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Abstract

Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome
where the encoded agrobacterial oncogenes are expressed and cause crown gall disease.
Essential for crown gall development are laaH (indole-3-acetamide hydrolase), laaM (trypto-
phan monooxygenase) and Ipt (isopentenyl transferase), which encode enzymes for the
biosynthesis of auxin (laaH, laaM) and cytokinin (Ipt). Although these oncogenes are well
studied as the tumor-inducing principle, nothing is known about the regulation of oncogene
expression in plant cells. Our studies show that the intergenic regions (IGRs) between the
coding sequences (CDS) of the three oncogenes function as promoters in plant cells.
These promoters possess a eukaryotic sequence organization and cis-regulatory elements
for the binding of plant transcription factors. WRKY 18, WRKY40, WRKY60 and ARF5 were
identified as activators of the Ipt promoter whereas laaH and laaM is constitutively express-
ed and no transcription factor further activates their promoters. Consistent with these re-
sults, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type
and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene.
WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours
whereas the ARF5 gene is transcribed later during crown gall development. The WRKY pro-
teins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 syner-
gistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our
data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a patho-
gen defense response of the host cell. The WRKY protein is recruited to induce Ipt expres-
sion, which initiates cytokinin-dependent host cell division. With increasing auxin levels
triggered by ubiquitous expression of laaH and laaM, ARF5 is activated and interacts with
WRKY40 to potentiate Ipt expression and balance cytokinin and auxin levels for further

cell proliferation.
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Author Summary

Crown gall development requires the expression of agrobacterial genes in the plant

host. These genes are transferred by the T-DNA of the plant pathogen Agrobacterium
tumefaciens and include the oncogenes IaaH, IaaM and Ipt, which, according to the
tumor-inducing principle, are essential for crown gall development. The oncogenes are
involved in auxin and cytokinin production. This results, when at appropriate hormone
ratios, in enhanced cell proliferation. The T-DNA transformation process and the encoded
oncogene enzymes have been intensively studied, but knowledge of oncogene expression
in plant cells and the regulatory host factors is missing. We set out to fill this gap, provid-
ing evidence that expression of the Ipt gene is host-cell controlled, whereas the IaaH and
IaaM genes are ubiquitously expressed at low levels in T-DNA transformed tissue. This is
achieved by A. tumefaciens, which first hijacks transcription factors of the plant pathogen
response pathway to activate Ipt oncogene expression and initiates cell proliferation. With
increasing auxin levels during the infection process, a transcription factor of the auxin-
signaling pathway is recruited, potentiating Ipt gene expression. Thus, for crown gall
development, two host-signaling pathways are combined through the interaction of tran-
scription factors that adjust the ratio of cytokinin to auxin.

Introduction

Agrobacterium tumefaciens is a pathogenic bacterium that infects several plant species. A re-
gion in the tumor inducing (Ti) plasmid, the transfer DNA (T-DNA), is integrated into the
plant genome causing crown gall disease [1]. There are essentially two groups of genes encoded
on the T-DNA of virulent A. tumefaciens strains [2]. The first is responsible for producing
opines, so providing a carbon and nitrogen source for A. tumefaciens, with the second group
expressing the oncogenes required for crown gall development. These oncogenes include IaaH,
IaaM, Ipt, gene 6b and gene 5. It is assumed that although gene 6b and gene 5 are expendable,
IaaH, IaaM and Ipt are crucial for crown gall development [3-5]. IaaH and IaaM code for en-
zymes that catalyze biosynthesis of auxin and Ipt mediates cytokinin biosynthesis [5,6]. IaaM
encodes a tryptophan monooxygenase that converts tryptophan (Trp) into indole-3-acetamide
(IAM), and IaaH an indole-3-acetamide hydrolase, converts IAM into indole-3-acetic acid
(IAA) [7-9]. Ipt (isopentenyl transferase) catalyzes the rate-limiting step in cytokinin biosyn-
thesis [2,5,10]. Cytokinins can also be synthesized in A. tumefaciens cells by the chromosomal
encoded miaA enzyme [11,12] and the trans-zeatin synthesizing (tzs) enzyme encoded on the
nopaline-type pTi-plasmid [13-15]. A. tumefaciens secretes auxin and cytokinin from the cells
to initiate crown gall development [16] and pretreatment of plant tissues with auxin and cyto-
kinin promotes A. tumefaciens-mediated transformation efficiency [14,17,18]. Very recently it
was shown that cytokinins secreted by A. tumefaciens repress a Myb transcription factor in
host plant cells, resulting in an enhanced transformation efficiency [18].

The increased production of auxin and cytokinin in T-DNA transformed plant cells ex-
pressing the IaaH, IaaM and Ipt oncogenes induces cell proliferation and differentiation
[19,20]. Therefore, a T-DNA harboring plant cell needs to initiate transcription of the three on-
cogenes in order to express their function. In eukaryotic cells, the RNA polymerase II complex
mediates transcription of mRNAs from protein-coding genes. This complex recognizes the
TATA box and the transcription start site (TSS) [21] within upstream promoter regions that
drive the expression of the downstream coding sequence (CDS). These two sequence features
build the core promoter and this is sufficient to transcribe a gene [21]. TATA boxes were
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predicted to be present 5" upstream of the CDS of the IaaH, IaaM and Ipt oncogenes [22-24].
In addition to initiation of transcription by the RNA polymerase II complex, expression of eu-
karyotic genes is usually regulated by transcription factors. These bind to regulatory sequence
elements localized in the promoter regions of many eukaryotic genes and are oriented in a
sense or anti-sense direction distant from the TSS [21]. For the Ipt gene of the octopine Ti plas-
mid pTiAch5, a 184 bp fragment upstream of the CDS is sufficient for transcription in plant
cells [25]. In particular, the region between —185 and —139 bp from the translational start
codon are essential [26]. Within that region, the 30 bp sequence cyt-1 binds an as yet unknown
protein from tobacco nuclear protein extracts, designated CBF (cyt-1 binding factor) [27]. This
suggests that expression of the agrobacterial oncogenes can be regulated by host transcription
factors that await discovery.

A well-known response of plants to microbial pathogens is the microbe associated molecu-
lar pattern (MAMP)-induced innate immunity response, which includes expression of several
WRKY transcription factors [28]. The expression profiles of 72 WRKY genes in Arabidopsis re-
vealed that 49 genes are responsive to salicylic acid (SA) and pathogen treatment [29]. The
WRKY transcription factor binding elements, the W-boxes (TGAC), are present in many de-
fense related gene promoters [28]. In addition to the induction of pathogen defense responses,
crown gall development requires cell proliferation and differentiation, such as vascularization
[30]. These developmental programs are synergistically controlled by auxin and cytokinin sig-
naling pathways that lead to changes in the regulation of gene expression. The expression of
some auxin responsive factor (ARF) genes is induced by auxin, particularly in developing em-
bryos and vascular tissues [31]. ARFs are known to induce the transcription of genes in an
auxin-dependent manner by binding to auxin response elements (AuxREs) in auxin responsive
promoters [31,32]. The regulation of ARF function involves auxin/indole acetic acid (Aux/
IAA) proteins and TIRI (transport inhibitor response 1) [33,34]. Aux/IAA proteins interact
and repress the transcriptional activity of ARFs [35,36]. The F-box auxin receptor TIRI is part
of the SCF™™® ubiquitin ligase complex [37,38]. At increasing auxin concentrations, Aux/TAA
proteins are recognized and ubiquitinylated by the SCE™™ complex and subsequently degraded
by the 268 proteasome [39,40]. The de-repressed ARF proteins can activate target promoters.

This study focuses on the transcriptional regulation of the A. tumefaciens genes IaaH, IaaM
and Ipt in the host plant. The intergenic regions between the CDSs of IaaH, IaaM and Ipt of
the virulent T-DNA of A. tumefaciens strain C58 (pTiC58, AE007871) showed promoter activ-
ity in Arabidopsis cells. The IaaH and IaaM genes involved in auxin biosynthesis in T-DNA
transformed cells, were ubiquitously expressed at low levels. In contrast, the Ipt promoter was
activated by the transcription factor WRKY40 (AT1G80840), a transcription factor that re-
sponded rapidly to A. tumefaciens infection. WRKY40 together with ARF5 (AT1G19850),
which is part of an auxin-dependent signaling pathway, boosted Ipt promoter activity in an
auxin dependent manner. This enhanced activity correlated with cis-regulatory elements such
as W-boxes and AuxREs in the Ipt promoter and the protein interaction of WRKY40 with
ARF5. Our findings suggest that A. tumefaciens recruits the WRKY-dependent pathogen de-
fense pathway to activate Ipt gene expression. This can be substantially increased when the
auxin-dependent developmental process mediated by ARF5 is switched on.

