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Wo kämen wir hin, wenn jeder sagte,
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KURZZUSAMMENFASSUNG

Man ist sich einig darüber, dass das Standardmodell der Teilchenphysik in seiner ak-
tuellen Form nicht der Weisheit letzter Schluss ist – zu viele grundlegende Fragen lässt
es offen. Lediglich die genaue Form der nötigen Erweiterung wird heiß debattiert. Super-
symmetrische Modelle gehören zu den vielversprechendsten Ansätzen zu Physik jenseits
des Standardmodells, da sie gleichzeiting das Hierarchieproblem lösen und die Dichte der
beobachteten dunklen Materie im Universum erklären können. Obwohl das minimale super-
symmetrische Modell weitere Vorzüge vorzuweisen hat – hierzu gehört die Vereinheitlichung
der Eichkopplungen an großen Skalen sowie radiative elektroschwache Symmetriebrechung –
sprechen die aktuellen Messungen am LHC eine andere Sprache. Zudem sind auch in
diesem Modell die Neutrinos masselos, sodass es nicht die endgültige Theorie darstellen
kann. Dies mindert jedoch nicht die Schönheit des Konzepts der Supersymmetrie, weshalb
es an der Zeit ist, nichtminimale supersymmetrische Modelle zu untersuchen, welche die
o. g. Probleme nicht aufweisen. Diese Modelle müssen auf Herz und Nieren geprüft werden,
bevor man sie mit experimentellen Daten vergleichen und Vorhersagen für zukünftige
Experimente treffen kann.

Das Ziel dieser Arbeit ist es, zu diesem wichtigen Prozess beizutragen. Hierzu soll
die besonders aussichtsreiche Klasse von supersymmetrischen Modellen, welche auf einer
links-rechts-Eichsymmetrie basieren, genau untersucht werden. Diese Modelle sind deutlich
weniger von LHC-Ausschlussgrenzen betroffen und sagen zudem rechtshändige Neutrinos
voraus, mit welchen die leichten Neutrinomassen erklärt werden können.

Zu Beginn wenden wir uns einem links-rechts-supersymmetrischen Modell an der TeV-
Skala zu, in welchem SU(2)R-Tripletts sowohl für die Brechung der Links-Rechts-Symmetrie
als auch für die Generation von Neutrinomassen verantwortlich sind. Zur führenden
Ordnung in der Störungstheorie beinhaltet diese Art von Modellen ein tachyonisches
doppelt geladenes Skalarfeld. Wir wenden uns der Ermittlung der zugehörigen Masse
auf dem Einschleifenniveau zu und zeigen erstmals in einer konsistenten, vollständigen
Berechnung derselben, dass die Masse im Allgemeinen reell ist. Anschließend werden die
Beschränkungen an die Links-Rechts-Brechungsskala aus aktuellen LHC-Daten ermittelt.
Wir zeigen, dass unser Modell gewisse Signal-Überschüsse in jenen Daten erklären kann –
der aktuelle LHC-Lauf wird klären, ob diese tatsächlich neuer Physik oder doch nur
statistischen Fluktuationen entsprechen. Schließlich bestimmen wir in einer Untersuchung
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der Vakuumstruktur auf dem Einschleifenniveau diejenigen Parameterregionen, in welchen
die phänomenologisch korrekte elektroschwache Symmetriebrechung angenommen wird.
Passenderweise werden Regionen bevorzugt, welche messbare Signale am LHC vorhersagen.

In einem leicht unterschiedlichen Modell, in dem eine U(1)R × U(1)B−L bis herunter
an die TeV-Skala überleben kann, implementieren wir einen über Eichwechselwirkungen
vermittelten Supersymmetrie-Brechungsmechanismus, mit besonderem Augenmerk auf die
eichkinetische Mischung in den Randbedingungen. Durch die erweiterte Eichgruppe wird
die Higgsmasse bereits auf führender Ordnung erhöht. Wir ermitteln die Konsequenzen für
die Skala der Supersymmetrie-Brechungsskala. Anschließend untersuchen wir die am LHC
zu erwartende Phänomenologie und zeigen auf, in welchen Prozessen sich dieses Modell
von Standard-Szenarien unterscheidet.

Durch diese Arbeit hinweg nehmen wir an, dass die leichten Neutrinomassen duch einen
Seesaw-Mechanismus an der TeV-Skala erklärt werden. Dass dies zu potentiell höchst
interessanten Signalen in Niederenergieexperimenten führt, wird im letzten Teil dieser
Arbeit thematisiert. Der Fokus liegt hierbei auf Lepton-Flavour-verletzenden Prozessen wie
µ→ e γ, µ→ 3 e oder die µ− e-Umwandlung in Atomkernen, welche wir im Rahmen eines
supersymmetrischen Modells mit inversem Seesaw-Mechanismus genauer untersuchen. Ins-
besondere widerlegen wir Behauptungen von nichtentkoppelnden Z-Pinguin-Diagrammen
und untersuchen die Aussichten, Signale an zukünftigen Experimenten zu messen sowie
Rückschlüsse auf das zugrundeliegende Modell ziehen zu können. In diesem Zusammenhang
demonstrieren wir die Möglichkeit, durch die relativen Verhältnisse von Verzweigungsver-
hältnissen wie BR(τ → 3µ)/BR(τ → µ e+e−) unterscheiden zu können, ob die zugehörigen
Prozesse hauptsächlich durch supersymmetrische oder durch W − ν-Diagramme herbeige-
führt wurden.
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ABSTRACT

It is generally agreed upon the fact that the Standard Model of particle physics can only be
viewed as an effective theory that needs to be extended as it leaves some essential questions
unanswered. The exact realization of the necessary extension is subject to discussion.
Supersymmetry is among the most promising approaches to physics beyond the Standard
Model as it can simultaneously solve the hierarchy problem and provide an explanation for
the dark matter abundance in the universe. Despite further virtues like gauge coupling
unification and radiative electroweak symmetry breaking, minimal supersymmetric models
cannot be the ultimate answer to the open questions of the Standard Model as they still do
not incorporate neutrino masses and are besides heavily constrained by LHC data. This
does, however, not derogate the beauty of the concept of supersymmetry. It is therefore
time to explore non-minimal supersymmetric models which are able to close these gaps,
review their consistency, test them against experimental data and provide prospects for
future experiments.

The goal of this thesis is to contribute to this process by exploring an extraordinarily
well motivated class of models which bases upon a left-right symmetric gauge group. While
relaxing the tension with LHC data, those models automatically include the ingredients
for neutrino masses.

We start with a left-right supersymmetric model at the TeV scale in which scalar
SU(2)R triplets are responsible for the breaking of left-right symmetry as well as for the
generation of neutrino masses. Although a tachyonic doubly-charged scalar is present
at tree-level in this kind of models, we show by performing the first complete one-loop
evaluation that it gains a real mass at the loop level. The constraints on the predicted
additional charged gauge bosons are then evaluated using LHC data, and we find that we
can explain small excesses in the data of which the current LHC run will reveal if they are
actual new physics signals or just background fluctuations. In a careful evaluation of the
loop-corrected scalar potential we then identify parameter regions in which the vacuum
with the phenomenologically correct symmetry-breaking properties is stable. Conveniently,
those regions favour low left-right symmetry breaking scales which are accessible at the
LHC.

In a slightly modified version of this model where a U(1)R × U(1)B−L gauge symmetry
survives down to the TeV scale, we implement a minimal gauge-mediated supersymmetry
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breaking mechanism for which we calculate the boundary conditions in the presence of
gauge kinetic mixing. We show how the presence of the extended gauge group raises the
tree-level Higgs mass considerably so that the need for heavy supersymmetric spectra is
relaxed. Taking the constraints from the Higgs sector into account, we then explore the
LHC phenomenology of this model and point out where the expected collider signatures
can be distinguished from standard scenarios.

In particular if neutrino masses are explained by low-scale seesaw mechanisms as is done
throughout this work, there are potentially spectacular signals at low-energy experiments
which search for charged lepton flavour violation. The last part of this thesis is dedicated
to the detailed exploration of processes like µ→ e γ, µ→ 3 e or µ− e conversion in nuclei
in a supersymmetric framework with an inverse seesaw mechanism. In particular, we
disprove claims about a non-decoupling effect in Z-mediated three-body decays and study
the prospects for discovering and distinguishing signals at near-future experiments. In this
context we identify the possibility to deduce from ratios like BR(τ → 3µ)/BR(τ → µ e+e−)
whether the contributions from ν −W loops dominate over supersymmetric contributions
or vice versa.
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CHAPTER 1

INTRODUCTION

With the start of the second run of the Large Hadron Collider (LHC) [1] at CERN, for the
first time proton-proton collisions at a centre-of-mass energy of

√
s = 13 TeV are achieved in

a laboratory. In the first run with
√
s = 8 TeV, the Standard Model of particle physics (SM)

has been once more confirmed to be an outstandingly accurate description of high-energy
physics phenomena and despite some sporadic fluctuations, so far no measurement has
shown significant inconsistency with the SM predictions. Complementary to the high
energies probed at the LHC, many low-energy experiments report excellent agreement with
the SM.

The Standard Model is based on the gauge group SU(3)c × SU(2)L × U(1)Y , where
c stands for colour, L for left in the sense of chirality, and Y for the hypercharge. As
the SU(2)L factor indicates, the SM is a chiral theory, meaning that a left-handed field
transforms differently compared to its right-handed counterpart. A consequence is that,
e.g., the left-handed charged leptons eL and neutrinos νL form a doublet under SU(2)L
while the right-handed eR are singlets. Right-handed neutrinos, which are singlets under
the complete gauge group, are not included in the Standard Model. If this gauge group
were exact, not only the gauge bosons but also the fermions would be massless as a
Dirac mass term including the left-and right-handed fields would obviously violate gauge
invariance. However, the electroweak gauge group SU(2)L × U(1)Y has to be broken to
the electromagnetic U(1)em which itself is exact. The basic idea for this breakdown is the
spontaneous symmetry breaking proposed in the Brout-Englert-Higgs mechanism [2, 3].
The predicted remnant, a scalar particle, has for a long time been the only missing jigsaw
piece of the Standard Model, until finally a scalar with properties consistent with the
Higgs boson has been discovered in the last run of the LHC [4,5]. Therefore, the SM is
now complete, and is hence the first self-consistent particle physics theory that could, in
principle, be valid up to energy scales where gravity comes into play.

A justified question that one might therefore ask is what particle physicists actually
expect from the higher energies that are now being probed at the LHC – and the answer is
manifold as there are good reasons why the Standard Model is not the ultimate particle
physics theory, and that instead new phenomena should show up at the TeV scale. In
particular the connection to cosmology cannot be made without assuming additional
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Chapter 1. Introduction

mechanisms which themselves cannot be established in the SM framework. Among these
problems is the matter-antimatter asymmetry in the universe as well as the matter com-
position that we observe. Only a small part of the matter in the universe is of baryonic
origin; the dominating portion is “dark matter” in the sense that it does not show up when
doing spectroscopy. So far it has only been observed indirectly, e.g. in the behaviour of
galaxy rotation curves or via gravitational lensing effects. The SM lacks a description
of this phenomenon as no known particle exhibits the suitable properties. A convenient
candidate would be an electrically neutral, weakly-interacting massive particle with a mass
of O(100 GeV ... 1 TeV)1, corresponding to non-relativistic cold dark matter. Although
neutrinos are also “dark” in this respect, they would constitute hot dark matter. Being rel-
ativistic during structure formation, hot dark matter washes out the small-scale structures
of the universe; judging from the structures we observe in the universe, neutrinos can thus
only account for a small portion of the total amount of dark matter. The neutrinos pose
a further riddle as the accommodation of neutrino masses in the theory is not possible
without extending the Standard Model. In addition to this experimental evidence there is
also a solid indication for physics beyond the Standard Model (BSM) from the theoreti-
cal viewpoint. This so-called hierarchy problem is related to the hierarchy between the
electroweak and the Planck scale and the consequences for scalar particles; we will discuss
it in some detail in the next chapter. A more philosophical question would be if there is
a reason why the gauge group is as we observe it. In particular one might ask if there is
a physical interpretation of the rather unattractive hypercharge or a reason for the left
chirality of the interactions that we observe – or if the original theory at higher scales is
left-right-symmetric, or even features a single unified gauge group.

Many theories have been proposed that partially or fully address the issues plaguing
the Standard Model. Most of them predict new particles with masses within the reach of
the LHC. Hence, there is plenty to explore by the two multi-purpose LHC detectors CMS
and ATLAS, and a variety of different signatures from different models are searched for
in the respective analyses; see e.g. the summary websites of the Exotics groups [6,7]. A
particularly well-motivated BSM scenario relates bosons and fermions by a symmetry, the
“supersymmetry” (SUSY) [8,9]. Minimal realizations thereof simply supersymmetrize the
Standard Model and already by themselves have appealing features. However, secondary
to still not incorporating neutrino masses, those scenarios are already heavily constrained
by the LHC results, so that it is time to seriously consider non-minimal realizations and
explore their phenomenology. We will do so for different well-motivated scenarios, mostly
based on extended gauge symmetries like left-right symmetry.

The rest of this thesis is organized as follows. In chapter 2 we start by motivating
supersymmetry and introduce the concept via some technical details. After a brief summary
of the minimal SUSY model we point to weak spots thereof and turn to the discussion of
non-minimal supersymmetric models. In chapter 3 we consider a representative of left-right-
supersymmetry which automatically incorporates a mechanism to generate neutrino masses
by the presence of SU(2)R triplets. Prior to the evaluation of constraints from the LHC
searches we address and improve the calculation of the mass of a doubly-charged scalar
in this model which has been the topic of quite some discussion in the past decades. We
conclude this chapter with the discussion of the vacuum stability by the use of the one-loop

1In the LHC, such a particle would, if produced, carry away momentum when leaving the detector so
that it could be measured as missing transverse momentum.
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effective potential. In chapter 4 we consider as a gauge group a remnant of left-right
symmetry where the SU(2)R is broken to a U(1)R. As a consequence there are two Abelian
gauge groups in the theory so that gauge kinetic mixing has to be considered. Assuming
gauge mediation as the SUSY-breaking mechanism, we calculate the boundary conditions
for the SUSY-breaking parameters in the presence of kinetic mixing. We then go on with
exploring the model; after investigating the Higgs mass at the tree- and loop-level we turn
to the collider phenomenology of the model where we discuss the impact of the boundary
conditions from SUSY breaking on the signatures that we expect at the LHC. In chapter 5
we then turn to non-collider aspects. More specifically, we investigate charged lepton
flavour violating (cLFV) processes such as µ → eγ, µ → 3 e as well as µ − e conversion
in nuclei in the example of a model with an inverse seesaw mechanism for neutrino mass
generation. After identifying the importance of different contributions to these processes,
we discuss the prospects of measuring them at near-future experiments and show how to
distinguish between different scenarios. In chapter 6 we conclude. In the appendix A we list
the complete spectrum of the model considered in chapter 3 plus the one-loop self energy of
the doubly-charged scalar as well as the one-loop tadpole corrections. In appendix B we list
the formulas for the decay widths and conversion rates used in chapter 5. We furthermore
describe in detail in section B.4 why it was believed for some time that Z-penguin diagrams
show a non-decoupling effect and how we eventually resolved this issue.
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CHAPTER 2

SUPERSYMMETRY

2.1 Motivation

The Lagrangian density can be written in its most generic form as

L =
∑
i,n

1

Λn−4
i

Ld=n , (2.1)

where the parameters Λi are of mass dimension one and correspond to different scales in
the theory. Ld=n contains all field-valued operators of dimension n. As the eventual La-
grangian L has to be of dimension four, Ld=4 does not depend on any scale. For n > 4, the
lowest scales at which these operators are generated give the most important contributions,
whereas for n < 4 the largest scales are most relevant. The Standard Model Lagrangian
contains only operators of dimension four, with the exception of one operator, the Higgs
mass term m2

HH
†H. Being a dimension two operator, one would “naturally” expect it to

be of the order of the largest scale in the theory. Assuming that no other physics beyond
the SM is present, this would be the Planck scale MPl. However, we observe that the Higgs
mass is of the electroweak scale which is 17 orders of magnitude below MPl. Hence, an
almost exact cancellation of completely uncorrelated parameters has to be assumed to get
the correct Higgs mass, corresponding to a huge fine-tuning. This unnatural cancellation is
commonly denoted as the naturalness or hierarchy problem. In terms of Feynman diagrams,
one can depict that behaviour by considering quantum corrections to the Higgs mass,
using a cutoff regularization at the scale ΛUV (which could be MPl). The most important
Standard Model contribution is given by the top loop

H H

t

,
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2.1. Motivation

which gives a one-loop contribution to the Higgs mass parameter of

δm2
H ∝

|yt|2
16π2

Λ2
UV , (2.2)

with yt denoting the top Yukawa coupling. Therefore, the scalar Higgs is sensitive to
physics at the cutoff scale ΛUV , ultimately giving rise to the Λ2

UVH
†H term.

One can think of this problem in different ways.

• One could simply accept that nature is fine-tuned as this “problem” is, although
being extremely unnatural, no conceptual issue.

• One could assume that there is not only one universe, but that in fact we are living
in a multiverse with a vast variety of different vacua and hence different parameter
configurations. In that case, statistically, some of the vacua turn out to accidentally
feature very large cancellations of different parameters – and we just happen to live
in one of these.

Those solutions seem rather unsatisfactory since they, instead of proposing solutions,
merely shift the issue into the unknown/unmeasurable or simply ignore it. Solutions can
be found, however, if one demands the Higgs mass term to be technically natural in the
sense of ’t Hooft [10]. This means that the symmetry of the theory gets enhanced once a
particular parameter vanishes, so that quantum corrections may only be driven by that
symmetry-breaking parameter itself and therefore remain small.

• Rather pessimistic attempts try to argue that there is, in fact, no real hierarchy
problem and that the Standard Model is valid up to arbitrarily large scales: the
Higgs mass term is the only term that explicitly breaks scale invariance, so that scale
symmetry gets restored in the limit m2

H → 0 [11]. In these terms, the arguments
using using cutoff regularizations are invalid as the cutoff parameter itself breaks
scale invariance. However, it has been shown that, even if Planck scale physics
were ignored, this scenario is unphysical since the hypercharge gauge coupling has
a Landau pole at very large scales [12], hence re-introducing a scale to which the
quantum corrections to the Higgs mass are sensitive. To prevent the Landau pole
by imposing a different renormalization group equation (RGE) running of the gauge
coupling, extra fields have to be introduced near the TeV scale.

• Other approaches regard the Higgs boson as the Nambu-Goldstone boson of a
spontaneously broken approximate global symmetry. Composite Higgs as well as
Little Higgs theories rely on this principle (for recent reviews, see, e.g., refs. [13, 14]).

• Alternatively, one could imagine that space-time is actually 4 + n-dimensional and
that the SM fields are just localized on a four-dimensional membrane while gravity
acts in all dimensions. Models with large and warped extra dimensions as in ref. [15]
and [16] have in common that they solve the hierarchy with the following proposal:
gravity is not actually weaker than the other forces (i.e. the 4 + n-dimensional
Planck-scale is not so much separated from the electroweak scale), but it is just
experienced weak from the four-dimensional viewpoint because of the flux loss in the
n extra dimensions.
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Chapter 2. Supersymmetry

• The most prominent approach instead introduces a symmetry between bosons and
fermions, the so-called supersymmetry.

Within this symmetry, femions and bosons corresponding to each other have the
same mass and couplings. Thus, mH also gives mass to fermions which by themselves
do not have a naturalness problem. As δm2

H is an additional mass term for scalars
but not for the associated fermions, it breaks supersymmetry and is naturally small.
In terms of quantum corrections, for each diagram with a fermionic loop there exist
diagrams with the respective bosonic partners in the loops which cancel the quadratic
divergence:

H H
t̃

.

The cancellation happens because of the relative minus sign of the respective diagrams
owed to Fermi/Bose statistics. A non-zero δm2

H is only induced if the top quark and
its superpartner have different masses, i.e. if supersymmetry is broken. The latter
has to be the case as no scalar partner of any known fermion has been observed.
However, supersymmetry can be broken “softly”, i.e., in a way in which no new
quadratic divergences are introduced. Therefore, δm2

H only grows logarithmically
with the mass ratio of the top quarks and their bosonic partners. Hence, the hierarchy
problem is solved if supersymmetric particles exist, with masses that are not too
large compared to the electroweak scale [17].

We will embark on the last possibility. In the following, we will introduce the concept of
supersymmetry and its direct consequences. Before we start with some technical details we
briefly mention additional virtues entailed by supersymmetric models.

Gauge coupling unification

The quest for finding a grand unified theory (GUT) in which all forces unify to a single one
requires the gauge couplings of the electroweak and the strong sector to unify at a certain
scale, denoted “GUT scale” in the following. The attempt to find a single GUT-scale using
the RGEs of the gauge groups within the Standard Model [18], fails as the unification
predicts a too small value of sin2 θW , θW being the Weinberg angle. This situation changes
when supersymmetry is introduced: because of the altered particle content at the mass scale
of the supersymmetric partners, the RGEs evolve differently from this scale upward. In fact,
already in the minimal realization of a supersymmetric model (discussed in section 2.6),
gauge coupling unification is achieved, the GUT scale being O(1016 GeV) [19–21], see also
the discussion in ref. [22].

Dark matter

As mentioned in the introduction, the Standard Model cannot explain the amount of dark
matter observed in the universe as it lacks a fitting particle candidate. This is not the
case in supersymmetric models with conserved R-parity (see section 2.6.2) in which the
fermionic partners of Higgs or gauge bosons exhibit the necessary properties [23].
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2.2. Supersymmetry as a space-time symmetry

2.2 Supersymmetry as a space-time symmetry

In 1967, Coleman and Mandula proved a ”theorem on the impossibility of combining
space-time and internal symmetries in any but a trivial way” [24]. The consequence of
that theorem is that the generators of any internal symmetry of the theory must commute
with the Poincaré group, and that therefore the only space-time symmetries are the known
translations Pµ and Lorentz transformations Mµν . One loophole can be found in their
argumentation: the theorem only applies if commutation relations are assumed. This has
been exploited by Haag,  Lopuszański and Sohnius who showed in ref. [25] that the only
non-trivial extension of space-time symmetry consists of the addition of generators Qα , Q

†α̇

which transform as spinors under Poincaré group operations. The corresponding (anti-)
commutation relations read [8]

{Qα, Qβ} = {Q†α̇, Q
†
β̇
} = 0 , (2.3)

{Qα, Q†β̇} = 2σµ
αβ̇
Pµ , (2.4)

[Pµ, Qα] = [Pµ, Q†α̇] = 0 , (2.5)

where σµ = (12, ~σ), σi being the Pauli matrices, and α, α̇, β, β̇ = 1, 2. The brackets {· , ·}
and [· , ·] denote the usual anticommutator and commutator, respectively.

Hence, a closed algebra of the known space-time symmetries and an internal symmetry
can be formulated. The symmetry related to those generators is called supersymmetry.
As the generators carry spinorial charge, an application to a fermionic field results in a
bosonic state and vice versa:

Q|fermion〉 = |boson〉 , Q|boson〉 = |fermion〉 . (2.6)

In general, there could be multiple generators Qiα, Q
i†α̇. In this thesis, however, we will

only consider one pair of Qα, Q
†α̇, corresponding to N = 1 supersymmetry.

Superspace

To fix the notation, we mostly adopt the syntax from refs. [26,27] and deploy the Minkowski
metric in the more widely-used variant in particle physics, ηµν = diag(1,−1,−1,−1) . We
define a Dirac spinor ΨD in terms of the left-chiral and right-chiral Weyl spinors ξα and
χ†α̇:

ΨD =

(
ξα
χ†α̇

)
, (2.7)

where (un-) dotted indices α, β are used exclusively for (right-) left-chiral fields and all
right-handed Weyl spinors carry daggers. (χ†α̇)† = χα is thus a left-chiral field. The indices
are raised and lowered by the antisymmetric ε symbol, ξα = εαβξβ etc. . Contracted terms
that do not explicitly show the spinor index structure are to be read as

ψη = ψαηα = ψαεαβη
β , (2.8)

ψ†η† = ψ†α̇η
†α̇ = ψ†α̇ε

α̇β̇η†
β̇
. (2.9)
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Chapter 2. Supersymmetry

As supersymmetry expands the space-time symmetry to the so-called superspace, also
the known bosonic coordinates xµ must be complemented by fermionic coordinates θα and
θ̄α̇. Those are two-component anticommuting Grassmann variables with mass dimension
−1/2. Because of their anticommutation relations, θαθα vanishes and consequently any
power series in θα stops after the second-order term θθ = θαεαβθ

β. As a nice additional
feature, derivatives and integrations turn out to be the same as they just pair with the
corresponding relevant component. The derivatives read:

∂

∂θα
θ̄α̇ = 0 ,

∂

∂θα
θβ = δβα ⇒ ∂

∂θα
ψθ = ψα ,

∂

∂θα
ψθ = −ψα , ∂

∂θα
θθ = 2θα etc. .

(2.10)

A chiral covariant derivative in superspace that satisfies the SUSY algebra can then be
written as [27]:

Dα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ , D†α̇ =

∂

∂θ̄α̇
− iσ̄µ α̇αθα∂µ , (2.11)

Dα = − ∂

∂θα
+ iθ̄α̇σ

µ α̇α∂µ , D†α̇ = − ∂

∂θ̄α̇
+ iθασ̄µαα̇∂µ . (2.12)

2.3 Superfields

Because of the finiteness of the expansion in Grassmann coordinates, a generic scalar
superfield Θ can be expressed in the following form [28]:

Θ(x, θ, θ̄) = a+ θξ + θ̄χ† + θθb+ θ̄θ̄c+ θσµθ̄vµ + θ̄θ̄θη + θθθ̄ζ† + θθθ̄θ̄d . (2.13)

Chiral superfields

For constructing a theory that incorporates the Standard Model, chiral superfields Φ(x, θ, θ̄)
are needed. A left-chiral superfield is defined by the requirement that the right-chiral
covariant derivative annihilates it:

D†α̇Φ = 0 . (2.14)

Φ∗, satisfying DαΦ∗, is a right-chiral superfield, accordingly. A chiral superfield can
always be obtained from a generic superfield by applying Φ(x, θ, θ̄) = D†α̇D

α̇†Θ(x, θ, θ̄) . By
choosing a suitable redefinition of the coordinates, yµ = xµ − iθσµθ̄, eq. (2.14) is satisfied
for

Φ(y, θ, θ̄) = Φ(y, θ) = φ(y) +
√

2 θψ(y) + θθF (y) . (2.15)

A left-chiral superfield is therefore composed of a complex scalar field φ, a complex left-
handed Weyl spinor ψ and an auxiliary field F . As F is the coefficient of θθ, we will name
every superfield coefficient of θθ as “F -term” in the following.

We stress here that the number of fermionic and of bosonic degrees of freedom (DOF)
within a chiral superfield is the same. On-shell, the complex scalar and the Weyl fermion
each feature two DOF. Off-shell, however, the Weyl spinor has two complex components
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and hence four DOF. The extra degrees of freedom from the auxiliary field F are thus
needed to close the algebra off-shell. As a consequence, F does not propagate but can be
eliminated by the equations of motion as will be seen in section 2.4. We further emphasize
that there is a scalar “partner” for each Weyl fermion, i.e. for each chirality of a Dirac
fermion.

Vector superfields

In addition to the matter superfields, we need to construct vector superfields V (x, θ, θ̄) to
incorporate the gauge bosons. They are defined by the requirement:

V = V ∗ , (2.16)

which relates the coefficients of eq. (2.13) as:

a = a∗ , χ† = ξ† , c = b∗ , vµ = v∗µ , ζ
† = η† , d = d∗ . (2.17)

One can get rid of the redundant degrees of freedom a, ξ and b by choosing a particular
supergauge. In this Wess-Zumino gauge [29], the vector superfields can be written as

VWZ = θσµθ̄Aµ + θ̄θ̄θλ+ θθθ̄λ† +
1

2
θθθ̄θ̄D . (2.18)

A gauge supermultiplet therefore consists of a vector field Aµ, a Weyl spinor λ and an
auxiliary field D which, just like F , can be expressed in terms of the physical fields when
applying the equations of motion. Similar to the F -terms, we will henceforth call the
coefficients of θθθ̄θ̄ “D-terms”.

We have seen that, in the matter as well as in the gauge sector, each field known from
the Standard Model gets a supersymmetric partner. The scalar partners of fermions are
commonly denoted with an “s” in front of the name (e.g. stop, selectron), and in an abuse
of notation, we talk of left (right) sfermions as superpartners of the left-chiral (right-chiral)
fermion. Although those scalar particles cannot be of any chirality, the chirality information
of the fermionic partner is encoded in their couplings. Fermionic superpartners of vector or
scalar bosons are named with an “ino” at the end of the particle name so that we talk of
gauginos and higgsinos.

2.4 The constituents of a supersymmetric model

It is convenient to write the matter interactions of a particular model in terms of the
superpotential, a holomorphic function in Φi of mass dimension three. Its most generic
form for a renormalizable theory reads:

W (Φ) = LiΦi +
1

2
mijΦiΦj +

1

3
λijkΦiΦjΦk . (2.19)

In order to be gauge invariant, each term in W has to form a gauge singlet so that Li is zero
for all but singlet fields S. The F -terms of the superpotential

∫
d2θW+h.c. = [W (Φ)]F+h.c.

form the non-derivative parts of the chiral Lagrangian.
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Chapter 2. Supersymmetry

The gauge self interactions are defined by constructing the supersymmetric generaliza-
tion Wα of the field-strength tensor Fµν which is given by [26]

Wα = −1

4
D†D†e−2gaTaV aDαe

2gaTaV a , (2.20)

a indexing the gauge group and T a being the associated generator. The summation over
repeated indices is understood. The F -terms of WαWα eventually give the gauge self
interactions

Lgauge = −1

4
F aµνF

a,µν + iλaσµ∂µλ
a† +

1

2
DaDa , (2.21)

where a total derivative has been dropped.

The rest of the Lagrangian includes, in addition to the F -terms of the superpotential,
also the gauge-matter interactions which are encoded in the D-terms of Φ∗e2gaTaV aΦ,

Lmatter = [Φ∗i e
2gaTaV aΦi]D + ([W (Φ)]F + h.c.) . (2.22)

Splitting that into

Lmatter = Lchiral + Lint , (2.23)

we define Lchiral as the part which includes the covariant derivatives and the F -terms and
Lint as the part which consists of the additional gauge-matter interaction terms

Lint = −
(√

2ga(φ
∗
iT

aψi)λ
a + h.c.

)
+ ga(φ

∗
iT

aφi)D
a . (2.24)

Combined with eq. (2.21), the equations of motion for the auxiliary Da can be used to
eliminate those fields from the Lagrangian:

Da = −ga(φ∗iT aφi) . (2.25)

Combining eqs. (2.21-2.25), the D-term contribution to the tree-level scalar potential is
given by

VD(φ, φ∗) =
1

2
DaDa =

g2
a

2
(φ∗iT

aφi)(φ
∗
jT

aφj) . (2.26)

Analogous to Da, the auxiliary fields Fi of the chiral superfields can be eliminated from
Lmatter. Defining the derivatives of the superpotential w.r.t. the scalar fields as

W i =
∂

∂Φi
W (Φ)

∣∣∣
Φi=φi

, W ij =
∂2

∂Φi∂Φj
W (Φ)

∣∣∣
Φi=φi,Φj=φj

, (2.27)

they can be expressed as

Fi = −W ∗i , F ∗i = −W i , (2.28)
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so that the chiral Lagrangian then reads

Lchiral = Dµφ
i∗Dµφi + iψiσµD†µψ

†
i −

1

2
(W ijψiψj + h.c.)−W iW ∗i , (2.29)

Dµ being the covariant derivative. It is now clear that explicit fermion masses are repre-
sented by mij and Yukawa couplings by λijk. The last part in eq. (2.29) is the F -term
contribution to the scalar potential:

VF (φ, φ∗) = F ∗iFi = W iW ∗i =
∑
i

∣∣∣∣∂W∂Φi

∣∣∣∣2
Φi=φi

. (2.30)

Note that the scalar potential VD and VF are both positive semidefinite, Vi ≥ 0. In the
ground state of unbroken supersymmetry both contributions vanish separately.

The full Lagrangian is given by

L = Lchiral + Lint + Lgauge . (2.31)

2.5 Supersymmetry breaking

Not having observed any scalar partner of a known fermion with an identical mass makes
clear that SUSY has to be broken. As mentioned in the motivation, this breaking should
be “soft”, i.e. such that no quadratic divergences are re-introduced. A necessary but not
sufficient condition for this to happen is that the SUSY-breaking operators are of a mass
dimension less than four. The allowed terms are 1

−Lsoft = (
1

2
Maλaλa + ξiφi +

1

2
Bijφiφj +

1

6
Tijkφiφjφk + h.c.) +m2

ijφ
∗
iφj , (2.32)

where ξiφi is only allowed by gauge invariance if φi is a singlet field. As every particular
SUSY-breaking mechanism leads to different patterns of the parameters in eq. (2.32), it is
often interesting to freely explore the parameter range without specifying the mechanism
at work.

The above terms break supersymmetry explicitly; for a realistic breaking scenario,
however, one would assume that they are generated dynamically by spontaneous symmetry
breaking analogous to the Higgs mechanism. This translates to the condition that the
scalar potential is minimized when either VD or VF are non-zero. As it turns out, particular
realizations of SUSY breaking are quite intricate, and attempts to implement a tree-level
SUSY breaking in the visible sector (i.e. induced by fields charged under the gauge group)
suffer from serious problems. While D-term breaking [30,31] is ruled out as it predicts vevs
for charged or coloured scalars in realistic frameworks, F -term breaking scenarios [32,33],
though in principle working, are heavily constrained by the mass sum rule [34] and the
consequential prediction of light charged scalars. For a comprehensive overview over the
different mechanisms we refer to ref. [35].

The mentioned problems can be circumvented when SUSY is broken at a high scale in

1The reader might notice that, e.g., no term Dijkφ
∗
iφjφk is present. This is an example of a term of

d < 4 that does lead to a quadratic divergence and hence should not be generated by a SUSY-breaking
mechanism [27].
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a sector that is not directly connected to our visible world. One speaks of a “hidden sector”
in the sense that it only interacts indirectly, i.e. via some mediation mechanism, with the
superfields that we wish to describe. The two most popular mechanisms in the literature
work via gravity and gauge fields as mediators. They have in common that they assume
SUSY to be broken by the F -term vev 〈F 〉 of a spurion superfield X̂.

2.5.1 Gravity mediation

The probably most intuitive idea is that gravity is responsible for mediating SUSY breaking.
Those models are based on the idea that SUSY is a local symmetry at high scales, the
“supergravity” [36,37], and conveniently a local SUSY Lagrangian automatically includes
terms that mediate SUSY-breaking [27]. The respective operators are suppressed by the
Planck scale so that the SUSY-breaking parameters are of the order

mij , Ma , Tijk ∼
〈F 〉
MPl

. (2.33)

Models of minimal supergravity are frequently used as the basis for simplified univer-
sal boundary conditions for the soft SUSY-breaking parameters at the GUT-scale, see
section 2.6.4.

A serious drawback of Planck-scale mediated SUSY-breaking is the “SUSY flavour
problem”: although gravitational interactions are flavour-blind, there is no reason why
the induced higher-dimensional operators which break SUSY should respect the flavour
structure that we observe at experimentally accessible energies. As a consequence, the
matrix-valued parameters m and T could have any flavour structure. This would in general
lead to large flavour-violating effects in low-energy decays and oscillations – which is not
compatible with low-energy measurements. Hence, one needs to assume in any realization
that (at least approximately) the scalar masses are generated flavour-diagonal and that
the trilinear couplings exhibit the same structure as the respective Yukawa couplings.

2.5.2 Gauge mediation

The flavour problem is solved if SUSY breaking is mediated by gauge interactions which
themselves automatically preserve the flavour structure. Models with gauge-mediated
supersymmetry breaking (GMSB) [38–43] introduce so-called messenger multiplets with
superpotential couplings to the spurion field. As the messengers are also charged under
the gauge group, they couple to the gauge bosons and gauginos so that SUSY breaking is
transmitted from the secluded sector to the visible world via loop diagrams involving the
messengers in the loops. See ref. [44] for a comprehensive review of GMSB scenarios. As
schematically shown in figure 2.1, gauginos receive their masses Ma at one-loop whereas
the scalar squared masses m2 are generated at the two-loop order, so that both masses are
of the same order of magnitude

Ma , mij ∼
g2

16π2

〈F 〉
M

, (2.34)

where M is the mass scale of the messenger fields. Trilinear couplings are not generated
by these types of diagrams. In practice it turns out that this leads to difficulties with
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X̂ ; 〈X〉 = M + θ2F

Φ̂

secluded sector

messenger sector

visible world

Figure 2.1: Illustration of gauge mediated supersymmetry breaking. The propagators from
messenger fermions (scalars) are depicted with red solid (dashed) lines.

explaining the measured Higgs mass, see section 2.7, so that non-minimal scenarios are
considered. An explicit example of a model with gauge-mediated supersymmetry breaking
in an SO(10) embedding will be shown in section 4.3.

2.6 The minimal supersymmetric standard model

2.6.1 Model definition

The minimal realization of a supersymmetric model must, of course, incorporate the
complete SM particle content. Consequently, we need to include all left- and right-chiral
fermions as well as the Higgs boson into chiral supermultiplets. Embedding the Higgs
doublet into a chiral multiplet is not enough, though, for two reasons. The first reason
is that the Weyl fermion associated to the Higgs field carries a hypercharge that is not
opposed by any other fermion and thus leads to a gauge anomaly. The second reason is
the structure of supersymmetric theories which only allow the superpotential to include
either left-chiral or right-chiral superfields, not both. As a consequence, neither the term
µĤ∗Ĥ (Ĥ being the left-chiral Higgs superfield) nor a Yukawa coupling to the down-type
quarks or charged leptons can be written down, which is phenomenologically unacceptable.
Hence, in addition to the Higgs supermultiplet Ĥu giving masses to the up-type quarks we
introduce a second one, Ĥd, with the opposite hypercharge.

The superpotential of the minimal supersymmetric standard model (MSSM) [36,45]
then reads:

WMSSM = Y ij
u ûci Q̂

α
j εαβ Ĥ

β
u − Y ij

d d̂ci Q̂
α
j εαβ Ĥ

β
d − Y ij

e êci L̂
α
j εαβ Ĥ

β
d + µ Ĥα

u εαβ Ĥ
β
d ,

(2.35)

where XαεαβX
β is the SU(2)-invariant product of fields X lying in the fundamental

representation, and we have omitted colour indices. The superfields with their quantum
numbers are defined in table 2.1. Following eq. (2.32), the corresponding soft SUSY-breaking
terms are given by
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Superfield Spin 0 Spin 1
2 # Generations SU(3)c × SU(2)L × U(1)Y

Q̂ Q̃ = (ũL, d̃L) Q = (uL, dL) 3 (3,2, 1
6)

ûc ũcR ucR 3 (3̄,1,−2
3)

d̂c d̃cR dcR 3 (3̄,1, 1
3)

L̂ L̃ = (ν̃L, ẽL) L = (νL, eL) 3 (1,2,−1
2)

êc ẽcR ecR 3 (1,1, 1)

Ĥu Hu = (H+
u , H

0
u) H̃u = (H̃+

u , H̃
0
u) 1 (1,2, 1

2)

Ĥd Hd = (H0
d , H

−
d ) H̃d = (H̃0

d , H̃
−
d ) 1 (1,2,−1

2)

Table 2.1: Matter content of the MSSM with the respective quantum numbers under SU(3)c ×
SU(2)L × U(1)Y .

−LMSSM
soft =

1

2

(
M1 B̃ B̃ +M2 W̃

α δαβ W̃
β +M3 g̃

γ δγδ g̃
δ + h.c.

)
(2.36)

+m2
e,ij (ẽci )

∗ ẽcj +m2
L,ij (L̃αi )∗ δαβ L̃

β
j +m2

Hd
|Hd|2 +m2

Hu |Hu|2

+m2
Q,ij (Q̃αi )∗ δαβ Q̃

β
j +m2

d,ij (d̃ci )
∗ d̃cj +m2

u,ij (ũci )
∗ ũcj +

(
BµH

α
u εαβ H

β
d

+ T iju ũci Q̃
α
j εαβ H

β
u − T ijd d̃ci Q̃

α
j εαβ H

β
d − T ije ẼCi L̃

α
j εαβ H

β
d + h.c.

)
,

where γ, δ are SU(3)c indices. The Majorana fermions B̃, W̃ , g̃ are the gauginos associated
with the hypercharge, SU(2)L and SU(3)c groups, respectively.

2.6.2 R-parity

The superpotential as defined in eq. (2.35) does not exhibit the most general form that is
compatible with the symmetries of the theory. Instead, four more terms are, in principle,
allowed, each inducing a vertex with an odd number of supersymmetric particles and
breaking either baryon number (B) or lepton number (L). They read:

W/R =
1

2
λijkû

c
i d̂
c
j d̂
c
k + λ′ijkL̂

α
i εαβQ̂

β
j d̂

c
k +

1

2
λ′′ijkL̂

α
i εαβL̂

β
j ê
c
k + εiL̂

α
i εαβĤ

β
u (2.37)

If both L- and B-violating terms are simultaneously present, rapid proton decay is
triggered; e.g., the decay p+ → π0e+ would be allowed through an s-channel squark when λ
and λ′ are non-zero and not extremely small. To prevent this disaster, a discrete symmetry
is often introduced, the so-called R-parity, which connects the spin with the B and L
quantum numbers 2. It reads [47]:

R = (−1)3(B−L)+2s , (2.38)

where s is the spin of the respective field. As one can easily verify, this term forbids all
vertices with an odd number of supersymmetric particles as those carry R = −1. Thus, each
term in W/R breaks R-parity so that proton decay is forbidden by demanding invariance

2see ref. [46] and refs. therein for an overview over R-parity violating supersymmetry.
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under this symmetry. As a direct consequence, besides the stabilization of the proton, the
lightest supersymmetric particle (LSP) is stable: the only possibility for the LSP to decay is
into two lighter non-supersymmetric particles, which breaks R-parity as the corresponding
vertex would feature R = −1. This is phenomenologically very interesting: if the LSP is
electrically neutral, it is a candidate for dark matter which can, in some regions of the
parameter space, contribute by the correct amount to the relic density observed in the
universe. In the MSSM, the dark matter candidates are the gauginos (bino and wino) as
well as the higgsinos, see ref. [27] for an overview over the different scenarios.

2.6.3 Mass spectrum of the model

We will now give a brief overview over the spectrum of the MSSM at the tree-level. This
will be handy later as some properties even of extended SUSY models can be deduced from
the simpler MSSM limit, and differences w.r.t. the MSSM are relevant for collider searches.

Tadpole equations and the Higgs sector

The electroweak symmetry SU(2)L × U(1)Y is broken down to the U(1)em as soon as the
neutral components of the two Higgs doublets develop vevs. We hence split the complex
neutral Higgs fields into a real and positive vev,3 a real scalar as well as a real pseudoscalar
field according to

H0
u =

1√
2

(vu + φu + iσu) , H0
d =

1√
2

(vd + φd + iσd) , (2.39)

where the constraint v2
u + v2

d = v2, v being the value of the Standard Model Higgs vev, is
given by the electroweak gauge boson masses. For further reference we define the ratio of
the vevs as

tanβ =
vu
vd
. (2.40)

The conditions to find a minimum of the scalar potential V read

∂V

∂φi
= 0 . (2.41)

As these conditions correspond to the vanishing of Higgs tadpole diagrams, the mini-
mization conditions are also commonly denoted tadpole equations. They read 4

Bµ =
1

2

(
m2
Hu −m2

Hd
−M2

Z cos 2β
)

tan 2β , (2.42)

|µ|2 = −1

2

(
m2
Hu +m2

Hd
+M2

Z −
m2
Hu
−m2

Hd

cos 2β

)
, (2.43)

where M2
Z = 1

4(g2
1 + g2

2)v2 is the tree-level Z mass. From the second equation one can
deduce that tanβ > 1 if m2

Hu
< m2

Hd
by demanding that |µ|2 +M2

Z/2 > 0. This hierarchy

3The vevs can always be made real and positive in the MSSM by suitable redefinitions of the Higgs
fields.

