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Abstract

Background

Anemia is common and is associated with impaired clinical outcomes in diabetic chronic

kidney disease (CKD). It may be explained by reduced erythropoietin (EPO) synthesis, but

recent data suggest that EPO-resistance and diminished iron availability due to inflamma-

tion contribute significantly. In this cohort study, we evaluated the impact of hepcidin-

25—the key hormone of iron-metabolism—on clinical outcomes in diabetic patients with

CKD along with endogenous EPO levels.

Methods

249 diabetic patients with CKD of any stage, excluding end-stage renal disease (ESRD),

were enrolled (2003–2005), if they were not on EPO-stimulating agent and iron therapy.

Hepcidin-25 levels were measured by radioimmunoassay. The association of hepcidin-25

at baseline with clinical variables was investigated using linear regression models. All-

cause mortality and a composite endpoint of CKD progression (ESRD or doubling of serum

creatinine) were analyzed by Cox proportional hazards models.

Results

Patients (age 67 yrs, 53%male, GFR 51ml/min, hemoglobin 131 g/L, EPO 13.5 U/L,

hepcidin-25 62.0 ng/ml) were followed for a median time of 4.2 yrs. Forty-nine patients died

(19.7%) and forty (16.1%) patients reached the composite endpoint. Elevated hepcidin

levels were independently associated with higher ferritin-levels, lower EPO-levels and im-

paired kidney function (all p<0.05). Hepcidin was related to mortality, along with its interaction
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with EPO, older age, greater proteinuria and elevated CRP (all p<0.05). Hepcidin was also

predictive for progression of CKD, aside from baseline GFR, proteinuria, low albumin- and

hemoglobin-levels and a history of CVD (all p<0.05).

Conclusions

We found hepcidin-25 to be associated with EPO and impaired kidney function in diabetic

CKD. Elevated hepcidin-25 and EPO-levels were independent predictors of mortality, while

hepcidin-25 was also predictive for progression of CKD. Both hepcidin-25 and EPOmay

represent important prognostic factors of clinical outcome and have the potential to further

define “high risk” populations in CKD.

Introduction
Anemia is common in patients with chronic kidney disease (CKD) and diabetes and is related
to worse prognosis [1–3]. Herein, anemia enhances well-known diabetic microvascular compli-
cations, while a variety of molecular pathways have been identified [4]. Microvascular and
macrovascular complications of diabetes can be explained by anemia further deteriorating tis-
sue hypoxia [5], which is the main stimulus of endogenous erythropoietin (EPO) release [6].

EPO is the most important hormone of hemoglobin regulation and reduced production of
EPO (“absolute EPO deficiency”) might be a major cause of decreasing hemoglobin levels in
CKD [7]. However, anemia can frequently be detected even in early stages of diabetic CKD [8]
as well as in a multitude of other chronic diseases (“anemia of chronic diseases” [ACD]) [5, 9].
Processes of chronic low-grade inflammation are characteristic for these conditions and may
also be causal for impairments of hemoglobin synthesis [5, 10]. In ACD and anemia of CKD,
alterations of EPO-related mechanisms are discussed, e.g. “relative EPO deficiency”, that is in-
appropriately low levels of EPO (however, within a “normal range” in a non-anemic reference
population) despite low hemoglobin levels. This scenario could indicate either sensing errors
and/or insufficient synthesis of EPO. In contrast, elevated EPO-levels have also been described
in anemic patients; a phenomenon that could be explained by resistance of the bone marrow
to EPO [11–13].

Dysregulation of iron homeostasis represents another key-player in ACD; levels of iron in
the circulation are decreased as intestinal iron-absorption is reduced and the release of storage
iron is inhibited [5, 14]. The hormone hepcidin, with its active isoform hepcidin-25, seems to
be the main regulator of iron homeostasis in this setting [15] and is itself regulated by inflam-
matory processes [16, 17].

While anemia and chronic inflammation are frequently detected in CKD, hepcidin-25 is an
important biomarker, determining impaired iron metabolism in ACD [18, 19]. However, evi-
dence on the prognostic implications of hepcidin-25 is sparse, as only few reports described its
association with clinical outcome [20–22], and importantly, to our knowledge, not by consider-
ing endogenous EPO levels simultaneously.