Results

The intergenic regions between the oncogenes function as promoters in
plant cells

To discover how the expression of the agrobacterial oncogenes IaaH, IaaM and Ipt is regulated in
plant cells, we analyzed the structure of the T-DNA region of the nopaline-type Ti plasmid pTiC58.
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Figure 1. IGR1 and IGR2 function as promoters in Arabidopsis cells. (A) Arrangement of the coding sequences of the laaH, laaM and Ipt oncogenes and
the intergenic regions (IGRs) in the T-DNA region of the Ti plasmid of A. tumefaciens strain C58, pTiC58. (B) Arabidopsis crown gall callus cells expressing
the green fluorescing protein (GFP) under the control of IGR1a (IGR1a::GFP), IGR1b (IGR1b::GFP) and IGR2 (IGR2::GFP). IGR1 was used in two
orientations; one is upstream of laaH CDS (IGR1a) and the other upstream of laaM (IGR1b). The universal cauliflower mosaic virus promoter was used as a
positive control (2x CaMV35S::GFP) and the GFP CDS without promoter, as the negative control (GFP). Images show crown gall callus cells in the
transmission microscopy (top row) and the UV light mode (bottom row, excitation: 490 nm, emission: 510 nm). The UV-light intensity used for excitation is the
same for both pictures. Bars, 50 ym.

doi:10.1371/journal.ppat.1004620.9001

The CDS of the three oncogenes are sequentially arranged and interrupted by two non-coding in-
tergenic regions (IGR1 and IGR2; Fig. 1A). The IaaM and Ipt genes are transcribed from the sense
strand and the IaaH gene is encoded on the opposite strand. If IGR1 functions as a promoter for
both the IaaH and IaaM oncogenes, it must be a bidirectional promoter: one direction being 5’
upstream of the TSS of the InaH CDS (IGR1a) and the other, 5" upstream of IaaM (IGR1b).

To prove whether the IGRs function as promoters in plant cells, the complete IGR sequences
were fused with the CDS of the green fluorescent protein (GFP) in a binary vector. The IGR1a
and IGR1b sequences included the 5" untranslated regions (5 UTR) of both the IaaH and IaaM
genes, whereas IRG2 contained the 3> UTR of IaaM and 5" UTR of the Ipt gene. We generated
stable transformed Arabidopsis crown gall tumor cell lines by infecting Arabidopsis root segments
with the virulent A. tumefaciens strain C58, which, in addition to their pTiC58, harbor a binary
vector with the IGR::GFP constructs. Detection of GFP fluorescence in the IGRIa::GFP, IGR1b::
GEP and IGR2::GFP crown gall cell lines demonstrated that the IGRs drive GFP expression, so
function as promoters in plant cells (Fig. 1B). Furthermore, as the IGR1 sequence is a bidirection-
al promoter, it can drive transcription of both the IaaH and IaaM genes.

Since IGR1a, IGR1b and IGR?2 all function as promoters in eukaryotic cells, their sequences
should contain the core promoter elements, such as the initiator (Inr) sequence and TATA
box. To localize these in the promoters, we determined the TSSs of the IaaH, IaaM and Ipt
genes using the 5’ rapid amplification of cDNA ends (5" RACE) assay, finding that the transla-
tional start codon of the IaaH, IaaM and Ipt CDSs are at positions +12 bp, +26 bp and
+44 bp in respect to the TSS (Table 1). Upstream of the TSSs, the typical eukaryotic Inr
box (YYANWYY, TSS is underlined, Y = C/T, W = A/T, N = A/G/C/T) was present in the
three promoter sequences. This is in agreement with the plant specific “YR Rule” (YR, TSS is
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underlined, Y = C/T, R = A/G [41,42]). The TATA boxes, the binding sites for the general tran-
scription factor complex, are found in the promoter regions —25 bp to —35 bp and another fea-
ture of many eukaryotic promoters, the CAAT boxes, are localized approximately —70 bp
upstream of the TSSs within the oncogene promoter regions (Table 1).

To ascertain whether the regulatory promoter elements of pTiC58 are conserved, we per-
formed a sequence alignment with the promoter and 5’ untranslated regions (5" UTRs) of the
three oncogenes from different Ti plasmids. We compared the upstream sequences of the three
oncogene CDSs of the Ti plasmids from two nopaline-types (pTiC58, pTiSAKURA), three octo-
pine-types (pTiA6NC, pTiAch5, pTil5955) and one agropine-type (pTiBo542). The alignment
shows that the TSSs (arrows), TATA boxes and CAAT boxes of the promoters for IaaH (S1 Fig.),
IaaM (S2 Fig.) and Ipt (S3 Fig.) are conserved between the pTi plasmids of the different
A. tumefaciens strains. In contrast, two TATA boxes are present 5’ upstream of the CDS in
the Ipt genes from the octopine Ti plasmids (S3 Fig.). In the Ipt promoter of pTiC58, two
CAAT boxes were predicted (S3 Fig.), one of which (GGTAAAGCC, from —72 to —64 bp) is
conserved and also found in other nopaline type and in the octopine type pTi plasmids, but
not in the agropine type Ipt promoter where no CAAT box was predicted. The second CAAT
box (AAGGAATCT, —49 to —41 bp) is specific for the Ipt promoters of the nopaline type Ti-
plasmids (S3 Fig.). Cis-regulatory binding elements for transcription factors were also determined
in the IaaH, IaaM and Ipt promoters on the Watson and Crick strand using PLACE (http://www.
dna.affrc.go.jp/PLACE/index html) [43-45]. Several binding elements for different transcription
factor families including MYB, DOF, WRKY, bHLH, ARR1 and ARF, were localized within the
Ipt promoter (Table 1). In the IaaH and IaaM promoters, the binding element for the ARR1
(AT3G16857) transcription factor was dominant and there were eight ARR1 elements altogether.

To identify potential transcription factors that may be involved in enhancing the expression
of the oncogenes, we analyzed existing microarray data of Arabidopsis crown galls [20,46],
based on the Arabidopsis transcription factors listed in the Plant Transcription Factor Database
v3.0 [47] (http://planttfdb.cbi.pku.edu.cn/index.php?sp=Ath). A total of 151 transcription fac-
tor genes were found to be differentially transcribed in inflorescence stems inoculated with the
virulent A. tumefaciens strain C58 compared to non-inoculated stems (S1 Table; fold change >
2 or < 0.5, p value < 0.01). As early as three hours post inoculation (hpi), three of these genes
were up-regulated: WRKY53 (AT4G23810, 2.47 fold), WRKY40 (2.22 fold), and NAC102
(AT5G63790, 2.18 fold). WRKY53 was also up-regulated by the disarmed A. tumefaciens strain
GV3101 (2.37 fold) 3 hpi. Six days post inoculation (dpi), the expression of six transcription
factor genes was up- or down-regulated (S1 Table). In Arabidopsis crown gall material of A.
tumefaciens strain C58, 141 transcription factor genes were transcriptionally changed com-
pared to reference tissue 35 days post wounding (dpw). Amongst these, 74 genes were up-regu-
lated, with 67 down-regulated (S1 Table) and all belong to various families including WRKYs,
MYBs, DOFs, and NACs. The DNA binding elements and the microarray data both suggest
that the MYB, DOF, WRKY, bHLH, ARR1 and ARF transcription factors are potential candi-
dates for involvement in the regulation of Ipt expression, while ARR1 could regulate transcrip-
tion of the InaH or IaaM genes. The core promoter sequence elements could contribute to the
basal expression of the three oncogenes in plant cells, whereas the binding sites for transcrip-
tion factors might function in enhancing their transcription.

WRKY 18, WRKY40, WRKY60 and ARF5 activate the Ipt oncogene
promoter

To begin to study the regulation of onocgene expression, we first used quantitative real-time
PCR (qRT-PCR). We assessed the relative transcript numbers of IaaH, IaaM and Ipt genes in
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Table 1. Cis-regulatory sequence elements within the promoter of the oncogenes laaH, laaM and Ipt encoded on the T-DNA of the Ti plasmid
from A. tumefaciens strain C58, pTiC58.

Promoter (sequence) laaH(-1 to -301) laaM(-1 to -301) Ipt fwd(-1 to -654) Iptrev (-1 to -654)
Positions of core promoter sequence elements

Inr box (YYANWYY) -2 CCAAACC +5 -2 CTACACA +5 -2 CTAATCC +5

Start coden (ATG) +12 ATG +26 ATG +44 ATG

TATA box(TATAAA) —-36 TATATT =31 ! —-32 TAAATA -272 —29 TATAAC —24 3+ 56

CAAT box(GGNCAATCN) -66 CCAAT -62 ' —75 CCATT =712 —72 GGTAAAGCC -64 ° -49 AAGGAATCT -41 4°

Number of transcription factor binding elements

MYBCORE (CNGTTR or AACGG) 0 5 3
MYB2AT (YAACKG) 0 0 1 2
DOFCOREZM (AAAG) 2 0 5 5
W-Box (TGAC) 1 0 4 2
EBOXBNNAPA (CANNTG) 0 0 4 4
ARR1 (GATT) 3 5 3 4
ARF (TGTCNC or TGTCTN) 0 1 2 3

Positive numbers indicate the positions downstream and negative numbers the positions upstream of the TSSs (+1). Y = C/T, K= G/T, W = A/T, R = A/G,
N = A/G/C/T.

