) such that H`(u) < +∞. We can decompose u as u = v + w, where

v ∈ W 1,1(0, 1) and w is a jump function. For given N ∈ N, we set ti = i
N . We define vN

such that vN (ti) = v(ti) and

v′N (x) =

(
−
∫ ti+1

ti

v′(t)dt

)
∧ γ

for x ∈ (ti, ti+1). Clearly, we have vN → v in L1(0, 1). Let us define (uN ) ⊂ L1(0, 1) by

uN := vN +w. Then we have uN ∈ A`(0, 1) for all N ∈ N and uN → v+w = u in L1(0, 1).

By the convexity of J∗∗CB, J∗∗CB(z) = W (z) for z ≤ γ and J∗∗CB(z) = W (γ) for z ≥ γ, we

have that

H`(u) =

∫ 1

0
J∗∗CB(u′(x))dx =

N∑
i=1

∫ ti

ti−1

J∗∗CB(u′(x))dx ≥
N∑
i=1

1

N
J∗∗CB

(
−
∫ ti

ti−1

u′(t)dt

)

=

N∑
i=1

1

N
W

(
−
∫ ti

ti−1

u′(t)dt ∧ γ

)
=

∫ 1

0
W (u′N (x))dx = G`p(uN ).

The limit N → ∞ yields G`p(u) ≤ lim inf
N→∞

G`p(uN ) ≤ H`(u) and thus that G`p(u) ≤ H`(u)

for all u ∈ A`(0, 1). Let us now consider a general u ∈ BV `(0, 1) satisfying H`(u) < +∞.

We decompose the distributional derivative Du as Du = u′L1 + Dsu. As above, we set

ti = i
N for given N ∈ N. We define a jump function wN ∈ L1(0, 1) as

wN (x) =


0 if x ∈ [0, t1),

Dsu([0, ti−1) if x ∈ [ti−1, ti) for i ∈ {1, . . . , N},

Dsu([0, 1]) if x = 1.

We set uN = v + wN , with v(x) =
∫ x

0 u
′(t)dt. The definition of uN yields u′N ≡ u′,

#SuN ≤ N and [uN ] ≥ 0 (using Dsu ≥ 0). Hence, uN ∈ A`(0, 1). Moreover, it holds

that w := u − v satisfies w ∈ BV (0, 1) and w′ ≡ 0. Since, wN is the piecewise constant

interpolation of (a representative of) w, we have that wN → w in L1(0, 1) and thus
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uN → u in L1(0, 1). Furthermore, it holds

H`(u) =

∫ 1

0
J∗∗CB(u′)dx =

∫ 1

0
J∗∗CB(u′N )dx ≥ G`p(uN ).

By letting N →∞, we obtain G`p(u) ≤ lim infN→∞G`p(uN ) ≤ H`(u). Altogether, we have

G`p(u) ≤ H`(u) for all u ∈ L1(0, 1), which proves the limsup inequality.

First-order equivalence. We define the functional G`1,n : L1(0, 1)→ R ∪ {+∞} as

G`1,n(u) :=
G`n(u)− J∗∗CB(`)

λn

=


1
λn

∫ 1

0
W (u′(x))− J∗∗CB(`)dx+BIJ#(Su ∩ [0, 1]) + r(`) if u ∈ A`(0, 1),

+∞ else,

(3.191)

where r(`) is defined in (3.189). For given 0 < ` ≤ γ, we have to show that

G`1(u) := Γ- lim
n→∞

G`1,n(u) = H`
1(u) =

r(`) if u(x) = `x,

+∞ else,
(3.192)

see Corollary 3.14 and (3.189). For ` > γ, we have to prove that

G`1(u) := Γ- lim
n→∞

G`1,n(u) = H`
1(u) =

BIJ#(Su ∩ [0, 1]) + r(γ) if u ∈ SBV `
c (0, 1),

+∞ else,

(3.193)

where the set SBV `
c (0, 1) is defined in (3.47), see Theorem 3.19 and Remark 3.25.

Compactness. Let (un) ⊂ L1(0, 1) be such that supnG
`
1,n(un) < +∞. As in the proof of

the zero-order equivalence, we deduce from the boundary conditions and the monotonicity

of un that there exist u ∈ BV `(0, 1) and a subsequence, not relabelled, such that un
∗
⇀ u

in BV (0, 1). Moreover, we have

G`1,n(un) =
1

λn

∫ 1

0
W (u′n(x))− J∗∗CB(`)− (J∗∗CB)′(`)(u′n − `)dx+BIJ#(Su ∩ [0, 1]) + r(`)

+
1

λn

∫ 1

0
(J∗∗CB)′(`)(u′n(x)− `)dx. (3.194)

Next, we show that both integral terms in (3.194) are non-negative. Set

W`(z) := W (z)− J∗∗CB(`)− (J∗∗CB)′(`)(z − `). (3.195)

Note that W` ≥ 0 and W`(z) = 0 if and only if z = min{`, γ}. Indeed, if ` ≥ γ this

follows by (J∗∗CB)′(`) = 0, {γ} = arg minzW (z) and W (γ) = JCB(γ), see (3.187). Let

us consider 0 < ` < γ. From W (z) = J∗∗CB(z) = JCB(z) for z ≤ γ, we deduce that
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W`(z) = W (z) −W (`) −W ′(`)(z − `) and the claim follows by the strict convexity of

W . Hence, the first integral in (3.194) is non-negative. Let us show that also the second

integral is non-negative. For ` ≥ γ this follows by (J∗∗CB)′(`) = 0. Consider 0 < ` < γ.

Since un ∈ A`(0, 1), it holds

` = Dun([0, 1]) =

∫ 1

0
u′ndx+Dsun([0, 1]) and Dsun([0, 1]) ≥ 0.

Thus, using (J∗∗CB)′(`) ≤ 0 yields

1

λn

∫ 1

0
(J∗∗CB)′(`)(u′n(x)− `)dx = − 1

λn
(J∗∗CB)′(`)Dsun([0, 1]) ≥ 0. (3.196)

From (3.194), BIJ > 0 and (3.196), we obtain that

+∞ > sup
n
G`1,n(un) ≥ G`1,n(un) ≥ 1

λn

∫ 1

0
W`(u

′
n(x))dx+ r(`).

Since W` ≥ 0 and W`(z) = 0 if and only if z = min{`, γ}, we deduce that u′n → min{`, γ}
in measure in (0, 1). Moreover, we deduce from (3.194), BIJ > 0, and supnG

`
1,n(un) < +∞

that there exists a constant C > 0 such that

C ≥ 1

λn

∫ 1

0
W`(u

′
n)dx+ #(Su ∩ [0, 1]). (3.197)

The definition of W yields limz→±∞ |z|−1W`(z) = +∞. Hence, we deduce from un
∗
⇀ u

in BV (0, 1), (3.197) and Theorem 2.8 that u ∈ SBV `(0, 1). Moreover, it holds u′n ⇀ u′ in

L1(0, 1), Djun
∗
⇀ Dju weakly∗ in the sense of measures and +∞ > lim infn #Sun ≥ #Su.

As in Proposition 3.9, we deduce u′ = min{`, γ} a.e., u′n → u′ in L1(0, 1) and [u] ≥ 0.

Altogether, we have in the case 0 < ` ≤ γ that u(x) = `x a.e. in (0, 1) and for ` > γ that

u ∈ SBV `
c (0, 1), see (3.47).

Liminf inequality. Fix 0 < ` ≤ γ. Let (un) be a sequence of functions such that

supnG
`
1,n(un) < +∞ and un → u in L1(0, 1). The above compactness considerations

yield that u(x) = `x a.e. in (0, 1). By using the convexity of W and BIJ > 0, we obtain

that

G`n(un) ≥ 1

λn

(
W

(∫ 1

0
u′n(x)dx

)
− JCB(`)

)
+ r(`) ≥ r(`) = H`

1(u).

For the last inequality, we used that JCB ≡ W on (0, γ] and W decreasing on (0, γ],

see (3.187). Furthermore, we used ` =
∫ 1

0 u
′
ndx + Djun([0, 1]) and Djun([0, 1]) ≥ 0. By

passing with n to +∞, we obtain the liminf inequality in this case.

Let ` > γ. Let u ∈ L1(0, 1) and (un) ⊂ SBV `(0, 1) be such that supnG
`
1,n(un) <

+∞ and un → u in L1(0, 1). By the compactness result it holds u ∈ SBV `
c (0, 1) and

Djun
∗
⇀ Dju weakly∗ in the sense of measures. Set Su = {s1, . . . , sk} ⊂ [0, 1]. The weak∗

convergence of Djun to Dju yields that there exists for every si a sequence (sin) with
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sin ∈ Sun and sin → si. From W (z) ≥ JCB(γ) for all z ∈ R, BIJ > 0 and the continuity of

r(z), we deduce that

lim inf
n→∞

G`1,n(un) ≥ r(`) + lim inf
n→∞

BIJ#(Sun ∩ [0, 1]) ≥ r(γ) +BIJ#(Su ∩ [0, 1]),

which proves the assertion.

Limsup inequality. This follows for 0 < ` by taking un = u for all n ∈ N.

Let us now show that the continuum energy G`n captures the behaviour of the discrete

energy H`
n also in the vicinity of ` = γ. For this, we consider the behaviour of (G`nn ) for

some sequence (`n) ⊂ R with `n → γ as n → ∞. More precisely, we assume that `n ≥ γ

for all n ∈ N and that the following limit exists

δn :=
`n − γ√
λn
→ δ ≥ 0 as n→∞. (3.198)

For u ∈ A`n(0, 1), we define v :=
u−uγ√
λn

, where uγ(x) := γx for all x ∈ [0, 1]. The definition

of the function v implies that v(0−) = 0, v(1+) = `n−γ√
λn

= δn, Sv = Su and [v] ≥ 0 in

[0, 1]. Hence, v ∈ Âδn(0, 1), where for δ ∈ R the set Âδ(0, 1) is defined by

Âδ(0, 1) := {v ∈ SBV δ(0, 1) : [v] ≥ 0 in [0, 1], #Sv < +∞}. (3.199)

As in the discrete model, we can express the energy G`n1,n(u) (see (3.191)) with u =

uγ +
√
λnv in terms of the displacement v by F δnn (v) = G`n1,n(u), where the functional

F δnn : L1(0, 1)→ (−∞,+∞] is given by

F δnn (v) :=

Fn(v) if v ∈ Âδn(0, 1),

+∞ else,
(3.200)

where Fn is defined by

Fn(v) :=
1

λn

∫ 1

0
W
(
γ +

√
λnv

′
)
− JCB(γ)dx+BIJ#(Sv ∩ [0, 1]) + r(γ).

Note that we used that `n ≥ γ by assumption, which yields J∗∗CB(`n) = JCB(γ) and

r(`n) = r(γ), see (3.18) and (3.189).

Proposition 3.40. Let J1, . . . , Jk and u
(1)
0 , u

(1)
1 ∈ RK−1

+ satisfy the same assumptions as

in Proposition 3.39. Let δn → δ be such that (3.198) is satisfied. Then the sequences (Eδnn )

and (F δnn ), defined in (3.131) and (3.200) are Γ-equivalent with respect to the L1(0, 1)-

convergence.
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Proof. Thanks to Theorem 3.34 and the same considerations as in Remark 3.25, we have

to show that

Γ- lim
n→∞

F δnn (v) = Eδ(v) =

α
∫ 1

0
|v′|2dx+BIJ#(Sv ∩ [0, 1]) + r(γ) if v ∈ SBV δ

e (0, 1)

+∞ else,

(3.201)

where SBV δ
e (0, 1) is defined in (3.150) and α := 1

2J
′′
CB(γ).

Compactness. Let (vn) ⊂ L1(0, 1) be such that supn F
δn
n (vn) < +∞. From the definition

of W , see (3.187), we obtain minW = W (γ) = JCB(γ), W ′(γ) = 0 and W ′′(γ) > 0. Using

(3.190), we deduce that there exists a constant c > 0 such that W (γ+ z)−JCB(γ) ≥ cz2.

Hence, we have

F δnn (vn) =
1

λn

∫ 1

0
W (γ +

√
λnv

′
n)− JCB(γ)dx+BIJ#(Sv ∩ [0, 1]) + r(γ)

≥c
∫ 1

0
|v′n|2dx+BIJ#(Sv ∩ [0, 1]) + r(γ). (3.202)

From vn ∈ Âδn(0, 1), we deduce

0 ≤ |Djvn|([0, 1]) = Djvn([0, 1]) = δn −
∫ 1

0
v′n(x)dx ≤ δn + ‖v′n‖L1(0,1).

From δn → δ and (3.202), we obtain that the right-hand side is bounded independently

of n. Hence, supn |Dvn|([0, 1]) < +∞ and by the boundary conditions, we obtain that

supn ‖vn‖L∞(0,1) < +∞. Altogether, we have using c,BIJ > 0 that there exists C > 0

such that

C ≥
∫ 1

0
|v′n|2dx+ #Svn + ‖vn‖L∞(0,1)

for all n ∈ N. From this, we deduce, as in the discrete setting (see Lemma 3.33), that

there exist a subsequence (vnk) and v ∈ SBV δ
e (0, 1) (see (3.150)) such that vnk → v in

L1(0, 1), v′nk ⇀ v′ in L2(0, 1) and Djvnk
∗
⇀ Djv weakly∗ in the sense of measures.

Liminf inequality. Let vn ⊂ SBV (0, 1), v ∈ L1(0, 1) such that vn → v in L1(0, 1) and

supn F
δn
n (vn) < +∞. By the above compactness result, we have v ∈ SBV δ

e and we can

assume that v′n ⇀ v′ in L2(0, 1) and Djvn
∗
⇀ Djv weakly∗ in the sense of measures.

The estimate for the jumps can be done exactly as in the proof of Proposition 3.39. We

only estimate the elastic part of the energy. This can be done in a similar fashion as

for the discrete energy Eδnn , see Theorem 3.34. A Taylor expansion of W at γ yields

W (γ + z) − JCB(γ) = αz2 + η(z) with lim
z→0

η(z)
|z|2 = 0. Defining ω(t) := sup|z|≤t |η(z)|, we

have

W (γ +
√
λnz)− JCB(γ) ≥ λnαz2 − ω(|

√
λnz|). (3.203)

We define ’good’ sets:

In =

{
x ∈ (0, 1) : |vn(x)| ≤ λ−

1
4

n

}
.
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Since ‖v′n‖L2(0,1) is equibounded, we have that the indicator functions χn := χIn satisfy

χn → 1 strongly in L2(0, 1). Hence, χnv
′
n ⇀ v′ in L2(0, 1). Moreover, we can Taylor

expand W on the ’good’ sets:

∀x ∈ In :
1

λn

(
W (γ +

√
λnv

′
n(x))− JCB(γ)

)
=αv′n(x)2 +

1

λn
η(
√
λn|v′n(x)|).

Hence, we obtain

lim inf
n→∞

F δnn (vn) ≥ lim inf
n→∞

(
1

λn

∫ 1

0
χn(W (γ +

√
λnv

′
n)− JCB(γ))dx

)
+BIJ#Sv + r(γ)

≥ lim inf
n→∞

∫ 1

0
χn

(
α|v′n|2 −

ω(
√
λnv

′
n)

λn

)
dx+BIJ#Sv + r(γ)

≥α
∫ 1

0
|v′|2dx+BIJ#Sv + r(γ) = Eδ(v),

which completes the proof of the lim inf inequality. Note that we used in the last inequality

that χnv
′
n ⇀ v′ in L2(0, 1) and that

√
λn|v′n| ≤ λ

1
4
n if χn is non-zero and thus

χn
λn
ω(
√
λn|v′n|) = (v′n)2 · χn

ω(
√
λn|v′n|)

λn|v′n|2
→ 0 in L1(0, 1)

Indeed, the above quantify is a product of sequence which is equibounded in L1(0, 1) and

a sequence which converges to zero in L∞(0, 1) (using lim
z→0

ω(z)
z2 = 0 and

√
λn|v′n(x)| ≤ λ

1
4
n

if χn(x) 6= 0).

Limsup inequality. To show the upper bound it is by density enough to consider func-

tions v ∈ SBV δ
e (0, 1) such that v ∈ C2((0, 1) \ Sv). Moreover, it is not restrictive to

assume that there exists ρ > 0 such that v′ ≡ 0 on [0, ρ) ∪ (1− ρ, 1]. We decompose v as

v = ṽ + w where ṽ ∈ C2(0, 1) and w is a jump function, i.e. ṽ′ ≡ v′ and w′ ≡ 0.

Let (vn) ⊂ L1(0, 1) be such that vn = v + zn, where zn(x) = (δn − δ)x for all x ∈ R.

From v ∈ SBV δ
e , we deduce that vn(1+) = v(1+) + δn − δ = δn and vn ∈ Âδn . By the

definitions of vn, we have vn = ṽ+ zn +w where ṽ and w are as above. From ṽ ∈ C2(0, 1)

and v′ ≡ 0 on [0, ρ) ∪ (1− ρ, 1], we deduce max
z∈[0,1]

|ṽ′(z)| = c ∈ R. Taylor expansion yields

lim sup
n→∞

1

λn

∫ 1

0
W (γ +

√
λnv

′
n)− JCB(γ)dx

= lim sup
n→∞

1

λn

∫ 1

0
W
(
γ +

√
λn(ṽ′ + δn − δ)

)
− JCB(γ)dx

≤ lim sup
n→∞

1

λn

∫ 1

0
αλn(ṽ′ + δn − δ)2 + ω

(
|
√
λn(ṽ′ + δn − δ)|

)
dx

≤ α
∫ 1

0
ṽ′(x)2dx+ lim sup

n→∞

{
|δn − δ|α

∫ 1

0
(2|ṽ′|+ |δn − δ|)dx+

ω(
√
λn(c+ |δn − δ|))

λn

}
= α

∫ 1

0
ṽ′(x)2dx,
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where ω(z) is defined as in the proof of the lim inf inequality. Note that we used for the

last equality that δn → δ and limz→0 |z|−2ω(z) = 0. Using Svn = Sv for all n ∈ N and

ṽ′ = v′, we obtain

lim sup
n→∞

F δnn (vn) ≤ α
∫ 1

0
ṽ′(x)2dx+BIJ#(Sv ∩ [0, 1]) + r(γ) = Eδ(v),

see (3.201). This finishes the proof.

Remark 3.41. We conclude this section with some general remarks on (G`n) and possible

generalisations.

(a) The map ` 7→ minuG
`
n(u) is continuous in `. For this, we show that

min
u
G`n(u) =

JCB(`) + λn
∑K

j=2(j − 1)Jj(`) if 0 < ` ≤ γ,

JCB(γ) + λn
∑K

j=2(j − 1)Jj(γ) + min{α(`− γ)2, λnBIJ} if ` > γ,

where α = 1
2J
′′
CB(γ). It is straightforward to see that this implies the continuity of

` 7→ minuG
`
n(u).

Consider u ∈ A`(0, 1) such that Su = ∅. By the convexity of W and
∫ 1

0 u
′dx = ` (since

u ∈ SBV `(0, 1)), we have

G`n(u) ≥W (`) + λnr(`),

and this lower bound is attained by u(x) = `x for x ∈ [0, 1]. For u ∈ A`(0, 1) such that

Su 6= ∅, we have that

G`n(u) ≥W (`−Dju([0, 1])) + λnBIJ + λnr(`),

where we used the convexity of W ,
∫ 1

0 u
′dx + Dj([0, 1]) = ` and BIJ > 0. In the case

0 < ` ≤ γ, we obtain, using Dju is a positive measure and W is decreasing on (0, γ], that

minuG
`
n(u) = W (`) + λnr(`) which shows the assertion in this case. Since W ≥ W (γ),

we have the following lower bound for functions u ∈ A`(0, 1) such that Su 6= ∅:

G`n(u) ≥W (γ) + λnBIJ + λnr(`),

and this lower bound is attained by u(0) = 0 and u(x) = γx+ `− γ for x ∈ (0, 1] if ` > γ.

By the definition of W and r, this yields the assertion in the case ` > γ.

(b) In [20], Braides and Truskinovsky introduced the notion of uniform Γ-equivalence,

see [20, Definition 6.3]: Two sequences (H`
n) and (G`n) are uniformly Γ-equivalent at order

λqn at `0 > 0 if there exist translations m`
n such that for all `n → `0 as n→∞ the following

equation holds upon extraction of a subsequence

Γ- lim
n→∞

H`n
n −m`n

n

λqn
= Γ- lim

n→∞

G`nn −m`n
n

λqn
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and these Γ-limit are non-trivial, see also [51]. Two sequences are uniformly equivalent at

order λqn if they are uniformly Γ-equivalent at order λqn at `0 for all `0 > 0. The uniform

equivalence of (H`
n) and (G`n) implies, under certain coercivity assumptions, that

sup
`>0

∣∣∣inf
u
G`n(u)− inf

u
H`
n(u)

∣∣∣ = o(λqn),

see [20, Theorem 6.4]. A topic of future research is the question whether or not Proposi-

tion 3.39 can be generalised to uniform equivalence at order λqn for q ∈ {0, 1}
(c) The r(`)-term in the energy G`n is rather ad hoc and arises from the boundary layer

energies B(θ, `) and BBJ(θ) for the specific choice of u
(1)
0 and u

(1)
1 that we consider here.

It is desirable to construct an equivalent continuum model with flexible boundary layer

energies which depend on u′ in a suitable sense; see [11, Theorem 6.2] for an example in

an elastic setting. In particular this will be crucial if one includes external forces to the

energy, see [35, Theorem 4.1].



Chapter 4

Analysis of a quasicontinuum

method in one dimension

In this chapter, we present an analysis of a quasicontinuum method via Γ-convergence.

We consider the discrete energy H`
n, see (3.4), as the fully atomistic model problem.

From this, we derive a QC-approximation and perform a development by Γ-convergence.

We study requirements on the QC-approximation which ensure that the minima and the

minimiser of the first-order Γ-limits of the fully atomistic energy and the corresponding

QC-approximation coincide.

4.1 Discrete model

Let us recall basic definitions and notations for the fully atomistic energy H`
n. For given

K ∈ N, the discrete energy Hn : An(0, 1)→ R ∪ {+∞}, see (3.2), is defined by

Hn(u) =
K∑
j=1

n−j∑
i=0

λnJj

(
ui+j − ui

jλn

)
,

where Jj , j = 1, . . . ,K are potentials of Lennard-Jones type and An(0, 1) is defined in

(3.1). Moreover, we impose boundary conditions: for given ` > 0 and u
(1)
0 , u

(1)
1 ∈ RK−1

+ ,

we set

u0 = 0, un = `, us − us−1 = λnu
(1)
0,s, u

n+1−s − un−s = λnu
(1)
1,s

for 1 ≤ s < K, see (3.3). The functional H`
n : L1(0, 1)→ (−∞,+∞] is defined by

H`
n(u) =

Hn(u) if u ∈ An(0, 1) satisfies (3.3),

+∞ else.