4Here we also choose Bµ to be real which can be achieved by phase shifts in the Higgs fields.
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of the soft SUSY-breaking masses is automatic as the top Yukawa contribution gives a
negative contribution of [48]

δm2
Hu ' −

3y2
t

4π2
m2
t̃

log

(
Λ���SUSY

mt̃

)
(2.44)

in the RGE running from the scale of SUSY breaking Λ���SUSY downwards, driving m2
Hu

negative. Note that this implies that electroweak symmetry breaking does not have to
be introduced by hand as it is the case in the Standard Model. Instead, it is generated
radiatively as a consequence of supersymmetry breaking [49, 50]. The ratio tanβ is
furthermore constrained from below to tanβ & 1.2 if one requires yt to stay perturbative
above the electroweak scale [26]. This is because the up-type (down-type) quark Yukawa
couplings Yu (d) have to increase with decreasing (increasing) tanβ in order to match the
measured quark masses (mu (d) ∝ Yu (d) vu (d)).

In eq. (2.43) one can find a peculiarity: the SUSY-conserving superpotential parameter
µ is connected to the SUSY-breaking sector through the values of mHu/d and thus has to
be of the same order of magnitude so that the relation holds. For tanβ & 5, for instance,
one has −m2

Hu
− |µ|2 'M2

Z/2. This is somewhat unexpected as µ and the SUSY-breaking
parameters originate from completely uncorrelated sectors. This issue is commonly known
as the µ problem. In the case of heavy supersymmetric spectra, i.e. msoft � MZ , there
is an additional issue as then some fine-tuning of the parameters is necessary in order to
arrive at the required cancellation down to the electroweak scale MZ , corresponding to a
SUSY naturalness problem. While already inconvenient at the tree-level, the situation gets
worse at the loop-level because of the large radiative corrections of the type of eq. (2.44)
from the stops and also the gluinos. Consequently, for obtaining a “natural” setup, upper
bounds on the stop and gluino mass can be set [51].

We turn to the mass spectrum of the Higgs bosons and first consider the CP -odd
(pseudoscalar) Higgses. As in the Standard Model, one pseudoscalar boson becomes the
longitudinal component of the Z boson. In the presence of two Higgs doublets, one physical
state A0 remains, with the mass

m2
A0 =

2Bµ
sin 2β

. (2.45)

The CP -even Higgs masses then read in the basis (φd, φu):

m2
h0 =

(
M2
Z cos2 β +m2

A0 sin2 β −1
2(M2

Z +m2
A0) sin 2β

−1
2(M2

Z +m2
A0) sin 2β M2

Z sin2 β +m2
A0 cos2 β

)
. (2.46)

It turns out that mh1 < MZ at tree-level, and only in the limit tanβ →∞, the Z mass is
reached. Large tanβ is therefore preferred and loop corrections have to account for the
missing 35 GeV to explain the measured Higgs mass. For large tanβ, the lightest Higgs is
mostly φu-like.

Apart from the neutral Higgs sector, there are also the two complex charged Higgs
fields H−d and H+

u . One mass eigenstate is the charged would-be Goldstone boson that
becomes the longitudinal component of the massive W boson whereas the remaining
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physical eigenstate H± has the mass

m2
H± =

g2
2v

2

4
+m2

A0 . (2.47)

Neutralinos and charginos

The higgsinos (with masses µ) and the SU(2)L × U(1)Y gauginos (with masses Mi) mix
among each other after electroweak symmetry breaking and form four neutral Majorana
states, the neutralinos χ̃0

i , and two complex Dirac fermions, the charginos χ̃±i . The
neutralino mass matrix reads in the basis (B̃, W̃ 3, H̃0

d , H̃
0
u):

mχ̃0 =


M1 0 −g1vd

2
g1vu

2
0 M2

g2vd
2 −g2vu

2
−g1vd

2
g2vd

2 0 −µ
g1vu

2 −g2vu
2 −µ 0

 . (2.48)

The chargino mass matrix in the basis (W̃−, H̃−d ),(W̃+, H̃+
u ) is given by

mχ̃± =

(
M2

g2vu√
2

g2vd√
2

µ

)
(2.49)

and can be diagonalized by two unitary matrices U and V according to mdia
χ̃± = U∗mχ̃±V

†.

Due of the unbroken SU(3)c, the gluinos G̃ don’t mix with other states and their mass
is simply given by

mg̃ = |M3| . (2.50)

Sfermions

Each sfermion species consists of three complex scalar states per chirality, so that the
charged slepton and squark masses can be expressed by 6× 6 matrices while the sneutrinos
only feature a 3×3 matrix due to the lack of right-handed neutrino superfields in the model.
The masses of the latter read

m2
ν̃ = m2

L +
1

8
(g2

1 + g2
2)(v2

d − v2
u)1 . (2.51)

In addition to the soft SUSY-breaking masses and the D-terms, the charged sleptons also
receive contributions from the F -terms. Their mass matrix reads in the basis (ẽL, ẽR):

m˜̀ =

m2
L +

v2
d
2 Y
†
e Ye + 1

8(g2
1 − g2

2)(v2
d − v2

u)1 −vuµY †e +vdT
†
e√

2
−vuµ∗Ye+vdTe√

2
m2
e +

v2
d
2 YeY

†
e − 1

4g
2
1(v2

d − v2
u)1

 . (2.52)
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The squark mass matrices read in the bases (ũL, ũR) and (d̃L, d̃R), respectively:

m2
ũ =

m2
Q + v2

u
2 Y
†
uYu − 1

24(g2
1 − 3g2

2)(v2
d − v2

u)1 −vdµY †u+vuT
†
u√

2
−vdµ∗Yu+vuTu√

2
m2
u + v2

u
2 YuY

†
u + 1

6g
2
1(v2

d − v2
u)

 ,

(2.53)

m2
d̃

=

m2
Q +

v2
d
2 Y
†
d Yd − 1

24(g2
1 + 3g2

2)(v2
d − v2

u)1
−vuµY †d +vdT

†
d√

2
−vuµ∗Yd+vdTd√

2
m2
d +

v2
d
2 YdY

†
d − 1

12g
2
1(v2

d − v2
u)

 .

(2.54)

2.6.4 The CMSSM

Counting in all soft SUSY-breaking parameters, the MSSM has over 100 free parameters.
As a systematic study of this multi-dimensional parameter space is impossible, it is desirable
to constrain the parameters to a smaller subset, which can be done by specifying the SUSY-
breaking sector or setting simplified boundary conditions. A particularly widely-studied
scenario, inspired by minimal supergravity [36], relates the SUSY-breaking masses to only
three parameters at the GUT scale: it is assumed that there is a unified mass parameter
for all scalars, one for all fermions and one for all trilinear couplings:

M1 = M2 = M3 = M1/2 , (2.55)

m2
Q = m2

u = m2
d = m2

L = m2
e = m2

0 1 , m2
Hu = m2

Hd
= m2

0 , (2.56)

Au = Ad = Ae = A0 , where Ti = YiAi . (2.57)

The diagonal structure in the scalar soft masses and the proportionality of the trilinear
couplings to the Yukawa couplings is assumed for convenience, in order to avoid the large
flavour violating effects – i.e. to circumvent the SUSY flavour problem. Using those
boundary conditions, all separate soft SUSY-breaking parameters can be evaluated at lower
scales according to their RGE running, and the number of free parameters of the model
reduces to five: m0 , M1/2 , A0 , tanβ , sign (µ) .

This model setup is commonly called the constrained MSSM (CMSSM) [52], and is
often used for setting benchmarks with specific features, e.g. with different neutralino dark
matter scenarios. Analyses of LHC searches for squarks and gluinos often interpret the
obtained cross-section limits in the m0 −M1/2 plane of the CMSSM, see, e.g., ref. [53].

2.7 Beyond the MSSM: non-minimal supersymmetric mod-
els

The MSSM is a very popular model that includes many desirable features that the Standard
Model lacks. Starting from a very simple principle, the extension of space-time symmetry
to its most general non-trivial form, the unification of gauge couplings as well as the
possibility of solving the hierarchy problem arise automatically. In addition, if R-parity is
realized in nature, the neutralinos emerge as viable candidates for cold dark matter.

However, despite its virtues, LHC data so far tells us that supersymmetry is either
rather heavy or hidden somehow. Although neither supersymmetry itself nor simple models
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like the MSSM can be fully excluded by the LHC, the negative search results amplify some
internal issues. Most of them have to do with the Higgs sector and the top squark: as
evaluated in section 2.6.3, the Higgs mass within the MSSM can be at most as large as the
Z mass – roughly 35 GeV have to be accounted for by loop corrections. As the top Yukawa
coupling is the largest coupling to the Higgs, loops with tops and stops give the dominant
contributions to these mass corrections. Those loop corrections vanish in the limit of exact
SUSY and are logarithmically dependent on the SUSY-breaking parameters in the stop
sector. Hence, if interpreted within the MSSM, the Higgs mass measurement tells us that
the stop mass and/or the associated trilinear coupling T 33

u have to be large. This lays
the foundation for the first serious doubts about the elegancy of supersymmetry: it was
motivated as the solution to the hierarchy problem which eliminates the need for fine-tuning.
However, the larger the stop masses, the less efficient is SUSY to ameliorate this issue, and
in the end still some fine-tuning is required from the generic arguments provided in the
motivation section. Moreover, also the SUSY naturalness problem gets more serious with
a larger SUSY-breaking mass scale. SUSY in its minimal form is therefore already quite
unnatural. This tension is relaxed in the framework of “natural supersymmetry” which
assumes a heavy (= multi-TeV) supersymmetric spectrum except for the third-generation
squarks, the gluinos and the higgsinos [54]. In this scenario, the fine-tuning associated with
the SUSY naturalness problem is reduced and the loop corrections to the Higgs mass are
driven by the left-right splitting in the stop sector induced by a large T 33

u . While increasing
the naturalness, those scenarios are well compatible with LHC data: the stop production
via a t-channel gluino exchange is suppressed because of the quark flavour content in the
proton. In addition, the hadronic searches are less sensitive to third-generation squarks as
the respective analyses suffer from larger uncertainties due to the difficulty to identify the
top-quarks in the final states. Natural SUSY scenarios are, however, not compatible with
the flavour-blind boundary conditions for the soft SUSY-breaking masses as is automatic
in models with gauge mediation and assumed in the CMSSM and would thus require
non-minimal SUSY-breaking mechanisms. More seriously, the large trilinear couplings
required for achieving the correct Higgs mass tend to destabilize the vacuum and prefer
charge- and colour-breaking minima [55,56]. Although still very interesting for benchmarks
and generic features, the MSSM hence loses popularity as a candidate for the theory beyond
the Standard Model5, and non-minimal supersymmetric realizations are considered more
frequently. This non-minimality can be in the form of new particles and interactions, often
inspired by additional global symmetries, or of an enlarged gauge symmetry (where the
latter usually implies the former).

2.7.1 The NMSSM

A widely-studied example of the former is the next-to minimal supersymmetric standard
model (NMSSM)6 which introduces an extra gauge singlet S with a non-vanishing vev to the

particle content. The extra scale-invariant superpotential terms read W ⊃ λŜĤα
u εαβĤ

β
d +

κ
3 Ŝ

3, so that an effective µ-term µeff = λ〈S〉 is generated dynamically. In this course, the

dimensionful couplings Wdim = µHα
u εαβĤ

β
d + µSŜ

2 + ξSŜ can be forbidden by a discrete

5The latest global fit by the Fittino collaboration already excludes the CMSSM at the 90 % confidence
level [57].

6See refs. [58,59] for recent reviews.
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Z3 symmetry, leaving a scale-invariant superpotential and solving the µ problem. In
addition, the tree-level Higgs mass is enhanced at the tree-level, relaxing the need for
fine-tuning. The spontaneous breakdown of the Z3 symmetry by the vevs of S, Hu and Hd

leads to a “domain wall” problem [60] which can, e.g., be avoided by the introduction of
non-renormalizable operators [61].

2.7.2 Models with Dirac gauginos

A further interesting possibility beyond the MSSM which nowadays gains increasing
attention is the introduction of Dirac mass terms for the gauginos instead of Majorana
masses, thus allowing for an additional U(1) symmetry of the theory (the “R-symmetry”)
as well as an N = 2 supersymmetric Higgs and gauge sector. In order to form Dirac
fermions, the gauginos have to pair up with new fermions in the adjoint representation of
the respective gauge group. R-symmetry forbids trilinear couplings, therefore alleviating
the SUSY flavour problem also for non-flavour-blind SUSY-breaking mechanisms [62], yet
without the need for large stop masses for explaining the measured Higgs mass [63, 64].
Because of the Dirac nature of the gluinos, they do not contribute to the RGEs, leading to
an increased naturalness [65,66]. In addition, the production cross sections at the LHC of
(and thus the mass limits on) squarks get reduced [67] since the diagrams that require a
chirality flip of the mediating gluino do not contribute. An unaesthetic property of this class
of models is that the new superfields that have to be introduced to write the Dirac gaugino
mass terms spoil the unification of gauge couplings so that awhile no conclusive high-scale
models could be formulated. However, recently, this issue has been resolved with the
development of the constrained minimal Dirac gaugino supersymmetric standard model [68]
which manages to preserve this desirable feature by the introduction of intermediate
vector-like fields charged under lepton number. Hence, a first phenomenological model
with CMSSM-like boundary conditions for the soft SUSY-breaking parameters can be
formulated which can serve, just like the CMSSM for MSSM studies, as a benchmark model
for comprehensive studies of Dirac gaugino models. In ref. [69], we could identify regions
in parameter space in which Dirac neutralino LSPs of higgsino or bino-singlino type have
the right properties to play the role of cold dark matter while being consistent with direct
detection measurements.

2.7.3 Neutrino mass models

So far the presented models only included the left-handed neutrinos, as is the case in the
Standard Model. Simply writing down Majorana masses for those is not possible due to their
belonging to SU(2)L doublets. Hence, the neutrinos are massless if no higher-dimensional
operators or new particles are added by hand.7 Adding the Weinberg operator [70]
1
2c5|Lαi εαβHβ

u |2 is arguably the easiest possibility for achieving massive neutrinos. Being
a dimension five operator, it is useful for an effective field theory description of neutrino
masses.

If we do not want to allow non-renormalizable operators, the most obvious solution
for achieving massive neutrinos is, of course, to add right-handed neutrino superfields ν̂c

that are singlets under the gauge group to the particle content and write a Dirac Yukawa

7This is not true if R-parity is violated since in this case the neutrinos can get their masses via mixing
with the neutralinos.
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coupling Wν = Y ij
ν L̂αi εαβĤ

β
u ν̂cj , leading to a Dirac mass mD = vu√

2
Yν . In this case, however,

Yν has the inconvenient property that its largest entry has to be at least about six orders
of magnitude smaller than the smallest (MS)SM coupling, the electron Yukawa, in order
to comply with neutrino oscillation data – not to mention the required hierarchy between
Yν and yt. This large hierarchy seems to suggest that other mechanisms are at work that
suppress the masses of left-handed neutrinos. Those scenarios are called seesaw mechanisms
because of the way the first proposal works, namely by the interplay of two different scales
where the heavier scale suppresses the mass of the lighter state, making it even lighter.

In this seesaw mechanism of type I [71–74], the right-handed neutrinos have a lepton-
number-violating Majorana mass term MR. The diagonalization of the ν mass matrix

then leads to a mass of the light eigenstates of mν ' mTDmD
MR

. The ν mass suppression is
therefore entirely due to the mass hierarchy between the two scales, and all eigenstates are
Majorana particles. Integrating out νR eventually leads to the Weinberg operator defined

above, where c5 = Y Tν Yν
MR

. If Yν is of O(1), then MR has to be of the order of the GUT
scale, i.e. out of reach for the direct detection at collider experiments. Indications that this
mechanism could be at work could at best be found indirectly by the confirmation that
neutrinos are Majorana particles, e.g. by the measurement of neutrinoless double-β decay.
If, in turn, one allows Yν to be small,8 the right-handed neutrinos could as well be as light
as a few hundred GeV. In chapter 3 we will make use of that and introduce a seesaw-I
scenario in which MR is generated dynamically by the TeV-scale vev of a scalar field.

The inverse seesaw mechanism [75], as the name suggests, relies on the reversed
principle: a further singlet fields is introduced, and the light neutrino masses are explained
by the smallness of their Majorana mass term which is naturally small as it violates
lepton number. The resulting right-handed neutrino mass eigenstates are pseudo-Dirac
particles. In chapter 4 as well as 5 we will present inverse seesaw realizations in more
detail and explore possibilities to measure traces of such a mechanism, e.g. by detecting
lepton-flavour-violating decays.

There exist many more mechanisms like the linear seesaw [76] and the seesaw mechanisms
of type II [77,78] and III [79]. In the latter two mechanisms there is no need for right-handed
neutrinos as the masses are generated via interactions with a scalar triplet under SU(2)L
and a fermionic triplet, respectively.

2.7.4 Models with extended gauge groups

Already for a long time the idea is present that the Standard Model gauge group is not
the definite symmetry of the theory but that it is in fact just a low-energy remnant
of a larger group. In particular the hypercharge U(1)Y and the associated charges of
the particles which do not possess any intuitive interpretation seem too random for an
ultimate theory, and the possible gauge coupling unification in supersymmetric models
suggests that there is a unified description of the gauge symmetries. The discovery that
the SM gauge group and its particle content fit perfectly into an SU(5) grand unified
theory [18,80] has given an enormous boost to the field and strengthened the efforts to find
the ultimate unified high-scale model. While minimal non-supersymmetric SU(5) could be
ruled out by the non-observation of the proton decay p→ e+π0 in the expected range [81]9,

8In this context, “small” means small w.r.t. yt but still of the order of other small Yukawa couplings.
9and the prediction of an incorrect value for sin2 θW
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supersymmetric models survive this constraint as they predict a larger unification scale
compared to non-SUSY models and hence more strongly suppressed rates. However,
minimal supersymmetric SU(5) models predict observable rates of the the decay p→ K+ν̄
by dimension five operators [82], so they could eventually be ruled out, too [83,84]. Although
these constraints can be evaded in non-minimal supersymmetric SU(5) models, also those
face a number of problems, see the review in ref. [22]. Among those problems is that the
SU(5) GUT does not have the possibility to conveniently include all fermionic matter fields
into a single irreducible representation – which one would expect from a unified theory.
Instead, the ingredients for neutrino masses like right-handed neutrinos are the only matter
fields that have to be added by hand.10

This is not the case in models with larger unified gauge groups like SO(10) or E6. Those
models have a higher rank than SU(5) and accordingly larger fundamental representations.
One can easily convince oneself that the SO(10) is a further GUT candidate because it
contains the SU(5): SO(10)→ SU(5)× U(1) [85]. A nice property of SO(N) models is
that they are automatically anomaly-free. This is not so in SU(N) (except for SU(2))
models where one has to be careful with the choice of representations in order to find a
vanishing anomaly coefficient [86]. Furthermore, in contrast to SU(5), a very convenient
consequence of the SO(10) gauge group is that right-handed neutrinos are required in order
to complete the matter content and to form a 16-plet. In fact, while the gauge group we
observe so far is left-chiral, SO(10) models are originally left-right-symmetric. That can
be seen by the decomposition 11

SO(10)→ SU(4)C × SU(2)L × SU(2)R (2.58)

→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L ,

where B − L is the difference between baryon and lepton number that we have already
encountered in the definition of R-parity. Guided by the motivation that it is an intermediate
breaking step of SO(10), it is very interesting to work with this left-right-symmetric gauge
group. While B − L is an accidental symmetry in the Standard Model, it has to be
introduced by hand in the MSSM, disguised as R-parity. In the left-right-symmetric
context it becomes clear that those effects are just low-energy remnants of a local B − L
symmetry at higher scales. In the end, the conservation or violation of R-parity is
determined by the exact mechanism that eventually breaks the left-right-symmetric stage
SU(2)L×SU(2)R×U(1)B−L down to the left-chiral SU(2)L×U(1)Y : if the fields responsible
for the breakdown carry odd B − L quantum numbers, also R-parity is violated. The
opposite direction of this argument is not automatic, but one also has to take into account
the minimization conditions of the scalar potential; in the next section we will investigate
a model where SU(2)R × U(1)B−L is simultaneously broken by SU(2)R triplets with

10If neutrino masses are generated by a seesaw-II mechanism, in turn, the fermionic representations are
complete as the needed triplets have to be accommodated in the Higgs representations.

11The first breaking step leads to Pati-Salam models [87]. Because of the unification of SU(3)c and
U(1)B−L interactions into a single gauge group, those models predict compressed spectra if the Pati-Salam
symmetry survives down to a scale not too far away from the TeV scale, see also ref. [88]. In particular
after the null results of the LHC, those models gain relevance: if the mass difference between the coloured
sparticles and the LSP is small, the corresponding decay products are soft and hence harder to detect. The
LHC bounds are correspondingly weaker, allowing for lower SUSY scales and therefore a more natural
theory.
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B − L = ±2 and of which it was nevertheless believed that it must violate R-parity
spontaneously by sneutrino vevs (which we shall see is not the case).

The choice of the Higgs sector is, of course, the part which distinguishes the different
left-right supersymmetric models and to a large extent influences their phenomenology.
The use of triplets is in this connection probably the most intuitive choice: because of the
primal left-right-invariance, the right-handed fields appear in SU(2)R doublets, and in the
presence of triplets, a gauge-invariant superpotential coupling of two right-handed lepton
superfields to a SU(2)R-breaking Higgs superfield is possible. This automatically results in
a seesaw-I mechanism for neutrino masses, linking the seesaw-scale directly to the breaking
scale of left-right symmetry.

This breaking scale can, in principle, lie anywhere in-between the TeV and the GUT
scale. The former possibility is, of course, the much more interesting one as it is directly
relevant for LHC physics. In supersymmetric manifestations, the particular advantage
comes into play that the tree-level Higgs mass receives extra tree-level D-term contributions,
ameliorating the fine-tuning issues discussed above. Clearly, those contributions decouple if
left-right symmetry is unbroken only at high scales. There are, however, SO(10) breaking
chains in which SU(2)R is already broken at the high scale, but in which a local U(1)R
symmetry is left over. The remaining U(1)R × U(1)B−L symmetry can then be kept
unbroken down to energies as low as the TeV scale [89], bearing the same benefit in what
concerns the Higgs mass, but of course a different phenomenology, most importantly in the
gauge boson, the neutrino and the residual Higgs sector.

We will now go on with the exploration of a particular example of a minimal left-right
supersymmetric model with triplet scalars at the TeV scale in which we will discuss and
resolve open questions and consider the LHC phenomenology as well as constraints from
vacuum stability. Afterwards we turn to a U(1)R × U(1)B−L model in which we especially
focus on the Higgs sector and investigate whether the tree-level Higgs mass enhancement
is enough to restore minimal gauge mediation as a relevant SUSY-breaking mechanism.
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CHAPTER 3

LEFT-RIGHT SUPERSYMMETRY
WITH TRIPLET SCALARS

3.1 The model

We work in a left-right supersymmetric model in which a seesaw mechanism for the
generation of neutrino masses is automatically present. Therefore, Higgs triplets ∆ in the
adjoint representation of SU(2) are introduced. For electroweak symmetry breaking as
well as a successful fit to the CKM matrix, two copies of SU(2) bidoublets Φ are needed.
In addition, the presence of a singlet field S under all gauge groups is assumed which
guarantees electroweak symmetry breaking in the supersymmetric limit. The superpotential
reads

W =(Q̂L y
Q
1 ) · Φ̂1 · Q̂R + (Q̂L y

Q
2 ) · Φ̂2 · Q̂R + (L̂L y

L
1 ) · Φ̂1 · L̂R + (L̂L y

L
2 ) · Φ̂2 · L̂R

+
(
µ1 + λ1Ŝ

)
Φ̂1 · Φ̂1 +

(
µ2 + λ2Ŝ

)
Φ̂2 · Φ̂2 +

(
µ12 + λ12Ŝ

)
Φ̂1 · Φ̂2 (3.1)

+ yL3 L̂L · ∆̂2L · L̂L +
(
µL + λLŜ

)
∆̂1L · ∆̂2L

+ yL4 L̂R · ∆̂1R · L̂R +
(
µR + λRŜ

)
∆̂1R · ∆̂2R +

1

3
λSŜ

3 + µSŜ
2 + ξSŜ , (3.2)

where the colour indices are suppressed and the Yukawa couplings y
L/Q
i are 3× 3 matrices

in flavour space. The superfields with their respective quantum numbers are listed in
table 3.1. The SU(2)-invariant products read

Φ̂a · Φ̂b = (Φ̂a)
j
i εjk (Φ̂b)

k
l ε
il, (3.3)

∆̂a · ∆̂b = (∆̂a)
j
i εjk (∆̂b)

k
l ε
il = Tr

(
∆̂a∆̂b

)
, (3.4)

Ψ̂L · Φ̂ · Ψ̂R = (Ψ̂L)i εij Φ̂j
k ε

lk (Ψ̂R)l , (3.5)

L̂L · ∆̂ · L̂L = (L̂L)iεji ∆̂j
k (L̂L)k , (3.6)

L̂R · ∆̂ · L̂R = (L̂R)i ∆̂i
j ε
jk (L̂R)k , (3.7)
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3.1. The model

with the usual antisymmetric ε symbol, ε12 = −ε21 = −ε12 = ε21 = 1.

Superfield Spin 0 Spin 1
2 # Gen. SU(3)c × SU(2)L × SU(2)R × U(1)B−L

Q̂L = (ûL, d̂L) Q̃L QL 3 (3,2,1, 1
3)

Q̂R = (ûcR, d̂
c
R) Q̃R QR 3 (3,1,2∗,−1

3)

L̂L = (ν̂L, ˆ̀
L) L̃L LL 3 (1,2,1,−1)

L̂R = (ν̂cR,
ˆ̀c
R) L̃R LR 3 (1,1,2∗, 1)

Φ̂i Φi Φ̃i 2 (1,2,2∗, 0)

∆̂1L ∆1L ∆̃1L 1 (1,3,1,−2)

∆̂2L ∆2L ∆̃2L 1 (1,3,1, 2)

∆̂1R ∆1R ∆̃1R 1 (1,1,3,−2)

∆̂2R ∆2R ∆̃2R 1 (1,1,3, 2)

Ŝ S S̃ 1 (1,1,1, 0)

Table 3.1: Chiral superfields and their quantum numbers with respect to SU(3)c × SU(2)L ×
SU(2)R × U(1)B−L. The U(1) charges are normalized such that Qem = T 3

L + T 3
R + B−L

2 .

Because of the enlarged gauge symmetry with respect to the Standard Model group, the
vector fields feature extra states. In the unbroken phase, the gauge boson sector contains
the gluons, the neutral gauge singlet boson B associated with the B − L Abelian group as
well the SU(2)L and SU(2)R triplet vectors W i

L and W i
R. After the symmetry breaking

steps described below, the latter three gauge eigenstates mix to the usual photon, Z and
W± as well as new massive Z ′ and W ′± states.

As soon as the electrically neutral components of the SU(2)R-triplet scalars develop
vevs, SU(2)R × U(1)B−L is spontaneously broken, leaving the residual hypercharge U(1)Y .
The necessary vacuum structure for that to happen is

〈∆1R〉 =
〈 ∆−1R√

2
∆0

1R

∆−−1R −∆−1R√
2

〉 =

(
0 v1R√

2

0 0

)
, 〈∆2R〉 =

〈∆+
2R√
2

∆++
2R

∆0
2R −∆+

2R√
2

〉 =

(
0 0
v2R√

2
0

)
.

(3.8)

A consequence of this vacuum structure is that the right-handed neutrinos, which lie in
the LR doublet, receive a Majorana mass

√
2 yL4 v1R and are thus directly connected to the

scale of SU(2)R breakdown. Since also the masses of the new gauge bosons W ′ and Z ′ are
determined by the SU(2)R breaking scale, the above vevs have to lie at least at the TeV scale.
Non-vanishing vevs for the ∆iL scalars are also allowed and would, accordingly, lead to a
Majorana mass for the left-handed neutrinos of

√
2 yL3 v2L. Consequently, in order to achieve

massive right-handed neutrinos while the left-handed counterparts remain light, either v2L

has to be negligibly small or yL4 � yL3 . The next breaking step SU(2)L ×U(1)Y → U(1)em
is due to vevs of the neutral bidoublet fields,

〈Φ1〉 =
〈(Φ0

1 Φ+
1

Φ−1 Φ′01

)〉
=

( vd√
2

0

0
v′1√

2

)
, 〈Φ2〉 =

〈(Φ′02 Φ+
2

Φ−2 Φ0
2

)〉
=

(
v′2√

2
0

0 vu√
2

)
. (3.9)

The primed vevs v′i give rise to W −W ′ as well as extra kaon mixing and we shall
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Chapter 3. Left-right supersymmetry with triplet scalars

neglect them henceforth 1. In addition, we also allow a vev for the singlet field,

〈S〉 =
vS√

2
. (3.10)

We assume the hierarchy

vS , viR � vu,d � viL ≈ v′i ≈ 0 (3.11)

and define

v2
R = v2

1R + v2
2R , tanβR =

v2R

v1R
. (3.12)

Similar to the NMSSM, we impose a discrete Z3 symmetry under which scalar fields

transform as φ → e
2πi
3 φ and which accordingly forbids all bilinear and linear terms in

the superpotential, µi = ξS = 0. As a consequence, all dimensionful parameters in the
superpotential are dynamically generated by vS and the couplings to the singlet field, so
that, in this way, effective µ terms of

µeff =
λ12vS√

2
, µeff

R =
λRvS√

2
, µeff

L =
λLvS√

2
, µeff

S =
λSvS√

2
(3.13)

arise, hence solving the µ problem. In addition, we assume λ1 = λ2 = 0 analogously to
refs. [93–96].

After the spontaneous symmetry breaking steps, the gauge eigenstates of the singlet, the
bidoublets and the triplets as defined in table 3.1 will mix among each other according to
their (broken and conserved) quantum numbers. The Higgs sector can thus be decomposed
into irreducible sets of nine CP -even (h0) and nine CP -odd neutral fields (A0, two of which
become the longitudinal part of the massive neutral gauge bosons after left-right- and
electroweak symmetry breaking), eight singly-charged Higgs fields (H±, two of which being
the would-be Goldstone bosons of the charged gauge bosons) and four doubly-charged ones
(H±±). The fermionic counterparts include in addition to the higgsinos also the gauginos
so that the neutralinos (χ̃0), the singly-charginos (χ̃±) and the doubly-charginos (χ̃±±)
consist of twelve, six and two states, respectively.

3.1.1 Scalar potential and minimization conditions

For the derivation of the scalar potential we concentrate on the relevant parts for the
following discussion, i.e. the SU(2)R triplets and their interactions. The parts of the
superpotential that we have to take into account for this purpose are

W∆ = yL4 L̂
T
R ∆̂1R ε L̂R + λR Ŝ Tr(∆̂1R ∆̂2R) +

1

3
λS Ŝ

3 , (3.14)

where ε is treated as a 2× 2 matrix. The corresponding tree-level scalar potential V0 reads

V0 = VF + VD + Vsoft . (3.15)

1The induced W −W ′ mixing has been used by refs. [90, 91] to explain the recent excess in diboson
events seen by ATLAS [92].
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The separate parts read

VF = λ2
R |S|2

(
Tr(∆†1R ∆1R) + Tr(∆†2R ∆2R)

)
+
∣∣∣λR Tr(∆1R ∆2R) + λS S

2
∣∣∣2

+ yL4 λR

(
S∗ L̃TR ∆†2R ε L̃R + h.c.

)
+ (yL4 )2 (L̃†RL̃R)2 , (3.16)

VD =
g2
R

2

3∑
i=1

(
Tr(∆†1R[τi,∆1R]) + Tr(∆†2R[τi,∆2R])− L̃†R τi L̃R

)2

+
g2
BL

2

(
Tr(∆†2R ∆2R)− Tr(∆†1R ∆1R) +

1

2
L̃†RL̃R

)
, (3.17)

Vsoft = m2
∆1R

Tr(∆1R ∆†1R) +m2
∆2R

Tr(∆2R ∆†2R) +m2
S |S|2 +m2

LR
L̃†RL̃R

+
(
TλR S Tr(∆1R ∆2R) +

1

3
TλS S

3 + TL4 L̃TR ∆1R ε L̃R + h.c.
)
, (3.18)

where τi = 1
2σi and σi are the Pauli matrices. Inserting the vacuum expectation values of

eqs. (3.8-3.10) and deriving w.r.t. the vevs yields the conditions for vacuum minimization

∂V

∂vS
= vS

(
m2
S + λRλSv1Rv2R +

λ2
R

2

(
v2

1R + v2
2R

))
+ λ2

Sv
3
S

+
1√
2

(
v1Rv2RTλR + v2

STλS

)
= 0 , (3.19)

∂V

∂v1R
= v1R

(
m2

∆1R
+
g2
BL

2

(
− v2

2R + v2
1R

)
+
g2
R

2

(
v2

1R − v2
2R

))
+
λR
2
v2
S

(
λRv1R + λSv2R

)
+
λ2
R

2
v1Rv

2
2R +

1√
2
v2RvSTλR = 0 , (3.20)

∂V

∂v2R
= v2R

(
m2

∆2R
+
g2
BL

2

(
− v2

1R + v2
2R

)
+
g2
R

2

(
− v2

1R + v2
2R

))
+
λR
2
v2
S

(
λRv2R + λSv1R

)
+
λ2
R

2
v2

1Rv2R +
1√
2
v1RvSTλR = 0 , (3.21)

and we refer to the appendix A for the complete tadpole equations with all possible terms.

As already observed in ref. [97], the vacuum configuration associated with these mini-
mization conditions does not correspond to the global minimum of the scalar potential at
tree level. Instead, the D-terms are minimized if the vevs are aligned along the τ1 direction:

〈∆1R〉CB =

(
0 v1R

2
v1R

2 0

)
, 〈∆2R〉CB =

(
0 v2R

2
v2R

2 0

)
, (3.22)

leading to phenomenologically disastrous vevs for the ∆−−1R and ∆++
2R fields. Therefore the

model favours, at the tree-level, a vacuum where electric charge is broken. Beyond that,
it turns out that the desired vev structure doesn’t even correspond to a true minimum
of the scalar potential but merely to a saddle point, whereby the negative curvature is
found in the field direction of the doubly charged scalars. We will address this issue in
detail in section 3.2 where we discuss the tree-level H±± mass and show that the one-loop
corrections are essential to understand the vacuum structure.
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Chapter 3. Left-right supersymmetry with triplet scalars

3.1.2 Some mass matrices

For the following discussion we present the relevant mass matrices in suitable approximations.
For a complete account of all mass matrices exhibiting the full structure we refer to the
appendix A.

Gauge bosons

The physical neutral gauge bosons are admixtures of the B and the electrically neutral
components of the WL and WR triplets. Their mass matrix reads in the according basis
(B,W 3

L,W
3
R):

m2
V 0 =

 g2
BL v

2
R 0 −gBL gR v2

R

0 1
4g

2
L v

2 −1
4gL gR v

2

−gBL gR v2
R −1

4gL gR v
2 1

4g
2
R(v2 + 4v2

R)

 . (3.23)

The corresponding mixing matrix ZZ rotates into the mass eigenbasis according to Bµ

Wµ
L,3

Wµ
R,3

 = ZZ

 γµ

Zµ

Z ′µ

 (3.24)

and can be parametrized, in the limit vR � v, by two angles ΘW , Θ′W only:

ZZ =

 cos ΘW cos Θ′W − cos Θ′W sin ΘW − sin Θ′W
sin ΘW cos ΘW 0

cos ΘW sin Θ′W − sin ΘW sin Θ′W cos Θ′W

 . (3.25)

Neglecting all terms of O(v2/v2
R), the Z ′ mass is

MZ′ '
√
g2
BL + g2

R v
2
R . (3.26)

The charged gauge bosons consist of the combinations W±L/R = 1√
2
(W 1

L/R ∓ iW 2
L/R).

Those states do not mix among each other if v′i vanishes, and the mass matrix reads in the
basis (W−L ,W

−
R ):

m2
V ± =

(
1
4g

2
Lv

2 0
0 1

4g
2
R(v2 + 2v2

R)

)
, (3.27)

so that W = WL and W ′ = WR, and

MW ′ =
1

2
gR

√
v2 + 2v2

R . (3.28)

The relation MZ′ > MW ′ is a consequence of the SU(2)R × U(1)B−L breaking by SU(2)R
triplets and is important for LHC physics. Should a Z ′ be found while W ′ searches yield
bounds of MW ′ > MZ′ , this breaking mechanism would be ruled out at once.
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Neutralinos and charginos

As a consequence of viL, v
′
i ≈ 0, the scalar and fermionic ∆iL and Φ′0i states each don’t mix

with the rest of the corresponding spectrum, making the mass matrices reducible. We will
nevertheless include those states in the respective particle definitions.

The mass matrix for the neutralinos reads in the basis(
W̃ 0
L, W̃

0
R, B̃, Φ̃

′0
2 , Φ̃

0
2, Φ̃

0
1, Φ̃

′0
1 , ∆̃

0
1L, ∆̃

0
2R, ∆̃

0
2L, ∆̃

0
1R, S̃

)
:

mχ̃0 = (3.29)

M2L 0 0 0 −gLvu
2

gLvd
2 0 0 0 0 0 0

0 M2R 0 0 gRvu
2 −gRvd

2 0 0 −gRv2R 0 gRv1R 0
0 0 M1 0 0 0 0 0 gBLv2R 0 −gBLv1R 0
0 0 0 0 0 0 −µeff 0 0 0 0 0

−gLvu
2

gRvu
2 0 0 0 −µeff 0 0 0 0 0 −λ12vd√

2
gLvd

2 −gRvd
2 0 0 −µeff 0 0 0 0 0 0 −λ12vu√

2

0 0 0 −µeff 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 µeff

L 0 0

0 −gRv2R gBLv2R 0 0 0 0 0 0 0 µeff
R

λRv1R√
2

0 0 0 0 0 0 0 µeff
L 0 0 0 0

0 gRv1R −gBLv1R 0 0 0 0 0 µeff
R 0 0 λRv2R√

2

0 0 0 0 −λ12vd√
2
−λ12vu√

2
0 0 λRv1R√

2
0 λRv2R√

2
2µeff

S



,

and is diagonalized by a unitary matrix U0. M2L/R and M1 are the soft SUSY-breaking
gaugino masses of the SU(2)L/R and U(1)B−L gauge bosons.

The mass matrix of the singly-charginos is given in the bases(
W̃+
L , W̃

+
R , Φ̃

+
2 , Φ̃

+
1 , ∆̃

+
2L, ∆̃

+
2R

)
and

(
W̃−L , W̃

−
R , Φ̃

−
2 , Φ̃

−
1 , ∆̃

−
1L, ∆̃

−
1R

)
as:

mχ̃− =



M2L 0 0 1√
2
gLvd 0 0

0 M2R − 1√
2
gRvu 0 0 −gRv1R

1√
2
gLvu 0 0 µeff 0 0

0 − 1√
2
gRvd µeff 0 0 0

0 0 0 0 µeff
L 0

0 gRv2R 0 0 0 µeff
R


, (3.30)

and is is diagonalized by U+ and U−

U+,∗mχ̃−U
−,† = mdiag

χ̃− . (3.31)

As apparent from the neutralino and chargino mass matrices, the masses of four
neutralinos and two charginos are given by ∼ µeff whereby the Φ̃′01,2 states form an exact
Dirac pair.

The doubly-charginos of the different SU(2) sectors do not mix among each other so
that the mass matrix is diagonal and the mass and gauge eigenstates coincide:

χ̃−−L = ∆̃−−1L , χ̃++
L = ∆̃++

2L , mχ̃±±L
= µeff

L , (3.32)

χ̃−−R = ∆̃−−1R , χ̃++
R = ∆̃++

2R , mχ̃±±R
= µeff

R . (3.33)
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Chapter 3. Left-right supersymmetry with triplet scalars

(S)neutrinos

The light neutrino masses are generated by a type-I seesaw mechanism due to the Majorana
mass term for νR and the Dirac mass term from yL2 after symmetry breaking. An additional
type-II seesaw mechanism would only be at work with non-zero v2L. In the basis (νL, ν

c
R),

the neutrino mass matrix reads:

mν =

(
0 vu√

2
vu(yL2 )T

vu√
2
vuy

L
2

√
2 yL4 v1R

)
. (3.34)

Assuming v1R at the TeV scale, yL2 � yL4 is needed for a successful explanation of the light
neutrino masses. In particular, if yL4 is of O(1), then |yL2 |ij . O(10−5) has to be satisfied.
Accordingly, the heavy neutrino mass eigenstates are almost pure right-handed neutrinos
with

mνR '
√

2 yL4 v1R . (3.35)

The spin-zero superpartners of the right-handed neutrinos receive their mass by the
soft SUSY-breaking masses m2

LR
as well as the appropriate D- and F -terms. The F -term

coming from µeff
R thereby splits the right sneutrinos into scalar (S) and pseudoscalar (P )

parts. Using yL2 � yL4 , the left-right mixing can be neglected and the resulting right
sneutrino masses read

(m
S/P
ν̃R

)2 ' m2
LR

+
1

4
(g2
R + g2

BL)(v2
2R − v2

1R) 1 + yL4

(
2 yL4 v

2
1R ± (λR vS v2R +

√
2 v1R T

L
4 )
)
,

(3.36)

In case of large yL4 µ
eff
R , the mass splitting can be substantial and even drive one eigenstate

tachyonic. Therefore, a large soft SUSY-breaking mass is required for an increasing µeff
R .

Charged Higgses

Similar to the MSSM, the gauge eigenstate Φ+
2 forms the would-be-Goldstone boson of

the electroweak W boson together with Φ−1 , whereas the W ′ would-be-Goldstone is a near
maximal mixture of ∆−1R and ∆+

2R if we assume tanβR ≈ 1. Hence there are six physical
charged Higgs bosons. The mostly Φ−2 -like state is usually the lightest out of the six states.
Its mass can be approximated by

m2
H±1
' g2

R

2
(v2

2R − v2
1R) = g2

R v
2
R

tan2 βR − 1

2(1 + tan2 βR)
, (3.37)

whereas a small mixing with the ∆−1R/∆
+
2R state exists due to the off-diagonal D-terms to

the mass matrix. The ∆−1R component within H±1 is roughly

RH−1 ,∆−1R '
v

2 vR
. (3.38)

This admixture is responsible for the coupling of the right-handed neutrinos to H±1 `
∓

which is proportional to yL4 · RH−1 ,∆−1R . We have checked that these approximate relations

30



3.2. The H±± mass

agree with the full numerical values within 5 %. The full mass matrix, including the gauge
fixing terms, is defined in the appendix A, eq. (A.217).

3.2 The H±± mass

The fact that the desired vacuum configuration does not reside in a true minimum at
tree-level and that the scalar potential instead favours vevs for the doubly charged triplet
scalars has serious implications for the H±± mass. We will discuss this issue in more detail
here.

The H±± mass eigenstates consist of admixtures of the ∆−−1L,R and ∆++
2L,R fields to four

H±± states. A mixing between the SU(2)L- and the SU(2)R-triplet states is only induced
at loop level by the slepton trilinear couplings and turns out to be negligibly small so that
we can safely neglect it in the following considerations. In the subsequent discussion, H−−

always refers to the lightest eigenstate of the ∆−−1R −∆++
2R
∗

admixture.

3.2.1 Tree level

The mass matrix of the doubly charged SU(2)R Higgs bosons reads in the basis (∆−−1R , ∆++
2R
∗
):

2

m2 =

(
D++ − tanβRF++ F++

F++ −D++ − cotβRF++

)
, (3.39)

with

D++ =
g2
R

2

(
v2
d − v2

u + 2(v2
2R − v2

1R)
)
,

F++ =
λ2
R

2
v1Rv2R +

λRλS
2

v2
S −

λRλ12

2
vdvu +

TλR√
2
vS .