1.[23]

2.[24]

3.[22]

4.72]

5.[73]

6. [74]

doi:10.1371/journal.ppat.1004620.t001

25-day-old Arabidopsis thaliana crown galls induced by the virulent A. tumefaciens strain C58,
finding that the transcript levels of IaaH and InaM were much lower compared to those of the
Ipt gene in the crown galls (Fig. 2A). The high-throughput protoplast transactivation (PTA)
system was then used [48] to identify transcription factors that could activate the three onco-
gene promoters in plant cells. To do so, the complete promoters of IaaH (IGR1a, 337 bp),
IaaM (IGR1b, 337 bp) and Ipt (IGR2, 697 bp) of the pTiC58-encoded oncogenes (Fig. 1A)
were fused with the CDS of the firefly luciferase (LUC) reporter gene. The plasmids containing
the oncogene promoter-LUC constructs were transfected into Arabidopsis mesophyll proto-
plasts, either alone, or together with a second plasmid containing the CDS of a transcription
factor fused to the constitutive cauliflower mosaic virus (CaMV35S) promoter. The relative lu-
minescence, a measure for the oncogene promoter activity since it drives luciferase gene ex-
pression, was then determined. Mesophyll protoplasts transfected only with the oncogene
promoter-LUC constructs showed the same pattern of promoter activity as that determined for
the relative transcript numbers in crown galls (Fig. 2B). The Ipt promoter induced a higher rel-
ative luminescence than the IaaH and IaaM promoters.

Next, a library containing the CDS of more than 400 transcription factors was screened.
Among the included family members, WRKY, AP2/ERF, bHLH, bZIP, DOF, MYB and NAC,
only WRKY18 (AT4G31800), WRKY40, WRKY60 (AT2G25000) and ARF5 were found to
specifically activate the Ipt promoter in protoplasts (Fig. 3A). Protoplasts co-transfected with
the WRKY or ARF effector and the Ipt-promoter-LUC reporter constructs exhibited a signifi-
cantly higher promoter activity (reflected by luciferase activity) compared to the control
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Figure 2. Transcripts of oncogenes in crown galls and activity of oncogene promoters in protoplasts.
(A) Relative abundance of laaH, laalM and Ipt transcripts in crown gall tumors 25 days after inoculation of A.
tumefaciens strain C58 into Arabidopsis inflorescence stems. Relative transcript numbers were quantified by
qRT-PCR and normalized to 10,000 molecules of ACTIN2/8. Bars show mean values (+SD) of three
independent samples. (B) Relative luciferase activity (firefly LUC/renilla LUC) driven by oncogene promoters
(laaH pro, laaM pro and Ipt pro). Relative luciferase activity is calculated by firefly luminescence/renilla
luminescence. Bars show mean values (+SD) of three independent experiments.

doi:10.1371/journal.ppat.1004620.9g002

samples that only harbored the reporter. Despite several attempts, no transcription factor was
found to activate the laaH and IaaM promoters. Comparison of the three WRKYSs alone and
in combination both showed that WRKY40 exerts the strongest impact on Ipt promoter-driven
luciferase expression (54 Fig.). Even all three WRKY's together did not increase the relative lu-
minescence more than WRKY40 alone. This observation points towards a dominant role for
WRKY40 in Ipt promoter regulation.

The transcript numbers of WRKY18, WRKY40, WRKY60 and ARF5 genes in crown gall tis-
sues of A. tumefaciens strain C58 were determined using qRT-PCR. In agreement with the pub-
lished microarray data [20,46], the transcript levels were clearly elevated in crown gall tumors
compared to inflorescence stems inoculated with the disarmed A. tumefaciens strain GV3101
(Fig. 3B). It is already known that WRKY18, WRKY40 and WRKY60 are induced early after
bacterial and fungal pathogen infection [49,50]. To analyze the impact of A. tumefaciens on gene
induction, we analyzed the time-dependent expression of the three WRKY genes in Arabidopsis
thaliana (Col-0) leaf tissues infiltrated with either the virulent A. tumefaciens strain C58, the
disarmed strain GV3101 or buffer as a control. The qRT-PCR results demonstrated that the
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Figure 3. Activation of the Ipt promoter and gene expression of WRKY18, WRKY40, WRKY60 and ARF5. (A) Fold induction of /pt promoter-driven
luminescence (Ipt pro) by WRKY 18, WRKY40, WRKY®60 and ARF5 in Arabidopsis mesophyll protoplasts transfected with two plasmid types. One harbors
the Ipt promoter upstream of the firefly luciferase coding sequence (CDS) and the other, the universal cauliflower mosaic virus promoter (CaMV35S)
upstream of a transcription factor CDS. The relative luminescence induced by the Ipt promoter in the absence of a transcription factor expression plasmid
was set to 1. Bars show mean values (+SD) of three independent experiments. (B) Relative transcript numbers of WRKY18, WRKY40, WRKY60 and ARF5
genes in crown galls 25 days after inoculation with the virulent A. tumefaciens strain C58 (C58 Crown gall) and the disarmed strain (GV3101 Stems). (C)
Time-dependent expression of the WRKY18, WRKY40, WRKY60 and ARF5 genes upon infiltration of five-week-old Arabidopsis leaves with suspension
(ODggo 1.0) of strain C58 and GV3101 as well as an Agromix buffer as control. Relative transcript numbers were quantified by gqRT-PCR and normalized to
10,000 molecules of ACTIN2/8. Bars show mean values (+SD) of three independent samples. ** P<0.01 *** P<0.001 (Student’s t-test).

doi:10.1371/journal.ppat.1004620.9003

three WRKY genes responded to a certain degree to the infiltrated buffer solution at all ana-
lyzed time points (2 hpi to 72 hpi), indicating that they respond to wounding (Fig. 3C). The
transcript levels of WRKY18 began to increase significantly at 8 hpi after infiltration by strain
GV3101. The WRKY40 and WRKY60 genes were significantly induced by both A. tumefaciens
strains as early as 2 and 4 hpi, respectively (Fig. 3C). In contrast, transcription of the ARF5
gene was still very low after 72 hpi, suggesting that this gene is not responsive to A. tumefaciens
or wounding at the time points analyzed (Fig. 3C). The gene expression patterns imply that at
the very beginning of A. tumefaciens infection (2 to 4 hpi), WRKY40 and WRKY®60 genes are
already expressed.

PLOS Pathogens | DOI:10.1371/journal.ppat.1004620 January 23, 2015 8/27
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Table 2. Number of WRKY-boxes (W-boxes) and auxin response elements (AuxREs) within the intergenic regions (IGRs) of the tumor inducing
(Ti) plasmids from different A. tumefaciens strains.

pTi plasmid IGR1? IGR2°
W-box (TGAC) AuxRE (TGTCNC or TGTCTN) W-box (TGAC) AuxRE (TGTCNC or TGTCTN)

Nopaline pTiC58 1 1 7 5

pTiT37 ? ? B 5

pTiSAKURA 2 1 6 5
Octopine pTi15955 2 1 7 5

pTiIABNC 2 1 7 5

pTiAch5 2 1 7 5
Agropine pTiBo542 2 1 6 8

Sequences are from the Genbank database (http://www.ncbi.nlm.nih.gov/genbank/). ”?”, IGR1 of pTiT37 is not present in the Genbank database.
@ IGR1 is localized between the coding sequences of laaH and laaM
P |GR2 is localized between the coding sequences of laaM and /pt.

doi:10.1371/journal.ppat.1004620.t002

WRKY and ARF transcription factors bind respectively to specific DNA sequences, W-
box (TGAC) and AuxRE (TGTCNC or TGTCTN). Sequence analysis of the two IGRs of
pTiC58 revealed that seven W-boxes (one W-box is localized in the 5> UTR of the Ipt gene)
and five AuxREs are located in IGR2 (Table 1, 2), which are equally distributed along the pro-
moter sequence (S5 Fig.). IGR1 drives expression of IaaH and IaaM and contains only one W-
box and AuxRE sequence motif, and this is more closely localized upstream of the IaaM than
that of the IaaH TATA box. Sequence comparisons of IGR1 and IGR2 regions illustrate that
W-boxes and AuxREs are also conserved in the T-DNA regions of several A. tumefaciens
strains (Table 2). Similar to the pTiC58, the majority of these elements are enriched in the Ipt
promoters whereas only one or two of them are located in the IaaH and IaaM promoter se-
quences. From this in silico result, it can be concluded that the Ipt oncogenes, rather than IaaH
and IaaM of the different A. tumefaciens strains are regulated by WRKY and ARF transcription
factors in planta.

WRKY 18, WRKY40 and WRKY60 mutants display an impaired crown
gall development

To unravel the role of WRKY18, WRKY40 and WRKY®60 in A. tumefaciens-mediated crown
gall development, we performed a crown gall growth assay with mutant plants of the three
WRKY genes inoculated with the tumorigenic A. tumefaciens strain C58, determining the
crown gall weights 25 days later. All mutant genotypes developed smaller crown galls than the
wild-type Col-0 (Fig. 4A, B), with the double mutant wrky18/wrky40 and the triple mutant
wrky18/40/60 developing the smallest crown galls. The triple mutant was most resistant to
crown gall development; about 30% of the mutant plants did not development any crown gall
material at all after 25 days. Unfortunately, the role of the ARF5-mediated auxin signaling
pathway on crown gall development could not be analyzed due to the strong developmental
phenotypes of arf5 mutant plants [51,52].