The goal is to solve the minimisation problem

min
u∈An(0,1)

H`
n(u),

129
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which we consider as our fully atomistic problem.

The idea of energy based quasicontinuum approximations is to replace the above min-

imisation problem by a simpler one of which minimisers and minimal energies are good

approximations of the ones for H`
n. Typically this new problem is obtained in two steps:

(a) Define an energy where interactions beyond nearest neighbour interactions (’long

range’) are replaced by certain nearest neighbour interactions in some regions.

(b) Reduce the degree of freedom by choosing a smaller set of admissible functions.

To obtain (a), we follow Lin and Luskin [38, eq. (4.2)] and replace the jth (j ≥ 2) nearest

neighbour interactions by

Jj

(
ui+j − ui

jλn

)
= Jj

(
1

j

i+j−1∑
s=i

us+1 − us

λn

)
≈ 1

j

i+j−1∑
s=i

Jj

(
us+1 − us

λn

)
.

While this approximation turns out to be appropriate in the bulk, this is not the case close

to surfaces, where boundary layers occur. This motivates us to construct a quasicontinuum

model accordingly: for given n ∈ N let k1
n, k

2
n ∈ N with 0 < k1

n < k2
n < n − j. For

kn = (k1
n, k

2
n), we define the energy Ĥkn

n by using the above approximation of the jth

interaction for k1
n ≤ i ≤ k2

n − j, (cf. Figure 4.1), and keeping the atomistic descriptions

elsewhere,

Ĥkn
n (u) :=

n−1∑
i=0

λnJ1

(
ui+1 − ui

λn

)
+

K∑
j=2

k1
n−1∑
i=0

λnJj

(
ui+j − ui

jλn

)

+
K∑
j=2

k2
n−j∑
i=k1

n

λn
j

i+j−1∑
s=i

Jj

(
us+1 − us

λn

)
+

K∑
j=2

n−j∑
i=k2

n+1−j

λnJj

(
ui+j − ui

jλn

)
.

Analogously to H`
n, we define the functional Ĥ`,kn

n : L1(0, 1)→ (−∞,+∞]

Ĥ`,kn
n (u) :=

Ĥkn
n (u) if u ∈ An(0, 1) satisfies (3.3),

+∞ else.

For the following analysis it is useful to rewrite the energy Ĥkn
n in various ways. For given

j ∈ {1, . . . ,K}, we define the sets

A(j) := {0, . . . , k1
n − 1} ∪ {k2

n − j + 1, . . . , n− j}, C(j) := {k1
n, . . . , k

2
n − j}. (4.1)

The energy Ĥkn
n (u) reads

Ĥkn
n (u) =

K∑
j=1

λn

 ∑
i∈A(j)

Jj

(
ui+j − ui

jλn

)
+

1

j

∑
i∈C(j)

i+j−1∑
s=i

Jj

(
us+1 − us

λn

) . (4.2)
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0 nn-11

J2(z)

J (z)
1

J (z/2)
2

J (z)
1n

l

k n
2

k

Figure 4.1: Illustration of the quasicontinuum approximation forK = 2. Here z denotes
the scaled distance between the corresponding atoms in the deformed configuration and
the two dotted lines stand for 1

2J2(z). Moreover, the black balls symbolise the repatoms.

For j ∈ {2, . . . ,K}, we can rewrite the terms in the sum over i ∈ C(j) as follows:

1

j

k2
n−j∑
i=k1

n

i+j−1∑
s=i

Jj

(
us+1 − us

λn

)
=

k2
n−j∑

i=k1
n+j−1

Jj

(
ui+1 − ui

λn

)

+

j−1∑
i=1

i

j

{
Jj

(
uk

1
n+i − uk1

n+i−1

λn

)
+ Jj

(
uk

2
n−i+1 − uk2

n−i

λn

)}
.

Thus, we can rewrite the energy Ĥkn
n (u) as

Ĥkn
n (u) =

k2
n−K∑

i=k1
n+K−1

λnJCB

(
ui+1 − ui

λn

)
+

K∑
j=1

∑
i∈A(j)

λnJj

(
ui+j − ui

jλn

)

+
K∑
j=1

K−1∑
s=1

λn

(
s

j
∧ 1

){
Jj

(
uk

1
n+s − uk1

n+s−1

λn

)
+ Jj

(
uk

2
n−s+1 − uk2

n−s

λn

)}
,

(4.3)

where JCB :=
∑K

j=1 Jj is defined as in (3.17).

To obtain (b) we consider, instead of the deformation of all atoms, just the deformation

of a possibly much smaller set of so-called representative atoms (repatoms). We denote

the set of repatoms by Tn = {t0n, . . . , trnn } ⊂ {0, . . . , n} with 0 = t0n < t1n < · · · < trnn = n

and define

ATn(0, 1) :=
{
u : [0, 1]→ R : u is affine on (tin, t

i+1
n )λn for tin, t

i+1
n ∈ Tn

}
. (4.4)

Since we are interested in the energy Ĥ`,kn
n (u) for deformations u ∈ ATn(0, 1), we define

Ĥ`,kn,Tn
n : L1(0, 1)→ R ∪ {+∞} by

Ĥ`,kn,Tn
n (u) :=

Ĥ
`,kn
n (u) if u ∈ ATn(0, 1),

+∞ else on L1(0, 1).
(4.5)
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In the following sections, we study Ĥ`,kn,Tn
n as n tends to infinity. Therefore, we will

assume that kn = (k1
n, k

2
n) is such that

(i) lim
n→∞

k1
n = lim

n→∞
n− k2

n = +∞, and (ii) lim
n→∞

λnk
1
n = lim

n→∞
λn(n− k2

n) = 0. (4.6)

Hence, in particular limn→∞ λnk
2
n = 1. The above assumption corresponds to the case

that the size of the atomistic region becomes unbounded on a microscopic scale (i), but

shrinks to a point on a macroscopic scale (ii). While assumption (i) is crucial (see

also Remark 4.6), the assumption (ii) can be easily replaced by limn→∞ λnk
1
n = ξ1,

limn→∞ λn(n − k2
n) = 1 − ξ2 and 0 ≤ ξ1 < ξ2 ≤ 1. In this case the analysis is essen-

tially the same, but in the case of fracture, see Theorem 4.11, one has to distinguish more

cases. We assume (4.6) (ii) here because it is the canonical case from a conceptual point

of view. Otherwise the atomistic region and continuum region would be on the same

macroscopic scale.

4.2 Γ-limit of zeroth order

In this section, we derive the Γ-limit of the sequence (Ĥ`,kn,Tn
n ) defined in (4.5). We show

that (Ĥ`,kn,Tn
n ) Γ-converges to the same functional H` as the fully atomistic energy (H`

n),

see Theorem 3.7.

Theorem 4.1. Suppose that (LJ1)–(LJ5) are satisfied. Let ` > 0 and u
(1)
0 , u

(1)
1 ∈ RK−1

+ .

Let kn = (k1
n, k

2
n) satisfy (4.6) and let Tn = {t0n, . . . , trnn } with 0 = t0n < t1n < · · · < trnn = n

and {0, . . . ,K − 1} ∪ {n−K + 1, . . . , n} ⊂ Tn be such that

∃(pn) ⊂ N such that lim
n→∞

λnpn = 0 and sup{ti+1
n − tin : ti+1

n , tin ∈ Tn} ≤ pn. (4.7)

Then (Ĥ`,kn,Tn
n ) defined in (4.5) Γ-converges with respect to the L1(0, 1)-topology to the

functional H` defined in (3.26) by

H`(u) =


∫ 1

0
J∗∗CB(u′)dx if u ∈ BV `(0, 1), Dsu ≥ 0 in [0, 1],

+∞ else on L1(0, 1).

Proof. Let (un) be a sequence of functions such that supn Ĥ
`,kn,Tn
n (un) < +∞. The same

arguments as in the compactness part of the proof of Theorem 3.7 yield the existence of

a subsequence (unk) and u ∈ BV `(0, 1) such that unk
∗
⇀ u weakly∗ in BV (0, 1).

Liminf inequality. Similar arguments as in the proof of Theorem 3.7 yield that it is

sufficient to consider sequences of function (un) such that un
∗
⇀ u weakly∗ in BV (0, 1)

for some function u ∈ BV `(0, 1) in order to prove the liminf inequality.
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The definition of A(j), see (4.1), and assumption (4.6) imply that

lim
n→∞

λn#A(j) = lim
n→∞

λn(k1
n + n− k2

n) = 0.

Hence, we obtain from (4.3) and Jj ≥ Jj(δj) that

Ĥ`,kn,Tn
n (un) ≥

k2
n−K∑

i=k1
n+K−1

λnJCB

(
ui+1
n − uin
λn

)
+

K∑
j=1

λnJj(δj)

{
#A(j) +

K−1∑
s=1

2

(
s

j
∧ 1

)}

=

k2
n−K∑

i=k1
n+K−1

λnJCB

(
ui+1
n − uin
λn

)
+ o(1),

as n→∞. For every ρ > 0 there exists an N ∈ N such that (ρ, 1−ρ) ⊂ λn(k1
n+K, k2

n−K)

if n ≥ N . Since J∗∗CB ≥ JCB(γ) and JCB(γ) < 0 it holds

lim inf
n→∞

Ĥ`,kn,Tn
n (un) ≥ lim inf

n→∞

k2
n−K∑

i=k1
n+K

λnJ
∗∗
CB

(
ui+1
n − uin
λn

)

≥ lim inf
n→∞

∫ 1−ρ

ρ
J∗∗CB(u′n)dx+ 2ρJCB(γ).

From (un) ⊂W 1,∞(0, 1), un
∗
⇀ u in BV (ρ, 1− ρ) and Proposition 2.15, we deduce

lim inf
n→∞

Ĥ`,kn,Tn
n (un) ≥

∫ 1−ρ

ρ
J∗∗CB(u′)dx+ 2ρJCB(γ),

if Dsu ≥ 0 in (ρ, 1− ρ), and +∞ else. The required lower bound follows by taking ρ→ 0

and using the same arguments as in Theorem 3.7 to obtain Dsu ≥ 0 in [0, 1].

Limsup inequality. The limsup inequality can be proven in a similar way as for the

fully atomistic energy H`
n, see Theorem 3.7. We define the functional Ĥkn,Tn

n : L1(0, 1)→
R ∪ {+∞} by

Ĥkn,Tn
n (u) :=

Ĥkn
n (u) if u ∈ ATn(0, 1),

+∞ else.

We claim that for every u ∈ BV (0, 1) with Dsu ≥ 0 in (0, 1), there exists a sequence

(un) ⊂ L1(0, 1) such that un → u in L1(0, 1) and

lim sup
n→∞

Ĥkn,Tn
n (un) ≤

∫ 1

0
J∗∗CB(u′)dx. (4.8)

We show this only for linear functions. This can be adapted to piecewise affine functions

and the claim follows by density and relaxation arguments, see Theorem 3.7.

Let us first consider linear functions u such that u(x) = zx with z ≤ γ. Since JCB(z) =

J∗∗CB(z) for z ≤ γ it follows that the constant sequence un = u satisfies (4.8). Indeed,
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u ∈ ATn(0, 1) and (4.2) yields

Ĥkn,Tn
n (u) =

K∑
j=1

Jj(z)− λn
K∑
j=2

(j − 1)Jj(z) = J∗∗CB(z) +O(λn)

as n → ∞. Note that we used #(A(j) ∪ C(j)) = n − j + 1. Let us now consider linear

functions u such that u(x) = zx with z > γ. For every (pn) satisfying (4.7), we find a

sequence (qn) of natural numbers such that

lim
n→∞

λnqn = 0, lim
n→∞

pn
qn

= 0,

e.g. qn = b√npnc. We define for every n ∈ N a set T ′n = {th
0
n
n , . . . , th

Nn
n
n } ⊂ Tn, where

0 = h0
n < h1

n < · · · < hNnn = rn such that there exists C1, C2 > 0 which satisfy

C1qn ≤ th
k+1
n
n − thknn ≤ C2qn for all k ∈ {0, . . . , Nn − 1}.

From n =
∑Nn−1

k=0 (th
k+1
n
n − th

k
n
n ), we deduce that C1Nnqn ≤ n ≤ C2Nnqn, and thus Nnqn =

O(n). Let us now define un ∈ ATn(0, 1) such that un(1) = z and

un(x) = zλnt
hkn
n + γ(x− λnth

k
n
n ) for x ∈ [t

hkn
n , th

k+1
n
n − 1]λn and k ∈ {0, . . . , Nn − 1}.

By using t
hkn
n − th

k
n−1
n ≤ pn for all k ∈ {1, . . . , Nn} and |u(x)− un(x)| ≤ 2z, we obtain

∫ 1

0
|u(x)− un(x)|dx =

Nn−1∑
k=0

∫ λnt
hk+1
n −1
n

λnt
hkn
n

∣∣∣zx− zλnthknn − γ (x− λnthknn ) ∣∣∣dx
+

Nn∑
k=1

∫ λnt
hkn
n

λnt
hkn−1
n

|u(x)− un(x)|dx

≤
Nn−1∑
k=0

∫ λnt
hk+1
n −1
n

λnt
hkn
n

(z − γ)(x− λnth
k
n
n )dx+ 2zNnλnpn

=

Nn−1∑
k=0

1

2
(z − γ)λ2

n

(
th
k+1
n −1
n − thknn

)2
+ 2zNnλnpn

≤1

2
(z − γ)NnC

2
2q

2
nλ

2
n + 2zλnpnNn

and thus un → u in L1(0, 1). Indeed, by λnNnqn = O(1), λnqn → 0 and O(λnpnNn) =

O
(
pn
qn

)
, the terms in the last line above tend to zero as n → ∞. Let us now show that

(un) indeed satisfies (4.8). By definition, we have ui+1
n − uin = λnγ for 0 ≤ i ≤ n− 1 and
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i /∈
(
N ∩ ∪Nnk=1[t

hkn−1
n , t

hkn
n )
)

and by using #
(
N ∩ ∪Nnk=1[t

hkn−1
n , t

hkn
n )
)
≤ Nnpn, we have

Ĥkn,Tn
n (un) =

Nn−1∑
k=0

t
hk+1
n −1
n −j∑
i=t

hkn
n

λnJj(γ) +O(λnpnNn) = JCB(γ) +O(λnpnNn).

Since λnpnNn → 0 as n→∞, we deduce (4.8) in this case.

For every u ∈ BV ` such that H`(u) < +∞, we can combine the above results with the

same procedure as in Theorem 3.7 to construct sequence (un) such that un ∈ ATn(0, 1)

satisfies (3.3) and

lim sup
n→∞

Ĥ`,kn,Tn
n (un) ≤ H`(u),

which proves the lim sup inequality.

Remark 4.2. To underline that the zero-order Γ-limit is too coarse to measure the qual-

ity of the quasicontinuum method, we remark that one can show that the sequence of

functionals defined as

H`,CB
n (u) :=


n−1∑
i=0

λnJCB

(
ui+1 − ui

λn

)
if u ∈ ATn(0, 1) satisfies (3.3),

+∞ else,

Γ-converges to H` with respect to the L1(0, 1)-convergence under the same assumptions

on (Tn) as in Theorem 4.1. Note that the functional H`,CB
n can be understood as a

continuum approximation of H`
n.

4.3 Γ-limit of first order

In this section, we derive the first-order Γ-limit of (Ĥ`,kn,Tn
n ), i.e. the Γ-limit of the sequence

of functionals (Ĥ`,kn,Tn
1,n ) defined by

Ĥ`,kn,Tn
1,n (u) =

Ĥ`,kn,Tn
n (u)−minvH

`(v)

λn
. (4.9)

It will be useful to rearrange the terms in the expression of the energy Ĥ`,kn,Tn
1,n . Let

u ∈ ATn(0, 1) be such that the boundary conditions (3.3) are satisfied. For j ∈ {2, . . . ,K},
we can rewrite the nearest neighbour interactions as

n−1∑
i=0

J1

(
ui+1 − ui

λn

)
=

n−j∑
i=0

1

j

i+j−1∑
s=i

J1

(
us+1 − us

λn

)
+

j−1∑
s=1

j − s
j

(
J1(u

(1)
0,s) + J1(u

(1)
1,s)
)
,
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see (3.5). Hence, using A(j)∪C(j) = {0, . . . , n−j}, A(j)∩C(j) = ∅ for all j ∈ {1, . . . ,K},∑K
j=2 cj = 1, and minH` = J∗∗CB(`) =

∑K
j=2 ψ

∗∗
j (`), see (3.14) and (3.18), we obtain that

Ĥ`,kn,Tn
1,n (u) =

K∑
j=1

 ∑
i∈A(j)

Jj

(
ui+j − ui

jλn

)
+
∑
i∈C(j)

1

j

i+j−1∑
s=i

Jj

(
us+1 − us

λn

)− nJ∗∗CB(`)

=

K∑
j=2

∑
i∈A(j)

{
Jj

(
ui+j − ui

jλn

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

λn

)
− ψ∗∗j (`)

}

+
K∑
j=2

∑
i∈C(j)

1

j

i+j−1∑
s=i

{
Jj

(
us+1 − us

λn

)
+ cjJ1

(
us+1 − us

λn

)
− ψ∗∗j (`)

}

+

K∑
j=2

cj

j−1∑
s=1

j − s
j

(
J1(u

(1)
0,s) + J1(u

(1)
1,s)
)
−

K∑
j=2

(j − 1)ψ∗∗j (`).

Recall that for j ∈ {2, . . . ,K} it holds

n−j∑
i=0

(
ui+j − ui

jλn
− `
)

= −
j−1∑
s=1

j − s
j

(
u

(1)
0,s + u

(1)
1,s − 2`

)
.

see (3.40). Adding and subtracting
∑K

j=2

∑n−j
i=0 (ψ∗∗j )′(`)(u

i+j
n −uin
jλn

− `) to Ĥ`,kn,Tn
1,n (u) and

(3.14) yield

Ĥ`,kn,Tn
1,n (u) =

K∑
j=2

∑
i∈A(j)

{
Jj

(
ui+j − ui

jλn

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

λn

)
− ψ∗∗j (`)

− (ψ∗∗j )′(`)

(
ui+j − ui

jλn
− `
)}

+

K∑
j=2

∑
i∈C(j)

1

j

i+j−1∑
s=i

{
ψj

(
us+1 − us

λn

)

− ψ∗∗j (`)− (ψ∗∗j )′(`)

(
us+1 − us

λn
− `
)}
−

K∑
j=2

(j − 1)ψ∗∗j (`)

+

K∑
j=2

cj

j−1∑
s=1

j − s
j

(
J1(u

(1)
0,s) + J1(u

(1)
1,s)
)

−
K∑
j=2

(ψ∗∗j )′(`)

j−1∑
s=1

j − s
j

(
u

(1)
0,s + u

(1)
1,s − 2`

)
. (4.10)

Let (un) be such that un ∈ An(0, 1). For given j ∈ {2, . . . ,K}, we recall that σij,n(`) is

defined by

σij,n(`) = Jj

(
ui+j − ui

jλn

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1 − us

λn

)
− (ψ∗∗j )′(`)

(
ui+j − ui

jλn
− `
)
−ψ∗∗j (`)
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see (3.42). Recall that σij,n(`) ≥ 0, see (3.43). Moreover, we set

µij,n(`) :=ψj

(
us+1 − us

λn

)
− (ψ∗∗j )′(`)

(
us+1 − us

λn
− `
)
− ψ∗∗j (`). (4.11)

By using ψj ≥ ψj(γ) = ψ∗∗j (γ), we have µij,n(`) ≥ 0. In terms of σij,n(`) and µij,n(`) the

equation (4.10) reads

Ĥ`,kn,Tn
1,n (u) =

K∑
j=2

 ∑
i∈A(j)

σij,n(`) +
∑
i∈C(j)

1

j

i+j−1∑
s=i

µij,n(`)

−
K∑
j=2

(j − 1)ψ∗∗j (`)

+
K∑
j=2

cj

j−1∑
s=1

j − s
j

(
J1(u

(1)
0,s) + J1(u

(1)
1,s)
)

−
K∑
j=2

(ψ∗∗j )′(`)

j−1∑
s=1

j − s
j

(
u

(1)
0,s + u

(1)
1,s − 2`

)
. (4.12)

Applying similar arguments as in the proof of Proposition 3.9 for the fully atomistic

energy H`
1,n to Ĥ`,kn,Tn

1,n given as in (4.12) we obtain the following compactness result.

Proposition 4.3. Let ` > 0, u
(1)
0 , u

(1)
1 ∈ RK−1

+ and suppose that assumptions (LJ1)–(LJ5)

are satisfied. Let (kn) = (k1
n, k

2
n) satisfy (4.6) and let (un) be a sequence of functions such

that

sup
n
Ĥ`,kn,Tn

1,n (un) < +∞. (4.13)

(1) If ` ≤ γ, then, up to subsequences, un → u in L∞(0, 1) with u(x) = `x, x ∈ [0, 1].

(2) In the case ` > γ, then, up to subsequences, un → u in L1(0, 1) where u ∈ SBV `
c (0, 1);

see (3.47).

Proof. We can essentially copy the proof of Proposition 3.9. Let us only show how to

adapt the argument for u′n → min{`, γ} in measure in (0, 1). For given ε > 0, we define

the set Iεn as

Iεn :=

{
i ∈ {0, . . . , n− 1} :

∣∣∣∣ui+1
n − uin
λn

−min{`, γ}
∣∣∣∣ > ε

}
.

By the definition of σi2,n(`), µi2,n(`) (see (3.42), (4.11)) and Lemma 3.8, we deduce the

existence of η = η(ε) > 0 such that σi2,n(`), µi2,n ≥ η for i ∈ Iεn. From (4.4), (4.12), (4.13),

σij,n(`), µij,n(`) ≥ 0 and Jj is bounded from below, we deduce that there exists a constant
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C > 0 such that

C ≥
K∑
j=2

 ∑
i∈A(j)

σij,n(`) +
∑
i∈C(j)

1

j

i+j−1∑
s=i

µij,n(`)


≥
k1
n−1∑
i=0

σi2,n(`) +

k2
n−2∑

i=k1
n+1

µi2,n(`) +
n−2∑

i=k2
n−1

σi2,n(`) ≥ #Iεnη.

From this, we deduce exactly as in Proposition 3.9 that u′n → min{`, γ} in measure in

(0, 1). We can now apply similar arguments as in the proof of Proposition 3.9 to show

the assertions.

Proposition 4.3 tells us that a sequence of deformations (un) with equibounded energy

converges in L1(0, 1) to a deformation u which has a constant gradient almost everywhere.