The lightest eigenstate is massless and hence a pseudo-Goldstone boson in the limit of
vanishing gauge coupling strength. The positive definiteness of m2 can easily be checked
by the trace and the determinant which both have to be positive for obtaining two positive
eigenvalues. In the limit v → 0, which is reasonable because of the imposed hierarchy
vR � v, it is an easy exercise to check that this is not possible: the lightest eigenvalue
is always negative, apart from the case tanβR = 1 where it is zero. This case, however,
corresponds to a saddle point of the potential and hence is of no relevance. That is to
say, positive eigenvalues can only be achieved by the interplay of the vevs of the different,
uncorrelated breaking steps. It has already been noted in ref. [98] that one only finds
positive eigenvalues if

|v2
u − v2

d| < 2|v2
2R − v2

1R| (3.40)

is fulfilled, independently from the other parameters in the mass matrix. However, because
of the phenomenologically necessary hierarchy between vR and v, eq. (3.40) is a very
fine-tuned condition which requires tanβR− 1� 1. This behaviour is depicted in figure 3.1

2In the appendix we define the full 4× 4 mass matrix, see eq. (A.46).
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Chapter 3. Left-right supersymmetry with triplet scalars

where the lightest eigenvalue m2
H±± of m2 is shown. The upper curve in the left plot shows

m2
H±± as a function of tanβR for the case that the vacuum exhibits the charge-breaking

vev configuration of eq. (3.22): the eigenvalue is generically positive, corresponding to a
positive curvature of the scalar potential in this direction. The desired configuration of
eq. (3.8), however, features a negative curvature, represented by the negative squared mass
values of the blue curve. Only in the region around tanβR ≈ 1 this behaviour is interrupted
by a tiny region with positive squared masses where the condition (3.40) holds. This region
is augmented in the right plot. The cases tanβ = 50 (1) are shown, corresponding to
large (vanishing) |v2

u − v2
d|. Although the fraction of parameter space with large tanβ and

tanβR very close to unity features positive eigenvalues of m2, this possibility is rendered
unphysical as well since one of the pseudoscalar Higgs bosons has a negative squared mass
in this region [99].

This means that no phenomenologically feasible spectrum can be found at tree level,
and that the desired vacuum configuration cannot be a minimum of the tree-level scalar
potential but corresponds to a saddle point. A possibility to avoid these problems at tree
level would be to introduce new terms to the scalar potential in the form of vevs for the right
sneutrinos. These, however, violate R-parity, with all the associated inconveniences [97,99].

0.0 0.5 1.0 1.5 2.0

-1´10
7

-5´10
6

0

5´10
6

tan βR

m
2 H

±
±
[G

eV
2
]

charge-breaking

desired
vacuum configuration

vacuum configuration

0.9995 1.0000 1.0005 1.0010

-30

-25

-20

-15

-10

-5

0

5

tan βR

m
2 H

±
±
[G

eV
2
]

tan β = 1

tan β = 50

|v2u − v2d| = 2|v22R − v21R|

Figure 3.1: The lightest m2 eigenvalues m2
H±± as a function of tanβR. On the left figure the

blue curve corresponds to the desired vacuum of eq. (3.8) and the purple line to the charge-
breaking vacuum configuration of eq. (3.22). The parameters have been set to vR = 5.5 TeV, vS =
10 TeV, λR = 0.5, λS = −0.5, λ12 = −0.02, TλR = 0, The right plot is a zoom into the left figure:
we show the curve of the desired vacuum configuration for the cases tanβ = 1 and 50 in blue and
red. The line which satisfies the condition |v2

u − v2
d| = 2|v2

2R − v2
1R| is shown in red (blue) for the

case tanβ = 50 (1).

3.2.2 Loop level

Although at the tree level, we find no possibility to construct a sensible model with R-
parity conservation, it is not yet clear that the same argument holds in higher orders of
perturbation theory. As has already been noted in the pioneering work by Coleman and
Weinberg [100], radiative corrections can change the vacuum structure considerably, and
hence also the adopted symmetry breaking or conservation. In left-right supersymmetric
models, related considerations have been carried out [101], with the result that the one-loop
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3.2. The H±± mass

effective potential can change the saddle point discussed in the previous section to a
charge-conserving minimum of the potential. These attempts suffer from the problem that
the negative m2

H±± will appear in the logarithms of the one-loop effective potential once
the self-induced corrections are included. Simply disregarding the resulting imaginary parts
of the one-loop potential is potentially dangerous since a complex potential indicates an
unstable vacuum which eventually would decay [102]. We will return to considerations on
the vacuum stability in section 3.4.

In more recent studies it was argued that the one-loop corrections induced by the
Majorana neutrino Yukawa coupling yL4 are sufficient to (i) render the H±± squared mass
positive in the gaugeless limit [103], and to (ii) pull the desired minimum lower than the
charge-breaking one, making it the global minimum [104]. In this case, m2

LR
is found to be

required negative and, thus, large corrections from the gauginos to the slepton squared
masses are necessary to avoid R-parity breaking. As those corrections grow with yL4 , this
means that it is very hard to achieve non-tachyonic sneutrinos because of the mass splitting
induced by yL4 µ

eff
R , c.f. 3.36.

Here, we will perform a full Feynman-diagrammatic calculation which does not possess
any of the flaws mentioned above: neither will we neglect any contributions or ignore the
issue of imaginary logarithms, nor need negative values for m2

LR
. For the numerical results

we have implemented the model in the Mathematica package SARAH [105–110]. We have
then used SARAH to generate source code for the spectrum generator SPheno [111, 112]
which allows for a precise calculation of the mass spectrum at the one-loop level. The
renormalization procedure is carried out in the DR scheme: first, the tadpole contributions
are calculated with which the minimization equations are solved at one-loop. The solutions
are inserted into the tree-level mass matrices to which the self energies are added and
which are finally diagonalized. In the usual approach, the masses entering the loops are the
tree-level values. Evidently, as argued above, this is a problem here due to the negative
squared masses of the doubly charged Higgs bosons. Therefore, we modified the code in
a way inspired by the on-shell scheme. Instead of inserting the tree-level masses into the
loops, we use the loop-corrected ones in an iterative manner:

• 1st iteration: m2
[1] = m2(m2

[0]) using m2
[0] = |[m2

H±± ]tree−level|

• m2
[k] = m2(m2

[k−1]) until
|m[k]−m[k−1]|

m[k]
< ε� 1

We usually find convergence with ε = 10−4 after four iterations. Note that the starting point
is in principle arbitrary, and we have verified that using other values such as m[0] = 0 gives
the same results. We want to remark that the above prescription breaks gauge invariance
at the two-loop order. However, the associated effects are expected to be significantly
smaller than the genuine two-loop contributions and are hence of no relevance here.

We now turn to the numerical results. As a first exercise we start by comparing our
results to the analytical formula given in ref. [103]. For this purpose we have modified
the code according to the approximations used there: (i) gaugeless limit (gi → 0), (ii)
negligence of the electroweak vevs and (iii) inclusion of only the loop contributions stemming
from one diagonal entry in yL4 . As has been seen in the previous subsection 3.2.1, in this
limit the lightest H±± eigenstate is a massless pseudo-Goldstone boson, implying that
the loop corrections have to be finite [113]. In figure 3.2 we show the results for the
squared H±± mass in these approximations as contour lines in various planes which display

33



Chapter 3. Left-right supersymmetry with triplet scalars
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Figure 3.2: Comparison of our numerics with the analytical results obtained in ref. [103], using
the same approximations. The grey contour lines depict the H±± squared mass values in GeV2

obtained by the formulas of ref. [103] while the red dashed lines show the results using our modified
code. The upper row shows the results in the (vR, log10(m2

LR
/GeV2)) plane using yL4 = 0.4 and in

the (vR, y
L
4 ) plane using m2

LR
= 2 ·106 GeV2. The remaining relevant parameters have been fixed to

λR = 0.4, vS = 10 TeV. The lower row shows the H±± squared isomass lines in the (yL4 , λR) plane
on the left panel, using vR = 5.5 TeV, vS = 10 TeV and m2

LR
= 2 · 106 GeV2. The right panel shows

the (vR, µ
eff
R ) plane with m2

LR
= 107 GeV2, yL4 = 0.1. The white dashed lines show, for comparison,

the H±± squared mass eigenvalues at the tree level without applying any approximations. In the
white regions one sneutrino CP -eigenstate gets tachyonic in the gaugeless limit.
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3.2. The H±± mass

���
���Figure 3.3: Generic one-loop diagrams contributing to the doubly-charged Higgs self-energy.

the most important dependencies. We observe excellent agreement between the grey
contour lines and the red dashed ones, representing the analytical results and our numerical
treatment, respectively. Therefore, we see our numerics confirmed. Interestingly, in most
of the considered parameter regions these one-loop corrections contribute negatively to
m2
H±± , i.e., they are even counterproductive for achieving a viable spectrum. This is

especially true for large y4
L and vR. Only in regions with a large µeff

R parameter we find
positive contributions, as seen in the lower row of figure 3.2. These positive values have
to be compared with the actual tree-level eigenvalues which arise in the absence of any
approximations (shown in white dashed contour lines). We find that very large values of
µeff
R have to be paired with low values for vR to achieve combined squared masses which are

at least positive, see the upper left corner in the lower right image of figure 3.2. However,
as those large µeff

R values decrease the mass of one of the ν̃R CP eigenstates, one sneutrino
easily gets tachyonic. This is what happens in the white regions in figure 3.2. For avoiding
that, m2

LR
has to be large to compensate for this negative term. If one assumes that the

soft mass terms of all sfermions are of approximately the same order of magnitude, it would
be very unlikely in this case for the LHC to observe any of the squark or slepton states in
direct production.

We stress again that the above discussion only includes the yL4 -dependent corrections
in the gaugeless limit, and we now move on to consider the full one-loop corrections. The
generic Feynman diagrams which determine the H±± self energy are shown in figure 3.3. In
addition, the one-loop corrections to the neutral triplet scalar tadpole diagrams contribute
via the solutions to the tadpole equations. In figure 3.4 we present the analogue to the left
upper image of figure 3.2, only with the full corrections turned on. Note that it is the actual
masses which are shown, not the squared ones. It is striking that, although the tree-level
mass as well as the previously considered partial corrections both point to tachyonic states,
we find phenomenologically viable masses of several hundreds of GeV when we do the full
calculation. The shape in m2

LR
is entirely due to the negatively contributing yL4 -dependent

corrections so that by reducing yL4 (right panel) the dependence of m2
LR

is almost gone
and the H±± masses increase notably. The white regions at low slepton soft masses are
due to tachyonic sneutrinos as in the previous discussion, whereas the blank areas at large
m2
LR

or vR feature a tachyonic doubly-charged Higgs despite the large positive one-loop
corrections to its mass.

Being comprised of transcendental equations, the analysis of the parametric dependence
of the loop contributions is highly non-trivial. However, some conclusions can be drawn.
For a first qualitative understanding we show in figure 3.5 the effect of gradually switching
on different loop contributions to the tree-level squared mass which itself is represented by
the grey solid line. As already discussed beforehand, the yL4 -dependent loop contributions
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Figure 3.4: Mass of the lightest doubly-charged Higgs boson in GeV as evaluated from a complete
one-loop calculation. The results are presented in (vR, log10(m2
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/GeV2)) planes for a scenario

featuring the same setup as in the left panel of figure 3.2 (left), as well as for the case of a smaller
yL4 = 0.1 and a larger λR = 0.9 value (right).
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Figure 3.5: Dependence of mH±± on vR. Predictions are given at the tree level (grey solid) and
after considering full (black solid) and partial (other curves) one-loop corrections. For the latter,
we first include the sole yL4 -dependent (s)lepton and (s)neutrino contributions (blue dotted) to the
tree-level value, then add on top of them all diagrams featuring neutral gauge bosons as well as
neutral and doubly-charged Higgs bosons (blue dashed). We next additionally include chargino
contributions (blue solid) and further consider diagrams with neutralinos and doubly-charged
higgsinos (black dashed). The full result finally also contains extra W ′±/H± contributions. The
employed benchmark scenario is defined by λR = 0.4, m2

LR
= 2 · 106 GeV, yL4 = 0.25 and features

one generation of right-handed neutrinos.
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3.2. The H±± mass

from the (s)neutrinos and charged (s)leptons contribute negatively for large values of yL4
and m2

LR
. Understanding the remaining contributions that we have added for the first time

in this kind of models requires a review of the relevant couplings between the H±± and
the particles in the loop. The relevant couplings to charginos and neutralinos read

ΓL
χ̃++
R χ̃0

jH
−−
k

=− i
(
λRU

0,∗
j,S̃
Z−−
k,∆−−1R

+
√

2
(
gBLU

0,∗
j,B̃
Z−−
k,∆++,∗

2R

+ gRU
0,∗
j,W̃R,3

Z−−
k,∆++,∗

2R

))
,

ΓR
χ̃++
R χ̃0

jH
−−
k

=− i
(
λRU

0
j,S̃
Z−−
k,∆++,∗

2R

−
√

2
(
gBLU

0
j,B̃
Z−−
k,∆−−1R

+ gRU
0
j,W̃R,3

Z−−
k,∆−−1R

))
, (3.41)
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+
j H
−−
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√
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k,∆++,∗

2R

(
U+,∗
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R

U+,∗
j,∆̃+

R

+ U+,∗
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R

U+,∗
j,W̃+

R

)
,

ΓR
χ̃+
i χ̃

+
j H
−−
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=− i
√

2gRZ
−−
k,∆−−1R

(
U−
i,W̃+

R

U−
j,∆̃+

R

+ U−
i,∆̃+

R

U−
j,W̃+

R

)
,

where we have parameterised the vertices as Γ = ΓLPL + ΓRPR. U0, U± and Z−− are the
mixing matrices of the neutralinos, charginos and doubly-charged Higgs bosons respectively,
whose elements we name Ui,X and Zi,X . These matrix elements hence denote the X field
component of the ith mass eigenstate. The diagrams involving two charginos give a negative
contribution to mH±± . Having naively expected a positive contribution, this sign can be
understood from the large mixing between the gaugino and the singly-charged higgsino
of the SU(2)R sector, see eq. (3.30). The respective diagonal contributions to the doubly-
charged Higgs self energy are proportional to (|ΓL

χ̃+
i χ̃

+
j H
−−
k

|2 + |ΓR
χ̃+
i χ̃

+
j H
−−
k

|2)m2
H±± whereas

the off-diagonal contributions are proportional to (ΓL
χ̃+
i χ̃

+
j H
−−
k

)(ΓR
χ̃+
i χ̃

+
j H
−−
l

)∗mχ̃+
i
mχ̃+

j
. As

the masses of the relevant charginos are proportional to vR and the wino soft SUSY-
breaking mass, they are in general much larger than mH±± . Hence, the contributions to
the off-diagonal entries of the H±± mass matrix turn out to be much larger than those to
the diagonal ones, yielding a negative contribution to mH±± after diagonalization. The
contribution from loop diagrams involving a neutralino and a doubly-charged higgsino, in
turn, are positive. The difference w.r.t. the singly-chargino case depicted above stems from
the singlino component of the neutralinos. In the respective entries of the mass matrix, the

product (Γ
L/R

χ̃++
R χ̃0

jH
−−
k

)(Γ
L/R

χ̃++
R χ̃0

jH
−−
l

)∗ involves λR-dependent terms whose sign is different

from the ones of the gauge contributions. These terms will dominate for large values of λR,
and hence µeff

R . In addition, large µeff
S increases the singlino component of χ̃0 and therefore

U0
j,S̃

.

Another important positive contribution comes from diagrams involving charged vector
and Higgs bosons from the SU(2)R sector. The respective interactions read

ΓH−−j W ′+W ′+ =− i
√

2g2
R

(
v1RZ

−−
j,∆−−1R

+ v2RZ
−−
j,∆++

2R

)
,

ΓH−−j H+
k W

′+ = − i
(
gRZ

−
k,∆−,∗1R

Z−−
j,∆−−1R

+ gRZ
−
k,∆+

2R

Z−−
j,∆++,∗

2R

)
, (3.42)
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where we have omitted the momentum and metric dependence from the former two vertices

37



Chapter 3. Left-right supersymmetry with triplet scalars

and neglected the electroweak vevs in the latter coupling. Being proportional to vR, these
contributions increase with the LR breaking scale.

In summary, the most important one-loop contributions to mH±± are:

• negatively contributing: yL4 -dependent loops ((s)neutrinos and charged (s)leptons) as
well as H±± /{γ, Z, Z ′, h0, A0} and χ̃± loops,

• positively contributing: χ̃±±/χ̃0 and W ′±/H± loops.

Eventually, the tree-level contribution to mH±± , represented by the grey line in figure 3.5,
grows too negative with increasing vR and cannot be compensated anymore by the χ̃±±/χ̃0

and W ′±/H± loops so that H±± becomes tachyonic again for large enough vR. This scale
turns to be vR ' 14 TeV for the example of figure 3.5.

We see from the shown examples that the use of incomplete one-loop considerations
from the literature leads to the conclusion that a large parameter space is excluded due
to tachyonic states. When applying a complete treatment, however, it turns out that
a big portion of this parameter space is in fact viable. Fortunately, the predicted H±±

masses turn out to be of the same order of magnitude as is currently probed at the LHC.
Hence, they have to be confronted with the current limits set by the ATLAS and CMS
collaborations [114,115]. Because of the Yukawa term yL4 L̂R ·∆̂1R · L̂R in the superpotential,
the decay products are two like-sign leptons, H++ → `+`+, and the bounds vary depending
on the flavour of the final state leptons. The lower bounds on the mass of a doubly-charged
Higgs boson given in ref. [115] are 444 GeV, 459 GeV and 204 GeV for ee, µµ and ττ
final states, respectively. However, it is assumed there that the the H±± originates from
a SU(2)L triplet, the production cross sections of which being higher than for a SU(2)R
triplet. In ref. [114], both cases are considered separately. While the bounds for SU(2)L-
gauged H±± states are generically tighter than the respective limits in [115], the bounds
for SU(2)R triplet states are slightly looser: 374 GeV and 438 GeV for the final states of
ee and µµ flavour, respectively. Bounds for a like-sign ττ pair are not provided.

3.3 Collider searches

The CMS and ATLAS collaborations are very actively searching for signals of extra gauge
bosons. As shown earlier, in the setup under study, the W ′ is generically lighter and
thus would show up first at a collider experiment. We will therefore concentrate on
the interpretation of W ′ searches and evaluate the resulting constraints on the model’s
parameter space.

The W ′ can decay into a variety of final state particles. Apart from a pair of quarks, this
comprises vector and Higgs bosons such as W±H0 or H∓H±±. In addition, supersymmetric
final states can appear as decay products, most prominently charginos and neutralinos, but
also a pair of squarks or sleptons. Eventually, also the fermionic counterpart of the latter
is possible: a charged lepton and a right-handed neutrino. While the final-state neutrino
can in principle also be a light state (ν), its coupling to the W ′ is strongly suppressed
by the small νL − νR mixing angle so that, if kinematically accessible, the ` νR channel is
much more likely. Analyses looking for a charged lepton and missing energy, assuming a
low-mass neutrino in the final state, hence do not apply to left-right symmetric models.
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3.3. Collider searches

3.3.1 Hadronic W ′ searches

The easiest way to look for a W ′ is searching for deviations from the Standard Model in the
quark-quark final state, whereas the differentiation between first- and second-generation
quarks and third-generation quarks has to be done. The former case yields a simple dijet
final state. In the latter case, the top quark decay products bW and the subsequent W
decay have to be taken into account, so that the looked-for final state is two b-jets, a
charged lepton and missing energy. While direct bounds on simplified left-right symmetric
models have been derived in the corresponding analyses, it is not yet clear how these
bounds translate to our model as the W ′ total width and consequently also the hadronic
branching ratios depend on the complete set of open W ′ decays. We therefore revisit the
corresponding most recent CMS search results [116,117] in the context of our model. Here
and in the following we will assume gR = gL.
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Figure 3.6: Bounds on the mass of the W ′ boson as obtained from the analysis of tb leptonic
events (` = e, µ, τ) (left) and the CMS dijet search (right). The cross-sections for the model under
study range within the grey bands, and the red lines represent the limits on the signal cross sections
obtained from ref. [117] and ref. [116], respectively. The acceptance for the kinematic cuts as used
in the dijet analysis is A ' 0.53.

For a comparison of the given cross-section limits we used SARAH to produce MadGraph

[118] code via the UFO [119] interface. The parton level results have been convoluted with
with the parton density distribution set CTEQ6L1 [120] and scaled to the next-to-leading
order by multiplying with the appropriate K-factors of 1.23 and 1.2 for the processes
pp→ jj and pp→ tb, respectively.3 In figure 3.6 we present the expected cross-sections
which are compared to the tb (left image) and the dijet search limits (right). The grey bands
correspond to the ranges in which the cross-section can vary in this model, depending on the
spectrum: the upper edge of the curves corresponds to the case of a heavy supersymmetric
spectrum in which case effectively only the W ′ decay channels into Standard Model particles
or ` νR are open, resulting in a comparatively small width. The lower edge corresponds to
a light spectrum, in particular µeff = 150 GeV, and an accordingly increased W ′ width.
The broader the W ′ resonance, the more suppressed are the jj and tb branching fractions,
which is the reason for the spread in the grey bands. The red lines each show the exclusion
curves from CMS in the σ −MW ′ plane. In ref. [116], a lower limit on the mass of a W ′

stemming from a SU(2)R gauge symmetry of 2.05− 2.1 TeV is given which agrees with the
upper edge of the grey band in the left panel of figure 3.6. In the case of a light spectrum,

3The numerical results have been cross-checked with output from CalcHEP [121].
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Chapter 3. Left-right supersymmetry with triplet scalars

in turn, the bounds are reduced to MW ′ . 1.95 TeV. The CMS limit for dijet resonances
depends a lot more on the specific spectrum. The reason for that is a small excess that has
been observed at an invariant dijet mass around 1.8 TeV so that the bounds are weaker in
its vicinity. Because of the spread of the grey bands according to the different possible W ′

widths, this has important consequences for setting bounds on our model: if the SUSY
spectrum is light (lower edge of the grey band), the bounds of the jj search are not very
constraining, and only masses up to 1.7 TeV can be excluded from this search. Hence, for
these scenarios the tb bounds are relevant. If, in turn, the supersymmetric spectrum is
heavy, then the dijet bounds are more constraining than the tb search. We deduce that

• light SUSY spectrum: MW ′ & 1.95 TeV and

• heavy SUSY spectrum: MW ′ & 2.25 TeV.

3.3.2 Combined W ′-νR search

Apart from the hadronic searches, also combined analyses are performed which look for
right-handed neutrinos that have been produced by a decaying W ′. The limits obtained by
these searches are typically interpreted in a simplified left-right-symmetric context where
the Standard Model is extended by a W ′ and a νR, using gL = gR. Consequently, the
assumptions are that (i) the W ′ has no other decay channels than a pair of quarks or
a charged lepton and a right-handed neutrino and (ii) that the νR decays solely via an
off-shell W ′ (denoted W ′∗ in the following). The considered production chain is

p p→W ′ → ` νR → ` `W ′∗ → ` ` q1 q̄2 , (3.43)

and only leptons and quarks of the first two generations are considered. Assuming that
the produced νR doesn’t mix with the other neutrinos and is considerably heavier than
the top quark leads to the assumption that the νR decays to a charged lepton plus first-
or second-generation quarks in about two thirds of the cases. In the considered type of
models, however, this assumption would be very premature [93,95,96,122] as in general
additional two-body decays are possible such as decays into a charged (neutral) slepton and
a chargino (neutralino), and also into a charged lepton and a charged Higgs. The latter is
often the case in the model under consideration because of the light mostly Φ−2 -like state
with the non-negligible coupling to νR via the ∆1R admixture, see eqs. (3.37-3.38). Via
this mixture, the additional decay channel

νR → `∓H± (3.44)

is in general open, the charged Higgs subsequently decaying into tb. A further suppression
of the νR → `jj decay is present when the supersymmetric spectrum is light so that
additional three-body decays of the form

νR → `W ′∗ → `X Y , X Y 6= jj (3.45)

are open. In particular the higgsino-like charginos and neutralinos whose mass is controlled
by the size of µeff can reach large branching ratios. In figure 3.7 we show the branching
ratios of right-handed neutrinos for the case that the lightest charged Higgs ranges between
200 and 300 GeV (left panel) as well as between 400 and 500 GeV (right panel) in mass. The
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Figure 3.7: Branching ratios of the right-handed neutrino for a light spectrum, including a
charged Higgs of mass 200 GeV < MH± < 300 GeV (left) and for a heavier spectrum with
400 GeV < MH± < 500 GeV (right). ‘Other’ refers to all other two- and three-body decays.

different regions can be easily identified. In the low νR mass region, the three-body decay
via a virtual W ′ dominates, the final state being almost exclusively the `jj channel since
the `tb channel has too little phase space available. For νR masses at the H± threshold,
the associated two-body decay channel opens and the other channels are suppressed
accordingly. The final state as used in the experimental analysis still amounts to around
10-40 % in this case. The magnitude of this branching ratio is mostly influenced by the
mass ratio mνR/MW ′ because of the suppression of the W ′ propagator in the three-body
decay. Accordingly, the heavier the decaying νR, the less suppressed the three-body decay,
and consequently, `jj can become the dominant channel again. This is the case in the
right figure at around mνR ≈ 1.5 TeV. The other decay modes (cyan) are, in the lower
mass regions of the right-handed neutrino, mostly three-body decays νR → `∓χ̃±χ̃0 via
an intermediate W ′. As soon as another two-body decay opens which isn’t suppressed by
a small mixing angle, it will dominate over the other decays. This is the case in the left
figure where we have assumed a somewhat lighter spectrum than in the right panel, with
accordingly lighter sleptons. Hence, as soon as this channel is kinematically allowed, the
decays νR → ν̃χ̃0/˜̀∓χ̃± amount to almost 100 % in branching ratio.

Evidently, the modified νR decays with respect to the simplified treatment change
the interpretation of the experimental search results considerably, and a reanalysis in the
framework of our model is in order. To this day, the most constraining bounds with this
respect stem from the CMS collaboration, ref. [123], and the reported bounds on the W ′

mass range up to 3 TeV. In figures 3.8-3.9 we show the reinterpretation of this search in the
(MW ′ ,mνR) plane for right-handed neutrinos of electron and muon flavour, respectively,
using a suitable K-factor of 1.3 [124]. The area enclosed by the black line corresponds to
the region which ref. [123] excludes for the kind of left-right models used there. The red
dots correspond to parameter points of our model which are excluded because of the placed
cross-section limits, whereas green points are allowed. In the low-mass region of the right-
handed neutrinos, the analysis is not sensitive: the νR decay products are very collimated,
and as the reconstruction in this analysis relies on high-pT objects which are spacially
well separated from one another, the signal drops rapidly for mνR/MW ′ . 0.1 [123]. The
overlap between red and green points in this area is quite significant and can be explained
by the extra W ′ decay modes: in this low νR mass region, the H± is often too heavy for the
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Figure 3.8: Random scan over the model parameters presented in the (mνRe ,MW ′) plane (left)
and ((y4

L)11, vR) plane (right). Red (green) points are excluded (allowed) from the CMS search
for W ′ and νR,e in the eejj channel. The black curve in the left panel of the figure is taken from
ref. [123] and contains the excluded region of the W ′/νR,e combination when evaluated in the
simplified model of ref. [123].
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Figure 3.9: Same as in figure 3.8, for a right-handed neutrino of a muon flavour (of mass mνR,µ).
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νR to decay into. The assumptions of the simplified models thus apply for those parameter
points where the W ′ decays dominantly into qq̄′ or `νR, i.e. those points exhibiting a
heavy supersymmetric spectrum. Consequently, some of the points close to the border of
the exclusion line are actually excluded. For those points whith a light supersymmetric
spectrum, in turn, extra W ′ decays into higgsinos and other particles reduce the branching
fraction into the searched-for final state. In this way, the ``jj cross-section is reduced,
leaving those points close to the black line still allowed.

In the region featuring large mνR , in turn, all points which lie close to the black exclusion
curve are still allowed. This is the combined effect of additional W ′ decays as well as the
additional W ′-mediated νR three-body decays and the open νR → `∓H± channel. The
latter becomes more important in the bulk region where also MW ′ is large so that the
three-body decays are further suppressed. As a result, no excluded points can be found in
the vicinity of the exclusion curve in the high-MW ′ region but the W ′ bounds are reduced
by up to 400 GeV and 700 GeV for the case of electron- and muon-flavoured neutrinos,
respectively. In general, the bounds for the νR,e are less restrictive, and the effect of the
open `∓H± channel is much more pronounced (see the notch at mνR,e & 500 GeV in
figure 3.8). This is because of the less stringent CMS cross-section bounds in ref. [123]. In
fact, an excess with a local significance of 2.8σ has been observed in the eejj channel for
1.8 < MW ′/GeV < 2.4 whereas the muon channel agrees very well with the null hypothesis.
In the experimental analysis it is stated that left-right symmetric models appear to fail
to explain that excess, the main reason being that the estimated production cross section
following eq. (3.43) is in general too large. However, this statement clearly does not hold
when considering additional W ′ and νR decay channels which reduce the eejj signal as in
the scenarios discussed above, and in the following we shall see under which circumstances
our model can fit this excess.

Note that our model in its described implementation can not explain the deficit of
same-sign leptons within the final state (only one out of 14 potential signal events contains
electrons of the same electric charge). Instead, as the neutrinos in our model are of
Majorana type and we assume CP conservation in the lepton sector, one would expect
the e±e∓jj and the e±e±jj final states to be produced with the same rate. The more
recent ATLAS analysis which only searches for same-sign lepton pairs and jets underpins
this same-sign deficit as it does not see any excess in the data [125]. In the context of our
model, this issue could e.g. be resolved by employing an inverse seesaw mechanism: in this
way, the neutrinos would be pseudo-Dirac particles whereas the total rates addressed below
are not affected 4. Keeping that in mind, we will proceed with showing how in our model
the necessary cross-sections are obtained.

As in the µµjj channel no deviation from the background expectation has been observed,
νR,µ has to lie outside of the excluded mass range when compared to figure 3.9. We hence
(conservatively) demand

mνR,µ . 200 GeV or mνR,µ & 1.8 TeV , (3.46)

4In ref. [126], a linear seesaw realization is presented which has the same effect of resolving this issue.
An alternative explanation of the same-sign deficit in the context of left-right symmetry has been given
in ref. [127]: in this analysis, the interference between two right-handed Majorana neutrinos with mixed
flavour content and opposite CP parities is considered which can partially suppress same-sign lepton pairs.
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or equivalently

(yL4 )22 . 0.04 or (yL4 )22 & 0.36 . (3.47)

The νR of τ type remains unconstrained. For the following investigation we differentiate
between three different νR mass hierarchies:

1. mνR,e < mνR,µ ≈ mνR,τ ,

2. mνR,µ � mνR,e < mνR,τ ,

3. mνR,µ ≈ mνR,τ � mνR,e .

The first hierarchy is in fact excluded if we apply an upper bound on the slepton soft
mass parameter mLR of a few TeV: this scenario requires a rather large (yL4 )22 coupling
which, as discussed before, decreases mH±± . This mass, in turn, is most constrained if
H±± couples strongly to the muon flavour since in this case the most stringent bounds
from µ±µ± searches apply and hence it has to be heavier than ∼ 400 GeV. For obtaining
the sufficiently large one-loop corrections for this to happen, large µeff

R values are required
which themselves enhance the splitting of the right sneutrino CP eigenstates. Eventually,
for avoiding tachyonic sneutrinos, mLR has to be larger than ∼ 3 TeV in this scenario,
which we regard as undesirable. With the same line of argument we can also disregard the
hierarchy mνR,τ � mνR,e < mνR,µ . As a consequence, only the cases in which νR,µ is light
are further considered. As we shall see in the following, both cases can in fact explain the
observed excess, with both a light and a heavy supersymmetric spectrum.

Light supersymmetric spectrum

Let us consider a light supersymmetric spectrum now, in the sense that the higgsinos are
light. In this case, the less stringent W ′ bound from the tb search applies, MW ′ . 1.95 TeV.
In figure 3.10 we present the signal cross sections using µeff = 150 GeV and mνR,e = MW ′/2
for the cases of νR hierarchy 2 (black, solid) and 3 (black, dashed). The different values
for µeff

R have no impact on the cross-section but were chosen in order to prevent a too
small mH±± . The reason for the slight difference between both cases is the additional
decay channel νR,e → e±νR,ττ∓ for hierarchy 3. The observed (expected) cross-section
limit is depicted by the red solid (dashed) line, and the green (yellow) band shows the
expected limit ±1σ (2σ). The blue line with the second largest cross-section depicts the
case in which no additional νR decays are available but only the W ′-mediated three-body
decays νR,e → eqq̄′. The difference between the neutrino hierarchies 2 and 3 in this case
is very small so that only a single line is presented. The orange dashed line corresponds
to the simplified left-right scenario as employed by ref. [123], in good agreement with the
theoretical cross-section curve shown there.

As apparent from the figure, taking into account all decay modes of the W ′ is not
enough for reducing the cross-section to the required value as this suppression only amounts
to a factor of ∼ 1.6. However, the combination with the additional νR decay modes, which
result in a further suppression factor of 2.5, yields a cross-section which is of the right
magnitude in order to explain the measured excess.
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Figure 3.10: Expected cross section of the process pp → W ′ → eejj at
√
s = 8 TeV using

µeff = 150 GeV, tanβR = 1.02 and (yL4 )11 ' 0.24 which corresponds to mνR,e = MW ′/2. The
black solid (dashed) line shows the case of νR hierarchy 2 (3) using µeff

R = 4 (6) TeV. The blue line
corresponds to the case in which the νR only decays into `qq̄′. The orange dashed line represents the
scenario of simplified left-right models where two-body νR decays as well as additional W ′ decays
are absent. The grey area is excluded from the W ′ → tb searches in [117]. The red line shows the
exclusion bound of ref. [123] and hence excludes all cross sections above the curve, while the red
dotted line corresponds to the expected exclusion line using the background-only assumption. The
green (yellow) band shows the expected exclusion ±1σ (2σ).

Heavy supersymmetric spectrum

The same consideration can be done if the higgsinos are heavy. In this case, the stronger
W ′ bound from the dijet search applies and its mass has to be larger than ∼ 2.25 TeV.
Because of the smaller W ′ and νR width in this case, the eejj cross-section is less reduced
than for the case of light supersymmetry. We present in figure 3.11 the same situation as
in figure 3.10 using µeff = 1.5 TeV. Again we show the cases for neutrino mass hierarchy 2
(black lines) and 3 (blue) and see that hierarchy 3 features the smaller cross-sections when
using the same value for tanβR. We present two different tanβR values for the case of
hierarchy 2. This is to show how the increase of mH±1

with larger tanβR, c.f. eq. (3.37),

reduces the phase space of the νR → `∓H±1 decay and consequently increases the ``jj
cross section. Eventually we find that despite the more stringent bounds on MW ′ and the
relative factor of ∼ 1.6 between these cross-sections and the ones in figure 3.10, also this
scenario would still be compatible with the measured excess.

Consequences for the model

Taking the excess seriously, the necessary conditions for the fit to succeed have interesting
consequences for the model. Of course, the most obvious consequence would be a W ′ of
∼ 2−2.3 TeV which has to show up soon in the hadronic searches. This would immediately
fix vR. Secondly, if we take the same assumptions as above, in particular no flavour mixing
within the νR sector, then νR,µ has to be light, mνR,µ . 200 GeV.
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Figure 3.11: Cross-section of pp→ W ′ → eejj at
√
s = 8 TeV using µeff =1.5 TeV. The black

solid (dashed) lines correspond to νR hierarchy 2 and tanβR = 1.05 (1.02) µeff
R = 6 TeV (3.5 TeV),

the parameters of blue dot-dashed line are tanβR = 1.05, µeff
R = 6 TeV for hierarchy 3. The grey

area is excluded from the dijet searches in ref. [116]. The rest of the figure is as in figure 3.10.

Interestingly, a near-future W ′ mass measurement can shed light on the underlying
theory: should it be confirmed at 2 TeV, then an interpretation within our model will
immediately demand a broad W ′ resonance, implying new particles of the order of a few
hundred GeV as decay products, as are the higgsino-like charginos and neutralinos in the
scenarios discussed above. A confirmation at 2.3 TeV, in turn, points to scenarios which
lack such light additional decay final states.

Additional considerations on the H±± mass constrain the parameter space even further:
for νR hierarchy 3, only a moderate largest yL4 entry of ∼ 0.24 is required for the case
mνR,e = MW ′/2, so that mH±± is not reduced by a large amount. However, as in this
case H±± couples strongest to (and hence dominantly decays into) a pair of electrons,
the respective LHC bounds already constrain its mass to be beyond 400 TeV. To achieve
this, µeff

R has to be large (µeff
R & 6 TeV for tanβR = 1.02 and MW ′ around 2 TeV). As a

consequence, in order to avoid a tachyonic sneutrino, mLR & 2.5 TeV has to be satisfied
so that the charged sleptons carry masses of the same order of magnitude. For hierarchy
2 these bounds are not as severe because in this case the dominant H±± decay mode
is a τ pair, with the associated lower LHC bounds of roughly 200 GeV. Although the
negative contributions from yL4 to the one-loop m2

H±± are larger than in the scenario (2),
the conditions on µeff

R and also mLR are weaker in this case.

3.4 Vacuum stability

We have shown above that the tree-level saddle point of the charge-conserving vacuum can
turn into a true minimum when considering the full one-loop corrections to the H±± mass.
Of course, this merely means that it is one minimum among others, and at this stage we
can not yet deduce a statement about the global minimum. In particular, it is not yet clear
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if the desired vacuum configuration as in eq. (3.8) can feature a deeper minimum than
the charge-breaking one of the tree-level potential, eq. (3.22), at all. Here we will analyse
the stability of the desired vacuum for being able to provide statements about the valid
parameter space from theory arguments, complementary to the experimental searches at
the LHC.

We start by evaluating the one-loop effective potentials for the two most relevant vacua:
the one exhibiting the desired symmetry breaking pattern and the charge-breaking one. In
the following we denote the former as ‘DSB’ and the latter as ‘CB’. The basic features can
already be seen by the parts of the superpotential involving the ∆̂iR, L̂R and Ŝ superfields
as in W∆ of eq. (3.14) so that we work with the tree-level scalar potential as defined in
eqs. (3.15-3.18). We calculate the soft Higgs masses m2

∆1R
, m2

∆1R
and m2

S by solving the
tadpole equations in the DSB case:

∂V0

∂X

∣∣∣
DSB:〈∆0

iR〉=
viR√

2
,〈S〉= vS√

2

= 0 for X = {∆0
1R,∆

0
2R, S} . (3.48)

Now Vsoft is optimized for the DSB case. In order to account for this optimization in the
CB case, the vevs viR have to be modified by a small amount, and we can relate the vevs
of the CB vacuum to the corresponding DSB ones by

〈∆0
1R〉|CB = 〈∆−−1R 〉|CB = α1

v1R

2
and 〈∆0

2R〉|CB = 〈∆++
2R 〉|CB = α2

v2R

2
, (3.49)

and we therefore have to demand

∂V0|CB

∂αi
= 0 (3.50)

in order to find the global CB tree-level minimum. Those conditions result in αi which are
not equal to but close to unity. We proceed by calculating the masses of the scalar particles.
As electromagnetism is not per se a good symmetry in this context, we split every complex
scalar field X into its scalar and pseudoscalar components, X = 1√

2
(vX + φSX + iφPX). The

non-zero vevs vX are considered for the appropriate fields according to the CB and DSB
vacuum configurations. The unphysical would-be-Goldstone bosons can be rotated out so
that we end up with 15 real scalar fields, the mass matrix being calculated by

(
M2
S

)DSB/CB

ij
=

∂2V0

∂φi∂φj

∣∣∣
DSB/CB

. (3.51)

The fermionic spectrum corresponding to W∆ consists of the SU(2)R and U(1)B−L
gauginos W̃ i

R and B̃, the triplet higgsinos ∆̃iR as well as the singlet fermion S̃ and the
right-handed lepton doublet LR. It can be evaluated from the Lagrangian terms

Lfermions
mass =− λS S S̃ S̃ − λR

(
S̃ Tr(∆̃1R ∆2R) + S̃ Tr(∆1R ∆̃2R) + S Tr(∆̃1R ∆̃2R)

)
(3.52)

− yL4
2

(
2LTR ∆1R ε LR + L̃TR ∆̃1R ε LR + LTR ∆̃1R ε L̃R

)
(3.53)

−
√

2gR

3∑
i=1

W̃R,i

(
Tr(∆†1R[τi, ∆̃1R]) + Tr(∆†2R[τi, ∆̃2R])− L̃†R τi LR

)
(3.54)
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−
√

2gBLB̃
(

Tr(∆†2R ∆̃2R)− Tr(∆†1R ∆̃1R) +
1

2
L̃†R τi LR

)
(3.55)

− 1

2
mW̃R

3∑
i=1

W̃R,i W̃R,i −
1

2
mB̃ B̃ B̃ + h.c. . (3.56)

This results for example in lepton masses of

mνR |DSB =
√

2 v1R y
L
4 , meR |DSB = 0 , (3.57)

mνR |CB = α1 v1R y
L
4 , meR |CB = α1 v1R y

L
4 . (3.58)

The masses of the vector bosons W i
R and B are obtained from the application of the

covariant derivative to the Higgs fields (Dµφ)†(Dµφ). The relevant non-derivative part of
the corresponding Lagrangian reads

Lvector
mass =Tr

(
(gR

3∑
a=1

Wµ,a
R [∆†1R, τ

a]− gBLBµ ∆†1R)(gR

3∑
b=1

W b
R,µ [τ b,∆1R]− gBLBµ ∆1R)

+ (gR

3∑
a=1

Wµ,a
R [∆†2R, τ

a] + gBLB
µ ∆†2R)(gR

3∑
b=1

W b
R,µ [τ b,∆2R] + gBLBµ ∆2R)

)
.

(3.59)

Three of the four mass eigenstates feature masses of O(vR) whereas one eigenstate remains
massless in each case. The latter is a consequence of the fact that a Higgs field in the
adjoint representation of an SU(N) cannot break the rank of this group. In the particular
cases the massless bosons emerge from the following: in the DSB case the hypercharge
U(1) remains unbroken by the triplet scalar vevs. In the CB case, in turn, the vevs are
aligned along τ1 so that this generator remains unbroken due to [τ1,∆iR] = 0 and W 1

R

turns out massless.

Having derived all masses for both symmetry breaking scenarios, we calculate the
one-loop effective potential

V1L,eff = V0 + VCW , (3.60)

where VCW is the Coleman-Weinberg potential [100] which reads, in the DR scheme and
Landau gauge,

VCW =
∑
n

(−1)2sn(2sn + 1)

64π2
m4
n

(
log

(
m2
n

Q2

)
− 3

2

)
. (3.61)

Here, n runs over all scalar fields, Weyl fermions and gauge bosons. The symbols sn and
mn represent the spin and mass of the nth field. Q is the renormalization scale which we
fix to 1 TeV. We have checked that the features discussed below do not depend on the
choice of Q by varying it up to 2 vR.