Previously, we have shown that in a group of patients with type 2 diabetic CKD, elevated
EPO levels were strongly associated with classical markers of inflammation and were also inde-
pendently predictive for mortality [23]. The purpose of the current study was to investigate
hepcidin-25 levels in the setting of diabetic patients with CKD with a focus on its association
with EPO levels and other variables of CKD, anemia and inflammation. Furthermore, we
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analyzed its relationship along with EPO and other known risk factors, to mortality and pro-
gression of CKD.

Materials and Methods
As described previously [23], a cohort of 243 adult patients with type 2 diabetes of any CKD
stage was enrolled between 2003 and 2005 from four nephrology outpatient clinics in the
Würzburg area, Germany. Main exclusion criteria comprised renal replacement therapy (RRT,
dialysis or kidney transplantation) at baseline, and any type of anemia therapy (red blood cell
transfusions within three weeks before enrollment, medical therapy with iron, vitamin B12, fo-
late, or erythropoietin stimulating agents [ESA]). Information was collected on medical history,
physical examination and routine clinical measures, while details on medical history were
based on personal interview as well as by detailed investigation of the patients’ charts. Biomate-
rials were processed immediately and stored at -80°C. Between 2008 and 2009, patients were
followed by telephone interview with their nephrologist and/or primary care physician (PCP)
regarding survival status, initiation of RRT and the patient’s last available serum creatinine
measurement. The latter value was determined prior to death (however, in a considerably sta-
ble condition as judged by the patient’s PCP/nephrologist) or most closely to the date of the
telephone interview. During the same time of baseline examination, a group of n = 29 type 1 di-
abetic patients was enrolled in the study according to the procedures described above, while
longitudinal information was collected up to 2012. The study was approved by the Ethics Com-
mittee of the University of Würzburg. All patients provided written informed consent.

Glomerular filtration rate (GFR) was calculated by taking the average of measured creati-
nine and urea clearance in a 24-hour urine collection, adjusted for body-surface area [24]. If
24-hour urine collection was missing (5% of the total cohort), GFR was estimated according to
the CKD-EPI formula [25]. EPO was measured by ELISA (Roche). For hepcidin measurement,
serum samples were thawed and aliquots were filled into tubes at +4°C and frosted again at
-80°C immediately thereafter. Samples were shipped on dry ice to the Imperial College, Lon-
don, UK within 24 hrs. Hepcidin-25 was measured by RIA as previously reported [26] (range
of measurement: 1.25 to 160 ng/ml, detection limit: 0.6 ng/ml). As biomaterials were not avail-
able for all patients, we studied a total of n = 249 patients (n = 224 type 2, n = 25 type 1 diabe-
tes). Patients with missing serum samples (n = 23) had lower median (inter quartile range,
IQR) GFR of 28.5 ml/min (17.7–57.0; p = 0.01) and tended to have a greater proportion of his-
tory of cardiovascular disease (CVD, 52.2%, p = 0.07) as compared to patients in whom sam-
ples were available (GFR 50.8 ml/min [29.5–70.9]; CVD 32.1%). Other characteristics, such as
age, gender, diabetes type, EPO, CRP or hemoglobin did not differ (all p>0.3). Longitudinal
outcomes of interest included all-cause mortality and a composite endpoint of progression
of CKD, defined as either initiation of RRT or doubling of serum creatinine (SCr) in patients
not on RRT.

Statistical Methods
Analyses were performed on a complete case dataset using SAS 9.3 (SAS Institute, Cary, NC,
USA). Characteristics of participants were compared across hepcidin tertiles (<44, 44–76,>76
ng/ml) using ANOVA, Kruskal-Wallis test, χ2- test, and Fisher’s exact test, as appropriate. Fac-
tors associated with hepcidin levels at baseline were examined using linear regression analysis; if
needed, variables were transformed to assure correct regression analyses, e.g. the logarithmic
form of hepcidin was used. In stepwise forward multivariate analyses, models of basic patient
characteristics, renal function and anemia (model 1), and additional markers of inflammation
and clinical variables (model 2) were built. The association of hepcidin at baseline with mortality
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and progression of CKD was investigated by Kaplan-Meier analyses across tertiles. In Cox
proportional hazards analyses, we investigated the association of hepcidin with clinical end-
points in univariate and in backward multivariate analyses (model 1: pexclusion>0.10, model 2:
pexclusion>0.05), accounting for EPO, the interaction of hepcidin and EPO and other potential
confounders/mediators such as age, albumin, and kidney function, in particular those factors
that indicated a relationship to hepcidin-25 in linear regression analysis. The functional form of
the variables in the Cox models and the proportional hazards assumptions were tested by
Schoenfeld residuals. The model’s predictive ability was assessed by time-dependent C-statistics,
which describe the probability that the model will assign the higher risk to the patient who
achieved the endpoint as compared to the patient who did not.