In the following lemma, we prove that (un) yields a sequence of discrete gradients in the

atomistic region converging to the same constant. This turns out to be crucial in the

proofs of the first-order Γ-limits.

Lemma 4.4. Let ` > 0, u
(1)
0 , u

(1)
1 ∈ RK−1

+ and suppose that Jj, j ∈ {1, . . . ,K} satisfy

(LJ1)–(LJ5). Let (kn) = (k1
n, k

2
n) satisfy (4.6) and let (un) be a sequence of functions such

that (4.13) is satisfied. Then there exist sequences (T 1
n), (T 2

n) ⊂ N with T 1
n ∈ {0, . . . , k1

n −
K − 1} and T 2

n ∈ {k2
n, . . . , n−K} such that, up to subsequences,

lim
n→∞

u
T in+s+1
n − uT

i
n+s
n

λn
= min{`, γ}, for s ∈ {0, . . . ,K − 1} and i = 1, 2. (4.14)

Proof. The proof is an adaption of the proof of Lemma 3.11. Let us define (k̃n) ⊂ N by

k̃n = min{k1
n, n− k2

n} and

In :=

{
i ∈ {0, . . . , k1

n − (K + 1)} ∪ {k2
n, . . . ., n−K} : σiK,n(`) >

1√
k̃n

}
.

By (4.13), there exists C > 0 such that

C ≥ sup
n

k1
n−K−1∑
i=0

σiK,n(`) +

n−K∑
i=k2

n

σiK,n(`)

 ≥ sup
n

∑
i∈In

1√
k̃n

= sup
n

#In√
k̃n
.

Hence, we have #In = O(
√
k̃n).
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Now let i /∈ In. By using the definition of J0,K and J0,K(z) ≥ ψ∗∗K (z) ≥ (ψ∗∗K )′(`)(z −
`) + ψ∗∗K (`), we deduce from 0 ≤ σiK,n(`) ≤ 1√

k̃n
that

0 ≤JK
(
ui+Kn − uin
Kλn

)
+
i+K−1∑
s=i

cK
K
J1

(
us+1
n − usn
λn

)
− J0,K

(
ui+Kn − uin

jλn

)
≤ 1√

k̃n
, (4.15)

0 ≤J0,K

(
ui+Kn − uin
Kλn

)
− ψ∗∗K (`)− (ψ∗∗K )′(`)

(
ui+Kn − uin
Kλn

− `
)
≤ 1√

k̃n
. (4.16)

Let (hn) ⊂ N be such that hn ∈ {0, . . . , k1
n −K − 1} ∪ {k2

n, . . . , n−K} and hn /∈ In. By

using the fact that J0,K(z) = ψ∗∗K (`) + (ψ∗∗K )′(`)(z − `) if and only if z = min{`, γ}, we

conclude from (4.6) and (4.16) that

uhn+K
n − uhnn
Kλn

→ min{`, γ} as n→∞.

Combining this with (4.15) and assumption (LJ4) (see (3.13)), we deduce

lim
n→∞

uhn+s+1
n − uhn+s

n

λn
= min{`, γ} for s ∈ {0, . . . ,K − 1}.

Hence, for sequences (h1
n), (h2

n) ⊂ N with h1
n ∈ {0, . . . , k1

n − K − 1} =: K1
n and h2

n ∈
{k2

n, . . . , n−K} =: K2
n and hin /∈ In, for n big enough and i = 1, 2, we deduce

lim
n→∞

u
hin+1
n − uh

i
n
n

λn
= min{`, γ}.

It is left to prove existence of such sequences. Since #In = O(
√
k̃n), we conclude by the

assumption (4.6) that Ki
n \
(
In ∩Ki

n

)
6= ∅ for n sufficiently large and i = 1, 2 which shows

the existence.

4.3.1 The case 0 < ` ≤ γ

As for the fully atomistic model studied in Chapter 3, we distinguish between the cases

0 < ` ≤ γ and ` > γ, where ` denotes the boundary condition on the last atom in the chain

and γ denotes the unique minimum point of J0,j for j ∈ {2, . . . ,K}. In the case 0 < ` ≤ γ
no fracture occurs by Proposition 4.3. In this section, we show that the first-order Γ-limit

of (Ĥ`,kn,Tn
n ) coincides with the first-order Γ-limit H`

1 of the fully atomistic model (H`
n),

cf. Theorem 3.19.

Theorem 4.5. Let 0 < ` ≤ γ and u
(1)
0 , u

(1)
1 ∈ RK−1

+ . Let k1
n, k

2
n satisfy (4.6) and let

Tn ⊂ {0, 1, . . . , n} be such that

{0, . . . , k1
n} ∪ {k2

n, . . . , n} ⊂ Tn = {t0n, . . . ., trnn }. (4.17)
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Then the sequence (Ĥ`,kn,Tn
1,n ) defined in (4.9) Γ-converges with respect to the L∞(0, 1)-

topology to the functional H`
1 defined in (3.51).

Proof. Liminf inequality. Let (un) ⊂ L1(0, 1) and u ∈ L1(0, 1) with un → u in L1(0, 1)

and lim infn→∞ Ĥ
`,kn,Tn
1,n (un) < +∞. By Proposition 4.3, we deduce that u(x) = `x a.e.

in (0, 1) and un → u in L∞(0, 1). We have to show that

lim inf
n→∞

Ĥ`,kn,Tn
1,n (un) ≥B(u

(1)
0 , `) +B(u

(1)
1 , `)−

K∑
j=2

(j − 1)ψj(`)

−
K∑
j=2

ψ′j(`)

j−1∑
s=1

j − s
j

(
u

(1)
0,s + u

(1)
1,s − 2`

)
, (4.18)

see (3.51). By Lemma 4.4, there exist sequences (T 1
n), (T 2

n) ⊂ N such that T 1
n < k1

n −K,

T 2
n > k2

n and

lim
n→∞

u
T in+s+1
n − uT

i
n+s
n

λn
= ` for i ∈ {1, 2} and s ∈ {1, . . . ,K − 1}. (4.19)

Using σij,n(`), µij,n(`) ≥ 0, we obtain from (4.1), T 1
n < k1

n, T 2
n > k2

n and (4.12) that

Ĥ`,kn,Tn
1,n (un) ≥

K∑
j=2


T 1
n∑

i=0

σij,n(`) +

n−j∑
i=T 2

n+1

σij,n(`) + cj

j−1∑
s=1

j − s
j

(
J1(u

(1)
0,s) + J1(u

(1)
1,s)
)

−
K∑
j=2

(j − 1)ψj(`)−
K∑
j=2

ψ′j(`)

j−1∑
s=1

j − s
j

(
u

(1)
0,s + u

(1)
1,s − 2`

)
. (4.20)

We can now use the same estimates as in the fully atomistic case, see Theorem 3.12. By

using (4.19) and the estimates (3.55) and (3.57), we obtain

lim inf
n→∞

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

T 1
n∑

i=0

σij,n(`)

 ≥B(u
(1)
0 , `), (4.21)

lim inf
n→∞

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
1,s) +

n−j∑
i=T 2

n+1

σij,n(`)

 ≥B(u
(1)
1 , `). (4.22)

The estimates (4.20)–(4.22) yield (4.18).

Limsup inequality. SinceH`
1(u) (see (3.51)) is finite if and only if u(x) = `x it is sufficient

to construct a recovery sequence for u(x) = `x. As for the liminf inequality, we can follow

the proof for the fully atomistic system. In fact, we can even use the same recovery

sequence. Fix η > 0. By the definition of B(θ, `), see (3.50), we can find v : N0 → R
and N1 ∈ N with v0 = 0, vs − vs−1 = u

(1)
0,s for s ∈ {1, . . . ,K − 1} and vi+1 − vi = ` for

i ≥ N1 satisfying (3.58). Furthermore, there exists w : N0 → R and N2 ∈ N with w0 = 0,

ws −ws−1 = u
(1)
1,s for s = 1, . . . ,K − 1 and wi+1 −wi = ` for i ≥ N2 satisfying (3.59). By
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means of the functions v and w we can construct a recovery sequence (un) for u,

uin =


λnv

i if 0 ≤ i ≤ N1 +K,

λnv
N1+K + `−λn(wN2+K+vN1+K)

n−N1−N2−2K (i−N1 −K) if N1 +K ≤ i ≤ n−N2 −K,

`− λnwn−i if n−N2 −K ≤ i ≤ n.

As we mentioned above this is exactly the same recovery sequence that we have used in

Theorem 3.12. We have shown that un → u in L∞(0, 1) and that un satisfies the boundary

conditions (3.3) for n large enough. Moreover, since k1
n → +∞ and n−k2

n → +∞, we can

assume N1 + K ≤ k1
n and n−N2 −K ≥ k2

n for n sufficiently large. Thus un is affine on

λn(k1
n, k

2
n) which implies un ∈ ATn(0, 1) for arbitrary Tn satisfying {0, . . . , k1

n}∪{k2
n, ..n} ⊂

Tn. Using (3.58) and (3.59), we obtain

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

N1∑
i=0

σij,n(`)

}
≤B(u

(1)
0 , `) + η,

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(u
(1)
1,s) +

n−j∑
i=n−N2−K

σij,n(`)

 ≤B(u
(1)
1 , `) + η.

By (3.51) and (4.12), it remains to show that

Σn :=
K∑
j=2


k1
n−1∑

i=N1+1

σij,n(`) +

k2
n−j∑
i=k1

n

1

j

i+j−1∑
s=i

µsj,n(`) +

n−N2−K−1∑
i=k2

n−j+1

σij,n(`)


is infinitesimal as n→∞. This follows directly from the proof of Theorem 3.12. Indeed,

in Theorem 3.12 we have shown that for un it holds that

lim
n→∞

K∑
j=2

n−N2−K−1∑
i=N1+1

σij,n(`) = 0.

By using the fact that un is affine on λn(N1, . . . , n−N2), we have that σij,n(`) = µij,n(`) for

j ∈ {2, . . . ,K} and i ∈ {N1 +K, . . . , n−N2−K−1}, and thus the statement follows.

Remark 4.6. In the proof of Theorem 3.12, the assumption (4.6) (i) is crucial. If one

drops this assumption, for example to let k1
n and n − k2

n be independent of n, the first-

order Γ-limits of H`,kn,Tn
n and Ĥ`

n do not coincide in general. In this case the boundary

layer energies B(θ, `) would be replaced by some “truncated” boundary layer energies

BT (θ, `) in the first-order Γ-limit of Ĥ`,knTn
n . To quantify the difference between B(θ, `)

and BT (θ, `) one has to perform a deeper analysis, as in the spirit of Section 3.4.3, on the

decay of the boundary layers.
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4.3.2 The case ` > γ

According to Proposition 4.3, the case ` > γ leads to fracture. In the fully atomistic

model, H`
1,n, each crack costs a certain amount of fracture energy, see Theorem 3.19.

Moreover, the fracture energy depends on whether the crack is located in (0, 1) or {0, 1}.
In this section, we aim for an analogous result for the quasicontinuum model Ĥ`,kn,Tn

1,n .

Here the specific structure of T = (Tn) turns out to be important. We will show that every

jump corresponds to the debonding of a pair of representative atoms and this induces the

debonding of all atoms in between. Thus the distance between two neighbouring repatoms

quantifies the jump energy.

Let (un) be a sequence such that un ∈ ATn(0, 1) and un satisfies (3.3). Then, we deduce

from (4.12) that

Ĥ`,kn,Tn
1,n (un) =

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

k1
n−1∑
i=0

σij,n +

j−1∑
s=1

s

j
µ
k1
n+s−1
j,n +

k2
n−j∑

i=k1
n+j−1

µij,n

+

j−1∑
s=1

s

j
µ
k2
n−s
j,n +

n−j∑
i=k2

n−j+1

σij,n + cj

j−1∑
s=1

j − s
j

J1(u
(1)
1,s)− (j − 1)ψj(γ)

}
,

(4.23)

with σij,n := σij,n(γ) and µij,n := µij,n(γ), see (3.42) and (4.11). Note that we used ψ∗∗j ≡
ψj(γ) on [γ,+∞). Let us now introduce some notations and state assumptions on the set

of representative atoms T = (Tn) under which the Γ-limit of (Ĥ`,kn,Tn
1,n ) will be derived.

In particular the repatoms at the interface between the local and nonlocal region have to

be treated with extra care.

(T1) The set of representative atoms T = (Tn) satisfy (4.7) and (4.17).

(T2) The following limits exist in N ∪ {+∞}

r̂(T ) := lim
n→∞

(
r(Tn)− k1

n

)
, with r(Tn) := min{r ∈ Tn : k1

n +K − 1 ≤ r},

l̂(T ) := lim
n→∞

(
k2
n − l(Tn)

)
, with l(Tn) := max{l ∈ Tn : k2

n −K + 1 ≥ l}.
(4.24)

(T3) There exist M ∈ N and kTr , k
T
l ∈ {1, . . . ,K} such that the sets Ir(Tn) and I l(Tn)

defined by

Ir(Tn) := {i ∈ Tn, i ∈ {k1
n, . . . , r(Tn)}},

I l(Tn) := {i ∈ Tn, i ∈ {l(Tn), . . . , k2
n}},

(4.25)
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satisfy #(Ir(Tn)) = kTr and #(I l(Tn)) = kTl for all n ≥ M . For n ≥ M , we define

r̂Tn = (r̂T1,n, . . . , r̂
T
kTr ,n

) and l̂Tn = (l̂T1,n, . . . , l̂
T
kTl ,n

) as

r̂T1,n := k1
n, r̂Ts,n := min{r ∈ Tn : r̂Ts−1,n < r ≤ r(Tn)} for s ∈ {2, . . . , kTr },

l̂T1,n := k2
n, l̂Ts,n := max{l ∈ Tn : l̂Ts−1,n > l ≥ l(Tn)} for s ∈ {2, . . . , kTl }.

(4.26)

Moreover, we assume that the following limits exist in N0:

r̂Ti := lim
n→∞

(
r̂Ti,n − k1

n

)
for i ∈ {1, . . . , kTr − 1},

l̂Ti := lim
n→∞

(
k2
n − l̂Ti,n

)
for i ∈ {1, . . . , kTl − 1}.

(4.27)

We define r̂T ∈ (N0 ∪ {+∞})k
T
r and l̂T ∈ (N0 ∪ {+∞})k

T
l as

r̂T = (r̂T1 , . . . , r̂
T
kTr

), l̂T = (l̂T1 , . . . , l̂
T
kTl

), with r̂TkTr
:= r̂(T ) and l̂T

kTl
:= l̂(T ). (4.28)

(T4) For given x ∈ [0, 1], the following limit exists in N ∪ {+∞}

b(x, T ) := lim
n→∞

min
{
q2
n − q1

n : (q1
n), (q2

n) ⊂ N, r(Tn) ≤ q1
n < q2

n ≤ l(Tn),

q1
n, q

2
n ∈ Tn, lim

n→∞
λnq

1
n = lim

n→∞
λnq

2
n = x

}
.

(4.29)

Remark 4.7. (a) Assume that T = (Tn) satisfies (T1)–(T4). By (4.26) and (4.27) it holds

r̂T1 = l̂T1 = 0. For given k ∈ {2, . . . ,K}, we define the set I(k) ⊂ (N0 ∪ {+∞})k as

I(k) :=
{

(r1, . . . , rk) ∈ (N0 ∪ {+∞})k : 0 = r1 < r2 < · · · < rk−1 < K − 1 ≤ rk
}
. (4.30)

Clearly, we have that r̂T ∈ I(kTr ) and l̂T ∈ I(kTl ). Since r̂Ts,n, l̂
T
s,n ∈ N, it follows from

(4.27) that there exists M̃ ∈ N such that

r̂Ti = r̂Ti,n − k1
n for i ∈ {1, . . . , kTr − 1},

l̂Ti = k2
n − l̂Ti,n for i ∈ {1, . . . , kTl − 1},

(4.31)

for n ≥ M̃ . Moreover, if r̂(T ) < +∞ (or l̂(T ) < +∞) it is not restrictive to assume that

r̂(T ) = r(Tn)− k1
n (or l̂(T ) = k2

n − l(Tn)) for n ≥ M̃ .

(b) In the case of nearest and next-to-nearest neighbour interactions only, we deduce from

the definitions of r(Tn) and l(Tn), see (4.24), and (T3) that

r̂Tn = (k1
n, r(Tn)), l̂Tn = (k2

n, l(Tn)) and r̂T = (0, r̂(T )), l̂T = (0, l̂(T )). (4.32)

Let us now introduce boundary layer energies which correspond to a jump close respec-

tively at the interface between the atomistic and continuum region. Firstly, we introduce

further abbreviations. For a given function v : N0 → R, an i ∈ N0 and a j ∈ {2, . . . ,K},
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we define σij(v) and µij(v) by

σij(v) =Jj

(
vi+j − vi

j

)
+
cj
j

i+j−1∑
s=i

J1(vs+1 − vs)− ψj(γ) (4.33)

µij(v) =ψj(v
i+1 − vi)− ψj(γ). (4.34)

For a given r = (r1, . . . , rk) ∈ I(k), we define the following minimum problem

B
(1)
IF (r) := inf

q∈N
min

{ K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1(vs − vs−1) +

q−1∑
i=0

σij(v) +

j−1∑
s=1

s

j
µq+s−1
j (v)

+

q+rk−1∑
i=q+j−1

µij(v)

}
: v : N0 → R, v0 = 0, vq+i+1 − vq+i = vq+rs+1 − vq+rs ,

if 1 ≤ s < k and rs ≤ i < rs+1

}
. (4.35)

The boundary layer energy B
(1)
IF (r) yields the optimal position of a fracture that occurs

in the atomistic region but close to the atomistic/continuum interface. Note that the

reduced degree of freedom in the quasicontinuum energy yields an additional constraint

compared to the previous defined boundary layer energies.

Remark 4.8. Let J1, . . . , Jk satisfy (LJ1)–(LJ5).

(i) Let r ∈ I(k) be such that rk = +∞. In this case the constraints in (4.35) imply that

vi+1−vi = vq+rk−1+1−vq+rk−1 for i ≥ q+rk−1. Moreover, the last sum from i = q+ j−1

to q + rk − 1 reads

∞∑
i=q+j−1

µij(v) =

q+rk−1−1∑
i=q+j−1

µij(v) +

∞∑
i=q+rk−1

(
ψj(v

q+rk−1+1 − vq+rk−1)− ψj(γ)
)
.

Since γ is the unique minimiser of ψj , the above quantity is finite only if vq+rk−1+1 −
vq+rk−1 = γ. Hence, for r ∈ I(k) with rk = +∞ the boundary layer energy B

(1)
IF (r) reads

B
(1)
IF (r) = inf

q∈N
min

{ K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1(vs − vs−1) +

q−1∑
i=0

σij(v)

+

q+rk−1−1∑
i=q

(
i− q + 1

j
∧ 1

)
µij(v)

}
: v : N0 → R, v0 = 0, vi+1 − vi = γ

if i ≥ q + rk−1, vq+i+1 − vq+i = vq+rs+1 − vq+rs if 1 ≤ s ≤ k − 2 and

rs ≤ i < rs+1

}
. (4.36)

(ii) Consider the special case k = 2. Note that if we consider nearest and next-to-

nearest neighbour interactions only this is the sole case of interest. Indeed this follows by
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2 ≤ k ≤ K, see Remark 4.7. Fix r ∈ I(2). Then r = (r1, r2) = (0, r2), see (4.30), and the

constraint on v in (4.35) reads v0 = 0 and vq+i+1−vq+i = vq+1−vq for i ∈ {0, . . . , r2−1}.
This yields µq+ij (v) = µqj(v) for 0 ≤ i < r2. Hence, we have

B
(1)
IF ((r1, r2)) = inf

q∈N
min

{ K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1(vs − vs−1) +

q−1∑
i=0

σij(v)

+

(
r2 −

1

2
(j − 1)

)
µqj(v)

}
: v : N0 → R, v0 = 0,

vq+i+1 − vq+i = vq+1 − vq if 0 ≤ i ≤ r2 − 1

}
=: BIF (r2). (4.37)

Let r2 = +∞. As above, we have the constraint vi+1 − vi = γ for i ≥ q in (4.37). This

implies µqj(v) = 0 and we obtain that BIF (∞) = B(γ), see (3.71).

Next, we introduce two further boundary layer energies corresponding to a jump exactly

at the interface between the atomistic and continuum region. Before we state the precise

definitions let us first give some heuristic explanations. Consider the debonding of two

atoms labelled by i and i+ 1 with k1
n ≤ i < r(Tn). Then there exists m ∈ {1, . . . , kTr − 1}

such that r̂Tm,n ≤ i < i + 1 ≤ r̂Tm+1,n. This causes two boundary layers. One of them

’starts’ at r̂Tm,n and ’moves into’ the atomistic region, B
(2)
IF , and the other one ’starts’ at

r̂Tm+1,n and ’moves into’ the continuum region, B
(3)
IF .

For a given r = (r1, . . . , rk) ∈ I(k) and m ∈ {1, . . . , k − 1}, we define

B
(2)
IF (r,m, γ) := inf

N∈N
min

{ K∑
j=2+rm

cj

j−1∑
s=1

j − (s ∨ (rm + 1))

j
J1(vs − vs−1)

+
K∑
j=2

∑
i≥(rm+1−j)∨0

σij(v) +
K∑
j=2

rm−1∑
i=0

(
rm − i
j
∧ 1

)
µij(v) : v : N0 → R,

v0 = 0, vi+1 − vi = γ if i ≥ N, vi+1 − vi = vrm−rs+1 − vrm−rs

if 2 ≤ s ≤ m and rm − rs ≤ i < rm − rs−1

}
(4.38)

Furthermore, we define for r = (r1, . . . , rk) ∈ I(k) and m ∈ {1, . . . , k}

B
(3)
IF (r,m) := min

{
K∑

j=2+rm

cj

j−rm−1∑
s=1

j − rm − s
j

J1(vs − vs−1)

+

K∑
j=2

rk−rm∑
i=1

(
i+ rm
j
∧ 1

)
µi−1
j (v) : v : N0 → R, v0 = 0,

vi+1 − vi = vrs−rm+1 − vrs−rm if m ≤ s ≤ k − 1 and

rs − rm ≤ i < rs+1 − rm

}
. (4.39)
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Remark 4.9. Fix k ∈ {2, . . . ,K} and let r ∈ I(k). Using r1 = 0, we deduce from (4.38)

that

B
(2)
IF (r, 1, γ) = inf

N∈N
min

{ K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(vs − vs−1) +
K∑
j=2

∑
i≥0

σij(v) :

v : N0 → R, v0 = 0, vi+1 − vi = γ if i ≥ N
}

= B(γ), (4.40)

see (3.71). Moreover, using rk ≥ K − 1, we obtain from (4.39) that B
(3)
IF (r, k) = 0.