In the following discussion we compare the depths of the minima of V1L,eff between the
DSB and CB cases. Since the absolute depth of the minima is of no relevance, we are only
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Figure 3.12: Results for ∆V = V DSB
1L,eff − V CB

1L,eff using the simplified approach with just the terms
from W∆. For negative (positive) values of this difference, the DSB (CB) minimum is deeper. In the
left panel we show this difference at the tree level (solid grey line) and at the one-loop level (solid
black line) as a function of tan βR for vR = 5.5 TeV, λR = 0.4, yL4 = 0.25, m2

LR
= 2 · 106 GeV2 and

vS = 10 TeV. The additional lines represent the different contributions to ∆V : slepton and lepton
fields (blue dotted line), Higgs fields (blue dashed line), gauginos/higgsinos (red dotted line) and
vector bosons (red dashed line). In the right panel we depict the total difference for tanβR = 1.02
and yL4 = 0 as well as λR = 0.3 (solid black line), 0.4 (green dotted line), 0.5 (blue dashed line) and
0.6 (red dot-dashed line).

interested in the difference of these values:

∆V = V DSB
1L,eff − V CB

1L,eff , (3.62)

i.e. negative values imply that in this case the DSB vacuum at one-loop indeed features
the lower minimum. In figure 3.12 we present ∆V as a function of tanβR and vR. In the
left panel we show in addition to the total difference (black solid line) also the separate
contributions to ∆V . Interestingly, we can confirm the suggestive statement of ref. [104]
that the desired symmetry breaking variant can indeed turn out to result in a deeper
minimum than the charge-breaking one once loop corrections are taken into account – with
the difference that our findings motivate the inclusion the complete one-loop corrections
as the sole yL4 -dependent contributions from the (s)lepton sector are counterproductive
with this respect. In the particular case depicted on the left panel of figure 3.12, the
DSB case corresponds to the global minimum of the one-loop effective potential for
tanβR ∈ [0.97, 1.03]. It is plainly seen that the DSB minimum can only be the deeper one
because of the gaugino and higgsino contributions whereas the (s)lepton, Higgs and vector
contributions usually add positively to ∆V . In section 3.2.2 it was argued that, besides
the neutralino contributions, also the W ′±/H± loop contribute substantially to a positive
m2
H±± and hence to a one-loop DSB minimum. Note that this is not in contradiction

with the statements made here since it is not the absolute contributions to V DSB
1L,eff that

matter from a vacuum stability viewpoint but only the relative ones w.r.t. V CB
1L,eff . The

dependence of ∆V on vR for different values of λR is shown in the right panel of figure 3.12.
We observe that the DSB vacuum can only feature the deeper minimum up to a certain
value of vR which strongly depends on the other parameters like λR. This is similar to the
H±± mass where the positive loop corrections from χ̃0/χ̃±± are enhanced for larger λR.

In the above considerations we have shown that at one-loop, the desired symmetry
breaking scenario can feature a deeper minimum than the vacuum structure corresponding

49



Chapter 3. Left-right supersymmetry with triplet scalars

50

100

100

150

200

250

275

2000 4000 6000 8000 10000 12000 14000

0.0

0.1

0.2

0.3

0.4

0.5

vR [GeV]

y
L 4

50

100

100

150
200

250

275

2000 4000 6000 8000 10000 12000 14000

0.0

0.1

0.2

0.3

0.4

0.5

vR [GeV]
y
L 4

Figure 3.13: Analysis of the vacuum stability in the (vR, y
L
4 ) plane using λR = 0.3, for one

generation of right-handed neutrinos (left) and for three mass-degenerate νR states (right). The
other fixed model parameters are m2

LR
= 2 · 106 GeV2 and vS = 10 TeV. The white contours

indicate isomass lines for the doubly-charged Higgs boson in GeV as obtained with our full one-loop-
corrected calculation. The green regions correspond to setups where the DSB vacuum configuration
of eq. (3.8) is the global minimum of the scalar potential whereas in the red regions, the CB vacuum
configuration consists of a deeper minimum. The blue line separates these cases using the results
from the simplified analytical approach.

to the tree-level global minimum. For this analysis we have already known which ones
the minima if interest were. In general, however, there are many more minima of the
scalar potential with different vacuum structures which we have to take into account when
asking for the global minimum and which we miss by only considering the two known ones.
Therefore, we now turn to a numerical analysis of the vacuum structure of the full model,
allowing for additional vevs. For this purpose we used SARAH to produce model files for
Vevacious [128]. This is a programme that first evaluates all tree-level extrema of the
scalar potential of a given model and continues by finding the nearby minima at the loop
level via homotopy continuation, using the one-loop effective potential approach as done
above. For checking if a given parameter point lives in a stable vacuum, one should, in
principle, take into account all scalar fields and examine which ones develop a vev and
which not. However, in models with as many scalars as in the present one, finding all
possible minima in this multidimensional field space would require enormous amounts of
CPU time well beyond a year for a single parameter point. Therefore, we restrict ourselves
to allowing vevs for the most reasonable candidates only. In addition to the neutral Higgs
scalars Φ0

1,2, ∆0
1R,2R and S, we consider, as above, the possibility of non-zero vevs for ∆−−1R

and ∆++
2R in order to account for the CB case. Moreover, we allow one generation of right

sneutrinos ν̃R to have a non-zero vev in order to cover the possibility of R-parity violating
vacua. This is motivated by the fact that the tree-level saddle point of the CB vacuum can
be turned into a minimum by allowing ν̃R vevs.

It turns out that in regions where R-parity conserving spectra can be found at the
one-loop level, the global minimum is always either
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3.4. Vacuum stability

• of the DSB kind, i.e.
〈Φ0

1〉 = vd/
√

2 , 〈Φ0
2〉 = vu/

√
2 ,

〈∆0
1R〉 = v1R/

√
2 , 〈∆−−1R 〉 = 0 ,

〈∆0
2R〉 = v2R/

√
2 , 〈∆++

2R 〉 = 0 ,
〈S〉 = vS/

√
2 , 〈ν̃R〉 = 0 ,

• or the CB kind, i.e.
〈Φ0

1〉 = 〈Φ0
2〉 = 0 ,

〈∆0
1R〉 = 〈∆−−1R 〉 ' v1R/2 ,

〈∆0
2R〉 = 〈∆++

2R 〉 ' v2R/2 ,
〈S〉 = vS/

√
2 , 〈ν̃R〉 = 0 .

In figure 3.13 we show in the (vR, y
L
4 ) plane the regions where the global minimum

corresponds to the desired vacuum configuration (green) and where it corresponds to the
charge-breaking scenario (red). The line that separates the DSB and CB cases due to
∆V = 0 as obtained from the analytic approach used before is shown in blue. From the
good agreement between both approaches we conclude that the simplified analytic approach
can safely be used for a first understanding and an estimate of which of the known minima
is deeper. The green-shaded parameter space of figure 3.13 is currently narrowed down
from two sides by the LHC which sets lower limits on vR (see section 3.3) as well as on
mH±± (see section 3.2). As for the yL4 -dependent loop contributions to the H±± mass
shown in figure 3.2, the region with the desired global minimum shrinks with growing
Majorana neutrino Yukawa coupling and SU(2)R breaking scale, rendering these scenarios
less likely. As each single νR contribution lifts the one-loop scalar potential, the net effect
of including more than one non-zero yL4 entry is that the region where a stable desired
vacuum is possible gets reduced accordingly. This is seen in the right panel of figure 3.13
where we show for the otherwise same setup as in the left figure the case where all three
right-handed neutrinos are degenerate in mass, i.e. yL4 =̂(yL4 )ii. As a matter of fact, the
scenario on the left-hand side still contains parameter space that is not ruled out by LHC
searches as long as the massive right-handed neutrino is of tau flavour. The scenario on
the right panel, in contrast, is fully excluded because of the H±± searches as the decay
H±± → `±`± would be democratic in lepton flavour and the associated stronger bounds
would apply.

While the parameter space in figure 3.13 is close to exclusion, this is not necessarily the
case for other parameter regions. As has been shown in figure 3.12, larger λR values not
only help raising the one-loop H±± mass but also pulling the DSB minimum below the
charge-breaking analogue. In the left panel of figure 3.14 we show this effect in the (yL4 , λR)
plane. The figure on the right panel accordingly shows the analogue of figure 3.13 using
λR = 0.4 instead of 0.3, featuring an accordingly larger region of allowed parameter space
in the (vR, y

L
4 ) plane. This increase in µeff

R comes with a prize, though. As discussed before,
it enhances the F -term contribution to one of the sneutrinos and can consequently drive
one of the CP -eigenstates tachyonic. The black curves in figure 3.14 enclose the regions in
which that happens at the tree level. A natural consequence is R-parity violation in these
parameter regions. Yet, similar to the H±± states which are tachyonic at the tree level,
also the sneutrinos can be helped to a positive squared mass at the loop level which is the
reason for small green strips beyond the black lines. Moving away from that frontier in
parameter space, however, leads to larger negative squared masses at the tree level which
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Figure 3.14: Analysis of the vacuum stability in the (yL4 , λR) and the (vR, y
L
4 ) plane. The

parameters have been chosen as in the corresponding plots of figure 3.2 for one generation of
right-handed neutrinos. The color code is as in figure 3.13. The blue line separates DSB and CB
global minima as obtained from the simplified analytical approach. The additional black lines
enclose regions where one sneutrino CP eigenstate gets tachyonic at the tree level due to the large
negative F -term contributions. The grey areas indicate the parameter space in which the global
minimum is found to violate R-parity, whereas the vacuum conserves electric charge in the lighter
grey regions and in the darker grey regions it doesn’t.

loop corrections cannot counteract. Hence, the ν̃R field associated with the yL4 entry has to
aquire a vev in these areas, thereby breaking R-parity. This is the case in the grey regions
in figure 3.14. A lighter grey shading indicates regions where R-parity is broken whereas the
global minimum still conserves electric charge. However, although electroweak symmetry is
also broken in this area, it does not happen at the correct scale since the electroweak vevs
are of the order of one TeV. The darker grey shading, in turn, corresponds to scenarios
where both, R-parity and electric charge invariance, are broken. Note that the R-parity
violation here spoken of is solely an artefact of large negative F -term contributions to
the sneutrino masses and could easily be avoided by a larger soft slepton mass m2

LR
. In

other words, in this case 〈ν̃R〉 6= 0 is necessary to acquire a minimum in the ν̃R direction of
the scalar potential. It is hence of completely different origin than the R-parity violation
suggested in refs. [97,99] which was thought necessary for a charge-conserving minimum
at 〈∆−−1R 〉 = 〈∆++

2R 〉 = 0 – irrespective of the ν̃R direction. In particular, as pointed out
before, we did not find any R-parity violating global minima in regions where the tree-level
squared masses of the sneutrinos are positive.

Finally, we remark that the parameter space in the red region of the figures does not
necessarily have to be excluded because of a decaying vacuum. Instead, using a simple
analysis of direct path tunneling at zero temperature, we found that in fact all points
with a non-tachyonic H±± in the red region are metastable as the estimated tunneling
time is many orders of magnitude larger than the age of the Universe. A more thorough
investigation of this effect including the optimization of the tunneling path at T 6= 0 is
beyond the time scale of this thesis. Investigations of this kind within the MSSM have
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3.4. Vacuum stability

however shown that the consideration of additional non-zero vevs for other scalar fields
such as squarks can prove a previously-thought metastable vacuum to be unstable [55,56].

In conclusion, we have shown that the consistent calculation of one-loop mass corrections
can not only ameliorate the situation of a tree-level tachyonic doubly-charged Higgs field but
also increase the depth the corresponding vacuum beyond the dangerous charge-breaking
one. Hence, other than concluded in early studies, the model under investigation is perfectly
viable and in particular does not require R-parity violation to be kept alive. Fortunately,
our study has shown that the regions of the parameter space which feature a large-enough
H±± mass and at the same time a stable vacuum coincide with the scales currently under
probe by the LHC, rendering this model highly testable.
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CHAPTER 4

SO(10) INSPIRED GMSB

We will now address the issue of the predicted Higgs mass in supersymmetry in the
context of models with an extended gauge group. As briefly discussed before, in minimal
supersymmetric models, the tree-level Higgs mass is constrained to be at most equal to
the Z mass so that large loop corrections from stops are necessary to raise mh to the
measured value. This translates to the requirement that either the stop masses have to
be in the multi-TeV range or that there is a large left-right splitting in the stop sector,
incorporated in large stop trilinear couplings. The former is unattractive as then one of
the main motivations for supersymmetry, namely it being the solution to the hierarchy
problem, would be in a bad shape. The latter suffers from the problem that, for large
ratios of the trilinear coupling to the average stop mass, the vacuum tends to grow unstable
as a charge- and colour-breaking minimum featuring sfermion vevs emerges as the global
minimum [55,56]. If the mechanism that breaks supersymmetry invariance works via gauge
mediation, these trilinear couplings are tiny. Hence, the stop masses have to be very large
which implies, in GMSB, large masses of the superpartners in general. Therefore, there
is little hope for observing traces of such a model at the LHC and gauge mediation in
its original form has been mostly disregarded recently. Instead, non-minimal realizations
which include direct messenger-matter interactions have gained some popularity since they
provide the possibility to generate large trilinear couplings [129–138].

In models exhibiting an extended gauge group such as the left-right-symmetric model
discussed above, the condition mh,tree < MZ does not apply anymore. The reason is that
the Higgs fields are often also charged with respect to the new gauge symmetry so that
extra D-terms add to the tree-level Higgs mass. In the following, we shall pursue the idea
of minimal gauge mediated supersymmetry breaking in an explicit realization of a model
with an extended gauge group and check to which extent these D-terms can loosen the
lower bounds on the squark masses and which LHC phenomenology can be expected.

So far we have considered “true” left-right gauge symmetry at the TeV scale. A UV
extension of these types of models is in general non-trivial as gauge coupling unification
usually requires the addition of intermediate supermultiplets [139]. There are, however,
classes of models in which a remnant left-right symmetry of SU(3)c × SU(2)L × U(1)R ×
U(1)B−L can remain unbroken down to the electroweak scale while retaining perturbative
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4.1. Model definition

gauge coupling unification at the GUT scale [88,89]. Therefore we can assume that the left-
right symmetric group gets broken down to the above group close to the GUT scale so that,
starting from an SO(10) GUT, the breaking works along the “minimal” left-right-symmetric
chain:

SO(10)→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L
→ SU(3)c × SU(2)L × U(1)R × U(1)B−L ∼ GUT scale (4.1)

→ SU(3)c × SU(2)L × U(1)Y ∼ TeV scale

As a consequence, the mass scale of supersymmetry breaking lies in the phase with
broken SU(2)R but unbroken U(1)R × U(1)B−L.

We will now start with presenting the central features of the model under consideration,
define the messenger sector and derive the boundary conditions for the SUSY-breaking
parameters before we go on with investigations of the Higgs properties and discuss different
possibilities how a signal from this model could show up at the LHC.

4.1 Model definition

The matter sector as known from the MSSM is extended by three generations of a right-
handed neutrino superfield ν̂c so that all matter fields can be accommodated in a complete
16-plet under SO(10) for each flavour. The Higgs sector has to be enlarged because of the
need to break U(1)R × U(1)B−L down to the hypercharge group. This is achieved by two
superfields χ̂R and ˆ̄χR bearing the opposite (same) U(1) charges as ν̂c. Because of these
charge assignments, a seesaw of the inverse type is possible which requires the inclusion of
an additional gauge singlet superfield Ŝ. Note that the additional Higgs fields originate
from SU(2)R doublets in the in the unbroken SU(2)L × SU(2)R × U(1)B−L phase close to
the GUT scale, transforming as (0,2,∓1), and hence do not coincide with the additional
Higgs sector from chapter 3 where SU(2)R triplets were used to break the symmetry and
to implement a seesaw mechanism of type I. We will come back to this point and motivate
the preference of this symmetry breaking and the corresponding seesaw mechanism over
the previous one when discussing the tadpole equations in section 4.4.

The superpotential of the model reads

W =Y ij
u ûci Q̂

α
j εαβ Ĥu − Y ij

d d̂ci Q̂
α
j εαβ Ĥ

β
d − Y ij

e êci L̂
α
j εαβ Ĥ

β
d + µ Ĥα

u εαβ Ĥ
β
d

+ Y ij
ν ν̂ci L̂

α
j εαβ Ĥ

β
u + Y ij

S ν̂ci Ŝj χ̂R − µR ˆ̄χR χ̂R +
1

2
µijS Ŝi Ŝj , (4.2)

which agrees with the one used in ref. [140].

It should be noted that the χR, χ̄R fields break R-parity spontaneously as soon as they
develop a vev as they have R = −1 due to their B−L quantum numbers. Moreover, gauge
invariance would also allow terms like ˆ̄χRL̂Ĥu in the superpotential. Those would further
contribute to this R-parity violation as soon as 〈χ̄R〉 6= 0 and 〈H0

u〉 6= 0, respectively, hence
mixing charged leptons with charginos as well as neutrinos with neutralinos. In order to
avoid this, we introduce a discrete ZM2 matter parity under which the Higgs superfields
Ĥu, Ĥd, χ̂R, ˆ̄χR are even and all other fields are odd. A discrete symmetry of that kind
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Chapter 4. SO(10) inspired GMSB

has already been proposed in refs. [141,142] for similar models. This parity is sufficient to
forbid the dangerous terms leading to proton decay and to prevent the LSP from decaying,
so that there is no need for the conventional R-parity. It is important to note that the
contraints due to the discrete gauge symmetry anomalies are fulfilled [143,144].

The soft SUSY-breaking Lagrange density is given by

−Lsoft = m2
ijφ
∗
iφj +

(
1

2
Mabλaλb +BµH

α
u εαβ H

β
d −BµR χ̄R χR +BµS S̃ S̃ + T ijS χR ν̃

c
i S̃j

− T ijd d̃ci Q̃
α
j εαβ H

β
d + T iju ũci Q̃

α
j εαβ H

β
u − T ije ẽci L̃

α
j εαβ H

β
d + T ijν ν̃ci L̃

α
j εαβ H

β
u + h.c.

)
,

(4.3)

where we have used φ for all scalar particles, i and j being generation indices, and λa for
the gaugino of gauge group a. Note that because of the two Abelian gauge groups and the
resulting gauge kinetic mixing (see a discussion of that effect in the next section), also a
mixed term MR,B−LλRλB−L is possible.

In table 4.1, we list the matter content of the model with the respective quantum
numbers under the gauge groups. The U(1) charges are normalized in such a way that,
after the breaking U(1)R × U(1)B−L → U(1)Y , the hypercharge operator reads

Y = TR + TB−L , where TB−L Φ =
B − L

2
Φ . (4.4)

After electroweak symmetry breaking, the electric charge is Qem = T 3
L + Y . For the

UV completion and the respective relations at the GUT scale we use a different, GUT-
compatible normalization of the charges under the Abelian groups. This results in the
relation

YGUT =

√
3

5
TR,GUT +

√
2

5
TB−L,GUT where (4.5)

YGUT =

√
3

5
Y ,

(
TR,GUT
TB−L,GUT

)
= N ·

(
TR
TB−L

)
, and N =

(
1 0

0
√

3
2

)
, (4.6)

The vector of U(1) gauge couplings (gR, gBL)T is multiplied by N−1 so that the unification
condition at the GUT-scale actually reads g3 = gL = gR,GUT = gBL,GUT .

4.2 Gauge kinetic mixing and the change of basis

Since the field-strength tensor of an Abelian group is gauge invariant by itself, the kinetic
Lagrange density for this case can be written as

Lkin = −1

4
Fµνi χijFj,µν , (4.7)

where χ is a symmetric n × n matrix, n being the number of U(1) groups present. Fµν
is a vector that contains the field strength tensors, in our U(1)R × U(1)B−L theory it is
(FRµν , F

B−L
µν )T . Hence, the mixing term Lkin, mix = −1

2F
R,µνχ12F

B−L
µν appears. Even if the

two Abelian groups can be embedded orthogonally within an SO(10) completion (which
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Superfield Spin 0 Spin 1
2 # Gen. SU(3)c × SU(2)L U(1)R × U(1)B−L U(1)Y × U(1)χ

Q̂ (ũL, d̃L) (uL, dL) 3 (3,2) (0, 1
3) (1

6 ,
1
4)

d̂c d̃cR dcR 3 (3,1) (1
2 ,−1

3) (1
3 ,−3

4)
ûc ũcR ucR 3 (3,1) (−1

2 ,−1
3) (−2

3 ,
1
4)

L̂ (ν̃L, ẽL) (νL, eL) 3 (1,2) (0,−1) (−1
2 ,−3

4)
êc ẽcR ecR 3 (1,1) (1

2 , 1) (1, 1
4)

ν̂c ν̃cR νcR 3 (1,1) (−1
2 , 1) (0, 5

4)

Ŝ S̃ S 3 (1,1) (0, 0) (0, 0)

Ĥd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) 1 (1,2) (−1

2 , 0) (−1
2 ,

1
2)

Ĥu (H+
0 , H

0
u) (H̃+

0 , H̃
0
u) 1 (1,2) (1

2 , 0) (1
2 ,−1

2)
χ̂R χR χ̃R 1 (1,1) (1

2 ,−1) (0,−5
4)

ˆ̄χR χ̄R ˜̄χR 1 (1,1) (−1
2 , 1) (0, 5

4)

Table 4.1: Chiral superfields and their quantum numbers with respect to SU(3)c × SU(2)L ×
U(1)R×U(1)B−L. We also give the quantum numbers in the basis SU(3)c× SU(2)L×U(1)Y ×U(1)χ
which will be defined in section 4.2.

means that one gets rid of χ12 at MGUT ), this term will arise with RGE running to the
low scale as soon as some part of a formerly complete SO(10) multiplet is being integrated
out so that only an incomplete representation remains. This is true for the Higgs sector in
our model. One can easily verify that by calculating the anomalous dimension

γab =
1

16π2
Tr (QaQb) , (4.8)

where a, b are the indices of the U(1) gauge groups and the trace runs over all superfields
with charge Qa under U(1)a. In the basis (U(1)R, U(1)B−L), it reads

γ =
1

16π2
N

(
15
2 −1

2
−1

2
9
2

)
N , (4.9)

where N is the matrix that contains the GUT normalization as used in eq. (4.6). The
non-zero off-diagonal elements are responsible for generating χ12 with RGE evolution.

For dealing with the gauge kinetic mixing we can either keep the χ12 term or apply the
procedure introduced in ref. [145] where the mixing is shifted to the covariant derivative

Dµ = ∂µ − iQlGlmAµm (4.10)

by re-defining the gauge fields as Aµ → χ1/2Aµ. Here, Aµ is a vector containing the gauge
fields, Aµ = (Bµ

R, B
µ
B−L)T , and Q = (TR, TB−L)T contains the charges. G is the formerly

diagonal 2× 2 gauge coupling matrix that now absorbs χ−1/2 in order to leave eq. (4.10)
invariant,

G =

(
gR gRBL
gBLR gBL

)
, (4.11)

so that χ12 is traded for non-zero mixed gauge couplings gRBL and gBLR. The GUT
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normalization
QGUT = NQ, GGUT = N−1G . (4.12)

leaves the product
QTG = (NQ)TN−1G = QTGUTGGUT (4.13)

and hence also the covariant derivative invariant. At the GUT scale we demand that the
off-diagonal couplings gBLR, gRBL vanish.

In order to simplify the comparison with known results from the MSSM, we now
will rotate the basis (U(1)R, UB−L) in such a way that we recover the hypercharge as
one orthogonal U(1) direction. This freedom of choice of a basis exists because of the
Abelian nature of the gauge groups. We name the other resulting orthogonal direction as
χ according to the possible decomposition SO(10)→ SU(5)× U(1)χ.

For a proper matching, we need to derive the charge and gauge coupling relations
between the two different bases, (U(1)R, U(1)B−L) and (U(1)Y , U(1)χ). For that purpose
we can perform two independent rotations on the charges and the gauge fields by inserting
the orthonormal matrices O1 and O2 into the second term of eq. (4.10) :

iQTGAµ = i(NQ)TN−1GAµ (4.14)

= i(NQ)TOT1 O1N
−1GOT2 O2A

µ = i(N ′Q′)TN ′−1G′A′µ . (4.15)

We now can identify (Q′GUT )T = (O1QGUT )T and hence (N ′Q′)T = (O1NQ)T as well
as G′GUT = N ′−1G′ = O1GGUTO

T
2 = O1N

−1GOT2 and A′µ = O2A
µ. N ′ is the diagonal

matrix that contains the GUT normalization of the rotated basis.

The rotations can be fixed by the phenomenological requirements that the new U(1)Y
corresponds to the Standard Model hypercharge group. Therefore, O1 can be determined
by the requirement Y = TR + TB−L. In addition, the gauge boson BY related to the
hypercharge must not have couplings to the χ charge which means that we have to find an
upper-triangular form of the gauge coupling matrix:

G′ = N ′O1N
−1GOT2 =

(
gY gY χ
0 gχ

)
(4.16)

This requirement determines O2. We find that

Q′ =
(
Y
χ

)
=

(
TR + TB−L
3
2TB−L − TR

)
, with (4.17)

N ′ =

√3
5 0

0
√

2
5

 , (4.18)

gY =
gBLgR − gBLRgRBL√

(gBLR − gR)2 + (gBL − gRBL)2
,

gχ =
2

5

√
(gBLR − gR)2 + (gBL − gRBL)2 , (4.19)

gY χ =
2(g2

BL + g2
BLR) + gBLRgR + gBLgRBL − 3(g2

R + g2
RBL)

5
√

(gBLR − gR)2 + (gBL − gRBL)2
.
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As an aside, we see that the GUT-normalization N ′11 for the hypercharge has exactly
the same value as typically used in the MSSM. Applying the above definitions, one can
verify that the unification condition

g3 = gL = gR,GUT = gBL,GUT , gRBL = gBLR = 0 (4.20)

exactly translates to

g3 = gL = gY,GUT = gχ,GUT , gY χ = 0 . (4.21)

The charges of the superfields under the new basis are listed in table 4.1. Note that
they correspond to the U(1)χ charges in ref. [146] up to a sign which we chose to absorb
into the definitions of O1 and O2. Hence, the extra gauge boson Z ′ that we end up with
corresponds to the Zχ in ref. [146].

4.3 GMSB boundary conditions

As briefly discussed in section 2.5, gauge-mediated supersymmetry breaking works via so-
called messenger superfields Φ̂ which are charged under the gauge group under consideration
and coupled to the SUSY-breaking spurion field X̂, hence transmitting supersymmetry
breaking via loop-induced gauge interactions to the visible sector. We will assume for
simplicity a single spurion field which couples universally to all messenger fields via a single
coupling λ, described by the superpotential term

WGM = λ X̂ Φ̂i
ˆ̄Φi . (4.22)

In the following we will get rid of λ by rescaling X̂ → λX̂. We further assign a vev to both
the scalar and the auxiliary component of X̂,

〈X〉 = M + θ2F , (4.23)

so that the squared mass matrix of the scalar messenger fields reads

m2
Φi,Φ̄i

=

(
M2 F
F M2

)
. (4.24)

Consequently, the scalar eigenstates have masses of
√
M2 ± F . The fermionic messenger

components, however, only receive a mass of M . It is thus clear from the mass splitting of
scalars and fermions within the same supermultiplet that supersymmetry is broken by the
F -term vev of X̂.

The requirement |F | < |M |2 must hold for obtaining positive squared messenger masses,
and we define the mass-dimension 1 and 0 quantities

Λ =
F

M
, (4.25)

x =
Λ

M
< 1 . (4.26)
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SU(3)c × SU(2)L U(1)R × U(1)B−L U(1)Y × U(1)χ

Φ̂1 (1,2) (1
2 , 0) (1

2 ,−1
2)

ˆ̄Φ1 (1,2) (−1
2 , 0) (−1

2 ,
1
2)

Φ̂2 (3,1) (0,−2
3) (−1

3 ,−1
2)

ˆ̄Φ2 (3̄,1) (0, 2
3) (1

3 ,
1
2)

Table 4.2: Quantum numbers of the messenger fields in the respective bases.

In minimal GMSB scenarios within the MSSM, the representation of the messenger
multiplets is usually assumed to be a 5 + 5̄ under SU(5). This is because complete
representations of the GUT group don’t spoil gauge coupling unification, at whichever scale
they may be introduced. For the same reason we introduce n generations of messenger
multiplets which each form a complete SO(10) representation. Below we will assume the
messengers to form a 10-plet which, under the decomposed gauge group under consideration,

results in two SU(2)L doublets Φ̂1,
ˆ̄Φ1 and two SU(3)c triplets Φ̂2,

ˆ̄Φ2 with suitable charges
under the additional Abelian gauge groups. We list these fields and their quantum numbers
under both previously discussed U(1) bases in table 4.2.

The soft SUSY-breaking masses are generated at the one- (two-) loop order for fermions
(scalars) [44, 147–149] via diagrams of the kind of the ones in figure 2.1. We can then
integrate out the messenger fields at M which we henceforth call the messenger scale. The
boundary conditions for the soft masses at the messenger scale are well known in the
literature (see, e.g., [148]) if there is no kinetic mixing:

Ma =
g2
a

16π2
Λ
∑
i

na(i) g(xi) , (4.27)

m2
k =2 Λ2

∑
a

Ca(k)
g4
a

(16π2)2

∑
i

na(i) f(xi) , (4.28)

where ga denotes the GUT-normalized coupling of gauge group a and i runs over the
messenger fields. na(i) is the Dynkin index of the messenger i with respect to the gauge
group a. We use a normalization where

∑
i na(i) = 1 for the 10 of SO(10). Ca(k) is the

quadratic Casimir invariant of the scalar field k. It is N2−1
2N if k lies in the fundamental

representation of a =̂SU(N) and equals the squared GUT-normalized charge q2
X,GUT if

a =̂U(1)X . The functions g(xi) and f(xi) are approximately 1 for xi . 0.2 [148], and since
we use universal spurion-messenger couplings in our studies, we have xi = x.

In eqs. (4.27-4.28) a sum over all messenger fields appears in the boundary conditions
for the fermion masses and the scalar squared masses, respectively. This implies that
the fermion soft masses depend, at the scale M , linearly on the number n of introduced
messenger SO(10) multiplets, whereas the scalar soft masses only go with

√
n. As a

consequence, n influences the mass hierarchy, which will be of relevance in section 4.8 when
we discuss the nature of the next-to-lightest supersymmetric particle.

For a consistent inclusion of gauge kinetic mixing we have to extend the eqs. (4.27-4.28).
For this purpose we can use the substitution rules for multiple Abelian groups as derived
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in ref. [145]. We arrive at

MA 6=Abelian =
g2
A

16π2
Λ
∑
i

nA(i)g(xi) , (4.29)

Mkl=Abelian =
1

16π2
Λ
(∑

i

g(xi)G
TQiQ

T
i G
)
kl
, (4.30)

m2
k =

2

(16π2)2
Λ2
( ∑
A 6=Abelian

CA(k)g4
A

∑
i

f(xi)nA(i)

+
∑
i

f(xi)(Q
T
kGG

TQi)
2
)
, (4.31)

where Q and G are as defined in the previous section. Note that eqs. (4.29-4.31) are
invariant under the application or omission of a GUT normalization to the U(1) couplings
and charges.

The trilinear couplings are essentialy zero at the scale of gauge mediation and only pick
up non-zero values via RGE running from M down to the renormalization scale. The same
is true for the mass of the scalar gauge singlet S which does not couple to the messenger
fields at the considered loop orders. However, through its coupling to χR and νc, it turns
non-zero at the three-loop level, and we estimate this mass as

m2
S '

Y 2
S

16π2

(
m2
χR

+m2
νc
)
. (4.32)

RGE effects usually drive this squared mass negative. In practice, however, it turns out that
this is no problem since F -terms proportional to M2

Z′ prevent the mass eigenstates from
becoming tachyonic, see also the discussion of the sneutrino mass matrix in section 4.8.

4.4 Tadpole equations

We decompose the neutral scalar fields responsible for gauge symmetry breaking into their
CP -even (odd) components φi (σi) and their vevs:

Hu =
1√
2

(φu + iσu + vu), Hd =
1√
2

(φd + iσd + vd),

χR =
1√
2

(φR + iσR + vχR), χ̄R =
1√
2

(φ̄R + iσ̄R + vχ̄R) . (4.33)

Beside the usual notation v2 = v2
d + v2

u and tanβ = vu/vd we re-define vR and tanβR as
suitable for this model:

v2
R = v2

χR
+ v2

χ̄R
, tanβR =

vχR
vχ̄R

. (4.34)
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Figure 4.1: Allowed parameter space in the vR − tanβR plane. The plotted values correspond to
|µR| which is calculated using the tadpole equations. The free parameters have been set to n =
1, Λ = 5 ·105 GeV, M = 1011 GeV, tan β = 30, sign(µR) = −, YS = diag(0.7, 0.6, 0.6), Y iiν = 0.01 .

We then use the minimization conditions for the scalar potential ∂V
∂φi

= 0 to determine the

parameters |µ|2, |µR|2, Bµ, and BµR :

Bµ =
tβ

t2β − 1

(
m2
Hd
−m2

Hu +
v2

4
c2β

(
g2
L + g2

Y + (gχ − gY χ)2
)

+
5v2
R

8
c2βRgχ(gχ − gY χ)

)
,

(4.35)

BµR =
tβR

t2βR − 1

(
m2
χ̄R
−m2

χR
− 5v2

8
c2βgχ(gχ − gY χ) +

25v2
R

16
c2βRg

2
χ

)
, (4.36)

|µ|2 =
1

t2β − 1

(
m2
Hd
−m2

Hut
2
β −

v2

8

(
g2
L + g2

Y + (gχ − gY χ)2
)
(t2β − 1)

+
5v2
R

16
c2βR(1 + t2β)gχ(gχ − gY χ)

)
, (4.37)

|µR|2 =
1

t2βR − 1

(
m2
χ̄R
−m2

χR
t2βR +

5v2

16
c2β(t2βR + 1)gχ(gχ − gY χ)− 25v2

R

32
(t2βR − 1)g2

χ

)
,

(4.38)

where we have used the abbreviations {cx, sx, tx} = {cosx, sinx, tanx}. Let us examine
eq. (4.38) in a bit more detail. The term proportional to v2

R will always contribute with
a negative sign, whereas the v2 term is negative (positive) for tanβR > 1(< 1). At the
messenger scale, the soft masses of χR and χ̄R are equal and a splitting only takes place
because of the different running from M downwards. The one-loop β functions read in the
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limit of vanishing kinetic mixing

β
(1)

m2
χ̄

=− 25

2
g2
χ|Mχ|2 +

5

2
gχσχ , (4.39)

β
(1)
m2
χ

=− 25

2
g2
χ|Mχ|2 −

5

2
gχσχ + 2Tr

(
(m2

χR
+m2

νc)YSY
†
S +m2

SY
†
SYS + T ∗ST

T
S

)
, (4.40)

with

σχ =
g2
χ

4

(
5(m2

χ̄R
−m2

χR
) + 4(m2

Hd
−m2

Hu) (4.41)

+ Tr
(
m2
ec + 3m2

u + 5m2
νc + 6(m2

Q −m2
L)− 9m2

d

))
,

which is zero at the messenger scale and remains zero at the level of one-loop RGEs.
Therefore, the main splitting between m2

χR
and m2

χ̄R
is due to the impact of a non-zero YS ,

and at a scale below M we find m2
χ̄R

> m2
χR

. Compared to the boundary conditions from
an mSUGRA-inspired scenario as in ref. [140], however, we find significantly less splitting.
This is due to the shorter RGE running and the smallness of the trilinear couplings. From
these arguments it is clear that only tanβR = 1 + ε, with a small, positive ε will give a
real solution to µR

1. Apparently, it is much harder to get a solution to eq. (4.38) with a
growing U(1)R × U(1)B−L breaking scale and hence there is an upper limit on tanβR for
a given value of vR. This is exemplified in figure 4.1 where the values of |µR| are shown
as contours depending on vR and tanβR. The white space is where no physical spectrum
exists: for large tanβR because eq. (4.38) has no solution, and for low tanβR because of
tachyonic states.

We have also considered the case where neutrino masses are generated by a seesaw-I
mechanism similar to [150,151], in which case there is no need to introduce the singlet field
S. That would imply that the χR fields would have to carry twice the U(1) charges of the
νc field in order to preserve gauge invariance so that Majorana masses for the right-handed
neutrinos could be generated by the superpotential term Y ′S ν̂

c χ̂R ν̂
c. These Higgs fields

could originate from SU(2)R triplets in the unbroken left-right symmetric phase, as the
∆iR fields used in chapter 3. However, we find that in this case it is even harder to obtain
a reasonable splitting m2

χ̄R
− tan2 βRm

2
χR

. The reason for that is the altered RGE running
of the soft masses compared to the inverse seesaw scenario; in the case of seesaw-I, the
larger gauge contributions prevent m2

χR
from becoming sufficiently small.

4.5 Neutrino masses

After electroweak symmetry breaking, the neutrino mass matrix reads in the basis
(νL, ν

c
R, S):

mν =

 0 1√
2
vuY

T
ν 0

1√
2
vuYν 0 1√

2
vχRYS

0 1√
2
vχRY

T
S µS

 . (4.42)

1Note that ε = 0 corresponds to a saddle point of the scalar potential and not to a minimum.
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In the limit µS � 1√
2
vuYν � 1√

2
vχRYS , this mass matrix can be block-diagonalized, leading

to an effective mass matrix for the light neutrinos ν of [75,152]

Mlight '
v2
u

v2
χR

Y T
ν (Y T

S )−1µSY
−1
S Yν , (4.43)

while being almost exclusively composed of νL states. The lightness of left-handed neutrino
masses is hence achieved by vχR � vu as well as small µS and Yν . In addition to achieving
a sufficient mχ̄R −mχR splitting, large values for YS help suppressing the neutrino masses.
While we can always find a basis in which YS is diagonal, it is apparent in eq. (4.43) that
there is the possibility to fit the neutrino mixing angles by giving non-diagonal flavour
structure to either Yν or µS , or a to combination of both.

Since µS , vuYν � vχRYS , the six heavy neutrino eigenstates νh form three quasi-Dirac
pairs with masses

mνh '
1√
2
vχRYS . (4.44)

4.6 Higgs mass at tree-level

Let us turn to the Higgs sector of this model. One of the main motivations for this
study was the question whether or not the measured Higgs mass can be accommodated
without the need for multi-TeV stop masses or large trilinear couplings. Since the latter
is not possible in models with minimal GMSB, the former must usually be the case (see,
e.g., [153–155]). In models with extended gauge symmetry, however, additional D-terms
can help to raise the mass already at tree level. In our model, the mass matrix for the
neutral scalar Higgs fields reads in the basis (φd, φu, φ̄R, φR):

m2
h0 =

(
m2
du m2

duR

(m2
duR)T m2

RR

)
, (4.45)

where

m2
du =

1

4

(
g̃2

Σv
2 cos2 β +m2

A sin2 β −1
2 sin 2β(g̃2

Σv
2 + 4m2

A)
−1

2 sin 2β(g̃2
Σv

2 + 4m2
A) g̃2

Σv
2 sin2 β +m2

A cosβ

)
,

m2
duR =

5

8

(
g̃2
χvvR cosβ cosβR −g̃2

χvvR cosβ sinβR
−g̃2

χvvR sinβ cosβR g̃2
χvvR sinβ sinβR

)
,

m2
RR =

( 25
16g

2
χv

2
R cos2 βR +m2

AR
sin2 βR − 1

32 sin 2βR(25g2
χv

2
R + 16m2

AR
)

− 1
32 sin 2βR(25g2

χv
2
R + 16m2

AR
) 25

16g
2
χv

2
R sin2 βR +m2

AR
cos2 βR

)
,

g̃2
Σ = g2

L + g2
Y + (gχ − gY χ)2, g̃2

χ = gχ(gχ − gY χ) ,

and m2
A(R)

= 2Bµ(R)
/ sin 2β(R) are the tree-level squared masses of the pseudoscalar Higgs

bosons. Applying some approximations (tanβR → 1, vR � v) and the decoupling limit
(tanβ → ∞), the upper bound for the eigenvalue associated with the lightest SU(2)L
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doublet Higgs can be found to be

m2
h,tree ≤M2

Z +
1

4
(gχ − gY χ)2v2 , (4.46)

and we obtain typical values gχ − gY χ ' 0.27. Hence, a tree-level enhancement of several
GeV with respect to the MSSM upper limit is found for this model due to the extra
D-terms. Note that, in the same limit, we also end up with a massless state for the φR/φ̄R
fields. In figure 4.2 we show the behaviour of the two lightest eigenvalues of eq. (4.45) with
tanβR. With tanβR > 1, the former massless R-state gains mass and a mixing between
the upper left and the lower right block of eq. (4.45) sets in. Because of that, mh,tree

can even reach values well above 100 GeV at the cost of reduced resemblance to the pure
SU(2)L doublet Higgs boson. This is depicted in the right panel of figure 4.2 where the
doublet admixture R2

Li
= |Ui1|2 + |Ui2|2 is shown for the lightest and the next-to lightest

Higgs. Similar to the solutions to the tadpole equations, values of tanβR close to one are
favoured for the desired feature of a tree-level enhancement while retaining a large doublet
fraction. This also means that, in general, there is a second light Higgs state which we will
henceforth call hχR .
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Figure 4.2: Tree-level dependence of the lightest Higgs masses (left) as well as the admixture of
the SU(2)L doublet Higgses R2

Li
= |Ui1|2 + |Ui2|2 (right) on tanβR. The parameters have been

chosen as in figure 4.1 and we have fixed vR = 7 TeV. The horizontal small dashed (red) line shows
the Z mass.

4.7 Numerical results

Having shown how the tree-level Higgs mass is enhanced by extra D-terms, we now have to
add the loop-corrections in the framework of the discussed model. For this purpose we have
extended the model implementation of ref. [140] in SARAH by up to four messenger 10-plets
as defined in table 4.2. The GMSB boundary conditions of eq. (4.31) are implemented at
the messenger scale where the messenger fields themselves are being integrated out. We
then use the SPheno source code generated by SARAH for a precise spectrum calculation
which includes the full RGE running and at the two-loop order as well as the one-loop
mass calculation. Furthermore, the known two-loop corrections to the MSSM Higgs
masses [156–159] are included. As all soft SUSY-breaking masses and trilinear couplings
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Figure 4.3: Mass of the doublet-like Higgs mh vs. the mass of the lightest stop mt̃1
for the

parameter scan defined in table 4.4, using one messenger 10-plet. Only points with Rh→γγ > 0.5
(left) and 0.9 (right) were included. The blue dots represent parameter points where the lightest
Higgs eigenstate is doublet-like, green dots points where hχR is lighter.

are fixed by the boundary conditions at the messenger scale and Bµ(R)
as well as |µ(R)| are

determined by the solution of the tadpole equations, the remaining free parameters in our
numerical setup are

n , Λ , M, tanβ , tanβR , sign(µ) , sign(µR) , vR , YS , Yν , (4.47)

We furthermore fix µS by fitting neutrino data for a given YS and Yν . Since it does not
affect the LHC phenomenology discussed in the following, we will, until further notice,
assume that the neutrino mixing is explained by the inherent off-diagonal structure of µS
and hence keep YS and Yν diagonal. Because of its smallness, µS is irrelevant for collider
phenomenology and no flavour-violating LHC signals are expected in this scenario.2

To facilitate the discussion of the model properties, we have chosen a number of
benchmark scenarios shown in table 4.3 which each possess certain distinct features that
shall be of relevance in what follows.

4.7.1 Higgs physics

In order to determine the magnitude of the loop-corrected Higgs mass within our minimal
GMSB scenario, we have performed a scan over a large portion of the parameter space of
the model. The varied ranges are listed in table 4.4. Since Λ is roughly the mass scale of
the soft SUSY-breaking masses, it is only varied in a narrow range which permits squark
masses in the range of one or a few TeV.