To test the robustness of results, sensitivity analyses in the final regression models were per-
formed; (a) other kidney function measures: eGFRCKD-EPI for all patients, eGFRMDRD for all
patients, eGFRMDRD in those with missing 24hr urine collection; (b) gender, hemoglobin and
diabetes-type forced in the analyses, as well as testing the models in type 2 diabetics only; (c)
forcing ferritin in the Cox models; (d) excluding patients with iron-deficiency (i.e. ferritin
<30 μg/l [27]); (e) excluding patients with CKD stages 1 and 2 and (f) imputing missing data
(S1 Methods for imputing missing data).

Results
Participants were on average 66.5 years old, 53% were male, with a GFR of 51 ml/min
(Table 1). Patients in the higher hepcidin tertiles were more likely to be male and in advanced
stages of CKD. They were also more likely to be anemic, and with a history of hypertension
and hyperlipidemia. EPO-levels were highest in the low hepcidin tertile. CRP-levels did not dif-
fer across tertiles as did not hemoglobin or the type of diabetes.

Information on at least one subsequent clinic appointment after the baseline visit was col-
lected in all patients after a median observation time of 4.2 years (max. 8.6 years). During
follow-up, 49 patients died, of which 20 were on RRT. Main causes of death were vascular,
e.g. myocardial infarction, stroke, sudden death (n = 19, 38.8%) and due to sepsis/infection
(n = 11, 22.5%). The remaining causes were malignancy (n = 5, 10.2%), other (n = 7, 14.3%),
and unknown (n = 7, 14.3%). Thirty-five patients progressed to ESRD (34 hemodialysis, 1 peri-
toneal dialysis) and in those not on dialysis, SCr doubled in five patients. The composite end-
point progression of CKD was observed in 40 patients.

Determinants of Hepcidin-25 levels
In univariate linear regression analyses at baseline, lower hepcidin levels were found in patients
with preserved and mildly impaired GFR and those with higher EPO levels (Table 2). Hepcidin-
levels were elevated more frequently in male patients and those with hypertension and hyperlip-
idemia, and those with greater values of proteinuria. Hemoglobin was not associated with hepci-
din. In multivariate analyses, the associations of EPO and GFR with hepcidin remained
statistically significant, even after adjustment for markers of inflammation and clinical variables,
e.g. hypertension and hyperlipidemia (models 1 and 2). Levels of hepcidin and ferritin were
strongly correlated, but not entirely co-linear (as assessed by condition indices [28] and variance
inflation factors [29]), thus explaining a large amount of variability in hepcidin levels (R2 = 0.5).

These findings were not altered in sensitivity analyses testing various GFR estimations, and
when gender, hemoglobin and diabetes-type were forced in the model. Similarly, no substantial
changes were observed when only type 2 diabetics were investigated or iron deficient patients
(n = 14) were excluded. Focusing on advanced stages of CKD (stages 3–5, n = 130) did not
change the associations of GFR, EPO and ferritin with hepcidin levels, whereas hypertension
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Table 1. Patient characteristics and outcomes, total cohort and by hepcidin tertile.

hepcidin tertile

total cohort <44 ng/ml 44–76 ng/ml >76 ng/ml
n = 249 n = 83 n = 84 n = 82 p-value

age, yrs 66.5 (57.0–73.2) 67.6 (57.2–73.2) 66.0 (55.4–72.5) 66.3 (58.1–74.2) 0.9

gender, male 52.6% 42.2% 52.4% 63.4% 0.02

body mass index, kg/m2 29.4 (27.0–33.2) 29.3 (26.8–34.1) 29.6 (27.8–32.9) 29.4 (26.4–32.9) 0.8