If WRKY18, WRKY40 and WRKY60 activate the Ipt promoter, it would be expected that
Ipt oncogene expression would be altered in the WRKY mutant plants. To investigate this, we
used quantitative RT-PCR to measure the relative transcript numbers of the Ipt oncogene in
Arabidopsis crown gall material of the wrky mutants inoculated with A. tumefaciens strain C58.
Compared to crown galls from the wild-type (Col-0) plants, the Ipt transcript levels were

PLOS Pathogens | DOI:10.1371/journal.ppat.1004620 January 23, 2015 9/27
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Figure 4. Arabidopsis wrky mutants develop smaller crown galls. (A) Crown gall weights of wrky18,
wrky40, wrky60 mutants and the wild type Col-0 25 days after inoculation of Arabidopsis inflorescence stems
with the tumorigenic A. tumefaciens strain C58. Bars show mean values of crown gall weight (+SE) separated
from the stems of at least 40 plants from each genotype. (B) Representative pictures of the stems of the
different genotypes 25 days after inoculation of A. tumefaciens. (C) Relative transcript numbers of the Ipt
oncogene in stems of the wild-type plant Col-0 and the wrky18/40/60 triple mutant 6 days post inoculation (6
dpi) of A. tumefaciens strain C58. Relative transcript numbers were quantified by gqRT-PCR and normalized
to 10,000 molecules of ACTIN2/8. Bars show mean values (+SD) of three independent samples. * P<0.05;
** P<0.01; *** P<0.001 (Student’s t-test).

doi:10.1371/journal.ppat.1004620.9004
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similar in crown galls from the wrky18, wrky40 and wrky60 mutants (S6A Fig.). Due to this
similarity, i.e., no obvious impact of WRKY on long term Ipt gene expression in crown galls,
earlier time points of C58 Arabidopsis stem inoculations were analyzed. At 2 dpi, the Ipt tran-
script levels were far too low to reliably quantify differences (S6B Fig.). Only at 6 dpi did Ipt
transcription reach a measureable level (S6B Fig.) and showed in the triple mutant (wrky18/40/
60) a moderate reduction compared to the wild-type (Fig. 4C). The moderate reduction of Ipt
transcription may be due to the function of ARF5, which is still expressed in the wrky triple
mutant. This assumption is supported by the observation that in crown galls of the wrky single
mutants gene expression of ARF5 was elevated and that of TAA12, an inhibitor of ARF5 func-
tion, was reduced (S6C Fig.).

WRKY40 and ARF5 proteins interact and synergistically potentiate /pt
promoter activity

The PTA data revealed that the Ipt promoter can be activated by WRKY18, WRKY40,
WRKY60 and ARF5. To test whether these transcription factors cooperatively regulate the Ipt
promoter, we co-expressed the WRKY40 protein with ARF5 in the presence of the Ipt promot-
er-LUC construct in Arabidopsis mesophyll protoplasts. The Ipt promoter-driven luciferase ac-
tivity was clearly higher, particularly in the presence of ARF5 and WRKY40 compared to
ARF5 or WRKY40 alone (Fig. 5A). In contrast, expression of ARF5 together with WRKY18 or
WRKY60 did not further enhance the Ipt promoter activity. This also indicates that WRKY40
is more important than WRKY18 and WRKY60 for activating the Ipt promoter.

These results imply that the WRKY40 and ARF5 proteins interact to synergistically
activate Ipt gene expression. This was tested using the Bimolecular Fluorescence Comple-
mentation (BiFC) assay to study protein interactions between the WRKYs and ARF5. The C-
terminal half of the yellow fluorescent protein (cYFP) was fused to the C-terminus of the
ARF5 and WRKY40 proteins to express ARF5- and WRKY40-cYFP fusion proteins, respec-
tively. The N-terminal half of YFP (nYFP) was fused to the C-terminus of the three WRKY
proteins as well as to ARF5 to generate WRKY 18-, WRKY40-, WRKY60-nYFP and ARF5-
nYFP. Observation of YFP-mediated fluorescence demonstrates that both WRKY40 and
ARFS5 interacted with themselves and with all the other expressed genes, when transiently co-
expressed in Arabidopsis mesophyll protoplasts (Fig. 5B, C). The fluorescence signal was
always restricted to the nucleus. The free cYFP construct was used as negative control, and
showed no YFP fluorescence when co-expressed with the WRKY-nYFPs and ARF5-nYFP in
protoplasts (Fig. 5D).

It has been reported that the domain IIT and IV at the C-terminus of the ARF5 protein is im-
portant for dimerization and protein-protein-interaction [53-55]. To prove whether these do-
mains are required for the interaction with the WRKY proteins, we fused a C-terminal deletion
of ARF5 (1-722 aa) to cYFP (ARF5A722-cYFP) and co-expressed them with either ARF5-
nYEP or the three WRKY-nYFPs. Although stable [53], the truncated ARF5A722 protein was
unable to interact with the intact ARF5 protein or with WRKY18, WRKY40 and WRKY60
(Fig. 5E). This indicates that the domains III and IV are not only required for self-interaction,
but also for interaction with the three WRKYs. The specificity of the interactions between
ARF5 and the three WRKY's was confirmed by co-expressing ARF3 (AT2G33860)-cYEP,
which naturally lacks domain IIT and IV, and WRKY53-cYFP, expressed early after infection
with A. tumefaciens strain C58 (3 hpi; S2 Table) [20,53]. Neither ARF3 nor WRKY53 inter-
acted with ARF5, WRKY18, WRKY40, and WRKY60, thus verifying that the interactions
between the WRKYs and ARF5 are specific (Fig. 5F, G).
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Figure 5. WRKY40 and ARF5 protein interaction potentiates Ipt promoter activity. (A) Fold induction of Ipt promoter-driven luminescence in the
presence of WRKY 18, WRKY40, WRKY60 and ARF5 transcription factor expression plasmids in the protoplast transactivation system. The relative
luminescence induced by the Ipt promoter in protoplasts without transfection of any of the transcription factor expression plasmids was set to 1. Bars show
mean values (+SD) of three independent experiments *** P<0.07 (Student’s t-test). NS: not significant. (B) Bimolecular fluorescence (BiFC) assay with
ARF5-cYFP and ARF5-nYFP, WRKY18-nYFP, WRKY40-nYFP, WRKY60-nYFP, (C) with WRKY40-cYFP, (D) with cYFP, (E) with a C-terminal deletion of
ARF5 (ARF5A722-cYFP), (F) with ARF3-cYFP and (G) with WRKY53-cYFP in Arabidopsis mesophyll protoplasts. YFP, image in fluorescence mode of
reconstituted yellow fluorescent proteins; BF, images in bright filed mode; merge, overlay of YFP with the corresponding BF image. Bars, 10 um.

doi:10.1371/journal.ppat.1004620.9g005
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Figure 6. WRKY40 binds to the Ipt promoter in vitro. (A) Positions of W-boxes (TGAC, grey bars) in the
sense (above the line) and anti-sense strand (below the line) of the Ipt promoter. The line below the Ipt
promoter (-184 bp to —135 bp) indicates the fragment used as Ipt probe for electrophoretic mobility shift
assay (EMSA). (B) EMSA with the labeled Ipt promoter probe in the absence (-) and in the presence of 150
ng (+) or 300 ng (++) of purified recombinant histidine-tagged WRKY40 protein. Competitor indicates without
() and with (+) addition of unlabeled /pt promoter probe. The WRKY40-/pt complex indicates binding of
WRKY40 protein to the labeled Ipt probe and the free Ipt probe no protein binding.

doi:10.1371/journal.ppat.1004620.9006

The PTA assays indicate that WRKY40 has a stronger potential to activate the Ipt promoter
than WRKY18 and WRKY60 (Fig. 3A and 5A). This implies that WRKY40 regulates the Ipt
promoter directly. We therefore analyzed binding of WRKY40 to the Ipt promoter using the
electrophoretic mobility shift assay (EMSA). The recombinant WRKY40 protein fused to six
histidine amino acids at the N-terminus (6xHis-WRKY40) was expressed and purified from E.
coli and a 50 bp fragment (—184 bp to —135 bp) of the Ipt promoter, which contains three of
the six W-boxes located in the promoter region, was radioactively labeled and served as a
probe for EMSA (Fig. 6A). Only a weak band of the shifted Ipt promoter fragment (Fig. 6B,
WRKY40-Ipt complex) was observed in the presence of 150 ng purified recombinant 6xHis-
WRKY40 protein, but a doubled amount of the His-tagged WRKY40 protein (300 ng) exhib-
ited a much stronger band. Addition of unlabeled Ipt promoter fragments as competitor to the
reaction mixture significantly reduced the binding of WRKY40 to the labeled Ipt promoter
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probe. Thus, the WRKY40 protein binds to the Ipt probe in vitro, suggesting that the Ipt pro-
moter is a direct target of the WRKY40 transcription factor in plant cells.