In figure 4.3 we display the results of the scan and show the mass of the lightest
doublet-like Higgs mh vs. the mass of the lighter stop eigenstate for the case n = 1. We
speak of an acceptable Higgs mass if it ranges within 123 GeV < mh < 128 GeV, due to
the theoretical uncertainty of the Higgs mass calculation. It is distinguished between the
case in which the doublet-like Higgs is the lightest eigenstate (blue points) and the case
in which there is a lighter hχR state (green points), whereas like in figure 4.2, the latter

2We will examine the consequences for lepton flavour violating observables in the case in which neutrino
data is fitted by a non-trivial structure in Yν in chapter 5.
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BLRI BLRII BLRIII BLRIV BLRV BLRVI

n 4 1 1 1
Λ [GeV] 2.5 · 105 5 · 105 3.8 · 105 5 · 105

M [GeV] 1011 1010 9 · 1011 1011

tanβ 40 30 30 20
tanβR 1.04 1.03 1.05 1.02
sign(µR) − + − +
vR [TeV] 7 7.5 6.7 12
Y ii
ν 0.01 0.01 0.01 0.01

diag(YS) (.65,.65,.1)(.65,.65,.3)(.65,.65,.65) (.6,.6,.6) (.77,.73,.45) (.7,.6,.6)

mh1 [GeV] 70 92 125 70 108 98
R2
L,h1

0.006 0.018 0.961 0.003 0.094 0.006

mh2 [GeV] 126 127 156 124 124 124
R2
L,h2

0.994 0.982 0.039 0.997 0.906 0.995

MZ′ [TeV] 2.53 2.7 2.41 4.32

mνh,1 [GeV] 357 1070 2306 2277 1542 3633

mνh,2 [GeV] 2309 2308 2306 2278 2497 3633

mνh,3 [GeV] 2309 2308 2306 2278 2633 4238

mν̃1 [GeV] 334 909 1715 1728 1207 1863
mν̃2 [GeV] 1072 1546 1715 1757 1482 1879
mν̃3 [GeV] 2090 2048 1715 1759 1514 1879

mτ̃1 [GeV] 906 906 905 867 764 1007
mµ̃R [GeV] 1166 1166 1165 976 877 1061
mẽR [GeV] 1167 1166 1166 976 877 1061

mχ̃0
1

[GeV] 505 766 1156 575 453 589

mχ̃0
2

[GeV] 1157 1157 1353 610 825 1043

mχ̃±1
[GeV] 2216 2216 2217 1113 883 1142

mχ̃±2
[GeV] 2591 2590 2588 1956 1600 2015

mg̃ [GeV] 5460 5459 5456 3018 2423 3076
mt̃1

[GeV] 4209 4209 4206 2993 2231 2941

Table 4.3: Input parameters and mass spectrum of different representative parameter points. Note
that the heavy neutrino mass eigenstates νh are quasi-Dirac states each so that the three listed
masses correspond to six fermions.

case in general results in a heavier h state because of the enhanced tree-level contributions.
Furthermore, we see that with stop masses around mt̃1

≈ 2 TeV, the Higgs mass can
already be of acceptable size if there is a substantial mixing between the doublet and the
χR states. Filtering out points with a large χR admixture (which we have done here by
requiring the decay rate into a photon pair not to be smaller than 90 % the SM rate), this
lower “bound” on the stop mass increases by around one to two hundred GeV.

Compared to stop masses of 5 TeV and larger, which are needed in minimal GMSB
scenarios within the MSSM [154], our model bears an improved naturalness with this
respect. Nevertheless, also a stop with a mass around 2 TeV will be hard to detect at the
LHC and a new collider might be required for a discovery.
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Parameter varied range

n 1 ... 4
Λ 1√

n
(105 ... 106) GeV

M (105 ... 1012) GeV
tanβ 1.5 ... 40

tanβR 1 ... 1.15
sign(µR) ±1

vR (6.5 ... 10) TeV
Y ii
S 0.01 ... 0.8
Y ii
ν 10−5 ... 0.5

Table 4.4: Parameter ranges of the random scan. The sign of µ has aways been taken positive.

Apart from the mixing, the Higgs mass can also be enhanced by raising the messenger
scale: with increasing M , the RGE running gets longer and with it the magnitude of the
trilinear couplings increases. This is illustrated in figure 4.4 where we show on the left
panel the dependence of the stop trilinear coupling T 33

u on the messenger scale for three
benchmark scenarios and on the right panel the resulting Higgs mass. The sudden increase
of mh for BLRIII and BLRV (at M ≈ 1010 and 1011, respectively) is due to a level crossing
of h and hχR .
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Figure 4.4: Stop trilinear coupling T 33
u and mass of the doublet-like Higgs as a function of M

for BLRIII (black dashed line), BLRIV (black full line) and BLRV (black dotted line) (but for
tanβR = 1.03). The associated light green lines correspond to the hχR state of the respective
parameter point.

We now turn to the Higgs branching ratio into a pair of photons which we have
previously used to narrow down the number of parameter points in figure 4.3. We define
the ratio Rh→γγ by

Rh→γγ =
[σ(pp→ h)×BR(h→ γγ)]BLR
[σ(pp→ h)×BR(h→ γγ)]SM

. (4.48)

The cross sections pp→ h for the main production channels (gluon and vector boson fusion)
are the same as in the Standard Model, up to the (effective) couplings of the Higgs boson
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Figure 4.5: Left image: D-term contribution to the mass entries of the R-sleptons using tan β = 10
as well as MZ′ = 1.5, 3.0 TeV and fixing the gauge couplings by the requirement of gauge coupling
unification: gY = 0.36, gY×χχ = 0.29, gY×BLBL = 0.55. The full (dashed) lines correspond to the
U(1)Y × U(1)χ (U(1)Y × U(1)B−L) scenario. The right plot shows the rate of h→ γγ with respect
to the Standard Model expectation vs. the lightest stau mass using n = 4. Only points with
123 GeV < mh < 128 GeV are included. The color coding of the parameter points is as in figure 4.3.

cBLRhXX to the initial states X = g,W . Consequently, we can write:

σ(XX → h)BLR = σ(XX → h)SM

(
cBLRhXX

cSMhXX

)2

.

Shortly after the discovery of the Higgs boson (essentially through the diphonon
channel) [4, 5], there has been quite some excitement since both, ATLAS and CMS,
reported an enhanced h → γγ branching ratio with respect to the Standard Model
expectations [160,161]. With more statistics, however, this excess has largely vanished and
the newest measurements are compatible with the SM rate [162,163].

In many supersymmetric models, Rh→γγ can have values above one due to a virtual
light τ̃ in the loop in addition to the Standard Model contributions from the W boson
and the top quark. This is not so here: the largeness of mt̃1

, which is required for the
loop contributions to the Higgs to be large enough, also imposes a lower limit on Λ, and
hence also on the slepton soft SUSY-breaking masses. Consequently, in our model, the
lighter stau eigenstate is as heavy as 500 GeV or more. Although it has been shown that,
even in models with large SUSY-breaking masses, the stau can be light enough to enhance
Rh→γγ (see, e.g., ref. [164] in the context of a model exhibiting a U(1)Y × U(1)B−L gauge
symmetry), we find that this is not the case here. In ref. [164], large D-term contributions
are responsible for a suppression of the τ̃1 mass. This is different in our model: first,
the D-terms itself are smaller for a given set of parameters. This is depicted in the left
panel of figure 4.5 where we compare the D-terms between our model and the model used
in ref. [164] for equivalent input values. Second, the ratio tanβR (which enhances the
D-terms) is more restricted to small values in our model due to the tadpole equation (4.38).
The right plot of figure 4.5 presents the results for Rh→γγ vs. the mass of the lightest stau
for n = 4 and with the constraint that the Higgs mass is in the desired mass range. We
find that our model actually prognosticates rates slightly smaller than the Standard Model
prediction. Note that Rh→γγ = 0.9 is well compatible with the recent searches [162,163]
within 1σ.
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4.8 Dark matter and NLSP discussion

Because of the comparatively small scale at which SUSY gets broken, the gravitino is
usually the LSP in models with gauge mediation. Its mass reads [44]:

m3/2 =
F√

3mPl

, (4.49)

where mPl is the reduced Planck mass, so that m3/2 is typically in the MeV range or above.
All SUSY particles decay into it in a cosmologically short time [165–167]. The abundance of
thermally produced gravitinos is under assumptions consistent with the standard thermal
evolution of the early universe given by

Ω3/2h
2 =

m3/2

keV

100

g?
, (4.50)

where g? is the effective number of degrees of freedom at the time of gravitino decoupling.
Even though for gravitino masses of O(100 GeV), the relic abundance would be in the
correct range to agree with the observation, it is nontrivial to satisfy all relevant constraints,
see the more detailed discussion in ref. [168]. A gravitino with a mass in the MeV range
certainly results in a too large value for the relic density within the standard assumptions.
These would, however, in general not apply if the reheating temperature was sufficiently
low – which means that the gravitino might never have been in thermal equilibrium [169].
Because of these very model dependent statements we will not go into the dark matter
description any further but concentrate on the phenomenology of the next-to-lightest
supersymmetric particle (NLSP) instead. The latter is of particular interest in GMSB
models since all heavier supersymmetric particles will first decay into the NLSP before
this itself decays into the gravitino. As a result, all cascades at a collider experiment will
(temporarily) end in Standard Model particles and the NLSP, as is the case for the LSP
in models with gravity mediation. However, in contrast to the latter, the NLSP may also
be a charged particle because of its eventual decay into the gravitino. The lifetime of the
NLSP is generically proportional to F 2 [44] so that, in most of the parameter space under
consideration, it is too long-lived to decay inside a collider detector, yet short-lived enough
not to be in conflict with the bounds set by big bang nucleosynthesis.

In usual minimal GMSB secanarios, two candidates for the NLSP exist: the lightest
neutralino and the lightest stau, each leading to phenomenologically very different possible
signatures at a collider experiment. With an inverse seesaw mechanism at work, however,
there is also the possibility of a S̃-like sneutrino to be the NLSP. This can be realized with
a hierarchical structure in YS which makes one sneutrino eigenstate light. A neutralino
can be the NLSP for little or no hierarchy in YS and messenger multiplicities n . 2, a stau
for larger n. Alternatively, the χ̃0

1 can be lighter than the lightest stau for n > 2 if |µR|
is small or if there is little left-right splitting in the slepton sector, meaning small tanβ.
The reason for the dependence on n is the scaling of the soft SUSY-breaking masses at M .
Recall that it is n for gauginos and

√
n for scalars, so that the ratio of gaugino to sfermion

masses at the messenger scale is proportional to
√
n. The impact of the YS hierarchy on

the NLSP nature is already apparent in the spectra of the benchmark points BLRI-BLRIII
which only differ in the Y 33

S entry, yet each choice features a different NLSP nature. This
is further exemplified in figure 4.6 where we show the masses of the lightest neutralino,
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sneutrino and stau eigenstates as a function of Y 33
S . While the charged slepton masses

do not depend on the choice of YS , in particular the lightest sneutrino and neutralino
eigenstates are very sensitive to this coupling. This will become clear in the subsequent
discussion where the three different scenarios and their main differences to standard GMSB
models are presented.
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Figure 4.6: Masses of the lightest supersymmetric particles as a function of the [3,3] entry of YS ,
leaving the remaining parameters as in BLRI-BLRIII.

4.8.1 Neutralino NLSP

The neutralino sector consists, in addition to the usual higgsinos and gaguinos, of the
R-higgsinos and the gaugino associated with the U(1)χ gauge boson (B̃χ). The mass matrix
reads in the basis (B̃, W̃ 3, H̃0

d , H̃
0
u, B̃χ, ˜̄χR, χ̃R):

Mχ̃0 =



M1 0 −gY vd
2

gY vu
2

MY χ

2 0 0
0 M2

gLvd
2 −gLvu

2 0 0 0

−gY vd
2

gLvd
2 0 −µ (gχ−gY χ)vd

2 0 0
gY vu

2 −gLvu
2 −µ 0 − (gχ−gY χ)vu

2 0 0
MY χ

2 0
(gχ−gY χ)vd

2 − (gχ−gY χ)vu
2 Mχ

5gχvχ̄R
4 −5gχvχR

4

0 0 0 0
5gχvχ̄R

4 0 −µR
0 0 0 0 −5gχvχR

4 −µR 0


.

(4.51)

In order to distinguish of which nature the lightest neutralino is, it is convenient to
apply some approximations. In the limit of negligible mixing between the MSSM states
and the new ones (the upper left 4× 4 block and the lower right 3× 3 block in the mass
matrix) as well as tanβR → 1, the three new neutralino states correspond to the mass
eigenvalues

µR ,
1

2

(
Mχ + µR ±

√
1

4
M2
Z′ +M2

χ − 2MχµR + µ2
R

)
, (4.52)
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where M2
Z′ ' 25

16g
2
χv

2
R in the considered limit. Because of the serious limitations from the

tadpole equation (4.38), see also figure 4.1, we usually find |µR|,Mχ � M ′Z , so that the
lightest state is governed by the value of µR. The two other states have masses around
MZ′ and can form a quasi-Dirac pair. The lightest state out of the upper left 4× 4 block
always turns out to be a bino since M1 < M2, |µ|. Hence, the nature of a neutralino NLSP
is mainly dictated by the relative sizes of |µR| and M1, so we either find the MSSM-like
bino (M1 < |µR|) or a maximally mixed ˜̄χR − χ̃R state (|µR| < M1). Figure 4.7 shows the
evolution of the neutralino masses as a function of µR in BLRIV. Here, the variation of
µR was achieved by adjusting tanβR within a suitable range. As the bino mass parameter
is M1 ' 575 GeV in this case, this is the very value for µR at which the NLSP nature
changes from hχR-like to bino-like.

Because of the dependence of the mass splitting m2
χ̄R
−m2

χR
on Y †SYS , µR is sensitive

to the particular YS entries. In figure 4.6, where Y 33
S has been varied, one can nicely see

the associated evolution of the R-higgsino-like neutralino mass.

0 200 400 600 800 1000 1200 1400

50

100

500

1000

µR [GeV]

m
χ̃
0 i
[G

eV
]

χ̃0
1

χ̃0
2

χ̃0
3...7

Figure 4.7: Masses of the different neutralino eigenstates as a function of µR. The ratio tanβR
has been adjusted within 1.02 < tanβR < 1.033 in order to satisfy the tadpole equation (4.38). In
other respects the parameters have been fixed to the values of BLRIV.

The signatures of the neutralino-NLSP scenario would be rather difficult to measure
at the LHC. Because of the low messenger multiplicity which is usually required for a
neutralino NLSP, the two lightest coloured states turn out to be the t̃1 and the gluino,
whereby the former has to be at least as heavy as 2 TeV to satisfy the Higgs mass constraints.
Depending on whether the gluino turns out to be heavier or lighter than the lightest stop,
it will dominantly decay either into tt̃1 or a chargino/neutralino and a third-generation
quark. Irrespective of the detailed decay chain, the final state will contain b jets and W
bosons. The endpoint of such a cascade depends on the admixtures of the lightest and
next-to-lightest neutralinos. As seen in the possible decays of the χ̃0

2 state in figure 4.8,
additional final state particles could comprise Higgs bosons of the doublet and the ˜̄χR/χ̃R
type (for large (low) values of |µR|, respectively). Interesting intermediate states could be
light sneutrinos (not in the figure as they are too heavy for this choice of parameters) as
well as charged sleptons. Those will eventually further decay into the lightest neutralino
and a neutrino or a charged lepton, respectively. The different regions of dominant χ̃0

2

channels can easily be explained with the help of figure 4.7. Up to roughly |µR| ≈ 670 GeV,
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the only kinematically accessible decay channels are hχRχ̃
0
1 and Zχ̃0

1. The latter gets more
important with decreasing mass diffenence χ̃0

2 − χ̃0
1 since hχR is lighter than the Z at

this benchmark point. At the small window centered around |µR| = 575 GeV, χ̃0
2 − χ̃0

1

gets too small, so that only three-body decays via virtual Z or hχR bosons are possible.
As soon as the kinematical threshold is crossed, the decay into a charged slepton and
and the corresponding lepton dominates. At very large values for |µR|, the hierarchy
M1 < M2 < |µR| emerges, so that the next-to-lightest neutralino is wino-like and the
doublet-like Higgs gets to be a possible decay product.
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Figure 4.8: Branching ratios of the second lightest (left) as well as the lightest neutralino (right)
as a function of µR using the same parameters as in figure 4.7.

The eventual decays of the NLSP, depicted in the right panel of figure 4.8, are heavily
dependent on its nature: bino NLSPs decay, as in standard scenarios, into a gravitino and
a neutral gauge boson. Only a small portion decays into the h G̃ final state. χR-like states,
in turn, are not charged under the Standard Model gauge group and consequently decay,
besides the gravitino, into a hχR . Unfortunately, due to the long lifetime of the NLSP, such
a decay will not happen inside a usual particle physics detector so that there is no hope of
measuring such a process at the LHC.

4.8.2 Stau NLSP

The mass matrix of the sleptons reads in the basis (ẽL, ẽR)

m2
l̃

=

(
m2
L + 1

2v
2c2
βY
†
e Ye +DL

v√
2
(T †e cβ − µY †e sβ)

v√
2
(Tecβ − µ∗Yesβ) m2

E + 1
2v

2c2
βYeY

†
e +DR

)
, (4.53)

with the D-terms

DL =
1

32

(
2
(
− 3g2

χ + gχgY χ + 2(g2
Y − g2

L + g2
Y χ)
)
v2c2β − 5gχ(3gχ + 2gY χ)v2

Rc2βR

)
1 ,

DR =
1

32

(
2
(
g2
χ + 3gχgY χ − 4(g2

Y + g2
Y χ)
)
v2c2β + 5gχ(gχ + 4gY χ)v2

Rc2βR

)
1 . (4.54)

As remarked before, the stau can be the NLSP for n ≥ 3 because of the suppression of the
soft SUSY-breaking scalar masses of

√
n with respect to the gaugino masses. Furthermore,

large values for tanβ help increasing the left-right splitting of the slepton states and thence
reduce the mass of the lighter state. A further requirement is that the YS Yukawa coupling
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should not inherit much hierarchy in the diagonal entries as otherwise a sneutrino or
neutralino could nevertheless be lighter, see figure 4.6.

The gluino is the heaviest coloured particle here because of the large messenger multiplic-
ity, rendering a discovery of this state at the LHC only possible for very high luminosities.
The cascade decays anticipated in the stau NLSP scenario are different compared to the
former case of a neutralino NLSP, in particular in the initial and the last decay step: first,
the gluino will decay into all sorts of squarks instead of just the third-generation ones. The
further decay of the squarks will eventually end in the lightest neutralino, implying the
possibility of the alongside production of the hχR scalar as above. The lightest neutralino
itself then decays into a τ τ̃1 final state. As the stau will decay outside of the detector, a
typical event of this type would include, additionally to several jets and leptons, a charged
track. As in particular the latter is a very promising signal, its phenomenology has been
thoroughly studied, see, e.g., refs. [170,171]. Explicit searches are currently being performed
at the LHC, setting limits of roughly mτ̃ > 300 GeV for long-lived staus within an MSSM
scenario [172].

4.8.3 Sneutrino NLSP

In principle, one would have to split the sneutrinos into their CP -odd and CP -even
eigenstates and regard these (pseudo-) scalar particles separately. However, the only
source of CP -splitting is found in the F -terms induced by µS and the corresponding soft
SUSY-breaking bilinear BµS term. As the masses of the left-handed neutrinos within the
inverse seesaw mechanism at work require µS to be small, this CP splitting is found to be
negligibly small, so that we can safely work with complex scalar sneutrino fields in what
follows. In the limit µS , BµS → 0, the sneutrino mass matrix reads in the basis (ν̃L, ν̃R, S̃):

M2
ν̃ =
m2
L +

v2s2β
2 Y †ν Yν +D′L

v√
2

(
T †ν sβ − µY †ν cβ

)
1
2vvRY

†
ν YSsβsβR

v√
2

(
Tνsβ − µ∗Yνcβ

)
m2
νc +

v2
Rs

2
βR

2 YSY
†
S +

v2s2β
2 YνY

†
ν +D′R

vR√
2

(
TSsβR − µ∗RYScβR

)
1
2vvRY

†
SYνsβsβR

vR√
2

(
T †SsβR − µRY

†
S cβR

)
m2
S +

v2
Rs

2
βR

2 Y †SYS

 ,

(4.55)

with

D′L =
1

32

(
2
(
− 3g2

χ + gχgY χ + 2(g2
L + g2

Y + g2
Y χ)
)
v2c2β − 5gχ(3gχ + 2gY χ)v2

Rc2βR

)
1 ,

D′R =
5gχ
32

(
2(gχ − gY χ)v2c2β + 5gχv

2
Rc2βR

)
1 . (4.56)

The mixing between the left sneutrinos ν̃L and the ν̃R and S̃ states is small compared to
the diagonal entries, so that we effectively end up with left sneutrinos as well as admixtures
of singlet scalars and right sneutrinos. Although the soft SUSY-breaking singlet mass m2

S

is driven negative by the RGEs, the much larger F -term 1
2v

2
Rs

2
βR
Y †SYS prevents negative

diagonal entries and hence tachyonic eigenstates. The entries mixing the ν̃R and S̃ states
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can reach the size of the diagonal entries for sufficiently large values of |µR|. Therefore,

|µR| .
√
m2
νc + v2

RY
2
S /4 (4.57)

must furthermore be fulfilled so that no tachyonic states occur. For this condition we have
applied the approximations tanβR → 1 and D′R, TS → 0. YS is constrained from above
by requiring that all couplings should stay perturbative up to the GUT scale whereas the
product |YSY †S | is constrained from below by requiring the correct symmetry breaking (see
the discussion about generating m2

χ̄R
−m2

χR
6= 0 in section 4.4). Hence, we cannot have

two or more light singlet-like sneutrinos as at least two diagonal YS entries should be large
in order to have a large enough |YSY †S |. If, however, only one diagonal YS entry is small,
i.e. . 0.2 while the other two are large, i.e. roughly 0.7, one generation of singlets is
light enough for the NLSP to be a sneutrino of mainly singlet nature. The admixtures
of the singlet and the ν̃R of τ flavour within the lightest sneutrino state of figure 4.6 are
depicted in figure 4.9. The sudden drop of the ν̃R,τ admixture at Y 33

S ' 0.64 is due to a
level crossing of two sneutrino mass eigenstates.
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Figure 4.9: Relative admixtures of the singlet state S̃ and the right τ -sneutrino to the lightest
sneutrino state as a function of the third diagonal YS entry while the remaining parameters are
fixed to the values of the benchmark points BLRI, BLRIII and BLRIII, as in figure 4.6.

The smallness of the YS entry in case of the sneutrino NLSP also results in one rather
light νh quasi-Dirac pair, see also the masses of BLRI in table 4.3. Nevertheless, these
fermions are always heavier than the lightest sneutrino. This is due to the combined effect
of the S̃ − ν̃R mixing and the negative m2

S . Consequently, the sneutrino NLSP will always
decay into a gravitino and a light neutrino. The next heavier supersymmetric state in the
ν̃-NLSP scenario is the R-higgsino-like neutralino. The reason for that is the small |µR|
because of the condition (4.57) and the strong constraints from a small YS on µR via the
tadpole equation (4.38). If kinematically allowed, this lightest neutralino will decay to the
LSP and the corresponding heavy neutrino, yielding

χ̃0
1 → ν̃1νh1 → νG̃W (∗)` . (4.58)

The W boson will be off-shell if mνh1
turns out to be very small. Using the parameters
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BLRI BLRII BLRIII BLRIV BLRV BLRVI

MZ′ [TeV] 2.5 2.7 2.4 4.3

BR(dd̄) 0.45 0.49 0.52 0.52 0.52 0.48
BR(uū) 0.08 0.09 0.10 0.10 0.10 0.09
BR(`¯̀) 0.17 0.18 0.20 0.20 0.20 0.18
BR(νν) 0.15 0.16 0.17 0.17 0.17 0.16
BR(W+W−) 0.01 0.01 0.01 0.01 0.01 0.01
BR(νhνh) 0.12 0.06 − − − −
BR(h1Z) − − 0.01 − − −
BR(h2Z) − − − 0.01 − −
BR(˜̀̀̃ ∗) − − − − − 0.02
BR(ν̃ν̃) 0.01 − − − − 0.01
BR(χ̃0

i χ̃
0
j ) − − − − − 0.02

BR(χ̃+
2 χ̃
−
2 ) − − − − − 0.02

Table 4.5: Branching ratios of the Z ′ boson for the parameter points of table 4.3. Only branching
ratios of 10−2 or larger are shown.

of figure 4.9, we find that the above neutralino decay will happen in almost 100 % of
the cases for |Y 33

S | . 0.07, whereas it decays to a gravitino and a light neutrino with
BR(χ̃0

1 → G̃ν) ' 1 for larger values of |Y 33
S |. As the latter final state would be completely

invisible at a collider experiment, this scenario couldn’t be distinguished from the neutralino
NLSP case in this model.

4.9 Z ′ phenomenology

We now turn to the Z ′ boson, its decays and the resulting phenomenology at the LHC. For
a better orientation, we list the decay modes of the Z ′ and the corresponding branching
ratios of the representative benchmark points of table 4.3 in table 4.5. Strikingly, decays
into supersymmetric particles are hardly expected as long as the Z ′ is not heavier than
around 4 TeV. This is a consequence of the very constraining GMSB boundary conditions
and the required rather large scales for Λ. In variants of this or similar models which work
via gravity mediation, it has been shown that supersymmetric Z ′ decays can lead to a
rich LHC phenomenology, see, e.g., [140,151,173,174]. Here, for the parameter choices in
BLRIII and BLRV, not even the sneutrinos and right-handed neutrinos are light enough
for the Z ′ to decay into, so that only decay channels into SM particles are open. As
mνh ∝ YS vR, only scenarios which feature small YS for one generation of singlets, and
hence a large hierarchy in YS , exhibit a Z ′ decaying into heavy neutrinos. This is the case
for BLRI-II. BLRVI features a Z ′ which is heavy enough for supersymmetric final states to
occur.

The to date tightest bounds on the mass of a Z ′ boson stem from the search for dilepton
resonances at a centre-of-mass energy of

√
s = 8 TeV by the ATLAS and CMS collaborations,

refs. [175,176]. The respective cross-section limits are of comparable size. As the ATLAS
analysis distinguishes between different Z ′ models when deriving the cross-section limits
and takes into account interference effects of the Z ′ with the Drell-Yan background, we
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Figure 4.10: Cross section of the dilepton production via a Z ′ resonance at
√
s = 8 TeV for the

benchmark points BLRI (solid line), BLRII (dot-dashed line) and BLRIII (dashed line). The red
line shows the exclusion limit from ref. [175] as evaluated for the Z ′χ scenario.

will always refer to this analysis in the following and compare the predictions of our model
to the bounds given in [175] for the scenario of a Z ′χ.

For an interpretation of the cross-section limits in the context of our model, we made
use of the SARAH interface to CalcHEP which we used in version 3.4.2 [121], and calculated
the production cross sections σ(pp→ Z ′ → `+`−) for the benchmark points of table 4.3.
In figure 4.10, we present the results for BLRI-III. Naturally, the bound on BLRI is the
less stringent one as the decays into the heavy neutrinos are most pronounced for this
scenario and hence lead to a broadening of the Z ′ width. According to their smaller total
width, the dilepton mode of the Z ′ bosons of BLRII and BLRIII is correspondingly larger,
cf. table 4.5, leading to slightly tighter exclusion bounds. Nevertheless, as apart from the
heavy neutrinos, no large non-SM decay channels are present, the limits do not vary much
and we can place the bound MZ′ > 2.5 TeV, corresponding to vR > 6.9 TeV, on our model.
Therefore, BLRV with MZ′ = 2.4 TeV is already excluded.

For a Z ′ close to this mass, the supersymmetric decay modes are not accessible. While
heavy Z ′ masses could nevertheless help in resonantly producing supersymmetric particles,
there is little hope for a subsequent discovery of these high-mass sparticles, see the discussion
of slepton production through a Z ′ resonance in ref. [151]. Therefore, the most promising
possibility in which a Z ′ could tell about the underlying model is the decay mode into two
heavy neutrinos. Those decay further into W± `∓, Z ν, or hi ν (i = 1, 2) with the branching
ratios ∼ 0.6, ∼ 0.2 and ∼ 0.2, respectively [140]. Naively, one would also expect the decay
into sneutrinos to be sizeable in case of a sneutrino NLSP due to mν̃1 < mνh1

. However,
the coupling to the Z ′ is suppressed because of the large S̃ portion and the rather moderate
ν̃R share in a light sneutrino state, see also figure 4.9. In principle, also the second-lightest
sneutrino can be produced. However, as ν̃2 is the ν̃R-like sneutrino eigenstate, its mass is
governed by the large SUSY-breaking mass parameter m2

νc , so that there is a kinematical
suppression and we find only branching ratios of at most O(0.01) for sneutrinos in the final
state. In parts of the parameter space, the decay ν̃2 → ν̃1 hχR is possible. Mostly, however,
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it will undergo the decay

ν̃2 → νh χ̃
0
1 → νh νh ν̃1 → ` `W W + /ET , (4.59)

where /ET denotes the missing transverse energy due to the escaping sneutrino NLSP or its
invisible decay products. The complete Z ′ decay chain would hence dominantly be

Z ′ → ν̃2ν̃
∗
2 → 4` 4W + /ET , (4.60)

whereas also the other final states

2` 2W 2Z + /ET

2` 2W 2h+ /ET

4Z + /ET (4.61)

2Z 2h+ /ET

4h+ /ET

are feasible. The Z ′ decays into neutralinos are not expected to play an interesting role at
the LHC. Despite the possibility of rather light χ̃R/ ˜̄χR states, the decays into these are
suppressed: the Z ′ − χ̃0

i − χ̃0
j coupling is proportional to

gχ
(
2(Zi,3χ Zj,3χ − Zi,4χ Zj,4χ ) + 5(Zi,6χ Zj,6χ − Zi,7χ Zj,7χ )

)
, (4.62)

whereas the new higgsinos have admixtures of Z1,6
χ ' Z1,7

χ ' ±1/
√

2, Zχ being the
neutralino mixing matrix. The MSSM-like neutralinos and charginos which contain a large
higgsino content can only be produced for large Z ′ masses with branching ratios of a few
percent. In the scenario of BLRVI, the Z ′ production cross section is only of around 1 fb,
requiring large statistics to study the final states.

In conclusion, while an enlarged gauge symmetry at the TeV scale can help softening
the requirements for very large stop masses in scenarios with gauge mediation, the mass
scale for supersymmetric particles is in general still too high for a detailed study of the
model at the LHC. Therefore, the best hopes for discovery of parts of the model rest on
the extra gauge boson.
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CHAPTER 5

LEPTON FLAVOUR VIOLATION IN
LOW-SCALE SEESAW MODELS

The models in the previous chapters each featured seesaw mechanisms which resulted in
low-scale (i.e. significantly below the GUT scale) right-handed neutrinos, and we have
explored the consequences for LHC physics while leaving out the low-energy phenomenology.
This chapter is finally reserved for shedding some light on the particularly interesting lepton
flavour violating processes which are expected to show enhanced rates in such low-scale
seesaw mechanisms.

Other than in collider searches, the desirable possibility of the unambiguous identification
of new particles is not given in low-energy experiments. Instead, in processes like rare
decays or meson mixings, potential new heavy particles only enter as off-shell propagators,
mostly in loops. This makes it much harder to identify the source of a possible discrepancy
with respect to the SM predictions, and one has to compare different models in terms of
their predictions for the effective operators which describe the process.

Nevertheless, in many cases the precise measurement of low-energy processes is sensitive
to much higher mass scales than can be probed at current colliders as the background
is comparatively much lower. Let us consider charged lepton flavour violation: in the
Standard Model, the single lepton Yukawa coupling can be diagonalized while keeping all
flavour eigenstates equal to the gauge eigenstates. Consequently, lepton flavour is conserved
in the Standard Model. In the presence of right-handed neutrinos and the associated
additional Yukawa coupling, this statement is not true anymore. Instead, analogous to the
quark sector, one only has the freedom to choose a basis where one Yukawa coupling is
diagonal, but not both – which means that, in general, lepton flavour is violated. This
has finally been confirmed by the observation of neutrino oscillations [177] which implies,
besides that neutrinos are massive, that the neutrino mass eigenstates are in fact different
from the gauge eigenstates. Consequently, even though we can choose a basis where the
charged lepton Yukawa coupling is diagonal, loop diagrams of the type of figure 5.1 with
neutrinos and W bosons in the loop promote the flavour violation from the neutrino to
the charged lepton sector. Accordingly, muons and tauons can, in principle, decay via
processes like `α → `β γ or `α → 3 `β. In addition, in muon capture experiments, µ − e
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Figure 5.1: Examples for generic lepton flavour violating Feynman diagrams. In this illustration,
the red propagators represent particles of all spins. Diagrams of the left type contribute to the
radiative lepton decays `α → `β γ. The diagrams in the middle and at the right contribute to the
leptonic three-body decays `α → `β `γ `δ as well as to µ− e conversion in nuclei.

conversion is imaginable, corresponding to the parton-level process µ q → e q′. However, in
the SM extended by ν masses, those diagrams are suppressed by (mν/MW )4, so that the
respective cLFV branching rations are of the order of 10−50. This is beyond the reach of
any experiment we can imagine by now.

It is hence obvious that the measurement of any such process would be a plain sign
of BSM physics. In fact, in many models of new physics, cLFV processes are potentially
large. For instance, just considering the diagram with the supersymmetric analogue of
the ν −W loop already makes clear that in SUSY there is no such huge suppression as
in the SM since one expects chargino and sneutrino masses to be of the same order of
magnitude. Consequently, the LFV rates could actually be accessible for current and/or
future experiments.

The cLFV observable which is currently best constrained is µ → e γ. The MEG
collaboration could set a lower limit of BR(µ→ eγ) < 5.7 · 10−13 [178] and in the future,
the sensitivity will increase to 6 · 10−14 [179]. This future sensitivity will be outplayed
by experiments searching for µ → 3 e and µ − e conversion by the Mu3e and PRIME
collaborations, respectively [180,181]. In table 5.1 we summarize the current bounds as
well as the expected future sensitivities for the various considered cLFV observables.

LFV Process Present Bound Future Sensitivity

µ→ eγ 5.7× 10−13 [178] 6 · 10−14 [179]
τ → eγ 3.3 · 10−8 [182] ∼ 3 · 10−9 [183]
τ → µγ 4.4 · 10−8 [182] ∼ 3 · 10−9 [183]
µ→ eee 1.0 · 10−12 [184] ∼ 10−16 [180]
τ → µµµ 2.1 · 10−8 [185] ∼ 10−9 [183]

τ− → e−µ+µ− 2.7 · 10−8 [185] ∼ 10−9 [183]
τ− → µ−e+e− 1.8 · 10−8 [185] ∼ 10−9 [183]

τ → eee 2.7 · 10−8 [185] ∼ 10−9 [183]
µ−,Ti→ e−,Ti 4.3 · 10−12 [186] ∼ 10−18 [181]
µ−,Au→ e−,Au 7 · 10−13 [187]
µ−,Al→ e−,Al 10−15 − 10−18

µ−, SiC→ e−, SiC 10−14 [188]

Table 5.1: Current experimental upper bounds and future sensitivities for lepton flavour violating
radiative and three-body decays as well as conversion rates in the presence of nuclei.

Facing such bright prospects, it is interesting to see what theory tells us. As said

80



5.1. Mass spectrum of the model

before, in case of a positive signal, it is not easy to determine of which origin the associated
new physics is. However, with so many complementary experiments at operation, the
combination of observations and non-observations can be illuminating. For instance,
assuming the MSSM and employing a high-scale seesaw model, µ→ eγ will be orders of
magnitude larger than µ→ 3e [189,190]:1

BR(`α → 3`β) ' α

3π

(
log

(
m2
`α

m2
`β

)
− 11

4

)
BR(`α → `βγ) , (5.1)

so the observation of a three-body decay combined with the (non-)observation of µ→ eγ
could strongly (dis)favour said scenario. The simple relation between those observables
can not be generalized to supersymmetric models featuring low-scale seesaw scenarios like
the inverse seesaw. The reason is that, in addition to SUSY-scale right sneutrinos, also
non-supersymmetric diagrams involving a W boson and a right-handed neutrino can be
large [190–192], so that apart from the photonic penguins also other types of diagrams can
contribute significantly. Recently there has been quite some discussion going on about the
role of Z penguins in supersymmetric low-scale seesaw scenarios as enormous enhancements
with respect to the γ penguins have been reported in refs. [193, 194]. In particular the
fact that we made the same observation in association with the study of chapter 4, see
ref. [168], motivated us to scrutinize (i) the origins of that effect [195], and subsequently (ii)
the relative importance of all different contributions from the various types of diagrams to
the cLFV observables which are listed in table 5.1 [196]. In the following, we will present
the results of this investigation.

5.1 Mass spectrum of the model

We concentrate on the inverse seesaw mechanism based on the MSSM for which we add
three generations of right-handed neutrino superfields ν̂c and three generations of singlets
X̂ to the MSSM field content. While the ν̂c fields have to carry a lepton number of −1,
the singlets carry L = +1.2 The corresponding superpotential reads

W =Y ij
u ûci Q̂

α
j εαβ Ĥ

β
u − Y ij

d d̂ci Q̂
α
j εαβ Ĥ

β
d − Y ij

e êci L̂
α
j εαβ Ĥ

β
d + µ Ĥα

u εαβ Ĥ
β
d

+ Y ij
ν ν̂ci L̂

α
j εαβ Ĥ

β
u +MRij ν̂

c
i X̂j +

1

2
µXij X̂i X̂j . (5.2)

While the MR term is lepton number conserving and has no profound reason to be of a
certain scale, µX violates L by two units. Hence, since lepton number is restored in the
limit µX → 0, this parameter is expected to be naturally small, in the sense of ’t Hooft [10].

1This can easily be estimated in this type of models as µ→ 3e is dominated by the γ penguin diagrams,
so that the corresponding diagrams are related (compare the first and second diagram in figure 5.1).

2This is different to the assignments in chapter 4 where lepton number is part of a broken gauge group.
Hence, there, the singlets S carry L = 0 while the Higgs fields charged under B − L induce the inverse
seesaw mechanism once they develop a vev.
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The soft SUSY-breaking Lagrangian reads

−Lsoft = −LMSSM
soft +m2

ν̃cij
ν̃ci ν̃

c∗
j +m2

XijX̃
∗
i X̃j

+ (T ijν ν̃
c
i L̃

α
j εαβH

β
u +Bij

MR
ν̃ci X̃j +

1

2
Bij
µX
X̃iX̃j +m2

Xνcij
X̃∗i ν̃

c
j + h.c.) , (5.3)

and LMSSM
soft is defined in eq. (2.36). Also BµX and m2

Xνc
violate lepton number by two

units and are therefore expected to be small.

The only difference in the mass spectrum of this model with respect to the MSSM is
found in the (s)neutrino sector. In the following, we will discuss the corresponding mass
matrices in some detail.

5.1.1 Fitting neutrino data within the inverse seesaw mechanism

The 9× 9 neutrino mass matrix reads in the basis (νL, ν
c
R, X):

MISS =

 0 mT
D 0

mD 0 MR

0 MT
R µX

 , (5.4)

where we abbreviated mD = 1√
2
vuYν . Applying the replacement MR → 1√

2
vχRYS and

µX → µS , we arrive at the mass matrix of the U(1)R × U(1)B−L model of chapter 4,
eq. (4.42). Hence, in the limit µX � mD � MR, the effective mass matrix for the light
neutrino eigenstates can be written in the same way as eq. (4.43):

Mlight ' mT
D(MT

R )
−1
µXM

−1
R mD . (5.5)

Note that we can always work in a basis where MR is diagonal. In that case, Yν and µX in
general feature an off-diagonal structure.

We can now go on and fit the model parameters to the known neutrino data. For that
purpose, we use MR and µX as input and fix Yν using a parameterisation developed by
Casas and Ibarra for the seesaw I [197], adapted to the inverse seesaw case [198,199]:

Yν =

√
2

vu
V †D√XRD

√
mνU

†
PMNS , (5.6)

where D√mν = diag(
√
mνi), mνi being the light neutrino masses, and D√X = diag(

√
X̂i).

X̂i contains the eigenvalues of X = MR µ
−1
X MT

R , and V is the matrix that diagonalizes X

as V XV T = X̂.

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [200,201] is the mixing matrix
of the light neutrinos, νeνµ

ντ

 = UPMNS

ν1

ν2

ν3

 (5.7)
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and can be parameterised by three real angles θ12,23,13 and one Dirac CP phase δCP :

UPMNS = (5.8)1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23

 cos θ13 0 sin θ13 e
−iδCP

0 1 0
− sin θ13 e

iδCP 0 cos θ13

 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1

 .

So far, the absolute mass scale of the neutrinos is not known since only squared mass
differences can be extracted from neutrino oscillation experiments. Denoting the neutrino
mass eigenstate of mostly electron flavour admixture as ν1, the difference ∆m2

21 = m2
ν2
−m2

ν1

is known to a good precision, whereas the other mass difference can only be measured
up to a sign. Therefore, it is not yet clear if the hierarchy mν1 < mν2 < mν3 (normal
hierarchy) or mν3 < mν1 < mν2 (inverted hierarchy) is realized in nature. Consequently,
while sin2 θ12 can be determined unambiguously, the fits to θ13 and θ23 depend on the
underlying neutrino mass hierarchy, and little is known about the CP phase.

R in eq. (5.6) is an arbitrary 3×3 complex orthogonal matrix which can be parameterised
analogously to eq. (5.8) with the difference that all three angles θR12,23,13 can be complex.

Eventually, once MR, µX and R are fixed, there is still freedom in choosing mν1 , the
hierarchy and δCP for a successful fit of Yν . In the following, we will assume normal
hierarchy together with mν1 = 10−4 eV and δCP = 0 using the best-fit parameters as
provided in ref. [202]

∆m2
21 = 7.60 · 10−5 eV2 , ∆m2

31 = 2.48 · 10−3 eV2 ,

sin2 θ12 = 0.323 , sin2 θ23 = 0.467 , sin2 θ13 = 0.0234 , (5.9)

which are in good agreement with [203–205]. Fixing MR = 1 · 2 TeV, µX = 1 · 10−5 GeV
and R = 1 yields

Yν = 10−2 ·

0.0956 −0.0589 0.0348
0.616 0.594 −0.687
0.404 1.78 1.91

 . (5.10)

5.1.2 Sneutrino masses

The lepton number violating terms µX and BµX induce a small mass splitting between the
sneutrino CP eigenstates. To account for that, we split the complex sneutrino fields into
their real and imaginary part according to ν̃L = 1√

2
(φL + iσL), ν̃R = 1√

2
(φR + iσR), X̃ =

1√
2
(φX + iσX), so that the mass matrices of the scalar and pseudoscalar sneutrinos read in

the basis (φL, φR, φX) and (σL, σR, σX), respectively:

m2
ν̃S/P

= (5.11)
m2
L + 1

2v
2
uY

T
ν Y

∗
ν +DL − 1√

2

(
vdµY

T
ν − vuT †ν

)
1√
2
vu<

(
Y T
ν M

∗
R

)
− 1√

2

(
vdµY

∗
ν − vuTν

)
m2
ν̃c +MRM

†
R + 1

2v
2
uYνY

†
ν BMR

±MRµ
∗
X

1√
2
vuM

T
RY
∗
ν BT

MR
± µXM †R MT

RM
∗
R +m2

X + µXµ
∗
X ±BµX

 ,
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with

DL =
1

8
(g2

1 + g2
2)(v2

d − v2
u) = −m2

Z cos2 θW cos 2β 1 . (5.12)

As one expects |MR µ
∗
X | � |BMR

| and |BµX | � |MR|2, the CP -splitting has a negligible
impact on the phenomenology of the model.

5.2 Lepton flavour violating decays

Because of the off-diagonal structure of Yν , it is obvious that lepton flavour violating
processes can in general be introduced at the loop level. The experimentally most interesting
observables are the radiative muon decay µ → eγ, three-body muon and tauon decays
`α → `β`γ`γ as well as coherent muon conversion in nuclei. In the appendix B, we define
all relevant decay widths.

5.2.1 Numerical setup

For the numerical evaluation, we use the combination of SARAH and SPheno for the spectrum
calculation, including the full RGE running at the two-loop level. For the calculation of
the flavour observables, we use the FlavorKit package [206] as incorporated in SARAH.
FlavorKit uses FeynArts and FormCalc [207–210] to calculate all one-loop amplitudes
to any process relevant for flavour physics. Processes which are not yet predefined can
be implemented via PreSARAH by providing the amplitude and the necessary FeynArts

structure, see the manual for further information. In this manner, the FlavorKit repertoire
has been extended to also include `−α → `−β `

±
β `
∓
γ in line with this project.