Diabetes mellitus 0.5

Type 1 10.0% 12.1% 7.1% 11.0%

Type 2 90.0% 88.9% 92.9% 89.0%

duration of diabetes, yrs 10 (4–21.5) 10 (3–19) 12 (4–24) 10 (4–22) 0.5

diabetic retinopathy a 32.1% 28.9% 33.3% 34.2% 0.7

history of CVD b 32.1% 37.4% 32.1% 26.8% 0.4

smoking c 27.4% 24.4% 33.3% 24.4% 0.3

hypertension a 81.9% 73.5% 85.7% 86.6% 0.049

blood pressure, mmHg

systolic 143 ± 22 142 ± 20 143 ± 23 144 ± 22 0.9

diastolic 81 ± 14 80 ± 15 81 ± 14 80 ± 12 0.8

hyperlipidemia a 42.2% 32.5% 42.9% 51.2% 0.052

Laboratory

GFR, ml/min/1.73m2 51 (30–71) 53 (39–76) 51 (31–70) 44 (25–70) 0.07

CKD d 0.05

stage G1 6.3% 6.6% 4.9% 7.4%

stage G2 30.5% 29.0% 35.4% 27.2%

stage G3a 18.0% 25.0% 15.9% 13.6%

stage G3b 18.8% 23.7% 19.5% 13.6%

stage G4 19.7% 13.2% 20.7% 24.7%

stage G5 6.7% 2.6% 3.7% 13.6%

proteinuria, mg/day 186 (107–1145) 156 (94–530) 182 (119–879) 300 (127–1605) 0.10

HbA1c, % 6.9 (6.4–8.0) 6.9 (6.4–7.8) 7.1 (6.4–8.1) 6.9 (6.4–8.1) 0.9

C-reactive protein, mg/dL 0.34 (0.14–0.78) 0.34 (0.16–0.63) 0.25 (0.11–0.90) 0.37 (0.19–0.99) 0.4

albumin, g/dL 4.1 (3.8–4.4) 4.1 (3.8–4.4) 4.1 (3.9–4.4) 4.2 (3.8–4.6) 0.8

total cholesterol, mg/dL 198 (176–223) 198 (176–221) 194 (174–209) 199 (177–227) 0.6

hemoglobin, g/L 131 ± 20 132 ± 19 133 ± 20 129 ± 19 0.3

anemia e 37.9% 31.1% 33.3% 49.4% 0.04

ferritin, μg/L 149 (71–244) 65 (38–112) 154 (105–223) 260 (159–363) <0.001

EPO, U/L 13.5 (9.2–18.4) 15.2 (9.6–23.7) 12.8 (9.1–16.6) 13.4 (9.3–16.7) 0.04

hepcidin, ng/ml 62.0 (33.0–83.0) 26 (16.8–33) 62 (55–69) 96 (83–120) <0.001

Outcomes

death 19.7% 22.9% 13.1% 23.2% 0.18

initiation of RRT 14.1% 4.8% 15.5% 22.0% 0.006

doubling of SCr 2.0% 2.6% 2.9% 1.6% 0.9

progression of CKD (RRT or doubling of SCr) 16.1% 7.4% 18.1% 23.2% 0.02

Legend: data are means ± standard deviation, medians (interquartile range) and proportions (%); p-value across hepcidin tertiles; abbreviations: EPO,

endogenous erythropoietin; CVD, cardiovascular disease, GFR, glomerular filtration rate; TIA, transient ischemic attack; SCr, serum creatinine; RRT, renal

replacement therapy.
a self-reported history or as specified in the patient’s chart
b self-reported history of angina pectoris, myocardial infarction, stroke /TIA, or as specified in the patient’s chart
c current smoker or stopped within the past 5 yrs
d CKD stages G1 and G2 defined as proteinuria and GFR >90 ml/min and 60–90 ml/min, respectively
e hemoglobin <120 g/L in women and <135 g/L in men

doi:10.1371/journal.pone.0123072.t001
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and dyslipidemia lost significance (detailed data not shown). Finally, the beta-coefficients of
the complete case model 2 were within the confidence limits of the regression model on the im-
puted dataset (S1 Table. Multivariate linear regression analysis on imputed dataset, dependent
variable log-hepcidin).

Association of Hepcidin-25 with Mortality
In univariate analyses, no clear relationship between hepcidin and the probability of survival
was observed (Fig 1 and Table 3). Older age, male gender, a history of CVD, impaired kidney

Table 2. Determinants of log-hepcidin-level (linear regression analyses).

univariate multivariate

model 1 model 2

age [10 yrs] -0.02 (-0.09; 0.05) 0.002, p = 0.5 –

gender, male 0.24 (0.08; 0.41) -0.11, p = 0.13 0.21 (0.04; 0.37)

type 2 diabetes -0.09 (-0.37; 0.19) -0.03, p = 0.7 –

EPO [log (U/L)] -0.02 (-0.39; -0.09) -0.007 (-0.04; -0.01), p = 0.065 -0.01 (-0.02; 0.00)