Assume that J1, . . . , JK satisfy the assumptions (LJ1)–(LJ5). Let r ∈ I(k) be such that

rk = +∞. In the same way as in Remark 4.8, we obtain

B
(3)
IF (r,m) = min

{
K∑

j=2+rm

cj

j−rm−1∑
s=1

j − rm − s
j

J1(vs − vs−1)

+

K∑
j=2

rk−1−rm∑
i=1

(
i+ rm
j
∧ 1

)
µi−1
j (v) : v : N0 → R, v0 = 0,

vi+1 − vi = γ if i ≥ rk−1 − rm, vi+1 − vi = vrs−rm+1 − vrs−rm

if m ≤ s ≤ k − 2 and rs − rm ≤ i < rs+1 − rm

}
. (4.41)

Lemma 4.10. Let J1, . . . , JK satisfy (LJ1)–(LJ5). Let Tn = {t0n, t1n, . . . , trnn } with 0 =

t0n < t1n < · · · < trnn = n for all n ∈ N. Let (un) be a sequence of functions sat-

isfying (4.13). Furthermore, let (hn) ⊂ N be such that k1
n ≤ thnn < thn+1

n ≤ k2
n and

lim infn→∞
(
thn+1
n − thnn

)
= +∞. Then, we have

lim
n→∞

ut
hn
n +1
n − ut

hn
n
n

λn
= γ.

Proof. From supn Ĥ
`,kn,Tn
1,n (un) < +∞, σij,n, µ

i
j,n ≥ 0 and (4.23), we deduce the existence

of a constant C > 0 such that

C ≥ sup
n

1

2

thn+1
n −1∑
i=thnn

µi2,n =
1

2
sup
n

(thn+1
n − thnn )µt

hn
n
n ,

where we used that u′n(x) = λ−1
n (thn+1

n − thnn )−1(ut
hn+1
n
n − ut

hn
n
n ) for all x ∈ λn(thnn , thn+1

n ).

This implies µt
hn

n = O((thn+1
n − thnn )−1) and thus µt

hn

n → 0 as n→∞. Similar steps as in

Lemma 4.4 yield

lim
n→∞

ut
hn
n +1
n − ut

hn
n
n

λn
= γ.
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Next, we will state the main theorem of this section concerning the Γ-limit of the

functionals Ĥ`,kn,Tn
1,n for ` > γ. The Γ-limit is different to the one obtained for the fully

atomistic energy H`
1,n, see Theorem 3.19. We will come back to this in Section 4.4.

Theorem 4.11. Suppose that hypotheses (LJ1)–(LJ5) hold. Let ` > γ and u
(1)
0 , u

(1)
1 ∈

RK−1
+ . Let (k1

n), (k2
n) satisfy (4.6) and let T = (Tn) satisfy (T1)–(T4). Then (Ĥ`,kn,Tn

1,n )

Γ-converges with respect to the L1(0, 1)-topology to the functional Ĥ`,T
1 defined by

Ĥ`,T
1 (u) =B(u

(1)
0 , γ)(1−#(Su ∩ {0})) +B(u

(1)
1 , γ)(1−#(Su ∩ {1}))

+BIFJ

(
r̂T , b(0, T ), u

(1)
0

)
# (Su ∩ {0})−

∑
x:x∈Su∩(0,1)

b(x, T )JCB(γ)

+BIFJ

(
l̂T , b(1, T ), u

(1)
1

)
# (Su ∩ {1})−

K∑
j=2

(j − 1)ψj(γ) (4.42)

if u ∈ SBV `
c (0, 1), and +∞ else on L1(0, 1), where BIFJ(r, s, θ) is defined for r =

(r1, . . . , rk) ∈ I(k), s ∈ N ∪ {+∞} and θ ∈ RK−1
+ as

BIFJ(r, s, θ) = min

{
min {BAIF (r), BBIF (r),−sJCB(γ)}+B(θ, γ), BBJ(θ)

}
(4.43)

with

BAIF (r) := B
(1)
IF (r) +B(γ)−

K∑
j=2

jψj(γ), (4.44)

and

BBIF (r) := min

{
B

(2)
IF (r,m, γ) +B

(3)
IF (r,m+ 1)−

K∑
j=2+rm

ψj(γ)(j − rm − 1)

−
K∑
j=2

rm+1∑
s=rm+1

(
s

j
∧ 1

)
ψj(γ) : m ∈ {1, . . . , k − 1}

}
, (4.45)

where BBJ , B
(1)
IF , B

(2)
IF and B

(3)
IF are given in (3.74), (4.35), (4.38) and (4.39), respectively.

Remark 4.12. The definition of the jump energies for a jump at the interface are somewhat

cumbersome. Note that in the case of nearest and next-to-nearest neighbour interactions

(K = 2) the situation is much simpler. We have already noted that in this case r̂T and

l̂T are completely described by the scalars r̂(T ), l̂(T ) ∈ N ∪ {∞}. In particular, we have

that the minimisation over m in (4.45) is trivial since 1 ≤ m ≤ k− 1 ≤ 1. Hence, we have

by Remark 4.9 that BBIF (r) = B(γ) −
(
r + 1

2

)
JCB(γ). See Proposition 4.14 below for

the precise statement in this case.

Proof. Liminf inequality. Without loss of generality, we can assume that there is only one

jump point. By symmetry, we only need to distinguish between a jump in 0 and in (0, 1).
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Jump in 0. Let (un) be a sequence of functions converging to u with Su = {0} such

that supn Ĥ
`,kn,Tn
1,n (un) < +∞. Then Proposition 4.3 implies that un → u in L1(0, 1) with

u(x) =

0 if x = 0,

(`− γ) + γx if 0 < x ≤ 1.
(4.46)

By Lemma 4.4 there exist sequences (T 1
n), (T 2

n) ⊂ N with 0 < T 1
n < k1

n −K < k2
n + 1 <

T 2
n < n−K such that

lim
n→∞

u
T in+1+s
n − uT

i
n+s
n

λn
= γ, for i ∈ {1, 2} and 0 ≤ s ≤ K − 1. (4.47)

We can write the energy in (4.23) as

Ĥ`,kn,Tn
1,n (un) =

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

T 1
n∑

i=0

σij,n +

k1
n−1∑

i=T 1
n+1

σij,n +

j−1∑
s=1

s

j
µ
k1
n+s−1
j,n

+

k2
n−j∑

i=k1
n+j−1

µij,n +

j−1∑
s=1

s

j
µ
k2
n−s
j,n +

T 2
n∑

i=k2
n−1

σij,n +

n−j∑
T 2
n+1

σij,n

+ cj

j−1∑
s=1

j − s
j

J1(u
(1)
1,s)− (j − 1)ψj(γ)

}
(4.48)

The estimate for the elastic boundary layer energy at 1 is exactly the same as in the case

` ≤ γ, see (4.22), and is given by

lim inf
n→∞

K∑
j=2

 n−j∑
i=T 2

n+1

σij,n + cj

j−1∑
s=1

j − s
j

J1(u
(1)
1,s)

 ≥ B(u
(1)
1 , γ). (4.49)

To estimate the remaining terms, we note that there exists (hn) ⊂ N with λnhn → 0 such

that

lim
n→∞

uhn+1
n − uhnn

λn
= +∞. (4.50)

We have to consider the following cases:

(1) hn < T 1
n , (2) T 1

n +K ≤ hn < k1
n, (3) k1

n ≤ hn < r(Tn), (4) r(Tn) ≤ hn. (4.51)

Indeed, by extracting a subsequence, we can assume that lim infn→∞ Ĥ
`,kn,Tn
1,n (un) =

limn→∞ Ĥ
`,kn,Tn
1,n (un). Note that by (4.47), we deduce hn 6∈ {T 1

n , . . . , T
1
n + K − 1} for

n sufficiently large. Let (hn) be such that it oscillates between at least two of the cases

(1)–(4), then we can extract a further subsequence which satisfies only one of the cases,

which does not change the limit.

The first two cases correspond to a jump in the atomistic region. In the first case,
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the jump is sufficiently far from the atomistic/continuum interface and leads to the same

jump energy as a jump in 0 in the fully atomistic model. The jump in the second case

is closer to the continuum region and leads to a jump energy of the form BAIF (r̂T ), see

(4.44). In the third case, the jump is exactly at the interface between the atomistic region

and the continuum region. This yields a jump energy of the form BBIF (r̂T ), see (4.45).

The last case corresponds to a jump within the continuum region.

Case (1). Consider (un) as above with (hn) satisfying (4.50) and (4.51, (1)). We show

lim inf
n→∞

Ĥ`,kn,Tn
1,n (un) ≥ BBJ(u

(1)
0 ) +B(u

(1)
1 , γ)−

K∑
j=2

(j − 1)ψj(γ). (4.52)

With the same arguments as in Theorem 3.19, we obtain

lim inf
n→∞

K∑
j=2

T 1
n∑

i=0

σij,n ≥ Bb(u
(1)
0 ) +B(γ)−

K∑
j=2

jψj(γ). (4.53)

Combining (3.74), (4.48), (4.49), (4.53) and σij,n, µ
i
j,n ≥ 0 implies (4.52).

Case (2). Assume that (un) satisfies (4.50) with (hn) such that (4.51, (2)) holds true.

We show that

lim inf
n→∞

Ĥ`,kn,Tn
1,n (un) ≥ B(u

(1)
0 , γ)+B(u

(1)
1 , γ)+B(γ)+B

(1)
IF (r̂T )−

K∑
j=2

(2j−1)ψj(γ), (4.54)

where r̂T = (r̂T1 , . . . , r̂
T
kTr

) is given in (4.28). First, we estimate the elastic boundary layer

energy at 0. This can be done in a similar way as in the case ` ≤ γ, see (4.21), and we

obtain

lim inf
n→∞

K∑
j=2

cj j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

T 1
n∑

i=0

σij,n

 ≥ B(u
(1)
0 , γ). (4.55)

We will now estimate

Ωn :=
K∑
j=2


k1
n−1∑

i=T 1
n+1

σij,n +

j−1∑
s=1

s

j
µ
k1
n+s−1
j,n +

r(Tn)−1∑
i=k1

n+j−1

µij,n

 . (4.56)

As in the proof of Theorem 3.19, we deduce from (4.50) that

K∑
j=2

hn∑
hn−j+1

σij,n =

K∑
j=2

cj

j−1∑
s=1

j − s
j

{
J1

(
uhn−s+1
n − uhn−sn

λn

)
+ J1

(
uhn+s+1
n − uhn+s

n

λn

)}

−
K∑
j=2

jψj(γ) + r(n) (4.57)
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where

r(n) =
K∑
j=1

0∑
s=−j+1

Jj

(
uhn+j+s
n − uhn+s

n

jλn

)
→ 0 as n→∞.

Thus it remains to prove that for n sufficiently large it holds

K∑
j=2

{ hn−j∑
i=T 1

n+1

σij,n + cj

j−1∑
s=1

j − s
j

J1

(
uhn−s+1
n − uhn−sn

λn

)}
≥ B(γ)− ω1(n) (4.58)

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1

(
uhn+s+1
n − uhn+s

n

λn

)
+

k1
n−1∑

i=hn+1

σij,n +

j−1∑
s=1

s

j
µ
k1
n+s−1
j,n +

r(Tn)−1∑
i=k1

n+j−1

µij,n

}
≥ B(1)

IF (r̂T )− ω2(n), (4.59)

where ω1(n), ω2(n) → 0 as n → ∞. The estimate (4.58) can be proven in the same way

as inequality (3.93) and thus we show (4.59) only.

Let us first assume that r̂(T ) < +∞, where r̂(T ) is defined in (4.24). Since we are

interested in the behaviour as n→∞, it is not restrictive to assume that

r̂Ts,n − k1
n = r̂Ts for all s ∈ {1, . . . , kTr }, (4.60)

see Remark 4.7. We define for 0 ≤ i ≤ r(Tn)− hn − 1,

ûin =
ui+hn+1
n − uhn+1

n

λn
.

The definition of ûn and σij(ûn), see (4.33), imply that

σi−hn−1
j (ûn) = Jj

(
ui+jn − uin
jλn

)
+
cj
j

i+j−1∑
s=i

J1

(
us+1
n − usn
λn

)
− ψj(γ) = σij,n,

for hn + 1 ≤ i ≤ k1
n− 1. Moreover, we have that µi−hn−1

j (û) = µij,n for k1
n ≤ i ≤ r(Tn)− 1,

see (4.34). Let us set qn = k1
n − hn − 1 and let us recall that r̂T = (r̂T1 , . . . , r̂

T
kTr

) is such

that r̂T
kTr

= r̂(T ), see assumption (T3). The left-hand side of (4.59) reads in terms of ûn

as

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1

(
uhn+s+1
n − uhn+s

n

λn

)
+

k1
n−1∑

i=hn+1

σij,n +

j−1∑
s=1

s

j
µ
k1
n−1+s
j,n +

r(Tn)−1∑
i=k1

n+j−1

µij,n

}

=

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1

(
ûsn − ûs−1

n

)
+

qn−1∑
i=0

σij(ûn) +

j−1∑
s=1

s

j
µqn−1+s
j (ûn)

+

r̂(T )+qn−1∑
i=qn−1+j

µij(ûn)

}
≥ B(1)

IF (r̂T ).
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Note that we used r(Tn) = k1
n+ r̂(T ), see (4.60). The last inequality follows from the fact

that ûn is a competitor for the infimum problem in the definition of B
(1)
IF (r̂T ), see (4.35),

for n sufficiently large. Clearly, we have û0
n = 0 for all n ∈ N. Consider s ∈ {1, . . . , kTr −1}

and i ∈ {r̂Ts , . . . , r̂Ts+1 − 1}. The assumptions (T3), (4.60) and un ∈ ATn(0, 1) imply that

u′n is constant on λn(k1
n+ r̂Ts , k

1
n+ r̂Ts+1). Hence, we have for ûn and qn = k1

n−hn−1 that

ûqn+i+1
n − ûqn+i

n =
u
k1
n+i+1
n − uk

1
n+i
n

λn
=
u
k1
n+r̂Ts +1
n − uk

1
n+r̂Ts
n

λn
= ûr̂

T
s +qn+1
n − ûr̂Ts +qn

n .

Hence, ûn is an admissible test function for B
(1)
IF (r̂T ), with q = k1

n − hn − 1, and (4.59)

holds true in the case r̂(T ) < +∞.

Let us now consider r̂(T ) =∞. By (4.27), it is not restrictive to assume that

r̂Ts,n − k1
n = r̂Ts for all s ∈ {1, . . . , kTr − 1}. (4.61)

Moreover, we deduce from Lemma 4.10 and (r(Tn)− r̂T
kTr −1,n

)→ +∞ that

lim
n→∞

u
r̂T
kTr −1,n

+i+1

n − u
r̂T
kTr −1,n

+i

n

λn
= γ, (4.62)

for 0 ≤ i ≤ K − 1. We define the function vn : N0 → R by

vin =


ui+hn+1
n −uhn+1

n
λn

if 0 ≤ i ≤ r̂T
kTr −1,n

− hn − 1,

γ(i− r̂T
kTr −1,n

+ hn + 1) + u
r̂T
kTr −1,n
n −uhn+1

n
λn

if r̂T
kTr −1,n

− hn − 1 ≤ i.

We show that the definition of vn implies that vn is a competitor for the infimum problem

in the definition of B
(1)
IF (r̂T ) with qn = k1

n − hn − 1, see (4.36). Clearly, it holds v0
n = 0.

Consider s ∈ {1, . . . , kTr − 2} and i ∈ {r̂Ts , . . . , r̂Ts+1 − 1}. As in the case r̂(T ) < +∞, we

deduce from un ∈ ATn(0, 1), (4.61) and qn = k1
n − hn − 1 that

vqn+i+1
n − vqn+i

n = vqn+r̂Ts +1
n − vqn+r̂Ts

n .

Moreover, the definition of vn yields vi+1
n − vin = γ for i ≥ qn + r̂T

kTr −1
. Hence, vn is a test

function for B
(1)
IF (r̂T ), see (4.36). Note that the definition of vn and (4.62) imply that

ui+1
n − uin
λn

= vi−hnn − vi−hn−1
n for hn + 1 ≤ i ≤ r̂T

kTr −1,n
− 1,

lim
n→∞

ui+1
n − uin
λn

= γ = vi−hnn − vi−hn−1
n for r̂T

kTr −1,n
≤ i ≤ r̂T

kTr −1,n
+K − 1.

(4.63)
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As in the case r̂(T ) < +∞, we deduce that

σij,n =σi−hn−1
j (vn) for hn + 1 ≤ i ≤ r̂T

kTr −1,n
− j

µij,n =µi−hn−1
j (vn) for k1

n ≤ i ≤ r̂TkTr −1,n
− 1.

(4.64)

From (4.64), r̂T
kTr −1,n

= r̂T
kTr −1

+ k1
n < r(Tn) and µij,n ≥ 0, we obtain that

K∑
j=2

{ k1
n−1∑

i=hn+1

σij,n +

j−1∑
s=1

s

j
µ
s+k1

n−1
j,n +

r(Tn)−1∑
i=k1

n+j−1

µij,n

}

≥
K∑
j=2

{ (k1
n−1)∧(r̂T

kTr −1,n
−j)∑

i=hn+1

σij,n +

k1
n−1∑

i=r̂T
kTr −1,n

−j+1

σij,n +

r̂T
kTr −1,n

−1∑
i=k1

n

(
i− k1

n + 1

j
∧ 1

)
µij,n

}

≥
K∑
j=2

{ k1
n−hn−2∑
i=0

σij(vn) +

r̂T
kTr −1

+k1
n−hn−2∑

i=k1
n−hn−1

(
i− k1

n + hn + 2

j
∧ 1

)
µij(vn)

}
− ω̂(n),

where

ω̂(n) =

K∑
j=2

k1
n−1∑

i=k1
n+r̂T

kTr −1
−j+1

|σij,n − σ
i−hn−1
j (vn)| → 0 as n→∞. (4.65)

Indeed, (4.65) follows from (4.63) and the continuity of J1, . . . , JK on its domain. Alto-

gether, using the previous calculations and qn = k1
n−hn− 1, we can rewrite the left-hand

side of (4.59) as

K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1

(
uhn+s+1
n − uhn+s

n

λn

)
+

k1
n−1∑

i=hn+1

σij,n +

j−1∑
s=1

s

j
µ
k1
n−1+s
j,n +

r(Tn)−1∑
i=k1

n+j−1

µij,n

}

≥
K∑
j=2

{
cj

j−1∑
s=1

j − s
j

J1

(
vsn − vs−1

n

)
+

qn−1∑
i=0

σij(vn) +

r̂T
kTr −1

+qn−1∑
i=qn

(
i− qn + 1

j
∧ 1

)
µij(vn)

}
− ω̂(n)− ω̃(n) ≥ B(1)

IF (r̂T )− ω̂(n)− ω̃(n).

where

ω̃(n) =

K∑
j=2

hn+j−1∑
i=k1

n+r̂T
kTr −1

j − (i− hn)

j

∣∣∣∣J1

(
ui+1
n − uin
λn

)
− J1(γ)

∣∣∣∣ ,
and ω̃(n)→ 0 as n→∞, see (4.63). The last inequality follows by the fact that vn is an

admissible test function for the infimum problem in the definition of B
(1)
IF (r̂T ). Combining

this with (4.65) proves the inequality (4.59) in the remaining case r̂(T ) = +∞.
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By using (4.48), (4.49), (4.55), (4.57)–(4.59) and the fact that σij,n, µ
i
j,n ≥ 0, we obtain

(4.54).

Case (3). Let (un) satisfy (4.50) with (hn) such that ((4.51), (3)) holds true. We show

that

lim inf
n→∞

Ĥ`,kn,Tn
1,n (un) ≥ B(u

(1)
0 , γ) +B(u

(1)
1 , γ) +BBIF (r̂T )−

K∑
j=2

(j − 1)ψj(γ). (4.66)

It is not restrictive to assume that

r̂Tm,n ≤ hn < r̂Tm+1,n, (4.67)

for some 1 ≤ m ≤ kTr − 1. Indeed, since k1
n = r̂T1,n ≤ hn < r(Tn) = r̂T

kTr ,n
we obtain by

passing to a subsequence (4.67) for some m ∈ {1, . . . , kTr − 1}. Assuming (4.67), we show

that

lim inf
n→∞

Ωn ≥ B(2)
IF (r̂T ,m, γ) +B

(3)
IF (r̂T ,m+ 1)−

K∑
j=2+r̂Tm

(
j − r̂Tm − 1

)
ψj(γ)

−
K∑
j=2

r̂Tm+1∑
i=r̂Tm+1

(
i

j
∧ 1

)
ψj(γ), (4.68)

where Ωn is defined in (4.56). Combining (4.68) with the definition of BBIF (r̂T ), see

(4.45), and (4.48), (4.49), (4.55), we obtain (4.66).

If m = kTr − 1, we can assume that r̂(T ) < +∞. Otherwise, we have by the definition of

r̂T that lim
n→∞

(r̂Tm+1,n− r̂Tm,n) = +∞ and Lemma 4.10 combined with un ∈ ATn(0, 1) yields

lim
n→∞

uhn+1
n − uhnn

λn
= lim

n→∞

u
r̂Tm,n+1
n − ur̂

T
m,n
n

λn
= γ,

which contradicts (4.50). Let us assume that n is sufficiently large such that it holds

r̂Ts,n − k1
n = r̂Ts for s ∈ {1, . . . , kTr − 1}. (4.69)

From (4.50), (4.67) and un ∈ ATn(0, 1), we deduce that

lim
n→∞

u
s+k1

n+1
n − us+k

1
n

n

λn
= lim

n→∞

uhn+1
n − uhnn

λn
= +∞, for s ∈ {r̂Tm, . . . , r̂Tm+1 − 1}. (4.70)
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For n sufficiently large, such that (4.69) holds, the term Ωn, see (4.56), reads

Ωn =
K∑
j=2


(k1
n−1)∧(r̂Tm,n−j)∑
i=T 1

n+1

σij,n +

r̂Tm∑
s=1

(
s

j
∧ 1

)
µ
k1
n+s−1
j,n +

r(Tn)−k1
n∑

s=r̂Tm+1+1

(
s

j
∧ 1

)
µ
k1
n+s−1
j,n


+

K∑
j=2+r̂Tm

cj
j

k1
n−1∑

i=r̂Tm,n−j+1

r̂Tm,n−1∑
s=i

J1

(
us+1
n − usn
λn

)
−

K∑
j=2+r̂Tm

(j − 1− r̂Tm)ψj(γ)

+

K∑
j=2+r̂Tm+1

cj
j

k1
n−1∑

i=r̂Tm,n−j+1

i+j−1∑
s=r̂Tm+1,n

J1

(
us+1
n − usn
λn

)
−

K∑
j=2

r̂Tm+1∑
s=r̂Tm+1

(
s

j
∧ 1

)
ψj(γ)

+ r(n), (4.71)

where r(n) is defined by

r(n) =

K∑
j=2+r̂Tm

k1
n−1∑

i=r̂Tm,n−j+1

Jj

(
ui+jn − uin

λn

)
+

K∑
j=1

r̂Tm+1∑
s=r̂Tm+1

(
s

j
∧ 1

)
Jj

(
u
s+k1

n
n − us+k

1
n−1

n

λn

)
.