The tadpole equations are solved for |µ| and Bµ, the phase of µ being treated as a
free parameter, as are MR, BMR

as well as µX and BµX . We furthermore define as usual
tanβ = vu/vd. The Standard Model masses and couplings are used as listed in table 5.2;
the dimensionless parameters are evaluated up to the GUT scale (MGUT , defined by the
requirement gY = gL) using the RGE equations provided by SARAH. At MGUT we impose
the CMSSM-like boundary conditions:

m2
Q = m2

u = m2
d = m2

L = m2
e = m2

νc = m2
X = m2

01 , (5.13)

m2
Hu = m2

Hd
= m2

0 , (5.14)

M1 = M2 = M3 = M1/2 , (5.15)

whereas the mixing soft parameter mXνc is zero at MGUT and is not induced by the
RGEs. Additionally, it is assumed that, as usual, all soft SUSY-breaking trilinear couplings
originate from a common A-term:

Ti = A0Yi , i = u, d, e, ν . (5.16)

These parameters are then evolved down to QEWSB =
√
t̃1t̃2 where the mass spectrum is

calculated at one loop. The lepton flavour violating processes, in turn, are calculated at
MZ . The effects of the RGE running of the operators down to the scale of the decaying
particle can be taken into account to a good approximation by using α(0).
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α−1
em 127.92783 Gµ 1.11639 · 10−5GeV−2

αS 0.11720 MZ 91.18760 GeV
mb(mb) 4.2 GeV mt 172.9 GeV
mτ 1.777 GeV

Table 5.2: Input values for the SM parameters taken at MZ unless specified otherwise.

5.2.2 Results

m0 1 TeV M1/2 1 TeV

A0 -1.5 TeV MR 2 TeV
BµX 100µX BMR

100MR

tanβ 10 sign(µ) +

Table 5.3: Input values for the various parameters if not scanned over or stated otherwise. MR

and µX are taken proportional to the unit matrix.

We turn to the numerical results. In addition to MR, we use diagonal µX and adapt
Yν to fit neutrino data, and throughout the numerical evaluations we assume MR to be
degenerate, MR = M ii

R , i = 1...3 . Of particular interest is the dependence of the respective
rates on the mass scale of the new particles. This scale is MR for the right-handed neutrinos
and MSUSY for supersymmetric particles, and we define MSUSY = m0 = M1/2 = −A0. If
not scanned over or stated otherwise, we fix the model parameters according to table 5.3.

µ→ eγ

In the majority of models, the most constraining LFV observable is the radiative muon
decay µ → eγ. We shall see that this is also the case here, but that this situation can
change with future experiments. In figure 5.2, we show the dependence of the decay rate
on MR and MSUSY as well as for the case MR = MSUSY . In each scenario we present the
complete decay rate as well as separately the contributions from the supersymmetric and
the non-supersymmetric particles. The latter include, in addition to the SM fields, also the
heavy neutrinos, the heavy neutral scalar and pseudoscalar as well as the charged Higgs
boson. The latter is also the reason for the dip in the curve for the non-supersymmetric
contributions: the major part of the non-SUSY amplitude is contributed by the ν −H±
and ν −W± diagrams which add with a relative sign in K

L/R
2 , so that a sign-flip occurs

where both contributions cancel each other.3 Note that mH± is a function of the SUSY
mass scale which means that the magnitudes of the non-SUSY diagrams actually also
depend on MSUSY in regions where the ν −H± diagrams dominate. As apparent from the
figures, the sign flip happens at MR > MSUSY , which is the reason why there is no such
situation if MR = MSUSY are varied together.

3This is in contrast to the known contributions to b→ sγ where both types of diagrams with t−W±
and t−H± in the loop interfere constructively. We have verified that we recover the b→ sγ results when
replacing the neutrino masses and Yukawa couplings with the top mass and coupling.
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Figure 5.2: Branching ratio of the radiative decay µ → e γ as a function of MSUSY and MR,
the other parameters being given in the text. The grey shaded area roughly corresponds to the
parameter space excluded currently by the LHC.

The dominating SUSY diagrams are the ones induced by the respective superpartners,
the sneutrinos and charginos. We observe that, for the chosen parameter setup, the
supersymmetric contributions dominate if the SUSY and νR mass scales coincide, M =
MR = MSUSY , with the relative importance of the SUSY diagrams increasing with M .

The grey area here and in the following figures, indicating MSUSY < 0.8 TeV, roughly
corresponds to the recent LHC exclusions on the constrained SUSY parameter space which
assume the CMSSM as the underlying model [53]. Although most of the model under
consideration is similar to the CMSSM, the bounds cannot be translated one-to-one because
of the enhanced (s)neutrino sector and the correspondingly different cascade decays, so
that the shown bound may be regarded as conservative.

µ→ 3e

A particularly promising observable because of the upcoming Mu3e experiment [180] is
the three-body decay µ→ 3e. In the same manner as in figure 5.2, we show in figure 5.3
the results for this observable as a function of MR and MSUSY . Before discussing the
individual contributions to this decay, we will focus on the supersymmetric Z-penguin
diagrams in a little more detail. Two conclusions can be drawn from the figures: these
diagrams are (i) sub-dominant for each considered scenario and (ii) the respective operators
decouple properly for large mediator scales, i.e. the amplitude decreases with increasing
mass of the particles in the loop. Both observations, though sounding rather trivial, are in
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Figure 5.3: BR(µ→ 3 e) as a function of MSUSY , MR and an overall scaling parameter f for Yν
whereas f = 1 corresponds to the Yukawa matrix shown in eq. (5.10). The other parameters are
given in table 5.3.

fact very interesting as previous studies reported otherwise for low-scale seesaw models,
including the very model under consideration.

It has been first noted in ref. [193] that, using the amplitudes and loop functions of [189],
the suppression of Z-mediated LFV diagrams (as it happens in the MSSM extended by a
seesaw-I sector) does no longer happen in non-minimal scenarios such as models with inverse
seesaw or R-parity violation. Instead, an enhancement of (MSUSY /MZ)4 of supersymmetric
Z-penguins with respect to supersymmetric photon penguins has been observed. A further
study [194] confirmed these results and carved out the relevant part which leads to that
effect within the supersymmetric inverse seesaw model. According to ref. [194], the effective
Z − `i − `j vertex as mediated by a charged higgsino and a right sneutrino can be written
to first order as

F =
g

8 cos θW

(
Y †ν Yν

)
ij

(cos2 θW −
1

2
) . (5.17)

Since Yν is a generic complex matrix, the corresponding matrix element will be non-zero in
general. Apparently, as eq. (5.17) does not depend on any mass scale, the contribution
from this operator is non-decoupling, meaning that it will carry information from new
physics – at whichever scale that may be. Consequently, it will dominate for large masses
of loop particles, which is exactly the (MSUSY /MZ)4 enhancement found in ref. [193].
Several other papers which made use of the same formulas have reported the Z-penguin
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enhancement [140,194,211], including the publication associated with the study of chapter 4,
ref. [168]. Moreover, this Z-penguin non-decoupling was one of the main motivations for
the Mu3e experiment as it sets hopes to discover new physics even in case the associated
energy scales are by far out of reach of the LHC. In fact, two out of the three explicit
models discussed in the corresponding research proposal [180] rely on that effect.

However, as pointed out in ref. [195], those hopes are ill-founded. We could trace back
the reported effect to a combination of an error in the loop amplitudes and an erroneous
definition of the loop function C00 in the literature. Using the correct amplitude, the
one-loop effective vertex of eq. (5.17) vanishes exactly and can only be non-zero by chargino-
or left-right-sneutrino mixing.4 Both mixings are suppressed roughly as v/MSUSY , so that
the amplitude decouples with MSUSY as one would also have naively expected, and as is
also clearly seen in figure 5.3. For a detailed investigation of that issue see appendix B.4.
Based upon this finding, the authors of ref. [193] have revoked the reported Z-penguin
enhancement in an erratum [212].

In figure 5.3, we observe that the non-supersymmetric diagrams dominate if MR =
MSUSY . Interestingly, it is in fact the box diagrams which give the most important
contributions if MR is in the TeV region.5 Note that this statement does not depend on
the magnitude of Yν . This can be seen in the lower right panel of figure 5.3 where we scale
Yν as f Yν . The fact that all contributions scale in the same way can be spoiled if extra
flavour violating entries in the soft SUSY-breaking parameters were present. For larger
MSUSY = MR or for MR < MSUSY , the interference between the non-SUSY boxes and
Z-penguins becomes important: both types of diagrams contribute with a relative sign,
so that the overall amplitude is suppressed by an order of magnitude in the region where
both contributions cancel each other. This is e.g. the case for MSUSY = MR ' 10 TeV in
the left upper plot in figure 5.3. With the chosen set of parameters, this region coincides
with the values of branching ratios probed by future experiments, so that this interference
has to be regarded when interpreting positive results or when setting bounds because of
non-observations.

The non-supersymmetric γ penguins are in general at least an order of magnitude
smaller than said diagrams. The sign-flip between the ν−H± and the ν−W± contributions
to K2, though present, is by far not as pronounced as in figure 5.2 where it led to a change
of the overall sign, but can only be seen as a small kink. The reason is that for the
off-shell photon, the monopole operators K1 appear with a higher weight than the dipole
contributions from K2. See appendix B for a definition of these operators.

µ− e conversion in nuclei

The µ− e conversion rates behave similarly to the three-body decays as the difference only
amounts to the exchange ee↔ qq in the corresponding diagrams. The main discrepancy to
the µ→ 3e decay is seen in figure 5.4 in the very pronounced negative interference between
the non-SUSY Z-penguins and boxes and the SUSY photon penguins, which is due to
a relative sign between the SUSY γ penguins and the non-SUSY boxes. The rest of the
figure shows no qualitative difference to the muonic three-body decay.

4Also the mass splitting of the sneutrinos into CP -even and CP -odd eigenstates can induce a non-zero
[ij] element; however, as explained earlier, this splitting is very small.

5Note that this finding is not new. It has first been observed by ref. [213] and confirmed by refs. [214–216].

88



5.2. Lepton flavour violating decays

500 1000 2000 5000 1´10
4

10
-24

10
-22

10
-20

10
-18

10
-16

10
-14

10
-12

MR = MSUSY [GeV]

C
R
(µ

−
e,

A
l)

full contribution

non-SUSY Z penguins

non-SUSY boxes

SUSY Z penguins
SUSY boxes

SUSY γ penguins

non-SUSY γ penguins

100 200 500 1000 2000 5000 1´10
4

10
-21

10
-19

10
-17

10
-15

10
-13

10
-11

MR [GeV]

C
R
(µ

−
e,

A
l) full contribution

non-SUSY Z penguins
non-SUSY boxes

SUSY Z penguins

SUSY boxes

SUSY γ penguins

non-SUSY γ penguins

500 1000 2000 5000 1´10
4

10
-28

10
-25

10
-22

10
-19

10
-16

MSUSY [GeV]

C
R
(µ

−
e,

A
l)

full contribution

non-SUSY Z penguins

non-SUSY boxes

SUSY Z penguins
SUSY boxes

SUSY γ penguins

non-SUSY γ penguins

0.1 0.2 0.5 1.0 2.0 5.0 10.0
10
-25

10
-22

10
-19

10
-16

10
-13

10
-10

f

C
R
(µ

−
e,

A
l)

MSUSY = 1 TeV

MR = 2 TeV

Figure 5.4: µ−e conversion on Al as a function of MSUSY and MR as well as the scaling parameter
f for Yν .

The nuclei used for µ− e conversion experiments don’t influence the generic behaviour
of the conversion rate with MR/SUSY . This is exemplified in figure 5.5 where we compare
the absolute rates of the processes discussed so far, and show the µ − e conversion for
the elements Al and Ti. Also apparent from this figure is that, with µ→ e γ bearing the
strongest bounds up to date, this is the currently most constraining LFV process. In the
future this situation will, however, change when muon capture experiments probe µ− e
conversion down to rates of O(10−18). These experiments will in particular provide the
best bounds to our model if MR .MSUSY .

τ decays

The different contributions from different types of diagrams to the flavour violating τ
decays are analogous to the µ decays and, using the same texture of Yν , the total branching
ratios are of the same order of magnitude as µ→ 3 e for τ → µ `+i `

−
i , `i = e, µ and roughly

two orders smaller for τ → e `+i `
−
i , see figure 5.6. The reason is the structure of Y †ν Yν :

the (2,3) and (1,2) entries using eq. (5.10) are larger than the (1,3) elements. In either
case, the τ decay rates are too small to be observed in the near future. This statement,
however, is specific to the assumptions made so far. Indeed, it is possible to find regions of
the parameter space in which the τ observables are enhanced with respect to the µ decays
because of a different Yν structure. This can already be the case if the generic matrix R
as of eq. (5.6) exhibits a non-trivial structure and µX inherits a hierarchy in the diagonal
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Figure 5.5: Comparison of the magnitudes of BR(µ→ e γ), BR(µ→ 3 e), µ− e conversion on Ti
and Al as functions of MR and MSUSY .

entries.

Those regions are of particular interest as the observation of more than one τ three-body
decay channel could give insight into the underlying BSM physics which leads to the decay:
for MSUSY < MR, the branching ratio is dominated by the SUSY γ penguins which prefer
the decays into lighter particles since the corresponding final states have more phase space
available. In case MR > MSUSY , in turn, the non-SUSY boxes usually give the dominant
contribution. They favour the final state with three leptons of the same flavour: for the
decay τ → µ e+e−, e.g., most of the box diagrams require an an additional LFV vertex
with respect to the 3µ final state, so that BR(τ− → µ−e+e−) < BR(τ → 3µ). Hence,
a measurement of both decays can give hints to the relative scales or even the existence
of supersymmetric states or right-handed neutrinos. This behaviour is exemplified in the
lower row of figure 5.6.

The remaining decays τ → e µ−e+ and τ → µ e−µ+ are suppressed with respect to said
processes since (i) the only possible contributing type of diagram is the boxes and (ii) at
least one more lepton flavour violating vertex is required compared to the previous cases.
Therefore, those decays are beyond hope of discovering in the near future.

We now turn to parameter regions which feature enhanced τ LFV decays, refraining from
the previous assumptions that R is trivial and that µX is proportional to the unit matrix.
Using the approach to fit Yν according to eq. (5.6) and keeping the other parameters
fixed, a change of the overall µX prefactor obviously influences all LFV rates equally
as it corresponds to an overall scaling of Yν as in the previous pictures. Implementing
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Figure 5.6: Branching ratios of the LFV τ decays as a function of MR and MSUSY . The lines in
the upper row correspond to BR(µ→ 3 e) (black solid), BR(τ → 3e) (blue solid), BR(τ → 3µ) (red
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Chapter 5. Lepton Flavour violation in low-scale seesaw models

a hierarchical structure while keeping µX diagonal, in turn, can influence the relative
importance of τ and µ decays. This is illustrated in figure 5.7 where we show the radiative
µ and τ decays as a function of the µ33

X entry for two values of tanβ. Being dominated
by the SUSY contribution, the branching ratios roughly scale like tan2 β. In figure 5.8,
we show how already one non-zero θR angle can lead to relative differences between the
branching fractions of τ and µ decays for different hierarchies in µX .6 Those differences are
maximally enhanced if the amplitude of one observable undergoes a sign-flip. Hence, the
best mechanism to enhance τ over µ LFV decays is finding parameter regions where the µ
decays are suppressed for this reason. This is the case for certain values of θR23, depending
on the structure of µX . The behaviour of the radiative decays (upper row) compared to
the three-body decays (lower row) with varying θR23 is the same.
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Figure 5.8: Dependence of `α → `βγ (upper row) and `α → `β`γ`δ (lower row) on θR23 for
two different µX hierarchies each, and MR = 4 TeV. In the upper row, the lines correspond to
BR(µ→ e γ) (black solid), BR(τ → e γ) (blue dashed) and BR(τ → µ γ) (red dotted). In the lower
row, they correspond to the branching ratios of µ → 3 e (black solid), τ → 3 e (blue solid) and
τ → 3µ (red solid), as well as τ → e µ+µ− (blue dashed) and τ → µ e+e− (red dashed).

From these figures it is apparent that one can find small regions where τ decays might
indeed be relevant for future experiments. We have exploited this fact in figure 5.9 where
we show two special cases where most of the radiative and three-body decays are within
reach of the future experiments. For those specific scenarios we have adapted θR23 such that
the µ→ e γ amplitude is near a sign-flip and is hence suppressed with respect to τ → µγ.
In that manner, the latter can still have a sizable branching ratio of O(108) which is within
the reach of SuperB even when µ→ e γ is below its current bound. Interesting regions of

6Note that R has no impact if µX and MR are proportional to the unit matrix.
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Figure 5.9: LFV µ- and τ -observables as a function of µ11
X = µ22

X while keeping µ33
X fixed. The

underlying parameters are given in the plots. The lines correspond to BR(τ → µγ) (red, solid),
BR(τ → 3µ) (red, dashed), BR(τ− → µ−e+e−) (red, dotted), BR(µ → e γ) (black, solid) and
BR(µ→ 3 e) (black, dashed). The light grey, red, yellow and blue bands show the expected future
reach of the dedicated experiments to τ → µ γ, τ → 3µ, µ→ e γ and µ→ 3 e as given in table 5.1.

this kind can be found for both cases, MR < MSUSY (left panel) and MR > MSUSY (right
panel). Regarding the left plot, even the interesting ratio BR(τ → µ e+e−)/BR(τ → 3µ)
as discussed above is potentially accessible.

5.3 Lepton flavour violation in the SO(10) inspired GMSB
model

Considerations on lepton flavour violating decays have also been performed in the U(1)R ×
U(1)B−L model of chapter 4. By the time of the journal article, ref. [168], we had not
yet corrected the LFV amplitudes as presented in section 5.2.2 and instead relied on the
erroneous amplitudes of ref. [189]. Hence, the same observation as in refs. [193, 194] of
a dominating Z penguin has been promoted, leading to the wrong conclusion that the
Z-penguin diagrams in fact show a non-decoupling behaviour, scaling as (MSUSY /MZ)4.
While the results for the considered radiative decay µ→ e γ are unaffected, the findings for
µ→ 3 e and the µ− e conversion in nuclei as presented in figure 11 in ref. [168] are wrong.
Therefore, we correct our findings as well as the plots of this figure in the following.

In chapter 4, the assumption was made that the complete flavour structure of the
neutrino sector is encoded in µS . This will lead to undetectable rates for charged lepton
flavour violating decays. Let us now assume that also in this model the neutrino mixing
is present because of the non-diagonal form of Yν . In the following, we refrain from the
Casas-Ibarra-like parameterisation used above in favour of a slight redefinition. This is
done in order to compare the obtained results one-to-one with the ones reported in ref. [168].
Hence we use [218]

Yν =f

 0 0 0

a a(1− sin θ13√
2

) −a(1 + sin θ13√
2

)√
2 sin θ13 1 1

 ,
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Figure 5.10: Flavour violating observables in the U(1)R × U(1)B−L model as a function of f
as defined in eq. (5.18): BR(µ → e γ) (solid line), BR(µ → 3 e) (dotted line) and CR(µ → e) in
Au (dashed line) for the points BLRI (left) and BLRIII (right) defined in section 4.7, table 4.3
and using Yν to explain the neutrino data. The upper bounds (BR(µ→ e γ) < 5.7 · 10−13 [178]),
BR(µ→ 3 e) < 1.0 · 10−12 [217], CR(µ− e) < 7.0 · 10−13 [187]) are shown as a red horizontal line,
respectively.

a =

(
∆m2

�
∆m2

Atm

) 1
4

≈ 0.4 , (5.18)

where we assumed that the complete flavour structure of the neutrino sector is inherent in
the neutrino Yukawa coupling Yν while YS and µS are diagonal. This parameterisation
holds for a massless lightest neutrino eigenstate. The results for the lepton flavour violating
rates of µ→ e γ, µ→ 3 e as well as the conversion rate of µ→ 3 in gold nuclei are shown in
figure 5.10 as a function of the scaling factor f within two benchmark scenarios as defined
in table 4.3. Clearly, as is also the case for the inverse seesaw with elsewise MSSM particle
content, the radiative µ → eγ decay is the currently most constraining observable. The
other processes, at most competing with each other in magnitude, are seen to be more
than an order of magnitude smaller. This is in gross disagreement with the results for the
exact same setup shown in ref. [168] where the conversion rate in nuclei was reported to be
not only the most constraining process, but even around two orders of magnitude more
pronounced than µ→ eγ.
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CHAPTER 6

SUMMARY

We studied the phenomenology of non-minimal supersymmetric models with or inspired by
a left-right symmetric gauge group SU(3)c×SU(2)L×SU(2)R×U(1)B−L. In the scenario
which is most relevant for LHC physics, this gauge group gets broken at the TeV scale.
Assuming the most economic version with SU(2)R triplets that break left-right symmetry
by their vev, one is faced with the problem that a doubly-charged scalar gets tachyonic
at the tree-level. Improving the approaches of previous studies which partially calculated
its one-loop mass, we proposed an iterative method to calculate mH±± which includes the
full one-loop corrections. We demonstrated that our approach can reproduce the partial
results from the literature and made clear that the full corrections are needed in order to
get a realistic and reliable prediction. As a charged tachyonic particle goes hand in hand
with a vacuum that breaks electromagnetic U(1)em invariance, we further performed a
study of the vacuum stability at the one-loop order using the one-loop effective potential
method. We found that low triplet vevs are favoured by vacuum stability arguments so
that the current LHC run will be able to push this model close to exclusion in the case of
absence of signals. So far, searches from the 8 TeV run of the LHC were able to constrain
the mass of the predicted W ′ to MW ′ & 2 TeV. Particularly the lower edge of this bound
is currently of interest because of excesses measured in the diboson and dilepton plus dijet
channels. We demonstrated how in particular the latter measurement of eejj events can
be explained by the model under consideration. A confirmation of the excess would favour
light supersymmetric states – especially charginos at a few hundred GeV – making the
scenario very predictive.

We then turned to a related model where not the complete SU(2)R group but only the
subgroup U(1)R survives down to the TeV scale. In this case, there is no TeV-scale W ′ but
only a Z ′ to be expected. We implemented a minimal GMSB mechanism using messenger
fields transforming as a 10 under SO(10) while paying attention to the possible gauge
kinetic mixing when deriving the boundary conditions for the SUSY-breaking parameters
at the messenger scale. The tree-level Higgs mass can reach values up to ∼100 GeV in
this model due to the presence of extra D-terms from the extended gauge sector. As
a consequence, the stop masses can be as low as 2 TeV despite the smallness of the
trilinear couplings, which are only generated by the RGE running from the messenger scale
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Chapter 6. Summary

downwards. This has to be seen opposed to the lower stop mass bound of 5 TeV in the
MSSM context with minimal GMSB. Because of the weakly-coupled gravitino LSP, the
next-to lightest SUSY particle is usually long-lived. While GMSB scenarios with MSSM
particle content only feature either a neutralino or a stau NLSP, this model adds the
possibility of a right sneutrino as NLSP. We investigated the different cases and specified
the respective expectable cascade decays at a hadron collider. Finally we evaluated the
lower bounds on the Z ′ and pointed out possibly interesting Z ′ decays.

In the last part of this thesis we moved away from LHC physics and studied lepton
flavour violating low-energy observables. Those processes are enhanced in low-scale seesaw
mechanisms with respect to high-scale scenarios because of the comparatively light right-
handed neutrinos in the former case. Apart from the radiative decay `α → `β γ we also
considered the three-body decays `α → `β `γ `δ as well as µ−e conversion in nuclei, applying
the supersymmetric inverse seesaw mechanism with CMSSM boundary conditions. We
found that the non-supersymmetric Z-penguin and box contributions dominate over the
supersymmetric ones in the latter two types of observables if MR . MSUSY , whereas
negative interference between the respective diagrams can reduce the total rate by several
orders of magnitude. As regards the radiative decays, the SUSY contributions dominate
over the non-SUSY ones for MR & MSUSY /2. Up to now, µ → e γ gives the tightest
constraints on this type of models. Comparing the prospects for future experiments, one
finds that the three-body decay µ→ 3 e will be most relevant in the medium term, whereas
in the long run the µ− e conversion experiments will be able to set the tightest constraints.
Finally, we considered cLFV τ decays and could demonstrate how the measurement of two
different branching ratios like BR(τ → 3µ) and BR(τ → µ e+e−) can give insight into the
physics at work. This is because their relative size is sensitive to the types of diagrams
that dominate; in particular, it is different in the case in which the ν −W box gives the
dominant contribution as compared to the one in which the SUSY γ penguin dominates.
It is further noteworthy that the increase of the respective scales MR and MSUSY results
in the expected decoupling behaviour of the contributions of every type of diagram. This
disproves previous claims of a non-decoupling behaviour of Z-penguins. Correspondingly,
we also corrected the associated aspect in own published results from the study of the
U(1)R × U(1)B−L model.
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APPENDIX A

MASS MATRICES IN LEFT-RIGHT
SUPERSYMMETRY

A.1 Tree-level mass matrices and tadpole equations

Here we present the relevant tree-level mass matrices of the full model without approxima-
tions. In contrast to above, we include the other possible neutral and R-parity conserving
vevs 〈∆1L,2L〉 = v1L,2L and 〈H ′01,2〉 = v′1,2. Moreover, we include the SU(2)L and SU(2)R
Higgs fields which correspond to each other in the same multiplets even though in some
cases the mass matrices turn out to be reducible, as is the case for the doubly-charged
Higgses and their superpartners.

A.1.1 Tadpole equations

We split the neutral scalar fields into their CP-even and CP-odd parts as well as the vevs
as follows:

S =
1√
2
vS +

1√
2
φS + i

1√
2
σS , (A.1)
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A.1. Tree-level mass matrices and tadpole equations

With the soft SUSY-breaking mass terms m2
S , m

2
φ1,2

, m2
φ1φ2

, m∆1R,2R,1L,2L
the tadpole

equations then read
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2 − v2
u + v2

d + v′2
2
))

+
1

2

(
2
(
m2
φ1
vd +m2

φ1φ2
v′2
)

+ λ2
12

(
v′1vuv

′
2 + vd

(
v2
u + v2

S

))
+ vu

(
− λ12

(
λLv1Lv2L + λRv1Rv2R + λSv

2
S

)
−
√

2vSTλ12

))
= 0 , (A.8)

∂V

∂φH0
2

= +
1

8
vu

(
g2
L

(
− 2v2

1L + 2v2
2L − v′2

2 − v2
d + v′1

2
+ v2

u

)
+ g2

R

(
2v2

1R − 2v2
2R − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2

(
2
(
m2
φ1φ2

v′1 +m2
φ2
vu

)
+ λ12

((
λ12vu − λSvd

)
v2
S + vd

(
λ12

(
v′1v
′
2 + vdvu

)
− λLv1Lv2L − λRv1Rv2R

))
−
√

2vdvSTλ12

)
= 0 , (A.9)

∂V

∂φR0
1

= +
1

4
v1R

(
2g2
BL

(
− v2

2L − v2
2R + v2

1L + v2
1R

)
+ g2

R

(
2v2

1R − 2v2
2R − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2

(
2m2

∆1R
v1R + λR

((
λRv1R + λSv2R

)
v2
S

+ v2R

(
− λ12

(
v′1v
′
2 + vdvu

)
+ λLv1Lv2L + λRv1Rv2R

))
+
√

2v2RvSTλR

)
= 0 ,

(A.10)

∂V

∂φR0
2

= +
1

4
v2R

(
2g2
BL

(
− v2

1L − v2
1R + v2

2L + v2
2R

)
+ g2

R

(
− 2v2

1R + 2v2
2R − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2

(
2m2

∆2R
v2R + λR

((
λRv2R + λSv1R

)
v2
S

+ v1R

(
− λ12

(
v′1v
′
2 + vdvu

)
+ λLv1Lv2L + λRv1Rv2R

))
+
√

2v1RvSTλR

)
= 0 ,

(A.11)

∂V

∂φH′01
= +

1

8
v′1
(
g2
L

(
− 2v2

1L + 2v2
2L − v′2

2 − v2
d + v′1

2
+ v2

u

)
+ g2

R

(
2v2

1R − 2v2
2R − v′2

2 − v2
d + v′1

2
+ v2

u

))
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+
1

2

(
2
(
m2
φ1
v′1 +m2

φ1φ2
vu

)
+ λ12

((
λ12v

′
1 − λSv′2

)
v2
S

+ v′2
(
λ12

(
v′1v
′
2 + vdvu

)
− λLv1Lv2L − λRv1Rv2R

))
−
√

2v′2vSTλ12

)
= 0 , (A.12)

∂V

∂φH′02
= +

1

8
v′2
(
g2
L

(
2v2

1L − 2v2
2L − v′1

2 − v2
u + v2

d + v′2
2
)

+ g2
R

(
− 2v2

1R + 2v2
2R − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2

(
2
(
m2
φ1φ2

vd +m2
φ2
v′2
)

+ λ2
12

(
v′2
(
v′1

2
+ v2

S

)
+ vdv

′
1vu

)
+ v′1

(
− λ12

(
λLv1Lv2L + λRv1Rv2R + λSv

2
S

)
−
√

2vSTλ12

))
= 0 , (A.13)

∂V

∂φL0
1

= +
1

4
v1L

(
2g2
BL

(
− v2

2L − v2
2R + v2

1L + v2
1R

)
+ g2

L

(
2v2

1L − 2v2
2L − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2

(
2m2

∆1L
v1L + λL

((
λLv1L + λSv2L

)
v2
S

+ v2L

(
− λ12

(
v′1v
′
2 + vdvu

)
+ λLv1Lv2L + λRv1Rv2R

))
+
√

2v2LvSTλL

)
= 0 ,

(A.14)

∂V

∂φL0
2

= +
1

4
v2L

(
2g2
BL

(
− v2

1L − v2
1R + v2

2L + v2
2R

)
+ g2

L

(
− 2v2

1L + 2v2
2L − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2

(
2m2

∆2L
v2L + λL

((
λLv2L + λSv1L

)
v2
S

+ v1L

(
− λ12

(
v′1v
′
2 + vdvu

)
+ λLv1Lv2L + λRv1Rv2R

))
+
√

2v1LvSTλL

)
= 0 ,

(A.15)

∂V

∂φν̃L i
= 0 , (A.16)

∂V

∂φν̃R i
= 0 . (A.17)

In our setup we chose to solve these equations for the soft SUSY-breaking parameters
{m2

S , mφ2
1
, m2

φ2
, m∆2

1R
, m2

∆2R
, m2

φ1φ2
, Tλ12 , m

2
∆1L

, m2
∆2L
}.

A.1.2 Mass matrices and rotations for the gauge bosons

Mass matrix for the neutral gauge bosons (γ, Z, Z ′)

in the basis: (B,WL,3,WR,3)

mV 0 =

 g2
BL(v2

L + v2
R) −gBLgLv2

L −gBLgRv2
R

−gBLgLv2
L

1
4g

2
L(v2 + v′2 + 4v2

L) −1
4gLgR(v2 + v′2)

−gBLgRv2
R −1

4gLgR(v2 + v′2) 1
4g

2
R(v2 + v′2 + 4v2

R)

 , (A.18)
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using v2 = v2
u + v2

d, v
′2 = v′21 + v′22 , v

2
L = v2

1L + v2
2L, v

2
R = v2

1R + v2
2R , and ZZ rotates into

the mass eigenbasis:  Bµ

Wµ
L,3

Wµ
R,3

 = ZZ

 γµ

Zµ

Z ′µ

 , (A.19)

where in the limit vR � v � vL, ZZ can be parametrized by two angles ΘW , Θ′W only:

ZZ =

 cos ΘW cos Θ′W − cos Θ′W sin ΘW − sin Θ′W
sin ΘW cos ΘW 0

cos ΘW sin Θ′W − sin ΘW sin Θ′W cos Θ′W

 . (A.20)

Mass matrix for the charged gauge bosons (W±, W ′±)

in the basis: (W−L ,W
−
R )

mV ± =

(
1
4g

2
L(v2 + v′2 + 2v2

L) −1
2gLgR(v1v

′
1 + v2v

′
2)

−1
2gLgR(v1v

′
1 + v2v

′
2) 1

4g
2
R(v2 + v′2 + 2v2

R)

)
. (A.21)

This matrix is diagonalized by ZW which we parametrize by one real angle(
W−,µL

W−,µR

)
=

(
cosφW − sinφW
sinφW cosφW

)(
W−,µ

W ′−,µ

)
. (A.22)

A.1.3 Mass matrices and rotations for the scalars

Mass matrix for down-squarks (d̃)

in the basis:
(
d̃L, d̃R

)
:

m2
d̃

= (A.23)(
md̃Ld̃∗L

−λ12vS
2 (v′1y

Q
2 + vuy

Q
1 )† + 1√

2
(v′2T

Q
2 + vdT

Q
1 )†

−λ12vS
2 (v′1y

Q
2 + vuy

Q
1 ) + 1√

2
(v′2T

Q
2 + vdT

Q
1 ) md̃Rd̃∗R

)
,

where

md̃Ld̃∗L
= +

1

24
1
(

2g2
BL

(
− v2

1L − v2
1R + v2

2L + v2
2R

)
+ 3g2

L

(
− 2v2

1L + 2v2
2L − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2

(
2m2

QL + v′2

(
v′2y

Q†
2 yQ2 + vd

(
yQ†1 yQ2 + yQ†2 yQ1

))
+ v2

dy
Q†
1 yQ1

)
, (A.24)

md̃cRd̃
c,∗
R

= +
1

24
1
(

2g2
BL

(
− v2

2L − v2
2R + v2

1L + v2
1R

)
+ 3g2

R

(
2v2

1R − 2v2
2R − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2

(
2m2

QR + v′2

(
v′2y

Q
2 y

Q†
2 + vd

(
yQ1 y

Q†
2 + yQ2 y

Q†
1

))
+ v2

dy
Q
1 y

Q†
1

)
. (A.25)

This matrix is diagonalized by ZD:

ZDm2
d̃
ZD,† = m2

dia,d̃
. (A.26)
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Mass matrix for up-squarks (ũ)

in the basis: (ũL,α1 , ũR,α2) :

m2
ũ = (A.27)(

mũLũ∗L
−λ12vS

2 (v′2y
Q
1 + vdy

Q
2 )† + 1√

2
(v′1T

Q
1 + vuT

Q
2 )†

−λ12vS
2 (v′2y

Q
1 + vdy

Q
2 ) + 1√

2
(v′1T

Q
1 + vuT

Q
2 ) mũRũ∗R

)
,

(A.28)

where

mũLũ∗L
=

1

24
1
(

2g2
BL

(
− v2

1L − v2
1R + v2

2L + v2
2R

)
+ 3g2

L

(
2v2

1L − 2v2
2L − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2

(
2m2

QL + v′1
2
yQ†1 yQ1 + vu

(
v′1

(
yQ†1 yQ2 + yQ†2 yQ1

)
+ vuy

Q†
2 yQ2

))
, (A.29)

mũcRũ
c,∗
R

=
1

24
1
(

2g2
BL

(
− v2

2L − v2
2R + v2

1L + v2
1R

)
+ 3g2

R

(
− 2v2

1R + 2v2
2R − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2

(
2m2

QR + v′1
2
yQ1 y

Q†
1 + vu

(
v′1

(
yQ1 y

Q†
2 + yQ2 y

Q†
1

)
+ vuy

Q
2 y

Q†
2

))
. (A.30)

This matrix is diagonalized by ZU :

ZUm2
ũZ

U,† = m2
dia,ũ . (A.31)

Mass matrix for charged sleptons (ẽ)

in the basis: (ẽL, ẽR) :

m2
ẽ = (A.32)(

mẽLẽ∗L
−λ12vS

2 (v′1y
L
2 + vuy

L
1 )† + 1√

2
(v′2T

L
2 + vdT

L
1 )†

−λ12vS
2 (v′1y

L
2 + vuy

L
1 ) + 1√

2
(v′2T

L
2 + vdT

L
1 ) mẽcRẽ

c,∗
R

)
,

where

mẽLẽ∗L
= +

1

8
1
(

2g2
BL

(
− v2

2L − v2
2R + v2

1L + v2
1R

)
+ g2

L

(
− 2v2

1L + 2v2
2L − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2

(
2m2

LL + v′2

(
v′2y

L†
2 yL2 + vd

(
yL†1 yL2 + yL†2 yL1

))
+ v2

dy
L†
1 yL1

)
, (A.33)

mẽcRẽ
c,∗
R

= +
1

8
1
(

2g2
BL

(
− v2

1L − v2
1R + v2

2L + v2
2R

)
+ g2

R

(
2v2

1R − 2v2
2R − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2

(
2m2

LR + v′2

(
v′2y

L
2 y

L†
2 + vd

(
yL1 y

L†
2 + yL2 y

L†
1

))
+ v2

dy
L
1 y

L†
1

)
. (A.34)

This matrix is diagonalized by ZE :

ZEm2
ẽZ

E,† = m2
dia,ẽ . (A.35)

Mass matrix for the CP-even sneutrinos (ν̃S)

in the basis: (φν̃L , φν̃R) , (φν̃L , φν̃R):
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A.1. Tree-level mass matrices and tadpole equations

m2
ν̃S =

(
mφν̃Lφν̃L

mT
φν̃Rφν̃L

mφν̃Lφν̃R
mφν̃Rφν̃R

)
, (A.36)

where

mφν̃Lφν̃L
=

1

8
1
(

2g2
BL

(
− v2

2L − v2
2R + v2

1L + v2
1R

)
+ g2

L

(
2v2

1L − 2v2
2L − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

4

(
4m2

LL
+ 4λLv1LvS<

(
yL3

)
+ 8v2

2L<
(
yL3 y

L∗
3

)
+ 2v′1

2<
(
yL,T1 yL∗1

)
+ v′1vu

(
2<
(
yL,T1 yL∗2

)
+ 2<

(
yL,T2 yL∗1

))
+ 2v2

u<
(
yL,T2 yL∗2

)
+ 4
√

2v2L<
(
TL3

))
,

(A.37)

mφν̃Lφν̃R
=

1

4

(
− λ12vS

(
2v′2<

(
yL1

)
+ 2vd<

(
yL2

))
+ v′1

(
2
√

2<
(
TL1

)
+ 4v1R<

(
yL4 y

L∗
1

)
+ 4v2L<

(
yL1 y

L∗
3

))
+ vu

(
2
√

2<
(
TL2

)
+ 4v1R<

(
yL4 y

L∗
2

)
+ 4v2L<

(
yL2 y

L∗
3

)))
, (A.38)

mφν̃Rφν̃R
= +

1

8
1
(

2g2
BL

(
− v2

1L − v2
1R + v2

2L + v2
2R

)
+ g2

R

(
− 2v2

1R + 2v2
2R − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

4

(
4m2

LR
+ 4λRv2RvS<

(
yL4

)
+ 2v′1

2<
(
yL1 y

L†
1

)
+ v′1vu

(
2<
(
yL1 y

L†
2

)
+ 2<

(
yL2 y

L†
1

))
+ 2v2

u<
(
yL2 y

L†
2

)
+ 8v2

1R<
(
yL4 y

L∗
4

)
+ 4
√

2v1R<
(
TL4

))
. (A.39)

Mass matrix for the CP-odd sneutrinos (ν̃P )

in the basis: (σν̃L , σν̃R):

m2
ν̃P =

(
mσν̃Lσν̃L

mT
σν̃Rσν̃L

mσν̃Lσν̃R
mσν̃Rσν̃R

)
, (A.40)

where

mσν̃Lσν̃L
= +

1

8
1
(

2g2
BL

(
− v2

2L − v2
2R + v2

1L + v2
1R

)
+ g2

L

(
2v2

1L − 2v2
2L − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

4

(
4m2

LL
− 4λLv1LvS<

(
yL3

)
+ 8v2

2L<
(
yL3 y

L∗
3

)
+ 2v′1

2<
(
yL,T1 yL∗1

)
+ v′1

(
2vu<

(
yL,T1 yL∗2

)
+ 2vu<

(
yL,T2 yL∗1

))
+ 2v2

u<
(
yL,T2 yL∗2

)
− 4
√

2v2L<
(
TL3

))
,

(A.41)

mσν̃Lσν̃R
=

1

4

(
− λ12vS

(
2v′2<

(
yL1

)
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+ 2vd<
(
yL2

))
+ v′1

(
2
√

2<
(
TL1

)
− 4v1R<

(
yL4 y

L∗
1

)
− 4v2L<

(
yL1 y

L∗
3

))
+ vu

(
2
√

2<
(
TL2

)
− 4v1R<

(
yL4 y

L∗
2

)
− 4v2L<

(
yL2 y

L∗
3

)))
, (A.42)

mσν̃Rσν̃R
= +

1

8
1
(

2g2
BL

(
− v2

1L − v2
1R + v2

2L + v2
2R

)
+ g2

R

(
− 2v2

1R + 2v2
2R − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

4

(
4m2

LR
− 4λRv2RvS<

(
yL4

)
+ 2v′1

2<
(
yL1 y

L†
1

)
+ v′1

(
2vu<

(
yL1 y

L†
2

)
+ 2vu<

(
yL2 y

L†
1

))
+ 2v2

u<
(
yL2 y

L†
2

)
+ 8v2

1R<
(
yL4 y

L∗
4

)
− 4
√

2v1R<
(
TL4

))
. (A.43)

In the limit applied in our study, i.e. v′1,2, v1L,2L → 0, and additionally neglecting the

Dirac-type Yukawa couplings yL1,2 and the corresponding trilinear couplings TL1,2, the matrix
reduces to

mφν̃Lφν̃L
= m2

LL
+ 1

1

8

(
2g2
BL

(
v2

1R − v2
2R

)
+ g2

L

(
v2
d − v2

u

))
,

mφν̃Lφν̃R
= 0 ,

mφν̃Rφν̃R
= m2

LR
+ 2v2

1R<
(
yL4 y

L∗
4

)
+ 1

1

8

(
2(g2

BL + g2
R)
(
v2

2R − v2
1R

)
+ g2

R

(
v2
d − v2

u

))
+
(
λRv2RvS<

(
yL4

)
+
√

2v1R<
(
TL4

))
. (A.44)

and

mσν̃Lσν̃L
= m2

LL
+ 1

1

8

(
2g2
BL

(
v2

1R − v2
2R

)
+ g2

L

(
v2
d − v2

u

))
,

mσν̃Lσν̃R
= 0 ,

mσν̃Rσν̃R
= m2

LR
+ 2v2

1R<
(
yL4 y

L∗
4

)
+ 1

1

8

(
2(g2

BL + g2
R)
(
v2

2R − v2
1R

)
+ g2

R

(
v2
d − v2

u

))
−
(
λRv2RvS<

(
yL4

)
+
√

2v1R<
(
TL4

))
. (A.45)

Mass matrix for the doubly charged Higgs fields (H±±)

in the basis:(
∆−−1R ,∆

++,∗
2R ,∆−−2L ,∆

++,∗
2L

)
,
(

∆−−,∗1R ,∆++
2R ,∆

−−,∗
2L ,∆++

2L

)
:

m2
H−− =
DR
−− − v2R

v1R
FR−− FR−− 0 0

FR−− −DR
−− − v1R

v2R
FR−− 0 0

0 0 DL
−− − v2L

v1L
FL−− FL−−

0 0 FL−− −DL
−− − v1L

v2L
FL−−

 , (A.46)
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where

DR
−− =

g2
R

2

(
v2
d + v′22 − v2

u − v′21 + 2(v2
2R − v2

1R)
)
, (A.47)

FR−− =
λ2
R

2
v1Rv2R +

λLλR
2

v1Lv2L +
λRλS

2
v2
S −

λRλ12

2
(v′1v

′
2 + vuvd) +

TλR√
2
vS , (A.48)

DL
−− =

g2
L

2

(
v2
u + v′21 − v2

d − v′22 + 2(v2
2L − v2

1L)
)
, (A.49)

FL−− =
λ2
L

2
v1Lv2L +

λLλR
2

v1Rv2R +
λLλS

2
v2
S −

λLλ12

2
(v′1v

′
2 + vuvd) +

TλL√
2
vS . (A.50)

Mass matrix for the Higgs bosons (h)

in the basis: X =
(
φH0

1
, φH0

2
, φH′01 , φH′02 , φR0

1
, φR0

2
, φS , φL0

1
, φL0

2

)
:

For reasons of brevity we show the mass matrix without having inserted the solutions
to the tadpole equations. Because of the complexity of the system, the insertion of the
solutions would lead to even more lengthy expressions.