GFR [10 ml/min/1.73 m2] -0.04 (-0.07; -0.004) -0.04 (-0.06; -0.01) -0.03 (-0.06; -0.01)

proteinuria [log(mg/day)] 0.05 (-0.007; 0.11) 0.02, p = 0.4 –

hemoglobin [g/L] -0.005 (-0.05; 0.04) -0.01, p = 0.8 –

ferritin [log(μg/L)] 0.48 (0.41; 0.55) 0.46 (0.39; 0.53) 0.45 (0.38; 0.52)

CRP [log(mg/dl)] 0.03 (-0.03; 0.10) – 0.02, p = 0.6

albumin [(g/dL)2] 0.002 (-0.02; 0.02) – -0.002, p = 0.7

history of CVD -0.13 (-0.31; 0.05) – -0.05, p = 0.5

hypertension 0.19 (-0.02; 0.41) – 0.18 (0.02; 0.35)

hyperlipidemia 0.21 (0.05; 0.39) – 0.13 (0.00; 0.25)

Legend: data are beta-coefficients (95% CI), displayed bolded if p<0.05; multivariate linear regression models were built stepwise (model 1: basic patient

characteristics, model 2: additional markers of inflammation and clinical variables), while eliminating variables with p>0.1 within each model (beta-

coefficients and p-values are displayed before variables left the model); abbreviations: CI, confidence interval; EPO, endogenous erythropoietin; CVD,

cardiovascular disease; GFR, glomerular filtration rate; CRP, C-reactive protein;

doi:10.1371/journal.pone.0123072.t002

Fig 1. Probability of survival according to hepcidin tertiles. low (black), intermediate (blue), high (red);
(Kaplan-Meier analysis, plog-rank = 0.19).

doi:10.1371/journal.pone.0123072.g001
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function (GFR and proteinuria) as well as lower hemoglobin and albumin levels and higher lev-
els of CRP were significantly associated with mortality in univariate analyses. Patients with type
2 diabetes were at higher risk for mortality when compared to type 1 diabetics. In multivariate
analyses, male gender, type 2 diabetes, a history of CVD, hemoglobin, albumin and GFR lost sig-
nificance, while older age, the extent of proteinuria and higher CRP-levels remained significant-
ly related to mortality (all p<0.05). These analyses also revealed an independent association of
higher hepcidin levels with a higher risk for mortality, in particular when the interaction of hep-
cidin and EPO levels was considered simultaneously. Although higher hepcidin levels were
(HRhepcidin = 1.49, p = 0.01) and higher EPO levels tended to be (HRlogEPO = 2.47, p = 0.08) re-
lated to mortality, the interaction of both (HRhepcidin�logEPO = 0.86, p = 0.01) attenuated the risk
for mortality. These observations get supported by an increased C-statistic (0.823 ± 0.031), if
both hepcidin and EPO were considered in model 2 as compared to the model without these
variables (0.809 ± 0.029); while the difference between these C-statistics was not statistically sig-
nificant (p = 0.4).

Ferritin was not associated with mortality, neither in univariate analyses (HRlogferritin 0.97,
p = 0.9), nor when being forced in the final Cox model 2 (HRlogferritin 1.00, p = 0.9), while the
relations of the other variables remained stable. In further sensitivity analyses (see methods)
the direction as well as magnitude of the associations remained largely unchanged. Restricting
the dataset to patients with advanced stages of CKD (i.e. stages 3–5, n = 130 patients, n = 41
outcomes), did not markedly alter the association of hepcidin to mortality and also not the in-
teraction of EPO and hepcidin, but age, gender and history of CVD lost significance (detailed
data not shown). Hazard Ratios of the complete-case model were within the 95% confidence
limits of hazard ratios derived from the imputation (S2 Table. Multivariate Cox proportional
hazards analysis on imputed dataset, outcome mortality).