From (4.70) and limz→+∞ Jj(z) = 0 for j ∈ {1, . . . ,K}, we deduce that r(n) → 0 as

n→∞. To prove (4.68), it remains to show the following inequalities

K∑
j=2+r̂Tm

cj
j

k1
n−1∑

i=r̂Tm,n−j+1

r̂Tm,n−1∑
s=i

J1

(
us+1
n − usn
λn

)

+
K∑
j=2


(k1
n−1)∧(r̂Tm,n−j)∑
i=T 1

n+1

σij,n +

r̂Tm∑
s=1

(
s

j
∧ 1

)
µ
k1
n+s−1
j,n

 ≥ B(2)
IF (r̂T ,m, γ)− r1(n) (4.72)

K∑
j=2+r̂Tm+1

cj
j

k1
n−1∑

i=r̂Tm,n−j+1

i+j−1∑
s=r̂Tm+1,n

J1

(
us+1
n − usn
λn

)
+

K∑
j=2

r(Tn)−k1
n∑

s=r̂Tm+1+1

(
s

j
∧ 1

)
µ
k1
n+s−1
j,n

≥ B(3)
IF (r̂T ,m+ 1)− r2(n), (4.73)

where r1(n), r2(n) → 0 as n → ∞. In order to prove (4.72), we define suitable test

functions for the boundary layer energy B
(2)
IF (r̂T ,m, γ). Let us define for i ≥ 0

ũin =


u
r̂Tm,n
n −u

r̂Tm,n−i
n

λn
if 0 ≤ i ≤ r̂Tm,n − T 1

n − 1,

γ(i− r̂Tm,n + T 1
n + 1) + u

r̂Tm,n
n −uT

1
n+1
n

λn
if i ≥ r̂Tm,n − T 1

n − 1.

(4.74)

We claim that ũn is a competitor for the infimum problem defining B
(2)
IF (r̂T ,m, γ), see

(4.38), if n is sufficiently large. The above construction implies ũ0
n = 0 and ũi+1

n − ũin = γ

for i ≥ r̂Tm,n − T 1
n − 1. Fix s ∈ {2, . . . ,m} and i ∈ {r̂Tm − r̂Ts , . . . , r̂Tm − r̂Ts−1 − 1}. From
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un ∈ ATn(0, 1) and (4.69), we deduce that u′n is constant on λn(k1
n+ r̂Ts−1, k

1
n+ r̂Ts ). Hence,

ũi+1
n − ũin =

u
k1
n+r̂Tm−i
n − uk

1
n+r̂Tm−i−1
n

λn
=
u
k1
n+r̂Ts
n − uk

1
n+r̂Ts −1
n

λn
= ũr̂

T
m−r̂Ts +1
n − ũr̂Tm−r̂Tsn .

This matches the constraint in (4.38). Let us rewrite the left-hand side of (4.72) in terms

of ũn. By the definition of ũ and σij , we have

σij(ũ) =Jj

ur̂Tm,n−in − ur̂
T
m,n−i−j
n

jλn

+
cj
j

i+j−1∑
s=i

J1

ur̂Tm,n−sn − ur̂
T
m,n−s−1
n

λn

− ψj(γ)

=σ
r̂Tm,n−j−i
j,n

for i ∈ {0, . . . , r̂Tm,n − j − T 1
n − 1}. Hence, we obtain, using (4.69), that

K∑
j=2

(k1
n−1)∧(r̂Tm,n−j)∑
i=T 1

n+1

σij,n =

K∑
j=2

r̂Tm,n−j−T 1
n−1∑

i=(r̂Tm,n−j−(k1
n−1))∨0

σ
r̂Tm,n−j−i
j,n =

K∑
j=2

r̂Tm,n−j−T 1
n−1∑

i=(r̂Tm+1−j)∨0

σij(ũn)

=
K∑
j=2

∑
i≥(r̂Tm+1−j)∨0

σij(ũn)− r1(n) (4.75)

with

r1(n) =
K∑
j=2

r̂Tm,n−T 1
n−2∑

i=r̂Tm,n−j−T 1
n

{
Jj

(
ũi+jn − ũin

j

)
+
cj
j

i+j−1∑
s=i

J1

(
ũs+1
n − ũsn

)
− ψj(γ)

}
→ 0

as n → ∞. Indeed, the definition of ũn implies ũi+1
n − ũin = γ for i ≥ r̂Tm,n − T 1

n − 1.

Hence, σij(ũn) = Jj(γ) + cjJ1(γ)− ψj(γ) = 0 for i ≥ r̂Tm,n − T 1
n − 1. Furthermore, by the

choice of T 1
n , see (4.47), we have

lim
n→∞

(ũ
r̂Tm,n−T 1

n−K+s
n − ũr̂

T
m,n−T 1

n−K+s−1
n ) = lim

n→∞

u
T 1
n+K−s+1
n − uT

1
n−K−s
n

λn
= γ

for s ∈ {1, . . . ,K − 1}. Hence, r1(n)→ 0 as n→∞. Moreover, we can rewrite the terms

involving µij,n in (4.72) by

K∑
j=2

r̂Tm∑
s=1

(
s

j
∧ 1

)
µ
s+k1

n−1
j,n =

K∑
j=2

r̂Tm∑
s=1

(
r̂Tm − s+ 1

j
∧ 1

)
µ
r̂Tm+k1

n−s
j,n

=

K∑
j=2

r̂Tm−1∑
s=0

(
r̂Tm − s
j

∧ 1

)
µsj(ũn). (4.76)

Note that we used µij(ũ) = µ
r̂Tm+k1

n−i−1
j for i ∈ {0, . . . , r̂Tm − 1}. It is left to rewrite
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the terms involving only J1 on the left-hand side in (4.72) in terms of ũn. For given

j ∈ {2 + r̂Tm, . . . ,K} and n sufficiently large such that (4.69) holds true, we have that

k1
n−1∑

i=r̂Tm,n−j+1

r̂Tm,n−1∑
s=i

J1

(
us+1
n − usn
λn

)
=

k1
n−1∑

i=r̂Tm,n−j+1

r̂Tm,n−i−1∑
s=0

J1

ur̂Tm,n−sn − ur̂
T
m,n−s−1
n

λn


=

k1
n−1∑

i=r̂Tm,n−j+1

r̂Tm,n−i−1∑
s=0

J1

(
ũs+1
n − ũsn

)
=

j−r̂Tm−2∑
i=0

j−i−2∑
s=0

J1

(
ũs+1
n − ũsn

)

=

j−2∑
s=0

j−2−s∨r̂Tm∑
i=0

J1

(
ũs+1
n − ũsn

)
=

j−1∑
s=1

(j − s ∨ (r̂Tm + 1))J1

(
ũsn − ũs−1

n

)
. (4.77)

Since ũn is a competitor for the infimum problem in the definition of B
(2)
IF (r̂T ,m, γ), we

deduce from (4.75)–(4.77) that the estimate (4.72) holds true.

Let us now show (4.73). Firstly, we consider the case r̂(T ) < +∞. As in case (2) it is

not restrictive to assume (4.60). We define ṽin for i ≥ 0 by

ṽin =
u
r̂Tm+1,n+i
n − ur̂

T
m+1,n
n

λn
. (4.78)

Let us check that ṽn is a competitor for the infimum problem of B
(3)
IF (r̂T ,m+1), see (4.39).

Clearly, ṽ0
n = 0. Fix s ∈ {m + 1, . . . , kTr − 1} and i ∈ {r̂Ts − r̂Tm+1, . . . , r̂

T
s+1 − r̂Tm+1 − 1}.

From un ∈ ATn(0, 1) and (4.60), we obtain that

ṽi+1
n − ṽin =

u
r̂Tm+1,n+i+1
n − ur̂

T
m+1,n+i
n

λn
=
u
k1
n+r̂Ts +1
n − uk

1
n+r̂Ts
n

λn
= ṽ

r̂Ts −r̂Tm+1+1
n − ṽr̂

T
s −r̂Tm+1
n .

Hence, ṽn satisfies the constraints in the definition of B
(3)
IF (r̂T ,m+ 1), see (4.39). Let us

now rewrite the left-hand side of (4.73) in terms of ṽn. Firstly, we consider the terms

involving only J1. For given j ∈ {2 + r̂Tm+1, . . . ,K} and n sufficiently large such that

(4.60) holds true, we have that

k1
n−1∑

i=r̂Tm+1,n−j+1

i+j−1∑
s=r̂Tm+1,n

J1

(
us+1
n − usn
λn

)
=

k1
n−1∑

i=r̂Tm+1,n−j+1

i+j−r̂Tm+1,n∑
s=1

J1

(
ṽsn − ṽs−1

n

)

=

j−r̂Tm+1−2∑
i=0

i+1∑
s=1

J1

(
ṽsn − ṽs−1

n

)
=

j−r̂Tm+1−1∑
s=1

j−r̂Tm+1−2∑
i=s−1

J1

(
ṽsn − ṽs−1

n

)

=

j−r̂Tm+1−1∑
s=1

(j − r̂Tm+1 − s)J1

(
ṽsn − ṽs−1

n

)
. (4.79)
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Moreover, we have for the terms involving only µij,n, using (4.60), that

r(Tn)−k1
n∑

s=r̂Tm+1+1

(
s

j
∧ 1

)
µ
k1
n+s−1
j,n =

r̂T
kTr
−r̂Tm+1∑
s=1

(
s+ r̂Tm+1

j
∧ 1

)
µ
k1
n+r̂Tm+1+s−1

j,n

=

r̂T
kTr
−r̂Tm+1∑
s=1

(
s+ r̂Tm+1

j
∧ 1

)
µs−1
j (ṽn). (4.80)

Combining (4.79), (4.80) and the fact that vn is a competitor for the infimum problem in

the definition of B
(3)
IF (r̂T ,m+ 1) yields (4.73) in the case r̂(T ) < +∞.

It is left to consider the case r̂(T ) = +∞. Clearly, we have r(Tn) − r̂T
kTr −1,n

→ +∞ as

n→∞. Lemma 4.10 and the definition of ṽn, see (4.78), yields

lim
n→∞

u
k1
n+r̂Tm+1+1+s
n − uk

1
n+r̂Tm+1+s
n

λn
= lim

n→∞

(
ṽs+1
n − ṽsn

)
= γ, (4.81)

for s ∈ {r̂T
kTr −1

− r̂Tm+1, . . . ,K − r̂Tm+1 − 2}. We define v̂n : N0 → R, by

v̂in =

ṽ
i
n if i ∈ {0, . . . , r̂T

kTr −1
− r̂Tm+1},

γ(i− r̂T
kTr −1

+ r̂Tm+1) + ṽ
r̂T
kTr −1

−r̂Tm+1

n if i ≥ r̂T
kTr −1

− r̂Tm+1.
(4.82)

The definition of v̂n and the previous considerations about ṽ imply that v̂ is a competitor

for the infimum problem in the definition of B
(3)
IF (r̂T ,m+ 1) with r̂T

kTr
= +∞, see (4.41).

Hence, we obtain

K∑
j=2+r̂Tm+1

cj
j

k1
n−1∑

i=r̂Tm,n−j+1

i+j−1∑
s=r̂Tm+1,n

J1

(
us+1
n − usn
λn

)
+

K∑
j=2

r(Tn)−k1
n∑

s=r̂Tm+1+1

(
s

j
∧ 1

)
µ
k1
n+s−1
j,n

≥
K∑

j=2+r̂Tm+1

cj
j

j−r̂Tm+1−1∑
s=1

(j − r̂Tm+1 − s)J1

(
v̂sn − v̂s−1

n

)

+

K∑
j=2

r̂T
kTr −1

−r̂Tm+1∑
s=1

(
s+ r̂Tm+1

j
∧ 1

)
µs−1
j (v̂n)− r2(n)

≥ B(3)
IF (r̂T ,m+ 1)− r2(n),

with

r2(n) =
K∑
j=2

cj
j

j−r̂Tm+1−1∑
s=r̂T

kTr −1
−r̂Tm+1+1

(j − r̂Tm+1 − s)
(
J1(γ)− J1(ṽsn − ṽs−1

n )
)
.

By (4.81), we obtain that limn→∞ r2(n) = 0 and thus (4.73) is proven.
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Case (4). Finally, let (un) satisfy (4.50) with (hn) such that ((4.51), (4)) holds. We

show

lim inf
n→∞

Ĥ`,kn,Tn
1,n (un) ≥ B(u

(1)
0 , γ) +B(u

(1)
1 , γ)− b(0, T )JCB(γ)−

K∑
j=2

(j − 1)ψj(γ). (4.83)

With a similar argument as in case (3), we deduce from Lemma 4.10 that b(0, T ) has to

be finite. Let us define sequences (h1
n), (h2

n) ⊂ N by

h1
n := max{q ∈ Tn, q ≤ hn}, h2

n := min{q ∈ Tn, q > hn}.

From un ∈ ATn(0, 1), we have µij,n = µhnj,n for h1
n ≤ i ≤ h2

n − 1. The assumption ((4.51),

(4)) and the definition of h1
n, imply k1

n +K − 1 ≤ r(Tn) ≤ h1
n. Hence, using σij,n, µ

i
j,n ≥ 0,

we obtain

K∑
j=2


k1
n−1∑

i=T 1
n+1

σij,n +

j−1∑
i=1

i

j
µ
k1
n+i−1
j,n +

h1
n−1∑

i=k1
n+j−1

µij,n +

h2
n−1∑
i=h1

n

µij,n +

k2
n−j∑
i=h2

n

µij,n


≥ (h2

n − h1
n)

K∑
j=2

µhnj,n.

By the definition of h1
n, h2

n and (4.7), we obtain from lim
n→∞

λnhn = 0 that lim
n→∞

λnh
1
n =

lim
n→∞

λnh
2
n = 0. Hence, there exists a constant N ∈ N such that (h2

n − h1
n) ≥ b(0, T ) for

all n ≥ N . From µhnj,n ≥ 0 and lim
n→∞

µhnj,n = −ψj(γ), we deduce

lim inf
n→∞

(h2
n − h1

n)
K∑
j=2

µhnj,n ≥ −b(0, T )
K∑
j=2

ψj(γ) = −b(0, T )JCB(γ),

where we used
∑K

j=2 ψj(γ) = JCB(γ). Combining the above considerations with (4.48),

(4.49), (4.55) and σij,n, µ
i
j,n ≥ 0, we obtain inequality (4.83).

In summary, for the jump in 0, we have the estimate

lim inf
n→∞

Ĥ`,kn,Tn
1,n (un)

≥ B(u
(1)
1 , γ)−

K∑
j=2

(j − 1)ψj(γ)

+ min

{
min

{
BAIF (r̂(T )), BBIF (r̂T ),−b(0, T )JCB(γ)

}
+B(u

(1)
0 , γ), BBJ(u

(1)
0 )

}
,

which meets (4.42) for a jump in 0.

Jump in (0, 1). Assume that Su = {t}, with t ∈ (0, 1). Let (un) be a sequence converging

to u such that supn Ĥ
`,kn,Tn
1,n (un) < ∞. Then Proposition 4.3 implies that un → u in
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L1(0, 1) with

u(x) =

γx if 0 ≤ x < t,

(`− γ) + γx if t < x ≤ 1.
(4.84)

Combining (4.55), (4.49) and the arguments of case (4) above, we can prove

lim inf
n→∞

Ĥ`,kn,Tn
1,n (un) ≥ B(u

(1)
0 , γ) +B(u

(1)
1 , γ)− b(x, T )JCB(γ)−

K∑
j=2

(j − 1)ψj(γ), (4.85)

which is the asserted estimate.

Limsup inequality. As for the lower bound it is sufficient to consider a single jump either

in 0 or in (0, 1).

Jump in 0. Corresponding to the cases (1)–(4), see (4.51), we construct sequences (u
(i)
n )

with u
(i)
n → u for i = 1, . . . , 4, where u is given by (4.46) such that

lim sup
n→∞

Ĥ`,kn,Tn
1,n (u(1)

n ) ≤B(u
(1)
1 , γ) +BBJ(u

(1)
0 )−

K∑
j=2

(j − 1)ψj(γ), (4.86)

lim sup
n→∞

Ĥ`,kn,Tn
1,n (u(2)

n ) ≤B(u
(1)
0 , γ) +B(u

(1)
1 , γ) +BAIF (r̂T )−

K∑
j=2

(j − 1)ψj(γ), (4.87)

lim sup
n→∞

Ĥ`,kn,Tn
1,n (u(3)

n ) ≤B(u
(1)
0 , γ) +B(u

(1)
1 , γ) +BBIF (r̂T )−

K∑
j=2

(j − 1)ψj(γ), (4.88)

lim sup
n→∞

Ĥ`,kn,Tn
1,n (u(4)

n ) ≤B(u
(1)
0 , γ) +B(u

(1)
1 , γ)−

K∑
j=2

(b(0, T ) + j − 1)ψj(γ). (4.89)

To show these inequalities, we recall some definitions of sequences from Chapter 3. Let

η > 0. By the definition of B(θ, γ), see (3.72), we find a function v : N0 → R and an

N1 ∈ N such that v0 = 0, vs − vs−1 = u
(1)
0,s, for 1 ≤ s < K and vi+1 − vi = γ if i ≥ N1,

satisfying
K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) +

K∑
j=2

∑
i≥0

σij(v) ≤ B(u
(1)
0 , γ) + η. (4.90)

Moreover, we find w : N0 → R and an N2 ∈ N with w0 = 0, ws − ws−1 = u
(1)
1,s for

1 ≤ s < K and wi+1 − wi = γ if i ≥ N2, such that

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(u
(1)
1,s) +

K∑
j=2

∑
i≥0

σij(w) ≤ B(u
(1)
1 , γ) + η. (4.91)
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By the definition of B(γ), see (3.71), we find a function ũ : N0 → R and an Ñ ∈ N such

that ũ0 = 0, ũi+1 − ũi = γ if i ≥ Ñ and

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1

(
ũs − ũs−1

)
+

K∑
j=2

∑
i≥0

σij(ũ) ≤ B(γ) + η. (4.92)

Let us recall that the infinite sums in (4.90)–(4.92) can be replaced by the sum from i = 0

to i = N1 − 1 respectively N2 − 1, Ñ − 1.

Case (1). We construct a sequence (un) converging to u in L1(0, 1), given in (4.46),

satisfying (4.86). For this, we can use the same recovery sequence which was constructed

for a jump in 0 in Theorem 3.19. Let η > 0. By the definition of Bb(θ) given in (3.70),

there exist ŵ : N0 → R and k̂0 ∈ N, k̂0 ≥ K−1 such that ŵk0 = 0, ŵk0+1−s− ŵk0−s = u
(1)
0,s

for s = 1, . . . ,K − 1 and (3.98) is satisfied. The recovery sequence (un) is defined means

of the sequences ũ, ŵ and w, as

uin =


−λnŵi−k̂0 if 0 ≤ i ≤ k̂0,

`+ λn(ũi−(k̂0+1) − ũk2
n+1−(k̂0+1) − wn−(k2

n+1)) if k̂0 + 1 ≤ i ≤ k2
n + 1,

`− λnwn−i if k2
n + 1 ≤ i ≤ n.

By the definition of ŵ and w the function un satisfies the boundary conditions (3.3).

Moreover, since k1
n, k2

n are such that limn→∞ k
1
n = limn→∞(n− k2

n) = +∞ we have for n

large enough that

k1
n − (k̂0 +K) > Ñ and k2

n +N2 +K ≤ n.

This implies that ui+1
n − uin = λnγ for i ∈ {k1

n, . . . , k
2
n} for n sufficiently large and thus

un ∈ ATn(0, 1). In a similar way as in the proof of Theorem 3.19, we can show that

limn→∞ un = u in L1(0, 1) and, by using the above inequalities and (3.74), that

lim sup
n→∞

Ĥ`,kn,Tn
1,n (un) ≤ B(u

(1)
1 , γ) +BBJ(u

(1)
0 )−

K∑
j=2

(j − 1)ψj(γ) + 3η.

The assertion follows from the arbitrariness of η > 0.

Case (2). Next, we construct a sequence (un) which converges in L1(0, 1) to u, given

in (4.46), and satisfies (4.87).

Let us first assume that r̂(T ) < +∞. Fix η > 0. By the definition of B
(1)
IF (r), see

(4.35), we find a function z : N0 → R and a q ∈ N such that z0 = 0 and zq+i+1 − zq+i =
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zq+r̂
T
s +1 − zq+r̂Ts if s ∈ {1, . . . , kTr − 1} and i ∈ {r̂Ts , . . . , r̂Ts+1 − 1}, satisfying

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(zs − zs−1) +

q−1∑
i=0

σij(z) +

j−1∑
s=1

s

j
µq−1+s
j (z) +

r̂(T )−1∑
i=q+j−1

µij(z)


≤ BIF (r̂T ) + η. (4.93)

Set hn := k1
n − q − 1; then we have λnhn → 0. Set k0

n = b
√
k1
nc. Clearly, we have

limn λnk
0
n = 0 and limn(k1

n − k0
n) = +∞. For n sufficiently large, we can assume that the

following relations hold true:

k0
n ≥ N1 +K, Ñ ≤ hn − k0

n −K, n− k2
n −K ≥ N2,

r̂Ts,n − k1
n = r̂Ts for s ∈ {1, . . . , kTr }.

(4.94)

We are now able to construct a recovery sequence (un) by means of the functions z, v, w

and ũ:

uin =



λnv
i if 0 ≤ i ≤ k0

n,

λn

(
vk

0
n − ũhn−i + ũhn−k

0
n

)
if k0

n ≤ i ≤ hn,

`+ λn
(
zi−hn−1 − zr(Tn)−hn−1 − wn−r(Tn)

)
if hn + 1 ≤ i ≤ r(Tn),

`− λnwn−i if r(Tn) ≤ i ≤ n.

(4.95)

By definition of v and w the functions un satisfy the boundary conditions (3.3). Let us

now check that un ∈ ATn(0, 1) for n sufficiently large. The definition of w and (4.94)

yields ui+1
n − uin = λnγ for r(Tn) ≤ i ≤ k2

n. Thus it is left to show that for given

s ∈ {1, . . . , kTr − 1} and n sufficiently large it holds u′n is constant on λn(r̂Ts,n, r̂
T
s+1,n). Fix

s ∈ {1, . . . , kTr − 1} and let i ∈ {r̂Ts , . . . , r̂Ts+1}. By the definition of un, z, (4.94) and

hn = k1
n − q − 1, we obtain that

u
k1
n+i+1
n − uk

1
n+i
n

λn
=zq+i+1 − zq+i = zq+r̂

T
s +1 − zq+r̂Ts =

u
k1
n+r̂Ts +1
n − uk

1
n+r̂Ts
n

λn
.