We define the mass matrix as

(m2
h)ij = mXiXi , (A.51)

where

mφ
H0

1
φ
H0

1

= m2
φ1

+
1

8

(
g2
L

(
2v2

1L − 2v2
2L + 3v2

d − v′1
2 − v2

u + v′2
2
)

+ g2
R

(
− 2v2

1R + 2v2
2R + 3v2

d − v′1
2 − v2

u + v′2
2
))

+
1

2
λ2

12

(
v2
u + v2

S

)
, (A.52)

mφ
H0

1
φ
H0

2

=
1

2

(
λ12

(
λ12

(
2vdvu + v′1v

′
2

)
− λLv1Lv2L − λRv1Rv2R − λSv2

S

)
−
√

2vSTλ12

)
− 1

4

(
g2
L + g2

R

)
vdvu , (A.53)

mφ
H0

2
φ
H0

2

= m2
φ2

+
1

8

(
− g2

L

(
2v2

1L − 2v2
2L − 3v2

u − v′1
2

+ v2
d + v′2

2
)

− g2
R

(
− 2v2

1R + 2v2
2R − 3v2

u − v′1
2

+ v2
d + v′2

2
))

+
1

2
λ2

12

(
v2
d + v2

S

)
, (A.54)

mφ
H0

1
φ
H′01

=
1

2
λ2

12vuv
′
2 −

1

4

(
g2
L + g2

R

)
vdv
′
1 , (A.55)

mφ
H0

2
φ
H′01

=
1

2
λ2

12vdv
′
2 +

1

4

(
g2
L + g2

R

)
v′1vu +m2

φ1φ2
, (A.56)

mφ
H′01

φ
H′01

= m2
φ1

+
1

8

(
− g2

L

(
2v2

1L − 2v2
2L − 3v′1

2 − v2
u + v2

d + v′2
2
)

− g2
R

(
− 2v2

1R + 2v2
2R − 3v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2
λ2

12

(
v′2

2
+ v2

S

)
, (A.57)

mφ
H0

1
φ
H′02

=
1

2
λ2

12v
′
1vu +

1

4

(
g2
L + g2

R

)
vdv
′
2 +m2

φ1φ2
, (A.58)

mφ
H0

2
φ
H′02

=
1

2
λ2

12vdv
′
1 −

1

4

(
g2
L + g2

R

)
vuv
′
2 , (A.59)

mφ
H′01

φ
H′02

=
1

2

(
λ12

(
λ12

(
2v′1v

′
2 + vdvu

)
− λLv1Lv2L − λRv1Rv2R − λSv2

S

)
−
√

2vSTλ12

)
− 1

4

(
g2
L + g2

R

)
v′1v
′
2 , (A.60)
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mφ
H′02

φ
H′02

= m2
φ2

+
1

8

(
g2
L

(
2v2

1L − 2v2
2L + 3v′2

2 − v′1
2 − v2

u + v2
d

)
+ g2

R

(
− 2v2

1R + 2v2
2R + 3v′2

2 − v′1
2 − v2

u + v2
d

))
+

1

2
λ2

12

(
v′1

2
+ v2

S

)
, (A.61)

mφ
H0

1
φ
R0

1

= −1

2
g2
Rvdv1R −

1

2
λ12λRvuv2R , (A.62)

mφ
H0

2
φ
R0

1

=
1

2
g2
Rv1Rvu −

1

2
λ12λRvdv2R , (A.63)

mφ
H′01

φ
R0

1

=
1

2
g2
Rv
′
1v1R −

1

2
λ12λRv

′
2v2R , (A.64)

mφ
H′02

φ
R0

1

= −1

2
g2
Rv1Rv

′
2 −

1

2
λ12λRv

′
1v2R , (A.65)

mφ
R0

1
φ
R0

1

= m2
∆1R

+
1

4

(
2g2
BL

(
3v2

1R − v2
2L − v2

2R + v2
1L

)
+ g2

R

(
− 2v2

2R + 6v2
1R − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2
λ2
R

(
v2

2R + v2
S

)
, (A.66)

mφ
H0

1
φ
R0

2

=
1

2
g2
Rvdv2R −

1

2
λ12λRv1Rvu , (A.67)

mφ
H0

2
φ
R0

2

= −1

2
g2
Rvuv2R −

1

2
λ12λRvdv1R , (A.68)

mφ
H′01

φ
R0

2

= −1

2
g2
Rv
′
1v2R −

1

2
λ12λRv1Rv

′
2 , (A.69)

mφ
H′02

φ
R0

2

=
1

2
g2
Rv
′
2v2R −

1

2
λ12λRv

′
1v1R , (A.70)

mφ
R0

1
φ
R0

2

=
1

2

(
λR

(
2λRv1Rv2R − λ12

(
v′1v
′
2 + vdvu

)
+ λLv1Lv2L + λSv

2
S

)
+
√

2vSTλR

)
−
(
g2
BL + g2

R

)
v1Rv2R , (A.71)

mφ
R0

2
φ
R0

2

= m2
∆2R

+
1

4

(
− 2g2

BL

(
− 3v2

2R − v2
2L + v2

1L + v2
1R

)
+ g2

R

(
− 2v2

1R + 6v2
2R − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2
λ2
R

(
v2

1R + v2
S

)
, (A.72)

mφ
H0

1
φS = − 1√

2
vuTλ12

+ λ12

(
λ12vd − λSvu

)
vS , (A.73)

mφ
H0

2
φS = − 1√

2
vdTλ12 + λ12

(
λ12vu − λSvd

)
vS , (A.74)

mφ
H′01

φS = − 1√
2
v′2Tλ12

+ λ12

(
λ12v

′
1 − λSv′2

)
vS , (A.75)

mφ
H′02

φS = − 1√
2
v′1Tλ12 + λ12

(
λ12v

′
2 − λSv′1

)
vS , (A.76)

mφ
R0

1
φS =

1√
2
v2RTλR + λR

(
λRv1R + λSv2R

)
vS , (A.77)

mφ
R0

2
φS =

1√
2
v1RTλR + λR

(
λRv2R + λSv1R

)
vS , (A.78)

mφSφS = m2
S +

1

2

(
λ2
L

(
v2

1L + v2
2L

)
+ λ2

12

(
v2
d + v′1

2
+ v2

u + v′2
2
)

+ λS

(
− 2λ12

(
v′1v
′
2 + vdvu

)
+ 2λLv1Lv2L

)
+ λR

(
2λSv1Rv2R + λR

(
v2

1R + v2
2R

))
+ 6λ2

Sv
2
S + 2

√
2vSTλS

)
, (A.79)

mφ
H0

1
φ
L0
1

=
1

2
g2
Lvdv1L −

1

2
λ12λLvuv2L , (A.80)
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mφ
H0

2
φ
L0
1

= −1

2
g2
Lv1Lvu −

1

2
λ12λLvdv2L , (A.81)

mφ
H′01

φ
L0
1

= −1

2
g2
Lv1Lv

′
1 −

1

2
λ12λLv2Lv

′
2 , (A.82)

mφ
H′02

φ
L0
1

=
1

2
g2
Lv1Lv

′
2 −

1

2
λ12λLv

′
1v2L , (A.83)

mφ
R0

1
φ
L0
1

=
1

2
λLλRv2Lv2R + g2

BLv1Lv1R , (A.84)

mφ
R0

2
φ
L0
1

=
1

2
λLλRv1Rv2L − g2

BLv1Lv2R , (A.85)

mφSφL0
1

=
1√
2
v2LTλL + λL

(
λLv1L + λSv2L

)
vS , (A.86)

mφ
L0
1
φ
L0
1

= m2
∆1L

+
1

4

(
2g2
BL

(
3v2

1L − v2
2L − v2

2R + v2
1R

)
+ g2

L

(
− 2v2

2L + 6v2
1L − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2
λ2
L

(
v2

2L + v2
S

)
, (A.87)

mφ
H0

1
φ
L0
2

= −1

2
g2
Lvdv2L −

1

2
λ12λLv1Lvu , (A.88)

mφ
H0

2
φ
L0
2

=
1

2
g2
Lvuv2L −

1

2
λ12λLvdv1L , (A.89)

mφ
H′01

φ
L0
2

=
1

2
g2
Lv
′
1v2L −

1

2
λ12λLv1Lv

′
2 , (A.90)

mφ
H′02

φ
L0
2

= −1

2
g2
Lv2Lv

′
2 −

1

2
λ12λLv1Lv

′
1 , (A.91)

mφ
R0

1
φ
L0
2

=
1

2
λLλRv1Lv2R − g2

BLv1Rv2L , (A.92)

mφ
R0

2
φ
L0
2

=
1

2
λLλRv1Lv1R + g2

BLv2Lv2R , (A.93)

mφSφL0
2

=
1√
2
v1LTλL + λL

(
λLv2L + λSv1L

)
vS , (A.94)

mφ
L0
1
φ
L0
2

=
1

2

(
λL

(
2λLv1Lv2L − λ12

(
v′1v
′
2 + vdvu

)
+ λRv1Rv2R + λSv

2
S

)
+
√

2vSTλL

)
−
(
g2
BL + g2

L

)
v1Lv2L , (A.95)

mφ
L0
2
φ
L0
2

= m2
∆2L

+
1

4

(
− 2g2

BL

(
− 3v2

2L − v2
2R + v2

1L + v2
1R

)
+ g2

L

(
− 2v2

1L + 6v2
2L − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2
λ2
L

(
v2

1L + v2
S

)
. (A.96)

This matrix is diagonalized by Zh:

Zhm2
hZ

h,† = m2
dia,h . (A.97)

Mass matrix for the pseudoscalar Higgs bosons (A0)

in the basis: X =
(
σH0

1
, σH0

2
, σH′01 , σH′02 , σR0

1
, σR0

2
, σS , σL0

1
, σL0

2

)
:

We define the mass matrix including the gauge fixing terms ξ as:

m2
A0 = mXiXj + ξZ m

ξ,Z
XiXj

+ ξZ′m
ξ,Z′
XiXj

, (A.98)
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where

mσ
H0

1
σ
H0

1

= m2
φ1

+
1

8

(
g2
L

(
2v2

1L − 2v2
2L − v′1

2 − v2
u + v2

d + v′2
2
)

+ g2
R

(
− 2v2

1R + 2v2
2R − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2
λ2

12

(
v2
u + v2

S

)
, (A.99)

mσ
H0

1
σ
H0

2

=
1

2

(
λ12

(
− λ12v

′
1v
′
2 + λLv1Lv2L + λRv1Rv2R + λSv

2
S

)
+
√

2vSTλ12

)
, (A.100)

mσ
H0

2
σ
H0

2

= m2
φ2

+
1

8

(
g2
L

(
− 2v2

1L + 2v2
2L − v′2

2 − v2
d + v′1

2
+ v2

u

)
+ g2

R

(
2v2

1R − 2v2
2R − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2
λ2

12

(
v2
d + v2

S

)
, (A.101)

mσ
H0

1
σ
H′01

=
1

2
λ2

12vuv
′
2 , (A.102)

mσ
H0

2
σ
H′01

=
1

2
λ2

12vdv
′
2 +m2

φ1φ2
, (A.103)

mσ
H′01

σ
H′01

= m2
φ1

+
1

8

(
g2
L

(
− 2v2

1L + 2v2
2L − v′2

2 − v2
d + v′1

2
+ v2

u

)
+ g2

R

(
2v2

1R − 2v2
2R − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2
λ2

12

(
v′2

2
+ v2

S

)
, (A.104)

mσ
H0

1
σ
H′02

=
1

2
λ2

12v
′
1vu +m2

φ1φ2
, (A.105)

mσ
H0

2
σ
H′02

=
1

2
λ2

12vdv
′
1 , (A.106)

mσ
H′01

σ
H′02

=
1

2

(
λ12

(
− λ12vdvu + λLv1Lv2L + λRv1Rv2R + λSv

2
S

)
+
√

2vSTλ12

)
, (A.107)

mσ
H′02

σ
H′02

= m2
φ2

+
1

8

(
g2
L

(
2v2

1L − 2v2
2L − v′1

2 − v2
u + v2

d + v′2
2
)

+ g2
R

(
− 2v2

1R + 2v2
2R − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2
λ2

12

(
v′1

2
+ v2

S

)
, (A.108)

mσ
H0

1
σ
R0

1

= −1

2
λ12λRvuv2R , (A.109)

mσ
H0

2
σ
R0

1

= −1

2
λ12λRvdv2R , (A.110)

mσ
H′01

σ
R0

1

= −1

2
λ12λRv

′
2v2R , (A.111)

mσ
H′02

σ
R0

1

= −1

2
λ12λRv

′
1v2R , (A.112)

mσ
R0

1
σ
R0

1

= m2
∆1R

+
1

4

(
2g2
BL

(
− v2

2L − v2
2R + v2

1L + v2
1R

)
+ g2

R

(
2v2

1R − 2v2
2R − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2
λ2
R

(
v2

2R + v2
S

)
, (A.113)

mσ
H0

1
σ
R0

2

= −1

2
λ12λRv1Rvu , (A.114)

mσ
H0

2
σ
R0

2

= −1

2
λ12λRvdv1R , (A.115)

mσ
H′01

σ
R0

2

= −1

2
λ12λRv1Rv

′
2 , (A.116)

mσ
H′02

σ
R0

2

= −1

2
λ12λRv

′
1v1R , (A.117)

mσ
R0

1
σ
R0

2

=
1

2

(
λR

(
λ12

(
v′1v
′
2 + vdvu

)
− λLv1Lv2L − λSv2

S

)
−
√

2vSTλR

)
, (A.118)
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mσ
R0

2
σ
R0

2

= m2
∆2R

+
1

4

(
2g2
BL

(
− v2

1L − v2
1R + v2

2L + v2
2R

)
+ g2

R

(
− 2v2

1R + 2v2
2R − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2
λ2
R

(
v2

1R + v2
S

)
, (A.119)

mσ
H0

1
σS = vu

( 1√
2
Tλ12

− λ12λSvS

)
, (A.120)

mσ
H0

2
σS = vd

( 1√
2
Tλ12

− λ12λSvS

)
, (A.121)

mσ
H′01

σS = v′2

( 1√
2
Tλ12 − λ12λSvS

)
, (A.122)

mσ
H′02

σS = v′1

( 1√
2
Tλ12

− λ12λSvS

)
, (A.123)

mσ
R0

1
σS = v2R

(
− 1√

2
TλR + λRλSvS

)
, (A.124)

mσ
R0

2
σS = v1R

(
− 1√

2
TλR + λRλSvS

)
, (A.125)

mσSσS = m2
S +

1

2

(
λ2
L

(
v2

1L + v2
2L

)
+ λ2

12

(
v2
d + v′1

2
+ v2

u + v′2
2
)

+ λS

(
2λ12

(
v′1v
′
2 + vdvu

)
− 2λLv1Lv2L

)
+ λR

(
− 2λSv1Rv2R + λR

(
v2

1R + v2
2R

))
+ 2λ2

Sv
2
S − 2

√
2vSTλS

)
, (A.126)

mσ
H0

1
σ
L0
1

= −1

2
λ12λLvuv2L , (A.127)

mσ
H0

2
σ
L0
1

= −1

2
λ12λLvdv2L , (A.128)

mσ
H′01

σ
L0
1

= −1

2
λ12λLv2Lv

′
2 , (A.129)

mσ
H′02

σ
L0
1

= −1

2
λ12λLv

′
1v2L , (A.130)

mσ
R0

1
σ
L0
1

=
1

2
λLλRv2Lv2R , (A.131)

mσ
R0

2
σ
L0
1

=
1

2
λLλRv1Rv2L , (A.132)

mσSσL0
1

= v2L

(
− 1√

2
TλL + λLλSvS

)
, (A.133)

mσ
L0
1
σ
L0
1

= m2
∆1L

+
1

4

(
2g2
BL

(
− v2

2L − v2
2R + v2

1L + v2
1R

)
+ g2

L

(
2v2

1L − 2v2
2L − v′1

2 − v2
u + v2

d + v′2
2
))

+
1

2
λ2
L

(
v2

2L + v2
S

)
, (A.134)

mσ
H0

1
σ
L0
2

= −1

2
λ12λLv1Lvu , (A.135)

mσ
H0

2
σ
L0
2

= −1

2
λ12λLvdv1L , (A.136)

mσ
H′01

σ
L0
2

= −1

2
λ12λLv1Lv

′
2 , (A.137)

mσ
H′02

σ
L0
2

= −1

2
λ12λLv1Lv

′
1 , (A.138)

mσ
R0

1
σ
L0
2

=
1

2
λLλRv1Lv2R , (A.139)

mσ
R0

2
σ
L0
2

=
1

2
λLλRv1Lv1R , (A.140)
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mσSσL0
2

= v1L

(
− 1√

2
TλL + λLλSvS

)
, (A.141)

mσ
L0
1
σ
L0
2

=
1

2

(
λL

(
λ12

(
v′1v
′
2 + vdvu

)
− λRv1Rv2R − λSv2

S

)
−
√

2vSTλL

)
, (A.142)

mσ
L0
2
σ
L0
2

= +m2
∆2L

+
1

4

(
2g2
BL

(
− v2

1L − v2
1R + v2

2L + v2
2R

)
+ g2

L

(
− 2v2

1L + 2v2
2L − v′2

2 − v2
d + v′1

2
+ v2

u

))
+

1

2
λ2
L

(
v2

1L + v2
S

)
. (A.143)

Gauge fixing contributions from ξZ :

mξ,Z
σ
H0

1
σ
H0

1

=
1

4
v2
d

(
gL cos ΘW + gR sin ΘW sin Θ′W

)2

, (A.144)

mξ,Z
σ
H0

1
σ
H0

2

= −1

4
vdvu

(
gL cos ΘW + gR sin ΘW sin Θ′W

)2

, (A.145)

mξ,Z
σ
H0

2
σ
H0

2

=
1

4
v2
u

(
gL cos ΘW + gR sin ΘW sin Θ′W

)2

, (A.146)

mξ,Z
σ
H0

1
σ
H′01

= −1

4
vdv
′
1

(
gL cos ΘW + gR sin ΘW sin Θ′W

)2

, (A.147)

mξ,Z
σ
H0

2
σ
H′01

=
1

4
v′1vu

(
gL cos ΘW + gR sin ΘW sin Θ′W

)2

, (A.148)

mξ,Z
σ
H′01

σ
H′01

=
1

4
v1′

2
(
gL cos ΘW + gR sin ΘW sin Θ′W

)2

, (A.149)

mξ,Z
σ
H0

1
σ
H′02

=
1

4
vdv
′
2

(
gL cos ΘW + gR sin ΘW sin Θ′W

)2

, (A.150)

mξ,Z
σ
H0

2
σ
H′02

= −1

4
vuv
′
2

(
gL cos ΘW + gR sin ΘW sin Θ′W

)2

, (A.151)

mξ,Z
σ
H′01

σ
H′02

= −1

4
v′1v
′
2

(
gL cos ΘW + gR sin ΘW sin Θ′W

)2

, (A.152)

mξ,Z
σ
H′02

σ
H′02

=
1

4
v2′

2
(
gL cos ΘW + gR sin ΘW sin Θ′W

)2

, (A.153)

mξ,Z
σ
H0

1
σ
R0

1

=
1

2
vdv1R sin ΘW

(
gBL cos Θ′W − gR sin Θ′W

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.154)

mξ,Z
σ
H0

2
σ
R0

1

=
1

2
v1Rvu sin ΘW

(
− gBL cos Θ′W + gR sin Θ′W

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.155)

mξ,Z
σ
H′01

σ
R0

1

=
1

2
v′1v1R sin ΘW

(
− gBL cos Θ′W + gR sin Θ′W

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.156)

mξ,Z
σ
H′02

σ
R0

1

=
1

2
v1Rv

′
2 sin ΘW

(
gBL cos Θ′W − gR sin Θ′W

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.157)

mξ,Z
σ
R0

1
σ
R0

1

= v2
1R sin Θ2

W

(
gBL cos Θ′W − gR sin Θ′W

)2

, (A.158)

mξ,Z
σ
H0

1
σ
R0

2

=
1

2
vdv2R sin ΘW

(
− gBL cos Θ′W + gR sin Θ′W

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.159)

mξ,Z
σ
H0

2
σ
R0

2

=
1

2
vuv2R sin ΘW

(
gBL cos Θ′W − gR sin Θ′W

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.160)
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mξ,Z
σ
H′01

σ
R0

2

=
1

2
v′1v2R sin ΘW

(
gBL cos Θ′W − gR sin Θ′W

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.161)

mξ,Z
σ
H′02

σ
R0

2

=
1

2
v′2v2R sin ΘW

(
− gBL cos Θ′W + gR sin Θ′W

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.162)

mξ,Z
σ
R0

1
σ
R0

2

= −v1Rv2R sin Θ2
W

(
gBL cos Θ′W − gR sin Θ′W

)2

, (A.163)

mξ,Z
σ
R0

2
σ
R0

2

= v2
2R sin Θ2

W

(
gBL cos Θ′W − gR sin Θ′W

)2

, (A.164)

mξ,Z
σ
H0

1
σ
L0
1

=
1

2
vdv1L

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.165)

mξ,Z
σ
H0

2
σ
L0
1

= −1

2
v1Lvu

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.166)

mξ,Z
σ
H′01

σ
L0
1

= −1

2
v1Lv

′
1

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.167)

mξ,Z
σ
H′02

σ
L0
1

=
1

2
v1Lv

′
2

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.168)

mξ,Z
σ
R0

1
σ
L0
1

= v1Lv1R sin ΘW

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gBL cos Θ′W − gR sin Θ′W

)
,

(A.169)

mξ,Z
σ
R0

2
σ
L0
1

= −v1Lv2R sin ΘW

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gBL cos Θ′W − gR sin Θ′W

)
,

(A.170)

mξ,Z
σ
L0
1
σ
L0
1

= v2
1L

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)2

, (A.171)

mξ,Z
σ
H0

1
σ
L0
2

= −1

2
vdv2L

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.172)

mξ,Z
σ
H0

2
σ
L0
2

=
1

2
vuv2L

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.173)

mξ,Z
σ
H′01

σ
L0
2

=
1

2
v′1v2L

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.174)

mξ,Z
σ
H′02

σ
L0
2

= −1

2
v2Lv

′
2

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gL cos ΘW + gR sin ΘW sin Θ′W

)
,

(A.175)

mξ,Z
σ
R0

1
σ
L0
2

= −v1Rv2L sin ΘW

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gBL cos Θ′W − gR sin Θ′W

)
,

(A.176)

mξ,Z
σ
R0

2
σ
L0
2

= v2Lv2R sin ΘW

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)(
gBL cos Θ′W − gR sin Θ′W

)
,

(A.177)

mξ,Z
σ
L0
1
σ
L0
2

= −v1Lv2L

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)2

, (A.178)
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mξ,Z
σ
L0
2
σ
L0
2

= v2
2L

(
gBL cos Θ′W sin ΘW + gL cos ΘW

)2

. (A.179)

Gauge fixing contributions from ξZ′ :

mξ,Z′

σ
H0

1
σ
H0

1

=
1

4
g2
Rv

2
d cos Θ′

2
W , (A.180)

mξ,Z′

σ
H0

1
σ
H0

2

= −1

4
g2
Rvdvu cos Θ′

2
W , (A.181)

mξ,Z′

σ
H0

2
σ
H0

2

=
1

4
g2
Rv

2
u cos Θ′

2
W , (A.182)

mξ,Z′

σ
H0

1
σ
H′01

= −1

4
g2
Rvdv

′
1 cos Θ′

2
W , (A.183)

mξ,Z′

σ
H0

2
σ
H′01

=
1

4
g2
Rv
′
1vu cos Θ′

2
W , (A.184)

mξ,Z′

σ
H′01

σ
H′01

=
1

4
g2
Rv1′

2 cos Θ′
2
W , (A.185)

mξ,Z′

σ
H0

1
σ
H′02

=
1

4
g2
Rvdv

′
2 cos Θ′

2
W , (A.186)

mξ,Z′

σ
H0

2
σ
H′02

= −1

4
g2
Rvuv

′
2 cos Θ′

2
W , (A.187)

mξ,Z′

σ
H′01

σ
H′02

= −1

4
g2
Rv
′
1v
′
2 cos Θ′

2
W , (A.188)

mξ,Z′

σ
H′02

σ
H′02

=
1

4
g2
Rv2′

2 cos Θ′
2
W , (A.189)

mξ,Z′

σ
H0

1
σ
R0

1

= −1

2
gRvdv1R cos Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.190)

mξ,Z′

σ
H0

2
σ
R0

1

=
1

2
gRv1Rvu cos Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.191)

mξ,Z′

σ
H′01

σ
R0

1

=
1

2
gRv

′
1v1R cos Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.192)

mξ,Z′

σ
H′02

σ
R0

1

= −1

2
gRv1Rv

′
2 cos Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.193)

mξ,Z′

σ
R0

1
σ
R0

1

= v2
1R

(
gBL sin Θ′W + gR cos Θ′W

)2

, (A.194)

mξ,Z′

σ
H0

1
σ
R0

2

=
1

2
gRvdv2R cos Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.195)

mξ,Z′

σ
H0

2
σ
R0

2

= −1

2
gRvuv2R cos Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.196)

mξ,Z′

σ
H′01

σ
R0

2

= −1

2
gRv

′
1v2R cos Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.197)

mξ,Z′

σ
H′02

σ
R0

2

=
1

2
gRv

′
2v2R cos Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.198)

mξ,Z′

σ
R0

1
σ
R0

2

= −v1Rv2R

(
gBL sin Θ′W + gR cos Θ′W

)2

, (A.199)

mξ,Z′

σ
R0

2
σ
R0

2

= v2
2R

(
gBL sin Θ′W + gR cos Θ′W

)2

, (A.200)

mξ,Z′

σ
H0

1
σ
L0
1

= −1

2
gBLgRvdv1L cos Θ′W sin Θ′W , (A.201)

mξ,Z′

σ
H0

2
σ
L0
1

=
1

2
gBLgRv1Lvu cos Θ′W sin Θ′W , (A.202)
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mξ,Z′

σ
H′01

σ
L0
1

=
1

2
gBLgRv1Lv

′
1 cos Θ′W sin Θ′W , (A.203)

mξ,Z′

σ
H′02

σ
L0
1

= −1

2
gBLgRv1Lv

′
2 cos Θ′W sin Θ′W , (A.204)

mξ,Z′

σ
R0

1
σ
L0
1

= gBLv1Lv1R sin Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.205)

mξ,Z′

σ
R0

2
σ
L0
1

= −gBLv1Lv2R sin Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.206)

mξ,Z′

σ
L0
1
σ
L0
1

= g2
BLv

2
1L sin Θ′

2
W , (A.207)

mξ,Z′

σ
H0

1
σ
L0
2

=
1

2
gBLgRvdv2L cos Θ′W sin Θ′W , (A.208)

mξ,Z′

σ
H0

2
σ
L0
2

= −1

2
gBLgRvuv2L cos Θ′W sin Θ′W , (A.209)

mξ,Z′

σ
H′01

σ
L0
2

= −1

2
gBLgRv

′
1v2L cos Θ′W sin Θ′W , (A.210)

mξ,Z′

σ
H′02

σ
L0
2

=
1

2
gBLgRv2Lv

′
2 cos Θ′W sin Θ′W , (A.211)

mξ,Z′

σ
R0

1
σ
L0
2

= −gBLv1Rv2L sin Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.212)

mξ,Z′

σ
R0

2
σ
L0
2

= gBLv2Lv2R sin Θ′W

(
gBL sin Θ′W + gR cos Θ′W

)
, (A.213)

mξ,Z′

σ
L0
1
σ
L0
2

= −g2
BLv1Lv2L sin Θ′

2
W , (A.214)

mξ,Z′

σ
L0
2
σ
L0
2

= g2
BLv

2
2L sin Θ′

2
W . (A.215)

The mass matrix is diagonalized by ZAh:

ZAhm2
A0Z

Ah,† = m2
dia,A0 . (A.216)

Mass matrix for charged Higgs bosons (H±)

in the basis: X =
(
H−1 , H

+,∗
1 , H−2 , H

+,∗
2 ,∆−1R,∆

+,∗
2R ,∆

−
1L,∆

+,∗
2L

)
,

Y =
(
H−,∗1 , H+

1 , H
−,∗
2 , H+

2 ,∆
−,∗
1R ,∆

+
2R,∆

−,∗
1L ,∆

+
2L

)
:

We define the mass matrix including the gauge fixing terms ξ as:

m2
H− = mXiYj + ξW mξ,W

XiYj
+ ξW ′m

ξ,W ′
XiYj

, (A.217)

where

mH−1 H
−,∗
1

= m2
φ1

+
1

8

(
g2
L

(
− 2v2

1L + 2v2
2L − v2′

2 + v2
d + v1′

2 + v2
u

)
+ g2

R

(
− 2v2

1R + 2v2
2R − v2

u + v2
d + v1′

2 + v2′
2
))

+
1

2
λ2

12v
2
S , (A.218)

mH−1 H
+
1

=
1

4

(
g2
L + g2

R

)
vdv
′
1 , (A.219)

mH+,∗
1 H+

1
= m2

φ1
+

1

8

(
g2
L

(
2v2

1L − 2v2
2L − v2

u + v2
d + v1′

2 + v2′
2
)

+ g2
R

(
2v2

1R − 2v2
2R − v2′

2 + v2
d + v1′

2 + v2
u

))
+

1

2
λ2

12v
2
S , (A.220)
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mH−1 H
−,∗
2

=
1

4

(
g2
Lvdv

′
2 + g2

Rv
′
1vu

)
+m2

φ1φ2
, (A.221)

mH+,∗
1 H−,∗2

=
1

2

(
λ12

(
− λ12

(
v′1v
′
2 + vdvu

)
+ λLv1Lv2L + λRv1Rv2R + λSv

2
S

)
+
√

2vSTλ12

)
+

1

4

(
g2
Lv
′
1v
′
2 + g2

Rvdvu

)
, (A.222)

mH−2 H
−,∗
2

= m2
φ2

+
1

8

(
g2
L

(
− 2v2

1L + 2v2
2L − v2

d + v1′
2 + v2

u + v2′
2
)

+ g2
R

(
− 2v2

1R + 2v2
2R − v1′

2 + v2
d + v2

u + v2′
2
))

+
1

2
λ2

12v
2
S , (A.223)

mH−1 H
+
2

=
1

2

(
λ12

(
− λ12

(
v′1v
′
2 + vdvu

)
+ λLv1Lv2L + λRv1Rv2R + λSv

2
S

)
+
√

2vSTλ12

)
+

1

4

(
g2
Lvdvu + g2

Rv
′
1v
′
2

)
, (A.224)

mH+,∗
1 H+

2
=

1

4

(
g2
Lv
′
1vu + g2

Rvdv
′
2

)
+m2

φ1φ2
, (A.225)

mH−2 H
+
2

=
1

4

(
g2
L + g2

R

)
vuv
′
2 , (A.226)

mH+,∗
2 H+

2
= m2

φ2
+

1

8

(
g2
L

(
2v2

1L − 2v2
2L − v1′

2 + v2
d + v2

u + v2′
2
)

+ g2
R

(
2v2

1R − 2v2
2R − v2

d + v1′
2 + v2

u + v2′
2
))

+
1

2
λ2

12v
2
S , (A.227)

mH−1 ∆−,∗1R
=

1

2

1√
2
g2
Rv
′
1v1R , (A.228)

mH+,∗
1 ∆−,∗1R

=
1

2

1√
2
g2
Rvdv1R , (A.229)

mH−2 ∆−,∗1R
=

1

2

1√
2
g2
Rv1Rvu , (A.230)

mH+,∗
2 ∆−,∗1R

=
1

2

1√
2
g2
Rv1Rv

′
2 , (A.231)

m∆−1R∆−,∗1R
=

1

2

(
g2
BL

(
− v2

2L − v2
2R + v2

1L + v2
1R

)
+ g2

Rv
2
1R

)
+

1

2
λ2
Rv

2
S +m2

∆1R
, (A.232)

mH−1 ∆+
2R

= −1

2

1√
2
g2
Rv
′
1v2R , (A.233)

mH+,∗
1 ∆+

2R
= −1

2

1√
2
g2
Rvdv2R , (A.234)

mH−2 ∆+
2R

= −1

2

1√
2
g2
Rvuv2R , (A.235)

mH+,∗
2 ∆+

2R
= −1

2

1√
2
g2
Rv
′
2v2R , (A.236)

m∆−1R∆+
2R

= −1

2
g2
Rv1Rv2R +

1

2

(
λR

(
− λ12

(
v′1v
′
2 + vdvu

)
+ λLv1Lv2L + λRv1Rv2R + λSv

2
S

)
+
√

2vSTλR

)
, (A.237)

m∆+,∗
2R ∆+

2R
=

1

2

(
g2
BL

(
− v2

1L − v2
1R + v2

2L + v2
2R

)
+ g2

Rv
2
2R

)
+

1

2
λ2
Rv

2
S +m2

∆2R
, (A.238)

mH−1 ∆−,∗1L
= −1

2

1√
2
g2
Lvdv1L , (A.239)

mH+,∗
1 ∆−,∗1L

= −1

2

1√
2
g2
Lv1Lv

′
1 , (A.240)
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mH−2 ∆−,∗1L
= −1

2

1√
2
g2
Lv1Lv

′
2 , (A.241)

mH+,∗
2 ∆−,∗1L

= −1

2

1√
2
g2
Lv1Lvu , (A.242)

m∆−1L∆−,∗1L
=

1

2

(
g2
BL

(
− v2

2L − v2
2R + v2

1L + v2
1R

)
+ g2

Lv
2
1L

)
+

1

2
λ2
Lv

2
S +m2

∆1L
, (A.243)

mH−1 ∆+
2L

=
1

2

1√
2
g2
Lvdv2L , (A.244)

mH+,∗
1 ∆+

2L
=

1

2

1√
2
g2
Lv
′
1v2L , (A.245)

mH−2 ∆+
2L

=
1

2

1√
2
g2
Lv2Lv

′
2 , (A.246)

mH+,∗
2 ∆+

2L
=

1

2

1√
2
g2
Lvuv2L , (A.247)

m∆−1L∆+
2L

= −1

2
g2
Lv1Lv2L +

1

2

(
λL

(
− λ12

(
v′1v
′
2 + vdvu

)
+ λLv1Lv2L + λRv1Rv2R + λSv

2
S

)
+
√

2vSTλL

)
, (A.248)

m∆+,∗
2L ∆+

2L
=

1

2

(
g2
BL

(
− v2

1L − v2
1R + v2

2L + v2
2R

)
+ g2

Lv
2
2L

)
+

1

2
λ2
Lv

2
S +m2

∆2L
. (A.249)

Gauge fixing contributions from ξW :

mξ,W

H−1 H
−,∗
1

=
1

4

(
gLvd cosφW − gRv′1 sinφW

)2

, (A.250)

mξ,W

H−1 H
+
1

=
1

4

(
gLv

′
1 cosφW − gRvd sinφW

)(
− gLvd cosφW + gRv

′
1 sinφW

)
, (A.251)

mξ,W

H+,∗
1 H+

1

=
1

4

(
gLv

′
1 cosφW − gRvd sinφW

)2

, (A.252)

mξ,W

H−1 H
−,∗
2

=
1

4

(
gLvd cosφW − gRv′1 sinφW

)(
gLv

′
2 cosφW − gRvu sinφW

)
, (A.253)

mξ,W

H+,∗
1 H−,∗2

= −1

4

(
gLv

′
1 cosφW − gRvd sinφW

)(
gLv

′
2 cosφW − gRvu sinφW

)
, (A.254)

mξ,W

H−2 H
−,∗
2

=
1

4

(
gLv

′
2 cosφW − gRvu sinφW

)2

, (A.255)

mξ,W

H−1 H
+
2

= −1

4

(
gLvd cosφW − gRv′1 sinφW

)(
gLvu cosφW − gRv′2 sinφW

)
, (A.256)

mξ,W

H+,∗
1 H+

2

=
1

4

(
gLv

′
1 cosφW − gRvd sinφW

)(
gLvu cosφW − gRv′2 sinφW

)
, (A.257)

mξ,W

H−2 H
+
2

=
1

4

(
gLv

′
2 cosφW − gRvu sinφW

)(
− gLvu cosφW + gRv

′
2 sinφW

)
, (A.258)

mξ,W

H+,∗
2 H+

2

=
1

4

(
gLvu cosφW − gRv′2 sinφW

)2

, (A.259)

mξ,W

H−1 ∆−,∗1R

=
1

2

1√
2
gRv1R sinφW

(
− gLvd cosφW + gRv

′
1 sinφW

)
, (A.260)

mξ,W

H+,∗
1 ∆−,∗1R

=
1

2

1√
2
gRv1R sinφW

(
gLv

′
1 cosφW − gRvd sinφW

)
, (A.261)

mξ,W

H−2 ∆−,∗1R

=
1

2

1√
2
gRv1R sinφW

(
− gLv′2 cosφW + gRvu sinφW

)
, (A.262)

mξ,W

H+,∗
2 ∆−,∗1R

=
1

2

1√
2
gRv1R sinφW

(
gLvu cosφW − gRv′2 sinφW

)
, (A.263)
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mξ,W

∆−1R∆−,∗1R

=
1

2
g2
Rv

2
1R sinφ2

W , (A.264)

mξ,W

H−1 ∆+
2R

=
1

2

1√
2
gRv2R sinφW

(
− gLvd cosφW + gRv

′
1 sinφW

)
, (A.265)

mξ,W

H+,∗
1 ∆+

2R

=
1

2

1√
2
gRv2R sinφW

(
gLv

′
1 cosφW − gRvd sinφW

)
, (A.266)

mξ,W

H−2 ∆+
2R

=
1

2

1√
2
gRv2R sinφW

(
− gLv′2 cosφW + gRvu sinφW

)
, (A.267)

mξ,W

H+,∗
2 ∆+

2R

=
1

2

1√
2
gRv2R sinφW

(
gLvu cosφW − gRv′2 sinφW

)
, (A.268)

mξ,W

∆−1R∆+
2R

=
1

2
g2
Rv1Rv2R sinφ2

W , (A.269)

mξ,W

∆+,∗
2R ∆+

2R

=
1

2
g2
Rv

2
2R sinφ2

W , (A.270)

mξ,W

H−1 ∆−,∗1L

=
1

2

1√
2
gLv1L cosφW

(
− gLvd cosφW + gRv

′
1 sinφW

)
, (A.271)

mξ,W

H+,∗
1 ∆−,∗1L

=
1

2

1√
2
gLv1L cosφW

(
gLv

′
1 cosφW − gRvd sinφW

)
, (A.272)

mξ,W

H−2 ∆−,∗1L

=
1

2

1√
2
gLv1L cosφW

(
− gLv′2 cosφW + gRvu sinφW

)
, (A.273)

mξ,W

H+,∗
2 ∆−,∗1L

=
1

2

1√
2
gLv1L cosφW

(
gLvu cosφW − gRv′2 sinφW

)
, (A.274)

mξ,W

∆−1R∆−,∗1L

=
1

2
gLgRv1Lv1R cosφW sinφW , (A.275)

mξ,W

∆+,∗
2R ∆−,∗1L

=
1

2
gLgRv1Lv2R cosφW sinφW , (A.276)

mξ,W

∆−1L∆−,∗1L

=
1

2
g2
Lv

2
1L cosφ2

W , (A.277)

mξ,W

H−1 ∆+
2L

=
1

2

1√
2
gLv2L cosφW

(
− gLvd cosφW + gRv

′
1 sinφW

)
, (A.278)

mξ,W

H+,∗
1 ∆+

2L

=
1

2

1√
2
gLv2L cosφW

(
gLv

′
1 cosφW − gRvd sinφW

)
, (A.279)

mξ,W

H−2 ∆+
2L

=
1

2

1√
2
gLv2L cosφW

(
− gLv′2 cosφW + gRvu sinφW

)
, (A.280)

mξ,W

H+,∗
2 ∆+

2L

=
1

2

1√
2
gLv2L cosφW

(
gLvu cosφW − gRv′2 sinφW

)
, (A.281)

mξ,W

∆−1R∆+
2L

=
1

2
gLgRv1Rv2L cosφW sinφW , (A.282)

mξ,W

∆+,∗
2R ∆+

2L

=
1

2
gLgRv2Lv2R cosφW sinφW , (A.283)

mξ,W

∆−1L∆+
2L

=
1

2
g2
Lv1Lv2L cosφ2

W , (A.284)

mξ,W

∆+,∗
2L ∆+

2L

=
1

2
g2
Lv

2
2L cosφ2

W . (A.285)

Gauge fixing contributions from ξW ′ :

mξ,W ′

H−1 H
−,∗
1

=
1

4

(
gLvd sinφW + gRv

′
1 cosφW

)2

, (A.286)
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mξ,W ′

H−1 H
+
1

= −1

4

(
gLvd sinφW + gRv

′
1 cosφW

)(
gLv

′
1 sinφW + gRvd cosφW

)
, (A.287)

mξ,W ′

H+,∗
1 H+

1

=
1

4

(
gLv

′
1 sinφW + gRvd cosφW

)2

, (A.288)

mξ,W ′

H−1 H
−,∗
2

=
1

4

(
gLvd sinφW + gRv

′
1 cosφW

)(
gLv

′
2 sinφW + gRvu cosφW

)
, (A.289)

mξ,W ′

H+,∗
1 H−,∗2

= −1

4

(
gLv

′
1 sinφW + gRvd cosφW

)(
gLv

′
2 sinφW + gRvu cosφW

)
, (A.290)

mξ,W ′

H−2 H
−,∗
2

=
1

4

(
gLv

′
2 sinφW + gRvu cosφW

)2

, (A.291)

mξ,W ′

H−1 H
+
2

= −1

4

(
gLvd sinφW + gRv

′
1 cosφW

)(
gLvu sinφW + gRv

′
2 cosφW

)
, (A.292)

mξ,W ′

H+,∗
1 H+

2

=
1

4

(
gLv

′
1 sinφW + gRvd cosφW

)(
gLvu sinφW + gRv

′
2 cosφW

)
, (A.293)

mξ,W ′

H−2 H
+
2

= −1

4

(
gLvu sinφW + gRv

′
2 cosφW

)(
gLv

′
2 sinφW + gRvu cosφW

)
, (A.294)

mξ,W ′

H+,∗
2 H+

2

=
1

4

(
gLvu sinφW + gRv

′
2 cosφW

)2

, (A.295)

mξ,W ′

H−1 ∆−,∗1R

=
1

2

1√
2
gRv1R cosφW

(
gLvd sinφW + gRv

′
1 cosφW

)
, (A.296)

mξ,W ′

H+,∗
1 ∆−,∗1R

= −1

2

1√
2
gRv1R cosφW

(
gLv

′
1 sinφW + gRvd cosφW

)
, (A.297)

mξ,W ′

H−2 ∆−,∗1R

=
1

2

1√
2
gRv1R cosφW

(
gLv

′
2 sinφW + gRvu cosφW

)
, (A.298)

mξ,W ′

H+,∗
2 ∆−,∗1R

= −1

2

1√
2
gRv1R cosφW

(
gLvu sinφW + gRv

′
2 cosφW

)
, (A.299)

mξ,W ′

∆−1R∆−,∗1R

=
1

2
g2
Rv

2
1R cosφ2

W , (A.300)

mξ,W ′

H−1 ∆+
2R

=
1

2

1√
2
gRv2R cosφW

(
gLvd sinφW + gRv

′
1 cosφW

)
, (A.301)

mξ,W ′

H+,∗
1 ∆+

2R

= −1

2

1√
2
gRv2R cosφW

(
gLv

′
1 sinφW + gRvd cosφW

)
, (A.302)

mξ,W ′

H−2 ∆+
2R

=
1

2

1√
2
gRv2R cosφW

(
gLv

′
2 sinφW + gRvu cosφW

)
, (A.303)

mξ,W ′

H+,∗
2 ∆+

2R

= −1

2

1√
2
gRv2R cosφW

(
gLvu sinφW + gRv

′
2 cosφW

)
, (A.304)

mξ,W ′

∆−1R∆+
2R

=
1

2
g2
Rv1Rv2R cosφ2

W , (A.305)

mξ,W ′

∆+,∗
2R ∆+

2R

=
1

2
g2
Rv

2
2R cosφ2

W , (A.306)

mξ,W ′

H−1 ∆−,∗1L

= −1

2

1√
2
gLv1L sinφW

(
gLvd sinφW + gRv

′
1 cosφW

)
, (A.307)

mξ,W ′

H+,∗
1 ∆−,∗1L

=
1

2

1√
2
gLv1L sinφW

(
gLv

′
1 sinφW + gRvd cosφW

)
, (A.308)

mξ,W ′

H−2 ∆−,∗1L

= −1

2

1√
2
gLv1L sinφW

(
gLv

′
2 sinφW + gRvu cosφW

)
, (A.309)

mξ,W ′

H+,∗
2 ∆−,∗1L

=
1

2

1√
2
gLv1L sinφW

(
gLvu sinφW + gRv

′
2 cosφW

)
, (A.310)

mξ,W ′

∆−1R∆−,∗1L

= −1

2
gLgRv1Lv1R cosφW sinφW , (A.311)
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mξ,W ′

∆+,∗
2R ∆−,∗1L

= −1

2
gLgRv1Lv2R cosφW sinφW , (A.312)

mξ,W ′

∆−1L∆−,∗1L

=
1

2
g2
Lv

2
1L sinφ2

W , (A.313)

mξ,W ′

H−1 ∆+
2L

= −1

2

1√
2
gLv2L sinφW

(
gLvd sinφW + gRv

′
1 cosφW

)
, (A.314)

mξ,W ′

H+,∗
1 ∆+

2L

=
1

2

1√
2
gLv2L sinφW

(
gLv

′
1 sinφW + gRvd cosφW

)
, (A.315)

mξ,W ′

H−2 ∆+
2L

= −1

2

1√
2
gLv2L sinφW

(
gLv

′
2 sinφW + gRvu cosφW

)
, (A.316)

mξ,W ′

H+,∗
2 ∆+

2L

=
1

2

1√
2
gLv2L sinφW

(
gLvu sinφW + gRv

′
2 cosφW

)
, (A.317)

mξ,W ′

∆−1R∆+
2L

= −1

2
gLgRv1Rv2L cosφW sinφW , (A.318)

mξ,W ′

∆+,∗
2R ∆+

2L

= −1

2
gLgRv2Lv2R cosφW sinφW , (A.319)

mξ,W ′

∆−1L∆+
2L

=
1

2
g2
Lv1Lv2L sinφ2

W , (A.320)

mξ,W ′

∆+,∗
2L ∆+

2L

=
1

2
g2
Lv

2
2L sinφ2

W . (A.321)

In the case v′1, v
′
2 → 0, the gauge fixing contributions reduce to

m2(ξW−)
∣∣∣
v′1=v′2=0

= (A.322)

1
4g

2
Lv

2
d 0 0 −1

4g
2
Lvdvu 0 0 − 1

2
√

2
g2
Lvdv1L − 1

2
√

2
g2
Lvdv2L

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−1
4g

2
Lvdvu 0 0 1

4g
2
Lv

2
u 0 0 1

2
√

2
g2
Lv1Lvu

1
2
√

2
g2
Lvuv2L

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

− 1
2
√

2
g2
Lvdv1L 0 0 1

2
√

2
g2
Lv1Lvu 0 0 1

2g
2
Lv

2
1L

1
2g

2
Lv1Lv2L

− 1
2
√

2
g2
Lvdv2L 0 0 1

2
√

2
g2
Lvuv2L 0 0 1

2g
2
Lv1Lv2L

1
2g

2
Lv

2
2L


,

m2(ξW ′−)
∣∣∣
v′1=v′2=0

= (A.323)

0 0 0 0 0 0 0 0
0 1

4g
2
Rv

2
d −1

4g
2
Rvdvu 0 − 1

2
√

2
g2
Rvdv1R − 1

2
√

2
g2
Rvdv2R 0 0

0 −1
4g

2
Rvdvu

1
4g

2
Rv

2
u 0 1

2
√

2
g2
Rv1Rvu

1
2
√

2
g2
Rvuv2R 0 0

0 0 0 0 0 0 0 0
0 − 1

2
√

2
g2
Rvdv1R

1
2
√

2
g2
Rv1Rvu 0 1

2g
2
Rv

2
1R

1
2g

2
Rv1Rv2R 0 0

0 − 1
2
√

2
g2
Rvdv2R

1
2
√

2
g2
Rvuv2R 0 1

2g
2
Rv1Rv2R

1
2g

2
Rv

2
2R 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.
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The mass matrix is diagonalized by Z−:

Z−m2
H−Z

−,† = m2
dia,H− . (A.324)

A.1.4 Mass matrices and rotations for the fermions

Mass matrix for the neutralinos (χ̃0)

in the basis:
(
W̃ 0
L, W̃

0
R, B̃, H̃

′0
2 , H̃

0
2 , H̃

0
1 , H̃

′0
1 , ∆̃

0
1L, ∆̃

0
2R, ∆̃

0
2L, ∆̃

0
1R, S̃

)
:

mχ̃0 = (A.325)



M2L 0 0
gLv
′
2

2 −gLvu
2

gLvd
2 −gLv

′
1

2 gLv1L 0 −gLv2L 0 0

0 M2R 0 −gRv
′
2

2
gRvu

2 −gRvd
2

gRv
′
1

2 0 −gRv2R 0 gRv1R 0
0 0 M1 0 0 0 0 −gBLv1L gBLv2R gBLv2L −gBLv1R 0

gLv
′
2

2 −gRv
′
2

2 0 0 0 0 −λ12vS√
2

0 0 0 0 −λ12v′1√
2

−gLvu
2

gRvu
2 0 0 0 −λ12vS√

2
0 0 0 0 0 −λ12vd√

2
gLvd

2 −gRvd
2 0 0 −λ12vS√

2
0 0 0 0 0 0 −λ12vu√

2

−gLv
′
1

2
gRv
′
1

2 0 −λ12vS√
2

0 0 0 0 0 0 0 −λ12v′2√
2

gLv1L 0 −gBLv1L 0 0 0 0 0 0 λLvS√
2

0 λLv2L√
2

0 −gRv2R gBLv2R 0 0 0 0 0 0 0 λRvS√
2

λRv1R√
2

−gLv2L 0 gBLv2L 0 0 0 0 λLvS√
2

0 0 0 λLv1L√
2

0 gRv1R −gBLv1R 0 0 0 0 0 λRvS√
2

0 0 λRv2R√
2

0 0 0 −λ12v′1√
2
−λ12vd√

2
−λ12vu√

2
−λ12v′2√

2

λLv2L√
2

λRv1R√
2

λLv1L√
2

λRv2R√
2

√
2λSvS



.