Table 3. Determinants of mortality (Cox proportional hazards analysis)

univariate multivariate

model 1 model 2

hepcidin [10 ng/ml] 1.024 (0.951; 1.102) 1.513 (1.136; 2.015) 1.491 (1.095; 2.029)

EPO [log (U/L)] 1.497 (0.867; 2.585) 2.612 (0.972; 7.020) 2.466 (0.884; 6.877)

hepcidin * logEPO – 0.846 (0.759; 0.944) 0.858 (0.763; 0.9763)

age [10 yrs] 1.917 (1.413; 2.602) 2.225 (1.399; 3.538) 1.982 (1.292; 3.042)

gender, male 1.982 (1.089; 3.601) 2.030 (0.873; 4.721) 2.03, p = 0.10

type 2 diabetes 3.715 (1.015; 13.60) 0.78, p = 0.8 –

GFR [10 ml/min/173m2] 0.718 (0.624; 0.826) 0.96, p = 0.7 –

proteinuria [log(mg/day)] 1.487 (1.229; 1.799) 1.538 (1.227; 1.929) 1.625 (1.305; 2.023)

hemoglobin [g/L] 0.829 (0.725; 0.949) 0.99, p = 0.9 –

CRP [log (mg/dl)] 1.509 (1.194; 1.908) 1.592 (1.163; 2.179) 1.566 (1.133; 2.165)

albumin [(g/dl)] 0.425 (0.276; 0.655) 0.74, p = 0.5 –

history of CVD 3.663 (2.041; 6.571) 1.63, p = 0.2 –

hypertension 1.216 (0.566; 2.611) – –

hyperlipidemia 1.055 (0.598; 1.864) – –

ferritin [log(μg/L)] 0.973 (0.715; 1.324) – –

Legend: data are hazard ratios (HR) (95% confidence interval, CI), displayed bolded if p<0.05; multivariate Cox models were built with backwards

selection (model 1: pexclusion>0.10, model 2: pexclusion>0.05), accounting for variables significant (p<0.05) in univariate associations (HRs and p-values are

displayed before variables left the model)

doi:10.1371/journal.pone.0123072.t003

Hepcidin-25 in Diabetic Chronic Kidney Disease

PLOS ONE | DOI:10.1371/journal.pone.0123072 April 20, 2015 7 / 14



Association of Hepcidin-25 with Progression of CKD
Elevated levels of hepcidin were related to a higher risk for progression of CKD (Fig 2 and
Table 4). Moreover, older age, male gender, a history of CVD, higher levels of CRP and pro-
teinuria, and lower levels of albumin, hemoglobin and baseline GFR were associated with this
composite endpoint in univariate analyses. Kidney function (lower GFR as well as greater
proteinuria) was also the strongest determinant of CKD progression in multivariate analyses
(multivariate model), along with lower hemoglobin and albumin levels, a history of CVD and
elevated hepcidin levels (all p<0.05). The incremental value of hepcidin to the model was

Fig 2. Probability of time free of progression of CKD according to hepcidin tertiles. low (black),
intermediate (blue), high (red); (Kaplan-Meier analysis, plog-rank = 0.01).

doi:10.1371/journal.pone.0123072.g002

Table 4. Determinants of progression of CKD (Cox proportional hazards analysis).

univariate multivariate

hepcidin [10 ng/ml] 1.179 (1.095; 1.270) 1.134 (1.041; 1.235)

EPO [log(U/L)] 1.463 (0.797; 2.687) 1.13, p = 0.8

age [10 yrs] 1.330 (1.000; 1.768) 0.92, p = 0.7

gender, male 2.100 (1.083; 4.071) 1.53, p = 0.4

type 2 diabetes 2.432 (0.719; 8.229) –

GFR [10 ml/min/173m2] 0.431 (0.330; 0.561) 0.545 (0.370; 0.802)

proteinuria [log(mg/day)] 2.202 (1.740; 2.786) 1.542 (1.133; 2.101)

hemoglobin [g/L] 0.652 (0.570; 0.746) 0.678 (0.503; 0.915)

CRP [log (mg/dl)] 1.779 (1.342; 2.358) 1.28, p = 0.2

albumin [g/dl] 0.325 (0.218; 0.484) 0.301 (0.119; 0.762)

history of CVD 2.771 (1.488; 5.162) 2.345 (1.035; 5.316)

hypertension 1.526 (0.596; 3.907) –

hyperlipidemia 0.894 (0.475; 1.683) –

ferritin [log(μg/L)] 1.313 (0.918; 1.878) –

Legend: data are hazard ratios (HR) (95% confidence interval, CI), displayed bolded if p<0.05, the

multivariate Cox model was built with backwards selection (pexclusion>0.05), accounting for variables

significant (p<0.05) in univariate association and EPO (HRs and p-values are displayed before variables

left the model)

doi:10.1371/journal.pone.0123072.t004
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described by a (non-significantly, p = 0.12) increased C-statistic of 0.949 ± 0.012 as compared
to the model without hepcidin (0.938 ± 0.013).