This implies that u′n = λ−1
n (u

r̂Ts,n+1
n − ur̂

T
s,n
n ) on λn(r̂Ts,n, r̂

T
s+1,n). Hence, un ∈ ATn(0, 1).

Next, we show that

lim
n→∞

(
uhn+1
n − uhnn

)
= `− γ. (4.96)
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Since we have hn = k1
n − q − 1, r(Tn)− k1

n = r̂(T ) and k2
n > r(Tn) for n sufficiently large,

we obtain

uhn+1
n − uhnn = `+ λn

(
z0 − zr(Tn)−hn−1 − wn−r(Tn) − vk0

n + ũ0 − ũhn−k0
n

)
= `+ λn

(
wN2 − wn−r(Tn) − wN2 − zq+r̂(T ) − vk0

n + vN1 − vN1 − ũhn−k0
n + ũÑ − ũÑ

)
= `+ λn

(
γ(N2 + r(Tn)− n− k0

n +N1 − hn + k0
n + Ñ)− wN2 − zq+r̂(T ) − vN1 − ũÑ

)
= `− γ + λn

(
γ(q + 1 + r̂(T ) +N2 +N1 + Ñ)− wN2 − zq+r̂(T ) − vN1 − ũÑ

)
. (4.97)

Since the terms which are multiplied by λn are independent of n, we have (4.96) and

similar arguments as in the proof of Theorem 3.19 yield un → u in L1(0, 1). From (4.96),

we deduce uhn+1
n −uhnn

λn
→ +∞ as n→∞. Thus, for fixed j ∈ {2, . . . ,K} it holds

hn∑
i=hn−j+1

σij,n =cj

j−1∑
s=1

j − s
j

(
J1

(
uhn+1−s
n − uhn−sn

λn

)
+ J1

(
uhn+s+1
n − uhn+s

n

λn

))
− jψj(γ) + rj(n)

=cj

j−1∑
s=1

j − s
j

(
J1

(
ũs − ũs−1

)
+ J1

(
zs − zs−1

))
− jψj(γ) + rj(n), (4.98)

where rj(n) → 0 as n → ∞. By the definition of v, w, ũ and un and (4.94), we obtain

that ui+1
n − uin = γ for i ∈ {N1, . . . , hn − Ñ − 1} ∪ {r(Tn), . . . , n−N2 − 1}. Hence

K∑
j=2


hn−Ñ−1−K∑

i=N1

σij,n +

k2
n−j∑

i=r(Tn)

µij,n +

j−1∑
s=1

s

j
µ
k2
n−s
j,n +

n−N2−1−K∑
i=k2

n−1

σij,n

 = 0. (4.99)

Moreover, we observer by the definition of un, the function v and w and (3.108), (3.99)

that

K∑
j=2

N1−1∑
i=0

σij,n =
K∑
j=2

∑
i≥0

σij(v) ≤ B(u
(1)
0 , γ)−

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(u
(1)
0,s) + η,

K∑
j=2

n−j∑
i=n−N2−K

σij,n =
K∑
j=2

∑
i≥0

σij(w) ≤ B(u
(1)
1 , γ)−

K∑
j=2

cj

j−1∑
s=1

j − s
j

J1(u
(1)
1,s) + η.

(4.100)
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Combining the definition of un, the functions ũ and z with (4.92), (4.93), (4.98) and

(4.99), we get

K∑
j=2


k1
n−1∑

i=hn−Ñ−K

σij,n +

j−1∑
s=1

s

j
µ
k1
n−1+s
j,n +

r(Tn)−1∑
i=k1

n+j−1

µij,n


=

K∑
j=2

{
hn−j∑

i=hn−Ñ−K

σij,n + cj

j−1∑
s=1

j − s
j

(
J1(ũs − ũs−1) + J1(zs − zs−1)

)
+

k1
n−1∑

i=hn+1

σij,n

+

j−1∑
s=1

s

j
µ
k1
n−1+s
j,n +

r(Tn)−1∑
i=k1

n+j−1

µij,n − jψj(γ) + rj(n)

}

=

K∑
j=2

{
Ñ+K−j∑
i=0

σij(ũ) + cj

j−1∑
s=1

j − s
j

(
J1(ũs − ũs−1) + J1(zs − zs−1)

)
+

q−1∑
i=0

σij(z)

+

j−1∑
s=1

s

j
µq−1+s
j (z) +

r̂(T )−1∑
i=q−1+j

µij(z)− jψj(γ) + rj(n)

}

≤B(γ) +B
(1)
IF (r̂T )−

K∑
j=2

jψj(γ) + 2η +
K∑
j=2

rj(n). (4.101)

Altogether, we have by (4.23) and (4.99)–(4.101) that

lim sup
n→∞

Ĥ`,kn,Tn
1,n (un) ≤B(u

(1)
0 , γ) +B(u

(1)
1 , γ) +B(γ) +B

(1)
IF (r̂T )−

K∑
j=2

(2j − 1)ψj(γ) + 4η.

The assertion (4.87) in the cases r̂(T ) < +∞ follows by the arbitrariness of η > 0 and

the definition of BAIF (r̂T ), see (4.44).

Let us now consider the case r̂(T ) = +∞. In this case we have to change the definition

of z in the recovery sequence. By the definition of B
(1)
IF (r̂T ), see also (4.36), there exist a

function ẑ : N0 → R and a q ∈ N such that ẑ0 = 0, ẑq+i+1 − ẑq+i = ẑq+r̂
T
s +1 − ẑq+r̂Ts if

s ∈ {1, . . . , kTr − 2} and i ∈ {r̂Ts , . . . , r̂Ts+1 − 1} satisfying ẑq+i+1 − ẑq+i = γ for i ≥ r̂T
kTr −1

and

K∑
j=2

cj
j−1∑
s=1

j − s
j

J1(ẑs − ẑs−1) +

q−1∑
i=0

σij(ẑ) +

j−1∑
s=1

s

j
µq−1+s
j (ẑ) +

∑
i≥q+j−1

µij(ẑ)


≤ BIF (r̂T ) + η. (4.102)

Note that µij(ẑ) = 0 for i ≥ q + r̂T
kTr −1

. Define un as in (4.95) with z replaced by ẑ. Then

the sequence (un) is a recovery sequence for u. Note that un satisfies (3.3). Moreover,

similar arguments as for the case r̂(T ) < +∞ combined with ẑi+1−ẑi = γ for i ≥ q+r̂T
kTr −1

yields un ∈ ATn(0, 1) for n sufficiently large. Let us show (4.96). For n sufficiently large

such that it holds r̂T
kTr −1,n

= k1
n + r̂T

kTr −1
, we deduce from the calculations in (4.97) and
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ẑi+1 − ẑi = γ for i ≥ q + rT
kTr −1

that

uhn+1
n − uhnn =`− γ + λn

(
γ(r(Tn)− k1

n)− ẑq+r(Tn)−k1
n + ẑ

q+r̂T
kTr −1 − ẑ

q+r̂T
kTr −1

)
+O(λn)

=`− γ + λn
(
γ(r(Tn)− k1

n − (q + r(Tn)− k1
n)− r̂TkTr −1)− ẑq+r̂

T
k−1
)

+O(λn)

=`− γ +O(λn),

which yields (4.96). Similar arguments as in the case r̂(T ) < +∞ yields (4.87), which

finishes the proof in this case.

Case (3). We have to prove that there exists a sequence (un) converging in L1(0, 1) to

u, given in (4.46), satisfying (4.88).

Let us first assume that r̂(T ) < +∞. Let m ∈ {1, . . . , kTr − 1} be such that

BBIF
(
r̂T
)

=B
(2)
IF (r̂T ,m, γ) +B

(3)
IF (r̂T ,m+ 1)−

K∑
j=2+r̂Tm

(
j − r̂Tm − 1

)
ψj(γ)

−
K∑
j=2

r̂Tm+1∑
i=r̂Tm+1

(
i

j
∧ 1

)
ψj(γ). (4.103)

Fix η > 0. By the definition of B
(2)
IF (r,m, γ), see (4.38), there exist a function ū : N0 → R

and an N̄ ∈ N such that ū0 = 0, ūi+1−ūi = γ for i ≥ N̄ and ūi+1−ūi = ūr̂
T
m−r̂Ts +1−ūr̂Tm−r̂Ts

if s ∈ {2, . . . ,m} and r̂Tm − r̂Ts ≤ i < r̂Tm − r̂Ts−1, such that the following inequality holds

K∑
j=2+r̂Tm

cj

j−1∑
s=1

j − (s ∨ (r̂Tm + 1))

j
J1(ūs − ūs−1) +

K∑
j=2

∑
i≥(r̂Tm+1−j)∨0

σij(ū)

+

K∑
j=2

r̂Tm−1∑
i=0

(
r̂Tm − i
j
∧ 1

)
µij(ū) ≤ B(2)

IF (r̂T ,m, γ) + η.

Furthermore, by the definition of B(r̂T ,m+1), see (4.39), there exists a function v̄ : N0 →
R with v̄0 = 0 and v̄i+1 − v̄i = v̄r̂

T
s −r̂Tm+1+1 − v̄r̂Ts −r̂Tm+1 if s ∈ {m + 1, . . . , kTr − 1} and

r̂Ts − r̂Tm+1 ≤ i < r̂Ts+1 − r̂Tm+1 such that

K∑
j=2+r̂Tm+1

cj

j−r̂Tm+1−1∑
s=1

j − s− r̂Tm+1

j
J1(v̄s − v̄s−1)

+

K∑
j=2

r̂(T )−r̂Tm+1−1∑
i=1

(
i+ r̂Tm+1

j
∧ 1

)
µi−1
j (v̄) ≤ B(3)

IF (r̂T ,m+ 1) + η.
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Set k0
n := b

√
k1
nc. Clearly, we have limn λnk

0
n = 0 and limn(k1

n − k0
n) = +∞. For n

sufficiently large, we can assume that the following relations hold true:

k0
n ≥ N1 + 1, N̄ ≤ k1

n − k0
n − 2, n− k2

n − 1 ≥ N2,

r̂Ts,n − k1
n = r̂Ts for s ∈ {1, . . . , kTr }.

(4.104)

We construct a sequence (un) by means of the functions v, w, ū and v̄:

uin =



λnv
i if 0 ≤ i ≤ k0

n,

λn(vk
0
n − ūr̂Tm,n−i + ūr̂

T
m,n−k0

n) if k0
n ≤ i ≤ r̂Tm,n,

u
r̂Tm,n
n +

i−r̂Tm,n
r̂Tm+1,n−r̂Tm,n

u
r̂Tm+1,n
n if r̂Tm,n < i < r̂Tm+1,n,

`+ λn

(
v̄i−r̂

T
m+1,n − v̄r(Tn)−r̂Tm+1,n − wn−r(Tn)

)
if r̂Tm+1,n ≤ i ≤ r(Tn),

`− λnwn−i if r(Tn) ≤ i ≤ n.

(4.105)

Note that u
r̂Tm,n
n = λn(vk

0
n + ūr̂

T
m,n−k0

n) and u
r̂Tm+1,n
n = ` − λn(v̄r(Tn)+r̂Tm+1,n + wn−r(Tn))

in the definition of un. By definition of the function v and w the sequence un satisfies

the boundary conditions (3.3). Moreover, we have that ui+1
n − uin = λnγ for N1 ≤ i ≤

r̂Tm,n−N̄−1 and r(Tn) ≤ i ≤ n−N2−1 for n large enough. Let us show that u′n is constant

on λn(r̂Ts,n, r̂
T
s+1,n) for s ∈ {1, . . . , kTr − 1} and n sufficiently large. Fix s ∈ {2, . . . ,m} and

r̂Ts−1,n ≤ i ≤ r̂Ts,n − 1. Note that this implies r̂Tm − r̂Ts ≤ r̂Tm − (i− k1
n)− 1 < r̂Tm − r̂Ts−1 for

n such that (4.104) holds. By the definition of un, ū and (4.104), we obtain

ui+1
n − uin
λn

=ūr̂
T
m−i − ūr̂Tm−i−1 = ūr̂

T
m−r̂Ts +1 − ūr̂Tm−r̂Ts =

u
k1
n+r̂Ts
n − uk

1
n+r̂Ts −1
n

λn
.

This implies that u′n = λ−1
n (u

r̂Ts,n
n − ur̂

T
s,n−1
n ) on λn(r̂Ts−1,n, r̂

T
s,n) for s ∈ {2, . . . ,m}. Let

us now show that u′n is constant on λn(r̂Ts,n, r̂
T
s+1,n) for s ∈ {m, . . . , kTr − 1}. The case

s = m follows directly from the definition of un. Fix s ∈ {m + 1, . . . , kTr − 1} and

rTs,n ≤ i ≤ rTs+1,n − 1. From (4.104) and the definition of un and v̄, we obtain

ui+1
n − uin
λn

=v̄i−r̂
T
m+1,n+1 − v̄i−r̂

T
m+1,n = v̄r̂

T
s −r̂Tm+1+1 − v̄r̂Ts −r̂Tm+1 =

u
k1
n+r̂Ts +1
n − uk

1
n+r̂Ts
n

λn
.

Hence, u′n = λ−1
n (u

r̂Ts,n+1
n −ur̂

T
s,n
n ) on λn(r̂Ts,n, r̂

T
s+1,n) for s ∈ {m+1, . . . , kTr −1}. Altogether,

we have that un ∈ ATn(0, 1). Let us show

lim
n→∞

(
u
r̂Tm+1,n
n − ur̂

T
m,n
n

)
= `− γ. (4.106)
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We have

u
r̂Tm+1,n
n − ur̂

T
m,n
n =`+ λn

(
v̄0 − v̄r(Tn)−r̂Tm+1,n − wn−r(Tn) − vk0

n + ū0 − ūr̂Tm,n−k0
n

)
=`+ λn

(
wN2 − wn−r(Tn) − wN2 − v̄r(Tn)−r̂Tm+1,n + vN1 − vk0

n − vN1

+ ūN̄ − ūr̂Tm,n−k0
n − ūN̄

)
=`+ λn

(
γ
(
N2 − n+ r(Tn) +N1 − k0

n + N̄ − r̂Tm,n + k0
n

)
− wN2 − vN1

− ūN̄ − v̄r(Tn)−k1
n−r̂Tm+1

)
=`− γ + λn

(
γ
(
N2 +N1 + N̄ + r(Tn)− k1

n − r̂Tm
)
− v̄r(Tn)−k1

n−r̂Tm+1

− wN2 − vN1 − ūN̄
)
. (4.107)

Since r(Tn) − k1
n = r̂(T ) < +∞, the terms which are multiplied by λn are independent

of n. This yields (4.106). Similar arguments as in the proof of Theorem 3.19 imply that

un → u in L1(0, 1). For s ∈ {r̂Tm, . . . , r̂Tm+1 − 1}, we deduce from the definition of un and

(4.106) that

u
k1
n+s+1
n − uk

1
n+s
n

λn
=
u
r̂Tm+1,n
n − ur̂

T
m,n
n

λn(r̂Tm+1 − r̂Tm)
→∞ as n→∞. (4.108)

Let us assume that n is sufficiently large such that r̂Ts,n = k1
n + r̂Ts for s ∈ {1, . . . ,m}.

Then similar calculations as for the liminf inequality (e.g. (4.77), (4.79)) yield

K∑
j=2+r̂Tm

k1
n−1∑

i=r̂Tm,n−j+1

σij,n

=
K∑

j=2+r̂Tm

cj
j

k1
n−1∑

i=r̂Tm,n−j+1

r̂Tm,n−1∑
s=i

J1

(
us+1
n − usn
λn

)
−

K∑
j=2+r̂Tm

(k1
n − 1− r̂Tm,n + j)ψj(γ)

+
K∑

j=2+r̂Tm+1

cj
j

k1
n−1∑

i=r̂Tm,n−j+1

i+j−1∑
s=r̂Tm+1,n

J1

(
us+1
n − usn
λn

)
+ r1(n)

=

K∑
j=2+r̂Tm

cj
j

k1
n−1∑

i=r̂Tm,n−j+1

r̂Tm,n−i−1∑
s=0

J1

(
ūs+1 − ūs

)
−

K∑
j=2+r̂Tm

(j − 1− r̂Tm)ψj(γ)

+
K∑

j=2+r̂Tm+1

cj
j

k1
n−1∑

i=r̂Tm,n−j+1

i+j−r̂Tm+1,n∑
s=1

J1

(
v̄s − v̄s−1

)
+ r1(n)

=
K∑

j=2+r̂Tm

cj
j

j−1∑
s=1

(j − (s ∨ (r̂Tm + 1)))J1

(
ūs − ūs−1

)
−

K∑
j=2+r̂Tm

(j − 1− r̂Tm)ψj(γ)

+
K∑

j=2+r̂Tm+1

cj
j

j−r̂Tm+1−1∑
s=1

(j − r̂Tm+1 − s)J1

(
v̄s − v̄s−1

)
+ r1(n) (4.109)
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with

r1(n) =

K∑
j=2+r̂Tm


k1
n−1∑

i=r̂Tm,n−j+1

Jj

(
ui+jn − uin
jλn

)
+
cj
j

(r̂Tm+1,n∧(i+j))−1∑
s=r̂Tm,n

J1

(
us+1
n − usn
λn

)→ 0

as n→∞, which follows from (4.108). Moreover, we have

K∑
j=2

r̂Tm+1,n−1∑
i=r̂Tm,n

(
i− k1

n + 1

j
∧ 1

)
µij,n = −

K∑
j=2

r̂Tm+1∑
s=r̂Tm+1

(
s

j
∧ 1

)
ψj(γ) + r2(n), (4.110)

with

r2(n) =
K∑
j=2

r̂Tm+1∑
s=r̂Tm+1

(
s

j
∧ 1

)
ψj

 u
r̂Tm+1,n
n − ur̂

T
m,n
n

(r̂Tm+1,n − r̂Tm,n)λn

→ 0 as n→∞.

Hence, using (4.109) and (4.110), we obtain

K∑
j=2


k1
n−1∑
i=k0

n

σij,n +

j−1∑
s=1

s

j
µ
k1
n+s−1
j,n +

r(Tn)∑
i=k1

n+j−1

µij,n


=

K∑
j=r̂Tm+2

cj

j−1∑
s=1

j − (s ∨ r̂Tm)

j
J1

(
ūs − ūs−1

)
+

K∑
j=2

k1
n+r̂Tm−j−k0

n∑
i=(r̂Tm−j+1)∨0

σij(ū)

+
K∑
j=2

r̂Tm−1∑
i=0

(
r̂Tm − i
j
∧ 1

)
µij(ū) +

K∑
j=2+r̂Tm+1

cj

j−r̂Tm+1−1∑
s=1

j − r̂Tm+1 − s
j

J1

(
v̄s − v̄s−1

)

−
K∑
j=2

r̂Tm+1∑
s=r̂Tm+1

(
s

j
∧ 1

)
ψj(γ) +

K∑
j=2

r(Tn)−r̂Tm+1,n∑
i=1

(
i+ r̂Tm+1

j
∧ 1

)
µi−1
j (v̄)

−
K∑

j=2+r̂Tm

(j − 1− r̂Tm)ψj(γ) + r(n)

≤B(2)
IF (r̂T ,m, γ) +B

(3)
IF (r̂T ,m+ 1) + 2η −

K∑
j=r̂Tm+2

(j − 1− r̂Tm)ψj(γ)

−
K∑
j=2

r̂Tm+1∑
s=r̂Tm+1

(
s

j
∧ 1

)
ψj(γ) + r(n),



168 Chapter 4. Analysis of a quasicontinuum method in one dimension

with r(n) := r1(n) + r2(n). Now similar calculations as before lead, by using (3.108) and

(3.99), to

lim sup
n→∞

Ĥ`,kn,Tn
1,n (un) ≤B(u

(1)
0 , γ) +B(u

(1)
1 , γ) +B

(2)
IF (r̂T ,m, γ) +B

(3)
IF (r̂T ,m+ 1)

+ 4η −
K∑

j=r̂Tm+2

(j − 1− r̂Tm)ψj(γ)−
K∑
j=2

r̂Tm+1∑
s=r̂Tm+1

(
s

j
∧ 1

)
ψj(γ)

−
K∑
j=2

(j − 1)ψj(γ),

which proves (4.88) by the arbitrariness of η > 0 and the definition of m.

Let us now consider r̂(T ) = +∞. By the definition of B
(3)
IF , there exists a function

v̂ : N0 → R with v̂0 = 0 and v̂i+1 − v̂i = v̂r̂
T
s −r̂Tm+1+1 − v̂r̂Ts −r̂Tm+1 for r̂Ts − r̂Tm+1 ≤ i <

r̂Ts+1 − r̂Tm+1 with s ∈ {m + 1, . . . , kTr − 2} and v̂i+1 − v̂i = γ for i ≥ r̂T
kTr −1

− r̂Tm+1 such

that

K∑
j=2+r̂Tm+1

cj

j−r̂Tm+1−1∑
s=1

j − s− r̂Tm+1

j
J1(v̂s − v̂s−1)

+
K∑
j=2

∑
i≥1

(
i+ r̂Tm+1

j
∧ 1

)
µi−1
j (v̂) ≤ B(3)

IF (r̂T ,m+ 1) + η.

Note that µij(v̂) = 0 for i ≥ r̂T
kTr −1

− r̂Tm+1. Define un as in (4.105) with v̄ replaced by v̂.

Similar calculations as above yield that (un) is a recovery sequence for u. We only show

that (un) satisfies (4.106). By (4.107) and v̂i+1 − v̂i = γ for i ≥ r̂T
kTr −1

− rTm+1, we obtain

that there exists C ∈ R independent of n such that

u
r̂Tm+1,n
n − ur̂

T
m,n
n =`− γ + λn

(
γ(r(Tn)− k1

n)− v̂r(Tn)−k1
n−r̂Tm+1 + C

)
=`− γ + λn

(
γr̂TkTr −1 − v̂

r̂T
kTr −1

−rTm+1 + C

)
→ `− γ as n→∞.

We can now use similar arguments as in the case r̂(T ) < +∞ to prove (4.88).

Case (4): Here, we prove that there exists a sequence (un) converging in L1(0, 1) to u,

given by (4.46), which satisfies (4.89).