This matrix is diagonalized by Z0:

Z0,∗mχ̃0Z0,† = mdia
χ̃0 . (A.326)

Mass matrix for the charginos, (χ̃±)

in the basis:
(
W̃+
L , W̃

+
R , H̃

+
2 , H̃

+
1 , ∆̃

+
2L, ∆̃

+
2R

)
,
(
W̃−L , W̃

−
R , H̃

−
2 , H̃

−
1 , ∆̃

−
1L, ∆̃

−
1R

)

mχ̃− =



M2L 0 1√
2
gLv

′
2

1√
2
gLvd −gLv1L 0

0 M2R − 1√
2
gRvu − 1√

2
gRv

′
1 0 −gRv1R

1√
2
gLvu − 1√

2
gRv

′
2 0 1√

2
λ12vS 0 0

1√
2
gLv

′
1 − 1√

2
gRvd

1√
2
λ12vS 0 0 0

gLv2L 0 0 0 1√
2
λLvS 0

0 gRv2R 0 0 0 1√
2
λRvS


. (A.327)

This matrix is diagonalized by U+ and U−

U+,∗mχ̃−U
−,† = mdia

χ̃− . (A.328)
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Mass matrix for the doubly-charged higgsinos (χ̃±±)

in the basis:
(

∆̃−−1L , ∆̃
−−
1R

)
,
(

∆̃++
2L , ∆̃

++
2R

)
mχ̃−− =

(
1√
2
λLvS 0

0 1√
2
λRvS

)
. (A.329)

Mass matrix for the neutrinos, (ν)

in the basis: (νL, ν
c
R) , (νL, ν

c
R)

mν =

 √
2v2Ly

L
3

1√
2

(
v′1y

L,T
1 + vuy

L,T
2

)
1√
2

(
v′1y

L
1 + vuy

L
2

) √
2v1Ry

L
4

 . (A.330)

This matrix is diagonalized by UV :

UV,∗mνU
V,† = mdia

ν . (A.331)

Masses of the charged leptons (e), up- (u) and down-quarks (d)

They are obtained as follows

me = 1√
2

(
v′2y

L,T
2 + vdy

L,T
1

)
, (A.332)

md = 1√
2

(
v′2y

Q,T
2 + vdy

Q,T
1

)
, (A.333)

mu = 1√
2

(
v′1y

Q,T
1 + vuy

Q,T
2

)
. (A.334)

These matrices are diagonalized by {U eL, U eR}, {UdL, UdR}, and {UuL, UuR}, respectively:

U e,∗L meU
e,†
R = mdia

e , (A.335)

Ud,∗L mdU
d,†
R = mdia

d , (A.336)

Uu,∗L muU
u,†
R = mdia

u . (A.337)

A.2 1-loop corrections to the mass of H−−

A.2.1 Self energy for the doubly charged Higgs bosons

Πi,j(p
2) = (A.338)

2
(
− 1

2
rMS +B0

(
p2,m2

W− ,m
2
W−

))
Γ∗
Ȟ++
j ,W−,W−

ΓȞ++
i ,W−,W−

+ 4
(
− 1

2
rMS +B0

(
p2,m2

W− ,m
2
W ′−

))
Γ∗
Ȟ++
j ,W ′−,W−

ΓȞ++
i ,W ′−,W−

+ 2
(
− 1

2
rMS +B0

(
p2,m2

W ′− ,m
2
W ′−

))
Γ∗
Ȟ++
j ,W ′−,W ′−

ΓȞ++
i ,W ′−,W ′−
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−B0

(
p2,m2

η−L
,m2

η+L

)
ΓȞ++

i ,η̄+L ,η
−
L

ΓȞ−−j ,η+L ,η̄
−
L
−B0

(
p2,m2

η−R
,m2

η+L

)
ΓȞ++

i ,η̄+L ,η
−
R

ΓȞ−−j ,η+L ,η̄
−
R

−B0

(
p2,m2

η−L
,m2

η+R

)
ΓȞ++

i ,η̄+R ,η
−
L

ΓȞ−−j ,η+R ,η̄
−
L

−B0

(
p2,m2

η−R
,m2

η+R

)
ΓȞ++

i ,η̄+R ,η
−
R

ΓȞ−−j ,η+R ,η̄
−
R

+ 4ΓȞ−−i ,Ȟ++
j ,W+,W−

(
− 1

2
rMSm

2
W− +A0

(
m2
W−

))
+ 4ΓȞ−−i ,Ȟ++

j ,W ′+,W ′−

(
− 1

2
rMSm

2
W ′− +A0

(
m2
W ′−

))
+ 2ΓȞ−−i ,Ȟ++

j ,Z,Z

(
− 1

2
rMSm

2
Z +A0

(
m2
Z

))
+ 2ΓȞ−−i ,Ȟ++

j ,Z′,Z′

(
− 1

2
rMSm

2
Z′ +A0

(
m2
Z′

))
− 2

2∑
a=1

mχ̃−−a

12∑
b=1

B0

(
p2,m2

χ̃−−a
,m2

χ̃0
b

)
mχ̃0

b

(
ΓL∗
Ȟ++
j ,χ̃−−a ,χ̃0

b

ΓR
Ȟ++
i ,χ̃−−a ,χ̃0

b

+ ΓR∗
Ȟ++
j ,χ̃−−a ,χ̃0

b

ΓL
Ȟ++
i ,χ̃−−a ,χ̃0

b

)
+

2∑
a=1

12∑
b=1

G0

(
p2,m2

χ̃−−a
,m2

χ̃0
b

)(
ΓL∗
Ȟ++
j ,χ̃−−a ,χ̃0

b

ΓL
Ȟ++
i ,χ̃−−a ,χ̃0

b

+ ΓR∗
Ȟ++
j ,χ̃−−a ,χ̃0

b

ΓR
Ȟ++
i ,χ̃−−a ,χ̃0

b

)
−

3∑
a=1

mea

3∑
b=1

B0

(
p2,m2

ea ,m
2
eb

)
meb

(
ΓL∗
Ȟ++
j ,ea,eb

ΓR
Ȟ++
i ,ea,eb

+ ΓR∗
Ȟ++
j ,ea,eb

ΓL
Ȟ++
i ,ea,eb

)
+

1

2

3∑
a=1

3∑
b=1

G0

(
p2,m2

ea ,m
2
eb

)(
ΓL∗
Ȟ++
j ,ea,eb

ΓL
Ȟ++
i ,ea,eb

+ ΓR∗
Ȟ++
j ,ea,eb

ΓR
Ȟ++
i ,ea,eb

)
−

4∑
a=1

A0

(
m2
H−−a

)
ΓȞ−−i ,Ȟ++

j ,H++
a ,H−−a

+

4∑
a=1

9∑
b=1

B0

(
p2,m2

H−−a
,m2

A0
b

)
Γ∗
Ȟ++
j ,H−−a ,A0

b
ΓȞ++

i ,H−−a ,A0
b

+

4∑
a=1

9∑
b=1

B0

(
p2,m2

H−−a
,m2

hb

)
Γ∗
Ȟ++
j ,H−−a ,hb

ΓȞ++
i ,H−−a ,hb

− 3

6∑
a=1

A0

(
m2
d̃a

)
ΓȞ−−i ,Ȟ++

j ,d̃∗a,d̃a

−
6∑
a=1

A0

(
m2
ẽa

)
ΓȞ−−i ,Ȟ++

j ,ẽ∗a,ẽa
− 3

6∑
a=1

A0

(
m2
ũa

)
ΓȞ−−i ,Ȟ++

j ,ũ∗a,ũa

− 1

2

6∑
a=1

A0

(
m2
ν̃Pa

)
ΓȞ−−i ,Ȟ++

j ,ν̃Pa ,ν̃
P
a
− 1

2

6∑
a=1

A0

(
m2
ν̃Sa

)
ΓȞ−−i ,Ȟ++

j ,ν̃Sa ,ν̃
S
a

+
1

2

6∑
a=1

6∑
b=1

B0

(
p2,m2

ẽa ,m
2
ẽb

)
Γ∗
Ȟ++
j ,ẽa,ẽb

ΓȞ++
i ,ẽa,ẽb

−
6∑
a=1

mχ̃−a

6∑
b=1

B0

(
p2,m2

χ̃−a
,m2

χ̃−b

)
mχ̃−b

(
ΓL∗
Ȟ++
j ,χ̃−a ,χ̃

−
b

ΓR
Ȟ++
i ,χ̃−a ,χ̃

−
b

+ ΓR∗
Ȟ++
j ,χ̃−a ,χ̃

−
b

ΓL
Ȟ++
i ,χ̃−a ,χ̃

−
b

)
+

1

2

6∑
a=1

6∑
b=1

G0

(
p2,m2

χ̃−a
,m2

χ̃−b

)(
ΓL∗
Ȟ++
j ,χ̃−a ,χ̃

−
b

ΓL
Ȟ++
i ,χ̃−a ,χ̃

−
b

+ ΓR∗
Ȟ++
j ,χ̃−a ,χ̃

−
b

ΓR
Ȟ++
i ,χ̃−a ,χ̃

−
b

)
−

8∑
a=1

A0

(
m2
H−a

)
ΓȞ−−i ,Ȟ++

j ,H+
a ,H

−
a

+
1

2

8∑
a=1

8∑
b=1

B0

(
p2,m2

H−a
,m2

H−b

)
Γ∗
Ȟ++
j ,H−a ,H

−
b

ΓȞ++
i ,H−a ,H

−
b

− 1

2

9∑
a=1

A0

(
m2
A0

a

)
ΓȞ−−i ,Ȟ++

j ,A0
a,A0

a
− 1

2

9∑
a=1

A0

(
m2
ha

)
ΓȞ−−i ,Ȟ++

j ,ha,ha

+
4∑
b=1

Γ∗
Ȟ++
j ,γ,H−−b

ΓȞ++
i ,γ,H−−b

F0

(
p2,m2

H−−b
, 0
)

+

4∑
b=1

Γ∗
Ȟ++
j ,Z,H−−b

ΓȞ++
i ,Z,H−−b

F0

(
p2,m2

H−−b
,m2

Z

)
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+

4∑
b=1

Γ∗
Ȟ++
j ,Z′,H−−b

ΓȞ++
i ,Z′,H−−b

F0

(
p2,m2

H−−b
,m2

Z′

)
+

8∑
b=1

Γ∗
Ȟ++
j ,W−,H−b

ΓȞ++
i ,W−,H−b

F0

(
p2,m2

H−b
,m2

W−

)
+

8∑
b=1

Γ∗
Ȟ++
j ,W ′−,H−b

ΓȞ++
i ,W ′−,H−b

F0

(
p2,m2

H−b
,m2

W ′−

)
.

where Γijk denotes the vertex factor between the particles i, j, k. A “ˇ” on a particle index
in a vertex means that this particle is to be taken in the gauge eigenstate, i.e. its mixing
matrix occurring in the vertex has to be replaced by the unit matrix, which is due to the
fact that the self energy defined above denotes the 1-loop corrections to the mass matrix
and not to the already diagonalized mass eigenvalues. The parameter rMS depends on the
regularization scheme and is zero for DR and 1 for dimensional regularization. Since we
work in a supersymmetric model we apply the DR scheme.

A.2.2 1-loop corrections to the tadpoles

δt
(1)
h = (A.339)

A0

(
m2
η−L

)
Γȟi,η̄−L ,η

−
L

+A0

(
m2
η+L

)
Γȟi,η̄+L ,η

+
L

+A0

(
m2
η−R

)
Γȟi,η̄−R ,η

−
R

+A0

(
m2
η+R

)
Γȟi,η̄+R ,η

+
R

+A0

(
m2
ηZ

)
Γȟi,η̄Z ,ηZ +A0

(
m2
ηZ′

)
Γȟi,η̄Z′ ,ηZ′

+ 4Γȟi,W+,W−

(
− 1

2
rMSm

2
W− +A0

(
m2
W−

))
+ 4Γȟi,W ′+,W ′−

(
− 1

2
rMSm

2
W ′− +A0

(
m2
W ′−

))
+ 2Γȟi,Z,Z

(
− 1

2
rMSm

2
Z +A0

(
m2
Z

))
+ 2Γȟi,Z′,Z′

(
− 1

2
rMSm

2
Z′ +A0

(
m2
Z′

))
+ 2

2∑
a=1

A0

(
m2
χ̃−−a

)
mχ̃−−a

(
ΓL
ȟi, ¯̃χ

−−
a ,χ̃−−a

+ ΓR
ȟi, ¯̃χ

−−
a ,χ̃−−a

)
+ 6

3∑
a=1

A0

(
m2
da

)
mda

(
ΓL
ȟi,d̄a,da

+ ΓR
ȟi,d̄a,da

)
+ 2

3∑
a=1

A0

(
m2
ea

)
mea

(
ΓL
ȟi,ēa,ea

+ ΓR
ȟi,ēa,ea

)
+ 6

3∑
a=1

A0

(
m2
ua

)
mua

(
ΓL
ȟi,ūa,ua

+ ΓR
ȟi,ūa,ua

)
−

4∑
a=1

A0

(
m2
H−−a

)
Γȟi,H++

a ,H−−a

− 3

6∑
a=1

A0

(
m2
d̃a

)
Γȟi,d̃∗a,d̃a

−
6∑
a=1

A0

(
m2
ẽa

)
Γȟi,ẽ∗a,ẽa − 3

6∑
a=1

A0

(
m2
ũa

)
Γȟi,ũ∗a,ũa

− 1

2

6∑
a=1

A0

(
m2
ν̃Pa

)
Γȟi,ν̃Pa ,ν̃Pa −

1

2

6∑
a=1

A0

(
m2
ν̃Sa

)
Γȟi,ν̃Sa ,ν̃Sa

+ 2

6∑
a=1

A0

(
m2
χ̃−a

)
mχ̃−a

(
ΓL
ȟi, ¯̃χ

−
a ,χ̃
−
a

+ ΓR
ȟi, ¯̃χ

−
a ,χ̃
−
a

)
+

6∑
a=1

A0

(
m2
νa

)
mνa

(
ΓL
ȟi,νa,νa

+ ΓR
ȟi,νa,νa

)
−

8∑
a=1

A0

(
m2
H−a

)
Γȟi,H+

a ,H
−
a
− 1

2

9∑
a=1

A0

(
m2
A0

a

)
Γȟi,A0

a,A0
a
− 1

2

9∑
a=1

A0

(
m2
ha

)
Γȟi,ha,ha

+

12∑
a=1

A0

(
m2
χ̃0
a

)
mχ̃0

a

(
ΓL
ȟi,χ̃0

a,χ̃
0
a

+ ΓR
ȟi,χ̃0

a,χ̃
0
a

)
,
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δt
(1)

ν̃S
= 0 . (A.340)
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APPENDIX B

LOW ENERGY OBSERVABLES

The effective Lagrangian for the lepton flavour violating low energy observables `α → `βγ,
`α → `β`γ`δ as well as µ− e conversion in nuclei can be written as

LLFV = L``γ + L4` + L2`2d + L2`2u , (B.1)

with

L``γ = e ¯̀
β

[
γµ
(
KL

1 PL +KR
1 PR

)
+ im`ασ

µνqν
(
KL

2 PL +KR
2 PR

)]
`αAµ + h.c. (B.2)

L4` =
∑

I=S,V,T
X,Y=L,R

AIXY
¯̀
βΓIPX`α ¯̀

δΓIPY `γ + h.c. (B.3)

L2`2d =
∑

I=S,V,T
X,Y=L,R

BI
XY

¯̀
βΓIPX`αd̄γΓIPY dγ + h.c. (B.4)

L2`2u = L2`2d|d→u,B→C . (B.5)

Let us specify the conventions used above. In the first equation defining the `α → `βγ
interaction Lagrangian, e is the electric charge, Aµ the photon field and q its 4-momentum.
PL/R = 1

2(1∓ γ5) are the chirality projectors while the scalar, vector and tensor operators

ΓI read ΓS = 1, ΓV = γµ and ΓT = σµν . The form factors KX
i , AIXY and BI

XY (CIXY )
correspond to the effective vertices of the `α → `βγ, `α → `β`γ`δ and `αdγ → `βdγ
(`αuγ → `βuγ) interactions. For simplicity, their indices have been suppressed.

The decay widths/conversion rates of these processes in terms of the lepton masses
and the form factors are defined in the following and we refer to ref. [196] for a complete
account of all contributing Feynman diagrams as well the corresponding form factors.
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B.1. Radiative decay: `α → `βγ

B.1 Radiative decay: `α → `βγ

The width of the radiative decay `α → `βγ takes the simple form [219]

Γ (`α → `βγ) =
αemm

5
`α

4

(
|KL

2 |2 + |KR
2 |2
)
, (B.6)

with KL,R
2 as defined in eq. (B.2) and the fine structure constant αem = e2/(4π). Note

that the monopole contribution coming from KL,R
1 vanishes for on-shell photons and only

contributes to photon-mediated three-body decays, see below.

B.2 Three-body decays

B.2.1 Same-flavour final state: `−α → `−β `
−
β `

+
β

We now consider the tree-body decays µ→ 3e, τ → 3e or τ → 3µ. Defining the external
momenta as `−α (p)→ `−β (p1) `−β (p2) `+β (p3), the decay width is given by

Γ (`α → 3 `β) =
m5
`α

512π3

[
e4
(∣∣KL

2

∣∣2 +
∣∣KR

2

∣∣2)(16

3
log

m`α

m`β

− 22

3

)
(B.7)

+
1

24

(∣∣ASLL∣∣2 +
∣∣ASRR∣∣2)+

1

12

(∣∣ASLR∣∣2 +
∣∣ASRL∣∣2)

+
2

3

(∣∣∣ÂVLL∣∣∣2 +
∣∣∣ÂVRR∣∣∣2)+

1

3

(∣∣∣ÂVLR∣∣∣2 +
∣∣∣ÂVRL∣∣∣2)+ 6

(∣∣ATLL∣∣2 +
∣∣ATRR∣∣2)

+
e2

3

(
KL

2 A
S∗
RL +KR

2 A
S∗
LR + c.c.

)
− 2e2

3

(
KL

2 Â
V ∗
RL +KR

2 Â
V ∗
LR + c.c.

)
− 4e2

3

(
KL

2 Â
V ∗
RR +KR

2 Â
V ∗
LL + c.c.

)
− 1

2

(
ASLLA

T∗
LL +ASRRA

T∗
RR + c.c.

)
− 1

6

(
ASLRÂ

V ∗
LR +ASRLÂ

V ∗
RL + c.c.

)]
,

where the mass of the final state leptons has been neglected but for the prefactors multiplying
KL,R

2 . The photonic monopole form factors have been absorbed in the definition of the
vectorial operators ÂV :

ÂVXY = AVXY + e2KX
1 (X,Y = L,R) . (B.8)

Note that eq. (B.7) agrees with ref. [216] and, although the form of eq. (B.7) differs
from the corresponding formula given in ref. [189], both are in agreement. The reason
for that is that the scalar form factors ASLR and ASRL as in eq. (B.7) have been absorbed
in the corresponding vector form factors AVLR and AVRL in [189] by means of a Fierz
transformation [220].
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B.2.2 Final state of differing flavour: `−α → `−β `
−
γ `

+
γ

We next consider the three-body decay `−α (p) → `−β (p1) `−γ (p2) `+γ (p3) with β 6= γ. The
decay width is given by

Γ
(
`−α → `−β `

−
γ `

+
γ

)
=

m5
`α

512π3

[
e4
(∣∣KL

2

∣∣2 +
∣∣KR

2

∣∣2)(16

3
log

m`α

m`γ

− 8

)
(B.9)

+
1

12

(∣∣ASLL∣∣2 +
∣∣ASRR∣∣2)+

1

12

(∣∣ASLR∣∣2 +
∣∣ASRL∣∣2)

+
1

3

(∣∣∣ÂVLL∣∣∣2 +
∣∣∣ÂVRR∣∣∣2)+

1

3

(∣∣∣ÂVLR∣∣∣2 +
∣∣∣ÂVRL∣∣∣2)+ 4

(∣∣ATLL∣∣2 +
∣∣ATRR∣∣2)

− 2e2

3

(
KL

2 Â
V ∗
RL +KR

2 Â
V ∗
LR +KL

2 Â
V ∗
RR +KR

2 Â
V ∗
LL + c.c.

)]
,

where we have used the same definitions and approximations as in eq. (B.7). Finally, also
eq. (B.9) is in perfect agreement with the expressions given in ref. [216].

B.2.3 Final state of differing flavour: `−α → `+
β `
−
γ `
−
γ

The decay width of the process `−α (p)→ `+β (p1) `−γ (p2) `−γ (p3), β 6= γ, is given by

Γ
(
`−α → `+β `

−
γ `
−
γ

)
=

m5
`α

512π3

[
1

24

(∣∣ASLL∣∣2 +
∣∣ASRR∣∣2)+

1

12

(∣∣ASLR∣∣2 +
∣∣ASRL∣∣2) (B.10)

+
2

3

(∣∣∣ÂVLL∣∣∣2 +
∣∣∣ÂVRR∣∣∣2)+

1

3

(∣∣∣ÂVLR∣∣∣2 +
∣∣∣ÂVRL∣∣∣2)+ 6

(∣∣ATLL∣∣2 +
∣∣ATRR∣∣2)

− 1

2

(
ASLLA

T∗
LL +ASRRA

T∗
RR + c.c.

)
− 1

6

(
ASLRÂ

V ∗
LR +ASRLÂ

V ∗
RL + c.c.

)]
,

using the same conventions as in eq. (B.7). This process does not receive any contribution
from penguin diagrams but only from boxes.

B.3 Coherent µ− e conversion in nuclei

For the discussion of µ−e conversion in nuclei we follow the conventions and approximations
described in Ref. [221,222]1 The conversion rate, relative to the the muon capture rate, is
given by

CR(µ− e,Nucleus) =
peEem

3
µG

2
F α

3
em Z

4
eff F

2
p

8π2 Z

×
{∣∣∣(Z +N)

(
g

(0)
LV + g

(0)
LS

)
+ (Z −N)

(
g

(1)
LV + g

(1)
LS

)∣∣∣2 +

1See also [223–225] for detailed works regarding the effective Lagrangian at the nucleon level, [214,226]
for a calculation including the effects of the atomic electric field and [227] for recent improvements on the
hadronic uncertainties.
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B.4. Decoupling of the Z penguin contributions

∣∣∣(Z +N)
(
g

(0)
RV + g

(0)
RS

)
+ (Z −N)

(
g

(1)
RV + g

(1)
RS

)∣∣∣2} 1

Γcapt
,

(B.11)

Z and N being the number of protons and neutrons in the nucleus and Zeff the effective
atomic charge [228]. GF is the usual Fermi constant, Fp the nuclear matrix element
and Γcapt the total muon capture rate. Ee and pe (which is ' mµ in our numerical
evaluation) denote the electron momentum and energy and mµ the muon mass. The

coupling parameters g
(0)
XK and g

(1)
XK (with X = L,R and K = S, V ) can be written in terms

of effective couplings at the quark level as

g
(0)
XK =

1

2

∑
q=u,d,s

(
gXK(q)G

(q,p)
K + gXK(q)G

(q,n)
K

)
,

g
(1)
XK =

1

2

∑
q=u,d,s

(
gXK(q)G

(q,p)
K − gXK(q)G

(q,n)
K

)
. (B.12)

Only the scalar (S) and vector (V ) couplings contribute to coherent µ − e conversion
in nuclei [221], and the only sizeable contributions are expected from the up, down and
strange quarks. The numerical values of the relevant GK factors are [221,229]

G
(u,p)
V = G

(d,n)
V = 2 ; G

(d,p)
V = G

(u,n)
V = 1 ;

G
(u,p)
S = G

(d,n)
S = 5.1 ; G

(d,p)
S = G

(u,n)
S = 4.3 ;

G
(s,p)
S = G

(s,n)
S = 2.5 . (B.13)

Finally, the gXK(q) coefficients can be written in terms of the form factors in eqs. (B.2-B.5)
as

gLV (q) =

√
2

GF

[
e2Qq

(
KL

1 −KR
2

)
− 1

2

(
CV LL``qq + CV LR``qq

)]
(B.14)

gRV (q) = gLV (q)

∣∣
L→R (B.15)

gLS(q) = −
√

2

GF

1

2

(
CSLL``qq + CSLR``qq

)
(B.16)

gRS(q) = gLS(q)

∣∣
L→R , (B.17)

Qq being the electric charge (Qd = −1/3, Qu = 2/3), and CIXK``qq = BK
XY

(
CKXY

)
for

d-quarks (u-quarks), with X = L,R and K = S, V .

B.4 Decoupling of the Z penguin contributions

Here we discuss in more detail the circumstances and errors that led to the reported
non-decoupling of lepton flavour violating Z-penguin diagrams. The results of this section
have been published in ref. [195].

It is common to parameterise loop-induced flavour violating couplings in terms of
effective vertices. The processes we are interested in here feature effective couplings
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Figure B.1: Chargino-sneutrino loops contributing to the effective µ− e− Z coupling.

`i − `j − Z which can be written as

¯̀
jγµ
(
FLPL + FRPR

)
`iZ

µ . (B.18)

Here, PL/R are the usual left/right projection operators, and FL,R are the form factors
which contain the different loop-induced contributions to this vertex. FL,R contribute to
the three-body decays `j → `i`

+
k `
−
k [189], µ − e conversion in nuclei [222] as well as τ

mesonic LFV decays [230].

In ref. [189], the contributions from supersymmetric loops containing charginos and
sneutrinos as shown in figure B.1 were calculated as

F
(c)
L |AH = (B.19)

− 1

16π2

(
CRiBXC

R∗
jAX

(
2E

R(c)
BA C24(m2

ν̃X
,m2

χ̃−A
,m2

χ̃−B
)− EL(c)

BA mχ̃−A
mχ̃−B

C0(m2
ν̃X
,m2

χ̃−A
,m2

χ̃−B
)
)

+ CRiAXC
R∗
jAY

(
2Qν̃XY C24(m2

χ̃−A
,m2

ν̃X
,m2

ν̃Y
)
)

+ CRiAXC
R∗
jAXZ

(`)
L B1(m2

χ̃−A
,m2

ν̃X
)
)
,

where CRiAX , E
R(c),L(c)
BA , Qν̃XY and Z

(`)
L denote the χ̃A− `i− ν̃X , χ̃A− χ̃B −Z, ν̃X − ν̃Y −Z

and `− `− Z couplings, respectively. C0 and B1 are well-known Passarino-Veltman loop
functions evaluated in the limit of vanishing external momenta. Combining the definitions
provided in [189] and [231], C24 is given by

4C24(m2
0,m

2
1,m

2
2) = B0(m2

1,m
2
2) +m2

0C0(m2
0,m

2
1,m

2
2) . (B.20)

For the detailed definitions see section B.4.1 or ref. [189]. The form factor FR can be
neglected to a good approximation as all contributions thereto require a chirality flip and
are hence proportional to the Yukawa couplings of the charged leptons.

It has been first observed in ref. [193] that F
(c)
L |AH contains non-decoupling terms

for certain types of supersymmetric models, in particular for models featuring an inverse
seesaw mechanism or R-parity violation. As those terms cannot depend on the chargino
mixing angle φχ, one can concentrate on the leading parts F (c,0) in the expansion in φχ;

while doing so, we split the form factor into the wino and higgsino contributions FW̃ (0)
L

and F H̃(0)
L :

F (c,0) = − 1

16π2

(
FW̃ (0)
L + F H̃(0)

L

)
. (B.21)
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In ref. [194], the origin of the terms leading to the non-decoupling effect were identified
for the MSSM extended by an inverse seesaw mechanism, as is used in chapter 5. In
particular, it has been found that the leading-order higgsino contribution contains a term
which only depends on the gauge and Yukawa couplings:

F H̃(0)
L =

g

8 cos θW

(
Y †ν Yν

)
ij

(cos2 θW −
1

2
) . (B.22)

As Y †ν Yν is in general non-diagonal, this coupling induces an effective `i − `j − Z vertex
which stays constant, irrespective of the mass scale of the virtual particles in the loop, i.e.
that doesn’t decouple.

Motivated by this puzzling finding we re-computed the underlying form factor and
found a slightly different result:

F
(c)
L = − 1

16π2

(
CRiBXC

R∗
jAX

(
E
R(c)
BA

[
B0(m2

χ̃−A
,m2

χ̃−B
)− 2C00(m2

ν̃X
,m2

χ̃−A
,m2

χ̃−B
)

+m2
ν̃X
C0(m2

ν̃X
,m2

χ̃−A
,m2

χ̃−B
)
]
− EL(c)

BA mχ̃−A
mχ̃−B

C0(m2
ν̃X
,m2

χ̃−A
,m2

χ̃−B
)
)

(B.23)

+ CRiAXC
R∗
jAY

(
2Qν̃XY C00(m2

χ̃−A
,m2

ν̃X
,m2

ν̃Y
)
)

+ CRiAXC
R∗
jAXZ

(`)
L B1(m2

χ̃−A
,m2

ν̃X
)
)
.

Using the analytical relation between the loop functions B0, C0 and C00

DC00(m2
0,m

2
1,m

2
2) = B0(m2

1,m
2
2) +m2

0C0(m2
0,m

2
1,m

2
2) , (B.24)

we can now compare our result to eq. (B.19). In the above, D = 4− 2 ε as commonly used
in dimensional regularization/reduction, and DC00 = 4C00 − 1

2 because of a 1
4 ε singularity

within C00. Using eq. (B.24) together with (B.20), we can identify C24 = C00 − 1
8 .

We find that our result would agree with eq. (B.19) if we made the mistake of neglecting
ε when applying D to C00 so that DC00 → 4C00 and if we in addition identified C24 with
C00. It is hence clear that the differences between our form factor and the one of [189]
are two constant terms which originate from the handling of 1/ε singularities as well as
a wrong definition of C24. In the following it is shown how using the correct form factor
disproves the non-decoupling claims by an explicit re-evaluation of eq. (B.22) as well as
the analytical results of ref. [193].

To do so, we first extract the parts of F
(c)
L proportional to Y †ν Yν , corresponding to a

projection on the higgsinos in the loop. We find

F H̃L =− 1

4

∑
P,S

Y ∗ν,aiYν,bjVB2V
∗
A2

(
Awave
abAB +AχabAB +AνabAB

)
, (B.25)

Awave
abAB =− ZP/S∗X,3+aZ

P/S∗
X,3+bδBA

(
g2 cos θW − g1 sin θW

)
B1(m2

χ̃−A
,m2

ν̃X
) ,

AχabAB =Z
P/S∗
X,3+aZ

P/S∗
X,3+b

[(
2g2 cos θWV

∗
B1VA1 + V ∗B2VA2

(
g2 cos θW − g1 sin θW

))
×(

2C00(m2
ν̃X
,m2

χ̃−A
,m2

χ̃−B
)−B0(m2

χ̃−A
,m2

χ̃−B
)−m2

ν̃X
C0(m2

ν̃X
,m2

χ̃−A
,m2

χ̃−B
)
)

+(
(2g2 cos θWU

∗
A1UB1 + U∗A2UB2(g2 cos θW − g1 sin θW )

)
mχ̃Amχ̃BC0(m2

ν̃X
,m2

χ̃−A
,m2

χ̃−B
)
]
,

AνabAB =
(
g2 cos θW + g1 sin θW

)
δBAZ

P/S∗
Xc Z

S/P∗
Y c Z

P/S∗
X,3+aZ

S/P∗
Y,3+b2C00(m2

χ̃−A
,m2

ν̃X
,m2

ν̃Y
) .
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Here, we have distinguished between the CP -even and CP -odd sneutrino eigenstates ν̃S

and ν̃P because of the mass splitting induced by the lepton number violating terms µX
and BµX , see eq. (5.11). ZS/P are the sneutrino mixing matrices, and mν̃k corresponds
to the respective CP -state, with the index k covering all mass eigenstates. U and V are
the unitary matrices diagonalizing the chargino mass matrix; k1 and k2 project on the
wino and higgsino component of χ̃±k , respectively. Sums over repeated indices are implicitly
understood and a, b, c = 1, . . . , 3. In the limit of U, V → 1, i.e. of no chargino mixing,
eq. (B.25) reduces to

F H̃(0)
L = −1

4

∑
P,S

Y ∗ν,aiYν,bj
(
g2 cos θW − g1 sin θW

)
Asum
ab , (B.26)

Asum
ab = Z

P/S∗
X,3+aZ

P/S∗
X,3+b

(
−B1(m2

χ̃−2
,m2

ν̃X
) + (m2

χ̃−2
−m2

ν̃X
)C0(m2

ν̃X
,m2

χ̃−2
,m2

χ̃−2
)

+ 2C00(m2
ν̃X
,m2

χ̃−2
,m2

χ̃−2
)−B0(m2

χ̃−2
,m2

χ̃−2
)
)

+ 2Z
P/S∗
Xc Z

S/P∗
Y c Z

P/S∗
X,3+aZ

S/P∗
Y,3+bC00(m2

χ̃−2
,m2

ν̃X
,m2

ν̃Y
) .

In the limit of no left-right mixing in the sneutrino sector, this expression further simplifies
to

Asum
ab =Z

P/S∗
X,3+aZ

P/S∗
X,3+b

(
−B1(m2

χ̃−2
,m2

ν̃X
) + (m2

χ̃−2
−m2

ν̃X
)C0(m2

ν̃X
,m2

χ̃−2
,m2

χ̃−2
)

+ 2C00(m2
ν̃X
,m2

χ̃−2
,m2

χ̃−2
)−B0(m2

χ̃−2
,m2

χ̃−2
)
)

(B.27)

=Z
P/S∗
X,3+aZ

P/S∗
X,3+b

(
−B1(m2

χ̃−2
,m2

ν̃X
) +m2

χ̃−2
C0(m2

ν̃X
,m2

χ̃−2
,m2

χ̃−2
)

− 2C00(m2
ν̃X
,m2

χ̃−2
,m2

χ̃−2
) +

1

2

)
. (B.28)

= 0 .

One can easily confirm that Asum
ab vanishes when explicitly inserting the analytic forms

of the loop functions given in section B.4.1. The step from eq. (B.27) to eq. (B.28) has
been done for a better comparison with the results from ref. [194], using eq. (B.24). The
difference of a mass-independent constant term of 1

4 leads to the disappearance of the
reported non-decoupling contribution (B.22).2

For completeness, we now also provide the results for the pure wino contribution.

In [193,194] it was reported that the off-diagonal (i.e. flavour-changing) parts of FW̃ (0)
L

vanish in the MSSM limit (i.e. no sneutrino left-right mixing and no mass splitting of the
CP eigenstates) because of the unitarity of the sneutrino mixing matrix while the diagonal
parts remain finite. Defining

FW̃ (0)
L =− 1

4

∑
P,S

g2
2

(
g2 cos θWY1 + g1 sin θWY2

)
, (B.29)

they found Y1 → diag(−3
4) and Y2 → diag(−1

4). Using the correct equations, however, we

2The additional different overall factor of 1
2

between the above equation and the result in ref. [194] can

be traced back to the part where Z
P/S∗
X,3+aZ

P/S∗
X,3+b = δba which was erroneously taken to be 1

2
δba in ref. [194].
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arrive at

Y1 =Z
P/S∗
Xi Z

P/S∗
Xj

(
−B1(m2

χ̃−1
,m2

ν̃X
) + 2(m2

χ̃−1
−m2

ν̃X
)C0(m2

ν̃X
,m2

χ̃−1
,m2

χ̃−1
) (B.30)

+ 4C00(m2
ν̃X
,m2

χ̃−1
,m2

χ̃−1
)− 2B0(m2

χ̃−1
,m2

χ̃−1
)
)

+ 2Z
P/S∗
Xc Z

S/P∗
Y c Z

P/S∗
Xi Z

S/P∗
Y j C00(m2

χ̃−1
,m2

ν̃X
,m2

ν̃Y
) , (B.31)

Y2 =Z
P/S∗
Xi Z

P/S∗
Xj B1(m2

χ̃−1
,m2

ν̃X
) + 2Z

P/S∗
Xc Z

S/P∗
Y c Z

P/S∗
Xi Z

S/P∗
Y j C00(m2

χ̃−1
,m2

ν̃X
,m2

ν̃Y
) .

Both contributions vanish exactly in the MSSM limit because of an exact cancellation of
the different loop functions, i.e. also the diagonal entries vanish and Y1 = Y2 = 0. Although
the conclusion for LFV amplitudes is the same, the cancellation of the off-diagonal wino
contributions happens due to a different reason. Compared to [193,194], Y1 differs by a
constant term originating from the handling of the 1/ε singularities whereas Y2 vanishes
because of correct the usage of C00 instead of the ill-defined C24.

Departing from the limits of no chargino mixing or no sneutrino left-right mixing of
course re-introduces off-diagonal terms for both, wino and higgsino amplitudes. Because
of the sole origin in the particle mixing, those amplitudes drop with the mass of the loop
particles, hence decoupling with the SUSY mass scale. This is beautifully seen in the
numerical examples for µ→ 3 e and µ− e conversion in figures 5.3-5.4.

B.4.1 Relevant vertices and loop functions

The vertices relevant for the derivations above read for the supersymmetric inverse seesaw
model:

CRiAX(P ) = ΓR
ēiχ̃
−
A ν̃

P
X

= − i√
2

(
g2Z

P,∗
Xi VA1 −

3∑
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Y ∗ν,aiZ
P,∗
X3+aVA2

)
, (B.32)

CRiAX(S) = ΓR
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X

= − 1√
2
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Xi VA1 −
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)
, (B.33)

E
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(B.34)

E
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2
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(B.35)

Qν̃XY = Γν̃PX ν̃
S
Y Zµ

= − i

2

(
g1 sin θW + g2 cos θW

) 3∑
a=1

ZP,∗XaZ
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Y a , (B.36)

Z
(`)
L = ΓLēieiZµ =

1

2

(
− g1 sin θW + g2 cos θW

)
. (B.37)

The loop functions needed for the above discussion read in the limit of vanishing
external momenta:
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2
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, (B.38)
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