No association of ferritin with progression of CKD was observed, neither in univariate/
multivariate models, nor when ferritin was forced in the multivariate model. EPO levels were
also not related to progression of CKD in these analyses, including the interaction with hepcidin
or by forcing EPO in the final model. The results were also not altered by forcing in diabetes
type and when the analyses were performed on type 2 diabetics only. Results were largely un-
changed by excluding iron deficient patients and patients with early stages of CKD (detailed
data of sensitivity analyses not shown). Finally, the observed associations were similar in the
imputed dataset (S3 Table. Multivariate Cox proportional hazards analysis on imputed dataset,
outcome progression of CKD).

Of note, medication with statins or ACE-inhibitors/Angiotensin-Receptor-blockers at base-
line was not associated with hepcidin-levels or any of the investigated clinical outcomes in
univariate analyses (S4 Table. Univariate linear regression analyses, dependent variable log-
hepcidin medication variables; S5 Table. Univariate Cox proportional hazards analyses, out-
come mortality, medication variables; S6 Table. Univariate Cox proportional hazards analyses,
outcome progression of CKD, medication variables).

Discussion
In the current cohort study of diabetic patients which were mainly in CKD stages 2 and 3, we
found that anemia was common and hepcidin levels were related to endogenous EPO levels
and impaired kidney function. These findings were independent from inflammatory processes
(e.g. CRP levels) or other clinical conditions (e.g. hypertension, hyperlipidemia). In particular
after multivariate adjustment, hepcidin was independently predictive for mortality and progres-
sion of CKD. We observed an interesting role of EPO in this setting as the interaction of hepci-
din and EPO was independently associated with mortality.

Although the pathophysiology of type 1 and type 2 diabetes per se is very different, we did
not detect any major variation of the associations of hepcidin and EPO and also of both with
the investigated outcomes when the type of diabetes was investigated in detail. While based on
a considerably small group of patients with type 1 diabetes, these results suggest that the patho-
physiology of anemia in diabetic CKD may be similar in large parts, including inflammatory
processes as described in ACD.

Hepcidin is the key-hormone of iron metabolism in ACD [14] and inflammatory processes
are not only a cause, but also a symptom of iron dysregulation [30–32]. The release of hepci-
din-25 leads to internalization and degradation of the iron export channel ferroportin [17].
High hepcidin levels thus result in reduced plasma iron and diminished iron availability. Hep-
cidin synthesis and release themselves are regulated by changes in iron storage, hypoxia and
erythropoiesis [33], and elevated levels of the hormone have been described in association with
markers of inflammation (e.g. C-reactive protein, interleukin-6), anemia (e.g. hemoglobin and
endogenous EPO) and also with iron status (e.g. ferritin) [18, 34, 35]. We confirmed a strong
relationship of hepcidin with ferritin [36] which reflects the pathophysiological mechanism:
hepcidin inhibits iron release [18] and thus causes high levels of stored iron, i.e. ferritin. Al-
though a substantial amount of the variability of ferritin is mediated through hepcidin, other
factors were independently related to hepcidin, such as GFR and EPO. However, we could not
detect any meaningful role of ferritin in predicting mortality or progression of CKD.

Understanding the pathophysiology of ACD in the setting of CKD is important if treatment
with iron or ESA needs to be started. It is well known that patients with elevated levels of in-
flammatory markers need higher doses of ESA to reach certain hemoglobin targets and that
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these patients are at particularly high risk for mortality [22, 37]. It is still not entirely under-
stood whether it is the use of a higher ESA dose itself or the underlying reasons that necessitate
the use of higher ESA doses to achieve target hemoglobin levels that put this group of “non-
responders” at particularly “high risk” [22]. Knowing EPO and hepcidin-25 levels [38, 39]
might help understanding these processes and to further characterize the group of “high
risk” patients.