The ARF5-mediated auxin-signaling pathway induces /pt, but not laaH
and /laaM gene expression

That ARF5 enhances the WRKY40-mediated activation of the Ipt promoter suggests that the
auxin signaling pathway is involved in regulating Ipt expression. Previous studies have shown
that the levels of unconjugated IAA in infected Arabidopsis stems are more than two-fold
higher six days after inoculation with A. tumefaciens strain C58 compared to non-inoculated
plant stems [20]. We found that crown galls accumulate four times more unconjugated IAA
than control tissues and the total level of cytokinins in Arabidopsis crown gall tissues infected
with A. tumefaciens strain C58 are 10 times higher than in crown gall-free stem tissues (8414
vs. 849 ng/g dry weight). The dominant cytokinin forms in Arabidopsis crown gall tissues
were zeatin conjugates, including zeatin nucleotide (3657 vs. 308 ng/g dry weight) and zeatin
riboside (2294 vs. 76 ng/g dry weight). The content of free zeatin was also higher in crown gall
tissues than in mock-inoculated stems (544 vs. 34 ng/g dry weight).

Based on these results, we used the PTA system to analyze the impact of auxin and cyto-
kinin on IaaH, IaaM and Ipt promoter activity. The Ipt promoter was highly activated by
the bioactive auxin type 1-naphthaleneacetic acid (1-NAA) and the cytokinin type trans-ze-
atin (Fig. 7A), with the latter much less effective. Increasing concentrations of auxin and cy-
tokinin had no strong enhancing effect on the activity of the three oncogene promoters
(Fig. 7A). The Ipt promoter sequence contains five auxin response elements (AuxREs,
TGTCNC or TGTCTN) for binding of ARF transcription factors, whereas only one AuxRE
is present in the bidirectional IaaH and IaaM promoter sequence (Table 1, S5 Fig.) and
ARF transcription factors usually regulate their target genes in an auxin-dependent manner
[33,34]. Thus, we analyzed the regulatory effect of ARF5 on the Ipt promoter in the pres-
ence of auxin in the PTA system. ARF5 activated the Ipt promoter, an activation that was
even stronger when the mesophyll protoplasts were treated with auxin (1-NAA, Fig. 7B).
Mutations in the AuxREs (sense TGTCNC or TGTCTN, anti-sense GNGACA or
NAGACA) in the Ipt promoter abolished the auxin induction and the enhancing effect of
ARFS5 (Fig. 7C). It is known that auxin/indole-3-acetic acid (Aux/IAA) proteins can inhibit
ARF mediated promoter activation and the repressor of ARF5 is IAA12 (also known as
BODENLOS, BDL, AT1G04550) [54]. When we co-transfected Arabidopsis mesophyll pro-
toplasts with the ARF5 and TAA12 plasmid constructs, a significant reduction in the Ipt
promoter-driven luciferase activity was found compared to protoplasts transfected with
only ARF5 (Fig. 7B). Nonetheless, the level of the Ipt promoter activity was not as low as it
was in the absence of any transcription factor, indicating that not all ARF5 proteins are in-
hibited by IAA12.

In addition to the W-boxes and AuxREs, the IaaH, IaaM and Ipt promoters also contain
ARRI binding elements (GATT; Table 1), suggesting that the three oncogenes are regulated by
type-B ARR transcription factors to mediate cytokinin signaling. The ARRI gene is expressed
at low levels in crown gall tissue of the virulent A. tumefaciens strain C58 and in stems infected
with the disarmed strain GV3101 according to real time PCR measurements (S7A Fig.). ARR4
(AT1G10470), a type A transcription factor gene, was strongly expressed in crown gall tumors
(S7A Fig.). The ability of both the ARR1 and ARR4 transcription factors to activate the laaH,
IaaM and Ipt promoters was tested in the PTA system. Neither ARR1 nor ARR4 significantly
increased luciferase activity driven by the three oncogene promoters, even in the presence of
trans-zeatin (S7B Fig.). Hence, the ARF5-mediated auxin signaling pathway, but not that of
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Figure 7. ARF5 activates the Ipt promoter in an auxin-dependent manner. (A) Fold induction of oncogene promoter-driven luminescence in Arabidopsis
mesophyll protoplasts treated with auxin (1-NAA) or cytokinin (trans-zeatin) of different concentrations. Protoplasts were transfected with the laaH, laaM, and
Ipt promoter-luciferase reporter constructs, and then incubated with different concentrations of 1-NAA or trans-zeatin overnight. (B) Fold induction of /pt
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ARF5) or ARF5 plus IAA12 (Ipt pro ARF5 IAA12) with (+ 1-NAA) and without auxin (- 1-NAA) addition. (C) Mutations in the five auxin responsive elements

(AuxREm, TGTCNC to TGGCNC and TGTCTN to TGGCTN) of the Ipt promoter abolish the ARF5- and auxin-dependent luminescence induction. The

relative luminescence of intact or mutated Ipt promoters in the absence of any transcription factor expression plasmids and auxin treatment was set to 1. Bars
show mean values (+SD) of three independent experiments. * P<0.05; ** P<0.071; *** P<0.001 (Student’s t-test).

doi:10.1371/journal.ppat.1004620.9007

cytokinin, regulates Ipt expression, whereas the expression of IaaH and IaaM is not affected by

either of the two signaling pathways.

Discussion

The plant pathogen, Agrobacterium tumefaciens takes advantage of the host transcriptional
machinery to express its own T-DNA encoded oncogenes IaaH, IaaM and Ipt in plant cells.
Expression of the oncogenes results in increased production of the phytohormones auxin and
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cytokinin, which induce uncontrolled cell proliferation and crown gall development. The T-
DNA transformation process and the roles of the encoded oncogene enzymes is far better un-
derstood [10,56,57] than the regulation of oncogene expression in plant cells. We therefore ex-
amined this regulation, asking whether the expression of the InaH, IaaM and Ipt oncogenes is
regulated by host transcription factors and how oncogene expression is coordinated to obtain
tumor-inducing auxin/cytokinin levels in a T-DNA transformed cell.

Agrobacterium tumefaciens utilizes a transcription factor of the
pathogen defense pathway to induce Ipt oncogene expression

Expression of a gene in a eukaryotic cell requires general sequence features (e.g. TATA, CAAT)
and potentially cis-regulatory elements for the binding of transcription factors. For the Ipt pro-
moter of the octopine Ti plasmid pTiAch5, previous studies have shown that it binds CBF, a
protein of unknown function from tobacco nuclear protein extracts [25-27]. This implies that
at the least, expression of the Ipt oncogene is regulated by plant derived transcription factors.
Nonetheless, using the PTA screening system we found that no transcription factor activated
the IaaH and IaaM promoters of pTiC58. This may be because the transcription factor collec-
tion used for screening did not cover all the encoded Arabidopsis transcription factors; candi-
dates for binding to the IaaH and IaaM promoters may have been missed. However, the very
few cis-regulatory elements in the relatively short promoter sequence and the low level of tran-
scription in crown galls, in addition to the low promoter activity in protoplasts, suggest that
the InaH and IaaM genes are not strongly activated by transcription factors, but instead are
constitutively expressed at low basal levels. In contrast, the Ipt oncogene promoter of pTiC58
contains several W-boxes and is activated by the WRKY18, WRKY40 and WRKY60 proteins.
The impaired crown gall growth on the wrky18, wrky40 and wrky60 mutant plants indicates
that these WRKY transcription factors have a positive effect on crown gall development. The
three WRKYs are paralogous transcription factors that cooperatively regulate biotic and abiotic
stress responses in Arabidopsis [49,58—63] and the respective wrky mutants are known to be
more resistant to biotrophic pathogens such as Pseudomonas syringae and powdery mildew
Golovinomyces orontii [50]. Hence, the smaller crown galls on these wrky mutants may result
from both fewer transformation events due to the stronger resistance response towards bio-
trophic pathogens and/or from reduced Ipt expression due to the loss of wrky function. Unfor-
tunately, these two processes are not easy to separate in infection-based assays.

It is known that transcription of WRKY40 and WRKY®60 is induced by fungal and bacterial
pathogens [49,50]. Likewise, A. tumefaciens inoculation induced their transcription within two
hours, indicating that they are expressed quite early in response to this pathogen. Thus, it is con-
ceivable that the WRKYs are needed to trigger Ipt oncogene expression from the very beginning
in a T-DNA transformed cell, so these pathogen responsive genes are already expressed when the
T-DNA enters the host cell. Consequently, a reduction in Ipt promoter activity can be observed
early on in the wrky triple mutant, vanishing at later infection stages. The relatively moderate
difference in Ipt gene expression between the wrky triple mutant and wild-type most likely results
from the increased expression of ARF5 and reduced expression of its inhibitor JAA 12 in the
mutant background. Thus, A. tumefaciens hijacks a host transcription factor, which is part of the
plant pathogen defense machinery, to initiate expression of its own oncogene in the host cell.