Without loss of generality we can assume b(0, T ) < +∞. By the definition of b(0, T ),

we can find a sequence (hn) ⊂ N with thnn , thn+1
n ∈ Tn, r(Tn) ≤ thn < thn+1

n and

limn→∞ λnt
hn
n = limn→∞ λnt

hn+1
n = 0 such that

lim
n→∞

(thn+1
n − thnn ) = b(0, T ).
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We construct now the sequence (un) by means of the functions v and w:

uin =


λnv

i if 0 ≤ i ≤ thnn ,

thn+1
n −i

thn+1
n −thnn

λnv
thnn + i−thnn

thn+1
n −thnn

(`− λnwn−t
hn+1
n ) if thnn < i < thn+1

n ,

`− λnwn−i if thn+1
n ≤ i ≤ n.

This sequence satisfies the boundary conditions (3.3) and ui+1
n −uin = λnγ for N1 ≤ i ≤ thnn

and for thn+1
n ≤ i ≤ n−N2 and we have

ut
hn+1
n
n − ut

hn
n
n =`+ λn(wt

hn+1
n −n − vt

hn
n )

=`+ λn(wt
hn+1
n −n − w−N2 + w−N2 − vt

hn
n + vN1 − vN1)

=`+ λn(γ(thn+1
n − thnn − n+N2 +N1) + w−N2 − vN1)→ `− γ

as n→∞. Thus, un → u in L1(0, 1). Furthermore, we obtain for thnn ≤ i ≤ thn+1
n − 1,

µij,n = ψj

(
ut
hn+1
n
n − ut

hn
n
n

λn(thn+1
n − thnn )

)
− ψj(γ)→ −ψj(γ)

as n→∞. This implies

K∑
j=2

thn+1
n −1∑
i=thnn

µij,n = −b(0, T )
K∑
j=2

ψj(γ) = −b(0, T )JCB(γ),

and together with (3.108) and (3.99) the desired inequality (4.89) follows.

Jump in (0, 1) We have to prove that there exists a sequence (un) converging in L1(0, 1)

to u, given in (4.84), satisfying

lim
n
Ĥ`,kn,Tn

1,n (un) ≤ B(u
(1)
0 , γ) +B(u

(1)
1 , γ)− b(x, T )JCB(γ)−

K∑
j=2

(j − 1)ψj(γ).

This can be shown analogously to case (4) for a jump in 0, by using sequence (hn) ⊂ N
with thnn , thn+1

n ∈ Tn for all n ∈ N such that limn λnt
hn
n = limn λnt

hn+1
n = x and

lim
n→∞

(thn+1
n − thnn ) = b(x, T ).

4.4 Minimum Problems

According to Theorem 3.19 and Theorem 4.11, the sequences (H`
1,n) and (Ĥ`,kn,Tn

1,n ) do

not have the same Γ-limit for ` > γ, while they coincide in the case 0 < ` ≤ γ. In order
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to analyse the validity of the QC-approximation also for ` > γ, we study the minimum of

Ĥ`,T
1 in dependence of the choice of the representative atoms described by T = (Tn).

Here, we consider the case of nearest and next-to-nearest neighbour interactions only;

for a short comment on the general case, see Remark 4.24 at the end of this section.

We give sufficient conditions on T such that minuH
`
1(u) = minu Ĥ

`,T
1 (u). Moreover, we

provide examples in which the minimal energies and minimisers of H`
1 and Ĥ`,T

1 do not

coincide. To this end, certain relations between different boundary layer and jump energies

are needed, which we provide in several lemmas in this section. Some of these relations

are proven under additional assumptions on the potentials J1 and J2. In Proposition 3.2,

we show that all these assumptions are satisfied for the classical Lennard-Jones potentials

and Morse-potentials; see (3.22) and (3.24). The following results are contained in [55,

Section 5].

Throughout this section, we assume that J1 and J2 satisfy the assumptions (LJ1)–(LJ5)

(for K = 2). Recall that in this case, we have

J0(z) := J0,2(z) = J2(z) +
1

2
inf {J1(z1) + J1(z2) : z1 + z2 = 2z}

and ψ2(z) = JCB(z) = J1(z) + J2(z) for all z ∈ R. Let us recast the boundary layer

energies derived in Section 3.3 for the case K = 2. For a function v : N0 → R and i ∈ N0

we define σi(v) as

σi(v) = J2

(
vi+2 − vi

2

)
+

1

2

(
J1(vi+2 − vi+1) + J1(vi+1 − vi)

)
− J0(γ). (4.111)

The boundary layer energies B(θ, γ), Bb(θ), defined in (3.72), (3.70) for θ ∈ RK−1
+ and

B(γ) defined in (3.71) reads in the case K = 2 and θ > 0 as

B(θ, γ) = inf
N∈N

min

{
1

2
J1(v1 − v0) +

∑
i≥0

σi(v) :

v : N0 → R, v0 = 0, v1 = θ, vi+1 − vi = γ for i ≥ N
}
, (4.112)

Bb(θ) = inf
q∈N

min

{
1

2
J1(v1 − v0) +

q−2∑
i=0

σi(v) :

v : N0 → R, vq = 0, vq−1 = −θ
}
, (4.113)

B(γ) = inf
N∈N0

min

{
1

2
J1(v1 − v0) +

∑
i≥0

σi(v) :

v : N0 → R, v0 = 0, vi+1 − vi = γ for i ≥ N
}
. (4.114)

Next, we restate Theorem 3.19 in the case K = 2. Note that in this case the result was

already proven in [50, Theorem 4.2].
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Proposition 4.13. Let K = 2 and suppose that J1 and J2 satisfy the assumptions (LJ1)–

(LJ5). Let ` > γ and u
(1)
0 , u

(1)
1 > 0. Then (H`

1,n) Γ-converges with respect to the L1(0, 1)-

topology to the functional H`
1 defined by

H`
1(u) =B(u

(1)
0 , γ)(1−#(Su ∩ {0})) +BBJ(u

(1)
0 )#(Su ∩ {0}) +BIJ#(Su ∩ (0, 1))

+B(u
(1)
1 , γ)(1−#(Su ∩ {1})) +BBJ(u

(1)
1 )#(Su ∩ {1})− J0(γ) (4.115)

if u ∈ SBV `
c (0, 1), and +∞ else on L1(0, 1), where, for θ > 0,

BBJ(θ) =
1

2
J1(θ) +Bb(θ) +B(γ)− 2J0(γ) (4.116)

is the boundary layer energy due to a jump at the boundary and

BIJ = 2B(γ)− 2J0(γ) (4.117)

is the boundary layer energy due to a jump at an internal point of (0, 1), where B(θ, γ),

Bb(θ) and B(γ) are defined in (4.112)–(4.114).

Let us now rewrite the results for H`,kn,Tn
1,n in the case of nearest and next-to-nearest

neighbour interactions. In this case, the definitions of the boundary layer energies for a

jump at the interface between the atomistic and continuum region simplifies significantly.

Let r(Tn), r̂(T ), l(Tn) and l̂(T ) be defined as in (4.24). In the case K = 2, we have

r̂T = (0, r̂(T )) ∈ I(2) and l̂T = (0, l̂(T )) ∈ I(2), see (4.28). Moreover, the boundary

layer energy BIF (n) for n ∈ N, defined in (4.37), reads

BIF (n) := inf
q∈N

min

{
J1(v1 − v0) +

q−1∑
i=0

σi(v) +

(
n− 1

2

)
µq(v) : v : N0 → R, v0 = 0

}
,

(4.118)

where µi(v) is defined for functions v : N0 → R and i ∈ N0 as

µi(v) = JCB
(
vi+1 − vi

)
− JCB(γ). (4.119)

Note that the additional constraint vq+i+1 − vq+i = vq+1 − vq for 0 ≤ i ≤ n− 1 in (4.37),

vanishes in (4.118). This follows from the fact that, for given q ∈ N, the minimum problem

in the definition of (4.118) is independent of vi+1 − vi for i ≥ q + 1, see (4.111). The

following result follows directly from Theorem 4.11; see also [55, Theorem 4.8] for a direct

proof.

Proposition 4.14. Let K = 2 and suppose that J1 and J2 satisfy the assumptions (LJ1)–

(LJ5). Let ` > γ, and u
(1)
0 , u

(1)
1 > 0. Let (k1

n), (k2
n) satisfy (4.6), and let T = (Tn) satisfies
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the assumptions of Theorem 4.11. Then Ĥ`,T
1 , given in (4.42), reads

Ĥ`,T
1 (u) =B(u

(1)
0 , γ)(1−#(Su ∩ {0})) +B(u

(1)
1 , γ)(1−#(Su ∩ {1}))

+BIFJ

(
r̂(T ), b(0, T ), u

(1)
0

)
# (Su ∩ {0})−

∑
x:x∈Su∩(0,1)

b(x, T )JCB(γ)

+BIFJ

(
l̂(T ), b(1, T ), u

(1)
1

)
# (Su ∩ {1})− J0(γ) (4.120)

if u ∈ SBV `
c (0, 1), and +∞ else on L1(0, 1), where b(x, T ) is defined in (4.29) and

BIFJ(n, k, θ) is defined for n, k ∈ N ∪ {+∞}, θ > 0 as

BIFJ(n, k, θ) = min

{
min {BAIF (n), BBIF (n),−kJCB(γ)}+B(θ, γ), BBJ(θ)

}
(4.121)

with

BAIF (n) := BIF (n) +B(γ)− 2J0(γ), (4.122)

and

BBIF (n) :=B(γ)−
(

1

2
+ n

)
J0(γ), (4.123)

where BBJ(θ) and BIF (n) are given in (4.116) and (4.118).

Proof. We only have to show that for all r = (r1, r2) ∈ I(2) (see (4.30)) it holds BBIF (r) =

BBIF (r2), see (4.45), (4.123). Fix r ∈ I(2). Using B
(2)
IF (r, 1, γ) = B(γ) and B

(3)
IF (r, 2) = 0

(see Remark 4.9) and ψ2(γ) = JCB(γ), we obtain from (4.45) that

BBIF (r) =BIF (r, 1, γ) +B
(3)
IF (r, 2)− JCB(γ)−

r2∑
s=1

(s
2
∧ 1
)
JCB(γ)

=B(γ)− JCB(γ)

(
r2 +

1

2

)
= BBIF (r2).

We used that the constraint in (4.45) reads m = 1 and that r1 = 0.

Let us now give some estimates for the boundary layer energies in the case K = 2.

Lemma 4.15. Let (LJ1)–(LJ5) for K = 2 be satisfied. Then

(1) 1
2J1(δ1) ≤ B(γ) ≤ 1

2J1(γ);

(2) B(θ, γ) ≥ 1
2J1(θ) for all θ > 0;

(3) 1
2J1(δ1) ≤ Bb(θ) ≤ 1

2J1(θ) for all θ > 0;

(4) Bb(δ1) = 1
2J1(δ1);

(5) 1
2J1(δ1) ≤ BIF (m) ≤ 1

2J1(γ) for every m ∈ N ∪ {+∞}.
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Proof. (1)–(3) follows directly from Lemma 3.22 and (3) implies (4); see also [50, Lemma

5.1] for direct proves. Let us show (5). Since γ is the minimum point of J0 and JCB the

terms involving σi(v) and µi(v) in the definition of BIF (m), see (4.118), are non-negative.

Hence, we have

BIF (m) ≥ min
1

2
J1(z) =

1

2
J1(δ1).

To show the upper bound, we can use the function u : N0 → R with ui = iγ as a

competitor for BIF (m) for every m ∈ N and deduce the upper bound.

To compare minuH
`
1(u) and minu Ĥ

`,T
1 (u), we need to estimate BIFJ(n, k, θ), defined

in (4.121). This will be done, under additional assumptions on J1, J2, in the following

lemmas.

Lemma 4.16. Let J1, J2 be such that (LJ1)–(LJ5) are satisfied and J1(γ), J2(γ), J2(δ1) <

0. Define the quantity

B̃IFJ(n, k) := min {BAIF (n), BBIF (n),−kJ0(γ)} , (4.124)

where BAIF and BBIF are defined in (4.122) and (4.123). Then

(i) B̃IFJ(n, 1) = −J0(γ) for all n ∈ N ∪ {+∞}, n ≥ 1,

(ii) B̃IFJ(1, k) = BBIF (1) = B(γ)− 3
2J0(γ) for all k ∈ N ∪ {+∞}, k ≥ 2,

(iii) B̃IFJ(n, k) = BAIF (n) for all n, k ∈ N ∪ {+∞} with n ≥ 2, k ≥ 2.

Proof. (i) From J2(δ1) < 0, we deduce J0(γ) ≤ J0(δ1) ≤ J1(δ1) + J2(δ1) < J1(δ1). Hence,

we obtain by B(γ), BIF (n) ≥ 1
2J1(δ1), see Lemma 4.15 (1) and (5), and the definitions of

BAIF (n) and BBIF (n), see (4.122) and (4.123), that

BAIF (n) ≥J1(δ1)− 2J0(γ) > −J0(γ),

BBIF (n) ≥B(γ)− 3

2
J0(γ) ≥ 1

2
J1(δ1)− 3

2
J0(γ) > −J0(γ).

(ii) From BIF (m) ≥ 1
2J1(δ1), 0 > J1(δ1) > J0(γ) and B(γ) ≤ 1

2J1(γ) < 0, J0(γ) < J1(γ),

we deduce

BAIF (1) ≥1

2
J1(δ1) +B(γ)− 2J0(γ) > B(γ)− 3

2
J0(γ) = BBIF (1),

−kJ0(γ) ≥− 2J0(γ) >
1

2
J1(γ)− 3

2
J0(γ) ≥ B(γ)− 3

2
J0(γ) = BBIF (1).

(iii) Again by BIF (m), B(γ) ≤ 1
2J1(γ) < 0 and J0(γ) < 0, we conclude

BAIF (n) ≤1

2
J1(γ) +B(γ)− 2J0(γ) < B(γ)− 5

2
J0(γ) ≤ BBIF (n)

BAIF (n) ≤J1(γ)− 2J0(γ) < −kJ0(γ),

for n, k ≥ 2, which proves the statement.
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In order to compute the value of BIFJ(n, k, θ), see (4.121), we provide an estimate for

BAIF (n).

Lemma 4.17. Let J1, J2 satisfy assumptions (LJ1)–(LJ5) and additionally

R(t) := J2

(
γ + t

2

)
+

1

2
(J1(γ) + J1(t))− J0(γ)− 3

2
(JCB(t)− J0(γ)) ≤ 0 (4.125)

for all t ∈ dom J1. Then BIF (m) = B(γ) for any m ≥ 2 and BAIF (n) = BIJ for

n ≥ 2, where BIF (m), B(γ), BAIF (n) and BIJ are defined in (4.118), (4.113), (4.122)

and (4.117).

Proof. Let us first show that BIF (m) ≤ B(γ) for all m ∈ N. For every η > 0 there exists,

by the definition of B(γ), in (4.114), a function ũ : N → R and an Ñ ∈ N such that

ũ0 = 0, ũi+1 − ũi = γ if i ≥ Ñ , satisfying (4.92) in the case K = 2, i.e.

1

2
J1(ũ1 − ũ0) +

∑
i≥0

σi(ũ) ≤ B(γ) + η.

The function ũ is also a competitor for the minimum problem for BIF (m), see (4.118).

For q > Ñ + 1, we have that µq(ũ) = 0, σi(ũ) = 0 for i ≥ q and thus

BIF (m) ≤1

2
J1(ũ1 − ũ0) +

q−1∑
i=0

σi(ũ) +

(
m− 1

2

)
µq(ũ) ≤ B(γ) + η

and the assertion follows by the arbitrariness of η > 0.

Let us now show BIF (m) ≥ B(γ) for m ≥ 2. The definition of BIF (m), see (4.118),

implies BIF (m) ≥ BIF (2) for all m ≥ 2. Let η > 0. By the definition of BIF (2) in (4.118)

there exist a function u : N0 → R and a q ∈ N such that u0 = 0 and

1

2
J1(u1 − u0) +

q−1∑
i=0

σi(u) +
3

2
µq(u) ≤ BIF (2) + η.

Next, we define the function ū : N0 → R by ūi = ui if i ≤ q + 1 and ūi+1 − ūi = γ if

i ≥ q + 1. The function ū is a competitor for B(γ), see (4.114). Thus

B(γ) ≤1

2
J1(ū1 − ū0) +

∑
i≥0

σi(ū)

=
1

2
J1(u1 − u0) +

q−1∑
i=0

σi(u) + J2

(
γ + uq+1 − uq

2

)
+

1

2
J1(uq+1 − uq)

+
1

2
J1(γ)− J0(γ) ≤ BIF (2) + η +R(uq+1 − uq).

By assumption (4.125), we have R(uq+1 − uq) ≤ 0. Hence, by the arbitrariness of η > 0,

we have BIF (m) ≥ BIF (2) ≥ B(γ) for all m ≥ 2.
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Altogether, we have BIF (m) = B(γ) for m ≥ 2. Hence, we have by the definition of

BAIF (n) and BIJ , see (4.122) and (4.117), that BAIF (n) = BIJ for n ≥ 2.

Before we state our main result of this section, we recall some estimates for the boundary

layer energies in H`
1 given in Lemma 3.23 and Proposition 3.24, and refine them under

additional assumptions on J1 and J2.

Lemma 4.18. Let J1, J2 satisfy (LJ1)–(LJ5). Then

B(θ, γ) ≤BBJ(θ) ≤ B(θ, γ) +BIJ ∀θ > 0, (4.126)

min
u
H`

1(u) = min
{
BBJ(u

(1)
0 ) +B(u

(1)
1 , γ), BBJ(u

(1)
1 ) +B(u

(1)
0 , γ)

}
− J0(γ). (4.127)

and BIJ > 0, where B(θ, γ), BBJ(θ) and BIJ are defined in (4.112), (4.116) and (4.117).

If, for θ > 0, there exists a constant ηθ > 0 such that 1
2J1(γ) + J2

( t+γ
2

)
≤ 0 for all t ∈ R

with J1(t) < J1(θ) + 2ηθ, it holds that B(θ, γ) < BBJ(θ).

Proof. The inequalities (4.126), BIJ > 0 and (4.127) follow from Lemma 3.23 and Propo-

sition 3.24, where the case of arbitrary K ≥ 2 is considered.

We prove B(θ, γ) < BBJ(θ) under the additional assumption. Let η > 0 be such that

η < ηθ and 1
2BIJ − η > 0. We show BBJ(θ) − (1

2BIJ − η) ≥ B(θ, γ), which clearly

proves B(θ, γ) < BBJ(θ). By the definition of Bb(θ), see (4.113), there exist q ∈ N and

v : N0 → R such that vq = 0 and vq−1 = −θ with

Bb(θ) + η ≥1

2
J1(v1 − v0) +

q−2∑
i=0

σi(v).

By the upper bound Bb(θ) ≤ 1
2J1(θ) (see Lemma 4.15 (3)) and the fact that the terms in

the above sum are non-negative, we deduce J1(v1 − v0) ≤ J1(θ) + 2η. Let us define the

function u : N0 → R by ui = −vq−i for i ∈ {0, . . . , q} and ui+1 − ui = γ for i ≥ q. Note

that u1 − u0 = vq − vq−1 = θ and thus that u is a competitor for the minimum problem

which defines B(θ, γ), see (4.112). Hence,

B(θ, γ) ≤ 1

2
J1(u1 − u0) +

∑
i≥0

σi(u)

=
1

2
J1(θ) +

q−2∑
i=0

σi(v) + J2

(
γ + v1 − v0

2

)
+

1

2
J1(v1 − v0) +

1

2
J1(γ)− J0(γ)

≤ 1

2
J1(θ) +Bb(θ) + η − J0(γ) = BBJ(θ) + η − (B(γ)− J0(γ))

= BBJ(θ)−
(

1

2
BIJ − η

)
,

where we used 1
2J1(γ) + J2

(
v1−v0+γ

2

)
≤ 0.
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Combining the previous results, we are able to give sufficient conditions on the repre-

sentative atoms T = (Tn) in order to ensure minuH
`
1(u) = minu Ĥ

`,T
1 (u). In plain terms,

it is enough to make sure that the representative atoms Tn are such that k1
n+1, k2

n−1 /∈ Tn
and for all i, j ∈ {k1

n + 2, . . . ., k2
n − 2} ∩ Tn it holds |i− j| ≥ 2.

Theorem 4.19. Let u
(1)
0 , u

(1)
1 > 0 and ` > γ. Let J1, J2 satisfy (LJ1)–(LJ5), J1(γ),

J2(γ), J2(δ1) < 0 and (4.125). If T = (Tn) satisfies (4.17) and l̂(T ), r̂(T ), b(x, T ) ≥ 2,

for all x ∈ (0, 1), see (4.24), (4.29). Then Ĥ`,T
1 defined in (4.120) reads

Ĥ`,T
1 (u) = H`

1(u)−
∑

x:x∈Su∩(0,1)

(b(x, T )J0(γ) +BIJ) (4.128)

for u ∈ SBV `
c (0, 1), and +∞ else on L1(0, 1). Moreover, for given u

(1)
0 , u

(1)
1 > 0

min
u
Ĥ`,T

1 (u) = min
u
H`

1(u). (4.129)

For u ∈ argmin Ĥ`,T
1 , the jump set satisfies Su ⊂ {0, 1}. If furthermore J1 and J2 satisfy

all assumptions of Lemma 4.18, it holds #Su = 1.

Proof. Let us first prove (4.128). By the definition of H`
1 and Ĥ`,T

1 (see (4.115), (4.120)),

we have to show BIFJ(r̂(T ), b(0, T ), u
(1)
0 ) = BBJ(u

(1)
0 ) and BIFJ(l̂(T ), b(1, T ), u

(1)
1 ) =

BBJ(u
(1)
1 ). By Lemma 4.17, we have BAIF (n) = BIJ , for n ≥ 2. Hence, we have for

BIFJ(n, k, θ), defined in (4.121), with n, k ≥ 2 and θ > 0 by Lemma 4.16 (iii) and

inequality (4.126) that

BIFJ(n, k, θ) = min {BAIF (n) +B(θ, γ), BBJ(θ)} = BBJ(θ).

Hence, by b(x, T ), l̂(T ), r̂(T ) ≥ 2, for all x ∈ (0, 1) the assertion (4.128) is proven.

From J0(γ) < 0, Lemma 4.16 (iii), Lemma 4.17 and Lemma 4.18, we deduce that

−b(x, T )J0(γ) ≥ −2J0(γ) > B̃IFJ(2, 2) = BAIF (2) = BIJ > 0 (4.130)

for all x ∈ (0, 1). Combining (4.130) with (4.126), we obtain that BBJ(θ) < B(θ, γ) −
2J0(γ) for all θ > 0. Hence, the jump set Su of minimisers u of Ĥ`,T

1 satisfies Su ⊂ {0, 1}
and by (4.126)–(4.128)

min
u
Ĥ`,T

1 (u) = min
{
BBJ(u

(1)
0 ) +B(u

(1)
1 , γ), BBJ(u

(1)
1 ) +B(u

(1)
0 , γ)

}
− J0(γ)

= min
u
H`

1(u).