Data on hepcidin as a risk factor for clinical outcomes in particular in the setting of CKD
are sparse. Reports indicated progression of atherosclerotic plaques, and increased risk of CV
events and CV mortality [20]. Enhanced oxidative stress caused by iron dysregulation further
promotes inflammatory processes and dysregulation of erythropoiesis, such as EPO release
and responsiveness of the bone marrow to EPO [5]. Niihata et al. found hepcidin being strong-
ly associated with markers of inflammation and independently predictive for the progression
of anemia in non-dialysis dependent CKD patients [21]. Chronic (low-grade) inflammation
not only is evident in CKD but represents also an important determinant of CVD in this setting
[40]. Inflammatory processes have been shown to be predictive for progression of CKD in type
2 diabetics [41, 42], but also for CV-events and for all-cause mortality in patients on hemodial-
ysis. Impairments of iron-regulation, i.e. elevated hepcidin levels, were independently related
to CV events and left ventricular mass, but the univariate association of hepcidin with mortality
diminished after multivariate adjustment in ESRD-patients of the CONTRAST study [22, 43].

In our cohort of diabetic patients not on RRT we found hepcidin-25 being independently
associated with progression of CKD even after adjustment for baseline GFR, proteinuria and
other well-known parameters of worse prognosis, such as lower levels of albumin and hemo-
globin [44]. Numerically, the predictive ability (C-statistic) was increased by adding hepcidin
to the model, but this finding was not significant due to limited statistical power. Analysis of
hepcidin regarding its relationship to mortality rendered a potential interplay between hepci-
din and endogenous EPO. Elevated levels of both variables indicated an increased mortality
risk. Therefore, we hypothesized that if both can be observed in a patient, this would indicate a
potentiated risk of mortality. In fact, we found the opposite: the “protective”Hazard Ratio for
the interaction term suggested that the worse prognosis was somewhat weakened. Adding hep-
cidin, EPO, and their interaction also numerically augmented the model’s prognostic informa-
tion, even after adjustment for age, inflammation (CRP) and proteinuria. Taking into account
the limited sample size of our study, thus requiring cautious interpretation and certainly con-
firmation by future studies, our results suggest that the combination of both variables, hepcidin
and EPO, carries important prognostic information.

Hepcidin has demonstrated its role as a biomarker for iron homeostasis [19], but its utility
as a predictor of clinical outcome should be explored in more detail, in particular how much in-
cremental prognostic value is carried in addition to established risk factors, such as age, GFR,
and anemia. It also needs be investigated, how treatment decisions based on hepcidin measure-
ment may affect clinical outcome, potentially via reducing hepcidin-25 by pharmaceutical in-
terventions which are currently under investigation; these include monoclonal antibodies
directed against hepcidin [45] or HIF (hypoxia inducible factor) prolyl hydroxylase inhibitors
[46]. Herein, novel treatments focusing on modulation of inflammatory pathways may also
yield promising results [47]. However, reduction/suppression of elevated hepcidin-25 or mod-
ulation of signal cascades without direct treatment of the potentially underlying conditions
that cause elevated hepcidin levels may limit the success of these therapeutic strategies.

Although our study sample is of limited size, the main strengths of the current dataset are a
detailed collection of baseline variables and a considerably long observation time of up to 8.6
years. However, we are aware of several limitations of the current results. In both, linear regres-
sion, but particularly in the outcome analyses, a large number of explanatory variables were
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included in the models, thus overfitting of the models and finding associations by chance is
surely possible. The limited sample size itself is prone to confounding. We understand our ap-
proach as mostly hypothesis generating and our results have to be confirmed by other research-
ers in independent and larger datasets. Moreover, hepcidin-25 was measured by RIA instead of
the gold-standard mass spectrometry and only measurements at baseline were available (with-
out having noted the exact day-time). This is of particular interested, as substantial intra-
individual variability of hepcidin-levels was found [48, 49]. Analysis of subsequent hepcidin
measurements and analyses of changes of hepcidin-levels over time would surely provide im-
portant insights. Finally, we did not collect information on clinical events during follow-up,
such as CVD events or stroke, and information on the cause of death was gained from medical
records of the patient’s PCP or nephrologist with no assessment by a formal endpoint commit-
tee. Therefore, and due to small numbers of outcomes within each category, we did not analyze
specific causes of death.

Conclusions
We found that in diabetic CKD, hepcidin-25 levels were independently associated with endoge-
nous EPO levels and impaired kidney function even after adjustment for markers of inflamma-
tion. Hepcidin as the key hormone of iron homeostasis was also predictive for important
clinical outcomes, namely progression of CKD and mortality. The latter relationship was further
described by a significant interaction of hepcidin and EPO. After confirmation by independent
studies, our findings suggest that both, hepcidin and EPO may represent important prognostic
factors for clinical outcome and may have the potential to further define “high risk” popula-
tions in CKD.
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