Auxin, but not cytokinin signaling is important for inducing /pt oncogene
expression

A. tumefaciens and T-DNA transformed plant cells produce auxin and cytokinin [13,20].
Cytokinin affects cell division, essential for cell proliferation and initiation of crown gall
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development. Only the activity of the Ipt promoter, not that of the IaaH and IaaM genes, in-
creased upon application of trans-zeatin, the dominant cytokinin in Arabidopsis crown galls.
Eight binding elements for the ARRI transcription factor are located in the bidirectional pro-
moter of JaaH/IaaM and seven in the Ipt promoter. ARR1 is a type-B ARR transcription factor
that activates transcription of cytokinin responsive genes [64,65]. Nonetheless, the activity of
all three oncogene promoters was not influenced either by ARR1 or ARR4, even in the presence
of trans-zeatin. This indicates that cytokinin signaling does not have a dominant role in onco-
gene expression. The auxin type 1-NAA was much more effective than trans-zeatin in activat-
ing the Ipt promoter, but again, not for the promoters of IaaH or IanaM. Elevated levels of free
IAA are detectable in infected tissues six days after inoculation with A. tumefaciens strain C58
[20] and at the same infection stage, expression of the ARF5 gene begins to increase, as shown in
the microarray data (1.49 fold, P value = 0.006) [20,46]. The Ipt promoter contains five AuxREs
and is activated by 1-NAA and by the auxin response factor ARF5 upon release from inhibition
by IAA12 in an auxin-dependent manner. Expression of the ARF5 gene is induced by auxin [66]
and the elevated auxin levels in plant tissues infected and T-DNA transformed by A. tumefaciens
most likely induce ARF5 gene expression and de-repress the ARF5 protein by proteolysis of
IAA12. The release of ARF5 inhibition in the presence of auxin leads finally to activation of the
Ipt promoter in the T-DNA transformed plant cell and may contribute to the moderate differ-
ences of Ipt transcript numbers in the wrky mutants and wild-type. Taken together, the results
indicate that auxin is an important factor in regulating Ipt oncogene expression, which exerts its
function through the auxin-sensitive transcription factor ARF5.

WRKY40 and ARF5 synergistically boost Ipt gene expression, thereby
integrating host pathogen defense and auxin signaling

Our study shows that WRKY40 binds directly to the Ipt promoter in vitro and has the strongest
effect on Ipt promoter activation in plant cells, an activation that increases even further in the
presence of the ARF5 transcription factor. It has been shown that WRKY transcription factors
specifically interact with different kinds of proteins [67] and WRKY18, WRKY40 and
WRKY60 interact with each other and themselves [49], a result confirmed in this study. More-
over, WRKY18, WRKY40, and WRKY60 interact with ARF5. Most ARFs contain four impor-
tant domains, except for ARF3, ARF13 and ARF17, which lack domain III and IV and ARF23,
which has only domain I [31]. Domain III and IV are localized at the C-terminus of ARF pro-
teins and are important for dimerization and interaction with Aux/IAA proteins [53]. Accord-
ing to our study, the domain III and IV of ARF5 seem to be required for the interaction with
the three WRKY transcription factors. The interaction of ARF5 with WRKY40, but not that
with WRKY18 and WRKY60, greatly enhances the activation of the Ipt promoter, so emphasiz-
ing the role of WRKY40 as the most important transcriptional activator of Ipt gene expression.
Moreover, the WRKY40-ARF5 interaction links two signaling pathways for the regulation of
Ipt gene expression: the ARF5-dependent auxin and WRKY-mediated pathogen defense path-
way. Both pathways are activated in the host plant upon infection with A. tumefaciens and
synergistically boost expression of the Ipt gene in T-DNA transformed cells.

Conclusion

This study suggests a bifactorial regulation of oncogene expression in T-DNA transformed
plant host cells (Fig. 8). Just after A. tumefaciens infection, auxin and cytokinin levels are as low
as in an untransformed plant cell. The WRKY40 gene is soon expressed in response to infec-
tion, and the protein binds to W-boxes in the Ipt promoter to induce gene expression

(Fig. 8A). Under low auxin conditions, ARF5 interacts with IAA12, so is inactivated. Over
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Figure 8. Proposed model on the regulation of oncogene expression in host cells. (A) The plant cells have low auxin levels at the early stage of
transformation by A. tumefaciens. The bidirectional promoter between CDSs of laaH and laaM is recognized by RNA polymerase Il complex (RNAP Il) to
induce basal levels of transcription. Under low auxin conditions, the transcriptional activity of ARF5 is largely blocked by IAA12 via the interaction of domain
Illand IV. The transcription factor WRKY40 binds to W-boxes (TGAC) located in the Ipt promoter and activates transcription of the Ipt gene. (B) T-DNA
transformed plant cells contain elevated auxin levels six days after inoculation due to the constitutive activity of the laaH and laaM enzymes and secretion by
A. tumefaciens cells. High concentration of auxin mediates the interaction between TIR1 and IAA12. Poly-ubiquitination of IAA12 by the complex of TIR1,
SKP (ASK1) and cullin1 (CUL1) induces its degradation and releases ARF5 to bind to the AuxREs (TGTCNC or TGTCTN) in the Ipt promoter and form a
complex with WRKY40 via domain Ill and IV. The ARF5-WRKY40 complex finally potentiates activation of the Ipt promoter and promotes expression of the
Ipt oncogene.

doi:10.1371/journal.ppat.1004620.9g008

time, the auxin concentration increases in the T-DNA transformed cell, the result of the ubig-
uitous expression of IaaH and IaaM, driven by binding the RNA polymerase II complex to the
promoter and additional auxin that can be secreted from the A. tumefaciens cells into the apo-
plast. Under high auxin concentrations, the ARF5 inhibitor IAA12 is poly-ubiquitinylated and
degraded, thus releasing the transcription factor ARF5. The de-repressed ARF interacts via do-
main IIT and IV with WRKY40, resulting in strong expression of the Ipt oncogene. Taken to-
gether, this transcription factor interaction integrates two signaling pathways: the WRKY-
based pathogen defense pathway for initial induction of Ipt gene expression and later, the
auxin signaling pathway to boost Ipt expression. Moreover, the alterations in Ipt expression
levels may be a mechanism to fine-tune the cytokinin to auxin ratios in a transformed plant
cell. The appropriate auxin/cytokinin balance is an important mechanism to control whether a
crown gall will proliferate or grow and differentiate.
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Materials and Methods
Plant materials and growth conditions

Arabidopsis thaliana ecotype Columbia (Col-0) was used as the genetic background of the
wrkyl8 (GABI-Kat 328G03), wrky40 (SLAT_N40001), and wrky60 (SALK_120706) mutants
[58]. Plants were grown on soil and cultivated in growth chambers (Percival AR-66L2, Perry,
USA) with 12 h light (ca. 120 pmol~m72~sf1 fluorescent white light, TL70, Philips, Eindhoven,
Netherlands) at 22°C and 12 h dark at 16°C. The crown gall callus cell culture was generated
by inoculating A. thaliana root segments of ecotype Wassilewskija (WS-2) with the virulent
Agrobacterium tumefaciens strain C58 and cultivated on MS agar plates [1x MS basal salts
including vitamins and MES buffer (Murashige and Skoog medium, Duchefa Biochemie,
Haarlem, Netherlands), 10 g/L sucrose, 100 mg/L myo-Inositol (Duchefa Biochemie, Haarlem,
Netherlands), 7.5 g/L plant agar (Duchefa Biochemie, Haarlem, Netherlands), pH 5.7] without
the addition of phytohormones, but with 100 mg/L ticarcillin disodium/clavulanate potassium
(Duchefa Biochemie, Haarlem, Netherlands). The GFP expressing crown gall cell cultures were
generated in the same manner except the A. tumefaciens strain C58 was used. This harbored, in
addition to its pTiC58 plasmid, the binary vector pMDC206 [68] with the IaaH, IaaM and Ipt
promoter-green fluorescent protein (GFP) constructs inserted in the T-DNA region. The anti-
biotic hygromycin (30 mg/L) was added to the agar medium for selection of transformed cells.
All callus cultures were transferred to fresh media every three weeks. The crown gall cell sus-
pension cell cultures were grown in the dark at 22°C with gentle shaking at 160 rpm, and trans-
ferred to fresh medium [1x MS basal salts including vitamins and MES buffer (Murashige and
Skoog medium, Duchefa Biochemie, Haarlem, Netherlands), 20 g/L sucrose, 100 mg/L myo-
Inositol (Duchefa Biochemie, Haarlem, Netherlands), pH 5.7] at a 1:2 dilution (v/v) twice

a week.