If J1 and J2 are such that B(θ, γ) < BBJ(θ) for all θ > 0, see Lemma 4.18, we obtain

from the above equation that every minimiser u of Ĥ`,T
1 satisfies #Su = 1.
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In the next theorem which is based on the previous Γ-convergence statements, we deduce

a convergence result for the difference between the minimal energies of the fully atomistic

model and the quasicontinuum model.

Theorem 4.20. Let u
(1)
0 , u

(1)
1 > 0, ` > 0 and let k1

n, k
2
n satisfy (4.6). Let J1, J2 and (Tn)

satisfy the assumptions of Theorem 4.5 and, if ` > γ, also the additional assumptions of

Theorem 4.11 and Theorem 4.19 such that (4.129) is valid. Then it holds

inf
u
H`
n(u)− inf

u
Ĥ`,kn,Tn
n (u) = o(λn), (4.131)

as n→∞.

Proof. Let us first note that the functionals H`
n, Ĥ`,kn,Tn

n are equi-coercive in L1(0, 1),

which follows by the compactness argument in the proofs of Theorem 3.7 and Theorem 4.1.

Moreover, by Proposition 3.9 and Proposition 4.3 the functionals H`
1,n, Ĥ`,kn,Tn

1,n are equi-

coercive. In the case 0 < ` ≤ γ, Theorem 3.12 and Theorem 4.5 ensure that H`
n and

Ĥ`,kn,Tn
n are Γ-equivalent at order λn, see [20, Definition 4.2], and (4.131) follows from

[20, Theorem 4.4]. Similarly, if γ < `, we deduce from Theorem 4.1 and Theorem 4.11

inf
u
Ĥ`,kn,Tn
n (u) = min

u
H`(u) + λn min

u
Ĥ`,T

1 (u) + o(λn),

see [9, Theorem 1.47]. Further, by (4.129), we obtain

inf
u
Ĥ`,kn,Tn
n (u) = inf

u
H`(u) + λn inf

u
H`

1(u) + o(λn) = inf
u
H`
n(u) + o(λn).

Remark 4.21. In the case 0 < ` ≤ γ, the estimate (4.131) holds under the assumptions

of Theorem 4.5 for arbitrary K ≥ 2. Indeed, Theorem 3.12 and Theorem 4.5 ensure that

H`
n and Ĥ`,kn,Tn

n are Γ-equivalent at order λn for all K ≥ 2. Hence, the QNL-method is

valid for general finite range interactions of Lennard-Jones type in an elastic regime.

In the next proposition, we show that the sufficient conditions of Theorem 4.19 are

sharp in the case ` > γ. To this end, we show for a particular choice of u
(1)
0 , u

(1)
1 > 0 that

if the representative atoms are not chosen as in the above theorem, neither the minima

nor the minimisers of H`
1 and Ĥ`,T

1 coincide.

Proposition 4.22. Let ` > γ, u
(1)
0 = δ1 and u

(1)
1 = γ. Let J1, J2 satisfy (LJ1)–(LJ5).

Then it holds for H`
1

min
u
H`

1(u) = BBJ(δ1) +B(γ, γ)− J0(γ), (4.132)

and the unique minimiser u satisfies Su = {0}. Let J1, J2 satisfy the assumptions of

Theorem 4.19 and J2(γ) > 2J2

(
δ1+γ

2

)
. Then the following assertions hold true:
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(a) Let T 1 = (T 1
n ) be such that there exists z ∈ [0, 1] with b(z, T 1) = 1. Then

minu Ĥ
`,T 1

1 = B(δ1, γ) + B(γ, γ) − 2J0(γ) < minuH
`
1 and the jump appears in-

differently in z ∈ [0, 1] with b(z, T 1) = 1.

(b) Let T 2 = (T 2
n ) be such that l̂(T 2) = 1 and r̂(T 2), b(z, T 2) ≥ 2 for all z ∈ [0, 1].

Then minu Ĥ
`,T 2

1 = B(δ1, γ) + B(γ, γ) + B(γ) − 3
2J0(γ) < minuH

`
1 and the jump

appears in 1.

Proof. Let us first prove the part regarding the energy H`
1. Proposition 3.24 yields that

BBJ(δ1) < B(δ1, γ) +BIJ and BBJ(γ) = B(γ, γ) +BIJ (see also [50, Theorem 5.1]). This

implies

BBJ(δ1) +B(γ, γ) < B(δ1, γ) +B(γ, γ) +BIJ = B(δ1, γ) +BBJ(γ),

which proves (4.132) and that the unique minimiser u of H`
1 satisfies Su = {0}. Let us

now show the assertions concerning the minimal energies of Ĥ`,T
1 . We test the minimum

problem for B(δ1, γ), see (4.112), with v : N0 → R such that vi+1 − vi = γ for all i ≥ 1.

By using J2(γ) > 2J2

(
δ1+γ

2

)
and J0(γ) = J1(γ) + J2(γ), we obtain

B(δ1, γ) ≤ J1(δ1) +
1

2
J1(γ) + J2

(
δ1 + γ

2

)
− J0(γ) < J1(δ1)− 1

2
J0(γ). (4.133)

From (4.43) and Lemma 4.16, we deduce BIFJ(n, k, θ) ≥ min{−J0(γ) +B(θ, γ), BBJ(θ)}.
(a) Combining the above considerations with (4.120) it is enough to show that B(δ1, γ)−

J0(γ) < BBJ(δ1). This follows by using (4.133), Lemma 4.15 (1), (4) and J0(γ) =

JCB(γ) < J1(δ1):

B(δ1, γ)− J0(γ) < J1(δ1)− 3

2
J0(γ) ≤ 1

2
J1(δ1) +Bb(δ1) +B(γ)− 2J0(γ) = BBJ(δ1).

(b) From (4.120), Theorem 4.19 and r̂(T 2), b(z, T 2) ≥ 2 for all z ∈ [0, 1], we deduce

Ĥ`,T 2

1 (u) ≥ minH`
1 for u ∈ SBV `

c (0, 1) with Su ∩ [0, 1) 6= ∅. Let us compute the energy

for a jump at 1: For k ≥ 2, we have by Lemma 4.16 (ii) that B̃IFJ(1, k) = B(γ)− 3
2J0(γ).

As in Lemma 4.16 (ii), we have, by using B(γ) ≥ 1
2J1(δ1) > 1

2J0(γ) if J2(γ) < 0, that

BIJ ≥ B(γ)− 3
2J0(γ). Hence, by applying BBJ(γ) = B(γ, γ) +BIJ and the definition of

BIFJ(n, k, θ), see (4.43), we deduce

BIFJ(1, k, γ) = min

{
B(γ)− 3

2
J0(γ), BIJ

}
+B(γ, γ) = B(γ)− 3

2
J0(γ) +B(γ, γ).

Thus, we deduce from l̂(T 2) = 1 and b(1, T 2) = 2 that BIFJ(l̂(T 2), b(1, T 2), γ) = B(γ)−
3
2J0(γ) +B(γ, γ). Hence, by the definition of Ĥ`,T

1 , see (4.120), and by (4.132) it remains

to show that B(δ1, γ) + B(γ) − 3
2J0(γ) < BBJ(δ1), which follows by using (4.133) and
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Lemma 4.15 (1), (4)

B(δ1, γ) +B(γ)− 3

2
J0(γ) <J1(δ1) +B(γ)− 2J0(γ)

=
1

2
J1(δ1) +Bb(δ1) +B(γ)− 2J0(γ) = BBJ(δ1).

Next, we show that all additional assumptions on J1, J2 in this chapter are satisfied by

the classical Lennard-Jones potentials and Morse potentials, defined in (3.22) and (3.24)

respectively.

Proposition 4.23. Let J1, J2 be as in (3.22) or (3.24) respectively. Then J1 and J2

satisfy J1(γ), J2(γ), J2(δ1) < 0, J2(γ) > 2J2

(
δ1+γ

2

)
and inequality (4.125) holds on

dom J1. Furthermore, there exists for all θ > 0 a constant ηθ > 0 such that J2

( t+γ
2

)
< 0

for t ∈ dom J1 such that J1(t) < J1(θ) + 2ηθ.

Proof. Let J1, J2 satisfy (3.22), i.e., there exist k1, k2 > 0 such that J1(z) = k1
z12 − k2

z6 and

J2(z) = J1(2z). Straightforward calculations lead to

δ1 =

(
2k1

k2

)1/6

, γ =

(
1 + 2−12

1 + 2−6

)1/6

δ1, z0 =

(
k1

k2

)1/6

=

(
1

2

)1/6

δ1, (4.134)

where δ1 is the unique minimiser of J1, γ the unique minimiser of J0 (and JCB) and z0

is the unique zero of J1 with J1 < 0 on (z0,+∞). Note that z0 < γ < δ1. Moreover, we

have that J1 is strictly decreasing on (0, δ1) and strictly increasing on (δ1,+∞). A simple

calculation yield J1(z) < 0 for z >
(
k1
k2

)1/6
:= z0. From γ > z0, we deduce J1(γ) < 0

and thus J2

(γ+t
2

)
= J1(γ + t) < 0 on {t : t > 0} = dom J1. Since γ < 2γ < 2δ1, we have

J2(γ), J2(δ1) < 0. Moreover, by δ1/2 < γ < δ1 and the definition of J2, it is sufficient to

show J2(γ) > 2J2(δ1) to obtain J2(γ) > 2J2

(
δ1+γ

2

)
:

J2(γ)− 2J2(δ1) =
k1

212δ12
1

(
(1 + 2−6)2

(1 + 2−12)2
− 2

)
− k2

26δ6
1

(
1 + 2−6

1 + 2−12
− 2

)
=

k2
2

4k1212

(
(1 + 2−6)2

(1 + 2−12)2
− 2− 27

(
1 + 2−6

1 + 2−12
− 2

))
> 0.

Let us now show inequality (4.125). Since J0(γ) = JCB(γ) = J1(γ) + J2(γ) and J ′0(γ) =

J ′CB(γ) = 0 one directly has R(γ) = 0 and R′(γ) = 0. Consider the function J1 + 2J2

given by

J1(z) + 2J2(z) =
k1

z12
− k2

z6
+

k1

211z12
− k2

25z6
=
k1(1 + 2−11)

z12
− k2(1 + 2−5)

z6
.

This is again a Lennard-Jones potential and there exists a constant zc > 0 such that

J ′′1 (z) + 2J ′′2 (z) > 0 for all z ∈ (0, zc). To compute zc we set the second derivative of
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J1 + 2J2 equal to zero:

0 =
156k1(1 + 2−11)

z14
c

− 42k2(1 + 2−5)

z8
c

, zc > 0 ⇔ zc = δ1

(
13

7

1 + 2−11

1 + 2−5

)1/6

.

From an analogous calculation we obtain that J ′′CB(z) > 0 for z ∈ (0, z∗) with

z∗ = δ1

(
13
7

1+2−12

1+2−6

)1/6
> zc. Now we estimate R on [zc,+∞). Since zc > δ1 > γ, we have

1
2J1 − 3

2JCB = −1
2J2 − JCB is decreasing on (zc,+∞). Since J2

( t+γ
2

)
= J1(t+ γ) < 0 for

t ≥ 0, we have

R(t) ≤ −1

2
J2(zc)− JCB(zc) +

1

2
(J1(γ) + J0(γ)) ≈ −0.0469

k2
2

k1
< 0,

for t ≥ zc. We now show that R′(t) ≥ 0 for t ≤ γ and R′(t) ≤ 0 for γ ≤ t ≤ zc, which

proves the statement. For 0 < t ≤ γ < zc < z∗, we have

R′(t) =
1

2
J ′2

(
t+ γ

2

)
+

1

2
J ′1(t)− 3

2
J ′CB(t) =

1

2

(
J ′2

(
t+ γ

2

)
− J ′2(t)

)
− J ′CB(t)

=
1

2

∫ t+γ
2

t
J ′′2 (z)dz +

∫ γ

t
J ′′CB(z)dz ≥ 1

2

∫ t+γ
2

t
J ′′2 (z) + J ′′CB(z)dz > 0.

Analogously we get for γ ≤ t ≤ zc

R′(t) = −1

2

∫ t

t+γ
2

J ′′2 (z)dz −
∫ t

γ
J ′′CB(z)dz ≤ −1

2

∫ t

t+γ
2

J ′′2 (z) + J ′′CB(z)dz < 0.

Hence, Lennard-Jones potentials satisfy all the properties asserted.

Let now J1 and J2 be Morse potentials as in (3.24), i.e., there exist k1, k2, δ1 > 0 such

that J1(z) = k1

(
1− e−k2(z−δ1)

)2 − k1 and J2(z) = J1(2z). In this case, we do not have

such an explicit expression for γ as in the Lennard-Jones case and therefore derive bounds

on γ. Since J ′1(z) < 0 if and only if z < δ1 and J ′1(z) > 0 if and only if z > δ1, we deduce

from 0 = J ′CB(γ) = J ′1(γ) + 2J ′1(2γ) that δ1/2 < γ < δ1. A straightforward calculation

yields J1(z) < 0 if and only if z > k2δ1−ln(2)
k2

=: z0. In order to prove J1(γ) < 0, we show

J ′CB(z0) < 0, which implies z0 < γ. Indeed, we have

J ′CB(z0) = −4k1k2(16e−2k2δ1 − 4e−k2δ1 + 1) = −4k1k2

(
(1− 2e−k2δ1)2 + 12e−2k2δ1

)
< 0.

As in the Lennard-Jones case, we deduce from J1(γ) < 0, γ < δ1 and the definition of

J2 that J2(γ), J2(δ1) < 0 and J2

(γ+t
2

)
< 0 for all t > 0. Define for θ > 0 the constant

ηθ := 1
2(J1(0)−J1(θ)) > 0, then we deduce J2

( t+γ
2

)
< 0 for t ∈ {t : J1(t) < J1(θ)+2ηθ} ⊂

{t : t > 0}.
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Let us show J2(γ)− 2J2

(
δ1+γ

2

)
= J1(2γ)− 2J1(δ1 + γ) > 0. From {γ} = argmin JCB,

we deduce

0 = J ′CB(γ) =− k1k2

(
−2ek2δ1(e−k2γ + 2e−2k2γ) + e2k2δ1(2e−2k2γ + 4e−4k2γ)

)
=2k1k2e

k2δ1e−4k2γ
(
e3k2γ + 2e2k2γ − ek2δ1(2 + e2k2γ)

)
=2k1k2qδ1q

−4
γ

(
q3
γ + 2q2

γ − qδ1(2 + q2
γ)
)

with qγ := ek2γ > 1 and qδ1 := ek2δ1 > 1. This yields qδ1 =
q3
γ+2q2

γ

2+q2
γ

and allows us to show

J2(γ)− 2J2

(
δ1 + γ

2

)
= k1

(
−2e−k2(2γ−δ1) + e−2k2(2γ−δ1) + 4e−k2γ − 2e−2k2γ

)
= k1e

−4k2γ
(
−2ek2δ1e2k2γ + e2k2δ1 + 4e3k2γ − 2e2k2γ

)
= k1q

−4
γ

(
4q3
γ − 2(1 + qδ1)q2

γ + q2
δ1

)
=

k1

q2
γ(q2

γ + 2)2

(
2q5
γ − 5q4

γ + 16q3
γ − 12q2

γ + 16qγ − 8
)

>
k1

q2
γ(q2

γ + 2)2

(
q3
γ

(√
2qγ − 5

2
√

2

)2
+ 12q2

γ(qγ − 1) + 16qγ − 8

)
> 0

since qγ > 1.

It is left to show that R = R(t) ≤ 0 for all t ∈ R. We prove the inequality in a different

way than in the Lennard-Jones case. We have limt→+∞R(t) = 1
2J1(γ) + 1

2J0(γ) < 0 and

by using J1(t+ γ) < J1(2t) for t < 0 we obtain that

lim
t→−∞

R(t) ≤ lim
t→−∞

(
−J1(t)− 1

2
J2(t) +

1

2
J1(γ) +

1

2
J0(γ)

)
= −∞.

Moreover, by the definition of R = R(t) and γ, we have that R(γ) = R′(γ) = 0. To show

that R(t) ≤ 0 it is sufficient to show that R has no critical point except γ. Indeed, if

R(t) > 0 for some t ∈ R, then in order to satisfy the conditions at infinity there has to

exist a maximum point t̂ with R(t̂) > 0 and R′(t̂) = 0. By the definition of J1, J2 and

R = R(t), we have

R′(t) =J ′1(t+ γ)− J ′1(t)− 3J ′1(2t)

=2k1k2e
k2δ1

(
e−k2(t+γ)(1− e−k2(t+γ−δ1))− e−k2t(1− e−k2(t−δ1))

− 3e−2k2t(1− e−k2(2t−δ1))

)
=2k1k2e

k2δ1e−4k2t
(

(e−k2γ − 1)e3k2t + (ek2δ1(1− e−2k2γ)− 3)e2k2t + 3ek2δ1
)

=2k1k2e
k2δ1q−4

t

(
(e−k2γ − 1)q3

t + (ek2δ1(1− e−2k2γ)− 3)q2
t + 3ek2δ1

)
=2k1k2e

k2δ1q−4
t f(qt)
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with qt = ek2t. From R′(γ) = 0 it follows f(qγ) = 0. Let us show that qγ is the unique

zero of f . We have f(0) = 3ek2δ1 > 0 and from k2, γ > 0, we deduce e−k2γ − 1 < 0 and

thus limq→∞ f(q) = −∞. This implies that if f has a second zero, it would have a local

minimum and a local maximum in (0,+∞). But

f ′(q) = q
(

3(e−k2γ − 1)q + 2(ek2δ1(1− e−2k2γ)− 3)
)

and thus f has at most one local extremum in (0,+∞). Hence, qγ is the unique zero of

f and γ the unique zero of R′(t).

Remark 4.24. In Theorem 4.19 and Proposition 4.22, we provide necessary and sufficient

conditions on the repatoms T = (Tn) to ensure minuH
`
1(u) = minu Ĥ

`,T
1 (u) for ` > γ

and nearest and next-to-nearest neighbour interactions. An extension of these results

to general finite range Lennard-Jones type interactions requires refined estimates on the

different boundary layer energies for K > 2 which we will not present here. Let us

illustrate that in general a sufficiently coarse mesh at the interface and in the continuum

region ensure minuH
`
1(u) = minu Ĥ

`,T
1 (u).

Let us assume that the hypotheses (LJ1)–(LJ5) hold true. Let ` > γ and u
(1)
0 , u

(1)
1 ∈

RK−1
+ . From (3.73), (3.117), (3.118) and (4.42), we deduce that it is sufficient to ensure

that

BBJ(u
(1)
0 ) = BIFJ(u

(1)
0 , r̂T , b(0, T )), BBJ(u

(1)
1 ) = BIFJ(u

(1)
1 , l̂T , b(1, T ))

BBJ(u
(1)
i ) ≤ B(u

(1)
i , γ)− b(x, T )JCB(γ) for all x ∈ [0, 1] and i ∈ {0, 1}

(4.135)

to obtain minuH
`
1(u) = minu Ĥ

`,T
1 (u). The relations (4.135) can be achieved by choosing

the repatoms T = (Tn) such that it holds

r̂T = l̂T = (0,+∞) ∈ (N0 ∪ {+∞})2 and b(x, T ) = +∞ for all x ∈ [0, 1], (4.136)

where r̂T , l̂T and b(x, T ) are defined in (4.28) and (4.29). Indeed, since ψj(γ) < 0

(see (3.19)) for j ∈ {2, . . . ,K}, we have that BBIF ((0,+∞)) = +∞ (see (4.45)) and

−b(x, T )JCB(γ) = +∞ for all x ∈ [0, 1]. Thus, the definition of BIJ and BIFJ (see (3.75),

(4.43)), the equality B
(1)
IF ((0,+∞)) = B(γ) (see Remark 4.8 (ii)) and (3.117) imply that

BIFJ((0,+∞),+∞, θ) = min {BAIF ((0,+∞)) +B(θ, γ), BBJ(θ)}

= min

B(1)
IF ((0,+∞)) +B(γ)−

K∑
j=2

jψj(γ) +B(θ, γ), BBJ(θ)


= min {BIJ +B(θ, γ), BBJ(θ)} = BBJ(θ),

for all θ ∈ RK−1
+ . Hence, we have that Ĥ`,T

1 (u) = H`
1(u) if Su ⊂ {0, 1}, and +∞

otherwise. Note that (4.136) is satisfied for T = (Tn) such that the assumptions of
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Theorem 4.11 hold true and that there exists (qn) ⊂ N such that limn→∞ qn = +∞ and

min{s− t : k1
n ≤ t < s ≤ k2

n, t, s ∈ Tn} ≥ qn.

We close this remark by showing that for Lennard-Jones potentials, see (3.22), and

arbitrary K ≥ 2 it is sufficient to ensure b(x, T ) ≥ 2 to obtain BBJ(θ) ≤ B(θ, γ) −
b(x, T )JCB(γ). Therefore, we define the function f : (0,+∞)→ R by

f(z) :=J1(z)−
K∑
j=3

(j − 2)Jj(z) = k1

1−
K∑
j=3

j − 2

j12

 z−12 − k2

1−
K∑
j=3

j − 2

j6

 z−6

It is easy to see that f has a unique root z0 > 0 given by

z0 =

(
k1

k2

) 1
6

(
1−

∑K
j=3

j−2
j12

1−
∑K

j=3
j−2
j6

) 1
6

,

and that f(z) < 0 for z > z0. Using (3.23), we obtain

z0 <

(
k1

k2

) 1
6
(

1

2− ζ(5)

) 1
6

<

(
k1

k2

) 1
6
(

2

ζ(6)

) 1
6

<

(
2k1

k2

) 1
6

(∑K
j=1 j

−12∑K
j=1 j

−6

) 1
6

= γ,

where ζ(n) =
∑

j≥1 n
−j denotes the Riemann Zeta function. Hence, f(γ) < 0. Using the

definition of BIJ (see (3.75)), (3.117), Lemma 3.22 (1) and
∑K

j=2 cj = 1, we obtain for

b(x, T ) ≥ 2 that

BBJ(θ)− (B(θ, γ)− b(x, T )JCB(γ)) ≤ BIJ + 2JCB(γ)

≤ J1(γ)
K∑
j=2

(j − 1)cj −
K∑
j=2

jψj(γ) + 2JCB(γ)

= −
K∑
j=1

jJj(γ) + 2

K∑
j=1

Jj(γ) = f(γ) < 0.

This showsBBJ(θ) < B(θ, γ)−b(x, T )JCB(γ) if b(x, T ) ≥ 2 for Lennard-Jones interactions

of finite range.
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