Agrobacterium tumefaciens strains, cultivation and plant inoculation
procedures

The virulent A. tumefaciens strain C58 noc® (nopaline catabolism, number 584; Max Planck In-
stitute for Plant Breeding, Cologne, Germany) and the disarmed derivative of C58, strain
GV3101 (pMP90) were used for plant inoculations. The strains were cultivated on YEB-agar
plates (5 g/L yeast extract, 5 g/L tryptone, 5 g/L sucrose, 50mM MgSOy,, and 15 g/L agar) at
28°C for 2 days. GV3101 was cultivated in the presence of rifampicin (10 mg/L) and gentami-
cin (25 mg/L). Before plant inoculation, the A. tumefaciens strains were transferred into King’s
liquid medium (20 g/L protease peptone, 1.5 g/L K,HPO,, 10 mL/L glycerol, 600 uM MgSO,)
and grown overnight at 28°C and 140 rpm. King’s medium was removed by pelleting the bacte-
ria three times at 8000 rpm for 1 min and resuspension in Agromix buffer (0.01 M MgCl,,

0.01 M MES pH 5.6). For recovery, the resuspended cells were cultured at 28°C and 140 rpm
for 2 to 3 hours. The optical density (ODggo) was measured at 600 nm (NanoDrop 2000c
UV-Vis Spectrophotometer, Thermo, Waltham, USA) and adjusted to ODgqq 1.0 for leaf infil-
trations and ODg 0.5 for inflorescence stem inoculations. A. tumefaciens suspensions were in-
filtrated into the abaxial side of 5-week-old Arabidopsis (Col-0) leaves by tightly pressing the
orifice of a 1 mL syringe onto the leaf surface. For induction of crown gall growth, young inflo-
rescence stems (3 to 10 cm) of A. thaliana plants were inoculated by injecting A. tumefaciens
suspensions four times with a 5 mL syringe and a needle attached to it. Crown galls were sepa-
rated from the inflorescence stems 25 days after inoculation with a scalpel using a dissecting
microscope (Leica MZ6) and their weight was immediately determined. Leaves infiltrated or
stems inoculated with A. tumefaciens strain GV3101 served as reference.
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Construction of recombinant plasmids

For construction of the promoter-GFP fusions (IGRIa::GFP, IGR1b::GFP and IGR2::GFP), the
vector pMDC206 was used, which contains the coding sequence (CDS) of GFP including an in-
tron [68]. The promoter sequences of the intergenic regions (Fig. 2A) between the InaH and
IaaM CDS (IGR1, 337 bp) and between the IaaM and Ipt CDS (IGR2, 697 bp) of the pTiC58
plasmid were inserted upstream of the GFP CDS using Gateway cloning technology [68]. IGR1
was cloned in both directions (IGR1a and IGR1b, Fig. 2B). The ubiquitous cauliflower mosaic
virus (2x CaMV35S) promoter was used as a positive control. To construct the plasmids for
the Bimolecular Fluorescence Complementation (BiFC) assay and the luciferase reporter con-
structs, the pSAT vector was altered to be used in the USER cloning strategy as described in
[69,70]. For the BiFC assay, the ubiquitin 10 (UBQ10) promoter and CDS of the C-terminal
half (Venus, 156-239) and N-terminal half (Venus, 1-173aa, I152L) of the yellow fluorescent
protein (cYFP, nYFP) were inserted into the pSAT vector. The full CDSs, excluding the stop
codon of WRKY18, WRKY40, WRKY53, WRKY60, ARF3 and ARF5, and of the C-terminal
deletion of ARF5 (1-722 aa), were inserted before the C-terminus of the cYFP or nYFP to gen-
erate the fusion proteins WRKY-cYFP, WRKY-nYFP, ARF-cYFP, ARF-nYFP and ARF5A722-
cYFP. To generate the InaH, IaaM, Ipt promoter-firefly luciferase reporter constructs (IaaH
promoter-LUC, IaaM promoter-LUC and Ipt promoter-LUC), DNA fragments of the lucifer-
ase reporter CDS and the CaMV -terminator were introduced into the pSAT vector first, then
the sequences of IGR1a, IGR1b and IGR2 (Fig. 2B) were added upstream of the luciferase re-
porter CDS. To express a histidine-tagged WRKY40 protein in E. coli cells, full length CDS in-
cluding the stop codon was cloned into the vector pET28b (Novagen Merck Millipore,
Darmstadt, Germany) at the Ndel and Xhol restriction enzymes sites. This resulted in expres-
sion of a WRKY40 protein fused at its N-terminus with 6x histidine amino acids (6xHis-
WRKY40). For site-specific mutagenesis of the AuxREs in the Ipt promoter (Ipt promoter Aux-
REm), the QuickChange Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara,
USA) was used. All primer sequences used are listed in S2 Table.

5’ rapid amplification of cDNA ends (5’ RACE)

For analysis of the transcription start sites of the IaaH, IaaM and Ipt oncogenes of A. tumefaciens
strain C58 in plant cells, the mRNA extracted from crown gall callus cells was used. The mRNA
was extracted from approximately 50 mg crown gall callus material by using Dynabeads Oligo
(dT),5 (Invitrogen, Carlsbad, USA) following the manufacturer’s protocol. First-strand cDNA
was generated by using SMART Scribe Reverse Transcriptase, the SMARTer IT A Oligonucleotide
primer and the 5 RACE CDS primer A (Clontech, Otsu, Japan). The fragments of the 5’ ends of
the oncogene cDNAs were amplified using DreamTaq DNA Polymerase (Fermentas, Thermo,
Waltham, USA) and the Universal Primer A Mix (UPM) and the gene specific primers (IaaH re-
verse, IaaM reverse and Ipt reverse, S2 Table). The resulting PCR products were cloned using the
pGEM-T Easy Vector (Promega, Fitchburg, USA) and transformed into the E. coli strain MRF
(Agilent Technologies, Santa Clara, USA). At least three independent clones were sequenced to
determine the transcription start site of each gene.

Reverse transcription polymerase chain reaction (RT-PCR) and
quantitative real-time PCR (qRT-PCR)
Total RNA from approximate 50 mg plant tissue was extracted by using the RNeasy Plant Mini

Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. Before reverse tran-
scription, about 500 to 1000 ng of total RNA extracted from Arabidopsis tissue was digested by
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DNase I (Fermentas, Thermo, Waltham, USA) for 30 min at 37°C. DNase digestion was termi-
nated by the addition of 25 mM EDTA and subsequent incubation at 70°C for 10 min. First
strand cDNA synthesis was performed using oligo(dT) 18 primers (Fermentas, Thermo, Wal-
tham, USA) and the Thermo Scientific RevertAid First Strand cDNA Synthesis Kit (Thermo,
Waltham, USA). Quantitative RT-PCR with the plant cDNA samples was performed as de-
scribed in [20]. The primer sequences used are listed in S2 Table.

Protoplast transactivation (PTA) system and luminescence
measurements

The Arabidopsis mesophyll protoplast isolation and transfection procedures were performed as
described in [48,71]. For transfection, 30 uL protoplast suspension (approximately 1x10* cells),

1 ug plasmid DNA of oncogene promoter-LUC constructs (IaaH promoter-LUC, IaaM
promoter-LUC and Ipt promoter-LUC) and 1 ug of the expression plasmids containing the
CaMV35S::transcription factor constructs of the transcription factor library [48] were combined
in each well of a microtiter plate (Nunc U96; MicroWell Polypropylene Plates, Thermo, Wal-
tham, USA). As an internal standard, 1 pg plasmid expressing the Renilla luciferase driven by the
CaMV35S promoter (CaMV35S::Renilla LUC) was co-transfected. The protoplast suspension
mixture was incubated overnight in the dark and at room temperature. The following day, a dual
luciferase measurement was performed using the Renilla-Juice BIG Kit and Beetle-Juice BIG Kit
(PJK GmbH, Kleinblittersdorf, Germany). The protoplasts settled at the bottom of the wells by
gravity, then the supernatant was removed from the protoplast suspensions and 20 pL Lysis-
Juice 2 (Renilla-Juice BIG KIT) was added to each well and mixed by pipetting. After 15 min on
ice, the microtiter plate was centrifuged (4000 rpm for 10 min). An aliquot of 10 pL of the super-
natant was transferred into the wells of two new microtiter plates. As substrate for the two types
of luciferase enzymes, 50 UL Renilla-Juice for renilla luciferase (CaMV35S::Renilla LUC) and

50 UL Beetle-Juice for firefly luciferase (InaH promoter-LUC, IaaM promoter-LUC and Ipt
promoter-LUC) were added via the liquid handling robotic device and the luminescence was
measured by the Robion Solaris plate reader luminometer (STRATEC Biomedical Systems AG,
Birkenfeld, Germany). The relative luminescence intensity was calculated from the values of
Firefly-LUC versus Renilla-LUC. The relative luminescence intensity calculated from the onco-
gene promoter-LUC constructs (IaaH promoter-LUC, IaaM promoter-LUC and Ipt promoter-
LUC) in the absence of any expression plasmids containing the CaMV35S::transcription factor
constructs or phytohormone treatments was set to 1. The fold induction in luminescence
represents the relative activity induced by certain transcription factors or treatments.

Protein expression and electrophoretic mobility shift assays (EMSA)

Protein synthesis was induced in the bacterial suspension of the transgenic E. coli SoluBL21
strain (Genlantis, San Diego, USA) expressing the 6xHis-WRKY40 fusion protein by adding
0.5 mM Isopropyl B-D-1-thiogalactopyranoside (IPTG) at ODggq 0.6 overnight at 16°C. Purifi-
cation of the histidine-tagged WRKY40 protein was performed according to the protocol from
Novagen (Merck Millipore, Darmstadt, Germany). To generate the 50 bp of the Ipt promoter
probe used in EMSA, two complementary oligonucleotides were synthesized by Sigma (Sigma
Aldrich, St. Louis, USA). The two oligonucleotides were mixed at a 1:1 molar ratio in annealing
buffer (10 mM Tris, pH8.0, 1 mM EDTA, 50 mM NaCl). The mixture was incubated at 95°C
for 5 min and slowly cooled to room temperature and incubated overnight. The double-strand-
ed oligonucleotides were purified from an 3% (w/v) agarose gel after electrophoresis, then ra-
dioactively labeled by using T4 polynucleotide kinase (Fermentas, Thermo, Waltham, USA)
and [gamma—3 %P] adenosine 5’-triphosphate (ATP; Hartmann Analytic GmbH, Braunschweig,
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Germany). About 5 ng labeled probe and 150-300 ng 6xHis-WRKY40 protein were mixed in
DNA-protein binding buffer [10 mM Tris-HCI pH8.0, 0.5 mM ZnSO,, 0.25 mM DTT, 0.1 pg/
uL poly [dI-dC], 5% (v/v) glycerol]. The binding reaction mixture was incubated on ice for 30
min and separated in a 6% (w/v) native polyacrylamide gel [45 mM Tris-borate, 1 mM EDTA,
pH 8.6, 15% (v/v) Rotiphorese Gel 40 (29:1; Roth, Karlsruhe, Germany), 0.1% (w/v) ammoni-
um persulfate (APS), 0.5% (v/v) TEMED] at 4°C for 3 h at 200 V in 0.5 x TBE buffer (45 mM
Tris-borate and 1 mM EDTA; pH 8.6). The gel was fixed in 5% acetic acid for 10 min and dried
for approximately 1 h (gel drying systems, Bio-Rad, Hercules, USA), exposed at —70°C to an x-
ray film (Eastman Kodak, Rochester, USA) overnight and then developed.

Cytokinin analysis

Crown gall materials used for cytokinin analysis were obtained from Wassilewskija (WS-2)
stems inoculated with A. tumefaciens strain C58. The analysis was performed as described in
[19].

Bimolecular fluorescence complementation (BiFC) assay and
microscopy

For the BiFC assay, 20 ug of each cYFP and nYFP protein fusion constructs (WRKY-cYFP,
WRKY-nYFP, ARF-cYFP, ARF-nYFP and ARF5A722-cYFP) were transfected into mesophyll
protoplasts using the PEG-calcium transfection method [71]. After incubation for 16-18 h in
the dark at room temperature, protoplasts were inspected and images were taken using a con-
focal laser scanning microscope (Leica TCS SP5II, Leica Wetzlar, Germany).

Fluorescing plant cells and tissues were inspected and documented using an epifluorescence
microscope (BZ 8000K, Biozero, Keyence, Osaka, Japan) and the software program (BZ obser-
vation application). For the inspection of intact plants, a dissecting microscope (Leica MZ6,
Leica, Wetzlar, Germany) was used and pictures of crown galls were taken using a Leica
DFC500 camera (Leica, Wetzlar, Germany).

Accession numbers of Arabidopsis genes

The Arabidopsis gene indexes (AGI) of genes mentioned in the text are AT2G33860 (ARF3),
AT1G19850 (ARF5), AT3G16857 (ARRI1), AT1G10470 (ARR4), AT1G04550 (IAA12),
AT5G63790 (NAC102), AT4G31800 (WRKY18), AT1G80840 (WRKY40), AT4G23810
(WRKY53) and AT2G25000 (WRKY60). AGI codes are from The Arabidopsis Information Re-
source database (TAIR, http://www.arabidopsis.org).

Supporting Information

S1 Fig. Alignment of IaaH promoters including the 5’ untranslated regions from different
A. tumefaciens strains. Nucleotide sequences of indole-3-acetamide hydrolase (IaaH) promot-
ers including the 5" untranslated regions of T-DNAs from the nopaline-type (pTiC58, pTiSA-
KURA), octopine-type (pTil5955, pTiA6NC, pTiAch5) and agropine-type (pTiBo542) Ti
plasmids. The arrow indicates the position of the transcription start sites (TSS) +1. Negative
numbers indicate the nucleotide positions upstream and positive numbers downstream of the
TSSs. TATA box and CAAT box sequences are written above the aligned sequences.

(PDF)

S2 Fig. Alignment of IaaM promoters including the 5’ untranslated regions from different
A. tumefaciens strains. Nucleotide sequences of tryptophan monooxygenase (IaaM) promot-
ers including the 5’ untranslated regions of T-DNAs from the T-DNAs of the nopaline-type
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(pTiC58, pTiSAKURA), octopine-type (pTil5955, pTiA6NC, pTiAch5) and agropine-type
(pTiBo542) Ti plasmids. An arrow indicates the position of the transcription start sites (TSS)
+1. Negative numbers indicate the nucleotide positions upstream and positive numbers down-
stream of the TSSs. TATA box and CAAT box sequences are written above the

aligned sequences.

(PDF)

S3 Fig. Alignment of Ipt promoters including the 5’ untranslated regions (5’ UTR) from
different A. tumefaciens strains. Nucleotide sequences of isopentenyl transferase (Ipt) pro-
moters including the 5’ untranslated regions of T-DNAs from the nopaline-type (pTiC58,
pTiT37, pTiSAKURA), octopine-type (pTil5955, pTiA6NC, pTiAch5) and agropine-type
(pTiBo542) Ti plasmids. An arrow indicates the position of the transcription start sites (TSS).
Negative numbers indicate the nucleotide positions upstream and positive numbers down-
stream of the TSSs. TATA box and CAAT box sequences are written above the aligned se-
quences. The framed “TATAAA” sequence indicates the TATA box, only conserved in the
octopine type Ti plasmids. The sequence from —150 to =91 shows the conserved region, which
is named as Ipt element.

(PDF)

$4 Fig. The effects of WRKY18, WRKY40 and WRKY60 on Ipt promoter activity. Fold in-
duction of Ipt promoter-driven luminescence in the presence of WRKY18, WRKY40 and
WRKY60 transcription factor expression plasmids in the protoplast transactivation system.
The relative luminescence induced by the Ipt promoter in protoplasts without transfection of
any of the transcription factor expression plasmids was set to 1. Bars show mean values (£SD)
of three independent experiments.

(PDF)

S5 Fig. Cis-regulatory elements within IGR1 and IGR2. Positions of TATA boxes (TATAAA,
blue bars), auxin responsive elements (AuxREs, TGTCNC or TGTCTN, green bars), W-boxes
(TGAG, red bars) and transcript start site (TSS arrow) in the sense (above the line) and anti-
sense strand (below the line) of the intergenic region (IGR1) and IGR2.

(PDF)

S6 Fig. Ipt, ARF5 and IAA12 gene expression. (A) Relative transcript numbers of the Ipt on-
cogene in 25-day-old crown galls of wild-type plants and wrky18, wrky40 and wrky60 single
mutants, (B) in stems of wild-type plants 2 days and 6 days post-inoculation (2 dpi and 6 dpi)
of A. tumefaciens strain C58 and (C) of ARF5 and IAA12 in crown gall tumors of the wild-
type Col-0 and wrky single mutants. Relative transcript numbers were quantified by qRT-PCR
and normalized to 10,000 molecules of ACTIN2/8. Bars show mean values (+SD) of three inde-
pendent samples. NS: not significant. * p-value < 0.05; ** p-value < 0.01; **x p-value < 0.001;
NS: not significant (Student’s t-test).

(PDF)

S7 Fig. ARR1 and ARR4 do not activate the oncogene promoters. (A) Relative transcript
numbers of the ARRI and ARR4 genes in crown galls 25 days after inoculation with the virulent
A. tumefaciens strain C58 (C58 Crown gall) and in stems inoculated with the disarmed strain
GV3101 (GV3101 Stems). Relative transcript numbers were quantified by qRT-PCR and nor-
malized to 10,000 molecules of ACTIN2/8. Bars show mean values (+SD) of three independent
samples. (B) Fold induction of InaH, IaaM, Ipt promoter-driven luminescence in Arabidopsis
mesophyll protoplasts transfected with ARR1 and ARR4 transcription factor expression plas-
mids and in the presence or absence of trans-zeatin. The relative luminescence in the absence
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of ARR1, ARR4 expression plasmids and trans-zeatin was set to 1. Bars show mean values
(£SD) of three independent experiments.
(PDF)

S§1 Table. List of transcription factor genes differentially expressed upon infection with
Agrobacterium tumefaciens strain C58. Analyses are based on existing microarray data
[20,46] using the Plant Transcription Factor Database v3.0 [47] (http://planttfdb.cbi.pku.edu.
cn/index.php?sp=Ath) for annotation. Genes are listed according to the following criteria: Fold
change (FCh) > 2 or < 0.5, p value < 0.01. hpi: hours post inoculation; dpi: days

post inoculation.

(PDF)

S2 Table. List of primers used in the different experiments.
(PDF)
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